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Abstract

We address the problem of rendering extremely complex virtual scenes with large amounts of detail. We
focus on high-end off-line rendering algorithms based on path tracing that are intensively used in the
special effects and 3D animation industries. The large amounts of detail required for creating believable
virtual worlds raise important efficiency problems that paralyze production rendering pipelines and greatly
complicate the work of 3D artists. We introduce new algorithms for prefiltering complex 3D assets while
preserving their appearance at all scales, in order to reduce loading times, ray intersection costs, shading
costs and Monte Carlo noise, without lowering the quality of rendered frames. Our main contributions
are a new hybrid LOD approach that combines the benefits of meshes and volumetric representations for
prefiltering complex 3D assets, as well as a new approach for prefiltering high-resolution heterogeneous
participating media.

L’objectif de cette thèse est le rendu de scènes virtuelles extrêmement détaillées. Nous nous intéressons
plus particulièrement aux algorithmes de rendu de haute qualité reposant sur du path tracing qui sont
très largement utilisés dans l’industrie des effets spéciaux et pour calculer le rendu de films d’animations.
Les grandes quantités de détails nécessaires à la modélisation de mondes virtuels crédibles soulèvent de
sérieux problèmes d’efficacité du rendu qui paralysent les studios et compliquent grandement le travail
des artistes. Nous introduisons de nouveaux algorithmes pour préfiltrer les objets 3D complexes à des
échelles arbitraires, afin de réduire les temps de chargement, les coûts d’intersection des rayons lumineux,
le calcul des matériaux et la quantité de bruit dans les images, le tout sans porter atteinte à la qualité du
rendu. Nos contributions principales sont une nouvelle approche hybride de niveaux de détail qui combine
les avantages des maillages et des représentations volumiques pour le préfiltrage des objets complexes à
des échelles arbitraires, ainsi qu’une nouvelle approche de préfiltrage pour le cas des volumes hétérogènes
de haute résolution.
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Chapter 1

Introduction: efficient rendering with
level-of-detail representations

More than a hundred and fifty thousand final frames need to be created for an average feature-length film.
This number doubles for 3D stereoscopic films. In both animated features and films with special effects
based on 3D computer graphics, producing these frames requires a tremendous amount of human and
computer work. The total number of frames computed during the production is actually much larger than
the number of final frames if we take into account all the provisional frames and test images computed
to iteratively improve the film.

Many artists must be involved in the process of producing believable computer-generated worlds. In
particular:

• Some artists must create believable and detailed 3D geometry.

• Some artists must paint detailed textures and design realistic materials using these textures.

• Believable animations for characters are either created manually by 3D animators or with the help
of motion capture techniques. Other elements such as hair, cloth, fluids and destructions are often
animated based on physical simulations with artistic control.

• Lighting artists must design and place virtual light sources such that rendering algorithms can
generate a frame by computing the scattering of the light in the virtual scene.

Huge amounts of detail in both the geometry of a scene and its textures are required for reaching
the visual complexity of the real world. These details often result in hundreds of gigabytes of data for
rendering a single frame. This is a major problem in every studio because large geometry and texture
files lead to paralyzing loading time in the software used for designing and animating a scene as well as
very large rendering time. Artists must sometimes wait minutes before obtaining very noisy previews of
a frame, and hours to obtain a final frame even with powerful render farms.

In this thesis, we address the problem of rendering extremely complex scenes. Our approach to this
problem is appearance-preserving prefiltering: we design algorithms whose input is some high-resolution
data (typically geometry, textures and reflectance models) and that generate data at a lower resolution,
with the same distant appearance, that is, such that no difference can be seen between the input data and
low-resolution data when it is viewed from a distance. An important part of our work and of prefiltering
methods in general is the choice of appropriate representations for the prefiltered data, that is, the choice
of appropriate types of rendering primitives and appropriate reflectance models. Prefiltering methods
are also called level-of-detail or LOD methods, because they typically generate low-resolution renderable
data at various prefiltering levels. If LODs are accurate, they can be used in place of sub-pixel or hidden
details without lowering the quality of the final image.
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In this chapter, we discuss the scope and context of our thesis. We first give a brief overview of
rendering algorithms, and we provide details about the goals and trends of prefiltering techniques for
high-quality rendering.

1.1 Rendering algorithms

Real-time and off-line rendering. Rendering is traditionally divided in two categories based on the
available time budget for computing one frame. Real-time rendering techniques aim at generating at
least 30 frames per second. It is mostly achieved with graphics processing units (GPUs), and used in
interactive applications such as videos games, simulators or interactive scientific visualization. Off-line
rendering designates high-end rendering applications where quality standards are very high, and whose
computation time is often expressed in hours or tens of hours for final frames, that is a million times
more than the budget of real-time rendering. In this thesis, we focus on such off-line applications that
compute accurately light scattering in very complex virtual scenes.

Interactive rendering. Interactive rendering designates cases where the computation is not necessarily
real-time but fast enough (for example expressed in seconds) for the user to move the camera and change
some settings while having a visual feedback. Interactive rendering is extremely important for 3D artists
when they design the animations, the materials and the lighting of a scene. Art is an iterative process
and the final quality often depends on the number of iterations.

A current challenge in the film industry is designing rendering applications that support both inter-
active and off-line rendering so that artists can freely balance the accuracy and the rendering efficiency.
This is very challenging because off-line and interactive rendering algorithms typically have very different
architectures, and because the complexity of the geometry and the materials in production scenes cannot
be processed interactively without simplification. Level-of-detail representations can bring large benefits
in this context.

Pixel values as integrals. In this thesis, we focus on off-line rendering applications that accurately
simulate light scattering in a scene from the light sources to the virtual camera. Pixels of a frame are
defined as an integral of the light energy scattered by the scene and reaching a pixel. Moreover, the
amount of light scattered at a point in the scene towards a pixel of the camera is itself defined as an
integral of the incident light energy at this point times a scattering function that characterizes the surface
of the medium at this point. The formalization of rendering as a recursive integral equation has been
introduced in computer graphics by Kajiya [Kaj86] under the name rendering equation. This inspired all
the photo-realistic rendering algorithms currently used in the film industry.

Monte Carlo rendering. Rendering algorithms used in the special effects and 3D animation industries
estimate the integrals of the rendering equation by finding light paths between the virtual light sources and
the virtual camera, based on geometrical optics. These paths contain one or more scattering events, such
specular or diffuse reflections and refractions on surfaces of the 3D scene. Pixels values are estimated using
Monte Carlo approaches: many paths must be found between each pixel and the lights based on random
sampling techniques, such that the average the contribution of the paths provides an estimator of the
amount of light scattered towards the pixel. Many algorithms have been proposed based on the seminal
work of Kajiya, including many algorithms for computing volumetric light scattering in participating
media such as the skin, wax, marble, clouds or milk. These algorithms can compute very precise images
but are prone to noise, and computing random light paths until the convergence of each pixel value can
be very long. In this thesis, we do not propose new rendering algorithms, we instead propose ways to
prefilter the appearance of high-resolution rendering primitives and to represent it using memory efficient
and accurate models, in order to decrease the rendering time for the same image quality. The methods
introduced in this manuscript are rather independent of rendering algorithms.
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1.2 Rendering large amounts of detail

Amounts of detail and image resolution. The lack of detail in a 3D scene is immediately perceived
and it limits the realism of rendered pictures. In most cases, small details must be seen at the scale of
pixels, for example the small irregularities of skin, the fibers of clothes or the small leaves of a plant.
Ideally, the amount of detail required for rendering one frame should be approximately linear to the
resolution of the frame: each of the 2 or 8 millions of pixels should approximately depend on a few details
that cover approximately one pixel in screen space, since smaller details cannot be seen individually. In
practice, the amount of detail at rendering is non-linear to the image resolution, for several reasons:

• It is not convenient to model 3D content at an arbitrary resolution. For example, for modeling a
tree that will appear in the background, it is much easier to model the geometry at the scale of
the leaves, even if leaves will be sub-pixel in the frame. Similarly, it is much easier to model a
distant fur with explicit fibers than using lower-resolution primitives that would have exactly the
same distant appearance. Painters know how to paint the distant appearance of foliage without
painting individual leaves, but this is hard to achieve for realistic 3D rendering, especially because
the position of the camera and the lighting of the scene are not known precisely at the time the
data is created by 3D artists. The 3D assets must have a correct appearance when rendered with
arbitrary lighting conditions and in all directions, and they are modeled using many and sometimes
unnecessary details.

• A 3D object can be seen at various scales in a shot (a group of contiguous frames). For this reason,
all the assets must be modeled with enough detail such that the have a sufficient resolution for close
views, and they will have too many details for other frames.

• Off-line rendering algorithms compute the accurate scattering of the light in the scene. Some
important details are only seen indirectly: for example, they cast shadows on the directly visible
parts of the scene, or they appear in some specular reflections. Rendering algorithms often load
and render entire virtual scenes even if only a small part of them is directly visible from the camera,
and many of the off-screen details could often be safely prefiltered because their high frequencies
have little effect on pixel values.

For all these reasons, scenes are often rendered with lots of unnecessary details. As discussed in the next
section, prefiltering details without changing pixels values is not trivial in general.

The cost of rendering detailed scenes. Scenes with large amounts of detail raise important pro-
duction problems:

• Large amounts of data must be loaded and processed for rendering a frame, before the actual
rendering step begins. Loading can take minutes or even hours for massive scenes.

• The geometric complexity increases the cost of finding the intersections of light rays with the scene.
The computation of ray intersections is a fundamental element of all off-line rendering algorithms,
and it is a significant part of the total rendering cost.

• Production path tracing algorithms try to maximize the coherence of memory access to the geometry
and textures. Large scenes deteriorate cache coherence and rendering efficiency.

• The evaluation and sampling of complex materials designed with many high-resolution texture
layers can be very time consuming. This cost is called the shading cost and it is sometimes the
bottleneck of production renderers.

• Because pixels are evaluated using Monte Carlo approaches, high frequencies in a scene result in
noisier images, which is addressed by computing more light paths. Therefore, the cost of details is
double: not only the cost increases with the complexity of the scene because computing light paths
is more expensive, but more paths must be computed to avoid noise in pixel values.
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(a) Photo of a piece of velvet. (b) Photo of pine trees seen at various scales.

Figure 1.1: Examples of complex appearances emerging from sub-resolution details. (a): The charac-
teristic appearance of velvet emerges from its well-organized shiny fibers. Many other fabrics have such
anisotropic reflections and complex appearance at grazing angles. (b): Pine trees seen at various scales.
Even when pine needles are sub-pixel, the appearance of pines is complex and emerges from the scattering
properties of the assemblies of bright and translucent needles.

Out-of-core rendering and unrenderable scenes. Very detailed scenes do not fit into the main
memory of computers, and out-of-core rendering refers to techniques for handling such scenes, by loading
only parts of a scene on demand. Unfortunately, accessing the disk memory is at least one or two
orders of magnitude slower than accessing the main memory1,2. Moreover, out-of-core rendering requires
additional memory for storing temporary data until the missing parts of a scene are loaded. Out-of-core
rendering is not a mature technology, and very large scenes remain unrenderable in many studios.

1.3 Rendering with level-of-detail representations

For addressing problems raised by very complex scenes, two complementary approaches can be used.
First, rendering algorithms must be optimized, for example using efficient acceleration structures such
as bounding volume hierarchies, ray ordering for improving the coherency of memory access, or cache
systems for reusing data from previous render tasks. Secondly, memory usage can be reduced using
some type of data compression in a preprocessing step. Loss-less data compression allows for reducing
loading times but it does not address the problem of noise due to high-frequency details nor scenes whose
traceable geometry does not fit in the main memory. Detail prefiltering consists in simplifying rendering
primitives while being aware of the effect of the simplification on pixel values. It can be thought as a
form of lossy compression but it relies on hypotheses about what governs the appearance of 3D assets
at a given scale, so that high spatial frequencies can be replaced by lower frequency data that have the
same macroscopic appearance. This is the approach adopted in this thesis.

Appearance-preserving prefiltering is difficult. In the next chapters, we will show that prefiltering
arbitrary 3D models is a difficult problem. For example, the appearance of complex objects such as
fabrics (Fig. 1.1a) or trees (Fig. 1.1b) emerges from the scattering properties of the details and from
masking and shadowing effects at small scales. Predicting and representing efficiently such objects at
arbitrary resolutions is very challenging, and naïve prefiltering methods often fail in preserving the correct
appearance at all scales. We will see that designing specific prefiltering methods for particular types of
3D assets is possible using appropriate assumptions, and that prefiltering robustly and automatically
arbitrary production assets is a much more difficult problem.

LOD methods must avoid all kinds of temporal artifacts. When the resolution of an asset must be
1https://surana.wordpress.com/2009/01/01/numbers-everyone-should-know/
2https://gist.github.com/jboner/2841832
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changed during a shot, for example because the camera is moving backward, the appearance of the asset
must remain consistent, and the transition between the levels of detail must be imperceptible and should
not introduce flickering or popping artifacts. This is an important and challenging quality constraint for
high-quality off-line rendering.

Current prefiltering techniques for off-line rendering. In the next chapters, we review techniques
commonly used in production: geometric LODs, such as mesh simplification or adaptive subdivision
(Chap. 3), textured-based prefiltering such as the well known mip mapping (Chap. 4) and techniques
dedicated to render efficiently aggregate detail such as foliage or hair (Chap. 5). We will also discuss
the validity domain of each method and show that all-scale prefiltering of complex assets such as trees
remains an open problem that we address in Part II.

Drawbacks of the prefiltering approach. LODs have a rather bad reputation because many pre-
fitering methods are not robust and efficient enough for production. LODs are often a source of bugs
and artifacts in rendered images, and 3D artists and directors do not like 3D assets being automati-
cally simplified unless prefiltering algorithms are proven to be robust enough. Studios generally avoid
using aggressive LODs when possible, although simplification techniques are mandatory for rendering
very detailed scenes that could not be rendered otherwise. Moreover, we will see in chapter 6 that LOD
methods raise several technical problems in production pipelines. For example, some LOD methods have
a significant precomputation cost, meaning that LODs cannot be computed per frame at render time,
and must but precomputed at the best place in the pipeline.

Instancing is another way of reducing memory usage in some complex scenes. It consists in defining
multiple instances of a geometry in a scene while storing the geometry only once in the main memory.
This allows great savings in scenes that have many buildings or trees with the same geometry. With
instancing, the level of detail must be chosen according to the instance that is the closest to the camera,
leading to sub-optimal resolutions for instances in the background. Using additional LODs would increase
memory usage instead of decreasing it.

The future of prefiltering methods. The progressive increase of available memory in computers
allows the rendering of extremely complex scenes compared to what was technically possible a few years
ago. Many problems are actually solved years after they are studied simply because computers are more
powerful, and approximate solutions get replaced by simpler high-quality methods. A huge amount of
work has been done on generating level-of-detail representations of rendering primitives, and a large
part of this work is now outdated, although inspiring. For instance, Reeves [RB85] proposed a volume
approximation for shading its particle-based foliage, and stated that ‘it would be a formidable task to
shade each particle exactly, calculating whether it is in shadow and determining if it should be highlighted.
In fact, unless the camera points directly at the sun from within the tree, it is almost impossible to tell
whether or not any one leaf should be in shadow’. It is now possible to compute unbiased shadowing and
multiple scattering in trees with thousands of leaves.

One could wonder what will be the place of LOD methods in future production pipelines. On the
one hand, as computers become more and more powerful, brute force approaches become affordable and
allow for overcoming problems raised by previous approximate solutions. On the other hand, rendering
pipelines will always be highly sub-optimal without LOD techniques and resources will be wasted because
of unnecessary details. Further research on efficient and robust prefiltering can bring huge benefits for
both interactive visualization and final frames.

1.4 Overview of the thesis

Our goal is to investigate new prefiltering techniques for improving the rendering efficiency in the case
of very detailed scenes. As mentioned above, we focus on high-end rendering applications and we target
high-quality rendering.
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The first three chapters of this manuscript present previous work on geometric simplification (Chap. 3),
surface-space prefiltering (Chap. 4) and aggregate detail (Chap. 5).

In Part II, we present our contributions on all-scale prefiltering of complex assets such as trees. Inspired
by previous work on both surface-based prefiltering and volumetric approximations of aggregate detail,
we revisit several techniques and combine them to achieve robust and seamless prefiltering. We show
that we obtain high-quality results for various assets such as trees which are not supported by previous
methods. This work has been published and presented at the conference Eurographics 2017 [LN17].

In Part III, we address the problem of downsampling high-resolution voxel grids representing hetero-
geneous participating media, while preserving their appearance at all scales. We discuss the limitations of
naïve prefiltering methods and we review the related work of Zhao, Wu et al. [ZWDR16], in which volumes
are downsampled based on optimizations of scattering parameters with image-space errors. We introduce
an alternative method that is more general, that generates accurate results and that is significantly faster.
This work has been published and presented at the conference Eurographics 2018 [LN18].

1.5 Summary of our contributions

In Part II, we present several contributions for the prefiltering of complex assets at arbitrary scales:

• We analyze the problem of prefiltering assets and the limitations of current methods. We propose a
new hybrid LOD approach that combines the strengths of surface-based and volumetric prefiltering
methods (Chap. 6).

• We introduce an algorithm that analyzes meshes and detects macrosurfaces at a given scale (Chap. 7).

• We propose a new vertex placement strategy for simplifying meshes with edge collapse operations,
based on a two-sided geometric error metric (Sec. 8.2).

• We propose a technique for prefiltering albedos and microfacet distributions in the edge collapse
framework (Sec. 8.3).

• We propose an alternative technique for macrosurface prefiltering in the case of structured quad
meshes, which are the standard representation in many studios (Sec. 8.4).

• We introduce a voxelization algorithm that estimates occlusion probabilities of sub-resolution in-
tricate geometry and that avoids aliasing (Chap. 9).

In Part III of the thesis, we present the following contributions:

• Based on our analysis of the problem of prefiltering high-resolution heterogeneous volumes (Chap. 11),
we propose a new participating medium model based on the microflake model [JAM∗10a] that is
adapted to volume downsampling (Chap. 12).

• We show that choosing appropriate functions in our model allows for deriving closed-form expres-
sions which are required for its efficient implementation. We provide all these derivations (Chap. 13).

• Based on our model, we introduce a new downsampling approach and we demonstrate its benefits
compared to previous work (Chap. 14).

1.6 Industrial collaborations

During this PhD, I worked as an intern in the studios of Weta Digital in Wellington, New Zealand (July-
August 2015), and at the Walt Disney Animation Studios in Burbank, CA, USA (October-December
2017). I studied various aspects of LOD methods for production. Although confidentiality clauses prevent

16



us from providing information about the pipelines of these studios in this document, discussions about
our motivations and general rendering problems are largely inspired by these internships and by our
discussions with rendering researchers and engineers.
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Chapter 2

Introduction : rendu efficace avec des
niveaux de détail

Plus de cent cinquante mille images doivent être produites en moyenne pour former un long métrage.
Que ce soit pour des films d’animation 3D ou pour des films demandant beaucoup d’effets spéciaux
calculés sur ordinateur, produire ces images demande une quantité de travail gigantesque et nécessite la
collaboration de nombreux artistes spécialistes de l’informatique graphique 3D. Pour créer des mondes
virtuels convaincants, ces artistes doivent produire :

• de la géométrie en 3D convaincante et suffisamment détaillée,

• des textures et des matériaux réalistes pour habiller cette géométrie,

• des animations crédibles, soit manuellement, soit en s’aidant de procédés de capture de mouvements,
soit en utilisant des simulations physiques pour animer les cheveux, les fluides ou les vêtements,

• des éclairages virtuels à la fois plausibles et esthétiques qui sont utilisés par un logiciel de rendu qui
va calculer la diffusion de la lumière dans la scène virtuelle pour produire une image du film.

Une énorme quantité de détails est nécessaire pour reproduire virtuellement la complexité du monde
réel. Ces détails sont en grande partie géométriques, mais des textures très détaillées sont également
nécessaires. La somme de ces détails conduit à l’élaboration de scènes virtuelles dont la taille mémoire
peut dépasser des centaines de gigaoctets pour le calcul d’une seule image. Gérer de telles quantités
de données est un défi majeur pour tous les studios d’effets spéciaux : les temps de chargement sont
extrêmement longs et ils paralysent les artistes qui doivent attendre plusieurs minutes voire des heures
pour obtenir ne serait-ce qu’un aperçu bruité de l’image finale, et ce même avec des ordinateurs puissants
ou d’immenses serveurs de calcul.

Dans cette thèse, nous étudions les problèmes qu’affrontent les studios lorsque des scènes très détaillées
doivent être produites et rendues. Notre but est de concevoir des algorithmes qui permettent de réduire
les temps de calcul sans porter atteinte à la qualité des images finales. Notre approche du problème est
une approche de préfiltrage : en partant de données de haute résolution, nos algorithmes génèrent des
données de plus basse résolution afin que les ressources des ordinateurs ne soient pas gaspillées pour des
détails qui ne sont pas visibles dans l’image parce qu’ils sont masqués, hors-champ ou sous-pixel. Ces
données préfiltrées sont appelées des LODs (levels of detail en anglais).

Dans ce chapitre d’introduction, nous délimitons le périmètre de nos recherches, nous donnons un
aperçu des méthodes de rendu et nous présentons notre approche et ses avantages pour augmenter
l’efficacité du rendu d’images de haute qualité.
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2.1 Les algorithmes de rendu

Rendu temps réel, rendu off-line. Le domaine du rendu est traditionnellement divisé en deux
catégories en fonction du budget temps disponible pour le rendu d’une image. Le rendu temps réel
désigne un ensemble de techniques dont le but est de générer plus de 30 images par seconde pour des
applications interactives comme des simulateurs, de la visualisation scientifique ou des jeux vidéos. Le
rendu temps réel repose principalement sur les cartes graphiques pour atteindre la performance requise.
A l’opposé, le rendu off-line est la méthode de rendu utilisée pour les images prédictives en architecture,
la publicité, les effets spéciaux et les films d’animation qui utilisent l’informatique graphique 3D. Dans
les applications de rendu off-line, c’est la qualité de l’image qui prime et non l’efficacité du rendu. Il
n’est pas rare d’attendre des heures ou des dizaines d’heures pour le rendu d’une image, ce qui permet
à l’algorithme de calculer précisément la diffusion de la lumière dans la scène et de générer des images
convaincantes voire indiscernables d’une photographie. La dichotomie entre ces méthodes de rendu est
grande : de quelques millisecondes à une dizaine d’heures, le budget temps est multiplié par un million.
Dans cette thèse, nous étudions des algorithmes pour le rendu off-line, avec une attention particulière
pour les applications liées au cinéma qui demandent le calcul de très nombreuses séquences d’images.

Rendu intéractif. Le rendu intéractif est une troisième famille d’algorithmes qui vient se placer entre
le rendu temps réel et le rendu off-line. Son but est de générer des images de manière suffisamment
rapide pour permettre une interaction de l’utilisateur avec la scène virtuelle, sans pour autant imposer
une limite stricte de plusieurs dizaines d’images par seconde. Avec le rendu interactif, l’utilisateur peut
déplacer une caméra virtuelle, changer le matériau d’un objet ou créer une animation tout en ayant à la
fois un bon aperçu de l’image finale et en gardant une approche d’essai-erreur avec des retours visuels
rapides. Le rendu interactif est très important dans les domaines du design de scènes virtuelles.

Ce type de rendu est un défi actuel pour l’industrie des effets spéciaux. En effet, il est difficile de
concevoir des logiciels de rendu qui peuvent à la fois produire des images de manière interactive et calculer
les images finales efficacement car les architectures logicielles de ces algorithmes sont très différentes.
Dans le cas des scènes complexes, il est parfois impossible d’obtenir une prévisualisation interactive tant
la quantité de détails engendre de longs temps de chargement et de calcul. Les algorithmes de niveaux
de détail sont alors d’une grande utilité.

Les valeurs de pixels définies comme des intégrales. Dans cette thèse, nous nous concentrons sur
les algorithmes de rendu précis qui calculent entièrement la diffusion de la lumière dans une scène, c’est
à dire les multiples réflexions, réfractions et diffusions qui mènent les rayons lumineux issu des sources
de lumière virtuelles jusqu’à la caméra. Ces calculs reposent sur des modèles physiques de réflectance
des surfaces des objets virtuels. Pour calculer la valeur d’un pixel, il faut calculer l’intégrale de toute
la lumière qui l’atteint. De plus, la quantité de lumière réfléchie par les surfaces dans la direction du
pixel est elle-même définie comme une intégrale de la lumière incidente à cette surface fois une fonction
de réflectance. Cette formalisation du rendu par des intégrales récursives est étudiée en informatique
graphique depuis les travaux de Kajiya [Kaj86] et c’est cette approche qui est utilisée pour calculer des
images réalistes dans l’industrie des effets spéciaux.

Le rendu par des techniques de Monte Carlo Les algorithmes modernes de rendu de haute qualité
estiment les intégrales en trouvant beaucoup de chemins de lumière entre les sources et la caméra de la
scène virtuelle, en s’appuyant sur les lois de l’optique géométrique. Ces chemins peuvent comporter
plusieurs interactions avec les objets de la scène, par exemple plusieurs réflexions spéculaires. Comme
les intégrales n’ont presque jamais de solutions analytiques, les valeurs des pixels sont calculées avec
des approches de Monte Carlo, c’est à dire numériquement en échantillonnant aléatoirement le domaine
d’intégration. Pour cela, beaucoup de chemins lumineux sont calculés et leur contribution moyenne est
un estimateur de l’intégrale du pixel. Cette méthode a été l’objet d’un grand nombre de travaux et
beaucoup d’algorithmes de rendu ont vu le jour, y compris beaucoup de méthodes calculant la diffusion
de la lumière dans les milieux participatifs translucides comme le marbre, le lait, les nuages, ou la cire.
Tous ces algorithmes calculent des images très précises, si tant est qu’on leur en donne le temps : les
images sont victimes du bruit caractéristique des méthodes de Monte Carlo et la convergence est parfois
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très longue, voire tellement longue dans certains cas pathologiques que plusieurs mois de calculs ne
suffiraient pas. Dans cette thèse, nous ne proposons pas de nouveaux algorithmes de rendu. Notre but
est de simplifier les données qui sont rendues afin que tous ces algorithmes soient plus rapides, le tout
sans amoindrir la qualité des images calculées. Nos travaux sont donc relativement indépendants des
algorithmes de rendu, bien qu’il faille savoir comme ils fonctionnent pour les rendre plus efficaces.

2.2 Le rendu de scènes très détaillées

Quantité de détails et résolution d’image. Une quantité trop faible de détails dans une scène est
très perceptible et ruine le réalisme d’une image. Idéalement, des détails doivent être modélisé et rendus
jusqu’à l’échelle des pixels, en créant par exemple de petites irrégularités sur les visages, des fibres sur
un tissus ou de petites feuilles sur une branche. En théorie, la quantité de détail nécessaire pour le rendu
d’une image pourrait être linéaire du nombre de pixels de l’image, puisque seuls les détails qui peuvent
être discernés dans l’image sont indispensables. En pratique, ce n’est jamais le cas, et ce pour plusieurs
raisons :

• Les artistes créent les objets 3D à une résolution qui leur convient, et pas à des résolutions arbi-
trairement basses pour les besoins d’une image. Par exemple, créer un modèle d’arbre 3D réaliste
est plus facile en modélisant la géométrie à l’échelle des feuilles, même si ces feuilles sont sous-pixel
dans l’image finale. Si les peintres savent créer directement l’apparence d’un feuillage distant sur
une toile, cette approche est bien plus complexe dans le cadre d’un rendu réaliste, où le feuillage
doit avoir une apparence plausible sous tous les points de vues et pour tous les éclairages possibles.
De même, il est bien plus facile de créer une fourrure réaliste en modélisant un ensemble de poils
qu’en utilisant d’autres modèles de plus basse résolution dont l’apparence distante est celle d’une
fourrure.

• Le point de vue de la caméra n’est pas connu précisément lors de la modélisation, il est donc difficile
de modéliser un objet en s’arrêtant exactement à l’échelle nécessaire. De plus, si la caméra ou l’objet
bougent, un objet 3D peut être vu à plusieurs échelles, et il faut qu’il ait suffisamment de détails
pour chacune des images du film. Les objets 3D sont donc modélisés à de hautes résolutions au cas
où ces détails soient nécessaires pour une scène du film. A cause de cela, la quantité de détails est
souvent beaucoup plus grande que nécessaire dans une image donnée.

• Les algorithmes de rendu off-line calculent précisément la diffusion de la lumière. Les chemins
lumineux parcourent toute la scène virtuelle et pas seulement la partie de la scène directement
visible à l’écran. Par exemple, les objets 3D peuvent projeter des ombres complexes ou être vus
dans des reflets : il est donc nécessaire de garder des détails pour les objets même si ils sont hors-
champ. Néanmoins, une grande partie de ces détails indirects sont inutiles en pratique car malgré
leur contribution indirecte aux pixels, ils ne sont pas discernables individuellement.

En résumé, les scènes sont toujours rendues avec des détails qui contribuent peu aux valeurs des pixels.
Ou plus exactement, c’est l’ensemble des détails dans un voisinage qui contribue au transport de la
lumière, mais les hautes fréquences de ces détails ne contribuent pas à l’image. Nous verrons dans la
suite de ce chapitre que préfiltrer ces détails sans modifier l’image finale est un problème difficile dans
bien des cas.

Le coût du rendu des scènes détaillées. Les scènes virtuelles très détaillées peuvent engendrer
d’important surcoûts :

• Les scènes complexes doivent être chargées en mémoire pour le rendu d’une image. Plusieurs étapes
de préparation des données pour l’algorithme de rendu pèsent également sur l’efficacité du rendu.
Ces étapes représentent parfois plusieurs minutes ou plusieurs heures de chargement et de calculs,
avant même que le rendu à proprement parlé commence.

• La complexité géométrique d’une scène augmente le coût du calcul des chemins lumineux, qui est
une des briques fondamentales des algorithmes de rendu off-line.
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• Du fait de la grande taille des scènes en mémoire, les opérations d’accès mémoire peuvent être un
frein majeur à l’efficacité d’un algorithme. Les algorithmes de rendu ont des stratégies pour max-
imiser la cohérence de l’accès aux données pour réduire ces coûts, mais plus la scène est complexe,
plus c’est difficile.

• Évaluer et échantillonner les matériaux de la scène peut également être très coûteux, notamment
lorsque les textures sont de très haute résolution et que beaucoup de textures sont utilisées pour le
même objet. Ce coût est parfois le principal goulot d’étranglement des algorithmes de rendu.

• Les méthodes de Monte Carlo donnent des valeurs de pixels bruitées si l’échantillonnage du domaine
d’intégration est trop faible. du domaine d’intégration. De manière générale, plus les fonctions à
intégrer ont des hautes fréquences, plus le bruit est important. Une scène détaillée engendre donc
un double surcoût : non seulement chaque chemin lumineux est plus cher à calculer, mais il faut
aussi calculer plus de chemins pour que l’image atteigne un niveau de bruit acceptable.

Rendu out-of-core et scènes trop complexes pour être rendues. Les scènes extrêmement dé-
taillées ne peuvent être chargée entièrement en mémoire, faute de place. Les algorithmes de rendu out
of core sont les algorithmes qui permettent de calculer le rendu sans avoir à charger toute la scène en
même temps : un système de cache permet de charger sur demande les parties de la scène nécessaires à
un moment donné du calcul, et de libérer de la mémoire lorsque certaines données ont déjà servi. Ces
algorithmes ne sont pas optimaux car l’accès à la mémoire de stockage (disques dur, SSD) est bien plus
long que l’accès à la mémoire vive, d’au moins un ou deux ordres de grandeur1,2. De plus, les algorithmes
out of core ont des surcoûts en terme de mémoire pour stocker des informations sur l’état du rendu (typ-
iquement des chemins lumineux incomplets) en attendant que les données manquantes soient chargées,
ce qui contribue aussi à la diminution des performances. Le rendu out-of-core n’est pas considéré comme
un technologie mature et beaucoup de studios n’en disposent pas. Pour eux, les scènes trop complexes
ne peuvent tout simplement pas être rendues.

2.3 Le rendu efficace avec des niveaux de détail

Pour affronter les problèmes soulevés par les scènes complexes, deux approches complémentaires peuvent
être envisagées. La première consiste à optimiser les algorithmes de rendu, par exemple en utilisant
des structures accélératrices comme les bounding volume hierarchies, en triant les rayons pour faire en
sorte que les accès mémoire soit cohérents, ou en stockant certaines informations dans des caches pour
qu’elles puissent être rentabilisées pour le calcul de plusieurs chemins lumineux. Une seconde stratégie
consiste à réduire la quantité de données nécessaires pour le rendu, avant l’étape de rendu elle-même. La
compression sans perte des données peut réduire les temps de chargement mais ne résout pas le problème
du bruit causé par les détails de hautes fréquences, ni le problème des scènes massives qui ne tiennent pas
en mémoire une fois décompressées. Le préfiltrage de détails consiste à réduire la quantité de données
tout en ayant conscience de l’effet du filtrage sur l’apparence des objets 3D. Les techniques de préfiltrage
peuvent être vues comme des techniques de compression avec pertes adaptées au rendu, et basées sur
des hypothèses de ce qui constitue l’apparence d’un objet 3D à une échelle donnée. C’est l’approche que
nous adoptons dans cette thèse.

Le problème du préfiltrage est un problème difficile. Dans les prochains chapitres, nous mon-
trerons que préfiltrer automatiquement des modèles 3D arbitraires est un problème difficile. Pour citer
deux exemples, l’apparence distante des tissus (Fig. 2.1a) et des feuillages (Fig. 2.1b) provient des pro-
priétés optiques complexes des détails sous-résolution (les fibres, les feuilles) et de leur agencement qui
engendre des effets de masquage et d’ombrage particuliers. Prédire et représenter efficacement l’apparence
de tels objets à des échelles arbitraires est un important problème de recherche, et les méthodes naïves
ne parviennent pas à préserver une apparence cohérente à toutes les échelles. Nous verrons que met-
tre au point des méthodes de filtrage pour des types particuliers d’objets 3D est possible en s’aidant

1https://surana.wordpress.com/2009/01/01/numbers-everyone-should-know/
2https://gist.github.com/jboner/2841832
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(a) Photographie d’une pièce de
velours.

(b) Photographie de pins vus à plusieurs échelles.

Figure 2.1: Exemples d’apparences complexes émergeant de détails sous-résolution. (a): L’apparence
caractéristique du velours provient de ses fibres brillantes et bien organisées. De nombreux autres tissus
ont aussi des apparences anisotropes et des reflets particuliers aux angles rasants. (b): Des pins vus à
plusieurs échelles. Même lorsque les aiguilles de pin sont sous-pixel, l’apparence du feuillage est complexe
et provient des propriétés des ensembles d’aiguilles brillantes et translucides.

d’hypothèses bien choisies, et que le préfiltrage automatique et fiable d’objets arbitraires est un problème
bien plus difficile.

Les méthodes de préfiltrage doivent éviter toute forme d’incohérence temporelle. Quand la résolution
d’un objet 3D doit être changée au cours d’une séquence d’image, par exemple lorsque la caméra virtuelle
se déplace vers l’arrière, l’apparence de l’objet doit rester cohérente et la transition entre les niveaux de
détail doit être imperceptible. Cette contrainte ajoute de la difficulté au problème du préfiltrage.

Les méthodes actuelles de préfiltrage pour le rendu off-line. Dans les prochains chapitres, nous
passerons en revue des techniques de préfiltrage existantes : le préfiltrage de géométrie, et en particulier
la simplification de maillage et les méthodes de subdivision (Chap. 3), les méthodes de filtrage de textures
comme le célèbre mip mapping (Chap. 4) et les techniques dédiées au préfiltrage des géométries complexes
comme les feuillages ou les cheveux (Chap. 5). Nous parlerons également du domaine de validité de chaque
méthode et nous montrerons que préfiltrer précisément certains objets tels que les arbres est un problème
non résolu par les méthodes existantes. Nous proposons des solutions dans la partie II.

Les inconvénients de l’approche de préfiltrage Les LODs pâtissent d’une réputation plutôt mau-
vaise dans les studios de production parce que beaucoup de méthodes de préfiltrage ne sont pas suff-
isamment fiables et précises pour les besoins de l’industrie. Les LODs sont parfois source de problèmes
et de défauts dans les images rendues, et ni les artistes ni les réalisateurs n’aiment l’idée que les objets
3D soient simplifiés automatiquement avant le rendu avec des risques de perte de qualité. De plus, nous
verrons dans le chapitre 6 que les méthodes de préfiltrage posent plusieurs problèmes pratiques lorsqu’il
s’agit de les utiliser dans de grands studios de production. Par exemple, du fait que le préfiltrage a un
coût non négligeable, il ne peut avoir lieu au moment du rendu, il doit plutôt être précalculé en amont et
rentabilisé pour le calcul de plusieurs images. L’instancing est une autre stratégie pour réduire la taille
des scènes très détaillées. Cette méthode consiste à créer plusieurs instances d’une géométrie dans une
scène tout en ne stockant la géométrie qu’en un seul exemplaire en mémoire. Cela permet de réduire
de beaucoup la taille d’une scène si elle comporte beaucoup d’arbres ou de bâtiments similaires. Avec
l’instancing, le niveau de détail utilisé pour le rendu doit être choisi en fonction de l’instance qui a le
plus besoin de détail, typiquement celle qui est la plus proche de la caméra. Cela veut dire que toutes les
autres instances, qui partagent la même géométrie, auront trop de détails pour le calcul de cette image.
Dans cette situation, utiliser des LODs augmente la taille mémoire de la scène au lieu de la diminuer.
Pour toutes ces raisons, les studios évitent quand ils le peuvent de recourir à des méthodes de préfiltrage.

23



Néanmoins, ils sont obligés d’utiliser des méthodes de simplification lorsque les scènes sont trop détaillées,
sans quoi elles ne pourrait pas être rendues.

L’avenir des méthodes de préfiltrage. L’accroissement progressif de la mémoire vive des ordinateurs
permet le rendu de scènes complexes qui étaient considérées comme impossible à traiter auparavant.
Beaucoup de problèmes sont en fait résolus quelques années après avoir été identifiés, simplement parce
les ordinateurs sont devenus plus performants. Les méthodes qui utilisent des approximations sont alors
remplacées par des méthodes plus coûteuses mais plus précises. Beaucoup de recherches ont été menées sur
la génération de niveaux de détail et une grande partie des solutions proposées n’ont plus de raisons d’être
utilisées bien qu’elles puissent encore inspirer des travaux actuels. Pour citer un exemple, Reeves [RB85]
a proposé un modèle volumique pour calculer l’ombrage approximatif dans les feuillages de ses arbres
constitués de particules. Dans son article, il déclare que « déterminer de manière exacte l’illumination et
l’ombrage de chaque particule demanderait des calculs considérables. En réalité, à moins que la caméra
soit tournée exactement vers le soleil, il est à peu près impossible de déterminer si une feuille est ou n’est
pas dans l’ombre.» Actuellement, il est possible et même courant de calculer en quelques minutes et de
manière très précise la diffusion de la lumière dans des arbres virtuels faits de milliers de feuilles.

On peut se demander quelle sera la place des méthodes de préfiltrage dans quelques années dans
les studios d’effets spéciaux. Des ordinateurs de plus en plus puissants permettent de résoudre des
problèmes par des approches précises et directes et de s’affranchir des problèmes posés par les méthodes
approximatives. D’un autre côté, les algorithmes de rendu seront toujours sous-optimaux sans préfiltrage
et les ressources seront gaspillées à cause de détails inutiles. Des avancées dans le domaine du préfiltrage
précis et fiable pourraient être extrêmement utiles pour le rendu interactif ou final des images.

2.4 Aperçu de la thèse

Notre but est de proposer de nouvelles techniques de préfiltrage pour accélérer le rendu des scènes très
détaillées. Nous nous plaçons dans le cadre du rendu off-line de haute qualité.

Les trois premiers chapitres de cette thèse (Partie I) présentent les travaux existants sur la simplifica-
tion géométrique (Chap. 3), sur le préfiltrage de l’apparence des surfaces (Chap. 4), et les approximations
des grands ensembles de détails (Chap. 5).

Dans la Partie II, nous présentons nos contribution pour le filtrage des objets 3D complexes comme
les arbres. Inspirés par les méthodes existantes sur le filtrage de surfaces et de géométrie complexe, nous
revisitons plusieurs techniques et nous les combinons de manière à préfiltrer des apparences complexes
à toutes les échelles, avec des transitions imperceptibles entre les niveaux de détail. Nous montrons que
notre méthode produit des LODs précis pour des types d’apparence mal supportés par les méthodes
existantes. Ce travail a été publié et présenté à la conférence Eurographics 2017 [LN17].

Dans la Partie III, nous nous intéressons au problème de la simplification des grilles de voxels de
haute résolution représentant des milieux participatifs hétérogènes, tout en préservant leur apparence à
toute les échelles. Nous présentons les travaux existants et leurs limitations, et en particulier le travail
de Zhao, Wu et al. [ZWDR16] dans lequel ils proposent une solution au problème. Nous montrons que
notre approche est plus générale et plus rapide tout en étant précise. Nos résultats ont été publiés et
présentés à la conférence Eurographics 2018 [LN18].

2.5 Résumé de nos contributions

Dans la Partie II, nous présentons plusieurs contributions pour le préfiltrage d’objets complexes à
n’importe quelle échelle :

• Nous proposons une analyse du problème du préfiltrage pour les géométries complexes et nous
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expliquons les limitations des méthodes existantes. En partant de ces constats, nous proposons une
nouvelle approche de préfiltrage hybride qui combine les atouts des représentations surfaciques et
volumiques (Chap. 6).

• Nous proposons un algorithme qui analyse des maillages et détecte leurs macrosurfaces à une échelle
donnée (Chap. 7).

• Nous proposons une nouvelle stratégie de placement de vertex dans le cadre de la simplification
de maillage par edge collapse, en optimisant une erreur géométrique dans l’esprit de la distance de
Hausdorff entre deux surfaces (Sec. 8.2).

• Nous proposons une technique de préfiltrage des albedos et des distributions de microfacettes dans
le cadre de la simplification de maillage par edge collapse (Sec. 8.3).

• Nous proposons une deuxième technique de préfiltrage de macrosurfaces, plus adaptée au cas des
maillages réguliers de quadrilatères qui sont très utilisés en production (Sec. 8.4).

• Nous proposons un algorithme de voxélisation qui calcule les probabilités d’occlusion locale dans la
géométrie sous-résolution, tout en évitant les problèmes d’aliasing (Chap. 9).

Dans la Partie III, nous présentons les contributions suivantes :

• En partant d’une analyse du problème de préfiltrage des volumes hétérogènes de haute résolu-
tion (Chap. 11), nous proposons un nouveau modèle de milieu participatif issu du modèle de mi-
croflakes [JAM∗10a]. Ce nouveau modèle est plus adapté au problème de la simplification volumique
(Chap. 12).

• Nous montrons qu’en choisissant soigneusement certaines fonctions, il est possible d’obtenir des
formes closes pour notre modèle, qui sont nécessaires pour son implémentation efficace (Chap. 13).

• Grâce à notre modèle, nous proposons une nouvelle méthode de simplification volumique et nous
montrons ses avantages par rapport aux méthodes existantes (Chap. 14).

2.6 Collaborations industrielles

Pendant la préparation de cette thèse, j’ai eu la chance de travailler dans les studios de Weta Digital à
Wellington, en Nouvelle Zélande (juillet et août 2015), et dans les studios d’animation de Walt Disney à
Burbank, en Californie (de octobre à décembre 2017). J’y ai étudié plusieurs aspects des problèmes de
préfiltrage et des méthodes de rendu en production. Des clauses de confidentialité nous empêchent de
donner des détails sur certains points techniques et de montrer les résultats obtenus. En revanche, dans
les différents chapitres de ce manuscrit, la description des problèmes, des contraintes de production et de
nos motivations est très largement inspirée de nos discussions avec des chercheurs et des ingénieurs dans
ces studios.
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Part I

Level-of-detail techniques for efficient
rendering

From the beginning of computer graphics, rendering very detailed scenes has been identified as a major
long-term challenge. Starting from the 70s’, several researchers introduced the main concepts of level-
of-detail representations, which allow for adapting the complexity of a scene for a particular rendering
task in order to avoid aliasing and the waste of computational resources due to useless object-space
details. For instance, Catmull described an algorithm that ‘subdivides a patch into successively smaller
subpatches until a subpatch is as small as a raster-element, at which time it can be displayed’ [Cat74].
Clark proposed a hierarchy of models that provides a way to ‘vary the amount of detail in a scene both
according to the screen area occupied by the objects in the scene and according to the speed with which
an object or the camera is moving’, as well as the idea of ensuring that computation time ‘grows linearly
with the visible complexity of a scene rather than as a worse than linear function of the object-space
complexity’ [Cla76]. Kajiya [Kaj85] proposed the idea of the multi-scale modeling of surface appearance
using either explicit geometry, texture mapping or BRDF models depending on the scale.

A huge amount of work has been done on rendering more and more complex scenes with reasonable
rendering time. As mentioned in the introduction chapter, many level-of-detail methods are now outdated,
because they were designed for primitives and rendering algorithms that are not used any more, or because
our computers can now compute more accurate solutions quite easily. On the other hand, level-of-detail
techniques such as mip mapping [Wil83] or mesh simplification [LWC∗02] are still used today and continue
to inspire new methods. In this part of the dissertation, we review previous work on prefiltering geometry
(Chap. 3), surface reflectance (Chap. 4) and aggregate detail (Chap. 5). We focus on techniques that
inspired our work and on the recent research related to our thesis.
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Chapter 3

Previous work on geometric
level-of-detail representations

Following the formalization of level-of-detail approaches for efficient rendering in the 70s’ [Cla76], the
automatic simplification of high-resolution geometry has been addressed by many authors and became an
entire discipline starting from the early 90s’. Such algorithms and in particular triangle mesh simplification
algorithms [LWC∗02] are now considered a mature technology [TPC∗10]. Besides polygonal meshes, other
level-of-detail representations of 3D geometry have been explored, such as surfels [PZvBG00], point set
surfaces [ABCO∗01, AA04, AK04] and voxel-based representations [GM05, YLM06, LK10a, HN12]. We
also review them in this chapter.

In rendering applications, the appearance of a 3D object is due to both its geometry and its surface
reflectance models. Geometric prefiltering and reflectance prefiltering are closely related but often ad-
dressed separately by authors. This chapter mainly focuses on the former, and reflectance prefiltering is
discussed in greater detail in chapter 4.

All the methods presented in this chapter share a common limitation: they cannot produce accurate
LODs of complex geometry such as trees at coarse resolutions. This is because they explicitly or implicitly
assume that the simplified geometry is large, simple or smooth enough at the prefiltering scale. Alternative
methods that specifically aim at prefiltering intricate geometry are discussed in chapter 5.

3.1 Mesh simplification algorithms in computer graphics

Mesh simplification received the greatest attention because meshes are the standard primitive not only for
rendering surfaces but also in many fields of computer graphics such as animation, shape modeling and
physical simulations. The book Level of detail for 3D graphics [LWC∗02] has been written by some of the
most influential researchers in the domain of mesh simplification and it summarizes previous work done
in the 90s’ and early 00s’. We refer the reader to this book for a comprehensive description of triangle
mesh simplification algorithms and quality metrics. Some of these algorithms are still commonly used
nowadays, for instance in modeling software and geometry acquisition pipelines. In this section, we give
an overview of the topic, mention some recent publications and discuss the aspects that are important
for our thesis such as seamless transitions between LODs. In chapter 8, we rely on this previous work for
triangle and quad mesh prefiltering.

3.1.1 Overview of mesh simplification algorithms

Manifold meshes. Polygonal meshes are collections of vertices and polygons that connect these ver-
tices. Some definitions include the case of lines, i.e. edges that are not adjacent to any faces, although
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meshes are more often considered as collections of triangles, quadrilaterals (quads) or other polygons.
Meshes in computer graphics are mostly used for representing the boundaries of opaque objects or the
interface between two media (they are sometimes called B-rep representations). For this reason, most
meshes model 2-manifold surfaces, that is surfaces that are locally similar (or homeomorphic) to a disc.
Manifold surfaces are either closed or with boundaries, in which case the geometry at the boundaries is
homeomorphic to half-discs (Fig. 3.1).

(a) 2-manifold surface with boundaries (b) Non-manifold surface

Figure 3.1: Example of a 2-manifold surface with boundaries (a) and a non-manifold surface (b). The
geometry around points of a manifold surface is homeomorphic to discs or half-discs.

Discrete, continuous and seamless LODs. Mesh simplification algorithms can generate multiple
versions of a geometry with different levels of detail. These LODs are often called discrete LODs. In ren-
dering applications such as games, LODs are chosen depending on various criteria such as their distance
to the camera, and the sudden change of LOD often leads to visible popping artifacts when the camera
moves. Some authors proposed continuous LOD (or CLOD) frameworks [LKR∗96,Hop96], in which a list
of coarsening operations describes the transformation from the high- to the low-resolution mesh. This
approach is in fact equivalent to a large set of discrete LODs, and does not necessarily support perfectly
seamless (invisible) transitions between the LODs. There are techniques for morphing high-resolution
surfaces into low-resolution surfaces and avoiding popping artifacts. This is called either LOD interpola-
tion [Tur92,BRS96], geomorphs [Hop96] or continuous LODs [TB94], which can be ambiguous. All these
methods rely on mappings between vertices of high- and low-resolution surfaces. In this dissertation, we
will refer to it as either LOD interpolation or seamless transitions between LODs.

Budget-based and fidelity-based LODs. Most mesh simplification algorithms are characterized
by the local coarsening operations that are applied iteratively on a mesh. The user often asks the
algorithm to stop when the complexity of the mesh has been reduced to a given vertex or face count.
In this case, the algorithm must maximize the geometric fidelity without exceeding the specified budget.
This is called either budget-based simplification [LWC∗02], min-ε simplification [CMS98] or best-effort
simplification [WLC∗03]. In some applications, it is more convenient for the user to provide a minimum
quality criterion, for instance a level of geometric accuracy, and to ask the algorithm to simplify the
mesh as much as possible without violating the quality constraints. This is called either fidelity-based
simplification [LWC∗02] or min-# simplification [CMS98].

