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et de l’Ecole d’économie de Paris-PSE
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Résumé

Cette thèse traite de la théorie du risque en finance et en assurance. La mise en pra-

tique du concept de comonotonie, la dépendance du risque au sens fort, est décrite pour

identifier l’optimum de Pareto et les allocations individuellement rationnelles Pareto optim-

tales, la tarification des options et la quantification des risques. De plus, il est démontré

que l’aversion au risque monotone à gauche, un raffinement pertinent de l’aversion forte

au risque, caractérise tout décideur à la Yaari, pour qui, l’assurance avec franchaise est

optimale.

Le concept de comonotonie est introduit et discuté dans le chapitre 1. Dans le cas de

risques multiples, on adopte l’idée qu’une form naturelle pour les compagnies d’assurance

de partager les risques est la Pareto optimalité risque par risque. De plus, l’optimum de

Pareto et les allocations individuelles Pareto optimales sont caractérisées.

Le chapitre 2 étudie l’application du concept de comonotonie dans la tarification des options

et la quantification des risques. Une nouvelle variable de contrôle de la méthode de Monte

Carlo est introduite et appliquée aux “basket options”, aux options asiatiques et à la TVaR.

Finalement dans le chapitre 3, l’aversion au risque au sens fort est raffiné par l’introduction

de l’aversion au risque monotone à gauche qui caractérise l’optimalité de l’assurance avec

franchise dans le modèle de Yaari. De plus, il est montré que le calcul de la franchise

s’effectue aisément.
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Summary

This thesis deals with the risk theory in Finance and Insurance. Application of the Comono-

tonicity concept, the strongest risk dependence, is described for identifying the Pareto op-

tima and Individually Rational Pareto optima allocations, option pricing and quantification

of risk. Furthermore it is shown that the left monotone risk aversion, a meaningful refine-

ment of strong risk aversion, characterizes Yaari’s decision makers for whom deductible

insurance is optimal.

The concept of Comonotonicity is introduced and discussed in Chapter 1. In case of multiple

risks, the idea that a natural way for insurance companies to optimally share risks is risk by

risk Pareto-optimality is adopted. Moreover, the Pareto optimal and individually Pareto

optimal allocations are characterized.

The Chapter 2 investigates the application of the Comonotonicity concept in option pricing

and quantification of risk. A novel control variate Monte Carlo method is introduced and

its application is explained for basket options, Asian options and TVaR.

Finally in Chapter 3 the strong risk aversion is refined by introducing the left-monotone

risk aversion which characterizes the optimality of deductible insurance within the Yaari’s

model. More importantly, it is shown that the computation of the deductible is tractable.
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Introduction

0.1 General Introduction

This thesis deals with the risk theory in Finance and Insurance. Application of the Comono-

toncity concept, the strongest risk dependence, is described for identifying the Pareto optima

and Individually Rational Pareto optima allocations, option pricing and quantification of

risk. Furthermore it is shown that the left monotone risk aversion, a meaningful refinement

of strong risk aversion, characterizes Yaari’s decision makers for whom deductible insurance

is optimal.

The concept of comonotonicty is introduced and discussed in Chapter 1. Moreover, the

Pareto optimal and individually Pareto optimal allocations are characterized. Chapter 2

investigates the application of the Comonotonicity concept in option pricing and quantifica-

tion of risk. In Chapter 3 the strong risk aversion is refined by introducing the left-monotone

risk aversion which characterizes the optimality of deductible insurance within the Yaari’s

model.

0.2 Chapter 1: Multivariate risk sharing and the derivation of indi-

vidually rational Pareto optima

In a seminal paper, in case of strict strong risk averters assumed to be expected utility deci-

sion makers, Borch (1962) characterized Pareto optimal risk sharing. The optimal sharing

rule which depends on the specification of the utilities is based on a Mutuality Principle for

risks which are fully diversifiable, furthermore Borch (1962) derived the precise conditions

of the optimal allocations, which allow to compute the sharing of the Macroeconomic Risk

(See for instance chapter 10 of Eeckhoudt et al. (2005) for more details).

It turns out that for expected utility decision makers with strictly increasing and strictly

concave utility functions, Pareto optima are necessarily strictly comonotone i.e. strictly

increasing functions of the aggregate endowments, but the converse is false.

As noticed by Landsberger and Meilijson (1994), the specific utilities of agents are hardly

even known in practice, moreover let us add that the model which is used by an agent is

13
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hardly even known as well. Consequently, Landsberger and Meilijson (1994) only assumed

that agents are strictly strong risk averters in the sense of strict second order dominance.

They obtained the nice result, that for such agents Pareto optimal allocations coincide

exactly with the set of comonotone allocations i.e. the set of allocations which are non

decreasing functions of the aggregate endowments. Landsberger and Meilijson (1994) gave a

proof of the previous result and an algorithm allowing to reach at least one Pareto optimum,

while they did not offer a method for computing all Pareto optima.

The main novelty provided by this work is to offer a complete characterization of Pareto

optima, by extensively taking advantage of the polytope structure of these Pareto optima.

Furthermore, it is shown that this strategy also allows to easily describe the entire convex

set of individually rational Pareto optima—those for which every individual is better off

when comparing with the initial situations—which clearly are those of practical interest in

real life.

0.3 Chapter 2: Comonotonic Monte Carlo and its applications in

option pricing and quantification of risk

Monte Carlo (MC) simulation is a well known technique in different domains of mathe-

matics such as mathematical finance, see Glasserman (2003); Benninga (2014). A typical

application of the Monte Carlo method in finance is the estimation of the no-arbitrage price

of a specific derivative security (e.g. a call option), which can be expressed as the expected

value of its discounted payoff under the risk neutral measure. Another application of the

Monte Carlo method in finance is estimating risk measures, such as Tail Value-at-Risk.

The main shortcoming of the Monte Carlo method is its high computational cost. The

standard error of the crude Monte Carlo estimate is of order O( 1√
n
) and thus, to double

the precision, one must run four times the number of simulations. Alternatively, strategies

for reducing σ should be considered.

Several variance reduction techniques can be used in companion with the Monte Carlo

method, such as antithetic variables, control variates and importance sampling. A detailed

survey of these techniques is given in Ripley (1987). In chapter three we focus on the well-

known control variate method for variance reduction which is based on the comonotonicty

concept.

14
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0.4 Chapter 3: Optimality of deductible for Yaari’s model: a reap-

praisal

In the framework of EU model, Arrow (1965) proved that for a given premium, the optimal

insurance contract for a EU risk averse decision maker is a contract with deductible. Gollier

and Schlesinger (1996) obtained a nice generalization of this result by proving that this result

holds also under strong aversion, whatever be the decision maker’s decision model under

risk.

Vergnaud (1997) refined this result by proving that for any left monotone risk averse decision

maker (not necessarily strongly risk averse), whatever be the decision model under risk, the

optimal contract for a given premium is a deductible policy.

This last result is important since strong risk aversion is disputable in some situations, while

Jewitt (1989)’s refinement i.e. left monotone risk aversion appears to be better adapted

to insurance. This adds further justification to RDEU (rank-dependent expected utility)

models and in particular to Yaari (1987)’s model that allow the decision maker to be left

monotone risk averse without being strongly risk averse, which is impossible in the EU

model, see Chateauneuf et al. (2004). In this chapter the optimality of deductible in the

framework of Yaari’s model is revisited.

0.5 Summary of Results

0.5.1 Multivariate risk sharing and the derivation of individually rational

Pareto optima

In case of multiple risks, we did adopt the idea that a natural way for insurance companies

to optimally share risks is risk by risk Pareto-optimality. Our framework is based upon the

well-known results in the one dimensional case characterizing Pareto-optimality as comono-

tonicity in case of strong risk aversion. A simple computable method is offered for deriving

all Pareto-optima and deriving all Individually Rational Pareto-optima.

Definitions and Preliminary Results

The definitions, lemmata and theorems which exploited to obtain the results of chapter 1

are given as follows.

Definition 0.5.1. X = (X1, . . . , Xi, . . . , Xn) ∈ (Rm)p×n is Pareto optimal if ∀k ∈ �1, p�

(Xk
1 , . . . , X

k
i , . . . , X

k
n) is Pareto optimal in the usual sense for the univariate case with re-

spect to the second order stochastic dominance i.e. for k given, (Xk
1 , . . . , X

k
i , . . . , X

k
n) is a
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feasible allocation:

Xk
i ∈ R

m
+ ∀i, �n

i=1X
k
i = wk and there does not exist Y = (Y k

1 , . . . , Y
k
i , . . . , Y

k
n ),

Y k
i ∈ R

m
+ ∀i, �n

i=1 Y
k
i = wk, such that Y k

i �SSDX
k
i ∀i and Y k

i0
�SSDX

k
i0

for some i0.

Definition 0.5.2. X = (X1, . . . , Xi, . . . , Xn) ∈ (Rm)p×n is an individually rational Pareto

optimum if X is Pareto optimal and individually rational i.e. ∀i, k Xk
i �SSDw

k
i .

Definition 0.5.3. An allocation X = (X1, . . . , Xi, . . . , Xn) is comonotone if,

∀(i, i�) ∈ �1, n�2 (Xi (s)−Xi (t))
�

Xi� (s)−Xi� (t)
�

≥ 0 ∀ (s, t) ∈ S2.

Theorem 0.5.4. The set of Pareto optimal allocations coincide with the set of comonotone

allocations.

Lemma 0.5.5. Any Pareto optimal allocation is comonotone.

Lemma 0.5.6. Any comonotone allocation is Pareto optimal.

Lemma 0.5.7. Let w(sj) = wj. Then after possibly relabeling, if needed, the indices in

such a way that w1 ≤ . . . ≤ wj ≤ . . . ≤ wm, one gets: If (Xi)i=1,...,n is a feasible allocation,

then the two following properties are equivalent;

(i) (Xi)i=1,...,n is comonotone.

(ii) Xi(1) ≤ . . . ≤ Xi(j) ≤ . . . ≤ Xi(m) ∀i = 1, . . . , n.

Remark 0.5.8. It is worth noticing that building upon Lemma 0.5.7, Theorem 0.5.4 can be

restated, in accordance with some economic terminology (For instance see Eeckhoudt et al.

(2005)), see Theorem 0.5.9 below.

Theorem 0.5.9. For an allocation X = (X1, . . . , Xi, . . . , Xn) ∈ R
m×n the two following

assertions are equivalent:

(i) X is Pareto optimal

(ii) 1. X is feasible
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2. Mutuality Principle:

∀s, t ∈ S w(s) = w(t) =⇒ Xi(s) = Xi(t) ∀i = 1, ..., n

3. Weak comonotonicity:

∀s, t ∈ S w(s) < w(t) =⇒ Xi(s) ≤ Xi(t) ∀i = 1, ..., n

Remark 0.5.10. Let us recall again that for strict strong risk averters who are EU (expected

utility decision makers) Pareto optima satisfy (ii).1, (ii).2 but (ii).3 should be replaced by

strict comonotonicity (see Borch (1962) or also Eeckhoudt et al. (2005)) i.e. ∀s, t ∈ S

w(s) < w(t)=⇒Xi(s) < Xi(t) ∀i = 1, ..., n.

Theorem 0.5.11. The set of Pareto optima is a polytope, hence it is the convex hull of its

finitely many extreme points.

Lemma 0.5.12. Any individually rational Pareto optimum (IRPO) Xi is such that E(Xi) =

E(wi).

Lemma 0.5.13. The set PIR of individually rational Pareto optima is nonempty.

Remark 0.5.14. Note that in the present paper, we intend to systematically derive all

IRPO’s at least for rational probabilities (which apparently in “real life” is not a severe

limitation). Our result contrasts from the algorithms which can be found in the literature.

Actually these algorithms propose a method to obtain only one IRPO (see e.g. Landsberger

and Meilijson (1994) or Ludkovski and Rüschendorf (2008)), but not all IRPO’s.

Remark 0.5.15. Note that even for a finite state space S , it is not easy to express the

individually rational conditions Xi�SSDwi, i = 1, . . . , n. Actually Xi�SSDwi is equivalent

to
� p

0
F−1
Xi

(t)dt ≥
� p

0
F−1
wi

(t)dt ∀p ∈ (0, 1) (0.1)

with equality if p=1, as noticed in Lemma 0.5.12, but even if (0.1) has to be checked only

for a finite number p� ∈ (0, 1), in practice finding which p� must be chosen is a delicate

task. In contrast, if each pj is a rational probability, let us say of the type pj =
kj
q where

kj , q ∈ N
∗
+, it is immediate that Xi�SSDwi iff

� k
q

0
F−1
Xi

(t)dt ≥
� k

q

0
F−1
wi

(t)dt ∀k ∈ �1, q�.
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Theorem 0.5.16. The set PIR of individually rational Pareto optima is a polytope, hence

the convex hull of its finitely many extreme points.

Theorem 0.5.17. Assume that the initial endowment of agent i is wi ∈ R
m and define the

IRPO’s as the allocations X = (X1, . . . , Xi, . . . , Xn) ∈ R
m×n such that

�

iXi =
�

iwi (:=

w) and Xi�SSDwi ∀i, then the set PIR is the polytope of the feasible allocations which are

comonotone and satisfy the individually rational constraints.

0.5.2 Comonotonic Monte Carlo and its applications in option pricing

and quantification of risk

A novel control variate Monte Carlo method (CoMC) is presented based on the concept

of comonotonicity. This method is explained for basket options, Asian options and TVaR.

We evaluated the performance of the method in realistic cases by illustrative numerical

examples. The realistic benchmark examples show that the precision of estimating the

price of Asian and Basket options is drastically increased by employing the CoMC method

while the computation time is not increased considerably compared to the crude Monte

Carlo method.

Definitions and Preliminary Results

The definitions, lemmata and theorems which exploited to obtain the results of chapter 2

are given as follows.

Definition 0.5.18. A random vector X = (X1, ..., Xn) is comonotonic if and only if it has

a comonotonic copula i.e. for all x = (x1, ..., xn), we have

FX(x) = min {FX1(x1), FX2(x2), ..., FXn(xn)} . (0.2)

Proposition 0.5.19. If X has a comonotonic copula then for U ∼ Uniform(0, 1), we have

X
d
= (F−1

X1
(U), (F−1

X2
(U), ..., (F−1

Xn
(U)). (0.3)

Proposition 0.5.20. The quantile function F−1
Sc

of a sum S
c of comonotonic random vari-

ables with distribution functions FX1 , ..., FXn is additive

F−1
Sc

(p) =

n
�

i=1

F−1
Xi

(p), 0 < p < 1. (0.4)
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Definition 0.5.21. The distorted expectation of a random variable X is defined by

ρg[X] =

� 0

−∞

�

g(F̄X(x))− 1
�

dx+

� ∞

0
g(F̄X(x))dx, (0.5)

where F̄X(x) = 1 − FX(x) denotes the tail function of FX(x) and the function g(.) is a

so-called distortion function, i.e. a non-decreasing function g : [0, 1] −→ [0, 1] such that

g(0) = 0 and g(1) = 1.

Proposition 0.5.22. The distortion risk measure for a sum of comonotonic variables is

additive i.e. for any distortion function g and all random variables Xi we have

ρg[S
c] =

n
�

i=1

ρg[Xi]. (0.6)

Corollary 0.5.23. The Tail Value-at-Risk, TV aRX(p), at level p ∈ (0, 1) given by

TV aRX(p) =
1

1− p

� 1

p
F−1
X (q)dq (0.7)

is a distortion risk measure with distortion function

g(x) = min

�

x

1− p
, 1

�

, 0 ≤ x ≤ 1,

hence it is additive for comonotonic random variables.

