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Résumé de la thèse en français

0.1 Introduction

Les réseaux ad hoc ont fait l’objet de nombreuses études grâce à leur capacité de
déploiement sans infrastructure (e.g. [1] et les références associées). Ces réseaux
subissent de nombreux changement dynamiques dus au fait que les nœuds sont
mobiles et que les connexions entre ces derniers sont sujettes aux phénomènes
aléatoires inhérents aux canaux de communications sans fil. C’est pourquoi la
gestion des interférences dans ces réseaux constitue un défi dont la difficulté
se trouve augmentée par l’absence d’un contrôleur central pouvant le réaliser.
Ce dernier obstacle constitue une des raisons de la faible mise en œuvre de ces
réseaux en pratique.

Parmi les alternatives de gestion des ressources dans les réseaux ad hoc, la so-
lution clustérisée est celle qui assure de bonnes performances de communications
tout en tenant compte de la mobilité et du passage à l’échelle. La clustérisation
garde les avantages des réseaux ad hoc (pas d’infrastructure) et réduit de manière
significative la signalisation ce qui permet la mise en œuvre de ces réseaux en
pratique [2, 3, 4]. L’idée est de rassembler localement (et dynamiquement) les
nœuds en groupes appelés "cluster" dans le but d’optimiser la performance du
réseau et de gérer localement les ressources du cluster. Cette tâche est souvent
effectuée par un chef de cluster (CH en anglais) qui est élu parmi les nœuds du
cluster. Le rôle du CH est de gérer l’allocation des ressources et des schémas de
transmissions au sein de son cluster. Pour ce faire, les nœuds de chaque cluster
échangent de la signalisation uniquement avec leur CH, ce qui réduit significati-
vement la signalisation par rapport à un réseau ad hoc traditionnel. Les réseaux
ad hoc organisés en clusters sont utilisés dans les contextes des réseaux de vé-
hicules, des réseaux cognitifs ainsi que dans les réseaux militaires où les nœuds
proches géographiquement appartiennent au même cluster [5].

Un des problèmes principaux dans les réseaux ad hoc clustérisés concerne
l’allocation de spectre afin de permettre les communications sans fil dans les
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clusters. Une solution idéale serait d’effectuer une allocation orthogonale des
bandes de fréquences à l’initialisation de la procédure mais ce n’est pas possible
pour les deux raisons suivantes. Tout d’abord, à cause de la nature dynamique du
réseau, le nombre de clusters peut varier et donc aussi le nombre de bandes de
fréquences nécessaires à son bon fonctionnement. Ensuite, pour passer à l’échelle,
le réseau a besoin de plus en plus de bandes de fréquences à mesure que le nombre
de clusters augmente ce qui n’est pas réalisable à cause de la pénurie de spectre.
Pour pallier à ces difficultés, on limite la quantité de bandes de fréquences et
une solution pratique consiste à regarder les allocations dynamiques permettant
une réutilisation spatiale des canaux. En effet, les liens radios peuvent continuer
à fonctionner lorsque l’interférence est maîtrisée. Par exemple, on peut fixer un
SINR minimum en dessous duquel le lien radio est considéré non fonctionnel.
Par la suite, on peut utiliser la décroissance naturelle de la puissance des signaux
radios avec la distance afin de réutiliser des canaux fréquentiels par différent
clusters.

Dans cette thèse, on considère un réseau ad hoc clustérisé dans lequel les
nœuds de chaque cluster communiquent entre eux et échangent de la signalisa-
tion avec le CH. Nous supposons qu’il n’y a pas d’échange d’information entre
les clusters. Afin de réduire la quantité d’interférence dans le réseau, et du fait
qu’il n’existe pas de contrôleur central pour réaliser la gestion au fil de l’eau des
interférences, les clusters peuvent utiliser différent canaux fréquentiels. Cepen-
dant, les bandes de fréquences sont des ressources rares ce qui oblige des clusters
à utiliser la même bande. Une allocation des fréquences doit être réalisée dans le
but de maximiser les performances du réseau. Malheureusement, cette allocation
ne peut être planifiée pour les raisons suivantes. La charge au niveau de chaque
cluster varie dans le temps (car le trafic varie dans le temps) ce qui signifie que
l’interférence des clusters entre eux varie également. Les clusters sont également
mobiles, et deux clusters voisins à un instant donné peuvent se retrouver éloignés
plus tard. Ainsi l’allocation doit être dynamique pour faire face à la mobilité et aux
variations de trafic. L’absence de contrôleur central impose également que l’allo-
cation de fréquence soit effectuée de manière distribuée. Dans chaque cluster, le
CH décide du choix du canal fréquentiel utilisé par les nœuds de son cluster et cela
sans échanger de signalisation avec les autres clusters. De plus, cette allocation
doit être robuste aux diverses perturbations aléatoires affectant les liens radios.
Les CHs doivent prendre des décisions basées sur des mesures qui sont poten-
tiellement perturbées par la large gamme de variations dynamiques inhérentes
aux réseaux ad hoc sans fil. Dans un contexte où les informations et les déci-
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sions sont distribuées, il est naturel pour les CHs de considérer des changements
de configuration du réseau lorsque les mesures varient. Dans un environnement
perturbé par des phénomènes dynamique ce n’est plus le cas, ce qui peut mener
le réseau à avoir un comportement incontrôlable et détériorer sérieusement ses
performances.

0.2 État de l’art

Cette section présente plus formellement le contexte et les axes de l’étude, et décrit
l’état de l’art concernant l’allocation distribuée des fréquences dans les réseaux
ad hoc clustérisés.

Dans le contexte de l’allocation distribuée des ressources, il est usuel d’em-
ployer la théorie des jeux (GT en anglais) comme cadre pour la modélisation du
problème. Les concepts de bases de la GT utiles dans cette thèse sont dévelop-
pés dans le Chapitre 2. Le problème est donc modélisé par un jeu dans lequel
les clusters sont les joueurs et leurs stratégies sont les choix de fréquences. Les
décisions des clusters sont guidées par une métrique appelée utilité. Le cadre du
problème d’allocation distribuée des fréquences peut être résumé par les proprié-
tés suivantes :

(i) le choix de fréquence est effectué indépendamment par chaque cluster,

(ii) la stratégie de chaque cluster dépend seulement de ses propres actions et
mesures d’utilité courante et passées (l’information est locale),

(iii) l’utilité n’a pas de forme exacte dans le sens où c’est une fonction qui dépend
du choix des autres clusters et elle prend des valeurs discrètes,

(iv) l’utilité peut être perturbée par des processus stochastiques (e.g. évanouissements
de Rayleigh),

(v) le contexte de l’étude est dynamique dans le sens où les clusters peuvent
bouger, entrer et quitter le réseau, et la charge de trafic peut varier,

(vi) l’ensemble des stratégies est discret (sélection des canaux fréquentiels).

Les propriétés (i) et (ii) définissent un schéma "complètement découplé" [6] que
l’on nomme complètement distribué dans cette thèse [7, 8]. Il est important de noter
que dans le cadre des propriétés (i) et (ii), et dans une large classe de jeux de tailles
finies, il n’existe pas de procédure adaptative qui converge presque sûrement vers
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un équilibre de Nash (NE en anglais) [6, 9, 10]. Cependant, comme nous allons
le voir dans cette thèse, il est possible d’étudier une forme de convergence plus
faible (voir les états stochastiques stables (SSS en anglais) dans la Section 2.2 pour
les détails).

Vis à vis de la propriété (iii), les méthodes d’apprentissages sans modèle sont
intéressantes pour aborder notre problème [11], car dans ce paradigme, les joueurs
n’essaient ni de modéliser leur environnement, ni d’obtenir un modèle explicite
de l’utilité. Ils considèrent l’environnement comme une boîte noire et apprennent
en interagissant avec lui (e.g. trials and errors).

Ce cadre de travail, bien que très restrictif, peut être rencontré dans une grande
variété d’exemples. Par exemple, dans un champ d’éoliennes, chacune des éo-
liennes contrôle la puissance qu’elle extrait du vent [12]. Il est très difficile, voire
impossible, de modéliser l’influence d’une turbine sur les autres. De plus, l’ab-
sence de communications entre les différentes éoliennes rend impossible toute
coopération. Un autre exemple concerne les personnes se rendant au travail dans
une ville. Ces derniers désirent éviter les bouchons, cependant il ne connaissent
pas les choix stratégiques des autres, ni l’influence de leur propre stratégie sur
leur propre préférence et celles des autres [13].

La propriété (iv) représente le fait que dans un contexte de communications
sans fil, le canal est perturbé par des processus stochastiques qui à leur tour
affectent l’utilité. Ces perturbations de l’utilité se répercutent sur les décisions
des joueurs ce qui peut faire perdre les bonnes propriétés de convergence des
algorithmes d’allocation des ressources, et diminuer la performance du réseau.

Nous rencontrons des algorithmes d’allocation des fréquences complètement
distribués dans beaucoup de contextes sans fil car les nœuds/joueurs ne peuvent
pas forcément échanger de la signalisation entre eux au risque de diminuer le
trafic. De plus, les fonctions d’utilité réalistes n’ont régulièrement pas de forme
exacte comme mentionné par la propriété (iii) (e.g. Qualité d’expérience, nombre
de paquets correctement décodés, etc ). Néanmoins, dans ce contexte, des al-
gorithmes d’allocation de ressources basés sur des apprentissages sans modèle
ont été développés. Parmi eux, nous avons identifié les méthodes basées sur le
"Q-learning", le "learning automata", le "combined payoff and strategy learning",
le "no-regret learning" et les méthodes "trial and error" (TE en anglais) comme
des solutions potentielles. Pour chacune des procédures d’apprentissage précé-
dentes, nous présentons le principe de fonctionnement général sans rentrer dans
les détails.

Dans [14, 15] les auteurs utilisent le Q-learning pour sélectionner les canaux
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fréquentiels parmi les femtocells. Dans [16], le Q-learning est employé afin d’al-
louer de manière complètement distribuée les canaux fréquentiels et la puissance
dans un réseau. Le principe général de la méthode est de résoudre les équations
d’optimalité de Bellman [17]. La solution de ces équations maximise la somme
des utilités cumulées au cours du temps. Cependant, il y a quelques contraintes
à utiliser cette méthode dans un contexte complètement distribué. Tout d’abord,
pour prendre leur décision, les joueurs ont besoin de connaître l’état du système
ce qu’ils n’ont pas (ils ne connaissent pas les choix d’actions des autres joueurs).
Ensuite, l’optimalité de la solution peut être atteinte dans un environnement sta-
tionnaire ce qui n’est pas le cas dans les jeux à plusieurs agents. La décision
d’un joueur influence celle des autres et réciproquement. Par conséquent, l’en-
vironnement n’est pas stationnaire et la convergence de la procédure n’est plus
assurée [11]. C’est pourquoi, lors de l’implémentation du Q-learning dans un
environnement multi-agents, chaque joueur considère peu ou pas d’interaction
avec les autres joueurs. De plus, dans les cas où la convergence peut être atteinte
(i.e. peu de couplage entre les joueurs), cela peut prendre beaucoup de temps [11].

Avec le Q-learning, chaque joueur essaye d’apprendre les valeurs d’utilités
cumulées et choisit la stratégie dans le but de maximiser cette valeur. Il existe des
algorithmes qui ont un fonctionnement opposé dans le sens où la valeur d’utilité
reçue modifie directement le choix des stratégies. Ces méthodes sont connues
sous le nom anglais de learning automata [18, 19]. Dans [20, 21, 22], les auteurs
proposent un algorithme basé sur le principe du learning automata présenté dans
[23]. La preuve de convergence utilise les équations différentielles ordinaires et les
approximations stochastiques [24]. Chaque stratégie est jouée avec une probabilité
qui est mise à jour à chaque itération en utilisant une approximation stochastique.
Pour une action donnée, la probabilité de la jouer lors de la prochaine itération est
d’autant plus importante que l’utilité reçue est grande. Les probabilités des autres
stratégies sont misent à jour en utilisant la conservation des probabilités. Il est
prouvé dans [23] que les états stationnaires de l’algorithme sont les équilibres de
Nash purs (PNE en anglais) (voir la Définition 2.2 à la page 12 pour de plus amples
détails). Un des principaux avantages de ce type d’algorithmes, en plus d’être
complètement distribués, est leur capacité à évoluer dans un environnement où
l’utilité est perturbée. Cela est dû à l’utilisation d’approximations stochastiques.
Cependant, il existe quelques inconvénients lors de l’usage de ces algorithmes.
Le premier est que bien qu’un PNE puisse être atteint, il n’y a pas d’information
supplémentaire sur sa performance. Par exemple, il est montré dans [25] que
l’algorithme converge vers un état sous optimal. De plus, dans le cadre restrictif
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de cette thèse, l’existence d’un PNE n’est pas assurée, ce qui peut remettre en
cause la convergence de ces algorithmes.

Les algorithmes précédents apprennent l’utilité moyenne ou la stratégie, mais
il existe des algorithmes qui utilisent les deux procédures simultanément. Dans
[25, 26] les auteurs implémentent l’approche combined payoff and strategy lear-
ning afin de partager les ressources entre les femtocells et les bornes Wifi respec-
tivement. Le principe de fonctionnement de ces algorithmes peut être décrit en
deux étapes. Durant la première étape, l’utilité moyenne correspondant à l’action
courante est mise à jour en utilisant l’utilité reçue et une méthode d’approximation
stochastique. Dans un second temps, la distribution de probabilité des stratégies
est mise à jour de manière similaire au cas des learning automata à la différence
près qu’une fonction de correspondance avec des propriétés particulière est uti-
lisée (voir [26] pour plus de détails). Grâce à cette fonction et au caractère fini
du jeu, l’algorithme possède un point fixe vers lequel il peut converger. Ce qui
est intéressant, c’est qu’en réglant un paramètre de température, on peut faire
en sorte que ce point fixe soit une action pure ou une probabilité uniforme de
jouer n’importe quelle action. Il est également intéressant de noter que, comme
dans le learning automata, cet algorithme est robuste aux perturbations de l’utilité
grâce à l’utilisation d’une approximation stochastique. Par rapport au learning
automata, l’apprentissage combiné améliore les performances de fonctionnement
[25]. Cependant, les auteurs de [25] mentionnent que bien que le point fixe peut
correspondre à un PNE, la convergence vers ce point peut ne pas être sûre si la
fonction d’utilité est trop égoïste (e.g. pas de communication entre les joueurs). De
plus, il n’y pas de garantie de performance de l’équilibre atteint. Il est intéressant
de noter que ces algorithmes font partie d’un concept plus général nommé en
anglais combined fully distributed payoff and strategy reinforcement learning
(CODIPAS-RL) décrit dans [7].

La procédure no-regret est employée dans [27, 28] afin d’allouer de manière
complètement distribuée la puissance sur certaines bandes de fréquences et des
canaux fréquentiels respectivement. Par rapport aux méthodes précédentes, l’ap-
prentissage no-regret possède une philosophie différente. Les joueurs n’essaient
pas directement d’améliorer leur utilité mais essaient plutôt de diminuer leur
regret. Le regret de jouer une action est la différence de l’utilité moyenne qu’il
reçoit en jouant l’action courante et ce qu’il aurait pu obtenir en jouant une action
différente. Le regret peut ensuite être utilisé pour mettre à jour la distribution de
probabilité des stratégies comme dans la méthode learning automata (e.g. [29]).
Par exemple, on peut faire en sorte d’augmenter la probabilité de jouer une stra-



0.2. État de l’art xiii

tégie rapportant un faible regret. Les procédures no-regret comme celle présentée
dans [29] convergent vers l’ensemble des équilibres corrélés connus pour contenir
l’ensemble des NEs [30]. Dans ce sens, n’importe quel jeu fini possède au moins
un équilibre corrélé. Bien que l’ensemble des équilibres corrélés soit plus géné-
ral que celui des NEs il n’y a pas de garanties théoriques d’obtenir de meilleurs
performances. Cependant, il a été observé que rechercher des équilibres corrélés
peut permettre d’obtenir de meilleurs performance sociales que juste chercher
les PNEs [11]. Il existe quelques inconvénients à l’usage de ces procédures. Tout
d’abord, initialement cette procédure [29] n’est pas complètement distribuée dans
le sens où pour calculer le regret il faut connaitre les actions des autres joueurs.
Dans [27, 28], les auteurs modifient l’algorithme pour le rendre complètement
distribué. De plus, l’algorithme [29] n’est pas robuste aux perturbations de l’uti-
lité c’est pourquoi [28] propose des modifications afin de palier à cette difficulté.
Enfin, pour calculer le regret, le joueur doit pouvoir connaitre l’utilité reçue s’il
avait joué une action différente ce qui dans notre cas est impossible et doit être
appris d’une autre manière.

La dernière classe d’algorithmes que nous présentons ici est basée sur le trial
and error et est noté TE. La plupart des travaux basés sur le TE se concentrent
sur des fonctions d’utilité déterministes dans lesquelles l’utilité n’est pas per-
turbée par des phénomènes stochastiques. Les auteurs de [31, 32] utilisent deux
méthodes TE nommées ODL [12] et TEL [10] afin d’allouer de manière complè-
tement distribuée les bandes de fréquences ainsi que les puissances d’utilisations
de ces canaux dans un réseau ad hoc clustérisé. Une version modifiée d’ODL a
été employée dans [33] afin d’allouer des bandes de fréquences de manière com-
plètement distribuée dans un contexte de réseaux ad hoc et d’évanouissements
lents. La description détaillée de ces méthodes TE est reléguée au Chapitre 3. De
manière simple, chaque joueurs implémente un contrôleur à états fini dans lequel
deux modes de fonctionnement se distinguent. Dans le premier mode, le joueur
expérimente une nouvelle stratégie avec une probabilité faible ce qui correspond
à une version standard de phase exploration/recherche. Dans un second mode, le
joueur expérimente de manière aléatoire n’importe quelle stratégie à chaque ité-
ration de l’algorithme, ce qui est considéré comme une phase de recherche bruité.
Dans chacun des modes, la probabilité d’accepter une nouvelle stratégie comme
stratégie future s’accroît avec la valeur de l’utilité reçue lors de l’expérimentation.
La machine d’état définit quel mode utiliser en fonction de la valeur de l’utilité
reçue. L’algorithme ODL converge (au sens des SSSs) vers un état qui maximise
la somme des utilités de tous les joueurs, aussi connu sous le nom de fonction
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de bien-être social (voir la Définition 2.3 à la page 12). L’algorithme TEL quant à
lui possède le résultat intéressant suivant : s’il y a un PNE, l’algorithme converge
(au sens SSS) vers un état qui maximise la fonction de bien-être social parmi ces
PNE, sinon, l’algorithme converge vers un état qui maximise un compromis entre
la fonction de bien-être social et une fonction de stabilité. La difficulté est que
les propriétés de convergence des algorithmes mentionnés ne sont plus valides
dans un contexte où l’utilité est perturbée par des processus stochastiques. Cela
pose un problème dans notre cadre car ces phénomènes sont omniprésents dans
les canaux de propagations sans fil (évanouissement, ombrage). Dans le domaine
du contrôle, un travail récent [34] est le premier à proposer des modifications de
ODL pour faire face aux perturbations stochastiques. Dans ces modifications, la
déviation maximum du bruit qui affecte l’utilité est supposée constante et connue
en avance.

Parmi les procédures d’allocation complètement distribuées présentés, le prin-
cipe TE semble être pour le moment, la solution qui possède la convergence la plus
générale et la mieux définie, et qui remplit l’ensemble des propriétés mentionnées
en début de cette section sauf la (iv). La méthode Q-learning essaie directement
de maximiser la somme cumulée de l’utilité. Cependant, elle est originellement
construite pour être utilisée dans des contextes avec un seul joueur ce qui rend la
convergence dans notre cadre peu sûre ou très longue. Les procédures learning au-
tomata convergent vers les PNEs dont l’existence n’est pas assurée dans ce travail.
De plus, la performance de ces équilibres n’est pas détaillée. Combined learning
of payoff and strategy peut converger vers un point fixe dont l’efficacité n’est
pas spécifiée non plus. Ensuite, cette convergence n’est pas certifiée dans notre
contexte. Cependant, les performances de fonctionnement semblent meilleur que
celles de Learning automata [26]. Les procédures no-regret convergent vers un
type d’équilibres différents (i.e. équilibres corrélés) qui contiennent les NEs. Cette
classe d’algorithmes n’est pas initialement construite pour fonctionner dans un
contexte complètement distribué. Leur adaptation nécessite des modifications qui
rendent la convergence non sûre ou très lente.

En comparaison aux autres procédures, les approches TE possèdent d’intéres-
santes propriétés de convergence globales bien que le problème soit non coopé-
ratif. Elles sont également simples à implémenter. La possibilité de caractériser
aussi précisément leur convergence provient de la notion de convergence utili-
sée, les états stochastiques stables (SSS en anglais) sont moins contraignant que
la convergence presque sûre. Avec ce concept, plutôt que de converger avec une
probabilité 1 vers un état, le réseau est amené à passer une grande proportion du
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temps dans un état optimal et peut le quitter à tout moment. Il est prouvé dans
[6] qu’il n’existe pas de procédure complètement distribuée convergeant presque
sûrement ou avec probabilité 1 vers un NE dans la plupart des jeux, ce qui fait que
les résultats du TEL sont les meilleurs que l’on peut atteindre dans ce contexte.
Néanmoins, il a été observé dans les travaux [35], que ces procédures deviennent
instables quand l’utilité est sujette à des perturbations stochastiques. Plus pré-
cisément, on démontre dans cette thèse la perte des propriétés de convergence
lorsque l’utilité est perturbée (voir Chapitre 4). La cause de cette sensibilité aux
perturbations est que chaque joueur interprète les variations d’utilités comme des
changements d’état du système et réagit localement ce qui perturbe de manière
globale le réseau. Une des contributions majeure de ce travail et de définir des
algorithmes TE robustes aux perturbations de l’utilité.

De plus, au-delà des notions de convergence et du fait que les algorithmes
atteignent un état satisfaisant dans notre problème, l’étude des caractéristiques de
convergence reste une question ouverte [10, 11]. La principale difficulté provient
de la complexité des chaînes de Markov (MC en anglais) induites par l’utilisation
des algorithmes. Le jeu dans lequel les joueurs utilisent les algorithmes TE peuvent
être représentés par des MCs discrètes avec énormément d’états. C’est pourquoi,
obtenir la matrice de transition de ces MCs est difficile ce qui rend l’analyse
du temps de convergence également très difficile (même numériquement). La
résolution de ce problème dans un cas spécifique est une des contributions majeure
de ce travail.

0.3 Structure de la thèse

Cette thèse est composée de six chapitres en incluant celui-ci : Les aspects théo-
riques (Chapitre 2), Allocation complètement distribuée des fréquences sans per-
turbations (Chapitre 3), Allocation complètement distribuée des fréquences avec
perturbations (Chapitre 4), Les statistiques de l’utilité perturbée (Chapitre 5) et
la conclusion (Chapitre 6). Dans cette section, nous décrivons un bref résumé de
chaque chapitre.

Le Chapitre 2 présente les notations théoriques et les outils nécessaires à la
compréhension de la modélisation du problème d’allocation de ressources, et des
principaux résultats théoriques. Plus spécifiquement, la Section 2.1 introduit les
concepts de théorie des jeux que nous utilisons dans cette thèse. La Section 2.2
introduit la représentation sous forme de MC et le concept de MC régulière-
ment perturbée dont la définition est clé pour comprendre les démonstrations
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théoriques de convergence des algorithmes employés.

Le chapitre 3 rappelle le problème d’allocation des fréquences de manière
complètement distribuée dans un contexte déterministe [35]. Le problème est
résolu de manière efficace avec les algorithmes TE dont le fonctionnement et
les résultats de convergence sont présentés en détails. La seconde partie de ce
chapitre concerne l’étude de leur performance qui reste une question ouverte à
cause de la grande dimension des MCs sous-jacentes. Le principe de l’analyse est
de réduire la dimension de la MC pour pouvoir réaliser les calculs numériques.
La réduction se fait en se basant sur des symétries de la MC liées à la particularité
du modèle de l’utilité utilisé. Grâce à ces simplification, nous sommes capables de
comparer les algorithmes TE présentés dans des régions difficilement atteignables
par simulations de Monte Carlo.

Dans le Chapitre 4, nous considérons toujours le problème d’allocation des
fréquences sauf que nous ajoutons des perturbations stochastiques de l’utilité.
Nous introduisons tout d’abord un modèle général de perturbations dont le but
est de représenter l’influence générale des perturbations possibles sur la mesure
d’utilité. Dans ce cadre, le comportement des algorithmes TE est analysé et dé-
crypté. Nous sommes capables de démontrer l’incapacité des algorithmes TE
standards à conserver leurs propriétés de convergences. C’est pourquoi dans la
suite du chapitre, nous proposons des modifications pour rendre ces algorithmes
robustes, et nous prouvons la convergence de ces derniers. Ensuite, nous éten-
dons ces solutions à un cadre plus général dans lequel des hypothèses faites sur
les perturbations sont relâchées. Finalement, nous étudions plus en détail les so-
lutions proposées afin de montrer l’amélioration des performances en présence
de perturbations vis à vis des algorithmes TE initiaux.

Le Chapitre 5 est dévoué à l’analyse de l’impact des évanouissements de Ray-
leigh sur les statistiques de l’utilité. L’objectif est de comprendre comment ces
évanouissements peuvent influencer l’utilité et le processus d’allocation de res-
sources dans le Chapitre 4. Le calcul de ces statistiques requièrent les statistiques
du SINR car c’est ce qui est utilisé afin de calculer les valeurs de l’utilité. Pour
cela, on considère une transmission OFDM, une des technologies les plus utilisées
de nos jours. Tout d’abord on considère les évanouissements plats que l’on note
NB, et par la suite, nous considérons les évanouissements sélectifs en fréquence
que l’on note WB. Dans le cas WB, l’abstraction de la couche physique utilise une
métrique de SNR équivalente nommée EESM qui associe aux différentes valeurs
de SNR corrélées sur les sous porteuses une seule valeur de SNR équivalent.
La corrélation des variables aléatoires dans la métrique EESM nous empêche de



0.3. Structure de la thèse xvii

trouver une forme exacte pour ses statistiques. C’est pourquoi, nous supposons
que les évanouissements corrélés du canal peuvent être représentés par une suc-
cession d’évanouissements constant sur une bande de cohérence et indépendant
et identiquement distribués d’une bande à l’autre. Cela permet de développer
des calculs numériques afin de trouver les statistiques d’EESM. Pour compléter
la procédure, on met en place une méthode permettant de calculer la valeur de
la bande de cohérence afin que les statistiques calculées avec la méthode propo-
sée correspondent aux statistiques d’EESM obtenues à travers le canal initial. Les
résultats nous permettent de comprendre clairement le comportement de l’utilité
en présence d’évanouissements de Rayleigh. Cela nous permet également de pré-
dire les performances d’un système OFDM qui utilise la métrique EESM ce qui
pourrait donner des pistes de travail sur le design des futurs systèmes sans fil
utilisant OFDM. Enfin, le modèle de canal par blocs utilisé peut servir d’abstrac-
tion de couche physique avec une complexité peu élevée dans les simulations du
Chapitre 4.

Le Chapitre 6 conclue cette thèse et fournit des perspectives de travail.
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Chapter 1

General Introduction

1.1 Introduction

Ad hoc wireless networks have been attracted intensive studies in the past due to
their ability of being deployed without infrastructure (e.g. [1] and the references
therein). These networks experience a wide variety of dynamic changes due to
the fact that nodes are mobile and their connectivity is subject to time varying
wireless channel conditions. The interference management in such networks is
therefore challenging especially with the lack of a central entity to perform it. This
explains the limited implementation of these networks in practice.

Among the alternatives to manage resources in ad hoc networks, the clustered
one is the method that ensures good performance when dealing with scale effects
and mobility. Clustering keeps advantage of ad hoc networks (no infrastruc-
ture) while reducing the signaling overhead and allowing the implementation of
such networks in practice [2, 3, 4]. The idea consists in gathering locally (and
dynamically) nodes in “clusters” in order to optimize network performance and
to manage locally cluster’s resources. This task is often devoted to a Cluster
Head (CH) that is elected among the cluster nodes. The role of the CH is to
control the resource allocation and transmission schemes inside the cluster. The
nodes in each cluster exchange signaling only with the CH, which reduces the
signaling overhead as compared to traditional ad hoc networks. Clustered ad hoc
networks are used in the context of vehicular networks, cognitive radio networks
and military networks where nodes close to each other belong to the same cluster
[5].

One of the major problem in clustered ad hoc networks deals with spectrum
band allocated to clusters in order to make them able to operate. An ideal solution
is to allocate orthogonally the frequency bands at the starting step of the algorithm
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but it is not operationally possible for the two following reasons. Firstly, because
of the inherent dynamic nature of the network, the number of clusters may vary
and so does the number of required frequency channels. Secondly, to cope with
the scaling effect, in which the network is able to deal with an increasing number
of clusters, the network would require more and more channels as the network
grows up, which is impossible due to spectrum scarcity. To overcome these
difficulties, a practical solution considers a finite spectrum resource and tries to
look for a possible dynamic re-use of frequency bands. Indeed, the radio links
are able to work when the interference is limited, for example, one may set a
minimum Signal to Noise plus Interference Ratio (SINR). In this way, we can take
advantage of the electromagnetic waves natural power decrease with respect to
the distance (or obstacles) in order to re-use the same frequency band by different
clusters.

In this thesis, we consider a clustered network where the nodes in each cluster
communicate with each other and exchange signaling information with the CH.
No information is exchanged between different clusters. In order to reduce the
interference in the network, especially that no central entity exists in the network to
perform instantaneous interference management, the clusters may use different
frequency bands. Bandwidth is however a scarce resource which implies that
several clusters may use the same frequency. A frequency allocation must then be
conducted in a such a way to maximize the network performance. This allocation
cannot unfortunately be handled off-line for the following reasons. The load of
each cluster is time varying (since the traffic is usually time varying) which means
that the interference from one cluster on another is time varying. The clusters
are also mobile which means that two neighbor clusters could become distant
after some time. The frequency allocation must then be dynamic to cope with
mobility and dynamic clusters’ load. The lack of central controller in the network
implies that such a frequency allocation must be done in a distributed way. In
each cluster, the CH decides at a given time the frequency band to be used in
its cluster without exchanging any signaling information with other clusters. In
addition, the allocation have to be robust to disturbances. The CH realizes the
frequency allocation based on measurements that are possibly disturbed due to
wide variety of dynamic changes that face ad hoc networks. In a distributed
information/decision perspective it is natural to expect a change in the state of
the network if the measurements have changed. In a disturbed environment this
can lead the network to uncontrolled and unexpected decisions and deteriorate
performance heavily.
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1.2 State of the art

This section establishes more formally the context and the focus of the work and
presents the state of the art of distributed resource allocation in clustered ad hoc
networks.

In the context of distributed resource allocation, it is usual to employ Game
theory (GT) as a modeling framework. The concepts of GT useful in this thesis
are described in Chapter 2. The problem is thus modeled by a game in which we
consider the clusters as players and their actions as frequency channel choices.
Then, each cluster takes decision based on a metric named utility (or payoff). The
framework of the resource allocation problem considered can be summarized by
the following properties:

(i) the decision is made separately by each cluster,

(ii) the cluster’ strategy depends only on its current and past utilities and actions
(local information),

(iii) the utility does not have a closed form expression as it is a function of other
clusters’ actions and takes discrete values,

(iv) the utility can be disturbed by stochastic process (e.g. fast fading),

(v) the context is dynamic in the sense that clusters can move, leave or enter the
network, and the load can vary,

(vi) the action set is discrete (selection of frequency channels).

Properties (i) and (ii) define a completely uncoupled scheme [6] that we name
fully distributed in the thesis [7, 8]. It is important to specify that in the context of
properties (i) and (ii), and in a large class of games with finite memory, there exists
no adaptive algorithm that converges almost surely to a Nash Equilibrium (NE)
[6, 9, 10]. However, as one will see, it is possible to consider a weaker type of
convergence (see Stochastic Stable State (SSS) and Section 2.2 for details).

With property (iii), it appears that the model-free strategy learning algorithms
are very appealing approaches [11] since in this paradigm, players neither try to
model the environment nor try to have a specific/explicit utility form. They simply
consider the environment as a black box and learn by interactions (e.g. trials and
errors). This context, though very restrictive, can be encountered in a wide variety
of examples. For instance, in a wind farm, each turbine controls the power that
it extracts from the wind [12]. It is very difficult, if not intractable, to model the
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impact of a turbine on other turbines. In addition, the lack of communications
between them makes impossible any cooperation. Another example is the case
of commuters in city that want to avoid traffic jams but, they neither know the
strategies of other commuters nor the impact of their strategy on the achieved
rewards [13].

Property (iv) represents the fact that in the context of wireless telecommuni-
cations, the medium is disturbed by stochastic processes which, by consequence,
affect the utility. These utility perturbations impact players decisions which can
lead to the loss of convergence properties and thus to performance degradations.

Fully distributed resource allocation can be encountered in many wireless
contexts since the nodes/players may not be able to exchange information between
each other in order not to increase the overhead in the network. Also realistic
utility functions of the users may not have closed form expression as denoted by
property (iii) (e.g. Quality of Experience, number of correctly decoded packets, etc
). Nonetheless, in this context some approaches to allocate resources with model-
free strategic algorithms have been developed. Among them we have identified
Q-learning, learning automata, combined payoff and strategy learning, no-regret
learning and Trial and Error (TE) learning as potential solutions. For each of the
previous of learning procedures, we present the basic principle without going
into details of the analysis.

In [14, 15] authors use Q-learning algorithm to select frequency channels
among femtocells. In [16] Q-learning is employed to allocate frequency chan-
nel and power in a fully distributed network. The basic principle of this learning
procedure is to solve the Bellman’s optimality equation [17]. The solution to these
equations maximizes the sum of cumulative utilities over time. There are some
drawbacks related to the use of this procedure in a fully distributed scheme. First
of all, players require the state of the system which they do not have (they do
not know the action of other players). Then, the optimality can be reached in a
stationary environment which is not the case in multi player games. The decision
of a player has an impact on future other players decisions and vice versa. Con-
sequently, the environment is not stationary and the convergence of the previous
algorithm is not ensured [11]. Usually, when implementing Q-learning in multi
players environment, each player considers low or no interaction with others.
In addition, in some cases where convergence can be obtained (e.g. low coupling
between players), the convergence takes a large amount of time [11].

With Q-learning, each player tries to learn the expected cumulative reward
to find a policy. In the opposite, there exists algorithms that directly learn the
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policy based on the received reward. They are known as learning automata
[18, 19]. In [20, 21, 22] authors proposed an algorithm based on learning automata
scheme whose principle is presented in [23]. The convergence proof is based
on ordinary differential equation and stochastic approximation [24]. Each action
is played with a given probability which is updated at each iteration using a
stochastic approximation. For a given action selected, the probability to play it
in the next iteration increases especially as the received utility is great. Other
probabilities are computed using conservation probability. It is proved in [23]
that the stationary points of the algorithm are Pure Nash Equilibrium (PNE)
(see Definition 2.2 in page 12 for details). The main advantage of these type of
algorithms, in addition to be fully distributed, is that they are designed to evolve
in an environment where the utility can be disturbed. This is a consequence of
the stochastic approximation procedure. However, there are some issues arising
when using the above methods. The first one is that nothing more can be said
about the efficiency of the PNE reached. For instance, it is shown in [25] that
the algorithm can converge to a suboptimal state. In addition, in the restrictive
environment considered in this thesis the existence of PNE is difficult to predict
which makes the convergence of the above procedure not ensured.

Previous algorithms learn the expected reward or the policy but there exists
schemes that use both information at the same time. In [25, 26] authors use com-
bined payoff and strategy learning approaches to respectively share the resources
among femtocells or wifi access points. The basic principle of these algorithms
can be described as follows. It is composed of two steps. During one step, the
average utility value corresponding to the use of that action is updated using
the received utility and a stochastic approximation method. In a second step, the
probability distribution over actions is updated similarly to the learning automata
scheme at the difference that a mapping function with some specific properties
is involved (see [26] for more details). Thanks to this function and the finiteness
of the game, the algorithm possesses a unique fixed point to which the algorithm
may converge to. One can force the fixed point to be a uniform distribution over
the action space or a pure action. It is interesting to note that as in the learning au-
tomata procedure, the algorithm is naturally robust to utility disturbances thanks
to the stochastic approximation. In comparison to learning automata, combined
learning improves the convergence performance as observed in [25]. However,
the authors in [25] also note that while the fixed point equilibrium can correspond
to a PNE, the convergence to this equilibrium may not be ensured if the utility is
too selfishness (no communication between players). In addition to that, there are
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no guaranties on the performance of the equilibrium reached. It is interesting to
note that these types of algorithms are part of a more general concept named com-
bined fully distributed payoff and strategy reinforcement learning (CODIPAS-RL)
described in [7].

The no-regret procedure is employed in [27, 28] in order to allocate power to
channel and frequency channel respectively, in a fully distributed way. In com-
parison to algorithms presented previously, the no-regret learning has a totally
different philosophy. Players do not try to directly increase their utility but rather
try to minimize their regret. The regret of playing an action is the difference
between what a player get in average by playing this action and what he would
have received by playing a different one. The regret can then be used to up-
date the probability among actions just as a learning automata would have done
(e.g. [29]). For instance, one can set this update such that the probability of playing
actions with low regret is high. No-regret procedures as the adaptive process in
[29] converge to the set of correlated equilibrium which contains the set of NE
[30]. In this sense any finite game has always at least one correlated equilibrium.
Even though a correlated equilibrium is more general than a PNE, there are no
theoretical guaranties of better performance. However, looking for a correlated
equilibrium can highlight better social performance than just looking for a PNE
[11]. The no-regret learning scheme [29] is not fully distributed in the sense that
players need to observe actions of others to compute regret. In [27, 28] authors
modified the algorithm to make it fully distributed. Algorithm [29] is not robust
to disturbances that is why [28] proposes a modification to face disturbance using
stochastic approximation of the regret. Finally, to compute the regret, the player
needs to know the utility it would have received if it has played a different action,
which in our case is not available at each step of the algorithm and needs to be
learnt.

The last class of algorithms presented here are the TE based learning proce-
dures. Most of the existing work based on TE schemes focuses on deterministic
payoff functions in which the utility is not disturbed by a stochastic process. Au-
thors in [31, 32] use two TE based algorithms, namely the ODL [12] and the TEL
[10] to allocate in a fully distributed way frequency and power to a clustered ad
hoc network. A modified version of ODL has been used in [33] to allocate fre-
quency channels in an ad hoc network and in the context of very slow shadowing
variations, in which the algorithm can be run and converge before the variation
of the shadowing. The description of both TE algorithms is relegated to Chap-
ter 3. Basically, each player implements a state machine in which two different
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behaviors can be distinguished. In the first mode, a player experiments with low
probability a different action which is a standard search/exploration phase. In
the second mode, a player experiments randomly any action which is a “noisy”
search phase. In both modes, the experimented action has a probability to be
accepted that increases with the utility received. The finite state machine defines
which mode to use depending on the received utility. Algorithm ODL achieves
a state that maximizes the social welfare value (sum of all clusters’ utilities, see
Definition 2.3 in page 12) regardless the existence of PNE. Algorithm TEL has the
following particular interest: if a PNE exists, the system spends a high amount
of time in a state that maximizes the social welfare function whereas, if a PNE
does not exist, the algorithm allows achieving a state that represents a trade-off

between stochastic stability and maximizing the social welfare. The aforemen-
tioned TE based algorithms loose their convergence property when the payoff is
affected by a stochastic process, which is a common assumption in radio channel
propagation (fading, shadowing). In the domain of control, recent work [34] is
the first to propose a modification of ODL to face disturbances. In this modifica-
tion, the maximum disturbance deviation that affects the utility is supposed to be
constant and known in advance.

Among the model-free learning approaches discussed, TE schemes seems to
be, for the time being, the solution whose convergence is well specified and that
fulfills almost all the conditions required except property (iv). Q-learning directly
tries to maximize a cumulative sum of rewards. However, it has originally been
designed for a single player problem making the convergence in multi players
not ensured or possibly very long. Learning automata converges to the set of
PNE whose existence is not ensured in our cases. In addition the performance
of the NE reached is not guaranteed to be efficient. Combined learning of payoff

and strategy can converge to a fixed point that corresponds in some cases to a
PNE but the efficiency of the fixed point is not known. In addition, in a fully
distributed scheme the procedure is not guaranteed to converge. However it
seems to outperform learning automata [26]. Regret learning converges to a
different type of equilibrium (i.e. correlated equilibrium) that embeds the NE
equilibrium. To that end it converges in a larger class of games and can reach more
efficient states than NE. This class of learning procedures are however not initially
designed to work in a fully distributed scheme. They require some modifications
to be adapted that make the convergence much slower and not ensured.