Quality metrics. Budget-based and fidelity-based simplification both require some quality metrics
for identifying the coarsening operations that are the less aggressive. These coarsening operations are
usually applied first, because the order in which these operations are performed has a large impact on the
quality of the resulting surface [COM98]. We will see that many metrics have been proposed, including
various aspects such as geometric accuracy, attribute deviation (for example in the case of meshes with
per-vertex colors [Hop96]), texture deviation [COM98], or view-dependent criteria that are mandatory
for the simplification of large terrains [Hop97,LE97,XESV97].
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Related algorithms. Mesh simplification is related to other mesh algorithms such as remeshing, which
consists in generating a new mesh from scratch that approximates well the input mesh, without relying
on coarsening operations. The goal of remeshing algorithms is usually to generate meshes with special
properties, for example with nicely shaped and evenly sized polygons, or using only quadrilateral faces
[BLP∗12]. Surface reconstruction algorithms from points clouds [HDD∗92,KBH06] are also related in the
sense that they could be used for decreasing the complexity of a mesh, although it is a rather uncommon
approach because surface reconstruction is more difficult than mesh simplification.

3.1.2 Coarsening operations for triangle meshes

The majority of work on mesh simplification has focused on the case of triangle meshes because such
meshes are the most general representation (other polygons can be triangulated). Moreover, triangles
are convenient because they are always flat and convex. Well known coarsening operations for triangle
meshes include:

• The vertex removal operation, which was one of the first proposed coarsening operation. It consists
in removing a vertex and all its adjacent faces, and to fill the hole (re-triangulation) [SZL92,Tur92,
BRS96].

• The vertex clustering operation, or cell collapse, consists in merging a set of neighboring vertices,
and finding a good representative vertex for each cluster. This operation was first proposed for
a regular grid of clustering cubes [RB93] and it has been improved by centering the cells around
important vertices [SS95].

• The edge collapse operation (Fig. 3.2) can preserve the topology of the mesh and it allows for
generating accurate decimated surfaces by optimizing vertex positions at each collapse [HDD∗93,
GH97,LT98].

• The vertex contraction is similar to the edge collapse but it can be applied to non adjacent vertices
[GH97].

Most mesh simplification algorithms rely on the edge collapse operation [LT98,Hop99], and other opera-
tions are more rarely used.

Figure 3.2: The edge collapse coarsening operation. Various methods have been proposed for placing
the vertex v such that the geometric error is minimized [HDD∗93,GH97,LT98].

Note that some mesh simplification algorithms rely on local operation that do not coarsen the mesh,
for instance the edge split and the edge swap operations [HDD∗93]. It has been observed that these
operations bring little benefits in general and that coarsening operations such as the edge collapse are
sufficient [Hop96].

3.1.3 Quad mesh simplification

More recently, some authors addressed the problem of simplifying quad meshes (i.e. meshes made of
quadrilateral faces) by using only quads in low-resolution geometry. Quad mesh simplification is more
difficult than triangle mesh simplification, because it is rather difficult to find local coarsening operations
that generate “good quads”, i.e. almost flat and nicely shaped quads with vertices of valence 4, without
introducing triangles in the neighborhood. Various quad coarsening operations have been proposed and
combined in previous work, including:
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(a) Singlet removal [TPC∗10] (b) Doublet removal [TPC∗10] (c) Diagonal collapse [TPC∗10]

(d) Edge collapse [TPC∗10] (e) Partial poly-chord collapse [Dew08]

(f) qeMerge operation [DSC09] (g) Poly-chord removal [DSSC08]

Figure 3.3: Examples of coarsening operations for quad mesh simplification.

• Local coarsening operations that only affect a few quads:

– The diagonal collapse [TPC∗10], also known as quad-close [Kin97], quad-collapse [DSSC08],
quadvertex merge [DSC09], diamond or face close operation [Dew08] (Fig. 3.3c).

– The singlet and doublet removal [TPC∗10] (Fig. 3.3a and 3.3b).
– The edge collapse for quads [TPC∗10] (Fig. 3.3d).
– The qeMerge operation [DSC09] (Fig. 3.3f).

• Less local coarsening operations:

– The ring collapse [tBPHJ02], later generalized as poly-chord collapse [DSSC08,SBS08] (Fig. 3.3g).
– The partial ring collapse [Dew08], (Fig. 3.3e).

Quad mesh simplification is discussed with more detail in section 8.4, in which we rely on a type of
poly-chord collapse operation for prefiltering quad meshes and their materials.

3.1.4 Quantifying and minimizing geometric errors

Several authors proposed quality metrics for quantifying the geometric error of mesh simplification al-
gorithms. These metrics are used to optimize the quality of the mesh in budget-based methods, and to
control and stop the simplification in fidelity-based methods.

Maximum distances. A simple metric of the quality of a mesh consists in defining a distance from a
surface M to a surface M ′ as the maximum of the distance between a point of M and the surface M ′.
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(a) (b)

Figure 3.4: The surface-to-surface distance defined as d1(M,M ′) = max
x∈M

d(x,M ′) is not symmet-
ric: d1(M,M ′) 6= d1(M ′,M) in general, as shown in (a). Using this distance is insufficient for mesh
simplification. For instance, in example (b), d1(M,M ′) = 0 even if M ′ introduces a geometric error.
It is often more accurate to rely on a two-sided distance, for example a Hausdorff distance defined as
dh(M,M ′) = max(d(M,M ′), d(M ′,M)).

This one-sided surface-to-surface distance writes

d1(M,M ′) = max
x∈M

d(x,M ′)

with
d(x,M ′) = min

y∈M ′
‖x− y‖2.

where ‖.‖2 denotes the usual Euclidean norm. Using this definition, the distances d1(M,M ′) and
d1(M ′,M) are not equal, as illustrated in Fig. 3.4: even if all the points of M are close to the sur-
face M ′, some points of M ′ could be at a larger distance from M . In a mesh simplification context,
it is generally important that both d1(M,M ′) and d1(M ′,M) remain small. Therefore, a two-sided
distance such as the Hausdorff distance provides a better information about the quality of a simplifica-
tion [KLS96,Ros97,ASCE02,LWC∗02]:

dh(M,M ′) = max(d1(M,M ′), d1(M ′,M)).

Various algorithms have been designed based on such one-sided [CVM∗96] or two-sided distances [Gué99].
Bounding the surface-to-surface distance in object space allows for bounding the geometric error in screen
space, for example ensuring that the simplified surface does not deviate of more than one pixel.

Mean distances. Cignoni et al. introduced the Metro tool [CRS98] for evaluating the geometric
accuracy of LODs, based on the integral of the point-to-surface distance on the surface:

E(M,M ′) = 1
|M |

x

p∈M

d(p,M ′) ds

where |M | denotes the area of M . For mesh optimization, for example for optimizing vertex positions
in the edge collapse framework [HDD∗93], is it convenient to have similar metrics based on some kind of
mean distance between two surfaces, so that the minimization problem can be solved locally with a few
iterations [HDD∗93]. Hoppe et al. [HDD∗93] proposed a one-sided error metric based on square distances
between points on the high-resolution mesh and the simplified mesh:

E(X,M ′) =
∑
n

d(xi,M ′)2

with X ∈
(
R3)n a set of 3D points xi ∈M and M ′ the simplified surface. Aspert et al. [ASCE02] write

a similar root mean square error with an integral:

E(M,M ′) =
√

1
|M |

x

p∈M

d(p,M ′)2 ds.

Two-sided versions of these error metrics have also been used [GH97,OVBP11]. We rely on similar metrics
for optimizing vertex positions in section 8.2.
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Quadric error metrics. Quadric error metrics (QEM) were introduced by Garland et al. [GH97]
and used for ordering collapse operations and optimizing vertex positions. The error associated with a
vertex position is a weighted sum of square distances between this point and the planes that contain
the neighboring triangles before the collapse operation. This error can be written E(v) = vtQv with
v = (x, y, z, 1)t the vertex position and Q a 4 × 4 matrix. Indeed, the distance between a point (x, y, z)
and a plane with equation ax + by + cz + d = 0 (with a2 + b2 + c2 = 1) writes vtP = ax + by + cz + d
with P = (a, b, c, d)t. The square distance writes

(ax+ by + cz + d)2 =
(
vtP

)2 = vtPP tv = vtQpv with Qp =


a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

 .
Then the sum of square distances to several planes writes vtQv with Q a sum of matrices Qp. Given
a matrix Q, optimizing v consists in finding the position v that minimizes vtQv, which is a linear
problem [GH97]. The quadric error metric must be seen as an approximation of the geometric error.
Indeed, what really matters is the distance between v and the input geometry, which is only approximated
by distances between v and a set of planes. Quadric error metrics have been used in many applications
because they are memory efficient, they can be implemented easily, they are fast and they improve the
quality compared to naïve methods.

It has been observed that placing vertices in order to preserve the volume of the geometry increases
the accuracy of mesh simplification methods [LT98], compared to the original QEM and naïve placement
strategies. Several authors proposed volume-preserving algorithms [Gué99, LT98, Hop99]. We found
that volume-preserving strategies lack robustness when simplifying very thin geometry, as discussed in
section 8.2. We argue that volume preservation is not the proper requirement for most applications
(including ours) but a convenient metric for approximating two-sided geometric errors. In section 8.2, we
show how to minimize directly a two-sided geometric error, which is more robust that volume preserving
methods in some cases.

Memoryless simplification. The geometric error that we want to minimize is the error between the
input surface and the simplified surface. Some of the first geometric simplification algorithms such as
the one proposed by Hoppe [Hop96] approximate such errors during the optimization process. Lindstrom
and Turk [LT98] have shown that it is sufficient to minimize the geometric incremental error locally after
each collapse, between the newly created geometry and the geometry before the collapse operation. This
strategy has been called memoryless simplification because the input high-resolution surface is not used
for computing errors. Hoppe later proposed a new version of the QEM and provides some insight about
the benefits of memoryless simplification [Hop99].

Using screen-space errors. Lindstrom and Turk [LT00] relied on QEM for placing vertices but they
evaluate the cost of collapse operations in image space, by rendering the surface before and after the
collapse from different points of view. This metric is appropriate for applications where only the visual
fidelity matters but mesh simplification with this approach is more difficult and light-dependent.

3.1.5 Taking into account reflectance attributes in quality metrics

The first mesh simplification algorithms only addressed the problem of simplifying the geometry. In the
following years, several authors addressed the case of simplifying meshes with attributes while preserving
their appearance. The attributes were mostly per-vertex or per-corner colors and normals [Hop96], and
textured meshes with per-corner uv coordinates. Some quality metrics were proposed for taking into
account both the geometric error and the attribute deviation during the simplification [BRS96,GH98,
Hop96,EM99,Hop99], while Cohen et al. [CMO97,COM98] proposed a metric for the texture deviation.

These metrics are either used for restricting the simplification to non-destructive operations [BRS96],
but also for estimating the best positions and attributes for the vertices after each edge collapse operations,
in order to minimize both the geometric error and the attribute errors [GH98,Hop96,Hop99]. Optimizing
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vertex attributes, for example using quadric error metrics [GH98,Hop99], can be seen as a form of material
prefiltering. In the case of per-vertex attributes, for example, the color of a new vertex is obtained from
the colors of the neighboring vertices. However, this method has limited accuracy for normals [Hop99] and
has not been used for prefiltering normal distributions. We propose an alternative prefiltering technique
for edge collapse operations in section 8.3 and we will show how to prefilter microfacet distributions in
this context.

3.2 Other geometric level-of-detail representations

Meshes are the most used representation for rendering surfaces but many authors proposed alternative
representations that have better properties for some applications. In particular, various alternative surface
representations, such as surfels, point set surfaces and distance fields have several benefits for prefiltering
high-frequency geometric details. In this section, we describe these representations and discuss their
strengths and weaknesses for LOD rendering.

3.2.1 Surfels as LODs for global illumination

The word surfel is an abbreviation of surface element. Surfels have been initially used by Pfister et
al. [PZvBG00] as an alternative rendering primitive to polygon meshes for interactive rendering. Each
surfel is a sample of a surface, that is a 3D position, a normal, and some shading parameters. Pfister
et al. use them for efficient interactive rendering of relatively complex surfaces, although the authors
state that “surfels are not well suited to represent flat surfaces, such as walls or scene backgrounds, where
large, textured polygons provide better image quality at lower rendering cost”. Surfels are related to point
based rendering [AGP∗04,Gro09], whose main goal is to render point sets without surface reconstruction.

Surfels were initially rendered using splatting techniques in interactive applications [PZvBG00]. In
ray tracing applications, surfels rendered as discs lead to various artifacts such as holes in the surface
and false self-shadowing [WS05]. Surfels have been used in production for rendering distant crowds for
which LOD techniques were mandatory due to the large number of agents [Kan14].

Interestingly, surfels have received much more attention when physically-based global illumination
computations became affordable for the animation and special effects industries [PH08]. Indeed, surfels
often lack accuracy for the surfaces viewed directly, but they have been used for representing approximate
versions of 3D scenes for computing indirect lighting [Bun05, PH08, Chr10,KTO11]. This technique is
often refered to as point-based global illumination, or PBGI. Groups of surfels are approximated using
spherical harmonics [PH08] or wavelets [WMB15], and the unstructured nature of surfels allows fast
access to appropriate LODs of the geometry seen from each shading point.

The original PBGI algorithm is limited to diffuse global illumination, or reflections from rough materi-
als at the cost of increased memory usage [WMB15]. Despite the interest of this noise-free and fast global
illumination technique, the film industry progressively moved to path-traced global illumination [KFF∗15].

3.2.2 Point set surfaces

Point set surfaces are implicit surfaces defined from unstructured point sets, e.g. points obtained from 3D
scanning devices. They were introduced to computer graphics by Alexa et al. [ABCO∗01] and improved
in various other publications [AA04,AK04,GG07,Gro09]. They aim at defining smooth, manifold surfaces
from a set of 3D points (often with their normals) without relying on surface reconstruction algorithms
and mesh representations.

Point set surfaces can be used for rendering complex surfaces from little information (points without
connectivity), as shown in Fig. 3.5. Moreover, high-frequency details can be very easily filtered by
changing a parameter used in the projection operator that defines the surface [ABCO∗01]. However, point
set surfaces have not been used for LOD rendering, because ray tracing such surfaces is much less efficient
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(a) A small set of points with normals (b) Algebraic point set surface [GG07]

Figure 3.5: Example of point set surface defined from a small set of points with their normals, from
the work of Guennebaud and Gross [GG07].

than rendering polygons [AA03,WS05], and because they are less flexible than polygons for representing
complex geometry with a lot of sharp features. Conversion to meshes has been studied [SFS05] but point
set surfaces as intermediary LOD representation bring few benefits if the high-resolution asset is a mesh.

3.2.3 Representing surfaces with volumetric data

Volume representations are convenient for LODs thanks to their structured and hierarchical nature,
allowing for prefiltering 3D data in the spirit of texture mip mapping. In particular, volumes can be
used for prefiltering high-frequency geometry into semi-transparent voxels (this is what we propose in
chapter 9). In this chapter, we focus on volume representations used for representing simple enough
surfaces.

Gobbetti et al. [GM05] proposed to store some geometry in a volume hierarchy, and to render the
sub-resolution geometry of low-resolution voxel using simple OpenGL point primitives. A view-dependent
shading is estimated for each point by casting rays on the input geometry in a preprocess step. Yoon
et al. [YLM06] proposed to approximate sub-resolution geometry in low-resolution bounding boxes by
a plane with material attributes. This strategy is actually related to surfels (Sec. 3.2.1) and it has the
same limitations: visible holes on curved surfaces, false self-shadowing and popping artifacts at LOD
transitions. This approach was later revisited and improved by Laine et al. [LK10a,LK10b]. Instead of
using a single plane in their sparse voxel octrees, they store a pair of parallel planes (or contour planes)
per voxel that envelop the geometry contained in the voxel. The orientation of the planes matches the
orientation the approximated surface. At rendering, the slab defined by the two planes is intersected with
the slabs of the parent voxels for improving the accuracy, as shown in Fig. 3.6. This representation is
memory efficient, it is not subject to holes and it can be rendered very efficiently. However, the authors
did not address the problem of seamless transitions, and this representation is not appropriate when the
geometry inside a voxel is too complex.

Sparse voxel octrees were initially designed for efficient real time rendering of complex scenes but they
have also been used for precomputing LODs of production assets [PMA14,PES15]. Prus et al. [PES15]
built on the contour planes of Laine et al. and they prefilter materials relying on Burley’s BRDF [Bur12]
whose parameters have a near linear impact on the visual aspect of the material, allowing for linear
parameter prefiltering. Prus et al. also addressed the problem of normal prefiltering in Laine’s framework.

Heitz and Neyret [HN12] proposed an alternative representation to contour planes. Like Crassin et
al. [CNS∗11], they rely on cone octree traversal. Cones from the camera are divided into small cone
elements, approximated by cylinders with equal diameter and length. Macrosurfaces are encoded in the
volume representation using a signed distance and a normal per voxel. In each cone element volume
data is interpolated for obtaining a prefiltered normal and a signed distance that define a plane which
approximate the sub-voxel geometry. This representation brings several benefits compared to contour
planes: it produces better results under magnification (that is, when voxels are larger than pixels), and it
supports seamless LOD transitions with quadrilinear interpolation. One important assumption of their
work is that the sub-resolution geometry in voxels is always a macrosurface, with a low macroscopic
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(a) Level 1 (b) Level 2 (c) Level 3 (d) Result

(e) Level 1 (f) Level 2 (g) Level 3 (h) Result

Figure 3.6: Laine et al. [LK10a, LK10b] store two parallel planes per voxel for approximating the
geometry at different scales. At rendering, the slabs of parent voxels are taken into account for improving
the accuracy of the representation (d,h).

curvature and belonging to a thick object (hypotheses H6 and H7 in Sec. 5.1 in [HN12]). The authors did
not used their grid-based signed distance field in a ray tracing application although it could be rendered
like other implicit surfaces with iterations to find ray intersections [Har96,WS05,Jam10b].

3.3 Subdivision, tessellation, displacement

Subdivision surfaces and displacement mapping are standard tools in the industry for modeling complex
surfaces with a few base polygons and texture-based geometric details. These techniques support LODs by
nature, although achieving watertight, artifact-free LODs with seamless transitions is not straightforward.
We review some previous work that are useful for understanding the problem of prefiltering production
assets (Chap. 6).

3.3.1 Subdivision surfaces

Parametric patches (Bézier patches, B-spline patches) are mappings from a 2D domain into 3D space,
used in modeling for creating smooth surfaces from a small set of control points. Subdivision surfaces
were introduced in the publications of Catmull and Clark [CC78] and Doo and Sabin [DS78] at a time
when researchers were looking for ways to generalize spline modeling to arbitrary topology [DKT98].
Starting from a polygon mesh, a subdivision scheme is applied iteratively to refine the mesh, and the
geometry converges to limit smooth surface (Fig. 3.7). Catmull-Clark subdivision surfaces can also be
seen as parametric surfaces since they can be evaluated directly using Stam’s method [Sta98], instead of
based on iterative subdivision.

Subdivision surfaces have huge benefits for modeling and rendering surfaces:

• They allow for modeling smooth shapes (the limit surface has C2 continuity almost everywhere)
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using a few control points. Control points only affect the geometry locally (this property is also
called compact support of local definition). This facilitates authoring and computations.

• One can manipulate the coefficients of subdivision to achieve effects such as sharp creases or control
the behavior of the boundary curves (we will discuss this in chapter 6).

• Subdivision surfaces can be efficiently animated by animating the base mesh.

• They naturally support levels of detail. Base meshes are typically subdivided until each polygon
projects to approximately one pixel. The base meshes are often considered as good coarse LODs
when base polygons themselves are sub-pixel. However, the base mesh is not the best approximation
of the limit surface in general, since the geometry tends to shrink significantly during the first
subdivisions.

Various subdivision schemes have been proposed, including Doo-Sabin [DS78], Catmull-Clark [CC78],
Loop [Loo87], Butterfly [DLG90,ZSS97], Kobbelt [Kob96] and Midedge [PR97]. Catmull-Clark subdivi-
sion surfaces are the most used in production with quadrilateral base meshes. The limit surface defined
by Catmull-Clark subdivision can be described by a collection of bicubic B-spline patches, with an infinity
of such patches around extraordinary vertices [SRK∗15].

Liktor and al. [LPD14] addressed the problem of adaptive subdivision of parametric surfaces, so that
large and close patches are more subdivided than small or distant patches. Adaptive subdivision raises
the problem of cracks between neighboring patches that do not have the same subdivision level. Liktor
and al. addressed this problem based on the fractional tessellation introduced by Moreton [Mor01], and
their method supports seamless transitions. They have used their method in the case of Catmull-Clark
subdivision, relying on the approximations proposed by Loop et al. around irregular vertices [LSNCn09].

Once subdivided, the vertices can be further displaced using displacement maps or procedural func-
tions to add high-frequency details to the surface. This is very commonly used for modeling organic
shapes that have a smooth macroscopic appearance with small irregularities (skin, bark, leaves, etc.) in
the animation and special effects industries. Efficient subdivision surfaces for real-time applications on
the GPU is a more recent research problem [LS08,LSNCn09,NLMD12,SRK∗15,BFK∗16] and subdivision
surfaces are not widely used currently in the game industry.

(a) Base mesh (b) Level 1 (c) Level 2 (d) Level 3 (e) Limit surface

Figure 3.7: Catmull-Clark subdivision surfaces [CC78]

3.3.2 Displacement mapping

In 1978, Blinn proposed to perturb surface normals using a wrinkle function [Bli78] to mimic the appear-
ance of a high-resolution surface without increasing the geometric complexity. This led Cook [Coo84] to
develop displacement mapping to render more realistic silhouettes. Displacement mapping is a standard
tool in the animation and special effect industry because it produces accurate silhouettes but also correct
masking-shadowing effects a small scales. Base polygons are tessellated using either a simple flat tessel-
lation algorithm of subdivision surfaces, and the resulting vertices are displaced in the direction of the
normal based on scalar displacement maps, or displaced in arbitrary directions if vectorial displacement
maps are used.
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The high-frequency geometry described by displacement maps can be prefiltered in the parametric
space, which is simpler than mesh-based geometry prefiltering. For example, normal distributions of
displaced geometry can be efficient prefiltered in texture space [DHI∗13], given that the amplitude of the
displacement is small enough with respect to the macroscopic curvature.

Seamless LODs for adaptively tessellated surfaces with displacement mapping has been recently stud-
ied when hardware tessellation became available on GPUs. On-the-fly hardware tessellation allows for
rendering very detailed meshes much faster than traditional high-resolution meshes with similar com-
plexity [NKF∗16], and it is now widely used in computer games, as well as in interactive previews in the
film industry.

Problems appear when displacement mapping is used in continuous LOD frameworks. The hardware
tessellator generates vertices with their positions and texture coordinates in the parametric space, and
fractional tessellation introduces swimming artifacts during transitions because the generated vertices are
progressively sliding in texture space. Several authors recently addressed this problem for reducing or
avoiding such artifacts [NL13,SPM∗13,LBG16].

3.4 Summary of the chapter

In this chapter, we have presented previous work on:

• Mesh simplification methods based on small coarsening operations, driven by quality metrics that
include geometric error, attribute and texture deviations, and screen space errors.

• Other surface representations (surfels, point set surfaces and voxel-based representations such as
distance fields and plane contours) that can be used in LOD framework.

• Technique for modeling and prefiltering the geometry of highly detailed surfaces through adaptive
subdivision and displacement.

All these methods are intended to prefilter the geometry at scales where it can be approximated locally
by a piece of surface (polygon, surfels or smooth implicit surface). This assumption does not hold for
assets with sub-resolution intricate geometry and the surface-based methods presented in this chapter do
not address the problem of representing accurately semi-transparent appearances with correct occlusion.
In the next chapters, we discuss existing techniques for prefiltering materials in texture space (Chap. 4)
as well as methods for prefiltering sub-resolution intricate geometry when surface-based methods fail in
preserving a correct macroscopic appearance (Chap. 5).

3.5 Résumé du chapitre

Dans ce chapitre, nous avons présenté plusieurs méthodes existantes :

• Des méthodes de simplification de maillage qui reposent sur de petites opérations locales de sim-
plification, contrôlées par des métriques qui prennent en compte l’erreur géométrique introduite, la
déviation d’attribut ou de coordonnées de texture, ou encore en prenant en compte des erreurs en
espace image.

• Des représentations surfaciques alternatives aux maillages (surfels, point set surfaces et représen-
tations par des grilles de voxels) qui peuvent être utilisées pour du rendu efficace avec niveaux de
détail.

• Des techniques de modélisation et de filtrage de surfaces très détaillées, et en particulier les tech-
niques de subdivision adaptative et de déplacement.
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Toutes ces méthodes ont pour but de préfiltrer la géométrie à des échelles où elle peut être approximée
localement par un morceau de surface. Ces approximations sont incorrectes dans le cas d’une géométrie
complexe à l’échelle du préfiltrage, et les méthodes présentées dans ce chapitre ne permettent pas de
traiter ce cas important. Dans les prochains chapitres, nous présentons les techniques existantes pour
le préfiltrage des matériaux en espace texture (Chap. 4) ainsi que les méthodes de préfiltrage pour la
géométrie complexe (Chap. 5).
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Chapter 4

Previous work on surface-space
prefiltering

In physically-based rendering techniques, the pixels of virtual camera models measure light intensity
emitted and scattered in the scene. Each pixel value is defined by 4D integral of the incident light over
a 2D spatial kernel around the pixel center and over a set of directions in the 2D spherical domain
depending on the aperture of the camera model. Such integrals are expensive to compute. In Monte
Carlo rendering, pixel integrals are estimated by casting rays that sample the 4D domain, leading to
noise if the integrand has high frequencies (meaning that pixels “see” complex things).

In this chapter, we focus on the case where pixels only see a piece of surface, and we will show that
with some assumptions it is possible to rewrite the pixel integral as a surface integral over the pixel
footprint. Then, we can derive prefiltering methods in surface space that allow for prefiltering spatial
frequencies without changing the pixel integral. In other words, we can simplify the appearance of surfaces
so that less data needs to be loaded, stored and accessed at rendering, while decreasing the noise of the
rendered image and without introducing visible errors. The need for surface prefiltering has been soon
analysed and addressed in the 80s’ with the introduction of texture mip mapping [Wil83] and the idea of
BRDF models as prefiltered representations of the distant appearance of complex surfaces [Kaj85,BM93].
Prefiltering in surface space is still an ongoing research problem, in particular for real-time applications
where anti-aliasing methods are mandatory [OB10,DHI∗13,KHPL16,XWZB17].

We first recall the derivation of prefiltering integrals from sceen space to surface space based on
previous work [BN12] and we recall the underlying assumptions of any surface prefiltering methods.
We start with the simple case of pixel footprints covering flat surfaces, and then we describe the case
of bumped surfaces with more complex self-shadowing and view-dependent visibility effects. Then, we
present previous work on linear and non-linear surface prefiltering.

4.1 Physical units and notations

Physically-based rendering relies on radiometric units such as irradiance and radiance on which rely
surface reflectance models. We briefly recall the main physical units used in computer graphics and we
introduce some notations.

4.1.1 Directions and solid angles

Directions are fundamental in physically-based rendering. They are either defined as normalized 3D
vectors, that is, points on the unit sphere (noted S2), or using two angles in spherical coordinates. A
solid angle is an area on the unit sphere that quantifies how much a set of directions occupies the spherical
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domain. The unit of a solid angle is the steradian, noted sr. Steradians are to directions what square
meters are to 2D points. The set of all the directions measures 4π sr (the area of the unit sphere), the
hemisphere measures 2π sr. In our notations, we use ω for directions and dω for infinitesimal solid angles
around direction ω for integrals in the spherical domain.

4.1.2 Radiant flux

Light is an electromagnetic radiation that carries energy. An “amount of radiation” is called a radiant flux
and its SI unit is the watt, that is a radiant energy (in joule) per second. In physically-based rendering,
pixels values for each wavelength can be thought as measures of a radiant flux.

4.1.3 Irradiance

Irradiance is a radiometric unit that measures a radiant flux received by a surface, per unit area. Its
SI unit is the watt per square meter (W·m−2), that is an energy per second and per square meter.
Integrating an irradiance over a surface gives a radiant flux. Radiosity has the same unit and is used for
measuring a flux leaving a surface.

4.1.4 Radiance

Radiance is the most used radiometric units in computer graphics theory. Unlike irradiance, it quantifies
the light emitted, scattered or received by a surface in a particular direction ω. It is defined as the radiant
flux per solid angle around the direction ω, and per square meter orthogonally to ω. We will note L(p, ω)
or simply L(ω) the radiance in direction ω at a point p on a surface, and its unit is the watt per steradian
per square meter (W·sr−1·m−2). Radiance can be integrated over the hemisphere to obtain an irradiance:

E(p) =
∫
L(p, ωi)〈n · ωi〉dωi (4.1.1)

where 〈·〉 is the clamped dot product. The term 〈n · ωi〉 comes from the fact that the radiance L(p, ωi)
is defined per square meter orthogonally to ωi. The cosine of the angle between the surface normal n
and the direction ωi must be taken into account to obtain the received energy per square meter on the
surface.

4.1.5 Bidirectional reflectance distribution function (BRDF)

A bidirectional reflectance distribution function (BRDF) characterizes how light is scattered at a point
on a surface, more precisely how much incident light from direction ωi is scattered in direction ωo. We
note this function f(ωi, ωo) and it is defined as

f(ωi, ωo) = dL(ωo)
L(ωi) cos(θi)dωi

with L(ωi) the incident radiance in direction ωi, and θ the angle between ωi and the surface normal.
The term cos(θi) has the same meaning as in Eq. 4.1.1: it scales the incident radiance L(ωi) to obtain
an energy per square meter on the surface. The unit of BRDFs is sr−1.

This definition of the BRDF may be unintuitive because of the derivative. The reason for this is that
we want f(ωi, ωo) to measure how much the incident radiance from direction ωi is reflected in direction ωo:
the ratio of L(ωo) and L(ωi) would be insufficient since L(ωo) takes into account the radiance scattered
in direction ωo from arbitrary directions, and not only from ωi. The derivative avoids this problem: the
BRDF measures a change of L(ωo) due to a change of incident radiance L(ωi).

Physically-based BRDFs in computer graphics have the following properties:
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1. The BRDF must be positive: f(ωi, ωo) ≥ 0. An incident radiance L(ωi) cannot remove energy in
scattering direction ωo.

2. The BRDF must satisfy f(ωi, ωo) = f(ωo, ωi): a surface that scatters light from direction ωi
to direction ωo scatters light from ωo to ωi. This property is sometimes called the Helmholtz
reciprocity principle (more generally, inverting a source and a receiver does not affect the light
transport between them).

3. The scattered energy at the surface is not larger than the incident radiance. This writes:
∫
S2 f(ωo, ωi)〈n·

ωi〉dωi ≤ 1, with S2 the unit sphere.

The refraction and diffuse transmission of light through a surface, for example at a glass-air interface or
through a thin sheet of paper, can be characterized by a bidirectional transmittance distribution function
(BTDF) over the lower hemisphere, the same way the BRDF is defined on the upper hemisphere. The
union of the BRDF and the BTDF is called a bidirectional scattering distribution function (BSDF).
We refer the reader to the work of Walter et al. [WMLT07] for more information about commonly used
physically-based BSDF models based on microfacets.

4.1.6 The local illumination equation

The BRDF allows for writing a radiance of scattered light as an integral of the BRDF and the incident
radiance:

L(ωo) =
∫
S2
f(ωi, ωo)L(ωi)〈ωi · n〉dωi. (4.1.2)

This equation has been introduced to computer graphics in 1986 [ICG86,Kaj86] and is sometimes referred
to as the rendering equation, although modern renderers simulate other kinds of scattering events such
as volumetric scattering. This equation is also called the local illumination equation [BN12] and it is an
important equation for deriving surface prefiltering methods.

4.2 Prefiltering flat surfaces

In this section, we consider the case of a locally flat surface seen by a pixel of a virtual camera, and we
recall the hypotheses under which the pixel integral can be rewritten as an integral of radiance over the
pixel footprint on the surface. The case of flat surfaces allows for understanding the validity domain of
all surface prefiltering methods.

4.2.1 Problem statement

Let’s consider a locally flat surface P with normal n, rendered as an opaque surface mapped with a
spatially varying BRDF. This surface is seen by a virtual camera, and we are interested in the value
of a pixel that only receives radiance from this surface (there are no other occluders in the scene nor
volumetric scattering).

Flat surface seen by a pinhole camera. For this derivation, we focus on the case of a pinhole
camera, that is a virtual camera with infinitely small aperture, so that every point in the image plane
only receives radiance from a single direction. The 4D pixel integral then reduces to a 2D spatial integral
of the radiance on a spatial kernel around the pixel center. This kernel for integrating the radiance L(x, ω)
is illustrated in Fig. 4.1 in the virtual image plane. It can be a simple box filter or a smoother filter with
better anti-aliasing properties, for instance a Gaussian filter or a Mitchell-Netravali filter [MN88].

For each point x on the virtual image plane, the only radiance that contributes to the image is the
radiance in direction ω from x to the pinhole. Therefore, pixel values can be written either as integrals
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Image plane

Virtual image plane

Figure 4.1: A pinhole camera model. Each pixel is defined as an integral of the radiance L(x, ω) on a
kernel w, either in the image plane or in the virtual image plane.

in screen space or in the spherical domain:

I =
∫
S2
w(ω)L(O,ω) dω (4.2.1)

with L(O,ω) the radiance at the pinhole in direction ω, I a mean radiance with unit W·m−2, and w the
pixel filter in the space of directions such that∫

S2
w(ω) dω = 1.

Because the pixel sees directly the flat surface P , the pixel integral (Eq. 4.2.1) can be written as an
integral of the radiance reflected or emitted from the surface, in the pixel footprint on the surface. This
is illustrated in Fig. 4.2.

S

Figure 4.2: A pixel of a pinhole camera, characterized by an angular kernel w, seeing a flat surface
with normal n. The angular kernel can be replaced by a spatial kernel wS(p) of the pixel footprint on the
surface.

Each direction w corresponds to a point p in the pixel footprint on the surface, and we have the
relation dω = ω · n

r2 dp [BN12], with r the distance between the surface and the pinhole ‖O− p‖. We can
rewrite the pixel integral (Eq. 4.2.1) as follows:

I =
∫
S2
w(ω)L(O,ω) dω =

∫
P

wS(p)L(p, ω) dp

with wS(p) = w(ω)ω · n
r2 the spatial kernel on the surface. We have∫

P

wS(p) dp =
∫
P

w(ω)ω · n
r2 dp =

∫
S2
w(ω) dω = 1.

Local illumination equation. Using the local illumination equation (Eq. 4.1.2) in the pixel integral,
I becomes a double integral over the spatially varying BRDF in the pixel footprint and the incident
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illumination in the spherical domain:

I =
∫
P

wS(p)
∫
S2
f(p, ω, ωi)L(p, ωi)〈ωi · n〉dωi dp (4.2.2)

Surface prefiltering. A common assumption at this stage is to assume that the incident radiance
L(p, ωi) is uniform over the pixel footprint (this is sometimes called the far-field approximation). This
assumption is always used in prefiltering methods, and this is why it is always possible to claim the
inaccuracy of LODs in the case of laser-like light sources, which are out of the validity domain of pre-
filtering methods. Using the far-field assumption, L(p, ωi) becomes L(ωi) in the equation. Moreover, the
direction ω towards the pinhole can be considered constant in the pixel footprint, given that the camera
is far enough, and that the pixel angular footprint is small. Using these two assumptions, we can rewrite
I as:

I =
∫
S2

(∫
P

wS(p)f(p, ω, ωi) dp
)
L(ωi)〈ωi · n〉dωi.

This is the surface prefiltering equation: it means that we can prefilter the spatially varying BRDF over
the pixel footprint without changing the pixel value. We can define a new BRDF fF as follows:

fF (ω, ωi) =
∫
S2
wS(p)f(p, ω, ωi) dp (4.2.3)

so that the pixel integral becomes

I =
∫
S2
fF (ω, ωi)L(ωi)〈ωi · n〉dωi.

As discussed in the introduction, prefiltering the surface reflectance functions brings several benefits:

• Evaluating the prefiltered BRDF fF can be much cheaper than integrating all the BRDFs f : the
4D integral in Eq. 4.2.2 reduces to a 2D integral (since the 2D spatial integral is precomputed). In
practice, this means less noise and faster rendering.

• The prefiltered BRDF fF can sometimes be represented accurately with much less data than the
set of input BRDFs, because the appearance that emerges from sub-resolution details often have
a lower complexity than the details themselves (at least the spatial information can be removed).
This means that rendering the prefiltered BRDF requires less memory and allows fast access to
surface parameters at shading time.

Domain of validity. This derivation has been written for the case of locally flat surfaces seen by a
pinhole camera with the far-field approximation. In practice, the prefiltering method described above
is also valid (although approximate) for surfaces with low curvature, with other virtual camera models
and additional non-pathological occluders in the scene. Moreover, in surface prefiltering techniques, the
integral over the pixel footprint is always an approximation of the real footprint.

4.2.2 Prefiltering strategies

General approaches vs BRDF models. Given Eq. 4.2.3, the main goal of prefiltering methods is
to find a good way to represent fF in order to reduce the memory footprint while ensuring efficient
evaluation. A very general strategy is to represent fF using a multidimensional array. Indeed, BRDFs
are functions over a 4D domain and they can be stored as 4D arrays of values. The dimension can be
reduced to 3 for isotropic BRDFs (that is, BRDFs whose lobes do not dependent on the azimuthal angle
of the incident direction). When functions fF are themselves spatially varying, this adds two dimensions
to the arrays. Such 5D or 6D arrays are called Bidirectional Texture Functions (BTF) [DvGNK99], and
they are equivalent to a set of photos of the surface for various view and light directions. Because BTFs
directly represent reflectance values, they can be prefiltered very easily using simple linear combinations.
Despite its generality, this strategy is not the most used for prefiltering surfaces because of its huge
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memory requirements, in particular for high frequency BRDFs that require a fine sampling of the 4D or
3D angular domain. Another very general way of representing BRDFs is to compute their projections
onto any basis of the 4D domain, for example using wavelets or spherical harmonics. This strategy has
also significant memory requirements if BRDFs have high angular frequencies.

BRDFs are more efficiently represented using parametric BRDF models with a few reflectance param-
eters such as albedo (color), roughness, direction of anisotropy or index of refraction. Once a model is
chosen for representing the prefiltered BRDF fF , the prefiltering problem reduces to estimating the best
set of parameters XF such that

fF (XF , ω, ωi) '
∫
P

wt(p)f(p, ω, ωi) dp.

A common method is to use the same BRDF model for fF and the input BRDFs f :

fF (XF , ω, ωi) = f(XF , ω, ωi) '
∫
P

wS(p)f(X(p), ω, ωi) dp

so that the parameters XF can be estimated directly from the parameters of the input BRDFs X(p).

Linear prefiltering of BRDF parameters. Some BRDFs parameters can be linearly prefiltered if
they have a linear relation with the surface reflectance. In this case, the prefiltering problem reduces to

XF =
∫
P

wS(p)X(p) dp

or, in the case of textured surfaces,
XF =

∑
t∈T

wtXt

with T the set of texels in the footprint, wt a weight for each texel and Xt the BRDF parameters of this
texel.

For example, when the surface is assigned a Lambertian BRDF with spatially varying color c(p), the
prefiltering integral writes:

fF (ω, ωi) =
∫
P

wt(p)f(p, ω, ωi) dp =
∫
P

wS(p)c(p)
π

dp =
∫
P
wS(p)c(p) dp

π

which is another Lambertian BRDF.

Linear prefiltering of microfacet distributions. Another example is the case of microfacet normal
distributions in microfacet-based BRDF models [WMLT07,Hei14b]:

f(ωi, ωo) =
∫ ∣∣∣∣ωi · ωmωi · n

∣∣∣∣ fm(ωi, ωo, ωm)
∣∣∣∣ωo · ωmωo · n

∣∣∣∣G(ωi, ωo, ωm)D(ωm) dωm

where D is the microfacet normal distribution, G is a masking-shadowing term that depends on the
distribution D, fm(ωi, ωo, ωm) is the micro-BRDF on a microflake with normal ωm. Assuming that the
micro-BRDF is the same for all the microfacets of the surface, and that only the microfacet distribution
D is varying on the surface, the prefiltering equation rewrites:∫
P

wS(p)f(p, ω, ωi) dp =
∫
P

wS(p)
∫ ∣∣∣∣ωi · ωmωi · n

∣∣∣∣ fm(ωi, ωo, ωm)
∣∣∣∣ωo · ωmωo · n

∣∣∣∣G(ωi, ωo, ωm)D(ωm) dωm dp

(4.2.4)

=
∫ ∣∣∣∣ωi · ωmωi · n

∣∣∣∣ fm(ωi, ωo, ωm)
∣∣∣∣ωo · ωmωo · n

∣∣∣∣ (∫
P

wS(p)G(ωi, ωo, ωm)D(ωm) dp
)

dωm.

(4.2.5)

This means that it is valid to linearly prefilter the product G(ωi, ωo, ωm)D(ωm) in the pixel footprint. In
practice, the masking-shadowing term G is neglected (since it has essentially an effect at grazing angles) or
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considered roughly independent of the microflake normal distribution D, so that the prefiltering equation
reduces to the prefiltering of the microflake distribution alone:

DF (ω) =
∫
P

wS(p)D(ωm) dp.

Many authors rely on this approximation or a similar one [BN12]. Dupuy, Heitz et al. [DHI∗13,Hei14a]
showed that this approximation is accurate in the case of Gaussian surfaces.

Non-linear parameters. In some cases, BRDFs parameters do not have a linear relation to the surface
reflectance and cannot be prefiltered linearly. For example, the roughness parameter of the Blinn-Phong
BRDF [Bli77] cannot be prefiltered linearly. For a more complex example, let’s consider a Lambertian
surface with a spatially varying scalar parameter s(p), and such that the color of the surface at a point
p is obtained through an arbitrary colormap C(s(p)) with C : R 7→ R3 [HNPN13]. Then the prefiltering
equation writes

fF (ω, ωi) =
∫
P

wS(p)C(s(p))
π

dp =
∫
P
wS(p)C(s(p)) dp

π
.

Because ∫
P

wS(p)C(s(p)) dp 6= C

(∫
P

wS(p)s(p) dp
)

in general, it is not possible to prefilter linearly the parameters s(p).

Bruneton and Neyret [BN12] listed various general strategies for obtaining parameters that can be
prefiltered linearly from non-linear parameters. Let’s consider a function f(X(p), Y ) with non-linear and
spatially-varying parameters (X(p), so that the prefiltered function fF (Y ) cannot be obtained directly:

fF (Y ) =
∫
w(p)f(X(p), Y ) dp 6= f

(∫
w(p)X(p) dp, Y

)
.

In this situation, it is possible to obtain fF (Y ) through linear prefiltering using one of the following
strategy:

• When the function f is a probability density function, it is sometimes well characterized by some
its first moments. For example, in the case Y ∈ R:[∫

f(X(p), Y )
∫
Y f(X(p), Y )

∫
Y 2f(X(p), Y )

]
or in the case of Y = (y1, y2) ∈ R2:∫ f(X(p), Y )

∫
y1f(X(p), Y )

∫
y2

1f(X(p), Y )∫
y2f(X(p), Y )

∫
y2

2f(X(p), Y )∫
y1y2f(X(p), Y )

 .
The important idea is that moments of fF (Y ) can be obtained by prefiltering linearly the moments
of the base functions f(X(p), Y ). For example:∫

Y fF (Y ) dY =
∫
Y

∫
w(p)f(X(p), Y ) dpdY =

∫
w(p)

(∫
Y f(X(p), Y ) dY

)
dp

Therefore, if fF (Y ) is well characterized by its moments, a simple prefiltering can consist of linearly
prefiltering the moments of the base functions f(X(p), Y ). This is the core idea of the LEAN
mapping technique for prefiltering normal distribution [OB10], as discussed later. This technique is
mostly used for prefiltering Gaussian distributions that are entirely characterized by the first and
second order moments.

• Another technique consists in projecting the base function f(X(p), Y ) onto a basis of functions
Bi(Y ):

f(X(p), Y ) =
∑

ai(p)Bi(Y )
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Then the coefficients ai(p) can be prefiltered:∫
wS(p)f(X(p), Y ) dp =

∫
wS(p)

(∑
ai(p)Bi(Y )

)
dp =

∑(∫
wS(p)ai(p) dp

)
Bi(Y ).

• Similarly, it is possible to write f(X(p), Y ) with a spanning set of functions that do not form a
basis. This is the strategy adopted by multi-lobe approaches, as discussed later (Sec. 4.4.2). Such
methods usually require to store less coefficients but prefiltering is more difficult if the number of
coefficients has to remain constant at all scales [Fou92a,TLQ∗05,TLQ∗08].

• It is possible to rewrite fF (Y ) as an integral over a distribution of parameters φ(x):

fF (Y ) =
∫
w(p)f(X(p), Y ) dp =

∫
χ

f(x, Y )φ(x) dx

with ∫
χ

φ(x) dx = 1

and χ the space of the parameters. If it is possible to efficiently evaluate the integral of the product
f(x, Y )φ(x), then a simple prefiltering method consists in linearly prefiltering the distribution of
parameters. This strategy has been used by several authors, including Heitz et al. [HNPN13,
HNPN14] for prefiltering color mapped textures and surfaces.

4.2.3 Correlation between BRDF parameters

In some cases, the base BRDFs depend on several parameters that have a linear relation to the appearance
and that are correlated to each other. An example is given in Fig. 4.3c and 4.3d in the case of a surface
with correlated microflake distributions and albedos (colors). In this case, it is incorrect to linearly
prefilter each type of parameter independently of the others, because of the correlations (Fig. 4.3). One
can find many other cases of correlated parameters.

(a) Linearly prefiltered
microfacet distributions.

(b) Linearly prefiltered
microfacet colors.

(c) Resulting incorrect
prefiltering.

(d) Correct prefiltering.

Figure 4.3: Bottom: Input surface with spatially-varying attributes. Top: Prefiltered surface. When
surface attributes are correlated (here, microfacet distributions (a) and microfacet albedos (b)), it is
incorrect to prefilter linearly each type of parameters independently of the others (c).

The absence of correlation is a common hypothesis in prefiltering methods [BN12], but some methods
support some types of correlation as discussed in section 4.4.3.

4.3 Prefiltering rough surfaces

In the last section, we have shown that it is possible to prefilter the appearance of flat surfaces without
changing pixel values. However, most rendered surfaces in computer graphics are not perfectly flat. In
particular, surfaces are commonly tessellated and perturbed using displacement maps in order to add
high-frequency details to a scene. In this section, with discuss the problems raised by the prefiltering of
non-flat surfaces.
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4.3.1 Problem statement

As in the previous section, we consider the case of a pinhole camera with a pixel footprint covering a
surface, but we do not assume that the surface is flat. Because of surface perturbations, the normal
is varying in the pixel footprint and some parts of the surface can be hidden. The pixel integral now
rewrites as an integral over the visible part of the surface in the pixel footprint (Fig. 4.4).

S

Figure 4.4: A pixel of a pinhole camera seeing a surface. Because the surface is not flat, the normal is
varying in the pixel footprint and some parts can be hidden.

The pixel integral now writes
I =

∫
P

wS(p)L(p, ω)dp

with wS(p) taking into account the direct visibility of a point p from the camera, V (p, ω), and the spatially
varying normal:

wS(p) = w(ω)V (p, ω)n(p) · ω
r2 .

As before, and thanks to the visibility function, we have∫
P

wS(p)dp =
∫
P

w(ω)V (p, ω)n(p) · ω
r2 dp = 1.

Using the local illumination equation, we obtain

I =
∫
ω

(∫
S

w′S(p)f(p, ω, ωi)〈n(p) · ωi〉dp
)
L(ωi) dωi. (4.3.1)

4.3.2 Useful hypotheses

At this stage, we can see from Eq. 4.3.1 that prefiltering arbitrary surfaces in surface space is not as
simple as in the case of a flat surface: the integrand of the spatial integral contains a visibility term
V (p, ω) and the term n(p) · ω that are both view dependent. In other words, the contribution of points
p to the radiance directly seen by the pixel is view-dependent, so that the surface must be prefiltered
in a different way for each viewing direction, contrary to the case of the flat surface in which a single
prefiltered BRDF can be used for all directions ω.

Nevertheless, with more assumptions, including the hypothesis of the absence of correlation between
the visibility term and the BRDFs [BN12] or specific surface statistics [HNPN13,HNPN14], is it possible
to derive approximate prefiltering equations.

4.4 Previous work

4.4.1 Mip mapping

Williams [Wil83] proposed to prefilter images by downsampling them by a factor 2 in each dimension
using a box filter. The set of downsampled images is stored as a pyramid of prefiltered maps, called mip
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(a)
2D box reconstruction filter, or

nearest neighbor

(b)
2D linear reconstruction filter

(bilinear)

(c)
2D cubic filter (bicubic)

Figure 4.5: Common reconstruction methods for 2D images. Linear and cubic methods (b,c) offer
higher quality than the box reconstruction filter (a).

maps. At render time, prefiltered values of the image are reconstructed using trilinear interpolation, i.e.
a linear interpolation of two samples of two adjacent maps in the pyramid, themselves obtained with a
bilinear interpolation of 4 values in the maps (Fig. 4.5). Therefore, trilinear interpolation requires the
access to 8 texels of the prefiltered maps. Mip mapping or related methods are used in almost every
rendering applications that have textured geometry.

The kernel used for generating the mip maps in the original algorithm was a square box filter. The data
is further blurred by the trilinear interpolation when these maps are used for obtaining a sample. In the
end, the prefiltering kernel of each sample is often quite different from the shape of the pixel footprint on
the surface. Several authors introduced alternative techniques for a better matching between ellipsoid-like
or trapezoid-like footprints and prefiltering kernels [Cro84, FF88,Hec89, SKS96,MPFJ99,BA05]. These
techniques are often referred to as anisotropic prefiltering techniques.

As discussed in Sec. 4.2 and 4.3, mip mapping for color textures is only valid under some hypotheses:
the underlying geometric surface should be flat enough or with statistical perturbations that are uncorre-
lated to colors, the effective mip mapping kernel should correspond to the pixel footprint on the surface
and the colors must have a linear effect on the BRDFs. Mip mapping has later been used for prefiltering
linearly other kinds of reflectance parameters, such as the moments of slope distributions [OB10,DHI∗13].

