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Abstract 

 

This thesis investigates the Palaeoproterozoic crust of the West African Craton in southwest 

Ghana, providing insight into its controversial geodynamic and tectonic evolution. Rocks of 

the study area comprise greenschist- to amphibolite facies, mafic to felsic volcanic and 

volcaniclastic rocks, high-grade paragneisses and low-grade volcano-sedimentary packages, 

all of which are extensively intruded by multiple generations of granitoids. New lithological, 

metamorphic and structural maps are constructed using integrated field mapping and 

interpretation of regional airborne geophysical datasets. This approach is used to constrain the 

deformation history of the sparsely exposed rocks of the NE- to NNE-striking Sefwi 

Greenstone Belt and the adjacent volcano-sedimentary domains deformed during the Eburnean 

Orogeny (2150–2070 Ma).  

 

Combined geochemical and geochronological analysis of the magmatic suites of the 

Sefwi Greenstone Belt reveal calc-alkaline, volcanic arc affinities, as well as a striking 

similarity to Neoarchean TTGs that require diverse magma sources and petrogenetic processes. 

Rare inherited zircon cores from the Palaeoproterozoic magmatic suite yield ages of ca. 2250 

to 2270 Ma, with granitoid emplacement ages ranging between ca. 2189 and 2081 Ma. Zircon 

Lu-Hf analysis reveals consistently positive εHf(t) values and two-stage crustal model ages 

between 2650 and 2250 Ma, indicative of a radiogenic proto-crust and short crustal residence 

times. The magmatic evolution reveals the coeval generation of sodic, high-silica TTGs derived 

from partial melting of low-K mafic sources and dioritic magmas generated in a 

metasomatised, LILE-enriched mantle wedge at ca. 2155 Ma. Subsequent emplacement of 

high-K quartz monzonites at ca. 2136 Ma supports the interaction of mantle-derived magmas 

and remelting of existing TTGs. The final stage of magmatism is characterised by the 

emplacement of two-mica-granites and leucogranites along the NW margin of the Sefwi 

Greenstone Belt between ca. 2092 and 2081 Ma, interpreted as a terminal collisional event 

during the Eburnean Orogeny.  

Eburnean metamorphism and deformation is characterised in the study area by initial 

high-pressure amphibolite facies metamorphism corresponding with low apparent geothermal 

gradients (HP-MT, ~15–17°C/km). D1 NNW-SSE shortening generated a ubiquitous bedding-

parallel foliation (S1) and ~E-W striking thrust faults, resulting in the burial of supracrustal 

rocks and crustal thickening. In the high-grade terrane, subsequent amphibolite-granulite facies 
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metamorphism is associated with anatexis. In-situ SHRIMP U-Pb monazite ages at ca. 2073 

Ma, hosted within, D2 mineral assemblages, are interpreted as the initial timing of cooling and 

exhumation, significantly later than paroxysmal metamorphism in NW Ghana and central Ivory 

Coast (2150–2130 Ma). NNE-striking normal detachments and constrictional deformation 

structures formed during sinistral ENW-WSW transtension (D2), during which segments of the 

middle- and lower crust were juxtaposed with low-grade domains. Subsequent E-W directed 

shortening (D3) caused the dextral re-activation of NE-SW striking shear zones, associated with 

a localised greenschist facies metamorphic overprint.  

We propose that the juvenile crust of southwest Ghana was generated in an intra-

oceanic arc setting, associated with diverse and intense subduction-related magmatism until 

subsequent terrane accretion and collision. The north-western margin of the Sefwi Greenstone 

Belt in interpreted as a suture between the separate arc terranes, diachronously accreted during 

the Eburnean Orogeny. The Palaeoproterozoic crust of the southern portion of the West African 

Craton represents a juvenile crustal growth event, recording the unique geodynamic and 

orogenic processes associated with nascent subduction-related plate tectonics in the early 

Earth.  
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Résumé 

Cette thèse s’intéresse à un  segment de croûte d’âge Paléoprotérozoïque du craton ouest-

africain. Les roches de la zone d'étude comprennent des roches volcaniques et 

volcanoclastiques mafiques à felsiques, des paragneiss de haut grade métamorphique et des 

ensembles volcano-sédimentaires faiblement métamorphisés. De nouvelles cartes 

lithologiques, métamorphiques et structurales sont construites à l'aide d’une approche intégrée, 

couplant cartographie de terrain et interprétation des données géophysiques aéroportées à 

l’échelle régionale.  

L’analyse des données géochimiques et géochronologiques des suites magmatiques de 

la ceinture de roches vertes de Sefwi révèle une affinité marquée avec le magmatisme calco-

alcalin, produit des arcs volcaniques modernes et avec les TTGs d’âge Néoarchéen, impliquant 

une certaine diversité des sources et des processus pétrogénétiques. Des coeurs de zircons 

hérités, présents au sein de la suite magmatique livrent des âges autour de ca. 2250 à 2270 Ma. 

Leurs couronnes révèlent des âges de mise en place compris entre ca. 2189 et 2081 Ma. 

L’analyses Lu-Hf sur zircon livre des valeurs εHf positives et des âges modèles pour la croûtes 

situés entre 2650 et 2250 Ma. Ces valeurs indiquent l’existence d’une proto-croûte à tendance 

radiogènique et des temps de séjour limités pour ces magmas évoluant au sein de cette proto-

croûte. L'évolution des magmas montre qu’ils ont été générés de façon concomitante, vers 2155 

Ma, certains dérivants de la fusion d’une source mafique faiblement enrichit en potassium et 

formant des magmas sodiques, riches en silice, de type TTGs, d’autres de composition plus 

dioritiques, générés à partir de la fusion du manteau métasomatisé et enrichit en LILE. La mise 

en place plus tard vers ca. 2136 Ma de monzonites, présentant de teneurs élevées en potassium, 

soutient l’hypothèse d’une interaction avec des magmas de refusion de TTG existants au sein 

de la croûte. Le dernier stade du magmatisme est caractérisé par la mise en place de granites à 

deux micas et de leucogranites, le long de la marge nord-ouest de la ceinture de roches vertes 

vers ca. 2092 et 2081 Ma, marquant le stade de la collision au sein de l’orogène Eburnéenne. 

L’évènement tectono-métamorphique d’âge Eburnéen est caractérisé par un 

métamorphisme initialement de faciès amphibolite de haute pression, associé à un gradient 

géothermique assez froid (HP-MT, ~ 15-17 ° C / km). Le raccourcissement D1, orienté NNO-

SSE, a généré une foliation pénétrative  (S1), parallèle au litage des roches et des plans de 

chevauchement à tendance décrochant, orienté E-O. Cette tectonique précoce a provoquée 

l’enfouissement de roches supra-crustales (sédiments, roches volcaniques) et un épaississement 
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de la croûte.  Cet évènement métamorphique précoce évolue dans le temps et l’espace vers le 

facies amphibolite-granulite et l’anatexie. Les données SHRIMP U-Pb in-situ sur monazite 

livré des âges autour de ca. 2073 Ma. Ces monazites sont présentes au sein de paragénèses 

métamorphiques (D2) soulignant la foliation S2. Ces âges sont interprétés comme marquant le 

début de l’exhumation et du refroidissement de la croûte inférieure. Des détachements 

normaux, orientés NNE-SSO et des structures constrictives se sont formés conjointement au 

sein d’un régime de déformation D2 globalement transtensif, à jeux sénestre. Un régime 

compressif plus tardif (D3) a ensuite causé une réactivation en mouvement dextre de ces 

structures cisaillantes orientées NE-SO avec une rétrogression en schistes verts.   

Nous proposons que les segments de croute juvénile ont été générés en contexte d’arc 

intra-océanique, associé à un magmatisme intense et varié, issus des processus de subduction 

qui prendront fin lors des stades d’accrétion et de collision de ces segments d’autres terranes 

birimiens. La marge nord-ouest de la ceinture de roches vertes de Sefwi est interprétée comme 

une zone de suture entre des segments d’arc originellement séparés. 
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Résumé analytique (Executive summary)  

Objectifs de la thèse 
 

Les roches d’âge Paléoprotérozoïques du craton ouest-africain, datés autour de 2300-2070 Ma, 

sont actuellement sous-explorées et peu représentées dans la littérature mondiale qui s’intéresse 

à la géodynamique protérozoïque. Ce craton expose pourtant un ensemble unique des roches 

crustales formées après la transition archéen-protérozoïque et qui n’ont subi que très peu de 

modifications après la stabilisation de ce dernier. Ce craton offre ainsi une fenêtre 

exceptionnelle sur le cadre géodynamique et les processus orogéniques responsables de la 

formation et la conservation de la croûte juvénile et des processus orogéniques au cours d'une 

période énigmatique de l'histoire de la Terre. Dans le cadre de l'Initiative pour l' Exploration en 

Afrique de l’Ouest (WAXI), les chercheurs d’universités d’Afrique de l’Ouest , d’Australie, de 

France et du Canada se sont associés avec les acteurs industriels, des sponsors et les bureaux 

nationaux de recherche en géologie, au sein  d’un programme intégré qui vise à améliorer nos 

connaissances sur la géologie et le potentiel d'exploration du craton ouest-africain. Ce projet 

représente l'un des derniers projets de doctorat à l'échelle régionale du programme WAXI au 

Ghana, ce qui représente une opportunité pour relier la technique de recherche récente et les 

résultats du sud et du nord-ouest du Ghana. La ceinture de roches vertes de Sefwi, d’âge 

Paléoprotérozoïque, située au sud-ouest du Ghana, constitue la zone ciblée par cette thèse. Les 

principales questions que cette thèse vise à aborder peuvent être listées comme suit: 

 

1. Quelle a été l'évolution structurale et métamorphique de la ceinture de roches vertes 

de Sefwi? 

2. Quelles ont été les caractéristiques de la déformation et du métamorphisme au 

Paléoprotérozoïque ? Quelles ont été les forces motrices à l’origine de cet évènement 

tectono-métamorphique ? En outre, qu’est-ce que cela nous apprend sur  le style 

tectonique de l'orogenèse éburnéenne et quelles en sont les implications pour la 

compréhension de cette orogenèse Paléoprotérozoïque? 

3. Quels ont été les paramètres géodynamiques qui ont permis la formation et la 

préservation de grands volumes de croûte juvénile au sein du craton ouest-africain, suite 

à une période hypothétique de quiescence tectonique globale? Est-ce que les processus 

géodynamiques responsables de la formation du craton ouest-africain ont des 

similitudes avec les processus archéens ou ont-ils été formés dans un cadre tectonique 
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différent, de type Tectonique des Plaques? Et en quoi ces processus de Tectoniques de 

Plaques diffèrent-ils de ceux d'aujourd'hui? 

  

L'objectif principal de cette thèse est d'explorer le cadre géodynamique de la formation de la 

croûte juvénile ainsi que les processus orogéniques préservés au sein du craton ouest-africain 

pour avoir un aperçu de l'évolution du régime  de la Tectonique des Plaques au début de 

l'histoire de la Terre.  

Compte tenu de ces objectifs ambitieux et de la taille de l’objet d’étude, une approche 

multi-échelles et multi-disciplinaires a été privilégié, combinant données de terrain, 

cartographie régionale, analyse structurale et modélisation métamorphique, couplé à des 

datations  et des analyses géochimies et isotopiques. Les grandes lignes de la thèse adressent 

différents aspects au sein de trois principaux objectifs, incluant le contexte au sein de 

la littérature existante et les méthodes appliquées afin d'explorer différents aspects de chaque 

question. 

Les directeurs de thèse pour ce projet étaient le Dr. Laurent Aillères (School of Earth, 

Atmosphere and Environment, Monash University), le Prof. Mark Jessell (Centre for 

Exploration Targeting, University of Western Australia/ Géosciences Environnement 

Toulouse/ L’Institut de Recherche pour le développement), le Prof. Peter Betts (School of 

Earth, Atmosphere and Environment, Monash University), le Dr. Lenka Baratoux (GET/IRD) 

and le Dr. (HDR) Jérôme Ganne (GET/IRD). De proches collaborations ont pu être établie avec 

Sylvain Block (GET), Nicholas Thébaud (CET, UWA), Luis Parra-Avila (CET/UWA), Robin 

Armit (School of Earth, Atmosphere and Environment, Monash University) et Christopher 

Spencer (Earth Dynamics Research Group, Curtin University).   

Ce projet a été financé par AMIRA International et les commanditaires de l' industrie, 

y compris AusAid et le projet ARC Linkage LP110100667, qui a bien voulu soutenir le projet 

WAXI (P934A). Une part importante de la recherche a été financée par le School of Earth 

Atmosphere and Environment, Monash Research Initiative Fund – à travers le Dr 

Laurent Ailleres et des contributions du Dr Robin Armit et du professeur Peter Betts, ainsi que 

par l’Institut de Recherche pour le Développement (IRD), à travers les fonds de recherche 

du Dr Jérôme Ganne. 
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Chapitre III Résumé 

Ce chapitre se concentre sur les lithologies et les séquences de déformation préservées dans la 

ceinture de roches vertes du Sefwi et dans les domaines tectono-métamorphiques adjacents au 

sud-ouest du Ghana. Nous présentons de nouvelles cartes litho-structurales et métamorphiques 

de la zone d'étude, qui sont le produit de l'intégration de la cartographie 

sur le terrain, des données pétrophysiques obtenues sur des lithologies prélevées localement et 

des données géophysiques aéroportées obtenues à l’échelle régionale. L'étude structurale 

multi-échelle et  l’intégration de plusieurs ensembles de données géologiques sur une région 

où les affleurements géologiques se font rares, permet de mieux appréhender l’histoire 

tectonique de ce craton. Nous considérons ici le style et l'histoire de la déformation dans le 

contexte des modèles tectoniques existants pour le craton ouest-africain et des modèles 

orogéniques proposés pour la Terre primitive, au regard de ceux opérant aujourd'hui. La 

pétrologie métamorphique, les estimations quantitatives du métamorphisme et celle de la 

dation U-Pb des monazites métamorphiques mentionnés dans le présent chapitre sont discutés 

en détail au chapitre 4. Ce chapitre est destiné à être soumis à la revue Precambrian Research 

début 2018. 

Cette étude présente des cartes litho-structurales et métamorphiques nouvellement 

interprétées sur la ceinture de roches vertes de Sefwi et des domaines volcano-sédimentaires 

d’âge  Paléoprotérozoïque (2300-2070 Ma). Cette ceinture se situe dans la partie sud-ouest du 

Ghana, marquant la limite orientale du craton ouest-africain. L'utilisation intégrée des 

observations sur le terrain, la cartographie structurale et l'interprétation des données 

géophysiques aéroportées régionales fournissent de nouvelles informations sur l'architecture, 

la séquence de déformation, les relations de superposition tectonique et l'évolution tectonique 

de la région exposée à l’époque paléoprotérozoïque (2150-2070 Ma). Cette étude met en 

lumière des domaines tectoniquement juxtaposés, marqués par des grades métamorphiques 

contrastés, comprenant des roches métamorphisée dans le faciès des schistes verts et 

amphibolites, des roches volcaniques et volcanoclastiques mafiques à felsiques, des paragneiss 

de haut grade métamorphique et des ensembles volcano-sédimentaires faiblement 

métamorphisés. Ces roches para- et ortho-dérivés sont très largement recoupés par plusieurs 

générations de granitoïdes.  

La première déformation se caractérise par une foliation métamorphique omniprésente 

S1, parallèle à la stratification originelle des roches. Cette foliation précoce est présente sur 

l’ensemble de la zone d'étude. Elle est plan axial de plis isoclinaux mal préservés Le 
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raccourcissement D1, d’orientation NNO-SSE, est associée à un métamorphisme de haut grade 

impliquant de la fusion partielle au stade finaux de son évolution. Il est interprété comme lié à 

un événement d'épaississement de la croûte birimienne, générant des granites à deux micas qui 

se mettent en place entre 2092 et 2081 Ma, ce qui  permet de fixer un âge minimum à 

cette déformation D1. Les structures prenant place lors de l’événement tectonique ultérieur 

(D2) sont caractérisées par un pendage moyen, orienté OSO-ENE à NE-SO et un plan de 

clivage S2 portant une minéralogie métamorphique. La nature transtensive de la déformation 

est révélée par la  nature coaxiale des plis F2 dont les axes sont parallèles à celle de la linéation 

métamorphique L2, s’orientant ENE-OSO à NE-SO, légèrement oblique  par rapport aux 

grandes zones de cisaillement observées régionalement. Au sein de ce régime transtensif, 

l'exhumation différentielle tardi-orogénique de la croûte moyenne et inférieure se produit le 

long des plans extensifs orientés NNE, associant des mouvements en transpression sénestre le 

long des zones de cisaillement d’échelle régionale orientés NE-SO. La chronologie de 

l'exhumation est contrainte par des âges métamorphiques U-Pb sur monazites situés autour de 

ca. 2073 Ma. Le raccourcissement tectonique E-O qui vient se surimposer à l’édifice structurale 

est interprété comme lié à une modification des conditions aux limites (régionales). Il est 

associé à la réactivation dextre des zones de cisaillement d’orientation NE-SO et au plissement 

des structures antérieures, présentes pourtant en position distale par rapport à ces zones de 

cisaillement majeures. Nous proposons que la limite nord-ouest de la ceinture de Sefwi 

représente une zone de collision entre d’une part le sud du Ghana et  d’autre part, les parties 

centrales et nord-ouest du Ghana / Côte d'Ivoire. Ces deux domaines présentent des histoires 

tectoniques contrastées. En outre, nous suggérons que l'accrétion du craton ouest-africain soit 

le résultat d’une succession d’épisodes d’accrétion au sein de l’orogène éburnéenne, ce qui 

nous offre de nouvelles perspectives sur l'évolution des processus orogéniques au  

Paléoprotérozoïque. 

 

Chapitre IV Résumé 

Ce chapitre est complémentaire du cadre et de la carte tectono-métamorphiques présentés au 

chapitre 3, fournissant une analyse pétrographique détaillée, des estimations quantitatives des 

conditions du métamorphisme régional dominant et des contraintes géochronologiques sur la 

déformation et le métamorphisme durant l'orogenèse éburnéenne. Ces nouvelles contraintes 

géochronologiques sont comparées aux données géochronologiques existantes afin de 

comprendre la chronologie des évènements métamorphiques au sein du craton, mais aussi la 
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chronologie du métamorphisme de haut grade dans la zone étudiée et son rapport aux autres 

terrains de haut et bas grades au sein du craton. Les assemblages métamorphiques et les âges 

sur monazites documentés dans ce chapitre élucident une histoire métamorphique plus 

complexe pour le sud-ouest du Ghana (en particulier) et l'orogenèse éburnéenne (en générale), 

contribuant ainsi à une meilleure compréhension de l'amalgamation du craton ouest-africain à 

cette époque. Cette évolution métamorphique apparait comme un régime d’exception au 

Paléoprotérozoïque. Ce chapitre a été soumis au Journal of Metamorphic Geology. Une version 

révisée sera renvoyée avant mai 2018. Les principales révisions proposées ont été prises en 

compte, certaines révisions étant toujours en cours. 

De nouvelles données pétrographiques et géochronologiques sont présentées pour les 

paragneiss migmatitiques et les roches méta-volcaniques de hauts grades exposées au sud-ouest 

du Ghana. L'étude porte sur les domaines tectono-métamorphiques présents au cœur de la 

ceinture de roches vertes de Sefwi et dans les domaines adjacents à cette ceinture. Ces 

domaines sont bornés ou recoupés par des zones de cisaillement ductiles, fortement réactivées, 

d’orientation NE à ENE et présentes à l’échelle régionale. Au nord de la ceinture de Sefwi, un 

terrane de haut grade a été nouvellement identifié. Il comprend des paragneiss migmatitiques 

hétérogènes de haut grade, injecté par de volumineuses intrusions de granite à deux micas. Il 

est interprété comme faisant partie de la ceinture de Sefwi en raison de ses similitudes 

métamorphiques et structurales. Paragneiss et amphibolites à grenat révèlent de façon 

sporadique un métamorphisme précoce de haute pression et moyenne température (HP-MT) 

(10,0 à 11,5 kbar, 580-650 ° C), s’inscrivant au sein d’un faciès amphibolite de haute pression 

et marquant un gradient géothermique apparent assez froid, de l’ordre de 15-17 °C par km. Cet 

évènement métamorphique précoce évolue vers le facies amphibolite-granulite (7.5 à 9.5 kbars, 

650-700 °C) atteignant le début de la fusion partielle (anatexie). Cette évolution se produit le 

long d’un gradient géothermique apparent moyen de l’ordre de 20-25 °C / km.  

La variété des chemins métamorphiques progrades enregistrés par les migmatites révèle 

un réchauffement durant la décompression, ou inversement un réchauffement durant 

l’enfouissement. L’exhumation de ces roches partiellement fondues se produit conjointement, 

comme l’indique le parallélisme entre la forme horaire de tous ces chemins P-T-t, montrant 

une baisse simultanée en pression et température, et la présence d’un métamorphisme régional 

dans le facies amphibolite venant se superposer aux assemblages métamorphiques de plus haut 

grade. 
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Les données d’âge (U-Pb) obtenues in-situ sur monazite (SHRIMP) permettent de 

situer le début de cette exhumation et de ce refroidissement autour de ca. 2073 Ma. A l’inverse 

des migmatites, un échantillon d’amphibolite à grenat enregistre son refroidissement durant 

l’exhumation, sans passer par un stade de plus haute température. Nous interprétons 

les chemins P-T –t de forme horaire enregistré par deux des trois échantillons, comme la 

preuve d’un épaississement de la croûte birimienne dans ce secteur de Sefwi, en lien avec 

la convergence et la collision de ce segment de croûte le long de sa  marge nord - ouest. 

L'exhumation de la croûte inférieure le long des zones de cisaillement d’orientation NE et de 

plans de détachement à pendage ouest est finalisée aux environs de ca. 2092 - 2081 Ma, ce qui 

correspond à l’âge de mise en place des leucogranites venant recouper les écailles de croûte 

inférieure et supérieure. 

Les assemblages métamorphiques de haute pression produits le long de faibles 

gradients géothermiques apparents distinguent le sud-ouest du Ghana des provinces 

granitiques-gneissiques précambriennes. De plus, les diverses histoires thermiques et la 

juxtaposition tectonique de différentes écailles de la croûte issues de différentes profondeurs 

ne sont pas conformes aux prédictions métamorphiques et au type homogène des déformations 

prédits par le modèle «d’orogène chaud» proposé pour le cas des orogènes précambriens. De 

plus, des âges métamorphiques aussi jeunes n'ont pas été documentés auparavant dans la partie 

sud-est du craton ouest-africain. Ces résultats suggèrent plutôt différents épisodes de collision 

survenant au cours de l'assemblage du craton, produisant  une histoire métamorphique 

diachrone et complexe. L’enregistrement métamorphique du craton Ouest africain soutient 

l'idée d'un régime tectonique de transition au Paléoprotérozoïque, partagé entre une 

Tectonique des Plaques moderne qui s’annonce et une tectonique Archaïque qui disparait. Ces 

gradients métamorphiques froids préfigurent en quelque sorte l'apparition des premières 

subductions modernes du Néoprotérozoïque et leur cortège métamorphique de ultra-haute 

pression (UHP). 

 

Chapitre V Résumé 

Les chapitres de recherche précédents ont exploré le style tectonique et les mécanismes 

d’exhumation accompagnant l’orogène éburnéenne, comme il est possible de la documenter 

dans le SW du Ghana. Ce chapitre se concentre sur l'évolution magmatique de la ceinture de 

roches vertes de Sefwi afin de mieux comprendre le contexte géodynamique de la croissance 

de la croûte à cette époque de la Terre. Il présente de nouvelles analyses pétrologiques et 
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géochimiques des suites magmatiques représentatives de la ceinture de roches vertes de Sefwi 

et du domaine adjacent de Sunyani-Comoé. L'analyse des données en éléments majeurs et 

traces permet de remonter aux sources potentielles des magmas et des processus 

pétrogénétiques responsables de la formation de la croûte birimienne. Les analyses U-Pb et Lu-

Hf sur zircons contraignent la chronologie du magmatisme, tout en nous fournissant des 

informations sur les processus et la chronologie d’'extraction de ces magmas à partir du 

manteau paléoprotérozoïque, mais aussi sur les temps de séjour de ces magmas dans la croûte 

birimienne et sur la nature de cette proto-croûte en Afrique de l’Ouest. La chronologie du 

magmatisme et les valeurs εHf(t) sont comparés à d’autres régions du craton ouest – africain. 

Cette approche permet de révéler différents sous-domaines à signature isotopique bien 

distincte, nous amenant à une meilleure compréhension de l'architecture du craton. Une 

considération d’ensemble est enfin apportée à cette géodynamique paléoprotérozoïque, 

responsable de la formation et de la préservation du craton ouest-africain, au regard des 

modèles géodynamiques proposé pour l’Archéen et ceux connus et opérant  au Phanérozoïque. 

De nouvelles données géochimiques et isotopiques sont présentées pour les suites 

magmatiques qui affleurent dans la partie sud-ouest du Ghana (ca. 2300-2070 Ma). Cette étude 

se concentre sur l'évolution magmatique de la ceinture de roches vertes de Sefwi, redéfinissant 

les caractéristiques géochimiques et isotopiques des principales suites magmatiques mises en 

place entre ca. 2155 et 2136 Ma. La croûte paléoprotérozoïque juvénile dérive d’un matériel 

crustal extrait d’un manteau appauvri entre ca.2650 et 2260 Ma, indiquant des temps de séjour 

assez courts dans la croûte et impliquant un remaniement très limité de la croûte continentale 

archéenne présente à cette époque paléoprotérozoïque. 

De nouvelles données géochimiques roche totale mettent en lumière la grande variété 

pétrologique,  géochimique et isotopique des suites magmatiques d’âge Paléoprotérozoïque 

présentes au sud du Ghana.  Ces nouvelles données indiquent une mise en place simultanée de 

ces magmas issus de différentes sources présentent au sein d’arcs volcaniques. Cinq suites 

magmatiques ont été identifiées: 1) granitoïdes de type tonalites-trondhjémite-granodiorite 

(TTG), riches en sodium, dominés par la biotite et la hornblende, associés localement à des 

systèmes effusifs de type dacite; 2) diorites calco-alcalines, enrichies en LILE et laves 

andésitiques associées; 3) pyroxénites, gabbros et  roches intrusives de composition mafique  

; 4) monzonites riches en quarz, de composition très potassique; et 5) granites à deux micas et 

leucogranites à muscovite, enrichis en éléments incompatibles. Les spectres en éléments traces 

sont tous caractérisés par des valeurs en Nb –Ta,  P, Ti très négatives et des anomalies positives 

en Pb et Ba dans les suites magmatiques plus évolués, ce qui indique une influence de 
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la croûte au cours de la genèse du magma au sein de l’arc volcanique. Les diorites et les TTGs 

à biotite présentant de faibles valeurs d’HREE, se mettent en place simultanément vers ca. 2155 

Ma, révélant des sources contrastées. Les magmas de type dioritique sont produits plus 

en profondeur, issus de la fusion partielle d’un coin de manteau métasomatisé et enrichi en 

éléments incompatibles, tandis que les TTGs à biotite ont probablement été produits par la 

fusion partielle de panneaux de croûte océanique subductés sous l’arc, au sein d’un manteau 

assez chaud. La genèse des TTGs à hornblende est attribuée à la fusion partielle à plus faible 

profondeur d’une croûte mafique. Cette hypothèse se fonde sur l’observation des 

faibles teneurs en Sr de ces magmas, leur forte teneur en terres rares lourdes (HREE), le faible 

fractionnement en terres rares légères (REE) et des rapports en éléments assez 

élevés par rapport aux données issues de l’expérimentale. La mise en place de magma 

monzonitiques vers ca. 2136 Ma est révélateur d’un processus de mélange au sein de la croûte 

birimienne, entre des magmas issus de la fusion du manteau et d’autres dérivant d’une refonte 

partielle de TTGs existants. La mise en place ultérieure de granites à deux micas et des 

leucogranites, entre ca. 2092-2081 Ma, est interprétée comme le produit d’une anatexie 

crustale lors d’un évènement de type collision d’arc. La zone de suture envisagée se situerait 

parallèlement à la marge nord - ouest de la ceinture Sefwi. Les analyses in-situ Lu-Hf sur 

zircons livrent toujours des valeurs ε Hf(t) positives, situées entre +4,9 et +8,0 pour les TTG, 

+2,2 et +5,5 pour les diorites et +2,7 à +5,8 pour les laves dacitiques, mettant en évidence une 

source nettement radiogénique durant la croissance de la croûte et représentant potentiellement 

une limite isotopique juvénile au sein de ce craton. Les monzonites mises en place 

postérieurement révèlent une plus large gamme de valeurs en Hf (t), situées entre +1,2 et 

+6,5, ce qui suggère une hétérogénéité croissante dans la source de ces magmas. Nous 

suggérons que la formation et l'accrétion du craton ouest-africain reflètent l'accumulation 

rapide et l'amalgamation de terranes d'arcs générés en domaine intra-océanique et associant de 

la subduction. Ce type de géodynamique géochimique est très semblable à celle communément 

proposée pour les cycles de Wilson et représentait, à ce titre, une de ses toutes premières 

expression dans l’histoire de la Terre. 

 

Conclusions 

La province d’âge Paléoprotérozoïque du Craton ouest-africain fournit un laboratoire naturel 

pour explorer les liens géodynamiques et orogéniques entre l'Archéen et le Protérozoïque. Ce 

craton préserve en son coeur un épisode unique de croissance crustale, qui n’a pas d’équivalent 
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connu au niveau mondial. L'évolution magmatique, tectonique et métamorphique du Craton 

ouest-africain au Paléoprotérozoïque reflète un régime de Tectonique des  Plaques naissant, où 

s’opère des changements géochimiques et métamorphiques progressifs et majeurs. 

Dans le cadre de cette thèse, j'ai établi un nouveau cadre magmatique pour la ceinture 

de roches vertes de Sefwi au Paléoprotérozoïque, mettant en lumière une production intense de 

croûte juvénile et la collision d'arcs intra-océaniques au sein d’un régime de subduction. Des 

similitudes frappantes existent entre les processus pétrogénétiques et l'évolution magmatique 

des terranes du sud-ouest du Ghana et ceux d’âge Néoarchéen ou de leurs homologues plus 

modernes, issus des systèmes d’arcs actuels. Les données géochimiques et isotopiques de la 

région reflètent l'adoption progressive des processus pétrogénétiques et crustaux 

modernes. Ceci est soutenu par l'histoire tectonique et métamorphique de la région, caractérisée 

par un épaississement crustal initial en contexte chevauchant puis la génération de conditions 

métamorphiques de HP-MT, le tout étant interprétée comme la conséquence d’une collision 

progressive entre terranes d'arc. L'exhumation tectonique ultérieure de la croûte inférieure 

est la preuve d’un durcissement de la lithosphère sous la province birimienne il y a 2 Ga. Ce 

comportement mécanique  de la lithosphère apparaît incompatible avec le modèle « d’orogène 

chaud » proposé pour le Protérozoïque. L'implication de cette évolution géodynamique et 

tectonique proposée pour le craton ouest-africain améliore notre compréhension sur l’évolution 

du régime tectonique global et du refroidissement séculaire de la Terre primitive depuis 2.5 

milliards d’années. 

 

Sommaire des publications et congrès 
 

Le chapitre 4 a éte soumis á Journal of Metamorphic Geology (May 2017). 

 

McFarlane, H. B., Block, S., Ganne, J., Baratoux, L., Ailleres, L., Betts, P.  Jessell, M. W., 

Armstrong, R. (submitted) Petrological and geochronological evidence of collisional 

orogenesis and subsequent lower crust exhumation during the Palaeoproterozoic Eburnean 

Orogeny, SW Ghana. Journal of Metamorphic Geology.  

 

Les chapitres 3 et 5 seront préparé pour etre soumis á Precambrian Research apres que la 

thèse a été présentée. 

 

McFarlane, H. B., Block, S., , Ailleres, L., Betts, P.,  Ganne, J., Baratoux, L., Jessell, M. (in 

preparation) Transtension-related lower crust exhumation in the late stages of the 

Palaeoproterozoic Eburnean Orogeny, SW Ghana: Evidence for diachronous assembly of the 

West African Craton. For submission to Precambrian Research. 

 

McFarlane, H. B., Thebaud, N., Parra-Avilla, L., Armit, A., Spencer, C., Ganne, J., Ailleres, 

L., Baratoux, L., Betts, P. G. and Jessell, M. W. (in preparation) Juvenile crust formation in 



xxii 

 

the West African Craton: New geochemical and zircon U-Pb evidence from the 

Palaeoproterozoic Sefwi Greenstone Belt, SW Ghana. For submission to Precambrian 

Research.  

 

Feng, X., McFarlane, H. B., Martin., R, Jessell, M. W.,  Amponsah, P. O. Ganne, J., Hu, S. 

(in preparation) 3D numerical modelling of lower crust exhumation in fault relay zone under 

transtension: Implications for the Sefwi terrane, SW Ghana. For submission to Precambrian 

Research. 

 

 

Conference presentations:  

 

McFarlane, H. B., Ailleres, L., Betts, P., Ganne, J., Baratoux, L. and Jessell, M. (2017) 
Secular evolution of orogenic processes during the Palaeoproterozoic assembly of the West African 

Craton. Specialist Group in Tectonics and Structural Geology (SGTSG), Denmark, Australia. 

7 - 13 November 2017 

 

McFarlane, H. B., Block, S., Ailleres, L., Betts, P., Ganne, J., Baratoux, L.,   Jessell, M. 

(2016) Lower and middle crust exhumation during Palaeoproterozoic accretionary tectonics: 

Key new evidence from the Sefwi Greenstone Belt, SW Ghana Abstract. 35th International 

Geological Congress, Cape Town, South Africa. (Oral Presentation) 

 

McFarlane, H. B., Block, S., Ganne, J., Baratoux, L., Ailleres, L., Betts, P., Jessell, M. (2016) 

Detailed magmatic and tectono-thermal study of an orogenic system in a transitional Earth: 

the Eburnean Orogeny. AGU Fall Meeting, San Francisco, December 12 – 16 2016 (Poster 

presentation)  

 

McFarlane H. B., Block, S., Ailleres, L., Baratoux, L., Betts, P., Ganne, J. and Jessell, M. 

(2015) Lower crustal exhumation under transtension during the Palaeoproterozoic Eburnean 

Orogeny in Sefwi belt, SW Ghana. WAXI Conference, Dakar, Senegal, 17-18 September 

2015  

 

McFarlane H.B., Block, S., Ailleres, L., Baratoux, L., Betts, P., Ganne, J. and Jessell, M 

(2015) New insights into Palaeoproterozoic tectonics: A study of the structural and 

metamorphic evolution of the Sefwi greenstone belt, SW Ghana, West African Craton. 

Specialist Group in Tectonics and Structural Geology (SGTSG), Caloundra, Australia. 22 - 

27 November 2015. Accepted abstract - poster withdrawn 

 

McFarlane, H. B., Block, S., Ailleres, L., Baratoux, L., Betts, P., Ganne, J. and Jessell, M 

(2014) Tectonic and metamorphic evolution of the Sefwi Greenstone Belt: Implications for 

the WAC. Colloquium of African Geology, Dar es Salaam, Tanzania, 14-16 August 2014 

 

  



 

xxiii 

 

Table of Contents 

 

Copyright notice .................................................................................................................................... v 

Abstract ................................................................................................................................................ vii 

Résumé .................................................................................................................................................. ix 

Declaration............................................................................................................................................ xi 

Résumé analytique (Executive summary) ........................................................................................ xiii 

Table of Contents ............................................................................................................................. xxiii 

Acknowledgements ......................................................................................................................... xxvii 

 

1   Introduction ............................................................................................................................... 3 

1.1 General Introduction .............................................................................................................. 3 

1.2 West African Craton Geology .............................................................................................. 10 

    1.2.1 Introduction ................................................................................................................... 10 

    1.2.2 Geological Setting ......................................................................................................... 11 

    1.2.3 Controversies................................................................................................................. 15 

1.3 Synthesis .............................................................................................................................. 20 

1.4 References ............................................................................................................................ 20 

 

2 Research aims and rationale .................................................................................................... 35 

2.1 Research aims....................................................................................................................... 37 

2.2 Thesis outline ....................................................................................................................... 38 

       2.2.1 Chapter 3: Transtension-related lower crust exhumation in the late stages of         

    the Palaeoproterozoic Eburnean Orogeny, SW Ghana: Evidence for    

    diachronous assembly of the São Luís-West African Craton ........................................ 38 

2.2.2 Chapter 4: Petrological and geochronological evidence of collisional  

          orogenesis and lower crust exhumation during the Palaeoproterozoic 

          Eburnean Orogeny, SW Ghana, West African Craton ................................................. 39 

2.2.3 Chapter 5: Palaeoproterozoic juvenile crust formation in southern  

         Ghana, West Africa: New insights from igneous geochemistry and U-Pb-Hf  

         zircon data ..................................................................................................................... 40 

2.2.4 Chapter 6: Discussion and conclusions ......................................................................... 42 

   2.3 References ............................................................................................................................. 43 



xxiv 

 

 

3 The geology and tectonic evolution of southwest Ghana                                                        47 

3.0 Introduction  ......................................................................................................................... 49 

   Chapter 3: Transtension-related lower crust exhumation in the late stages of the     

                       Palaeoproterozoic Eburnean Orogeny, SW Ghana: Evidence for diachronous   

                       assembly of the São Luís-West African Craton                                                  51 

Abstract ...................................................................................................................................... 53 

3.1 Introduction .......................................................................................................................... 56 

3.2 Geological Setting ................................................................................................................ 60 

3.3. Study area ............................................................................................................................ 60 

3.3.1 Litho-structural domains ............................................................................................... 60 

3.3.2. Major Shear zones ........................................................................................................ 63 

3.4 Methodology and data .......................................................................................................... 64 

3.4.1 Methodology ................................................................................................................. 64 

3.4.2 Processing and interpretation of geophysical data ........................................................ 64 

3.5 Lithological associations and geological map ...................................................................... 66 

     3.5.1 Lithologies .................................................................................................................... 66 

     3.5.2 Geophysical response of tectono-metamorphic domains ............................................. 75 

3.6 Tectono-metamorphic history .............................................................................................. 78 

3.6.1 Deformation sequence ................................................................................................... 78 

3.6.2 Metamorphic history ..................................................................................................... 88 

3.6.3 Structural-metamorphic map ......................................................................................... 90 

3.7 Discussion ............................................................................................................................ 93 

3.7.1 Timing of Eburnean deformation in the Sefwi Belt ...................................................... 93 

3.7.2 Rheology, tectonic style and exhumation ...................................................................... 97 

3.7.3 Orogenic model, regional correlations and Transamazonian ties ................................. 99 

3.7.4 Implications for Paleoproterozoic geodynamics ......................................................... 102 

3.8 Conclusions ........................................................................................................................ 103 

3.9 Acknowledgements ............................................................................................................ 104 

3.10 References ........................................................................................................................ 104 

      Appendix A. Supplementary data I – IV ............................................................................ 116 

      Appendix B. Magnetic susceptibility histograms .............................................................. 116 

 

4 The metamorphic evolution of SW Ghana                                                                            117 

    4.0 Introduction ........................................................................................................................ 119 



 

xxv 

 

   Chapter 4: Petrological and geochronological evidence of collisional orogenesis and lower     

                       crust exhumation during the Palaeoproterozoic Eburnean Orogeny,  

                       SW Ghana, WAC                                                                                                 121 

Abstract .................................................................................................................................... 123 

4.1 Introduction ........................................................................................................................ 125 

4.2 Geological Setting .............................................................................................................. 127 

4.2.1 West African Craton geology ...................................................................................... 127 

4.2.2 Geology of southwest Ghana ...................................................................................... 131 

4.3 Methods .............................................................................................................................. 133 

4.3.1 Petrographic analysis and mineral chemistry .............................................................. 133 

4.3.2 P-T calculations ........................................................................................................... 133 

4.3.3 Geochronology ............................................................................................................ 359 

4.4 Petrography and mineral chemistry ................................................................................... 135 

4.4.1 High-grade rocks ......................................................................................................... 136 

4.4.2 H2O-saturated melting ................................................................................................. 150 

4.5 Results ................................................................................................................................ 151 

4.5.1 P-T conditions and P-T paths ...................................................................................... 151 

4.5.2 Geochronology ............................................................................................................ 157 

4.6 Discussion .......................................................................................................................... 159 

4.6.1 Metamorphic evolution of the study area .................................................................... 159 

4.6.2 Regional context .......................................................................................................... 164 

4.6.3 Burial and exhumation ................................................................................................ 165 

4.6.4 Implications for Palaeoproterozoic tectonics .............................................................. 169 

4.7 Conclusions ........................................................................................................................ 170 

4.8 Acknowledgements ............................................................................................................ 171 

4.9 References .......................................................................................................................... 171 

      Appendix C. Perplex data files ........................................................................................... 182 

 

5  Crustal evolution of the West African Craton                                                                     183 

    5. 0 Introduction ....................................................................................................................... 185 

          Chapter 5: Palaeoproterozoic juvenile crust formation in southern Ghana, West     

          Africa: New insights from igneous geochemistry and U-Pb-Hf zircon data               187 

Abstract .................................................................................................................................... 189 

5.1 Introduction ........................................................................................................................ 191 

5.2 Palaeoproterozoic geology of West Africa ........................................................................ 193 



xxvi 

 

5.3 Main lithologies and stratigraphy ....................................................................................... 196 

5.4 Sampling and analytical methods ....................................................................................... 198 

5.4.1 Whole rock geochemistry ............................................................................................ 198 

5.4.2 Zircon U-Pb dating ...................................................................................................... 199 

5.4.3 In-situ Lu–Hf analyses ................................................................................................ 200 

5.5 Results ................................................................................................................................ 201 

5.5.1 Lithological and petrological descriptions .................................................................. 201 

5.5.2 Whole rock geochemistry ............................................................................................ 206 

5.5.3 Geochronology ............................................................................................................ 216 

5.6 Discussion .......................................................................................................................... 228 

5.6.1 Petrogenesis of magmatic suites .................................................................................. 228 

5.6.2 Timing of juvenile crust formation, recycling and basin deposition ........................... 233 

5.6.3 Implications for the crustal architecture of the West African Craton.......................... 237 

5.6.4 A geodynamic model for the southern West African Craton ...................................... 239 

5.7 Conclusions ........................................................................................................................ 243 

5.8 Acknowledgements ............................................................................................................ 244 

5.9 References .......................................................................................................................... 244 

      Appendix D. Geochronology of southern Ghana ............................................................... 256 

      Appendix E. Hf standard results ........................................................................................ 256 

      Appendix F. Hf standards vs accepted values .................................................................... 256 

 

6 Discussion and conclusion                                                                                                       257 

    6.1 Discussion .......................................................................................................................... 259 

    6.1.1 Introduction ................................................................................................................. 259 

    6.1.2 Evolution of the West African Craton......................................................................... 260 

    6.1.3 Implications for Palaeoproterozoic geodynamics and orogenesis .............................. 265 

    6.1.4 Recommendations for future research ........................................................................ 267 

    6.2 Conclusion ......................................................................................................................... 268 

6.3 References .......................................................................................................................... 269 

 

  



 

xxvii 

 

Acknowledgements 

 
Well, it’s been a journey… 

 

My deepest thanks must go to my main supervisor, Laurent, as well as my co-supervisors, Pete, Mark, 

Jérôme and Lenka. When Laurent and Pete first pitched the idea of doing a PhD with field work in West 

Africa, a year in France and a home base in Melbourne, it sounded like a dream! In its infant stages, 

I’m sure none of us had imagined just how big (and how expensive) the project would turn out to be. 

Laurent, I don’t think I’ll ever be able to express how gratefully I am for all the experiences I’ve had 

over the last four and a half years. Thank you for proposing the project and for financing it in all its 

excesses; thank you for our discussions, even when they ran in circles; thank you for your support and 

friendship throughout the years and for having confidence in me when I had none. You provided the 

light, the hope and the push in spite of my stubbornness and perfectionism. I must also thank Pete for 

setting me on new trajectories, inspiring new debates and for always believing in subduction. To 

Jérôme, Lenka and Mark, many thanks to each of you for your wisdom and insight. Your expertise and 

patience have refined my research in a multitude of ways despite the slow-drip feed of my finished 

works, and each of you have aided my navigation of the French administration system. A special thanks 

must go to Caroline Venn for being an inspiring mentor, a wonderful friend and a brilliant second mum. 

I hope I can one day make amends for texting you at 4am for months on end after finishing field work 

on the other side of the world. You kept me safe! Thanks must also go to the administration at the School 

of Earth, Atmosphere and Environment, especially to Silvana, Katie, Christine and Emily, for getting 

me organised when I wasn’t. I couldn’t have managed without you. 

 

I gratefully acknowledge AMIRA International and the industry sponsors, including AusAid 

and the ARC Linkage Project LP110100667, for their support of the WAXI project (P934A). A 

significant amount of the research was funded by the  School of Earth Atmosphere and Environment, 

Monash Research Initiative Fund – Dr Laurent Ailleres, with addition contributions from the  School 

of Earth Atmosphere and Environment, Monash Research Initiative Fund – Dr Robin Armit and Prof. 

Peter Betts, Institute pour le Recherche et Developpement (IRD) through Dr Jérôme Ganne. I would 

like to thank all those who helped make my field seasons happen, including the generous support of the 

Geological Survey Department (GSD) of Ghana, including Kwame Boamah, and for the supply of maps, 

data and logistical support. A special thank you must also go to the GSD drivers, Mr Kwasi Duah and 

Mr Brown. Kwasi, thank you for your help translating, navigating, organising and wielding the sledge 

hammer. It was an absolute pleasure to do field work with you. A number of mining companies also 

kindly allowed me to visit mine sites and utilise their outcrop databases, including the teams at Chirano 

(Kinross), Bibiani (Resolute) and Kenyase (Newmont) mines. Thanks to Clay Postlethwaite for his 



xxviii 

 

continued interest and support of the research – our discussions were always so valuable.  I would also 

like to thank Philippe de Parseval and Sophie Gouy for assistance in microprobe data acquisition and 

Thierry Aigouy for his assistance in SEM imaging at the Géosciences Environnement Toulouse (GET) 

laboratory. I gratefully acknowledge the facilities and technical staff at the Monash Centre for Electron 

Microscopy. Thanks also to Richard Armstrong at ANU for his help extracting monazite ages and for 

being such a generous host for my time in Canberra. I am indebted to Christopher Spencer for 

conducting the Lu-Hf analyses, for answering my questions and for setting my aspirations higher upon 

our first meeting at AGU. 

 

There have also been a number of researchers who have helped with the design of the project, 

as well as teaching me a huge number of new analytical techniques. Much of the project conception 

and design must be credited to Sylvain Block, who challenging me and guided me through the earlier 

years of this PhD. To Luis Parra-Avila and Nicolas Thébaud, thank you for initiating me into the world 

of SHRIMP dating. The geochronology may well have been a total disaster without your guidance. 

Massive thanks to Robin Armit for your guidance, unwavering support and for your contribution in 

piecing together such an amazing story. The editorial contribution of Roberto Weinberg and the 

passionate discussions had with Oliver Nebel were also greatly appreciated. 

 

I have done an extensive amount of travel during this PhD and as a result, I have made lifelong 

friends both at home and abroad. To my friends in France, thanks for helping me build a second home 

and for your patience when listening to my butchering of the French language in the beginning. My 

love of cheese now extends to such depths that I think I will never be able to live without it. To my Perth 

crew, thanks for adopting me in the blink of an eye. Can’t wait to see more of you in the future. To my 

friends at home, especially Emily and Elspeth, thank you for bringing some normalcy back into my life, 

for drink and dancing with me, for piecing me back together when I fell apart and for sticking with me 

despite my frequent absence. To my friends at Monash, especially Lauren, Jackson, Dave and Geez, I 

could not have survived without you. You’ve been with me for the whole rollercoaster ride of this thesis, 

as well as field trips, coffees and many, many beers. Thanks for dipping your toes into insanity with me. 

 

There is one person in particular who remained by my side, bringing me hope and making me 

smile through the stress, sweat, blood and tears, despite being on the other side of the world. Thank you 

Léandre.  Here’s to the next chapter of our lives. 

 

Finally, thank you to my family. Mum and Dad, you have been so generous and supportive 

throughout this experience. You have no idea how much I appreciate everything you’ve done to help 

get me here, including the endless cups of tea, the farm retreats and the life advice. 



Chapter I
Introduction



2



3

1 Introduction

1.1 General Introduction

The application of the plate tectonic paradigm and a uniformitarian approach to interpret the 

Precambrian Earth remains a contentious issue. Similarities between ancient and modern rock types 

have prompted many authors to invoke modern plate tectonics by 3000 Ma (Cawood, et al., 2006; 

Condie & Kröner, 2008; Smithies, et al., 2005; van Hunen & Moyen, 2012), or even earlier (Furnes, et 

al., 2015), with its operation becoming widespread after 2700 Ma (Condie, 2008). However, a number 

of the petro-tectonic assemblages and plate tectonic indicators that we use to track the role of plate 

tectonics, including ophiolite sequences, blueschist facies and ultra-high-pressure metamorphism, did 

not appear until ca. 1000 Ma (Hamilton, 1998; Stern, 2005; Stern, 2007). Based on this, Stern (2007) 

suggests that there is a progression from an episodic plate tectonic regime capable of lithosphere 

recycling and generation of arc-like magmas at ~ 1900 Ma, with sustainable, deep subduction of 

negatively buoyant oceanic lithosphere beginning in the Neoproterozoic. Alternatively, the global 

adoption of a plate tectonic regime is suggested to be episodic and diachronous during the Archaean 

(O’Neill, et al., 2007; van Hunen & Moyen, 2012) or a gradual transitional from a plume-lid regime to 

a plate tectonic regime from Archaean to the Phanerozoic (Fischer & Gerya, 2016a; Fischer & Gerya, 

2016b). 

 Magmatism and tectonic activity of the Earth are, in essence, the surficial manifestation of the 

global thermal budget balancing the loss of heat through mantle convection with heat production, 

primarily generated through radioactive decay (Jaupart, et al., 2007, and references therein). It is 

widely accepted that the mantle was hotter in the early Earth and has since undergone secular cooling 

(Korenaga, 2008a; Korenaga, 2008b; Labrosse & Jaupart, 2007; Schubert, et al., 1980), with ambient 

mantle temperatures at ca. 3000–2500 Ma between 150 and 250 °C higher than present day (Ganne & 

Feng, 2017; Herzberg, et al., 2010). Elevated mantle temperatures likely affected the composition and 

thickness of oceanic lithosphere, as well as the rheology, composition and tectonic processes of the 

continental lithosphere (Burov & Yamato, 2008; Burov, 2011; Davies, 1992; Sizova, et al., 2010; van 

Hunen & van den Berg, 2008; Yamato, et al., 2008). 

 In order to understand the evolution of plate tectonics and the continental crust, we turn to 

the crustal record. This in itself presents geographical and statistical biases, representing a system 
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continually affected by recycling, surface erosion, subduction-zone recycling and overprinting during 

crustal reworking (Clift & Vannucchi, 2004; Hawkesworth, et al., 2009; Hawkesworth & Kemp, 2006a). 

Crustal growth models indicate that a significant proportion (~65%) of the continental crust had been 

extracted from the mantle by the end of the Archaean, with growth rates decreasing after ca. 3000 Ma, 

coinciding with elevated crustal reworking as indicated by zircon Hf isotopic record (e.g. Belousova, 

et al., 2010; Dhuime, et al., 2012). Archaean crust, however, represents a relatively low proportion of 

the continental crust exposed today, reflecting a low preservation rate and intense crustal recycling 

and reworking in the early Earth, limiting both surface exposure and, consequently, the record of early 

Earth processes. The igneous and detrital zircon record displays successive peaks, which are interpreted 

as episodes of discrete juvenile crust production and preservation (Cawood, et al., 2013; Condie, et 

al., 2011b; Hawkesworth & Kemp, 2006b). The Precambrian geological record shows peak activity at 

3500 Ma, 2700 Ma, 2100–1900 Ma and 1100 Ma (Condie, 1998; Condie, et al., 2005; Condie, et al., 

2011a; Kemp, et al., 2006; McCulloch & Bennett, 1994) associated with crust production, supercraton/

continent formation and orogenesis. These peaks have multiple interpretations including mantle 

avalanche events (Condie, 1998) and spikes in super-plume activity (Albarède, 1998; Stein & Hofmann, 

1994), or are alternatively correlated with the timing of supercontinent assembly and magmatism 

(Campbell & Allen, 2008; Taylor & McLennan, 1995). Hawkesworth, et al. (2009), however, note 

that these peaks may simply represent ideal preservation conditions. Given the ambiguous nature of 

these crystallisation peaks, exploration of regions that contain significant additions of juvenile crust 

between these events, such as the ca. 2300 – 2100 Ma crust of the West African Craton (Abouchami, 

et al., 1990; Boher, et al., 1992), may provide insight into global crustal and tectonic transitions of the 

early Earth.

 There are many changes documented in the magmatic and the metamorphic record that 

coincide with the Archaean-to-Proterozoic transition, and the hypothesised advent of plate tectonics. 

Keller and Schoene (2012) describe a significant disruption in the secular evolution of the geochemical 

characteristics of mafic and felsic lithologies occurring at the Archaean-Proterozoic boundary, 

which are associated with changes in the degrees of mantle melting, crustal thickness and the rise 

of atmospheric oxygen and potentially reflect a major change in global geodynamics. MgO-rich 

komatiites are produced during high degrees of partial melting of a hot mantle (Condie, 1994; Condie 

& Benn, 2006; De Wit & Ashwal, 1997), and are found in far greater abundance in the Archaean 

than in either the Proterozoic or the Phanerozoic. Similarly, felsic rocks display strong compositional 
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variation at the Archaean-Palaeoproterozoic boundary, with Archaean crust dominated by the grey 

gneisses including the tonalite-trondhjemite-granodiorite (TTG) suite, minor amphibolites and 

paragneisses. The TTG suite is characterised by high Na2O and SiO2 concentrations, high light rare 

element (LREE) over heavy rare earth element (HREE) ratios and the absence of positive or negative 

Sr and Eu anomalies (Jahn, et al., 1981; Moyen, 2011; Moyen & Martin, 2012), and are derived from 

the partial melting of hydrous metabasalts at depth. There are two contrasting schools of thought for 

their genesis; the first invokes subduction of oceanic crust, often involving young hot lithosphere to 

transport hydrated basalts to depth (Drummond & Defant, 1990; Halla, et al., 2009; Laurent, et al., 

2014; Moyen, 2011), and the second suggests that TTGs are generated during the delamination of an 

over-thickening mafic crust (Atherton & Petford, 1993; Bédard, 2006; Smithies, 2000). Magmatism 

in the Neoarchaean reveals greater petrological and geochemical diversity with the emplacement of 

TTGs followed by high-K granitoids, two mica-granites and late sanukitoids (Laurent, et al., 2014; 

Martin, et al., 2009; Zeh, et al., 2009). The sanukitoids series have potassic calc-alkaline to alkali-

calcic, metaluminous compositions and are enriched in both incompatible elements, and Ni and Cr, 

suggesting both crustal and mantle-derived contributions, or contamination during melting from 

basic to ultrabasic rocks (Laurent, et al., 2014; Martin, et al., 2009). As such, they are interpreted as the 

product of the interaction of melts derived from enriched crustal material and mantle peridotite, and 

are therefore a proposed proxy for the development of subduction-related processes at the Archaean-

Proterozoic boundary (Heilimo, et al., 2010; Laurent, et al., 2011; Moyen, et al., 2003). 

Phanerozoic versus Precambrian orogenesis

In order to understand the development or onset of the plate tectonic regime, many geologists have 

long relied upon uniformitarianism, interpreting features of ancient terranes as analogues to modern 

geological formation (Cawood, et al., 2009; Condie & Benn, 2006; Condie & Kröner, 2008; Ernst, 

2009; Stern, 2005; Windley, 1981). Alternatively, based on archetypal features of Archaean provinces, 

authors have invoked unique geodynamic settings for crustal evolution during the early Earth 

(Bédard, et al., 2003; Bédard, et al., 2013; Chardon, et al., 1998; Hamilton, 1998; Smithies, et al., 

2003; Van Kranendonk, et al., 2007). Here we explore the characteristics and tectonic differences of 

Phanerozoic, Proterozoic and Archaean orogens, in order to discuss their geodynamic significance 

and  the contrasting schools of thought regarding Precambrian tectonics. 
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 The modern plate tectonic paradigm is largely based on our understanding and documentation 

of Phanerozoic orogens that form along convergent plate margins in association with the subduction 

of oceanic lithosphere. Convergence and lateral shortening are responsible for the accretion of 

mobile orogenic belts or terranes with contrasting tectono-metamorphic histories. The horizontal 

forces generated by subduction lead to the centripetal growth of continental crust, evidenced by the 

amalgamation of younger terranes on continental margins and lateral age gradients (Moresi, et al., 

2014; Percival, et al., 2006). In general, Phanerozoic accretionary orogens comprise accretionary 

wedges, exotic crustal fragments, volcanic arcs and associated back arcs, ophiolites, clastic sedimentary 

basins and distinct metamorphic terranes (Cawood, et al., 2009; Condie, 2005; Hyndman, et al., 

2005). The forearc is characterised by low heat flow decreasing in a trenchward direction with the 

downgoing cold lithosphere recording a low geothermal gradient of 5–10 °C/km, characteristic of 

a “cold” orogen. In contrast, the magmatic arc and the backarc domains are characterised by high 

heat flow and high geothermal gradients between 20 and 40 °C/km (Hyndman, et al., 2005). The 

concurrent burial and metamorphism of the accretionary prism and rocks of the arc and back-arc 

domains under blueschist-to-eclogite facies metamorphic conditions and amphibolite-to-granulite-

facies metamorphic conditions, respectively, and their subsequent juxtaposition, creates a thermal 

asymmetry within the accretionary orogenic systems. The duality of thermal regimes represents a 

hallmark indicator of modern accretionary orogens generated in a plate tectonic regime (Brown, 

2006).

