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Applications: the film industry 

Dawn of the Planet of the Apes, Weta, 2014
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Applications: the film industry

Moana, Disney, 2016
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light paths
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2.5 billion
light paths
(4096 paths/px)

Rendering time:
1 hour
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Rendering: hours, tens of hours with render farms!
1 film: about 150000 final frames
Huge problem for artists, directors, producers...

Ralph Breaks the Internet, Disney, 2018 
32 GB of geometry
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64GB

The cost of high-quality rendering
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Massive amounts of detail

War for the Planet of the Apes, Weta, 2017
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Massive amounts of detail

Coco, Pixar, 2017
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64GB

L3 Cache (20MB)

The cost of high-quality rendering

HDD, SSD

Main memory (64GB)

Processors

slow Scene data
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Olaf’s Frozen Adventures, Disney, 2017
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Useless details

Moana, Disney, 2016
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Virtual camera

Sub-pixel details

Clearly not optimal: memory usage, noise

Pixel
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S

Virtual camera

Pixel footprint on the geometry
Smaller = useless
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(87% memory reduction)

High resolution asset

Rendering
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Reference
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Benefits of LODs Problems

Reduce:
- Memory usage
- Loading time
- Light path computation
- Noise

Same image !

Preserving the appearance:
- Difficult
- In the industry: naïve methods
- Academic research: special cases 

And some requirements:
- General, robust
- Seamless prefiltering
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Benefits of LODs Problems

Reduce:
- Memory usage
- Loading time
- Light path computation
- Noise

Same image !

Preserving the appearance:
- Difficult
- In the industry: naïve methods
- Academic research: special cases 

And some requirements:
- General, robust
- Seamless prefiltering

Our goal: addressing these problems!
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Part 1: Prefiltering production assets Part 2: Prefiltering heterogeneous volumes

[Hybrid mesh-volume LODs, EG 2017]
Internship at the Walt Disney Animation Studios

[A new microflake model, EG 2018]

Overview of the thesis
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Input mesh LOD 1 LOD 2 LOD 3
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● Texture prefiltering

● Alternative representations (real-time)
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Part 1: Prefiltering production assets

Hundreds of publications

● Sometimes useful:

● Not accurate for intricate geometry:

● Not always adapted to reflectance prefiltering

Previous work on geometry simplification

49

[Daniels 2008]
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[Muller 2016]
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[Moon 2008]

Prefiltering hair (MS)

[Schröder 2011] [Zhao 2011] 
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Previous work on volume approximations
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[Moon 2007] [Meng 2015] 
[Muller 2016]

Prefiltering granular materials
[Moon 2008]

Prefiltering hair (MS)

[Schröder 2011] [Zhao 2011] 
[Jakob 2010] [Khungurn 2015]

Prefiltering fabrics

Statistical descriptionExplicit geometry



Introduction

Previous work on volume approximations

52

Virtual sensor
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3D grid of voxels:
- Density parameters
- Scattering parameters 

(color, phase function)



Introduction

Previous work on volume approximations

54

Virtual sensor

Virtual camera Virtual light source

Heterogeneous participating medium

3D grid of voxels:
- Density parameters
- Scattering parameters 

(color, phase function)
Not accurate for large surfaces
(transparency problem, ≠ scattering)
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Previous work
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Mesh simplification Volume approximations

Large surfaces Useful Inaccurate

Tiny geometry Inaccurate Useful
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MeshHeterogeneous
Participating medium

Input asset

Automatic prefiltering with both meshes and volumes

LOD 1 LOD 2 LOD 3

Mesh
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● Cascading precomputation for seamless transitions:

● At rendering: mesh inside the volume
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x S

I

S

S
S

x

0 component
Sub-resolution geometry

2 components
Sub-resolution geometry

1 component
Macrosurface

Macrosurface

 I: intersection, connected to x inside S
x on a macro-surface if I has one component
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Macrosurfaces 

Sub-resolution geometry 
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Macrosurfaces 

Sub-resolution geometry 
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Contributions:

● More robust mesh simplification

● Add support for reflectance prefiltering

Revisiting surface prefiltering

68

Triangle meshes Quad meshes
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Simplified mesh
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Edge collapse & vertex placement

Revisiting surface prefiltering
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Simplified mesh
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Minimize a two-sided distance 

Input mesh
(foliage)

LOD,
Quadric error metric

LOD,
Volume preserving

LOD,
Our: minimization

Edge collapse & vertex placement
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Revisiting surface prefiltering
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Minimize a two-sided distance 

Input mesh
(foliage)

LOD,
Quadric error metric

LOD,
Volume preserving

LOD,
Our: minimization

Edge collapse & vertex placement

Same metric used for quad meshes
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Mappings for reflectance prefiltering

Triangle meshes Quad meshes

Normal prefiltering in world space [Heitz et al. 2015] [Walter et al. 2014]
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Part 1: Prefiltering production assets

Difficult problem: 
● Appearance has many degrees of freedom
● We want few parameters

Need accurate occlusion estimation

Surface reflectance to volume scattering functions:
Microflake volume model [Jakob et al. 2010] [Heitz et al. 2015]

Appearance-preserving voxelization

89

voxel
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Result of our hybrid pipeline

Video
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Part 1: Prefiltering production assets

Problems and future work
● Prefiltering surface-like appearance of disconnected elements

