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Résumé

Un siécle aprés le modéle d'univers de Friedmann-Lemaitre, les observations le
confortent avec une constante cosmologique A et une composante de matiére
sombre (noire) sans pression (poussiére) et froide dominant celle baryonique,
que l'on désigne par modéle ACDM ou encore modéle standard. L’accélération
de D'expansion de 1'Univers confirmée par le diagramme de Hubble des su-
pernovae en 1998 impose une valeur strictement positive a la constante cos-
mologique.

Mes travaux de thése se focalisent sur I'estimation des valeurs de paramétres
cosmologiques du modéle standard en utilisant la technique de corrélation
nulle. Cette approche présente ’avantage d’étre plus robuste que les tech-
niques usuelles. En particulier, il n’est pas requis de préciser la fonction de
luminosité, celle-ci est déduite par cette méthode. De plus, elle prend en
compte le biais de Malmquist due a la limitation en magnitude apparent. Ce
travail a consisté aussi a modéliser des échantillons de I’événement quasar ainsi
que I'événement supernova, une extrapolation adaptée du premier. Ce qui a
permis de générer des échantillons conformes aux hypothéses des modéles, afin
de valider les approches statistiques. Nous avons exploité les données du Sloan
Digital Sky Survey (SDSS) pour les quasars, et celles du SuperNova Legacy
Survey (SNLS) et du SDSS-IT pour les supernovae. Les inférences statistiques
ont conduit & un univers spatialement fermé et une présence de matiére noire
plus faible.

Dans le cadre d’une prochaine application de cette technique, elle sera
utilisée pour contraindre les modeles d’énergie noire. De méme, 'utilisation
des amas de galaxies observées grace a l'effet de Sunyaev Zel’dovich, servira
d’échantillon cosmologique. Une telle étude pourra contribuer a apporter un
élément de réponse a la validité du réle supposé des neutrinos massifs dans la
formation des amas dans I’ére primordiale de I’Univers.

Mots Clés : Cosmologie, Matiére noire, Energie noire, paramétres cos-
mologiques, statistiques, simulation, quasars, supernovae, diagramme de Hub-
ble.



Abstract

A century after the Universe model of Friedmann-Lemaitre, the observations
comfort it with a cosmological constant A and a dark matter component with-
out pressure (dust) and cold dominating the baryonic one, which is denoted
by ACDM model or standard model. The acceleration of the expansion of the
Universe confirmed by the Hubble diagram of the supernovae in 1998 imposes
a strictly positive value on the cosmological constant.

My thesis work focuses on the estimation of the cosmological parameters
values of the standard model using the null correlation technique. This ap-
proach has the advantage of being more robust than the usual techniques. In
particular, it is not necessary to specify the luminosity function, it is derived
from the data analysis. In addition, it accounts for the Malmquist bias due to
selection effects on apparent magnitude. This work deals with modelling sam-
ples of the quasar event and the supernova event, which enables us to generate
samples in order to validate the statistical approaches. We used data from
the Sloan Digital Sky Survey (SDSS) for quasars, and the SuperNova Legacy
Survey (SNLS) and SDSS-II for supernovae. The Statistical inferences suggest
a Universe spatially Closed and a weaker presence of dark matter than that in
the Standard model.

Such a statistical analysis can be used to constrain dark energy models.

Application of this technique might be useful for analyzing of clusters of
galaxies observed through the effect of Sunyaev Zel’dovich, in view of deriving
the cosmological model and provide an answer to the question of the contri-
bution of massive neutrinos in the formation of clusters in the primordial era
of the Universe.

Key Words: Cosmology, dark matter, dark energy, cosmological parame-
ters, statistics, simulation, quasars, supernovae, Hubble diagram.
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Introduction

The understanding of the Universe was started in the XVIth epoch when the
polish Copernicus suggested a heliocentric model of solar system, leading to
the idea: no special place for Earth in the Universe. This revolution was fol-
lowed by a second and major one dated for 1687, where Isaac Newton offers
the first real theory of gravitation. This theory explained for the first time the
movement of the stars in the sky as well as falling bodies on Earth, giving a
description of the gravitational interaction as a force that spreads instantly.
However, this theory was not able to explain the anomalous precession of Mer-
cury’s perihelion by 42.7 arcseconds per century. The questions that formed
the weaknesses of Newton’s theory, have been answered with the new theory
of gravitation given by Einstein in 1905-1915. A new description of gravity
is given by the Einstein Field Equations, which can be summed up in words
as follows: matter modify the curvature of space-time, and the curvature of
space-time maps the movement of matter.

It is worth to mention that Einstein added to his equations a cosmological
constant A searching a solution of a static cosmic Universe. Both Friedmann
(1922) and Lemaitre (1927), independently, proved that the Einstein’s theory
has cosmological solutions of an expanding, non static Universe. It was not
until 1929, the era of modern cosmology began with the discovery of Hubble
of the expansion of the Universe [E. Hubble 1929|. This discovery marked
a milestone and a major progress in cosmological studies. One generally be-
lieves that this is the reason why Einstein withdrew the constant A claiming
that its introduction was a great mistake. Later, this constant was proposed
as a solution to explain the expansion of the Universe. Recently, the Hubble
diagram of type-la supernovae agrees with a positive value of the cosmological
constant, what interprets as an acceleration of the cosmological expansion [A.
G. Riess et al. 1998], [S. Perlmutter et al. 1999].
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Actually, the usual statistical approach in the analysis of the Hubble dia-
gram is faced to the systematic biases, assuming hypotheses on the luminosity
function and the selection function. On the other hand, a robust statistical
approach requires a weaker number of hypotheses.

This thesis, introduces simulation methods of quasar and supernova samples,
as well as a robust statistical technique with the aim to constrain formal values
of the cosmological parameters.

In Chap[l] I present a brief description of the observational cosmology rep-
resented by the Friedmann-Lemaitre-Gamow model. I present in Chapl2] the
probability laws which describe the characteristics of quasar samples, and the
simulation methods in which my work is part. The third chapter is devoted
to describing the robust statistical method. The application of this method
on the quasar data from SDSS survey and the results are exhibited in Chap[4]
Finally, A new modelling of supernova sample is presented in Chapfs] A data
processing of supernovae of SDSS-II and SNLS3 surveys is described as well in
this chapter.
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Chapter 1 : Basics of Observational Cosmology

1.1 Introduction

Many centuries after Newton (1643 - 1727), who introduced the first universal
gravitational theory, the cosmology follows Newton’s theories and principleﬂ
searching for ways to understand the laws that control the Universe |[E. Har-
rison 2000).

The Universe, during Newton’s time, was thought to consist of only the so-
lar system and the stars. It was unclear how far the latter were from Earth,
since no direct measurement of the distances could be performed due to the
quality of the astronomical instrumentation at that time. It was not until the
nineteenth century, that the first direct measurement of the distance of a star
was performed by Bessel [T. Plotner 2008|. After Bessel’s parallaxﬂ in 1837,
it was obvious that the size of the solar system was infinitesimal compared to
that of the Universe. Luckily, the spectroscopy, a device which measures the
chemical composition of stars and estimates their fluxes and luminosities, was
developed in 1842 by Alexandre Becquerel (1820-1891) [I. Appenzeller 2013]
By the end of that century, the Universe was recognized as an enormous galaxy,
the Milky Way where we belong, with a huge number of stars |L. Gerrit 1937].
The stars are distributed in a chaotic order in the sky, however, in some times
they are accumulated in clusters. The latter are known as diffuse nebula or
planetary nebula [J. B., Kaler 1976|. These observations arise a lot of ques-
tions such as: What is the nature of these clusters and how do they perform?
Those questions remained unanswered until the twentieth century when in
1925, Edwin Hubble discovered a Cepheid in the brightest spiral nebula, An-
dromeda. Using the period-luminosity relation of Henrietta Leavitt (1908)
for the calibrated Cepheids [J. D. Fernie 1969|, Hubble discovered the extra-
galactic nature of Andromeda. This nebula is more than 2 million light years
away from our galaxy |[I. Ribas 2005|. Hubble, then, concluded that the Uni-
verse is not restricted to the Milky Way, and it is populated by millions of
galaxies...

1.2 Newtonian cosmology

Despite the success of the Newtonian theory in explaining the gravitational
laws on earth and between planets and their motion in the solar system, it

!Principle of inertia, fundamental principle of dynamics and principle of reciprocal actions
2Due to the source or observer movement, two different lines of sight illustrate two posi-
tions of the source with an angle that allows to measure distance using geometry.
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fails to describe the Universe at a large scale.

The Newtonian theory predicts a non stable Universe |M.S. Longair 2013].
Assuming two objects of different masses are separated by a distance d, these
objects, in the Newtonian concept, cannot remain in their positions indefinitely
considering their mutual attraction. According to this theory, these objects
undergo a gravitational force which leads to shorten the distance between
them. Consequently, a Universe which surrounds a center of mass is doomed to
collapse on itself. In the Newtonian theory, to obtain such a cosmological model
without a center, one must consider a cloud filling the Universe uniformly
with a constant density. However, according to Halley in 1720, in an infinite
Universe containing an infinite number of stars, the night sky should be as
bright as the day. This conflict between the darkness of the night sky and the
assumption of an infinite and eternally static universe is the major problem
of the Newtonian cosmology, known by “Olberts’ paradox” |E. R. Harrison
1989|. This paradox has been resolved later through the modern cosmology
(described in the next section) which shows that the Universe is expanding.
Due to this expansion, the light emitted from distant stars and galaxies is
“redshifted”. Thus, the emission spectra of those objects appear to us as veering
gradually to the light frequencies that we cannot see (typically in infrared).
This interpretation explains the darkness of our night sky.

1.3 Einstein’s cosmology

The modern cosmology began hundred years ago (1915) where Albert Einstein
published his theory of general relativity (GR). This theory links the distribu-
tion of the energy density that fills the Universe and its geometry through the
Einstein field equations (EFE):

1
Ry = SRy = 87GT,,, (1.1)

Where R, is the Ricci tensor, g, is the metric tensor used with the convention
signature (4, —,—,—), R is the Ricci scalar, T,, is the energy-momentum
tensor and G is the Newtonian constant. In GR, the units are so that the speed
of light in a vacuum, ¢ = 1 E] In 1917, Einstein introduced the cosmological
constant A for obtaining a static Universe. EqJL.1] becomes:

1
R, — §Rg,w + Agu = 87GT),, (1.2)
In 1922, the Russian meteorologist and engineer, Alexander Friedmann proved

that the EFE also allow dynamical worlds [H. Nussbaumer 2014|. However, it
took Einstein a few years to recognize the relevance of Friedmann’s remarks.

3¢ =1, i.e. time can be measured in unit of length, 1s = 2.999792458 x10%m



Chapter 1 : Basics of Observational Cosmology

Independently, in 1927, the Belgian canon, Georges Lemaitre published a pa-
per |G. Lemaitre 1927] in which he established the same equations as Fried-
mann and interpreted them. Lemaitre also predicted the “Hubble Law” even
before the Hubble observations (getting a “correct” estimation for the Hub-
ble constant of 625 km.s~*.Mpc~')f] In 1931, he published his theory of the
“primitive atom” in which he introduced the concept of the time zero.

It was not until 1929 that Hubble discovered the famous linear relationship
between the distance and the velocity (Sect[1.9) of distant galaxies with the
help of a telescope of 2.54 meters in diameter placed at Mount Wilson [E.
Hubble 1929|. In 1931, Hubble showed Einstein the observational evidence of
a redshifted nebular spectra convincing Einstein that the Universe is expand-
ing. Einstein acknowledged, therefore, that there was no reason to maintain
his idea of a finite static Universe. He abandoned the cosmological constant,
describing it as “the greatest mistake of his life”. In 1932, Einstein published
with de Sitter his euclidean infinite cosmological model of the Universe [A.
Einstein and W. de Sitter 1932]. The concept of an expanding Universe later
acquired the term, “Big Bang” theory. This term was coined by Fred Hoyle,
one of the proponents of the stationary model, who introduced Lemaitre to his
colleagues in 1950 with the words: “This is the Big Bang man!”.

By the end of the 70’s, [H. Fliche & J. M. Souriau 1979| reconsidered the grav-
itational equations with the cosmological constant in their statistical analysis
of the Hubble diagram of QSOs. This allowed to estimate a positive value
of A. Later, [Triay, R. et al. 1990|, statistical investigation on the brightest
cluster led to similar results which shows the acceleration of the cosmological
expansion. Eight years later, |A. G. Riess et al. 1998] and [S. Perlmutter
et al. 1999| pointed out the evidence of cosmic acceleration by measuring the
accurate distances to distant type-Ia supernovae, used as standard candles.
Since then, the use of A become the dilemma of the century.

1.4 The Friedmann-Lemaitre-Gamow model

The framework of the modern cosmology is based on the cosmological prin-
ciple. Tt supports the hypotheses of the homogeneity and the isotropy of the
universe. According to the Copernican principle, there is no privileged place in
the Universe. Furthermore, assuming the isotropy of this latter, which means
that each point in the Universe has identical properties in different directions,
thus, the Universe would look homogeneous’} As a matter of fact, observing
the universe at a given length in different directions with the same opening

“Mpc: 106x pe. A parsec (pc) is a unit of measurement of distance outside the solar
system and it is used to express the measuring of the cosmological distances. It is equivalent
to 3.26 light years: 1pc = 3.08 x 10'm.

STsotropy from every point implies homogeneity [Robert M. Wald 1984]
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solid angle must lead to an identical result independent of the chosen direction.
This characteristic implies that, on a large scale, we can describe the observ-
able universe as being spatially homogeneous and isotropic. This brings us to
the description of space-time with the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric. Despite the inhomogeneity of the Universe at small scales
as shown in the map of 2df survey in Figll.3] the FLRW metric describes
the space-time at large scales, more than 100 Mpc, where the cosmological
hypotheses are valid as seen in Fig[T.4]

1.4.1 The Friedmann’s equations

The FLRW metric illustrates the cosmological principle mathematically. It is
defined in spherical coordinates (r, O, ¢) as:

dr?

1—Ekr?

ds® = dt* — a*(t)] + 72(dO? + sin*Ody?)] (1.3)
where ¢ is the cosmic time, a(t) is the (dimensionless) ezpansion parameter, its
present value is a, = a(t,) = 1, and k is the sign of curvature of space which
determines the type of geometric topology: k = —1 for an open Universe, k = 0
for a flat Universe and k = 1 for a closed Universe. The derivation of the FLRW
metric is purely geometrical, subject to the constraints of homogeneity. An
alternative form of the metric is given by taking into account the representation
of the fixed coordinates. We can write the alternative FLRW metric as:

ds® = dt* — a*()[dx* + Si(x)(dO* + sin*Ody?)] (1.4)
where dy reads:

dr

d = s (1.5)
and Sj(y):
sin(y) ifk=1
Selx) = ¢ x it k=0 (1.6)

sinh(y) if k= -1

In a homogeneous Universe, the energy-momentum tensor 7), accounts for a
perfect fluid of density p and pressure P. Using the T, tensor with the metric
in Eq[1.3] one can derive the Friedmann equations:

. 2
G k A
g2 (%) 2=, F L2 1.
(> 5 P ety (1.7)

7
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a 4G A
S= " T(p+3P)+ = 1.8
. 3 (p+3P)+ 3 (1.8)

where @ stands for the time derivative of a(t). H is the Hubble parameter,
its present value is H, = 67.8 0.9 km.s™".Mpc~! [Planck Collaboration T
(2015)].

1.4.2 Primordial Universe

Until the late thirties, the formation of elements in the Universe was a subject
of debates. In 1942, George Gamow mentioned for the first time the idea of
a primordial nucleosynthesis. In 1948, Gamow, Alpher and Herman predicted
the cosmic microwave background, working on a model of a hot Big Bang as-
suming a primordial Universe composed only of neutrons (which subsequently
disintegrate into protons) |P. J. E. Peebles 2014], [V. Alpher 2014]. In this
model of Big Bang Nucleosynthesis (BBN), the original Universe was made up
of an extremely hot and dense plasma of photons, fermions and quarks. The
Universe then expanded, and its density and temperature decreased, fostering
primordial nucleosynthesis i.e. the formation of the first weak nuclei (hydro-
gen, helium, deuterium, lithium). When the temperature became low enough
(~ 3000°K) for the first atoms to form through a process called recombination.
At that time, the baryons decoupled the photons and the light began to spread
freely. This radiation, which was simply cooled during the Universe evolution,
is known as the Cosmic Microwave Background (CMB). The baryons and cold
dark matter (Sect. evolved in an attached way under the force of gravity,
and formed the structures that we are currently seeing, i.e. clusters, galaxies
and stars.

Interestingly, two main observations confirmed the BBN model. The first
one was established in 1965, when Penzias and Wilson detected the cosmic
microwave background. The natural explanation for the presence of this radi-
ation is that the Universe passed through a warm and dense phase before the
recombination happened and the radiation was emitted. This radiation has
almost a perfect black body spectrum with an average temperature of 2.73°K
produced by the photons of the primordial Universe and its spectrum peaks
in the microwave frequency range of 160.2 GHz corresponding to a wavelength
of 1.9 mm. The temperature of CMB is isotropic and homogeneous down to
variations of 107° (see Figll.1)).

The measures abundance of the weak elements in the Universe, as a second
proof, are in excellent agreement with the predictions of the primordial nucle-
osynthesis |G. Steigman 2004]. This includes the mass abundance of Helium
He4 predicted between 23% and 30%, in a perfect agreement with observations
[C. A. Bertulani, et al. 2016].
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The Cosmic Microwave Background as seen by Planck and WMAP

Planck

Figure 1.1: This image shows the Cosmic Microwave Background as seen
by ESA’s Planck satellite (upper right half) and by its predecessor, NASA’s
Wilkinson Microwave Anisotropy Probe (lower left half). The colors represent
the temperature fluctuations. Red (res. blue) corresponds to warm (resp. cold)
regions. Image taken from the website of ESA and the Planck Collaboration

1.5 Contents of the Universe

The perfect fluid is characterized by the properties of the energy-momentum
tensor with pressure P and density of energy in the Universe p. It satisfies an
(empirical) equation of state:

P =wp (1.9)

where w = —1 for a cosmological constant (vacuum energy density) and w <
—% for dark energy models such as quintessence.

Combining Eqs[I.7 and [I.§ we get:
a
p+3(p+P)5:0 (1.10)
From the derivation of Eqs[I.7] and we obtain:
d(pa®) = —Pda® (1.11)
using Eq{1.10] one can define the evolution in time of the energy density

p(t) o a(t)30+w) (1.12)

9
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Figure 1.2: The CMB power spectrum obtained with Planck 2015. Top: Agree-
ment of the flat standard model of cosmology ACDM with the observation
data from the temperature release of the Planck satellite. Residuals with re-
spect to this model are shown in the bottompanel [Planck Collaboration XIII|

2015)|.

For the several components of gravitational sources in the Universe, this energy
density is written as:

pi(t) o< a(t)30Hwd) (1.13)

with w, = 1/3 for the radiation and w,, = 0 for the non-relativistic matter.
Equating Eqfl.13] we get:

pyat o< const. (1.14)

pma® o< const. (1.15)
For relativistic matter such as neutrinos, w, is not constant and varies depend-
ing on the era, but this component can be neglected for recent periods.
By neglecting this term, EqJI.7 becomes:

8rG E A
H*=—"—(pn - =+= 1.1
With the following notation :
—3k
= 1.17
Pk~ 8rGa? (1.17)

10
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Figure 1.3: Scale at which the hypothesis of a spatial uniform distribution
of gravitation sources becomes valid is roughly above 100 Mpc, according to
the distribution of a large number of galaxies with 2dF survey. The figure
shows the large-scale structures, which are less visible with distance from the
orbserver. The Milky Way is located at the intersection of the two slices of the

observed sky [M. Colless 2003].

we can express Eql1.16| as follows:

G
H? = —=(pm + py + pa+ pi)
where
B 3H?
Pe = IrG

With the dimensionless parameters:

Qm:p_m7 97:&7 QA:p_A’ Qk:&

Pec Pec Pec Pec
named cosmological parameters, EqJ1.18| becomes:

H? m
B buy Py Pa o
Ho pC,O pC,O pc,o pc,o

Using Eqgs. and we obtain:

EE__wn(@>3+fz<&g4+pA+_% (%
HZ  peo \a Peo \ @ Peo  Peo \Q

11
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(1.21)

(1.22)
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Figure 1.4: The spatial distribution of the quasars of the BOSS catalog shows
a radial stratification due to four distinct phases of observations, and in each
of sub-samples a decrease in the number of objects as the radius increases.
By taking into account this selection effect, one can safely guess that this
distribution is uniform. Figure credit: universetoday website.

Since a, = 1, therefore:

Z—; =Qna? +Qa™ + Qp + Qpa? (1.23)
where these dimensionless parameters satisfiy:
D+ + Q0 + Q=1 (1.24)
The above notations of cosmological parameters are the usual notations, but
they are substituted by Qx = \, = ﬁ, Q= —ko = [%;, Q=0 = 8”5%
8m3G(KT,)%

and ) = a, = 5 107° which are more appropriated because these
quantities show different behaviors with time. Let us define the polynomial:

P(a) = Moa* — koa® + Qoa + a, (1.25)
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P)=1; X—kot+Q+a,=1 (1.26)

In our statistcal analysis, we estimate the parameters A\, and €.

1.6 Baryonic Acoustic Oscillations

The properties of the CMB guarantee the existence of a scale from which the
universe becomes isotropic and homogeneous, as well as the measurement of
the velocity of our galaxy with respect to the referential that it defines. Even
though the temperature of the CMB is extremely uniform throughout the sky,
the COBE satellite (Cosmic Background Explorer) detected tiny fluctuations
or temperature anisotropies in the CMB in 1992. The WMAP (Wilkinson Mi-
crowave Anisotropy Probe) satellite, launched in 2001, confirmed the COBE
observation and mapped the temperature fluctuations with a much higher res-
olution. More recently, the Planck satellite mapped the CMB anisotropy with
even higher accuracy (see Fig.. In general agreement with the observation,
the anisotropy in the CMB grew from the gravitational tension of small fluctu-
ations existent in the early Universe. These perturbations gave rise to acoustic
oscillations in the photon-baryon fluid before the recombination. During that
period, the gravitational attraction between baryons tended to collapse the
system and compress the photon-baryon fluid whereas the photon pressure pro-
vided an opposite restoring force. This created sound waves that propagate in
the fluid of the primordial Universe. At the time of recombination, the photons
were diffused freely and these oscillations outlined in the CMB. A modelling
of the dynamics of these structures in the primordial plasma makes it possible
to interpret the angular fluctuations of its temperature, which are observed
by means of a spectral analysis, which provides estimates of cosmological pa-
rameters. Moreover, these features have an imprint on baryonic structures at
every stage of the evolution of the Universe called Baryonic Acoustic Oscil-
lations (BAO). It is believed that the high density areas associated with the
acoustic waves in the CMB condense to create the current structures. The
size of structures, can be used to trace back the cosmological parameters |[W.
Hu 1997]. Fig. shows the power spectrum of the CMB obtained by Planck
satellite.