 Continued convergence results in the closure of oceanic basins, the onset of collision and the 

tectonic assembly of domains within the accretionary orogen or exisiting continental lithosphere, 

exemplified by the Alpine-Himalayan Orogen. In this setting, lateral shortening is accommodated 

by the development of major thrust faults, nappe stacking and heterogeneous crustal thickening 

within the accretionary wedge and foreland belts and basins (Dahlen, 1990). The resulting elevated 

topographic profiles are continually subjected to erosional and tectonic processes that ultimately 

remove the overburden, exposing the high-pressure rocks from deep within the orogen that yield key 

information regarding the tectonic processes of Phanerozoic collisional orogens. First documented 

in the Phanerozoic Western Alps continental collisional belt by Chopin (1984) and in the ca. 400 Ma 

Caledonides of Norway (Smith, 1984), coesite inclusions in garnet and clinopyroxene porphyroblasts 

within high-grade blueschist domain and eclogite pods revealed the burial of continental upper crustal 

rocks within the subduction zone to depths of approximately 100 km (~ 30 kbar) and their subsequent 
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return to the surface (Chopin, 1984; Chopin, 2003; Smith, 1984). The interpreted mechanism for the 

burial involves the entrainment of tracts of the leading edge of a continental plate, attributed to body 

forces during incipient collision (Chopin, 2003, and references therein). Greater debate, however, 

surrounds the mechanism for the exhumation of ultra-high pressure (UHP) rocks. Petrological and 

isotopic data reveal simultaneous high cooling rates and high decompressions rates, representative 

of rapid exhumation rates of 1–2 cm/yr (Burov, et al., 2001; Doin & Henry, 2001; Hacker, et al., 

2000), with observed concurrent cooling during exhumation (Carswell & Zhang, 1999; Chopin, 1984) 

precluding entrainment of UHP metamorphic rocks during the diapiric ascent of plutons as a viable 

exhumation mechanism. Burov, et al. (2001, and references therein) summarised multiple levels of 

exhumation in a continental collision zone. They propose that exhumation of low-pressure–low-

temperature rocks of the accretionary prism can be attributed to classical corner flow, whilst deeper 

high-pressure–high-temperature segments of the crust are exhumed through positive buoyancy and 

ascending shear flow. Alternatively, exhumation of the deepest material is attributed to convective 

instabilities generated through heating of crustal material by the overlying asthenospheric mantle 

(Burov, et al., 2001), or to the break off subducted lithosphere and its subsequent exhumation along 

the subduction channel due to its relative positive buoyancy (Gerya, et al., 2002). These mechanisms 

are then complemented by the removal of overburden and thinning of the crust during extensional 

tectonics. Extension is attributed to extensional collapse (Andersen, 1998), lateral, ductile flow of a 

weak, partially molten lower crust (Vanderhaeghe & Teyssier, 2001a; Vanderhaeghe & Teyssier, 2001b) 

or, alternatively, to slab rollback (Brun & Faccenna, 2008), ultimately exposing the complex melange 

of metamorphic terranes observed in orogenic belts today. 

 Numerical experiments and thermomechanical modelling (Burov, et al., 2014; Burov & Yamato, 

2008; Faccenda, et al., 2008; Yamato, et al., 2007) examining the role and interaction of these processes 

are complemented and constrained by petrological evidence and the determination of P-T-t-d paths 

of metamorphic terranes (e.g. England & Thompson, 1984), which allow us to calculate transient 

geotherms within the crust during orogenesis. This knowledge often guides interpretation of early 

Earth tectonics or alternatively highlights the differences in architecture, processes and geotherms that 

characterise Archaean and Palaeoproterozoic provinces. The following section explores the unique 

characteristics of Precambrian orogens and the range of proposed geodynamic frameworks, including 

ambiguity of evidence between different end-member models. 
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 Archaean provinces, and and some Palaeoproterozoic terranes, frequently display a unique 

crustal architecture characterised by narrow greenstone belts, vast granite-gneiss terranes dominated 

by TTG magmatism and craton-scale shear zones. The interpreted geodynamic significance of such 

terranes follows two schools of thought, the first of which regards granite-greenstone provinces as 

ancient analogues of the modern, horizontal, subduction-driven plate tectonic regime (Cawood, et 

al., 2006; Condie & Benn, 2013; Condie & Kröner, 2008). In this model, crustal-scale shear zone 

are interpreted as major thrust related sutures. The second school of thought invokes a unique 

geodynamic model for the early Earth (Bédard, 2003; Bédard, et al., 2013; Smithies, et al., 2003). 

Archaean metamorphism predominantly preserves non-linear exposures of greenschist to medium-

pressure granulite facies rocks, with no record of blueschist facies metamorphism, nor deep continental 

subduction (Brown, 2007, and references therein). Strain patterns in some Archaean provinces define 

dome and keel geometries with strain trajectory triple junctions associated with homogeneous 

distributed deformation. These strain patterns are interpreted as the product of both body forces exerted 

by diapiric structures and regional horizontal shortening reflecting boundary forces (Bouhallier, et al., 

1995; Choukroune, et al., 1995). Gravitational instabilities between the thick, dense overlying (flood)

basalts or greenstone cover and the underlying warm, felsic and less dense granitoid-dominant lower 

crust result in a density inversion (Abbott & Hoffman, 1984; Chardon, et al., 1996; Chardon, et al., 

1998; Hoffman & Ranalli, 1988; Taylor & McLennan, 1985; Van Kranendonk, et al., 2004; West & 

Mareschal, 1979). Synformal structures commonly observed in anastomosing greenstone belts are 

attributed to the downward advection or sagduction of cold dense material, and elliptical foliation 

patterns form during the diapiric emplacement of high-viscosity granitoids (Chardon, et al., 2002; 

Choukroune, et al., 1995). The dome-and-keel geometries contain vertical stretching lineations at 

the contact between the two domains and are thus interpreted as the result of “vertical” tectonics 

(Bouhallier, et al., 1995; Choukroune, et al., 1995; Lompo, 2010; Marshak, 1999; Van Kranendonk, et 

al., 2004; Vidal, et al., 2009). 

 However, the dichotomic debate between vertical and horizontal tectonics has recently been 

questioned by a number of authors (François, et al., 2014; Rey, et al., 2014; Thébaud & Rey, 2013). 

François, et al. (2014) integrated structural, metamorphic and geochronological studies in the Archean 

East Pilbara granite-greenstone terranes, which revealed the rapid burial (9–11 kbar, 450–550 °C) 

of metabasalts and metasediments and their subsequent exhumation during partial melting of the 

lower crustal and the formation of granitoid domes. Complementary thermomechanical modelling 



9

revealed a diverse range of apparent geothermal gradients (10–45°C/km) (François, et al., 2014). 

In addition, based on numerical experiments, Thébaud and Rey (2013) argue that sagduction can 

generate significant lateral shortening and intraplate deformation. The rapid burial of supracrustal 

sequences and associated cold apparent geothermal gradients are typically attributed to subduction 

along a plate boundary, however,  both François, et al. (2014) and Thébaud and Rey (2013) highlight 

the potential of sagduction as a viable alternative mechanism for burial and exhumation. A similar 

mechamism was proposed by Ganne, et al., (2014) for  high-pressure (>10 kbar) volcano-sedimentary 

Palaeoproterozoic rocks of the West African Craton, which were exhumated from lower crustal depths 

through entrainment in ascending granitoids. It was recented noted, however,  by Rey, et al. (2014) 

that sagduction and subduction are not neccessarily mutally exclusive when dealing with elevated 

amntle temperatures. Numerical modelling suggests that early continents derived from differentiation 

of thick oceanic plateaus underwent intraplate gravitational collapse, which generated sufficient lateral 

forces and buoyancy contrasts to initiate episodic subduction of adjacent oceanic lids. Using this 

method, Rey, et al., (2014) were able to generate a self-consistent geodynamic framework explaining 

multimodal volcanism and TTG melts and formation of a deep mantle root, characteristic of Archaean 

cratons, as well as coexisting stagnant-lid and subduction-like processes. Given these arguments, 

distinguishing between vertical and horizontal tectonics and different geodynamic settings on the 

basis of deformation and apparent geothermal gradients is remains problematic and nuanced. 

 The third end-member orogenic model invoked in the Precambrian tectonic debate is the 

“hot-orogen” model proposed for young, hot Precambrian orogens, sourcing evidence from field 

observations, strain patterns and analogue and numberical models. In this model, bulk horizontal 

contraction is accommodated by homogeneous deformation and metamorphism and lateral crustal 

flow due to rheologically weakened lithosphere (Chardon, et al., 2009; Chardon, et al., 2011; Cruden, 

et al., 2006; Rey & Houseman, 2006). The rheologically weak lithosphere prohibits the formation of 

both significant topographic relief and crustal-scale detachments capable of exhuming the lower crust. 

The hot-orogen mode is invoked for Precambrian accretionary and collisional orogens (e.g. Cagnard, 

et al., 2007; Vidal, et al., 2009) as well as wide, mature Phanerozoic orogens such as the Variscan Belt 

(Schulmann, et al., 2008). 

 Whilst the debate surrounding early Earth tectonics and geodynamics continues to focus on 

finite timing and end-member models, other datasets suggest a more gradual progression towards the 
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modern plate tectonic regime. In the metamorphic record, Archaean metamorphic rocks commonly 

exhibit average metamorphic conditions from sub-greenschist facies to granulite facies with no 

sharp lateral metamorphic breaks (e.g. Goscombe, et al., 2009; Komiya, et al., 2002; Percival, et al., 

1992). The Neoarchaean was marked by the coeval appearance of ultra-high temperature (UHT) and 

eclogite-high-pressure granulite (E-HPG) facies metamorphism, interpreted by Brown (2006; 2007) 

as a key marker for the onset of a transitional Proterozoic plate tectonic regime involving increasingly 

widespread subduction-like process transitioning to self-sustaining subduction systems around the 

globe. It was not until the Neoproterozoic that the classic metamorphic indicators of the modern 

plate tectonic regime appearance including blueschist facies metamorphic conditions and ultra-high 

pressure assemblages (Stern, 2005; Stern, 2007), suggesting the progressive evolution and adoption of 

present day subduction dynamics.

 Many datasets derived from the geological record suggest the Earth was going through 

significant geodynamic changes at the Archaean-Palaeoproterozoic boundary, which possibly 

extended into the Palaeoproterozoic (e.g. Brown, 2007; Condie, 1997; Keller & Schoene, 2012). Given 

the breadth of time for which estimates of the commencement of plate tectonics span (~700 Ma to 

>4000 Ma: Harrison, et al., 2005; Sleep, 2005; Stern, 2007; van Hunen & Moyen, 2012), a focus on 

the geological record during this transitional period is warranted. The Palaeoproterozoic provinces 

of the West African Craton are characterised by juvenile crust composed of volcano-plutonic belts 

and granite-gneiss domains similar to Archaean granite-greenstone provinces (Abouchami, et al., 

1990; Lompo, 2010; Milési, et al., 1992; Taylor, et al., 1992; Vidal, et al., 2009).The craton represents 

a significant crustal growth event between the two global peaks in juvenile crust production and the 

first orogenic event during a period of global orogenesis between 2100 and 1800 Ma, heralding the 

amalgamation of the first Palaeoproterozoic supercontinent, Nuna (Columbia) (Rogers & Santosh, 

2002; Zhao, et al., 2002; Zhao, et al., 2004). As such, the West African Craton provides a unique 

opportunity to explore the enigmatic tectonic regime of the Proterozoic. 

1.2 West African Craton Geology

1.2.1 Introduction

The Palaeoproterozoic (2300–2070 Ma) West African Craton represents one of Earth’s oldest 

Palaeoproterozoic accretionary orogens (Windley, 1992). This orogeny is associated with high 
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Fig. 2.1. Simplified geological map of the West African Craton, showing key geological provinces (modified after Ennih 

& Liégeois, 2008). 

production rates of juvenile crust and extensive, protracted magmatism (Abouchami, et al., 1990; 

Condie, 2007), forming between two global crustal growth maxima at 2700 and 1900 Ma (Cawood, et 

al., 2013; Condie, 1998; Condie, et al., 2005). The formation and deformation of the craton precedes 

the amalgamation of the first Palaeoproterozoic supercontinent, Nuna (Columbia) and a major period 
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of global orogenesis between 2100 and 1800 Ma (Rogers & Santosh, 2004; Zhao, et al., 2002; Zhao, et al., 

2004). The following section provides the geological setting of the West African Craton, highlighting 

controversies that persist in the literature, reminiscent of those that arise in the Neoarchaean record.

1.2.2 Geological Setting 

The West African Craton consists of two major geological provinces: the Reguibat Rise of northwest 

Africa and the Leo-Man Rise of western Africa (Fig. 2.1) (Bessoles, 1977b; Black, 1980; Rocci, et al., 

1991). The Reguibat Rise extends across southern Morocco to southern Algeria, whilst the Leo-Man 

Rise is exposed throughout Sierra Leone, Liberia, Guinea, Ivory Coast, southern Mali, Burkina Faso, 

Ghana and Niger, and includes the Kédougou-Kéniéba and Keyes inliers of Senegal and western Mali. 

The craton is centrally overlain by the intracontinental Mesoproterozoic to Devonian Taoudeni Basin 

and the Neoproterozoic Volta Basin in the southeast. The entire craton is bounded to the east and 

west by Pan African-aged mobile belts (Ennih & Liégeois, 2008; Schluter & Trauth, 2008; Villeneuve 

& Cornée, 1994). Prior to the opening of the Atlantic Ocean in the Jurassic, correlations are made 

between the West African Craton, the São-Luís Craton and the north-eastern extent of French Guiana 

(Klein, et al., 2005; Klein & Moura, 2008; Ledru, et al., 1994; Nomade, et al., 2003; Vanderhaeghe, et 

al., 1998).

 Both the Reguibat Rise and the Leo-Man Rise each comprise an Archaean domain in the 

west and a Palaeoproterozoic domain to the east, separated by major shear zones (Fig. 2.1) (Black, 

1980). The Archaean nuclei of the Leo-Man Rise comprises the Kenema-Man Domain, consisting 

of tonalite-trondhjemite-granodiorite gneisses emplaced in three discrete pulses at 3600–3500 Ma, 

3260–3050 Ma and 2960–2850 Ma, intercalated with linear belts of supracrustal rocks including 

basalts, BIFs, komatiites and minor sedimentary sequences (Rollinson, 2016, and references therein). 

Crust formation in the Leo-Man Rise is concomitant with the magmatism of the Reguibat Rise 

(Potrel, et al., 1998; Potrel, et al., 1996). The Kénéma-Man Domain was affected by two Archaean 

orogenic events, including the Leonian (3500–2900 Ma) and the Liberian (2900–2600 Ma) events 

(Bessoles, 1977b; Rollinson, 2016; Tagini, 1971a), associated with amphibolite- to granulite facies 

regional metamorphism (Kouamelan, et al., 1998; Kouamelan, et al., 1997; Thiéblemont, et al., 2001). 

The  final orogenic event is attributed to the accretion of the Palaeoproterozoic domains during the 

Eburnean Orogeny (ca. 2100 Ma) (Abouchami, et al., 1990; Boher, et al., 1992; Liégeois, et al., 1991).

 Palaeoproterozoic rocks of the West African Craton form the eastern domains of the 
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Reguibat and Leo-Man Rises, known as the Yetti-Eglab and Baoulé-Mossi Domains, respectively. 

The Palaeoproterozoic Baoulé-Mossi domain of the West African Craton (WAC) is characterised by 

elongate meta-volcanic greenstone belts, meta-sedimentary basins, and large granite-gneiss provinces 

consisting of variably deformed grey gneisses and tonalite-trondhjemite-granodiorite (TTG) suites, 

separated by craton-scale shear zones (e.g. Abouchami, et al., 1990; Bessoles, 1977b; Feybesse & 

Milési, 1994). Volcanic and volcano-sedimentary sequences for the Birimian Supergroup were first 

described in the Birim Valley in Ghana by Kitson (1918). Greenstone belts predominantly comprise 

metamorphosed Birimian volcanic sequences, which range in composition from tholeiitic and calc-

alkaline basalts through to rhyolites and associated minor volcaniclastic, greywacke and chemical 

sedimentary sequences (Baratoux, et al., 2011; Boher, et al., 1992; Doumbia, et al., 1998; Pouclet, et 

al., 2006). Birimian volcano-sedimentary rocks are made of low-grade argillite, shale, greywacke and 

rare intercalated intermediate volcanoclastic or volcanic layers (Adadey, et al., 2009; Agyei Duodu, 

et al., 2009; Junner, 1940). The youngest Palaeoproterozoic sequence comprises fluvio-deltaic detrital 

sedimentary formations of the Tarkwa Group, which are often spatially restricted to fault bounded 

basins overlying central portions of greenstone belts (Ledru, et al., 1994). Tarkwaian rocks consist of 

conglomerates, quartzites and immature sediments, defined by the sequences exposed in the Ashanti 

Belt in southern Ghana (Junner, 1935; Perrouty, et al., 2012). Timing of deposition was originally 

constrained by detrital zircons from the basal units of the formation yielding single U-Pb and Pb-Pb 

ages between ca. 2150 and 2143 Ma (Davis, et al., 1994; Hirdes & Nunoo, 1994). The maximum age 

of deposition has subsequently been revised to 2107 – 2097 Ma (Perrouty, et al., 2012; Pigois, et al., 

2003). Tarkwa Group sedimentary rocks are interpreted as syn-orogenic to late stage basins (Davis, 

et al., 1994; Perrouty, et al., 2012), or alternatively as a molasses sequence deposited at the onset of 

deformation in a foreland basin (Eisenlohr & Hirdes, 1992). 

 Craton-scale isotopic studies using whole rock Nd and Lu-Hf analysis of magmatic and 

detrital zircons predominantly indicated a radiogenic source for the Palaeoproterozoic crust (Abati, 

et al., 2012; Abouchami, et al., 1990; Block, et al., 2016a; Boher, et al., 1992; Klein, et al., 2005; 

Tapsoba, et al., 2013). Hf-and Nd-isotope signatures yield model ages on average between 2500 and 

2100 Ma, indicating short crustal residence after mantle extraction. A number of studies, however, 

reveal negative εNd(t) and εHf(t) values in far south-eastern Ghana and southern Mali, indicating an 

older crustal influence or reworking of Archaean crust, with model age ranging from 4000 to 2800 

Ma in southern Mali (Parra-Avila, et al., 2016; Petersson, et al., 2016; Taylor, et al., 1992). The oldest 
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detrital zircons in the Palaeoproterozoic domain yield U-Pb ages between ca. 3600 and 2700 Ma 

sourced from southern Mali (Parra-Avila, et al., 2016). These ages correlate well with the Kénéma-

Man Domain, yet are not found elsewhere in the craton. Inherited zircon cores from throughout the 

domain predominantly yield ages between ca. 2300 and 2200 Ma (de Kock, et al., 2011; Gasquet, et al., 

2003; Siegfried, et al., 2009; Thomas, et al., 2009), whilst the oldest recorded crystallisation ages are 

yielded by granodiorite gneisses in Burkina Faso at 2265 ± 17 Ma (Parra-Avila, et al., 2017) and 2253 

± 9 Ma (Tshibubudze, et al., 2013). 

 Bimodal volcanism of the Birimian greenstone belts is dated across the craton at between 

2300 and 2180 Ma (Block, et al., 2016a; Delor, et al., 1995; Feybesse, et al., 2006; Hirdes & Davis, 

1998; Hirdes, et al., 1996; Hirdes, et al., 2007). Similar age ranges are yielded by the earliest phase of 

TTG and calc-alkaline plutonism in Ghana (de Kock, et al., 2011; Doumbia, et al., 1998; Feybesse, 

et al., 2006; Siegfried, et al., 2009), Burkina Faso (Parra-Avila, et al., 2016; Tshibubudze, et al., 2013; 

Tshibubudze, et al., 2015), Ivory Coast (Gasquet, et al., 2003; Pouclet, et al., 2006) and Senegal (Dioh, 

et al., 2006; Gueye, et al., 2008; Gueye, et al., 2007), with granitoid emplacement occurring near 

continuously until 2100 Ma. Post-2100 Ma volcanism and calc-alkaline plutonism is documented 

in Kedougou-Kéniéba Inlier of Senegal (Hirdes & Davis, 2002), prompting authors to propose a 

diachronous accretion of the Palaeoproterozoic crust; however, magmatism in the remainder of the 

craton at this time is limited to the emplacement of late potassic granites and leucogranites along the 

Palaeoproterozoic-Archaean boundary and minor occurrences in southern Ghana (Egal, et al., 2002; 

Gueye, et al., 2007; Hirdes, et al., 1992; Hirdes, et al., 2007). 

 Deformation and metamorphism of the Palaeoproterozoic domains is attributed to the 

Eburnean Orogeny (2150 – 2070 Ma) (Bonhomme, 1962; Feybesse, et al., 2006). Eburnean deformation 

is characterised as an early crustal thickening event, often associated with extensive magmatism and 

greenschist to granulite facies metamorphism, followed by the development of craton-scale shear zones 

during transcurrent tectonism (Baratoux, et al., 2011; Eisenlohr & Hirdes, 1992; Feybesse, et al., 2006; 

Hein, 2010; Jessell, et al., 2012; Perrouty, et al., 2012; Tagini, 1971a; Vidal, et al., 2009). The early phase 

of deformation was responsible for juxtaposition of domains of different composition and grade and 

the generation of high-grade terranes, which authors attribute to a range of mechanisms, discussed in 

detail in Section 2.3. Major strike-faulting in the later stages of the Eburnean (ca. 2100 Ma) is commonly 

associated with a pervasive greenschist facies overprint and wide-spread gold mineralisation hosted in 

shear zones and palaeoplacer deposits (Feybesse, et al., 2006; Galipp, et al., 2003; Ledru, et al., 1991; 
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Milesi, et al., 1989; Oberthür, et al., 1998; Pigois, et al., 2003; Vidal, et al., 2009). Terminal collision or 

docking of the Palaeoproterozoic and Archaean domains is constrained by formation and exhumation 

of high-pressure granulite facies rocks between 2050 and 2030 Ma (Kouamelan, 1996; Kouamelan, et 

al., 1997; Pitra, et al., 2010). The craton records very few magmatic ages after ca. 1980 Ma, indicating 

a prolonged period of quiescence until ca. 1000 Ma (Ennih & Liégeois, 2008, and reference therein). 

This dramatically contrasts the global crustal and orogenic record, which is dominated by the elevated 

crustal growth and widespread formation of linear, mobile orogenic belts during the formation and 

assembly of the supercontinent, Nuna (Condie, 1998; Zhao, et al., 2002).

1.2.3 Controversies

1.2.3.1 Stratigraphy and nomenclature 

The Palaeoproterozoic West African Craton is characterised by narrow volcanic greenstone belts, wide 

meta-sedimentary “basins” and vast granite-gneiss terranes, bounded and separated by crustal-scale 

transcurrent shear zones that formed during the Eburnean Orogeny. Sporadic exposures of high met-

amorphic grade gneissic to migmatitic rocks occur throughout the Baoulé-Mossi domain, juxtaposed 

with low-grade rocks. Questions that continue to arise include: What is the tectono-stratigraphic ar-

chitecture of the craton? Can we correlate stratigraphic units and deformation events at a craton-scale? 

Was the Eburnean Orogeny monocyclic or polycyclic? What do the strain patterns and metamorphic 

record of the craton tell us about the tectonic style during the Eburnean? 

Previous studies have employed geochemical, geochronological and structural investigations in 

order to determine the stratigraphic framework, the tectonic environment and the phases and styles 

of tectonism recorded within the craton. Persisting controversies and questions regarding the Palae-

oproterozoic evolution of the craton are mainly due to the limited geochemical, metamorphic and 

geochronological data, and the integrations of such datasets at a regional or craton scale, as well as 

complex geo-political relationships. This has produced a variety of evolutionary models for the West 

African Craton (Abouchami, et al., 1990; Baratoux, et al., 2011; Block, et al., 2016b; Boher, et al., 

1992; de Kock, et al., 2012; Egal, et al., 2002; Feybesse, et al., 2006; Feybesse & Milési, 1994; Hein, 

2010; Ledru, et al., 1994; Liégeois, et al., 1991; Milesi, et al., 1989; Tshibubudze, et al., 2009; Vidal & 

Alric, 1994; Vidal, et al., 2009). 

Some of the earliest controversies generated in literature regarding the West African Craton, arose 
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from conflicting interpretation of the stratigraphy of the craton between French and English geolo-

gists in the 1940 – 1970s. Early literature, predominantly proposed by Anglophone geologists, divided 

the Birimian Supergroup into a lower series of greywackes, phyllites, shales and minor lavas, and 

an upper series of mafic to intermediate lavas and subordinate volcaniclastic rocks, greywacke and 

phyllite (Junner, 1935; Junner, 1940; Kesse, 1985; Ledru, et al., 1989; Lemoine, et al., 1985; Milési, et 

al., 1986). Conversely, francophone geologists proposed a basal Birimian volcanic and volcano-sedi-

mentary unit, overlain by shallow basins filled with flysche-type and molasse sedimentary sequences 

(Aubouin, 1961; Bessoles, 1977b; Tagini, 1971b). In addition, structural, geochemical and isotopic 

studies by Eisenlohr and Hirdes (1992) and Leube, et al. (1990) suggest that the Birimian metavol-

canic rocks and metasedimentary formations are contemporaneous distal, lateral facies equivalents. 

Most recently, Adadey, et al. (2009) and Perrouty, et al. (2012) proposed a stratigraphy for the Birim-

ian Supergroup in southern Ghana using a compilation of the growing geochronological data for the 

region. The stratigraphy comprises the basal Sefwi Group metavolcanics and mica schists (>2174 Ma), 

constrained by the syn-tectonic emplacement of the Sekondi granitoid (Oberthür, et al., 1998). The 

overlying Kumasi Group phyllites and volcanoclastic rocks were deposited between ca. 2154–2125 

Ma, based on detrital zircon ages, syn-depositional volcanism and late-depositional granitoid intru-

sion (Adadey, et al., 2009; Oberthür, et al., 1998; Perrouty, et al., 2012). 

Whilst the advent of precise geochronology has largely settled the stratigraphic debate, there are con-

trasting interpretations of deformation relationships. This includes suggestions of an early deforma-

tion event  recorded by the lower meta-volcanic units that is not recognised in upper meta-sedimen-

tary units, which suggests a polycyclic evolution for the Eburnean Orogeny (de Kock, et al., 2012; 

Feybesse, et al., 1990; Ledru, et al., 1991; Perrouty, et al., 2012). This model suggests that there was an 

early orogenic event prior to the emplacement of the Birimian meta-sedimentary rocks. Authors sug-

gest that high-grade terranes and some greenstone belts record elevated metamorphic conditions and 

polyphase deformation, interpreted as an older basement upon which meta-sedimentary units were 

deposited and subsequently deformed during the Eburnean Orogeny sensu stricto (s.s.) (e.g. Arnould, 

1961; Lemoine, et al., 1990; Perrouty, et al., 2012). The age and terminology of the early deformation 

event differs throughout the Baoulé-Mossi Domain, including the “Burkinian” orogenic cycle in the 

Ivory Coast (2400 – 2150 Ma) (Lemoine, et al., 1990), the “Tangaean” event of Burkina Faso (2170 – 

2130 Ma) (Hein, 2010; Tshibubudze, et al., 2009), or, more recently, “Eburnean I” (2266 – 2150 Ma) 

(Allibone, et al., 2002) or “Eoeburnean” event in Ghana (2195 – 2150 Ma) (Baratoux, et al., 2011; de 
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Kock, et al., 2011; de Kock, et al., 2012; Perrouty, et al., 2012). Early deformation often corresponds 

with an initial phase of magmatic accretion and crustal thickening (e.g. Feybesse, et al., 2006; Milési, 

et al., 1992; Vidal, et al., 2009). Each of these events are interpreted to precede the tectonic assembly of 

the Paleoproterozoic and Archaean domains and transcurrent tectonism and greenschist facies meta-

morphism attributed to the Eburnean Orogeny s.s. (2130 – 1980 Ma) (Feybesse, et al., 2006; Jessell, et 

al., 2012; Ledru, et al., 1991; Lompo, 2010; Oberthür, et al., 1998; Pitra, et al., 2010). 

Monocyclic interpretations for the Eburnean Orogeny deem volcano-plutonic belts and metasedi-

mentary basins to be contemporaneous, lateral facies equivalents or representative of crustal segments 

of varying depths. This interpretation requires greenschist facies metasedimentary provinces to be 

coeval, supracrustal equivalents to high grade metamorphic terranes, which were juxtaposed during 

later deformation (Block, et al., 2015; Block, et al., 2016b; Eisenlohr & Hirdes, 1992; Hirdes, et al., 

1996; Hirdes, et al., 2007; Leube, et al., 1990; Opare-Addo, et al., 1993). These models suggest that 

deformation and metamorphism across the craton reflect a long-lived, progressive orogenic event 

(Block, et al., 2016b; Eisenlohr & Hirdes, 1992; Hirdes, et al., 2003). Given the variety of interpreta-

tions and discrepancies between the terranes, additional geochronologically-constrained structural 

and metamorphic studies are required in order to elucidate the spatial and temporal variations of 

deformation events across the craton.

1.2.3.2 Metamorphic record and tectonic style of the West African Craton

Metamorphism of the meta-volcanic and meta-sedimentary rocks within greenstone belts reveal pre-

dominantly low-grade metamorphism from greenschist to amphibolite facies (Galipp, et al., 2003; 

John, et al., 1999; Kříbek, et al., 2008). In contrast, metamorphism and migmatization of orthogneiss-

es and paragneisses in high-grade terranes is associated with upper amphibolite to granulite facies 

conditions (Bessoles, 1977a; Block, et al., 2015; de Kock, et al., 2011; John, et al., 1999; Opare-Addo, 

et al., 1993), with high-pressure granulites predominantly restricted to the tectonic contact between 

the Archaean Kénéma-Man and Palaeoproterozoic Baoulé-Mossi domains (Pitra, et al., 2010). Whilst 

geochronological data is relatively limited, the timing of Eburnean metamorphism is constrained by 

U-Pb ages of metamorphic monazite, zircon and titanite in between 2110 and 2080 Ma (e.g. de Kock, 

et al., 2011; Oberthür, et al., 1998), with older paroxysmal metamorphism at ca. 2130 Ma proposed 

by Block, et al. (2015; 2016b) based on metamorphic monazite and zircon ages. Sm-Nd garnet-whole 

rock isochron ages from central Ivory Coast are older still at ca. 2150 Ma (Boher, et al., 1992). 
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Analyses of strain patterns and metamorphic relationships have drawn a range of interpretations on 

the tectonic styles and geodynamic mechanisms responsible for the tectonic evolution of the West 

African Craton. Some authors interpret dome and basin geometries within the craton, which they 

suggest was associated with Archaean-like diapirism-related vertical tectonics, with late horizontal 

shortening purely accommodated by transcurrent shear systems (e.g. Lompo, 2010; Pouclet, et al., 

2006; Pouclet, et al., 1996; Vidal, et al., 1996). In such studies, amphibolite facies metamorphism is at-

tributed to contact metamorphism during granitoid emplacement (Debat, et al., 2003; Gasquet, et al., 

2003; Pons, et al., 1995; Soumaila & Garba, 2006). In the case of the Sefwi Greenstone Belt, large tracts 

of regional amphibolite facies gneisses are peculiarly attributed to an underlying, unexposed K-rich 

pluton (Hirdes, et al., 1993). Alternative proposals for orogenic styles in West Africa include “mod-

ern-type” thrust-related tectonics and nappe stacking (Feybesse, et al., 2006; Feybesse & Milési, 1994; 

Milési, et al., 1992). Indeed, the cold (~15°C/km) apparent geothermal gradients deduced for rocks 

metamorphosed at the greenschist-blueschist facies transition are interpreted as evidence of mod-

ern-style subduction during the formation and assembly of the craton (Ganne, et al., 2012). Preserva-

tion of cold geothermal gradients is inconsistent with many studies which interpret deformation and 

metamorphism of the West African Craton as a weak, hot orogen (Caby, et al., 2000; Lompo, 2009; 

Pons, et al., 1995; Vidal, et al., 2009). The weak, hot orogen model consists of extensive magmatism, 

often diapirically emplaced, with subsequent lateral shortening associated with homogeneous thick-

ening and late-orogenic development of large-scale shear zones. The high-pressure granulite facies 

metamorphism at the Archaean-Palaeoproterozoic boundary along the Sassandra Shear Zone in west-

ern Ivory Coast may be elucidated by either crustal thickening by unit stacking in a collisional setting 

or homogeneous thickening of a warm, weak crust (Pitra, et al., 2010). In NW Ghana, late-orogenic 

exhumation of amphibolite-granulite facies rocks occurs during orogenic collapse following crustal 

thickening, with the formation of anatectic domes resembling modern collisional orogens (Block, et 

al., 2016b). Given the diversity of tectonic models, deformation styles and distribution of metamor-

phic terranes proposed for the West African Craton, it is possible that the craton preserved spatial 

and temporal variations in the crust. Elucidation of such variations requires continued integration of 

structural, metamorphic and geochronological studies. 

1.2.3.3 Geodynamic setting and crustal formation

Based on εNd(t) and εHf(t) data, the Palaeoproterozoic crust of the West African Craton displays a dom-

inantly juvenile character (Abouchami, et al., 1990; Block, et al., 2016a; Boher, et al., 1992; Taylor, 
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et al., 1992), with short crustal residence times. Recent studies, however, show a greater Archaean 

influence in southern Mali and far southeast Ghana (Parra-Avila, et al., 2016; Petersson, et al., 2017; 

Petersson, et al., 2016). The magmatic processes and geodynamic setting of juvenile crust formation 

are attributed to a number of scenarios including: an oceanic plateau setting (Abouchami, et al., 1990; 

Boher, et al., 1992); the accretion of multiple volcanic island arcs (Baratoux, et al., 2011; Dampare, 

et al., 2008; Pawlig, et al., 2006; Senyah, et al., 2016; Sylvester & Attoh, 1992); the development of a 

volcanic island arc system within an oceanic plateau setting (Boher, et al., 1992); or intra-cratonic rift-

ing leading to the opening of oceanic domains that were subsequently inverted (Leube, et al., 1990). 

Alternatively, Begg, et al. (2009) suggest that the West African Craton represents the amalgamation of 

Archaean-aged lower-lithospheric domains. 

Geochemical studies reveal the bimodal nature of early volcanism across the craton, with a basal se-

quence of tholeiitic basalts overlain by calc-alkaline volcanic rocks noted in a number of greenstone 

belts across the domain (Abouchami, et al., 1990; Baratoux, et al., 2011; Dampare, et al., 2008; Hirdes, 

et al., 1996; Pouclet, et al., 2006; Senyah, et al., 2016). Lompo (2009) interpret tholeiitic volcanism as 

a mantle plume event, similar to the differentiated oceanic flood basalt analogy proposed by Abouch-

ami, et al. (1990). Intrusive suites in the southern portion of the West African Craton are frequently 

described as tonalite-trondhjemite-granodiorite (TTG) series (Doumbia, et al., 1998; Vidal, et al., 

2009), based on normative feldspar discrimination plots after Barker (1979). These intrusions have 

historically been divided into three main groups, as defined by the primary ferro-magnesian mineral 

and the host domain: 1) variably foliated, amphibole-bearing granitoids hosted in volcanic belts; 2) 

biotite-bearing granites hosted in meta-sedimentary “basins;” and, 3) potassic, alkaline biotite-mus-

covite granites and muscovite leucogranites (Baratoux, et al., 2011; Block, et al., 2016a; Egal, et al., 

2002; Gueye, et al., 2008; Hirdes, et al., 1992; Leube, et al., 1990; Lompo, 2009; Oberthür, et al., 1998; 

Tapsoba, et al., 2013; Vegas, et al., 2008). Extensive geochemical characterisation of these intrusions 

reveal calc-alkaline affinities, negative Nb-Ta, Ti and P anomalies coupled with positive Pb anomalies, 

with diverse Eu and Sr anomalies and REE fractionation patterns (Baratoux, et al., 2011; Block, et al., 

2016a; Egal, et al., 2002; Eglinger, et al., 2017; Feybesse, et al., 2006; Gueye, et al., 2008; Hein, 2010; 

Leube, et al., 1990; Petersson, et al., 2016; Tapsoba, et al., 2013; Vegas, et al., 2008), bearing striking 

similarities to classical arc geochemical signatures (Arculus, et al., 1999). TTG magmas and associ-

ated lavas are interpreted as the production of partial melting of the down-going slab in a subduction 

setting (Baratoux, et al., 2011; Peucat, et al., 2005; Pouclet, et al., 2006; Sylvester & Attoh, 1992), with 
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high-pressure, low-HREE TTGs and LILE-enriched diorites in NW Ghana interpreted as the product 

of delamination of the lower crust and lithospheric mantle (Block, et al., 2016a). 

Whilst these lines of evidence suggest that crustal accretion occurred primarily in a subduction set-

ting, a number of characteristics of the craton do not conform with those of modern accretionary 

orogens. The major site of juvenile crustal growth on the modern Earth is associated with extensive 

magmatism in magmatic arcs forming along convergent plate margins (Arculus, 1994). Lateral accre-

tion of juvenile terranes or mobile belts against older craton margins results in lateral crystallisation 

age gradients and isotopic boundaries (Gastil, 1960; Hoffman, 1988; Zeh, et al., 2009). In the West 

African Craton, significant volumes of juvenile crust form in an oceanic domain, distal to Archaean 

crustal influences. Furthermore, there are no clear age gradients preserved in sub-parallel greenstone 

belts emplaced between 2300 and 2180 Ma. The youngest juvenile crust is located in Kedougou-Kénié-

ba Inlier of Senegal, suggesting a westward gradient (Hirdes & Davis, 2002). Hirdes and Davis (2002) 

propose a major suture in central Ivory Coast, joining an older eastern sub-province with a 50- 100 

M.y. younger western sub-province. A ca. 2130 Ma suture between two crustal blocks is hypothesised 

by Parra-Avila, et al. (2017) for a similar location, based on a comprehensive geochronological tran-

sect across Burkina Faso, northern Ghana, southern Mali and eastern Guinea; however, the studies 

are not in exact agreement, making the extent of the suture somewhat ambiguous. Finally, the meta-

morphic record and litho-structural architecture do not preserve the same asymmetries, exotic crustal 

fragments, accretionary prism and metamorphic conditions as modern accretionary systems, thus 

convoluting the application of a subduction collision model for the West African Craton. 

1.3 Synthesis 

The greenstone-granite-gneiss terranes of the Palaeoproterozoic West African Craton bear a number 

of similarities to Archaean provinces. The lithological assemblage, craton-scale shear zones and dom-

inant low- to medium-grade metamorphism are explained by a variety of geodynamic and tectonic 

models, reminiscent of both Archean and Phanerozoic processes. As such a number of questions arise 

when attempting to elucidate the geological evolution of the region. These include: What was the geo-

dynamic setting in which the juvenile crust was generated and does it conform to the modern plate 

tectonic regime? What were the orogenic processes responsible for the amalgamation and stabilisation 

of such large areas of crust? What are the implications of these finding in understanding the evolution 

of geodynamic processes and lithospheric properties in the early Earth?
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In order to answer these questions, the research in this thesis employs a multi-disciplinary, multi-scale 

approach to understand the crustal and tectonic evolution of the West African Craton during the 

Palaeoproterozoic, focusing on the Sefwi Greenstone Belt and adjacent domains in southwest Ghana. 
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2 Research aims and rationale

2.1 Research aims

The ca. 2300–2070 Ma Palaeoproterozoic rocks of the West African Craton are presently under-

explored, and poorly represented in the global literature regarding Proterozoic geodynamics. It 

represents a unique subset of the crustal rocks forme++d after the Archean-Proterozoic transition, 

with no significant reworking following the craton stabilisation. It thus provides an exceptional 

window into the geodynamic setting and orogenic processes responsible for juvenile crust formation 

and preservation and orogenic processes during an enigmatic period of the Earth’s history. The 

Palaeoproterozoic Sefwi Greenstone Belt of SW Ghana in the West African Craton provides the area 

of focus for this thesis. The primary questions this thesis aims to address include: 

1. What was the structural and metamorphic evolution of the Sefwi Greenstone Belt? 

2. What were the characteristics of Palaeoproterozoic deformation and metamorphism and 

what were the possible driving forces? Furthermore, what insight does this provide into the 

tectonic style of the Eburnean Orogeny and what are the implications for Palaeoproterozoic 

orogenesis?  

3. What was the geodynamic settings which allowed for the formation and preservation of 

large juvenile crust volumes of the West African Craton, following a hypothesised period of 

global tectonic quiescence? Do the geodynamic processes responsible for the formation of the 

West African Craton those active during the Archean or were they formed in a plate tectonic-

setting? How do these processes differ from today? 

 The overarching aim of this thesis is to explore the geodynamic setting of juvenile crust formation as 

well as the orogenic processes preserved in the West African Craton to gain insight into the evolution 

of the plate tectonic regime early in the Earth’s history. Given the temporally and spatially expansive 

nature of this aim, this thesis employs a multi-scale and multi-discipline approach combining field 

evidence, including regional structural and metamorphic mapping, with quantitative P-T-t constraints, 

geochemical and isotopic data.  The following thesis outline addresses different aspects of the three 

primary aims, including the context within existing literature and the methods applied in order to 

explore different aspects of each question. 
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2.2 Thesis outline

This thesis is presented as a series of three manuscripts. As each chapter/manuscript is designed as a 

stand-alone publication, they each require general background information, therefore some repetition 

and overlap may exist between chapters. Chapter IV was submitted for publication in the Journal 

of Metamorphic Geology, and was returned for resubmission by May 2018 pending revisions. The 

manuscripts represented by Chapters III and V are ready for submission at Precambrian Research 

upon finalisation of the thesis.  

2.2.1 Chapter 3: Transtension-related lower crust exhumation in the late stages of the 

Palaeoproterozoic Eburnean Orogeny, SW Ghana: Evidence for diachronous assembly 

of the São Luís-West African Craton 

A number of difficulties arise when applying a uniformitarian approach to understanding Archean 

and Proterozoic terranes, whereby their comparison to modern accretionary and collisional orogens 

contains a multitude of uncertainties due to ambiguous field relationships (e.g. Condie, 1981; de Wit, 

1998), the absence or sporadic formation and preservation of plate tectonic indicators (Hamilton, 

1998; Stern, 2005) and the influence of the warmer upper mantle temperatures in the early Earth 

(Gerya, 2014; Sizova, et al., 2014; van Hunen & Allen, 2011). The ca. 2150–2070 Ma Eburnean–

Transamazonian Orogeny of the West African-Sao Luis Craton represents the first Palaeoproterozoic 

orogenic event during a period of global orogenesis between ca. 2100 and 1800 Ma, heralding the 

first Palaeoproterozoic supercontinent, Nuna (Betts, et al., 2016; Feybesse, et al., 2000; Rogers & 

Santosh, 2002; Zhao, et al., 2004). A number of conflicting tectonic models are invoked for the West 

African Craton, with the lack of consensus primarily resulting from extensive overprinting by late 

transcurrent tectonism, a pervasive greenschist facies metamorphic overprint, poor exposure and 

limited geochronological constraints. Existing tectonic models include crustal thickening through 

thrusting and tectonic stacking during subduction-driven lateral shortening (e.g. Feybesse, et al., 

2006; Feybesse & Milési, 1994; Ledru, et al., 1994; Liégeois, et al., 1991),  archaic dome and basin 

formation associated with granitoid diapirism and greenstone sagduction (e.g. Lompo, 2009; Lompo, 

2010; Pons, et al., 1995), or, alternatively, homogeneous, distributed deformation and metamorphism 

attributed to a Proterozoic hot-orogen model (e.g. Chardon, et al., 2009; Vidal, et al., 2009). 

The primary aim of this chapter was to develop a more detailed regional geological map of the Sefwi 
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Greenstone Belt and the adjacent Sunyani-Comoé and Kumasi Afema Domains. It presents a synthesis 

of the geophysical signatures and petrophysical properties of lithologies within the study area, a new 

regional structural framework and the interpretation of regional airborne geophysical datasets. The 

integration of field observations, a structural framework and regional geophysical datasets constrained 

the interpretation of new litho-structural and metamorphic maps of the study area. Metamorphic 

constraints mentioned in this chapter are presented in Chapter 4, with detailed metamorphic 

petrography, quantitative metamorphic modelling and U-Pb monazite ages. The tectonic evolution of 

southern Ghana is discussed in relation to the deformation and metamorphism of granite-greenstone 

terranes of the West African Craton during the ~2150–2100 Ma Eburnean Orogeny. Finally, structures, 

strain patterns and distribution of tectono-metamorphic domains are compared to those of Archean 

and Phanerozoic orogen in order to better understand the characteristics, tectonic setting and style of 

Palaeoproterozoic orogenesis.

2.2.2 Chapter 4: Petrological and geochronological evidence of collisional orogenesis 

and lower crust exhumation during the Palaeoproterozoic Eburnean Orogeny, SW 

Ghana, West African Craton

Metamorphic conditions and gradients within and between different orogenic provinces inform 

geologists about the tectonic style, crustal architecture and thermal regimes that characterise 

individual orogens and tectonic settings. The metamorphic record of Phanerozoic subduction-related 

orogens, including blueschist facies rocks and ultra-high pressure (UHP) metamorphism contrasts 

the “ordinary” greenschist- to granulite facies metamorphism that dominates most Archean granite-

greenstone provinces (Brown, 2006; Brown, 2007, and references therein). Indeed, the major changes 

in the metamorphic record at the Archean-Proterozoic and the Proterozoic-Phanerozoic transition 

coupled with changes in structural styles that are interpreted as major changes in the global tectonic 

regime (e.g. Condie, 1994a; Stern, 2007). Palaeoproterozoic greenstone-granite-gneiss terranes 

of the West African Craton have often been characterised by apparent homogeneous low-grade 

metamorphism and transcurrent tectonism attributed to the Palaeoproterozoic Eburnean Orogeny 

(ca. 2150 – 2070 Ma) (e.g. Junner, 1935; Leube, et al., 1990), with amphibolite to granulite facies 

metamorphism often interpreted as the product of contact metamorphism (e.g. Caby, et al., 2000; 

Pons, et al., 1995; Vidal, et al., 1996; Vidal, et al., 2009). Small exposures of orthogneisses and 

paragneisses are sporadically preserved throughout the craton, with varying interpretations, ranging 
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from a discordant gneissic basements prompting polycyclic models for the Eburnean Orogeny (e.g. 

de Kock, et al., 2011; Lemoine, et al., 1990), to the interpretation of gneissic and migmatitic textures 

as syn-tectonic granitoid emplacement (Gasquet, et al., 2003), with local migmatisation (Caby, et 

al., 2000). Alternatively, a number of studies have documented transitional greenschist-blueschist 

facies rocks indicative of cold apparent geothermal gradients (~15°C/km) (Block, et al., 2015; Ganne, 

et al., 2012), characteristic of modern subduction-related deformation. Proponents of monocyclic 

orogenesis during the Eburnean Orogeny suggest that low-grade terranes are the supra-crustal 

equivalents of high-grade rocks, metamorphosed during the same tectonic event and subsequently 

juxtaposed during structurally controlled exhumation (Block, et al., 2016; Hirdes, et al., 2007). 

Existing metamorphic studies of greenstone belts in southern Ghana, including the Sefwi and Ashanti 

belts, suggest prevailing metamorphic conditions were greenschist to amphibolite facies (Galipp, et al., 

2003; John, et al., 1999; Klemd, et al., 2002). Thus far, regional scale upper greenschist to amphibolite 

facies metamorphism within the Sefwi Belt is poorly elucidated, with elevated metamorphic grades 

attributed to “the updoming of a large, hidden, underlying potassic pluton” (Hirdes, et al., 1993). 

This chapter aims to explore the metamorphism and tectonic contacts between tectono-metamorphic 

domains within the Sefwi Greenstone Belt relative to the adjacent low-grade volcano-sedimentary 

Sunyani-Comoé and Kumasi-Afema domains. Quantitative assessment of the metamorphic conditions 

are investigated through the construction of whole-rock pseudosections to constrain P-T paths in key 

locations within the study area. New constraints on the timing of metamorphism are provided by new 

in-situ SHRIMP U-Pb dating of metamorphic monazite. These constraints are used to understand 

spatial and temporal variations in the metamorphic conditions and relative timing of metamorphism 

between discrete terranes within the West African Craton. The results of this chapter provide insight 

into the monocyclic versus polycyclic nature of the Eburnean orogeny, aiding our understanding of 

the architecture and assembly of the West African Craton. Finally we aim to discuss the significance of 

these results in understanding Palaeoproterozoic geodynamics. 

2.2.3 Chapter 5: Palaeoproterozoic juvenile crust formation in southern Ghana, West 

Africa: New insights from igneous geochemistry and U-Pb-Hf zircon data

The mechanisms and growth rates of continental crustal genesis have undergone temporal changes 

since the Hadaean as a product of the Earth’s cooling and differentiation. The most important period 
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of change occurs at the end of the Archean Eon, between 3000 and 2500 Ma, by the end of which 

more than 50% of the Earth’s continental crust had formed (Belousova, et al., 2010; Condie, et al., 

2011; Dhuime, et al., 2012; Taylor & McLennan, 1985; Taylor & McLennan, 1995). Archean cratons 

are systematically characterized by greenstone belts, voluminous juvenile tonalite-trondhjemite-

granodiorite granitoids, komatiites and banded-iron formations (Condie, 1994b; Martin, et al., 2005; 

Moyen, 2011; Sylvester, 1994),  commonly bounded by craton-scale shear zones (De Wit & Ashwal, 

1997). In contrast, crustal growth in the Phanerozoic is largely limited to accretionary orogens, 

characterized by calc-alkaline magmatism, lateral age gradients, ophiolite sequences and suturing 

of juvenile crustal ribbons or fragments onto plate margins (Cawood, et al., 2009, and references 

therein).  The Palaeoproterozoic greenstone belts and granite-gneiss domains of the West African 

Craton displays both lithological and architectural similarities to Archean provinces, characterised 

by apparent lack of lateral age gradients and the coeval injection of juvenile TTGs across hundreds 

of kilometres. The magmatic processes and geodynamic settings for its formation, however, continue 

to be debated, with authors invoking an ocean plateau setting (Abouchami, et al., 1990; Boher, et al., 

1992; Lompo, 2009) or the accretion of volcanic island arcs (Baratoux, et al., 2011; Dampare, et al., 

2008; Senyah, et al., 2016; Sylvester & Attoh, 1992). 

 In this chapter, we investigate the geochemical and isotopic signature of magmatic rocks in the 

archetypal Sefwi Greenstone Belt. We define the major suites present in the study and use petrological 

and major and trace element analysis to define possible sources and petrogenetic processes active 

during crust formation. Geochemical analysis is complemented by zircon U-Pb and Lu-Hf isotopy 

to constrain the timing of magma emplacement, as well as the timing of magma extraction from the 

depleted mantle. We present our results within the broader context of magmatism in the West African 

Craton to discuss the crustal evolution of the craton. Finally, this chapter assesses the viability of 

various geodynamic settings for crustal growth in the context of the Archean-Proterozoic transition, 

including subduction-related settings, oceanic plateaus, or tectonically or magmatically over-thickened 

crust (e.g. Bédard, et al., 2003; Defant & Drummond, 1990; Laurent, et al., 2014; Moyen, 2011; Moyen 

& Martin, 2012; Smithies & Champion, 2000).
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2.2.4 Chapter 6: Discussion and conclusions

This chapter provides a synthesis of the research aims and the significance of the results covered in 

this thesis. The discussion is composed of a brief summary of literature regarding the West African 

Craton, including the different geodynamic models proposed for the evolution and preservation of the 

craton. The significance of the metamorphism and deformation attributed to the Eburnean Orogeny 

is then considered in the context of the evolution of metamorphism throughout geologic time. We 

outline the unique nature of orogenic processes recorded in the craton during the Palaeoproterozoic 

at the commencement of a major period of global orogenesis, heralding the supercontinent era. The 

subsequent discussion explores the possible geodynamic setting for the formation of juvenile crust 

preserved in southern Ghana relative to Archean and modern geodynamic processes. Finally we 

discuss the significance of our findings in the West African Craton within the Palaeoproterozoic rock 

record in the context of secular cooling of the Earth and the transition to from Archean geodynamics 

to a modern plate tectonic regime.
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3.0 Introduction

This chapter focuses on the lithologies and deformation sequence preserved in the Palaeoproterozoic 

Sefwi Greenstone Belt and adjacent tectono-metamorphic domains of SW Ghana in the West Afri-

can Craton. We present new litho-structural and metamorphic maps of the study area, which are the 

product of the integration of field mapping, petrophysical data for individual lithologies and regional 

airborne geophysical data sets. The multi-scale structural investigation and incorporation of multiple 

datasets provides insight into the poorly understood structural history, tectonic relationships and pro-

cesses of a sparsely exposed, yet archetypal greenstone belt of the craton. We consider the deformation 

style and history in the context of both existing tectonic models for the West African Craton and oro-

genic models proposed for the early Earth relative to today. 

Metamorphic petrology, quantitative metamorphic estimates and metamorphic monazite U-Pb ages 

referred to in this chapter are discussed in detail in Chapter 4. 
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Chapter 3: Transtension-related lower crust exhumation in the late 
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Abstract

This study presents newly interpreted litho-structural and metamorphic maps of the Sefwi Greenstone 

Belt and volcano-sedimentary domains of southwest Ghana in the Palaeoproterozoic (2300–2070 Ma) 

West African Craton. The integrated use of field observations, structural mapping and interpretation 

of regional airborne geophysical data provides new information on the architecture, deformation 

sequence, overprinting relationships and tectonic evolution of the sparsely exposed region during 

the Palaeoproterozoic Eburnean Orogeny (2150–2070 Ma). This study reveals tectonically juxtaposed 

domains of contrasting metamorphic grade comprising high-grade paragneisses and meta-volcanic 

rocks and low-grade volcano-sedimentary packages, both of which are extensively intruded by multiple 

generations of granitoids. The earliest deformation is characterised by a ubiquitous, bedding-parallel 

metamorphic foliation (S1) preserved throughout the study area, axial planar to poorly preserved 

isoclinal folds. D1 NNW-SSE shortening is associated with high-grade metamorphism with partial 

melting occurring in its later stage. It is interpreted as a crustal thickening event, generating two-

mica and muscovite granites emplaced between 2092 and 2081 Ma, providing a minimum age for D1 

deformation. D2 structures are characterized by a moderate to steeply dipping, WSW-ENE to NE-SW 

striking, penetrative S2 mineral cleavage. The transtensional nature of the deformation is indicated 

by the sub-parallel to coaxial nature of F2 fold axes and L2 stretching lineations, pitching shallowly 

ENE-WSW to NE-SW and striking obliquely to the major shear zones. Under a transtensional regime, 

late-orogenic differential exhumation of the middle and lower crust occurs along NNE-striking 

extensional detachments, coincident with oblique sinistral displacement along NE-SW regional-scale 

shear zones. The timing of exhumation is constrained by metamorphic monazite U-Pb ages at ca. 2073 

Ma. Overprinting by subsequent E-W shortening is attributed to a change in boundary conditions 

and is associated with dextral reactivation of regional NE-SW striking shear zones and refolding of 

earlier structures distal to major shear zones. We propose that the north-western margin of the Sefwi 

Belt represents the collision of southern Ghana and central and NW Ghana/Ivory Coast which display 

contrasting tectonic histories. Furthermore, we suggest the accretion of the West African Craton is 

the product of episodic collisional orogenesis, providing new insights into the evolution of orogenic 

processes during the Palaeoproterozoic. 

Keywords: Palaeoproterozoic collisional orogenesis; transtension; exhumation; West African 

Craton; Sefwi Greenstone Belt
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3.1 Introduction

The applicability of the plate tectonic paradigm and a uniformitarian approach when investigating 

accretionary and collisional orogenesis in the Precambrian is a continued source of controversy and 

debate. Modern subduction-related convergent settings are characterised by a number of tectonic and 

metamorphic features including ophiolites, accretionary mélanges, fold and thrust belts, blueschist 

facies rocks and ultra-high-pressure metamorphism (UHPM) (Chopin, 2003; Ernst, 2005; Matsuda 

& Uyeda, 1971; Miyashiro, 1973). The similarities in datasets between the ancient and modern rock 

record and tectonic processes are interpreted as evidence for the operation of plate tectonics by at least 

ca. 3000 Ma, based on the appearance of mantle wedge-related geochemical signatures, collages of 

accretionary-type terranes, palaeomagnetic data indicating ocean crust consumption, metamorphic 

and structural data indicating collisional orogenesis and numerical modelling of oceanic subduction 

(Cawood, et al., 2009; Cawood, et al., 2006; Condie, 2008; Condie & Benn, 2013; Pease, et al., 2008; 

Smithies, et al., 2007). Alternatively, the absence of key tectono-metamorphic features, or differences 

in their appearance, in Precambrian terranes has prompted a number of authors to propose alternative 

geodynamic and orogenic processes in the early Earth (e.g. Bédard, et al., 2003; Hamilton, 2011; Stern, 

2005; Stern, 2007; van Hunen & van den Berg, 2008).