The TE approaches possess very attractive global convergence behavior de-
spite the non-cooperativeness of the problem, while remaining quite simple to
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implement. The possibility to characterize so accurately the theoretical perfor-
mance of TE schemes is due to the convergence notion of SSS that is less restrictive
than almost sure convergence. In this convergence concept, rather than converg-
ing with probability one, the network spends a high proportion of time in the
optimal state and can leave it. However, it is proved in [6] that there exists no
fully distributed procedures that converges almost surely to a NE and thus, the
convergence result of the TEL algorithm is the strongest that one would achieve in
our thesis. Nonetheless, as it is noted in [35], these procedures exhibit instability
when the utility is subject to disturbances. More specifically, the aforementioned
TE algorithms loose their convergence property when the utility is disturbed by
a stochastic process (it is proved in Chapter 4). The reason is that they are very
sensitive to utility changes in the network. In fact, for the same network action,
the utility takes several values due to stochastic variations. It follows that clusters
interpret these disturbances as network action changes and, they react to these
stimulus perturbing the overall network. One of the main contribution of this
thesis consists in analyzing and proposing a solution to the problem of disturbed
utility in TE schemes (TEL and ODL) under specific settings.

Beyond the convergence notion and the fact that the above two algorithms
converge to a desired state, the study of these specific convergence properties
(i.e. SSS) remains an open question [10, 11]. The main reason comes from the
computation complexity of the inherent Markov Chain (MC) generated by these
two algorithms. In fact, the game in which players employ these learning schemes
can be represented by discrete MCs with huge number of states. Obtaining the
transitions matrix of these MCs is therefore not tractable which makes the analysis
of the convergence rate not possible (even numerically). This problem is one of
the important contributions studied in this work.

1.3 Outlines

This thesis is composed of six chapters including this one: Theoretical aspects
(Chapter 2), Fully distributed channel allocation without disturbances (Chapter 3),
Fully distributed channel allocation with disturbances (Chapter 4), Statistics of the
disturbed utility (Chapter 5) and a conclusion (Chapter 6). We provide hereafter
a brief summary of each chapter.

Chapter 2 presents the theoretical notations and background that are neces-
sary to understand the resource allocation modeling and the main results of the
thesis. More specifically, Section 2.1 introduces the game theory and associated
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concepts related to our work. Section 2.2 introduces the MC representation and
the extended concept of regularly perturbed MC that is of main interest in the
convergence study of algorithms employed.

Chapter 3 recalls the problem of frequency resource allocation without dis-
turbances [35]. The problem can be solved efficiently with TE based algorithms
whose operations as well as their convergence results are presented in details.
However, their convergence rates remains an open question due to the huge di-
mension of the inherent MC generated by these algorithms. Thus, the second
part of this chapter is dedicated to their performance analysis under a simplified
utility model. The principle of this analysis is to propose an approximation of the
MC to reduce the number of states such that it enables numerical computation of
performance. This complexity reduction is based on finding symmetries in the
MC and on approximations of algorithms transitions. With these approximations,
we are able to realize a comparison of two TE based algorithms in regions that are
unreachable with Monte Carlo simulations.

Chapter 4 still considers the problem of frequency resource allocation except
that we include stochastic disturbances in the utility function. We first introduce
a general disturbed utility model whose aim is to model the impact of stochastic
perturbation on the utility. In this disturbed context, the behavior of standard
TE algorithms presented in Chapter 3 is analyzed and decrypted. It is shown,
theoretically, that in a disturbed environment those algorithms fail to keep good
convergence properties. Therefore, we propose modifications of these algorithms
and, we provide theoretical proofs of convergence. These solutions are then
extended to a more general framework in which some assumptions about the
disturbance are released. Then, we study with more details the impact of the
proposed solutions on the global convergence of the algorithms.

Chapter 5 is devoted to the analysis of the physical layer abstraction used in
Chapter 4 in the context of Rayleigh fading. The specific goal of this chapter is
to study the statistics of the utility to understand the impact of Rayleigh fading
on resource allocation algorithms in Chapter 4. These statistics computations
require the statistics of the SINR since it is the input of the utility function. We
consider an Orthogonal Frequency Division Multiplexing (OFDM) transmission
scheme as it is one of the most widely used technology nowadays. First, we deal
with flat fading referred to as Narrow Band (NB) fading and then, we consider
the frequency selective fading referred to as Wideband (WB) fading. In the later
case, the abstraction of the physical layer uses the effective SNR metric named
Effective Exponential SNR Mapping (EESM) that maps the correlated SNRs over
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each subcarrier into one effective SNR. The EESM does not possess an appropri-
ate form for mathematical manipulation which prevents us from providing any
theoretical analysis of its statistics and hence of the utility statistics. We thus ex-
tend this abstraction assuming that the channel exhibits a coherence bandwidth
which enables us to consider the fading flat inside successive bandwidths. To
complete this procedure, we provide a method based on statistical tests to set the
coherence bandwidth parameter such that the new abstraction represents faith-
fully the effective SNR computed using a real channel. The proposed abstraction
allows numerical computation of the utility statistics which enables us to clearly
understand its behavior. It also enables us to predict the performance of a WB
OFDM system, to provide insights on the design of future wireless system based
on OFDM modulation, and to give a simplified abstraction to model WB fading
in numerical simulations.

Chapter 6 concludes this thesis and provides outlooks for future works.

1.4 Contributions

This work has led to a publication and a patent.

Conference

• J. Gaveau, C. J. Le Martret, M. Assaad, “ Grouping of subcarriers and ef-
fective SNR statistics in wideband OFDM systems using EESM”, in 2017
IEEE 13th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Oct 2017, pp. 1-7.

Patent

• J. Gaveau, C. J. Le Martret, M. Assaad, “Procédé d’allocation de ressources
radio dans un réseau sans fil, par apprentissage”, INPI, 2017.
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Chapter 2

Theoretical aspects

This chapter presents the main theoretical tools of interest used in the thesis. The
problem considered deals with the fully distributed allocation of frequency chan-
nels among clusters. Since game theory studies behavior of interacting agents,
it appears as a natural tools to tackle this problem. In this context, we analyze
algorithms whose theoretical proofs of convergence rely on perturbed Markov
Chain (MC) theory. This chapter is organized as follows. First, we present basic
concepts of game theory. In the second section, preliminary definitions on MC
and the specific case of regularly perturbed MC are highlighted.

2.1 Game theory

Game theory (GT) is a mathematical framework to study and analyze the out-
come resulting from the interaction between decision-takers named players. Each
player chooses an action from a set and receives an outcome named utility (or
payoff). A game is the association of a set of players, a set of strategies and util-
ities. Classically, GT is separated in cooperative and non-cooperative games. In
cooperative GT, players can form coalitions to maximize their utility. Whereas,
in non cooperative GT, players act independently without cooperating. In both
cases, GT studies the equilibrium reached through players’ interactions. In this
thesis, we assume that players that represent clusters cannot communicate and
thus do not cooperate. Thus, non-cooperative GT is our main focus. We model
the network using the normal form as follows.

Definition 2.1 (Normal form game). A normal form game with K players is defined by
the triplet G = (K , (Nk)k∈K , (uk)k∈K ) whereK is the set of players,Nk is the set of player
k strategies and, ∀k ∈ K , uk : N1 × · · · × NK → R is the utility function of player k.
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The vector of all strategies or actions, named action profile, is noted a =

(a1, . . . , aK) ∈ N = N1 × · · · × NK. The utility received by each player depends
on other players’ actions so it is a function if this action profile. It is convenient
to highlight the action taken by a given player in the action profile as follows
a = (ak, a−k) where ak is the action of cluster k and a−k is the action of all players
except k. One of the most studied solution concept in non-cooperative GT is the
Pure Nash Equilibrium (PNE) defined as follows.

Definition 2.2 (Pure Nash Equilibrium). A pure Nash equilibrium is an action profile
a∗ in which no player has an incentive to deviate from its action. Then ∀k ∈ K and
∀ak ∈ Nk,

uk(ak, a∗−k) ≤ uk(a∗). (2.1)

The PNE defines actions that are played with probability one. In this sense it is
a specific case of Mixed Nash Equilibrium (MNE). In this last case, each player can
select actions according to a probability distribution which is not restricted to play
one action with probability one as in the PNE. The MNE is thus a generalization of
PNE in which no player can increase its expected utility by unilaterally changing
its probability distribution over actions. In any finite game, the existence of a PNE
is not always ensured contrary to the MNE [36].

The overall performance of a game can be measured in terms of the sum of all
utilities named the social welfare.

Definition 2.3 (Social welfare). For any action profile a, the social welfare is defined as

W(a) :=
∑
k∈K

uk(a). (2.2)

and the average social welfare with respect to the number of player is

Wm(a) :=
W(a)

K
. (2.3)

Going further with GT necessitates some assumptions in the structure of the
game. For instance, games can be zero sum, potential, congestion, etc or a com-
bination of these properties. There are many types of games and giving an
exhaustive list would be irrelevant for the comprehension of this work (for more
details see [37]). However, it is important to understand that each property gives
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insights on the interactions between players through their utility function and
provides information on the existence of specific equilibriums such as the PNE.
In this work we consider a very general assumption supposing that our game is
interdependent.

Definition 2.4 (Interdependence). The game G is interdependent if, ∀a ∈ N , and all
proper subset of cluster ∅ ⊂ J ⊂ K , ∃i < J, ∃a′J ∈

∏
k∈JNk such that ui((a′J, a−J)) , ui(a).

Literally, any subset of player(s) can modify the utility of a player not in the set
by an appropriate action change. It is a less restrictive hypothesis than genericity
(i.e. games in which the utility of each player is modified by any action change)
which implies interdependence [10]. The meaningful example of a traffic game
given in [10] gives one pertinent view of this phenomenon. In this game, agents
can select the route of their choice. There are payoff ties because a local change
of route by one player does not change the payoffs of players on different routes.
However, it satisfies the interdependence condition because a given player, or set
of players, can switch to a route that is being used by another player and hence
change his payoff.

The interdependent property, regardless of the utility function form, is the
only assumption made about the structure of the game in this thesis. It means
that we consider a very general framework. In that context, we study algorithms
whose convergence proofs rely on perturbed MC presented in the next section.

2.2 Markov chains and regular perturbations

This section presents notions relative to MC and perturbed MC. The convergence
proofs of the proposed algorithms that are given in Chapter 4 rely on perturbed
MC properties. This requires the introduction of MC notions and their transition
matrix representation.

Let n ∈ Z and (Xn)n be a sequence on a countable space Ξ. This process can be
represented by a matrix if it is a homogeneous MC.

Definition 2.5 (Markov property). The process (Xn)n is a MC if and only if for all n
and all (x0, . . . , xn) ∈ Ξn+1,

Pr {Xn = xn|Xn−1 = xn−1, . . . ,X0 = x0} = Pr {Xn = xn|Xn−1 = xn−1} ,

where Pr {X|Y} is the probability for event X to happen knowing that Y happened.
In other word, a process is a MC if the probability that an event happens depends
only on the previous event.



14 2. Theoretical aspects

Definition 2.6 (Homogeneous Markov chain). The process (Xn)n is a homogeneous
MC if and only if for all n and all (x0, x1) ∈ Ξ2,

Pr {Xn = x1|Xn−1 = x0} = Pr {X1 = x1|X0 = x0} .

With these properties, one can represent the process (Xn)n with one transition
matrix. This representation is defined as follows.

Definition 2.7 (Transition matrix). The transition matrix of the homogeneous MC
(Xn)n is (Px,x′)(x,x′)∈Ξ2 where

Px,x′ = Pr {X1 = x′|X0 = x} .

This representation appears to be very useful to compute probabilities in
MC. For instance, the probability to get from x to x′ in p steps is given by
Pr

{
Xp = x′|X1 = x

}
= (Pp)x,x′ .

The study of perturbed MC relies on trees manipulations which can be seen as
specific type of graph. With the previous matrix representation, one can see the
MC as a graph where some states are accessible from one another.

Definition 2.8 (Accessibility). Let (x, y) ∈ Ξ2, a state x is accessible from y, and is
noted x← y, if there exists a finite path with positive probability from x to y.

In other words, there exists a finite n > 0 such that (Pn)y,x > 0. One can see the
process induced by P as a graph where the state in Ξ are the vertices and edges are
any two states with a positive transition in P (i.e. (x, y) ∈ Ξ2 is an edge if Pxy > 0).
In addition, if x ← y and x → y, x and y are said to communicate which is noted
x ↔ y. All states that communicate form a communication class. All states of a
class are either transient or recurrent.

Definition 2.9 (Transience and recurrence). A state in Ξ is recurrent if there is a
probability 1 to return to it. In the contrary, a state in Ξ is transient if there is a positive
probability to never return to it.

Note that, a class with recurrent (transient) states is a recurrent (transient) class.
Intuitively, there is a positive probability to leave and never return a class with
transient states whereas, there is a null probability to leave a class with recurrent
states once entered.

Proposition 2.1. All communication classes of a given MC form a partition of the set Ξ.
Let note C1,C2 . . . all communication classes, that are disjoints, then

Ξ =
⋃
i=1

Ci.
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Definition 2.10 (Irreducibility). A MC composed of one communication class is irre-
ducible.

In addition to that, any MC that is finite and irreducible is recurrent. The
study of perturbed MC (defined in the sequel) is based on the study of the unique
stationary distribution of that MC. In few words, the stationary distribution of
a MC is the probability distribution over states after a sufficient long time. The
proportion of time spends in states converges to the stationary distribution if in
addition to be irreducible, the finite MC is aperiodic.

Definition 2.11 (Aperiodicity). A state x ∈ Ξ is aperiodic if and only if there exists
n > 0 such that (Pn)x,x > 0. A MC is aperiodic if and only if x is aperiodic for all x ∈ Ξ.

Contrary to the case in which we consider a MC periodic, that is to say when the
probability of reaching a given state is positive only periodically, when the MC is
aperiodic (and irreducible) the process converges to one stationary distribution.

We now have all the notions to describe a regular perturbed Markov chain.
In what follows, the exponent in Pv defines the value of a perturbation v (not the
number of times the matrix is multiplied by itself).

Definition 2.12 (Regular Perturbed Markov Process [38]). A Markov process Pε is a
regular perturbation of P0 if the next conditions hold for all x, y ∈ Ξ

(i) Pε is aperiodic and irreducible for all ε > 0.

(ii) lim
ε→0

Pεx,y = P0
x,y.

(iii) If Pεx,y > 0, ∃r ≥ 0, s.t. 0 < lim
ε→0

ε−rPεx,y < ∞.

We define rxy the resistance of the transition (x, y) as rxy := r.

From property (i) and previous definitions, the matrix Pε has a unique station-
ary distribution noted πε. In general, P0 is composed of several communication
classes (see Proposition 2.1) and ends necessarily in one of them (see Definition 2.9
and the remark below). Therefore, the process P0 has several stationary distri-
butions (one for each recurrent class) and converges to one of them. When the
perturbation ε is strictly positive, the perturbed process Pε is able to jump from
one recurrent class of P0 to others. Consequently, Pε has a unique communication
class and a unique stationary distribution. When the perturbation decreases to
0, condition (ii) specifies that Pε becomes progressively P0. This means that the
process selects progressively one of the recurrent class of P0 and that the states of
this class have a non vanishing stationary probability. This introduces the concept
of SSS.
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Definition 2.13 (Stochastic stable state). A state x ∈ Ξ is a SSS relative to the process
Pε if limε→0 πε > 0.

When the perturbation goes to 0 the probability to observe a state that is not
a SSS decreases to 0. This type of convergence is less restrictive than almost sure
convergence or convergence with probability 1.

The convergence of the algorithms studied in Chapters 3 and 4 relies on the
specific property that possesses the SSS of the regularly pertubed MC. This
property is linked to the studies of the spanning trees over states in Ξ (i.e. the
trees whose vertex are all states in Ξ). The process described by Pε can be seen
as a graph with states in Ξ as vertices. Each edge links a couple of states that
communicate in one step of the process (that has a positive probability in Pε). In
perturbed MC theory, the edges of the trees are weighted by the resistance defined
in condition (iii) of Definition 2.12. In addition, one needs to define the resistance
of a tree.

Definition 2.14 (Resistance of a tree). Let τx be a spanning tree in Ξ that is rooted in
x ∈ Ξ. The resistance of τx is given by the sum of the resistance of all its edges,

r(τx) =
∑

(i, j)∈τx

ri j (2.4)

The set of trees rooted in x is noted Tx. The minimum resistance among all
spanning trees rooted at a given state is the stochastic potential of this vertex.

Definition 2.15 (Stochastic potential). The stochastic potential of a state x ∈ Ξ is the
least resistance tree among all spanning trees rooted at x

ρ(x) = min
τ∈Tx

r(τ). (2.5)

With the previous definitions, it is possible to state the major result related to
regularly perturbed MCs that is proved in [38].

Theorem 2.1. Let Pε be a regularly perturbed MC. The SSSs are the states contained in
the recurrent communication classes of P0 with the minimum stochastic potential.

The details of the proof are out of the scope of this chapter but their meaning
is useful to understand the convergence proofs of the algorithms studied in this
thesis. From this theorem, it follows that when ε decreases to 0, the states with
the minimum stochastic potential have a non vanishing stationary probability
in comparison to other states. Thus, the process remains a longer time in those
states than in others. Minimizing the stochastic potential is equivalent to solve
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an optimization problem. The particularity of the algorithms studied in this
thesis is that despite the non-cooperative characteristic of the considered games,
they find a global cooperative optimum in the long run. They converge to a
state that minimizes the stochastic potential which has the particularity to take
into account the utility of all players in the game. To prove such a result, one
needs to compute the stochastic potential of the MC process over Ξ which can
be really cumbersome for two reasons. The first reason is the dimension of the
state space Ξ and the second reason is the complexity of MC’s structures induced
by the algorithms. The first difficulty is lowered in the same seminal paper [38].
The author shows that the study of the trees induced by the process Pε (i.e. over
all states in Ξ) can be reduced to the analysis of graphs considering only the
recurrence classes of P0 as vertices. The number of edges in the new graph is
hence significantly reduced. The second difficulty is solved by appropriately
designing the algorithms such that, the study of the trees becomes feasible and,
the stochastic potential corresponds to the desirable global behavior of the system
[10, 12].
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Chapter 3

Distributed channel allocation
without disturbances

This chapter describes solutions to the decentralized resource allocation scheme
based on two Trial and Error (TE) algorithms namely, Trial and Error Learning
(TEL) and Optimal Distributed Learning (ODL). They are initially designed to
evolve in a deterministic environment (no random varying utility). They show
the particularity to exhibit interesting cooperative convergence properties in a
broad class of games even though the game is non cooperative. In fact, ODL
has the property to spend a high proportion of time in an optimum state that
maximizes the sum of the utilities of all players. The TEL has the property to
spend a high proportion of time in an optimum state that maximizes the sum of
the utilities of all players if there exists a Pure Nash Equilibrium (PNE), otherwise,
it spends a high proportion of time in an optimum state that maximizes a trade-off

between the sum of the utilities of all players and a predefined stability function.
The author in [35] proposed an adaptation of these algorithms to the deterministic
telecommunication context. It is thus of main importance, in Section 3.1, to present
a brief summary of this adaptation. Section 3.2 discusses the existence of PNE
in the game considered. Section 3.3 describes the TE algorithms’ mechanisms.
Section 3.4 presents the associated theoretical results and highlights preliminary
numerical results. Section 3.5 tackles the problem of analyzing the performance of
these algorithms. Even though they converge to a desired state, the convergence
rate remains an open question [10, 11]. For instance, estimating the mean fraction
of time spent in the optimum state as well as the mean time duration to reach it
is challenging due to the high complexity and dimension of the inherent Markov
Chain (MC). Section 3.6 concludes this chapter.
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3.1 Model

This section presents the deterministic model of clustered ad hoc wireless net-
works. Deterministic means that no stochastic variations are considered in the
model (static nodes, no time varying channel). Nonetheless, stochastic variations
will be taken into account in Chapter 4 and the model will be modified accordingly.
First, we present the wireless telecommunication model and its mathematical rep-
resentation. Then, the metric available to take decision are detailed and a game
model is formulated.

We consider a wireless network composed of K clusters with possibly different
sizes. The set of clusters is denoted byK = {1, . . . ,K}. The allocation of resources
in each cluster k ∈ K is handled by one node called the Cluster Head (CH). The CH
chooses the frequency channel to use in its own cluster without communicating
with other CHs. The set of N possible resources is denoted by N = {r1, . . . , rN}.
For any cluster k ∈ K , the action of selecting a given resource allocation is denoted
by the discrete variable ak ∈ N . Vector a = (a1, . . . , aK) ∈ NK represents the actions
of all clusters. In a cluster, a link i is a couple composed of a transmitter it and a
receiver ir and is denoted by i = (it, ir). A link i is said to be a working link if its SINR
at the receiver side ir is above a predefined threshold Γ0 ≥ 0. Interference is caused
by the clusters using the same resource. The instantaneous SINR expression of
link i in cluster k, considering only Additive White and Gaussian Noise (AWGN)
channels is (time index is removed to simplify the notation)

SINRk
it,ir =

SNRk
it,ir

1 +
∑

n∈Ik

∑
j∈Mn

INRn,k
j,ir

, (3.1)

where Mn is the set of transmitting nodes at time t in the cluster n ∈ K , Ik is
set of clusters interfering (operating on the same resource) with the cluster k,

SNRk
j,i =

gk
j,iP

k
j

N0Wnb
and INRn,k

j,i =
gn,k

k,i Pn
j

N0Wnb
, with gn,k

j,i the path loss from user j in cluster n
to user i in cluster k (if the two nodes j and i are in the same cluster k then we
write any value xk,k

j,i = xk
j,i, e.g. gk,k

j,i = gk
j,i), with Pk

j is the transmit power by node j in
cluster k, N0 is the thermal noise density such that N0 = kbT with kb the Boltzmann
constant, T the temperature and finally, Wnb is the signal bandwidth. Note that
the noise power in this band is Pb = N0Wnb. The channel gain is computed with

a three slopes model, gn,k
j,i =

(dn,k
j,i )−2

4π

(
1 +

dn,k
j,i

100

)−1 (
1 +

dn,k
j,i

1000

)−1

, where dn,k
j,i is the distance

between node j in cluster n and node i in cluster k. In the sequel, for each cluster k,
the couple transmitter-receiver i = (it, ir) refers to link i of cluster k and, when there
is no ambiguity, it is simply denoted by i for ease of notation (e.g. SINRk

it,ir becomes
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SINRk
i ). It is worth mentioning that the set of interfering clusters Ik depends on

the discrete action vector a. At each iteration, a link i = (it, ir) in cluster k is said to
be working if the received SINR is greater than a given threshold Γ0. Receiver ir

computes for transmitter it in its cluster the working link metric of i

`k
i (a) := 1

{SINRk
i (a)>Γ0}

, (3.2)

where 1{x} is the indicator function equal to 1 if the condition into bracket is
verified and 0 otherwise, SINRi(a) is the SINR measured at the current iteration
with (3.1) while the action profile is a. Note that this metric is already used to
design a utility function in [39] where the utility of each cluster is represented by
one link (e.g. without power considerations uk(a) = `k

i (a)).
A more detailed model has been proposed in [31] in which the utility is com-

posed of the working metric of all links inside the cluster as follows

uk(a) :=
1
|Lk|

∑
i∈Lk

`k
i (a), (3.3)

where Lk is the set of links in cluster k and, |Lk| is the number of links in cluster
k. Then, uk ∈ U = [0, 1] and is discrete. Note that it is assumed that the CH
can communicate with all nodes even if their respective communication links
are not working. For instance, the nodes could feedback the link metric on
a control channel with low throughput that is more robust than the intended
communication link. This model of utility is used in Section 3.4.2 and will be
adapted to the stochastic context in Chapter 4.

The resource allocation problem in the clustered ad hoc network can be repre-
sented by a non-cooperative game in normal formG = (K , (N) j∈K , (u j(a)) j∈K ,a∈NK).
The allocation is then realized in this way. At each time, the receiver of link i in
cluster k feedbacks the bit `k

i to the CH. The CH of cluster k knows hence the value
of the working metric for all link i inside its cluster. Each CH knows a numerical
realization of the instantaneous utility of its own cluster only (no signaling be-
tween clusters). Based on this knowledge, the CH decides a resource allocation
action ak in such a way to maximize its utility. It is worth mentioning that due to
the lack of signaling between the clusters, the CH cannot know the interference.

3.2 Discussion on PNE existence

Naturally, the question of the existence of a PNE in game G arises. It is worth
mentioning that from Nash theorem in [36] game G possesses at least one NE
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(at least a mixed NE), which follows from the finiteness of the game. First of
all, when the number of resources is greater or equal than the number of players
(i.e. N ≥ K) the existence of a PNE is ensured. For instance, when all players
use a different resource then, their utilities is maximum. However, when N < K
the existence of a PNE turns out to be not ensured. Authors in [40] propose a
meaningful example to justify the possible non existence of PNE in clustered ad
hoc networks. Briefly, the lack of an equilibrium is due to the asymmetry of
interference between clusters.

We illustrate this phenomenon by considering the network illustrated in Fig-
ure 3.1 and the model described in Section 3.1. There are three clusters with two
nodes each and N = 2. In this model, the received utility is represented in the
cube in Figure 3.2. Each corner represents a network resource configuration a (the
top vector) and, the associated utility vector u (the bottom vector). Due to the
asymmetry of interference, when two clusters interfere, one of them has always
an incentive to deviate. This later, when changing its action is still interfered but
less than before. The reason of this asymmetry is well illustrated in Figure 3.1.
For instance, let consider that clusters 1 and 2 employ the same resource. Then,
both nodes of cluster 2 are strongly interfered whereas only one node is strongly
interfered in cluster 1. Consequently, one link in cluster 1 works whereas no link
in cluster 2 works and the utilities are u1 = 0.5 and u2 = 0. The same reasoning
applies successively to clusters 2 and 3 and, clusters 3 and 1. In Figure 3.2, the
best response cycle represented by the red arrows shows that there is no PNE in
this case.

Consequently, this example shows that depending on the number of resources
N and, on nodes’ positions, the existence of a PNE is not ensured. That is why we
focus in this work on two fully distributed algorithms that exhibit good conver-
gence properties even if a PNE is not available. These algorithms are presented
in the next section. It is worth mentioning that one of the two algorithms still
highlights specific convergence properties when a PNE exists.

3.3 Fully distributed trial and error algorithms

This section focuses on the description of two fully distributed algorithms that
can be adapted to tackle the resource allocation problem. These algorithms,
TEL and ODL, exhibit good convergence properties as it will be presented in
Section 3.4.1. Both share common characteristics. Each player k ∈ K implements
a Finite State Controller (FSC) composed of states called moods and noted mk and,
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Figure 3.1: Wireless ad hoc clustered network with 3 clusters composed of 2 nodes
each. Crosses represent mobile terminals, and ellipses the affiliations of terminals
to cluster.
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Figure 3.2: Cube of utility of players. On each corner, the top vector represents
the network action a and, the bottom vector is the utility computed, u, by the CH.
The red arrows represent the best response cycle. There are two resources.

m = (m1, . . . ,mK) is the mood vector of the network. In the TEL, there are four
moods called Content (C), Watchful (W), Hopeful (H) and Discontent (D), whereas
the ODL controller is solely composed of the two moods C and D. Furthermore,
each player has a benchmark action and a benchmark utility denoted respectively
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by āk ∈ N and ūk ∈ U that are kept in memory. The benchmarks of the network
are then denoted by ā = (ā1, . . . , āK) ∈ NK and ū = (ū1, . . . , ūK) ∈ UK.

Definition 3.1 (State of the network). The different states taken by the network that
uses any of the two algorithms are defined by z = (m, a, ā,u, ū) where m = (m1, . . . ,mK)
is the mood vector of the network, a = (a1, . . . , aK) is the network vector of played actions,
ā = (ā1, . . . , āK) ∈ NK is the benchmark action vector of all players, u = (u1, . . . ,uK) is the
network vector of received utilities, and ū = (ū1, . . . , ūK) ∈ UK is the benchmark utility
vector.

At each iteration, every player either selects to use the benchmark action
(i.e. ak = āk) or decides to try a new one ak , āk. Then, the player observes
the obtained utility uk and compares it to its benchmark utility ūk. Depending
on the result of this comparison, the player, with some probability, updates its
benchmark and change its mood or not. The benchmark update consists in
replacing the current benchmark (i.e. (āk, ūk)) by the current action and received
utility (i.e. (ak,uk)). Detailed descriptions of both algorithms, including the rules
used to define/update the benchmark actions and utilities, are provided in the
next sections.

3.3.1 TEL

This section describes the rules applied in the TEL controller presented in [10] of
any k ∈ K and for any ε ∈]0, 1]:

• mk = C, there are two cases to consider :

1) with probability 1−ε, the player keeps playing its benchmark (i.e. ak =

āk). The next state changes to H if uk > ūk or, it changes to W if uk < ūk or, it
remains C if uk = ūk.

2) with probability ε, the player experiments a new action, i.e. ak ∈ N\{āk}.
The action experimented is selected randomly amongN\{āk} (i.e. Pr {ak = ri} =

1
N−1 , ∀ri , āk) and, the next state remains mk = C. When uk > ūk, player k
updates its benchmark with probability εG(uk−ūk), where G(x) = −ν1x + ν2,
with ν1 > 0 and ν2 such that 0 < G(uk − ūk) < 1/2. An update consists in
changing the benchmark by the played action and the received utility in the
next iteration as follows, ūk ← uk and āk ← ak.

• mk = H: ak = āk and the next state changes to C with a utility benchmark
update (i.e. ūk ← uk) if uk > ūk or, it changes to W if uk < ūk or, it changes to
C if uk = ūk.
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• mk = W: ak = āk and the next state changes to H if uk > ūk or, it changes to D
if uk < ūk or, it changes to C if uk = ūk.

• mk = D: an action ak is randomly selected amongN (i.e. Pr {ak = ri} =
1
N , ∀ri ∈

N) with probability 1. The next state mk changes to C with probability εF(uk),
where F(u) = −φ1u + φ2 with, φ1 > 0 and φ2 such that 0 < F(u) < 1/2K, with
a benchmark update (i.e. ūk ← uk and āk ← ak), otherwise, with probability
1 − εF(uk), mk = D.

3.3.2 ODL

This section described the rules applied in the ODL controller given in [12] of any
player k ∈ K and for any ε ∈]0, 1]:

• mk = C, there are two cases to consider :

1) with probability 1 − εc, where c > K is a real constant, ak = āk. If
uk , ūk then the state mk changes to D with probability 1 − ε1−uk . Otherwise,
with probability ε1−uk , the cluster updates its benchmark (i.e. ūk ← uk ) and
remains C.

2) with probability εc > 0, a new action is experimented, ak ∈ N\{āk}.
The new action is selected randomly in the set N\{āk}. If uk , ūk, the state
mk changes to D with probability 1− ε1−uk . Otherwise, with probability ε1−uk ,
the cluster updates its benchmark (i.e. ūk ← uk and āk ← ak) and remains in
C.

• mk = D: an action ak is randomly chosen amongN . The cluster switches to C
with probability ε1−uk and updates its benchmark (i.e. ūk ← uk and āk ← ak),
otherwise with probability 1 − ε1−uk , it remains D.

3.4 Results

In a deterministic context (static nodes, no time varying channel), the resource
allocation problem can be efficiently handled by TE based methods. Assuming
interdependency (see Definition 2.4), these methods have an interesting property
of spending a high amount of time in stable states that maximizes a specific
function related to the network performance. Although the interdependence
property may appear restrictive, it is actually met in a broad class of games and
makes the TEL and the ODL algorithms very appealing. This section presents the
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theoretical and numerical results obtained by using the TE algorithms presented
in Section 3.3.

3.4.1 Theoretical results

The next results require notions that we present briefly for clarity. The set C0

represent a set in which all players are content (i.e.∀k ∈ K , mk = C) and aligned.
A cluster is said to be aligned if u = ū and a = ā. In addition, we use the definition
of SSS (see Definition 2.13 in Chapter 2). The stationary probability of states
that are not SSSs vanishes when the perturbation ε goes to zero. Therefore, over
the long run, the SSSs are observed more frequently than other states provided
that ε is small enough. The theoretical result obtained with the TEL algorithm is
presenting in the next theorem.

Theorem 3.1 ([10]). If the K persons gameG is interdependent with deterministic utilities
and all players use the TEL,

(i) if the set of PNE is not empty, every PNE that maximizes the social welfare is an
SSS,

(ii) otherwise, every state z∗ ∈ C0 that maximizes a trade-off between the social welfare
and the instability as follows is an SSS

φ1W(z∗) − ν1S0(z∗). (3.4)

where the instability Sx(z) := maxk∈K maxa′k∈C\ak{0,uk(a′k, a−k) − ūk ≥ x} represents
the tendency of the system to leave z. In this state, at least one player has the
possibility to increase its utility benchmark. The greater this increase, the greater
the probability to accept the new action. If a PNE exists, and the network is in
this state, no one can improve its utility benchmark by an action change because
S0(z) = 0. The network spends a high amount of time in this state. If PNE
does not exist, then S0(z) > 0 and the algorithm spends a high amount of time
in a stable state that maximizes a trade-off between the social welfare and an
instability function. The theoretical result of the ODL algorithm is described by
the following theorem.

Theorem 3.2 ([12]). If the K persons game G is interdependent with deterministic
utilities, every state that maximizes the social welfare is a SSS.

No matter if a PNE exists or not, the ODL algorithm selects a state that maxi-
mizes the social welfare, which is a general result.
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Figure 3.3: Wireless ad hoc clustered network with 9 clusters composed of 4 nodes
each. Crosses represent mobile terminals, and colors the affiliations of terminals
to cluster identified by the number in the bottom right of each square.

Table 3.1: Simulation parameters values

N 9 kb 1.38 10−23 WK−1s Γ0 4.3 dB
PTx 1 W T 238 K nit 15000
B 250 KHz Pb 7.9 10−15 W

3.4.2 Numerical results

In this section, numerical results are presented using the wireless model de-
scribed in Section 3.1. The goal is twofold. First it highlights the behavior of
both algorithms in a deterministic environment and the link with the analytical
performance predicted in Section 3.4.1. Secondly, it provides a reference of their
behavior in an allocation problem that is deterministic. These results will serve
as a comparison in Chapter 4 where stochastic perturbation of the utility is con-
sidered. The ad hoc clustered network used in simulation is given in Figure 3.3.
Parameters are listed in Table 3.1. The parameter Γ0 is set such that the Bit Error
Rate (BER) is 10−2. Unless specified, the experimentation probability in TEL is set
to ε = 10−3 whereas for ODL, one need a lower value to get similar performance
εν = 10−4 (i.e. ε = 0.36).

Figures 3.4 present the average social welfare of TEL and ODL in the deter-
ministic context described in Section 3.1. The black curve is the average social
welfare (see Definition 2.3 in page 12) noted Wm. It is the normalized sum of all
clusters’ utilities. The red curve is the average benchmark social welfare noted
Wm and defined afterwards.
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Definition 3.2 (Benchmark social welfare). The benchmark social welfare is the sum
of all players’ benchmark and it is given, for any z ∈ Ξ, by

W(z) =
∑
i∈K

ūi. (3.5)

The average benchmark social welfare is

Wm(z) =
W(z)

K
. (3.6)

The average benchmark social welfare is hence the normalized sum of all
clusters’ benchmark utilities.

First, one can see that the network tends to maximizes the average social
welfare for both algorithms and to keep it at a high value. The fact that the
network does not remain in a maximum social welfare state in Figure 3.4b is
expected as the Theorems 3.2 and 3.1 in Section 3.4.1 specify that this state is an
SSS. So the network spends a high amount of time in this state. As one will see
in Section 3.5, this amount of time is related to ε. Note that as long as ε > 0, the
network has a positive probability to leave each state.

The red curve variations in both figures are expected because the perturbation
ε is kept constant along the simulation. The clusters keep experimenting and
consequently, the state of the system changes regularly. Notice that the black
curve variations in Figure 3.4a happen more often than in Figure 3.4b. This is
also an expected results since, when the current state is content, the probability to
experiment a new action in TEL is ten times higher than the one in ODL.

When the red curve is constant, it means that no one in the network changes
its benchmark and the network is relatively stable. Even if the black curve is
subject to variations due to experimentations, the red curve tends to remain
stable. The clusters keep their benchmarks constant during ephemeral network
modifications. This behavior is important and it is made possible thanks to the
FSC of each algorithm presented in Section 3.3. They are constructed such that
they absorb these short network changes due to explorations of other clusters.
Without this property, the network would adapt to any perceived change which
would cause a lot of instability and hence interference.

As an other observation, the ODL reaches faster a quite good social welfare
than the TEL but, it oscillates more often around this value than the TEL. This
highlights the stability capacity of the TEL whereas its probability to experiment
(ε = 10−3) is much more greater than the one in ODL (εc = 10−4).
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Figure 3.4: Resource allocation in a deterministic environment with TEL and ODL
algorithms.

More generally, as one will see in Section 3.5, when ε is large (e.g. ε > 0.1)
the network goes fast to good social welfare but is less stable. Conversely, if ε
is small (e.g. ε < 10−4), the network is very stable and converges slowly to high
social welfare values. To tackle the intricate convergence speed/stability problem,
a solution consists in decreasing ε. In [41] authors prove that the convergence is
guaranteed when the annealing of ε is of order 1/

√
t which is very long. The slow

convergence speed is a general result when dealing with algorithms that look
for global optimum states such as simulated annealing algorithms. It is worth
mentioning that [31] proposes an enhancement of TEL in which ε is decreased
very fast if the utility is high enough. In this case however, the convergence of
algorithms cannot be guaranteed. This approach is discussed in Chapter 4. For
this moment let us analyze more precisely the performance of both algorithms.

3.5 Performance analysis

This section presents one of the main contribution of this thesis [42]. We study the
performance of both TEL and ODL algorithms for a specific interference model.
We have seen in the previous sections the capacity of these algorithms to exhibit
good cooperative performance for a broad class of games. Even though the above
two algorithms converge to a desired state, their convergence rate remains an
open question [10, 11]. The main reason comes from the computation complexity
of the inherent MC generated by these two algorithms. In fact, the game in which
players employ these learning schemes can be represented by discrete MCs based
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on states z (see Section 3.3) whose number is huge. Obtaining the transitions
matrix of these MCs is therefore not tractable which makes the analysis of the
convergence rate not possible (even numerically).

The main contributions of this section are fourfold. We are interested in com-
puting the mean time these algorithms spend in a desired state as well as the
mean time required to achieve that state under a given model. Due to the huge
dimension of the MCs, only approximations can be employed to compute a close
approximation of the aforementioned convergence metrics. The first contribu-
tion is to provide an approximation of the MC associated to the TEL algorithm.
The second contribution is to also provide such an approximation for the ODL
algorithm. In addition, we explain the methodology to obtain them. To the best
of our knowledge, a first attempt to analyze the convergence rate of TEL in a
practical context was addressed in [31]. However, the analysis proceeded in this
thesis provides a better approximation (as one will see in the sequel). In addi-
tion, no attempt has been made to analyze the convergence properties of ODL.
Third, with the numerical results, we study the convergence properties of each
algorithm. Last, this allows us to provide a comparison between these two algo-
rithms. To the best of our knowledge, this comparison has not been addressed
under a practical system model before.

This section is organized as follows. Section 3.5.1 presents the system model
and assumptions. Section 3.5.2 presents the MC representation of both algorithms
and the figure of merit to be computed. Section 3.5.3 summarizes the main results
of this work. The detailed analysis of the convergence (i.e. mean convergence time
to a desired state and mean time spent in that state), including the reduction of
the MCs, is provided in Sections 3.5.4, 3.5.5 and 3.5.6. Section 3.5.7 highlights the
complexity reduction induced by our method. Section 3.5.8 presents the algorithm
necessary to compute the transition matrix of both reduced MCs. Numerical
results are provided in Section 3.5.9.

3.5.1 Simplified model

We consider as in Section 3.1, a network/set of K players K , that interact among
each other. The context is quickly recalled for clarity. The players share a set
of resources N . Each player k chooses an action ak, which consists in selecting
without exchanging any information with the other players a resource inside the
setN . When two players choose the same resource they interfere with each other.
This problem can be modeled as the normal form gameGwith appropriate utility
function. Since we consider a general game model, we make in the following
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some assumptions in order to ensure the existence of a PNE. We suppose that the
number of available resources N is greater or equal to the number of players K (see
Section 3.2). We assume that the utility can take binary values (i.e. u ∈ {0, 1}K). Note
that, such a hard threshold utility model is commonly encountered in the literature
[33, 39, 43]. Furthermore, we assume that if two players interfere with each other
(i.e. choose the same resource) then their utilities are equal to 0. The utility of
a player is then equal to 1 when no other player chooses the same resource.
These simplified assumptions can be first justified by the fact that our objective
in this section is to study the performance of TEL and ODL algorithms and not to
study the existence of PNE for some game models. Then, it is worth mentioning
that even under the above assumptions the problem is still challenging. Firstly,
players cannot communicate with each other and then cannot be aware of the
others’ actions and they can only observe the result of their own actions (e.g. a
player cannot know how many players have chosen the same resource). Secondly,
the resulting Markov chain, as one will see in the sequel, remains very complex
to analyze under this model.