1.7 Dark matter

Dark matter is an ad hoc ingredient used in the modelling of a gravitational
structure to interpret observations. It does not interact electromagnetically
and therefore cannot be detected directly with telescopes. Its properties are
deducted from gravitational effects on visible matter. It is believed that only
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less than 10% of the energy density of the Universe comes from baryonic and
in principle, visible matter. |E. Hubble 1934| proposed the first measure of the
density of (visible) matter in the Universe based on an average of the measured
galactic mass (6 - 8) x 10% M. The existence of such matter was derived by
Jan Oort in 1932 who studied the orbits of stars in the galaxy and concluded
that the Milky Way should contain more matter than what was visible [J. H.
Oort 1932|. Soon after, Zwicky measured the dispersion of the radial velocities
of eight galaxies in the Coma supercluster and found a surprisingly large value
|F. Zwicky 1933]. Applying the virial theorem, he found that the total mass
of the supercluster should be 400 times greater than the mass of visible matter
|F. Zwicky 1937]. He resolved the problem by introducing a hidden mass
distributed in the cluster.
In the 1970s, Vera Rubin measured the rotational curves of spiral galaxies and
discovered that the radial velocity of the galaxy Andromeda (M31) remains
constant until at least 30 kpc using the 21 c¢m line of Hydrogen [Rubin et al.
1970]. In disagreement with the expected keplerian rotational curve, this study
has given rise an evidence of the existence of dark matter in the galaxies. Since
then, the modelling of several observations are in agreement with the existence
of dark matter in the universe such as the dynamics of galaxies and clusters,
the gravitational lensing and the temperature distribution of hot gas in the
galaxy clusters as well as cosmological probes such as the CMB, BAO and
Type Ia Supernovae.
Three different types of dark matter have been defined: cold dark matter
(CDM), warm dark matter (WDM) and hot dark matter (HDM). The neutrino
is the best candidate for hot matter while its mass is not yet well constrained.
Concerning the cold dark matter, the best candidates are the WIMPs (Weak
Interacting Massive Particles), which are predicted by many supersymmetric
theories, and MACHO (Massive Compact Halo Astronomical Object). The
decoupling date of these particles intervenes in the formation of large structures
in the Universe. A Universe dominated by hot dark matter would have a
“top-down” scenario of structure formation: the formation of superclusters
of galaxies which then break up into clusters, then galaxies, and so forth.
Conversely, a Universe dominated by cold dark matter scenario would be a
“bottom-up”: formation of galaxies (from clouds of gas) which are grouped
into clusters and then into superclusters. Nowadays observations agree with
the theory of cold dark matter despite some cluster observations suggest that
they have formed previously.

1.8 The Dark Energy

Since the end of 90s, acceleration of cosmic expansion has been detected by
using Hubble diagram of type-la supernovae thanks to Supernova Cosmology
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Project (SCP) [S. Perlmutter et al. 1999] and the High-Z supernova |A. G.
Riess et al. 1998|. According to FL.G model, such an acceleration results from
either a positive zero cosmological constant or the an unknown gravitational
source, an ad hoc alternative motivated by the cosmlogical constant problem
in High Energy Physics. These two interpretations being integrated in a single
one named "Dark Energy". Fig[l.5| presents the confidence contours of Q,,
and Qy (see Sect[L.H]) obtained by SCP using 42 SNe Ia. This section outlines
the two frequent approaches used to explain this acceleration.
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Figure 1.5: Confidence contours in the (257, 24) plan obtained by the Super-
nova Cosmology Project with observations of 42 SNe Ta |S. Perlmutter et al.
1999).

1.8.1 Models with Scalar Fields

To sketch the approach to this issue, we limit to describe models which are
behind several dark energy models. The first models of this class are the
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quintessence models [B. Ratra 1988, /C. Wetterich 1988| in which the dark
energy is described by a scalar field in a slow rolling plan, in a way quite
similar to inflation. The dynamics of dark energy by that of a scalar field
which is characterized by potential that has to fit to observational constraints.
The quintessence models appear interesting when considering that The main
issue with these models is the determination of the potential to obtain a value
of dark energy density close to the measured energy density. To solve this
problem, other scalar fields have been proposed as a phantom field |[R. Caldwell
2002, 2003| and K-essence model [T. Chiba et al. 2000, C. Armendariz-Picon
2000,2001|. But these models suffer from similar problems.

1.8.2 The Cosmological Constant

While in GR, the cosmological constant stands for a universal constant. From
the point of view of particle physics, it would be the energy density of quantum
fluctuations of vacuum. Hence, two major obstacles appear: the cosmological
constant problem and the problem of coincidence.

The Cosmological constant problem

According to the particle physics, the value of the energy density of the vacuum
is estimated:

precm ~ (10" GeV)* ~ 2.10"%rg /em? (1.27)

On the other hand, observations of type-la SNe and CMB fluctuations, the
observed energy density is of order:

P ~ (1072GeV) ~ 2.10erg/em? (1.28)

Therefore, the expected value is ~ 120 order of magnitude larger than the
observed energy density [S. Weinberg 1989, |S. Carroll 2001]:

pxacuum ~ 10120,0%78 (129)

This disagreement is known as the “Cosmological constant problem”.

The coincidence problem

The observed energy densities of the vacuum and of matter are of the same
order of magnitude, as seen in Figl[l.5| while, the energy densities of the com-
ponents of the Universe (., (%, and \,) evolve differently as shown in Fig[1.6]
This figure shows that the vacuum energy initially had a negligible quantity
with respect to the two other densities, then it becomes dominant in the present
time. We also see that the transitions between the dominant components are
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fairly short, particularly between matter and energy of the vacuum. It is in-
triguing that this transition happens today which makes the present day a
privileged time in cosmic history. It is, therefore, interesting to ask whether
the observed dark energy is a form of energy having a state equation variable
with time. Hence, a new model has been introduced by adding a scalar field
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Figure 1.6: Evolution of the densities of radiation (2, of radiation €2,,, and of
the cosmological constant 2, with respect to the expansion factor. The differ-
ent periods indicated by the dashed lines correspond to the Planck scale, the
electroweak symmetry breaking (EW), the Big Bang nucleosynthesis (BBN)
and the present epoch (Now). Credit: [S. Carroll 2004].

slowly varying with time (see Sect[1.8.1]).

1.9 Hubble diagram and measure of distances

What Hubble did that led to the discovery of his law was the measure of both
the distance and the velocity of galaxies in the nearby Universe (see Fig[L.7).
He showed that galaxies recede with a velocity that increases proportionally
with their distance, what gives the Hubble’s law:

v=H.d (1.30)

where the recession velocity of galaxies v and their distance d. The constant
of proportionality H, is called the Hubble constant. Since its discovery, the
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Hubble diagram became a major tool for retrieving of cosmological informa-
tion. The distribution of type-Ila supernovae in this diagram is used with (large
samples of type-Ia supernovae) detected from surveys such as the SNLS, SDSS,
HST and low-z surveys (Fig.. The spectra of a source is seen redshifted

+ BO00 KM |

o 0¥ PARSECS £210® PARSECS

Figure 1.7: The Hubble diagram showing the expansion of the Universe. The
radial velocity of stars, corrected for solar motion plotted against the distance

estimated from the stars and the average of brightness of galaxies in a cluster.
Credit: [E. Hubble 1929].

by an observer, due to the expansion of the Universe. The redshift 2 is defined
as follows:

)\o
1+Z:)\—6:mzﬁ (1.31)

where a, = 1. Therefore, the formula of the expansion factor at time t is
expressed as:

a(z) = (1.32)

1.9.1 The Comoving Distance

In the comoving space, the galaxies have fixed coordinates and the comouving
distance 7" between the observer and the source of light at redshift z. Using
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Figure 1.8: The Hubble diagram of the Supernovae samples with the SNLS,
SDSS, HST and several low-z surveys. Credit: [Betoule, M. et al 2014].

Egs and one obtains:

m™(z) = /t:o%

da

N /a Hov/ Aot — koa? + Qoa + g

1 /1 1
— ——da
Ho ﬁlz \/P(CL)

Hereafter, we use the dimensionless comoving distance:

(1.33)

(1.34)

(1.35)

(1.36)
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The dimensionless comoving volume V' (z) is the volume of a sphere of radius
7(z) centered on the observer’s location. It is defined by the following formula:

T (27 —sin(27))  if Ko >0

3
KS

V(z)={ 73 if ko = 0 (1.37)

T+ (sinh(27) — 27) if ko <O

|ro| 2

where T = 74/| Kk, | is the angular distance.

1.9.2 The Age and the Conformal Time

The lookback time can be measured from the observer at z = 0 (time ¢,) back
to redshift z (time t) [f] It is given by:

[t

For a flat cosmological model (\, = 0.7, 2, = 0.3) and H, = 70 km.s~ 1. Mpc™,
the age of the Universe today is estimated at:

t(z) = (1.38)

1
H,

978 Gyr [ ad

==/ PZL) — 13.4698 Gyt (1.39)
The conformal time n* reads:
dn* = % (1.40)
and then, we obtain:
1
Mo = e (1.41)

where 7 is the dimensionless conformal time (see Eq/L.36).

1.9.3 The Luminosity Distance

The emitted light of a source is received by the observer as he is on a surface
element of a sphere of radius d;,, the luminosity distance, centered on the light
source. The received light per unit of time represents the flux and the apparent

6In a common language (poor), it is the time taken by the emitted light to travel from
an object at redshift z to the observer [K. Krisciunas 1993].

20



1.10 The Magnitude Systems

brightness of this source which decreases with the square of the distance, by
the known inverse square law:

L
4rd?
where L is the intrinsic luminosity of an object. It turns out that the luminosity
distance is related to the comoving distance and can be written as follows:

f= (1.42)

Ay = 5 (1+2) D7) (1.43)
With:
O if ko >0
T(rm) =4 7 i ko =0 (1.44)
SAE) if jy < 0

Vol
1.10 The Magnitude Systems

In astronomy, the magnitude system is frequently used to describe the bright-
ness of an object. The magnitude is a scale used to classify the stars depending
on their brightness. The brightest stars have the lowest magnitude for which
one degree of magnitude corresponds to a difference of 2.51 times in brightness.

1.10.1 The Apparent Magnitude

This magnitude corresponds to the perception of a star’s luminosity in the
eyes of an observer. Perception through the human eye is non-linear and
is sensitive to relative differences of luminosity between stars, therefore the
observed magnitude is presented in logarithmic scale. The apparent magnitude
m of an object, is defined as its flux, f, measured in a given observational
filter, and the one of a reference object (for example Vega star which has null
magnitude), fo , in the same filter.

m = —2.5logy, (%) (1.45)
0

The magnitude of the reference star is null what defines the origin of magnitude
by defining the zero point notion (ZP) as:

ZP = —2.5logy,(fo) (1.46)
one has:
m = —2.5log,o(f) + ZP (1.47)

There are two magnitude systems: the Vega and AB systems.
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1.10.2 The Vega System

For this system, Vega (« lyr) is the reference star and its magnitude should
be null in all filters. Because it is not always the case, corrections of Vega
magnitude for the filters UBV RI are required, e.g., [Johnson and Morgan
1953|: give V =10.03, B—V = 0.0, U — B = —0.01, and others: V — R = 0.0
and R — I = 0.006 are given by [B. J. Taylor 1986| in accordance with the
Vega spectrum [D. S., Hayes et al. 1985] and [Bohlin et al. 2004].

1.10.3 The AB System

The AB magnitude system is based on spectral flux densities which correspond
to measurements that are calibrated in absolute units. This system links the
magnitude to physical units directly. It is introduced by [J. B. Oke et al.
1983| and developed by [Fukugita et al. 1996| under the SDSS program. The
magnitude in this system is defined as:

[ d(logv)f,T,
d(logv)T,

map = —2.5log, —48.6 (1.48)

with f, the flux in units of frequency, of unit erg.s~'.cm=2.Hz~!, and 7, is the
transmission of the filter used (dimensionless). The constant 48.6 is chosen so
that AB = V for an object whose spectrum is flat. This reference system is
based on four dwarf stars of type F.

1.11 Constrain the cosmological parameters

Using the definition of apparent magnitude, we can introduce the absolute
magnitude M of an object. This latter is a measure of the intrinsic brightness
of the object and is defined as it would appear to a hypothetical observer at a
distance of 10pc. The apparent magnitude for an object at redshift z is related
to the absolute magnitude (following EqJ1.42), we can write:

m(2) = —2.510g,0 (W) + 5logy <d1L0—§0ZC)> (1.49)
m(z) = M + 5logy, (i%g) (1.50)

The difference between the two magnitudes is called distance modulus ((2)
(Fig[1.9) and is defined as:

((z) = 5logy, (dL(Z)) (1.51)

10pc
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The best measurement or estimation of this latter represents the clue of con-
straining the Hubble diagram pearls, the cosmological parameters A, and €)..

Comoving distance 7(z)

Distance modulus ((z)
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Figure 1.9: From top left to bottom right: The comoving distance, the lu-
minosity distance, the distance modulus and the comoving volume versus the
redshift for six different cosmological models.

1.12 Conclusion

In this Chapter, we have presented the standard cosmological model ACDM
based on the Friedmann-Lemaitre-Gamow model. In the framework, we will
seek the more appropriated values of the cosmological parameters using sta-
tistical techniques.
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Quasars samples
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2.1 Introduction

Quasars were discovered in the late 1950’s using the radio telescopes with no
observation of corresponding visible objects. The first one was tied to an op-
tical object was the radio source. Surprisingly, the spectrum of this object
had many unidentified broad emission lines. Soon after, it was discovered by
the Dutch astronomer Maarten Schmidt that these lines were not so strange,
as they were just redshifted. Believing he was observing a star, Schmidt dis-
covered the radio quasar, 3C 273, in 1963 and identified its emission lines of
hydrogen and showed that they were shifted to larger wavelengths [M. Schmidt
1963|. It resembled a star, because it was seen as a point source through the
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telescope. But unlike the stars, the spectrum of this point source had a strong
radio emission. More objects of the same type were soon observed. In the
absence of the explanation of the astrophysical nature of these objects, they
were called quasi-stellar radio sources, the name which has been subsequently
abbreviated as “quasars”.

Quasars are considered a subset of the population of active galactic nuclei

(AGN) (e.g. see |[R. Antonucci 1993]). Fig[2.1]represents a AGN which consists
of a super-massive black hole in the center surrounded by an accretion disk. It
is formed due to the surrounding materials which fall under the huge gravity of
the black hole. While falling, these materials release their potential energy as
a result of the friction generated between them. Through different turbulent
phenomena, these materials generate high energy particles channeled by the
magnetic field lines of the AGN. These particles are later released in the form of
two collimated jets from the magnetic poles. The accretion disk is surrounded
by a thick torus of dust.
An AGN whose jet of particles collimates in our line of sight is called a “Blazar”.
If the jet tips in another direction and the host galaxy of the black hole is
visible, the AGN is a Seyfert galaxy, otherwise, the AGN is a quasar. The
quasar (QSO for quasi stellar objects) is the brightest class of AGNs.

2.2 Spectrum of quasar

QSOs are identified mainly by their emission lines. Lyman-a emission line
(ALy_a — 1215 A) characterizes particularly the quasars (see Fig. [2.2). Ad-
ditional emission lines are also visible in their spectrum, such NV, SilV, CIV,
Mgll, among other ones less important, see| Spectral Lines used in SDSS table.
In general a “Lyman alpha forest” is present in most of QSOs spectra, a depres-
sion of the continuum in the spectrum caused by a succession of absorption
lines at smaller wavelength than the Lyman-, emission line. It is caused by the
the presence of neutral hydrogen located along the line of sight of the quasar.
This is the AGunn-Peterson effecta [J. Gunn and B. Peterson 1965]. Figl2.3]
represents a QSO from the SDSS survey at a redshift of 5.8. The part of the
spectrum between the Lyman-f and the Lyman-v emission lines is called the
forest Lyman-{3, etc... This depression of the continuum due to the superpo-

sition of absorption lines is caused by hydrogen clouds and other absorbers in
front of the QSO.

2.3 Events in the space-time diagram

With the motivation in mind to use events (such as light emissions from as-
tronomical objects) to probe the geometry of space-time, one has to specify
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2.3 Events in the space-time diagram

Narrow Line
Region

Broad Line
Region

Accretion
Disk

Obscuring sl
Torus — 4

Figure 2.1: Diagram unifying different astrophysical types of AGN (blazars,
quasars, seyfert galaxies) depending on the inclination angle with respect to
the line of sight of the dust torus surrounding the same central engine (Noted
in green). The various components of AGN (noted in white): A luminous
accretion disk which surrounds the central black hole. Broad emission lines
which are due to clouds orbiting above the disk. A thick dusty torus which
obscures the broad-line region from transverse lines-of-sight. Narrow emission
lines which are originated from irradiated clouds so far from the central source.
Credit: [C. M. Urry, P. Padovani, 1995|

their intrinsic properties that characterize a single family. They are assumed
to be not very different from one another in terms of their intrinsic luminosity
(standard candles). Moreover, we assume that they do not show evolutionary
effects and that they are uniformly distributed in space. These characteristics
stand for random variables with probability densities who are defined by spe-
cific working hypotheses. The data are face to selection effects in observation,
and a selection function is used at this purpose. We check the efficiency of our
statistical method on simulation samples as a representation of the real data.

The main selection effect, it has been described by Malmquist (see Sect.,
depends only on the apparent magnitude. Therefore, a selection function must
be used in the probability density in order to take it into account among other
selection effects in observation.
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Figure 2.2: Spectrum of quasar at Figure 2.3: Spectrum of quasar SDSS
rest frame determined by the SDSS  1044-0125 at redshift 5.8. The optical
survey. The dashed thin and thik Lyman-a emission (1215 A) is shifted
lines are the power-law fits to the es-  into near Infra-Red ~ 8230 A.
timated continuum flux. Credit: |D.

Berk, et al 2001].

According to working hypotheses, the objects have fixed position on the
comoving space V3 and they are expected to be uniformly distributed.
In the space-time diagram (Figs2.4 & as described by the direct product
of the conformal time with V3, perennia]ﬂ sources show vertical world lines
(black) while ephemeral ones (blue and green) stand for parts of those ones.
By assuming that they are bright enough, they can be observed solely when
the light past cone of the observer crosses that gives a date (i.e. a redshift).
Two dates (the beginning) 7; and (the end) 7, are displayed for ephemeral
events. Similarly, the duration of observation, being infinitesimal compared
to cosmological scale, is magnified on the space-time diagram. On these fig-
ures, the intersection of the world lines with the past light cone of the observer
(the two crossed lines at the red circle) ensures the object to be visible, if
it is bright enough with respect to observation device. The objects (quasar,
galaxy,...) are characterized intrinsically by the comoving distance 7 and the
absolute magnitude M by assuming that it is constant in time. On the other
hand, the ephemeral objects are characterized by a luminosity fonction (light
curve) instead of a constant absolute magnitude.

LA perennial object is an object which emits a stream of light and has been doing so
since the inception of the observable universe, since the decoupling epoch, and for all time,
such as galaxies, quasars and clusters.
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n A
Va4

Figure 2.4: The spacetime diagram (conformal time 71 versus comoving space) :
The red filled circle stands for our present position. The world lines of sources
are vertical (perennial - black) and (ephemeral - blue), they cross the past light
cone of the observer for observed objects. These ones are characterized by an
absolute magnitude M and a comoving volume V for the perenial ones, and
also by a lifetime duration An for ephemeral ones.

2.4 The selection effect

With a limiting magnitude in observation, since the apparent luminosity de-
creases with distance, the sample average of absolute magnitudes does not pro-
vide us the mean absolute magnitude of the population, see Gunnar Malmquist
(1922). This bias arises due to the limited sensitivity of instruments and tele-
scopes, causing the over-representation of luminous objects in a magnitude-
limited sample. Therefore, the average of absolute magnitude of the truncated
sample will be brighter than the one of the complete sample |Binney & Mer-
rifield, 1998|. This limitation in the apparent magnitude is the main selection
effect.

29



Chapter 2 : Quasars samples

V4
Naft-—
(M\V)
|

Vs

Figure 2.5: Similar to Fig[2.4] showing the appearance (blue)/disappearance
(green) of new /existing supernovae due to the intersection/out of intersection
of the light cone with their limited lifetime.

2.5 Modelling a sample of quasars

Given that the quasars are detected at high redshift, therefore the use of the
Hubble diagram with this type of objects will be a good tool to obtain the
cosmological information. The farthest quasar observed up to now is the quasar
ULAS J112001.48+064124.3 detected at redshift z = 7.085 [E. Momjian et al
2013]. As usual, a non evolution of quasars is assumed on interpreting the non-
linear Hubble diagram. In the following, we assume H, = 70 Km.Mpc=!.s71
|D. N. Spergel et al 2013|.

2.5.1 Statistical modelling

In this section, we focus on building a simulation sample of QSOs with an
approach which is different than that used in the MCMC [Lewis et al 2002).
As we have noted in Sectf2.3] the QSOs are characterized intrinsically by an
absolute magnitude M and a uniform distribution in the comoving space. If
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the absolute magnitude M is distributed according to the luminosity function
f(M), then the QSO’s sample is described with the product of two independent
probability densities as follow:

APy, o f(M)dM.dV (2.1)

Assuming that the selection effects depend solely on m, we use a selection
function ¢(m) for describing the selection process in observation. Then, the
probability density of the observable variables are described by:

¢(m)dpth
APy, = S~ th 2.2
"= Puo) 22
where Py, (¢) is a normalization factor:
Pth(¢) - /¢dpth (23)

We define the cumulative distribution function (cdf) of the random variable
M as:

X 1 X .
Fo) = | IPa = s / M (1) (2.4)

—00

where V(M) is defined as follows:

V) = [ olc(a) + anavi(z) (25)

F(z) is a uniform random variable between 0 and 1.

The absolute magnitude-volume diagram is a graphic representation of data
that enables one to check visually any artifact in the distribution. For the true
values of cosmological parameters, they are distributed uniformly along the
V-axis and according to the luminosity distribution function along the M-axis.
This diagram was proposed by Fliche and Souriau |H. Fliche & J. M. Souriau
1979|, (hereafter named FS diagram).

