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List of notations and definitions

The next list describes several notations and definitions for some spaces, products and norms that
are used within the thesis.

EH1
0 (Ω),(T ) Space of functions w in space H1

0 (Ω) for ∀t ∈ [0,T ]

such that t → w(·,x) is in L2(0,T )

EH(div,Ω),(T ) Space of functions w in space H(div,Ω) for ∀t ∈ [0,T ]

such that t → w(·,x) is in L2(0,T )

(w1,w2)(Ω) := (w1,w2)L2(Ω) Inner product in space L2(Ω)

=
∫

Ω
w1 ·w2dx

(w1,w2)1(Ω) := (w1,w2)H1
0 (Ω) Inner product in space H1

0 (Ω)

=
∫

Ω
∇xw1 ·∇xw2dx

(w1,w2)K(Ω) :=
∫

Ω
σσσ(w1) : εεε(w2)dx Inner product in space related to the elastic potential energy

(w1,w2)M(Ω) :=
∫

Ω
ρw1 ·w2dx Inner product in space related to the kinetic energy

∥w∥(T ) := ∥w∥L2(T ) L2-norm in time [0,T ]

∥w∥
∞(T ) := supt∈[0,T ] |w| L∞-norm in time [0,T ]

∥w∥(Ω) :=
√
(w,w)(Ω) L2-norm in space

∥w∥1(Ω) :=
√
(w,w)1(Ω) H1-norm in space

∥w∥K(Ω) :=
√
(w,w)K(Ω) Norm in space related to the elastic potential energy

∥w∥M(Ω) :=
√

(w,w)M(Ω) Norm in space related to the kinetic energy

∥w∥K(Ω),(T ) :=
√∫ T

0 ∥w∥2
K(Ω)dt L2-norm in time of the elastic potential energy

∥w∥K(Ω),∞(T ) := supt∈[0,T ] ∥w∥K(Ω)(t) L∞-norm in time of the elastic potential energy

∥w∥M(Ω),(T ) :=
√∫ T

0 ∥w∥2
M(Ω)dt L2-norm in time of the kinetic energy

∥w∥M(Ω),∞(T ) := supt∈[0,T ] ∥w∥M(Ω)(t) L∞-norm in time of the kinetic energy
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4 Introduction

1.1 Context

Wave propagation in homogeneous media and its numerical modelling have been widely developed
for many years [1, 27, 85, 108]. However, when waves propagate in heterogeneous media, where the
physical properties of media vary continuously or discontinuously, waves interact with heterogeneities
and a lot of complicated phenomena arise: reflection, refraction, diffraction, scattering, interference,
attenuation, dispersion, etc. [1, 78, 103, 153]. Due to this complex nature, direct numerical simulations
on the fine grids become prohibitively expensive and the quantities that are classically considered
as relevant for quality control of numerical solutions are always highly oscillating in time-space. It
is therefore important and necessary to develop efficient, accurate and even new methods for the
quantification of numerical errors.

This work deals with the numerical analysis of wave propagation problems in heterogeneous
media and the a posteriori error estimation for its finite element solutions, which allows assessing and
controlling their quality.

This project has various applications in different domains, such as the numerical modeling of
polycrystalline permeability to ultrasonic waves [15, 16, 69, 145]. Crystalline solids are composed
of large quantities of grains (or crystallites). Each grain can belong to a specific class of crystal
symmetry exhibiting anisotropic elasticity and possess a unique crystallographic orientation from the
neighbouring grains. An elastic wave travelling through a polycrystalline material gets scattered at
grain interfaces due to crystallographic misorientations of adjacent grains. This scattering leads to a
loss of energy by the coherent wave and results in apparent wave attenuation and noise signals, which
depend on ultrasonic frequency, grain size and shape, and the elastic properties of the crystallites.
Understanding elastic wave interactions with these media is very important for non-destructive testing
[30]. Figure 1.1 illustrates ultrasonic wave propagation in a polycrystalline material.

This project can also be applied in geophysics [49, 121, 149]. Seismic or elastic wave propagation
through the earth plays an important role in understanding damages during earthquakes. It is known
that the materials in the earth are highly heterogeneous and their elastic properties vary with the depth
from one region to another. Although this variation may be gradual, there exist also discontinuities
that separate media with different elastic coefficients. The existence of arbitrary-shaped interfaces,
inclusions and fractures requires an efficient treatment [4, 99, 100]. Considering that the earth has
strong heterogeneities and complex geometries, its numerical modelling is quite a challenging problem.
Figure 1.2b gives P-wave velocity of the Marmousi2 model. The geometry of this model is based
on a profile through the North Quenguela trough in the Cuanza basin [36, 107]. Figure 1.2c shows a
simulation of P-wave propagation in soil.

Furthermore, in geophysics, the length scale is of the order of the kilometre and the physical
properties vary continuously or discontinuousely, while in the polycrystalline application, the length
scale is of the order of the micrometre and the anisotropic material properties are discontinuous from
one grain to another. Even if the involved scales and the frequency of waves are very different in the
two cases and the polycrystalline materials reveal much more discontinuities at the interfaces, they
present similar issues when efficient numerical simulations are sought for.
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(a) (b)

Fig. 1.1 (a) polycrystalline microstructure, (b) simulation of quasi-P wave propagation in polycristals
(by MSSMat, CentraleSupélec)

(a)

(b) (c)

Fig. 1.2 (a) example of horizontal heterogeneity at the global scale: geology map of the surface of the
Earth [39], (b) Marmousi2 P-wave velocity [107], (c) simulation of P-wave propagation in soil (by
MSSMat, CentraleSupélec)
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1.2 Modelling of elastic wave propagation in heterogeneous media

In this section, we start with the introduction of the elastodynamic equation in homogeneous
media. Then different types of waves and various propagation phenomena in heterogeneous media are
presented. Finally, the high frequency (HF) wave propagation in the weak coupling regime studied in
this work is introduced in detail.

1.2.1 Wave propagation in homogeneous media

We introduce firstly the elastic wave propagation in homogeneous media in an open domain
Ω ⊆ R3 and R3 stands for the general three-dimensional Euclidean space. The density of media is
denoted by ρ . The displacement field is denoted by u(t,x) : (0,T )×Ω → R3, where x ∈ Ω is the
spatial position vector. The second-order Cauchy stress tensor is denoted by σσσ(t,x) and f stands for
the density of body force.

Then the second-order elastodynamic equation reads:

ρ∂
2
t u(t,x)−∇x ·σσσ(u(t,x)) = f ∀(t,x) ∈ (0,T )×Ω (1.1)

where ρ is independent of x in the homogeneous case and ∇x is the gradient with respect to x. The
stress field σσσ is defined by the generalized Hooke’s law:

σσσ(t,x) = C : εεε(t,x) (1.2)

where C is the fourth-order elasticity tensor, independent of x in the homogeneous case. For homoge-
neous isotropic elastic materials [1], eq. (1.2) becomes:

σσσ = λ tr(εεε)I3 +2µεεε (1.3)

where tr(·) is the trace operator, I3 is the 3×3 identity matrix, and λ ,µ are two Lamé parameters.The
strain tensor εεε is defined by:

εεε(t,x) = ∇x ⊗s u(t,x) =
1
2

(
∇x ⊗u(t,x)+(∇x ⊗u(t,x))T

)
(1.4)

where ⊗s is the symmetrized tensor product of two vectors, ⊗ is the tensor product and the superscript
T stands for the transpose.

Equation (1.1) is solved subject to the initial conditions and the boundary conditions. At initial
instant t = 0, the displacement and the velocity are defined as:

u(0,x) = u0(x), ∂tu(0,x) = v0(x) ∀x ∈ Ω (1.5)
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The boundary conditions mean that the displacement and/or the stress vectors are specified on ∂Ω,
such as Dirichlet or Neumann boundary conditions [152]:

u = 0 on (0,T )×Γu, σσσ(u) ·n = h on (0,T )×Γσσσ (1.6)

where h denote the density of surface force.

In the particular case of harmonic plane waves, the displacement fields have the following form:

u(t,x) = Uei(x·k−tω) (1.7)

where U is the wave mode defining the polarization direction and amplitude, i is the imaginary unit, k
is the wave vector which specifies the direction of propagation and ω is the angular frequency of wave.
Now introducing eq. (1.7) to eq. (1.1) and taking f = 0, the so-called Christoffel equation is obtained:(

ω
2I3 −ΓΓΓ(k)

)
·U = 0 (1.8)

where the Christoffel tensor ΓΓΓ is defined as (with Einstein summation convention): ∀W,

ΓΓΓ(k) ·W = ρ
−1 (C : (W⊗s k)) ·k i.e. Γik = ρ

−1Ci jklk jkl (1.9)

From eq. (1.8) it is known that the polarization vector U and ω2 are respectively the eigenvector and
eigenvalue of ΓΓΓ(k). The wave propagation modes can be obtained by using eigendecomposition. For
homogeneous isotropic elastic materials, ΓΓΓ(k) has three eigenvalues:

ω
2
1 =

λ +2µ

ρ
|k|2 , ω

2
2 = ω

2
3 =

µ

ρ
|k|2 (1.10)

The corresponding eigenvectors or polarization directions of waves are respectively denoted by three
unit vectors k̂, k̂⊥

1 and k̂⊥
2 . k̂ = k

|k| is the eigenvector of ω2
1 and

{
k̂⊥

1 , k̂⊥
2
}

are the eigenvectors of ω2
2

such as (k̂, k̂⊥
1 , k̂⊥

2 ) form an orthonormal triplet. Equation (1.10) are called the dispersion relation
for each wave mode. The first eigenvalue corresponds to the P-wave mode and the other one with
multiplicity of two to the S-wave mode:

ωp = cp |k|=

√
λ +2µ

ρ
|k| , ωs = cs |k|=

√
µ

ρ
|k| (1.11)

where cp and cs are respectively velocities of P-wave and S-wave. P-waves propagate at a higher
velocity than do the S-waves and the two S-waves in an isotropic medium propagate at the same
velocity.

We presented above the pure body waves P and S. The mode of propagation of a P-wave is always
longitudinal and a S-wave is transverse (fig. 1.3, left). They can travel through the interior of a
body such as the Earth’s inner layers. When waves meet the boundary or the interface between two
homogeneous materials, they can be reflected and transmitted between each other and conversions
between P and S-waves exist. Surface waves, in contrast to body waves can only move along the
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Fig. 1.3 Body waves (left) and surface waves (right) (Encyclopædia Britannica, Inc.)

surface [1, 151]. There are two types of surface waves: Love waves and Rayleigh waves [7]. The Love
wave is polarized in the horizontal direction perpendicular to the propagation path, while Rayleigh
waves have an ellipsoidal polarization in the vertical plane through the path of propagation (fig. 1.3,
right).

1.2.2 Phenomena and scattering regimes for wave propagation in heterogeneous me-
dia

Now we focus on heterogeneous media, where physical properties of media C depend on x (ρ
can also depend on x but here we assume it constant).

As we mentioned in the section 1.1, various complex phenomena appear when different types of
waves propagate in heterogeneous media. More specifically, waves are reflected when they encounter
boundaries of material properties through which they are traveling. When waves meet the interface
between two media of different material properties, they change directions and this phenomenon
is called refraction. Diffraction refers to the ability of waves to bend around corners or slits and to
spread whenever they encounter obstacles. Attenuation is the term used to account for loss of wave
amplitude due to all mechanisms, including absorption, scattering, and mode conversion. Scattering
refers to wave radiation from heterogeneity acting as secondary sources of radiation due to excitation
by the incident wave. An example of illustration of some phenomena mentioned above is given in
fig. 1.4.

Specifically, scattering can be classified into different regimes according to the characteristic
length scales [8, 154]. In fact, it is known that wave propagation in heterogeneous media is a
multi-scale problem both mathematically and numerically, and different phenomena can happen for
different scales involved. There are at least three fundamental length scales for wave propagation
problems: the propagation distance L, the characteristic length of heterogeneity lc (the scale on
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Fig. 1.4 Acoustic wave propagation phenomena: specular reflection, diffuse reflection, refraction and
diffraction [84]

which the heterogeneous medium varies) and the dominant wavelength λ . Also, the amplitude of
the fluctuations of heterogeneities σ2 has to be considered. The following scattering regimes and
phenomena can be described with different values of dimensionless parameters ξ := klc = 2πlc/λ

and ε := λ/L [155]:

1. quasi-homogeneous or effective medium regime: ξ < 0.01,σ2 ≈ 1 and ε ≈ 1. The medium
can be regarded as quasi-homogeneous, because the heterogeneous scale length lc is very small
compared to the typical wavelength λ . The homogenization methods with a deterministic
effective wave equation can be applied [38, 56, 98].

2. Rayleigh scattering regime: 0.01 ≤ ξ < 0.1. The amount of scattered energy in 3D is propor-
tional to k4, leading to apparent attenuation of high frequencies [34, 62]. In the case that the
scattering field is much weaker than the incident field, Born approximation is used [69, 133],
based on the expansion of elastic constants whose variations are very weak σ2 ≪ 1.

3. weak coupling regime: 0.1 ≤ ξ ≤ 10,σ2 ≪ 1,ε ≪ 1. In this regime where the heterogeneity
scale length is in the same order with the wavelength and small compared to the propagation
distance and the fluctuations of the inhomogeneities are weak, full interactions between wave
fields and media can be observed. This regime cannot be treated by usual homogenization and
multi-scale techniques. In this case, the transport or the radiative transfer equations are the
appropriate models to describe the propagation of the wave energy [17, 119]. In the chapters 3
and 4, our work focuses on applications in this regime.
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4. forescattering regime: ξ ≫ 1. The wavelength is small compared to the length of heterogeneity
and the scattered wave energy is mainly concentrated near the forward direction. In this case
the parabolic approximation for the full wave equation can be used [43]. It describes a one-way
(forward direction) wave propagation, since the back-scattered waves are very weak. The
scattering problem becomes a focusing diffraction and interference problem [93, 94].

1.2.3 High frequency setting

The high frequency wave propagation, when we assume the wavelength is small compared to the
propagation distance (i.e. ε ≪ 1), is specifically introduced here. It should be studied in a different and
specific way compared to the low or mid frequency wave propagations. The most relevant observables
for modelling wave propagation in HF limit are no longer the wave field uε or its derivatives, but
rather its quadratic quantities like energy or energy density. It can be understood by a simple example
discussed in [25, 123].

Considering the following wave field x → uε(x), which oscillates with an amplitude a(x) and its
mean function u(x):

uε(x) = u(x)+a(x)sin
x
ε
, 0 < ε ≪ 1 (1.12)

uε(x) has no strong limit when ε → 0, although a(x) and u(x) vary slowly. However, for any
continuous function ϕ(x) having a compact support on R, a weak limit can be obtained:

lim
ε→0

∫
R

ϕ(x)(uε(x))2dx =
∫
R

ϕ(x)
(

u2(x)+
1
2

a2(x)
)

dx (1.13)

as a consequence of Riemann-Lebesgue’s lemma. The observation function ϕ(x) allows computing
a smoothed “energy” of uε(x), locally at a selected point of interest x, given by u2(x)+ 1

2 a2(x), and
quantifying the influence of oscillations with amplitude a at that point (fig. 1.5). Above all, this weak
limit has no longer the oscillating properties of uε(x).

Fig. 1.5 The function uε(x) (thin solid line), its mean u(x) (thick solid line) and its square root weak
limit (u2(x)+ 1

2 a2(x))
1
2 (thick dashed line) [25]
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Similarly, for wave propagation problems, the highly oscillatory features of quantities such as the
velocity and pressure fields (for acoustic waves) or the displacement and stress fields (for elastic waves)
are more difficult to understand in a high frequency regime. The energy or the energy density arise
as the most relevant observables for the characterization of HF wave propagation. These quadratic
quantities are no more highly oscillating. More details can be found in [25, 123, 156]. In this context,
we shall thus consider the evolution of the energy density (i.e. Wigner measure, presented in detail in
the chapters 3 and 4) associated to high frequency acoustic or elastic waves.

1.2.4 Kinetic model for high frequency wave propagation in the weak coupling limit

When high frequency elastic waves propagate in random media in the weak coupling limit, i.e.

λ ≈ lc ≪ L, σ
2 ≪ 1 (1.14)

and the background physical properties of weakly heterogeneous media can be modelled by a
superposition of a homogeneous or slowly varying part, called also slowly background, and a fast
fluctuating part, a kinetic model which describes the evolution of wave energy will arise.

Its derivation can be based on the use of the Bethe-Salpeter equation for the propagation of
correlations, which satisfies the principle of conservation of total wave energy and the second law
of thermodynamics [72, 73]. Or more precisely mathematically, a multi-scale asymptotic analysis
by Wigner transforms and their interpretation in terms of semiclassical operators can also be used
[17, 123]. For example, Ryzhik et al. [119] derived and analyzed radiative transfer equations for
the energy density of acoustic, electromagnetic, and elastic waves in random media with the spatial
Wigner transform; Baydoun et al. [25] assessed the influence of material anisotropy on the radiative
transfer regime of elastic waves in randomly heterogeneous media. All these methods allow deriving
a transport equation (for homogeneous media) or a radiative transfer equation (for heterogeneous
media) from the wave equation in terms of energy densities in phase space. We present the main
derivation steps of this equation obtained by Wigner transform for homogeneous and heterogenous
media respectively in the sections 3.2.1 and 4.1.2.

In general, analytical solutions do not exist for the radiative transfer equation. However, when
considering scalar wave propagation in an isotropic homogeneous background medium, it can be
solved analytically [73, 112, 147].

Bal and Pinaud [20] compared particularly the energy densities of wave fields by solving the
acoustic wave equation with those obtained by solving the radiative transfer equation. The wave
equation was simulated by a finite difference forward scheme in time and the radiative transfer
equation was solved numerically by Monte Carlo method [91, 106]. Finally a good agreement was
found between the two energy quantities integrated in a subdivision of the studied 2D random media.
It illustrates the equivalence of these two equations in the weak coupling regime and allows validating
the weak limit proposed by the theory of radiative transfer in random media.

As we presented above, the energy density is a more relevant observable in the high frequency
limit than wave fields and the radiative transfer equation is equivalent to the wave equation in random
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media in terms of energy. Thus in this work, we aim at studying this new equation and quantifying
errors of numerical solutions of the wave equation in terms of energy based on it.

1.3 Error estimation for numerical solutions of wave equation

For wave propagation in heterogeneous media with complex phenomena presented in the sec-
tion 1.2.2, described by the partial differential equation (PDE) with varying coefficients and initial or
boundary conditions, it is typically impossible to find exact analytical solutions. Various numerical
methods are used to find an approximate numerical solution. It is important to verify their validity
and quality by some tools of error estimation.

1.3.1 Numerical methods for wave equation

In dynamics, the usual discretization of problem combines space discretization and a time-stepping
scheme. The most common numerical methods for space discretization in elastodynamics are the finite
difference method (FDM) [33, 130, 148] and the finite element method (FEM) [75, 124, 131, 157].
Others include the spectral method [64, 139], the boundary-element method (BEM) [21, 104], the
finite-volume method (FVM) [52, 92].

More specifically, the FDM, based directly on the strong formulation of PDE, discretizes the exact
solution through approximations of the partial differential operators. It is mainly adapted to simple
geometries. The FEM is based on the variational or the weak form of PDE. It is better adapted to
complicated geometries, but sometimes requires more memory space for numerical simulations than
FDM. The spectral element method (SEM) [59, 87] is a formulation of FEMs with a subdivision of
the computational domain into hexahedral elements. The most important property of the SEM is that
the mass matrix is diagonal by construction, which saves time and memory. The BEM transforms
PDE describing a boundary value problem to an equivalent representation by integral equations with
known and unknown boundary states. Hence, it only requires discretization of the boundary surface
rather than the volume, i.e., the dimension of problems is reduced by one. However, the BEM matrix
is a unsymmetric and full matrix with non-zero coefficients and the FEM matrix is much larger but
very sparsely populated. It means that the latter can be stored and solved more efficiently. Besides,
the transformation of PDE to boundary integral equations requires the use of Green function, which is
difficult and restricts the applications of the BEM, especially for problems in heterogeneous media.
Based on the strong formulation of PDE, the FVM divides the domain into elements (called “control
volume”). By the divergence formula, an integral formulation of the fluxes over the boundary of the
control volume is then obtained. The fluxes on the boundary are discretized with respect to the discrete
unknowns. The FVM is usually used in solving fluid flow problems. As the FEM, the advantage of
the FVM is that it is easily formulated to allow for unstructured meshes.

The FEM is chosen in this work. It has been widely used for solving wave propagation problems
[48, 146]. Here we present in brief the discretization for the wave equation with the FEM and the
related notations and definitions.
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Firstly, the weak form of the wave equation (1.1) with initial conditions (1.5) and boundary
conditions (1.6) is built by introducing a test function w:

∀t, find u(t, ·) ∈ V(Ω) with u(0,x) = u0(x), ∂tu(0,x) = v0(x) such that ∀w ∈ V(Ω),

(∂ 2
t u,w)M(Ω)+(u,w)K(Ω) = (f,w)(Ω)+ ⟨h,w⟩(Γσσσ )

(1.15)

where V(Ω) is the space of kinematically admissible displacements. The products in eq. (1.15) are
defined as:

(u,w)(Ω) =
∫

Ω

u ·wdx, (u,w)K(Ω) =
∫

Ω

σσσ(u) : εεε(w)dx,

(u,w)M(Ω) = (ρu,w)(Ω), ⟨u,w⟩(Γσσσ )
=

∫
Γσσσ

u ·wdx
(1.16)

Let Vh(Ω) be a subspace of V(Ω), the FEM consists in reconstructing solutions expanded on a basis
{wh} of Vh(Ω), which is defined using a spatial mesh Th, a partition of the domain Ω into elements
(S). The letter h stands for the maximal diametre of the elements. A semi-discretized weak form of
the variational problem (1.15) reads:

∀t, find uh(t, ·) ∈ Vh(Ω) with uh(0,x) = u0,h(x), ∂tuh(0,x) = v0,h(x) such that ∀wh ∈ Vh(Ω),

(∂ 2
t uh,wh)M(Ω)+(uh,wh)K(Ω) = (f,wh)(Ω)+ ⟨h,wh⟩(Γσσσ )

(1.17)

The approximate displacement field uh is defined by:

uh(t, ·) = ∑
A,k

UAk(t)wA(x)ek (1.18)

where A is the node of mesh, k stands for the direction in space, ek is the unit vector in direction
k, wA is the shape function at node A, UAk is the node displacement at node A and in direction k.
Equation (1.17) can be expressed in the following matrix form:

[M]
{

Ü(t)
}
+[K]{U(t)}= {F(t)} (1.19)

where {U(t)} is the node displacement vector for instant t, [M] is the mass matrix and [K] is the
stiffness matrix defined respectively by:

M(Ak)(Bl) = (wAek,wBel)M(Ω), K(Ak)(Bl) = (wAek,wBel)K(Ω) (1.20)

and {F(t)} is the vector of forces:

F(Bl) = (f,wBel)(Ω)+ ⟨h,wBel⟩(Γσσσ )
(1.21)

For solving the system (1.19), various time-stepping schemes can be chosen for the second-order
time derivative, such as the forward finite difference scheme [60], the Newmark scheme [105], etc.
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Take the forward finite difference scheme as an example. The interval (0,T ) is divided into
equal subintervals In = (tn, tn+1) (n ∈ [0,N − 1] with t0 = 0 and tN = T ) of length ∆t. We denote
un

h∆t = uh(tn) (u0
h∆t = u0), the time-stepping scheme reads:

∂
2
t un

h∆t =


∂t un

h∆t−∂t un−1
h∆t

∆t , n ∈ [1,N]

a0, n = 0
with ∂tun

h∆t =


un

h∆t−un−1
h∆t

∆t , n ∈ [1,N]

v0, n = 0
(1.22)

Then time discrete solutions un
h∆t are found for all n with eq. (1.22) and eq. (1.19). The semi-

discretization in space and time-stepping scheme presented above can also be based on a first-order
equation by introducing u = ∂tv.

Space-time finite element methods, with or without the continuity in time, can also be used in
elastodynamics. For instance, the time discontinuous space-time Galerkin (DG) method has been
developped for solving the wave equation [76, 95, 140]. It is based on the following strong first-order
form of eq. (1.1): ρ∂tv(t,x)−∇x ·σσσ(u(t,x)) = f

∇x · (σσσ(∂tu(t,x)−v(t,x))) = 0
(1.23)

The time period is subdivided as in what we presented for the time-stepping scheme above. Let a
finite element space Vn(Mn) is given for each space-time slab Mn = In ×Ω. The weak form of DG
method is then formulated as follows:

find (u,v) ∈ ∏
N−1
n=0 Vn(Mn)×Vn(Mn) such that ∀w = (wu,wv) ∈ ∏

N−1
n=0 Vn(Mn)×Vn(Mn)

A((u,v),w) = L(w) (1.24)

with

A((u,v),w) =
N−1

∑
n=0

∫
In

(∂tv,wv)M(Ω) dt +
N−1

∑
n=0

∫
In

(u,wv)K(Ω)dt︸ ︷︷ ︸
equilibrium

+
N−1

∑
n=1

(
[v]n,wn

v,+
)

M(Ω)
dt +

(
v0
+,w

0
v,+

)
M(Ω)︸ ︷︷ ︸

continuities of v in time

+
N−1

∑
n=0

∫
In

(∂tu,wu)K(Ω)dt −
N−1

∑
n=0

∫
In

(v,wu)K(Ω)dt︸ ︷︷ ︸
equivalence of ∂t u and v

+
N−1

∑
n=1

∫
In

([u]n,wn
u,+)K(Ω)dt +(u0

+,w
n
u,+)K(Ω)︸ ︷︷ ︸

continuities of u in time

,

L(w) =
(
v0,w0

v,+
)

M(Ω)
+(u0,w0

u,+)K(Ω)︸ ︷︷ ︸
initial conditions

+
N−1

∑
n=0

∫
In

(f,wv)(Ω)dt +
N−1

∑
n=0

∫
In

⟨h,wv⟩(Γσσσ )
dt︸ ︷︷ ︸

boundary conditions
(1.25)

where un
±(x) = limτ→0+ u(tn ± τ,x), [u]n = un

+−un
−.

According to eq. (1.24), the displacement and velocity fields (u,v) are continuous in space
and discontinuous in time between two successive space-time slabs and the continuity in time is
enforced only weakly. To solve eq. (1.24) numerically, the time-space domain Mn is discretized by
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a space-time finite element mesh, and un
h∆t and vn

h∆t are then obtained. In our studies, the choice of
Vn(Mn) = P1(In)×Vn(Ω) is adopted, where P1(In) stands for the linear interpolation in In. In this
work, only one linear element is used in time within each space-time slab. More details can be found
in [82].

We denote always (uh∆t ,vh∆t) for finite element solutions used in this work (obtained by the time
discontinuous space-time Galerkin method with code OOFE, MSSMat, CentraleSupélec): in the
chapter 2, they stand for reconstructed time continuous solutions based on the obtained time discrete
solutions

{
(un

h∆t ,v
n
h∆t)

}
; in the chapters 3 and 4, they stand for time discrete solutions

{
(un

h∆t ,v
n
h∆t)

}
.

1.3.2 Error estimation methods

Finite element analysis involves always different sources of errors that can compromise the validity
of the finite element solutions. One major source of errors is introduced by the spatial-temporal
discretization (other sources of errors, such as modelling error, user error, etc. [111, 143], exist but
our introduction here is mainly related to the discretization error). These errors can be lowered by
using smaller mesh sizes or higher order polynomial basis functions, etc., according to some criteria
that characterize the accuracy of the finite element solutions. Error estimation is an important tool for
quantifying and controlling the errors between the exact solutions and the finite element solutions.

There are mainly two types of error estimates that serve very different purposes:

• a priori error estimate is derived before computing numerical solutions. It tells us the order of
convergence for a given finite element method, i.e. how fast the error decreases as the mesh
size decreases or the interpolation order increases [14, 40]. When u is regular enough and uh∆t

has some regularities in time, an a priori error estimate usually takes the following form:

∥u−uh∆t∥ ≤C(hk +(∆t)l) (1.26)

where the constant C depends on exact solutions u, k > 0, l > 0, ∥·∥ is some time-space
norm. When spatial and temporal approximations are improved, the approximate solutions
approach the exact ones and the error goes to 0. However the exact solutions are usually
unknown. This method has been already largely applied for the wave equation: Jenkins et al.
[80] derived optimal a priori error estimates for mixed finite element displacement formulations
of the acoustic wave equation; Deka [46] proposed optimal a priori error estimates for both
semidiscrete and fully discrete schemes for the wave equation and it is verified with a numerical
example; other contributions include [3, 22, 60, 76, 114].

• a posteriori error estimates give us a much better idea of the actual errors in a given finite
element computation than a priori estimates. They can be used to perform adaptive mesh
refinement [138, 141]. More specifically, a posteriori error estimators are used to indicate
where the error is particularly high, then the mesh is refined in those locations. A new finite
element solution is computed, and the process is repeated until a satisfactory error tolerance is
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reached. A posteriori error estimates usually take the form:

∥u−uh∆t∥ ≤ η =

{
N−1

∑
n=0

∑
S∈Th

(ηn
S )

2

} 1
2

(1.27)

for dynamic problem. Here ηn
S (uh∆t) is a quantity related to uh∆t at tn and in element S ∈ Th.

It is called element estimator or indicator. In contrast to a priori estimates, it is used for a
practical a posteriori assessment of the accuracy of a computed finite element solution.