3.5.2 Markov Chain representation and performance metrics

The different states taken by the network are defined by z = (m, a, ā,u, ū), where
m = (m1, . . . ,mK), a = (a1, . . . , aK), ā = (ā1, . . . , āK), u = (u1, . . . ,uK), and ū =

(ū1, . . . , ūK) are (1×K) vectors representing the moods, the actions, the benchmark
actions, the utilities, and the benchmark utilities respectively (see Sections 3.1 and
3.3). These states represent a MC noted ΞTEL if the TEL is used by all players or
ΞODL if it is ODL. Unless there is an ambiguity, we drop the indices and call the
MC Ξ in the sequel.

The convergence performance is evaluated along two features: i) the mean time
duration to reach the SSS maximizing the social welfare, starting from a specific
initialization point, also known as Expected First Hitting Time (EFHT) denoted
by TEFHT, ii) the mean fraction of time duration spent on that state denoted by α.

It is of interest to note that these algorithms are known to converge under the
interdependence property (see Definition 2.4). In few words, the interdependence is
the property that for any set of players, there exists an action that changes the
utility of a player not in the set. This condition is a sufficient condition as the
analysis in [10, 12] was done for more general game model than the one considered
in this thesis. In our case, the above condition is not needed. In fact, thanks to
the presence of the probability ε in TEL and ODL (see Section 3.3), all states of the
MC Ξ communicate and form a unique communication class. The MC Ξ is then
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ergodic (i.e. it is a finite, irreducible and aperiodic MC) and possesses a unique
invariant distribution. This property ensures a non null transition probability
between all states for a sufficient number of transitions and a non null probability
of the corresponding state. In the next section, we present the main results of this
work and the figure of merit tendency that can be deduced from numerical results
presented in Section 3.5.9.

3.5.3 Performance observations

The main result of this work is to provide an efficient approximation of the MC
for TEL and ODL algorithms that allows an accurate numerical convergence
analysis. The approximated MC is denoted by Ξ̃. In next sections, we describe
the procedure to approximate and reduce the MC dimensionality so as to realize
the convergence analysis. It is worth mentioning that the number of states in the
original MC is huge, which makes very hard the computation (even numerically)
of the performance metrics TEFHT and α for both algorithms.

Using the proposed efficient approximation, we were able to find interesting
results (that are presented in Section 3.5.9). Based on the obtained results, the
following observations can be highlighted. We use the Landau notation O(.) to
specify the rate of convergence when K becomes large or when ε is close to 0 and
strictly positive. In this notation, K and ε are dropped for clarity.

Observation 1. For the TEL, the EFHT TEFHT = O( 1
εa1 ) and TEFHT = O(Ka2) where

a1, a2 > 0 and, 1 − α = O(εa3) and 1 − α = O(Ka4) where a3, a4 > 0.

Observation 2. For the ODL, TEFHT = O( 1
εcb1

) and TEFHT = O(bK
2 ) where b1 > 0 ,b2 > 1

and, the stability is 1 − α = O(εb3) and α = O(bK
4 ), where b3 > 0, 1 > b4 > 0.

From these observations some interesting comparisons can be done. Both
algorithms have a convergence time inversely proportional to ε and a stability
that decreases polynomially with ε. However, ODL has a convergence time which
is exponential with respect to K contrarily to TEL which is polynomial. At low
K, the convergence time of ODL is relatively similar to the TEL one, but at higher
K, TEL converges faster than ODL. In addition, for ODL, the stability decreases
exponentially with respect to K whereas, for the TEL, the stability decreases
polynomially. It follows that the TEL is much more stable than the ODL. At
low number of players, the convergence time of both algorithms are similar but
the stability of TEL is better. At higher number of players, the TEL performs
better than ODL for both convergence metrics. These observations result from
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the analysis of numerical figures of merit computed using the formulas presented
in the next section.

3.5.4 Metrics computation

In this section, we present how to compute the figures of merit of both algorithms
using the transition matrix P0 of Ξ. The method is based on the generalized
fundamental matrix F for ergodic MC developed in [44]. The matrix F, which is
an extension of the fundamental matrix introduced in [45], is defined by

F := (I − P0 + 1bt)−1, (3.7)

where I is the identity matrix, 1 is a column vector filled with 1, and b is any
arbitrary column vector such that bt1 , 0. In the simulations, we use b = 1.

The first feature deals with the EFHT to a given state j from a state i, TEFHT(i, j) =

Ei

[
T j

]
, and is given by ([44] equation (30))

Ei

[
T j

]
=

F j j − Fi j

π j
, (3.8)

where Fi j is the term in line i and column j of matrix F, and π j is the stationary
probability of state j. The stationary distribution is given by ([44] equation (28))

btF = π. (3.9)

The second feature that describes the performance of stochastic stable algorithms
is the mean fraction of time spent in the state that maximizes the social welfare. In
an ergodic MC, the proportion of time α j spent in a state j is equal to its stationary
probability α j = π j ([45] Theorem 4.2.1) that can be computed using (3.9).

The convergence analysis realization requires the manipulation of transitions
matrices. The huge number of states S grows exponentially with K and N (see
Section 3.5.7) and since Ξ’s transition matrix has dimension (S × S), it needs
to be approximated to allow numerical computation of the performance. As
an example, even for small values N = K = 3, the number of states is already
S = 373, 248. In this work, we propose a new approach to build the approximated
MC Ξ̃ whose transition matrix is noted P. Note that the approximation Ξ̃ is
built such that it is ergodic as Ξ which means that, P admits a unique invariant
distribution with strictly positive components. With this approximation, formulas
(3.8) and (3.9) are still valid if P0 is replaced by P. It remains to construct P with
justified and motivated arguments. This approach follows two steps: i) first we
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approximate the original Markov chain Ξ by identifying some invariance induced
by the utility model defined in Section 3.5.1, ii) we then further reduce the MC
complexity by neglecting some transitions. Then, from the probability transition
matrix of Ξ̃, we are able to compute the two convergence figures of merit.

3.5.5 Reducing the Markov chain dimensionality

In order to approximate Ξ, we start by considering only the states called recurrence
classes of the unperturbed process [38], shorten as Recurrence Classes (RC) (see
Definition 2.9 of recurrence for details), that were used as the key feature for
the TEL and ODL proof of convergence. The system tends to spend naturally a
high amount of time in those states which thus play a major role in convergence
metrics. The reason comes from the combination of two properties. First, the
network needs at least one experimentation to leave an RC, which occurs with
small probability ε. Secondly, by definition, the network always naturally goes to
an RC when no perturbation occurs. These states are characterized by m = mC :=
(C,C, . . . ,C), a = ā, and u = ū, i.e. , all the players are in the content mood and
aligned (i.e. a = ā, and u = ū). We denote by R the set of these states. We can also
drop some notations, and we rewrite a state z = (mC, a, ā,u, ū) ∈ R as z = (ā, ū)

To reduce the number of RCs, two invariances induced by the utility model
are highlighted. First of all, due to the binary utility values and the utility rules,
interchanging actions between players is equivalent to interchange the utility
vector components accordingly, thus not modifying the number of 0 and 1 in
the utility vector. As such, we can deduce that it does not change the “global”
performance of the network. For instance, let consider a network with three
players and three resources z1 = ((r1, r2, r1), (0, 1, 0)) ∈ R. Players 1 and 3 have
a utility equal to 0 because they use the same resource. If we interchange the
actions of player 1 and 2, z1 is transformed into z2 = ((r2, r1, r1), (1, 0, 0)). There
is always one player with a utility equal to 1 and two players with a utility
equal to 0. Nothing has changed from a network perspective, thus, the algorithm
performance remains the same from these two states.

Secondly, notice also that interchanging the resource labels does not change at
all the utility vector (this is also true for geographical models when orthogonality
between resources is assumed). For instance, if we change the resource label 1
with label 3 and, label 2 with label 1, z1 becomes z3 = ((r3, r1, r3), (0, 1, 0)) which
involves the same observations as the previous modification.

These two invariances have led us to represent any RC with the ordered repar-
tition of players over resources. For any action vector ā, we build the repartition
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vector of players over resources d := (d1, d2, · · · , dN) where di =
∑K

k=1 1{ak=ri} is the
number of players that use a resource ri ∈ N . For instance, the repartition of
player in z1 is d1 = (2, 1, 0) and the repartition vector of z3 is d3 = (1, 0, 2). The or-
dered repartition vector is s = (s1, . . . , sN) where ∀i, j ∈ [1,N], i < j, ∃i′, j′ ∈ [1,N],
si = di′ ≥ s j = d j′ . For instance, the ordered repartition vector of z1 is s1 = (2, 1, 0)
and, the ordered repartition of z3 is s3 = (2, 1, 0) which is equal to s1. Thus, it fol-
lows that this representation makes no difference between RC that are invariant
with respect to the transformations mentioned. Hence, it is possible to reduce the
number of RC in Ξ. Moreover, the utility vector repartition is directly specified
by the ordered repartition of players, then we drop this notation and z = (ā, ū)
becomes z = s.

In what follows, for ease of comprehension we slightly modify RC notations.
For each z ∈ R the number of resources employed is noted n =

∑N
`=1 1{s`>0}. In

addition, for each n ∈ [1,N] there exists different possible ordered repartitions
of players whose number is noted IN(n). It is equal to the number of ways to
partition integer N in n parts, i.e. IN(n) = Part(N,n) where the recursive formula
gives Part(N,n) = Part(N − 1,n − 1) + Part(N − n,n), and for any integers x, y,
Part(x, x) = 1, Part(x < y, y) = 0 and Part(x, 1) = 1 ([46] Chapter 2, Section
2.1, Theorem B). Thus, any z ∈ R can be noted Zn(i) where n is the number of
resources used and i ∈ [1, IN(n)] is the index of the ordered repartition and, the
associated ordered repartition vector is Sn(i) = (Si

n,1,S
i
n,2, . . . ,S

i
n,N). For instance, in

a network with N = K = 4, when n = 2 there are two possible ordered repartitions
S2(1) = (3, 1, 0, 0) and S2(2) = (2, 2, 0, 0). However, for n = 3 there is a unique
repartition S3(1) = (2, 1, 1, 0). The mapping between indices i and the ordered
repartitions is arbitrary and has to be made by the experimenter. The reduced
states Zn(i) for all n ∈ [1,N] and for all i ∈ [1, IN(n)] are called Reduced Recurrence
Classes (RRC).

Notice that the social welfare of RC represented by the same RRC are equal, but
we can find different RRC for which their elements have the same social welfare.

3.5.6 Approximated Markov chain

In this section, we build an approximation Ξ̃ of Ξ that is composed of the RRC and
a subset of intermediary states between RRC. More specifically, the construction
of the intermediary states considered in each approximations (TEL and ODL)
is detailed. These constructions are driven by, i) the willingness to conserve the
ergodic property of Ξ in order to be able to approach its convergence performance,
ii) the need to construct a MC with low dimension (i.e. with the least number
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of states). A condition to make property i) realizable, consists in constructing
intermediary states around each RRC such that, all states of Ξ̃ (i.e. RRC and
intermediary states) are accessible from one another. We note ξn(i) the set that
contains the RRC Zn(i) and some associated intermediary states that we define
later. The simplest, thus verifying ii), and necessary way to conserve the ergodicity
property is to construct intermediary states such that, if the transition between sets
ξn(i){ ξn+1( j) exists then there also exists a transition from setsξn+1( j){ ξn(i) (the
symbol{ specifies that this transition can involve multiple states in Ξ̃). This is the
consequence of the fact that from every RRC Zn(i) where n < N, there are players
interfered and, it is possible for one of them to find a free resource (e.g. an interfered
player experiments on a free resource). Repeating this process successively shows
that, all RRCs can access ZN(1), which is the RRC without interference. Therefore,
the condition, if ξn(i){ ξn+1( j) exists, then, so does ξn+1( j){ ξn(i), implies that all
sets communicate. Finally, the previous condition becomes sufficient, if the sets
are constructed such that all states in all sets are accessible. In addition to these
simplifications, we consider the following hypothesis to build Ξ̃ completely.

Assumption 3.1. For each algorithm models, we assume at each iteration of the algorithm
that at most one content player can experiment, and such, solely when the system is in an
all content mood and aligned state, i.e. m = mC, u = ū and, a = ā.

The reason to propose this assumption is summarized as follows. When all
players are content, the probability that one player experiments (i.e. 0 < ε� 1) is
larger than the probability that two or more player experiment (i.e. 0 < ε2

� ε �

1). Moreover, when the system is not aligned, it goes in less than two steps and
with a high probability (≈ (1 − ε)2) to a state in which all players are content and
aligned or, that contains a discontent player. Thus, most of the time, the system is
either in a) an all content and aligned state or, b) it contains at least one discontent
player. In case a), it is most probable that only one player experiments whereas,
in case b), the probability that a discontent player experiments is 1 which is much
larger than the probability for a content player to experiment (ε� 1).

Hypothesis 1. For the TEL model, the probability that a discontent player accepts a
new utility u as a benchmark is 1 ≥ εF(u)

≥ ε
1

2K . We suppose that εF(0) = ε
1

2K and that,
εF(1) = ε0 = 1.

In other words, we suppose that the constants φ1 and φ2 presented in Sec-
tion 3.3 have been chosen such that F(.) spans the whole available region.

In the next two sections, we present the constructions of sets ξn(i) of each
algorithm. We start the reasoning by considering all sets ξn(i) = {Zn(i)}. Then we
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add successively intermediary states in all sets to build the approximated MC.
When a state is added to ξn(i) it is also added to any other set ξn′(i′) where i , i′

and n , n′. Figures 3.5a and 3.5b present, for ease of space and comprehension, a
resulting partial view of Ξ̃’s intermediary models with two sets ξn(i) and ξn+1( j),
for TEL and ODL respectively. The lines define the oriented connections between
states. Plain lines correspond to direct transition inside the same set ξn(i) whereas
dashed lines correspond to direct transitions between different sets. The connex-
ions are detailed in Appendices A and B for the TEL and ODL respectively. In
these figures, without loss of generality, it is supposed that, there exists j such
that ξn(i) is connected to ξn+1( j). In such a case, we would also like to have ξn+1( j)
connected to ξn(i) for ergodicity. We also suppose that, all intermediary states are
present for simplicity of comprehension, whereas as explained in the next two
sections, there exists some conditions in which they have to be deleted from their
corresponding set to keep Ξ̃ ergodic.

3.5.6.1 TEL model

This section presents the construction of the intermediary states in the approxi-
mated MC based on the TEL algorithm described in Section 3.3. Given any RRC
Zn(i), a transition where a player interfered finds a free resource, e.g. Zn(i) {
Zn+1( j), does not necessitate additional intermediary state unless one player is
left alone on its resource after the experimentation. In this situation, the left
alone player sees its utility increases and becomes hopeful. Therefore, we start by
considering in ξn(i) the state ξn

0(i) in addition to Zn(i) where

• ξn
0(i) corresponds to a player alone in Zn(i) that is hopeful.

Thus, at this step, ∀n, i, ξn(i) = {Zn(i), ξn
0(i)}.

A transition in which the network uses one less frequency, e.g. ξn+1( j){ ξn(i),
involves a player that accepts a lower benchmark, which is only possible through
a discontent mood. To become discontent, a player passes through a watchful
mood. This leads us to consider the two intermediary states ξn

1(i) and ξn
2(i) where

• ξn
1(i) is the state where a player alone in Zn(i) is watchful,

• ξn
2(i) is the state where a player alone in Zn(i) is discontent. It corresponds

to the situation where the watchful player in ξn
1(i) experiences one more

iteration a decrease in utility.

Note that during the transition ξn
1(i)→ ξn

2(i) (where→means that the transition is
direct), the system is not aligned whereas, a content player experiments. It is not
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in accordance with Assumption 3.1 but, this is the only time that it is overridden
in order to keep the MC ergodic. Finally, to avoid any absorbing state, two more
intermediary states ξn

3(i) and ξn
4(i) are considered where

• ξn
3(i) is a state where two players that were alone in Zn(i) are using the same

resource and one of them is watchful. It corresponds to the case where the
discontent player from ξn

2(i) has updated its benchmark with the resource of
a player that was not interfered in Zn(i).

• ξn
4(i) is a state where two players that were alone in Zn(i) are using the same

resource and one of them is discontent. It corresponds to the state that
follows ξn

3(i) where the player watchful becomes discontent.

The base to construct our model for TEL is established with

ξn(i) = {Zn(i), ξn
0(i), ξn

1(i), ξn
2(i), ξn

3(i), ξn
4(i)}.

It is said in the introduction, that all intermediary states have to be accessible but,
in some cases they are not all present. For instance, when every player in Zn(i)
is interfered, no one can become discontent and states ξn

1(i), ξn
2(i), ξn

3(i) and ξn
4(i)

are not present. These absences have to be taken into account to compute the
probabilities in Appendix A, and in the simulations in order to build an ergodic
chain (an isolated state in a matrix makes the chain not ergodic). These cases are
described as follows starting with any given ξn(i) = {Zn(i)}:

• If in Zn(i) all players are interfered, only the state Zn(i) is present

• If in Zn(i) only one player is alone on its resource, this player can become
discontent or hopeful, however, it cannot make an other player discontent.
Therefore, include states ξn

0(i), ξn
1(i) and ξn

2(i) in ξn(i). There is one exception,
where the distribution Sn(i) is of the form (2, . . . , 2, 1, 0, . . . , 0) and, the state
ξn

0(i) is removed from ξn(i).

• If in Zn(i) at least two players are alone on their respective resource, include
ξn

3(i) and ξn
4(i) in ξn(i).

The transitions between states and the associated probabilities are detailed in
Appendix A.

3.5.6.2 ODL model

This section presents the construction of the intermediary states in the MC ap-
proximation based on the ODL algorithm described in Section 3.3. First of all,
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the model that contains only the ξn(i) = {Zn(i)} is sufficient to have an ergodic
chain Ξ̃. The transition Zn(i) → Zn(i) occurs if nothing happens. The transition
Zn(i) → Zn+1( j) represents an interfered player that experiments and finds a free
resource. The reversed transition Zn+1(i)→ Zn( j) occurs if one of the not interfered
player in Zn+1( j) goes back to the position of the experimenter from Zn(i). The
accuracy of the model can be increased by adding a few more states. The stabil-
ity of ODL is directly related to the number of discontent players. Such players
experiment randomly, which makes the number of possible transitions between
states growing very fast with the number of discontent players. It prevents us
from describing too many discontent players at the same iteration. In this work,
we manage to model the case where at most two players can be discontent at
the same time. Going beyond this would require for each additional discontent
player a large amount of extra transitions for a small accuracy gain. This model
requires three more states ξn

1(i), ξn
2(i) and ξn

3(i) to be added with each RRC Zn(i):

• ξn
1(i) corresponds to the case where a player alone in Zn(i) is discontent,

• ξn
2(i) corresponds to the case where two players alone in Zn(i) are discontent.

• ξn
3(i) is a state where one of the two players that share the same resource in

Zn(i) is discontent.

As in the previous Section 3.5.6.1, there are some cases, depending on Zn(i),
where ξn

1(i), ξn
2(i) and ξn

3(i) are not all present simultaneously in ξn(i). They have
to be removed accordingly to make the resulting MC ergodic. These cases are
described as follows starting with ξn(i) = {Zn(i)}:

• If there exists a resource played by two players in Zn(i), include the state
ξn

3(i) in the set ξn(i).

• If at least one player in Zn(i) is alone on its resource, include the state ξn
1(i)

in ξn(i).

• If at least two players in Zn(i) are alone on their respective resource, include
ξn

2(i) in ξn(i).

The transitions between states and the associated probabilities are detailed in
Appendix B.
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Figure 3.5: Partial view of Ξ̃ for both algorithms.

3.5.7 Complexity comparison

We compute the Markov chain complexities to highlight the importance of the
transformations from Ξ to Ξ̃ made in this work. The simplifications and approx-
imations are essential in order to be able to predict the algorithms performance.
The number of states in Ξ is given by the product of components’ dimensions in
z = (m, a, ā,u, ū). The vector of player moods can have MK values if the mood of
each player can take M values. The vector of players’ actions and action bench-
marks a or ā can take NK values each one. The utility vector u is specified by the
action vector a and, the utility benchmark vector ū can take 2K values. Therefore,
the complexity of Ξ is (MN22)K. This is obviously intractable and, we have re-
duced the recurrence states R into Z which has a cardinality |Z| =

∑K
n=1 Part(K,n).

Afterwards, we have approximated Ξ by keeping some intermediary states as
detailed in Section 3.5.6. Figure 3.6 presents the complexity of Ξ and Ξ̃ for the
TEL algorithm with respect to the number of players. The significant complexity
reduction allows us to predict performance numerically.

3.5.8 Procedure to compute the transition matrix

Once the states of Ξ̃ are established, the next step consists in computing the
transition probabilities of matrix P. The procedure is described in Algorithm 1
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Figure 3.6: Complexity comparison between Ξ and Ξ̃.

and summarized as follows. The first step necessitates to generate all RRCs.
For this purpose, a classical integer partitioning algorithm is used to generate
all ordered repartition vector Sn(i) [47]. The number of RRC using n ∈ [1, . . . ,N]
resources among N is given by IN(n) (see Section 3.5.5). In both algorithms, at each
RRC Zn(i) is associated an intermediary state model ξn(i), whose number of states
depends on some exceptions specified in Sections 3.5.6.1 and 3.5.6.2 for the TEL
and ODL respectively. One has to pay attention to these exceptions when it makes
the one-to-one mapping function between the states of Ξ̃ and the lines of P. Then,
the Algorithm 1 goes trough all Zn(i) and looks for all j ∈ IN(n+1) such that Zn+1( j)
is accessible from Zn(i). When n < N, there exists at least one such a j and, by
construction the set ξn+1( j) is connected to the set ξn(i). The transition probabilities
are computed in the algorithm through three consecutive steps. These steps and
formulas are highlighted in the same order in Appendices A and B for the TEL
and ODL respectively. On the first hand, the probabilities inside the set ξn(i) are
computed. On the second and third hand, for each j in IN(n + 1) such that ξn(i)
is connected to ξn+1( j), the algorithm computes, the probabilities from set ξn(i) to
set ξn+1( j) and, the reverse probabilities from set ξn+1( j) to set ξn(i).

The example provided in Figure 3.7 with K = N = 5 highlights the links
between the sets ξn(i), identified by the vector Sn(i). For instance, the set in the
top left corresponds to 5 players interfering on the same resource.

3.5.9 Numerical results

3.5.9.1 Accuracy of the proposed models

We assess the accuracy of our proposed models by comparing the values com-
puted numerically with the proposed approximation Ξ̃ (TEFHT(i, j) is computed
with (3.8) and α j is computed with (3.9)) with the values obtained through Monte
Carlo simulations. We consider three different values for K = {3, 5, 7} in two cases
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Algorithm 1 Computing the matrix P

Input: Z; ∀n ∈ [1,N], IN(n); ∀n ∈ [1,N], ∀i ∈ [1, IN(i)]
Output: P

1: Generate ∀n ∈ [1,N] and ∀i ∈ [1, IN(n)], Zn(i) = (Sn(i)) with an integer parti-
tioning algorithm

2: for n = 1 to N do
3: for i = 1 to IN(n) do
4: Select a distribution Sn(i) = [Si

n,1,S
i
n,2, · · · ,S

i
n,n, 0, 0, · · · , 0]

5: Compute the following probabilities using appendices A and B for TEL
and ODL respectively (check the existence of links using exceptions de-
tailed in Sections 3.5.6.1 and 3.5.6.2), and fill the matrix P:
For TEL : pZn(i)ξn

1 (i), pZn(i)Zn(i), pξn
1 (i)ξn

2 (i), pξn
1 (i)Zn(i), pξn

2 (i)Zn(i), pξn
2 (i)ξn

3 (i), pξn
2 (i)ξn

2 (i),
pξn

3 (i)ξn
4 (i), pξn

4 (i)ξn
0 (i), pξn

4 (i)ξn
3 (i), pξn

4 (i)ξn
4 (i), pξn

0 (i)Zn(i), pξn
0 (i)Zn(i) using (A.1), (A.2), (A.4),

(A.5), (A.6), (A.7), (A.8), (A.10), (A.11), (A.12), (A.13), (A.15) respectively,
For ODL : pZn(i)ξn

1 (i), pZn(i)ξn
2 (i), pZn(i)ξn

3 (i), pZn(i)Zn(i), pξn
1 (i)Zn(i), pξn

1 (i)ξn
2 (i), pξn

1 (i)ξn
1 (i),

pξn
2 (i)Zn(i), pξn

2 (i)ξn
1 (i), pξn

2 (i)ξn
2 (i), pξn

3 (i)Zn(i), pξn
3 (i)ξn

3 (i) using (B.1), (B.2), (B.3), (B.4),
(B.10), (B.11), (B.12), (B.15), (B.16), (B.17), (B.22), (B.23), respectively.

6: for k = 1 to n do
7: if Si

n,k > 1 then
8: w← (Si

n,1, · · · ,S
i
n,k − 1, · · · ,Si

n,n, 1, 0, · · · , 0)
9: w̃← w sorted in decreasing order

10: Find j ∈ IN(n + 1) such that Sn+1( j) = w̃ which corresponds to state
Zn+1( j)

11: Compute the following probabilities using Appendices A and B for
TEL and ODL respectively (check the existence of links using excep-
tions in Sections 3.5.6.1 and 3.5.6.2), and fill the matrix P:
For TEL : pZn(i)Zn+1( j), pZn(i)ξn+1

0
, pξn+1

2 ( j)Zn(i), pξn+1
4 ( j)Zn(i), pξn+1

4 ( j)ξn
0 (i) using

(A.16), (A.17), (A.18), (A.19), (A.20) respectively,
For ODL : pZn(i)Zn+1( j), pZn(i)ξn+1

1 ( j), pZn(i)ξn+1
2 ( j), pξn

3 (i)Zn+1( j), pξn
3 (i)ξn+1

1 ( j),
pξn

3 (i)ξn+1
2 ( j), pZn+1( j)Zn(i), pZn+1( j)ξn

3 (i), pξn+1
1 ( j)Zn(i), pξn+1

1 ( j)ξn
3 (i), pξn+1

2 ( j)Zn(i), pξn+1
2 ( j)ξn

1 (i),
pξn+1

2 ( j)ξn
2 (i) and pξn+1

2 ( j)ξn
3 (i) using (B.27), (B.28), (B.29),(B.24), (B.25), (B.26),

(B.30), (B.32), (B.33), (B.34), (B.35), (B.36), (B.37), (B.38) respectively.
12: end if
13: end for
14: end for
15: end for
16: return P
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Figure 3.7: Example of transitions considered between RRS in our models for
C = K = 5.

N = K and, N = K + 2. In the ODL, the constant c is equal to K. Both algorithms
are compared with respect to the same probability to experiment from a content
mood, i.e. ε in TEL is equal to εc in ODL. The EFHT is computed from, the state
i where all players use the same resource (e.g. state with S1(1) = (5, 0, 0, 0, 0) in
Figure 3.7), to the state j where they are all on different resources (e.g. state with
S5(1) = (1, 1, 1, 1, 1) in Figure 3.7). The stability α j is computed for the state j where
all players use a different resource. In Monte Carlo simulations, denoted by "mc",
5000 trials are used to compute the EFHT and 106 trials are used to compute the
stability. In what follow, the indices are dropped, the EFHT is noted TEFHT and it
is given in number of algorithm iterations and the stability is simply noted α.

For the TEL algorithm, Figures 3.8a and 3.8b present the EFHT and the fraction
of time 1 − α when K = N respectively. The reason to display 1 − α instead of α
is to discern the values close to one at low ε. For both features, these results are
accurate in comparison to Monte Carlo simulations. The EFHT converges to the
Monte Carlo results when εdecreases. The little gap observed at higher ε is caused
by an increasing probability to have more than one experiment at a time. Thus,
the probability for the system to not be aligned increases and, Assumption 3.1 is
less valid. The offset observed in Figure 3.8b is due to the fact that, we are able
to represent accurately at most one discontent player at each algorithm iteration.
The stability is highly related to the number of discontent players.

Figures 3.9a and 3.9b present the same results but with N = K + 2. The goal is
to show the coherence of our approximation. In that scenario, two resources have
been added which results in the decrease of the collision probability (a collision
is when two players or more try the same resource). Therefore, with respect to
the first scenario, Assumption 3.1 is more accurate and, the probability of being
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Figure 3.8: Figures of merit comparisons between our approximated models and
Monte Carlo simulations when N = K.
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Figure 3.9: EFHT and stability comparisons between our approximated models
and Monte Carlo simulations when N = K + 2.

discontent decreases. Consequently, the numerical results of our approximation
are closer to Monte Carlo simulations.

In addition, in Figures 3.8 and 3.9, one can check the result detailed in Obser-
vation 1, in which the behavior of EFHT is TEFHT = O( 1

εa2 ) where a2 > 0 and the
behavior of the stability is 1 − α = O(εa4) where a4 > 0.

For ODL algorithm, Figures 3.10a and 3.10b present when K = N the EFHT
and the fraction of time α j, respectively. For both features, these results are
accurate in comparison to Monte Carlo simulations. The gap observed at low
ε for stability metric is due to the number of discontent players. We recall that
the proposed approximation models accurately at most two discontent players.
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Figure 3.10: EFHT and stability comparison between our approximated models
and Monte Carlo simulations when N = K.
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Figure 3.11: EFHT and stability comparison between our approximated models
and Monte Carlo simulations when N = K + 2.

When ε decreases the number of discontent players increases (a player remains
in D with probability 1 − ε when u = 0) above two with an increasing probability
and the model becomes less accurate.

We present in Figures 3.11a and 3.11b the same results but with N = K +

2. The accuracy of both features studied is again assessed. The probability to
have collisions decreases and so does the probability to have a high number of
discontent players. This leads to a better accuracy of the proposed model.

Generally, one can notice how the stability decreases with the number of
players and how the convergence time increases. Furthermore, the convergence
time decreases when the number of resource increases. In addition, in Figures 3.10
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Figure 3.12: Performance comparison between our approximation and Rose ap-
proximation when N = K.

and 3.11, one can check the result detailed in Observation 2, in which the EFHT
is TEFHT = O( 1

εcb2
) where b2 > 0 and the behavior of the stability is 1 − α = O(εcb4)

where b4 > 0.

3.5.9.2 Performance comparisons with approximation in the literature

In this section, we compare the results obtained in the previous section with the
approximation given in [31], noted model 1 in this work. This last model figures
of merit are computed as follows. For the EFHT, the equation (33) in [31] is
employed. For the stability, Theorem 5 in [31] gives the stability α but some
corrections have been made. For instance, the term TCNE(k) from [31] is replaced
with equation (33) in [31] whose sum is started in k instead of 0. The reason for
this change is that the variable TCNE(k) diverges when N = K and, it is an upper
bound of (33) [31].

Figures 3.12a and 3.13a present the EFHT of the model Ξ̃ and model 1 when
N = K and K + 2, respectively. One can observe that both models are quite far
from each other except for high ε. Knowing that our model converges close to
simulations, we immediately deduce the model 1 lack of accuracy.

On the other hand, Figures 3.12b and 3.13b present 1 − α when N = K and
K + 2 respectively. One can notice that, except for K = 3, the curves resulting
from model 1 are above those of model Ξ̃. As our model is a tight upper bound
on results obtained with Monte Carlo simulations (see Figures 3.8b and 3.9b ), it
again assesses the accuracy of our model.

For the stability metric, in the case N = 3 and K = N, the model 1 is as closed to
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Figure 3.13: Performance comparison between our approximation and Rose ap-
proximation when N = K + 2.

Monte Carlo simulations as our proposed approximation. However, contrary to
model Ξ̃, the result for N = K+2 shows that model 1 gets away from the simulation
contrary to our approximation that gets closer. This proves the coherence of our
model in comparison to model 1.

3.5.9.3 Performance comparison between TEL and ODL

In previous sections, we have characterized the accuracy of TEL and ODL pro-
posed models. In this section, we take the advantage of the available approxi-
mations that have low complexity, to compare both algorithms and, to analyze
their performance in domains hardly reachable with Monte Carlo simulations.
Figures 3.14a and 3.14b present, for both algorithms, the EFHT (in logarithmic
scale) and the stability α respectively. The number of resources used is N = K
and N = K + 5 and, the probability to experiment is fixed to ε = εc = 10−3. The
increase of N results for both algorithms, first, in a better stability and, secondly,
in a lower convergence time. This result counteracts the argument that the con-
vergence time increases with the alphabet size ([31] Section V. B.). The reason
is that players find a free interference state faster and, the probability that two
players interfere is less important when the set of free resources is larger. There
exists a value of K such that the EFHT of both algorithms is the same. Below
this value, ODL is more efficient than TEL with respect to the convergence time
and beyond this value the behavior is inverted. More generally, the fact that in
some cases TEL converges faster than ODL contradicts the idea that, the larger
the algorithm controller (4 moods for TEL and 2 moods for ODL), the slower its
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convergence, as it is said in [33] (Section IV-B). In addition, Figure 3.14b shows
that TEL is more stable than ODL even when N is increased and such, at any K.
Figure 3.15 presents the same results as in Figure 3.14 but with ε = εc = 10−4.
The convergence time of both algorithms are increased. This is not a surprise as
we deduce in Observations 1 and 2 that TEFHT is inversely proportional to some
power of ε. The decrease of ε increases the stability of both algorithms. As ε
decreases, so does the probability to experiment of players in state C. Thus, the
probability that two players or more collide also decreases with ε which results
in a higher stability of the state. More generally, the convergence and stability
tendencies remain the same in comparison to Figure 3.14. In Figures 3.14a and
3.15a, one can assess the results detailed in Observations 1 and 2. The EFHT of
ODL and TEL respectively follow an exponential and a polynomial behavior with
respect to K (the y-axis is in logarithmic scale). In Figures 3.14b and 3.15b one can
guess the exponential and polynomial decreasing of the ODL and TEL stability
respectively. Figure 3.16 presents the stability 1 − α and α with respect to K for
the TEL and ODL respectively. These two figures confirm the previous guess and
assess the convergence results of Observations 1 and 2.

To conclude, in our system model, ODL is less stable than TEL. There exists
some region of K for which ODL converges faster. However, the gain in speed con-
vergence is not considerable and, the exponential behavior of ODL with respect
to K makes the convergence of this algorithm possibly very long in large systems.
This small advantage in convergence speed is compromised by less stability. In
view of the results, we would recommend that, the use of ODL algorithm in an
environment with large utility variation is preferable when the need in stability
is not important and the amount of players is limited.

3.6 Conclusion

This chapter has first presented the wireless model in a deterministic environment,
the utility function and the game model. We then have showed that this game
does not necessarily possess a PNE. This is one of the reasons we have selected
TE algorithms, that converge in a broad class of games, as candidates to solve
the frequency channel allocation problem. The algorithms, TEL and ODL, have
been presented as well as their theoretical convergence results. Numerical results
obtained in this context have illustrated the good convergence behaviors of both
algorithms. Then, we have provided a detailed performance analysis of these
learning strategies. To overcome the huge dimension of the inherent MC of the
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Figure 3.14: Performance comparison between TEL and ODL when ε = 10−3 with
respect to K.
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Figure 3.15: Performance comparison between TEL and ODL when ε = 10−4 with
respect to K.

game, we have provided an approximation of these chains. This has allowed to
compute a close approximation of the average time the system remains in a desired
state as well as the average time required to achieve that state for the first time.
Thanks to the above approximations, a comparison between the performance of
TEL and ODL has been provided.
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Chapter 4

Distributed channel allocation in
presence of disturbances

4.1 Introduction

The theory developed by Young [38] to design TE algorithms such as the TEL and
the ODL assumes that for each action vector corresponds a unique utility vector.
This context is referred to as deterministic context in the sequel. These algorithms
are based on FSCs whose states transitions depend on the utility variations that
are caused by action changes of the players. When applying these algorithms
to the telecommunication context, this assumption is no longer valid because
of the stochastic nature of the medium, i.e. , for a fixed given action vector the
corresponding utility vector is time varying. This context is referred to as stochastic
context in the sequel. As a consequence, players perceive utility variations that
are not caused by action changes, leading to undesired transitions in the FSC.
Hence, convergence properties are no longer valid as noticed in [34] for the ODL,
causing performance degradations as observed in [35] for the TEL. Thus, the goal
of this chapter is to study how to adapt TE algorithms to take into account time
variations of the utility so as to improve their performance.

Let u(a) be the utility vector obtained by playing action a in the deterministic
context. In the stochastic context, the utility vector obtained by playing consis-
tently a varies over time around u(a). We name these variations in the sequel
disturbances as in [34]. Authors in [34] adapted the ODL algorithm to the stochas-
tic context for ramp coordination in traffic control. We refer the corresponding
algorithm to as Robust Optimal Distributed Learning (RODL). Remember that
in the FSC of ODL there is only one transition that is triggered by utility varia-
tions. In content mood, when there is no experiment, the state may change when
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u , ū, see Section 3.3.2 page 25. The basic principle of RODL is to introduce
one threshold, denoted by ρ, such that the previous condition is changed into
u < [ū − ρ, ū + ρ]. The role of the threshold is to absorb the disturbances and it
represents its maximum deviation.

To the best of our knowledge the TEL algorithm has not been adapted to a
stochastic context. In this thesis, we apply the idea of introducing a threshold as in
[34] to the TEL algorithm, that we name Robust Trial and Error Learning (RTEL).
We prove under specific disturbance assumptions the convergence of the RTEL
to some Stochastic Stable State (SSS). Notice that the idea of using thresholds was
evoked in [13], named tolerance, as a potential extension to its work. As pointed
out in [34] the maximum deviation ρ is not a priori known by players and then
needs to be estimated. Notice that in their work this value is set empirically with
respect to the simulation context. In the work presented here, we improve the use
of the thresholds in three ways:

1. we introduce two different thresholds, one for the lower bound noted δ−,
and one for the upper bound noted δ+, such that for instance the previous
test u < [ū − ρ, ū + ρ] becomes u < [ū − δ−, ū + δ+],

2. we consider that each cluster k has its own pair of thresholds (δ−k , δ
+
k ) that

are set independently between clusters,

3. we provide an on the fly algorithm to learn the thresholds per cluster to
adapt to the disturbance distribution.

Since the probability density function (pdf) of the utility belongs to the class of
Bernoulli-type distributions which may exhibit strong asymmetry, modification
1 allows to account for the skewness of the utility disturbance. Modification 2
is necessary since each cluster perceives the disturbance differently and is com-
pulsory for a full distributed implementation. In the telecommunication context,
notice that as a by-product, the adaptive learning of the thresholds 3 also allows
to account for the nodes mobility. These improvements are applied to both the
RODL and the RTEL.

This chapter is organized as follows. Section 4.2 presents the model of the
utility with disturbances. Section 4.3 presents the RTEL and recall the RODL
algorithms. Section 4.4 presents the theoretical convergence results of TEL, ODL,
RTEL and RODL in the stochastic context. Section 4.5 presents the algorithm
to adapt thresholds on the fly. Section 4.6 presents simulations results of the
TE algorithms and their enhanced versions in the stochastic context. Section 4.7
concludes the chapter.
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4.2 Disturbed utility model

4.2.1 Disturbance characterization

First, we remind from (3.3) (page 21) that the utility of cluster k is given by

uk(a) =
1
|Lk|

∑
i∈Lk

`k
i (a), (4.1)

where `k
i (a) = 1

{SINRk
i (a)>Γ0}

indicates the link status (0: the link is not working, 1:

the link is working) with SINRk
i (a) the SINR of link i in cluster k. In Chapter 3

we have considered the so-called deterministic context, meaning that the SINR is
assumed to be a constant (not time-varying) for each link as long as a is played.
As a consequence, the values `k

i (a),∀i,∀k are fixed for a given a and the corre-
sponding utility is a deterministic constant. Then, the deterministic context can
be formalized as follows:

Let us define `k
i (a) and uk(a) := 1

|Lk |

∑
i∈Lk

`k
i (a) the constant deterministic values

taken by the links’ status and the corresponding deterministic utility respectively,
when the SINR of all links are assumed constant. Then, the deterministic context
can be formalized as follows:

Definition 4.1 (Deterministic context). ∀k ∈ K , ∀t,∀a0 ∈ N
K, at = a0 ⇒ uk(at) =

uk(a0), where uk(a0) is the deterministic utility received by cluster k when a0 is played.

Now, we consider the case where the SINR is time-varying and so does the
utility (see property (iv) in Section 1.2). This may happen for various reasons and
two examples are given in Section 4.2.2. As a consequence, the link status are
time-varying and can be modeled as:

`k
i (a) = `k

i (a) ⊕ bk
i (a), (4.2)

where⊕ stands for the logical OR operator and bk
i (a) is a boolean random variable.