2.5.2 Simulation technique

A simulation that describes a sample of QSOs in a cosmological model (.,
2,), depends on apparent magnitude my;,, and a luminosity function f(M)
(usually a Gaussian function, see appendix If the sample is “complete”
up to apparent magnitude my;,,, then the selection function reads:

¢(m) = 0(myim — m) (2.6)
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where 6 stands for a Heaviside function. For a given threshold my;,, a source
with absolute magnitude M is visible up to redshift z,,.., a value that satisfies
the following equation:

Miim = C( Zmaz) + M (27)

Hence, let us define the function vme,(M) that coincides with V(M) is this
particular case:

~

V(M) = vma(M) = v( Zmaa) (2.8)

Having defined a correspondence table of the cumulative distribution function
F(z), we can deduce by interpolation its inverse function. Hence, we generate
a random uniform sample F: F}, € [0,1] and we retrieve the corresponding
absolute magnitude M by solving the inverse mapping :

My, = F(Fy) (2.9)

and hence the volume vy, (My) following Eq2.§ (or Eqf2.3] if ¢(m) is not
a Heaviside function). We generate a uniform random variable Vj between
[0, Vmaz(Mg)], and then we determine the redshift:

2=V V) (2.10)

where V! stands for the inverse fonction of the comoving volume Eql1.37]
Fig[2.6|shows the diagram v,,,, versus M for a given apparent magnitude my;,.
The red symbol plus is a realization of a uniform random variable distributed
between 0 and vy,4,(My). This step is done for N number of objects. Finally,
we compute the apparent magnitude of each object according to Eq[I1.50} to
obtain a simulated sample of QSOs: {(zx, my)}k=1.n (presented in Fig.ﬂ
We generated several samples that allowed us to validate the techniques used
hereafter. We chose the standard cosmological model (A, = 0.7, Q, = 0.3) and
a Gaussian luminosity function of mean M, = —20 and standard deviation
oy = 0.3, with a limiting apparent magnitude my;,,, = 26.

An example of biased sample generator

Although not absolutely necessary, it is not uninteresting to describe a method
of sample simulation, which can be found in the literature to estimate the cor-
rection of the bias of Malmquist, which is unfortunately erroneous. To generate
a sample complete up to an apparent limiting magnitude my;,,, it consists on
choosing ad hoc a redshift value domain so to minimize the number of objects

2This simulation sample is different than the one obtained by the MCMC method where
the major drawback of this latter is that it is extremely time consuming [Vicent J. Martinez
et al | (see COSMOMC based on MCMC approach)
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2.5 Modelling a sample of quasars

-20.5 -20.0 -19.5 -19.0

Absolute magnitude M

Figure 2.6: The blue curve gives the maximum volume v,,,,(M) around the
observer up to which an object with absolute magnitude M can be observed
by using a device that detects up to a limiting apparent magnitude mg,,.

discarded because of the apparent magnitude threshold. Let the z,,,. be such
a value, the corresponding volume reads V., as given by Eq[l.37] Hence,
one generates a uniform distribution of N objects between 0 and V., and by
assuming a Gaussian distribution of the absolute magnitude with a probabil-
ity density function go(M; My, op) which gives the sample, { My, Viti=1.n-
Therefore, the redshift is determined by solving the inverse function of volume,
V~=YV4), and the apparent magnitude following Eq. As a result, one ob-
tains the observed quantities {(z, my)}r=1.n. Such a sample is shown in the
M —V diagram in Fig[2.8] We see clearly that the objects with absolute mag-
nitude M are distributed uniformly until a maximum volume is reached. To
represent the selection effects, we apply a threshold my;,, to the resulting sam-
ple excluding all events that have a larger value of apparent magnitude than
Myim; this cutoff is translated by a Heaviside function 0(my;, —m). A cutoff
at Zmae is present (in the simulation), as described by a Heaviside function
0(Zmaz — 2). Therefore, the probability density of the events reads:

dPobs = G(m”m — m)@(zmax — Z)g(;(M, M(), O']w)dM dV (211)

1
Pth(emez)
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-20.5 —-20.0 -19.5 -19.0
Absolute magnitude M

Figure 2.7: Simulation of a QSOs sample complete up to a limiting apparent
magnitude. The blue curve caracterizes the threshold on apparent magnitude.
The distribution of simulated sources (red) is uniform with respect to comoving
volume (V') and Gaussian with respect to absolute magnitude (M).

where Py, (0,,0,) is a normalization factor:
P (0,,0,) = /G(mlim —m)0(zZmaz — 2)9c(M; My, opr)dM dV (2.12)

The comparison between Fig[2.§8] and Fig[2.9}B shows up the sources (red)
that are not bright enough to be visible at a limiting magnitude my;,. The
histogram in Fig[2.9tA shows this distribution of absolute magnitudes of a
complete sample up to redshift z,,,., the red domain corresponds to sources
not enough bright to be visible with a limiting apparent magnitude my;,,. The
average of the observed sample (blue domain) is found to be brighter than the
mean that characterizes the population ((M) = My — §M), appearing notice-
ably on the histogram. This is the effect of the Malmquist bias. The number
deficit corresponds to ~ 20% of the sample. Contrary to the technique used
above, determining a maximum redshift of the sample before starting the sim-
ulation is unlikely since we would lose a large number of objects, as can be
observed in the empty circle in Fig[2.9}B. In other words, we applied cutoff
on the redshift, in addition to the cutoff applied on the apparent magnitude,
might be the cause of raising the systematic errors. Without this cutoff, the
circle must contain a such number of objects. Moreover, a selection function

34



2.5 Modelling a sample of quasars

Volume

1+

+ *-q_ ol b
. . e . e " . .
—(%2.0 -215 =210 -205 =200 -19.5 -19.0 -18.5 -18.0
Absolute magnitude M

Figure 2.8: A complete sample up to redshift z,,,, with (., A\c = 0.3,0.7).
A uniform distribution appears in vertical axis and a Gaussian distribution in
the horizontal axis.

depending on the redshift put an additional correlation between the variables,
which is inconsistent with the hypotheses of work of the statistical test de-
scribed in Chapf3] This is the main difference between this method and the
simulation method described in Sect[2.5.1] which make this last the recom-
mended method of simulation.

2.5.3 The k-correction

As we have seen in Sects[1.9 & the cosmological expansion of the universe
shifts the spectrum of QSO toward the red wavelength (Fig[2.10). Therefore,
in order to have an homogeneous data sample, one needs a k—correction (
[Humason, Mayall, & Sandage 1956|; [Oke & Sandage 1968|). Namely, one
uses the absolute magnitude M at the same wavelength for all objects at any
redshift and EqJI.50] becomes:
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fffffffffffffff

R <
-20.5 -20.0 -19.5 -19.0 7(}2.0 -215 -21.0 =205 -195 -19.0 -185 -18.0
Absolute magnitude M Absolute magnitude M

Figure 2.9: Distributions of a complete sample up to redshift z,,,, and limiting
magnitude my;,, by disentangling the visible objects (blue) from those that are
not visible (red). A): Histogram of absolute magnitudes. B): M-V diagram.

where myx is the apparent magnitude in the observed X band, My is the
absolute magnitude of the source in the rest-frame Y band and kyxy is the
k-correction between the X and Y bands. kxy is calculated through the rate

of the observed flux in X band and the one measured in a “fictive” filter in the
rest frame Y [Hogg, D. W. 2002]:

[ON)XN)dX [ Po(A)Y (N)dA
[ O(Z22)Y (A)dA [ o(A) X (N)dA

1+2

kxy(z) = —2.5log19(1 + z) — 2.5log1g

2.15)

where ®()\) is the spectrum of the source and ®y(A) is the spectrum of the
reference object.

Because, quasars spectrum shows various broad emission lines, their k-
correction accounts for a component due to the underlying continuum, Kcont,
and another component due to the emission lines, Kem |Ross N. P. 2013]. We
define the redshift’s term:

((z) = 5logyq ((lllL()—g) + k(2) (2.16)

Thus, Eqf2.14]is written as follows:

m =M + ((z) (2.17)
Because of the presence of the emission lines in the spectrum of QSO, the k-
correction is not a monotonous function. Hence, the redshift’s term in Eq)2.17]

is no longer an invertible function.
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Figure 2.10: A typical quasar spectrum at redshift z —5. The QSO can be
observed in two bands thanks to the Lya emission line which is in the i’ band
and the Ly« forest which is along of the 1’ band. Figure credit: [R. Sharp et
al 2001].

2.6 Conclusion

In this chapter we have described how to model a QSO sample from a theoret-
ical to an observed probability laws that describes the events. We presented
an efficient simulation method for providing samples in agreement with the
working hypotheses.
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CHAPTER 3

The null correlation technique
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The correction of biased statistics requires to know the probability law
of characteristics describing the sample used, such as the luminosity function
and the selection effects. Hereafter, we use a robust statistical method which
does not depend on the luminosity function and the selection function. These
features are derived as a result of this approach. The innovative aspect of this
approach is the use of the weighting factor.

3.1 Introduction

The null correlation technique was formulated by [H. Fliche & J. M. Souriau
1979| for quasar statistics and later adapted for the brightest cluster galaxies
by [Triay, R. et al. 1990]. To illustrate this technique, let us describe a simple
example of linear correlation with a uniform distribution on the y-axis, and a
Gaussian distribution on the x-axis with mean 0 and standard deviation 0.5.
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The probability density function of the Gaussian distribution:

dP o go(x)dz f(y)dy (3.1)

where f(y) is a Heaviside function:

{1 ifo<y<1

0 otherwise

fly) = (3.2)

With a rotation of angle 7 the distribution appears as shown in Fig[3.1 Now,
let us suppose that the observer is faced to analyze such a distribution, which
is described with probability law in the (X,Y) frame:

dP « G(X,Y)dX dY (3.3)

where G stands for the probality density function of X and Y, which works as
a correlation function between the random variables X and Y:

G(X,Y) = ga(X cos(f) — Ysin(0)) h(X,Y) (3.4)
with

1 if 0 < Xsin(d) +Ycos(d) <1
hMX,Y) = { (3.5)

0 otherwise

The aim is to estimate the value of 6 by assuming a linear correlation between
these random variables. With the usual procedure to estimate such a value
by mean of a least square fitting, one is faced to the arbitrary choice of the
distance (horizontal or vertical). A way to overcome such a problem is to
translate this optimization into finding a way to make the random variables
independents. Eq[3.3shows that the correlation between X and Y is given by
the correlation function p oc h(X,Y) es@) sm@XY a5 part of the probability
density function. To remove such a correlation, one can use a weighting factor
w; = %. The weighted covariance reads:

0(O) = 3wl X — (XD = (V) (5.

where:

N

(X) = ZwiXi and (V) =) wY; (3.7)

=1

is expected to be null for the true value of theta, I'(f) = 0, see Fig[3.2]
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-2.0 =15 -1.0

Figure 3.1: The distribution of the sample in both (z,y) and (X,Y") frames.
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Figure 3.2: Searching the zero value of the weighted covariance of X and Y.

The equation I'(f) = 0 shows two solutions, the first one (6 = ) matches the
one used for simulation.

The Hubble diagram of sources at cosmological distances shows a correlation
between the two observables, the redshift z and apparent magnitude m, which
are not linearly dependent.
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Usual statistical approach consists to fit the data to the theoretical curve by
means of a least-square method, so that the values of the cosmological pa-
rameters minimize the dispersion. To know if the selection effects bias the
estimates of these parameters, we must make assumptions to describe them in
the probability distribution of these data.

The null correlation technique does not require to make such additional hy-
potheses, but solely that there is no selection effects on redshift.

According to the formula a simulated sample under the model (A, =
0.7, Q, = 0.3) is performed, we used a Gaussian luminosity function; this
sample is used in this section to discuss on the statistical technique.

The observed data are descibed in the (M, m) frame by the following prob-
ability density:

APirsmy = p(2)6(m) F(M)AM dm;  p(z) = 2 (3.8)

where p(z) is a correlation function between M and m, which corresponds to
the Jacobian of the transformed variables (M, V) — (M, m). The correlation
of the apparent magnitude and the absolute magnitude is shown in Figf3.3]
At first glance, for the true values of the cosmological parameters (£, \,),
the correlation between the random variables M and m vanish by dividing
each event by the correlation function p(z). This correlation is given by the
weighted covariance of M and m, it depends on cosmological parameters and
reads:

I, Ao) = Zwk(Mk — (M) (my, — (m)) (3.9)

where wy, is a weighting factor (details in Sect3.2)) which is inversely propor-
tional to p(zx). The weighted averages (M) and (m) are defined as follows:

(m) =" wemy, (3.11)

The solutions of equation I'(,, A;) = 0 are candidate values for 0, and .,
they correspond to a curve on the (Q,, A,) plane.

3.2 Weighting factors

The correlation function of the probability density given by EqJ3.8] depends
on the Friedmann-Lemaitre model:

w(z) = —— = 5= (3.12)



3.2 Weighting factors

Volume

MY
frame

-1 -1

Absolute magmtude M

gy -

mMm
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Apparent magnitude m
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Absolute magnitude M

Figure 3.3: Data distribution in the (M, V') frame and (M, m) frame.

For the case of the close Universe k¢ > 0:

ov. oV . oV
We compute 7 = o — 02

??). Then we obtain:

% (the details of calculation are in the appendix

e Without the k-correction term:

oV (1 — cos(2wET))
== A (3.13)
8 [(1 +2)4/ P(£=) + #g cot(kZT)
e With the k-correction term:
08_‘2 _ l(1 - COlS(2/<LO 7)) — (3.14)
[(1 +2) P(ﬁ) + ke cot(/igT)} + [(1 + 2)? P(liz) = }
where 1 = %(010).

For the case of the open Universe xy < 0:

The same calculation for negative ko, We obtain:
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e Without the k-correction term:

1
88_‘/ _ (cosh(2|ko| 7')1— 1) : (3.15)
¢ [(1 +2)/P() + [kol2 coth(mom)}
e With the k-correction term:
o _ (cosh(2|ko|?7) — 1)
o 1 1 »
%+ 2)[P(2) + ol coth(lmo 27)] + [(1+ 22 /P() 22|
(3.16)
5ko]
For the case of the flat Universe gy = 0:
e Without the k-correction term:
3
88—‘/ = . (3.17)
C o r(142)y/P(i) + 1
e With the k-correction term:
3
%—V — 9 ’ - (3.18)
Cor (14 2)y/P() + 1+ 7(1+ 2)2, /P 28
where 9 = & 12(10).
The weighting factor reads:
Wy, = w(z) (3.19)

Zﬁil w(z;)

The price to pay for using the weighting factors is the partial loss of the
statistical information [Triay et al 1991], mostly at high redshift as we show
in Fig[3.4l It can be evaluated by measuring of the percentage of the deficit
as follows:

N

Li=1+ ﬁ > wilnw (3.20)
k=1

Finally, with the aim of ensuring the estimation of the A\, and 2, without

depending on a particular choice of the magnitude, the weighting factor is

multiplied by arbitrary functions of M and m. These functions avoid the con-

centration of all the weight on the near objects. We have chosen the following
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10F

weighting factor w(z)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Redshift z

Figure 3.4: The inverse of the correlation function versus redshift for a given
cosmological model.

m—M].

function in particular: 105! Therefore, the weighting factor is calculated

by the following formula:

1 L1
wp(z) = g 105"M = 105¢ (3.21)
ac ac

where [ is chosen so that weighting factors wll] are as close as possible. Tts
value is determined by minimizing the function over the sample:

Ly = Max{ws(z)} — Min{ws(2)} (3.22)

Fig[3.5]shows the deficit of statitical information versus 3 (left panel) that can
be compared to the range of weighting factors, that can be compared to the
dispersion of weighting factors values (right panel). The weaker of L£; is, the
more reliable the results. A small difference on the values of 5 obtained by
the two methods does not have a significant impact on the estimation of the
cosmological parameters. On the other hand, the simulations show that it is
preferable to perform the minimization of £y rather than £,. The latter is used
loss estimator. The weighting factor versus redshift as it is shown in Fig[3.6]
The use of these weighting factors favors the sources at low and high redshift
compared to other, which is at the benefit to recover cosmological informa-
tion, see Figl3.4  We seek the values of cosmological parameters in the (.,

1 _ wg(zk)
wp = —ws(zE)
TN ws(z)
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1

0304 % 1 Brmin = 1.822
*t Bumin = 1.650 3
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5

Figure 3.5: The percentage of the lost of the statistical information (left: for
Ly, right: for L£y) with respect to the parameter [.
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Figure 3.6: The weighting factor with respect to the redshift for a given cos-
mological model.

o) diagram with a zero weighted covariance; bounced models are explicitly
excluded. The statistics depend on data (my, z;) and are calculated in each
vertex of a grid (2%, M\); j—o.» according to Eqs., and . Such a
procedure separates the domain in two parts, positive covariance and negative
covariance on the (€, A\,) diagram, see Fig.. The roots corresponding to a
zero weighted covariance, located between the negative and positive values, are
determined by mean of horizontal and vertical parabolic interpolation. The
set of solutions defines the null correlation curve (NCC): the candidate values
of the cosmological parameters. Fig[3.7 shows the NCC when using the simu-
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lation sample with the standard model. Note that the red circle on the curve
corresponds to this model, what ensures the validity of this method.
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Figure 3.7: Left to right, top to bottom. The values of the weighted covariance
with respect to cosmological model. The null values of the NCC are found by
horizontal and vertical interpolations in the covariance grid. The NCC in the
(Q0, Ao) plane retrieve the initial simulation model (the filled red circle).

We came by simulations to the conclusion that the NCC depends on the cos-
mological model and the sample features. Simulation samples were performed
by assuming the standard model (2, = 0.3, A, = 0.7) and a Gaussian lumi-
nosity function gg(M; My = —20, 0, = 0.6) with different limiting apparent
magnitude (my, = 26, my, = 24) and different sample sizes N. Fig. shows
two NCCs which contain the values of cosmological parameters used to sim-
ulate the samples. Any candidate model chosen on a NCC which is different
than the one used to simulate the related sample, has a different NCC. The
shape of the NCC depends strongly on the chosen sample. Fig)3.9|shows the
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Chapter 3 : The null correlation technique

NCC (red curve) corresponding to a simulated sample in the model (2, = 0.1,
Ao = 1.2). Hence, we chose the model (2, = 0.19, A\, = 1.4) on this NCC
to simulate another sample with the same characteristics (luminosity func-
tion, size and limited apparent magnitude). The corresponding NCC, which
includes the values of the cosmological parameters used to perform the simu-
lation, but switches around the candidate model with respect to the previous
one (blue curve in Fig.. The accuracy of the null correlation approach is

The null correlation curve in the (£, A,) plane

(0, Ay) = (0.3, 0.7)
450 objects, m_lim = 26 |
(2, M) = (0.3, 0.7)
300 objects, m_lim = 24 |

0.2 0.4 0.6 0.8 1.0
9

Figure 3.8: The shape of the NCC of two simulated samples with different
sizes and different apparent magnitude limits.

ascertained by the study of the statistical fluctuations. Hence, one hundred
random complete samples were generated according to the density defined in
Eq. These samples were simulated with the same cosmological model (flat
standard model), Gaussian luminosity function, size and limiting apparent
magnitude. These samples provided us with one hundred NCCs for comput-
ing the statistics of Eq3.9] The analysis was performed by varying the number
of objects. It turns out that the statistical estimates are more accurate with
larger number of objects. As shown in Fig[3.10] a butterfly shape is obtained
by the hundredth NCCs. Fig[3.10] (top panel, left) is obtained for samples of
35 objects, (top panel, right) for samples of 350 objects and (bottom panel)
for samples of 2000 objects. In the first figure, the shape of the butterfly is
wide, only 30% of the curves retrieved the initial model. For 350 objects, most
(98%) of the curves retrieves the initial simulated model. In the bottom panel
we see clearly that the model is retrieved for all samples with high accuracy.
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The null correlation curve in the (2, \)) plane
SR ‘ 1 !

T N = (019, 1.4)

Tt A = 01, 12)

The null correlation curve in the [0, M) plgﬁé""--—-.,_,_

< N
0.2

0.05 0.10 0.15 0.20 025
2

Figure 3.9: The dependence of cosmological model on the NCC appears in
these curves when we use two samples with same characteristics but with
different cosmological models.

3.3 Luminosity function and selection function

The null correlation approach allows us to determine the shapes of the lumi-
nosity function f(M) and the selection function ¢(m). For the true values
of the cosmological parameters, the sample is described with the following
probability density:

dP, = fu(M)AM ¢y,(m)dm (3.23)
where the functions f,,(M) and ¢,(m) are defined as follows:

Fu(M) x 105 M £(M) (3.24)

o (m) o 105™¢(m) (3.25)

They are evaluated from the cumulative distribution functions:

F, (M) = /_ N Fu(M)dM (3.26)

o, (m) = /_m Ow(m)dm (3.27)
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The null correlation curve in the (22, \)) plane The null correlation curve in the (92, A,) plane
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The null correlation curve in the (2, ) plane
Banges T T T

. A =103,07 ]

0.8F e

Ao

0.6

0.4

0.2

0.2 0.4 . 0.6 0.8 1.0
Figure 3.10: The precision of the method is shown obviously by increasing
the size of the sample. From left to right and from top to bottom, the size
of the sample increases from 35 to 350 to 2000 respectively. We see that the
statistical fluctuations decrease with the increasing of the number of objects.

For a sufficiently large number of objects, F,,(M) and ®,(m) can be approxi-
mated by step-functions F*'(M) and ®5(m) as follows:

Fy(M) ~ F3l(M) = wif(M — M) (3.28)
O, (m) & Dif(m) = > wif(m — my,) (3.29)

where 0 is the Heaviside function. To obtain the functions f(M) and ¢(m),

we compute f,(M) and ¢, (m) by determining the derivatives of F,,(M) and
®,,(m) and use Egs and In order to avoid the arbitrary choice of
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the fit, the derivatives of smooth approximations of F' (M) and ®5/(m) are
determined by the linear interpolations. Then, the luminosity function f(M)
and the technological function ¢(m) are determined as follows:

FSt(MA+A,M)—FSt(M—A M) 1 B 01
f(M) A, M2 M 105

(3.30)

P (m+Arm) @5 (m=Aym) 11 L m
¢<m) & Arm~+2Aym 107

where A, M and A;M are the right and left intervals of the variable M in

which contain @ values of My > M and M) < M respectively. The intervals
A,m and A;m also contain ‘/TN values of m; > m and m; < m respectively.