4.4.2 Normal map prefiltering

Mip mapping relies on the linear prefiltering of texel values. Such linear operations must preserve the ap-
pearance at all scales: they must correspond to a valid prefiltering operation derived from the prefiltering
equations (Eq. 4.2.3 and 4.3.1). With the success of bump mapping [Bli78], i.e. surfaces with perturbed
shading normals for adding surface details without increasing the geometric complexity, prefiltering high-
resolution bump maps became an important problem, in particular for real-time rendering. Contrary
to color textures, bump maps (or the related normal maps) cannot be prefiltered by linearly averaging
normals. Indeed, averaging and renormalizing normals results in a smooth macroscopic surface, which
is a rather bad approximation of distant bumpy surfaces, which are better described by a distribution
of normals or other kinds of roughness information. Various prefiltering methods for normal maps have
been proposed for the multi-scale rendering of bumpy surfaces.

Normal map prefiltering as a convolution problem. Normal map prefiltering methods usually
start from the case of a flat surface with a given geometric normal n (Sec. 4.2) and spatially varying
shading normals ns(p), defined using a bump map, a normal map or procedural functions. The prefiltering
equation reduces to the computation of a prefiltered BRDF fF :

fF (ωi, ωo) =
∫
wS(p)f(p,Rns(ωi), Rns(ωo)) dp

where Rns is a rotation operator that rotates ωi and ωo in an appropriate shading frame aligned with
the normal ns(p). In the case where the BRDF is not spatially varying, the prefiltered BRDF fF
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can be written as an integral of the base BRDF and a normalized normal distribution D in the pixel
footprint [HSRG07]:

fF (ωi, ωo) =
∫
f(Rω(ωi), Rω(ωo))D(ω) dω. (4.4.1)

Then this can be further simplified assuming that the base BRDF can be written as a function of ωi
(f(ωi · n) for Lambertian BRDFs) or ωh, with

ωh = ωi + ωo
|ωi + ωo|

the half vector. With these particular BRDFs, equation 4.4.1 reduces to a convolution in the spherical
domain. Note that BRDFs of the form f(ωh, n) are related to microfacet-based BRDFs, because they are
mainly characterized by the value of the microfacet distribution for the direction ωh (although masking
and shadowing terms also contribute, especially at grazing angles [WMLT07]). For this reason, prefiltering
normal distributions or BRDFs in the space of the half-vector are very similar problems. Han et al.
[HSRG07] compute this convolution in real time by projecting the BRDF onto zonal harmonics (a subset
of spherical harmonics that are radially symmetric), and representing the normal distribution either using
spherical harmonics or a set of von Mises-Fisher lobes (which are scalar function in the spherical domain
that are symmetric about a central direction), inspired by the work of Fournier [Fou92b, Fou92a]. In
the case where the base BRDF is a microfacet model, a microfacet normal distribution for fF can be
estimated by convolving the microfacet distribution of the base BRDF with the normal distribution. This
idea can be found in the work of Toksvig [Tok05], where the BRDFs and normal distributions are written
as gaussian functions in the 1D angular domain and convolved. Xu et al. [XWZB17] convolve the BRDF
and the normal distribution, both approximated with von Mises-Fisher lobes.

Prefiltering the statistics of normal distributions. Convolution methods require to prefilter nor-
mal distributions. Han et al. [HSRG07] write the base normal distribution using spherical harmonics,
so that the distribution can be prefiltered using a simple mip mapping of the spherical harmonics co-
efficients. They also propose an alternative multilobe representation that cannot be linearly prefiltered
and that requires non-linear lobe fitting as discussed in the next paragraph. An alternative to spherical
harmonics is the prefiltering of the statistics of normal distributions, which allows for prefiltering high-
frequency distributions with very little data. Olano and North [ON97] proposed to represent normal
distributions with 3D Gaussians restricted to a sphere. These distributions can then be prefiltered by
averaging the centers of the 3D Gaussian distributions and estimating new standard deviations. As noted
by Schilling [Sch97], this is related to the work of Neyret [Ney95,Ney98] in which normal distributions
were encoded using ellipsoids that were combined into new ellipsoids for prefiltering. At the same period,
Schilling [Sch97] proposed to encode normal distributions as 2D distributions of normal perturbations
(which is equivalent to 2D Gaussian distributions in slope space). The distributions were characterized
by the mean normal and a 2× 2 covariance matrix. Schilling linearly combined the covariance matrices,
which does not give exactly the correct statistics for the prefiltered distributions. A similar idea was
reintroduced by Olano and Baker [OB10,Bak11] under the name offcentered Beckmann distribution. One
of their main contribution is a new way to store the parameters of the distribution so that they can be
prefiltered using linear mip mapping, and then used to reconstruct the covariance matrices. Dupuy, Heitz
et al. [DHI∗13] later revisited this representation. They used a microfacet-based BRDF model and they
derived the missing masking-shadowing term for off-centered Beckmann distributions. All these methods
are memory efficient but their accuracy is limited by the simplicity of the Gaussian distributions on which
they rely.

Multilobe representations. The idea of multilobe techniques is to represent arbitrary BRDFs or
normal distributions using a set of base lobes. Tan et al. [TLQ∗05] use a set of 2D Gaussian functions
for encoding normal distributions. Han et al. [HSRG07] used vMF lobes. The work of Fournier [Fou92a,
Fou92b] is also related to multilobe representations of normal distributions since he represented prefiltered
BRDFs using a set a Phong BRDFs. Similarly, Tan et al. [TLQ∗08] rely on mixtures of gaussian and
cosine BRDF lobes. Xu et al. [XWZB17] also use a set of vMF lobes for representing BRDFs in the
half-vector space.

Multilobe methods allow for prefiltering more accurately complex normal distributions (compared
to simple Gaussian distributions), but they raise two main challenges. First, approximating a set of
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lobes with a smaller number of lobes requires non-linear and sometimes ill-conditioned optimization
procedures [TLQ∗05,HSRG07,TLQ∗08]. Secondly, efficient seamless transitions are not trivial. Fournier
[Fou92a, Fou92b] proposed to interpolate directly BRDF values, which requires to access and evaluate
8 × N lobes for trilinear interpolation, N being the number of lobes in each texel. A less expensive
method is to interpolate each lobe with the lobes in neighboring texels that have a similar orientation.
Lobes must be ordered in each texel so that:

• each lobe i in a texel corresponds to (i.e. can safely be interpolated with) the lobes i in neighboring
texels,

• the lobes i of 4 texels correspond to the lobe i of the corresponding low-res texel.

This is called lobe alignment in the publications. When lobes are aligned, the parameters of a lobe
i can be trilinearly interpolated in order the reduce the shading cost compared to Fournier’s method.
A lobe alignment constraint is added in the non-linear optimization step [TLQ∗05, HSRG07, TLQ∗08].
As noted by Bruneton et al. [BN12] and Dupuy et al. [DHI∗13], lobe alignement can be ill-posed, and
errors in alignment causes rendering artifacts. Xu et al [XWZB17] proposed a mutilobe method that
overcomes these limitations. They divide the hemisphere of directions into several regions, and use
one lobe per region, such that lobes are aligned by construction in neighbouring texels and in all the
mip maps. Their method could be extended to support cases where color and normals are correlated.
The authors reported some temporal noise and discussed the lack of accuracy for representing highly
anisotropic normal distributions.

Rendering surfaces with tiny glints and scratches. Yan et al. [YHJ∗14] addressed the problem
of rendering specular surfaces with very high-resolution normal maps representing sub-pixel scratches
and specular flakes. Unlike previous methods, they did not attempt to simplify the effective normal
distribution of the pixel footprint since the high-frequencies of this normal distribution characterizes the
appearance of their specular surfaces under high-frequency incident illumination (for instance a very small
area light). Therefore, their method aims at evaluating more efficiently the effective normal distribution,
rather than reducing the storage cost required by the high resolution normal map. Jakob et al. [JHY∗14]
addressed a very similar problem in the case of glints created procedurally, with a method for efficiently
finding the facets in the spatial and angular domain. Their method is procedural and have low storage
requirements, although it cannot be used for rendering structures whose size is larger than pixels. Yan et
al. [YHMR16] later proposed an alternative version of their first method [YHJ∗14], in which they represent
the surface details as 4D Gaussian elements (two spatial dimensions and two angular dimensions) for
improving rendering efficiency. In our work, we did not addressed specifically these types of surface
appearance and we focused on prefiltering arbitrary surfaces while drastically reducing memory usage.

Filtering normals on curved surfaces. Kaplanyan et al. [KHPL16] addressed the problem of filtering
tiny but important specular highlights on curved surfaces, in order to avoid aliasing in real-time rendering
applications. Their method is related to normal map prefiltering since they filter the distribution of
normals in a pixel footprint covering a curved surface. Given the camera and a point light, they estimate
a set of half-vectors in slope space that contribute to light scattering from the light to the camera, in a
pixel footprint around a point x on the surface. Then, they integrate the microfacet distribution over this
set of half-vectors in slope space. The derivation is based on some approximations of the local geometry
around x.

4.4.3 Prefiltering displaced surfaces

Methods for prefiltering color textures and normal map always consider that the surface is flat in the
pixel footprint. As explained in section 4.3, prefiltering displaced surfaces is more challenging due to
view- and light-dependent masking and shadowing effects, and potential correlations between visibility
and surface attributes.
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Bruneton and Neyret [BN12] discussed visibility prefiltering in their survey, and in particular horizon
maps which encode visibility information as an elevation angle for each azimuthal direction, at each point
on the surface. Heitz et al. [HNPN13, HNPN13] prefilter color mapped surfaces with small geometric
details and complex visibility effects. They assume that the color of the surface can be decomposed into
three functions:

• a term that is decorrelated to the surface geometry,

• a term that is correlated to surface height only,

• a term that is correlated to surface slopes only.

Under a Gaussian surface assumption [Smi67] (Gaussian distributions of heights and slopes) and the
hypothesis of uncorrelated slopes and height, they derive reflectance models of surfaces with complex mi-
croscopic details. In this method, the relation between the micro-geometry and the colors must be known
explicitly, which is not the case when prefiltering arbitrary textured surfaces. Dupuy et al. prefiltered dis-
placement maps based on microfacet distribution prefiltering [DHI∗13]. They derive masking-shadowing
terms in order to obtain a physically-based BRDF, and they assume that the micro-geometry and the
reflectance are uncorrelated.

4.5 Summary of the chapter

We have shown how pixel integrals can be rewritten as integrals in surface space in the case of flat
surfaces, and how prefiltering methods can be derived from these integrals. We have seen that under
some hypotheses, the surface appearance can be prefiltered without impacting pixel values, meaning that
surface-space prefiltering sometimes allows for more efficient rendering without loss of quality.

We have seen that the case of non-flat surfaces introduces new challenges because of visibility effects
a small scales: the pixel integral rewrites as an integral over the visible surface from the camera, which
makes prefiltering equations more difficult to derive.

We reviewed some previous work on surface-space prefiltering, including the well known mip mapping
technique, various normal prefiltering methods and non-linear methods for complex surfaces. Prefilter-
ing non-flat surfaces is a difficult and rather understudied problem compared to normal distribution
prefiltering.

4.6 Résumé du chapitre

Nous avons montré que les valeurs des pixels, définies comme des intégrales, peuvent dans certains cas
être réécrites avec des intégrales sur l’empreinte du pixel sur la surface. Nous avons montré comment
obtenir des équations de préfiltrage à partir de ces intégrales dans le cas des surfaces qui sont localement
plates. Nous avons également montré qu’il était possible de préfiltrer les surfaces et donc d’accélérer le
rendu sans changer la valeur des pixels.

Nous avons commenté le cas des surfaces non planes, et vu que le problème du préfiltrage est bien
plus complexe pour ces surfaces, notamment à cause d’effets de masquage et d’ombrage à de petites
échelles. Dans cette situation, l’intégrale d’un pixel peut être réécrite comme une intégrale sur la partie
de la surface qui est visible par le pixel, ce qui complique le problème du préfiltrage puisque cette partie
visible dépend du point de vue.

Nous avons présenté plusieurs méthodes existantes pour le filtrage de l’apparence des surfaces, et en
particulier les techniques de mip mapping et le filtrage des distributions de normales. Le préfiltrage de
surfaces non planes est un problème difficile et plutôt sous-étudié, contrairement au filtrage de normales.
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Chapter 5

Previous work on prefiltering aggregate
detail

In the previous chapter, we presented prefiltering methods that can be used in cases where pixel footprints
cover entirely simple surfaces. However, these methods do not solve the problem of prefiltering collections
of sub-resolution elements, such as complex buildings (Eiffel Tower, Golden Gate) seen from a distance,
sailing ships and trees. The problem is related to the rendering of materials made of large amounts
of small and similar elements, sometimes called aggregate detail. Such materials include hair, fabrics,
sand, snow and foliage. The small elements must be rendered explicitly in close views at the price of
large storage requirements and costly explicit path tracing, but they cannot be seen individually from
a distance and must be prefiltered for efficient rendering. In this chapter, we review previous work on
prefiltering sub-resolution elements in the context of off-line physically-based rendering.

5.1 The appearance of aggregate detail

We first provide some general information about the appearance of various common types of aggregate
detail. This gives some intuition about how light is scattered in assemblies of elements and how to prefilter
them accurately.

5.1.1 The appearance of hair and fur

Hair consists in dielectric fibers covered by microscopic scales forming the cuticle, with internal cylindrical
structures (cortex, medula). Light is reflected by hair fibers, but it is also refracted, internally reflected,
scattered and absorbed in fibers. Hair fibers are usually aligned coherently, leading to a specific anisotropic
appearance. Light is scattered many times in the hair, and multiple scattering contributes a lot to the
appearance. In the case of high-albedo hair, for example human blond hair, multiple scattering is even
predominant as shown in Fig. 5.1, partly because an important part of the incident light is scattered
forward by hair fibers [MJC∗03], meaning that light easily penetrates the hair. In computer graphics, hair
fibers are modeled using dielectric tubes of elliptical sections [MJC∗03,ZW07,dFH∗11,dMH13,CBTB16],
with parametric scattering models that take into account the effects of the tiny scales at the surface of
the cuticle and additional internal structures in the case of non-human hair [YJR17].

5.1.2 The appearance of fabrics and clothes

Like hair and fur, fabrics are made of assemblies of fibers. They also have a complex anisotropic appear-
ance (Fig. 1.1a) due to the fact that fibers are coherently organized in yarns, that are themselves woven
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(a) Photo (b) Single
scattering

(c) All scattering
orders

(d) Single
scattering

(e) All scattering
orders

Figure 5.1: Hair photography (a) and rendering (b,c,d,e) from the work of Moon and Marschner
[MM06]. Hair rendering allows for observing how much multiple scattering contributes to the appearance
of aggregate materials with high albedo elements.

into regular paterns with well-defined orientations. Moreover, several types of yarns can be used in the
same piece of cloth, sometimes leading to complex colored anisotropic reflections. In close views, fabrics
are three dimensional, and the visibility of each type of yarn is view-dependent. For this reason, fabrics
often show interesting reflectance properties at grazing angles where only a subset of the fibers contributes
to the appearance. As for hair, light is scattered multiple times in fabrics, and multiple scattering may
contribute a lot to the appearance.

5.1.3 The appearance of granular materials

Assemblies of grains such as snow, sand or sugar raise the same problems as hair and fabrics: large
storage requirements for close views, costly rendering due to highly complex geometry, predominance
of multiple scattering for high-albedo grains. Contrary to fibers, most grain assemblies do not have a
strong anisotropic appearance, which simplifies the problem of prefiltering them. The appearance of some
granular materials such as snow or sugar is characterized by many glints as shown in Fig. 5.2.

(a) Glints due to specular reflections on sugar grains. (b) The same sugar lit by a head light.

Figure 5.2: Various aspects of the appearance of sugar. Like in other granular materials, specular
reflections on grains create glints (a). Light is scattered by these high-albedo grains and penetrates inside
the material (b). Here, multiple scattering adds a saturated yellow tint to the material.
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5.1.4 The appearance of foliage

Trees and other plants are typically observed at various scales: we can observe the individual leaves when
we are close from them, but we also see thousands of distant trees at once when we contemplate landscapes.
Light is relfected from leaves but also diffusely transmitted through them (Fig. 5.3). Bright leaves also
result in glints when they are observed from a distance (Fig. 1.1b). Leaves are often coherently organized,
leading to anisotropic occlusion and appearance. The front and the back of leaves typically have different
scattering properties. Multiple scattering can be important in foliage although it is generally less critical
than in high-albedo aggregate materials.

(a) Photo of leaves with a front light. (b) The same leaves and a back light.

Figure 5.3: The appearance of leaves is often characterized by diffuse and specular reflections (a) as
well as translucency, that is, light diffusely transmitted through the leaves (b).

5.1.5 Other complex appearances

Apart from the various types of aggregate detail presented above, other types of complex geometry exist
and require to be rendered at various scales. For instance, complex buildings seen from a distance such as
the Eiffel tower of the Golden gate, or distant sailing ships with sub-resolution ropes. These appearances
are most of the time less complex than aggregate detail, but remain challenging for artifact-free and
all-scale prefiltering.

5.1.6 Relation to participating media.

All these examples have something in common: their semi-transparent distant appearance is analogous
to light scattering in participating media such as wax, milk, clouds or skin. Indeed, light interacts with
foliage, hair or snow with some probabilities that depend on the density of individual elements, and
the macroscopic appearance results from their local scattering properties. From a distance, a statistical
description of the position and the orientation of the elements is sufficient, from which can be derived
occlusion probabilities and scattering functions. This is why participating media models have been used
for approximating scattering in aggregate materials, as discussed in Sec. 5.4.

5.2 Stochastic simplification

Cook et al. [CHPR07] addressed the problem of simplifying aggregate detail for rendering massive pro-
duction scenes. The landscape shown in their article is made of lots of small elements (‘a hundred million
leaves’) and was ‘unrenderable’ without simplification.
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In the same spirit as other stochastic methods [KKF∗02,DCSD02], they randomly simplify complex
assets by deleting some of the elements and changing the size and color of the remaining elements in order
to approximately preserve the overall appearance of the asset. They propose methods for scaling elements
for a given pruning level in order to reduce the variation of the projected area of the asset across scales.
Unlike other prefiltering methods, they do not average the properties of the elements locally. Instead,
they combine the colors of remaining elements with the average color of the entire asset to avoid artifacts
(they call this ‘contrast correction’). This means that assets with a spatially-varying appearance have
an homogeneous (and therefore incorrect) appearance at coarse resolutions. Despite its limitations, this
strategy allows for simple and efficient simplification and it is probably used in many studios.

More importantly, stochastic simplification assumes that the appearance of their aggregate geome-
try can be prefiltered using a few large elements. This hypothesis does not hold at coarse resolutions:
approximating a foliage with a few large leaves does not preserve the self-shadowing probabilities of intri-
cate geometry nor other scattering statistics. Similarly, a hair strand does not have the same scattering
characteristic as a single large hair fiber. Such problems have been observed at Weta Digital and at the
Walt Disney Animation Studios. Larger leaves create unwanted glints unless normals are prefiltered, and
LOD representations of foliage are always too bright unless the masking and shadowing probabilities in
the input geometry are taken into account.

5.3 Background: participating media models in computer graphics

Participating media models are ubiquitous in off-line production rendering for smoke, clouds, skin, marble,
scattering liquids or other volumetric effects. Sub-surface scattering is a special case in which light is
only absorbed and scattered in the close vicinity of the surface. In this situation, it is possible to derive
simplified models with analytical expressions based on diffusion approximations [Ish78,JMLH01,HCJ13],
although unbiased volume path tracing is now affordable for some studios [CKB16,WVH17] and gives
significantly more accurate results, in particular in the case of curved and relatively thin objects.

Despite the wide range of assets that are rendered with volumetric light scattering, the number of
available volume scattering models is actually very small. We review them in this section.

5.3.1 The radiative transfer equation

Participating media models in computer graphics come from previous work on radiative transfer in
physics [Cha50, Ish78]. The fundamental equation is the radiative transfer equation which expresses a
radiance at a specific location in a participating medium depending on local attenuation, scattering and
emission. We recall the main results here and we refer the reader to the course of Marschner [Mar12] for
a more comprehensive discussion about the origin of this equation and a step by step derivation.

Attenuation in a medium. As light travels in a participating medium, some of it is absorbed or
scattered, while some light does not interact and propagates in a straight line. This is modeled using
an attenuation coefficient σt with unit m−1, and the Beer-Lambert law gives the attenuation of light for
a distance d in the media: e−σtd. The attenuation σt can depend on the wavelength in the model. It
can be spatially varying, in which case the attenuation along a distance d in the medium is given by an
integral of the attenuation:

exp

− d∫
s=0

σt(s) ds

 .

Scattering coefficient. Similarly, a scattering coefficient is used for characterizing the amount of
scattered light per unit distance in the medium. It is noted σs in this manuscript, and its unit is the
m−1. It is also wavelength-dependent and can be spatially varying. Because attenuated light is either
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scattered or absorbed, it is possible to define an absorption coefficient:

σa = σt − σs.

Phase functions. Light can be scattered isotropically or in specific directions when it interacts with a
participating medium. This can be characterized by a probability distribution function in the spherical
domain S2 of the scattered energy for an incident direction ωi. This distribution is called the phase
function and it is noted f(ωi, ωo). The name phase function comes from astronomy where the brightness
of an reflecting body (for instance, the Moon) depends on its phase, that is the angle between the view
direction and the light source. Most phase functions only depend on the angle between ωi and ωo and
are noted f(ωi · ωo). Normalized phase functions satisfy∫

S2
f(ωi · ωo) dωo = 1, ∀ωi ∈ S2.

The isotropic phase function is the simplest model. It corresponds to light scattered equally in all
directions, and it writes

f(ωi · ωo) = 1
4π .

The Henyey-Greenstein phase function [HG41], often abbreviated HG, is widely used in computer
graphics because of its simplicity, and its parameter g ∈ [−1, 1] that allows for choosing between forward
scattering (when g > 0) and backward scattering (when g < 0), which drastically change the appearance
of participating media. It writes:

f(ωi · ωo) = 1
4π

1− g2

(1 + g2 − 2g(ωi · ωo))3/2 .

Rayleigh and Mie scattering are other models used in the case of light scattered by small particles, in
particular in the atmosphere and in clouds.

The radiative transfer equation (RTE). Using the functions introduced above, the radiative trans-
fer equation at a point p in the volume writes:

(ω · ∇)L(p, ω) + σtL(p, ω) = σs

∫
S2

f(ω · ω′)L(p, ω′) dω′ +Q(p, ω)

with L(p, ω) is the radiance at a point p in direction ω and Q(p, ω) a source term characterizing light
emission in the volume, in W·m−3·sr−1, that is an emitted radiance per meter. The term

(ω · ∇)L(p, ω) = ω ·


∂L(p, ω)
∂x

∂L(p, ω)
∂y

∂L(p, ω)
∂z


is a directional derivative of L(p, ω) at a point p along ω, that is how L(p, ω) varies for an infinitesimal
spatial displacement from p in direction ω. Note that this equation is similar to the local illumination
equation that we used for surfaces (Chap. 4): the integral of the BRDF and the incident radiance over
the spherical domain is replaced by the integral of the phase function with the incident radiance.

5.3.2 Anisotropic RTE and microflake model

In the “classical” RTE presented above, the attenuation coefficient σt and the scattering coefficient σs
do not depend on any direction. The classical RTE only models isotropic media, that is media whose
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appearance does not change with the view direction. For example, for example, let’s suppose that we
are looking at a sphere of isotropic media, we could rotate it arbitrarily and it would have exactly the
same appearance. This model is therefore limited for representing anisotropic media, for example media
made of microscopic well-organized non-spherical elements. Jakob et al. [JAM∗10a] have introduced an
extension of the classical RTE physically-based model which allows for modeling such media. We will
highly rely on this framework in our thesis and we recall their main results.

Anisotropic RTE

The anisotropic radiative transfer equation (RTE) proposed by Jakob et al. [JAM∗10a] writes:

(ω · ∇)L(ω) + σt(ω)L(ω) = σs(ω)
∫
S2

f(ω → ω′)L(ω′) dω′ +Q(ω)

with σt(ω) the anisotropic attenuation coefficient, σs(ω) the anisotropic scattering coefficient (which is
usually wavelength dependent), and f the anisotropic phase function (in the sense that it depends on ω
and ω′, and not only on the angle between ω and ω′). In this manuscript, we use phase functions that
are normalized over the second parameter:∫

S2

f(ω → ω′) dω′ = 1, ∀ω.

Helmholtz’s reciprocity principle for anisotropic media

In general, phase functions in the anisotropic RTE framework do not satisfy f(ω → ω′) = f(ω′ → ω).
The Helmholtz’s reciprocity principle, which states that the radiative transfer remains the same when
interchanging sources and receivers, writes

σs(ω)f(ω → ω′) = σs(ω′)f(ω′ → ω).

This is the reason why using arbitrary phase functions for a media with anisotropic attenuation coefficients
often break reciprocity.

Microflake model

Based on their anisotropic RTE, Jakob et al. [JAM∗10a] have studied the case of media made of clouds
of microflakes, that is, microscopic flat surfaces with random positions and whose scattering properties
are described by a micro-BRDF. The orientation of the microflakes in the medium is characterized by a
microflake normal distribution D in the spherical domain. Jakob et al. derived attenuation coefficients
and phase functions for such media and the Helmholtz’s reciprocity principle is satisfied by construction.
When the microflake micro-BRDF is perfectly specular, deriving evaluation and sampling procedures for
the phase functions is simpler.

In this manuscript, we assume like Heitz et al. [HDCD15] that microflakes reflect on both side and
we only consider normal distributions D that satisfy

D(ω) = D(−ω).

Given D, the attenuation coefficient is derived from the integral of the projected areas of the microflakes

σt(ω) = ρ

∫
D(ωm)〈ω · ωm〉dωm (5.3.1)

where ρ, often referred to as density, is the amount of microflake surface per unit volume, in m−1.
Assuming that the microflake color is not view-dependent, the scattering coefficient for a wavelength λ
is given by

σs(ω) = ρα(λ)
∫
D(ωm)〈ω · ωm〉dωm = α(λ)σt(ω) (5.3.2)
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with α(λ) the albedo of the microflakes. In the case of specular microflakes, the phase function writes

f(ω → ω′) = ρα(λ)D(ωh)
4σs(ω) (5.3.3)

with ωh = ω + ω′

‖ω + ω′‖
the half-vector.

5.4 Volumetric approximations of aggregate geometry

As mentioned in section 5.1, light scattering in aggregate geometry viewed from a distance is related
to volume models used in physics. The precise position of each small element is not required, so that
scattering and free-flight distances can be described statistically, which is exactly what volumetric models
do. Volumetric models are memory efficient (they often have few parameters locally) and they allow huge
savings in rendering time compared to rendering explicitly all the sub-resolution elements. Volumes
have been used as approximations of complex geometry by many authors. We review their work in this
section. In particular, we review several methods that rely on volumetric approximations for computing
multiple scattering in aggregate geometry, since this is a type of prefiltering in which the statistics of
light scattering in the volume must match the ones of the input explicit geometry.

The distant appearance of aggregate geometry emerges from the properties of the elements it is
made of. It is often complex due to its semi-transparency, the visibility and shadowing effects between
elements, the importance of multiple scattering for elements with high albedo, and sometimes the complex
reflectance properties of individual scatterers. Therefore, most prefiltering methods aim at simplifying
one type of complex geometry and have a limited validity domain.

5.4.1 Types of volumetric models

By volumetric models, we designate all models that rely on a statistical attenuation of light, based on
attenuation coefficients or opacity values, and in which scattering is not governed by explicit geometry
but by scattering coefficients and phase functions. Most models rely on the radiative transfer equation,
but some authors proposed custom models that do not ensure Helmholtz reciprocity, and some proposed
non-classical volume models with non-local scattering operations and non-exponential free-flight distance
distributions.

5.4.2 Early volumetric approximations

Blinn [Bli82] introduced volumetric models in computer graphics. As other authors in the physics lit-
erature [Cha50], he proposed a model of single scattering in clouds of randomly positioned spherical
scatterers, and used it for rendering the rings of Saturn made of particles of water ice. Blinn also pre-
sented various simple and widely used phase functions in other fields (isotropic, diffuse spheres, Henyey-
Greenstein, Rayleigh, etc.). Kajiya et al. [KVH84] rendered heterogeneous volumes, and later proposed
a path tracing algorithm [Kaj86] that has then been later generalized for rendering volumes. In another
work [KK89], Kajiya and Kay used heterogeneous volumes for representing fur. Their medium had several
parameters: a local projected area of microsurfaces (which gives an attenuation), a local fiber direction
and a reflectance function. They introduced two fiber scattering models derived from Lambertian and
specular cylinders. The volumetric fur was rendered with single scattering and volumetric shadows with
ray tracing. The idea of using volumes instead of explicit cylinders has inspired many other authors as
discussed below.
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5.4.3 Prefiltering with hierarchical volume representations

Various forms of volume representations have been used for efficiently storing and rendering prefiltered
versions of complex arbitrary geometry. Neyret [Ney95, Ney98] prefilter volumetric textures by repre-
senting the underlying geometry using ellipsoids, which can encode isotropic media as well as foliage-like
and fur-like normal distributions. The same idea was later adapted to the physically-based microflake
framework with the introduction of the SGGX microflake normal distritbution [HDCD15], which is the
normal distribution of an arbitrary ellipsoid. Lacewell et al. [LBBS08] prefilter complex geometry for re-
ducing the noise in soft shadows. They use a bounding volume hierarchy and store directional occlusion
information for each box. They show that the noise can be significantly reduced by prefiltering occlusion.
They did not extend this approach with reflectance information for rendering directly distant foliage.
As mentioned in their work, volume representations cannot be used for representing accurately opaque
surfaces larger than the prefiltering scale. In their method, they chose manually a correlation height,
that is a prefiltering scale from which occlusion can be prefiltered using their representation. Crassin
et al. [CNS∗11] also encoded geometric information using voxels for computing indirect illumination in
real time. They used anisotropic voxels that encode view-dependent occlusion and appearance in the 6
main directions, and they proposed a simple algorithm for volume downsampling. Their method is less
accurate for occlusion prefiltering than the one of Lacewell et al., but they encode reflectance information
such as colors and normals. However, their representation has not been used nor evaluated for rendering
directly distant assets.

5.4.4 Approximating hair and fur

The realistic rendering of hair is very challenging for several reasons:

• Light scattering in individual hair fibers is complex. Accurate, efficient and controllable hair shading
models are still being investigated [dFH∗11,dMH13,CBTB16,YJR17].

• The geometry of assemblies of hair fibers is complex and has large storage requirements. Computing
ray intersections with these fibers is rather costly.

• Moreover, many intersections must be computed for rendering multiple scattering, making hair
rendering even more costly.

• Hair rendering is subject to noise, because of the high spatial frequency and the complexity of light
scattering.

For these reasons, various authors proposed ways to render hair more efficiently than brute-force ap-
proaches. Kajiya and Kay [KK89] used volumetric textures for rendering fur. Volumes were later used
in other methods, for instance by Andersen et al. [AFFC16] for rendering the smooth appearance of sub-
resolution undercoat hair. However, most methods rely on explicit hair fibers modeled using segments or
other linear primitives. With the introduction in computer graphics of the first realistic scattering func-
tions for human hair [MJC∗03,ZSW04], it has been observed that multiple scattering plays an important
role in the appearance of hair, and in particular in the case of high-albedo hair fibers (e.g. blond hair,
white hair).

A seminal work on approximating light scattering in hair was done by Moon and Marschner [MM06].
Inspired by volume photon mapping algorithms [JC98], they proposed to trace particles in the explicit
geometry during a first pass and to store their positions and directions in a 5D map. At rendering, the
radiance L(x, ω) due to multiple scattering in the hair is estimated using the map and smooth 5D kernels,
whereas low-order scattering is computed using the explicit geometry. This method does not exactly rely
on a volumetric model but like other work on realistic hair rendering its uses the fact that multiple
scattering creates a low-frequency radiance field that can be statistically estimated without explicitly
computing every fiber-to-fiber scattering events. A similar idea has been proposed simultaneously by
Zinke et al. [ZW06].

Moon et al. [MWM08] later proposed an alternative and more efficient solution. They voxelize the hair
geometry by estimating in each voxel a main fiber direction and a standard deviation of fiber directions.
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They also define an anisotropic attenuation coefficient that depend on the distribution of fiber directions.
In a first pass, the light particles are scattered according to the volume representation, which is faster
than light tracing in the explicit geometry [MM06]. The radiance information is stored using spherical
harmonics in each voxel, and this information is filtered both in the angular domain (to avoid ringing)
and spatially (to avoid noise). The SH representation allows for computing efficiently the integral of the
product of the incident radiance and a fiber reflectance functions at rendering. The accuracy of their
volumetric model has not be evaluated for the rendering of distant hair without explicit geometry.

5.4.5 Volumetric models of fabrics and clothes

As for hair, rendering fabrics using explicit fibers is realistic but inefficient, especially when multiple
scattering must be computed. Schröder et al. [SKZ11] proposed to use volumes for rendering fabrics.
They voxelize line segments at the scale of yarns, and show that the appearance of their volumetric
representation can match accurately the images obtained by rendering the explicit geometry. In each
voxel, they represent the fiber distribution using a Gaussian distribution, and they use Gaussian mixtures
when voxels contain various yarns. Their volumetric model does not rely on the RTE. They use a
precomputed visibility function for accounting for masking and shadowing at the scale of dense yarns,
although they rely on a volumetric attenuation for global shadowing effects. They evaluated their method
at multiple scales using various resolutions of voxel grids. Their low-resolution volumes show several
artifacts because of some assumptions made at the level of yarns that do not hold at all scales. Moreover,
their results show aliasing due to their voxelization algorithm that relies on 3D non-overlapping box
filters: this indeed minimizes blur but introduces artifacts as discussed in Chap. 9, especially for fabrics
in which the geometry is periodic with high-frequencies.

Jakob at al. introduced the anisotropic radiative transfer equation [JAM∗10a] and applied it to
the rendering of fabrics, using fiber-like microflake normal distributions in the microflake model. Zhao et
al. [ZJMB11] built on this work and used the microflake model for rendering the micro-geometry of fabrics
acquired from X-ray computed tomography. They introduced another fiber-like microflake distribution
and estimate scattering parameters for their volumetric model from photographs of real fabrics. They
show that volumetric models based on the anisotropic RTE can reproduce the complex appearance of
fabrics such as velvet or satin.

In another work, Zhao et al. [ZHRB13] addressed the problem of rendering efficiently multiple scat-
tering in very detailed microflake volumes, leveraging the fact that fabrics can be modeled with a few
blocks of voxels tiled on a base surface. They precompute voxel-to-voxel, patch-to-patch, and patch-
to-voxel light transfer and use this information for simulating efficiently high-order scattering. Heitz et
al. [HDCD15] introduced a new parametric microflake distribution that can represent fiber-like media
and can be prefiltered efficiently, although they do not address the problem of prefiltering density and
scattering parameters. Zhao et al [ZWDR16] addressed this problem by optimizing scattering parameters
in image space. Their work will be presented in more detail in section 11.3.3. We also contribute to this
problem and we propose an alternative solution for accurate volume downsampling (Part III).

Khungurn et al. [KSZ∗15] evaluated the accuracy of several volumetric representations compared
to the rendering of explicit fibers for matching the appearance of real fabrics. They compared three
representations: explicit geometry with a fiber scattering model (BCSDF), a volumetric representation
with voxelized geometry and rendered with the microflake model, and also a volumetric representation
rendered with phase functions derived from the fiber BCSDF. They have drawn the conclusion that all
these methods can be used for rendering realistic fabrics, but that representations based on the fiber
BCSDF are more accurate than the microflake model. Although they focused on fabrics, the same
conclusions can probably be drawn for hair rendering: a phase function derived from dielectric fiber
scattering models would be more accurate than a fiber-like microflake phase function.

5.4.6 Approximating granular materials

Multiple scattering in granular materials has also be studied and rendered using volumetric approxi-
mations. Moon et al. [MWM07] first proposed not to rely on the RTE, observing that light scattering
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densely packed in grain assemblies do not follow the base assumption of independent scattering due to
well-separated small scatterers from which the RTE is derived. They measured the scattering properties
and distributions of free-flight distances in granular materials and showed the differences with the classical
RTE. They introduced a shell transport operator that is precomputed for a particular granular materials
and can be used for simulating various scattering events, leading to an efficient but specific rendering
solution. They used a tabulated free-flight distribution function and do not rely on usual exponential
distributions. However, the visual differences between their non-classical model and the classical RTE
have not been demonstrated. They noted that rendering high-albedo granular materials without approx-
imation is almost impossible, and their volumetric approximation greatly alleviate this problem. As for
hair [MM06,MWM08], low-order scattering is computed with the explicit geometry.

Meng et al. [MPH∗15] revisited this work and combined three rendering algorithms: explicit path
tracing for low-order scattering when grains are seen individually, volume path tracing, as well as a
diffusion approximation as previous work on sub-surface scattering [DI11]. They introduced another non-
classical volume model, but derive parameters of the classical RTE (attenuation coefficient, scattering
coefficient, phase functions) and rely on the classical volume path tracing at rendering. Their results show
that the RTE framework provides a good approximation of densely packed grains, whereas the diffusion
approximation introduces more bias but further improves the rendering efficiency.

Directly inspired by previous work [MWM07, MPH∗15], Müller et al. [MPG∗16] proposed a more
general solution for rendering granular materials with large-scale spatial variations of grain properties.
They also combine various strategies including volume approximations (shell tracing) and prefiltered
grain scattering functions used for direct illumination when grains are sub-pixels, which is more efficient
compared to rendering distant grains with their explicit geometry. As noted by the authors, rendering
the explicit geometry remains the only way to preserve the glints of such materials. Ideally, the path
tracing of the explicit geometry should not be necessary for distant grains, and a prefiltering method that
preserves glints for such materials remains to be found.

5.4.7 Prefiltering foliage with volumes

Interestingly, foliage has received less attention in recent research on prefiltering complex geometry,
despite its close relationship to other aggregate materials, maybe because leaves have lower albedos
and the rendering of multiple scattering converges faster compared to blond hair or snow. Volume
approximations have been used as well, for example by Max et al. [MKMW97], or by heitz et al. [HDCD15].
Leaves diffusely transmit light and often produce glints, and prefiltering accurately such effects has not
been done yet to our knowledge. In Part II, we prefilter sub-resolution intricate geometry using the
microflake model and we show how to estimate attenuation coefficients and normal distributions.

5.5 Summary of the chapter

In this chapter, we reviewed several accurate prefiltering methods for intricate geometry for which the
surface-based methods seen in chapters 3 and 4 cannot be used. We have seen that:

• The stochastic simplification method [CHPR07] is efficient but has limited accuracy and validity
domain. Because the local occlusion and scattering properties are not prefiltered, this method
cannot be used for prefiltering assemblies of specular elements or spatially varying aggregate detail.

• We discussed the appearance of the main types of aggregate detail useful for computer graphics
because of their ubiquity: hair, fur, fabrics, granular materials and foliage. We highlighted their
similarity: their volumetric behavior at some scales, the importance of multiple scattering and the
complex scattering in individual elements.

• We presented the previous work on volumetric approximations of such materials, and we discussed
the fact that these approximations are memory efficient and highly improve the rendering efficiency
in the case of fabrics [ZHRB13,KSZ∗15], hair [MM06,MWM08] and granular materials [MWM07,
MPH∗15,MPG∗16].
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• We have presented the classical radiative transfer equation and its anisotropic extension [JAM∗10a],
on which we built our work in Parts II and III of this manuscript.

5.6 Résumé du chapitre

Dans ce chapitre, nous avons présenté et commenté plusieurs méthodes de préfiltrage pour des géométries
complexes qui ne peuvent pas être traitées avec les méthodes surfaciques présentées dans les chapitres 3
et 4. Nous avons vu que :

• La suppression aléatoire d’éléments [CHPR07] est efficace mais elle est peu fiable et a un domaine
de validité relativement restreint. Elle ne peut pas être utilisée dans le cas de géométries dont
l’apparence varie spatialement parce que la transparence et les propriétés de réflexion locales ne
sont pas préfiltrées.

• Nous avons passé en revue plusieurs types d’apparence complexe dont le rendu est utile en infor-
matique graphique : les cheveux, la fourrure, les tissus, les ensembles de grains et le feuillage. Nous
avons souligné certaines similarités entre ces matériaux, et notamment leur comportement volu-
mique à certaines échelles, l’importance des diffusions multiples sur leur apparence et la complexité
des réflexions à l’échelle des petits éléments.

• Nous avons présenté les méthodes existantes sur l’approximation de tels matériaux par des représen-
tations volumiques, et nous avons vu que ces représentations sont efficaces du point de vue de
la mémoire et qu’elles permettent d’améliorer grandement l’efficacité du rendu dans le cas des
tissus [ZHRB13, KSZ∗15], des cheveux [MM06,MWM08] et des matériaux granulaires [MWM07,
MPH∗15,MPG∗16].

• Nous avons présenté les équations du modèle de transfert radiatif classique et de son extension
anisotrope [JAM∗10a], sur laquelle nous nous appuierons dans les parties II et III.
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Part II

A new hybrid prefiltering method with
meshes and volumes

In this part of the dissertation, we address the problem of generating appearance-preserving LODs of
high-resolution textured meshes. We have seen that mesh simplification is a well studied problem in
computer graphics (Chap. 3) and that several authors have addressed the problem of prefiltering the
appearance of textured surfaces (Chap. 4). Despite this previous work, prefiltering complex assets such
as buildings or trees at arbitrary scales remains understudied, because most methods rely on the assump-
tion that assets have the appearance of simple surfaces at the prefiltering scale, which does not hold at
scales where the geometry becomes intricate. Because of this surface-like appearance assumption, many
methods are limited to simple surfaces or are only valid at intermediate prefiltering scales.

Some methods specifically address the problem of prefiltering complex geometry such as granular
materials or fibers using volume representations or hybrid mesh-volume methods (Chap. 5). These
methods lack generality and cannot be used for automatically prefiltering a wide range of assets. We
introduce a new hybrid method for prefiltering assets at arbitrary scales that combines mesh analysis,
mesh simplification and voxelization to overcome some limitations of previous methods.

This part of the dissertation begins with a problem analysis of accurate, seamless and general LOD
generation from input textured meshes (Chap. 6). We will see that a hybrid approach can fit all the
requirements of high-quality LOD generation. We then introduce new tools for prefiltering complex
assets at arbitrary scales, including an algorithm for the automatic analysis of macrosurfaces in arbitrary
meshes (Chap. 7), the joint simplification of geometry and materials for textured meshes (Chap. 8) and
the prefiltering of intricate geometry (Chap. 9). In chapter 10, we discuss some implementation details
and show examples of assets prefiltered using our method.
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Chapter 6

Problem analysis: prefiltering
production assets at arbitrary scales

One of our main motivations for this thesis is to explore new LOD methods for off-line production
rendering, and in particular for the film industry in which extremely complex worlds have to be rendered
with limited time, memory and CPU cores, and with substantial quality requirements. In this chapter,
we provide information about production assets and we discuss the problem of simplifying them while
preserving accurately their appearance at arbitrary scales. Based on this analysis, we propose a pipeline
for generating LODs (Sec. 6.4) that combines mesh simplification and sub-resolution geometry prefiltering.
The various elements of this pipeline are discussed in the next chapters.

6.1 Production assets

In this section, we discuss the properties of rendering primitives used in the industry at the time this
dissertation is written. Because studios rarely provide detailed information about their production tools
and workflows, the content of this section is mostly based on personal discussions and technical details
learned during the internships at Weta Digital and at the Walt Disney Animation Studios.

6.1.1 The production pipeline

The production of special effects and computer-animated films is organized as a pipeline in which different
departments reuse data from other departments and produce 3D content for a film, until final frames
can be computed. This pipeline is complex [CCL14], and modifying it is difficult because changes affect
many departments, production tools and artists. Having a global view of the pipeline and considering
production constraints allows for identifying important requirements for LOD methods.

The pipeline varies from company to company, but departments such as modeling, texturing, lighting,
rigging, animation, physical simulations, compositing, digital matte painting, stereo, layout, crowds,
environments or rotoscoping can be found in many studios. The pipeline is ideally but rarely one-way, due
to the interdependence of all the departments and the iterative nature of filmmaking. It is not uncommon
that artists from a department ask for changes upstream in the pipeline. For instance, artists in the texture
department may ask for some modifications of the topology of an asset to the modeling department, or
lighting artists could ask for a modification of the material of an asset. A director can also ask for
changes that affect various departments. Each department uses specific programs. Many are standard in
the industry, such as Maya1 (modeling, animation), Nuke2 (compositing) or Houdini3 (simulation), but

1Autodesk, https://www.autodesk.eu/products/maya/overview
2The Foundry, https://www.foundry.com/products/nuke
3SideFX, https://www.sidefx.com/products/houdini-fx/
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studios also develop their own software and plugins when they need to have a complete control of the
source code for their specific needs. For example, several major studios use their own renderers, such as
Hyperion4 at the Walt Disney Animation Studios, Manuka5 at Weta Digital or RenderMan6 at Pixar
Animation Studios.

Artists do not create entire scenes directly, they model smaller elements that are reviewed indepen-
dently. Other artists assemble all the elements for a scene or a shot (a series of frames without cuts in a
film, typically lasting a few seconds). These elements can be divided into two main groups:

• Assets: usually independent objects or elements of a scene. For example, a car, a tree, a fridge, a
boulder, etc. Assets can be used in one or several scenes of a film. Large assets such as mountains,
riverbeds or the interior of buildings for indoor scenes are sometimes called environments or master
sets.

• Characters: they require a specific pipeline that include rigging and other tasks for hair and cloth.

The creation of rendering primitives usually involves three main steps: modeling the geometry, creating
some textures, and finally setting the materials using the textures. This process can vary and include
captured data from real-word objects, physical simulations, or data generated semi-automatically using
procedural methods, for instance in the case of plants. The data processed by the renderers is rather
standard in the industry, the most common representation being polygon meshes, subdivided using
Catmull-Clark subdivisions [CC78] or similar algorithms (Sec. 3.3.1), displaced using displacement maps,
and shaded with spatially-varying reflectance models often based on textures.

6.1.2 Geometry of base meshes

The geometry of assets such as trees and buildings consists of various disconnected meshes. For example,
a tree will have distinct meshes for the trunk, the twigs and the leaves. Although renderers compute
intersections between rays and triangles, the base meshes are usually quadrilateral meshes (or quad
meshes) and are triangulated at render time. Quads are often more natural for modeling compared to
triangles [DKT98], for example in the case of cylinder-like shapes using extrusion modeling7. Quads also
facilitate texturing.

Production meshes are almost always manifold with boundaries, meaning that each point of the
surface must have a neighborhood that is homeomorphic to a disk (for points inside the surfaces) or a
half-disk (for points on boundary edges). For example, edges cannot be adjacent to more that 2 faces
(Fig. 6.1a), and vertices cannot be adjacent to more than 2 boundary edges (Fig. 6.1b). However, self-
intersections are allowed (Fig. 6.1d). These constraints come from several pipeline considerations. In
particular, texture filtering is only well-posed for manifold surfaces. Modeling artist intend to produce
semi-regular meshes (Fig. 6.2) with feature-aligned face loops.

6.1.3 Subdivision surfaces

Subdivision surface algorithms (Sec. 3.3.1, [CC78, Loo87, DLG90, ZSS97, Kob96]) are used for model-
ing smooth shapes, and the base mesh is seen as the control mesh of a smooth parametric surface.
Smooth subdivision surfaces are sometimes called limit surfaces because they are defined by subdivi-
sion schemes that are applied iteratively such that the geometry converges towards a smooth surface.
However, Catmull-Clark subdivision surfaces can be evaluated as other parametric surfaces using Stam’s
method [Sta98].

At rendering, a level of subdivision is chosen to approximate the limit surface. It is typically chosen
depending on the position of the camera, and base meshes or subdivided meshes are considered as

4https://www.disneyanimation.com/technology/innovations/hyperion
5https://www.wetafx.co.nz/research-and-tech/technology/manuka/
6https://renderman.pixar.com/
7https://en.wikipedia.org/wiki/Polygonal_modeling
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(a) Non-manifold edge (b) Non-manifold vertices (c) Non-manifold vertex (d) Self-intersecting
manifold surface

Figure 6.1: The geometry of production assets is usually manifold with boundary, i.e. for any point of
the surface, there is a connected neighborhood of this point that is homeomorphic to a disk (for points
inside the surface) or a half disk (for points on boundary edges). This means that self-intersections are
allowed (d) but edges cannot have more than two adjacent faces (a) and vertices cannot have more than
two adjacent boundary edges (b). Note that vertices can be non-manifold even if they are not adjacent to
boundary edges (c).

(a) Unstructured quad mesh
from [BLP∗12]

(b) Unstructured quad mesh
from [BLP∗12]

(c) Semi-regular quad mesh

Figure 6.2: Quad meshes can be unstructured (a,b), but modeling artists usually produce semi-regular
meshes (c) in which most vertices have 4 adjacent faces, most edges are feature-aligned. This facilitates
authoring, texturing, and it avoids artifacts in subdivision surfaces. The mesh (c) comes from the Sintel
project (https: // durian. blender. org/ news/ sintel-lite/ ).

good approximations of the limit surface if each polygon projects to approximately one pixel. This
means that in practice, the base mesh is rendered without subdivisions for assets in the background.
Therefore, subdivision surfaces algorithms can be used as LOD techniques, although they cannot be used
for prefiltering a geometry beyond the scale of the base polygons.

Subdivision surfaces tend to smoothen all the sharp features of base polygon meshes (Fig. 6.3a).
Artists often need to model surfaces with both smooth areas and sharp features. They have two main
ways of preserving sharp features with subdivision surfaces:

• Adding tiny faces around sharp features (Fig. 6.3b).

• Tagging some edges as “sharp” and modifying the subdivision scheme so that it can preserve sharp
features. This is often called creasing or creased edges and vertices [HDD∗94,DKT98], and a weight
can be given to edges to chose a level of sharpness (Fig. 6.3c).

The subdivision level can be adaptive for a given surface: each polygon can be seen as a patch that
can be subdivided independently of other polygons, so that large base polygons are more subdivided
than small base polygons. However, naïve implementations lead to cracks between patches that have
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a different level of subdivision, and various methods are used to avoid this problem, such as specific
subdivision pattern [Mor01,LPD14].