From (4.2) we deduce that utility (4.1) can be written:

uk(a) = uk(a) + ξk(a), (4.3)

where the random variable (rv) ξk(a) is called the utility disturbance. We can now
define the stochastic context as follows:

Definition 4.2 (Stochastic context). ∀k ∈ K , ∀t,∀a0 ∈ N
K, at = a0 ⇒ uk(at) =

uk(a0) + ξk(a) where uk(a0) is the deterministic utility received by cluster k when a0 is
played, and ξk(a) is a random variable called the utility disturbance.
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It is important to note that, although time index is omitted in the notation,
ξk(a) is time-varying. It is also stochastic state and payoff dependent and thus
not an independent and identically distributed (iid) noise (i.e. averaging over this
noise cannot be used to cancel out its effect).

Inserting (4.2) into (4.1), we deduce from (4.3) that

ξk(a) = nk(a)wk, (4.4)

where nk(a) :=
∑

i∈Lk
`k

i (a) − `k
i (a) is an integer rv and

wk :=
1
|Lk|

. (4.5)

Moreover, since uk(a) ∈ [0, 1], we deduce that −uk(a) ≤ ξk(a) ≤ 1 − uk(a), and thus
−nk

i (a) ≤ nk(a) ≤ |Lk| − nk
i (a), with nk

i (a) :=
∑

i∈Lk
`k

i (a).
Following [34], one way to characterize the disturbance is to consider its effect

on the utility maximum deviation among all clusters, for all action vectors, and
all realizations ωi:

µ := max
a,ω1,ω2,k

|uk(a, ω1) − uk(a, ω2)|, (4.6)

where uk(a, ω) is the perceived utility at cluster k at realizationω of the disturbance.
According to (4.3), (4.6) is equal to

µ = max
a,ω1,ω2,k

|ξk(a, ω1) − ξk(a, ω2)|, (4.7)

which shows that the maximum utility deviation is equal to the maximum dis-
turbance deviation. Now, from (4.4), we get

µ = wk max
a,ω1,ω2,k

|nk(a, ω1) − nk(a, ω2)|, (4.8)

which shows that the maximum utility deviation is a multiple integer of wk, and
thus there exists a non negative integer vk such that

vk :=
µ

wk
= µ|Lk|. (4.9)

Notice that from (4.6), we have µ ∈ [0, 1]. However, we will see in Section 4.4
that we need to make the following assumption:

Definition 4.3 (Bounded utility disturbance assumption). The bounded utility dis-
turbance assumption corresponds to the case where the maximum deviation of the distur-
bance utility (4.7) verifies 0 < µ < 1.

Notice that this assumption plays an instrumental role in the derivation of
the algorithms in Section 4.3 that restore the convergence properties thanks to
the thresholds. However, there is no reason that this assumption is fulfilled in
general. This contradiction will be discussed in details in Section 4.5.
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4.2.2 Disturbance examples

Disturbances of the utility that constitute the statement of property (iv) in Sec-
tion 1.2 may appear for a lot of reasons depending on the communication system
setting. We give here two different cases leading to disturbances in our dynamic
frequency allocation context that will be used in the simulations of Section 4.6 .

The first case of disturbance that we consider is the Rayleigh fading. When
the propagation channel between transmitters and receivers is random (as for the
Rayleigh fading), the SINR becomes a rv even if the same a is played along time.
As a consequence, the working links metrics `k

i (a) = 1
{SINRk

i>Γ0}
become Bernoulli

rvs, and the utility a Poisson-Bernoulli one.
The second case that we consider is the effect of the link scheduling inside

clusters. In the case of a Time Division Multiple Access (TDMA), the links are
scheduled according to Quality of Service (QoS) criteria and to the traffic load.
Thus, the order of transmissions inside the cluster (who is transmitting to whom)
can be seen as a random process even if the same a is played along time. As a
consequence, the interference perceived by the different links is changing over
time and so the SINR, leading to a disturbed utility.

Note that the derivation of the SINR pdf for the case with Rayleigh fading is
detailed in Chapter 5.

4.3 Robust trial and error algorithms

This section presents the RTEL and RODL algorithms that extend the TEL and
ODL ones to the stochastic context. As said in Section 4.1, these algorithms use
thresholds (δ−k , δ

+
k ) that enable us to restore their convergence properties under

the bounded assumption (see Definition 4.3).

4.3.1 RTEL

This section describes the new rules applied to the RTEL FSC for any k ∈ K and
for any ε ∈ (0, 1]:

• mk = C, there are two cases to consider :

1) with probability 1 − ε, the player keeps playing its benchmark (i.e.
ak = āk). The next state changes to H if uk > ūk + δ+

k or, it changes to W if
uk < ūk − δ−k or, it remains C if uk ∈ [ūk − δ−k , ūk + δ+

k ].
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2) with probability ε, the player experiments a new action, i.e. ak ∈

N\{āk}. The action experimented is selected randomly among N\{āk} (i.e.
Pr {ak = ri} = 1

N−1 , ∀ri , āk) and, the next state remains mk = C. When
uk > ūk + δ+

k , player k updates its benchmark with probability εG(uk−ūk), where
G(x) = −ν1x + ν2, with ν1 > 0 and ν2 such that 0 < G(uk − ūk) < 1/2. An
update consists in changing the benchmark by the played action and the
received utility in the next iteration as follows, ūk ← uk and āk ← ak.

• mk = H: ak = āk and the next state changes to C with a utility benchmark
update ( i.e. ūk ← uk) if uk > ūk + δ+

k or, it changes to W if uk < ūk − δ−k or, it
changes to C if uk ∈ [ūk − δ−k , ūk + δ+

k ].

• mk = W: ak = āk and the next state changes to H if uk > ūk + δ+
k or, it changes

to D if uk < ūk − δ−k or, it changes to C if uk ∈ [ūk − δ−k , ūk + δ+
k ].

• mk = D: an action ak is randomly selected among N (i.e. Pr {ak = ri} = 1
N ,

∀ri ∈ N) with probability 1. The next state mk changes to C with probability
εF(uk), where F(u) = −φ1u +φ2 with, φ1 > 0 and φ2 such that 0 < F(u) < 1/2K,
with a benchmark update (i.e. ūk ← uk and āk ← ak), otherwise, with
probability 1 − εF(uk), mk = D.

Note that when we set δ−k = 0 and δ+
k = 0, the RTEL reduces to the TEL.

4.3.2 RODL

This section describes the new rules applied to the RODL FSC. This algorithm
extends the one given in [34] by considering two different thresholds δ− and δ+

per cluster, and also the fact that these thresholds are different from one cluster to
another:

• mk = C, there are two cases to consider :

1) with probability 1 − εc, where c > K is a real constant, ak = āk. If
uk < [ūk−δ−k , ūk +δ+

k ] then the state mk changes to D with probability 1−ε1−uk .
Otherwise, with probability ε1−uk , the cluster updates its benchmark (i.e.
ūk ← uk ) and remains C.

2) with probability εc > 0, a new action is experimented, ak ∈ N\{āk}.
The new action is selected randomly in the setN\{āk}. The state mk changes
to D with probability 1 − ε1−uk . Otherwise, with probability ε1−uk , the cluster
updates its benchmark (i.e. ūk ← uk and āk ← ak) and remains in C.
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• mk = D: an action ak is randomly chosen amongN . The cluster switches to C
with probability ε1−uk and updates its benchmark (i.e. ūk ← uk and āk ← ak),
otherwise with probability 1 − ε1−uk , it remains D.

Note that when we set ∀k, δ−k = δ and δ+
k = δ, the RODL reduces to the algorithm

given in [34], and when we set δ−k = 0 and δ+
k = 0, the RODL reduces to the ODL.

4.4 Convergence properties of TE based algorithms in
the stochastic context

In this section, we address the convergence of the TE based algorithms in the
stochastic context. First, we show that the TEL and ODL do not converge to a
desirable state in a disturbed environment. Then, we prove the convergence of the
RTEL and RODL algorithms under the bounded assumption (see Definition 4.3).
As in the deterministic context, an additional assumption required in the stochas-
tic context to get those results is the interdependence property (see Definition 2.4 in
page 13). In the case of robust algorithms, this property ensures that given any
state of the network, there exists an appropriate action change such that a set of
clusters modifies the utility of at least one different cluster more than its tolerance
level. Thus, in any state there always exists an appropriate group of clusters that
can make the network leave the current state.

We now define the non-cooperative stochastic game in normal form that con-
stitutes the framework adapted to the study of the convergence of RTEL and
RODL algorithms in the stochastic context.

Definition 4.4 (stochastic game in normal form). A normal form stochastic game with
K players is defined by the quadruplet Gs = (K , (Nk)k∈K , (Ωk)k∈K , (uk(a, ω)k∈K ,a∈N ,ω∈Ωk))
whereK is the set of players,Nk is the set of player k actions ∀k ∈ K ,N =

∏K
k=1Nk, Ωk

is the set of possible disturbance realizations for players k ∈ K , uk : N ×Ωk → [0, 1] is
the disturbed utility function of player i given by model (4.3).

Let us first present the proposition that states the loss of convergence properties
for both algorithms (we remind that the proofs in the deterministic context are
presented in Section 3.4.1).

Proposition 4.1 (Instability in presence of disturbances). Let an interdependent
stochastic game Gs in which all clusters use the TEL or the ODL. The state z in which all
clusters are discontent is the SSS.
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The proof of this proposition is given in Appendix C.1. It says that the network
spends a high amount of time in a state (the discontent state) in which all clusters
behave randomly. This is an undesirable state which motivated us to propose the
robust TEL algorithms.

We are now addressing the convergence of the RTEL and RODL in the game
Gs. Before stating the corresponding theorems, we need to introduce some notions
and notations that are required to understand them and whose formal definitions
are provided in Appendix C.2. Notice that we have stated and derived the proofs
of these theorems assuming that the number of links in each cluster is a constant
and thus∀k,wk = w and vk = v, and also that δ−k = δ and δ+

k = δ. These assumptions
have been made in order to simplify the notations for the sake of proof clarity, but
these results can be easily extended to the general case.

• C0
δ: denotes the set of states in which all clusters are content (i.e.∀k ∈ K ,

mk = C) and aligned. In a deterministic context a cluster is said to be aligned
if u = ū and a = ā. In a disturbed environment and with the introduction of
tolerance thresholds this notion is slightly modified. A cluster is aligned if
when a = ā then u ∈ [ū − δ, ū + δ] (see (C.3)).

• E0
δ: denotes the set in which no cluster can increase its benchmark by more

than δwhen comparing the utility with the benchmark (referred to as δ-PNE
in the sequel; see (C.4) for the definition). We have E0

δ ⊂ C0
δ.

• Sδ(z): for z ∈ Ξ (see Section 3.4.1 page 26), it represents the maximum utility
increase that one of the player can obtain by deviating unilaterally. In other
word, the larger this gap, the more probable the network to observe an
action change. It is the propensity that the network has to leave a state z.

• δ∗ :=
⌈

v−1
2

⌉
w, where w and v are defined in (4.5) and (4.9) respectively, and

dxe is the ceiling function of x.

• W(z) represents the benchmark social welfare given in Definition 3.2 in page
28. This notion is important here since, unlike the TEL, the convergence of
the robust algorithms is derived in terms of benchmark social welfare instead
of instantaneous social welfare.

We can now state the following theorems for which proofs are given in Ap-
pendix C.2 and Appendix C.3 respectively.

Theorem 4.1 (Convergence result of RTEL). If the K persons gameGs is interdependent
and all players use the algorithm RTEL with δ ≥ δ∗,



4.5. Adaptive robust algorithms 59

(i) if E0
δ , ∅, every state in E0

δ that maximizes the benchmark social welfare is an SSS,

(ii) otherwise, every SSS is a state z∗ ∈ C0
δ that maximizes a trade-off between the

benchmark social welfare and the instability as follows

φ1W(z∗) − ν1Sδ(z∗). (4.10)

Theorem 4.2 (Convergence result of RODL). If the K persons game Gs is interde-
pendent and all players use the algorithm RODL with δ ≥ δ∗, every state in C0

δ that
maximizes the benchmark social welfare is an SSS.

Theorems 4.1 and 4.2 show that the RTEL and RODL converge in the stochastic
context in terms of benchmark social welfare, under the bounded disturbance
assumption. They can be seen as an extension of the convergence results for the
TEL and the ODL obtained in the deterministic context expressed in terms of social
welfare (using the utility). Theorem 4.1 states that if a δ-PNE exists then RTEL
spends a high amount of time in a state that maximizes the benchmark social
welfare whereas, otherwise, it maximizes a trade-off between the benchmark
social welfare and a stability function. Theorem 4.2 states that in any case, the
algorithm spends a high amount of time in a state that maximizes the benchmark
social welfare. Notice that a proof of Theorem 4.2 is given in [34], but our proof is
simpler and shorter.

4.5 Adaptive robust algorithms

We have seen in the previous section that the convergence of the robust algorithms
is ensured provided the tolerance threshold is such that δ ≥ δ∗. The disturbance
distribution characteristic δ∗ is supposed unknown to the clusters. Its value de-
pends on the actions of the players but also, in our application, on the network
topology that is possibly time-varying due to mobility, and the propagation chan-
nel conditions between nodes. Moreover, when the players change their actions,
the disturbance distributions change accordingly. It is clear that an adaptive so-
lution is required to learn the tolerance levels at each cluster. Thus, the purpose
of this section is to provide solutions in order to learn and adapt of the tolerance
thresholds for each cluster.

For the sake of clarity, we expose our solution in two steps. First, we present
the tolerance thresholds estimation algorithm assuming that the action vector a
of the game and the network topology are fixed. In that case, the disturbance
distribution is assumed to be fixed at each cluster and the data flow that is used to
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estimate the thresholds are rvs belonging to the same distribution. This case will
be referred to as stationary and on the fly conventional estimators can be used.
Second, we tackle the case (referred to as non-stationary) when a is changing over
time (due to experimentations of clusters) or the network topology is changing
over time. In that case the disturbance distribution is no longer fixed along time
at each cluster, and an adaptation needs to be done to detect these changes and to
cope with it accordingly.

4.5.1 Assuming that the action vector is fixed

In order to present the procedure to learn the thresholds, we start by considering
the topology and the action vector a fixed which involves that the rvs such as the
utility or working link metrics are stationary. The later condition is important for
a convergence without bias of thresholds estimators.

The thresholds are set such that a cluster is not sensitive to disturbances which
is given by

∀ξ, u(a; ξ) ∈ [ū − δ−, ū + δ+]. (4.11)

With the model of the utility presented in Section 4.2, the disturbance deviation
is bounded and one can set targeted positive tolerance thresholds δ− = δ−∗0 and
δ+ = δ+∗

0 as follows
δ−∗0 := ū − L∗0, (4.12)

where L∗0 = min
ξ

(u(a; ξ)) is a low bound on the utility distribution and,

δ+∗
0 := U∗0 − ū, (4.13)

where U∗0 = max
ξ

(u(a; ξ)) is an upper bound on the utility distribution. Note that

with previous definitions [ū − δ−, ū + δ+] = [L∗0,U
∗

0].

Figure 4.1: Selection of bounds L∗0 and U∗0 in case of bounded disturbance.
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Figure 4.2: Selection of thresholds δ−∗0 and δ+∗
0 in case of bounded disturbance.

Figure 4.1 presents the selection principle of bounds L∗0 and U∗0 when the
deviation of the utility is bounded (i.e.µ < 1, see Section 4.2). For simplicity,
we represent the distribution of the utility as a continuous variable with a pdf
denoted by fu(.) whereas in this thesis it takes discrete values. Then, in the same
context, Figure 4.2 illustrates the threshold computations (4.12) and (4.13) when
the benchmark utility ū ∈ [L∗0,U

∗

0].
It happens that ū < [L∗0,U

∗

0]. In this case the benchmark utility is considered
“outdated”. This arises, for instance, when ū has been updated and the network
state has changed meantime. When the network state changes, the utility distribu-
tion also changes and the benchmark utility selected during the previous network
state does not represent anymore the new received utility at the cluster. We pro-
pose two modifications in order for the cluster to change its benchmark in such
case. The first modification is to impose the thresholds δ− and δ+ to be positive.
The second modification is to prevent the region covered by thresholds δ+ and
δ− from being larger than the range covered by L∗0 and U∗0. Figure 4.3 represents
this case when ū is outdated. If the two previous modifications are applied, then
δ+ = 0 because with (4.13) it must be negative whereas with the first modification
δ+ = max{0, δ+∗

0 }. In addition, with the second modification δ− = min{U∗0 − L∗0, δ
−∗

0 }

so in this scenario δ− = U∗0−L∗0. It follows that the cluster is sensitive to the dashed
part of received utilities and there is a positive probability that the state of the
cluster’s FSC changes. This later change results in a benchmark update such that
with some probability the new benchmark belongs to [L∗0,U

∗

0].
In practice, the bounded assumption (Definition 4.3) is not valid. For instance,

in this thesis when the utility is disturbed, it is a Poisson-Binomial process (see
Section 5.1.1 in page 100) and when all the Bernoulli parameters are such that
0 < pi < 1 (5.2) (note that if pi = 0 or 1 the link is deterministic as it always works
or does not work), then min

ξ
(u(a; ξ)) = 0 and max

ξ
(u(a; ξ)) = 1 (i.e.µ = 1 (4.6) which

violates the bounded assumption). As a consequence, with the given bounds L∗0
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Figure 4.3: Selection of thresholds δ− and δ+ in case of bounded disturbance when
the benchmark utility ū does not well represent the perceived utility.

Figure 4.4: Problem for the selection of thresholds in case of unbounded distur-
bance, i.e.µ = 1.

and U∗0, condition (4.11) is always satisfied since ū−δ− = L∗0 = 0 and ū+δ+ = U∗0 = 1
and, the cluster is insensitive to any action change or disturbance which freezes
the system. Figure 4.4 illustrates a scenario of unbounded disturbance. It presents
the resulting thresholds L∗0 and U∗0 and, the associated tolerance thresholds. One
can clearly see that the cluster becomes insensitive to any received utility value.

In order to avoid the algorithm from being frozen in this case, one needs to
release the constraint to set the bounds L∗0 and U∗0 and to allow a few quantity
of the disturbances to be outside the interval [ū − δ−, ū + δ+] (4.11). The idea is
that if the quantity of utility values allowed outside the interval is small enough,
the algorithm is going to behave as there were no disturbance in addition to be
sensitive to action changes in the network. Therefore, one needs to set different
targeted positive tolerance thresholds δ− = δ−∗ and δ+ = δ+∗ where

δ−∗ := ū − L∗, (4.14)

δ+∗ := U∗ − ū, (4.15)

where bounds L∗ and U∗ are defined such that the utility can vary a small amount
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of time outside [ū − δ−, ū + δ+] = [L∗,U∗]. The tolerance thresholds δ− and δ+ are
computed with (4.14) and (4.15) with L∗ and U∗ defined as follows

L∗ := arg max
x

{
Fu(x) ≤

R1

2

}
, (4.16)

and
U∗ := arg min

x

{
Fc

u(x) ≤
R1

2

}
, (4.17)

where R1 > 0 is the small proportion of utility values allowed outside the set
[L∗,U∗], Fu(x) = Pr {u ≤ x} and (Fc

u(x) = Pr {u ≥ x}) is the probability of u to be less
(greater) than x computed with the pdf of u noted fu in the sequel. Therefore, as u
takes discrete values in a set [x0, x1, . . . , x|L|], we compute the cumulative functions
Fu(x) = Pr {u ≤ x} and Fc

u(x) = Pr {u ≥ x} as follows

Fu(x) :=
∑
xi≤x

fu(xi), (4.18)

and
Fc

u(x) :=
∑
xi≥x

fu(xi), (4.19)

Knowing the pdf fu, it is possible to compute Fu(.) (Fc
u(.)) and hence the two

targeted bounds L∗ and U∗ that are necessary to estimate the thresholds. The
above procedure is illustrated in Figure 4.5. The dashed section of the utility
distribution is the small part of disturbed utility (R1 percent here) allowed outside
the set of utilities [L∗,U∗] from which the cluster is insensitive to. Consequently,
the bounds L∗ > 0 and/or U∗ < 1 and the cluster is sensitive to action changes when
the utility value falls in [0,L∗] or [U∗, 1]. It is interesting to note that if R1 = 0, we
go back to the problem of threshold selection illustrated in Figure 4.4 which is
that the cluster becomes insensitive to any utility variation. On the other side, if
R1 = 1, then L∗ = U∗ and δ∗− + δ∗+ = 0 (see the sum of (4.14) and (4.15)). It means
that the cluster becomes sensitive to almost all utility variations as in the TEL and
we do not take advantage of the proposed modification. Besides, the convergence
of the algorithm is not satisfying as stated in Proposition 4.1. Therefore, the
setting of R1 relies on a trade-off such that a cluster is robust to disturbances,
R1 < 1, and sensitive to action changes, R1 > 0. If there is no action change, R1

defines the probability for a cluster to leave the content state due to disturbances.
Hence, with a probability proportional to R2

1 the cluster becomes discontent and
perturbs the network by experimenting randomly. If the perturbation ε > 0, there
is a high probability that this cluster goes back to content in few iterations (it is
proportional to ε1/2K

� 0) so even if a few clusters change their state to discontent
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Figure 4.5: Solution for the selection of thresholds in case of unbounded distur-
bance.

the network is not destabilized that much due to the fast transit from discontent
to content mood. If R1 is too high, the number of discontent cluster rises due to
their increase sensitivity to disturbances (i.e. the sensitive range [0,L∗] and [U∗, 1]
has increased). Thus, the idea to set R1 is to make it close to 0 and positive such
that the probability to get simultaneously many discontent clusters is low in order
to keep the network stable, while being sensitive enough to action changes.

Note that when ū < [L∗,U∗] we can use the same modifications proposed in
the bounded case in order for the cluster to update its benchmark utility.

The utility u is the sum of independent Bernoulli rvs `i whose parameters are
pi (see Section 5.1.1 in page 100 for details). When the parameters pi are known for
all users, one can compute the density fu and then obtain the tolerance thresholds
using (4.14) and (4.15) with (4.16) and (4.17). Unfortunately, the parameters pi

cannot be known exactly since their estimation relies on a finite set of observations
(e.g. `i values received at each algorithm iteration). It follows that the pdf of u can
only be approximated and so the bounds L∗ and U∗ which implies that δ− , δ−∗

and δ+ , δ+∗. To tackle this problem, a first idea consists in using the maximum
likelihood estimate of pi to construct an estimation of fu, denoted f̂u. With this
later estimate, one finds L and U the estimates of L∗ and U∗ using (4.16) and (4.17)
respectively by replacing Fu(.) and Fc

u(.) with Fû(.) and Fc
û(.) computed with f̂u.

Figure 4.6 presents a realization of the previous procedure. The main issue of
this method is that for low number of observations, the estimated pi denoted by p̂i

has a large estimation error. An example of this problem is illustrated in Figure 4.7
where the red curve is one given value of pi and the blue curve is its maximum
likelihood estimate. One can observe that at low number of observations (less than
20), pi is largely overestimated. In addition, even for more than 20 observation an
estimation error regularly arises.
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Figure 4.6: Estimation of the pdf bounds based on fû.
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Figure 4.7: Estimation of the Bernoulli parameter using the maximum of the
likelihood.

Consequently, the pdf fû is a coarse estimate of fu as presented in the example in
Figure 4.6. Therefore, this often results in wrong tolerance thresholds estimations
as presented in Figure 4.8. For clarity, fu is withdrawn and the bounds L∗ are U∗

are kept. The targeted tolerance thresholds are computed using (4.14) and (4.15)
but recall that they are not available because fu is not known to the cluster. Instead
we compute estimated tolerance thresholds δ− and δ+ similarly by replacing L∗

with L and U∗ with U in (4.14) and (4.15). One can see in this example that
δ− < δ−∗ which makes a cluster too sensitive to disturbances as more than R1

percent of utility values impact transitions in the FSC. These changes lead to more
experimentations which in turn perturb other clusters and the overall network in
the end. More generally, this highlights the difficulty to estimate robust tolerance
thresholds (i.e. δ− ≥ δ−∗ and δ+

≥ δ+∗) with one estimation of fu. Figure 4.9 presents
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Figure 4.8: Estimation of the tolerance thresholds based on fû.

on the left the estimation of bounds L and U using the maximum likelihood
method noted "ML" and on the right the estimation of tolerance thresholds based
on L and U. The red curves are the targeted value that are not known to the cluster
and the blue curves are the estimated values. We model a Poisson Binomial rv
with 12 links with their respective Bernoulli parameters uniformly drawn. One
can observe in Figure 4.9a the wrong estimation of bounds at low number of
observations. More specifically, the problem is that L∗ is overestimated and U∗

is underestimated. The opposite (e.g. L∗ is underestimated) would not have been
a problem as one will see in the sequel. Thus, on the right in Figure 4.9b both
thresholds are underestimated at low number of observations whereas we would
have preferred these two thresholds to be overestimated (i.e. δ+

≥ δ+∗ and δ− ≥ δ−∗)
in order for the cluster to be robust to disturbances. For instance, δ+ = 0 under 20
observations whereas it must be at least δ+∗ = 0.1 to ensure the cluster from not
being perturbed by more than R1 percent of disturbances. The consequences on
the network performance of cluster sensitivity to disturbances are highlighted in
Section 4.6.2.

In this thesis, we thus propose a different solution such that, instead of esti-
mating pi, we estimate an interval [p−i , p

+
i ] that contains pi. Let fu− and fu+ be the

pdf obtained with all pi replaced with p−i and p+
i respectively (then p−i ≤ pi ≤ p+

i ).
Let also Fu−(.) and Fc

u+(.) be the distribution functions computed as in (4.18) and
(4.19) but with fu−(.) and fu+(.) respectively. We conjecture the following result.

Conjecture 1. If for all i ∈ L, pi ≥ p−i , then ∀x, Fu−(x) ≥ Fu(x) and Fc
u(x) ≥ Fc

u−(x).

This result can be proved in a Binomial case where ∀i, pi = p but it remains an
open question when dealing with a Poisson Binomial distribution. Based on this
conjecture, Figure 4.10 presents the three pdfs fu− , fu and fu+ and the bounds L∗
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Figure 4.9: Illustration of the error estimation using a maximum likelihood pro-
cedure to compute the tolerance thresholds.

Figure 4.10: Representation of the pdfs fu− and fu+ based on the Conjecture 1.

and U∗ computed using fu. The pdf fu is dashed because in practice we cannot
compute it. The pdf fu− provides a cumulative function Fu− that is greater than
Fu. Similarly, the pdf fu+ provides a complementary cumulative function Fc

u+ that
is greater than Fc

u.

From these observations, we deduce that the estimated bounds L and U of L∗

and U∗ are computed based on fu− and fu+ as illustrated in Figure 4.11. For clarity,
the pdf fu is withdrawn and the bounds L∗ and U∗ are kept. The arrows mean
that when the number of observations increases both pdfs tends to fu, hence the
bounds L and U respectively tend to L∗ and U∗.
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Figure 4.11: Bounds selection based on pdfs fu− and fu+ .

Figure 4.12: Tolerance thresholds selection based on pdfs fu− and fu+ .

More Formally, we compute L and U using Fu−(.) and Fc
u+(.) as follows

L = arg max
x

{
Fu−(x) ≤

R1

2

}
, (4.20)

U = arg min
x

{
Fc

u+(x) ≤
R1

2

}
, (4.21)

where with Conjecture 1, L ≤ L∗ and U ≥ U∗. With the bounds L and U it is possible
to compute the tolerance thresholds δ− and δ+ as illustrated in Figure 4.12. The
targeted tolerance thresholds δ−∗ and δ+∗ are computed using (4.14) and (4.15)
respectively. However, we know that these values are not available because we
cannot compute fu. Therefore, a similar procedure is employed to compute δ−

and δ+ that is based on L and U. In Figure 4.12, one can see that δ+
≥ δ+∗ and

that δ− ≥ δ−∗ hence, clusters do not react untimely to utility variations. Thus, the
estimated tolerance thresholds δ− and δ+ are given by

δ− = ū − L, (4.22)
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δ+ = U − ū, (4.23)

and do not underestimate the targeted tolerance thresholds δ−∗ and δ+∗ given by
(4.12) and (4.13) respectively (i.e. δ− ≥ δ−∗ and δ+

≥ δ+∗). Note that to deal with
the case in which ū < [L,U] we use the same modifications as proposed in the
bounded and unbounded case which consists in keeping the thresholds positives
and such that δ+ + δ− ≤ U − L.

However, remind that the interval [p−i , p
+
i ] is also computed using a finite

number of observations so there is a probability such that∃i, pi ≤ p−i or that pi ≥ p+
i .

In such case, the hypothesis of Conjecture 1 is not verified and it is possible that
Fu−(x) ≤ Fu(x) or Fc

u(x) ≤ Fc
u−(x). Consequently, the estimated tolerance thresholds

underestimate the targeted thresholds which results in a cluster that becomes too
sensitive to disturbances.

In this thesis, we estimate the confidence interval [p−i , p
+
i ] of pi with a Bayesian

method described afterwards. The reason to select a Bayesian procedure is that
confidence interval obtained by directly inverting the binomial distribution is
overly conservative [48]. In addition, other confidence interval approximations
just as the adjusted Wald or Score intervals [48] while better than the exact interval,
either perform badly at low number of sample or do not provide the requested
coverage in average. We choose a Bayesian approach for its simplicity to update
through time and its performance for any value of the Bernoulli parameter [49].
This approach is described as follows.

The confidence interval Ci(R2) = [p−i , p
+
i ] contains the parameter pi with a

confidence (1 − R2), i.e. R2 is the probability that pi < Ci(R2). This interval is
computed with the posterior distribution of pi. The Bayesian approach relies
on the good choice of a prior for pi, noted ppi(.). Let a x = (x1, . . . , xM) be the
M measurements of a Bernoulli variable with the parameter pi. It follows that
yM =

∑M
`=1 x` is a binomial random variable with parameters M and Mpi. The

likelihood of observing yM = k is

p(yM = k|pi) =

(
M
k

)
(pi)k(1 − pi)M−k. (4.24)

It is important to note that p(yM = k|pi) is a beta distribution, so p(yM = k|pi) =

Beta(pi, k + 1,M − k + 1) [50] (26.1.33 page 930) where

Beta(p, a, b) =
1

B(a, b)
pa−1(1 − p)b−1, (4.25)

where B(a, b) is the beta function ([50] 6.2.1). It is practical to employ a prior that
leads to a posterior that is easy to deal with. In this case, a prior that follows a
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beta law
ppi(x) ∝ (x)α−1(1 − x)β−1. (4.26)

leads to a posterior that is also a beta law as follows [51]

p(pi|k,M) = Beta(pi, k + α,M − k + β) (4.27)

If there is no information on pi, the prior can be chosen such that it is a uniform
distribution, i.e. ppi(x) = Beta(x, 1, 1). However, with this procedure we have
observed in the simulations, that the convergence speed of thresholds is slow
when the Bernoulli parameter is either close to 0 or 1. This leads us to use instead
a Jeffrey’s prior which is defined by ppi(x) = Beta(x, 1/2, 1/2) [51] (i.e.α = β = 1/2
). This prior distribution increases slightly the probability for pi to be close to 0
or 1. Consequently, the convergence speed of the tolerance interval estimation is
increased when pi is close to 0 or 1. An equal-tailed confidence interval for pi with
a confidence (1 − R2) is obtained by solving the following two equations∫ p−i

0
Beta(p, k + 1/2,M − k + 1/2)dp =

R2

2
, (4.28)∫ 1

p+
i

Beta(p, k + 1/2,M − k + 1/2)dp =
R2

2
. (4.29)

It is equivalent to invert the incomplete beta function ([50] 26.5.1) in R2
2 and 1− R2

2

and this provides p−i and p+
i respectively. Figure 4.13 presents the result of the

above procedure to estimate interval that contains the Bernoulli parameter with a
confidence 1−R2. The red curve is the Bernoulli parameter to find, the dashed blue
curve is p−i obtained after solving (4.28) and the plain blue curve is p+

i computed
using (4.29). The difference between Figures 4.13b and 4.13a is a change in R2.
Note that in both case the parameter pi is well bounded. The parameter R2 can
be seen as the risk that pi < [p−i , p

+
i ]. Thus one can observe that in Figure 4.13a

the interval defined by [p−i , p
+
i ] seems narrower than the one in Figure 4.13b. The

reason is that, the greater R2, the narrower the interval [p−i , p
+
i ] and, the more

probable to not bound pi. This interval converges faster as R2 increases but at the
expense of accuracy to bound pi which in our case is very important.

Finally, with all p−i and p+
i one computes Fu−(.) and Fc

u+(.) to get L and U with
(4.20) and (4.21) respectively. Figure 4.14a presents a realization of this procedure
on a specific example with 12 links whose Bernoulli parameters are uniformly
drawn. In comparison to the maximum likelihood estimation presented in Fig-
ure 4.9a one can see that the bounds L ≤ L∗ and U ≥ U∗ which ensures a robust
estimate of tolerance thresholds. Then, it remains to compute δ− and δ+ with (4.22)
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Figure 4.13: Illustration of the interval [p−i , p
+
i ] estimation using a Bayes method.
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Figure 4.14: Illustration of the bounds L and U and the tolerance estimations using
a Bayes method.

and (4.23). This procedure is illustrated in Figure 4.14b in which we observe the
desired behavior of robust tolerance thresholds, i.e. δ− ≥ δ−∗ and δ+

≥ δ+∗. In addi-
tion, in this specific realization one can note the better convergence speed of the
proposed procedure in comparison to the maximum likelihood one in Figure 4.9b.

Figure 4.15a presents a second example of tolerance threshold estimation but
for a second draw of Bernoulli parameters. One can notice that the thresholds
sometimes increase again. This behavior can have severe consequences on the
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Figure 4.15: A solution to tolerance thresholds jumps.

stability. For instance, a cluster can increase the thresholds such that, in a worst
case, it becomes progressively insensitive to a disturbance whose deviation in-
creases due to network action changes. This would hence prevent the cluster
from changing its benchmark whereas the network state has changed. One of the
solution is to not allow the thresholds to increase once the estimation process has
started as presented in Figure 4.15b. With the proposed solution, the tolerance
thresholds converge to the targeted value without jumping untimely.

Finally, the procedure to adapt the tolerance thresholds on the fly is presented
in Algorithm 2 and summarized as follows. Let note `i := (`i(1), . . . , `i(M)) the
M measurements of the i working link metric which are used to estimate the
thresholds. The `i(.) are Bernoulli rvs with parameter pi which is not known to
the cluster. The first step is to compute the pdfs fu− and fu+ with the Bernoulli
parameter p−i and p+

i obtained after bounding pi using a 1−R2 confidence interval
and measurements. With these densities, one can compute a lower bound L of
L∗ and an upper bound U of U∗ using (4.20) and (4.21). These bounds are used
to obtain the thresholds δ+

0 and δ−0 but it remains several steps before getting the
estimated thresholds δ− and δ+. The first step is to keep the thresholds positive
and less than U − L in order for the cluster to change its benchmark utility when
it is outdated as illustrated in Figure 4.3. The second and final step is to decrease
the thresholds if the new computed value is smaller than the previous one only
when the number of measurement M > 1. If M = 1 the tolerance thresholds are
initialized with the computed value.
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Algorithm 2 Compute the thresholds δ− and δ+

Input: R1, R2, ū, |L|, ∀i ∈ L, `i = (`i(1), . . . , `i(M)), δ−(t), δ+(t)
Output: δ−(t + 1), δ+(t + 1)

1: for i = 1 to |L| do
2: p−i ← solve (4.28) using R2 and, k =

∑M
j=1 `i( j),

3: p+
i ← solve (4.29) using R2 and, k =

∑M
j=1 `i( j),

4: end for
5: fu−(.) ← this pdf is computed using convolution of the pdf of Binomial vari-

ables with parameter p−i (e.g. a convolution method is given in [52]),
6: fu+(.)← as in the previous line but with p−i replaced with p+

i

7: Fu−(.)← computed using (4.18) with fu(.) replaced by fu−(.),
8: Fc

u+(.)← computed using (4.19) with fu(.) replaced by fu+(.),
9: L← use (4.20) with R1,

10: U← use (4.21) with R1,
11: δ−0 = ū − L as in (4.22),
12: δ+

0 = U − ū as in (4.23),
13: δ−2 ← min{δ−1 ,U − L} with δ−1 ← max{0, δ−0 }, this condition is to avoid ū from

being outside [L,U],
14: δ+

2 ← min{δ+
1 ,U − L} with δ+

1 ← max{0, δ+
0 }, this condition is to avoid ū from

being outside [L,U],
15: if M > 1 then {If there are more than one measurement to process the estima-

tion}
16: δ−(t + 1)← min{δ−(t), δ−2 }, this line and the next one avoid jumps in thresh-

olds estimations as illustrated in Figure 4.15
17: δ+(t + 1)← min{δ+(t), δ+

2 },
18: else {If there are only one measurement the thresholds are initialized}
19: δ−(t + 1)← δ−2 ,
20: δ+(t + 1)← δ+

2 ,
21: end if
22: return δ−(t + 1), δ+(t + 1).
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4.5.2 General case

The estimation process of tolerance thresholds described above must be based
on stationary observations to converge without bias. That is why we have fixed
the action vector a. In practice, the action vector is time varying since clusters
experiment new actions, and they react to network changes (e.g. clusters mobility
that modify the interference and hence the utility, experimentations from other
clusters) by modifying their own action. This section presents a procedure to
keep only stationary observations so as to update the thresholds. Note that as
long as cluster do not move and do not experiment the received measurements are
assumed to be stationary. In our case, the observations are the one bit feedback
from each link i ∈ L, (`i(1), . . . , `i(M)), where M is the number measurements
available. In the following, we consider that these observations are stored in a
memory, denoted by `i(t) = (`i(1), . . . , `i(M)) at time t for link i. This memory
provides the input for the estimation procedure presented in Algorithm 2 in the
previous section. Thus, the difficulty is to fill this memory with only stationary
observations. For instance, if a cluster experiments a new action, the received `i

for all i are not stationary with previous measurements as the network action has
changed. Thus, the received measurement do not have to be taken into account
in the thresholds estimation process and it is not added to the memory `i(t + 1) .

The procedure to fill `i(t) at time t is presented in Algorithm 3 and is indepen-
dent of the RODL or RTEL algorithms. We consider three modes to update the
memory: (i) add the received information to the memory, (ii) keep the memory
unchanged, (iii) reset the memory and add the current received measurement to
it. The reasoning contains steps based on each algorithm state controller that are
summarized as follows. Let suppose initially that the memory of the cluster k,
`i(t), is filled with stationary information.

The first step consists in testing if the cluster experiments a new action or not.
If it experiments, the state of the network changes and the received information,
`i for all i, is not stationary with respect to the information stored in `i(t) and must
not be added to it (i.e. either update mode (ii) or (iii) will be selected depending on
further conditions described in the sequel). If it does not experiment, the cluster
needs to check if the received information is stationary with what has been stored
into `i(t). In this case, the cluster cannot know if the network state has changed
(it is not aware of other clusters’ actions) but, if u ∈ [ū − δ−, ū + δ+] the cluster
considers that the network state has not changed. Therefore, from a cluster point
of view, the received `i are stationary with respect to the information contained in
`i(t). This information is stored which is noted `i(t+1) = (`i(1), . . . , `i(M), `i(M+1))
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with `i(M + 1) = `i (i.e. update mode (i)).
If the cluster experiments or, if it does not experiment but u < [ū − δ−, ū + δ+],

then the observation received, `i, are not stationary with respect to the information
in `i(t) (i.e. either update mode (ii) or (iii) will be selected). In this scenario there
are two possibilities, either the benchmark is updated, noted case (a) or it is
not, noted case (b). In case (a), the new state is the future benchmark therefore
the information stored in `i(t) is outdated as it corresponds to the observations
related to the former state. Consequently, the memory `i(t+1) is reset and the new
information is stored which is noted `i(t + 1) = (`i(1)) with `i(1) = `i (i.e. update
mode (iii)). In case (b), the observation received is not stationary with respect to
`i(t) an it cannot be added to it. In addition, the state has not necessarily changed
(i.e. no benchmark update) so the memory cannot be refreshed that is why, we
keep it unchanged (i.e. update mode (ii)).

It is worth mentioning that the memory `i(t) can be fulfilled with any type
of observations using this procedure as long as either RTEL or the RODL are
employed. However, in our case we are specifically interested in the bits feedback
`i from each link.

4.6 Numerical results

This section presents the numerical results related to the robust TE algorithms
presented in Section 4.3, namely the RTEL and RODL (page 55). It also presents the
numerical results associated to the enhancement proposed in Section 4.5 that are
related to the capacity for each cluster to adapt online their tolerance thresholds.
In addition, we provide numerical results to validate in average the performance
of the adaptive RTEL. More precisely, the proposed algorithms are random in
the sense that the choice of channel is governed by a probability distribution.
In this sense, the performance of algorithm varies from one realization to the
other. It is of much importance to study the average performance of the proposed
modifications.