One may formulate the following properties describing an optimal a posteriori error estimate
[6, 150]:

1. guaranteed upper bound: ensure that eq. (1.27) holds;

2. local efficiency: ensure that the local estimator represents a lower bound for the actual
errors, up to a multiplicative constant, i.e. there exist a constant C > 0 such that :{

∑
S∈Th

(ηn
S )

2

} 1
2

≤C∥u−uh∆t∥In
, ∀n ∈ [0,N −1] (1.28)

With these two properties it is known that the error estimator should yield guaranteed and
sharp upper and lower bounds of the actual errors.

3. asymptotic accuracy: ensure that the effectivity index:

Ieff =
η

∥u−uh∆t∥
(1.29)

i.e. the ratio of the estimated and actual error, goes to one as h and ∆t decrease;

4. robustness: guarantee the three preceding properties independently of the parameters of
the problem and of their variations;

5. small evaluation cost: ensure that the computational cost needed for the evaluation of the
estimators ηn

S should be much smaller than the cost required to obtain the approximate
solution itself;

A variety of methods are developed for a posteriori error estimates (see [6] for a review of main
methods for error estimation): element residual method [13, 47, 50], recovery based methods
by Zienkiewicz and Zhu [158], the constitutive relation error method by Ladevèze [88, 89],
goal-oriented dual weighted method [51, 110, 117], etc. Most of these methods have been
successfully applied for error control of elliptic and parabolic problems [23, 28, 29, 44, 45,
54, 55, 117]. However, there are relatively less studies on the error control of finite element
methods for second-order hyperbolic problems [3, 22, 136, 137].

For example, Georgoulis et al. [60] derived a posteriori error bounds of residual type in the
L∞(L2)-norm for for the space-discrete problem and the fully-discrete implicit finite element
method of the linear wave equation, using elliptic reconstruction and space-time reconstruction
technique. Johnson [82] proved a priori and a posteriori error estimates for a finite element



1.4 Objectives 17

method for linear second-order hyperbolic equations based on a finite element discretization
with discontinuous Galerkin methods. Only the error due to space discretization is considered
and the error estimates are derived using elliptic reconstruction. Picasso [114] proposed an
anisotropic a posteriori error estimate. It was derived for a finite element discretization of the
wave equation in two space dimensions and numerical results on adapted meshes indicated
that the error estimator slightly underestimates the true error. The works of Aubry et al. [10]
were based on a space-time Galerkin formulation for elastodynamics. It provides a variational
formulation of the error with respect to the residual. The adjoint state gives an upper bound of
the error by the norm of the residuals.

1.4 Objectives

The aim of our work is developing tools of error estimation for numerical solutions of wave
equation in heterogeneous media.

Firstly, a residual-type a posteriori error representation is proposed for finite element solutions
of the elastodynamic equation, based on works of Ibrahima [77] for the error estimation of the
elastodynamic and acoustic equations. In fact, Vohralík [150] has derived a posteriori error estimates
in an energy norm for the first-order (in time) heat equation. Ibrahima attempted to extend his idea
to the elastodynamic problem but some difficulties appear when dealing with the second-order time
derivative term in time. We continued and prolonged his efforts and developed an explicit error
estimation in energy norm for the elastodynamic equation.

Secondly, we plan to quantify HF wave propagation in the weak coupling limit, where strong
interactions between wave fronts and the heterogeneous medium generate complex propagation
phenomena. This is the primary objective in this work. As discussed in the section 1.2, the energy or
more generally quadratic quantities are the most relevant observables in the high frequency limit, and
the radiative transfer equation for the energy density arises in the weak coupling regime. We propose
that numerical errors can be evaluated with radiative transfer equation in terms of energy quantities
of numerical waves. The main objective is defining a new evaluation method of numerical errors of
wave fields with this new equation, and determining the distribution of mesh size h related to wave
length λ and lc with a more relevant criterion in terms of energy quantities.

In brief, instead of using the classical error method for highly oscillating fields based on the wave
equation for uh∆t (fig. 1.6, dashed line), the new errors in terms of energy quantities of wave fields
Wε [uh∆t ] (Wε and W denote respectively the Wigner transform and its weak limit, i.e. the Wigner
measure) are used to build a posteriori error analysis based on the radiative transfer equation (fig. 1.6,
solid line). Difficulties are expected in the aspect of the computation of Wigner transform because of
its dependance on four variables (t,x;ω,k) and the complexity of radiative transfer equation for high
dimensions.

It is worth noticing that errors quantified by these two methods have different sources. The first
method is classical, only the modelling by the elastic wave equation is considered, and we study the
discretization error arising in the finite element solutions of this model. The second method proposes
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Fig. 1.6 Principle of the two a posteriori error estimations considered in this thesis

to use the radiative transfer model for evaluating the errors of numerical finite element solutions of
the wave equation. Thus the defined errors can be considered including both the discretization error
and “modelling error”, which is the gap between the averaged energy quantities of the exact solutions
of the wave equation in a set of "similar" cases and the weak limit defined by the radiative transfer
equation for that set.

The manuscript is organized as follows.

In the chapter 2, an explicit a posteriori residual based error upper bound is developed theoretically
and numerically for the elastodynamic equation. Basically two main ideas are developed: the second-
order elastodynamic equation is transformed firstly to a first-order hyperbolic system; and the residual
method of a posteriori error estimates is exploited with a series of field reconstructions in time and in
space. A numerical application with 1D homogeneous and heterogeneous media is given.

Then we develop a residual error estimator for the high frequency wave equation in the weak
coupling regime based on radiative transfer modelling in terms of energy quantities. It is realized in
homogeneous media in the chapter 3 and heterogeneous media in the chapter 4. This part is the major
contribution in this PhD work.

In the chapter 3, we present in detail the Wigner transform and its interest for the analysis of
wave equations. We show how it can be used to determine the phase-space energy densities in the
high frequency limit and to derive the transport equation in homogeneous media in terms of Wigner
measure, the weak limit of the Wigner transform of wave fields. Then a residual type error is based
on this equation and it is validated numerically with different mesh sizes in 1D media.

In the chapter 4, following the same idea as the chapter 3, the radiative transfer equation in
heterogeneous media is presented. In 1D media, the analytical solutions can be found and the
propagation phenomena are introduced and analyzed. A discussion on strong localization is proposed
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to analyze the numerical results in 1D and to verify the radiative transfer regime. Then the residual
errors are defined based on this equation in terms of Wigner transform of approximate solutions of
the wave equation. Considering the numerical fluctuations in the calculation of Wigner transform
in heterogeneous media, the convolution properties of Wigner transform are used to define a filtered
error. Numerical implementation in 1D random media allows to validate these two residual errors.
We find that the second one with convolution improves greatly the results of the first one.

Some conclusions and perspectives are finally drawn in the chapter 5.
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This chapter introduces a new a posteriori error estimation for numerical solutions of a second-
order hyperbolic wave equation, based on the work of Ibrahima [77] and Vohralík [150]. A key feature
is the use of the residual method and the development of a series of reconstructions in time and in
space with respect to different regularities required by corresponding ingredients of the obtained error
bound.

At first, different reconstructions in time and in space are introduced and discussed in the sec-
tion 2.1. Then the section 2.2 gives the detailed proof of the obtained estimator. In the section 2.3,
numerical results for wave propagation in 1D media are presented for numerical solutions with
uniform mesh. Specifically, the behaviour of exact errors and the effectivity of the error bound are
studied numerically.
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2.1 Reconstructions in time and in space of finite element wave solu-
tions

Reconstruction methods have been widely used to construct a posteriori error estimates for finite
element approximations. For instance, Mozolevski and Prudhomme [109] proposed a goal-oriented
error estimation in finite element approximations of second-order elliptic problems that combines
the dual weighted residual method and equilibrated-flux reconstruction methods for the primal and
dual problems. The ZZ-type error estimators due to Zienkiewicz and Zhu [159, 160] are based
on reconstruction of an improved stress and define the error as the difference between this stress
and the one computed by the standard finite element procedure. The constitutive relation error
method proposed by Ladevèze [90] consisted in post-processing the finite element solution in order to
construct an admissible displacement-stress pair and then defining error bounds by quantifying the
non-verification of the constitutive relations.

In this chapter, we consider the case where approximate solutions (un
h∆t ,v

n
h∆t) at all instant tn are

calculated by the finite element method. It means that they are discrete in time (fig. 2.1a). Since
time integration properties and some regularities in time are required to deduce the error bound,
reconstructions in time can be applied to obtain solutions inside each In with some regularities. In
general, the continuity in space of the exact solution is maintained in the finite element analysis, i.e.
un

h∆t and vn
h∆t are piecewise polynomial and continuous in space. However, the derivative of finite

element solutions in space, and consequently the finite element stress vectors are not continuous
across element interfaces [150]. Furthermore, the point-wise strong equilibrium is generally not
verified (fig. 2.1b), i.e.

σσσ(un
h∆t) /∈ H(div,Ω), ρ∂tvn

h∆t −∇x ·σσσ(un
h∆t) ̸= f (2.1)

where σσσ(·) stands for the stress tensor related to a displacement field. Compared to un
h∆t , σσσ(un

h∆t) has
the same regularity in time but a reduced regularity in space.
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Fig. 2.1 (a) finite element solutions (un
h∆t ,v

n
h∆t) in time, (b) exact and finite element stress in space
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Consequently, according to the requirement of regularities by the proposed a posteriori error
estimator (section 2.2), some reconstructions in time and in space are proposed here:

• two reconstructions in time for displacement and velocity fields, denoted respectively by
uh∆t(t,x) and vh∆t(t,x);

• one reconstruction for stress fields in space, denoted by σσσh∆t(t,x).

These reconstructions are also appropriately chosen in order to simplify or eliminate some terms in
the proposed error estimator. We give the detailed definitions of reconstructions that are used in the
sections 2.2 and 2.3 as follows.

Firstly, uh∆t and vh∆t satisfy always: ∀n ∈ [0,N −1],

uh∆t(tn, ·) = un
h∆t , vh∆t(tn, ·) = vn

h∆t (2.2)

with initial conditions: uh∆t(0, ·) = u0 and vh∆t(0, ·) = v0. According to the minimum required
regularities for our error estimation, (uh∆t ,vh∆t) should satisfy in time:

uh∆t ∈C0((0,T )), i.e. C0 in time (2.3a)

vh∆t ∈C1((0,T ))∩∏
n

C2(In) i.e. C1 in time and C2 in each time interval In (2.3b)

Also, it is known that if the values of a time function and its derivatives at two extremities of each
time interval In are given as (wn,wn+1,∂twn,∂twn+1), we can reconstruct a function C1 in time, cubic
in each time interval In by the following equation (fig. 2.2):

w(t) :=
(t − tn+1)

2(2t + tn+1 −3tn)
(∆t)3 wn +

(t − tn)2(−2t − tn +3tn+1)

(∆t)3 wn+1

+
(t − tn+1)

2(t − tn)
(∆t)2 ∂twn +

(t − tn)2(t − tn+1)

(∆t)2 ∂twn+1
(2.4)
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Fig. 2.2 A reconstruction C1 in time, cubic in each In (cubic Hermite interpolation)
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The velocity reconstruction vh∆t is introduced firstly. According to eq. (2.3b), vh∆t can be recon-
structed by eq. (2.4) with (vn

h∆t ,v
n+1
h∆t ,a

n
h∆t ,a

n+1
h∆t ), with an

h∆t := ∂tvh∆t(tn, ·),∀n. If the Newmark scheme
is used in time, accelerations are already given. For other schemes such as the time discontinuous
Galerkin method, an

h∆t has to be defined. We have the following two definitions of vh∆t for different
definitions of an

h∆t .

Definition 2.1 (Basic v-reconstruction). We call basic v-reconstruction the velocity field obtained
with (vn

h∆t ,v
n+1
h∆t ,a

n
h∆t ,a

n+1
h∆t ) by eq. (2.4), where an

h∆t is computed by finite difference:

an
h∆t :=


vn+1

h∆t −vn
h∆t

∆t for n = 0

vn+1
h∆t −vn−1

h∆t
2∆t for n ∈ [1,N −1]

vn
h∆t−vn−1

h∆t
∆t for n = N

(2.5)

Definition 2.2 (Equilibrated v-reconstruction). We call equilibrated v-reconstruction the velocity field
obtained with (vn

h∆t ,v
n+1
h∆t ,a

n
h∆t ,a

n+1
h∆t ) by eq. (2.4), where an

h∆t is computed by mechanical equilibrium:

∀n, (ρan
h∆t ,wh)(Ω)+(σσσ(un

h∆t),εεε(wh))(Ω) = (fn,wh)(Ω) (2.6)

The computational cost of acceleration in the first v-reconstruction eq. (2.5) is ignorable compared to
that in the second one eq. (2.6). Indeed, the computational expense in the latter results mainly from
the inverse of the mass matrix. In explicit dynamic analysis, it is at the same cost with the computation
of finite element solutions. This is efficient if a diagonalized mass matrix is used. But its influence on
reconstructions is not studied here.

Then two definitions are also proposed for the displacement reconstruction uh∆t :

Definition 2.3 (Basic u-reconstruction). We call basic u-reconstruction for the displacement field
obtained by eq. (2.4) with (un

h∆t ,u
n+1
h∆t ,v

n
h∆t ,v

n+1
h∆t ) (C1 in time, cubic in each time interval In).

Definition 2.4 (Equilibrated u-reconstruction). We call equilibrated u-reconstruction the displacement

field obtained with (un
h∆t ,u

n+1
h∆t ,u

n+ 1
2

h∆t ) (C0 in time, quadratic in each time interval In), where ∀n,

un+ 1
2

h∆t := uh∆t(tn + ∆t
2 ), i.e. the value of uh∆t at the centre instant of In, obtained by mechanical

equilibrium with the following algorithm:

1. reconstruct equilibrated velocity field vh∆t with definition 2.2 and compute

∂tv
n+ 1

2
h∆t = ∂tvh∆t(tn +

∆t
2
) (2.7)

for the centre point of In;

2. compute un+ 1
2

h∆t by equilibrium:(
ρ∂tv

n+ 1
2

h∆t ,wh)

)
(Ω)

+

(
σσσ(un+ 1

2
h∆t ),εεε(wh)

)
(Ω)

=
(

fn+ 1
2 ,wh

)
(Ω)

; (2.8)
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3. reconstruct quadratic uh∆t with the three fields (un
h∆t ,u

n+1
h∆t ,u

n+ 1
2

h∆t ) in each In.

It is noted that in eq. (2.8), the computation of un+ 1
2

h∆t requires to invert the stiffness matrix, which is
much more expensive than the inverse of the mass matrix, especially for large models.

Finally, considering the reconstructions in space, since ∇x ·σσσ(uh∆t) is not locally in equilibrium
as we introduced before, we propose the following stress reconstruction:

Definition 2.5 (Equilibrated σ -reconstruction). Let vh∆t be the reconstructed velocity field (C1 in time,
cubic in each time interval In), we call equilibrated σ -reconstruction any function σσσh∆t constructed
from vh∆t which satisfies:{

σσσh∆t(t,x) ∈ EH(div,Ω),(T )

(ρ∂tvh∆t −∇x ·σσσh∆t ,1)(S) = (f,1)(S) ∀t ∈ (0,T ), ∀ S ∈ Th
(2.9)

where EH(div,Ω),(T ) denotes space of functions σσσ such σσσ(t, ·) belongs to H(div,Ω) in space and
t → σσσ(·,x) is in L2(0,T ). We define also the reconstructed time derivative of stress:

δδδ h∆t(t,x) := ∂tσσσh∆t , δδδ h∆t ∈ EH(div,Ω),(T ) (2.10)

More precisely, σσσh∆t and ∂tvh∆t have the same regularities in time, i.e. C0 in time and quadratic in
each time interval. If f is not locally quadratic in time intervals, we can take its quadratic interpolation
as approximation. Note that eq. (2.9) is only a weak form of the equilibrium equation because it holds
only for mean values on each mesh element. Thus σσσh∆t(t,x) is not unique with this definition. We
propose the following two reconstructions of σσσh∆t that satisfies the definition 2.5:

Definition 2.6 (MRE σ -reconstruction). We call the MRE (Minimum Regularity Ensured) σ -
reconstruction any σσσh∆t , that is continuous and piecewise linear in space and obtained by the following
strategies. As ∇x ·σσσh∆t is constant in each S, by eq. (2.9), we have:

∇x ·σσσh∆t =
1

V (S)

∫
S
(ρ∂tvh∆t − f)dx (2.11)

where V (S) is the volume of element S. Given the constant derivative of σσσh∆t in each element,
one more parameter, such as a Neumann-type boundary condition, is needed so as to determine a
continuous and piecewise linear reconstructed stress. σσσh∆t is then determined by minimizing the
residual errors.

Definition 2.7 (SA σ -reconstruction). We call SA (Statically Admissible) σ -reconstruction the
statically admissible stress construction proposed by Ladevèze and Pelle [90], namely it should verify:

∀t, ρ∂tvh∆t −∇x ·σσσh∆t = f, in S (2.12)

It is known that with the Ladevèze method, at each time step tn, a SA stress field σσσh∆t(tn) is
reconstructed using the weakly equilibrated finite element stress solutions σσσ(un

h∆t). In our case,
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in order to obtain a stress field σσσh∆t(t) that is continuous in the whole time and quadratic in each
time interval, a SA stress field σσσh∆t(tn+ 1

2 ) should be reconstructed and for this the equilibrated u-
reconstruction at tn+ 1

2 is used. We recall that the latter is based on the equilibrated v-reconstruction
according to the definition 2.4. We will see in the section 2.2 that the use of the SA σ -reconstruction
allows to cancel one of the indicators and simplify the calculations of the residual error estimators.

The table 2.1 summarizes our propositions of reconstructions presented in this section. They all
satisfy the requirement in the obtained error bound and we can make choice according to our demands
in numerical applications.

fields name description

uh∆t
basic u-reconstruction using (un

h∆t ,v
n
h∆t), ∀n

equilibrated u-reconstruction using un
h∆t and un+ 1

2
h∆t (equilibrium at tn+ 1

2 ), ∀n

vh∆t basic v-reconstruction using (vn
h∆t ,a

n
h∆t), an

h∆t by FD, ∀n

equilibrated v-reconstruction using (vn
h∆t ,a

n
h∆t), an

h∆t by equilibrium, ∀n

σσσh∆t
MRE σ -reconstruction weak equilibrium verified with mean value

SA σ -reconstruction strong equilibrium verified

Table 2.1 Reconstructions in time and in space

2.2 A posteriori error estimate for wave equation

In this section, we present the derivation of an a posteriori error upper bound in an energy
norm between the unknown exact solutions (u,v) and the reconstructed solutions (uh∆t ,vh∆t). Only
homogeneous Dirichlet boundary conditions are considered here for simplicity.

The main result of the explicit a posteriori error upper bound in energy norm is given here:

Theorem 2.8. (Error upper bound for elastodynamic problems) Let (uh∆t ,vh∆t ,σσσh∆t) a group of
reconstruction fields chosen in the table 2.1, we have√

∥ v−vh∆t ∥2
M(Ω),∞(T ) + ∥ u−uh∆t ∥2

K(Ω),∞(T ) ≤ 2∥HR,DF∥∞(T )+2HR,DF(0)+2
√

T∥HV N∥(T )

+2
√

T∥HDE,GV∥(T )+
√

2
√
∥HR,DF∥(T )∥HV N∥(T )

(2.13)
where ∥ v−vh∆t ∥2

M(Ω),∞(T )+ ∥u−uh∆t ∥2
K(Ω),∞(T )= supt∈[0,T ] ∥ v−vh∆t ∥2

M(Ω) (t)+ ∥u−uh∆t∥2
K(Ω) (t).

The three time dependent residual functions used above are defined below.
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The lack of equilibrium function HR,DF(t) is defined as:

HR,DF(t) =

{
∑

S∈Th

(ηR,S(t)+ηDF,S(t))
2

} 1
2

(2.14)

with:
ηR,S(t) =

CphSCK√
λmin

∥f(t,x)−ρ∂tvh∆t(t,x)+∇x ·σσσh∆t(t,x)∥(S) (2.15)

ηDF,S(t) =
1√
λmin

∥σσσh∆t(t,x)−σσσ(uh∆t)(t,x)∥(S) (2.16)

The lack of equilibrium rate function HDE,GV (t) is defined as:

HDE,GV (t) =

{
∑

S∈Th

(ηDE,S(t)+ηGV,S(t))
2

} 1
2

(2.17)

with:
ηDE,S(t) =

CphSCK√
λmin

∥∥−∂tf(t,x)+ρ∂
2
t vh∆t(t,x)−∇x ·δδδ h∆t(t,x)

∥∥
(S) (2.18)

ηGV,S(t) =
1√
λmin

∥−δδδ h∆t(t,x)+σσσ(∂tuh∆t(t,x))∥(S) (2.19)

The velocity residual HV N(t) is defined as:

HV N(t) = ∥∂tuh∆t(t,x)−vh∆t(t,x) ∥K(Ω) (2.20)

where hS is the mesh size of element S, λmin is the smallest eigenvalue of the fourth-order tensor
C, Cp is the constant in the Poincaré’s inequality (theorem A.5) and CK is the constant in the Korn
inequality (theorem A.6).

In HR,DF , ηR,S represents the errors related to equilibrium equation and ηDF,S represents the
errors between the reconstructed stress and the stress of reconstructed displacement. ηR,S vanishes
in the case of SA σ -reconstruction according to the definition 2.7. ∥HR,DF∥(0) allows involving the
initial conditions. HDE,GV results from the residual of time derivative of equilibrium. HV N evaluates
the nonconformity between time derivative of the reconstructed displacement and the reconstructed
velocity, which equals to 0 only at tn for our choices of reconstructions.

As a preliminary step to the proof of this theorem, we first define a residual operator and prove a
lemma related to it.

Definition 2.9 (Residual operator Rh∆t). We define the following residual operator Rh∆t such that
∀t ∈ (0,T ):

(Rh∆t(t),w)(Ω) = (f(t)−ρ∂tvh∆t(t),w)(Ω)− (σσσ(uh∆t)(t),εεε(w))(Ω) (2.21)
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where w is considered as an H1
0 function in space.

According to the regularities of ∂tvh∆t and uh∆t , Rh∆t is C0 in time and C1 in each time interval.
Its time derivative ∂tRh∆t (L2 in time) can be obtained by:

(∂tRh∆t ,w)(Ω)(t) = (∂tf−ρ∂
2
t vh∆t ,w)(Ω)(t)− (σσσ(∂tuh∆t),εεε(w))(Ω)(t) (2.22)

Otherwise, eq. (2.21) can be written as:

(Rh∆t ,w)(Ω) = (f−ρ∂tvh∆t +∇x ·σσσ(uh∆t),w)(Ω)+ ∑
S∈Th

⟨σσσ(uh∆t) ·n,w⟩(∂S) (2.23)

where the last term gives rise to the stress vector jumps at the interfaces of elements. Thus this operator
involves both the volume and surface residuals. Also, by adding and substracting the equilibrated
stress reconstruction σσσh∆t into the definition of residual Rh∆t in eq. (2.21), we have

(Rh∆t ,w)(Ω) = (f−ρ∂tvh∆t +∇x ·σσσh∆t ,w)(Ω)+(σσσh∆t −σσσ(uh∆t),εεε(w))(Ω) (2.24)

It can be seen that this operator contains also the residual of different reconstructions in time.

Finally, according to the weak formulation, we have:

(Rh∆t ,w)(Ω)(t) = (ρ∂t(v−vh∆t),w)(Ω)(t)− (σσσ(u−uh∆t),εεε(w))(Ω)(t) (2.25)

The definition of ∂tRh∆t in eq. (2.22) and the property in eq. (2.25) will be used in the derivation
of the theorem 2.8.

Lemma 2.10 (Upper bound of residual Rh∆t). ∀t ∈ (0,T ), we have:

(Rh∆t ,w)(Ω) (t)≤ HR,DF(t)∥w∥K(Ω) (t) (2.26)

and∫ t

0
(Rh∆t ,∂tw)(Ω) dτ ≤ ∥HDE,GV∥(t) ∥w∥K(Ω),(t)+HR,DF(t)∥w∥K(Ω) (t)+HR,DF(0)∥w∥K(Ω) (0)

(2.27)
where w is H1

0 in space, C0 in time and C1 in each time interval.

Proof. We prove firstly the equation (2.26) based on eq. (2.24). According to the definition 2.5 of
σσσh∆t and assuming that wS is the average of w in element S, we have:

(ρ∂tvh∆t −∇x ·σσσh∆t ,wS)(S) = (f,wS)(S), ∀ S (2.28)
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Decomposing eq. (2.24) in space into each element S and introducing eq. (2.28) into eq. (2.24), we
can deduce that:

(Rh∆t ,w)(Ω) = ∑
S∈Th

(f−ρ∂tvh∆t +∇x ·σσσh∆t ,w−wS)(S)+ ∑
S∈Th

(σσσh∆t −σσσ(uh∆t),εεε(w))(S) (2.29)

For the first term in eq. (2.29), using respectively Cauchy-Schwarz inequality (theorem A.7), Poincaré’s
inequality, Korn’s inequality and that λmin is the smallest eigenvalue of the fourth-order tensor C:

(f−ρ∂tvh∆t +∇x ·σσσh∆t ,w−wS)(S) ≤ ∥f−ρ∂tvh∆t +∇x ·σσσh∆t∥(S) ∥w−wS∥(S)
≤CphS ∥f−ρ∂tvh∆t +∇x ·σσσh∆t∥(S) ∥w∥1(S)

≤CphSCK ∥f−ρ∂tvh∆t +∇x ·σσσh∆t∥(S) ∥εεε(w)∥(S)

≤
CphSCK√

λmin
∥f−ρ∂tvh∆t +∇x ·σσσh∆t∥(S) ∥w∥K(S)

= ηR,S ∥w∥K(S)

(2.30)

where ηR,S is defined in eq. (2.15). For the second term in eq. (2.29), using again the Cauchy-Schwarz
inequality and the definition of λmin results in:

(σσσh∆t −σσσ(uh∆t),εεε(w))(S) ≤ ∥σσσh∆t −σσσ(uh∆t)∥(S) ∥εεε(w)∥(S)

≤ 1√
λmin

∥σσσh∆t −σσσ(uh∆t)∥(S) ∥w∥K(S)

= ηDF,S ∥w∥K(S)

(2.31)

where ηDF,S is defined in eq. (2.16). Introducing eq. (2.30) and eq. (2.31) into eq. (2.29), then applying
again the Cauchy-Schwarz inequality, we obtain eq. (2.26):

(Rh∆t ,w)Ω(t)≤ ∑
S∈Th

(ηR,S(t)+ηDF,S(t))∥w∥K(S) (t)

≤

{
∑

S∈Th

(ηR,S(t)+ηDF,S(t))
2

} 1
2

∥w∥K(Ω) (t)

= HR,DF(t)∥w∥K(Ω) (t)

(2.32)

Now the same idea of proof can be applied for the second result eq. (2.27) of lemma 2.10.
Replacing w by ∂tw, applying integration by parts in time and using eq. (2.22), we have:∫ t

0
(Rh∆t ,∂tw)(Ω)dτ =−

∫ t

0
(∂tRh∆t ,w)(Ω)dτ +(Rh∆t ,w)(Ω)(t)− (Rh∆t ,w)(Ω)(0) (2.33)
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Adding and substracting the reconstructed time derivative of stress (eq. (2.10)) into the first term of
eq. (2.33) results in:

−
∫ t

0
(∂tRh∆t ,w)(Ω)dτ =

∫ t

0
(−∂tf+ρ∂

2
t vh∆t −∇x ·δδδ h∆t ,w)(Ω)dτ −

∫ t

0
(δδδ h∆t −σσσ(∂tuh∆t),εεε(w))(Ω)dτ

(2.34)
It can be observed that we can proceed with the same steps of proof with eq. (2.24). We have:

− (∂tRh∆t ,w)(Ω)(t)≤ HDE,GV (t)∥w∥K(Ω) (t) (2.35)

where HDE,GV is defined in eq. (2.17). Finally, introducing eq. (2.35) into eq. (2.33), using the
Cauchy-Schwartz inequality to obtain time-space norm, then applying eq. (2.26) for the last two terms
of eq. (2.33), we deduce:∫ t

0
(Rh∆t ,∂tw)(Ω)dτ ≤ ∥HDE,GV∥(t) ∥w∥K(Ω),(t)+HR,DF(t)∥w∥K(Ω) (t)+HR,DF(0)∥w∥K(Ω) (0)

(2.36)

Now we start to prove theorem 2.8:

Proof. (Theorem 2.8)

∀t, we have:

1
2
∥ v−vh∆t ∥2

M(Ω) (t)+
1
2
∥ u−uh∆t ∥2

K(Ω) (t)

=
1
2

∫ t

0

{
d
dt

∥v−vh∆t∥2
M(Ω)+

d
dt

∥u−uh∆t∥2
K(Ω)

}
dτ +

1
2
∥v−vh∆t∥2

M(Ω) (0)+
1
2
∥u−uh∆t∥2

K(Ω) (0)

=
∫ t

0
(ρ∂t(v−vh∆t),v−vh∆t)(Ω) dτ +

∫ t

0
(σσσ(u−uh∆t),εεε(∂t(u−uh∆t)))(Ω) dτ

(2.37)
The last two terms related to the initial conditions vanish according to hypothesis for reconstruction
fields at t = 0: uh∆t(0, ·) = u0 and vh∆t(0, ·) = v0. Then by adding and subtracting ∂tuh∆t in the first
term of the last line of eq. (2.37) and using the definition 2.9 of Rh∆t with w = ∂t(u−uh∆t), we get:

1
2
∥ v−vh∆t ∥2

M(Ω) (t)+
1
2
∥ u−uh∆t ∥2

K(Ω) (t)

=
∫ t

0
(ρ∂t(v−vh∆t),∂tuh∆t −vh∆t)(Ω) dτ +

∫ t

0
(ρ∂t(v−vh∆t),v−∂tuh∆t)(Ω) dτ

+
∫ t

0
(σσσ(u−uh∆t),εεε(∂t(u−uh∆t)))(Ω) dτ

=
∫ t

0
(ρ∂t(v−vh∆t),∂tuh∆t −vh∆t)(Ω) dτ︸ ︷︷ ︸

:=(a)

+
∫ t

0
(Rh∆t ,∂t(u−uh∆t))(Ω)dτ︸ ︷︷ ︸

:=(b)

(2.38)
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The term (b) is obtained according to eq. (2.25). Then the two terms (a) and (b) are treated separately
in the following.

