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Résumé en français

Depuis son introduction par Wishart dans le domaine des statistiques en 1928 [311],
le concept de matrice aléatoire a été utilisé dans divers domaines : mathématiques,
physique, finance, etc.

En mathématiques, la théorie des matrices aléatoires a été un domaine de recherche
très actif. Une de ses applications les plus remarquables est la théorie des nombres. En
1973, Montgomery a conjecturé que la fonction de corrélation a deux points des zéros de
la fonction zêta de Riemann est identique à celle des valeurs propres de grandes matrices
unitaires aléatoires [237]. Bien que cette conjecture n’ait toujours pas été démontrée,
la connexion entre la théorie des nombres et les matrices aléatoires s’est renforcée : la
conjecture de Montgomery a été étendue aux fonctions de corrélations à n points, il
a été montré que la fonction zêta se comporte comme les polynômes caractéristiques
de matrices aléatoires, que des généralisations de la fonction zêta, les fonctions L, sont
reliées à d’autres ensembles de matrices aléatoires,... Pour plus de détails, je renvoie
aux revues [87,188,189], ainsi qu’aux références qu’elles contiennent.

En physique, les matrices aléatoires ont été introduites dans les années 50 par Wigner
dans le but d’étudier le noyau atomique [306, 309, 310]. En effet, il est très difficile de
décrire analytiquement ce système à N corps en interaction. L’idée de Wigner consiste à
simplifier sa description en remplaçant son Hamiltonien par une matrice aléatoire. Cette
approche repose sur le principe que les propriétés universelles du système ne doivent pas
dépendre de ses détails microscopiques, mais uniquement de propriétés globales, comme
les symétries. L’approche de Wigner est similaire à celle de la physique statistique : en
physique statistique l’analyse de la dynamique d’un problème à N corps (par exemple
un gaz) est remplacée par une information statistique (probabilité d’occupation d’un
microétat). De même, au lieu de considérer un modèle microscopique pour le noyau
atomique, on se donne une mesure de probabilité sur un ensemble d’Hamiltoniens. Bien
que cette approche ne permette pas de décrire les détails du spectre du noyau, elle a
permis de décrire correctement des propriétés universelles, comme la distribution de
l’espacement entre niveaux d’énergie consécutifs (voir Figure 1).

Les symétries jouent un rôle essentiel dans cette approche, car elles imposent de
fortes contraintes sur l’Hamiltonien. Une première classification de matrices aléatoires,
qui se base sur deux symétries globales (renversement du temps et rotation du spin),

– ix –



Résumé en français

Figure 1: Histogramme représentant
l’espacement entre niveaux d’énergie
consécutifs (normalisé par l’espacement
moyen) des 108 premiers niveaux de
166Er, obtenus par résonance de neutrons
lents (les données sont tirées de [205]).
Le trait plein représente la prédictions
des matrices aléatoires connue sous le
nom de Wigner’s surmise (voir Sec-
tion 1.2). La ligne en pointillés corre-
spond à la loi de Poisson, qui serait atten-
due si les niveaux d’énergie étaient des
variables aléatoires indépendantes.
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a été établie par Dyson dans les années 60 [115, 116]. Cette classification a ensuite été
complétée par Altland et Zirnbauer à la fin des années 90 [16,314] en prenant en compte
des symétries discrètes (symétrie chirale et particule-trou).

Bien qu’elle ait d’abord été utilisée en physique nucléaire, la théorie des matrices
aléatoires s’est révélée être un puissant outil dans divers domaines de la physique, par
exemple pour étudier le transport électronique cohérent [5, 30, 54, 88, 163, 169, 191, 226,
229,278,301–303], l’information quantique (entropie d’intrication d’états bipartite) [99,
125, 126, 250, 251, 258], les interfaces fluctuantes en physique statistique [248, 249], les
atomes froids [77, 91, 100, 198, 218, 219], la transmission de données dans des canaux
entrée multiple sortie multiple (MIMO, multiple input multiple output), les verres de
spin [2, 22,52,142,144,149], etc.

De nombreuses applications des matrices aléatoires reposent sur les ensembles in-
variants. Ces ensembles sont entièrement caractérisés par la loi jointe des valeurs pro-
pres {λi} de la matrice aléatoire, tandis que les vecteurs propres sont décorrélés des
valeurs propres. Les exemples les plus connus sont les trois ensembles Gaussiens (or-
thogonal, unitaire et symplectique), mais il existe beaucoup d’autres ensembles, comme
les ensembles de Laguerre ou de Jacobi qui sont importants pour les applications des
matrices aléatoires en transport quantique. Par exemple, le transport des électrons
à travers un point quantique (quantum dot) à deux terminaux est caractérisé par un
jeu de probabilités de transmission {Tn}. Plusieurs observables physiques peuvent être
exprimées à partir de ces transmissions, par exemple la conductance G = 2e2

h

∑
n Tn

où e désigne la charge électronique, ou la puissance du bruit de grenaille (shot noise)
S = 2e3|V |

h

∑
n Tn(1 − Tn), où l’on a noté V la différence de potentiel. Si la dynamique

des électrons dans le point quantique est de nature chaotique, on peut montrer que les
probabilités {Tn} sont distribuées comme les valeurs propres de matrices aléatoires dans
les ensembles de Jacobi. Les deux quantités physiques susmentionnées sont alors des
exemples de statistiques linéaires de valeurs propres d’une matrice aléatoire: elles sont
de la forme L = ∑N

i=1 f(λi), où f est une fonction quelconque (le terme linéaire vient
du fait que L ne comporte pas de produit de valeurs propres distinctes).
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Panorama de cette thèse

La détermination des propriétés de ces statistiques linéaires a été un domaine de
recherche très actif. Les fortes corrélations entre les valeurs propres de matrices aléa-
toires rendent en effet ce problème très difficile. Plusieurs techniques ont été développées
pour étudier les fluctuations typiques de ces observables. Elles ont abouti à la célèbre
formule de Dyson-Mehta pour la variance des statistiques linéaires [117], qui a par la
suite été étendue par plusieurs personnes, entre autres : Beenakker [28, 29], Basor et
Tracy [26], Jancovici et Forrester [181]. La question des fluctuations atypique a été con-
sidérée plus récemment. Une puissante méthode qui permet d’étudier ces fluctuations
atypiques est la technique du Gaz de Coulomb, introduite par Dyson et Mehta [115,117].
Dans cette approche, les valeurs propres de matrices aléatoires sont interprétées comme
les positions de particules dans un gaz unidimensionnel, avec répulsion logarithmique.
La détermination de la distribution d’une statistique linéaire se réduit à l’étude de l’effet
d’une contrainte sur la configuration optimale de ce gaz (minimum de l’énergie). Cette
contrainte peut potentiellement engendrer des transitions de phases dans le gaz.

Dans cette thèse, je décris comment les puissants outils issus de la théorie des ma-
trices aléatoires, en particulier le gaz de Coulomb, peuvent être utilisés pour étudier des
observables variées en physique statistique.

Panorama de cette thèse
Après une introduction générale (page 1) suit un chapitre préliminaire (page 5) dans
lequel je donne un aperçu global de la recherche que j’ai menée pendant ma thèse. J’y
liste mes principaux résultats, ainsi que mes publications (résumées dans le Tableau 1,
page 9). Une partie de ces sujets est abordée plus en détails dans la suite du manuscrit.
Pour les autres, je renvoie le lecteur aux articles correspondants.

Première partie : statistiques linéaires et matrices aléatoires
La première partie se concentre sur l’analyse de la distribution (fluctuations typiques et
atypiques) de différentes statistiques linéaires de valeurs propres, en utilisant la méthode
du gaz de Coulomb.

Le Chapitre 1 est une introduction générale à la théorie des matrices aléatoires.
Après avoir discuté les exemples des ensembles Gaussiens et de Laguerre, j’y décris plus
particulièrement les propriétés universelles des ensembles invariants.

Le Chapitre 2 introduit la méthode du gaz de Coulomb, qui est l’outil principal de
cette première partie. Je donne quelques illustrations de cette méthode dans des cas
simples.

Dans le Chapitre 3 j’applique cette méthode pour obtenir la loi jointe de deux statis-
tique linéaire, qui est requise pour étudier le transport AC dans un circuit RC quan-
tique. L’analyse de cette loi jointe nous oblige à imposer deux contraintes sur le gaz
de Coulomb, ce qui nous donne un diagramme de phase bidimensionnel pour le gaz de
Coulomb (le premier obtenu dans ce contexte).
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Au Chapitre 4 j’introduis un nouveau type d’observable, que nous avons baptisé
statistiques linéaires tronquées. Ce sont des statistiques linéaires dans lesquelles nous
avons gardé seulement une fraction des valeurs propres. Nous avons considéré deux
cas : soit on ne conserve que les plus grandes (ou les plus petites) valeurs propres,
soit n’importe quel sous-ensemble de valeurs propre peut contribuer. Je présente une
méthode générale pour analyser ces deux différents cas, et je l’applique à l’étude d’un
modèle d’interfaces 1D fluctuantes.

Deuxième partie : fils désordonnés
La deuxième partie de cette thèse se concentre sur l’étude d’un modèle de fil désor-
donné quasi-1D. Ce projet s’inscrit dans le domaine des systèmes désordonnés, et plus
précisément, de la localisation d’Anderson. Il est bien connu que la dimension joue
un rôle crucial dans l’étude de la propagation d’une onde dans un milieu aléatoire. À
une dimension, il existe de puissants outils analytiques qui permettent de calculer les
propriétés de localisation. Cependant, le problème devient beaucoup plus difficile en
dimensions supérieures.

Les modèles de fils désordonnés multicanaux représentent une situation intermédi-
aire entre le probleme purement 1D et les dimensions supérieures. Une des principales
méthodes pour étudier ces modèles a été introduite par Dorokhov, Mello, Pereyra et Ku-
mar (DMPK) [106–109,227] (voir aussi les revues [30,229]). Cette approche est décrite
dans le Chapitre 5.

L’approche DMPK repose en revanche sur une hypothèse d’isotropie qui la restreint
a cas quasi-1D. Notre but est de se passer ce cette hypothèse. De plus, notre objectif
est également d’étendre au cas multicanal les puissants outils qui existent en 1D. Nous
nous intéressons donc à un modèle de fil désordonné : l’équation de Dirac multicanale
avec masse aléatoire, qui est introduit au Chapitre 6, dans lequel je le relie à un modèle
de matrices aléatoires.

Dans le Chapitre 7, j’utilise la connexion à ce modèle de matrice pour analyser la
densité d’états et les propriétés de localisation de ce fil désordonné. Cette approche
nous permet d’étendre des résultats connus, en considérant un cas non-isotrope.

Enfin, dans le Chapitre 8 je montre que ce modèle subit une série de transitions de
phases de nature topologique, contrôlées par le désordre. Je présente une interprétation
simple de ces transitions en terme de condensation de charges dans un gaz de Coulomb.
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Introduction

Since its first use by Wishart in the context of Statistics [311], the concept of random
matrix has been used in various domains: Mathematics, Physics, Finance, ...

In Mathematics, random matrix theory has been an intense subject of investigation.
One of its most remarkable applications is number theory. In 1973, Montgomery con-
jectured that the pair correlation function of the zeros of the Riemann zeta function
(related to the distribution of prime numbers) is the same as for the eigenvalues of ran-
dom unitary matrices [237]. Although this conjecture still remains to be proved, the
connection between random matrices and number theory has been strengthened: Mont-
gomery’s conjecture was extended to higher order correlation functions, the Riemann
zeta function was shown to behave as the characteristic polynomials of random matrices,
a connection between generalisations of the zeta function, known as L-functions, and
other ensembles of random matrices was exhibited, ... For more details, see for instance
the reviews [87,188,189] and references therein.

In Physics, random matrices have first been introduced in the 50s by Wigner to study
the atomic nucleus [306, 309, 310]. His idea consists in replacing the exact many body
Hamiltonian by a random matrix which captures the essential symmetries of the system.
This approach successfully reproduced the correct statistics for the level spacing [224].

Symmetries play a fundamental role in this approach, as they impose strong con-
straints on the Hamiltonian. A first classification of random Hamiltonian, based on
global symmetries, was established by Dyson in the 60s [115, 116]. This classification
was completed at the end of the 90s by Altland and Zirnbauer [16, 314].

Although it was first applied in nuclear physics, random matrix theory has proved
to be a useful tool in diverse fields of physics, such as electronic quantum transport
[5,30,54,88,163,169,191,226,229,278,301–303], quantum information (entanglement in
random bipartite quantum states) [99, 125, 126, 250, 251, 258], the study of fluctuating
interfaces in statistical physics [248, 249], cold atoms [77, 91, 100, 198, 218, 219], data
transmission in multiple input multiple output (MIMO) channels [187,241], spin glass [2,
22,52,142,144,149], ...

Many applications of random matrices involve invariant ensembles. These ensembles
are fully characterised by the joint distribution of the eigenvalues {λi} of the random
matrix, while the eigenvectors are uncorrelated to the eigenvalues. The most famous
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examples are the three Gaussian ensembles (orthogonal, unitary and symplectic), but
many other ensembles exist, such as the Laguerre or the Jacobi ensembles. These latter
have played a central role in the applications of random matrix theory to quantum trans-
port. For example, the electronic transport through a two terminal quantum dot can be
characterised by a set of transmission probabilities {Tn}. Several physical quantities can
be related to these transmissions, for example the conductance G = 2e2

h

∑
n Tn, where e

is the electronic charge or the shot-noise power S = 2e3|V |
h

∑
n Tn(1−Tn), where V is the

voltage drop. If the dynamics in the quantum dot is of chaotic nature, the probabilities
{Tn} were shown to correspond to the eigenvalues of random matrices in the Jacobi
ensembles. The two physical observables aforementioned are thus examples of linear
statistics of eigenvalues of random matrices: they are of the form L = ∑N

i=1 f(λi), where
f can be any given function.

Determining the statistical properties of these linear statistics has been an intense
field of study. The strong correlations between the eigenvalues of random matrices make
this problem quite difficult. Several techniques were first developed to study the typical
fluctuations. This led to the formula for the variance of linear statistics of Dyson and
Mehta [117], which was later extended by several people, among them: Beenakker [28,
29], Basor and Tracy [26], Jancovici and Forrester [181]. More recently, the question of
atypical fluctuations, was considered. A convenient method to address this problem is
to use the Coulomb gas technique introduced by Dyson and Mehta [115, 117]. In this
approach, the eigenvalues of random matrices are interpreted as the positions of particles
in a strongly correlated 1D gas, with logarithmic repulsion. Then, the derivation of the
distribution of the linear statistics reduces to minimising the energy of the Coulomb gas
under constraints. An interesting feature is the possibility of phase transitions in the
underlying Coulomb gas, driven by the constraints.

In this thesis, we apply the powerful tools of random matrix theory, in particular
the Coulomb gas method, to study various observables in statistical physics.

Overview of this thesis

First part: linear statistics in random matrix theory
The first part is devoted to the analysis of the full distribution (typical and atypical
fluctuations) of different linear statistics, using the Coulomb gas technique.

Chapter 1 gives a general introduction to random matrix theory, and focuses on the
universal features of invariant ensembles.

Chapter 2 introduces the Coulomb gas method, which is the main tool used in this
first part to analyse the distribution of linear statistics.

In Chapter 3 we apply this method to obtain the joint distribution of two linear
statistics, which is required in the study of AC transport in a quantum RC-circuit. The
study of this joint distribution leads us to introduce two constraints on the Coulomb
gas, resulting in the first two dimensional phase diagram obtained in this context.

We introduce in Chapter 4 a new type of observables, which we called truncated
linear statistics. These are linear statistics in which only a fraction of the eigenvalues
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contribute. We expose a general method to study these truncated linear statistics and
apply it to the study of a model of 1D fluctuating interfaces.

Second part: multichannel disordered wires
The second part of this thesis is devoted to the analysis of a model of quasi-1D dis-
ordered wire. This project enters into the framework of disordered systems, and more
precisely, Anderson localisation. It is well known that dimensionality plays a crucial
role in the problem of a wave in a random medium. In one dimension, powerful analytic
methods allow to compute the localisation properties. However, the problem is much
more challenging in higher dimensions.

Models of multichannel disordered wires represent an intermediate situation between
the strictly 1D case and higher dimensions. One of the main methods to study these
models was introduced by Dorokhov, Mello, Pereyra and Kumar (DMPK) [106–109,227]
(for reviews see [30,229]). This approach is described in Chapter 5.

The DMPK approach is however based on an isotropy assumption, which restricts
it to the quasi-1D geometry. We wished to go beyond this assumption. Furthermore,
our aim was to extend the powerful methods that exist for 1D disordered systems to
the multichannel models. Therefore, we focus on a model of disordered wire, the mut-
lichannel Dirac equation with a random mass, which is introduced in Chapter 6, and
shown to be linked to a random matrix model.

In Chapter 7 we use this connection to analyse the density of states and the locali-
sation properties of this model.

Finally, in Chapter 8, we show that this model exhibits a series of topological phase
transitions, driven by the disorder. We give a simple interpretation of these transitions
in terms of the condensation of charges in a Coulomb gas.
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Main results

In this preliminary chapter, I give an overview of the research I have conducted during
my PhD at LPTMS. I briefly describe my publications related to the questions studied
during my PhD, as I have chosen to reproduce only a fraction of them in this manuscript.

Random matrices, Coulomb gas and determinantal
processes
A first part of my work is devoted to the study of observables known as linear statistics
of the eigenvalues of random matrices. These linear statistics play a central role in
the applications of random matrices as they can represent many physical quantities:
conductance or shot noise of a chaotic quantum dot, kinetic energy of a gas of cold
fermions, ... I have studied the distribution of several linear statistics, in various domains
of physics, using a technique called the Coulomb gas method (described in Chapter 2).

Linear statistics and quantum transport
I have worked on several applications of random matrices to coherent quantum transport.
The first one concerns the study of the AC transport properties of a quantum RC-circuit
designed from a chaotic quantum dot. These properties can be related to the scattering
matrix S describing the transport of a single electron through the chaotic cavity. More
precisely, the AC response is obtained from the energy dependence of the S-matrix,
which is encoded in the Wigner-Smith matrix Q = −iS†∂εS. Knowing the statistical
properties of Q from Refs. [57, 58] we have studied the distribution of the “mesoscopic
capacitance” Cµ and the “charge relaxation resistance” Rq of the circuit. This analysis
requires the derivation of the joint distribution of two linear statistics in the Laguerre
ensemble of random matrix theory.

1) A. Grabsch and C. Texier, Capacitance and charge relaxation resistance of chaotic
cavities —Joint distribution of two linear statistics in the Laguerre ensemble of
random matrices, Europhys. Lett. 109(5), 50004 (2015).

ó Included as Article 2, page 77.
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This letter is the result of the work initiated during my master’s internship at
LPTMS. It presents only the first results on the Coulomb gas, as the full phase dia-
gram was obtained later during my PhD. For more details, see Chapter 3.

The study of the joint distribution mentioned above was performed using the Coulomb
gas technique. In this analysis, I introduced an important simplification of the method,
based on a thermodynamic identity (discussed at the end of Section 2.2.5). Besides
providing a shortcut through the usual Coulomb gas technique, the use of this ther-
modynamic identity has allowed to spot a mistake in Ref. [286] and also derive further
results.

+ See the erratum of Ref. [286]

The Coulomb gas method yields only the dominant contribution to the distribution
in the limit of large matrix size. We have also studied the subleading corrections to this
result, which are essential in the study of the Wigner time delay (related to the density
of states) of disordered wires.

2) A. Grabsch and C. Texier, Distribution of spectral linear statistics on random
matrices beyond the large deviation function – Wigner time delay in multichannel
disordered wires, J. Phys. A 49, 465002 (2016).

ó Included as Article 1, page 47.

This work is discussed in Section 2.2.6.

A central concept in the aforementioned project is that of Wigner-Smith time de-
lay matrix Q. The distribution of this matrix was obtained by Brouwer, Frahm and
Beenakker [57, 58] for a chaotic quantum dot and by Brouwer and Beenakker [34] for
semi infinite disordered wires. These distributions have been derived under the assump-
tion that the mesoscopic system (quantum dot) is connected to a macroscopic system
via perfect contacts, or isotropy with respect to the coupling by the disorder (disordered
wires). We have extended their result for quantum dots and obtained the distribution
of Q for arbitrary coupling. Our result is briefly discussed in Section 3.1.2.

3) A. Grabsch, D. V. Savin, C. Texier, Wigner-Smith time-delay matrix in chaotic
cavities with non-ideal contacts, arXiv:1804.09580 (2018).

The Wigner-Smith matrix Q is a central object of this thesis: besides Articles 1)
and 3) aforementioned, it also appears in 5) (see below) and in 9) (density of states is
related to trQ) in the context of disordered wires.

Truncated linear statistics
Motivated by applications to coherent transport, we have introduced a new type of
observables, which we called truncated linear statistics. These are linear statistics in
which only a fraction of the eigenvalues contribute. We have developed a general method,
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based on the Coulomb gas, to study these truncated linear statistics and applied it to
the study of a model of 1D fluctuating interfaces and to analyse the contribution of a
finite fraction of channels to the density of states of a chaotic quantum dot.

4) A. Grabsch, S. N. Majumdar, and C. Texier, Truncated Linear Statistics Asso-
ciated with the Top Eigenvalues of Random Matrices, J. Stat. Phys. 167(2),
234–259 (2017), updated version arXiv:1609.08296.

ó Included as Article 3, page 103.

5) A. Grabsch, S. N. Majumdar, and C. Texier, Truncated Linear Statistics Associ-
ated with the Eigenvalues of Random Matrices II. Partial Sums over Proper Time
Delays for Chaotic Quantum Dots, J. Stat. Phys. 167(6), 1452–1488 (2017).

ó Included as Article 4, page 105.

These two articles are the object of Chapter 4.

Cold atoms
The positions of noninteracting fermions in a 1D harmonic trap at zero temperature can
be mapped onto the eigenvalues of Gaussian matrices (with unitary symmetry). This
mapping allows to study linear statistics of the fermions’ positions with the Coulomb
gas method. However, this connection is lost at finite temperature. We have introduced
a general formalism (based on determinantal processes and statistical mechanics) to
study the fluctuations of such observables at finite temperature, in both the canonical
and grand canonical ensembles.

6) A. Grabsch, S. N. Majumdar, G. Schehr, and C. Texier, Fluctuations of observables
for free fermions in a harmonic trap at finite temperature, SciPost Phys. 4, 014
(2018).

Our method relies on the statistical properties of the occupation numbers of the
energy levels. In the grand canonical ensemble they are independent, but in the canonical
one they are strongly correlated. These correlations induce a strong difference in the
fluctuations of observables in the different ensembles. To quantify these correlations, we
have studied the p-point correlation function of these occupation numbers and applied
our results to the study of Bose-Einstein condensation in one dimension.

7) O. Giraud, A. Grabsch, and C. Texier, Correlations of occupation numbers in
the canonical ensemble and application to a Bose-Einstein condensate in a one-
dimensional harmonic trap, Phys. Rev. A 97, 053615 (2018).
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In two dimensions, several systems of noninteracting fermions can also be described
by a random matrix model. For example, the modulus square of the ground state wave
function of charged fermions subjected to a magnetic field can be mapped onto the
distribution of eigenvalues in the complex Ginibre ensemble. Motivated by the study
of extreme value statistics of correlated variables, we have analysed the distribution
of the largest (complex) eigenvalue in different matrix ensembles (which corresponds
to the position of the farthest fermion). In particular, we have exhibited a universal
“intermediate deviation regime” which connects smoothly the typical regime to the left
large deviation tail.

8) B. Lacroix-A-Chez-Toine, A. Grabsch, S. N. Majumdar, and G. Schehr, Extremes
of 2d Coulomb gas: universal intermediate deviation regime, J. Stat. Mech.
2018(1), 013203 (2018).

Random matrices and disordered systems
We have considered multichannel disordered wires in the three chiral symmetry classes.
We have made a connection with a random matrix model and have given a simple
interpretation of the topological phase transitions in terms of the condensation of charges
in an underlying Coulomb gas. Furthermore, our approach has allowed us to go beyond
the case of isotropic disorder and explore analytically the effect of some anisotropy in
the couplings.

9) A. Grabsch and C. Texier, Topological phase transitions in the 1D multichannel
Dirac equation with random mass and a random matrix model, Europhys. Lett.
116, 17004 (2016).

ó Included as Article 5, page 177.

The work that led to this publication was initiated during a one year internship at
the University of Bristol (2014–2015), and later completed during my PhD at LPTMS
(in particular the study of the Lyapunov exponents and the numerical simulations,
described in Chapter 7, are unpublished). This work is the object of Part II.

This overview of my research is summarised in Table 1.
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Coulomb gas Linear Wigner-Smith Disordered Cold In this
statistics matrix wires atoms thesis

1) 3 3 3 Chapter 3
2) 3 3 3 3 Section 2.2.6
3) 3 3 Section 3.1.2
4) 3 3 Chapter 45) 3 3 3

6) 3 3 7

7) 3 7

8) 3 3 7

9) 3 3 3 3 Part II

Table 1: List of publications with their corresponding topics. The articles related to
cold atoms are not described in this thesis.
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Part I

Linear statistics in random matrix
theory





Chapter 1

Introduction to random matrices

Although it was first used in Statistics by Wishart [311], the idea of random matrices has
been introduced in Physics by Wigner to describe the spectra of atomic nuclei [309]. The
nucleus is a complex many body system which is very difficult to describe analytically.
Wigner’s idea is to model it by a simpler Hamiltonian, taken in the form of a N × N
matrix:

H =


...

· · · hij · · ·
...

 , (1.1)

where the matrix elements hij are taken as random. This approach is based on the idea
that the universal properties of a system should not depend on its details, but only on
global properties, such as symmetries. This observation will lead us to introduce the
invariant ensembles of random matrices, which are the main objects of this chapter.

Wigner’s approach is somewhat similar to the one of statistical physics: in statistical
physics the analysis of the dynamics of the many body problem (a fluid for example) is
replaced by a statistical information (occupation of microstates). Similarly, instead of
considering a microscopic model for the nucleus, one provides some statistical informa-
tion on the Hamiltonian. Although this approach cannot reproduce the details of the
spectrum of the nucleus, it successfully describes some universal properties such as the

0.0 0.5 1.0 1.5 2.0 2.5
s

0.0

0.2

0.4

0.6

0.8

1.0

P
(s

)

Figure 1.1: Histogram of the levels spacing
(normalised by the mean spacing) for the
first 108 levels of 166Er obtained by slow neu-
tron resonance (data taken from Ref. [205]).
The solid line is the prediction from ran-
dom matrix theory, known as Wigner’s sur-
mise (see Section 1.2). The dashed line is
the Poisson distribution, which would be ex-
pected if the energy levels were independent
random variables.
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levels statistics (see Fig. 1.1).
In this chapter, we first describe the Wigner-Dyson classification of symmetries in

Section 1.1. We then introduce the Gaussian ensembles of random matrices considered
by Wigner in Section 1.2. We briefly describe Wishart’s earlier work on empirical
covariance matrices in Section 1.3. We conclude with Section 1.4 by some general
discussion on the invariant ensembles of random matrices.

1.1 The Wigner-Dyson classification
Symmetries have played a central role in Wigner’s approach. Following this idea, Dyson
introduced a classification of random Hamiltonian based on symmetries [115,116]. Tak-
ing into account two symmetries, under time-reversal and spin-rotation, Dyson obtained
three different classes which he labelled by an index, called the Dyson index, denoted
β. As we will see, β can take the values 1, 2 or 4 and is the number of independent real
variables per matrix element of H.

In order to represent an Hamiltonian the matrix H must be Hermitian. This matrix
can represent either a many body system (such as the atomic nucleus) or a one body
system (for example an electron in a chaotic cavity1). The presence of other symmetries
will impose additional constraints on H.

• If time-reversal symmetry is broken (for example by a magnetic field), there are no
further conditions on H. The Hamiltonian can be any Hermitian matrix,

H† = H . (1.2)

This Hamiltonian can be diagonalised by a unitary matrix, and its spectrum is invariant
under unitary transforms

H → U †HU , with U ∈ U(N) . (1.3)

This class, called the unitary class, is associated to the Dyson index β = 2.

• If the system is invariant under time-reversal, we must impose additional conditions
on the Hamiltonian. Time-reversal symmetry is represented by an antiunitary operator
T , which can be decomposed as T = KC, where K is a unitary matrix and C is the
complex conjugation operator. Time-reversal invariance of the Hamiltonian reads

H = THT−1 = KH?K−1 = KHTK−1 , (1.4)

where we used that H† = H to replace the complex conjugation by a transposition.
Acting twice with the operator T , we should recover the original Hamiltonian, thus

K?K = κ1N , with κ = ±1 , (1.5)

and we used that K−1 = K†. We now need to discuss the two possibles cases.
1The relation between chaotic dynamics and random matrices has been introduced in the famous

work of Bohigas, Giannoni and Schmit [44].
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1.1. The Wigner-Dyson classification

– Let us first consider the case κ = 1. This situation is realised if the spin is con-
served2, or in many-body systems with integer total angular momentum [308]. We
can then choose a basis such that K = 1N , thus the time-reversal symmetry (1.4)
reduces to

HT = H . (1.6)
The corresponding Hamiltonian is therefore a real symmetric matrix. Its spectrum
is invariant under orthogonal transforms

H → UTHU , with U ∈ O(N) . (1.7)

This defines the orthogonal class, identified with the Dyson index β = 1.

– We now consider the case κ = −1. This situation is realised if spin-rotation
symmetry is broken (for example, by spin-orbit coupling in a metallic device). We
can choose to represent the matrix K in terms of the second Pauli matrix, as
K = iσ2. Time reversal invariance (1.4) implies

H = σ2H
Tσ2 . (1.8)

There are now two ways of seeing the problem. Either we consider that H is a
2N × 2N matrix with complex coefficients, which satisfies (1.8), where σ2 acts in
the spin subspace and should be understood as 1N ⊗ σ2. The matrix H can be
diagonalised by unitary transforms U that satisfy Uσ2U

T = σ2, meaning that U
belongs to the compact symplectic group3 Sp(N). We can equivalently think of
H as a N ×N matrix, with 2× 2 matrix coefficients of the form

q012 + iq1σ1 + iq2σ2 + iq3σ3 , q0, q1, q2, q3 ∈ R, (1.9)

which act on the spin space. These coefficients can be thought of as quaternions, so
that H is a N×N self-adjoint matrix of quaternions, which can be diagonalised by
a N×N “unitary matrix of quaternions”4. Since this compact group is isomorphic
to the compact symplectic group, we will also denote it Sp(N). For coherence with
the other cases we will follow this second approach, so that H is always a N ×N
matrix. Its spectrum being invariant under symplectic transforms

H → U−1HU , with U ∈ Sp(N) , (1.10)

this defines the symplectic class, associated to β = 4 (matrices of quaternions).

Based on time-reversal and spin-rotation symmetries, we have obtained the three
Wigner-Dyson classes, indexed by β = 1, 2 or 4. This classification, known as Dyson’s
threefold way [116,224], is summarised in Table 1.1.

2If the spin is conserved, we can work in the corresponding subspace, such that we reduce to an
effectively spinless Hamiltonian.

3The condition Uσ2U
T = σ2 means that U belongs to the symplectic group Sp(2N). The intersec-

tion with the unitary group defines the compact symplectic group [171]: Sp(N) = Sp(2N) ∩U(2N).
4Since H is a 2N × 2N , it has 2N eigenvalues. However they all have degeneracy two, so

we can effectively treat H as a N × N matrix of quaternions which can be diagonalised as H =
U−1Diag(λ112, . . . , λN12)U .
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Dyson index TRS SRS H U
β = 1 yes yes real symmetric orthogonal
β = 2 no irrelevant complex Hermitian unitary
β = 4 yes no quaternionic self dual symplectic

Table 1.1: Dyson’s threefold way. The different classes are indexed by the Dyson index β
which counts the number of independent real parameters per matrix element of H. The
presence or not of time-reversal (TRS) and spin-rotation (SRS) symmetries determine
the class. The matrix H can be diagonalised by a matrix U , which belongs to a compact
group.

1.2 The Gaussian ensembles
Having identified the three Wigner-Dyson classes, we can follow Wigner’s idea to study
the spectrum of the atomic nucleus. The simplest case consists in considering systems
invariant under time-reversal symmetry, and restrict ourselves to the energy levels asso-
ciated to the same spin states. The transitions between these levels conserve the spin,
therefore this corresponds to the orthogonal class β = 1. The Hamiltonian H is thus a
real symmetric matrix, so we only need to fix the matrix elements hij for i 6 j. There
remains to choose the distribution of these entries. Wigner considered two possibilities:

(i) Either all entries are statistically independent (the so called “Wigner matrices”);

(ii) Or from a more physical point of view, the physical properties of a quantum system
should not depend on the choice of the basis, therefore the joint distribution of the
entries of H must be invariant under a change of basis, i.e., under a rotation (1.7)
(the so called “rotationally invariant” ensembles).

It turns out that numerically it is easier to generate the Wigner matrices, but not so easy
to generate matrices from a generic rotationally invariant ensemble (because the entries
get highly correlated). In contrast, for rotationally invariant ensembles, it is much easier
to derive analytically the joint distribution of eigenvalues as we show below.

In particular, there is only one ensemble of random matrices that has independent
entries as well as is rotationally invariant: the Gaussian ensemble. This is known as
the celebrated Porter-Rosenzweig theorem [263] (see also [224]). We thus consider this
specific ensemble, by choosing the matrix entries hij as independent Gaussian variables:

hij ∼ N (0, σij) , (1.11)

where σij is the variance of the element hij. We can thus write the distribution of the
matrix H as

P (H) =
∏
i6j

 1√
2πσ2

ij

e−h2
ij/2σ

2
ij

 , (1.12)

with respect to the Lebesgue (uniform) measure

dH =
∏
i6j

dhij . (1.13)
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If we additionally impose that the distribution is invariant under orthogonal transforms,
Eq. (1.7), we obtain very restrictive conditions of the variances σij:

σij =


σ if i = j ,

σ√
2

if i < j ,
(β = 1) . (1.14)

We can understand this easily: the symmetric off diagonal terms being equal, they ap-
pear twice in the matrix while the diagonal terms contribute only once. The choice (1.14)
compensates this imbalance. Using that

∑
i6i

h2
ij

2σ2
ij

= 2
∑
i<j

h2
ij

2σ2 +
∑
i

h2
ij

2σ2 =
∑
i,j

h2
ij

2σ2 = tr(HTH) = tr(H2) , (1.15)

we can rewrite the distribution (1.12) as

P (H) = 1
2N/2(πσ2)N(N+1)/4 e−

1
2σ2 tr(H2) , (1.16)

which makes explicit the invariance of the distribution under (1.7). For convenience,
we will set σ = 1. We thus define the Gaussian Orthogonal Ensemble (GOE) by the
distribution

P (H) = 1
GN,1

e− 1
2 tr(H2) , GN,1 = 2N/2 πN(N+1)/4 . (1.17)

We can similarly define the Gaussian Unitary Ensemble (GUE) and Gaussian Sym-
plectic Ensemble (GSE) by filling the matrix H with independent complex or quater-
nionic Gaussian variables. This defines the three Gaussian ensembles, associated to the
distributions

P (H) = 1
GN,β

e−
β
2 tr(H2) , GN,β = 2N/2

(
π

β

)N
2 (1+βN−1

2 )

(1.18)

with respect to the associated Lebesgue measures defined in Appendix A.1. The choice
σ2 = 1/β for the variance of the matrix elements is arbitrary, but will turn out to be
convenient in the following as it permits to treat the three cases in a unified way (see
for instance Section 2.1.1).

Given the distribution of the matrix H (1.18), we are now interested in its eigenval-
ues, which represent the energy levels of the nucleus in Wigner’s approach. Therefore,
we need to make a change of variables to go from the matrix entries hij to the eigen-
values and eigenvectors of H. Since we are interested only in the eigenvalues, we will
then integrate over the eigenvectors to obtain the marginal of the eigenvalues. We thus
perform the eigendecomposition

X = U−1ΛU , Λ = Diag(λ1, . . . , λN) , U ∈


O(N) for β = 1 ,
U(N) for β = 2 ,
Sp(N) for β = 4 .

(1.19)
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The Jacobian of this change of variables in given in Appendix A.1, and reads:

dH =
∏
i<j

|λi − λj|β
N∏
i=1

dλi dµ(U) , (1.20)

where dµ is the Haar measure on the corresponding compact group. This Jacobian
involves a Vandermonde determinant

det(λj−1
i ) =

∏
i<j

(λi − λj) , (1.21)

which is of central importance as we will soon see. The joint distribution of the eigen-
values and eigenvectors is thus

P ({λi}, U) = 1
GN,β

∏
i<j

|λi − λj|β
N∏
i=1

e−
β
2 λ

2
i , (1.22)

which does not depend on U . This means that the eigenvectors of H are uniformly
distributed over the compact group. Therefore, integrating (1.22) over the matrix U ,
we obtain the joint distribution of the eigenvalues

P(λ1, . . . , λN) = 1
G̃N,β

∏
i<j

|λi − λj|β
N∏
i=1

e−
β
2 λ

2
i (1.23)

where the normalisation constant G̃N,β is given by

G̃N,β = GN,β

vN,β
, where vN,β =

∫
dµ(U) =

πβ
N(N−1)

2 Γ
(
β
2

)N
ΓN,β

(
βN
2

) , (1.24)

expressed in terms of the multivariate Gamma function ΓN,β, defined in Appendix B
(see also Appendix A.1). We thus deduce the normalisation constant as:

G̃N,β = 2N/2
(
π

β

)N
2 (1+βN−1

2 ) ΓN,β
(
βN
2

)
πβ

N(N−1)
2 Γ

(
β
2

)N = (2π)N/2

β
N
2 (1+βN−1

2 )

N∏
j=1

Γ
(
βN−j+1

2

)
Γ
(
β
2

) . (1.25)

An important feature of the joint distribution of eigenvalues (1.23) is the presence of
the Vandermonde determinant, which comes from the Jacobian of the eigendecomposi-
tion. This term induces correlations between the different eigenvalues. In particular,
the joint distribution (1.23) vanishes for λi = λj and i 6= j. Therefore, the probability
of having two eigenvalues close to each other is very small. This induces some effective
repulsion between the eigenvalues, as we will see in more details in Chapter 2.

Although we have obtained the joint distribution (1.23) for β = 1, 2 or 4 from the
diagonalisation of Gaussian Wigner matrices, it can be obtained for general β > 0 by the
diagonalisation of a specific type of Wigner matrices: the tridiagonal Dumitriu-Edelman
ensembles [113].
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1.3. Wishart matrices – Laguerre ensembles

Additionally, the joint distribution (1.23) can also be derived by analysing the Dyson
Brownian motion [114].

Wigner conjectured that the statistics of the spacing of energy levels of the atomic
nuclei should be correctly described by the spacing of eigenvalues in the Gaussian en-
sembles. He computed the distribution of the levels spacing from the joint distribution
of eigenvalues (1.23) for N = 2 and β = 1 (to describe transitions between levels with
the same spin), and obtained:

P (s) = πs

2 e−πs2/4 , s = |λ1 − λ2|
〈|λ1 − λ2|〉

, (1.26)

where 〈· · ·〉 denotes the averaging with (1.23). The vanishing of this distribution for s =
0 shows the repulsion between the eigenvalue. Wigner conjectured that this form should
hold for bigger matrices [307]. Although the shape of the distribution remains similar, its
exact form is more complicated for larger values of N [224]. Wigner’s conjecture (1.26),
known as Wigner surmise has first been verified experimentally on the levels of 166Er in
Ref. [205] (see Fig. 1.1). A finer agreement was later obtained in Ref. [45] by combining
the data from 27 different nuclei (1726 spacings).

Beyond their applications in nuclear physics [45, 205, 309], the Gaussian ensembles
have then found applications in many other fields, such as quantum transport (in the
Hamiltonian approach, see for instance [148]) and cold atoms [77,100,218,219].

1.3 Wishart matrices – Laguerre ensembles
Before being introduced in physics by Wigner, random matrices have first been studied
by Wishart [311] in the context of statistics. His purpose was to analyse the statistical
properties of the sample covariance of a series of measurements. Consider a first series
of measurements {x(1)

i }i=1,...,M . One can think for example of a set of temperatures in a
given city, measured at different times i. The sample (or empirical) mean value of this
series is

x(1) = 1
M

M∑
i=1

x
(1)
i . (1.27)

We can also define the sample variance5

ṽar(x(1)) = 1
M − 1

M∑
i=1

(
x

(1)
i − x(1)

)2
. (1.28)

This latter gives information about the amplitude of fluctuations of the measures {x(1)
i }

around the empirical mean (1.27). If the x(1)
i ’s are random variables, these two quantities

are also random and one can investigate their probabilistic properties. For instance, if
the x(1)

i ’s are independent and identically distributed, the law of large number states
5The factor 1

M−1 , instead of 1
M which might be more natural at first sight, in the definition of the

sample variance is such that, if the x(1)
i ’s are independent random variables, the mean of (1.28) is the

probabilistic variance
〈
ṽar(x(1))

〉
= Var(x(1)).

– 19 –



Chapter 1. Introduction to random matrices

that both the empirical mean and variance converge towards the probabilistic mean and
variance for a large series of samples:

x(1) −→
M→∞

〈
x

(1)
i

〉
, ṽar(x(1)) −→

M→∞
Var(x(1)

i ) =
〈
(x(1)

i )2
〉
−
〈
x

(1)
i

〉2
, (1.29)

where 〈· · ·〉 denotes the averaging with respect to the distribution of the x(1)
i ’s.

One can also consider different series of measurements {x(j)
i }i=1,...,M for j = 1, 2, . . . , N .

In our example, these could represent measurements of temperatures at times i, in dif-
ferent cities labelled by j. We can define the empirical mean and variance for each
series as in Eqs. (1.27) and (1.28). We can additionally define the empirical covariance
between two different series as

c̃ov(x(a), x(b)) = 1
M − 1

M∑
i=1

(
x

(a)
i − x(a)

) (
x

(b)
i − x(b)

)
. (1.30)

This quantity gives information about the correlations between the two different series
a and b. We can write this definition in a more compact form by introducing theM×N
matrix of measurements (shifted by their mean)

X =


x

(1)
1 − x(1) · · · x

(N)
1 − x(N)

x
(1)
2 − x(1) · · · x

(N)
2 − x(N)

... ...
x

(1)
M − x(1) · · · x

(N)
M − x(N)

 . (1.31)

We can then rewrite (1.30) in terms of the empirical covariance matrix C:

c̃ov(x(a), x(b)) = Cab , with C = 1
M − 1 X

TX , (1.32)

and c̃ov(x(a), x(a)) = ṽar(x(a)).
Wishart was interested in the statistical properties of the matrix C. In a typical

sample, the entries Xij of (1.31) are correlated. However, even in the uncorrelated
case, the spectral properties of the covariance matrix C are nontrivial. Therefore, the
knowledge of these properties is essential to distinguish the specific features of a true
sample from the universal characteristics of C. Henceforth, Wishart constructed a Null
model, by considering random covariance matrices, in which the entries Xij of (1.31)
are independent and identically distributed. He choose these entries as Gaussian vari-
ables, with zero mean and unit variance. Note that unlike the matrices considered in
Section 1.2, this rectangular matrix has no particular symmetry and all its elements are
independent. We introduce then the matrix

Y = XTX , X of size M ×N , Xij ∼ N (0, 1) , (1.33)

which is, up to a factor, the empirical covariance matrix (1.32). This new matrix is real
symmetric, and thus corresponds to the orthogonal symmetry class β = 1. One can
show that its distribution is given by6 [244,311]:

P (Y ) ∝ (detY ) 1
2 (M−N+1)−1 e− 1

2 trY , Y > 0 , (1.34)
6The proof relies on the Jacobian (A.18) given in Appendix A.
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1.3. Wishart matrices – Laguerre ensembles

for M > N and Y > 0 means that the matrix Y has positive eigenvalues (since it takes
the form of a square, see (1.33)). This distribution, called the Wishart distribution,
is a generalisation of the Gamma distribution to real symmetric matrices. It can be
extended to the other symmetry classes by considering matrices X filled with complex
or quaternionic coefficients of variance 1/β (as for the Gaussian ensembles, this choice
is arbitrary). The β-Wishart distribution is then

P (Y ) ∝ (detY )
β
2 (M−N+1)−1 e−

β
2 trY , Y = X†X > 0 , Xij ∼ N (0, 1/β) (1.35)

where we denoted X† the adjoint7 of the matrix X.
The Wishart distribution can be extended to the case where the parameter M is not

an integer. This generalisation defined the three Laguerre Ensembles of random matrix
theory (indexed by β), which correspond to the distribution

P (Y ) = 1
LN,β(α) (detY )α−1−βN−1

2 e−
β
2 trY , α > β

N − 1
2 (1.36)

where the normalisation constant can be expressed in terms of a multivariate Gamma
function, defined in Appendix B.1:

LN,β(α) =
(

2
β

)Nα
ΓN,β(α) = πβN(N−1)/4

(
2
β

)Nα N∏
j=1

Γ
(
α− β j − 1

2

)
. (1.37)

We can recover the Wishart distribution (1.35) by setting α = βM/2.

As for the Gaussian ensembles, we can look for the distribution of the eigenval-
ues of the matrix Y . We again perform the eigendecomposition Y = U−1ΛU , as in
Eq. (1.19). The Jacobian is given by Eq. (1.20), and the eigenvalues and eigenvectors
again decorrelate. Integration over the eigenvectors gives:

P(λ1, . . . , λN) = 1
L̃N,β(α)

∏
i<j

|λi − λj|β
N∏
i=1

λ
α−1−βN−1

2
i e−

β
2 λi , λi > 0 (1.38)

where

L̃N,β(α) = π−β
N(N−1)

2

(
2
β

)Nα ΓN,β(α)ΓN,β
(
βN
2

)
Γ
(
β
2

)N
=
(

2
β

)Nα N∏
j=1

Γ
(
α− β j−1

2

)
Γ
(
βN−j+1

2

)
Γ
(
β
2

) . (1.39)

As for the Gaussian case discussed in Section 1.2, the Vandermonde determinant in
distribution (1.38) induces repulsion between the eigenvalues.

7Depending on the symmetry class, it can be a transposition (β = 1), conjugation and transposition
(β = 2) or the quaternionic conjugation and transposition (β = 4).
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Beyond its original application to the study of empirical covariance [311], the La-
guerre ensembles have found many other applications in diverse fields of Mathematics,
Physics or Finance [49,50,67,68]. For instance in the context of quantum transport, the
(inverse of the) Wigner-Smith matrix which describes quantum scattering in a chaotic
quantum dot [57, 58, 286] (see also Article 2, Article 4 and the reviews [194, 284]) or in
multichannel disordered wires [34] (also Article 1) belongs to the Laguerre ensembles.
These ensembles also appear in the description of quantum entanglement of random
bipartite quantum states [250, 251], interface models in statistical physics [249] (see
Article 3) and principal component analysis in statistics [214].

In this thesis we will encounter this distribution in Chapter 3 in the context of quan-
tum transport and in Chapter 4 for the statistical description of fluctuating interfaces.

1.4 Invariant ensembles
We have introduced two different sets of random matrices: the Gaussian ensembles (1.18)
and the Laguerre ensembles (1.36). These are particular examples of a much broader
class of ensembles, known as invariant ensembles. These are ensembles which verify the
invariance properties (1.3), (1.7) or (1.8). This means that the distribution P (H) of the
N ×N matrix H satisfies

P (UHU−1) = P (U) , U ∈


O(N) for β = 1 ,
U(N) for β = 2 ,
Sp(N) for β = 4 .

(1.40)

In general, we can write such distributions in the form

P (H) = 1
ZN,β

e−
β
2 trV (H) , (1.41)

where ZN,β is a normalisation constant and V is a function, called potential, which
verifies V (UHU−1) = UV (H)U−1. This is true for any function which can be expressed
as a power series. Note that the potential V must be sufficiently confining to ensure
the normalisability of (1.41). For example, the Gaussian ensembles (1.18) are obtained
by setting V (x) = x2, and the Laguerre ensembles (1.36) correspond to V (x) = x −
[ 2
β
(α − 1) − (N − 1)] ln x. For other examples of invariant ensembles, we can mention

the Cauchy ensemble, corresponding to the potential

V (x) = α ln(1 + x2) , α > N − 1 . (1.42)

The condition on α ensures the normalisability: the probability must decay sufficiently
fast at infinity. For example, this ensemble is involved in the proof of the equivalence
between the Hamiltonian approach and the stochastic approach to quantum transport,
in order to derive the Poisson kernel [54]. Another important ensemble for applications
to quantum transport (for the transmission through a quantum dot [24,30,154,301–303])
is the Jacobi ensemble, associated to

V (x) = −a ln x− b ln(1− x) for x ∈ [0, 1] , a, b > − 2
β
. (1.43)
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Ensembles Interval P(λ1, . . . , λN)
Gaussian λi ∈ R ∏

i<j |λi − λj|
β ∏

n e−β2 λ2
n

Laguerre λi ∈ R+ ∏
i<j |λi − λj|

β ∏
n λ

α−1−βN−1
2

n e−β2 λn

Cauchy λi ∈ R ∏
i<j |λi − λj|

β ∏
n(1 + λ2

n)−βα/2

Jacobi λi ∈ [0, 1] ∏
i<j |λi − λj|

β ∏
n λ

βa
2
n (1− λn)βb2

Table 1.2: A few ensembles of random matrix theory.