The continental record of the early Earth is characterised by high crustal growth rates (e.g. 

Dhuime, et al., 2012), archetypal granite-greenstone terranes (e.g. Condie, 1994; de Wit, et al., 1992) 

and warmer mantle temperatures (Herzberg, et al., 2010; Korenaga, 2013). Recently, a significant 

amount of research using numerical, analogue and thermo-mechanical modelling has focused on the 

role of elevated mantle temperatures and its influence on the mode and viability of subduction and 

orogenic processes (e.g. Ernst, 2009; Gerya, 2014; O’Neill, et al., 2007; Sizova, et al., 2014; Sizova, 

et al., 2010). The secular cooling of the mantle corresponds with changes in subduction behaviour, 

including episodicity and slab break off, as well as changes in lithospheric rheology (Burov & Cloetingh, 

2010; Burov, 2011; Rey & Coltice, 2008; Rey & Houseman, 2006). This, in turn, is reflected in the 

metamorphic record and the strain patterns of ancient orogens (e.g. Bouhallier, et al., 1995; Brown, 

2006; Brown, 2007; Choukroune, et al., 1995).  

The Palaeoproterozoic rock record represents a unique period of the Earth’s history defined 

by nascent or episodic plate tectonics and ambient mantle temperatures approximately 100 – 200 

°C greater than present day (Herzberg, et al., 2010; Korenaga, 2008a; Korenaga, 2008b). Whilst 
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Archaean-like granite-greenstone terranes persist into the Proterozoic, significant changes are 

observed in the geochemical record at 2500 Ma (Keller & Schoene, 2012; Moyen, 2011) corresponding 

with the diversification of preserved metamorphic conditions including ultra-high-temperature 

metamorphism, high-pressure granulite facies metamorphism and rare formation and exhumation of 

eclogites between 3000 and 2000 Ma (e.g. Brown, 2006; Brown, 2007; Collins, et al., 2004). Elevated 

magmatism and crustal growth coincides with the development of collisional orogenesis in the 

Neoarchaean and Palaeoproterozoic, prompting the invocation of a hot-orogen model characterised 

by monotonous HT-LP metamorphic conditions and three-dimensional deformation during the 

compression of hot lithosphere (Cagnard, et al., 2006; Chardon, et al., 2009; Vidal, et al., 2009). 

The Palaeoproterozoic (2300–2070 Ma) granite-greenstone terranes of the West African Craton 

(Abouchami, et al., 1990; Boher, et al., 1992) represents an enigmatic juvenile cratonic domain and a 

unique opportunity to explore orogenic processes in the early phases of these global transitions.

This study focuses on the tectonic evolution of the Palaeoproterozoic crust of southwest Ghana in 

the West African Craton, comprising the Sefwi Greenstone Belt and the adjacent Sunyani-Comoé and 

Kumasi-Afema meta-sedimentary domains. Newly interpreted lithological and structural maps of the 

region are presented, yielded by the integration of field observations and regional airborne geophysical 

data. Structural analysis of the region defines a new deformation sequence during the ca. 2100 Ma 

Eburnean Orogeny, with timing constraints interpreted from existing geochronological data. Field 

observations of metamorphic assemblages and foliations are presented in a new metamorphic map, 

which highlights tectonically juxtaposed high-grade domains with low-grade domains. The multi-

scale, multi-discipline approach provides insight into the tectonic styles and exhumation mechanisms 

preserved within the craton. Evidence presented in this study for the tectono-metamorphic history 

of the Palaeoproterozoic Transamazonian-Eburnean Orogeny of the São Luís–West African Craton 

reveals episodic collisional orogenesis during craton assembly. Finally, we discuss the implications of 

our findings relative to the Precambrian orogenic record and the secular evolution of metamorphism 

and thermodynamic properties of the lithosphere in the early Earth.

3.2 Geological Setting

The southern portion of the West African Craton (WAC) comprises the Archaean Kénéma-Man 

province (3600–2700 Ma) and the juvenile granite-greenstone terranes of the Palaeoproterozoic 

(2300–1980 Ma) Baoulé-Mossi Domain to the east and north (Bessoles, 1977) (Fig. 3.1a). The
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Fig. 3.1: a) The southern portion of the West African Craton showing the study area in the southeast, (modified after 

Milési, et al., 2004), with inset showing location of Archaean and Palaeoproterozoic domains of the West African Craton, 

Dark and light green colours represent mafic volcanic rocks and sedimentary rocks intercalated with intermediate to 

felsic volcanoclastic rocks, respectively. Yellow units comprise unconformably overlying fluvio-deltaic sediments in fault-

bounded basins; b) Simplified map from this study showing dominant lithologies, domain names used within the text and 

major shear zones transecting the SW Ghana. CD: Chiraa Domain; HD: Hwidiem Domain; BGD: Bechem Granitoid 

Domain; KJD: Kukuom-Juaboso Domain; SWD: Sefwi-Wiawso Domain; SZ: Shear Zone.

Baoulé-Mossi Domain is characterised by elongate volcanic-plutonic greenstone belts and volcano-

sedimentary basins of the Birimian Supergroup (Fig. 3.1), which are bounded by regional- to craton-

scale shear zones (Junner, 1940; Leube, et al., 1990) and voluminous granite-gneiss terranes. Birimian 
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volcanic and volcanoclastic sequences range in composition from basalt to rhyolite, with tholeiitic to 

calc-alkaline affinities (e.g. Baratoux, et al., 2011; Dampare, et al., 2008; Leube, et al., 1990; Pouclet, 

et al., 2006). Sedimentary rocks of the Birimian Supergroup include sequences of volcaniclastic 

greywacke, argillite, shale and chemical sediments, intercalated with intermediate volcanic layers 

(e.g. Leube, et al., 1990; Oberthür, et al., 1998). Greenstone belts are sporadically overlain by fluvio-

deltaic sedimentary sequences of conglomerate, quartzite and phyllite of the Tarkwa Group, which 

were deposited in narrow, fault bounded basins (Davis, et al., 1994; Eisenlohr, 1989). Multiple 

generations of Palaeoproterozoic granitoids are gneissic to undeformed, bearing both calc-alkaline 

affinities as well as geochemical similarities with the tonalite-trondhjemite-granodiorite (TTG) suite, 

with compositions ranging from dioritic to granitic (e.g. Doumbia, et al., 1998; Gasquet, et al., 2003; 

Hirdes, et al., 1996). 

 Prior to the advent of absolute geochronology, the stratigraphic relationship between Birimian 

metavolcanic and metasedimentary sequences drew a number of conflicting interpretations due to 

ambiguous, highly tectonised field relationships (e.g. Junner, 1935; Junner, 1940; Milési, et al., 1989; 

Pouclet, et al., 1996; Tagini, 1971; Whitelaw & Junner, 1929). U-Pb and Pb-Pb zircon crystallisation 

ages indicate volcanic activity occurred across the craton between ca. 2250 and 2180 Ma (Agyei Duodu, 

et al., 2009; Delor, et al., 1992; Hirdes & Davis, 1998; Hirdes & Davis, 2002; Hirdes, et al., 1996; Loh, 

et al., 1999; Oberthür, et al., 1998). Volcanism was considered to be partially contemporaneous with 

early granitoid emplacement (e.g. de Kock, et al., 2011; Feybesse, et al., 2006; Gueye, et al., 2008; 

Pawlig, et al., 2006; Tshibubudze, et al., 2013). 

The Palaeoproterozoic rocks of Ghana and eastern Ivory Coast include, from south to north, 

N- to NE-striking volcano-plutonic greenstone belts of the Kibi-Winneba, Ashanti, Sefwi, Bui, 

Bole-Nangodi and Lawra belts. The intervening metasedimentary domains, often referred in to in 

the literature as basins, including the Kumasi domains, and the Sunyani-Comoé, or Haute-Comoé 

domain. A new stratigraphy for the Birimian Supergroup was recently established in southern Ghana 

by Adadey, et al. (2009) and Perrouty, et al. (2012), comprising Birimian metavolcanic rocks and 

subordinate mica-schists of the Sefwi Group, which were emplaced between ca. 2195 and 2170 Ma, and 

the volcano-sedimentary and sedimentary sequences of the Kumasi Group. Detrital zircon U-Pb ages 

from the Kumasi Group indicate deposition commenced at ca. 2150 Ma (Adadey, et al., 2009; Davis, et 

al., 1994; Oberthür, et al., 1998). The Kumasi Group is intercalated with andesitic layers dated at 2142 

± 24 Ma in the Kumasi Domain (Adadey, et al., 2009), with similar ages indicated for sedimentation in 
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the Sunyani-Comoé Domain (Delor, et al., 1992; Hirdes, et al., 2007). Tarkwaian sediments comprise 

clastic material sourced from both the Sefwi and Kumasi Groups. The Tarkwaian sediments have a 

maximum age of deposition, constrained by U-Pb and Pb-Pb detrital zircons of 2132 ± 3 Ma (Davis, 

et al., 1994; Hirdes & Nunoo, 1994), with the youngest detrital age of 2090 ± 17 Ma (Pigois, et al., 

2003). Tarkwaian units in the Ashanti Belt are intruded by granitoids at 2097 ± 2 Ma (Oberthür, et 

al., 1998). Voluminous amphibole and biotite-bearing, NaO- and CaO-rich TTG and calc-alkaline 

plutonism occurred between ~2190 and 2130 Ma (Gasquet, et al., 2003; Hirdes, et al., 1996; Tapsoba, 

et al., 2013). K2O-rich granitoids and young felsic lavas are emplaced between ~2130 and 2070 Ma in 

the west of the Baoulé-Mossi Domain in Senegal, along the Archaean-Palaeoproterozoic contact in 

the Ivory Coast, and to the southeast of the domain in southwest Ghana and southeast Ivory Coast 

(e.g. Egal, et al., 2002; Hirdes & Davis, 2002; Hirdes, et al., 1992; Petersson, et al., 2016).

Deformation of Palaeoproterozoic terranes of the Baoulé-Mossi Domain developed during the 

Eburnean Orogeny (Bonhomme, 1962) between ca. 2150 and 1980 Ma (Davis, et al., 1994; Oberthür, 

et al., 1998). However, there is conjecture about the number and timing of deformation events, and 

the deformation mechanisms of different terranes (Feybesse, et al., 2006; Lemoine, et al., 1990; Milési, 

et al., 1989; Vidal, et al., 2009). Throughout the craton, Palaeoproterozoic metamorphism, attributed 

to the Eburnean Orogeny, is largely restricted to lower-greenschist to amphibolite facies (e.g. Béziat, 

et al., 2000; Feybesse, et al., 2006; Kříbek, et al., 2008). It has been proposed by some authors that 

peak metamorphism reached upper amphibolite facies within the contact aureole of plutons (e.g. 

Pons, et al., 1995). Regional medium-pressure, medium temperature (MP-MT) amphibolite facies 

metamorphism; however, prevailed in the Sefwi and Ashanti belts (Galipp, et al., 2003; John, et al., 

1999), whilst rare, relic high-pressure, low-temperature (HP-LT) assemblages have been documented 

in NW Ghana (Block, et al., 2015) and eastern Burkina Faso (Ganne, et al., 2012), suggesting a greater 

diversity in metamorphic conditions than previously assumed. Feybesse et al. (2006) propose that 

an initial phase of the Eburnean Orogeny corresponds to magmatic accretion followed by partly 

contemporaneous deposition of flysch-type sequences of the Kumasi Group between 2135 and 2100 

Ma. Synchronous Eburnean crustal thickening and medium- to high-grade metamorphism are 

attributed to thrust tectonism and lateral contractional deformation (Block, et al., 2015; Block, et al., 

2016; Feybesse, et al., 2006; Feybesse & Milési, 1994; Ganne, et al., 2012), with subsequent transcurrent 

tectonism and greenschist facies metamorphism occurring across the craton between 2100 and 2070 

Ma (Delor, et al., 1995; Feybesse, et al., 2006; Jessell, et al., 2012; Ledru, et al., 1991; Lompo, 2010). 
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Juxtaposed terranes with contrasting peak high-grade and low-grade conditions were interpreted to 

have undergone a concomitant evolution during monocyclic, progressive deformation (Block, et al., 

2015; Block, et al., 2016; Galipp, et al., 2003; Hirdes, et al., 2007; Leube, et al., 1990; Loh, et al., 1999), 

and therefore represented different crustal depths. 

 Alternatively, some authors propose a two-phase orogenic evolution and consequently divide 

the orogenic event into the Eburnean I (2200–2150 Ma) and Eburnean II (2110–2088 Ma) deformation 

events, which were separated by a period of extension and sedimentation (Allibone, et al., 2002a). 

These events are also referred to as the Eoeburnean and Eburnean, respectively (de Kock, et al., 

2012; Perrouty, et al., 2012). They suggest deformation and metamorphism of high- and low-grade 

terranes is diachronous, with >2150 Ma gneissic crust interpreted as an older basement, indicative of 

a polycyclic orogenic history (de Kock, et al., 2012; Feybesse, et al., 2006; Hein, 2010; Lemoine, et al., 

1990; Tshibubudze, et al., 2013; Vidal, et al., 2009). 

The tectonic processes that generate and exhume high-grade terranes are an additional source of 

discussion. Some authors argue for unit stacking and nappe folding of rheologically strong continental 

crust during tectonic accretion, reminiscent of modern-style tectonic regimes (e.g. Billa, et al., 1999; 

Fabre, et al., 1990; Feybesse, et al., 2006; Milési, et al., 1989). Others have argued that increased 

metamorphic grade is localised to pluton aureoles and found in association with dome and basin 

strain patterns (Pons, et al., 1995; Vidal, et al., 2009). Alternatively, exhumation of migmatitic rocks 

is interpreted as the product of buoyancy-driven ascent in a rheologically weak, hot orogenic crust, 

following homogeneous and distributed crustal thickening and extensive granitoid emplacement (e.g. 

Caby, et al., 2000; Ganne, et al., 2014; Pouclet, et al., 1996; Vidal, et al., 2009). 

3.3 Study area

3.1.1 Litho-structural domains 

The geology of southwest Ghana and southeast Ivory Coast comprises the NE-striking Sefwi-

Greenstone Belt, which contains a diverse range of metamorphic rocks from greenschist facies to 

migmatitic packages, flanked to the NW and SE by two vast, low-grade meta-sedimentary rocks of 

the Sunyani-Comoé and Kumasi-Afema Domains (Fig. 3.1b) (Agyei Duodu, et al., 2009; Feybesse, et 

al., 2006; Hirdes, et al., 2007). These domains are often referred to as basins in the literature; however, 

given the pervasive deformation and metamorphism of the meta-sedimentary units and the unknown 

nature of both the basement and their tectonic contacts, we hereon in refer to them as tectono-
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metamorphic domains. Discrete domains are bounded and intersected by ENE-, NE- or ~N-striking 

shear zones. 

3.3.1.1 High-grade domains of the Sefwi Belt

The Chiraa Domain (CD) is a triangular area in the northeast of the study area, reaching ~30 km in 

width. It is included as a subdomain of the Sefwi Belt due to metamorphic and structural similarities. 

The Chiraa Domain comprises highly heterogeneous lithological packages of paragneisses, rare 

granite orthogneisses and hornblendites that are extensively intruded by foliated two-mica granites 

and pegmatites. Paragneisses are often observed as elongate rafts and are sometimes migmatitic. They 

frequently preserve stratigraphic layering with metamorphic assemblages and textures indicating 

greywackes, pelitic or volcaniclastic protoliths. Metamorphic petrology and quantitative estimates 

of metamorphic conditions recorded by the domains are detailed in Chapter 4. This contrasts with 

previous mapping, which classifies the Chiraa Domain as a homogenous granite batholith (Agyei 

Duodu, et al., 2009; Hirdes, et al., 1993). A biotite-muscovite granite and a muscovite pegmatite in 

the Chiraa domain yielded zircon U-Pb crystallisation ages of 2093 ± 2 and 2093 ± 2 Ma (Petersson, 

et al., 2016), respectively, within error of a previous zircon U-Pb age of 2092 ± 2 Ma (Agyei Duodu, 

et al., 2009) in the north of the domain. The Chiraa Domain is bounded to the west by a poorly 

exposed, west-dipping NNE-striking shear zone that is rotated into an east-west orientation along 

its south-dipping southern margin. The eastern margin of the domain is unconformably overlain by 

Neoproterozoic sediments of the Volta Basin. 

The Kukuom-Juaboso Domain (KJD) is a medium- to high-grade domain that forms the core 

of the Sefwi Belt. This domain is rhomboidal in shape and is 150km in length and 45km at its widest 

point. The core of the domain is dominated by poly-deformed upper-greenschist to amphibolite facies 

mafic to intermediate amphibolites and quartz-rich meta-greywackes and metamorphosed volcano-

sedimentary rocks. It is extensively intruded by multiple generations of granodiorite, granite and mafic-

ultramafic plutons. However, very few geochronological dates have been published. Granodiorite 

intrusions in the north-west of the domain were emplaced at ca. 2135 Ma (Amponsah, 2012). The 

ENE-striking Hwidiem Shear Zone separates the Kukuom-Juaboso Domain from garnet amphibolites 

and weakly foliated to gneissic volcaniclastic packages, quartzites and meta-cherts of the Hwidiem 

Domain (HD). The Hwidiem Shear Zone contains migmatitic mafic orthogneisses characterised by 

fluid-present melting (detailed in Ch. 4). The Bechem Granitoid Domain (BGD) is dominated by 

weakly deformed granitoids with compositions varying significantly from quartz diorites to garnet-
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biotite granites and late potassic biotite granites (Hirdes, et al., 1993). Pyroxenite, gabbro and norite 

intrusions also form much of the domain displaying a strong spatial associated with high strain shear 

amphibolite gneiss. Whilst little dating has been undertaken within the domain, a greenschist facies 

meta-rhyolite flow on the southern margin of the domain yield a U-Pb zircon age of 2189 ± 1 Ma 

(Hirdes & Davis, 1998). Southeast of the rhyolite, strongly sheared Tarkwa-like conglomerates with 

abundant rounded quartzo-feldspathic lithics are observed along the tectonic contact between the 

Sefwi Belt and the Kumasi-Afema Domain.

3.3.1.2 Low-grade domains of the Sefwi Belt

The NE-SW striking Sefwi-Wiawso volcano-plutonic domain (SWD) represents the southern portion 

of the Sefwi Belt and extends for ~200 km from Bibiani in southwest Ghana into south-eastern Ivory 

Coast (Hirdes, et al., 2007; Hirdes, et al., 1993). The domain comprises greenschist facies tholeiitic 

to intermediate volcanic rocks, including pillow basalts, with minor volcaniclastic and volcano-

sedimentary sequences. It is extensively intruded by granites that range in compositions from quartz 

diorite, monzodiorite, granodiorite and tonalite to biotite granite. These granites were emplaced 

between 2178 and 2136 Ma (Agyei Duodu, et al., 2009; Hirdes, et al., 1992; Hirdes, et al., 2007), 

pene-contemporaneous with the emplacement of felsic volcanic and volcaniclastic rocks that have 

ages between ca. 2180 and 2166 Ma (Hirdes, et al., 2007).  The domain is bound to the north by the 

Ketesso high strain zone, to the east by the NNE-SSW-striking Bibiani and Chirano shear zones. The 

Sefwi-Wiawso Domain is juxtaposed with the Kumasi metasediments at its southern boundary along 

the Afema high strain zone (Hirdes, et al., 2007). Immature, polymictic conglomerates occur at the 

easternmost boundary of the domain bound by the Bibiani shear zone (Agyei Duodu, et al., 2009). 

The detrital material is sourced from both the volcano-plutonic rocks and the adjacent low-grade 

metasedimentary domains (Hirdes, et al., 1993).

3.3.1.2 Low-grade meta-sedimentary domains/basins

The Sunyani-Comoé and Kumasi-Afema meta-sedimentary domains coincide with the poorest 

outcrop conditions in the study area. These domains comprise isoclinally folded volcaniclastic rocks, 

wackes, and argillites, intercalated with felsic to intermediate volcanic and volcaniclastic rocks (Hirdes, 

et al., 1993). The Sunyani-Comoé Domain has a greater abundance of turbiditic sequences, whilst the 

Kumasi-Afema Domain is suggested to comprise a more significant volcaniclastic rock component 
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(Hirdes, et al., 1993). Initiation of sedimentation in the domains is constrained by a 2142 ± 24 Ma 

U-Pb zircon crystallisation age of an andesitic layer that is intercalated with metasedimentary rocks 

in the Kumasi Basin (Adadey, et al., 2009). Metasedimentary rocks of the Kumasi-Afema Domain 

are intruded by numerous granodiorite and granite plutons between 2136 and 2090 Ma (Adadey, et 

al., 2009; Hirdes, et al., 1992). Within the Sunyani Basin, elongate, rounded leucogranite intrusions 

flank the Sefwi Belt to the northwest. Granites and leucogranites emplaced in the Sunyani-Comoé 

domain parallel to the NW margin of the Sefwi Belt decrease in age from the northeast to southwest. 

U-Pb zircon crystallization ages of 2088 ± 1 Ma and 2081 ± 1 were yielded by the muscovite-bearing 

Kawtiago granite and the Apouasso granite in southeast Ivory Coast (Delor, et al., 1992; Hirdes, et 

al., 1992; Hirdes, et al., 2007), with corresponding granite emplacement ages of ca. 2093 Ma in the 

neighbouring Chiraa Domain to the northeast (Agyei Duodu, et al., 2009; Petersson, et al., 2016).

3.3.2 Major Shear Zones

The crustal architecture of the study area is defined by the NE-striking Sefwi shear system (Jessell, 

et al., 2012), which extends >300 km from central Ghana to southeast Ivory Coast. The southern-

most Afema shear zone marks the tectonic contact between the Sefwi-Wiawso volcano-plutonic 

domain and the Kumasi-Afema meta-sedimentary domain. Delor, et al. (1992) document NW-

directed thrust movement along SE-dipping portions of the Afema Shear Zone in southeast Ivory 

Coast. The Ketesso high-strain zone transects the length of the Sefwi Belt, from central Ghana to 

south-east Ivory Coast, covered by Neoproterozoic sediments to the northeast and Miocene-Pliocene 

sediments to the southwest (Hirdes, et al., 2007). It separates the Sefwi-Wiawso and Kukuom-Juaboso 

domains, forming the southern extent of the Bechem granitoid domain (Hirdes, et al., 2003; Jessell, 

et al., 2012). Domains of the Sefwi Belt are bounded to the north by the Kenyase-Yamfo shear zone, 

comprising reactivated sub-vertical and south-dipping shear zones. Within the Kukuom-Juaboso 

domain, early shear zones are folded around ENE-WSW striking structures, with the Hwidiem shear 

zone truncating on the Kenyase-Yamfo shear zone. Both the Kenyase-Yamfo and the Ketesso shear 

zones are transected by discrete, late NNE-striking sinistral faults, the latter being intersected by the 

extension of the Bibiani shear zone, forming the contact between the Sefwi-Wiawso domain and the 

Kumasi-Afema meta-sedimentary rocks. 
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3.4 Methodology and data 

3.4.1 Methodology

The new interpreted geological map of the study area integrates traditional mapping techniques with 

regional geophysical data sets. Outcropping geology was exceedingly sparse due to the presence of 

an extensive, thick laterite and saprolite sequence (5 to >40m thick) and significant areas of densely 

vegetated forest reserves covering the study area, precluding continuous mapping. Interpretation of 

potential field, radiometric and remote sensing data was constrained by lithological, structural and 

petrophysical information acquired at 484 outcrop localities. This data was complemented by outcrop 

maps and observations from Hirdes, et al. (1993), as well as outcrop databases from mining companies 

operating in the field area (Kinross and Newmont). 

3.4.2 Processing and interpretation of geophysical data

Datasets used included regional airborne magnetic and radiometric data covering SW Ghana were 

acquired by the Geological Survey Department of Ghana and GoldenStar Resources Pty Ltd between 

1984 and 2005 and national Ivory Coast aeromagnetic data collected by Kenting Earth Sciences in 1976. 

The Ghanaian data is a composite grid of five individual surveys, the details and locations of which are 

shown in the supplementary information (Fig. A1SI). Four surveys have line spacings of 200–500m 

and flight altitudes of 70–80 m, depending on the individual survey. Data was collected along E-W 

flight lines with the data from the south-eastern-most survey (outside mapping area) collected along 

N-S flight lines. The national airborne magnetic data of Ivory Coast was collected along N-S flight 

lines that were spaced 500m apart and collected from an elevation of 152 m (Fig. A1SI). Raw data 

was processed using Geosoft Oasis Montaj software and used for regional interpretations. Processed 

images are shown in supplementary files (Supplementary Material A; Fig. 2SI–4SI).

3.4.2.1. Aeromagnetic data 

Airborne magnetic surveys provide us with a map of magnetic anomalies from which we can derive 

lithological, structural and kinematic information, as constrained by field observations (Aitken & 

Betts, 2009; Betts, et al., 2007; Lindsay, et al., 2011; Stewart, et al., 2009). The regional airborne 

magnetic data covering SW Ghana was gridded as a composite residual magnetic intensity (RMI) 

grid with a resolution of 100 m. The residual magnetic intensity data covering the Ivory Coast was 
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gridded to a cell size of 125 m. Conventional reduction of data to the magnetic pole (RTP) becomes 

unstable near the equator due to the low inclination of the Earth’s magnetic field (Li, 2008; MacLeod, 

et al., 1993), simultaneously generating north-south trending artefacts and inaccurately representing 

true north-south structures or anomalies (Beard, 2000) (Fig. A1SI). Both residual magnetic intensity 

datasets covering SW Ghana and the Ivory Coast and the A1 total magnetic intensity (TMI) grid were 

reduced to the equator (RTE), with a 180-degree phase reversal or inversion (negative RTE) (Fig. 

ASI3) according to the method of Luo et al. (2010). Interpretation of lithology distribution relied 

on both the negative RTE and analytical signal grids (MacLeod, et al., 1993). Filters included the 

first vertical derivative, tilt derivative and amplitude normalisation (Automatic Gain Control) aided 

extraction of structural information and lithological boundaries by highlighting magnetic features 

and steep gradients in the magnetic dataset (Gunn, et al., 1995; Milligan & Gunn, 1997; Pilkington & 

Keating, 2009; Verduzco, et al., 2004). 

3.4.2.2. Radiometric (gamma-ray) data 

Gamma-ray spectrometry data shows the content and distribution of radioactive elements in the rocks 

and regolith in the uppermost 30cm of the Earth’s crust (Minty, et al., 1997; Wilford, et al., 1997). 

Combined use of topographic information and geochemical data highlights lithology distribution 

and laterite and regolith cover (Dickson & Scott, 1997; Wilford, et al., 1997), applied during similar 

mapping in Burkina Faso (Metelka, et al., 2011) and NW Ghana (Block, et al., 2016) and SW Ghana 

(Perrouty, et al., 2012). U, Th, and K bands were gridded individually at 100 m resolution (Fig. A4SI).

The bands are combined in a ternary RBG (Red-Green-Blue) diagram and draped over a shaded 

image of the digital elevation model (90m resolution; Shuttle Radar Topographic Mission, SRTM, 

2000). Band ratio (U/K and Th/K) and Principal Component Analysis (PCA) images were derived 

from the original bands. Relative abundance ratios were used to distinguish changes in rock type and 

alteration.

3.4.2.3. Gravimetric data

Gravity data is frequently utilised in 2D and 3D geophysical modelling for constraining the geometry 

of lithological bodies and structures at depth (e.g. Attoh, 1982; Direen, et al., 2005) Gravimetric 

data was sourced from the International Gravimetric Bureau (http://bgi.omp.obs-mip.fr/) as EGM08 

Free Air and Bouguer anomaly grids. The Bouguer anomaly map (Fig. 2SI) shows long wavelength 

anomalies is most effective at differentiating regional rock domains, large lithological packages and 
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the extent of major structures along strike.

3.3.2.4. ALOS PALSAR data

Advanced Land Observing Satellite; Phase Array type L-Band Synthetic Aperture Radar high-

resolution data (ALOS PALSAR data) collected in 2009 (downloaded from http://www.eorc.jaxa.

jp/ALOS/en/) was used as a complementary topographic information dataset to the SRTM. Two 

polarisation channels (HH + HV) were gridded with a resolution of 25m with a third band ((HH 

+HV)/2) used in a ternary RGB diagram. Unlike its application in the neighbouring Ashanti belt 

(Perrouty, et al., 2012), limited structural and detail could be gleaned from this dataset. 

3.5 Lithological associations and geological map

The geophysical datasets were integrated within a GIS software for interpretation, according to the 

method detailed by Metelka, et al. (2011). Field observations, including lithological and petrophysical 

data, were used to constrain lithology distribution, complemented by radiometric and topological 

maps. Field structural relationships were used to constrain the interpretation of gradients and signals 

in the processed magnetic data images. Excellent correlation was observed between the structure 

and topology of lithologies and magnetic fabrics in airborne magnetic data. Integration of field data, 

petrophysical data and geophysical signatures were used to characterise the principal lithological 

associations (Table 1) in the new litho-structural map, as outlined below. Measured magnetic 

susceptibility values for each unit are presented in Appendix B. Gravimetric data facilitated the 

demarcation of major domains with high anomalies following the greenstone belt and adjacent meta-

sedimentary domains corresponding with moderate to low gravity response, with no visible gradients 

at the domain contacts. Further interpretation of the gravity data was precluded by the low resolution. 

Values for magnetic anomalies are derived from the negative RTE image colour bar legend, and, as a 

product of data processing, are given as negative integers. 

3.5.1 Lithologies

3.5.1.1 Basalt/metabasalt/metadolerite

Metabasalts and metadolerites in the field area have been metamorphosed under greenschist facies 

to amphibolite facies with foliations indicating varying intensity of deformation, often depending on 

proximity to larger structures such as faults and regional shear zones. Garnet-bearing amphibolites 
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are exposed in the Kukuom-Juaboso domain. Greenschist facies pillow basalts are observed in 

the Sefwi-Wiawso domain are weakly deformed and pervasively altered, sub-greenschist facies 

metabasalts. In the airborne magnetic surveys, mafic volcanic rocks correspond with high-amplitude, 

high-frequency magnetic anomalies, The anomalies are elongate and curvilinear, ranging between 10 

and 40 km in length, with bimodal amplitudes of -618 to -509 nT (red hues corresponding to high 

magnetic anomalies) and -816 to -745 nT(blue hues corresponding to low amplitude), becoming more 

heterogeneous in proximity to major structures indicating both magnetite growth and destruction 

during fault movement. They are characterised by a strong magnetic fabric, displaying excellent 

correlation with S1 foliation measurements suggesting the magnetic data is imaging the earliest 

foliation. They have a multi-modal magnetic susceptibility range from 0.05 to 13.08–84 x 10-3 SI. 

The dark radiometric signal of basalts indicated depletion in incompatible elements; however, units 

located along shear zones on domain boundaries show evidence of potassic alteration. 

3.5.1.2 Meta-andesite/dacite

Significant areas of andesitic and dacitic rocks occur both within both the Kukuom-Juaboso and Sefwi 

Wiawso domains of the Sefwi Belt as well as rare intercalated sills in the adjacent metasedimentary 

domains. Units in the Sefwi-Wiawso domain are variably deformed and metamorphosed under 

greenschist facies conditions and are often associated with juvenile metasediments. Intermediate lavas 

are associated with a homogeneous to slightly stippled, low to moderate amplitude magnetic anomalies. 

They are consistently lower amplitude (-710 to -620 nT) and often longer wavelength in their magnetic 

response relative to the metabasalts. Late andesitic dykes in the Kukuom-Juaboso domain are observed 

cross-cutting earlier structures. The meta-andesitic layers have a bimodal magnetic susceptibility of 

0.03–0.40 x 10-3 SI and 7.41–39.50 x 10-3 SI. The radiometric response ranges from low to high intensity, 

often featuring a magnetic fabric. The units are often associated with distinct U enrichment relative to 

Th and K in the radiometric data.

3.5.1.3 Rhyolite/felsic volcaniclastic rocks/ meta-rhyolite

Rhyolites and felsic volcanoclastic and pyroclastic units are found in the Sunyani-Comoé and Kumasi-

Afema domains as narrow layers, parallel to stratigraphic layering in schists derived from volcano-

sedimentary rocks. These felsic lava flows and volcaniclastic layers correspond with discrete, elongate 

bimodal, high- and low- amplitude magnetic anomalies (-783 to -750 nT; -618 to -585 nT), interpreted 

as parallel to stratigraphic layers and volcanic flows. 
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Magnetic susceptibilities tend to be low (< 0.60 x 10-3 SI); however, more magnetite-rich felsic 

volcanoclastic layers have high magnetic susceptibility (6.25-29.14 x 10-3 SI). Their radiometric signal 

reveals high K and Th content relative to U. 

3.5.1.4 Volcaniclastic/pyroclastic  rocks

Immature, volcaniclastic and pyroclastic rocks with subordinate epiclastic meta-greywacke units and 

rare iron-rich quartzites cover significant proportions of the Kukuom-Juaboso and Hwidiem domains. 

This unit is metamorphosed at upper greenschist to amphibolite facies conditions. Foliations vary 

from biotite defined schistose to gneissic, with alternating quartz and biotite/amphibolite bands. 

Garnet is a common mineral; however, aluminosilicates were not observed. Textural and petrological 

evidence indicates water-present melting occurred along early shear zones. The magnetic response 

of the volcaniclastic metasedimentary rocks indicates a heterogeneous distribution of magnetite in 

alternating highly magnetic and non-magnetic layers, with amplitudes of -585 to -509 nT and -816 

to -760 nT, respectively, with short, high-frequency wavelengths. The strong magnetic fabric shows 

excellent correlation with measured S0 and S1 measurements and is therefore used to extrapolate S1 

trajectories. Magnetite-rich strata well define structures within this unit, and excellent correlation was 

observed between the earliest foliation defined by biotite and/or amphibole and the magnetic fabric 

displayed in the processed aeromagnetic data. The magnetic susceptibility of this rock was bimodal, 

with values ranges from low (< 1 x 10-3 SI) to extremely high (20.01–80.30 x 10-3 SI). The radiometric 

signal indicates Th enrichment relative to U and K, commonly masked by regolith cover, indicating 

extensive weathering. 

3.5.1.5 Volcano-sedimentary schist

The volcano-sedimentary schist unit comprises greywackes, argillitic schists, graphitic shale and 

minor intercalated felsic to intermediate volcanic rocks metamorphosed under sub-greenschist to 

greenschist facies conditions, with elevated metamorphic grade limited to narrow contact aureoles 

of intruding granitoids. It forms large proportions of the Sunyani-Comoé and Kumasi-Afema 

domains. Metamorphic assemblages included quartz-chlorite-white mica-feldspar in the Sunyani-

Comoé Domain, and quartz-chlorite-actinolite-feldspar meta-greywackes and sericitic argillites in 

the Kumasi-Afema Domain. Airborne aeromagnetic data covering the metasedimentary rocks of the 

Kumasi-Afema Domain reveals a smooth low wavelength, low- to moderate amplitude magnetic signal 
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(-690 to -605 nT), indicating homogeneous distribution of magnetite. Higher magnetic responses and 

dipole magnetic  anomalies are observed proximal to shear zones, associated with localised magnetite 

formation during deformation. In contrast, the volcano-sedimentary schists and intermediate 

volcanic rocks in the Sunyani-Comoé Domain are characterised by a prominent bimodal magnetic 

signal. Smooth, wide and elongate, low-amplitude signals associated with larger exposures of non-

magnetic rocks (-816 to -684 nT) immediately north of Kenyase and then again north of Sunyani, 

whilst volcano-sedimentary schists along strike of intruding leucogranites often have a high magnetic 

response characterised by strong ENE-striking magnetic fabrics. These fabrics are characterised by 

high amplitude (-620 to -545 nT) anomalies with high frequency, which we attribute to the production 

of magnetite during prograde metamorphic reactions in granitoid aureoles, coupled with structurally 

controlled fluid flow. Measured magnetic susceptibility values are consistently low (0.02–1.30 x 10-3 

SI); however, we note that the surface exposures of this unit are often extensively weathered. The 

radiometric signal reveals K and Th enrichment relative to U in the Kumasi-Afema Domain; however, 

the airborne radiometric data indicates extensive regolith cover in the Sunyani-Comoé Domain. The 

volcano-sedimentary schists display pervasive chlorite-sericite-ankerite alteration in proximity to 

shear zones.

3.5.1.6 Composite gneiss

Large proportions of the Chiraa domain are composed of paragneisses, rare granitic orthogneisses, 

varying proportions granitic and trondhjemitic melts and pegmatite dykes. The gneissosity in the 

paragneiss units is defined by alternating mica-rich and quartz-plagioclase-rich bands. Varying modal 

proportions garnet and micas between layers suggests stratigraphic variability, or possibly bedding, 

with aluminosilicate minerals limited to rare Al-rich layers. The observed gneissosity in the paragneiss 

is parallel to the stratigraphic variations, as is the weak gneissosity or biotite foliation in some granite 

bodies. The magnetic response of the composite gneiss is associated with low-amplitude (-816 to -765 

nT), long wavelength anomalies and a weak magnetic fabric that is often truncated by linear responses 

associated with structural or lithological contacts. Minor proportions of the domain are characterised 

by a short wavelength, higher magnetic signal (-618 to -550 nT) defining a stronger magnetic fabric, 

possibly indicating heterogeneous magnetite concentration in stratigraphic layers. Measured magnetic 

susceptibility values of paragneisses and granites are predominantly low (0.04–1.30 x 10-3 SI). The 

radiometric signal indicates moderate U, Th and K enrichment. A similarly heterogeneous unit is 

mapped in NW Ghana (Block, et al., 2016), thus the term “composite gneiss” has been adopted for 
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this study. 

3.5.1.7 Mafic orthogneiss

Mafic orthogneisses are high strain units exposed along shear zones marking domain boundaries 

including along the Hwidiem shear zone and the southern margin of the Chiraa domain. The 

migmatitic mafic orthogneiss in the Chiraa domain has a metamorphic mineral assemblage of garnet 

and clinopyroxene with plagioclase-rich leucosomes indicating metamorphism at high-pressure 

amphibolite–granulite transition. Orthogneisses along the Hwidiem shear zone contain hydrous 

peritectic minerals, including hornblende, suggesting congruent, fluid-present melting (Weinberg & 

Hasalová, 2015, and references therein). The magnetic response of the mafic orthogneiss is generally 

characterised by high-amplitude (-585 to -509 nT), elongated anomalies, often seen subparallel to 

D1 and D2 shear zones; however, amplitudes below -750 nT are associated with migmatitic mafic 

orthogneisses containing high melting proportions in the western section of the Hwidiem Shear Zone. 

This reflects magnetite destruction during high-grade metamorphism with associated fluid flow. The 

measured magnetic susceptibility of mafic orthogneisses is bimodal with values ranging from 0.12 to 

9.58 x 10-3 SI.

3.5.1.8 Gabbro-pyroxenite-norite

This unit contains a variety of lithologies, including variably deformed hornblende-bearing gabbros, 

norite and clinopyroxene-rich pyroxenite displaying extensive replacement by hornblende, also 

associated with layered, hornblende-bearing mafic and dioritic intrusive sequences. Pyroxenites 

located along Hwidiem shear zones display interconnected plagioclase-quartz melt veins. These 

lithologies are limited to the Kukuom-Juaboso, Bechem and Hwidiem domains in the central Sefwi 

Belt. These units have a highly irregular magnetic texture with low frequency, low amplitude (-784 

to -683 nT) anomalies and a poorly developed magnetic fabric, increasing in strength along faulted 

margins. They are characterised by low to moderate magnetic susceptibility (0.27 ̶ 2.48 x 10-3 SI) and 

gamma ray emissions indicate a strong depletion in incompatible elements. Where more strongly 

deformed, the radiometric signal indicates high U and Th relative to K, indicating extensive lateritic or 

regolith cover (Dickson & Scott, 1997). This intrusive complex has not been directly dated; however, 

their chronology relative to the granitoid series is described below. 



73

3.5.1.9 Granitoids

(1) G1. Trondhjemite, tonalite and rare granodiorite plutons contain biotite as the main ferromagnesian 

phases, with minor amphibole. They are foliated and locally migmatitic. K-feldspar is present in 

(micro) granodiorite plutons. G1 granitoids have a low amplitude (-810 to -706 nT), moderate 

frequency response in the aeromagnetic data and a stippled magnetic texture. Magnetic 

susceptibility is multi-modal, ranging from 0.15–25.30 x 10-3 SI, and are associated with a well-

defined magnetic fabric. Their gamma-ray emissions indicate a heterogeneous depletion in 

radioactive elements. 

(2) G2. These granitoids comprise biotite-bearing, foliated to gneissic trondhjemite and tonalite 

plutons, with subordinate to rare amphibole. G2 granitoids are rounded to elongate and have a 

smooth, low to moderate (-783 to -684 nT) magnetic response. Magnetic susceptibility values 

ranging from 0.12 – 1.03 x 10-3 SI. The relative chronology of G1 and G2 granitoids is deduced 

from overprinting relationships observed in airborne magnetic surveys, where the magnetic fabric 

visible within G1 granitoids is truncated along the margins of the smooth, long wavelength, low 

amplitude responses of G2 granitoids, which suggests relative geochronology of G2 granitoids 

post-dating G1 granitoids. G2 granitoids in the Bechem Granitoid Domain displayed pervasive 

silica alteration and magnetite growth proximal to shear zones. Gamma-ray emissions indicate 

an overall depletion in radioactive elements and relative enrichment in Th. The 50km long Tano 

River trondhjemitic batholith, located immediately north of Wiawso, is associated with a large 

low response in the gravity data.

(3) G3a. Small, irregular elliptical bodies of calk-alkaline, coarse-grained, equigranular amphibole-

bearing granodiorites and quartz diorites, with subordinate biotite, titanite and K-feldspar, often 

observed as interlocking bodies. The magnetic signal is sub-elliptical in shape with a heterogeneous, 

high frequency, low to high amplitude (-717 to -651 nT) magnetic response. This unit has a 

strong spatial association with G3b granitoids; however, they have distinctly different radiometric 

signals. Their radiometric signal indicates heterogeneous Th enrichment relative to U and K, with 

other areas indicating depletion in all incompatible elements. The magnetic susceptibility of these 

granitoids is bimodal, with values ranging from low (< 1 x 10-3 SI), to locally highly magnetic 

(4.25 – 24.04 x 10-3 SI).

(4) G3b. These granitoids are porphyritic potassic granites with abundant biotite and K-feldspar. They 
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contain minor amphibole and accessory titanite. They are characterised as elliptical, sometimes, 

slightly elongate, with a distinct radiometric signal indicating enrichment in K relative to Th and U. 

The magnetic response of G3b granitoids is distinguished from G3a granitoids due to its moderate 

amplitude (-637 to -600 nT) and a more stippled texture, suggesting a heterogeneous distribution 

of magnetite. G3b granitoid magnetic susceptibility values are low to moderate (0.47–3.88 x 10-3 

SI) and display a weak to well-defined magnetic fabric in airborne magnetic data. 

(5) G4. These leucogranites contain muscovite, +/- biotite, and are often associated with coarse-

grained, muscovite-rich pegmatitic bodies. Airborne magnetic data reveals elongate (~ 30 – 40 

km), elliptical bodies parallel to the NW-striking tectonic contact between the Sefwi Belt and the 

Sunyani-Comoé Domain. The magnetic response of G4 granitoids is characterised by smooth, 

low amplitude (-816 to -750 nT), and long wavelength (>10 km) magnetic responses. Rounded 

batholiths intruding the Kumasi-Afema Domain are structurally ambiguous in the potential 

field data. Their magnetic susceptibility values are homogeneously low (< 0.15 x 10-3 SI). The 

radiometric signal for G4 indicates enrichment in K and Th, relative to U. Gamma-ray emissions 

of large pegmatite bodies indicate enrichment in all incompatible elements. These bodies share 

similar petrological and petrophysical characteristics to ME3 of Baratoux, et al. (2011) and 

Metelka, et al. (2011) and G5 of Block, et al. (2016).

3.5.1.10 Chemical sediment (Chert)

Chemical sediment in the field area is largely composed of massive or banded chert, located along 

the north-western and far western margins of the Kukuom-Juaboso and Hwidiem domains, within 

the Sefwi Belt. The magnetic response of the chert is associated with asymmetrical, elongate (~5km), 

low amplitude (-783 to -771 nT), irregular anomalies. Magnetic susceptibility values are generally low 

(0.35–1.59 x 10-3 SI) and the radiometric signal indicates a depletion in all incompatible elements.

3.5.1.11 Polymictic conglomerate and sandstone

Two types of polymictic conglomerate and sandstone units are observed in the field area, confined to 

the Ketesso Shear Zone and the Bibiani Shear Zone. Where exposed along the Ketesso Shear Zone, 

this lithology comprises strongly sheared sandstone, siltstone and matrix supported conglomeratic 

beds with intensely sheared, rounded quartzo-feldspathic clasts. Conglomerates located along the 
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Bibiani Shear Zone contain metasedimentary schist, meta-volcanic and granite-derived lithics, 

indicating local sources. A steeply dipping S-C fabric with a horizontal mineral stretching lineation 

is defined by the metamorphic assemblage of either quartz-chlorite-white mica or quartz-chlorite-

actinolite, often pervasively altered to sericite and albite. This lithology is associated with narrow, 

elongate heterogeneous magnetic anomalies, largely controlled by fluid flow along shear zones and has 

a radiometric signal that indicates high K and Th.

3.5.1.12 Dolerite dyke

Dolerite dykes in the field area are characterised by high-amplitude (-509 nT), linear magnetic 

anomalies, less than a kilometre in width and 40 to 200 km in length. The dykes crosscut all 

Palaeoproterozoic formations with three primary orientations at N 340°, N 020° and N 070°. The 

dipole response characterising some dykes indicates strong magnetic susceptibility and remanence; 

however, this was not further investigated within this study. In the northeast of the field area, some 

dyke generations are overlain by Neoproterozoic Volta basin sediments, whilst others intrude the 

Neoproterozoic sedimentary pile, indicating multiple emplacement events.

3.5.1.13 Volta basin sediments

Covering the north-eastern extent of the field area, the Neoproterozoic Volta Basin sediments 

unconformably overlie the Palaeoproterozoic units. The sediments comprise horizontal beds of thick 

cross-bedded sandstone, fine-grained arkoses and rare conglomerates (Junner, 1946; Kalsbeek, et al., 

2008). Magnetic anomalies of Palaeoproterozoic unit continue beneath the basin sediments; however, 

their magnetic signal of is smoothed and slightly reduced in amplitude. The basin margin is most 

clearly defined in the combined DEM and radiometric image, associated with an elevated topography 

and extensive K depletion relative to U and Th.

3.5.2 Geophysical response of tectono-metamorphic domains

The study area is divided into a number of tectono-metamorphic domains based on their geology, 

metamorphic grade and geophysical response. Given the sparsity of outcrop and the rarity of exposure 

of major shear zones, domain boundaries are interpreted from magnetic lineaments, truncation of 

magnetic fabrics or contrasting magnetic, radiometric or gravity responses. The tectono-metamorphic 

domains of the Sefwi Greenstone Belt, including the high-grade Chiraa Domain, correspond with a 
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NE-striking, high amplitude gravity anomaly (Fig. A2SI). Moderate to low gravity responses flank 

the belt to the northwest and southeast, corresponding with meta-sedimentary units of Sunyani-

Comoé and Kumasi-Afema Domains, respectively. High amplitude gravity anomalies also correspond 

to the parallel-striking Ashanti Greenstone Belt and the northern Bui Greenstone Belt (Fig. A2SI). 

The aeromagnetic data provides significantly more detail on the lithology distribution and domain 

boundaries within the Sefwi Belt based on contrasting magnetic characteristics (Fig. 3.2a). 

The north-western margin of the Sefwi Belt is defined by a ~250km long, curvilinear NE-

striking magnetic lineament, known as Kenyase-Yamfo Shear Zone, which separates amphibolite 

facies tectono-metamorphic domains of the belt from low-grade metasedimentary packages of the 

Sunyani-Comoé Domain. The central, rhomboidal Kukuom-Juaboso Domain is characterised by a 

strong, E-W to ENE-WSW trending magnetic fabric, predominantly associated with metamorphosed 

volcaniclastic and greywacke sequences. Magnetic fabrics of the Kukuom-Juaboso Domain are 

truncated to the west and to the east along NNE-striking structures, interpreted as the domain 

boundaries. The northern margin of the Kukuom-Juaboso Domain is demarcated by the elongate, 

narrow, ENE-striking magnetic lineaments of the Hwidiem Shear Zone. Exposures within the shear 

zone comprise migmatitic meta-basalt and meta-diorites, which are associated with alternative low 

and moderate-to-high amplitude magnetic anomalies, indicating structurally controlled magnetite 

destruction and growth during deformation and metamorphism. To the north of the Hwidiem Shear 

Zone, the Hwidiem Domain is characterised by high, amplitude, high frequency, NE-striking magnetic 

fabrics intruded by multiple, low magnetic plutons. 

In the far northeast of the study area, the Chiraa Domain is characterised by predominantly by 

a low magnetic signal containing discrete, high magnetic anomalies, consistent with the heterogeneous 

high-grade paragneiss and granite exposures within the domain. The Bechem Granitoid domain is 

characterised by a low- to moderate magnetic response, with a weak, heterogeneous magnetic fabric, 

with high amplitude, linear to curvilinear magnetic anomalies demarcating its southern boundary 

represented by the ~300 km-long Ketesso Shear Zone. The southern portion of the Sefwi Belts comprises 

the Sefwi-Wiawso Domain, which is characterised by highly magnetic mafic to intermediate volcanic 

rocks, featuring a NE- to ENE-striking magnetic fabric and low amplitude, low-frequency magnetic 

anomalies associated with multiple generations of pluton emplacement. 
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Fig. 3.2: a) Composite image of the negative reduced to the equator (nRTE) residual magnetic intensity draped over the 

shaded first vertical derivative (1VD), comprising airborne magnetic surveys from SW Ghana and SW Ivory Coast (survey 

details in Fig. A1SI); b) Lithological and structural map of the Palaeoproterozoic rocks of SW Ghana. CD: Chiraa 

Domain; HD: Hwidiem Domain; BGD: Bechem Granitoid Domain; SWD: Sefwi-Wiawso Domain; SZ: Shear Zone. 

Shear zones are colour coded according to the last deformation event during which they were active. Darker colours of 

the same lithological unit represent more rocks with a higher magnetic response. 
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Contrasting all domains within the Sefwi Belt, the Sunyani-Comoé Domain is characterised 

by alternating high and low NE-striking magnetic domains. Smooth, low amplitude, long wavelength 

magnetic domains are associated with meta-sedimentary units bounded by highly magnetic lineaments, 

which are interpreted as shear zones activating during different phases of deformation. Within the 

high magnetic domains, ENE-striking magnetic fabrics are observed in the metamorphosed volcano-

sedimentary rocks, surrounding and along strike of elongate, elliptical magnetic lows associated with 

leucogranitic plutons. Whilst the Kumasi-Afema Domain bearing some lithological similarity to the 

Sunyani-Comoé Domain, it is characterised by and low- to moderate magnetic response with poorly 

developed NE-striking magnetic lineaments. The entire study area is cross-cut by late NW-, NNW- 

and N-striking, dolerite dykes associated with narrow, elongate dipole magnetic anomalies. 

3.6 Tectono-metamorphic history

3.6.1 Deformation sequence

We distinguish five discrete deformation events in the Sefwi Greenstone Belt and adjacent 

metasedimentary domains attributed to the Palaeoproterozoic Eburnean Orogeny. The structural 

framework for these five events is deduced from field observations across the study area, kinematic 

analysis of processed potential field data and the macroscale geometries of discrete tectono-

metamorphic domains.

3.6.1.1 D1 NNW-SSE directed shortening

D1 is defined by a ubiquitous, penetrative metamorphic foliation present in both high-grade rocks and 

low-grade rocks throughout the study area. In the Sunyani-Comoé and Kumasi-Afema domains, S1 

trajectories define the axial surface of kilometric NE-SW striking isoclinal folds of thick stratigraphic 

units, parallel to the crustal-scale shear zones that dominate the architecture of the study area. 

Conversely, S1 trajectories of domains within the Sefwi Belt, as well within the Chiraa Domain, are 

routinely oblique to NE-SW-striking shear zones. In the Kukuom-Juaboso Domain, S1 trajectories 

and D1 shear zones vary in strike between E-W and ENE-WSW, with evidence of overprinting during 

subsequent deformation. In the high-grade Chiraa Domain, gneissic S1 trajectories follow an arcuate 

geometry, elongate toward ~N250, overprinted by subsequent deformation and vertically transposed 

along domain boundaries. 

In the Kukuom-Juaboso Domain (Fig. 3.3a, b, d), S1 is defined by a shallowly- to steeply-
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dipping, schistose to gneissic metamorphic foliation of aligned biotite and amphibole in metavolcanic 

rocks, para-amphibolites and orthogneisses, which are well imaged in aeromagnetic data. S1 is parallel 

to bedding (S0) in metamorphosed volcaniclastic units. The limited number of isoclinal, centimetric F1 

folds observed in this domain are intrafolial, with fold axes parallel to bedding in metasedimentary units. 

In the core of the domain, locally migmatitic orthogneisses, interpreted as intermediate metavolcanic 

sequences, display metamorphic banding dipping moderately (<60°) towards N330 to N350, bearing 

down-dip amphibole stretching lineations and top-to-the-SSE kinematic indicators (Fig. 3.3a). A rose 

diagram plotting all S1 measurements for the Kukuom-Juaboso Domain displays two main trends, 

striking approximately E-W and N030, respectively (Fig. 3.3d). Amphibolite facies packages and large 

granitoid bodies of the Sefwi Belt are juxtaposed with the low-grade metasediments of the Sunyani-

Comoé domain along the Kenyase-Yamfo Shear Zone; however, D1 kinematic indicators are largely 

obscured by later deformation and poor exposure.

Fig. 3.3: (a, b, c) Representative D1 structures in the study area showing key geometries and overprinting relationships 

(see Fig. 3.7 for outcrop locations). a) NNW-dipping gneissosity (S1) in a meta-andesite (SB016) in the Kukuom-Juaboso 

Domain with foliation-parallel, coarsely crystalline, late-D1 leucosomes; b) Illustration highlights asymmetry of S1-

parallel leucosomes with steeply down-dip L1 amphibole stretching lineations (not shown) indicating reverse top-to-the-
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SSE kinematics; c) Bedding-parallel biotite foliation, axial planar to isoclinal F1 folds in a paragneiss unit (SB359) in the 

Chiraa Domain, showing low angle relationships with a D1  shear zone; d) Summary diagram of all S1 measurements from 

each domain plotted as a rose diagram to highlight structural trends. 

In the high-grade Chiraa Domain, S1 is defined by a biotite-rich gneissosity parallel to stratigraphic 

layering in migmatitic garnet-bearing paragneisses (Fig. 3.3c), also observed in subordinate granitic 

orthogneisses. No reliable L1 stretching lineations were observed in this domain. S1 is moderate- to 

steeply-dipping with a highly variable orientation due to overprinting and transposition (Fig. 3.3d). 

Migmatitic paragneisses of the domain display stromatic leucosomes, parallel to the S1 gneissic 

banding, as well as discordant leucocratic veins and dykes, cross-cutting S1 foliations. Similarly, 

migmatitic metabasalts exposed in the Hwidiem Shear Zone display an S1 gneissosity, defined by 

aligned hornblende alternative with plagioclase and quartz, also featuring stromatic leucosomes, which 

suggest partial melting occurred in both domains during, or in the latter stages of, D1 (Fig. 3.3a). In 

contrast, in the Sunyani-Comoé and Kumasi-Afema Domains, S1 is characterised by a chlorite-white 

mica foliation, parallel to bedding (S0) in the low-grade metasediments, defining the axial surface of 

isoclinal F1 folds. In mafic and intermediate meta-volcanic rocks of the Sefwi-Wiawso Domain, S1 

is predominately characterised by a steeply dipping E-W to NE-SW, chlorite-actinolite-white mica 

schistosity (Fig. 3.3d) and mineral alignment in biotite and hornblende bearing granitoids. Based on 

field observations, D1 is likely characterised as an NNW-SSE directed shortening event associated with 

isoclinal folding and thrusting, high-grade metamorphism, and partial melting in its latter stages.

D1 structures in the airborne magnetic data are primarily preserved within the Kukuom-

Juaboso Domain and the Hwidiem Domain, corresponding with high magnetic E-W to ENE-

WSW striking lineaments interpreted as D1 shear zones, often coinciding with a sharp change in the 

amplitude and texture of the magnetic response. They are parallel to the ENE-striking magnetic fabric 

of the Kukuom-Juaboso Domain, which corresponds with the bedding-parallel S1 foliation observed 

in the field. D1 shear zones are often refolded around tight ENE-striking folds developed during D2, 

or truncated by later faults. The combined evidence of a bedding-parallel S1, rare isoclinal intra-folial 

F1 folds, coupled with the documented thrust movement along D1 structures is consistent with lateral 

contractional deformation and crustal thickening during D1 NNW-SSE directed shortening. During 

this event, the Kenyase-Yamfo Shear Zone likely represented an oblique reverse fault; however, due to 

extensive reactivation, this was not confirmed by field evidence.
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3.6.1.2 D2 ENE-WSW directed transtension 

The structural expression of D2 deformation within the study area is highly varied, depending on both 

the orientation of pre-existing structures and proximity to major D1 shear zones. In the amphibolite to 

granulite facies paragneisses of the Chiraa Domain, S2 is defined by a spaced biotite schistosity, forming 

the axial surface of tight, gently-inclined F2 folds (Fig. 3.4a), with fold axes observed approximately 

parallel to L2 mineral stretching lineations, defined by elongate kyanite or biotite in favourable 

lithologies. S2 progressively rotates in orientation from ~N040 to N270 in an anticlockwise direction, 

parallel to the arcuate geometries of the S1 trajectories (Fig. 3.5), dipping steeply to the west in the 

north of the domain, and shallowing slightly to the south (60–80°S). In the far north of the domain, 

L2 and F2 plunging moderately (18–40°) towards the ~N230, rotating with the metamorphic fabric 

to an E-W orientation along the southern margin of the domain, plunging shallowly to moderately 

(~7–44°) towards both the east and west due to subsequent deformation. In a raft of migmatitic mafic 

orthogneisses (SB177) in the south of the domain, the S1 gneissosity and plagioclase-rich leucosomes 

are refolded by centimetric, rootless F2 folds (Fig. 3.4b), with minor melt accumulation in fold hinges. 