Corollary 0.5.24. The ESF (Expected shortfall) can be written as a linear combination of

distortion risk measures given by

TV aRX(p) = F−1
X (p) +

1

1− p
ESFX(p),

see Dhaene et al. (2006), thus it follows

ESFSc(p) = (1− p)(TV aRSc(p)− F−1
Sc

(p))

= (1− p)

�

n
�

i=1

TV aRXi
(p)−

n
�

i=1

F−1
Xi

(p)

�

=

n
�

i=1

ESFXi
(p), 0 < p < 1.
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Corollary 0.5.25. By choosing p = FSc(K) in Corollary 0.5.24, it follows that the stop-loss

premium E[(Sc−K)+] of a sum S
c of comonotonic random variables with strictly increasing

distribution functions FX1 , ..., FXn can be written as

E[(Sc −K)+] =

n
�

i=1

[(Xi − F−1
Xi

(FSc(K)))+], ∀K ∈ R. (0.8)

0.5.3 Optimality of deductible for Yaari’s model: a reappraisal

The main purpose of this chapter is to show that, within the Yaari’s model, left-monotone

risk aversion does characterize the optimality of deductible insurance. Moreover, it is shown

that for such left-monotone Yaari’s risk averters, the computation of the deductible is very

tractable.

Definitions and Preliminary Results

The definitions, Lemmata and theorems which exploited to obtain the results of chapter 3

are given as follows.

Definition 0.5.26. For random variables X and Y with the same mean, Y is a left mono-

tone increase in risk of X if
� F−1

Y
(p)

−∞ FY (p) ≥
� F−1

X
(p)

−∞ FX(p), ∀p ∈ [0, 1]. Let us recall that

for any distribution F i.e. any mapping F : R −→ R non-decreasing, right-continuous such

that limt→−∞ F (t) = 0, limt→+∞ F (t) = 1, F−1 : [0, 1] −→ R is defined ∀p ∈ [0, 1] by

F−1(p) = inf
�

t ∈ R̄, F (t) ≥ p
�

. Note that F−1(0) = −∞.

Lemma 0.5.27. For every pair (X,Y ) of discrete random variables with E(X) = E(Y )

such that Y is a left monotone increase in risk of X, Y can be reached from X by a finite

sequence of transfers as in (3.3).

Definition 0.5.28. Distribution G is a left-monotone simple spread of F if

1. E(G) = E(F )

2. ∃ p0 ∈ (0, 1) such that:

p ≤ p0 =⇒ (2.1) G−1(p) ≤ F−1(p)

(2.2) d(p) = F−1(p)−G−1(p) is non-increasing on (0, p0]

p > p0 =⇒ (2.3) G−1(p) ≥ F−1(p).
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Lemma 0.5.29. If G is a left-monotone simple spread of F then F is left-monotone less

risky than G.

Lemma 0.5.30. Any Yaari decision maker is a left monotone increase in risk if and only

if the probability transformation function is star shaped1at 1 i.e. 1−f(p)
1−p is an increasing

function of p on [0, 1).

Theorem 0.5.31. Any Yaari’s decision maker who has preference for deductibles with any

given premium is a left-monotone risk averse.

Lemma 0.5.32. Any decision maker who exhibits preference for deductible will prefer

L (X) = (x1, p1; x2, p2; x3, p3; x4, p4) to L (Y ) = (x1−�p3, p1; x2, p2; x3+�p1, p3; x4, p4),

[Recall that through the definitions of the “L ”, one has pi ≥ 0,
�4

i=1 pi = 1 and x1 < x2 <

x3 < x4 and x1 − �p3 < x2 < x3 + �p1 < x4].

Remark 0.5.33. Note that if we had required that indemnities should satisfy the Moral

Hazard requirement i.e. that what remains to be paid by the decision maker namely D−I(D)

should increase with the amount of the damage our Lemma 0.5.32 would remain valid.

Actually: d4− I(d4) = 0 < d3− I(d3) = x4−x3− �p1 < d2− I(d2) = x4−x2 < d1− I(d1) =

x4 − x1 + �p3.

Remark 0.5.34. The proof of Theorem 0.5.31 shows that it is enough that a Yaari’s de-

cision maker has preference for deductible only in case of finite discrete random losses, in

order to be a left-monotone risk averter.

Theorem 0.5.35. (Vergnaud (1997)) Any left-monotone risk-averse decision maker has

preference for deductible.

Theorem 0.5.36. A strict left monotone risk averse Yaari decision maker will purchase

full insurance if

(1 +m)(1− F (0))− (1− f(F (0))) < 0 (0.9)

1A function f ∈ F is star-shaped at m, if:
f(m)−f(p)

m−p

is an increasing function of p on [0,m) ∪ (m, 1].
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Otherwise, d̄ is an optimal level of deductible if and only if it satisfies

(1 +m)(1− F (d̄−))− (1− f(F (d̄−))) ≥ 0 ≥ (1 +m)(1− F (d̄))− (1− f(F (d̄))). (0.10)

Remark 0.5.37. If F is continuous, indeed the inequality 0.10 in theorem 0.5.36 reduces

to the following simple equation:

(1 +m)(1− F (d̄))− (1− f(F (d̄))) = 0

Lemma 0.5.38. Let u : [a, b] −→ R be continuous and such that u
�

+(·) exists on (a, b) with

u
�

+(x) ≤ 0 ∀x ∈ (a, b) then u is non-increasing on [a, b] .

Lemma 0.5.39. Let u : [a, b] −→ R be continuous and such that u
�

+(·) exists and strictly

negative on J = (a, b) where J �= ∅ then u is strictly decreasing on [a, b] .
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Chapter 1

Multivariate risk sharing and the deriva-

tion of individually rational Pareto optima1

Alain Chateauneuf, Mina Mostoufi, David Vyncke

Abstract

Considering that a natural way of sharing risks in insurance companies is to require

risk by risk Pareto optimality, we offer in case of strong risk aversion, a simple com-

putable method for deriving all Pareto optima. More importantly all Individually

Rational Pareto optima can be computed according to our method.

Keywords : Multivariate risk sharing, Comonotonicity, Individually rational Pareto

optima.

JEL classification: D70, D81.

1.1 Introduction

In a seminal paper, in case of strict strong risk averters assumed to be expected

utility decision makers, Borch (1962) characterized Pareto optimal risk sharing. The

optimal sharing rule which depends on the specification of the utilities is based on a

Mutuality Principle for risks which are fully diversifiable, furthermore Borch (1962)

derived the precise conditions of the optimal allocations, which allow to compute the

1This paper is published in the Journal of Mathematical Social Sciences, Vol. 74, Pages 73 − 78,
March 2015.
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sharing of the Macroeconomic Risk (See for instance chapter 10 of Eeckhoudt et al.

(2005) for more details).

It turns out that for expected utility decision makers with strictly increasing and

strictly concave utility functions, Pareto optima are necessarily strictly comonotone

i.e. strictly increasing functions of the aggregate endowments, but the converse is

false.

As noticed by Landsberger and Meilijson (1994), the specific utilities of agents are

hardly even known in practice, moreover let us add that the model which is used

by an agent is hardly even known as well. Consequently, Landsberger and Meilijson

(1994) only assumed that agents are strictly strong risk averters in the sense of strict

second order dominance.

They obtained the nice result, that for such agents Pareto optimal allocations coincide

exactly with the set of comonotone allocations i.e. the set of allocations which are non

decreasing functions of the aggregate endowments. Landsberger and Meilijson (1994)

gave a proof of the previous result and an algorithm allowing to reach at least one

Pareto optimum, while they did not offer a method for computing all Pareto optima.

The main novelty provided by this work is to offer a complete characterization of

Pareto optima, by extensively taking advantage of the polytope structure of these

Pareto optima. Furthermore, it is shown that this strategy also allows to easily

describe the entire convex set of individually rational Pareto optima—those for which

every individual is better off when comparing with the initial situations—which clearly

are those of practical interest in real life.

This is performed under the mild assumption that the underlying probability informa-

tion (we just consider a finite set of states of nature) consists of rational probabilities.

This is not a too restrictive assumption since any probabilistic information can indeed

be approximated as far as needed by such rational probabilities.

As a dividend in case of multidimensional risk sharing if multidimensional risk aver-

sion, is defined as strict strong risk aversion component by component, which would

prove to be meaningful in case of extreme caution, then multidimensional Pareto

optima, reduce to one dimensional Pareto optima component by component and

therefore can be easily computed through our proposed method.

Indeed, in this way we avoid using a generalized comonotone dominance principle,

which is in accordance with the multidimensional second order stochastic dominance,

as this is developed by Carlier et al. (2012) in order to obtain other types of Pareto

optima, which apparently might be difficult to derive analytically.
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The paper is organized as follows. Section 1.2 presents the general framework of

multidimensional risk sharing, recalls some definitions and shows how the problem

reduces to one dimensional Pareto optima. Section 1.3 deals with the characterization

of Pareto optimal risk sharing, while section 1.4 offers a description of individually

rational Pareto optima.

As an application, we derive all individually rational Pareto optima linked with the

insurance problem examined by Landsberger and Meilijson (1994). This example

illustrates how IRPO ’s (individually Rational Pareto optimal risk sharings) allow

reducing risks which are not initially covered by the insurance policy. Finally, section

1.5 discusses the obtained results and concludes the paper.

1.2 Framework and Definitions

Consider, for the purpose of illustration, n insurance companies, i = 1, . . . , n, each

holds at date zero, p portfolios of insurance of type k = 1, . . . , p leading at date one

to future stochastic wealth Xk
i :

�

S, 2S, P
�

→ R+ , where S = (s1, . . . , sj, . . . , sm) is

the finite space of the sets of nature, and P the probability on 2S is given and satisfies

P (sj) = pj > 0 ∀j.
Let wi = (w1

i , . . . , w
k
i , . . . , w

p
i ) be the initial endowment of insurance i with respect to

each portfolio of type k, i.e. each future wealth in each state with respect to premia

and reimbursements related to type k. Denote wk =
n

�

i=1

wk
i .

By definition, X is a feasible allocation if X = (X1, . . . , Xi, . . . , Xn) with Xi ∈
�

R
m
+

�p ∀i = 1, . . . , n and
n

�

i=1

Xk
i = wk ∀k ∈ �1, p�.

Let us now recall that if X and Y are bounded real random variables, X dominates

Y by the second order stochastic dominance i.e. X is considered as less risky than Y

denoted by X�SSDY if
� p

0
F−1
X (t)dt ≥

� p

0
F−1
Y (t)dt ∀p ∈ �0, 1� where F−1 is the usual

quantile function.

Moreover X�SSDY i.e. X strictly dominates Y for the second order stochastic dom-

inance if furthermore
� p0
0

F−1
X (t)dt >

� p0
0

F−1
Y (t)dt for some p0 ∈ (0, 1].

We assume that each agent i has preferences �i associated with the component by

component second order stochastic dominance that is forXi = (X1
i , . . . , X

k
i , . . . , X

p
i ) ∈

�

R
m
+

�p
and Yi = (Y 1

i , . . . , Y
k
i , . . . , Y

p
i ) ∈

�

R
m
+

�p
then if Xk

i �SSDY
k
i ∀k ∈ �1, p� one has

Xi weakly preferred to Yi i.e. Xi�iYi and if furthermore there exist k0 ∈ �1, p� such
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that Xk0
i �SSDY

k0
i then Xi is strictly preferred to Yi i.e. Xi�iYi.

From the above assumptions it turns out that:

Definition 1.2.1. X = (X1, . . . , Xi, . . . , Xn) ∈ (Rm)p×n is Pareto optimal if ∀k ∈
�1, p� (Xk

1 , . . . , X
k
i , . . . , X

k
n) is Pareto optimal in the usual sense for the univari-

ate case with respect to the second order stochastic dominance i.e. for k given,

(Xk
1 , . . . , X

k
i , . . . , X

k
n) is a feasible allocation:

Xk
i ∈ R

m
+ ∀i, �n

i=1 X
k
i = wk and there does not exist Y = (Y k

1 , . . . , Y
k
i , . . . , Y

k
n ),

Y k
i ∈ R

m
+ ∀i, �n

i=1 Y
k
i = wk, such that Y k

i �SSDX
k
i ∀i and Y k

i0
�SSDX

k
i0
for some i0.

Definition 1.2.2. X = (X1, . . . , Xi, . . . , Xn) ∈ (Rm)p×n is an individually rational

Pareto optimum if X is Pareto optimal and individually rational i.e. ∀i, k Xk
i �SSDw

k
i .

1.3 Deriving all Pareto optima

From Definition 1.2.1 it turns out that the p-dimensional case reduces to p one di-

mensional situations. So we just have to deal with the following situation:

X = (X1, . . . , Xi, . . . , Xn) Xi :
�

S, 2S, P
�

→ R+, w ∈ R
m
+ given.

In subsection 2.3.1 for the sake of completeness we just propose what we hope to be

a very simple, direct and complete proof of the well-known characterization of Pareto

optimal allocations in terms of comonotonicity.

1.3.1 Pareto optima in the one-dimensional case

Definition 1.3.1. An allocation X = (X1, . . . , Xi, . . . , Xn) is comonotone if,

∀
�

i, i
�� ∈ �1, n�2 (Xi (s)−Xi (t)) (Xi� (s)−Xi� (t)) ≥ 0 ∀ (s, t) ∈ S2.

We intend to retrieve, in a simple way, the well-known following theorem, which is

implicit in Landsberger and Meilijson, see Landsberger and Meilijson (1994).

Theorem 1.3.2. The set of Pareto optimal allocations coincide with the set of comono-

tone allocations.

The proof will result from the following two lemmas.

Lemma 1.3.3. Any Pareto optimal allocation is comonotone.

Proof: We just sketch the proof given in Chateauneuf et al. (2000). It is enough to

show that any non-comonotone allocation X = (X1, . . . , Xi, . . . , Xn) can be improved
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to a new allocation X
�

=
�

X
�

1, . . . , X
�

i , . . . , X
�

n

�

which is mutually beneficial for all

agents and strictly beneficial for at least one.

Let us assume, without loss of generality, that comonotonicity is not satisfied for X1

, X2 and for s1 , s2. Let X1 (s1) = x1, X1 (s2) = x2, X2 (s1) = y1, X2 (s2) = y2 and

assume without loss of generality that x1 + y1 ≤ x2 + y2, x1 > x2 and y1 < y2.

Let us modify (x1, x2) to
�

x
�

1, x
�

2

�

and (y1, y2) to
�

y
�

1, y
�

2

�

where x
�

1 = x
�

2 =
p1x1 + p2x2

p1 + p2
,

y
�

1 = x1 + y1 − x
�

1 and y
�

2 = x2 + y2 − x
�

2.

ThereforeX = (X1, . . . , Xi, . . . , Xn) has been modified to, X
�

= (X
�

1, X
�

2, X
�

3, . . . , Xn
�

)

where Xi
�

= Xi ∀i = 3, . . . , n.

It is then straightforward to see that we obtain a new allocation X
�

and that Xi
�

is

strictly less risky than Xi for i = 1, 2 since E(u(Xi
�

)) > E (u (Xi)) for any strictly

concave utility function u, which completes the proof. ✷

Lemma 1.3.4. Any comonotone allocation is Pareto optimal.

