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Abstract

Personal robots associated with ambient intelligence are an upcoming solution for domestic care.
In fact, helped with devices dispatched in the environment, robots could provide a better care to
users. Although numerous works were conducted in that direction, major challenges are remaining.
In this thesis, we aim to cover the problems of perception, cognition and action, in order to ensure
the quality of service provided by robots in smart environments.

Although perception phase, consisting of context acquisition, is eased by using both sensors from
robots and smart environments, such a variety of sources also brings issues of data quality and con-
flicts. Consequently, data and information provided by sensors can be imprecise, inaccurate, out-
dated, in contradiction, or simply missing. In other words, handling uncertainty is an essential chal-
lenge to tackle and leads to the following question: How can the robot acquire and understand the
context while supporting all uncertainty issues? After perceiving, we enter in the cognition phase to
reason and make a decision. The objective is to understand and identify anomalous situations that
require the reaction of the robot. Consequently, the main issue is: how to detect these situations at
runtime over uncertain data and knowledge in order to set a goal for the robot? Performing actions
usually relies on task planning to reach a goal. As the smart home in which the robot will evolve is not
known in advance, it is impossible to provide an exhaustive knowledge for task planning. Moreover,
unexpected changes in the environment may occur during the plan execution. These problems lead
to numerous task failures. Hence, task planning is facing the following challenge: How to understand
the causes of failures in order to proactively avoid them in the future?

In this thesis, we proposed multiple contributions, exploring both reasoning and learning ap-
proaches. To tackle uncertainty, we proposed a novel context acquisition approach that deals with
four uncertainty dimensions by semantically enriching and fuzzifying events, while existing tech-
niques only cover two or three dimensions. In order to identify anomalous situations, we defined an
hybrid solution based on Markov Logic Networks and a context ontology. By adding more semantic
in the inference, we reach a more accurate situation identification even with partial observations.
Finally task failures due to incomplete knowledge are tackled by a reinforcement learning method
which identifies the causes. The knowledge of the task planner is then enriched with these detected
causes. In dynamic environments, classical planners wait for the task failure to regenerate the whole
plan and may have wasted time and energy to execute useless tasks. To avoid this, we propose to
incrementally generate the plan and execute it on the fly in order to take into account the last con-
text changes. Consequently, by combining these two proposals, task failures will be prevented in
the future. As a result, all these contributions form a global framework that can be specified and
configured for various robots and smart environments.

Each of our contributions was prototyped, tested and validated through simulations and/or phys-
ical tests using a small humanoid robot and a smart home development platform.






Resume

Lassociation de robots personnels et d'intelligences ambiantes est une nouvelle voie pour laide a
domicile. En effet, en sappuyant sur les appareils intelligents présents dans lenvironnement, les
robots pourraient fournir un service de haute qualité. Cependant, méme si plusieurs travaux vont
dans cette direction, il y a encore de nombreux verrous. Cest pour cela que dans cette thése, nous
cherchons a résoudre les problématiques de perception, de cognition et daction rencontrées par les
robots dans des environnements intelligents, et ainsi assurer la qualité de service de ces derniers.

Méme si la perception est facilitée par lutilisation des capteurs a la fois de lenvironnement intel-
ligent et du robot , une telle variété de capteurs est une source de conflits et de défauts. Cela peut
en effet engendrer des données imprécises, erronées, périmées, en contradiction ou incomplétes.
Lincertitude est donc un probléme majeur, mais comment le robot peut il acquérir et comprendre le
contexte malgré cette incertitude ? Une fois le contexte percu, le robot entre dans la phase de cog-
nition pour raisonner et prendre une décision. Ce dernier doit comprendre et identifier si la situation
estanormale, et si cest le cas, intervenir pour résoudre cette situation. Ainsi, comment le robot peut
détecter des situations anormales, a lexécution et malgreé lincertitude, afin de prendre une décision
? Pour atteindre lobjectif choisi par sa décision, le robot va établir un plan dactions via un plani-
ficateur. Un tel outil se base sur une connaissance préétablie. Cependant, chaque environnement
étant différent et ouvert, il est irréaliste que cette connaissance soit exhaustive. En plus de cela, pen-
dant que le robot suit son plan, des changements peuvent avoir lieu dans lenvironnement. Ces deux
faits engendrent des échecs dactions, ce qui nest pas acceptable. Comment le robot peut-il donc
comprendre les causes déchec pour ensuite les éviter proactivement ?

Dans cette thése, nous avons proposeé plusieurs contributions, sappuyant sur le raisonnement
et/ou lapprentissage. Pour faire face au probléeme d'incertitude, nous avons proposé denrichir sé-
mantiquement et de flouter des événements fournis par les capteurs. Cela permet a notre approche
de gérer quatre dimensions d'incertitude, la ou les méthodes classiques nen aborde que deux ou
trois. Pour la détection des situations anormales, et par la suite la décision, nous avons étudié une
méthode hybride basée sur les Réseaux Logiques de Markov et une ontologie de contexte. Grace
a une sémantique de plus haut niveau dans linférence, nous arrivons a détecter précisément les
situations anormales, et ce, méme si la connaissance est partielle. Enfin, afin déviter les échecs
dactions dus a un manque de connaissance, nous avons proposé une méthode dapprentissage par
renforcement qui identifie les causes déchecs et enrichit la connaissance du planificateur. Quant au
dynamisme de lenvironnement, alors que les approches classiques attendent léchec pour recréer
un plan, nous avons concu un outil qui crée le plan incrémentalement et lexécute a la volée. En
combinant ces deux propositions, les échecs peuvent étre proactivement évités. Au final, toutes ces
contributions peuvent étre regroupées pour former un framework global qui peut étre spécifié et
configuré pour de multiples robots et environnements intelligents.

Chacune de nos contributions a été implémentée, testée et validée au travers de simulations
et/ou de tests a laide dun petit robot humanoide et dune plateforme intelligente.
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Chapter 1

Introduction

1.1 Research Context

Who hasn't dreamed of being served by robots at home ? Or being helped ubiquitously by various
devices in the environment ? Over the years, people have kept foreseeing what could be possible
and how our life could be improved with robots and intelligent spaces. From Asimov’s robots to
Iron Mans JARVIS ubiquitous intelligence, through Disney’s Wall-E interpretation, these technologies
are now part of the collective imagination, for the good and the bad. For a long time they were
purely fiction. However, with the current breakthroughs in robotics, Artificial Intelligence and Internet
of Things (loT), they are getting closer to reality. Nowadays, we observe the emergence of service
robots in museums, train stations!, and at home. Similarly, we can see our environments getting
smarter thanks to novel sensors and actuators, particularly for homes, also known as smart homes
in that case. These new products are also relatively immature and primitive. Huge progress are under
way as there is a growing demand. In fact, although robots and smart homes can improve comfort
and security for everybody, such technologies are also answering a major society problem: ageingg.
With the population growing older, robots and smart environments offer a promising opportunity
for cheap domestic health careB BB |n fact, smart homes and robots can provide user monitoring,
perform daily tasks, ensure surveillance, and keep company against loneliness.

In this thesis, we want to study the management of data for both robots and smart environments
in shared domestic context. To acquire and use data, robots and smart environments can rely on
numerous method and techniques, each having their own features, strengths and weaknesses. But
where are we today in these research fields ? What are the problems we are facing ? They both share
the same purpose: enhancing users' life. They sometimes operate independently from one another,
but wouldn't it be more relevant for them to work together, to cooperate? In the next subsections, we
discuss these matters after defining and clarifying what are personal robot and smart environments,
including smart homes.

"https://www.ter.sncf.com/pays-de-la-loire/gares/services-en-gare-et-a-bord/pepper
Zhttp://www.un.org/en/sections/issues-depth/ageing/
3https://www.youtube.com/watch?v=ppPLDEi821g
*https://www.youtube.com/watch?v=XuwP5i0B-gs
*http://medicalfuturist.com/healthcare-is-coming-home/
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11.1 Personal Robots

Robots have been studied and developed for decades. Over the years, they have acquired numerous
forms and purposes. Some of them are industrial arms in factory, others are floating assistant in the
International Space Station, while others take the shape of a plusha. To classify these robots, Kim
[91] pointed out three generations of robots matching the eras of modern computing:

1. Industrial Robots, that aim to execute repetitive tasks in factories.
2. Personal Robots, that help persons in their everyday life.
3. Ubiquitous Robots, that can perform services anywhere, any time.

First generation robots, that is to say industrial robots, started emerging during the fifties and are
nowadays mature and widely used in factories. They aim to perform precise manufacturing tasks
that are tough and tiring for humans. These robots are the achievement of years of innovation in
mechatronics, but they do lack intelligence. Current research is pushing toward smarter industrial
robots that have the ability to collaborate with humans, also known as cobots or collaborative robots
[136, 52]. Although they are sometimes used with specific external sensors [42, 13, 2], industrial
robots rarely share their environment with other devices. The industry 4.0 pushes toward more
smart environments around those robots, but remains limited.

At the opposite of the spectrum, we can find ubiquitous robots [92]. These third generation
robots are able to navigate the ubiquitous space to provide services anytime, anywhere, on any avail-
able devices. In fact, such robots are part of a large smart space and can go through networks to use
devices according to their needs, such actuators in a smart home or robotic "bodies#B. Some re-
searchers have already started exploring the third generation of robotics [91, 92], including projects
such as LIRECE [61] or UNR-PF [85]. However, this is a relatively novel field of research with major
bottlenecks to pass [34].

Today, research and industrial effort is mostly being put in the second generation of robots,
namely personal robots. As implied, such robots aim to provide personal help and service in daily
living, in particular at home. The research community is noticeably active around personal robots,
as illustrated by the Robocup @Home competition [186]. In fact, this generation is pushed forward
by societal demands, for domestic services, but also and mainly for health care. As a matter of
fact, personal robots are explored to help disabled people [64, 178] and persons with Autism Spec-
trum Disorder (ASD) [127]. On top of that, personal robots were extensively studied through major
projects such as Robot-Era [22] or CompanionAble [67]. In this thesis, we are considering personal
robots in a domestic context. But what is a personal robot?

As implied, a personal robot is, first of all, a robot: it is a device equipped with sensors, actuators
and computational units that allow it to perceive, navigate, act and interact with humans. Personal
robots are conceived to help one or multiple persons by performing tasks according to the willand/or

éhttp://www.phoque-paro.fr/
"https://vimeo.com/21156543
8https://www.youtube.com/watch?v=uKL0Jbn_6nc
‘http://lirec.eu/
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need of users. To this end, the robots need to be provided with a high level of intelligence, as well as,
the ability to interact with humans, referred as Human Robot Interaction (HRI). This kind of robots
can also be referred as service robots or, in some cases and particularly for vacuum robots, domestic
robots. In the rest of this document, we will refer to them by using equally Personal Robots or
Service Robots.

Personal robots, thanks to their mobility, sensors and actuators, are able to perform complex
tasks anywhere in the environment. They can, for instance, patrol in a house for surveillance or grab
objects to deliver to the user. However, some tasks, yet straightforward for humans such as opening
doors, can be challenging for robots19. Furthermore, another issue is the range of their sensing
abilities, in fact, they can only be aware of their immediate surroundings and may have problems
monitoring distant elements. These are possibly strong limits for personal robots. Yet, they could be
solved by a smart environments providing more information and possibilities to a personal robots.

1.1.2 Smart Environments

Along with the emergence of Artificial Intelligence (Al), smart environments, in particular smart homes,
are becoming more and more popular [169, 105]. A smart home consists of a housing equipped
with smart devices: electronic devices that can sense, communicate with other smart devices, and
act with some intelligence, for instance, an actuator may perform a task under particular conditions.
Smart devices differ from classical devices by their intelligence and communication capabilities, for
example, a smart fridge[':1 is not only able to store food, but is also connected to the internet and can
interact with a smart phone. More generally, a smart environment is a place, such as a shop, a mu-
seum [4] or other, that is equipped with smart devices. Some companies are proposing all-in smart
home solutions, such as Orange@. Nowadays, we observe the emergence of the Internet of Things
(IoT), where objects are connected to the Internet. Pushed by this rise, there is an increasing number
of various smart devices on the market, ranging from toothbrushest3 to cameras M. Yet, these newly
available sensors can be used locally for the intelligence of the room. Be aware that this work is not
more related to the loT than the usage of similar devices.

The research community about smart devices network is highly active. In fact, pervasive or ubig-
uitous computing is a trendy topic [190, 189, 145, 12], yet much larger than smart homes: pervasive
or ubiquitous environments refer to environments that can perform services anywhere, anytime,
which is out of the scope of this work. The literature is also active on more specific environments
enhanced with devices, that are referred to as smart environment or ambient intelligence when re-
ferring to the behaviour mechanism [12]. As a smart home is a housing enhanced with devices, a
smart home is a smart environment. In this document, we will equally use the term ambient intelli-
gence, smart environment, as well as, more specially, smart home. Note that, in this work, although
we focus on domestic application, we consider all kinds of smart environment, in particular in our
review of the literature.

Ohttps://www.youtube.com/watch?v=UU0o8N9_iHO
"https://www.samsung.com/us/explore/family-hub-refrigerator/overview/
Zhttps://homelive.orange.fr/

Bhttps://www.kolibree. com
“https://wuw.netatmo.com/en-GB/product/security/
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At home, ambient intelligence enables automatic control, for lighting and heating for example. It
is also an efficient automatic security system, forinstance, Netatmo Welcome is able to identify users
and triggers an alert if the person is unknown. Smart environments also offer promising possibilities
for health care [105]. In fact, they are a proper solution to monitor patients: medical staff can be
informed of the activity of the user or health information, and be alerted if necessary, if the user falls
for instance. Smart environments can also perform specific tasks, turning on the light in the most
obvious example, but we can also think about automatic doors or smart TV. However, the sensor
network may not cover the whole home, typically, the user may fallin a blind spot. Furthermore only
specific tasks can be performed. On top of that, it may be uncomfortable for a person to interact
with a smart environment. In fact, it has no real face or body to represent it and this can be disturbing
for the user. These issues could be solved by interacting with a personal robot, thanks to its mobility
and ability to naturally interact with humans.

1.1.3  An lllustrative Example of a Personal Robot Interacting With a Smart Home

As we pointed out, both smart environments and personal robots are emerging and provide inter-
esting possibilities of domestic services, including health care. Each of them has its own strengths
and weaknesses, they however fulfil the same role: improve users quality of life. Consequently,
combining both seems to be a promising approach. In fact, by interacting with each other, personal
robots and ambient intelligence can overcome the weaknesses of each other and enable more pos-
sibilities, providing an overall improved quality of services. However, such an interaction can also
induce new challenges. Let us have an illustrative example that depicts the interest and challenges
of using personal robots and smart environments.

Arthur and Nono

Arthur is an elderly living alone in its smart home. Actually, he is not exactly alone as he possesses his
own service robot: Nono. Nono helps Arthur’s daily routine by performing multiple and various tasks,
from information to object manipulation. The robot can rely on the smart home and its several de-
vices to achieve its goals. In fact, the smart environment contains various sensors; it is composed of
cameras (2D/3D), movement sensors, beacons, RFID tags and sensors, opening sensors (on doors
and windows), Arthur's smart phone, connected devices (stove, TV, fridge, etc.), thermometers, gas
detectors, air quality sensors, switches, and microphones. It also possesses various actuators: lights,
smart devices (TV, fridge, heaters, etc.), motorized doors, alarms (i.e. speakers), motorized windows
and shutters, and user’s smart phone. Nono, the personal robot, is equipped with various sensors,
including 2D and 3D cameras, sonar, microphones, inertial units, contact sensors, and internal mon-
itoring sensors (battery, temperature, etc.). It has arms that allow to grab and carry small objects or
press on buttons. Nono embeds a basic intelligence and is able to speak, listen, and identify user’s

activity using its cameras.
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A Daily Adventure

It's almost noon. Arthur, as usual, is preparing his lunch. In the meantime, Nono is standing by in the
living room. Arthur’s cooking implies heating a meal for a long time, thus, until it ends, he decides to
lay down on the living room sofa. However, after a few minutes, Arthur fell asleep. Nono was looking
at him, thanks to its cameras, it guesses that its master was sleeping. This is confirmed by the living
room microphone that detects low noise level. Thanks to its connected stove and thermometer,
the ambient intelligence detects the stove is still on, and informs Nono about it. This could be a
problem, as the meal may be overcooked or a more hazardous event could occur, such as a fire. As
Arthur is sleeping, Nono decides to directly go to the kitchen and to shut down the stove. The robot
computes a plan of actions to achieve it: it has to (1) go to the kitchen, (2) approach the stove, (3) shut
it down and (4) activate the kitchen vent through the smart environment. It proceeds to execute
the plan and reaches the stove. As the stove has no connectivity, the robot then presses the easy
manipulable button to turn the stove off Lastly, it communicates with the smart environment to turn
the vent on. Nono has successfully prevented any hazard and cleared the air in the kitchen. After
this task, the robot decides to go back to the living room and informs Arthur of its action as soon as
he is awake. By the time Nono reaches the room, Arthur has woken up and moved to the bedroom,
while still having forgotten his meal. When it arrives in front of the sofa, Nono couldn' find Arthur,
and apparently, no movement was detected in this room. However, the ambient intelligence has
detected movement in the corridor and the bedroom. Nono infers that Arthur is likely to be in the
bedroom and proceeds to go there. On the way, the bedroom’s door appears to be close, but Nono
stops its current action to ask the motorized door to open, then the robot enters as it was expected
to do. Once there, it successfully finds Arthur and explains him what it did. Arthur is happy with what
Nono did and immediately proceeds to the kitchen to save his lunch and finally eats something...

Discussion

This scenario highlights the advantages of interactions between a personal robot and a smart envi-
ronment. First, it provides a better quality of the user’s activity recognition. By using both the robot
sensors and the smart home sensors, it can reinforce the knowledge. There is a "double check” that
enables a better understanding of the context, in this case the activity recognition. Moreover, with-
out the smart devices, Nono would not have been able to locate Arthur when he left the living room,
nor Nono will be able to move around in the house. Combining smart home and robot provides a
better coverage thus allowing a better quality of service; Nono knows where it needs to go and it
can open more easily a door by activating the door actuators. In brief, Nono is more effective and
its actions more accurate. From these ideas, in this thesis, we want to explore the possibilities of
personal robots in smart homes.

Unfortunately, we are currently still far from the ideal scenario described above. The interaction
between robots and ambient intelligence, although beneficial, involves addressing numerous ob-
stacles, such as the dynamism of the environment, the imperfection of sensors and heterogeneity
of data. Furthermore, decision making and task planning, that are essential for Nono, are also de-
manding and complex process that additionally requires to take into account both robot and smart
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environment. In this thesis, we aim to tackle these challenges. Let us now review them.

1.2 Challenges and Objectives

As illustrated in the scenario, robots and smart environment have the possibility to provide a high
quality service to user. However there are many and various challenges to overcome before achiev-
ing such performance. Before addressing the challenges, we use a simple and common abstracted
architecture based on three layers: perception, cognition, action. This architecture allows to classify
and position challenges and works in the global process of the data. Note that this general pattern
carries no novelty. In fact, many researchers have proposed architectures [3, 104, 33, 19, 150], yet
the general pattern perception, cognition, action can be observed in those works. Furthermore, more
layers are sometimes considered, such as ”empathy”E, but are not necessary for us. Let us see the
three steps we consider:

+ Perception: corresponds to the context data (or contextual data) acquisition. First, raw data
provided by the robot and/or environment sensors are collected. By combining these sensor
data and by correlating them towards other semantic data sources, higher context data are
inferred.

- Cognition: corresponds to the analysis of a situation at broad. The cognition consist in ab-
stracting context data into information, then knowledge through the understanding of situa-
tions. It enables the robot to understand what is happening in order to take actions. This in-
cludes the user activity recognition (i.e. sleeping, cooking). An activity itself can be composed
of sub-actions such as walking, grabbing an object. By recognizing a predefined situation, that
is a state of context, one is able to make a decision to react. This relates to the intelligence of
the robot and/or the smart home.

« Action: once the robot and the ambient intelligence know what to do, they can act on the
environment. To this matter, task planning is commonly used. It is a method that generates a
sequence of tasks according to the context. An action can be an order given by the user, the
activation of some actuators, or the mobility of the robot. Again an action might be complex
and decomposed into many sub-actions, such as going to the kitchen, grabbing the bottle, etc.

In order to provide an efficient and satisfactory service, personal robots and smart robots need
to tackle these three layers. We identified multiple challenges, belonging to one or two layers, that
are to be tackled:

1.2.1 Perception Problems: Heterogeneity and Variability of Sources of Context Data

Acquiring the knowledge of the context from sensors and data sources is an essential step of per-
ception. Yet, for a robot in a smart environment, it is subjected to the challenge of heterogeneity
of context data. In fact, the environment is filled with various devices, on top of the robot. In the

Bhttp://www.bbc.com/news/video_and_audio/must_see/40306617/five-robots-that-are-changing-everything
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scenario, the Arthur's home is filled with thermometers, microphones, motion sensors, smart stove
and more, Nono is also equipped with cameras, microphones and sonar, each working differently
and providing various context data. Thus, Nono needs to acquire multiple types of data from various
type of sources. Data sources can provide data in different ways. Context data can be transmitted
in stream, as events, pushed or pulled. Although it is possible to transform one type of data trans-
mission to another, in the end, the robot shall be able to use any of them. Note that in this thesis,
we suppose context data provided through middleware, how the devices communicate is out of the
scope of this work. We suppose all the context data to be provided as events, meaning they are
pushed and associated to timestamps. We actually focus on the heterogeneity of data. In fact, the
robot needs to consider different types of data similarly, for instance the user location and the tem-
perature have different format and meaning, yet must be taken into account similarly. This implies
using a rich context model that supports any type of data. Ontologies are known for offering such
a feature: their triple based design permits to associate entities with properties of numerous types.

1.2.2 Perception and Cognition Problems: Dealing with Uncertainty

Sensors are not perfect: they can be mistaken and provide uncertain data. This can lead to an erro-
neous knowledge of the context and to an inadequate response from the robot. From example, if
Nono receives context data indicating Arthur is in the living room while he left to the bedroom, Nono
will try to look for him in the wrong room. This could at best delay the robot or, at worse, causes it to
failits task. Thus, uncertainty is a problem of perception and cognition. We consider five dimensions
of uncertainty [190]:

+ Freshness represents the temporal relevance of a context data. In facta context data s valid for
a given duration and may become obsolete after this delay. For example, if Arthur moves from
the living room to the bedroom, the context data stating he is in the living room is outdated,
thus wrong.