In the case of off-line rendering algorithms that compute all orders of light scattering, it is not trivial
to know the appropriate level of subdivision for each surface. Some geometry is invisible from the camera
but indirectly visible through shadows, reflections or refractions. Various strategies can be used, including
tessellation oracles for predicting automatically the required level of subdivision, or simpler strategies
based on distances to the frustum.

Seamless changes of resolution are not always implemented in production rendering pipelines. In this
case, artifacts may appear when the camera or an asset move during a shot. To avoid these problems,
some pipelines support the use of tessellation cameras to control the tessellation for an entire shot, in
the same spirit as dicing cameras8 in the REYES rendering pipeline [CCC87].

6.1.4 Heterogeneous or inappropriate resolution

The goal of modeling artists is to quickly produce visually good models for close views, because this is
how assets are reviewed, and because the precise position of the asset is not necessarily known in advance.
Therefore, assets are not modeled at the appropriate resolution for a particular scene or shot, as discussed
in Sec. 1.2. Quads can have very heterogeneous sizes, and for a given frame, some of the base quads can
be smaller that pixels while others cover several pixels. In particular, this happens when artists use tiny
faces for controlling subdivision surfaces (Fig. 6.3c). Base polygon meshes are sometimes over-modeled,
meaning that most of the base polygons are much smaller than pixels at rendering.

When base polygons are smaller than the desired spatial resolution, memory usage can often be
saved by simplifying the base meshes. However, we will see that surface-based prefiltering is not always
sufficient. For example, artists usually model trees at the scale of leaves (often using procedural tools),
and prefiltering sub-pixel leaves cannot be done accurately with mesh simplification techniques.

6.1.5 Displacement

The subdivided geometry is very often displaced using displacement maps (Sec. 3.3.2). Such maps often
contain scalar values, and vertices are displaced along the surface normal. Vector displacement is also
used for displacing vertices in arbitrary directions. In production pipelines, displacement maps are used
to add details of small amplitude with respect to the size of the base polygon. For example, small-scale
irregularity on a skin, or small bumps on a tree bark. Displacement maps can be painted directly by
artists or generated by virtual sculpting software such as Zbrush9 or MudBox10.

When displacement maps have a high resolution compared to the level of geometric subdivision,
they must be prefiltered before displacing vertices to avoid aliasing problems, such as the swimming
artifact [NL13, SPM∗13, LBG16]. Large features such as ears or horns are almost never modeled using
displacement maps, because this approach raises frequent problems for animation and collision detection,
both generally computed using the base polygons. Displacement is important in appearance-preserving
methods since small perturbations change the perceived roughness of an object from a distance and have
to be taken into account in coarse levels of geometric subdivision for consistent appearance.

6.1.6 Textures and materials

Texture maps are used to store all kinds of scattering parameters, including albedos, roughness param-
eters, directions of anisotropy, and weights or masks for combining several reflectance models. Many
studios rely on uv-mapping but others like the Walt Disney Animation Studios rely on an independent
mapping for each base polygon (PTex [BL08]).

8https://renderman.pixar.com/resources/RenderMan_20/attributes.html#dicing-strategy-camera
9http://pixologic.com/

10https://www.autodesk.com/products/mudbox/overview
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Base mesh Base mesh Base mesh

Limit sub-div. surface

(a) Smooth geometry modeled with
subdivision surfaces

Limit sub-div. surface

(b) Geometry sharpened with tiny
base faces (blue)

Limit sub-div. surface

(c) Geometry sharpened with
crease weights (red edges)

Figure 6.3: The limit surface of subdivision algorithm (here, Catmul-Clark) has no sharp features (a).
Modeling artists use additional tiny face loops (b) or creasing (c) to preserve some sharp features.

Final materials for an asset are usually a combination of base materials. The most common base
materials are the Lambertian reflectance model, smooth and rough dielectrics with microfacet models,
smooth and rough conductors and emissive materials. Spatially varying materials are designed using
textures but also procedural functions or other data such as distances to particles around the surface.
Node-based graphical interfaces are very popular in the industry for the artistic authoring of materials.
Examples of such interfaces can be found in the Hypershade material editor in Maya11, in the Cycles
renderer of Blender12, in Nuke13 or in Mary14. Burley et al. introduced the principled BRDF [Bur12],
an artist-friendly general material that only exposes to artists intuitive parameters for combining base
materials, and reduces the problem of overly complex node graphs. This technique is currently used
in Hyperion, the renderer of the Walt Disney Animation Studios, but also in other renderers such as
RenderMan15.

6.1.7 Modeling practices

Assets and characters are made of lots of disconnected meshes that are manifold, with or without bound-
aries. Very often, each manifold surface is assigned an appearance based on the real-word object it models:
wood, shiny metal, fabric, glass, plastic, etc. For example, a window will be modeled using a mesh for the
frame with a wood appearance, and another mesh for the pane with a glass appearance, instead of using
a single mesh with a glass material at the center and a wood material on the borders. Modeling mesh
elements that have a single kind of appearance facilitates authoring, avoids some prefiltering problems
and reduces the number of texture access at shading time.

11https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/
GUID-EA5E2F6E-574A-4DBA-B3BE-01FDD5381FAD-htm.html

12https://docs.blender.org/manual/en/dev/render/cycles/introduction.html
13https://www.foundry.com/products/nuke
14https://www.foundry.com/products/mari
15https://renderman.pixar.com/resources/RenderMan_20/PxrDisney.html
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Disconnected meshes in assets and characters are almost always intersecting each other for avoiding
light leaks at rendering. For instance, a building asset is typically made of many separated mesh elements
for the walls, stairs, windows, ceilings and floors, and each element intersects some others. Similarly, the
branches of a tree are often separated meshes that penetrate the mesh of the trunk, and hair primitives
penetrate the geometry that models the skin.

6.1.8 Other rendering primitives: curves, volumes

Apart from textured meshes, off-line production renderers handle other rendering primitives such as seg-
ments or other 1D primitives, especially for hair modeling, or volumetric data, for example for rendering
clouds, smoke and fire. In this part of the dissertation, we focus on prefiltering polygon meshes. We
discussed previous work on hair prefiltering in Chap. 5, and volume downsampling is addressed in the
last part of the dissertation (Chap. 11 to 14).

6.2 Using LODs in production pipelines

In the previous section, we gave an overview of the creation of textured meshes in the film industry. We
now discuss practical problems raised by LODs in production pipelines and we list important requirements
and useful properties.

6.2.1 Per asset, per shot and per frame precomputation

LODs methods can have a significant precomputation cost, especially when assets are very complex,
because the data must be loaded and can be prefiltered with time consuming techniques, for exam-
ple non-linear optimization (Sec. 4.4.2), random sampling for estimating integrals, or occlusion estima-
tion [LBBS08]. Therefore, LODs must be precomputed at the right place in the pipeline, so that the
precomputation cost is amortized for various rendering tasks and it does not put an additional burden
on the pipeline.

For example, LODs can be precomputed per frame, per shot or per asset. Per-frame LOD computation
is rather inefficient because a LOD can usually be used in many frames. Per asset precomputation is
convenient because assets are often used in various shots. Moreover, in the modeling workflow, each asset
is reviewed individually by directors or other artists with various lights and views, and the quality of
LODs could be reviewed similarly (for various views, lights and scales). In the case of per asset LOD
precomputation, the camera, that lights and the neighboring assets are not known. This context is known
in per shot LOD precomputation, and it can be used for efficient prefiltering. For example, simplifying
groups of neighboring assets can be more efficient than prefiltering each asset individually: in a dense
forest with many overlapping plants, prefiltering a whole part of the forest can be more efficient than
computing LODs for each plant.

6.2.2 LODs and instancing

Instancing consists in adding N instances of a mesh in a virtual scene without loading the geometry N
times at rendering nor duplicating the geometry in memory. Each instance is described by its position
in the scene and some transformations (scaling, rotations, deformations). The renderer computes ray
intersections for all the instances using the same geometry. Instancing is very useful in scenes where lots
of details are similar through the entire image: the leaves of a tree, the trees of a forest, the buildings
in a city, etc. Instances may also have different reflectance attributes so that all instances look visually
different even if the underlying ray-traced geometry is the same. For example, instanced leaves of a tree
can have different materials based on their position in the foliage.

All the instances of a scene have the same geometry, that is the same resolution. This means that if
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instances of a tree appear in both the foreground and the background, a high-resolution geometry must
be used for all the instances. It is possible to create groups of instances depending on their positions
with respect to the camera, and to use appropriate LODs for each group, but this reduces the benefits
of instancing for reducing memory usage. However, creating groups of instances by level of detail has
benefits in terms of noise. Therefore, there is a tradeoff between asset prefiltering and instancing, whose
optimal solution depends on the scene, the complexity of the asset, the number of instances, and the
bottleneck of the rendering algorithm.

It must be noted that LODs also tend to decrease the cost of ray intersections because they require
less rendering primitives. However, these savings do not always bring significant speedup because the
relationship between the cost of ray intersections and the geometric complexity is not linear. This
is because rendering algorithms use highly optimized acceleration structures such as bounding volume
hierarchies, and because ray intersections are not always the bottleneck compared to data loading and
shading evaluations.

6.2.3 Useful properties of LOD methods for production pipelines

Seamless LOD transitions. Seamless transitions designate the possibility to change the resolution
of an asset from the finest to the coarsest resolution without any brutal change of appearance (popping
artifacts) in rendered images (Sec. 3.1.1). Seamless transitions are important when various resolutions of
an asset are needed in the same shot, because popping artifacts are extremely perceptible. In particular,
seamless transitions are required when assets are moving farther and farther from the camera, and when
assets move and progressively go out of the camera frustum since popping artifacts could be visible in
shadows or indirect reflections.

Automatic and robust. LOD methods should be as robust as possible. Artists’ time is even more
precious than computer resources, and LOD methods should ideally require no human intervention nor
manual corrections.

Standard representations for the renderers. The representations used in LODs should be com-
patible with the existing rendering algorithms. For example, the primitives used in LODs should satisfy
Helmholtz’s reciprocity, especially for bidirectional rendering algorithms [LW93,Vea98].

Generality. Although strong assumptions on input assets allow for robust and efficient prefiltering,
assets used in production are extremely diverse. Artists create trees with all kinds of branches, spatially-
varying leaves, palms, flowers, fruits, lianas, etc. Buildings can have the appearance of medieval castles,
Victorian houses or futuristic towers. Generality is very important and it is probably the most challenging
requirement.

6.3 Types of appearance and efficient representations

One of the main questions in appearance prefiltering is the choice of representations used in the LODs,
i.e. the rendering primitives such as polygons (Sec. 3.1), surfels (Sec. 3.2.1), implicit surfaces (Sec. 3.2.2),
voxel-based geometry (Sec. 3.2.3) or volumes (Chap. 5), and the scattering models assigned to these
primitives such as BSDFs (Sec. 4.1.5) and phase functions (Sec. 5.3). Some representations are more
appropriate than others, because they approximate more accurately the appearance of the input data at
some scales, because they have a better memory efficiency or because they support seamless transitions.
In this section, we discuss the choice of the representations for prefiltering textured meshes at arbitrary
scales.
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6.3.1 Distant appearance of textured meshes

Textured meshes are used for representing all kinds of things, from simple surfaces to more complex
appearance such as the foliage of pine trees. Depending on the distance between the asset and the camera,
a pixel can either see (that is, capture the radiance from) a single polygon covering the pixel entirely
(Fig. 6.4a), several connected polygons forming a simple surface (Fig. 6.4b), small polygons that do not
cover entirely the pixel (Fig. 6.4c) or a large number mesh elements which we refer to as sub-resolution
geometry (Fig. 6.4d). The appearance of simple surfaces is quite different from the appearance of a foliage
viewed from a distance. The former can be characterized by a normal and a surface reflectance model,
and the later does not have a well-defined normal and is better described by a probability of occlusion,
i.e. how much the geometry attenuates light and covers pixels.

(a) (b) (c) (d)

Figure 6.4: The appearance of textured meshes depends on the scale at which they are observed,
represented with blue circles. (a): In close views, the appearance is due to one or a few polygons. (b):
At this scale, the appearance is due to a simple surface made of connected polygons. (c): For distant views,
connected polygons do not cover pixels, leading to a semi-transparent appearance. (d): Semi-transparent
appearance due to a lot of sub-resolution geometry.

If we move progressively an asset from the foreground to the background, the appearance seen by the
pixels changes continuously from a surface-like appearance to a semi-transparent appearance, until the
entire asset becomes sub-pixel. This means that an all-scale prefiltering method should support various
types of appearance with seamless transitions. Ideally, the input high-resolution textured mesh should
be used as the finest of the LODs when the asset is very close to the camera.

In Chap. 3, we have seen that several LOD methods have a limited domain of validity because
they assume that the appearance of the asset in each pixel is alway a surface-like appearance. For
example, mesh simplification methods or the contour plane method (Sec. 3.2.3, [LK10a]) cannot be used
for prefiltering accurately foliage for distant views, because what pixels see is quite different from the
appearance of simple opaque surfaces, and these methods do not preserve accurately the probability of
occlusion. In other words, these methods should only be used as long as the asset is made of simple
and large enough surfaces compared to the chosen prefiltering scale. In this part of the dissertation, we
address the problem of all-scale prefiltering and we do not want to assume that pixels only see simple
surfaces.

6.3.2 Identifying important characteristics of appearance

Before obtaining the results presented in the next chapters, we experimented various LOD methods using
either volume-based representations or surfels as primitives for prefiltering all kinds of appearances, and
we did not obtain satisfying results: volumes were inaccurate for representing large surfaces with accurate
shading, and surfels lead to artifacts for both large surfaces and foliage-like geometry. We found that
these rendering primitives are not appropriate for prefiltering all kinds of appearances, and that accurate
prefiltering requires to understand what characterizes the distant appearance of an asset in order to
preserve it using the best representation.

When an asset is moving from the foreground to the background, pixels see continuous changes of
appearance. It is difficult to define precise and unambiguous types of appearance, and there are necessarily
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transition scales. Nevertheless, from our tests, we have drawn the conclusion that the scattering of light
at a given resolution can be roughly classified in two categories, each with specific prefiltering constraints:

• Assets are often made of large, simple enough, watertight surfaces (without light leaks) that cover
several pixels. We found that these surfaces must be prefiltered using accurate and watertight
surface representations, and with accurate surface reflectance models.

• In the case of sub-resolution geometry such as foliage seen from a distance, the amount of occlusion of
the sub-resolution details is an important part of the perceived appearance, because it characterizes
the shadows, how much the background is seen through the asset, and how deep light can penetrate
inside the asset (for example in a foliage). Therefore, intricate details must be prefiltered with
correct local occlusion, which is not the purpose of surface-based prefiltering methods.

6.3.3 Automatic analysis of complex geometry

Because the distant appearance of 3D assets can be classified in two categories with different prefiltering
requirements, a solution is to prefilter them separately using appropriate methods and primitives for each
one. Therefore, we need a tool for automatically analyzing input assets and classifying the geometry
in two groups: the geometry that must be prefiltered using a watertight surface appearance, and the
geometry that must be prefiltered with a correct local occlusion. This automatic analysis is actually a
difficult problem, for two main reasons:

• As explained above, there is a continuity between surface appearance and semi-transparent ap-
pearance, and there are always ambiguous cases where it is unclear if the appearance should be
prefiltered as a surface or as sub-resolution geometry.

• A surface-like appearance can be due to a large watertight mesh (Fig. 6.5a), but also to smaller
disconnected elements, such as flat tiles on a roof (Fig. 6.5b). The former case is easier to detect
automatically and we address this problem in the next chapter (Chapter 7). The second case is
more difficult, because large scale watertightness is not something that can be detected with a local
analysis of manifold geometry. This case remains an open problem, nor only for the detection but
also for the robust prefiltering of such surfaces.

(a) Roof modeled with a single manifold surface (b) Similar roof modeled with disconnected tiles

Figure 6.5: Surface-like appearance from a distance can be due to either large-scale manifold sur-
faces (a) or assemblies of disconnected elements (b). Prefiltering manifold surfaces is much simpler,
using mesh simplification and well-posed material prefiltering in surface space. Surface appearance due
to disconnected geometry is more challenging for automatic detection and robust prefiltering.

6.3.4 Prefiltering surface-like appearances

Once a surface-like appearance has been detected in an asset, at a given prefiltering scale, it must be
prefiltered using appropriate rendering primitives and scattering functions. In the next chapters, we rely
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on meshes for prefiltering surface-like appearance, because they fulfill all our requirements: they can
model watertight surfaces without artifacts, they are memory efficient and they can be rendered very
efficiently. Because most assets are modeled with large manifold meshes (Fig. 6.5a), prefiltering such
surfaces using meshes reduces the prefiltering problem to a mesh simplification problem with surface
material prefiltering. Moreover, mesh simplification is a well studied problem and this framework supports
seamless transitions between discrete LODs (Sec. 3.1). The problem of prefiltering surface-like appearance
modeled with disconnected elements (Fig. 6.5b) is much more challenging as it raises the problem of
finding a good surface approximation, with a proper orientation and appropriate front and back materials,
which are rather ill-posed problems with many ambiguous cases.

Meshes are not the only potential representation for modeling surface appearance. As we mentioned
above, we experimented surfels in early tests and found that they suffer from several drawbacks compared
to meshes:

• Surfels must be large enough and overlap for avoiding light leaks, which leads to rendering artifacts
on curved surfaces (an example can be found in the work of Wald et al. [WS05]) but also on flat
surfaces because surfels are perfectly superimposed, which raises ray casting issues (false shadowing
between neighboring surfels and unstable ray intersections with surfels).

• With surfels, the knowledge of manifold surfaces is lost, and material prefiltering becomes ambigu-
ous. For example, prefiltering front and back materials is well-posed for manifold surfaces but not
for surfels. For this reason, prefiltering surfaces from the previous LOD would be difficult.

• Seamless transitions are more difficult to achieve using surfels and risks of light leaks appear when
morphing large surfaces made of many surfels.

Among other surface representations, implicit surfaces based on point sets or distance fields (Sec. 3.2.2
and 3.2.3) have less flexibility than meshes for prefiltering. In various implicit surface representations,
only a single surface can exist locally, and the smallest distance between two surfaces depends on the size
of the reconstruction kernel for point set surfaces [ABCO∗01] or the resolution of the distance field [HN12].
Representing geometry such as local intersections of large surfaces or close parallel surfaces would require
various superimposed implicit surface definitions, which would increase storage and rendering costs.
Although ensuring a single manifold surface locally seams to be a good property for LODs, it makes
material prefiltering ill-posed, for the same reasons as for prefiltering disconnected elements using a
single surface. In the case of large-scale parallel surfaces with, for instance, a glass material for the first
surface and a diffuse material for the second one, prefiltering becomes difficult with a single surface in
the LOD. To the contrary, preserving two surfaces allows for well-posed and robust prefiltering of each
of the manifold surfaces, and a correct appearance of the LOD.

Heterogeneous participating media cannot be used for representing accurately a surface-like appear-
ance at a large scale. Volumes are not watertight, unless density parameters in voxels are high, which in
turn creates inaccurate thick silhouettes (Fig. 6.6). Moreover, is it difficult to preserve precisely the ap-
pearance of a surface using heterogeneous participating media because multiple scattering in the volume
affects the perceived color and always scatters light diffusely. Volumes cannot represent several surfaces
locally, and are not the most appropriate representation for view-dependent reflectance.

6.3.5 Prefiltering sub-resolution intricate geometry

As we mentioned above, prefiltering sub-resolution geometry requires preserving the local occlusion. This
can be done by measuring the local occlusion of the input geometry, for example based on local ray casting
as proposed in Chapter 9. Then, it is possible to use volumes, surfels or small polygons to preserve a
correct local occlusion in the LOD, by estimating appropriate density parameters or surface areas for the
prefiltered representations.

The microflake volume model introduced by Jakob et al. [JAM∗10a] (Sec. 5.3.2) combined with the
SGGX distribution [HDCD15] allows for rendering foliage-like and fiber-like volumetric appearance with
relatively low storage requirements, especially if sparse voxel grids are used. Microflakes volumes are
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(a) Input mesh. (b) Prefiltering using
isotropic volume.

(c) Prefiltering using
microflakes volume.

(d) Same as (c),
density ×20

Figure 6.6: Several volumetric approximations (b,c,d) of a mesh containing large watertight surfaces
with respect to the prefiltering scale (a). Volumes are rendered with approximately one voxel per pixel.
From the point of view of the occlusion, heterogeneous participating media cannot be used for prefiltering
such geometry because this representation fails to preserve both watertightness (b,c) and local occlusion
(d). (a): Input high-resolution mesh. (b): Isotropic participating medium approximation with preser-
vation of the mean local occlusion. (c): Using an anisotropic participating medium model (microflakes
model). (d): Increasing density parameters preserves watertightness but leads to incorrect local occlusion
and silhouettes. Rendered with volumetric path tracing in Mitsuba [Jak10].

characterized by microflake normal distributions and microflakes albedos, allowing for prefiltering di-
rectly sub-resolution polygons from their individual normals and albedos. On the other hand, from a
pipeline point a view, polygons and surfels are more convenient in the case of overlapping or animated
assets, compared to volume representations. In Chapter 9, we address the problem of estimating volume
scattering parameters given some intricate geometry.

6.4 Our new framework for generating hybrid LODs

From the observations discussed in the previous section, we propose a pipeline for generating appearance-
preserving LODs. As shown in Fig. 6.7, we propose a cascaded LOD generation based on an automatic
surface appearance analysis, and separate prefiltering for large surfaces and sub-resolution intricate ge-
ometry. The cascade aims at enabling seamless transitions in the mesh simplification framework, as well
as reducing the prefiltering cost by analyzing the mesh of the previous LOD instead of the input mesh.

Input (mesh) LoD 1 LoD 2 LoD 3

A AS S

V V

A S VMesh analysis for macro-surface separation Mesh simplification and pre-filtering Voxelization

A S

V

macro-surfaces

sub-resolution

geometry

Figure 6.7: We propose a framework for generating all-scale appearance-preserving LODs. Starting
from an input textured mesh, we analyze and separate large-scale surfaces (or macrosurfaces) from the rest
of the geometry using our separation criterion (step A, Chap. 7). Macrosurfaces are prefiltered until they
match the target resolution (step S, Chap. 8). The rest of the geometry, i.e. sub-resolution geometry is
prefiltered independently of large surfaces (step V, Chap. 9). Each output LODs consists of the prefiltered
macrosurfaces and prefiltered sub-resolution geometry (in this case, voxels). They have to be rendered
jointly. Our cascaded LOD framework allows for seamless transitions.
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6.5 Summary of the chapter

In this chapter, we introduced various ideas that led us to the hybrid prefiltering method whose parts
are presented in the next chapters. Our main points were the following:

• Production assets can be assumed to have several properties that help prefiltering them. In partic-
ular, they are made of assemblies of clean manifold surfaces.

• On the other hand, production assets have very heterogeneous polygon sizes and can have both
large surfaces and intricate details.

• The distant appearance of assets can be classified in two main categories: large-scale watertight
surface-like appearance, and semi-transparent appearance due to intricate details.

• These kinds of appearance require different prefiltering methods: for the former, a watertight
surface representation is needed with correct surface material, for the later the local occlusion must
be preserved in the LOD.

• Among the existing surface representations for prefiltering and rendering large watertight surfaces,
meshes are the most appropriate representation and allow us to rely on previous work on mesh
simplification with seamless transitions.

• Prefiltering sub-resolution geometry can be done using various representations, including the mi-
croflakes volume model which can be used for rendering sub-pixel foliage-like and fiber-like appear-
ances.

• We proposed a LOD pipeline with automatic analysis of large surfaces and sub-resolution geometry
for all-scale appearance-preserving LODs.

In the next chapters, we address some of the problems identified in this chapter so that our prefiltering
pipeline can be implemented: we address the automatic analysis of macrosurfaces in chapter 7, the
prefiltering of macrosurfaces in chapter 8, and the prefiltering of intricate geometry in chapter 9. Results
of our method can be found in chapter 10.

6.6 Résumé du chapitre

Dans ce chapitre, nous avons introduit plusieurs idées qui ont mené à la conception d’une méthode hybride
pour le préfiltrage. Les différents éléments de cette méthode sont détaillés dans les prochains chapitres.
Les idées principales de ce chapitre étaient les suivantes :

• Les objets 3D utilisés en production ont certaines propriétés spécifiques qui nous aident à les pré-
filter. En particulier, ils sont faits de surfaces de topologie simple et leurs polygones sont agencés
de manière cohérente.

• D’un autre côté, les objets 3D de production peuvent avoir des tailles de polygones très hétérogènes,
c’est à dire qu’on peut y trouver à la fois de grands polygones et de tout petits détails géométriques.

• Les apparences distantes de ces objets peuvent être classées en deux grandes catégories: les ap-
parences des larges pans de surfaces étanches, et les apparences semi-transparentes dues à de la
géométrie sous-résolution.

• Ces sortes d’apparence nécessitent des méthodes de préfiltrage différentes : pour les grands pans
de surfaces, il faut utiliser une représentation surfacique étanche et des modèles de réflectance
appropriés, tandis que pour la géométrie sous-resolution il faut surtout préserver la transparence
locale dans les LODs.

• Parmi les représentations surfaciques existantes pour le préfiltrage et le rendu, les maillages sont les
plus pratiques et ils nous permettent de nous appuyer sur de nombreux travaux de simplification
de maillage et de transitions imperceptibles entre les niveaux de détail.
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• Pour préfiltrer de la géométrie complexe sous-résolution, plusieurs solutions peuvent être envisagées,
et en particulier les modèles volumiques de microflakes qui peuvent être utilisés pour le rendu de
milieux anisotropes comme les ensembles de fibres ou les feuillages.

• Nous proposons une approche de LOD hybride qui repose sur une analyse automatique des macro-
surfaces et de la géométrie sous-résolution pour le préfiltrage à des échelles arbitraires.

Dans les prochains chapitres, nous nous pencherons sur plusieurs problèmes identifiés dans ce chapitre,
de manière à pouvoir implémenter entièrement notre approche hybride : nous traiterons le problème
de l’analyse automatique de macrosurfaces dans le chapitre 7, le préfiltrage des macrosurfaces dans le
chapitre 8, et le préfiltrage de la géométrie complexe dans le chapitre 9. Les résultats obtenus avec notre
approche seront présentés dans le chapitre 10.
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Chapter 7

A new algorithm for detecting
macrosurfaces

In this chapter, we address the problem of analyzing the geometry of an asset for detecting automati-
cally surface-like appearances and sub-resolution intricate geometry, in order to prefilter them accurately
using appropriate algorithms and representations. We show in this chapter that detecting surface-like
appearances due to large manifold surfaces (Fig. 6.5a) can be achieved with a local analysis of a mesh.
As mentioned in the previous chapter, detecting surface-like appearances due to disconnected elements
(Fig. 6.5b) is much more challenging. For example, it is difficult to robustly detect that an assembly of
disconnected tiles forms a large watertight surface, using local geometric information or local occlusion
measurements.

We only address the problem of detecting manifold surfaces, which are a lot more frequent in produc-
tion assets than surface-like appearance made of disconnected elements. We use the term macrosurface
for designating manifold surfaces that are large compared to a given prefiltering scale. In this chapter,
we propose a definition of macrosurfaces for our hybrid LOD method and we propose practical solutions
for implementing a macrosurface analysis algorithm.

7.1 Definition of macrosurfaces

7.1.1 Ambiguities and requirements

Our macrosurface definition aims at separating a given geometry into large-scale surfaces and sub-
resolution geometry. Of course, ambiguities appear because there are necessarily transitions scales where
surfaces are not large but not clearly sub-resolution either. Nevertheless, some cases are not ambiguous:

• Tiny cylinders (Fig. 7.1a) and ribbons (Fig. 7.1b) are clearly not macrosurfaces and should not be
prefiltered using large opaque surfaces.

• Tiny disconnected elements should be robustly classified as sub-resolution geometry (Fig. 7.1c
and 7.1d)

• To the contrary, large smooth surfaces are clearly macrosurfaces (Fig. 7.1e) and should be robustly
identified as such, as well as large surfaces with small perturbations (Fig. 7.1f).

Ambiguous cases include:

• Surfaces with relatively large perturbations with respect to the prefiltering scale. Their appearance
is similar to the one of sub-resolution cylinders (Fig. 7.1g).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.1: (a,b,c,d): Non-ambiguous cases of sub-resolution geometry that do not have the appearance
of macrosurfaces at the prefiltering scale (blue circles). (e,f): Non-ambiguous macrosurfaces at the
prefiltering scale. (g,h): Ambiguous cases with highly curved surfaces that are between simple surfaces
and cylinder-like sub-resolution geometry.

• Highly curved surfaces that do not cover pixels (Fig. 7.1h).

The goal of our definition is not to overcome ambiguities but to robustly detect cases that are not
ambiguous. In our implementation (Sec. 7.2), we rely on a cleaning step from improving the quality of
the analysis.

7.1.2 Our definition of macrosurfaces

We propose a definition that classifies points on a manifold surface into two groups, depending on the
connected neighborhood of each point: points belonging to macrosurfaces, and points belonging to sub-
resolution geometry.

Let x be a point on the mesh M and r the target spatial resolution, which gives the scale of the
macrosurface analysis. Let S be the sphere of radius r centered in x, and B the closed ball bounded by
S (Fig. 7.2a). We call I the set of points p ∈ (M ∩ S) that are connected to x in M ∩B. We say that x
belongs to a macrosurface if I has one single connected component.

7.1.3 Examples

To have more intuitions about the behavior of our macrosurface criterion, we can look at what happens
in two simple cases:

• I is empty for all points on any disconnected geometry that is small compared to S (Fig. 7.2d).
Our criterion states that these points on such small elements do not belong to a macrosurface.

• For all points on cylinders whose radius is small compared to S, I has two connected components,
as shown in Fig. 7.2c, meaning that such cylinders are analyzed as sub-resolution geometry.
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Figure 7.2: Several geometries including non-ambiguous macrosurfaces (a), sub-resolution geometry
(c,d) and ambiguous cases (b,e). Our macrosurface analysis at a point x on a surface M depends on
the number of connected components of I defined as the set of points p ∈ (M ∩ S) that are connected
to x inside the ball B. (a,b): I has a single component, our criterion detects a macrosurface around
x. (c,d,e): I is empty or has more than one component. The point x is analyzed as not belonging to a
macrosurface.

Other examples are illustrated in Fig. 7.2. Note that our criterion does not analyze as sub-resolution
geometry the boundaries of large surfaces, which is a good property, as such borders are indeed part of
a large watertight surface.

7.2 Implementation

In this section, we propose an implementation of a macrosurface detection algorithm based on the criterion
introduced in the previous section, with a method for efficiently evaluate the criterion for one point of
the input surface, and a cleaning step for improving the behavior of the algorithm in ambiguous cases.

7.2.1 Evaluating our macrosurface criterion

Our definition of macrosurfaces is based on the connected neighborhood of a point on a mesh. For a
given point, it requires the computation of the number of intersections of connected polygons in the
neighborhood of a point with a sphere, and to find the topology of the intersection (the number of con-
nected component of the intersection). Therefore, efficient evaluation requires fast access to neighboring
faces, edges, points, etc. The half-edge data structure [BSBK02] is appropriate since access to adjacent
elements can be done with constant time.

We propose a strategy for exploring efficiently the connected neighborhood and computing the topol-
ogy of I. We assume without loss of generality that the input mesh of the analysis is a triangle mesh, as
other polygons can be triangulated for this computation. Our algorithm consists in a local exploration of
the faces connected to x inside the sphere of radius r and center x. When we find an intersection between
a face and the sphere, we store the information in order to retrieve the topology of I once all the local
faces have been explored. Sphere-triangle intersections lead to various cases presented in Fig. 7.3. More
precisely, our algorithm has the following steps:

1. Create a list of faces to explore, which is initialized with the face that contains the point x.

2. While there are faces to explore:

• Choose one face in the list, look for intersections with the sphere S. The different cases are
shown in Fig. 7.3.

• If the face intersects the sphere, store some information about the intersection.
• Add neighboring faces that have not been explored yet and that are connected to x inside S
(Fig. 7.3, green arrows).
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Figure 7.3: For evaluating our macrosurface criterion, we look for intersections between triangles and
the sphere S. Our algorithm stores information about these intersections (red parts) and then explores
neighboring faces that are connected inside the sphere. Neighboring faces that must be explored are shown
with green arrows.

3. Finally, find the topology of I from all the intersections that have been found. If I has a single
connected component, x belongs to a macrosurface, else x belongs to sub-resolution geometry.

The main idea of the algorithm is to ensure that explored faces are always connected to x inside the
sphere S. For this reason, we start with the face that contains x and only add to the exploration list
faces that have points connected to x inside S (Fig. 7.3). A pseudo code of the algorithm can be found
in Appendix A.

7.2.2 Per-triangle evaluation and cleaning step

Our macrosurface criterion is defined for arbitrary points on a surface. In practice, we have some input
meshes and we want to classify their polygons into macrosurfaces or sub-resolution geometry. In our
implementation, we decided to evaluate our criterion once per triangle, for example using the center
of mass as evaluation point, or the middle of the longest edge, which performs better for elongated
triangles. After the analysis of the entire mesh, triangles are identified as parts of a macrosurface or as
sub-resolution intricate geometry as shown in Fig. 7.4a. In the case on highly curved surfaces or cylinders,
our method analyzes as macrosurfaces the endings, as shown in Fig. 7.2b and 7.4a. Although these cases
are ambiguous, we found that in some cases they are best prefiltered as sub-resolution intricate geometry,
and that a cleaning step could help classifying them more robustly. Our cleaning pass is the following:
for each connected piece of potential macrosurfaces, we check that the bounding sphere is larger than
S. If this is the case, we classify this geometry as a macrosurface, else we classify it as sub-resolution
geometry. Indeed, groups of connected faces that do not satisfy this criteria cannot cover more than one
pixel. This is illustrated in Fig. 7.4b.
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macro-surfaces

not
macro-surfaces
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Figure 7.4: Our two steps macrosurface analysis. (a): Detecting potential macrosurfaces (orange).
Our criterion uses spheres whose radius is equal to the target resolution and whose centers are on the
surface (Sec. 7.1.2). (b): Keeping only large connected surfaces (green). As the upper part of the bump
is smaller that S, it is analyzed as sub-resolution geometry after our cleaning step.

7.3 Results and discussion

Results on complex meshes are shown in Fig. 7.5 for different scales of analysis. They show that our
algorithm robustly detects cylinder-like sub-resolution geometry and large surfaces. Ambiguities can be
seen close to borders at some scales since the geometry is locally ribbon-like.

The cost of our analysis for a given point x depends on how many triangles are connected to x in B.
Our implementation is more expensive if the mesh is very detailed compared to S because lots of triangles
have to be explored. Fortunately, in our filtering pipeline (Fig. 6.7), the average triangle size increases at
each LOD and their edge lengths are approximately r

2 . Moreover, only macrosurfaces from the previous
LOD have to be analyzed. Our implementation is therefore efficient for our pipeline. Our algorithm
easily supports parallel implementations since each triangle analysis is independent of the others. In our
implementation, the mean cost of the analysis per triangle is around 15 µs if the mesh comes from the
previous LOD (the analysis of the input mesh highly depends on its resolution compared to the first
target resolution). We used the OpenMesh library [BSBK02,Ope] and the half-edge data structure for
efficient local explorations of meshes.

The main limitation of our approach is that it only detects macrosurfaces due to connected and
smooth enough meshes. It cannot detect large scale watertightness due to disconnected elements or very
rough surfaces (Fig. 7.2e). Our method could probability be improved by additional cleaning steps. For
example, the small ambiguous regions on the leaves in Fig. 7.5 at transitions scales could be changed to
macrosurfaces when these regions are small compared to S and surrounded by macrosurfaces.

7.4 Summary of the chapter

In this chapter:

• We proposed a criterion for classifying points on manifold surfaces into either points belonging to
macrosurfaces or points belonging to sub-resolution intricate geometry.

• We discussed the implementation of our macrosurface analysis for separating meshes into macro-
surfaces and sub-resolution geometry, for a given prefiltering scale. We proposed an additional
cleaning step for improving the quality of the separation.

• Our method robustly detects sub-resolution cylinder-like and ribbon-like geometry, as well as large,
smooth enough, watertight surfaces. It does not detect surface-like appearances due to disconnected
geometry, which remains an open problem.
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Figure 7.5: Results of our mesh-based macrosurface analysis with four different resolutions: blue circles
represent the size of sphere S (Sec. 7.1.2) whose radius is equal to the target spatial resolution in the
LOD. Green triangles are triangles analyzed as belonging to macrosurfaces by our algorithm. Top left:
leaves and big twigs are macrosurfaces compared to the target resolution. Bottom right: the geometry
has no surface wider than the target resolution.

7.5 Résumé du chapitre

Dans ce chapitre :

• Nous avons proposé un critère pour classer les points de surfaces comme des points appartenant à
des macrosurfaces ou comme des points appartenant à de la géométrie complexe sous-résolution.

• Nous avons proposé un algorithme pour détecter les macrosurfaces d’un maillage à une échelle
donnée, et commenté une étape supplémentaire de nettoyage pour améliorer la robustesse de
l’algorithme.

• Notre méthode détecte de manière fiable les géométries assimilables à des cylindres ou des rubans
sous-résolution, ainsi que les grands pans de surfaces. Elle ne détecte pas les apparences de surfaces
dues à de la géométrie déconnectée, ce qui reste un problème non résolu.
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Chapter 8

Resolution-based mesh simplification
with material prefiltering

In previous chapters, we have seen that the geometry of an asset can be automatically separated into
macrosurfaces and sub-resolution intricate geometry for a given prefiltering scale, and that prefiltering
these two kinds of data requires different techniques: watertight surface representations for macrosurfaces,
and occlusion-preserving techniques for sub-resolution geometry. In this chapter, we address the problem
of prefiltering macrosurfaces given a target spatial resolution. Assuming that the input meshes are
macrosurfaces at the desired prefiltering scale, we know that we are in the domain of validity of mesh
simplification algorithms such as the edge collapse simplification algorithm (Sec. 3.1). As discussed in
previous chapters, we rely on mesh simplification for several reasons: meshes are efficient as prefiltering
primitives, some mesh simplification algorithms support seamless transitions, and many authors have
studied accurate and robust mesh simplification so that we can build on their work.

Despite the large amount of previous work on geometric LODs, we had to adapt previous mesh
simplification methods to satisfy our needs:

• We want to prefilter both the geometry and the materials. Most previous methods focus either on
texture-space prefiltering (Chap. 4) or pure geometric simplification (Chap. 3). Some methods have
been proposed for taking into account materials during the simplification [COM98,Hop99]. What
we want instead is to prefilter materials at any scale, independently of the geometric simplification
and of uv patches. In other words, we don’t want the materials to be a constraint for the geometric
simplification, we rather want to prefilter accurately the materials for arbitrary geometric coarsening
operations.

• Most mesh simplification algorithms are budget-based, meaning that elements are iteratively deleted
until a given vertex count or face count is reached, or fidelity-based, meaning that the mesh is sim-
plified as long as the produced error (e.g. a geometric error or other quality metrics) does not
exceed a chosen maximum error (Sec. 3.1.1). What we need instead is a resolution-based simplifi-
cation algorithm, that is, an algorithm that runs until it is not possible to apply new coarsening
operations without breaking resolution constraints. For example, the size of created polygons that
should not be larger than the target spatial resolution.

In this chapter, we revisit two mesh simplification algorithms, the edge collapse algorithm [Hop96] and
the face loop collapse algorithm for quad meshes [DSSC08]. We introduce several modifications so that
these algorithms can be used for resolution-based macrosurface simplification with well-posed material
prefiltering.
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8.1 Requirements

In this section, we analyze various requirements for mesh simplification algorithms in our context, based
on the conclusions drawn in previous chapters.

8.1.1 Resolution-based simplification and stopping criteria

As explained in Sec. 3.1, mesh simplification methods are characterized by coarsening operations, which
are ordered using some metrics that quantify how much they affect the quality of the mesh. Operations
that have a minimum impact on the accuracy of the mesh are typically applied first. These algorithms
also require a criterion to stop the simplification when the desired level of simplification is reached.

In our case, we need a resolution-based stopping criterion: surfaces should not be simplified beyond
the target spatial resolution for the LOD. A convenient strategy is to ensure that simplified polygons are
never larger than the target resolution (even if this would be acceptable on perfectly flat surfaces). Using
this strategy, it is sufficient to have per-face reflectance parameters in the LODs since prefiltered faces
are always sub-pixel.

It is possible to add fidelity-based constraints to our resolution-based stopping criterion. In some of
our implementations, we prevented the mesh simplification algorithm from creating a simplified surface
whose distance to the input surface is larger than the target resolution, because such geometric error
could be visible in pixels. We relied on a two-sided distance between the input surface M1 and the
simplified surface M2, as discussed in Sec. 3.1.4:

dist(M1,M2) = max
(

max
x∈M1

d(x,M2), max
y∈M2

d(y,M1)
)

with
d(x,M) = min

y∈M
‖x− y‖2.

The constraint dist(M1,M2) < ξtol ensures that all points of M1 are at a distance of ξtol or less from M2,
and that all points of M2 are at a distance of ξtol or less from M1. The limit distance ξtol can be chosen
depending on the target resolution for preventing visible errors in pixels. This quality constraint limits
(often slightly) the geometric simplification in curved regions, but it leads to most robust LODs.

8.1.2 Seamless transitions

Mesh simplification algorithms mostly consist of local coarsening operations that are applied iteratively
on meshes. Some operations support seamless transitions. For example, the edge collapse operation
(Fig. 8.1a) allows the morphing of the old mesh to the new one, by displacing continuously the two
vertices of the collapsed edge to the position of the resulting vertex. This property of the edge collapse
operation extends to arbitrary numbers of collapses at the same time: for each input vertex vi, it is
possible to find a destination vertex v′i given the set of edge collapse operations, and seamless transitions
can be achieved by linearly interpolating positions vi and v′i. Therefore, it is possible to compute discrete
LODs, separated by arbitrary numbers of collapse operations. Note that the vertex clustering operation
[RB93, SS95] and the poly-chord collapse operation [DSSC08] can be seen as groups of edge collapse
operations applied simultaneously, meaning that they also support seamless transitions. To the contrary,
some local operations in mesh simplification methods do not support as easily seamless transitions, as for
instance retopology operations (Fig. 8.1c). In this chapter, we essentially rely on edge collapse operations
and the face loop collapse operation, which is a special case of poly-chord collapse [DSSC08].

8.1.3 Mapping for reflectance prefiltering

In production, the faces of an asset are textured and assigned a surface material, more precisely a
reflectance model (Lambertian model, microfacet models, layered surface models, combinations of various
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(a) Standard edge collapse (b) Mesh foldover creating
non-manifold geometry

(c) Example of retopology operation
(edge flip)

Figure 8.1: Examples of local coarsening and retopology operations on triangle meshes. Top: geometry
before applying the operation. Bottom: geometry after the operation.

models, etc.) and reflectance parameters (albedo, microfacet distributions, etc.). As mentioned above,
we ensure that simplified faces are not larger than the target spatial resolution, so that we can use per-
face reflectance parameters in the LOD. We need to compute prefiltered reflectance parameters for each
simplified face based on the materials of the high-resolution faces.

We have seen in chapter 4 that material prefiltering is often done in texture space, by neglecting
correlations between reflectance parameters, masking-shadowing effects on rough surfaces and the macro-
scopic curvature of the surface. With these assumptions, material prefiltering reduces to prefiltering the
reflectance models over a region of the surface (Sec. 4.2). In our context, the spatial filter of the prefilter-
ing integral for each face of the simplified geometry is defined over one or various high-resolution faces
(Fig. 8.2), which potentially have different texture spaces. Therefore, we need a mapping from simplified
faces to high-resolution faces for extending existing texture-space material prefiltering techniques to mesh
simplification algorithms.

(a) Input geometry with materials (b) Prefiltered geometry

Figure 8.2: In mesh simplification frameworks such edge collapse, a mapping from the simplified surface
(b) to the input high-resolution surface (a) is missing, preventing from efficient material prefiltering. In
this chapter, we address this problem for edge collapse simplification (Sec. 8.3) and quad mesh simplifi-
cation using the face loop collapse operation (Sec. 8.4)

.

For prefiltering materials along with a geometric simplification algorithm, we need to solve two prob-
lems:

• Geometry simplification algorithms do not necessarily provide a clear mapping for material pre-
filtering during the simplification (Fig. 8.2). For example, in the edge collapse framework, there is
no clear mapping from simplified to high-resolution polygons, in particular when merged vertices
are set to arbitrary positions for reducing geometric errors.

• If we have such a mapping, we can express materials of the simplified faces as an integral of the
materials over the high-resolution surface, which simplifies to a weighted sum of input materials
in the case of per-face attributes. We can then address the problem of prefiltering them, that
is, representing efficiently the combined materials to reduce the memory usage and the noise in
rendered images due to high spatial frequencies.
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In this chapter, we propose two solutions for the first problem: we introduce a new method for obtaining
linear combination weights for prefiltering materials in the edge collapse framework (Sec. 8.3), and we
propose a face loop collapse algorithm for simplifying quad meshes with a simple mapping between input
faces and low-resolution faces (Sec. 8.4). We also partially address the second problem and show how to
efficiently prefilter microfacet normal distributions in this context (Sec. 8.3).

8.1.4 Preserving manifold surfaces

Preserving manifold surfaces while prefiltering macrosurfaces has several benefits:

• Our macrosurface criterion (Chap. 7) was designed for analyzing manifold surfaces. New cases
appear when meshes are not manifold and we only studied the robustness of our criterion for
manifold surfaces.

• When simplifying a flat mesh without ensuring that the surface remains manifold, faces adjacent
to non-manifold edges overlap as shown in Fig. 8.1b, which can introduce artifacts at rendering.

• Material prefiltering defined as an integral of the materials of the high-resolution surface is only
well-posed if the simplified surface has the same topology as the input surface, which is assumed to
be manifold in our work. Prefiltering becomes more ambiguous when the topology of the simplified
mesh is different. For example, if a T junction is created by a coarsening operation on a manifold
surface, it is unclear how to define front and back materials for each simplified face.

In the edge collapse framework, non-manifold geometry can be created from manifold surfaces, as
shown in Fig. 8.1b. This is also true for related algorithms such as vertex merging and poly-chord
collapsing. In the case of edge collapse on triangle meshes, one can check that a particular collapse
operation preserves a manifold surface using the Link condition [Ede06]: when two adjacent vertices v1
and v2 are collapsed, it is sufficient to be sure that if there is another point v3 that is adjacent to both
v1 and v2 through edges, then there must be a face (v1, v2, v3). The Link condition can be checked
very efficiently if a fast access to adjacent elements is provided by the mesh data structure. Preserving
manifold surfaces in the case of face loop collapse operations is more challenging and discussed in the
work of [DSSC08].

8.2 A new vertex placement strategy for robust mesh simplification
with edge collapses

In mesh simplification algorithms based on edge collapse [LWC∗02], one of the key ingredients is the
strategy for placing merged vertices after each edge collapse. Several vertex placement strategies have
been proposed. The most simple approach, known as half-edge collapse, consists in placing the vertex v
resulting from a collapse at one of the initial vertices (v1 and v2 in Fig 8.3). This leads to inaccurate
simplified meshes because objects tend to shrink [LT98,Hop99]. This is an important issue for complex
objects such as trees because the global appearance is very sensitive to the occlusion of the small elements,
and may be visibly changed if every leaf is inaccurately simplified. An example is given in Fig 8.4. Placing
v between v1 and v2 does not perform better.

Vertex placement strategies based on quadric error metrics (Sec. 3.1, [GH97,Hop99]) have been suc-
cessfully used for fast simplification and they improve the quality of simplified meshes compared to naïve
approaches. Unfortunately, QEM methods also tend to shrink the geometry as noted by Hoppe [Hop99].

Several authors addressed the problem of preserving the volume of a mesh in the edge collapse frame-
work [Gué99,Hop99, LT98,ALSS99]. These methods reduce the shrinking effect and generally improve
the quality of simplified meshes. However, volume preservation is not always the right goal: a mesh could
have a null or almost null volume locally, and volume-preserving methods are not robust in this case
as shown in Fig. 8.4c. Preserving the area of the surface is not the proper criterion either because the
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Figure 8.3: One edge collapse operation. Vertices v1 and v2 are merged into a new vertex v. Triangles
t1 and t2 are collapsed. Every other triangle ti corresponds to a new triangle t′i.

(a) High res (b) QEM [GH97] (c) [LT98] (d) Our

Figure 8.4: Comparison of vertex placement strategies for accurate mesh simplification with edge
collapses. (a): The input high resolution mesh. (b): QEM-based simplification tends to shrink the
geometry. (c): Volume-preserving simplification proposed in [LT98]. It leads to instabilities for thin
geometries such as leaves. (d): Our vertex placement strategy. Unlike volume-preserving methods, it is
robust for thin geometry and almost degenerated cases.

simplification of very rough surfaces would generate incorrect results. Actually, what we want for our
LODs is to minimize a two-sided geometric distance between the input mesh and the simplified mesh, in
order to minimize errors in pixels.

We propose a new vertex placement strategy based on the minimization of a two-sided mean square
distance between the high-resolution surface and the simplified surface. Our algorithm produces results
with quality similar to volume-preserving methods and it is more robust.

8.2.1 Background

For each collapse operation, we propose to place the merged vertex such that it minimizes a two-sided
distance in the spirit of Aspert et al. [ASCE02]. Given two vertices v1 and v2 (Fig 8.3), M the set of
triangles adjacent to v1 and v2 and M ′ the triangles adjacent to the new vertex v, we want to find a
position for v that minimizes

dsqr(M,M ′) =
x

p∈M

d(p,M ′)2dp +
x

p′∈M ′

d(p′,M)2dp′ (8.2.1)

with
d(p,M ′) = min

p′∈M ′
‖p− p′‖2.

This formulation or similar ones have been used for measuring geometric errors in simplified meshes
[OVBP11], but have never been used directly for vertex placement to our knowledge. Finding a position
for v that minimize Eq. 8.2.1 is difficult because of non linearities: contrary to the quadric error metric,
we consider the actual distances between points and surfaces, instead of simpler distances between points
and the planes that contain high-resolution faces.