Proof: Let X = (X1, . . . , Xi, . . . , Xn) be a comonotone allocation. We just intend to

show that it is impossible that a feasible allocation Y = (Y1, . . . , Yi, . . . , Yn) strictly

dominates X. Without loss of generality, we assume that Y1�SSDX1 i.e. there exists

p0 ∈ (0, 1] such that:

� p0

0

F−1
Y1

(t)dt >

� p0

0

F−1
X1

(t)dt

and,
� p

0

F−1
Y1

(t)dt ≥
� p

0

F−1
X1

(t)dt and ∀p ∈ [0, 1].

Moreover
� p

0
F−1
Yi

(t)dt ≥
� p

0
F−1
Xi

(t)dt ∀i ∀p ∈ [0, 1].

Hence we get,
n

�

i=1

� p0

0

F−1
Yi

(t)dt >
n

�

i=1

� p0

0

F−1
Xi

(t)dt (1.1)

Let us now show that,

n
�

i=1

� p0

0

F−1
Yi

(t)dt ≤
� p0

0

F−1�n
i=1 Yi

(t)dt (1.2)

Recall that TVAR is sub-additive see Denuit and Dhaene (2012), i.e. for any random

variable Z, TVAR(Z,p) = 1
1−p

� 1

p
F−1
Z (t))dt, where p ∈ [0, 1) is such that for any
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random variables T and Z one gets:

TVAR(Z+T,p) ≤ TVAR(Z,p)+TVAR(T,p).

From E(Z) =
� 1

0
F−1
Z (t))dt, E(T ) =

� 1

0
F−1
T (t))dt and indeed E(Z + T ) = E(Z) +

E(T ) it is then straightforward to obtain:

� p0

0

F−1
Z+T (t)dt ≥

� p0

0

F−1
Z (t)dt+

� p0

0

F−1
T (t)dt.

And therefore by induction one gets (1.2). Combining (1.1) and (1.2) we obtain:

n
�

i=1

� p0

0

F−1
Xi

(t)dt <

� p0

0

F−1�n
i=1 Yi

(t)dt (1.3)

But
�n

i=1 Xi = w =
�n

i=1 Yi hence F−1
w = F−1�n

i=1 Xi
= F−1�n

i=1 Yi
, moreover since X

is comonotone F−1�n
i=1 Xi

=
�n

i=1 F
−1
Xi

a.e. (almost everywhere) thus (1.3) implies:
� p0
0

F−1
w (t)dt <

� p0
0

F−1
w (t)dt a contradiction, which completes the proof of lemma

1.3.4 and henceforth of Theorem 1.3.2. ✷

1.3.2 Deriving all Pareto optima

We intend now to show that the set of Pareto optima is a polytope. Therefore by

implementing the vertex identification algorithm as can be found in MATLAB (2010),

one can easily obtain all Pareto optima. Let us start by a preliminary lemma.

Lemma 1.3.5. Let w(sj) = wj. Then after possibly relabeling, if needed, the indices

in such a way that w1 ≤ . . . ≤ wj ≤ . . . ≤ wm, one gets: If (Xi)i=1,...,n is a feasible

allocation, then the two following properties are equivalent;

(i) (Xi)i=1,...,n is comonotone.

(ii) Xi(1) ≤ . . . ≤ Xi(j) ≤ . . . ≤ Xi(m) ∀i = 1, . . . , n.

Proof:

(i)=⇒(ii): Let wj ≤ wj+1 and assume there exists i0 such that Xi0(j) > Xi0(j + 1).

Since (Xi)i=1,...,n is comonotone, we have Xi(j) ≥ Xi(j+1)∀i �= i0. Summing up both

sides of the inequality over i = 1, . . . , n gives
�n

i=1Xi(j) >
�n

i=1Xi(j + 1).

Since (Xi)i=1,...,n is a feasible allocation, the following relation wj > wj+1 is obtained,

which is a contradiction.
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(ii)=⇒(i): Take j �= j
�

. From (ii) we have:

Xi(1) ≤ . . . ≤ Xi(j) ≤ . . . ≤ Xi(m) ∀i = 1, . . . , n, therefore it is immediate that

∀i �= i
�

(Xi(j)−Xi(j
�

))(Xi� (j)−Xi� (j
�

)) ≥ 0, which means that the Xi ’s are pairwise

comonotone. ✷

Remark 1.3.6. It is worth noticing that building upon Lemma 1.3.5, Theorem 1.3.2

can be restated, in accordance with some economic terminology (For instance see

Eeckhoudt et al. (2005)), see Theorem 1.3.7 below.

Theorem 1.3.7. For an allocation X = (X1, . . . , Xi, . . . , Xn) ∈ R
m×n the two fol-

lowing assertions are equivalent:

(i) X is Pareto optimal

(ii) 1. X is feasible

2. Mutuality Principle:

∀s, t ∈ S w(s) = w(t) =⇒ Xi(s) = Xi(t) ∀i = 1, ..., n

3. Weak comonotonicity:

∀s, t ∈ S w(s) < w(t) =⇒ Xi(s) ≤ Xi(t) ∀i = 1, ..., n

Proof:

(i)=⇒(ii) is immediate since by definition, Pareto optima are feasible. It can be

concluded from Theorem 1.3.2 that X is comonotone, therefore from lemma

1.3.5 we have:

w(s) ≤ w(t) and w(t) ≤ w(s) implies Xi(s) = Xi(t) ∀i.
Also we have, w(s) < w(t)=⇒Xi(s) ≤ Xi(t) ∀i.

(ii)=⇒(i) Let i, j ∈ {1, ..., n} and s, t ∈ S indeed if Xi(s) = Xi(t) then

(Xi(s)−Xi(t)) (Xj(s)−Xj(t)) ≥ 0, and by symmetry if Xi(s) < Xi(t) then

w(s) < w(t), therefore it can be concluded from (ii).3 that Xj(s) ≤ Xj(t) hence,

(Xi(s)−Xi(t)) (Xj(s)−Xj(t)) ≥ 0. ✷

Remark 1.3.8. Let us recall again that for strict strong risk averters who are EU

(expected utility decision makers) Pareto optima satisfy (ii).1, (ii).2 but (ii).3 should

be replaced by strict comonotonicity (see Borch (1962) or also Eeckhoudt et al. (2005))

i.e. ∀s, t ∈ S w(s) < w(t)=⇒Xi(s) < Xi(t) ∀i = 1, ..., n.
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As mentioned in the introduction, for EU decision makers the converse is false, only

some particular feasible allocations satisfying the Mutuality Principle, and strict

comonotonicity are Pareto optima. Their derivation requires the use of first order

conditions intimately linked with the Von Neumann utilities of the considered deci-

sion makers.

Theorem 1.3.9. The set of Pareto optima is a polytope, hence it is the convex hull

of its finitely many extreme points.

Proof: Since from Theorem 1.3.2, Pareto optima are comonotone allocations, it is

straightforward from lemma 1.3.5 to see that the set P of Pareto optima is a nonempty

compact convex subset K of Rn , defined as the intersection of some finite collection

of closed half-spaces (that is the set of solutions of finitely many linear inequalities).

Hence from proposition 3.2.1 in Florenzano et al. (2001) we conclude that P is a

polytope, and from the well-known Krein-Milman theorem (see for instance, proposi-

tion 3.1.4 in Florenzano et al. (2001)) that P is the convex hull of its extreme points.

Since P is a polytope, the number of these extreme points is finite. ✷

1.3.3 Two illustrating examples

Here we present two examples to illustrate the procedure of the calculation of the

extreme points; also we study the properties of the obtained vertices through these

examples. In the first example, we chose the following values for the parameters

introduced in the problem framework. We take m = n = 2 and the initial vector of

endowment w = (2, 4), which leads to the following constraints:

P = {(x1, x2), (y1, y2)} such that:































−x1 ≤ 0, − x2 ≤ 0

−y1 ≤ 0, − y2 ≤ 0

x1 − x2 ≤ 0, y1 − y2 ≤ 0

−x1 − y1 ≤ −2, − x2 − y2 ≤ −4

x1 + y1 ≤ 2, x2 + y2 ≤ 4

As it was discussed before, P is a polytope. Furthermore, P is the convex hull of

the finite set of extreme points. For the sake of illustration, we obtain the extreme

points of P . First we construct the related system S of linear equations with the four

unknown quantities x1, x2, y1 and y2:
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➀ x1 + y1 = 2

➁ x2 + y2 = 4

➂ x1 = 0

➃ x2 = 0

➄ y1 = 0

➅ y2 = 0

➆ x1 − x2 = 0

➇ y1 − y2 = 0.

Clearly any extreme point satisfies the endowment constraints (1) and (2). So build-

ing for instance upon Proposition 3.3.1 in Florenzano et al. (2001), we know that

any extreme point is a solution of a subsystem of S including equalities (1) and (2),

which is of rank 4, and which satisfies, the corresponding remaining inequalities of

P . First we pick equations (1), (2), (3) and (4) , which leads to (x1 = 0, y1 = 2) and

(x2 = 0, y2 = 4). Now we check the obtained result with the remaining inequality con-

straints, which proves that ((x1, x2), (y1, y2)) is situated inside the polytope, therefore

it is a feasible solution and can be regarded as one of the vertices of the polytope.

We add (x1 = 0, y1 = 2) and (x2 = 0, y2 = 4) to the set of vertices and continue the

algorithm for the remaining set of equations to identify all the extreme points. In

this way four extreme points are identified as below:

{((x1, x2), (y1, y2))} = {((0, 0), (2, 4)) , ((2, 4), (0, 0)) , ((0, 2), (2, 2)) ((2, 2), (0, 2))} .

As already mentioned in theorem 1.3.9, the set of Pareto optima can be defined as the

convex hull of the identified extreme points. Hence, considering the extreme points

obtained for this example, the set of Pareto optimal can be presented as below:

{((x1, x2), (y1, y2))} = {(2α2 + 2α4, 4α2 + 2α3 + 2α4) ,

(2α1 + 2α3, 4α1 + 2α3 + 2α4)}. (1.4)

In the second example we consider the parameters, m = 3, n = 2 and w = (3, 5, 3).
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The comonotonicity assumption requires reordering the initial endowment in an in-

creasing order, which gives w = (3, 3, 5). Now we can construct the system of equa-

tions and inequalities as described in the problem framework. The obtained feasible

extreme points are as following:

{((x1, x2, x3), (y1, y2, y3))} = {((0, 0, 0), (3, 3, 5)) , ((3, 3, 5), (0, 0, 0)) ,

((0, 0, 2), (3, 3, 3)) ((3, 3, 3), (0, 0, 2))}. (1.5)

One important property of the obtained extreme points in this example and the

previous one is the symmetry of results with respect to the replacing of xi by yi. This

property is due to the structure of equalities, imposed by endowment constraints.

Hence if (xi, yi) is an extreme point, (yi, xi) is also an extreme point of the polytope2.

1.4 Deriving all individually rational Pareto optima

As for Pareto optima, it turns out from Definition 1.2.2 that the p-dimensional case

reduces to p one dimensional cases. Let wi :
�

S, 2S, P
�

→ R+, i=1, . . . ,n be

the initial endowments of the agents. We are looking for a Pareto optimum X =

(X1, . . . , Xi, . . . , Xn) such that Xi�SSDwi, i = 1, . . . , n.

Some preliminary lemmata:

Lemma 1.4.1. Any individually rational Pareto optimum (IRPO) Xi is such that

E(Xi) = E(wi).

Proof: One has
�n

i=1 wi =
�n

i=1 Xi hence
�m

i=1 E(wi) =
�m

i=1 E(Xi) but Xi�SSDwi

so

� 1

0

F−1
Xi

(t)dt ≥
� 1

0

F−1
wi

(t)dt i.e. E(Xi) ≥ E(wi) which gives the result. ✷

Lemma 1.4.2. The set PIR of individually rational Pareto optima is nonempty.

Proof: Landsberger and Meilijson (1994) nicely proved in their Proposition 1 (page

100) that every allocation is dominated by some comonotone allocation, therefore

from Theorem 1.3.2 one can conclude that there exist at least one individually rational

Pareto optimum. ✷

2Indeed implementing the vertex identification algorithm in MATLAB(2010) would give the set of Pareto
optima in any case.
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Remark 1.4.3. Note that in the present paper, we intend to systematically derive

all IRPO’s at least for rational probabilities (which apparently in “real life” is not a

severe limitation). Our result contrasts from the algorithms which can be found in

the literature. Actually these algorithms propose a method to obtain only one IRPO

(see e.g. Landsberger and Meilijson (1994) or Ludkovski and Rüschendorf (2008)),

but not all IRPO’s.

Remark 1.4.4. Note that even for a finite state space S , it is not easy to express

the individually rational conditions Xi�SSDwi, i = 1, . . . , n. Actually Xi�SSDwi is

equivalent to
� p

0

F−1
Xi

(t)dt ≥
� p

0

F−1
wi

(t)dt ∀p ∈ (0, 1) (1.6)

with equality if p=1, as noticed in Lemma 1.4.1, but even if (1.6) has to be checked

only for a finite number p� ∈ (0, 1), in practice finding which p� must be chosen is a

delicate task. In contrast, if each pj is a rational probability, let us say of the type

pj =
kj
q
where kj, q ∈ N

∗
+, it is immediate that Xi�SSDwi iff

� k
q

0

F−1
Xi

(t)dt ≥
� k

q

0

F−1
wi

(t)dt ∀k ∈ �1, q�.

We then state Theorem 1.4.5, which is the main result of this paper.

Theorem 1.4.5. The set PIR of individually rational Pareto optima is a polytope,

hence the convex hull of its finitely many extreme points.

Proof: The proof is similar as the one of theorem 1.3.9 except that we have now

to take into account the new“closed half-spaces” constraints E(Xi) = E(wi)∀i and
� p�

0

F−1
Xi

(t)dt ≥
� p�

0

F−1
wi

(t)dt ∀i∀p�. Note that IRPO ’s depend on the probability P

while PO ’s are independent of probability P. ✷

1.4.1 Two illustrating examples

Example 1

One can imagine that 1 and 2 are agricultural producers and that w1, w2 represents the

possible production of tomatoes during one year depending on the climate conditions

s1 and s2. Note by the way that one could imagine that these agricultural produc-

ers produce also potatoes, so our definition of individually rational Pareto optima as
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State s1 s2

p 1
2

1
2

w1 2 0

w2 0 4

w 2 4

Table 1.1: Probability of the states for example 1.

Pareto optima separately with respect to tomatoes productions and potatoes produc-

tions would apparently make sense in such a situation.

Here we are looking for individually rational Pareto optima X = (x1, x2) and Y =

(y1, y2). Clearly the individually rational Pareto optima (X, Y ) are characterized by:

Comonotonicity condition: x1 ≤ x2 and y1 ≤ y2.

Dominance: X�SSDw1 so x1 ≥ 0 and E(X) = E(w1) i.e. x1 + x2 = 2

Y�SSD w2 so y1 ≥ 0 and E(Y ) = E(w2) i.e. y1 + y2 = 4.

Feasibility: x1 ≥ 0 and x2 ≥ 0, y1 ≥ 0 and y2 ≥ 0

x1 + y1 = 2, x2 + y2 = 4.

Hence direct computations give that the extreme IRPO ’s are ((0, 2) , (2, 2)) and

((1, 1) , (1, 3)) so:

PIR = {(α2, 2α1 + α2) , (2α1 + α2, 2α1 + 3α2) ,α1 ≥ 0,α2 ≥ 0,α1 + α2 = 1} .