+ Accuracy represents the "truth” of a context data. Indeed, due to hazard in the environment
or miscalculation, sensors have sometimes mistakes and may provide information that are
actually wrong. For instance, a low quality thermometer may provide an aberrant temperature
of 150°C.

« Precision models the exactitude of a context data: an imprecise data is true, yet inexact. Mo-
tion sensors are a perfect example for imprecise data; such a device only delivers a signal
meaning a movement occurred, but it is unable to tell who was making the movement and
where he/she/it was in the environment.

« Contradiction is the problem of having two context data providing contradictory information.
One (or the two) sources may be wrong or the two may be partially true, e.g. due toimprecision.
For example, Arthur may be perceived in two rooms at the same time by different sensors, this
can be due to one being inaccurate, or Arthur being actually between the two rooms.

-+ Completeness represents the availability of context data. By not being available, due to a
breakdown for example, the absence of a data in the model could lead the cognition to be
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inaccurate. In Arthur's home, a motion sensor may be broken down, thus not providing location
information.

In order to have a proper context knowledge, it is important to cope with these uncertainty
dimensions. This implies a particular acquisition process as well as a suitable context model. Oth-
erwise, the decision making and task planning could be negatively affected, leading to inadequate
decisions and task failures. In the literature [190], there exist various solutions tackling uncertainty
dimensions. Yet, they only tackle a few dimensions at a time. Tackling all these dimensions at a time
is @ major limit in the state-of-the-art.

1.2.3 Cognition Problems: Context and Situation Awareness

Once the context is acquired, the robot can decide to intervene by itself. It needs to be intelligent
and to correctly understand the surroundings. For example, when Arthur forgets he was cooking
and goes to sleep, there is a risk of the kitchen getting smoked, or, at worst, a fire can occur. In con-
sequence, Nono decides by itself to intervene to shut down the oven. Detecting such anomalous
situations is a major challenge of the cognition layer. In fact, it requires a rich knowledge including
complex context data, such as the activity recognition, that are not obtained directly from sensors,
but are inferred. In consequence, the data model must support these kinds of data and be able to
generate them. Ontologies are famous for their compatibility with reasoning engines and can pro-
vide a proper solution. However, from this knowledge, the situation awareness should be enabled.
In other words, the robot should understand the situation and accordingly take a decision. This re-
quires strong reasoning abilities based on learning or rules and using all of the context knowledge.
In fact, most works actually only consider the activity of the user to detect the anomaly [75, 147, 79]
and do not consider possible anomalous situations from other sources of data. As mentioned earlier,
the uncertainty of data has an influence on the process and shall be considered. The detection of
situations when the robot should intervene over a complex context knowledge is a challenge to
be addressed. Note that we consider only one robot in the environment and the decision making is
considered to be centrally performed by this robot.

1.2.4 Action Problems: Risk of Failure

Once the robot has decided what to do, or received order from the user, it proceeds to the action
layer and determines a course of actions, or tasks, to follow in order to execute the decision. To do
so, it can rely on a task planner. A task planner is a tool that generates a sequence of tasks to reach a
given goal according to the current context. Hence, it finds a solution adapted to the current context.
Typically, when Nono decides to shut down the oven, it generates a plan of actions that consists of
first going to the kitchen, then approaching the oven, pressing the oven switch, leaving the kitchen,
going to the bedroom and finally warning Arthur. There exist multiple tools to plan; they mainly rely
on chaining based on preconditions and postconditions, or task decomposition into subtasks. Once
the plan is generated, the robot executes it task per task. However, the robot may fail some tasks,
thus impacting the whole plan. In fact, in domestic application, it can encounter various problems
causing the failure of the task including:

24



« Breakdown: the robot has a breakdown or an internal error causing it to be unable to perform
the task. For example, if Nono has its arm engines overheating, it is unable to grab objects.

+ Robot limits: the robot is given a task, but doesn't have the capabilities to perform it. Typically,
Nono can be asked to grab an object on the table while its arms are to short to reach it.

« Dynamism of the environment: the environment, thus the context, varies over time. Execut-
ing a task and, by extension, a plan is time consuming, for example, for Nono, going from a
room to another is a matter of minutes. In the meantime, many changes can occur, leading
to the plan to be outdated, as it was generated according to a now obsolete context, leading
to failure. For example, when Nono has to warn Arthur who is in the living room, by the time
it reaches this room, Arthur may have moved to the bedroom, causing Nono to fail to reach
Arthur.

+ Unexpected conditions: when planning, the task are selected according to conditions. These
conditions define if the task can be performed. However, it may happen that these conditions
are incomplete according to the environment, thus causing a task to be picked even if it will
fail. For example, with Arthur, Nono has no problem to vocally warn the user, however, if we
consider another user, Jeanne, that is deaf, she won't be able to hear it, making Nono fails as
the task of vocally warning is not applicable with a deaf user. The implied problem is that an
expert can hardly provide conditions exhaustively taking into account possible failure causes,
as it varies according to the environment, user and robot.

Failures are a common problem for personal robots. A commonly used solution is to regenerate a
new plan when failure is encountered [185, 116, 20], yet this is costly in execution time, energy, and
may give a bad impression to the user. Thus, failures are to be proactively avoided, which is an open
challenge.

In our case, the robot is not alone, it also interacts with a smart environment, for acquiring the
context, but also for acting. Most planners don't take into consideration the sources of data. Yet, in-
tensively smart devices can exhaust their energy, for example by constantly querying Arthur's phone
for movement context data, Nono may empty its battery. However, not all context data are useful
to generate a plan. On top of that, the plan may use smart devices to act, however, they may be
already in use or busy. For example, if a heater is being adjusted by Arthur, it should not be used in
the plan. The smart environment is indeed a strong source context data for the robot, but it is also a
source of constraints when using it. In the end, taking into consideration the constraint of the smart
environment in the task planner is important, yet novel.

1.2.5 Transversal: Open Environment

A constraint is the open aspect of the smart environment. In fact, smart homes and robots are vari-
ous and equipped differently. Arthur's home is not the same as everyone elses. Each environment
has its own devices and possibilities. Some may have a rich coverage of sensors, others may have
limited sensing opportunities, but more actuators. Hence, our propositions must be compatible and
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independent of any environment. For example, if Nono was sent to another smart home, with dif-
ferent sensors and actuators, it should be able to operate after resetting with the help of an expert.
Thus, Nono must not be dependent on specific devices, for example, a solution using only audio
stream for surveillance would be incompatible with environments and robots with no microphones.
Furthermore, as the environment is open, new devices may be added at runtime. Typically, Arthur
may decide to buy a new device or, oppositely, remove one from the environment. It is important
for our solution and our model to be able to evolve and adapt as the smart environment changes.
For example, if Arthur adds new beacons for localization, the knowledge of Nono needs to be eas-
ily adapted in accordance. Handling the open aspect of the smart environment is a constraint that
impacts all other challenges during perception, cognition or action.

1.3 Contributions

For robots within smart environments, it is essential to have a great management and understanding
of data in order to ensure the quality of service to users. However, with current research advance-
ment, numerous challenges are remaining unsolved. In this computer science thesis, we proposed
multiple contributions to cope with those challenges and to provide solutions for data management
for robots in smart environments. Through these works, we explored the usage of various techniques
and combinations, including learning and reasoning techniques. We can divide them in four steps
that follow the perception, cognition and action process:

1. First come context acquisition and understanding contributions, that aim to solve perception
challenges, including uncertainty and heterogeneity of context data, to enable a proper con-
text knowledge from the sensors.

2. Secondly, cognition propositions are applied on the acquired knowledge in order to make a
decision. This requires the understanding of the situation while supporting uncertainty.

3. Thirdly, once the decision is taken, the robot can act by using our planning contribution, that
aims to tackle the action problems through a novel planning paradigm.

4. Finally, as limitations of planning knowledge can cause failures, experience can be acquired
from the robot actions to perform cognition for the robot to learn and enhance the knowledge

of its planner.

As a whole, our contributions compose a larger system: the FAIRIE framework. Let us have an

overview of our contributions.

1.3.1 Perception: From Sensors to Knowledge

In fact, perceiving through sensors is key to achieve the knowledge of the context, that is the root for
the intelligence of robot and smart environment. Acquiring the context in a domestic environment
is not a simple task as data sources are imperfect and various. While most most sensors can be as-
similated as event based sources, others require particular processes, such as robot cameras. Hence,
we proposed two contributions to acquire the context under the constraints of smart environment.
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Firstly, we tackled context acquisition based on events. Our contribution, FSCEP gathers, batches,
semantizes and fuzzifies events provided from various sensors, from the smart environment or the
robot. By applying fuzzification on batch of events, it generates a single high level event carrying
a fuzzy context data. This is enabled by relying on ontological background knowledge as well as
Complex Event Processing (CEP) and fuzzy logic. Our contribution is consequently capable to han-
dle various types of events, thus context data, and supports four uncertainty dimensions, namely
freshness, accuracy, imprecision and contradiction. Furthermore, FSCEP is a specification approach
and can easily be extended by adding new rules.

Secondly, we addressed the case of vision based acquisition, in particular for activity recognition.
In fact, user activities are essential context data. One option to acquire it, is for the robot to rely on
its camera to recognize and classify the gesture of the user. The idea is to analyse a video stream
of the user to infer his/her activity [46]. However, although this learning-based approach offers
decent results on datasets, in more general cases, it has difficulty to recognize and usually provides
an inaccurate and imprecise activity recognition. In order to overcome these limits, we propose a
combination between vision based activity recognition and ontological context knowledge obtained
from the smart environment. With this knowledge, our contribution, VARSeR, refines the output of
the vision based approach into more precise and accurate activity recognition.

1.3.2 Cognition: From Knowledge to Decision

Cognition allows to understand the context and make a decision from it. In our work, we are partic-
ularly focused on anomalous situations, that is to say situations that require robot intervention. Un-
derstanding the situation requires a strong analytical process and a support of data uncertainty in or-
der to provide an accurate decision. To deal with these cognition challenges, we propose CAREDAS,
that uses both Markov Logic Network and ontologies. CAREDAS uses a semantic context knowledge
and applies a complex inference process based on MLN. Unlike most approaches, it is able to detect
anomalous situations over the whole context, and not only on user activities. Our solution is able to
take into consideration the uncertainty of context data by adjusting weights accordingly. On top of
that, the process does not require an exhaustive observation of the situations and consequently sup-
ports completeness. This enables CAREDAS to accurately detect anomalous situations. From this
identification, the robot can decide which goal to achieve in order to "solve” the detected situation.

1.3.3 Action: From Decision to Actions

In order to act, the robot uses a task planner. This allows it to determine a sequence of actions to
follow in order to reach a goal according to the current context. However, during the execution of the
plan, the context may change, causing failures. To cope with this action layer problem, we proposed
a novel planner DHTN that combines execution and planning. DHTN enhances a commonly used
planner, HTN [170, 43], but uses a different planning paradigm. In fact, instead of generating then
executing the plan, DHTN incrementally and alternatively generates and executes the plan. By doing
so, DHTN can take into account the latest context changes when planning. This implied not only
creating the plan, but also monitoring it and correcting it if necessary. Furthermore, DHTN is capable
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of computing a subset of context data needed for planning. From there, only the necessary context
data are used, preventing waste usage of sensors. On top of that, it uses statuses to monitor and
control the availability of actions, in particular through smart devices. This makes DHTN thrifty and

efficient in a smart environment.

1.3.4 Cognition/Action: From Actions to Experience

Even if DHTN is able to cope with the dynamism of the environment, the planning knowledge can
hardly be exhaustive and failures may be caused by unexpected conditions. LEAF is our cognition
and action contribution that aims to enrich the planning knowledge from experience, thus proac-
tively preventing further failures. LEAF aims to identify failure causes from the experience of previ-
ous failures. To do so, an history is created from previous encountered situations using ontologies.
From there, we used a reinforcement learning approach that includes the user in the loop, ensuring
the quality of the learning. We modelled this process as a multi-armed bandit problems. Conse-
quently, a state-of-the-art multi-armed bandit approach, R-UCB [28], was used and improved. In
fact, in order to refine the learning, we used causal induction and causal graph to determine direct
and indirect failure causes. From this learning, LEAF provides a knowledge of the causes that can then
be used to avoid further failures: if a task failure cause is observed, then it shall not be used in the
task plan as it is likely to fail. By doing so, LEAF proactively prevent task failures due to unexpected
conditions, but also the ones, in particular cases, due to robot limitation or breakdown.

1.3.5 FAIRIE

Allin all, these contributions form a bigger framework called FAIRIE. FAIRIE is a set of tools, including
but not limited to our contributions, that allows to deal with perception, cognition and action for a
personal robot in smart environment. FAIRIE needs to be parametrized and defined according to the
environment, thus being a framework, but can be adapted in various environments. In fact, according
to the needs, modules, that are our contributions, can be used or not. For example, FAIRIE may be
configured for an environment that only includes a robot, or can be set to use all its capabilities in
a rich smart home with a strong personal robot. This enables FAIRIE and our contributions to be
compatible with a large variety of environments.

1.4 Thesis Organization

This manuscript describes the work conducted during my thesis and is divided into four parts. The
first part reviews the state-of-the art. After an introductory chapter, we review the existing combi-
nation between robots and smart environment and identify the current and open fields of problem.
From there, two chapters review respectively and specifically context awareness techniques and
task planning. We then address our contributions in two parts respectively corresponding to con-
text awareness and task planning in the resulting framework: FAIRIE. In the second part, we review
our perception contributions that handle data from sensors to knowledge and that enable the robot
to go from knowledge to decision. In the third part, we present how our novel planning approach
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can turn the decision to actions and how the experience from actions can be used to enrich the
planning knowledge. In a conclusive fourth part, we provide more information about FAIRIE and its
experiments, before concluding this document by discussing the lessons we learnt and providing
various perspectives.
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Chapter 2

Introduction

Robotics and ambient intelligence can both rely on active research communities. Each of these
fields carry a tremendous amount of challenges and topics, going from hardware conception to self
configuration through computer vision. Combining robots and smart environments seems to be
a promising approach for various needs, including domestic healthcare. For this reason, many re-
searchers and projects explored this idea. Although such an approach has specific challenges, they
are also numerous, some being more mature than the others.

In this part, we aim to review the literature, to evaluate the current state of the research around
robot in smart environment, and to identify the precise limitations to tackle in order to achieve our
objectives. As the topics are miscellaneous, we first review the existing works of robots collaborating
in smart environments. From this analysis, we position ourselves according to other works. In fact,
robots can collaborate with devices in various contexts, yet, in our work, we focus on service and
domestic context. Then, we identify fields of problems encountered by these restrained works and
evaluate their advancements. This allows us to identify two fields that are facing limitations toward
our objectives: context awareness and task planning. Context awareness incorporates methods used
to acquire, model and use the context, which is essential for domestic services. Task planning aims to
generate a sequence of tasks for the robot to follow in order to fulfil an order or a decision according
to the context. In fact, task planners rely on the knowledge acquired from context aware techniques,
making the two closely related while having different research communities.

In the next chapter, we review the challenges encountered by personal robots in smart envi-
ronment and discuss how researchers, through projects, addressed them. In the following chapter,
We then shift our focus on general context awareness techniques We point out strengths and limits
of those techniques when applied in our case. Lastly, in the third chapter, we review existing task
planning solutions and discuss them against our requirements. Again, we extract weaknesses in the
current planning technologies that need to be solved. This part ends with a conclusion summarizing
our analysis of the literature.
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Chapter 3

Personal Robots In Smart Homes

3.1 Introduction

Both personal robots and smart homes are common subjects in research. Although, each of them
has its own focuses and problems, they do share a same purpose: improve user life. Consequently,
the research community has explored the possibility of using robots and smart environments to-
gether. In this chapter, we aim to discuss the fields of problems encountered by personal robots in
smart homes from a global scope. As we will see, among the described and addressed problems in
the literature, our challenges are not tackled. In order to understand the challenge they may face, it
is essential to understand personal robots capabilities. Consequently, we firstly describe today’s per-
sonal robots. From this description, it can be observed that such robots can encounter difficulties for
acting and sensing. Smart homes can provide a solution to these problems, although they may also
induce new ones. The interaction between personal robots and smart environments was explored
through multiple major research projects. Those projects aimed, and actually achieved to some ex-
tent, to deploy robots in domestic smart spaces. In consequence, they tackle a complete spectrum
of problems to which personal robots in smart environments are subjected to. Accordingly, we will
briefly review and pinpoint these classes of problems. From this, we will underline which challenges
are yet to be addressed in two particular fields.

3.2 Personal Robots

Robots are various in forms and purposes. Some are specialized in executing industrial tasks while
others can embody multiple ubiquitous devices. In this work, we consider and focus on personal
robots. As implied by their name, personal robots aim to provide service to public in everyday life.
These robots actually operate alongside users to help them with usual and common tasks, hence,
most of them are also service robots. Unlike industrial robots, personal robots are intelligent, au-
tonomous and often mobile. Such features have been enabled thanks to a large research effort over

the past twenty years in numerous domains including sensing, navigation and Al.

"https://www.ald.softbankrobotics.com/en/press/gallery/pepper
Zhttps://zenbo.asus.com/product/gallery/
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(a) Softbank Pepper[I (b) CompanionAble Hector (c) Asus Zenbo?

Figure 3.1: Examples of personal robots

After years of innovations and contributions, the first commercial personal robots are just be-
ing released, such as Blue Frog BuddyE, Asus Zenboll, or IJinif. Furthermore, multiple robots were
used for research in the past few years, such as CompanionAble Hector or Aldebaran, now Softbank
Robotics, Nao. These robots can take various forms, as seen in Figure B.]. Most of them rely on
wheels, allowing them to easily navigate in smooth environments. Yet, some robots, such as Nao,
use legs. They also usually feature a humanoid face, which is important for human robot interac-
tionE: it allows user to naturally look and understand the robot. They may also be able to speak [82].
Recently, many personal robots are provided along with tablets, allowing easy interaction with a user
and enabling the usage of visual messages. These robots are equipped with various sensors to per-
ceive the environment. Cameras are usually the main sensing tools for these robots and the most
recent ones even carry 3D cameras allowing them to use a 3D representation of the environment
and recognize shapes. 2D cameras are also immensely useful, with the progress in computer vision,
they can be used to identify the activity of the user [46], identify persons or even understand emo-
tions [76]. Microphones are also widely used in personal robots, making them able to listen to users
as well as other noises. Other personal robot sensors include sonar, range sensors, air quality sen-
sors and others. Some of them are equipped with arms and hands allowing them to grab objects, but
this technology is expensive, and many robots do not have any arms. Even if armless, these robots
can already perform a companion, surveillance or assistant role. Other robots, as Pepper or Nao,
are used for customer interaction in retails or in museums. For healthcare applications, robots are
equipped with strong actuators and can perform possibly complex tasks. Finally, to enable sensing,
control and interaction, these robots usually embed a computational unit able to perform operations
independently from a remote computer. They are indeed able to apply vision algorithms, store data,
compute trajectories, etc. In brief, personal robots vary in roles, capabilities, sizes and prices. They

3http://www.bluefrogrobotics.com/en/buddy/

*https://zenbo.asus.com/

Shttp://www.ipl.global/
®https://spectrum.ieee.org/automaton/robotics/humanoids/what-people-see-in-157-robot-faces
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are mobile, intelligent and can perform numerous tasks. We consider this class of robots.

In our work, we used the Nao robot [63], shown in Figure B.2. Nao is a
small humanoid robot popular in education and research. It is widely used
in various domain including interaction with patient with ASD [165], loco-
motion [122] or computer vision [46]. Nao is a bipedal robot, which enables
large possibilities of movement, but limits its ability to navigate on longer
distance and time. With its arms, it can grab light and small objects. It can
rely on two 2D cameras, as well as sensors including inertial unit, sonar, and
tactile sensors. One the main strength of Nao is its API, Naogqi. In fact, Nao
has the ability to talk, understand speech, identify persons and walk. Con-
sequently, working with Nao is simple. This makes it a perfect experiment

platform for us.

Figure 3.2: Nao robot?

Although personal robots have been the subject of major effort, they are
still facing several challenges, in particular in domestic context [186]. In fact,
perceiving, thinking and acting are demanding and problems including localization, context acquisi-
tion or Human Robot Interaction (HRI) are currently hot research topics. Indeed, although they are
equipped with various sensors and actuators, personal robots need to be able to use them correctly
in order to be able to perform their function. Alongside personal robots, smart homes are also on the
rise. As mentioned earlier, by interacting with each other, personal robots and smart environments
could overcome some of their problems. Consequently, research has been exploring such a col-
laboration, in particular through major research projects such as Robot-Era [22] or CompanionAble
[67]. These projects cover challenges encountered by personal robot and use smart environment
In the next section, we will review these projects from a larger scope in order to identify the prob-
lems they encountered and tackled, but also their limits when facing the challenges pinpointed in
our introduction.

3.3 Projects

Integrating robots in smart environment was addressed through multiple large projects. They tackled
the aforementioned challenges and proposed solutions to various extents to solve them. These
works are among the closest to our work as they explicitly used robots in smart environments, even
if the problematic they address can be broader. Let us review these projects.

3.31 PEIS

The PEIS project [155, 31, 156] is undoubtedly a pioneer project for the integration of robots in smart
homes. Similarly to us, yet more precursory, this project comes from the observation that homes are
going to be equipped with various devices that "form an ecology of communicating and cooperating
Physically Embedded Intelligent Systems (PEIS)". In such environments, each devices functionalities
are improved by interacting with other devices. While most works tend toward complex and isolated

"https://www.ald.softbankrobotics.com/en/press/gallery/nao
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companion robots, Saffiotti et al. [155, 156] opt for robots that are part of the environment. In fact,

as depicted in Figure B.3, PEIS is positioned at the balanced merge of robotics, Al and ubiquitous

computing. Thus, robots are considered as any other devices in the smart environment.

The architecture and communication between devices
are ones of the main focus of PEIS. PEIS relies on a dis-
tributed oriented middleware [32], where each component,  auonomous
devices and robots, perform tasks for the whole system. The e
configuration of the ecology is a big challenge for such a
system. Thus, a centralized approach based on a hierarchi-
cal automated planner was studied [108], as well as a dis-
tributed approach that relies on recursively extend a pro-
vided initial configuration [65]. The project also tackles the
issue of communication between devices, in particular the

problem of anchoring [101]; in fact, as sensors are various

Artificial
Intelligence Ambient
~ Intelligence

Robatics

Sensor Networks

Figure 3.3: Positioning of PEIS, from [155]

and heterogeneous, determining data referring to the same object (i.e. anchoring) is a problem. As

PEIS is aimed to be deployed in home, the HRI dimension of the project was also addressed [68].