● Animation

● New volume models for prefiltering

91
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Path tracing high-resolution volumes
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Microflake model [Jakob et al. 2010]

Parameters per voxel:
● Density of microflakes
● Microflake normal distribution
● Microflake albedo
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Path tracing high-resolution volumes

[Zhao, Wu et al. 2016]
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Voxels at the scale of fibers
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Path tracing high-resolution volumes

● Very realistic
● Rendering is long (hours)
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[Zhao, Wu et al. 2016]

Voxels at the scale of fibers



Part 2: Downsampling heterogeneous volumes

Solution: volume downsampling, prefiltering
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Solution: volume downsampling, prefiltering
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LOD 2 LOD 3LOD 1Input

Goal: appearance-preserving, for any light and view
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Low-resolution voxel

Density:
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Low-resolution voxel

Density: Albedos:
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Linear downsampling

Density: Albedos: Normal distributions: 

106

Low-resolution voxel

[Heitz et al. 2015] 
[Zhao, Wu et al. 2016]
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Linear downsampling

Linear
downsampling

500^3 voxels
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16^3 voxels (< 1%)
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500^3 voxels
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16^3 voxels (< 1%)
Comparison:

Linear
downsampling



Part 2: Downsampling heterogeneous volumes

The problem with linear downsampling

109

Input



Part 2: Downsampling heterogeneous volumes

The problem with linear downsampling

110

Input (density x20)



Part 2: Downsampling heterogeneous volumes

The problem with linear downsampling

Input (density x20) Linear downsampling

111



Part 2: Downsampling heterogeneous volumes

The problem with linear downsampling
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Comparison:
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Problem with linear downsampling

Incorrect transparency
Incorrect colors

113

Input Linear downsampling

Comparison:
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Transparency: 50%

Linear downsampling:
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Linear downsampling:
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d

Transparency:                < 50%Transparency: 50%
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d

Transparency: 50%Transparency: 50%

Correct transparency:
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Problem #2: Local shadowing
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Problem with linear downsampling

What’s happening?
Problem #1: Transparency 
Problem #2: Local shadowing
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Local shadowing 
Multiple scattering
= saturated perceived color
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Problem #2: local shadowing

Transparency 50%

128

Local shadowing 
Multiple scattering
= saturated perceived color

Less local shadowing 
Mostly single scattering
= light colors
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Problem #2: local shadowing

Input Naïve (correct transp.) 
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Problem #2: local shadowing
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Naïve (correct transp.) Input



Part 2: Downsampling heterogeneous volumes

Previous work: [Zhao, Wu et al. 2016]

131

Much more accurate than naïve linear downsampling

Reference, 25.4 GB LODs, 45.6 MB



Part 2: Downsampling heterogeneous volumes

Previous work: [Zhao, Wu et al. 2016]
Algorithm:
1) Downsample linearly
2) Render input volume (several views & lights)
3) Iterative optimization:

● Render current LOD (several views & lights)
● Update scattering parameters

Problems:
- Long precomputation time
- Does not support well semi-transparent media
- Does not support well spatially-varying appearances
- Linear downsampling of density

132
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Our approach

● Correct transparency (non-linear)
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Our approach

● Correct transparency (non-linear)

● Local estimation of parameters
About x10 faster than [Zhao, Wu et al. 2016] 
Overcome some limitations
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Our approach

● Correct transparency (non-linear)

● Local estimation of parameters
About x10 faster than [Zhao, Wu et al. 2016] 
Overcome some limitations
 

● New microflake model for correct local shadowing
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Our new model: microscopic self-shadowing
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(+1 parameter)
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Our new model: microscopic self-shadowing

140

Difficult: get closed-form expressions for scattering functions, sampling

Model of transparent media with multiple scattering at micro-scales

Standard model Our model
Isotropic shadowing

(+1 parameter)

Our model
Anisotropic shadowing

(+6 parameters)



Part 2: Downsampling heterogeneous volumes

Our new model: microscopic self-shadowing

141

Input



Part 2: Downsampling heterogeneous volumes

Our new model: microscopic self-shadowing
Input Naïve (linear) Naïve (correct transp.)
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Our new model: microscopic self-shadowing
Our modelInput Naïve (linear) Naïve (correct transp.)

143
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Local estimation of parameters

We estimate:

● Transparency (easy)

● Single scattering albedo & normal distributions [Heitz et al. 2015] (linear)

144



Part 2: Downsampling heterogeneous volumes

Local estimation of parameters

145

We estimate:

● Transparency (easy)

● Single scattering albedo & normal distributions [Heitz et al. 2015] (linear)

● Density and shadowing parameters

● Multiple scattering albedo

Good property: no optimization needed
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Results

Naïve (linear) Naïve (correct transp.) Our

Errors:
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Results

InputLOD 2 
[Zhao, Wu et al. 2016]

12 CPU core hours

LOD 2 
Our, 1 CPU hours (2 minutes)
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Input

Results
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Results

LOD 2
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Limitations
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Local shadowing 
Multiple scattering
Saturated colors

Correct transparency (anisotropic) 
Correct shadowing
Correct average color
Scattering directions: inaccurate

Our LOD: microscopic shadowing
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Conclusion

Sub-resolution polygons in hybrid LODs

Glints, surfaces & volumes

Non-classical volume models [d’Eon 2018] [Jarabo et al. 2018]

Future work

158