Firstly, for the term (a), using eq. (2.25) by taking w = (∂tuh∆t −vh∆t), we have:

(a) =
∫ t

0
(Rh∆t ,∂tuh∆t −vh∆t)(Ω)dτ +

∫ t

0
(σσσ(uh∆t −u),εεε(∂tuh∆t −vh∆t))(Ω) dτ (2.39)

Now the first equation (2.26) of lemma 2.10 can be applied for the first term of eq. (2.39):∫ t

0
(Rh∆t ,∂tuh∆t −vh∆t)(Ω)dτ ≤

∫ t

0
HR,DF(τ)∥∂tuh∆t −vh∆t∥K(Ω) (τ)dτ

≤ ∥HR,DF∥(t) ∥∂tuh∆t −vh∆t∥K(Ω),(t)

≤ ∥HR,DF∥(T ) ∥HV N∥(T )

(2.40)

where HV N is defined in eq. (2.20). The second term of eq. (2.39) is treated firstly by Cauchy-Schwartz
inequality:∫ t

0
(σσσ(uh∆t −u),εεε(∂tuh∆t −vh∆t))(Ω) dτ ≤ ∥u−uh∆t∥K(Ω),(t) ∥∂tuh∆t −vh∆t∥K(Ω),(t)

= ∥u−uh∆t∥K(Ω),(t) ∥HV N∥(t)
(2.41)

Using the definition of L∞ norm, it can be derived that:

∥u∥2
K(Ω),(t) =

∫ t

0
∥u∥2

K(Ω) (τ)dτ ≤
∫ t

0
sup

τ

{
∥u∥2

K(Ω) (τ)
}

dτ = t sup
τ∈[0,t]

{
∥u∥2

K(Ω) (τ)
}
= t ∥u∥2

K(Ω),∞(t)

(2.42)
Apply this result for ∥u−uh∆t∥K(Ω),(t) in eq. (2.41):

∫ t

0
(σσσ(uh∆t −u),εεε(∂tuh∆t −vh∆t))(Ω) ≤

√
t ∥u−uh∆t∥K(Ω),∞(t) ∥HV N∥(t)

≤
√

T ∥HV N∥(T ) ∥u−uh∆t∥K(Ω),∞(t)

(2.43)

Combing eq. (2.40) and eq. (2.43), the temporary upper bound is found for (a):

(a)≤ ∥HR,DF∥(T ) ∥HV N∥(T )+
√

T ∥HV N∥(T ) ∥u−uh∆t∥K(Ω),∞(T ) (2.44)

Secondly, for the term (b), taking w = u−uh∆t in the second equation (2.27) of lemma 2.10, we
have:

(b)≤ ∥HDE,GV∥(t) ∥u−uh∆t∥K(Ω),(t)+HR,DF(t)∥u−uh∆t∥K(Ω) (t)+HR,DF(0)∥u−uh∆t∥K(Ω) (0)

≤
(√

T∥HDE,GV∥(T )+∥HR,DF∥∞(T )+HR,DF(0)
)
∥u−uh∆t∥K(Ω),∞(T )

(2.45)
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We have successfully found an upper bound for (a) and (b) in eq. (2.44) and eq. (2.45), then
inserting these two inequalities into eq. (2.38), ∀t ∈ (0,T ], we have:

∥ v−vh∆t ∥2
M(Ω) (t)+ ∥ u−uh∆t ∥2

K(Ω) (t)≤ A∥u−uh∆t∥K(Ω),∞(t)+B2

≤ A
√

∥v−vh∆t∥2
M,∞(t)+∥u−uh∆t∥2

K(Ω),∞(t)+B2
(2.46)

where:
A = 2∥HR,DF∥∞(T )+2HR,DF(0)+2

√
T (∥HDE,GV∥(T )+∥HV N∥(T ))

B2 = 2∥HR,DF∥(T )∥HV N∥(T )
(2.47)

As x2 ≤ ax+b2 implies x ≤ a+b whenever a,b positive 1, we find the a posteriori error bound:√
∥v−vh∆t∥2

M(Ω),∞(T )+∥u−uh∆t∥2
K(Ω),∞(T ) ≤ A+B

2.3 Numerical application in 1D homogeneous and heterogeneous me-
dia

In this section, we apply numerically the theorem 2.8. Wave propagation in a one-dimensional
elastic bar with homogeneous media and two different heterogeneous media is considered here. In
these cases, the analytical solutions or reference solutions of the wave equation can be found. We
compare numerically the “exact errors” (i.e. errors between analytical or reference solutions and
numerical solutions) and the estimated errors defined in eq. (2.13) for numerical solutions with
different mesh sizes. The efficiency of the error upper bound is analyzed.

2.3.1 Definition of numerical model and parameters

We consider here a 1D bar with length L = 3.2 m, whose left end is subjected to the Neumann
boundary condition with a truncated ricker signal F(t) with a magnitude of 1 kN/m2 and the duration
TR of 0.22 ms (fig. 2.3). The right end of the bar is subjected to the free boundary condition. The total
analysis time period is [0,Tf ] with Tf = 1 ms which allows the wave front to propagate a round trip in
this bar.

1This result is used for deducing a guaranteed upper bound of x here. In fact, x2 ≤ ax+b2 ⇒ (x− a
2 )

2 ≤ a2

4 +b2 ⇒
(x− a

2 )
2 ≤ ( a

2 +b)2 ⇒ x ⩽ a+b for a,b positive
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Fig. 2.3 Truncated ricker signal and its frequency spectrum (amplitude normalized to 1): (a) F(t), (b)
|FFT (F)| (fast Fourier transform)

Homogeneous bar 

Heterogeneous bar +1 inclusion 

Heterogeneous bar +5 inclusions 

Fig. 2.4 Model for homogeneous or heterogenous bars (black zone: E1, red zone: E2)

Figure 2.4 gives three models with different physical properties (the density ρ is constant for all
models, only the Young’s modulus E can be heterogeneous):

1) a homogeneous bar with E = E1;

2) a heterogeneous bar with one inclusion, with E = E2 = E1/70 in the inclusion and E = E1

otherwise, where the length of the inclusion is l = 0.2 m, and its centre is located at L/2 = 1.6 m;

3) a heterogeneous bar with five inclusions, with E = E2 in the inclusions and E = E1 other-
wise, where the length of each inclusion is l = 0.2 m, and their centres are located respectively at
1,1.4,2,2.4,2.8 m. For this bar, the observation period is changed to 3Tf to ensure a round trip
because the wave velocity in inclusions is smaller.

The numerical parameters are given in the tables 2.2, 2.3 and 2.4. In the table 2.2, fc is the cutoff
frequency of the truncated ricker signal. The table 2.3 presents the different mesh sizes h and time
steps ∆t used for the homogeneous case and the table 2.4 presents those used for both heterogeneous
cases. It can be observed that in heterogeneous cases we have more elements per wavelength in the
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slow area with E1 than that with E2. Thus the obtained numerical solutions describe waves more
precisely in these areas.

media load (truncated ricker)

ρ (kg/m3) E (GPa) c (m/s ) TR (ms) fc (kHz)

homogeneous 2500 E1 = 70 c1 = 5300 0.22 9.5

heterogeneous 2500 E1 = 70 c1 = 5300 0.22 9.5
E2 = 1 c2 = 632

Table 2.2 Numerical parameters of media and load

h (m) 0.55 0.28 0.14 0.07 0.035 0.017 0.008

λ ( fc)/h 1 2 4 8 16 32 65

Table 2.3 Mesh sizes used in the homogeneous case

h (m) 0.066 0.035 0.017 0.008 0.004 0.002

(λ1( fc)/h,λ2( fc)/h) (8,1) (16,2) (32,4) (65,8) (139,16) (278,32)

Table 2.4 Mesh sizes used in both heterogeneous cases

2.3.2 Analytical solutions of wave equation

In this section, analytical or reference solutions are given for the homogeneous case and the two
heterogeneous cases. It allows computing their differences with numerical solutions.

For the homogeneous case, analytical solutions exist:

u(t,x) =


0 for 0 ≤ t ≤ x

c1

c1
E

∫ t− x
c1

0 F(τ)dτ for x
c1
≤ t ≤ L

c1

c1
E

∫ t− x
c1

0 F(τ)dτ − c1
E

∫ t− L
c1
+ x

c1
− L

c1
0 F(τ)dτ for L

c1
≤ t ≤ 2L

c1

(2.48)

For the heterogeneous bar with one inclusion, analytical solutions for the wave equation can be
also found. In fig. 2.5, the reflection and transmission of waves at an interface x = a is given. Since
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the incident stress waves is defined by σi = F(t − x/c1), using the continuity of the stress at each
interface, the stresses for reflected and transmitted waves can be expressed as [1]:

σr =CrF(t +(x−2a)/c1), σt =CtF(t −a/c1 − (x−a)/c2) (2.49)

with Cr and Ct are respectively the reflection coefficient and the transmission coefficient given by:

Cr =
c2/c1 −1
c2/c1 +1

, Ct =
2c2/c1

c2/c1 +1
(2.50)

Then total waves can be calculated with the superposition of reflected and transmitted waves.

For the heterogeneous bar with five inclusions, considering the complexity of analytical solutions
under a large number of reflections and transmissions, numerical solutions with a relatively small
mesh size h = 1 mm are used as the reference solution.

F (t –x/c1) Ct F (t –a/c1-(x-a)/c2) 

(ρ, c1) 

Cr F (t +(x-2a)/c1) 

x=a 

(ρ, c2) 

Fig. 2.5 Incident, reflected and transmitted waves

2.3.3 Numerical exact errors for 1D elastic wave propagation

In this section, we observe firstly the errors between analytical solutions found in the section 2.3.2
and numerical finite element solutions in energy norm in 1D media.

Firstly, fig. 2.6 presents an example of numerically calculated velocity fields and local exact errors
in energy norm in time-space between approximate solutions and analytical or reference solutions:

eM+K(t,x) =
1
2
{

ρe2
v +E(∂xeu)

2}(t,x), with ev = v− vh∆t , eu = u−uh∆t (2.51)

It is observed that overall, the errors increase with time and with number of interaction with the
interfaces or boundaries.
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(a)

(b)

(c)

Fig. 2.6 Numerical results of velocity fields v(t,x) and local errors 1
2

{
ρe2

v +E(∂xeu)
2
}
(t,x) (normal-

ized by total energy
∫ L

0
1
2

{
ρv2 +E(∂xu)2

}
dx = constant, ∀t) for: (a) the homogeneous bar (λ/h= 32),

(b) the heterogeneous bar with one inclusion (λ1/h = 278,λ2/h = 32), (c) the heterogeneous bar with
five inclusions (λ1/h = 278,λ2/h = 32)

Then the evolution of errors with time:

∥ev∥M(Ω) (t) =
{∫ L

0

1
2

ρe2
v(t,x)dx

} 1
2

, ∥eu∥K(Ω) (t) =
{∫ L

0

1
2

E(∂xeu(t,x))2dx
} 1

2

(2.52)

is studied so as to observe the error behaviour on the interfaces and the boundary of domain.

In the homogeneous case, ∥ev∥M(Ω) (t) and ∥eu∥K(Ω) (t) are presented in fig. 2.7b. Firstly, errors
are increasing with time of simulation. A strong oscillation observed in [t1, t2] is related to when
waves interact with the right boundary (fig. 2.7a). A conversion between errors in two energy norms
is obtained, resulting from the conversion of potential energy and kinetic energy.
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Now the errors for the first heterogeneous case are shown in fig. 2.8b. We observe always the
increase of errors with time and strong oscillations during [t1, t2] and [t3,Tf ]. From fig. 2.8a it can
be known that these two time intervals are corresponding to the period when waves interact either
with the two boundaries of bar or the interfaces between two materials. During [t2, t3], wave front
propagates far from the interfaces or boundaries. Note that during [0, t1], waves are reflected and
refracted by the first interface around t = 3 ms but this effect on errors is relative small compared to
that in latter times so we neglect here (inset of fig. 2.8b).
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Fig. 2.7 Homogeneous media (λ/h = 32): (a) velocity fields v(t,x), (b) ∥ev∥M (t) and ∥eu∥K(Ω) (t)
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Fig. 2.8 Heterogeneous media with one inclusion (λ2/h = 32): (a) velocity fields v(t,x), (b) ∥ev∥M (t)
and ∥eu∥K(Ω) (t)

Finally, in the highly heterogeneous case with 5 inclusions, it is difficult to identify the instants as
what we have done above since waves are largely reflected and refracted here. However, we can still
find that oscillation of errors start at t1 when waves meet the first interface (fig. 2.9).
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Fig. 2.9 Heterogeneous media with five inclusions (λ2/h = 32): (a) velocity fields v(t,x), (b) ∥ev∥M (t)
and ∥eu∥K(Ω) (t)

Now we focus on our L∞-time exact errors in energy norm defined in the error bound:√
∥v− vh∆t∥2

M(Ω),∞(Tf )
+∥u−uh∆t∥2

K(Ω),∞(Tf )
=
√
∥ev∥2

M(Ω),∞(Tf )
+∥eu∥2

K(Ω),∞(Tf )
(2.53)

Equation (2.53) is computed for all the mesh sizes in homogeneous and heterogeneous media and
we present all the results in terms of degree of freedom in fig. 2.10.

It can be observed in fig. 2.10 that in all cases, exact errors are decreasing with smaller mesh size
or larger number of degrees of freedom and more precisely. They are inversely proportional to dof.
Errors increase with the number of degrees of heterogeneity for solutions with the same degree of
freedom.
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2.3.4 Numerical estimated errors for 1D elastic wave propagation

Now we compute numerically the error bound in eq. (2.13) and verify its accuracy. Four com-
binations of the reconstructions in time and in space listed in the table 2.1 of the section 2.1 are
studied:

• case1: basic u-reconstruction + basic v-reconstruction + MRE σ -reconstruction;

• case2: basic u-reconstruction + equilibrated v-reconstruction + MRE σ -reconstruction;

• case3: equilibrated u-reconstruction + equilibrated v-reconstruction + MRE σ -reconstruction;

• case4: equilibrated u-reconstruction + equilibrated v-reconstruction + SA σ -reconstruction.

Recall that the SA σ -reconstruction requires both the equilibrated u-reconstruction and the equilibrated
v-reconstruction. In the rest of four combinations, we choose three of them here (case1-3).

The error bound is firstly computed in homogeneous media.

In fig. 2.11 we compared numerical exact errors obtained in the section 2.3.3 and estimated errors
with the four cases presented above.

Firstly, it is illustrated in fig. 2.11a that estimated errors with four different reconstructions are
decreasing with dof, as we expected. They are close to each other. The second case gives the smallest
value of errors. Its computational cost is relatively small, especially compared to the last two cases.
Secondly, compared to the numerical exact errors, the obtained error bounds are much larger. On
the one hand, it can be understood by the existence of a significant constant coefficient before the
estimated errors; on the other hand, their rate of convergence is different. In effect, in fig. 2.11b we
find that the effectivity index of error bound (i.e. ratio of the estimated and exact errors, see eq. (1.29))
increases with the computational effort. Thus this estimator has a weak asymptotic accuracy.
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Fig. 2.11 Error estimation in the homogeneous case: (a) exact errors and estimated errors (log-log
graph), (b) effectivity index (semi-log graph)
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Now we analyze the major terms that contribute to total estimated errors. In fig. 2.12a, we find
2
√

T ∥HDE,GV∥(T ) is dominant in estimated errors. Recall that:

ηDE,S =
CphSCK√

λmin

∥∥−∂t f +ρ∂
2
t vh∆t −∇x ·δh∆t

∥∥
(S) , ηGV,S =

1√
λmin

∥−δh∆t +σ(∂tuh∆t)∥(S) (2.54)

so it depends on both reconstructions in time and in space. We find that in fact this term contributes
most to the total errors due to the nonconformity of the time derivative of equilibrium of reconstruction
fields.

In fig. 2.12b, ∥HDE,GV∥(T ) also contributes a large part of errors in the cases 3 and 4. Recall that
∥HDE,GV∥(T ) = ∥∂tuh∆t − vh∆t ∥K(Ω),(T ) so it depends mainly on the reconstructions of u and v in time;
it is found in fig. 2.12b that the cases 1 and 2 with basic reconstruction for u,v have a better conformity
between ∂tuh∆t and vh∆t inside In than that in the cases 3 and 4 with equilibrated u-reconstruction and
v-reconstruction. Besides, for the cases 3 and 4 same reconstructions (uh∆t ,vh∆t) are used so they give
the same results.

2.4 Conclusion

In this chapter we derived explicit a posteriori error estimates in a non-natural L∞ norm for elastic
wave propagation in heterogeneous media. The numerical results in the homogeneous case indicate
that this estimation gives a fully computable upper bound of exact errors. However, its asymptotic
exactness remains to be improved. In the work of Vohralík [150], similar reconstructions were also
defined and used for an error bound of the first order (in time) heat equation; a nearly constant
effectivity index was obtained in its numerical applications. In fact, for the second-order (in time)
hyperbolic equation, our error bound includes not only the residual errors related to the equilibrium
(as in [150]) but also the residual errors related to the time derivative equilibrium of reconstructed
fields. The latter (HDE,GV ) dominates in the behaviour of the estimated errors. In a future work, more
efforts should focus on reconstructions of fields that respect the equilibrium better.
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As we introduced in the section 1.2.4, the radiative transfer equation arises for high frequency
wave propagation in heterogeneous media in the weak coupling limit. It is derived by a two-scale
asymptotic expansion of the wave equation in terms of the spatio-temporal Wigner transforms of wave
fields. Its particular form in homogeneous media, i.e. the transport equation, is studied in this chapter.
It describes the transport of wave energy. Considering the highly oscillating properties of HF wave
fields, the classical error estimator that was derived in chapter 2 is no more efficient. The errors based
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on more relevant quantities, i.e. the energy densities of numerical solutions of wave equation, are
studied here with the transport equation.

In the section 3.1, the Wigner transform is introduced in detail. We start with the temporal
Wigner transform of a time signal. Its important mathematical properties, especially the interference
property and the energy property, are presented and analyzed. Then the scaled spatio-temporal Wigner
transform in the high frequency limit is defined and it satisfies also all the properties above. Finally,
the discrete Wigner transform is studied and some numerical examples are given.

In the section 3.2, the principal steps for the derivation of the transport equation in terms of Wigner
transforms are given. The transition from wave fields to energy densities, from the wave equation
model to the energy transport model is presented in detail. Then the theoretical residual errors of finite
element solutions of the wave equation based on the transport equation are defined and developed.

In the section 3.3, the numerical application of the defined residual error in a 1D medium is given.
Residual errors for finite element solutions with different discretizations in time and in space are
compared, that allows validating the obtained error estimator.
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3.1 Wigner transform applied to the elastic wave equation

In this section, we give a detailed introduction of the Wigner transform. In the high frequency
regime, it is used to derive the transport equation in homogeneous media and the radiative transfer
equation in heterogeneous media (chapter 4). Some examples and numerical illustrations are given to
clarify its properties and physical meanings.

The Wigner transform is widely used in signal processing [32, 42, 120] as a time-frequency
representation since it provides a better simultaneous time-frequency resolution compared to the other
representations, such as the Fourier transform (FT) [31, 35], the short-time Fourier transform (STFT)
[11, 12], etc.

For time-space dependent functions, the definition of spatio-temporal Wigner transform is given
by:

Definition 3.1 (Spatio-temporal Wigner transform). The spatio-temporal Wigner transform of two
time-space dependent vector functions F(t,x) and G(t,x), (t,x) ∈ R×Rd , is a second-order tensor
defined by:

W[F,G](t,x;ω,k) =
1

(2π)1+d

∫
R×Rd

F
(

t − τ

2
,x− y

2

)
⊗G∗

(
t +

τ

2
,x+

y
2

)
ei(τω+y·k)dτdy (3.1)

where d is the spatial dimension and the superscript ∗ denotes the complex conjugation operator.

3.1.1 Temporal Wigner transform in signal processing

The spatio-temporal Wigner transform (3.1) depends on four variables, two in the time-space
domain and two in the (ω,k)-phase space. In order to simplify the introduction, we give the definition
of temporal Wigner transform for two scalar time signals and introduce its properties in the following.
The spatio-temporal Wigner transform satisfies also these properties.

Definition 3.2 (Temporal Wigner transform). The (cross) Wigner transform of two time signals F(t)
and G(t) is defined as the Fourier transform of their instantaneous correlation function:

W[F,G](t;ω) =
1

2π

∫
R

F
(

t − τ

2

)
G∗

(
t +

τ

2

)
eiτωdτ (3.2)

The (auto-) Wigner transform of F(t) is denoted by: W[F ](t;ω) := W[F,F ](t;ω).

Basically, the temporal Wigner transform tells us how the spectral density changes in time. It has
several important properties [120]:

Property 1 (Symmetry property). If F(t) is real-valued, W[F ] is an even function of ω .

W[F ](t;ω) = W[F ](t,−ω) (3.3)
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Property 2 (Conjugation property).

W[F,G] = (W[G,F ])∗ (3.4)

Thus W[F ] is real for all (t;ω). Note that in the case of Wigner transform of two vectorial fields F
and G, W[F,G] = (W[G,F])∗T .

Property 3 (Correlation of a sum property). The Wigner transform of a sum of two signals is the
square of the correlation in time-frequency of their Wigner transforms.

|W[F1 +F2](t;ω)|2 =
∫
R×R

W[F1]
(

t − τ

2
;ω − υ

2

)
W[F2]

(
t +

τ

2
;ω +

υ

2

)
dτdυ (3.5)

Property 4 (Integration properties). The cross Wigner transform can be seen as a time distribution of
the product of spectrums F̂Ĝ∗ or a phase-space description of the product of time signals FG∗.∫

R
W[F,G](t;ω)dt =

1
2π

F̂(ω)Ĝ∗(ω),
∫
R

W[F,G](t;ω)dω = F(t)G∗(t) (3.6)

Property 5 (Energy density properties). The marginal distribution obtained by integrating over
time equals the energy spectrum, while the one obtained by integrating over frequency equals the
instantaneous energy.∫

R
W[F ](t;ω)dt =

1
2π

∣∣F̂(ω)
∣∣2 , ∫

R
W[F ](t;ω)dω = |F(t)|2 (3.7)

The integration of Wigner transform over the time-frequency domain is equal to the total energy of
the signal. ∫

R×R
W[F ](t;ω)dtdω =

∫
R
|F(t)|2 dt =

1
2π

∫
R

∣∣F̂(ω)
∣∣2 dω (3.8)

The two equations above mean that Wigner transform can be interpreted as a distribution of energy
density in time-frequency domain, which is, however, not always positive for all (t;ω).

Property 6 (Convolution property). The Wigner transform of the product of two signals equals the
convolution of the Wigner transform of each signal with respect to frequency. The Wigner transform
of the convolution of two signals equals the convolution of the Wigner transform of each signal with
respect to time.

W[Fh](t;ω) =
∫
R

W[F ](t;υ)W[h](t;ω −υ)dυ (3.9a)

W[F ∗h](t;ω) =
∫
R

W[F ](τ;ω)W[h](t − τ;ω)dτ (3.9b)

where “∗” denotes the convolution operator of two time functions.

Property 7 (Interference property). The Wigner transform of a sum of two signals has the following
form:

W[F1 +F2](t;ω) = W[F1](t;ω)+W[F2](t;ω)+2Re{W[F1,F2](t;ω)} (3.10)
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where “Re” denotes the real part of a complex-valued quantity. This is due to the fact that Wigner
transform is bilinear function according to its definition 3.2. W[F1] and W[F2] are called “auto-terms”
and 2Re{W[F1,F2](t;ω)} is called “cross-term” or interference term.

3.1.2 Discussion and analysis of the interference property of Wigner transform

The existence of cross-terms of Wigner transform has a great influence on the time-frequency
analysis. In this section we study in detail this property by some theoretical and numerical examples.

The following example is given by [70, 79]. We consider a time signal F(t) = F1(t)+F2(t)
defined as follows:

F1(t) = A1h(t − t1)eiω1t , F2(t) = A2h(t − t2)eiω2t (3.11)

where A1 and A2 are real constant amplitudes, h is thought to be a window function concentrated at 0
in time. Thus F1 and F2 are respectively concentrated around (t1;ω1) and (t2;ω2) in the (t;ω)-plane.

Using the interference property eq. (3.10), W[F1 +F2] can be computed analytically. The two
auto-terms can be obtained by the convolution property eq. (3.9) and by taking into account the fact
that W[eiω1t ] = δ (ω −ω1):

W[F1](t;ω) = A2
1W[h](t − t1;ω −ω1), W[F2](t;ω) = A2

2W[h](t − t2;ω −ω2) (3.12)

Thus as a time-frequency representation of F1 and F2, W[F1] and W[F2] lie respectively in the sur-
roundings of points (t1,ω1) and (t2,ω2) in the (t;ω)-plane. For the cross term 2Re{W[F1,F2](t;ω)},
by the definition of the cross Wigner transform eq. (3.2) and a time shift of h, we obtain:

2Re{W[F1,F2](t;ω)}= 2Re
{

A1A2
1

2π

∫
h
(

t − t1 −
τ

2

)
eiω1(t− τ

2)h∗
(

t − t2 +
τ

2

)
e−iω2(t+ τ

2)eiτωdτ

}
= 2A1A2 cos(ωdt − (ω −ωm)td)W[h](t − tm;ω −ωm)

(3.13)
where the time lag and the frequency lag are denoted by (td ;ωd) = (t2 − t1;ω2 −ω1), the centre time
and the centre frequency are denoted by (tm;ωm) = ( t1+t2

2 ; ω1+ω2
2 ). Several properties of cross term

are observed with this expression. Firstly, the cross term is a modulated version of the original signal
F shifted to the midpoint (tm;ωm) of the segment connecting (t1;ω1) and (t2;ω2) in the (t;ω)-plane.
This result can be generalized to a function composed of N time-frequency component signal, which
are localized around N different points in the (t;ω)-plane. In this case, there exist N(N−1)

2 cross terms
between each two components. Secondly, the “cosine” function in cross term can be written as:

cos(ωdt − (ω −ωm)td) = cos

√
ω2

d + t2
d

 ωd√
ω2

d + t2
d

t −ω
td√

ω2
d + t2

d

+ωmtd

 (3.14)

so it results in oscillations in the direction (ωd ;−td) that is orthogonal to the line that connects the

auto-terms in the direction (td ;ωd); the frequency of this oscillation is simply the distance
√

t2
d +ω2

d
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in the (t;ω)-plane between the signal components. Then the peak value of the cross term is twice as
large as the product of that of the auto-terms. Finally, we will see with the following example that the
“cosine” function is in fact the source of negative values of Wigner transform.

Numerical illustration of Wigner transform of a sum of two gaussian complex-valued signals
(fig. 3.1a) is given in the following so as to observe the properties of cross terms explained above. We
define h(t) and the parameters of the function F in eq. (3.11) by:

h(t) = e−2t2
, A1 = (

4
π
)

1
4 , (t1;ω1) = (−2;20); A2 = (

8
π
)

1
4 , (t2;ω2) = (2;40) (3.15)

Figure 3.1b gives the Wigner transform of F(t). It is found that the two auto-terms located at
(t1;ω1), (t2;ω2) and the cross term located at their centre (tm;ωm) = (0;30) agree with the theoretical
analysis above. We also observe that oscillations of the cross term (along the solid arrowed line) are
orthogonal to connecting line of the auto-terms (along the dashed arrowed line). The auto-term W [F2]

and the cross term have the same amplitude and quadruple that of the auto-term W [F1] in fig. 3.1b.
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Fig. 3.1 (a) real part of a complex-valued signal F(t) (eq. (3.11), eq. (3.15)) composed of two gaussian
functions localized in both time and frequency domains, (b) Wigner transform in time-frequency
domain W[F ](t;ω): two auto-terms (positive, red round zone); one cross term (positive or negative,
oscillating zone)
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As expected, it is observed that the cross term contains some negative values, resulting from
“cosine” in eq. (3.13). Although the Wigner transform satisfies always energy properties (eq. (3.7)
and (3.8)), we cannot interpret it as an exact time-varying energy density estimate. It may be more
reasonable to integrate Wigner transform in a period of time or a band of frequency so as to ensure
its positivity as a representation of energy (energy density property eq. (3.7)). The integral of auto-
or cross terms over frequency is called its energy content. Generally, both auto- and cross terms
contribute to signal energy [70, 118]. The oscillations of cross terms suggest that their energy content
is small compared to the energy content of auto-terms. In particular, the cross term of disjoint signals
(i.e. auto-terms do not overlap) has zero energy content. Figure 3.2 illustrates the energy content of
the example above, and no energy exists for the cross term at t = 0.
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Fig. 3.2 Energy content of F(t) (composed of two disjoint gaussian functions):
∫
R W[F ](t;ω)dω

normalized to total energy

In this simple case the cross terms are separated spatially from the auto-terms. We can easily
identify them and their integration in time has no contribution to total energy. However, for multi-
component or continuous frequency signals, cross-terms of their Wigner transform not only appear in
the separate area, where the auto-terms are zero or negligible but also spread throughout the domain
of the auto-terms, and corrupt them in the complete Wigner transform. Therefore, it is difficult to
distinguish between auto-terms and cross terms if more complicated signals are used [71, 116].