Example 2

Note that we can write the initial situation as in table 1.3 by taking into account

that the true states that will occur are s1 and s2, and not s1, s21, s22 and s23. So

Pareto optima will be X = (x1, x2) and Y = (y1, y2) or fictitious X̂ = (x1, x2, x2, x2)

and Ŷ = (y1, y2, y2, y2), so the set PIR will now satisfy the polytope property:

Comonotonicity condition: x1 ≤ x2 and y1 ≤ y2.
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State s1 s2

p 1
4

3
4

w1 2 0

w2 0 4

w 2 4

Table 1.2: Initial probability of the states for example 2.

State s1 s21 s22 s23

p 1
4

1
4

1
4

1
4

ŵ1 2 0 0 0

ŵ2 0 4 4 4

ŵ 2 4 4 4

Table 1.3: Converted to the uniform probability

Dominance: X�SSDw1 , x1 ≥ 0 and x1 + x2 ≥ 0, x1 + 2x2 ≥ 0,

E(X) = E(w1) i.e. x1 + 3x2 = 2

Y�SSDw2 , y1 ≥ 0 and y1 + y2 ≥ 4, y1 + 2y2 ≥ 8,

E(Y ) = E(w2) i.e. y1 + 3y2 = 12.

Feasibility: x1 ≥ 0 and x2 ≥ 0, y1 ≥ 0 and y2 ≥ 0

x1 + y1 = 2, x2 + y2 = 4.

Hence direct computation gives that the extreme IRPO ’s are
��

0, 2
3

�

,
�

2, 10
3

��

and
��

1
2
, 1
2

�

,
�

3
2
, 7
2

��

so:

PIR =
��

1
2
α2,

2
3
α1 +

1
2
α2

�

,
�

2α1 +
3
2
α2,

10
3
α1 +

7
2
α2

�

,α1 ≥ 0,α2 ≥ 0,α1 + α2 = 1
�

.

1.4.2 Revisiting the insurance example of Landsberger and Meilijson

(1994)

Landsberger and Meilijson (1994) considered the following risky situation. In this

example the following risky situation is considered. A risk averse agent owns a house

worth 10$. The house is susceptible to a total loss with probability 1/10. The agent

also owns 1$ in cash and a source of random income (stock) which pays 2$ or nothing

with probability 1/2 each.
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Fair insurance of the house is available but uncertainty associated with capital (stock)

income is retained. Under fair insurance, the wealth positions of the insured and the

insurer are given in table 1.4:

State s1 s2 s3 s4

Situation Stock pays zero Stock pays 2$ Stock pays zero Stock pays 2$

House-total loss House-total loss House intact House intact

Probability 0.05 0.05 0.45 0.45

Insured’s wealth

position X 10 12 10 12

Insurer’s wealth

position Z -9 -9 1 1

Table 1.4: Insurance example of Landsberger and Meilijson (1994).

We assume as Landsberger and Meilijson (1994) that both agents are strict strong

risk averters. We intend to derive all the IRPO ’s, while Landsberger and Meilijson

(1994) just proposed one sharing rule through their specific algorithm.

Note that theorem 1.4.5 assumes that all the considered allocations are non-negative,

so we need to prove that the results of theorem 1.4.5 remains valid if no boundedness

constraints are imposed on the initial allocations and the Pareto optima. To this end,

theorem 1.4.5 can be improved in the following way:

Theorem 1.4.6. Assume that the initial endowment of agent i is wi ∈ R
m and define

the IRPO’s as the allocations X = (X1, . . . , Xi, . . . , Xn) ∈ R
m×n such that

�

i Xi =
�

i wi (:= w) and Xi�SSDwi ∀i, then the set PIR is the polytope of the feasible

allocations which are comonotone and satisfy the individually rational constraints.

Proof: A simple examination of the proof of theorem 1.4.5 shows that it is just

required to check that the set PIR is bounded.

We may assume since the probabilities are rational, that in fact we are considering

the situation where all the states j = 1, ...,m are with probability 1/m.

So translating our problem in this setting, we may assume:

w(1) ≤ . . . ≤ w(j) ≤ . . . ≤ w(m).

Thus we are looking for Xi, i = 1, ..., n such that from comonotonicity:

Xi(1) ≤ . . . ≤ Xi(j) ≤ . . . ≤ Xi(m) ∀i We know that for IRPO Xi, we have

E(Xi) = E(wi) so the dominance condition 1 gives:
�m

j=1 Xi(j) =
�m

j=1 wi(j).
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Let σi : {1, ...,m} → {1, ...,m} be the permutation such that,

wi(σi(1)) ≤ . . . ≤ wi(σi(j)) ≤ . . . ≤ wi(σi(m)).

Hence from dominance condition 2: Xi�SSDwi, we get:
�k

j=1 Xi(j) ≥
�k

j=1 wi(σi(j)) ∀k ∈ {1, ...,m}.

Therefore for a given i, Xi(1) ≥ Minj wi(j), and then comonotonicity implies that

Xi(1) ≥ Minj wi(j) ∀i, hence the Xi’s are bounded from below. Condition 1 imme-

diately leads to the fact that each Xi is bounded from above.

Considering that for a given i we have:

Xi(m) =
�m

j=1 wi(j)−
�m−1

j=1 Xi(j) ≤
�m

j=1 wi(j)− (m− 1)Minj wi(j).

Therefore from comonotonicityXi ≤
�m

j=1 wi(j)−(m−1)Minj wi(j) which completes

the proof. ✷

Having proved the validity of our IRPO computation algorithm for the cases like

Landsberger and Meilijson (1994)’s example, we apply our algorithm and we obtain

the following two extreme points for the set of IRPO which are depicted in tables 1.5

and 1.6.

State s1 s2 s3 s4

X1 10 10.2 10.2 12

Z1 -9 -7.2 0.8 1

w 1 3 11 13

Table 1.5: First extreme point

State s1 s2 s3 s4

X2 10 10 10.22 12

Z2 -9 -7 0.78 1

w 1 3 11 13

Table 1.6: Second extreme point

In fact the first extreme point (X1, Z1) turns out to be the IRPO found by Lands-

berger and Meilijson (1994). Clearly any of the IRPO (i.e. any convex combination of

(X1, Z1) and (X2, Z2)) allows both agents to reduce their risk compared to the initial

situation, but indeed while only the insurable risk was diversified using the insurance

market, risk sharing allowed also social risks (stock risk) to be reduced.
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1.5 Conclusion

In this paper, in case of multiple risks, we did adopt the idea that a natural way

for insurance companies to optimally share risks is risk by risk Pareto-optimality.

Our framework is based upon the well-known results in the one dimensional case

characterizing Pareto-optimality as comonotonicity in case of strong risk aversion.

Two main results are obtained in this work.

Due to the polytope structure of Pareto-optima and also of Individually Rational

Pareto-optima, we offer a simple computable method. First for deriving all Pareto-

optima and second—in the not severely restrictive case of rational probabilities—for

deriving all Individually Rational Pareto-optima. The method merely consists in

systematically obtaining the finitely many extreme points of the respective polytopes.

The method is illustrated using the numerical examples. Moreover the application of

this approach in insurance industry is examined by computing all the IRPO’s of the

Landsberger and Meilijson (1994)’s example.
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Chapter 2

Comonotonic Monte Carlo and its applica-

tions in option pricing and quantification

of risk1

Alain Chateauneuf, Mina Mostoufi, David Vyncke

Abstract

Monte Carlo (MC) simulation is a technique that provides approximate solutions

to a broad range of mathematical problems. A drawback of the method is its high

computational cost, especially in a high-dimensional setting, such as estimating the

Tail Value-at-Risk for large portfolios or pricing basket options and Asian options.

For these types of problems, one can construct an upper bound in the convex or-

der by replacing the copula by the comonotonic copula. This comonotonic upper

bound can be computed very quickly, but it gives only a rough approximation. In

this paper we introduce the Comonotonic Monte Carlo (CoMC) simulation, by using

the comonotonic approximation as a control variate. The CoMC is of broad appli-

cability and numerical results show a remarkable speed improvement. We illustrate

the method for estimating Tail Value-at-Risk and pricing basket options and Asian

options when the logreturns follow a Black-Scholes model or a variance gamma model.

Keywords : Control Variate Monte Carlo, Comonotonicity, Option pricing.

JEL classification: C02, C13, C15, G17.

1This paper is submitted to the Journal of Derivatives.

43



Chapter 2. Comonotonic Monte Carlo and its applications in option pricing

2.1 Introduction

Monte Carlo (MC) simulation is a well known technique in different domains of math-

ematics such as mathematical finance, see Glasserman (2003); Benninga (2014). The

method is based on the estimation of the expectation of a real-valued random vari-

able X by generating many independent and identically distributed samples of X,

denoted X1, ..., Xn. The natural unbiased estimator for E(X) is then the sample

mean X̄n = 1
n

n
�

i=1

Xi.

A typical application of the Monte Carlo method in finance is the estimation of

the no-arbitrage price of a specific derivative security (e.g. a call option), which can

be expressed as the expected value of its discounted payoff under the risk neutral

measure. For instance the price at time t of a European call option with strike price

K and maturity date T on an underlying with price process St can be obtained as

the expectation of its discounted payoff e−r(T−t)(ST − K)+ under the risk-neutral

probability Q,

EC(K,T, t) = EQ[e−r(T−t)(ST −K)+].

For the computation of this price by Monte Carlo simulation, we generate a large

number of price paths ST and compute the discounted payoffs and their sample mean.

The obtained result is an unbiased estimate of the option price.

Another application of the Monte Carlo method in finance is estimating risk measures,

such as Tail Value-at-Risk. The Tail Value-at-Risk of a portfolio at the probability

level p is the arithmetic average of its quantiles from the threshold p to 1. The Monte

Carlo method estimates these quantiles by generating a huge number of portfolio val-

ues for which the exceedance probabilities Pr[X ≥ x] = E[I(X ≥ x)] are computed,

where I(.) denotes the indicator function. A classical interpolation and inversion then

gives an estimate for the quantile.

The main shortcoming of the Monte Carlo method is its high computational cost. By

the Central Limit Theorem, if X1, ..., Xn have finite variance σ2, then X̄n is approx-

imately Gaussian and Var(X̄n)=
σ2

n
. Consequently, the standard error of the crude

Monte Carlo estimate is of order O( 1√
n
) and thus, to double the precision, one must

run four times the number of simulations. Alternatively, strategies for reducing σ

should be considered.

Several variance reduction techniques can be used in companion with the Monte Carlo

method, such as antithetic variables, control variates and importance sampling. A
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detailed survey of these techniques is given in Ripley (1987). In this paper we focus

on the well-known control variate method for variance reduction.

The applications considered in this paper are simulation problems based on multi-

variate random variables, such as basket options where the price depends on several

underlying securities. In these problems the closed form expressions are often available

for the univariate cases. For instance, in a lognormal world the price of a European call

option (which only depends on ST ) can be calculated with the Black-Scholes pricing

formula. As comonotonicity essentially reduces a multivariate problem to univariate

ones, leaving the marginal distributions intact, we propose to use the comonotonic

approximation as a control variate in a so-called Comonotonic Monte Carlo (CoMC)

framework. One further step that can be considered is utilizing the CoMC method in

addition to other existing control variates in the framework of a multi-variable control

variate method.

The Comonotonic Monte Carlo method is particularly useful to estimate distortion

risk measures for sums of random variables, such as Tail Value-at-Risk (TVaR). The

application domain of this method can also be extended to the risk measures which

can be written as a linear combination of distortion risk measures, such as the Ex-

pected Shortfall (ESF). As the ESF basically consists of a stop-loss transform, its

mathematical concept is very similar to option pricing, so the technique is useful in

this domain as well.

The structure of this paper is as follows. First we discuss the control variate method

for reducing the variance. Next, we describe the application of the comonotonicity

concept to construct the comonotonic control variate. In the fourth section, we illus-

trate the CoMC framework for Asian options, Basket options and TVaR. In the final

section we conclude the results.

2.2 Control Variate Monte Carlo Method

The control variate method is a classical approach for reducing the variance, and

hence improving the efficiency, in Monte Carlo simulation, see e.g. Kemna and Vorst

(1990) for the pricing of arithmetic Asian options.

In the control variate Monte Carlo method, when we generate the sample values to

estimate E[X], we use the same values to estimate the expectation of a different

random variable Y which resembles X and for which the analytical calculation of its

expectation, E[Y ], is straightforward. Assuming that E[Y ] is known, we can then
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determine the error of estimating E[Y ] and use it to correct the estimate of E[X].

As an example, in the case of Asian option pricing, we can calculate the value of a

geometric Asian call option using both the (analytical) Black-Scholes formula and

Monte Carlo simulation. If the simulation turns out to underestimate the real option

price, one could argue that the corresponding estimate for the arithmetic Asian option

will also be too low and adjust the Monte Carlo estimate accordingly.

In general, the control variate method can be formulated as follows. Suppose that

there exists a random variable Y , related to X, for which E[Y ] is known. Consider-

ing that the sample means X̄n and Ȳn are unbiased estimators for E(X) and E[Y ]

respectively, the adjusted estimator

X̄n(λ) = X̄n − λ(Ȳn − E[Y ]), λ ∈ R

is also an unbiased estimator of E[X], i.e. E[X̄n(λ)] = E[X̄n] = E[X]. The control

parameter λ is an arbitrary scalar, but in order to minimize the variance of X̄n(λ) we

should set it to

λ∗ =
Cov(X, Y )

V ar[Y ]
= ρ

�

V ar[X]

V ar[Y ]

with ρ denoting the correlation between X and Y . This choice yields a minimum

variance (1 − ρ2)V ar[X̄n], which is obviously smaller than V ar[X̄n] as −1 ≤ ρ ≤ 1.

Therefore the control variate unbiased estimator X̄n(λ) leads to a smaller variance

compared to the obtained variance from the crude Monte Carlo unbiased estimator

X̄n.

Note that the optimal λ∗ involves moments of X and Y that are generally unknown.

Hence λ is often chosen to be 1. This choice makes sense if the control variate Y is

very similar to X, and thus if ρ is close to 1 and V ar[X] ≈ V ar[Y ]. The optimal λ∗

could also be estimated from the simulated data, but one should take into account

that this introduces bias of order O(1/n) to the estimator X̄n(λ). A straightforward

way to overcome this problem is to use different samples for the estimation of λ and

E[X].

2.3 Comonotonic Control Variate

The concept of comonotonicity has received a lot of interest in the recent actuarial

and financial literature, mainly due to its interesting properties that can be used
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to facilitate various complicated problems, see Dhaene et al. (2014); Deelstra et al.

(2011); Liu et al. (2013); Tsuzuki (2013). In the following sections we describe the

properties of comonotonicity that can be used to construct a comonotonic control

variate for a multivariate Monte Carlo simulation.

2.3.1 Comonotonic Upper Bound

Consider a random vector X = (X1, ..., Xn) for which the marginal distributions of

Xi’s are known. In order to determine the distribution function of the sum of random

variables, S =
�n

i=1 Xi, it is often assumed that the individual random variables Xi’s

are mutually independent. However, the assumption of mutual independence might be

violated and may result in underestimating the sum S. To avoid this underestimating,

we need to consider the dependence structure of the random vector X. If the joint

distribution of X is unspecified or less tractable, we can derive an upper bound for

the sum S in convex order2.