All the ensembles introduced in this chapter are summarised in Table 1.2.
Invariant ensembles play a central role in applications random matrix theory. For

these ensembles, the eigenvectors and eigenvalues are statistically independent and one
can focus only on the latter. The distribution of the eigenvalues can be easily obtained,
as we did for the Gaussian and Laguerre ensembles. Indeed, let us consider the eigen-
decomposition

H = UΛU−1 , Λ = Diag(λ1, . . . , λN) , (1.44)
where U belongs to the corresponding compact group, fixed by the Dyson index β. The
Jacobian of this change of variables is given in Appendix A.1, and reads

dH =
∏
i<j

|λi − λj|β
N∏
i=1

dλi dµ(U) , (1.45)

where dµ(U) is the Haar (uniform) measure on the corresponding compact group. The
joint distribution of the eigenvalues and eigenvectors is thus

P ({λi}, U) = 1
ZN,β

∏
i<j

|λi − λj|β
N∏
i=1

e−
β
2 V (λi) . (1.46)

As in the Gaussian and Laguerre cases, the eigenvalues and eigenvectors are statistically
independent. Furthermore, the eigenvectors are uniformly distributed and can easily be
integrated over. We obtain

P(λ1, . . . , λN) = 1
Z̃N,β

∏
i<j

|λi − λj|β
N∏
i=1

e−
β
2 V (λi) , (1.47)

where the normalisation constant Z̃N,β is related to the one of (1.41) by

Z̃N,β = ZN,β
vN,β

, where vN,β =
∫

dµ(U) =
πβ

N(N−1)
2 Γ

(
β
2

)N
ΓN,β

(
βN
2

) , (1.48)

expressed in terms of the multivariate Gamma function ΓN,β defined in Appendix B.
We see that the distributions (1.23) and (1.38) obtained for the Gaussian and La-

guerre ensembles respectively are specific examples of invariant ensembles. We can stress
that the observation made in the Gaussian ensembles is general: the presence of the
Vandermonde determinant (which comes from the Jacobian of the eigendecomposition)
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Chapter 1. Introduction to random matrices

induces strong correlations between the eigenvalues. Since the distribution (1.47) van-
ishes for λi = λj (i 6= j), the probability of having two eigenvalues close to each other is
small. This causes an effective repulsion between the eigenvalues, which we will discuss
in more details in Chapter 2.
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Chapter 2

The Coulomb gas method and the
distribution of linear statistics

In this chapter, we give a general introduction to one of the main tools used in this
thesis: the Coulomb gas method. It was first introduced by Dyson and Mehta [115,
117], and has then been applied to many different problems of random matrices, such
as the study of the largest eigenvalue [101, 212, 213] (which is required to study the
distribution of the number of stationary points in a Gaussian field [22,52,142,144,149])
or the number of eigenvalues in a given domain [210,211,217–219]. It also proved to be
very efficient in the study of the electronic transport through a quantum dot [30, 301,
302], data transmission in multiple input multiple output (MIMO) channels [186, 187],
principal component analysis [214], bipartite quantum entanglement [99, 125, 250, 251],
one dimensional fluctuating interfaces in statistical physics [249] or cold atoms [218,219].
For references in the mathematical literature, see for instance [36,37].

The Coulomb gas method is an extremely powerful tool to study invariant ensembles,
for which the joint distribution of eigenvalues takes the form1

P(λ1, . . . , λN) ∝
∏
i<j

|λi − λj|β
N∏
i=1

e−
βN

2 V (λi) . (2.1)

The idea of the Coulomb gas approach is to rewrite this joint distribution of eigenvalues
as a Gibbs weight

P(λ1, . . . , λN) ∝ e−
βN2

2 E(λ1,...,λN ) , (2.2)

where the Dyson index β plays the role of an inverse temperature and we introduced
the “energy”

E(λ1, . . . , λN) = − 1
N2

∑
i 6=j

ln |λi − λj|+
1
N

N∑
i=1

V (λi) . (2.3)

This can be interpreted as the energy of a one-dimensional gas of particles, at positions
{λi}, trapped in an external potential V (λ), which interact with logarithmic repulsion,
see Fig. 2.1. This long range repulsion corresponds to the Coulomb interaction of charged

1We introduced a factor N in the exponential compared to Eq. (1.47) for convenience, as we will
see later.
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Chapter 2. The Coulomb gas method and the distribution of linear statistics

Figure 2.1: In the Coulomb gas ap-
proach, the eigenvalues {λi} of a ran-
dom matrix are mapped onto the po-
sitions of particles in a 1D gas with
logarithmic interaction, confined by a
potential V (x). Here we represented a
harmonic potential.

particles in 2D, hence the name of this approach2. In the following, we will thus often
use the term charges to refer to the eigenvalues. This approach is particularly convenient
as it permits to forge some physical intuition in random matrix theory by thinking of
the eigenvalues as interacting charges.

We expect the typical distribution of charges {λn} to balance the potential and
interaction energy. Let us denote λtyp a typical scale for the eigenvalues. The interaction
energy scales as

1
N2

∑
i 6=j

ln |λi − λj| = O(N0) , (2.4)

independently of the scaling of the eigenvalues. While the potential energy has the
scaling

1
N

N∑
i=1

V (λi) = O(V (λtyp)) . (2.5)

If we assume that the potential is independent ofN , these two contributions thus balance
each other in (2.3) if the eigenvalues are of order 1 as N →∞:

λtyp = O(N0) . (2.6)

This is why we chose to multiply the potential V by a factor N in (2.1): this ensures
that the eigenvalues will not scale with N . Note also that the energy (2.3) is also O(N0)
as N →∞.

We can now apply standard tools from statistical mechanics to extract some infor-
mation from the joint distribution (2.2). Let us first see how we can obtain the typical
distribution of eigenvalues for large N (which maximises (2.2)), and then apply this
formalism to get the distribution of other observables, known as linear statistics.

2.1 Typical density of eigenvalues
Let us look for the typical distribution of eigenvalues. For largeN , the Gibbs weight (2.2)
is dominated by the configuration of charges {λ(0)

n } which minimises the energy (2.3).
We can find this configuration by taking the derivative of this energy with respect to
each λi:

∂E

∂λi

∣∣∣∣∣
{λ(0)
n }

= 0 ⇒ − 2
N

N∑
j=1
j 6=i

1
λ

(0)
i − λ

(0)
j

+ V ′(λ(0)
i ) = 0 , (2.7)

2Note that it is the 2D Coulomb interaction for a 1D gas. To avoid confusion, the term log-gas is
sometimes used in the literature.
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2.1. Typical density of eigenvalues

where V ′ denotes the derivative of the potential. This equation can thus be interpreted
as a force balance for the charge at position λ(0)

i : the external force that derives from
the potential must balance the sum of the repulsion of all the other charges. To solve
this equation in the limit N →∞, we switch to a continuous description. Introduce the
empirical density of charges

ρ0(x) = 1
N

N∑
i=1

δ
(
x− λ(0)

i

)
. (2.8)

In the large N limit, we can replace the density (2.8) by a continuous one. Equation (2.7)
can thus be rewritten as

2−
∫ ρ0(y)
x− y

dy = V ′(x) , (2.9)

where we denoted −
∫
the Cauchy principal value. This equation holds for all x in the

support of the density ρ0. Our aim is thus to invert this integral equation to obtain the
typical (or optimal) density of charges. The inversion process depends on the support
of this density. If the density was supported on the whole real line, Eq. (2.9) would
correspond to a Hilbert transform, which can be easily inverted [291]. However, this
is not the case. The easiest way to prove it is to look at the behaviour for x → ∞ of
Eq. (2.9). If ρ0 was supported on R, we would obtain:

−
∫ ρ0(y)
x− y

dy ' 1
x
, for x→∞ , (2.10)

where we used that the density is normalised
∫
ρ0 = 1. Since the potential V must

be confining to ensure the normalisability of the joint distribution (2.1), the force bal-
ance (2.9) cannot be satisfied if ρ0 is supported on R. Therefore, the support of ρ0 is
bounded. Let us suppose that this support is a compact interval [a, b] with a < b. In this
case, Eq. (2.9) can be inverted using a formula due to Tricomi [296] (see Appendix A.5).
We obtain

ρ0(x) = 1
π
√

(x− a)(b− x)

1 +−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
V ′(t)

2

 . (2.11)

This expression can then be evaluated for specific choices of potential V to give an
explicit form for the density. This formula holds only if the optimal density has a
compact support [a, b]. We can expect this to be true if the potential V has a single
minimum: in this case, the charges will accumulate at the bottom of the well and spread
due to the repulsion. If the potential V has several local minima, we can have more
complex densities. This will be discussed in Chapters 3 and 4.

To illustrate this discussion, let us follow explicitly the procedure described above in
the case of the Gaussian and Laguerre ensembles.

2.1.1 Wigner semicircle distribution
We consider the three Gaussian ensembles introduced in Section 1.2. We can rewrite
the joint distribution of the eigenvalues (1.23) in the form

P(λ1, . . . , λN) ∝
∏
i<j

|λi − λj|β
N∏
i=1

e−
βN

2 λ2
i , (2.12)
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Figure 2.2: Typical density of eigen-
values for Gaussian matrices (GOE,
GUE and GSE), i.e. Wigner’s semi-
circle law (2.17) compared to an his-
togram obtained by diagonalising one
GUE matrix of size N = 1000.
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where we introduced a factor N in the exponential such that this distribution coincides
with (2.1), with a harmonic confinement V (x) = x2. This potential having a single
minimum, we expect the density ρ0 to be supported on an interval [a, b] to be determined.
Equation (2.11) becomes:

ρ0(x) = 1
π
√

(x− a)(b− x)

1 +−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
t

 . (2.13)

The principal value integral is given in Appendix C, by relation (C.11). We obtain

ρ0(x) = 1
π
√

(x− a)(b− x)

{
1 + (b− a)2

8 + a+ b

2 x− x2
}
. (2.14)

There only remains to determine the boundaries a and b. Using the symmetry of the
problem under the reflection x→ −x, we deduce that

a = −b . (2.15)

We thus only need to find the value of b. This can be done using the continuity of ρ0.
Since the density vanishes outside the interval [a, b], we impose that ρ0(a) = ρ0(b) = 0
in Eq. (2.14). This reduces to imposing that the expression inside the brackets vanishes
at these points which yields:

b = −a =
√

2 . (2.16)
Using this result in Eq. (2.14) we obtain the density

ρ0(x) = 1
π

√
2− x2 (2.17)

This is the celebrated Wigner semicircle law for the distribution of eigenvalues of Gaus-
sian matrices [1, 135, 224]. Wigner first obtained this result by studying the moments
of this distribution in the large N limit [306, 310]. Here, we have easily recovered this
result by using the Coulomb gas method. Note that the density ρ0 is the same for all
values of β, due to the fact that we have chosen to multiply the potential V by β/2
in (2.1). It is represented in Fig. 2.2, along with numerical simulations.
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Figure 2.3: Typical density of
eigenvalues for Wishard ma-
trices (Laguerre ensembles),
i.e. the Marčenko-Pastur dis-
tribution. Left: ν = 0,
Eq. (2.22). Right: ν = 1,
Eq. (2.24). The histograms
are obtained by diagonalising
matrices of size N = 1000.

2.1.2 Marčenko-Pastur distribution
We now consider the Laguerre ensembles described in Section 1.3. We rewrite the joint
distribution of eigenvalues (1.38) as

P(λ1, . . . , λN) ∝
∏
i<j

|λi − λj|β
N∏
i=1

λ
βN

2 ν+µ−1+β
2

i e−
βN

2 λi , λi > 0 , (2.18)

where we rewrote the parameter α of Eq. (1.38) as

α = βN

2 (ν + 1) + µ , ν > 0 , (2.19)

in order to isolate its N dependence (the condition ν > 0 ensures normalisability at
leading order in N). In terms of Wishart matrices, this corresponds to the distribution
of eigenvalues of matrices Y = X†X, where X is of size M ×N with M ' (ν + 1)N for
N → ∞, and Xij ∼ N (0, 1/β). As in the Gaussian case, we introduced a factor N in
the exponential to identify (2.18) with Eq. (2.1), with the potential

V (x) = x− ν ln x , x > 0 and ν > 0 , (2.20)

where we dropped the subleading O(N−1) corrections which are irrelevant at leading
order. The domain x < 0 is excluded since the eigenvalues are positive. In terms of
the Coulomb gas, this condition reduces to confine the gas on the positive axes with a
wall at the origin. We can compute the typical density ρ0 from Eq. (2.11), by using the
integrals (C.10) and (C.14). We obtain:

ρ0(x) = 1
π
√

(x− a)(b− x)

{
1 + a+ b

4 − x

2 −
ν

2

(
−1 +

√
ab

x

)}
. (2.21)

We now need to distinguish two cases:

• If ν = 0, the potential (2.20) is not repulsive at the origin, thus the charges tend
to accumulate there. Therefore, there is no reason to impose ρ0(a) = 0. Instead,
we impose a = 0. Then, the condition ρ0(b) = 0 yields b = 4, such that the density
takes the form

ρ0(x) = 1
2π

√
4− x
x

(2.22)
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• If ν > 0, the potential (2.20) is repulsive at the origin, so we expect 0 < a < b.
Imposing ρ0(a) = ρ0(b) = 0, we deduce

a = 2 + ν − 2
√

1 + ν , b = 2 + ν + 2
√

1 + ν . (2.23)

The typical density then takes the form

ρ0(x) = 1
2πx

√
(x− a)(b− x) (2.24)

Note that we can recover (2.22) by taking the limit ν → 0.

The densities (2.22) and (2.24) have first been derived by Marčenko and Pastur [221].
They are represented in Fig. 2.3 for ν = 0 and ν = 1

2.2 Distribution of linear statistics of eigenvalues
We have seen that the Coulomb gas method is very powerful to obtain the typical density
of eigenvalues of a random matrix, in the limit of large matrices N →∞. We will now
apply this method to study other kind of observables, known as linear statistics. These
are quantities of the form

L =
N∑
n=1

f(λn) , (2.25)

where f can be any given function, not necessarily linear.
Many quantities take the form of linear statistics, such as the number of eigenvalues

in a given domain [210, 211, 214, 217–219]. In the context of quantum transport, the
conductance and shot noise of a quantum dot can also be expressed as linear statis-
tics [30,191,278,301,302], as well as the Wigner time delay [164,284,286]. Other exam-
ples include the mutual information in MIMO channels [186, 187] or the Renyi entropy
as a measure of quantum entanglement [99,125,250,251].

2.2.1 From the typical fluctuations to the large deviations
Different methods have been introduced to study observables of the form (2.25). The
typical fluctuations can be studied using orthogonal polynomials [224] or Selberg’s in-
tegral [191, 224, 273, 278]. In particular, a formula3 for the variance of L has first been
obtained by Dyson and Mehta [117] in the Gaussian ensembles:

Var(L) ' 1
βπ2

∫ ∞
0

∣∣∣f̂(k)
∣∣∣2 k dk , f̂(k) =

∫ ∞
−∞

eikx f(x) dx . (2.26)

This general formula exhibits a universal scaling in 1/β. Another formula has been
derived by Beenakker [28, 29] in the Laguerre ensembles (2.18) (with ν = 0), for appli-
cations in coherent quantum transport:

Var(L) ' 1
βπ2

∫ ∞
0
|F (k)|2 k tanh(πk) dk , F (k) =

∫ ∞
−∞

eikx f(ex) dx . (2.27)
3The formula (2.26) was obtained for distributions of the form (2.1), without the factor N in front

of the potential V , as in Eq. (1.47). The two are related by a rescaling of the eigenvalues with N , which
translates in a rescaling of the linear statistics L.
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Several other formulae can be found in the literature, see for instance Refs. [26,33,181].
The question of atypical fluctuations, associated to rare events, has been addressed

more recently [101,300]. It fits into the framework of large deviations theory, which has
been an intense field of study both in Mathematics and Physics. For a review on large
deviations, see [293]. In this perspective, the Coulomb gas method has proved to be
a very powerful tool to analyse the full distribution (typical and atypical fluctuations)
of a linear statistics in the limit N → ∞ [135]. We now show how the Coulomb gas
method can be applied for this purpose.

Let us first rescale the linear statistics to manipulate quantities of order O(N0).
Since the eigenvalues {λn} are O(N0), the linear statistics (2.25) is O(N). Therefore,
we introduce the rescaled linear statistics

s = 1
N
L = 1

N

N∑
n=1

f(λn) . (2.28)

We can formally write the distribution of s in terms of the joint distribution of the
eigenvalues (2.1) as:

PN(s) =
∫

dλ1 · · · dλN P(λ1, . . . , λN) δ
(
s− 1

N

N∑
n=1

f(λn)
)
, (2.29)

which we can rewrite in terms of the energy (2.3):

PN(s) =

∫
dλ1 · · · dλN e−

βN2
2 E(λ1,...,λN ) δ

(
s− 1

N

N∑
n=1

f(λn)
)

∫
dλ1 · · · dλN e−

βN2
2 E(λ1,...,λN )

. (2.30)

We will now show how to use the Coulomb gas method to analyse this distribution.
First, we study the cumulant generating function in Section 2.2.2. Then, we study the
distribution PN(s) in Section 2.2.3. An example is given in Section 2.2.4. Finally, we
slightly reformulate the method in Section 2.2.5 to introduce the procedure and the
notations we will use in Chapters 3 and 4.

2.2.2 Characteristic function and cumulants
Let us first study the cumulants of the distribution PN(s) by introducing the moment
generating function

GN(µ) =
〈

e−
βN2

2 µs
〉

=
∫
PN(s) e−

βN2
2 µs ds . (2.31)

From the distribution (2.30), we obtain

GN(µ) =

∫
dλ1 · · · dλN exp

[
−βN

2

2

(
E(λ1, . . . , λN) + µ

N

N∑
n=1

f(λn)
)]

∫
dλ1 · · · dλN exp

[
−βN

2

2 E(λ1, . . . , λN)
] . (2.32)
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Since the energy is of order O(N0), we can estimate these integrals for N → ∞ by a
saddle point method. The denominator is dominated by the configuration of eigenvalues
(or charges) that minimises the energy (2.3). This is the optimal configuration {λ(0)

n },
which verifies (2.7). However, the numerator is dominated by the configuration {λ̃n(µ)},
which minimises

F (λ1, . . . , λN ;µ) = E(λ1, . . . , λN) + µ

N

N∑
n=1

f(λn) . (2.33)

Taking a derivative with respect to λi gives

∂F

∂λi

∣∣∣∣∣
{λ̃n}

= 0 ⇒ − 2
N

N∑
j=1
j 6=i

1
λ̃i − λ̃j

+ V ′(λ̃i) + µf ′(λ̃i) = 0 . (2.34)

This equation can, like (2.7), be interpreted as a force balance on the particle located at
λ̃i, but with an additional force µf ′. Therefore, we reduced the problem of computing
the moment generating function of a linear statistics to studying the effect of an external
force on the Coulomb gas. Let us suppose we are able to solve (2.34) for this optimal
configuration {λ̃n(µ)} (we will describe a procedure to do so in a second step). The
saddle point estimate of (2.32) gives

GN(µ) ∼ exp
[
−βN

2

2
(
F ({λ̃n(µ)};µ)− E({λ(0)

n })
)]

, (2.35)

where the symbol ∼ means logarithmic equivalence:

lim
N→∞

− 2
βN2 lnGN(µ) = F ({λ̃n(µ)};µ)− E({λ(0)

n }) . (2.36)

There remains now to evaluate F ({λ̃n(µ)};µ). Note that we can easily evaluate the
second term (energy of the optimal configuration {λ(0)

n }) simply by setting µ = 0:

E({λ(0)
n }) = F ({λ̃n(µ = 0)};µ = 0) . (2.37)

We will thus focus on evaluating F ({λ̃n(µ)};µ). This is usually very difficult to do in
practice, due to the complex form of the energy (2.3). However, the problem greatly
simplifies if we compute the derivative with respect to µ:

d
dµF ({λ̃n(µ)};µ) =

n∑
i=1

dλ̃i
dµ

∂F

∂λi

∣∣∣∣∣
{λ̃n(µ)}︸ ︷︷ ︸
=0

+ ∂F

∂µ

∣∣∣∣∣
{λ̃n(µ)}

= 1
N

N∑
i=1

f(λ̃i(µ)) . (2.38)

Therefore, knowing the optimal configuration {λ̃n(µ)}, we can easily compute the value
of F ({λ̃n(µ)};µ) by integration of (2.38) with respect to µ (the value for µ = 0 is given
by Eq. (2.37)).
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Figure 2.4: Effective poten-
tial Veff(x) = V (x) + µf(x)
(red) to which is subjected
the Coulomb gas, along with
the corresponding density of
charges ρ̃(x;µ) (blue). Plots
are for the Gaussian ensem-
bles V (x) = x2, with f(x) =
x2 (example of Section 2.2.4).
Top: the unconstrained case
µ = 0. Bottom left: µ > 0,
corresponding to a stronger
confinement. Bottom right:
µ < 0, i.e. weaker con-
finement (dashed lines are for
µ = 0).

Continuous description for the density of eigenvalues

We now come back to finding the solution of the saddle point equation (2.34). For large
N , it is convenient to switch to a continuous description. Let us denote

ρ̃(x;µ) = 1
N

N∑
n=1

δ
(
x− λ̃n(µ)

)
(2.39)

the corresponding density of charges for a given value of µ. In the limit N → ∞,
Eq. (2.34) becomes

2−
∫ ρ̃(y;µ)

x− y
= V ′(x) + µf ′(x) (2.40)

This equation shows that the density ρ̃(x;µ) is the optimal density for the Coulomb gas
in the effective external potential

Veff(x) = V (x) + µf(x) . (2.41)

Therefore, analysing the distribution of a linear statistics reduces to modifying the
potential in which the Coulomb gas is placed. Changing the value of µ thus changes
the potential and consequently deforms the density ρ̃ away from the typical one ρ0, as
illustrated in Fig. 2.4).

Equation (2.40) can again be solved explicitly, at least in the simplest cases, by mak-
ing use of Tricomi’s formula (A.42). Solving this equation allows to express the optimal
density ρ̃ in terms of the parameter µ. We can now use this solution to rewrite (2.38)
as

d
dµF ({λ̃n(µ)};µ) '

∫
ρ̃(x;µ) f(x) dx . (2.42)
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We can then obtain the expression of F ({λ̃n(µ)};µ) by integrating this expression.
Therefore, the moment generating function takes the form

GN(µ) ∼
N→∞

exp
[
−βN

2

2 Ψ(µ)
]
, with dΨ

dµ =
∫
ρ̃(x;µ) f(x) dx , Ψ(0) = 0 (2.43)

This shows that the moment generating function takes a large deviations form, where
Ψ is called large deviation function. We can easily deduce the cumulant generating
function, defined as the logarithm of (2.31):

lnGN(µ) = −βN
2

2 Ψ(µ) =
∞∑
k=1

1
k!

(
−βN

2µ

2

)k 〈
sk
〉
c
, (2.44)

where we denoted
〈
sk
〉
c
the kth cumulant of s. Therefore, we obtain directly the cumu-

lants of the linear statistics from the derivatives of the large deviation function Ψ:

〈
sk
〉
c
'
(
− 2
βN2

)k−1

Ψ(k)(0) . (2.45)

In particular, the variance has the scaling

Var(s) ∝ 1
βN2 . (2.46)

This specific scaling in 1/N2 is a signature of the strong correlations between the eigen-
values of random matrices. In the uncorrelated situation, the relative fluctuations of
a sum of independent variables is known to scale as 1/N (central limit theorem). The
presence of correlations thus strongly reduces the relative fluctuations.

The procedure to compute the cumulants is, in principle, straightforward: one should
find the solution ρ̃(x;µ) of Eq. (2.40), then compute the large deviation function Ψ from
Eq. (2.43) and then expand it as a power series in µ to identify the cumulants. Before
carrying out this procedure explicitly on an example in Section 2.2.4, let us first study
the full distribution PN(s).

2.2.3 Distribution of the linear statistics
We have obtained a compact expression for the moment generating function (2.31) in
a large deviations form, see Eq. (2.43). This function is the Laplace transform of the
distribution PN(s), see (2.31). We can thus write the distribution as the inverse Laplace
transform

PN(s) = βN2

2
1

2iπ

∫ c+i∞

c−i∞
GN(µ) e

βN2
2 sµdµ , (2.47)

where the integral runs over a vertical contour Reµ = c of the complex plane, located
at the right of all (possible) singularities of GN(µ). Using the expression (2.43) for the
moment generating function, and dropping the prefactors, we obtain

PN(s) ∼
N→∞

1
2iπ

∫ c+i∞

c−i∞
exp

[
−βN

2

2 (Ψ(µ)− sµ)
]

dµ . (2.48)
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This integral can be evaluated via a saddle point method. The saddle point is given by
the value µ?(s), solution of

dΨ
dµ

∣∣∣∣∣
µ?(s)
− s = 0 ⇒

∫
ρ̃(x;µ?(s)) f(x) dx = s . (2.49)

Then, the distribution is given by

PN(s) ∼
N→∞

exp
[
−βN

2

2 Φ(s)
]
, (2.50)

where
Φ(s) = Ψ(µ?(s))− sµ?(s) . (2.51)

The distribution of the linear statistics also takes a large deviations form, with a large
deviation function Φ, which is simply deduced from Ψ by a Legendre transform4. The
direct consequence is that

dΦ
ds = dµ?

ds
dΨ
dµ

∣∣∣∣∣
µ?(s)︸ ︷︷ ︸

=s

−s dµ?
ds − µ?(s) = −µ?(s) . (2.52)

Therefore, we can compute the large deviation function Φ(s) by direct integration of
µ?(s), obtained from Eq. (2.49). Let us denote s0 such that µ?(s0) = 0. From Eq. (2.51),
we have Φ(s0) = 0 since Ψ(0) = 0. Therefore, we can write the distribution as

PN(s) ∼
N→∞

exp
[
−βN

2

2 Φ(s)
]
, Φ(s) = −

∫ s

s0
µ?(s′) ds′ (2.53)

The value s0 has then a simple interpretation: since Φ(s0) = dΦ
ds (s0) = 0, it is the

minimum of the large deviation function, thus the maximum of the distribution PN(s).
s0 is thus the typical value of the linear statistics (2.25).

The large deviations form (2.53) encodes information about the typical fluctuations
around s0, but also about the tails of the distribution which result from atypical fluctu-
ations. The challenge is to obtain an analytical form for this large deviation function.

2.2.4 A first illustration: a simple solvable example
Having described the general procedure to obtain the distribution of a given linear statis-
tics via the Coulomb gas method, let us illustrate it on an example. We consider the
three Gaussian ensembles (GOE, GUE and GSE) introduced in Chapter 1, correspond-
ing to the joint distribution of eigenvalues (2.1), with V (x) = x2. We will consider the
linear statistics

L =
N∑
i=1

λ2
i , (2.54)

which corresponds to (2.25) for f(x) = x2. We start with this specific example as it is
exactly solvable for all N and will thus be a test of the Coulomb gas method. We first
derive an exact expression for the distribution of s = L/N , and then apply the Coulomb
gas approach.

4This property is knwon as the Gärtner-Ellis theorem [120,170] (see also the review [293]).
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Exact distribution

The moment generating function (2.32) takes the form:

G exact
N (µ) =

∫
dλ1 · · · dλN exp

−βN2

2

− 1
N2

∑
i 6=j

ln |λi − λj|+
1
N

N∑
i=1

λ2
n + µ

N

N∑
n=1

λ2
n


∫

dλ1 · · · dλN exp
−βN2

2

− 1
N2

∑
i 6=j

ln |λi − λj|+
1
N

N∑
i=1

λ2
n

 .

(2.55)
Making the change of variables xi =

√
1 + µ λi in the numerator, we obtain:

G exact
N (µ) = 1

(1 + µ)N/2 exp
[
−βN

2

2
N(N − 1)

N2 ln
√

1 + µ

]

×

∫
dx1 · · · dxN exp

−βN2

2

− 1
N2

∑
i 6=j

ln |xi − xj|+
1
N

N∑
i=1

x2
n


∫

dλ1 · · · dλN exp
−βN2

2

− 1
N2

∑
i 6=j

ln |λi − λj|+
1
N

N∑
i=1

λ2
n

 . (2.56)

The multiple integrals cancel out, and we obtain the exact moment generating function

G exact
N (µ) = (1 + µ)−N2 (1+βN−1

2 ) . (2.57)

We can compute the inverse Laplace transform to deduce the exact distribution of
s = L/N :

P exact
N (s) = 1

Γ(N2 + βN N−1
4 )

(
βN2

2

)N
2 (1+βN−1

2 )

s
βN2

4 −
N
2 (β2−1)−1 e−

βN2
2 s , (2.58)

which is a Gamma distribution. This result is valid for all values of N , but in the limit
N →∞ we have

− 2
βN2 lnP exact

N (s) = s− 1
2 −

1
2 ln(2s) +O

( 1
N

)
, (2.59)

where we have used Stirling’s formula [166]:

ln Γ(z) = z ln z − z + 1
2 ln 2π

z
+O(z−1) . (2.60)

The distribution P exact
N (s) is represented in Fig. 2.5 for different values of N . We will

use the exact result (2.58,2.59) to check the validity of the Coulomb gas method.

Approximate distribution from the Coulomb gas

We now apply the procedure of section 2.2 to analyse the largeN limit of the distribution
of s via the Coulomb gas technique. We first need to solve the integral equation (2.40),
for the density ρ̃, which becomes in this case:

−
∫ ρ̃(y;µ)

x− y
dy = (1 + µ)x . (2.61)
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This equation can be solved using Tricomi’s theorem (A.42), assuming that the density
ρ̃ has a compact support [a, b]. This gives:

ρ̃(y;µ) = 1
π
√

(x− a)(b− x)

1 + (1 + µ)−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
t

 . (2.62)

Using relation (C.11) to evaluate the integral, we deduce

ρ̃(y;µ) = 1
π
√

(x− a)(b− x)

{
1 + (1 + µ)

[
(b− a)2

8 + a+ b

2 x− x2
]}

. (2.63)

The values of a and b are then deduced by imposing that the density vanishes at these
points, from which we deduce

b = −a =
√

2
1 + µ

(2.64)

and
ρ̃(y;µ) = 1 + µ

π

√
b2 − x2 . (2.65)

This optimal density is shown in Fig. 2.4 for different values of µ.
The moment generating function takes the form (2.43), with a large deviation func-

tion Ψ(µ) which can be computed from

dΨ
dµ =

∫ b

a
ρ̃(x;µ) x2 dx = 1

2(1 + µ) , with Ψ(0) = 0 . (2.66)

Therefore, we obtain

Ψ(µ) = 1
2 ln(1 + µ) ⇒ GN(µ) ∼ (1 + µ)−

βN2
4 , (2.67)

which coincides with the large N behaviour of (2.57). From this expression, we can
straightforwardly extract the cumulants of the distribution of s by using Eq. (2.45):

〈
sk
〉
c
'
(

2
βN2

)k−1

(k − 1)! . (2.68)

We can now obtain the form of the full distribution PN(s). First, we need to find
the value µ?(s) by solving (2.49), which reads:

s =
∫ b

a
ρ̃(x;µ?(s)) x2 dx = 1

2(1 + µ?(s))
⇒ µ?(s) = 1

2s − 1 . (2.69)

The typical value s0 is the solution of the equation µ?(s0) = 0, which gives s0 = 1/2.
We then obtain the large deviation function controlling the large N behaviour of PN(s)
from (2.52):

Φ(s) = −
∫ s

s0
µ?(s′)ds′ = s− 1

2 −
1
2 ln(2s) . (2.70)

This large deviation function obtained from the Coulomb gas method matches the
asymptotic result (2.59) obtained from the exact computation of the distribution (2.58).
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Figure 2.5: Large deviation func-
tion Φ(s) (dashed line), given by
Eq. (2.70), compared to the exact re-
sult (2.58), for β = 2, and N = 3, 5,
10 and 50. The inset represents the
distribution PN(s) itself. The dashed
lines are the asymptotic form (2.53)
for N = 3, 5 and 10 (normalised).
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Comparison between this exact result and the large deviation function (2.70) is shown
in Fig. 2.5. The exact form (2.58) rapidly reaches the asymptotic form (2.70): the two
are in excellent agreement for N = 10 and the curves are indistinguishable in the plot
range for N = 50. This shows that the behaviour obtained in the limit N → ∞ de-
scribes very well the distribution of the linear statistics for values of N relatively small
(N ∼ 10− 50).

This example validates the use of the Coulomb gas technique to obtain the asymp-
totic large deviations form of the distribution PN(s) for N →∞.

2.2.5 Reformulation in a continuous setting
In Sections 2.2.3 and 2.2.4 we have shown how the Coulomb gas method can be applied
to obtain the distribution of a linear statistics in the limit N → ∞. In this section we
present a different derivation of Eq. (2.53), as it is often found in the literature (see for
instance [88,101,102,300,301]).

Formulation in terms of functional integrals

Up to now, the continuous approximation was introduced in Section 2.2.2 in order to
find the optimal distribution of eigenvalues, i.e. solve Eq. (2.38). We will show that it
is possible to start from a fully continuous description by introducing a path integral
formalism. Here, we sketch the main ideas of this approach. For a more detailed
derivation see Ref. [102].

We again introduce the empirical density of eigenvalues is defined as

ρ(x) = 1
N

N∑
n=1

δ(x− λn) . (2.71)

In the limit N → ∞, this density can be replaced by a continuous one, which must
satisfy the condition ∫

ρ(x)dx = 1 . (2.72)
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Figure 2.6: An histogram of the
eigenvalues {λn}, consisting of
bins of widths δx at positions xi
containing ni eigenvalues. In the
limit δx → 0 it converges to the
density ρ(x).

The idea is thus to replace the integration measure over the eigenvalues {λn} by a
(functional) measure over the density ρ:

P({λn}) dλ1 · · · dλN −→ Dρ P [ρ] δ
(∫

ρ(x)dx− 1
)
, (2.73)

where P [ρ] is a functional of the density encoding the weight (2.2) of the configuration
{λn} described by ρ. However, this substitution must be done carefully. Indeed, when
switching from a discrete description in terms of the eigenvalues {λn} to a continuous
one in terms of the density ρ, there is a loss of information which will be accounted for by
adding an entropic contribution. This entropy comes from the fact that the permutations
of the set {λi} give rise to the same density ρ(x). To estimate this entropy, we construct
this density from an histogram of the set {λi}. We denote ni the number of eigenvalues
in an interval of size δx around the point xi, as shown in Fig. 2.6. The number of ways
to arrange the eigenvalues {λi} (by permuting them) into the histogram is

N !∏
i ni!

. (2.74)

Taking the logarithm and using Stirling’s formula (2.60), we obtain:

ln N !∏
i ni!
' N lnN −N −

∑
i

ni lnni +
∑
i

ni = N lnN −
∑
i

ni lnni . (2.75)

The bins {ni} and the density ρ(x) are related by
ni
N

= ρ(xi)δx , (2.76)

therefore:
ln N !∏

i ni!
' −N ln δx−N

∑
i

ρ(xi) δx ln ρ(xi) . (2.77)

In the continuous limit δx→ 0 we can replace the sum by an integral. We obtain:

N !∏
i ni!
' (δx)−N eNS [ρ] , (2.78)

where we introduced the classical Shannon entropy

S [ρ] = −
∫
ρ(x) ln ρ(x) dx (2.79)
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For simplicity, we can drop the constant factor δx by redefining the normalisation con-
stant of distribution P [ρ] which will multiply the measure. Therefore, when switching
to a continuous description, the correct substitution is (at leading order in N):

P({λn}) dλ1 · · · dλN −→ Dρ eNS [ρ] P [ρ] δ
(∫

ρ(x)dx− 1
)
. (2.80)

Let us now discuss the probability measure P [ρ], which is the continuous counterpart
of Eq. (2.2). It can be obtained by taking the large N limit of the energy (2.3). The
potential energy (second term) simply gives

1
N

N∑
i=1

V (λi) −→
N→∞

∫
ρ(x) V (x) dx . (2.81)

However, as already stressed by Dyson [115], we must treat more carefully the self-
interaction energy (first term of (2.3)) because of the diagonal terms:

− 1
N2

∑
i 6=j

ln |λi − λj| ' −
∫

dx ρ(x)
(∫ x− δλ2 +

∫
x+ δλ

2

)
dy ρ(y) ln |x− y| , (2.82)

where we excluded from the double integral a region of size δλ, which is the typical
gap between two eigenvalues near the point x. This gap can be estimated from the
density (2.71) as

δλ ' 1
Nρ(x) . (2.83)

With this estimate, Eq. (2.82) becomes

− 1
N2

∑
i 6=j

ln |λi − λj| ' −
∫

dx
∫

dy ρ(x)ρ(y) ln |x− y|

− 1
N

∫
ρ(x) [ln(2Nρ(x))− 1] dx . (2.84)

Using that the density is normalised, we get∫
ρ(x) [ln(2Nρ(x))− 1] dx = ln(2N)− 1−S [ρ] , (2.85)

where S [ρ] is the entropy (2.79). Combining this expression with (2.84) and (2.81), we
obtain that the energy (2.3) takes the form:

E({λn}) ' E [ρ] + 1
N

S [ρ] , (2.86)

where we have introduced the energy functional

E [ρ] = −
∫

dx
∫

dy ρ(x)ρ(y) ln |x− y|+
∫

dx ρ(x)V (x) (2.87)

and again dropped the constant terms (included by redefining the normalisation). Com-
bined with (2.80), we have shown that we can substitute the measures as

P({λn}) dλ1 · · · dλN −→ Dρ e−
βN2

2 E [ρ]+N(1−β2 )S [ρ] δ
(∫

ρ(x)dx− 1
)
, (2.88)
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up to an overall constant for normalisation. For a more rigorous derivation of the relation
above, see Ref. [102]. Interestingly, the entropic term vanishes in the unitary case β = 2.

We can now rewrite the distribution (2.30) of a linear statistics in terms of functional
integrals:

PN(s) '

∫
Dρ e−

βN2
2 E [ρ]+N(1−β2 )S [ρ] δ

(∫
ρ(x)dx− 1

)
δ
(∫

ρ(x)f(x)dx− s
)

∫
Dρ e−

βN2
2 E [ρ]+N(1−β2 )S [ρ] δ

(∫
ρ(x)dx− 1

) , (2.89)

where the denominator ensures that the distribution is normalised.

Saddle point estimate

In many cases, we are only interested in the leading contributions, as in Sections 2.2.2–
2.2.4. We will drop the entropic correction of order N and keep only the O(N2) energy
term5. We thus rewrite the distribution (2.30) as

PN(s) '

∫
Dρ e−

βN2
2 E [ρ] δ

(∫
ρ(x)dx− 1

)
δ
(∫

ρ(x)f(x)dx− s
)

∫
Dρ e−

βN2
2 E [ρ] δ

(∫
ρ(x)dx− 1

) . (2.90)

We can then estimate these functional integral by a saddle point method. Let us consider
the numerator first. It is dominated by the density that minimises the energy E [ρ] under
the constraints imposed by the Dirac delta-functions. These constraints can be handled
by introducing Lagrange multipliers µ0 and µ1. We thus need to minimise

F [ρ;µ0, µ1; s] = E [ρ] + µ0

(∫
ρ(x)dx− 1

)
+ µ1

(∫
ρ(x)f(x)dx− s

)
. (2.91)

Taking the functional derivative with respect to ρ yields

δF

δρ(x) = 0 ⇒ −2
∫
ρ(y) ln |x− y| dy + V (x) + µ0 + µ1f(x) = 0 . (2.92)

Taking the derivative with respect to x, we recover

2−
∫ ρ(y)
x− y

dy = V ′(x) + µ1f
′(x) , (2.93)

i.e. Eq. (2.40), as it should. We now understand the significance of the parameter µ
introduced in Section 2.2.2: it coincides with the Lagrange multiplier µ1 which enforces
the constraint

∫
ρf = s. Solving Eq. (2.93) yields the optimal density as a function of

the Lagrange multiplier µ1. Since it is the same density as in Section 2.2.2, we denote it
ρ̃(x;µ1). We can obtain it as a function of the parameter s by enforcing the constraint∫

ρ̃(x;µ1)f(x)dx = s . (2.94)
5Note that here we consider β fixed and let N →∞ (motivated by Dyson’s threefold way, in which

β = 1, 2 or 4). Instead if we let β = O(N−1) (using for example Dumitriu-Edelman matrices [113]),
we can no longer neglect the entropic term, which then modifies the optimal density [8, 9].
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Solving this equation for µ1 yields the Lagrange multiplier as a function of s. We
denote µ?1(s) this solution. We can thus express the density ρ?(x; s) which dominates
the numerator of (2.90) as

ρ?(x; s) = ρ̃(x;µ?1(s)) . (2.95)

The optimal density for the denominator can be easily deduced by releasing the con-
straint, i.e. setting µ1 = 0. This corresponds to a value s0, given by µ?1(s0) = 0. The
saddle point for the denominator is thus

ρ0(x) = ρ?(x; s0) = ρ̃(x; 0) . (2.96)

With these results, we obtain the saddle point estimate of (2.90):

PN(s) ∼
N→∞

exp
[
−βN

2

2 (E [ρ?(x; s)]− E [ρ0])
]
. (2.97)

There remains to evaluate the energy of ρ?(x; s), given by Eq. (2.87). This can be
cumbersome to do in practice, but has been carried out explicitly in a few cases to
obtain the distribution PN(s), see for instance [101, 102, 286, 300, 302]. In Ref. [163]
(Article 2) we introduced a great simplification, along the lines of Section 2.2.3. Indeed,
the density ρ? satisfies all the constraints6, thus:

E [ρ?(x; s)] = F [ρ?(x; s);µ?0(s), µ?1(s); s] . (2.98)

Taking the derivative with respect to s yields:

d
dsE [ρ?(x; s)] =

∫ ∂ρ?(x; s)
∂s

δF

δρ(x)

∣∣∣∣∣
ρ?︸ ︷︷ ︸

=0

dx + dµ?0
ds

∂F

∂µ0

∣∣∣∣∣
µ?0︸ ︷︷ ︸

=0

+dµ?1
ds

∂F

∂µ1

∣∣∣∣∣
µ?1︸ ︷︷ ︸

=0

+ ∂F

∂s

∣∣∣∣∣
µ?1

= −µ?1(s) . (2.99)

Therefore, we can introduce the large deviation function

Φ(s) = E [ρ?(x; s)]− E [ρ0] = −
∫ s

s0
µ?1(s′)ds′ (2.100)

and then the distribution of s is given by (2.97). We have made extensive use of
Eq. (2.100) in the analysis of different linear statistics [160, 161, 163, 164] (Article 1,
Article 2, Article 3 and Article 4), as it greatly simplifies the analysis of the distribu-
tion: instead of computing the double integral (2.87), which can be quite cumbersome
to do in practice, we only have one (simpler) integration to perform. This relation has
also been discussed in Ref. [89].

An interesting feature of this approach is the possibility of phase transitions in the
associated Coulomb gas. When changing the value of s, the density ρ?(x; s) of the gas
can undergo a change – splitting, condensation of one charge, ... – which we can interpret

6Imposing the constraint on the normalisation gives the first Lagrange multiplier µ0 as a function
of s. We denote it µ?0(s).
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as a phase transition. These transitions are associated to non-analyticity of the energy E
(or equivalently of the large deviation functions Φ) as a function of s. Phase transitions
of various order have been observed in many applications of the Coulomb gas method, for
example in quantum transport [88,163,286,301,302], quantum entanglement [250,251],
models of interface [249], study of the largest eigenvalue [212], etc... For an overview
of the different mechanisms, see the Table at the end of Article 3, which we reproduce
here in Table 2.1.

Quantity Ensemble Order Type Reference
Wigner time delay Laguerre second [286]∑
i λ
−1
i

Renyi entropy Laguerre second [250,251]∑
i λ

q
i & third

Conductance Jacobi third [301,302]∑
i λi

Shot noise, Jacobi third [302]∑
n λn(1− λn)

Moments, Jacobi third [302]∑
n λ

k
n

NS conductance, Jacobi third [94]∑
n λ

2
n(2− λn)−2

Largest eigenvalue Gaussian, third [102]
λ1 Laguerre [212,213]
Index Gaussian, [210,211]∑
n Θ(λn) Laguerre ? [217,218]

Cauchy,...
Index (2D) Complex third [10]∑
n Θ(|λn| − r) Ginibre

Mean radius (2D) Complex fourth [90]∑
n |λn| Ginibre

Center of mass Laguerre infinite [249]
of interf. ∑i

√
λi ??

Truncated∑K
i

√
λi Laguerre infinite Ref. [161] (Article 3)∑K

i λi Jacobi ∞ & 3rd Chapter 4

Table 2.1: List of different phase transitions observed in the Coulomb gas. The evolution
of the density of the gas on each side of the transitions are represented ? : the energy
has a logarithmic correction at the typical value. ?? : the density presents a logarithmic
correction at the hard edge ρ(x) ∼ − ln x/

√
x for x → 0. Reproduced from Ref. [161]

(Article 3).
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2.2.6 A conjecture for subleading corrections
We have introduced the general features of the Coulomb gas method, applied to the
study of linear statistics in the limit N → ∞. Usually, the form (2.97) is sufficient
to correctly describe the behaviour of the distribution PN(s). However if the choice of
ensemble and of function f is such that the distribution has a power law tail which does
not depend on N , it cannot be reproduced by the large deviations form (2.97). In this
case, one should look for 1/N corrections, beyond the analysis of the large deviation
function Φ(s).

The analysis of these corrections has been an intense field of research, see for instance
Refs. [17, 47, 48, 81, 82, 121, 123, 124]. This problem has also been studied from the
perspective of field theory, as the study of fields with a high number of components
was proposed to model the strong coupling limit [53, 178]. The 1/N corrections can be
analysed by loop equations [17,233], which provide recursion between the contributions
of different orders to the correlation function. A solution of these loops equation was
later found by Eynard [123, 124] in terms of properties of algebraic curves. Usually,
these methods provide a rigorous analysis of the 1/N corrections to the characteristic
function (2.31).

Instead, we have proposed in Ref. [164] to investigate the distribution PN(s) itself
and have formulated a conjecture for the form of this distribution. We briefly sketch
here the ideas that led us to this conjecture.

Let us start from the expression (2.89). By expressing the Dirac delta functions as

δ (X) = βN2

4iπ

∫ +i∞

−i∞
dµ e

βN2
2 µX , (2.101)

we can introduce the two Lagrange multipliers µ0 and µ1 and rewrite (2.89) as

PN(s) ' βN2

4iπ

∫ +i∞

−i∞
dµ0

∫ +i∞

−i∞
dµ1

∫
Dρ e−

βN2
2 F [ρ;µ0,µ1]

∫ +i∞

−i∞
dµ0

∫
Dρ e−

βN2
2 F [ρ;µ0,0]

, (2.102)

where F is given by

F [ρ;µ0, µ1] = E [ρ] + µ0

(∫
ρ(x)dx− 1

)
+ µ1

(∫
ρ(x)f(x)dx− s

)
+ 1
N

(
1− 2

β

)
S [ρ] . (2.103)

In the case β = 2, the entropic term vanishes and the functional F is quadratic in
ρ. Therefore, the functional integrals over ρ in (2.102) are Gaussian. However, the
integration is restricted to densities which remain positive ρ(x) > 0, due to the fact
that it represents a density of eigenvalues. If we neglect this restriction7, the functional

7This is reasonable if the density ρ? of the saddle point never vanishes, as fluctuations around it
are not sensitive to the constraint ρ(x) > 0. This is the case for example in the Jacobi ensembles, but
not in the Gaussian or Laguerre ensembles.
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integrals are Gaussian and the saddle point estimate of Section 2.2.5 is exact8. We thus
obtain

PN(s) ' N2

2iπ

∫ +i∞

−i∞
dµ0

∫ +i∞

−i∞
dµ1 e−N2F [ρ̃?(x;µ0,µ1);µ0,µ1]

∫ +i∞

−i∞
dµ0 e−N2F [ρ̃?(x;µ0,0);µ0,0]

, (2.104)

where we denoted ρ̃?(x;µ0, µ1) the solution of (2.93) which is not necessarily normalised,
as the normalisation condition comes from the integral over µ0. We have thus re-
duced the problem from evaluating functional integrals to computing scalar integrals
in the complex plane. In principle, a careful saddle point estimate of these integrals
should yield the large deviation form (2.97), as well as the prefactor (from the Hes-
sian of F [ρ̃?(x;µ0, µ1);µ0, µ1]), which is a 1/N2 correction to the large deviation func-
tion (2.100). This procedure is however usually difficult to carry out in practice. Nev-
ertheless, explicit computations in simple cases (such as the example of Section 2.2.4)
suggest that the distribution (2.104) takes the form

PN(s) ' cN,2

√
−N

2

2π
∂µ?1
∂s

e−N2Φ(s) , (2.105)

where cN,2 is a constant, Φ is the large deviation function (2.100) and µ?1 the value of
the Lagrange multiplier obtained from the saddle point equation (2.94). This is our
conjecture for the form of the distribution for β = 2, which we can extend to general β
as

PN(s) ' cN,β

√
−βN

2

4π
∂µ?1
∂s

exp
[
−βN

2

2 Φ(s) +N

(
1− β

2

)
S [ρ?(x; s)]

]
. (2.106)

This form allows an easy computation of the distribution from simple properties of the
Coulomb gas (the Lagrange multiplier µ?1(s) and the density ρ?).