Lastly, task planners were also studied within PEIS, even if it did not constitute a major axis of

the project. For instance, PTLplan was used[87]; it is a probabilistic conditional planner that supports

uncertainty. Moreover, the distributed system can monitor task executions of robots and/or devices

and detects whenever a failure situation occurs.

3.3.2 Robot-Era

More recently, Robot-Era projectE was conducted. Robot-Era is a Euro-
pean research project that aims to implement and to analyse advanced
robotic system for elder care. This project is one of the most advanced
application of service robot with rich and real-life experiments: it leads
to tens of publications and is a practical illustration of robots integra-
tion in smart environments. Robot-Era relies on the contributions of the
PEIS project as for the integration of robots in smart spaces, however, the
problematic of the Robot-Era project goes far beyond. In fact, the contri-
butions go from purely technical integrations and configuration [73, 4Q]
to legal, ethic and HRI aspects of robots [21, 60]. Among the noticeable
contributions, we can point out their proposition toward robotic localiza-

Figure 3.4 Robot-Era
project logo

tion. Actually, as already mentioned earlier, the usage of a RDIF floor to locate the robot was studied

[89]. Another core contribution is Robot-Era task planner. Multiple dimensions were considered

and resulting planner are able to cope with numerous constraints, including planning for multiple

actors [41].

3.3.3 CompanionAble

8http://www.robot—era.eu
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CompanionAbleE is another important European project that aims
to help people subjected to dementia and depression thanks robots

and ambient intelligence [67]. Integration of robots in smart envi- é Companionable
Mabile Rabot Companian, Smart Home

ronments is an important matter of this work [15]. Yet, unlike PEIS

approach, the CompanionAble robot has a lot of capabilities and can
operate onits own [66]. Similarly to Robot-Era, the project provided

a large spectrum of contributions including robot’s navigation and Figure 3.5 CompabionAble

localization [88], telemedicine [167] and, mainly, monitoring and project logo
context acquisition.

User monitoring is a key feature for such a system and was accordingly addressed. Medjahed et
al. [115] proposed a system to monitor the user health based on three types of sensors available in the
environments and on fuzzy logic to ensure a proper data fusion. Activity monitoring was also tackled
in CompanionAble. Volkhardt et al. [177] designed a system that identify the users activity based
on his/her current pose and motion, and on surrounding objects position. Situation awareness, and
more generally context awareness, is explicitly addressed in this project. For instance, microphones
are used for this matter [152]. Used robots are limited in capabilities; for instance, they have no
arms, and they consequently performed relatively simple tasks, thus, task planning was not a main

contribution of this work.

3.4 Fields of Problems for Personal Robots in Smart Homes

In these projects, we can identity five main fields of problems:

+ Network Communication: the way the robot can interact with a smart environment from a
technical point of view is a challenge. In fact, sensors are diverse and use different technolo-
gies, such as Bluetooth or Zigbee. They also have different ways to provide data: some provide
events, some push the data, while other need the system to pull the data. Coping with this is-
sue is already addressed in the literature [173, 168], including in PEIS[101, 73]. A solution is to
rely on middleware, such as Universal Plug and Play (UPnP) [26] that abstracts network com-

munication.

+ Localization and Mapping: as they operate in homes, an essential challenge for personal robots
is to map the environment and locate themselves. The current solution is to use Simultaneous
Localization And Mapping (SLAM) [44, 17], however, not all personal robots have the sensors
to use this technology. An alternative way is to rely on the smart environment. The possibility
of using smart devices to locate robots was explored in multiple works and contexts. Some
works explored the usage of laser range finders [58, 59], while others, including Robot-Era,
tried to used RFID to locate robots [172, 90].

+ Human Robot Interaction: personal robots are required to interact with users, and how they do
so is an important matter, particularly considering a smart environment. In fact, smart devices

“http://www.companionable.net
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can help the robot interact with the users, by easing their identification for example [166]. The
robot can also be used as an interface for the smart environment [133] and the acceptance of
such system by the user is being studied [166]. HRI is important to consider when proposing
a personal robot, and is consequently commonly addressed [21, 60].

- Context Acquisition and Management: acquiring and understanding the knowledge of the
context is essential. Actually, it allows the robot and the smart environment to take decision,
intervene and act properly. This requires not only to gather context data from sensors, but
also to understand them and enable a more abstracted knowledge. Although the robot can
perform this process to some extent, in particular through vision algorithm [46, 62, 132], the
smart environment can provide a greater knowledge. For this usage, RFID are commonly used
[166, 30]. However, various sensors can also be used, sometimes very specifically, to monitor
the health or activity of the user [152, 115, 177].

» Task Planning: finally, as mentioned, task planning allows the robot to compute a sequence
of tasks to perform in order to reach a goal. Planning in consideration of the smart environ-
ment is important. Accordingly, some works, in particular in Robot-Era, proposed complex
multi-agent planners [41], others consider the usage of probabilistic planner [87]. Never-
theless, the task planning for robots interacting with smart environments is not commonly
addressed. However, out of smart environments, this topic is common for personal robots
and many propositions solving issues including imperfect knowledge [185] or task failures [86]
were studied.

Each field of problems has its own challenges and research community. Although there are all
to be dealt with when conceiving and deploying a personal robot in a smart environment, in this
thesis, we focus on two aspects: context acquisition and management, and task planning. In fact,
as pointed out in the introduction, major open challenges are yet to be tackled in those fields. Yet,
while existing approach of robots in smart environment do cover a large spectrum of problems, they
also fail to overcome all challenges. Let us discuss those limitations.

Firstly, in order to act appropriately, robots need to acquire and understand the context. How-
ever, within a smart environment, sources of data are various, which implies heterogeneity over
devices and context data. In the literature, the technical integration of sensors is commonly ad-
dressed by self-configuration, as in PEIS [73], or through middleware [26]. However, supporting
the heterogeneity of context data is another challenge that is rarely explicitly addressed. On top of
that, multiple approaches, including CompanionAble, use specific sensors and types of data, mak-
ing these techniques dependent on these particular types of data. Having such a variety of devices
induces problems of uncertainty. In fact, sensors can be imperfect, and sources can be in contra-
diction. This causes context data to possibly be outdated, inaccurate, imprecise, contradictory or
incomplete. Considering the reliability of context data is important for the robot to properly un-
derstand the context. Yet, among works of robotics within smart environments, this issue is rarely
addressed. In PEIS, it was partially considered [101] for anchorage. This leads to the open research
question: how can a robot operating in a smart environment acquire the context over heterogeneous
and uncertain data? Answering this question is essential as context understanding is closely related
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to context acquisition. The use of the acquired context is impacted by issues of heterogeneity and
uncertainty. The context knowledge can be used to understand situations, to infer complex data
such as user activity, and to take decisions. This feature was implemented in CompanionAble, that
proposed to monitor health dimensions [115] as well as the activities of the user [177]. However, they
used specific sensors, as well as basic or raw context data with and focus on low level data fusion.
More generally, reasoning over diverse and rich knowledge is often not addressed. Thus, how can
personal robots understand the context and take decisions accordingly?

Secondly, once a decision was taken, the robot can achieve it using the acquired context knowl-
edge and a task planner. Robot-Era did explore the task planning problem for robots in smart envi-
ronments. In fact, as a part of this project, a whole task planner was designed [41]. This planner is
able to deal with multiple agents and uses four solvers to ensure constraints of time, dependencies
and resources. It allows to generate a plan with multiple devices without overusing them. However,
the issue of task failures remains. Even if replanning is possible, it is not a satisfactory solution, yet
this approach can't proactively avoid such failures. Furthermore, even if it prevents overusing devices
thanks to its dedicated solver, the planner does not question the context acquisition. This leads to
the usage of devices and context data that are not relevant in the plan making. Hence, the following
problem remains: how can a personal robot avoid task failures? How does the robot task planner
impact the smart environment?

We observed that the current research around personal robots in smart environment fails to
answer those questions. However, these challenges are important to tackle to move toward high
quality domestic robots. Yet, others communities have proposed techniques in other contexts that
may be applied in our case. This is why, in the two next chapters, we review those techniques.

3.5 Conclusion

In this chapter, we offered a global view of problems encountered by personal robots in smart en-
vironments. Firstly, we described current personal robots to understand their capabilities and limits.
Smart home can offer a way to help these robots, consequently, multiple major projects were con-
ducted. These projects aimed to use robots in domestic context and used environment enriched
with sensors and actuators. To achieve that they had to cope with a large spectrum of problems. We
pointed out five main fields of problems that are to be tackled for a personal robot in smart home.
As these problems overlap various domain and competencies, in this work, we focus on two fields
of problems: task planning and context management. Among existing work of robots in smart en-
vironments, we pinpointed limits in these two fields. Accordingly, we will now review the literature
of both context acquisition and management and task planning techniques in the next two chap-
ters respectively. From these analyses, we aim to evaluate what state-of-the-art techniques can be
applied and what are their limitations.
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Chapter 4

Context Awareness

41 Introduction

Acquiring, understanding, and using the context knowledge is an essential step for a personal robot
and/or a smart environment. This knowledge is the key to their intelligence. Indeed, it is not only
useful, but also required, to make decisions and act in the environment. In fact, task planners are de-
pendent on the context knowledge and cannot provide a task plan without it. However, dealing with
the context is not trivial, in particular in domestic applications. As we mentioned, there are numerous
challenges, including the heterogeneity of data, the variability of sources, uncertainty, and the ability
to identify particular situations. In the previous chapter, we pointed out that most works addressing
robots in smart environments do not provide answers to these challenges. Consequently, in this
chapter, we aim to review more general methods proposed in the literature and used to acquire, un-
derstand and use the context. These techniques were used in various applications [1], in particular
smart homes and other smart environments, but were rarely considering robots. Nevertheless, we
analysed them in regards to our challenges.

The general process of context management is not only to acquire sensor data, but also to rise
up in abstraction. The idea is to increase the semantics of data toward information and knowledge
that can then be used for accurate decision making. As depicted in Figure 4.1, we can decompose
the context management into four layers. Firstly, sensors and other sources provide context data
that represent a basic dimension in the environment, for example the detection of a movement is
a context data. Secondly, these context data can be aggregated to form higher level information.
Typically, the user location that is inferred from detected movements, sounds and others, is an in-
formation. Thirdly, with all these context data and information, the robot and/or smart environment
can understand the global situation of the environment, for example it enables Nono to understand
the anomalous situation when Arthur forgets he is cooking. Lastly, based on this knowledge, the
robot can decide what to do in response, in Nonos case, it decides to go and turn off the oven. This
whole abstraction process is required for a robot in a smart environment, but it is enabled through
multiple phases. In fact, in the literature, approaches often deal with only some parts of this pro-
cess. Some works are dedicated to provide particular information from context data, such as user
activity, while others use already acquired information to infer new information or understand the
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Figure 4.1: Data Abstraction Process

situation. Thus, a complete context management solution is likely to use multiple tools to acquire,
understand and use the context. The literature carries multiple approaches and vocabularies, but
before reviewing those works, let us discuss the terms and notions implied.

4.2 Background and Definitions

Contributions around context management are diverse in paradigms and applications. The terms
used in the literature can have different definitions from one work to another. In this section, we aim
to provide definitions of notions used in this chapter. Furthermore, we also discuss the position and
classification of state-of-the-art solutions.

The very first notion to address is naturally the context data or contextual data. Context data
are the first to be acquired and can then be used to infer information. We consider the following
definition of context data:
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Definition 1. Context Data (or Contextual Data):
A context data is a formatted data that represents a specific dimension of the environment.

For example, the temperature in a room, the detection of a movement or the robot battery level
are context data. Such data are provided by sensors or other data sources, and are formatted ac-
cording to the technique used. In this work we focus on the management of data, how the raw data
provided by sensors are technically acquired and transformed is not in the scope of this thesis. In-
deed, we do suppose the usage of an interface or a middleware in charge of communicating with
the devices. Nevertheless, it is important to notice that the context data can be provided in different
ways. Some are provided as events, while some are pulled or pushed to the system. Solutions in the
literature can be different according to the hypotheses used as for data sources. The acquisition of
the context data is the first layer of the abstraction of the context, as seen in Figure 4.1,

These context data can be abstracted into information. Information is a higher level data that is
inferred from the analysis of context data, or other information.

Definition 2. Information:
A piece of information is a high level data inferred from derivation of one or multiple context data.

Forinstance, the user location is an information derived from context data representing the move-
ment or noise in rooms. Information is obtained from other context data, but can also be provided
by smart devices or robots that perform a first analysis by themselves. For example, the location of
the user may be directly provided by the robot using a vision algorithm. One particular information
is the user’s activity. Recognizing the activity of the user is a popular topic in the literature. In fact,
multiple contributions are proposed to solely extract this information. It is important to distinguish
activities and situations: an activity refers to the user’s actions, while the situation is a global state of
the environment. In the literature, these two terms are often used ambiguously. Hence, we define
the activity as follows:

Definition 3. Activity:
An activity is a piece of information related to a given user and that describes his/her action.

Arthur cooking is an example of an activity. Note that an activity is exclusively related to a human
user. As for the robots, we use the term task. Many works aim to extract the activity by itself, for
instance to provide it to medical staff, but the activity is also a precious information for understanding
situations.

The situations are a more global concept that are higher in abstraction. In fact, they can be seen as
a snapshot of the environment and is based on a large set of information and context data, including

activities.

Definition 4. Situation:
A situation represents a given state of the environment.

'In the literature, the two terms are used in a similar way [189]: both are correct and can be applied, nevertheless, in
this document we will use the term context data.
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Understanding situations means knowing what is happening in the context. It abstracts a large
amount of information and context data into knowledge, as represented in Figure 4.1. For example,
when the oven is active while Arthur is elsewhere sleeping, the situation is abnormal and should be
solved. Similarly to humans, situation awareness [47] is essential for robots and/or smart devices for
decision making. With this knowledge, the system can decide what to perform. This usually implies
calling a task planner, thus ending the context management process.

In the literature, various definitions of context data, information, activities and situations can be
found. In this work, we will rely on the ones provided here. Nevertheless, even if not exactly using
the same terms, state-of-the-art works do aim to acquire and understand the context. To this ex-
tent, various propositions were conducted to acquire higher level knowledge or, in other words, to
rise up the abstraction of data. Many approaches cope with a small part of this abstraction. Some
may focus on inferring particular information, while others may tackle specifically situation aware-
ness from information. Most of them are actually addressed in regard of activity recognition and/or
situation awareness. According to the INCOME projectE [8], these techniques can be classified into
two main categories: data driven approaches and knowledge driven ones. Data driven approaches
usually focus on using low level context data to infer new information, such as activities. Hence,
these techniques allow to obtain information from context data, as depicted in Figure §.1. Accord-
ingly, they often rely on machine learning using basic data. On the other hand, knowledge-based
approaches rely on specified knowledge, through rules for instance, to perform reasoning in order to
generate information or situations. Such techniques can model and use information to infer com-
plex situations or activities. Consequently, they often permit to rise from information to knowledge,
even if they can be used to infer new information as well, as seen in Figure 4.1. These approaches
can also be similarly divided as learning-based and specification-based methods [190].

In the next sections, we will review the techniques used for abstracting data and creating context
knowledge. Most of this analyses were mostly based on the reviews of surveys conducted by Ye et al.
[190, 189]. We will review each category of techniques and evaluate their strengths and weaknesses,
in particular facing our challenges. Consequently, we will first focus on learning-based approaches,
before tackling specification-based ones. Then, we discuss the possibility of using both learning and
specification through hybrid approaches.

4.3 Learning-Based Approaches

Learning-based techniques rely on a dataset to learn a model from it. Once the model is learnt, it
can be used to classify, in our case, context data into activities or situations. By doing so, they do not
require a specification effort, but the learning phase is critical. Some models, once settled, cannot
evolve, while other can continuously evolve as the environment does so. Using machine learning was
commonly utilized for activity recognition or situation awareness. Let us review the most important
techniques.

First, a simple approach is to use the Bayes theorem: this is the method followed by Naive Bayes
or Bayesian Networks [121]. It estimates the probability of the hypotheses by knowing the proba-

2qww.irit.fr/income/
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bility associated to evidences when the hypotheses is true thanks to the learning set. Although it
can achieve decent results, it requires an accurate supervised learning phase and compatible data.
Moreover, the model can hardly evolve at runtime.

A more mature usage of Bayes theory is the Bayesian Network (BN) [53]. A BN is a acyclic graph
where nodes are variables and arcs are relations between variables: if an arc is represented from A
to B, it means B depends on the variable A. Such a model allows to represent the dependencies
between context data, activities and/or situations. Classification is done by propagating probabili-
ties using a probability table associated to the nodes. They were used in multiple works in context
aware systems [175]. BN main issue is its weakness toward incompleteness: BN does not support
well missing data. Furthermore, even if it is a supervised learning-based technique, it requires some
expert interventions, in particular for the structure of the graph. Once the model is set, it does not
change without expert intervention.

Hidden Markov Model (HMM) s also a common solution for classification [23]. Such model relies
on states and observations, which, in activity classification, can be associated respectively to activities
and context data, as depicted in Figure 4.2, The principle is to estimate the probability of moving from
a state to another according to the observation. They are perfectly suitable for context awareness
[103], yet they are sensible to scalability, as the number of states can be important. HMM uses
supervised learning.
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Figure 4.2: Example of HMM

Sensors

States are grey nodes while observations are green nodes. An arc represents the probability of going from a
state to another, and the probability of having a given observation when entering the state.

HMM supposes all observations are independent, which prevents understanding long-term and
complex patterns. Conditional Random Field (CRF) [97] aims to solve that issue by considering se-
guences of states and not only transitions between states. CRF can be seen as an undirected acyclic
graph. Similarly to HMM, the weights are learnt from a dataset under supervision, while the feature
functions and the structure are provided by an expert. They are commmonly used in vision, but can
also be used for activity identification [174].
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Support Vector Machine (SVM) is yet another machine learning-based approach [72] that can be
used for context awareness. SVM principle relies on finding the optimal linear hyperplane separation
between classes in the training dataset. SVM are able to operate with various number of features,
but are sensible to uncertainty. They were used for activity recognition and gesture classification [6].

Context Free Grammar (CFG) [119] relies on a decomposition knowledge of situations into ac-
tions, and actions into sub-actions. Detection is performed by detecting pattern of actions through
production rules. A variation of CFG is Stochastic Context Free Grammar (SCFG). In SCFG, produc-
tion rules are associated with probabilities that are learnt from a dataset. Although CFG and SCFG
are suitable for basic scenarios with simple and known structure of interest, they are not adapted for
more complex case as the knowledge required would need a huge effort from the expert. Learning
the structure of CFG is a way to explore, but it was shown to be difficult.

Decision Tree (DT) is a very common technique in machine learning [154]. A DT represents
classes as a tree were nodes represent criteria of classification over features. It uses this formal-
ism to classify entities based on their features. DT are learnt without supervision from a dataset by
extracting features that allow to separate classes. They have been used activity recognition from
sensors, but can only operate on small and simple dataset.

Another approach is to use web mining to extract knowledge from distant databases when datasets
are not available [36]. For instance, by consulting a "howto” website, it is possible to determine what
objects are used during a particular activity. The knowledge can supposedly be used at any time,
including when deployed. Although it was applied in home context [188], it is very specific and can
only solve particular cases.

Although initially designed for text analysis, suffix trees were used in activity recognition [117, 69].
It consists of discovering temporal patterns of events to identify activities, that are considered to be
sequence of events. In fact, a suffix tree represents all possible sequences and sub-sequences of
events for a given activity, as depicted in Figure #.3. The events pattern, thus the structure of the
tree, are learnt. It is to be noted that, by basing on events pattern, suffix tree are limited to event
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Fridge, Stove, Table, Stove, Table, Stove, Sink
Activity ={ 1, 2, 3 2, 3, 2, 4}

Figure 4.3: Example of suffix tree representation for an activity from [69, 190]
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Finally, Artificial Neural Networks (ANN) simulate the behaviour of a layer based network of neu-
rons. A neuron has weighted numerical inputs and is activated if the sum of its input goes higher
than a threshold. Outputs of neurons from one layer are linked to the inputs of neurons of the next
layer. For activity recognition, the neural network uses as inputs, meaning inputs for the neurons
of the first layer, sensor data. The network is then interpreted and the output is a selection of an
activity among a list. Figure 4.4 depicts an example of an ANN. ANN weights are usually learnt and
adapted on the fly, for instance by using genetic algorithms. However, ANN mainly works as a black
box, meaning it is hard to adjust if it is mistaken. Furthermore, uncertainty can have a huge impact
on the recognition process.

Learning-based approaches characteristics are summarized in Table 4.1

Temperature

Sleeping
Acceleration

Working

Noise

Figure 4.4: Simple example of ANN

This ANN is composed of 3 layers of artificial neurons, represented as yellow circles. Based on some context
data, the ANN is able to detect if the activity sleeping and/or working are occurring.

4.4 Specification-Based Approaches

Opposite to learning techniques, approaches relying on specification are also popular for context
awareness. Specification requires a greater engineering effort to set, as an expert must provide rel-
atively detailed information, but it enables a refined and more high-level recognition process. In
fact, many machine learning approaches only use simple data and can cope with basic situations.
Specification-based approaches on the other hand, can detect potentially complex activities and
situations. Let us review some of these techniques.

First of all, the most general approach consists of using formal logic, through logic programming
[74]. Logic programming consists of specifying rules that define high-level data, including situations
or activities. These rules are grouped in a rule base. Multiple formalisms are possible for these rules.
As situations cannot be inferred from raw data, in most cases, backward or forward chaining is re-
quired to go from sensor data to situations/activities. Formal logic based situation aware systems
have the advantage of having a formal specification of situations, as well as enabling verification of
consistency of these specifications. On top of that, as it relies on rules, it is easy to integrate new
sensors and new data by adding rules to the rule base. Completeness issue is supported as multi-
ple ‘ways, through different rules, can be found to evaluate the activity. However, other uncertainty
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Type Uncertainty Heterogeneity | Evolution

Naive Bayes | Supervised Inaccura.cy. No No
Contradiction

BN Supervised Inaccura.cy. Yes No
Contradiction

HMM Supervised Inaccura.cy. Yes No
Contradiction

SVM Supervised NA Yes No
Inaccuracy

CRF Supervised Contradiction | Yes No
Freshness
Completeness

CFG Supervised Inaccuracy Yes No
Contradiction
Completeness

DT Supervised Inaccuracy Yes No
Contradiction

Web Mining | Unsupervised | NA Yes Yes

Suffix Tree | Unsupervised | NA No No

ANN Unsupervised | Completeness | Yes Yes

Table 4.1: Comparison of learning-based context awareness techniques

dimensions are not supported.