Dhaene et al. (2002) proved that the convex-largest sum of the components of a

random vector X with given marginal distributions will be obtained in the case that

the random vector X has a comonotonic distribution, which means that each two

possible outcomes (x1, ..., xn) and (y1, ..., yn) of (X1, ..., Xn) are ordered component-

wise.

Definition 2.3.1. A random vector X = (X1, ..., Xn) is comonotonic if and only if

it has a comonotonic copula i.e. for all x = (x1, ..., xn), we have

FX(x) = min {FX1(x1), FX2(x2), ..., FXn
(xn)} . (2.1)

Proposition 2.3.2. If X has a comonotonic copula then for U ∼ Uniform(0, 1), we

have

X
d
= (F−1

X1
(U), (F−1

X2
(U), ..., (F−1

Xn
(U)). (2.2)

Proof: See Dhaene et al. (2002). ✷

2A random variable X is said to precede a random variable Y in the convex order sense, written X ≤cx Y

, if and only if

�

E(X) = E(Y )
E(X − d)+ ≤ E(Y − d)+ for all real d
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According to Proposition 2.3.2, for any random vector X = (X1, ..., Xn), not nec-

essarily comonotonic, we can construct its comonotonic counterpart which will be

denoted by Xc = (Xc
1, ..., X

c
n) as follows

Xc := (F−1
X1

(U), (F−1
X2

(U), ..., (F−1
Xn

(U)).

Clearly Xc and X have the same marginal distributions FXi
, but they have a different

copula. Also the sum of its components, Sc =
�n

i=1 X
c
i , gives an upper bound for the

sum S. In fact, replacing the copula by a comonotonic copula yields the largest sum

in the convex order, see Dhaene et al. (2002).

2.3.2 Additivity property

Here we discuss the additivity property of the quantile function and any distortion

risk measure for a sum of comonotonic random variables. The additivity property

will be used to compute the comonotonic upper bound.

Proposition 2.3.3. The quantile function F−1
Sc

of a sum S
c of comonotonic random

variables with distribution functions FX1 , ..., FXn
is additive

F−1
Sc

(p) =
n

�

i=1

F−1
Xi

(p), 0 < p < 1. (2.3)

Proof: See Dhaene et al. (2002). ✷

By the additivity property exhibited in Proposition 2.3.3, calculating the distribution

function of Sc is straightforward. The distribution of Sc simply follows from inverting

its quantile function. This makes the comonotonic upper bound S
c a natural control

variate, namely comonotonic control variate, in a Monte Carlo simulation.

In the following propositions it will be shown that any distortion risk measure has

the additivity property for comonotonic variables. This property facilitates deriving

the comonotonic control variate for estimating the Tail Value-at-Risk (TVaR) and

option pricing in a so-called comonotonic Monte Carlo (CoMC) framework.

Definition 2.3.4. The distorted expectation of a random variable X is defined by

ρg[X] =

� 0

−∞

�

g(F̄X(x))− 1
�

dx+

� ∞

0

g(F̄X(x))dx, (2.4)

where F̄X(x) = 1− FX(x) denotes the tail function of FX(x) and the function g(.) is
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a so-called distortion function, i.e. a non-decreasing function g : [0, 1] −→ [0, 1] such

that g(0) = 0 and g(1) = 1.

According to Wang (1996), ρg is known as the distortion risk measure associated

with distortion function g. Note that the distortion function g is assumed to be

independent of the distribution function of X.

Proposition 2.3.5. The distortion risk measure for a sum of comonotonic variables

is additive i.e. for any distortion function g and all random variables Xi we have

ρg[S
c] =

n
�

i=1

ρg[Xi]. (2.5)

Proof: This result is proved in Wang (1996) for non-negative random variables,

but it can be easily extended to all real-valued variables. Substituting g(F̄X(x)) by
� F̄X(x)

0
dg(q) in (2.4) and changing the order of the integrations, we find that

ρg[X] =

� 1

0

F̄−1
X (q)dg(q) =

� 1

0

F−1
X (1− q)dg(q) (2.6)

for any distortion function g and any random variable X. Combining equations (2.3)

and (2.6) yields

ρg[S
c] =

� 1

0
F−1
Sc

(1− q)dg(q) =
� 1

0

�n
i=1 F

−1
Xi

(q)dg(q) =
�n

i=1 ρg[Xi],

which completes the proof. ✷

Corollary 2.3.6. The Tail Value-at-Risk, TV aRX(p), at level p ∈ (0, 1) given by

TV aRX(p) =
1

1− p

� 1

p

F−1
X (q)dq (2.7)

is a distortion risk measure with distortion function

g(x) = min

�

x

1− p
, 1

�

, 0 ≤ x ≤ 1,

hence it is additive for comonotonic random variables.

We remark that risk measures which can be written as a linear combination of distor-

tion risk measures satisfy the additivity property as well. For instance the Expected
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Shortfall (ESF) defined as

ESFX(p) = E[(X − F−1
X (p))+]

is not a distortion risk measure, but it is also additive for comonotonic random vari-

ables.

Corollary 2.3.7. The ESF can be written as a linear combination of distortion risk

measures given by

TV aRX(p) = F−1
X (p) +

1

1− p
ESFX(p),

see Dhaene et al. (2006), thus it follows

ESFSc(p) = (1− p)(TV aRSc(p)− F−1
Sc

(p))

= (1− p)

�

n
�

i=1

TV aRXi
(p)−

n
�

i=1

F−1
Xi

(p)

�

=
n

�

i=1

ESFXi
(p), 0 < p < 1.

It is worth noting that the Expected Shortfall basically consists of a stop-loss pre-

mium, so it is very closely related to the pricing of options. More generally, for the

stop-loss transform of a sum of comonotonic variables we have the following result.

Corollary 2.3.8. By choosing p = FSc(K) in Corollary 2.3.7, it follows that the

stop-loss premium E[(Sc −K)+] of a sum S
c of comonotonic random variables with

strictly increasing distribution functions FX1 , ..., FXn
can be written as

E[(Sc −K)+] =
n

�

i=1

[(Xi − F−1
Xi

(FSc(K)))+], ∀K ∈ R. (2.8)

The additivity property of distortion risk measures for comonotonic variables reduces

the multivariate problem to univariate ones.

Furthermore, replacing the copula by a comonotonic copula leaves the margin-al dis-

tributions intact. Therefore the simulated samples in the univariate cases are readily

available from the main simulation routine. Considering the mentioned properties,

the comonotonic upper bound is an obvious control variate choice. In the next section

we apply the CoMC method to Asian and Basket option pricing and to estimating
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the TVaR of a portfolio.

2.4 Comonotonic Control Variate for Asian Options, Basket

Options and Tail Value-at-Risk

2.4.1 Asian Option

An Asian option is a path dependent option, for which the payoff depends on the

average price of the underlying risky asset in the considered time interval. We consider

a discrete set of n time points along the time interval [0, T ] such that the asset price,

St, is observed at time points 0 = t0 < t1 < ... < tn = T .

In a complete market, the no-arbitrage price of the Asian option at time 0 is its

expected discounted pay-off under a martingale measure Q given by

AC(n,K, T ) = e−rTEQ

��

1

n

n
�

i=1

Sti −K

�

+

�

,

where r is the risk-free rate.

Since in general the distribution of the average 1
n

�n
i=1 Sti of dependent random vari-

ables is not available, it is not possible to derive a closed-form expression for the Asian

option price. Therefore the comonotonic Monte Carlo simulation is a useful method

for estimating the price of Asian option. In the following, we derive the comonotonic

control variate for this estimation in the CoMC framework.

The comonotonic upper bound of AC(n,K, T ), which is obtained by replacing the

price vector (St1 , ..., Stn) by its comonotonic counterpart (Sc
t1
, ..., Sc

tn), reads

ACcom(n,K, T ) = e−rTEQ

��

1

n

n
�

i=1

Sc
ti
−K

�

+

�

=
e−rT

n
EQ

�

(Sc − nK)+
�

,

where S
c =

�n
i=1 S

c
ti
.

Note that from Proposition 2.3.2 we have
�n

i=1 S
c
ti
=

�n
i=1 F

−1
Sti

(U). Using Corollary

2.3.8, we have

ACcom(n,K, T ) =
e−rT

n

n
�

i=1

EQ

�

�

Sti − F−1
Sti

(FSc(nK))
�

+

�

.
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Hence, ACcom(n,K, T ) can be rewritten in terms of prices of European call options

EC(ki, ti) at time 0 with exercising times ti and strike prices ki

ACcom(n,K, T ) =
1

n

n
�

i=1

e−r(T−ti)EC(ki, ti), (2.9)

where ki = F−1
Sti

(FSc(nK)), see also Simon et al. (2000).

For the practical determination of the strike prices ki, the distribution function of the

comonotonic sum FSc has to be calculated and evaluated at nK by Proposition 2.3.3.

Under the risk-neutral probability, this can be done numerically in a straightforward

way. The ki’s are then obtained by evaluating the inverse distribution function of the

marginals at FSc(nK).

Considering the Lévy market model for asset prices we derive the comonotonic upper

bound (2.9). We assume that the price St of the risky asset follows a variance gamma

process
�

X
(V G)
t , t � 0

�

, which is a popular class of Lévy process. The risk-neutral

model for the asset price is then given by

St = S0
exp ((r − q) t)

E [exp(Xt)]
exp(Xt).

The factor exp ((r − q) t) /E [exp(Xt)] guarantees that the risk-neutral setting holds

by considering a mean correcting argument, see Albrecher et al. (2005).

The price EC(K,T ) of a European call option with strike price K and maturity

date T under the variance gamma model can be calculated by the Carr and Madan

formula, see Madan et al. (1998); Albrecher et al. (2005), which formulates the price

of European call option in terms of the characteristic function of the underlying Lévy

process.

Let α be a positive constant such that the αth moment of the stock price exists and

let φ be the characteristic function of the variance gamma process. Then we have

EC(K,T ) =
exp(−αlog(K))

π

� +∞

0

exp(−iυ log(K))�(υ)dυ, (2.10)

where

�(υ) =
exp(−rT )E [exp(i(υ − (α + 1)i) log(ST ))]

α2 + α− υ2 + i(2α + 1)υ

=
exp(−rT )φ(υ − (α + 1)i)

α2 + α− υ2 + i(2α + 1)υ
.
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Hence the comonotonic upper bound can be obtained using the European option

pricing formula (2.10) of Carr and Madan and (2.9). We consider this comonotonic

upper bound as a control variate in the CoMC method for estimating the price of

Asian options in a variance gamma model.

Numerical example

We illustrate the performance of the CoMC method to estimate the price of an Asian

option when the underlying asset follows a variance gamma process. We consider an

arithmetic Asian option with maturity of 1 year and averaging every month (i.e. 12

averaging dates). The initial value of the stock price is normalized to be 100 and

the yearly risk free interest rate is r = 0.02. The parameters of the variance gamma

process that were used to generate the price paths are those from Albrecher et al.

(2005). Five values (80, 90, 100, 110 and 120) are assumed for the strike price K.

In Table 2.1 we compare the performance of the crude Monte Carlo (MC) method

and the CoMC method based on 10, 000, 000 simulated paths. The estimated price

based on MC and CoMC is represented by ACMC and ACCoMC respectively. The

performance of CoMC method is examined by comparing its computation time and

obtained variance with the crude Monte Carlo method.

The ratio of computation times (TMC/TCoMC) and Variances (VMC/VCoMC) are de-

picted for each of strike prices in Table 2.1.

K ACMC ACCoMC VMC/VCoMC TMC/TCoMC

80 20.7295 20.7441 161.7179 0.5175

90 11.8211 11.7605 94.3999 0.5176

100 4.5661 4.5684 54.5796 0.5164

110 0.9405 0.9295 21.3384 0.5143

120 0.2039 0.2006 11.3167 0.5157

Table 2.1: Performance of the CoMC method in Asian option pricing

We observe that by increasing the strike price, K, the ratio of variance reduction

VMC/VCoMC decreases while the ratio of computation time TMC/TCoMC is almost

constant. In other words, the CoMC method performs well when the option is in the

money.
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Since S
c is larger than S in convex order, they have the same expectation value,

E(Sc) = E(S), but Sc has heavier tails than S, see Vyncke et al. (2001). Therefore,

the difference of E[(S−K)+] and E[(Sc −K)+] is smaller for the in the money cases

compared to the other cases where the strike price is comparatively larger. This

results in a higher correlation between (S − K)+ and (Sc − K)+ when K is small.

Consequently the comonotonic control variate method performs better for the in the

money cases.

The efficiency of the method can be quantified by comparing the number of samples

required for the crude Monte Carlo method to achieve the same degree of accuracy.

For the different strike prices K = 80, 90, 100, 110, 120 the number of samples

required for the crude Monte Carlo to reach the same level of precision as the CoMC

varies between 11 to 160 times the original number of samples.

Considering that the required computation time for the comonotonic control variate

Monte Carlo method is only twice the computation time of crude Monte Carlo method

for the same number of samples, it can be concluded that employing the CoMC

method significantly increases the computation performance and efficiency.

2.4.2 Basket Option

A Basket option is an option on a portfolio (or basket) of several underlying assets

whose payoff is dependent on the value of a weighted sum of the underlying assets.

Consider a portfolio of n risky assets with price process {Si(t), t ≥ 0}, i = 1, ..., n and

positive weights ai,
�n

i=1 ai = 1.

In a complete market, the no-arbitrage price of a Basket call option with maturity

date T and strike price K at time 0 is given by

BC(n,K, T ) = e−rTEQ

��

n
�

i=1

aiSi(T )−K

�

+

�

, (2.11)

which is the expected payoff of the call option under a martingale measure Q, dis-

counted at the risk-free rate r.

In the classical Black-Scholes model, the price process of assets are assumed to follow

the risk-neutral stochastic differential equations

dSi(t) = (r − qi)Si(t)dt+ σiSi(t)dBi(t), (2.12)
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where the Bi(t) are Brownian motions, qi and σi denote the dividend rate and the

volatility of the underlying asset i respectively. Given the above dynamics, the price

of the ith asset at time T equals

Si(T ) = Si(0)e
(r−qi−σ2

i /2)T+σiBi(T ).

Thus, the random variable Si(T )/Si(0) is lognormally distributed with parameters

(r − qi − σ2
i /2)T and σ2

i T . We assume that the Brownian motions Bi and Bj are

correlated with a constant correlation ρij.

Since the distribution of a sum of lognormally distributed random variables is not log-

normal, the distribution of the weighted sum
�n

i=1 aiSi(T ) is not known analytically

and hence determining the price of the Basket option is not straightforward.

In order to estimate the price of a Basket option in the comonotonic Monte Carlo

framework, the corresponding comonotonic control variate can be constructed as fol-

lows.

By replacing the weighted average
�n

i=1 aiSi(T ) with the comonotonic weighted av-

erage
�n

i=1 aiS
c
i (T ) in (2.11), the comonotonic upper bound of BC(n,K, T ) is then

given by

BCcom(n,K, T ) = e−rTEQ
�

(Sc −K)+
�

, (2.13)

where S
c =

�n
i=1 aiS

c
i (T ) =

�n
i=1 aiF

−1
Si(T )(U), see Proposition 2.3.2.

Note that by using Corollary 2.3.8, the comonotonic upper bound (2.13) can be

written in terms of a weighted sum of European call options,

BCcom(n,K, T ) = e−rT

n
�

i=1

aiE
Q

�

�

Si(T )− F−1
Si(T )(FSc(K))

�

+

�

=
n

�

i=1

aiECi(ki, T ), (2.14)

where ki = F−1
Si(T )(FSc(K)).