Section 4.6.1 presents the different disturbance models considered. Section 4.6.2
provides results to valid, in case of fading, the assumption on the bounded distri-
bution of the utility (see Section 4.2). The second step of this section is to sustain
the Proposition 4.1 that presents the impact of the stochastic process on TEL and
ODL algorithms. Then, in Section 4.6.3, we present results involving the proposed
robust algorithms where it is shown that their performance coincide with the non
modified algorithms in a deterministic environment. Section 4.6.4, presents re-
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Algorithm 3 Update of memory sk

Input: `i(t) = (`i(1), . . . , `i(M)), a, ā(t), ā(t − 1), u, ū(t), ū(t − 1), δ−, δ+, ∀i `i,
Output: `i(t + 1)

1: STEP 1
2: if a , ā then
3: go to STEP 3
4: else
5: go to STEP 2
6: end if
7: STEP 2
8: if u ∈ [ū − δ−, ū + δ+] then
9: ∀i, `i(t + 1) = (`i(1), . . . , `i(M), `i(M + 1)) with `i(M + 1) = `i, the new obser-

vation is added to the memory.
10: go to END
11: else
12: go to STEP 3
13: end if
14: STEP 3
15: if (ā(t), ū(t)) , (ā(t − 1), ū(t − 1)) (i.e. the benchmark has been updated) then
16: ∀i, `i(t + 1) = (`i(1)) with `i(1) = `i (i.e. M = 1), the memory is refreshed with

the new observations.
17: go to END
18: else
19: `i(t + 1) = `i(t), nothing happens,
20: go to END
21: end if
22: END
23: return `i(t + 1)
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sults related to the enhanced adaptive algorithms. Finally, Section 4.6.5 provides
thorough results that compare the TEL and the enhanced RTEL.

4.6.1 Clusters communication modelling

The section presents the SINR formulas that will be used in numerical simula-
tions to compute the utility functions. These formulas are derived in Chapter 5
which is dedicated to the study of the utility statistics and the SINR modeling
in the Rayleigh fading context for the NB and WB cases. Depending on the con-
text (deterministic/stochastic and types of scheduling), we consider three cases:
(i) worst case of the deterministic context, (ii) worst case of the stochastic con-
text named configuration 1, (iii) multiple access with random scheduling in the
stochastic context named configuration 2.

4.6.1.1 Worst case in the deterministic context

In the first case, the utility is deterministic. The SINR formula is given by (3.1)
which is a constant (i.e. we do not consider averaging errors). As a worst case,
we assume that receivers in a cluster are interfered by all nodes belonging to a
different clusters on the same channel (i.e. the setMn in (3.1) contains all nodes of
cluster n). Note that this worst case does not exist in practice since transmitters
are scheduled to avoid intra cluster interference. With the SINR, one can compute
the working link metrics (3.2) and then the utility with (3.3) in page 21. This case
is denoted by AWGN.

4.6.1.2 configuration 1: worst case fading

In configuration 1, we consider a worst case with Rayleigh fading in which we
assume that receivers in a cluster are interfered by all nodes belonging to different
clusters on the same channel (i.e. the set Mn of transmitting nodes in cluster n
is composed of all of its nodes). The SINR formula that takes into account the
Rayleigh fading are presented in details in Chapter 5. We consider flat fading
(noted NB fading) and frequency selective fading (noted WB fading). The SINR
is given by (5.5) in NB (page 101) and (5.14) in WB (page 105). Therefore, the
working link metric in (3.2) can be written for link i in cluster k

`k
i (a) = 1

{Γk
i (a)>Γ0}

, (4.30)



78 4. Distributed channel allocation in presence of disturbances

with

Γk
i (a) =


αk

i SNRk
i

1+
∑

n∈Ik

∑
j∈Mn α

n,k
j,ir

INRn,k
j,ir

, (5.5) in NB fading,

−β log
(

1
Nc

(∑Nb−1
m=1 Ncce

−
SINRk

i (m)
β + N′cce

−
SINRk

i (Nb)
β

))
, (5.14) in WB fading,

(4.31)
where the SINR in each block m of coherent subcarriers is given by the NB SINR
in (4.31) with the indices of the block added as follows

SINRk
i (m) =

αk
i (m)SNRk

i

1 +
∑

n∈Ik

∑
j∈Mn

αn,k
j,ir

(m)INRn,k
j,ir

. (4.32)

4.6.1.3 configuration 2: multiple access with scheduling and fading

In configuration 2, we consider Rayleigh fading and that nodes are scheduled
in a TDMA scheme with several possibilities to transmit during an iteration of
algorithms. An algorithm iteration is divided into Q time slots and, the node that
transmits at slot q in cluster k is noted iq(k). The sequence iq, for q = 1, . . . ,Q, is
drawn randomly from one iteration to the other such that each node can transmit
M times during the iteration. Consequently, we propose a new definition of a
working link in this context as follows

`k
i (a) := 1

{Lk
i (a)>Γ1}

, (4.33)

where Γ1 is a threshold that belongs to [0, 1] and Lk
i (a) is the ratio of successful

transmissions of link i. This ratio is given by

Lk
i (a) :=

1
M

Q∑
q=1

δiq,it1
{
Γk

iq ,ir
(a)>Γ0

}, (4.34)

where δi, j is the dirac function, Γk
iq,ir

(a) is the SINR of link (iq, ir) computed during
slot q. One can modify slightly the SINR defined in (4.31) to compute the one in
slot q except that the interference depends solely on nodes that transmit on the
same resource (i.e.Mn = {iq(n)}):

Γk
iq,ir(a) =


αk

iq ,ir
SNRk

iq ,ir

1+
∑

n∈Ik
αn,k

iq(n),ir
INRn,k

iq(n),ir

, (5.5) in NB fading,

−β log

 1
Nc

∑Nb−1
m=1 Ncce

−

SINRk
iq ,ir

(m)

β + N′cce
−

SINRk
iq ,ir

(Nb)

β

 , (5.14) in WB fading,

(4.35)
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Table 4.1: Simulation parameters values

N 8 kb 1.38 10−23 WK−1s Γ0 4.3 dB
PTx 1 W T 238 K nit 15000
B 250 KHz Pb 7.9 10−15 W

where the SINR in each block m of coherent subcarriers is the NB SINR in (4.35)
with the indices of the block added as follows

SINRk
iq,ir(m) =

αk
iq,ir

(m)SNRk
iq,ir

1 +
∑

n∈Ik
αn,k

iq(n),ir
(m)INRn,k

iq(n),ir

. (4.36)

Note that the set Mn of interfering nodes in cluster n corresponds to the
transmitting node on the same resource iq(n) which is why the sum in (4.35) and
in (4.36) is removed in comparison to (4.31) and (4.32).

4.6.2 Disturbed utility and its impact on TE algorithms

This section presents numerical results related to the impact of disturbance on the
utility and on the TEL and ODL algorithms. More specifically, we present results
that assess Proposition 4.1 (page 57) which states the loss of efficient convergence
properties of both algorithms in a disturbed environment.

The ad hoc clustered network used in simulation is given in Figure 3.3. Pa-
rameters are contained in Table 4.1. The parameter Γ0 is set such that the BER is
10−2. Unless specified, experimentation probability in TEL and RTEL is ε = 10−3

whereas for ODL and RODL one need a lower value to get similar performance
εc = 10−4 (i.e. ε = 0.36). We consider one less channel resource than the number
of clusters so the results are expected to be lower than in Section 3.4.2 (page 27)
where there are as many cluster as channels. Such a configuration is set to force
reuse of frequency channels. In addition to this effect, the fading also decreases
the maximum available social welfare.

Figures 4.16 present the different average social welfare behavior of TEL in an
AWGN channel on the left and with Rayleigh fading on the right. The black curve
is the average social welfare (see Definition 2.3 in page 12) noted Wm. It is the
normalized sum of all clusters’ utilities. The red curve is the average benchmark
social welfare (see Definition 3.2 in page 28) noted Wm. It is the normalized sum of
all clusters’ benchmark utilities. A stable red curve means that the network does
not change its benchmark and is relatively stable. The black curve can be subject
to high variations due to experimentations and fading. Clearly, there is a loss of
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(a) TEL with AWGN channel.
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(b) TEL in configuration 1.

Figure 4.16: Impact of disturbances on the average social welfare for the TEL.
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(a) ODL with AWGN channel.
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(b) ODL in configuration 1.

Figure 4.17: Impact of disturbances on the average social welfare for the ODL.

stability when a stochastic payoff is considered. With TEL, most of the clusters
are discontent as explained by Proposition 4.1, so they act randomly which leads
to the observed behavior with large outages. However, with the disturbance,
the average of Wm over time is good despite outages. The reason is that clusters
select channels uniformly when discontent. So they are spread over all available
channels which, in average, provides almost good performance.

Figures 4.17 present the same results than in Figures 4.16 but with the ODL
algorithm. The conclusion are similar in comparison to the TEL case. One can
note that the convergence rate in Figure 4.17a is slower than in Figure 4.16a. In
addition, outages in Figure 4.17b are larger than in 4.16b.
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(a) Constant tolerance threshold δ = 0.25.
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(b) Constant tolerance threshold δ = 0.15.

Figure 4.18: Average social welfare for RTEL in configuration 1.

4.6.3 Robust algorithms with fixed tolerance δ

This section presents results related to the RTEL and RODL algorithms described
in Section 4.3 page 55. The network used for simulations is the same as the one
given in Figure 3.3. Parameters are contained in Table 4.1.

Figures 4.18 present the average social welfare with the RTEL for different
threshold values. As in Section 4.6.2, the black curve is the average social wel-
fare noted Wm and the red curve is the average benchmark social welfare noted
Wm. The global decrease in average social welfare when comparing results in
Figure 4.16a with results in Figure 4.18a is due to fading. Wm varies a lot because
of the fast fading but, one can notice that Wm is quite stable as in Figure 4.16a.
The tolerance stabilizes the network. On the right, in Figure 4.18b, the tolerance
threshold is decreased. The stability also decreases from Figure 4.18a to Fig-
ure 4.18b (see Wm variations) but, during instabilities, the social welfare is above
the stable benchmark social welfare. This highlights that making the algorithm
more robust (i.e. high tolerance level) can also prevent it from finding a state with
a high social welfare. Globally, in these realizations, the modifications improve, in
term of social welfare, the behavior of the algorithm in presence of disturbances.

Figures 4.19 present results with RODL algorithm in presence of Rayleigh
fading. Note that the tolerance level is increased in comparison to 4.18. The
tolerance in RODL also stabilizes the behavior of the network and the Wm behaves
similarly to the case without disturbance in Figure 4.17a. In Figure 4.19b, the
tolerance level is decreased and leads to some instability. However, the network
converges faster to an average good social welfare in comparison to Figure 4.19a.

Numerical results presented in Figures 4.18 and 4.19 highlight the following
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(a) Constant tolerance threshold δ = 0.34.
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(b) Constant tolerance threshold δ = 0.25.

Figure 4.19: Average social welfare for RODL in configuration 1.

observations. The RODL seems less stable than the RTEL and this involves the
presence of strong outages. In addition, in these realizations, the RODL algorithm
has more difficulties than the RTEL to find and remain in a high social welfare state.
Generally, when there are disturbances, the presence of a tolerance threshold can
stabilize the benchmark social welfare similarly to the case without disturbances.
In addition, decreasing the tolerance leads the network to an average good social
welfare faster but at the expense of the stability. On the contrary, a large tolerance
level can freeze the network in a suboptimal state (e.g. see Figures 4.18a or 4.19a).
Consequently, the tolerance threshold needs to be set carefully and accurately.

4.6.4 Tolerance adaptation in RTEL and RODL

In this section, we provide numerical results with the enhancement proposed
previously. The network is the same as presented in Figure 3.3. The parameters are
listed in Table 4.2. The parameter Γ0 is set such that the BER is 10−2. With R1 = 0.01,
the tolerance thresholds should cover at least 99 % of the utility distribution.
Parameter R2 is chosen such that the convergence of the confidence intervals of
the Bernoulli parameters are quite fast while the tolerance thresholds estimation
is robust (i.e. the tolerance thresholds are not too small, see Section 4.5 for details).

Figures 4.20 present results associated with the use of RTEL algorithm and the
adaptive thresholds. More specifically, Figure 4.20a presents the average social
welfare where the black curve is the average social welfare (see Definition 2.3)
noted Wm and the red curve is the average benchmark social welfare (see Definition
3.2) noted Wm. Figure 4.20b presents, for cluster 6, the utility, the benchmark utility
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Table 4.2: Simulation parameters values

N 8 T 238 K R1 0.01
PTx 1 W Pb 7.9 10−15 W R2 0.4
B 250 KHz Γ0 13.4 dB
kb 1.38 10−23 WK−1s nit 15000
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(b) Utility of cluster 6

Figure 4.20: Behavior of the network with RTEL algorithm in configuration 1.

and thresholds variations during 3000 iterations. One can observe that adaptive
thresholds manage to keep the network stable even in the presence of disturbances
as in the fixed threshold case presented in Figures 4.18. On the right, Figure 4.20b
shows the capacity for the thresholds to adapt online to the utility distribution.
The tolerance thresholds are sometimes reset and converge to a new value (e.g. see
around iteration 700). In addition, one can see the capacity for the cluster to not be
perturbed by experiments (e.g. after iteration 1000). There is a strong outage due
to experiments in the network and, the thresholds are not modified because this
value is outside the range defined by the tolerance levels. The thresholds keep the
cluster away from becoming discontent and stabilize the network. In comparison
to the case with a fixed tolerance level in Figure 4.18a, here the network is able to
find a better state with a higher social welfare. It is due to the fact, that clusters
adapt dynamically their thresholds and can avoid more often from being stuck
into a state because of a large tolerance level.

Figures 4.21 present the same results as in Figure 4.20 but with the enhanced
RODL algorithm. As usual, the average social welfare seems more unstable in
comparison to the RTEL case. Similarly to the fixed thresholds scenario in Fig-
ure 4.19, the adaptive thresholds manage to stabilize the network in the presence
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Figure 4.21: Behavior of the network with RODL algorithm in configuration 1.

of disturbances. In addition, it seems to have a better average social welfare in
comparison to the fixed tolerance case in Figures 4.19. Figure 4.21b illustrates
the tolerance level variations of cluster 6 between iterations 800 and 1200. One
can observe the capacity of thresholds to adapt to the utility variations (in green)
despite the instability of RODL.

We have been able to show the importance of the presence of thresholds to
stabilize the network in presence of disturbances. In addition, we have shown
that these tolerance levels should be adaptive and, a procedure to set the tolerance
online has been presented with motivated arguments and mathematical justifi-
cations. This enhancement shows the particularity to keep the performance of
both algorithms in a disturbed environment similar to a non one (from a stability
perspective). It even seems to outperform the fixed tolerance scenario in some
conditions. So far, we have considered the social welfare as a leading performance
metric to implement modifications of the TEL and ODL and each time, we have
observed one realization of the allocation process over 15 000 iterations. From a
telecommunication perspective, there are some other metrics to be observed. In
addition, one need also to test the proposed modifications over several run of the
same scenario to completely analyze the advantages and disadvantages of these
modifications.

4.6.5 Comparison of TEL with adaptive RTEL

This section provides numerical results to compare the enhanced RTEL with the
TEL. The goal is to highlight the advantages and disadvantages of the proposed
solution in a context with disturbances. TE algorithms behavior is driven by
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Figure 4.22: Example of a clustered ad hoc network with 16 clusters and 5 nodes
per cluster. Each cluster is highlighted by square containing nodes with a specific
color and an identification number on the bottom left.

stochastic processes. Players try new actions and modify their states following a
probability distribution (see RTEL description in Section 4.3 in page 55). In this
sense, their performance change depending on the network and on the realization
considered. They spend a high proportion of time in efficient states but they also
can spend some time in undesirable states. It is important to study their average
performance over several realizations and networks. We are going to test both
algorithms in configuration 1 and then in configuration 2. Performance metrics are
presented in Section 4.6.5.1. They are averaged over 5 realizations of 5 different
networks maps as the one presented in Figure 4.22. More specifically, each map
is a square of 12800 m aside separated in squares of 3200 m long. Each network
is composed of 16 clusters of 5 nodes each. Nodes are distributed uniformly in
squares.

4.6.5.1 Average ad hoc network metrics

This section presents the different metrics considered in Section 4.6.5.3. We av-
erage metrics over algorithm iterations, networks and realizations of simulations
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that are repeated several times.

• Average utility per cluster

No matter what is the configuration considered, the utility is the normalized sum
of indicator functions `k

i (see Section 4.6.1 in page 77) and is noted uk(a) for cluster
k. For each configuration one can compute the average utility per cluster

U =
1

K(n f − n0)

nk∑
t=n0

K∑
k=1

uk(at), (4.37)

where at is the network action at instant t and, n0 and n f are the first and last
iterations considered respectively.

• Average channel changes per cluster

The average channel changes of a network is the average number of time the
action changes. It reflects the global perturbation of the network. A lot of action
changes means that it does not find an appropriate action and can lead to severe
collisions. A player k has changed action from iteration t to t + 1 if

Jk(t) = 1{ak(t),ak(t+1)}, (4.38)

where ak(t) is the action played by cluster k at instant t. The average number of
channel changes per cluster is given by

J =
1

K(n f − n0)

n f∑
t=n0

K∑
k=1

Jk(t). (4.39)

• Cluster’s topology based metrics

The utility defines the global performance of each cluster but does not provide
details on their structure. For instance, it is really important to keep nodes in
cluster connected (in the sense of the working link metric `). In addition, one can
require that a message cannot be relayed more than a given number of times (e.g. 2
times) to avoid delay. Topology metrics based on graph theory are a efficient tool
to measure these constraints.

In this thesis, the topology of a cluster is defined by the adjacency matrix,
named A(k) for cluster k, and computed using the working link metrics `k as
follows

∀i = (m,n) ∈ Lk, (A(k))mn =

1, if `k
i = 1 or m = n,

0, otherwise ,
(4.40)
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where, as a reminder, Lk is the set of links in cluster k.
With this matrix, one can compute the minimum number of hops necessary

to allow a communication between two nodes. It is given by a matrix, noted D(k)
for cluster k, that can be computed as follows

∀i = (m,n) ∈ Lk, (D(k))mn = inf{c ∈N
∣∣∣(A(k)c)mn > 0}, (4.41)

where (D(k))kk = 0 and, two non connected nodes have an infinite distance. It
is then possible to compute the diameter of each cluster k that is the maximum
number of hops to connect two nodes in cluster k, and it is given by

dk = max D(k). (4.42)

It is worthwhile to remark that when dk = ∞, there are at least two nodes that
cannot communicate at the requested QoS. In practice, we never test dk > Nk,
where Nk is the number of nodes in cluster k, as Nk is the length of the longest
path in the graph. In addition, matrix D is computed with a depth first search
algorithm.

4.6.5.2 Perturbation profile and satisfaction

The numerical results presented so far are obtained using a constant perturbation
ε. In practice, this leads to very slow increasing social welfare (see results in
Sections 3.4.2, 3.5.9, 4.6.4 and 4.6). In Chapter 3, we have shown that the conver-
gence time can be of the order of 1/εa where a > 0. Usually, when dealing with
TE algorithms one need to start with high value of perturbation to converge fast
to an average good social welfare and then decreases slowly ε. In [41] authors
prove that to ensure convergence of TE algorithms with probability 1, the per-
turbation ε must decrease with a profile such that limT→∞

∑T
t=1 εt = ∞, where εt

is the perturbation at instant t. Example of profiles that fulfill this condition are
of the form εt ≈

ε0
tb with b ∈]0, 1[, where t is the iteration number and, ε0 is the

initial perturbation value. This profile rises two problems. The first problem is
that it decreases extremely slowly which involves a very slow convergence. The
second problem is that once ε has started to decrease, the network is less and less
able to adapt to changes. Solutions encountered in the literature consider first a
fast decrease of the perturbation and secondly, a possible increase of ε as soon as
some specific constraints are not satisfied.

In [35, 39], authors propose a way to decrease ε very fast if the utility of a
player is equal to 1. If the utility is less than its maximum value, the perturbation
is set to an initial value. While the utility is maximum, a player divides by two
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the perturbation at each iteration. Such a quick decrease prevents the algorithm
from converging with probability 1, however, it shows good results in practice
[35]. This process of decreasing very fast the perturbation once a given criterion is
reached reminds the notion of satisfaction [53, 54]. The idea behind satisfaction is
to satisfy each player instead of trying to maximize each player’s utility. A player
can be satisfied though the utility is not maximum.

The satisfaction can have many forms and using the utility can be one of them
[31]. In this thesis, we decided to slightly modify this point of view by taking into
account the topological structure of clusters. The diameter in (4.42) is considered
as a satisfaction function and more specifically, a cluster is satisfied as long as its
diameter is less than 2. The main advantage is that even if a link is not working
because of interference or disturbance (which means that the utility is strictly
less than 1), the diameter can still be 2 and the cluster is able to operate (i.e. we
consider that a message can be relayed once). Hence, the perturbation is initiated
less untimely than if the cluster was satisfied with a utility equal to one. Note
that the satisfaction based on the utility equal to its maximum could be relaxed
by considering clusters satisfied if their utility is greater than a threshold strictly
less than the maximum but, this would still not take into account the topological
cluster’s structure.

The perturbation profile of each cluster is generally defined as follows

εt+1 =

 ε0, if s(at) = 0,

max{εmin, vεt}, otherwise,
(4.43)

where εt is the value of the perturbation at instant t, ε0 is the initial perturbation
value, εmin is the minimum perturbation value, at is the network action at instant
t, v is positive constant strictly less than 1 (e.g. in [31], v = 0.5) and, s(.) is the sat-
isfaction function that can take two values here 0 or 1 (e.g. in [31], s(at) = 1{u(at)=1}).
These parameters are specified in the following numerical results section.

4.6.5.3 Results

• Numerical results : configuration 1

We start by presenting the numerical results associated with configuration 1. The
simulation parameters are presented in Table 4.3. We consider that transmissions
are NB and subject to Rayleigh fading (see Chapter 5 for details on the fading
model). Both algorithms, namely RTEL and TEL, are compared with an epsilon
profile given by (4.43). We set R1 = 0.98 in order to cover 98 % of utility values.
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Table 4.3: Parameters values for simulations in configuration 1

N 12, . . . , 16 PTx 1 W B 250 KHz
kb 1.38 10−23 WK−1s T 238 K Pb 7.9 10−15 W
Γ0 13.2 dB ε0 0.01N

K εmin
0.01

K

n0 2000 n f 5000 v 0.61
R1 0.02 R2 0.4

This value is a fair trade-off between covering a large amount of the utility and let
some out in order to be able to react to experiments or network action changes. The
parameter R2 = 0.4 is low because the estimation process is quite conservative. It
follows that this value enables a fast convergence of thresholds in any case while
keeping robust the convergence by above values to ideal thresholds. Parameter
is set to v = 0.61 in order that a cluster, when satisfied, goes from ε0 to εmin in five
iterations.

Figure 4.23 presents the average utility (4.37) computed over 25 simulations.
The red curve is the metric obtained using the RTEL algorithm and the black
curve is the one obtained using TEL algorithm. The vertical bars are one stan-
dard deviation above and below the average. First of all, one can observe that
the average utility increases with the number of available channels. This is an
expected behavior as there are more possibilities for the algorithm to select states
with less interference. Second, the RTEL algorithm improves performance of the
clustered ad hoc network in comparison to the TEL. The solution of adding toler-
ance thresholds enables the algorithm to reach a better average performance. This
improvement is not that significant when the number of channels becomes larger.
In this case, there exists states with low or no interference. It follows that the SNR
is high enough to avoid strong outages and consequently utility disturbances.
The working condition of the TEL are recovered and the advantages of adding
tolerance thresholds are less significant.

Note that the standard deviation of measurements is larger when using RTEL
than when using the TEL. In the RTEL, the utility variations are greater than
the thresholds levels and the network is stable in each states visited. In the con-
trary, without thresholds any utility variations are possible and the network state
changes very quickly around an average constant social welfare. Consequently,
the resulting average utility value with RTEL can be quite different (though very
good) from one simulation to the other in comparison the one obtained with the
TEL. This phenomenon can be clearly observed in Figure 4.16. In addition, when
the average utility increases, utility values are closer to one and the measurement
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Figure 4.23: Average utility computed over 5 realizations of 5 clustered ad hoc
networks with 12 to 16 channels in configuration 1. Bars represent one standard
deviation up and below the average value.

deviation decreases.

Figure 4.24 presents the average diameter per cluster. This metric decreases
when the number of channel increases. The reason is that the less interference,
the better the communication links and, hence the better the diameter. One can
notice that the diameter with the RTEL is lower than with the TEL. It highlights
the fact that a greater utility does not imply necessarily a better cluster topology.
However, both global behavior are linked. When the utility increases, the diameter
decreases. One of the reasons of the gap observed is that the tolerance thresholds
can stabilize clusters in states in which the diameter, is sometimes higher than
1. Without thresholds as soon as the diameter is greater than two, it is highly
probable that clusters change their actions and, in average, this leads to the small
gap observed.

Figure 4.25 presents the average number of channels changes per cluster. In
this figure, the impact of the proposed solution is clearly visible. The network
is impressively stabilized with the solution in comparison to the TEL. It follows
that some control has been recovered as there are few channel changes and a high
average utility. In the TEL case however, there are a lot of channel changes due to
the high number of discontent clusters. These players act totally randomly and
the consequence is a lost in control and a lower average utility. Again, when the
number of channels increases, the average channel changes with TEL algorithm
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Figure 4.24: Average diameter computed over 5 realizations of 5 clustered ad hoc
networks with 12 to 16 channels in configuration 1. Bars represent one standard
deviation up and below the average value.

comes close to the one obtained with RTEL as the hypothesis needed to get the
TEL works are recovered (i.e. there exists states with no disturbances).

The average channel change is never null because the perturbation profile
never goes lower than 10−3. It means that players try new channels at least every
1000 iterations even if they are satisfied.

Figure 4.26 presents the average 10th percentile of the utility. It is the utility
value that is above the 10 % of the lowest utility values. It represents the impor-
tance of outages or strong decreases in the utility. The reason to highlight this
result is to show that a low number of channel changes implies less collisions and
thus lower outage utilities. One can see that the red curve is, except for N = 16
above the dark one. This means that strong utility outages are more significant
when there are no tolerance thresholds which justifies the use of the modification
in such case. It appears that this effect is reduced when the number of channel
increases and can even be reversed. When N = 16 the red curve is below the black
one. As it is explained in previous numerical results, in this situation, hypotheses
needed for the TEL are recovered and it performs well. In addition, this also
shows that the add of tolerance threshold can prevent the network from reaching
better performance states. This phenomenon is explained more accurately in the
sequel when considering configuration 2.

• Numerical results : configuration 2
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Figure 4.25: Average frequency of channel changes per cluster computed over 5
realizations of 5 clustered ad hoc networks with 12 to 16 channels in configuration
1. Bars represent one standard deviation up and below the average value.
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Figure 4.26: Average utility 10th percentile computed over 5 realizations of 5
clustered ad hoc networks with 12 to 16 channels in configuration 1. Bars represent
one standard deviation up and below the average value.

This section deals with the results obtained considering configuration 2. The
simulations parameters are similar to those presented in Table 4.3. In addition,
we consider that each node transmits M = 5 times during a TE iteration and that
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the threshold Γ1 = 0.8. In this case, for each node at most one message can be lost
among all transmissions during an iteration.

Figure 4.27 presents the average utility (4.37) as in Figure 4.23 but with configu-
ration 2. First of all, one can notice that at lower number of channels one get similar
or better performance in comparison to results obtained under configuration 1 in
Figure 4.23 and this for both algorithms. This is an expected behavior because
under configuration 2 the interference generated is lower than in configuration 1 (see
Section 4.2). In addition, one can notice two different regions. The first one before
N = 15 and the second one above N = 15. The first region corresponds to what has
been observed in configuration 1 results in Section 4.6.5.3. In this region, the RTEL
performs better because no matter what is the state, there are disturbances on the
utility so the tolerance thresholds have an important role. However in the second
region, results are less convincing. It appears that the average utility is stuck
just below one in comparison to results obtained with TEL that reach one (black
curve). The reason is that, in the RTEL, once the benchmark plus the threshold of
a cluster is equal to one, it is stuck in the state unless it goes to discontent which
can take a long time (e.g. a cluster needs two consecutive strong enough collisions
to go through discontent).

Figure 4.28 illustrates the latter phenomenon. It shows the utility of cluster
5 with N = 16 during 600 iterations of one of the simulation’s realizations. One
can notice that, after a few hundred iterations, ū + δ+ = 1 but the average utility
is less than one. This cluster is interfered with cluster 4 and both are then sen-
sitive to fast fading. Cluster 5 cannot, by its own, select an action that improves
the average utility and is stuck in a suboptimal state. To accept a new action,
the experimentation must result in a higher utility than ū + δ+ which is already
maximum. Note that in the simulations, we have observed that both clusters are
satisfied (i.e. diameter less than 2) though the utility is not equal to 1.

Figure 4.29 presents the average diameter per cluster. The average diameter
is less than 2 in both cases which fulfills the requirement of the satisfaction.
In addition, as in the previous configuration it decreases with N. There are
some remarks to add. Both regions described in Figure 4.27 are also visible. The
diameter of both algorithms is almost equal until N = 13 which is slightly different
from what has been observed in Figure 4.24. In the latter figure the diameter of
the TEL is slightly lower than the one of RTEL. After N = 13 a gap start to increase
between both curves. It is due to the robustness induced by tolerance levels which
prevents cluster from finding state with better utility and with better diameter.

Figure 4.30 presents the average number of channels changes per cluster.
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Figure 4.27: Average utility computed over 5 realizations of 5 clustered ad hoc
networks with 12 to 16 channels in configuration 2. Bars represent one standard
deviation up and below the average value.
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Figure 4.28: Instantaneous utility of cluster 5 during a realization of the simulation
with N = 16 channels.

As in Figure 4.25 the stabilization induced by the proposed solution is clearly
visible. Note that in this case when N = 16 average channel changes of both
algorithms are almost the same. This means that TEL has found a stable state
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Figure 4.29: Average diameter computed over 5 realizations of 5 clustered ad hoc
networks with 12 to 16 channels in configuration 2. Bars represent one standard
deviation up and below the average value.
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Figure 4.30: Average frequency of channel changes per cluster computed over 5
realizations of 5 clustered ad hoc networks with 12 to 16 channels in configuration
2. Bars represent one standard deviation up and below the average value.

with no disturbance that verifies the satisfaction. The existence of this state is
more probable when there are more and more channels as there exists states with
less and less interference.
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Figure 4.31: Average utility 10th percentile computed over 5 realizations of 5
clustered ad hoc networks with 12 to 16 channels in configuration 2. Bars represent
one standard deviation up and below the average value.

Figure 4.31 presents the average 10th percentile of the utility. It is the utility
value that is above the 10 % of the lowest values. Again, two working regions are
highlighted. Below N = 14 with TEL, outages are more significant than the one
with RTEL . Above N = 14 the behavior is reversed. This still justifies the use of
the tolerance when the utility is disturbed.

4.7 Conclusion

This chapter has presented modifications of the TEL and ODL algorithms, named
RTEL and RODL, that are able to operate in environment with a utility disturbed
by a stochastic process. One of the reasons to propose these modifications is that
TEL and ODL have been shown, theoretically and numerically, to loose their good
convergence properties in such disturbed environment. The convergence proof of
the RTEL has been derived under a general disturbance model. The convergence
proof of the RODL was already been proposed in the literature [34]. Both robust
algorithms have then been design to adapt to varying disturbance distribution.
For instance, the distribution depends on the network action and structure that
could vary over time. We therefore have proposed an enhancement of the RTEL
and RODL that have made them able to adapt to highly varying environment.

We have provided a numerical analysis that sustains theoretical results. We
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have shown the loss of convergence of the TEL and ODL in a disturbed envi-
ronment in which we have considered Rayleigh fading. We also have illustrated
that the RODL and RTEL were able to operate in disturbed environment. How-
ever, despite these good results we have shown that the RODL is quite unstable
just as the ODL. We have compared the results obtained with the RTEL and the
initial algorithm TEL in two configurations for a high number of simulations.
Different metrics have revealed the capacity for the robust algorithm to improve
performance when the utility was subject to disturbances. We have highlighted
the drawback that the presence of thresholds could sometimes prevent the net-
work from improving its performance. Thresholds have stabilized the network
but they could prevent some clusters from learning better actions and especially
when they had a utility close to the maximum. These scenarios have arisen when
there were almost as many channels as players. This has created states with no
disturbances which, for a reminder, are the stable states of the TEL which in addi-
tion here maximized the social welfare. However, when the utility was constantly
disturbed, at low number of available channels, the RTEL has operated efficiently
in comparison to TEL. Consequently, the two different behaviors that have been
observed, have appeared from the fact that simulations contained a mix of states
with disturbed and non-disturbed utility values. An idea to operate in such en-
vironment would be to find rules that deactivate the thresholds when necessary,
because the RTEL without thresholds becomes the TEL.
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Chapter 5

Statistics of the disturbed utility

In this chapter, we derive the statistics of the disturbed utility that are needed to
study its behavior (e.g. bounded assumption, variance,...). Since these statistics
depend on the SINR ones, we first derive the statistics of the SINR when the
propagation is modeled by Rayleigh fading.

We consider both the NB and WB fading cases modeled by flat Rayleigh
fading and frequency selective Rayleigh fading respectively. In the WB context,
the SINR is computed using a link to system abstraction using the effective SNR.
In order to get a closed form expression of the pdf of the utility, we select the
EESM abstraction since we use OFDM for the physical layer. However, since the
frequency fading coefficients are correlated over all subcarriers, we simplify the
fading model using the coherence bandwidth concept where subset of subcarriers
are subject to independent fadings. From this model, we succeed to compute the
close to exact pdf of the utility, using numerical convolution, in a simplified case
in which the interference do not experiment fading. In the general case in which
interference are subject to Rayleigh fading, although the pdf of the terms to be
convolved can be derived in closed form, we need an approximation to realize
tractable numerical convolutions.

In order to apply the previous model in simulations, one need to set the
coherence bandwidth value parameter, i.e. the number of consecutive subcarriers
that are subject to the same flat fading. However, the definition of the coherence
bandwidth (that may differ between authors) is not accurate enough to feed our
model. In addition, this bandwidth needs to be adjusted with respect to the
channel parameters (path amplitudes, path delays, ...). In this thesis, we provide
a theoretical framework to find the “right” coherence bandwidth value to perform
pdf computations and simulations. We select the coherence bandwidth such that
the pdf of the effective SNR obtained using the coherence bandwidth assumption
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fits as close as possible the one obtained using the real channel. This approach
gives a meaningful interpretation of the coherence bandwidth with respect to the
block fading model. Application of this framework is applied to a typical urban
standard channel. The relevance and accuracy of the proposed framework is
assessed by simulations comparing the Packet Error Rate (PER) obtained by both
abstractions.

Section 5.1 presents the statistical model of the utility when the SINR is a rv
and, proposes models of the SINR when transmissions are subject to different
types of Rayleigh fading such as the NB fading and the WB fading. The later
model necessitates the computation of the coherence bandwidth for which we
propose a methodology described in Section 5.2. Based on this model, we high-
lights in Section 5.3 numerical results that illustrate the steps of the methodology.
We also present a validation of the procedure by predicting with high accuracy
performance in WB OFDM schemes and we derive the utility distribution is some
cases.

5.1 Pdf of the SINR and of the utility

5.1.1 Pdf of the utility

This section, presents the general model of the utility distribution when the SINR
is time varying. For clarity, we remind some notations from Chapter 3. We
consider a wireless network composed of K clusters with possibly different sizes.
The set of clusters is K . The set of N possible resources is denoted by N . In a
cluster, a link i is said to work if its SINR at the receiver side is above a predefined
threshold Γ0 ≥ 0. Remind that, the utility function is, according to (3.3),

uk(a) =
1
|Lk|

∑
i∈Lk

`k
i (a), (5.1)

where `k
i (a) = 1

{SINRk
i (a)>Γ0}

. When the SINR is a rv, then `k
i (a) is a binomial rv

equal to one when link i in cluster k is working and zero otherwise. The Bernoulli
parameter of `k

i (a), noted pk
i , is given by

pk
i (Γ0) := Pr

{
SINRk

i > Γ0

}
, (5.2)

which can be seen as the complementary Cumulative Density Function (cdf) of
SINRk

i (a). Define the vector b := (b1, ..., b|Lk |) where each component can take its
value in {0, 1} and the setB` := {b|

∑
|Lk |

i=1 bi = `}which is the set of all combinations
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b such that the sum of its terms is `. Since uk is a discrete rv, its distribution is
equal to its probability mass

puk(`) = Pr
{
uk =

`
|Lk|

}
, (5.3)

and the closed form of that distribution is a Poisson-Binomial one

puk(`) =
∑
b∈B`

|Lk |∏
i=1

(pk
i )

bi(1 − pk
i )

bi . (5.4)

Using the definition given by (3.3) and (5.2), the mean of the process isE [uk] =
1
|Lk |

∑
i∈Lk

pk
i which can be interpreted as the arithmetic mean of pk

i and the variance
is V(uk) = 1

|Lk |

∑
i∈Lk

pk
i (1−pk

i ). Finally, to compute the utility distribution, one need
to find parameters pk

i (5.2) that are directly linked to the cdf of the SINR. Then, a
practical way to compute the exact Poisson-Binomial distribution numerically is
to use convolution methods as presented in [52]. We consider two cases, first we
deal with the standard NB case and then, we derive the WB one.

5.1.2 NB fading

Interference is caused by nodes belonging to clusters using the same resource.
Let Mn be the set of transmitting nodes at time t in cluster n ∈ K and, Ik is
set of clusters interfering (operating on the same resource) with cluster k. The
instantaneous SINR expression of link i in cluster k considering only AWGN
channels is given by (3.1) (page 20). In a NB scheme, the useful signal as well as
the interference are subject to Rayleigh flat fading. The SINR at the receiver ir of
link i = (it, ir) in cluster k becomes

SINRk
i =

αk
i SNRk

i

1 +
∑

n∈Ik

∑
j∈Mn

αn,k
j,ir

INRn,k
j,ir

, (5.5)

where αk
i and αnk

j,ir
are the fading coefficient that impact the link i = (it, ir) in cluster

k and the interfering link ( j, ir) with j in cluster n and ir in cluster k. When
considering Rayleigh fading, signals’ power is modulated by an exponential rv
[55]. In addition, a parameter λ = 1 for the exponential rv means that there is
no power loss through Rayleigh fading. Consequently, the fading coefficient αk

i

and αnk
j,ir

follow an exponential distribution with parameter λ = 1. Here the fading
impacts at the same time the SNR and the Interference to Noise Ratio (INR) terms.
The formula (5.5) is employed in Chapter 4 as the input of the utility function in
case of NB fading.
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When the system is NB, it is possible to compute an exact expression of the
success probability pk

i (5.2). In Appendix D, we prove that for a link i = (it, ir), the
Bernoulli parameter is given by the complementary cdf of the SINR as follows

pk
i (Γ0) =

exp
(
−

Γ0

SNRk
i

)
∏

n∈Ik

∏
j∈Mn

(
1 +

Γ0 INRn,k
j,ir

SNRk
i

) . (5.6)

5.1.3 WB fading

In this section, we present a WB formula of the SINR in an OFDM system. When
such a system is subject to frequency selective fading, symbols suffer from dif-
ferent SNR over each subcarrier. This has motivated the use of link to system
mapping techniques such as EESM [56, 57]. This solution, employed in OFDM
level simulations, for instance in LTE [58, 59], maps the different SNRs over all
the subcarriers into one single effective value SNReff (so-called effective SNR) as
follows

SNReff := −β log

 1
Nc

Nc∑
i=1

e−
SNRi
β

 , (5.7)

where Nc is the number of subcarriers, SNRi is the SNR of channel i and, β is a
scaling parameter depending on the Modulation and Coding Scheme (MCS). The
basic principle to model WB OFDM system in this thesis consists in replacing the
NB SINR used in `k

i (e.g. see (5.1)) by the effective SINR computed in (5.7). Then
the computation of the utility (5.1) remains the same.

The EESM metric is useful, for instance, to evaluate the performance of wire-
less systems (e.g. PER) or to build adaptive modulation and coding schemes [60].
However, due to the nonlinearity form of (5.7), there exists no exact closed form
for its statistics. It follows that the success probability of each link i in cluster
k, pk

i (Γ0) (5.2), cannot be obtained analytically and the utility distribution cannot
be derived accordingly. The proposed approaches in the literature are based on
moment matching approximation with different distributions. Gaussian, Gener-
alized Extreme value and Pearson distributions are employed in [61], Log-normal
distribution is used in [58] and, a more accurate approximation based on beta
distribution is presented in [62].