As a result of the use of linear interpolation technique, the (‘/TN) points on the

left side and the (‘/TN) points on the right side are isolated and therefore, must
be discarded in the estimation of the functions f(M) and ¢(m). Figs[3.11]and
3.12] show the result obtained for f(M) and ¢(m) with simulated samples in
which f(M) is a Gaussian function with an average M, = —20, a standard
deviation oy, = 0.15, a Gumbel function with mode M, = —20 and a scale
parameter vy = 1.09 (see appendix [A.2). The ¢(m) function is a Heaviside
function. The upper panels of these figures show the statistics of the lumi-
nosity function. The (left panel) illustrates the empirical cdf of the evaluated
luminosity function represented by the green curve, it is compared to the theo-
retical cdf of the luminosity function represented by the red curve. The (right
panel) shows the luminosity function with respect to the absolute magnitude.
The red curve is the luminosity function used for the simulation of the sample
and the green “plus” symbols represent the luminosity function evaluated by
the interpolation technique. The lower panels show the statistics of the selec-
tion function. The (left panel) represents the empirical cdf of the evaluated
selection function represented by the green curve and the theoretical cdf of the
Heaviside function represented by the red curve. The (right panel) shows the
technological function with respect to the apparent magnitude m. The func-
tion p(m) = ¢(m) (the green “plus” symbols) obtained is the same as the one
used in the simulation, it is evaluated as a Heaviside function (in red). These
figures show that the initial luminosity and technological functions used for
the simulation are retrieved perfectly by this technique with (M) = —20.005
and oy = 0.158.

3.4 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test is a nonparametric test that allows one
to check whether deviations between the theoretical cdf and the empirical
(step) cdf can be considered as random fluctuations. The KS is based on the
probability law of the maximum distance defined as follows:

Dmaac - M(IZE( ‘ CdfTheoretical - Cdempirical |) (33]—)
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Figure 3.11: Statistics of the luminosity function (upper panels) and the se-
lection function (lower panels)

The result of D,,,, is compared to the critical value, “Di,q,0", (for a signifi-
cance level ) obtained from the KS table with respect to the size of the sample.
It allows one to decide if the null hypothesis is accepted (Diaz < Dpmaz.a) OF
rejected (Dimas > Dias,a) for a given a (by default, o = 5%). Fig[3.13 shows
the cdf of three distributions with increasing sample size (N) (from left to
right) that can be compared to the theoretical cdf of a uniform distribution
(solid line). It shows how the empirical and the theoretical cdf get closer when
N grows.

The KS test enables one to check whether specific functions f(M) and ¢(m)
fit the databy comparing F,,(M) with F5*(M) and ®,(m) with ®(m). For
this purpose we started with the case of the luminosity function. If f(A/) has
a Gaussian form (AppJA.1), Eq[3.24) shows that f, (M) is still Gaussian with
a mean (M) defined in Eq[3.11] and a standard deviation oy, defined as the
following:

T e e— Zwk(Mk — (M))? (3.32)
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Figure 3.12: Similar to Fig3.11] but with a Gumbel distribution for the lumi-
nosity function.
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Figure 3.13: Three cdf testing uniform distribution with Kolmogorov-Smirnov
test.

Afterwords, we compute analytically the cdf F,,(M) defined in Eqf3.26] The
maximum deviations between the continuous cdf F,,(M) and the empirical cdf
F5H (M) are computed as follows:

Diaw = Maz(|F, (M) — Fif(M)]) (3.33)

If a Gaussian hypothesis for f(M) is likely i.e the null hypothesis is accepted
by the KS test for a significance level, one can estimate the characteristics of
the Gaussian shape of f(M): The standard deviation oy, which is defined in
Eq3.32) and the mean M:

fln(10) ,

My = (M) + 5 o (3.34)

The assumption of the completeness of the sample up to the limiting apparent
magnitude my;,, leads to a technological function ¢(m) like a Heaviside function
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0(myim, — m). The calculation of Eqf3.27| using Eq/3.25| gives us the following
theoretical cdf of ¢, (m):

—B(Mim—m)

Oy(m) = 1+ O(mym — m)(10~ 5= _ 1) (3.35)

This last allows us to obtain the maximum deviations with respect to the
empirical cdf ®5(m):

Dinaz = Maz(|®y,(m) — 3(m)]) (3.36)

This test allows us to decide whether these deviations are statistical fluctua-
tions.

3.5 The V/V,,, test

The V/V,ae test is well known statistical approaches that have been used in
cosmology. The random variable V/V,,,, has a uniform distribution between
0 to 1. Herein, we apply this test as described by [G. Bigot & R. Triay 1991].
We define the uniform random variable:

Vo(2)
Vin(M)

h(z,m) = (3.37)
where Vj(z) is the comoving volume at redshift z and V,,,(M) is the comoving
volume that the source of absolute magnitude M remains visible up to a red-
shift 2,4, at a limiting apparent magnitude my;,, of the survey, it corresponds
t0 V(Zmaz) defined in Eq2.8] [Schmidt M., 1968|. The probability density of
a complete sample reads:

APy, — %Q(mlim —)(2)0(= orm — 2)f(M)AM AV (3.38)

where A denotes the normalization factor, 2., the redshift of the formation
epoch and 6 the Heaviside function. A range of redshift is defined by the
product of the Heaviside functions in the probability density in which a source
of absolute magnitude M is observed. Following Eq[2.17] we defined this range
by M (2):

M (2) = 0(muim — M — ((2))0(2)0(2f0rm — 2) (3.39)
A little algebra shows that the probability density of M and h reads:
dP o V,,,(M) f(M)dM dh (3.40)

After obtaining a set of candidate models (the NCC), we apply the KS test
to test to these candidate models. That requires the calculation of: the abso-
lute magnitude Mp, the maximum of redshift z,,,, (which corresponds to the
limited apparent magnitude my;,), the maximum of volume V' (z,,,,) and the

volume Vp(z;) according to Eqsi2.17] and respectively.
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3.5.1 Calculation of the V/V,,,. terms

The calculation of V/V,,,, is straightforward, but for a positive curvature pa-
rameter, needs one pays attention to its calculation. In such a case, the red-
shift range I1y/(2) might consist in several intervals, as in models with positive
curvature. In that cases, the function ((z) is not monotonic and the inverse
function ¢~ (my;, — M) does not exist. Therefore, to compute the terms Vj(2)
and V,, (M) andt determine the redshift domain IIy/(2), i.e. the regions where
the object with luminosity M is observable. Let z! be the redshift for which
¢ reaches its maximum. The domain ITj;(z) is not connected if 27 < 2fpm.
In such a case, Eq[2.17 has two roots: z; and 2. Let us define the following
magnitudes:

M = myim, — C(21) (3.41)

Mform = Miim — C(Zform) (342)

The sources with absolute magnitude M which satisfy the condition MT <
M < Moy, has a visibility redshift window defined by a union of disjoint red-
shift intervals: [0, 21]U [22, Zorm] (see Fig[3.14). To summarize, the calculation
of h(z,m) in case of a positive curvature model distinguished in two cases.
Firstly, if EqJ2.17 has a single root then we have:

Vo(2) = V(2) (3.43)

Vin(M) = V(min{2form, Zmaz }) (3.44)

Secondly, if Eq2.17has two roots then h(z,m) is calculated with the following
terms:

V(z) if 2 <2z

V(@) =) Vi) £ V() = Vi) if 2> 2 (3.45)

Vi (M) =V (z1) + V(2form) — V(22) (3.46)

A similar issue occurs also in the presence of the k-correction term in Eq[2.17]
(because the emission lines make this function solely invertible by part). We
note that the V/V,,,, test can be applied on subsamples defined with criteria:
Momin < M < Mpae a0d Zpin < 2 < Zmae. Therefore, h(z,m) is calculated as
follows:

Vo(z) — max{w (M), V (2min)}

M) = T D)V o)} — mar{e ) V) 40

35



Chapter 3 : The null correlation technique

where w,;(M) are given by Eqs. and substituting my;, into Eq.
by My for j = 1, or by my,., for j=2.

Once the terms of variable h(z, m) are determined, we compute its cumulative
distribution function as follows:

> 0(z — bz, my)) (3.48)

k=1

Fy(z) =

==

and therefore, we compare it to the cdf of theoretical uniform distribution
between 0 and 1 (the linearity) using the KS test as follows:

Dyow = Max(|Fp(x) — x)) (3.49)

For each model on the NCC, we obtain a value of D,,,,. The lower the D,,,.
value, the more the agreement between the two distributions. Thus, the most
likely values of cosmological parameters correspond to the minimum of D,,,,
over the NCC. The V/V,,,, test is applied, on the NCC in Fig[3.15 with Q, =
0.2, and A\, = 0.5. The values of D,,,, is given for each model on the curve.
The yellow curve gives D, as a function of A, (Fig]3.15] in top right and
left). The minimum is reached at value of A, chosen for the simulated sample.
Similarly, the magenta curve gives D,,,. as a function of )., and we obtain the
same result, the value of Q, chosen for the simulation (Fig3.15]in top right and
in bottom right). We measure that the likelihood of this result is estimated at
at 99% significance level.
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Figure 3.14: The redshift range is not connected for this model with positive
curvature ko, = 0.4. The distance modulus ((z) of a source with absolute
magnitude M has most likely two solutions and it cannot be observed in the
hatched area.

3.6 Conclusion

We had described, an innovative statistical method that does not require the
knowledge of the luminosity function and which is free from the Malmquist
bias. It consists on a first step which uses the null correlation technique to
obtain a set of models which agree with data. The accuracy of estimates im-
proves with the increasing of number of objects. Moreover, one estimates the
luminosity and the selection functions.

A second step uses V/V,,4. test, with a little modification of the usual defini-
tion. Tt provides us with better estimates of cosmological parameters.

a7



Chapter 3 : The null correlation technique

Significance
99% 63% 29%

i
1
1.4 4 !
1
1
4 1
12 !
1
i
1.0 1 !
i
o 0.8 1 ° 0.8 (Q./A.) = (0.2, 0.5)
~ ! ~
1
0.6 4 ! 0.6
________ i
0.4 4 : 0.4
1
0.2 A | 0.2 4
1
1
0.0 . L T T T . 0.0 . T . T T
001 002 003 004 005 006 007 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Dmax Q.
0.07 1
0.06 1
0.05 -
3 F29%
£ 0.04
Q I 55%
[ 63%
0.03 Lt
I 99%
0.02 1
0.01
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Q.

Figure 3.15: Kolmogorov- Smirnov test (Likelihood of candidates). Search for
the minimum of D,,,, (top left) as a function of \,, and (bottom right) as a
function of €, on the NCC (top right).

o8

Significance



CHAPTER 4

Application to quasars data
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4.1 Introduction

The largest homogeneous sample of QSOs ever found, are provided by public
data releases of SDSS. Hereafter, we proceed to a statistical analysis of these
samples with the aim to apply the null correlation method for inferring cos-
mological information. For such a purpose, we use the absolute magnitude
diagram and the V/V,,,, test.
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4.2 The Sloan Digital Sky Survey data

The Sloan Digital Sky Survey is one of the well known surveys specialized in
the identification of the QSOs and galaxies for mapping the Universe. Since
2000 the SDSS has evolved in two editions: SDSS-I (up to 2005), SDSS-II
(2005-2008) followed by the SDSS-IIT in 2008 which mainly detects the char-
acteristic scale imprinted by baryon acoustic oscillations (BAO) in the early
Universe through the SDSS’s Baryon Oscillation Spectroscopic Survey Project
(BOSS). The SDSS telescope with diameter 2.5m is located at Apache Point
Observatory, in Southeast New Mexico (USA), using multi-band with a pho-
tometric system of five filters (r, i, u, z, and g based on the AB magnitude
system as explained in Sect and covering about 11,600 deg? of the sky
in Northern Hemisphere. It is also associated with a pair of spectrographs
with optical fiber feed, which measure the spectra of selected objects.

We have used several catalogs to apply the null correlation test. We focused

Figure 4.1: The Sloan foundation 2.5m telescope Ritchey-Chretien type located
at Apache Point Observatory, in south east New Mexico.

on the samples from SDSS-I and SDSS-1I. Since our investigation requires sta-
tistical properties such that the homogeneity of the sample, we were unable
to perform the test on the SDSS-III samples. This is due to the selection of
objects which was dependent on the redshift (more specifically for the nineth
data release DR9-BOSS). In the DR9 sample, the QSOs were selected in order
to measure the BAO scale in the Lyman-« forest at redshift ~ 2.5. Thus, most
of the QSOs in this sample span a range of redshifts: 2.5 < z < 3.5
. For the reason of this selection based on redshift, as seen in the absolute
magnitude-volume diagram of DR (see Sect.§3.1 for more description and
analysis of this diagram), we did not use this sample for the application of the
null correlation test. However, the two editions I/1I grow increasingly with a
huge number of quasars (QSOs) and goodness of the quality of the selection
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target candidates.

Firstly, we applied the test to the first edition of SDSS quasar catalog, the
Early Data Release (EDR). It consists of 3,814 QSOs with redshifts ranging
from 0.15 to 5.03. The survey reaches a flux limit of ¢ ~ 19 for objects with
u—wv < 1.5. This limit becomes i & 20 for objects with u —v > 1.5 [Schneider
et al 2002]. Secondly, we chose from SDSS-II, the first and third data releases
(DR1 and DRS3 respectively) where the latter covers all the area of the former
with more than three times of quasars. Finally, we used a sample where the
number of QSOs is much higher. It is the latest sample of SDSS-II, the seventh
data release DR7, and is two times more than the DR3 cited above.

Here, I present the different characteristics of each sample (DR1, DR3 and
DR7). The main difference between DR1 and DR3, is the number of quasars
selected in each. The DR1 catalog contains 16,713 QSOs with redshift from
0.08 up to 5.41, and spans a range of apparent ¢ magnitude between 15.15
and 21.79. While the DR3 catalog consists of 46,420 QSOs (three times more
quasars than DR1) covering the full area of DRI, an area of 4188 deg®. The
DR3 sample is distinguished from DR1 due to the several modifications in the
criteria of the selection candidates. Interestingly, due to new techniques used
for this sample, the DR3 has more accuracy than the previous data releases in
determining the signal /noise ratio used to determine the redshift. This allows
to improve the localization of the selected quasars with more precision. More-
over, a good improvement of the photometric measurement and the imaging
data are also released. The selected QSOs in DR3 have a redshift range from
z = 0.078 to 5.414 where 520 quasars have redshifts greater than 4, of which
17 are at redshifts greater than 5. This sample extends from i = 15 to 21.78
(1 = 19.1 is the first limit on the apparent magnitude at z < 3 and ¢ = 20.2 for
z > 3). Among this sample, only 160 QSOs have brightness fainter than 20.5
in the i band, for which only five QSOs have i > 21.0 [Schneider et al 2005|.
The DR is the final data release for SDSS-II, it contains 105,783 spectroscopi-
cally confirmed QSOs which represent the entire set of QSOs from SDSS-I and
SDSS-II Quasar survey. The catalog covers an area of 9380 deg?. The range of
redshift in this catalog is from 0.065 to 5.461 with apparent magnitude from
1 = 14.86 to 22.36. This sample has 1248 QSOs with redshifts larger than 4,
of which 56 have redshifts above 5 [Schneider et al 2010].

All of the QSOs in these catalogs are selected with luminosities larger than
M = —22 in the i band (calculated with the cosmological model: Q, = 0.3,
Ao =0.7and H, = 70 Km.Mpc'.s71), as well as with a full width at half max-
imum (FWHM) of lines from the broad line region greater than 1000 km.s™'.
It is worth to mention that applying a limit on the absolute magnitude (which
is a variable depends on the cosmological parameters) is prohibited because
it makes a bias on the estimation of the parameters. However, the value
M = —22 corresponds to z < 0.06, then its effect is not significant and there-
fore ignored.
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4.2.1 The k-correction

As mentioned in Sect2.5.3] the k-correction makes the absolute magnitude M
centered at the same wavelength for all objects at any redshift. The dependence
of the k-correction on the overall quasar Spectral Energy Distribution (SED)
necessitates the study of its component, usefully by separating between the
continuum (K,p,;) and the emission lines (K.,,). The quasar SED can be
represented by assuming a power law distribution f, o< v*”. Then, the K,
is given, as traditionally, at redshift zero by the following:

Kcont = —25(1 -+ Oéy)lOglo(]. + Z) (41)

According to [Richards et al 2006| paper, the continuum slopes appear corre-
lated with the observed relative g — ¢ color, while the true correlation is not
found yet, notably for high redshift. Then, it is useful to change the rest-
frame’s redshift which avoids the mentioned correlation. Therefore, a redshift
close to the median redshift of the DR3 sample is chosen for the K.,,; with a
constant continuum slope o, = —0.5, i.e, the continuum k-corrections are zero
at z = 2, which reduces the systematic error (This error incurred when using
a fixed spectral index for all the bluest and reddest objects at high redshift).
Transferring the zero point of the k-correction to z = 2, significantly reduces
the systematic error incurred by extrapolating the wrong spectral index to
high redshift (see [Richards et al 2006] for more details). k-correcting the part
of emission lines, K,,,, is established with a selection of the flux limit. This
limit has been settled in the ¢ band at z = 2 due to the fact that the i-band
is relatively free of strongly peaked emission lines at this redshift. Note that,
the Lya forest does not include the ¢ band until much higher redshift. The
contribution of host galaxies is likely to be small in this analysis. Figld.2]shows
the total k-correction, K.,,; and K,,,, in the ¢ band.

4.3 Results

4.3.1 The null correlation test

The null correlation curves found with the samples and subsamples described
above are very close to each other, and they coincide in the region of the low
density matter in the (0o, o) diagram (see Fig [4.3). These results are in a
good agreement with the results of [H. Fliche & J. M. Souriau 1979] who
first applied this test on the QSOs. However, it must be noted that the NCC
of the EDR sample (red curve in Fig [4.3]) shows a decreasing shape which
gives different results. This issue is due to the bad quality of the selection
data of EDR sample. Indeed, it has been notified that original version of the
quasar target selection algorithm used in the EDR data did a particularly poor
job of selecting quasars with redshifts close to z = 3.5 |[Richards et al 2006].
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K(2)
dk(z)/dz
U
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Redshift z Redshift =

Figure 4.2: Left: The k-correction of the SDSS-DR3 sample in the i-band
including both the emission-line and continuum components, normalized at
z = 2 with a fixed spectral index a,, = —0.5. Right: The numerical derivative
of k-correction with respect to the redshift z.

Therefore, this curve is excluded. The model with zero curvature (defines a
flat universe, Q, = 0.6) is not a good candidate (see Sect[4.4}§3.2).

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 4.3: The null correlation curves corresponding to EDR, DR1, DR3,
DRT7 samples and DR3 subsamples. The curves are located in the region with
positive curvature r, > 0 (above the straight line). All the curves give close
candidate values for cosmological parameters excepted the one of EDR sample
(red curve).

The V/V,ae test provide us with more likely values of the cosmological
parameters in agreement with the working hypotheses. Its application suggest
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Figure 4.4: The absolute magnitude-volume diagram of the EDR sample. The left panel
with Q, = 0.076, A\, = 1.211. The right panel with 2, = 0.3, Ao = 0.7. The domains
corresponding to limiting magnitudes ¢ = 15, 19.1, 20.5 and 21.78 are delimited by the
corresponding curves (yellow, blue, green and black). The second ordinate axis represents
the redshift values.

the most likely candidate defined by €, = 0.076, \, = 1.211. Hereafter, we
use those values in the diagrams and graphics for the discussion of results. Af-
terward, we plot the absolute magnitude-volume diagram that will be named
afterwards FS diagram (for Fliche and Souriau diagram). It is worth to note
that two limiting apparent magnitude, ¢ = 19.1 and ¢+ = 20.5, are present in
this diagram that correspond to two distinct set of observations. In Figs. |4.4
[4.5] and we show the difference between the FS diagrams built
by a determined candidate model (left) and the model of the standard flat
universe (right) for the samples EDR, DR1, DR3, the homogeneous subsam-
ple of DR3 and DR7. It is clear that the F'S diagram of EDR sample suffers
from the weakness of the size with respect to other catalogs. For the other
catalogs, we noticed that objects are missing in the F'S diagrams at redshifts
z = 2.7 and z = 3.5. The obvious reason of this selection effect is because
the SDSS colors of quasars at these redshifts are similar to the colors of their
stars (host galaxies), which makes difficult to distinguish quasars from stars.
Furthermore, we remark a lack of bright QSOs in the bottom-left of the FS di-
agram (white zone, which began more significant with flat universe) compared
to the simulated diagram in Fig. (built with model Q, = 0.076, \, = 1.211;
the volume-redshift and distance modulus-redshift diagrams are represented
in Figdd.10| and respectively, this last enables one to understand the de-
creasing of the luminosity at high redshift in the simulation sample). This is
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Figure 4.5: Similar to Fig[d.4} the absolute magnitude-volume diagram of the
DR1 sample.
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Figure 4.6: Similar to Fig[d.4} the absolute magnitude-volume diagram of the
DR3 sample.
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Figure 4.9: The absolute magnitude-volume diagram of a simulated sample which consists
of 46,420 objects with a Gaussian luminosity function with My = —25, o = 1.2, a limiting
magnitude my;,;, = 19.1, and a maximum redshift z,,,, = 13.6 in the model 2, = 0.076,
Ao = 1.211.

due to the selection of bright QSOs i.e. a limit on the apparent magnitude has
been applied to select the brightest objects, ¢+ = 15, as mentioned above, in
addition to a rarity of QSOs at low redshift (details are given in Sect[4.4}§3.2).
Fig[4.12] (right panel) shows how the k-correction intervenes the weighting
factor and its dependence on the cosmological model with the data (the red
curves) and with a simulation (the blue curves) where variation between the
curves is due to the changes of \,. The negative values (see left panel of
Fig ) are artefacts that appear when the distance-modulus is no longer
invertible at high redshift, which concern solely 10 objects (0.02% of the sam-
ple size).
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Figure 4.10: The volume-redshift diagram in the model €, = 0.076, A\, = 1.211. The
graduation on the ordinate is translated into angular distance on the right hand side axis.