In Article 1 we give more details and we verify the conjecture (2.106) explicitly
on several examples (listed in Table 2.2). In all these examples, our conjecture either
gives the correct result for the whole distribution (if known), or properly reproduces the
exponents controlling the power law tails, up to a constant prefactor.

Coming back to our original motivation, we have analysed in Article 1 the distri-
bution of the Wigner time delay in disordered wires, which is a linear statistics with
f(λ) = 1/λ in the Laguerre ensembles. In this case we have obtained µ?1(s) ∝ 1/s3 for
s→∞, corresponding to Φ(s)→ 0 in this limit. The large deviation function Φ cannot
characterise the decay of the probability at infinity. The determination of the prefactor
with (2.106) is thus crucial, as it gives PN(s) ∼ 1/s2 for s→∞.

In all the cases mentioned in Table 2.2, the optimal density ρ? which dominates
the integrals (2.102) is supported on a single interval [a, b]. We have not tested the
conjecture (2.106) in a situation where the density is supported on several intervals.

Finally, the most promising way to prove this conjecture seems to make a connection
with the loop equations method [47,123,124]. This approach could also clarify the range
of applications of Eq. (2.106) to obtain the distribution of linear statistics.

8The second derivative δ2F
δρ(x)δρ(y) = −2 ln |x− y| does not depend on ρ, so the Hessian cancels out

between the numerator and the denominator.
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Ensemble V (x) Linear statistics f(x) References
Laguerre x− ν ln x, ν 6 0 trace x [164] (Article 1)
Laguerre x− ln x Wigner time delay (cavity) 1/x [286]
Laguerre x Wigner time delay (wire) 1/x [164] (Article 1)
Jacobi 0 6 x 6 1 Conductance x [301]

Table 2.2: A few cases on which the conjecture (2.106) has been explicitly tested. These
examples are discussed in the conclusion of [164] (Article 1).
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Distribution of spectral linear statistics on random matrices
beyond the large deviation function – Wigner time delay in

multichannel disordered wires

A. Grabsch and C. Texier, Distribution of spectral linear statistics on random matrices
beyond the large deviation function – Wigner time delay in multichannel disordered
wires, J. Phys. A 49, 465002 (2016).

+ http://dx.doi.org/10.1088/1751-8113/49/46/465002
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Chapter 3

Joint distribution of two linear
statistics

In Chapter 2 we have introduced the general method to obtain the distribution of a linear
statistics using the Coulomb gas technique. In this Chapter, we describe an application
of random matrices to quantum transport which requires the determination of the joint
distribution of two linear statistics. Some of the main results have been published in
the Letter [163], which is included at the end of this Chapter (Article 2). Here we also
present some extensions obtained more recently.

We start in Section 3.1 by giving some generalities about coherent quantum transport
and quantum scattering in quantum dots. In Section 3.2 we show that the analysis
of the physical properties of a quantum RC-circuit can be reduced to the study the
joint distribution of two linear statistics. In Sections 3.3 and 3.4 we analyse this joint
distribution using the Coulomb gas method. These results are used in Section 3.5 to
study the resistance of the quantum RC-circuit.

3.1 Quantum scattering

3.1.1 Coherent electronic transport
Since the 80s, it has been possible to realise micrometric condensed matter devices in
which the electronic phase coherence length becomes larger than the system size at
low temperature (∼ 1K). This regime, which is intermediate between the atomic and
the macroscopic regimes, and in which quantum coherence plays a crucial role at low
temperature, is called the “mesoscopic regime”.

A convenient approach to quantum transport is the Landauer-Büttiker formalism,
which allows to relate measurable properties (conductance, shot noise, ...) to scattering
properties of a single electron. This approach has later been extended to AC transport
(admittance, ...) by Büttiker and collaborators. Let us recall a few simple ideas.

The response of mesoscopic devices under stationary (DC) external drive has been
extensively studied. In such situations, the mesoscopic system is connected to macro-
scopic conductors, through which current is injected and collected (Fig. 3.1). At a given
energy ε each external lead α allows the propagation of Nα scattering states (like a
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Figure 3.1: A mesoscopic device con-
nected to two perfect leads (L and R),
through which is applied a voltage. The
subblock of the scattering matrix S de-
scribing transport from contact L to
contact R is denoted SLR.

wave-guide). The contacts between the leads and the cavity are assumed to be perfect.
The mesoscopic conductor can thus be described by a scattering matrix S(ε) which re-
lates the in-going to out-goint amplitudes of these scattering states. In the case of two
contacts (see Fig. 3.1), the DC conductance GDC at zero temperature is given in terms
of the scattering matrix S by the well-known Landauer formula [132]:

〈I〉 = GDCV , GDC = e2

h
tr(S†LRSLR) , (3.1)

where SLR is the subblock of the S-matrix which describes scattering from the left to the
right lead (at Fermi energy). Taking into account spin degeneracy, this relation becomes
GDC = (2e2/h) tr(S†LRSLR). The formula (3.1) can be extended to the multiterminal
case, and to finite temperature [71]. In this stationary (DC) setting, the scattering
matrix S, which characterises the solution of the Schrödinger equation for one electron
in the structure, controls entirely the conductance GDC of the mesoscopic device, i.e. a
quantity measurable by simple means.

The DC response of micrometric systems characterises their resistive properties (con-
ductance). It is also natural to probe their capacitive and inductive properties by
studying the dynamic response under AC driving (at pulsation ω). These properties
are encoded in the complex admittance G(ω) (or its impedance Z(ω) = 1/G(ω)). The
simplest system we can consider is a quantum RC-circuit, represented in Fig. 3.2. It
can be realised experimentally with a chaotic cavity (quantum dot) patterned in a two-
dimensional electron gas. This cavity is closed by a quantum point contact which allows
the propagation of N scattering modes. The scattering of a wave of energy ε in this
cavity can be described by the N ×N scattering matrix S(ε). The cavity is capacitively
coupled to a metallic gate deposited on top of it or nearby.

A theory for the AC response of coherent conductors has been proposed by Büttiker,
Prêtre and Thomas [73–75]. In the absence of interaction between the electrons, the
admittance of the RC-circuit takes the form (without spin degeneracy)

G0(ω) = e2

h

∫
dε f(ε)− f(ε+ ~ω)

~ω
[
N − tr

(
S†(ε)S(ε+ ~ω)

)]
, (3.2)
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V
G

G
V

Figure 3.2: A quantum RC-circuit
formed with a 2D electron gas and top
gates (from Refs. [163,286]).

where f is the Fermi-Dirac distribution. Here, the matallic gate plays no role. This
formula has been generalised to the multiterminal situation in Ref. [72, 265]. At low
frequency, expanding this expression in powers of ω, we obtain at zero temperature:

G0(ω) = e2

h

(
−iω tr[Q] + ω2

2 tr[Q2] +O(ω3)
)
, (3.3)

which is expressed in terms of the Wigner-Smith matrix

Q = −i~ S†∂S
∂ε

∣∣∣∣∣
εF

(3.4)

evaluated at the Fermi energy. Unlike the DC case where the transport properties
are described by the scattering matrix S at Fermi energy, the AC response is encoded
in the Wigner-Smith matrix Q, another fundamental matrix characterising the energy
dependence of the S-matrix. This matrix encodes the temporal aspects of the scattering
(see for instance the reviews [97,284]).

Büttiker, Prêtre and Thomas have stressed the role of electronic interaction in nonlin-
ear AC transport. Within a simple mean field (Hartree) treatment of these interactions,
they showed that the admittance of the RC-circuit can be obtained by combining in
series the admittance G0, Eq. (3.2), and the geometric capacitance Cgeo encoding the
Coulomb interaction [74]:

1
G(ω) = 1

G0(ω) + 1
−iωCgeo

. (3.5)

The geometric capacitance Cgeo characterises the shape of the system, and can be de-
duced in principle from the Poisson equation. The admittance G0(ω) encodes the meso-
scopic effects. Combining (3.5) with the expansion (3.3), we obtain at zero temperature,
a low frequency expansion of the form

Z(ω) = 1
G(ω) = 1

−iωCµ
+Rq +O(ω) . (3.6)

Thus we have obtained the same form as the one given by the classical electrokinetics
theory. However the two coefficients Cµ, the “mesoscopic capacitance”, and Rq, the
“charge relaxation resistance”, now encode information on the quantum dynamics of
charges in the device. The mesoscopic capacitance is given (at T = 0) by

1
Cµ

= 1
Cgeo

+ 1
Cq

, Cq = e2

h
tr[Q] (3.7)
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The mesoscopic capacitance is thus obtained by combining two different capacitances
in series: the geometric one Cgeo (coming from the Coulomb energy Q2/2Cgeo) and the
quantum one Cq which comes from the Fermi energy NεF ∼ Q2/Cq (it is an effect of
the density of states, and thus is proportional to tr[Q]).

The second term of the expansion (3.6) is the charge relaxation resistance (at T = 0)

Rq = h

2e2
tr[Q2]
tr[Q]2 (3.8)

Equation (3.7) and (3.8) can be extended to finite temperature, by introducing convo-
lutions with the Fermi function: the traces must be replaced by

∫
dε(∂f/∂ε) tr[· · · ] [74].

We stress that the factor 2 in the denominator of (3.8) does not arise from spin
degeneracy. If we include this degeneracy, the charge relaxation resistance becomes

Rq = h

2s × 2e2
tr[Q2]
tr[Q]2 . (3.9)

In particular the result (3.8) leads to the surprising result that the one-channel
contact (N = 1) is characterised by the universal value of half the quantum resistance
h/(2e2) (named the “Büttiker resistance” [177]), instead of the value RDC = h/e2 which
we would obtain for the DC resistance of the contact (Eq. (3.1) for SLR ∝ 1N). This
prediction has been verified experimentally [150,151].

The resistance Rq controls the charge relaxation in the quantum regime through the
RC time

τRC = RqCµ . (3.10)
This resistance plays an important role in experiments involving charge injection, for
example in quantum information (“flying qubit”) [127,128] and quantum optics experi-
ments with electrons [42,43].

We will now see how to analyse the quantum capacitance Cq and the charge relax-
ation resistance Rq within a random matrix approach.

3.1.2 The random matrix approach for chaotic quantum dots
In the formalism described above, we have expressed the physical properties of the
mesoscopic system (conductance, capacitance, ...) in terms of the scattering matrix
S(ε) and the Wigner-Smith matrix Q, obtained from S by (3.4). We now describe how
the statistical properties of these matrices can be obtained within a random matrix
approach to describe the transport properties through a chaotic quantum dot.

Scattering matrix S(ε)

If we assume that the dynamics inside the quantum dot is chaotic, the scattering matrix
S(ε) can be taken as random [6,30,55,64].

â Perfect contacts
If the quantum dot is connected to a macroscopic system via perfect contacts (as it
was assumed in the previous section), it is natural to assume that the probabilities to
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3.1. Quantum scattering

be scattered in any of the N channels are equal. Therefore, the scattering matrix at a
given energy ε is uniformly distributed on the unitary group, with only the constraints
imposed by symmetries [24, 180]. The different symmetry classes are labelled by the
Dyson index β (see Section 1.1):

• Case β = 2: in the absence of time-reversal symmetry, there is no further restric-
tion on S, which can be any unitary matrix. This ensemble is called Circular
Unitary Ensemble (CUE).

• Case β = 1: in the presence of both time-reversal and spin-rotation symmetry,
the scattering matrix is symmetric:

ST = S . (3.11)

The set of unitary matrices satisfying this constraint is called the Circular Orthog-
onal Ensemble (COE).

• Case β = 4: if spin-rotation symmetry is broken, but time-reversal symmetry
is preserved, S belongs to the Circular Symplectic Ensemble (CSE) which corre-
sponds to the set of unitary matrices satisfying

σ2STσ2 = S , (3.12)

where σ2 is the second Pauli matrix.

Under this assumption, one can study the distributions of quantities which depend on S
at a given energy, such as the DC conductance (3.1), the shot noise [71], ...(see also [30]
for a review).

â Non ideal contacts
If the quantum dot is connected through non ideal leads, the distribution of the S-matrix
can be obtained either from a maximal entropy principle (stochastic approach [30, 229,
230]) or by assuming that the Hamiltonian of the closed system is a random matrix
(Hamiltonian approach [209, 298]). In the universal regime the two approaches yield
the same result for the distribution of the scattering matrix [54], known as the Poisson
kernel. It is parametrised only by the mean scattering matrix denoted S̄, as:

P (S) ∝
∣∣∣det(1N − S̄?S)

∣∣∣−2−β(N−1)
. (3.13)

The circular ensembles are recovered by setting S̄ = 0. This distribution has been
successfully applied to the study of coherent transport properties, such as the conduc-
tance [30].

Wigner-Smith matrix Q(ε)

â Perfect contacts
The AC response of the quantum dot is encoded in the Wigner-Smith matrix Q, con-
structed from the derivative of the S-matrix with respect to the energy ε, see Eq. (3.4).
Therefore it is not enough to know the distribution of S at a given energy: we need
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information on its energy-dependence, which is a more difficult task. Different theories
for this ε-dependence have been proposed, see for instance Refs. [56–58, 146, 148, 159]
(see also [140]).

In Refs. [57,58], Brouwer, Frahm and Beenakker have obtained the distribution of the
Wigner-Smith matrix Q in the case of perfect contacts. They showed that Q−1 belongs
to the Laguerre ensembles of random matrices1 (see Section 1.3). More explicitly, denote
τn the eigenvalues of Q, which are called the proper time delays. Introducing the rates
γn = τH/τn, where τH = h/∆ is the Heisenberg time and ∆ the mean level spacing, the
joint distribution of the γi’s is given by [57,58]:

P(γ1, . . . , γN) ∝
∏
i<j

|γi − γj|β
N∏
n=1

γβN/2n e−βγn/2 , γn > 0 , (3.14)

where β ∈ {1, 2, 4} is the Dyson index associated to the symmetry classes (see Sec-
tion 1.1). The proper time delays {τn = τH/γn} control the quantum capacitance (3.7),

Cq = e2

h

N∑
i=1

τi = e2

h
τH

N∑
i=1

1
γi

(3.15)

and the charge relaxation resistance (3.8),

Rq = h

2e2

∑N
i=1 τ

2
i(∑N

i=1 τi
)2 = h

2e2

∑N
i=1 1/γ2

i(∑N
i=1 1/γi

)2 . (3.16)

Therefore, knowing the joint distribution (3.14) one should in principle be able to deduce
the statistical properties of Cq and Rq. However, this is not an easy task due to the
strong correlations between the time delays. For instance, Cq is related to another
well-studied quantity: the Wigner time delay

τW = h

Ne2Cq = 1
N

tr[Q] = τH
N

N∑
n=1

1
γn

. (3.17)

The distribution of τW was first obtained before the result (3.14) of Brouwer, Frahm and
Beenakker, for N = 1 channel by Gopar, Mello and Büttiker [159]. It was later derived
for N = 2 channels from (3.14) by Savin, Fyodorov and Sommers [270]. A systematic
method was then introduced by Mezzadri and Simm to obtain the cumulants of the
distribution, for arbitrary N [232]. The distribution of τW was obtained in the large
N limit by Texier and Majumdar [286] by using the Coulomb gas method described in
Chapter 2. We describe this last result in Section 3.3.

In this chapter, we show how the distribution of the resistance Rq, given by (3.16),
can be obtained by the Coulomb gas technique.

â Non ideal contacts
In the case of non-ideal contacts, several results have been obtained on the correlations

1This result holds in the Wigner-Dyson symmetry classes discussed in Chapter 1. For other
symmetry classes (Chiral and Bogoliubov-de Gennes, described in Chapter 5), see for instance
Refs. [145,215,272].
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or the marginal distribution of the time delays, see for instance [146–148,203,270,279].
Most of these results have been obtained using a nonperturbative approach developed
in Refs. [148, 203, 279], which can be extended to include effects due to finite absorp-
tion [271] or disorder [141,257].

In Ref. [162], we have obtained the distribution of the Wigner-Smith matrix for the
case of non ideal contacts. More precisely, denoting

T = 1−
∣∣∣S̄∣∣∣2 = 4κ

(1 + κ)2 (3.18)

the transmission of the contact, the distribution of inverse of the symmetrised Wigner-
Smith matrix

Γ = Q−1
s , Qs = S1/2QS−1/2 = −i~S−1/2∂S

∂ε
S−1/2 (3.19)

is given by the following matrix integral over Hermitian matrices:

P (Γ) ∝ (det Γ)βN/2
∫ dK det(1N +K2)βN/2

det(1N + κ2K2)1−β/2+βN exp
[
−β2κ tr

(
1N +K2

1N + κ2K2 Γ
)]

. (3.20)

In Ref. [162], we have used this representation to study the distribution of the Wigner
time delay τW = tr[Q]/N . However, in this chapter, we will focus on the case of ideal
contacts, so that we can use the simpler distribution (3.14).

3.2 The Coulomb gas formulation
In order to make use of the Coulomb gas method introduced in Chapter 2, we rewrite
the distribution (3.14) in the form (2.1) by making the change of variables γi = Nxi.
This gives:

P(x1, . . . , xN) ∝
∏
i<j

|xi − xj|β
N∏
n=1

e−
βN

2 V (xn) , V (x) = x− ln x , xi > 0 . (3.21)

From the discussion of Chapter 2, xi = O(N0), therefore the rates γi = O(N). This
corresponds to proper times that scale as 1/N . We can express Rq in terms of the
{xi = γi/N} as:

Rq = h

2e2

N∑
n=1

1/x2
n(

N∑
n=1

1/xn
)2 . (3.22)

The quantum resistance (3.22) is not of the form (2.25), therefore not a linear statistics.
However, it can be expressed in terms of two linear statistics:

Rq = h

Ne2
r

2s2 , s = 1
N

N∑
n=1

1
xn

, r = 1
N

N∑
n=1

1
x2
n

, (3.23)
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where the factor N was introduced such that both s and r are O(N0). Our aim is thus
to obtain the joint distribution of these two linear statistics,

PN(s, r) =
∫

dx1 · · · dxN P(x1, . . . , xN) δ
(
s− 1

N

N∑
n=1

1
xn

)
δ

(
r − 1

N

N∑
n=1

1
x2
n

)
, (3.24)

from which we can easily deduce the joint distribution of Cq and Rq. Before entering
into the derivation of the distribution, let us first notice that since s and r are expressed
in terms of the same variables {xi}, some domains in the (s, r) plane are excluded. First,
the Cauchy-Schwarz inequality (or Jensen’s inequality) imposes that

(
N∑
i=1

1
xi

)2

6 N
N∑
i=1

1
x2
i

⇒ r > s2 . (3.25)

This gives a first forbidden region in the (s, r) plane. Then, from the positiveness of the
eigenvalues xi > 0, we have the second condition

r 6 N s2 . (3.26)

The consequence of these restrictions is that the quantum resistance (3.23) is bounded:

h

2Ne2 6 Rq 6
h

2e2 (3.27)

The lower bound corresponds to a situation where all the proper times τi are equal. The
upper bound is reached when one of the τi’s becomes much larger than the others. In
this case the resistance is dominated by one resonance, and we recover the result of the
N = 1 channel situation. In the limit N → ∞, we expect the resistance to reach its
semiclassical value Rq → RDC = h/(Ne2).

We have reduced the problem to the determination of the joint distribution of two
linear statistics in the Laguerre ensembles of random matrices. We will thus apply the
Coulomb gas method introduced in Chapter 2 to study this joint distribution in the
large N limit. Compared to the case we have analysed in Section 2.2.4, we will see that
we need to introduce two constraints on the gas, one for s and one for r. This will yield
a richer physics for the Coulomb gas, with a two dimensional phase diagram, in the
(s, r) plane. The joint distribution of two linear statistics has been considered by other
authors, see for instance Refs. [88,93].

Instead of working with the eigenvalues {γn = Nxn}, we will use the continuous
approach, introduced in Section 2.2.5, involving the density

ρ(x) = 1
N

N∑
n=1

δ(x− xn) . (3.28)

We replace the measure over the eigenvalues {xn} in (3.24) by a weight for the density:

P({xn}) dx1 · · · dxN −→ e−
βN2

2 E [ρ] δ
(∫

ρ(x)dx− 1
)
Dρ , (3.29)
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where we introduced the energy

E [ρ] = −
∫

dx
∫

dy ρ(x)ρ(y) ln |x− y|+
∫
ρ(x)(x− ln x)dx . (3.30)

This energy is indeed of the form (2.87), with a potential V (x) = x − ln x. The joint
distribution (3.24) takes the form:

PN(s, r) '

∫
Dρ e−

βN2
2 E [ρ] δ

(
1−

∫
dx ρ(x)

)
δ

(
s−

∫ dx
x
ρ(x)

)
δ

(
r −

∫ dx
x2 ρ(x)

)
∫
Dρ e−

βN2
2 E [ρ] δ

(
1−

∫
dx ρ(x)

) .

(3.31)
The procedure is the same as for one linear statistics: we look for the density ρ?(x; s, r)
which dominates the numerator of (3.31) in the limit N → ∞. This can be done by
introducing three Lagrange multipliers, one per constraint on ρ, i.e. per delta function.
We thus introduce the functional

F [ρ;µ0, µ1, µ2; s, r] = E [ρ] + µ0

(∫
dx ρ(x)− 1

)
+ µ1

(∫ dx
x
ρ(x)− s

)

+ µ2

(∫ dx
x2 ρ(x)− r

)
. (3.32)

The saddle point is given by δF
δρ(x) = 0, which gives

2
∫
ρ(y) ln |x− y| dy = x− ln x+ µ0 + µ1

x
+ µ2

x2 . (3.33)

Taking a derivative with respect to x yields:

2−
∫ ρ(y)
x− y

dy = 1− 1
x
− µ1

x2 − 2µ2

x3 . (3.34)

Our aim is now to find the solution ρ?(x; s, r) of this equation, which satisfies the two
constraints ∫

ρ?(x; s, r)dx
x

= s ,
∫
ρ?(x; s, r)dx

x2 = r . (3.35)

Depending on the values of s and r, we obtain different types of solutions, which we will
interpret as different phases for the Coulomb gas. Having found the optimal density ρ?,
the energy of the gas can be computed using an extended version of the thermodynamic
identity (2.52)2:

∂E [ρ?(x; s, r)]
∂s

= −µ1(s, r) , ∂E [ρ?(x; s, r)]
∂r

= −µ2(s, r) . (3.36)

Before studying the joint distribution of s and r, let us first briefly review the results
on the marginal distribution of s, obtained in Ref. [286], and present some extensions.
We will come back to the determination of PN(s, r) in a second step (Section 3.4).

2Compared to Eq. (2.100), we have dropped the superscript ? for the value Lagrange multipliers
after imposing the constraints, in order to lighten the notations.
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3.3 Marginal distribution of s: capacitance Cq
We begin by analysing the marginal distribution of s, proportional to the quantum
capacitance Cq (or the Wigner time delay τW ), see Eq. (3.17). Its distribution, denoted
P

(s)
N (s), thus encodes all the statistical properties of the capacitance. It has been studied

by a Coulomb gas technique in Ref. [286] (this article focuses on the Wigner time
delay τW = (h/Ne2)Cq). Here we present the main results, which will be useful in the
following, and present some extensions.

The marginal of s can be obtained by releasing the constraint on r. This is easily
implemented by setting the Lagrange multiplier µ2 to zero. We are back to determining
the distribution of a single linear statistics, in the Laguerre ensembles, as described in
Section 2.2.5. In Ref. [286], the authors solve the saddle point equation (3.34) with
µ2 = 0 and obtain two types of solutions, which we now describe.

3.3.1 Phase I: Compact density
The first solution corresponds to an optimal density which has a compact support [a, b]:

ρ(s)
? (x; s) = x+ c

2πx2

√
(x− a)(b− x) . (3.37)

This solution is conveniently parametrised by

u =
√
a

b
. (3.38)

Then, all the parameters are given by

v =
√
ab = 2u3u2 − 2u+ 3

(1− u2)2 , c = µ1

v
, (3.39)

µ
(s)
1 = −4u2 (3u2 − 2u+ 3)(u2 − 6u+ 1)

(1− u2)4 . (3.40)

The parameter u can be related to s via the constraint (3.35), which gives:

s = σ(u) (def)= (1− u)2−u4 + 16u3 + 2u2 + 16u− 1
16u2(3u2 − 2u+ 3) . (3.41)

All these expressions were obtained from Tricomi’s theorem, as illustrated in Chapter 2.
Additionally, we can compute the corresponding value of r:

r = τ(u) (def)= (1− u2)4−u4 + 12u3 − 6u2 + 12u− 1
64u4(3u2 − 2u+ 3)2 . (3.42)

Note that the typical value of the linear statistics s can be obtained by releasing the
constraint:

µ
(s)
1 = 0 ⇒ u0 = 3− 2

√
2 . (3.43)

This corresponds to the density

ρ0(x) = 1
2πx

√
(x− x−)(x+ − x) , x± = 3± 2

√
2 , (3.44)

which is the Marčenko-Pastur distribution discussed in Section 2.1.2. The typical value
of s is thus

s0 = σ(u0) =
∫ ρ0(x)

x
dx = 1 . (3.45)
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Domain of existence

Since the function s = σ(u) has a maximum sc ' 1.17 reached for uc = (1+24/3−25/3)/3,
this compact phase can exist only for

s < sc = σ(uc) . (3.46)

Explicit form of the energy

In Ref. [286], the energy associated to the density (3.37) was analysed using the func-
tional (3.30). This integral representation did not permit the authors to obtain an ana-
lytic expression for the energy. However, the use of the thermodynamic identity (3.36)
yields an explicit form of the energy, by direct integration of (3.40):

E [ρ(s)
? (x; s)]− E [ρ0] = 3

2 ln(X(s)− 2) + 2 ln(3X(s)− 2) + (X(s)− 6)2

2(X(s)2 − 4) + 5 ln 2 , (3.47)

where
X(s) = u+ 1

u
= σ−1(s) + 1

σ−1(s) . (3.48)

From this expression, we recover (and improve) the asymptotics of Ref. [286]:

E [ρ(s)
? (x; s)]− E [ρ0] '


1
s

+ 3
2 ln s+ 5

2 ln 2− 9
4 for s→ 0

1
4(s− 1)2 for s→ 1 .

(3.49)

Having described this first phase, which exists only for s < sc ' 1.17, we now
describe the second solution obtained in Ref. [286].

3.3.2 Phase II: Condensation of one charge
We now investigate the second phase, which permits to reach the large values of

s = 1
N

N∑
n=1

1
xn

. (3.50)

From this expression, it is clear that we can construct a large value of s simply by letting
one charge, say x1, go to zero. This charge thus detaches from the others, so we single
it out:

s = 1
Nx1

+ 1
N

N∑
n=2

1
xn

. (3.51)

For this single charge to give a macroscopic contribution as N → ∞, its position x1
must scale as 1/N :

x1 = 1
N

1

s− 1
N

N∑
n=2

1
xn

. (3.52)

– 59 –



Chapter 3. Joint distribution of two linear statistics

In the large N limit, we will describe the N − 1 remaining charges by a continuous
density ρ1, such that

ρ(s)
? (x; s) = 1

N
δx1(x) + ρ1(x) . (3.53)

Using this ansatz in the equilibrium equation (3.34), we deduce

µ
(s)
1 = −x1 +O(N−2) . (3.54)

Therefore, µ(s)
1 → 0 as N → ∞. The density ρ1 is thus no longer constrained, so it

reaches the optimal one without any constraint, which is the Marčenko-Pastur distribu-
tion (3.44):

ρ1(x) −→
N→∞

ρ0(x) . (3.55)

The value of x1 is deduced from Eq. (3.52):

s = 1
N

1

s−
∫ ρ0(x)

x
dx

= 1
N(s− 1) . (3.56)

We can also compute the corresponding value of r, which is given by

r = 2 +N(s− 1)2 . (3.57)

A similar scenario was shown to occur in other contexts, for example in the distribu-
tion of the largest eigenvalue [47,101,102,212,300] or for the Renyi entropy [250,251].

Domain of existence

This phase exists as long as the single charge remains separated from the bulk, that is
x1 < a. This gives the condition

s > s̃c = 1 + 1/(Nx−) . (3.58)

Energy of the gas

The corresponding energy can be obtained from (3.54) by using the thermodynamic
identity (3.36). This yields

E [ρ(s)
? (x; s)]− E [ρ0] = 1

N
ln(s− 1) + cte . (3.59)

To obtain this constant, it is required to use the integral form of the energy (3.30),
which gives

E [ρ(s)
? (x; s)]− E [ρ0] = 1

N
ln(s− 1) + lnN

N
− 1 + 2 ln 2

N
+O(N−2) . (3.60)

Note that the efficiency of the thermodynamic identity has permitted to spot a mistake
in the original version of Ref. [286].

Knowing the explicit from of the density ρ
(s)
? (x; s) for all values of s, we can now

study the distribution of s.
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Figure 3.3: Energy of the
Coulomb gas associated
to the Wigner time delay
τW = tr[Q]/N = (h/Ne2)Cq.
The circles denote the end of
existence of each phase. The red
point indicates the transition at
sN → 1 as N →∞. Insets repre-
sent the corresponding shape of
the density of the Coulomb gas.

3.3.3 Distribution and phase diagram
The Coulomb gas exhibits two possible phases which coexist on a small interval, as
shown in Fig. 3.3. To find the position of the phase transition, we need to identify the
phase with the lowest energy. The energies (3.47) and (3.60) are represented in Fig. 3.3.
They intersect at

sN ' 1 +
√

2 lnN
N

. (3.61)

Therefore, for s < sN , the compact phase is stable, while it is the one with a separate
charge for s > sN . In the thermodynamic limit N → ∞, sN → 1, thus the phase
transition occurs at s = 1. The energy near this point is given by (3.49) and (3.60),
which gives for N →∞:

E [ρ(s)
? (x; s)]− E [ρ0] '


1
4(s− 1)2 Phase I, i.e. s < 1

0 Phase II, i.e. s > 1 .
(3.62)

In the usual denomination of statistical physics, this corresponds to a second order phase
transition.

Having obtained the expression of the energy of the Coulomb gas, Eqs. (3.47)
and (3.60), we deduce the distribution of s from (2.97):

P
(s)
N (s) ∼ exp

[
−βN

2

2
(
E [ρ(s)

? (x; s)]− E [ρ0]
)]

. (3.63)

From the expressions of the energies, the distribution of s is dominated by a Gaussian
peak near s0 = 1, with variance

Var(s) ' 4
βN2 ⇒ Var(Cµ) '

(
e2

h

)2 4
βN2 . (3.64)

We have recovered the result of Refs. [56, 203, 232]. The tails of the distribution are
given by:

P
(s)
N (s) ∼

 s−3βN2/4 e−βN2/(2s) for s→ 0
(s− 1)−βN/2 for s→∞ .

(3.65)

A sketch of this distribution is represented in Fig. 3.4.
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Figure 3.4: Distribution of the Wigner time
delay τW = tr[Q]/N = (h/Ne2)Cq, derived
in Ref. [286] by a Coulomb gas method. In-
sets represent the shape of the optimal den-
sity ρ?(x; s) in the two phases s < sN and
s > sN . The circles denote the positions
of the end of existence of each phase. Both
phases exhibit a metastable region around
the transition point sN . As N →∞, sN →
1 and the Coulomb gas undergoes a second
order phase transition at s = 1.

3.4 Joint distribution
Having studied the marginal distribution of s, we move to the analysis of the joint
distribution PN(s, r). We now have two parameters, therefore we will obtain a two
dimensional phase diagram for the Coulomb gas. To the best of our knowledge, this
phase diagram reported in Ref. [163] is the first 2D one obtained in the framework of
random matrices. Another one has been studied in Ref. [88] soon after.

The case of the marginal of s, corresponding to set the Lagrange multiplier µ2 to
zero, is a line is the (s, r) plane, given by Eqs. (3.41,3.42) and (3.57). Therefore we
expect to find again the two phases discussed in Section 3.3, at least on this line. We
will see that in addition to these phases, there is an additional one for the Coulomb gas.

3.4.1 Phase I: Compact density
We start by looking for solutions supported on a compact interval [a, b]. In this case,
Eq. (3.34) can be solved using Tricomi’s theorem (see Appendix A.5). We obtain the
optimal density in terms of the Lagrange multipliers µ1 and µ2 as

ρ̃(x;µ1, µ2) = 1
π
√

(x− a)(b− x)

[
A+ 1

2

(
a+ b

2 − x
)
− 1

2

(
−1 +

√
ab

x

)

−µ1

2

(√
ab

x2 −
a+ b

2x
√
ab

)
− µ2

(√
ab

x3 −
a+ b

2x2
√
ab
− (a− b)2

8x(ab)3/2

)]
, (3.66)

where A is a constant. The normalization of ρ imposes A = 1. The conditions that the
density vanishes for x = a and x = b yields

12 + 2(b− a)− 4
√
b

a
+ 2µ1

√
b

a

(1
b
− 1
a

)
− µ2

√
b

a

( 3
a2 −

2
ab
− 1
b2

)
= 0 , (3.67)

12 + 2(a− b)− 4
√
a

b
+ 2µ1

√
a

b

(1
a
− 1
b

)
− µ2

√
a

b

( 3
b2 −

2
ab
− 1
a2

)
= 0 . (3.68)

These two equations give a and b, and thus the density, as functions of the Lagrange
multipliers µ1 and µ2. The density can then be expressed as a function of s and r by
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Constraints Parameters (s, r) Veff(x) ρ?

none none (s = s0, r = r0) x− ln x MP, Eq. (3.44)
s =

∫ ρ(x)
x

dx s (r = r(s)) x− ln x+ µ1
x

Eq. (3.37)
s =

∫ ρ(x)
x

dx, r =
∫ ρ(x)

x2 dx s, r x− ln x+ µ1
x

+ µ2
x2 Eq. (3.71)

Table 3.1: Optimal density ρ? for the Coulomb gas in the presence of constraints. The
addition of constraints reduces to place the gas in an effective potential Veff(x).

imposing the constraints (3.35):

− 1
2 + 6 + a+ b

4
√
ab

− 1
4

(1
a

+ 1
b

)
− µ1

16

(1
a
− 1
b

)2
− µ2(a+ b)(a− b)2

16(ab)3 = s , (3.69)

a2 + 6a− 2ab+ 6b+ b2

8(ab)3/2 − 1
16

( 3
b2 + 2

ab
+ 3
a2

)
− µ1(a+ b)(a− b)2

16(ab)3

− µ2

128(a− b)2 9a2 + 14ab+ 9b2

(ab)4 = r . (3.70)

Solving these last two equations give µ1(s, r) and µ2(s, r). With these results, we can
write the optimal density as

ρ?(x; s, r) = x2 + px+ q

2πx3

√
(x− a)(b− x) , (3.71)

where the coefficients p and q given by

p = µ1√
ab

+ µ2

(ab)3/2 (a+ b) , (3.72)

q = 2µ2√
ab
. (3.73)

We can recover the optimal density obtained for the marginal distribution of s by setting
µ2 = 0 in these expressions. As shown in Table 3.1, the addition of the constraints
changes the form of the density ρ?. Note that, as for the marginal of s, all these
equations can be further simplified by introducing the variables

u =
√
a

b
, v =

√
ab . (3.74)

This change of variable is useful both for numerical and analytical results as all the
parameters µ1, µ2, s and r can then be expressed as rational fractions of u and v.

Domain of existence

Compared to the case of the marginal of s, the discussion is more involved. The solu-
tion (3.71) is valid as long as it remains positive. This imposes the condition

Q(x) (def)= x2 + px+ q > 0 , ∀x ∈ [a, b] . (3.75)
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Figure 3.5: The three con-
ditions for the existence of
the compact phase, obtained
from (3.75).

Figure 3.6: Domain of existence
of the compact density (shaded
region), obtained from (3.75), de-
limited by the dashed line. Inset
is a zoom on the region near the
origin. The different conditions
shown in Fig. 3.5 are indicated.
The transitions between different
conditions, denoted by a dot, are
associated to a cusp in the bound-
ary of the domain.
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This quadratic polynomial has a minimum at

xm = −p2 . (3.76)

There are now three possibilities, illustrated in Fig. 3.5:

1 xm < 0, thus (3.75) can be reduced to Q(a) > 0;

2 xm ∈ [a, b], therefore (3.75) becomes Q(xm) > 0;

3 xm > b, and (3.75) gives Q(b) > 0.

These conditions correspond to the blue domain, delimited by the dashed line, shown
in Fig. 3.6.

Typical fluctuations

The typical values (s0, r0) of the two linear statistics can be easily obtained by releasing
the constraints. Setting µ1 = µ2 = 0 in Eqs. (3.67,3.68) yields

a = 3− 2
√

2 , b = 3 + 2
√

2 . (3.77)
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This corresponds to a density of charges given by the Marčenko-Pastur distribution (3.44):

ρ0(x) =

√
(x− x−)(x+ − x)

2πx , x± = 3− 2
√

2 . (3.78)

We deduce the typical values of s and r as

s0 =
∫ ρ0(x)

x
dx = 1 , r0 =

∫ ρ0(x)
x2 dx = 2 . (3.79)

The behaviour of the energy near this point can be obtained by expanding the energy to
second order in s− s0 and r− r0. Using the thermodynamic identities (3.36) we obtain

E [ρ?(x; s, r)] ' E [ρ0]− 1
2(s− s0)2 ∂µ1

∂s

∣∣∣∣∣
(s0,r0)

− 1
2(r − r0)2 ∂µ2

∂r

∣∣∣∣∣
(s0,r0)

− (s− s0)(r − r0) ∂µ1

∂r

∣∣∣∣∣
(s0,r0)

. (3.80)

From Eqs. (3.67)–(3.70), we deduce

E [ρ?(x; s, r)] ' E [ρ0] + 5
2(s− 1)2 + 1

16(r − 2)2 − 3
4(s− 1)(r − 2) . (3.81)

From Eq. (2.97), we deduce that the joint distribution of s and r is dominated by a
Gaussian peak located at (s0, r0). We can rewrite (3.81) in terms of a covariance matrix
as

E [ρ?(x; s, r)]− E [ρ0] '
(
δs δr

)( 4 24
24 160

)−1 (
δs
δr

)
,

{
δs = s− 1 ,
δr = r − 2 . (3.82)

From this expression, we recover the variance of s given by Eq. (3.64), and also deduce

Var(r) ' 160
βN2 , Cov(s, r) ' 24

βN2 . (3.83)

The covariance matrix (3.82) has been recently derived by other means [92,93], but our
approach will also provide us with information about the full joint distribution of s and
r, which is needed to study the resistance Rq.

Asymptotic behaviour near r = s2

We can similarly study the behaviour of the energy near the limit r = s2. Denote
ε = r − s2 > 0. In the limit ε→ 0, Eqs. (3.67)–(3.70) give

µ1 = −s
ε

+ 7
4

3− 5s
s2 +O(

√
ε) , (3.84)

µ2 = 1
2ε + 23s− 17

8s2 +O(
√
ε) . (3.85)

The energy can then be deduced from the thermodynamic identities (3.36) by integration
of these expressions:

E [ρ?(x; s, r)] ' −1
2 ln(r − s2) +O(1) , as r − s2 → 0 . (3.86)
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3.4.2 Phase II: Condensation of one charge
As we have seen in Section 3.3, we can reach large values of s and r by letting one
charge, for instance the one located at x1, go to zero as 1/N . This observation leads us
to look for a solution of (3.34) in the form

ρ(x) = ρ1(x) + 1
N
δ(x− x1) , (3.87)

where ρ1 has a compact support denoted [a, b]. For x ∈ [a, b], Eq. (3.34) becomes

1
2

(
1− 1

x
− µ1

x2 − 2µ2

x3

)
= −
∫ ρ1(x)
x− y

dy + 1
N

1
x− x1

. (3.88)

Equation (3.34) must also be evaluated for x = x1, which can be interpreted as the force
balance on the charge at position x1:

1
2

(
1− 1

x1
− µ1

x2
1
− 2µ2

x3
1

)
=
∫ ρ1(x)
x1 − x

dx . (3.89)

Using Tricomi’s theorem, one can compute the expression of the density ρ1. Imposing
the conditions ρ1(a) = ρ1(b) = 0, the constraints (3.35) and relation (3.89) which fixes
the position of the isolated charge, we obtain a set of five equations linking µ1, µ2, a, b
and x1 to the parameters s and r. Then the density ρ1 takes the form

ρ1(x; s, r) = x3 +mx2 + nx+ l

2πx3(x− x1)
√

(x− a)(b− x) , (3.90)

where we introduced

m = µ1√
ab

+ µ2
a+ b

(ab)3/2 − x1

(
µ2

(ab)5/2
3a2 + 2ab+ 3b2

4 + 1√
ab

+ µ1
a+ b

2(ab)3/2

)
, (3.91)

n = 2µ2√
ab
− x1

(
µ2

a+ b

(ab)3/2 + µ1√
ab

)
, (3.92)

l = −2x1
µ2√
ab
. (3.93)

Similarly as in the case of the marginal of s, for the charge located at x1 to give a
macroscopic contribution to s and r, it must be of order O(N−1). We thus denote

x1 = x̃1

N
. (3.94)

We can expand the equations determining the parameters in the limit N → ∞. As
in the compact case, it is not convenient to choose s and r as parameters. Instead,
we choose to parametrise the solution by u =

√
a/b and x̃1 as this will yield simpler
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Figure 3.7: Domain of existence of Phase II
(shaded), obtained from (3.100,3.101), de-
limited by the red solid line. The green
line is r = N(s − σ(u0))2 + τ(u0). On this
line, the energy is given at leading order by
its value for (s = σ(u0), r = τ(u0)). The
line µ2 = 0, corresponding to the case of
the marginal of s studied in Section 3.3 is
also represented. All the lines are shown for
N = 5000, while their limit for N →∞ are
represented by dash-dot lines.

expressions than the other possible choices. For fixed u and x̃1, we obtain:

ρ1(x; s, r) = ρ(s)(x;σ(u)) +O(N−1) , (3.95)

µ1 = µ
(s)
1 (u) + 1

N
µ

(1)
1 (u, x̃1) +O(N−2) , (3.96)

µ2 = − 1
2N x̃1 µ

(s)
1 (u)− 1

2N2

(
x̃1 µ

(1)
1 (u, x̃1) + x̃2

1

)
+O(N−3) , (3.97)

s = σ(u) + 1
x̃1

+ 1
N
s(1)(u, x̃1) +O(N−2) , (3.98)

r = N

x̃2
1

+ τ(u) +O(N−1) , (3.99)

where the functions µ(s)
1 , σ and τ are given by Eqs. (3.40), (3.41) and (3.42) respectively.

We do not give here the explicit form of the functions µ(1)
1 (u, x̃1) and s(1)(u, x̃1), which

are rational fractions in u and linear in x̃1.

Domain of existence

We now study the domain in the (s, r) plane in which this phase with a condensed
charge exists. The solution must respect two conditions:

1. The density (3.95) must remain positive on its support. At leading order, it is
given by the density of the compact phase of Section 3.3, therefore this gives

σ(u) < sc . (3.100)

2. The separate charge x1 = x̃1/N must remain detached from the bulk, thus

x̃1 < Na . (3.101)

These two conditions correspond to the shaded domain represented in Fig. 3.7.
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Energy of the gas

Unlike for Phase I, we can explicitly compute the energy E [ρ?(x; s, r)] in this phase
from equations (3.95)–(3.99). The question is again to get the correct parametrisation
to find the most compact expressions. The simplest way I found is to first invert the
series (3.98) to obtain u in terms of x̃1 and s, as a power series

u = u0(x̃1, s) + 1
N
u1(x̃1, s) +O(N−2) . (3.102)

The leading coefficient, given by

s = σ(u0) + 1
x̃1

, (3.103)

is of particular interest: instead of parametrising by s and x̃1, it is more convenient to
take s and u0 as parameters. Indeed, let us denote

E(u0, s) = E
[
ρ?
(
x; s, r = N(s− σ(u0))2 + τ(u0)

)]
(3.104)

the energy of the gas, where we used Eq. (3.99) for r. The meaning of this parametri-
sation is simple: for a given value of u0, changing s moves us on the parabola r =
N(s− σ(u0))2 + τ(u0). The starting point of this curve is (s = σ(u0), r = τ(u0)), which
is on the line µ2 = 0 corresponding to the case of the marginal discussed in Section 3.3
(see Fig. 3.7).

The derivatives of the energy (3.104) can be computed from the thermodynamic
identities (3.36) and the expressions of the Lagrange multipliers (3.96,3.97):

∂E
∂s

= 1
N

1
s− σ(u0) +O(N−2) , (3.105)

∂E
∂u0

= σ′(u0)
[
−µ(s)

1 (u0) + 1
N

(
1

σ(u0)− s + 16u2
0(1 + u2

0)u
2
0 − 6u0 + 1
(1− u2

0)2

)
+O(N−2)

]
.

(3.106)

By integrating these two equations, we obtain the energy of the gas:

E(u0, s) = E [ρ(s)
? (x; s)] + 1

N
[ln(s− σ(u0)) + Ξ(u0)] +O(N−2) , (3.107)

where the O(N0) term is the energy of the gas for µ2 = 0, given by Eq. (3.47) and the
function Ξ is given by

Ξ(u) = ln
(

32u2 3u2 − 2u+ 3
(1 + u)6

)
+ 2(1 + u2)u

2 − 6u+ 1
(1− u2)2 + lnN − 1− 2 ln 2 . (3.108)

In this expression, we fixed the constant by identification with (3.60) for σ(u0) = 1.
From the exact form of the energy (3.107), we can deduce its asymptotic behaviour

near the forbidden region r = Ns2:

E [ρ?(x; s, r)] ' 2Ns
Ns2 − r

for r → Ns2 . (3.109)
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3.4.3 Phase III: Split bulk
Up to now, we have described the two phases already obtained for the marginal of s.
But these two phases do not describe the full (s, r) plane. We now investigate the nature
of the density in the remaining region, see Fig. 3.7.