What calls for special attention is that a sum of complex-valued signal (3.11) was given above
as an example. Solutions of wave propagation problems are always real-valued. It is known that
any real-valued signal can be expressed as a sum of two complex-valued signals with positive and
negative frequencies. For example, we have: cos(ωt) = eiωt+e−iωt

2 . Thus the cross terms in the Wigner
transform of a sum of two real-valued signals result from not only interactions between intrinsic
positive frequencies but also between positive and negative frequencies.

We study now the sum of two real-valued signals G = G1 +G2 given by:

G1(t) =
F1(t)+F∗

1 (t)
2

= A1h(t − t1)cos(ω1t), G2(t) =
F2(t)+F∗

2 (t)
2

= A2h(t − t2)cos(ω2t)
(3.16)



48 Energy-based error estimation for HF wave in homogeneous media

with F1 and F2 already defined in eq. (3.11). So their complex conjugates F∗
1 and F∗

2 are respectively
localized around (t1;−ω1) and (t2;−ω2) in the (t;ω)-plane. Thus G(t) is composed of four frequency
components, and there are four auto-terms at (t1;±ω1), (t2;±ω2) and six cross terms at (t1;0), (t2;0),
(tm;±ωm), (tm;±ωd) for its Wigner transform.

Considering the example of a sum of the two real-valued gaussian signals defined by eq. (3.16) with
parameters given by eq. (3.15), its Wigner transform is computed and illustrated in fig. 3.3. We get four
auto-terms at (t;ω) = (−2;±20) and (2;±40) and six cross terms at (t;ω) = (−2;0),(2;0),(0;±30)
and (0;±10), which appear between each two auto-terms (fig. 3.3). Every cross term is resulting from
the interference of each two auto-terms (marked with solid arrowed lines in fig. 3.3) and its locations,
fluctuations and peak value are determined by eq. (3.13).

Fig. 3.3 Wigner transform of a signal G(t) (eq. (3.16), eq. (3.15)) composed of two real-valued
gaussian functions in time-frequency domain W[G](t;ω): four auto-terms (positive, red round zone);
six cross terms (positive or negative, oscillating zone)

Until now, we presented the existence and properties of cross terms in Wigner transform. Since
the distribution of energy density in terms of frequency may be influenced by these terms, we will
try and analyze some methods to remove them. However, the total energy property should not be
influenced by that removal since in our work, the Wigner transform of wave fields is studied and the
energy transport equation is used for evaluating errors.

For instance, cross terms between positive frequencies and negative frequencies for 1D signal
can be suppressed by Hilbert transform. In fact, Hilbert transform of a signal allows eliminating its
negative frequency components and we obtain what is called the analytical signal [66, 142]. Thus
its Wigner transform contains only cross terms between non negative frequencies. The 1D form of
analytical signal using the Hilbert transform has been used extensively in signal processing since
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their introduction by Gabor [58]. However, their extension to the 2D case and their application to
images are limited, due to the non-uniqueness of the multidimensional Hilbert transform. Some usual
definitions of 2D Hilbert transform can be found in [101]. However, either negative frequencies are
not suppressed totally, or the real part of the constructed analytical signal does not coincide with the
original signal. Consequently, since we are concerned with 2D or higher dimension, this method
is not practical. Some suppression methods have been already developed to reduce the cross terms
between positive frequencies, such as low pass filtering or adding window functions [115, 126], image
processing [9, 116], combining the STFT and the Wigner transform [63, 83, 134], etc. Generally,
in all cases, cross terms can never be totally removed without affecting the appearance and quality
of the resulting time-frequency representation [161]. In detail, a loss of frequency concentration or
resolution will appear with these methods and the most important energy properties cannot hold any
more. Also, such methods are either computationally expensive or have a very limited applicability.
Consequently, we do not use the classical cross term removal methods in our work so as to conserve
always the energy properties. However, we should always pay attention to the existence of cross terms
and their influence on our numerical computations, especially when explaining phenomena in phase
space.

3.1.3 Scaled spatio-temporal Wigner transform in the high frequency limit

As discussed in the introduction of this chapter, we consider high frequency limit where the
typical distance of propagation L of waves is much larger that the typical wavelength λ in the system:
ε = λ

L ≪ 1. The spatio-temporal Wigner transform (definition 3.1) should be rescaled and defined as
follows:

Definition 3.3 (Scaled spatio-temporal Wigner transform). The scaled spatio-temporal Wigner trans-
form Wε [uε ,vε ] for two vector fields uε(t,x) and vε(t,x) is defined as:

Wε [uε ,vε ](t,x;ω,k) :=
1
ε2 W[uε ,vε ]

(
t,x;

ω

ε
,
k
ε

)
=

1
(2π)1+d

∫
R×Rd

uε

(
t − ετ

2
,x− εy

2

)
⊗v∗ε

(
t +

ετ

2
,x+

εy
2

)
ei(τω+y·k)dτdy (3.17)

and the (auto-) spatio-temporal Wigner transform Wε [uε ] := Wε [uε ,uε ].

With this definition, the spatio-temporal Wigner transform is properly scaled at ε−1 for ω and k
so as to observe all the fast fluctuations of order ε−1 and to separate them from slow fluctuations of ε0.
It satisfies always all the properties of the temporal Wigner transform introduced in the section 3.1.1
and section 3.1.2.

Using rules of pseudo-differential calculus presented in Appendix C, we derive the following
properties of the scaled Wigner transform:



50 Energy-based error estimation for HF wave in homogeneous media

Lemma 3.4 (Time and space derivative properties of Wigner transform).

∂tWε [uε ] = Wε [∂tuε ,uε ]+ (Wε [∂tuε ,uε ])
∗T (3.18a)

k̂ ·∇xWε [uε ] = Wε

[
k̂ ·∇xuε ,uε

]
+
(
Wε

[
k̂ ·∇xuε ,uε

])∗T
(3.18b)

where (k̂ ·∇xW)i j = kl∂xl Wi j (with Einstein summation convention). It is in fact the directional
derivative along k̂ of W.

Proof.

Using homogeneous pseudo-differential operator’s properties eq. (C.4) and eq. (C.3) with ϕ(εDt)=

ε∂t and ϕ(εDx) = εk̂ ·∇x, we haveWε [ε∂tuε ,uε ] = iωWε [uε ]+
ε∂t
2 Wε [uε ]

Wε [uε ,ε∂tuε ] =−iωWε [uε ]+
ε∂t
2 Wε [uε ]

Wε

[
εk̂ ·∇xuε ,uε

]
= ikWε [uε ]+

εk̂·∇x
2 Wε [uε ]

Wε

[
uε ,εk̂ ·∇xuε

]
=−ikWε [uε ]+

εk̂·∇x
2 Wε [uε ]

(3.19)
Then taking the sum of each two equations in eq. (3.19), we get:

∂tWε [uε ] = Wε [∂tuε ,uε ]+Wε [uε ,∂tuε ] (3.20a)

k̂ ·∇xWε [uε ] = Wε [k̂ ·∇xuε ,uε ]+Wε [uε , k̂ ·∇xuε ] (3.20b)

Recalling the conjugation property (eq. (3.4)) of Wigner transform), thus we obtain eq. (3.18).

Now we present the Wigner measure, i.e. the energy density described by the transport equation
or the radiative transfer equation.

Definition 3.5 (Wigner measure). The Wigner measure, denoted by W, is the weak limit of the
Wigner transform Wε as ε → 0:

W[uε ] := lim
ε→0

Wε [uε ] (3.21)

As we observed with the examples in the section 3.1.2, Wigner transform can be positive or
negative. However, Wigner measure can be demonstrated to be always positive [97]. Thus Wigner
measure can be interpreted as the energy density of waves in phase space. This is exactly the property
that makes the Wigner measure a useful tool for the study of wave or quantum interference phenomena.

Furthermore, the potential and kinetic energy of high frequency propagating waves can be
estimated by its Wigner measure with the following lemma:
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Lemma 3.6 (Energy property of Wigner measure of wave fields).

lim
ε→0

1
2

∫
Rd

(C : εεε(uε)(t,x)) : εεε
∗(uε)(t,x)dx =

1
2

∫
R×Rd×Rd

ρΓΓΓ(k) : W[uε ](t,x;ω,k)dωdxdk

(3.22a)

lim
ε→0

1
2

∫
Rd

ρ∂tuε(t,x) ·∂tu∗
ε(t,x)dx =

1
2

∫
R×Rd×Rd

ρTr(W[∂tuε ](t,x;ω,k))dωdkdx (3.22b)

Proof. For eq. (3.22a), by using the integration property of Wigner transform over (ω,k) (the second
equation of eq. (3.6)), we have

lim
ε→0

1
2

∫
Rd

(C : εεε(uε)(t,x)) : εεε
∗(uε)(t,x)dx

= lim
ε→0

1
2

∫
R
((ε∇x)

∗ · (C : εεε(uε)(t,x))) ·u∗
ε(t,x)dx

= lim
ε→0

1
2

∫
R×Rd×Rd

Tr(Wε [(ε∇x)
∗ · (C : εεε(uε)(t,x)),uε ] (t,x;ω,k))dωdkdx

(3.23)

Then applying the property of pseudo-differential operators eq. (C.3) by taking ψ(εDx)uε = (ε∇x)
∗ ·

(C : εεε(uε), we can derive:

lim
ε→0

1
2

∫
Rd

(C : εεε(uε)(t,x)) : εεε
∗(uε)(t,x)dx

= lim
ε→0

1
2

∫
R×Rd×Rd

ρ

{
ρ
−1C :

(
(ik+

ε∇x

2
)∗⊗ (ik+

ε∇x

2
)

)}
: Wε [uε ](t,x;ω,k)dωdkdx

=
1
2

∫
R×Rd×Rd

ρΓΓΓ(k) : W[uε ](t,x;ω,k)dωdkdx

(3.24)

The kinetic energy eq. (3.22b) can be obtained by using directly the energy property of Wigner
transform (the second equation of eq. (3.7)).

Note that these results in eq. (3.22a) and eq. (3.22b) are valid also in heterogeneous media when
the elastic parameters are dependant of x [25].

In high frequency limit, highly oscillating quantities such as u2
ε , σσσ2

ε do not satisfy a closed-form
equation in time-space (t,x); however, we will see that the Wigner measure W[uε ] as ε → 0 satisfies
a closed-form equation that we derive in next section 3.2.

3.1.4 Discrete Wigner transform and analysis of parameters

Before the introduction of the transport equation, numerical computation of Wigner transform is
an important aspect in numerical applications. The Wigner transform of numerical solutions of wave
equation is quantified in our work and its analytical expression does not exist. Besides, considering
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the computational cost, Wigner transform should not be computed in an infinite region. Thus we
should discuss the numerical computation of Wigner transform.

In this section, the discrete Wigner transform (DWT) is defined and analyzed. DWT for a temporal
signal is presented here for simplicity (DWT for a time-space dependent function is realized in the
same way). Numerical examples are given for Wigner transform of a ricker signal in time and Wigner
transform of wave fields in the time-space domain.

The discretization of the temporal Wigner transform (3.2) is defined in the following:

Definition 3.7 (Discrete Wigner transform). Assuming that a discretized signal is given as F [N] :=
F(t = N∆t), N ∈ [1,Ns], where Ns is the total number of samples. ∆t is the sampling interval.
ζt = Ns∆t is the sampling length. The summation variable τ in Wigner transform is discretized by
τ/2 = M∆t, M ∈ Z. The discretization of frequency is defined as ω = 2π

L
Ns∆t ,L ∈ Z. Then the

discrete Wigner transform W[F ][N;L] is defined as (we use the same notation W[F ] for continuous
and discrete Wigner transform):

W[F ][N;L] := W[F ]

(
t = N∆t;ω = 2π

L
Ns∆t

)
=

1
π

∑
M

F [N −M]F∗[N +M]ei4πM L
Ns

(3.25)

Compared with the classical discrete Fourier transform (DFT) [35]:

Ĝ[L] = ∑
M

G[M]ei2πM L
Ns (3.26)

the DWT can be interpreted as a DFT of the correlation function FF∗ with twice frequency.

Now we discuss the choice of numerical parameters in DWT: the sampling interval ∆t and the
sampling length or computation length ζt .

According to the Shannon sampling theorem [81], the maximum resolvable frequency must be
half the sampling frequency fs for DFT. Thus for DWT, fs or ∆t satisfies:

fs =
1
∆t

≥ 4 fF (3.27)

where fF is the frequency of signal F(t). So ∆t takes a very small value for high frequency fF .

Frequency resolution is defined as the distance between two adjacent frequency data points in the
DWT so it stands for the precision of the frequency representation of the signal:

∆ f =
1

2ζt
=

1
2Ns∆t

, f ∈
[
− 1

4∆t
,

1
4∆t

]
(3.28)
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Fig. 3.4 Ricker signal and its frequency spectrum: (a) F(t), (b) |FFT (F)|

Smaller ∆ f means a better frequency resolution. However, since ∆t is very small, increasing ζt

means increasing a large total number of sampling Ns, that may cause a high computational cost
especially for high dimension input. We have to choose an appropriate ζt .

We consider firstly identifying the value of ζt for two adjacent frequencies of a signal. If we want
to separate two peaks with frequencies ω1 and ω2 of DWT (ω2 > ω1), we need to have at least one
node between these two points in ω axis, i.e.:

ω2 −ω1

2π
≥ 2∆ f =

1
ζt
, i.e. ζt ≥

2π

ω2 −ω1
(3.29)

Now considering a continuous frequency band with a maximum frequency ω0, it is known that it
has a cross term ω0

2 between ω0 and low frequency near to zero in Wigner transform. For separating
components ω0 and ω0

2 , we need

ζt ≥
4π

ω0
(3.30)

In conclusion, discrete Wigner transform in time is realized within a chosen computation length
ζt that satisfies eq. (3.30). Now same analysis of parameters can be extended to the discrete Wigner
transform of a time-space dependant signal, denoted by (ζt ,ζx). They should verify:

ζt ≥
4π

ω0
, ζx ≥

4π

k0
(3.31)

where k0 is the frequency related to the space variable, i.e the wave number for wave propagation
problems. Since spatio-temporal Wigner transform depends on four parameters (t,x;ω,k), we fix one
time-space point (t0,x0) in time-space and represent all the results in phase space (ω,k), computed
for the chosen computation region (ζt ,ζx) in time-space. In addition, we know that Wigner transform
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is real (for d = 1) and symmetric about the origin in phase space so we illustrate only positive ω in all
the figures.

Now the DWT of a ricker signal is given so as to observe the influence of different computation
lengths ζt . It can be seen as the Wigner transform of the product of the ricker signal and a rectangular
window function with different window lengths ζt . Figure 3.4 illustrates a ricker signal centred at
t = 0 s with period TR = 4 ms. The maximum frequency fmax = 500 Hz (frequency for maximum
amplitude). According to eq. (3.30), ζt ≥ 2/ fmax = 2Tmax = 4 ms for the identification of fmax. Note
also that 2Tmax = TR so this choice is reasonable in the sense that this lower bound allows including
the whole signal F(t).

Figure 3.5a - 3.5d give the numerical results of W[F ] in terms of time-frequency for four different
values of ζt . We find also that the maximum value of Wigner transform lies at zero frequency, as
a result of superposition of cross terms between all ω0 and −ω0 (ω0 ∈ [0,2π fmax]) since ricker is a
real-valued signal in time. The second maximum value of Wigner transform is located around the
maximum frequency.

In fig. 3.5e, we compare the four plots fig. 3.5a - 3.5d for a fixed frequency f = fmax. According
to the convolution property of Wigner transform in frequency (eq. (3.9a)), the change of computation
region, i.e. the size of rectangular window function has almost no influence on time resolution. The
last three lines almost coincide, but ζt = Tmax = TR/2 differs most from others because it contains
only the half signal in time and has a low-resolution in time. It changes principally the frequency
resolution. Figure 3.5f shows their values for a fixed time instant t = 0: we observe that ζt = 2Tmax

already allows identifying a maximum frequency around fmax = 500 Hz as expected. With increasing
ζt , a spectrum with higher resolution is obtained.

Note also that since this ricker signal has a spectrum of frequency over a continuous frequency
range, cross terms of its Wigner transform spreads out over the same continuous frequency range.
Thus the maximum frequency found by its Wigner transform does not coincide with its real value
fmax = 500 Hz. To investigate the influence of the parameter ζt on numerical calculations of Wigner
transform, we propose to identify the maximum frequency by the middle point determined by the
two adjacent frequencies corresponding to the two highest amplitudes (of course, the maximum at
f = 0 due to cross terms with negative frequencies is neglected). It is respectively 375 Hz, 564 Hz,
530 Hz, 515 Hz, obtained with fig. 3.5f and illustrated in fig. 3.6 with ζt increasing. It shows that the
identified maximal frequency of the numerically calculated Wigner transform converges to a value
that would be slightly larger than the maximal frequency fmax defined by the ricker signal.

Now to study the influence of the size of sampling length on the discrete spatio-temporal Wigner
transform, we consider the wave propagation in a 1D semi-infinite homogeneous bar (fig. 3.7). Its end
is subjected to Neumann boundary condition by a ricker signal F(t) with a magnitude of 1 kN/m2

(t ∈ [0,TR]). The related parameters are given in the table 3.1. Here the analytical solution of wave
displacements can be computed with eq. (2.48).
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Fig. 3.5 Wigner transform of ricker signal W[F ](t; f ) for (a) ζt = Tmax, (b) ζt = 2Tmax, (c) ζt = 4Tmax,
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… 

Fig. 3.7 Model in 1D homogeneous media

media load (ricker) wave

ρ (kg/m3) E0 (GPa) TR (µs) Tmax (µs) λmax (m)

2500 70 15 7.5 0.04

Table 3.1 Numerical parameters of media, load and waves in homogeneous media

In fig. 3.8, Wigner transform of u(t,x) for one point in the vicinity of the wave front (t0 =

5.5TR = 0.083 ms,x0 = 0.4 m) with three different (ζt ,ζx) is computed numerically. They satisfy
ζt ≥ 2Tmax,ζx ≥ 2λmax according to eq. (3.31). Note that the energy density property eq. (3.7) of
Wigner transform: ∫[

− ζt
2 , ζt

2

]
×
[
− ζx

2 , ζx
2

] W[u](t0,x0;ω,k)dωdk = |u(t0,x0)|2 (3.32)

is always verified numerically, independent of the choice of computation region. It can be observed
that in phase space, the spatio-temporal Wigner transform gives the energies along the direction of
propagation (ω = c0 |k|) in all cases.
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In 1D homogeneous media, wave displacement is constant along the characteristics x =±c0t. It
is known that the Fourier transform of a constant function is a delta dirac function. It means that
Wigner transform of wave front should be analytically a dirac function in the direction perpendicular
to ω =−c0k. However, the numerical computation of Wigner transform along x = c0t is realized in a
finite region. It can be seen as a Fourier transform for a rectangular function with different widths, so
a sinc function is obtained in the direction perpendicular to ω =−c0k in all cases (fig. 3.8d).

Comparing the figures fig. 3.8a to fig. 3.8c, it is shown once again that the parameters (ζt ,ζx) =

(8Tmax,8λmax) give a higher resolution of Wigner transform. Figure 3.8d gives the value of Wigner
transform in the line perpendicular to ω = −c0k across the maximum frequency k = −kmax =

−157m−1 (black solid line in figs. 3.8a to 3.8c). It can be observed that the main lobe is more and
more narrow, i.e. a better concentration, with the increasing of the size of computation region. As
the computational cost with this choice is acceptable for our applications, with about 0.08 s for the
calculation for one time-space point, thus these parameters are used for all the calculations presented
in the section 3.3 and in the chapter 4.

-kmax 

(a)

-kmax 

(b)

-kmax 

(c) (d)

Fig. 3.8 W[u](t,x;ω,k) for (t0,x0) at wave front with: (a) (ζt ,ζx) = (2Tmax,2λmax), (b) (ζt ,ζx) =
(4Tmax,4λmax), (c) (8Tmax,8λmax); (d) their value at the line perpendicular to ω = −c0k for the
maximum frequency k =−kmax
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3.2 Transport energy-based residual errors of numerical solutions of
wave equation

In this section, the transport equation with the scaled Wigner transform is derived in the weak
coupling regime, based on the wave equation. It reveals the connection of the wave equation to
the energy transport equation in homogeneous media [17, 119]. Then residual-type errors of finite
element solutions of the wave equation are defined based on the transport equation in terms of Wigner
transform of wave fields.

3.2.1 Transport equation in homogeneous media

The wave equation (1.1) in homogeneous media is considered here with assumption of f = 0. We
apply the pseudo-differential calculus for this equation in the following.

ΓΓΓ(ε∇x) denotes the pseudo-differential operator defined using the same mathematical symbol as
the Christoffel operator ΓΓΓ(iεk) (see Appendix C for the definition of the pseudo-differential operator
and its symbol). Considering homogeneous and isotropic media, we have:

ΓΓΓ(k̂) = c2
s Id +(c2

p − c2
s )k̂⊗ k̂ (3.33)

We rescale t → t/ε and x → x/ε in high frequency limit. Then the wave equation can be expressed as:(
(ε∂t)

2Id −ΓΓΓ(ε∇x)
)
·uε(t,x) = 0 (3.34)

and the cross Wigner transform is applied to this equation and uε :

Wε

[(
(ε∂t)

2Id −ΓΓΓ(ε∇x)
)
·uε ,uε

]
= 0, Wε

[
uε ,

(
(ε∂t)

2Id −ΓΓΓ(ε∇x)
)
·uε

]
= 0 (3.35)

Using the properties of pseudo-differential operators in eq. (C.3), eq. (C.4), and eq. (C.2) by taking
ϕ(εDt) = (ε∂t)

2 and ψ(εDx) = ΓΓΓ(ε∇x), we obtain:

(iω)2 Wε [uε ]+ iεω∂tWε [uε ] = ΓΓΓ(ik) ·Wε [uε ]−
iε
2
{ΓΓΓ(ik) ,Wε [uε ]}+o(ε2),

(iω)2 Wε [uε ]− iεω∂tWε [uε ] = Wε [uε ] ·ΓΓΓ((ik))∗T +
iε
2

{
Wε [uε ],(ΓΓΓ(ik))∗T

}
+o(ε2)

(3.36)

where the Poisson bracket is defined by: {ΓΓΓ,W} = ∇kΓΓΓ · ∇xW − ∇xΓΓΓ · ∇kW with the product
∇kΓΓΓ ·∇xW := ∂k j ΓΓΓ ·∂x j W (with Einstein summation convention).

The asymptotic expansion of Wε is defined by:

Wε := W0 + εW1 +o(ε2) (3.37)
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Note that the 0-order term W0 is equivalent to the Wigner measure W, as W0 = limε→0 Wε . Introduc-
ing eq. (3.37) into eq. (3.36), the leading order o(ε0) gives:(

ω
2Id −ΓΓΓ(k)

)
W0 = 0 (3.38)

Using the eigendecomposition for ΓΓΓ as we did for the Christoffel equation (1.8), it can be found that
the non-trivial solutions of eq. (3.38) can be written in the form [17]:

W0 = Wpk̂⊗ k̂+Ws = Wpk̂⊗ k̂+ ∑
α,β=1,2

Ws,αβ k̂⊥
α ⊗ k̂⊥

β
(3.39)

and the eigenvalues of the Christoffel tensor:

ω
2
p = c2

p |k|
2 , or ω

2
s = c2

s |k|
2 (3.40)

In eq. (3.39), W0 is decomposed into P-mode (associated to the eigenvalue ωp and the eigenvector k̂)
and S-mode (associated to the multiple eigenvalue ωs and the eigenvectors

{
k̂⊥

1 , k̂⊥
2
}

). Wp is a scalar
function and Ws is a 2×2 matrix (two modes for S-wave) in 3D media. Thus the multiply-scattered
wave energy in an elastic medium may be characterized by four parameters, one for the longitudinal
wave and three for the transverse wave (according to the symmetry property of Wigner transform,
only three coefficients of Ws are independent).

Now by subtracting the two equations in eq. (3.36) and inserting eq. (3.37), the order o(ε) of the
obtained equation gives:

2ω∂tW0 =
1
2
({

ΓΓΓ(k) ,W0}−{
W0,ΓΓΓ(k)

})
(3.41)

We multiply the above equation on the left and the right by k̂ for mode P and by k̂⊥ for mode S, and
recall that the identity matrix Id = k̂⊗ k̂+ I⊥ = k̂⊗ k̂+ k̂⊥

1 ⊗ k̂⊥
1 + k̂⊥

2 ⊗ k̂⊥
2 . Its right-hand side reads:

k̂ ·
({

ΓΓΓ(k) ,W0
}
+
{

W0,ΓΓΓ(k)
})

· k̂ = k̂ ·
{

ΓΓΓ(k) · Id ,W0
}
· k̂− k̂ ·

{
W0,Id ·ΓΓΓ(k)

}
· k̂

=
{

ω2
p,Wp

}
−
{

Wp,ω
2
p
}

= 2∇kω2
p ·∇xWp

I⊥ ·
({

ΓΓΓ(k) ,W0
}
+
{

W0,ΓΓΓ(k)
})

· I⊥ = I⊥ ·
{

ΓΓΓ(k) · Id ,W0
}
· I⊥− I⊥ ·

{
W0,Id ·ΓΓΓ(k)

}
· I⊥

=
{

ω2
s ,Ws

}
−
{

Ws,ω
2
s
}

= 2∇kω2
s ·∇xWs

(3.42)
Then introducing eq. (3.42) into eq. (3.41) and using the definition of ωp and ωs, the following
equations for mode P and S can be found:ω∂tWp[uε ]− c2

pk ·∇xWp[uε ] = 0

ω∂tWs[uε ]− c2
s k ·∇xWs[uε ] = 0

(3.43)
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We recall that k ·∇x is the operator of the directional derivative along k. According to eq. (3.40),
for example in the case of P-waves, we have ωp =±cp |k|. Considering that ω is physically always
positive and using the symmetry about zero of Wigner transform in phase space, we define ω > 0 and
±k that represent the two directions “±”. Thus Wp[uε ] can be projected into these two directions by:

Wp[uε ](t,x;ω,k) = W+
p [uε ](t,x;−k)δ (ω − cp(−k · k̂))+W−

p [uε ](t,x;k)δ (ω − cp(k · k̂)) (3.44)

This shows that the forward wave intensity W+
p propagates in the direction −k̂ and the backward

wave intensity W−
p propagates in the direction k̂ in phase space. Note that this definition is consistent

with the numerical example in the section 3.1.4. In fig. 3.8, it is noticed that Wigner transform
of forward waves (t,x = cpt > 0) in 1D media takes value with slope of −cp in phase space (for
k < 0,ω =−cpk > 0). In fact, it is a result of exponential terms e j(τω+yk) in the definition of Wigner
transform, which differs with the common definition of harmonic forward-going plane waves e j(τω−yk).
However, it does not affect the analysis of results. We keep this traditional definition of Wigner
transform and use this convention of sign for (ω,k) in eq. (3.44) in the following. All analysis and
definitions above are applied similarly for S-wave.

Introducing eq. (3.44) into eq. (3.43) (note that k in eq. (3.43) should be changed to −k for W+
p

and W+
s according to our choice of sign), it can be decomposed into:∂tW±

p [uε ]± cpk̂ ·∇xW±
p [uε ] = 0

∂tW±
s [uε ]± csk̂ ·∇xW±

s [uε ] = 0
(3.45)

which are the transport equations for P and S-wave in homogeneous media, subjected to some initial
conditions and boundary conditions.

The general solutions of eq. (3.45) for harmonic waves can be expressed as:W±
p (t,x;∓k) = Ap(k̂ ·x∓ cpt)

W±
s (t,x;∓k) = As(k̂ ·x∓ cst)

(3.46)

In the time-space domain (t,x), general solutions of P-wave displacement in homogeneous media
∂ 2

t u− c2
p∇2

xu = 0 can be expressed as:

up(t,x) = F(k̂ ·x− cpt)+G(k̂ ·x+ cpt) (3.47)

where F and G are arbitrary functions of their argument. It has two components that represent
respectively the propagation of wave fronts in the forward and backward directions. It can be
remarked that the energy density Wp (eq. (3.46)) has the same arguments in the time-space domain.
Considering the Wigner transform of up(t,x), according to eq. (3.10), it has two auto-terms related
to energy density of two directions W±

p in eq. (3.46) and one cross term that vanishes in the weak
sense when ε → 0. The same can be said of the S-wave. In the phase space (ω,k), Wigner measure
presents the relation of dispersion along the characteristics in eq. (3.44), that is verified numerically
by the example in fig. 3.8 of section 3.1.4.
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3.2.2 Theoretical residual errors based on transport equation

We assume that uh∆t is a finite element solution of the wave equation (1.1) in the high frequency
limit. The numerical errors related to uh∆t are evaluated based on transport equations eq. (3.45) in
terms of energy quantities of wave fields, i.e. the projections of Wigner transform of uh∆t . In the
following, its projection on mode P is denoted by Wp[uh∆t ] = k̂ ·Wε [uh∆t ] · k̂ and on mode S by
Ws[uh∆t ] = I⊥ ·Wε [uh∆t ] · I⊥.

Definition 3.8. Residual errors based on transport equations (3.45) are defined as:R±
p [uh∆t ](t,x;ω,k) := ∂tW±

p [uh∆t ](t,x;ω,k)± cpk̂p ·∇xW±
p [uh∆t ](t,x;ω,k)

R±
s [uh∆t ](t,x;ω,k) := ∂tW±

s [uh∆t ](t,x;ω,k)± csk̂s ·∇xW±
s [uh∆t ](t,x;ω,k)

(3.48)

Furthermore, it can be demonstrated that eq. (3.48) can be transformed into the following theorem.