Our approach is totally different from what has been proposed in the literature
[63] and use the coherence bandwidth assumption [64]. Under this assumption,
the SNR of subcarriers lying in the same coherence bandwidth are the same
whereas the SNR of subcarriers in different coherence bandwidth are iid. This
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changes the sum of correlated variable in (5.7) into the sum of iid rvs. It follows
that one can use numerical convolutions and a change of variables to approximate
the statistics of EESM. In comparison to moment matching methods that try to
approach the EESM distribution, this method provides the exact statistics of the
effective SNR generated with the coherence bandwidth assumption.

The benefits of this approach are manifolds. First, the independence property
between coherent bandwidth allows the realization of simple calculation to predict
accurately system performance in specific cases as one will see in the sequel. In
these cases it is also possible to compute success probability pk

i (Γ0) from which, the
utility distribution can be derived. Then, it provides a low computational method
to generate effective SINR in order to simulate WB OFDM systems in Chapter 4.
Furthermore, in practice, the knowledge of channel coefficient necessitates one
pilot training per subcarrier which involves a large amount of signaling. In future
wireless systems, the coherence bandwidth gives insights on the number of pilots
to use to recover the statistics of the channel when using EESM metric. To take
advantage of these benefits, one need to set the coherence bandwidth parameter
or the number of subcarriers to be grouped in this bandwidth.

The rest of this section is organized as follows: Section 5.1.3.1 presents how
to compute EESM when considering a real channel, Section 5.1.3.2 describes the
computation of EESM when considering the proposed block fading channel, Sec-
tion 5.1.3.3 presents the calibration of the EESM, Section 5.1.3.4 describes the
procedure to compute the statistics of EESM with the block fading channel in
the simplified model where the interference are no subject to fading and, Sec-
tion 5.1.3.5 details the similar procedure but in the full model where the interfer-
ence are subject to Rayleigh fading.

5.1.3.1 EESM model with the real channel

We consider an OFDM system with Nc subcarriers and ∆ f the frequency shift
between two consecutive subcarriers. We consider the following specular channel
model that we refer to as “real” channel in the sequel and defined as,

h(t) =

Np∑
i=1

aiδ(t − τi), (5.8)

where δ(.) is the Dirac function, Np is the number of paths, ai is the amplitude of
path i and τi is the associated delay. We consider a Rayleigh fading in the rest of
the work so, coefficients ai follow a circular complex, white and Gaussian with
zero mean and variance σ2

i distribution (e.g.CN(0, σ2
i )). The path amplitudes are
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supposed to be iid and,
∑Np

i=1 σ
2
i = 1 (the energy loss is already taken into account

in the path loss coefficient).
We start the study by considering the SNR without interference which are

introduced later in the model. The received SNR at subcarrier i, after removing
the cyclic prefix and applying a match filtering is given by

SNRi = |H( fi)|2γ, (5.9)

where γ is the expected SNR per subcarrier, and H( fi) is the Fourier transform of
(5.8) at the subcarrier i with frequency fi:

H( fi) =

Np∑
k=1

aie−2 jπ fiτk . (5.10)

According to Definition (5.7), the EESM metric obtained with the real channel
model is

SNReff(γ) := −β log

 1
Nc

Nc∑
i=1

e−
|H( fi)|

2γ
β

 . (5.11)

5.1.3.2 EESM model with the block fading channel

This section presents the model of EESM in which we take into account the
coherence bandwidth assumption. The main idea consists in considering a block
fading channel such that, the SNR is the same for each block of Ncc consecutive
subcarriers and, the fading coefficients are iid between the different blocks of
Ncc subcarriers. Consequently, the model of EESM considering the block fading
channel is given by

γeff(γ) := −β log

 1
Nc

Nb−1∑
i=1

Ncce
−
αiγ
β + N′cce

−
αNb

γ

β


 , (5.12)

where Nb is the number of independent blocks of subcarriers, N′cc = Nc−(Nb−1)Ncc

is the number of remaining coherent subcarriers after gathering them by group
of Ncc, and, αi for i = 1, . . . ,Nb are iid rvs following an exponential distribution
with parameter λ = 1. The reason to model αi as an exponentially distributed rv
comes from the exponential behavior of |H( fi)|2 in (5.9).

Since the SNR over consecutive subcarriers are not exactly equal in the real
channel, the grouping represents an approximation of the original EESM model
given in (5.11). The goal is then to find the number Ncc such that the statistics of
γeff in (5.12) obtained with the block fading channel are close to the one of SNReff

in (5.11) obtained with the “real” channel.
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The previous model is extended to consider interference. With the same
principle, the fading coefficients are considered iid from one coherence block to
another. The SINR at the receiver of link i in cluster k and in each block m is
computed as follows

SINRk
i (m) =

αk
i (m)SNRk

i

1 +
∑

n∈Ik

∑
j∈Mn

αnk
j,ir

(m)INRnk
j,ir

, (5.13)

with the difference with (5.5) that αk
i (m) and αnk

j,ir
(m) are the fading coefficients of

block m that impact the link i in cluster k and the interfering link ( j, ir) with j in
cluster n and ir in cluster k. These coefficients are iid from one block to another.
Considering the coherence bandwidth assumption, the EESM of link i in a cluster
k is modeled as follows

γi,k
eff

(γ) = −β log

 1
Nc

Nb−1∑
j=1

Ncce
−

SINRk
i ( j)
β + N′cce

−
SINRk

i (Nb)
β


 , (5.14)

where SINRk
j(m) is given by (5.13). This formula is used in Chapter 4 as the SINR

in a WB OFDM system which is inputed in the utility. To complete the model it
remains two steps. The first step presents a procedure in order to set the scaling
factor β in Section 5.1.3.3. The second step presents a methodology to find Ncc in
Section 5.2. Between these two steps, we present how the block fading assumption
can be used to obtain the statistics of EESM in Sections 5.1.3.4 and 5.1.3.5.

5.1.3.3 Calibration of EESM

In formulas (5.11), (5.12) and (5.14) the scaling factor β needs to be calibrated
for each considered MCS. We employ the standard calibration procedure in [65]
which is presented in Algorithm 4 and summed up briefly here. We use the
model described in Section 5.1.3.1 to realize the calibration. The parameter β is
optimized such that, the PER obtained for various SNReff is as close as possible to
the PER obtained for AWGN channel with the given MCS. The PER obtained in
AWGN channel serves as a reference called the AWGN-PER Look Up Table (LUT)
and is noted PERLUT. For each realization of a channel (e.g. fixed paths amplitude
and AWGN density), the PER, noted PERsim is obtained through simulation. The
SNReff is computed with (5.11). Note that SNReff depends on β. Using the LUT,
one can map a PERLUT value for each SNReff. With these both PER values, the
square difference of the logarithm of the PER, | log10(PERLUT) − log10(PERsim)|2, is
computed. The above procedure is repeated over several channel realizations.
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Then, we sum these differences over all channel realizations and, β is tuned so as
to minimize this sum.

Algorithm 4 Calibration of β

Input: PERLUT, γ = (γ1, . . . , γNsnr),β = (β1, . . . , βNβ),Nβ, Nsnr, Nch

Output: β
1: for isnr = 1 to Nsnr do
2: γ← γ(isnr), select the expected SNR per subcarrier
3: for ich = 1 to Nch do
4: h = ((a1, τ1), . . . , (aNp , τNp))← set the channel h (see Section 5.1.3.1)
5: PERsim(h, γ) ← Monte Carlo simulation of the OFDM system with the

given channel h
6: SNReff(h, γ,β)← compute the effective SNR with (5.9), (5.10) and (5.11),
7: end for
8: end for
9: β = arg min

β

{∑
h
∑
γ

∣∣∣ log10(PERLUT(SNReff(h, γ,β))) − log10(PERsim(h, γ))
∣∣∣2}

10: return β

5.1.3.4 EESM statistics and pdf of the utility in a simplified model

The main advantage to model the channel as independent blocks in Section 5.1.3.2
is that convolution can be employed to get the pdf (or the cdf) of γeff (5.12). This
computation is of interest since it helps in evaluating the statistics of the utility
(see Section 5.1.1) and the performance of wireless broadband systems using the
EESM technique. The computation requires some technical steps/details that are
provided in this section. We start by a considering a simplified model in which
there are no interference or if there are, they are no subject to fading. Hence in the
later case, the SINR over each block of coherent subcarriers (5.13) becomes

SINRk
i (m) = αk

i (m)
SNRk

i

1 +
∑

n∈Ik

∑
j∈Mn

INRnk
j,ir

, (5.15)

which can be seen as a constant multiplied by a rv that follows an exponential
distribution. The distribution of the utility requires to compute the cdf of EESM
(see Section 5.1) with the block fading channel (5.12) that is given by

Pr
{
γeff(γ) ≤ Γ

}
=Pr

Nb−1∑
i=1

e−
αiγ
β +

N′cc

Ncc
e−

αNb
γ

β ≥
Nc

Ncc
e
−Γ
β

 . (5.16)
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We change the formulation of Pr
{
γeff(γ) ≤ Γ

}
as follows

Pr
{
γeff(γ) ≤ Γ

}
=1 − Pr

Nb−1∑
i=1

Xi + X′Nb
≤ f (Γ)

 , (5.17)

where for i from 1 to Nb−1, Xi = e−
αiγ
β are iid rvs with density pX(x), X′Nb

=
N′cc
Ncc

e−
αNb

γ

β

is a rv independent from Xi with density pX′(x), and

f (Γ) :=
Nc

Ncc
e
−Γ
β (5.18)

is a positive constant. The problem of computing the cdf of γeff (5.16) can be seen

as the problem of finding the cdf of the rv Y =
∑Nb−1

i=1 e−
Aiγ
β +

N′cc
Ncc

e−
ANb

γ

β in (5.17).
The later is the sum of independent rvs and its density is the convolution of rvs’
densities involved into the sum as follows

pY(y) = (pX ∗ pX ∗ · · · ∗ pX︸             ︷︷             ︸
Nb−1

∗pX′)(y), (5.19)

where ∗ is the convolution symbol and, with y ∈ [0,Nc/Ncc]. The next step consists
in computing the densities pX and pX′ . These variables have the general form
X = C1e−C2A where A is exponentially distributed with parameter 1 (i.e. pA(a) = e−a),
C1 and C2 are two strictly positive real constants. For X, C1 = 1 and C2 =

γ
β . Then,

for X′, C1 =
N′cc
Ncc

and C2 =
γ
β . Hence, the density of X or X′, denoted by pX(x)

and pX′(x), can be obtained after applying the change of variable x = g(α), where
g(α) = C1e−C2α is strictly monotone with the appropriate C1 and C2. Thus, we only
present the general pdf pX obtained with the following formula (pX′ is obtained
by setting C1 and C2 appropriately in the next formulas)

pX(x) =
pA(g−1(x))
|g′(g−1(x))|

, (5.20)

where g−1(x) = − 1
C2

log( x
C1

) and g′(α) = −C1C2e−C2α. Thus, the pdf of X becomes

pX(x) =
1

C1/C2
1

1
C2

x1/C2−1,

=
x1/C2−1

B(C1; 1/C2, 1)
,

(5.21)

with x ∈]0,C1], B(x; a, b) :=
∫ x

0
ta−1(1 − t)b−1dt is the beta incomplete function ([50]

6.6.1) and, B(C1; 1/C2, 1) = C1/C2
1 C2. This means that X follows a Beta law. An

analytical form of (5.19) is available for Nb = 1 or 2 (if N′cc = 0) but we are not able
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for Nb > 2 to derive it as the computation involves the integral of incomplete beta
functions. Thus, it is necessary to proceed with numerical convolutions.

In this case, we sample the densities pX and pX′ . Let a regular sampling
x̃ = x0, . . . , xNs−1 where xk+1 − xk = ∆x with ∆x = 1/Ns, Ns the number of samples
and xk = k∆x. The sampled distribution is noted p̃ such that p̃X[k] = pX(xk). We
realize with this sampling that the probability is not conserved anymore due to
the approximation or,

Ns−1∑
i=0

p̃X[k]∆x , 1. (5.22)

In addition, the density pX possesses a singularity in 0 when C2 > 1 (see (5.21))
which means that previous sum diverges in some cases. In order to conserve
probability through the convolutions to compute Y and to avoid the singularity
from being propagated numerically, we have found the following trick to be very
useful and efficient. We replace the sampled term of the density in 0 by a specific
term as follows

p̃X[k] :=


1

∆x
−

∑Ns−1
i=1 pX(xi), k = 0,

pX(xk), otherwise.
(5.23)

One can check that
∑Ns−1

i=0 p̃X[i]∆x = 1 with the proposed trick. The numerically
approximated pdf of Y, noted p̃Y, is computed using the sampled version of (5.19)
with the proposed p̃X (5.23) as follows

p̃Y[k] = (p̃X ∗ p̃X ∗ · · · ∗ p̃X︸             ︷︷             ︸
Nb−1

∗p̃X′)[k], (5.24)

where the sampling of y is ỹ = (y0, . . . , yN′s) with a step ∆y = ∆x = 1/Ns and
N′s = (Nb − 1)Ns + b( Nc

Ncc
− Nb)Nsc and Nb = b Nc

Ncc
c. In addition, we can prove

that with the modified pdf in (5.23), the resulting cdf of Y obtained numerically
(cumulative sum of (5.24) multiplied with ∆y) still converges to the right cdf of Y
as Ns increases. The theoretical cdf of γeff (5.17), knowing the density pY, is given
by

Pr
{
γeff(γ) ≤ Γ

}
= 1 −

∫ f (Γ)

0
pY(y)dy. (5.25)

Thus, the cdf can be approximated numerically using p̃y as follows

Pr
{
γeff(γ) ≤ Γ

}
≈ 1 −

N′(Γ)∑
i=0

p̃Y[i]∆y. (5.26)
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where

N′(Γ) :=
⌊

f (Γ)
∆y

⌋
,

=
⌊
Ns f (Γ)

⌋
,

(5.27)

with f (Γ) given in (5.18). The value N′(Γ) is the number of point in the sampling
ỹ to be taken into account in the sum in (5.26). It is important to note that when Γ

increases, f (Γ) decreases and so does N′(Γ). In addition, we require N′(Γ) ≥ 1. The
reason is that, when we compute numerically the cdf of γeff, we link each sample yi

to its counterpart in the effective SNR domain using the following transformation
(see (5.17) and (5.18))

Γi = f −1(yi),

= −β ln
(Ncc

Nc
yi

) (5.28)

Therefore, when N′(Γ) = 0 it is equivalent to compute the cdf in Γ0 = f −1(0) = ∞

and we cannot illustrate numerically the result. Consequently, the maximum
effective SNR, Γmax at which we can compute the cdf of γeff is in y1 (the lowest yi

is for the maximum Γ) and it is given by

Γmax = −β ln
(Ncc

Nc
∆y

)
,

= −β ln
(Ncc

Nc

1
Ns

)
.

(5.29)

Figure 5.1 illustrates previous observation with Ns = 1000, γ = 15 dB, Nb = 8,
γ = 7 dB and β = 1.8. The red curve is the cdf of γeff computed numerically
with (5.26) and the black curve is the cdf of γeff (5.12) obtained with Monte Carlo
simulations. The red curve stops at Γmax = 12.1 dB in the figure which is the value
obtained with the above reasoning.

For instance, if one wants to compute the cdf at Γmax = 16 dB, the reverse
reasoning can be applied to find the right sampling step. In this case, one needs
Ns = Ncc

Nc
e

Γmax
β = 2 × 109 samples which requires a lot of numerical resources to

be convolved. The computation of the cdf beyond Γmax with low numerical
complexity can be obtained with the following proposed numerical procedure
that combines (i) the fact that the high effective SNR correspond to small yi in
the sampling with (ii) the fact that the first terms of p̃Y require to realize the
convolution of p̃X over a limited number of points. State (ii) can be explained as
follows. Let be a discrete function p̃X[i] for i = 0, . . . ,Ns − 1 that we convolve with
itself to get p̃Y[i] with i = 0, . . . , 2Ns − 2 (i.e. Y = X1 + X2 in this toy example). Then
to obtain p̃Y[1], no matter how large is Ns, one needs to compute

p̃Y[1] = 2p̃X[0]p̃X[1].
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Figure 5.1: The black curve is the cdf of γeff obtained with Monte Carlo simulation
using 105 realizations. The red curve is the cdf of γeff computed numerically with
(5.26) with Ns = 1000.

Previous equation requires only two samples and provides the value p̃Y[1]. In
the same way, as long as m < Ns − 1, computing p̃Y[m] requires the (m + 1) first
terms of p̃X. Thus, one can compute the cdf of γeff in Γmax, by setting the sampling
step ∆max

y = 1/Nmax
s such that N′(Γmax) = 1 in (5.27), i.e. Nmax

s = Ncc
Nc

e
Γmax
β . Hence,

N′(Γmax) = 1 and to compute (5.17) using the approximation (5.26), one needs
solely to compute p̃Y in y0 and y1 whose convolutions require respectively the
first and second term of p̃X as described previously.

However, note that the approximation (5.26) becomes accurate when N′(Γmax)�
1. Therefore, we propose to oversample with a factor M � 1 previous sam-
pling such that the new sampling step is ∆x = ∆y = 1

MNmax
s

. Consequently,

N′(Γmax) = b
f (Γ)
∆y
c = bMNmax

s f (Γ)c = M. Equation (5.26) requires the computa-
tion of terms p̃Y[m] for m = 0, . . . ,M which are obtained by convolving at most the
M first terms of p̃X. We have found that M > 20 provides good results.

Before showing numerical results, it remains to compute the initial point p̃X[0]
in (5.23). According to Definition (5.23),

p̃X[0] =
1
∆x
−

Ns−1∑
i=1

pX(xi), (5.30)

and when Ns is large computing the sum requires a lot of numerical resources
(e.g. Ns > 109 ), therefore we look for an approximation of p̃X[0]. With (5.21), and
a regular sampling x̃ = (x1, . . . , xNs−1) such that ∆x = 1/Ns, the initial point is given
by

p̃X[0] =
1
∆x

1 −
∆x

B(C1; 1/C2, 1)

Ns−1∑
i=1

x1/C2−1
i

 . (5.31)
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Figure 5.2: The black curve is the cdf of γeff obtained with Monte Carlo simulation
using 105 realizations. The red curve is the cdf of γeff computed numerically with
Ns = 1000.

One can rewrite xi = i∆x so

p̃X[0] =
1
∆x

1 −
∆1/C2

x

B(C1; 1/C2, 1)

Ns−1∑
i=1

i1/C2−1

 . (5.32)

Using the following asymptotic approximation (x < 1):

Ns−1∑
i=1

ix−1
≈

(Ns)x

x
+ ζ(1 − x), (5.33)

where ζ(.) is the Riemann zeta function, p̃X[0] can be approximated by,

p̃X[0] ≈
1
∆x

(
1 −

∆1/C2
x

B(C1; 1/C2, 1)

(
C2N1/C2

s + ζ(1 − 1/C2)
))
,

=
1
∆x

(
1 −

C2

B(C1; 1/C2, 1)

(
1 +

∆1/C2
x ζ(1 − 1/C2)

C2

))
.

(5.34)

Finally, with the modified sampled density (5.23) and the computed initial point
(5.34) and with the convolution procedure explained above, we can compute
numerically the cdf of γeff. Figure 5.2 presents the convergence of our procedure
with the same simulation conditions used to obtain results in Figure 5.1. One can
observe that the cdf can be computed for all the SNReff range.

This cdf is of importance to compute the Bernoulli parameters involved in the
distribution of the utility (see (5.2)). The above procedure is developped in the
case with no interference which means that the SNR over each subcarrier can be
seen as a constant multiplied by an exponential rv. Thus this can be adapted to
the case with interference that are not subject to fading (see (5.15)). In this case,
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one can use the above procedure using

γ =
SNRk

i

1 +
∑

n∈Ik

∑
j∈Mn

INRn,k
j,ir

, (5.35)

to compute the Bernoulli parameters of rvs involved in the utility function and to
get its distribution.

5.1.3.5 EESM statistics with interference subject to fading

In this section, we present how to compute the pdf of EESM in a more general
case where the interference are subject to block Rayleigh fading. This case is more
complex in the sense that at each subcarrier the SINR cannot be seen as a constant
multiplied by a rv as in the previous section. This involves further computations.
For clarity, with the block fading channel, we recall that the SINR of link i in
cluster k over each block m of coherent subcarriers is given by (5.13) as follows

SINRk
i (m) =

αk
i (m)SNRk

i

1 +
∑

n∈Ik

∑
j∈Mn

αn,k
j,ir

(m)INRn,k
j,ir

, (5.36)

where αk
i (m) and αn,k

j,ir
(m) are exponential rvs with parameter 1. The first step to get

the density of EESM consists in computing the pdf of the SINR over each block
of coherent subcarrier. We prove in Appendix E that this density, denoted by
pSINRk

i
(.), is given by

pSINRk
i
(γ) =

1

SNRk
i

e
−

γ

SNRk
i

∑
n∈Ik

∑
j∈Mn

πn
j

INRn,k
j,ir

1
γ

SNRk
i

+ 1
INRn,k

j,ir

1 +
1(

γ

SNRk
i

+ 1
INRn,k

j,ir

)
 , (5.37)

where

πn
j =

∏
n′,n∈Ik

∏
j′, j∈Mn

INRn,k
j,ir

INRn,k
j,ir
− INRn′,k

j′,ir

. (5.38)

The second step of the process to compute the pdf of EESM is to get the density

of terms involved in the logarithms of EESM denoted by X = C1e−
SINRk

i
β with C1 = 1

or Ncc
Nc

depending on which pdf is considered in the computation of (5.19) (X or
X′). This pdf denoted by pX(.) can be obtained using the same change of variable
as defined in (5.20) with C2 = 1

β . The proof is presented in Appendix E where we
show that the pdf of X is given by

pX(x) =
ν

Cν
1

xν−1
∑
n∈Ik

∑
j∈Mn

πn
j

INRn,k
j,ir

1(
1

INRn,k
j,ir

− ν ln( x
C1

)
)
1 +

1
1

INRn,k
j,ir

− ν ln( x
C1

)

 , (5.39)
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where ν =
β

SNRk
i
. To compute the pdf of EESM one needs to convolve a sampled

version of (5.39) denoted by p̃X[.] and defined as in (5.23). Note that this pdf is
proportional to νxν−1, as in (5.21), except that here there is a second multiplying
term involving highly nonlinear combination of the interference. In the current
case, the nonlinear term that involves the interference prevents us from finding an
accurate approximation of p̃X[0] (as in (5.30) when the interference are not subject
to Rayleigh fading) for large Ns. It follows that, with this method, computing the
cdf of γeff at high SNR per subcarrier remains an open question.

However, we propose the following trick to approach the cdf at high effective
SINR. When the number of sample Ns is too large to compute the term p̃X[0]
in (5.23), we propose to replace it by the term we would have obtained if the
interference were no subject to Rayleigh fading. Hence, p̃X[0] is replaced by (5.34)

with C1 = 1 or Ncc
Nc

and C2 = SINR∗
β with SINR∗ =

SNRk
i

1+
∑

n∈Ik

∑
j∈Mn INRn,k

j,ir

. We justify

this approach as follows. At high effective SINR, the INR are much lower than
the SNR, thus, the impact of fading on the interference is lower than the impact
of fading on the useful signal. Therefore, we neglect the fading that impact
the interference and we approximate the SINR per subcarrier as a Rayleigh rv
multiplied by SINR∗.

Figure 5.3 presents in two cases the comparison between the cdf of EESM ob-
tained through Monte Carlo simulations in black and with the numerical method
proposed in this section in red. In both case, the SNR = 25 dB. The difference are
the number of interfering signals and their INRs. In Figure 5.3a there are two in-
terference sources with INR = [1, 5] dB and in Figure 5.3b there are 5 interference
sources with INR = [1, 2, 5, 10, 20] dB. One can note that, there are less interference
in the left figure than in the right one so, the effective SINR is, in average, higher
in the left figure than in the right one. Hence, we can observe on the left figure
the slight gap between the two curves (for SINReff > 11 dB) due to the use of the
proposed trick to approximate the cdf at high effective SINR. In addition, we
observe that the proposed modification leads to an accurate approximation of the
cdf. In Figure 5.3b the cdf of the effective SINR is computed without the use of the
approximation and leads to a close to perfect match. In both case, the accuracy of
the numerical approach is illustrated and assessed.

5.2 Proposed methodology to find Ncc

In this section, we present a methodology to find Ncc such that the statistics of
the proposed model γeff (5.12) obtained with the block fading channel are similar
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Figure 5.3: cdf of EESM when interference are subject to Rayleigh fading with
different number of interferer and Nb = 10.

to the statistics of SNReff (5.11) obtained with the real channel (5.8). The idea
is that if we are able to reproduce the statistics of SNReff using the coherence
bandwidth approximation (with the right value of Ncc) then we can use γeff to
compute statistics of the effective SNR and of the utility. Therefore, Ncc is selected
such that the cdf of both models are as close as possible. This is realized with a
Goodness of Fit (GoF) test which is a procedure comparing the cdf of two rvs.
The principle of this procedure is presented in Figure 5.4. We consider a standard
OFDM transmission with a bit generator, a convolutional code (“CC”) and the
standard OFDM procedure. Then, the signal goes through a channel which is
either the real channel or the block fading channel whose length of blocks Ncc is
the key parameter to set. A white Gaussian noise is added to the signal such that
the average SNR per subcarrier is set to γ. With the resulting signal we compute
the effective SNR metric using EESM. If we repeat this procedure, one can obtain
the cdf of SNReff obtained through the real channel, and the cdf of γeff obtained
through the block fading channel. Then, it remains to adjust Ncc such that both cdf
are as close as possible, which is the role of the GoF test presented in Section 5.2.3.

5.2.1 Procedure

The methodology to select Ncc is detailed in Algorithm 5 and is summarized as
follows. The first step consists in drawing Nsnr realizations of the real channel
to compute Nsnr values of SNReff(γ) for a given γ. The number of samples Nsnr

must be large enough to consider the empirical cdf as the theoretical reference
(see Section 5.2.3). Then, we draw Nsnrmod realizations of the block fading channel
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Figure 5.4: Principle of the procedure to select Ncc.

for a given Ncc to compute Nsnrmod values of γeff(γ) less than a threshold b whose
role is detailed in Section 5.2.2. We repeat this procedure Nω times for Ncc between
1 and Nc. Afterwards, we proceed to the statistical test presented afterward in
Section 5.2.3. Finally, for every realization iω, we find Ncc between 1 and Nc that
minimizes the metric of the test and, we average over all Nω realizations.

5.2.2 SNR bound b computation

This section explains the reason to introduce the threshold b in Algorithm 5
and proposes a method to compute it. We have observed through simulations
particular cdf behaviors of SNReff statistics at high SNReff. Figure 5.5 compares
the cdf of SNReff (black curve) with the cdf of γeff (red curve). The real channel is
a standardized channel “Typical case for urban area” (TU) with 6 taps from [66].
The bandwidth of the signal is Ws = 1 MHz with Nc = 256, γ = 20 dB and β = 1.8
(i.e. QPSK modulation). Clearly, the red curve cannot fit the black curve for SNReff

higher than 10 dB.
In addition, if we wanted to realize the statistical test in line 5 of Algorithm 5

over all the SNReff range, it would return a value Ncc that makes both cdf as close
as possible over the whole range of SNReff as illustrated in Figure 5.6. This is an
unwanted result because the cdf of γeff obtained with the block fading channel
would never fit correctly the cdf of SNReff.

Therefore, in order to model the performance, (e.g. PER prediction) the distri-
bution of SNReff at low SNR specifies the most important part of the PER value
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Algorithm 5 Compute the number of coherent carriers Ncc

Input: γ, Nc, Nsnr, Nω, Nsnrmod, b
Output: Ncc

1: SNReff(γ)← generate Nsnr samples of effective SNR with the real channel that
are sorted (Nsnr must be large e.g. 40000)

2: for iω = 1 to Nω do {Test over all realizations}
3: for icc = 1 to Nc do {Try all possible coherence bandwidths}
4: γe f f (γ, icc) ← generate Nsnrmod samples of effective SNR less than b with

the channel model,
5: TKS(iω, icc) ← statistical comparison between γe f f (γ, icc) and SNReff(γ)

((5.46) in Section 5.2.3) for values less than b,
6: end for
7: N′cc(iω)← arg min(TKS(iω, :)),
8: end for
9: Ncc(γ)← 1

Nω

∑Nω

iω=1 N′cc(iω)
10: return Ncc(γ)
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Figure 5.5: Comparison of the cdf of SNReff and γeff at high γ for Ncc = 20.

[67]. We are hence interested in fitting the beginning of the cdf with our model
as presented in Figure 5.5. In this specific case, one can see that the threshold b to
limit the test is around 10 dB.

In the following, we first study the cause of this specific behavior in Sec-
tion 5.2.2.1 in order to propose a procedure that returns a given threshold b in
Section 5.2.2.2.
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Figure 5.6: Comparison of the cdf of SNReff and γeff at high γ for Ncc = 50.

5.2.2.1 cdf mismatch at high SNR

One of the reason of the possible mismatch between the cdf of SNReff and γeff at
high SNReff is due to the combination of the exponential decrease of the terms
inside the logarithm of the EESM (5.11) and the correlation between channel
coefficients in the real channel model.

The exponential terms decrease fast to zeros as the exponent decreases (it
is a negative exponent). Therefore, for low average SNR γ, the exponents are
close to 0 and all terms in the logarithm of EESM have a low probability to be
null simultaneously. Consequently, they all have a statistical contribution in the
density of EESM. On the other hand, for high γ, the exponential terms are not
null only when the fading coefficient is close to 0, which happens more rarely as
γ increases. Consequently, a few terms in the logarithm of EESM have a strong
influence on the statistical behavior of EESM. As one will see in the following,
this phenomenon prevents the EESM statistics from being approximated, for high
γ, by either models in the literature as in [62] or our model.

This phenomenon is highlighted in Figure 5.7 where the pdf of SNReff is pre-
sented in two cases. We consider a TU channel and the same parameter as in the
introduction of this section. In the first case in black, we compute SNReff with all
the exponential terms as in (5.11) as follows

SNReff(γ) = −β log

 1
Nc

Nc∑
i=1

e−
|H( fi)|

2γ
β

 . (5.40)

In the second case in red, a different version of SNReff is computed, where we
keep in the logarithm the three largest terms at each realization of the channel. It
is given by
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Figure 5.7: Comparison of EESM pdfs considering all terms (black curve) and the
three most influential terms (red curve) into the logarithm of (5.11).

SNReff = −β log

 1
Nc

3∑
j=1

e−
SNR∗j
β

 , (5.41)

where SNR∗j for j = 1 to 3 are the three lowest SNR among all SNRi = |H( fi)|2γ in
(5.40) for i = 1 to Nc. Note that the three most influential terms in the logarithm of
(5.40) have the smallest channel fading coefficients. It is clear that the statistical
behavior of EESM changes around 10 dB. In addition, for SNReff > 15 dB the
distribution can be described with a limited number of subcarriers (less than 3
with the red curve), whereas for SNReff < 15 dB, one need more subcarriers to
describe completely the distribution.

Consequently, we assume that the sudden change in the statistic behavior
around 10 dB observed in Figures 5.5 and 5.7 is due to the fact that the number of
terms in the logarithm of (5.40) that have statistical impact is less than Nc.

The exponential behavior of terms inside the logarithm explains the sudden
change in the pdf but not the mismatch between the cdf of γeff and SNReff. This
mismatch is due to the correlation between consecutive subcarriers when consid-
ering the real channel. Let take the example in which EESM can be described with
the two most influential subcarriers. Then (5.11) becomes

SNRe f f (γ) = −β log
(

1
Nc

(
e−

ν∗1γ
β + e−

ν∗1γ
β

))
, (5.42)

where ν∗1 and ν∗2 are the two lowest channel coefficients. In a WB case, fading coef-
ficients are correlated thus, the two lowest coefficients are necessarily correlated
as well. With the block fading channel, EESM in (5.12) becomes

γeff(γ) = −β log
(

1
Nc

(
Ncce−

µ∗1γ
α + Ncce

−
µ∗1γ
β

))
, (5.43)



5.2. Proposed methodology to find Ncc 119

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

SNR
eff

 (dB)

C
D

F

 

 

real channel

Francis

Figure 5.8: Comparison with model proposed by [62]

where Ncc is the number of coherent subcarriers that are in the same coherence
bandwidth and µ∗1 and µ∗2 are the two lowest channel coefficients. Even if Ncc goes
to 1, the remaining two terms in (5.43) are independent whereas in (5.42) they are
highly correlated. This shows the limitation for the proposed approach to fit the
curves at high effective SNR.

Before getting into details of the procedure to set b it is interesting to show that
one of the approximations found in the literature (that are all principally based on
moment matching methods) has a similar limitation. The existing approaches in
the literature try to approximate EESM statistics by one given distribution. These
distributions are well adapted to approximate the distribution of EESM for low
SNReff (or high SNReff) but not for the entire range of SNReff as it exhibits two
different statistical behaviors. One would need a mixture of distributions to do
so. Figure 5.8 presents the cdf of EESM obtained with the model in [62] in red
and with the real channel in black. One can see again the impossibility for the
approximation to fit the black curve at high SNReff.

5.2.2.2 Procedure to compute b

In this section, we propose a procedure to set the threshold b. In the previous
section, we have highlighted that this threshold separates the SNReff domain in
two regions. Below b, one needs the Nc terms in the logarithm of (5.40) to describe
the statistical behavior of SNReff. Above b, less than Nc terms in the previous
logarithm are necessary to describe the statistical behavior of SNReff.

The procedure to select b is presented in Algorithm 6 and is summarized as
follows. The objective is to detect when the statistical behavior of SNReff can be
described completely with (Nc−1) terms in the sum in the logarithm of (5.40). We
start by drawing a real channel and then we compute SNReff taking into account all
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channel coefficients |H( fi)|2 as in (5.40) that we note SNR(1)
eff

(γ). Then, we compute
a second SNReff, noted SNR(2)

eff
(γ) using the same realization of the channel. The

particularity is that we withdraw the term with the highest channel coefficient
that we call j here. This effective SNR is given by

SNR(2)
eff

(γ) = −β log

 1
Nc

Nc∑
i=1,, j

e−
|H( fi)|

2γ
β

 . (5.44)

With these two values, we compute an error term ε(SNR(1)
eff

) = |10 log10(SNR(1)
eff

(γ))−
10 log10(SNR(2)

eff
(γ))|. If the statistic of the SNReff can be described with less sub-

carrier than Nc, the error will be close to 0. This procedure is repeated Nsnr times.
Then we look for the minimum SNR(1)

eff
such that this error decreases below a given

threshold that we have set to τ = 10−6.

Algorithm 6 Compute the threshold b
Input: γ, τ, Nc, Nsnr,
Output: b

1: SNR(1)
eff

(γ)← generate Nsnr samples of effective SNR with the real channel that
are sorted (Nsnr must be large e.g. 40000)

2: SNR(2)
eff

(γ) ← SNR(1)
eff

(γ) except that the less influential subcarrier has been
withdrawn in the sum of (5.11) (see (5.44))

3: ε← |10 log10(SNR(1)
eff

(γ)) − 10 log10(SNR(2)
eff

(γ))|
4: b← min

{
SNR(1)

eff

∣∣∣ε < τ}
5: return b

5.2.3 GoF test

GoF tests are non-parametric hypothesis tests whose objective is to compare the
distribution of a set of data with a theoretical distribution. The main advantages
of these tests are their selectivity with a few data samples in addition to their
simplicity. The test compares a theoretical cdf that one wants to fit with the
empirical cdf of the data set. In this work in Line 5 of Algorithm 5, γeff is considered
as the data sample and SNReff as the theoretical data to fit. Among the different
GoF tests, we find the Kolmogorov-Smirnov (KS) one the more appropriate since
we compute the test on a bounded SINR domain (up to b; see the previous section).

The empirical cdf of a given set (x1, . . . , xN) being defined by

FN(y) =

N∑
i=1

1
{xi≤y}, (5.45)
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where N is the number of sample in the data set, the KS metric is given by [68]

TKS = sup
y
|FN(y) − F(y)|, (5.46)

where F(.) is the theoretical cdf to fit.
Notice that although in GoF tests this metric is compared to a given threshold,

for our procedure we use only the metric value.

5.2.4 Average PER computation

This section presents how to estimate the theoretical prediction of PER in order
to validate the procedure to select Ncc. This prediction uses the approximation of
the pdf pY, p̃Y (5.24), that is obtained in Section 5.1.3.4. First, we start with the
definition of the average PER given by

PER(γ) =

∫
∞

0
PERLUT(z)pγeff(γ)(z)dz, (5.47)

where pγeff(γ)(z) is the density of γeff(γ) and, PERLUT(z) is the LUT of the codeword
error rate [65]. Note that, we are able to compute a numerical approximation of
pY(y) (5.19) which is linked to γeff as follows y = f (γeff) = Nc

Ncc
e−

γeff
β (5.18). With the

change of variable y = Nc
Ncc

e−
z
β and |dy| = Nc

Nccβ
e−

z
β |dz|, (5.47) becomes

PER(γ) =

∫
∞

0
PERLUT(z)pY

( Nc

Ncc
e−

z
β

) Nc

Ncc

1
β

e−
z
βdz. (5.48)

It is known that the variations of the effective SNR are well represented on a
logarithmic scale. In addition, the LUT curve is often provided in a decibel scale
rather than in a linear one. This means that PERLUT(z) is not available and we
have instead PERdB

LUT(v) where v = 10 log10(z). Using z = 10
v

10 and the fact that
|dz| = ln(10)

10 10
v
10 |dv|, (5.48) becomes

PER(γ) =

∫
∞

−∞

PERdB
LUT(v)

ln(10)
10

10
v

10 pY
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In practice, previous formula is computed over a restricted range of effective
SNR denoted by [SNRmin

eff,dB, SNRmax
eff,dB] here, therefore (5.49) is approached by
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Then, we approximate previous formula numerically using (5.24) as follows,
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Table 5.1: MCS

MCS coding modulation
1 CC 1/2 QPSK
2 CC 1/2 16-QAM
3 CC 3/4 16-QAM

Table 5.2: Calibrated β

MCS 1 2 3
Nc = 512 1.8 6.4 8.25

where v = (v0, . . . , vNv−1) is regular sampling of the effective SNR in decibels

with v0 = SNRmin
eff,dB, vNv−1 = SNRmax

eff,dB and vk+1 = vk + ∆v where ∆v =
SNRmax

eff,dB−SNRmin
eff,dB

Nv
.

5.3 Numerical results

In this section, we analyze the numerical results obtained by applying the algo-
rithm 5. OFDM symbols are coded independently and, the interleaver is modified
randomly at every packet. We implement the two different convolutional codes
described in [69]: a rate 1/2 and a rate 3/4 with a conventional punctured pat-
tern [55]. The number of subcarriers is Nc = 512 and, the signal bandwidth is
Ws = Nc∆ f = 10 MHz. The numerical results are obtained for three MCSs that
are presented in table 5.1. We consider a standardized channel TU with 6 taps
described in [66]. In this case, a = [−3, 0,−2,−6,−8,−10] dB are the relative paths’
powers and τ = [0, 0.2, 0.5, 1.6, 2.3, 5] µs are the paths’ delays.

5.3.1 Calibration

The first step is to calibrate the scaling factor β with the method in [65] presented
in Algorithm 4. Figure 5.9a presents the result of β calibration for the three MCSs
described in Table 5.1. The black curve, denoted by “Sim.” is the real PER
obtained for a fixed SNReff and the red curve is the PER predicted for this SNReff

using the LUT curve defined in Section 5.1.3.3. The calibration of β makes these
curves as close as possible. The calibration results are presented in Table 5.2 for
each MCS.
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Figure 5.9: Calibration for all MCS.

5.3.2 Application of the procedure to a standardized channel

We apply the procedure described in Algorithm 5 with Nsnr = 20000, Nω = 2000
and Nsnrmod = 100. Figures 5.10a and 5.10b present an example of a comparison
between the cdfs obtained with the channel and with the model for the selected
Ncc with MCS 1. The value Ncc are presented afterwards. The cdf of the model
is generated with Monte Carlo method denoted by “model MC”, and with the
convolution method described in Section 5.1.3.4 denoted by “model Conv.”. First
of all, one can observe that the Monte Carlo cdf and the numerical cdf are almost
similar which assesses the accuracy of the convolution method. The step size taken
is ∆x = 10−3. Second, the choice of Ncc makes the cdf obtained by the model very
close to the real cdf of the channel (the black curve). At low γ, in Figure 5.10a,
the matching is almost perfect for the whole range of SNReff. At higher γ, in
Figure 5.10b, the matching starts to be less accurate at high SNReff because of the
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Figure 5.10: cdf comparison of EESM for different average SNR values with MCS
1.

limitation of the proposed approximation as explained in Section 5.2.2.