We know from Proposition 2.3.3 that the quantile function of a sum of comonotonic

random variables is simply the sum of the quantile functions of the marginal dis-

tributions. Moreover, in case of strictly increasing and continuous marginals, the
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cumulative distribution function FSc(x) is uniquely determined by

F−1
Sc

(FSc(x)) =
n

�

i=1

aiF
−1
Si(T )(FSc(x)) = x F−1

Sc
(0) < x < F−1

Sc
(1), (2.15)

see Kaas et al. (2000). Hence using the inverse distribution function of Si(T ) given

by

F−1
Si(T )(p) = Si(0)e

(r−qi−σ2
i /2)T+σi

√
TΦ−1(p), ∀p ∈ (0, 1), (2.16)

where Φ is the cdf of the standard normal distribution, (2.15) results in

n
�

i=1

aiSi(0)e
(r−qi−σ2

i /2)T+σi

√
TΦ−1(FSc (K)) = K, (2.17)

from which FSc(K) can be obtained numerically. Therefore the strike prices ki for

asset i can be determined by evaluating (2.16) at FSc(K).

Having obtained the ki’s, the price of a European call option with strike price ki and

maturity date T at time 0 reads

ECi(ki, T ) = Si(0)Φ(di,1)− kie
−rTΦ(di,2),

where

di,1 =
ln(Si(0)/ki) + (ri + σ2

i /2)T

σi

√
T

, di,2 = di,1 − σi

√
T .

Thus, the comonotonic control variate for a Basket option pricing in Black-Scholes

setting can be determined by the weighted summation of ECi(ki, T ) in (2.14).

Note that an alternative control variate can be obtained by replacing the weighted

arithmetic average with the geometric average. Since the geometric average of the

lognormally distributed variables is also lognormally distributed, obtaining the closed-

form formulation for the geometric control variate is trivial, see Kemna and Vorst

(1990).

Numerical example

In this section, the performance of the CoMC method is evaluated for pricing basket

options. We consider a Basket option consisting of seven assets. The data used for

this purpose is based on the basket of seven stock indices underlying the G-7 index-

linked guaranteed investment certificates offered by Canada Trust Co, see Milevsky
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and Posner (1998a,b).

The risk free interest rate is r = 0.063 and the maturity date is set to 1 year. The

initial value of each asset in the basket is normalized to be 100. The other considered

parameters are given in Table 2.2 and 2.3.

weight volatility dividend yield

country index (in%) (in%) (in%)

Canada TSE 100 10 11.55 1.69

Germany DAX 15 14.53 1.36

France CAC 40 15 10.68 2.39

U.K. FSTE 100 10 14.62 3.62

Italy MIB 30 5 17.99 1.92

Japan Nikkei 225 20 15.59 0.81

U.S. S&P 500 25 15.68 1.66

Table 2.2: G-7 index linked guaranteed investment certificate weightings

Canada Germany France U.K. Italy Japan U.S.

Canada 1.00 0.35 0.10 0.27 0.04 0.17 0.71

Germany 0.35 1.00 0.39 0.27 0.50 -0.08 0.15

France 0.10 0.39 1.00 0.53 0.70 -0.23 0.09

U.K. 0.27 0.27 0.53 1.00 0.45 -0.22 0.32

Italy 0.04 0.50 0.70 0.45 1.00 -0.29 0.13

Japan 0.17 -0.08 -0.23 -0.22 -0.29 1.00 -0.03

U.S. 0.71 0.15 0.09 0.32 0.13 -0.03 1.00

Table 2.3: Correlation structure of the G-7 index

The performance of the CoMC method is examined by comparing its computation

time and obtained variance with the crude Monte Carlo method. The ratio of vari-

ances VMC/VCoMC is depicted for different strike prices in Table 2.4. The estimated
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prices for the considered Basket option based on MC and CoMC methods are repre-

sented by BCMC and BCCoMC respectively. The obtained results for both methods

are based on 10, 000, 000 simulated paths.

K BCMC BCCoMC VMC/VCoMC TMC/TCoMC

80 23.1366 23.1387 273.6565 0.5191

90 13.8112 13.8166 35.2039 0.5778

100 5.6312 5.6440 10.7839 0.5577

110 1.2320 1.2387 3.2520 0.5260

120 0.1334 0.1336 1.4792 0.5339

Table 2.4: Performance of the CoMC method in Basket option pricing

According to Table 2.4, the variance reduction capability of CoMC decreases by

increasing the strike price, while the required computation resources for the CoMC

method is only twice the crude Monte Carlo method. Therefore the method is best

suited for the in the money cases with the same reasoning given in numerical example

for Asian option.

In this example it is observed that, based on the estimation error, the number of

samples required for the crude MC to reach the same level of accuracy as the precision

of the CoMC, varies between 3 to 273 times the original number of samples.

Considering that the comonotonicity assumption induces the strongest positive de-

pendency, it is expected that the correlation structure has a strong influence on the

performance of the CoMC method. Therefore it is worth to examine these effects

quantitatively in Basket option pricing. To this end, we consider a Basket option

consisting of the first two assets of Table 2.2 with equal weights. The performance of

the CoMC method is evaluated for different strike prices and correlations ρ.
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ρ K BCMC BCCoMC VMC/VCoMC

0.75 80 23.4258 23.4196 2910.4

90 14.5317 14.5374 534.91

100 7.3315 7.3320 147.17

0.25 80 23.3801 23.3843 706.49

90 14.2747 14.2701 87.210

100 6.6607 6.6828 19.961

−0.25 80 23.3826 23.3734 313.20

90 14.0618 14.0633 30.654

100 5.9161 5.9256 6.6869

−0.75 80 23.3657 23.3714 100.95

90 13.9747 13.9855 9.4026

100 4.9893 4.9947 2.7801

Table 2.5: Influence of the correlation on the efficiency of CoMC

For the constant strike price K, the variance reduction ratio VMC/VCoMC increases

for higher level of positive assets correlation ρ, see Table 2.5. On the other hand, in

case of a negative correlation, which is highly contrasting with the comonotonicity

assumption, the variance reduction ratio VMC/VCoMC is considerably decreased.

As mentioned in the theoretical background, the geometric control variate is an al-

ternative control variate in Basket option pricing. The second numerical example

is aimed at comparing the performance of the comonotonic control variate with its

competent alternative, the geometric control variate. For this purpose, similar to

the previous example, we consider a two asset basket and compute the efficiency of

the methods for different weights ai and initial prices S0 while the strike price is the

initial value of the portfolio and correlation coefficient is considered to be constant,

ρ = 0.35.

59



Chapter 2. Comonotonic Monte Carlo and its applications in option pricing

a1/a2 (S01, S02) VMC/VCoMC VMC/VG

1 (100, 100) 29.7870 539.7020

(100, 50) 34.1525 7.2490

(50, 100) 50.0775 8.1827

0.25 (100, 100) 105.2138 2251.6

(100, 50) 48.7746 17.9618

(50, 100) 377.3903 41.6317

Table 2.6: Comparison of CoMC and geometric control variate

Table 2.6 compares the variance reduction VMC/VG obtained by the geometric control

variate to the variance reduction VMC/VCoMC of the CoMC method. The results

show that for the cases where the initial prices are equal the geometric control variate

performs much better than the CoMC method. In the other cases, the performance of

the comonotonic control variate method surpasses the variance reduction obtained by

the geometric control variate method. We conclude that for non-equal initial prices,

the CoMC method has real added value.

2.4.3 Tail Value-at-Risk

The Tail Value-at-Risk (TVaR) of a portfolio at a given level of probability p ∈ (0, 1),

is defined as the arithmetic average of its quantiles from the threshold p up to 1, see

Corollary 2.3.6.

Consider a portfolio consisting of n risky assets where each asset price Si(t) follows

the risk-neutral stochastic differential equation in (2.12). The value of the portfolio

at time T equals S =
�n

i=1 aiSi(T ). Since the distribution function of S is unknown,

determining the Tail Value-at-Risk of the loss of the portfolio, TV aR−S(p), is not

straightforward. Therefore, the comonotonic Monte Carlo method can be employed

for estimating TVaR.

As already mentioned in Corollary 2.3.6, the Tail Value-at-Risk is additive for a

sum of comonotonic random variables. Hence, the comonotonic control variate for

estimating the TVaR for the loss of portfolio in the CoMC framework is given by

TV aRcom = TV aR−Sc(p) =
1

1− p

� 1

p

F−1
−Sc

(q)dq
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=
n

�

i=1

ai

�

− 1

1− p

� 1

p

F−1
Si(T )(1− q)dq

�

, (2.18)

where S
c =

�n
i=1 aiS

c
i (T ) =

�n
i=1 aiF

−1
Si(T )(U), see Proposition 2.3.2.

Considering that the price Si(T ) of each asset at time T is lognormally distributed,

we have for (2.18)

− 1

1− p

� 1

p

F−1
Si(T )(1− q)dq = −E(Si(T ))

1− p

�

Φ(Φ−1(1− p)− σi

√
T )

�

, (2.19)

where Φ denotes the standard normal distribution function and σi is the volatility of

asset i, see Sandström (2010).

Numerical example

The performance of the CoMC method is evaluated here for the calculation of the

TVaR risk measure. We consider a portfolio consisting of the first two assets, Canada

and Germany, of Table 2.2. We generate the price paths in a Black-Scholes setting

using the parameters given in Tables 2.2 and 2.3.

risk measure TV aRMC TV aRCoMC VMC/VCoMC TMC/TCoMC

TVaR(0.90) 86.4584 86.4631 3.5193 0.5321

TVaR(0.95) 83.6405 83.6446 2.6940 0.5227

TVaR(0.99) 78.4445 78.4150 1.8013 0.5600

Table 2.7: The performance of CoMC method for TVaR

The results of the CoMC method are compared with the ones obtained from the crude

Monte Carlo method for the different levels of probability p, see Table 2.7. For this

specific correlation structure, the variance reduction ratio, VMC/VCoMC , obtained by

the CoMC method is rather limited.

2.5 Conclusion

In this paper, we presented a novel control variate Monte Carlo method based on the

concept of comonotonicity. The CoMC method is explained for basket options, Asian

options and TVaR.
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We evaluated the performance of the method in realistic cases by illustrative numerical

examples. The realistic benchmark examples show that the precision of estimating

the price of Asian and Basket options is drastically increased by employing the CoMC

method while the computation time is not increased considerably compared to the

crude Monte Carlo method. The parametric study revealed the strong dependence of

the method performance on the correlation between assets for Basket option pricing.

Moreover, we showed that decreasing the strike price increases the efficiency of the

method in Asian option and Basket option pricing. Thus the CoMC method is best

suited for in the money options.

62



References

Hansjörg Albrecher, Jan Dhaene, Marc Goovaerts, and Wim Schoutens. Static hedg-
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Chapter 3

Optimality of deductible for Yaari’s model:

a reappraisal.

Alain Chateauneuf, Michèle Cohen, Mina Mostoufi, Jean-Christophe Vergnaud

Abstract

The main purpose of this paper is to show that left monotone risk aversion, a mean-

ingful refinement of strong risk aversion, characterizes Yaari’s decision makers for

whom deductible insurance is optimal. A second goal is to offer a detailed proof of

the deductible ’s computation, which proves the tractability of Yaari’s model under

left-monotone risk aversion.

Keywords : Yaari’s model, Jewitt’s left-monotone risk aversion, optimality of de-

ductible.

JEL classification: D80, D81.

3.1 Introduction

In the framework of EU model, Arrow (1965) proved that for a given premium,

the optimal insurance contract for a EU risk averse decision maker is a contract with

deductible. Gollier and Schlesinger (1996) obtained a nice generalization of this result

by proving that this result holds also under strong aversion, whatever be the decision

maker’s decision model under risk.

Vergnaud (1997) refined this result by proving that for any left monotone risk averse

decision maker (not necessarily strongly risk averse), whatever be the decision model

under risk, the optimal contract for a given premium is a deductible policy.
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This last result is important since strong risk aversion is disputable in some situations,

while Jewitt (1989)’s refinement i.e. left monotone risk aversion appears to be bet-

ter adapted to insurance. This adds further justification to RDEU (rank-dependent

expected utility) models and in particular to Yaari (1987)’s model that allow the de-

cision maker to be left monotone risk averse without being strongly risk averse, which

is impossible in the EU model, see Chateauneuf et al. (2004).

The goal of the present paper is to revisit the optimality of deductible in the frame-

work of Yaari’s model. Actually we show in section 3.4 that while left-monotone risk

aversion is sufficient for a Yaari’s decision maker to prefer deductible (a known result

since Vergnaud (1997), for which we propose what we hope to be a more direct proof,

actually as V ergnaud whatever be the decision maker’s decision model), it turns

out that for Yaari’s decision maker left-monotone risk aversion is also a necessary

condition for optimality of deductible.

In actual fact a main new result of this paper is to prove that optimality of deductible

characterizes left-monotone risk averse Yaari’s decision makers.

Moreover it is clear that once the optimality of a deductible policy for the insurer has

been established, the question of computing her optimal level of deductible has to be

settled.

As pointed out in Chateauneuf et al. (1997), Doherty and Eeckhoudt (1995) have

shown that this question is very tractable in Yaari’s model, when dealing with strongly

risk averse insurers. It turns out that Chateauneuf et al. (1997) stated a theorem

proving that the computation of the deductible remains very tractable for Yaari’s

decision maker merely assumed to be left monotone risk averse, but in fact the proof

of this theorem has never been published, so a second goal of this paper is to fill this

gap, see Section 3.5.

The paper is organized as follows: section 3.2 describes the framework and gives the

main definitions, section 3.3 introduces left monotone increase in risk, sections 3.4

and 3.5 are devoted to our main results respectively characterization of left monotone

risk averse Yaari’s decision maker through optimality of deductible and computation

of the optimal level of deductible. Finally, section 3.6 concludes the paper.

3.2 Framework and Definitions

In this section, we describe the decision maker’s preference and the structure of insur-

ance contract. We assume the decision maker chooses his preference through Yaari’s
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model, a particular case of rank-dependent expected utility.

3.2.1 Yaari’s Model

Under the rank-dependent expected utility (RDEU) model a decision maker is charac-

terized by a utility function u and an increasing probability-transformation function

f : [0, 1] −→ [0, 1] that satisfies f(0) = 0, f(1) = 1. Such a decision maker prefers a

random variable X to a random variable Y if and only if V (X) > V (Y ) where the

functional V is given by

V (Z) = Vu,f (Z) = −
� ∞

−∞
u(x)df(P (Z > x)) = −

� ∞

−∞
u(x)df(1− F (x)))

=

� 0

−∞
[f(P (u(Z) > t))− 1] +

� ∞

0

f(P (u(Z) > t))dt,

see Quiggin (1982); Chateauneuf et al. (1997). The Yaari functional is the special

case of V (Z) where V (Z) = VI,f (Z). In fact the utility under certainty is the identity

function u(x) ≡ x, see Yaari (1987).