Megacrystic garnet and clinopyroxene porphyroblasts display S1/2 foliation parallel stretching (Fig. 

3.4c). Whilst the tectonic contact between migmatitic rocks of the Chiraa Domain and greenschist 

facies metasedimentary rocks of the Sunyani-Comoé Domain to the west and south is poorly exposed, 

it is interpreted as significant crustal detachment, juxtaposing domains of contrasting metamorphic 

grade. Along the western boundary of the Chiraa Domain, the dip direction of the S2 foliation in both 

the high and low grade rock progressively rotates counter-clockwise from NW to W and then to the 

south, along the southern boundary of the domain.  The corresponding L2 stretching lineation pitches 

shallowly to the SW, progressively rotating to the east. The combined structural and architectural 

features of this tectonic contact is interpreted as a normal, left lateral detachment fault, with foliation 

rotation attributed to a regional scale drag fold along the larger shear system along strike. 

 Within the Kukuom-Juaboso and Hwidiem domains, S1 trajectories and D1 shear zones are 

refolded along tight F2 folds elongate towards N230–N270. S2 is a moderate- to steeply- (40–82°) 

NNW to SSE-dipping, discontinuous biotite and/or amphibole foliation (Fig. 3.5), depending on the 

lithology. The ENE-WSW oriented Hwidiem Shear Zone marks the tectonic contact between the 

Kukuom-Juaboso and Hwidiem domains. Within the shear zone, metamorphic banding (S1) and 

parallel leucosomes in migmatitic mafic orthogneisses are refolded around open, upright F2 folds, 

displaying prominent elongation and mineral stretching parallel to F2 fold axes (Fig. 3.4d). F2 fold 
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Fig. 3.4 Representative D2 structures. a) Tight, SW plunging F2 folds in a garnet-biotite paragneiss in the 

Chiraa domain (SB440), refolding pelitic and psammitic layers (S0 ) and a bedding-parallel biotite foliation 

(S1 ); b) Migmatitic orthopyroxene-free garnet-clinopyroxene meta-basalt (SB177) on the southern margin 

of the Chiraa Domain, displaying subparallel relationship between S2 and transposed, refolded S1 foliation 

and plagioclase-rich leucosomes; c) Elongate, megacrystic garnet and clinopyroxene porphyroblasts and 

plagioclase-rich leucosomes (SB177); d) Open, constrictional F2 fold refolding S1 gneissosity in a migmatitic 

meta-basalt (SB089) in the Hwidiem Shear Zone, displaying a prominent L2 stretching lineation parallel to the 

F2 fold axis; e) L>>S tectonite in the Ketesso Shear Zone displaying pervasive mineral elongation in a quartz 

dioritic garnet amphibolite; f) Southeast dipping S-C2 fabrics in the footwall of the Kenyase-Yamfo Shear 

Zone, associated with steeply east plunge L2 stretching lineations, indicating normal, left-lateral movement; 
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g) Prominent, NE-striking sub-vertical S2 foliation in a pyritic, greenschist facies volcano-sedimentary rocks 

(SB103) in the Sunyani-Comoé Domain. S1 and S2 are orthogonally overprinted by a sub-vertical, N-striking 

dissolution cleavage (S3 ). Inset: h) Sub-vertical NE-striking S2 crenulation cleavage overprinting a millimetric, 

flat-lying chlorite-white mica S1 foliation.

hinges plunge 17–30°  towards ~N080, whilst L2 amphibole stretching lineations plunge near coaxially to 

N065–N109. This geometry indicates greater hinge parallel elongation relative to hinge-perpendicular 

shortening, which is characteristic of a transtensional regime (Dewey, et al., 1998). 

Fig. 3.5. Summary diagram of D2 and D3 structural data from domains within the study area. The 

first and third columns plot S2 planes and L2 and F2 poles to highlight the coaxial, shallow-plunging 

relationship of L2 and F2. The second and fourth columns highlight the relatively consistent expression 

of D3 shortening throughout all domains. 

A similar relationship is observed in a garnet-hornblende paragneiss (SB464) in the Kukuom-

Juaboso Domain with isoclinal, near recumbent F2 folds displaying near coaxial L2 amphibole 

stretching lineations. Unlike the Hwidiem Domain, L2 mineral stretching lineations observed in 

the core of the Kukuom-Juaboso Domain consistently plunge shallowly (7–34°) towards the west, 

with more varied orientation proximal to domain boundaries due to later transposition. The coaxial 

relationship between L2 and F2, their obliquity relative to the major Kenyase-Yamfo Shear Zone 
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attest to constrictional deformation and folding under transtension (Fossen, et al., 2013). The role 

of constrictional deformation is further demonstrated by the presence of L>>S tectonites in garnet-

amphibole-bearing dioritic amphibolites (L2: 4–11° → N230) in the Ketesso high strain zone (Fig. 3.4e). 

Along strike, metre-scale boudin flow structures are observed in a strongly sheared, highly altered 

granite (L2: 11° → N225). According to Sullivan (2013, and references therein), L>>S and L-tectonites 

are indicative of transtension and ductile deformation in the mid- to lower crust. 

D2 deformation in the Sefwi-Wiawso, Sunyani-Comoé and Kumasi-Afema domains displays 

contrasting metamorphic grade and fold style. The NE-striking Kenyase-Yamfo Shear Zone separates 

the Sunyani-Comoé-Domain and amphibolite facies rocks of the Kukuom-Juaboso and Hwidiem 

domains. Foliations in the footwall of the shear zone dip moderately to the south (~48–64°) bearing 

east-pitching mineral stretching lineations (L2: 52° →N092) and normal, left-slip kinematic indicators 

(Fig. 3.4f), which overprint the S1 foliation. We, therefore, interpret the shear zone as a D1 fault 

reactivated as a left-lateral normal fault under an ENE-WSW tensional regime. In the greenschist facies 

volcano-sedimentary rocks of the Sunyani-Comoé Domain, bedding and S1 are refolded by isoclinal, 

SW-plunging F2 folds evident in tight, millimetric crenulations of S1 by an upright S2 foliation in F2 fold 

hinges (Fig. 3.4 g, h), or locally as a NE-SW oriented, differential S1/2 cleavage parallel to the regional 

scale crustal architecture. In the southern volcano-plutonic Sefwi-Wiawso Domain, D2 strcutres are 

poorly defined, and are variably expressed as E-W to NE-SW striking, tight folds associated with spaced 

dissolution crenulation cleavage or a weak chlorite schistosity in favourable lithologies. On the eastern 

margin of the Sefwi-Wiawso Domain, the NNE-striking brittle-ductile Bibiani Shear Zone separates 

folded metasediments of the Kumasi-Afema domain in the footwall from polymictic conglomerates 

in the hanging wall. The Bibiani Shear Zone and the parallel Chirano Shear Zone are interpreted as 

extensional detachments, bounding a syn-extension graben hosting conglomeratic units containing 

lithics sourced from both the Sefwi-Wiawso and Kumasi-Afema domains.

The D2 Hwidiem Shear Zone is characterised by a curvilinear, elongate anomalies with highly 

varied magnetic amplitudes (-816 to -585 nT) and short wavelengths (500 m – 2 km). The western 

extent of the shear zone is low magnetic, likely reflecting magnetic destruction during fluid-fluxed 

partial melting of mafic rocks within the shear zone. Distal to the boundaries of the Kukuom Juaboso 

Domain, D1 magnetic fabrics and D1 shear zones are refolded by regional-scale ENE-striking, tight 

F2 folds. The truncation of ~E-W striking high amplitude magnetic fabrics in the domain defines 

the NNE-striking D2 shear zone representing the western boundary of the domain. Along this shear 
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zone, rocks of the Kukuom-Juaboso Domain are juxtaposed with the NE-striking, alternating short 

wavelength, high amplitude and smooth, low amplitude magnetic signals of volcano-sedimentary 

schists of the Sunyani-Comoé Domain. 

 In the north of the field area, alternating NE-striking, high-ampitude and low amplutide 

magnetic signals of the Sunyani-Comoé Domain are trucated along the boundary of the patchy, weakly 

magnetic to strongly magnetic lithologies within the Chiraa Domain. Both S2 foliation trajectories and 

magnetic anomalies preserved in rocks of the Chiraa Domain progressively rotate counter-clockwise 

in orientation from NE-striking in the north to E-W striking in the south. This rotation is mirrored by 

the magnetic fabric of the adjacent greenschist facies sediments of the Sunyani-Comoé Domain. The 

rotation of D2 structures is consistent with drag folding associated with sinistral movement along the 

Kenyase-Yamfo Shear Zone. Additional kinematic indicators of sinistral movement are interpreted 

from the S-C magnetic fabric in the metamorphosed volcano-sedimentary rocks south of Kawtiego as 

well as the complex, δ-type shear sense indicated by magnetic units wrapping around a small pluton 

near Adzopé. In the south of the study area, truncation of early magnetic fabrics occurs along the 

Bibiani Shear Zone associated with normal movement during D2 transtension. 

3.6.1.3 D3 E-W directed shortening

Early fabrics, folds and shear zones are overprinted by deformation during D3, characterised as a 

progressive E-W directed shortening event in a strike-slip setting. D3 resulted in distributed 

accommodation of strain, later transitioning to simple shear-related deformation along narrow 

shear zones associated with a localised greenschist facies metamorphic overprint. The overprinting 

relationship between D1/2 and D3 is most clearly evident in internal areas of high-grade domains, with 

fabrics, shear zones and isograds oriented ~E-W, or approximately parallel to the D3 shortening axis. 

In the Chiraa Domain, D3 is characterised by sub-vertical, N-S striking crenulation cleavage with 

minor biotite recrystallization along crenulation axes, and open, gently N-plunging F3 folds (Fig. 3.5). 

 Microstructural evidence shows crenulation of kyanite-defined L2 stretching lineations by the 

overprinting N-S S3 foliation. The near orthogonal relationship between F2 and F3 fold axes has resulted 

in Type 1 fold interference patterns in both the Chiraa (Fig 3.6a) and Kukuom-Juaboso domains, 

distal to high-strain zones along domain boundaries. On the NNE-striking western boundary of the 

Chiraa Domain, earlier fabrics are transposed to a sub-vertical orientation during localised dextral 

strike-slip movement. The post-crystallisation dextral shearing of garnet-bearing leucosomes in 
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migmatitic paragneisses (Fig. 3.6b), approximately 5km east of the domain boundary, indicate that 

D3 deformation post-dates peak metamorphism. Overprinting relationships in the amphibolite facies, 

Kukuom-Juaboso domain are demonstrated by the refolding of sinistral drag folds along metre-scale 

D2 shear zones by near-orthogonal NNE-striking upright F3 folds (Fig. 3.6c). 

Fig. 3.6: D3 structures. a) Type-1 fold interference pattern in migmatitic paragneisses in the Chiraa Domain (SB404), 

illustrating the near orthogonal relationship of ENE-WSW oriented F2 folds and ~N-S striking S3 biotite foliations; b) 

Post-crystallisation dextral shearing of a garnet-bearing leucosome, sub-parallel to S1 and S2 foliations in a migmatitic 

paragneiss on the western margin of the Chiraa Domain (SB147); c) N- to NNE striking vertical S3 foliation overprinting 

drag folds generated during D2 sinistral strike-slip faulting in the southwestern regions of the Kukuom-Juaboso Domain 

(SB313); d) Prominently elongation of quartz clasts in Tarkwaian-type conglomerates and chlorite-white mica S-C3 

fabrics (SB418) indicating dextral shearing along the Ketesso Shear Zone. 

 In the low-grade metavolcanic and metasedimentary domains, D3 deformation generates a 

N-S to NE-SW oriented dissolution cleavage, most poorly developed in the Sefwi-Wiawso Domain. 

D3 E-W shortening transposes tectonic fabrics proximal to domain boundaries to sub-vertical 

orientations, reactivating pre-existing shear zone with favourable orientations. In the high-strain 

Ketesso-Shear Zone and the Kenyase-Yamfo Shear Zone chlorite-muscovite NE-SW S-C3 fabrics, 

sigmoidal asymmetries and sub-horizontal stretching lineations indicate dextral shearing under 

greenschist facies conditions. Conglomerate units within the Ketesso Shear Zone display prominent 
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shearing of clasts coupled with the development of chlorite-white-mica S-C3 fabrics (Fig. 3.6d). In 

contrast, the NNE-striking Bibiani on the eastern boundary of the Sefwi Wiawso Domain is at high 

angles to D3 shortening and is, therefore, less favourable for strike-slip reactivation. Instead, Tarkwa-

type conglomerates deposited during D2 transtension were thrust over low-grade metasediments 

of the Kumasi-Afema Domain during D3.We correlate D3 deformation with brittle-ductile shearing 

and west-side-up movement associated with greenschist facies metamorphism documented in the 

Chirano lode horizon, parallel to the Bibiani shear zone (Allibone, et al., 2004).

D3 deformation in the airborne magnetic data sets is associated with high amplitude, elongate 

NE-striking anomalies between 250 and 300 km in length, associated with the linear Ketesso Shear 

Zone and the curvilinear Kenyase-Yamfo and Afema Shear Zones. These anomalies truncate those 

associated with the Hwidiem Shear Zone and the southern margin of the Chiraa Domain. Gentle N-S 

F3 folds reform early magnetic fabrics within the Kukuom-Juaboso, Hwidiem and Chiraa Domains. 

3.6.1.4 D4: N-S shortening - Brittle ductile deformation and NNE-SSW sinistral shear zones

D4 is associated with NW-SE-directed shortening associated with brittle-ductile deformation. This 

deformation event did not significantly influence the macro-scale crustal architecture of the study 

area. D4 generated late sinistral oblique reactivation of the NNE-SSW Bibiani and Chirano shear 

zones, deflected existing fabric and faults in the Kumasi-Afema Domain. Pseudotachylites in the 

northern areas of the Bibiani Shear Zone crosscut an earlier east-west mineral foliation in a meta 

dacite (SB051). Immediately west of the Chiraa Domain, NE-SW striking structures are truncated by a 

narrow N-S sinistral shear zone, with C4-S fabrics developed in a graphitic schist. In the aeromagnetic 

data, NNS striking D4 faults, including the reactivated Bibiani Shear Zone, truncate the Ketesso Shear 

Zone immediately to the north, whilst a smaller N-S shear zone west of Chiraa truncates reactivated 

D3 shear zones in the Sunyani-Comoé Domain.

3.6.1.5 D5 WNW-ESE shortening; Reidel shear zones 

Late NW-SE, NE-SW and E-W oriented structures, which form conjugate fault sets developed during 

D5 WNW-ESE shortening. Dextral displacement commonly observed along E-W striking shear 

zones and sinistral movement long NW-SE striking shear zones. Similar late-stage deformation was 

documented in neighbouring eastern Ivory Coast (Delor, et al., 1992; Hirdes, et al., 2007; Lüdtke, et 

al., 1999; Lüdtke, et al., 1998). The magnetic expression of D5 faults is interpreted from the truncation 
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and lateral displacement of pre-existing magnetic lineaments and fabrics. Faults are often localised, 

with a maximum length of 10 km. 

3.6.2 Metamorphic history

We present a new metamorphic map for the study area (Fig. 3.7) based on field observations of 

petrological assemblages and metamorphic textures. Here we describe the key assemblages and 

metamorphic relationships for each domain (mineral abbreviations after Whitney & Evans, 2010). 

More detailed petrological analysis and quantitative P-T estimates and geochronological constraints 

from in situ monazite SHRIMP U-Pb ages are presented in Chapter 4. 

Rocks from the Chiraa and Kukuom-Juaboso domains preserve high-grade metamorphic 

assemblages. The peak pressure assemblages of paragneiss sample SB398 comprises Bt + Grt + Ky 

+ Pl + Ph + Rt + Qz, whilst garnet amphibolites comprise Hbl + Grt + Pl + Ilm + Qz indicative of 

high-pressure amphibolite facies metamorphic conditions. Initial conditions of 10.0–11.5 kbar, 580–

650 °C, deduced from unzoned garnet porphyroblast compositions are associated with low apparent 

geothermal gradients (15–17 °C/km) (detailed in Chapter 4). Migmatitic paragneisses of the Chiraa 

Domain contain leucosomes parallel to the S1 foliation, often refolded by F2 folds or feeding into 

dykes that cross –cut both D1 and D2 structures. This suggests that partial melting was late-D1 to 

syn-D2. Anatexis in the Chiraa Domain matches a higher apparent geothermal gradient of 20–25 °C/

km, consistent with the peak metamorphic assemblage observed in a migmatitic metabasic rock in 

the same domain of Pl + Grt + Cpx + Hbl + Ilm + L, which suggests anatexis occured at >10 kbar and 

>700 °C (Pattison, 2003). Conversely, garnet amphibolites from the Kukuom-Juaboso Domain do 

not undergo partial melting. In contrast, metamorphosed volcano-sedimentary rocks of the Sunyani-

Comoé Domain preserve a peak assemblage of fine-grained chlorite-white mica ± actinolite. 

Field observations revealed a localised greenschist facies metamorphic overprint along the boundaries 

of the amphibolite facies and migmatitic domains and along major shear zones, whilst little to no 

retrogression of high-grade assemblages was observed away from domain boundaries. This suggests 

exhumation and juxtaposition of domains of contrasting metamorphic grade occurred prior to the 

greenschist facies metamorphic overprint. In the Kukuom-Juaboso Domain, retrogression the garnet 

amphibolite sample (SB344) is marked by the localised chlorite growth along the foliation planes 

and on the rim of garnets and the overgrowth of titanite around foliation-parallel ilmenite (Chapter 

4). The incomplete replacement of hornblende and garnet by chlorite and syn-kinematic growth of 
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chlorite on foliation plane indicates late deformation is associated with a clockwise P-T path from 

upper amphibolite facies conditions to upper greenschist facies conditions (Spear, 1993). This is 

consistent with the clockwise P-T paths displaying simultaneous cooling and decompression and 

an overprinting transcurrent-related, retrograde mineral assemblage of chlorite-carbonate-epidote-

albite, documented in the Kukuom-Juaboso Domain by Galipp et al (2000; 2003).

The timing of the initiation of cooling and exhumation in the high-grade paragneisses (samples SB398 

and SB389) is constrained by in situ monazite U-Pb SHRIMP ages of 2073 ± 2 Ma and 2074 ± 3 Ma 

(see Chapter 4). Monazite grains were located primarily in the matrix, elongate parallel to the main 

tectonic fabric, or in the case of SB398, parallel to the L2 kyanite stretching lineation. The monazite 

age is interpreted as the timing of exhumation initiation, post-dating zircon U-Pb crystallisation ages 

of 2093 ± 2 Ma and 2092 ± 2 Ma yielded by granites in the Chiraa Domain (Petersson, et al., 2016). 

This relationship is consistent with observations from many high-grade terranes in which monazite 

populations are younger than zircon populations from the same area (Kelsey, et al., 2008).

3.6.3 Structural-metamorphic map

Figures 3.7 and 3.8 display the trajectories of the S1 foliations over the new tectono-metamorphic 

map of the study area and illustrates the distribution of metamorphic facies, including localised 

water-fluxed incongruent partial melting along the Hwidiem shear zone within the Sefwi Belt. This 

methodology is utilised by Block, et al. (2016) for Palaeoproterozoic rocks exposed in NW Ghana and 

is applied here to facilitate comparison of strain patterns in comparable terranes in the West African 

Craton. Fault generations are colour-coded according to their primary deformation phase or the event 

during which they were last reactivated. This map illustrates that:

- The early S1 and subparallel S2 fabrics preserve an E-W to ENE-WSW strike within the higher 

grade subdomains of the Sefwi Belt, complemented by the major trends displayed in rose 

diagrams of S1 measurements for the Kukuom-Juaboso and Hwidiem Domains in Figure 3.4. 

The Kenyase-Yamfo Shear Zone along the north-western margin of the belt demarcates the 

transition from ENE-WSW striking foliation trajectories to the predominantly NE-striking S1 

trajectories of the Sunyani-Comoé Domain. The shear zone is likely to have been inherited from 

either the primary crustal architecture or D1 and has been reactivated and transposed during 

subsequent deformation. Within the Sefwi Belt, smaller D1 shear zones and isograds associated 

with partial melting at the upper amphibolite to granulite facies conditions commonly strike 
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Fig. 3.8. (a) Detailed structural-metamorphic maps of the Chiraa Domain and (b) the intersection of the Hwidiem Shear 

Zone and the Kenyase Shear Zone (see Fig. 3.6 for locations). Juxtaposition of amphibolite facies and migmatitic rocks 

with greenschist facies volcano-sedimentary sequences occurs along normal oblique D2 faults, which are reactivated and 

transposed during D3 deformation.
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ENE and are variably refolded or truncated by younger structures. The NNE-striking western 

margins of the Chiraa and Kukuom-Juaboso domains coincide with the most significant lateral 

metamorphic breaks, which are attributed to D2 ENE-WSW transtension (Figs. 3.7 and 3.8). 

- Refolded S1 trajectories with the Kukuom-Juaboso Domain reveal regional-scale tight F2 

folds, generating a low-angle relationship between S1 and S2. D2 structural measurements (Fig. 

3.5) indicate a near coaxial relationship of shallowly E- to NE- and W- to SW- plunging L2 

and F2 measurements, most prominent in the higher metamorphic grade domains. Figure 

3.8 highlights the obliquity between the E-W to ENE-WSW striking S1/2 measurements in 

the Chiraa Domain (Fig. 3.8a) and the Kukuom Juaboso Domain (Fig. 3.8b) and the NE-SW 

strike of the major shear zones. The obliquity of this relationship is characteristic of terranes 

deformed under a transtensional regime.

- Sheared S1 foliation trajectories form S-C fabrics which indicate sinistral movement along 

multiple D2 shear zones in the Sunyani-Comoé Domain, often occurring along strike of 

elongated leucogranitic plutons between the townships of Chiraa and Kawtiego and toward 

the Ghanaian-Ivorian border (Fig. 3.7). 

- Rocks of the Kukuom-Juaboso domain are transected by and entrained in the Ketesso high-

strain zone during D3. Upper amphibolite rocks are documented in the extension of the high 

strain zone on the Ivorian side. Hirdes, et al. (2007) suggest that the rocks represent a high-

grade, deeper crustal equivalent of the Sunyani-Comoé domain metasediments whilst we 

contended that they form part of the Kukuom-Juaboso domain. E-W shortening during D3 

refolded S1/2 foliation trajectories within the Kukuom-Juaboso Domain whilst transposing its 

NNE-striking western boundary to a sub-vertical orientation. Plots of S3 measurements distal 

to shear zones indicate a relatively consistent N-S strike attributed to pure shear deformation, 

whilst simple shear-related deformation localised along major NE-SW-striking shear zones  

generating dextral S-C3 fabrics (Fig. 3.5).

- Foliation trajectories on either side of the NNE-striking Bibiani Shear Zone display drag 

folds associated with sinistral shearing along the fault. Truncation of the Afema Shear Zone 

at the southern extent of the Bibiani Shear Zone suggests the latest reactivation post-dates D3 

shearing along the Afema Shear Zone. 
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3.7 Discussion

3.7.1 Timing of Eburnean deformation in the Sefwi Belt

Palaeoproterozoic crust exposed in southwest Ghana comprises tholeiitic to calc-alkaline volcanic 

suites and TTG-like to calc-alkaline plutons suites was emplaced between 2190 and 2130 Ma, 

recognised as a phase of magmatic accretion (e.g. Amponsah, 2012; Hirdes & Davis, 1998; Hirdes, 

et al., 2007; Hirdes, et al., 1993; Loh, et al., 1999; Taylor, et al., 1992). Subsequent deformation and 

metamorphism attributed to the Eburnean Orogeny are bracketed across the craton between ca. 2150 

and ca. 1980 Ma (e.g. Davis, et al., 1994; Feybesse, et al., 2006). Deposition of metasediments in 

the Kumasi-Afema Domain, considered to be partially contemporaneous with sedimentation in the 

Sunyani-Comoé Domain, is constrained by the youngest detrital zircon age of 2154 ± 2 Ma (Oberthür, 

et al., 1998), with intercalated andesitic flows dated at 2142 ± 2 Ma (Adadey, et al., 2009), and late-

sedimentary emplacement of granodiorite plutons at 2136 ± 19Ma (Adadey, et al., 2009). Perrouty, 

et al. (2012) bracket Kumasi Group deposition between 2154–2125 Ma, in agreement with a period 

of tectonic extension and emplacement of alkaline granites and quartz monzonites in the Sefwi-

Wiawso domain between 2150 and 2130 Ma proposed by Hirdes, et al. (2007). Figure 3.9 illustrates 

the interpreted tectonic setting and relative distribution of key terranes in southwest Ghana prior 

to the commencement of D1 deformation at ca. 2100 Ma. The tectonic contacts between domains of 

the Sefwi Belt and the adjacent metasedimentary domains have been significantly reworked during 

subsequent deformation, and therefore their nature remains unclear. Gravity data; however, defines 

major litho-tectonic domains, with high gravity anomalies matching the boundaries of the volcano-

plutonic and high-grade domains of both the Sefwi and Ashanti belts, and low to moderate strength 

anomalies associated with the metasedimentary domains, likely reflecting the architecture generated 

during early crust formation. 

 In the study area, D1 deformation is characterised by a ubiquitous bedding parallel foliation, 

development of E-W oriented regional scale thrusts and kilometric folds in association with HP-MT 

temperature metamorphism (Fig. 3.9b), consistent with crustal thickening (England & Thompson, 

1984). These observations are consistent with field observations of a subparallel relationship bedding 

and S1 in the Sunyani-Comoé Domain exposed in southeast Ivory Coast (Delor, et al., 1992; Delor, et 

al., 1992b). The timing of D1 crustal thickening remains unconstrained in this study; however, P-T-t 

paths indicate rapid burial of supracrustal rocks precedes anatexis in the Chiraa Domain. We, 
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therefore, suggest that the minimum timing of D1 is at ca. 2093 Ma indicated by the oldest granite 

crystallisation age from the Chiraa domain (Petersson, et al., 2016). D1 field observations potentially 

correspond with the shear-related, bedding-parallel foliation documented in the neighbouring Ashanti 

belt by (Allibone, et al., 2002a; Allibone, et al., 2002b). The timing of early Eburnean deformation is 

poorly constrained in southern Ghana, with authors suggesting it extended from 2187 to 2158 Ma (D1; 

Perrouty, et al., 2012) or 2116 to 2088 Ma (Eburnean II; Allibone, et al., 2002a). It must be noted that 

Allibone, et al. (2002a) suggest that metamorphism of Birimian mafic volcanic rocks was attributed to 

extensive magmatism between ca. 2200 and 2150 Ma, referred to as Eburnean I. Alternatively, thrust-

related crustal thickening in southern Ghana is hypothesised by Feybesse, et al. (2006) between 2130 

and 2100 Ma. This likely corresponds with monazite and vein-hosted zircon growth at 2102 ± 1 Ma 

and 2104 ± 3 Ma, respectively, in migmatitic orthogneisses in the southern extent of the Ashanti belt 

(Loh, et al., 1999). Lobjoit (1964) suggested that the deflection of the strike of meta-sedimentary 

rocks around a foliated tonalite pluton east of Bibiani was the product of “forceful emplacement” 

of the pluton. We instead suggest that the structural evidence may indicate syn- to late-kinematic 

emplacement of the pluton during D1 deformation, providing a minimum age for the commencement 

of D1 deformation of ca. 2116 Ma (Hirdes, et al., 1992). 

The transition from a compressional to a tensional regime and transcurrent D2 tectonism is 

constrained by monazite crystallisation ages hosted in both L2 kyanite porphyroblasts and the matrix 

of a biotite-sillimanite magmatic gneiss, which both yielded SHRIMP U-Pb ages of ca. 2073 Ma. This 

age records the initial stages of cooling along the retrograde path and the initiation of ENE-WSW 

transtension-related exhumation during D2  (Fig. 3.9c,d). This is consistent with the findings of Jessell, 

et al. (2012) who concluded that transcurrent tectonism along the NW margin of the Sefwi Belt in the 

Sunyani-Comoé domain post-dates the emplacement of the Apouasso leucogranite at ca. 2081 Ma. 

Whilst Jessell, et al. (2012) suggest that the elongation of the leucogranites occurred during dextral 

shearing, the combined evidence of constriction related structures and the macro-geometries of 

juxtaposed metamorphic domains (Fig. 3.9d), we conclude that D2 deformation drove oblique sinistral 

reactivation of major D1 tectonic boundaries, in agreement with sinistral D2 deformation interpreted 

by Feybesse, et al. (2006),and sinistral kinematic indicators observed along strike in southeast Ivory 

Coast (Vidal, et al., 2009). Furthermore, we propose that the conglomerate and sandstone sequences 

west of the Bibiani Shear Zone were deposited in NNE-striking half-graben structures that developed 

during D2 transtension. 
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 Younger D3 deformation was associated greenschist facies metamorphism and dextral 

reactivation of the Sefwi shear system during E-W shortening (Grey shear zones: Fig. 3.9d). The 

timing of D3 remains unconstrained; however, it is potentially correlated with retrograde greenschist 

facies metamorphism and hydrothermal xenotime crystallisation at 2063 ± 9 Ma post-dating sinistral 

shearing in the Ashanti Belt (Pigois, et al., 2003). 

3.7.2 Rheology, tectonic style and exhumation

Strain patterns and lateral changes in metamorphic grade are widely investigated in Precambrian 

provinces due to the insight they provide into the rheological structure of the lithosphere and its 

influence on tectonic style and exhumation processes during orogenesis. In Phanerozoic orogenic belts, 

lateral tectonic forces are accommodated through thrust-related, heterogeneous crustal thickening 

and unit stacking. Conversely, Archaean and some Palaeoproterozoic terranes are associated with 

warmer lithospheres and elevated continental geotherms, which results in weaker and more buoyant 

lithosphere (Griffin, et al., 1998). Under such conditions, convergence is accommodated through 

homogeneous crustal thickening, limited topography and lateral ductile flow (Cagnard, et al., 2006; 

Cruden, et al., 2006; Rey & Houseman, 2006). Alternatively, crustal thickening is attributed to the 

diapiric emplacement of voluminous buoyant granitoids and the sagduction of negatively buoyant 

greenstone terranes, resulting in the characteristic dome and basin strain pattern, with subsequent 

lateral shortening accommodated by craton-scale strike-slip shear zones (Bouhallier, et al., 1993; 

Choukroune, et al., 1995). In the Sefwi Greenstone Belt, we argue that the combined evidence of a 

bedding-parallel foliation (S1), early D1 thrust faulting and initial HP-MT metamorphism indicates 

burial of supracrustal rocks reflects the early stages of modern collisional orogens (England & 

Thompson, 1984). During D1 deformation, we propose that large-scale thrusting leads to heterogeneous 

crustal thickening and burial of supracrustal rocks during horizontal convergence, early in the tectonic 

history of SW Ghana. This is consistent with hypothesised accommodation of crustal thickening by 

nappe stacking (Allibone, et al., 2002b; Feybesse, et al., 2006; Milési, et al., 1992). Such evidence does 

not conform to dome and basin geometries, homogeneous crustal thickening and diapirism-related 

deformation as proposed for areas of the West African Craton (e.g. Delor, et al., 1995; Lompo, 2009; 

Vidal, et al., 1996; Vidal, et al., 2009).

HP-LT and HP-MT metamorphic conditions and low geothermal gradients are rare in 

ancient orogenic domains (Brown, 2007).Whilst few in number, tectono-metamorphic studies of 
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Palaeoproterozoic rocks in the West African Craton sporadically preserve peak pressures of 10 – 14 

kbars associated with relatively cool apparent geothermal gradients, indicating a minimum crustal 

thickening of 33 – 50 km, recorded in NW Ghana (Block, et al., 2015), within the Sefwi Belt (Ch. 4, 

this study), eastern Burkina Faso (Ganne, et al., 2012) and along the tectonic contact between the 

Archaean Kénéma-Man Domain and the Palaeoproterozoic Baoulé-Mossi Domain (Pitra, et al., 2010). 

Documentation of such conditions in the West African Craton suggests that localised areas of the 

lithosphere were cool enough and strong enough to support moderate amounts of crustal thickening, 

suggesting the development of thermo-mechanical properties similar to that of the Phanerozoic 

lithosphere (Rey & Houseman, 2006). 

The metamorphic record of the study area reveals high-pressure mineral assemblages 

including two garnet amphibolites documented in the Kukuom-Juaboso Domain, a Grt-Ky-Rt bearing 

paragneiss (SB398) and an orthopyroxene-free garnet-clinopyroxene migmatitic mafic orthogneiss 

(SB177) hosted within the Chiraa Domain. The phase assemblage of the mafic orthogneiss is consistent 

with metamorphism at pressures greater than 10 kbar and 700 °C (Pattison, 2003). It was noted by 

Pattison (2003), however, that whilst this phase assemblage is characteristic of high-pressure granulite 

facies metamorphism, it was also possible to generate similar assemblages under amphibolite facies 

conditions. Metamorphic constraints coupled with field observations, including stromatic leucosomes 

feeding into discordant veins and dykes cross-cutting S1 gneissosity indicate partial melting occurred 

at mid- to lower crustal depths towards the end of D1 deformation and the transition to D2. The 

complex foliation and lineation structural pattern associated with D2 deformation indicates a switch 

in the dominant strain axes and a change in the tectonic mode. Field observations from throughout 

high-grade domains of the Sefwi Belt are indicative of a transtensional regime. These include shallow-

pitching, coaxial F2 folds and L2 stretching lineations oriented ~ENE-WSW, indicative of transtensional 

folding of horizontal layers in a heterogeneous lithology as a response to constrictional strain (Fossen, 

et al., 2013), most clearly developed within with ENE-WSW striking Hwidiem Shear Zone and within 

the Kukuom-Juaboso Domain. Within the Ketesso Shear Zone, a quartz dioritic garnet amphibolite 

preserves an L>>S tectonite fabric (SB294; Fig. 3.4g) consistent with transtension in the lower crust 

(Dewey, 2002). It is juxtaposed with a weakly deformed, greenschist facies metabasalt (SB347) of 

the Sefwi-Wiawso Domain 13 km to the east-southeast. Differential exhumation juxtaposing high-

grade tectono-metamorphic domains is attributed the normal movement along NNE-SSW-striking 

detachments faults and normal, left-lateral reactivation of major NE-striking shear zones, providing 
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evidence against homogeneous uplift proposed for Palaeoproterozoic orogenic domains involving 

weak, juvenile crust (Cagnard, et al., 2006; Cagnard, et al., 2007; Chardon, et al., 2009; Cruden, et al., 

2006). 

There are two possible interpretations of the driving force of transtension and constrictional 

strain. Within the hot orogen model, lateral constrictional flow develops during orogen-normal 

shortening in response to gravitational forces acting on thickened, hot lithosphere (Chardon, et al., 

2009; Chardon, et al., 2011; Cruden, et al., 2006). Significant topographic relief and heterogeneous 

crustal thickening are prohibited by rheologically weak lithosphere and thermally homogeneous 

lower crust, with lateral shortening resulting in orogen-parallel flow, noted in the later stages of 

Neoarchaean convergence in the Gawler and Terre Adélie cratons (Duclaux, et al., 2007). A similar 

concept is applied to wide, mature collision orogens that have undergone extensive partial melting in 

the low crust, where accumulated gravitational stress results in extensional collapse (e.g. Brown, 2010; 

Royden, et al., 2008; Vanderhaeghe & Teyssier, 2001) and the formation of gneiss domes (Whitney, 

et al., 2004). It is likely that partial melting of middle and lower crustal rocks documented in the 

northeast of the study area contributed to the localised rheological weakening of the crust. However, 

the observed metamorphic textures and calculated metamorphic P-T paths do not display isothermal 

decompression, with steep retrograde paths instead indicating concurrent cooling and exhumation, 

therefore we do not consider gravitational collapse to be the primary driver of transtension-related 

exhumation. For SW Ghana, we hypothesise that constrictional deformation and transtension-driven 

late-orogenic exhumation indicates a change in boundary conditions to ~ENE-WSW divergence. This 

thermo-mechanical behaviour is analogous to the exhumation of HP and UHP rocks of the Western 

Gneiss Region of western Norway, driven by sinistral oblique plate divergence of Laurentian and Baltic 

plates (Krabbendam & Dewey, 1998). 

3.7.3 Orogenic model, regional correlations and Transamazonian ties

Some of the major complexities when considering an orogenic model for the West African Craton 

arise from the regional or craton-scale correlation of metamorphic or deformation events between 

discrete greenstone belts, both volcano-plutonic and meta-sedimentary, and high-grade gneissic 

terranes. Polycyclic orogenic models for the West African Craton are inferred from exposures of 

high-grade terranes, thought to represent a Palaeoproterozoic (> 2150 Ma) basement deformed and 

metamorphosed prior the low-grade metamorphism and transcurrent tectonics of the Eburnean 
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Orogeny (e.g. de Kock, et al., 2012; Hein, 2010; Pouclet, et al., 1996). In SW Ghana, D1 deformation 

in both the Ashanti Belt (Perrouty, et al., 2012) and the Sefwi Belt (this study) is associated with an 

initial phase of N-S to NNW-SSE shortening. Whilst we were unable to directly constrain the timing 

of D1 in this study, Perrouty, et al. (2012) propose an Eoeburnean (D1) event between 2187 – 2158 Ma, 

observed in metavolcanic rocks and mica schists of the Sefwi Group exposed in the southern extent 

of the Ashanti Belt. This timing corresponds with extensive magmatism in the Sefwi Belt, regarded by 

other authors as a magmatic accretionary event (Allibone, et al., 2002b; Feybesse, et al., 2006; Milési, 

et al., 1992). Perrouty, et al. (2012) bracket a subsequent extensional event associated with deposition 

of Kumasi Group volcano-sedimentary units between 2154 and 2125 Ma, prior to the deposition of 

Tarkwaian sediments between 2107–2097 Ma.

Correlation of the regional scale thrust faulting and crustal thickening documented in the 

Sefwi Belt, also associated with N-S shortening, is convoluted by the tectonic setting and timing of the 

deposition of Kumasi Group interpreted by Perrouty, et al. (2012). Rocks in the Chiraa and Kukuom-

Juaboso domains indicate burial or supracrustal rocks to depths of >33 km, interpreted as a narrow 

collisional front between the Sefwi Belt and the Sunyani-Comoé Domain. The obliquity between 

D1 shortening and the NE-SW strike of the Sefwi Belt potentially suggests oblique collision along 

pre-existing crustal discontinuities associated with juvenile crust formation. Feybesse, et al. (2006) 

describe a similar period of thrust tectonism and crustal thickening between 2130 and 2105 Ma in 

SW Ghana, which they attribute to D1 deformation of the Eburnean Orogeny. Such deformation may 

also provide a mechanism for the formation of shear-related, bedding-parallel foliations documented 

in both the Sefwi Belt and the Ashanti Belt (this study; Allibone, et al., 2002b). 

Poor correlation is found between subsequent deformation events between the Sefwi and 

the Ashanti belts. D2 constrictional deformation described in this study is attributed to ENE-WSW 

transtension, normal left-lateral movement along major shear zones and a change in boundary 

conditions. Sinistral movements within the Sefwi shear systems is supported by field observations of 

Feybesse, et al. (2006) and in the Ivorian extent of the Sunyani-Comoé Domain (Vidal, et al., 2009). 

In situ monazite ages constrain the initiation of D2 exhumation of high-grade rocks at ca. 2073 Ma 

(Ch. 4; this study), post-dating granite and leucogranite emplacement in the Sunyani-Comoé domain 

between 2093 and 2081 Ma (Agyei Duodu, et al., 2009; Hirdes, et al., 1992; Hirdes, et al., 2007), 

attributed to partial melting in the lower crust after to D1 crustal thickening. We suggest that deposition 

of the Tarkwa-like immature conglomerates and sandstone along the NNE-striking Bibiani Shear 
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zone is associated with graben formation and normal fault movement during D2. As such, we caution 

the correlation of these conglomerates with those exposed in the Ashanti Belt. Whilst D2 potentially 

corresponds with the D4 NNW-SSE shortening event responsible for the sinistral reactivation of the 

Ashanti fault (Allibone, et al., 2002b; Perrouty, et al., 2012), we are unable to reconcile the D3 NW-

SE shortening of Perrouty, et al. (2012) with deformation recorded in the study area. In addition, late 

dextral reactivation of regional NE-striking shear zones is not observed in the Ashanti Belt.

In NW Ghana, high-grade metamorphism develops during N-S shortening between 2140 and 

2130 Ma (Block, et al., 2015; Block, et al., 2016). Exhumation of the lower crust is attributed to N-S 

extension during gravitational collapse generating anatectic domes. Block, et al. (2016) hypothesise 

a subsequent collision and corresponding E-W shortening between independent crustal domains 

represented by NW Ghana (D3; Block, et al., 2016) and SW Burkina Faso (D1; Baratoux, et al., 2011) 

between 2130 and 2110 Ma, forming a cohesive block. Anatexis and high-grade metamorphism in 

NW Ghana commence ~40 million years prior to the genesis of collision-related leucogranites along 

the NW margin of the Sefwi Belt after ca. 2092 Ma, indicating a diachronous metamorphic history 

for the high-grade terranes exposed in SW Ghana. Furthermore, the exhumation of middle and lower 

crust documented in both NW Ghana and the study area occur more than 40 million years apart. Such 

large discrepancies in the timing of deformation and metamorphism between discrete greenstone 

belts in SW Ghana relative to greenstone-granite-gneiss terranes of NW Ghana and SW Burkina Faso 

is therefore interpreted as the product of episodic collisional orogenesis between independent juvenile 

Palaeoproterozoic terranes. The proposed collisional D1 event associated with NNW-SSE shortening 

in SW Ghana potentially corresponds with the post-2110 Ma late sinistral shearing along the N-S 

striking Jirapa shear zone of NW Ghana (Block, et al., 2016). Sinistral shear zones in NW Ghana are 

subsequently overprinted by dextral NE-striking strike-slip shear zones during E-W shortening (D5; 

Block, et al., 2016), which we interpret as synchronous with our D3 deformation. Such deformation 

may be the distal expression of the collision of the Archaean Kénéma-Man Domain and the Baoulé-

Mossi domain between 2050 and 2030 Ma (Kouamelan, et al., 1997; Pitra, et al., 2010).  

On a more global scale, geological, structural and geochronological studies employed in 

paleogeographic and geochronological reconstructions have supplied strong evidence that West 

Africa and the São Luís Craton were contiguous during the Palaeoproterozoic (e.g. Hurley, et al., 

1967; Klein & Moura, 2008, and references therein; Torquato & Cordani, 1981). Magmatism of the São 

Luís craton and the basement of the Gurupi belt is defined by three periods of magmatic activity (2240 
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± 5 Ma; 2160 ± 10 Ma; 2080 ± 20 Ma), sharing lithological and structural characteristics with SW 

Ghana (Klein & Moura, 2008). Peraluminous collision-type granitoids (2086 – 2090 Ma), produced 

by partial melting of crustal material during collision (Klein, et al., 2005; Klein & Moura, 2008), are of 

comparable age to the collisional orogenesis and leucogranites emplacement in the Sunyani-Comoé 

Domain (Agyei Duodu, et al., 2009; Hirdes, et al., 1992; Hirdes, et al., 2007). A stronger correlation 

may be made between the magmatic and tectono-thermal evolution of the Sefwi Greenstone Belt 

and the Ile de Cayenne complex, French Guiana. Both the Sefwi Belt and the Cayenne complex are 

characterised by early tholeiitic magmatism followed by emplacement of TTG magmas between ca. 

2174 and 2144 Ma , with some bearing calc-alkaline affinities (Delor, et al., 2003; Feybesse, et al., 2006; 

Hirdes, et al., 2007; Vanderhaeghe, et al., 1998). Both terranes yield positive εHf(t) and εNd(t) values 

that attest to the juvenile character of the crust (Delor, et al., 2003; Petersson, et al., 2017; Taylor, et al., 

1992), which formed distal to Archaean cratonic material with a subsequent period tectonic accretion 

(Gruau, et al., 1985; Kroonenberg, et al.; Vanderhaeghe, et al., 1998). Crustal thickening, anatexis 

and emplacement of potassic granitoids and peraluminous leucogranites along major shear zones 

between ca. 2093 and 2083 Ma in French Guiana is attributed to oblique collision and late orogenic 

lateral extrusion (Vanderhaeghe, et al., 1998), bearing a striking similarity to the sequence of events 

recorded in southwest Ghana. The final correlation between the two terranes comes from the timing 

of crustal extension and formation of granulite facies metamorphism is in the Guiana Shield at 2070 

to 2060 Ma (Delor, et al., 2001), which we interpret to be a lateral continuation of the D2 deformation 

and metamorphism recorded on the northwest margin of the Sefwi Belt. Furthermore, if we assign 

sinistral movement, as documented in this study, to the 400km of displacement along the Sefwi shear 

system proposed by Jessell, et al. (2012), it would place modern day SW Ghana, and likely the São Luís 

Craton, in NE Brazil in the French Guiana Shield. 

3.7.4 Implications for Paleoproterozoic geodynamics

Structural and metamorphic evidence yielded by rocks in the West African Craton provide an 

opportunity to explore orogenic processes during the Palaeoproterozoic, prior to the appearance of 

blueschists and ultra-high-pressure metamorphism (UHPM) and other tectonic indicators attributed 

to a modern plate tectonic regime in the Neoproterozoic (Stern, 2005; Stern, 2007). The Neoarchaean 

to Palaeoproterozoic period, however, coincides with a number of significant changes in the Earth, 

including changes in the tectonic style, secular evolution recorded in the metamorphic record and 
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evolving chemistry of magmatic rocks (e.g. Brown, 2006; Brown, 2007; Dhuime, et al., 2012; Keller 

& Schoene, 2012; Laurent, et al., 2014). Indeed, it is widely accepted that the ambient upper-mantle 

temperatures were hotter in the past (e.g. Herzberg, et al., 2010; Labrosse & Jaupart, 2007), likely 

affecting the tectonic style and the rheology of the lithosphere (Burov & Yamato, 2008; Burov, 2011; 

Sizova, et al., 2010; van Hunen & van den Berg, 2008). The orogenic model we propose for SW Ghana 

reveals structural and metamorphic evidence of significant crustal thickening and clockwise P-T-t 

paths reminiscent of modern collisional orogens, forming a growing body of research suggesting 

collision between discrete Palaeoproterozoic terranes in the West African Craton (Block, et al., 2016; 

Parra-Avila, 2015; Parra-Avila, et al., 2016). 

We iterate that the hot-orogen model does not sufficiently explain the strain patterns and 

metamorphism documented in southwest Ghana which contrast the homogeneous lithospheric 

deformation, monotonous metamorphism and limited exhumation capacity of hot orogens proposed 

for Neoarchaean and Palaeoproterozoic orogens (Cagnard, et al., 2011; Cagnard, et al., 2006; Cagnard, 

et al., 2007; Chardon, et al., 2009; Rey & Houseman, 2006; Rey, et al., 2003), proposed also for areas of 

the West African Craton (Vidal, et al., 2009). Instead, the tectonic style and orogenic model proposed 

for SW Ghana bears a number of similarities to collisional orogenesis documented in the Archaean 

Barberton terrain (Diener, et al., 2013; Moyen, et al., 2006) and the Archaean Abitibi Subprovince 

(Daigneault, et al., 2002; Mueller, et al., 1996), including initial HP-MT metamorphism interpreted 

as a collisional event followed by late orogenic extension. 

The period of global orogenesis between ca. 2100 and 1800 Ma is characterised by extremely 

diverse metamorphic conditions and tectonic style including the pene-contemporaneous 1810 Ma hot 

orogen of the southern Finnish Svecofennides (Cagnard, et al., 2007) and the Himalaya-like Trans-

Hudson Orogen, associated with the formation and exhumation of eclogite facies rocks (Weller & 

St-Onge, 2017). As such, we believe the tectono-metamorphic history of SW Ghana supports the 

notion of non-unique orogenic processes for the Neoarchaean-Palaeoproterozoic period, potentially 

reflecting the thermal divergence in the mantle between 2.500 and 2000 Ma, as proposed by Condie, et 

al. (2016) and the progressive, and possibly localised, development of plate tectonics and subduction 

settings (Condie & Kröner, 2008).

3.8 Conclusions

A new interpretation of the tectonic evolution and development of the crustal architecture of SW 
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Ghana during the Palaeoproterozoic Eburnean Orogeny has been presented, based on the integration 

of regional field mapping, interpretation of regional airborne geophysical datasets and incorporation 

of geochronological constraints. The re-interpretation of the litho-tectonic map, combined with the 

regional structural framework and complementary metamorphic data suggests that the domains within 

the Sefwi Belt record significant crustal thickening during NNW-SSE shortening, relative to adjacent 

low-grade domains. The tectonic contact between the Sefwi Belt and the Sunyani-Comoé Domain is 

interpreted as a narrow, collisional front, representing a suture zone between SW Ghana and central 

Ghana/Ivory Coast that formed during oblique convergence. Differential exhumation of high-grade 

domains occurred after thermal relaxation of the orogenic crust during D2 transtension, contrasting 

the surface geology predicted for Precambrian hot orogens. Furthermore, based on previous studies 

of elongate granites coupled with macro-geometries of domains, we interpret major normal, left 

lateral movement within the Sefwi shear system. Based on both structural and metamorphic evidence 

transtension is interpreted as the product of orogenic extension reflecting changes in boundary 

conditions and oblique plate divergence rather than gravitational collapse. Localised, late dextral 

reactivation of NE-striking shear zones is generated by far-field stresses. We highlight the diachronous 

nature of high-grade metamorphism and discrepancies in deformation histories across the craton 

during the Eburnean Orogeny, which we interpret as the product of episodic collisional orogenesis 

between discrete juvenile terranes during the assembly and stabilisation of the West African Craton. 
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Appendix A. Supplementary data I – IV
See pp. 276 - 279 or refer to electronic data file “Ch3_AppendixA_SI”

Fig. A1SI. Composite image of greyscale reduced to the pole (RTP) of the residual magnetic intensity and 
associated individual survey details.

Fig. A2SI. Bouguer gravity anomaly grid of survey area

Fig. A3SI. Composite image of negative reduced to the equator (RTE) of the residual magnetic intensity 
(RMI) with greyscale first vertical derivative (1VD) for all surveys utilised in the study

Fig. A4SI. Greyscale digital elevation model of study area with ternary image of gamma-ray signal from three 
channels, K, eTh, and eU, highlighting the partial coverage of radiometric data of the study area 

Appendix B. Magnetic susceptibility histograms
See pp. 280 or refer to electronic data file “Ch3_AppendixB”

Fig. B1. Measured magnetic susceptibility values for individual units presented in histograms to display range 
and frequency.



Chapter IV
The metamorphic evolution of SW Ghana: 

Insights into the Palaeoproterozoic Eburnean Orogeny,
West African Craton



118



119

4.0 Introduction

This chapter is complementary to the tectono-metamorphic framework and map presented in 

Chapter 3, providing detailed petrographic analysis, quantitative estimates of prevailing metamorphic 

conditions and geochronological constraints on deformation and metamorphism during the Eburnean 

Orogeny. These new geochronological constraints are compared to existing geochronological data in 

order to understand the timing of metamorphism in high- and low-grade terranes, as well as the 

timing of high-grade metamorphism in the study area relative to other high-grade terranes within 

the craton. The metamorphic assemblages and monazite ages documented in this chapter elucidate a 

more complex metamorphic history for the SW Ghana and the Eburnean Orogeny, thus aiding our 

understanding of the amalgamation of the West African Craton. We consider the significance of the 

metamorphism documented in SW Ghana relative to the global metamorphic record, which appears 

to be unique the Palaeoproterozoic plate tectonic regime.

This chapter was submitted to the Journal of Metamorphic Geology and was returned for revision for 

resubmission in May 2018. The major suggested revisions have been addressed, with some revisions 

still in progress. 
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Chapter 4: Petrological and geochronological evidence of collisional 
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Abstract

New petrological and geochronological data are presented for migmatitic paragneisses and high-grade 

metavolcanic rocks exposed in southwest Ghana in the south-eastern portion of the Palaeoproterozoic 

(2300–2070 Ma) West African Craton. The study focuses on tectono-metamorphic domains within 

and adjacent to the NE-striking Sefwi Greenstone Belt, formed during the relatively understudied 

Eburnean Orogeny (2150–2070 Ma). These domains are bounded or transected by steeply dipping 

NE- to ENE-striking reactivated regional ductile shear zones. 

North of the Sefwi Belt, a newly interpreted high-grade terrane comprises heterogeneous, 

migmatitic paragneisses with voluminous biotite-muscovite granite intrusions and is interpreted to 

be part of the Sefwi Belt due to its metamorphic and structural similarities. Paragneiss and garnet 

amphibolite samples sporadically reveal initial high-pressure amphibolite facies metamorphic 

conditions (10.0–11.5 kbar, 580–650 °C), corresponding to a cool apparent geothermal gradient of 

15–17 °Ckm-1. Migmatites record peak temperature conditions at the amphibolite–granulite facies 

transition (7.5–9.5 kbar, 650–700 °C), establishing a new apparent geothermal gradient of 20–25 °C 

km-1. Variable prograde paths in the migmatites indicate contrasting prograde paths showing heating 

during decompression, or, conversely, concomitant heating and burial. Subsequent coeval exhumation 

is suggested by parallel clockwise P-T-t paths, simultaneous decreases in pressure and temperature 

and a regional amphibolite facies metamorphic overprint. In-situ monazite U-Pb SHRIMP ages of 

ca. 2073 Ma constrain the timing of the initial stages of cooling and exhumation. In contrast to the 

migmatites, a garnet amphibolite sample records cooling during exhumation immediately following 

initial HP–MT conditions. We interpret the clockwise P-T-t paths of two of the three samples as 

evidence of convergence-related crustal thickening and collision along the northwest margin of the 

Sefwi greenstone belt. Exhumation of the lower crust along NE-striking shear zones, and west-dipping 

normal detachment post-dates leucogranite emplacement in lower and upper crustal slices at ca. 2092 

– 2081 Ma. 

High-pressure metamorphic assemblages and low apparent geothermal gradients distinguish 

SW Ghana from similar Precambrian granite-greenstone provinces elsewhere. Furthermore, diverse 

thermal histories and the tectonic juxtaposition of crustal slices from different depths do not conform 

with the homogeneous metamorphism and strain patterns attributed to the “hot orogen” model 

proposed for Precambrian orogens. Furthermore, such young metamorphic ages have not been 

previously documented in the south-eastern portion of the West African Craton. These findings instead 
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suggest episodic collisional orogenesis occurred during craton assembly resulting in a diachronous 

metamorphic history. The metamorphic record of the West African Craton supports the notion of a 

Palaeoproterozoic transitional tectonic regime, prior to the appearance of the hallmark ultra-high-

pressure (UHP) metamorphism attributed to modern subduction-related plate tectonics.

Key words: collision; exhumation; transtension; Palaeoproterozoic orogenesis; West African 

Craton.
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4.1 Introduction

Precambrian geodynamics and lithosphere tectonics continue to provide a source of controversy 

in scientific literature (e.g. Cawood, et al., 2006; Condie & Benn, 2006; Reddy & Evans, 2009). Of 

particular interest are the tectonic settings and processes associated with Precambrian accretionary 

and collisional orogenesis, culminating in craton assembly and stabilisation (Condie, 2007; Windley, 

1992). Precambrian accretionary orogens include all Archaean cratons and several Palaeoproterozoic 

provinces (Windley, 1992) and are characterised by high crustal production rates, voluminous juvenile 

magmatism, elevated geothermal gradients and low lithospheric strength relative to the Phanerozoic 

(Condie, 2007; Gerya, 2014; Sizova, et al., 2010). The comparison of metamorphic conditions and 

tectonic settings preserved in Precambrian orogens relative to the Phanerozoic, therefore, remains 

uncertain. Archaean orogens commonly comprise elongate greenstone belts and vast granite-gneiss 

domains, featuring low-pressure granulite facies metamorphism and homogeneous strain patterns 

(e.g. Bouhallier, et al., 1995; Choukroune, et al., 1995).  Whilst some authors interpret such features 

within the modern plate tectonics paradigm (e.g. Cawood, et al., 2006; de Wit, et al., 1992), alternative 

tectonic processes have also been proposed by a number of authors (e.g. Bouhallier, et al., 1995; 

Choukroune, et al., 1995; Hamilton, 1998; Rey & Houseman, 2006), emphasising the potential 

significance of diapirism, vertical movement and gravitational forces in granite-greenstone regions 

during lithospheric deformation.   Additionally, the “hot orogen” model proposed for some Precambrian 

provinces accommodates lateral shortening in weak, hot crust through distributed deformation, with 

minimal topographic expression due to lateral or three-dimensional flow (Cagnard, et al., 2006; 

Cruden, et al., 2006; Rey & Houseman, 2006). Such orogens are commonly characterized by broad 

regions with isobaric metamorphism and lateral temperature gradients (Bleeker, 1990; Caby, et al., 

2000; Cagnard, et al., 2007; Chardon, et al., 2009), resulting from homogeneous uplift of the entire 

domain (e.g. Gapais, et al., 2009).  In contrast, Phanerozoic accretionary orogens involve subduction 

of cold, rigid lithosphere, able to support significant crustal thickening, thus generating and exhuming 

high-pressure (HP) to ultra-high-pressure (UHP) metamorphic terranes, inferred as the hallmark of 

modern-style plate tectonics (Stern, 2005; 2007). 