To get some insight, let us come back to the saddle point equation (3.34). It describes
the force balance for a charge at position x, between the repulsion of the other charges,
and an external force which derives from the effective potential

Veff(x) = x− ln x+ µ1

x
+ µ2

x2 . (3.110)

If µ1 < 0 and µ2 > 0, this effective potential exhibits two local minima. Therefore, the
density of charges can split into two bulks, located at each minima. Solving the integral
equation (3.34) for a density with two bulks using Tricomi’s theorem is more involved,
as we will see in Chapter 4. Here, we use another method, based on complex analysis,
which is more convenient in this case [216, 218, 219, 248]. For a complex variable z, we
introduce the resolvent

G(z) =
∫ ρ?(x; s, r)

z − x
dx . (3.111)

This function is analytic everywhere in the complex plane, except on the support of ρ.
Indeed, if x ∈ Supp(ρ):

G(x+ iε)−G(x− iε) = −2iε
∫ ρ?(y; s, r)

(x− y)2 + ε2 dy −→
ε→0+

−2iπρ?(x; s, r) . (3.112)

Therefore, if we can determine the function G(z), we can extract the optimal density
ρ?(x; s, r) from its cuts. Additionally, since the density is normalised, the resolvent must
verify the property

G(z) ∼ 1
z
for |z| → ∞ . (3.113)

We can derive an equation on G by multiplying (3.34) by ρ?(x;s,r)
z−x and integrating over

x. After a few manipulations, we obtain that G is solution of the quadratic equation

−G(z)2 +G(z)
(

1− 1
z
− µ1

z2 −
2µ2

z3

)
− s+ µ1r + µ2t

z
− µ1s+ 2µ2r

z2 − 2µ2s

z3 = 0 , (3.114)

where we used that

s =
∫ ρ?(x; s, r)

x
dx = −G(0) , r =

∫ ρ?(x; s, r)
x2 dx = −G′(0) , (3.115)

and we denoted
t =

∫ ρ?(x; s, r)
x3 dx = −1

2G
′′(0) . (3.116)

The normalisation condition (3.113) implies

s+ µ1r + µ2t = 1 , (3.117)

so that Eq. (3.114) no longer depends on this unknown parameter t. We can then solve
this quadratic equation to get

G(z) = 1
2

(
1− 1

z
− µ1

z2 −
2µ2

z3

)
± 1

2z3

√
P (z) , (3.118)
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Figure 3.8: Two possibilities for the polyno-
mial P . Either it has 4 positive roots (top),
or an additional positive double root, de-
noted α. Any other possibility would lead
to a density ρ? with a higher number of sup-
ports. The signs are the value of the func-
tion sgG(x) = ±1. On the support of ρ?,
corresponding to P (x) < 0, it is the oppo-
site of the sign of P ′, see Eq. (3.122). Out-
side the support, it has to be constant (to
be determined), unless P (x) vanishes.

where we introduced the following polynomial of degree six:

P (z) = z6 − 6z5 + (1− 2µ2(2s+ 1)− 8µ2r)z4 + (2µ1 − 4µ2(2s+ 1))z3

+ (µ2
1 + 4µ2)z2 + 4µ1µ2z + 4µ2

2 . (3.119)

The support of the optimal density corresponds to the cuts of (3.118), which are given
by P (x) 6 0. We can then deduce the density (3.112) using that

ImG(z + iε) = sgG(x)
2x3

√
P (x) + iP ′(x)ε −→

ε→0+

sgG(x)
2x3 sign(P ′(x))

√
−P (x) , (3.120)

where sgG(x) = ±1, depending on the ± sign in (3.118). We thus obtain

ρ?(x; s, r) = 1
2πx3

√
−P (x) , (3.121)

and
sgG(x) = − sign(P ′(x)) for x ∈ Supp(ρ?) . (3.122)

If x /∈ Supp(ρ?), G(x) is real and continuous from Eq. (3.111). Therefore sgG(x) is
constant outside the support of ρ?, or can change if the multiplicative factor P (z)
vanishes. The possible values of this function are represented in Fig. 3.8.

S We look for an optimal density ρ? with a support of the form [a, b] ∪ [c, d], with
0 < a < b < c < d. This implies that a, b, c and d are positive roots of the polynomial
P . There are only two possibilities, illustrated in Fig. 3.8:

1 a, b, c and d are the only positive roots of P ;

2 there is another positive root α. This additional root must have multiplicity two,
otherwise ρ? would have a third support.

To completely solve the problem, we need to determine all the roots of P , which will
give the density ρ?, Eq. (3.121), as well as µ1 and µ2. The relations between the roots
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and the coefficients of P give six equations, which is not enough to completely determine
all the parameters. We thus need another equation. We can make use of Eq. (3.33),
which we rewrite in terms of the effective potential (3.110) as

∫
ρ?(y; s, r) ln |x− y| dy = µ0 + Veff(x) , ∀x ∈ Supp(ρ?) . (3.123)

This equation depending on the unknown Lagrange multiplier µ0, which acts as a chem-
ical potential for the Coulomb gas, we will consider the difference between two points,
say b and c:

Veff(c)− Veff(b) =
∫
ρ?(y; s, r) ln

∣∣∣∣∣c− yb− y

∣∣∣∣∣ dy . (3.124)

This equation can be interpreted as the chemical equilibrium between the two bulks,
supported on [a, b] and [c, d] (this interpretation was proposed in Refs. [216,219]). Using
the definition of G, Eq. (3.111), we have

∫ c

b
G(x)dx =

∫
ρ?(y; s, r) ln

∣∣∣∣∣c− yb− y

∣∣∣∣∣ dy . (3.125)

Therefore, from the expression of G. Eq. (3.118), the condition (3.124) becomes

∫ c

b

sgG(x)
x3

√
P (x)dx = 0 . (3.126)

This condition cannot be fulfilled in case 1 , where P has only four positive roots, as
sgG is constant on [b, c] (see Fig. 3.8). Therefore, we are in the situation 2 and sgG
has to change sign when crossing the double root α. The polynomial P thus takes the
form

P (x) = (x− α)2(x− a)(x− b)(x− c)(x− d) , (3.127)

from which we deduce the density (3.121)

ρ?(x; s, r) = |x− α|2πx3

√
(x− a)(b− x)(c− x)(d− x) . (3.128)

Expanding (3.127) and identifying the coefficients with (3.119), we obtain the set of
six equations linking the seven parameters a, b, c, d, α, µ1 and µ2 to s and r. The last
relation is given by Eq. (3.126), which we can rewrite as

∫ c

b

x− α
2πx3

√
(x− a)(x− b)(x− c)(x− d) dx = 0 . (3.129)

since sgG changes sign when crossing the root α. This gives a set of seven equations,
which fix all the parameters for a given couple of values (s, r). This set of equations
cannot be solved analytically, but it can be implemented numerically to compute these
parameters, for each value of s and r.
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Domain of existence

The solution (3.128) with two bulks can cease to exist in different situations:

1. the left bulk can vanish if a = b;

2. the right bulk can vanish if c = d;

3. the two bulks can merge if b = c.

In case 1, at the limit the resulting density takes the form

ρ?(x; s, r) = (x− α)(x− a)
2πx3

√
(x− c)(d− x) , (3.130)

which is the optimal density in the compact phase. Similarly for case 2. Therefore,
there is an overlap between Phase I and Phase III.

However, in case 3, the resulting density is

ρ?(x; s, r) = (x− α)2

2πx3

√
(x− a)(d− x) , (3.131)

since b < α < c. This density, supported on [a, d], vanishes as a square in the bulk for
x = α. This coincides with the limit 2 for Phase I. Therefore, the transition from
Phases I to Phase III occurs on this line, represented in Fig. 3.6.

Finally, we will see below that this phase extends up to s = 1, and overlaps with
Phase II. Therefore Phase III completes our description of the whole (s, r) plane.

Asymptotic behaviours

The analysis of the set of equations determining the density ρ? in Phase III is rather
difficult. We can however analyse some limiting cases. The most interesting one is the
limit b→ 0, with a ' b. In this case we obtain

α ' −2b ln b , (3.132)

c+ d ' 6 , cd ' 1 , (3.133)
µ1 ' 2b ln b , µ2 ' −b2 ln b , (3.134)

s ' 1 + α
(b− a)2

16b4 , r ' α
(b− a)2

16b5 . (3.135)

Combining these expressions, we deduce

b ' s− 1
r

, (3.136)

therefore the limit b→ 0 is either r →∞ or s→ 1+ (this shows that Phase III extends
to s = 1). Combining this expression with Eq. (3.134), we obtain µ1 and µ2 in terms of
s and r. Using then the thermodynamic identities (3.36), we deduce

E [ρ?(x; s, r)] ' −(s− 1)2

r
ln s− 1

r
+ cst . (3.137)

The constant can be determined by taking the limit s→ 1. We then reach the vertical
line µ2 = 0 on which the gas is frozen the ρ0, thus:

E [ρ?(x; s, r)] ' −(s− 1)2

r
ln s− 1

r
+ E [ρ0] . (3.138)
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3.4.4 Summary and phase diagram
Combining the results of the previous sections, we have obtained the expression of the
optimal density of the Coulomb gas for all values of the parameters s and r. The
resulting phase diagram is represented in Fig. 3.9.

Knowing the optimal density ρ?(x; s, r), the joint distribution of s and r takes the
form (2.97)

PN(s, r) ∼
N→∞

exp
[
−βN

2

2 Φ(s, r)
]
, Φ(s, r) = E [ρ?(x; s, r)]− E [ρ0(x)] , (3.139)

where the Marčenko-Pastur distribution is associated to the typical values of s and r:

ρ0(x) = ρ?(x; s0, r0) , with
{
s0 = 1
r0 = 2 (3.140)

The precise expression of the large deviation function depends on the phase under con-
sideration:

Φ(s, r) =


ΦI(s, r) if (s, r) ∈ Phase I,
ΦII(s, r) if (s, r) ∈ Phase II,
ΦIII(s, r) if (s, r) ∈ Phase III,

(3.141)

which can be deduced from the phase diagram given in Fig. 3.9. In particular, we have
an analytical expression for the function ΦII , deduced from Eq. (3.107). The other two
functions are not known analytically, but can be evaluated numerically. Nevertheless,
we have the following behaviours, deduced from Eqs. (3.86,3.138):

ΦI(s, r) ' −
1
2 ln(r − s2) , for r − s2 → 0+ , (3.142)

ΦIII(s, r) ' −
(s− 1)2

r
ln s− 1

r
, for s− 1

r
→ 0+ . (3.143)

The transitions between the phases can be determined, when two phases overlap, by
looking for the one with the smallest energy. For Phases I and II, the analysis is similar
to the case of the marginal of s, discussed in Section 3.3. The conclusion is also the
same: in the limit N →∞ the transition occurs on the line µ2 = 0. It is also a second
order phase transition.

The transition between Phases II and III is more complex, and was not studied into
details. As we have seen when studying the energy, the limit s→ 1 corresponds to the
left bulk (supported on [a, b]) going to zero. It is natural to expect that, for finite N ,
when this bulk contains only 1 charge it becomes the separate charge of Phase II. For
N → ∞, we thus expect the transition to occur at the limit s = 1, corresponding also
to µ2 = 0. The order of this transition however remains to be determined.

Finally, we have not analysed the transition between Phases I and III, as it is quite
difficult to compute analytically the energy in these phases. However, as discussed in
Ref. [212], the order of the transition depends only on the scenario for the density (con-
densation of one charge, splitting of the bulk, ...). The line associated to the condition
2 for Phase I corresponds to the splitting of a compact density into two bulks. Ex-
actly on the transition line, the density vanishes as a square, Eq. (3.131). A similar
scenario was shown in Refs. [167,304] to correspond to a third order phase transition.
Therefore, we expect that this line corresponds to a third order transition, but a direct
derivation would still be instructing.
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Figure 3.9: Phase diagram for the
Coulomb gas, in the presence of
two constraints.
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3.5 Statistical properties of Rq

Having obtained the full joint distribution of s and r, we can now analyse the distribution
of the quantum resistance

Rq = h

Ne2 rq , rq = r

2s2 . (3.144)

3.5.1 Typical fluctuations
As we have seen in Section 3.4.1, the typical values of s and r are given by

s0 = 1 , r0 = 2 . (3.145)

This corresponds to a typical value of the resistance of

〈rq〉 = r0

2s2
0

= 1 ⇒ 〈Rq〉 '
h

Ne2 . (3.146)

We notice that 〈Rq〉 ' RDC, where RDC is the Sharvin resistance of the ballistic quantum
point contact given by (3.1), in the large N limit, as expected. We can study the
fluctuations around this value from the expression of the large deviation function ΦI(s, r)
near the point (s0, r0), given by Eq. (3.82):

Var(rq) '
8

βN2 ⇒ Var(Rq)
〈Rq〉2

' 8
βN2 . (3.147)

The variance (3.147) corresponds to a Gaussian peak of the distribution, near the mean:

pN(rq) ∼ exp
[
−βN

2

16 (rq − 1)2
]
. (3.148)
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The covariance matrix (3.82) shows that the variables s and r are strongly correlated,
and therefore the capacitance Cq and resistance Rq are also correlated:

Cov(Cq, Rq)√
Var(Cq)Var(Rq)

= 1√
2
. (3.149)

3.5.2 Large deviations
The Coulomb gas approach gives access to the full joint distribution of s and r, from
which we study the distribution of rq, away from the typical region. This distribution
is given by

pN(rq) =
∫
PN(s, r) δ

(
rq −

r

2s2

)
dsdr =

∫
2s2 PN(s, 2s2rq) ds . (3.150)

Since the joint distribution PN(s, r) has the large deviations form (3.139), this integral
can be evaluated by a saddle point estimate. One only needs to find the minimum of
the large deviation function Φ(s, r) on a line r = 2s2rq.

• Let us consider the case rq > 1. The large deviation function Φ(s, r) is of order
O(N0) everywhere, except on the line µ2 = 0 where it is O(N−1). Therefore, on a given
line r = 2s2rq, the minimum of Φ(s, r) is located on the line µ2 = 0. This latter being
given by r = N(s− 1)2 + 1, the intersection is solution of{

r = 2s2rq ,
r = N(s− 1)2 + 2 . (3.151)

Solving this set of equations yields that the saddle point of (3.150) is

s∗ =
N −

√
2N(rq − 1) + 4rq
N − 2rq

. (3.152)

Using that, for µ2 = 0,
ΦII(s, r) '

1
N

ln(s− 1) , (3.153)

we deduce

pN(rq) ∼
 N − 2rq

2rq +
√

2N(rq − 1) + 4rq

βN/2 . (3.154)

Near the upper boundary, it reduces to a power law suppression

pN(rq) ∼
(
N

2 − rq
)βN/2

, rq →
N

2

−
. (3.155)

• If rq < 1, the analysis is more difficult. We can however study the limit rq → 1
2

+.
Denote

rq = 1
2 + ε . (3.156)
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Figure 3.10: Sketch of the distribution of
the quantum resistance Rq = (h/Ne2)rq.

The distribution (3.150) becomes

pN(rq) ∼
∫

2s2 exp
[
−βN

2

2 ΦI(s, s2 + 2s2ε)
]

ds , (3.157)

where ΦI is the large deviation function in Phase I. Its behaviour in the limit ε→ 0 is
given by (3.142), from which we deduce the power law suppression

pN(rq) ∼
(
rq −

1
2

)βN2/4
, for rq →

1
2

+
. (3.158)

This concludes our analysis of the distribution of rq, which is sketched in Fig. 3.10.
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Chapter 4

Truncated linear statistics

A lot of effort has been devoted to the analysis of linear statistics. In Chapter 2, we have
presented the Coulomb gas technique, which is a very convenient method to study the
full distribution of these linear statistics (typical and atypical fluctuations). We have
applied this method in Chapter 3 to study the joint distribution of two linear statistics.

In our Refs. [160, 161] (Article 3 and Article 4), we have introduced a new type of
observable which we have called truncated linear statistics. For a N ×N random matrix
with eigenvalues {λi}, we define a truncated linear statistics as

L̃ = 1
N

K∑
n=1

f(λn) , with 1 6 K 6 N , (4.1)

where f can be any given function, not necessarily linear. Compared to the case of
the usual linear statistics described in Chapter 2, we have an additional parameter K,
which is the number of eigenvalues contributing to L̃. If K = N , we recover the case of
the usual linear statistics. For K < N , we can consider two possibilities:

1 We fix the subset of eigenvalues that contribute to (4.1), for example the K largest
ones. This case constitutes an intermediate situation between two well-studied
problems: the distribution of the full linear statistics (K = N) and extreme value
statistics when keeping only the largest eigenvalue (K = 1), which has been much
studied [47,101,102,183,213,294,295,300] (see also the review [212]).
This situation is relevant for example in the context of data compression or in
statistics, for principal component analysis [214, 277] (one keeps a given number
of the top eigenvalues, which carry the most relevant information).
This first case is the object of Ref. [161] (Article 3). In this paper, we have applied
this question to a model of fluctuating interfaces in statistical physics.

2 We let any possible subset of K eigenvalues contribute.
We have studied this case in Ref. [160] (Article 4) in the context of quantum
scattering. We have studied the contribution to the density of states of a given
number of scattering channels in a multiterminal quantum dot.

In order to compare these two cases and make the analysis more concrete we will
focus on an example of truncated linear statistics, coming from a model of fluctuating
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interfaces discussed in [161] (Article 3). This model was shown to be related to random
matrices in Ref. [249]. We describe it in Section 4.1. In Section 4.2, we analyse the
case of the truncated linear statistics constrained to select the largest eigenvalues (case
1 ). The other situation, in which all the eigenvalues can contribute, is described in
Section 4.3 (case 2 ).

4.1 A model of fluctuating interfaces
The analysis of the truncated linear statistics will be based on a model of N non inter-
secting elastic and fluctuating interfaces in 1 + 1 dimensions. This model was originally
introduced by de Gennes [98], and later studied by Fisher [134] in the context of sur-
face wetting or depositions of atoms on a substrate. Each interface is described by its
height hn(x), with n = 1, . . . , N . We will suppose that the interfaces evolve on top of
a substrate of size L, located at height zero, so that hn(x) > 0 as shown in Fig. 4.1.
For simplicity, we will assume periodic boundary conditions. To each interface can be
associated an energy

E [hn(x)] =
∫ L

0

1
2

(
dh
dx

)2

+ V(hn(x))
 dx , (4.2)

which is the sum of the elastic energy (first term) and some potential energy. For the
choice of the potential, we follow Ref. [249] and choose a sum of harmonic confinement,
and a repulsion from the substrate, leading to the form

V(h) = b2h2

2 + α(α− 1)
2h2 , (4.3)

with b > 0 and α > 1. The repulsion in 1/h2 can be justified from entropic considera-
tions [134,249]. The energy of the N interfaces is then simply

Einterf [{hn(x)}] =
N∑
n=1
E [hn(x)] , with h1 > h2 > · · · > hN . (4.4)

At thermal equilibrium, we can associate to each configuration {hn(x)} a Boltzmann
weight

P [{hn(x)}] ∝ exp
{
− 1
kBT

Einterf [{hn(x)}]
}
, (4.5)

where kB is the Boltzmann constant and T the temperature. In the following we set
kBT = 1 for convenience. Let us consider the set of heights {hn(x)} at a given point x,
see Fig. 4.1. Since we chose periodic boundary conditions the system has translational
invariance, thus the joint distribution of the height do not depend on the position
x and we will simply denote {hn} the set of heights at a given position x. Their
joint distribution was derived in [249] by mapping these heights onto the positions of
free fictitious quantum particles. Since the interfaces cannot cross, these particles are
fermions. In the limit of large system size L → ∞, their distribution is controlled by
the many body ground state wave function Ψ0(h1, . . . , hN). This yields:

Pinterf(h1, . . . , hN) ∝
∏
i<j

(h2
i − h2

j)2
N∏
n=1

h2α
n e−bh2

n . (4.6)
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4.1. A model of fluctuating interfaces

Figure 4.1: Non intersecting Brownian on
top of a substrate (at h = 0), with peri-
odic boundary conditions. The distribution
of a set of heights {hn} at a given position
x is independent of x due to translational
invariance.

Making the change of variables λn = bh2
n, this distribution reduces to

P(λ1, . . . , λN) ∝
∏
i<j

(λi − λj)2
N∏
n=1

λα−1/2
n e−λn , λn > 0 . (4.7)

We recognise the joint distribution of eigenvalues in the Laguerre ensemble (1.38). The
Vandermonde determinant simply comes from the condition that the interfaces do not
cross. It is raised to the power β = 2, which is not related to the breaking of time
reversal symmetry as usual in applications of random matrices to quantum mechanics,
as discussed in Section 1.1. This particular value comes from the fact that the probability
density (4.6) is the square of the many body wave function: Pinterf = |Ψ0|2.

Knowing the joint distribution of heights (4.6,4.7), one can study the statistical
properties of observables associated to the set of interfaces {hn}. For instance, the
centre of mass of all the interfaces is given by

G = 1
N

N∑
n=1

hn = 1
N
√
b

N∑
n=1

√
λn . (4.8)

This quantity is a linear statistics, of the form (2.25) with f(λ) =
√
λ. Its distribution

was analysed in Ref. [249] by a Coulomb gas method. Here, we will study the distribution
of the centre of mass of the top K interfaces:

G̃ = 1
K

K∑
n=1

√
λn , (4.9)

where we set b = 1 for simplicity. We recognise the expression of the truncated linear
statistics (4.1), restricted to the top K eigenvalues, with f(λ) =

√
λ (case 1 ). In

Section 4.2 we will analyse the distribution of this quantity in the limit N → ∞ with
κ = K/N fixed. In a second step, we will release the constraint that only the top K

interfaces contribute, and allow any subset of K interfaces contribute (case 2 ). This
is the object of Section 4.3.

As in the previous chapters, we will study the distribution of (4.9) by a Coulomb
gas method. We thus rewrite the joint distribution (4.7) in the form (2.1) by denoting
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λn = Nxn. We obtain

P(x1, . . . , xN) ∝
∏
i<j

(xi − xj)β
N∏
n=1

e−NV (xn) , xn > 0 , (4.10)

where β = 2 for the interface model, and we introduced the potential

V (x) = x− 1
N

(
α− 1

2

)
ln x , x > 0 . (4.11)

In the limit N →∞, for fixed α, this reduces to the linear potential

V (x) = x , x > 0 . (4.12)

From the discussion of Chapter 2, for large N the xi’s remain of order N0. To consider
only quantities which do not scale with N , we introduce

s = κ√
N
G̃ = 1

N

κN∑
n=1

√
xn , κ = K

N
. (4.13)

In the following, we will derive the distribution of s, for fixed κ ∈]0, 1[, in the limit
N →∞ in the two situations described above.

4.2 Truncated linear statistics restricted to the
largest eigenvalues

In this section, we analyse the distribution of the rescaled centre of mass s of theK = κN
highest interfaces. We can rewrite (4.13) as

s = 1
N

K∑
n=1

√
xn , x1 > x2 > · · · > xN , (4.14)

where the xi’s are picked from the joint distribution (4.10), corresponding to the La-
guerre ensemble of random matrices. We have adapted the Coulomb gas method de-
scribed in Chapter 2 to this new type of observable. Here, we will give an overview of
the derivation and summarise the main results. The details are published in Ref. [161],
which is included at the end of this Chapter (Article 3).

4.2.1 The Coulomb gas formulation
To study the distribution of the truncated linear statistics s, we adapt the Coulomb gas
method to this new type of observable. We again interpret the {xi} as the positions of
charges in a 1D gas, with density

ρ(x) = 1
N

N∑
n=1

δ(x− xn) (4.15)

and energy
E [ρ] = −

∫
dx
∫

dy ρ(x)ρ(y) ln |x− y|+
∫
x ρ(x) dx , (4.16)
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where we used (2.87) with the potential (4.12). We can rewrite (4.14) in terms of the
density ρ as

s =
∫
c

√
x ρ(x) dx , (4.17)

where c is a lower bound which ensures that only the topK = κN eigenvalues contribute
to s. This means that c is the position of the Kth charge: c = xK . We can re-express
this condition as ∫

c
ρ(x) dx = κ . (4.18)

A dual problem was considered in Ref. [214], in which the authors have studied the
distribution of the number of eigenvalues above a fixed threshold in the Laguerre en-
sembles (see also Refs. [210,217] for the number of positive eigenvalues in the Gaussian
or Cauchy ensembles). In their case, c is the fixed threshold, and the fraction κ of eigen-
values above it is a random quantity. Here we fix this fraction κ while the boundary c
can fluctuate.

Following the procedure of Section 2.2.5, we should find the minimum of the en-
ergy (4.16), under the constraints (4.17) and (4.18), with the condition that ρ is nor-
malised to unity. We thus introduce the functional

F [ρ;κ, s;µ(1)
0 , µ

(2)
0 , µ1] = E [ρ] + µ

(1)
0

(∫ c

ρ(x)dx− (1− κ)
)

+ µ
(2)
0

(∫
c
ρ(x)dx− κ

)
+ µ1

(∫
c

√
x ρ(x) dx− s

)
, (4.19)

where µ(1)
0 , µ(2)

0 and µ1 are Lagrange multipliers enforcing the constraints. The minimum
is given by δF

δρ(x) = 0. Taking a derivative with respect to x gives

2−
∫ ρ?(y;κ, s)

x− y
dy = 1 +

 0 for x < c ,
µ1

2
√
x

for x > c . (4.20)

As in Section 2.2.5, we can again interpret this equation as a force balance on the charge
located at position x. But this time, the additional force coming from the constraint
on s acts only on the fraction κ of the rightmost charges. Depending on the sign of µ1,
this force pushes these charges either towards or away from the origin, as illustrated in
Fig. 4.2. We will thus distinguish these two cases in the following.

In order to solve Eq. (4.20), it is convenient to split the density into two parts: one
which contains to rightmost K = κN charges, which we denote ρ2, and the second which
contains the other charges, denoted ρ1:

ρ?(x;κ, s) =
{
ρ1(x) for x < c ,
ρ2(x) for x > c .

(4.21)

We will denote [a, b] the support of ρ1, and [c, d] the support of ρ2. The force balance
equation (4.20) rewrites

2
∫ b

a

ρ1(y)
x− y

dy + 2−
∫ d

c

ρ2(y)
x− y

dy = 1 + µ1

2
√
x

for x > c , (4.22)

2−
∫ b

a

ρ1(y)
x− y

dy + 2
∫ d

c

ρ2(y)
x− y

dy = 1 for x < c . (4.23)
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Figure 4.2: Coulomb gas in the ex-
ternal potential (4.12), with a wall
at x = 0 coming from the posi-
tivity of the eigenvalues. The con-
straint on s translates in an addi-
tional external force applied only
on the K = κN rightmost charges.
If µ1 < 0, this force pulls these
charges away from the origin (top).
If µ1 > 0, it pushed them, and con-
sequently the whole gas, towards
the bottom of the well (bottom).

The procedure to solve this type of coupled equations was introduced in Refs. [210,
211], in the study the distribution of the number of positive eigenvalues of Gaussian
matrices (which is a linear statistics). The method relies on Tricomi’s theorem (see
Appendix A.5). We first solve Eq. (4.23) to express ρ1 in terms of ρ2. We then plug
the result in Eq. (4.22), which gives an equation on ρ1 only. Solving this equation then
yields ρ1 and thus ρ?. We will not perform explicitly this derivation here, as it is quite
cumbersome. We refer to the appendix of Article 3. We only list the results here.

Optimal density

The optimal density without constraint is obtained by setting µ1 = 0. Then, solving
Eq. (4.20) we recover the Marčenko-Pastur distribution introduced in Section 2.1.2:

ρ0(x) = 1
2π

√
4− x
x

. (4.24)

The divergence at the origin corresponds to an accumulation of charges at the bottom of
the well. As usual, relaxing the constraint corresponds to the typical density, associated
to the typical value s0, given by (4.17):

s0(κ) =
∫ 4

c0

√
x ρ0(x) dx = (4− c0)3/2

3π , (4.25)

where c0 is determined by (4.18):

κ =
∫ 4

c0
ρ0(x) dx = 2

π
arccos

√
c0

2 −

√
c0(4− c0)

2π . (4.26)

These two equations give a parametric representation of the line s0(κ) in the (κ, s)
plane. It is the solid line represented in Fig. 4.4. For a given value of κ, it gives the
most probable value s0(κ) of the truncated linear statistics.
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Figure 4.3: Optimal density
ρ?(x; s, r) (solid line), compared
to the Marčenko-Pastur density
ρ0 (dashed) obtained when re-
leasing the constraint. Left:
Phase I, Right: Phase II. The
shaded areas correspond to the
κN rightmost charges.

Phase I: µ1 < 0

The case µ1 < 0 corresponds to an additional force that pulls the rightmost charges to
the right, away from the origin. Since the other charges are not subjected to this force,
we do not expect them to move much. Therefore, the density ρ? should split into two
disjoint bulks, corresponding to b < c. This is illustrated in Fig. 4.2 (top). Since the
rightmost charges are pulled towards the large x, this corresponds to a value of s, given
by (4.17), larger than the typical value s0(κ).

We can check that this heuristic argument is correct by solving Eqs. (4.22,4.23).
Remarkably, this can be done analytically, and yields a compact expression:

ρ?(x;κ, s) = µ1

2π2
sign(x− c)√

d− b

√√√√(c− x)(b− x)
x(d− x) Π

 d− c
d− x

,

√
d− c
d− b

 , (4.27)

where Π is the complete elliptic integral of the third kind defined by Eq. (C.3). This
density is represented in Fig. 4.3 (left).

We can easily estimate the leading behaviour of the energy in the limit s→∞ by a
heuristic argument. For large s, the κN rightmost charges are pushed towards infinity.
The typical position xtyp of these charges is obtained from (4.17), which gives

s ' κ
√
xtyp ⇒ xtyp ' s2/κ2 . (4.28)

The energy of these charges is dominated by their potential energy, thus

E [ρ?(x;κ, s)] '
∫
c
ρ?(x;κ, s)V (x)dx ' κ V (xtyp) ' s2/κ , (4.29)

where we introduced an additional factor κ since only the κN rightmost charges con-
tribute. This heuristic derivation is validated by a precise analytic computation, which
also yields the next term:

E [ρ?(x;κ, s)] = s2

κ
+ κ(3κ− 4) ln s+O(1) for s→∞ . (4.30)

Phase II: µ1 > 0

We now consider the second case, µ1 > 0. It corresponds to an additional force that
pushes the rightmost charges towards the origin. It thus corresponds to s < s0(κ). In
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this case, the solution of Eqs. (4.22,4.23) give a simpler result:

ρ?(x;κ, s) = 1
2π

√
d− x
x

+ µ1

4π2√x
ln
√
d− c+

√
d− x∣∣∣√d− c−√d− x∣∣∣ . (4.31)

This density is supported on the interval [0, d] (here b = c). Remarkably, this density
exhibits a logarithmic divergence in the bulk, at x = c, where the two densities ρ1 and
ρ2 meet:

ρ?(x;κ, s) ' − µ1

4π2√c
ln |x− c| , for x→ c . (4.32)

This singularity is clearly visible in Fig. 4.3 (right). We stress that this is very unusual in
the framework of the Coulomb gas to obtain such a behaviour for a density of eigenvalues.
A logarithmic divergence has already been exhibited at the edge of a density in Ref. [249],
with a behaviour − ln x/

√
x. However, this behaviour comes from the specific linear

statistics discussed in this paper. Here, the logarithmic singularity in the bulk comes
from the new type of constraint on the gas induced from the consideration of truncated
linear statistics. We have shown that the logarithmic divergence (4.32) is universal
with respect to the matrix ensemble and the function f of the truncated linear statistics
(as long as it is monotonous). See Ref. [161], included at the end of this Chapter.

As in the previous phase, we can analyse heuristically the behaviour of the energy for
s→ 0. This corresponds to pushing the rightmost charges towards the origin. Therefore,
all the charges are confined in a small domain of typical size

xtyp ' s2/κ2 , (4.33)

which corresponds to a typical spacing δx ' xtyp/N . The energy is then dominated by
the repulsion between the charges, thus

E [ρ?(x;κ, s)] ' −
∫

dx
∫

dy ρ?(x;κ, s)ρ?(y;κ, s) ln |x− y| ' − ln δx ' −2 ln s . (4.34)

This behaviour can similarly be checked from a careful analytical computation.

Phase diagram and transition

For a fixed value of κ (corresponding to a vertical line in the phase diagram in Fig. 4.4),
the parameter s drives a phase transition in the Coulomb gas. This transition occurs
for s = s0(κ), corresponding to µ1 = 0. At the transition point, the density is given by
the Marčenko-Pastur distribution (4.24). For s > s0(κ), the density of the gas has a
gap, while for s < s0(κ) it exhibits a logarithmic singularity.

The order of the transition is obtained by studying the behaviour of the energy
E [ρ?(x;κ, s)] at the transition. One can show that all the derivatives of the energy are
continuous on each side of the transition point s0(κ). However, the energy is not analytic
at this point:

E [ρ?(x;κ, s0(κ) + ε)]− E [ρ?(x;κ, s0(κ)− ε)] = O(ε e−γ/ε) as ε→ 0+ , (4.35)

where
γ =
√

4− c0

π
(4− c0 + c0 ln c0/4) (4.36)
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Figure 4.4: Phase diagram for the
Coulomb gas.

and c0 is obtained from Eq. (4.26). Therefore, following the usual terminology of sta-
tistical physics, this corresponds to an infinite order phase transition. The details are
given in Article 3.

4.2.2 Distribution of the truncated linear statistics
Having obtained the optimal density ρ?(x;κ, s) for all values of κ and s, we can now
analyse the distribution of the truncated linear statistics (4.14). From the analysis of
Section 2.2.5, it is given by

P
(top)
N,κ (s) ∼ exp

[
−βN

2

2 Φκ(s)
]
, Φκ(s) = E [ρ?(x;κ, s)]− E [ρ0(x)] , (4.37)

where only β = 2 is relevant for the interface model. The large deviation function Φκ

can be conveniently studied by making use of the thermodynamic identity (2.100):

dΦκ

ds = −µ1 . (4.38)

This large deviation function Φκ is represented in Fig. 4.5.

Typical fluctuations

The typical value of s, given by µ1 = 0, is s0(κ) obtained from Eqs. (4.25,4.26). We
deduce the mean value of the centre of mass (4.9):

〈
G̃
〉

=
√
N

κ
s0(κ) . (4.39)

The fluctuations near this point can be obtained from the behaviour of µ1 near 0. We
obtain

Φκ(s) = π2

4− c0 + c0 ln c0/4
[s− s0(κ)]2 +O([s− s0(κ)]3) , (4.40)

where c0 is given by (4.26). This corresponds to a Gaussian peak of the distribution
near s = s0(κ). We straightforwardly deduce

Var(s) = 2
π2βN2

(
4− c0 + c0 ln c0

4

)
. (4.41)
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Figure 4.5: Large deviation func-
tion Φκ(s), associated to the dis-
tribution of the centre of mass of
the κN highest interfaces (inset,
for β = 2). The optimal den-
sity ρ? for the Coulomb gas is also
shown for the two phases. The
phase transition occurs at s =
s0(κ), represented by the vertical
dashed line.
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We recognise the usual scaling of the variance in 1/βN2, characteristic of the fluctuations
of a linear statistics.

Large deviations for s→∞

This asymptotic form (4.30) yields the behaviour

P
(top)
N,κ (s) ∼ sβN

2κ(4−3κ)/2 e−βN2s2/2κ for s→∞ . (4.42)

Large deviations for s→ 0

We deduce from (4.34):
P

(top)
N,κ (s) ∼ sβN

2 for s→ 0 , (4.43)
which does not depend on κ. This fact can be understood easily: unlike the case s→∞,
the energy is dominated by the interaction part and involves all the charges, as they are
all confined by the wall at x = 0. Therefore, the energy of the gas is independent of κ.

A sketch of the distribution P
(top)
N,κ (s), along with the behaviours (4.40), (4.42)

and (4.43), is represented in Fig. 4.5.

4.2.3 A universal mechanism
We have analysed in details the distribution of the truncated linear statistics (4.14) in
the Laguerre ensemble (4.10). For fixed κ = K/N , we have shown that in the limit
N → ∞ the underlying Coulomb gas undergoes a phase transition of infinite order,
located at the most probable value of s, given by s0(κ).

Furthermore, we can show that for any choice of function f for the linear statistics,
provided it is monotonous, and any matrix ensemble, the Coulomb gas will always
exhibit an infinite order phase transition, at the typical value s0(κ) determined by

s0(κ) =
∫
c0
f(x) ρ0(x) dx , (4.44)
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where ρ0 is the typical density of eigenvalues in the matrix ensemble under consideration,
and c0 is fixed by

κ =
∫
c0
ρ0(x) dx . (4.45)

This transition delimits two phases: one with a gap in the density and one with a
logarithmic divergence in the bulk. Depending on the choice of f the Coulomb gas
may have other phase transitions, but the neighbourhood of the typical value s0(κ) is
always characterised by the universal mechanism described above. This is proved in the
Appendix of Article 3.

4.2.4 Singular nature of the limits κ→ 0 and κ→ 1
Note that in the case κ = 1 studied in Ref. [249], with the same function f(x) =

√
x, the

Coulomb gas undergoes infinite order phase transition at the typical value s0(1). We can
straightforwardly take the limit κ → 1 in the results above to obtain the distribution
of the full linear statistics. We stress that this is not the case in general (for arbitrary
f). For most linear statistics (κ = 1) the Coulomb gas does not undergo an infinite
order phase transition at the typical value s0(1), as it does for κ < 1. Therefore the
limit κ→ 1 is singular and we cannot recover the phase diagram at κ = 1 from the one
obtained for κ < 1. An example is given in the conclusion of Ref. [161] (Article 3).

The limit κ→ 0 is also singular. Indeed, the extreme case corresponds to take only
K = 1 eigenvalue, which is thus the largest. This corresponds to κ = 1/N , which cannot
be studied by our Coulomb gas method, as it would require to obtain the subdominant
contribution in 1/N whereas the Coulomb gas provides only the dominant one.

The singularity of these limits comes from the non-commutativity of the limits κ→ 0
(or κ → 1) and N → ∞. It would be interesting to study more closely these limits to
see how the universal mechanism described here transitions to the ones known for the
largest eigenvalue (κ = 1/N) [47, 101, 102, 212, 213, 300] and for the full linear statistics
(κ = 1) [77, 94,210,211,214,217,218,249–251,286,301,302].

4.3 Unconstrained truncated linear statistics
In the previous Section we have studied the distribution of the truncated linear statis-
tics (4.13), with the condition that only the largest eigenvalues contribute. We now
relax this constraint and consider the situation where the x′is involved in

s = 1
N

K∑
n=1

√
xn , (4.46)

are not necessarily ordered, such that any subset of K = κN eigenvalues can contribute
to s. This problem has been studied in Ref. [160] (Article 4), for a different linear
statistics from motivations from quantum scattering in a chaotic quantum dot. Here,
in order to compare with the case where only the largest eigenvalues contribute, we will
analyse the distribution of (4.46).
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4.3.1 A new matrix ensemble
Our approach is based on the Coulomb gas method, which treats the eigenvalues as
indistinguishable variables. Therefore, to keep track of the eigenvalues of interest, we
must introduce an additional set of N random variables, denoted {ni}, defined as

ni =
{

1 if xi contributes to s ,
0 otherwise. (4.47)

The condition that we select a fixed number K = κN of eigenvalues becomes
N∑
i=1

ni = K = κN . (4.48)

We can then rewrite the truncated linear statistics (4.46) as a sum over all the eigen-
values:

s = 1
N

N∑
n=1

ni
√
xi . (4.49)

In this form, since we have restored the symmetry under the permutation of the xi’s,
we can now suppose that the eigenvalues are ordered, x1 > x2 > · · · > xN . Note
that the case of the largest eigenvalues discussed in Section 4.2 is obtained by imposing
n1 = n2 = · · · = nK = 1 and nK+1 = · · · = nN = 0. Here, we consider the case where
the ni’s are no longer fixed. This corresponds to introduce the joint distribution of the
two sets of random variables:

PN,κ({xi}, {ni}) ∝ P({xi}) 1x1>x2>···>xN δ
∑

ni,κN
(4.50)

where P({xi}) is the joint distribution of the eigenvalues (4.10) and

1x1>x2>···>xN =
N∏
i=1

Θ(xi − xi+1) (4.51)

ensures that the eigenvalues are ordered (Θ is the Heaviside step function).
Within this new ensemble (4.50), our aim is to determine the distribution of the

truncated linear statistics (4.49), which is given by

PN,κ(s) =
∑
{ni}

∫
dx1 · · · dxN PN,κ({xi}, {ni}) δ

(
s− 1

N

N∑
i=1

ni
√
xi

)
, (4.52)

in the limit N →∞. We will again use the Coulomb gas method and write

PN,κ({xi}, {ni}) ∝ e−
βN2

2 E[{xn}] 1x1>x2>···>xN δ
∑

ni,κN
, (4.53)

where the energy of the gas is

E[{xn}] = − 1
N2

∑
i 6=j

ln |xi − xj|+
1
N

N∑
i=1

xi , (4.54)

which is O(N0). In the limit N →∞, we will again perform a saddle point estimate to
find the optimal configurations of {xi} and {ni} that dominate (4.52).
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Remark: Relation with the thinned ensembles

The ensemble (4.50) is related to the thinned ensembles introduced by Bohigas and
Pato [46] to describe the transition from the spectral statistics of random matrices
(strongly correlated) to Poisson statistics (independent variables). These ensembles
have been well-studied in the literature, see for instance Refs. [38,80,199]. The thinned
ensembles are obtained by removing each eigenvalue xi with a given probability κ. They
correspond to the distribution

P(thinned)
N,κ ({xi}, {ni}) ∝ P({xi}) 1x1>x2>···>xN κ

∑
ni(1− κ)

∑
ni . (4.55)

This is somehow a “grand canonical” version of the problem we consider here, as the
final number of eigenvalues obtained can fluctuate while we impose it to be fixed to κN
in (4.50). Because of the strong correlations between the variables, it is far from obvious
that the two ensembles are equivalent.

4.3.2 Typical density of eigenvalues

In the absence of constraint, the typical configuration of charges {x(0)
i } is given by the

minimum of the energy (4.54):
∂E

∂xi

∣∣∣∣∣
{x(0)
i }

= 0 . (4.56)

As we have seen in Section 4.2, in the limit N → ∞, this optimal configuration is
associated to the Marčenko-Pastur distribution ρ0(x), given by Eq. (4.24).

In Section 4.2 we restricted to the contribution of the largest eigenvalues. From
the typical density ρ0 we deduced the typical value s0(κ) (maximum of P (top)

N,κ ) simply
by selecting the K = κN largest eigenvalues, see Eqs. (4.25,4.26). Here, we have the
freedom to choose any subset of K eigenvalues to contribute to s. We can thus construct(
N
K

)
different values of s, without moving the eigenvalues, therefore without any energy

cost for the Coulomb gas. The maximal accessible value is given by s0(κ) (selecting the
largest eigenvalues, cf. Fig. 4.6, left). Conversely, the minimal accessible value s1(κ) is
obtained by selecting the smallest eigenvalues (see Fig. 4.6, right). Thus,

s1(κ) =
∫ b0

0

√
x ρ0(x) dx , (4.57)

where b0 is given by

κ =
∫ b0

0
ρ0(x) dx . (4.58)

In the entire interval [s1(κ), s0(κ)], the Coulomb gas is frozen to its optimal density ρ0
(minimum of the energy), and only the ni’s fluctuate. Outside this interval we have
to deform the density ρ, as we have done in Section 4.2. The phase diagram of the
Coulomb gas thus involves (at least) two critical lines, s0(κ) and s1(κ).

We will come back to the analysis of the typical fluctuations in Section 4.3.4, but
first we will analyse the large deviations, outside the interval [s1(κ), s0(κ)].
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Figure 4.6: The two ex-
treme cases obtained from
the Marčenko-Pastur distribu-
tion (4.24): either we select only
the top eigenvalues (left), or the
smallest (right).
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4.3.3 Large deviations
To analyse the distribution (4.52), let us first study the atypical fluctuations, corre-
sponding to small or large values of s.

Phase I

Consider the limit s → ∞. From the expression of s, Eq. (4.46), it corresponds to
xi →∞ for all i such that ni = 1:

xi →∞ if ni = 1 ⇒ s→∞ . (4.59)

The otherN−K eigenvalues, which do not contribute to s, are not constrained, therefore
they remain of order 1. The limit s→∞ thus selects only the largest eigenvalues:

n1 = n2 = · · · = nK = 1 , nK+1 = · · · = nN = 0 . (4.60)

The problem thus reduces to the case studied in Section 4.2, and we can directly trans-
pose our results here. Therefore the distribution (4.52) is dominated by the density
of eigenvalues ρ?(x;κ, s) given by (4.27). In particular, its asymptotic behaviours are
related to the behaviours of the energy (4.30,4.40):

E [ρ?(x;κ, s)]− E [ρ0] '


s2

κ
+ κ(3κ− 4) ln s for s→∞ ,

α0(s− s0(κ))2 for s→ s0(κ)+ ,

(4.61)

where

α0 = π2

4− c0 + c0 ln c0/4
(4.62)

is obtained from (4.40), and c0 is given by (4.26).
This derivation is valid as long as only the largest eigenvalues contribute to s. This is

true if the gap between the two supports of ρ?(x;κ, s) is larger than the typical spacing
of the eigenvalues, which is of order N−1. In the limit N → ∞, this reduces to the
condition

s > s0(κ) , (4.63)

where s0(κ) is given by Eqs. (4.25,4.26).
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Figure 4.7: Optimal density for the
Coulomb gas, given by Eq. (4.65).
Only the fraction κ of charges
contained in the left bulk con-
tribute to s. The dashed lined
is the Marčenko-Pastur distribu-
tion (4.24).

Phase III

The other limit can be studied similarly. If s → 0, all the eigenvalues contributing
to (4.49) must go to zero, which means they are the smallest:

n1 = · · · = nN−K−1 = 0 , nN−K = · · · = nN = 1 . (4.64)

We can then adapt the derivation presented in the Appendix of Article 3 to consider the
smallest eigenvalues. We obtain again an optimal density of charges with two disjoint
supports [0, b] and [c, d], of the form:

ρ?(x;κ, s) = µ1

2π

√
(b− x)(d− x)(c− x)

x
−
∫ b

0

dt
2π

1
t− x

1√
(b− t)(c− t)(d− t)

, (4.65)

where the principal value is needed only if x ∈ [0, b]. The values of b, c, d and µ1 are
obtained from the conditions that this density vanishes at b, c and d (which have already
been implemented to obtain the form (4.65)), along with the constraints

s =
∫ b

0

√
x ρ?(x;κ, s) dx , κ =

∫ b

0
ρ?(x;κ, s) dx . (4.66)

Note that this seems to give too many conditions, but one of them is redundant as it
was used in the derivation of (4.65). This density is represented in Fig. 4.7.

As before, this phase exists as long as the two bulks remain separated by a gap. The
limit of existence is thus b = c, which corresponds to

s < s1(κ) , (4.67)

where s1(κ) is given by Eqs. (4.57,4.58).
The behaviour of the energy of the gas can be studied similarly as in Section 4.2.

We obtain

E [ρ?(x;κ, s)]− E [ρ0] '

 −2κ2 ln s for s→ 0 ,
α1(s− s1(κ))2 for s→ s1(κ)− ,

(4.68)

where
α1 = π2

√
4− b0 + b0−8

4 −
b0
4 ln

(√
4− b0 + 8−b0

4

) (4.69)

and b0 is given by Eq. (4.58).
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Figure 4.8: Large deviation function (en-
ergy of the Coulomb gas) as a function of s,
for κ = 0.5. In the interval [s1(κ), s0(κ)] it
is exactly zero as the Coulomb gas is frozen
to the Marčenko-Pastur distribution (4.24).
The optimal densities ρ? in each regions are
represented in the insets.
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Large deviation function – Second order phase transition

We have obtained the configuration of the charges {xi}, associated to the density
ρ?(x;κ, s), that dominates the distribution (4.52). The density takes three different
forms, depending on the value of s. We will see that in the interval [s1(κ), s0(κ)], the
density is frozen to the Marčenko-Pastur distribution ρ0 (Phase II), such that the en-
ergy of the gas is stuck to its minimal value E [ρ0]. For s > s0(κ), the fraction κ of the
rightmost charges detach from the others and the density splits into two bulks (Phase
I). As s increases, these charges move further away from the origin. We thus recover
the situation of Section 4.2. Conversely, for s < s1(κ), the leftmost charges detach,
and move towards the origin (Phase III). All these phases are represented on the phase
diagram in Fig. 4.9. We can regroup the behaviours of the energy in Phases I and III
near s0(κ) and s1(κ) respectively, Eqs. (4.61) and (4.68), as

E [ρ?(x;κ, s)]− E [ρ0] '


α0[s− s0(κ)]2 for s→ s0(κ)+ , (Phase I),
0 for s ∈ [s1(κ), s0(κ)] , (Phase II),
α1[s− s1(κ)]2 for s→ s1(κ)− , (Phase III).

(4.70)

We thus deduce that the two phase transitions are of second order.
Having obtained the density ρ?(x;κ, s), we deduce the form of the distribution

from (2.97):

PN,κ(s) ∼ e−
βN2

2 Φ̃κ(s) , Φ̃κ(s) = E [ρ?(x;κ, s)]− E [ρ0(x)] . (4.71)

The large deviation function Φ̃κ is represented in Fig. 4.8. This analysis gives no infor-
mation on the distribution in the interval [s1(κ), s0(κ)] since the Coulomb gas is frozen.
In this interval, the distribution is thus controlled by the fluctuations of the ni’s, which
we now investigate.