Formal logic cannot handle efficiently space and time properties. That is why Spatio-Temporal
Logic was proposed [11]. This logic extends the formal logic with dedicated operators such as AND-
Later. Some works are even able to handle trajectories, which is convenient for robotic applications.
Yet, such a logic requires a particular data structure and solely focuses on spatio-temporal data.

A very popular logic that copes with uncertainty is the fuzzy logic [93]. Fuzzy logic relies on partial
truth. In fact, a statement is associated with a truth degree and can overlap with other statements.
As a matter of fact, in fuzzy set theory, a variable can belong to multiple sets at the same time with
various truth degrees. The most common example is the temperature: 10°C can be considered cold,
20°C considered hot, and 15°C considered both cold, with truth degree 0.5, and hot with truth degree
0.5. Using such a logic in context aware systems allows to cope with the imprecision of context data,
as well as contradictions. It is commonly used [115], but rarely by itself.

Dempster-Shafer Theory (DST) is a mathematical theory of evidence proposed by Dempster
and Shafer [164]. It has been applied to recognize activity in pervasive environments [114]. Its main
strength is its ability to propagate uncertainty values, allowing to provide an information on the cer-
tainty of inference. DST is a graphical model that relies on mass functions, frame of discernment
and combination rules. It relies on an oriented networks of proofs: sensors are represented as input
while activities are positioned as outputs, in between, we can find intermediate context data as well
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as operations. DST uses mass functions on data: each subset of possible values of data is associated
to a mass, that is a degree of belief. This belief is distributed in the network using specific operators
and combination rules, such as composition, derivation or association, as depicted in Figure 4.5, The
belief network and the degree of belief has to be specified by an expert. These degrees of belief are
propagated in the network according to the sensory observation, allowing to cope with complete-
ness and contradiction.
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Figure 4.5: Example of DST.

Situation theory is a variation of logic [[112]. Situation theory, or situation calculus, is another form
of logic particularly interesting in our case. In this logic, a situation is defined as a state of the world
at a given time. Such a logic is designed to deal with actions leading to situation changes. Kalyan et
al proposed a multi-level situation theory [84]. This upgraded approach relies on infons, a discrete
unit of information for a single entity, and situations. Infons are obtained from sensors or reasoners.
Situations are defined as a set of sub-situations, or micro-situations, that are themselves defined as a
composition of infons. Consequently, by creating entity-specific micro situation and then combining
them, we can determine the current situation.

Last but not least, ontologies are also a powerful tool for context awareness. Ontologies were
initially designed and used for the Semantic Web B, yet, they have now more applications. One
of the most popular ontologies representation is Resource Description Framework (RDF), that relies
on RDF triples: subject, that is the resource to describe, predicate, that is the property applicable
to the subject, and object, that is the value of the property and can be another resource. Hence, an
ontology can be seen as a set of RDF triplesE] and can be seen as a graph with resources as nodes and
properties between them as arcs. Such a formalism allows for a clear and rich representation of data.
Furthermore, ontologies can represent a lot of different data, from sensor outputs to user activities.
Ontologies can rely on various language definitions, such as OWL, that enable high interoperability

3https://www.w3.org/standards/semanticweb/
*Note that other ontology representations exist, yet, in this work, we focused on the RDF formalism.
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between systems. One of the major strengths of ontologies is their ability to support rule-based
reasoning engines, allowing to infer higher level data. Finally, ontologies can be easily extended
with new concepts, reasoning engine or other features. However, on the other hand, they require
a significant specification effort to design the structure and the rules. For these reasons, they are
extensively used for situation aware applications [148] and often combined with other techniques,
as we will see in the next section.

Characteristics of specification-based approach can be found in Table .2,

Uncertainty Heterogeneity | Evolution
Formal Logic | Completeness | Yes Addition of rules
ST Logic Freshness No Addition of rules
Imprecision
Fuzzy Logic prec _I _ Yes Addition of rules
Contradiction
DST Completeness No No
Contradiction
Situation Th. | NA Yes Addition of rules
Ontology Via extension | Yes Addition of rules

Table 4.2: Comparison of specification-based context awareness techniques

4.5 A Need For Combination

In the previous two subsections, we reviewed numerous techniques from various fields. We can note
major differences between learning-based and specification-based approaches. Learning-based
approaches, as summarized in Table 4.1, are noticeably adapted for uncertainty. In fact, several tech-
niques are able to solve several uncertainty dimensions at a time, such as CRF, CFG and BT. They are
also in most cases suitable for heterogeneous data. It is to notice that unsupervised learning ap-
proaches are not doing well with uncertainty. However, learning-based approaches often deal with
simple and static models, that require a new learning phase if the environment changes. Further-
more, learning only allows to understand the usual situations and activities that are presented in the
training dataset. In consequence, learning-based approaches can hardly cope with non-recurrent
situations. On the other hand, specification-based approaches are neither very well adapted to un-
certainty management nor are designed to only solve particular uncertainty dimensions , such as
Fuzzy Logic or DST. However, they are able to cope with complex situations and can be extended
by adding new rules, even if it requires further engineering effort.

As we can see, both types of approaches partially support our constraints, but they appear to be
complementary. This leads to the idea of hybrid approaches, as pointed by Ye et al. [190]. These are
solutions that combine several techniques, both learning-based and specification-based. Such ap-
proaches are specifically designed for context awareness in home environment, hence, they would
allow to cover more constraints. Furthermore, such approach can cover a larger abstraction of data,
by not only being able to infer information, but also enabling a complete knowledge through sit-
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uations. It is to notice that some of these approaches are actually more relevant when combined,
for instance, web mining seems to have a greater potential when combined as a complement with
another technique. Ontologies are also perfectly suitable for combination, as they could be easily ex-
tended. Many combinations are actually possible. In the literature, multiple hybrid approaches were
proposed, in particular based on ontologies. Each provides features and solves particular issues. Yet,
all of them aim to have the most accurate understanding of the context. This can be measured by
the activity or situation recognition accuracy for each approach. This metric is a good way to com-
pare approaches, even if hypotheses vary from one to another, for example, some techniques may
be designed to overcome one particular uncertainty dimension and will struggle in an environment
subjected to other dimensions. Let us review hybrid and ontological approaches.

4.6 Combination Approaches

Hybrid approaches, that are combinations of techniques, were proposed in order to take advantage
of the strengths of both types of approaches while limiting their weaknesses. Such a way could lead
to an efficient context aware system in smart home, that is why it was explored by multiple works
that we review in this section.

Multi-Entity Bayesian Network (MEBN) [99] is a typical hybrid approach. MEBN is an upgrade
of Bayesian Networks based on first order logic and Bayesian theory. In fact, on the one hand, a
BN lacks expressiveness and considers a finite set of entities. On the other hand, formal logic does
not have a proper way to deal with uncertainty. By using both formalisms, MEBN enables a high
expressiveness while supporting uncertainty. MEBN relies on fragments, that can be seen as small
BN. Each fragment carries nodes that can be interfaced with other fragments. Based on the context
observations, fragments are instantiated and aggregated, the outcome results in a situation-specific
Bayesian Network, that is a BN perfectly adapted to the current context. Thus, MEBN is actually
able to handle the evolution of the environment: it dynamically creates a situation-specific Bayesian
Network and the theory can be easily enriched with new fragments. On top of that, it supports
the same uncertainty dimensions as Bayes based approaches, namely inaccuracy and contradiction.
However, they cannot cope with other dimensions and can not use reasoning for a richer context
knowledge. Later, MEBN was used to extend the OWL ontology language through PR-OWLE [39].
PR-OWL aims to add probabilistic representation into OWL for a better uncertainty management.
However, although this hybrid approach stood out in space encounters scenarios, it was not applied
for domestic context awareness. In the end, PR-OWL features the expressibility, interoperability
and reasoning of ontologies, as well as a support of inaccuracy and contradiction. It means that
completeness, precision and freshness are not tackled.

First-order logic allows to model rich and complex knowledge from various context data. How-
ever, it does not support uncertainty, unlike probabilist Markovian approaches. That is why Richard-
son and Domingos proposed [149] a combination called Markov Logic Network (MLN). A Markov
logic network is a first-order knowledge base with a weight attached to each formula or rule. It can

Swww.pr-owl.org/
uww.pr-owl.org/basics/ontostartrek.php
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be seen as a template for constructing Markov networks. Those networks can then be used to eval-
uate the validity of the formula. MLN takes the best of the two approaches and models complex
knowledge while supporting contradiction, imprecision and completeness. However, MLN does not
support the other uncertainty dimensions. Furthermore, it does not rely on semantic knowledge,
however it can be associated with ontologies.

Considering fuzzy property is an interesting perspective. That is why some studies explore the
usage of both fuzzy logic and ontologies. Rodriguez et al. [151] proposed such a solution. In their
work, the authors proposed a fuzzy ontology to represent human activities. To do so, they used
Fuzzy OWL 2, an extension of the OWL language, as well as FuzzyDL, a fuzzy reasoning engine. They
designed an ontology based on crisp ontologies [24] and concepts extracted from other ontologies
such as CONON [182] or CoDAMoS [138]. This resulting model is composed of four main entities:
users, environment, activities and relationship, as shown in Figure 4.6 This approach was compared
to other crisp ontologies in terms of accuracy and scalability . Thanks to its fuzzy properties, it has
proven to achieve better accuracy for an equivalent scalability. However, in our context, scalability
is not a main matter as we only consider home environments. Moreover, fuzzy logic allows to tackle
uncertainty to a certain extent, but cannot cope with other dimensions such as completeness or
contradiction.

happensinLocation

hasTimestamp

jonAppliesT
actionfppliesTo belongsToEmvironment

] | j isinLocation
Thing invalvesAction performsAction

asctartDatetime
hasDuration

Figure 4.6: Main relationships from the context ontology [151]

performsActivity

Relationships between User, Activity and Environment, from [151]

Another work using fuzzy logic is the proposition of D'Aniello et al. [45]. In their work, the au-
thors aim to provide a multi-agent fuzzy-based approach for situation detection. To do so, they
use three ontologies: Semantic Sensor Network Ontology (SSNO) [35] to describe the smart envi-
ronment, Situation Awareness ontology to describe the situations, and domain specific ontologies
such as time ontology or geonames ontology. The three ontologies can be seen in the architecture
schema presented in Figure #.7. They used a multi-agent and multi-layer approach to enable a bet-
ter interface with the smart environment. Furthermore, to classify data, they relied on Fuzzy Format
Concept Analysis (FFCA) as well as fuzzy association rules. This enabled the use of the strength of
fuzzy logic to their advantage and cope with imprecision of data. On top of that, by using association
rules mining, completeness is supported. This work has serious strengths for home environments
context awareness, yet it does not overcome all uncertainty dimensions.

Attard el al. [10] describes a novel context ontology: DCON. It is illustrated in Figure 4.8. DCON
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Figure 4.7: Architecture of the hybrid approach proposed in [45]

actually describes a 'snapshot’ of the state of the environment. A situation is defined as a given con-
text, thus a situation is described by one DCON ontology. The idea of this approach is to maintain a
live context and to compare it to stored situations. DCON relies on layers: attributes (which are raw
values), elements, aspects and context. It is defined by three sub-ontologies which may be seen as
three different model levels, where each level defines the next one. As said before, situation recog-
nition is performed by comparing the live context to stored situations by similarity measurement. In
stored DCON, each aspect, element and attribute carries a weight that indicates the relevance of an
information for this situation. This weight is then used in the similarity algorithm. With this weight
notion, DCON is able to take into account users feedback by adjusting weights according to positive
or negative examples. This is a very interesting feature for a personal robot: user satisfaction is not
to be neglected. However, the approach does not support uncertainty.

Finally, Okeyo et al. [128] proposed a way to combine ontology and temporal formalism for
activity recognition. In their work, activities are decomposed by sub-activities. Sub-activities have
dependencies between each other, for instance, an activity can follow another. An ontological model
was defined: Activity of Daily Life (ADL): ADL allows to describe sensors, objects, context and more.
Unlike DCON that represents 'snapshots, ADL contains all known activities. The core of this work s its
window oriented data management. In fact, the system is able to support continuous data stream
and to cope with freshness issues. For activity recognition, the solution uses four steps. First, it
transforms context observations into basic actions by using the ADL ontology. Secondly, it generates
partial activity representation, using the ontology again. From this, the system then applies simple
activity recognition by using subsumption and similarity measurement. Finally, complex activities
are recognized by applying rules. This process is not very detailed as the core of this work is the
temporal aspect. Here, the ontology is mainly used for storing the knowledge of activities rather
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than storing the context itself. Furthermore, only freshness is supported.

The features of each reviewed hybrid approach is depicted in Table #.3. As we can see, all re-
viewed approaches can model heterogeneous types of data. Furthermore, similarly to specification-
based, they rely on rules, that can be added and/or adapted to the environment. It is worth noticing
that ontologies are widely used, enabling semantic knowledge, inference and interoperability. How-
ever, uncertainty is variably supported. The approach proposed by D'Aniello et al. [45] is the most
advanced to overcome these challenges. They provide a full abstraction of context data into situa-
tions and cope with three uncertainty dimension thanks to fuzzy logic and association rules mining.
Yet, they do not tackle neither freshness nor contradiction. Hence, overcoming all uncertainty di-
mensions is an open research problem. Further combinations are to be explored to get closer to a
full uncertainty support.

Semantic | Uncertainty Heterogeneity | Evolution
I
MEBN[99] | No naceurasy 1 ves No
Contradiction
I
PR-OWL [39] | Yes naceiEey | Yes No

Contradiction

Contradiction
MLN [149] No Imprecision Yes Addition of rules
Completeness

Inaccuracy

[151] Yes Yes Addition of rules
Imprecision
Inaccuracy

[45] Yes Imprecision Yes Addition of rules
Completeness

[10] Yes No Yes Addition of rules

[128] Yes Freshness Yes Addition of rules

Table 4.3: Comparison table of all compared hybrid approaches

4.7 Conclusion

In this chapter, we reviewed context aware techniques used for activity recognition and/or situ-
ation awareness, in particular in smart homes applications. We discussed and criticized learning-
based and specification-based approaches with focus on our objectives. We noticed that each type
of approaches was able to solve some of our constraints, but not all of them. On the one hand,
learning-based methods tend to be more efficient as for uncertainty management. On the other
hand, specification-based methods can be easily enhanced by adding new rules and can detect com-
plex patterns. From this observation, comes the idea of using combination of learning-based and
specification-based approaches: hybrid solutions.

Hybrid approaches are promising and were consequently explored for domestic context aware-
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ness by multiple researchers. The state-of-the-art points out the relevance and performance of
such approaches. In fact, by using the best of both learning-based and specification-based meth-
ods, such approaches are achieving better results for activity recognition and/or situation awareness.
As summarized in Table .3 it is also worth noticing that most of them rely on ontological knowl-
edge: this enables interoperability, reasoning and a high-level data modelling. This partly explains
why all hybrid approaches can model and use heterogeneous types of context data. Most of them
can be extended by adding new rules, by opposition to learning approaches that need to recreate
the model. However, uncertainty is only partially covered. At best, three uncertainty dimensions
are supported [149, 45]. Hence, coping with our five identified uncertainty dimensions is an open
problem. Another finding is that many combinations were not tried. Thus, exploring new hybrid
approaches is a promising way toward handling of uncertainty.

In regard to the observed literature limitations, we explored new combinations through three
contributions. Firstly, we proposed two context acquisition techniques for both event-based sources
and video-based ones, such as robot cameras. We designed a technique that gathers, batches, se-
mantizes and fuzzifies events. This approach actually combines CEP with ontologies and fuzzy logic.
It is able to model and/or cope with four uncertainty dimensions that are freshness, accuracy, preci-
sion and contradiction. We also improved a learning-based vision algorithm for activity recognition.
We actually refined the vision results with an ontological knowledge to enable more precise and ac-
curate detections. Secondly, based the acquired knowledge, we proposed CAREDAS, a technique
that identifies anomalous situations by using Markov logic and ontologies. This situation awareness
then allows to make a decision. Our contribution is able to take into consideration the previously
modelled uncertainty and supports completeness. When operating together, these contributions
are able to acquire and use the context over uncertainty and heterogeneity. Furthermore, they can
be adapted to the environment through the specification of rules. Allin all, our contributions allow
the robot, helped by the smart environments, to have a rich context knowledge and to take an ap-
propriate decision. They are presented in Part Ji. Once the context is acquired and decision is taken,
the robot can rely on a task planner to reach its goal, which is also subjected to challenges, as we will
see in the next chapter.
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Chapter 5

Automated Planning Techniques

5.1 Introduction

One of the important features for personal robots is the control of their actions and behaviours in
the environment. Indeed, once it understands its surroundings, a robot must act. But to determine
what to do and how to do it, it uses a control system or a task planner. As we previously pointed
out, although it is a common problem in robotics, with multiple solutions, it yet lacks exploration for
robots in smart environments; in fact most planning approaches focuses on standalone robots or
other fields of application.

There exist numerous techniques for controlling robots. One approach is to consider all possible
states of the robot and the environment. Several models explored that direction and were used in
robotics. Among these techniques, we can find Finite State Machine (FSM) and Hierarchical Finite
State Machine (HFSM) [33, 95, 77], Behaviour Tree (BT) [111], and Influence Diagram (ID) [96]. How-
ever, such approaches are only suitable for simple cases: indeed, in real case scenarios, foreseeing all
possible cases of a personal robot in a smart home is almost impossible. Furthermore, FSM and BT
are sensible to the problem of maintenance and scalability. Finally, even if the model is exhaustive,
upgrading it to environmental changes requires a large engineering effort, as relationships between
all other states are to be modelled. For these reasons, they are not suitable for domestic service
robots. Another approach consists of using Artificial Neural Networks (ANN) to control the robot
[16, 137]. In that case, the ANN uses as input context data and provides as output a task to perform.
Although it can work with a limited expert intervention, it requires an exhaustive and accurate train-
ing phase. Moreover, as ANN work as a "black box”, they do lack control; this can be a problem as the
robot may take inappropriate decisions, in particular in unplanned situations.

Another way to control robots is through task planning. The principle is to generate a sequence
of tasks according to the current context by using the knowledge on the tasks provided by an expert.
By doing so, the planner features flexibility and control at the same time. Automated task planning
is a large topic with multiple applications, including robotics. Even if commonly used for personal
robots, task planners are still encountering limits in domestic applications and smart environments.
In this section, we review the state-of-the-art of planners for personal robots. First of all, before
addressing planning for robots, we review the general class of task planner. We then identify what
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are the constraints and specific challenges for planning in a domestic robotic context. Finally, we
review the literature around robot task planner before discussing them toward defined criteria.

5.2 General Task Planning

Automated planning is a research topic on its own that was studied for more than 40 years. It has
numerous usages, nevertheless, Al and robotics are among its core applications. There exist multiple
planning solutions each having its own characteristics in terms of definitions and algorithms.

5.21 Chain Planner

Stanford Research Institute Problem Solver (STRIPS) [51] is one the most famous and pioneer plan-
ners. STRIPS considers a set of possible actions, each having preconditions and postconditions. The
knowledge of the ‘world’ is represented through predicates. Actions conditions respectively repre-
sent the required predicates to perform the action and the effect of the action on the "world”. Given
the current state of the "world’, and a goal state to reach, STRIPS generates a sequence of actions
that lead to the goal state. To do so, it chains actions according to their preconditions and postcon-
ditions using a stack-based algorithm. An example can be found in Figure 5.1. The formalism and
the method proposed by Fikes and Nilsson was intensively used over the years. Particularly, STRIPS
formalism lead to Action Description Language (ADL) [135], and later to the famous Planning Do-
main Description Language (PDDL) [113]. STRIPS was improved, adapted and led to new planning
solutions according to the needs and contexts. For example, some improved and used it for video
games by using a A* algorithm [129], while others proposed a planner relying on constraints [176].

Actions Goal State
isLocatedIn('nona’, ‘living room’) charging(‘nona’)
isLocatedIn(‘'charge station’,'bedroom’) [ ask_door_help ] [ ask human helpJ [ charge ]
status('door1’, ‘close’) — — — —
isLocatedIn('door?’, ‘living room’) -
isLocatedIn('door1’, ‘bedroom’) [ go_to(object) ] [ approach_door ] [ leave_room ]

isMotorised(‘door1’, ‘true)

isLocatedIn(‘'nono’, ‘bedroom’)
closeTo(‘nono’, ‘doort’) InSameRoom('nono’, ‘chage

‘ inSameRoom(‘nono’, ‘door1’) | isMotorised('doort’, true) | | status(‘doort’,'open’) station’)

T T
1
i

[ Start

closeTo(‘nono’, ‘charge station’)
T

T

] 1
: :
1 ‘

go_to(‘door?’) aSkhglgorH leave_room : gDSj:Z&iz:?)rgeH charge } -» charging(‘nono’)

Figure 5.1: Example of a STRIPS planning process

In this scenario, Nono the robot proceeds to recharge its batteries. Hence, it aims to reach the state where it
is charging. STRIPS generates a sequence of actions that allows to go from the initial state to the goal state. It
uses the available actions (or tasks) and their preconditions and postconditions (not represented). Intermediate
states are partially represented.
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5.2.2 Hierarchical Planner

A major derivation of STRIPS is Hierarchical Task Network (HTN) [153, 170, 48], or more generally,
hierarchical planners. Such planners rely on a richer knowledge than STRIPS-like planners. In fact,
HTN considers two types of tasks (or actions): primitive and composite. Primitive task can be exe-
cuted as such, similarly to a STRIPS action. Composite tasks, on the other hand, are tasks that can
be composed in subtasks. Consequently, HTN also carries the knowledge of the possible decompo-
sitions, or sub-plan, for composite tasks: by construction, this knowledge is a hierarchical network
of tasks. Each sub-plan is associated with preconditions using predicates. HTN algorithm consists in
selecting decompositions for composite tasks according to the context until only primitive tasks are
remaining. By relying on the knowledge of a task network, HTN requires more specifications from
the designer. However, this reduces the search space, making HTN usually quicker than STRIPS. Fur-
thermore, by specifying the decompositions, the designer has more control on the planning and is
ensured of the quality the generated plan. For these reasons, HTN and hierarchical planners are pop-
ular, particularly in robotics. Similarly to STRIPS, HTN was used and improved in various contexts. It
also has numerous implementations [49, 38, 123, 124].