A number of studies, however, have demonstrated the sporadic appearance in the Neoarchaean 

and Palaeoproterozoic of high-pressure and/or eclogite facies metamorphic conditions and diverse 

geothermal gradients within metamorphic domains of Precambrian orogens (e.g. Block, et al., 2013; 

Collins, et al., 2004; Ganne, et al., 2012; Moyen, et al., 2006; Nicoli, et al., 2015; Volodichev, et 
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al., 2004). In a review of the secular evolution of metamorphism, Brown (2007; 2009) notes the 

appearance of complementary eclogite-high-pressure granulite (E-HPG) and ultra-high temperature 

(UHT) metamorphism, which he infers to be the ancient expression of subduction-to-collision 

orogenesis. Brown (2006) proposes a transitional “Proterozoic plate tectonic” regime based on the 

diversification of recorded metamorphic conditions after the Neoarchaean. Rare high P/T and low 

geothermal gradients (<20 °km-1) and evidence of structurally controlled exhumation are documented 

in the MesoArchaean Barberton greenstone-granitoid terrane (Moyen, et al., 2006), the Neoarchaean 

to Palaeoproterozoic Jiaodong Terrain in the North China Craton (Liu, et al., 2015), the Salem block 

of southern India (Anderson, et al., 2012), the Usagaran Orogen , Tanzania (Collins, et al., 2004), 

the Fada N’Gourma area of Burkina Faso (Ganne, et al., 2012) and high-grade paragneisses in NW 

Ghana (Block, et al., 2015), where the latter two examples are from the West African Craton (WAC). 

However, debate continues to surround the tectonic setting producing HP-UHP metamorphic rocks 

and the mechanism(s) of exhumation in the Neoarchaean and Palaeoproterozoic (Block, et al., 2015; 

Block, et al., 2016b; Brown, 2007; Ganne, et al., 2014; van Hunen & van den Berg, 2008). In this 

paper, we investigate variations in the thermal history and exhumation mechanisms active during 

the Palaeoproterozoic Eburnean Orogeny of the WAC, focusing on newly documented high-grade 

domains of the Sefwi greenstone belt in southwest Ghana. 

The Palaeoproterozoic Baoulé-Mossi domain (2300–2070 Ma) of the southern WAC is a vast 

(3 x 106 km2) juvenile crustal domain, comprising Archaean-like tonalite-trondhjemite-granodiorite 

granite-gneiss domains and linear-to-arcuate metavolcanic and metasedimentary greenstone belts, 

bound by crustal-scale strike-slip shear zones (Bessoles, 1977). Widespread crustal reworking and 

the emplacement of more evolved, potassic granites is associated with terrane accretion and the 

collision of the juvenile Palaeoproterozoic domain with the Archaean Kénéma-Man nucleus during 

the 2150 – 2070 Ma Eburnean Orogeny (Bonhomme, 1962; Feybesse, et al., 2006; Hirdes, et al., 1996; 

Kouamelan, et al., 1997; Ledru, et al., 1994; Milési, et al., 1991; Pitra, et al., 2010). The Eburnean 

Orogeny represents one of the oldest Palaeoproterozoic orogens on Earth during a period of global 

orogenesis between 2100 Ma and 1800 Ma, and is likely to herald the onset of the amalgamation of the 

supercontinent, Nuna (or Columbia) (Rogers & Santosh, 2002; Zhao, et al., 2002; Zhao, et al., 2004).

There remains, however, disagreement regarding the tectonic processes responsible for the WAC 

assembly, which can be partially attributed to the limited number of studies with integrated metamorphic 

and geochronological data (e.g. Block, et al., 2015; Feybesse, et al., 2006; Kouamelan, et al., 1997; Pitra, 
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et al., 2010). In this study we combine field observations, petrological and geochronological data to 

investigate spatial and temporal variation in the formation and exhumation of high-grade tectono-

metamorphic domains juxtaposed with low-grade supracrustal rocks in the south-eastern portion of 

the WAC. We address ambiguities in the relationship between high-grade gneissic domains, greenstone 

belts sensu stricto and metasedimentary provinces. The results are compared with those of Block et 

al. (2015) and we discuss the potential tectonic models proposed for the WAC. The findings have 

significant implications for understanding the enigmatic crustal architecture, including deciphering 

whether high-grade domains represent an older crustal basement or lower crustal equivalents of low-

grade metavolcanic and metasedimentary supracrustal rocks. 

4.2 Geological Setting

4.2.1 West African Craton geology

The West African Craton (WAC) consists of the northern Reguibat Rise, the Kédougou-Kéniéba and 

Kayes inliers and the southern Leo-Man Rise (Bessoles, 1977; Rocci, et al., 1991), overlain by the 

Neoproterozoic to Devonian Taoudeni basin in the central part of the craton. The Leo-Man Rise (Fig. 

4.1) comprises the western Archaean Kénéma-Man domain, flanked to the north and east by the 

Palaeoproterozoic Baoulé-Mossi domain, which are tectonically juxtaposed along the Sassandra Fault 

(Bessoles, 1977). Palaeoproterozoic rocks are characterised by elongate volcanic, volcano-sedimentary 

and sedimentary belts of the Birimian Supergroup and voluminous granite-gneiss terranes (Fig. 4.1). 

The Birimian Supergroup is subdivided into basaltic to rhyolitic volcanic and volcano-sedimentary 

rocks of the Sefwi Group (Perrouty, et al., 2012) and the overlying volcaniclastic, volcano-sedimentary 

and rare chemical (Mn-rich) sedimentary rocks of the Kumasi Group (Adadey, et al., 2009; Perrouty, 

et al., 2012). Volcanic units display tholeiitic to calc-alkaline affinities (e.g. Abouchami, et al., 1990; 

Baratoux, et al., 2011; Boher, et al., 1992) emplaced across the craton between 2300 and 2160 Ma 

(Doumbia, et al., 1998; Hirdes & Davis, 1998; Hirdes, et al., 1996; Loh, et al., 1999; Pouclet, et al., 

2006).

Deposition of the Birimian volcano-sedimentary units is constrained by detrital zircon, 

indicating a maximum deposition age of ca. 2150 Ma (Davis, et al., 1994; Oberthür, et al., 1998), 

continuing until  late-depositional emplacement of a granodiorite pluton in the Kumasi Basin at 2136 

± 19 (Adadey, et al., 2009). Volcano-plutonic greenstone belts are commonly unconformably overlain 

by shallow water, fluvio-deltaic sedimentary rocks of the Tarkwaian Group (Kitson, 1918; Whitelaw & 
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Junner, 1929) deposited in small fault-bounded basins, with detrital zircons constraining a maximum 

deposition age of c. 2130, or possibly as young as c. 2107 Ma (Davis, et al., 1994; Hirdes & Nunoo, 

1994; Pigois, et al., 2003).

Fig. 4.1. Geological map of the Leo-Man rise (modified after BRGM SIGAfrique, Milési, et al., 2004). Mafic to intermediate 

volcanic greenstone belts (dark green); volcano-sedimentary, volcaniclastic and intermediate volcanic provinces (light 

green); Granitoid composition ranges from tonalite-trondhjemite-granodiorite and granite with minor mafic intrusions. 

Late fluvio-deltaic sediments (yellow) unconformably overlying greenstone belts in narrow, fault bounded basins.

Granite-gneiss terranes of the West Africa Craton formed during several protracted pulses of 

intense Na2O- and CaO-rich trondhjemite-tonalite-granodiorite (TTG) plutonic activity between ca. 

2200 and 2130 Ma  (Doumbia, et al., 1998; Egal, et al., 2002; Feybesse, et al., 2006; Gasquet, et al., 

2003; Hirdes, et al., 1996; Oberthür, et al., 1998).  Subsequent magmatism evolved towards potassic, 

peraluminous granites by ca. 2070 Ma (e.g. Block, et al., 2016a; Egal, et al., 2002; Gueye, et al., 2008; 

Hirdes, et al., 1992; Lompo, 2009). 

Initial juvenile crustal formation is speculated to have evolved from an ocean plateau in 

association with mantle plume activity, with subsequent calc-alkaline plutonism and contemporaneous 

volcanism (Abouchami, et al., 1990; Boher, et al., 1992; Leube, et al., 1990) or alternatively from arc 

volcanism followed by micro-plate accretion (Baratoux, et al., 2011; Dampare, et al., 2008; Petersson, 



129

et al., 2016; Pouclet, et al., 1996; Sylvester & Attoh, 1992). This juvenile material was deformed 

during the c. 2150-1980 Ma Eburnean Orogeny (Bonhomme, 1962). Early crustal thickening was 

attributed by some authors to magmatic accretion similar to a modern plate tectonic setting, which 

was subsequently overprinted by thrust faults (e.g. Feybesse, et al., 2006; Feybesse & Milési, 1994; 

Milési, et al., 1992). Conversely, “Archaic-type” vertical tectonics that emphasised pluton diapirism 

and the relative downward movement of greenstone belts has also been proposed (Delor, et al., 1995; 

Pouclet, et al., 1996; Vidal, et al., 1996; Vidal, et al., 2009). Across the craton, regional metamorphism 

associated with the Eburnean Orogeny varies from lower-greenschist facies to lower-amphibolite 

facies (e.g. Béziat, et al., 2000; Feybesse, et al., 2006; Ganne, et al., 2012; Kříbek, et al., 2008).  Upper-

amphibolite facies conditions are generally restricted to the contact aureoles of plutons (Debat, et 

al., 2003; Lobjoit, 1964; Pons, et al., 1995). The absence of HP-LT assemblages and significant lateral 

metamorphic breaks has been attributed by some authors to elevated geothermal gradients (>25 

°Ckm-1) and homogenous uplift (Pons, et al., 1995; Vidal, et al., 2009). 

Recent studies, however, have revealed heterogeneity in thermal gradients and metamorphic 

conditions (Block, et al., 2015; Ganne, et al., 2012). In southern Ghana, regional MP-MT amphibolite 

facies metamorphism (5–6 kbar, 500–600 °C) is recorded within the Sefwi and Ashanti belts (Galipp, 

et al., 2003; John, et al., 1999), and slightly higher anatectic conditions occur in the Winneba-Awutu 

migmatites on the Ghanaian southern coast ( >5 kbar, >600 °C) (Loh, et al., 1999; Opare-Addo, et al., 

1993). High-pressure granulites are restricted to the tectonic contact between the Archaean Kénéma-

Man shield and the Palaeoproterozoic Baoulé-Mossi domain (Fig. 4.1), where conditions reached 

~13 kbar and 850 °C (Pitra, et al., 2010). Ganne, et al. (2012) documented an early, cold thermal 

regime (<10–15 °Ckm-1) and high-P greenschist to blueschist facies conditions in chlorite-phengite 

assemblages in greenstone belts in eastern Burkina Faso. Similar relic metamorphic conditions (8–10 

kbar, 400–500 °C and 11–14 kbar, 520–560 °C) are preserved in volcano-sedimentary schists and 

paragneisses of northwest Ghana (Block, et al., 2015). Where observed, sharp metamorphic breaks 

between high-and low-grade domain are interpreted as the product of tectonic exhumation and 

juxtaposition of different crustal levels (Block, et al., 2015; Block, et al., 2016b; Hirdes, et al., 2007; 

Loh, et al., 1999; Opare-Addo, et al., 1993), which contradicts lateral, granitoid-related metamorphic 

gradients used to interpret high- and low-grade domains within the “hot” orogen models (Chardon, 

et al., 2009; Vidal, et al., 2009). 

There are a number of models proposed for the tectono-metamorphic evolution of the West 
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African Craton based on the interpretation of the relationship between high-grade metamorphic 

domains and low-grade volcano-sedimentary sequences. Small exposures of poly-deformed high-

grade rocks in Burkina Faso and Ivory Coast (Boher, et al., 1992; de Kock, et al., 2011; 2012), or poly-

deformed metavolcanics in SW Ghana (Perrouty, et al., 2012), have been interpreted as the basement 

upon which Birimian metasedimentary sequences were deposited. This sporadically recognised event 

is referred to as Eburnean I (Allibone, et al., 2002) or Eoeburnean (de Kock, et al., 2011; Perrouty, et 

al., 2012) in Ghana and western Burkina Faso (Baratoux, et al., 2011; Metelka, et al., 2011), and the 

Tangaean event in north-eastern Burkina Faso (Hein, 2010; Tshibubudze, et al., 2009). It precedes the 

more widely recognised phase of the Eburnean (or Eburnean II) Orogeny (~2130 – 1980 Ma), associated 

greenschist facies metamorphism and transcurrent tectonism (Allibone, et al., 2002; Eisenlohr & 

Hirdes, 1992; Feybesse, et al., 2006; Jessell, et al., 2012; Pouclet, et al., 2006; Pouclet, et al., 1996; Vidal, 

et al., 2009). Alternatively, a monocyclic evolution is proposed for the Eburnean Orogeny, during 

which high-grade gneisses and migmatites and low-grade rocks undergo coeval metamorphism at 

different crustal levels during a single progressive event and are subsequently tectonically juxtaposed 

(Block, et al., 2015; Block, et al., 2016b; Eisenlohr & Hirdes, 1992; Opare-Addo, et al., 1993). 

Distinguishing between monocyclic and polycyclic models for the Eburnean orogeny is 

hampered by the limited amount of precise geochronological data constraining the time of high-grade 

metamorphic events, most notably lacking in southern Ghana. Amphibolite facies metamorphism in 

central Ivory Coast is dated at 2153 ± 93 Ma  (Grt-WR Sm-Nd; Boher, et al., 1992) and 2144 ± 3 Ma 

in the Ivorian extent of the Sefwi belt (Pb-Pb Tnt; Hirdes, et al., 2007). In-situ ICP-MS and SHRIMP 

U-Pb monazite crystallisation ages, hosted by leucosomes and overprinting assemblages constrained 

anatexis at 2138 ± 7 Ma and overprinting amphibolite facies metamorphism at 2130 ± 7 Ma in migmatitic 

para- and orthogneissic units in NW Ghana (Block, et al., 2015). These ages are distinctly older than 

geochronological data revealed by syntectonic intrusions and metamorphic units from across the 

craton, which constrain Eburnean deformation and low-grade metamorphism between 2114 and 2080 

Ma (de Kock, et al., 2011; Feybesse, et al., 2006; Hirdes, et al., 1996; Kouamelan, et al., 1997). The final 

tectono-metamorphic event records the collision of the Archaean and Palaeoproterozoic domains 

between ~2080 and 2030 Ma based on U-Pb zircon, monazite, titanite ages and Sm-Nd garnet ages 

(Kouamelan, et al., 1997; Pitra, et al., 2010). Whilst disparity in metamorphic ages recorded across the 

craton might suggest multiple metamorphic peaks between ca. 2150 and 2030 Ma, further integrated 

tectono-metamorphic and geochronological data are required to unravel the tectonic evolution and 
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assembly of the WAC.   

4.2.2 Geology of southwest Ghana 

The Palaeoproterozoic rocks of southern Ghana and southeast Ivory Coast are characterised by 

NE-striking, parallel greenstone belts several hundred kilometres long and 20–60 km wide, with 

large, intervening metasedimentary domains. This study focuses on the fault-bounded, litho-

tectonic domains of the Sefwi greenstone belt and the adjacent Sunyani-Comoé and Kumasi-Afema 

metasedimentary domains (Fig. 4.2).  Outcrop is exceedingly sparse and the field area is extensively 

covered by thick regolith, cocoa plantations and forest reserves. 

The field area is dominated by the 280 km-long, 40–80 km-wide Sefwi Greenstone Belt, 

which is bounded to the north by the Kenyase-Yamfo shear zone and to the south by the Afema 

shear zone (Hirdes, et al., 2007) (Fig. 4.2). It is transected by the Ketesso High Shear Zone, which 

trends parallel to the Sefwi Belt structural grain (Hirdes, et al., 2007; Jessell, et al., 2012). In this 

study, the belt is subdivided into four litho-tectonic domains: the Kukuom-Juaboso domain (KJD), the 

Bechem domain (BD), the Hwidiem domain (HD) and the southern Sefwi-Wiawso domain (SWD) 

(Fig. 4.2). The central, rhomboidal Kukuom-Juaboso domain, is an 80 km long, elongate in a NE-

trending domain that comprises amphibolite facies mafic to intermediate volcanic rocks, immature 

volcaniclastic greywackes, minor metasedimentary units and extensive granitoids intrusions 

(Galipp, et al., 2003; Hirdes, et al., 1993). The Bechem granitoid domain is characterised by layered 

intrusions of gabbro, norite and pyroxenite, strongly deformed amphibolites, large quartz-diorite 

and granodiorite plutons, and small, elliptical post-tectonic granites (Agyei Duodu, et al., 2009). The 

northern margin of the adjacent Bechem and Kukuom-Juaboso domains is marked by a ENE-striking 

shear zone, which contains slivers of migmatitic mafic orthogneisses (this study). Geochronological 

constraints for magmatism for these domains are limited to a rhyolite yielding a U-Pb zircon age of 

2189 ± 1 Ma (Hirdes & Davis, 1998) and a hornblende-biotite granodiorite U-Pb zircon age of 2135 

Ma (Amponsah, 2012). The NE-striking Ketesso shear zone transects the central region of the Sefwi 

belt, south of which is the low-grade Sefwi-Wiawso volcano-plutonic domain of the belt, comprising 

greenschist facies mafic to intermediate lavas and abundant granitoid intrusions that display pervasive 

chlorite-carbonate or quartz-sericite alteration with minor accessory sulphides. U-Pb zircon ages for 

granitoids in the Sefwi-Wiawso domain yield crystallisation ages between 2180 and 2140 Ma (Hirdes, 

et al., 1992; Hirdes, et al., 2007).
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Fig. 4.2. Regional litho-structural map of the study area (Chapter 4: this study). The Sunyani-Comoé and Kumasi-

Afema domains are characterised by isoclinally folded, sub-greenschist to greenschist facies metasedimentary and 

volcano-sedimentary rocks with rare intercalated intermediate volcanic layers. The Chiraa domain (CD) in the northeast 

comprises poly-deformed paragneisses and voluminous granite intrusions.  Lithologies exposed in the Kukuom-Juaboso 

domain (KJD) are diverse, consisting of metamorphosed mafic to intermediate volcanic, volcaniclastic and minor 

sedimentary units and multiple generations of felsic and mafic granitoid intrusions. BD: Bechem domain; SWD: Sefwi-

Wiawso domain; HD: Hwidiem domain; HSZ: Hwidiem shear zone. Fault kinematics denoted only where unambiguous, 

or, in the case of the Ashanti belt, derived from the literature (e.g. Perrouty, et al., 2012). U-Pb zircons ages are sourced 

from: (1) Petersson, et al. (2016); (2) Hirdes, et al. (1992); (3) Delor, et al. (1992).

Towards the northeast of the study area, the Chiraa high-grade domain (formerly referred to 

as the Sunyani batholith) is a 25 x 35 km triangular shaped domain (Fig. 4.2), comprising strongly 

deformed, migmatitic paragneiss with abundant granite intrusions and pegmatite dykes, amphibolite 

enclaves and rare migmatitic mafic orthogneisses. Granitic intrusions often contain tectonic slivers 

of paragneiss and biotite-rich schlerien. Large exposures of paragneiss units comprise alternating 

pelitic and psammopelitic layers. Rare exposures of felsic orthogneiss display a gneissosity parallel 

with that of the paragneisses. This is in tectonic contact with greenschist facies volcano-sedimentary 

rocks of the Sunyani-Comoé basin along a NNE-striking fault. The eastern margin of the Chiraa high-
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grade domain is unconformably overlain by undeformed Neoproterozoic Voltaian sedimentary rocks 

(Kalsbeek, et al., 2008). 

The Sunyani-Comoé Domain comprises low-grade chlorite-white mica schists, greywackes, 

argillites, banded iron stones, graphitic shales, volcaniclastic rocks and rare intercalated intermediate 

volcanic rocks of the Kumasi Group (Agyei Duodu, et al., 2009; Hirdes, et al., 2007; Hirdes, et al., 

1993). Similar lithologies are found in the Kumasi-Afema Domain to the south of the study area, 

south of which lies the Ashanti Greenstone Belt (Agyei Duodu, et al., 2009; Perrouty, et al., 2012). 

U-Pb zircon crystallization ages (ca. 2093 – 2081 Ma) of leucogranites intruding the Sunyani-Comoé 

Domain parallel to the north-western margin of the Sefwi Belt (Fig. 4.2) (Agyei Duodu, et al., 2009; 

Hirdes, et al., 2007; Hirdes, et al., 1993; Petersson, et al., 2016). 

4.3 Methods

4.3.1 Petrographic analysis and mineral chemistry

Mineral assemblages, textural context and microstructures were examined in polished thin sections 

under transmitted, plane polarised (PPL) and cross polarised light (XPL). Backscattered electron 

(BSE) imaging was performed at Monash Centre for Electron Microscopy at Monash University, 

Australia, using a JEOL JSM-7001F Field Emission Gun (FEG) Scanning Electron Microscope 

(SEM). Preliminary mineral chemistry examined by energy-dispersive x-ray spectroscopy (EDS) 

using Oxford Instruments Aztec X-ray analysis system with 80mm2 Silicon Drift Detector (SDD).  

Conditions used for BSE and EDS mineral chemical composition characterization are: accelerating 

voltage of 15 keV, working distance (WD) of 10mm, and probe current of 10A, objective aperture of 3. 

To image internal structures of monazites, accelerating voltage was increased to 20 keV with a probe 

current of 14.  Further BSE imaging and chemical characterization was performed at Géoscience 

Environnement Toulouse, Université Paul Sabatier (Toulouse III), France, using a JEOL JSM 6360LV 

coupled to a PGT Sahara SDD EDS detector. Imaging conditions used accelerating voltage of 20 keV, 

WD of 10mm and spot size of 50µm. Mineral compositions were measured using a Cameca-SX-5 at 

Centre de Microcaractérisation Raimond CASTAING in Toulouse, France.

4.3.2 P-T calculations

To derive P-T conditions and metamorphic paths, pseudosections were calculated for the whole rock 

compositions, calculating minimum Gibbs free energy in the P-T space represented by a multiphase 
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equilibrium diagram. Pseudosections were constructed using the computer software package Perple_X 

(version 6.6.8) (Connolly, 1990; Connolly, 2005) (http://www.perplex.ethz.ch/). Calculations were 

conducted in the Na2O-K2O-CaO-MgO-MnO-FeO-Al2O3-TiO2-SiO2-H2O chemical system for 

metapelitic samples and in the Na2O-CaO-MgO-MnO-FeO-Al2O3-TiO2-SiO2-H2O for mafic samples. 

The bulk composition of each sample was obtained with X-ray fluorescence (XRF) at the Australian 

Research funded Centre of Excellence in Ore Deposits (CODES) at the  University of Tasmania 

using a PANalytical Axios Advanced X-Ray Spectrometer (Robinson, 2003; Watson, 1996).  CaO was 

corrected for apatite content using measured P2O5, and ferric iron was transformed into ferrous iron 

using the following equation: 

M Fetotal = M FeO (wt%) = 0.9 × M Fe2O3 (wt %).

The internally consistent thermodynamic dataset of Holland and Powell (1998) (updated 

in 2002) was used for minerals and fluids (CORK model: (Holland & Powell, 1991)). Elemental 

fractionation during prograde garnet porphyroblast growth was considered for sample SB177 which 

has a garnet modal proportion of >1%, using the method according to Marmo et al. (2002). Solid 

solution models used for calculations of pseudosections for metapelitic samples were as follows: 

Bio(TCC) for biotite (Tajčmanová, et al., 2009), Chl(HP) for chlorite (Holland, et al., 1998), St(HP) 

for staurolite (Holland & Powell, 1998), Ctd(HP) for chloritoid (Holland & Powell, 1998), Gt(WPH) 

for garnet (White, et al., 2001), Ilm(WPH) for ilmenite, hCrd for cordierite, Mica(CHA1) for 

titanium-, magnesium- and iron-bearing white mica (Auzanneau, et al., 2010; Coggon & Holland, 

2002), melt(HP) for haplogranitic melts (Holland & Powell, 2001), Pl(h) for plagioclase feldspar and 

Kf for potassic feldspar. 

For the garnet amphibolite (sample SB344), ferric iron content in amphiboles was calculated 

using the spreadsheet of Locock (2014) and was found to be negligible.  The structural formulae and 

andradite content of garnet porphyroblasts were calculated according to the methods of Droop (1987). 

Given ilmenite is the only oxide observed in the sample and minimal ferric iron in the structural 

formula of garnet and amphibole, O2 and Fe2O3 were excluded from calculations. Sample SB344 was 

modelled using the following solid solution models: 

Gt(WPH) for garnet (White, et al., 2001), GlTrTsPg for amphibole (Wei & Powell, 2003; White, et 

al., 2003), Act(M) for actinolite, Ilm(WPH) for ilmenite, melt (HP) for haplogranitic melts (Holland 

& Powell, 2001), Pl(h) for plagioclase feldspar, Opx(HP) for orthopyroxene and Omph(GHP2) for 
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clinopyroxene (Diener & Powell, 2012; Green, et al., 2007). 

4.3.3 Geochronology

4.3.3.1 In-situ SHRIMP U-Th-Pb monazite dating

Monazite grains were initially located and investigated with transmitted and reflected light optical 

microscopy for textural location and optical features. The internal structure of each grain was further 

characterised by back-scatterede electron (BSE) imaging using a JEOL FEG 7001F scanning electron 

microscope at the Monash Centre for Electron Microscopy, Monash University, Melbourne, Australia.  

Monazite grains were analysed in situ using the Sensitive High Resolution Ion Microprobe (SHRIMP 

II) at the Research School of Earth Sciences, the Australian National University, Canberra, Australia. 

To ensure monazites were dated in the correct textural and petrogenetic context, polished thin 

sections were cut and mounted in a 30mm diameter SHRIMP “megamounts.” Large scale maps of 

the final mounts were constructed from reflected light photographic mosaics to target SHRIMP spot 

analysis.  Monazite standard 44069, which has a U/Pb age of 425 Ma and U concentration of 2100 

ppm (Aleinikoff, et al., 2006) was mounted in each epoxy mount with thin section segments. The 

analyses were performed using a ~ 5nA negative O primary beam and a selected spot size of 15 μm. 

The secondary beam was energy filtered by ~70% to minimise scattered ions and interference on the 

common Pb isotope 204Pb and to reduce the Th peaks. Analyses of the unknowns measured 6 scans 

through the mass stations 203CeO2, 
204Pb. 204.1 (background), 206Pb, 207Pb, 208Pb, 232Th, 238U, 248Th and 

254UO, regularly interspersed with analysis of the monazite standard. Data reduction was performed 

according to Williams (1998, and references therein), using SQUID 2 Excel macro of Ludwig (2009) 

and Excel macro Isoplot 3 (Ludwig, 2003). Age calculations used decay constants recommended by 

the IUGS Subcommission on Geochronology (as given in Steiger & Jäger, 1977) and corrections for 

common Pb were made using the measured 204Pb and the relevant common Pb compositions (Stacey & 

Kramers, 1975). Uncertainties of 1s are given for individual U-Pb analyses (ratios and ages), however, 

uncertainties in the calculated weighted mean ages are reported as 95% confidence limits and include 

the uncertainties in the standard calibrations where appropriate. 

4.4 Petrography and mineral chemistry 

Field work was conducted throughout the Sefwi Greenstone Belt and the adjacent Sunyani-Comoé 

and Kumasi-Afema domains to collect samples of the major metamorphic rocks and igneous suites 
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within distinct litho-tectonic domains. Samples were selected based on the geographic location, 

structural context and informative mineral assemblages for geothermobarometry.  Sample location, 

peak metamorphic assemblages and whole rock bulk composition for key samples are presented 

in Tables 4.1 and 4.2. Table 4.3 contains representative mineral compositions described in the text. 

Mineral abbreviations are after Whitney and Evans (2010).

Table 4.1. Peak metamorphic mineral assemblage and location of the investigated samples.

Table 4.2. Whole rock bulk compositions (oxide wt %) of samples used for calculation of P-T pseudosections.

4.4.1 High-grade rocks

4.4.1.1 Sample SB398 (garnet-kyanite-rutile migmatitic paragneiss)

Sample SB398 is a locally migmatitic paragneiss from the western part of the Chiraa Domain. The 

outcrop comprised interbedded, gneissic metagreywackes and rare aluminous metapelitic layers. 

These rocks are intruded by centimetre- to metre-scale granitic dykes. Abundant and variable garnet 

and kyanite modal proportions in Al-rich layers indicate compositional heterogeneity in the protolith 

(Fig. 4.3a,b).  The primary structures include a penetrative gneissosity (S1) parallel to compositional 

layering defined predominantly by biotite alternating with quartz-feldspar layers. S1 is folded around 

tight, symmetric metre-scale F2 folds plunging moderately towards west-northwest to southwest. At 

the outcrop from which sample SB398 was derived (Fig. 4.3b), kyanite defines a prominent L2 mineral 

stretching lineation, pitching ~30° to the west.  
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Fig. 4.3. Outcrop photos of SB398. a) Outcrop photo of SB398 showing refolded pelitic and psammitic layers and 

parallel biotite schistosity, with parallel to cross-cutting leucosomes and leucocratic veins; b) Aluminium-rich pelitic 

layer containing high modal proportions of kyanite and garnet with increasing biotite content proximal to stromatic 

leucomsones.

Petrographic relationships are used to define a succession of four distinct metamorphic 

assemblages, denoted A – D (Fig. 4.4). The first two assemblages are defined by two unique pluri-

mineral aggregates in the core and mantle of subhedral poikilitic, garnet porphyroblasts (2–7 mm) 

(Fig. 4.4a). Garnet porphyroblast composition shows irregular zonation toward rim, consistent with 

back-scattered electron (BSE) images which indicate a thin, bright, irregular rim. Electron microprobe 

analysis (EMPA) transects of garnet porphyroblasts (Fig. 4.5a) display curved chemical profiles 

of Prp13–15, Alm75–77, Grs5–6 and Sps2–3, with decreasing pyrope (Prp ~10) and increasing 

spessartine (Sps ~4) and  almandine (Alm ~78) on garnet rims indicating partial garnet resorption and 

re-equilibrium (Kohn & Spear, 2000; Spear, 1993). Garnet cores contain fine-grained, pluri-mineralic 

aggregates of anhedral plagioclase (Pl1), euhedral rutile, radial chlorite and accessory apatite, zircon 

and graphite (Fig 4.4b), with abundant, small (<10 μm) quartz inclusions. Chl has a #Mg (Mg/(Mg 

+ Fe)) ranging from 0.29 to 0.53 with a negligible Ti content. Anhedral plagioclase inclusions (Pl1) 

in the core of garnet (Fig. 4.4a, b) have An content (=100 x (Ca/(Ca + Na)) of 32-40. Assemblage 

(A), defined as Grt + Chl + Pl1 + Rt + Qz ± Bt , is consistent with greenschist to low-T amphibolite 

conditions. Pluri-mineral inclusions in the garnet mantle comprise euhedral biotite1 and phengite1 

laths and coarse-grained, subhedral to euhedral plagioclase2, with prismatic to elongate, single grain 

rutile inclusions (Fig 4.4c, d). Biotite1 has #Mg of 50 - 52 and Tivi = 0.11–0.15 a.p.f.u. (based on 11 

oxygen).
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Fig. 4.4. Photomicrographs of sample SB398 (a, d, e) and BSE images (b, c, f). (a) Garnet porphyroblast with inferred 

garnet core-mantle boundary (red dashed line) defined by inclusion size and composition. Core inclusions comprise 

plagioclase1, chlorite and rutile, whilst mantle inclusions comprise biotite1, phengite1 and plagioclase2. Matrix minerals 

include biotite2, phengite2, plagioclase3 and deformed kyanite blades with quartz and biotite inclusion trails (right of 

image centre). Graphite is ubiquitous throughout the sample. (b) Assemblage (A) in garnet core comprising anhedral 

plagiolase1, radial chlorite laths and euhedral rutile. (c) Assemblage (B) in garnet mantle euhedral biotite1, phengite1 

and coarse-grained plagioclase1. (d) Single grain inclusions of rutile in garnet mantle. (e) Subhedral biotite2 in the 

matrix in contact with monazite-bearing kyanite blade and matrix plagioclase3. (f) Retrograde muscovite and ilmenite in 

matrix, growing at the apex of a kyanite blade containing monazite.
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Fig. 4.5. Chemical composition profiles of transects across garnet porphyroblasts in samples (a) SB398, (b) SB389, (c) 

SB344 and (d)SB177. Profiles show location of garnet cores (c) and rims (r). 

White mica inclusions have high potassic white mica content (Ms = 100 x (K/K + Ca + Na) of Ms=88– 

92 and elevated TiO2 content of 0.68–1.02 wt %. It has a composition of Si = 3.11–3.13 a.p.f.u, Fe2+ = 

0.07–0.08 a.p.f.u. and Mg = 0.03–0.04 a.p.f.u. (11O). This composition indicates partial phengitic and 

Ti substitution by Si + R2+ = Alvi + Aliv and Alvi + Si = Ti + Aliv, consistent with high-P 2M1 phengites 

(Auzanneau, et al., 2010; Cibin, et al., 2008; Massonne & Schreyer, 1987), and is, therefore, denoted 

as phengite1 (Ph1).  The euhedral shape and preservation of crystal faces of plagioclase2 (Fig. 4.4c) 

suggests crystallisation from a melt (Vernon & Collins, 1988). Plagioclase2 shows a small decrease in 

An (30 – 36). A second assemblage (B) is, therefore defined as Grt + Bt1 + Ph1 + Pl2 + Rt + Qz ± L 

(melt) associated high amphibolite facies metamorphism (e.g. Spear, 1993), potentially corresponding 

with high-P amphibolite facies conditions. The transition from metamorphic assemblage (A) in the 

garnet core to metamorphic assemblage (B) in the garnet mantle is interpreted as the product of two 

reactions. The first is the chlorite dehydration reaction (R1) corresponding to increasing pressures and 

temperatures:

 Chl + Kfs + tk → Ph1 + Bt + Qz + H2O       (R1),

after Simpson et al. (2000), whereby tk is an additional Tschermak component [Al2(Fe, Mg)-1Si-1] 

exchanged with garnet (Coggon & Holland, 2002). The absence of Kfs inclusions in garnet may indicate 

its total consumption as a reactant, typical of average Al-rich, K-poor metapelites bulk compositions 

(Simpson, et al., 2000; Spear, 1993). The shift from assemblage (A) to assemblage (B) indicates  partial 
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melting of the rock and transition to suprasolidus conditions. The third assemblage (C) is defined by 

phases in the matrix and the appearance of kyanite. Garnet porphyroblasts are observed in contact 

with matrix biotite (Bt2) and subhedral, matrix plagioclase (Pl3) (An 27–36), displaying overlapping 

An content to Pl2 inclusions in garnet. Kyanite has two grain morphologies in the matrix indicating 

multiple stages of growth. Millimetric, irregular anhedral kyanite grains containing rare monazite 

grains are observed as irregular inclusions parallel to elongate matrix biotite (Bt2), with a composition 

of #Mg = 42–45 and Tivi = 0.12–0.17 a.p.f.u (based on 11 oxygen). Bt2 defines the penetrative 

metamorphic foliation in SB398. The more abundant form of kyanite is represented by millimetric 

to centimetric, near euhedral, poikilitic porphyroblasts. These contain inclusions of matrix biotite 

(Bt2), quartz, rutile, monazite and graphite aligned parallel or subparallel to the c-axis (Fig. 4.4a, e, 

f), thus kyanite is interpreted as syntectonic. Poikiloblastic kyanite is not observed in equilibrium 

contact with garnet porphyroblasts. Production of peritectic kyanite during anatexis is interpreted 

as the product of near total consumption of phengite, attributed to muscovite dehydration reaction 2 

(R2) in suprasolidus conditions: 

 Ms (Ph2) + Pl + Qtz → Ky + melt (L)      (R2),

consistent with reactions observed in low-temperature (<800 °C) anatectic pelites in the Greenland 

Caledonides (Kalsbeek, et al., 2001).

 Assemblage (C) comprises the phases Grt + Bt2 + Ky + Pl3 + Ph2 + Rt + Qz ± L. Remaining 

phengite in the matrix (Ph2) has a similar, although more variable, composition to phengite1 inclusions 

in the garnet with a composition of Si= 3.06–3.19 a.p.f.u, Aliv = 0.81–0.83 a.p.f.u., Alvi = 1.81–1.95 

a.p.f.u. and Mg = 0.04–0.08 a.p.f.u. (11O). Fe2+ in phengite2 displays a significant decrease from ~ 0.07 

a.p.f.u. to ~ 0.05 a.p.f.u.. Biotite dehydration in SB398 is limited by its coexistence with rutile, thus 

extending its stability under higher temperatures (Guidotti, 1984; Stevens, et al., 1997). Furthermore, 

the inclusion of rutile grains in kyanite and as single grains in the matrix indicates that the transition 

from assemblage (B) to assemblage (C) remained at temperature and pressure conditions above the 

stability fields of ilmenite, at the amphibolite-granulite facies transition.  

Early retrogression in sample SB398 is indicated by small muscovite overgrowths on kyanite 

rims (Fig. 4.4f), also overgrowing the biotite foliation associated with the back reaction of fluid 

produced during crystallisation of small volumes of melt, as defined by reaction 3:

 Ky + Pl + H2O → Ms + Qz       (R3).



142

Overgrowths of muscovite (Ms) have Ms = 89–91, and lower Si = 3.06–3.08 a.p.f.u. and Alvi = 1.89–

1.91 a.p.f.u. compared to Ph2 in the matrix. Low modal proportion (<1%) of late ilmenite in muscovite 

cleavage planes (Fig. 4.4f) indicates the rock crossed from the stability field of rutile into the stability 

field of ilmenite during retrogression. Garnet chemical profiles (Fig. 4.5a) show downward inflection 

in #Mg, coinciding with a decrease Prp and increased Alm and Sps content (Prp12, Alm78, Sps4) 

suggesting partial resorption along garnet rims (Kohn & Spear, 2000; Spear, 1993). 

4.4.1.2 Sample SB389 (migmatitic biotite-sillimanite-garnet paragneiss)

Sample SB389 is from a migmatitic biotite-sillimanite paragneiss with relict garnet porphyroblasts, 

located nine kilometres northeast of Chiraa, in the Chiraa high-grade domain (Fig. 4.2). Sedimentary 

layering in outcrop is interpreted from irregular, alternating high- and low-modal proportions of 

micas and aluminosilicates in pelitic and psammitic beds, respectively (Fig. 4.6a). The metatexite 

has a penetrative biotite-fibrolitic sillimanite metamorphic foliation (S1) alternating with quartz-

plagioclase bands, featuring coarse fibrolitic sillimanite nodules, with abundant accessory apatite, and 

minor monazite, ilmenite, ferroceladonite-rich muscovite and hematite.  Coarse-grained, foliation-

parallel stromatic leucosomes observed in outcrop feed into centimetric quartz-plagioclase rich dykes 

(Fig. 4.6b) with biotite-rich selvedges forming on margins of quartz-plagioclase rich leucosomes (Fig. 

4.6c). Field observations indicate limited melt segregation and minor melt migration. Centimetric, 

asymmetric, moderately inclined tight folds refold the S1 gneissosity.  A northeast-southwest striking, 

S2 axial planar foliation, defined by biotite, dips 75° to the southeast.  F2 folds plunge moderately to the 

southwest.  

Fig. 4.6. Field photos of biotite-sillimanite sample SB389. a) Outcrop showing strongly deformed  meta-pelitic and meta-

psammitic layers, which sheared bedding parallel leucosomes and granititc dykes and leucosomes feeding into high-
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angle leucocratic vein; b) Biotite selvedges on margins of refolded leucosome. 

Petrographic relationships and mineral chemical compositions are used to constrain 

three metamorphic assemblages (A–C). Garnet is preserved as relict, millimetric rounded-to-

globular, anhedral porphyroblasts, with quartz, plagioclase (Pl1) and biotite (Bt1) inclusions (Fig. 

4.7a), representing a modal proportion of less than 1%.  Garnet often appears as disaggregated 

porphyroblasts, truncated along overprinting biotite foliations. Garnet composition is strongly zoned 

with a core composition of Prp12–14, Grs4–6, Sps12–17, Alm64–67 (Fig. 4.5b), with increasing Sps 

(16-20) and decreasing Prp (10-11) towards garnet rim indicate strong garnet resoption and element 

diffusion (Kohn & Spear, 2000; Spear, 1993). We note that the combined evidence of anhedral grain 

morphology and garnet resorption indicate that garnet compositions must be treated with caution.  

Anhedral biotite (Bt1) inclusions observed in garnet have a composition of #Mg = 43–45 and Tivi = 

0.12–0.14 a.p.f.u.  Plagioclase inclusions (Pl) in garnet have An(26–29), within the range observed for 

plagioclase in the matrix (An23–31). Muscovite observed in contact with garnet porphyroblasts has a 

composition of Ms = 93–97, Si = 3.04–3.12 a.p.f.u. and Alvi = 1.68–1.80 a.p.f.u., with Fe2+ = 0.02–0.16 

a.p.f.u. and Fe3+ = 0.08–0.16 a.p.f.u., calculated using charge balance between charge ideal nd charge 

real, indicating partial ferric iron-rich celadonite substitution, according to Tischendorf et al. (2004).  

The composition is comparable to muscovite inclusions in subhedral matrix plagioclase. Metamorphic 

assemblage (A) is defined as Grt + Bt1 + Pl + Qz ± Ms, however, we note that microstructural 

evidence for the prograde assemblage associated with garnet porphyroblasts in this sample is often 

ambiguous due poor preservation.

Relict kyanite porphyroblasts occur in the matrix with extensively corroded rims and never 

in equilibrium contact with garnet. Figures 4.7a and 4.7c show a kyanite porphyroblast with a sub-

rounded quartz core and an interstitial cuspate film of plagioclase (An 29–31) pseudomorphing melt, 

suggesting kyanite was forming in suprasolidus conditions and respresents a peritic phase (Holness & 

Sawyer, 2008). Kyanite is interpreted as the product of muscovite dehydration melting during reaction 

2 (R2) as the rock crossed the solidus. Potassium feldspar was observed only as rare, round inclusions 

in plagioclase in thin section, suggesting limited production during reaction 2, total consumption 

during subsequent retrograde reactions or extraction during melt segregation and transportation. 

Reaction 2 occurs at the transition from assemblage (A) to assemblage (B) Grt + Bt2 + Ky + Pl + Qtz 

+ L at suprasolidus, high-pressure amphibolite facies conditions. 
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Fig. 4.7. Photomicrographs of migmatitic metapelite sample SB389. (a) Early, rounded, anhedral garnet porphyroblast 

in contact with muscovite, quartz and plagioclase. Aligned biotite defines penetrative metamorphic fabric. (b) Isolated 

corroded kyanite porphyroblast with thick overgrowth of muscovite with the square indicating inset (c). (c) A cuspate 

film of plagioclase pseudomorphing melt between corroded kyanite and rounded, anhedral quartz. Biotite2 visible as 

inclusion in muscovite2. (d) BSE image of randomly aligned, fine grained, fibrolitic sillimanite in sillimanite nodule. (e) 

Fibrolitic sillimanite is observed in two morphologies; the first, as coarse-grained knots suggesting it is a retrograde 

phase, pseudomorphing pre-existing porphyroblasts; the second textural location of fibrolitic sillimanite is sub-parallel 

to the S2 foliation. Square in sillimanite nodule shows location of (d), not to scale.

Kyanite porphyroblasts are embayed in thick muscovite overgrowths containing small round 

inclusions of quartz and biotite (#Mg = 43–44; Tivi = 0.17–0.18 a.p.f.u.). Muscovite composition is 

indistinguishable from that of muscovite in contact with garnet. The relationship between kyanite 
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and muscovite overgrowths is interpreted the product of two possible reactions: first, as a rapid 

metasomatic back reaction between kyanite and water released during in situ melt crystallization (R3) 

occurring as the rock returned below the solidus, and second, the following closed-system sillimanite-

forming, decompression, chain reaction (R4):

 Ky + Bt + Qz → Ms → Sil + Bt +Qz      (R4),

involving mica as a catalyst (Foster, 1991; Gervais & Hynes, 2013). This reaction produces distinct 

replacement of kyanite by muscovite with Bt-free mantles and sillimanite growth after biotite with 

Ms-free mantles forming fine-grained, fibrolitic sillimanite nodules, as described by Foster (1991) for 

high-grade pelites. R4 and R5 are responsible for the formation of the dominant matrix assemblage 

(C), Sil + Bt + Pl + Qz ± Ms ± Grt. Elongate, fibrolitic sillimanite is also observed sub-parallel to the 

subhedral, elongate, highly-pleochroic biotite (#Mg 42-45 and Tivi= 0.10–0.15 a.p.f.u) and muscovite 

foliation suggesting metamorphism is concurrent with deformation (Fig. 4.7d,e), representing the 

biotite-producing end of R5. Matrix plagioclase has An 27–29.  This assemblage is often seen over-

printing relict kyanite grains and dark brown, highly corroded biotite grains with round quartz 

inclusions, representing the early biotite consumption of R5. Despite differences in morphology and 

microstructural context, the two types of biotite have indistinguishable chemical composition. 

Late oxidation of the rock is indicated by an overprint of matrix biotite by an intergrowth of 

muscovite (Ms2) and hematite. The oxidation of biotite and aluminosilicate produces muscovite and 

hematite, modelled by the following balanced chemical equation: 4Bt + 4Sil + O2 = 4Ms + 6Hem + 

4Qz. Ms2 composition displays lower Si content than from Ms1, with a composition of Ms = 93–96, 

Si = 3.03–3.05 a.p.f.u. and Alvi = 1.71–1.79 a.p.f.u..

4.4.1.3 Sample SB344 (garnet-bearing amphibolite)

Sample SB344 is sourced from an outcrop located 5 km south of the Ketesso shear zone, 40km 

south of Juaboso (Fig. 4.2). The location of this garnet amphibolite is interpreted as the southern-

most extent of the amphibolite-facies Kukuom-Juaboso domain based on its metamorphic grade 

and structural information. Exposures of chlorite-actinolite bearing, weakly-foliated metabasalts 

and unmetamorphosed granodiorite plutons are found less than 5 km to the southeast of the garnet 

amphibolite sample (SB344), therefore, we infer a significant lateral metamorphic break lies to its south 

and southeast, likely coinciding with a poorly exposed tectonic contact. The penetrative metamorphic 
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foliation in this sample is defined by aligned subhedral to euhedral, elongate amphibole grains and 

minor plagioclase and quartz-rich bands, wrapping around millimetric garnet porphyroblasts. Strain 

shadows of garnets primarily consist of quartz. Accessory apatite is visible throughout the sample. 

Garnet porphyroblasts are subhedral to euhedral, 1 – 3 mm in diameter with aligned 

inclusions of elongate quartz and magnesio-ilmenite, which preserve a relict foliation (S1) oblique 

to the penetrative amphibole and plagioclase foliation of the matrix, denoted as S2 (Fig. 4.8a). The 

obliquity between the two foliations suggests garnet growth is inter-tectonic (Fig. 4.8b). Measured 

garnet composition shows slight zoning from core to rim with Prp6 → Prp7, Grs26 → Grs27, Sps10 → 

Sps4 and Alm58 → Alm62 (Fig. 4.5c). Plagioclase in the matrix has a composition of An 15–21, with 

one transect revealing a higher An content (An24–30). Matrix amphibole is classified as ferropargasite 

(Fprg) with #Mg = 39–41, Ca/Na = 2.73–3.11, (Ca+Na)B = 1.79–1.89 a.p.f.u., (Na+K)A = 0.56–0.68 

a.p.f.u. and Tivi = 0.09 a.p.f.u.. The structural formula of ferropargasite was calculated according to the 

IMA 2012 recommendation, with the use of the excel spreadsheet compiled by Locock (2014). Ilmenite 

in the matrix is commonly aligned with the foliation and as inclusions in ferropargasite. Minor epidote 

is observed in the matrix. Assemblage (A) (Grt + Pl + Fprg + Ilm + Ep + Qz) represents the peak 

assemblage, corresponding with amphibolite facies conditions. Weak retrogression and secondary 

hydration is indicated by chlorite overgrowth, localised along foliation planes and thin replacement 

rims on garnet grain boundaries and internal fractures. Incomplete replacement of ilmenite by titanite 

is confined to S2 foliation planes, with rounded ilmenite inclusions observed in foliation parallel 

titanite grains, suggesting a transition from the stability field of ilmenite to titanite (Fig. 4.8b). These 

phases define assemblage (B) Grt + Pl + Fprg + Ep + Chl + Ttn, indicative of high-P greenschist 

facies conditions. 

4.4.1.4 Sample SB164 (garnet-bearing amphibolite)

Sample SB164 comes from the western margin of the amphibolite facies Kukuom-Juaboso domain in 

the Sefwi greenstone belt, about 10 km north of the township of Juaboso. The domain is separated from 

the chlorite-white mica schists of the Sunyani-Comoé metasedimentary province by a north-northeast 

striking shear zone (Fig. 4.2). The rock contains a high modal proportion (~30%) of subhedral garnet 

porphyroblasts (2–7 mm) and a penetrative foliation. 
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Fig. 4.8. Photomicrographs of metamorphosed mafic rocks. (a) Subhedral garnet porphyroblasts with inclusion trails 

of ilmenite and quartz, defining early metamorphic foliation (S1), hosted in a matrix of aligned, elongate ferropargasite, 

plagioclase and coarse-grained ilmenite. Strain shadows of garnet are filled with quartz. (b) Retrograde chlorite in 

along fractures in garnet porphyroblasts and overgrowth of rounded titanite around ilmenite along S2/3 foliation plane. 

(c) Polymineralic inclusions of cummingtonite, magnesio-hornblende, quartz, plagioclase and ilmenite in garnet 

porphyroblasts in amphibolite sample SB164. (d) Early foliation preserved in garnet porphyroblasts at an oblique angle 

to the penetrative metamorphic foliation (S2) in the matrix defined by elongate hornblende and plagioclase, seen wrapping 

around garnet porphyroblasts. (e) Pluri-mineralic inclusions in garnet of euhedral plagioclase1, subhedral hornblende1 

and ilmenite and isolated inclusions of anhedral clinopyroxene1.  (f) Peritectic garnet and clinopyroxene2 hosted in 

plagioclase-rich leucosome (Pl2) with titanite, ilmenite and clinopyroxene along leucosomes selvedges. A thin rim of 

hornblende2 and actinolite on the garnet porphyroblast comprise the early retrograde assemblage.
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Unzoned, poikiloblastic garnet porphyroblasts (Prp15–18, Sps2–3, Grs14–16, Alm63–67) preserve 

aligned inclusion trails of magnesio-hornblende (Mhb), cummingtonite (Cum), plagioclase and 

ilmenite (Fig. 4.8c).  The first assemblage (A) is represented by Grt + Mhb + Cum + Pl + Ilm + 

Qz. Magnesio-hornblende inclusions in garnet display the same composition as matrix magnesio-

hornblende, which represents ~70% modal proportion of matrix minerals. It has a composition of 

#Mg = 0.53–0.57, Ca/Na = 4.48–6.01, (Ca+Na)B = 1.34–1.81 a.p.f.u. and (Na+K)A = 0.27–0.39 a.p.f.u. 

Cummingtonite inclusions have #Mg 0.57–0.61, Ca/Na = 2.86–4.59, (Ca+Na)B = 0.11–0.53 a.p.f.u. and 

(Na + K)A = 0.00–0.04 a.p.f.u. Both plagioclase inclusions and matrix plagioclase have a composition 

within the range of An88–93. Rare chlorite grains in garnet have #Mg = 43–46, otherwise absent from 

the matrix. The foliated matrix of SB164 (Fig. 4.8d) comprises the same assemblage as the garnet 

inclusions trails with the exception of cummingtonite and chlorite, which are not observed in the 

matrix. Epidote is only observed in the matrix. Assemblage (B) is defined as Grt + Mhb + Pl + Ilm + 

Ep + Qz. Both assemblages indicate epidote-amphibolite to amphibolite facies conditions.  Whilst the 

obliquity between garnet inclusion trails and the foliated matrix suggest the garnet porphyroblasts are 

intertectonic (Passchier & Trouw, 2005), the mineral assemblages and mineral chemical compositions 

are too similar to distinguish multiple events without additional geochronological constraints (Vernon, 

et al., 2008). 

4.4.1.5 Sample SB177 (garnet-clinopyroxene bearing migmatitic gneiss)

Sample SB177 is from a raft of migmatitic, calcic metabasalt surrounded by extensive granite outcrop 

5 km east of Chiraa (Fig. 4.2). The outcrop SB177 contains large blocks of megacrystic metamorphic 

rocks preserving high-grade garnet-clinopyroxene-bearing metamorphic assemblages. The tectonic 

fabric strikes east-west, dipping steeply to the south with a gently west-plunging mineral stretching 

lineation. Leucosomes occur as discrete, disconnected patches, often pooling in fold hinges suggesting 

syn-tectonic partial melting and minimal melt segregation and loss. Peritectic garnet porphyroblasts 

are subhedral with irregular, embayed grain boundaries, often occurring in contact with peritectic 

clinopyroxene porphyroblasts. Garnets are heavily fractured. 

 Three metamorphic assemblages have been deduced from petrographic relationships and 

mineral compositions. Chemical profiles of garnets show strong zonation in grossular and almandine 

content (Fig. 4.5d). Changes in garnet composition from core (Grt1) to rim (Grt2) are Grs44–46 

→ Grs 39–43, Alm49–50 → Alm51–54, Prp3–4 → Prp 5–6 and Sps1–2 → Sps0–1 (Fig. 4.5d). Pluri-
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mineral aggregates and singular inclusions of titanite and ilmenite, and plagioclase and hornblende 

constrain an early, amphibolite facies metamorphic assemblage (Fig. 4.8e), defined by (A) = Grt1 + 

Hbl1 + Pl1 + Ilm + Ttn + Mag ± Cpx ± Ep. Pl1 has An41–43 and Hbl1 has #Mg = 28–34, Ca/Na = 

4–6, (Ca+Na)B = 1.89–1.93  a.p.f.u. and (Na+K)A = 0.51–0.61 a.p.f.u.  Clinopyroxene in all textural 

locations as classified as Ca-Mg-Mg (Quad) clinopyroxenes. Clinopyroxene inclusions in garnet 

display an intermediate diopside-hedenburgite composition with #Mg = 0.44–0.49, Ca/(Ca + Na) = 

0.97–0.99, high wollastonite content of Wo(100 *Ca/(Ca+Mg+Fe)) = 47–49, enstatite (En) (100*Mg/

(Mg+Ca+Fe)) = 22–26 and ferrosillite (Fs) (100*FeT/(FeT+Ca+Mg)) = 24–28, after Morimoto et al. 

(1988). 

Metamorphic assemblage (B) records the transition to suprasolidus conditions under the upper 

amphibolite to granulite conditions. It comprises Grt2 + Cpx + Pl2 + Qz + Ttn + Ilm ± Czo + melt 

(L) (Fig. 4.8f). Garnet and clinopyroxene porphyroblasts are hosted in granoblastic plagioclase-rich 

leucosomes, where grain boundaries have visible 120o angles. Plagioclase in leucosomes is classified as 

Pl2, which has higher An content (62-71) than Pl1 inclusions in garnet. Clinopyroxene porphyroblasts 

hosted in leucocratic domains have #Mg 50–55, Ca/(Ca + Na) = 0.97–0.99, Wo= 49–51, En = 26–27 

and Fs = 22–25. Clinopyroxene selvedges grow in equilibrium with both titanite and ilmenite on 

leucosomes margins (Fig. 4.8f). Early garnet and clinopyroxene growth are interpreted as the product 

of progressive dehydration of hornblende defined by the following reaction (R5), typical of transitional 

amphibolite metamorphism:

 Hbl1 + Qz → Grt1 + Cpx1 + Pl1 + H2O       (R5).

The bulk rock composition has a low Na/Ca ratio, thus prolonging the hornblende-out reaction. 

Anatexis and peritectic growth of garnet and clinopyroxene occur during continued hornblende 

dehydration (R6) as the rock crosses the solidus:

 Hbl1 + Pl1 + Qz = Grt2 + Cpx2 + L (or V)       (R6)

The peak metamorphic assemblage corresponds with key high-pressure granulitic associations in 

mafic rocks, forming at the boundary between amphibolite/high-pressure granulite metamorphic 

conditions (700–850 °C, 10–14 kbar) (O’Brien & Rötzler, 2003). The absence of orthopyroxene in 

garnet-clinopyroxene-bearing mafic granulites is indicative of partial melting occurring above 10 kbar 

(Pattison, 2003).  Growth of retrograde hornblende (Hbl2) on garnet rims indicates the back reaction 

(R7) between peritectic minerals and melt, common in rocks with minimal melt extraction: 
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 Grt2 + Cpx2 + melt (L) → Hbl2 + Pl2        (R7)

Hbl2 has #Mg = 34–41, Ca/Na = 5–6, (Ca+Na)B = 1.95–1.99  a.p.f.u. and (Na+K)A = 0.48–0.53 a.p.f.u. 