93



8.2.2 Our approach

We propose to approximate dsqr(M,M ′) (Eq. 8.2.1) with a sum of square distances. Our algorithm is
iterative and it tries to find a better position x for the vertex v at each step.

Let’s consider an edge collapse such as the one in Fig. 8.3. Given a current position x, our algorithm
is the following:

1. We choose some points pi on M , and find for each one the nearest point p′i on M ′. We write points
p′i as functions of x using barycentric coordinates: p′i = a′ix + b′i with a′i ∈ R and b′i ∈ R3.

2. We choose some points P′i onM ′, and find for each one the nearest point Pi onM . We write points
P′i as functions of x using barycentric coordinates: P′i = A′ix + B′i with A′i ∈ R and B′i ∈ R3.

3. Then, we minimize square distances between the points of each pair:

xnext = arg min
x

(∑
‖p′i − pi‖2 +

∑
‖P′i −Pi‖2

)
. (8.2.2)

4. We iterate until convergence or stop after a chosen number of steps.

The main idea behind this algorithm is that minimizing Eq. 8.2.2 also reduces distances between pi
and M ′ and between points P′i and M . Computing xnext can be done efficiently:

xnext = arg min
x

∑
‖a′ix + b′i − pi‖2 +

∑
‖A′ix + B′i −Pi)‖2

= arg min
x

∑
a

′2
i (x · x) + 2a′i(b′i − pi) · x +

∑
A

′2
i (x · x) + 2A′i(B′i −Pi) · x

= arg min
x

c(x · x) + C · x

= −C
2c

with c =
∑
a

′2
i +

∑
A

′2
i and C =

∑
2a′i(b′i − pi) +

∑
2A′i(B′i −Pi).

8.2.3 Implementation and discussion

We implemented this algorithm and we compute optimal positions of the merged vertex for each collapse
operation. For points pi, we choose the positions of v1 and v2 (the vertices of the collapsed edge) as well
as points at the middle of the edges that are adjacent to v1 and v2. For points P′i, we use the position of
the vertex v (its current position) and points at the middle of the edges that are adjacent to v. We stop
the optimization after 200 iterations and use the tolerance error ε = targetRes/100.

We observed that our algorithm converges most of the time with few iterations. During our tests,
we measured that the average number of iterations was 7, and the average cost of the optimization was
164 µs per edge collapse. The most time-consuming task in our algorithm is finding the closest points p′i
and Pi. This is why we choose few points pi and P′i. We compared our method with the standard QEM
strategy and one volume-preserving method (Fig. 8.4) implemented in CGAL [CGA16]. Our method
leads to results that are similar to the volume-preserving method in simple cases, and it is more robust
for thin geometry because our minimization is well conditioned.

8.3 A new material prefiltering method for the edge collapse frame-
work

In this section, we propose a method for prefiltering materials when meshes are simplified with edge
collapse operations. We introduce a strategy for writing the reflectance models of simplified faces as
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linear combinations of the reflectance models of high-resolution faces. We show how to combine our
method with the work of Heitz et al. [HDCD15] and Dong et al. [DWMG15] for prefiltering linearly
microfacet normal distributions during the mesh simplification, without requiring a common parametric
space for all the high-resolution faces.

8.3.1 Introduction

Let’s consider a single edge collapse operation on a manifold surface, as shown in Fig 8.3. We assume
that each face of the input geometry is assigned a reflectance model with per-face parameters. Our
goal is to preserve the appearance of the surface after the simplification, in which the merged vertex is
positioned such that the geometric error is minimized (Sec. 8.2). As explained before, our strategy is to
write the reflectance models of the simplified faces as linear combinations of the reflectance models of the
high-resolution faces.

When the geometry is perfectly planar locally, each triangle of the geometry is seen proportionally to
its size from a given point of view. In this case, it is possible to preserve exactly the appearance of the
surface from a distance by assigning to each simplified face the average material of the input geometry,
that is, a sum of the input materials weighted by the areas of the corresponding triangles. This naïve
strategy over-blurs the appearance of the surface as illustrated in Fig. 8.5b. We propose another method
that preserves exactly the appearance in the planar case while avoiding over-blurring (Fig. 8.5c).

(a) Input geometry with materials (b) Simplified geometry and naïve
material prefiltering method

(c) Simplified geometry with our
material prefiltering method

Figure 8.5: In the case of a planar geometry simplified using edge collapse, a simple prefiltering solution
consists in prefiltering the reflectance models of simplified faces by averaging the reflectance models of all
the neighboring high-resolution faces (b). This solution preserves exactly the appearance of the surface
from a distance, but it over-blurs the surface appearance. We propose a method that also preserves exactly
the appearance in the planar case while avoiding over-blurring (c).

The case of a non-planar geometry is more difficult. Indeed, the contribution of each face to the
appearance is view dependent, because of different cosine factors for the projected area of each face
depending of their normal, and because of masking between faces (Sec. 4.3). It is not possible in general
to preserve exactly the appearance from all view directions. In our work, we derive weights from the
planar case, and we assume that our strategy is good for almost-planar geometry, and good enough in
average (over all directions) in more complex cases.

8.3.2 Notations

Let’s consider the collapse of the edge joining two vertices v1 and v2 as illustrated in Fig. 8.3. We call
the merged vertex v. We assume for clarity that neither v1 nor v2 are border vertices in this explanation.
Our results extend easily to the general case. Let ti be the N triangles adjacent to v1 and v2 (i ∈ [1, N ])
such that t1 and t2 are the collapsed faces. Let t′i (i ∈ [3, N ]) be the faces after the collapse such that
each ti becomes the face t′i after the collapse. We callM the set of triangles ti andM ′ the set of triangles
t′i (Fig. 8.3). Let Ai and A′i be the areas of triangles ti and t′i. We have A′1 = 0 and A′2 = 0 since t1 and
t2 are collapsed. We call wi the area of each triangle ti divided by the area of M :

∀i ∈ [1, N ], wi = Ai∑
k

Ak
. (8.3.1)
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Similarly, we define

∀i ∈ [1, N ], w′i = A′i∑
k

A′k
. (8.3.2)

By definition, we have
∑
wi = 1 and

∑
w′i = 1, w′1 = w′2 = 0.

8.3.3 Preserving the mean radiance

In the case of a planar geometry with per-face BRDFs fi, and assuming a locally uniform lighting
(Sec. 4.2), the mean radiance of the surface M in direction ωo is given by:

Lmean(ωo) =
∑

i∈[1,N ]

wi

∫
Ω

L(ω)fi(ω, ωo)〈ω, n〉dω, (8.3.3)

with n the normal of the surface and L(ω) the incident radiance in direction ω. We want to find BRDFs
f ′i for each triangle t′i so that the mean radiance is preserved after the collapse, meaning Lmean(ωo) =
L′mean(ωo) with

L′mean(ωo) =
∑

i∈[3,N ]

w′i

∫
Ω

L(ω)f ′i(ω, ωo)〈ω, n〉dω. (8.3.4)

8.3.4 Our approach

We first write each BRDF f ′i as a linear combination of BRDFs fi:

∀j ∈ [3, N ], f ′j =
∑

i∈[1,N ]

wji fi with ∀j,
∑
i

wji = 1 (8.3.5)

and we need to find appropriate weights wji . The mean radiance of M ′ in the planar case is given by

L′mean(ωo) =
∑
j

w′j

∫
Ω

L(ω)
∑
i

wji fi(ω, ωo)〈ω, n〉dω

=
∑
i

∑
j

w′jw
j
i

∫
Ω

L(ω)fi(ω, ωo)〈ω, n〉dω. (8.3.6)

Then, our problem is to find weights wji so that L′mean(ωo) = Lmean(ωo). Thus, we want to ensure that

∀i ∈ [1, N ],
∑
j

w′jw
j
i = wi. (8.3.7)

As discussed in the introduction of this section, there is a simple and naïve solution, which consists
in choosing wji = wi ∀j (Fig. 8.5b). This solution results in unnecessarily blurred surfaces: all the
parameters are averaged in the neighborhood of the collapsed edge, even if the collapsed edge is actually
very small compared to neighboring triangles. Instead, we propose a simple heuristic for the choice of
weights wji : we maximize weights wii (i.e. the weight of fi in the simplified triangle t′i) in order to avoid
over-blurring, and so that the mean radiance L(ωo) in preserved in every direction ωo.

Let G = {i ∈ [1..N ], wi < w′i} be the set of triangles whose relative area increase with the edge
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collapse, and L = {i ∈ [1..N ], wi ≥ w′i} the other ones. Our weights are the following:

wii = 1 ∀i ∈ L
wij = 0 ∀i ∈ L and i 6= j

wii = wi
w′i

∀i ∈ G

wij =
(

1− wi
w′i

)
cj ∀i ∈ G and i 6= j

with cj =
wj − w′j∑

i∈L
(wi − w′i)

(8.3.8)

We can check that our weights satisfy Eq. 8.3.7. If i ∈ G,∑
j

wjiw
′
j = wi

w′j
w′j = wi.

Else if i ∈ L, ∑
j

wjiw
′
j = w′i +

∑
k∈G

wki w
′
k

= w′i +
∑
k∈G

ci

(
1− wk

w′k

)
w′k

= w′i +
∑
k∈G

wi − w′i∑
l∈L

(wl − w′l)
(w′k − wk)

= w′i + (wi − w′i)

∑
k∈G

(w′k − wk)∑
l∈L

(wl − w′l)
.

Observing that ∑
k∈G

(w′k − wk)−
∑
l∈L

(wl − w′l) =
∑
k∈G

(w′k − wk) +
∑
l∈L

(w′l − wl)

=
∑
i

w′i −
∑
j

wi

= 0

we can write

∑
j

wjiw
′
j = w′i + (wi − w′i)

∑
k∈G

(w′k − wk)∑
k∈G

(w′k − wk)

= wi.

Therefore, our method satisfies equation 8.3.7.

8.3.5 Application: using our weights for prefiltering microfacet distributions

Once all the weights wji have been computed, we can address the problem of prefiltering the materials
for each face. For example, if each input face was assigned a Lambertian BRDF, our weights can
be used for prefiltering diffuse albedos. A more interesting problem is prefiltering microfacet normal
distributions, as microfacet models are widely used for rendering rough dielectric and conductor materials,
and because prefiltering microfacet distributions is closely related to prefiltering normals of displaced
surfaces (Sec. 4.2.2, Sec. 4.4.2). In previous work on linear prefiltering of normal distributions [OB10,
DHI∗13], normals were prefiltered in texture space assuming that the distributions were defined in the

97



same frame. In our case, there is no such common frame for arbitrary groups of high-resolution faces.
Finding a convenient frame would be possible for nearly planar geometry but rather ill-posed in general.

Walter et al., in the supplemental material of the work of Dong et al. [DWMG15], proposed a micro-
facet distribution based on the normal distribution of an ellipsoid that is not necessarily aligned with the
geometric normal. This distribution was introduced for rendering anisotropic materials with off-centered
microfacet distributions. Independently of this work, Heitz et al. [HDCD15] proposed to use a distribution
based on an ellipsoid for representing microflake orientations in the microflake volume model introduced
by Jakob et al. [JAM∗10a]. Heitz et al. have shown that such distributions can be prefiltered linearly
with sufficient quality in many cases.

We propose to combine these techniques for our LODs: we rely on the microfacet model of Walter et
al. for both our input and LOD faces, and we prefilter microfacet distributions using our weights and the
linear method of Heitz et al. [HDCD15]. For specular microfacets, the BRDF of Walter et al. [DWMG15]
writes:

fs(ωi, ωo,S) = D(h,S) G2(ωi, ωo,h,S) F (ωi · h)
4|ωi · n||ωo · n|

(8.3.9)

with S the SGGX matrix, D the microfacet SGGX normal distribution, G2 the masking-shadowing term,
F the Fresnel term, h the half-vector and n the normal. Analytic expressions and sampling procedures
can be found in the supplemental material [DWMG15]. For diffuse microfacets, we follow the formulation
and sampling procedure proposed by Heitz et al. [HD15]. It is given by

fd(ωi, ωo,S) = 1
π

1
|ωo · n|

∫
Ω
〈ωo, ω〉

G2(ωi, ωo,h,S)
G1(ωi,h,S) Dωi(ω,S)dω (8.3.10)

with Dωi the visible normal distribution in direction ωi and G1 the masking term. 〈 , 〉 is the clamped
dot product. Our per-triangle BRDF consists of specular and diffuse terms:

fi(ωi, ωo) = sifs(ωi, ωo,Si) + difd(ωi, ωo,Si) (8.3.11)

with si the triangle specular albedo and di the diffuse albedo. Si is the SGGX matrix.

Using the notations introduced above and our weights, our prefiltering strategy writes:

∀j ∈ [3, N ], f ′j =
∑

i∈[1,N ]

wji fi

=
∑
i

wji

(
sifs(ωi, ωo,Si) + difd(ωi, ωo,Si)

)
' s′jfs(ωi, ωo,S′i) + d′jfd(ωi, ωo,S′i) (8.3.12)

with s′j =
∑
i w

j
i si the mean specular albedo, d′j =

∑
i w

j
i di the mean diffuse albedo and S′i =

∑
i w

j
iSi the

filtered normal distribution. This approximation is valid if the SGGX linear prefiltering is accurate, which
is not always the case as highlighted by Zhao, Wu et al. [ZWDR16] who used a multi-lobe representation
when needed. Another underlying assumption in our prefiltering method is that albedos and SGGX
distributions are uncorrelated.

Note that when the ellipsoid is aligned with the geometric normal, the microfacet distribution of Walter
et al. reduces to a simple GGX distribution. This means that GGX microfacet distributions [WMLT07]
can easily be converted to the ellipsoid microfacet distributions. Our method could be extended to
specular and diffuse transmission terms [WMLT07,DWMG15].

8.3.6 Results and discussion

Our prefiltering method is fast because weights are given by very simple formulas that only depend on
the area of each triangle, and because we only rely on linear prefiltering of albedos and SGGX matrices.
In our implementation, material prefiltering at each collapse takes around 7 µs. This is small compared
to the cost of the vertex placement (around 170 µs in our implementation). Our method can prefilter
anisotropic roughness due to small surface details as shown in Fig. 8.6.
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Input LOD 1 LOD 2 LOD 3 LOD 4 Unfiltered LOD 4
(pixelated) Ref Unfiltered

(pixelated)

(a)

(b)

(c)

(d)

Figure 8.6: Meshes simplified with edge collapse operations and prefiltered with our method. (a): Sphere
with diffuse microfacets. (b): Sphere with specular microfacets. Coarse LODs have rougher materials
since our prefiltering is done in world space and takes into account surface curvature. (c,d): Spheres
with specular materials and grooves leading to anisotropic normal distributions in coarse LODs.

LOD 1 LOD 3 LOD 1 LOD 3

Reference Reference Reference Reference

Figure 8.7: Macrosurface prefiltering of two assets with diffuse and specular microfacets. Left: a tree
trunk. Right: Stone pavers. Rendered in Mistuba (sunsky emitter).

We derived our weights from the case of a planar geometry but we use them for all kinds of edge
collapses operations. As mentioned above, our method is less accurate on non-planar cases, because the
emitted radiance in direction ωo depends on cosine weights 〈ωo,ni〉 for each triangle with normal ni, and
also on view-dependent visibility terms taking into account masking between triangles.

Our method is also limited by the use of a single SGGX lobe: this representation cannot be used for
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prefiltering surfaces with strong microscopic correlations between the geometry and albedos [HSRG07,
HN12] or normal distributions that are very different from SGGX lobes. Multi-lobe SGGX distributions
could be used for improving the quality of the simplified materials following ideas of Zhao, Wu et al.
[ZWDR16] or Xu et al. [XWZB17].

8.4 Prefiltering macrosurfaces by collapsing face loops

In previous sections, we proposed to prefilter macrosurfaces relying on edge collapse operations. We intro-
duced a new strategy for placing merged vertices and a method for prefiltering materials at each collapse
operation. In this section, we propose an alternative algorithm for prefiltering macrosurfaces assuming
that input assets consist of well-structured quadrilateral meshes with feature-aligned edge loops. We
have seen that production quad meshes sometimes have tiny polygons close to large polygons (Sec. 6.1),
especially around sharp features for controlling subdivision surfaces (Fig. 6.3b). Our solution based on
quad mesh simplification brings several benefits in this case:

• We rely on methods that simplify the geometry while keeping structured quad meshes, which are
more adapted to some production pipelines, in particular in pipelines with per-face textures [BL08].

• Our method provides a simpler mapping between the simplified faces to the high-resolution quads,
compared to mesh simplification based on edge collapse operations.

Our contribution is not the mesh simplification algorithm itself but its adaptation to the problem of
prefiltering macrosurfaces with control of the geometric error and material prefiltering. We designed and
implemented the method proposed in this section at the Walt Disney Animation Studios and found that
it is well compatible with production assets with per-face texture patches and heterogeneous quad sizes.

8.4.1 Background

Quad mesh simplification has been studied by various authors and it is now as mature as triangle mesh
simplification. We reviewed previous work and existing coarsening operations in section 3.1.3. Previous
methods mostly addressed the problem of generating low-resolution quad meshes with good geometric
properties, for example evenly shaped quads and vertices with a valence of 4.

Some coarsening operations do not easily support seamless transitions. This is because at rendering,
each quad is replaced by a pair of triangles. There are two possible triangulations for each quad and
they are not visually equivalent (except for perfectly planar quads). Therefore, methods that change the
topology of neighboring polygons (such as qeMerge [DSC09] and edge collapse [TPC∗10]) could introduce
popping artifacts unless quad triangulation is carefully controlled.

Several local coarsening operations (ring collapse, diagonal collapse) could be adapted for macrosur-
face simplification by using weights in the same way as what we proposed for edge collapse in section 8.3.
However, we rely on special poly-chord collapse operations that lead to a better mapping from simplified
quads to high-resolution quads. As discussed by Tarini et al. [TPC∗10], the poly-chord collapse operation
lacks flexibility for some applications, because it is a non-local operation that sometimes improves the
mesh in some areas and deteriorates other areas. They propose to rely only on local coarsening oper-
ations for a better control of the simplification. However, we found that poly-chord collapse is flexible
enough for production meshes which generally have clean, feature-aligned edge loops with equally sized
faces. We adapt the poly-chord collapse algorithm proposed by Daniels et al. [DSSC08] for our require-
ments: resolution-driven simplification with control of the geometric error, seamless transitions and clear
mappings for well-posed material prefiltering.
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8.4.2 Face loops

Before giving the details of our quad mesh prefiltering algorithm, we recall some properties of structured
quad meshes. We use the term face loop for designating a set of quad faces connected by their opposite
edges. Face loops are similar to rings [tBPHJ02] and its dual representation, the poly-chord [DSSC08].
We use the term face loop because this is the name used in modeling software, and because we think it is
clearer to talk about faces rather than their dual representation, at least for our application. Examples
of face loops are given in Fig. 8.8. Face loops have the following properties:

• On 2-manifold meshes without boundaries, face loops are always closed.

• On 2-manifold with boundaries, they are either closed or with their two endings on boundaries.

• Face loops can have one or more self-intersections (Fig. 8.8e).

• Each face belongs to exactly two face loops, except in the case of a self-intersection, in which case
the face only belongs to a single face loop.

• A single face loop can span the entire geometry. This rarely happen on structured quad meshes.

• Face loops can be adjacent to themselves, as shown in Fig. 8.8d and 8.8e.

(a) Face loop (b) Face loop (c) Face loop (d) Face loop with
self-adjacency

(e) Face loop with
self-intersection

Figure 8.8: Examples of face loops on closed 2-manifold quad meshes. Face loops are shown in blue,
with self-intersection faces in green and self-adjacency edges in red.

8.4.3 Collapsing face loops

The face loop collapse operation consists in collapsing the quads of a face loop by merging one side of the
loop with the other side. As for the half-edge collapse equivalent in the edge collapse framework, the face
loop collapse operation can be applied in two directions as shown in Fig. 8.9. The remaining vertices have
the same position as the vertices of one of the sides of the face loop. This adds validity constraints for
candidate face loops: a valid face loop cannot be adjacent to itself more than two times orthogonally to
the loop direction, as shown in Fig. 8.9. Else, the collapse is not well defined. This operation is a special
case of the poly-chord collapse operation [DSSC08], and it is well compatible with material prefiltering
as discussed later.

8.4.4 Mappings with the face loops collapse operations

The face loop collapse operation provides a simple mapping between high-resolution faces and simplified
faces, as shown in Fig. 8.10. Simplified faces map to two high-resolution faces, except around face loop
self-intersections. Material prefiltering can be done using this mapping, with weights proportional to face
areas, in the same spirit as our weights in the case of edge collapse operations. Because each low-resolution
face actually corresponds to an array of quad faces, the mapping could even be used for rewriting textures
for the low-resolution faces from the high-resolution textures.
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(a) Valid face loop collapse (b) Valid face loop collapse (c) Valid face loop collapse

(d) Valid face loop collapse (e) Valid face loop collapse (f) Invalid (g) Invalid

Figure 8.9: Examples of face loop collapse operations. In the case of self-adjacency, some collapse
operations are not valid (f,g) because there is no well-defined collapse direction for all the self-adjacency
edges.

Figure 8.10: With the face loop collapse operation, most low-resolution faces map to two of the high-
resolution faces, except around self intersection faces. This mapping is important for material prefiltering.
Note that some high-resolution faces are affected by the collapse operation even if they do not map to
other faces, such as the face at the very top of the geometry.

8.4.5 Resolution-based stopping criteria

As for mesh simplification based on edge collapse, we need to control the quad mesh simplification based
on the desired prefiltering scale, in order to avoid visible errors in pixels due to overly aggressive coarsening
operations. In our implementation, we used the following constraints:

• A face loop collapse operation is only valid if the faces it affects are smaller that the target resolution,
before and after the coarsening operation. This ensures that faces larger than the prefiltering scale
are not modified, and that small faces do not become larger than the prefiltering scale.

• We control the geometric error using a two-sided distance, as mentioned in Sec. 8.3. We estimate
this error by choosing a set of points on the low- and high-resolution surfaces, and looking at the
distances from these points to the other surface. Then, we look at the maximum of these distances,
and we only allow the collapse if it stays bellow the target resolution times a tolerance factor
ε ∈ (0, 1), ε being a parameter of our simplification algorithm.
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8.4.6 Topology verifications

We have seen that the Link condition must be evaluated in edge collapse algorithms for ensuring that the
surface remains a 2-manifold (Sec. 8.3). As discussed in the work of Daniels et al. [DSSC08], manifold
preservation is more challenging for poly-chord collapse operations because they are cases where all the
individual edge collapse of a face loop collapse are topologically valid, but the whole face loop collapse
operation is not. For example, in the case of a cube, all edge collapse are valid individually but all the face
loop collapse operations result in degenerated faces and are therefore invalid. In their article, Daniels et
al. [DSSC08] propose an equivalent of the Link criterion for face loops where each edge collapse is verified
individually while virtually collapsing all the other edges.

8.4.7 Algorithm

The first step of our simplification algorithm is to find all the face loops of a given quad mesh, to select only
those that are valid given our resolution-based criteria (no faces larger than the target resolution, etc.)
and to collapse the face loop that introduces the lowest geometric error. Finally, some information about
the collapse operation can be stored so that the entire mapping between high- and low-resolution faces
can be retrieved at the end of the simplification, for both prefiltering and smooth geometric transitions.
Then, other collapse operations have to be found and applied iteratively, until all valid operations have
been applied.

A correct but inefficient simplification algorithm would be to recompute the topological validity and
the geometric errors of all the remaining face loops after each collapse, since the last collapse operation
have potentially affected all of them. We optimized the algorithm by maintaining a list of collapse
operations, sorted by geometric errors. After each collapse operation, we analyze again the first collapse
operation on the list, and we apply it if it is still valid if it has a geometric error bellow the chosen
tolerance factor (otherwise, we update the list and try again with the next collapse operation). This
strategy does not ensure that the operation with the lowest geometric error is applied, but it guaranties
that the geometric error remains under the tolerance factor and it avoids time waste for recomputing all
the errors after each collapse. There is room for improvement in this algorithm. For example, we could
explore smarter ways to keep some information about the potential geometric error for each face of the
mesh, for the 4 collapse operations for this faces, and update only what is needed after each collapse
operation.

8.4.8 Discussion

This algorithm is less flexible and more time consuming than simplification based on edge collapse op-
erations, but it brings several benefits due to the preservation of structured quads in prefiltered macro-
surfaces. In the case of assets modeled with subdivision surfaces with a mix of large and tiny base faces,
it may be useful to support the subdivision of large faces at rendering, while prefiltering areas with sub-
resolution faces. We know that the subdivision of a base face is only affected by the neighboring faces:
it is possible to add some constraints during the prefiltering to prevent the simplification of faces that
influence the subdivision of large faces. We did not handle this case in our implementation. To sup-
port simultaneously adaptive subdivision and prefiltering in the same mesh, other implementation details
should to be studied, for instance ensuring crack-free surfaces and artifact-free seamless transitions.

8.5 Summary of the chapter

In this chapter, we addressed the problem of prefiltering macrosurfaces with their materials. We revisited
some previous work on geometric simplification and proposed new tools for generating accurate prefiltered
macrosurfaces. Our main contributions in this chapter are the following:

• We analyzed the requirements of macrosurface prefiltering for our LOD application, and in particu-
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lar seamless transitions, well-posed material prefiltering by ensuring that surfaces remain manifold,
and the existence of a mapping between low- and high-resolution surfaces.

• We discussed existing vertex placement strategies for algorithms based on edge collapse and we
proposed a new strategy that addresses the lack of robustness of volume-preserving methods.

• We proposed a method for prefiltering materials in the edge collapse framework. We introduced
prefiltering weights that preserve the appearance of the high-resolution surface in flat regions and
avoid over-blurring.

• We showed how to combine our prefiltering weights, the SGGX linear prefiltering method [HDCD15]
and the ellipsoid microfacet normal distribution [DWMG15] to efficiently prefilter microfacet normal
distribution in the edge collapse framework.

• We introduce an alternative algorithm for prefiltering macrosurfaces in the case of quad meshes.
We showed that the face loop collapse operation preserves structured quad meshes, defines a simple
mapping between low- and high-resolution surfaces, and is more adapted to assets with both large
textures faces and sub-resolution faces.

8.6 Résumé du chapitre

Dans ce chapitre, nous nous sommes penchés sur le problème du préfiltrage de macrosurfaces avec leurs
matériaux. Nous avons modifié des approches existantes de simplification géométrique et nous avons
proposé de nouveaux outils pour générer des surfaces préfiltrées précises. Les principales contributions
présentées dans ce chapitre sont les suivantes :

• Nous avons analysé les besoins de notre approche de préfiltrage pour les macrosurfaces et souligné
l’importance des transitions invisibles entre les différentes résolutions, des méthodes de filtrage bien
posées qui s’assurent de la bonne topologie des surfaces, et de l’existence d’une bijection entre les
surfaces de haute et basse résolution.

• Nous avons commenté les techniques existantes de placement de sommets pour les algorithmes de
simplification de maillage par edge collapse, et nous avons proposé une nouvelle méthode qui est
plus fiable.

• Nous avons proposé une méthode de préfiltrage des matériaux dans le cadre de la simplification de
maillage par edge collapse. Nous avons introduit des poids de préfiltrage qui préservent l’apparence
de la surface dans les régions planes et qui évitent de flouter inutilement l’apparence de la surface
de basse résolution.

• Nous avons montré comment utiliser notre méthode avec le filtrage linéaire de distributions SGGX
[HDCD15] et la distribution de normales d’ellipsoïde [DWMG15] pour préfiltrer efficacement les
distributions de normales sans paramétrisation globale de la surface.

• Nous avons introduit un algorithme alternatif pour le préfiltrage des macrosurfaces faites de quadri-
latères. Nous avons montré que l’opération de simplification des boucles de faces peut préserver la
structure régulière des maillages de quadrilatères, tout en garantissant une bijection claire entre les
surfaces de haute et basse résolution. Cet algorithme est aussi mieux adapté aux objets 3D ayant
à la fois de grandes et de petites faces texturées.
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Chapter 9

Prefiltering sub-resolution intricate
geometry

We have seen in chapter 6 that an important requirement for prefiltering sub-resolution intricate geometry
is the preservation of the local probability of occlusion. This is why existing surface-based methods such as
mesh simplification algorithms cannot be used for prefiltering complex geometry at arbitrary scales. We
discussed in chapter 5 some previous work on approximating aggregate elements using volume models,
and we have seen that these methods target specific aggregations such as hair or granular materials,
whereas our goal is to prefilter complex geometry without strong assumptions about the input data.

We propose a voxelization algorithm for prefiltering intricate geometry with estimations of the local
occlusion in the input geometry. Based on this, we show how to estimate scattering parameters for the
microflake volume model, and we discuss an alternative representation based on a few sub-resolution
polygons.

9.1 Background: voxelization algorithms

9.1.1 Voxelization

The word voxelization can be rather confusing due to its multiple uses in computer graphics and other
fields. First, let’s recall that a voxel is a volume element used for storing any kind of data depending on
the application. Voxelization designates an algorithm that takes as input some data and converts it to
a voxel-based representation, usually regular voxel grids, sparse voxels grids or multi-resolution volume
hierarchies such as sparse voxel octrees.

Example of such algorithms include:

• Voxelization using binary voxels, for instance empty and non-empty voxels.

• Voxelization using planar representations per voxel or a distance field for prefiltering meshes, that
is storing positions, normals and reflectance parameters [YLM06,LK10a,HN12,PES15].

• Voxelization with occlusion estimation [Pan14].

• The work of Lacewell et al. [LBBS08] is closely related: they prefilter the occlusion of complex
meshes, not exactly in voxels but for each node of a bounding volume hierarchy.

In the next section, we propose a new voxelization algorithm that measures local occlusion probabilities
for each voxel by casting rays on the input geometry. Our approach is related to previous work on
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occlusion prefiltering [LBBS08]. Contrary to them, we address aliasing problems that appear with current
voxelization algorithms. Then, we estimate parameters for a participating medium model to preserve both
the occlusion and the scattering properties.

9.1.2 Aliasing in voxelization algorithms

In previous approaches, the occlusion of the geometry was measured in cubes or in cuboids. Pan-
teleev [Pan14] addressed the problem of fast GPU voxelization and estimated the occlusion using local
rasterizations of the triangles inside the voxel. Lacewell et al. [LBBS08] proposed to render the geometry
inside BVH nodes in the three main axis to get directional opacities.

In these methods, each voxel is obtained only from the geometry contained in the corresponding cube
or box, that is, the voxelization uses a sort of 3D box filter that is prone to artifacts (Fig. 9.1), as already
noted in [WK93]. Other examples of aliasing artifacts can be found in the work of Schroder et al. [SKZ11],
in which they prefilter high-frequency periodic fiber paterns.

The second problem of these methods is that they only measure opacity in the directions of the
three main axes. This may lead to other kinds or artifacts: for example, an axis aligned polygon of
unit area has a projected area of 1 in one direction and 0 in the other directions, whereas the same
polygon rotated such that its normal becomes 1√

3
(1, 1, 1) have a projected area of 1√

3
' 0.58 in the

three axis. This means that estimating the average occlusion of a geometry by averaging 3 projected
areas gives significantly different results depending on the orientation of the geometry with respect to the
grid. Ideally, estimating occlusion and scattering parameters should not involve specific directions.

(a) Mesh (b) Naïve voxelization (aliased) with occlusion
estimation

Figure 9.1: Example of an aliased voxel grid (b) obtained with a simple voxelization algorithm. In this
case, the occlusion estimation in each cubic voxel leads to aliasing due to sub-resolution well-organized
elements (a) that are not aligned with the voxel grid.

Although these artifacts are relatively uncommon or not visible in most cases, we will show that it is
actually simple to avoid them by choosing appropriate ray casting strategies:

• Casted rays should have random directions in order to take into account the appearance from all
the points of view.

• Voxels values such as opacity should not be computed only from the geometry inside the corre-
sponding cube. Artifacts can be avoided if the voxelization process satisfies the Nyquist sampling
criterion: some kind of low-frequency and large-enough prefiltering kernel should be used. In other
words, each voxel should represent a neighborhood around of the voxel center, and this neighbor-
hood should be large enough.

9.2 A new aliasing-free voxelization algorithm with ray casting

In this section, we address the problem of retrieving a local occlusion probability from some input geom-
etry, for each voxel of a 3D grid. In the next section, we will show how to use this information to preserve
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a correct occlusion probability in LODs. We propose to estimate occlusion probabilities by casting rays
on the input mesh and looking for local intersections with the geometry. One of our main contributions is
an algorithm for ray casting that has good prefiltering properties and avoids aliasing problems compared
to naïve methods.

9.2.1 Occlusion estimation with ray casting

Our approach consists in casting rays around each voxel center and looking for intersections with the
geometry in the voxel neighborhood. The main ideas of our voxelization algorithm is that all rays have the
same length and are equally taken into account, and that we use smooth 3D probability density functions
(pdf) for sampling ray origins, which acts like a low-pass filter and prevents object-space aliasing. We
sample a random direction uniformly on the spherical domain for each ray in order to prevent directional
artifacts.

We cast all rays with a fixed length Lr, meaning that we ignore intersections farther than Lr from ray
origins. This allows to derive a mean probability of occlusion for a distance Lr around the voxel center.
We only take into account the first intersection with the geometry, if any.

The ray length Lr is a parameter of our algorithm. Long rays due to a large value Lr would tend to
over-blur the voxelization, because the geometry that is far from the voxel center would be taken into
account. To the contrary, small rays would only measure how much the geometry fills the space, and
the measured occlusion would tend to zero when Lr tends to zero in the case of infinitely thin polygons.
In our implementation, we set Lr to the voxel size, which avoids over-blurring and takes into account
correlations between occluders at the prefiltering scale.

An estimation of the probability of occlusion in the voxel neighborhood over a distance Lr is given
by the proportion of rays that intersect the geometry:

Pocc = nbHits
nbRays (9.2.1)

where nbRays is the number of rays casted for this voxel and nbHits is the number of rays that intersected
some geometry at a distance smaller that Lr. In Section 9.3.1, we show how to use Pocc to retrieve a
density parameter for the voxel.

9.2.2 Artifact-free voxelization

We now propose a sampling algorithm for casting rays around voxels in order to avoid object-space
aliasing. Let vi be the center of a voxel i, and Di the probability density function used to randomly
sample ray origins for that voxel (Fig. 9.2). We want to know how much (i.e. with which probability)
each point x ∈ R3 can be hit by a ray during the estimation of the occlusion for a given voxel. This
probability must vary smoothly in space in order to prevent object-space aliasing.

voxel

sampling(pdf)

(a) Sampling ray origins uniformly in a cube.

voxel

sampling(pdf)

(b) Sampling ray origins using a smoother pdf.

Figure 9.2: Sampling strategies for ray origins using different probability density functions. We sample
a random direction for each ray in order to avoid artifacts.
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We introduce the function Pi that gives, for each point x ∈ R3, the probability that a ray whose origin
is sampled using the pdf Di intersects a spherical occluder with radius γ centered in x. This function Pi
should be smooth enough: it is the low-pass filter of the voxelization. Moreover, given that there are Nv
voxels, we want the function Pall defined by

Pall(x) = 1
Nv

∑
voxels i

Pi(x) (9.2.2)

to be constant for all points x inside the voxel grid, i.e. all points in space have the same probability of
being intersected by rays during the entire voxelization (this is also for preventing aliasing). In general,
an arbitrarily chosen distribution Di would not satisfy Eq. 9.2.2, meaning that some parts of the input
asset will be more sampled than others. In the rest of this section, we propose some distributions Di that
ensure a uniform sampling of the voxelized asset.

Probability of intersecting an occluder. Although we do not strictly need it for the rest of our
derivation, we first discuss how rays casted with random directions for a given origin sample the neigh-
boring geometry. This gives some intuitions about our voxelization algorithm. These rays can intersect
the geometry in a neighborhood with some probability that depends on the distance to the origin. Let
Pr be the radial function that gives the probability that a ray hit a spherical occluder of radius γ, given
that the occluder is at a distance d from the ray origin. Intuitively, Pr(d) decreases as long as d increases
because the solid angle of the spherical occluder decreases. The solid angle of a cone with apex angle θ
is given by 2π(1− cos(θ)). The solid angle of a spherical occluder is the one of a cone with apex

θ = arccos
(√

1− γ2

d2

)
where d is the distance between the ray origin and the occluder center. For d ≥ γ and d ≤ Lr, we have

Pr(d) = 1
2

(
1−

√
1− γ2

d2

)

which tends to γ2

4d2 when γ becomes very small compared to d. We can see that the probability of being
sampled for polygons around the origin is roughly inversely proportional to the square distance to the
origin.

Sampling strategies. For a given Di (the pdf used for sampling ray origins) and Pr (the probability
of intersection depending on the distance from a ray origin), we can write the probability Pi of being
intersected at x during the voxelization of voxel i as

Pi(x) =
∫
R3
Pr(dist(x, p)) Di(p) dp.

The probability of being intersected at x during the entire voxelization is the weighted sum of Pi(x) over
all the voxels:

Pall(x) = 1
Nv

∑
i

∫
R3
Pr(dist(x, p)) Di(p) dp

= 1
Nv

∫
R3
Pr(dist(x, p))

(∑
i

Di(p)
)

dp

= 1
Nv

∫
R3
Pr(dist(0, p))

(∑
i

Di(p+ x)
)

dp.

Now Pall is constant in space if
∑
iDi is constant. A simple solution is to choose a cubic uniform

probability density function:

Dcube
i (x) =


1

voxelSize3 if ‖x− vi‖∞ ≤ voxelSize

0 otherwise
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Algorithm 1: Our sampling algorithm for ray origins (Section 9.2.2). We sample origins in a
cube around the voxel and then use a 3D normal distribution in order to avoid object-space aliasing.

nbHits = 0;
rayL = voxelSize;
mu = (0,0,0);
sigma = 0.6×voxelSize ;
for i = 1 to nbRays do

rayD = SampleDir ();

rayO = voxelCenter +
(

SampleUnitCube () -
(

1
2 ,

1
2 ,

1
2

))
× voxelSize + SampleNormalDistrib (mu, sigma);

if Intersect ( rayO, rayD, rayL) then
nbHits ++;

end
end

where ‖ ‖∞ is the infinity norm. Moreover, any convolution of a solution with another probability
density functions is also a solution. Smooth functions Pi can be achieved using Di = Dcube

i ∗ Dsmooth,
with Dsmooth any smooth probability density function. In our implementation, we used a 3D Gaussian
function with standard deviation σ = 0.6 × voxelSize (example (c) in Fig. 9.3). A pseudo-code for our
sampling method can be found in Algorithm 1.

9.3 Prefiltering sub-resolution intricate geometry using the microflake
model

Once the local occlusion probability has been measured as explained in the previous section, we can
address the problem of prefiltering sub-resolution intricate geometry while preserving a correct local
occlusion in the LOD. We show how to estimate density and scattering parameters for the microflake
model, which is the model we used for prefiltering complex assets. Results are shown in the next chapter.

9.3.1 Estimating density parameters for the microflake model

At a given voxel, Eq. 9.2.1 estimates the local probability of occlusion of rays with length Lr in the voxel
neighborhood. When using a volume model for prefiltering the sub-resolution geometry, the first step is
to estimate an attenuation coefficient for each voxel (or density parameters in the microflake model) such
that the local probability of occlusion is preserved. For isotropic participating media, the attenuation
coefficient σt of a voxel must satisfy

1− e−σt Lr = Pocc

and we obtain
σt = − 1

Lr
log
(

1− NbHits
NbRays

)
In the microflake model, the attenuation coefficient in direction ω is given by

σt(ω) = ρσ(ω)

and
σ(ω) =

∫
Ω
〈ω ·m〉D(m) dm,

with D the microflake normal distribution function, ρ the density parameter and 〈 · 〉 the clamped dot
product. We discuss how to obtain microflake distributions in the next paragraph. Given a microflake
distribution for the voxel, we look for a density parameter ρ such that the average attenuation in all
directions equals Pocc:

1− 1
4π

∫
Ω
e−ρσ(ω)Lr dω = Pocc
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Figure 9.3: Effect of voxelization strategies on object-space aliasing. The naïve voxelization (a) consists
in measuring the occlusion of geometry in a small cube around the voxel center. Our voxelization algorithm
can prevent object-space aliasing and acts as a low-pass filter (b,c). Images represent slices of the 3D
probability density functions Di for sampling ray origins (Section 9.2.2) and slices of 3D functions Pi
giving for each point the probability of being intersected by a ray.

In general, there is no closed-form expression for the parameter ρ. One can show that the function f
defined as

f(ρ) = 1
4π

∫
Ω
e−ρσ(ω)Lr dω

is a strictly decreasing function and has C∞ continuity, which makes numerical methods based on 1D
gradient descent very efficient for estimating ρ. It requires evaluating f and ∂f

∂ρ
, which we estimate using

numerical integration of the spherical integral in our implementation.

9.3.2 Estimating other scattering parameters: albedos, microflake distributions

For prefiltering sub-resolution geometry using the microflake model, we need also to estimate microflake
albedos and microflake distribution (the microflake distribution must be found before optimizing the
density parameter). We rely on the SGGX microflake distribution introduced by Heitz et al. [HDCD15],
because it is flexible and memory efficient.

We propose to obtain a distribution of microflake directly from the distribution of normals of the
polygons of the sub-resolution geometry. For the occlusion estimation, we have proposed an algorithm
based on ray casting. We leverage this and store the SGGX matrix describing the normal distribution at
each ray intersection [HDCD15]. At each ray intersection, we also get the specular and diffuse albedos
of the surface reflectance model. We average the SGGX matrices and the albedos and we use specular
and diffuse SGGX phase functions [HDCD15]. Examples of voxelization and prefiltering using microflake
volumes are shown in the next chapter.
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9.4 Discussion

Prefiltering sub-resolution intricate geometry using the microflake model as proposed above has several
limitations:

• We only estimate the average occlusion, and do not try to estimate view dependent occlusion, for
example due to foliage-like geometry. Our strategy (Sec. 9.3.1) is to preserve this average occlusion
in the microflake media, which has some anisotropy but not necessarily the same anisotropy as
in the input geometry. However, because we retrieve microflake normal distributions from the
microfacet distributions of the voxelized faces, the anisotropic occlusion in the microflake medium
is often similar to the one of the geometry. In the next part of the thesis, we show that preserving a
correct anisotropic occlusion in the LOD is not critical compared to the phase functions and albedos
(Chap. 14), and we believe that preserving a correct average occlusion is sufficient for almost all
the assets.

• We only estimate and store one SGGX distribution per voxel, which has a limited accuracy. For
example, this cannot preserve the sparkling appearance of foliage due to specular reflections on
large leaves, as discussed in the next chapter.

• We only store two albedos per voxel (specular and diffuse), and did not try to encode view-dependent
volume albedos.

• We linearly prefilter albedos. We did not try to take into account the local probability of self-
shadowing in the geometry and to derive more accurate albedos from this information. We address
a related problem in part III.

During our collaboration with the Walt Disney Animation Studios, we experimented an alternative
prefiltering method in which we generate a few polygons per voxel such that they preserve a correct
average occlusion, instead of relying on a volume representation. Polygons are more convenient than
volumes in production pipelines, for example for animation or when many assets are overlapping. Our
test on occlusion using polygons were encouraging, although the problem of estimating correct reflectance
parameters for such polygons remains to be addressed.

9.5 Summary of the chapter

In this chapter, we discussed previous voxelization algorithms with occlusion estimation, and we proposed
a new algorithm that avoids aliasing artifacts. The main idea of our algorithm is to cast rays with
arbitrary directions around voxel centers and to estimate occlusion probabilities from the number of ray
intersections.

Based on our algorithm for estimating local occlusion, we show how to prefilter sub-resolution intricate
geometry using the microflake volume model, and we propose strategies for estimating density, microflake
distributions and albedos for each voxel.

9.6 Résumé du chapitre

Dans ce chapitre, nous avons présenté plusieurs algorithmes de voxélisation qui estiment l’occlusion locale,
et nous avons introduit un nouvel algorithme qui évite les problèmes d’aliasing. L’idée principale de notre
algorithme est de lancer des rayons dans des directions aléatoires dans le voisinage d’un voxel pour estimer
les probabilités d’occlusion à partir du nombre d’intersections trouvées.

Avec notre algorithme d’estimation de l’occlusion locale, nous montrons comment préfiltrer de la
géométrie complexe sous-résolution en utilisant le modèle de microflakes, et nous proposons des stratégies
pour estimer la densité, les distributions de normales et les albedos pour chaque voxel.
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Chapter 10

Results of our hybrid LOD approach

In this chapter, we show and discuss the results of the hybrid LOD approach (Fig. 6.7) proposed in
chapter 6. We first give some details about how we combined our macrosurface analysis (Chap. 7) with
macrosurface prefiltering (Chap. 8) and the voxelization of sub-resolution intricate geometry (Chap. 9).

10.1 Implementation of our hybrid LOD approach

10.1.1 Choice of scattering models

Our hybrid LOD pipeline is rather independent of the surface reflectance models used in the input asset
and the LODs, as it is independent of the participating media model used for prefiltering sub-resolution
geometry. However, some scattering models easily support material prefiltering, and we have shown
in chapter 8 that the ellipsoid NDF combined with SGGX linear prefiltering allows for the efficient
prefiltering of microfacet distribution in our pipeline. We have also explained that the microflake volume
model is well adapted to geometry prefiltering because phase functions can be derived from the reflectance
and orientations of sub-resolution polygons.

For generating the results shown in the next sections, we used the following models:

• The reflectance model of input surfaces consists of a microfacet model with the ellipsoid NDF
distribution. Microfacets have both a diffuse and a specular microscopic BRDF. For each input
face, we store a SGGX distribution (6 coefficients), a specular albedo and a diffuse albedo (RGB).

• We use the same reflectance model for prefiltered macrosurfaces.

• For the volume model, we use the microflake model with one SGGX distribution and we store
diffuse and specular albedos (RGB).

We didn’t experimented other kinds of materials with, for instance, transmission lobes or light emission.
Prefiltering arbitrary materials such as layered materials, sparkling materials, measured materials or
fabrics models remains an open problem and this was not the goal of our work.

10.1.2 Seamless transitions between LODs

Seamless transitions were one of the main requirement for our hybrid method, and we took this constraint
into account when choosing mesh simplification algorithms. Then, perfectly seamless transitions can be
achieved quite easily.
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Seamless transitions for macrosurface geometry. Given a macrosurfaces of LODN , the set of
edge collapse operations that leads to LODN+1 defines a mapping between the vertices of LODN and
the vertices of LODN+1 [Hop96]. We interpolate vertex positions in order to achieve smooth transitions
between the two LODs.

Seamless transitions for surface materials. In the edge collapse framework (Sec. 8.3), each triangle
in LODN+1 maps to a triangle in the previous LOD LODN . We linearly interpolate their albedos and
SGGX coefficients during the transition between LODN and LODN+1. As we use SGGX coefficients in
world space, specular reflections stay consistent during the transition even if the geometric normal of the
triangles is changing. The same technique can be used for quad-based mesh prefiltering (Sec. 8.4).

Seamless transitions from meshes to volume. Triangles of LODN that are voxelized in LODN+1
(Fig. 6.7) must smoothly fade out during the transition, while voxel densities smoothly increase. We
simply use an opacity coefficient for each voxelized triangle that goes from 1 to 0 during the transition.

Seamless transitions between volumes. 8 voxels in LODN correspond to 1 voxel in LODN+1. In
our implementation, we linearly interpolate densities, albedos and SGGX coefficients of voxels in LODN

with the corresponding voxels in LODN+1. We do not use spatial interpolation between voxels of the same
LOD because our voxelization algorithm prevents high frequencies in the volumetric data and because it
facilitates seamless transitions (otherwise, a quadrilinear interpolation must be used).

10.1.3 Other implementation details

Voxelization. We used Jakob’s Mistuba renderer [Jak10] for casting rays during our voxelization
(Chap. 9). We casted 200 rays for each non-empty voxel and stored 16 bytes: 4 for the density pa-
rameter (one float), 6 for the SGGX coefficients (1 byte per coefficient), 3 for the specular albedo and 3
for the diffuse albedo (1 byte per color channel).

Rendering. We also used Mitsuba for rendering our LODs. We implemented plugins for the diffuse
and specular SGGX phase functions based on the code provided by Heitz et al. [HDCD15]. We modified
the core of the renderer in order to render microflake media with different specular and diffuse albedos.
We also implemented the BRDF model of Dong at al. [DWMG15] for specular and diffuse microfacets
based on the work of Heitz et al. [HD15].

Efficiency. The precomputation times for prefiltering can be found in Fig. 10.4. Our macrosurface
prefiltering was run on a single core, while voxelization was computed using 8 hyperthreaded cores on
a Intel Xeon E5-2609. For the first LOD of the weeping willow model the total computation time was
20 minutes, which includes 2 minutes for loading the input mesh and its textures, 5 minutes for the
macrosurface analysis and 4 minutes for the mesh simplification and prefiltering. The remaining time
corresponds to various other tasks such as preparing and writing the outputs of the algorithm.

10.2 Results

Results of our hybrid LOD method are shown in Fig. 10.1, 10.2 and 10.3. These examples include
trees and a complex sailing ship model with tiny ropes and wood elements. Our method produces high
quality LODs with little errors when compared to reference images. The local and global occlusion of
the assets is accurately preserved, meaning that our LODs cast correct shadows in a scene and have a
correct semi-transparent appearance from a distance. Seamless transitions from the input mesh to the
low-resolution volume have been demonstrated in a supplemental video of our publication [LN17]. This
videos shows that the transition from meshes to volumes is barely perceptible, in particular for the foliage
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of the weeping willow and the tiny ropes of the ship. To our knowledge, these examples are the first
to show seamless transitions from input complex meshes to coarse LODs with fully controlled resolution
and correct appearance at all scales.

10.3 Limitations

Our method has different kinds of limitations. Due to its modularity and the several steps involved, the
limitations come from different parts of the LOD pipeline:

• Our macrosurface analysis is limited to connected watertight manifold surfaces, as discussed in
Chap. 7. In Fig. 10.5, we show an example of our LODs on a planar geometry with holes: the
geometry has the appearance of a surface (single normal, perfectly aligned occluders), although it is
not watertight. Volumes cannot represent very precisely this surface-like appearance. Our method
computes density parameters for the voxels so that the average local occlusion is preserved, which
produces an overly transparent appearance in this case. Finally, our macrosurface analysis can lack
robustness for very complex surfaces such as the grass-like surface of the asset shown in Fig. 10.5c.