Theorem 3.9. The local residual error maps in (t,x;ω,k) domain can be obtained by:R±
p [uh∆t ] =

(
W±

p [vh∆t ,uh∆t ]+
(
W±

p [vh∆t ,uh∆t ]
)∗T

)
± cp

(
W±

p [k̂p ·∇xuh∆t ,uh∆t ]+
(
W±

p [k̂p ·∇xuh∆t ,uh∆t ]
)∗T

)
R±

s [uh∆t ] =
(

W±
s [vh∆t ,uh∆t ]+ (W±

s [vh∆t ,uh∆t ])
∗T
)
± cs

(
W±

s [k̂s ·∇xuh∆t ,uh∆t ]+
(
W±

s [k̂s ·∇xuh∆t ,uh∆t ]
)∗T

)
(3.49)

Proof. Using lemma 3.4.

Errors defined with eq. (3.49) is more interesting than eq. (3.48) because it emphasizes the
importance of the correlations of the displacement with the velocity and the directional derivative
along the wave vector of the displacement. Numerically, it avoids the computation of the time
derivatives by finite difference, when numerical velocities are already obtained at each time step.

Considering that the local errors R±[uh∆t ](t,x;ω,k) depend on four parameters and using the
energy properties of Wigner transform (eq. (3.7)), we propose two new error quantities in an energy
norm:

R̄[uh∆t ](ω,k) :=
∫
R×Rd

∑
α

tr
{∣∣R+

α [uh∆t ](t,x;ω,k)
∣∣+ ∣∣R−

α [uh∆t ](t,x;ω,k)
∣∣}dtdx (3.50)

and

R̃[uh∆t ](t,x) :=
∫
R×Rd

∑
α

tr
{∣∣R+

α [uh∆t ](t,x;ω,k)
∣∣+ ∣∣R−

α [uh∆t ](t,x;ω,k)
∣∣}dωdk (3.51)

where α = P,S stands for different modes. Taking into account that the existence of cross terms
disturbs the distribution of energy in terms of frequency, the second definition R̃(t,x) is used and
computed in this work.
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3.3 Numerical application for wave propagation in a 1D homogeneous
medium

In this section, we analyze numerically the defined residual errors eq. (3.54) and eq. (3.55) in a
1D case.

We firstly rewrite the transport equation and the residual errors in 1D media for clarity and
simplification of some notations. In this case, only P-wave propagates with constant velocity c0 and
the subscript p can be neglected. The transport equation eq. (3.45) reads:

∂tW±[uε ]± c0∂xW±[uε ] = 0 (3.52a)

Recall that W± with the convention of sign defined in eq. (3.44) can be written as:

W+[uε ] := W[uε ](t,x;ω =−c0k > 0,k < 0), W−[uε ] := W[uε ](t,x;ω = c0k > 0,k > 0) (3.53)

The residual error maps in 1D are obtained with eq. (3.49) and eq. (3.51), namely:

R±[uh∆t ](t,x;ω,k) := 2Re
(
W±

ε [vh∆t ,uh∆t ](t,x;ω,k)
)
±2c0Re

(
W±

ε [εh∆t ,uh∆t ](t,x;ω,k)
)

(3.54)

and
R̃[uh∆t ](t,x) :=

∫
R×R

{∣∣R+[uh∆t ](t,x;ω,k)
∣∣+ ∣∣R−[uh∆t ](t,x;ω,k)

∣∣}dωdk (3.55)

where vh∆t and εh∆t stand for respectively the numerical velocity and strain fields.

Now we consider here the same 1D wave propagation model as the one defined in the section 3.1.4
(fig. 3.7). All the physical parameters are defined already in the table 3.1 except that here we consider
a bar with a finite length L = 1 m so wave front propagates a round trip in a time period Tf = 0.4 ms.
The left end is subjected to the Neumann conditions with the ricker signal and the right end to the free
boundary condition.

The exact solutions of the wave displacement in the time-space domain are obtained analytically
and illustrated in fig. 3.9. Note that the Wigner transform of the exact solutions is calculated
numerically.

In order to analyze the evolution of residual errors with refinement, three numerical finite element
solutions are computed with different mesh sizes h and time steps ∆t shown in the table 3.2. Note
that they all satisfy the sampling condition in eq. (3.27): 1

∆t ≥ 4 fc, with fc the cutoff frequency of the
ricker signal, which can be chosen equal to 3 fmax.
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Fig. 3.9 Wave displacement: (a) u(t,x) in the whole computed time-space domain (with two computa-
tion regions for Wigner transform at two points A (tA,xA) and B (tB,xB)), (b) u(t,x0) for x0 = 0.4 m,
(c) u(t0,x) for t0 = 0.1 ms

h (mm) ∆t (µs) λ ( fc = 3 fmax)/h

1 3.125 0.5 4

2 1.25 0.2 10

3 0.625 0.1 20

Table 3.2 Parameters for finite element solutions of wave equation, h: mesh size, ∆t: time step,
λ ( fc)/h: number of elements in the shortest wavelength of interest corresponding to the cutoff
frequency
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3.3.1 Residual errors in phase space for different refinements of finite element solu-
tions

We choose firstly two representative points: point A (t = 0.083 ms, x = 0.4 m) at the centre of
wave front in the forward path (for W+) and point B (t = 0.27 ms, x = 0.6 m) in the return path
(for W−) (fig. 3.9a), and then the residual errors defined in eq. (3.49) in phase space are respectively
computed.

(a) (b)

Fig. 3.10 Numerical computation of Wε [uh∆t ](t,x;ω,k) in phase space for a given time-space point:
(a) point A, (b) point B

Figure 3.10 gives the results of Wigner transform for the two considered time-space points A and
B, numerically calculated with (ζt ,ζx) = (8Tmax,8λmax) = (0.06ms,0.32 m) for the FE numerical
wave solutions obtained with h = 0.625 mm, ∆t = 0.1 µs. It is observed that the Wigner transform
takes values along respectively the two characteristic lines of the dispersion relation ω =∓c0k.

Now we compute the residual errors R±[uh∆t ](t0,x0;ω,k) in phase space in eq. (3.49) for different
time-space refinements.

Figure 3.11 give local residual errors distributed in phase space for the points A and B with
different numerical solutions. It can be found the tendency of decreasing of errors with increasing
refinement. Errors at point B are generally larger that at point A for same size of refinement due to
the increase of errors with time.

Generally, the maximum of the estimated errors is located around kmax (we ignore the maximum
at k = 0 where all the cross terms between positive/negative frequencies overlap). In the case
λ ( fc)/h = 4 for point B (the top figure in fig. 3.11b), it is observed that the frequency band is much
shorter than other cases and the maximum of errors is approximatively located at kmax/2. In fact, it
can be remarked in fig. 3.12 (more evident in fig. 3.12b) significant errors related to the numerical
diffusion of numerical solutions with the time discontinuous Galerkin method used here. It includes
the dissipation (associated to the amplitude error) and the dispersion (associated to the phase error).
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These effects, depending on mesh size and the size of the time step, increase with time. Consequently,
for the coarse refinement (λ ( fc)/h = 4 here), the quality of estimated errors cannot be ensured. Errors
can be underestimated (fig. 3.13b). More studies on diffusion properties of DG or other numerical
methods for the wave equation can be found in [5, 74, 136].

(a) (b)

Fig. 3.11 (a) R± for point A in phase space for different refinements; (b) R± for point B in phase
space for different refinements
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Fig. 3.12 Wave displacement for different refinements: (a) u(tA, :), (b) u(tB, :)
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Fig. 3.13 (a) R± for point A, interpolated on the line perpendicular to ω =−c0k across the k =−kmax;
(b) R± for point B, interpolated on the line perpendicular to ω = c0k across the k = kmax

Some noticeable fluctuations are also found along ω =∓c0k (most remarkable for λ ( fc)/h = 4).
At the bottom of fig. 3.13, we give respectively the interpolation of the previous three plots on the
line perpendicular to ω =∓c0k across the k =∓kmax for point A and B. For point A, in the case of
λ ( fc)/h = 4, it is observed that these fluctuations are small compared to the relatively large errors
in ω = c0k. In the case of λ ( fc)/h = 20, fluctuations and errors become more comparable. These
fluctuations are resulting from “spectral leakage”. In simple terms, DFT (so does DWT) for the
sampled signal is repeated periodically; if some glitches or discontinuities exist in the boundaries of
the chosen computation region, a leakage of frequency will arise. Leakage causes the signal levels to
be reduced and redistributed over a broad frequency range. For exact solutions of wave propagation
in homogeneous media, if we compute its Wigner transform along the direction of propagation
x = ±c0t, it can be seen as a constant continuous function. No leakage happens. For numerical
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solutions, discontinuities always exist and we cannot find a method that allows removing totally these
fluctuations. Increasing the size of computation region is one of methods to reduce them. That is
also an explanation for choosing a large (ζt ,ζx) = (8Tmax,8λmax). A detailed discussion about this
phenomenon can be found in appendix B.

3.3.2 Residual errors in time-space for different refinements of finite element solu-
tions

Considering the numerical fluctuations found in last section, R(t,x;ω,k) is filtered with a window
function and then we compute errors in the time-space domain R̃(t,x) defined in eq. (3.55), i.e.

R̃(t,x) :=
∫
R×R

∣∣R±(t,x;ω,k)
∣∣hR(ω,k)dωdk (3.56)

where hR(ω,k) is a window function defined in phase space, which allows the filtering of fluctuations
according to our choice. Considering here that the integral area of errors should be only around
ω =±c0k so we choose naturally a rectangular window defined with the rotational coordinate (it can
be also found in Appendix F for a more detailed definition of this new coordinate):

h̃R(k⊥,k∥) = hR(ω,k) = rect(k⊥)rect(k∥) with

k⊥ =
ω

c0
−k

√
2

k∥ =
ω

c0
+k

√
2

(3.57)

For forward waves (point A, fig. 3.14), the length of h̃R along k⊥ is from zero to the cutoff frequency:
k⊥ ∈ [−3

√
2kmax,0]. Its width in k∥ direction is carefully chosen as ζ∥ = 2

√
2∆k (recall that ∆k is

frequency resolution). This width covers at least the main lobe of Wigner transform in this direction.
It allows to contain the residual errors along the characteristic line but not too much fluctuations.
Indeed, as we discussed in the section 3.1.3, the DWT can be seen as DFT of a rectangular function
with period of

√
(c0ζt)2 +ζ 2

x =
√

2ζx in the (c0t,x)-plane along x = c0t (t axis is rescaled to c0t)
in homogeneous media, so the width of main lobe is equal to 2√

2ζx
= 2

√
2∆k. For backward waves,

errors are distributed in the first quadrant, thus k⊥ ∈ [0,3
√

2kmax].

Figure 3.14 illustrates the effect of window function on residual errors for forward waves (for
λ/h = 4 in fig. 3.11a).

Now residual errors are computed for all points (t,x) so we get a time-space maps of errors. Note
that the boundaries are neglected since in the present work the chosen calculation domain of Wigner
transform and the validity of the transport equation are only considered in the bulk of the medium. In
fig. 3.15, the convergence of errors with decreasing mesh size is illustrated. It can be also found in
fig. 3.15d that the integral of errors over space is increasing with time (more evident for the coarsest
mesh).
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Fig. 3.14 Filtering for residual errors in phase space
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λ/h = 10, (c) λ/h = 20, (d)
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To understand more clearly, we compare values of all R̃(t,x) for a certain position x0 or a certain
moment t0 in one plot. In fig. 3.16, it is observed that the residual errors defined in eq. (3.55) are
decreasing with smaller mesh size as we expected. Two errors for exact solutions are given (discretized
both with respect to the finest refinement λ/h = 20): one is computed in coordinates (t,x), another is
along the direction of propagation. As we mentioned in last section, Wigner transform of the latter
has no leakage. Thus it is noticed in fig. 3.16 that it has much smaller value than the former case and
other numerical solutions. It means that the window function hR allows reducing the fluctuations but
it cannot remove totally the effect of frequency leakage. We can conclude that errors resulting from
leakage of frequency are very important in numerical computations of Wigner transform but it does
not influence the evaluation of errors with refinement here.
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Fig. 3.16 Comparison of residual errors between numerical solutions and exact solutions: (a) R̃(t,x0)
for x0 = 0.4 m, (b) R̃(t0,x) for t0 = 0.1 ms
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Fig. 3.17 Comparison of residual errors between three exact solutions with different discretizations:
(a) R̃(t,x0) for x0 = 0.4 m, (b) R̃(t0,x) for t0 = 0.1 ms

Finally, for only exact solutions without leakage in FFT, sources of residual errors in numerical
computations can be considered mainly as the discretization in the time-space domain of analytical
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equations. Indeed, errors of exact solutions with different sizes of discretization can be also computed
and compared in fig. 3.17. We find that they are much smaller than errors in fig. 3.16 so they can be
neglected.

3.4 Conclusion

In this chapter, we presented the transport equation which describes the energy transport for HF
wave propagation in homogeneous media, derived by the scaled spatio-temporal Wigner transform.
The properties of cross terms in Wigner transform were analyzed and discussed in detail. For
numerical computations of Wigner transform, an important study of parameters, i.e. the size of
computation region in time and in space for discrete Wigner transform was determined in function of
signal frequency considering the frequency resolution. Then the energy-based residual errors of the
wave equation with the transport equation were proposed analytically. A numerical application of
these results is realized in a 1D homogeneous medium. The errors were computed for approximate
solutions with different mesh sizes and we compare all these results in the time-space domain. We
observed that with increasing number of degrees of freedom, the defined residual errors are decreasing
as we expected, which allows validating our tools of error estimator.
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This chapter deals with high frequency wave propagation problems in heterogeneous media.
Compared to the transport equation in chapter 3, a more general and complicated radiative transfer
equation is studied. It is derived from the wave equation in the same way as we did in the section 3.2.1.
It describes not only the transport of energy, but also the scattering of energy by heterogeneities, with
the effects of coupling between different polarization modes. After a long propagation time, we find
the mean amplitude of waves decreases with the distance travelled, since the coherent or mean wave
energy is converted to incoherent fluctuations. Considering the difficulties and high computational
costs of analyzing errors for highly oscillating wave fields in these media, we propose here to quantify
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errors of finite element solutions of the wave equation in terms of energy quantities governed by this
new equation.

In the section 4.1, we start with the introduction of random media, which is used to model the
heterogeneities, and the radiative transfer equation in these media. Then the analytical solutions
of the radiative transfer equation in 1D media are obtained. The related propagation phenomena
characterized by the scattering mean free length, are discussed. A numerical example of wave
propagation in a 1D medium is presented and the localization phenomenon is discussed.

In the section 4.2, the energy-based residual errors of wave fields using the radiative transfer
equation are defined analytically and computed numerically for FE wave solutions obtained in 1D
heterogeneous media.

In the section 4.3, a filtering of the obtained residual errors with window functions is proposed,
which allows smoothing Wigner transform and reducing the influence of cross terms. Its numerical
application is presented and analyzed.

Finally, in the section 4.4, the energy-based residual errors of numerical wave solutions obtained
with two different refinements are compared.
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4.1 Radiative transfer equation in heterogeneous media in the weak
coupling limit

In this section, we present the radiative transfer equation in heterogeneous media and the related
phenomena. Firstly, the heterogeneities of media are described by a random model of mechanical
properties. Then the scaled spatio-temporal Wigner transform defined in the chapter 3 is used for the
derivation of the radiative transfer equation in heterogenous media. Some important characteristic
lengths and propagation phenomena are discussed in the end.

4.1.1 Statistical description of weak randomly-fluctuating media

As we introduced in the section 1.2.4, we consider the high frequency wave propagation in the
weak coupling limit. The physical properties of weakly heterogeneous media are assumed in the form:

C(x) = C0(x)+
√

εC1

(x
ε

)
(4.1)

Here ρ(x) is assumed slowly varying so only the elastic tensor is assumed to vary rapidly.

The slowly varying part C0(x) satisfies:

C0(x) = E [C(x)] (4.2)

where E[·] denotes mathematical expectation or ensemble average.

The fast fluctuating part C1(y), with y = x
ε
, is considered as a statistically homogeneous mean

zero random field with unit-variance in the y variable. The standard deviation of C is given by the
mean square of the fractional fluctuations

√
ε before C1. This size is the unique scaling which allows

significantly modifying the energy spreading in the transport regime at a long propagation distance.
Indeed, if the random fluctuations are too weak they will not affect significantly energy transport
(although strong interactions between waves and media exist in this case with lc ≈ λ ), and too large
fluctuations will lead to the localization of wave energy in media where the radiative transfer theory
cannot be applied [125]. Note that the period of the fluctuations of the properties is of order ε , as the
characteristic length over which the material fluctuates. This model allows an asymptotic analysis of
wave propagation problems.

A random medium can be seen as an ensemble of heterogeneous media, called realizations. Each
realization differs from another in the detailed spatial structure of fluctuations, but they have some
common statistical properties, such as mean value, variance or standard deviation, and covariance
function.

Definition 4.1. For any statistically homogeneous random field U, its covariance function P(r) and
power spectral density P̂(k) (Fourier transform of covariance function) are respectively defined by:

P(r) = P(y− z) = E [U(y)⊗U(z)] ,

P̂(k) =
∫
Rd

P(z)e−iz·kdz
(4.3)
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With the definition of P̂(k), we have:

(2π)d
δ (p+q)P̂(p) = E

[
Û(p)⊗ Û(q)

]
(4.4)

The covariance function is a statistical measure of the spatial correlation and the magnitude of
the fluctuations in the medium. When a medium is isotropic, the covariance function depends only
on the lag distance r = |y− z|. Three covariance functions are given here as examples: the sinc2,
the exponential and the gaussian functions. These three functions and their corresponding power
spectral densities are given in the table 4.1 and illustrated in fig. 4.2. Here “sinc” stands for the
unnormalized cardinal sine function sin(x)

x and “tri” stands for the scaled triangular function defined

by tri(k/a) :=

{
1−|k|/a |k| ≤ a

0 otherwise
.

type covariance function power spectral density

sinc2 P(r) = σ2sinc2(πr/lc) P̂(k) = σ2lctri(klc/2)

exp P(r) = σ2e−2r/lc P̂(k) = 1
π

σ2lc 1
(1+k2l2

c /4)2

gauss P(r) = σ2e−πr2/l2
c P̂(k) = 1

π
σ2lce−k2l2

c /(4π)

Table 4.1 Examples of covariance function and power spectral density (P(0) = σ2)
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Fig. 4.1 (a) normalized sinc2, exponential and gaussian covariance functions, (b) sinc2 function with
different correlation lengths

It can be seen that the covariance function P(r) depends on two parameters: the variance σ2 and
the correlation length lc. Here lc is defined so that it satisfies:

lc = 2
∫

∞

0

P(r)
σ2 dr (4.5)

Different definitions for lc can be found in the literature [41, 127]. Physically, the correlation length
lc refers to an order of magnitude of the distance beyond which the values of the random field are
almost uncorrelated.



4.1 Radiative transfer equation in heterogeneous media in the weak coupling limit 75

Briefly, a random medium realization is obtained by the filtering of a white noise. This white
noise is filtered with the square root of the power spectral density of the required covariance function
in the wave number domain. The inverse Fourier transform provides the fluctuating field which is
superposed on the slowly fluctuating background. Figure 4.2 gives one realization of numerical 2D
random fields with spectra P̂(kx,ky) = σ2l2

c tri(kxlc/2)tri(kylc/2) by spectral approaches [128, 129].
The influence of the correlation length on media can be observed.

(a) (b)

Fig. 4.2 One realization of 2D random media generated by the covariance function sinc2 with different
correlation lengths: (a) lc = l0, (b) lc = 2l0

4.1.2 Radiative transfer equation

In this section, the radiative transfer equation is derived, which describes the high frequency wave
propagation in random media in the weak coupling limit. It provides a description of the evolution of
wave energy in phase space in terms of the Wigner measure.

We present hereafter only the main steps taken in the derivation of the radiative transfer equation.
More details can be found in [17, 25, 119]. The main idea is the same as the derivation of the transport
equation presented in the section 3.2.1. However, a special attention should be paid for the new
order

√
ε in the asymptotic expansion of the Wigner measure, resulting from the magnitude of fast

fluctuations of random media defined in eq. (4.1). Besides, the transport equation can be seen as a
particular case of the radiative transfer equation by removing the fast fluctuations of media.

First of all, we can also write the rescaled wave equation in the high frequency limit as we did in
eq. (3.34): (

(ε∂t)
2Id −ΓΓΓ(x;ε∇x)

)
·uε(t,x) = 0 (4.6)

In the case of heterogeneous media, ΓΓΓ depends on x. However, we still present the case of isotropy for
simplicity. According to the randomly fluctuating elasticity tensor defined by eq. (4.1), the Christoffel
tensor ΓΓΓ is expanded as:
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ΓΓΓ ·uε = ρ
−1(x)(C0(x) : (k⊗s uε)) ·k︸ ︷︷ ︸

ΓΓΓ0(x;k)

+
√

ερ
−1(x)(C1(x/ε) : (k⊗s uε)) ·k︸ ︷︷ ︸

ΓΓΓ1(x,x/ε;k)

+ ερ
−1(x)(∇xC0(x) : (k⊗s uε)) ·k︸ ︷︷ ︸

ΓΓΓ2(x;k)

+o(ε
3
2 )

(4.7)

The following equations hold when the spatio-temporal Wigner transform is applied to the wave
equation and the wave field:

Wε [
(
(ε∂t)

2Id −ΓΓΓ(x;ε∇x)
)
·uε ,uε ] = 0, Wε [uε ,

(
(ε∂t)

2Id −ΓΓΓ(x;ε∇x)
)
·uε ] = 0 (4.8)

A two-scale asymptotic expansion of the Wigner transform for these two equations is defined as:

Wε(t,x,x/ε;ω,k) = W0(t,x;ω,k)+
√

εW1(t,x,x/ε;ω,k)+ εW2(t,x,x/ε;ω,k)+o(ε
3
2 ) (4.9)

Introducing eq. (4.7) and eq. (4.8) into eq. (4.6), all the terms inside the Wigner transform and the
Christoffel tensor are developed and expanded. Parameter identification is then applied respectively
for the first three orders o(ε0),o(

√
ε) and o(ε).

The order o(ε0) gives: (
ω

2Id −ΓΓΓ0(x;k)
)
·W0 = 0 (4.10)

In the case of ΓΓΓ0(x) is independent of x, the same equation as that in homogeneous media (eq. (3.38))
is found. In the general case, we also use the same eigendecomposition of W0 in the P-mode and the
S-mode as eq. (3.39), and the dispersion relation eq. (3.40) with cp = cp(x) and cs = cs(x).

The order o(
√

ε) allows deriving the Fourier transform of W1 with respect to y and the order o(ε)
gives an equation in terms of W0 and W1, while W2 disappears under an assumption of orthogonality.
Note that an ensemble average is applied when we deal with the order o(ε). The projection of W0

on a mode α , denoted by Wα (α = p,s), obtained in the radiative transfer equation is in fact E[Wα ].
However, we denote it always by Wα in the rest of document. Besides, a crucial mixing assumption is
applied during the derivation: the average of the leading term W0 is assumed to depend only on slow
space variable x [17, 119]. It allows us to separate the product of the average of W0 and the average
of fast fluctuating variables since they vary on different scales. Finally combing equations in these
two orders and using all these assumptions presented above, the 3D radiative transfer equation for the
P-mode and the S-mode is obtained and given in the following:

∂tW±
p (t,x;k)±

{
ωp(x;k),W±

p (t,x;k)
}

=
∫

ωp(k)=ωp(k′)
spp(x;k,k′)W±

p (t,x;k′)dk′−Spp(x;k)W±
p (t,x;k)

+
∫

ωp(k)=ωs(k′)
sps(x;k,k′)

(
k̂⊥′ ⊗ k̂⊥′

)
: W±

s (t,x;k′) dk′−Sps(x;k)W±
p (t,x;k)

(4.11a)
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∂tW±
s (t,x;k)±

{
ωs(x;k),W±

s (t,x;k)
}
+
[
N(x;k),W±

s (t,x;k)
]

=
∫

ωs(k)=ωs(k′)
sss(x;k,k′)G(k,k′) ·W±

s (t,x;k′) ·
(
G(k,k′)

)T dk′−Sss(x;k)W±
s (t,x;k)

+
∫

ωs(k)=ωp(k′)
ssp(x;k,k′)k̂′

⊥⊗ k̂′
⊥W±

p (t,x;k′)dk′−Ssp(x;k)W±
s (t,x;k)

(4.11b)
with

G(k,k′) = (k̂ · k̂′)k̂⊥
i ⊗ k̂⊥

i,⊥′ + k̂′
⊥⊗ k̂⊥′ , i = 1,2 (with Einstein summation convention) (4.12)

Sαβ (x;k) =
∫

ωα (k)=ωβ (k′)
sαβ (x;k,k′)dk′, α,β = p,s (4.13)

Recall that (k̂, k̂⊥
1 , k̂⊥

2 ) forms an orthonormal triplet. In the eqs. (4.11) and (4.12), the subscripts
⊥ and ⊥′ denote respectively the projection into the plane perpendicular to k̂ and to k̂′. It means:

k̂⊥′ = k̂− (k̂ · k̂′)k̂′, k̂′⊥ = k̂′− (k̂′ · k̂)k̂, k̂⊥
i,⊥′ = k̂⊥

i − (k̂⊥
i · k̂′)k̂′ (4.14)

[A,B] := AB−BA stands for the Lie bracket. The matrix N(x;k) in eq. (4.11b) leads to the coupling
of elements of the matrix Ws. It is related to the slow variations of the background C0 (in proportion
to ∂cs

∂x j
) and vanishes in homogeneous media. sαβ (x;k,k′) is the differential scattering cross-section

for the mode α −β scattering, namely the rate of conversion of energy at x from the mode α with
wave number k′ into the mode β with wave number k′. It is associated to the fast fluctuations of
media. Sαβ (x;k) is the total scattering cross-section. For simplicity, in order to avoid the multiple
S-mode in 3D media, the formula of differential scattering cross-sections in 2D isotropic media are
given here. Results for 3D or anisotropic media can be found in [25]. The elasticity tensor C(x) is
determined by two Lamé’s coefficients λ and µ in the same form with eq. (4.1):

λ (x) = λ0(x)+
√

ελ1

(x
ε

)
, µ(x) = µ0(x)+

√
εµ1

(x
ε

)
(4.15)

The differential scattering cross-sections are given by :

spp(x;k,k′)=
cp(x) |k|2

4

{
(c2

p(x)−2c2
s (x))2

c4
p(x)

P̂λλ (k−k′)+
4c2

s (x)(c2
p(x)−2c2

s (x))
c4

p(x)
(k̂ ·k̂′)2P̂λ µ(k−k′)

+
4c2

s (x)
c4

p(x)
(k̂ · k̂′)4P̂µµ(k−k′)

}
(4.16)

sps(x;k,k′) =
cs(x) |k|2

4

{
4(k̂ · k̂′)2P̂µµ(k−k′)

}
(4.17)

sss(x;k,k′) =
cs(x) |k|2

4
P̂µµ(k−k′) (4.18)

ssp(x;k,k′) =
cs(x) |k′|2

4

{
4(k̂ · k̂′)2P̂µµ(k−k′)

}
(4.19)
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where P̂λλ , P̂µµ , P̂λ µ are the power spectral densities of the fast fluctuations of corresponding subscript.
For example, P̂λ µ is defined by (variance σ2 = ε):

(2π)2
δ (p+q)P̂λ µ(p) = εE

[
λ̂1(p)µ̂1(q)

]
(4.20)

Equation (4.16) implies that the fast variations C1 contribute to the right-hand side of the radiative
transfer equation only through the power spectral densities of its elasticity parameters.

Compared with the transport equation in homogeneous media (3.45), in the radiative transfer
equations eq. (4.11) we have two additional terms on the left-hand side (transport of waves), {ωα ,W±

α }
(α = p,s) and [N,W±

s ], resulting from slow variations C0, and two additional terms on the right-hand
side (scattering of waves), resulting from fast variations C1.

Now the particular case of 1D heterogenous media with only fast fluctuations, is discussed. We
assume that ρ and E0 are constant, the heterogeneity in eq. (4.1) becomes:

E(x) = E0 +
√

εE1

( x
ε

)
(4.21)

The only mode in 1D is a P-mode with velocity c0 =
√

E0
ρ

, the radiative transfer equation eq. (4.11)
becomes (the subscript α for mode P is removed hereafter for simplicity):

∂tW±(t,x;k)± c0∂xW±(t,x;k) =
∫
|k|=|k′|

s(k,k′)W±(t,x;k′)dk′−S(k)W±(t,x;k) (4.22)

The differential scattering cross-section s(k,k′) (4.16) and the total scattering cross-section S(k)
(4.13) are:

s(k,k′) =
c0k2

4
P̂(k− k′), S(k) =

∫
|k|=|k′|

s(k,k′)dk′ (4.23)

where P̂(k) denotes P̂E1E1(k), i.e. the power spectral density for E1. As a matter of fact, in 1D media
only two directions of propagation exist, thus k′ = k or k′ =−k. s(k,k′) in eq. (4.23) reads:

s(k,k′) =


c0k2

4 P̂(0), k′ = k

c0k2

4 P̂(2k), k′ =−k
, S(k) =

c0k2

4
P̂(0)+

c0k2

4
P̂(2k) (4.24)

Thus the scattering part in eq. (4.22) becomes:∫
|k|=|k′|

s(k,k′)W±(t,x;k′)dk′−S(k)W±(t,x;k)

=

(
c0k2

4
P̂(0)W±(t,x;k)+

c0k2

4
P̂(2k)W±(t,x;−k)

)
−
(

c0k2

4
P̂(0)+

c0k2

4
P̂(2k)

)
W±(t,x;k)

=
c0k2

4
P̂(2k)W±(t,x;−k)− c0k2

4
P̂(2k)W±(t,x;k)

(4.25)
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where the two terms related to s(k,k) cancel each other out. Indeed, waves are scattered only in the
direction opposite to their propagation direction.