Continued hydration of garnet, and hornblende results in the final retrograde assemblage (C) of  

marked by the appearance of actinolite, chlorite, epidote, albite and calcite on late fracture networks 

and grain boundaries of porphyroblasts (Fig. 4.8f) and is defined as Hbl2 + Pl + Act + Ep +Chl + Ab. 

The secondary retrograde reaction (R8) is typical of greenschist facies metamorphism:

 Grt2 + Hbl2 + Pl + H20 → Act + Chl + Ab + Ep + Calcite     (R8).

4.4.2 H2O-saturated melting

Partial melting of mafic protoliths occurs extensively along the Hwidiem shear zone and in the core 

of the Kukuom-Juaboso amphibolite domain. Peritectic hydrous minerals, predominantly comprising 

hornblende were commonly entrained in plagioclase-rich and quartz-rich leucosomes.  Migmatitic 

amphibolites in the Hwidiem shear zone (e.g. SB089) host foliation-parallel leucosomes comprising 

subhedral hornblende and plagioclase with round quartz inclusions, with accessory epidote, apatite 

and rare euhedral titanite. A minor greenschist facies overprint comprises epidote, rutile and chlorite. 

Leucocratic domains in migmatitic amphibolite gneiss SB435 are observed with both diffuse boundaries 

or with hornblende selvedges (Fig. 4.9a). The leucosomes assemblage consists of euhedral plagioclase, 

centimetric, poikilitic hornblende prisms (Fig. 4.9b) and minor quartz and k-feldspar with accessory 

allanite and magnetite. Extensive alteration of the assemblage is marked by the presence of sericite, 

chlorite, epidote and albite. In the core of the Kukuom-Juaboso domain, an exposure of migmatitic 

gneissic metadacite (SB016) with a gneissosity defined by aligned amphibole alternating with quartzo-

feldspathic bands.

Fig. 4.9. (a) Leucosome with hornblende selvedges in migmatitic amphibolite gneiss located along the Hwidiem shear 
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zone. (b) Peritectic hornblende rod hosted in quartz-plagioclase leucosome in migmatitic amphibolite gneiss.\

4.5 Results

4.5.1 P-T conditions and P-T paths

4.5.1.1 Sample SB398 (garnet – kyanite - bearing paragneiss)

P-T pseudosections for paragneiss sample SB398 (Fig. 4.10) show stability fields of observed assemblages 

and mineral stability fields derived from measured mineral compositions. Observed pluri-mineralic 

inclusions of anhedral plagioclase, radial chlorite and euhedral rutile in garnet porphyroblasts cores 

potentially partially record an early prograde assemblage (A) at temperatures below the calculated 

Chl-out—Grt-in line at 590 °C (Fig. 4.10a) and pressures above 10 kbar as indicated by the inclusion 

of rutile. Subsolidus high-pressure amphibolite conditions of 9.9–11.5 kbar, 590–640 °C are deduced 

from measured garnet composition (Prp13-15, Alm75-77, Grs5-6) and biotite inclusion composition 

(Bt1 Mg# = 50–52), corresponding to the calculated stability field of Grt + Bt + Pg + Ms + Rt + 

Qz. This assemblage partially resembles that of assemblage (B), Grt + Ph1 + Bt1 + Pl2 + Rt + Qz ± 

L. The inclusions of euhedral plagioclase crystals in the mantle of garnet porphyroblasts potentially 

suggesting the assemblage is metastable as it first crossed the solidus. Paragonite (Pg) was not preserved 

as inclusions in garnet, nor in the matrix, potenitially indicating a preservation issue. The transition 

from assemblage (B) to assemblage (C) records heating concomitant with < 2 kbar of exhumation 

indicating suprasolidus upper amphibolite facies conditions of 690 °C at 9.5 kbar within the stability 

field of kyanite. The calculated stability field associated with these conditions has the assemblage Grt + 

Bt + Ky + Pl + Ms + L ± Rt, corresponding well with the observed assemblage (C) Grt + Bt2 + Ky + Pl2 

+ Qz + Rt ± Ms ± L. At the calculated suprasolidus conditions, calculated plagioclase composition is 

consistent with that of measured euhedral garnet inclusions of plagioclase (Pl2) and matrix plagioclase 

(Pl3) have anorthite content (30–36), corresponding also to 4–6 % volume of kyanite (Fig. 4.10c). 

Calculated conditions and observations are consistent with estimations for partial melting of similar 

pelitic lithologies in the Caledonides by Kalsbeek et al. (2001) of ~ 750 °C and 10–12 kbar. Monazite is 

observed as inclusions in matrix biotite and in kyanite porphyroblasts (Fig. 4.4e, f) and is interpreted 

to have crystallised during peak temperature metamorphism. 

 The retrograde path is more poorly constrained. Phases associated with retrogression are 

limited in modal proportion, evident in small muscovite overgrowths on kyanite rim, the appearance 

of ilmenite after rutile in the matrix, often in assocaition with muscovite and decrease in the #Mg of 
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Fig. 4.10. MnNCKFMASHTi P-T pseudosections for phase equilibria for metapelite sample SB398. (a) Calculated stable 

assemblages. (b) Calculated garnet isopleths for pyrope (dotted lines and values in circles) and almandine (dashed lines 

and values in squares). Colour spectrum represents garnet volume. (c) The colour spectrum shows modal proportions of 

aluminosilicates with anorthite content of plagioclase in dashed lines with values in circles. (d) Isopleths of Bt #Mg in 

dashed line with value in squares.

Bt2, however, this likely indicates a cation exchange between biotite and garnet during garnet resorption 

and diffusional reequilibration. Matrix biotite in contact with garnet rims records a decrease in Mg# 

(#Mg 42 – 45) (Fig. 4.10d).  The observed phases and compositions correspond to a calculated stability 

field with the assemblage Bt + Chl + Pl + Pg + Grt + Ilm and metamorphic conditions of ~ 6 kbar and 

580–590 °C. The absence of retrograde sillimanite and staurolite has two possible explanations, the 
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first of which suggests that concurrent cooling and decompression held the rocks at conditions above 

that of the stability field of sillimanite, preserving the kyanite porphyroblasts. The second explanation  

suggests problematic crystallisation due to decreasing temperature or fluid-absent conditions during 

retrogression.

 Overall, P-T modelling reveals a clockwise P-T path for sample SB398. Garnet porphyroblasts 

record burial along a cool geothermal gradient (~15° C/km) crystallising under high-pressure 

amphibolite conditions near the amphibolite-granulite boundary (Vernon & Clarke, 2008).  Following 

peak pressure, sample SB398 records a near isobaric increase in temperature to amphibolite facies 

suprasolidus conditions crossing geotherms and recording a transient apparent geothermal gradient 

of 20–25 °C/km. The retrograde path records a 3 kbar decrease in pressure and a drop of 100° C. 

4.5.5.2 Sample SB389 (biotite-sillimanite gneiss)

P-T pseudosections for sample SB389 are presented in Figure 4.11. Measured compositions of relict 

garnet porphyroblasts (Grs 4-6, Sps12-17 and Prp12-15) correspond with calculated stability fields 

with assemblages Bt + Grt + Pl +Ms + Ilm + Qz and Bt + Grt + Pl +Ms + Qz (Fig. 4.11b) consistent 

with the observed petrological assemblage (A) Grt + Bt1 + Ms1 + Pl + Qz. Values of Tiiv (0.12 – 0.14 

a.p.f.u.) in biotite are consistent with the stability filed of Bt + Grt + Pl + Ms + Ilm + Qz. The absence 

of ilmenite suggests ilmenite consumption may have gone to completion or been replaced during 

subsequent alteration. Garnet prophyoblasts have been strongly resorbed, therefore the calculated 

stability field of garnet 5.5–9 kbar and 550–640 °C, associated with an apparent geothermal gradient of 

~20 °C/km, are regarded with caution. Modelled garnet modal proportions indicate garnet represents 

less than 2% of phases present under these pressure and temperature conditions, consistent with 

petrological observations (Fig. 4.11b). 

The prograde path is constrained by the preservation of highly corroded relict kyanite 

porphyroblasts with plagioclase melt rims. Modelling indicates modal proportions of kyanite under 5 

% (Fig. 4.11c). The anorthite composition of plagioclase (An 29 – 31) melt rims around kyanite indicates 

peak metamorphic conditions of 8.5 kbar and 690 °C, coinciding with modelled phase assemblage of 

Bt + Pl + Grt + Ky + L ± Ms, matching assemblage (B).  The transition to observed assemblage (B) Grt 

+ Bt2 + Ky + Pl + Qtz + L is the product of reaction 4 and occurs under suprasolidus conditions at 

the amphibolite-granulite facies boundary.  The overgrowth of muscovite on relict, resorbed kyanite 

grains indicates the rock returned below the wet solidus prior to a decrease in pressure into the stability 
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Fig. 4.11. MnNCKFMASHTi P-T pseudosections for phase equilibria for metapelite sample SB389. (a) Calculated stable 

assemblages. (b) Calculated garnet isopleths for pyrope (dotted lines and values in circles) and grossular (dashed lines 

and values in squares). Colour spectrum represents garnet volume. (c) The colour spectrum shows modal proportions of 

aluminosilicates with anorthite content of plagioclase in dashed lines with values in circles. (d) Isopleths of Bt #Mg in 

dashed line with value in squares presented with Ti content of biotite (grey dotted line and values in circles).

fields of sillimanite.  The retrograde path is constrained by the pseudomorphing of kyanite 

porphyroblasts by sillimanite. Modelling indicates sillimanite modal proportions reach 5% as pressure 

drops below 7 kbar and 675 °C.  Measured matrix biotite compositions (43–45) (Fig. 4.11d), matrix 

plagioclase anorthite content (27–29) and the appearance of sillimanite corresponds with the modelled 

phase assemblage of Bt + Pl +Ms + Grt + Sill + Qz (Fig. 4.11c). This is consistent with assemblage (C): 
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Sill + Pl + Bt + Ms + Qz ± Grt. The absence of cordierite suggests either that pressure did not fall below 

4 kbar during the initial stages of retrogression or alternatively that there was limited free water during 

exhumation prohibiting the crystallisation of retrograde phases. The absence of staurolite similarly 

suggests temperatures and pressures remained above ~5 kbar and > 590 °C, however, the evidence is 

inconclusive.

4.5.5.3 Sample SB344 – Garnet amphibolite

P-T pseudosections for garnet amphibolite sample SB344 (Fig. 4.12) shows calculated stable 

assemblages, observed assemblages and measured mineral compositions. Calculated mineral

 Fig. 4.12. MnNCFKMASHTi P-T pseudosections for phase equilibria for metabasalt sample SB344. 

(a) Calculated stable assemblages. (b) Calculated garnet isopleths for pyrope (dotted lines and values 
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in circles) and grossular (dashed lines and values in squares). Colour spectrum represents garnet 

volume. (c) Calculated magnesium number of amphibole values indicated by dashed lines and values 

in squares and anorthite content of plagioclase in dotted lines with values in hexagons. 

structural formulae for garnet and amphibole showed negligible ferric iron content, therefore, ferric 

iron was not incorporated in pseudosection calculations and epidote is represented by zoisite in the 

pseudosections. 

Peak pressure and temperature conditions of 10.0 – 10.5 kbar and 580 – 640 °C are deduced from 

grossular and pyrope content of garnet porphyroblasts, overlapping with a calculated assemblage 

of Grt + Amp + Pl + Ilm + Qz, consistent with the observed assemblage (A). These metamorphic 

conditions correspond with a slightly cool apparent geothermal gradient of ~17 °C km-1 in the upper 

amphibolite facies. Following the formation of assemblage (A), the rock crossed hydration reaction 

1, into the stability domain of chlorite, as indicated by the partial hydration and growth of chlorite 

in the fracture network of garnet and along the foliation plane. A further decrease in pressure and 

temperature crossing out of the stability domain for ilmenite and into that of titanite during reaction 

2.  The measured #Mg of amphibole and anorthite content of matrix plagioclase constrain greenschist 

facies conditions of 6.5–9 kbar and 450–500 °C, corresponding with a calculated assemblage of Chl + 

Amp + Pl + Grt + Zo + Ttn + Qtz and the observed matrix and retrograde assemblage. 

4.5.5.4 Samples SB164 (garnet amphibolite) and SB177 (garnet-clinopyroxene bearing migmatitic 
gneiss)

Whilst it is mineralogically similar to sample SB344, attempts to model pressure and temperature 

condition for garnet amphibolite SB164 using Perple_X were unsuccessful. All pseudosections 

calculated for the bulk composition of SB164 yielded unresolvable discrepancies between observed 

mineral assemblages and measured and calcluated mineral compositions. Pseudosections calculated 

for the garnet-clinopyroxene-bearing mafic migmatite (SB177) indicated unrealistic clinopyroxene 

stability down to greenschist facies. This is interpreted as the result of elevated CaO content in the bulk 

composition. Whole rock CaO wt% was corrected for calcite content, however, isopleths derived from 

the pseudosections with adjusted whole-rock CaO significantly underestimated Ca content relative 

to the measured Ca composition in the Ca-bearing phases (Grt, Cpx, Pl). Whilst we are confident 

the petrological and textural evidence in SB177 indicates high grade metamorphism of a mafic to 

intermediate metavolcanic rock, thermodynamic calculations of P-T for SB177 are deemed unreliable.
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4.5.2 Geochronology

4.5.2.1 Sample SB398 (garnet-kyanite- bearing paragneiss)

Eighteen U-Th-Pb SHRIMP analyses were performed on 14 individual monazite grains from sample 

SB398 (mounts Z6388 and Z6391). All monazites are unzoned and hosted in biotite and kyanite 

porphyroblasts or as isolated grains in the matrix. Monazites in this sample are subhedral to anhedral, 

often featuring prominent elongation. Rare inclusions of quartz occur in larger grains.  Some monazites

Fig. 4.13. Results of U-Pb dating of samples SB398 and SB389. (a, b, d) Back-scattered electron images of monazites 

showing textural context. (a) Deformed monazite in kyanite porphyroblast in sample SB398. (b) SHRIMP analysis points
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for one of the monazites dated in SB398. (c) Results of SHRIMP analyses for SB398 on Concordia diagram with ellipses 

showing decay constant uncertainty. (d) Coarse-grained matrix monazite in sillimanite porphyroblast, elongated parallel 

with tectonic fabric in the matrix of SB389. (e) Results of SHRIMP analyses for sample SB389 on Concordia diagram with 

ellipses used to calculate age intercept. (f) Weighted mean average of U-Pb analyses for sample SB389.  

are elongated parallel to the main S2 fabric  or sub-parallel to kyanite porphyroblasts (Fig. 4.13a; b; 

c). Eighteen dates were derived from monazite grains in SB398, yielding an upper intercept age of 

2073 ± 2 Ma (MSWD = 0.72, P = 0.78, Fig. 4.11c) and a weighted mean 207Pb/206Pb age of 2073 ± 2 Ma 

(MSWD 0.68, P = 0.83) (Table 4.4). The ca. 2073 Ma intercept age is interpreted to record the timing of 

the growth of kyanite, with metamorphism occurring at the transition from amphibolite to granulite 

facies immediately above the solidus. 

4.5.2.2 Sample SB389 (biotite-sillimanite gneiss)

Monazites in sample SB389 occur in the matrix commonly associated with biotite and aligned with the 

penetrative tectonic fabric (Fig. 4.13d). Back-scattered electron images show rare patchy compositional 

zoning and large fractures. Monazites in sample SB389 show two distinct morphologies. One population 

is subhedral to euhedral coarse grains (up to 200 µm along the c-axis).  These occur in either the matrix 

or biotite porphyroblasts. The other population are elongate, sub-rounded grains, often with embayed 

grain boundaries.  They are often hosted within large fibrolitic sillimanite pseudomorphs (Fig. 4.13e, 

4.13f). Six U-Th-Pb analyses were performed on five grains, representative of the two morphologies, 

yielding an upper intercept age of 2073 ± 6 Ma (MSWD = 0.18, P = 0.95) and a weighted mean 

207Pb/206Pb age of 2074 ± 3 Ma (MSWD = 0.18, P = 0.97) (Table 4.4). Monazites in all textural locations 

yielded identical dates. As the monazites in SB389 were not shielded in porphyroblasts, this age likely 

represents the timing of the host rock passing through the closure temperature of monazite as the rock 

returned to subsolidus conditions during cooling and exhumation. 

 4.6 Discussion                                                                

4.6.1 Metamorphic evolution of the study area

The culmination of an extensive, regional-scale field mapping campaign, petrological studies and 

thermodynamic calculations of P-T conditions and P-T path determinations are presented in Figure 

4.14, revealing distinct tectono-metamorphic domains and significant, lateral metamorphic breaks 

along the major shear zones bounding the Sefwi greenstone belt and normal-sense detachment faults. 

In this section, we summarise the progression of metamorphism within the study area, revealing 
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higher pressures and a more complex metamorphic history than previous studies suggest. 

1. We interpret the earliest prograde metamorphic event from phases preserved as pluri-

mineral aggregates (Chl + Pl + Rt + Qz ± Bt) in garnet cores of the Grt-Ky-Rt paragneiss 

sample (SB398) from the Chiraa high-grade domain. This is interpreted as the partial 

preservation of an early prograde assemblage at temperatures below ~590 °C, in the 

stability field of rutile (P > 10 kbar). Whilst precise pressures and temperatures could not 

be constrained, this assemblage is associated with epidote-amphibolite facies conditions 

and a cool apparent geothermal gradient of <15 °C km -1. SB398 is the only sample to 

record such conditions in the early stage of the metamorphic evolution of the study area. 

This event is the earliest metamorphic event, however, it is relatively poorly constrained 

and is therefore denoted as M1e. 

2. Subsequent prograde high-pressure amphibolite facies conditions (10.0–11.5 kbar, 600–

650 °C) are deduced from phases in the garnet mantle of SB398 (Fig. 4.10b, 4.10d) in 

the Chiraa high-grade domain and from garnet porphyroblast compositions of the garnet 

amphibolite (SB344; Fig. 4.12b), ~150 km southwest, in the adjacent Kukuom-Juaboso 

medium-grade domain. From these two samples, we interpret metamorphism associated 

with an apparent geothermal gradient of 15–17 °Ckm-1 that was contemporaneous across 

the two domains and part of the same metamorphic event (M1). The Opx-free, Grt + Cpx 

+ Pl ± Hbl mafic granulite (SB177) on the southern margin of the Chiraa domain indicates 

higher, but poorly constrained, high pressure granulite facies metamorphic conditions 

(>10 kbar, >700 °C), associated with an apparent geothermal gradient of < 20 °Ckm-1. This 

likely reflects metamorphism at the M1/M2 transition. 

3. In contrast to the samples above, sample SB389 in the Chiraa high-grade domain, ~20km 

east of SB398, indicates different initial conditions. Relict garnet porphyroblasts in biotite 

sillimanite paragneiss sample SB389, indicate initial conditions of 5–8 kbar, 560–640 

°C.  These conditions indicate a higher apparent geothermal gradient than those of M1, 

however, due to evidence of extensive diffusional reequilibration, we suggest that such 

constraints are not significantly robust for further interpretation.  

4. Following M1, the next metamorphic event, M2, was characterized by metamorphic 

conditions of 8–10 kbar, 650–700 °C, establishing a new apparent geothermal gradient 
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of 20–30 °C km-1. This conditions are associated with anatexis recorded only in samples 

from the Chiraa high-grade domain, best reflected in samples SB389 and SB398 (Fig. 

4.10c, 4.11c). P-T conditions for these two samples converge during M2 metamorphism. 

Sample SB398 records well the P-T path, evolving from M1 to M2 through heating during 

minor decompression (<2 kbar) (Fig. 4.10). This compares with sample SB389 (Fig. 4.11) 

20km east, that evolves from initial medium-pressure stages and converges towards these 

same conditions by heating and burial (Fig. 4.9). If these two paths are assumed to be 

contemporaneous it suggests that the entire terrane is heating up while parts of it are being 

exhumed (SB398) and others being buried (SB389).

5. In-situ monazite U-Pb SHRIMP ages of ca. 2073 Ma were yielded by both paragneiss 

samples (SB398 and SB389), hosted in kyanite porphyroblasts, matrix biotite and as 

individual grains within the matrix.  The consistency of the U-Pb dates indicates relatively 

uniform monazite crystallisation within the Chiraa Domain. This suggest convergence of 

P-T paths discussed in point 4. This age post-dates zircon U-Pb crystallization ages of ca. 

2092 Ma for two mica granites and pegmatites within the domain (Agyei Duodo et al., 

2009; Petersson, et al., 2016), supporting the concept of zircon ages tending to be older 

than monazite ages in the same rock, commonly observed in high-grade metasediments 

(Kelsey, et al., 2008). We propose that the uniform monazite ages records the monazite 

closure temperature at the beginning of the retrograde paths thus recording the initialtion 

of colling and exhumation.   

6. Overprinting M2 metamorphism, M3 metamorphism is characterised by parallel 

retrograde P-T paths of samples located in the Chiraa high-grade domain (SB398 and 

SB389), which reach average amphibolite facies conditions of 5.5–7.0 kbar and 560–620 °C 

(SB398: Fig. 4.10c, d; SB389: Fig. 4.11c, d). This is interpreted as exhumation of the entire 

domain during M3. Neither P-T paths nor petrographic relationships in these samples 

indicate isothermal decompression, instead, they follow a moderately steep gradient 

with decreasing pressures and temperatures. Preservation of these assemblages suggests 

minimal fluid interaction in the later stages of the metamorphic history.
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Fig. 4.14. a) Metamorphic map of the Sefwi Greenstone belt and adjacent metasedimentary provinces with calculated P-T 

paths. The migmatitic Chiraa domain is located in the northeast, separated from the amphibolite facies to locally migmatitic 

domains of the central portions of the Sefwi belt by the reactivated Kenyase-Yamfo fault. The greenschist facies volcano-

plutonic Sefwi-Wiawso domain represents the southern portion of the belt, tectonically bounded by the reactivated Ketesso 

shear zone to the north and the Afema shear zone to the south. Fault kinematics indicate latest movement with the exception 

of the sinistral strike-slip component of D2 inferred from structural and metamorphic relationships; b, c, d) Synthesis of 

metamorphic paths of high-metamorphic rocks exposed in SW Ghana with geothermal gradients and the aluminosilicate 

triple junction as a point of reference, revealing an initial apparent geothermal gradient of 15 – 17 °C km-1 recorded by 

samples in multiple tectono-metamorphic domains. Subsequent partial melting is associated with sustained high pressures 

as the rocks crossed over the solidus. Note the distinct difference between the geothermal gradients recorded by retrograde 

paths between the anatectic samples (SB389; SB398) and the garnet amphibolite (SB344).
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7. Southwest of the Chiraa domain in the Kukuom-Juaboso domain, the garnet amphibolite 

sample SB344 of point 2 above shows a different metamorphic history after the high-

pressure metamorphism of M1. It does not record an increase in temperatures after peak 

temperatures. It instead records cooling during exhumation, associated with an overprinting 

high-pressure greenschist facies metamorphism (6.5–9 kbar, 450–500°C) (Fig. 4.12c). This 

is interpreted as a divergence in the metamorphic histories of the two terranes, occurring 

at the M2/M3 transition.

8. The latest recognisable metamorphic overprint is interpreted as M4. Continued 

retrogression to greenschist facies conditions is localized along tectonically-reactivated 

high-strain zones and domain boundaries (Fig. 4.8f; Fig. 4.14). On the southern margin of 

the Chiraa domain, the peak assemblage of mafic granulite sample SB177 is overprinted by 

an assemblage typical of lower greenschist facies (Chl + Ab + Cal + Ep + Qz).  

Figure 4.14 presents a synthesis of the P-T paths and P-T conditions recorded by high-grade rocks 

in SW Ghana. In summary, bringing together all the available metamorphic data derived from these 

samples, we suggest that the history of metamorphism for the belt is: an initial crustal thickening 

event (D1), responsible for the burial of supracrustal rocks and the M1e and M1 assemblages; 

subsequent heating during D2 is only recorded in the Chiraa high-grade domain with western 

samples indicating heating during exhumation and eastern samples indicating heating during burial, 

demonstrated by the M2 phase assemblages; exhumation during cooling occurs in both the Chiraa 

and the Kukuom-Juaboso domain during D3, however, this occurs under contrasting apparent 

geothermal gradients between the domains suggesting heterogeneous metamorphic histories exist 

within the study area. The tectonic juxtaposition of the Chiraa and Kukuom-Juaboso domain with 

the adjacent, greenschist-facies, chlorite-white mica schists of the Sunyani-Comoé domain to the 

west is interpreted as the product of exhumation during D3.

The determined metamorphic history is significantly more complex than that deduced by 

Galipp, et al. (2003), and indicates much higher pressures than metamorphic conditions (490–580 

°C, 4–6 kbar) of Galipp, et al. (2003) derived from garnet-biotite thermometry and plagioclase-

amphibole thermobarometry for a schist and a mafic meta-granitoid, located ~ 35km north-northeast 

of SB344 in the Kukuom-Juaboso domain. Galipp, et al. (2003) infer a clockwise P-T path from an 

overprinting retrograde assemblage of Chl + Ep + Ab + carbonate, similar to petrological observations 

the retrograde assemblage in mafic granulite sample SB177. 
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4.6.2 Regional context

Geochronological constraints of metamorphism and magmatism in the Sefwi belt are severely limited, 

hindering correlation with similar greenstone or high-grade terranes of the West African Craton. 

Emplacement of hornblende-biotite bearing granitoids in domains of the Sefwi belt is restricted to 

~2180 – 2150 Ma (Delor, et al., 1992; Hirdes, et al., 1992; Hirdes, et al., 2003; Hirdes, et al., 2007), 

with late high-K granites and granodiorites emplaced at ca. 2136 Ma (Amponsah, 2012; Hirdes, et al., 

2007). These ages are significantly older than metamorphic ages revealed in this study and, therefore, 

are unlikely to be correlated. A single metamorphic date exists in the Ivorian extent of the Sefwi belt, 

with a metamorphic titanite in a dioritic amphibolite yielding a Pb-Pb age of 2144 ± 3 Ma (Hirdes, et 

al., 2007). Again, this age is significantly older than monazite ages detailed in this study, however, in 

the absence of a structural context, no further correlation can be made.

 U-Pb zircon crystallisation ages of  2092 ± 2 Ma (Agyei Duodu, et al., 2009), 2093 ± 2 Ma  and 

2092 ± 4 Ma (Petersson, et al., 2016) were yielded by exposures of two-mica granite and pegmatite 

within the Chiraa high-grade domain, obtained using SIMS analysis. Leucogranites in the adjacent 

Sunyani-Comoé domain were emplaced parallel to the northwest margin of the Sefwi belt in upper 

crustal, greenschist facies metasedimentary rocks between 2088 ± 1 Ma (Agyei Duodu, et al., 2009; 

Hirdes, et al., 1992) and 2081 ± 6 (Hirdes, et al., 2007) (locations in Fig. 4.12), along strike of the 

Chiraa domain. The timing of peak to post-peak metamorphism in the Chiraa high-grade domain, 

as constrained by U-Pb monazite ages, suggests temperatures in the Chiraa domain remained above 

monazite closure temperatures until ca. 2073 Ma. As the Chiraa domain and the Sunyani-Comoé 

domain are now exposed at the same crustal level, it is reasoned that tectonic juxtaposition by 

differential exhumation post-dates both monazite growth in the Chiraa domain and the along-strike 

emplacement of leucogranites in low-grade metasediments of the Sunyani-Comoé domain. 

 In the context of southern Ghana, MP-MT metamorphic conditions and peak temperatures 

of ~550 °C in the neighbouring Ashanti greenstone belt occurred at ca. 2100 Ma, with post-peak 

amphibolite facies metamorphism constrained by a hydrothermal xenotime crystallisation SHRIMP 

U-Pb age of 2063 ± 9 Ma (Pigois, et al., 2003). Staurolite-grade, amphibolite facies metamorphism of 

the Tarkwa Phyllite in the Damang gold deposit, in the southern central region of the Ashanti belt, 

was constrained by EMPA U-Pb monazite analysis, which yielded an age of 2005 Ma (White, et al., 

2014), however, the structural context of the monazite may be obscured by textures related to late dyke 

intrusion.  Further south, migmatitic orthogneisses are documented in the Kibi-Winneba belt and in 
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the far southeast of the Ashanti belt  (Fig. 4.2) with calculated peak metamorphic conditions of 5 – 8.5 

kbar, ~600 °C, which are as yet undated (Feybesse, et al., 2006; Opare-Addo, et al., 1993).

 Exposed elsewhere in the West African Craton, high-grade terranes comparable to the Chiraa 

domain reveal metamorphic ages significantly older than ages in southern Ghana. Garnet-whole rock 

Sm-Nd isochron ages constrain the timing of the amphibolite facies, Yaouré ortho- and paragneisses 

in central Ivory Coast at 2153 ± 13 Ma, directly west of the study area (Boher, et al., 1992). North of 

the study area, paragneisses and chlorite-white mica schists in NW Ghana and eastern Burkina Faso, 

respectively, reveal relic blueschist facies mineral assemblages, matching low apparent geothermal 

gradients (10 – 15 °Ckm-1) (Block, et al., 2015; Ganne, et al., 2012). The timing of subsequent anatexis 

at the amphibolite-granulite transition and a late amphibolite facies overprint in the high grade rocks 

of NW Ghana occurred between ca. 2140 and 2110 Ma, as indicated by zircons and monazite ages 

yielded by magmatic and metamorphic units (Block, et al., 2015; 2016b). Block, et al. (2015) elucidate 

a metamorphic history analogous to that of this study, however, the  discrepancy in the timing of 

metamorphism suggests high-grade metamorphism occurred ~40-70 m.y. earlier in NW Ghana than 

in SW Ghana. High-pressure granulite facies assemblages in western Ivory Coast post-date Ghanaian 

high-grade metamorphism, forming at c. 2030 during the terminal collision between the Archaean 

and Palaeoproterozoic domains of the WAC along the Sassandra Fault (Fig. 4.2) (Grt-WR Sm-Nd 

age, Kouamelan, et al., 1997; Pitra, et al., 2010). Whilst further geochronological data is required to 

fully understand craton-wide metamorphic relationships, the considerable discrepancy in the timing 

of high-grade metamorphism and lower crustal exhumation between NW Ghana, SW Ghana and 

western Ivory Coast suggests a diachronous metamorphic history for the Eburnean Orogeny during 

the assembly of the West African Craton. 

4.6.3 Burial and exhumation

This study reveals an initial period of crustal thickening and burial of supracrustal rocks in high-grade 

domains to depths greater than 35 km (10–11 kbar) (Fig. 4.14). M1 is characterised by intermediate 

high-P/T conditions, matching a cool apparent geothermal gradients of 15–17 °km-1, suggesting rapid 

burial of sediments during crustal thickening. It has been well established that similar low apparent 

geothermal gradients (10–20 °Ckm-1) record the thermal conditions associated with burial of crustal 

material to significant depths during the early stages of continental collision (England & Richardson, 

1977; England & Thompson, 1984). Given the paucity of outcrop and the extensive overprinting by 
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subsequent transcurrent tectonism, evidence for the crustal thickening mechanism of D1 is largely 

obscured. However, based on the ubiquitous bedding-parallel metamorphic foliations and rare, 

moderately to steeply, north and south pitching down-dip mineral stretching lineations on E-W to 

ENE-WSW–striking early shear zones, D1 is likely characterised by N-S to NNW-SSE shortening and 

thrust-related thickening in a convergent tectonic setting. Similar crustal thickening and rapid burial 

of metasediments is recorded in northwest Ghana (Block, et al., 2015). 

 Investigation of negative dP/dT segments of P-T-t-D paths aids in the understanding of 

the evolution of orogens. They lend additional insight into the uplift or exhumation mechanism of 

metamorphic terranes, including exhumation of high-pressure and ultra-high-pressure (HP and 

UHP) rocks via erosion, extrusion, corner flow, buoyancy and extension (Franěk, et al., 2011; Guillot, 

et al., 2009; Platt, 1993; Teyssier & Whitney, 2002), each recording a unique P-T-t path. Combined 

metamorphic and structural data presented in this study indicate a progressive transition from D1 to 

D2 under continued NNW-SSE shortening. Following peak-P conditions, sample SB398 of the Chiraa 

domain underwent heating and small amount of exhumation (<2 kbar) to suprasolidus conditions, 

with the negative dP/dT segment of the clockwise P-T path likely recording thermal relaxation of the 

crust (England & Thompson, 1984) and the termination of crustal thickening. 

 Stromatic leucosomes, parallel with the primary gneissosity or bedding-parallel S1 foliations, 

feed into NNE-striking dilational zones, indicating late D1—syn-D2 partial melting. D2 structures are 

characterised by ~E-W to NE-SW striking, upright to slightly inclined, tight F2 folds, seen refolding 

S0/S1 at an outcrop scale and D1 shear zones a regional scale (Fig. 4.15). The L2 mineral stretching 

lineation is variably defined by kyanite and amphibole/biotite in the Chiraa and Kukuom-Juaboso 

domains, respectively. Both F2 fold axes and L2 mineral stretching lineations predominantly pitch 

shallowly W to WSW, or alternatively, shallowly to the east due to later deformation. The dip direction 

of L2 and F2 is oblique to the NE-SW orientation of the major shear zones bounding the Sefwi Belt.  

The coaxial relationship of F2 and L2 stretching lineations, indicating constrictional folding, and their 

obliquity to the regional shear zones are characteristic of transtension tectonic regimes (Fossen, et 

al., 2013). The orientation of the major tensional axis of the strain ellipsoid during D2, is therefore 

interpreted as ENE-WSW, marking the transition from a NNW-SSE compressive regime to a ENE-

WSW tensile regime. 

Metamorphic breaks coincide with the Kenyase-Yamfo and the Ketesso high-strain zones, 

with a regional decrease in metamorphic grade from the northeast to the southwest. The most 
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significant metamorphic breaks, however, occur along NNE-striking detachment faults. We propose 

that anatectic lower crustal rocks of the Chiraa high-grade domain and amphibolite facies, middle 

crust of the Kukuom-Juaboso domain were differentially exhumed under sinistral transtension and 

tectonically juxtaposed against the greenschist facies metasediments of the Sunyani-Comoé domain. 

The development of a kilometric drag fold rotating the tectonic fabrics in the Chiraa high-grade 

domain is consistent with sinistral displacement along the high strain zone marking the southern 

boundary of the domain (Fig. 4.15).

Fig. 4.15. a) Metamorphic map with foliations trajectories of the Chiraa high-grade domain showing 

rotation of the S1 and S2 foliations within the domain, and subsequent overprinting and transposition 
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of foliations along major dextral high-strain zones during D3 E-W shortening; (b) Kyanite-defined 

L2 stretching lineation plunging ~30° towards N 273°; (c) P-T paths and metamorphic conditions 

highlight D2 exhumation.

Syn-orogenic partial melting of the lower crust has been recognised as the catalyst for the rheological 

weakening of the crust, resulting in crustal flow in response to either tectonic or gravitational stresses 

(Brown, 2010; Royden, et al., 2008; Vanderhaeghe, 2009; Vanderhaeghe & Teyssier, 2001). 

Evidence of partial melting in the lower crustal rocks of the Chiraa domain during M2/D2, 

likely contributed to rheological weakening of the over-thickened crust, facilitating the transition 

to the D2 transtensional regime orthogonal to the shortening regime of D1, after which exhumation 

occurred. Concurrent cooling and decreasing pressure after peak temperatures is evident in steep 

negative dP/dT segments of P-T paths for samples from the Chiraa domain. The gradient of their 

retrograde paths crosses steady state geotherms suggesting exhumation exceeded thermal re-

equilibration, thus precluding homogeneous uplift and erosion of the terrane. In Phanerozoic orogenic 

belts, gravitationally-driven orogenic collapse is associated with anatectic dome structures, down-

dip mineral stretching lineations and isothermal decompression in suprasolidus segments of P-T 

paths (Teyssier & Whitney, 2002; Whitney, et al., 2004), similar to those documented in high-grade 

domains of Palaeoproterozoic NW Ghana (Block, et al., 2015; Block, et al., 2016b). The shallow to 

moderate pitches of L2 stretching lineations and the association of small temperature decreases with 

decreasing pressure during exhumation observed in SW Ghana distinguishes transtension-related 

exhumation from coupled extension and gravitational collapse driving exhumation in NW Ghana. 

We note that gravitational forces acting on the over-thickened crust likely assisted for the transition 

from a compressive to tensile regime, resulting in orogen parallel flow and late orogenic exhumation 

reminiscent of modern orogenic processes, however, we are reticent to invoke gravitational collapse 

based on the discussed metamorphic constraints.  

Transpressional dextral reactivation and transposition of pre-existing tectonic contacts to sub-

vertical shear zones along domain boundaries are attributed D3 E-W bulk shortening. Pure shear-

related structures forming under E-W shortening are evident in anisotropic units striking obliquely 

to the major NE-oriented crustal architecture. A penetrative, N-S striking, crenulation cleavage and 

upright, open F3 folds overprint S1 and S2, decreasing in intensity towards the south. Retrograde 

greenschist facies metamorphism is localised along shear zones, defined by chlorite-white mica S-C 

or S-C’ fabrics. 
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4.6.4 Implications for Palaeoproterozoic tectonics 

The Palaeoproterozoic crust exposed in SW Ghana and SE Ivory Coast comprises small high grade 

domains, metamorphosed at high-pressure amphibolite to transition amphibolite-granulite facies 

metamorphic conditions. These domains are tectonically juxtaposed against low-grade, upper 

crustal metasediments along detachments faults and regional scale shear zones. The presence of 

strong metamorphic breaks does not conform to the spatially uniform metamorphic conditions and 

homogeneous uplift proposed by some authors in Precambrian accretionary or hot orogens (Cagnard, 

et al., 2006; Gapais, et al., 2009), attributed to warmer, weak lithosphere (Cagnard, et al., 2011). 

The metamorphic record of the study area instead indicates early heterogeneous crustal thickening, 

associated with cool apparent geothermal gradients, reminiscent of modern incipient collisional 

orogenesis. 

Numerical modelling of post-accretionary deformation in wide, hot orogens displays lateral, orogen 

parallel flow is produced during bulk constriction, common to Precambrian hot orogens and modern 

orogenic plateaux (Cagnard, et al., 2006; Chardon, et al., 2009; Chardon, et al., 2011; Cruden, et 

al., 2006). Here, however, we illustrate the development of constrictional structures occurred under 

moderate geothermal gradients of 20–30 °Ckm-1 resulting in differential exhumation of anatectic mid- 

to lower crustal blocks, reminiscent of modern processes. Such evidence suggests that transtension was 

instead driven by combined boundary forces, likely associated with a period of oblique plate divergence, 

with the assistance of gravitational forces acting on the thickened, partially molten orogenic crust. 

Similar crustal mechanical behaviour in the Palaeoproterozoic West African Craton is documented 

only in NW Ghana (Block, et al., 2015). Palaeoproterozoic lower crustal exhumation in SW Ghana 

is analogous to the Devonian transtension-related exhumation of ultra-high-pressure rocks of the 

Western Gneiss Region of the Scandinavian Caledonides (Fossen, et al., 2013; Krabbendam & Dewey, 

1998). These orogenic processes significantly contrast those observed in other Palaeoproterozoic 

accretionary orogens such as those of the southern Finnish Svecofennides (Cagnard, et al., 2007).

Eclogites and high-P metamorphism have been documented in a number of Palaeoproterozoic 

orogens, including the Usagaren Orogen, Tanzania, at ca. 2000 Ma (Collins, et al., 2004) and, more 

recently, in the Trans-Hudson Orogen at ca. 1800 Ma (Weller & St-Onge, 2017). These authors argue 

that this indicates modern subduction-related orogenic processes were active early in the Earth’s history. 

The findings of this study do not reveal direct evidence of subduction-related processes. Instead, we 

propose that the combined evidence of HP-MT assemblages, low initial apparent geothermal gradients, 
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heterogeneous crustal thickening and the generation and emplacement of leucogranitic plutons parallel 

to the northwest margin of the Sefwi belt is the ancient expression of a Palaeoproterozoic collisional 

orogen suturing two micro-continental fragments represented by southern Ghana and central Ghana/

central Ivory Coast. 

Our findings, in addition to other recent studies (e.g. Block, et al., 2015; Ganne, et al., 2012), document 

diverse geothermal gradients within the West African Craton, indicating a more heterogeneous 

tectono-metamorphic evolution than previously assumed. These results contrast with the high 

geotherms recorded during collisional orogenesis involving the juvenile crust of Palaeoproterozoic 

Southern Svecofennian Arc Complex, southern Finland (Cagnard, et al., 2007). It must be noted, 

however, that the in sporadic preservation of HP-LT or HP-MT metamorphic conditions within 

the WAC, pressures never exceed 14kbar, potentially indicating the maximum amount of crustal 

thickening supportable by the juvenile Palaeoproterozoic crust. Diverse geothermal gradients are 

associated with terrane accretion in the Archaean Barberton granitoid-greenstone terrain (Moyen, 

et al., 2006) and in throughout the eastern Yilgarn Craton (Goscombe, et al., 2009). Whilst granulite 

facies metamorphism is ubiquitous throughout Earth’s history, low geothermal gradients (10–20 

°Ckm-1) associated with eclogite-high pressure granulite (E-HPG) metamorphism first appeared 

in the Neoarchaean, with an increasing number of occurrences in the Palaeoproterozoic and into 

the Phanerozoic  (Brown, 2007, and references therein). Coupled with the occurrence of ultra-high 

temperature (UHT) metamorphism after the Archaean-Proterozoic boundary, Brown (2007; 2009) 

proposes that changes to global geodynamic processes  created a proto-tectonic regime during the 

Neoarchaean, associated with an increased diversity in tectono-metamorphic environments. In this 

context, the assorted thermal regimes and tectonic processes recorded in the West African Craton, in 

the absence of extreme pressure metamorphism attributed to modern subduction-related orogenic 

processes, supports the notion of a transitional Proterozoic plate tectonic regime. Furthermore, this 

research is complementary to the growing body of research that suggest Palaeoproterozoic orogens 

forming between 2100 and 1800 Ma document growing heterogeneity in thermal regimes, whilst also 

displaying spatial and temporal variations in metamorphism and strain accommodation between 

individual Palaeoproterozoic provinces. 

4.7 Conclusions

The metamorphic record of juxtaposed domains in the Palaeoproterozoic Sefwi greenstone belt of the 
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West African Craton reveals a far more complex metamorphic history than previously recognised. We 

document low apparent geothermal gradients and clockwise P-T-t paths with heterogeneous prograde 

segments. Sharp lateral metamorphic breaks are interpreted as the product of tectonic exhumation of 

crustal slices from different depths. Exhumation is associated with strain localisation along craton-

scale ductile shear zones and normal sense detachments faults during oblique divergence, likely 

assisted by partial melting in the lower crust. Palaeoproterozoic rocks in southwest Ghana provide 

excellent insight into the link between high grade metamorphism within greenstone belts and the 

craton-scale shear zones that dominate the West African Craton. These results contrast the weak, hot 

orogen model proposed for some areas of the craton. The metamorphic record of the study area is 

interpreted as the product of monocyclic orogenesis. The discrepancies in the timing of high grade 

metamorphism throughout the craton, however, suggests episodic collisional orogenesis during the 

Eburnean Orogeny was ultimately responsible for craton assembly, superimposed on the accretionary 

orogenic system of the West African Craton. 
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Appendix C. Pseudosection data files
Perplex data files for pseudosection calculation.

Refer to electronic data files with prefix “Ch4_AppendixC_Perplex”
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5. 0 Introduction
The previous research chapters explored the tectonic style and exhumation mechanism of the Eburnean 

Orogeny as preserved in SW Ghana. This chapter focuses on the magmatic evolution of the Sefwi 

Greenstone Belt in order to understand the geodynamic setting of crustal growth. It presents new 

petrological and geochemical analysis of representative magmatic suites from throughout the Sefwi 

Greenstone Belt and the Sunyani-Comoé Domain. Major and trace element data analysis investigates 

potential magma sources and petrogenetic processes responsible for the Palaeoproterozoic crust 

formation. Zircon U-Pb and Lu-Hf analyses constrain the timing of magmatism, as well as providing 

us with information on the timing of mantle extraction, crustal residence times, and the nature of 

the proto-crust. The timing of magmatism and εHf(t) values are compared to other areas in the West 

African Craton in order to investigate potential isotopic boundaries within the craton, providing 

crucial information on the craton architecture. Finally, we consider the broader geodynamic setting 

responsible for the formation and preservation of the West African Craton relative to Archaean and 

Phanerozoic geodynamic models.
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Abstract

New geochemical and isotopic data are presented for the magmatic suites exposed in southwest Ghana 

in the south-eastern portion of the Palaeoproterozoic (2300–2070 Ma) West African Craton. This 

study focuses on the magmatic evolution of the Sefwi Greenstone Belt, re-defining the geochemical 

and isotopic characteristics of the major magmatic suites emplaced between ca. 2155 and 2136 Ma. 

The juvenile Palaeoproterozoic crust was derived from crustal material extracted from the depleted 

mantle between ca. 2650 and 2260 Ma, indicating short crustal residence times and includes minimal 

reworking of Archaean continental crust.

New whole-rock geochemical data reveals the wide range of petrological, geochemical and isotopic 

signatures of magmatic suites in southern Ghana, which indicate contemporaneous emplacement of 

magmas from a range of sources within a volcanic island arc setting. The five distinct magmatic suites 

include: 1) biotite-dominant and hornblende-dominant, SiO2- and Na2O-rich tonalites-trondhjemite-

granodiorite (TTG) granitoids and associated dacites; 2) calc-alkaline, LILE-enriched diorites and 

associated andesitic lavas; 3) pyroxenite, gabbro and layered mafic intrusives; 4) high-K quartz 

monzonites; and, 5) incompatible element rich, two-mica granites and muscovite leucogranites. Trace 

element patterns indicate near ubiquitous negative Nb-Ta, P and Ti anomalies and positive Pb and Ba 

anomalies in the felsic suites, indicative of a crustal influence during magma genesis in an island arc 

setting. Diorites and biotite-bearing low-HREE TTGs are emplaced contemporaneously at ca. 2155 

Ma, revealing contrasting sources. Diorite magmas are produced thorough the partial melting of the 

incompatible element-enriched metasomatised mantle wedge, whilst the biotite-bearing TTGs were 

likely produced through the partial melting of young, hot subducting oceanic crust at depth. The 

hornblende TTGs are attributed to the shallow, partial melting of mafic crust based on low Sr and high 

HREE concentrations, weak REE fractionation and major element ratios compared to experimental 

melts. The emplacement of high-K quartz monzonites at ca. 2136 Ma reveals mixing of mantle-

derived magmas and partial melts derived from existing TTGs in the crustal pile. The subsequent 

emplacement of two-mica granites and leucogranites between ca. 2092–2081 Ma is interpreted to 

be the product of crustal anatexis during an arc-arc collisional event, with a proposed suture parallel 

to the NW margin of the Sefwi Belt. In-situ zircon Lu-Hf analysis reveals consistently positive εHf(t) 

values between +4.9 and +8.0 for TTGs, +2.2 and +5.5 for diorites and +2.7 to +5.8 for dacitic lavas, 

highlighting a distinctly radiogenic source during crustal growth, potentially representing a juvenile 
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isotopic boundary within the craton. Subsequent emplacement of quartz monzonites reveals a wider 

range of εHf(t) values between +1.2 and +6.5, suggesting growing heterogeneity of magma sources. We 

hypothesise that the formation and accretion of the West African Craton reflects the rapid accumulation 

and amalgamation of individual island arc terranes generated by two coeval intra-oceanic subduction 

zones, representing an ancient expression of the Wilson cycle. 

Key words: Palaeoproterozoic; subduction-collision; juvenile magmatism; Zircon Lu-Hf; West 

African Craton
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5.1 Introduction

The Archaean and Proterozoic rock record reveals temporal changes in the mechanisms and processes 

associated with crustal growth and preservation. These changes reflect the secular cooling of the Earth, 

the differentiation of the Earth’s crust and evolving plate dynamics (e.g. Davies, 2001; Hawkesworth 

& Kemp, 2006a; Herzberg, et al., 2010). Crustal growth models indicate that more than 50% of the 

cumulative volume of continental crust had formed by 3000 Ma (Belousova, et al., 2010; Cawood, 

et al., 2013; Dhuime, et al., 2012; Hirdes, et al. 1992; Taylor & McLennan, 1985), with continuous 

additions hypothesised from the early Earth through to the present day. However, major changes 

are recorded in the continental rock record between 3000 and 2500 Ma, including the geochemical 

evolution of volcanic and plutonic rocks (Keller & Schoene, 2012; Laurent, et al., 2014; Moyen & 

Martin, 2012), the diversification and secular evolution of the metamorphic record (Brown, 2006; 

Brown, 2007a) and changes in orogenic strain patterns, crustal architecture and rheology (Cagnard, 

et al., 2011; Chardon, et al., 2009; Rey & Houseman, 2006). This multi-disciplinary body of evidence 

signals significant changes in global geodynamics, often interpreted as the commencement of some 

form of plate tectonics (Condie & Aster, 2010; Condie & O’Neill, 2010; Keller & Schoene, 2012; Sizova, 

et al., 2010; Windley, 1984). Indeed the onset of plate tectonics is likely responsible for the transition 

from net crustal growth to major lithospheric recycling and reworking as part of the Wilson cycle, 

with the destruction or consumption of tectonic plates in subduction zones (e.g. Cawood, et al., 2013; 

Dhuime, et al., 2012).   

 A number of datasets within the geological record illustrate distinct clusters of magmatic 

and tectonic activity during the evolution of the early Earth. Episodic crustal growth is suggested by 

peaks in the juvenile crust record at 2700, 1900 and 1200 Ma (Cawood, et al., 2009; Condie, 1995; 

Condie, 1998); the orogenic record displays discrete events at ca. 3800–3500, 2900–2600, 1900–1600, 

and 1200–900 Ma (e.g. Zhao, et al., 2002), whilst the U-Pb detrital zircon ages define peak clusters at 

2700, 2500, 2010, 1840, 1650, 1150 and 600 Ma (Condie, et al., 2005; Condie, et al., 2011). These peaks 

often coincide with supercontinent formation (e.g. Condie & Aster, 2010; Nance, et al., 1988; Rogers 

& Santosh, 2004), however, they all represent periods during which conditions were favourable for 

preservation of the crust (Hawkesworth, et al., 2009; 2010). Falling between these maxima, cratonic 

domains of the West African-Sao Luis Craton and Guiana Shield record a period of significant juvenile 

crustal growth during the early Palaeoproterozoic (2300–2070 Ma), representing one of the youngest 
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cratonic provinces on Earth (Abouchami, et al., 1990; Boher, et al., 1992; Gasquet, et al., 2003; Gruau, 

et al., 1985; Klein, et al., 2005; Taylor, et al., 1992). Production and preservation of juvenile crust is 

attributed to the Eburnean–Trans-Amazonian Orogen (Abouchami, et al., 1990; Boher, et al., 1992; 

Bonhomme, 1962), forming one of the earliest orogenic events of the 2100–1800 Ma period of global 

orogenesis that heralded the rise of the Palaeoproterozoic supercontinent Nuna (also called Columbia 

(Betts, et al., 2016; Rogers & Santosh, 2002; Zhao, et al., 2002). Juvenile Palaeoproterozoic rocks 

of the southern portion of the West African Craton, forming the Baoulé-Mossi Domain, comprise 

narrow, elongate- to arcuate greenstone belts alternating with parallel sedimentary basins or vast 

granite-gneiss domains of tonalite-trondhjemite-granodiorite plutons, bearing striking lithological 

and architectural similarities with Archaean granite-greenstone provinces, including the Superior 

Province of the Canadian Shield (Card, 1990a; Condie & Benn, 2006; Daigneault, et al., 2002; Percival, 

et al., 1994), the Kaapvall Craton and the Limpopo Belt (de Wit, et al., 1992; Poujol, et al., 2003; Zeh, 

et al., 2009; Zeh, et al., 2013), and the Kola and Karelian provinces of the Baltic Shield (Sorjonen-

Ward & Luukkonen, 2005, and references therein). Parallel greenstone belts, striking between N- and 

NE, occur across the craton and are often fault-bounded by regional to craton-scale shear zones. 

 The use of in-situ isotopic analysis of zircon, including both U-Pb and Lu-Hf systematics 

yield both the crystallisation age and the timing of extraction of the source material from the mantle 

(Hawkesworth & Kemp, 2006b; Patchett, et al., 2004). This is a well-established method used to 

understand crustal evolution, crustal architecture and the geodynamic setting of crustal formation 

(e.g. Belousova, et al., 2010; Cawood, et al., 2013; Condie, et al., 2005; Dhuime, et al., 2012; Griffin, et 

al., 2004; Griffin, et al., 2000; Hawkesworth & Kemp, 2006b; Kemp, et al., 2007).

 This study reports new whole-rock geochemical data for twenty-nine igneous samples and 

ion microprobe (SHRIMP II) U-Pb and LA-MC-ICP-MS Lu-Hf zircon data for four samples. The 

selected samples are believed to be representative of the major magmatic suites exposed in the Sefwi 

Greenstone Belt and Sunyani-Comoé of southwest Ghana. The aim of this study is to examine the 

magmatic suites emplaced in southern Ghana and elucidate the crustal evolution of an archetypal 

Palaeoproterozoic greenstone belt. Furthermore, we discuss the implications of our results, combined 

with published data, within the context of the crustal architecture of the West African Craton and the 

geodynamic setting responsible for the formation and preservation of the juvenile crustal domain. 
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5.2 Palaeoproterozoic geology of West Africa

The West African Craton (WAC) encompasses the northern Reguibat Rise and the sub-Saharan 

Leo-Man Rise, each comprising 3600–2600 Ma Archaean provinces to the west and 2300–2070 Ma 

Palaeoproterozoic domains to the east (Abouchami, et al., 1990; Potrel, et al., 1998; Rollinson, 2016; 

Thiéblemont, et al., 2001). The domains are separated by the overlying Mesoproterozoic-Palaeozoic 

Taoudeni Basin. The Archaean Man Shield is juxtaposed with Palaeoproterozoic rocks of the Baoulé-

Mossi Domain along the Sassandra Shear Zone (Fig. 5.1) (Attoh & Ekwueme, 1997; Bessoles, 1977), 

with the Palaeoproterozoic Kayes and Kédougou-Kéniéba Inliers lying to the northwest. The Baoulé-

Mossi domain is dominated by rocks of the Birimian Supergroup (2300 – 2125 Ma), forming linear 

to arcuate, N- to NE-trending volcanic greenstone belts and broad volcano-sedimentary domains, 

often bounded by craton-scale shear zones and separated by vast granite-gneiss terranes (Hirdes, et 

al., 1996; Junner, 1940; Leube, et al., 1990). Volcanic belts are commonly unconformably overlain 

by fluvio-deltaic sequences of the Tarkwa Group and equivalents (2107–2097 Ma) (e.g. Baratoux, et 

al., 2011; Perrouty, et al., 2012; Pigois, et al., 2003; Zitzmann, et al., 1997). The Palaeoproterozoic 

rocks were accreted and cratonised during the 2150–2070 Ma Eburnean Orogeny (Bonhomme, 1962; 

Feybesse, et al., 2006; Oberthür, et al., 1998).

 Volcanic rocks of the Birimian Supergroup range in composition from basalt to rhyolite, 

displaying tholeiitic to calc-alkaline affinities (e.g. Baratoux, et al., 2011; Hirdes, et al., 1993; Senyah, 

et al., 2016; Sylvester & Attoh, 1992), with subordinate intercalations of volcaniclastic or immature 

sedimentary rocks. Volcano-sedimentary domains comprise deformed sequences of greywacke, 

shale, argillitic and volcaniclastic rocks (pyroclastic and epiclastic), and rare chemical sedimentary 

rocks and calc-alkaline volcanic sequences (Hirdes, et al., 1993; Leube, et al., 1990). The volcanic and 

volcano-sedimentary rocks are extensively intruded by voluminous plutonic rocks forming a wide 

range of magmatic suites, with diorite to tonalite-trondhjemite-granodiorite (TTG), high-K granite, 

and leucogranite compositions. Prior to the advent of precision geochronological methods, plutonic 

rocks in Ghana were classified as “belt-type” or “basin-type”, based on their host terranes.  In southern 

Ghana, based on the predominant ferromagnesian mineral and alkali index classification, further 

subdivision of felsic plutons resulted in the four following suites: Dixcove, Winneba, Cape Coast and 

Bongo (Leube, et al., 1990). The Dixcove granitoids are variably foliated, metaluminous, hornblende-

bearing plutons which intrude volcanic belts, whilst the biotite- and/or muscovite-bearing Winneba 

and Cape Coast granites and granodiorites are restricted to volcano-sedimentary domains or basins 
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(Leube, et al., 1990). Finally, the K-rich Bongo granites intrude Tarkwaian-like sediments in NW 

Ghana (Abitty, et al., 2016; Leube, et al., 1990).  

Fig. 5.1. Simplified map of the West African Craton showing the Archaean Kénéma-Man domain and the Palaeoproterozoic 

Baoulé-Mossi domain, comprising volcanic greenstone belts (dark green), meta-sedimentary basins (light green) and 

large granitoid domains (orange). Yellow areas represent late fluvio-deltaic sequences of the Tarkwa Group (modified 

after BRGM SIGAfrique map,Milési, et al., 2004). 