Method
primitive task go_to_charge
compound

task 1

Possible
decomposition

meth_main
| go_to_door H open_door |—>| leave_room H go_to_recharge_station H charge |

a'l\\

~

/ \ =~
« ~
-7 2 \ S -
o / \ ~
o -~ / \ ~ -
- 4 \ S
s / \ ~
-7 / S
-~
A » X -
meth_door_opened meth_open_motor meth_open_help meth_open_manual
| ask_door_help | ask_human_help | | approach_door H push_door |
precondition: precondition: precondition: precondition: none
doorOpen(d) doorMotorised(d) inSameRoom(this, anyhuman)

Figure 5.2: Example of a HTN

This knowledge represents the tasks and methods for the robot, Nono, to go to recharge. The composite task
go_to_charge has one single method. This method is composed of five tasks. The composite task has five
methods that represent different options to perform this task. When planning, HTN will select one of the
methods whose preconditions are valid in the current context. Of course, in practice, HTN are much larger,
but a full HTN can hardly be displayed in this document.

5.2.3 Probabilistic Planner

Partially Observable Markov Decision Process (POMDP) can also be used as probabilistic planner
[83, 14]. POMDP represents states of the environment and probabilistic transitions according to ob-
servations. The plan is generated by applying iterative methods such as value iteration and policy
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iteration. The main advantage of POMDP is its ability to generate a plan under uncertain and par-
tial observations, making them popular and relevant for service robots. However, they are complex,
computationally intractable and require a complete planning knowledge from an expert. Conse-
quently, similar to FSM and ID, they are adapted for relatively simple or specific cases.

5.3 Task Planning for Personal Robots: Problematic

The presented classes of planners are generic and can be easily adapted to applications. In fact,
there exist tens of works and improvements over multiple constraints. For instance, performance
and efficiency of planning is commonly addressed. Service robotics carries very specific constraints
for task planning, particularly in home environments. Performance is often not an issue for robots, in
fact, in comparison, task execution is much longer and makes the planning time relatively negligible.
In fact, on the one hand, for a robot, performing a physical task, such as opening a door or simply go
to another room, is usually a matter of minutes. While on the other hand, most plans are generated
in a few seconds.

However, task failure is an issue for service robots. In fact, in home environments, robots may
encounter various hazards leading them to fail one of the planned task. A failure can have various

causes:

- Breakdown: the robot has a hardware or software issue. It can be a falll, a battery depletion,
actuator malfunction or others. Nao robots are, for instance, commonly subjected to over-
heating.

« Context change: due to another actor, such as a person, the context changes making the cur-
rent plan outdated. For example, the robot may have to grab an object, but a person takes it
before the robot could.

+ Robot limits: the robot is unable to perform a task as its capabilities are limited. For example,
its arms maybe too short to grab an object it has to collect.

+ Non-expected failure cause: a task fails due to environment constraint that were not expected
when designing the system. For example, vocally warning a deaf user will always fail...

Whenever a failure occurs, the robot shall find an alternative plan to reach its goal. A simple and
common approach is to regenerate a new plan with updated context information. Even if replan-
ning is not time-consuming, the robot "wasted” the actions performed until the failure, and has to
do more tasks than expected to reach its goal, making the plan execution much longer and resource-
consuming. Moreover, replanning is sometimes not enough, and more complex and time-consuming
computation maybe required [57], slowing even more the robot. On top of that, as such robots are
likely to serve persons, it is worth considering impact on the user acceptance. In fact, if a robot is too
slow or keep failing, the user will not be willing to use it. Furthermore, for healthcare applications fail-
ing can be unacceptable as some tasks may be critical, medication delivery for instance. For robots
operating in smart homes, it is important for task planning to take into consideration the possibilities
of failure in order to avoid them and/or handle them properly.

"https://www.youtube. com/watch?v=g0TaYhjp0Ofc
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Another important dimension is the context awareness. In fact, unlike many applications, in
smart homes the context knowledge is variable and may not be complete. As sensors may not be
available or reachable from the robots, it may have an incomplete knowledge when planning. The
knowledge may also change during execution. Oppositely, various data are irrelevant in plan gener-
ation. For example, the temperature of a room has no impact on the plan generated for delivering
medication. Yet, obtaining such a data has a cost in term energy and processing, that is pointless if
the obtained data is not used. Thus, for robots in smart environments, it is important to consider the
dynamism of the context, as well as the observation needs for the creating the plan.

We will now review state-of-the-art planners adapted for domestic robots and discuss them

over the aforementioned constraints.

5.4 Robotic Task Planning for Home Environment

Task planning is essential for service robots. It is consequently a
commonly addressed problem. Obviously, contributions go beyond

the failure management and context awareness as numerous other

key problems are on the table, such as HRI.

HTN was widely used in such a context. In fact, its hierarchical
structure offers interesting possibilities of control and understand-
ing. As the matter of fact, Montreuil et al. proposed Human Aware
Task Planner (HATP) [118]: HATP is an HTN upgrade based on Sim-
ple Hierarchical Ordered Planner 2 (SHOP2) [124] implementation
and it aims to enable socially acceptable plans for multiple agents,

including robots and humans, but also possibly smart devices. To

do so, it relies on social rules that define undesirable states, unde-

sirable sequence of actions, how to balance effort between actors, Figure 5.3: HATP Refinement
and other factors. The main difference between HTN and HATP is  Tree and Time Projection from
that HATP does manipulate a refinement tree, on top of the stan- 8]
dard task set. By manipulating a tree, as shown in Figure 5.3, HATP is able not only to find a plan,
but also to find the best socially acceptable plan. Besides, HATP respects time constraints, essen-
tial when interacting with a human user. By using social rules, HATP as an extended social context
awareness, allowing it to efficiently generates socially acceptable plans. However, it is to notice that
failure management is not explicitly addressed, while failure can be a critical social acceptance crite-
rion.

Later, Lallement et al. created Hierarchical Agent-based Task Planner (HATP) [98]. HATP is also
an HTN upgrade that aims to provide an adapted planner for roboticists. It uses the "previous HATP”
contributions HATP features are numerous: it provides a convenient object oriented world repre-
sentation, an intuitive domain formalism, social rules to generate acceptable plan, and the possibil-
ity to interleave HATP with a geometric planner. HATP eases the work of the designer thanks to its
user-friendly formalism but is also able to generate extremely fine plans through its interface with
a geometric planner, a tool that generates plan for low level tasks, such as grasping orientation with
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the robot arm. This approach is able to use an extended context, including social and geometric
data, thus providing better and finer plans. However, having such a precise and constrained plan
make it more sensitive to context changes. Such planners are currently being improved and tested
in follow-up works [179].

Consecutively, HTN was also improved to provide
human-robot collaborative plans [116] for shared tasks, as
depicted in Figure 5.4. In this work, the HTN hierarchical
structure is fully taken advantage of, in order to share and
explain the plan. In fact, in this approach, sub-plans can
be executed by different actors. The planner is able to
affect an actor to a sub-plan thanks to the knowledge of
the expertise of the actor. It also uses social rules and a

cost model proposed in previous works. Furthermore, if a
human is a novice for the given task, the robot is able to

Figure 5.4: Example of human-robot col-

explain to her/him how to proceed using the known de- laboration for preparing a meal, from [i16]
compositions of the task. Consequently, as actors may be

learning how to perform tasks, they are likely to fail. In this work, the robot monitors the user’s ac-
tions and replans in case of failure, however, it only explains the part that went wrong, making the
interaction more acceptable. By monitoring the user, the robot also assesses his/her expertise level

and uses it on its planning process.

Although these approaches underline the possibilities of HTN and the context awareness for
robots at home, they do not tackle the problem of failures in plans. Hopefully, multiple works were
conducted towards it.

Weser et al. [185] addressed the problem of task planning in partially observable and dynamic
environments. Their work is part of the design of the architecture of the TASER robot. Again, this
approach relies on HTN and uses SHOP2 [124]. As mentioned in the previous section, the robot may
not have access to all the context information, leading to an incomplete knowledge that can make
plan generation inaccurate. In order to overcome this, Weser et al. propose to generate a specific
plan to acquire missing information, before replanning with the now updated context knowledge. To
do so, they define a dedicated replanning action: whenever the plan reaches this action, the plan is
regenerated. But as they noticed, "replanning is a resource and time-consuming process”. Although
this is arguable, we agree that replanning should be prevented as discussed in the previous section.
To prevent this drawback, TASER's planner tries to anticipate perception results using assumptions
and hypotheses. For instance, if doors are usually closed, a door status will be assumed as closed by
default, even if not observed. If the anticipation was correct, the plan does not need to be rebuilt,
otherwise, it is handled as usual by replanning. By including perception tasks in the plan, TASER's
architecture enables dynamic context-awareness and efficient plan regeneration.

The work conducted by Hanheide et al. [71] aims to provide a global planning solution for robots
operating in an open and uncertain environment. They explicitly address the issue of explaining and
handling task failures. The approach consists of comparing the actual and expected context obser-
vations, and to discover which unexpected data explains the failure of the task. To do so, whenever
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the robot encounters a failure, it generates a dedicated plan and uses a diagnostic knowledge in or-
der to extract failure causes. The diagnostic can rely on the assumptions made by the robot through
assumptive actions. Figure 5.5 shows an example of dependencies between tasks and assumptions.
Afterwards, the robot is able to make a new plan that avoids the identified causes. Actually, this work
refines the replanning process thanks to a decent understanding of the failure, yet, it is not stated
that this acquired knowledge is used for future plans.

[1: leads-to-room-placeholderi-meetingroom, p = 0.304]

i(A (leads—to-room placeholderl meetingroom) true)

4(2: room-from-placeholder placeholderl room2 meetingroom, p = 1.0)

l(A (category room2) meetingroom)

[3: object-in-room magazine room2 meetingroom, p = 0.8]

l(A (contains room2 magazine) true)

[4: virtual-object-position visualobject3 magazine room2, p = 1.0)7

(A (in-room placeholderl) room?2) (A (position objectl) room2)
[5: move dora placel placeholderi\
(K (in-room placeholderl))
i(= (is-in dora) placeholderil)

—»[6: create-cones dora magazine room2 placeholderlj<7

(cones-created magazine in room2)

*{7: search-for-object dora magazine roem2 placeholderi visualobjects};

[ conditional sensing effect J(—

l(K (position objectl))

{Goal: (exists (70 - object) (and (= (label 7o) magazine) (K (position ?o))))}

Figure 5.5: Example of action dependencies from [[71]

Assumptions, obtained by performing assumptive action, are coloured blue, physical actions are coloured grey.
Arrows indicate that the first action has an effect which the second action depends on via preconditions or
conditional effects.

Another approach that handles dynamism, is repairSHOP [183]. Although not conducted in a
robotic field, this work is relevant and can be applied in such a context. RepairSHOP was conceived
on top of the SHOP [123] HTN planner. Since SHOP is not able to deal with context changes aside
from replanning, repairSHOP aims to provide on-the-fly plan adaptation. To do so, they created a
specific structure: the goal-graph. It maintains the dependencies between HTN task nodes, allowing
SHOP to monitor changes in task’s conditions. In fact, any context change is propagated through the
goal-graph to the related tasks. SHOP is then able to replan from the designated task and only affects
a part of the current plan. By relying on an independent structure, repairSHOP needs a mapping
between HTN and the goal-graph. Unfortunately, how the context is acquired during the execution
is not addressed in this work.

As mentioned earlier, Robot-Era project conducted to the proposition of its own planner [40, 41].
The planner was designed in accordance to the constraints of robots operating in a smart home with
various actors, making this work essential for us. In fact, this planner cope with multiple require-
ments. Hence, it is needed to handle multiple goals, to use high level reasoning mapped to low
level actions, to ensure the coordination and collaboration between actors, and finally, to ensure the
share of resources and the schedule. Unlike previous works and due of its strong constraints, it was
designed from scratch and differs from classical formalisms, from STRIPS or HTN for example. In
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this approach, actions are defined as activities, that are not related to the user activity we use in our
work. An activity is associated with preconditions and postconditions, but also with a time interval
where it can occur, and with the resources used by the activity. The planner relies on the notion
of constraint network. A constraint network is a set of activities associated with time constraints, in-
cluding "meets’, "precedes’, "during”, and ten other. A configuration plan is a plan that is feasible in
term of consistency, time and resources. As implied, the generated plan is much more than a sim-
ple sequence of actions and affects the whole smart environment. The planning process is actually
similar to HTN. In fact, their approach takes as input a goal constraint network and relies on decom-
posing activities into sub-plan, that is to say sub constraint network. This allows to go from generic
high-level plans to a very specific and detailed one, as depicted in Figure 5.6, However, as it has to
cope with a lot of constraints, the planning process is complex and relies on five solvers that interact
together:

+ A temporal solver to ensure time consistency.
+ A resource scheduler that guarantees that no resource is overused.

- A state variable scheduler that aims to avoid conflictual context states.

+ An information dependency reasoner that enforces the information dependencies between
functionalities.

+ A causal planner, that is a more classical planner using preconditions and postconditions.

0 10 20 30 10 50 GO 70 >0 90 100 110 120 130

Robot2. Post
Robot2. Manipulation
Robot2. MoveFromTo EZH
Robot2.Kinect :
Robot2.Laser [ X ]
Robot2.Location @ m:_:::’ E:K:]
Robot1.Pills DELIVER
Robot1.MoveFromTo
Robotl.Location 2
Robot1.Laser
Robot1.Docking S R R T SE

Door.Kitchen [ apiax ]

Figure 5.6: Example of plan generated by Robot-Era planner, from [40]

The plan takes into account multiple actors as well as time constraint.

Furthermore, when the plan is being executed, the approach shows to be flexible. In fact, their ap-
proach alternates between planning and plan monitoring. The monitoring consists of sensing and
updating the configuration plan according the observation. A natural example is a delay in the ex-
ecution of an action, that implies a change of schedule. The solvers monitor the evolution of the
plan, whenever an essential context data changes, the replanning is triggered to adapt the plan. This
allows coping with new goal, context changes and possibly failures. Note that, although it adapts
the plan continuously, the planner only reacts to changes or failures, and does not prevent them.
Robot-Eras planner offers a solution that supports many constraints imposed by the smart home
environment. However, such features imply a very complex and specialized solution that uses its
own dedicated formalism, making it hard to upgrade and use.
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As mentioned, uncertainty matters in home environment, accordingly POMDP were used for
robotic planning. Zhang et al. [192] used POMDP associated with logical inference. In this work,
Answer Set Prolog (ASP) is used to model the context knowledge. ASP is a declarative language that
supports non-monotonic logical reasoning. Although it does not support uncertainty, it enables arich
representation of the context as well as inference, which is then used to generate a multinomial prior
for the POMDP state estimation. POMDP on the other hand, supports well the uncertainty, on the
contrary to any reasoning capabilities. In this work, hierarchies of POMDP are used in order to adapt
the vision and navigation process to the current task. However, in that case, the planners mainly
focus on vision and navigation. Yet, the scope of this research is mostly on the context knowledge
modelling and management. It proves the usage of reasoning and inference to enhance the robot
planning process.

Finally, only a few works try to address the problem of avoiding failures based on past experience.
To the best of our knowledge, the works led by Sariel and Kapotoglu [157, 86] are the main ones in
this field. In this approach, based on previous failed situations, the robot is able to determine failure
causes and avoid using tasks that are expected to fail. An illustrative scenario can be found in Figure
5.7. To do so, the authors use Inductive Logic Programming (ILP), an experiential learning frame-
work that builds an experience by deriving hypothesis from failure situations. Hypotheses can be
seen as rules that assert if a task is likely to fail or succeed when observing some context data. Each
hypothesis is associated with a probability that is adjusted according to the experience: a low prob-
ability meaning there is a lot of ambiguity. Whenever a task ends, context observations are stored
and labelled as success or failure, this knowledge can be seen as the experience. The hypotheses
and their probabilities are then adjusted accordingly. With these hypotheses, the planning process
is adjusted to prevent future failing situations. They use a POMDP planner that was adapted to take
into account the hypotheses, thus taking advantage of POMDP probabilistic approach and its natural
compliance with hypotheses’ probabilities. This technique has proven to improve the efficiency of
planning for the object manipulation case study. However, in a more complete home scenario, this
approach lacks a suitable context model. Furthermore, it is subjected to bias, in other words, it may
identify redundant yet related context data as failure cause or miss some in case of multiple possible
failure causes.

Allin all, reviewed approaches characteristics and features are summarized in Table 5.1 according
to the previously determined criteria: context awareness and failure handling. They are discussed in
the following section.

5.5 Conclusion

In this chapter, we reviewed automated planning in regards of our objective for a personal robot
interacting with a smart home. After quickly setting aside non-planning based alternative, such as
FSM or BT, we classified planning approaches into three classes: chain, hierarchical and probabilistic.
We underlined that standard planners would be subjected to failures and suited well for combination
with a smart environment. Therefore, we studied planners specifically designed for robots or that
provide key features. Their features are summarized in Table 5.1 We notice that most of them rely
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Figure 5.7: lllustrative scenario from [157]

The robot is asked to fetch the object 4, but first has to move obstacles out of the way. Objects coloured grey
are unseen. Objects circled with bold edges denote an object with a low probability of pickUp task success
based on previous experience. Thus, the robot generates a plan that avoids the task pickUp on these objects,
thus it moves the object 2 and not the object 1 before moving to the object 4.

on HTN or POMDP. In fact, the hierarchical structure enables a controlled plan while probabilistic
planner can support uncertainty of observation.

For most planners, when encountering a task failure, the solution is to regenerate the plan. How-
ever, reacting to the failure is not enough and we want robots to be able to avoid failures. This im-
plies being able to face the dynamism of the environment and being able to understand causes of
failures to prevent new ones. As for dynamism, only two works [185, 183] are explicitly trying to
avoid replanning to some extent. About learning the failure causes and enriching the planner with
the knowledge of these causes, to the best of our knowledge, only Sariel et al. [157] explored this
possibly on a very simple case. Yet, no planning solution is able to cope with failures due to both
dynamism and unplanned causes.

Context awareness, although essential for task planning, is not commonly addressed and most
techniques use a basic knowledge, sometimes enhanced with specific knowledge to cope with their
needs. Some works [192], however, use reasoning and inference to infer high level context data. We
also saw that, apart from [40], none of these works addressed the constraints of the smart environ-
ments. Thus, taking into account the smart environments and a high-level context knowledge is to
be explored.

Allin all, although some works propose specific interesting features, none of them is suitable
facing our objectives. That is why we proposed two contributions to cope with task failures and use
efficiently the context knowledge provided by the smart environment. First, we designed a new-
HTN based planner: DHTN. By taking advantage of HTN hierarchical structure, our approach pro-
vides a novel planning paradigm that alternate planning and execution. By doing so, DHTN is able
to take into account the last changes in the environment and adapt in case of a task failure instead of
replanning. On top of that, this novel planner is able to continuously update its context knowledge
and compute the subset of the context it opportunistically needs to advance in plan. However, the
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Planner Type | Context Knowledge | Context Dynamism | Failure Handling
HATP HTN Standard No No
[118] Social rules
Standard
HATP _
HTN Social rules No No
[98] ,
Geometric data
Standard
[16] HTN andare Partially No
Agent expertise
TASER's pl
s planner HTN Standard Yes Partially
[185]
STRIPS Standard
[71] _ an _ ar Partially Partially
POMDP Diagnostic know.
repairSHOP HTN Standard No Ves
[183] Goal graph
Robot-E
obotEra Custom Standard Partially No
[41]
[192] POMDP Enriched No Partially
[157] POMDP Limited No Yes

Table 5.1: Summary of features facing the dynamism of the context and failure management

Note than a partial handling of context dynamism means the approach only tackles particular aspects or con-

text data. Failure management can always be performed to some extent by replanning, yet only approaches

explicitly trying to avoid failure and replanning are denoted as managing failures, or denoted as patrtially if

limiting replanning.

planning knowledge of DHTN can hardly be exhaustive, and failures may occur due to unplanned

conditions. To cope with that issue, we designed a learning-based approach that is able to identify

failure causes from experience and causal induction. Our contribution, LEAF models the problem as

a multi-armed bandit one and includes users’ feedbacks. LEAF allows to enrich the planning knowl-

edge as the robot acquires experience. The planner then avoids to execute task if their failure causes

are observed, preventing further failures. These two contributions are presented in Part Ii.
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Chapter 6

Conclusion

In this first part, we analysed the state-of-the-art to refine challenges and identify unsolved prob-
lems. We reviewed general usage of service robots in smart environments and pinpointed class of
problems. Robots interacting with ambient intelligence are facing challenges of network communi-
cations, Human Robot Interaction, localisation and mapping, context awareness and task planning.
Our review, including major projects of the domain, shows that context awareness and task plan-
ning are two fields that are facing critical and essential challenges. Consequently, we have focused
particularly on these two points.

Firstly, we reviewed the literature around context aware techniques used for activity recognition
and situation awareness in domestic context. These techniques can be divided into two categories,
learning-based and specification-based approaches. We noticed that each has it own advantages
and drawbacks facing our requirements. Thus, we explored the possibility of hybrid approaches.
And indeed, techniques using both learning-based and specification-based appear to be promising
and rely on the strength of both type of approaches. However, none of them was able to completely
fulfil all our needs. The proposition of D'Aniello et al. [45] is the closest to cover all our challenges,
but they do not over all the uncertainty issues.

Secondly, we analysed task planning techniques. Widely used in many applications, the stan-
dard approaches are facing major limitations as for failures and context awareness in our case, in-
dependently from the type, namely, chain, hierarchical or probabilistic planner. In consequence,
we focused on a planner specifically designed for personal robots. We noticed some very interest-
ing propositions, but each of them was isolated. For example, Weser et al. [185] planner allows to
observe the context at runtime, but relied on replanning, and oppositely Kapotoglu et al. [86] ap-
proach prevent failures but does not address context acquisition. In the end there was no planner
that avoids task failures and takes into consideration the context acquisition.

From these observations, we proposed five contributions to overcome these omissions. Our
works cover the whole spectrum of challenges, tackling perception, cognition and action. This re-
sults in a modular framework for personal robot in smart environment: FAIRIE. FAIRIE general pro-
cess can be seen in Figure b.1. Each of our contributions is actually a module usable by FAIRIE, as
well as other ones from other researchers. These contributions can be divided into two classes that
matches the domain we reviewed. In the first following part, we address our perception and cogni-
tion contributions for context acquisition and decision making. Then, in the second part, we focus
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Figure 6.1: General process of FAIRIE

on our proposals toward failure avoidance in actions and task planning adapted for robots in smart
environments.
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Chapter 7

Introduction

Being aware of the context is an essential matters for domestic robots. The knowledge of the con-
text enables the robot to understand its surroundings, to take a decision and to act. Thus, the first
step of any intelligent system, including FAIRIE, is to perceive and understand the context. By using
the smart environment, personal robots have access to diverse information about the environment,
in other words, they can acquire a rich context knowledge. However, such an approach also brings
problems. As the devices are various and numerous, the issues of heterogeneity, flexibility and relia-
bility arise. In fact, the context acquisition should be compatible with heterogeneous data, for exam-
ple supporting events from motion sensors as well as recognized gestures from the robot cameras.
As the smart environment is open, context acquisition should not be restrained to specific devices.
But the most problematic issue remains the uncertainty of data. Context data can be imprecise, in-
accurate, outdated, in contradiction or missing. This alters the understanding and decision process
of the robot. While there exist techniques that cope with heterogeneity and flexibility, approaches
that additionally tackle uncertainty dimensions are less common. Actually, as we discussed in our
analysis of the literature, there are no solutions that cope with all uncertainty dimensions.