Substituting eq. (4.25) into eq. (4.22) and using the convention defined by eq. (3.53), we get the
1D radiative transfer equations:∂tW+(t,x;−k)+ c0∂xW+(t,x;−k) = c0k2

4 P̂(2k){W−(t,x;k)−W+(t,x;−k)}

∂tW−(t,x;k)− c0∂xW−(t,x;k) = c0k2

4 P̂(2k){W+(t,x;−k)−W−(t,x;k)}
(4.26)

Two new quantities emerge from adding and subtracting equations in eq. (4.26):

Ws(t,x;k) = W+(t,x;−k)+W−(t,x;k),

Wd(t,x;k) = W+(t,x;−k)−W−(t,x;k)
(4.27)

where Ws and Wd can be interpreted as the total energy density and the net forward-going density
with respect to the propagation direction k

|k|ex:

∂tWs + c0∂xWd = 0

∂tWd + c0∂xWs =− c0k2

2 P̂(2k)Wd
(4.28)

Equation (4.28) is equivalent to eq. (4.26).

Furthermore, by taking respectively the spatial and temporal derivatives of the second equation in
eq. (4.28): 

∂ 2Wd

∂x∂ t + c0∂ 2
x Ws =− c0k2

2 P̂(2k)∂xWd

∂ 2
t Wd + c0

∂ 2Ws

∂ t∂x =− c0k2

2 P̂(2k)∂tWd
(4.29)

and introducing the first equation of eq. (4.28) in eq. (4.29), we get:∂ 2
t Ws − c2

0∂ 2
x Ws =− c0k2

2 P̂(2k)∂tWs

∂ 2
t Wd − c2

0∂ 2
x Wd =− c0k2

2 P̂(2k)∂tWd
(4.30)

Two separate partial differential equations for Ws and Wd are obtained. If we consider a medium
with no scattering, a same form as the traditional 1D wave equation is obtained in terms of Ws or
Wd. For a given frequency k, eq. (4.30) can be seen as “damped” wave equations with a friction
coefficient c2

0k2

2 P̂(2k)> 0. It is known that the general solutions of the damped wave equation have an
exponential decay over time with the coefficient e−Ct (C > 0 constant) [37, 67, 96]. The difference
between wave energies in two opposite directions decreases quickly with time due to the conversion
of energy in these two directions and the sum of energies in two directions decreases at the same rate
as they spread out in space with the increase of time.
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4.1.3 Scattering mean free path

In this section, an important characteristic length called the scattering mean free path ls for the
radiative transfer regime is presented. The analytical solutions of the radiative transfer equation in 1D
media are given firstly. Then we give the definition of ls and discuss its influence on this regime.

Let us assume two initial conditions for eq. (4.26) defined by

W+(t = 0,x;−k) = W+
0 (x;−k), W−(t = 0,x;k) = W−

0 (x;k) (4.31)

Equation (4.26) can be seen as the telegraph equation for a given wave number k. Thus its
analytical solutions for a given k can be found in the following [65, 73, 147]:

W+(t,x;−k) = W+
0 (x− c0t)e−

c0
ls

t +
∫ x+c0t

x−c0t κ(t,x,y)W−
0 (y)dy+

∫ x+c0t
x−c0t κ+(t,x,y)W+

0 (y)dy

W−(t,x;k) = W−
0 (x− c0t)e−

c0
ls

t +
∫ x+c0t

x−c0t κ(t,x,y)W+
0 (y)dy+

∫ x+c0t
x−c0t κ−(t,x,y)W−

0 (y)dy
(4.32)

with:
ls(k) =

4

k2P̂(2k)
,

κ(t,x,y) =
e−

c0
ls

t

2ls
I0


√

c2
0t2 − (y− x)2)

ls

 ,

κ±(t,x,y) =
e−

c0
ls

t

2ls
I1


√

c2
0t2 − (y− x)2)

ls

 c0t ∓ (y− x)√
c2

0t2 − (y− x)2
,

(4.33)

where I0 and I1 are respectively the zero-order and the first-order modified Bessel functions of the
first kind [57].

In fact, the first term of the two solutions in (4.32) represents the original coherent wave supplied
by initial conditions, which decays exponentially with c0t over a characteristic length scale ls. Thus ls
is the so called mean free path for scattering. It measures the distance of the exponential decrease of
the energy density of coherent waves due to scatterings or successive interactions with the underlying
medium. Roughly speaking, the second and the third terms in (4.32) with the modified Bessel
functions describe the energy of incoherent waves which does not propagate ballistically. The second
term results from the scattering of the original coherent waves in the opposite direction. The last term
results form the conversion of coherent waves in the same direction when the coherent waves in the
first term decrease.

When cumulative scatterings become significant during the propagation, the coherent energy
becomes negligibly small. The incoherent energy dominates the field. W+ and W− tend to a local
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equipartition between each other [73]:

W+ ≈ W− ≈ e−
x2

2lsc0t

2
√

2πlsc0t
(4.34)

An example of analytical solutions for a single frequency wave is given here so as to illustrate the
analysis above, with initial conditions defined by:

W+
0 (x;k) = 200δ (x)δ (k+ k0) m3s, W−

0 (x;k) = 100δ (x)δ (k− k0) m3s (4.35)

where parameters are given by: k0 = 157 m−1, c0 = 4 km/s. Thus ls = 3.46 m and the sinc2 function
is chosen as the power spectral density.

Figure 4.3a and fig. 4.3b give results of W± in the time-space domain. It can be observed the
exponential decay over propagation time-distance along x =±c0t (red line). More precisely, fig. 4.3c
and fig. 4.3d give their natural logarithmic values (denoted by ln) along x =±c0t +∆x in terms of
c0t/ls (0 < ∆x ≪ 1). In fact, under the chosen initial conditions, it is known that W± is a dirac function
δ (0) on the characteristics x =±c0t (eq. (4.32)), so we compute ln(W±) on a adjacent parallel line
of the characteristics. The exponential decay of initial energies along the characteristic line (slope
= ±c0) is verified more rigorously. After the propagation over several ls, the coherent energy in
x =±c0t decreases quickly and it almost totally transforms into the incoherent energy centred around
x = 0. After a long propagation time, W+ and W− become more and more spread out in space. The
distribution of total energy satisfies a local equipartition between all possible modes: in fig. 4.3e and
fig. 4.3f, W+ and W− become equal and symmetric about x = 0.

Furthermore, note that ls depends on wave number k and the formula of power spectral density
according to its definition (4.33). The example above is discussed for a given ls and a given frequency.
Now we discuss its dependence on frequency. Choosing the three covariance functions: sinc2,
exponential and gaussian presented in the table 4.1 as examples, their power spectral densities and
scattering mean free paths are respectively computed and illustrated in fig. 4.4a and fig. 4.4b. Although
their P̂(2k) and ls(k) have different supports in frequency, some common properties are found. For
the high frequency limit, ls is approximatively inversely proportional to k2. For the low frequency
limit, ls is approximatively inversely proportional to k4 (for all P̂(k) sufficiently regular at k = 0
here). This phenomenon can be noticed in fig. 4.4b for the given parameters ε = 0.04, lc = 6 mm: ls
tends to infinite for these two limits. Hence, no scattering of energy exists in either limit. Physically,
this is due to the fact that in the low frequency domain (or the long wavelength limit) the medium
becomes effectively homogeneous. In the high frequency limit, geometric optics becomes a good
description for the classical wave propagation where the effect of scattering is expected to saturate.
More studies of the influence of different correlation models on scattering mean free path can be
found in [24, 86, 144].
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Fig. 4.3 Analytical solutions of W± in the time-space domain: (a) W+(t,x) (red line: x = c0t), (b)
W−(t,x) (red line: x =−c0t), (c) ln(W+) on x = c0t +∆x, (d) ln(W−) on x =−c0t +∆x, (e) W+(·,x)
for four time instants, (f) W−(·,x) for four time instants t = 0.4 ms, 2.6 ms, 4.4 ms and 7 ms, which
correspond respectively to c0t/ls(k0) = 0.3, 3, 5 and 8.
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Fig. 4.4 Normalized power spectral density and mean free path for different correlation models: (a)
P̂(2k), (b) ls(k) (parameters: ε = 0.04, lc = 6 mm)

Finally, note that what we discussed here remains valid when the waves are scattered by discrete
scatterers that are randomly distributed in the medium [119, 147].

4.1.4 Localization phenomenon in 1D heterogeneous media

Localization is a characteristic phenomenon when waves propagate in random media. It means
that wave energy remains in a fixed bounded region of space close to the source at all times. It is well
known that for (infinite) systems described by one spatial dimension, both quantum mechanical and
classical waves are localized even if an infinitesimal amount of randomness is present for sufficiently
large propagation distances [144]. When waves are localized and the energy does not propagate, the
radiative transfer regime is no more valid to describe the evolution of wave energy. Sheng [125]
estimated that in 1D the localization length is approximately four times the mean free path (the factor
four is not very accurate and valid especially for low frequency, but they nevertheless tell us that in
1D, the localization length is directly proportional to the mean free path). This offers the possibility of
an intermediate range when the radiative transfer might hold.

In this section, we discuss a wave propagation problem in two heterogeneous media with different
magnitudes of fluctuations. The localization phenomenon is then observed and analyzed.

Consider here the wave propagation in a heterogeneous bar with a constant density and a weakly
fluctuating Young’s modulus defined in eq. (4.21). A ricker force F(t) with a magnitude of 1 kN is
applied in the centre of bar x = 0 so the wave front propagates in two opposite directions (fig. 4.5).
Parameters are given in the table 4.2.
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Fig. 4.5 Model in 1D heterogeneous media

media load (ricker) wave mesh

ρ (kg/m3) E0 (GPa) σ2(E) = ε lc (mm) TR (ms) kmax (m−1) λmax (m) h (mm)

2500 40 0.04 6 0.02 157 0.04 5

2500 40 0.008 6 0.02 157 0.04 5

Table 4.2 Numerical parameters of media, load and waves for the numerical examples

The covariance function is chosen as sinc2 with the parameters defined in the table 4.2. Due to the
boundedness of its spectrum (fig. 4.4a), i.e. 2k/(2π

lc
)≤ 1 for nonzero value, we take 2×3kmax = 2π/lc

(related to the cutoff frequency fc = 3 fmax of ricker). Thus the power spectral density of the main
frequency range of ricker does not equal zero, i.e. they have a relatively small and finite scattering
mean free path (fig. 4.6). Consequently, lc = π

3kmax
= λmax

6 (it satisfies also the condition that λ is of
the same order of magnitude as lc). We choose two values of the variance σ2 = ε for random media
to observe the different phenomena. The mean free paths ls in these two cases are given in fig. 4.6.
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Fig. 4.6 Mean free path ls(k) (parameters: ε = 0.04,0.008, lc = 6 mm)

Consider firstly the case with larger fluctuations ε = 0.04. Numerical solutions of wave equation
with mesh size such that λ (3kmax)/h = 20 and time step ∆t = h/c0 are computed for ten realizations
of random media. uh∆t for one realization is illustrated in fig. 4.7.
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Fig. 4.7 Wave displacement in time- (half) space for one realization (ε = 0.04)

A comparison between the energy obtained by analytical solutions of the radiative transfer
equation (denoted by Wa) and by numerical solutions with Wigner transform of wave fields Wε [uh∆t ]

is considered here, as Bal and Pinaud [20] did in 2D random media. On the one hand, the existence of
localization phenomena can be verified by observing the evolution of energy. On the other hand, it
allows verifying the computation of Wigner transform as we introduced in the section 1.2.4.

Firstly, Wa is obtained analytically with eq. (4.31) subjected to some initial conditions. In this
case, it should be noticed that we cannot impose analytically initial conditions for Wa that is equivalent
to the energy density of wave fields. However, we can choose an instant t0 (after the source has
vanished) and approximate the initial conditions Wa(t = t0,x;k) by Wigner transform of numerical
waves:

Wa(t0,x;k) =
∫
R

Wε [uh∆t ](t0,x;ω,k)dω (4.36)

Then the total energy densities (sum of kinetic and potential energies) in the time-space domain
computed by analytical Wigner measure and numerical wave solutions in 1D are respectively defined
as:

E[Wa](t,x) :=
1
2

∫
R

{
ρω

2 (W+
a (t,x;k)+W−

a (t,x;k))+Ek2(W+
a (t,x;k)+W−

a (t,x;k)
)}

dk (4.37a)

E[uh∆t ](t,x) :=
1
2

∫
R2

{ρWε [∂tuh∆t ](t,x;ω,k)+EWε [∂xuh∆t ](t,x;ω,k)}dωdk (4.37b)

=
1
2

{
ρ(∂tuh∆t(t,x))

2 +E(∂xuh∆t(t,x))
2
}

Equation (4.37a) is already introduced in the lemma 3.6. Equation (4.37b) can be derived directly by
the energy properties of Wigner transform. Considering the results for numerical solutions of one
realization are highly oscillating (fig. 4.8), eq. (4.37b) is averaged in ten realizations. The comparison
of these two energies is given in fig. 4.9.
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Fig. 4.8 Energy density in the time-space domain (t ∈ [0,2 ms],x ∈ [−2 m,2 m]) obtained by one
realization of numerical wave fields E[uh∆t ]

The two figures fig. 4.9a and fig. 4.9c show that the two energies are quite similar, especially for
coherent energy. Some negative values for energy densities E[Wa](t,x) are found in fig. 4.9a. In effect,
the estimated initial conditions Wa(t0,x;k) by eq. (4.36) do not give an exact energy distribution in
terms of k (existence of cross terms for Wigner transform) and they contain some negative values for
a small part of low frequencies. These values are propagated in latter times and E[Wa](t,x) is slightly
underestimated. However, these negative energies are relatively small compared to the total energy
(≈ 0.2%). As a result, instead of comparing directly the estimated Wa and Wε [uh∆t ] in phase space,
this comparison in terms of time-space energy density is more reasonable. Finally, the two figures
fig. 4.9b and fig. 4.9d are plotted with a smaller scale in order to observe and compare the incoherent
energy. It seems that a part of energy is localized around x = 0.

We can compute the evolution of the total energy with time, defined by:

Ẽ[Wa](t) =
∫
[−2,2]

E[Wa](t,x)dx, E[Ẽ[uh∆t ]](t) = E
[∫

[−2,2]
E[uh∆t ](t,x)dx

]
(4.38)

so as to compare them and also to confirm the existence of localization. In fig. 4.10, it can be observed
that the total energy Ẽ[Wa](t) is underestimated (red line) as we just explained. Thus we propose a
“corrected” αẼ[Wa](t) with a correction factor:

α =
E[Ẽ[uh∆t ]](0)

Ẽ[Wa](0)
≈ 1.2 (4.39)

that allows roughly eliminating the errors due to the estimated initial conditions. The comparison
between the energy of averaged numerical waves (blue line) and the corrected energy of analytical
Wigner measure (red dashed line) shows that wave energies are partly localized.
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(a) (b)

(c)
(d)

Fig. 4.9 Energy density in the time-space domain (t ∈ [0,2 ms],x ∈ [−2 m,2 m]) obtained by (a) (b):
analytical Wigner measure E[Wa], (c) (d): average of 10 numerical wave fields E[E[uh∆t ]]
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Fig. 4.10 Comparison of the evolution of energy in time obtained by analytical/numerical solutions:
E[Ẽ[uh∆t ]] (blue solid line), Ẽ[Wa] (red solid line), αẼ[Wa] (red dashed line)
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Furthermore, the evolution in time of the spatial distribution of energies can also be analyzed.
Firstly, in fig. 4.11, E[Wa] and E[E[uh∆t ]] are compared at t = 0.5 ms. Considering that an average
of E(uh∆t) over ten realizations still gives a largely fluctuating line in space (dashed line), a local
average in time-space zone (5Tmax,5λmax) is added for each realization. It allows obtaining a smoother
averaged result.
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Fig. 4.11 Comparison of energy in time obtained by analytical/numerical solutions at t1 = 0.5 ms:
E[E[uh∆t ]] averaged in ten realizations (blue dashed line), E[E[uh∆t ]] averaged in a local time-space
domain and in ten realizations (blue solid line), E[Wa] (red line)

Now E[E(uh∆t)] and E[Wa] are compared in three instants during the period of propagation in
fig. 4.12. It is observed that E[Wa] decreases in time because energies are more and more overspreading
in space. However, E[E[uh∆t ]] remains almost constant with time, which means that wave energies are
concentrated around x = 0 and they do not propagate.

-1.5 -1 -0.5 0 0.5 1 1.5
X(m)

0.05

0.1

0.15

0.2

0.25

E
(·
,x

)/
to
ta
l
en

er
gy

E[E[u]](t1, x)
E[E[u]](t2, x)
E[E[u]](t3, x)
E[Wa](t1, x)
E[Wa](t2, x)
E[Wa](t3, x)

Fig. 4.12 Comparison of variation of energy in time obtained by analytical/numerical solutions for
three instants: t1 = 0.5 ms, t2 = 0.75 ms, t3 = 1.15 ms (final time = 2 ms)
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According to the discussion above, the medium with the chosen amplitude of fluctuations ε = 0.04
leads to an obvious localization phenomenon during the whole observation period. Now we consider
a smaller value ε = 0.008 and other parameters in the table 4.2 remain unchanged, then the same
analysis is performed to verify the existence of localization and the validity of radiative transfer
regime.

Under this condition, the scattering mean free path is obtained in terms of frequency (fig. 4.6,
ls(kmax) = 4.7 m). More precisely, ls is five times larger than that in the case with ε = 0.04. We still
choose the same mesh size and time step as the example above for finite element solutions of wave
equation. uh∆t for one realization is illustrated in fig. 4.13.

Fig. 4.13 Wave displacement in time- (half) space for one realization (ε = 0.008)

Considering the high cost of computing Wa (numerical integration in a large domain), here we do
not compute the two energies for the whole time-space domain as we shown in fig. 4.9. However,
the existence of localization can be verified in the same way as we did in fig. 4.12 for three chosen
instants and the results are illustrated in fig. 4.14. It is observed that wave energies are less localized
with time.
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Fig. 4.14 Comparison of variation of energy in time obtained by analytical/numerical solutions for
three instants: t1 = 1 ms, t2 = 3 ms, t3 = 6 ms (final time = 8 ms)
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Finally, we give the comparison of the evolution in time of two energies in time for x = 0 in these
two cases in fig. 4.15. It is still found that a smaller ε results in less localization.
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Fig. 4.15 Comparison of total energy obtained by analytical/averaged numerical solutions in time for
x = 0 (white dashed line: smoothed value of E[E(uh∆t)](t,0)): (a) ε = 0.04, (b) ε = 0.008

With these two examples it is found that the smaller amplitude ε of fluctuations should be chosen
to reduce the localization of energy so that the radiative transfer regime remains valid in a larger
region. In the next section, the example with ε = 0.008 will be used for the computation of Wigner
transform and residual errors.

4.2 Energy-based residual errors of numerical solutions of wave equa-
tion

As that defined in eq. (3.49) of residual errors for wave fields based on transport equation, here
we can also define it with radiative transfer equations (4.11) in terms of Wε [uuh∆t ]. In this section, we
only introduce this definition for 1D media for simplicity.

4.2.1 Theoretical residual errors based on 1D radiative transfer equation

Based on 1D radiative transfer equation (4.26 and 4.28), residual errors in terms of Wigner
transform of wave fields are defined in the following:

Definition 4.2. Residual errors based on 1D radiative transfer equation in terms of W± are defined as:

R+[uh∆t ] := ∂tW+
ε [uh∆t ]+ c0∂xW+

ε [uh∆t ]− c0
ls
(W−

ε [uh∆t ]−W+
ε [uh∆t ])

R−[uh∆t ] := ∂tW−
ε [uh∆t ]− c0∂xW−

ε [uh∆t ]− c0
ls
(W+

ε [uh∆t ]−W−
ε [uh∆t ])

(4.40)
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Definition 4.3. Residual errors based on 1D radiative transfer equation in terms of Ws and Wd are
defined as: 

Rsd
T [uh∆t ] := ∂tWs[uh∆t ]+ c0∂xWd[uh∆t ]

Rsd
T S[uh∆t ] :=

{
∂tWd[uh∆t ]+

2c0
ls

Wd[uh∆t ]
}
+ c0∂xWs[uh∆t ]

(4.41)

It can be noticed that Rsd
T contains only transport part of the radiative transfer equation and Rsd

T S
contains both transport and scattering parts.

Either of these definitions as a representation of errors can be used since in fact we have Rsd
T =

R++R− and Rsd
T S = R+−R−. In latter numerical applications, Rsd

T and Rsd
T S are chosen to illustrate

the results.

4.2.2 Numerical computation of Wigner transform of wave fields in random media

Before calculating numerically the defined errors in last section, the numerical computation of
Wigner transform in random media is firstly specifically presented here.

Generally in random media, we evaluate physical quantities by taking the average over the
ensemble of realizations of random media (as we did for the comparison of energy in the section 4.1.4).
In addition, in the high frequency limit ε → 0, formal arguments show that the ensemble average of
Wigner transform with respect to the randomness converge weakly to the Wigner measure, i.e. the
solution of the radiative transfer equation in random media [19, 53, 132].
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dm 

coherent wave 

incoherent wave 

u(t,x) 

I1 

Ω1 

Fig. 4.16 Randomly chosen time-space points for averaging the Wigner transform of numerical waves

Theoretically, Wε should be averaged over all possible realizations of the heterogeneous medium
with given statistics, which causes high computational costs in numerical applications. In practice, we
calculate, for example as in the last section, wave solutions in ten realizations of random media. A
local average in the time-space domain is added within each realization so as to obtain an equivalent
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ensemble average, denoted always by E[Wε ], i.e.

E[Wε ] =
1

jxNtx
∑ j ∑(tk,xk)∈I1×Ω1,k=1,..,Ntx

W( j)
ε (tk,xk) (4.42)

Here I1 and Ω1 are respectively the time subinterval and subspace. jx is the total number of realizations
and Ntx is the total number of time-space points chosen in I1 ×Ω1. W( j)

ε is the Wigner transform of
j-th realization of the random displacement field. j = 1, ...,10 ( jx = 10) in our work. The chosen
time-space points should be uncorrelated. In fig. 4.16, a simple illustration of a group of random
points with a mean distance dm = 6lc between two adjacent points in t-x space. Then we can compute
eq. (4.42) over these points and over ten realizations.

(a) (b)

(c) (d)

Fig. 4.17 Computation of Wigner transform for coherent forward waves in random media: (a) (b)
Wε [uh∆t ] for one point (t0,x0) with two different scales, (c) (d) E[Wε [uh∆t ]] averaged in time-space
and in ten realizations with two different scales

Figure 4.17 gives numerical results of Wε [uh∆t ](t,x;ω,k) of coherent forward wave fields. Similar
to the homogeneous case in fig. 3.10a, energies are mainly distributed along ω = −c0k since the
coherent energy are dominant. However, some fluctuations are also observed here (fig. 4.17b)
compared to fig. 3.10a. On the one hand, more discontinuities in the boundary of computation region
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are found in the heterogeneous case, thus the leakage of frequency will increase here (see Appendix
B). On the other hand, coherent wave are reflected by the random heterogeneities, so cross terms
between the forward waves and reflected waves arise in phase space. A small amount of energies of
reflected waves should be found in ω = c0k, but they are polluted by the fluctuations of frequency
leakage of coherent waves. For this reason they are not remarkable in fig. 4.17a. In fig. 4.17c, it can
be noticed that the average over more points allows reducing largely the numerical fluctuations around
ω =−c0k. Note that it cannot remove the negative values for low frequencies. In fact, coherent waves
are dominant and weakly fluctuating and it is similar to the homogeneous case in fig. 3.10.

(a) (b)

Fig. 4.18 Computation of Wigner transform for incoherent waves in random media: (a)
Wε [uh∆t ](t0,x0;ω,k), (b) E[Wε [uh∆t ]] (averaged in time-space and in 10 realizations)

Figure 4.18 gives numerical results of Wε [uh∆t ](t,x;ω,k) of incoherent wave fields. Firstly, it is
remarkable in fig. 4.18a that energies are not only distributed in ω =±c0k but also between these two
characteristic lines. As we explained above, the latter are cross terms due to the interference of waves
in two opposite directions. This phenomenon is more obvious than on fig. 4.17a since wave energies
in two directions are comparable. Figure 4.18b gives E[Wε [uh∆t ]], an average in time-space domain
and over 10 realizations. We find that energies are more concentrated along ω =±c0k. Besides, it
takes almost positive values over the entire phase space domain. Indeed, it can be understood by the
energy properties of Wigner transform:∫

R×R
Wε [u](t,x;ω,k)dtdx = |û(ω,k)|2 > 0 (4.43)

It is also observed that E[W+
ε [uh∆t ]] and E[W−

ε [uh∆t ]] are almost equal. In fact, E[W+
ε [uh∆t ]], E[W−

ε [uh∆t ]]

will always reach an equilibrium after a long time propagation. This result is explained in detail with
the analytical solution of radiative transfer equation in the section 4.1.3.

In conclusion, both the ensemble average and the average over a set of uncorrelated space-time
points are useful to reduce numerical fluctuations and cross terms in the computation of Wigner
transform in random media. From now on, we still denote the average E[Wε [uh∆t ]] by Wε [uh∆t ] for
simplicity.
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4.2.3 Numerical application of residual errors based on radiative transfer equation

In this section, uh∆t with a relatively fine mesh size obtained in the numerical example (ε = 0.008)
in the section 4.1.4 is used for calculating errors. Based on the calculations of Wigner transform for
coherent waves and incoherent waves in the section 4.2.2, residual errors of uh∆t in eq. (4.41) are
respectively computed and analyzed. In each case, we present firstly the errors

∣∣Rsd
T

∣∣ and
∣∣Rsd

T S

∣∣ in
function of number of realizations NR. It is expected that errors are close to zero since a relatively fine
mesh is used.

Above all, in all figures that represent errors in this chapter, we do not consider the low frequencies
since Wigner transform is computed in a bounded region and waves with a large wavelength cannot
be totally and exactly captured. More precisely, we choose to observe only waves with:

k ≥ 2× 2π

ζx
= 40 m−1 (4.44)

Recall that ζx is the computation region in space defined in the section 3.1.4 (fig. 3.9a) and we chose
ζx = 8λmax in our work.

Firstly, we compute the residual errors for coherent forward waves in fig. 4.19. As we discussed
in the section 4.2.2, a group of random points (Ntx ≈ 300) in the time-space domain is chosen in the
region around x = 0.5 m. Rsd

T and Rsd
T S are computed and averaged over these points and over ten

random realizations.

zoom 

Fig. 4.19 Computation area presented with u(t,x)

Figure 4.20 gives absolute values of the residual errors
∣∣Rsd

T

∣∣ and
∣∣Rsd

T S

∣∣ in terms of |k| for three
random realizations and the average of ten realizations, normalized by the total energy E

[
u2

h∆t

]
. And

we find that it is relatively small compared to the total energy. It is observed high varying value of
errors for lower frequency with different realizations (blue lines) and a local maximum of errors
located at the maximum frequency kmax = 157 m−1 for the averaged errors (red line).
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Besides, we give here also |R+| and |R−| so as to analyze errrors for waves in two directions.
Figure 4.21 gives absolute values of the residual errors in terms of |k|, normalized by the total
energy. It is found that much smaller errors are obtained for |R+|. As we explained above, waves are
mainly transmitted in the forward direction and only a small amount of waves are scattered to the
backward direction, so errors for W−

ε [uh∆t ] are polluted by numerical fluctuations of W+
ε [uh∆t ] due to

the frequency leakage and cross terms as we explained in fig. 4.17.
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Fig. 4.20 Residual errors along ω =±c0k for coherent wave: (a)
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Fig. 4.21 Residual errors along ω =±c0k for coherent wave: (a) |R+|, (b) |R−|

Now the same discussions are focused on the incoherent wave around x = 0 (fig. 4.22). In the
chosen computation region of time-space domain, it is known that W+ and W− tend to a local
equipartition between each other after a long time propagation, so Ws ≫ Wd ≈ 0 (fig. 4.23).
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zoom 

Fig. 4.22 Computation area presented with u(t,x)

Fig. 4.23 Ws and Wd around x = 0 and along ω =±c0k
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Fig. 4.24 Residual errors along ω =±c0k for incoherent wave: (a)
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Figure 4.24 gives residual errors
∣∣Rsd

T

∣∣ and
∣∣Rsd

T S

∣∣ in terms of frequency. Errors in each realizations
are high oscillating and the average gives a smoother result. It is remarked that although the average
of Wigner transform eliminates main cross terms for low frequency in fig. 4.18 and fig. 4.23, the
related errors still have a main peak for low frequency. On the one hand, the cross terms cannot totally
be suppressed by this average method. On the other hand, the numerical differentiation in eq. (4.41)
for small and fluctuating energy density of low frequency will bring some additional errors (average
may also reduce a part of such errors but very limited). These additional errors exist also for high
frequencies but they are much smaller since we have much less cross terms.
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Fig. 4.25 Residual errors along ω =±c0k for incoherent wave: (a) |R+|, (b) |R−|

Figure 4.25 gives residual errors in terms of W+ and W−. It can be found that here the contribution
to errors of the forward and the backward waves are comparable.

Furthermore, Wigner transform and the related residual errors can also be computed along the
direction of propagation x = ±c0t. The advantage of this transformation of coordinates is that the
edge effects or the discontinuities of boundary for numerical computation of Wigner transform may
be smaller in this case. The numerical results can be found in Appendix F. It is found that a similar
result is obtained and large errors are still found for low frequencies.