• At the Walt Disney Animation Studios, we found that mesh simplification algorithms suffer from the
intersection problem: two distinct macrosurfaces can intersect each other when they are simplified,
so that a hidden interior surface can appear on top of an exterior surface in the LOD. Although we
have shown how to control two-sided geometric errors during the simplification, our method does
not prevent this problem, and intersection verifications remain to be studied.

• Our material prefiltering method relies on single lobe SGGX prefiltering, which cannot represent
complex microfacet normal distribution and sparkling appearance. We assume that albedos and
microfacet normal distributions were not correlated, which could be inccorrect for some types of
surfaces. We only prefilter albedos and normal distributions, and do not take into account the
self-shadowing and masking of very rough surfaces nor the view-dependent appearance of surfaces
with correlated albedos and heights or slopes [HNPN14].

• For our volume representation, we used a single specular albedo and a single diffuse albedo, meaning
that our LODs cannot represent volumes with view-dependent colors. As for our BRDFs, we used
a single SGGX lobe per voxel. The sparkling appearance of the foliage of the weeping willow is not
preserved in coarse LODs, since a single SGGX lobe cannot represent this type of appearance.

10.4 Discussion

We presented results generated by our hybrid pipeline. Actually, several results of this part of the thesis
can be used in alternative LOD methods. For example, we used our quad-based method for prefiltering
production assets at the Walt Disney Animation Studios, without voxelizing sub-resolution details. The
control of the geometric errors allows for simplifying assets as much as possible while satisfying some
quality constraints for each target resolution. This strategy is not appropriate for trees but allowed high
compression rates and high-quality LOD at intermediate scales, while supporting well-posed material
prefiltering and seamless transitions.

On the other hand, our voxelization method can be used for prefiltering foliage-like geometry with
the a priori knowledge that leaves are sub-resolution, independently of our macrosurface analysis.
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Resolution LOD / Ref Occlusion Occ. error Memory usage

Input 0%

Mesh: 692 MB
Mat: 60.4 MB
Vol: none
Sparsity: none
Full grid: none

5123 0.90%

Mesh: 17.7 MB
Mat: 2.7 MB
Vol: 84 MB
Sparsity: 97%
Full grid: 2 GB

2563 1.7%

Mesh: 1.9 MB
Mat: 405 kB
Vol: 18 MB
Sparsity: 94%
Full grid: 256 MB

1283 2.1%

Mesh: 379 kB
Mat: 91 kB
Vol: 4 MB
Sparsity: 90%
Full grid: 32 MB

643 2.8%

Mesh: 60.2 kB
Mat: 16.4 kB
Vol: 827 kB
Sparsity: 83%
Full grid: 4 MB

323 4.4%

Mesh: 0
Mat: 0
Vol: 139 kB
Sparsity: 76%
Full grid: 512 kB

163 8.3%

Mesh: 0
Mat: 0
Vol: 33 kB
Sparsity: 57%
Full grid: 64 kB

Figure 10.1: Our LODs rendered with a volumetric path tracer and the sunsky emitter in Mitsuba. All
assets have diffuse and specular microfacets. The size of volumetric data takes into account the sparsity.
We added bytes for voxel indices in the grid (6 bytes for the LOD 5123 and 3 for the other resolutions,
per voxel). Occlusion errors were measured in image space.
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Resolution LOD / Ref Occlusion Occ. error Memory usage

Input 0%

Mesh: 43 MB
Mat: 2.2 MB
Vol: none
Sparsity: none
Full grid: none

5123 1.3%

Mesh: 2.7 MB
Mat: 456 kB
Vol: 6 MB
Sparsity: 99.8%
Full grid: 2 GB

2563 0.94%

Mesh: 654 kB
Mat: 134 kB
Vol: 1.5 MB
Sparsity: 99.5%
Full grid: 256 MB

1283 2.8%

Mesh: 176 kB
Mat: 44.2 kB
Vol: 389 kB
Sparsity: 99.0%
Full grid: 32 MB

643 0.63%

Mesh: 52.4 kB
Mat: 15.9 kB
Vol: 131 kB
Sparsity: 97.3%
Full grid: 4 MB

323 1.3%

Mesh: 6.7 kB
Mat: 3.7 kB
Vol: 30 kB
Sparsity: 95.0%
Full grid: 512 kB

163 7.3%

Mesh: 1.3 kB
Mat: 2.0 kB
Vol: 8 kB
Sparsity: 89.0%
Full grid: 64 kB

Figure 10.2: Our LODs rendered with a volumetric path tracer and the sunsky emitter in Mitsuba. All
assets have diffuse and specular microfacets. The size of volumetric data takes into account the sparsity.
We added bytes for voxel indices in the grid (6 bytes for the LOD 5123 and 3 for the other resolutions,
per voxel). Occlusion errors were measured in image space.
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Resolution LOD / Ref Occlusion Occ. error Memory usage

Input 0%

Mesh: 78 MB
Mat: 9.2 MB
Vol: none
Sparsity: none
Full grid: none

5123 -2.4%

Mesh: 35 MB
Mat: 5 MB
Vol: 45 MB
Sparsity: 98.4%
Full grid: 2 GB

2563 -1.35%

Mesh: 1.4 MB
Mat: 332 kB
Vol: 13 MB
Sparsity: 95.7%
Full grid: 256 MB

1283 0.75%

Mesh: 235 kB
Mat: 61 kB
Vol: 23.4 MB
Sparsity: 92.3%
Full grid: 32 MB

643 2.86%

Mesh: 24 kB
Mat: 8.6 kB
Vol: 623 kB
Sparsity: 87.2%
Full grid: 4 MB

323 5.11%

Mesh: 2.8 kB
Mat: 2.8 kB
Vol: 246 kB
Sparsity: 59.6%
Full grid: 512 kB

163 7.97%

Mesh: 0
Mat: 0
Vol: 26 kB
Sparsity: 65.2%
Full grid: 64 kB

Figure 10.3: Our LODs rendered with a volumetric path tracer and the sunsky emitter in Mitsuba. All
assets have diffuse and specular microfacets. The size of volumetric data takes into account the sparsity.
We added bytes for voxel indices in the grid (6 bytes for the LOD 5123 and 3 for the other resolutions,
per voxel). Occlusion errors were measured in image space.
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Willow Vessel Maple

Macrosurface prefiltering (mesh & materials) 40 mn 3 mn 3 mn

Voxelization, 5123 16 mn 12 mn 13 mn

Voxelization, 2563 4 mn 2 mn 2 mn

Figure 10.4: Prefiltering times for the 3 assets shown in Fig. 10.1, 10.2 and 10.3. Computation times
for prefiltering macrosurfaces include the loading time for input meshes and textures, our macrosurface
analysis, the mesh simplification step with our prefiltering algorithm and other tasks like writing the new
meshes and textures.

LODs LODs Pix. Ref. Pix.

(a) Diffuse spheres with different
sizes.

LODs LODs Pix. Ref. Pix.

(b) A diffuse plane with holes.

LODs LODs Pix. Ref. Pix.

(c) Tree trunk and grass (very
rough surface).

Figure 10.5: Our hybrid LODs for 3 input meshes (top). Volumetric parts are shown in green (left
columns). (b) and (c) show some limitations of our method: our mesh analysis cannot detect surface-like
appearance when the surface is disconnected, has holes (b) or is not smooth enough, e.g. because of the
grass under the trunk in (c). Our volumetric approximation is too transparent in such cases.

10.5 Summary of the chapter

In this chapter, we presented results generated with our LOD pipeline that combines the contributions
presented in the previous chapters:

• We discussed the implementation of the hybrid LOD pipeline, and in particular seamless transitions.

• We showed that our method generates accurate LODs for complex assets such as trees, with con-
sistent appearance across scales and correct occlusion.

• We have discussed the limitations of our method coming from the limitations of each sub-part of
our LOD pipeline. The main limitation is that our macrosurface analysis does not always detect
surface-like appearances (due to non-manifold geometry or complex surfaces), which can lead to
inaccurate volumetric approximations.

10.6 Résumé du chapitre

Dans ce chapitre, nous avons présenté des résultats produits avec notre méthode de préfiltrage hybride,
qui combine les contributions proposées dans les chapitres précédents :

119



• Nous avons détaillé l’implémentation de notre méthode de préfiltrage hybride, et en particulier les
transitions entre les différentes résolutions.

• Nous avons montré que notre méthode produit des résultats précis pour des objets 3D complexes
comme des arbres, avec des apparences cohérentes entre les échelles et des transparences correctes.

• Nous avons décrit les limitations de notre approche provenant des limitations des différentes sous-
parties de notre algorithme. La limitation principale de nos travaux est que notre analyse de
macrosurface ne détecte pas toujours les apparences qui ressemblent à des surfaces si la géométrie
sous-jacente est déconnectée, auquel cas les approximations volumiques manquent de précision.

120



Part III

A new microflake model with
microscopic shadowing for volume

downsampling

High-resolution voxel grids can be used for representing and rendering complex volumetric appearances.
3D grids can be generated from CT scanners [ZJMB11], physical simulations, procedural techniques or
voxelized 3D geometry (Chap. 9). Rendering such high-resolution data with path-tracing techniques is
very challenging because of large loading times and substantial memory access costs.

In this part of the dissertation, we address the problem of downsampling voxel grids containing the
parameters of a heterogeneous participating medium, so that the medium can be rendered efficiently from
a distance. As in part II, our main goal is appearance-preserving prefiltering at all scales. We show in
chapter 11 that preserving the appearance of heterogeneous media is not as easy as it seams, and that
naïve downsampling methods have insufficient accuracy in several important cases.

Our work is closely related to the previous work of Zhao, Wu et al. [ZWDR16] and we review it in
Sec. 11.3.3. We address the same problem in a different way and we show that our approach is faster and
supports various types of volume that were not accurately downsampled by their method. We introduce an
extension of the microflake model [JAM∗10a] by adding parameters describing the anisotropic correlation
of microflake positions at a microscopic scale (Chap. 12). We discuss the implementation of our model
in chapter 13, and we propose new downsampling algorithms based on this model in chapter 14.
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Chapter 11

Problem analysis: LODs of voxel-based
heterogeneous participating media

11.1 Introduction

11.1.1 High-resolution heterogeneous participating media

Heterogeneous participating media are commonly used in computer graphics for rendering complex semi-
transparent media such as clouds, smoke and marble. They are also used as approximations of aggregate
detail such as fabrics and granular materials (Chap. 5). The heterogeneity of such media is almost
always described explicitly by regular grids of cubic voxels, each voxel storing scattering parameters of
the volume model used for rendering. As introduced in Sec. 5.3, commonly used parameters include
attenuation coefficients, density of microflakes [JAM∗10a], scattering coefficients, microflake albedos and
parameters for phase functions. At rendering, scattering parameters at a given position in space are
obtained either by looking at the nearest voxel center or with some kind of interpolation, typically
trilinear interpolation.

As discussed in chapter 3 and 5, voxel grids are used in many computer graphics applications for storing
various types of data such as normals, distance fields [HN12], albedos, view-dependent attributes [CNS∗11]
or radiance [MWM08]. Therefore, the words volume or volume LODs refer to different algorithms and
techniques that are not always related to semi-transparent media. In this part of the thesis, we focus on
voxel-based heterogeneous participating media, and we use the word volume to designate participating
media with scattering models based on the radiative transfer equation (Sec. 5.3).

High-resolution heterogeneous media in computer graphics often come from physical simulations,
scanned data [ZJMB11], and voxelization of complex geometry ( [MWM08, SKZ11], Chap. 9). This
data often have a high resolution, and memory usage expresses in gigabytes. Rendering such data is
challenging because the spatially-varying attenuation must be integrated along each ray and memory
access operations are time consuming.

11.1.2 Appearance-preserving volume downsampling

Level-of-detail representations for volumes can bring huge benefits in terms of rendering time when the
input voxels are sub-pixel or off-screen. Voxel grids are well suited for LODs because of their well-
organized structure. If we know how to replace each block of n× n× n voxels by a single low-resolution
voxel without impacting the appearance of the volume from a distance, then the resolution of the voxel
grid can be adapted for a given frame and rendering is more efficient. The problem of simplifying volumes
can be summarized by the following question: how can we approximate a block of n× n× n voxels with
a single low-resolution voxel, in order to reduce memory usage but without changing the appearance
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Block

Input voxel

(a) Input volume
Low-res voxel

(b) LOD volume

Figure 11.1: A simple framework for volume LODs consists in approximating blocks of input voxels
(a) by low-resolution voxels (b).

LOD 5 LOD 3 LOD 1 Input volume LOD 1 LOD 3 LOD 5
Naïve (Linear) Naïve (Linear) Naïve (Linear) Our (Aniso) Our (Aniso) Our (Aniso)

Figure 11.2: Comparison between naïve downsampling of microflake volumes and our method (Aniso,
Chap. 14). Naïve downsampling of dense heterogeneous volumes often lead to inaccurate LODs, due to
the loss of masking and shadowing effects that occur between and inside dense input voxels. Rendered
with volume path tracing (the trunk of the cedar is a mesh), without trilinear interpolation.

from a distance? Generating low-resolution grids from high-resolution grids is sometimes called volume
downsampling [ZWDR16]: voxels are viewed as samples of a 3D signal, and low-resolution voxel grids
allow for reconstructing a low-frequency (filtered) signal from less samples. A simple downsampling
framework is illustrated in figure 11.1.

In this part of the thesis, we address the problem of generating volume LODs such that the appearance
of the heterogeneous participating medium is preserved at all scales when rendered with a full computation
of the volumetric multiple scattering. Examples of results are shown in figure 11.2. In chapter 4, we have
seen that linear texture downsampling can lead to inaccurate results, in particular if scattering parameters
have a non-linear relation to the appearance, and if various scattering parameters are correlated (for
example the slopes of a surfaces and its albedos). The same phenomena occur for volumes, and we will
give various examples in the next section.

11.1.3 Evaluating the quality of volume LODs

Image-space evaluation. The accuracy of LODs can be evaluated using image-space errors, by com-
paring rendered LODs with results obtained from high-resolution data. Ideally, such errors should be
computed for many different lighting setup and from many points of view, in order to evaluate the
accuracy of LODs in all possible rendering contexts.

Local evaluation. An alternative to the view- and light-dependent image-space errors consists in
evaluating LODs locally. For example, light scattering probabilities in each low-resolution voxel can be
compared with light scattering in the corresponding blocks of input voxels. In the same spirit as in the
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standard definition of BRDFs (Sec. 4.1), the radiative transfer in a voxel or in a block of voxels can be
characterized by a 9D function

T (pi, ωi, po, ωo, λ) = dLo(po, ωo, λ)
Li(pi, ωi, λ) dωi dpi

,

with 2D for the direction ωi of the incident radiance, 2D for its position pi, and similar dimensions for
the outgoing radiance (ωo and po). The last dimension is the wavelength λ.

For the local evaluation of LODs, we can assume that only the directions need to be considered,
because the exact incident and outgoing positions pi and po are not important when the volume is
rendered from a distance. Under this far-field assumption, we can restrict the local evaluation to a
function T (ωi, ωo, λ). It is convenient to omit light transmitted without scattering through the volume
in the definition of T , and to describe the directional transparency using a separate function.

Effective albedo and phase function. From the definition of the local transfer function T , we can
introduce the concept of effective albedo, that is the average scattering probability given an incident
direction ωi:

αeff(pi, ωi, λ) = 1
|P|

∫
P

∫
S2
T (pi, ωi, p, ω, λ) dω dp

with P the surface of the cube of medium and |P| its area. Contrary to the single scattering albedo,
this effective albedo takes into account multiple scattering in the volume, and is related to the apparent
color of the medium. Similarly, we can define an effective phase function f eff(pi, ωi, λ, ωo) that takes into
account all scattering orders locally. We will rely on these concepts in the following chapters.

Advantage of local LOD evaluation. Evaluating the accuracy of local transfer functions is more
efficient than computing errors in image space, because local computations can be fully parallelized, each
task only requires a small part of the entire data. Nevertheless, local evaluations of LODs give less
guaranties about the appearance of the entire LOD viewed from a distance, because effects of masking
and multiple scattering between neighboring blocks of voxels are not taken into account. In chapter 14, we
optimize scattering parameters using similar local measurements and we show that this is more efficient
than image-space optimization, and sufficient to ensure a correct appearance of the entire medium.

11.2 Case study

In the following examples, we consider voxels as cubes of participating media for simplicity: we assume
that box reconstruction filters are used for downsampling, and that volumes are rendered without trilinear
interpolation. The phenomena highlighted in these examples also occur if smoother filters are used for
rendering and prefiltering. We first present some examples where scattering parameters can be linearly
prefiltered while preserving the appearance of the volume, before discussing more complex cases. We do
not address all these cases in the next chapters, this section aims at giving intuitions about what governs
the appearance of heterogeneous volumes and at explaining why volume downsampling is challenging.

11.2.1 Examples where linear downsampling is accurate

Let’s first consider a block of voxels such that the scattering parameters are exactly the same in all the
voxels (Fig. 11.3a). In this specific case, prefiltering linearly the parameters and replacing the block by a
single low-resolution voxel (Fig. 11.3b) preserves exactly the appearance of the volume (i.e. its opacity,
effective albedos and effective phase functions).

Intuitively, we see that linear prefiltering would be a good approximation in cases where the block is
almost homogeneous (Fig. 11.3c). For example, if there are only subtle variations of density between the
voxels of the block, averaging the parameters and replacing the block by a unique low-resolution voxel
should be accurate enough.
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(a)
Block of input voxels with same

scattering parameters in each voxel.

(b)
Low-resolution voxel.

(c)
Block of input voxels with small

variations of scattering parameters.

Figure 11.3: If all the voxels of a block have the same scattering parameters (a), then the appearance
can be exactly preserved in the LOD using the same parameters (b). Linear prefiltering is often an
accurate approximation for the case of almost homogeneous blocks of voxels (c).

There are other cases where linear prefiltering gives good approximations. Let’s consider a block of
voxels with relatively low attenuation coefficients and spatially-varying scattering coefficients (Fig. 11.4a).
For instance, let’s consider a block of 4 × 4 × 4 voxels, each voxels blocking 5% of the light in each of
the three main directions (the medium is isotropic). Then, for an incident light beam in one of the
main directions and going through four voxels, light is scattered in the four voxels with probabilities
of approximately 0.05, 0.048 (that is, 0.05 × (1 − 0.05)), 0.045 and 0.043, from the first intersected
voxel to the last one. In this example, we can consider that scattering occur in all the voxels with
roughly the same probability, and also that single scattering is largely predominant compared to multiple
scattering, because most of the scattered light leaves the block with only one scattering event. Under
these assumptions, it is correct to assume that the spatial variations of the scattering coefficient do not
really mater: seen from a distance, the medium can be accurately described statistically by the average
scattering coefficient. In this case, it would be accurate enough to prefilter scattering coefficients linearly
(Fig. 11.4b).

These assumptions hold for other low-density volumes, for example microflake volumes with uniform
attenuation coefficients and scattering coefficients but spatially-varying microflake normal distributions
(Fig. 11.4c). In this case, it does not matter where each type of microflake is located in the block, the
average microflake normal distribution is sufficient for describing the medium under a far-field assumption
(Fig. 11.4d).

(a)
Low-attenuation voxels, varying
scattering coefficients represented

with colors

(b)
Low-resolution voxel with linearly
prefiltered scattering coefficients

(good approximation)

(c)
Varying

microflake
distributions

(d)
Low-resolution
voxel (good

approximation)

Figure 11.4: Under the hypothesis that voxels in the block are transparent enough (a, c), some linear
prefiltering operations give accurate approximations (b, d) because the spatial variations do not matter
from a distance. The red arrows in (a) and (c) represent scattering events (they occur everywhere in the
volume because the voxels are transparent enough).
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11.2.2 Examples with correlations

When scattering parameters are correlated, it is sometimes inaccurate to prefilter each parameter in-
dependently. We have already discussed this effect in the case of surfaces in chapter 4. A volumetric
example is given in figure 11.5 with correlations between albedos and microflake distributions.

(a)
Block of input voxels with correlated
microflake normal distributions and

albedos

(b)
Low-resolution voxel with
independent prefiltering of
distributions and albedos

(c)
Low-resolution voxel with a more

accurate model

Figure 11.5: When scattering parameters such as microflake albedos and microflake distributions are
correlated in the block of input voxels (a), independent linear prefiltering for each parameter lacks accu-
racy: in (b), light scattered by the volume is purple in all directions, while scattered light can be red or
blue depending on the scattering direction in the input volume (a). In this example, using two types of
microflakes in the low-resolution voxel (c) allows for preserving more accurately the radiative transfer of
the block of input voxels.

Another common example of correlations concerns density of microflakes and microflake albedos
(Fig. 11.6). If the input block contains opaque voxels with red microflakes and very transparent voxels
with blue microflakes, we intuitively know that microflake albedos should be weighted by the density of
microflakes and not prefiltered independently of density parameters. Note that unlike albedos, scattering
coefficients can usually be prefiltered linearly and independently of attenuation coefficients because they
directly represent the radiative transfer by unit of length in the media.

(a)
Block of input voxels with correlated

microflake albedos and density.

(b)
Incorrect low-resolution voxel with

linearly prefiltered albedos.

(c)
Correct low-resolution voxel using

weights proportionally to the
density parameters.

Figure 11.6: Example where simple linear prefiltering leads to inaccurate results for the low-resolution
voxel. In the block of input voxels, density parameters and albedos are correlated (a), leading to incorrect
appearance if albedos are prefiltered independently of density parameters (b). Using weights proportionally
to the density parameters solves the problem in this case (c).

11.2.3 Incorrect opacity with linearly prefiltered density

We now consider a 4×4×4 block with a very opaque voxel (with attenuation coefficient σinputt ) surrounded
with transparent voxels (Fig. 11.7a). In this case, the opacity of the block in one of the main direction
is approximately 1/16. By linearly downsampling the attenuation coefficients, we get an attenuation
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(a)
Block with a single opaque voxel

(very high attenuation coefficient).

(b)
Incorrect low-resolution voxel with
linearly prefiltered attenuation

coefficients.

(c)
Correct low-resolution voxel with
same opacity as the input block.

Figure 11.7: The linear prefiltering of attenuation coefficients can lead to inaccurate results with
incorrect opacity, especially in the case of very heterogeneous volumes.

coefficient of σinputt /16 for the low-resolution voxel, and its opacity is

1− exp
(
−dvσinputt

16

)

with dv the length of the low-resolution voxel. We can see that if σinputt is very large, we get a very opaque
low-resolution voxel that would an inaccurate approximation of the input volume. The same thing occurs
with the microflake model if density is prefiltered linearly in very heterogeneous blocks. This is the reason
why we propose to estimate density parameters that preserve the opacity in the next chapters, instead
of relying on linear prefiltering.

11.2.4 Examples with incorrect effective albedo and effective phase function

We now consider again the previous example with a single opaque voxel with attenuation σinputt in a
block of 4 × 4 × 4 input voxels (Fig. 11.7a), but we now consider the scattering inside this volume.
We call σinputs the scattering coefficient of the opaque voxel, and all the other voxels are transparent.
Ideally, a low-resolution voxel approximating this block should have the same occlusion, effective phase
functions and effective albedos, that is, light should be scattered with the same probability and in the
same directions. A light ray intersecting the low resolution voxel (along one of the main axes) is going
through the medium over a length that is 4 times the length of high-resolution voxels. Therefore, if we
set the attenuation and scattering coefficients of the low-resolution voxel to respectively σinputt /4 and
σinputs /4, then the scattering of light in the low-resolution voxel is exactly similar to light scattering in
the input opaque voxel (Fig. 11.8a and 11.8b): we simply scaled the medium such that the effective
albedo and phase function of the high-resolution dense voxel are preserved in the low-resolution voxel.
However, the occlusion of the low-resolution voxel is incorrect: we know that even linear pre-filtering
(giving σinputt /16 for the low-resolution voxel) results in an overly opaque voxel (Fig. 11.8d).

Now if we choose an attenuation coefficient that gives a correct opacity for the low-resolution voxel
(Fig. 11.8e), light scattering becomes quite different from the scattering in the input voxel:

• The low-resolution voxel becomes a transparent medium in which scattering occurs everywhere in
the volume (Fig. 11.8e), whereas it was occurring mostly in the vicinity of the boundaries of the
opaque voxel in the input block of voxels (Fig. 11.8a and 11.8b). This means, for example, that
light entering the low-resolution voxel in direction ωi could be scattered forward and leave the voxel
in the same direction. These light paths have a very low probability in the input opaque voxel. In
other words, the effective phase function of the low-resolution voxel is not accurate.

• Single scattering is largely predominant in the low-resolution voxel (Fig. 11.8e), whereas in the
input opaque voxel multiple scattering contributed a lot to the appearance. Because light paths in
the low-resolution voxel have less scattering events, the effective albedo of this voxel is brighter and
less saturated.
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(a)
Voxel with edge size

0.5, σt = 40

(b)
Voxel with edge size

2, σt = 10

(c)
Voxel with edge size

2, σt = 40

(d)
Voxel with edge size

2, σt = 2.5

(e)
Voxel with edge size

2, σt = 0.0323

Figure 11.8: Cubes of participating media rendered with a top light (spot light), a RGB albedo of
(0.8, 0.8, 0.97) and the Henyey-Greenstein phase function (g = 0.3). It is possible to preserve the ap-
pearance of a voxel while scaling it by dividing the attenuation coefficient and the scattering coefficient
by the scale factor, 4 in this example (a, b). Otherwise, the effective albedos and effective phase func-
tions are not preserved (c, d, e). Case (d) corresponds to the linear prefiltering described in Fig. 11.7a
(the attenuation coefficient is divided by 16), and (e) corresponds to a medium with an opacity of 1/16
(Fig. 11.7c). In low-opacity voxels (e), light is scattered everywhere in the voxel, it can leave the voxel
in every direction depending on the phase function, and multiple scattering does not contribute a lot to
the radiative transfer. In denser voxels (b,c), light is mainly scattered in the vicinity of the entry point,
it leaves the voxel backward because it cannot reach the opposite side of the voxel, and multiple scattering
creates more saturated colors in some directions. Therefore, effective albedos and phase functions in (c,
d, e) and different from (a) and (b).

From this example, we understand that it seams difficult to preserve both a correct opacity and
correct effective albedos and phase functions in the low-resolution voxel when the input medium is very
heterogeneous and has very opaque voxels. This is the fundamental problem we address in the next
chapters, by introducing a new volume model with parameters for characterizing the probability of self-
shadowing in the medium, independently of its attenuation coefficient.

11.2.5 Examples of view-dependent appearances

In the general case, a block of n × n × n input voxels can have a wide range of appearances, including
complex view-dependent opacity and view-dependent colors. When we try to approximate such complex
appearances with a single voxel of participating medium, we face a fundamental problem: light scattering
in the input block has little to do with the scattering in a homogeneous cube of participating medium.
Therefore, is it difficult and sometimes impossible, with available volume models, to accurately approxi-
mate the input volume with low-resolution voxels while preserving the opacity and local effective albedos
and phase functions. Examples are shown in Fig. 11.9.

As for surface prefiltering, volume downsampling always requires hypotheses about the input data so
that LODmethods can be derived. For instance, we can often assume that albedos and phase functions are
not correlated, which allows for prefiltering phase functions independently of albedos. This assumption
does not hold for every dataset, for example for some types of fabrics [ZWDR16].

11.3 Previous work on volume appearance matching

11.3.1 The lack of analytical models for effective albedos and phase functions

We have seen in the previous section that the distant appearance of participating media can be charac-
terized by their local directional attenuation, their effective phase functions and their effective albedos

129



(a)
Block of voxels with a view-dependent appearance,

due to colored dense voxels.

(b)
Block of voxels with a view-dependent appearance
due to spatially-varying microflake distributions.

Figure 11.9: The appearance of a block of voxels can have strong view-dependent effects that are difficult
to preserve accurately using a single voxel of participating medium. View-dependent effects may be due
to spatially-varying albedos or microflake distributions in the block of voxels.

(Sec. 11.1.3). Our goal is to downsample volume data while preserving such properties in low-resolution
volumes, and it would be useful to obtain analytically such functions directly from scattering parameters.

Unfortunately, it is difficult to predict the effective albedos and effective phase functions of a voxel of
participating medium given its scattering parameters, because of the complexity of multiple scattering in
a medium with arbitrary density and phase functions. The lack of models for the effective appearance of
voxels raises two main problems for volume LODs:

• First, it is difficult to derive closed-form expressions for the appearance of a block of input voxels in
terms of effective phase functions and effective albedos. Both can be evaluated numerically using
Monte Carlo approaches but this is time consuming and prone to noise because the full volume
light transport must be integrated. Nevertheless, we rely on such sampling methods in the next
chapters (Chap. 14), using appropriate hypotheses for simplifying the problem.

• Secondly, given a target appearance (for example a target effective albedo estimated in the block
of input voxel), it is difficult to derive scattering parameters for a low-resolution voxel. Because of
the lack of analytically models, we address this problem with an numerical approach (Chap. 14).

In fact, some models are available for the appearance of low-density volumes and very opaque voxels.
Light scattering in low-attenuation volumes is simple because multiple scattering can be neglected. Ef-
fective albedos are roughly equivalent to single scattering albedos, and effective phase functions to single
scattering phase functions. To the contrary, scattering in very dense media occur in the vicinity of the en-
try point and light cannot reach the opposite side of the voxel. Light scattering in this situation is similar
to the case of a homogeneous slab of medium of infinite width, for which sub-surface scattering models have
been studied, for both isotropic media (with angle dependent phase functions) [JMLH01,DI11,HCJ13]
and anisotropic media [JAM∗10a]. Solutions used in computer graphics rely on a diffusion approximation,
in which the radiance due to multiple scattering in the volume is assumed to have low angular frequencies,
such that it can be approximated using its first moments (i.e. a constant lobe plus a cosine lobe). Then,
practical solutions for the radiance at the surface are derived from the choice of boundary conditions
and approximations of the first scattering events in the medium. Has noted by Hery, Wrenninge and
Villemin [Her03,WVH17], closed-form expressions for the effective albedo allow for controlling directly
the effective appearance of diffusion-based sub-surface scattering models, and such controllability is very
important for 3D artists.

In conclusion, we have closed-form expressions for the effective albedos and effective phase functions
in volumes with either low or high optical depth, but we have no model for the situations in between,
where the diffusion approximation does not hold and multiple scattering and shadowing impact both the
effective albedo and the effective phase functions. We don’t contribute to this problem and we rely on
numerical estimations of effective albedos (Chap. 14). Efficient closed-form solutions remain to be found.
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11.3.2 Previous work on the relationships between scattering parameters and the
appearance of media

The problem of finding the relationship between scattering parameters and the effective appearance of
a volume has been noted and addressed by several authors in computer graphics. Zhao et al. [ZJMB11]
have used microflake volumes [JAM∗10a] for rendering fabrics and they estimated scattering parameters
of their volume model from photographs. Assuming that roughness parameters of microflake distributions
and albedos were uniform in the entire volume, and using the fact that density parameters have little
effect on the appearance of dense volumes, they optimized the albedo and the roughness by iteratively
updating one of the parameters until the image-space statistics of the rendered volume matched the
statistics of reference photographs.

Retrieving the relation between scattering parameters and global appearance has then been improved
by estimating derivatives of pixel values with respect to scattering parameters, for the acquisition from
photographs of real-work liquids [GZB∗13] and fabrics [KSZ∗15], and for the interactive editing of volume
albedos [HR13]. Estimating such derivatives allows faster convergence of the appearance matching process
because stochastic gradient descent methods can be used and all the parameters are optimized jointly
at each iteration. Zhao et al. [ZRB14] used the similarity theory [WPW89] to explore sets of scattering
parameters that lead to the same global appearance, and showed that the appearance matching problem
may have several solutions with similar accuracy for optically dense and high-albedo media. They showed
that the non-linear relation between scattering parameters and pixel radiances can be leveraged for
decreasing scattering coefficients in dense media and reducing significantly render time without changing
the appearance.

Similar problems have been noted concerning the complex relation between the global appearance
of dense packs of fibers such as hair and their individual scattering properties. The non-linear relation-
ship between the perceived color and scattering parameters of fibers such as azimuthal roughness and
transmission color makes authoring difficult for artists. Chiang et al. [CBTB16] addressed this problem
by pre-rendering images of fibers with different scattering parameters and finding a mapping between
perceived colors and scattering parameters. The mapping function was deduced from observations and
least-square fitting, and more general analytic models are still missing. Chiang et al. [CKB16] proposed
a similar numerical inversion for the appearance of path-traced media.

11.3.3 Downsampling scattering parameters [ZWDR16]

Zhao, Wu et al. [ZWDR16] recently addressed the problem of downsampling very heterogeneous volumes
while preserving their appearance, in the case of microflake volumes rendered with volume path trac-
ing. Their work is closely related to previous work on appearance matching [ZJMB11,GZB∗13,KSZ∗15]
because they have optimized albedos of low-resolution voxels such that the appearance of LOD vol-
umes matches the appearance of the reference high-resolution volumes. As in previous work, they rely
on iterative optimization using partial derivatives of pixel values with respect to scattering parame-
ters [GZB∗13,KSZ∗15]. In the next chapters, we introduce a new downsampling approach for generating
accurate LODs of microflake volumes. Because we address almost exactly the same problem as Zhao, Wu
et al. [ZWDR16], we review several aspects of their method in this section. The main difference between
our work and their method is that we optimize scattering parameters locally for each low-resolution voxel,
instead of using global optimization based on image-space error metrics which restricts the generality of
their downsampling algorithm.

Overview

The input data of Zhao, Wu et al. [ZWDR16] consists of high-resolution voxel grids, in which each voxel
stores spatially-varying scattering parameters for the microflake model (Sec. 5.3, [JAM∗10a]): microflake
densities (scalar value), microflake albedos (RGB value), and parameters for the microflake distribution
(one SGGX lobe, 6 coefficients).
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Figure 11.10: Figure from the work of Zhao, Wu et al. [ZWDR16]. Using a single SGGX lobe for
prefiltering microflake distributions is a good approximation when microflake distributions have low fre-
quencies or are coherently oriented (example 1). However, a single lobe is insufficient when the combined
distribution is more complex (example 2), for example when input voxels have fiber-like microflake dis-
tributions with distinct fiber orientations. The downsampling algorithm of Zhao, Wu et al. [ZWDR16]
supports multiple SGGX lobes in low-resolution voxels.

They also use the standard microflake model for low-resolution voxels, but they use multiple SGGX
lobes with different scattering coefficients for each lobe. As shown in Fig. 11.10, using several lobes allows
more accurate prefiltering, in particular in the case of fabrics with specular fibers. They also handle the
case of correlated albedos and microflakes distributions, as mentioned previously (Fig. 11.5) and shown
in Fig. 11.11c (twill with red and yellow fibers).

Their method consists in the following steps:

1. For each low-resolution voxel, they linearly downsample the density of input voxels (i.e. they
average density parameters). We have seen that this often leads to incorrect opacity (Sec. 11.2.3)
but has sufficient accuracy for opaque media with simple silhouettes when the asset is seen from a
distance.

2. For each low-resolution voxel, they find a small number of SGGX lobes for accurately repre-
senting the combined microflake distribution of input high-resolution voxels.

3. They cluster the low-resolution voxels into a few clusters with similar scattering parameters,
so that they can optimize scattering parameters per cluster, instead of per low-resolution voxel.
Clustering is mandatory in their method because the enormous amount of parameters that need
to be optimized makes the problem intractable otherwise. This strategy requires the underlying
hypothesis that blocks of input voxels with the same average albedo should have the same effective
albedo. This assumption would be incorrect in datasets with both high-density and low-density
regions with the same average albedo, and it raises problems for spatially-varying datasets because
a large number of clusters should be used to avoid artifacts. Their method also requires solving
additional problems such as finding SGGX lobe correspondence between low-resolution voxels be-
longing to the same cluster, because scattering parameters associated with each lobe are optimized
for the entire cluster.

4. They estimate scattering coefficients for each lobe and for each cluster with a stochastic gradient
descent, using the input high-resolution volume as the reference and iterating until reaching a local
minimum of image-space errors. The scattering parameters of each cluster of low-resolution voxels
are optimized using a stochastic gradient descent based on rendered images of the low-resolution
volume and reference images of the high-resolution volume. They render volumes and compute error
metrics for several camera positions and lighting conditions. Their error metric does not handle the
case where a pixel value comes from several semi-transparent voxels belonging to different clusters,
it only considers the first voxel seen by the pixel. This strategy implicitly assumes that all the low-
resolution voxels are dense enough. Optimizing scattering parameters using image-space metrics
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in the case of semi-transparent volumes would be more challenging and the gradient descent more
complex.

Discussion

Zhao, Wu et al. demonstrated that their method can be used for generating accurate LODs of microflake
volumes for which naïve linear downsampling would produce incorrect results. Results from their publi-
cation can be found in Fig. 11.11. Their test datasets include complex fabrics with correlations between
microflake albedos and microflake orientations, and their method preserves the colored anisotropic reflec-
tions of the input datasets (Fig. 11.11c). Their work have the following main limitations:

• In their method, density parameters are downsampled linearly, which produce incorrect silhouettes,
shadows and appearance for datasets with complex macroscopic shapes such as trees. Although
the strategy for prefiltering density parameters could be changed in their method, it is unclear
how the optimization algorithm should be adapted for robust parameter estimation in the case of
semi-transparent voxels.

• Voxel clustering is mandatory in their method and prone to artifacts. They noted artifacts in the
case of spatially-varying albedos and proposed an ad hoc jittering method which lacks generality
and robustness. Other parameters such as density or roughness could also vary spatially, leading to
other kinds of artifacts when using clusters. Using more clusters makes their algorithm less efficient
because more gradient images need to be computed.

The method we introduce in the next chapters has similar goals but it bypasses these limitations: we
estimate the scattering parameters independently for each low-resolution voxel using local metrics (mean
effective albedo), which is faster, avoids the use of voxel clusters and allows for simplifying all kinds of
spatially-varying datasets for the same precomputation cost. We do not rely on linear downsampling of
density parameters, and we estimate density parameters that ensure correct transparency, shadows and
silhouettes in our LODs.

11.4 Summary of the chapter

Rendering high-resolution heterogeneous participating media is challenging because of the memory re-
quirements of large 3D voxel grids and costly path tracing. We have presented the problem of volume
downsampling and we have introduced the definitions of effective albedos and effective phase functions
for characterizing the appearance of a voxel or a block of voxels (Sec. 11.1.3).

Based on simple examples, we have shown that simplifying volumes while preserving their appearance
is challenging:

• Linear prefiltering does not produce accurate results. In particular, averaging attenuation coeffi-
cients leads to low-resolution voxels with incorrect opacity.

• As in the case of surface prefiltering, scattering parameters such as density, albedos and microflake
normal distributions should not be downsampled independently in cases where they are correlated.

• Blocks of high-resolution voxels can have some types of view-dependent appearance that are not
easily approximated by common volume models.

• We have explained that generating low-resolution voxels with correct opacity, effective albedos and
effective phase functions is impossible in some cases using simple volume models (Sec. 11.2.4),
in particular because decreasing attenuation coefficients affects the amount of self-shadowing and
multiple scattering in the media.
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Lighting 1 Lighting 2

LOD
[ZWDR16]

High-res (ref) Naïve LOD
[ZWDR16]

High-res (ref) Naïve

(a) Bunny from [ZWDR16], resolution divided by 4 in each dimension.

(b) Velvet from [ZWDR16], resolution divided by 32 in each dimension.

(c) Twill from [ZWDR16], resolution divided by 8 in each dimension.

Figure 11.11: Results from the work of Zhao, Wu et al. [ZWDR16]. Their test datasets include fabrics
with aligned dense voxels at the voxel scale (a,b) and oriented colored fibers (c). They have shown that
optimizing albedos in low-resolution voxels allows for generating LODs with improved accuracy compared
to naïve prefiltering, with up to four orders of magnitude storage saving.

We have presented some previous work on volume downsampling and non-linear relationships between
the scattering parameters and the effective appearance of participating media, and we have highlighted
the lack of analytical models.

11.5 Résumé du chapitre

Calculer efficacement le rendu de milieux participatifs hétérogènes de haute résolution est difficile à cause
de la place que prennent les grilles 3D de voxels en mémoire. Nous avons présenté le problème du
préfiltrage volumique et nous avons introduit les concepts d’albedos effectifs et de fonctions de phases
effectives pour caractériser l’apparence d’un voxel ou d’un bloc de voxels (Sec. 11.1.3).

En partant d’exemples simples, nous avons montré que préfiltrer des volumes tout en préservant leur
apparence peut être difficile :

• Le préfiltrage linéaire n’a pas une précision suffisante dans certains cas. En particulier, moyenner
les coefficients d’atténuation donne des transparences incorrectes dans les volumes préfiltrés.

• Comme dans le cas du préfiltrage de surfaces, les paramètres de réflectance comme la densité, les
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albedos ou les distributions de normales de microflakes ne devraient pas être préfiltrés indépendem-
ment les uns des autres lorsque leurs valeurs sont corrélées.

• Les blocs de voxels de haute résolution peuvent avoir des apparences qui dépendent beaucoup de
l’angle d’observation, et les modèles volumiques existants ne donnent pas toujours des approxima-
tions fiables.

• Nous avons expliqué que préfiltrer des volumes avec des transparences et des apparences correctes
est parfois impossible avec les modèles volumiques existants (Sec. 11.2.4, en particulier parce que la
diminution de la transparence d’un milieu va de pair avec la diminution des probabilités d’ombrage
local et change la manière dont la lumière est diffusée.

Nous avons présenté des méthodes existantes pour le préfiltrage des volumes ainsi que des travaux portant
sur l’étude des relations non linéaires entre les paramètres de réflectance et l’apparence des volumes.
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Chapter 12

A new microflake model with
microscopic self-shadowing

In this chapter, we introduce a new participating medium model based on the microflake model. We
call it the microscopic self-shadowing model because it models media whose microflakes have correlated
positions at a microscopic scale, leading to microscopic shadowing and masking effects. Examples are
shown in Fig. 12.1. Microscopic self-shadowing impacts attenuation coefficients, as well as scattering
coefficients and phase functions. The key motivations for this model are the following:

• In our new model, the anisotropic attenuation due to anisotropic correlations of microflake positions
is independent of the microflake distribution. This means that our model can be used for pre-filtering
microflake distributions and anisotropic attenuation independently. For example, our model can
have isotropic microflake distributions and anisotropic attenuation (Fig. 12.1a), which was not
possible with the standard microflake model.

• Our model have parameters for controlling the amount of microscopic self-shadowing, and therefore
the perceived color of the medium due to multiple scattering, independently of the attenuation
of the medium. This was not possible in the standard microflake model, in which the amount of
multiple scattering was entirely determined by the attenuation coefficient and the single scattering
phase function.

These additional degrees of freedom allow for more accurate volume downsampling as shown in Fig. 12.2.

(a) (b) (c) (d)

Figure 12.1: Our model can be used for rendering participating media with correlated microflakes at
the microscopic scale (a,b,c,d). The spatial correlations of microflakes are independent of microflake
normal distributions in the model, and can lead to anisotropic attenuation even if the microflake normal
distribution is isotropic (a).
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(a)
Input voxels

(b)
Low-res voxel
(linear method)

(c)
Low-res voxel

(correct transp.)

(d)
Low-res voxel

(using our model)

Figure 12.2: In the case of a highly heterogeneous volume (a), naïve downsampling algorithms can lead
to inaccurate results (b-c). (b): Linear pre-filtering densities results in incorrect opacity (blue lines) in
low-resolution voxels. (c): A correct opacity can be obtained by decreasing the density in low-resolution
voxels, but this also decreases the probability of local self-shadowing and leads to overly bright LoDs. In
the standard microflake model, the amount of multiple scattering entirely depends on the attenuation of
the medium. (d): Our microscopic self-shadowing model can represent media with correlated microflakes
and it preserves both anisotropic opacity and self-shadowing effects.

12.1 The microscopic self-shadowing model

Our model builds on the microflake model [JAM∗10a]. The main formulas of this model have been given
in Sec. 5.3.2.

12.1.1 Notations

In this chapter and the following ones, we use often use spherical coordinates and we call φ ∈ (0, 2π) the
azimuth angle and θ ∈ (0, π) the polar angle, so that a normalized vector ω writes

ω =

cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)

 .
The symbols we use can be found in the following table:

Symbol Meaning Unit
D(ω) Microflake normal distribution st−1

A(ω) Microscopic self-shadowing function 1
ρ Area of microflake per unit volume m−1

σt Attenuation coefficient m−1

σs, σss, σms Scattering coefficients (wavelength dependent) m−1

f, fss, fms Normalized phase functions st−1

α, αss, αms Albedos (wavelength dependent) 1
〈 · 〉 Clamped dot product -
χ+(x) Indicator function of positive reals -

12.1.2 Microscopic self-shadowing function (A)

Let’s consider a volume whose microflakes are spatially correlated at a microscopic scale, as shown in
Fig. 12.1. We characterize microflake correlations with the probability that a microflake is shadowed or
masked by a neighboring microflake, in a given direction. We introduce a dimensionless scalar function
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A on the sphere such that 1−A(ω) gives the probability of shadowing by other neighboring microflakes
in the direction ω. A satisfies:

∀ω ∈ S2, 0 < A(ω) ≤ 1 and A(ω) = A(−ω). (12.1.1)

The case A(ω) = 1 corresponds to the standard microflake model in which microflakes are well separated
at a microscopic scale and not correlated [JAM∗10a]. Given this shadowing behavior at a microscopic
scale, we derive new expressions for attenuation coefficients, scattering coefficients and phase functions.

12.1.3 Attenuation coefficient (σt)

The attenuation coefficient is given by the standard microflake model times the self-shadowing function
A characterizing microflake correlations:

σt(ω) = A(ω)ρ
∫
D(ωm)〈ω · ωm〉 dωm. (12.1.2)

12.1.4 Single scattering coefficient (σss)

We consider the amount of local single scattering σss(ω) at microscopic scale, from an incoming direction
ω. Single scattering occurs when microflakes are both unmasked and unshadowed:

σss(ω) = ραss(λ)A(ω)
∫
A(ω′)D(ωm)〈ω · ωm〉 dωm (12.1.3)

where ω′ = 2ωm(ωm ·ω)−ω is the reflected direction given an input direction ω and a microflake normal
ωm. This can be written as an integral over outgoing directions, using the Jacobian of the transformation
from normals to specular reflections provided by Walter et al. [WMLT07]:

σss(ω) = ραss(λ)A(ω)
4

∫
A(ω′)D(ωh) dω′. (12.1.4)

12.1.5 The single scattering phase function (fss)

Microscopic self-shadowing also impacts the single scattering phase function fss, which is the standard
phase function attenuated in some directions due to microscopic shadowing (and normalized):

fss(ω → ω′) = A(ω′)D(ωh)∫
A(ω′′)D((ω′′ + ω)/‖ω′′ + ω‖) dω′′

= ραss(λ)A(ω)A(ω′)D(ωh)
4σss(ω) . (12.1.5)

Again, when A = 1, this reduces to the standard microflake specular phase function. It is easy to check
that our model satisfies Helmholtz’s reciprocity principle by construction:

σss(ω)fss(ω → ω′) = ραss(λ)A(ω)A(ω′)D(ωh)
4

which is symmetric in ω and ω′.

12.1.6 Microscopic multiple scattering

We want our model to take into account microscopic multiple scattering so that it satisfies the white
furnace test, meaning that all incoming light should be scattered in the case of microflakes with albedo
1, for any self-shadowing function A.
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Ideally, our model should have one scattering coefficient and one phase function for each number of
local scattering events. Unfortunately, their expressions involve spherical convolutions of the microflake
phase function, for which there is no analytic expressions in general. In our work, we chose to use a single
multiple scattering coefficient σms(ω) and a single multiple scattering albedo αms(λ) that approximate
contributions of all scattering orders except single scattering. The multiple scattering coefficient is given
by the amount of light that is scattered and then masked locally, times the multiple scattering albedo:

σms(ω) = αms(λ)ρA(ω)
∫

(1−A(ω′))D(ωm)〈ω · ωm〉dωm

= αms(λ)
(
σt(ω)− σss(ω)

αss(λ)

)
. (12.1.6)

The multiple scattering albedo αms(λ) is a parameter of our model. We assume that multiple scattering
is roughly diffuse, and we use the multiple scattering phase function

fms(ω → ω′) = fms(ω′) = σms(ω′)∫
σms(ω′′) dω′′

. (12.1.7)

It satisfies reciprocity since

σms(ω)fms(ω → ω′) = σms(ω)σms(ω′)∫
σms(ω′′) dω′′

which is symmetric in ω and ω′. This phase function scatters light in directions in which there is a lot of
microscopic shadowing. Also note that in the case αss(λ) = αms(λ) = 1, we have

σss(ω) + σms(ω) = σss(ω) + αms(λ)
(
σt(ω)− σss(ω)

αss(λ)

)
= σt(ω)

meaning that our model preserves energy when microflakes do not absorb light (i.e. the model passes
the white furnace test).

12.2 Simplified model with isotropic self-shadowing

Our model greatly simplifies when the self-shadowing function is isotropic, i.e. when A(ω) = A, ∀ω. As
discussed in Sec. 13.3, this simplified model is easier to implement, it requires less parameters at rendering
and it has a sufficient accuracy in practice. In the case of isotropic self-shadowing, the expressions of our
model reduce to

σt(ω) = Aρ

∫
D(ωm)〈ω · ωm〉 dωm (12.2.1)

σss(ω) = αss(λ)Aσt(ω) (12.2.2)

fss(ω → ω′) = ραss(λ)A2D(ωh)
4σss(ω) (12.2.3)

σms(ω) = αms(λ)σt(ω) (1−A) (12.2.4)

fms(ω′) = σms(ω′)∫
σms(ω′′) dω′′

= σt(ω′)∫
σt(ω′′) dω′′

. (12.2.5)

Note that σt(ω) is equal to A times the attenuation coefficient of the standard microflake model, and fss
is exactly the specular phase function of the standard microflake model.