That is why we proposed several contributions to enable context awareness over uncertain and
heterogeneous context data. In this part, we describe the perception and cognition phase of FAIRIE,
that allow to go from sensory data to a decision. We first address context acquisition through two
contributions. Context data can be provided in different ways, in particular through events. We con-
sequently proposed a specification method that batches, semantizes and fuzzifies events to gen-
erate a high level event that cope and/or model four uncertainty dimensions. We also considered
context data acquired from videos. We particularly focused on the case of a user activity identifi-
cation from the robot cameras. Combined with other context data provided by smart devices, the
vision-based recognition process was made more accurate and precise. Secondly, we describe our
cognition contributions. We proposed an approach, based on a hybrid technique, that analyses the
acquired context knowledge to identify anomalous situations and help the robot takes a decision
accordingly. Through these contributions we cope with a aforementioned challenges, as we will see
in the two next chapters.
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Chapter 8

From Sensor to Knowledge

8.1 Introduction

Knowledge is the foundation of any intelligence. For service robots and ambient intelligence, under-
standing the environment is a key for suitable behaviour and reaction. Consequently, acquiring the
knowledge of the context is the first, and possibly most critical, step. Without a proper knowledge
robots and ambient intelligence, similarly humans, are prone to mistakes. The context is mainly ob-
served through sensors, that provide a precise information about the environment, namely context
data. For example, Nono can use its cameras as well as motion sensors to observe the environment.
By gathering these context data from various sources, robots and smart environments perceive the
state of the surroundings, and create a knowledge, from the sensors. This knowledge can then be
used to infer new context data, used in the cognition phase to perform decision making, or used in
the action phase to generate a task plan.

However, as illustrated in our scenario of Arthur and its robot Nono, perceiving the context is not
a trivial task and multiple constraints arise. Firstly, it is important to consider that provided data are
not perfect, for example, Nono can observe Arthur in a room, while a smart device states the oppo-
site. Similarly, Nono may be mistaken in its observation. In fact, the quality of data is not ensured,
thus uncertainty is an essential matter. As defined in Section .2.2, we consider five dimensions of
uncertainty [190]: freshness, accuracy, precision, completeness and contradiction. Secondly, it is
worth noticing that the smart environment is open and filled with various sensors. Typically, Arthur
home is equipped with cameras, motion sensors and thermometers, and he may add new devices
such as beacons. Hence, when observing the context, it is essential not to make the assumption
of having specific devices, and to equally gather all types of data, that can be event based or video
stream for example. Lastly, some context data may be complex, such as the user activity. For in-
stance, when Arthur is cooking, Nono needs to rely on thermometers, microphones and its own
cameras to infer Arthur’s activity. Thus, acquiring the context also consists of managing inferred and
possibly complex context data.

The literature provides numerous techniques for context acquisition and management, yet, tack-
ling the aforementioned challenges is an open problem. Context acquisition is usually associated to
a particular purpose, mostly recognition of the activity of the user or obtaining particular context
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data, but can be applied in more general cases. Techniques can be divided in two categories [190]:
(1) learning based or data driven approaches, that rely on machine learning and low-level data, and
(2) specification based or knowledge based approach, that use the provided knowledge and operate
on high level data. On the one hand, learning based approaches appear to support well uncertainty,
as some techniques, such as CRF [97] or DT [154], can support up to three uncertainty dimensions.
However, they are mostly not compatible with the open aspect of the environment due to their sta-
sis and only use low level context data, such as raw events from a particular motion sensor. On the
other hand, specification based techniques, including formal or spatio-temporal logic [74, 11] and
ontologies, can model and cope with complex context data, such as the user location or activity,
and can be adapted by creating or adjusting rules. However, uncertainty management is limited in
those approaches. To overcome the limits of both approaches, hybrid techniques were proposed
[39, 151, 45, 10, 128] to specifically manage the context in smart environments. Although these
approaches perform better, in particular, by tackling more uncertainty dimensions and high-level
context data, they still can't cope with all our challenges.

In this chapter, we present our solutions for acquiring the context knowledge for a robot in a
smart environment. As we will discuss in the next section, we do not tackle communication and
interaction with devices; we actually focus on the management of the data required to provide the
context knowledge under the constraints previously illustrated. Consequently, we proposed two
solutions. Firstly, we propose an event-based context acquisition approach that semantically en-
riches and fuzzyfies events to model and tackle four uncertainty dimensions. Our approach actually
transforms raw events into complex, fuzzy, and semantic events that can then be stored and used,
enabling more accurate inference of context data, in particular user activities, and an improved cogni-
tion phase. Secondly, as not all sensors are event oriented, we also proposed a refined vision-based
activity recognition process. Indeed, vision is the main source of information of the robot and can
be used to recognize the gesture of the user, yet, this solution is highly inaccurate. Consequently, we
refined it by using the data provided by other sensors in the environment. These two approaches
allow to acquire the context from event-based sensors and robots cameras, covering most of the
spectrum of sensors.

Before reviewing our two contributions, we will first discuss preliminary notions and definitions
that are required and used in both solutions. We end this chapter by presenting the experiments
conducted and the obtained results.

8.2 Preliminaries

Before addressing our two contributions, it is important to clarify our hypotheses and to define no-
tions that will be used afterwards.

8.2.1 Data Sources

For a robot in smart environments, sources of data are diverse and numerous. To observe, the robot
can not only rely on its sensors, but also on smart devices dispatched in the environment. This variety
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induces heterogeneity of devices, protocol and data. For example, a motion sensor provides events
when a movement is detected, a thermometer provides a temperature on demand, and a camera
can perform heavy processing to identify a user. There are two different classes of data sources:

« Active data source (push mode): an active data source or active sensor sends (pushes) the in-
formation to the system. This is typically the case for event oriented sensors, such as motion
detector.

» Passive data source (pull mode): a passive data source or passive sensor is asked to provide a
data. In other words, the data is pulled. This is typically the case for sensors that continuously
analyse the context, such as thermometers.

In a smart environment, it is likely to find both passive and active sensors. Furthermore, commu-
nication protocols are also various, and often proprietary. Nevertheless, all data sources should be
used for context acquisition.

Although integration and configuration of devices in smart environments is an open challenge
[40], we do not address this issue. In order to gather the data, we actually rely on middleware or
home-made bootstraps that push data to our solutions. If a sensor is passive, its behaviour is ab-
stracted as an active one. For example, middleware can pull a temperature, and push it periodically
or when the value changes. Consequently, we suppose data to be pushed as input in our solutions.
By doing so, we put aside the heterogeneity of sensors and protocols, but the heterogeneity of data
remains: this led to the usage of ontologies, that can model numerous types of data, as we will dis-
cuss in the upcoming sections. The pushed data can then be transformed and handled as events,
enabling the usage of Complex Event Processing techniques, as we will see in the next section.

However, not all data can be pushed and transformed as events. This is particularly the case of
cameras, in particular the one embedded on robots. In fact, cameras are key sensors for robots allow-
ing them to observe the environment wherever they are. However, as such, cameras only provide
pictures or video streams without carrying information, thus, vision algorithms need to be applied
to extract data from cameras. As a result, we consider two types of data: events obtained from
pushed data, and video streams provided by the robot cameras or others. This led to two separate
contributions to acquire the context: one oriented on events, the other centred on the robot vision.

8.2.2 Background Ontologies

Ontologies are commonly used tools for maintaining knowledge. They can model numerous type
of data, in particular through the RDF format, that is based on triples, subject, predicate, object. On
top of that, they are often associated with inference engines enabling reasoning. For these reasons,
ontologies offer a suitable format for carrying the context of the knowledge. But ontologies can
also be used to store general information used by our solutions, in that case, they are refereed to as
background ontologies.

Background ontologies aim to carry structure and information required by our tools. The struc-
ture, meaning the classes and their properties, allows to normalize our data, allowing an easy inte-
gration into a context ontology. On the other hand, background ontologies carry other information
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Figure 8.1: Excerpt of a possible background ontology

This excerpt shows the types of devices in the ontologies that are used to classify objects in the environments.

about devices, robot, environment and others. Typically, the background ontology can carry the lo-
cation of sensors, the reliability of class of sensors, or specific sensors, or even the topology of the
environment. An example of carried background information can be found in Figure 8.2, Such an
ontology must a minima carry the following features:

« Class Sensor, and subclasses of Sensor, such as MotionSensor or thermometer

- Data property hasConfidence associated to Sensor subclasses that expresses the reliability de-
gree for a sensor. This trust is supposed to be provided by an expert. It can be learnt statisti-
cally, but this remains out of the focus of our work.

- Data property hadld associated to Sensor, that links each instance of sensor with an identifier.
« Class Activity, that represents the user activity.

« A set of inference rules, provided by an expert and depending on the environment and the
ontology. These rules are used to infer new context data, but also to refine the activity recog-

nition, as we will discuss later.
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Further concepts and properties can be provided according to specific needs and constraints of
one environment; this remains the responsibility of the designer. In our work, we improved a context
ontology for human activity representation * [151] with the aforementioned classes and properties,
as well as new type of sensors and activities. An excerpt of this ontology can be found in Figure 8.1
Note that any ontology that carries the minimal features aforementioned can be used. We used this
background ontology in both of our contributions as we will discuss now.

‘hasConfidence

> 0.5

-hasld :

>L> motion1
lis-a Motion
Sensor

Office 1

Arthur

:hasName

iisLocatedIn

:hasName

Figure 8.2: Example of two RDF graphs carrying background information

In this example, an expert has provided information about a motion sensor and the user, Arthur. These graphs
are part of a background ontology.

8.2.3 Complex Event Processing

Complex Event Processing (CEP) [107] is widely used in research and industry to manage events.
CEP techniques consist of generating complex events from other events, simple or complex, based
on rules, thus being a specification-based approach. CEP allows to gather, filter and batch events, as
well as perform a first reasoning by generating more and more complex events. In our contributions
we relied on a CEP as a first step to handle entering events. But what is an event? An event stream?
Let us define those notions.

Firstly, the entering and resulting flows of events can be considered in different ways. CEP usually
assume an event cloud or an event steam as input. They are defined as follows.

Definition 5. Event cloud: An event cloud is a partially ordered set of events where dependencies between
events are set by criteria other than time.

Definition 6. Event stream: An event stream is an ordered time sequence of events.

Event streams are mostly used, but event clouds can be required in some context. They define
how the events enters a CEP and how they are handled within it.

In CEP, there are two types of events:

'http://users.abo fi/ndiaz/public/FuzzyHumanBehaviourOntology/FuzzyHumanBehaviourV1l.owl
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+ Simple event: A simple event is provided by a source external to the CEP. It is a raw event
provided by a sensor, and it carries a raw data.

« Complex event: A complex event results from the abstraction and/or aggregation of other
several events, simple or complex.

Formally, an event is defined as follows:

Definition 7. Event:
An event is a vector defined as e = {t,ids,type,v} where t is the timestamp, ids is a set of sources
identifier, type is the source type, v is a value.

- Simple event: |ids| = 1 and t is the time the simple event enters the CEP.

« Complex event: ids is the union of all sources identifiers carried by events used to generated the
complex event e. t is the time the complex event was generated.

For example a motion sensor may provide the following simple events e; = {¢1, {motionl},
motion, active} meaning that the motion sensor was triggered and generated an event at date ¢;.
Similarly, a camera may provide the event ex = {ta, {cameral},identity, arthur} if it identifies
Arthur. Note that, in our case, we suppose these event formatted by a middleware or an interface.
Identifiers are set according to the background knowledge information on sensors. Timestamps are
set to the time they are sent to the CEP. Such events can be aggregated to form a complex event.
For example, the user location complex event, es = {t3, {motionl, cameral},location, kitchen}
can be generated from ¢; and e3 as the expert knows motionl and cameral to be located in the
kitchen. Note that a complex event is not necessarily composed from multiple simple events, in
fact, a complex event can simply be a refinement or a filtering of an event. In CEP, complex events
are often computed through rules. Rules are provided by an expert and allow to gather, filter and
batch events. For example, events of type motion and identity can be gathered, or only events
from given sources. As output, CEP rules create event batches.

Definition 8. Event Batch:
An event batch is a group of events resulting from a rule. Batch can be defined according to the number
of events, or according to time.

Note that a batch can be an event stream or an event cloud. A batch is defined by time, meaning
it carries events that are in a same time window. It can also be defined by the number of events, in
that case, the batch is provided when it reaches a given number of events. For example, a rule may
generate batch of location events such as:

{{ts, {motionl, camera},location, kitchen}, {ts, {motion3},location,of fice}}

CEP can be used to gather, filter and batch events, however, most CEP techniques do not tackle
uncertainty. In the literature, CEP rarely cope with uncertainty. In fact, the research community is
mainly focused on performance [191,187, 29, 180], as pointed out by Cugola et al. [37]: the few works
that do only address a subset of uncertainty dimension. Among these works, Artikis et al. [9] aims to
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identify uncertainty dimensions that may appear in CEP and discussed of possible solutions to ex-
tend traditional events. However, as their context is different from ours, the identified uncertainty
dimensions differ from ours, except imprecision. Wasserkrug et al. [184] proposed a framework for
knowledge representation in CEP supporting uncertainty. By relying on probabilities and generated
Bayesian Network, they address two types of uncertainty: the imprecision of events and the 'uncer-
tain relations between events. Other dimensions, that are essential in our context, are not dealt with.
Another approach dealing with uncertainty is CEP2U (Complex Event Processing Under Uncertainty)
[37]. It combines CEP and Bayesian Network. However, it only deals with, yet greatly, two dimen-
sions: the accuracy of data and accuracy of rules. More recently, SCARG (Sequence Clustering-based
Automated Rule Generation) [102] aims to tackle the problem of dynamic changes in the domain
and/or expert mistakes. The approach relies on learning, clustering and Markov Probability Transi-
tion Models, yet, it does not explicitly cope with uncertainty dimensions. Hence, no CEP techniques
can efficiently help us toward the management of uncertainty.

To cope with these limitations, in our solution we used CEP alongside with ontologies and fuzzy
logic. As performed by some semantic CEP such as ETALIS [7] of SCEPter [193], we used a back-
ground ontology that carries key information to handle uncertainty.

8.3 Context Acquisition over Event Based Sources: FSCEP

For a robot operating in a smart home, possibilities of acquiring the knowledge of the context are
as various are the variety of sensors. Most of these sensors, such as motion detectors, beacons or
thermometers, provide data that can be abstracted as pushed events. However, in real life, these
devices are not perfect, causing the data they provide to be uncertain. In order to acquire the con-
text over uncertain events, we propose a new context acquisition system: Fuzzy Semantic Complex
Event Processing (FSCEP). FSCEP, aims to cope and/or model four uncertainty dimensions, namely,
freshness, inaccuracy, imprecision and contradiction, by providing high level, semantic and fuzzy
events. This is enabled by relying on CEP, background ontologies and fuzzy logic. FSCEP is axed

over three main steps, as seen in Figure @ :
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Figure 8.3: FSCEP architecture

1. Events Acquisition: Once sensors data are transformed into events and pushed to FSCEP, they
are firstly acquired through a CEP. This CEP operates a filtering and a batching of events over
time. Thus, this phase provides a batch of fresh and filtered complex events.
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2. Semantization:The semantization phase transforms and enriches complex events into context
data and semantic events by using a semantic background knowledge. Thanks to the usage
of a background knowledge, events are formatted, enriched and associated with a confidence
value. As a result, it outputs a batch of semantic events.

3. Fuzzification: The final phase consists of analysing the batch of semantic event to generate a
single fuzzy semantic complex event. This event carries one context data with fuzzy values.
This event is the output of FSCEP and can be used or stored afterwards.

Let us now review each step more specifically.

8.3.1 Events Acquisition

As mentioned earlier, we suppose that data are pushed as events to FSCEP. Those simple events
are formatted as events whose timestamp ¢ is set as the date of transformation and emission. Thus,
FSCEP takes as input an event stream.

The aim of the events acquisition is to handle the input event stream on three axis. Firstly, it
aims to gather similar events together. For instance, events related to the user location, such as
motion detections, will be considered together, while events related to temperature, will be dealt
with separately. Secondly, it should filter inaccurate events. In fact, as sensors are imperfect, some
events may be obviously wrong and can be filtered. Lastly, it batches events into time-window. This
ensures the freshness of events as old ones are not considered.

In order to achieve this, simple events are gathered through a CEP. In our work, we relied on
Esper [5Q], yet, it can be substituted by another CEP solution. The CEP relies on rules provided by
an expert, that define how to gather, filter and batch events. Let us consider the following rule:

Select events of type="motion" and type="identity" in time_batch(lmin)

This rule simply gathers events of type motion and identity and put them in a one minute batch. The
resulting batch will contains events of those types that were provided in the last minute. By defining
such batches, only fresh events are gathered. Oppositely, if batches were defined according to a
number of events, old outdated ones could have been selected. On top of that, in case of overflow,
the recent-first policy is applied in FSCEP. Meaning that if the CEP is saturated, old events will be
replaced by new ones. Again, this prevents the system to take into consideration too old events.
Rules also allow to filter events, let us now consider the following one:

Select events of type="temperature" in time_batch(lmin) where wvalue < 100

This rule gathers temperature events in a one minute batch, and filter them according the tempera-
ture value. In fact, if the temperature is beyond 100°C, it is considered to be an artefact, and should
not be considered. By doing such filtering, the rule perform a first check of accuracy. Note that this
is just a simple example, more complex conditions can be set, for example, it is possible to verify the
uniqueness of an event or the relation between multiple ones.

These rules are defined by an expert that has the knowledge of the environment and its char-
acteristics. Naturally, multiple rules can be defined in the CEP. Furthermore, new rules can be easily
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added without altering the other ones or the knowledge. Note that, in FSCEP, the CEP are not used
to create aggregated complex events, as this is the role of the following phases. In the end, the CEP
allows to gather event of same types, filter inaccuracy, and batch into time-window. For each rule, a
batch of complex events is created. Those batches are then transmitted to the semantization phase.

8.3.2 Semantization

As its name implies, the semantization phase aims to add semantic to events. The principle is to
transform, by using a background ontology, the raw data carried by events into context data, and
model them into an ontological format. Consequently, the semantization process consists of trans-
forming complex events carried in a batch, to semantic events, resulting in a new batch of semantic
events. It is defined as follows:

Definition 9. Event semantization process
Let B.. be a batch of complex events. Let B, be a batch of semantic events. The event semantization
process consists of transforming an event e¢; € B, to a semantic event se;.

Bce — Bse

EventSemantization({e1,ea, ..., e,}) — {se1, sea, ..., se,}
where 0 < i <= n and n is the number of events in the batch B...

The semantization process relies on three core features: (1) extracting and formatting the context
data, (2) enriching with background information, and (3) setting confidence weights. Let us discuss
those features.
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Figure 8.4: Example of a semantic event

Example of a semantic event that carries the user location context data, in grey, as well as related information
provided by the background ontology, in green. The confidence value is also attached to the context data as
annotation.

The first feature of the semantization is the formatting of data carried by events to context data
modelled as RDF . The principle is to create a RDF triple from the information carried by an event.
In fact, we define a context data follows:

Definition 10. Context data (CD):
A context data is a piece of information about the environment provided by robots’ sensors, smart devices
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or a knowledge base. Formally, it is a RDF-Triple (subject, predicate, object). subject is the URI B of an
entity of the environment, object is the URI of another entity or a value, predz’cmteE is the relation between
the subject and the object.

For example, (:user, isLocatedIn, :office) is a context data that represents the user location. Note
that the subject can represent any entity of the environments, e.g. robot, user, furniture or other.
The object can represent an entity as well, but can also be a value, such as a number, a name or a
Celsius degree. The first step of the semantization is to create such a context data from a simple
event. The structure of context are carried in the background ontology. For example, that e location
is a relation between an entity and a room as (?entity, isLocatedIn, ?room), consequently, generated
location context data shall match this structure. As the background ontology shares its structure
with the context ontology, as seen in Figure [8.3, the provided context data match the formalism
of the context knowledge and can be immediately integrated. In order to identify what structure
to use, matching rules are used between the type of event and predicates. For example, event of
type location will be associated to the isLocatedIn relation. Once the structure is selected, objects
and subjects are identified to create the triple. This can be performed by using the identifier carried
by event or by relying on hypotheses. For example, we can assume motion sensors only detect the
user, that is alone in the environment, thus, thanks to this hypothesis, the subject of the triple can
be set as the user. In the end, the simple event is transformed to a context data in accordance to
the format of the ontologies. However, the information carried by the event may not be enough to
transform it to context data.

Indeed, the imprecision of the event may block the transformation into a context data. For exam-
ple, as is, a motion sensor does not provide the location of the user, but simply detects a movement.
However, the background ontology can tackle this flaw. In fact, the information carried in the on-
tology can be used to enrich the event data to finally create the context data. Typically, in the case
of the user location, the ontology stores the location from all sensors, thus, the user location is in-
ferred according to the identifier of the event. For example, an event e; = {¢1, {motionl}, motion,
active} with the ontology carrying the information (:motionf, isLocatedin, :kitchen), the context data
(:user, isLocatedln, :kitchen will be created. In short, information carried by the event and the back-
ground ontologies are interlaced to infer the related context data. By enriching data carried by events,
FSCEP copes with the imprecision issue. On top of that, further information from the background
ontologies is associated to the context data. These are also formed as RDF triples and, alongside
with the context data, form a RDF graph. Such information can be various and include information
about the origin sensors, the type of data, the subject or the object of the context data. Hence, this
step leads to the creation of a semantic event, defined as follows:

Definition 11. Semantic Event:

A semantic event is a couple defined as se = {t, G} where t is the timestamp, and G is a set of RDF-
Triples forming a graph. G carries a context data cd and information including the sources, identifiers,
confidence.