4.3 Filtering of the energy-based residual errors

Considering that the errors found in the last section are highly fluctuating and located largely
at lower frequencies due to the superposition of plenty of cross terms in Wigner transform of a
multi-frequency signal in random media, a filtering of residual errors is derived analytically in this
section. Then we compute the new residual errors of the FE numerical solutions of wave equation in
the last section 4.2.3.

We derive firstly the formula of filtered residual errors. In brief, it is based on the convolution of
Wigner transform of wave fields with Wigner transform of a window function h(t,x).
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We give here the definitions of the double convolution of Wigner transform and the short-time
Fourier transform:

Definition 4.4. The double convolution of two spatio-temporal Wigner transforms, denoted by “∗∗”,
is defined with respect to four variables (t,x;ω,k) by

Wε [uε ,vε ]∗∗Wε [h](t,x;ω,k) :=
∫
R4

Wε [uε ,vε ](t ′,x′;ω
′,k′)Wε [h](t−t ′,x−x′;ω−ω

′,k−k′)dt ′dx′dω
′dk′

(4.45)

Definition 4.5. The short-time Fourier transform is defined as [11]:

|STFT[uε ,h](t,x;ω,k)|2 :=
∣∣∣∣ ε

2π

∫
R2

uε(t − εα,x− εm) h∗(εα,εm) ei(αω+mk) dαdm
∣∣∣∣2 (4.46)

The Wigner transform has the following property:

Property 8. The relation between the double convolution of Wigner transforms and the STFT is the
following: ∀h(t,x),

Wε [uε ,vε ]∗∗Wε [h] = STFT[uε ,h]STFT∗[vε ,h] (4.47)

Proof. See Appendix D.

It is obvious that we have Wε [uε ]∗∗Wε [h] = |STFT[uε ,h]|2. The computation cost of the STFT
is in the same order as that of the Wigner transform. Thus the calculation of the right-hand side of
eq. (4.47) is more efficient than that of the convolution of two Wigner transforms.

If we choose w as a product of two window functions in time and in space, denoted by h(t,x) =
ht(t)hx(x), the property 8 illustrates that a filtering in time-space for wave fields will filter also the
results of its Wigner transform by the convolution. It means that this filtering results in smoother
values in phase space. Besides, a discussion on bilinear properties of STFT can be found in Appendix
E. Compared to Wigner transform, STFT suppresses largely cross terms at zero and low frequency
and less frequency leakage is observed.

Based on the analysis above and by recalling that Rsd
T = R+ +R− and Rsd

T S = R+ −R−, the
following results are derived:

Theorem 4.6. Filtered residual errors based on 1D radiative transfer equation are defined as:

R±[uh∆t ]∗∗Wε [hthx](t,x;ω = c0k,∓k)

= 2Re{STFT[vh∆t ,hthx](t,x;c0k,∓k)STFT∗[uh∆t ,hthx](t,x;c0k,∓k)}
±2c0Re{STFT[∂xuh∆t ,hthx](t,x;c0k,∓k)STFT∗[uh∆t ,hthx](t,x;c0k,∓k)}

+
1
16

∫
R

STFT[uh∆t ,hth∗x ](t,x− εl;c0k,±k)STFT∗[uh∆t ,hth∗x ](t,x+ εl;c0k,±k) P(2)(l)dl

− 1
16

∫
R

STFT[uh∆t ,hthx](t,x− εl;c0k,∓k)STFT∗[uh∆t ,hthx](t,x+ εl;c0k,∓k) P(2)(l)dl

(4.48)
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where P(2)(r) is the second-order derivative of the covariance function P(r).

Proof. We can derive the 1D filtered radiative transfer equation by convolutions with eq. (4.26) for
each term of the original radiative transfer equation.

For the two transport terms, we can prove the following result by lemma 3.4:

∂tWε [uε ]∗∗Wε [hthx] = 2Re{Wε [∂tuε ,uε ]}∗∗Wε [hthx] (4.49)

As the auto-Wigner transform is always real and by the property 8, we have

∂tWε [uε ]∗∗Wε [hthx] = 2Re{Wε [∂tuε ,uε ]∗∗Wε [hthx]}
= 2Re{STFT[vε ,hthx]STFT∗[uε ,hthx]}

(4.50)

In the same way, it can be derived that:

∂xWε [uε ]∗∗Wε [hthx] = 2Re{STFT[∂xuε ,hthx]STFT∗[uε ,hthx]} (4.51)

For the two scattering terms, we have:

k2

4
P̂(2k)Wε [uε ]∗∗Wε [hthx]

=
1
4

1
(2π)4

∫
R6

uε

(
t ′− ετ

2
,x′− εy

2

)
u∗ε

(
t ′+

ετ

2
,x′+

εy
2

)
ht

(
t − t ′− εs

2

)
hx

(
x− x′− εz

2

)
h∗t

(
t − t ′+

εs
2

)
h∗x

(
x− x′+

εz
2

)∫
R

e−i(s−τ)ω ′
dω

′︸ ︷︷ ︸
:=(a)

∫
R

k′2P̂(2k′)e−i(z−y)k′dk′︸ ︷︷ ︸
:=(b)

ei(sω+yk) dt ′dx′dτdydsdz

(4.52)

Firstly, the integration (a) can be seen as the Fourier transform of a function in the form f (x) = eiax

(a constant). It is known that:

(a) =
∫
R

eiτω ′
e−isω ′

dω
′ = 2πδ (s− τ) (4.53)

Secondly, for the integration (b), by using respectively the definition of the inverse Fourier transform
and the Fourier transform of function f (x) = xn [35]:∫

R
kne− jxkdk = 2πinδ

(n)(x) (4.54)

where n is a natural number and δ (n)(x) is the n-th distribution derivative of the dirac delta function,
we can derive:
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(b) =
∫
R

k′2
∫
R

P(x)e−i2xk′dx e−i(z−y)k′dk′

=
∫
R

P(x)
∫
R

k′2e−i(2x+z−y)k′dk′ dx

=
∫
R

P(x) 2πi2δ
(2)(2x+ z− y) dx

(4.55)

Then using the derivative property of the dirac delta function [61]:∫
f (x)δ (n)(x)dx =−

∫
∂ f
∂x

δ
(n−1)(x)dx (4.56)

and we get:

(b) =−2π

∫
R

P(x)δ (2)(2x+ z− y) dx

=−π

4
P(2)

(
y− z

2

) (4.57)

Introducing eq. (4.53) and eq. (4.57) to eq. (4.52), we get:

k2

4
P̂(2k)Wε [uε ]∗∗Wε [hthx]

=
1
4

1
(2π)4

∫
R6

uε

(
t ′− ετ

2
,x′− εy

2

)
u∗ε

(
t ′+

ετ

2
,x′+

εy
2

)
ht

(
t − t ′− εs

2

)
hx

(
x− x′− εz

2

)
h∗t

(
t − t ′+

εs
2

)
h∗x

(
x− x′+

εz
2

)
2πδ (s− τ) (−π

4
)P(2)

(
y− z

2

)
ei(sω+zk) dt ′dx′dτdydsdz

=− π

16
1

(2π)3

∫
R5

uε

(
t ′− ετ

2
,x′− εy

2

)
u∗ε

(
t ′+

ετ

2
,x′+

εy
2

)
ht

(
t − t ′− ετ

2

)
hx

(
x− x′− εz

2

)
h∗t

(
t − t ′+

ετ

2

)
h∗x

(
x− x′+

εz
2

)
P(2)

(
y− z

2

)
ei(τω+zk) dt ′dx′dτdydz

(4.58)
Then changing the variables in the equation above (t ′,τ) by (α,β ) and (x′,y,z) by (m,n, l) with:

{
t − t ′+ ετ

2 = εα

t − t ′− ετ

2 = εβ
,


x− x′+ εz

2 = εm

x− x′− εz
2 = εn

y−z
2 = l

(4.59)

thus
∫
R2 dt ′dτ =

∫
εdαdβ and

∫
R2 dx′dydz =

∫
2εdmdndl. We have:

k2

4
P̂(2k)Wε [uε ]∗∗Wε [hthx]

=− ε2

16
1

(2π)2

∫
R

∫
R2

uε(t − εα,x− εl − εm) h∗t (εα)h∗x(εm) ei(αω+mk) dαdm∫
R2

u∗ε(t − εβ ,x− εl + εn) ht(εβ )hx(εn) e−i(βω+nk) dβdn P(2)(l)dl

=− 1
16

∫
R

STFT[uε ,hthx](t,x− εl;ω,k)STFT∗[uε ,hthx](t,x+ εl;ω,k) P(2)(l)dl

(4.60)
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Same derivation can be applied for the scattering term in eq. (4.26) with “−k” (energy in the opposite
direction):

k2

4
P̂(2k)Wε [uε ](−k)∗∗Wε [hthx]

=− ε2

16
1

(2π)2

∫
R

∫
R2

uε(t − εα,x− εl − εm) h∗t (εα) hx(εm) ei(αω−mk) dαdm∫
R2

u∗ε(t − εβ ,x− εl + εn) ht(εβ ) h∗x(εn) e−i(βω−nk) dβdn P(2)(l)dl

=− 1
16

∫
R

STFT[uε ,hth∗x ](t,x− εl;ω,−k)STFT∗[uε ,hth∗x ](t,x+ εl;ω,−k) P(2)(l)dl

(4.61)

Combining the two transport terms in equations 4.50, (4.51) and the two scattering terms in eqs.
(4.60), (4.61) and projecting in “±”, the filtered radiative transfer equation for forward and backward
waves is obtained:

2Re{STFT[vh∆t ,hthx](t,x;c0k,∓k)STFT∗[uh∆t ,hthx](t,x;c0k,∓k)}
±2c0Re{STFT[∂xuh∆t ,hthx](t,x;c0k,∓k)STFT∗[uh∆t ,hthx](t,x;c0k,∓k)}

=− 1
16

∫
R

STFT[uh∆t ,hth∗x ](t,x− εl;c0k,±k)STFT∗[uh∆t ,hth∗x ](t,x+ εl;c0k,±k) P(2)(l)dl

+
1
16

∫
R

STFT[uh∆t ,hthx](t,x− εl;c0k,∓k)STFT∗[uh∆t ,hthx](t,x+ εl;c0k,∓k) P(2)(l)dl

(4.62)

Then the filtered residual errors are obtained in eq. (4.48) as we did in eq. (4.41).
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Fig. 4.26 Filtered residual errors along ω = ±c0k for coherent wave: (a)
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Fig. 4.27 Filtered residual errors along ω = ±c0k for incoherent wave: (a)
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We consider the same wave propagation problem in ten realizations of random media as in
section 4.2.3. Then we compute the absolute value of the filtered residual errors

∣∣Rsd
T [uh∆t ]∗∗Wε [hthx]

∣∣
and

∣∣Rsd
T S[uh∆t ]∗∗Wε [hthx]

∣∣ with eq. (4.48) for coherent waves (fig. 4.19) and incoherent waves
(fig. 4.22).

Numerical results are illustrated in fig. 4.26 for coherent waves and in fig. 4.27 for incoherent
waves. Compared to the residual errors without filtering in fig. 4.20 and fig. 4.24, errors concentrated
at low frequencies are largely reduced. It is observed that the errors are mainly concentrated around
the main frequency band of wave fields with the effect of the filtering of window functions. It means
that we get a more reasonable distribution of errors in terms of frequency.

4.4 Comparison of residual errors for two refinements

In this section, in order to study the behaviour of the proposed residual errors with respect to the
discretization size in space and in time, numerical wave solutions obtained by using a space mesh
twice coarser and a time step twice larger than those used in the section 4.2.3 are considered, so
we have λ (3kmax)/h = 10,∆t = h/c0. Otherwise, all the numerical parameters for calculating the
energy-based residual errors, such as the computation region of Wigner transform, the random points
chosen for average, remain unchanged. The residual errors calculated for both discretization sizes are
compared and it is hoped that they would decrease when the discretization in space and in time is
refined.

The residual errors defined in eq. (4.41) and the filtered residual errors defined in eq. (4.48) are
computed respectively for coherent waves and incoherent waves as we did in the section 4.2.3. The
numerical results are illustrated in fig. 4.28 and fig. 4.30, fig. 4.29 and fig. 4.31. It can be observed
that for coherent waves (figs. 4.28 and 4.29), as expected both residual errors and filtered residual
errors are smaller, especially over the main frequency range defined by the considered ricker signal,
for the wave solutions calculated with the finer discretization. Nevertheless, the decrease of residual
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errors between the two discretizations is largely reduced after the filtering, which is not yet well
understood for the moment. As far as the incoherent waves are concerned, both residual errors and
filtered residual errors give unsatisfying results, in fact no obvious decrease of errors is observed
with the finer discretization (figs. 4.28 and 4.29). There are several reasons that may account for this
phenomena. In section 3.3.1, it was observed that numerical dispersion and dissipation may influence
the quality of estimated errors. Here after a long propagation time, the dispersion or dissipation of
incoherent waves become significant. Thus the decrease of errors are not found as we observed in
fig. 3.13b. Besides, when we refine the mesh size and the time step, the elastic parameter E is also
refined. It means that the two solutions here are in fact calculated with two numerical models that
have slightly different physical properties. That may also disturb the results of errors. There exist also
other possible reasons, such as numerical fluctuations resulting from frequency leakage, numerical
differentiation and the distribution of cross terms, existence of localization, etc. Further studies are
necessary to understand these results and to resolve this problem.
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4.5 Conclusion

This chapter dealt with energy-based residual error for high frequency wave fields in heterogeneous
media. We introduced the heterogeneous media modelled with realizations of random fields of
mechanical properties. Radiative transfer equation that describes the transport and the scattering of
wave energy is obtained in these media in the weak coupling regime. 1D radiative transfer equations
were studied and solved analytically. The characteristic length for wave propagation in random media,
i.e. the scattering mean free path was introduced. It was observed that in low frequency and high
frequency limits, the scattering mean free path becomes unbounded. The localization phenomenon
that always exists in 1D was analyzed by considering the wave propagation problems in two random
media with different amplitudes of fluctuations. This analysis allowed finding a region in a random
medium where the radiative transfer regime still holds. Then based on the radiative transfer equation,
the residual errors of numerical solutions of wave equation were defined and computed numerically. It
was found that the obtained errors are very small compared to the total energy. Also, large part of errors
are concentrated around low frequencies due to cross terms of Wigner transform of random fields.
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In order to eliminate this effect, a filtering of residual errors was derived based on the convolution
properties of Wigner transform. It also favours the smoothing of the results. Numerical results showed
that this filtering with window function can reduce partly the pollution on errors caused by cross
terms, especially for low frequency. Finally, the decrease of errors with refinement was found with
coherent waves as we expected. However, the influence of filtering and the unexpected results for
incoherent waves remain to be improved.





Chapter 5

Conclusions and perspectives

Wave propagation in heterogeneous media, especially in the high frequency regime is always
a challenging and complex problem. Its numerical modelling and simulation require very accurate
numerical methods with high computational and memory costs. This work is dedicated to the
development of tools of error estimation for finite element solutions of wave equation in heterogeneous
media, which will be used to find solutions with a desired precision at a moderate cost.

Firstly, an explicit a posteriori upper bound for the errors between the exact solution and the
reconstructed approximate solution in an L∞-norm of energy in time was derived analytically for the
elastodynamic equation.

The basic idea of this derivation is based on the residual error method and the use of reconstructions.
In consideration of the requirement of regularities for the error bound, we have proposed two
reconstructions in time with different quantities or orders for displacement and velocity fields, and two
reconstructions in space for stress field: one is a basic reconstruction based on an element-wise weak
equilibrium relation, another is the statically admissible reconstruction, inspired by Ladevèze [90]. We
studied firstly the behaviour of the exact numerical errors in homogeneous and heterogeneous cases
with two different degrees of heterogeneity. The finite element solutions are solved with different
mesh sizes and time steps. We found that the errors are decreasing with the refinement in all cases. An
exchange between errors in kinetic and potential energy norms has been observed when waves interact
with boundaries and interfaces. Finally, by choosing different combinations of reconstructions, the
estimated errors were compared with the exact errors in the homogeneous case. A fully computable
error upper bound has been found with our error estimator but the ratio of the estimated and exact
errors is increasing as the computational effort grows. It means that the asymptotic accuracy of the
obtained estimator remains to be improved. Some discussions and analysis on the results showed
that the residual errors related to the time derivative of the equilibrium equation are dominant in the
contribution of total estimated errors.

Secondly, considering the difficulties encountered in numerical applications of the error bound for
the elastodynamic equation, a specific case, the high frequency wave propagation in the weak coupling
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regime was studied. As the traditional error estimators on the wave equation may not be efficient in
this regime, we proposed a quantification of errors with a kinetic model in terms of energy densities,
i.e. the transport equation in homogeneous media and the radiative transfer equation in heterogeneous
media. This kinetic model allows smoothing out the highly oscillatory features of waves. Based on
this new equation, we defined analytically a new residual-type error estimation method. The errors
are quantified in terms of energy quantities of numerical waves, which are calculated by the Wigner
transform of wave fields.

In 1D homogeneous media, the localization of errors around the characteristics in phase space
was observed. Considering the existence of extra fluctuations by frequency leakage, a filtering of
errors with window functions in phase space was proposed and a global residual error in time-space
domain was defined. The decrease of local and global errors when the discretization size decreases
was observed, which allows validating our definition of errors and methods of calculation.

In 1D heterogeneous media, the residual errors in terms of the total energy and the net forward-
going energy were proposed analytically. In numerical applications, a 1D medium with a small
magnitude of fluctuations was firstly found so that less localization exists and the radiative transfer
regime holds. Also an agreement between the radiative transfer energy and the numerical wave energy
allowed validating our calculations. Then the defined errors in the chosen medium with a fine mesh
were computed with the energy quantities of numerical wave solutions. The results revealed that the
defined errors are relatively small compared to the total energy, that allowed validating our definition
of errors. In order to reduce the influence of cross terms and other fluctuations on the distribution of
errors in terms of frequency and to obtain a smoother result of errors, a filtering of residual errors
in terms of the STFT of wave fields was derived. It is based on the convolution of radiative transfer
equation with Wigner transform of a window function. This filtering allowed reducing especially
the cross terms accumulated in low frequencies. Finally, the comparison of errors in phase space
for numerical solutions with two different discretizations sizes was obtained. For coherent waves,
residual errors are smaller for the finer discretization size as we expected. However, the decrease of
residual errors between the two discretizations was reduced after the filtering. For incoherent waves,
no obvious decrease of errors was found with the finer discretization. Some possible reasons were
given and a detailed analysis remains to be made in future works.

Some improvements, perspectives and difficulties are discussed here.

In a short term, efforts should be made firstly for resolving the existing problems. For the explicit
error bound defined for elastodynamics that has a weak asymptotic accuracy, the reconstructions in
time and in space should be reconsidered. They were defined with some desired regularities but they
also bring in additional errors since they can be seen as a post-treatment of approximate solutions.
Further efforts are needed to propose some new reconstructions so as to achieve a better equilibrium,
especially for the time derivative of equilibrium on the entire time interval. For the energy-based
residual errors in heterogeneous media, future works should be firstly focused on discussing and
analyzing the phenomena in the comparison of errors with two discretization sizes as we discussed
above. Besides, at present the identification of energy-based errors in terms of frequency seems
difficult to achieve due to the superposition of cross terms between all frequency components. Since
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the filtering with the STFT allows already reducing largely cross terms in low frequencies, this idea
may be applied in future works. It may allow quantifying the effect of numerical dispersion. In the
whole work, we merely defined errors to quantify the difference between the exact solutions and the
approximate solutions solved by time discontinuous Galerkin method. Other solvers or discretization
methods, such as Newmark, should also be tested to observe their influence on the estimator. Note
that the proposed reconstructions may be adapted to the choice of solvers.

Furthermore, in the radiative transfer regime, only wave propagation in an infinite region is
considered. We ignore the calculation of Wigner transform in the boundaries in the homogeneous
case when waves are totally reflected by the boundary. Difficulties arise when the energy densities
reach the boundaries of the domain or an interface. Some researchers have studied systematically
the boundary or interface conditions for the high frequency waves propagation in media with some
specific boundaries or interfaces [18, 122, 135]. But generally it is difficult to construct the Wigner
transform of wave fields with respect to boundary conditions in the case with arbitrary geometries of
the boundary and interfaces. Future works may be focused on errors based on the initial boundary
value problem for the radiative transport equation in some simple cases with specific boundaries and
interfaces.

Finally, the energy-based residual errors were analytically defined in 3D, so future works may
extend the numerical results of 1D media to a higher dimension. It should be noticed that localization
exists always in 1D media so applications on higher dimension are necessary. Note that the com-
putation and storage costs will be very expensive in higher dimensions in the sense that the Wigner
transform depends on (t,x;ω,k), i.e. six independent variables in 2D, and eight independent variables
in 3D. However, considering that the dispersion relation ω = cp,s |k| is always obtained and involved
in the radiative transfer equation, we can study only the quantities on the hypersurface defined by this
relation (2D media), that may allow reducing significantly the storage cost.





References

[1] Achenbach, J. (2012). Wave propagation in elastic solids, volume 16. Elsevier.

[2] Adams, R. A. and Fournier, J. J. (2003). Sobolev spaces, volume 140. Academic press.

[3] Adjerid, S. (2002). A posteriori finite element error estimation for second-order hyperbolic
problems. Computer methods in applied mechanics and engineering, 191(41):4699–4719.

[4] Aggelis, D. (2009). Numerical simulation of surface wave propagation in material with inhomo-
geneity: Inclusion size effect. Ndt & E International, 42(6):558–563.

[5] Ainsworth, M., Monk, P., and Muniz, W. (2006). Dispersive and dissipative properties of
discontinuous galerkin finite element methods for the second-order wave equation. Journal of
Scientific Computing, 27(1-3):5–40.

[6] Ainsworth, M. and Oden, J. T. (2011). A posteriori error estimation in finite element analysis,
volume 37. John Wiley & Sons.

[7] Aki, K. and Richards, P. G. (1980). Quantative seismology: Theory and methods. New York, page
801.

[8] Aki, K. and Wu, R.-S. (1988). Scattering and attenuation of seismic waves, part i. Pure and
Applied Geophysics, 128.

[9] Arce, G. R. and Hasan, S. R. (2000). Elimination of interference terms of the discrete wigner
distribution using nonlinear filtering. IEEE transactions on Signal Processing, 48(8):2321–2331.

[10] Aubry, D., Lucas, D., and Tie, B. (1999). Adaptive strategy for transient/coupled problems
applications to thermoelasticity and elastodynamics. Computer methods in applied mechanics and
engineering, 176(1-4):41–50.

[11] Auger, F., Flandrin, P., Gonçalvès, P., and Lemoine, O. (1996). Time-frequency toolbox. CNRS
France-Rice University, 46.

[12] Baba, T. (2012). Time-frequency analysis using short time fourier transform. The Open Acoustics
Journal, 5(1).

[13] Babuška, I. and Rheinboldt, W. C. (1978). A posteriori error estimates for the finite element
method. International Journal for Numerical Methods in Engineering, 12(10):1597–1615.

[14] Babuska, I., Whiteman, J., and Strouboulis, T. (2010). Finite elements: an introduction to the
method and error estimation. Oxford University Press.



112 References

[15] Bai, X. (2017). Finite Element Modeling of Ultrasonic Wave Propagation in Polycrystalline
Materials. PhD thesis, CentraleSupélec. Codirection avec Denis Aubry (MSSMat) et Jean-Hubert
Schmitt (MSSMat).

[16] Bai, X., Tie, B., Schmitt, J.-H., and Aubry, D. (Accepted for publication. February 2018.). Finite
element modeling of grain size effects on the ultrasonic microstructural noise backscattering in
polycrystalline materials. Ultrasonics, –(–):23 pages.

[17] Bal, G. (2005). Kinetics of scalar wave fields in random media. Wave Motion, 43(2):132–157.

[18] Bal, G., Keller, J. B., Papanicolaou, G., and Ryzhik, L. (1999). Transport theory for acoustic
waves with reflection and transmission at interfaces. Wave Motion, 30(4):303–327.

[19] Bal, G., Komorowski, T., and Ryzhik, L. (2003). Self-averaging of wigner transforms in random
media. Communications in mathematical physics, 242(1-2):81–135.

[20] Bal, G. and Pinaud, O. (2006). Accuracy of transport models for waves in random media. Wave
Motion, 43(7):561–578.

[21] Banerjee, P. K. and Butterfield, R. (1981). Boundary element methods in engineering science,
volume 17. McGraw-Hill London.

[22] Bangerth, W. and Rannacher, R. (1999). Finite element approximation of the acoustic wave
equation: Error control and mesh adaptation. East West Journal of Numerical Mathematics,
7(4):263–282.

[23] Bank, R. E. and Weiser, A. (1985). Some a posteriori error estimators for elliptic partial
differential equations. Mathematics of computation, 44(170):283–301.

[24] Baydoun, I., Baresch, D., Pierrat, R., and Derode, A. (2015). Scattering mean free path in
continuous complex media: Beyond the helmholtz equation. Physical Review E, 92(3):033201.

[25] Baydoun, I., Savin, É., Cottereau, R., Clouteau, D., and Guilleminot, J. (2014). Kinetic
modeling of multiple scattering of elastic waves in heterogeneous anisotropic media. Wave Motion,
51(8):1325–1348.

[26] Bebendorf, M. et al. (2003). A note on the poincaré inequality for convex domains.

[27] Bedford, A. and Drumheller, D. (1994). Elastic wave propagation. John Wileg g Sons, pages
151–165.

[28] Bergam, A., Bernardi, C., and Mghazli, Z. (2005). A posteriori analysis of the finite element
discretization of some parabolic equations. Mathematics of computation, 74(251):1117–1138.

[29] Bieterman, M. and Babuška, I. (1982). The finite element method for parabolic equations.
Numerische Mathematik, 40(3):373–406.

[30] Blitz, J. and Simpson, G. (1995). Ultrasonic methods of non-destructive testing, volume 2.
Springer Science & Business Media.

[31] Bloomfield, P. (2004). Fourier analysis of time series: an introduction. John Wiley & Sons.

[32] Boashash, B. (2015). Time-frequency signal analysis and processing: a comprehensive reference.
Academic Press.

[33] Boore, D. M. (1972). Finite difference methods for seismic wave propagation in heterogeneous
materials. Methods in computational physics, 11:1–37.



References 113

[34] Boutin, C. (2007). Rayleigh scattering of acoustic waves in rigid porous media. The Journal of
the Acoustical Society of America, 122(4):1888–1905.

[35] Bracewell, R. N. and Bracewell, R. N. (1986). The Fourier transform and its applications,
volume 31999. McGraw-Hill New York.

[36] Brougois, A., Bourget, M., Lailly, P., Poulet, M., Ricarte, P., and Versteeg, R. (1990). Marmousi,
model and data. In EAEG Workshop-Practical Aspects of Seismic Data Inversion.

[37] Burq, N. and Joly, R. (2016). Exponential decay for the damped wave equation in unbounded
domains. Communications in Contemporary Mathematics, 18(06):1650012.

[38] Capdeville, Y., Guillot, L., and Marigo, J.-J. (2010). 1-d non-periodic homogenization for the
seismic wave equation. Geophysical Journal International, 181(2):897–910.

[39] Charles, K. (2008). Mother earth gets undressed. Nature News.

[40] Ciarlet, P. G. (2002). The finite element method for elliptic problems. Classics in applied
mathematics, 40:1–511.

[41] Codona, J. L. (1985). Electromagnetic wave propagation through random media. Johanan
Codona.

[42] Cohen, L. (1989). Time-frequency distributions-a review. Proceedings of the IEEE, 77(7):941–
981.

[43] Corones, J., Dougherty, R., and McMaken, H. (1984). A new parabolic approximation to the
helmholtz equation. In Review of Progress in Quantitative Nondestructive Evaluation, pages
123–131. Springer.

[44] Cottereau, R., Chamoin, L., and Diez, P. (2010). Strict error bounds for linear and nonlinear
solid mechanics problems using a patch-based flux-free method. Mechanics & Industry, 11(3-
4):249–254.

[45] Cottereau, R. and Diez, P. (2015). Fast r-adaptivity for multiple queries of heterogeneous
stochastic material fields. Computational mechanics, 56(4):601–612.

[46] Deka, B. (2017). A priori L∞(L2) error estimates for finite element approximations to the wave
equation with interface. Applied Numerical Mathematics, 115:142–159.

[47] Demkowicz, L., Oden, J. T., Rachowicz, W., and Hardy, O. (1989). Toward a universal hp
adaptive finite element strategy, part 1. constrained approximation and data structure. Computer
Methods in Applied Mechanics and Engineering, 77(1-2):79–112.

[48] Dhia, A.-S. B.-B., Duclairoir, E.-M., Legendre, G., and Mercier, J.-F. (2007). Time-harmonic
acoustic propagation in the presence of a shear flow. Journal of Computational and Applied
Mathematics, 204(2):428–439.

[49] Dhua, S. and Chattopadhyay, A. (2016). Wave propagation in heterogeneous layers of the earth.
Waves in Random and Complex Media, 26(4):626–641.

[50] Díez, P., JoséEgozcue, J., and Huerta, A. (1998). A posteriori error estimation for standard finite
element analysis. Computer Methods in Applied Mechanics and Engineering, 163(1-4):141–157.

[51] Díez, P., Parés, N., and Huerta, A. (2010). Error estimation and quality control. Encyclopedia of
Aerospace Engineering.