12.3 Summary of the chapter

We extended the microflake model with new parameters that are useful for downsampling volumes.
We introduced a self-shadowing function A, where 1 − A(ω) represents the probability of shadowing
and masking by neighboring microflakes at a microscopic scale. Self-shadowing impacts the attenuation
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coefficient σt, the single scattering coefficient σss and the associated phase function fss. For energy
conservation, we introduce a local multiple scattering coefficient σms and its associated phase function
fms. Rendering with this model requires the evaluation of these functions (σt, σss, fss, σms, fms) and
sampling procedures for fss and fms.

In practice, Eq. 12.1.2, 12.1.3 and 12.1.7 rely on spherical integrals of the microflakes distribution D
with the shadowing function A, meaning that for most functions D and A, no closed-form expressions
can be found. In the next chapter, we present appropriate functions D and A that lead to closed-form
expressions, allowing efficient implementations of our self-shadowing model.

12.4 Résumé du chapitre

Nous avons étendu le modèle de volume de microflakes avec de nouveaux paramètres qui sont utiles
pour le préfiltrage des volumes. Nous avons pour cela introduit une fonction d’ombrage local A, où
1 − A(ω) représente la probabilité d’ombrage et de masquage par des microflakes voisins à une échelle
microscopique. L’ombrage local affecte le coefficient d’atténuation σt, le coefficient de diffusion σss et
la fonction de phase associée fss. Pour que notre modèle conserve l’énergie lumineuse localement, nous
prenons en compte les diffusions multiples locales en introduisant un coefficient de diffusion locale σms et
une fonction de phase de diffusion fms. Calculer le rendu de volumes avec ce modèle nécessite d’évaluer
ces fonctions (σt, σss, fss, σms, fms) et de trouver des procédures pour échantillonner fss et fms.

En pratique, les équations 12.1.2, 12.1.3 et 12.1.7 contiennent des intégrales dans le domaine sphérique
des distributions de microflakes D et des fonctions d’ombrage A. Ces intégrales n’ont pas de formes closes
pour la plupart des fonctions D et A. Dans le prochain chapitre, nous proposons des fonctions D et A
bien choisies qui permettent d’obtenir des formes closes, afin de pouvoir implémenter efficacement notre
modèle.
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Chapter 13

Implementing the microscopic
self-shadowing model

The self-shadowing model involves spherical convolutions which do not have closed-form expressions for
arbitrary microflake distributions D and shadowing functions A. The microflake normal distribution D
is defined in the space of microflake normals, while A is defined in the space of incoming or outgoing
directions. Because of this, it is very difficult to find closed-form expressions of integrals such as the one
equation 12.1.3. For instance, we could not find solutions using the commonly used SGGX distribution,
the Gaussian fiber distribution [ZJMB11], Spherical Gaussians [TS06] or Anisotropic Spherical Gaussians
[XSD∗13] despite their interesting mathematical properties.

Fortunately, we found that using trigonometric distributions (Sec. 13.2.2) and a carefully chosen shad-
owing function A (Sec. 13.2.1), we can derive several closed-form expressions and implement efficiently
our model (Sec. 13.2). We also propose an implementation of the simplified model (Sec. 12.2) based on
SGGX distributions [HDCD15] in Sec. 13.3. In the next chapter, we introduce algorithms that rely on
these models for downsampling and rendering microflake volumes.

This chapter contains long derivations and technical details. We provide a brief summary of our main
results (Sec. 13.1), so that the reader may skip the derivations and go directly to the next chapter.

13.1 Main results

13.1.1 Choosing the self-shadowing function A

We first introduce a convenient anisotropic self-shadowing function A:

A(ω) = ωTS ω (13.1.1)

with S a symmetric positive definite matrix encoding anisotropy as in SGGX distributions [HDCD15].
This function can be seen as the square projected area of an ellipsoid. As we want 0 < A(ω) ≤ 1, we
ensure that S has eigenvalues smaller than or equal to 1. We found that this representation is simple
and flexible enough for encoding smooth directional changes of the self-shadowing probability, and it
can be stored with only 6 parameters. More importantly, its simplicity allows for deriving closed-form
expressions of spherical integrals.
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Trig. lobes SGGX Trig. lobes SGGX Trig. lobes SGGX

Figure 13.1: Trigonometric lobes (Eq. 13.1.2) can be used for representing foliage-like (left) and fiber-
like (right) microflake distributions, similarly to SGGX lobes.

13.1.2 Using trigonometric lobes for the microflake normal distribution

Using self-shadowing functions as described by Eq. 13.1.1, we found closed-form expressions for our model
using the following microflake normal distributions:

Dcos(ω, ξ, n) = cos2n(ω, ξ)
Ncos(n) = (ω · ξ)2n

Ncos(n)

Dsin(ω, ξ, n) = sin2n(ω, ξ)
Nsin(n) = (1− (ω · ξ)2)n

Nsin(n)
with n ∈ N and Ncos(n) and Nsin(n) the normalization factors whose closed-form expressions can be found
in Sec. 13.2.3. These distributions will be referred to as trigonometric lobes. Any linear combination of
such lobes still leads to closed-form expressions in our model (by the linearly of the integrals with respect
to the microflake distribution). These lobes can represent the same kinds of distributions as the SGGX
distribution (Fig. 13.1), using for instance

D(ω) = wcDcos(ω, ξc, nc) + wsDsin(ω, ξs, ns) + wiso
4π (13.1.2)

with wc, ws, wiso positive weights such that wc + ws + wiso = 1.

13.1.3 Attenuation coefficients for cos2n and sin2n lobes

In Sec. 13.2.5, we derive a general closed-form expression for the attenuation coefficient σcos
t , but this

expression involves costly Gauss hypergeometric functions 2F1 and cannot be evaluated efficiently at
rendering. However, for each particular value n, we have found efficient closed-form expressions of the
form:

σcos
t (ω) = ρA(ω)


1

(ω · ξD)2

. . . .
(ω · ξD)2n

 · C1 (13.1.3)

with C1 a n + 1 vector of coefficients. We computed coefficients for each n between 1 and 20, using
symbolic integration [MGH∗05]. Note that for each n, these expressions are exact. We have found similar
expressions for sin2n lobes (only coefficients C1 change).

13.1.4 Single scattering coefficients

Similarly, we have found closed-form expressions for σss for each n:

σcos
ss (ω) = αss(λ)ρA(ω)


1

(ω · ξD)2

. . . .
(ω · ξD)2n

 · C2 ·

 ωTSA ω
ξTDSA ξD
trace(A)



+ αss(λ)ρA(ω)
(
ωTSA ξD

) (ω · ξD)
. . . . . .

(ω · ξD)2n−1

 · C3 (13.1.4)
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with C2 a (n+ 1)× 3 matrix of coefficients and C3 a vector of coefficients of length n. We found similar
expression for sin2n lobes.

13.1.5 Evaluating and sampling fss and fms

Details concerning phase functions can be found in Sec. 13.2.10 and Sec. 13.2.11. The evaluation of
our multiple scattering phase function fms (Eq. 12.1.7) involves the integral of the multiple scattering
coefficient: ∫

σms(ω) dω = αms(λ)
∫
σt(ω) dω − αms(λ)

αss(λ)

∫
σss(ω) dω.

We provide closed-form expressions for
∫
σt(ω) and

∫
σss(ω) (Sec. 13.2.7). We also provide sampling

procedures for visible normal distributions [HDCD15] for the trigonometric lobes. We rely on rejection
sampling for sampling exactly fss and fms. Our sampling procedures are very efficient (i.e. samples are
almost always accepted) when the shadowing function A has few anisotropic variations, which is often
the case in practice. Our procedures are less efficient when A is highly anisotropic.

13.1.6 Limitations

Compared to SGGX distributions, implementing our model with the distribution proposed in Eq. 13.1.2
is about 2 to 3 times more expensive for evaluating σt(ω), and about 25 to 60 times more expensive for
sampling the phase functions, depending on nc, ns, and A(ω). Despite these additional costs compared
to the standard microflake model, rendering our LODs is much faster than rendering high-resolution
volumes. In Sec. 13.3, we propose an implementation of our simplified self-shadowing model that is more
efficient because it relies on SGGX distributions for σt and fss.

Another limitation of the implementation proposed here is that unlike SGGX distributions, interpo-
lating trigonometric distributions cannot be done by linearly interpolating the parameters of the trigono-
metric lobes. This means that trilinear spatial interpolation at rendering would require 8 evaluations of
σt.

13.1.7 Implementing the simplified self-shadowing model using the SGGX distri-
bution

In our simplified self-shadowing model, σt and σss almost reduce to the standard microflake model, for
which the SGGX distribution allows for efficient rendering. For this reason, we propose an implementation
of the simplified model based on the SGGX distribution (Sec. 13.3). However, using SGGX distributions,
there is no closed-form expression for

∫
σms(ω) dω, which is involved in the multiple scattering phase

function. Assuming normalized SGGX matrices, meaning that the highest eigenvalue is 1, the other two
eigenvalues belong to the interval (0, 1]. We discretized this interval and precomputed

∫
σt(ω′′) dω′′ for

each pair of eigenvalues using numerical integration (Appendix D).

In the simplified self-shadowing model, sampling the multiple scattering phase function fms is equiv-
alent to importance sampling σt, i.e. the projected area of the SGGX ellipsoid given by

√
ωTS ω. In the

supplemental material, we provide the details of a sampling procedure for fms, using the fact that ωTS ω
is close enough to

√
ωTS ω to allow efficient rejection sampling.

13.2 Implementing the self-shadowing model with trigonometric lobes

In this section, we derive closed-form expressions and sampling procedures for implementing our self-
shadowing model, using an anisotropic self-shadowing function (Sec. 13.2.1) and microflake normal dis-
tributions based on trigonometric lobes (Sec. 13.2.2). The derivations include:
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• Normalization factors for trigonometric lobes (Sec.13.2.3).

• Expressions for the attenuation coefficient σt (Sec. 13.2.5).

• Expressions for the single scattering coefficient σss (Sec. 13.2.6).

• Expressions for
∫
σt and

∫
σss, involved in the multiple scattering albedo σms (Sec. 13.2.7).

• Sampling procedures for the single scattering phase function fss (Sec. 13.2.10 and 13.2.11).

• Sampling procedures for the multiple scattering phase function fms (Sec. 13.2.12).

13.2.1 Choice of a self-shadowing function

We introduce an anisotropic self-shadowing function A for which we can find closed-form expressions for
the spherical convolutions and integrals involved in our self-shadowing model (Eq. 12.1.3, 12.1.7). This
anisotropic self-shadowing function writes

A(ω) = a1(ξA1 · ω)2 + a2(ξA2 · ω)2 + a3(ξA3 · ω)2. (13.2.1)

It can also be written as the square projected area of an ellipsoid in direction ω [HDCD15] with axes ξAi :

A(ω) = ωT

ξA1 ξA2 ξA3

a1 0 0
0 a2 0
0 0 a3


 ξTA1

ξTA2

ξTA3

ω = ωTSA ω. (13.2.2)

13.2.2 Trigonometric lobes: Dcos(ω, ξ, n) and Dsin(ω, ξ, n)

We use distributions based on trigonometric lobes:

Dcos(ω, ξ, n) = cos2n(ω, ξ)
Ncos(n) = (ω · ξ)2n

Ncos(n)

Dsin(ω, ξ, n) = sin2n(ω, ξ)
Nsin(n) = (1− (ω · ξ)2)n

Nsin(n)

Diso(ω) = 1
4π

with n ∈ N and Ncos(n) and Nsin(n) the normalization factors.

13.2.3 Normalization factors

For the cosine lobe, the normalization factor writes

Ncos(n) =
∫

(m · ξD)2n dm = 4π
2n+ 1 .

The normalization factor for the sine lobe writes

Nsin(n) =
∫ (

1− (m · ξD)2
)n

dm = 2π 3
2 Γ(1 + n)

Γ
( 3

2 + n
) .

In our implementation, we precomputed the normalization factors for the sine lobe for n ∈ [1..20].
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13.2.4 Proof that distributions Dsin(ω, ξ, n) can be written as a sum of distributions
Dcos(ω, ξ, n)

Sine lobes Dsin(ω, ξ, n) have an interesting property: they can be written as a sum of 2n cosine lobes:

Dsin(ω, ξ, n) = 1
2n

2n−1∑
p=0

Dcos(ω, ξp, n) (13.2.3)

with ξp being 2n evenly spaced axes in the plane orthogonal to ξ. For example, a Dsin(ω, ξ, 5) distribution
is equivalent to a sum of 10 Dcos(ω, ξp, 5) distributions:

= + + + + + + + + +

Without loss of generality, we derive the proof in spherical coordinates in the case ξsin
D = [0, 0, 1]T . The

sum of cosine lobes writes

1
2n

2n+ 1
4π

2n−1∑
p=0




cos
(pπ

2n

)
sin
(pπ

2n

)
0

 ·
cos(φ) sin(θ)

sin(φ) sin(θ)
cos(θ)




2n

(13.2.4)

= 2n+ 1
8nπ

2n−1∑
p=0

(
cos
(pπ

2n

)
cos(φ) sin(θ) + sin

(pπ
2n

)
sin(φ) sin(θ)

)2n
(13.2.5)

= 2n+ 1
8nπ sin(θ)2n

2n−1∑
p=0

(
cos
(pπ

2n

)
cos(φ) + sin

(pπ
2n

)
sin(φ)

)2n
(13.2.6)

= 2n+ 1
8nπ sin(θ)2n

2n−1∑
p=0

cos
(pπ

2n − φ
)2n

. (13.2.7)

We can expand cos(x)2n [Wei17] as follows:

cos(x)2n = 1
22n

(
2n
n

)
+ 1

22n−1

n−1∑
k=0

(
2n
k

)
cos(2(n− k)x)

so we can write
2n−1∑
p=0

cos
(pπ

2n − φ
)2n

=
2n−1∑
p=0

(
1

22n

(
2n
n

)
+ 1

22n−1

n−1∑
k=0

(
2n
k

)
cos
(

2(n− k)
(pπ

2n − φ
)))

.

We can check that terms involving φ cancel to 0:
2n−1∑
p=0

n−1∑
k=0

(
2n
k

)
cos
(

2(n− k)
(pπ

2n − φ
))

=
n−1∑
k=0

(
2n
k

) 2n−1∑
p=0

cos
(

2(n− k)
(pπ

2n − φ
))

=
n−1∑
k=0

(
2n
k

)
<

(2n−1∑
p=0

exp
(

2i(n− k)
(pπ

2n − φ
)))

=
n−1∑
k=0

(
2n
k

)
<

(
exp (−2i(n− k)φ)

2n−1∑
p=0

exp
(
i(n− k)2π

2n

)p)

=
n−1∑
k=0

(
2n
k

)
<

exp (−2i(n− k)φ) 1− exp (i(n− k)2π)

1− exp
(
i(n− k)2π

2n

)


= 0.
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Finally, we obtain

2n+ 1
8nπ

2n−1∑
p=0




cos
(pπ

2n

)
sin
(pπ

2n

)
0

 ·
cos(φ) sin(θ)

sin(φ) sin(θ)
cos(θ)




2n

= 2n+ 1
8nπ sin(θ)2n

2n−1∑
p=0

1
22n

(
2n
n

)
(13.2.8)

= sin(θ)2n 2n+ 1
8nπ

2n
22n

(
2n
n

)
(13.2.9)

= sin(θ)2n 2n+ 1
π4n+1

(2n)!
2n! (13.2.10)

= sin(θ)2n
√
π(2n+ 2)!

4n+1(n+ 1)!
(n+ 1)

(2n+ 2)π3/2n!
(13.2.11)

= sin(θ)2nΓ (n+ 3/2)
2π3/2n!

(13.2.12)

= Dsin(ω, ξsin
D , n). (13.2.13)

13.2.5 Closed-form expression of the attenuation coefficient σt(ω)

Derivation of general closed-form expressions for σt(ω)

A general closed-form expression can be found for σt(ω) but this expression is not convenient for evaluation
because it involves costly evaluations of Gauss hypergeometric functions 2F1. For information, we provide
a derivation of this expression for the cosine lobe (Eq. C.18) in Appendix C. For efficient implementation,
we have precomputed simpler closed-form expressions for each n ∈ [1..20] as explained in Section 13.2.5.
Note that a general closed-form expression could also be derived for the sine lobe, using the fact that a
sine lobe can be written as a sum of cosine lobes (Sec. 13.2.4).

Pre-computing simple closed-form expressions for particular values n

Using symbolic integration [MGH∗05], we have found that for each particular n, σcos
t (ω) can be written

σcos
t (ω) = ρA(ω)


1

(ω · ξD)2

(ω · ξD)4

. . . .
(ω · ξD)2n

 · C1

with C1 a n+1 vector of coefficients. The evaluation cost is linear in n and this expression is very efficient
when n is small. In practice we precomputed coefficients from n = 1 to 20 (corresponding to a cos40

lobe). We have found similar expressions for sine lobes. These coefficients can be found in our code, in
the supplemental material of our publication [LN18] (files matrixcoslobe.h and matrixsinlobe.h).

13.2.6 Single scattering coefficients σss for Dcos and Dsin microflake distributions

The general closed-form expressions for σss are even more complex than the expressions for σt (Eq. C.18)
and they have no practical interest for rendering. Like we did for σt, we precomputed simpler and exact
closed-form solutions for each n = 1 to 20. We have found using symbolic integration that
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∫
(ξA · ω′)2Dcos(m, ξD, n)〈m · ω〉dm =


1

(ω · ξD)2

(ω · ξD)4

. . . .
(ω · ξD)2n

 · C2 ·

 (ω · ξA)2

(ξA · ξD)2

1



+ (ξA · ξD)(ξA · ω)


(ω · ξD)
(ω · ξD)3

. . . . . .
(ω · ξD)2n−1

 · C3 (13.2.14)

with ω′ = −ω+ 2m(ω ·m), C2 a (n+ 1)× 3 matrix of coefficients and C3 a vector of coefficients of length
n. Given Equation 13.2.1, we sum the contributions of the three shadowing axes and we obtain

∫
A(ω′)Dcos(m, ξD, n)〈m · ω〉dm =


1

(ω · ξD)2

(ω · ξD)4

. . . .
(ω · ξD)2n

 · C2 ·

 a1(ω · ξA1)2 + a2(ω · ξA2)2 + a3(ω · ξA3)2

a1(ξA1 · ξD)2 + a2(ξA2 · ξD)2 + a3(ξA3 · ξD)2

a1 + a2 + a3



+ (a1(ξA1 · ξD)(ξA1 · ω) + a2(ξA2 · ξD)(ξA2 · ω) + a3(ξA3 · ξD)(ξA3 · ω))


(ω · ξD)
(ω · ξD)3

. . . . . .
(ω · ξD)2n−1

 · C3.

(13.2.15)

We can write:
a1(ω · ξA1)2 + a2(ω · ξA2)2 + a3(ω · ξA3)2 = ωTSA ω

a1(ξA1 · ξD)2 + a2(ξA2 · ξD)2 + a3(ξA3 · ξD)2 = ξTD SA ξD

a1(ξA1 · ξD)(ξA1 · ω) + a2(ξA2 · ξD)(ξA2 · ω) + a3(ξA3 · ξD)(ξA3 · ω) = ωTSA ξD

a1 + a2 + a3 = tr(A).

Finally we obtain, for a cosine lobe Dcos,

σss(ω) = αss(λ)ρA(ω)


1

(ω · ξD)2

(ω · ξD)4

. . . .
(ω · ξD)2n

 · C2 ·

 ωTSA ω
ξTD SA ξD
trace(A)

+ αss(λ)ρA(ω)
(
ωTSA ξD

)
(ω · ξD)
(ω · ξD)3

. . . . . .
(ω · ξD)2n−1

 · C3.

(13.2.16)

Expressions in the case of sine lobes Dsin are similar, only coefficients in C2 and C3 are different. All the
coefficients can be found in our code in the files matrixcoslobe.h and matrixsinlobe.h [LN18].

13.2.7 Closed-form expression for
∫
σt and

∫
σss

Integrals
∫
σt(ω) dω and

∫
σss(ω) dω are involved in our multiple scattering phase function (Eq. 12.1.7).

We provide here the derivations of their closed-form expressions.

Closed-form expression of
∫
σt(ω) for cosine lobes Dcos(m, ξD, n)

We want to find a closed-form expression for a cosine distribution:∫
σt(ω) dω = ρ

∫
A(ω)

∫
Dcos(m, ξD, n)〈m · ω〉 dm dω. (13.2.17)
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We first invert the integrals:∫
A(ω)

∫
Dcos(m, ξD, n)〈m · ω〉 dm dω =

∫
Dcos(m, ξD, n)

∫
A(ω)〈m · ω〉 dω dm. (13.2.18)

We can decompose our shadowing function in three parts using equation 13.2.1:∫
A(ω)〈m · ω〉 dω =

∑
ai

∫
(ω · ξAi)2〈m · ω〉 dω. (13.2.19)

We choose a convenient parametrization: we take m = [1, 0, 0]T and ξAi = [sin(θA), 0, cos(θA)]T , so that
we can write

∫
(ω · ξAi)2〈m · ω〉 dω =

2π∫
φ=0

π/2∫
θ=0

(sin(θA) cos(φ) sin(θ) + cos(θA) cos(θ))2 cos(θ) sin(θ) dφ dθ

= π

4
(
cos(θA)2 + 1

)
= π

4
(
(ξAi ·m)2 + 1

)
. (13.2.20)

We can now substitute this expression in Eq. 13.2.18 and we obtain∫
Dcos(m, ξD, n)π4

(
(ξAi ·m)2 + 1

)
dm =

∫ 2n+ 1
4π (ξD ·m)2nπ

4
(
(ξAi ·m)2 + 1

)
dm. (13.2.21)

Choosing a parametrization such that ξD = [0, 0, 1]T and ξAi = [sin(θA), 0, cos(θA)]T , this writes

2π∫
φ=0

π∫
θ=0

2n+ 1
4π cos(θ)2nπ

4
(
(sin(θA) cos(φ) sin(θ) + cos(θA) cos(θ))2 + 1

)
sin(θ) dm =

π
(
n (ξD · ξAi)

2 + n+ 2
)

4n+ 6 .

(13.2.22)
Finally, we can sum and factor the formula for the three axes, and we obtain

∫
σt(ω) dω = ρa1

π
(
n (ξD · ξA1)2 + n+ 2

)
4n+ 6 +ρa2

π
(
n (ξD · ξA2)2 + n+ 2

)
4n+ 6 +ρa3

π
(
n (ξD · ξA3)2 + n+ 2

)
4n+ 6 .

(13.2.23)
Using Eq. 13.2.2, we can write, for a distribution Dcos(m, ξD, n):∫

σt(ω) dω = ρ

∫
A(ω)

∫
Dcos(m, ξD, n)〈m · ω〉 dm dω = ρ

π
(
n(ωTSA ω) + tr(SA)(n+ 2)

)
4n+ 6 .

(13.2.24)

Closed-form expression of
∫
σt(ω) for sine lobe Dsin(m, ξD, n)

The derivation is almost the same as for the Dcos(m, ξD, n) in Sec. 13.2.7. We need to compute∫
Dsin(m, ξD, n)π4

(
(ξAi ·m)2 + 1

)
dm =

∫ 2π 3
2 Γ(1 + n)

Γ
( 3

2 + n
) (

1− (ξD ·m)2)n π
4
(
(ξAi ·m)2 + 1

)
dm.

(13.2.25)
Choosing the same convenient frame in which ξD = [0, 0, 1]T and ξAi = [sin(θA), 0, cos(θA)]T , this writes

2×
2π∫

φ=0

π/2∫
θ=0

π

4
(
(sin(θA) cos(φ) sin(θ) + cos(θA) cos(θ))2 + 1

)
sin(θ)2n+1 dm =

π
(

3n+ 4− n (ξD · ξAi)
2
)

8n+ 12 .

(13.2.26)
Again, we have to sum this for each shadowing axis. For a Dsin(m, ξD, n) distribution, we obtain:∫

σt(ω) dω = ρ

∫
A(ω)

∫
Dsin(m, ξD, n)〈m · ω〉 dm dω = ρ

π
(
(3n+ 4) tr(SA)− n(ωTSA ω)

)
8n+ 12 .

(13.2.27)
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Closed-form expression of
∫
σss(ω) for cosine lobe Dcos(m, ξD, n)

In the case of a distribution Dcos(m, ξD, n), we look for a closed-form expression of the integral∫
σss(ω) dω = ραss(λ)

∫
A(ω)

∫
A(ω′)Dcos(m, ξD, n)〈ω ·m〉 dm dω, (13.2.28)

with ω′ = −ω + 2m(ω ·m). We invert integrals and we obtain∫
Dcos(m, ξD, n)

∫
A(ω)A(ω′)〈ω ·m〉 dω dm. (13.2.29)

We expand each shadowing term using Equation 13.2.1 and we obtain 9 terms of the form:∫
Dcos(m, ξD, n)

∫
A(ω)A(ω′)〈ω·m〉 dω dm =

∑
i,j∈{1,2,3}

∫
Dcos(m, ξD, n)aiaj

∫
(ω·ξAi)2(ω′·ξAj)2〈ω·m〉 dω.

(13.2.30)
We first consider the case i = j, and then the case i 6= j.

Case i = j

Without loss of generality, we work in the reference frame in whichm = [1, 0, 0] and ξAi = [cos(φAi), sin(φAi), 0].
We find∫

(ω · ξAi)2((−ω + 2m(ω ·m)) · ξAi)2〈ω ·m〉 dω (13.2.31)

=
π/2∫

φ=−π/2

π∫
θ=0

(cos(φAi) cos(φ) + sin(φAi) sin(φ))2(cos(φAi) cos(φ)− sin(φAi) sin(φ))2 cos(φ) sin(θ)6 dω dθ

(13.2.32)

= 1
24π

(
15(m · ξAi)4 − 10(m · ξAi)2 + 3

)
. (13.2.33)

We integrate this result with Dcos(m, ξD, n) (recall that we want a closed-form expression for Equa-
tion 13.2.28) and we find∫

Dcos(m,ξD, n) 1
24π

(
15(m · ξAi)4 − 10(m · ξAi)2 + 3

)
dm

= π
15n(n− 1) (ξD · ξAi)4 − 10n(n− 2) (ξD · ξAi)2 + 3n2 + 7n+ 10

24n2 + 96n+ 90 . (13.2.34)

Case i 6= j

We choose a reference frame such that m = [0, 0, 1]T , Ai = [sin(θAi), 0, cos(θAi)]T and

Aj = [cos(φAj) sin(θAj), sin(φAj) sin(θAj), cos(θAj)]T .

We have
ξAi ⊥ ξAj ⇒ sin(θAi) cos(φAj) sin(θAj) + cos(θAj) cos(θAi) = 0.

We develop and integrate as before, and find∫
(ω ·ξAi)2((−ω+2m(ω ·m))·ξAj)2〈ω ·m〉 dω = π

24
(
15(m · ξAi)2(m · ξAj)2 + (m · ξAi)2 + (m · ξAj)2 + 1

)
.

(13.2.35)
Finally, we obtain∫

Dcos(m,ξD, n) π24
(
15(m · ξAi)2(m · ξAj)2 + (m · ξAi)2 + (m · ξAj)2 + 1

)
dm

= π
15C1C2n(n− 1) + (n2 + 10n)(C1 + C2) + n2 + 5n+ 10

24n2 + 96n+ 90 (13.2.36)

with C1 = (ξAi · ξD)2 and C2 = (ξAj · ξD)2.
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Sum of all terms

Given equations 13.2.30, 13.2.34 and 13.2.36, we can write the closed-form expression of
∫
σss(ω) in

the case of a cosine lobe Dcos(m, ξD, n). After simplification, we obtain:

∫
σss(ω) dω = πραss(λ)

24n2 + 96n+ 90

(
15n(n− 1)

(
ξTDSAξD

)2
− 10n(n− 2)ξTDSASAξD + 2n(n+ 10)

(
ξTDSAξD tr(SA)− ξTDSASAξD

)
+ (3n2 + 7n+ 10) tr(SASA) + (n2 + 5n+ 10)

(
tr(SA)2 − tr(SASA)

))
.

(13.2.37)

Closed-form expression of
∫
σss(ω) for sine lobe Dsin(m, ξD, n)

The derivation is almost the same as for cosine lobes.

Case i = j

We have shown (Sec. 13.2.7) that∫
(ω · ξAi)2((−ω + 2m(ω ·m)) · ξAi)2〈ω ·m〉 dω = π

24
(
15(m · ξAi)4 − 10(m · ξAi)2 + 3

)
(13.2.38)

Then ∫
Dsin(m, ξD, n) π24

(
15(m · ξAi)4 − 10(m · ξAi)2 + 3

)
dm

= π
(45n2 − 45n)(ξD · ξAi)4 + (−50n2 + 10n)(ξD · ξAi)2 + 29n2 + 91n+ 80

192n2 + 768n+ 720 . (13.2.39)

Case i 6= j

We have found previously (Sec. 13.2.7) that∫
(ω·ξAi)2((−ω+2m(ω·m))·ξAj)2〈ω·m〉 dω = 1

24π
(
15(m · ξAi)2(m · ξAj)2 + (m · ξAi)2 + (m · ξAj)2 + 1

)
(13.2.40)

We obtain ∫
Dsin(m, ξD, n) π24

(
15(m · ξAi)2(m · ξAj)2 + (m · ξAi)2 + (m · ξAj)2 + 1

)
dm

= π
45C1C2n(n− 1)− (C1 + C2)n(19n+ 25) + 31n2 + 105n+ 80

192n2 + 768n+ 720 . (13.2.41)

with C1 = (ξA1 · ξD)2 and C2 = (ξA2 · ξD)2.

Sum of all terms

Again, we sum the terms from cases i = j and cases i 6= j, and after simplification we obtain the
closed-form expression of

∫
σss for sine lobes Dsin(m, ξD, n):
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∫
σss(ω) dω = πραss(λ)

192n2 + 768n+ 720

(
45n(n− 1)

(
ξTDSAξD

)2 + 10n(1− 5n)ξTDSASAξD

− 2n(19n+ 25)
(
ξTDSAξD tr(SA)− ξTDSASAξD

)
+ (29n2 + 91n+ 80) tr(SASA) + (31n2 + 105n+ 80)

(
tr(SA)2 − tr(SASA)

))
.

(13.2.42)

13.2.8 Sampling the distribution of visible normals for a cosine lobe Dcos(m, ξD, n)

We address here the problem of sampling the distribution of visible microflake normals [HDCD15] given
that the microflake distribution is a cosine lobe Dcos(m, ξD, n). This sampling procedure is useful when
using trigonometric lobes in the standard microflake model or in the simplified self-shadowing model.
Sampling visible normal distributions is actually the same problem as sampling the specular phase func-
tion. We want to sample the probability density function

Dωi(ωo) = Dcos(ωh, ξD, n)
4
∫
Dcos(m, ξD, n)〈ωi ·m〉dm

(13.2.43)

with ωh = ωi + ωo
‖ωi + ωo‖

. It is more convenient to work in the space of microflake normals, and to sample

normals instead of outgoing directions. Using the Jacobian of the transformation from microflake normals
to outgoing directions [WMLT07], the pdf for sampling microflake normals writes

Dωi(m) = Dcos(m, ξD, n)〈ωi ·m〉∫
Dcos(m, ξD, n)〈ωi ·m〉dm

. (13.2.44)

We could not find a procedure for sampling directly this function. We propose a sampling procedure
based on rejection sampling (Sec. B).

Using rejection sampling for sampling visible normals of Dcos(m, ξD, n)

We have found that it is possible to sample the function

Dcos(m, ξD, n)(ωi ·m)2∫
Dcos(m, ξD, n)(ωi ·m)2 dm

which is relatively similar to Dωi(m) (Eq. 13.2.44) on the hemisphere for which Dωi(m) is not null. We
propose a rejection sampling method based on this function. We introduce the normalized pdf

Ds
ωi(m) = Dcos(m, ξD, n)((ω1 ·m)2 + 1/4)∫

Dcos(m, ξD, n)((ω1 ·m)2 + 1/4) dm

because we have
|ω1 ·m| ≤ (ω1 ·m)2 + 1/4

so that we can write
Dcos(m, ξD, n)|ωi ·m|∫
Dcos(m, ξD, n)|ωi ·m|dm

≤MDs
ωi(m)

with
M =

∫
Dcos(m, ξD, n)((ω1 ·m)2 + 1/4) dm∫

Dcos(m, ξD, n)|m · ωi|dm
.
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Using rejection sampling, we can generate samples from the pdf

Dcos(m, ξD, n)|ωi ·m|∫
Dcos(m, ξD, n)|ωi ·m|dm

by generating samples from Ds
ωi(m) and accepting samples with probability

Dcos(m, ξD, n)|ωi ·m|∫
Dcos(m, ξD, n)|ωi ·m|dm

1
MDs

ωi(m) = |ω1 ·m|
(ω1 ·m)2 + 1/4 .

Once we get a sample m, we invert its direction if ωi ·m < 0 and we obtain a sample for Dωi .

Sampling Ds
ωi(m)

We show here how to sample the pdf

Ds
ωi(m) = Dcos(m, ξD, n)((ω1 ·m)2 + 1/4)∫

Dcos(m, ξD, n)((ω1 ·m)2 + 1/4) dm
.

We choose a reference frame such that ξD = [0, 0, 1]T and ω = [sin(ti), 0, cos(ti)]T , and find

Ds
ωi(φ, θ) = cos(θ)2n((cos(ti) cos(φ) sin(θ) + sin(ti) cos(θ))2 + 1/4) (2n+ 1)(2n+ 3)

π(8n cos(ti)2 + 2n+ 7) .

The marginal pdf for θ is given by

fθ(θ) =
∫
Ds
ωi(φ, θ) sin(θ) dφ = (2n+ 3)(2n+ 1) cos(θ)2n sin(θ)

8 cos(ti)2n+ 2n+ 7

(
cos(θ)2 (3 cos(ti)2 − 1

)
− cos(ti)2 + 3

2

)
.

For sampling this function, we rely on inverse transform sampling, meaning that we sample a random
number U ∈ (0, 1) and solve for θ the equation

U =
∫ θ

0
fθ(x) dx.

We find that∫ θ

0
fθ(x) dx = − cos(θ)2n+1

8 cos(ti)2n+ 2n+ 7

(
(2n+ 1)

(
3 cos(ti)2 − 1

)
cos(θ)2 + (2n+ 3)

(
− cos(ti)2 + 3

2

))
.

In our implementation, we solve this function numerically using Brent’s method, although other methods
could also be used. Once θ has been sampled, φ must be sampled from the pdf

Ds
ωi(φ, θ)
fθ(θ)

.

This leads to the following equation for sampling φ:

V =
∫ φ

0

Ds
ωi(x, θ)
fθ(θ)

dx

= 2 sin(ti)2 sin(θ)2(cos(φ) sin(φ) + φ) + 8 sin(θ) cos(θ) cos(ti) sin(ti) sin(φ) + 4 cos(θ)2 cos(ti)2φ+ φ

2π(6 cos(θ)2 cos(ti)2 − 2 cos(θ)2 − 2 cos(ti)2 + 3)) ,

(13.2.45)

V being another random number in (0, 1). Again, we invert this equation numerically with Brent’s

method, and we obtain a sample m =

cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)

.
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13.2.9 Sampling the distribution of visible normals for a sine lobe Dsin(m, ξD, n)

For sine lobes, we use the fact that Dsin(m, ξD, n) can be written as a sum of cosine lobes Dcos(m, ξD, n)
(Sec. 13.2.4). We first sample one of the cosine lobes proportionally to their projected area in direction
ωi, and then sample a visible normal from this lobe using the procedure derived in the previous paragraph
(Sec. 13.2.8).

13.2.10 Sampling the single scattering phase function fss for Dcos(m, ξD, n)

In Sec. 13.2.8 and 13.2.9, we have derived sampling procedures for the distribution of visible normals.
Now, we derive similar sampling procedures for the single scattering phase function fss. The single
scattering phase function is given by

fss(ωi → ωo) = ραss(λ)A(ωo)A(ωi)D(ωh)
4σs(ωi)

.

We use Ds
ωi (Eq. 13.2.8) in the space of outgoing directions

Ds
ωi(ωo) = D(ωh)((ωh · ωi)2 + 1/4)

4|ωh · ωi|
∫
D(ωh)((ωh · ωi)2 + 1/4) dm

and write

fss(ωi → ωo) = ραss(λ)A(ωo)A(ωi)D(ωh)
4σs(ωi)

(13.2.46)

= Ds
ωi(ωo)

ραss(λ)A(ωo)A(ωi)
σs(ωi)

|ωh · ωi|
∫
D(ωh)((ωh · ωi)2 + 1/4) dm
((ωh · ωi)2 + 1/4) (13.2.47)

≤ Ds
ωi(ωo)

ραss(λ)AmaxA(ωi)
∫
D(ωh)((ωh · ωi)2 + 1/4) dm
σs(ωi)

(13.2.48)

≤ Ds
ωi(ωo)MA (13.2.49)

with Amax = max
ω

A(ω) and

MA =
Amax

∫
D(m)((m · ωi)2 + 1/4)dm∫

A(−ωi + 2m(m · ωi))D(m)|m · ωi|dm
.

Using this relation between Ds
ωi and fss, we can generate samples from fss by generating samples from

Ds
ωi and accepting them with probability

fss(ωi → ωo)
MDs

ωi(ω) = A(ωo)|ωh · ωi|
Amax((ωh · ωi)2 + 1/4) . (13.2.50)

13.2.11 Sampling the single scattering phase function fss for Dsin(m, ξD, n)

In the case of a sine distribution Dsin(m, ξD, n), we rely on the sampling procedure for visible normals
proposed in Sec. 13.2.9. This method generates samples from the pdf

Dωi(ωo) = D(ωh)
4
∫
D(m)|m · ωi|dm

.

We can write

fss(ωi → ωo) = ραss(λ)A(ωi)A(ωo)D(ωh)
4σs(ωi)

(13.2.51)

≤ Dωi(ωo)
ραss(λ)AmaxA(ωi)

∫
D(m)|m · ωi|dm

σs(ωi)
(13.2.52)

(13.2.53)
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so we can sample fss for a sine distribution Dsin(m, ξD, n) by generating samples ωo from Dωi(ωo) and
accepting them with probability

pdf1(ωo)
Mpdf2(ωo)

= ραss(λ)A(ωi)A(ωo)D(ωh)
4σs(ωi)

4
∫
D(m)|m · ωi|dm

D(ωh)
σs(ωi)

ραss(λ)AmaxA(ωi)
∫
D(m)|m · ωi|dm

(13.2.54)

= A(ωo)
Amax

. (13.2.55)

13.2.12 Sampling the multiple scattering phase function fms

Our multiple scattering phase function is given by

fms(ωo) = σt(ωo)− σs(ωo)/αss(λ)∫
σt(ω)−

∫
σs(ω)/αss(λ)

. (13.2.56)

We observe that in the case of isotropic self-shadowing, this phase function reduces to the pdf

A(1−A)
∫
D(m)〈m · ωo〉dm∫

A
∫
D(m)〈m · ωo〉dmdω −

∫
A
∫
AD(m)〈m · ωo〉dmdω

=
∫
D(m)〈m · ωo〉dm∫ ∫
D(m)〈m · ωo〉dmdω

which is proportional to the projected area of microflakes in direction ωo. Given a single microflake with
normal m, we can sample a direction ω proportionally to the projected area of the microflake, |m · ω|,
by sampling a cosine lobe around direction m. Similarly, we can sample the projected area of a cloud of
microflakes by sampling first a normal from the distribution of normals D, and then by sampling a cosine
lobe around this normal. In Sec. 13.2.13 and 13.2.14, we show how to sample normals for Dcos and Dsin.

We derive a rejection sampling procedure for fms based on this pdf:

σt(ωo)− σs(ωo)/αss(λ)∫
σt(ω)−

∫
σs(ω)/αss(λ)

=
A(ωo)

∫
(1−A(−ωo + 2m(m · ωo)))D(m)〈m · ωo〉dm∫

A(ω)
∫

(1−A(−ω + 2m(m · ω)))D(m)〈m · ω〉dmdω
(13.2.57)

<

∫
D(m)〈m · ωo〉dm∫ ∫
D(m)〈m · ωo〉dmdωo

Amax(1−Amin)
∫ ∫

D(m)〈m · ωo〉dmdωo∫
A(ω)

∫
(1−A(−ω + 2m(m · ω)))D(m)〈m · ω〉dm dω

.

(13.2.58)

We find the following probability of acceptance:

A(ω)
∫

(1−A(−ω + 2m(m · ω)))D(m)〈m · ω〉dm
Amax(1−Amin)

∫
D(m)〈m · ωo〉dm

. (13.2.59)

This probability tends to 1 when the self-shadowing is almost anisotropic, and it tends to be smaller when
Amin and Amax are very different, meaning that this sampling procedure is less efficient is such case.

13.2.13 Sampling a normal from Dcos

The distribution
Dcos(ω, ξ, n) = (ω · ξ)2n 2n+ 1

4π
can be sampled easily in the reference frame in which ξ = [0, 0, 1], using inverse transform sampling. We
first sample the azimuth φ uniformly in (0, 2π). Then, the marginal distribution for θ is

2π∫
0

cos(θ)2n 2n+ 1
4π sin(θ) dφ = 2n+ 1

2 cos(θ)2n sin(θ).

The cumulative distribution function writes
x∫

0

2n+ 1
2 cos(θ)2n sin(θ)dθ = 1

2
(
1− cos(x)2n+1) .

156



This function can be inverted:

U = 1
2
(
1− cos(x)2n+1)⇒ cos(x)2n+1 = 1− 2U,

If U ≥ 1/2:
x = arccos

(
(1− 2U)

1
2n+1

)
. (13.2.60)

If U ≤ 1/2:
x = π − arccos

(
(2U − 1)

1
2n+1

)
. (13.2.61)

Therefore, θ can be sampled by sampling U in (0, 1) and then using Eq. 13.2.60 or 13.2.61. Finally, the
sample

m =

cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)


must be rotated back in the original reference frame of Dcos(ω, ξ, n).

13.2.14 Sampling a normal from Dsin

Again, we use the fact that Dsin(m, ξD, n) can be written as a sum of cosine lobes Dcos(m, ξD, n)
(Sec. 13.2.4). We first sample one of the cosine lobes randomly and follow the procedure derived in
Sec. 13.2.13.

13.2.15 Sampling a cosine lobe

Sampling simple cosine lobes cos(θ) is very common in path tracing. We recall one of the existing
procedures here. Given a lobe axis m, sampling a cosine lobe around this direction can be done easily
in the frame in which m = [0, 0, 1]. In this frame, the cosine lobe on the upper hemisphere in spherical
coordinates writes

cos(θ)
π

1θ∈(0,π2 )(θ).

We first sample φ uniformly in (0, 2π). The marginal pdf for θ writes

2π∫
0

cos(θ)
π

sin(θ) dφ = 2 cos(θ) sin(θ).

Then the cumulative distribution function writes
x∫

0

2 cos(θ) sin(θ) dθ = sin(x)2.

So θ can be sampled using a random sample U in (0, 1) and the inverse of the cumulative function:

θ = arcsin
(√

U
)
.

13.2.16 Case of isotropic distribution D(ω) = 1
4π

We derived above the closed-form expressions and sampling procedures of our self-shadowing model for
sine and cosine distributions. We now consider the case of an isotropic microflake distribution

D(ω) = 1
4π
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which is much simpler. The attenuation coefficient writes

σt(ωi) = ρA(ωi)
1

4π

∫
〈ωi · ω〉dω = ρA(ωi)

4

and the single scattering coefficient

σss(ωi) = ραss(λ)A(ωi)
∫
A(ωo)

1
4π 〈ωi · ω〉dω (13.2.62)

= ραss(λ)A(ωi)
1

4π
1
4

∫
A(ωo)dωo (13.2.63)

= ραss(λ)A(ωi)
1

4π
1
4

4π
3 tr(SA) (13.2.64)

= ραss(λ)A(ωi)
tr(SA)

12 . (13.2.65)

The single scattering phase function writes

fss(ωi → ωo) =
A(ωi)A(ωo)

1
4π

A(ωi)
1

4π
∫
A(ω) dω

= 3A(ωo)
4π tr(SA) .

This phase function is proportional to the self-shadowing function in the outgoing direction A(ωo). The
function A can be written as a sum of three cos2 lobes as shown in equation 13.2.1. Using this expression,
sampling A(ωo) can be done by sampling one of the lobe proportionally to the eigenvalues a1, a2 and
a3, and then sampling a cos2 lobe (almost the same as in Section 13.2.13) around the corresponding
eigenvector. The multiple scattering phase function writes

fms(ωo) = σt(ωo)− σs(ωo)/αss(λ)∫
σt −

∫
σs/αss(λ)

with ∫
σt(ω) dω = ρ

1
4

∫
A(ω) dω = π tr(SA)

3
and ∫

σss(ω) dω = ραss(λ) tr(SA)
12

∫
A(ω) dω = ραss(λ) tr(SA)

12
4π tr(SA)

3 = π tr(SA)2

9
so we have

fms(ωo) =
A(ωo)

1
4 −A(ωo)

tr(SA)
12

π

3 tr(SA)− π tr(SA)2

9

= 3A(ωo)
tr(SA)4π = fss(ωi → ωo). (13.2.66)

The multiple scattering phase function fms is the same as the single scattering phase function fss in the
case of an isotropic microflake normal distribution.

13.2.17 Combining trigonometric lobes

In previous sections, we have derived expressions for σt, σss, σms, fss, fms and sampling procedures for
cosine, sine and isotropic microflake distributions. We now provide details for combining various lobes,
that is, when the microflake normal distribution D can be written

D(ω) =
∑

wiDi(ω)

with
∑
wi = 1. Several expressions are linear in D, so that we obtain:

σt(ω) = ρA(ω)
∫ ∑

wiDi(m)〈m · ω〉dm =
∑

wi σ
i
t(ω)
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σss(ω) = ραss(λ)A(ω)
∫
A(−ω + 2m(m · ω))

∑
wiDi(m) dm =

∑
wi σ

i
ss(ω)∫

σt(ω) dω =
∫ ∑

wi σ
i
t(ω) dω =

∑
wi

∫
σit(ω) dω∫

σss(ω) dω =
∫ ∑

wi σ
i
ss(ω) dω =

∑
wi

∫
σiss(ω) dω

The single scattering phase function is not a linear combination of phase functions derived from each
lobes, because of the normalization factor:

fss(ωi → ωo) = ραss(λ)A(ωi)A(ωo)
∑
wiDi(ωh)

4
∑
wi σiss(ω)

=
∑ wiσ

i
ss(ω)∑

wi σiss(ω)
ραss(λ)A(ωi)A(ωo)Di(ωh)

4σiss(ω)

=
∑ wiσ

i
ss(ω)∑

wi σiss(ω)f
i
ss(ωi → ωo).

The weights depend on direction ωi. Intuitively, this means that if one lobe has a small projected area
in direction ωi, or if there is more self-shadowing for this lobe because reflected rays are such that A(ωo)
is small, then this lobe contributes less to the combined phase function from direction ωi. Similarly, the
combined multiple scattering phase function writes:

fms(ωo) = σt(ωo)− σss(ωo)/αss(λ)∫
σt(ω) dω −

∫
σss(ω)/αss(λ) dω

(13.2.67)

=
∑
wi(σit(ωo)− σiss(ωo)/αss(λ))∑

wi(
∫
σit(ω) dω −

∫
σiss(ω)/αss(λ) dω)

(13.2.68)

=
∑ wi(

∫
σit(ω) dω −

∫
σiss(ω)/αss(λ) dω)∑

wi(
∫
σit(ω) dω −

∫
σiss(ω)/αss(λ) dω)

σit(ωo)− σiss(ωo)/αss(λ)∫
σit(ω) dω −

∫
σiss(ω)/αss(λ) dω

(13.2.69)

=
∑ wi(

∫
σit(ωo)−

∫
σiss(ωo)/αss(λ))∑

wi(
∫
σit(ω) dω −

∫
σiss(ω)/αss(λ) dω)

f ims(ωo). (13.2.70)

Sampling these phase functions from direction ωi can be done by computing view dependent weights of
each lobes, and then sampling one function f iss or f ims accordingly.

13.3 Implementing the simplified self-shadowing model with the SGGX
distribution

In this section, we discuss the implementation of our simplified self-shadowing model (Sec. 12.2) using
the SGGX distribution. The attenuation coefficient is given by

σt(ω) = Aρ

∫
D(ωm)〈ω · ωm〉 dωm.

Using SGGX microflake distributions, this writes

σt(ω) = Aρ
√
ωTS ω

with S the SGGX matrix. Similarly, the single scattering coefficient writes

σss(ω) = αss(λ)Aσt(ω) = αss(λ)A2ρ
√
ωTS ω.

The single scattering phase function writes

fss(ω → ω′) = ραss(λ)A2D(ωh)
4σss(ω) = D(ωh)

4
√
ωTS ω
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which is the SGGX specular phase function [HDCD15]. For the microscopic multiple scattering, we have

σms(ω) = αms(λ)σt(ω) (1−A) = αms(λ)ρA (1−A)
√
ωTS ω (13.3.1)

fms(ω′) = σms(ω′)∫
σms(ω′′) dω′′

=
√
ωTS ω∫ √

ω′′TS ω′′ dω′′
. (13.3.2)

Unfortunately, there is no closed-form expression for
∫ √

ωTS ω. As this integral does not depend on the
orientation of the SGGX distribution, but only on the eigenvalues of the SGGX matrix, we precompute
numerically this integral for several sets of eigenvalues. Assuming that the SGGX is normalized so that
its largest eigenvalue is 1, we pre-compute

∫ √
ωTS ω for several pairs of smaller eigenvalues a2 and a3.

Appendix D shows the values we used in our implementation.