4.3.4 Typical fluctuations: mapping to a free fermions model
We have obtained the distribution PN,κ(s) outside the interval [s1(κ), s0(κ)] using the
Coulomb gas technique. In this case the eigenvalues contributing to s are either the
smallest or the largest, which corresponds to a frozen configuration {ni}, while the
eigenvalues {xi} fluctuate.
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In the interval [s1(κ), s0(κ)], all the values of s can be obtained from the optimal
density ρ0, as discussed in Section 4.3.2. Therefore, there are two possibilities:

• Either we move the eigenvalues away from their optimal configuration {x(0)
i }. This

corresponds to deform the density ρ?, which results in an energy cost of order N2.

• Or we let the eigenvalues rest to their optimal configuration {x(0)
i } while letting

the {ni} fluctuate. In this case, there is no energy cost from the Coulomb gas, but
only an entropic cost from the fluctuations of the set {ni} (different configurations
{ni} can give the same value of s). This entropy cost is of order N .

In the limit N →∞, we thus expect that the density of charges ρ? will remain frozen to
its optimal configuration ρ0, and only the {ni} will fluctuate. Indeed, the distribution
of s is given by

PN,κ(s) ∝
∑
{ni}

∫
dx1 · · · dxN e−

βN2
2 E[{xn}] δ∑ni,κN

δ

(
s− 1

N

N∑
i=1

nif(xi)
)
. (4.72)

A saddle point evaluation of the integral over the xi’s thus yields

PN,κ(s) ∝
∑
{ni}

δ∑
i
ni,κN

δ

(
s− 1

N

N∑
i=1

nif(x(0)
i )

)
, f(x) =

√
x , (4.73)

where {x(0)
i } is the optimal configuration that minimises the energy (4.54). We now

introduce a convenient representation of this distribution in terms of the microcanonical
partition function for K = κN particles, on N energy levels

εi = Nf(x(0)
i ) (4.74)

and total energy
E =

∑
i

niεi = Ns . (4.75)

The ni’s play the role of occupation number for these K fictitious particles. Since ni = 0
or 1 because an eigenvalue either contributes or not to s, these particles are fermions.
We have thus reduced the problem of determining the distribution of s to computing

Ω(K,E) =
∑
{ni}

δ∑
i
ni,K

δ

(
E −

N∑
i=1

niεi

)
(4.76)

for K free fermions with total energy E on the N energy levels (4.74). This is a textbook
computation in statistical physics [105,260,261,288], which we reproduce here. The idea
is to consider generating functions, such as

Z(K, β̃) =
∫

Ω(K,E) e−β̃E dE =
∑
{ni}

δ∑
i
ni,K

e−β̃
∑

i
niεi , (4.77)

which is the canonical partition function for K fermions at inverse temperature β̃, which
we denoted with a tilde to distinguish it from the Dyson index β. Here, the number
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of level N , which is the dimension of the one body Hilbert space, plays the role of a
volume. We also introduce the grand canonical partition function

ZGC(z, β̃) =
N∑
K=0

zK Z(K, β̃) =
∑
{ni}

z
∑

i
ni e−β̃

∑
i
niεi , (4.78)

where z = eβ̃µ is the fugacity and µ the chemical potential. This last sum can be easily
evaluated and has the standard form of the grand canonical partition function for non
interacting fermions:

ZGC(β̃, z) =
N∏
i=1

(
1 + z e−β̃εi

)
. (4.79)

In the thermodynamic limit, we deduce the expression of the grand potential (defined
here without the usual factor 1/β̃)

J (β̃, z) = lim
N→∞

− 1
N

lnZGC(β̃, z) = −
∫
ρ0(x) ln

(
1 + z e−β̃f(x)

)
dx , (4.80)

where ρ0 is the optimal density (4.24). The procedure is now straightforward: knowing
the grand canonical partition function, we will successively deduce the canonical and
microcanonical ones by using the equivalence of ensembles in the thermodynamic limit
N →∞ through a Legendre transform.

Canonical ensemble: cumulant generating function

We can obtain the canonical partition function in terms of its grand canonical counter-
part by inverting (4.78):

Z(K, β̃) = 1
2iπ

∮ ZGC(β̃, z)
zK+1 dz , (4.81)

where the integral runs over a contour enclosing once the origin in the counter-clockwise
direction. Using Eq. (4.80), we can evaluate this integral in the limit N → ∞ via a
saddle point estimate. The saddle point determines the fugacity to the value zcan(κ, β̃)
such that the mean (grand canonical) number of fermions is K:

z
∂ lnZGC

∂z

∣∣∣∣∣
zcan

= K ⇒
∫ ρ0(x)

eβ̃f(x)/zcan + 1
= κ . (4.82)

We then deduce the free energy (defined without the usual factor 1/β̃)

F(κ, β̃) = lim
N→∞

− 1
N

lnZ(κN, β̃) = κ ln zcan(κ, β̃) + J (β̃, zcan(κ, β̃)) . (4.83)

This whole procedure simply shows that the free energy F can be deduced from the
grand potential J by a Legendre transform, as it is well-known.

Since the truncated linear statistics under consideration is given byNs = ∑
i niεi, the

canonical partition function (4.77) is proportional to the moment generating function
of s:

Z(κN, β̃) ∝
〈
e−Nβ̃s

〉
. (4.84)
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The normalisation is simply obtained by setting β̃ = 0, thus:〈
e−Nβ̃s

〉
= Z(κN, β̃)
Z(κN, 0) . (4.85)

By taking the logarithm, we directly obtain that the cumulant generating function is
controlled by the free energy:

1
N

ln
〈
e−Nβ̃s

〉
−→
N→∞

F(κ, 0)−F(κ, β̃) . (4.86)

We then get the cumulants of s by expanding the generating function

ln
〈
e−Nβ̃s

〉
=
∞∑
k=0

(−Nβ̃)k
k!

〈
sk
〉

c
'

N→∞
N
(
F(κ, 0)−F(κ, β̃)

)
. (4.87)

Expanding F near β̃ = 0, we obtain the scaling〈
sk
〉
c
∝ N−k+1 , 0 < K < N . (4.88)

This can be compared to the scaling of the full linear statistics (K = N), Eq. (2.45):〈
sk
〉
c
∝ β−k+1N−2k+2 , K = N . (4.89)

We notice that, for the truncated linear statistics, the cumulants do not depend on
the Dyson index β. This is due to the fact that β controls the distribution of the
xi’s, which are frozen here. Furthermore, the cumulants are much larger in the case
of truncated linear statistics. Indeed, for the full linear statistics, they are controlled
by the fluctuations of ρ, which induces an energy cost of order N2. However here the
scaling comes from the fluctuations of the ni’s, which are associated to an entropy cost
of order N1, as we will see.

Expanding (4.83) near β̃ = 0, we obtain the first two cumulant as:

〈s〉 = κ
∫
ρ0(x)f(x) dx , (4.90)

Var(s) = κ(1− κ)
N

[∫
ρ0(x)f(x)2 dx−

(∫
ρ0(x)f(x) dx

)2
]

(4.91)

These expressions are quite general and should hold for any regular function f . Similar
expressions have been obtained recently for linear statistics in the thinned ensembles,
see for instance [38]. In our case we have f(x) =

√
x, thus:

〈s〉 = 8κ
3π , (4.92)

Var(s) = κ(1− κ)
N

(
1− 64

9π2

)
. (4.93)

We notice that the variance vanishes for κ = 0 and κ = 1. This is due to the fact that
Eq. (4.93) is only the leading term of a 1/N -expansion of the variance. When taking
κ = 1 (full linear statistics), the leading term vanishes and one should recover the usual
scaling of 1/βN2 of the linear statistics. The fact that Var(s) also vanishes for κ→ 0 is
straightforward from the symmetry κ↔ 1− κ which follows from the fermionic nature
of the fictitious particles (particle-hole symmetry).
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Microcanonical ensemble: distribution of the truncated linear statistics

Knowing the moments generating function (4.85), the distribution can be obtained by
Laplace inversion. Again, in the limit N →∞, we can perform a saddle point estimate,
which reduces to computing the Legendre transform of the free energy (4.83). The
temperature is fixed to its microcanonical value β̃mic(κ, s) by imposing that the mean
(canonical) energy is E = Ns:

∂F
∂β̃

∣∣∣∣∣
β̃mic

= s ⇒
∫ ρ0(x)

eβ̃micf(x)/zmic + 1
f(x) dx = s , (4.94)

where
zmic(κ, s) = zcan(κ, β̃(κ, s)) . (4.95)

We deduce that
lim
N→∞

1
N

ln Ω(K = κN,E = Ns) = S(κ, s) , (4.96)

where the entropy S is given by

S(κ; s) = β̃mic(κ, s)s−F(κ, β̃mic(κ, s)) . (4.97)

We can easily show that it verifies the thermodynamic identity

dS(κ, s)
ds = β̃mic(κ, s) (4.98)

This relation is analogous to (2.100) which we have extensively used in the context of
the Coulomb gas.

Therefore the distribution PN,κ(s), which is the inverse Laplace transform of (4.85)
is1:

PN,κ(s) ∼
N→∞

exp [−NΞκ(s)] , (4.99)

where the large deviation function is obtained by combining (4.85,4.96,4.97):

Ξκ(s) = −S(κ, s)−F(κ, 0) . (4.100)

Denoting s? the value of s which verifies

β̃mic(κ, s?) = 0 , (4.101)

we clearly have from (4.97) that

S(κ, s?) = −F(κ, 0) . (4.102)

The large deviation function is then a difference of entropy:

Ξκ(s) = S(κ, s?)− S(κ, s) (4.103)

The meaning is quite clear: the number of configurations {ni} which correspond to the
same value s is exactly eNS(κ,s). It is thus expected that the distribution is controlled

1Here, the notation ∼
N→∞

means − 1
N lnPN,κ(s)→ Ξκ(s) for N →∞.
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by an entropy effect. Note that this entropy comes from the fluctuations of the {ni},
therefore is not related to the entropy S [ρ], described in Section 2.2.5, which associated
to the Coulomb gas.

Note also that the values β̃mic and zmic of the inverse temperature and the fugacity
are obtained by summing over all the eigenvalues (or levels), with a weight given by the
Fermi-Dirac distribution

ni = 1
exp(β̃f(xi))/z + 1

, (4.104)

see Eqs. (4.82) and (4.94). The parameter β̃, which is the inverse temperature for the
fictitious fermions, can be either positive or negative. This unusual situation arises from
the fact that the spectrum εi = f(xi) is bounded both below and above. The Fermi-
Dirac distribution (4.104) interpolates between two step functions: it either selects the
smallest eigenvalues for β̃ → +∞, or the largest ones for β̃ → −∞, as shown in Fig. 4.9.

Let us now analyse the behaviour of the large deviation function (4.103). From the
identity (4.98), the point s? is the maximum of the entropy, thus the maximum of the
probability PN,κ(s), i.e. the typical value of the truncated linear statistics. In terms of
the fermions, the behaviour near this point can be obtained from an infinite temperature
expansion β̃ → ±∞. We obtain

Ξκ(s) '
(s− s?)2

2σ2
κ

, σ2
κ = κ(1− κ)

N

(
1− 64

9π2

)
. (4.105)

The behaviour near the edges s0(κ) and s1(κ) are obtained from zero temperature ex-
pansions β̃ → 0±, which follow from a Sommerfeld expansion [260]:

Ξκ(s) ' Cκ −


πb0

√
2ρ0(b0)

3 (s− s1(κ)) for s→ s1(κ)+ ,

πc0

√
2ρ0(c0)

3 (s0(κ)− s) for s→ s0(κ)− ,

(4.106)

where c0 and b0 are given by Eqs. (4.26,4.58) and

Cκ = −κ ln κ− (1− κ) ln(1− κ) . (4.107)

This value, which is the maximum of Ξκ, has a simple interpretation. The probability
PN,κ(s) is the (normalised) number of configurations {ni} among the

(
N
K

)
which gives

the value s. For s = s0(κ) or s = s1(κ), there is only one configuration (largest or
smallest eigenvalues), thus:

− 1
N

lnPN,κ(s0(κ)) ' 1
N

ln
(
N

K

)
−→
N→∞

Cκ , (4.108)

and similarly for s1(κ).
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4.3.5 Numerical simulations
To check our results, I have performed a numerical analysis of the distribution of the
truncated linear statistics by two different means:

1. Direct simulations of s by diagonalisation of Wishart matrices (constructed as
described in Section 1.3). This gives access to the typical fluctuations controlled
by the large deviation function (4.103).

2. Computation of the optimal density of the Coulomb gas ρ?(x;κ, s) which minimises
the energy under constraints, by Monte Carlo simulations.

For more details, see Article 4. The results of these simulations are in perfect agreement
with our analytical computations.

4.3.6 Summary and phase diagram
We have obtained the distribution of the truncated linear statistics s (4.46) for all values
of s, in the large deviations form:

PN,κ(s) ∼
N→∞


exp

[
−βN

2

2 Φ̃κ(s)
]

for s < s1(κ) or s > s0(κ) ,

exp [−N Ξκ(s)] for s ∈ [s1(κ), s0(κ)] ,
(4.109)

where the large deviation function

Φ̃κ(s) = E [ρ?(x;κ, s)]− E [ρ0(x)] (4.110)

is controlled by the energy of the Coulomb gas, while

Ξκ(s) = S(κ, s?)− S(κ, s) (4.111)

comes from the entropy of the occupation numbers {ni}. The particular behaviour of
the distribution, with two different scalings with N and N2 has a simple meaning:

• For s > s0(κ) (Phase I) and s < s1(κ) (Phase III), the occupation numbers {ni}
are frozen and select only the largest or the smallest eigenvalues. The distribution
PN,κ(s) is thus controlled by the fluctuations of the eigenvalues {xi}, which induce
an energy cost for the Coulomb gas. This yields the usual scaling βN2/2 of the
large deviations form.

• For s ∈ [s1(κ), s0(κ)] (Phase II), the Coulomb gas is frozen to its optimal configu-
ration, given by the Marčenko-Pastur distribution (4.24). The distribution PN,κ(s)
is then controlled by the entropy of the occupation numbers {ni}. This gives the
linear scaling in N .

This is summarised in the phase diagram shown in Fig. 4.9.
This analysis is universal: it does not depend on the matrix ensembles or the linear

statistics under consideration. In particular, the whole discussion of Section 4.3.4 is
valid for any typical density of eigenvalues ρ0 and monotonous function f for the linear

– 100 –



4.3. Unconstrained truncated linear statistics

Figure 4.9: Phase diagram for the Coulomb gas. For a given value of κ, the evolution
of the density ρ? of the Coulomb gas and of the mean occupation numbers ni are
represented.

statistics. Similar features should also occur for non-monotonous functions, but a more
detailed analysis is still required.

There also remains to understand more precisely the connection with the thinned
ensembles briefly mentioned in Section 4.3.1. These ensembles correspond to removing
eigenvalues with a given probability, which is a “grand canonical” version of the problem
studied here. As we have studied the distribution of the truncated linear statistics in
the thermodynamic limit N → ∞ by computing thermodynamic quantities, we expect
that the two problems should be similar. However the equivalence of ensemble is not so
trivial for these strongly correlated systems and should be investigated more precisely.
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Part II

Multichannel disordered wires





Chapter 5

Introduction to disordered wires

Electronic transport in disordered systems has been extensively studied since the pio-
neering work of Anderson in the 50s [18]. In a perfect cristal the eigenstates are extented
waves. The introduction of disorder might induce localisation of the states, i.e. expo-
nential decay of the wave function in space. Dimensionality plays a crucial role in the
theory of Anderson localisation [122, 195]. In the strictly one dimensional case, power-
ful analytical methods allow to obtain exact results [206]. However, these 1D models
cannot reproduce all the phenomenology which exists in higher dimensions, such as the
Anderson transition from localised to extended states. In one dimension, all the states
are localised, for all disorder strength. In higher dimensions, there are no analytical
method to study such systems at all disorder strength. Therefore, one relies either on
weak disorder perturbative expansions or numerical methods.

In this framework, models of disordered wires have been introduced to study the
transport properties in metallic wires, which have a width W much smaller than their
length L. These models describe a quasi-1D situation, between the purely 1D case and
higher dimensions. They have attracted a lot of attention in the theory of disordered
systems [30,122], both for analytical and numerical purposes.

Numerical studies of localisation, in any dimension d > 2, rely on the scaling ap-
proach [195]. This method is based on exact numerical computations of the localisation
length ξ(W ) for a quasi-1D system, with a finite cross-section W . The results obtained
for different finite size W allow to determine a scaling function, from which the locali-
sation length ξ(∞) of the infinite system is extracted.

The quasi-1D models of disordered wires allow to study an intermediate situation,
between the strictly 1D case and higher dimensions. Under the assumption of ergodicity
in the transverse direction (isotropy), these models have been studied analytically. In
particular, they properly describe a diffusive regime which does not exist in strictly 1D
systems.

The analytical study of quasi-1D disordered systems relies on three complementary
approaches. The first one is the diagramatic approach [3, 4], which is a perturbative
method valid for weak disorder. This approach cannot reach the strongly localised
regime, but allows to study the crossover between different symmetry classes, the deco-
herence and dephasing, ... The second approach, based on non linear σ-models, has
permitted to study different types of observables [11–14, 234, 235, 313] (for reviews,
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see [118,119,143]), such as density-density correlations, localisation length, conductance,
etc.... We will not discuss this approach in more details, as we will follow the third one
introduced in the 80s by Dorokhov, Mello, Pereyra and Kumar (DMPK) [106–109,227]
(for reviews see [30,229]). Their approach is based on the analysis of the transport prop-
erties of the wire, characterised by a transfer matrix or equivalently a scattering matrix.
Their central result is the celebrated DMPK equation, which describes the evolution of
the transmission eigenvalues along the wire. This approach relies on a global analysis of
the problem, based on symmetries. The DMPK equation describes disordered wires in
the presence or absence of time-reversal and spin-rotation symmetry, corresponding to
the Wigner-Dyson classes discussed in Chapter 1. This equation has allowed to success-
fully describe several physical properties of disordered wires, such as the conductance.
For a review, see Ref. [30]. Section 5.1 will give a description of the DMPK approach,
which will allow us to stress the difference with the approach developed in this thesis.

At the end of the 90s, the original Wigner-Dyson classification was extended by Alt-
land and Zirnbauer [15,16,314] to account for two other discrete symmetries encountered
in particle or condensed matter physics: the chiral and particle-hole symmetries. The
DMPK approach has thus been applied to study disordered wires belonging to these
new symmetry classes. We describe these new symmetry classes and the corresponding
extensions of the DMPK equation in Section 5.2.

In the 2000s, a renewed interest for these multichannel disordered wires arose from
the perspective of topological insulators and superconductors. These models have turned
out to provide a convenient framework to analytically study the effect of disorder on
topological phases. For more details, see Section 5.3.

5.1 The DMPK equation
Here we recall the DMPK method, which is one of the standard approach to study
quasi-1D systems [30]. Let us consider a disordered wire of length L with a finite width
W . This wire is connected to two perfect leads, as shown in Fig. 5.1. The scattering
states at Fermi energy define N propagating modes, called channels. We describe these
states by a N -components wave function Ψ. It satisfies the Schrödinger equation

HΨ = EΨ , H = −1N
d2

dx2 + V (x) , Ψ =


ψ1
...
ψN

 , (5.1)

where the potential V (x) is a N×N matrix. As discussed in Chapter 1, the symmetries
of the system impose some constraint on the Hamiltonian, and thus on the matrix V .
If the system breaks time-reversal symmetry, V can be any complex Hermitian matrix
(Dyson index β = 2). If time reversal symmetry is conserved this matrix can be either
real symmetric (β = 1) if spin is conserved or quaternionic self-dual (β = 4). See
Chapter 1 for a more detailed discussion of these symmetries.

The approach of Dorokhov, Mello, Pereyra and Kumar [106–109, 227] is based on
a transfer matrix formalism. To introduce this formalism, it is natural to consider a
scattering situation. We connect a disordered wire of length L to two perfect leads,
as shown in Fig. 5.1. In our model, this corresponds to set V (x) = 0 for x < 0 and
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Figure 5.1: A scattering situation
of a disordered wire of size L con-
nected to two perfect leads. On
each side, the wave function is the
superposition of ingoing and out-
going plane waves.

x > L. In these two regions, the wave function of energy E = k2 can be expressed as a
superposition of incoming and outgoing waves:

ΨE(x) = 1√
4πk


Ain
L eikx + Aout

L e−ikx for x < 0 ,

Aout
R eikx + Ain

R e−ikx for x > L ,
(5.2)

where the amplitudes Ain,out
L,R are N -components vectors and the prefactor is chosen so

that
∫

Ψ†E(x)ΨE′(x)dx = δ(E − E ′).
We now introduce the 2N × 2N scattering matrix S which relates the outgoing

amplitudes to the incoming ones:(
Aout
L

Aout
R

)
= S

(
Ain
L

Ain
R

)
. (5.3)

This matrix has to conserve the probability current J in = J out, where the incoming
and outgoing currents are given by

J in = 1
4π

[
(Ain

L )†Ain
L + (Ain

R)†Ain
R

]
= 1

4π (X in)†X in , where X in =
(
Ain
L

Ain
R

)
, (5.4)

J out = 1
4π (Xout)†Xout = 1

4π (X in)† S†S X in ,where Xout =
(
Aout
L

Aout
R

)
. (5.5)

This implies that the scattering matrix is unitary:

S ∈ U(2N) . (5.6)

This matrix can be decomposed in blocks of size N ×N :

S =
(
r t′

t r′

)
. (5.7)

where r and t represent respectively the reflection and transmission of a wave coming
from the left. Similarly, r′ and t′ are the reflection and transmission matrices for a wave
coming from the right side.

The idea of DMPK is to study the evolution of the eigenvalues {Tn} of the transfer
matrix tt† when the length L of the wire is increased by δL. To obtain the evolution of
these eigenvalues through a small slice δL we use perturbation theory. We describe the
first part of the wire by the scattering matrix (5.7), and the small part of length δL by
the scattering matrix

S̃ =
(
r̃ t̃′

t̃ r̃′

)
, (5.8)
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Figure 5.2: The wire of length
L + δL is artificially separated in
two parts. The first section of
length L is described by a scatter-
ing matrix S, while the additional
slice of length δL is described by
a scattering matrix S̃.

as shown in Fig. 5.2. To account for the disorder, the matrix S̃ is taken to be random.
We will assume that the disorder couples all the channels equivalently, such that a wave
injected in one channel will come out from any channel with equal probability. This
isotropy assumption restricts this approach to the quasi-1D geometry.

We want to study the transmission matrix t + δt of the wire of length L + δL. Let
us thus consider a wave coming from the left of the wire. This wave can be directly
transmitted through both systems, which corresponds to a transmission matrix t̃t. It can
also be transmitted once trough the first section, and then undergo a series of internal
reflections before coming out to the right of the wire. Summing all these possibilities
yields:

t+ δt = t̃t+ t̃r′r̃t̃+ t̃(r′r̃)2t+ · · · = t̃(1− r′r̃)−1t , (5.9)
thus

δt =
[
t̃(1− r′r̃)−1 − 1

]
t . (5.10)

We now need to specify the distribution of the matrices t̃ and r̃ which describe the
transmission and reflection by the small slice δL. Heuristically, if δL is small compared
to the mean free path `, we expect that the small slice δL will transmit incoming waves
with probability close to 1. We expect that the reflection probability is proportional to
δL (this can be proved with a microscopic model [3, 4, 287]), and thus we write:

〈
tr(t̃t̃†)

〉
= N

(
1− δL

`

)
, (5.11)

where 〈· · ·〉 denotes the averaging with respect to the matrix t̃. The length ` characterises
the strength of the disorder: it is the “elastic mean free path”1. If we set for convenience
` = 1, this means that the eigenvalues {T̃n} of t̃t̃† are close to unity:

T̃n = 1−O(δL) . (5.12)

We can actually express the scattering matrix S̃ in terms of these eigenvalues as [220,227]

S̃ =
(
U 0
0 V

)(
−
√

1− T
√
T√

T
√

1− T

)(
U ′ 0
0 V ′

)
, T = Diag(T̃1, . . . , T̃N) , (5.13)

where U , U ′, V and V ′ are N × N unitary matrices. In the absence of time reversal
symmetry (β = 2), the only condition is that S̃ is unitary and thus all the matrices
U , U ′, V and V ′ are distinct. In the presence of both time-reversal and spin-rotation

1We use here the definition of the mean free path used in the random matrix approach, which differs
from the one used in the microscopic (diagrammatic) approach [283].
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symmetry (β = 1), the scattering matrix is also symmetric, which implies that U ′ = UT

and V ′ = V T . Therefore, only two unitary matrices are required to parametrise S̃. The
case β = 4 corresponding to the presence of time-reversal symmetry but breaking of
spin-rotation symmetry can be discussed in a similar way [30,227]. This parametrisation
yields

r̃ = −U
√

1− T U ′ , t̃ = V
√
T U ′ . (5.14)

Knowing that the transmission eigenvalues {T̃n} are close to unity, Eq. (5.12), we deduce
that the eigenvalues of the increment δt, given by Eq. (5.10), are of order O(

√
δL). We

can thus apply perturbation theory to compute the variations of the eigenvalues of tt†
when the wire length is increased by δL. Let us denote {Tn} the eigenvalues of tt†, and
{|wn〉} the eigenvectors. To second order in perturbation theory, we have:

δTn = 〈wn|δ(tt†)|wn〉+
∑

m(6=n)

∣∣∣〈wm|δ(tt†)|wn〉∣∣∣2
Tn − Tm

+O((δL)3/2) , (5.15)

where the variation of the matrix tt† is given by

δ(tt†) = (δt)t† + t(δt)† =
[
t̃(1− r′r̃)−1 − 1

]
tt† + h.c. (5.16)

and h.c. denotes the Hermitian conjugate. The idea is now to compute 〈δTn〉 and
〈δTn δTm〉 with respect to the unitary matrices U , V , U ′ and V ′, at leading order in δL.
We thus need the distribution of these matrices over the unitary group. Following the
DMPK approach, we assume that these matrices have uniform distribution over U(N).
This implies that the slice δL couples all the channels of the wire in the same way. Under
this rather strong isotropy assumption, one can evaluate the averages over the unitary
group using the formulae given in Appendix A.4. At leading order, this gives [30]:

〈δTn〉 =
−Tn + 2Tn

βN + 2− β

1− Tn + β

2
∑

m( 6=n)

Tn + Tm − 2TnTm
Tn − Tm

 δL , (5.17)

〈δTn δTm〉 = 4T 2
n(1− Tn)

βN + 2− β δnm δL , (5.18)

and all higher moments vanish at order δL. These equations allow us to write Langevin
equations describing the evolution of the transmission eigenvalues {Tn} through the
slice, as δL→ 0:

dTn
dL = 〈δTn〉+

N∑
m=1
〈δTn δTm〉 ξm , (5.19)

where {ξm} are Gaussian white noises of unit variance. Since (5.17,5.18) relate the
variations of the transmissions to their value before entering the additional disordered
slice, the Langevin equations must be understood in the Itô sense. We can thus write
the associated Fokker-Planck equation for the distribution P ({Tn};L) of the eigenvalues
for a wire of length L:

∂

∂L
P ({Tn};L) =

N∑
n=1

∂

∂Tn

(
−〈Tn〉P + 1

2

N∑
m=1

∂

∂T m
〈δTn δTm〉P

)
. (5.20)
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We can make the change of variable λn = (1−Tn)/Tn to write this equation in the form
originally given in Refs. [108,227]:

∂

∂L
P ({λn};L) = 2

βN + 2− β

N∑
n=1

∂

∂λn

[
λn(1 + λn)J0({λn})

∂

∂λn

(
P ({λn};L)
J0({λn})

)]
,

(5.21)
where we introduced

J0({λn}) =
∏
i<j

|λi − λj|β . (5.22)

This Fokker-Planck equation is the celebrated DMPK equation describing the evolution
of the transmission eigenvalues upon increasing the length L of the wire. This equation
has been solved in an other form, by introducing the variables {xn} defined by

λn = sinh2 xn , Tn = 1
cosh2 xn

, xn > 0 . (5.23)

In terms of these variables, the DMPK equation reads:

∂

∂L
P ({xi};L) = 1

2(βN + 2− β)

N∑
n=1

∂

∂xn

[
J({xi})

∂

∂xn

(
P ({xi};L)
J({xi})

)]
, (5.24)

with
J({xi}) =

∏
i<j

∣∣∣sinh2 xi − sinh2 xj
∣∣∣β∏

i

sinh(2xi) . (5.25)

In this form, the DMPK equation has been solved exactly in the case β = 2 by map-
ping (5.24) onto a Schrödinger equation for noninteracting particles [31, 32]. A much
more complex solution has then been found in the other symmetry classes β = 1 and
β = 4 [78]. However, the knowledge of these exact solutions is not required to study
some physical observables, such as the conductance. These observables can be obtained
in the limiting cases (conducting or localised regimes) from an asymptotic analysis of
Eq. (5.24).

The conductance G can be expressed in terms of the transmission eigenvalues via
the Landauer forumla [132,200]:

G = 2e2

h

N∑
n=1

Tn = 2e2

h

N∑
n=1

1
cosh2 xn

, (5.26)

where the factor 2 comes from spin degeneracy. Knowing the statistical properties of
the xn’s, encoded in the DMPK equation (5.24), allows the study of the distribution of
the conductance.

In the limit L → ∞, for fixed number N of channels, the variables {xn} decouple
as x1 � x2 � · · · � xN � 1. In this limit, they all become independent Brownian
motions, such that the solution of the DMPK equation (5.24) factorises into a product
of Gaussian distributions [30], with

〈xn〉 = γnL , Var(xn) ∝ L , γn = β(N − n) + 1
β(N − 1) + 2 . (5.27)

– 114 –



5.1. The DMPK equation

The scales {γn} are called Lyapunov exponents. The system is thus characterised by
two length scales: 1/γ1 = O(N0) and 1/γN = O(N). The transport properties of the
wire depend on the ratios of the length L with these two scales.

Metallic regime

For 1� L� N , one can show from the DMPK equation (5.24) that the conductance
decays linearly with the wire’s length [228]:

〈G〉 ∼ G0
N`

L
, (5.28)

which coincides with Ohm’s law. The main success of the DMPK approach is to correctly
describe this metallic regime which does not exist in the strictly one dimensional case
N = 1.

If L� 1, the transmission eigenvalues are close to unity. The wire is thus perfectly
conducting:

G ' NG0 . (5.29)

Localised regime

If L � N , the statistics of {xn} are given by (5.27). Therefore, the conduc-
tance (5.26) is dominated by the smallest term, associated to xN :

G ' G0
1

cosh2 xN
' 4G0 e−2xN , G0 = 2e2

h
, (5.30)

from which we deduce, using Eq. (5.27):

〈lnG/G0〉 ' −2 〈xN〉 ' −
2L

β(N − 1) + 2 for L� N . (5.31)

We recover the well-known exponential decay of the conductance with the system size
L, characteristic of a localised regime [30].

All these results rely on the DMPK equation (5.21), originally derived for the three
Wigner-Dyson classes. We describe in Section 5.2 the extension of the DMPK equation
to the other symmetry classes.

Remark: extension of the DMPK approach

As we have seen above, the DMPK equation is based on the isotropy assumption:
the disorder couples all the channels in the same way. The consequence is that the
DMPK equation (5.39) is restricted to the quasi-1D geometry, as all the information
about the spatial structure is lost.

In order to describe higher dimensional systems, several approaches have been pro-
posed to extend the DMPK formalism. For instance, an extension based on a specific
model for the transfer matrix have been studied in Ref. [231]. Another approach consists
in introducing phenomenological parameters for the averages over the unitary matrices

– 115 –



Chapter 5. Introduction to disordered wires

U , V , U ′ and V ′, see Eq. (5.14), instead of considering them uniformly distributed. See
for instance Refs. [110–112, 245–247]. For example, in the Wigner-Dyson orthogonal
class (β = 1), the generalised DMPK equation takes the form [112,245]

∂P

∂L
= 1

2γ

N∑
n=1

Knn
∂

∂xn
J({xi})

∂

∂xn
J−1({xi})P , (5.32)

where

J({xi}) =
∏
i<j

∣∣∣sinh2 xi − sinh2 xj
∣∣∣γij N∏

i=1
|sinh(2xi)| , γij = 2Kij

Kii

. (5.33)

This equation is controlled by a matrix Kij of phenomenological parameters which
describe the anisotropy of the unitary matrices U , V , U ′ and V ′ (see Eq. (5.14)). Relating
this matrix K to the microscopic parameters of a specific model of disorder is however
rather difficult.

5.2 New symmetry classes
The original Wigner-Dyson classification takes into account two symmetries: time-
reversal and spin-rotation symmetries, which hold for the entire spectrum. At the
end of the 90’s, Altland and Zirnbauer [15, 16, 314] extended this original classification
by taking into account two additional discrete symmetries, which arise only at a spe-
cific value of the energy (usually taken as zero) in the one-body problem: the chiral
symmetry and the particle-hole symmetry. The DMPK equation was thus extended to
describe disordered wires belonging to these new symmetry classes. In this section, we
first describe the additional symmetries and in a second step we present the extension
of the DMPK formalism to these new classes.

5.2.1 The chiral classes
The chiral symmetry plays a role both in particle physics, in particular in quantum
chromodynamics [275,297,299], and in condensed matter [41, 152,153,207,292], as it is
carried by the Dirac equation. It is associated with Hamiltonians of the form

H =
(

0 h
h† 0

)
, (5.34)

where h is an operator acting on a given subspace. Such Hamiltonians exhibit the
symmetry

σzHσz = −H , (5.35)

where σz is the third Pauli matrix, acting in a given “isospin” space. The chiral sym-
metry maps an eigenstate ψε of H with energy ε to another eigenstate with opposite
energy −ε.

As in the Wigner-Dyson case, the presence or absence of time-reversal and spin-
rotation symmetry gives rise to a set of three chiral classes, see Table 5.1.
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5.2.2 The Bogoliubov-de Gennes classes
The remaining symmetry classes arise in the study of superconductors, which are usually
described using the Bardeen–Cooper–Schrieffer (BCS) theory [25]. The central element
of this theory is that the interactions of the electrons with the cristal can lead to the
pairing of electrons into Cooper pairs. Let us consider a lattice model, and introduce
the electronic creation and annihilation operators c†i and ci, defined for each lattice site
i. The dynamics of the electrons is described within a mean field (BCS) approach. This
leads to the Bogoliubov-de Gennes (BdG) Hamiltonian2

Ĥ =
∑
i,j

hijc
†
icj + 1

2
∑
i,j

(
∆ijc

†
ic
†
j −∆?

ijcicj
)
, (5.36)

with h† = h and ∆T = −∆ to ensure Hermiticity. In this expression, h is the Hamil-
tonian controlling the evolution of free electrons on the lattice, and ∆ represents the
superconducting gap, which is the order parameter. The excitations of this Hamiltonian
are called quasi-particles.

We can rewrite the Hamiltonian (5.36) in a matrix form by introducing the spinor
ψ† = ({c†i}, {ci}):

Ĥ = 1
2ψ
†Hψ , H =

(
h ∆
−∆? −hT

)
, (5.37)

where the minus signs appear due to the anticommutation relations {ci, c†j} = δij. This
Hamiltonian exhibits the particle-hole symmetry

τxH
T τx = −H , (5.38)

where τx is the first Pauli matrix in the particle-hole space (Nambu space).
This additional symmetry, combined with time-reversal and spin-rotation symmetry

gives rise to the Bogoliubov-de Gennes classes. Note that unlike in the Wigner-Dyson or
chiral cases, spin-rotation symmetry plays a role even if time-reversal symmetry is broken
because it combines with the particle-hole symmetry in a nontrivial way. Therefore, this
yields a set of four Bogoliubov-de Gennes classes, summarised in Table 5.1.

5.2.3 DMPK equation for the new classes
The original derivation of the DMPK equation presented in Section 5.1 has been ex-
tended to the additional chiral and BdG classes, in order to study the transport proper-
ties of chiral or superconducting disordered wires [59–63,65,66,79,242,243,292]. These
studies have shown that, for all the symmetry classes, the DMPK equation can be
written in the form

∂P

∂L
= 1

2γ

N∑
n=1

∂

∂xn
J({xi})

∂

∂xn
J−1({xi})P , (5.39)

2In the BCS approach, ∆ is a scalar. Here we present the Bogoliubov-de Gennes formalism which
describes an inhomogeneous superconductor, in which ∆ can be inhomogeneous in space.
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Name TRS p-h S ch. S SRS m0 ml ms

Wigner- AI (orthogonal) +1 no no yes 1 1 0
Dyson A (unitary) no no no indiff. 2 1 0

AII (symplectic) −1 no no no 4 1 ??
Chiral BDI (chiral orth.) +1 +1 yes yes 1 0 0

AIII (chiral unit.) no no yes indiff. 2 0 0
CII (chiral sympl.) −1 −1 yes no 4 0 0

BdG D no +1 no no 1 0 0
DIII −1 +1 yes no 2 0 ?
C no −1 no yes 4 3 0
CI +1 −1 yes yes 2 2 0

Table 5.1: Classification of disordered sytems based on four symmetries: time-reversal
(TRS), particle-hole (p-h S), chiral (ch. S) and spin-rotation (SRS). The names of the
different classes come from the Cartan classification of the symmetry group. m0, ml

and ms are the multiplicity of the ordinary, long and short roots for the corresponding
symmetric space. If N is even, ? = ?? = 0, while for odd N , ? = 2 and ?? = 4.

where J is given by:

J({xi}) =


∏
i<j

∏
±
|sinh(xi ± xj)|m0

N∏
k=1

sinh(2xk)ml sinh(xk)ms , xi > 0 , W-D and BdG,
∏
i<j

|sinh(xi − xj)|m0 , xi ∈ R , chiral.

(5.40)
and the constant γ is

γ =


m0(N − 1) +ml + 1 , W-D and BdG classes,
1
2[m0(N − 1) + 2] , chiral classes.

(5.41)

The parameters m0, ml and ms, known as the multiplicity of the ordinary, long and
short roots for the corresponding symmetric space, are given in Table 5.1. For the
Wigner-Dyson classes, the parameter m0 is simply the Dyson index β.

The DMPK equation (5.39) in these new classes has permitted to analyse the trans-
port and localisation properties of disordered wires [59–63, 65, 208, 242, 243], as well as
the density of states [61,66,292].

5.3 Topological phase transitions
More recently, models of multichannel disordered wires have attracted a lot of interest,
from the perspective of their topological properties. These are materials characterised
by a quantum number of topological nature.

The most famous example of a non trivial topological state in condensed matter
physics is the integer quantum Hall effect in two dimensional electronic systems. The
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topological index
TRS p-h S ch. S SRS 0D 1D 2D · · ·

Wigner- AI (orthogonal) +1 no no yes Z
Dyson A (unitary) no no no indiff. Z Z

AII (symplectic) −1 no no no Z Z2
Chiral BDI (chiral orth.) +1 +1 yes yes Z2 Z

AIII (chiral unit.) no no yes indiff. Z
CII (chiral sympl.) −1 −1 yes no Z

BdG D no +1 no no Z2 Z2 Z
DIII −1 +1 yes no Z2 Z2
C no −1 no yes Z
CI +1 −1 yes yes

Table 5.2: Periodic table of topological insulators. In any dimension, 3 classes can
exhibit topological phases indexed by an integer (Z), while 2 can host topological phases
indexed by a parity index (Z2). The other classes are topologically trivial. This table
has periodicity 8 with the dimension.

Hall conductance σxy of a conductor placed in a strong magnetic field, at low temper-
ature, is quantised and only takes values which are multiple of the quantum conduc-
tance [76,182]

σxy = n
e2

h
, n ∈ N∗ . (5.42)

The integer n was shown to be of topological nature [172, 290]: it is a winding number
which characterises the bulk properties of the system. A value n 6= 0 indicates a non
trivial insulator.

Another possible explanation for the quantisation of the Hall resistance has been
proposed by Büttiker [70] and emphasises the role of edge states [172] . The existence
of edge states (chiral channels propagating along the boundary) corresponds to the
interface between two different insulating phases: the Hall state in the sample and the
trivial insulating phase outside. In the quantum Hall effect, the number of edge states
is given by the filling factor n which appears in (5.42). This was shown to be a general
feature of topological insulators and topological superconductors, and has been named
the bulk-edge correspondence [269].

The topological properties of a system are constrained by symmetries. In any di-
mension, among the ten symmetry classes discussed in Section 5.2, only five of them can
support non trivial topological phases. This property is encoded in the periodic table of
topological insulators [193, 269], summarised in Table 5.2. Z corresponds to topological
phases classified by with a winding number while Z2 insulators are characterised by a
parity index. For example, the quantum Hall effect corresponds to the Z index for 2D
systems in the unitary Wigner-Dyson class (class A).

The main interest for topological phases rely in their robustness. Indeed, it requires
a great perturbation to change a topological property. Therefore, the introduction of
small disorder is expected leave the topological index unchanged. This property has lead
to the proposal of using topological states for quantum computing [7, 192], which are

– 119 –



Chapter 5. Introduction to disordered wires

topologically protected from decoherence. However, strong enough disorder can drive
topological phase transitions [240,264,268].

Multichannel disordered wires have provided a convenient framework to study the
effect of disorder on topological phases, and in particular how the disorder can drive
topological phase transitions. In the quasi-1D geometry, Table 5.2 indicates that models
belonging to the three chiral classes and two BdG classes can exhibit non trivial topo-
logical phases. They were indeed shown to exhibit topologically protected Majorana
zero modes [192,255]. The number of these modes plays the role of a topological index.
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Model and tools

In this chapter, we introduce a model of disordered wires which we will analyse in details
in the next chapters: the multichannel Dirac equation with a random mass. In the
striclty one dimensional case, this model is associated with the following Hamiltonian:

H = iσ2∂x +m(x)σ1 . (6.1)

It arises in different contexts in condensed matter physics, such as disordered metals
at half filling [156, 157], organic conductors [281], random spin chains [23, 129–131,133,
223, 274, 280], superconductors with random gap [35, 204]. It has also been studied in
statistical physics, due to its relation with the Sinai model [21,158,190,276]: the square
of the Hamiltonian (6.1) can be mapped onto the Fokker-Planck operator describing
the diffusion of a classical particle subjected to a random force, the famous “Sinai
problem” [51,131,201,238].

The DMPK approach introduced in Chapter 5 relies on global considerations, based
on symmetries. This method is restricted to the analysis of the universal properties of
the system. However, it can also be important to understand the crossover between
different universal regimes. Such an example is the transition between the GOE and
GUE: the two ensembles describe universal properties for zero and strong magnetic field
respectively. However, the full crossover1 would be needed to compare to experimental
data (for example, a conductance curve).

In the case of the Dirac equation (6.1), the two universal points are located at zero
energy ε = 0 (chiral classes) and infinity (Wigner-Dyson classes, see Table 5.1). Exact
results from the DMPK approach are only available in these two universal limiting cases.
Here, we present a detailed analysis the multichannel version of the model (6.1), from
which we derive the universal and non-universal properties.

6.1 The model
We consider the multichannel Dirac equation

HΨ(x) = εΨ(x) , (6.2)
1Several models have been introduced to study this crossover from a random matrix point of view,

see for instance Refs. [225,259]
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where Ψ is a 2N -components spinor, and the Dirac Hamiltonian H is of the form

H = i σ2 ⊗ 1N ∂x + σ1 ⊗M(x) =
(

0 ∂x +M(x)
−∂x +M(x) 0

)
, (6.3)

with σi a Pauli matrix and the mass M(x) is a N × N matrix. It can be either real
symmetric (β = 1), complex Hermitian (β = 2) or quaternionic self-dual (β = 4). The
Hamiltonian (6.3) exhibits the chiral symmetry:

σ3Hσ3 = −H (6.4)

Therefore, the system lies in one of the three chiral classes, see Table 5.1 page 118,
specified by the Dyson index β.

We now describe our model of disorder. The minimal model consists in taking the
random mass M(x) in the form of a Gaussian white noise, 〈Mab(x)Mcd(x′)〉 ∝ δ(x−x′).
However, there remains to specify the choice of correlations between the channels.

Isotropic noise

A first possibility is to pick the mass from the distribution

P [M(x)] ∝ exp
{
−1

2

∫
dx tr

[
(M(x)− µg1N)2

]}
, with M(x)† = M(x) . (6.5)

It is invariant under the transformation

M(x)→ U †M(x)U , (6.6)

where U belongs to the corresponding symmetry group:

U ∈


O(N) , for β = 1 ,
U(N) , for β = 2 ,
Sp(N) , for β = 4 .

(6.7)

Therefore, this distribution corresponds to an isotropic situation with respect to channel
exchange (as in the DMPK approach), since the noise couples all the channels in the
same manner.

Partially anisotropic noise

We wish to go beyond the isotropy assumption which is central in the DMPK ap-
proach. We will consider a more general distribution of the noise:

P [M(x)] ∝ exp
{
−1

2

∫
dx tr

[
(M(x)− µG)G−1(M(x)− µG)

]}
, M(x)† = M(x) ,

(6.8)
where µ ∈ R and G is a positive self-adjoint matrix which controls the correlations of the
matrix elements ofM . In this model, the correlations and the mean value 〈M(x)〉 = µG
are controlled by the same matrix G. Without loss of generality, we can assume that
it is diagonal

G = Diag(g1, . . . , gN) . (6.9)
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We can tune the N parameters {gi} which control the strength of the noise, and the
parameter µ controlling the mean. We thus have N + 1 parameters, unlike the only
2 available in the isotropic model (6.5) (µ and g = g1 = · · · = gN). The parameter
µ = 〈M〉G−1 is the mass-over-disorder ratio, and will play a prominent role in the
following.

In particular, this model permits to change the number of channels by letting one of
the elements of G, say gN , to zero. Indeed, in this limit, the noise becomes

M(x)→
(
M̃(x) 0

0 0

)
, for gN → 0 , (6.10)

where M̃ is a (N − 1)× (N − 1) matrix, distributed according to (6.8), with the matrix
G = Diag(g1, . . . , gN−1). In this limit, we thus obtain N − 1 channels coupled by the
disorder, and one independent free channel.

Fully anisotropic noise

The most general kind of disorder takes the form

P [M(x)] ∝ exp
{
−1

2

∫
dx tr

[
A−1(M(x)− µG)B−1(M(x)− µG)

]}
, (6.11)

where µ ∈ R and A, B and G are positive self-adjoint matrices. In this model, one can
tune independently the mean and variance of each matrix element of M .

Although the most general form of the noise (6.11) permits to reach the two dimen-
sional limit (by coupling only the nearest neighbour channels), it is too complex to get
analytical results. Instead, we will consider the intermediate model (6.8), from which
we will be able to obtain analytical results.

6.2 The scattering problem
Let us now introduce the scattering formulation, which will be shown to provide a conve-
nient way to study both the spectral and topological properties. We consider the Dirac
equation (6.2) on the half line x > 0. We suppose that the disorder is restricted to a
finite region [0, L], on which the mass is picked from the distribution (6.8). For x > L,
we set M(x) = 0. At x = 0, we impose the boundary condition by setting M(x) = ±∞
on the domain x < 0. This ensures total reflection of any wave coming from the right,
see Fig. 6.1.

The N = 1 channel case

Let us first consider the simpler case of N = 1, corresponding to a purely one
dimensional system. In the region x > L, Eq. (6.2) reduces to the free Dirac equation.
Therefore the solutions take the form of plane waves:(

−1
i

)
eiε(x−L) , and

(
1
i

)
e−iε(x−L) . (6.12)
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Figure 6.1: A scattering situation. A
wave incoming from the right on the
disordered region [0, L] is completely
reflected. The amplitude of the re-
flected wave is controlled by the re-
flection matrix r(ε). We represented
the mass and its opposite to remember
that non-zero mass implies a gapped
spectrum.

If we consider a wave coming from the right with amplitude 1, the amplitude of the
reflected wave is controlled by the reflection coefficient r(ε) (see Eq. 5.7). The solution
is the superposition of the incoming and outgoing plane waves:

ψε(x) =
(

1
i

)
e−iε(x−L) + r(ε)

(
−1
i

)
eiε(x−L) . (6.13)

Since the wave is totally reflected, the reflection coefficient is of modulus one:

|r(ε)| = 1 . (6.14)

Additionally, the chiral symmetry (6.4) links the solutions for positive and negative
energies:

ψ−ε(x) ∝ σ3ψε(x) =
(

1
−i

)
ei(−ε)(x−L) + r(ε)

(
−1
−i

)
e−i(−ε)(x−L) , (6.15)

which corresponds to the superposition of an outgoing wave of amplitude 1 and an
incoming wave of amplitude r(ε). The reflection coefficient r(−ε) at energy −ε is defined
from an incoming wave of unit amplitude. We thus multiply σ3ψε by −1/r(ε) = −r(ε)?
to obtain the true scattering state for energy −ε:

ψ−ε(x) = r(ε)?
(
−1
i

)
ei(−ε)(x−L) +

(
1
i

)
e−i(−ε)(x−L) . (6.16)

Comparing with (6.13), we deduce that the reflection coefficient for energy −ε is

r(−ε) = r(ε)? . (6.17)

This symmetry of the reflection coefficient is the direct consequence of the chiral sym-
metry (6.4).