114 References

[52] Dormy, E. and Tarantola, A. (1995). Numerical simulation of elastic wave propagation using a
finite volume method. Journal of Geophysical Research: Solid Earth, 100(B2):2123–2133.
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Appendix A

Definition of spaces and useful
inequalities

In the following Ω denotes an open set of Rd equipped with the Lebesgue measure x. We introduce
firstly some usual definitions:

Definition A.1 (L2(Ω),L∞(Ω)). We define:

L2(Ω) :=
{

u : Ω → Rd | u measurable and
∫

Ω

|u|2dx < ∞

}
(A.1)

with the L2-inner product (u1,u2)(Ω) :=
∫

Ω
u1 ·u2dx and norm ∥u∥(Ω) = ∥u∥L2(Ω) :=

√
(u,u)(Ω).

L∞(Ω) :=
{

u : Ω → Rd | u measurable and sup
x∈Ω

ess|u|< ∞

}
(A.2)

Definition A.2 (H1(Ω),H1
0 (Ω)). We define:

H1(Ω) :=
{

u ∈ L2(Ω) | Dαu ∈ L2(Ω),∀α such that |α| ≤ 1
}

(A.3)

If Ω is a bound domain ⊂ Rd with boundary ∂Ω, we define:

H1
0 (Ω) :=

{
u ∈ H1(Ω),u|∂Ω = 0

}
(A.4)

Definition A.3 (Weak divergence). Let a vector function v : Ω → Rd be given. v admits a weak
divergence if: 1. v ∈

(
L2(Ω)

)d ; 2. there exists a function w : Ω → R,w ∈ L2(Ω) such that

(v,∇xϕ)(Ω) =−(w,ϕ)(Ω), ∀ϕ ∈D(Ω) (A.5)

where the space D(Ω) is the space of functions from C∞(Ω̄) with a compact support in Ω [2]. The
function w is called the weak divergence of v and we note that ∇x ·v = w.
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Definition A.4 (H(div,Ω)). H(div,Ω) is the space of all the functions which admit the weak diver-
gence.

Some useful inequalities are also given that are used in our work:

Theorem A.5 (Poincaré’s inequality). Suppose that S an element of partition Th and hs its size,
∀u ∈ H1(S), there exists a constant Cp such that [26, 113]:

∥u−uS∥(S) ≤Cphs ∥u−uS∥1(S) (A.6)

where uS is the mean value of u in S and the norms are defined by ∥u∥(S) = ∥u∥L2(S) and ∥u∥1(S) =

∥∇x ·u∥(S). us is introduced here since the equilibrium of mean value in each element will be used in
the derivation of our error upper bound.

Theorem A.6 (Korn’s inequality). Assume that Ω is a bound domain and Γ0 ⊂ ∂Ω with |Γ0| > 0.
∀u ∈ H1

Γ0
(Ω) :=

{
u ∈ H1(Ω),u|Γ0 = 0

}
, there exists a constant Ck > 0 such that:

∥u∥1(Ω) ≤Ck ∥εεε(u)∥(Ω) (A.7)

where εεε(u) = 1
2

(
∇x ⊗u+(∇x ⊗u)T

)
.

Theorem A.7 (Cauchy-Schwarz inequality). For all functions u1 and u2 in a vector space F with an
inner product (,)F , it is true that:

(u1,u2)F ≤
√

(u1,u1)F(u2,u2)F (A.8)



Appendix B

Spectral leakage in FFT

When we calculate Wigner transform in fig. 3.8, some noticeable fluctuations are found around
lines that are parallel to the characteristic directions defined by ω = ±c0k. They are in fact the
results of a well-known phenomenon called “spectral leakage”, which happens in the discrete Wigner
transform calculation.

The spectral leakage is a problem that arises in the digital processing of signals. In fact, for
DFT, a signal is truncated firstly in order to obtain a finite set of samples. DFT implicitly assumes
that the sampled signal essentially repeats itself after the measured period and hence the signal
is continuous (conceptually, juxtapose the measured signal repetitively). This leads to glitches or
discontinuities in the boundary of sampling period. Of course, leakage will not occur if a FFT is
precisely computed on a periodic signal sampled of an integer number of cycles. However, if the
measurement region is purposefully made to be a non-integral multiple of the actual signal rate, these
sharp discontinuities will always spread out in the frequency domain leading to spectral leakage. In
fig. B.1, when the original periodic signal with one frequency f0 is sampled in a chosen repeating
period with discontinuities in the boundaries, its unique component f0 in frequency domain has a
leakage to other frequencies.

For our wave propagation problems, the Discrete Wigner transform of u(t,x) can be seen as a 2D
FT of the auto-correlation functions of displacement uu∗(τ,y) in a finite area ζt ×ζx (fig. B.2a). The
yellow zone can be seen as a time-space period of FFT in 2D.
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f0

without leakage
with leakage

original signal 
   sin(2πf0t) 
 
 
 
 
 
sampled signal 
 
 
 
 
 
 
repeated signal 

calculation length 

DFT 
 

Fig. B.1 Example of the DFT of a periodic signal

(a) (b)

Fig. B.2 uu∗ for point A with discontinuous edges: (a) one period, (b) three periods

Considering the exact solutions of wave propagation in homogeneous media interpolated exactly
with respect to dx = c0dt, uu∗ is a rectangular constant function along the characteristic line x = c0t.
Some discontinuities are observed in the two corners of fig. B.2a and more clearly in several periods
in fig. B.2b. That is why we obtained the fluctuations around ω =−c0k in phase space in fig. 3.8d. In
this case, one method for removing these fluctuations is correcting the discontinuous boundaries by
adding points in grid of numerical data such that remains constant (and continuous) along x = c0t
(fig. B.3a) when it is extended to infinite (fig. B.3b for more periods). Another more simple method
is calculating Wigner transform in the rotational coordinates presented in Appendix F. It allows
obtaining a constant function in the direction x = c0t when the period is repeated. Thus the problem
speckage leakage is resolved in this special case (fig. F.2d).
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However, for numerical solutions, we can never remove these fluctuations with either of these two
methods because of the evolution in time of the numerical dispersions. Also, it cannot be applied in
the heterogeneous case since the displacement is no more constant along the propagation direction.

(a) (b)

Fig. B.3 uu∗ for point A with continuous edges: (a) one period, (b) three periods

Several solutions have been proposed by researchers to overcome these edge effects: one popular
method for mitigating spectral leakage is called data windowing, which allows to reduce the artificial
high frequencies in DFT by finite-length sampling. For example, considering the sampled signal
in fig. B.1, it is multiplied by a hann window function. Notice that the sharp discontinuities are
eliminated and smoothed out in fig. B.4, even though the repeated signal does not match the original
signal. Its DFT has less leakage of frequency for high frequencies and it is more concentrated around
f0. Besides, increasing the sampling length is the best way to decrease spectral leakage regardless of
what kind of window you use, which leads to high cost of calculation. In general, we cannot find any
method to remove totally the leakage effect.

f0

without leakage
with leakage

repeated 
windowed  
signal 

DFT 
 

Fig. B.4 Example of the DFT of the periodic signal presented in fig. B.1: sampled signal with a hann
window function and its DFT





Appendix C

Pseudo-differential operator

In order to simplify the derivation of the transport equation and the radiative transfer equation
with Wigner transform, pseudo-differential calculus are taken into account [25, 97].

Definition C.1 (Pseudo-differential operators). Let ϕ(t,εDt) and ψ(x,εDx) be two matrix-valued
pseudo-differential operators defined by:

ϕ(t,εDt)u(t,x) :=
1

2π

∫
R

eitω
ϕ(t, iεω)û(ω,x)dω

ψ(x,εDx)u(t,x) :=
1

(2π)d

∫
Rd

eix·k
ψ(x, iεk)û(t,k)dk

(C.1)

We assume that ϕ(t, iεω) and ψ(x, iεk) are smooth functions and use the same mathematical symbols
for the operators ϕ(t,εDt), ψ(x,εDx) and their symbols ϕ(t, iεω), ψ(x, iεk).

This definition can be seen as a more general expression of time and space differential operators.
In effect, by the derivative property of the Fourier transform it is known for example that: ∂x f (x) =
1

2π

∫
eikxik f̂ (k)dk.

We have the following properties for the pseudo-differential operator [17]:

Lemma C.2. For the heterogeneous operator ψ(x,εDx), we have:

Wε [ψ(x,εDx)uε ,vε ] = ψ(x, ik)Wε [uε ,vε ]−
iε
2
{ψ,Wε [uε ,vε ]}+

iε
2

∇x ·∇kψ(x, ik)Wε [uε ,vε ]+o(ε2)

Wε [uε ,ψ(x,εDx)vε ] = Wε [uε ,vε ]
t
ψ

∗(x, ik)+
iε
2
{

Wε [uε ,vε ],ψ
∗T}− iε

2
Wε [uε ,vε ]∇x ·∇kψ

∗T (x, ik)+o(ε2)

(C.2)
where the Poisson bracket is defined by: {ψ,W}= (∇kψ ·∇xW−∇xψ ·∇kW), and we assume that
the differential operator Dx within the observable ψ acts on Wε [uε ,vε ] so that Wε [uε ,vε ](t,x;ω,k)ψ∗T (ik−
εDx

2 ) should be interpreted as the component-wise inverse Fourier transform (with respect to k′) of the
matrix Ŵε(t,k′;ω,k)[uε ,vε ]ψ

∗T (ik− iεk′

2 ).
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If ψ(x,εDx) = ψ(εDx) is independent of x, the eq. (C.2) becomes:

Wε [ψ(εDx)uε ,vε ] = ψ(ik)Wε [uε ,vε ]−
iε
2

∇kψ(ik) ·∇xWε [uε ,vε ]

Wε [uε ,ψ(εDx)vε ] = Wε [uε ,vε ]
t
ψ

∗(ik)+
iε
2

∇xWε [uε ,vε ] ·∇kψ
∗T (ik)

(C.3)

In the same way, we can derive for ϕ(εDt):

Wε [ϕ(εDt)uε ,vε ] = ϕ(iω)Wε [uε ,vε ]−
iε
2

∂ωϕ(iω) ·∂tWε [uε ,vε ]

Wε [uε ,ϕ(εDt)vε ] = Wε [uε ,vε ]ϕ
∗(iω)+

iε
2

∂tWε [uε ,vε ] ·∂ωϕ
∗(iω)

(C.4)



Appendix D

Convolution properties of Wigner
transform

In this chapter, we introduce the proof of the property 8 applied in the section 4.3.

Proof. Using the definition of convolution, we have:

Wε [uε ](t,x;ω,k)∗∗Wε [hthx](t,x;ω,k)

: =
∫
R4

Wε [uε ](t ′,x′;ω
′,k′)Wε [hthx](t − t ′,x− x′;ω −ω

′,k− k′)dt ′dx′dω
′dk′

=
∫
R4

1
(2π)2

∫
R2

uε(t ′−
ετ

2
,x′− εy

2
)u∗ε(t

′+
ετ

2
,x′+

εy
2
)ei(τω ′+yk′)dτdy

1
(2π)2

∫
R

ht(t − t ′− εs
2
)hx(x− x′− εz

2
)h∗t (t − t ′+

εs
2
)h∗x(x− x′+

εz
2
)eis(ω−ω ′)+iz(k−k′)dsdz

dt ′dx′dω
′dk′

=
1

(2π)4

∫
R6

uε(t ′−
ετ

2
,x′− εy

2
)u∗ε(t

′+
ετ

2
,x′+

εy
2
)ht(t − t ′− εs

2
)hx(x− x′− εz

2
)

h∗t (t − t ′+
εs
2
)h∗x(x− x′+

εz
2
)
∫
R

e−i(s−τ)ω ′
dω

′
∫
R

e−i(z−y)k′dk′ ei(sω+yk) dt ′dx′dτdydsdz

(D.1)

By the formula of the Fourier transform of function f (x) = eiτx:

f̂ (s) =
∫
R

eiτxe−isxdx =
∫
R

e−i(s−τ)xdx = 2πδ (s− τ) (D.2)

we find:



130 Convolution properties of Wigner transform

Wε [uε ](t,x;ω,k)∗∗Wε [hthx](t,x;ω,k)

=
1

(2π)4

∫
R6

uε(t ′−
ετ

2
,x′− εy

2
)u∗ε(t

′+
ετ

2
,x′+

εy
2
)ht(t − t ′+

εs
2
)hx(x− x′+

εz
2
)

h∗t (t − t ′+
εs
2
)h∗x(x− x′+

εz
2
) 2πδ (s− τ) 2πδ (z− y) ei(sω+yz) dt ′dx′dτdydsdz

=
1

(2π)2

∫
R4

uε(t ′−
ετ

2
,x′− εy

2
)h∗t (t − t ′+

ετ

2
)h∗x(x− x′+

εy
2
)

u∗ε(t
′+

ετ

2
,x′+

εy
2
)ht(t − t ′− ετ

2
)hx(x− x′− εy

2
)ei(τω+yk) dt ′dx′dτdy

(D.3)
Changing the variables (t ′,τ) to (α,β ) and (x′,y) to (m,n) with:{

t − t ′+ ετ

2 = εα

t − t ′− ετ

2 = εβ

{
x− x′+ εy

2 = εm

x− x′− εy
2 = εn∫

dt ′dτ =
∫

εdαdβ ,
∫

dx′dy =
∫

εdmdn

(D.4)

eq. (D.3) becomes:

Wε [uε ](t,x;ω,k)∗∗Wε [hthx](t,x;ω,k)

=
ε2

(2π)2

∫
R4

uε(t − εα,x− εm) h∗t (εα)h∗x(εm)

u∗ε(t − εβ ,x− εn) ht(εβ )hx(εn) ei((α−β )ω+(m−n)k) dαdβdmdn

=
ε2

(2π)2

∫
R2

uε(t − εα,x− εm) h∗t (εα)h∗x(εm) ei(αω+mk) dαdm∫
R2

u∗ε(t − εβ ,x− εn) ht(εβ )hx(εn) e−i(βω+nk) dβdn

=

∣∣∣∣ ε

2π

∫
R2

uε(t − εα,x− εm) h∗t (εα)h∗x(εm) ei(αω+mk) dαdm
∣∣∣∣2

= |STFT[uε ,hthx](t,x;ω,k)|2

(D.5)

Using the same steps of proof above, we can also derive that:

Wε [uε ](−k)∗∗Wε [hthx] =

∣∣∣∣ ε

2π

∫
R4

uε(t − εα,x− εm) h∗t (εα) hx(εm) ei(αω−mk) dαdm
∣∣∣∣2

= |STFT[uε ,hth∗x ](t,x;ω,−k)|2
(D.6)
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Properties and examples of STFT

The STFT, or the spectrogram (the magnitude squared of the STFT), is a simple extension of the
FT. It can be understood as the FT is repeatedly evaluated for a running windowed version of the
time-space domain signal. Cross terms exist also for STFT. Consider a general case of the sum of two
signals u1 +u2 , its STFT has the following form:

|STFT[u1 +u2,htx]|2 = |STFT[u1,htx]|2 + |STFT[u2,htx]|2

+2 |STFT[u1,htx]| |STFT∗[u2,htx]|cos(φu1(t,x;ω,k)−φu2(t,x;ω,k))
(E.1)

where |STFT[ui,htx]| and φui(t,x;ω,k), i = 1,2 are respectively the magnitude and the phase of the
STFT of signal ui. In eq. (E.1), the first two terms are the auto-terms and the last term is the cross
term. It can be observed that if two STFTs have no overlapping (t,x)-(ω,k) support, the cross term is
zero. Equation (E.1) can also be generalized to sum of N signals.

A summary of the principal properties of cross terms of STFT are given here. More detailed
analysis can be found in [83, 102, 120].

1. The STFT cross terms occurs at the intersection of two overlapping transforms and no cross
term occurs between two frequency components like Wigner transform in eq. (3.13). Depending
upon the amount of overlap of each pair of transforms, the energy distribution of the STFT of
an N component signal can have a minimum of zeros and a maximum of N(N−1)

2 cross terms,
unlike the Wigner transform, which always has N(N−1)

2 cross terms in the midway of two Wigner
transform auto-terms. However, it also reduces the time-frequency resolution simultaneously.

2. The STFT cross terms can have a maximum magnitude equal to twice the product of the
magnitude of the two spectrograms.

3. The STFT cross terms are modulated by a cosine whose argument is a function of the difference
of phases of STFT[ui,htx].
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Here we study the same example, namely the sum of two complex-valued and separate gaussian
signals F(t), as we presented for the Wigner transform in the section 3.1.2 to view the cross term
properties of STFT or spectrogram (hann window is used here with length = sample length/6).

(a) (b)

Fig. E.1 Comparison of Wigner transform and spectrogram of sum of two gaussian signal: (a) Wigner
transform, (b) spectrogram[F ](t;ω)

In fig. E.1b, it is found that no cross term exists in its spectrogram since the two gaussian signals
have no overlapping support as we explained above. Wigner transform has a better concentration.
However, if we modify (t1,ω1) = (1,30) so as to have two closely spaced signal in fig. E.2a, the effect
of the overlapped components becomes visible and an intersection of two terms is found in fig. E.2b.
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Fig. E.2 A signal composed of two more closely spaced complex-valued gaussian signals and its
spectrogram: (a) F(t)(only real-valued part), (b) spectrogram [F ](t,ω)

Now we compare of the Wigner transform and the spectrogram for coherent waves as we did in
the section 3.1.4 that is used in our application. The Hann window function is used in time and in
space for the spectrogram. The same calculation region is chosen for the Wigner transform and the
spectrogram so as to have the same sampled signal, see fig. E.3.
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Fig. E.3 Hann window function in space and its frequency spectrum: (a) h(x), (b) | f f t(h)|
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Fig. E.4 Comparison of the Wigner transform and the spectrogram of coherent waves: (a) Wigner
transform, (b) spectrogram, (c) values on ω =−c0k with magnitude normalized to 1

With fig. E.4, we have several comments as follows. Firstly, Wigner transform gives a better
resolution in phase space. Secondly, spectrogram suppresses almost cross terms at zero and low
frequency (we presented in the section 3.1.4 a peak around zero frequency for Wigner transform
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is due to superposition of cross terms). However, it is known that it cannot suppress all the cross
terms between positive frequencies because a continuous frequency range is used here. Finally,
less frequency leakage is observed for spectrogram due to the use of window functions. Wigner
transform is calculated directly in a limited calculation region and we can treat it as application of a
rectangular window, whose frequency spreading is very wide, which may mask important spectrum
details at even lower levels. That’s why we find small fluctuations everywhere in fig. E.4b. Generally,
non-rectangular window functions actually increase the total leakage, but they can also redistribute it
to places where it does the least harm. To different degrees they reduce the level of the spreading by
increasing the high-level leakage in the near vicinity of the original component [68]. So in fig. E.4c,
the use of hann window function increases leakage near main lobe and also allows to reduce frequency
leakage at a remote area of the main lobe.



Appendix F

Energy-based residual errors calculated
within the local basis defined by the wave
propagation characteristics

In this section, we consider the residual errors in 1D heterogeneous media defined in chapter 4
using the local basis defined by the wave propagation characteristics. A transformation of coordinates
is firstly performed for the Wigner transform and the radiative transfer equation in 1D case. Then the
residual errors are re-calculated respectively for coherent waves and incoherent waves.

We propose a change of variables for (t,x)→ (χ⊥,χ∥) (fig. F.1):{
χ⊥ = 1√

2
(c0t − x)

χ∥ =
1√
2
(c0t + x)

i.e.

{
t = 1√

2c0
(χ⊥+χ∥)

x = 1√
2
(−χ⊥+χ∥)

(F.1)

and for (τ,y)→ (φ ,ψ):{
φ = 1√

2
(c0τ − y)

ψ = 1√
2
(c0τ + y)

i.e.

{
τ = 1√

2c0
(φ +ψ)

y = 1√
2
(−φ +ψ)

dτdy =
1
c0

dφdψ (F.2)

where the subscripts ∥ and ⊥ represent respectively the directions along the forward and backward
wave propagation characteristics. Recall that τ and y are the shift variables related to t and x in the
definition of Wigner transform.

Introducing eq. (F.1) and eq. (F.2) into the definition 3.3 of Wigner transform in 1D:

Wε [uε ](t,x;ω,k) =
1

(2π)2

∫
R2

uε(t −
ετ

2
,x− εy

2
)u∗ε(t +

ετ

2
,x+

εy
2
)ei(τω+yk)dτdy (F.3)
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and we can derive that:

Wε [uε ](t,x;ω,k) =
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(F.4)
Defining the displacement field and the Wigner transform in new coordinates by:

ũ(χ⊥,χ∥) := u
(

1√
2c0

(χ⊥+χ∥),
1√
2
(−χ⊥+χ∥)

)
;
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(F.5)
we obtain the following relation:

ũ(χ⊥,χ∥) = u(t,x);

Wε [uε ](t,x;ω,k) =
1
c0

W̃ε [ũε ](χ⊥,χ∥;k⊥,k∥)
(F.6)

with the change of variables in the phase space

k⊥ = 1√
2
(ω

c0
− k)

k∥ = 1√
2
(ω

c0
+ k)

. Then the projections of Wigner

transform on the forward and backward directions can be expressed as:

W+
ε = Wε [uε ](t,x;ω = c0k,−k) =

1
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W̃ε [ũε ](χ⊥,χ∥;k⊥ =
√

2k,k∥ = 0) =
1
c0

W̃+
ε

W−
ε = Wε [uε ](t,x;ω = c0k,k) =

1
c0
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(F.7)

The local wave-characteristic basis and the associated coordinate system are illustrated in
fig. F.1 (with the coherent forward waves, fig. 4.17a) and the calculation region here is (ζ⊥,ζ∥) =
(
√

2ζx,
√

2ζx). The Wigner transforms within both global and local coordinate systerm are compared
fig. F.2. It is found that these two results are very close to each other along the characteristic line
(normalized and the coefficient 1

c0
considered). Figure F.2d shows that the numerical results calculated

using the local coordinate system have less fluctuations (by spectral leakage).
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Fig. F.2 Wigner transform for coherent forward wave: (a) Wε [uε ](t,x;ω,k) for (t = t0,x = x0), (b)
W̃ε [ũε ](χ⊥,χ∥;k⊥,k∥) for (χ⊥ = 1√

2
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1√
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(c0t+x0)), (c) values along the characteristic

line, (d) values in the line perpendicular to the characteristic line for k = kmax
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Now we can derive the radiative transfer equation using the local coordinate system. The two
terms of the transport part become:
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and
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∂χ⊥W̃ε [ũε ](χ⊥,χ∥;k⊥,k∥)∂xχ⊥+
1
c0
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(F.9)

Combing the above two equations and using eq. (F.6) and eq. (F.7), the two radiative transfer equations
for W̃+ and W̃− in eq. (4.26) become:

√
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Theorem F.1. The residual errors in the local basis associated to the wave propagation characteristics
are defined with:R̃+[ũε ] =

√
2∂χ∥W̃

+[ũε ]− 1
8 k2
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or R̃sd
T = R̃++ R̃−

R̃sd
T S = R̃+− R̃−

(F.12)

The filtering of residual errors can also be transformed under (χ⊥,χ∥;k⊥,k∥) in the same way as
we did in theorem 4.6. The detailed derivation is neglected and the results are given here.

Theorem F.2. The filtered residual errors in the local basis associated to the wave propagation
characteristics are defined with:R̃sd

T [ũε ]∗∗W̃[h̃χ⊥ h̃χ∥ ] = R̃+[ũε ]∗∗W̃[h̃χ⊥ h̃χ∥ ]+ R̃−[ũε ]∗∗W̃[h̃χ⊥ h̃χ∥ ]
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(F.13)
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where
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and
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where S̃TFT stands for STFT of ũε in new coordinates.

Then we can calculate eq. (F.12) and eq. (F.14) numerically for coherent waves and incoherent
waves as we did in section 4.2.3.
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Appendix G

Résumé substantiel

La simulation numérique de la propagation d’ondes en milieu hétérogène est un problème
difficile car il nécessite de suivre les différents fronts d’ondes diffractés sur les hétérogénéités.
C’est particulièrement vrai en régime mésoscopique à haute fréquence, car l’interaction des ondes
avec le milieu est plus forte et les distances de propagation (relativement à la longueur d’onde) sont
plus importantes. Ces travaux de thèse portent sur le développement d’outils d’estimation d’erreurs
pour les solutions numériques d’équations d’ondes par éléments finis. Ces outils doivent permettre de
contrôler la qualité des simulations et de piloter l’optimisation du coût numérique.

Dans une première partie, un estimateur d’erreur explicite a posteriori est proposé. Il permet
d’évaluer une erreur en norme énergétique en espace et en norme L∞ en temps entre la solution
exacte de l’équation élastodynamique et une solution approchée reconstruite. L’idée principale du
développement est basée sur une erreur en résidu et l’utilisation de reconstructions des champs. Pour
tenir compte des régularités nécessaires à l’obtention d’une borne supérieure de l’erreur, plusieurs
reconstructions en temps pour le déplacement et la vitesse sont proposées, ainsi que des reconstructions
en espace-temps pour la contrainte. La performance de l’estimateur a été comparée par rapport à des
erreurs numériques exactes pour des cas homogène et hétérogène, et pour des solutions éléments finis
obtenues avec différents tailles de maillage et pas de temps. L’erreur estimée diminue bien avec le
raffinement en temps et en espace, mais l’efficacité (rapport entre l’erreur estimée et l’erreur réelle)
augmente également avec le raffinement. La convergence asymptotique de l’estimateur obtenu doit
donc être améliorée. L’analyse des résultats montre que les composantes des erreurs liées aux résidus
de l’équation d’équilibre dérivée en temps sont dominantes dans la contribution des erreurs totales
estimées.

Dans une seconde partie, le travail se concentre sur le cas particulier de la propagation d’ondes
à hautes fréquences dans des milieux hétérogènes en régime de couplage faible. Dans ce cas, les
estimateurs classiques basés sur les champs de déplacement et de vitesse ne sont pas très efficaces,
car ces derniers sont très fluctuants. L’énergie devient alors une quantité d’intérêt plus pertinente.
Un nouvel estimateur d’erreur est proposé, basé sur le résidu des équations de transport en milieu
homogène et de transfert radiatif en milieu hétérogène. Ces deux équations décrivent le transport des
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densités d’énergie en espace des phases (la transformée de Wigner du champs de déplacement), et
peuvent être reliées à l’équation élastodynamique.

Dans les milieux 1D homogènes, l’évolution de l’estimateur d’erreur proposé est alors étudiée pour
des solutions éléments finis obtenues avec différents maillage et différents pas de temps. La distribution
des erreurs locales sur la relation de dispersion dans l’espace des phases est décrite. Compte tenu de
l’existence de fluctuations numériques supplémentaires causées par les fuites spectrales (spectrale
leakage), un filtrage des erreurs en espace des phases est proposé et une erreur résiduelle locale dans
le domaine espace-temps (mais globales pour l’espace des phases pour chaque point espace-temps
considéré) est définie. La diminution des erreurs locales dans l’espace des phases et dans le domaine
espace-temps avec le raffinement permet de valider notre définition des erreurs et la méthode de
calcul.

Pour les milieux 1D hétérogènes, différents examples sont proposés. Tout d’abord, le phénomène
de localisation est mis en évidence, et les valeurs des paramètres physiques du milieu de propagation
pour lesquels le régime de transfert radiatif est valable sont discuté. D’autre part, une comparaison
entre l’énergie obtenue par l’équation de transfert radiatif et par l’équation de propagation des
ondes permet de valider les outils de calcul des densités énergétiques développés. Enfin, deux erreurs
résiduelles sont proposées dans le cas 1D: l’une basée sur les énergies de l’onde prograde et rétrograde,
similaire à celles définies dans les milieux homogènes; l’autre basée sur l’énergie totale et l’énergie
nette prograde. Les calculs numériques des erreurs pour un exemple de barre 1D avec un maillage fin
montrent que les erreurs définies sont relativement faibles par rapport à l’énergie totale et diminuent si
une moyenne d’ensemble sur plusieurs barres est considérée, de manière cohérente avec l’obtention de
l’équation de transfert radiatif à partir de l’équation d’ondes. Cela permet de valider notre proposition
de définition des erreurs pour les solutions d’ondes numériques en régime mésoscopique à haute
fréquence.

Dans le cas hétérogène, les termes croisés et les fluctuations numérique perturbent le calcul de la
transformée de Wigner, ce qui influence l’estimation des distributions d’erreurs en espace des phases.
Afin de réduire cette influence et d’obtenir une estimation des erreurs plus fiable, un filtrage des erreurs
résiduelles en termes de STFT a été proposé par la convolution de l’équation de transfert radiatif
avec la transformée de Wigner d’une fonction de fenêtrage. La comparaison entre la STFT et la
transformée de Wigner pour les champs d’ondes a montré que les termes croisés sont largement réduits.
Les résultats numériques ont montré que ces erreurs résiduelles filtrées sont toujours relativement
faibles par rapport à l’énergie totale et qu’elles diminuent à mesure que le nombre de réalisations
aléatoires augmente. Ce filtrage permet en particulier de réduire les termes croisés accumulés en
basse fréquence. En plus, la décroissance d’erreurs avec le raffinement a été observée pour les fronts
d’ondes cohérentes mais c’est moins évidente pour ceux d’ondes incohérentes. Ce point reste donc à
améliorer.

En ce qui concerne les futures travaux, pour l’estimateur explicite, il faut proposer de nouvelles
reconstructions en espace et en temps qui possèdent un meilleur comportement asymptotique avec
le raffinement de la discrétisation en espace et en temps. D’autre part, pour les erreurs énergétiques,
des efforts doivent être faits pour comprendre les phénomènes exprimés à travers des résidus autour



143

des fronts d’ondes incohérentes afin de répondre aux questions qui restent ouvertes. Il sera aussi
intéressant d’appliquer les approches développées aux cas 2D ou 3D.
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