Zhttps://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
3From a RDF perspective, the predicate is an object property if object refers to an entity, and a data property if object
refers to a value.
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Hence, a semantic event is a context data extended with extra information, forming a RDF graph.
This graph can be used in the fuzzification phase and can be directly integrated in a context ontology.
An example of a semantic event can be found in Figure [8.4. Note that this extra information include
a confidence value. This value is key in FSCEP, as we discuss now.

The background ontology associates to sensors a confidence value. As implied, this value repre-
sents the reliability of a sensors. In other words, it quantifies the accuracy of a data source. Typically,
motion sensors can be easily mistaken, thus have a low confidence value. On the other hand, bea-
cons, that detect the user's phone may be more accurate and can be more easily relied on, but only
if the user usually stands by his/her phone. The confidence values are supposed provided. In our
work, we considered an expert; statistical learning can be applied, but remains out of the scope of
our contribution. This value can be set for a class of sensors, such as motion sensors or beacons,
or for a specific sensor. When an event is semantized, the generated context data is associated, by
annotation, to the confidence value of the source sensor. This can be seen in Figure 8.4. If an event
have multiple sources, for example e3 = {t3, {motionl, cameral},location, kitchen}, the average
of all confidence values is kept. This confidence value is then used during the fuzzyfication process.
By using such a weight, we aim to model the inaccuracy of context data.
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Figure 8.5: Example of a semantic event batch

Note that the two semantic events appear to be carrying context data that are in contradiction: is the user in
the kitchen or in the office?

In the end, the semantization process allows to transform complex events to context data and
enrich them by using the background ontology. The resulting semantic events are precise and model
accuracy through confidence values. They form a batch of semantic events, as seen in Figure 8.5,
Note that, as events are grouped per type in the events acquisition phase, one batch carries semantic
events representing one type of context data, for example location. This batch is then transmitted to
the fuzzyfication phase, that will analyse the whole batch to generate a single fuzzy event, allowing
to model contradiction.
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8.3.3 Fuzzyfication

The fuzzification process aims to analyse the batch of semantic events to generate one fuzzy se-
mantic event. This event carries multiple values for one context data, each associated with truth
weight. By doing so, the resulting fuzzy event models uncertainty, in particular the contradiction
and accuracy. The process consists of regrouping semantic events carried in a batch into a single se-
mantic event, and then to compute truth weight based on the information carried by these events,
in particular confidence weights. Formally, the process is defined a follows:

Definition 12. Fuzzification process

Let SE.; be a batch of semantic events SE.; = {sey, sea, ..., se,} where Vse € SE.q, se carries the
context data of type cd. The fuzzification process can be seen as a function that takes as input a batch
of semantic events and generates a F'SC E.; for a context data type cd.

Fuzzification(SE.q) — FSCE.4

The fuzzification aggregates semantic events into one semantic event that carries a fuzzy context
data. Thus, the first step is to compute this fuzzy context data according to the "normal” context data
carried in events in SE.;. A fuzzy context data is defined as follows:

Definition 13. Fuzzy Context Data (FCD):

A Fuzzy Context Data is a context data (see Definition [[0), thus a RDF-Triple (subject, predicate, object)
where object is multivalued and weighted. Hence, object is a set of pairs (v, w,) where v € V, V being
the set of all possible values or objects, and w,, is the truth weight associated to v.

For example, considering the batch in Figure 8.5, the following fuzzy context data can be as-
sembled: (user, isLocatedIn, {kitchen wj;office ws}). Note that, when represented
graphically, each possible value is associated to the subject with its own triple. Thus, a fuzzy context
data is actually a small RDF-graph with a single subject, as seen in Figure [8.6. Nevertheless, as for
textual representation, we will keep the formalism used in the previous example. To generate such
a fuzzy context data, context data carried by events in SE.; are regrouped. As they are part of the
same batch, they share the same structure, that is to say the same subject and predicate, but have
different objects. The set of these objects, that are the possible values, are detonated as V. The
resulting fuzzy context data has the subject and predicate of the entering context data, and as ob-
ject, it has V associated with truth weights. How these truth weights are computed is the core of the
fuzzification phase.

In order to compute the truth weights associated to values, FSCEP applies a membership func-
tion. This function uses as input a batch of semantic events and a value, and provides a truth weight
for this value. It is defined as follows:

Definition 14. Membership Function MF:
MF(SECd, val) = WTval

where SE., is a batch of semantic events, val € V is a possible value for cd and WT,,; is the truth
weight determined for val.
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Multiple membership can be applied and FSCEP is compatible with any function that matches
our definition. In our work, we considered a weighted mean function based on the confidence values
carried by semantic events. By doing so, we aim to compute truth weight that are based on the
accuracy of context data. The more accurate the data is, the higher its truth weight is, relatively to
other context data. Our membership function is defined as follows:

Definition 15. Confidence-based Membership Function M F.:
Let A be the set of all confidence weights « of a semantic event se in SE.;. Let A, be the set of all
confidence weights o of semantic event se in SE.q where object = val.

MF.(SE.q,val)=( >, «a)/(>. «a)

aeAval acA

Applying this membership function allows to compute truth weight of the fuzzy context data. Let
us apply it on the batch of semantic events depicted in Figure 8.5, This batch has two semantic events
carrying the context data representing the user to be in the office and the kitchen, with respectively
confidence 0.5 and 0.7. Therefore:

WTkitchen = MFC(SEisLocated]m k:itchen) = 07/(05 + 07) = 0.58
WToffice = MFC(SEiSLocatedIny of fice) = 0.5/(0.5 + 0.7) =0.42

This computed truth weight can then be associated to their respective values in the fuzzy context
data. In our example: (user, isLocatedIn, {kitchen 0.58;o0ffice 0.42}). This truth weight
means that the user is considered to be both in the kitchen and office. Trust weights are indeed
different as probabilities: on the one hand, probabilities would consider exclusive, meaning the value
is actually one or the other, on the other hand, fuzziness represented by truth weights means that
the two values are partially true. In fact, the fuzzy context data means that, according to the current
knowledge, all possible outcomes can be considered true to a certain degree. This also means that
no value should be excluded. Hence, by generating fuzzy context data, we model contradiction, but
also accuracy, as truth weights are based on confidence values.

As entering events are semantic, the formalism is obviously kept during the fuzzification phase.
Once the fuzzy context data is computed, a fuzzy semantic complex event can be created. This
event semantically represents a fuzzy context data as a RDF graph. Such event is defined as follows:

Definition 16. Fuzzy semantic complex event FSCE:

A fuzzy semantic complex event is a semantic event (see Definition I0) FSCE = {t, G} where t is the
timestamp, and G is a set of RDF-Triples forming a graph. G carries a fuzzy context data fcd and extra
information.

Such event is said complex as it results from a combination from multiple events. As mentioned,
the fuzzy context data itself is a RDF sub-graph composed of triples sharing the same subject and
predicate, and annotated with truth weight. Extra information carried by semantic events in SE.4
are also added in the graph G of the FSCE. However, now irrelevant information, such as confidence
values and sources, are removed. An example of a FSCE resulting from the fuzzification of the batch
in Figure [8.5 can be found in Figure [8.6
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Figure 8.6: Example of generated FSCE

Example of a FSCE carrying a fuzzy context data with two values or objects, in grey. Trust are annotated to
each possible value, in blue. They are associated with extra information, in green.

One FSCE is generated for each entering semantic batch. These FSCE are the output of FSCEP
and can then be inserted in a context ontology, or directly used. Thanks to their semantic formatting,
their integration is instantaneous. By using a fuzzified representation, accuracy and contradiction is
modelled and can be used in cognition processes. On top of, freshness and imprecision were tackled
in the previous phases of the generation.

8.3.4 Context Ontology

Once generated, the FSCE is sent to a context ontology that stores it. Note that it can be sent to an-
other application, yet, in our work, we only considered a context knowledge. The provided FSCE
is ensured to be fresh and precise, while contradiction and accuracy are modelled through truth
weights. The fuzzyness of context data can then be used to perform adjustments of the context
knowledge by reasoning over multiple context data. For example, if the fuzzy context data is pro-
vided (user, isLocatedIn, {kitchen (0,58);bedroom (0,42)}) while another source pro-
vides (user, isDoing, {cooking (1,0)}), then the useris more likely to be in the kitchen, as
cooking is often done there. Truth weights can also be used by other processes to take into con-
sideration the uncertainty, for example, activity recognition tools, such as AGACY [161], can be more
accurate by using such values. This is what we measured in our experiments to evaluate the relevance
of FSCEP.

8.3.5 Experiments

In order to evaluate FSCEP, we set up a simple activity recognition scenario. In this scenario, the user,
Arthur, is working in the office; we aim to identify this activity from context data provided by imper-
fect sensors. To do so, we need to acquire context data about his position and his current stance.
The office is equipped with a beacon, a motion sensor and the chair has a pressure sensor, while
the living room has a camera and a motion sensor. In this experiment, an activity is recognized by
applying simple inference rules in a context ontology filled by FSCEP or a CEP without fuzzification.
The objective of the experiment is to evaluate the gain of using a FSCEP over a solution that does
not tackle uncertainty. In consequence, we measure the activity recognition rates with and without
FSCEP.
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Implementation

Figure 8.7: Screenshot of the Freedomotic interface with our custom devices

FSCEP was prototyped relying a well-known CEP, Esper [50], and ontologies [151] through the
Jena framework. It is developed in Java and uses an agent based approach through ]adeE. Experi-
ments were conducted through simulation using Freedomotic, as discussed in Chapter |5, We have
implemented our scenario and added multiple imperfect sensors, including motion sensors, bea-
cons and cameras, as illustrated in Figure [8.7. These newly added devices generate events and are
able to communicate with our FSCEP.

Protocol

500 runs were executed, with and without FSCEP, thus totalling 1000 runs. One run consists in
a salve of events, the event processing through FSCEP or CEP, and the recognition of activity. We
considered one activity per run. To model uncertainty, each sensor has a probability of providing
an incorrect context data, ranging from 0% to 60%. In one run, for each sensors, context data are
generated within Freedomotic, correctly or incorrectly. These virtual sensors communicate context
data carried in events to FSCEP. These events are formatted to be a compatible with Esper. Formally,
Esper is associated with a list of possible events, that is a list of Java classes, entering events are Java
objects based on these classesE. We designed two inference rules to detect activities "working” or
"resting”, while Arthur is supposed to be only working in the scenario. We then measure the rate of
successful activity recognition, meaning detecting that Arthur is working, with and without FSCEP.

Results

The result of correct activity recognition comparison is displayed in Figure 8.8. As we can see, by
using FSCEP, the rule-based activity recognition process gains 10% of correctness. In fact, as ex-
pected, by having all possible values for a context data associated with truth weight, the cognition
process can consider all options and associates each outcome with a confidence value. This proves
the potential of our model for such applications. Note that, as home environments are each differ-
ent, the gain varies accordingly. Itis actually complicated to quantify an exact gain, as the uncertainty

*http://jade.tilab.com/
Shttp://esper.espertech.com/release-5.5.0/esper-reference/html_single/index.html#event_

representation
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Figure 8.8: Result of FSCEP experiments

of each environment can hardly be quantified and varies according to the context and available de-
vices. Hence, the strength of FSCEP is to enable other tools to perform their role more accurately, as
we have shown with this simple rule-based activity recognition case. Yet, using events from sensors
to acquire the context is not the only solution for the robot. In fact, it can use its cameras, which are
however not perfectly accurate. This is the object of the next section.

8.4 Vision-Based Context Acquisition: VARSeR

Although the robot can rely on sensors, from itself or the smart environment, that provide events or
event like data, not all devices are working this way. This is particularly the case of cameras, especially
robot ones. Indeed, unlike sensors that measure a particular value, such as a temperature or the
occurrence of the movement, cameras provide images, that, as is, do not provide information. In
fact, images need to be analysed through vision algorithms. For a robot, vision is essential as the
camera remains its main sensor. Consequently, vision algorithm, using both 2D and 3D images,
have been extensively used and improved, in particular with machine learning techniques.

Even if user activities can be inferred from the analysis of the context knowledge, as performed
with AGACY [161, 162] for example, the robot can also use its camera to do so. By analysing video
streams, the robot can identify the gesture of the user and associate it to an activity. Combined
with the mobility of the robot, such a tool enables the possibility to monitor the user anywhere the
robot can go. Hence, the activity of the user can be known, even if it is located in a "blind spot” in
the smart environment. However, such a technique is heavy, requires a strong learning phase and is
subjected to imprecision and inaccuracy. Indeed, the output of the vision activity recognition can be
erroneous, this can be due to a weakness in the learnt model or a confusion. Moreover, the gesture
may not be enough to identity a precise activity, for example, vision may detect that the user is sitting,
but not what for he is sitting, such as reading or watching the television. As the recognition is based
on gesture, some of them are alike, making them hard to distinguish some of them, even for human.
An illustrative example can be found on Figure [8.9. However, in a smart environment, the robot
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is not alone and can count on other sensors to support it. The idea is that some data sources can
provide determinant information. Furthermore, this offers the possibility to compute more precise
activities. For that reason, we proposed a solution in that direction.

Visual Activity Recognition with SEmantic Reasoning (VARSeR) is an hybrid approach combining
a learning vision-based activity recognition and ontologies. Our contributions improve a state-of-
the-art vision-based activity recognition thanks to an ontological context knowledge. This leads to
a solution that can be applied anywhere the robot can go, that requires few specifications as it uses
learning, and that used a rich context knowledge to refine the recognition. It also stores all possible
activities and rules, that are essential as we will see, in that sense, it can be seen as a background
ontology. In VARSeR, the ontology is used, through rules, to correct and refine the output of a
previously proposed vision-based process [46, 158] through rule based reasoning. Consequently,
VARSeR is able to identify more specific and accurate activities.

Before presenting our hybrid approach, let us first briefly describe the used vision-based activity
recognition process and illustrate its limit.

8.4.1 Vision-Based Activity Recognition

Figure 8.9: Example of a video stream from a Nao robot

Example of a video stream of a confusing gesture acquired by a Nao. Is the user phoning or drinking?

Our contribution is to improve a state-of-the-art vision-based activity recognition process by
refining its result. Recognizing an activity aims to extract one or multiple activity defined as follows:

Definition 17. Activity
An activity is a high-level context data (see Definition 0), thus a RDF-Triple (subject, predicate, object)
where where subject € Person, predicate = isDoing and object € Activity.

Forexample, (:user, isDoing, :cooking) isanexample of context data representing Arthur,
the user, being cooking. We suppose a user can only perform a single activity at a time. In this work,
we used the proposition of El-Yacoubi et al. [46, 158, 120]. This approach consists of analysing a
2D video stream, as seen in Figure 8.9, acquired by the robot to classify the gesture of the user to
possible activities. In brief, it uses as input a short video stream and outputs an ordered list of pos-
sible activities associated with probabilities. It is based on machine learning and requires a training
dataset. This solution is a four-steps process:

1. DenseTrack [181] is an algorithm that analyses an image stream to provide pixel trajectories.
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2. K-means [109] algorithm is used to group the trajectories into a fixed set of prototypes or
clusters.

3. Bag of words algorithm is used to compute the frequency of visual word’ thanks to the clusters
generated by K-means.

4. Support Vector Machine (SVM) [72] The bags are classified using a trained SVM.

The algorithm can be trained by providing a data set consisting of annotated video example.
Once trained, it can be applied on any acquired video stream. It generates an array of pair between
activity and probability, for example: {(eating, 0.05), (phoning,0.1), (walking,0.01), ...}. We refer
to this set as activity distribution. In our work, the algorithm was trained to recognize nine activities:
falling, phoning, applauding, drinking, remote control, sitting, walking, opening door, closing door. Note
that some activities are imprecise, for example sitting, as the user may be eating or watching the TV
while sat. This process is heavy and time consuming, in fact, in our experiments, the robot needed 1
to 2 minutes to infer the activities for a 2 seconds gesture. It achieves decent result on dataset used
in the literature, however, in more general cases, it encounters some difficulties and is sensitive to
confusion between gesture, as illustrated in Figure 8.9 For an application for a personal robot at
home, it needs to be enhanced, leading to our contribution. Please note that it would be possible
to replace this activity recognition approach by another solution, as long as it provides a probability
distribution of activities.

8.4.2 Refining Visual Activity Recognition

Background
Ontology

VARSeR

e o
58
Perception > £ T —T> Context
Context Data 8 E ? Ontology
S
g ,| Decision
: ) 1 Refined Making
. & 1 Activity
| f\"_, %8 Q. ey
X g »| 8 & Distribution
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4 L Reasoning

Figure 8.10: VARSeR process for activity recognition.

To overcome the limits of the vision-based activity recognition approach, VARSeR combines it
with ontological context knowledge. VARSeR is composed of four main steps, illustrated in Figure

B0

1. Vision-based activity recognition: The robot looks at the user’s gesture and captures a short
video. It then analyses the video and classifies it into activities using the approach presented
in the previous section. It sends the result, i.e. activities associated with probabilities, to the
context ontology.
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2. Acquiring context data: Once activities have been inserted in the context ontology, it starts the
refinement process and gathers context data. These context data are formatted and stored in
the ontology. Context data are pushed to VARSeR.

3. Reasoning: After acquiring context data, including activities, in the context knowledge, rea-
soning is applied. The reasoning aims to (1) infer new context data and (2) to identify more
precise activities.

4. Refining activity distribution: By using the knowledge carried by the context ontology, prob-
abilities are adjusted, thus correcting the inaccuracy of the initial vision-based recognition.

VARSeR aims to be fully deployed on a robot, however, it can also work with a robot and a server. In
that case, the robot proceeds with the initial activity recognition while the server carries the context
knowledge and performs the refinement. Let us now review each step:

Vision-based Activity Recognition

Our contribution comes on top of a vision-based activity recognition approach. Thus, the very first
step is to apply this process. The robot observes the user to acquire a video of the gesture and
use the algorithm presented in the previous section. From this, an array of activity associated with
probabilities is provided and send to VARSeR. The array is formatted to ontological format by an
interface and using the background ontology. The activities, associated to their probability, are then
stored in the context ontology. As example, the following activity distribution may be provided and
stored in the context ontology:

{(sitting,0.3), (phoning, 0.2), (walking, 0.05)}

Acquiring Context Data

Once the vision process is over, VARSeR gathers the context data. To do so, it acquires and stores
context data provided by sensors during a fixed duration. The data are formatted and pushed to
VARSeR through specific interfaces. Note that we suppose their structure to be matching the on-
tology one, this is enabled by the background ontology that shares its structure with the context
ontology. FSCEP can be used to provide these context data, but also other tools; VARSeR is actually
independent to the context provider. All the received context data are stored in the context ontology
that now carries the knowledge of the context.

Reasoning

Once filled, reasoning can be applied on the context ontology. Reasoning is performed by applying
inferences rules. These enables to infer new context data, but also and mainly to refine activities
into more precise one. In fact, detected activities can be imprecise, such a sitting. Yet, by using
more data on top of the initial recognition of the robot, it is possible to transform activities toward
more specific ones. For example, sitting can be refined into watching TV or eating. For each refined
activities is associated to the same probability as the original activity. Inference rules provided by
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the expert can update the activity distribution stored in the context ontology. Let us considered the
following rules as example. They are written using Jena formalism, but other inference language
can be applied. Note that real rules are much more complex and discriminative.

« If the user is sitting, located in a room with a TV then the user is "watching TV
rulet: (?act is-a Activity) (?act a_label “sitting”) (?act a_proba ?prob) (?usr isLocatedIn ?room) (?room is-a
RoomTV) — (?newAct is-a Activity) (?newAct a_proba ?prob) (?newAct a_label "watching TV")

- If the user is sitting, and close to a table then the user is "eating
rule2: (?act is-a Activity) (?act a_label "sitting”) (?act a_proba ?prob) (?usr isCloseTo ?tab) (?tab is-a Table)
— (?newAct is-a Activity) (?newAct a_proba ?prob) (?newAct a_label "eating”)

Hence, by supposing the user is sitting at the table in the living room, by applying these two rules,
the activity distribution obtained by vision will be refined into:

{(watchingTV,0.3), (eating,0.3), (phoning, 0.2), (walking, 0.05) }

Note that these more precise activities are not necessarily dependent of the original activity, for
example, the user may be eating while standing and can also be detected by other rules or sources.
As we can see, the activity distribution can be ambiguous. Furthermore, as stated, the accuracy of
the vision-based recognition is questionable. Thus, the activity distribution should be refined to lift
the uncertainty.

Refining Activity Distribution

In order to correct the probabilities, the context is analysed and activities are adjusted accordingly.
This is done by applying inference rules. For example, the following rules can be applied.

« If the phone’s inertial unit exceeds a given threshold - increase “phoning” probability,

+ If a movement was detected through a motion sensor located in a room with a TV - increase
"remote controlling” probability,

« If the TV is switched on - increase "watching TV probability.

These rules, as well as the probability adjustment, are defined by the designer. Obviously, further
rules can be added, even when the system is deployed. By applying these rules, the firstly com-
puted activity distribution is adjusted and corrected according to the observations of the environ-
ment. Typically, in case of a confusion by the vision process, a disambiguation is enabled by these
rules. For example, let us considered that the phone moved during the gesture, after applying rules,
the resulting activity distribution:

{(watchingTV,0.3), (eating,0.3), (phoning, 0.5), (walking, 0.05) }

Hence, the phoning is the now the most probable one. If not refined, the activities watching TV or
eating would have been believed to be the one occurring. This refinement leads to a more accurate
activity recognition.

éjena.apache.org
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Outcome

In the end, VARSeR have collected activities from a vision-based approach and context data from
various sensors, and have provided a new set of activities. These activities have had their proba-
bility corrected in accordance to the environment, and, on top of that more precise activity were
recognized. This enables a more precise and accurate understanding of the activity of the user, as
we observed through our experiments that we discuss in the next section.

It is worth noticing that the vision-based process, as well as VARSeR, only consider one activity
at a time. In fact, the activity distribution is built assuming only one activity to be true. However, in
reality, multiple activities can be performed at the same time. Typically, the user may be watching TV
while eating. An interesting perspective would be the ability to recognize multiple activity at once.
A way to approach it is to rely on fuzzy logic and truth weights rather than probabilities. Note that,
we considered only one activity at a time in our experiments.

8.4.3 Experiments

In order to evaluate VARSeR, we conducted extensive experiments within the HadapTIC platform
and with a Nao robot. In those tests, we aimed to evaluate the performance of the vision-based
solution by itself, and the performance of VARSeR, that combines vision and ontological approach.
These tests consisted of volunteers doing gestures in a smart room and in front of a robot that tries
to identify his/her activity. A detailed discussion of these experiments can be found in Appendix A,
in this section, we only focus on the important results.