Inside the disordered region, the spinor

ψε =
(
ϕ
ξ

)
(6.18)

is solution of the Dirac equation (6.2). At the origin, we can choose two possible bound-
ary conditions, depending on the convention for the mass (see Ref. [285] and references
therein), either

ξ(0) = 0 if M(x) = +∞ for x < 0 , (6.19)
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or
ϕ(0) = 0 if M(x) = −∞ for x < 0 . (6.20)

We will often choose the second one, but for the moment we will keep these two possi-
bilities.

The integrated density of states NL(ε) of the system of size L can be easily obtained
from the reflection coefficient r′ via the Krein-Friedel relation [95,137,138,196]:

NL(ε) = 1
2π δ(ε) = 1

2iπ ln r(ε) . (6.21)

This relation connects a property of the scattering states (the scattering phase δ) to the
spectrum of the isolated system of length L. This relation can be understood easily: let
us consider the spectral problem on [0, L]. The nth eigenmode ψn, of energy εn, satisfies
boundary conditions both at x = 0 and x = L. If we take for example M(x) = −∞
for x < 0 and M(x) = +∞ for x > L, then ϕn(0) = 0 and ϕn(L) = 0. The scattering
states (6.13) can be related to these normalised eigenmodes by imposing that they satisfy
the boundary conditions. The condition at x = 0 is satisfied by construction, and the
one at x = L gives

1− r(εn) = 0 ⇒ r(εn) = e2iπn , (6.22)

in the case M(x) = +∞ for x > L. Therefore, the phase of the reflection coefficient
changes by 2π when going from one eigenmode to the next.

The N > 1 case

Let us now consider the multichannel situation. The Dirac equation (6.2) has N
independent solutions. For convenience, we regroup them into a 2N ×N “spinor”:

Ψ(x) =
(

Φ(x)
Ξ(x)

)
, (6.23)

where Φ and Ξ are N ×N matrices which represent the “components” of the spinor Ψ.
As in the 1D case, in the domain x > L, the solutions take the form the superposition
of plane waves:

Ψ(x) =
(
1N
i 1N

)
e−iε(x−L) + 12 ⊗ r(ε)

(
−1N
i 1N

)
eiε(x−L) , x > L , (6.24)

where the reflection matrix r is of size N ×N . The discussions on the 1D case straight-
forwardly generalise to the multichannel case: the total reflection of the incoming wave
implies that the reflection matrix is unitary:

r(ε) ∈ U(N) , (6.25)

and the chiral symmetry implies

r(−ε) = r(ε)† (6.26)
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This matrix encodes all the information about the disordered region. For example, the
integrated density of states is encoded in the phase δ(ε) of the determinant of r:

NL(ε) = 1
2π δ(ε) = 1

2πi ln det r(ε) , det r(ε) = eiδ(ε) . (6.27)

The reflection matrix is a convenient object to characterise the disordered system. How-
ever, we will now introduce another matrix, related to r, which is more practical for
analytic computations.

6.3 The Riccati matrix
It has been shown that the analysis of one dimensional solvable models can be conve-
niently handled by introducing a Riccati variable [84–86, 139, 165, 173, 206]. To extend
this idea to the multichannel case, we introduce the Riccati matrix

Zε(x) = −ε Ξ(x)Φ(x)−1 , (6.28)

where Φ and Ξ are the two components of the matrix spinor (6.23). Using that they
satisfy the Dirac equation (6.2), we can show that the Riccati matrix obeys the equation

∂xZε(x) = −ε2 − Zε(x)2 −M(x)Zε(x)− Zε(x)M(x) . (6.29)

The initial condition at x = 0 follows from the one on the spinor Ψ, Eqs. (6.19,6.20): M(x) = +∞ for x < 0 ⇒ Ξ(0) = 0 ⇒ Zε(0) = 0 1N ,
M(x) = −∞ for x < 0 ⇒ Φ(0) = 0 ⇒ Zε(0) =∞1N .

(6.30)

To stress the importance of this matrix, let us first show how its relation with the
reflection matrix r(ε). From Eq. (6.24), we have:

Φ(L) = 1N − r(ε) , Ξ(L) = i[1N + r(ε)] . (6.31)

From the definition of Zε (6.28), we deduce:

Zε(L) = −iε[1N + r(ε)][1N − r(ε)]−1 . (6.32)

This relation can be inverted to express the reflection matrix as

r(ε) = [ε− iZε(L)][ε+ iZε(L)]−1 (6.33)

Therefore, we have reduced the problem of determining the reflection matrix to inte-
grating the differential equation (6.29) on [0, L].

When the mass M(x) is a Gaussian white noise, (6.29) is a stochastic differential
equation on the matrix Zε. This equation involving a multiplicative noise, we should
specify in which sense we interpret it. The Gaussian white noise can be thought of as a
spatially correlated noise in the limit of zero correlation length. If we assume that these
correlations are symmetric in space, the limit of zero correlations yields a stochastic
equation in the Stratonovich sense [155].
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If L is large enough, we expect the process Zε(x) to become stationary. Our aim will
be to find this stationary distribution.

But first, let us discuss the symmetries of the stochastic equation (6.29). Since the
Riccati matrix and its adjoint2 satisfy the same initial condition Zε(0)† = Zε(0) and also
the same differential equation since M † = M , we deduce that this matrix is self-adjoint:

Zε(x)† = Zε(x) . (6.34)

Additionally, using that ∂x(Z−1
ε ) = −Z−1

ε (∂xZε)Z−1
ε , we can easily show that Yε(x) =

−ε2 Z−1
ε also satisfies (6.29), but with the mass replaced by its opposite: M(x) →

−M(x). The initial condition having no influence on the stationary properties of the
stochastic process, we have:

Zε(x;M) (law)= −ε2 Zε(x;−M)−1 , (6.35)

where Zε(x;M) denotes the solution of (6.29) for the mass M(x), and we denoted
equality in law to indicate that the two stochastic processes have the same stationary
distribution. This property is a consequence of the supersymmetry of the Dirac equation
(see Ref. [86] for a discussion of the N = 1 channel case).

6.3.1 Fokker-Planck equation
We stress an important difference between the DMPK method and the approach we fol-
low here. The DMPK approach is based on a Fokker-Planck equation for the eigenvalues
of the transmission matrix. Here, instead of considering the eigenvalues of the Riccati
matrix, we study the full matrix Zε. We will thus write a Fokker-Planck equation for
the matrix process Zε(x). This central difference is crucial to go beyond the isotropic
case and study the effect of introducing some anisotropy between the channels.

Let us denote f(Z;x) the distribution of the matrix Zε, at position x. The Fokker-
Planck equation associated to the SDE (6.29) takes the form

∂

∂x
f(Z;x) = G †f(Z;x) , (6.36)

where G † is a second order differential operator with respect to the elements of Z. The
notation comes from the fact that this operator is the adjoint of another operator, called
the generator of the diffusion, which plays a central role for stochastic processes [254].
We will first derive the expression of the operator G †, and in a second step look for the
stationary distribution f(Z), solution of

G †f(Z) = 0 . (6.37)

To write this operator, we need to express the matrix Zε in terms of independent
real components. Since this matrix is self-adjoint, it has

N
(
β
N − 1

2 + 1
)

(6.38)

independent real parameters. We now need to distinguish the different values of β. For
simplicity, we will drop the index ε and simply denote Z the Riccati matrix.

2We denote † the adjoint in the generic case: for β = 1 it is a transpose, for β = 2 a conjugate
transpose and for β = 4 a quaternionic conjugate transpose.

– 127 –



Chapter 6. Model and tools

Orthogonal case β = 1

In this case, the matrices Z and M being real symmetric, we only need to consider
their upper-triangular parts. Let us first focus on the noise M(x). We can rewrite the
distribution (6.8) in terms of the matrix elements:

P [M(x)] ∝
N∏
n=1

exp
{
−
∫ dx
σnn

(Mnn(x)− µgn)2
} ∏
m<n

exp
{
−
∫ dx
σmn

Mmn(x)2
}
, (6.39)

where we denoted:

σmn =


gn for m = n ,

gngm
gn + gm

for m 6= n .
(6.40)

In this form, it is clear that each matrix element is an independent Gaussian white noise,
with mean µgnδmn and variance σmn. Therefore, we will denote

Mmn = µgn δmn +√σmn ξmn , (6.41)

where ξmn is a Gaussian white noise of unit variance and zero mean.
Let us now write the equation satisfied by each independent component of the Riccati

matrix Z. From the Eq. (6.29), we can straightforwardly write the equation satisfied by
each matrix element:

∂xZmn(x) = [−Z2 − ε2 − µGZ − µZG]mn +
∑
k6l

Bmn,kl(Z) ξkl , (6.42)

where we restricted the summation to k 6 l to consider only independent noises, and
we introduced

Bmn,kl(Z) = −√σkl
2− δkl

2 (Zmkδnl + Zmlδnk + Zlnδkm + Zknδlm) . (6.43)

From this set of coupled stochastic equations, we can write the Fokker-Planck equation
satisfied by the upper triangular matrix elements of Z in the form (6.36), with the
generator

G † =
∑
m6n

∂

∂Zmn

[
Z2 + E + µGZ + µZG

]
mn

(6.44)

+ 1
2
∑
m6n

∑
k6l

∑
a6b

∂

∂Zmn
Bmn,kl(Z) ∂

∂Zab
Bab,kl(Z) .

It is possible to write this equation in a compact way, using the matrix structure of the
equation. In order to do so, we introduce a matrix differential operator ∂

∂Z
which takes

into account the symmetries of Z (see Appendix A.2). It is defined as(
∂

∂Z

)
mn

= 1 + δmn
2

∂

∂Zmn
. (6.45)
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This specific form of the operator has been chosen to take into account that the diagonal
terms appear only once, while the off-diagonal terms appear twice (since Zij = Zji).
Using this operator, the generator (6.44) can be rewritten in the compact form

G † = tr
{
∂

∂Z

(
Z2 + E +µGZ + µZG)} (6.46)

+ 2 tr

 ∂

∂Z
Z

σ̃ ◦
 ∂

∂Z
Z +

(
∂

∂Z
Z

)T ,

where [A ◦ B]mn = AmnBmn is the Hadamard product and we introduced the modified
matrix of variances:

σ̃ab = 2− δab
2 σab . (6.47)

Unitary case β = 2

In this case, the matrices M and Z are complex Hermitian. We can decompose the
matrix elements of the noise into real and imaginary parts:

Mmn = µgn δmn +√σmn(ξmn + iζmn) , (6.48)

where ξmn and ζmn are two independent Gaussian white noises of unit variance and zero
mean, and σmn is given by Eq. (6.40). The Hermiticity of the matrix M imposes the
conditions

ξmn = ξnm , ζmn = −ζnm . (6.49)

As in the previous case, we can write a stochastic equation for each matrix element of
the Riccati matrix:

∂xZmn(x) = [−Z2− ε2− µGZ − µZG]mn +
∑
k6l

Bmn,kl(Z) ξkl +
∑
k<l

Cmn,kl(Z) ζkl , (6.50)

where Bmn,kl(Z) is given by Eq. (6.43) and

Cmn,kl(Z) = −√σkl (Zmkδnl − Zmlδnk + Zlnδkm − Zknδlm) . (6.51)

Having expressed the SDE in terms of independent Gaussian white noises, we can now
write the generator of the diffusion. We could decompose the matrix Z into independent
real elements, as we did for the noise M(x). However, it is simpler to consider the two
complex-conjugate off diagonal elements Zmn and Znm as independent variables. In
doing so, we can write the corresponding generator as:

G † =
∑
m,n

∂

∂Zmn

[
Z2 + E + µGZ + µZG

]
mn

(6.52)

+1
2
∑
m,n

∑
k6l

∑
a,b

∂

∂Zmn
Bmn,kl(Z) ∂

∂Zab
Bab,kl(Z)

+ 1
2
∑
m,n

∑
k<l

∑
a,b

∂

∂Zmn
Cmn,kl(Z) ∂

∂Zab
Cab,kl(Z) .
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As before, we can rewrite this complex expression in terms of the matrix differential
operator ∂

∂Z
, which now takes the simple form:(

∂

∂Z

)
mn

= ∂

∂Zmn
, (6.53)

since all matrix elements are now independent. The generator (6.52) can then be rewrit-
ten as

G † = tr


(
∂

∂Z

)T [
Z2 + E + µGZ + µZG

] (6.54)

+ tr


 ∂

∂Z
ZT +

( ∂

∂Z

)T
Z

T

T

σ̃ ◦

( ∂

∂Z

)T
Z +

(
∂

∂Z
ZT

)T
 .

Symplectic case β = 4

I did not write explicitly the generator G † of the Fokker-Planck equation in the quater-
nionic case, as the procedure becomes quite cumbersome. But we expect the results
obtained for β = 1 and β = 2 to generalise to β = 4.

6.3.2 Stationary distribution
The Fokker-Planck equation (6.36) cannot be solved analytically to give f(x;Z) for all
x. Therefore, we will focus on the stationary distribution f(Z), which is solution of
Eq. (6.37). The (adjoint) generator G † is given by Eq. (6.46) for β = 1 and Eq. (6.54)
for β = 2. This gives a partial differential equation of second order, with complex
structure. To get some insight, let us first look at the well-studied N = 1 case [51, 86].

In the strictly 1D case, Eq. (6.37) reduces to the ordinary differential equation

2g d
dz z

d
dz (zf(z)) + d

dz [(z2 + ε2 + 2µgz)f(z)] = 0 . (6.55)

For purely imaginary energy ε = ik, this Fokker-Planck equation admits the following
stationary solution [51,86]:

f(z) = C−1 z−µ−1 e−
1

2g (z+k2/z) , (6.56)

where the normalisation constant C depends on the energy k and the mass over disorder
ratio µ. Knowing this result for N = 1, we can try to guess to form of the solution for
the multichannel case. We take the ansatz:

f(Z) = C−1
N,β (detZ)−µ−α exp

{
−1

2 tr
[
G−1(Z + k2Z−1)

]}
, (6.57)

where α is a constant to be determined. For small values of N , this ansatz can be
verified using a symbolic computation program, such as Mathematica, by plugging
this form into the Fokker-Planck equation (6.37). By doing so, we find the following
values of α:
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β = 1 β = 2
N = 1 α = 1 α = 1
N = 2 α = 3/2 α = 2
N = 2 α = 2 α = 3

These results seem to indicate that α takes the value

1 + β
N − 1

2 . (6.58)

This can be proved analytically by plugging the ansatz (6.57) into the stationary
Fokker-Planck equation (6.37). The matrix derivatives can be evaluated using the prop-
erties given in Appendix A.2. Then, after rather lengthy but elementary calculations,
one can prove that the left hand side of Eq. (6.37) reduces to zero, proving that (6.57)
is the stationary distribution of the Riccati process.

To summarise, we have proved that the stationary distribution associated to the
stochastic process (6.29), for purely imaginary energy ε = ik is:

f(Z) = C−1
N,β (detZ)−µ−1−βN−1

2 exp
{
−1

2 tr
[
G−1(Z + k2Z−1)

]}
(6.59)

where the normalisation constant CN,β depends on k, µ and the matrix G. Using that
the Lebesgue measure dZ verifies (see Appendix A.1)

d(Z−1) = (detZ)−2−β(N−1)dZ , (6.60)

we can easily check that the distribution (6.59) is invariant under the change Z → k2Z−1,
provided that we replace µ by −µ:

fµ(Z)dZ = f−µ(k2Z−1)d(k2Z−1) . (6.61)

This relation is exactly the supersymmetry (6.35) for ε = ik.
We stress that the stationary distribution (6.59) permits to go beyond the DMPK

formalism, as we have introduced some anisotropy between the channels, controlled by
the matrix G. We can recover the isotropic situation by setting G = g1N . By doing
so, the distribution (6.59) becomes invariant under transforms Z → U †ZU , with U
belonging to the associated symmetry group, see Eq. (6.7). The consequence is that the
eigenvalues and eigenvectors of Z decouple, and we can focus only on the eigenvalues
{zn} (the distribution of the eigenvectors is uniform). The joint distribution of the
eigenvalues can be obtained by integration over the matrix U :

f({zi}) = C−1
N,β

∏
i<j

|zi − zj|β
N∏
i=1

z
−µ−1−βN−1

2
i e−

1
2g (zi+k2/zi) , (6.62)

where we have re-defined the normalisation constant, to absorb the volume of the sym-
metry group

∫
dµ(U) which plays no role.

The stationary distribution (6.59) is the central object of our approach. In the next
chapters, we will extract most of the information about the system, such as the density
of states, from this distribution.
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Chapter 7

Density of states and localisation
properties

In the previous Chapter, we have introduced the Riccati matrix Zε and obtained its
stationary distribution f(Z) for purely imaginary energy ε = ik. We will now relate
this distribution to physical properties of the system, such as the density of states and
the localisation length. We discuss in Section 7.3 a method to compute these quantities
numerically.

7.1 Density of states
As we have seen in Chapter 6, the Riccati matrix Zε is simply related to the reflection
matrix r by relation (6.33). Since the scattering matrix encodes all the spectral infor-
mation of the system, so does the Riccati matrix. In this section, we will first introduce
a convenient way to derive the density of states from the stationary distribution (6.59).
Then using this method, we will obtain exact expressions for the density of states under
the form of determinants, which will allow us to study its behaviour for ε→ 0.

The simplest way to relate the density of states to the Riccati matrix is to consider
a closed system of size L. We thus consider the Dirac equation (6.2,6.3) on the interval
[0, L], and impose the boundary conditions M(x) = −∞ for x < 0 and x > L (the
discussion is the same for the other possible boundary condition M(x) = +∞). Denote
ψn = (ϕn χn)T the spinor associated to the energy εn. The first component verifies
ϕn(0) = ϕn(L) = 0.

7.1.1 Analytic continuation and characteristic function
In order to relate this spectral problem to the reflection matrix introduced in the pre-
vious chapter, we need to change our perspective. Instead of diagonalising the Dirac
Hamiltonian, let us set for any energy ε the initial value problem:

HΨ(ε;x) = εΨ(ε;x) , Ψ(ε;x) =
(

Φ(ε;x)
Ξ(ε;x)

)
, Φ(ε; 0) = 0 and Ξ(ε; 0) = 1N . (7.1)
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where we constructed a “matrix spinor” Ψ containing all N independent solutions. This
differential equation can then be integrated on the interval [0, L] to give Ψ(ε;x). If ε is
set to one of the eigenvalues of H, say εn, the corresponding spinor ψn, which is also a
solution of the Dirac equation, can be expressed as a linear combination of the indepen-
dent solutions contained in Ψ(εn;x). The second boundary condition ϕn(L) = 0 implies
that this linear combination of the columns of Φ(εn;x) vanishes at x = L. Equivalently,
det Φ(εn;L) = 0. This properties allows to easily determine the integrated density of
states (IDoS), denoted NL(ε), which is the number of eigenstates of energy smaller than
ε. The idea is to count the number of times det Φ vanishes (or equivalently changes
sign) between 0 and ε. A convenient way to perform this counting relies on analyti-
cal properties of Ψ, and thus of det Φ(ε;L), in the energy ε. Indeed, since det Φ(ε;L)
changes sign when crossing one eigenvalue εn, its logarithm picks up a shift:

ln det Φ(ε+
n + i0+;L) = ln det Φ(ε−n + i0+;L)− iπ . (7.2)

Therefore, the IDoS is given by:

NL(ε) = − 1
π

Im[ln det Φ(ε+ i0+;L)] . (7.3)

There only remains to relate det Φ to the Riccati matrix Zε. Since the matrix spinor Ψ
verifies the Dirac equation (6.2), we have

− ∂xΦ +MΦ = εΞ . (7.4)

Combining this equation with the definition of the Riccati matrix (6.28) yields a first
order differential equation on Φ involving Zε:

∂xΦ(ε;x) = (Zε(x) +M(x))Φ(ε;x) . (7.5)

This differential equation cannot be integrated easily due to the fact that the matrices
Zε + M do not necessarily commute at different points. However, this equation on the
matrix Φ allows us to derive a differential equation on its determinant using Jacobi’s
formula [262]:

∂x det Φ = det Φ tr
[
(∂xΦ)Φ−1

]
, (7.6)

which yields:
∂x det Φ(ε;x) = det Φ(ε;x) tr [Zε(x) +M(x)] . (7.7)

This is now a first order scalar differential equation, which can be integrated easily on
[0, L]:

ln det Φ(ε;L) =
∫ L

0
tr [Zε(x) +M(x)] dx . (7.8)

Therefore, the IDoS (7.3) of the system on [0, L] reduces to

NL(ε) = − 1
π

Im
{∫ L

0
tr [Zε+i0+(x) +M(x)] dx

}
. (7.9)

Since Zε and M are random processes, this integrated density of states is also random.
Instead, we will consider the IDoS per unit length, in the limit of large system size:

N (ε) = lim
L→∞

1
L
NL(ε) = − 1

π
Im

{
lim
L→∞

1
L

∫ L

0
tr [Zε+i0+(x) +M(x)] dx

}
. (7.10)
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As we have discussed in Section 6.3, the Riccati process Zε is stationary. Therefore for
large L, we obtain

lim
L→∞

1
L

∫ L

0
tr [Zε(x) +M(x)] dx = 〈tr(Zε +M)〉 , (7.11)

where the averaging of Zε is performed using its stationary distribution.
Let us define the characteristic function

Ω(ε) = 〈tr(Zε +M)〉 (7.12)

for all ε complex, which is an important concept for one dimensional systems(see the
monograph [206] for a review and Refs. [84–86, 165] for recent articles). Combining
Eqs. (7.10,7.11), we deduce that the integrated density of states per unit length of the
semi-infinite system is simply given by1

N (ε) = − 1
π

Im Ω(ε+ i0+) , ε > 0 (7.13)

We thus need to compute the average of the Riccati matrix with respect of its
stationary distribution. We managed to obtain this distribution (6.59) only for purely
imaginary energy ε = ik. Hence, we will compute the characteristic function Ω(ik) on the
imaginary axis, and deduce its value for real energy by analytic continuation [173,206].
Using the form of the stationary distribution f(Z) given by Eq. (6.59), we can formally
write

〈Zε=ik〉 = Cβ,µ−1
∫

dZ Z (detZ)−µ−1−βN−1
2 exp

{
−1

2 tr
[
G−1(Z + k2Z−1)

]}
, (7.14)

where the normalisation constant is given by

Cβ,µ =
∫

dZ (detZ)−µ−1−βN−1
2 exp

{
−1

2 tr
[
G−1(Z + k2Z−1)

]}
. (7.15)

To obtain the density of states, one should in principle compute these two integrals.
However, we will show that it is only required to compute the normalisation constant
Cβ,µ. Let us first make the change of variable Y = G1/2ZG1/2 in the integral (7.15).
From Appendix A.1, the Jacobian of this change of variable is dZ = (detG)−1−βN−1

2 dY ,
thus:

Cβ,µ = (detG)µ
∫

dY (detY )−µ−1−βN−1
2 exp

{
−1

2 tr
[
G−2Y + k2Y −1

]}
. (7.16)

Recalling that G = Diag(g1, . . . , gN), we have

detG =
N∏
i=1

gi , and tr
[
G−2Y + k2Y −1

]
=

N∑
i=1

(
Yii
g2
i

+ k2(Y −1)ii
)
. (7.17)

1Equations (7.12) and (7.13), together with the discussion of Section 6.2, show the connection
between the spectral and scattering properties: counting the divergences of Zε corresponds to count
the number of resonances. This is equivalent to extracting the density of states from the Wigner-Smith
matrix Q discussed in Section 3.1 as ρ(ε) ' tr[Q(ε)]/h.
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Therefore, taking the derivative of Cβ,µ with respect to a diagonal element gp gives

∂Cβ,µ
∂gp

= µ

gp
Cβ,µ + 1

g3
p

〈Ypp〉 Cβ,µ . (7.18)

Using that Ypp = gpZpp, this last relation reduces to

g2
p

Cβ,µ
∂Cβ,µ
∂gp

= µgp + 〈Zε=ik〉pp = 〈µG+ Zε=ik〉pp . (7.19)

Thus, the pth diagonal elements of 〈Zε=ik + µG〉 can be easily expressed as derivatives
of Cβ,µ with respect to the diagonal elements of the matrix G. This allows us to express
the characteristic function (7.12) as:

Ω(ik) =
N∑
i=1

g2
i

∂

∂gi
ln Cβ,µ (7.20)

Our aim is now to compute Cβ,µ, given by Eq. (7.15), in order to deduce the density of
states of the system.

7.1.2 High energy limit
Let us first notice that the normalisation constant Cβ,µ given by Eq. (7.15) can be
expressed in terms of a Bessel function of matrix argument KN,β, defined in Appendix B,
as

Cβ,µ = 2N(1+βN−1
2 ) k−Nµ KN,β(−µ|kG−1, kG−1) . (7.21)

Although this formula gives an explicit expression of Cβ,µ in terms of a special function,
it is not very useful to study in details the density of states. However, it permits an
easy study of the limit k → ∞ by using the asymptotic form of KN,β given by (B.34).
Indeed, we obtain:

KN,β(λ|kG−1, kG−1) '
k→∞

(
π

2k

)N
2 (1+βN−1

2 ) ∏
i
√
gi∏

i<j(g−1
i + g−1

j )β/2
e−k tr[G−1](1 +O(k−1)) .

(7.22)
Using now Eq. (7.20), we deduce

Ω(ik) = Nk + 1
2 tr[G] + β

2
∑
j 6=i

gigj
gi + gj

+O(k−1) . (7.23)

Analytical continuation to k = −iε straightforwardly gives

Ω(ε) = −iNε+ 1
2 tr[G] + β

2
∑
j 6=i

gigj
gi + gj

+O(ε−1) . (7.24)

Therefore, we deduce the density of states from (7.13):

N (ε) '
ε→∞

Nε

π
, ⇒ ρ(ε) '

ε→∞

N

π
. (7.25)

As expected, at high energy the density of states reaches the asymptotic value N/π,
which is the value for the free Dirac equation
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7.1.3 Isotropic case
We first study the isotropic case G = g1N which is more simple. The effect of anisotropy
will be studied in the next Section. We want to evaluate

CN,β =
∫

dZ (detZ)−µ−1−βN−1
2 exp

{
− 1

2g tr
[
Z + k2Z−1

]}
. (7.26)

As we have shown in Section 6.3.2, in this isotropic case the eigenvalues and eigenvectors
of Z decouple. The integral over the eigenvectors is trivial and is just a constant (the
volume of the symmetry group). There only remains to evaluate the integral over the
eigenvalues, denoted {zn}:

CN,β =
∫

dz1 · · · dzN
∏
i<j

|zi − zj|β
N∏
i=1

z
−µ−1−βN−1

2
i e−

1
2g (zi+k2/zi) , (7.27)

where we conveniently redefined the normalisation constant to absorb the volume of
the symmetry group. We can now apply diverse tools from random matrix theory to
evaluate this integral. The procedure depends on the symmetry class, and thus on the
value of β.

Unitary case β = 2

We begin with the simplest case of β = 2. The integral (7.27) can be evaluated using
Andréief’s relation, see Appendix A.3. The result takes the form of a determinant:

CN,2 = N ! det
[∫

dz zi+j−2−µ−N e−
1

2g (z+k2/z)
]

16i,j6N
. (7.28)

We recognise the integral representation of the modified Bessel function Kν , also known
as the MacDonald function [166],

Kν(x) = xν

2

∫ ∞
0

dz z−ν−1 e− 1
2 (z+x2/z) . (7.29)

This allows us to express the normalisation in the compact form:

CN,2 = N ! 2N k−Nµ det [Ki+j−1−µ−N(k/g)]16i,j6N (7.30)

Orthogonal case β = 1

In the orthogonal case β = 1, the normalisation constant (7.27) reads

CN,1 =
∫ ∞

0
dz1 · · · dzN

∏
i<j

|zi − zj|
N∏
i=1

φ(zi) , φ(z) = z−µ−1−N−1
2 e−

1
2g (z+k2/z) . (7.31)

This multiple integral can be computed using De Bruijn’s formula [96], given in Ap-
pendix A.3. The result can be expressed as a Pfaffian:

CN,1 = N ! pf[A(µ, g)] (7.32)
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where A(µ, g) is a skew-symmetric matrix, whose expression depend on the parity of N .
For even N , it is of size N ×N , with elements given by

Aij(µ, g) =
∫ ∞

0
dz1dz2 sign(z1 − z2) zi−1

1 zj−1
2 φ(z1) φ(z2) , 1 6 i, j 6 N . (7.33)

For odd N , A(µ, g) is a matrix of size (N+1)× (N+1). Its elements are given by (7.33)
for 1 6 i, j 6 N . The last row and columns read

Ai,N+1(µ, g) = −AN+1,i(µ, g) =
∫ ∞

0
dz zi−1 φ(z) = 2 kµ+i−N−1

2 KN+1
2 −µ−1(k/g) . (7.34)

The expression (7.32) for the normalisation constant is more complex that it β =
2 counterpart (7.30), but this expression still permits a numerical evaluation of the
normalisation constant.

Symplectic case β = 4

Although the expression of the stationary distribution (6.59) has only been proved for
β = 1 or 2, we assume it still holds for β = 4. In this case, the normalisation con-
stant (7.27) can also be expressed as a Pfaffian, of a skew-symmetric matrix of size
2N × 2N (see Appendix A.3). Explicitly, this gives:

CN,4 = N ! 2N k−Nµ pf [(j − i)Ki+j−µ−1−2N(k/g)]16i,j62N (7.35)

Summary and comments

In all cases, we have obtained compact expressions (7.30,7.32,7.35) for the normalisation
constant CN,β. Combining these expressions with (7.13,7.20) allows to compute the
density of states

ρ(ε) = ∂εN (ε) (7.36)

after analytic continuation k → −iε. This density of states is plotted in Fig. 7.1 for
different values of µ and number of channels.

The low energy behaviour of the density of states displays non trivial dependence in
the number of channels N and the mass over disorder ratio µ. For example, in the case
µ = 0, its behaviour depends on the parity of N . This observation has already been
made in Ref. [292] in the isotropic case, by using the DMPK equation (see Section 5.2).
Here, we have also obtained the µ-dependence of the density of states, which will be a
crucial step in order to deduce the topological properties of the system (see Chapter 8).

But before discussing in more details the low energy behaviour, we first consider the
non-isotropic situation.

7.1.4 Non-isotropic case
In the general case, the integral in Eq. (7.15) is not invariant under transforms Z →
U †ZU . Nevertheless, it is still useful to introduce the eigenvalues and eigenvectors of Z:

Z = U †ZU , Z = Diag(z1, . . . , zN) , (7.37)
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Figure 7.1: Density of states
ρ(ε) in the isotropic case G =
1N for different numbersN of
channels and different values
of µ, in the case β = 2. The
DoS is normalised by the free
density of states ρ0 = N/π.
The case N = 1 is indepen-
dent of the Dyson index β.

and U belong to the corresponding group, Eq. (6.7). However, this time the integrals
over the eigenvalues and the eigenvectors do not decouple:

CN,β =
∫

dµ(U)
∫

dz1 · · · dzN
∏
i<j

|zi − zj|β (detZ)−µ−1−βN−1
2 (7.38)

× exp
{
−1

2 tr
[
UG−1U †(Z + k2Z−1)

]}
.

The dependence in the eigenvectors contained in the matrix U is encoded in the trace

tr
[
UG−1U †(Z + k2Z−1)

]
=

N∑
p=1

[UG−1U †]pp
(
zp + k2

zp

)
. (7.39)

To make the computations more tractable, we introduce

wn(z, U ;G) = z−µ−1−βN−1
2 exp

[
−1

2(UG−1U †)nn
(
z + k2

z

)]
, (7.40)

so that the normalisation constant takes the form

CN,β =
∫

dµ(U)
∫

dz1 · · · dzN
∏
i<j

|zi − zj|β
N∏
n=1

wn(zn, U ;G) . (7.41)

The integral over the matrix U cannot be performed analytically in general. It can
be done only in the unitary case via the Harish-Chandra-Itzykson-Zuber integral (see
Appendix A.4). But even in this case, the remaining integral over the eigenvalues is still
quite complicated and does not provide a useful representation to analyse the density
of states. Furthermore, because we also aim to discuss the other symmetry classes, we
will follow a different approach. We will not evaluate the integral over U , but only the
integral over the eigenvalues {zn}, similarly as in Section 7.1.3. This will give a more
compact expression for CN,β, which we will be able to analyse.
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Unitary case β = 2

To perform the integral over the eigenvalues, we cannot simply apply Andréief’s iden-
tity (A.27) because the weights wm given by (7.40) are not the same for all eigenvalues.
Nevertheless, we can adapt the proof of this identity given in Ref. [19] to our situation.
Let us expand one Vandermonde determinant as a sum over all permutations σ of length
N : ∏

i<j

(zi − zj) = det[zj−1
i ]16i,j6N =

∑
σ∈SN

ε(σ)
N∏
p=1

zσ(p)−1
p , (7.42)

where ε(σ) = ±1 is the signature of the permutation σ and SN the group of permuta-
tions. Using this expression in Eq. (7.41) gives:

CN,2 =
∑
σ∈SN

ε(σ)
∫

dµ(U)
∫

dz1 · · · dzN
∏
i<j

(zi − zj)
N∏
p=1

zσ(p)−1
p

N∏
n=1

wn(zn, U ;G) . (7.43)

The idea to simplify this expression is to get rid of the sum over the permutations.
To do so, let us permute the eigenvalues in the integral with the same permutation σ:
zi → zσ(i), or equivalently

Z → P †σZPσ , where [Pσ]ij = δi,σ(j) . (7.44)
This corresponds to also permute the eigenvectors as U → P †σU . The permutation
matrix Pσ is unitary, so the Haar measure dU is invariant under this permutation. The
normalisation constant becomes:

CN,2 =
∑
σ∈SN

ε(σ)
∫

dµ(U)
∫

dz1 · · · dzN
∏
i<j

(zσ(i) − zσ(j))
N∏
p=1

z
σ(p)−1
σ(p)

N∏
n=1

wn(zσ(n), P
†
σU ;G) .

(7.45)
From the fact that the Vandermonde is a determinant, we have∏

i<j

(zσ(i) − zσ(j)) = ε(σ)
∏
i<j

(zi − zj) . (7.46)

Additionally, one can simply check that
wn(z, P †σU ;G) = wσ(n)(z, U ;G) . (7.47)

Using these properties and relabelling the indices, we obtain:

CN,2 =
∑
σ∈SN

∫
dµ(U)

∫
dz1 · · · dzN

∏
i<j

(zi − zj)
N∏
p=1

zp−1
p wp(zp, U ;G) ,

= N !
∫

dµ(U)
∫

dz1 · · · dzN
∏
i<j

(zi − zj)
N∏
p=1

zp−1
p wp(zp, U ;G) . (7.48)

Similarly, expanding the second Vandermonde as (7.42) gives

CN,2 = N !
∑
σ∈SN

ε(σ)
∫

dµ(U)
∫

dz1 · · · dzN
N∏
p=1

zσ(p)−1
p zp−1

p wp(zp, U ;G) ,

= N !
∫

dµ(U)
∑
σ∈SN

ε(σ)
N∏
p=1

∫
dzp zp−1+σ(p)−1

p wp(zp, U ;G) ,

= N !
∫

dµ(U) det
[∫

dz zi+j−2 wi(z, U ;G)
]

16i,j6N
, (7.49)
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where in the last line we re-expressed the sum over permutations as a determinant. The
last integral over z can be computed and expressed as a modified Bessel function (7.29).
This finally gives the expression of the normalisation in terms of an integral over the
unitary group:

CN,2 = N ! 2N kNµ
∫

U(N)
dµ(U) det

[
Ki+j−1−µ−N(k[UG−1U †]ii)

]
16i,j6N

(7.50)

This expression is more complicated than the one obtained previously in the isotropic
case (7.27), because of the integral over the unitary group. But for small number of
channels, this integral can be evaluated numerically by parametrising the matrix U and
expressing the integral in terms of these parameters.

Orthogonal case β = 1

In the orthogonal case, we can adapt De Bruijn’s proof [96] to our situation. By per-
forming a very similar derivation as in the β = 2 case, we obtain the normalisation
constant as an integral over the orthogonal group:

CN,1 = N !
∫

O(N)
dµ(U) pf [A(µ, U,G)] (7.51)

where the skew-symmetric matrix A is given by:

Aij(µ, U,G) =
∫ ∞

0
dz1dz2 sign(z1 − z2) zi−1

1 zj−1
2 wi(z1, U ;G) wj(z2, U ;G) , (7.52)

where wn is given by (7.40). If N is odd, we should add one column and one row given
by

Am,N+1(µ, U,G) = −AN+1,m(µ, U,G) =
∫ ∞

0
dx xm−1wm(x, U ;G) (7.53)

= 2km−µ−
N+1

2 Km−µ−N+1
2

(
k[UG−1U †]mm

)
.

Symplectic case β = 4

We did not study explicitly the case β = 4, but we expect that relation (7.35) can
be extended to the anisotropic situation by introducing an additional integral over the
symplectic group Sp(N), as in relations (7.50,7.51) obtained for β = 1 and β = 2.

Summary and comments

In the non-isotropic situation, we have obtained several exact expressions for the nor-
malisation CN,β, Eqs. (7.50,7.51), in terms of integrals over a compact group. This
additional integral makes the numerical evaluation of these expressions more difficult,
but for small number of channels it can be done by introducing parametrisations of
the matrices. Then, the density of states can be evaluated by using (7.13,7.20), after
analytic continuation k → −iε. The result is shown in Fig. 7.2.

We notice some difference with the isotropic case in the crossover regime ε ∼ ||G||,
but the low energy behaviour seems to be similar in the two cases. We will now study
this behaviour in more details.
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Figure 7.2: Density of states
in the anisotropic case G =
Diag(1

2 ,
3
2) (solid lines) compared

to the isotropic case G = 12
(dashed lines), for N = 2 and
β = 2 and different values of µ.
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7.1.5 Low energy behaviour
We have shown that the density of states can be obtained from the normalisation con-
stant CN,β via relations (7.13,7.20). Having obtained compact expressions for this nor-
malisation constant (7.50,7.51), we can now analyse the low energy behaviour of CN,β
to deduce the low energy properties of the DoS. Since the integrated density of states
N (ε) is obtained from a derivative of the logarithm of CN,β, the leading low energy term
of the expansion is not sufficient, and we need to obtain the next to leading order term.
In the following we will show that the low energy expansion for ε = ik reads

CN,β ' A(µ,G)kθ[1 +B(µ,G)kα + o(kα)] . (7.54)

This implies that the expansion of the characteristic function obtained from Eq. (7.20)
takes the form

Ω(ε = ik) = Ã+ B̃ kα + o(kα) . (7.55)
After analytic continuation k → −iε, taking the imaginary part gives that the integrated
density of states behaves as

N (ε) ∼ εα . (7.56)
Our aim is now to compute this exponent α, which will be a central quantity. In the
next Chapter, we will show that this exponent characterises the topological properties
of the disordered wire.

Unitary case β = 2

As before, we start with the case β = 2. We will first discuss the isotropic case G = g1N ,
which is simpler. In this case for ε = ik, CN,2 is given by a determinant involving modified
Bessel functions (7.30). The k → 0 properties of the normalisation constant come from
the expansion of the Bessel functions [166]:

Kν(z) ∼

 z−|ν| (1 + Aνz
2 + o(z2)) for |ν| > 1 ,

z−|ν| (1 +Bνz
2|ν| + o(z2|ν|)) for |ν| < 1 .

(7.57)

We now need to plug this expression into the determinant (7.30) and expand it to get
the two leading orders in k. Many terms will give contributions to the same order, but
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since we are only interested in the powers of k and not the prefactors, we only need to
exhibit one of these terms. For example, the product of all diagonal elements give a
leading order contribution. We can check explicitly for small N that this contribution
is not cancelled out by other combination of the matrix elements. To get the exponent
α of the next to leading order term, introduce

ν = µ−N + n ∈]0, 1[ , (7.58)

with n ∈ {1, . . . , N}. We will now distinguish two cases, depending on the parity of n.

• Odd n: Let us study again the product of all diagonal elements. In this product, the
Bessel function with the smallest index is Kν , which gives a contribution k−ν(1+Bνk

2ν)
from Eq. (7.57). Thus, the product of diagonal elements has the expansion of the form
kη(1+Bνk

2ν). There are many other contributions to the determinant of the same order
in k, but we can check for N = 2 or N = 3 that these do not cancel out. Therefore,
the normalisation constant behaves as Cβ,2 ∼ kη(1 + Bk2ν), from which we deduce the
exponent

α = 2ν = 2(µ−N + n) , µ−N + n ∈]0, 1[ . (7.59)
• Even n: We can proceed as in the previous case, but this time the smallest index is
ν − 1. The same argument gives CN,2 ∼ kη(1 +Bk2(1−ν)), thus

α = 2(1− ν) = 2(1− (µ−N + n)) , µ−N + n ∈]0, 1[ . (7.60)

• For |µ| > N − 1, we can similarly prove that α becomes linear:

α = 2 |µ− (N − 1)| . (7.61)

These three results (7.59,7.60,7.61) show that the exponent α exhibits a saw behaviour,
as shown in Fig. 7.3. There remains to study the case where µ is an integer (this
corresponds to ν = 0 or 1):

µ = N −m , m ∈ {1, . . . , 2N − 1} . (7.62)

In this case, there is at least one modified Bessel function with index ν = 0 in the
determinant. For k → 0, it has the behaviour

K0(z) ∼ − ln z +O(1) . (7.63)

We can perform the same analysis as before, with this additional contribution, by dis-
tinguishing on the parity of m.
• Odd m: with our previous results, this would correspond to α = 0. We have an
expansion of the form

CN,2 ' A(µ, g)kη ln k
(

1 + B(µ, g)
ln k

)
, (7.64)

from which we can deduce the characteristic function from Eq. (7.20). After analytic
continuation k → −iε, we obtain the IDoS:

N (ε) ∼ 1
(ln ε)2 for α = 0 . (7.65)
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Figure 7.3: Exponent α control-
ling the low energy behaviour of
the density of states N (ε) ∼ εα,
for β = 2 and different num-
bers of channels. This exponent
exhibits a saw behaviour, given
by Eqs. (7.59,7.60,7.61). When α
reaches a local maximum, denoted
by �, the behaviour is N (ε) ∼
εβ |ln ε|. When α vanishes, de-
noted by •, the integrated density
of states has the superuniversal be-
haviour N (ε) ∼ 1/(ln ε)2, indepen-
dent of β.
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We recover the result obtained in Refs. [14,61,292] for odd N and µ = 0.
• Even m: this corresponds to a local maximum α = 2. A similar computation yields

CN,2 ' A(µ, g)kη
(
1 +B(µ, g) (k ln k)2

)
, (7.66)

from which we deduce
N (ε) ∼ ε2 |ln ε| for α = 2 . (7.67)

We again recover the behaviour obtained in [14,61,292] for even N and µ = 0.
These last two behaviours complete our low energy analysis of the density of states.

All our discussion in the isotropic case can be straightforwardly extended to the non
isotropic situation. In this latter case, there is an additional integral over the unitary
matrix U , Eq. (7.50). For a given U , we have an expansion of the form:

N ! 2N kNµ det
[
Ki+j−1−µ−N(k[UG−1U †]ii)

]
16i,j6N

'

A(µ, UG−1U †)kη
[
1 +B(µ, UG−1U †) kα + o(kα)

]
. (7.68)

Integrating this expression over the unitary matrix U gives CN,2. Assuming that the
prefactors do not vanish after integration (which we can check for N = 2), we obtain
the same k → 0 expansion as in the isotropic case. This shows that, for any matrix G,
N (ε) ∼ εα, where α is given by (7.59,7.60,7.61). This exponent has the saw behaviour
shown in Fig. 7.3.

Orthogonal case β = 1

A similar analysis can be performed in the orthogonal case, but even in isotropic case
the normalisation constant takes a more complicated form, see Eq. (7.32). We first need
to obtain the low energy behaviour of the matrix elements Aij given by (7.33). The
leading order can be obtained directly from the double integral representation. The
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next order is trickier to extract. A convenient way to do so is to make the change of
variables z1 = kx and z2 = ky in Eq. (7.33). This gives:

Ai,j = ki+j+2µ−N−1Bi+µ−N+1
2 ,j+µ−N+1

2
(k/g), (7.69)

where we have introduced:

Bα,β(k/g) =
∫ ∞

0
dx
∫ ∞

0
dy sign(x− y) xα−1yβ−1 e−

k
2g (x+y+1/x+1/y) . (7.70)

From this expression, we can show that Bα,β satisfy the following relations

(α + β)Bα,β(t) + t∂tBα,β(t) = −tBα−1,β(t)− tBα,β−1(t) , (7.71)

(α− β)Bα,β(t) + t∂tBα,β(t) = −tBα−1,β(t)− tBα,β−1(t)− 4Kα+β(2t) . (7.72)
We can make use of these relations to obtain the behaviour of Bα,β(k) as k → 0:

Bα,β(k) ∼ k−ξ(α,β)(1 +O(kη(α,β))) , (7.73)

where

ξ(α, β) = max(|α + β|, |α− β|) , and η(α, β) = 2 min(1, |α|, |β|) . (7.74)

We also have the specific behaviours:

Bµ,0 ∼ −k−|µ| ln k , (7.75)
Bµ,±1 ∼ k−|µ|−1(1 +O(k2 ln k)) , for µ > 1 , (7.76)
Bµ,±1 ∼ k−|µ|−1(1 +O(k2µ)) , for 0 < µ < 1 , (7.77)

B± 1
2 ,∓

1
2
∼ k−1(1 +O(k(ln k)2)) . (7.78)

If N is odd, in addition to these matrix elements, we should add one line and one
column to the matrix A, which are given by (7.34). The k → 0 behaviour of these
additional elements can straightforwardly be obtained from (7.57).

We will now use these expansions to study pf(A) =
√

detA as k → 0. Let us denote

ν = µ− (N − 2n− 1)/2 ∈]0, 1[ , with n ∈ {1, . . . , N} . (7.79)

It is easier to compute det(A) by decomposing the skew-symmetric matrix A in blocks
(both for odd and even N) as:

A =
(

Ã B̃
−B̃T C̃

)
, (7.80)

where we introduced Ã of size n× n, which verifies

Apm = Ãpm = −Ãmp ∼ k4ν+2(m+p−2n−2)(1 +O(k2)) , (7.81)

B̃ of size n× (N − n), with

Apm = B̃p,m−n ∼ k2ν+2(n−p−1)
{

1 +O(k2 min(ν,1−ν)) for p = n , m = n+ 1 ,
1 +O(k2) otherwise ,

(7.82)
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and C̃ of size (N − n)× (N − n), where

Apm = C̃p−n,m−n = −C̃m−p,n−p = 1 +
{
O(k2ν) for m = n+ 1 , p = n+ 1 ,
O(k2) otherwise.

(7.83)

The determinant of A is then computed using the formula for the determinant of a block
matrix:

det(A) ∼ det(C̃N,n) det(Ãn + B̃N,nC̃
−1
N,nB̃

T
N,n) . (7.84)

Finally the behaviour of CN,1 for k → 0 follows from pf(A) =
√

det(A) ∼ kσ(1 +O(kα)),
where

α = 2 min(ν, 1− ν) . (7.85)

As in the β = 2 case, we obtain a power low behaviour, whose exponent has again a saw
dependence on µ. We can similarly study the cases where α reaches a local extremum,
and obtain similar result to the case β = 2.

These results can be extended to the case of non isotropic disorder, controlled by the
matrix G. As for the unitary case, one should add a matrix integral over the orthogonal
group, which does not change the low energy behaviour of the DoS.

Symplectic case β = 4

In the symplectic case we have not explicitly computed the low energy behaviour from
the pfaffian (7.35). We expect that the simple dependence in β observed for β = 1 and 2
can be extended to the symplectic case. We have verified this assumption on the N = 2
channels case, but the general analysis remains to be done.