In the context of insurance, we address prospects of the form W − D, such that

W is a wealth endowment and D is a risky but insurable damage (defined on the

support [0,W ]). Therefore, the Yaari functional V is defined in terms of the damage

distribution F (D) as follows:

V =

� +∞

−∞
(W −D)df(F (D)). (3.1)

3.2.2 Insurance contracts with Deductible structure

Consider a decision maker with initial deterministic wealth W > 0 and possible

random damage D ≥ 0 with distribution function F buying an insurance i.e. an

indemnity I(D) such that:

1. 0 ≤ I(D) ≤ D, ∀D ∈ R
+

2. It has a price π given by π = (1+m)E(I(D)) where m ≥ 0 is the loading factor.

The decision maker will be said to express preference for deductible if for a given

premium π among all the possible indemnities I satisfying (1) and (2), he prefers the

indemnity Id(D),

Id(D) = (D − d)+
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where d is the level of the deductible.

In such a contract, the future wealth Wd of the decision maker is Wd = W − π−D+

(D−d)+. Therefore, the utility u(d) of this contract is given under Yaari’s model by:

u(d) = W − (1 +m)

� +∞

d

(1− F (t))dt− d+

� d

0

f(F (t))dt. (3.2)

3.3 Left monotone increase in risk

In the framework of expected utility (EU), a random variable Y is a mean preserving

spread (MPS) of a random variable X if and only if all risk averse expected utility

maximizers prefer X to Y . It should be noted that even in EU, there are some

counter-intuitive examples. For instance, if a risk averse expected utility maximizer

D1 is ready to pay c to exchange Y for a less risky X (i.e. Y MPS X), and if an

expected utility maximizer D2 is more risk averse than D1, it can happen that D2 is

ready to pay only c
�

< c for the same exchange. This single example proved that this

notion of increasing risk, MPS, is not universal.

The left monotone order have been constructed initially by Jewitt, see Jewitt (1989),

to solve the problem arised in insurance by MPS. This notion of increasing risk seems

to be linked with the EU model but in fact there is a model-free equivalent definition

of left monotone increase in risk.

Definition 3.3.1. For random variables X and Y with the same mean, Y is a left

monotone increase in risk of X if
� F−1

Y
(p)

−∞ FY (p) ≥
� F−1

X
(p)

−∞ FX(p), ∀p ∈ [0, 1]. Let

us recall that for any distribution F i.e. any mapping F : R −→ R non-decreasing,

right-continuous such that limt→−∞ F (t) = 0, limt→+∞ F (t) = 1, F−1 : [0, 1] −→ R is

defined ∀p ∈ [0, 1] by F−1(p) = inf
�

t ∈ R̄, F (t) ≥ p
�

. Note that F−1(0) = −∞.

In this definition, the upper limits of integration are arbitrary quantiles corresponding

to equal probability level p. In fact, Y is a left monotone increase in risk of X if Y

has more weight in the lower tail than X.

Chateauneuf et al. (2004) have been proved that when X and Y are discrete, with

the same mean, left monotone increase in risk can be obtained by a finite sequence of

following corresponding Pigou-Dalton transfers. To elaborate such a transformation,

we consider the following generating process.
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LetX and Y be two discrete random variables with distributions L (X) = (x1, p1; x2,

p2; x3, p3; x4, p4) where x1 < x2 < x3 < x4 and

L (Y ) = (x1 − �p3, p1; x2, p2; x3 + �p1, p3; x4, p4), (3.3)

where the outcomes are again in non-decreasing order.

One can prove that E(X) = E(Y ) and Y is a left monotone increase in risk of X. In

fact for any X and Y such that E(X) = E(Y ), Y is a left monotone increase in risk

of X if and only if Y can be obtained from X to a finite sequence of Pigou-Dalton

transfers as above. In this spread, the minimal outcome is always spread out, but not

necessarily the maximal outcome.

Lemma 3.3.2. For every pair (X, Y ) of discrete random variables with E(X) = E(Y )

such that Y is a left monotone increase in risk of X, Y can be reached from X by a

finite sequence of transfers as in (3.3).

Proof: See Chateauneuf et al. (2004). ✷

The following Definition 3.3.3 and Lemma 3.3.4 taken from Landsberger and Meilijson

(1994) will be of great help for some proofs.

Definition 3.3.3. Distribution G is a left-monotone simple spread of F if

1. E(G) = E(F )

2. ∃ p0 ∈ (0, 1) such that:

p ≤ p0 =⇒ (2.1) G−1(p) ≤ F−1(p)

(2.2) d(p) = F−1(p)−G−1(p) is non-increasing on (0, p0]

p > p0 =⇒ (2.3) G−1(p) ≥ F−1(p).

Lemma 3.3.4. If G is a left-monotone simple spread of F then F is left-monotone

less risky than G.

3.3.1 Left monotone risk aversion

A decision maker is left monotone risk averse if and only if for everyX and Y such that

Y is a left monotone increase in risk of X then he prefers X to Y . The left monotone

risk aversion is a weaker notion of risk aversion compare to the mean preserving

spreads (strong risk aversion) but stronger than the one based on the preference for
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the expected value of a random variable to the random variable itself. Next we discuss

the left monotone increasing in risk in the Yaari’s framework.

Lemma 3.3.5. Any Yaari decision maker is a left monotone increase in risk if and

only if the probability transformation function is star shaped1at 1 i.e. 1−f(p)
1−p

is an

increasing function of p on [0, 1).

Proof: See Chateauneuf et al. (1997). ✷

3.4 Optimality of deductible characterizes left monotone risk

averse Yaari’s decision maker

We first show that preference for deductible implies left-monotone risk aversion.

Theorem 3.4.1. Any Yaari’s decision maker who has preference for deductibles with

any given premium is a left-monotone risk averse.

Proof: As we have already mentioned, Chateauneuf et al. (2004) have been shown

that a decision maker is left-monotone risk averse if and only if the decision maker

prefers any discrete random variable X such that L (X) = (x1, p1; x2, p2; x3, p3; x4, p4)

to any random variable Y such that L (Y ) = (x1 − �p3, p1; x2, p2; x3 + �p1, p3; x4, p4)

where � ≥ 0. Therefore in order to prove that a decision maker who has preference for

deductibles turns out to be a left-monotone decision maker, it is sufficient to prove

the following Lemma.

Lemma 3.4.2. Any decision maker who exhibits preference for deductible will prefer

L (X) = (x1, p1; x2, p2; x3, p3; x4, p4) to L (Y ) = (x1−�p3, p1; x2, p2; x3+�p1, p3; x4, p4),

[Recall that through the definitions of the “L ”, one has pi ≥ 0,
�4

i=1 pi = 1 and

x1 < x2 < x3 < x4 and x1 − �p3 < x2 < x3 + �p1 < x4].

Proof: Indeed it is enough to show that ∃w > 0, D ≥ 0,m ≥ 0 and d ≥ 0 such that:

X = W −D − π + Id(D)

Y = W −D − π + I(D)

Let L (D) = (0, p4; x4 − x3, p3; x4 − x2, p2; d1, p1), d = x4 − x1 and d1 be such that

d1 − d− �p3 > 0.

1A function f ∈ F is star-shaped at m, if:
f(m)−f(p)

m−p

is an increasing function of p on [0,m) ∪ (m, 1].
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Note that d1 is consistent since d1 > x4 − x2, actually d1 > x4 − x1 + �p3. Note also

that d2 = x4 − x2 < d = x4 − x1 < d1. Therefore E((D − d)+) = p1(d1 − d) and π is

necessarily of the type π = (1 +m)p1(d1 − d) for some m > 0.

We need now to see if there exists someW such that our “new”X = W−D−π+Id(D)

actually satisfies:

L (X) = (x1, p1; x2, p2; x3, p3; x4, p4).

Considering the four states si related to pi we must have:

(i) x1 = W − d1 − π + d1 − d

(ii) x2 = W − (x4 − x2)− π + 0

(iii) x3 = W − (x4 − x3)− π + 0

(iv) x4 = W − 0− π + 0

It is immediate that W = π+ x4 is convenient. So for such a choice of W,D, π, d and

m we actually get that our initial X satisfies X = W −D − π + Id(D).

It remains to check if one has actually that our initial Y is equal to W −D−π+I(D)

where I(D) is a convenient indemnity idem est satisfying (i) and (ii).

Since (iii): I(D) = Y +D+ π−W , one gets E(I(D)) = E(Y ) +E(D) + π−W but

E(Y ) = p1x1 + p2x2 + p3y3 + p4x4 = E(X) so E(I(D)) = E(X) + E(D) + π −W =

E(Id(D)), therefore (ii) is satisfied.

Let us come to (i), from (iii) we get denoting di the damage if state si (related to

probability pi) occurs: I(d1) = x1 − �p3 + d1 + π − x4 − π = d1 − (x4 − x1 + �p3).

Note that since d1 has been chosen such that d1 > (x4−x1+�p3) we actually have 0 ≤
I(d1) ≤ d1, I(d2) = x2+x4−x2−x4 so 0 ≤ I(d2) ≤ d2 and I(d3) = x3+�p1+x4−x3−x4

i.e. I(d3) = �p1 but x3 + �p1 < x4 hence 0 ≤ I(d3) ≤ d3, also I(d4) = x4 + 0 − x4

hence 0 ≤ I(d4) ≤ d4 which complete the proof of Lemma 3.4.2. ✷

Remark 3.4.3. Note that if we had required that indemnities should satisfy the Moral

Hazard requirement i.e. that what remains to be paid by the decision maker namely

D− I(D) should increase with the amount of the damage our Lemma 4 would remain

valid. Actually: d4 − I(d4) = 0 < d3 − I(d3) = x4 − x3 − �p1 < d2 − I(d2) = x4 − x2 <

d1 − I(d1) = x4 − x1 + �p3.

Remark 3.4.4. The proof of Theorem 3.4.1 shows that it is enough that a Yaari’s

decision maker has preference for deductible only in case of finite discrete random

losses, in order to be a left-monotone risk averter.
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Theorem 3.4.5. (Vergnaud (1997)) Any left-monotone risk-averse decision maker

has preference for deductible.

Proof : Consider a left-monotone decision maker with initial deterministic wealth W

and possible stochastic loss D ≥ 0, buying an insurance with indemnity I(·) where

0 ≤ I(t) ≤ t ∀t ∈ R at price π = (1 +m)E(I(D)).

We intend to show that this decision maker will actually buy the insurance with

deductible d where indeed E((D − d)+) =
π

1 +m
.

From Lemma 3.3.4 it is enough to prove that Z is a left-monotone spread of Zd where

Z = W − π −D + I(D), Zd = W − π −D + Id(D) and I(D) = (D − d)+.

Since for any random variable T and any a ∈ R one has F−1
T+a = F−1

T +a, it is enough

to prove that −Y = −D+ I(D) is a left monotone spread of −Yd = −D+ (D− d)+.

Let p0 = F−Y (−d) the proof will be completed if we show that p0 ∈ (0, 1) and that:

∀p ≤ p0 F−1
−Y (p) ≤ F−1

−Yd
(p)

and F−1
−Yd

(p)− F−1
−Y (p) is non-increasing on (0, p0]

∀p > p0 F−1
−Y (p) ≥ F−1

−Yd
(p).

Note that −Yd = Max(−D,−d), and that −Y = −D + I(D) ≥ −D therefore

F−Y (t) ≤ F−D(t) ∀t ∈ R. Hence

t < −d F−Yd
(t) = 0 ≤ F−Y (t)

t ≥ −d F−Y (t) ≤ F−D(t) = F−Yd
(t) (3.4)

It turns out that p0 > 0, otherwise p0 = 0 implies F−Yd
(t) ≥ F−Y (t) ∀t and E(−Yd) =

E(−Y ) entails −Yd = −Y a contradiction.

Similarly p0 = 1 is impossible otherwise one would have F−Yd
(t) ≤ F−Y (t) ∀t, hence

−Yd = −Y a contradiction. So from the above single-crossing of F−Yd
and F−Y we

obtain that ∃p0 ∈ (0, 1) namely p0 = F−Y (−d) such that

∀p ≤ p0 F−1
−Y (p) ≤ F−1

−Yd
(p)

∀p > p0 F−1
−Y (p) ≥ F−1

−Yd
(p).

It remains to prove that F−1
−Yd

(p) − F−1
−Y (p) is non-increasing on (0, p0]. Since F−1

−Y is
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non-decreasing it is enough to see that F−1
−Yd

(p) = −d ∀p ∈ (0, p0].

From (3.4) we have F−Yd
(−d) ≥ p0 but −Yd = Max(−D,−d) implies F−Yd

(t) =

0 ∀t < −d hence F−1
−Yd

(p0) = −d. Furthermore, if 0 < p < p0 indeed F−1
−Yd

(p) ≤ −d,

but since F−Yd
(t) = 0 ∀t < −d, this implies finally that F−1

−Yd
(p) = −d ∀ 0 < p ≤ p0

which completes the proof. ✷

3.5 Computing the optimal level of deductible for a left mono-

tone Yaari decision maker

Once the optimality of a deductible contract for the decision maker has been estab-

lished, the question of computing his optimal level of deductible has to be settled.

Consider a left monotone Yaari decision maker with an initial wealth w ∈ R++, facing

an insurable risky loss L with distribution function F : F (L) = P (L ≤ �), ∀� ∈ R.

Assume that
�

0, �̄
�

is the support of the random loss L and that the decision maker

buys an indemnity Id at price π given by π(Id) = (1 +m)E(Id).

Theorem 3.5.1. A strict left monotone risk averse Yaari decision maker will pur-

chase full insurance if

(1 +m)(1− F (0))− (1− f(F (0))) < 0. (3.5)

Otherwise, d̄ is an optimal level of deductible if and only if it satisfies

(1+m)(1−F (d̄−))− (1−f(F (d̄−))) ≥ 0 ≥ (1+m)(1−F (d̄))− (1−f(F (d̄))). (3.6)

Remark 3.5.2. If F is continuous, indeed the inequality (3.6) in theorem 3.5.1 re-

duces to the following simple equation:

(1 +m)(1− F (d̄))− (1− f(F (d̄))) = 0.

Proof: Let us consider the simplest case which is named case 1.

Case 1: The distribution function F of the loss L is assumed to be strictly increasing

on
�

0, �̄
�

and continuous on R.

We know that the decision maker aims at maximizing over
�

0, �̄
�

, the function:

u(d) = w − d− (1 +m)

� ∞

d

(1− F (t))dt+

� d

0

f(F (t))dt
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where u(·) is well defined and continuous on
�

0, �̄
�

, so Max u(d) over
�

0, �̄
�

exists.

Furthermore from continuity of f and F , we have u
�

(d) exists on
�

0, �̄
�

and u
�

(d) =

(1 + m)(1 − F (d)) − (1 − f(F (d))), ∀d ∈
�

0, �̄
�

. Since F is strictly increasing and

F (�̄) = 1 one has F (d) < 1 ∀d ∈
�

0, �̄
�

, hence u
�

(d) = (1− F (d))((1 +m)− 1−f(F (d)
1−F (d)

),

∀d ∈
�

0, �̄
�

.

Therefore on
�

0, �̄
�

the sign of the derivative is equal to the sign of g(d) = (1 +m)−
1−f(F (d))
1−F (d)

i.e. signu
�

(d) =signg(d).

Let us assume that the decision maker is a strict left-monotone risk averter so h(d) =
1−f(F (d))
1−F (d)

is strictly increasing on
�

0, �̄
�

and consequently g(d) is strictly decreasing

on
�

0, �̄
�

, note that here F (0) = 0 so g(0) = m. Therefore if m = 0, u
�

(0) = 0 and

u
�

(d) < 0 ∀d ∈
�

0, �̄
�

.