Implementation

In our tests, we used the vision-based activity recognition proposed by El-Yacoubi et al. [46] that was
already implemented. It was embedded in a Nao robot. The HadapTIC platform provided multiple

sensors, including motion sensors and smart phones.

Protocol

Figure 8.11: Photo of VARSeR experiments for a "remote control” scenario
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The experiments consist of volunteers performing gestures in front of the robot, as shown in
Figure [B.11, the vision process and VARSeR are then applied and evaluated. We considered three
scenarios that were repeated multiple times for each volunteer: (1) Make a phone call, (2) Activate
the remote controland (3) Open the door. From this, we measured the correctness of the recognition
with and without VARSeR.

Results
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Figure 8.12: Successful activity recognition rate per scenario

Figure shows the activity recognition success rate with and without refinement. Firstly, as we
can see, raw vision-based activity recognition had mediocre results. It achieves 6.40% for the "re-
mote controlling” scenario, 53.97% for the "opening door” and 6.35% for the "phoning” one. This
result points out the difficulty for the vision-based algorithm to have a clear and strong classification
by itself. Indeed, the vision process is highly subjected to confusion, as gesture were often mistaken.
Typically, the remote-control gesture was often confused with an opening door and applauding ges-
ture, leading to a poor recognition rate. However, as for the phone scenario, the activity recognition
often detected the phone gesture as the lowest probable activity. We assert the cause of this poor
result to be the lack of training, even if previously trained using datasets, which points out the need
for an extremely strong learning phase. These results underline the need for an improvement.

On the other hand, results provided by VARSeR, that uses the outcome of the vision process
and context data from smart devices, are much better. The refined "remote controlling” scenario
has 71% successful recognition rate while the two others were almost reaching 100% of recognition
with VARSeR. This is again explained by the impact of the sensors. These results have also to be
put into perspective: in a more complex scenario with more activities and data sources, these rates
would not be equally good. Such high results are also and mainly explained by the semantic carried
by those context data: for example, a phone being lifted, detected through its inertial unit, provides
a strong hint toward the phoning activity. On top of that, as the activity distribution of the vision
process (see Appendix A) is tight, even a minor correction of the probability distribution allows to
provide a correct result. Hence, the information provided by external sensors have more weight in
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the recognition. This questions the relevance of using such a combination. Nevertheless, results also
show the gain we can have by combining and/or relying on smart sensors.

To summarize these experiments, we can assert that combining vision and sensors from the
environment allows to provide more reliable results. But, our main conclusion is that using both
approaches at the same time is not always the best solution. In some cases, the vision process could
be avoided, preventing huge costs in time and resources. In fact, we believe that selecting a method
to recognize activities instead of combining them in any case would be a better solution. Typically, in
this case, the robot could select either the vision, the smart environment, or both of them, depending
on the current case. This is obviously a challenging, yet promising, issue to tackle.

8.5 Conclusion

In this chapter, we proposed new techniques for context acquisition for a robot in a smart environ-
ment. We considered two types of sensors: (1) event-based or event like sensors, that provide spe-
cific measurement of the environment, such as the temperature or the occurrence of a movement,
and (2) cameras, in particular robot ones, that provide a video stream and requires a vision algorithm
to extract information. Hence, we proposed two contributions that support the constraints of robots
within smart environments, in particular uncertainty.

Ouir first approach, FSCEP, combines CEP, ontologies and fuzzy logic to acquire, filter, semantize
and fuzzify events. FSCEP uses CEP rules that allow filter and create batches of event, hence coping
with freshness and accuracy. Then, by relying on a background ontologies it enriches events with
further data, solving the imprecision of events and associating them with a confidence value. Finally,
FSCEP analyses these enriched events to generate a single Fuzzy Semantic Complex Event that
carries fuzzy context data whose truth degrees are computing thanks the added confidence value.
By doing so, the resulting event models both both inaccuracy and contradiction. Consequently,
FSCEP provides context data that are freed from uncertainty constraints and that carry multiple
possible values associated with a degree. Thanks to this handling and computing of truth degree,
FSCEP enables more accurate cognition processes that can use the provided data. This is what we
observed in our experiments, were a simple activity recognition solution was improved by taking into
consideration various possible values and uncertain degree.

Our second contribution, VARSeR, is a hybrid approach that combines a vision-based process
and ontologies for recognizing user activities, that are context data. Indeed, by itself, and as un-
derlined by our experiments, the vision-based approach is inaccurate and imprecise. By combining
these results with context data provided by other sensors and using ontological reasoning, VARSeR
refines the detected activities through rules. Based on the context knowledge, the refinement rules
actually adjust the probabilities of activities resulting from the vision process, hence correcting its in-
accuracy. Furthermore, inference rules are used to infer more precise activities, based on observed
gestures and observations from external sensors. Our results show VARSeR to achieve more accu-
rate and more precise recognitions. However, our experiments also question the relevance of using
both approach at the same time rather using one or the other according to the availability and reli-
ability of sensors. In fact, context data provided by sensors appeared to be discriminative enough,
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while the vision process could not provide strong distinction between activities. On top of that, in
this contribution, only one activity is considered at once.

An interesting perspective would be to adopt a fuzzy rather approach than a probabilistic one
in VARSeR. By doing so, it would be able to identify multiple activity at the same time. Exploring
the balance between learning based and specification based for activity recognition is also an open
door for future work. Nevertheless, our contributions enable a context acquisition under uncertain
sources. Our approaches can also be easily extended with new rules, and support video streams and
various types of events. The resulting context knowledge can then be used to infer new data and
take decision while supporting uncertainty. In the next chapter, we discuss how the robot can detect
anomalous situations and intervene consequently.
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Chapter 9

From Knowledge to Decision

What makes a personal robot truly intelligent is its ability to think and take decisions on its own. Af-
ter perceiving the context through its sensors or smart devices in the environment, the robot applies
cognition techniques to understand the acquired context knowledge and, consequently, to decide
what to do accordingly. This includes the understanding of situations, in particular anomalous sit-
uations. Such situations are non-ordinary, thus anomalous, and non-acceptable state of the envi-
ronment where the robot should intervene. These are not necessarily hazardous situations, that can
be detected through specific sensors, but rather situations where a problem could occur. In other
words, detecting anomalous situations allows the robot to act before the problem occurs. For ex-
ample, in our scenario, Arthur may forget he is cooking and go to sleep. In such situation, as the oven
is unattended, there is a risk of smoking and/or fire. By understanding the situation, Nono can act to
switch off the oven or wake up Arthur before the actual problem could happen. Doing so is naturally
more complex than reacting to the problem itself, that could have been simply detected through
a smoke detector in this example. In fact, in order to understand the situation, the robot needs to
continuously analyse the whole knowledge of the context, including the activity of the user.

However, in the literature, most works only consider anomaly over activities or specific data. In
fact, an anomaly is often consider to be a derivation of a usual routine of activities [75, 147, 79] or a
derivation on designated data [106, 125, 126]. Even if multiple axis were explored, with both learning
based [70, 78] and specification based [146, 147, 5] techniques, none of them is able to identify
anomalous situations over the global context knowledge. Hence, no technique is for example able
to detect the anomalous situation of Arthur sleeping while he started cooking. That is why we explore
the recognition of such situation, that is essential for a personal robot at home.

A simple way to identify anomalous situations over various context data is through the specifi-
cation of rules. For example, a rule can state that is if the oven if on, the temperature in the kitchen
is high, and that Arthur is sleeping, then the current situation is anomalous. However, the world is
far from being perfect. In fact, sensors are imperfect, leading to uncertain context data that makes
rules inefficient. The context knowledge can be outdated, inaccurate, imprecise, in contraction or in-
complete. As we discussed in the previous section, to tackle uncertainty when acquiring the context,
we proposed a tool, FSCEP, that tackles and models uncertainty through fuzzy context data. We
also proposed VARSeR, that provides a visual activity recognition solution with improved accuracy
and precision. Furthermore, the context knowledge maybe incomplete, meaning some context data
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maybe missing. For example, in our example, the temperature in the kitchen maybe inaccurate while
the activity of Arthur unknown, as Nono could not see him; nevertheless, Nono should understand
that the current situation is anomalous and intervene. In fact, even if the knowledge is uncertain, it
is important for the robot not to misunderstand those situations, as they could lead to problems or
hazards if no interventions are performed. That is why we explore the usage of a hybrid approach:
Markov Logic Network (MLN), a combination between Markov network and first order logic. Through
this technique, we aim to enable rules evaluation under uncertainty.

In this chapter, we present Context and Activity Recognition Enabling Detection of Anomalous
Situation (CAREDAS). CAREDAS is cognition approach that uses ontological knowledge and MLN
to identify anomalous situations. Rules are modelled through MLN that enables to use modelled
uncertainty and to cope with completeness: an anomalous situation can be recognize over uncertain
context data and even if not all elements of a rule are observed. By using a context ontology filled
using perception techniques previously described, CAREDAS is able to use the whole knowledge
of the context. Moreover, it performs a continuous analysis of the context by using time windows.
In the end, thanks to a mapping, the robot decides of action to perform to cope with the current
situation. Hence, CAREDAS use an uncertain knowledge to achieve a correct decision.

Before describing CAREDAS itself, we first have a preliminary discussion around MLN and used
notions. We then describe how CAREDAS uses ontology and MLN to identify anomalous situations
and take a decision. Finally, we present our results based on a dataset we acquired in a smart envi-
ronment.

9.1 Preliminaries

As CAREDAS relies on MLN, let us first discuss this technique. We then set up definitions of notions
in this work.

9.1.1 Markov Logic Network

Markov Logic Networks [149] are a combination between Markov network and first order logic that
enables uncertain inference.

Before defining MLN, it is important to know what is a Markov Network. A Markov network is
an undirected graph model for the joint distribution of a set of variable X = (X1, Xs,.., X,,). Itis
composed of a set (F;;w; ); 1 <i < n, where each F; is any real-valued function of the state and w; €
R is its weight. Z is the partition function. The joint distribution is given by:

P(z) = %exp <Z wlFl(x)> (9.1)

MLN are formally defined as follows by Richardson & Domingos [149] :

Definition 18. Markov Logic Network:
A Markov logic network L is a set of pairs (F;;w; ), where F; is a formula in first-order logic and w; is a real
number. Together with a finite set of constants C = c;...c,, it defines a Markov network M7, o (Equation

9.1) as follows:
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1. M, ¢ contains one node for each possible grounding of each predicate appearing in L.

2. My, ¢ contains one feature for each possible grounding of each formula F; in L.The weight of the
feature is the w; associated with F; in L.

A MLN can actually be seen as a template for building a Markov network: these networks are
called ground Markov networks (GMN). The resulting ground Markov network is a graph where nodes
are predicates. A vertex associates two nodes if the corresponding predicates appear together in at
least one grounding of one formula in L. From Definition |8 and Equation .1, the probability distri-
bution in the ground Markov network M7, ¢ is given by:

] F
P(z) = 7 €%P <Z wmz(x)> (9.2)

Where F is the set of rules in the MLN, n;(x) is the number of true groundings of F; with constant
x € C,w; is the weight of F;, and Z is the partition function.

The generated GMN, thus graph, can then be analysed to evaluate formulas or rules. Through the
weight and resulting probability distribution, MLN allows to evaluate those rules under uncertainty
Note that MLN actually uses specification as for rules and structure, and learning as for weights,
consequently, it can be considered as a hybrid approach. Please refer to Richardson & Domingos
work [149] for a more detailed definition.

9.1.2 Definitions

CAREDAS uses multiple notions. Firstly, it uses fuzzy context data that can be provided by FSCEP.
For example: (user, isLocatedIn, {kitchen (0,6);bedroom (0,4)}). The notion of fuzzy
context data is defined in Definition fi3. We suppose each FCD to be associated with a timestamp ¢,
that correspond to the time carried by a Fuzzy Event that carried this context data. This timestamp
will be used for time windowing. FCD can represent any context information, including the user
activity, provided by VARSeR or AGACY.

CAREDAS also considers the particular case of static context data.

Definition 19. Static Context Data (SCD):
A Static Context Data is a context data where subj, pred and val are not varying over time.

A SCD actually represent background information provided by an expert about the environment.
For example, a SCD (motionl,islocated, bedroom) that states that a given sensor is in a room is
provided and does not vary.

Context data are stored and accessed through a context ontology. Note that context data can
be represented in different ways. While represented as RDF triples by FSCEP and in the context
ontology, MLN relies on predicate. Yet, the transformation from one format to another is trivial and
is supposed transparent. For example, the location can be modelled as: (user, isLocatedIn,
{kitchen (0,6) ;bedroom (0,4)}) orisLocatedIn(user, kitchen, 0.6), isLocatedIn(user,
bedroom, 0.4).

The key notion of CAREDAS is the anomalous situation, that is, first of all a situation.
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Definition 20. Situation:
A situation is a triple: ({C'D;},ts,t.). {CD;} is a set of context data captured during a time interval
[ts, te; ts is the start time of the execution of the task and t. is the end time of its execution.

Hence, a situation can be seen as a 'snapshot’ of the state of the environment. An anomalous

situation is a particular situation were the robot should intervene. It is defined as follows:

Definition 21. Anomalous Situation:
An anomalous is a particular situation associated with a class cl and a confidence weight w. Hence, an

anomalous situation can be seen as a triple: (s, cl, w) were s is a situation.

Note that the class corresponds to a type of of anomalous situations, for instance, a risk of fire
or an unreachable recharge station for the robot. Anomalous situations can be defined though rules.
The principle is that, if all predicates, thus context data, of the rule are observed, thus the current situ-
ation is anomalous. For example, the rule: isDoing(user, "sleeping", w,) A status(stove,
"on", wp) — Anomaly(riskFire, p) states that if the user is sleeping while the stove is on,

therefore the situation is anomalous for a risk of fire.

9.2 MLN for Anomalous Situation Detection

status
(object, status, w)
i same

‘. (object, object, w)

D

IsDoing
(user, activity, w)

isLocatedIn
(object, room, w)

Figure 9.1: Example of a MLN with three rules

The colours indicate in which formula a predicate is used.

In order to recognize anomalous situations under uncertainty, these situations are defined by
rules modelled in a MLN. A MLN is a non-oriented graph representing the dependencies between
formulas and predicates, in other words, between rules and type of context data. Let us have an

example of definition of anomalous situations, let us consider the following rules:
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« F|: isDoing(user, "sleeping", w,) A status(stove, "on", w,) — Anomaly(riskFire,

p)

« Fy: isDoing(user, "sleeping", w,) A isLocated(user, roomhA, wp) A
isLocated(rechargeStation, roomB, 1) A same(roomA, roomB, 1) —

Anomaly(rechargeUnreachable, p)

+ F3: isLocated(robot, roomA, wp) A isLocated(rechargeStation, roomB, 1) A
diff(roomA, roomB, 1) A isLocated(door, roomA, 1) A isLocated(door, roomB,

1) A status(door, "close", wy) — Anomaly(rechargeUnreachable, p)

The MLN based on these rules is represented in Figure B.1. As we can see, the rules rely on par-

ticular predicates that are derived from both FCD and SCD We define three types of predicates:

Definition 22. Probabilistic Evidence Predicates (PEP):
Probabilistic Evidence Predicates (PEP) in our MLN is a predicate corresponding to FCD. It is carries an

evidence value that is the weight w.

Note that, when initiated from a FCD, |mV al| PEP can be generated, in other word a predicate is

generated for each possible value. The weight w is set to be the truth value w, corresponding to the

value v.

Definition 23. Deterministic Evidence Predicates (DEP):
Deterministic Evidence Predicates (DEP) in our MLN is a predicate corresponding to SCD. A DEP is always

true.

Hence, isLocated(rechargeStation, roomB, 1) is an example of a DEP representing the FCD of

the location of the recharge station.

Definition 24. Probabilistic Hidden Predicate (PHP):
Probabilistic Hidden Predicate (PHP) in our MLN can be referred as the query node: the right side of the
rule. Its distribution truth p is unknown.

Anomaly(AnomalyClass, p) is one of the PHP considered in CAREDAS. The objective of our MLN,

thus CAREDAS, is to infer p for each PHP in the graph. This value represents the confidence of the

rule being true, thus it represents the confidence the situation to be anomalous with the associated

anomaly class. In consequence, computing and evaluating p for all rules allows to establish the ab-

normality of the situation. Let us now see how p can be computed.

9.3 Anomaly Detection

The main role of this step is to find the most probable anomaly situation class, if any, of the current

situation. To do so, three steps are required:

« Situation construction: the situation is constructed from the context data provided in time
window. The process of anomalous situations is performed according to these time window
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+ Rules weights calculus: based on the instantiated formulas, weights of formulas are computed
and the MLN is used to compute probabilities of constant.

+ Hidden Predicates (PHP) weights calculus: computation of PHP based on probabilities of con-

stant and detection of anomaly.

9.3.1 Situation Construction

CAREDAS relies on a context ontologies that is continuously fed through tools such as FSCEP, VARSeR
or AGACY. Entering context data are fuzzy, hence associated with truth values. Activities are also as-
sociated with a weight corresponding to the confidence in the recognition. technically, any context
ontology can be used, for example the previously presented context ontology for human activity
representation [151] can be used. Inference rules can be applied to infer new context data. The re-
sulting ontologies carries a rich and various knowledge of the context, for example, user location,
activities, topology of the environment or robot battery level are data stored in the ontology. Hav-
ing a large and rich context knowledge is important to have a precise understanding of the situations
based on the whole context. From this knowledge, instance of FCD and SCD are extracted and then
used to generate a GMN from MLN, as we will see in the next sections.

Situations are considered within fixed time window. A time window is a period of time in which
context data are gathered. Meaning all SCD and all FCD whose associated time is inside the time
window are considered. These context data are then used to instantiate the rules carried in the MLN.
At the end of the time window, these rules are used in the recognition process. However, the instan-
tiated formulas are not removed at the end of the time window. In fact, each time window enriches
the current knowledge. The idea is to keep enriching the set of instantiated rules to refine the recog-
nition process: the more time windows pass, the more instance can be used to identify anomalous
situations. If an anomaly is detected, the activity of the user changes or an arbitrary duration passed,
the inference is reset and the instantiated formulas are purged.

Let us now see how the extracted context data are used to instantiate rules and identify the
anomalous situations.

9.3.2 Formulas Weights Calculus

Once the context data included in a time window are gathered, they can be used to instantiate
the MLN into a ground Markov network. Extracted context data provide a set of IPEP,, (weighted
Instanciated Probabilistic Evidence Predicate) where :

VinstP,, € IPEP,, <> instP,, € InstP & the truth value of the predicate is known. For example, can have
to instantiated predicates: status(oven, "on’, 0.95), isLocated(user, "livingroom”, 0.25) isLocated(user,
"bedroom’, 0.75) are IPEP,, obtained from FCD. Then, to compute the weight (w;) of logic rule F; €
F of the MLN model we apply this proposed formula :

(Z Wsat P;; )/nz

w; = In—-2 (9.3)
1- Z wsatPij /n’L
J
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Where satP;; € IPEP,, & satisfies F;. wsqp,; is the weight of satP;;. n; is the number of predicates €
PEP (N F;. This weight determine the confidence of a formula being valid, even if not all predicate of
this formula are observed. This modelling enables coping with incompleteness. For example, the F}
will have the weight: w; = ln% =—0.1.

These weights can then be used in MLN Equation 9.2 for each constant. By applying this equation
and instantiating nodes, the GMN can be generated from the MLN. This graph is then used to infer

the confidence of PHP, leading to the recognition of the anomalous situations.

9.3.3 Computation of the weight of Probabilistic Hidden Predicates

Once the GMN is generated, CAREDAS can now compute the weights of the PHP. By doing so, each
possible anomalous situation, modelled in the rules, will be associated with a confidence value. Let
k be a PHP in the GMN, P, is its confidence weight p . Let C}, be the of all constants that are in
predicates which have an edge toward . P is the formula in Equation 9.2

>, P(e)

ceCy,

P, =—
Pk ‘Ck’

(9.4)

In the end, all PHP have their distribution truth p computed. This value is used to establish if
an anomalous situation class is likely to be occurring. If a PHP has a p beyond a given threshold, at
default 0.5, the current situation is considered anomalous with the class of anomaly associated to
the PHP. If multiple anomaly classes are detected, the one with the highest p is considered to be the
most relevant. Lastly, if the situation is anomalous, the decision making process is started.

9.4 Decision Making from Anomalous Situations

Once an anomaly has been detected, it shall now be taken into consideration. In our context, when
facing an anomaly, the robot should act to inform the user or solve it. Thus, whenever an anomalous
situation is detected, the robot decides a new goal, it then will use its planner to generate a sequence
of task to risk this goal. These goals aim to provide a solution to the situations according to the
anomaly class detected. It can be simple, for example, if Nono can't access its recharge station, it
decides to sleep to save battery. On the other hand, Nono may need to perform more complex task,
like opening a door then moving to Arthur in order to warn him. This decision process is determined
by a reaction knowledge RK defined as follows:

Definition 25. Reaction Knowledge:
The reaction knowledge RK is a set of couples (stc, g) where stc is an anomalous situation class and g
is a goal to be executed by the robot.

As the anomalous situations are provided by an expert through rules, the reaction knowledge is
provided alongside when designed. Thus, whenever an anomalous situation is detected, the robot
access its reaction knowledge and finds the matching response. How the robot achieves its goal is
the matter of the task planner, addressed in the next chapter.
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9.5 Experiments

In order to validate CAREDAS, we conducted experiments using a dataset acquired in a smart en-
vironment. We aimed to measure the correctness of CAREDAS, as well as its precision and recall,
when facing various situations. As CAREDAS relies on time window, we compared its behaviour
with various size of time windows. In fact, a smaller time window size allows a quicker response,
but also implies less context data to use, thus making the recognition harder. Let us review these

experiments.

9.5.1 Implementation

CAREDAS was prototyped in Java and used Jena for ontology management. For this experiments, it
was linked with a dataset we acquired. In a more general case, the prototype was integrated with a
FSCEP implementation, for data acquisition, and AGACY activity recognition system.

9.5.2 Protocol

In order to evaluate CAREDAS, a dataset acquired out of more of 2 hours of daily life routine in the
HadapTIC platform. The dataset carries a list of fuzzy context data, including user activities, associ-
ated with a timestamp. Before being provided to CAREDAS, each data of the dataset is transformed
as a predicate, this step simply consist of creating the predicates in CAREDAS formalism, that is to say
as proper Java objects. The 2 hours of acquisition can be divided in 15 instance of scenarios. For each
instance, the tester performed multiple activities, triggering sensors in the platform. Activities were
manually annotated. These scenarios aimed to recreate anomalous situations, but som