 Mafic to intermediate volcanism occurred across the craton between 2300 and 2180 Ma (e.g. 

Agyei Duodu, et al., 2009; Delor, et al., 1995; Feybesse, et al., 2006; Hirdes & Davis, 1998; Lompo, 

2009), approximately coeval with the earliest pulse of TTG magmatism (de Kock, et al., 2011; Gueye, 

et al., 2007; Hirdes, et al., 1992; Oberthür, et al., 1998; Siegfried, et al., 2009). The most significant 

volumes of syn- to late-tectonic granitoid intrusions, however, were emplaced near-continuously 

between 2150 and 2100 Ma, yet preserved no clear lateral age gradients (Agyei Duodu, et al., 2009; 

Doumbia, et al., 1998; Egal, et al., 2002; Gasquet, et al., 2003; Hirdes, et al., 1992; Hirdes, et al., 

1996; Oberthür, et al., 1998; Tapsoba, et al., 2013; Tshibubudze, et al., 2013). Granitoids and lavas 

emplaced between 2100 and 2060 Ma are largely restricted to the Kédougou-Kéniéba Inlier and along 

the Archaean-Palaeoproterozoic contact (Egal, et al., 2002; Gueye, et al., 2007; Hirdes & Davis, 2002a), 
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with a significant, but localised population documented in southern Ghana along the northwest 

margin of the Sefwi Belt (Agyei Duodu, et al., 2009; Hirdes, et al., 1992; Hirdes, et al., 2007). 

 Many authors liken the evolution from bimodal tholeiitic volcanism to calc-alkaline volcanism 

with the development of a modern-day oceanic island arc setting (Ama Salah, et al., 1996; Arndt, 

et al., 1997; Baratoux, et al., 2011; Béziat, et al., 2000; Dampare, et al., 2008; Soumaila, et al., 2008; 

Sylvester & Attoh, 1992). Other authors attribute the wide-spread tholeiitic basaltic volcanism and 

associated plutonic activity to the plume-related formation of an oceanic plateau (Abouchami, et 

al., 1990; Augustin & Gaboury, 2017; Boher, et al., 1992; Lompo, 2009). Alternatively, authors have 

invoked intra-cratonic rifting leading to the opening of oceans and the formation of accretionary 

systems (Leube, et al., 1990) or a transtensional back-arc basin setting (Vidal & Alric, 1994). Isotopic 

studies of the juvenile terranes of the Baoulé-Mossi domain that formed between 2200 and 2100 Ma 

reveal Nd-model ages within ~300 Myrs of their magmatic crystallisation ages, recording crustal 

residence ages between 2500 and 2200 Ma (Abouchami, et al., 1990; Boher, et al., 1992; Gasquet, et 

al., 2003; Pawlig, et al., 2006; Peucat, et al., 2005). Nd and Hf-model ages reported in a small number 

of studies from far south-eastern Ghana and in the western portion of the Baoulé-Mossi domain, 

however, suggest a greater Archaean crustal influence or reworking of older Archaean crust in some 

portions of the domain (Parra-Avila, et al., 2016; Petersson, et al., 2017; Petersson, et al., 2016; Taylor, 

et al., 1992). 

 The crustal architecture and structural evolution of the West African Craton are attributed to 

lateral shortening across the craton during the 2150–2070 Ma Eburnean Orogeny (e.g. Bonhomme, 

1962; Eisenlohr & Hirdes, 1992; Feybesse, et al., 2006). Following the extensive granitoid emplacement, 

an early phase of deformation is characterised by thrust-related tectonism, unit stacking and high-

grade metamorphism attributed to crustal thickening (Allibone, et al., 2002; Block, et al., 2015; Block, 

et al., 2016b; Feybesse, et al., 2006; Galipp, et al., 2003; Ganne, et al., 2012; John, et al., 1999; Milési, 

et al., 1992). An alternative hypothesis suggests that the early crustal architecture defined dome and 

basin strain patterns, attributed to the diapiric uprising of granitoid bodies (Delor, et al., 1995; Lompo, 

2010; Vidal, et al., 1996; Vidal, et al., 2009). The widely recognised second phase of the Eburnean 

Orogeny (ca. 2110–2070 Ma) is characterised by the development of craton-scale strike-slip shear zones 

(Allibone, et al., 2002; Feybesse, et al., 2006; Jessell, et al., 2012; Pouclet, et al., 2006). Proponents of 

polycyclic orogenesis interpret high-grade terranes as older, deformed gneissic basement upon which 

discordant sequences of Birimian sediments were deposited during a crustal extension event which 
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were subsequently deformed during the Eburnean Orogeny (e.g. de Kock, et al., 2012; Hein, 2010; 

Perrouty, et al., 2012). In contrast, authors who invoke monocyclic orogenesis suggest that Birimian 

volcanic and sedimentary sequences formed pene-contemporaneously, underwent coeval deformation 

and metamorphism, and were subsequently juxtaposed during a single progressive deformation event 

during the Eburnean Orogeny (Block, et al., 2015; Block, et al., 2016b; Eisenlohr & Hirdes, 1992; 

Hirdes, et al., 2007). Discrepancies in the geochemical, geochronological, isotopic evolution and 

tectono-thermal histories between terranes in the West African Craton have been used as evidence of 

suturing of independent cratonic fragments and collision orogenesis within the craton, (Block, et al., 

2016b; Parra-Avila, 2015; Parra-Avila, et al., 2017).

5.3 Main lithologies and stratigraphy

The crustal architecture of southern Ghana and southeast Ivory Coast is defined by four parallel, 

elongate, narrow volcanic greenstone belts, the Kibi-Winneba, Ashanti, Sefwi and Bui belts (from 

southeast to northwest), separated by the Cape Coast, Kumasi-Afema and Sunyani-Comoé volcano-

sedimentary basins  (Agyei Duodu, et al., 2009; Hirdes, et al., 1993; Jessell, et al., 2012) (Fig. 5.2). The 

greenstone belts define the prevailing northeast-striking structural trend and are bounded by regional- 

to craton-scale shear zones. The stratigraphy of southern Ghana was recently re-characterised by 

Adadey, et al. (2009) and . The lower Sefwi Group, as defined by Perrouty, et al. (2012), comprises 

basalt and andesite sequences intercalated with minor volcaniclastic and sedimentary layers, with a 

minimum emplacement age of 2174 ± 2 Ma, interpreted from a syn-tectonic granitoid intrusion (U-Pb 

zircon age; Oberthür, et al., 1998). The overlying Kumasi Group (2154 – 2125 Ma) is predominantly 

made of phyllites and volcaniclastic rocks, with syn-depositional andesitic volcanism dated in the 

Kumasi-Afema Domain at 2142 ± 24 Ma (Adadey, et al., 2009). Detrital, fluvio-deltaic sedimentary 

rocks of the Tarkwa Group unconformably overlie the Sefwi Group volcanic rocks in the Ashanti belt, 

which were deposited between 2107 and 2097 Ma (Perrouty, et al., 2012; Pigois, et al., 2003). Existing 

geochronological data, including methodologies, for southern Ghana is summarised in Appendix D. 
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The study area focuses on plutonism and volcanism throughout the Sefwi Greenstone Belt and the 

volcano-sedimentary Sunyani-Comoé Domain (Fig. 5.2). These domains are bounded by the northeast-

striking Sefwi Shear System (Jessell, et al., 2012), including the Kenyase-Yamfo, the Ketesso and the 

Kumasi-Afema shear zones, from north to south. Results of the geochemical and geochronological 

analysis presented in this study are used to better understand the magmatic evolution of the study 

area, rather than redefining previously established stratigraphic column for the Ashanti Belt, located 

southeast of the Sefwi Belt.

5.4 Sampling and analytical methods 

Twenty-nine fresh samples representative of the dominant lithological units, including nineteen 

granitoid samples and ten basaltic to rhyolitic volcanic and volcanoclastic rock samples, were collected 

from sub-domains within the Sefwi Greenstone Belt and the Sunyani-Comoé Domain for petrological 

and geochemical analysis. Samples were collected from the tectonic-metamorphic domains defined 

in Chapter 3, including the southern greenschist facies, volcano-plutonic Sefwi-Wiawso Domain, the 

central amphibolite facies Kukuom-Juaboso and Hwidiem domains, the Bechem Granitoid Domain 

and the north-eastern, migmatitic Chiraa Domain. Several additional samples were collected from 

volcanoclastic and plutonic units in the low-grade Sunyani-Comoé volcano-sedimentary domain. The 

locations of the samples are shown in Fig. 5.2 and coordinates are given in Table 5.1.

5.4.1 Whole rock geochemistry

Major oxide and trace element geochemistry was collected for all twenty-nine igneous samples. 

Powder concentrates for each sample were produced at the School of Earth, Atmosphere and 

Environment, Monash University. Major element oxide analysis was performed at the School of Earth 

Sciences, CODES, University of Tasmania (samples marked with asterisk in Table 5.1) and at the ALS 

Geochemical Laboratory, Brisbane, Australia, using X-ray Fluorescence (XRF) analysis according to 

ALS method ME-XRF26 (ALS, 2006a). Major element oxides analysed by XRF include SiO2, TiO2, 

Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, BaO, Cr2O3 and P2O5, with a lower detection limit of 0.01%. 

Loss on ignition was determined gravimetrically. Trace element concentrations, including rare earth 

elements, were obtained by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) 

and Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) at the ALS Geochemical Laboratory, 

Brisbane, Australia according to ALS geochemical procedure ME-MS61 (ALS, 2006b). Replicate 

analyses and Monash rhyodacite (DAND) and basalt (BNB) reference standards were included to 
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ensure reproducibility and accuracy.  Major and trace element concentrations for all twenty-nine 

samples are presented in Table 5.1. 

5.4.2 Zircon U-Pb dating 

Four samples were selected for in-situ determination of the U-Pb age and Hf-isotope composition 

using Sensitive High-Resolution Ion Microprobe (SHRIMP) and Laser Ablation Multi Collector-

Inductively Coupled Plasma Mass Spectrometer (LA-MC-ICP-MS) analysis, respectively. 

5.4.2.1 Zircon separation

Zircon concentrates were obtained for five samples following the procedures described by Claoué-

Long, et al. (1995). Zircon extraction followed the established techniques using magnetic fractionation 

using a hand magnet and a  Franz Isodynamic magnetic separator, followed by heavy liquid (di-

iodomethane) separation. Zircons were hand-picked and mounted in epoxy resin discs, 5  mm in 

thickness and 25  mm in diameter. Samples were mounted with the following reference standards: 

M257 (561.3 Ma and 840 U ppm; Nasdala, et al., 2008), Temora II (416.8 Ma; Black, et al., 2004), 

OGC1 (3465 Ma; Stern, et al., 2009) and silicate glass NBS610. Reference standards were used for 

instrument set-up, common lead (204Pb) correction, Pb/U fractionation correction and to monitor 

instrument drift at the accuracy of results. Epoxy mounts were polished to expose a cross section 

through the internal structure of the grains. Back-scatter electron (BSE) and cathodoluminescence 

(CL) imaging of zircons was performed at the Monash Centre for Electron Microscopy (MCEM), 

Monash University using the JEOL JSM-7001F Field Emission Gun Scanning Electron Microscope 

(FEG SEM) and the FEI Nova NanoSEM 450 FEG SEM, respectively. Further BSE and CL imaging was 

performed at the Centre for Microscopy, Characterisation and Analysis at the University of Western 

Australia using the VEGA 3 Tescan SEM. BSE and CL images were used to identify internal structures, 

growth patterns and damage zones, and subsequently guide grain analysis. 

5.4.2.2 U-Th-Pb SHRIMP II zircon dating

In-situ zircon U-Th-Pb analysis was conducted using a Sensitive High Resolution Ion microprobe 

(SHRIMP II) at the John de Laeter Centre for Isotope Research at Curtin University, Perth, Australia.  

Instrument conditions are detailed by Kennedy and De Laeter (1994) and De Laeter and Kennedy 

(1998). The analytical procedures for zircon dating with the SHRIMP ion microprobe are outlined 

in Claoué-Long, et al. (1995) and Williams (1998). The mass-filtered, 10keV primary O2- beam is 
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focussed to an elliptical spot, ~25 μm in diameter, with an ion current of mass-filtered, of 2.2 – 2.0  

nA. For each spot, the dataset includes six cycles (scans) through the mass range of 196Zr2O
+, 204 Pb+, 

background (204.1), 206Pb+, 207Pb+, 208Pb+, 238U+, 248ThO+ and 254UO+, as outlined by Nasdala, et al. 

(2008). Data reduction was performed using the MS Excel add-in programs, SQUID version 2.5 and 

ISOPLOT v3.0 (Ludwig, 2003), according to Compston, et al. (1984), Claoué-Long, et al. (1995) 

and Williams (1998). Applied common-Pb corrections were based on the Stacey and Kramers (1975) 

model for isotopic ratios of terrestrial lead. Analytical cut offs were applied prior to data interpretation 

in order to exclude zircons that had potentially undergone disruption of the U-Pb systematics. In this 

study, the reported U-Pb ages are derived from concordant or near-concordant grains with accepted 

discordance values between –5% and +15% in order to minimise the number of inversely concordant 

values. In addition, analyses that yielded U concentrations over 1000 ppm or included more than 1.0% 

of non-radiogenic Pb (204Pb) were rejected. All ages are reported as 207Pb/206Pb ages with 1σ error.

5.4.3 In-situ Lu–Hf analyses

Lutetium-Hafnium (Lu-Hf) isotope analyses were performed on grains from samples dated using 

U-Pb zircon SHRIMP II method. Analyses were conducted using a Resonetics S-155-LR 193nm 

excimer laser ablation system attached to a Nu Plasma II multi-collector ICP-MS at the John de Laeter 

Centre, Curtin University. Sited adjacent to or “on-top-of ” SHRIMP spots, circular laser spots with 

diameters of 33 μm were drilled with a laser pulse repetition of 5 Hz and an energy density of ~2 J/

cm2 during 30 seconds of data acquisition, following an initial baseline period of 30 seconds. The 

isotopes 173Yb, 174(Yb, Hf), 175Lu, 176(Yb, Lu, Hf), 177Hf, 178Hf, and 179Hf were measured on Faraday cups 

in a static sequence. Isobaric interference of 176Yb was corrected according to the method of Nowell and 

Parrish (2001) whereby JMC475 Hf standard solutions were doped with Yb. From this, the true value 

of 176Yb/173Yb was derived using a regression, with 176Yb subsequently subtracted from the 176 peak. 

Correction for interference of 176Lu on 176Hf used the measured interference-free 175Lu isotope and a 

value of 0.02653. Corrections were applied during each analysis after an inverse mass bias correction 

using the measured 179Hf/177Hf ratio, this allows for absolute differences between the Hf and Yb mass 

bias. The 178Hf/177Hf and 180Hf/177Hf stable isotope ratios were used to monitor data quality.

 All data were adjusted relative to the primary reference zircon 91500. Analyses of reference 

zircons (MUN1, 3, 4,Fisher, et al., 2011; R33, Fisher, et al., 2014; GJ-1, Morel, et al., 2008; Plešovice, 



201

Sláma, et al., 2008; 91500, Wiedenbeck, et al., 1995; Mudtank, Woodhead & Hergt, 2005) were 

conducted every twenty spots throughout the session to verify accuracy and ensure reproducibility. 

Standard results are presented in Appendix E and comparison of measured standards to accepted 

values is shown in Appendix F.

 The measured 176Lu/177Hf ratios for each of the zircons analysed were used to calculate initial 

176Hf/177Hf ratios. There are a number of proposed decay constants for 176Lu (e.g. Bizzarro et al., 2003; 

Blichert-Toft et al., 1997; Scherer et al., 2001 ; Soderlund et al., 2004). A decay constant (λ) for 176Lu 

of 0.01867 for all Hf isotope calculations (Soderlund et al., 2004, after Scherer et al., 2001) is used in 

this study. εHf values are calculated relative to modern CHUR values, using the chondritic values of 

176Lu/177Hf = 0.282785 and 176Hf/177Hf = 0.0336 (Bouvier, et al., 2008, after Blichert-Toft and Albarède, 

1997) are used for calculating εHf and model ages. Hf model ages (TDM-1) are calculated for a linear 

4.56 Ga depleted mantle model with modern compositions of 176Lu/177Hf = 0.0384 and 176Hf/177Hf= 

0.28325 (Griffin, et al., 2002). Two-stage model ages, which yield more robust model age estimates, 

are calculated with the same depleted mantle parameters with average crustal 176Lu/177Hf = 0.0150 

(Condie, et al., 2005) and a 176Lu decay constant of 0.01867 (Söderlund, et al., 2004 after Scherer et al., 

2001). Initial 176Hf/177Hf and εHf(t) were calculated for using individual zircon crystallisation ages to 

observe the array of zircon age relative to their Hf signature, as well as comparative εHf(t) plots of the 

study area relative to West African and global zircon Hf databases. 

5.5 Results  

5.5.1 Lithological and petrological descriptions

5.5.1.1 Granitoids

In order to simplify the presentation and the description of the lithologies sampled in this study, 

analysed granitoid samples have been grouped into four main lithologies, based on petrological 

composition and geochemical analysis, detailed in section 5.1 and 5.2, respectively. The four main 

groups are: i) tonalite, trondhjemite and granodiorite (TTG); ii) quartz diorite and diorite; iii) granite 

and quartz monzonite, and; iv) pyroxenite and gabbro norite.

 Within the study area, there are two series of plagioclase-rich tonalite and trondhjemite plutons. 

The first group comprises large, composite, medium- to coarse-grained, leucocratic trondhjemite and 

tonalite plutons that contain biotite as the main ferro-magnesian mineral with subordinate to rare 
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hornblende (Figs. 5.3a and 5.3b) and rare interstitial microcline. The most significant exposures are 

located in the Sefwi-Wiawso and Bechem Granitoid domains (Fig. 5.2). Accessory phases include 

euhedral magmatic epidote, euhedral titanite, apatite and zircon. Deformed plutons display biotite 

alignment and sub-grain rotation recrystallisation of large, subhedral to euhedral plagioclase phenocryst 

with irregular, bulging grain boundaries. Plagioclase shows zoning of some grains suggesting changes 

in anorthite content and is variably sericitized. Minor chlorite replacement of biotite indicates late, 

weak greenschist facies metamorphic overprint, increasingly pervasive proximal to pluton boundaries. 

The second group comprises smaller, elliptical to elongate, mesocratic granodiorite and trondhjemite 

plutons that are emplaced proximal to the Bibiani and Afema shear zones in the south of the Sefwi 

Belt and often contain small, round, mafic enclaves (Fig. 5.3c). The plutons are medium- to coarse-

grained with an equigranular texture, containing hornblende as the primary ferro-magnesian mineral, 

subhedral to euhedral plagioclase and quartz. Minor biotite and microcline are often observed with 

accessory epidote, magnetite, apatite and hematite. 

 Quartz diorite and diorite plutons are medium- to coarse-grained and contain abundant 

hornblende phenocrysts and interlocking, subhedral to euhedral plagioclase often strongly altered by 

sericite, and minor quartz (Fig. 5.3d). Clinopyroxene phenocrysts often display extensive replacement 

rims of secondary hornblende and quartz.  In the Hwidiem Domain, large irregular plutons are often 

weakly deformed displaying a foliation of aligned hornblende, potentially associated with retrograde 

metamorphism. Exposure of a mesocratic to melanocratic layered plutonic complex in the Bechem 

Granitoid Domain contains quartz diorite through to gabbro diorite, bounded to the south by the 

Ketesso High-Strain Zone.  The plutons are variably deformed with foliations defined by metamorphic 

hornblende, seen wrapping around magmatic hornblende phenocrysts and are often structurally 

associated with strongly sheared metabasalts. Accessory minerals include magnetite, ilmenite, apatite 

and zircon with retrograde chlorite growth on hornblende rims and metamorphic epidote. 

 Three granite samples are grouped together based on their elevated potassium feldspar content, 

however, they each have distinct petrological assemblages and are presented together for comparative 

purposes.
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Fig. 5.3. Representative samples: a) Medium-grained foliated biotite-hornblende trondhjemite; b) Typical trondhjemite 

assemblage including zoned, euhedral plagioclase (Pl) phenocrysts, aligned biotite (Bt), quartz (Qz) and magmatic, 

subhedral epidote (Ep); c) Outcrop of trondhjemite in Sefwi-Wiawso domain with mafic enclave containing retrograde 

chlorite and actinolite; d) Hand sample of mesocratic quartz diorite; e) Outcrop of coarse-grained potassic biotite-

hornblende monzonite; f) Petrographic assemblage of potassic biotite-hornblende monazite with euhedral plagioclase 

displaying sericite alteration, interstitial microcline (Mc) and isolated, small hornblende (Hbl) and biotite grains; g) 
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Coarse grained to pegmatitic biotite-muscovite granite in metatectic paragneiss; h) Microcline-dominant leucogranite 

from the Sunyani-Comoé Domain, with plagioclase, quartz and muscovite (Ms).

 Potassium-rich quartz monzonite plutons (Fig. 5.3e) occur as large (>20 km), irregular, weakly 

deformed composite plutons, predominantly restricted to within the Kukuom-Juaboso and Bechem 

Granitoid domains within the Sefwi Belt. They have a distinct radiometric signature associated with 

anomalously high K2O content relative to U and Th (Chapter 3). The potassic plutons are leucocratic 

with a granular texture and contain zoned, euhedral plagioclase, microcline, quartz and biotite as 

the main ferromagnesian silicate (Figs. 5.3e; 5.3f), with minor hornblende and accessory magmatic 

epidote, titanite, ilmenite, magnetite and apatite. Granite samples from the Chiraa Domain are variably 

deformed, medium grained, irregular intrusions within high-grade metasedimentary rocks (Fig. 5.3g), 

comprising quartz, perthitic microcline and plagioclase. The metamorphic foliation within Chiraa 

Domain granites is defined by aligned biotite ± muscovite. Minor secondary chlorite is sometimes 

observed replacing biotite near the domain boundaries. Accessory minerals include ilmenite and 

zircon. Large, coarse-grained to megacrystic white-grey leucogranite plutons (>50 km) intrude the 

Sunyani-Comoé Domain, elongate parallel to the NE strike of the major crustal architecture. They 

contain quartz, muscovite, microcline with slight microperthitic texture, small euhedral plagioclase 

laths (Fig. 5.3h), and displaying weak sericite alteration. Weak deformation is indicated by irregular 

grain boundaries suggesting grain boundary migration.

 Pyroxenite and gabbro plutons often form elongate (10 – 20 km)  bodies, exposed in parts 

of the Bechem Granitoid Domain, as well as immediately south of the Hwidiem Shear Zone and 

in the southwestern extent of the Kukuom-Juaboso Domain (Fig. 5.2). Small (<10 km) elliptical 

gabbroic plutons are found in the study area, however, their emplacement timing and relation 

to the pyroxenites is unclear. The pyroxenite and gabbro plutons are mesocratic, coarse grained 

to megacrystic, equigranular plutons, ranging from undeformed to highly sheared (Fig. 5.4a). 

Petrographic assemblages include variable amounts of orthopyroxene, clinopyroxene, hornblende 

and plagioclase, depending on lithology and/or the presence of magmatic layering. Pyroxene grains 

are often extensively replaced by secondary hornblende and quartz, with late sericite alteration with 

some outcrops displaying abundant, centimetric plagioclase-rich veins (Fig. 5.4b). Accessory minerals 

include magnetite, ilmenite and secondary epidote and titanite. 
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Fig. 5.4. a) Hand sample of pyroxenite from the Bechem Granitoid Domain, containing clinopyroxene, minor 

orthopyroxene, both largely replaced by hornblende and quartz and minor plagioclase; b) highly altered 

and heavily veined outcrop of pyroxenite near the Ketesso Shear Zone; c) Typical metabasalt outcrop with 

chlorite-actinolite foliation; d) Vertical, foliated dacitic volcanoclasite (left) and strongly deformed volcano-

sedimentary beds (right); e) Quartz-microcline-plagioclase-phyric rhyolite; f) Hornblende and plagioclase 

phyric dyke cross cutting folded amphibole-garnet paragneiss in the Kukuom-Juaboso domain.

5.5.1.2 Volcanic rocks

Volcanic rocks analysed in this study range from basaltic to rhyolitic in composition. These basalts, 

metabasalts and basaltic andesites contain magmatic and/or metamorphic hornblende (Fig. 5.4c). 

Foliations in the metabasalts and meta-basaltic andesites are defined by aligned hornblende in higher 
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grade samples, or chlorite and actinolite in lower grade samples. The deformed dacitic volcanoclastic 

rocks (Fig. 5.4d) contain relic plagioclase and quartz phenocrysts and exhibit chlorite-muscovite 

foliations with rare preservation of foliation aligned biotite porphyroblasts. A number of quartz-phyric 

pink rhyolite outcrops are documented, observed stratigraphically overlying garnet-hornblende 

paragneisses in the Kukuom-Juaboso domain (Fig. 5.4e). Late andesite dykes contain hornblende 

and zoned plagioclase phenocrysts, observed in the field as a cross-cutting dyke, intruding a folded 

amphibole-bearing para-amphibolite (Fig. 5.4f). Intermediate and felsic lavas commonly display 

sericite alteration, including growth of fine grained white mica. 

5.5.2 Whole rock geochemistry

5.5.2.1 Samples

Samples were collected from most geological domains in the study area, including volcano-plutonic 

and volcanic layers in sedimentary domains, based on stratigraphic and structural relationships, and 

their potential significance for unravelling the early crustal evolution. A total of twenty-nine magmatic 

rocks were sampled for this study. They comprise nineteen plutonic samples, including four mafic to 

ultramafic plutons, and ten volcanic samples. Sample locations are shown in Fig. 5.2 and the results 

are presented in Table 5.1. 

5.5.2.2 Plutonic rocks

Sampled plutonic rocks record a wide range of silica contents. Plutons in the granite and TTG groups 

have high silica contents of 70–76 wt% SiO2, with the exception of the quartz monzonite sample 

with 68 wt% SiO2 (Fig. 5.5a). Diorite and quartz diorite rocks range from 55 to 61 wt% SiO2 (Fig. 

5.5a), whilst pyroxenites and gabbros contain < 52 wt% SiO2 (Table 5.1 – not shown in Fig. 5.5). 

Excluding the mafic and ultramafic suites, the silicic, plagioclase-rich granitoids are plotted on an 

An-Ab-Kfs normative ternary diagram (fields from Barker, 1979; O’Connor, 1965), distinguishing 

tonalite, trondhjemite, granodiorite and granite rocks based on normative CIPW norms, specifically 

normative feldspar composition. Six samples plot in the trondhjemite field, six in the tonalite field and 

three in the granite field (Fig. 5.5b). Interestingly, no samples plot within the granodiorite field. 
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Quartz-diorites, diorites and most granites plot along the calc-alkaline differentiation trend in the 

Na-K-Ca ternary diagram. The more sodic trondhjemite and tonalite samples, as well as the quartz 

monzonite, plot in the Archaean trondhjemite field (Fig. 5.5c). In the Harker diagrams (Fig. 5.5a), the 

SiO2 vs. K2O plot shows that the trondhjemite plutons display both tholeiitic (TH) and calc-alkaline 

(CA) affinities, whilst quartz-diorites and diorites plot primarily in the CA series, with one sample 

falling in the high-potassium calc-alkaline (HKCA) series. The quartz monzonite and granite samples 

all plot in the HKCA series. Overall, oxide and silica relationships in the Harker diagrams show 

approximately linear differentiation trends, with increasing SiO2 associated with decreasing MgO, 

CaO, TiO2 and FeO. Poor correlation, however, is observed between Al2O3, Na2O and K2O in relation 

to increasing SiO2, consistent with sericite alteration.

Fig. 5.5. Major element geochemistry of plutonic rocks of the study area, presented in (a) Harker diagrams (excluding 
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pyroxenites and gabbros), (b) normative feldspar triangle (excluding pyroxenite and gabbro), (c) molecular Na-K-Ca 

ternary diagram and (d) in an A/CNK vs A/NK diagram. Symbol legend (top right) represents the lithological groups 

based on identification of major mineral assemblages and the classification in the feldspar diagram. 

 For the tonalite-trondhjemite plutons, K2O/Na2O values range from 0.22 to 0.48, with one 

sample (SB045) plotting on the tonalite-granodiorite boundary with a K2O/Na2O ratio of 0.56.  Quartz 

diorite plutons display similar ranges (0.21 – 0.42) with a meta-gabbro recording an elevated K2O/

Na2O of 0.59, likely as a product of metamorphic processes. The granite and quartz monzonite plutons 

record significantly higher ratios of 0.76–1.01 relative to both the tonalite-trondhjemite and quart-

diorite plutons. 

 Tonalite-trondhjemite plutons have Mg# (100*(Molar Mg/(Mg/Fe2+)) of 13–31, with lower 

values often representing hornblende-dominant granitoids, with concentration of mafic oxides ranging 

between 0.73 and 4.65. By comparison granite and quartz monzonite samples have intermediate Mg# 

(34–37) and low mafic oxide concentrations (MgO + FeOT = 0.67–2.01). Quartz diorites and diorites 

display Mg# an order of magnitude higher (40–59) and mafic oxide concentrations of 7.36–12.92 

wt%. Pyroxenite and gabbro samples have low K2O/Na2O (0.18–0.32), and elevated Mg# (51–73) and 

mafic oxide concentration (MgO + FeOT = 18.4–25.6 wt%). Tonalites and trondhjemites are slightly 

metaluminous to slightly peraluminous (A/CNK = 0.99–1.07; A/CNK: molar ratio Al2O3/[CaO + 

Na2O + K2O] and A/NK = 1.22–1.65; A/NK: molar ratio Al2O3/[Na2O + K2O]) with one anomalously 

peraluminous sample (A/CNK = 1.30; A/NK = 1.68). Granites are peraluminous (A/CNK = 1.23–

1.27; A/NK = 1.11–1.12) whilst the quartz monzonite is slightly metaluminous (A/CNK = 1.31; A/NK 

= 0.98). Quartz-diorite, pyroxenite and gabbro samples are strongly metaluminous, yielding ratios of 

A/CNK = 0.76–0.93; A/NK = 1.55–2.26 and A/CNK = 0.16–0.68; A/NK = 2.04–3.88, respectively. 

 Trace element geochemistry of the plutonic samples are presented in primitive mantle-

normalised multi-element and chondrite-normalised rare earth element (REE) spidergrams (Fig. 

5.6). All samples show strongly negative anomalies for high field strength elements (HFSE) (Ta, Nb, 

Ti) with the exception of one meta-gabbro sample (SB191). Most samples also display a positive Pb 

anomaly, with the exception of granite samples SB010 and SB370. Pyroxenites and gabbros are weakly 

fractionated with low LREE contents (LaN = 9.28–45.15) and high HREE and Y contents (YbN = 7.39–

16.02), thus yielding low LREE/HREE ratios (LaN/YbN = 1.25–4.04). They display slightly negative to 

no Eu anomalies (EuN/Eu* = 081–1.03; Eu* = [SmN × GdN]1/2), and extremely low enrichment in large 
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5.6. Primitive-mantle normalised multi-element (McDonough, et al., 1992) and chondrite-normalised REE (McDonough 

& Sun, 1995) spidergrams.

ion lithophile elements (LILE) (RbN/LaN= 0.01–0.22), associated with moderately negative Rb, weakly 

positive Ba and mixed Sr anomalies (Sr = 94–460 ppm). Furthermore, only pyroxenites and gabbros 

samples display positive V and Sc anomalies with the exception of meta-gabbro sample SB040, which 
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has a slightly negative Sc anomaly potentially indicating a dioritic protolith rather than a gabbroic 

protolith. Quartz-diorite and diorite samples reveal intermediate REE fractionation patterns (LaN/

YbN = 2.86–22.90), with moderate to high LREE contents (LaN = 39.24–137.97) and high HREE and 

Y content (YbN = 6.02–15.46). They display slightly negative to slightly positive Eu anomalies (EuN/

Eu* = 0.91–1.20), and minimal LILE enrichment relative to LREE (RbN/LaN= 0.08–0.24), much like 

the pyroxenes and gabbros. 

 Both the multi-element diagram and REE diagram reveal two distinct tonalite-trondhjemite 

lithological groups, corresponding with the biotite-bearing (black triangles, Fig. 5.6) versus the 

hornblende-dominant (red triangles, Fig. 5.6) tonalite-trondhjemite plutons, as described in Section 

5.1. The biotite-rich samples have moderate to high LREE values (LaN = 20.67–64.97) and low HREE 

– Y concentrations (YbN = 0.31–2.92) contents, resulting in a steep, more fractionated REE spectra 

(LaN/YbN = 10.98–66.57). The hornblende-rich samples have flat, moderate fractionation REE spectra, 

corresponding with both high LREE concentration (LaN= 111.39–129.95) and high HREE – Y 

concentration (YbN 19.44 – 26.27), yielding a moderately fractionated REE pattern (LaN/YbN=4.35–

5.72).Additionally, the two groups have contrasting Sr and Eu anomalies, with the more heavily 

fractionated, biotite dominant group displaying strong positive Sr anomalies (Sr = 352–600ppm), 

positive Eu anomalies (EuN/Eu* = 1.14–1.62), as well as low to moderate LILE enrichment relative 

to LREE (RbN/LaN= 0.23–1.04), whilst the less fractionated, hornblende dominant group displays, 

negative Sr anomalies (Sr = 59–156 ppm), negative Eu anomalies (EuN/Eu* = 0.59–0.67) and low 

LILE enrichment relative to LREE (RbN/LaN= 0.15–0.27), reflecting the high LREE concentrations. 

Contrasting trace element chemistry suggests variation in the petrogenetic history of the two tonalite-

trondhjemite groups. 

Granites samples are characterised by moderate LREE content (LaN= 50.63–52.74), moderate 

to high HREE – Y contents (YbN = 1.06–1.24) and moderate to strong REE fractionation patterns 

(LaN/YbN=42.45–47.95), with the higher HREE values yielded by the quartz monzonite, indicating 

weaker REE fractionation (LaN= 52.75, YbN = 5.09, LaN/YbN= 10.35). Relative to all other samples, 

the granites display strong LILE enrichment (RbN/LaN=1.01 – 2.69) as well as weakly negative to 

negative Eu anomalies (EuN/Eu* = 0.67 – 0.98). 
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5.5.2.3 Volcanic rocks

Samples from volcanic units across the study area are plotted on the TAS diagram (Le Maitre, et al., 

1989) displaying a range of compositions from basalt to rhyolite (Fig. 5.7a). Nine of thet en samples plot 

in the sub-alkaline field, whilst a quartz-feldspar-phyric rhyolite sample (SB076) is slightly alkaline. In 

the AFM diagram , all samples plot (Fig. 5.7b) in the calc-alkaline field except for a metabasalt (SB164) 

and one meta-dacite (SB016), both from the Kukuom-Juaboso Domain within the Sefwi Belt. All 

dacitic samples plot close to the calc-alkaline field boundary, indicating more Fe-rich compositions. 

Meta-basalt sample SB164 displays positive Pb and Sr anomalies, a negative Zr anomaly, and a 

relatively flat trace element spectra. Both meta-basalt and basaltic andesite samples have similar REE 

patterns characterised by moderate LREE (LaN = 16.88–42.19) and HREE- Y (YbN = 10.87–11.49) 

contents, and low REE fractionation (LaN/YbN = 1.47 – 3.88). The basalt-andesite displays weak LILE 

enrichment with weakly positive Ba, U and La anomalies, as well as a positive Pb anomaly. Overall the 

group shows very weak LILE enrichment (RbN = 0.21–1.48; RbN/LaN = 0.01–0.04) and neither sample 

displays a Eu anomaly (EuN/Eu* = 1.02 – 1.11).

Dacites display more fractionated REE patterns, with moderate to high LREE content (LaN = 37.55–

110.97) and moderate to high HREE – Y content (YbN = 2.98 – 26.58), and LaN/YbN = 2.86–30.15. 

Dacites display LILE enrichment (RbN = 17.34 – 53.91; RbN/LaN = 0.22–1.02), strong negative HFSE 

anomalies (Nb, Ta, Ti) and no Sr anomalies, with the exception of a plagioclase-phyric dacite sample 

(SB464B), which shows a strong positive Sr anomaly.  Foliated dacitic volcanoclastic sample SB090 

shows unique trace element patterns, displaying a distinct positive Ce anomaly and negative Y 

anomaly. Eu anomalies in dacite samples are slightly negative to neutral (EuN/Eu* = 0.88 – 1.05).  

Rhyolitic samples display heterogeneous trace element patterns in multi-element diagrams, although 

each have negative Nb, Tb and Ti anomalies and negative Eu anomalies (EuN/Eu* = 0.52–0.85). REE 

spectra for each of the rhyolites show similarly moderate REE fractionation patterns (LaN/YbN = 

2.91–7.94), however, quartz-feldspar-phyric rhyolite sample (SB076) contrasts all other felsic lavas. It 

displays extreme LILE enrichment (RbN = 35.22; RbN/LaN = 5.56) with strong positive Pb, Ba, K and Sr 

(1090 ppm) anomalies, depletion in MREE and a weakly negative Eu anomalies (EuN/Eu* = 0.85) and 

a REE pattern less than an order of magnitude greater than chondrite values (YbN =  2.17).



215

Fig. 5.7. (a) TAS diagram (Le Maitre, et al., 1989) displaying volcanic samples from across the field area, ranging from 

basalt (circle) to basaltic andesite (diamond) to dacite (triangle) and rhyolite (square). (P-B) Picro-basalt; (B-A) Basaltic 

andesite; (A) Andesite; (T-A) Trachyandesite; (B-T-A) Basaltic trachyandesite; (T-B) Trachybasalt; (T/B) Tephrite/ 

Basanite; (P-T) Phonotephrite; (T-P) Tephriphonolite. (b) AFM ternary diagram (Irvine & Baragar, 1971; Kuno, 1968) 

where A is Na2O = K2O, F is FeOT and M is MgO. (c, e, g) Primitive-mantle normalised trace element (McDonough, et 
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al., 1992) and (d, f, h) chondrite-normalised REE (McDonough & Sun, 1995) spidergrams. 

Conversely, sample SB044 and SB244 are enriched in most incompatible elements and have negative 

Sr (63–83 ppm) and Eu (EuN/Eu* = 0.51–0.56), with sample SB044 displaying extreme enrichment in 

both HREE and LREE (LaN = 282; YbN = 61.55). 

5.5.3 Geochronology 

5.5.3 Results of zircon U-Pb and Lu-Hf analysis 

In-situ zircon SHRIMP U-Pb analyses were performed on four samples, including three plutonic 

samples and one volcanic sample.  This was complemented by Lu-Hf isotope analysis by LA-MC-

ICP-MS, both performed at Curtin University. An additional detrital zircon sample was selected for 

in-situ U-Pb analysis by LA-ICP-MS at Macquarie University. Back-Scattered Electron (BSE) and 

cathodoluminescence (CL) images of representative zircons grains analysed in each sample. CL images 

are presented in Figure 5.8.  The results of U-Pb and Lu-Hf analyses are shown in Tables 5.2 and 5.3 

and Figures 5.9, 5.10 and 5.11. 

5.5.3.1 Foliated biotite trondhjemite (sample SB248)

Zircons from biotite trondhjemite sample SB248 are commonly euhedral and prismatic, ranging in 

shape from stubby to elongate. Grains are approximately 100 to 250 µm in length and 50–100 µm in 

width. Smaller prismatic grains are pale coloured and relatively free of fractures whilst larger grains 

show brown colouration and more extensive fracture networks.  Cathodoluminescence images reveal 

fine oscillatory zoning with no clear evidence of xenocrystic cores (Fig. 5.8a). Rare examples of thin 

(<10μm) metamict rims were visible in CL images.
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Fig. 5.8. Cathodoluminescence (CL) images of representative zircon grains from analysed samples showing SHRIMP spot 

location (red dashed circles). 

Twenty-six analyses were performed on twenty-five zircons. Six analyses were rejected: one because it 

has a discordancy greater than +10%; one analysis that had a 204Pb corr % 206Pb greater than 1%; three 

that had 1σ greater than 25 Ma and one analysis which had U content over 1000 ppm. Twenty accepted 

analyses from sample SB248 yielded a single age population and a weighted mean average 207Pb/206Pb 

age of 2155 ± 5 Ma (MSWD of 1.15) interpreted to be the crystallization age due to the smaller error 
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relative to the intercept age (Fig. 5.9a). Concordia diagrams indicate a similar upper intercept age of 

2155 ± 14 (MSWD of 0.55) (Fig. 5.9b), with the Discordia line indicating minor lead loss. 

Twenty Hf analyses in dated grains yielded 176Lu/177Hf of < 0.0007, 176Yb/177Hf of < 0.02 and 176Hf/177Hf 

range from 0.281543 to 0.281630 ± 0.000034–0.000067 (2SE). Individual Pb-Pb ages and initial 

176Lu/177Hf ratios for each zircon reveal radiogenic εHf (t) values between +4.5 to +7.4 (mean εHf (t) = 6.0 

± 0.9), corresponding to a relatively tightly grouped range of two-stage TH
D

f
M

 model ages between 2.25 

and 2.45 Ga (Fig. 5.10a). 

5.5.3.2 Foliated dacitic volcanoclasite (SB173B)

Sample SB173B zircon morphology is commonly euhedral and prismatic, and rarely pyramidal, with 

ratios of 1:2 to 1:4, 80–150 µm in length and 50–75 µm in width, with larger zircons reaching 200 µm 

in length. Smaller prismatic grains are pale coloured and relatively free of fractures whilst larger grains 

show brown colouration and more extensive fracture networks.  Cathodoluminescence images reveals 

fine, low-luminescent, oscillatory zoning in some grains with no clear evidence of xenocrystic cores, 

whilst others show broad zoning with low luminescence (Fig. 5.8b).  BSE images show small mineral 

inclusions in a number of zircons and extensive fracturing in some smaller grains (likely to be the 

product of the mounting process).
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Thirteen U-Pb analyses were performed on thirteen zircons with from both oscillatory zoned and 

unzoned zircons, which defined a single zircon age population. Analyses yielded a weighted average 

207Pb/206Pb age of 2158 ± 6 Ma (MSWD = 1.02, n = 13) (Fig. 5.9c), interpreted as the crystallisation age 

of this rock, whilst a less precise upper intercept age of 2159 ± 14 Ma (MSWD = 1.11) was calculated 

from the concordia plot (Fig. 5.9d).

Fig. 5.9. Weighted average 207Pb/206Pb ages and Tera-Wassaberg concordia diagrams displaying SHRIMP 

U-Pb zircon spot data for samples SB248 (a,b), SB137B (c,d) and SB092 (e,f), displaying error bars of ±1σ. 

Accepted analyses shown in blue and rejected analyses shown in red.
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Thirteen Hf analyses were performed on dated grains yielding 176Lu/177Hf of < 0.0028, 176Yb/177Hf of 

< 0.09 and 176Hf/177Hf range from 0.281464 to 0.281567 (± 0.000043 – 0.000073 2SE). A juvenile, 

radiogenic Hf character is indicated by a wider range of suprachondritic εHf(t) values between +1.7 

and +5.8 (mean εHf (t) = 4.0 ± 1.1), corresponding to a range of TH
D

f
M

 model ages spanning from 2.40 

to 2.65 Ga (Fig. 5.10b).

Fig. 5.10. Results of combined U-Pb and Hf zircon analyses for samples from the study area in southwest Ghana, presented 

as 207Pb/206Pb age vs two-stage Hf model ages in billion years using the measure 167Lu/177Lu (first stage), a value of 0.0115 

for the average continental crust (second stage) (Condie, et al., 2005) and a depleted mantle 176Lu/177Hf and 176Hf/177Hf of 

0.0384 and 0.28325 (Griffin, et al., 2002).

5.5.3.3 Hornblende quartz diorite (SB092)

Zircons for sample SB092 are subhedral to euhedral and clear to pale rose-coloured, with length to 

width ratio commonly between 1:2 and 1:3. Two morphologies are noted for SB092, one is more equant 

(80–120 µm long and 80–100 µm wide) and the other slightly more elongate and near prismatic (120–

200 µm long and 50–80 µm wide). Inclusions of ilmenite needles are visible in some elongate grains. 

CL and BSE images show little evidence of metamictization. Most zircons have a large, uniform centre 

succeeded by irregular oscillatory zoning, a characteristic common to both morphological populations 
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(Fig. 5.8c). Sixteen zircon U-Pb analyses were performed on 16 zircons from both morphological 

groups. The two groups yielded indistinguishable ages, indicating a single zircon age population that 

yielded a weighted average 207Pb/206Pb age of 2155 ± 9 Ma (MSWD = 1.17, n =16) (Fig. 5.9e), which 

is interpreted as the crystallisation age. The Concordia plot yields an upper intercept age of 2144 ± 10 

(MSWD = 0.81, n = 16) (Fig. 5.9f), however, a number of grains show reverse concordance, artificially 

lowering the intercept age. 

Fifteen Hf analyses on fifteen grains yielded 176Lu/177Hf of < 0.003, 176Yb/177Hf of < 0.04 and 176Hf/177Hf 

range from 0.281475 to 0.281554 (± 0.000046 – 0.000074 2SE). These analyses yield a relatively 

radiogenic Hf signature, with suprachondritic εHf (t) values ranging from +2.0 to +5.5 (mean εHf (t) 

= 3.9 ± 1.1), which corresponds to a two-stage model age (TH
D

f
M

) range between 2.43 and 2.61 Ga, 

clustering in two groups at ~2.45 and ~2.56 Ga (Fig. 5.10c), suggesting two distinct mantle extraction 

events.

5.5.3.4 Biotite-hornblende potassic quartz monzonite (SB023)

Sample SB023 zircon morphology is commonly elongate, prismatic and clear to yellow colouring. 

Zircons are inclusion free and varied in size from 100 to 250 µm along the c-axis. CL imaging revealed 

common xenocrystic inherited cores with both dull and bright luminescence, commonly with broad 

irregular zonation (Fig. 5.8d). Zonation in xenocrystic cores is often truncated along the rim with rare 

evidence of metamictization on core rims. Oscillatory zoning is common within thick (30 - 60μm) 

growth rings. Elongate grains without cores show pyramidal grain termination and regular oscillatory 

zoning.  Large grains show more extensive cracking and fractures.

Thirty-six analyses were performed on twenty-six grains. Of the thirty-six analyses, four were performed 

on xenocrystic cores, two of which were rejected for common Pb above 1% and for 232Th/238U ratio 

<0.1. Two xenocrystic core analyses yielded 207Pb/206Pb ages of 2250 ± 28 Ma and 2270 ± 21 Ma. The 

remaining twenty-six analyses were performed on growth rims and homogeneous zircons. Eight of 

these analyses were rejected: one analysis had common Pb above 1%, two analyses yielded 1σ > 50Ma 

and five grains had discordance > 15%. One population was identified from remaining 18 analyses 

yielding a weighted average 207Pb/206Pb age of 2136 ± 7 Ma (MSWD = 1.4, n = 18), which is interpreted 

to be the crystallization age of the rock (Fig. 5.10a). The Concordia diagram reveals an upper intercept 

age of 2138 ± 15 (MSWD = 0.82, n = 18) (Fig. 5.10b)), with the plotted from both concordant and 
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discordant accepted age indicating slight modern lead loss.

Fig. 5.11. Weighted average 207Pb/206Pb ages and Tera-Wassaberg concordia diagrams displaying SHRIMP U-Pb zircon 

spot data for sample SB023, displaying error bars of ±1σ. Accepted analyses shown in blue, rejected analyses shown in 

red, accepted analyses for inherited cores in green.

 A total of twenty-two Hf analyses were performed on dated cores, rims and unzoned zircons 

from sample SB023, yielding 176Lu/177Hf of < 0.003, 176Yb/177Hf between 0.01 and 0.1, and 176Hf/177Hf 

range from 0.281447 to 0.281600 (± 0.000032 – 0.000068 2SE). Analyses revealed a varied, radiogenic 

Hf signature, with suprachondritic εHf (t) values between +1.4 and +7.2 (mean εHf = 4.1 ± 0.6). The 

two inherited cores yielded strongly radiogenic Hf signatures, with values of εHf(2250Ma) = +6.7 and 

εHf(2270Ma) = +4.1, within range of the εHf values for homogeneous zircons and zircon rims in the same 

sample, for which there was no discernible systematic variation. The significant range of six epsilon 

units for all zircons analysed in sample SB023 is consistent with either heterogeneous magma sources 

or crustal contamination and corresponds to a wide range of TH
D

f
M 

values, from 2.34 to 2.63 Ga. 

5.6 Discussion

5.6.1 Petrogenesis of magmatic suites

The observed major and trace element patterns of magmatic rocks are the product of source 

composition, petrogenetic mechanisms, magma mixing and fractionation crystallisation (e.g. Brown, 

et al., 1984; Pearce, et al., 1984a), as well as enrichment of magma sources and the residual phase 

assembly of partial melting, indicative of the pressure of melt production (e.g. Defant & Kepezhinskas, 
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2001; Foley, et al., 2002; Moyen, 2011; Moyen & Stevens, 2006a; Xiong, et al., 2005). The ubiquitous 

negative Nb-Ta, P and Ti anomalies coupled with positive Pb anomalies and variable LILE enrichment 

for all samples analyses in this study, excluding one meta-gabbro and one metabasalt, are consistent 

with the trace element patterns of the present-day bulk continental crust (Hawkesworth & Kemp, 

2006a; Hofmann, 1997; Rudnick & Gao, 2003). Such features typify arc magmas and crust formation in 

a subduction setting (e.g. Arculus, et al., 1999), and are therefore consistent with the onset of “modern-

style” subduction-related processes after 3.0 Ga (e.g. Condie & Benn, 2006; Halla, et al., 2009; Laurent, 

et al., 2014; Smithies & Champion, 2000). Magmatic rocks sampled in this study share a number of 

geochemical similarities with late-Archaean granitoids generated within nascent subduction-related 

geodynamic settings, which are characterised by: (i) sodic tonalite-trondhjemite-granodiorite (TTG) 

granitoids derived from partial melting of hydrous metabasalts; (ii)  mantle-derived, incompatible 

element-rich sanukitoids; (iii) biotite and two-mica granites derived from crustal sources; and, (iv) 

hybrid granitoids sharing petrological and geochemical similarities and sources to the first three 

groups (Halla, et al., 2009; Laurent, et al., 2014; Moyen, 2011; Moyen & Martin, 2012), suggesting 

somewhat comparable petrogenetic processes. 

 The two TTG groups, defined in section 5.1, are both characterised by a silicic, plagioclase-

rich assemblage, distinguished from one another on the basis on the dominance of either biotite or 

hornblende as the primary ferromagnesian mineral. They show tholeiitic to calc-alkaline affinities and 

low K2O/Na2O ratios, with higher ratios in the hornblende-bearing TTGs reflecting slightly higher 

modal proportions of potassium feldspar. Based on experimental melt compositions (Laurent, et al., 

2014, and references therein), Figure 5.12a indicates a common low-K mafic source for both TTG 

groups, with the exception of two samples, with one indicating a high-K mafic source, and the second 

high-Al2O3 sample indicating remelting of pre-existing TTGs. Although both groups of TTGs have 

low potassium values, normalised LREE/HREE ratios (Fig. 5.12b) indicate the hornblende-bearing 

granitoids show similar ratios to modern day basalt-andesite-dacite-rhyolite (BADR) arc sequences, 

where magma is primarily derived through metasomatism of mantle peridotite by fluids released during 

dehydration of the subducting slab (Martin, et al., 2009). The complementary trace element patterns 

of the two groups of TTGs suggests a link in their magmatic history, but contrasting petrogenetic 

processes. 
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Fig. 5.12. a) Ternary diagram for major element of granitoid samples analysed in this study used to discriminate 

between potential source rocks, with fields after Laurent, et al. (2014, and references therein) based on experimental melt 

compositions. Binary diagrams (b-f) used to discriminate: (b) interaction and role of fluids or enriched TTG magmas in 

mantle-derived magmas (fields based onMartin, et al., 2009, and references therein); (c, d, e) depth of melt generation 

and residual phase assemblage, comparing late Archaean TTGs and post-2.5Ga TTG and arc magmatism (Drummond 
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& Defant, 1990; Moyen, 2011); and (f) granite discrimination plot for tectonic setting of magma generation (Pearce, et 

al., 1984a).

REE patterns of the biotite-dominant TTG group display a strongly fractionated REE pattern, with 

a significant depletion in HREE indicating residual garnet and/or hornblende in the magma source.

 High Sr/Y ratios and Y content also reflect a garnet-bearing residuum (Fig. 5.12c), often 

characterising deep melting at a convergent margin (Condie, 2008; Martin, 1993). The LaN/YbN vs 

YbN binary diagram (Fig. 5.12d) indicate high modal proportions of garnet in residuum of the garnet-

eclogite source for the biotite-rich TTGs, compared to the garnet-free amphibolite indicated for the 

hornblende-dominant TTGs (Drummond & Defant, 1990; Laurent, et al., 2014; Moyen, 2011). These 

high-pressure TTG melts display positive Sr and Eu anomalies (Fig. 5.12e), a characteristic commonly 

documented in slab-derived tonalite and trondhjemite melts involving subduction of young, hot 

oceanic crust due to the release of Sr and Eu during plagioclase breakdown at the garnet amphibolite-

eclogite transition (Defant & Drummond, 1990; Drummond, et al., 1996; Drummond & Defant, 

1990), occurring at pressures between 1.5 and 2.0 GPa (Moyen & Stevens, 2006b; Rapp, et al., 1991). 

As such, these magmas are considered analogous to adakites generated through the partial melting of 

a hot, down-going slab in an oceanic environment (Defant & Drummond, 1990; Drummond, et al., 

1996; Smithies, 2000). Their unusually low Mg# and high SiO2 and elevated concentrations of Sc, V 

and Co suggest that evidence of interaction and assimilation with peridotite in the overlying mantle 

wedge has been partially obscured by subsequent amphibole fractionation (Rapp, et al., 1999; Wang, 

et al., 2006; Woodhead, et al., 1993).  

 Predominantly low-K mafic sources are indicated for hornblende-bearing TTGs (Fig. 

5.12a), however, compared to the biotite-bearing TTGs, they display lower Al2O3 contents, low Sr 

concentrations, weakly fractionated REE patterns with high HREE concentrations and slightly 

negative Eu anomalies. These characteristics indicate that magma production occurred within the 

stability field of plagioclase, indicating either plagioclase fractionation or plagioclase as a residual 

phase in a garnet-free or garnet poor-residuum at pressures of <1.0 GPa (Moyen & Stevens, 2006b). 

These characteristics suggest a shallow, low-pressure source, such as partial melting of garnet-free 

basaltic crust, interpreted as analogous to the low-pressure TTG group of Moyen (2011).

Contrasting TTG magmas, both the pyroxenite-gabbro and the diorite suites follow the calc-alkaline 

differentiation trend in the Na-K-Ca ternary diagram (Fig. 5.5). They display low SiO2 contents, high 

FeOT, MgO and Mg#, and enrichment in transitional metals including Cr and Ni, thus precluding melt 
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derivation from a purely crustal source. This is further highlighted by REE patterns which display less 

than an order of magnitude enrichment in HREE and MREE relative to primitive mantle values. Trace 

element patterns do, however, indicate moderate LILE and Pb enrichments for the quartz diorite suite, 

suggesting a crustal influence (Brown, et al., 1984; Hawkesworth & Kemp, 2006a). The pyroxenite suite 

potentially represents the primary magma from which the dioritic magmas evolved through fractional 

crystallisation during differentiation, generated thorough partial melting of an enriched mantle source. 

Depletion of HFSE elements, including Nb, Ta, Zr and Hf, in diorite and quartz diorite samples is 

typical of island arc magmas generated during dehydration melting with a rutile-bearing residuum 

(Foley, et al., 2002). Despite similarly low SiO2, elevated ferromagnesian (FeOT + MgO) content and 

Sr and Ba concentrations > 500 ppm, the diorite and quartz diorite samples are not considered to be 

analogous to the sanukitoids series frequently recorded at the Archaean-Palaeoproterozoic boundary, 

due to lower MgO concentrations, Mg# and weaker REE fractionation (Martin, et al., 2009; Martin, et 

al., 2005; Shirey & Hanson, 1984; Stern, et al., 1989). 

 Three samples plot in the high-K calc-alkaline field, including the biotite-hornblende quartz 

monzonite and two granites. The quartz monzonite sample displays a similar composition to the high-

pressure TTGs in terms of REE distribution and a positive Sr anomaly, but features a higher K2O/

Na2O ratio, greater concentrations of Rb, Ba and K, as well as lower SiO2 and no Eu anomaly. It may 

represent the mixture of magmas from a metasomatised mantle source and partial melting of pre-

existing high-pressure TTG sources (Feng & Kerrich, 1992).  It contrasts the two-mica granite and 

the muscovite-bearing leucogranite samples, which display higher SiO2 contents with elevated K2O/

Na2O (0.93–1.01), reflecting higher modal proportion of potassium feldspar. These granites display 

strongly fractionated REE patterns, substantial enrichment in LILE and negative Eu anomalies (Fig. 

5.12e), indicating plagioclase fractionation or melt generation within the stability field of plagioclase, 

consistent with geochemical characteristics of S-type granites generated through partial melting of 

metasedimentary rocks (Clemens, 2003; Clemens & Vielzeuf, 1987). These granites are interpreted as 

the product of shallow partial melting of enriched crustal sources, including sedimentary packages, 

further supported by field observations (Fig. 5.3g), and calculated metamorphic conditions for anatectic 

terranes detailed in Chapter 4. Within the Sefwi Belt, the extremely low REE content of a sampled 

rhyolite (SB076) is a reflection of its petrological assemblage which contains no ferromagnesian phases, 

however, field relationships indicate that this rhyolite non-conformably overlies a garnet-amphibole-

bearing paragneiss and potentially represents a felsic melt due to partial melting of a nearby crustal 
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source. Figure 5.12f shows that the two-mica and muscovite bearing granites plot in the collisional 

granite field (Pearce, et al., 1984a), whilst both TTG groups and the diorite groups plot in the volcanic 

arc granite field due to lower LILE enrichment. 