Low energy density of states: summary

We have shown, for any matrix G, that the low energy behaviour of the integrated
density of states has the form of a power law

N (ε) ∼ εα (7.86)

where the exponent α has a saw behaviour with µ, as shown in Fig. 7.3. This exponent
has the following scaling with the Dyson index β:

αβ(µ) = β

2 αβ=2

(
2
β
µ

)
. (7.87)

When this exponent reaches a local maximum, the behaviour of the IDoS receives
an additional logarithmic contribution:

N (ε) ∼ εβ |ln ε| for α = β (7.88)

While for α = 0, the behaviour is

N (ε) ∼ 1
(ln ε)2 for α = 0 (7.89)
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Figure 7.4: Low energy behaviour
of the integrated density of states
N (ε) for N = 2 channels and
β = 2, in the non-isotropic
case G = Diag(1

2 ,
3
2). The

points are obtained from numer-
ical simulations, the lines are
the analytic results for low en-
ergy (7.86,7.88,7.89).

which does not depend on the Dyson index β. This phenomenon of universality across
different symmetry classes is called superuniversality [168]. In Chapter 8, we will show
that the vanishing of this exponent α is associated to a phase transition of topological
nature.

We have checked the low energy behaviour of the density of states numerically,
see Fig. 7.4. The numerical results are in excellent agreement with the power low
behaviour (7.86), as well as the two behaviours (7.88,7.89), over several decades.

7.2 Lyapunov spectrum
For one dimensional and quasi-one dimensional systems, it is well known that the eigen-
states are localised in the presence of disorder. A good indicator of the localisation
properties is given by the Lyapunov exponents which measure the exponential growth
of the envelope of the wave function. They can be defined in two different ways, depend-
ing on the choice of point of view. We can either study the growth of the 2N -components
spinor ψ, which will give us a set of 2N Lyapunov exponents (one per component). This
is the point of view we will adopt in Section 7.3 to compute the Lyapunov exponents
numerically. However here, we will define them from the first component φ of the spinor
(which is itself a N -components vector). In this case, we will get N Lyapunov exponents
which we will denote γ1, . . . , γN . They can be obtained from the matrix-components of
the spinor Ψ, defined in Eq. (7.1), using Oseledec’s ergodic multiplicative theorem [256]
(see also Ref. [185]). This theorem states that the eigenvalues of the matrix

1
2x ln[Φ†(x)Φ(x)] (7.90)

are self-averaging, and converge to the Lyapunov exponents {γn} when x → ∞. Our
aim is to introduce a method to compute these exponents and analyse their properties.

As we will see explicitly at zero energy, these two perspective give the same Lyapunov
spectrum. Indeed, the 2N Lyapunov exponents controlling the evolution of the spinor
ψ are simply {γn} and {−γn}.
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7.2.1 Lyapunov spectrum at zero energy
At zero energy ε = 0, the Dirac equation (6.2,6.3) reduces to∂xϕ(x) = M(x)ϕ(x) ,

∂xξ(x) = −M(x)ξ(x) ,
(7.91)

or equivalently for the matrix-components Φ and Ξ:∂xΦ(x) = M(x)Φ(x) ,
∂xΞ(x) = −M(x)Ξ(x) ,

(7.92)

We will only focus on the equation for Φ, and introduce a method to compute its
Lyapunov exponents {γn}. The Lyapunov exponents of the second one are simply
their opposite {−γn}. This shows explicitly that considering the full spinor ψ gives the
Lyapunov spectrum {γn,−γn}.

We study the first order differential equation

∂xΦ(x) = M(x)Φ(x) , (7.93)

and aim to compute the associated Lyapunov exponents. The solution of this equation
takes the form of a ordered exponential

Φ(x) = T e
∫ x

0 M(t)dt , (7.94)

which must be understood formally as the power series of the exponential, in which the
matrices M always appear ordered with respect to their argument. This is ensured by
the presence of the ordering operator T, defined as:

T[M(t)M(t′)] =
{
M(t)M(t′) if t > t′ ,
M(t′)M(t) if t < t′ .

(7.95)

However the formal solution (7.94) is not very helpful to study the solution Φ(x) and
compute the Lyapunov exponents.

To circumvent the difficulty of solving Eq. (7.93), we introduce another formalism.
The idea of this approach is the following: take any initial vector ϕ1(0) and evolve it
with (7.93), that is ∂xϕ1(x) = M(x)ϕ1(x). This vector grows exponentially, with the
largest Lyapunov exponent, say γ1:

||ϕ1(x)|| ∼ eγ1x . (7.96)

To obtain the second largest Lyapunov exponent, say γ2, we need to follow two in-
dependent vectors ϕ1 and ϕ2. Considered independently, both will grow with rate γ1.
However, the volume (here surface) of the parallelogram delimited by these two vectors
(see Fig. 7.5) will also grow exponentially, with rate γ1 + γ2. The square of this volume
can be conveniently computed from the determinant:∣∣∣∣∣ϕ1(x)†ϕ1(x) ϕ1(x)†ϕ2(x)

ϕ2(x)†ϕ1(x) ϕ2(x)†ϕ2(x)

∣∣∣∣∣ . (7.97)
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Figure 7.5: Evolution of
independent vectors ϕ1
and ϕ2 with Eq. (7.93).
Each vector taken inde-
pendently will grow with
rate γ1, but the surface
enclosed by the two vec-
tors will grow with rate
γ1 + γ2.

Figure 7.6: The surface
enclosed by the two vec-
tors ϕ1(x) and ϕ2(x) is
also the surface delim-
ited by ϕ1(x) and ϕ⊥(x),
the component of ϕ2(x)
orthogonal to ϕ1(x).

This is valid for any independent solutions of Eq. (7.93). All the solutions being en-
coded in the matrix Φ(x), we can rewrite this determinant in terms of Φ. Indeed, the
determinant of the top left subblock of Φ(x)†Φ(x) is exactly (7.97). Mathematically,
this is called the second principal minor of Φ(x)†Φ(x), and denoted |Φ(x)†Φ(x)|2. This
discussion can be extended to a set of n vectors ϕ1, . . . , ϕn to obtain the top n Lyapunov
exponents from the nth principal minor of Φ†Φ [185,256]:

lim
x→∞

1
2x ln |Φ(x)†Φ(x)|n =

n∑
i=1

γi , γ1 > γ2 > · · · > γN (7.98)

where |Φ†Φ|n is the determinant of the top-left subblock of Φ†Φ of size n × n. The
discussion above is not a rigorous proof of this relation, but it gives some insight to
understand it.

To make use of relation (7.98), we will slightly rephrase the problem. Eq. (7.98) relies
on this idea of studying the volume enclosed by independent vectors. These vectors can
be conveniently chosen as the columns of the matrix Φ(x). For simplicity, let us look at
the first two columns, which we denote ϕ1(x) and ϕ2(x). The first vector ϕ1 will grow
exponentially with rate γ1, and so will the second vector ϕ2. Let us however decompose
the second vector as

ϕ2(x) = ϕ||(x) + ϕ⊥(x) , (7.99)

where ϕ|| is proportional to ϕ1, while ϕ⊥ is orthogonal to ϕ1. The volume enclosed by
ϕ1 and ϕ2 is the same as the one delimited by ϕ1 and ϕ⊥, as shown in Fig. 7.6. This
volume, which grows with rate γ1 + γ2, is easily computed as ||ϕ1|| × ||ϕ⊥||. Since ||ϕ1||
grows with rate γ1, we obtain

||ϕ⊥(x)|| ∼ exp(γ2x) . (7.100)
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Therefore, the growth of the component of ϕ2 orthogonal to ϕ1 is controlled by the
second Lyapunov exponent γ2. This means that, to obtain the Lyapunov exponents,
we should follow a set of orthogonal vectors. In general, this can be done by applying
a Gram–Schmidt algorithm to the columns of Φ to orthogonalise them. At the matrix
level, this procedure reduces to compute the QR-decomposition of Φ:

Φ(x) = Q(x)R(x) , (7.101)

where Q is orthogonal (β = 1), unitary (β = 2) or symplectic (β = 4) and R is upper
triangular with positive diagonal elements. The last condition implies the uniqueness of
the matrices Q and R. Using this decomposition in Eq. (7.93) gives

Q′(x)R(x) +Q(x)R′(x) = M(x)Q(x)R(x) , (7.102)

where Q′ and R′ denote the derivatives of Q and R. Let us multiply this equation by
Q−1 = Q† on the left, and R−1 on the right:

Q†(x)Q′(x) +R′(x)R−1(x) = Q†(x)M(x)Q(x) . (7.103)

Since R is upper triangular, so are R−1 and R′R−1. Therefore, looking at the matrix
elements of this equation on the lower triangular part yields:

[Q†(x)Q′(x)]mn = [Q†(x)M(x)Q(x)]mn , m > n . (7.104)

This gives a set of equations governing the evolution of the matrix Q. Looking now at
the diagonal elements of (7.103), we obtain

[Q†(x)Q′(x)]nn + R′nn(x)
Rnn(x) = [Q†(x)M(x)Q(x)]nn , (7.105)

where we used that (R−1)nn = (Rnn)−1 which follows from the fact that R is upper
triangular. Since Q†MQ is self-adjoint, its diagonal elements are real. And so is Rnn

by definition. Therefore [Q†Q′]nn is also real. Additionally, taking the derivative of
Q†Q = 1N gives

Q†Q′ + (Q′)†Q = Q†Q′ + (Q†Q′)† = 0 , (7.106)
from which we deduce that Re[(Q†Q′)nn] = 0. Thus,

[Q†(x)Q′(x)]nn = 0 , (7.107)

which implies that

R′nn(x)
Rnn(x) = ∂x lnRnn = [Q†(x)M(x)Q(x)]nn . (7.108)

We have thus obtained a set of coupled equations (7.104,7.106,7.108) which controls the
evolution of the QR-decomposition of Φ. We can summarise these equations as Q†Q′ = A ◦ (Q†MQ) ,

∂x lnRnn = (Q†MQ)nn ,
(Stratonovich) (7.109)
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where [A ◦B]mn = AmnBmn is the Hadamard product, and

A =


0 −1 · · · −1
1 . . . . . . ...
... . . . . . . −1
1 · · · 1 0

 . (7.110)

Having obtained Eq. (7.109) which describes the evolution of the matrix Q and the
diagonal elements of R, we will now relate these to the Lyapunov exponents obtained
from Eq. (7.98). From the QR-decomposition, we have Φ(x)†Φ(x) = R(x)†R(x). There-
fore, all the information of the localisation is contained in the matrix R. Denote Rn the
upper-left subblock of R of size n× n:

R(x) =
(
Rn(x) ?

0 ?

)
, (7.111)

where we have denoted ? any other non-zero subblock. We thus have:

Φ(x)†Φ(x) = R(x)†R(x) =
(
Rn(x)†Rn(x) ?

0 ?

)
. (7.112)

The determinant of the top-left subblock is given by:

|Φ(x)†Φ(x)|n = det[Rn(x)†Rn(x)] =
n∏
i=1

Rii(x)2 . (7.113)

Consequently, Eq. (7.98) reduces to

1
2x ln |Φ(x)†Φ(x)|n =

n∑
i=1

1
x

lnRnn(x) −→
x→∞

n∑
i=1

γn . (7.114)

Taking the difference between the equations for n and n− 1 gives the expression of the
nth Lyapunov exponent:

γn = lim
x→∞

1
x

lnRnn(x) (7.115)

This relation shows that the Lyapunov exponents can be obtained from the diagonal
elements of the matrix R.

The first consequence is that the sum of all Lyapunov exponents can be obtained
easily. From Eq. (7.115), we have

N∑
n=1

γn = lim
x→∞

1
x

N∑
n=1

lnRnn(x) . (7.116)

Using Eq. (7.109), we can write

∂x
N∑
n=1

lnRnn(x) = tr[Q†MQ] = trM(x) , (7.117)
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therefore,
1
x

N∑
n=1

lnRnn(x) = 1
x

∫ x

0
trM(x′)dx′ −→

x→∞
tr 〈M〉 = µ trG . (7.118)

This proves that the sum of all Lyapunov exponents is simply

N∑
n=1

γn = µ trG , for ε = 0 (7.119)

In the one dimensional case N = 1, we recover the value of the Lyapunov exponent at
zero energy [165].

We would like now to obtain each Lyapunov exponent independently. We can go
one step further than (7.115) by solving the equation on Rnn (7.109), which gives

1
x

lnRnn(x) = 1
x

∫ x

0
(Q†MQ)nn . (7.120)

For large x, the r.h.s. converges to
〈
Q†MQ

〉
by ergodicity. However, this mean value

is difficult to compute because the noise M and the matrix Q are correlated. This is
due to the fact that Eq. (7.109) is to be interpreted in the Stratonovich way, which
introduces nontrivial correlations between the matrices Q and M . This problem can
be solved by converting the set of equations (7.109) to their Itô form. This procedure
is quite cumbersome, but can be carried out explicitly. This gives the Itô form of the
equations satisfied by the diagonal elements of R:

∂x lnRnn = Dn,β(G,Q) + (Q†MQ)nn (Itô), (7.121)

where the drift correction is

Dn,β(G,Q) = β
∑
k,l

gkgl
gk + gl

∑
a

AanQ
†
akQkaQ

†
nlQln

+ (2− β)
∑
k,l

gkgl
gk + gl

∑
a

AanQ
†
nkQkaQ

†
nlQla . (7.122)

We recall that G = Diag(g1, . . . , gN) and the matrix A is given by (7.110). Integrating
equation (7.121) gives the expression of the Lyapunov exponents (7.115):

γn = 〈Dn,β(G,Q)〉+
〈
(Q†MQ)nn

〉
, (7.123)

where the averaging must be done over the stationary distribution of the matrix Q, and
over the noise M . Since this relation is obtained from the Itô form of the stochastic
equations, Q and M are uncorrelated, thus we can average them independently. Using
that 〈M〉 = µG, this yields:

γn = 〈Dn,β(G,Q)〉+ µ
〈
(Q†GQ)nn

〉
, (7.124)

where the brackets denote averaging over the stationary distribution of Q.
To compute the Lyapunov spectrum {γn}, we should first find the stationary distri-

bution of Q from its stochastic equation (7.109), and then use it to compute the averages
in Eq. (7.124). We will now apply this procedure to compute the Lyapunov exponents
in a few simple cases in which this procedure can be carried out explicitly.
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Figure 7.7: Lyapunov exponents
for N = 3 and β = 2 as a
function of the mass over disorder
ration µ, in the isotropic case
G = Diag(1, 1, 1). The lines
are obtained from Eq. (7.126),
the points from numerical
simulations.

Isotropic case

The simplest case is G = g1N . The drift (7.122) reduces to

Dn,β(G,Q) = βg

2 (N + 1− 2n) , (7.125)

which does not depend on Q. Therefore the averaging (7.124) is trivial for this term.
Additionally, since Q†Q = 1N , we have

〈
Q†GQ

〉
= g 〈1N〉 = g1N . Therefore, the

Lyapunov exponents (7.124) reduce to

γn = µg + βg

2 (N + 1− 2n) (7.126)

This expression for the Lyapunov exponents at zero energy is known in the literature [62,
208]. It was first derived for β = 1 by Le Jan and Newman independently [202, 252].
These Lyapunov exponents are equally spaced, and depend linearly on the mass over
disorder ratio µ. They are represented as function of µ in Fig. 7.7.

Non-isotropic case for N = 2 channels

In the general case, it is extremely difficult to find the stationary distribution of the
matrix Q associated to the stochastic equation (7.109). Nevertheless this can be done
for small number of channels, when the matrix Q can be parametrised by a few real
variables. For example, for N = 2 channels in the case β = 1 the matrix Q is orthogonal
and can be written as

Q =
(

cos θ − sin θ
sin θ cos θ

)
, (7.127)

and the Haar measure is simply dQ = dθ. While for β = 2, the unitary matrix Q can
be parametrised as

Q = eiφ
(

eiψ 0
0 e−iψ

)(
cos θ − sin θ
sin θ cos θ

)(
eiδ 0
0 e−iδ

)
, (7.128)

with Haar measure dQ = 2 |sin(2θ)| dφdψdδdθ. In both cases, rewriting the stochastic
equation (7.109) in terms of the parameters of Q allows to find the stationary solution,
which takes the form

f(Q) ∝ [(Q†GQ)11]µ−β/2[(Q†GQ)22]−µ−β/2 . (7.129)
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Figure 7.8: Lyapunov exponents
for N = 2 and β = 2 as
a function of the mass over
disorder ration µ, in the non-
isotropic case G = Diag(g1, g2).
The lines are obtained from
Eq. (7.130), the points from nu-
merical simulations.
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This explicit solution yields integral representations for the Lyapunov exponents (7.124).
For β = 2, these integrals can be computed analytically and gives the rather complex
expression

γ1 = µ2(g1g2)µ g1 + g2

g2µ
1 − g

2µ
2

[
B
(

g1

g1 + g2
; 1 + µ,−µ

)
− B

(
g2

g1 + g2
; 1 + µ,−µ

)]

+ µ
(g1 − g2)3

g2µ
1 − g

2µ
2

g2µ
1

6g1g2
F1

(
2,−µ+ 1, µ+ 1, 4; 1− g2

g1
, 1− g1

g2

)
+ 2 g1g2

g1 + g2
, (7.130)

where B(z; a, b) is the incomplete Beta-function, and F1 is the Appell hypergeometric
function with two arguments [20,27]:

F1 (a, b, b′, c;x, y) =
∑
m>0

∑
n>0

(a)m+n(b)m(b′)n
(c)m+nm!n! xmyn , (a)n = Γ(a+ n)

Γ(a) . (7.131)

The second Lyapunov exponent can be deduced from the relation (7.119). This result
allows to plot the Lyapunov exponents as a function of µ, as shown in Fig. 7.8. In
particular, we notice that they vanish for the same values µ = ±1 as in the isotropic
case, independently of the anisotropy.

Effect of anisotropy on the Lyapunov spectrum at ε = 0

The complexity of the expression (7.130) for the N = 2 channels case leaves almost no
hope to find closed expressions for the Lyapunov exponents in the general case for N
channels. We thus rely on numerical computations for higher number of channels (the
method is described in Section 7.3.1). To see the effect of anisotropy, we show in Fig. 7.9
the Lyapunov exponents {γn} for N = 5 channels, with disorder G = Diag(1, 1, 1, 1, gN),
as a function of gN . For gN = 1, we recover the isotropic situation (7.126). For gN = 0,
there is no disorder in the N th channel, which decouples from the others. This cor-
responds to a delocalised channel, along with 4 isotropically coupled channels. For
0 < gN < 1, the Lyapunov spectrum interpolated between these situations. In particu-
lar, we notice that the well-known linear Lyapunov spectrum [62,208] is recovered only
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Figure 7.9: Lyapunov exponents for N = 5, β = 2 and G = Diag(1, 1, 1, 1, gN) as a
function of gN , obtained by numerical simulations. Left: µ = 0, Right: µ = 0.5.

in the isotropic situations. If isotropy is broken, the Lyapunov exponents are no longer
equally spaced.

For µ = 0, we notice that one Lyapunov exponent remains exactly zero, indepen-
dently of the anisotropy. This observation is consistent with the the one made on the
N = 2 channels case (see Fig. 7.8). Therefore, it seems that, independently of the
isotropy, the nth Lyapunov exponent will vanish for

µ = β

2 (2n−N − 1) . (7.132)

As we have seen in Section 7.1 the exponent α which controls the low energy behaviour
of the density of states also vanishes for these particular values of µ. In the next Chapter,
we will show that these values of µ are associated to phase transitions of topological
nature.

7.2.2 Energy dependence of the Lyapunov exponents
Having extensively studied the zero energy case ε = 0, let us now briefly discuss the
Lyapunov spectrum away from the Dirac point. Our starting point is the Dirac equa-
tion (6.2,6.3), which yields∂xϕ(x) = M(x)ϕ(x)− ε ξ(x) ,

∂xξ(x) = −M(x)ξ(x) + ε ϕ(x) .
(7.133)

We can use the Riccati matrix (6.28) to reduce the equation on ϕ to a first order
differential equation:

∂xϕ(x) = [Zε(x) +M(x)]ϕ(x) . (7.134)
We can then reproduce the derivation of Section 7.2.1 with this new equation. Regroup-
ing again the independent solutions into the matrix Φ = QR, Eq. (7.109) becomes in
this case  Q†Q′ = A ◦ [Q†(Zε +M)Q] ,

∂x lnRnn = [Q†(Zε +M)Q]nn ,
(7.135)
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where the matrix A is given by (7.110). The Lyapunov exponents are then obtained
from the diagonal elements Rnn, Eq. (7.115). The main difference from the zero energy
case discussed above is the presence of the Riccati matrix Zε, which is coupled to the
matrix Q. This makes the problem much more challenging.

We stress an important difference with the case of zero energy discussed in Sec-
tion 7.2.1:

(i) At ε = 0 the two components ϕ and ξ of the spinor ψ decouple. We thus focused
on ϕ only and we extracted N Lyapunov exponents {γn}, which can be either
positive or negative. The second component ξ is associated to a second set of
Lyapunov exponents, which are simply {−γn} (see Eq. (7.91)).

(ii) Here at ε 6= 0, the two components of ψ remain coupled, and their evolution is
described by Eq. (7.133). It is thus associated to 2N Lyapunov exponents which
come in pairs {γn,−γn}. However, we have reduced the problem to Eq. (7.134)
which involves only the component ϕ by introducing the Riccati matrix. In doing
so, we select only the N largest Lyapunov exponents of the set {γn,−γn}, which
we denote {γ̂n = |γn|}.

Therefore, the Lyapunov exponents {γ̂n} extracted from Eq. (7.135) are always positive.

Sum of the Lyapunov exponents

Proceeding as in Section 7.2.1, we can easily obtain the the sum of all the Lyapunov
exponents {γ̂n} associated to (7.134) as

N∑
n=1

γ̂n(ε) = 〈Zε +M〉 = Re Ω(ε+ i0+) (7.136)

where Ω is the characteristic function (7.12) introduced in Section 7.1. We stress that
this relation differs from Eq. (7.119) which we obtained at zero energy:

• at ε = 0, Eq. (7.119) involves the Lyapunovs {γn} which can be either positive or
negative, and gives ∑n γn = µ trG;

• At finite energy, Eq. (7.136) involves the positive Lyapunovs {γ̂n}. Therefore,
taking the limit ε→ 0 in this last relation yields ∑n γ̂n(0) = ∑

n |γn(0)|, which in
general differs from (7.119).

Relation (7.136) is a generalisation of the formula used for one dimensional systems [84–
86,165,206]. Combining (7.136) with Eq. (7.13), we have shown that the characteristic
function Ω takes the form

Ω(ε+ i0+) =
N∑
n=1

γ̂n(ε)− iπ N (ε) (7.137)

This relation shows that the sum of all the Lyapunov exponents and the density of states
are the real and imaginary parts of the same analytic function. This is a consequence
of the Thouless relation [197,236]:

γ̂1(ε) + · · ·+ γ̂N(ε)
N

=
∫

dε′ ρ(ε′) ln |ε− ε′|+ const. , (7.138)
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Figure 7.10: Lyapunov exponents for N = 5, β = 2 and G = 15 as a function of the
energy ε, obtained by numerical simulations. Left: µ = 0, Right: µ = 5.

0 2 4 6 8 10
ε

0

1

2

3

4

5

6

γ̂
n

β=2, N=5, µ=0

0 10 20 30 40 50 60
ε

0

2

4

6

8

10

12

14

16

18
γ̂
n

β=2, N=5, µ=5

Figure 7.11: Lyapunov exponents for N = 5 and β = 2 in the anisotropic case G =
Diag(1, 1, 1, 1, 3) as a function of the energy ε, obtained by numerical simulations. Left:
µ = 0, Right: µ = 5.

which relates the sum of the Lyapunov exponents to the density of states. This relation
was first derived in the strictly one dimensional case by Herbert, Jones and Thou-
less [175,289].

Individual Lyapunov exponents

Although the sum of the Lyapunov exponents can be easily obtained from Eq. (7.136),
studying each exponent γ̂n independently is much more difficult. We thus rely on nu-
merical simulations (the algorithm is described below, in Section 7.3.1).

The Lyapunov exponents, in the isotropic case G = 1N are represented in Fig. 7.10,
for N = 5 channels in the unitary case β = 2. We clearly see, as noted before, that they
are all positive. Let us make a few comments.

• In the limit ε → 0, we can check that the Lyapunov exponents coincide with the
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absolute value of (7.126) obtained previously,

γ̂n = |γn| =
∣∣∣∣∣µg + βg

2 (N + 1− 2n)
∣∣∣∣∣ , n ∈ {1, . . . , N} . (7.139)

The absolute value can cause a degeneracy of the Lyapunov spectrum {γ̂n} at
ε = 0, for instance for µ = 0, as can be seen in Fig 7.10 (left);

• For ε → ∞, the Lyapunov exponents become equally spaced, and do not depend
on µ. They coincide with the spectrum obtained in the Wigner-Dyson symmetry
classes (compare for instance with Eq. (5.27)): they present the scaling

γ̂n = (1 + β(N − n))γ̂N , n ∈ {1, . . . , N} , (7.140)

where γ̂N is the smallest Lyapunov exponent;

• The crossover between the two universal values, for ε = 0 (chiral classes) and
for ε → ∞ (Wigner-Dyson classes), occurs at different values of the energy for
different Lyapunov exponents: the smallest exponents reach rapidly their limit,
while the largest converge more slowly.

The Lyapunov spectrum in the anisotropic caseG = Diag(1, 1, 1, 1, 3) is represented
in Fig. 7.11. The phenomenology is qualitatively similar to the isotropic case, except that
the Lyapunov exponents are no longer equally spaced, neither at ε = 0 (as we already
noticed in Section 7.2.1) nor for ε→∞. The linearity of the Lyapunov spectrum with
the index n seems to be a specific feature of the isotropic case.

7.3 Numerical simulations
We have obtained analytical results for the density of states and the sum of the Lyapunov
exponents for the multichannel Dirac equation with a random mass. Our aim is now to
perform numerical simulations to check these results. Furthermore, since we were only
able to study the sum analytically, we can use these simulations to study the energy
dependence of the spectrum of Lyapunov exponents γn.

To perform numerical simulations, it is convenient to consider a different version of
the problem. We still consider the Dirac equation (6.2,6.3), with a random mass taking
the form of impurities placed at positions {xn}:

M(x) =
∑
n

Wn δ(x− xn) , xn = n δx , (7.141)

where the N ×N matrices Wn are picked from the distribution

P [Wn] ∝ exp
{
− 1

2 δx tr
[
(Wn − µG δx)G−1(Wn − µG δx)

]}
. (7.142)

In the limit δx→ 0, this reduces to the multichannel Dirac equation (6.8) [40,266,282].
Between two impurities, the evolution of a spinor ψ(x) satisfies the free Dirac equa-

tion (
0 ∂x 1N

−∂x 1N 0

)(
ϕ
ξ

)
= ε

(
ϕ
ξ

)
, ψ =

(
ϕ
ξ

)
, (7.143)
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which we can rewrite as

∂x

(
ϕ
ξ

)
=
(

0 −ε 1N
ε 1N 0

)(
ϕ
ξ

)
. (7.144)

Therefore, the evolution between two impurities is straightforward:(
ϕ(x−n+1)
ξ(x−n+1)

)
=
(

cos(ε δx)1N − sin(ε δx)1N
sin(ε δx)1N cos(ε δx)1N

)(
ϕ(x+

n )
ξ(x+

n )

)
. (7.145)

There remains only to study the effect of an impurity at xn. To do so, we can rewrite
the Dirac equation (6.2,6.3) near the impurity at xn in the form ∂x [exp (Wn Θ(x− xn)) ξ] = ε exp (Wn Θ(x− xn))ϕ ,

−∂x [exp (−Wn Θ(x− xn))ϕ] = ε exp (−Wn Θ(x− xn)) ξ ,
(7.146)

where Θ is the Heaviside step function. Integrating on a small interval [xn − t, xn + t]
and letting t→ 0 yields {

ϕ(x+
n ) = eWn ϕ(x−n ) ,

ξ(x+
n ) = e−Wn ξ(x−n ) . (7.147)

Therefore the evolution of the spinor ψ can be described by the product of matrices

ψ(x+
n ) = An ψ(x+

n−1) , (7.148)

where
An =

(
eWn 0
0 e−Wn

)(
cos(ε δx)1N − sin(ε δx)1N
sin(ε δx)1N cos(ε δx)1N

)
. (7.149)

The value of the spinor at position xn can be deduced from the value at the origin using
the product

ψ(x+
n ) = Πnψ(0+) , where Πn = AnAn−1 · · ·A1 . (7.150)

We set for convenience Π0 = 12N . This product of random matrices has already been
considered in the literature, for example in Ref. [85] in the strictly one dimensional case
N = 1.

Having rephrased our problem in terms of a product of random matrices, we will now
see how this new formulation is useful to obtain numerically the Lyapunov exponents
and the density of states.

7.3.1 Lyapunov exponents
As we have seen in Section 7.2.1, the QR-decomposition is a powerful way to extract
the Lyapunov exponents. We now present the discrete version of this method, which
is convenient to study the product of random matrices (7.150). We thus introduce the
QR-decomposition2 of Πn:

Πn = QnRn , (7.151)
2Note that in the continuous version of Section 7.2.1 we introduced the QR-decomposition of the

N ×N matrix Φ while here we decompose the 2N × 2N matrix Πn.
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where Qn is orthogonal (β = 1), unitary (β = 2) or symplectic (β = 4) and Rn is
an upper triangular matrix, with positive real diagonal elements. This condition on the
diagonal elements of Rn ensures the uniqueness of the decomposition, which is important
for numerical purposes. The idea is to follow the evolution of the matrices Qn and Rn

with n. Initially, since Π0 = 12N , we have:

Q0 = 12N and R0 = 12N . (7.152)

From the definition of Πn (7.150) we have

Πn+1 = An+1Πn = An+1QnRn . (7.153)

Let us now introduce the QR-decomposition of An+1Qn:

An+1Qn = Q̃nR̃n , (7.154)

with the same conditions as for (7.151). From the unicity of the QR-decomposition, we
can straightforwardly deduce

Πn+1 = Qn+1Rn+1 , where
{
Qn+1 = Q̃n ,

Rn+1 = R̃nRn .
(7.155)

From the discussion of Section 7.2.1, the Lyapunov exponents can be extracted from
the diagonal elements of Rn [103,104]:

γi = lim
n→∞

1
n

ln[(Rn)ii] . (7.156)

The evolution of these diagonal elements, given by Eq. (7.155), can be rewritten as

ln[(Rn+1)ii] = ln[(R̃n)ii] + ln[(R̃n)ii] , (7.157)

thus
ln[(R̃n)ii] =

n∑
k=1

ln[(R̃k)ii] . (7.158)

This gives the final expression of the Lyapunov exponents:

γi = lim
n→∞

1
n

n∑
k=1

ln[(R̃k)ii] . (7.159)

Therefore, the Lyapunov exponents can be computed using the following procedure:

1. Initialise Q1 = 12N and {ξi = 0};

2. Compute the QR-decomposition of AnQn = Q̃nR̃n;

3. Set Qn+1 = Q̃n and increment ξi ← ξi + ln[(R̃n)ii]

4. Repeat from 2;

5. Return {γi = ξi/n}.
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Note that since most QR-decomposition algorithms do not respect the condition that
the diagonal elements of the matrix R be positive, it is required to make the correction

Q→ QD , R→ D†R , where Dij = Rii

|Rii|
δij , (7.160)

to ensure uniqueness of the QR-decomposition.

I used this procedure to obtain numerically the Lyapunov spectrum in different
situations. See Figs. 7.7 and 7.8 for the Lyapunov spectrum at zero energy, both in the
isotropic and anisotropic cases. See also Figs. 7.10 and 7.11 for the evolution of the
Lyapunov spectrum with the energy.

7.3.2 Density of states
The numerical evaluation of the density of states is based on a node counting theorem,
also known as Sturm Liouville oscillation theory in the mathematical literature [305]. We
proceed as in Section 7.1 and introduce the eigenstates ψn of the Dirac Hamiltonian (6.3)
restricted to the finite interval [0, L]:

Hψn = εnψn , ψn =
(
ϕn
ξn

)
, n ∈ N , (7.161)

with ξn(0) = ξn(L) = 0 (we could similarly choose the other boundary condition ϕn(0) =
ϕn(L) = 0). We also consider the initial value problem

HΨ(ε;x) = εΨ(ε;x) , Ψ(ε;x) =
(

Φ(ε;x)
Ξ(ε;x)

)
, with Ψ(ε; 0) =

(
1N
0

)
, (7.162)

where we again introduced the “matrix spinor” Ψ containing the N independent solu-
tions.

The node-counting theorem [305] states that the number of eigenstates of energy
εn < ε is exactly the number of zeros of det Ξ(ε;x) in the open interval ]0, L[. This
number is exactly the integrated density of states NL(ε):

NL(ε) = number of zeros of det Ξ(ε;x) in ]0, L[ . (7.163)

It is a random number, but in the limit of large system size L → ∞, it can be used to
obtain the mean IDoS per unit length

N (ε) = lim
L→∞

1
L
NL(ε) , (7.164)

which is deterministic from the ergodic property.
However, the matrices Φ and Ξ are not convenient objects for numerical purposes,

since they grow exponentially. We will thus re-express the IDoS in terms of the matrix
Q obtained from the QR-decomposition discussed in Section 7.3.1. Let us again consider
the initial value problem HΨ = εΨ, with a full 2N × 2N matrix Ψ. We thus denote

Ψ(ε, x) =
(

Φ(ε;x) Φ̃(ε;x)
Ξ(ε;x) Ξ̃(ε;x)

)
, with Ψ(ε; 0) = 12N =

(
1N 0
0 1N

)
. (7.165)

– 161 –



Chapter 7. Density of states and localisation properties

The first column is the “matrix spinor” obtained from the initial value problem (7.162)
with Ξ(ε; 0) = 0. The second column corresponds to the other possible boundary
condition Φ̃(ε; 0) = 0. Let us consider the QR-decomposition of this square matrix:

Ψ(ε, x) = Q(x)R(x) , (7.166)

where Q is orthogonal (β = 1), unitary (β = 2) or symplectic (β = 4), and R is upper
triangular with positive real diagonal elements. Let us decompose these matrices in
blocks of size N ×N :

Q(x) =
(
Q11(x) Q12(x)
Q21(x) Q22(x)

)
, R(x) =

(
R11(x) R12(x)

0 R22(x)

)
. (7.167)

The matrices Φ and Ξ are thus given by

Φ(x) = Q11(x)R11(x) , Ξ(x) = Q21(x)R11(x) . (7.168)

Therefore, det Ξ = detQ21 × detR. Since the matrix R encodes the envelope of the
spinor, its determinant is positive, and only detQ21 can vanish. This gives us the final
expression of the IDoS from (7.163):

NL(ε) = number of zeros of detQ21(x) in ]0, L[ . (7.169)

Since the matrix Q belongs to a compact group its elements are bounded, and so are
those of Q21. This makes this expression well-suited for numerical computations. This
discussion can be straightforwardly extended to the discretised model (7.141). The inte-
grated density of states N (ε) can thus be obtained from the product of matrices (7.150)
as follows:

1. Initialise Q1 = 12N and N0 = 0;

2. Compute the QR-decomposition of AnQn = Q̃nR̃n;

3. Set Qn+1 = Q̃n, extract the lower left subblock Q21 of size N of Qn+1;

4. If detQ21 changed sign when going from step n to n+ 1, increment N0 by one;

5. Repeat from 2;

6. Return N0/L (since N (ε) = limL→∞N0/L).

This procedure can be implemented in the same algorithm as the one described in
Section 7.3.1 to compute the Lyapunov spectrum and the IDoS simultaneously, in a
very efficient way.

I implemented this algorithm to compute the density of states. The numerical results
are in excellent agreement with the numerical computations, see Fig. 7.12. I also checked
the low energy behaviours obtained in Section 7.1 numerically. Since the analytical
results do not provide the prefactor, I obtained it via a fit of the numerical data. The
results are again in perfect agreement, see Fig. 7.4. The power law behaviour of the
density of states is correctly reproduced over several orders of magnitude.
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Chapter 8

Topological phase transitions

In the 2000s, models of multichannel disordered wires have been reconsidered from the
perspective of their topological properties. These models were indeed shown to support
Majorana zero modes [192, 255]. A key feature of these modes is that their topological
nature provides a protection under small perturbations (such as weak disorder). The
aim of this chapter is to study the effect of strong disorder on these modes, as it was
shown that the disorder can drive topological phase transitions [240,264,268].

In the previous chapters, we have introduced and studied a model of multichannel
disordered wire, the Dirac equation with a random mass, belonging to the three chiral
classes. We now investigate its topological properties. These properties are encoded in
a quantum number of topological nature. The determination of this index relies on the
bulk-edge correspondence: the topological quantum number, which characterises a bulk
property, also counts the number of edge states (as in the integer quantum Hall effect).
In the case of our chiral model, the edge states have zero energy. In order to count the
number of zero modes, we will consider in this chapter the Witten index defined by [312]

∆(β̃) = tr
[
σ3 e−β̃H2]

, (8.1)

where H is the Dirac Hamiltonian and β̃ is the inverse temperature (denoted with a
tilde to distinguish it from the Dyson index). To show how this index can be used to
characterise the topological properties of our model of disordered wires, we first consider
a simple example.

8.1 A simple example
Let us first consider the strictly one-dimensional case N = 1, with a constant mass
m(x) = m0 for x > 0. The Dirac equation (6.2,6.3) reduces to{

(∂x +m0)ξ(x) = ε ϕ(x) ,
(−∂x +m0)ϕ(x) = ε ξ(x) , ψ =

(
ϕ
ξ

)
. (8.2)

We choose the boundary condition m(x) = −∞ for x < 0, corresponding to ϕ(0) = 0
(we could similarly consider the case ξ(0) = 0). If m0 6= 0, the spectrum of the Dirac
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Figure 8.1: Spectrum of the 1D Dirac equation with a constant mass m(x) = m0 for
x > 0, while the mass is set to −∞ for x < 0. Left: m0 < 0, the mass does not change
sign when crossing the origin thus the gap remains open. There is no zero mode in this
case. Right: m0 > 0, the gap closes and reopens when crossing the origin. This causes
the appearance of a zero mode.

equation (8.2) is ] −∞,− |m0|] ∪ [|m0| ,+∞[, with a gap 2 |m0|. Inside the spectrum,
the solutions take the form

ψε(x) = A

(
ε sin κx

−κ cosκx+m0 sin κx

)
, κ =

√
ε2 −m2

0 , (8.3)

where A is a normalisation constant. In the gap, we can formally write solutions of the
Dirac equation (8.2) in the form

ψε(x) = A

(
ε sinh κx

−κ cosh κx+m0 sinh κx

)
, κ =

√
m2

0 − ε2 , (8.4)

which satisfy ϕ(0) = 0 but cannot be normalised. However, exactly at zero energy ε = 0,
this solution becomes

ψ0(x) =
(

0
1

)√
2m0 e−m0x , x > 0 , (8.5)

which can be normalised if m0 > 0 (we imposed m(x) = −∞ for x < 0). Therefore,
this zero mode exists only if the mass is positive. This can be related to the change of
sign of the mass when going from the region x < 0 to x > 0, associated to the closure
and reopening of the gap (see Fig. 8.1). This is the signature of a topological phase
transition. We will now see how to make use of the Witten index (8.1) to characterise
this transition.

In the case of a discrete spectrum, the Witten index (8.1), which counts the number
of zero modes, is independent of the temperature β̃ and is a quantum number of topo-
logical nature [253, 312]. Indeed, this index is expressed in terms of the squared Dirac
Hamiltonian

H2 = (−∂2
x +m2)12 + ∂xmσ3 =

(
H+ 0
0 H−

)
, H± = −∂2

x +m2 ± ∂xm , (8.6)
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and therefore takes the form

∆(β̃) = tr
[
e−β̃H+

]
− tr

[
e−β̃H−

]
. (8.7)

The index ∆(β̃) thus measures the difference between the two spectra of the Hamiltoni-
ans H+ and H− [184]. These Hamiltonians have the same spectrum, except potentially
at ε = 0 (is supersymmetry holds). Therefore, ∆(β̃) should indicate the presence of the
zero mode (8.5) for m0 > 0 (H+ corresponds to m(x) = m0 and H− to m(x) = −m0).

However, in the situation considered here, the spectrum is continuous and ∆(β̃) has
a non-trivial β̃-dependence. However, in the zero temperature limit β̃ → 0, only the
bottom of the spectrum contributes to ∆(β̃) and

∆(∞) = lim
β̃→∞

∆(β̃) (8.8)

is a topological quantum number [253]. We will see on the example (8.2) that it is of
the form

∆(∞) = 1
2 × integer (8.9)

and indeed characterises the number of zero modes.
In order to compute the Witten index ∆(∞) for the Dirac equation (8.2), we start

from the definition (8.1). Let us denote ρ+(ε) the density of states in the case of a
constant mass m0, and ρ−(ε) for −m0 (we make no assumption on the sign of m0). We
can rewrite (8.1) as

∆(β̃) =
∫ ∞

0
dε (ρ+(ε)− ρ−(ε)) e−β̃ε2

. (8.10)

After integration by parts, we obtain

∆(β̃) =
∫ ∞

0
dε δ+(ε)− δ−(ε)

2π 2β̃ε e−β̃ε2
, (8.11)

where δ± = −i ln det r±(ε) are the scattering Friedel phases obtained from the reflection
matrix r±(ε) introduced in Section 6.2. The topological index is obtained by taking the
zero-temperature limit β̃ →∞:

∆(∞) = δ+(0)− δ−(0)
2π . (8.12)

We have thus reduced the problem to computing the scattering Friedel phases δ± at
zero energy. To this end, we first come back to the scattering situation on the region
[0, L] introduced in Section 6.2 (see Fig. 6.1). For x > L, the solutions of the free Dirac
equation are characterised by the reflection coefficient r(ε):

ψε(x) =
(

1
i

)
e−iε(x−L) + r(ε)

(
−1
i

)
eiε(x−L) . (8.13)

Matching with the solutions (8.3,8.4) of the Dirac equation (8.2) at x = L, we express
the reflection coefficient as:

r(ε) = − iϕε(L)− ξε(L)
iϕε(L) + ξε(L) . (8.14)
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For example, if ε < |m0|, we have:

r(ε) = − iε sinh(κL) + κ cosh(κL)−m0 sinh(κL)
iε sinh(κL)− κ cosh(κL) +m0 sinh(κL) , κ =

√
m2

0 − ε2 . (8.15)

Therefore, in the limit L→∞, we obtain1

r(ε) =

√
m2

0 − ε2 −m0 + iε√
m2

0 − ε2 −m0 − iε
. (8.16)

Let us introduce the scattering Friedel phase δ(ε) = −i ln r(ε), which is related to the
density of states by (6.27). In the limit ε→ 0, we have

r(ε) = eiδ(ε) ' |m0| −m0 + iε− ε2/2 |m0|
|m0| −m0 − iε− ε2/2 |m0|

'

 −1− iε
m0

if m0 > 0 ,
1 + iε

|m0| if m0 < 0 ,
(8.17)

from which we deduce
δ(0) = π Θ(m0) , (8.18)

where Θ is the Heaviside function. We can easily deduce the Witten index (8.12) by
subtracting to this result the one where we substituted m0 → −m0:

∆(∞) = δ+(0)− δ−(0)
2π = 1

2 (Θ(m0)−Θ(−m0)) = 1
2 sign(m0) . (8.19)

The sign of the Witten index ∆(∞) indicates in which sector the zero mode is present
(m0 < 0 or m0 > 0).

Having understood the behaviour of the Witten index in this simple one dimensional
case, we can now go back to the multichannel case. The discussion above can be trivially
extended to the situation where M(x) = m01N , as all the channels are independent. A
zero mode is present in each channel if m0 > 0, thus:

∆(∞) = N

2 sign(m0) . (8.20)

We have seen on this simple example with a continuous spectrum that 2∆(∞) is
an integer, which counts the number of zero modes. In the case of a constant mass,
the spectrum is gapped, as illustrated in Fig. 8.1. However, this is not the case in the
disordered case: as shown in Section 7.1, the introduction of the disorder closes the gap.
We will show that even in the presence of disorder, 2∆(∞) remains an integer, which
indicates the presence of zero modes. It is remarkable that these zero modes still exist
for a gapless spectrum, as it was pointed out in Refs. [267,268].

1We first take the limit L→∞, before taking the limit ε→ 0. If we keep a finite size L� 1/m0,
the zero mode (8.5) is split into two low energy states, ε± = ±2m0 exp(−m0L) (for ϕ(0) = ξ(L) = 0).

– 168 –



8.2. Relation to the Riccati matrix

8.2 Relation to the Riccati matrix
Our aim is now to extend the previous discussion to the disordered case. In Section 7.1,
we have seen that we can extract the density of states from the distribution of Riccati
matrix Zε. We will now see that we can compute the topological index ∆(∞) from the
stationary distribution (6.59).

Our starting point is again the scattering situation of Section 6.2. This scattering
problem is characterised by the N × N reflection matrix r(ε), which can be expressed
in terms of the Riccati matrix Zε by Eq. (6.33). This allows us the express the Friedel
phase, for 〈M〉 = +µG as

δ+(ε) = −i ln det r(ε) = −i ln det
{

[ε− iZε(L)][ε+ iZε(L)]−1
}
. (8.21)

Let us now introduce eigenvalues {z+
n (L)} of the Riccati matrix for 〈M〉 = +µG. We

have:

δ+(ε) = −i ln det r(ε) = −i
N∑
n=1

ln
(
ε− iz+

n (L)
ε+ iz+

n (L)

)
= −2

N∑
n=1

arctan
(
z+
n (L)
ε

)
. (8.22)

We have the same relation for the phase δ−(ε) associated to the situation 〈M〉 = −µG,
in terms of the eigenvalues {z−n } of the corresponding Riccati matrix. The difference of
phases between the two situations thus reads:

δ+(ε)− δ−(ε) = −2
N∑
n=1

arctan
(
z+
n (L)
ε

)
+ 2

N∑
n=1

arctan
(
z−n (L)
ε

)
(8.23)

Using the supersymmetry (6.35), which implies the relation

{z+
n }

(law)=
{
−ε2/z−n

}
, (8.24)

we obtain:

〈δ+(ε)− δ−(ε)〉 =
〈

2
N∑
n=1

arctan
(

ε

z−n (L)

)
+ 2

N∑
n=1

arctan
(
z−n (L)
ε

)〉

= π
N∑
n=1

〈
sign[z−n (L)]

〉
, (8.25)

where we used that arctan x + arctan(1/x) = π sign(x)/2. For L → ∞, the Riccati
process is stationary, therefore the averaging can be performed with the stationary
distribution of Zε. We thus obtain the Witten index (8.12) as

∆(∞) = 〈δ+(0)− δ−(0)〉
2π = lim

ε→0

1
2

N∑
n=1

〈
sign(z−n )

〉
(8.26)

where the averaging is performed using the stationary distribution of Zε for 〈M〉 = −µG.
This relation links the topological properties of the disordered wire, encoded in the Wit-
ten index ∆(∞), to the statistical properties of the Riccati matrix, encoded in the sta-
tionary distribution f(Z), Eq. (6.59). However, we have obtained this distribution only
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for purely imaginary energies. We thus reproduce the above derivation with the analytic
continuation2 ε = ik to express the Witten index in terms of the distribution (6.59).
For this purpose, it is convenient to rewrite the reflection matrix as

r(ε) =
[√
−ε2 − i0+ − Zε(L)

] [√
−ε2 − i0+ + Zε(L)

]−1
, (8.27)

from which we deduce

r(ik) = k − Zik(L)− i0+

k + Zik(L)− i0+ . (8.28)

For 〈M〉 = ±µG, the associated Friedel phases are obtained from the eigenvalues {z±n }
of the Riccati matrix as

δ±(ik) = −i ln det r(ik) = −i
N∑
n=1

ln
(
k − z±n (L)− i0+

k + z±n (L)− i0+

)
. (8.29)

We can again compute the phase difference:

〈δ+(ik)− δ−(ik)〉 =
〈
−i

N∑
n=1

ln
(
k − z+

n (L)− i0+

k + z+
n (L)− i0+

)
+ i

N∑
n=1

ln
(
k − z−n (L)− i0+

k + z−n (L)− i0+

)〉

=
〈
−i

N∑
n=1

ln
(
z−n (L)− k − i0+

k + z−n (L)− i0+

)
+ i

N∑
n=1

ln
(
k − z−n (L)− i0+

k + z−n (L)− i0+

)〉
,

(8.30)

where we used the supersymmetry (6.35). Using now that

ln(x− i0+) = ln(−x− i0+) + iπ sign(x) , x ∈ R , (8.31)

we obtain:

〈δ+(ik)− δ−(ik)〉 = π
N∑
n=1

〈
sign(z−n (L)− k)

〉
. (8.32)

In the limit L→∞, the averaging can be computed from the stationary distribution of
the eigenvalues {z−n }. Therefore, we can write the Witten index (8.12) as

∆(∞) = 〈δ+(i0+)− δ−(i0+)〉
2π = lim

k→0

1
2

N∑
n=1
〈sign(zn − k)〉 (8.33)

where the averaging over the eigenvalues of the Riccati matrix must be performed with
the stationary distribution (6.59) with µ replaced by −µ (since it must be computed in
the case 〈M〉 = −µG). We will now make use of this formula to compute the value of
the topological index.