4.3.2 The V/V,,,, test

Because the V/V,,.. test requires the most possible homogeneous data set, we
focus on the DR3 and we use the subset of QSOs that were selected uniformly
as described in [Richards et al 2006). This subsample, noted SUBDR3, con-
tains 15343 QSOs, where 90% of QSOs are fainter than the notably limit of
the apparent magnitude, : = 19.1. Until this point, we have used only sam-
ples provided by their authors but the application of the V/V,,,, test requires
complete samples |G. Bigot & R. Triay 1991], see details in Sect3.5] The
FS diagram enables one to check whether a sample staisfies such a property.
As visible on Figures, they appear not homogenous, which forces us to iden-
tify complete subsamples. The theory allows one to apply a cutoff on the
apparent magnitude (M, < m < Mpa) as well as a cutoff on the redshift
(Zmin < 2 < Zmaz). We have applied this test with several subsamples chosen
by selecting domains on redshift and apparent magnitude to candidate models
as given by the NCC. The method is iterative, it consists in delimiting domains
for which the subsample appears homogeneous. Then, by means of the selec-
tion function determined by Eq[3.30] one identifies the apparent magnitude
range for which the subsample shows to be complete. Hence, the KS test is
applied to the corresponding subsample, which provides us with the likelihood
level of the cosmological parameters.
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Figure 4.12: Weighting factor applied to DR3 sample and simulation sample
without (left) and with (right) k-correction. Red curve with (A, = 1.275,
Q, = 0.132) and blue with (A, = 1.229, Q, = 0.132). The disturbed shape of
the curve is due to the contribution of the emission lines.

We start by applying the test to SUBDR3 sample using the corresponding
NCC (the yellow curve in Fig/d.3). The results for each subsample are given
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as follows:

e 1865 <m <19.1, 0.04 < z<245:Q, =0.132,\, = 1.275, at 35%
significance level.

e 1865 <m < 19.1, 1.8< 2<24:0Q,=0.076,)\ = 1.211, at 70%
significance level.

They are shown in Figs{4.14] and
The overdensity in the top of the FS diagram of SUBDR3 at redshift ~ 3

is noticeable in Fig[f.13] Indeed, this may can upset the result of the null
correlation test and then the V/V,,,, test. For this, we select a subsample of
SUBDR3 limited at an apparent magnitude 19.1, which contains 13828 QSOs,
getting rid the package in top. Therefore, we apply the null correlation test
on this subsample which provids us a NCC (in cyan color) in Fig[i.3] Hence,
we perform the V/V,,,, test on a subsample limited by:

e 18 <m <191, 18 < 2<24:Q,=0.0305\ = 1.1180, at 7%
significance level.

details about these results is presented in Sect[4.4}§3.3.
We select a subsample of DR7 in the following domain:
® Myin = 18.65, Myae = 19.1, Zimin = 1.8, Zmee = 2.4.

The application of V/V,,.. test suggests (2, = 0.0169, A\, = 1.079) at 59%
significance level (Figs[4.16] and These selection criteria have been cho-
sen to ensure the sample completeness within the largest magnitude range,
accordingly to application requirements of the test. This is confirmed with the
selection function ¢(m) which is roughly constant in this interval and close to

1 (Fig - see next section).

Error on the cosmological paramaters

The measurement errors on the apparent magnitude are available only for the
DR3 sample (46419 QSOs), this sample was used to measure the fluctuations of
the null correlation curve according to these errors. Figld.1§shows two curves
that confine the estimates of the cosmological parameters corresponding to the
taking into account of these errors. This allows us to estimate the error on the
cosmological paramaters. We found for 2, = 0.132, A, = 1.229: 62, = +0.003,
oA, = £0.0025.
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Figure 4.13: We represent the apparent magnitude limits on the FS diagram of
the homogeneous statistical subsample, SUBDR3, chosen to apply the V/V,4.:
18.65 <m < 19.1
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Figure 4.14: The cdf of V/V,,., compared to a uniform distribution, for a
SUBDR3 subsample with 2, = 0.076 and A\, = 1.211.
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testing a uniform distribution of V/V,,., values, for candidates cosmological
models on the NCC corresponding to SUBDR3. Left panel: D,,,, as a function
of \,. Right panel: D,,,, as a function of €2,. In both panels, the values of
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Figure 4.16: The cdf of V/V,,,, compared to a uniform distribution, for a DR7
subsample with (£2, = 0.0169 and A\, = 1.079).

4.3.3 Estimation of the luminosity function and the se-
lection function

The null correlation approach enables us to evaluate the luminosity function
f(M) and the selection function ¢(m) (for details of calculation see Sect[3.3).
The cosmological parameters used for these estimations are (€, = 0.0305,
Ao = 1.1180). The luminosity function shows approximately Gaussian for the
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Figure 4.18: Contribution of measurement errors to NCC corresponding to
DR3

brightest objects, whilst it becomes constant for the faintest objects (Fig.
represents f(M) of the subsample of SUBDR3 limited at 19.1 of apparent
magnitude. For the other samples, see the Sect.§3.4). The completeness
of the sample at a limited apparent magnitude is estimated in the simulation
with 95% significance. As a point of fact, this is not suitable for the entire
chosen sample. We found that the function ¢(m) obtained from the SDSS data
increases as an exponential function for the brightest objects (quasars are very
rare at low redshift), while it clusters around ¢(m) = 1.4 from 18.65 to 19.1
of apparent magnitudes. In this range of magnitude, the QSOs are easily
identified in the ¢ band, thanks to the Lya emission line which is more likely
to be observed in this band. Above the first limit i=19.1, the function ¢(m)
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decreases quickly as the deficiency of QSOs is important. But, ¢(m) becomes
constant until reaching the second apparent magnitude limit ¢ = 20.2 (Fig4.20
represents ¢(m) of the subsample described above. For the other samples, see
the Sect[1.41§3.4). The shape of the ¢(m) suggests that the SDSS samples are
constituted of at least two apparent magnitude limits, and of regions where
the emission lines of QSOs are easily identified in the ¢ band. The bottom
panel represents ¢(m) with an increasing shape until i=18.65. This function
becomes constant and close to ¢(m) = 1.4 up to the limit i« = 19.1 where it
starts to decrease at this limit. The top panel represents the zoom on ¢(m)
between the range from 17.9 to 19.1 where the function begin to be close to 1.
This trend is due to the rare bright QSOs (the nearby QSOs) and to the easy
identification of QSOs in this range.
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Figure 4.19: The luminosity function f(M) of the subsample of SUBDR3 with (Q, =
0.0305, Ao = 1.1180).
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1 Introduction

In the 80’s, because the estimation of cosmological parameters is more reliable when the
sources are remote, one had expected that the use of the Hubble diagram was the most
promising approach by using QSOs. However, such a viewpoint has been abandoned because
of the large dispersion in their luminosity distribution and possible evolutionary effects of
these sources. Nevertheless, despite of their weak capacity of being standard candles, an
innovative statistical approach, known as the null correlation technique, provided us with
the earliest estimates of the cosmological constant that accounts for the acceleration of the
cosmological expansion. This approach has been introduced by Fliche and Souriau [11, 12]
(FS) and later adapted with additional features to brightest cluster galaxies [17-19]. Our aim
is to perform such an approach to QSOs data sets from the Sloan Digital Sky Survey (SDSS),
in view of inferring cosmological informations..

2 The null correlation technique

Statistical analysis in observational cosmology is faced to the problem of selection effects,
which makes the derivation of unbiased inferences a major challenge, e.g. see the Malmquist
bias [14-16, 20|, among others. One of the interesting features of the null correlation tech-
nique is indeed to contribute in solving such problems in the determination of cosmological
parameters.

In the following sub-sections, we remind the geometry of the standard model with the
cosmological constant (no dark energy) and define quantities used herein, with their notations.
We show how to probe the geometry of spacetime through a statistical modelling of the
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Hubble law by means of weighting factors. Then, we remind the definitions of statistics
which provide us with estimates of the luminosity function and of the selection function, for
cosmological models that agree with the working hypotheses, and how to test them by means
of the FS diagram. Then, we show the appropriate use of the V/Vi,ax test for refining the
estimation of cosmological parameters. A comparison to the usual fitting technique in Hubble
diagram, shows up the benefits of this approach. With respect to simulation techniques, an
advantageous algorithm that provides complete samples up to a given apparent magnitude is
described.This chapter concludes with the methodology of the null correlation test, that we
use in the next section.

2.1 The Friedman-Lemaitre-Gamov model

In Friedman-Lemaitre-Gamov (FLG) model [10], the space-time is described by a RW metric
ds? = dt? — a*(t)do? (2.1)

where t is the cosmic time, a(t) is the (dimensionless) ezpansion parameter and do? is the
metric element on an homogeneous 3-dimensional manifold V3 (namely, the comoving space).
It corresponds to the space-time events from where the CMB is observed as an isotropic Black-
Body Radiation at (a given) temperature T'. It is characterized by its scalar curvature K and
the Hubble parameter H, which specifies a scale. Nowadays, value of the CMB temperature
is To = T(to) = 2.73°K, and by setting a, = a(t,) = 1, these models! can be parametrized
by the Hubble constant H, = H(t,) and the following cosmological parameters

1 8
Ao = §AH;Q, ko =KoH 2 =X+ Qo+ —1, Q= gﬂ'GpoHo_2 >0 (2.2)

Qo = %WBGkBT;*h*?’H;? ~2510°h"%, h=H,/(100kms 'Mpc™) (2.3)
These are dimensionless quantities that stand respectively for the present values of the reduced
versions of the cosmological constant A, the scalar curvature K of the comoving space, the
matter density, p being the specific density of massive particles (dark matter included), G is
the Newton’s constant, and the radiation energy density?, which accounts of CMB photons as
sources of gravity, kp is the Boltzmann constant, and A is the Planck constant; the deceleration
parameter reads ¢ = o + % — X. These notations, for time dependent quantities of a different
origins, are more appropriated than the usual ones Qp = Ao, Qx = —ko, Qu = Qo and
0, = a, for preserving their own meaning (in particular, for the sign of the scalar curvature).
The dimensionless expressions of the geometrical quantities used hereafter are :

e the comoving distance® of a source at redshift z,

1
m(2) = / i, P(a) = Xoa® — koa® + Qoa + o, P(1) =1 (2.4)
(1+2)~1 \/ P(a)

!The V5 homogeneity being related to the distribution of the gravitational sources, because of the presence
of large scale structures in the universe, one agrees that this model describes an anamorphosis of the galaxies
distribution that is smoothed at scale ~ 100 Mpc. The Sun is moving at speed 369 kms™* from such an event.

2 Although «v is negligible today, it provides us with a better description of the Universe at recombination
epoch than describing the radiation-dominated era and the matter-dominated era separately.

3The comoving distance reads 7/H,
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e the comoving volume of a sphere of radius 7 = 7(2),

(27 — sin(27)) Koo/ if kKo >0
Vir)=nxq 37° if ko =0 (2.5)

(sinh(27) — 27) (—ko)™%/% if Ko <0

where 7 = 74/|ko| for (ko # 0).

2.2 Statistical modeling of data

A class of luminous objects, described intrinsically by an absolute magnitude M and a position
in the comoving space, can be used to probe the space-time geometry, with even more precision
than magnitude dispersion is small (standard candles). For those that can be observed, their
world lines intercept the observer’s past lightcone, one measures their redshift z and their
apparent magnitude

m =M +((z) (2.6)

where the distance modulus ((z) reads in term of cosmological parameters. For broad-band
photometric measurements expressed in magnitudes, the estimation of rest frame luminosities
requires a K-correction term K (z). Hence, the distance modulus reads

d sin7/\/ko if ke >0
((z) =5log 1OLc + K(z) + A, d,=142)¢ 7 if Ko =0 (2.7)
P sinh7//—ro if Ko < 0

where dy, is the luminosity distance and A quantifies the foreground extinction.

According to FLG model, the spatial distribution of gravitational sources being uniform
in V3, their corresponding volume V' = V/(7), of a sphere of comoving radius 7 centered at the
observer location, stands for a uniform random variable. If (one assumes that) these objects
are permanent, the redshit z of those within the even horizon can be measured, (the visible
part of) the comoving space is representatively sampled? by mean of their comoving distance
7 = 7(2). If the related sample shows a luminosity function f(M) then the probability density
of the random variables (M, V') reads®

APy, o f(M)dM dV (2.8)

If the selection effects depend solely on m, the probability density of observed objects reads

B 1
~ Pa(¢)

apP o(m)f(M)AM AV, Py(@) = / o(m) f(M)dM AV (2.9)

where ¢ is a selection function that describes the difficulties to identify/collect the sources
and/or the selection criteria, it works as a filter response (i.e., 0 < ¢(m) < 1). According to
egs. (2.4),(2.5),(2.6),(2.7), it works as a correlation function of the random variables (M, V).

4When reasoning in the conformal spacetime diagram, this property becomes obvious since the past light
cone of the observer intercept the worldlines of objects at the same angle of 45°.
5The absence of evolutionary effects is a requirement for being considered as standard candles.
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2.3 Probing the geometry of spacetime with weighting factors
According to eq.(2.9), the probability density of random variables (M, m) can be written as

1 ov
dP = ——o¢(m)f(M)-—dM dm 2.10
B M5 (2.10)
which shows that the random variables (M, m) are correlated, because of the correlation
fonction g%' Hence, by weighting the data with the function

—1 —1
d d
”‘3(2):(372) 10§(mM):di<d‘z/) 105 20 210

the random variables (M, m) become independent for the true values of cosmological param-
eters, which stands for the principle of the null correlation test.
For a sample {(zx,m)}._q v, one defines the normalized weighting factors as follows

o = wp(2k)

T Ceivws(a) (2.12)

where the value of the parameter 3 is chosen to minimize the difference® between the weights
Wmin = min {wg(zk)}, w = max {wg(z 2.13
min k::l,N{ ﬁ( k)} max k:l,N{ ﬁ( k)} ( )

and hence to diminish the lose of information. Figure 1 shows the weighting factors (scaled
by the factor N) for the SDSS-DR3 sample calculated by assuming (Q, = 0.132, Ao = 1.275)
(bottom-left panel) and (€2, = 0.3, Ao = 0.7) (bottom-right panel).

Let us emphasise that the K-correction term, which intervenes through the distance
modulus ¢, plays an important rule in the weighting. Indeed, the comparison between the
upper panels (without K-correction term) to the bottom ones of figure 1, shows that its effect
in the weighting is not negligible with respect to that of cosmological parameters. It takes
into account that a source is more easily detectable when an emission line of its spectrum
overlaps with the observed wavelength window of the filter. Ignoring this effect necessarily
produces biased estimates of cosmological parameters.

Therefore, the (weighted) correlation coeficient of random variables (M, m), which reads

(Mg, = (M)y,) (mg, — (m)w)
ou(M)o,(m) ’

T(Q, o) = > w

k=1,N

My = my, — ((2x) (2.14)

where the weighted statistics of the mean and variance are defined by substituting X by M
or m in the following equations

N
(X)w= ) wpXp, 0u,(X)*= N1 wi (Xp = (X)w)? (2.15)
k=1,N k=1,N
has a vanishing expectation for the true values of cosmological parameters. Hence, the can-

didate model is defined by those values that satisfy the equation’

F(QO, )\O) =0 (2.16)
®It can be also the relative difference A, = Cmax_tmin,
"Note that if one limits solely to obtain these roots one can use the (weighted) covariance instead.
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Figure 1. The weighting factors (scaled values by a factor xN) for the SDSS-DR3 sample without
K-correction (upper panels) and with K-correction (bottom panels), by assuming (2, = 0.132, A\, =
1.275) (left panels) and (©, = 0.3, Ao = 0.7) (right panels).

which provides us with a curve in the €2,-)\, diagram, because of statistical characteristics of
data and the degeneracy in the Hubble law. To avoid cumbersome calculations, the accuracy
on the determination of cosmological parameters is estimated by applying the same procedure
to simulations generated by assuming these candidate value.

According to working hypothesess, the null correlation test can be applied to any sub-
sample selected in terms of the apparent magnitude®. It must be also noted that this method
does not require to specify the selection function ¢(m) and the luminosity function f(M) of
sources, which advantageously characterizes the robustness of our estimates.

2.4 Luminosity function and Selection function

For the candidate model, the weighted probability density that describes the sample reads

dP, x fu,(M)dM ¢y, (m)dm (2.17)

8e.g., the sources whose apparent magnitude stand within the interval [mmin, Mmax], Or any sampling, as
long as it is free from selection effects on redshift.
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as a product of two probability density functions, namely
—8m Bm
(M) x FOM)1075M, g (m) o ¢(m)105 (2.18)

For large N, their cumulative distributions functions can be approched as follow
N N
Fy(M) m Fy(M) = wp(M — M),  ®y(m) ~ Su(m) =Y wibl(m —my)  (2.19)
k=1 k=1
where 6 stands for the Heaviside step function. Hence, from discrete derivatives of statitstics,
one obtains estimates of the luminosity function and the selection function

AF, (M)
AM

Ad,,(m)

8
1075™ 2.20
Ao ; (2.20)

F(M) o 105Y, ¢(m) o

2.5 The FS diagram

A graphic representation of the data in the (M, V) diagram, hereafter named FS diagram
[11], enables one to detect inconsistencies with the working hypotheses as artifacts in the
distribution. A complete sample up to a limiting apparent magnitude my;, contains all the
sources in the field whose absolute magnitude M < Mpyax(2) at redshift z, where

Mmax(2) = muim — ¢(2) (2.21)

is either a decreasing function (if kK, < 0) or has a minimum for 7(z) = § (if ko > 0), in
addition of bumps related to the K-correction term, see figure 3. In the FS diagram, these

data are located to the left hand side of the curve
C: (Mpax(2),V(2)) (2.22)

that characterizes the threshold at the apparent magnitude myy,. For the true values of
cosmological parameters, they are distributed uniformly along the V-axis and according to
the luminosity distribution function along the M-axis.

It is obvious that one can have alterations of this idealist picture, such as a “smoothed cut
off” at my;y instead of a sharp one, which might be a closer description to the real situation.
Moreover, we must also expect the existence of structures characterizing the presence of several
surveys, bumps on the curve C which are related to emission lines in the spectrum, and others
alterations that depend on the identification process of sources. These structures, related to
the selection effects on the apparent magnitude, do not contradict the working hypotheses,
they are characterized by shapes that are parallel to C. Any other structure that cannot be
described by the selection function ¢(m) biases the null correlation test. With this in mind,
and according to working hypotheses, the presence of any structure suggesting evolution with
redshift invalidates the candidate model. Thanks to the power of the discernment of the eye,
a simple visual analysis of the FS diagram makes it possible to verify whether the working
hypotheses are satisfied and also to discern the artefacts from real structures.

2.6 Refining the determination

If the sample is (statiscally) complete up to a limiting apparente magnitude, then the results

obtained by the null correlation test can be refined by using the V/Viax test. Indeed, for the

candidate model, the data should be distributed uniformly along the V-axis. If the sample
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shows such a property solely within a redshift range of values, this test applies to the related
subsample.

For brevity, let us describe a case that does not account of coincidences of the filter
with the emission lines of sources? and of the case ko, > 0 for which the sample contains
objects with redshift z > z*, that is a threshold at which the apparent magnitude increases
with redshift'?. Hence, the selection effects being described by a cutoff at a limiting apparent
magnitude myy,, the selection function reads

¢(m) = 0(miim — m) (2.23)
A source with absolute magnitude M is visible up to a redshift 2y, as defined by
Miim = M + C(zlim) (224)

For the candidate model, namely the values of cosmological parameters that satisfy eq. (2.16),
the random variable

v
v = m € [07 1[7 Vmax(M) = V(Zlim) (2'25)

is uniformly distributed!! within the range [0,1]. The likehood of this assumption can esti-
mated by the Kolmogorov-Smirnov (KS) test to the sample of values

V()
Vinax (my — ¢(2))”

v = v(zg, mg) = (k=1,N) (2.27)

If the working hypotheses are correct, the distance between the empirical F(x) and the
theoretical F'(z) cumulative distribution functions, which is defined as follows

N

N . - 1

= sup |F(z)— x|, F(z)= N E 0(z — vg) (2.28)
z€(0,1] =1

is a random variable with the KS cumulative distribution function Proby(d < 8)'2.

In that case, according that the K-correction term takes emission lines into account, see eq. (2.7), the
distance modulus is not an invertible function, and the formulation of the null correlation test becomes slightly
different. Indeed, if the spectrum shows p emission lines, then equation Mmax(z) = M shows a first root 2o
in addition (eventually) of p < p pairs of roots {Z2;_1, Z2; }jzl,p’ ranked by increasing values, that correspond
to redshift ranges where the souce becomes visible. Hence, the uniform random variable as give in eq. (2.27)
transforms as follows

1

VS Vo (D) <V(Z) - ;9 (2 = 22541) (V(22541) — V(£2j))> ; Vinax (M) = V(20)+; (V(225) — V(225-1))

0The redshift dependance of the distance modulus, excepted that through the K-correction term, is given
by “log (1 + z) + logsin7(z)”, see eq. (2.7). Hence, if ko > 0, the distance modulus decreases with redshit
above a given value z* > %71(g); what characterizes a spatially closed universe (i.e., the comoving space V3
stands for the 3-sphere).

"Tndeed, its cumulative distribution function reads
F(z) = Prob(v < z) = Prob(V < 2Vimax(M)) = PL@ / Vinax (M) f(M)dM = z (2.26)
th

2In short, the value Proby (§ > 8), the probability to obtain statistical fluctuations larger than & (the one
measured), stands for the likelihood that the working hypotheses are correct.
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One can easily prove that the V/Viax test can be applied to sub-domains defined in
apparent magnitude m € [Mmin, Mmax) and /or in redshift z € [zmin, Zmax). Moreover, to avoid
making inferences on the formation epoch of sources, one can use zpax corresponding to the
largest redshift value in the sample, which is particularly useful if ko, > 0.

If the selection function ¢ is known, or given by eq. (2.20), then the V/Viyax test can be
adapted for using the entire sample by substituting V' and Vipax in eq. (2.27) by V and Vmax
defined as follows

B 14 B Vinax (M)
- / 6(M 4NV, Vinae(M) = / SM4C(E)AV()  (2.29)
0 0
where Viyax (M) is given by eq. (2.24).

2.7 A comparison with the Hubble diagram

In both approaches, the data sampled the cosmological expansion throughout cosmic time,
and along the observer’s past light cone. The sources are assumed to be permanent and not
evolving (number density, luminosity, spectral). Hence, a K-correction is used (unless using
bolometric magnitude), what requires a composite spectrum of sources. Unlike the FS dia-
gram, the Hubble diagram (m, z) the coordinates do not depend on cosmological parameters,
which facilitates the identification of selection effects in observation. The data are expected to
lie around a model dependent curve that gives the apparent magnitude of a standard candle
as a function of redshift. The goal is to fit that curve to data by means of a least squares
method, for estimating the values of cosmological parameters. To perform such an approach,
one is faced to the arbitrary choice of a distance between the data to their the predicted val-
ues, which often results from heuristic method with subjective reasoning. Moreover, in order
to perform properly the Malmquist bias correction, one has to specify the selection function
¢(m) and the luminosity function f(M). Because of these requirements, the null correlation
technique appears then more robust in testing the working hypotheses. Moreover, the uni-
formity on the spatial distribution of sources, as required by FLG models, is also tested. The
crucial difference with the Hubble diagram is that the eq. (2.16) does not have necessarely
a solution if the data do not fulfill the required properties that are induced by the working
hypotheses.