Since u is continuous on
�

0, �̄
�

this implies that Max u(d) over
�

0, �̄
�

is obtained at

the unique point d = 0. That is if m = 0, the decision maker buys full insurance.

Assume now that m > 0 therefore u
�

(0) > 0, either g(d) > 0 ∀d ∈
�

0, �̄
�

i.e.

limp→1
1−f(p)
1−p

≤ 1 + m and Max u(d) over
�

0, �̄
�

will be obtained for d = �̄, so

the decision maker will not buy insurance, or limp→1
1−f(p)
1−p

> 1+m , and therefore u
�

will be first positive and then negative and by continuity of u
�

on
�

0, �̄
�

, there exist a

unique d̄ ∈
�

0, �̄
�

where u
�

(d̄) = 0 and at that point one gets the optimal deductible

of the decision maker.

Summary of the results in case 1:

If m = 0 i.e. fair insurance, the decision maker will buy full insurance.

If m > 0 denoting h(1−) = limp→1
1−f(p)
1−p

(note that this limit exists and is finite since
1−f(p)
1−p

is increasing on [0, 1)).Either h(1−) ≤ 1 +m and so the decision maker will not

buy insurance or h(1−) > 1 +m and the decision maker will choose the level of de-

ductible d̄ which is the unique solution of u
�

(d̄) = 0 i.e. d̄ such that:

(1 +m)(1− F (d̄)) = 1− f(F (d̄)). ✷

Case 2: We now switch to the general case which needs the preliminary lemmas 3.5.3

and 3.5.4.

Lemma 3.5.3. Let u : [a, b] −→ R be continuous and such that u
�

+(·) exists on (a, b)

with u
�

+(x) ≤ 0 ∀x ∈ (a, b) then u is non-increasing on [a, b] .

Proof: Let us first prove that ∀x ∈ (a, b) and y ∈ (x, b] one has u(y) ≤ u(x). So take
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x ∈ (a, b). By hypothesis u
�

+(x) ≤ 0.

• Take � > 0 arbitrary, from u
�

+(x) ≤ 0, it comes that there exists y0 ∈ (x, b] such

that ∀y ∈ (x, y0] one has:

u(y)− u(x) ≤ �(y − x)

or else f(y) = u(y)− �y � u(x)− �x = f(x).

• Let us prove that in fact f(y) ≤ f(x) ∀y ∈ (x, b]. Let us define E:

E = {z ∈ (x, b] s.t y ∈ (x, z] ⇒ f(y) ≤ f(x)}, E �= ∅ since y0 ∈ E. E is bounded

above by b, so SupE exists. Denote M =: SupE.

Let us prove that M ∈ E. Actually by definition of M , for any z ∈ (x,M) one

has f(z) ≤ f(x), take zn ∈ (x,M) with zn ↑ M one has f(zn) ≤ f(x) ∀n, since
f is continuous one gets f(M) = lim f(zn) ≤ f(x), so M ∈ E. The proof will be

completed if we show that M = b.

• Assume M < b and let us show a contradiction. Since u
�

+(M) ≤ 0, ∃y1(�) >

M where y1(�) ∈ (M, b] such that u(y) − u(M) ≤ �(y − M) ∀y ∈ (M, y1] hence

f(y) ≤ f(M), and therefore since f(M) ≤ f(x) one gets f(y) ≤ f(x) ∀y ∈ (x, y1] a

contradiction since y1 > SupE.

Therefore ∀� > 0 one has u(y)− �y ≤ u(x)− �x ∀y ∈ (x, b] so u(y) ≤ u(x) ∀y ∈ (x, b],

i.e. ∀x ∈ (a, b) and y ∈ (x, b] one has u(y) ≤ u(x). Remains to show u(x) ≤ u(a)

∀x ∈ [a, b]. But let x ∈ (a, b] and take a < xn < x one has u(x) ≤ u(xn) let xn ↓ a,

but u continuous implies u(a) = lim u(xn) ≥ u(x) which completes the proof. ✷

Lemma 3.5.4. Let u : [a, b] −→ R be continuous and such that u
�

+(·) exists and

strictly negative on J = (a, b) where J �= ∅ then u is strictly decreasing on [a, b] .

Proof: Let us first prove that for any given x ∈ (a, b) one has y ∈ (a, b] y > x implies

u(y) < u(x). From u
�

+(x) < 0 i.e. limh→0+
u(x+h)−u(x)

h
< 0 where x + h ∈ (x, b], it

comes that there exists y0 ∈ (x, b] such that u(y) < u(x) ∀y ∈ (x, y0]. If y0 = b

the proof is completed. If y0 < b it is enough to show that u is non-increasing on

(x, b] since y ∈ (x, b] y > y0 will imply u(y) ≤ u(y0) but u(y0) < u(x) which implies

u(y) < u(x).

Let E = {z ∈ (x, b] s.t u(t) ≤ u(x) ∀t ∈ (x, z]}. One has E �= ∅ since y0 ∈ E. E is

bounded above by b, so SupE exists. Denote M =: SupE.

Let us prove that M ∈ E. Actually by definition of M , for any z ∈ (x,M) one has

u(z) ≤ u(x), take zn ∈ (x,M) with zn ↑ M one has u(zn) ≤ u(x) ∀n, since u is

continuous one gets u(M) = lim u(zn) ≤ u(x), so M ∈ E.
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Suppose M < b, then from u
�

+(M) < 0 there exists z1 ∈ (M, b] such that u(t) < u(M)

∀t ∈ (M, z1], so since u(M) ≤ u(x), one gets u(t) ≤ u(x) ∀t ∈ (x, z1] and z1 > M

contradicts the definition of M , so M = b.

It remains to prove that u(a) > u(x) ∀x ∈ (a, b]. Let a < xn < x, xn ↓ a, one has

u(x) < u(xn) ∀n, so u(x) < u(xn0) ≤ u(xn) n ≥ n0, u(xn) ↑ u(a) since u is continuous

so u(x) < u(a) which completes the proof. ✷

Theorem 3.5.1 is proved based on the results of lemma 3.5.3 and lemma 3.5.4 as

follows.

Proof of Theorem 3.5.1: Let [0, �̄] be the support of the random variable of losses

L where the c.d.f is F so �̄ = inf {� � 0, F (�) = 1}. One has:

u
�

+(d) = (1 +m)(1− F (d))− (1− f(F (d))) on [0, �̄),

u
�

−(d) = (1 +m)(1− F (d−))− (1− f(F (d−))) on (0, �̄].

By hypothesis F (�) < 1 ∀� ∈
�

0, �̄
�

, f is strictly increasing and continuous on [0, 1]

with f(0) = 0, f(1) = 1 and 1−f(p)
1−p

in non-decreasing on [0, 1).

Therefore:

u
�

+(d) = g(d)(1− F (d)) ∀d ∈
�

0, �̄
�

u
�

−(d) = h(d)(1− F (d−)) ∀d ∈
�

0, �̄
�

where g(d) = 1 +m− 1−f(F (d)
1−F (d)

), h(d) = g(d−).

Note that h(d) � g(d) ∀d ∈ (0, �̄), hence h(d) � 0 implies g(d) � 0 and g(d) � 0

implies h(d) � 0.

So on (0, �̄), u
�

+(d) � 0 ⇔ g(d) � 0 since 1 − F (d) � 0 and u
�

−(d) � 0 ⇔ h(d) � 0

since 1− F (d−) � 0 as well.

Note that u
�

+(0) exist and u
�

+(0) = (1 − F (0))g(0). Note that g is defined on [0, �̄)

and is non-increasing.

Case 1 : 1+m <
1− f(F (0))

1− F (0)
(3.7)

Let us show that in such a caseMax u(d) over
�

0, �̄
�

(which exists since u is continuous)

is obtained for d̄ = 0. So in case 1 d̄ = 0 i.e. there exists a unique optimal deductible

which proves to be full insurance. Note that this is (3.5) of theorem 3.5.1.

Proof: By hypothesis g(0) < 0 but g is non-increasing on [0, �̄), hence g(d) < 0

∀d ∈ (0, �̄) so u
�

+(d) < 0 ∀d ∈ (0, �̄). Since u is continuous on [0, �̄], from Lemma 3.5.4

u is strictly decreasing on [0, �̄] hence the maximum of u on [0, �̄] is uniquely obtained
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for d = 0, so d̄ = 0 is the optimal deductible. ✷

Case 2 : lim
d↑�̄

1− f(F (d))

1− F (d)
< 1+m1 (3.8)

In such a case there exists a unique optimal deductible which is d̄ = �̄, so the decision

maker will ask for no insurance, and it is straightforward that (3.6) is satisfied with

d̄ = �̄.

Proof: From case 2, h(�̄) exists finite strictly positive, and since h is non-increasing on

(0, �̄], one gets h(d) > 0 on (0, �̄), hence u
�

−(d) > 0 on (0, �̄). Since u is continuous on

[0, �̄], it turns out from Lemma 3.5.4
�

(the version of Lemma 3.5.4 where u
�

−(·) exists on

(a, b) and u
�

−(x) > 0 ∀x ∈ (a, b)) that u is strictly increasing on [0, �̄] and therefore that

Max u(d) over
�

0, �̄
�

is uniquely obtained at d̄ = �̄.

Case 3 : Note that r(d) = 1−f(F (d))
1−F (d)

is well-defined ∀d ∈ [0, �̄) (indeed we eliminate

the case when F (0) = 1, since in this case the decision maker would suffer for no loss,

hence would not like to insure) and positive, hence since r(d) is non-decreasing with

d, we obtain that limd↑�̄ r(d) exists eventually equal to +∞.

This last case 3 occurs when case 1 and case 2 are falsified, i.e. when :

1− f(F (0))

1− F (0)
� 1 +m � lim

d↑�̄

1− f(F (d))

1− F (d)
(3.9)

Let us now consider E =
�

d ∈ [0, �̄), 1−f(F (d))
1−F (d)

> 1 +m
�

.

• Either E �= ∅ Since E is bounded from below, Inf(E) exists, let d0 := Inf(E).

From the definition of d0, one has
1−f(F (d))
1−F (d)

> 1+m ∀d ∈ [0, �̄) such that d > d0, since

r(·) is right-continuous on [0, �̄) one gets 1−f(F (d0))
1−F (d0)

≥ 1 +m.

If d0 = 0 one has 1−f(F (0))
1−F (0)

= 1+m and 1−f(F (d))
1−F (d)

> 1+m ∀d ∈ (0, �̄), hence g(d) < 0 on

(0, �̄), so u is strictly decreasing on [0, �̄], and therefore there exists a unique optimal

deductible for the decision maker i.e. d̄ = 0. To summarize the first sub-case is:

Case 3.1 :
1− f(F (0))

1− F (0)
= 1+m <

1− f(F (d))

1− F (d)
∀d ∈ (0, �̄) (3.10)

and then the unique optimal deductible for the decision maker is d̄ = 0 i.e. the

1Note that ∀p ∈ [0, 1) 1−f(p)
1−p

�
1−0
1−0

= 1, that 1−f(p)
1−p

is non-decreasing on [0, 1) so this means that here

limp↑1
1−f(p)
1−p

exists and is finite.
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decision maker choose full insurance. Again (3.6) is satisfied with d̄ = 0.

Let us switch to the second case, where d0 > 0. In such a case since d0 = Inf(E),

one has ∀d ∈ [0, �̄), d < d0,
1−f(F (d))
1−F (d)

≤ 1 +m, hence
1−f(F (d0− ))

1−F (d0− )
≤ 1 +m. Therefore

the second sub-case is:

Case 3.2 : ∃d0 ∈ (0, �̄) such that :

1− f(F (d0−))

1− F (d0−)
� 1 +m ≤ 1− f(F (d0))

1− F (d0)
(3.11)

In such a case d̄ = d0 is an optimal deductible. This optimal deductible is not unique

if and only if there exists d
�

0 > 0, d
�

0 < d0 such that:

1− f(F (d−))

1− F (d−)
=

1− f(F (d0−))

1− F (d0−)
= 1 +m ∀d ∈ [d

�

0, d0]

in which case any d̄ ∈ [d
�

0, d0] is an optimal deductible. Note that (3.6) is satisfied for

any d̄ ∈ [d
�

0, d0]

Proof: For d ∈ (0, d0), we have h(d) ≥ 0, therefore u
�

−(d) ≥ 0, hence Lemma 3.5.3
�

(the dual Lemma of Lemma 3.5.3) implies u is non-decreasing over [0, d0]. Similarly,

for d ∈ [d0, �̄), we have g(d) ≤ 0, therefore, u�
+(d) ≤ 0, hence Lemma 3.5.3 implies u

is non-increasing over [d0, �̄]. Therefore d0 is an optimal deductible.

Since u(d) is non-decreasing over [0, d0], if the optimal deductible d0 is not unique,

there exists d
�

0 < d0 such that u(d) = u(d0) for d ∈ [d
�

0, d0], the interval is closed due

to the continuity of u(·). Hence u
�

−(d) = 0 ∀d ∈ (d�0, d0) and we have h(d) = 0 for

d ∈ (d�0, d0].

On the other hand if there exists d
�

0 < d0 such that h(d) = 0 for d ∈ (d�0, d0] then

u�
−(d) ≥ 0 and u�

+(d) ≤ 0 for all d ∈ (d�0, d0]. Therefore, u is both non-decreasing and

non-increasing over this interval. Hence u(d) = u(d0) for d ∈ [d�0, d0], in this case all

the points d ∈ [d�0, d0] are optimal. ✷

We now need to consider the case:

• Or E = ∅ In such a case we have:

1− f(F (d))

1− F (d)
� 1 +m ∀d ∈ [0, �̄) (3.12)

hence limd↑�̄
1−f(F (d))
1−F (d)

≤ 1 +m, therefore from (3.9):
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Case 3.3 : lim
d↑�̄

1− f(F (d))

1− F (d)
= 1 +m (3.13)

Proof: In this case, by the assumption, we have h(�̄) = 0. Since h is non-increasing

on (0, �̄], we can conclude that h(d) ≥ 0 on (0, �̄]. Lemma 3.5.3
�

(the version of

Lemma 3.5.3 where u
�

−(·) exists on (a, b) and u
�

−(x) ≥ 0 ∀x ∈ (a, b)) implies that u is

non-decreasing on [0, �̄]. Therefore, �̄ is an optimal deductible in this case.

Similar to the case 3.2, given that u(d) is non-decreasing and continuous, �̄ is not the

unique optimal, if and only if there exists d� such that 0 ≤ d
�

< �̄ and 1−f(F (d))
1−F (d)

=

1 + m ∀d ∈ [d
�

, �̄) in which case any d ∈ [d
�

, �̄] is an optimal deductible. Again it

is straightforward that (3.6) is satisfied ∀d̄ ∈
�

d
�

, �̄
�

. This completes the proof of

theorem 3.5.1.

3.6 Conclusion

While it is known since Vergnaud (1997) that whatever be the decision maker’s model

under risk, left-monotone risk aversion, a meaningful refinement of strong risk aversion

introduced by Jewitt (1989), implies optimality of deductible, the main purpose of

this paper is to show that in fact within the Yaari’s model left-monotone risk aversion

does characterize the optimality of deductible insurance.

A second main goal of this paper is to show that for such left-monotone Yaari’s risk

averters, the computation of the deductible is very tractable. Chateauneuf et al.

(1997) stated a theorem related to this point, but in fact the proof of this theorem

has never been published, this paper aims to fill this gap.
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