The multiple scattering phase function fms(ωo) is proportional to the projected area of microflakes
in direction ωo. As discussed in Sec. 13.2.12, sampling this function could be done by sampling a normal
from distribution D and then sampling a cosine lobe around this normal. However, there is no efficient
way of sampling a normal from SGGX distributions. Available methods are based on rejection sampling
and can be inefficient in some configurations. We observed that the distribution

ωTS ω∫
ω′TS ω′ dω′

is rather close to fms(ωo), and simple to sample, since it is actually the same distribution as the multiple
scattering phase function in the case of anisotropic self-shadowing and isotropic microflake distribution
(Sec. 13.2.16). Based on this function, we can derive a rejection sampling method. We know that

√
ωTS ω ≤ ωTS ω + 1

4

so that
√
ωTS ω∫ √

ω′TS ω′ dω′
≤ ωTS ω + 1/4∫ √

ω′TS ω′ dω′
(13.3.3)

≤ ωTS ω + 1/4∫
(ω′TS ω′ + 1/4) dω′

∫
(ω′TS ω′ + 1/4) dω′∫ √

ω′TS ω′ dω′
. (13.3.4)

We can sample
ωTS ω + 1/4∫

(ω′TS ω′ + 1/4) dω′

and accept samples with probability
√
ωTS ω∫ √

ω′TS ω′ dω′

∫
(ω′TS ω′ + 1/4) dω′

ωTS ω + 1/4

∫ √
ω′TS ω′ dω′∫

(ω′TS ω′ + 1/4) dω′
=

√
ωTS ω

ωTS ω + 1/4 .
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Chapter 14

Volume downsampling with our
microscopic self-shadowing model

In previous chapters, we introduced a new volume model called the microscopic self-shadowing model
(Chap. 12). We provided all the derivations for implementing this model and its simplified version so
that it can be used for efficient rendering (Chap. 13).

As mentioned in chapter 12, the main motivation for this model was the introduction of new param-
eters for the anisotropic attenuation and the amount of multiple scattering, in order to prefilter blocks
of high-resolution voxels. In this chapter, we provide algorithms for estimating the parameters of the
microscopic self-shadowing model for each low-resolution voxel. We presented the work of Zhao, Wu et
al. in Sec. 11.3.3 and discussed its limitations raised by the optimization of scattering parameters with
image-space errors on the entire volume. In this chapter, we show that optimizing parameters locally
overcomes some of these limitations, and that it is also more efficient.

14.1 Downsampling algorithms

In this section, we introduce new algorithms for downsampling standard microflake volumes using our
self-shadowing model. We assume that input voxels contain one density value, parameters for the mi-
croflake distribution and a specular albedo. We describe two algorithms that we used for generating
results in Sec. 14.2: Aniso uses anisotropic self-shadowing functions in each low-resolution voxel, and
Iso relies on our simplified self-shadowing model (Sec. 12.2) for which each low-resolution voxel has less
parameters. We also describe in this section two naïve algorithms that use the standard microflake model
in output voxels: Linear performs linear prefiltering for densities and albedos, and Transp performs
linear prefiltering for albedos but computes density parameters that preserve the local transparency of
the input volume. These naïve algorithms are used for comparison in Sec. 14.2.

Fig. 14.1 illustrates our downsampling pipeline and summarizes our input and output models for each
algorithm. Each of our output voxels have a unique single scattering albedo, which could be insufficient
for downsampling datasets with strong correlations between microflake distributions and albedos as shown
in Sec. 11.2.2. We discuss this case in Sec. 14.2.4.

14.1.1 Overview

In the four algorithms described in this section, each block of input voxels (Fig. 14.1) is downsampled
into one low-resolution voxel independently of other low-resolution voxels. The parameters of each low-
resolution voxel are computed using different strategies summarized in Table 14.1.
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Block of 
sub-voxels

Input voxel

(a) Input volume

Low-res voxel

(b) Output volume

Input ρ D(ω) α - -

Linear ρ D(ω) α - -
Transp ρ D(ω) α - -
Iso (our) ρ D(ω) αss A αms
Aniso (our) ρ D(ω) αss A(ω) αms

(c) Data in input and output voxels

Figure 14.1: Our input voxels (a) have parameters for the standard microflakes model (density ρ,
microflake distribution D(ω) and albedo α). Each low-resolution voxel (b) approximates a cube of input
voxels (or block of input voxels). In this paper, we compare four downsampling algorithms (c). Linear
and Transp use the standard microflake model. Iso and Aniso use our self-shadowing model and output
voxels store additional parameters in this case, for the self-shadowing function A and for the multiple
scattering albedo αms.

ρ αss A αms

Linear Linear (Eq. 14.1.1) Linear (Eq. 14.1.2) - -
Transp Mean (Eq. 14.1.5) Linear (Eq. 14.1.2) - -
Aniso Max (Eq. 14.1.7) Linear (Eq. 14.1.2) Sec. 14.1.4 Sec. 14.1.4
Iso Mean (Eq. 14.1.6) Linear (Eq. 14.1.2) Sec. 14.1.4 Sec. 14.1.4

Table 14.1: Summary of the algorithms described in this chapter.

We do not contribute to microflake prefiltering. Algorithms described in this section are valid for any
number of SGGX or trigonometric lobes in input and output voxels. In our implementation, we used a
single SGGX lobe in each low-resolution voxel, or an equivalent distribution using trigonometric lobes
(Fig. 13.1), and we prefiltered normal distributions using linear SGGX prefiltering [HDCD15].

14.1.2 Algorithm Linear

This is the naïve linear algorithm: given ρi and αi, densities and albedos of Niv input voxels (Fig. 14.1),
the parameters of the corresponding low-resolution voxel are computed using

ρ = 1
Niv

∑
ρi (14.1.1)

and
α =

∑
αiρi∑
ρi

. (14.1.2)

14.1.3 Algorithm Transp

This algorithm first computes transparency of the block of input voxel in the three axis of the voxel grid:
T (ωX), T (ωY ) and T (ωZ). These quantities are computed exactly from directional transparencies of each
input voxel. Given the size of input voxels Liv, the transparency of one input voxel in direction ωi is
given by

exp
(
−Livρi

∫
Di(m)〈ωi ·m〉dm

)
. (14.1.3)

Similarly, the transparency of the low-resolution voxel in direction ωi is given by

exp (−Lσt(ωi)) = exp
(
−Lρ

∫
D(m)〈ωi ·m〉dm

)
(14.1.4)
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with L the size of the low-resolution voxel. We compute density parameters that preserve the transparency
in each direction ωi, and we average them:

ρ = 1
3

∑
i∈{X,Y,Z}

− log (T (ωi))
L
∫
D(m)〈ωi ·m〉dm

. (14.1.5)

14.1.4 Downsampling using our self-shadowing model (Iso and Aniso)

Given a prefiltered microflake distribution D, our algorithms first compute the directional transparencies
of the block of input voxels as in algorithm Transp. Then, they compute a temporary density value ρ0
and temporary parameters for a self-shadowing function A0. These temporary parameters are used for
estimating the amount of self-shadowing in the low-resolution voxel. The amount of self-shadowing is also
computed in the block of input voxels (Fig. 14.1). The final density ρ and self-shadowing parameters are
computed so that the amount of self-shadowing is the same in the block of input voxels and the low-res
voxel. Single scattering albedos are downsampled linearly using Equation 14.1.2, and the computation
the multiple scattering albedo is discussed in Sec. 14.1.4.

Computing temporary parameters ρ0 and A0 from directional transparencies

Given the size of low-res voxels L, the transparency of a low-res voxel in direction ωi is given by

exp (−Lσt(ωi)) = exp
(
−Lρ0A0(ωi)

∫
D(m)〈ωi ·m〉dm

)
.

Algorithm Iso only uses the simplified microflake model in which A0(ω) = A0, ∀ω. In this case, we set
A0 = 1 and compute ρ for preserving the average transparency as in algorithm Transp:

ρ0 = 1
3
∑ − log(T (ωi))

L
∫
D(m)〈ωi ·m〉dm

. (14.1.6)

Algorithm Aniso uses the anisotropic self-shadowing function introduced in Section 13.2.1. It computes
ρ0 using

ρ0 = max
i∈{X,Y,Z}

(
− log(T (ωi))

L
∫
D(m)〈ωi ·m〉dm

)
, (14.1.7)

and then it computes the self-shadowing parameters with

A0(ω) = ωT

sX 0 0
0 sY 0
0 0 sZ

ω (14.1.8)

with
si = − log(T (ωi))

ρ0L
∫
D(m)〈ωi ·m〉dm

, i ∈ {X,Y, Z} (14.1.9)

so that directional transparencies of the low-res voxel match exactly T (ωx), T (ωy) and T (ωz), the trans-
parencies of the block of input voxels.

Estimating self-shadowing

At this stage, the low-resolution voxel has a correct transparency but an incorrect self-shadowing proba-
bility. For preserving self-shadowing effects, we estimate the amount of single scattering in the block of
input voxels and in the low-res voxel, and we compute final parameters accordingly. More precisely, we
estimate the mean amount of energy that leaves the block of input voxels after exactly one scattering
event. For one incoming ray r with direction ωr, intersecting the block of input voxels in xmin and xmax
as shown in Fig. 14.2, the amount of single scattering writes

Pss(r) =
xmax∫
xmin

σs(x, ωr)O(xmin, ωr, x)
∫
S2

f(x, ωr → ω)O(x, ω) dω dx (14.1.10)
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Figure 14.2: Notations for Eq. 14.1.10, for a ray in a block of input voxels or in a low-res voxel.

with
O(x1, ω, x2) = exp

(
−
∫ x2

x1

σt(s, ω) ds
)

(14.1.11)

and O(x1, ω) a similar transmittance probability between x1 and the limit of the block of input voxels,
in direction ω (Fig. 14.2). The quantity Pss(r) is dimensionless but wavelength dependent. We estimate
the mean amount of single scattering in the block of input voxels by casting Nray rays all around the
block of input voxels. In our implementation, we chose rays with directions parallel to the mains axis of
the voxel grid. For each ray, we compute Pss(ri) and we average the results:

M input
ss = 1

Nray

∑
rays

Pss(ri). (14.1.12)

Similarly, we estimate the quantity Mss, the amount of single scattering in the low-res voxel, using
the prefiltering distribution D, ρ0, A0(ω) and the corresponding σss and fss (instead of σs and f) in
Eq. 14.1.10.

Computing final density and self-shadowing parameters

Thanks to our model, we can control the amount of self-shadowing in the low-res voxel while preserving
the voxel transparency, using ρ = ρ0

γ
and A(ω) = γA0(ω) with γ ∈ (0, 1]. Indeed, for any value γ, using

ρ and A(ω) instead of ρ0 and A0(ω) in the low-res voxel does not impact the attenuation coefficient:

σt(ω) = ρA(ω)
∫
D(m)〈ω ·m〉dm = ρ0A0(ω)

∫
D(m)〈ω ·m〉dm.

On the contrary, the single scattering coefficient is multiplied by γ:

σss(ω) = ρA(ω)
∫
A(ω)D(m)〈ω ·m〉dm

= γρ0A0(ω)
∫
A0(ω)D(m)〈ω ·m〉dm.

This means that the amount of self-shadowing in the low-res voxel (estimated from Eq. 14.1.10) would
now be γMss. Given M input

ss and Mss, we compute the value γ that minimizes the error over various
wavelengths:

γ = arg max
g

∑
λi

∥∥M input
ss (λi)− gMss(λi)

∥∥2 (14.1.13)

λi being wavelengths. We used RGB albedos in our implementation.

Computation of the multiple scattering albedo σms

Our self-shadowing model requires a multiple scattering albedo σms that characterizes the color of light
scattered at least two times at the microscopic scale due to self-shadowing. At rendering, multiple
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scattering occurs at the microscopic scale with our model, but it can also occur several times in the
low-res voxel. We need to estimate σms such that the effective albedo αe of the low-res voxel, that is, the
resulting albedo of the voxel taking into account multiple scattering with microscopic and non-microscopic
scattering events, is the same as the effective albedo αinpute of the corresponding block of input voxels.

We first estimate the effective albedo αinpute in the block of input voxels, that is, the average color of
light when it leaves the block after 1 or more scattering events. We cast rays through the block of input
voxels as for single scattering estimations (Fig. 14.1). For each ray, we compute a light path until the
ray leaves the block, exactly as a volume path tracer would do. Then, αinpute is computed averaging ray
throughputs.

Now we want to find αms such that αe = αinpute . Unfortunately, there is no simple way to derive
exactly αe from αms (Sec. 11.3.1), and we want to avoid iterative optimizations because they are time
consuming. We approximate αe using:

αe ≈
∑

Psh(n)(Pssαss + (1− Pss)αms)n (14.1.14)

with Psh(n) the probability for a ray of having exactly n scattering events before leaving the voxel (∑
Psh(n) = 1 ) and Pss the probability of self-shadowing at the microscopic scale. We cast rays in the

low-res voxel and estimate probabilities Psh(n) for each n (up to a given value), which do not depend on
σms. For Pss, we use the following approximation:

Pss ≈
∫
σss

αss(λ)
∫
σt
. (14.1.15)

Finally, we can estimate αms by solving numerically the equation

αinpute =
∑

Psh(n)(Pssαss + (1− Pss)αms)n (14.1.16)

for each wavelength.

We evaluated this method by computing the relative errors of the RGB values of the effective albedos
in low-resolution voxels. For each low-resolution voxel, we compared the effective albedo (estimated with
ray casting and using the multiple scattering albedo obtained with our approximation) with the effective
albedo of the corresponding block of input voxels (also estimated with ray casting). In coarse LODs
(grid resolution divided by 32 in each dimension), we obtained the relative errors shown in Fig. 14.3.
Our approximations tend to underestimate the effective albedo, meaning that our multiple scattering
albedos in low-resolution voxels are slightly too dark on average. The accuracy depends on the amount of
shadowing and the density in the voxels. Our approach could be improved with a better understanding
of these errors.

Interestingly, cases with the highest errors in the effective albedos do not correspond to the highest
visual errors at rendering (See Fig. 14.4). The average albedo is important, but phase functions also
contribute a lot to appearance, especially when the lighting is not uniform.

14.2 Implementation and results

14.2.1 Precomputation time

The precomputation time depends on the number of samples used for estimating self-shadowing proba-
bilities and multiple scattering albedos (Sec. 14.1.4 and 14.1.4). In our implementation, we adapted the
number of samples to the complexity of the block of input voxels. For LOD i (i.e. 2i times smaller than
input volume in each dimension), blocks of input voxels viewed from one side have a complexity of 4i
voxels. We cast 40×4i rays for each non-empty low-res voxels so that our LODs are not subject to noise.
Our precomputation times are shown in Table 14.2.

In their work, Zhao, Wu et al. give precomputation time of respectively 12 and 40 CPU core hours for
the bunny (LOD 2) and the hairy ball (LOD 3). We obtained accurate results for these model with

165



-10 -8 -6 -4 -2 0 2 4 6 8 10
0

500

1000

1500

2000

2500

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

500

1000

1500

Bunny (low density) Bunny (high density) Hairy ball
Relative errors of effective albedos

(%)
Relative errors of effective albedos

(%)
Relative errors of effective albedos

(%)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

500

1000

1500

2000

2500

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

500

1000

1500

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

Hair (low density) Hair (high density) Cedar
Relative errors of effective albedos

(%)
Relative errors of effective albedos

(%)
Relative errors of effective albedos

(%)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

700

Pine tree
Relative errors of effective albedos

(%)

Figure 14.3: Relative errors between measured effective albedos in our low-resolution voxels and refer-
ence effective albedos measured in the corresponding blocks of input voxels. Charts show relative errors
for R, G and B values, in %. Each chart corresponds to one dataset used in Fig. 14.4. Vertical axes
give the count of a given relative error in the low-res voxels of the LOD (empty voxels are not taken into
account).

respectively 0.97 and 3.2 CPU core hours. As our algorithm downsamples each block of input voxels
independently, the parallelization of our method is straightforward.

14.2.2 Storage savings

Compared to the standard microflake model, our model requires additional data per voxel: 2 additional
values for our trigonometric distributions compared to SGGX, 3 for multiple scattering albedos (RGB)
and 6 or 1 additional values for the shadowing function using respectively our anisotropic self-shadowing
model or our simplified model. Despite its additional parameters, our downsampling method allows for
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Bunny hair Cedar Pine Hairy ball
Size of input vol. ' 5003 6003 6803 6803 6803

Aniso / LOD 1 1.1 1.4 0.1 0.13 6.8
Aniso / LOD 3 0.92 0.6 0.14 0.17 3.2
Aniso / LOD 5 0.64 0.33 0.17 0.15 1.2

Table 14.2: Our precomputation times measured on a Intel Xeon Processor E5-2630 v3 (in CPU core
hour).

huge memory savings as shown in Table 14.3.

Linear Iso (SGGX) Aniso (triglobe)
Per voxel values 10 14 21
Size of LOD1 wrt input 12.5% 17.5% 26.3%
Size of LOD3 wrt input 0.20% 0.27% 0.41%

Table 14.3: Memory requirements of our prefiltering methods.

In average, for the LODs shown in Fig. 14.4, the render time for naïve LODs is around 11% of the
render time for high-resolution volumes, and around 13% for our LODs with algorithm Aniso. This
means that our LODs also decrease render time despite the additional cost compared to rendering naïve
LODs.

14.2.3 Results

Fig. 14.4 compares our LODs with input volumes and results from naïve algorithms described in Sec-
tion 14.1. Our downsampling method supports semi-transparent inputs with low-density voxels. LODs
are only slightly more accurate in this case because naïve methods already perform well when there is no
strong self-shadowing effects (Fig. 14.4a and 14.4f). However, our LODs are much more accurate than
naïve LODs when input volumes have relatively dense voxels (Fig. 14.4b to 14.4e). Because we preserve
local transparency, our results have correct silhouettes even when input datasets have intricate shapes
(Fig. 14.4d and 14.4e). Our LODs can be computed at arbitrary scales and their appearance is consistent
(Fig. 14.5).

Using anisotropic self-shadowing functions allows for preserving exactly directional transparency in
low-res voxels independently of the microflake distribution, for instance when the microflake distribution
is isotropic as shown in Fig. 12.1a. However, we found in our experiments that using anisotropic self-
shadowing does not improve significantly the accuracy in practice, even for datasets with dense aligned
voxels such as the hairy bunny (Fig. 14.4b). This means that our simplified model has sufficient accuracy
in most downsampling applications, and that accuracy is more limited by albedos and phase functions
than by accurate view-dependent attenuation.

We compared our LODs with results provided by Zhao, Wu et al. [ZWDR16]. Fig. 14.6 and Fig. 14.7
show LODs of the dense hairy bunny and the velvet datasets. Both methods preserve large-scale albedos,
unlike naïve methods (14.5, 14.4b). Silhouettes of our LODs are more accurate because we preserve the
local transparency in low-resolution voxels instead of prefiltering density parameters linearly.

14.2.4 Limitations

The main limitation of our work is that the self-shadowing functions we use do not model accurately
self-shadowing effects in dense voxels. Indeed, our functions are symmetric (A(ω) = A(−ω)) while self-
shadowing in a dense voxel is very strong forward and much smaller backward. Moreover, our multiple
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Linear (naïve) Transp (naïve) Input volume Aniso (our) Iso (our)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 14.4: Comparison of volumes downsampled using the four algorithms described in Sec. 14.1.
Low-res volumes are LOD 5, meaning that the number of voxel has been divided by 85 compared to input
volumes. Insets show relative L1 errors in linear RGB, computed on low-resolution pictures. (a): low-
density bunny. (b): high density bunny (×20 compared to (a)). (c): dense hairy ball with anisotropic
microflake distributions. (d): cedar foliage with homogeneous albedo. (e): pine tree with dark trunk.
(f): hair with anisotropic microflake distribution. Our algorithm increases significantly accuracy of LODs
when input volumes have dense voxels ((b) to (e)).

scattering phase function is relatively diffuse, while light scattered multiple times in a dense voxel mainly
leaves this voxel backward — because light cannot reach the opposite side of the voxel. Hence, our
phase functions lack accuracy when input datasets are very dense and heterogeneous. This can be seen
in Figure 14.7 where the LOD from [ZWDR16] better preserves velvet-like reflections at grazing angles
because they use dense low-resolution voxels. Fig. 14.8 shows that our LODs lack accuracy for the hair
datasets because input voxels are too dense. Our self-shadowing model allows for preserving the mean
amount of local self-shadowing, but preserving both the local transparency and an accurate scattering
behavior remains an open problem for dense and heterogeneous input volumes.

We did not address the problem of colored multi-fiber datasets, for which it is important to store
multiple albedos and lobes in low-resolution voxels. We believe that our method can be extended to such
case using self-shadowing estimations for each lobe, but a rigorous study remains to be done. We did
not work on animated datasets with time-varying scattering parameters in input voxels. Precomputing
low-resolution volumes at each time step would reduce the benefits of using LODs in some applications.
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LOD 5 LOD 3 LOD 1 Input volume LOD 1 LOD 3 LOD 5
Naïve (Linear) Naïve (Linear) Naïve (Linear) Our (Aniso) Our (Aniso) Our (Aniso)

Figure 14.5: Comparison between naïve downsampling of microflake volumes and our method (Aniso).
Rendered without trilinear interpolation.

LOD 2 [ZWDR16] Input volume LOD 2 Iso (our)

Figure 14.6: Dense hairy bunny. Both methods preserve the macroscopic appearance of the input
volume. Silhouettes are slightly more accurate in our LOD because we do not prefilter density linearly.

169



LOD 5 [ZWDR16] Input volume LOD 5 Iso (our)

Figure 14.7: Close-up vs large-scale view of the velvet dataset. Our LODs have accurate transparency
(bottom right). Because they have dense low-resolution voxels (top left), LODs from [ZWDR16] preserve
more accurately fabrics-like appearance at large scales, especially at grazing angles. Preserving both the
transparency and the scattering behavior of the input volume remains an open problem.

Transp (naïve) Input volume Aniso (our)

Figure 14.8: Same hair dataset as in Fig. 14.4f, with density multiplied by 10. This is a challenging
case because of very anisotropic microflake distributions and complex self-shadowing effects due to dense
input voxels. Our LODs are slightly better than naïve methods for this datasets but lacks accuracy
(loss of bright anisotropic reflections). This is because our self-shadowing model does not preserve well
appearance of very dense voxels (Sec. 14.2.4).
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14.3 Summary of the chapter

We introduced two new downsampling algorithms that rely on our microflake model (Chap. 12). The
most accurate algorithm is based on anisotropic self-shadowing functions and can be implemented using
trigonometric distributions as discussed in chapter 13. The second algorithm relies on our simplified
model (isotropic self-shadowing functions). These downsampling algorithms estimate parameters for low-
resolution voxels corresponding to blocks of high-resolution voxels. The main steps of the algorithms for
each block of voxels are the following:

• Microflakes normal distributions are prefiltered as in previous work [HDCD15].

• The anisotropic occlusion of the block of voxels is estimated. Then, parameters for the corresponding
low-resolution voxel are obtained such that the local transparency of the medium is preserved.

• The self-shadowing parameters of the low-resolution voxel are estimated based on numerical esti-
mations of the self-shadowing probabilities in the block of voxels.

• Finally, a multiple scattering albedo is estimated for the low-resolution voxel, such that the average
effective albedo is preserved.

From our results, we can draw several conclusions:

• First, our anisotropic self-shadowing model and our simplified model produce LODs with similar
quality for all our test assets. Our simplified model should be used by default because it requires
less parameters and can be rendered more efficiently.

• This means that accurate anisotropic occlusion in low-resolution voxels is not necessary in practice,
it is sufficient to preserve the average occlusion of the block of input voxels. To the contrary, the
quality of LODs highly depends on the accuracy of the effective albedos and phase functions.

• We show that estimating scattering parameters locally is efficient and accurate. We compare our re-
sults with previous work based on image-space optimization and we show that our method generates
LODs with similar quality.

• The main limitation of our work is that our model is still unable to preserve accurately the effective
phase functions. This limits the quality of our LODs in some cases. Previous methods also fail in
preserving at the same time the occlusion, the effective albedos and the effective phase functions in
low-resolution volumes and this remains an open problem.

• We did not extend our method to the case of multi-lobe microflake distributions, and downsampling
such media with our method would be an interesting direction for future work.

14.4 Résumé du chapitre

Nous avons introduit deux nouveaux algorithmes pour le préfiltrage de volumes de microflakes (Chap. 12).
L’algorithme le plus précis utilise des fonctions d’ombrage local anisotropes et peut être implémenté avec
les distributions trigonométriques présentées dans le chapitre 13. Le deuxième algorithme repose sur
notre modèle simplifié et des fonctions d’ombrage isotropes. Ces algorithmes estiment des paramètres de
réflectance pour chaque voxel de basse résolution correspondant à un bloc de voxels de haute résolution.
Les principales étapes de ces algorithmes pour chaque bloc de voxels sont les suivantes :

• Les distributions de normales de microflakes sont préfiltrées comme dans les travaux précédents
[HDCD15].

• L’occlusion anisotrope du bloc de voxels est mesurée. Ensuite, des paramètres pour le voxel de basse
résolution correspondant sont obtenus de manière à conserver la transparence locale du milieu.
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• Des paramètres d’ombrage sont estimés à partir d’estimations numériques des probabilités d’ombrage
dans le bloc de voxels.

• Finalement, un albedo de diffusion multiple est estimé pour le voxel de basse résolution, de manière
à ce que l’apparence moyenne du milieu soit préservée.

A partir des résultats obtenus, nous pouvons tirer les conclusions suivantes :

• Tout d’abord, nos modèles d’ombrage anisotrope et isotrope génèrent des LODs de qualité similaire
pour toutes nos scènes de test. Notre modèle isotrope devrait être utilisé par défaut puisqu’il
requiert moins de paramètres et qu’il peut être rendu plus efficacement.

• Nous en concluons que préserver précisément la transparence anisotrope d’un milieu n’est pas
nécessaire en pratique, il est suffisant de préserver la transparence moyenne du bloc de voxels.
Au contraire, la qualité des LODs dépend grandement de la précision des albedos effectifs et des
fonctions de phase.

• Nous montrons qu’estimer des paramètres de réflectance localement est à la fois efficace et précis.
Nous comparons nos résultats avec une méthode existante qui repose sur de l’optimisation à base
d’erreurs en espace image et nous montrons que notre méthode produit des résultats de qualité
similaire.

• La principale limitation de notre méthode est que notre modèle ne peut pas représenter très précisé-
ment les fonctions de phases effectives des blocs de voxels. Cela limite la qualité de nos LODs dans
certains cas. Les méthodes précédentes échouent également à préserver à la fois la transparence et
l’apparence des milieux et cela reste problématique.

• Nous n’avons pas travaillé sur le cas des tissus multi-fibres pour lesquels plusieurs lobes sont néces-
saires par voxels. Préfiltrer de tels milieux avec notre modèle est une piste intéressante pour des
travaux futurs.
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Part IV

Conclusion
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Chapter 15

Conclusion

15.1 Important ideas

In this thesis, we have explained why prefiltering 3D assets is an important problem for the efficiency of
production rendering pipelines, and for efficient rendering in general: it allows for reducing memory usage,
loading times, the cost of ray intersections, the cost of shading the materials and the noise in rendered
images. We highlighted some important requirements of LOD methods for their use in production
pipelines such as accuracy, robustness, drastic reduction of memory usage, seamless transitions and
the use of standard rendering primitives.

Our main conclusions about our hybrid LOD approach (Part II) were the following:

• We used a volumetric model for prefiltering distant complex geometry such as foliage. We showed
that volumes are memory efficient and appropriate for representing sub-resolution intricate geom-
etry.

• Seamless transitions from meshes to volumes are possible and allow for combining the strengths
of these two representations for LOD rendering. In our all-scale hybrid approach, each prefiltering
method is used in its domain of validity.

• We showed that the separation of macrosurfaces and sub-resolution intricate geometry can be done
automatically using a mesh analysis. This is a first step towards automatic and robust prefiltering
of arbitrary assets.

• We showed that it is possible to prefilter the materials of surfaces during the geometric simplification
without any surface parametrization. This enlarges the scope of material prefiltering techniques
that where limited to texture space.

In Part III, we presented our contributions on downsampling high-resolution heterogeneous volumes.
Our main conclusions were the following:

• It is very important that low-resolution volumes have a correct local transparency. We explained
why linear density downsampling has insufficient accuracy, and we proposed an alternative method
that generates better results, with correct silhouettes and shadows.

• A correct average transparency in low-resolution volumes is sufficient: preserving accurately the
local anisotropic occlusion of the input volume does not improve the quality of the LODs according
to our experiments.

• We showed that scattering parameters and in particular albedos can be optimized locally, instead
of global optimizations based on image-space errors as in previous work. Local estimation of pa-
rameters is much faster and it allows for downsampling very easily spatially-varying volumes, which
was a difficult case for previous methods.
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• We extended the microflake model with additional parameters that are useful in downsampling
applications. These parameters allow for controlling independently the microflake distribution, the
anisotropic occlusion in the medium and the amount of self-shadowing, which plays and important
role in the apparent color of the medium.

15.2 Open problems

Prefiltering complex assets is a long-term research problem and it is far from being solved entirely. In this
thesis, we investigated new strategies and proposed new tools that overcome some limitations of previous
work. Nevertheless, many problems remain to be studied:

• Prefiltering methods in surface space are still rather limited: existing techniques mostly rely on
either heavy bidirectional texture functions, normal maps prefiltering, some hypothesis of decor-
relation between the geometry and the reflectance of the surface, or surfaces with specific micro-
appearance. Very few methods address the problem of prefiltering accurately non-flat surfaces.
Moreover, most methods focus on simple surface reflectance models (Lambertian BRDF, Phong
lobes, specular microfacets models), whereas reflectance models used in production are complex
combinations of base reflectance models which include layered models, subsurface scattering, trans-
mission through the surface, emission, etc. Prefiltering production assets with such reflectance
models is not well studied.

• As discussed in several chapters of this thesis, adding LOD methods to production pipelines raises
many practical problems. Some of these problems are specific to each pipeline, but some problems
such as asset overlapping or the efficient implementation of seamless transitions are more general
and far from being entirely investigated.

• Animating LOD representations is a rather understudied problem. In this thesis, as in previous
work on aggregate detail prefiltering, we relied on volumetric approximations that lack flexibility
in the case of animated assets. In particular, distant plants and furry characters can be efficiently
rendered using volumetric representations but they are often animated in production scenes, which
limits the scope of current prefiltering methods or adds additional precomputation costs that should
be studied.

• As an alternative to volume representations, we considered the use of a small number of sub-voxel
polygons for representing sub-resolution volume-like appearances. This strategy seems promising
to us for production environment, especially for animated and overlapping assets, but it remains
to be investigated and evaluated with the same quality criteria: correct mean occlusion, effective
albedos and effective phase functions. In particular, estimating and preserving the probability of
local shadowing seems mandatory in order to avoid overly bright LODs and our work on prefiltering
volumes would have to be adapted to this polygon-based representation.

• Our new volume model extends the range of available models for representing complex appearances.
We believe that new volume models should be investigated for the accurate approximation of sub-
resolution geometry. As demonstrated by Khungurn et al. [KSZ∗15], deriving phase functions from
fiber scattering models improves the accuracy of volumetric approximations for rendering fabrics.
More work should be done on approximating hair and foliage in the same spirit, not only for
computing multiple scattering but also for rendering distant assets without explicit geometry. For
example, the microflake model could be used with transmissive microflakes for representing leaves
more accurately.

• Glints on scratched surfaces, hair and granular materials such as snow have been recently inves-
tigated and rendered. Although the existing methods remain costly compared to materials, this
work is an important step towards perfect photorealism. In this thesis, we always prefiltered normal
distributions aggressively for ensuring low storage requirements and we did not attempt to preserve
glints in our low-resolution assets. We believe that the support of sparkling appearances is an
interesting future work, in particular for the accurate prefiltering of foliage with volumetric models.
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We hope that this thesis will inspire future work on appearance-preserving prefiltering for improving the
efficiency of rendering pipelines and the quality of rendered virtual worlds.
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Chapter 16

Conclusion

16.1 Idées importantes

Dans cette thèse, nous avons expliqué en quoi le préfiltrage des objets 3D est un problème important
pour l’efficacité du rendu dans les studios de production et de manière générale pour le rendu de haute
qualité : le préfiltrage permet de réduire la taille mémoire des scènes, les temps de chargement, les coûts
d’intersection des rayons lumineux, les coûts de calcul des matériaux et le bruit dans les images. Nous
avons souligné certaines contraintes de qualité que doivent satisfaire les méthodes de niveaux de détail
pour être utilisées en production, et plus particulièrement la fiabilité, la précision, l’efficacité mémoire,
les transitions invisibles entre les différentes résolutions et l’usage de primitives de rendu standards.

Nos principales conclusions concernant notre travail sur les LOD hybrides (Partie II) ont été les
suivantes :

• Nous avons utilisé des modèles volumiques pour préfiltrer et faire le rendu de géométries complexes
comme du feuillage. Nous avons montré que les représentations volumiques sont efficaces du point
de vue de la mémoire et appropriées pour le préfiltrage de certaines géométries complexes sous-
résolution.

• Les transitions invisibles entre les maillages et les volumes sont possibles et permettent d’allier
les avantages de ces deux représentations pour le rendu d’objets préfiltrés. Avec notre approche
hybride, chaque représentation et technique de préfiltrage est utilisée dans son domaine de validité.

• Nous avons montré que la détection de macrosurfaces et de géométrie complexe sous-résolution peut
être faite automatiquement à l’aide d’une analyse de maillage. Cette méthode est un premier pas
vers le préfiltrage automatique et fiable des objets 3D complexes.

• Nous avons montré qu’il est possible de préfiltrer les matériaux des surfaces dont la géométrie
est simplifiée par des algorithmes de simplification de maillage, le tout sans avoir besoin d’une
paramétrisation de toute la surface. Cela permet d’étendre la portée de certaines méthodes de
niveaux de détail qui étaient auparavant réservées à du préfiltrage en espace texture.

Dans la partie III, nous avons présenté nos contributions pour le préfiltrage des volumes hétérogènes
de haute résolution. Nos principales conclusions ont été les suivantes :

• Il est très important que les volumes préfiltrés aient une transparence locale correcte. Nous avons
montré pourquoi le filtrage linéaire des paramètres de densité n’est pas assez précis. Nous avons
proposé une méthode alternative qui génère de meilleurs résultats, avec des silhouettes plus précises
et des ombres correctes.

• Assurer une transparence moyenne précise est suffisant en terme de qualité : nos tests ont montré
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que la conservation de la transparence anisotrope locale ne permet pas de gagner significativement
en précision dans les volumes préfiltrés.

• Nous avons montré que les paramètres de réflectance et en particulier les albedos peuvent être
optimisés localement, à la place de méthodes d’optimisation globales s’appuyant sur des erreurs en
espace image comme c’était le cas dans les travaux précédents. L’estimation locale de paramètres
est plus rapide et permet le préfiltrage des milieux qui varient spatialement, ce qui était auparavant
un cas difficile.

• Nous avons étendu le modèle volumique de microflakes avec des paramètres supplémentaires qui
sont utiles pour préfiltrer des volumes. Ces paramètres permettent de contrôler de manière indépen-
dante la distribution de normales des microflakes, l’atténuation anisotrope du milieu, et la quantité
d’ombrage local qui influence beaucoup la couleur perçue du milieu.

16.2 Questions ouvertes

Le préfiltrage des objets 3D complexes est un problème de recherche de longue haleine qui est encore loin
d’être résolu entièrement. Dans cette thèse, nous avons proposé de nouvelles stratégies et de nouveaux
outils qui permettent de dépasser certaines limitations des travaux précédents. Néanmoins, de nombreuses
questions restent en suspens :

• Les méthodes de préfiltrage de l’apparence des surfaces sont toujours relativement limitées : les
méthodes existantes reposent principalement sur des BTFs coûteuses, sur du préfiltrage de dis-
tributions de normales, sur des hypothèses fortes d’absence de corrélation entre la géométrie de
la surface et sa réflectance, ou sur des modèles de microsurfaces particuliers. Peu de méthodes
permettent de préfiltrer précisément les surfaces non planes. De plus, la plupart des techniques ex-
istantes concernent des modèles de réflectance simples (modèle lambertien, lobes de Phong, BRDF
à microfacettes spéculaires), alors que dans les studios de production les modèles utilisés sont des
combinaisons complexes de matériaux de base qui peuvent inclure des modèles de réflectance multi-
couches, de la diffusion dans la surface, de la transmission à travers la surface, de l’émission, etc.
Le préfiltrage de ces matériaux n’est pas encore bien étudié.

• Comme mentionné dans plusieurs chapitres, implémenter des méthodes de niveaux de détail dans les
studios de production pose de nombreux problèmes pratiques. Certains de ces problèmes sont spé-
cifiques à chaque studio, mais d’autres sont plus généraux, comme les problèmes liés au chevauche-
ment d’objets voisins ou l’implémentation efficace des transitions invisibles entre les différentes
résolutions. Ces problèmes pourraient être étudiés plus précisément.

• L’animation de représentations préfiltrées est un problème sous-étudié. Dans cette thèse, comme
dans la majorité des travaux précédents sur le préfiltrage de géométrie complexe, nous avons utilisé
des représentations volumiques qui sont assez peu adaptées aux objets animés. En particulier, les
plantes et les personnages à fourrure peuvent être efficacement rendus avec des volumes mais ils sont
souvent animés dans les scènes de production, ce qui limite la portée des méthodes de préfiltrage
ou ajoute des surcoûts de précalcul. Cela devrait être étudié plus en profondeur.

• Nous avons commencé à étudier l’utilisation de quelques polygones sous-résolution comme représen-
tation alternative aux volumes pour préfiltrer de la géométrie complexe. Cette stratégie semblent
prometteuse pour les studios de production, en particulier pour les objets animés ou se chevauchant.
Il reste à étudier la qualité de cette solution pour la conservation des probabilités d’occlusion et
de l’apparence. L’estimation et la conservation des probabilités d’ombrage local semble nécessaire
pour éviter de générer des objets préfiltrés trop clairs, et nos travaux sur le filtrage de volumes
devrons être adaptés à cette représentation alternative.

• Le nouveau modèle de volume que nous avons introduit étend le nombre de modèles disponibles
pour le préfiltrage d’apparences complexes. Nous pensons que de nouveaux modèles devraient être
étudiés et s’ajouter au notre et accroître la portée et la précision du préfiltrage par des volumes.
Comme l’ont montré Khungurn et al. [KSZ∗15], utiliser des fonctions de phase issues des modèles
de réflexion de fibres permet d’améliorer la qualité du rendu de tissus. Une étude plus approfondie

180



pourrait être menée dans le même esprit sur l’approximation volumique de cheveux et de feuillages
distants. Par exemple, dans le cas des feuilles, le modèle à microflakes pourrait être utilisé avec des
lobes de transmission pour un préfiltrage plus précis.

• Le scintillement des surfaces rayées, des cheveux et des matériaux granulaires comme la neige a été
récemment étudié et rendu. Bien que les techniques actuelles sont onéreuses comparées aux autres
modèles de matériaux, elles sont un pas en avant vers le photoréalisme parfait des images rendues.
Dans cette thèse, nous avons toujours préfiltré les distributions de normales de manière agressive
pour s’assurer de réduire la taille mémoire des objets, et nous n’avons pas essayé de conserver des
apparences scintillantes dans les objets préfiltrés. Nous pensons qu’il s’agit d’une piste intéressante
pour des travaux futurs, en particulier pour le préfiltrage des feuillages avec des représentations
volumiques.

Nous espérons que cette thèse inspirera d’autres travaux sur le préfiltrage des apparences complexes pour
l’amélioration de l’efficacité des studios de production et la qualité des mondes virtuels rendus.
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Appendices

A Macrosurface analysis: finding the topology of I

The topology of I, as defined in chapter 7, can be computed with a mesh exploration, starting from the
face containing the point x. We make sure that only triangles connected to x inside S are explored. We
do not need the exact shape of I but just its topology.

Function IsOnMacroSurface ( inputTri, sphere)
I = ∅;
trisToExplore = inputTri;
exploredTris = ∅;
while not IsVoid ( trisToExplore) do

currentTri = PopFirst (trisToExplore);
Explore (currentTri, I, exploredTris);
Add (currentTri, exploredTris);

end
return HasSingleConnectedComponent (I);

End

Function Explore ( currentTri, I, exploredTris, trisToExplore, sphere)
for e in edges of currentTri do

if e intersect sphere or e is inside sphere then
adjTri = triangle adjacent to currentTri at e;
if adjTri is not in exploredTris and adjTri is not in trisToExplore then

Add (trisToExplore, adjTri);
end

end
end
/* sphere ∩ currentTri could be 1, 2 or 3 sections of a circle, or void. Only the

ends of each part is needed, because we just need the topology of I. */
its = ComputeIntersections (currentTri, sphere);
Add (its, I);

End
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B Rejection sampling

Probability distribution functions (pdf ) are ubiquitous in physically-based rendering, and procedures that
generate samples from such distribution are often needed. In particular, generating samples from phase
functions tends to decrease noise in volume path tracing.

Unfortunately, it is not always possible to find an efficient sampling procedure for given a pdf. The
most common method, known as inverse transform sampling, requires an expression of the inverse F−1

of the cumulative distribution function of the pdf:

F (u) =
u∫

x=−∞

pdf(x) dx,

but it is not always possible to find closed-form expressions for F−1. Some authors have found sampling
procedures using the fact that their pdf comes from a geometric problem – for instance, sampling visible
normals of an ellipsoid viewed from a given direction [HDCD15, DWMG15]. This strategy cannot be
applied to all pdfs.

Rejection sampling is a very general method that can generate samples from any normalized pdf.
For sampling the distribution pdf1, it is possible to generate samples from any other distribution pdf2
and to accept or reject these samples with a probability such that accepted samples follow exactly the
distribution pdf1. Rejection sampling is very powerful in the sense that it allows for sampling arbitrary
distributions, but the algorithm is only efficient if pdf2 is close enough to pdf1. The more pdf2 is different
from pdf1, the more samples will be rejected by the algorithm, leading to a very inefficient sampling
procedure. For sampling pdf1 using pdf2, rejection sampling needs a scalar M such that, for all x,

pdf1(x) ≤M pdf2(x)

Then, the sampling procedure is the following:

1. Generate a sample x from pdf2.

2. Generate a random number U in (0, 1).

If U ≤ pdf1(x)
M pdf2(x) , accept the sample x (en of the procedure).

Else, go back to step 1.

The value M is the average number of iterations needed before accepting one sample, and 1/M is the
average probability of accepting one sample from pdf2. It is thus possible to predict how efficient is a
sampling procedure – in average.
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C Derivation of general closed-form expressions for σt(ω)

In the case of a cos2n distribution, σt(ω) is given by

σt(ω) = ρA(ω)
∫
Dcos(m, ξD, n)〈m · ω〉 dm = ρ

A(ω)
Ncos(n)

∫
(m · ξD)2n 〈m · ω〉 dm.

Without loss of generality, we choose a convenient spherical parametrization such that ω = [cos(φi), sin(φi), 0]
and ξD = [1, 0, 0]. We have:

σt(ω) = ρ
A(ω)
Ncos(n)

∫ cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)

 ·
1

0
0

2n ∣∣∣∣∣∣
cos(φ) sin(θ)

sin(φ) sin(θ)
cos(θ)

 ·
cos(φi)

sin(φi)
0

∣∣∣∣∣∣ sin(θ) dφ dθ

= ρ
A(ω)
Ncos(n)

π/2−φi∫
φ=−π/2−φi

π∫
θ=0

(cos(φ) sin(θ))2n (cos(φ) sin(θ) cos(φi) + sin(φ) sin(θ) sin(φi)) sin(θ) dφ dθ

= ρ
A(ω)
Ncos(n)

π/2−φi∫
φ=−π/2−φi

π∫
θ=0

cos(φ)2n(cos(φ) cos(φi) + sin(φ) sin(φi)) sin(θ)2n+2 dφ dθ

= ρ
A(ω)
Ncos(n)

√
π Γ

( 3
2 + n

)
Γ(2 + n)

π/2−φi∫
φ=−π/2−φi

cos(φ)2n(cos(φ) cos(φi) + sin(φ) sin(φi)) dφ

= ρ
A(ω)
Ncos(n)

√
π Γ

( 3
2 + n

)
Γ(2 + n)

cos(φi)
π/2−φi∫

φ=−π/2−φi

cos(φ)2n+1 dφ+ sin(φi)
π/2−φi∫

φ=−π/2−φi

cos(φ)2n sin(φ) dφ


= ρ

A(ω)
Ncos(n)

√
π Γ

( 3
2 + n

)
Γ(2 + n)

cos(φi)
π/2−φi∫

φ=−π/2−φi

cos(φ)2n+1 dφ− 2 sin(φi)2n+2

2n+ 1

 . (C.1)

Now the integral
∫

cos(x)m dx can be written as a finite sum using∫
cos(x)m dx = 1

m
cos(x)m−1 sin(x) + m+ 1

m

∫
cos(x)m−2 dx.

It is also possible to write it with the Gauss hypergeometric function. Given that 0 ≤ φi ≤ π/2, on the
interval (−π2 − φi,−

π
2 ) we perform a change of variable with X = cos(φ), and we obtain

−π/2∫
φ=−π/2−φi

cos(φ)2n+1 dφ =
0∫

X=cos(−π/2−φi)

X2n+1
√

1−X2
dX (C.2)

=
0∫

X=− sin(φi)

X2n+1
√

1−X2
dX. (C.3)

Using the change of variable Y = X2

− sin(φi)
, with

∥∥∥∥∂X∂Y
∥∥∥∥ = sin(φi)

2
√
Y

we get

0∫
X=− sin(φi)

X2n+1
√

1−X2
dX =

1∫
0

Y n+ 1
2 sin(φi)2n+1√

1− Y sin(φi)2

sin(φi)
2
√
Y

dY (C.4)

= − sin(φi)2n+2

2

0∫
1

Y n√
1− Y sin(φi)2

dY. (C.5)
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Using
Γ(b)Γ(c− b)

Γ(c) 2F1 (a, b, c, z) =
∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a dt

we can write

− sin(φi)2n+2

2

0∫
1

Y n+ 1
2√

1− Y sin(φi)2
dY = − sin(φi)2n+2

2
Γ(b)Γ(c− b)

Γ(c) 2F1 (a, b, c, z) (C.6)

with a = 1
2 , b = n+ 1, c = n+ 2 and z = sin(φi)2. We have

−π/2∫
φ=−π/2−φi

cos(φ)2n+1 dφ = − sin(φi)2n+2

2
Γ(n+ 1)Γ(1)

Γ(n+ 2) 2F1

(
1
2 , n+ 1, n+ 2, sin(φi)2

)
(C.7)

= − sin(φi)2n+2

2n+ 2 2F1

(
1
2 , n+ 1, n+ 2, sin(φi)2

)
. (C.8)

Now, we integrate between −π/2 and 0:

0∫
φ=−π/2

cos(φ)2n+1 dφ =
∫ 1

0

X2n+1
√

1−X2
dX (C.9)

=
∫ 1

0

Y n+ 1
2

√
1− Y

1
2
√
Y

dY (C.10)

= 1
2

∫ 1

0

Y n√
1− Y

dY (C.11)

= Γ(b)Γ(c− b)
2Γ(c) 2F1 (a, b, c, 1) (C.12)

with a = 1
2 , b = n+ 1, c = n+ 2. We have

0∫
φ=−π/2

cos(φ)2n+1 dφ = 1
2B

(
1
2 , n+ 1

)
(C.13)

with B the beta function1. Finally, using the same approach,

π/2−φi∫
φ=0

cos(φ)2n+1 dφ =
π/2∫

φ=0

cos(φ)2n+1 dφ+
π/2−φi∫
φ=π/2

cos(φ)2n+1 dφ (C.14)

=
0∫

1

X2n+1

−
√

1−X2
dX +

cos(π/2−φi)∫
0

X2n+1

−
√

1−X2
dX (C.15)

= 1
2n+ 2B

(
1
2 , n+ 1

)
− sin(φi)2n+2

2n+ 2 2F1

(
1
2 , n+ 1, n+ 2, sin(φi)2

)
. (C.16)

We can add the three terms and get

π/2−φi∫
φ=−π/2−φi

cos(φ)2n+1 dφ = B

(
1
2 , n+ 1

)
− sin(φi)2n+2

n+ 1 2F1

(
1
2 , n+ 1, n+ 2, sin(φi)2

)
. (C.17)

1https://en.wikipedia.org/wiki/Beta_function
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We proved that

σt(ω) =ρ A(ω)
Ncos(n)

√
π Γ

( 3
2 + n

)
Γ(2 + n)(

cos(φi)
(
B

(
1
2 , n+ 1

)
− sin(φi)2n+2

n+ 1 2F1

(
1
2 , n+ 1, n+ 2, sin(φi)2

))
− 2 sin(φi)2n+2

2n+ 1

)
.

(C.18)

As explained before, we don’t use this expression in our implementation because more efficient expressions
can be found for each particular value of n, when n is small.
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D Tabulated values of
∫ √

ωTS ω
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Table 1: Precomputed values for
∫ √

ωTS ω for eigenvalues of S being 1, a2 and a3.
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Abstract

We address the problem of rendering extremely complex virtual scenes with large amounts of detail. We
focus on high-end off-line rendering algorithms based on path tracing that are intensively used in the
special effects and 3D animation industries. The large amounts of detail required for creating believable
virtual worlds raise important efficiency problems that paralyze production rendering pipelines and greatly
complicate the work of 3D artists. We introduce new algorithms for prefiltering complex 3D assets while
preserving their appearance at all scales, in order to reduce loading times, ray intersection costs, shading
costs and Monte Carlo noise, without lowering the quality of rendered frames. Our main contributions
are a new hybrid LOD approach that combines the benefits of meshes and volumetric representations for
prefiltering complex 3D assets, as well as a new approach for prefiltering high-resolution heterogeneous
participating media.

L’objectif de cette thèse est le rendu de scènes virtuelles extrêmement détaillées. Nous nous intéressons
plus particulièrement aux algorithmes de rendu de haute qualité reposant sur du path tracing qui sont
très largement utilisés dans l’industrie des effets spéciaux et pour calculer le rendu de films d’animations.
Les grandes quantités de détails nécessaires à la modélisation de mondes virtuels crédibles soulèvent de
sérieux problèmes d’efficacité du rendu qui paralysent les studios et compliquent grandement le travail
des artistes. Nous introduisons de nouveaux algorithmes pour préfiltrer les objets 3D complexes à des
échelles arbitraires, afin de réduire les temps de chargement, les coûts d’intersection des rayons lumineux,
le calcul des matériaux et la quantité de bruit dans les images, le tout sans porter atteinte à la qualité du
rendu. Nos contributions principales sont une nouvelle approche hybride de niveaux de détail qui combine
les avantages des maillages et des représentations volumiques pour le préfiltrage des objets complexes à
des échelles arbitraires, ainsi qu’une nouvelle approche de préfiltrage pour le cas des volumes hétérogènes
de haute résolution.
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