The null correlation method could have being introduced solely as a search for the roots
of the statistics defined in eq. (2.16) but the presentation in terms of weighted probabilities
allows to highlight a property akin to a lessening of the statistical information contained in
the sample. This one can be quantified as a (sample) number deficit NL defined by means
of the Shannon’s entropy H (w) as follows

1
L=1+FHw), Hw= k_zlewk In wy (2.30)

2.8 Simulations techniques

Let us focus on the case of a sample complete up to an apparent magnitude my;,, that are
uniformly distributed in space and with a luminosity function f(M), in a given cosmological
model (2, ). It is clear that to simulate such a sample {(z, my)},_q x with a trial and
error method, that keeps those (V}, M}) in agreement with selection effecté, is extremely time
consuming. In order to avoid such a difficulty, one needs to proceed in a different way.
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4.4 Inferences on cosmological expansion based on QSOs

The probability density is given in eq. (2.9), the selection effects in observation are solely
described by a cutoff in apparent magnitude, as described by eq.(2.23). Hence, the cumulative
distribution function'? reads

1 T
G = 5 / Vs (M) (M)A (231)

For each object, two random values g and vy are generated, both uniformly distributed
within the interval [0, 1]. By inversing the functions given in egs. (2.31) and (2.5), one obtains
successively My = G~ (gx), Vi = ve Vinax(My), zx = V"1 (Vi) and my = My + ¢(21).

2.9 The methodology when using the null correlation method

Since only the selection effects allowed in the data are the ones on the apparent magnitude,
one has to verify that there is no of other kinds, and in particular those on the redshift. For
this purpose, a visual inspection on the data distribution in the FS diagram enables us to
check whether anomalies at constant V' are present. At this point, let us emphasize that
the overlapping of emission lines of the spectrum of a source with the observed wavelength
window of the filter interprets as a selection effect on the apparent magnitude and not on
redshift.

Among the roots of eq. 2.16, that define the null correlation curve, one can refine the
estimate of cosmological parameters if (and only if) the sample is complete up to a given
limiting apparent magnitude. Indeed, the most likely values that account for the data is the
one for which the spatial distribution of (the observed) sources appears to be the most uniform
in the comoving space. The completeness criteria of the data can be checked by means of
the statistic given in eq. (2.20), which provides us with an estimate of the selection function
¢(m); it must coincide with a Heaviside step function at a threshold myy,. In general, the
samples do not show a sharp cutoff at the (apparent) threshold my;, but a smoother one. In
that case, a brighter limiting magnitude mj,_ < mjiy, has to be chosen to perform the V/Vijax
test. It is clear that such a step diminishes the sample size but to the benefit of an unbiased
estimation of the Kolmogorov-Smirnov test on the uniformity of the spatial distribution of
sources. If necessary, other subsampling criteria can be chosen, to test the distribution on
specific part of the FS-diagram, as described in section 2.6.

3 Application to QSOs samples

3.1 The Sloan Digital Sky Survey (SDSS) data

The data releases of Sloan Digital Sky Survey (SDSS) (http://www.sdss.org/) contain a large
number of QSOs data, whose the size and accuracy of samples increase with their release
numbers. However, we have been forced to limit our investigation on the first ones, because
of the required statistical properties for our investigation.

For example, the FS diagram of DR9-BOSS on figure 2 shows that the SDSS-III samples
suffer from an inhomogeneous parcelling due to data processing. For a homogenous sample,
one should have a regular distribution of dots situated at the left side of a curve (or below
it) representing the limiting apparent magnitude. Such a border is present, although its
sharpness is diminished because of an additional and sparse distribution of dots beyond it.

131f ¢ cannot not be identified to a Heaviside step function then Viyay in eq. (2.31) has to be substituted by

Vimax as defined in the footnote of sec. 2.6.
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Figure 2. The FS diagram for the SDSS-III:DR9 sample by assuming €2, = 0.3 and A, = 0.7.

Name N Az Ai-mag ref
EDR | 3,814 [0.15,5.03] | [15.16,20.82] |
DRI | 16,713 | [0.08,5.41] | [15.15,21.79] | [3]
DR3 | 46,420 | [0.078,5.414] | [15.10,21.78] | [5]
DR7 | 105,783 | [0.065,5.461] | [14.86,22.36] |

Table 1. QSOs samples

At the left side, and parrallel to it, two similar structures are also present. They probably
account for surveys with brighter limiting magnitudes. Such features characterize surveys at
different limiting apparent magnitudes. They can be treated globally by the null correlation
technique, as long as selection effects on redshift are absent, which is not the case. Indeed,
four prominent structures are present, the zones of higher density of dots with horizontal
borders, and a sparse region (with a rhombus shape) at the bottom of the distribution, that
characterize, as a matter of fact, selection effects on redshift. One of the reasons of such an
inhomogeneity is that these QSOs have been selected with the aim to measure the BAO scale
in the Lyman-« forest at redshift ~ 2.5. Most of them span a range of redshift: 2.5 < z <
3.5 [9].

Consequently, our choice has dropped to the SDSS Legacy Survey (i.e., SDSS-I and
SDSS-1I) which provides us with an “uniform and well-calibrated map of the Universe”. These
samples are described in table 1, characterized by their (number) size N and their range on
the redshift Az and the ¢ magnitude Ai-mag.

Because of successive improvements of the data processing, these samples were made
in different ways. For example, the differences between the DR1 and DR3 samples are due
to several modifications in the selection criteria of candidates (on the efficiency of the S/N
ratio to determine the redshift, on the constraint of the line width of the spectrum, new
techniques are used for the photometric measurement and the data imaging.). Although it
is recommended not to use previous versions to DR3 (see, http://classic.sdss.org/drl/), we
have performed the null correlation test to each of these samples, what enabled us to test
the stability of this method versus measurement errors (and improvements in measurement).
The K-correction term for the i-band used herein is described in [5, 6], it takes into account
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1 2 4 5

3
Redshift z

Figure 3. The K-correction of the SDSS-DR3 sample in the i-band, including both the emission-line
and continuum components, normalized at z = 2 with a fixed spectral index o, = —0.5.

2.0

No Big Bang

Figure 4. The null correlation curves in the Q,-\, diagram corresponding to samples : EDR, DR1,
DR3 and DR7. They provide us with the candidate values of cosmological parameters which agree
with the working hypotheses. The spatially closed cosmological models x, > 0 are located above the
straight line, that corresponds to k., = 0, where the standard solution is represented by a yellow dot.
The bottom curve corresponds to the EDR sample, these models are in complete disagreement with
those derived from the other samples.

the continuum and the emission lines, see figure 3.

3.2 The null correlation test

The null correlation test has been applied to these four samples and the results are shown in
the Q.-Ao diagram, see figure 4. Each sample provides us with a null correlation curve that
corresponds to candidate values in agreement with the working hypotheses.

The obvious result is that the candidate values obtained with the EDR sample are in
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complete disagreement with those of other samples. As a matter of fact, “..., the original
version of the quasar target selection algorithm used in the EDR data did a particularly poor
job of selecting quasars with redshifts close to z = 3.5. (loc. cit., see [6]).

Hence, let us focus on the other null correlation curves. They slightly differ from each
other, which is probably due to improved estimates of data and of different sample sizes.
These candidate values lie rather above a straight line defined by (Q, ~ 0.04, \; ~ 1.1) and
(Q =~ 0.5, A6 =~ 1.5), whose slope =~ 0.52 indicates that estimates of A\, are twice as much
accurated as those of {2,. The unsettling result is that A\, > 1.1 for all these candidate values,
what does not match with the standard value of A, =~ 0.7; furthermore one obtains A, &~ 1.3
by choosing Q) ~ 0.3.

We use the FS diagram of the samples DR3 and DRY for evaluating the relevance of
such a result, see figure 5. As representant, among these candidate models, we choose the one
with the smallest scalar curvature (2, = 0.076, Ao = 1.211) (left panels), since it is common
to these samples; their information deficit is £ = 18.10~* for DR3 and £ = 17.10~* for
DR7, see eq. (2.30). These diagrams are compared to their versions with (2, = 0.3, A\ = 0.7)
(right panels); their information deficit is £ = 43.107* for DR3 and £ = 50.10~* for DRT.
For purposes of the analysis, the graduation on the ordinate is translated into redshift on
the right hand side axis. The curves, they correspond to the apparent i-magnitudes m =
{15,19.1,20.5,21.78}, give ranges on the magnitude. Let us keep in mind that, while the
distribution along the vertical axis is expected to be uniform for a complete sample up to a
limiting apparent magnitude, the presence of selection effects in apparent magnitude alters
this characteristics, in addition of possible horizontal alterations due to selection effects by
the redshift. With figure 2, one can note that the homogeneity of these samples has improved
with respect to that of DR9 sample.

e 'S diagram of DR3 sample :

On the left panel, let us identify first the obvious structures which are produced by
selection effects, they appear as discontinuities in the distribution of dots. It is clear
that the low density region (hole) in the range 19.1 < m < 20.5 and 2.7 < z < 3.1 that
extends (slightly) at brighter magnitudes at z &~ 3.38, is due to selection effects on the
redshift. This attests of difficulties on identifying QSOs in the data processing. Mainly
because the colors of quasars and the stars of their host galaxies are similar at these
redshifts.

Moreover, the distribution, which extends up to magnitude of m = 21.78 is very sparse
down to ¢-magnitude m = 20.5 that confines more clearly the sample. A similar feature
is also present at i-magnitude m ~ 19 characterizing a distinct survey. The region within
15 < m < 19.1 could be splitted in two parts by a curve at constant i-magnitude, so
to detach a sparse region of nearby sources. These low density regions on either side of
the distribution are due to selection effects on apparent magnitude, while it is not the
case for the hole.

Hence, because of this inconsistency with the working hypothesis, these results can be
questioned, unless the hole is (interpreted as) a statistical fluctuation.

On the right panel, for an unbiased comparison with the left panel, the analysis of

structures has to take in account their relative sizes with respect to the extend of the

sample. With this in mind, the most prominent differences are that the size of the hole
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Figure 5. The FS diagram for the DR3 sample (upper panels) and the DR7 sample (bottom panels),
by assuming (2, = 0.076, A, = 1.211) (left panels) and (Q, = 0.3, A\, = 0.7) (right panels). The curves
correspond to the apparent i-magnitudes 15 (yellow), 19.1 (blue), 20.5 (green) and 21.78 (black). The
graduation on the ordinate is translated into redshift on the right hand side axis.

has diminished and the zone where bright QSOs are missing at low redshift has enlarged
significantly.

e F'S diagram of DR7 sample :
89
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Figure 6. The bottom part of the FS diagram of a complete sample of 46,420 sources up to i-
magnitue my, = 21, that was simulated by assuming (Q, = 0.132, A, = 1.275) with a Gaussian
luminosity function of absolute meam i-magnitue M, = —25 and standard deviation o = 1.2.

On the left panel, compared to DR3, the distribution of dots is much more dense (since
they are twice as much numerous and cover almost the same zone) and the void has
been almost filled. At the right side of the curve m = 20.5, the sample shows a fainter
limiting magnitude (well defined at lower redshift). Its number density decreases with
z and vanishes at z = 3.2, which characterizes a selection effect on the redshift. An
additional and sparse distribution is also present, that extends beyond m = 21.78.

On the right panel, the spatial distribution of bright QSOs appears less uniform com-
pared to the the left panel, and the number of missing objects at low redshifts increases
(statistically), which stands for as a significant issue.

3.3 Refining the cosmological parameter’s estimates

The candidates models as obtained from DR3 and DR7 samples are not so differents from
each other, that is the related null correlation curves coincide almost, see figure 4. With the
aim to refine the cosmological parameter’s estimates by mean of the V/Vj.x test we need
complete subsamples.

The only comparison between the FS diagrams of DR3 and DR7 samples with a simu-
lation on figure 6 shows that they are not complete, what is the required statistical property
which enable us to refine these estimates of cosmological parameters by means of the V/Vijax
test.

We start by applying the test to subsamples using the corresponding NCC. The results

for each subsample are given as follows:
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4

e 18.65 <m <19.1, 0.04<2z<245:Q,=0.132,\, = 1.275, at 35% significance level.

e 1865 <m<19.1, 18<2<24:0Q,=0.076,\, = 1.211, at 70% significance level.

Conclusion

The application of the null correlation and V/V,,4, tests to QSO samples of the SDSS survey
allowed us to discriminate the candidates values for the cosmological parameters that agree
with observations. We found a model with a positive scalar curvature with weak presence of
dark matter.
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Application to supernovae type Ia sample
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5.1 Introduction

Historical records of supernovae have been found over the past two thousand
years. The first SN in our own galaxy was observed and recorded by the Chi-
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nese astronomers, dating back to 7 December 185 AD with a visibility of 20
months [Clark et al 1977]. This event was discovered by several missions
(China, Japan, Korea, Arab and Europe) and followed by a three-year obser-
vation and recorder in 1006 AD as the earlier high luminous SN. The Crab
Nebula is the remains of a SN which was occurred in AD 1054 and confirmed
in 1968 to be associated with a pulsar, which is interesting to explain the en-
ergetics and structure of the whole supernovae remnant [Green et al 2003].
In this chapter, we describe a homogeneous class of supernova (type Ia) with
a standardization method. A new modelling of supernova sample is detailed
in Sectf5.2.3] Sect5.2.4] presents a detailed description of the selection effects.
The calibration of events is given in Sect5.2.5] Sect[5.3] shows an adaptation
of the null correlation test to the type-Ia SN. The application of model to real
data is presented in Sect[5.4]

5.2 Type Ia Supernovae as standard candles

The supernova (SN) is one of the most luminous objects in the universe dis-
covered until today. Tt is the result of the explosion of massive stars at the end
of its life. Its luminosity can match the one of its host galaxy in some cases,
and they are observed at cosmological distances. The SNe are classified into
groups, one of which can be used as standard candles for probing cosmological
distances with high accuracy.

The spectral and photometric studies of SN points out two categories
(Minkowski 1940) according to their properties, mainly based on the presence
(type II) or not (type I) of Hydrogen elements in their spectra. The spectrum,
is related to the photosphere phase (a few instants after explosion). The fast
expansion of its envelope makes the medium opaque to radiation, causing the
absorption lines to appear in the spectrum. Later, during the nebular phase
(After a few weeks of growth) emission lines arise in the spectrum since the
medium becomes transparent to radiation. For type I, the strong absorption
feature at wavelength ~ 6150 A due to silicon II (Sill) characterizes the type
Ta. In absence of Sill, the SN is classified depending on the presence/absence
of Helium He element as a type Ib/Ic. This classification is summarized in
Figh.1]

The photometric classification is based on the comparison of the evolution
of luminosity with time i.e. the light curve of the SN. Fig[5.2] shows, the light
curves of type Il SNe which decline slowly in the B band. Two additional
classes are distinguished from the type IIn, the SN type II-L that displays a
linear light-curve, and the SN type II-P which displays a plateau light-curve.
However, the SN type Ib decreases faster than the type II, it represents a sim-
ilar light-curve to that of SN Ia. This last group is the brightest among the
other types of SNe. According to [Cappellaro et al 1999, the SN type Ib, Ic,
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Figure 5.1: The supernova classification tree.
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Figure 5.2: The light curves of different types of SNe in the blue band: the

type Ia, Ib, TI-L, T1-P, and SN 1987A. The Curve of the SN Ta is brighter than
all other SN types. Figure courtesy: [Wheeler 1990).

and IT are the result of the explosion of massive stars in the framework of their
core-collapse. These types are formed in the arms of spiral galaxies and they
never had the possibility to be in the elliptical galaxies, where the rate of old
stars is high. Contrastingly, the type-la SN can be in any type of galaxy, as
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they are the result of the thermonuclear explosions of white dwarfs (Figs[5.3]
& . The low-mass stars (< SMQ)F_:] evolve as their hydrogen combusts and
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Figure 5.3: The supernova spectral Types. The gravitational supernovae is
the progenitor of the supernovae type Ib, Ic and II. The progenitor of SN type
Ia is a thermonuclear explosion of white dwarfs. Figure courtesy: Supernova
Cosmology Project (SCP).

transforms into Helium, which is explodes with increasing the temperature
to transform into carbon and oxygen. The most well-known model that de-
scribes the progenitor of the type-la SN as a low-mass star is that the one
which becomes a white dwarf at the end of its life. This latter is accompanied
with another star as a binary partner system (Fig. accreting matter on the
white dwarf, and then increasing its mass until reaching the Chandrasekhar
mass limit (=~ 1.4M). Consequently, the white dwarf explodes to produce the

L M is the solar mass
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5.2 Type [a Supernovae as standard candles

type-la supernovae. The main characteristic of this class is the homogeneity
of the SN spectra as shown in Figl5.5]

-
w

AB Magnitude + Constant
>
-l_rT T 1 71 I LI B I | I L L

17 U

4000 6000 8000 10000
Rest Wavelength (A)

Figure 5.4: An artistic image of a Figure 5.5: Spectra of three Type

white dwarf and a red geant star. Fig-  Ia supernovae, SN 1987D, SN 1987N,

ure courtesy: STFC/David Hardy. and SN 1990N, about one week af-
ter the maximum of their LC. Figure
courtesy: [A. V. Filippenko 1997]

5.2.1 The lightcurve of type-Ia SN

The light curve (LC) represents the temporal evolution of the luminosity during
the lifetime of SN. For objects that change their brightness, the L.C is a major
source of information and a valuable tool for studying these events. Fig[5.6]
shows the SN 1998bu with almost similar or different LC in optical bands
(referring to Bessel bands); e.g., note that two “bumps” appear in the I and R
bands with a delay of the second bump by 21 to 30 days from the maximum
in the B band. It is worth mentioning that among all types of SN, the LC
in the B band of the type-Ta SN is almost the same for all of them (Figf5.7
top panel). This feature makes them the most homogeneous family among the
SN types with respect to LC. The decline of a SN Ia light curves after the
maximum of luminosity correlates with the radioactive decay of °Ni to *°Co
for three to four weeks at the rate of 0.11mag.day~' and with the radioactive
decay *°Co to °Fe at the rate of 0.01mag.day~! more than one month.

5.2.2 Standardisation of type-Ia SN

In view to determine cosmological parameters, it is generally admitted that the
LC of type-Ia SNe are good candidates to be used as standard candles, because
the dispersion of luminosity at the maximum seems to be small, which is an
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Figure 5.6: UBVRI light curves for SN 1998bu (Figure courtesy: [N. B.
Suntzeff 1999)|)

obvious improvement compared to QSOs. |M. M. Phillips 1993|; |[Hamuy et
al. 1995], [1996a]; [Riess et al 1995|, [1996a]; have shown up a correlation
between the absolute magnitude, Mpg, at the maximum of luminosity and the
decline rate of luminosity after 15 days, noted Am; (Fig.. This correla-
tion enables one to estimate the absolute magnitude and hence the distance
modulus. Several models have been applied to standardize their LCs in or-
der to reduce the dispersion at the maximum of luminosity in the B band.
Among these models, one has the MLCS (Multicolor Light Curve Shape), the
MLCS2k2, the Stretch (stretching of the LC), the SiFTO, the SALT (Spectral
Adaptive Lightcurve Template) and the SALT2 models which are the most
widely used. These models standardize the SNe with: the apparent magni-
tude at maximum of luminosity (free from the k-correction), the (B-V) color
at this maximum of luminosity and a shape parameter for describing the LC.

A brief description of SALT2 Model

The SALT2 model (for the second version of Spectral Adaptive Lightcurve
Template) is an empirical model that determines the flux of type-Ia SNe as a
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Figure 5.7: Light curve standard obtained. The B-band light-curves for a
low-redshift SNe Ia from the Calan-Tololo survey (Figure courtesy: Hamuy et

al. [1996a])

function of p (phase) and A (wavelenghth), where p is defined as follows:

tobs *b
= 27 008 5.1
p 1+ 2 ( )

*

where t,,s stands for the date of observation and ¢}, . at maximum of lumi-
nosity in “rest frame”. Similarly, t* stands as the emission date at maximum
of luminosity. This model is parameterized by: the normalization factor, the
shape and the color parameters. It is based on modelling the spectral energy
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Figure 5.8: Correlation between the absolute magnitude with the decline rate
Amys of the light-curve for low-redshift SN Ia from the Calan-Tololo survey
(Figure courtesy: Hamuy et al. [1996a])

distribution:
FSN(p7 )\) = Zg X [S(](p, )\) + xlSl(p, )\) + ] X G[CXCL(/\)] (52)

where ¢ is the global normalization in flux, z; is the shape parameter (equiv-
alent to (s - 1) factor in Stretch method of standardization) which is used as
an estimator of the absolute magnitude, and ¢ the color of SN. The S, are the
spectral sequences: Sy stands for the mean spectral sequence, S; stands for the
first order deviation around Sy, etc...; B-splines functions are used to define
them. CL stands for the phase-independent color-law. The SALT2 output
provides us with : the apparent magnitude in B band free from (foreground)
alterations m} = —2.5log,,(x¢) + Z P, the date at maximum of luminosity t},.,
the difference of color between B and V bands and the shape parameter x;
|Guy et al 2010|, [Betoule, M. et al 2014].

5.2.3 Modelling of the Supernova event

The SN Ta event translates to a powerful flash whose intrinsic luminosity varies
with time. The light curve is characterized by the date ¢* at which the lumi-
nosity reaches its maximum and by the corresponding absolute magnitude M*.
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The evolution of the absolute magnitude with time is parametrized by a shape
parameter x1, that acts for a dilation/contraction of a pattern curve. The
lifetime of SN is shown to be linearly correlated with M* (Fig. describes
the apparent correlation between the absolute Magnitude and the decline rate
Am15):

M* = —Qxry + MO (53)

where M, stands for the absolute magnitude of the pattern curve at maximum
luminosity and @ > 0. The absolute magnitude at date t reads:

M(t) = —2.5logyo(F(t: 1", M*, 1)/ Fy) (5.4)

where Fj stands for the flux of the reference star and F'(¢;t*, M*, ;1) the in-
trinsic flux; it is described by SALT2 model in the reference frame of the
supernova.