Let Wc = ∆ f Ncc be the bandwidth of each block of subcarriers which is
supposed to represent the coherence bandwidth of the channel. Then Fig-
ures 5.11a, 5.11b and 5.11c present the equivalent relative coherence bandwidth
Wc
Ws

= Ncc
Nc

found by the Algorithm 5 for the three MCSs. Surprisingly, these figures
show that the number of coherent subcarriers decreases when the per-carrier SNR
increases. One would have thought that the estimated coherence bandwidth is a
constant with respect to the average SNR. Instead, the bandwidth of each block
varies between 0.1 and 0.25 times the signal bandwidth. In addition, at low γ, the
number of subcarriers to be considered in the same bandwidth seems to converge
to a constant value a least with MCS 1. One of the possible reasons to observe this
change in coherence bandwidth is that the larger γ, the larger the variations of the
SNR between consecutive subcarriers. Consequently, close subcarriers appear to
be more independent from a statistical perspective and the estimated coherence
bandwidth decreases.

5.3.3 Validation of the proposed methodology to select the co-
herence bandwidth

In this section, we compare the performance of the point-to-point communication
obtained with the TU channel and with the block fading channel using Ncc sub-
carriers as length of blocks that are selected with Algorithm 5. In addition, we
compare previous performance obtained with Monte Carlo simulations with the
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Figure 5.11: Normalized coherence bandwidth estimation using algorithm 5 with
Nc = 512.

numerical computation of the PER presented in Section 5.2.4. The procedure to
valid the methodology to compute Ncc is presented in Figure 5.12 and composed of
three parts. There are three illustrated chains denoted by (a), (b) and (c). Chain (a)
represents the PER computation through Monte Carlo simulations when consid-
ering the TU channel and whose result is denoted by PERRC. The block CC means
that we use a Convolutional Code and CC−1 represents the decoding procedure.
The block OFDM illustrates the standard OFDM procedure applied to the signal
and OFDM−1 the standard associated demodulation. The first block of the chain
are the bits transmitted. The block with the real channel is a representation of the
TU channel in frequency. Note that we add a white Gaussian noise such that the
average SNR per subcarrier is set to γ. Thus, the PER obtained in the end depends
on γ. The second chain (b) is similar to the first chain except that the real channel is
replaced with the block fading channel for a specific length of blocks given by Ncc
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Figure 5.12: Validation of the procedure scheme.

consecutive subcarriers. This length is computed using the methodology given
in Section 5.2.1. The resulting PER is noted PERBF. Note also that the average
SNR per subcarrier is set to γ as in chain (a). The last chain (c) represents the
numerical computation whose steps are detailed in Section 5.2.4. The resulting
PER is noted PERth. As in (b), the length of blocks in the channel are set to Ncc

consecutive subcarriers and the average SNR per subcarrier is set to γ. With the
EESM metric and the specific channel model we can use a convolution technique
to obtain the pdf of Y as described in Section 5.1.3.4. Note that we assume the
EESM metric to be calibrated with the procedure presented in Section 5.1.3.3 (i.e. β
is set). Then after multiplying this pdf with the LUT curve (see Section 5.1.3.3 in
page 105 for details about LUT) it remains to integrate over the effective SNR to
obtain the desired PER.

Figures 5.13a, 5.13b and 5.13c present the PER comparison for the three MCSs
considered (see Table 5.1). The red curves are obtained through Monte Carlo
simulations with the TU channel as presented in chain (a) in Figure 5.12. In this
case, the SNR over each subcarrier is computed using (5.9) in page 104. The dark
curves are also obtained through Monte Carlo simulations where the fading is
flat over blocks of Ncc consecutive subcarriers and independent between blocks
as presented in chain (b) in Figure 5.12. The length of blocks, Ncc, for the TU
channel are provided in Section 5.3.2 and depends on γ. The blue curves are
obtained using the theoretical approach described in Section 5.2.4 and illustrated
in chain (c) in Figure 5.12. For the three MCSs, the three methods presented are
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Figure 5.13: PER comparison with the channel and with the model for the three
MCSs.

very close, which confirms the accuracy of the proposed method to select the
coherence bandwidth and the validity of the numerical method to predict the
performance.

Note that there is a slight underestimation of the PER at higher SNR for MCSs
1 and 2. For large values of γ, the statistical test, presented in Section 5.2.3, is
proceeded over a restricted range of effective SNR to avoid fitting problems (see
Section 5.2.2). When γ becomes large, the range over which the test is proceeded
decreases and the proposed approximation becomes less accurate which explains
the gap observed.

5.3.4 Analysis of the pdf of the utility

The goal of this section is threefold, (i) we check if the pdf of the utility obtained
by simulation is close to the one obtained theoretically (we consider both the NB
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and the WB fading cases), (ii) if the answer to (i) in the WB fading case is positive,
we check if the modeling of the real channel by the block fading channel with
the right value of Ncc provides similar pdfs of the utility, (iii) we highlight the
difference on the pdfs of the utility between the case where the interference are
not subject to fading, that we name “simplified” model in the sequel, and the
case where the interference are subject to fading, that we name “full” model in
the sequel. We illustrate these results using the network presented in Figure 5.14.
More specifically, we observe the pdf of the utility at cluster 7 in three cases
denoted by Scenario 1, Scenario 2 and Scenario 3 in the sequel. These scenarios are
illustrated in Figure 5.15 where a schematic view of the network in Figure 5.14
is presented with the respective clusters’ indices. In the three figures, the green
square represents the cluster at which we observe the utility and the red boxes
are the interfering clusters. In Scenario 1, cluster 7 is interfered by clusters 4 and
8 which we can be seen as a bad channel allocation, in Scenario 2, cluster 7 is
interfered by clusters 4 and 3 which can be seen as an average scenario as one of
the interferer is farther in comparison to Scenario 1, finally, in Scenario 3, cluster
7 is interfered by cluster 1 and 3 which is a better resource allocation than in
Scenario 1 and 2.

In the sequel, when the pdf of the utility is obtained through Monte Carlo
simulations it is denoted by “mc” in the legend of the figures. When it is obtained
using the numerical method presented in this chapter, it is denoted by “th” (for
theoretical) in the legend. In addition, for clarity, remind that the principle to
compute the pdf of the utility is presented in Section 5.1.1 and it requires the cdf
of the SINR in the NB case or the cdf of the effective SINR in the WB case. In the
former case, the closed form of this cdf is presented in Section 5.1.2 whereas in the
later, we have presented how to approach this value numerically with the block
fading channel in Section 5.1.3.4 for the simplified model and in Section 5.1.3.5
for the full one.

5.3.4.1 NB fading

Figure 5.16 presents the pdf of the utility in the NB fading case described in
Section 5.1.2. The red bars are obtained through Monte Carlo simulations and the
black bars are obtained through numerical convolution. The later is computed as
described in Section 5.1.1. One can observe the perfect matching between the red
and black bars which assesses the accuracy of the numerical computation.

One can also note that from Scenario 1 to 3, the pdf moves also from the left to
the right. Figure 5.16a corresponds to the bad allocation scheme and the resulting
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Figure 5.14: Wireless ad hoc clustered network with 9 clusters composed of 4
nodes each. Crosses represent mobile terminals, and colors the affiliations of
terminals to cluster identified by the number in the bottom right of each square.

utility is closer to 0 than in the better allocation scheme in Figure 5.16c where it
is closer to 1. Figure 5.16b is an average case and the utility is approximatively
centered. In addition, we observe that while the utility can take all values in
the set [0, 1], the probability decreases very fast when moving away from the
maximum of the pdf. It never takes, with high probability, all possible utility
values. This observation sustains the choice made in Section 4.5 which consists
in setting the tolerance thresholds such that a small amount of utility R1 can lie
outside the tolerance interval. By doing so, we see here that the thresholds will
not cover the overall set [0, 1]. Therefore, the cluster is going to be sensitive to
action changes while being robust to disturbances. Furthermore, one can see how
the pdf of the utility changes from one Scenario to the other and its asymmetry in
Scenario 1 and 3. On the first hand, this assesses the need for tolerance thresholds
to be adaptive on the fly. On the second hand, this assesses the need for possibly
asymmetric thresholds.

5.3.4.2 WB fading: simplified model

In this section, we present the pdf of the utility in a simplified model where the
interference are not subject to fading. The SINR is given in (5.15) considering the
block fading channel. In this case it is possible to compute numerically the pdf
of the utility despite the highly nonlinear form of the effective SNR (5.12). The
method to compute this pdf is provided in Section 5.1.3.4.

Figure 5.17 presents the pdf of the utility in Scenarios 1, 2 and 3. Note that
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(a) Illustration of Scenario 1 in
which cluster 7 is interfered by 4
and 8

(b) Illustration of Scenario 2 in
which cluster 7 is interfered by 4
and 3

(c) Illustration of Scenario 3 in
which cluster 7 is interfered by 1
and 3

Figure 5.15: Illustration of the different scenarios considered.

we have set a given number of blocks to Nb = 10. The perfect match between the
black and red bars assesses the accuracy of the procedure to compute the pdf of
the utility when the EESM metric is used.

Furthermore, one can note that from the NB (results presented in the previous
section) to the WB case the deviation of the distribution is decreased. In the WB
case, the EESM metric sums the contribution of SINRs subject to iid Rayleigh
fading which alleviates its variations. This reinforces the fact that the adaptive
tolerance thresholds will not cover the overall set of utility values in Chapter 4. In
the WB case, the tolerance will be smaller than in the NB one. Hence, the cluster
is going to be more sensitive to action changes while more robust to disturbances
at the same time in comparison to the NB case.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 5.16: Pdf of the utility in a NB fading case.

5.3.4.3 WB fading: simplified model applied to a real channel

The aim of this section is to check the validity of the procedure to find the co-
herence bandwidth of an OFDM system that uses the EESM metric as presented
in Section 5.2. We compare the pdf of the utility obtained with the block fad-
ing channel denoted by “BF” with the one obtained with a real channel model.
We consider as a real channel the Typical Urban channel denoted by “TU”. The
effective SINR in the later is computed as described in Section 5.1.3.1. More
specifically, we consider the MCS 1 described in Table 5.1 which is composed of a
QPSK modulation and a convolutional code with rate 1/2, hence, the scaling factor
β = 1.8. The pdf of the utility considering the block fading channel requires the
use of the right coherence bandwidth. To that end we use the length of coherence
bandwidth provided in Section 5.3.2 for different MCSs that are obtained with the
procedure described in Section 5.2. The particularity here is that this bandwidth
depends on the average SINR per subcarrier so it is going to vary from one link to
another and we have to take it into account when computing the pdf of the utility.

Figure 5.18 presents the pdf of the utility with the block fading channel in black
and with the real channel in red. Because of the channel coefficients’ correlations
between subcarriers, this later pdf can only be obtained using Monte Carlo sim-
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 5.17: Pdf of the utility with the block fading channel (WB fading and
simplified model).

ulations in comparison to the BF case in which it is computed numerically. The
close to perfect match between red and black bars in the three scenarios assesses
at the same time the fact that we can model the real channel by its abstracted
counterpart the block fading channel and, the relevance of the procedure to select
the length of blocks in the block fading channel.

5.3.4.4 WB fading : full model

In this section, we present the results obtained with the full model that is described
in Section 5.1.3.5, and in which we consider the interference subject to fading (5.36).
In this case, the complex form of the pdf involved (5.39) prevents a numerical
computation of the EESM pdf at high average SINR per subcarrier. We have
hence proposed a trick to approach the cdf in such case. To check the validity of
the approximation in addition to the numerical method, Figure 5.19 presents the
pdf of the utility obtained through Monte Carlo in red in comparison to the pdf
of the utility obtained through numerical convolution proposed in Section 5.1.3.5
in black. The results are obtained considering β = 1.8, Nc = 500 and a constant
size of blocks of coherent subcarriers with Ncc = 50. The close to perfect match



5.3. Numerical results 133

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 5.18: Pdf of the utility obtained with the real TU channel in comparison to
the one obtained using the block fading channel.

between red and black bars assesses the accuracy of the proposed method.

5.3.4.5 WB fading : comparison between the simplified and full model

In this section, we compare the results obtained when using the simplified model
described in Section 5.3.4.2 and the one obtained when using the full model
described in Section 5.3.4.4 to understand the impact of interference subject to
fading on the utility. Figure 5.20 aggregates these results in the three scenarios
considered. We observe that when the interference are strong as in Scenario 1 or 2
(Figures 5.20a and 5.20b), the pdfs obtained using the simplified model are really
different from the one obtained using the full model in red. The reason is that
the faded interference have a strong impact on the statistics of the utility which
are not taken into account when using the simplified model. In addition, one
can observe that with the full model, the utility has a pdf with a better average
value when comparing to the simplified model. The reason is that interference are
subject to fading, thus, it happens that their impact can also be subject to outage
from one realization to the other which, in such case, increases the effective SINR.
These results can be predicted by comparing the cdf of EESM obtained with the
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 5.19: Pdf of the utility obtained when interference are subject to fading,
comparison between Monte Carlo results and numerically computed results.

simplified model and with the full model. Figure 5.21 presents the typical behavior
of these cdfs in the specific context with SNR = 25 dB and 5 interference sources
with INR = [1, 2, 5, 10, 20] dB. One can observe that the cdf obtained using the full
model noted Fcpl is lower than the cdf obtained using the simplified model noted
Fs, i.e.∀x, Fcpl(x) ≤ Fs(x). The Bernoulli parameters of each link, that are required to
derive the pdf of the utility, are computed using (5.2) (page 100) which can be seen
as the complementary cdf of EESM. Therefore, pcpl = 1 − Fcpl(Γ0) ≥ ps = 1 − Fs(Γ0)
are the links’ Bernoulli parameters of the full and simplified model respectively
that are computed in Γ0 the threshold which specifies if a link is working or not.
It follows that the links’ Bernoulli parameters computed with the full model are
all greater or equal to the one computed with the simplified model. Using the
Conjecture 1 this sustains the results observed in Figure 5.20 which is that the
probability to receive higher utility values with the full model is greater than in
the simplified model, or equivalently, the cdf of the utility with the full model is
lower than the cdf of the utility obtained with the simplified model.

In Scenario 3 (Figure 5.20c), interference have less statistical importance be-
cause the SINR per subcarrier is larger than in Scenario 1 and 2. It follows that,
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 5.20: Comparison of the pdf of the utility obtained with and without
(“simplified model”) interference subject to fading.
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Figure 5.21: Comparison of the cdf of EESM between the simplified and full
model.

both pdfs have closer similarities in comparison to Scenarios 1 and 2. This later
observation further justifies the trick we use in Section 5.1.3.5 to approach the cdf
obtained with the full model at high effective SINR with the cdf obtained with the
simplified model.
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5.4 Conclusion

The aim of this chapter has been to derive the pdf of the utility when taking into
account the Rayleigh fading so as to understand better the impact of fading on
the utility and on resource allocation algorithms. In order to derive the pdf of
the utility in the WB context, we have approximated the correlated fading over
frequencies as successive bands with independent fading. The real channel has
been hence modeled by a block fading channel. To complete this abstraction,
we have proposed a methodology based on statistical tests to set the coherence
bandwidth such that the statistics of the effective SNR that have been obtained
with the block fading channel fit the statistics of the effective SNR that have been
obtained with the real channel model. We have provided a description to compute
numerically the statistics of the effective SNR based on the block fading channel
in two different cases.

Numerical results have shown that the effective SNR with the block fading
channel could well approximate the statistics of the effective SNR with the real
channel if the coherence bandwidth had been well chosen. We have highlighted
that with the proposed abstraction, we could predict performance numerically
in an OFDM system using EESM. In addition, we have shown numerically
the relevance of such model to compute the pdf of the utility in a specific case.
The results have sustained the arguments that we had used in the reasoning in
Section 4.5 in order to make adaptive and asymmetric the tolerance thresholds
on the fly. Moreover, we have observed that with the right value of coherence
bandwidth which had been selected with the procedure, we could reproduce
numerically the statistics of the utility obtained using the real channel. This
again has assessed the capacity for the block fading channel to approximate a real
channel and the relevance of the coherence bandwidth selection procedure.

The proposed methodology to compute the coherence bandwidth has to be
realized off-line so as to provide reference tables to compute the desired statis-
tics (e.g. for performance prediction) at low computational cost. In this chapter,
we have applied the methodology on one real channel. It would be interesting
to realize this method over many channels to observe if a general underlying
model appears. For instance, we have highlight a relationship of the average
SNR per subcarrier with the estimated coherence bandwidth. Such a relation-
ship may exist with the maximum delay of the channel’s paths or with τRMS.
Moreover, this relationship could eventually be described by a relatively simple
model (e.g. polynomials of low order). This would simplify further the build of
reference tables of the coherence bandwidth, in addition to provide insightful
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meaning of the impact of various physical layer parameters on the performance
of the system.
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Chapter 6

Conclusion and perspectives

6.1 Conclusion

This thesis has addressed the fully distributed channel allocation problem in
clustered ad hoc networks. Game theory has been employed as a mathematical
framework for modeling the problem and, in this context, we have selected TE
based algorithms to tackle the challenge. In this paradigm, players are either able
to experiment rarely new actions or they experiment all the time random actions.
In both cases, they accept with higher probability an outcome that provides a
higher utility. These algorithms have shown the particularity to exhibit efficient
cooperative behavior despite the non-cooperative nature of the problem (fully
distributed) which has been one of the reasons they were selected as candidates
to solve the allocation problem considered in this thesis.

The convergence proofs of these algorithms rely on perturbed MC whose
dimension grows exponentially with the size of the problem. Therefore, the per-
formance analysis of these algorithms is intractable and constitutes an important
challenge. To overcome the huge dimension of the inherent MC, we have pro-
vided an approximation of these chains. This has allowed us to compute a close
approximation of the average time the system remains in a desired state as well
as the average time required to achieved that state for the first time. This has pro-
vided the possibility to compare the performance of two algorithms in addition
to give new insights on their convergence.

Toward the convergence study, we have noted that the main drawback of TE
algorithms was their sensitivity to disturbance. In wireless telecommunication
systems, it is common to assume the presence of time varying measurement in
radio channel propagation (fading, shadowing). Adapting these algorithms to
disturbance was hence a major goal of this thesis. To do so, we have proposed
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modifications of the above algorithms, with supporting theoretical proofs, which
have consisted in introducing tolerance thresholds into the allocation decision.
Then, we have proposed a method to adapt dynamically these thresholds in
order to make the algorithm operating in different time varying contexts.

We have especially studied the impact of Rayleigh fading on the utility by
deriving its pdf in various contexts and in specific cases. The utility function
requires SINR measurements as inputs whose formulas have been provided. Note
that simulations in Chapter 4 relied on this physical layer abstraction. We have
considered an OFDM transmission as it is one of the most widely used technology
nowadays. In case of frequency selective Rayleigh fading, the correlated SNRs
over subcarriers have been mapped into one effective SNR, noted EESM, that was
representing the performance of the transmission. The nonlinear form of EESM in
addition to the correlated SNR over subcarriers did not enable theoretical analysis
that is why we have simplified further the modeling. We have considered that
the fading was flat over consecutive subcarriers inside a bandwidth known as the
coherence bandwidth. The channel has been hence modeled as a block fading
channel. The idea has been then to use the independence property of fading
between bandwidths to realize a theoretical analysis. Then, we have provided
a method, based on statistical tests, to find the coherence bandwidth such that
the statistics of EESM with the coherence bandwidth assumption would fit the
statistics of EESM obtained with the real channel. We have observed that this
bandwidth depended on several parameters such as the channel to be simulated,
the signal bandwidth and the MCS. With the proposed assumption, we have
been able to derive in a specific case the pdf of the utility, to predict accurately
the performance of an OFDM system and, as a by-product, this abstraction could
be used as input in the system level simulations to avoid the implementation of
detailed physical layer.

6.2 Perspectives

As future work, several extensions of the current thesis can be addressed.
In this thesis, we have focused on the allocation of frequency channels among

clusters. It should be interesting to allocate the power and the frequency channels
simultaneously. In some cases, decreasing the power will reduce the interfer-
ence while keeping good communications capabilities of the nodes. This would
increase the capacity to reuse frequency channels among clusters.

We also have assumed that the nodes always transmit information. In practice,
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the load in clusters varies due to the time varying nature of the traffic. It thus could
be interesting to include traffic load variations as it could involve less interference
during periods with low communication demands. Hence, the capacity of the
network to reuse frequency could be increased.

In this thesis, we have considered that each user employs only one MCS during
the whole communication period. In practice, the choice of MCS depends on the
required QoS and on the SINR. Thus, it would be of interest to propose strategies
that include adaptive modulation and coding so as to adapt the transmission to
interference and load variations.

We have supposed that the clusters do not communicate among each other.
This has been motivated by the ad hoc type of the network. In some contexts in
wireless networks (e.g. small cells) some exchanging of signaling could be possible
between the clusters. In such context, it would be interesting to study the amount
of information necessary to increase the performance and make possible almost
sure convergence. In addition, one could study other type of approaches to
allocate frequency channels that require more information such as regret based
methods or distributed gradient methods for instance.

In Chapter 4, we have considered relaying capabilities of the nodes through the
possibility for the cluster to have a diameter greater than 1. It could be of interest
to develop further relaying strategies. For instance, different nodes repeat several
times the message to transmit so as to reach a farther node. It would provide
robust communications’ capabilities and less disturbed utility measurements.

In addition, one of the major problem which leads to strong outages of the
utility is due to the fact that a cluster tries a frequency that is used by another
cluster close to the first one. It thus could be interesting to allow frequency
channel sensing by clusters. In this case, for instance, a cluster would try among
frequencies which have a low measured power. This would reduce the number
of trials that induce strong interference and it could lead to better performance.

Furthermore, another possible method to improve the performance is to use
successive interference cancellation (SIC) receivers. In practice, nodes are inter-
fered by few transmitting nodes from different clusters. A node that is subject to
high interference would first decode the interfering message, and then it could
remove it from the signal so as to decode the message that is intended to it. This
allows for a better satisfaction of the users and hence a lower fluctuations of
average utility due to channel allocation.

In this thesis, we have assumed that the trial and error procedures are synchro-
nized (e.g. clusters measure and try during the same periods). This assumption
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can be difficult to meet especially when inter clusters communications capabilities
are limited. It would be then of interest to study the performance of algorithms
when the nodes are not synchronized. For instance, a cluster receives the links
metrics during one phase, transmits decisions orders to nodes in a second one,
and realizes measurements of metrics during a third phase. Therefore, if a cluster
realizes its measurements during a phase different than the third one, it observes
a utility that does not correspond to the current state of the network. Therefore,
it is going to perturb the cluster future decision which can result in performance
decreases.

Finally, the performance analysis of TE algorithms in Chapter 3 has been con-
ducted for a specific network and utility model. This choice has been motivated
by the willing to be able to simplify the huge Markov chain induced by the TE
processes. Thus, extension of this analysis to a more general utility model is an
interesting question that remains open.
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Appendix A

Probabilities involved in TEL
approximation

This appendix describes all the possible transitions and probabilities of TEL algo-
rithm model presented in Figures 3.5a.

Remind with Hypothesis 1 that, a discontent player accepts a free resource with
probability ε0 = 1 and, it accepts a resource already interfered with probability
εF(0) = ε

1
2K . In addition, with Assumption 3.1, we approximate the probability that

there is one experimentation among K content players by the probability that at
least one experimentation happens Pε(K) = 1 − (1 − ε)K.

A.1 Notations and preliminaries

As in Figure 3.5a, we consider two sets ξn(i) and ξn+1( j). We assume the presence
of all the intermediary states in order to derive the most general transition prob-
abilities. In practice, using Section 3.5.6.1, the reader must check the existence of
the intermediary states involved in sets before computing the probabilities.

The probability computation require the knowledge of the players repartition
over resources. For each set ξn(i), the number of resources having p players in
Zn(i) is noted Mi

n(p) =
∑

k 1
{
Si

n,k=p
} and the number of players that share a resource

with p − 1 other players in Zn(i) is noted mi
n(p) = pMi

n(p).

During a transition from ξn(i) to ξn+1( j), a resource is decremented by one
player and a free resource is incremented. We note k(i, j) the resource decremented
such that the term Si

n,k(i, j) of Sn(i) is decremented by one. Meanwhile, the term
Si

n,n+1 is incremented by one. During the reverse transition from ξn+1( j) to ξn(i),
the most left column of Sn+1( j) that has Si

n,k(i, j) − 1 players is incremented by one
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and, S j
n+1,n+1 is decremented by one.

A.2 Transitions inside each ξn(i)

We start by describing the transitions inside ξn(i) that is to say between the states
Zn(i), ξn

0(i), ξn
1(i), ξn

2(i), ξn
3(i) and ξn

4(i). State Zn(i) is connected to ξn
1(i) and itself.

The transition Zn(i)→ ξn
1(i) happens when a player that is not interfered becomes

watchful. It is given by probability

pZn(i)ξn
1 (i) =

(a)︷       ︸︸       ︷
Pε(K)

K − 1
K

(b)︷ ︸︸ ︷
Mi

n(1)
N − 1

, (A.1)

where (a) is the probability that there is an experimentation from any player
except the one that is going to be interfered and, (b) is the probability to select the
frequency of a player not interfered. The probability of transition Zn(i)→ Zn(i) is
computed using the conservation probability property

pZn(i)Zn(i) = 1 − pZn(i)ξn
1 (i) − pZn(i)Zn+1 , (A.2)

where pZn(i)Zn+1 is the probability for the network to find a new resource. It is given
by

pZn(i)Zn+1 =

(a)︷               ︸︸               ︷
Pε(K)

(K −mi
n(1))

K

(b)︷ ︸︸ ︷
Mn

i (0)
N − 1

, (A.3)

where (a) is the probability that an interfered player experiments and, (b) is the
probability that it finds a free resource.

From the state ξn
1(i), the network can directly go in Zn(i) or ξn

2(i). With As-
sumption 3.1, we do not consider any experimentation in ξn

1(i) except the one
needed to make the MC ergodic in transition ξn

1(i) → ξn
2(i). This later happens if

the watchful player (which cannot experiment) is subject to a second experiment
on its resource by an other player. This is given by the following probability

pξn
1 (i)ξn

2 (i) = Pε(K − 1)
1

N − 1
. (A.4)

Otherwise, we do not consider any other case from ξn
1(i) and, the system goes

naturally from ξn
1(i) to Zn(i) with probability

pξn
1 (i)Zn(i) = 1 − pξn

1 (i)ξn
2 (i). (A.5)
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State ξn
2(i) is connected to Zn(i) and ξn

3(i). During transition ξn
2(i) → Zn(i), on

the first hand, the discontent player selects a free resource. There are Mn
i (0) free

resources in addition to the discontent player resource. Secondly, it accepts it as a
new benchmark with probability εF(1) = 1 (Hypothesis 1). The probability of this
transition is thus given by

pξn
2 (i)Zn(i) =

Mn
i (0) + 1

N
, (A.6)

The transition ξn
2(i)→ ξn

3(i) happens if the discontent player selects a resource al-
ready occupied by only one player and, it updates its benchmark with probability
εF(0) = ε

1
2K (Hypothesis 1). The new player interfered becomes watchful in the next

iteration. From the discontent player point of view, there are Mn
i (1) − 1 players

alone on their resource. The transition happens with the following probability

pξn
2 (i)ξn

3 (i) =
Mn

i (1) − 1
N

ε
1

2K . (A.7)

The probability of transition ξn
2(i) → ξn

2(i) is computed using the conservation
probability property

pξn
2 (i)ξn

2 (i) = 1 − pξn
2 (i)Zn(i) − pξn

2 (i)ξn
3 (i) − pξn

2 (i)Zn−1 , (A.8)

where pξn
2 (i)Zn−1 is the probability that the discontent player selects and accepts a

resource already occupied by two players or more, which has probability

pξn
2 (i)Zn−1 =

N −Mi
n(1) −Mi

n(0)
N

ε
1

2K . (A.9)

In state ξn
3(i), the system is not aligned and there is no discontent player. Thus,

with Assumption 3.1, no experiment is proceeded and, the system moves directly
to state ξn

4(i) with probability
pξn

3 (i)ξn
4 (i) = 1. (A.10)

The state ξn
4(i) is connected to ξn

0(i) and ξn
3(i). For the following transitions, it useful

to note that in ξn
4(i), the number of resources with players that do not interfere is

Mn
i (1)−2 and, the number of free resources is Mn

i (0)+1. The transition ξn
4(i)→ ξn

0(i)
corresponds to the situation where the discontent player chooses a free resource,
that it accepts with probability εF(1) = 1 (Hypothesis 1). The player left alone sees
its utility increases and becomes hopeful. This happens with probability

pξn
4 (i)ξn

0 (i) =
Mn

i (0) + 1
N

. (A.11)

Transition ξn
4(i) → ξn

3(i) occurs when the discontent player selects an occupied
resource with one player (there are Mn

i (1) − 2 of them in ξn
4(i)) and, it accepts this
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resource as a new benchmark with probability ε
1

2K according to Hypothesis 1.
Thus, the new player interfered becomes watchful with probability

pξn
4 (i)ξn

3 (i) =
Mn

i (1) − 2
N

ε
1

2K . (A.12)

The probability to remain in ξn
4(i) is

pξn
4 (i)ξn

4 (i) = 1 − pξn
4 (i)ξn

0 (i) − pξn
4 (i)ξn

3 (i) − pξn
4 (i)Zn−1 , (A.13)

where pξn
4 (i)Zn−1 is the probability that, the network use one less frequency with all

players content and aligned. This happens if the discontent player selects and
accepts one of the N −Mi

n(1) −Mi
n(0) resources already occupied by two players

or more or, if it selects and accepts its current resource where the content player
interfered is aligned (i.e. it is going to accept the choice of the discontent player).
Consequently, the system uses one less frequency with probability

pξn
4 (i)Zn−1 =

N −Mi
n(1) −Mi

n(0) + 1
N

ε
1

2K , (A.14)

and the probability that it remains one more step in ξn
4(i) is pξn

4 (i)ξn
4 (i) = 0. Once

the network is in ξn
0(i), one player is hopeful and with Assumption 3.1, no player

experiments. Thus, in the next step this player becomes content with a benchmark
update and the network goes to Zn(i) with the following probability

pξn
0 (i)Zn(i) = 1. (A.15)

A.3 Transitions from ξn(i) to ξn+1( j)

The only way for the network to find a new resource is to go through a RC Zn(i).
If the network is not in Zn(i) either one player is discontent or the network is not
aligned. In the later, Assumption 3.1 tells us that no player experiments, whereas
in the former, the discontent player cannot discover a free resource because it is
necessarily not interfered in Zn(i).

During transition Zn(i)→ Zn+1( j), a player experiments on a free resource with
probability

pZn(i)Zn+1( j) =



(a)︷               ︸︸               ︷
Pε(K)

mi
n

(
Si

n,k(i, j)

)
K

(b)︷ ︸︸ ︷
Mn

i (0)
N − 1

, if Si
n,k(i, j) > 2,

0, if Si
n,k(i, j) = 2,

(A.16)
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where (a) is the probability to have an experimentation from any player inter-
fered on resources with Si

n,k(i, j) > 2 players and, (b) is the probability to select a
free resource. The second line corresponds to an other transition Zn(i) → ξn+1

0 ( j),
in which the player left alone after the experimentation sees its utility increase
and becomes hopeful. The probability of transition Zn(i) → ξn+1

0 ( j) is thus com-
plementary to the previous one and, it is given by

pZn(i)ξn+1
0 ( j) =

 0, if Si
n,k(i, j) > 2,

Pε(K)
mi

n(Si
n,k(i, j))

K
Mn

i (0)
N−1 , if Si

n,k(i, j) = 2.
(A.17)

A.4 Transitions from ξn+1( j) to ξn(i)

The approximation is constructed such that if it is possible to go from ξn(i) to
ξn+1( j), it is also possible to go from ξn+1( j) to ξn(i) (see Section 3.5.6.1). The way
for the system to go in a set where one less resource is employed only happens
in states with a discontent player, i.e. ξn+1

2 ( j) and ξn+1
4 ( j) for transition ξn+1( j) to

ξn(i). In practice, to compute the transitions inside ξn+1( j), we use the formulas in
Appendix A.2 by replacing the indices appropriately (ξn+1( j) is similar to ξn(i) with
one less free resource). In this section, the starting state is in ξn+1( j). Therefore,
we use the functions m j

n+1(.) and M j
n+1(.) instead of mi

n(.) and Mi
n(.). Moreover,

during a transition from ξn(i) to ξn+1( j), the resource that contained Si
n,k(i, j) in Sn(i)

has been decremented by one. Thus, the transition from ξn+1( j) to ξn(i) occurs if
any resource that contains Si

n,k(i, j) − 1 players is incremented by one.
The transition ξn+1

2 ( j) → Zn(i) happens if the discontent player selects a fre-
quency with Si

n,k(i, j) − 1 players and accept the new benchmark. The probability of
ξn+1

2 ( j)→ Zn(i) is thus given by

pξn+1
2 ( j)Zn(i) =


Mn+1

j (Si
n,k(i, j)−1)

N ε
1

2K , if Si
n,k(i, j) − 1 ≥ 2,

0, if Si
n,k(i, j) − 1 = 1,

(A.18)

where, the second line is null because it is represented by transition ξn+1
2 ( j) →

ξn+1
3 ( j) (see (A.7) with appropriate indices changes).

The transition ξn+1
4 ( j) → Zn(i) happens when the discontent player selects an

occupied resource and all players are content and aligned in the end. This is given
by probability

pξn+1
4 ( j)Zn(i) =

 0, if Si
n,k(i, j) − 1 ≥ 2,

1
Nε

1
2K , if Si

n,k(i, j) − 1 = 1,
(A.19)
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where, the first line is null because this corresponds to the transition ξn+1
4 ( j) →

ξn
0(i) described afterwards. The second line is the probability for the discontent

player to select and to accept the current resource. The transition ξn+1
4 ( j) → ξn

0(i)
corresponds to the case where the discontent player selects and accepts a resource
with Si

n,k(i, j) − 1 ≥ 2 players. Consequently, the player that is left alone becomes
hopeful with probability

pξn+1
4 ( j)ξn

0 (i) =


Mn+1

j (Si
n,k(i, j)−1)

N ε
1

2K , if Si
n,k(i, j) − 1 ≥ 2,

0, if Si
n,k(i, j) − 1 = 1,

(A.20)

where, the second line corresponds to previous transition ξn+1
4 ( j)→ Zn(i).
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Appendix B

Probabilities involved in ODL
approximation

This Appendix describes all the possible transitions and probabilities of ODL
algorithm model presented in Figure 3.5b. We also use the same notations and
preliminaries detailed in Appendix A.1.

In ODL, a player which perceives a utility or an action change accepts the
new benchmark with probability ε1−u or, it refuses it and becomes discontent with
probability 1 − ε1−u.

B.1 Transitions inside ξn(i)

We start by describing the transitions between the states Zn(i), ξn
1(i), ξn

2(i) and ξn
3(i).

The state Zn(i) is connected to ξn
1(i), ξn

2(i), ξn
3(i). Transition Zn(i)→ ξn

1(i) happens if
an alone player becomes discontent after perceiving a utility change that it does
not accept. This situation arises with probability

pZn(i)ξn
1 (i) =

(a)︷                                    ︸︸                                    ︷
Pε(K)

(K −mi
n(1) −mi

n(2))
K

Mi
n(1)

N − 1

(b)︷ ︸︸ ︷
(1 − ε) .

(B.1)

where (a) is the probability that any player interfered by two players or more
experiments on a resource with solely one player, (b) is the probability that this
alone player becomes discontent.

The transition Zn(i) → ξn
2(i) represents the situation where two players alone
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in Zn(i) become discontent in one step, whose probability is

pZn(i)ξn
2 (i) =

(a)︷                      ︸︸                      ︷
Pε(K)

mi
n(1)
K

Mi
n(1) − 1
N − 1

(b)︷  ︸︸  ︷
(1 − ε)2, (B.2)

where, (a) is the probability that an alone player experiments on a resource
with an other alone player and, (b) is the probability that both players become
discontent.

The transition Zn(i) → ξn
3(i) represents the situation where, from a resource

with two players, one of them experiments on an other resource with one player
and, one of them ends in discontent mood. This happens with probability

pZn(i)ξn
3 (i) =

(a)︷        ︸︸        ︷
Pε(K)

mi
n(2)
K

(b)︷            ︸︸            ︷
Mi

n(1)
N − 1

2ε(1 − ε), (B.3)

where (a) is the probability that a player experiments from a resource with
two of them, (b) is the probability to interfere with one player and, one of the
two players involved becomes discontent. The presence of multiplier 2 in term
(b) means that, inverting player’s label is a different event that results in the same
state ξn

3(i) and with the same probability.
The transition Zn(i) → Zn(i) is computed using probability conservation as

follows,

pZn(i)Zn(i) = 1 − pZn(i)ξn
1 (i) − pZn(i)ξn

2 (i) − pZn(i)ξn
3 (i) − pZn(i)Zn+1 − pZn(i)Zn−1

− pZn(i)ξn+1
1
− pZn(i)ξn+1

2
− pZn(i)ξn−1

3
,

(B.4)

where pZn(i)Zn+1 is the probability for any interfered player to select a free resource,
pZn(i)Zn−1 is the probability for any not interfered player to become interfered,
pZn(i)ξn+1

1
and pZn(i)ξn+1

2
are similar to pZn(i)Zn+1 with one and two players ending in

discontent mood respectively and, pZn(i)ξn−1
3

is the probability that two players
alone in Zn(i) finish on the same resource with one of them discontent. The first
probability is given by

pZn(i)Zn+1 = Pε(K)
(K −mi

n(1))
K

Mn
i (0)

N − 1
, (B.5)

which is the same as (A.3) in the TEL model. The second probability is given by

pZn(i)Zn−1 =

(a)︷        ︸︸        ︷
Pε(K)

mi
n(1)
K

( (b)︷                    ︸︸                    ︷
N −Mi

n(1) −Mi
n(0)

N − 1
ε+

(c)︷        ︸︸        ︷
Mi

n(1) − 1
N − 1

ε2
)
, (B.6)
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where, (a) is the probability for a player that is not interfered to experiment, (b) is
the probability that it experiments on resource with two players or more and that
it updates its benchmark, (c) is the probability to select the resource of a player
not interfered and that both accept this new benchmark. Probability pZn(i)ξn+1

1
is

given by

pZn(i)ξn+1
1

= Pε(K)
K −mi

n(1)
K

(a)︷                                ︸︸                                ︷
N −Mi

n(1) −Mi
n(0) − 1

N − 1
(1 − ε), (B.7)

where (a) is the probability that the player interfered selects a frequency with two
players or more, except its own resource, and, that it ends in discontent mood.

The probability to end in ξn+1
2 is

pZn(i)ξn+1
2

= Pε(K)
K −mi

n(1)
K

(a)︷           ︸︸           ︷
Mi

n(1)
N − 1

(1 − ε)2, (B.8)

where (a) is the probability that the experimenter selects the resource of player
not interfered and that both end up in discontent mood.

Finally, the probability to go from Zn(i) to ξn−1
3 is given by

pZn(i)ξn−1
3

= Pε(K)
mi

n(1)
K

(a)︷                  ︸︸                  ︷
Mi

n(1) − 1
N − 1

2ε(1 − ε), (B.9)

where (a) is the probability that the experimenter selects a resource with a player
not interfered and, one of them ends in discontent mood. The multiplier 2 has a
similar role than in (B.3).

The state ξn
1(i) is connected to Zn(i) and ξn

2(i) inside the set ξn(i). During
transition ξn

1(i) → Zn(i) the discontent player either chooses a free resource or its
current benchmark with probability

pξn
1 (i)Zn(i) =

Mi
n(0) + 1

N
. (B.10)

During transition ξn
1(i) → ξn

2(i), the discontent player makes an other player
discontent in addition to itself. This is given by probability

pξn
1 (i)ξn

2 (i) =

(a)︷      ︸︸      ︷
Mi

n(1) − 1
N

(1 − ε)2, (B.11)
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where (a) is the probability that the discontent player selects a resource that
contains a player alone, except its own resource.

The probability pξn
1 (i)ξn

1 (i) is obtained using the conservation property:

pξn
1 (i)ξn

1 (i) = 1 − pξn
1 (i)Zn(i) − pξn

1 (i)ξn
2 (i) − pξn

1 (i)Zn−1 − pξn
1 (i)ξn−1

3
, (B.12)

where pξn
1 (i)Zn−1 and pξn

1 (i)ξn−1
3

are the probability for the system starting in ξn
1(i) to end

for all j ∈ IN(n− 1) in states Zn−1( j) and ξn−1
3 ( j) respectively. The first probability is

given by

pξn
1 (i)Zn−1 =

N −Mi
n(0) −Mi

n(1)
N

ε +
Mi

n(1) − 1
N

ε2, (B.13)

which are similar to terms (b)+(c) in (B.6) except the choice is made over all
resources as the player is in state D.