5.6.2 Timing of juvenile crust formation, recycling and basin deposition

The temporal evolution of magmatism in the study indicates partly contemporaneous emplacement 

of high-pressure TTGs derived from melting of the subducting, young, hot, oceanic lithosphere, and 

quartz diorite melts derived from an enriched mantle source. These granitoids are emplaced into 

volcanic rocks of the Sefwi Belt, which have crystallisation ages between ca. 2189 and 2164 Ma (Hirdes 

& Davis, 1998; Hirdes, et al., 2007). The dacitic volcaniclastic sample from the Sunyani Basin yielded a 

zircon U-Pb crystallisation age of 2158 ± 6 Ma and displays similar trace element patterns to the low-

pressure TTGs, and is therefore interpreted as their volcanic equivalent. Hornblende-bearing tonalites 

emplaced in the Ivorian extent of the Sefwi-Wiawso domain at 2162 ± 1 Ma display moderate LILE 

enrichment relative to LREE and weak to intermediate REE fractionation patterns (Hirdes, et al., 

2007), and are also considered analogous to the hornblende-bearing TTG suite of this study. The 

timing of emplacement of the pyroxenite and gabbro suite remains poorly understood however, 

samples documented in this study are consistent with pyroxenites documented in south-eastern Ivory 

Coast also indicating a LILE-enriched upper mantle source (Hirdes, et al., 2007).

 Approximately 20 to 25 Myrs after TTG and diorite emplacement, high-K quartz monzonites 

yield zircon crystallisation ages of 2136 ± 7 Ma, interpreted as the product of remelting of existing 

high-pressure TTGs by mantle derived magmas. Quartz monzonite magmatism in the study area 

coincides with the emplacement of monzonitic and arfvedsonite-bearing albite granite magmatism 

between ca. 2145 and 2135 Ma in the Ivorian extent of the Sefwi-Wiawso Domain (Hirdes, et al., 

2007).

 Finally, two-mica and muscovite granitoids are emplaced in the Sunyani-Comoé Domain 

along the north-western margin between ca. 2092 and 2081 Ma (Agyei Duodu, et al., 2009; Hirdes, et 

al., 1992; Hirdes, et al., 2007; Petersson, et al., 2016), associated with crustal thickening and anatexis 

of felsic or supracrustal rocks, as detailed in Chapters 3 and 4. The muscovite granite sample (SB010) 

is taken from the margin of a muscovite-bearing granitoid that yielded Pb-Pb ages of 2088 ± 1 Ma 

(Hirdes, et al., 1992) and the two-mica granite (SB370) was sampled from the Wenchi pluton dated at 

2092 ± 2 Ma (Agyei Duodu, et al., 2009), suggesting that true granite magmas occur significantly later 
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in the magmatic history of the study area. 

The evolution of magmatic suites in the Neoarchaean terranes defines the following progression: (1) 

TTG magmatism, generated through the partial melting of mafic rocks; (2) crust-derived biotite or 

two-mica granitic magmatism; (3) sanukitoids derived from a hybridized incompatible element-rich 

source and mantle peridotite, and (4) high-K hybrid granites displaying characteristics of the three 

previous suites (Feng & Kerrich, 1992; Laurent, et al., 2014; Smithies & Champion, 2000). Laurent, 

et al. (2014) contend that the distinct evolution and diversity of magmatism in Archaean granitoids 

represents an ancient manifestation of subduction and tectonic collision. Despite the absence of 

sanukitoid-like rocks in the study area, a similar diversity and evolution is hypothesised for southern 

Ghana, involving early subduction-related TTG magmatism from both the subducting slab and shallow 

partial melting of a basaltic source with coeval dioritic magmatism derived from the metasomatised 

mantle wedge, emplacement of minor hybrid, high-K plutons, followed by production of crust-derived 

peraluminous granites during collision of continental fragments in the early Palaeoproterozoic. 

 The results of U-Pb dating of magmatic zircons constrain a period of magmatic activity in the 

Sefwi Greenstone Belt and the Sunyani-Comoé Domain yield two inherited zircon ages of 2250 ± 28 

and 2270 ± 21 Ma and crystallisation ages between ca. 2158 and 2136 Ma. Previous studies record a 

wider range of U-Pb crystallisation ages, between ca. 2222 and 2081 Ma, both within the study area 

and in the immediately adjacent Palaeoproterozoic domains (e.g. Davis, et al., 1994; Delor, et al., 

1992; Hirdes & Davis, 1998; Hirdes, et al., 2007; Oberthür, et al., 1998; Siméon, et al., 1992). The oldest 

preserved crystallisation age in the study area, yielded by a meta-gabbro in the Hwidiem Domain, for 

which K-Ar dating of amphibole indicating cooling below 550°C at 2222 ±32 Ma (Feybesse, et al., 

2006), within error of inherited zircon cores dated in this study. Andesitic and rhyolitic flows and 

volcaniclastic rocks within the Sefwi Belt yield U-Pb and Pb-Pb zircon ages between ca. 2189 and 

2164 (Hirdes & Davis, 1998; Hirdes, et al., 2007), partly contemporaneous with the emplacement of 

“belt-type” or “Dixcove-type” TTG granitoids into volcanic rocks of the Sefwi Belt between ca. 2179 

and 2154 Ma (Hirdes, et al., 1992; Hirdes, et al., 2007; Petersson, et al., 2017). 

 On the northern margin of the Sefwi Greenstone Belt, the timing of intermediate volcanism 

and sedimentation in the Sunyani-Comoé Domain (also referred to in the literature as the Sunyani 

Basin, or an extension of the Comoé Basin; Agyei Duodu, et al., 2009; Feybesse, et al., 2006; Vidal & 

Alric, 1994) is constrained by syn-depositional dacitic sample SB173B, which yielded an 207Pb/206Pb 

crystallisation age of 2158 ± 6 Ma. This dacite is found intercalated with low-grade volcano-sedimentary 
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rocks and provides a new maximum age for the commencement of sedimentation for the domain, 

previously constrained by post-depositional emplacement of elongate leucogranites between ca. 2092 

and 2081 Ma (Agyei Duodu, et al., 2009; Hirdes, et al., 1992; Hirdes, et al., 2007). Furthermore, this 

age indicates that volcanism and sedimentation in the Sunyani-Comoé Domain was contemporaneous 

with plutonism in the Sefwi Belt, suggesting coeval crustal formation with an unknown initial spatial 

relationship. Comparison of the timing of deposition of volcano-sediments in the Kumasi-Afema 

Domain, bracketed between ca. 2135 and 2122 Ma (Adadey, et al., 2009) or  between ca. 2154 to 2136 

Ma (Perrouty, et al., 2012) with the 2158 ± 6 Ma syn-depositional dacitic volcanism from the Sunyani-

Comoé Domain (this study) indicates diachronous basin development with sediment deposition 

commencing between 10 and 30 Myrs earlier in the Sunyani-Comoé Domain. This finding would 

support the timing of extension event between ca. 2145 and 2135 Ma, hypothesised by Hirdes, et al. 

(2007), potentially responsible for the original basin opening of the Kumasi-Afema Domain.

 The original spatial relationships between the Sefwi Belt and the Sunyani-Comoé Domain is 

largely obscured by deformation during the Eburnean Orogeny, however, we proposed that the tectonic 

contacts between the two domains represents a narrow collisional front or suture, with evidence of 

collision between the two discrete crustal fragments, represented by southern Ghana and central 

Ghana/Ivory Coast, recorded by the emplacement of syn-collisional granites (Fig. 5.12f) between ca. 

2092 and 2081 Ma, and high-P, intermediate-T metamorphism and clockwise P-T metamorphic paths 

(Ch. 4).

 Zircons from magmatic rocks analysed in this study display suprachondritic εHf values 

between +1.2 and +8.0 at the time of zircon crystallisation reflecting a highly radiogenic source and 

the juvenile nature of the newly formed crust. Furthermore, the juvenile Hf signature of all samples 

suggests that older, Archaean crustal material was absent or distal during juvenile crust production, 

consistent with the findings of previous studies of Palaeoproterozoic rocks in the West Africa Craton 

that yielded positive εNd between +1.2 and +4.3 (Abouchami, et al., 1990; Boher, et al., 1992; Gasquet, 

et al., 2003; Taylor, et al., 1992). The range of both εHf values and TH
D

f
M

 model ages suggest slightly 

heterogeneous magma sources for magmatism at ca. 2155 Ma, with greater ranges of εHf values and 

TH
D

f
M

 model ages in the ca. 2136 Ma quartz monzonite  suggesting increasingly heterogeneous sources 

late in the magmatic evolution, in agreement with geochemical analysis. Two-stage Hf model ages for 

all samples indicate the juvenile crust was extracted from the mantle between ca. 2260 Ma and 2650 

Ma (Fig. 5.13), indicating a Neoarchaean maximal age of a reworked proto-crust of 2650 Ma, from 
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which the Palaeoproterozoic crust was derived. When considering both inherited zircon cores and 

crystallisation ages of magmatic rocks in the study area, crustal residence times vary significantly 

between 100 and 400 million years. 

Fig. 5.13. εHf values versus Pb-Pb age diagram for individual zircon grains from the study area. Average continental crust 

evolution is modelled with 176Lu/177Hf = 0.0115 (Condie, et al., 2005) and a mafic crust evolution with 176Lu/177Hf = 0.0210 

(Kramers, 2007). The two evolutionary trends proposed by different authors (Blichert-Toft & Puchtel, 2010; Griffin, et 

al., 2002) for the composition of the depleted mantle display similar results for Hafnium model ages, represented by stars 

at the intersection of depleted mantle and crustal evolution trends. 

 Two conclusions may be drawn from the combined geochemical and isotopic characteristics 

of igneous rocks in the Sefwi Belt.  Firstly, the high-pressure TTG group, represented by ca. 2155 Ma 

trondhjemite sample (SB248), was generated through the partial melting of a subducting slab, extracted 

from the depleted mantle between approximately ca. 2300 and 2260 Ma. Secondly, diorites, quartz 

diorites and younger quartz monzonites have a wider range of εHf values, consistent with continued 

contribution of radiogenic material from the depleted mantle at ~ 2250 Ma combined with recycled 

juvenile proto-crust with mantle extraction ages spanning from ~2650 to 2300 Ma. Within the Baoulé-

Mossi domain of the WAC, inherited zircon ages span from the Mesoarchaean to Palaeoproterozoic, 

with approximately 10 grains in southern Mali presenting inherited ages between ca. 3600 and 2700 

Ma proximal to the Archaean Kénéma-Man Domain (Parra-Avila, et al., 2016). Younger inheritance 

is recorded by the Ghanaian Gondo granite gneiss, dated at ca. 2876 Ma, (Thomas, et al., 2009) and 

the Infantayire granite gneiss with inherited ages between ca. 2390 and 2260 Ma (Siegfried, et al., 

2009), and the 2312 ± 12 Ma inherited zircons age from the Dabakala tonalite, Ivory Coast (Gasquet, 

et al., 2003). By comparison, the oldest recorded crystallisation ages within the Baoulé-Mossi Domain 

is 2265 ± 17 Ma, yielded by a granodiorite in the Goren/Po-Tenkodogo-Yamba of the Banfora Belt, 
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Burkina Faso (Parra-Avila, et al., 2017), and 2253 ± 9 Ma, yielded by a granodiorite gneiss in northeast 

Burkina Faso (Tshibubudze, et al., 2013).  With the exception of the Gondo granite gneiss, these ages 

are comparable to inherited ages yielded by the quartz monzonite in this study. The lack of rocks 

with ages between ca. 2650 and 2300 Ma preserved in the Baoulé-Mossi Domain suggests that the 

juvenile proto-crust from which the domain was derived was completely recycled prior to the oldest 

crystallisation age in the Sefwi Belt of 2222 ± 32 Ma (Feybesse, et al., 2006). Alternatively, crust older 

than ca. 2222 Ma may be as yet undocumented or extensively eroded, as suggested by the presence of 

older zircons in stream sediments in southern Mali. 

5.6.3 Implications for the crustal architecture of the West African Craton

A database compilation of Hf-isotope data for igneous and detrital zircons sourced from 

Palaeoproterozoic rocks within the West African Craton is illustrated in Figure 5.14.  Figure 5.14 

contains all εHf(t) values currently available for WAC (pale grey diamonds) (data sourced from: Block, 

et al., 2016a; Eglinger, et al., 2017; Parra-Avila, et al., 2016; Petersson, et al., 2017; Petersson, et al., 

2016), demonstrates the spectra of values within and between discrete samples, highlights a 150 M.y. 

period of juvenile crust production between ~2250 and 2100 Ma, following a period of reworking of 

Archaean crust for zircons aged between ca. 3200 and 2600 Ma. εHf(t) values for the Sefwi Belt (this 

study; Fig. 5.14) are consistently radiogenic, spanning from with  +1 to +8, consistent with published 

ranges from the Palaeoproterozic domain of the West African Craton.

Fig. 5.14. Compilation of all εHf(t) values calculated for igneous and detrital zircons from the Baoulé-Mossi domain of the 

West African Craton (pale grey diamonds), relative to the evolution of the depleted mantle composition of (Griffin, et al., 

2002), and values yielded by this study for igneous samples SB023, SB092, SB173B and SB248. Data sourced from Block, 
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et al. (2016a), Eglinger, et al. (2017), Parra-Avila, et al. (2016) and Petersson, et al. (2016; 2017).

 The most significant implication of this data is realised when it is displayed as an overlay of 

the geological map of the Baoulé-Mossi Domain (Fig. 5.15), highlighting the spatial distribution of 

juvenile versus reworked crustal material. Whilst we acknowledge the relative sparsity of the data, it 

may be noted that the  highly radiogenic Hf signatures of ca. 2155 Ma samples from the Sefwi Belt 

(this study; Petersson, et al., 2017) separate the sub-chondritic Hf signature of the Kibi Belt from the 

sub-chondritic to supra-chondritic rocks of the Maluwe and Sawla Suite of NW Ghana (Petersson, et 

al., 2017), and the more distal mixed Hf signatures near the Archaean-Palaeoproterozoic boundary 

in southern Mali (Parra-Avila, et al., 2016) and in Palaeoproterozoic rocks in Guinea external to the 

Archaean domain (Eglinger, et al., 2017). 

Fig. 5.15. εHf(t) values yielded by Palaeoproterozoic rocks of the West African Craton (Data sources: Block, et al., 

2016a; Eglinger, et al., 2017; Parra-Avila, et al., 2016; Petersson, et al., 2017; Petersson, et al., 2016) highlighting the 

isotopic boundary (blue rectangle), represented by the Sefwi Belt in southwest Ghana, and significant reworked Archaean 

components in southeast Ghana, southern Mali and Guinea. Simplified greyscale map of the southern portion of the West 

African Craton from WAXI3. 

 We, therefore, propose that the juvenile nature of crust exposed in the study area represents 

an isotopic boundary within the crustal architecture of the WAC. Testing of this hypothesis, however, 

requires significantly more data, especially in the Ivory Coast. This data supports the conclusions 
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of a number of authors who suggest that isotopic signatures of magmatic rocks in southern Ghana 

require a second, as yet unknown, Archaean crustal source that lay southeast of the Baoulé-Mossi 

domain during crust formation (Petersson, et al., 2017; Taylor, et al., 1992). Further isotopic mapping 

of internal boundaries within the juvenile terranes of the WAC is somewhat limited by the capability 

of Hf analyses to recognise the reworking of recently created crust (Payne, et al., 2016, and references 

therein), thus impeding our understanding of the crustal architecture through Hf-isotopes alone.

 

5.6.4 A geodynamic model for the southern West African Craton

Palaeoproterozoic greenstone belts and granite-gneiss domains in the West African Craton have been 

likened to Archaean provinces based on lithological and structural associations (e.g. Delor, et al., 1995; 

Lompo, 2009; Lompo, 2010; Vidal, et al., 1996; Vidal, et al., 2009), whilst others consider greenstone 

belts in West Africa as analogous to modern volcanic arcs (e.g. Baratoux, et al., 2011; Dampare, et al., 

2008; Senyah, et al., 2016; Sylvester & Attoh, 1992). New geochemical and isotopic data presented in 

this study supports subduction-related magma generation, with most of the magmatic suites analysed 

from the Sefwi Greenstone Belt bearing geochemical signatures characteristic of arc environments. 

The proposed arc type environment is consistent with a growing body of evidence for volcanic arcs 

generated in a subduction setting within the West African Craton (Ama Salah, et al., 1996; Béziat, et 

al., 2000; Block, et al., 2016a; Lambert-Smith, et al., 2016; Parra-Avila, et al., 2017; Petersson, et al., 

2017; Petersson, et al., 2016; Sylvester & Attoh, 1992; Tapsoba, et al., 2013).

 The two end-member models generally considered for the production of TTGs through partial 

melting of hydrous metabasalts are distinguished by two contrasting geodynamic settings. The first 

geodynamic setting for TTG production is through partial melting of a basalt underplating thickened 

crust (Albarède, 1998; Atherton & Petford, 1993; Bédard, 2006; de Wit, 1998; Smithies, et al., 2005). The 

second setting is through the partial melting of a young, hot subducting slab, rather than dehydration 

melting (Foley, et al., 2002; Martin, 1986; Martin & Moyen, 2002; Rapp & Watson, 1995; Rapp, et al., 

1991), which generates melts that more closely resemble the geochemical characteristics of the high-P, 

low-HREE TTGs occurring in the Sefwi Belt. 

Juvenile magmatism documented in the study area is likely sourced from both the metasomatised 

mantle wedge as well as the subducting slab. This suggests that the geodynamic setting for crust 

production was hot enough to generate slab-derived melts, more than 250 Myrs younger than the 
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2500 Ma end-date of slab derived melts, proposed by Martin, et al. (2009), reflecting a decrease in the 

Earth’s heat production. We note the diversity and chronological evolution of magmatism in the study 

area, including subduction-related magmatism followed by emplacement of syn-collisional crustal 

melts and hybrid granitoids, which somewhat resembles those recorded in juvenile terranes from 

the late Archaean, including the Pietersburg Block of the Kaapvaal Craton (Laurent, et al., 2014) and 

the Kola and Karelian Craton (Halla, et al., 2009), elucidated by similar petrogenetic processes and 

broadly comparable geodynamic settings. In contrast to these systems however, the crustal evolution 

documented here in southern Ghana occurs in <100 Myrs, as opposed to the 1000 Myrs evolutionary 

period proposed for Archaean terranes (Laurent & Zeh, 2015). 

 Whilst magmatism in the Sefwi Belt and the adjacent domain is consistent with the peak 

magmatic activity for the eastern block of the West African Craton (Parra-Avila, et al., 2017), there 

are multiple avenues of evidence which suggest southern Ghana docked onto central Ghana and the 

central east Ivory Coast at ca. 2090 Ma. Evidence includes collision-related crust-derived granitic 

magmatism along the north west margin of the Sefwi Belt between ca. 2092 and 2081 Ma (this 

study; Hirdes, et al., 1996; Hirdes, et al., 2007) as well as high-pressure, intermediate-temperature 

metamorphism and anatexis (Ch. 4) with retrograde (post-peak T) metamorphism constrained by 

in-situ monazite U-Pb ages dated at ca. 2073 Ma. Within the broader context of the Palaeoproterozoic 

Baoulé-Mossi Domain of the WAC, diachroneity in the geochronological record suggests additional 

crustal boundaries coincide the boundary located between the Banfora and Bagoe belts of western 

Burkina Faso and southern Mali, respectively, as identified by Parra-Avila, et al. (2017). Block, et al. 

(2016b) recently proposed a collisional event at ca. 2130 Ma between NW Ghana and western Burkina 

Faso/Ivory Coast associated with peak metamorphism and crustal anatexis. This coincides with peak 

magmatism and the first phase of the westward migration of magmatism from the eastern most portions 

of the Baoulé-Mossi domain to the central crustal boundary (Hirdes, et al., 1996; Parra-Avila, et al., 

2017). Parra-Avila, et al. (2017) note a second westward migration of magmatism at ca. 2090 Ma, 

with subsequent synchronous subduction-related juvenile crust formation of the Kédougou-Kéniéma 

Inlier (Hirdes & Davis, 2002a; Lambert-Smith, et al., 2016) and high-K magmatism along the northern 

margin of the Kénéma Man Shield (Egal, et al., 2002; Eglinger, et al., 2017) during the collision of the 

Archaean and Palaeoproterozoic domains. This protracted westward migration of magmatism and 

subsequent cessation of magmatism is incompatible with the timing of collision between the Kibi Belt 

and an Archaean fragment at ca. 2140 Ma (Petersson, et al., 2017), and the subsequent collision along 
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the NW margin of the Sefwi Belt between southern Ghana and central Ghana/eastern Ivory Coast 

between 2100 and 2080 Ma (this study). The complex formation and terrane accretion of discrete 

crustal blocks therefore requires the invocation of a second driving force during the amalgamation of 

the craton, likely represented by a second subduction zone interacting with the larger, west migrating 

system. As such, we proposed that the amalgamation of the West African Craton was the product of 

multiple, diachronous docking or collisional events between discrete juvenile arc terranes. In the case 

of the Ivory Coast, NW Ghana and western Burkina Faso, the arc terranes may have developed within 

an oceanic plateau with subsequent collision causing intense structural imbrication of the buoyant 

oceanic arc lithosphere, analogous to the Belingwe Greenstone Belt and associated terranes in the 

southern Zimbabwe Craton (Kusky & Kidd, 1992), partially obscuring the early collisional history.  

 Juvenile crust of the West African Craton represents a unique episode in the geological history 

of the early Earth, immediately following a hypothesised shut down of magmatism and plate tectonics 

between 2400 and 2200 Ma (Condie, et al., 2009), and coinciding with the supposed break up of 

Archaean cratons (Bleeker, 2003). Figure 5.16 shows the spectrum of εHf(t) values yielded by magmatic 

zircons from the study area relative to the global detrital zircon record (Roberts & Spencer, 2015), 

demonstrating that the juvenile crustal growth in southern Ghana occupies the upper part of the εHf 

spectrum for the global record between ca. 2500 and 2000 Ma.

 Furthermore, in the global magmatic zircon Hf record, Condie, et al. (2011) demonstrated a 

peak in crustal reworking and a minima in juvenile crust production at 2100 Ma, which significantly 

contrasts with the crustal record of the study area and the West African Craton. We propose that 

high juvenile production and preservation recorded in West Africa is the product of the interaction 

of two northwest-dipping subduction zones. The central/northern subduction zone interacted with 

an oceanic plateau, as proposed by Boher, et al. (1992), associated with the westward migration and 

cessation of magma attributed to multiple collisional events within the craton and highly varied TTG 

and magma petrogenetic processes (Goldfarb, et al., 2017; Hirdes & Davis, 2002b; Hirdes, et al., 1996; 

Parra-Avila, et al., 2017). A smaller subduction zone to the southeast, responsible for the generation of 

the juvenile crust of southern Ghana (Sefwi, Ashanti and Kibi belts) and the collision of the unknown 

south-eastern Archean block with the Kibi Belt, with the subsequent collision along the Sefwi Belt.
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Fig. 5.16. Zircon εHf values yielded by this study presented relatively to the global detrital zircon database (Roberts & 

Spencer, 2015, and references therein), indicating the consistently radiogenic Hf signatures of magmatism in the Sefwi 

Belt, compared to the broader Hf array of the global record. 

Similar crustal evolution and growth models are proposed for the Archaean Belingwe greenstone belt 

of the Zimbabwe Craton  (Kusky & Kidd, 1992) and the Mesoarchaean Rio Maria granite-greenstone 

terrane of the Amazonian Craton  Lateral accretion, age gradients and horizontal shortening are 

predominantly interpreted as the result of subduction, with several authors proposing such features 

have characterised accretionary orogens since throughout the majority of Earth’s history (Betts, et al., 

2011; Card, 1990b; Cawood, et al., 2009; Cawood, et al., 2006; Kusky, 1989; Percival, et al., 1994). The 

amalgamation of the West African Craton requires multiple subduction zones to elucidate the wide-

spread magmatism, likely interacting with an oceanic plateau representing the recycled proto-crust, 

as well as the diachronous, distributed collision of multiple terranes. The collisions or intra-terrane 

sutures do not preserve evidence of modern collisional zones, such as ophiolite sequences or ultra-high 

pressure metamorphism associated with the subduction of continental crust (Chopin, 2003; Pearce, 

et al., 1984b), however, evidence of low apparent geothermal gradients, high-pressure—low/medium-
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temperature metamorphism and tectonic exhumation of lower orogenic crust has been demonstrated 

in a number of areas in the craton (this study; Block, et al., 2015; Block, et al., 2016b; Ganne, et 

al., 2012). We, therefore, propose that the craton represents the ancient expression of a subduction-

collision systems, with intermediate characteristics of late Archaean and Phanerozoic accretionary 

orogenic systems, supporting the concept of the secular evolution and development of modern style 

plate tectonics during the Palaeoproterozoic (Brown, 2006; Brown, 2007b). 

5.7 Conclusions

The Palaeoproterozoic domains of the West African Craton, comprising greenstone belts, large granite-

gneiss domains and wide meta-sedimentary basins share a number of characteristics with Archaean 

provinces. The proto-crust was likely extracted from the depleted mantle between ca. 2650 and 2260 

Ma, subsequently completely recycled prior to the generation of crustal material preserved in the 

Sefwi Belt between ca. 2222 Ma and 2080 Ma. Geochemical evidence presented in this study indicates 

the generation of diverse plutonic suites, including TTG granitoids, which share geochemical affinities 

with classical volcanic arc rocks whilst displaying striking similarity to Neoarchaean magmatic 

suites. Major and trace element geochemistry indicates predominantly low-K mafic sources and near 

ubiquitous positive Pb and Ba anomalies and negative Nb-Ta, P and Ti anomalies, in agreement with 

models of intra-oceanic subduction-related crustal growth for the craton. Two groups of TTGs as well 

as dioritic granitoids are emplaced synchronously from contrasting melt sources and melt depths, 

including partial melting of a young, hot subducting slab, dehydration melting of the metasomatised 

mantle wedge and shallow partial melting of a mafic source. The subsequent emplacement of quartz 

monzonites bearing hybrid characteristics and mantle derived magmas and partial melting of pre-

existing TTGs potentially represents a late extension event, associated with the opening of the 

Kumasi-Afema Domain between the Sefwi and the Ashanti belts. The emplacement of syn-tectonic 

two-mica and muscovite granites associated with crustal anatexis is associated with the collision of 

discrete crustal fragments the cessation of magmatism in southern Ghana. The diversity of magmatic 

suites documented in the study area resembles that of late Archaean terranes suggesting comparable 

petrogenetic processes, linked to the global onset of subduction-collision cycles, with Neoarchaean 

and Palaeoproterozoic terranes indicating the onset occurred locally and diachronously between 

different cratons (Laurent, et al., 2014).

εHf(t) values from analysed samples suggest the Sefwi Greenstone Belt represents an isotopic boundary 
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within the West African Craton, separating reworked or inherited Archaean crustal material in southeast 

Ghana from those in the northwest of the Baoulé-Mossi domain. This finding has two implications: (1) 

that distinct terranes within the craton may potentially be isotopically mapped, allowing us to better 

understand the crustal architecture; and, (2) that a second Archaean craton lay southeast of the WAC 

during the Palaeoproterozoic accretion of juvenile crust as indicated by subchondritic εHf values in 

the Kibi Belt, supporting the hypothesis of Petersson, et al. (2016). The most significant geodynamic 

implications of these findings is that we, therefore, have geochemical and isotopic evidence of intra-

oceanic subduction operating between two Archaean cratons, suggesting that subduction processes 

were driving tectonic activity in the WAC during the early Palaeoproterozoic. Furthermore, evidence 

of multiple subduction zones simplifies models that must reconcile rapid generation of multiple 

volcanic arcs, their diachronous accretion and preservation of such large areas juvenile crust.
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Appendix F - Fig. F1: Comparison of measured Hf standards relative to accepted values. Analyses of 

reference zircons (91500, GJ-1, Mudtank, Plešovice, R33 and MUN 1,3,4) were conducted throughout the 

session to verify accuracy and ensure reproducibility. These ratios are within the range of TIMS derived 

values reported for 91500 by Wiedenbeck, et al. (1995) (0.282290 ± 0.000014), and LA-ICP-MS values for 

GJ-1 (0.282000 ± 0.000005) (Morel, et al., 2008), Mudtank (0.282504 ± 0.000044) (Woodhead & Hergt, 

2005), Plešovice (0.282482 ± 0.000013) (Sláma, et al., 2008), R33 (0.282764 ± 0.000014) (Fisher, et al., 

2014) and doped synthetic zircon standards MUN 1, MUN3 and MUN 4 (0.282140±0.000006, 0.282135

±0.000005, 0.282141±0.000006, respectively ) (Fisher, et al., 2011).
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6.1 Discussion

6.1.1   Introduction

This thesis investigated the tectonic, metamorphic and crustal evolution on the volcano-plutonic and 

volcano-sedimentary rocks exposed in SW Ghana in the Palaeoproterozoic south-eastern portion of 

the West African Craton. The major aims of this thesis were to: 

1) understand the structural and metamorphic evolution of the Sefwi Greenstone Belt; 

2) characterise the tectonic setting and driving forces of the Palaeoproterozoic Eburnean 

Orogeny; and,

 3) investigate the geodynamic setting and processes responsible for the formation, 

amalgamation and preservation of large volumes of juvenile Palaeoproterozoic crust of the 

West African Craton, and how this reflects global geodynamic changes and the thermal 

evolution of the Earth. 

In order to explore these broad aims, this thesis encompassed a multi-scale and multi-disciplinary 

approach combining field mapping, structural geology, structural geophysics, metamorphic petrology 

and P-T modelling, whole rock major and trace element geochemistry, SHRIMP U-Pb zircon and 

monazite geochronology, LA-MC-ICP-MS Lu-Hf zircon analysis and LA-ICP-MS U-Pb detrital 

zircon geochronology. Regional lithological, structural and metamorphic mapping was conducted 

throughout the 60 000 km2 study area, from which we were able to develop a structural and metamorphic 

framework. This framework, combined with field observations and regional lithological databases, 

allowed us to interpret regional geophysical datasets to generate new litho-tectonic and metamorphic 

maps of the Sefwi Greenstone Belt and adjacent volcano-sedimentary domains. In this discussion, 

we summarise the tectonic and metamorphic history of the study area and potential tectonic models 

for the Eburnean Orogeny and discuss the insight this provides into Palaeoproterozoic orogenesis. 

In addition, we discuss the crustal evolution of southern WAC, and how this conceptual model aids 

our understanding of the evolution of global geodynamics since the Palaeoproterozoic relative to 

the modern plate tectonic regime. Finally, we highlight the opportunities derived from the thesis for 

further research in the West African Craton and other Palaeoproterozoic provinces.
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6.1.2   Evolution of the West African Craton

6.1.2.1   Tectonic and metamorphic evolution 

This thesis provides a new litho-structural and metamorphic map of the Sefwi Greenstone Belt, 

as well as parts of the Sunyani-Comoé and the Kumasi-Afema domains of southwest Ghana. The 

work combines a detailed analysis of the metamorphic conditions and thermal regimes recorded by 

tectono-metamorphic domains within the study area, revealing a far more complex metamorphic 

history than previously recognised. The thesis presents evidence of an otherwise undocumented 

migmatitic domain on the north-eastern margin of the Sefwi Belt, tectonically juxtaposed against 

high-pressure amphibolite facies rocks within the central region of the Sefwi Belt and the low-grade 

metamorphosed volcano-sedimentary rocks of the Sunyani-Comoé Domain. Documented initial low 

apparent geothermal gradients (~15°C/km) and clockwise P-T paths are associated with thrust-related 

crustal thickening, subsequent partial melting in the lower crust and shallow-crustal emplacement of 

syn-tectonic leucogranites between ca. 2092 and 2081 Ma, parallel to the north-western margin of the 

Sefwi Belt. Furthermore, high-grade metamorphism and exhumation are attributed to monocyclic 

orogenesis during Eburnean deformation in the study area, representing the tectonic accretionary 

phase of the orogen. Combined structural and metamorphic evidence is consistent with collisional 

orogenesis (England & Thompson, 1986; Thompson & England, 1984).  

 Late-orogenic exhumation along normal detachments and shear zones during regional 

transtension resulted in the tectonic juxtaposition of mid-crustal and lower-crustal rocks of the 

Sefwi Belt with the low-grade, upper-crustal rocks of the Sunyani-Comoé Domain. Constrictional 

deformation and exhumation of the lower crust are consistent with simple shear-dominated 

transtension during oblique orogenic extension or collapse (Fossen, et al., 2013), reminiscent of 

processes recorded in the Early Devonian Scandinavian Caledonides (Dewey, 1988; Krabbendam 

& Dewey, 1998). Petrological and metamorphic evidence of orogenic collapse includes symplectite 

textures, supra-solidus isothermal decompression (Duchêne, et al., 1997) and formation of anatectic 

domes  (Rey, et al., 2001; Vanderhaeghe, 2009; Vanderhaeghe & Teyssier, 2001a; Whitney, et al., 

2004). This contrasts with the metamorphic record of the study area, which is characterised by 

concurrent decreases in pressure and temperature indicating cooling during exhumation, juxtaposing 

both migmatitic and amphibolite facies rocks with greenschist facies supracrustal sequences. Post-

collisional extension, exhumation and transcurrent tectonism is favoured over orogenic collapse in 
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SW Ghana. It is interpreted on the basis of previous studies of elongate granites (Jessell, et al., 2012), 

coupled with macro-geometries of tectono-metamorphic domains, that D2 deformation in the Sefwi 

shear system is characterised by major normal, left-lateral movement. We suggest that extensional 

strain was localised along the NW margin of the Sefwi Belt due to the presence of a partially molten 

lower crust along the collisional front, which would have resulted in the mechanical weakening of the 

lithosphere (Vanderhaeghe, 2012; Vanderhaeghe & Teyssier, 2001a; Vanderhaeghe & Teyssier, 2001b). 

Our understanding of the driving force of transtension, however, is hindered by the destruction of 

the Palaeoproterozoic plate margin. Transtension may either be interpreted as the localisation of 

strain due to a change in boundary conditions, such as rollback of a far-field subduction zone, or, 

alternatively, it may represent lateral extrusion along a narrow orogenic front (Molnar & Tapponnier, 

1975; Sperner, et al., 2002; Thompson, et al., 1997b).  In terranes that have undergone extrusion, peak 

pressures along P-T-t paths coincide with peak temperatures (Thompson, et al., 1997a), however, the 

P-T-t paths derived for metamorphic rocks in the study area yield results that are inconclusive in this 

respect due to poor preservation of prograde assemblages. 

 As this thesis aimed to explore the evolution and style of tectonic processes during the 

Palaeoproterozoic, we must also consider the results in light of the alternative tectonic models.  In 

assessing the applicability of a gravitationally-driven tectonic regime, it was established in the 

introductory chapter of this thesis that sagduction of dense, cold greenstone cover into a mechanically 

weak felsic lower crust could provide a potential mechanism for the rapid burial of supracrustal 

rocks (e.g. François, et al., 2014, Ganne, et al. 2014), with corresponding lateral shortening and 

low apparent geothermal gradients. All of these features are observed in the Sefwi Greenstone Belt, 

recorded by migmatitic paragneisses of the Chiraa Domain, found in association with voluminous 

peraluminous granite intrusions, and in garnet amphibolites in the core of Sefwi Belt in the Kukuom-

Juaboso Domain. Exhumation of high-grade rocks in the vertical tectonic model requires the diapiric 

ascent of buoyant granitoids. Whilst this could potentially explain exhumation in the Chiraa Domain, 

the same can’t be said for the garnet amphibolite in the southwest of the Kukuom-Juaboso Domain, 

which is located within the major Ketesso Shear Zone, distal to any major intrusions. Alternatively, 

if the entire Sefwi Belt was sagducted, it would require the diapiric emplacement of vast granitoid 

domains immediately adjacent to the belt. This is not reflected in the crustal architecture of southwest 

Ghana nor in the isotopic record. Other features observed in the field area that contradict the vertical 

tectonic model include: dominantly lateral deformation and a near-total absence of steeply down-
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dipping mineral stretching lineations; an asymmetric crustal architecture including structurally-

controlled crust-derived peraluminous granites, orogen-parallel metamorphic gradients and sharp, 

orogen-oblique lateral metamorphic breaks; and, the presence of vast, low-grade metasedimentary 

domains either side of the belt.  Given the volume and significance of the data that disagrees with the 

sagduction model, we suggest that it is unlikely to have played a role in the tectonic evolution of the 

Sefwi Belt. 

 For the third end-member model, we emphasise that the low apparent geothermal gradients 

and narrow (<80km) orogenic front documented in this thesis are inconsistent with the hot-orogen 

model for Precambrian provinces in general (Cagnard, et al., 2011; Cagnard, et al., 2006; Cagnard, et 

al., 2007; Chardon, et al., 2009; Rey & Houseman, 2006; Rey, et al., 2003), and the West African Craton 

in particular (Chardon, et al., 2009; Vidal, et al., 2009). The findings of this thesis, therefore, support 

a plate tectonic regime, within which a nascent form of intra-oceanic subduction generated both arc-

like magmatism and TTG-like magmatism, as well as sufficient lateral deformation for collisional 

orogenesis during arc accretion. Furthermore, in the case of the broader geodynamic setting of the 

formation and amalgamation of the West African Craton, as discussed in Chapter 5, it is possible that 

there were multiple subduction zones operating simultaneously, likely in association with or adjacent 

to a Palaeoproterozoic oceanic plateau.

 The new geochronological constraints and deformation history presented in this study 

highlight the diachronous nature of the tectonic evolution of the West African Craton, warning against 

craton-scale correlation of deformation events, especially on the basis of interpreted orientation of the 

strain regime. The transition from peak metamorphic temperatures to retrogression and exhumation 

is constrained by in-situ monazite ages at ca. 2073 Ma, hosted within or aligned with D2 mineral 

assemblages. We speculate that the preceding terminal collisional event between modern-day SW 

Ghana and central Ghana/Ivory Coast occurred at ~2100 Ma, which led to the emplacement of 

syn-tectonic leucogranites along the NW margin of the Sefwi Belt between ca. 2092 and 2081 Ma 

(Agyei Duodu, et al., 2009; Hirdes, et al., 1992; Hirdes, et al., 2007). This  significantly later than 

the hypothesised collisional event between NW Ghana and SW Burkina Faso at ca. 2130 Ma (Block, 

et al. 2016). The final collision of the Palaeoproterozoic Baoulé-Mossi and Archaean Kénéma-Man 

domains occurred between ca. 2050 and 2030 Ma (Kouamelan, et al., 1997). These ages indicate lateral 

variation in the timing of deformation and metamorphism, consistent with progressive accretion and 

episodic collision of discrete crustal fragments during the Palaeoproterozoic Eburnean Orogeny. This 
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diachronous nature of deformation and metamorphism raises new questions for future research in 

the craton. For example, have all episodes of deformation and metamorphism been detected or are 

there additional internal collisions and what are the implications for the progression of the Eburnean 

Orogeny? 

6.1.2.2   Juvenile crustal growth 

The radiogenic Palaeoproterozoic continental crust exposed in Sefwi Belt was derived from a mafic 

proto-crust extracted from the depleted mantle between 2.26 and 2.65 Ga, indicative of short 

crustal residence times with  minimal reworking of Archaean-aged cratonic material (Ch. 5, this 

study; Petersson, et al., 2017; Petersson, et al., 2016). The results of coupled geochronological and 

geochemical studies indicate the coeval production of TTG-like and calc-alkaline magmas, derived 

from both partial melting of mafic crust at contrasting depths, as well as a LILE-enriched mantle 

source, with late emplacement of crust-derived felsic magmas. New U-Pb and Lu-Hf analyses indicate 

the recycling of juvenile mafic crust, with inherited zircon cores dated at ca. 2250 and 2270 Ma. 

Petrological and geochemical analyses inform us about the petrogenetic processes active during crust 

formation, including high-pressure partial melting of the subducting slab and low-pressure melting 

of mafic material generating high SiO2, sodic TTG granitoids with contrasting REE patterns, partial 

melting of the metasomatised mantle wedge forming dioritic magmas, and late-stage crust-derived 

granitic plutons. This magmatic evolution is somewhat analogous to Neoarchaean provinces in the 

Karelian and Kola cratons (Halla, et al., 2009), the Abitibi and Pontiac sub-provinces of the Superior 

Craton (Feng & Kerrich, 1992), the Rio Maria granite-greenstone terrane of the Carajás Province, 

Brazil (Almeida, et al., 2011) and the Limpopo Belt and Kaapvaal Craton of southern Africa (Laurent, 

et al., 2014). New geochronological constraints presented in this study indicate contemporaneous 

emplacement of magmas from a range of sources within a volcanic arc setting, with late emplacement 

of magma from shallow crustal sources, interpreted as the product of collision between two crustal 

blocks. As such, geochemical and isotopic evidences support crustal growth in a subduction setting 

followed by subsequent arc-arc collision during continental accretion, suturing the arc material of 

southern Ghana with the arc material of central Ghana and the Ivory Coast, which likely developed 

within, or in association with, an oceanic plateau. The magmatic evolution of the Sefwi Greenstone 

Belt falls within the Eoeburnean event of Perrouty, et al. (2012), whilst the proposed collision (this 

study) corresponds with the Eburnean sensu stricto. I suggest that division of the Eburnean Orogeny 

into multiple orogenies on the basis of pulses of magmatism must be carefully considered. Whilst 
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the two peaks of magmatic activity documented by Perrouty, et al. (2012) at ca. 2160 and ca. 2090 

Ma are likely separated by the deposition of the Kumasi Group, they most clearly demonstrate a 

change in magma chemistry from calc-alkaline and sodic tonalitic and trondhjemitic magma to more 

peraluminous, crust-derived magma, thus demonstrating a similar petrogenetic evolution to modern 

accretionary-collisional orogens. 

The proposed collision between southern Ghana and central Ghana/Ivory Coast is contemporaneous 

with volcanic arc magmatism in the far west of the West African Craton in the Kedougou-Kéniéba 

Inlier of eastern Senegal (Hirdes & Davis, 2002). As these areas are more than 1000 km apart, we 

propose that the formation and accretion of juvenile crustal domains in the West African Craton 

is associated with the interaction between two coeval, west-dipping subduction zones operating 

simultaneously, and ultimately driving episodic collision between discrete arc terranes. Greenstone 

belts of southern Ghana are the product of the smaller subduction zone operating independently of 

a larger, westward migrating subduction zone driving multiple collisional events during interaction 

with an oceanic plateau in the Ivory Coast, NW Ghana and northern Burkina Faso (Abouchami, et al., 

1990; Boher, et al., 1992), and subsequent terminal collision with the Archaean Kénéma-Man Domain 

at ~2050 to 2030 Ma. This is evident in localised age gradients preserved in both the magmatic and 

metamorphic record and proposed sutures within the craton (Block, et al., 2016; Eglinger, et al., 2017; 

Hirdes & Davis, 2002; Kouamelan, et al., 1997; Parra-Avila, et al., 2016; Parra-Avila, et al., 2017; 

Petersson, et al., 2017; Petersson, et al., 2016; Pitra, et al., 2010). This hypothesis is consistent with 

the distribution of greenstone belts, the voluminous TTG magma emplacement in the central regions 

of the southern West African Craton and the diachronous nature of high-grade metamorphism and 

deformation in the craton. In addition, the rapid formation and accretion of such terranes provides a 

plausible mechanism for the stabilisation and preservation of such a vast area of juvenile crust. 

 Finally, the geochemical, isotopic, metamorphic and structural history for SW Ghana 

presented in this study highlights the striking similarity between the Sefwi Greenstone Belt and the 

Paleoproterozoic Ile de Cayenne complex of French Guiana. They display coeval juvenile arc-related 

magmatism between 2174 and 2144 Ma with positive consistently εNd values, with subsequent crustal 

thickening and anatexis resulting in the emplacement of small syn-tectonic granite plutons along major 

shear zones, dated at 2093 ± 8 and 2083 ± 8 Ma (Delor, et al., 2003; Vanderhaeghe, et al., 1998). The 

final correlation between the two terranes comes from the timing of crustal extension and formation 

of granulite facies metamorphism is in the Guiana Shield at 2070 to 2060 Ma (Delor, et al., 2001), 
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which we interpret to be a lateral continuation of the D2 deformation and metamorphism recorded on 

the northwest margin of the Sefwi Belt. This suggests that the Sefwi Belt and the Ile de Cayenne were 

contiguous during the Palaeoproterozoic Eburnean-Transamazonian accretion/collision orogeny. 

This hypothesis is supported also by the formation of granulitic domains during late-orogenic crustal 

extension in the Ile de Cayenne (Delor, et al., 2001), potentially representing the spatial and temporal 

continuation of the constrictional deformation event documented in the Sefwi Belt in this study. 

6.1.3   Implications for Palaeoproterozoic geodynamics and orogenesis

Controversy surrounding the geodynamic setting of the formation of juvenile crust of the West African 

Craton is borne of the relatively limited geochronological constraints on the timing of deformation 

and metamorphism, as well as ambiguous or often obscured, field relationships between greenstone 

belts, granite-gneiss domains, and sedimentary basins, a problem also frequently encountered in 

Archaean terranes (Condie, 1981; de Wit, 1998). We conclude that the magmatic record of the West 

African Craton represents an ancient example of the subduction-collision tectonics, with a crustal 

evolution reminiscent of a number of Neoarchaean provinces formed at the advent of “modern-

subduction” processes (Laurent, et al., 2014; Martin & Moyen, 2002). It represents the amalgamation 

of arc terranes forming in an intra-oceanic setting. We emphasise that the original distribution of 

the terranes may have been thousands of kilometres apart, with their amalgamation requiring the 

closure of multiple oceans over the ~ 200 Myr evolution of the Eburnean-Transamazonian Orogeny, 

potentially analogous to the Miocene geodynamics of the Maramuni arc of Papua New Guinea, and 

the South Pacific (Holm, et al., 2016; Holm, et al., 2015; Schellart, et al., 2006). 

 The Neoarchaean to Palaeoproterozoic period coincides with a number of significant changes 

in the Earth, including changes in the tectonic style, secular evolution recorded in the metamorphic 

record and evolving chemistry of magmatic rocks (e.g. Brown, 2006; Brown, 2007; Dhuime, et al., 

2012; Keller & Schoene, 2012; Laurent, et al., 2014). This is a unique period prior to the Neoproterozoic 

appearance of blueschist facies or ultra-high-pressure (UHP) metamorphism and tectonic indicators, 

such as ophiolite sequences, attributed to the modern plate tectonic regime (Stern, 2005; Stern, 

2007). It is widely accepted that the ambient upper-mantle temperatures were hotter in the past (e.g. 

Herzberg, et al., 2010; Labrosse & Jaupart, 2007), which likely affected the tectonic style and the 

rheology of the lithosphere (Burov & Yamato, 2008; Burov, 2011; Sizova, et al., 2010; van Hunen & 

van den Berg, 2008). Rey and Coltice (2008) propose that the secular cooling of the Earth over the 
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Archaean-Proterozoic transition is coupled with a cooling and strengthening of continental crust, 

after which, the continental crust should theoretically support thrust-related crustal thickening and 

elevated topography. This study supports a growing body of research in the West African Craton that 

demonstrates thrust-related crustal thickening and structurally-controlled exhumation in a relatively 

strong lithosphere (Block, et al., 2016; Feybesse, et al., 2006; Hirdes, et al., 2007).  The tectonic style 

and orogenic model proposed for SW Ghana bears a number of similarities to collisional orogenesis 

documented in the Archaean Barberton terrain (Diener, et al., 2013; Moyen, et al., 2006) and the 

Archaean Abitibi Sub-province (Daigneault, et al., 2002; Mueller, et al., 1996) and the Early Devonian 

Western Gneiss Region of the Scandinavian Caledonides (Dewey, 1988; Krabbendam & Dewey, 

1998). In the Palaeoproterozoic rocks of southern Ghana, the absence of UHP rocks, akin to those 

found that characterise the Scandinavian Caledonides, highlights a conundrum in Neoarchaean to 

Mesoproterozoic terranes eloquently elucidated by Brown (2007). Brown poses the question as to 

whether the absence of such rocks reflects: a) the inactivity of deep subduction and generation of UHP 

rocks at this time in the Earth’s history, or, b) the inability of the early Earth lithosphere to exhume rocks 

from such depths, on the basis of elevated geotherms resulting in a rheologically weaker lithospheric 

plate. We suggest that the crustal record of the West African Craton represents nascent subduction-

related plate tectonics, tempered by elevated lithospheric temperatures during the Palaeoproterozoic 

relative to today. This is supported by coeval generation of slab-derived high-pressure TTGs, which 

requires elevated geotherms in the downgoing slab, and calc-alkaline dioritic magmas characteristic 

of a modern arc terrane. Furthermore, the metamorphic record reveals cold apparent geothermal 

gradients and HP-LT and HP-MT metamorphic assemblages similar to modern collisional orogens 

(this study; Block, et al., 2015; Ganne, et al., 2012). The absence of UHP assemblages likely reflects 

the inability of the slightly warmer and weaker Palaeoproterozoic crust to generate or exhume such 

assemblages, supporting the hypothesis of Sizova, et al. (2014), who propose a secular evolution of 

collisional orogenesis during the Proterozoic. The hybrid Archaean-Phanerozoic characteristics of 

subduction-related magmatism and subduction-collision-related metamorphism suggests that the 

evolution of geodynamic processes may have been a smooth progression, with gradual adoption of 

modern characteristics and the appearance of classic tectonic indicators occurring in the Palaeo- 

and Mesoproterozoic. If this is the case, Palaeoproterozoic terranes around the world may provide 

the missing link between archaic and modern tectonic regimes, thus warranting further geological 

research. 



267

6.1.4   Recommendations for future research

Based on the findings of this thesis, more thorough, suite-specific geochemical and isotopic analysis 

would further improve our understanding of the temporal evolution of magmatism and petrogenetic 

processes within the Sefwi Greenstone Belt. The expansion of the TerraneChron® program (Parra-

Avila, 2015, and references therein) may facilitate wider scale isotopic mapping of the craton and 

to examine the possibility of variance in the age of the 2300– 2200 Ma proto-crust being recycled 

in the WAC, as evidenced by the limited inherited zircon data. Alternatively, continued systematic, 

regional Lu-Hf, Sm-Nd and O isotope analysis may provide greater insight into the timing of mantle 

contribution and reworking of existing crust (e.g. Hawkesworth & Kemp, 2006). In addition, this may 

help better resolve questions regarding the mono- or polycyclic history of the Eburnean Orogeny by 

informing us about the true basement of the West African Craton.

 Continued high-resolution mapping within the belt at a domain-scale may provide additional 

insight into deformation within each domain as well as information regarding the tectonic nature of 

domain boundaries. Such studies could be complemented by structural mapping and geochronological 

studies conducted across the width of the Sunyani-Comoé and Kumasi-Afema domains to better 

constrain the relative timing of volcano-sedimentary deposition and deformation of each domain, as 

well as potentially elucidating the stratigraphic and tectonic relationships with the Bui and Ashanti 

greenstone belts. Lu-Hf dating of garnet growth from throughout the Sefwi Belt would elucidate the 

timing of HP metamorphism and D1 deformation for better correlation between domains within 

the belt. Additional geochronological constraints on the timing of high-grade metamorphism and 

mineralisation in both the Sefwi Belt and Ashanti Belt would greatly improve our understanding of 

the relative timing of deformation between the two greenstone belts, and their spatial association 

during the Eburnean Orogeny.  

 It is recommended that future research focuses on continued high-resolution mapping of 

high-grade terranes, particularly along shear zones within central and south-western Ivory Coast, in 

order to investigate other potential sutures within the craton. This may be supplemented with isotopic 

studies to investigate other potential isotopic boundaries in order to better understand the crustal 

architecture of the West African Craton. Additional analysis of O-isotope systematics in zircons from 

the WAC would greatly complement Hf data by providing insight into the geodynamic setting of 
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crust formation as well as information on the interaction of mantle-derived melts and supracrustal 

material exposed to near-surface processes, such as hydrothermal alteration (Valley, 2003). Structural 

studies should be complemented by quantitative calculations of metamorphic P-T paths and direct, 

high-precision dating of deformation and metamorphism. There should be a degree of caution 

when considering correlating craton-wide magmatic and tectonic events, as this leads to an over-

simplification of stratigraphic and tectonic relationships and a loss of detail, which is detrimental to 

the understanding of the growth and amalgamation of the craton. Furthermore, we suggest that the 

Eoeburnean vs Eburnean relationship be reassessed in a more detailed, spatial context in order to 

better understand lateral age gradients and tectono-thermal relationships between adjacent terranes. 

6.2 Conclusion

The Palaeoproterozoic crust of the West African Craton provides a natural laboratory to explore 

the geodynamic and orogenic links between the Archaean and the Proterozoic, preserving a unique 

period of juvenile crustal growth in the global rock record. The magmatic, tectonic and metamorphic 

evolution of the Palaeoproterozoic West African Craton reflects a nascent horizontal plate tectonic 

regime, highlighting the progressive changes in the geochemical and metamorphic record.

Within this thesis, I established a new magmatic framework for the Palaeoproterozoic Sefwi 

Greenstone Belt, which indicated juvenile crust production and collision of subduction-related intra-

oceanic arcs. Striking similarities exist between the petrogenetic processes and magmatic evolution 

of SW Ghana and Neoarchaean terranes as well as modern arc systems. The geochemical and isotopic 

record of the region reflects the gradual adoption of modern petrogenetic and crustal processes. This 

is supported by the tectonic and metamorphic history of the region, characterised by initial thrust-

related crustal thickening and generation of HP-MT metamorphic conditions which is interpreted 

to represent the collision of arc terranes. The subsequent tectonic exhumation of the lower crust is 

evidence of strengthening of the lithosphere, inconsistent with the proposed hot-orogen model for the 

early Proterozoic.  The implication of this proposed geodynamic and tectonic evolution for the West 

African Craton informs our understanding of the global tectonic regime and secular cooling of the 

early Earth.
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Appendix A – Supplementary data I – IV 
 

The following information was used to constrain the new litho-tectonic maps for southwest Ghana. 

 

Fig. A1SI. Map of displaying survey coverage of airborne magnetic surveys. The residual magnetic intensity 

(RMI) was reduced to the pole (RTP) to remove any asymmetry of magnetic anomalies caused by the 

inclination of the Earth’s magnetic field. The RTP images highlight the N-S artefacts commonly produced by 

the RTP transformation when performed in areas of low latitude (Li, 2008; MacLeod, et al., 1993).  

 

Table A1SI. Individual airborne magnetic survey details. 
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Fig. A2SI. Bouguer gravity anomaly grid highlighting the dominant northeast trend in the regional 

architectures, with gravity highs associated with the central Sefwi Greenstone Belt and the Ashanti Greenstone 

Belt in the southeast. The Kumasi-Afema Domain between the two belts is associated with a 40km-wde 

intermediate gravity anomaly, and intermediate to low-gravity anomalies associated with the Sunyani-Comoé 

Domain.  
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Fig. A3SI. Negative reduced to the equator (RTE) of residual magnetic intensity (RMI) grid in colour using to 

interpret litho-tectonic domains and some lithology distribution with greyscale first vertical derivative (1VD) 

overlay to highlight magnetic fabrics and major lineaments.  
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Fig. A4SI. Composite image displaying a greyscale scale digital elevation model with 90m resolution 

(Shuttle Radar Topographic Mission, SRTM, 2000) with an overlay of a ternary image of gamma-ray signal 

from three channels, K, eTh, and eU, highlighting the partial coverage of radiometric data of the study area. 
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Appendix B – Magnetic susceptibility histograms 

 

Fig. B1. Compilation of measured magnetic susceptibility values for lithologies in the study area. 

Measurements were made using an RT-1 Magnetic Susceptibility Meter. 
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Appendix C – Pseudosection data files 
 

Perplex data files for pseudosection calculation. 

 

Refer to electronic data files with prefix “Ch4_AppendixC_Perplex” 

 

 

Appendix D – Geochronology of southern Ghana 
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Appendix E – Hf standard results 
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Appendix F – Hf standards vs accepted values 
 

 

 



 
 

296 
 

 

Appendix F -  Fig F1: Comparison of measured Hf standards relative to accepted values. Analyses of reference 

zircons (91500, GJ-1, Mudtank, Plešovice, R33 and MUN 1,3,4) were conducted throughout the session to 

verify accuracy and ensure reproducibility. These ratios are within the range of TIMS derived values reported 

for 91500 by Wiedenbeck, et al. (1995) (0.282290 ± 0.000014), and LA-ICP-MS values for GJ-1 (0.282000 ± 



 
 

297 
 

0.000005) (Morel, et al., 2008), Mudtank (0.282504 ± 0.000044) (Woodhead & Hergt, 2005), Plešovice 

(0.282482 ± 0.000013) (Sláma, et al., 2008), R33 (0.282764 ± 0.000014) (Fisher, et al., 2014) and doped 

synthetic zircon standards MUN 1, MUN3 and MUN 4 (0.282140±0.000006, 0.282135±0.000005, 

0.282141±0.000006, respectively ) (Fisher, et al., 2011). 
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