2One can check that the simple analysis performed in the N = 1 case in the absence of disorder
(Section 8.1) can be extended to ε = ik, k ∈ R.
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8.2.1 The one channel case
Let us start with the simplest case of N = 1 channel. For ε = ik, the distribution of the
Riccati variable (6.57) for 〈M〉 = −µg becomes

f−(z) = C−1
1,β z

µ−1 e−
1

2g (z+k2/z) , z > 0 . (8.34)

If µ > 0, one can simply take the limit k → 0 in this expression, and obtain the
distribution of z at zero (imaginary) energy:

f−(z)→ C−1
1,β z

µ−1 e−z/2g , z > 0 , for k → 0 . (8.35)

This limit can only be taken for µ > 0 since the resulting distribution can be normalised
only in this case. Therefore, z remains of order one as k → 0 and is given by a Gamma
distribution. We can thus easily compute

lim
k→0
〈sign(z − k)〉 = 1 , (8.36)

from which we deduce the Witten index

∆(∞) = 1
2 , for µ > 0 . (8.37)

Let us now investigate to case µ < 0. We cannot simply take the limit k → 0 in the
distribution (8.34), as the resulting limit is not normalisable, due to the divergence at
the origin. Let us instead consider the rescaled variable y = z/k2. The distribution of
y thus reads

P (y) ∝ yµ−1 e−
1

2g (k2y+1/y) −→
k→0

yµ−1 e−1/(2gy) , (8.38)

which can be normalised for µ < 0. This shows that, in this case, the Riccati variable
z condensates to zero as O(k2) for k → 0, and reaches an inverse Gamma distribution.
Therefore, we can again evaluate the Witten index (8.33):

∆(∞) = 1
2 lim
k→0

〈
sign(k2y − k)

〉
= −1

2 , for µ < 0 . (8.39)

Additionally, we can also investigate the case µ = 0. The good scaling variable is
now u = z/k, which has the distribution

P (u) ∝ 1
u

e−
k

2g (u+1/u) . (8.40)

Using the symmetry u ↔ 1/u, which is simply the consequence of the supersymme-
try (6.35). This yields

∆(∞) = 1
2 lim
k→0
〈sign(ku− k)〉 = 0 , for µ = 0 , (8.41)

where the averaging is performed with respect to (8.40). To summarise, the Witten
index is controlled by the mass over disorder ratio µ = 〈M〉 /g, as:

∆(∞) =



1
2 for µ > 0 ,

0 for µ = 0 ,

−1
2 for µ < 0 .

(8.42)
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Figure 8.2: Condensation transition of
the eigenvalues as k → 0. If the mass
over disorder ratio µ is in the inter-
val (8.50), n eigenvalues “condensate”
towards the origin as O(k2), while the
remaining N − n remain of order 1.

This result is very similar to the one obtained in Section 8.1 in the case of a constant
mass, Eq. (8.19). There is however an important difference between the two situations:
for the constant mass the spectrum is gapped and the zero modes are midgap states.
However here there is no gap in the spectrum due to the disorder. It is remarkable that
these zero modes still exist in the case of gapless spectrum.

We have given an interpretation of the topological phase transition, driven by the
mass over disorder ratio µ, in terms of the distribution of the Riccati variable z. We
will now extend this picture to the multichannel case.

8.2.2 Condensation scenario in the isotropic case
We now go back to the multichannel situation N > 1 and consider first the isotropic case
G = g1N for simplicity. The joint distribution of eigenvalues (6.62) for 〈M〉 = −µg1N
reads:

f−({zn}) ∝
∏
i<j

|zi − zj|β
N∏
i=1

z
µ−1−βN−1

2
i e−

1
2g (zi+k2/zi) . (8.43)

For µ > βN−1
2 , one can directly take the limit k → 0:

f−({zn}) −→
k→0
LN,µ−βN−1

2
(z1, . . . , zN) , (8.44)

where

LN,θ(z1, . . . , zN) ∝
∏
i<j

|zi − zj|β
N∏
i=1

zθ−1
i e−zi/2g , zi > 0 , (8.45)

is the distribution of eigenvalues in the Laguerre ensemble of RMT. It is normalisable
for θ > 0. Therefore, all the eigenvalues of the Riccati matrix are of order O(1) as
k → 0, thus:

∆(∞) = 1
2 lim
k→0

N∑
n=1
〈zn − k〉 = N

2 , for µ > β
N − 1

2 . (8.46)

We now investigate the situation µ < βN−1
2 . In this case, the distribution obtained

by taking the limit k → 0 of (8.43) is not normalisable. Our aim is thus to find
the distribution of the eigenvalues {zn} in this limit. Inspired from the discussion
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of Section 8.2.1 in the one channel case, we rescale n eigenvalues as zi = k2yi, for
i ∈ {1, . . . , n}. In the limit k → 0, the Vandermonde determinant becomes:

∏
i<j

|zi − zj|β =
∏

16i<j6n
k2 |yi − yj|β ×

∏
n<i<j6N

|zi − zj|β ×
n∏
i=1

N∏
j=n+1

∣∣∣k2yi − zj
∣∣∣

' kn(n−1) ×
∏

16i<j6n
|yi − yj|β ×

∏
n<i<j6N

|zi − zj|β ×
N∏

j=n+1
zβnj . (8.47)

Therefore, as k → 0, the joint distribution of eigenvalues (8.43) factorises into two parts:

f−({zn}) ∝
k→0

1
k2n In,−µ+βN−2n+1

2

(
z1

k2 , . . . ,
zn
k2

)
× LN−n,µ−βN−2n−1

2
(zn+1, . . . , zN) , (8.48)

where LM,θ is the Laguerre distribution (8.45), and IM,θ is the “inverse Laguerre”

IM,θ(λ1, . . . , λM) ∝
∏
i<j

|λi − λj|β
M∏
i=1

λ
−θ−1−β(M−1)
i e−1/2λi , λi > 0 , (8.49)

which is also normalisable for θ > 0. This terminology means that {λi} are the inverse
of eigenvalues distributed according to the Laguerre distribution LM,θ. Combining the
conditions for the normalisability of both distributions LN,θ and IN,θ appearing in (8.48)
yields the condition

β
N − 1

2 − βn < µ < β
N − 1

2 − β(n− 1) . (8.50)

In this interval, n eigenvalues of the Riccati matrix condensate towards the origin as
O(k2), while the remaining N − n stay of order O(1) as k → 0. This mechanism is
illustrated in Fig. 8.2. Henceforth, the Witten index (8.33) takes the value

∆(∞) = 1
2 lim
k→0

 n∑
p=1
〈sign(zp − k)〉︸ ︷︷ ︸

→−1

+
N∑

p=n+1
〈sign(zp − k)〉︸ ︷︷ ︸

→+1

 = N − 2n
2 . (8.51)

Note that for µ < −βN−1
2 , all the eigenvalues condensate into the inverse Laguerre

distribution, thus

∆(∞) = −N2 , for µ < −βN − 1
2 . (8.52)

There only remains to study the transition points. Let us consider µ = β(N − 2n+
1)/2, for a certain n ∈ {1, . . . , N}. From our discussion in the case N = 1, we already
know that we should single out one eigenvalue, which will scale as O(k) for k → 0. We
can thus guess that the joint distribution of eigenvalues now factorises into three parts:

f−({zn}) ∝
k→0

1
k2(n−1) In−1,β

(
z1

k2 , . . . ,
zn−1

k2

)
× 1
zn

e− k2 (zn/k+k/zn)

× LN−n,β(zn+1, . . . , zN) . (8.53)
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Figure 8.3: Witten index ∆(∞)
(half the number of zero modes),
as a function of the mass over dis-
order ratio µ = 〈M〉G−1. This
index goes from the value N/2
for µ > βN−1

2 to −N/2 for µ <
βN−1

2 by steps of 1 through a se-
ries of N topological phase tran-
sitions. Exactly at each tran-
sition, it takes an intermediate
value (represented by the dots).
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The first n − 1 eigenvalues give a contribution −1/2 to the Witten index (8.33), the
N − n last give a contribution +1/2, while the nth averages to zero due to the super-
symmetry (6.35). This gives that, at the transition,

∆(∞) = N − 2n+ 1
2 , for µ = β

N − 2n+ 1
2 , n ∈ {1, . . . , N} . (8.54)

The value of the topological index ∆(∞) is shown as function of µ for different
number of channels in Fig. 8.3.

8.2.3 Non-isotropic case
We have studied in details the isotropic case in the previous section. We now move to
the non-isotropic case G = Diag(g1, . . . , gN). The distribution of the Riccati matrix is
given by (6.59). Let us introduce the eigenvalues and eigenvectors of Z as

Z = U †ZU , Z = Diag(z1, . . . , zN) . (8.55)

The Jacobian of this change of variable is given by (A.11). The joint distribution of
eigenvalues and eigenvectors thus reads, for 〈M〉 = −µG:

C−1
N,β

∏
i<j

|zi − zj|β
N∏
i=1

z
µ−1−βN−1

2
i exp

{
−1

2[UGU †]ii
(
zi + k2

zi

)}
. (8.56)

The marginal distribution of the eigenvalues is then obtained by integration over the
eigenvectors:

P−({zi}) = C−1
N,β

∫
dµ(U)

∏
i<j

|zi − zj|β
N∏
i=1

z
µ−1−βN−1

2
i exp

{
−1

2[UGU †]ii
(
zi + k2

zi

)}
.

(8.57)
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This form is more complicated that the one obtained in the isotropic case due to the
additional integral over the eigenvectors, but it can be analysed similarly. For µ > βN−1

2 ,
we can straightforwardly take the limit k → 0, as the resulting distribution can be
normalised. If µ < βN−1

2 , we proceed as in Section 8.2.2 and rescale several eigenvalues
by k2. The additional integral over the compact group makes no difference in the
discussion of the normalisability of the distribution. We can thus reproduce the exact
same argument as before, and obtain the same value of the topological index. This shows
that the Witten index ∆(∞) does not depend on the choice of the matrix G,
and thus that the topological phase transitions are robust against the addition of some
anisotropy among the channels.

8.3 Summary and phase diagram
We have shown that the multichannel disordered wire undergoes a sequence ofN distinct
topological phase transitions, driven by the mass over disorder ratio µ = 〈M〉G−1. These
transitions occur for

µ = β
N − 2n+ 1

2 , n ∈ {1, . . . , N} . (8.58)

At each transition point the topological index ∆(∞) changes by one unit. This corre-
sponds to the appearance or disappearance of a zero mode, located at the edge x = 0.

As we have seen in Chapter 7, the exponent α controlling the low energy behaviour
of the density of states,

N (ε) ∼ εα , (8.59)

vanishes when µ is equal to one of the values given by Eq. (8.58). Additionally, one of
the Lyapunov exponents (controlling the localisation properties) vanish at this point.
We can summarise these phase transitions as

Topological phase transition ⇔



µ = β
N − 2n+ 1

2 , n ∈ {1, . . . , N} ,

α = 0 ⇒ N (ε) ∼ 1
ln2 ε

,

∃p s.t. γp = 0 .

(8.60)

These transitions are represented on the phase diagram in Fig. 8.4.
After submitting our paper (Article 5), Christopher Mudry pointed out his recent

article, Ref. [239], in which a similar phase diagram is presented. In this article, the
phase diagram is obtained from global considerations (such as in the DMPK approach),
while here it is derived from a precise analysis of a microscopic model.
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Figure 8.4: Phase diagram of the
multichannel model, in the plane
disorder strength (encoded in G)
versus average mass 〈M〉 = µG.
The upper half plane is separated
in N + 1 sectors characterised by
the value of the topological index
2∆(∞). The transition lines are
given by Eq. (8.58).
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Topological phase transitions and superuniversality in the 1D
multichannel Dirac equation with random mass

A. Grabsch and C. Texier, Topological phase transitions in the 1D multichannel Dirac
equation with random mass and a random matrix model, Europhys. Lett. 116, 17004
(2016).

+ http://dx.doi.org/10.1209/0295-5075/116/17004
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Conclusion

Although random matrix theory has first been introduced almost a century ago, it is
still a very active field of research as new applications and new types of questions keep
arising. This thesis has provided several illustrations of this statement, as we have
introduced and studied several new problems, in different physical contexts.

• In Chapter 3, we have reported the study of the joint distribution of two spectral
linear statistics, motivated by the analysis of the impedance of a quantum RC-
circuit.

There has been a lot of works focusing on the stationary (DC) properties of quan-
tum transport in coherent mesoscopic systems using a random matrix approach
(see the review [30]). In this case, many physical quantities can be extracted
from the transmission probabilities {Tn}, which can be shown to correspond to
the eigenvalues of Jacobi random matrices (see Section 1.4). For example, the
conductance is given by the Landauer formula G = 2e2

h

∑
n Tn, where e is the elec-

tronic charge. It takes the form of a linear statistics, which has been extensively
studied, for example using the Coulomb gas method [301,302].

Here, we have studied the dynamical (AC) response of a quantum RC-circuit,
built from a chaotic quantum dot, using a theory developed by Büttiker, Prêtre
and Thomas [73–75]. In their formalism, the impedance of the circuit is expressed
in terms of two linear statistics involving the eigenvalues of the celebrated Wigner-
Smith matrix. For a chaotic cavity, the inverse of this matrix was shown to belong
to the Laguerre ensemble of random matrices [57,58].

In this context, we have analysed the joint distribution of these two linear statistics
and obtained a two dimensional phase diagram for the underlying Coulomb gas,
which has a rich structure. This was the first study of a joint distribution of two
linear statistics.

• In Chapter 4, we have introduced a new type of observable, which we have called
truncated linear statistics. These are linear statistics in which only a fixed number
K of the eigenvalues contribute. We have considered two situations: either only
the largest (or equivalently, the smallest) eigenvalues contribute, or any subset of
eigenvalues can contribute.
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We have identified different universal mechanisms for the Coulomb gas in the
two situations. The analysis of the first case has required that the function that
appears in the linear statistics is monotonous.

• To the best of our knowledge, all previous studies of the statistical properties
of linear statistics of the eigenvalues of random matrices in the limit N → ∞
corresponded to the case where the first moments are finite. In Section 2.2.6 we
have considered a case in which all the moments are infinite, motivated by the
study of the Wigner time delay in disordered wires. This situation induces some
technical difficulties and required us to go beyond the dominant energy term given
by the Coulomb gas method and conjecture the form of the 1/N corrections.

• We have also reconsidered the well studied problem of Anderson localisation in
disordered wires from a different point of view in Part II.
Many works are based on the DMPK approach [106–109,227] (for reviews see [30,
229]), which consists in studying the evolution of the eigenvalues of the transfer
matrix upon increasing the length of the wire. Focusing on the eigenvalues, this
approach relies on strong isotropy assumptions which restrict it to the quasi-1D
situation (when the system is ergodic in the transverse direction).
In this thesis, we have studied a matrix stochastic process instead of focusing on
the eigenvalues. We have established a connection between a specific model of
disordered wires (the multichannel Dirac equation with a random mass) and a
random matrix model (Chapter 6). This connection has allowed to go beyond the
usual isotropy assumption considered for such models and study the effect of the
introduction of some anisotropy between the channels. At the level of the matrix
model, the anisotropy breaks the rotational invariance of the distribution of the
random matrix. Using this connection we have studied the density of states and
the localisation properties of this model (Chapter 7). Finally, we have showed that
this model exhibits a series of topological phase transitions, driven by the disorder,
which are robust against the introduction of some anisotropy (Chapter 8).

As random matrix theory is still a very active field of research, both in mathematics
and in theoretical physics, there remain many open questions. We can give a few
examples in connection with the works presented in this thesis:

• The Coulomb gas method which has been extensively used in part I gives rise to
transitions of different orders. Many of these transitions have been summarised in
Table 2.1 (page 43).
A particular attention has been put on the case of third order phase transitions
(see the review [212]) in connection with the distribution of the largest eigen-
value of several random matrix ensembles. When the boundary of the spectrum
is described by a soft edge, it is well-known that the typical fluctuations of the
largest eigenvalue are characterised by a universal function (expressed in terms of
a Painlevé transcendent): the Tracy-Widom distribution [294]. The atypical fluc-
tuations are described by a nonuniversal large deviation function which smoothly
matches with the tails of the Tracy-Widom distribution [101,102,300]. This match-
ing by the smooth Tracy-Widom distribution corresponds in the limit N → ∞
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to the third order phase transition, which is generic for a soft edge/hard edge
transition [212].
It is natural to question whether other universal scenarios, like the splitting of
a charge for the second order transition (see Chapter 3 and also Refs. [250, 251,
286]), would be described by other universal functions similar to the Tracy-Widom
distribution.

• In the context of the truncated linear statistics restricted to the K largest eigen-
values, we have obtained a universal scenario in the case where the function is
monotonous. It is natural to question whether the universality remains for non
monotonous functions.
Additionally, we have only considered the situation in which a fixed fraction κ =
K/N ∈]0, 1[ of the eigenvalues contribute to the truncated linear statistics, while
N →∞. We have stressed that both limits κ→ 0 and κ→ 1 are singular.
At first sight, the fact that the limit κ → 1 is singular might seem surprising as
one would expect to recover the full linear statistics (K = N). However, we have
shown that for 0 < κ < 1, the Coulomb gas undergoes an infinite order phase
transition, which is not generic for κ = 1 (see Table 2.1, page 43).
In addition, taking the limit κ→ 0, we do not recover the result for K = 1 (largest
eigenvalue), as in this latter case the Coulomb gas exhibits a third order phase
transition [101, 102]. As discussed above, a more detailed analysis of the typical
fluctuations of the largest eigenvalue shows that they are described by a universal
function: the Tracy-Widom distribution, whose tails smoothly match with the
large deviation function. Similarly, we expect that there exists a smooth function
that interpolates between the case K = O(N) and K = O(1). The determination
of this function is still an open problem.

• In the context of disordered wires discussed in Part II, the analytical study of
the Lyapunov exponents, at any energy, remains a difficult question. It would be
interesting to determine if the QR-formalism introduced in Section 7.2.2 could be
successfully applied to this task.
Finally, although we have introduced some anisotropy in the noise which couples
the different channels, we have not considered the most general kind of disorder.
The study of a more general anisotropic model, which would permit to reach the
two dimensional limit, remains extremely challenging.
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Appendix A

Diverse tools from random matrix
theory

In this Appendix, I regroup a few useful tools which are often needed in random matrix
theory.

A.1 Measures and Jacobians
To define probability distributions and integrals over matrix spaces, we first need to
introduce a measure on those spaces. For a matrix M of size N × N , with no partic-
ular symmetry (all the entries are independent), the uniform measure is given by the
Lebesgue measure

dM =
N∏

i,j=1
dMij . (A.1)

In many cases, the matrices we consider have some particular symmetries. For example,
for real symmetric matrices (Dyson index β = 1), the elements on the lower triangular
part are equal to the one on the top triangular part and should contribute only once.
Therefore, the Lebesgue measure is

dM =
∏
i6j

dMij . (A.2)

For complex Hermitian matrices (β = 2), one should split the matrix elements into
their real and imaginary parts to consider only the independent real components. The
diagonal elements of such matrices are real, and symmetric off-diagonal elements are
complex-conjugate. The Lebesgue measure is thus

dM =
∏
i

dMii

∏
i<j

d(ReMij) d(ImMij) . (A.3)

In the quaternionic case β = 4, we decompose the off-diagonal matrix elements as
Mij = M

(0)
ij + iM (1)

ij + jM (2)
ij + kM (3)

ij , where i, j and k are the three imaginary units are
the M (n)

ij ’s are real. The Lesbesgue measure is

dM =
∏
i

dMii

∏
i<j

dM (0)
ij dM (1)

ij dM (2)
ij dM (3)

ij . (A.4)
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For the corresponding compact groups it is convenient to introduce the Haar measure
dµ, which is left and right-invariant:

dµ(V U) = dµ(UV ) = dµ(U) , ∀V ∈


O(N) for β = 1 ,
U(N) for β = 2 ,
Sp(N) for β = 4 .

(A.5)

Having defined the Lebesgue and Haar measures, we list a few Jacobians associated
to some frequently encountered transforms. The proofs and a more exhaustive list can
be found in [222]. Let X be a N×N real symmetric (β = 1), complex Hermitian (β = 2)
or quaternionic self-dual (β = 4) matrix.

Product: For any N ×N matrix A, we have:

Y = AXA† ⇒ dY = (detA2)1+βN−1
2 dX . (A.6)

The multiplication on the left by A and on the right by A† ensures that the resulting
matrix Y is still self-adjoint.

Inverse: The Jacobian for the inverse is

Y = X−1 ⇒ dY = (detX−2)1+βN−1
2 dX . (A.7)

Eigendecomposition: The main features of the statistics of the eigenvalues of random
matrices come from the Jacobian of the eigendecomposition

X = U †ΛU , Λ = Diag(λ1, . . . , λN) , U ∈


O(N) for β = 1 ,
U(N) for β = 2 ,
Sp(N) for β = 4 .

(A.8)

To ensure the uniqueness of this decomposition, we need to impose some conditions on
U . For example, we can impose that its diagonal elements are real and positive. Then,
the Jacobian is given by

dX =
∏
i<j

|λi − λj|β dλ1 . . . dλN dµ(U) , (A.9)

where dµ is the Haar measure on the corresponding group, which verifies1

∫
dµ(U) (def)= vN,β =

πβ
N(N−1)

2 Γ
(
β
2

)N
ΓN,β

(
βN
2

) , (A.10)

which is expressed in terms of the multivariate Gamma function, see Appendix B.1.
Note that the Jacobian (A.9) involves the Vandermonde determinant

∆(λ) = det[λj−1
i ]16i,j6N =

∏
i<j

(λi − λj) . (A.11)

1vN,β is not exactly the volume of the compact group, due to the conditions we imposed to ensure the
uniqueness of the eigendecomposition. Relation (A.10) can be found for β = 1 and β = 2 in Ref. [222],
and for general β in Ref. [135].
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Cholesky: Sometimes, it is useful to perform a Cholesky decomposition2

X = LL† , (A.12)

where L is a lower triangular matrix, with positive diagonal elements. The Jacobian is

dX = 2N
N∏
i=1

(Lii)β(n−j)+1 dL . (A.13)

We also have the Jacobian

X = L†L ⇒ dX = 2N
N∏
i=1

(Lii)β(j−1)+1 dL . (A.14)

QR-decomposition: Consider a M × N matrix X with independent elements, and
introduce its QR-decomposition

X = QR , (A.15)

where R is a N ×N upper triangular with positive diagonal elements, and Q is M ×N
and pseudo-unitary3: Q†Q = 1N . The Jacobian of this change of variables is

dX =
(
N∏
i=1

(Rjj)β(M−j+1)−1
)

dR dµ(Q) , (A.16)

where the measure dµ verifies
∫

dµ(Q) = 2NπβMN/2

ΓN,β
(
βM

2

) , (A.17)

expressed in terms of the multivariate Gamma function (B.5). If we introduce the matrix
Y = X†X = R†R, we deduce from (A.16) and (A.13):

dX = 2−N(detY )
β
2 (M−N+1)−1 dY dµ(Q) . (A.18)

This Jacobian proves the expression (1.35) for the expression of the Wishart distribution.

A.2 Derivatives
We are often led to consider functions of matrix argument f(M). Such functions can
then be differentiated with respect to any independent real parameter of the matrix M .
If this matrix is real symmetric (β = 1), it can be parametrised by its upper triangular
elements. It is thus convenient to define the differential operator [244](

∂f

∂M

)
ij

= 1 + δij
2

∂f

∂Mij

, β = 1 . (A.19)

2See for example Section B.1.
3Or pseudo-orthogonal or pseudo-symplectic.
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The prefactor gives weight 1 to the diagonal elements, and 1/2 to the off-diagonal ele-
ments to compensate the fact that their appear twice. In the case β = 2, the complex-
conjugate off-diagonal elements can be treated as independent, and we define this oper-
ator simply as (

∂f

∂M

)
ij

= ∂f

∂Mij

β = 2 . (A.20)

With these two operators we can write compact expressions for the derivatives of simple
functions. I give here a few examples which have been useful in this thesis. For a more
exhaustive list see Ref. [262].

Traces:
∂

∂X
tr(AX) = 1

2
(
A+ AT

)
, (A.21)

∂

∂X
tr(AX−1) = −1

2X
−1
(
A+ AT

)
X−1 . (A.22)

Determinant:
∂

∂X
det(X) = X−1 det(X) . (A.23)

Inverse: For β = 1,

∂(X−1)ab
∂Xij

= − 1
1 + δij

(
(X−1)ai(X−1)jb + (X−1)aj(X−1)ib

)
, (A.24)

and for β = 2:
∂(X−1)ab
∂Xij

= −(X−1)ai(X−1)jb . (A.25)

All these relations are needed to check that (6.59) is solution of the Fokker-Planck
equation (6.37).

A.3 Integrals over the eigenvalues
In RMT, one is often led to consider integrals of the form∫

I
dλ1 . . .

∫
I

dλN
∏
i<j

|λi − λj|β
N∏
n=1

w(λn) , (A.26)

where w is a given function and I an interval of R. This integral can be expressed in
terms of determinants or pfaffians, depending on the value of β [1, 135,224].

A.3.1 Unitary case (β = 2)
As usual in RMT, the unitary case β = 2 is the simplest: the integral (A.26) can
be expressed as a determinant thanks to Andréif’s formula [19] (see also the historical
review [136]):∫
I

dλ1 . . .
∫
I

dλN
∏
i<j

|λi − λj|2
N∏
n=1

w(λn) = N ! det
[∫
I

dλ λi+j−2 w(λ)
]

16i,j6N
. (A.27)
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A.3.2 Orthogonal case (β = 1)
In the orthogonal case, De Bruijn [96] proved that Eq. (A.26) can be rewritten as the
pfaffian of a skew-symmetric matrix A:

∫
I

dλ1 . . .
∫
I

dλN
∏
i<j

|λi − λj|2
N∏
n=1

w(λn) = N ! pf [A] . (A.28)

The expression of the matrix A depends on the parity of N .

• If N is even, the matrix A is of size N ×N , with elements are given by

Aij =
∫
I

dx
∫
I

dy sign(x− y) xi−1yj−1 w(x)w(y) . (A.29)

• If N is odd, the matrix A has size (N + 1) × (N + 1). For 1 6 i, j 6 N , the matrix
elements Aij are given by Eq. (A.29). The last row and columns read:

Ai,N+1 = −AN+1,i =
∫
I

dx xi−1 w(x) . (A.30)

A.3.3 Symplectic case (β = 4)
In the symplectic case, the integral (A.26) can also be expressed as a pfaffian [1, Chap-
ter 5] ∫

I
dλ1 . . .

∫
I

dλN
∏
i<j

|λi − λj|4
N∏
n=1

w(λn) = N ! pf[Aij] , (A.31)

where the 2N × 2N skew-symmetric matrix A is given by

Aij = (j − i)
∫
I

dx xi+j−3 w(x) . (A.32)

This formula comes from the relation [96]:∫
I

dx1 · · · dxN det[(φi(xj), ψi(xj))]16i62N
16j6N

= N ! pf
[∫
I
(φi(x)ψj(x)− φj(x)ψi(x))dx

]
16i,j62N

, (A.33)

where we denoted

det[(φi(xj), ψi(xj))]16i62N
16j6N

=

∣∣∣∣∣∣∣∣
φ1(x1) ψ1(x1) · · · φ1(xN) ψ1(xN)

... ... ... ...
φ2N(x1) ψ2N(x1) · · · φ2N(xN) ψ2N(xN)

∣∣∣∣∣∣∣∣ . (A.34)

With the choice
φi(x) = w(x) xi−1 , ψj(x) = (i− 1)xi−2 , (A.35)

relation (A.34) reduces to (A.33) by using [1]

det[(xi−1
j , (i− 1)xi−2

j ))]16i62N
16j6N

=
∏
i<j

(xi − xj)4 . (A.36)
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A.4 Integrals over the unitary group
Sometimes, we also need to evaluate some integrals over the compact groups. The
simplest integral, with only the Haar measure, are given by Eq. (A.10). I list here more
complicated integrals, only in the unitary case β = 2.

A.4.1 Products of matrix elements
Integrals involving product of matrix elements of unitary matrices over U(N) are given
by [83]:
∫
U(N)

Ui1j1 · · ·Uinjn U?
k1l1 · · ·U

?
knln dµ(U) =∑

σ∈Sn

∑
τ∈Sn

W (N, στ−1) δi1,kσ(i) · · · δin,kσ(n) δj1,lσ(i) · · · δjn,lσ(n) , (A.37)

where Sn is the group of permutations of n integers and W (N, σ) is the Weingarten
function. Often, the permutations are denoted by their cyclic shape: for example if
n = 2, the two possible permutations 12 for the identity (two cycles of length 1) and 21

for the transposition (one cycle of length 2). In this case, Eq. (A.37) reduces to∫
U(N)

Ui1j1Ui2j2U
∗
k1l1U

∗
k2l2dµ(U) = W (N, 12) (δi1k1δi2k2δj1l1δj2l2 + δi1k2δi2k1δj1l2δj2l1)

+W (N, 2) (δi1k1δi2k2δj1l2δj2l1 + δi1k2δi2k1δj1l1δj2l2) , (A.38)

where the Weingarten functions W (N, σ) are given by:

W (N, 12) = 1
N2 − 1 , W (N, 2) = − 1

N(N2 − 1) . (A.39)

A.4.2 The Harish-Chandra–Itzykson–Zuber integral
Consider two Hermitian matrices A and B of size N × N with eigenvalues {an} and
{bn} respectively. The Harish-Chandra–Itzykson–Zuber integral is [174,179]:

∫
U(N)

exp
[
t tr(AUBU †)

]
dµ(U) =

(
N−1∏
n=1

n!
)
t−n(n−1)/2 det[etaibj ]16i,jleqN

∆(a)∆(b) , (A.40)

where ∆(a) and ∆(b) are the Vandermonde determinants of the eigenvalues of A and
B, see Eq. (A.11).

A.5 Tricomi’s theorem
In the Coulomb gas method described in Chapter 2, one often encounters integral equa-
tions of the from

−
∫ b

a

f(y)
x− y

dy = g(x) , ∀x ∈ [a, b] , (A.41)

– 190 –



A.6. Saddle point estimate for integrals over matrix spaces

where −
∫
denotes the principal value integral. This relation can be inverted thanks to a

formula due to Tricomi [296]:

f(x) = 1
π
√

(x− a)(b− x)

A+−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x

 , (A.42)

where the constant A is a normalisation:
∫ b
a f = A.

A.6 Saddle point estimate for integrals over matrix
spaces

Consider the following integral

Iβ(t) =
∫
f(X) etφ(X) dX , (A.43)

where f and φ are scalar function, and the integration runs over the space of real
symmetric (β = 1), complex Hermitian (β = 2) or quaternionic self-dual matrices
(β = 4). Our aim is to use a saddle point method to give an asymptotic behaviour for
t→∞.

For integrals on Rn the result is well-known, and reads:
∫
f(~x) etφ(~x) dn~x '

t→∞

(2π)n/2√
t |detH|

f(~x0) etφ(~x0)(1 +O(t−1)) , (A.44)

where ~x0 is the saddle point, given by ∂φ
∂~x

= 0 and H is the Hessian matrix

Hij = ∂2φ

∂xi∂xj

∣∣∣∣∣
~x0

. (A.45)

The method to estimate integrals of the form (A.43) is the same as in the case of vectors.
One simply has to map the independent real elements of the matrix onto a big vector.
For example, with a mapping of the type

Xij −→ yn , with n = i+N(j − 1) , (A.46)

if X is a N×N matrix. Here, we considered all the matrix elements, but we can restrict
their number depending on the symmetry class.

The saddle points X0 (there might be several) are given by

∂φ

∂X

∣∣∣∣∣
X0

= 0 , (A.47)

where the matrix derivatives are defined in Section A.2. The Hessian matrix is then

H(i,j),(k,l) = ∂φ

∂Xij∂Xlk

∣∣∣∣∣
X0

. (A.48)
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Note that this is a formal expression: the derivatives must be taken with respect to
independent real components (see example in Section B.2). Therefore, we have:

Iβ(t) '
t→∞

(2π)N2 (1+βN−1
2 )

√
t detH

f(X0) etφ(X0)(1 +O(t−1)) , (A.49)

where the determinant of H runs over all independent real elements of X. We illustrate
this method in Appendix B.2.
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Special functions of matrix argument

In this Appendix, I introduce a few special functions defined by integrals over matrix
spaces.

B.1 Multivariate Gamma and Beta functions
We first define generalisations of the Gamma and Beta functions, which are not functions
of matrix argument, but which are useful. We define the multivariate Gamma function
as [222,244]

ΓN,β(a) =
∫

(detX)a−1−βN−1
2 e− trX dX (B.1)

where the integral is performed on N ×N matrices X = X†, with positive eigenvalues.
We can obtain an explicit form for this integral by using the Cholesky decomposition
X = LL†, where L is lower triangular, with positive diagonal elements. Its off diagonal
elements are either real (β = 1), complex (β = 2) or quaternionic (β = 4). We have

detX =
N∏
i=1

(Lii)2 (B.2)

and

trX = tr(LL†) = (L2
11) + (|L12|2 + L2

22) + · · ·+ (|Ln1|2 + · · ·+ L2
nn) . (B.3)

Using the Jacobian (A.13), we can express the Gamma function as

ΓN,β(a) =
(
N∏
i=1

2
∫ ∞

0
(Lii)a−β

j−1
2 −

1
2 e−L2

ii dLii
)∏

i>j

∫
e−|Lij |

2
dLij

 . (B.4)

The integrals over the off-diagonal terms are Gaussian, so they each yield a factor πβ/2.
The diagonal terms give usual Gamma functions, thus:

ΓN,β(a) = πβN(N−1)/4
N∏
j=1

Γ
(
a− β j − 1

2

)
(B.5)
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This function appears, for instance, in the normalisation constant of the Laguerre en-
semble, Eq. (1.36).

The multivariate Beta function can be defined similarly, by the integral [222]

BN,β(a, b) =
∫ 1N

0
(detX)a−1−βN−1

2 det(1N −X)b−1−βN−1
2 dX (B.6)

where the notation indicates that the integration is performed on self-adjoint matrices
X† = X with eigenvalues in [0, 1]. Equivalently, it can be defined as

BN,β(a, b) =
∫

(detX)a−1−βN−1
2 det(1N +X)−a−b dX , (B.7)

where X† = X > 0, to get rid of the upper bound. This function can be expressed in
terms of the Gamma function (B.1) as [222]:

BN,β(a, b) = ΓN,β(a)ΓN,β(b)
ΓN,β(a+ b) (B.8)

This expression reduces to the well-known relation for the Beta function in the case N =
1 [166]. Performing the eigendecomposition (A.8), the Beta function (B.6) reduces to
the well-known Selberg integral [224,273] (up to a constant arising from the integration
over the eigenvectors, given by Eq. (A.10)).

B.2 Bessel function
We now introduce the generalisation of the modified Bessel function Kν to the matrix
argument case, which is useful in Chapter 7. This function was first introduced by
Herz [176], in the case β = 1. Here, I use Bernadac’s definition of the modified Bessel
function of matrix argument [39], which I extend to β 6= 1. For two self-adjoint matrices
A and B with positive eigenvalues, we define

KN,β(λ|A,B) = (detAB−1)λ/2

2N(1+βN−1
2 )

∫
(detX)λ−1−βN−1

2 e− 1
2 tr(AX+BX−1)dX (B.9)

where the integral runs over self-adjoint matrices X with positive eigenvalues. With this
definition, this function seems to depend on two matrices A and B. However, making
the change of variables X = A1/2Y A1/2, we obtain

KN,β(λ|A,B) = KN,β(λ|1N , A1/2BA1/2) . (B.10)

Therefore, this Bessel function depends only on one matrix, which is A1/2BA1/2. More
generally, for any self-adjoint matrix M with positive eigenvalues, one has the relation

KN,β(λ|A,B) = KN,β(λ|M1/2AM1/2,M−1/2BM−1/2) . (B.11)

For N = 1, this function reduces to the usual modified Bessel function (7.29):

KN=1,β(λ|a, b) = Kλ(
√
ab) . (B.12)

– 194 –



B.2. Bessel function

The integral (B.9) is in general very difficult to evaluate. However, its asymptotic
form for large argument can be obtained by a saddle point estimate, as described in
Section A.6. This procedure was carried out for β = 1 in Ref. [69]. We here present
the derivation for all β of the asymptotic of K(λ|zA, zB), with z → ∞. Introduce
the matrix M such that M2 = A1/2BA1/2. Let us make the change of variable X =
A−1/2M1/2YM1/2A−1/2 in the integral. The Jacobian is given by (A.6), thus

KN,β(λ|zA, zB) = 1
2N(1+βN−1

2 )

∫
(detY )µ−1−βN−1

2 e− z2 tr[M(Y+Y −1)] dY . (B.13)

We can assume without loss of generality that M is diagonal. Denote

φ(X) = tr[M(X +X−1)] , f(X) = (detX)λ−1−βN−1
2 . (B.14)

Equation (B.13) is thus of the form (A.43) and we can apply the procedure described
in Section A.6. Using the properties of the matrix derivatives given in Section A.2, the
saddle point is given by

∂φ

∂X
= 0 ⇒ M −X−1MX−1 = 0 . (B.15)

We can solve this equation by diagonalizing X = U †DU . This gives the equation

DUMU † = UMU †D−1 , (B.16)

which we can rewrite in terms of components:

di(UMU †)ij = (UMU †)ij
1
dj
∀i, j . (B.17)

This equation imposes di = 1, ∀i, therefore the saddle point is

X0 = 1N . (B.18)

Let us now compute the Hessian. For β = 2, we can consider each matrix element
to be independent, thus:

∂φ

∂Xij∂Xkl

= ∂

∂Xij

(M −X−1MX−1)lk

= (X−1)li(X−1MX−1)jk + (X−1MX−1)li(X−1)jk , (B.19)

where we used relation (A.25). Therefore, the Hessian is

H̃(i,j),(k,l) = δliMjk +Mliδjk . (B.20)

However, one has to be careful with the derivatives: the independent real elements are
ReXij and ImXij for i < j, along with the diagonal elements Xii. Therefore, we have
for i < j:

∂

∂ ReXij

= ∂

∂Xij

+ ∂

∂Xji

, (B.21)
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∂

∂ ImXij

= 1
i

(
∂

∂Xji

− ∂

∂Xij

)
, (B.22)

and for the second derivatives:
∂2

∂(ReXij)2 = ∂2

∂X2
ij

+ ∂2

∂X2
ji

+ 2 ∂2

∂Xij∂Xji

, (B.23)

∂2

∂(ImXij)2 = − ∂2

∂X2
ij

− ∂2

∂X2
ji

+ 2 ∂2

∂Xij∂Xji

, (B.24)

∂2

∂ ReXij∂ ImXij

= i
(
∂2

∂X2
ij

− ∂2

∂X2
ji

)
. (B.25)

Using that M is diagonal, we obtain the true Hessian:

H(i,j),(k,l) = 2
1 + δij

(δkiMjl +Mkiδjl) . (B.26)

It is non zero for (i, j) = (k, l). So H is “diagonal”, and its determinant is simply

detH =
∏
i,j

H(i,j),(i,j) = 2N2 detM
∏
i<j

(Mii +Mjj)
2

. (B.27)

For β = 1, one has to be more careful. The first derivative is:

∂φ

∂Xij

= 2
1 + δij

(M −X−1MX−1)ij , (B.28)

and the derivative of an inverse is given by Eq. (A.24). Therefore:

∂φ

∂Xij∂Xkl

= 2
1 + δkl

1
1 + δij

(
(X−1)ki(X−1MX−1)jl

+(X−1MX−1)ki(X−1)jl + (i↔ j)
)
. (B.29)

Finally, the Hessian is:

H(i,j),(k,l) = 2
1 + δkl

1
1 + δij

(δkiMjl + δjlMki + δkjMil + δilMkj) . (B.30)

H(i,j),(k,l) is non zero iff (i, j) = (k, l) or (i, j) = (l, k). However, we will restrict ourselves
to independent variables by imposing i 6 j and k 6 l. So, we get:

detH =
(∏

i

H(i,i),(i,i)

)∏
i<j

H(i,j),(i,j)

 =
(∏

i

2Mii

)∏
i<j

2(Mii +Mjj)


= 2N(N+1)/2
(∏

i

Mii

)∏
i<j

(Mii +Mjj)
 . (B.31)

We can summarise the two cases as:

detH = 2N(1+βN−1
2 ) detM

∏
i<j

(Mii +Mjj)
β . (B.32)
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Using Eq. (A.49), we get the asymptotic form
∫

(detY )λ−1−βN−1
2 e− z2 tr[M(Y+Y −1)] dY '

z→∞(2π
z

)N
2 (1+βN−1

2 ) 1√
detM

∏
i<j

(Mii +Mjj)−β/2 e−z trM(1 +O(z−1)) . (B.33)

Hence, finally

KN,β(λ|zA, zB) '
z→∞

(
π

2z

)N
2 (1+βN−1

2 ) ∏
i<j(mi +mj)−β/2∏

i

√
mi

e−z trM(1 +O(z−1)) (B.34)

where {mi} are the eigenvalues of M =
√
A1/2BA1/2. We can check that this coincides

for β = 1 with the result of Butler and Wood [69].
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C.1 Elliptic integrals
The complete elliptic integrals are given by:

E(m) =
∫ 1

0

√
1−mt2
1− t2 dt, (C.1)

K(m) =
∫ 1

0

dt√
(1− t2)(1−mt2)

, (C.2)

Π(n,m) =
∫ 1

0

dt
(1− nt2)

√
(1− t2)(1−mt2)

. (C.3)

In the last integral, the Cauchy principal value should be taken if n > 1 (it corresponds
to the real part of the value given by the function EllipticPi in Mathematica).

We assume that a < b < c < d. The following integrals are be useful in Chapter 4:
∫ d

c

dt√
(t− c)(d− t)(t− b)

= 2√
d− b

K

(
d− c
d− b

)
, (C.4)

∫ d

c

√
t− c

(d− t)(t− b) dt = 2
√
d− bE

(
d− c
d− b

)
− 2 c− b√

d− b
K

(
d− c
d− b

)
, (C.5)

∫ d

c

dt√
(t− c)(d− t)(t− b)

1
t− x

= 2
(d− x)

√
d− b

Π
(
d− c
d− x

,
d− c
d− b

)
, (C.6)

∫ b

a

dt
(x− t)

√
(t− a)(b− t)(c− t)(d− t)

= 2
(x− b)(x− c)

√
(d− b)(c− a)

×
[
(x− b)K

(
(d− c)(b− a)
(d− b)(c− a)

)
+ (b− c)Π

(
(x− c)(b− a)
(x− b)(c− a) ,

(d− c)(b− a)
(d− b)(c− a)

)]
, (C.7)
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∫ d

c

dt
(x− t)

√
(t− a)(b− t)(c− t)(d− t)

= 2
(x− d)(x− a)

√
(d− b)(c− a)

×
[
(x− d)K

(
(d− c)(b− a)
(d− b)(c− a)

)
+ (d− a)Π

(
(x− a)(c− d)
(x− d)(c− a) ,

(d− c)(b− a)
(d− b)(c− a)

)]
, (C.8)

∫ b

a

dt√
(t− a)(b− t)(c− t)(d− t)

=
∫ d

c

dt√
(t− a)(b− t)(c− t)(d− t)

=

2√
(d− b)(c− a)

K

(
(d− c)(b− a)
(d− b)(c− a)

)
. (C.9)

C.2 Principal value integrals
We always consider x ∈ [a, b]. The following integrals are useful when applying the
Coulomb gas method (see Chapters 2 and 3):

−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
= a+ b

2 − x . (C.10)

−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
t = (b− a)2

8 + a+ b

2 x− x2 . (C.11)

−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
t2 = (b− a)2

8
a+ b

2 + (b− a)2

8 x+ a+ b

2 x2 − x3 . (C.12)

−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
t3 = (b− a)2

128 (5a2 + 6ab+ 5b2) + (b− a)2

8
a+ b

2 x

+ (b− a)2

8 x2 + a+ b

2 x3 − x4 . (C.13)

If 0 < a < x < b:

−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
1
t

= −1 +
√
ab

x
. (C.14)

−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
1
t2

= 1√
ab

(
−a+ b

2x + ab

x2

)
. (C.15)

−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
1
t3

= 1
(ab)3/2

(
(ab)2

x3 − ab
a+ b

2x2 −
(a− b)2

8x

)
. (C.16)

For a < x < b and x1 outside [a, b]:

−
∫ b

a

dt
π

√
(t− a)(b− t)

t− x
1

t− x1
= −1 +

√
(a− x1)(b− x1)
|x1 − x|

. (C.17)
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Titre : Théorie des matrices aléatoires en physique statistique : théorie quantique de la diffusion et 

systèmes désordonnés

Mots clés : matrices aléatoires, statistiques linéaires, grandes déviations, systèmes désordonnés, 

transport cohérent

Résumé : La théorie des matrices aléatoires a

des  applications  dans  des  domaines  variés  :

mathématiques,  physique,  finance,  ...  En

physique, le concept de matrices aléatoires a été

utilisé  pour  l'étude  du  transport  électronique

dans des structures mésoscopiques, de systèmes

désordonnés,  de  l'intrication  quantique,  de

modèles d'interfaces 1D fluctuantes en physique

statistique, des atomes froids, ... 

Dans cette thèse, on s'intéresse au transport AC

cohérent  dans  un  point  quantique,  à  des

propriétés  d'interfaces  fluctuantes  1D  sur  un

substrat  et  aux propriétés  topologiques  de fils

quantiques multicanaux.

La  première  partie  commence  par  une

introduction générale a la théorie des matrices

aléatoires  ainsi  qu'a  la  principale  méthode

utilisée dans cette thèse :  le gaz de Coulomb.

Cette technique permet entre autres d'étudier la

distribution d'observables qui prennent la forme

de statistiques linéaires des valeurs propres, qui

représentent  beaucoup  de  quantités  physiques

pertinentes. Cette méthode est ensuite appliquée

à des exemples concrets pour étudier le trans-

port cohérent et les problèmes d'interfaces fluc-

tuantes en physique statistique.

La seconde partie se concentre sur un modèle de

fil désordonné : l'équation de Dirac multicanale

avec masse aléatoire. Nous étendons le puissant

formalisme  utilisé  pour  l'étude  de  systèmes

unidimensionnels  au  cas  quasi-1D,  et

établissons une connexion avec un modèle  de

matrices  aléatoires.  Nous  utilisons  ce  résultat

pour obtenir la densité d'états et les propriétés

de localisation.  Nous montrons également que

ce système présente une série de transitions de

phases topologiques (changement d'un nombre

quantique  de  nature  topologique,  sans

changement  de  symétrie),  contrôlées  par  le

désordre.

Title: Random matrix theory in statistical physics: quantum scattering and disordered systems

Keywords: random matrices, linear statistics, large deviations, disordered systems, coherent transport

Abstract: Random  matrix  theory  has

applications  in  various  fields:  mathematics,

physics, finance, ... In physics, the concept of

random  matrices  has  been  used  to  study  the

electonic  transport  in  mesoscopic  structures,

disordered  systems,  quantum  entanglement,

interface  models  in  statistical  physics,  cold

atoms, ... In this thesis, we study coherent AC

transport  in  a  quantum  dot,  properties  of

fluctuating  1D  interfaces  on  a  substrate  and

topological properties of multichannel quantum

wires.

The  first  part  gives  a  general  introduction  to

random matrices and to the main method used

in this thesis: the Coulomb gas. This technique

allows to study the distribution of observables

which take the form of linear statistics of the

eigenvalues. These linear statistics represent

many  relevant  physical  observables,  in  dif-

ferent contexts. This method is then applied to

study concrete examples in coherent transport

and fluctuating interfaces in statistical physics.

The  second  part  focuses  on  a  model  of

disordered  wires:  the  multichannel  Dirac

equation with a  random mass.  We present  an

extension of the powerful methods used for one

dimensional systems to this quasi-1D situation,

and  establish  a  link  with  a  random  matrix

model. From this result, we extract the density

of states and the localisation properties of the

system.  Finally,  we  show  that  this  system

exhibits a series of topological phase transitions

(change  of  a  quantum number  of  topological

nature,  without  changing  the  symmetries),

driven by the disorder.
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