The second probability is given by

pξn
1 (i)ξn−1

3
=

Mi
n(1) − 1

N
2ε(1 − ε), (B.14)

which is similar to (a) in (B.9) except that the choice is made among N resources.
The state ξn

2(i) is connected to ξn
1(i) and Zn(i). The probability of transition

ξn
2(i)→ Zn(i) is given by

pξn
2 (i)Zn(i) =

(a)︷      ︸︸      ︷
Mi

n(0) + 2
N

(b)︷      ︸︸      ︷
Mi

n(0) + 1
N

, (B.15)

where (a) is the probability that the first discontent player selects a free resource.
The number of free resource is Mi

n(0) in addition to the 2 resources left by the
discontent players. Term (b) is the probability that the other discontent player
selects a free resource given that, the first discontent player has already selected
a free resource.

The probability of a transition ξn
2(i)→ ξn

1(i) is given by

pξn
2 (i)ξn

1 (i) = 2
Mi

n(0) + 2
N

(a)︷                           ︸︸                           ︷
N −Mi

n(1) −Mi
n(0)

N
(1 − ε), (B.16)

where (a) is similar to the term (a) in (B.7) except there is one more resource
available.

The probability to remain in ξn
2(i) is given by probability conservation

pξn
2 (i)ξn

2 (i) = 1 − pξn
2 (i)Zn(i) − pξn

2 (i)ξn
1 (i) − pξn

2 (i)Zn−1 − pξn
2 (i)ξn−1

1
− pξn

2 (i)ξn−1
2
− pξn

2 (i)ξn−1
3
, (B.17)
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where pξn
2 (i)Zn−1 , pξn

2 (i)ξn−1
1

and pξn
2 (i)ξn−1

2
represent the probability that the system uses

one less resource and, that, respectively, all player are content and aligned, one
player ends discontent and two players end discontent. The probability pξn

2 (i)ξn−1
3

corresponds to the event where two players not interfered end on the same re-
source with one of them discontent. A transition ξn

2(i) → Zn−1 happens if one
of the two discontent players selects a resource already occupied and the system
ends in an all content and aligned state. The probability of the first events is given
by

pξn
2 (i)Zn−1 =

Mi
n(0) + 2

N
Mi

n(1) − 1
N

ε2 + 2
Mi

n(0) + 2
N

N −Mi
n(1) −Mi

n(0)
N

ε, (B.18)

The transition ξn
2(i)→ ξn−1

1 happens if one of the two discontent players selects
a resource already occupied and the system ends with one player discontent. The
probability of all these possible events is given by

pξn
2 (i)ξn−1

1
= 2

N −Mi
n(1) −Mi

n(0)
N

ε
N −Mi

n(1) −Mi
n(0)

N
(1 − ε)

+ 2
Mi

n(1) − 2
N

ε2 N −Mi
n(1) −Mi

n(0) + 1
N

(1 − ε),
(B.19)

where the first terms in the sum deals with the cases in which one of the two
discontent players accepts a resource with two players or more and, the second
term deals with the case in which one of the two players selects a resource with
one player solely.

The probability of transition from ξn
2(i) to ξn−1

2 is the probability that one player
updates its benchmark with a resource already occupied and that, the systems
ends with two discontent players. It is given by

pξn
2 (i)ξn−1

2
= 2

N −Mi
n(1) −Mi

n(0)
N

ε
Mi

n(1) − 2
N

(1 − ε)2 +
Mi

n(1) − 2
N

ε2 Mi
n(1) − 3

N
(1 − ε)2,

(B.20)
where the first term deals with the case in which, one of the discontent players
updates its benchmark with a resource that contains two players or more and,
the second term is about the case where both discontent players select a resource
with one player. More specifically, in the second term, once the first discontent
player has selected a resource with one player and, both have accepted the new
benchmark, there is now one less resource with one player, i.e. Mi

n(1) − 3.
The transition ξn

2(i) to ξn−1
3 happens if one of the discontent players finds a free

resource and, the other selects the resource of a player not interfered. In this last
situation one of the two players interfered becomes discontent. This is given by
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the following probability

pξn
2 (i)ξn−1

3
=

Mi
n(0) + 2

N
Mi

n(1) − 1
N

2ε(1 − ε), (B.21)

The state ξn
3(i) is linked to Zn(i) and itself in the set ξn(i). During transition

ξn
3(i) → Zn(i) the system comes back to the all content and aligned state with

probability

pξn
3 (i)Zn(i) =

(a)︷︸︸︷
ε
N

+

(b)︷   ︸︸   ︷
Mi

n(1)
N

ε2, (B.22)

where (a) is the probability that the discontent player tries the current resource
and that it updates its benchmark. Note that, the player interfered is already
aligned in ξn

3(i). Term (b) is the probability that the discontent player tries an
other resource with one player and both accept the new benchmark.

The probability to remain in ξn
3(i) is given by

pξn
3 (i)ξn

3 (i) = 1 − pξn
3 (i)Zn(i) − pξn

3 (i)Zn+1 − pξn
3 (i)ξn+1

1
− pξn

3 (i)ξn+1
2
, (B.23)

where pξn
3 (i)Zn+1 , pξn

3 (i)ξn+1
1

and pξn
3 (i)ξn+1

2
are the probabilities for the system to use one

more frequency from ξn
3(i) and, respectively, the system ends with all players

content, one player discontent and two players discontent. Note that, these
transitions lead to one unique state j in IN(n + 1), Zn+1( j), ξn+1

1 ( j) and ξn+1
2 ( j). The

transition ξn
3(i) → Zn+1( j) occurs if the system ends in an all content mood and

aligned with one more frequency used after the experimentation. It happens if
the discontent player chooses a free resource with probability

pξn
3 (i)Zn+1( j) =


Mi

n(0)
N , if Sn,k(i, j) = 2,

0, otherwise.
(B.24)

The term pξn
3 (i)Zn+1 is the sum over all possible j of pξn

3 (i)Zn+1( j). Consequently,

pξn
3 (i)Zn+1 =

Mi
n(0)
N .

The transition ξn
3(i) → ξn+1

1 ( j) occurs if the discontent cluster remains discon-
tent. It happens with probability

pξn
3 (i)ξn+1

1 ( j) =


N−Mi

n(1)−Mi
n(0)−1

N (1 − ε), if Sn,k(i, j) = 2,

0, otherwise.
(B.25)

where the first line is the probability that the discontent player experiments on a
resource, with two players or more, except the current one and, that it remains
discontent. After this event, the player left alone by the discontent player is no
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more interfered and accepts the new benchmark with probability 1. The total
probability to go in ξn+1

1 is pξn
3 (i)ξn+1

1
=

N−Mi
n(1)−Mi

n(0)−1
N (1 − ε).

The event that leads to transition ξn
3(i) → ξn+1

2 ( j) is realized if the discontent
player experiments on an other resource with a cluster not interfered and both
end in discontent. This happens with probability

pξn
3 (i)ξn+1

2 ( j) =


Mi

n(1)
N (1 − ε)2, if Sn,k(i, j) = 2,

0, otherwise.
(B.26)

Using the same reasoning, pξn
3 (i)ξn+1

2
=

Mi
n(1)
N (1 − ε)2.

B.2 Transition from ξn(i) to ξn+1( j)

The only states in ξn(i) from which the system can use one more frequency are
Zn(i) and ξn

3(i). In other states, the discontent players are alone on their resource,
which mean that they cannot discover a new one.

The transitions ξn
3(i) → Zn+1( j), ξn

3(i) → ξn+1
1 ( j) and ξn

3(i) → ξn+1
2 ( j) have been

described in equations (B.24), (B.25) and (B.26).

The transition Zn(i) → Zn+1( j) happens if a player on a resource with Si
n,k(i, j)

experiments on a free resource. It is given by probability

pZn(i)Zn+1( j) = Pε(K)
mi

n(Si
n,k(i, j))

K
Mn

i (0)
N − 1

, (B.27)

which is term j of the sum that gives the total probability pZn(i)Zn+1 (B.5). The term
K −mi

n(1) in (B.5) is decomposed as follows
∑

j mi
n(Si

n,k(i, j)) = K −mi
n(1).

The transition from Zn(i) → ξn+1
1 ( j) corresponds to the term j of the sum that

gives probability Zn(i)→ ξn+1
1 in (B.7). Using the same procedure

pZn(i)ξn+1
1 ( j) = Pε(K)

mi
n(Si

n,k(i, j))

K
N −Mi

n(1) −Mi
n(0) − 1

N − 1
(1 − ε), (B.28)

Again with the same decomposition, probability of transition Zn(i) → ξn+1
2 ( j) is

obtained using (B.8) as follows

pZn(i)ξn+1
2 ( j) = Pε(K)

mi
n(Si

n,k(i, j))

K
Mi

n(1)
N − 1

(1 − ε)2, (B.29)
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B.3 Transitions from ξn+1( j) to ξn(i)

The system can employ one less resource when an alone player selects a resource
already occupied as a new benchmark. These transitions are possible from states
Zn+1( j), ξn+1

1 ( j) and ξn+1
2 ( j). In practice, probability transitions inside ξn+1( j), are

computed with formulas detailed in Section B.1 by replacing the indices appro-
priately. For example, in this section, the starting state is in ξn+1( j). Therefore, we
use the functions m j

n+1(.) and M j
n+1(.) instead of mi

n(.) and Mi
n(.). Moreover, dur-

ing a transition from ξn(i) to ξn+1( j), the resource that has Si
n,k(i, j) is decremented

by one. Thus, from ξn+1( j), any resource that contains Si
n,k(i, j) − 1 players can be

incremented by one to make the transition to ξn(i) occurs.
The transition Zn+1( j)→ Zn(i) happens with probability

pZn+1( j)Zn(i) =

 Pε(K)
m j

n+1(1)
K

M j
n+1(Si

n,k(i, j)−1)

N−1 ε, Si
n,k(i, j) − 1 > 1

Pε(K)
m j

n+1(1)
K

M j
n+1(1)−1
N−1 ε2, Si

n,k(i, j) − 1 = 1.
(B.30)

The first line corresponds to the probability that an alone player experiments
on a resource with Si

n,k(i, j)− 1 > 1 players, and that it accepts the decrease in utility.
The second line corresponds to the probability that an alone player experiments
on a resource with Si

n,k(i, j) − 1 = 1 player, and that both accept the decrease in

utility. From the experimenter point of view, there are M j
n+1(1) − 1 resources with

one player.
Note that pZn+1( j)Zn(i) is the term i of the sum that gives pZn+1( j)Zn =

∑
i pZn+1( j)Zn(i)

in (B.6). Therefore, the first and second line of (B.30) are, with respect to the right
indices changes, the term i of the sum that gives the first term and the second
term of (B.6) respectively. These similarities are used in what follows.

The transition probabilities pZn+1( j)ξn
3 (i), pξn+1

1 ( j)Zn(i), pξn+1
1 ( j)ξn

3 (i), pξn+1
2 ( j)ξn

1 (i), pξn+1
2 ( j)ξn

2 (i)

and pξn+1
2 ( j)ξn

3 (i) correspond to the term i of the sum that gives pZn+1( j)ξn
3

pZn+1( j)Zn ,
pξn+1

1 ( j)Zn
, pξn+1

1 ( j)ξn
3
, pξn+1

2 ( j)ξn
1

and pξn+1
2 ( j)ξn

3
respectively. After changing the indices

n + 1 into n, n into n − 1 and j into i, one can realize that these probabilities have
already been computed. They correspond to pZn(i)ξn−1

3
, pZn(i)Zn−1 , pξn

1 (i)Zn , pξn
1 (i)ξn−1

3
,

pξn
2 (i)ξn−1

1
and pξn

2 (i)ξn−1
3

from (B.9), (B.13), (B.14),(B.18), (B.19) and (B.21) respectively.
Thus, to obtain pZn+1( j)ξn

3 (i), pξn+1
1 ( j)Zn(i), pξn+1

1 ( j)ξn
3 (i), pξn+1

2 ( j)ξn
1 (i), pξn+1

2 ( j)ξn
2 (i) and pξn+1

2 ( j)ξn
3 (i), we

use previous probabilities by changing the indices appropriately and then, the i
th term of the sum that results in N −M j

n+1(0) −M j
n+1(1) is selected. This term

corresponds to M j
n+1(Si

n,k(i, j) − 1) as∑
i,Si

n,k(i, j)−1>1

M j
n+1(Si

n,k(i, j) − 1) = N −M j
n+1(0) −M j

n+1(1). (B.31)
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With these modifications and, using (B.9), the transition Zn+1( j) → ξn
3(i) has a

probability

pZn+1( j)ξn
3 (i) =

 0, Si
n,k(i, j) − 1 > 1,

Pε(K)
m j

n+1(1)
K

M j
n+1(1)−1
N−1 2ε(1 − ε), Si

n,k(i, j) − 1 = 1.
(B.32)

From state ξn+1
1 ( j) it is possible to go to Zn(i) and ξn

3(i). During transition
ξn+1

1 ( j)→ Zn(i) the discontent player chooses a frequency that contains Si
n,k(i, j) − 1

players. It happens with the following probabilities

pξn+1
1 ( j)Zn(i) =


M j

n+1(Si
n,k(i, j)−1)

N ε, Si
n,k(i, j) − 1 > 1,

M j
n+1(1)−1

N ε2, Si
n,k(i, j) − 1 = 1.

(B.33)

The first line is similar to the term i of the sum that results in the first term of
(B.13). The second line corresponds to the second term of (B.13).

With the same reasoning, using (B.14), ξn+1
1 ( j)→ ξn

3(i) happens with probability

pξn+1
1 ( j)ξn

3 (i) =

 0, Si
n,k(i, j) − 1 > 1,

M j
n+1(1)−1

N 2ε(1 − ε), Si
n,k(i, j) − 1 = 1.

(B.34)

The state ξn+1
2 ( j) is connected to Zn(i), ξn

1(i), ξn
2(i) and ξn

2(i). The probability of
transition ξn+1

2 ( j)→ Zn(i) is obtained using (B.18) as follows

pξn+1
2 ( j)Zn(i) =

 2
M j

n+1(0)+2
N

M j
n+1(Si

n,k(i, j)−1)

N ε, if Ci
n,k(i, j) − 1 > 1,

M j
n+1(0)+2

N
M j

n+1(1)−1
N ε2, if Si

n,k(i, j) − 1 = 1.
(B.35)

The first line is similar to the term i of the sum that results in the second term of
(B.18). The second line is similar to the first term of (B.18).

The probability of transition ξn+1
2 ( j)→ ξn

1(i), noted pξn+1
2 ( j)ξn

1 (i), is given by 2
M j

n+1(Si
n,k(i, j)−1)

N ε
N−M j

n+1(1)−M j
n+1(0)

N (1 − ε),Si
n,k(i, j) − 1 > 1,

2
M j

n+1(1)−2
N ε2 N−M j

n+1(1)+1−M j
n+1(0)

N (1 − ε),Si
n,k(i, j) − 1 = 1.

(B.36)

which is obtained using (B.19).
The probability of transition ξn+1

2 ( j)→ ξn
2(i) is given by

pξn+1
2 ( j)ξn

2 (i) =

 2
M j

n+1(Si
n,k(i,`)−1)

N ε
M j

n+1(1)−2
N (1 − ε)2, if Si

n,k(i, j) − 1 ≥ 2,
M j

n+1(1)−2
N ε2 M j

n+1(1)−3
N (1 − ε)2, if Si

n,k(i, j) − 1 = 1.
(B.37)
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which is obtained using (B.20).
Finally, the probability of transition ξn+1

2 ( j)→ ξn
3(i) is obtained using (B.21) as

follows

pξn+1
2 ( j)ξn

3 (i) =

 0, if Si
n,k(i, j) − 1 ≥ 2,

M j
n+1(0)+2

N
M j

n+1(1)−1
N 2ε(1 − ε), if Si

n,k(i, j) − 1 = 1.
(B.38)
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Appendix C

Proofs of theoretical results in
Section 4.4

This appendix presents the proofs of Proposition 4.1, Theorems 4.1 stated in Sec-
tion 4.4 in page 57. In addition, it also provides a shorter proof of Theorem 4.2
than the one given in [34]. They are based on perturbed MC theory whose main
concept is presented in Section 2.2. Thus, the convergence proofs of Proposi-
tion 4.1, Theorems 4.1 and 4.2 involve the computation of the stochastic potential
and its minimization. Before proving these results, we need to show that the MC
induced by either the RTEL or the RODL algorithms is a regular perturbed MC.
Recall that the matrix representation of these MCs is noted P0 (as in Section 3.5.4
page 33). For clarity, the reference to the algorithm in the notation is dropped
when there is no ambiguity. We distinguish Pε0 in which the perturbation ε > 0
and P0

0 in which the process is not perturbed. The convergence results are valid
if Pε0 is a regular perturbation (see Definition 2.12 page 15) of matrix P0

0 for each
algorithm. For clarity, this

Lemma C.1. For both algorithms RTEL and RODL, Pε0 is a regular perturbation of P0
0.

Proof of Lemma C.1. To prove this result, we show the three properties of the Defi-
nition 2.12. For the first property, we use the Claim 1 in [10] whose proof is similar
here assuming valid the interdependence condition (see Definition 2.4 for the TEL
of the ODL). In the case of robust algorithms, this property ensures that given any
state of the network, there exists an appropriate action change such that a set of
clusters modifies the utility of at least one different cluster more than its tolerance
level. We recall this Claim in [10] as follows:

Claim C.1. Given any state z ∈ Ξ in which at least one player is discontent, there exists
a sequence of transitions in the unperturbed process to D.
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where D is the set in which all clusters are discontent and, which is recalled
for clarity as follows

D := {z = (m, ā, ū) |∀i ∈ K ,mi = D} . (C.1)

With the previous Claim, as long as one player is discontent, the process ends in the
all discontent state D. In addition, all states in Ξ are accessible from D by definition
of algorithms transitions in Section 4.3. With the interdependence property, there
always exists a positive probability for one player to become discontent (e.g. two
successive experimentations that decrease the utility of a player more than the
threshold δ). Consequently, Pε0 is irreducible since all states communicate (see
Definition 2.8 in page 14).

Let prove the aperiodicity of MCs required in Definition 2.12 (i). The period-
icity is a class property [70] so as Pε0 is irreducible, one needs to show that one
state is aperiodic. In practice, when the probability to remain in a state is not null
it is aperiodic. Since there exists some states in which it is possible to remains at
least two successive algorithm iterations (e.g. no player experiments two times in
a row), this condition is true and (i) in Definition 2.12 is valid.

It remains to show conditions (ii) and (iii). Condition (ii) is the consequence
of the algorithms descriptions in Section 4.3. When the the perturbation ε tends
to 0, one obtains P0

0 by definition of the perturbation in the algorithm. The last
condition (iii) is verified because either a transition has a probability proportional
to ε0 or 1 − εr with r ≥ 0 (e.g. no experimentation) or, a transition occurs with a
probability that is proportional to εr with r > 0 (e.g. experimentation). �

C.1 Proof of Proposition 4.1

Proposition 4.1 is proved by showing that the Recurrence Classes (RC)s of P0
0

are reduced to only one RC in which all clusters are discontent (i.e. the set D). It
follows that this state is the only Stochastic Stable State (SSS) to which the network
converges to which is not a desirable state.

Proof of Proposition 4.1. Suppose that all clusters are in a content mood and aligned.
In the deterministic context, if no one experiments a new action, each cluster re-
ceives a deterministic and constant utility value (see Definition 4.1). However,
due to the presence of disturbances (see Definition 4.2), a cluster can see its utility
changing two times in a row such that, either it becomes discontent or, content
after an update through the hopeful state. In the last case, if the utility comes back
to the initial value because of disturbances, the cluster can see its utility decreasing
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two times in a row and becomes discontent. With the interdependence property
and Claim C.1, only one discontent cluster is needed to make others going to D
with probability one. Hence, all RCs are reduced to the all discontent state D
which becomes the SSS. �

C.2 Proof of Theorem 4.1

Theorem 4.1 is proved by analyzing spanning trees over the RCs, R, of the un-
perturbed process P0

0. The first part of the proof consists in finding the RCs of P0
0

which is provided in Lemma C.2 and, the second part of the proof deals with the
computation of edge resistances between these RCs through Lemmas C.3 to C.5.
The final part of the proof presents the stochastic potential computation and the
final results. We follow a procedure similar to the proof in [10] and we highlight
the main differences involved.

C.2.1 Recurrence classes of P0
0

The notion of alignment in [10] is redefined in the disturbed case as follows

Z0
δ := {z = (m, ā, ū)|∀i ∈ K ,∀ωi,ui(ā;ωi) ∈ [ūi − δ, ūi + δ]} , (C.2)

and the set of content and aligned clusters becomes

C0
δ :=

{
z = (m, ā, ū)|z ∈ Z0

δ,∀i ∈ K ,mi = C
}
. (C.3)

Furthermore, the notion of δ-Nash equilibrium with respect to the benchmark
with all content and aligned clusters is

E0
δ :=

{
z = (m, ā, ū)

∣∣∣z ∈ C0
δ,∀i ∈ K ,∀ai , āi, ūi > max

ωi
(ui((ai, ā−i), ωi)) − δ

}
. (C.4)

Lemma C.2. The recurrence classes, R, of the unperturbed process are D, and all single-
tons z ∈ C0

δ such that ∀i, δ ≥ δ∗ with δ∗ =
⌈

v−1
2

⌉
w.

Proof of Lemma C.2. In the unperturbed process P0
0, if every player is in D, then

the network remains in D as the probability to leave D is null. Therefore, D ∈ R.
Moreover, if the network is in state z ∈ Z0

δ without a cluster discontent, then every
cluster ends in content mood if ∀i ∈ K and ∀ω, |ui(ā, ω) − ūi| ≤ δ. Suppose that
there exists δ∗ such that if δ ≥ δ∗, all clusters go to the content mood in this case
and C0

δ ∈ R.



162 C. Proofs of theoretical results in Section 4.4

Table C.1: Resistances between states

No. Transition Resistance
1 E0

δ → D̄ r(e→ D̄) = 2
2 C0

δ\E
0
δ → D̄ r(z→ D̄) = 1 + G(Sδ(z))

3 D̄→ C0
δ r(D̄→ z) =

∑
i∈K F(ūi)

The value δ∗ is computed afterwards. The condition ∀i ∈ K , ∀ω, |ui(ā, ω)− ūi| ≤

δmeans that∀i ∈ K , ūi−minω(ui(ā, ω)) ≤ δ and maxω(ui(ā, ω))−ūi ≤ δ. In a general
case, one of the two left hand side (lhs) inequalities is lower than the other and,
we can find an integer k ∈N, such that adding kw in one of them equals both lhs.
Assume without loss of generality, that this term is added to the lhs of the first
inequality such that, there exists always the same δ verifying both equations at
the same time. We get the following systemūi −minω(ui(ā, ω)) + kw ≤ δ,

maxω(ui(ā, ω)) − ūi ≤ δ,
(C.5)

In this situation, we can add both inequalities which provides

δ ≥
maxω(ui(ā, ω)) −minω(ui(ā, ω)) − 1 + kw

2
, (C.6)

where with (4.8), we obtain,

δ ≥
v − 1 + k

2
w, (C.7)

Thus, the minimum value for the tolerance level δ occurs when k = 0. In addition,
as (v − 1)/2 may not belong toN, we get δ ≥ δ∗ =

⌈
v−1

2

⌉
w where dxe is the closest

integer above x.
It remains to prove that other states in Ξ are not contained in recurrence classes.

To that end, we use the Claim C.1 with similar arguments as in [10]. �

C.2.2 Resistances, trees and stochastic potential

This section presents complementary Lemmas C.3 to C.5 required for a complete
tree analysis. We present their proofs only when a major difference with [10]
exists. In summary, these Lemmas present the resistances of the tree composed of
the RCs of the unperturbed process P0

0. These resistance values are summarized
in Table C.1. With these results, a tree analysis is possible as in [10].

Lemma C.3. ∀e ∈ E0
δ, r∗(e) = 2 and e→ D̄ is an easy edge.
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First of all we recall the definition of easy edge from [10]:

Definition C.1 (Easy edge). An edge x→ y is called easy if its resistance r(x→ y) is
equal to the minimum resistance needed to leave the starting state x. This resistance is
noted r∗(x).

Proof of Lemma C.3. The proof is similar to the one in [10] but with definition of E0

in [10] replaced with E0
δ (C.4) here. The reason of this change is that in the RTEL, a

cluster that experiments can accept the new benchmark only if the received utility
is greater than δ. �

Lemma C.4. ∀z ∈ C0
δ\E

0
δ, r
∗(z) = 1 + G(Sδ(z)), if for z′ ∈ R, z → z′ is an easy edge

then, W(z) < W(z′), otherwise, z→ D̄ is an easy edge.

Proof of Lemma C.4. The main differences with [10] are, the definition of the sta-
bility Sδ(z) described afterwards which results from the presence of the tolerance
level and, the increase in benchmark social welfare W(.) instead of social welfare
W(.). If a new player i has the possibility to increase its payoff benchmark by more
than δ into the state z′, the new transition has a resistance r(z→ z′) = 1+G(ū′i− ūi).
Thus, the minimum resistance to escape z is by definition,

r∗(z) =1 + min
i

min
ai

min
ωi

(G((ui((ai, ā−i), ωi) − ūi))),

= 1 + G(Sδ(z)),
(C.8)

with the decreasing property of G and where, Sδ(z) = min
i∈K

{
Si
δ(z)

}
with,

Si
δ(z) = max

ai,ωi
{ui((ai, ā−i), ωi) − ūi|ui(ai, ā−i, ωi) − ūi ≥ δ} .

A transition with two experimenting players cannot be an easy edge as the re-
sistance of the transition would be greater than 1 + G(Sδ(z)) due to the design of
function G(.) in Section 4.3 as justified in [10]. �

Lemma C.5. ∀z ∈ C0
δ, r(D̄→ z) =

∑
i∈K F(ūi).

The difference with [10] comes from the use of ūi instead of ui(ā).

Lemma C.6. There exists a D-tree T∗
D

that is easy.

A tree is said to be easy, if it is composed of easy edges. The proof of Lemma C.6
is similar to Lemma 5 in [10] except that in this thesis, the no cycle property is
proven using the strict increase in W instead of W. Recall that this property is
shown in Lemma C.4. In the following, we note ρ∗ the stochastic potential of the
easy tree T∗

D
.
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C.2.3 Proof of the main result

The main result presented in Theorem 3.1 can be obtained by looking for the states
inR that minimize the stochastic potential. The stochastic potential of a recurrence
class z ∈ R is obtained by computing the resistance of the easy tree rooted at z
because it has the less resistance among all trees rooted at z (see Lemma 6 in
[10]). In this case, starting from the tree T∗

D
, it suffices to remove the easy edge

z → D and to add the easy edge D → z to get an easy tree that is rooted at z.
Consequently, the stochastic potential of z is given by

ρ(z) = ρ∗ − r(z→ D̄) + r(D̄→ z). (C.9)

Therefore, if c ∈ C0
δ\E

0
δ then, with resistances given in Table C.1, (C.9) becomes

ρ(c) = (ρ∗ − Kφ2 − ν2) − φ1W(z) − ν1Sδ(z). (C.10)

For a state e ∈ E0
δ, with the resistances given in Table C.1, (C.9) becomes

ρ(e) = (ρ∗ − 2) − φ1W(z), (C.11)

With the function F and G given in Section 4.3.1 (page 55), it is proved in [10] that
ρ(e) ≤ ρ(c). So if there exists a δ-PNE (i.e. E0

δ , ∅), the SSSs are those which min-
imize (C.11) or equivalently that minimize the benchmark social welfare among
PNEs. Otherwise, if E0

δ = ∅, the SSSs are those that minimize (C.10) or equiva-
lently that maximize a trade-off between the benchmark social welfare and the
stability. The proof of Theorem 4.1 is complete.

C.3 Proof of Theorem 4.2

With the same sets Z0
δ, C0

δ and D defined in (C.2), (C.3) and (C.1) respectively,
one can prove that the RCs of the unperturbed process are all singletons in C0

δ

and the set D as in the RTEL proof provided in the previous section. The proof
relies on similar arguments than in Section C.2.1. Then, with the same arguments
employed in [12], the resistances between RCs are similar to the one in [12] after
replacing Z0, C0 by their counterpart in our work Z0

δ, C0
δ respectively (D remains

unchanged). Consequently, the proof can be derived in the same way and is
shorter than the one provided in [34].

In [34], the main difference with our proof is that authors consider the set
C0
δ separated in different sets C0, C1, . . . ,Cm with m < K. Briefly, in the set C0,

all players have chosen their benchmark utility with respect to a received utility
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u(ā). The set C1 is composed of a subset of players as in C0 and a subset of
players that keep the same benchmark from C0 whereas the action has changed.
These second subset of players do not change their benchmark because with the
tolerance thresholds they do not see an enough significant change in utility to
react. Similarly, the set C2 is composed of a subset of players from C0, a subset of
player from C1 and a subset of player from C1 that is not sensitive to a new action
change because of the tolerance levels. The definitions of other sets is an iteration
of previous description.

In comparison to our proof the simplification is to gather together the sets C0,
C1, . . . ,Cm into one set C0

δ. The simple idea behind this reduction is to only focus
on whether the selected benchmark is stable to disturbances or not. Consequently,
it reduces the number of RCs to study and, the complexity of the tree analysis.
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Appendix D

Success probability in NB single
carrier scheme

We compute the success probability pk
i defined in Section 5.1.1. Using Defini-

tion (5.2) (page 100), pk
i is given by

pk
i (Γ0) = Pr

{
SINRk

i > Γ0

}
, (D.1)

where the SINR is a rv modeled by (5.5). Thus, for any link i = (it, ir) in cluster k,

pk
i (Γ0) = Pr

 αk
i SNRk

i

1 +
∑

n∈Ik

∑
j∈Mn

αnk
j,ir

INRnk
j,ir

> Γ0

 . (D.2)

Then,

pk
i (Γ0) = Pr

αk
i >

Γ0

SNRk
i

1 +
∑
n∈Ik

∑
j∈Mn

αnk
j,irINRnk

j,ir


 . (D.3)

In order to compute (D.3), we use the law of total probability with respect to the
αnk

j,ir
as follows

pk
i (Γ0) =

∫
x

Pr

αk
i >

Γ0

SNRk
i

1 +
∑
n∈Ik

∑
j∈Mn

xn, jINRnk
j,ir


∣∣∣∣∣∣∣∣x
 pα(x)dx, (D.4)

where x = ((xn, j)n∈Ik, j∈Mn), α = ((αnk
j,ir

)n∈Ik, j∈Mn) and pα(x) is the joint density function
of α given by

pα(x) =
∏
n∈Ik

∏
j∈Mn

λ exp
(
−λxn, j

)
. (D.5)

The αnk
j,ir

are exponential rvs iid with parameter λ = 1. In that case, for any fixed x,
let note the positive constant A(x), then

Pr
{
αk

i > A(x)
∣∣∣x} = exp (−A(x)) . (D.6)
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Gathering (D.6) and (D.5) into (D.4) gives:

pk
i (Γ0) = exp

(
−

Γ0

SNRk
i

) ∫
x

exp

−∑
n∈Ik

∑
j∈Mn

xn, j

Γ0 INRnk
j,ir

SNRk
i


∏

n∈Ik

∏
j∈Mn

exp
(
−xn, j

)
dx,

= exp
(
−

Γ0

SNRk
i

)∏
n∈Ik

∏
j∈Mn

∫
xn, j

exp

−xn, j

1 +
Γ0 INRnk

j,ir

SNRk
i


 dxn, j, (D.7)

and integrating over each xn, j gives the final result:

pk
i (Γ0) =

exp
(
−

Γ0

SNRk
i

)
∏

n∈Ik

∏
j∈Mn

(
1 +

Γ0 INRnk
j,ir

SNRk
i

) . (D.8)
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Appendix E

Some statistics when interference are
subject to fading

In this appendix, we derive the pdf of the SINR and its transformation X =

e−
SINR
β used in Section 5.1.3.5 in page 112. In this appendix, we consider that the

interference in the SINR are subject to Rayleigh fading. For clarity, let recall the
SINR of link i in cluster k in such context (5.36):

SINRk
i (m) =

αk
i (m)SNRk

i

1 +
∑

n∈Ik

∑
j∈Mn

αn,k
j,ir

(m)INRn,k
j,ir

, (E.1)

where αk
i (m) and αn,k

j,ir
(m) are exponential rvs with parameter 1. The pdf of previous

rvs is hence pα(y) = e−y. In the following steps we compute the pdf, denoted by
pSINRk

i
(.), of the SINR given by (E.1). For clarity we drop the m indices, and we

note Z = αk
i SNRk

i and W =
∑

n∈Ik

∑
j∈Mn

αn,k
j,ir

INRn,k
j,ir

. The pdf of Z is obtained after
using a change of variable (it is an exponential rv multiplied by a constant) and
pα(.). It is given by

pZ(z) =
1

SNRk
i

e
−

z
SNRk

i . (E.2)

The pdf pW(.) is more tricky to obtain but it is given in [71] using some convolution
derivations

pW(w) =
∑
n∈Ik

∑
j∈Mn

πn
j

INRn,k
j,ir

e
−

w
INRn,k

j,ir , (E.3)

with

πn
j =

∏
n′,n∈Ik

∏
j′, j∈Mn

INRn,k
j,ir

INRn,k
j,ir
− INRn′,k

j′,ir

. (E.4)
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With these notations, the pdf of SINRk
i is computed as follows

pSINRk
i
(γ) =

dPr
{
SINRk

i < γ
}

dγ
,

=

∫
∞

0

dPr
{

z
w+1 < γ

∣∣∣∣∣w}
dγ

pW(w)dw,

=

∫
∞

0

dPr
{
z < γ(w + 1)

∣∣∣∣∣w}
dγ

pW(w)dw,

=

∫
∞

0
(w + 1)pZ(γ(w + 1))pW(w)dw,

(E.5)

Replacing (E.2) and (E.3) in (E.5) gives

pSINRk
i
(γ) =

∫
∞

0
(w + 1)

1

SNRk
i

e
−γ(w+1) 1

SNRk
i

∑
n∈Ik

∑
j∈Mn

πn
j

INRn,k
j,ir

e
−

w
INRn,k

j,ir dw,

=
∑
n∈Ik

∑
j∈Mn

πn
j

INRn,k
j,ir

∫
∞

0
(w + 1)e

−
w

INRn,k
j,ir e
−γ(w+1) 1

SNRk
i dw,

=
1

SNRk
i

e
−

γ

SNRk
i

∑
n∈Ik

∑
j∈Mn

πn
j

INRn,k
j,ir

∫
∞

0
(w + 1)e

−w( γ

SNRk
i
+ 1

INRn,k
j,ir

)

dw,

(E.6)

For clarity of the derivation, we compute the integral term denoted by A separately
as follows

A =

∫
∞

0
(w + 1)e

−w( γ

SNRk
i
+ 1

INRn,k
j,ir

)

dw,

=

∫
∞

0
we
−w( γ

SNRk
i
+ 1

INRn,k
j,ir

)

dw +

∫
∞

0
e
−w( γ

SNRk
i
+ 1

INRn,k
j,ir

)

dw,

=
1

( γ

SNRk
i

+ 1
INRn,k

j,ir

)2
+

1
γ

SNRk
i

+ 1
INRn,k

j,ir

,

=
1

γ

SNRk
i

+ 1
INRn,k

j,ir

1 +
1

γ

SNRk
i

+ 1
INRn,k

j,ir

 .
(E.7)

Introducing A in (E.6) provides

pSINRk
i
(γ) =

1

SNRk
i

e
−

γ

SNRk
i

∑
n∈Ik

∑
j∈Mn

πn
j

INRn,k
j,ir

1
γ

SNRk
i

+ 1
INRn,k

j,ir

1 +
1

γ

SNRk
i

+ 1
INRn,k

j,ir

 , (E.8)

which concludes the proof of (5.37).
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To complete this appendix we provide the derivation of (5.39) which is the
pdf of X = C1e−

SINR
β with C1 > 0. Hence, we realize the change of variable

x = g(γ) = C1e−
γ
β using (5.20)

pX(x) =
pSINRk

i
(g−1(x))∣∣∣ dg

dγ

∣∣∣
γ=g−1(x)

, (E.9)

where g−1(x) = −β ln( x
C1

) and dg
dγ

∣∣∣
γ=g−1(x)

= −C1
β e−

g−1(x)
β = −x/β. Now it suffices to

apply these changes into (E.8) as follows

pX(x) =
β

x
1

SNRk
i

x
β

SNRk
i

C
β

SNRk
i

1

∑
n∈Ik

∑
j∈Mn

πn
j

INRn,k
j,ir

1
1

INRn,k
j,ir

−
β ln( x

C1
)

SNRk
i

1 +
1

1
INRn,k

j,ir

−
β ln( x

C1
)

SNRk
i

 ,
=
ν

Cν
1

xν−1
∑
n∈Ik

∑
j∈Mn

πn
j

INRn,k
j,ir

1
1

INRn,k
j,ir

− ν ln( x
C1

)

1 +
1

1
INRn,k

j,ir

− ν ln( x
C1

)

 ,
(E.10)

where ν =
β

SNRk
i

which concludes the proof of (5.39).
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Titre : Allocation des Ressources pour la Gestion Dynamique du Spectre dans les Réseaux Ad hoc 

Clustérisés 

Mots clés : allocation des ressources, réseaux ad hoc, gestion du spectre, apprentissage sans 

modèle, OFDM 
Résumé : L’objectif de cette thèse concerne 

l’allocation des canaux fréquentiels dans les 

réseaux ad hoc organisés en clusters. Les 

terminaux du réseau sont assemblés localement en 

clusters afin de garder les avantages des réseaux 

ad hoc tout en réduisant la quantité de signalisation 

nécessaire à son fonctionnement. Dans chaque 

cluster, un chef de cluster (CH en anglais) est 

désigné parmi les terminaux dont le rôle est de 

gérer localement les ressources ainsi que les 

communications. Un des problèmes concerne 

l'allocation des bandes de fréquence de manière 

distribuée à chaque cluster pour leur permettre 

d'opérer correctement. Les fréquences sont une 

ressource rare ce qui implique que plusieurs 

clusters sont amenés à utiliser les mêmes et donc à 

interférer entre eux. Le CH base ses décisions sur 

une fonction d'utilité qui prend en compte des 

mesures de performance des communications. Ces 

dernières peuvent être perturbées à cause des 

diverses variations dynamiques auxquels 

sont soumis les réseaux ad hoc. Parmi les 

algorithmes d'apprentissage distribués, nous avons 

identifié des méthodes basées sur le paradigme 

``d'essais erreur'' (TE en anglais) comme des 

solutions potentielles. Ces algorithmes ont la 

particularité d'avoir des propriétés de convergence 

globale intéressantes bien que le problème soit non 

coopératif. 

Dans un premier temps, nous avons étudié la 

convergence théorique de ces algorithmes en 

réalisant des approximations de chaînes de 

Markov dans des cas particuliers. Ensuite, nous 

avons montré théoriquement et numériquement 

que le principal défaut des approches TE est leur 

sensibilité aux variations aléatoires de la mesure 

d'utilité. Nous avons donc proposé des solutions, 

avec des preuves théoriques à l’appui, pour 

adapter ces algorithmes aux cas où l'utilité serait 

perturbée par des phénomènes aléatoires. Enfin, 

nous avons analysé de manière plus approfondie 

l’influence des évanouissements de Rayleigh sur 

les statistiques de l’utilité. 
 

 

Title : Resources Allocation for Dynamic Spectrum Management in Clustered Ad hoc Networks 

Keywords : resources allocation, ad hoc networks, spectrum management, model-free learning, 

OFDM 
Abstract: This thesis deals with the fully 

distributed allocation of channels in clustered ad 

hoc networks. Nodes are gathered locally into 

clusters in order to keep the advantage of the no 

infrastructure of ad hoc networks, and to reduce 

the amount of signalling.  In each cluster a node is 

elected as the Clustered Head (CH) whose role is 

to manage the resources and the transmissions 

locally. One of the major problem is to allocate in 

a distributed way spectrum bands to the clusters in 

order to make them able to operate. Bandwidth is 

a scarce resource which implies that several 

clusters may use the same frequency and hence 

interfere among each other. The CH realizes the 

frequency allocation based on a utility function 

that uses measurements as inputs. These 

measurements are possibly disturbed due to the 

wide variety of dynamic changes that face ad hoc 

networks.  

Among the distributed learning algorithms, we 

have identified approaches based on ``trial and 

error'' (TE) paradigm that could solve the channel 

allocation problem. These approaches possess 

very attractive global convergence behavior 

despite the non-cooperativeness of the problem 

and thus in a broad class of games. 

First, based on a specific utility model, we analyse 

the performance of these algorithms using Markov 

chains approximations in order to reduce 

numerical computations complexity. Then, we 

assess theoretically and numerically that a 

drawback of TE algorithms is their sensitivity to 

disturbances. We propose modifications with 

supporting theoretical proofs in order to adapt the 

TE algorithms to disturbances of the utility. 

Furthermore, we study the impact of Rayleigh 

fading on the utility by deriving its probability 

density function (pdf) in various contexts.  
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