The evolution of the apparent magnitude with time is given by the following:

m(tops) = M(t) + ((2) (5.5)
The absolute and the apparent magnitude at maximum luminosity satisfy:
m* = M"+((2) (5.6)

The necessary property which is required for a SN to be abservable is that
its world-line intercepts the observer’s past light cone, as described in Figs|2.4
and B9l

Herein, the SN event is defined by (M*,t*, 21, V') with a probability density
given by:

dPy, = g(M*, z1)dM™ day dt* dV (5.7)

which describes a uniform distribution as much in (comoving) space as in
(cosmic) time; where V' stands for the comoving volume of a sphere centered
at the observer location, and the comoving distance of the source as radius.
Subsequently, we will limit ourselves to considering the random variable t* as
a parameter required in the SALT?2 procedure, as usual.

5.2.4 Sampling the light curve of type-Ia SN and selec-
tion effects

Although the SNe are known to be used as standard candles, they could be

affected by large uncertainties due to the limitations in SN observation. Sim-

ilarly to QSOs, the selection effects must be taken into account in deriving
inferences, e.g. the one responsible of the Malmquist bias. However, in this
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Figure 5.9: Left: a schematic of intrinsic light curve of a SN. Right: the
interception of the world-line of the SN with the past light cone.

respect SN differs from QSO, mainly because it is not perenial.

SN candidate are firstly identified among variable light sources by comparing
two images of the same field taken at different times. Then, spectroscopic
monitoring allows to identify the candidate and determine their redshifts. Fi-
nally, if it turns out to be a type-Ia SN (based on the presence of identified
absorption lines), a photometric monitoring is performed, that privides us with
a light curve. The drawback in searching of type-Ia SNe (or any non-perennial
object) is the loss of many objects due to the bad weather conditions or a
delay in spectroscopic and photometric observations. In the aim to increase
the time and the field of observation, the rolling search method (developed in
the framework of the SuperNova Legacy Survey (SNLS) project) is followed
to observe this type of events. This method consists of four observation fields
during several regular time intervals and in different filters. This technique
enables one to discover and monitor several SNe simultaneously in four bands
(¢', ', ', 2'); it is used in SDSS, referring to the Smith catalog (2002) and
based on the AB system of magnituddﬂ Using multiple bands can cover a
wide wavelength range, which makes possible the observation of SN Ia at high
redshifts. An other advantage of using several filters is that the flux in the
reference of the SN in the B band can be estimated by an interpolation from
the color of the SN measured in two other bands (at least).

Each field is observed during 3-4 days and the successive images are com-
pared by subtracting their pixels [Pritchet 2004|. In the case of a significant

2Which can be converted to Johnson-Cousins bands system (B, V, R, I) referring to the
Landolt catalog (1992) based on the Vega system of magnitude.
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difference between the pixels, a photometric measurement is recorded. This
technique allows to obtain a good sampling of the light curve. In ideal cases, a
SN with lifetime ~ 80 days (the average for the SNe lifetime) might have ~ 20
photometric measurements, which provides us with an accurate fit of the SN
light curve. For instance, Figl5.10] shows the SN SNLS-04D3gx light curve in
the ¢ band sampled with 17 photometric measurements. The sampling of SN
curves needs photometric measurements in particular phases p, as described
in |Guy et al 2010]. Namely, the SNe are selected according to the following
requirements:

e they must show at least:

1. four measurements at different epochs ranging within -10 < p <
+35 days.

2. one measurement in early epoch ranging within -10 < p < +5 days.
3. one measurement ranging within +5 < p < 420 days.

4. two bands, with one measurement or more in the range -8 < p <
+10 days to ensure a genuine estimation of luminosity peak and
color.

A SN with a light curve poorly sampled is discarded from the sample. Accord-
ing to |Guy et al 2010, this effect is not significant for SNLS sample (SNe
with high redshifts), while the SN SDSS-IT sample (SNe with low redshifts) is
affected significantly [Betoule, M. et al 2014].

Figl5.1Tshows light curves that help to understand the standardization method,
see [S. Perlmutter et al. 1999|. They are described by referring to a pattern
curve (dashed, the master light curve) with a stretch s,, a color ¢, and an
absolute magnitude at maximum luminosity M,. The SNe with light curves
lying above the master curve are characterized by : s > s, and ¢ < ¢,. They
are brighter (a long lifetime), showing a slow decreases and bluer (fz > fv )]
Conversely, the ones below the master curve are characterized by : s < s, and
¢ > ¢,. They are fainter (a short lifetime), showing a fast decreases and less
bluer (fp < fv). We note that the color of SN at maximum of its luminosity
is more negative (resp., positive) for the SNe with light curves above (resp.,
below) the one of the master curve.

The opportunity to detect a supernova requires that the event lies in the
past light cone of the observer and that its apparent luminosity is brighter
than a given threshold fi;,,, let my, be the corresponding limiting apparent
magnitude that characterizes a device, see the red line in Fig/5.11} Because the
brighter the object the longer the lifetime, as a first approximation, a single

3¢c=B-V= —2.510g10(;—§)
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selection criteria on the magnitude accounts for both. Moreover, the SN light
curve requires to show a sufficient time to fulfill the selection criteria based on
the phase. Hence, the threshold of selection has to be brighter than mg,,.

The light curve must show a significant gap between my;,, and m*, and a
small Am; to have a good sampling in accordance with the detection technique
described above. With this in mind, we might idealize a "threshold" light
curve in term of mj;, and Amys i, which fulfills the aforementioned criteria
(see Figl5.12)). It is clear that a selection on m*, which takes into account the
lifetime, also describes a Malmquist bias (see Fig[5.13). Then, the probability
density of observed event reads:

x ¢p(m*)d Py, (5.8)

where ¢p(m*) stands for a selection function on the peak of apparent mag-
nitude in the B band. Although such a representation of the selection effects
is the most commonly accepted, it is clear that an improvement taking into
account the lifetime of the events is necessary. However, because the longer
the lifetime the brighter the supernova, the correction to this representation
can be expected to be small. A work is in progress to enable us to ensure this
quantitatively.

The color stands for a correction to decrease the scatter of the distribution of
the absolute magnitude at maximum luminosity M*. The corrected absolute
magnitude M satisfies the relation:

M*=M;—pc; B>0 (5.9)

which makes brighter the object the bluer. Hence, according to Eql5.8| the
probability density of observed SN transforms:

x ¢p(m*) ga(c;0,0.)dcd Py, (5.10)

5.2.5 Calibration statistics

The calibration of the Brighter-Slower (BS) relation assumed as a linear corre-
lation between M™* and z; as described by the probability density that reads:

o< g(M*, z1)dM* dxy (5.11)
We assume that the error in estimating M* from x4, as given by:
M*=ax;+b+e€ (5.12)

is a a random variable with a Gaussian distribution function gg(€;0,0.), see
Figl5.14] The estimation of parameters a and b (calibration), can be performed
either :
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Figure 5.10: Light curve of SN SNLS-04D3gx. This figure shows a light
curve well sampled by observations which help to characterize its parameters
(2o, th,, x1, ¢) without biases. Figure courtesy: |Astier P. et al, 2006]

e with the direct brighter-slower relation (DBS):
g(M*, 2)dM* dzy ~ gy (21)day ga(e; 0, 0PB%)de (5.13)
where :

M* = aPB5z, + bPBS 1€ (5.14)

e or with the indirect brighter-slower relation (IBS):

g(M*,z))dM* dxy ~ g, (M*)AM* go(e; 0, 0/8%)de (5.15)

€

where :
x1 = a'PIM* + 185 ¢ (5.16)

The estimates of corresponding parameters are denoted aP?P9 pPBS oDPBS,

aIBS) bIBS and O'GIBS.

As usual, we proceed with the maximum likelihood (ML) technique as de-
scribed in |Triay et al 1994). With a nearby objects used for calibration, we
can safely assume a uniform diestribution in an euclidian space. Hence, the

probability density that describes the calibration sample reads:
o ¢p(m*)g(M*, x1)dM* dxy ga(c; 0, 0. )dedt* €7°d¢ (5.17)
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Figure 5.11: A representative figure of the SN Ia light curves in the aim to
explain the selection effects. The dashed curve represents the master curve
where the entire light curves must coincide. The highest blue curve represents
the light curve of the SN Ia brighter, broader, slower and bluer than the master
curve. The cyan curve (the lowest) represents the light curve of the SN Ia
fainter, narrower, faster and less bluer than the master curve. The ¢; and ¢, are
two observation dates for which a candidate of SN is detected by subtracting
the images taken at these dates.

It is not observed at 1

where v = ?’I"T(w). Depending on the method used, as given by Eqsf5.13| and

the sample can be described by the corresponding probability densities:

dP,,s = #gbg(m*)gM* (xl)dxlgc;(c;(),ac)dcdt*e%dc X ga(€;0,0.)de
Pu(oB)
(5.18)
dP,,s = ;gf)B(m*)gml(M*)dM* 96(¢;0,0.)dcdt” e7%d¢ x 9c(€;0,0,.)de
Pu(oB)
(5.19)
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Figure 5.12: The selection of SNe depends on two characteristics: the maxi-
mum of luminosity m* and the decline rate Am;5. The lowest light curve is
the threshold light curve characterized by mj;,,, and Amys j,, which are used as
the selection criteria. A SN with a decline rate Amys < Amys;, is observed
as long as its apparent magnitude at maximum luminosity m* < mj;,,.

where the normalization factor reads :

Pi(oB) = /gbg(a:vl + b+ O gar+(21)dz1€7°d¢ x dt*ga(c; 0, 0.)dega(e; 0, 0 )de
(5.20)

Pi(¢p) o / ¢p(axy + b+ )gar (21)dze7°d¢ (5.21)

The statistics of parameters a, b and o, are determined by following the
order of their rating as follows:

e for the DBS relation :

aPBS = —00“(5521’ M) (5.22)
O'm1
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Figure 5.13: Two SNe with the same intrinsic characteristics at different red-
shifts. Although the light curve of the SN of the highest redshift (z = 1.5) has
a small decline rate Am%5 < Amys i due to the dilation of time, this SN will
not be considered in the sample because it has not a sufficient time to have
a good sampling of its light curve. The selection of SN is done only if m* <
M0

oPBS = gpren/1 — p2(xy, M¥) (5.23)
where p(x1, M*) is the correlation coefficient.

bDBS <M*> DBS< > +"}/0_DBS (524)

e for the IBS relation:

IBS O,
= — 2
¢ Cov(xy, M*) (5:25)
VB = (M*) — a'B%(2) (5.26)
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It is worth to mention that the existence of the factor yoPB% ?in the estimation

of bPBS parameter stands for a bias correction. In the following, we use the
IBS calibration method, because it is more robust (with respect to selection
effects) than the DBS one [Triay et al 1994].

Because the calibration schema turns out to be identical to the correlation
(M, ¢), one obtains similar equations, but this step requires the DBS method
to estimate the absolute magnitude.

5.2.6 Simulation

We proceed similarly as for the simulations of quasars samples, see Sect 2.5.2]
but by including the color correction with the probability density given in
Eq5.10] and the IBS relation, given in Eq[5.16] Then, one has the following
probability density:

X ¢p(Mm*)ge, (M*)AM™ go(c; 0,0.)de ga(€; 0, oo )de dt™ AV (5.28)
where t* is required in the SALT2 routine. Here, we assume that ¢p reads
as a Heaviside function 6(mj;,,, —m*) characterizing complete samples up to a

limiting apparent magnitude mj; ..
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The apparent magnitude in rest-frame B band obtained with standardization
of SNe (free from the k-correction) is given by:

m, = M} + ((2) (5.29)
where
axy +b+ Be if M2 < 10100
M; = (5.30)
ary + b+ fc+ 9 otherwise
d stands for a correction that depends on the host stellar mass M . [Sul-

livan, M. et al 2010], [Conley et al 2011]. Its value has been evaluated in
[Betoule, M. et al 2014] 6 = —0.070 £ 0.023 by using the joint light-curve

analysis sample of 740 SNe. It is used in this investigation.

To simulate a sample free from (foreground) alterations, we used M} instead

of M*, then Eq}5.2§| reads:
x ¢pp(m*) f(M)AM} ga(c;0,0.)dedV (5.31)

where f(M}) is the distribution function of M. Let us define the cumulative
distribution function of the random variable M} as follows

G=G(x Pth / FOMH) Q(M?¥) dM* (5.32)
where
Po(ép) = / dp(m*) F(M)AM? go(c; 0,0.)dedV (5.33)
and
QM) = [ Blmi, = M2+ e = ()gale:0.0dedV (33)

For a given value of M}, the probability density of random variables ¢ and V
is defined as follows

1
dp) = T@(m}‘im — M> + Bc—((2))9c(c;0,0.)dedV (5.35)
P, (é8)
where
P (0n) = [ 00mi, = A+ Be— el 0o)deaV (5.36)
The cdf of the random variable ¢ reads
~ 1 x
C=C(x) = T/ O(my,, — M+ fc— ((2))9c(c;0,0.)dedV (5.37)
Pth (¢B> o0
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The simulation scheme consists in the following trials
M: —c—V (5.38)

Let us remind that G € [0, 1] and C' € [0, 1] are uniform random variables. Each
generated random values for G and C, provide M* = G~Y(G) and ¢ = C~1(C)
from the inverse functions, see EqJ5.32] Then, with M* = M* — ¢, one
simulates a value of the uniform random variable V €[0, Va0 (M*)], see Eq.
The redshift is given by z = Vfl(f/) and the apparent magnitude at maximum
of luminosity m} by Eq[5.29] The shape parameter x; is determined either with
Eq[5.16] for the calibration parameters a’?% and b5 or with Eq[5.14] for a?P%
and b”P% and a value € generated by a white noise, in accordance with working
hypotheses. Let us analyze two samples of 240 objects which are simulated
with the following characteristics and according the models of white noise as

described in the calibration processes:

Q=03 =0.7 0 =03, =0.7

om: = 0.3,0, = 0.085 onx = 0.3,0. = 0.085
(A):{ B=3.14,0.=0.09 (B):X B=3.14,0,=0.6

aPBS = —0.14,bPB% = —19 a'BS = —5 bIBS = —95

M}y = —19,mj;,, = 25.04 M} = —19,mj;,, = 25.04

(5.39)

As expected, the FS diagrams in Fig5.15show that the distributions are upper
bounded by the curve V.. (M™*), characterizing the limiting apparent magni-
tude mj;,,, uniformly distributed with respect to V', and Gaussian with respect
to M. It can be noted that brighter objects have a more blue color. The Hub-
ble diagrams as shown in Fig/5.16|provide us with a data distribution about the
expected relation for a standard candel with M} = —19 (color = 0). The se-
lection effect at the limiting apparent magnitude, mj;,, = 25.04, makes clearly
the bound of the distribution. Because of such a feature, a least square fitting
method requires horizontal estimates of distances to the expected curve. The
characteristics of two samples (A) and (B) are described in four dimensional
diagrams in Figs[5.17] [5.18 The likelihood of working hypotheses on the color
and the shape parameter can be easily checked on these diagrams. That are
the correlation between M} and ¢ (middle left panel), also between M* and
x1 (top right panel).
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5.3 The null correlation test on the supernova
sample

Hereafter, we adapt the null correlation approach to SN samples for determin-
ing the cosmological parameters. The SN event is described in the (M}, m})
frame by the following probability density:

x popp(m™) ga(c; 0,0.)de f(M)AM: dm

where p = p(z) ;T:L/* stands as a correlation function which depends on the

cosmological parameters, see Eqs[3.13] and The weighting factor is
defined by Eq[3.21], but where the distance modulus is given by:

* *
Cest =m, — MC

(5.40)

(5.41)

where the absolute magnitude M} being estimated by x; and c. This is the
major difference with the null correlation procedure above used with quasars.
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Figure 5.17: Four dimensional diagrams of characteristics of sample (A).

Hence, the weighting factor reads:

1
wy(2) = - 105% (5.42)

omy
where y is determined by minimizing the quantity :

_ maa{u,()} - minfu, ()}
B = max{w,(z)} +min{w,(z)} (5.43)

It must be noted that the weighted correlation coefficient reads:

D A — i (M — (M) (me = (me) (5.44)

— YN VEDIR

where M is given by Eq The statisctics of standard deviations oj;: and
om: are defined by:

N
N ;
S = T > we(M;y — (M) (5.45)
k=1
N

N
2, = 1 Zwk(mzk — (m}))? (5.46)
k
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Figure 5.18: Four dimensional diagrams of characteristics of sample (B).

Figl5.19) shows the NCCs of the two simulated samples described above. As
expected, the values of the cosmological parameters used to generate the sam-
ples are roots of the statistic I'(£2,, Ao) = 0. Tt will be seen that the differences
in shape (e.g., the curvature) of the NCCs corresponding to these samples,
obtained according to different calibrations, are of a random nature and do
not reflect the calibration type.

To analyse the dependence of the shape of the NCC on the cosmological model
and the sample characteristics, thirty samples are simulated similar to (B) but
with different limiting apparent magnitude (mj;,,, = 25.04, m},, = 23) and
different sample sizes N. To illustrate the results, we have chosen two repre-
sentative samples allowing us to describe them clearly, see Fig[5.20] The shape
depends strongly on the sample characteristics (left panel). It is a matter of
fact that the NCC retrieve the cosmological parameters used to simulate the
samples, which shows the robustness of this approach. The degeneracy of the
Hubble law is analyzed with two simulated samples having the same charac-
teristics of (B) as follows: the first one is defined by (2, = 0.3, Ao = 0.7)
and the second one is chosen on the NCC of the first sample, (2, = 0.4,
Ao = 1.03). The corresponding NCCs deviate quite slightly from each other
(right panel) which shows the need to use an additional statistic to disentangle
the true model. The accuracy on the determination of the cosmological pa-
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rameters which form the NCC can be estimated from statistical fluctuations
specific to ten randomly generated samples with the same characteristics of
(B), see Fig[.21] We can have a hint of this precision from a square that
covers the edges of this distribution of curves, and we obtain AQ, ~ 0.02 and
AN, =~ 0.125, that correspond roughly to 3o error.

[No Big Bang
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10 @..A) = (0.3, 0.7}
s 0.8
~<
0.6
0.4
0.2
0.0 + T T T T
0.0 0.2 0.4 0.6 0.8
Q.

Figure 5.19: The NCC corresponding to (A) sample (left) and the one corre-
sponding to (B) sample (right).
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Figure 5.20: Shape of the NCC with respect to the characteristics of sample
and cosmological model.

The sample is described, after the determination of the color, as follows:
dP o 0(my,, —m") f(M)dM:dV (5.47)

Hence, we applied the V/V,,.. test, see Sec The model used for the
simulation shows 97% significance level as it is shown in FigJ5.22|
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Figure 5.21: NCC of ten randomly generated samples with the same charac-
teristics in the standard cosmological model.
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Figure 5.22: Search for the minimum of KS test, D,,q., (top left) as a function
of Ao, and (bottom right) as a function of €2, on the NCC (top right).
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5.3.1 Luminosity function and Selection function

One of the advantages of the null correlation approach is to estimate the lu-
minosity function and the selection function. Since the color is determined
by means of SALT2 routine, the sample can be described by the weighted
probability density that reads:

dP, « fu(M)dAM ¢p(m*)dm (5.48)

Let us emphasize that ¢p(m=) stands as a correlation function of ¢ and m/},
since m* = m} — [Bc. The probability density functions reads as a product of
two independent functions, the color correction being performed

*

Fu(MF) oc f(MOI07EME . gp,(m} — Be) o< pp(m? — Be)105™  (5.49)

For large N, their cumulative distributions functions can be approximated by
the step-functions:

A

F (M¥) ~ E,(M) Zwké’ (M; — M) (5.50)

Qp (M) — fe) = @Bw (m; — pe) = Zw;ﬁ my — e — (mh, — Beg)) (5.51)

where 6 is the Heaviside step function. Therefore, the derivatives of F},(M*)
and @, (m} — Be) allow to estimate the luminosity function and the selection
function

Ai)Bw( 6C>
Am*

1:
*

A (M)
AM:

C

f(M?) x 105M¢ op(m;; — fe)

(5.52)
Figs[5.23] show the estimation of the functions f(M?) and ¢ (m’ —fSc)
with simulated sample in which f(M7) is a Gaussian function with an average
M:,=-19 and a standard deviation oy = 0.25. These statistics have been
validated by tens simulated samples, the figures show that the assumed profiles
of functions are retrieved, they have not been smoothed from statistical fluc-
tuations and those due to the numerical derivate method, human eyes being
more efficient estimators than automatic methods.

5.3.2 Precision and error

In order to estimate the error budget around the best model of the cosmological
parameters, we performed a simulation of 500 samples using the caracteristics
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Figure 5.24: Similar to Fig5.23]

listed in the (B) case of Eq.. Each sample consists of 500 SN events. Firstly,
we applied the null correlation test to the 500 samples and we determined
their NCCs, see Fig[5.25] In this figure, we can see the effect of the statistical
fluctuations for the determination of the true cosmological model. Then, we
performed the V/V,,., test which provided us a set of models considered as
best estimates at a given significance level (between 86% and 97%). Therefore,
we split the area of models in squares (10 x 10) and we determined the density
of points in each square. This allowed us to determine the probability density
function on the Q. and A, axes, see Figl5.26] As a result, we obtained: Q, =
0.3£0.03, \o = 0.7+ 0.01 at 68% confidence level.
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Figure 5.25: The NCCs of the 500 simulated samples.
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Figure 5.26: Set of the best candidates of the cosmological model with the
likelihood contours (top left). The probability density functions with respect
to Ao (top right) and with respect to €, (left bottom).
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5.4 Application to the JLA sample

It is generally acknowledged that the type-Ia SN stands for a good standard
candle to constrain the cosmological parameters. Nevertheless, the nowadays
catalogs suffer from their small size. The joint light-curve analysis (JLA)]
sample, published in [Betoule, M. et al 2014|, consists of 740 type-Ia SNe
confirmed spectroscopically. Tt includes two main samples: the SDSS-IT (374
SNe) and SNLS3 (239 SNe) samples on which the present analysis is performed,
see table [5.1]

5.4.1 Description of samples

The FS diagram of JLA sample is described in Fig[5.27 Let us remind that,
according to the working hypotheses, the V-distribution should be uniform
and limited by a curve related to a limiting apparent magnitude. It is clear
that this distribution does not meet this expectation. Indeed, the three points
at V' > 3 are significantly detached from the rest of the distribution. They
belong to the HST sample, which shows inhomogeneities in selecting objects,
see Figh.28] Hence it must be excluded, in accordance with the requirement
of the null correlation approach. The red distribution in the FS diagram of
JLA represents the SDSS-II sample (objects with redshift less than 0.4). This
concentration is due to the difference between the observation conditions with
other surveys, mainly the SNLS3 sample (the blue points), SDSS-II has a
limiting apparent magnitude smaller than the one used for SNLS3. For this
reason, we decided to use the subsamples of JLA separately. The FS diagram
of low-z sample is represented in Fig[5.29] where the threshold on apparent
magnitude appears obviously. The FS diagram of SDSS-II supernova sample
is shown in Fig[5.30], such a structure is detected in this diagram within the
volume interval [0, 0.04] for M} < —19. In this region, there is a concentration
of objects. Upper to this cloud of points, we find a rectangular white space.
This shows that the SDSS-II sample is not uniformly distributed in volume
axis and then it is not consistent with the working hypotheses.

Figl5.31] represents the FS diagram of SNLS3 sample which contains objects
up to high redshift (z = 1.06). This sample shows a uniform distribution and
does not suffer from significant selection effects, apart from the limitation in
apparent magnitude. Consequently, this sample is more suitable to be used in
our approach.

5.4.2 Results

The calibration of data is performed with respect to the steps detailed in
Sect5.2.5] Since the calibration method suggests to use a cosmological model

*http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
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Figure 5.27: The FS diagram of JLA sample build with the model: €, = 0.3,
Ao = 0.7. The red dots represent the SDSS-II data, and the blue ones represent
those of SNLS3. The rest is represented with multicolor.

with zero scalar curvature (we used Q, = 0.3, A\, = 0.7), it will be more reason-
able to use a sample at low redshift where the effect of cosmological parameters
can be ignored. For this, we carried out the calibration for the low-z sample
which contains objects up to z = 0.08. We obtained: a = —0.138, b = —19.043
and 8 = 2.641. The correlation between the variables for SNLS3 sample is
shown in Figh.32

Once the absolute magnitude is estimated by using EqJ5.30} the null corre-
lation test is applied on both SNLS3 and SDSS-II samples. The NCC was not
found for the latter. In accordance with the above analysis on the F'S diagram
(Fig., this sample turns out indeed not compatible with the working hy-

Name N Az AB-mag
JLA 740 | [0.01,1.29] | [14.14,26.04]
| SNLS3 | 239 | [0.12,1.06] | [19.75,25.03] |
SDSS-IT | 374 | [0.036,0.4] | [17.32,22.42]
low-z | 118 | [0.01,0.08] | [14.14,18.47]
HST 9 |1]0.84,1.29] | [24.36,26.04]

Table 5.1: SNe Ia samples.
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Figure 5.28: The FS diagram of HST sample build with the model (€2, = 0.3,
Ao = 0.7).
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Figure 5.32: Similar to Fig[5.17] for SNLS3 sample with calibration of stan-
dardization coefficients with respect to the low-z sample.

potheses. On the other hand, the NCC has been determined with the SNLS3
sample, as shown in Fig
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Figure 5.33: The null correlation curve in the A\, — €2, diagram corresponding
to SNLS3 sample.

This NCC is obviously coherent with the results obtained with the SDSS-II
QSO samples, which favor a cosmological model with positive curvature (see

FigF31).
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Figure 5.34: The null correlation curves in the (€2,, \;) diagram that corre-
spond to QSO samples and SNLS3 sample (the highest).

The application of the V/V},4, test on the NCC provides us with cosmo-
logical parameters estimates (2, = 0.11, A\, = 1.32) at 40% significance level
(Fig. It must be noted that because of the weak sample size, we have not
selected subsamples complete to a limiting apparent magnitude for perform-
ing properly the V/V,.. test, but we did to the entire sample, which reduces
inevitably the significance level.
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Figure 5.35: D,,q, with respect to A, (left) and €2, (right) as candidates given
by the NCC of SNLS3.
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Figs[5.36] show the FS diagrams for SDSS-IT and SNLS3 samples,by
assuming these values. It is clear that the SNLS3 sample appears more uni-
formly distributed in V-axis than the standard one, see Fig[5.31] with this
cosmological model (Q, = 0.3, A\, = 0.7).
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Figure 5.36: The FS diagram of SDSS-II sample build with the model (Q, =
0.11, A\, = 1.32).

By using the estimation method for the luminosity function and selection
function, described in Sect[5.3.1] we obtained almost a Gaussian luminosity
function for the SNLS3 sample, see Fig[5.3§| (left panel). The average and
standard deviation o+ is estimated using EqJ5.45] This yields an average
My~ —19.139 and oy ~ 0.19. Figl5.38| (right panel) shows that the selec-
tion function ¢p(m*) is compatible with a Heaviside function up to a mag-
nitude of 24 and decreases. This result gives evidence of the difficulties in
sampling the light curve of faint magnitude objects.

We determined the error on the the cosmological parameters by perfom-
ing a perturbation of the apparent magnitude with a Gaussian white noise
characterized by a standard deviation of 0.03. Therefore, we found the corre-
sponding NCCs and we applied the V/V,,,, test. We performed this process
for 200 times. The obtained candidates are determined within 35% and 43%
significance level. Figh.39 shows the results of the tests within their error in-
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Figure 5.37: The FS diagram of SNLS3 sample build with the model (2, =

0.11, A, = 1.32).
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Figure 5.38: Luminosity function (left panel) and selection function (right

panel) built with the model (€2, = 0
sample.

11, Ao = 1.32), corresponding to SNLS3

tervals with the probability density functions. This work brought the result:

2, =0.13£0.02, A, = 1.34 £0.01.
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Figure 5.39: Similar to Figl5.26]

5.5 Conclusion

We studied the type-la supernovae events to infer the cosmological parameters
by means of their light curves which are good candidates to be used as stan-
dard candles. Such a feature that provides us an estimation of the absolute
magnitude at maximum of luminosity thanks to its correlation with the shape
parameter of the light curve. This is an advantage over the QSO investigation.
The selection of SNe does not depend solely on the observation of the object
at a given date, but also on the sampling of the light curve, which makes the
selection of objects more difficult. For this purpose, we analyzed the selection
effect and we determined a selection criterion (m};,,) that is a characteristic of
a fictive limiting light curve.

In a first step, we simulated supernovae samples taking into account the cor-
relation between the absolute magnitude and the shape parameter. The null
correlation test was adapted to these samples.

In a second step, we studied the JLA sample which consists of 740 SNe. Un-
fortunately, we found that this sample is not consistent with our approach.
Therefore, we applied the null correlation test to its subsamples, SDDSS-II
and SNLS3. The SNLS3 sample provided a null correlation curve close to the
ones found by using the QSO samples. This result favors a model with positive
scalar curvature with a weak presence of dark matter.
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5.5 Conclusion

Important improvement can be considered to extend this work. An im-
provement in the description of the selection function that takes into account
the lifetime of events can provide more accurate results.

In the future, this work will be a strong initiative to study the Gamma
Ray Bursts (GRBs), the most powerful explosive events ever observed in the
Universe. The GRBs are extragalactic objects distributed in a wide redshift
range reaching z = 8.3 (GRB 090423, [Tanvir, N. R. et al 2009]). The study of
GRBs using the statistical approach proposed in this thesis will allow to infer
the cosmological information more accurately.
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Un siécle aprés le modéle d’univers de Friedmann-Lemaitre, les observa-
tions le confortent avec une constante cosmologique A et une composante de
matiére sombre (noire) sans pression (poussiére) et froide dominant celle bary-
onique, communément appelé Modéle “Lambda Cold Dark Matter” (ACDM)
ou encore modéle standard. I’accélération de I'expansion de 'Univers confir-
mée par le diagramme de Hubble des supernovae en 1998 impose une valeur
positive a la constante cosmologique.

Mes travaux de thése se focalisent sur I'estimation des valeurs de paramétres
cosmologiques du modéle standard en utilisant la technique de corrélation
nulle. Cette approche présente ’avantage d’étre plus robuste que les tech-
niques usuelles. En particulier, il n’est pas requis de préciser la fonction de
luminosité, celle-ci est déduite par cette méthode. De plus, elle prend en
compte le biais de Malmquist due a la limitation en magnitude apparent. Ce
travail a consisté aussi a modéliser des échantillons de I’événement quasar ainsi
que I'événement supernova, une extrapolation adaptée du premier. Ce qui a
permis de générer des échantillons conformes aux hypothéses des modéles, afin
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de valider les approches statistiques. Pour ce qui concerne les quasars, nous
avons utilisé le Sloan Digital Sky Survey (SDSS) d’une part, et pour les su-
pernovae le SuperNova Legacy Survey (SNLS) et SDSS-II d’autre part. Les
inférences statistiques de ces données ont conduit a un univers spatialement
fermé et une présence de matiére noire plus faible.

Dans le cadre d’une prochaine application de cette technique, elle pourra
étre utilisée pour contraindre les modéles d’énergie noire. De méme, 1'utilisation
des amas de galaxies observées grace a l'effet de Sunyaev Zel’dovich, servira
naturellement comme échantillon cosmologique. Une telle étude pourra con-
tribuer a apporter un élément de réponse a la validité du role supposé des neu-
trinos massifs dans la formation des amas dans I’ére primordiale de 1’Univers.

Mots Clés : Cosmologie, Matiére noire, Energie noire, parameétres cos-
mologiques, statistiques, simulation, quasars, supernovae, diagramme de Hub-

ble.

134



6.1 La cosmologie moderne

6.1 La cosmologie moderne

La cosmologie moderne est basé sur le principe cosmologique, qui favorise les
hypothéses de I’homogénéité et de l'isotropie de 'univers. En effet, le principe
copernicien a proposé qu’il n’y a pas de place privilégiée dans 'univers. En
outre, '’hypothése de l'isotropie de ce dernier signifie que chaque point de
I’Univers posséde des propriétés identiques dans des directions différentes, alors
"Univers semble homogéne (I'isotropie de chaque point implique 'homogénéité).
L’observation dans des différentes directions avec la méme angle solide ont
conduit & un résultat identique. Ceci implique que, a grande échelle, nous
pouvons décrire 'univers observable comme étant spatialement homogéne et
isotrope. Cela nous améne a la description de 'espace-temps avec la métrique
Friedmann-Lemaitre-Robertson-Walker (FLRW):

ds* = dt* — a*(t)do? (6.1)

ou t est le temps cosmique, a(t) est le paramétre d’expansion (sans dimension)
et do? est I’élément métrique de 'espace homogene tridimensionnel V3 (nommé
par, espace comobile).

Malgré I'inhomogénéité de I'Univers a petites échelles, la métrique FLRW
décrit 'espace-temps a grandes échelles, a partir de plus de 100 Mpc, ou les
hypothéses cosmologiques sont valables comme les a montré la distribution
des quasars a grande échelle avec le sondage Baryon Oscillation Spectroscopic
Survey (BOSS).

En 1948, Gamow, Alpher et Herman ont prédit le fond diffus cosmologique,
ils ont proposé un modéle de Big Bang chaud en supposant un univers primor-
dial composé uniquement de neutrons (qui se désintégrent ensuite en protons)

|[P. J. E. Peebles 2014], [V. Alpher 2014]. Dans ce modéle (connu sous le
nom de BBN pour Big Bang Nucleosynthesis), I'Univers primordial était com-
posé d’un plasma de photons, fermions et quarks extrémement chaud et dense.
L’Univers a ensuite montré une expansion ou sa densité, ainsi sa température
ont diminué, favorisant la nucléosynthése primitive, c’est-a-dire la formation
des premiers noyaux faibles (Hydrogéne, hélium, deutérium, lithium). Env-
iron 380 000 ans aprés le Big Bang, la température est devenue assez faible
(~ 3000°K) pour que les premiers atomes se forment a travers un processus
appelé recombinaison (bien que les atomes n’aient jamais été combinés avant).
a cette époque, les photons ont découplé de baryons et la lumiére a commencé
a se propager librement. Ce rayonnement, qui a été simplement refroidi pen-
dant I’évolution de 'univers, est connu sous le nom de fond diffus cosmologique
(CMB pour Cosmic Microwave Background en anglais). Les observations ont
confirmé le modéle BBN, une fois lorsque Penzias et Wilson ont détecté le
CMB. Ce rayonnement a presque un spectre de corps noir parfait avec une

135



Chapter 6 : Résumé en francais

température moyenne de 2.73°K produit par les photons de ’Univers primor-
dial. La température de CMB est isotrope et homogéne a des variations de
I'ordre de 1075, Et une autre fois par les mesures de ’'abondance des éléments
légers dans 'univers, en tant que deuxiéme preuve, qui sont en excellent accord
avec les prédictions de la nucléosynthése primordiale |G. Steigman 2004]. Cela
inclut 'abondance massive d’Hélium He4 prédite entre 23% et 30%, avec un
accord parfait avec les observations [C. A. Bertulani, et al. 2016|. Le contenu
de 'univers est considéré comme un fluide parfait qui se caractérise par les pro-
priétés du tenseur énergie-impulsion avec la pression P et la densité d’énergie
dans l'univers p. En effet, les équations de Friedmann nous permettent de
définir le polynome suivant:

P(a) = Moa* — koa® + Qoa +ao; P(1) =1 (6.2)

ou les coefficients sont des parameétres sans dimension, et ils sont défini
comme suivant:

1 8
Ao = gAH;{ Ko =K H 2 =X+ Qo+ao—1, Q= ngpon > ((6.3)
8 . .

o = Ew‘(;chT;*h-dHO—Q ~25107°h2? h=H,/(100kms™'Mpc ')6.4)
Ce sont des quantités qui se situent respectivement pour les valeurs actuelles
des versions réduites de la constante cosmologique A, la courbure scalaire K
de 'espace, la densité de la matiére, p étant la densité spécifique des particules
massives (Matiére noire incluse), G est la constante de Newton, la densité
d’énergie du rayonnement et la constante de Hubble.

Ces parametres satisfont la formule:

Ao — Fot+ Qo+, =1 (6.5)
Par la suite, nous estimons les paramétres: A\, et 2.

Ce que Hubble a mené a la découverte de sa loi célébre était la mesure de
la distance et de la vitesse des galaxies dans ’Univers proche. Il a découvert
que les galaxies semblaient reculer & une vitesse qui augmentait proportion-
nellement avec leur distance. Ce phénoméne se refléte dans La loi de Hubble:

v=H.d (6.6)

Avec les coordonnées comobile des galaxies, on peut définir la distance
comobile T entre 'observateur et la source de lumiére & redshift z:

7(z) = / L da (6.7)




6.1 La cosmologie moderne

La distance de luminosité, dy, est défini comme le rayon d'une sphére
centrée sur la source lumineuse dont son énergie lumineuse est distribué sur
la surface de cette sphére. La lumiére regue par unité de temps représente le
flux (la luminosité apparente) de cette source qui diminue avec le carré de la
distance, par la loi d’inverse carré :

L
4rd?

f (6.8)

ol L est la luminosité intrinséque de l'objet. Il s’avére que la distance de
luminosité est liée a la distance comobile et elle s’écrit comme suit:

sin(T)

NG if kg >0
dy = ; (1+2)4 7 if Ko = 0 (6.9)
sinh(7) if/€0<0

N

ouT = T\/W est la distance angulaire.

En astronomie, le systéme de magnitude est fréquemment utilisé pour décrire
la luminosité d'un objet. La magnitude est une échelle utilisée pour classer
les étoiles en fonction de leur luminosité. Les étoiles les plus brillantes ont la
plus faible amplitude pour lesquelles un degré de magnitude correspond & une
différence de 2,51 fois de luminosité. En utilisant la définition de la magnitude
apparente m, nous pouvons introduire la magnitude absolue M d’un objet.
Ce dernier est une mesure de la luminosité intrinséque de I'objet et est défini
comme il apparaitrait & un observateur hypothétique a une distance de 10pc.
La magnitude apparente d’un objet a redshift z est liée a la magnitude absolue

(suivant Eq[6.8)), on peut écrire:
m = M+ ((z) (6.10)

o ((z) est le module de distance qui dépend des paramétres cosmologiques.
La meilleure mesure ou estimation de cette derniére distance représente la
clé pour contraindre les perles de diagramme de Hubble, c.a.d les paramétres
cosmologiques A, et €2,.
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Figure 6.1: Le diagramme de Hubble des échantillons de Supernovae avec
SNLS, SDSS, HST et plusieurs sondages low-z. Figure tirée de [Betoule, M.
et al 2014|

6.2 Simulation d’échantillon de quasar

Conformément aux hypothéses de I’homogénéité et de l'isotropie de I'univers,
les objets dans I'espace sont censés d’étre uniformément répartis. Les quasars
(QSOs, pour Quasar stellar Objects en anglais) supposés d’étre des objets
permanents pour sonder la géométrie de 1'espace-temps. Ils sont caractérisés
intrinséquement d’une magnitude absolue M et une distance comobile 7 (le
rayon de volume V' centré a la position de 'observateur avec une répartition
uniforme dans ’espace comobile). Sila magnitude absolue M est répartie selon
la fonction de luminosité f(M), échantillon de QSO est décrit avec le produit
de deux densités de probabilité indépendantes comme suit:

APy, o f(M)dM.dV (6.11)

En supposant que les effets de sélection dépendent uniquement de la magnitude
apparente m, nous utilisons une fonction de sélection ¢(m) dans la densité
de probabilité dans le but de prendre en compte le processus de sélection en
observation. Par conséquent, la densité de probabilité des variables observables
sont décrites par:

¢(m)dPth
Pin(9)

ol P, est un facteur de normalisation. Nous définissons la fonction de ré-
partition en terme de la variable aléatoire de magnitude absolue M comme

APy = (6.12)
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I'intégrale de ’équation [6.12] La fonction de répartition est une variable aléa-
toire uniforme entre 0 et 1. L’échantillon simulé est réalisé par la recherche de
la solution de l'inverse de la fonction de répartition en déterminant les deux
quantités intrinséque, la magnitude absolue M et le volume V. Ensuite, le
redshift 2 est déterminé par la solution de I'inverse de Volume V~!. Enfin, la
magnitude apparente est calculé en utilisant 1'EqJ6.10]

Le diagramme de magnitude absolue-volume (M —V') est représenté comme
une dérivation du diagramme de Hubble. Alors que ce diagramme ne montre
pas les effets de sélection, le diagramme M — V' donne une illustration claire
des effets de sélection.

—-20.0 -19.5
Absolute magnitude M

Figure 6.2: Le diagramme magnitude absolue-volume de 1’échantillon simulé
présenté en rouge. La courbe bleue est le volume en fonction de la magnitude
absolue a une magnitude apparente limite donnée. Cet échantillon a été généré
avec un univers plat (€2,, A\, = 0.3,0.7). Une répartition uniforme apparait sur
I’axe vertical et une distribution gaussienne sur I’axe horizontal tel qu’ils ont
été choisi initialement dans la simulation.

Ces simulations nous permettent d’obtenir des échantillons de QSO simi-
laires aux données réelles, qui peuvent étre utilisés avec le test de corrélation
nulle.

6.3 La technique de corrélation nulle

La méthode statistique habituelle, au moyen de I’ajustement du moindre carré,
consiste & adapter les données de 1’échantillon observable au modéle théorique
supposé. En d’autres termes, les paramétres cosmologiques sont définis de
telle sorte que les données montrent la dispersion minimale du comportement
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théorique. Cependant, le biais de Malmquist empéche a estimer correctement
la magnitude d’une telle dispersion & moins qu’on connaisse la fonction de lu-
minosité et les effets de sélection de 1'observation.

Avec la technique de corrélation nulle, nous sommes exemptés de fournir
ces caractéristiques. Néanmoins, les effets de sélection ne doivent pas dépen-
dre du redshift mais uniquement de la magnitude apparente. Selon la formule
un échantillon simulé sous le modeéle (0, Ao = 0.3,0.7) est effectué, nous
avons utilisé une fonction de luminosité gaussienne. Cet échantillon a été util-
isé comme référence pour vérifier la performance de la technique statistique.

La technique de corrélation nulle est une méthode statistique robuste qui
n’exige pas la connaissance de la fonction de luminosité a priori. De plus,
cette technique est exempte du biais de Malmquist. La technique de corréla-
tion nulle nous permettre d’obtenir un ensemble de modéles qui sont considéré
comme les meilleurs candidats qui s’accordent avec les données.

[’échantillon observé est représenté dans le plan (M, m) par la densité de
probabilité suivante:

dPvmy = p(2)¢(m) f(M)dM.dm;  p(z) = o (6.13)

— om

ot p(z) est une fonction de corrélation entre M et m. Pour les vraies
valeurs des paramétres cosmologiques (2., Ao ), la corrélation entre les variables
aléatoires M et m disparaissent en divisant chaque événement par la fonction
de corrélation p(z). Cette corrélation est donnée par la covariance pondérée de
M et m, elle dépend des parameétres cosmologiques et s’écrit comme suivant:

T(Qo, Ao) = Y wi(My — (M))(my — (m)) (6.14)

k=1

ol wy, est le facteur de pondération qui est inversement proportionnel & p(z).
Les moyennes pondérées de M et m sont notées (M) et (m) respectivement,
elles sont définies par les formules suivantes:

(M) = wpM (6.15)
(m) = Zwkmk (6.16)

La solution de I’équation I'(2,, A) = 0 donne les valeurs candidates de €2, et
Ao, au moyen de la courbe de corrélation nulle dans le plan (9, Xo) (Figl6.3).
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Figure 6.3: La courbe de corrélation nulle dans le plan (€, ;). La courbe
retrouve le modéle cosmologiques utilisé pour effectuer la simulation de
I’échantillon.

L’exactitude de cette technique a été montré en étudiant les fluctuation
statistiques qui diminuent avec 'augmentation du nombre d’objets. D’autre
part, I’approche de corrélation nulle nous a permis de déterminer la fonction
de luminosité et la fonction de sélection.

Un deuxiéme test a été établi, au moyen du test V/V,,.., avec une petite
modification de la définition habituelle. Nous avons affiné les résultats en
appliquant ce test sur la courbe de corrélation nulle dans le but d’obtenir les
meilleurs candidats des parameétres cosmologiques.

6.4 Reésultats avec les données quasars

Nous avons appliqué le test de corrélation nulle et celui de V/V,,,, sur plusieurs
échantillons et sous-échantillons de QSO fournis par les données du sondage
SDSS. Nous avons obtenu plusieurs courbes de corrélation nulles qui nous
ont permis de discriminer les meilleurs candidats qui s’accordent avec les hy-
pothéses de travail. En outre, nous avons affiné les résultats en vérifiant la
répartition spatiale uniforme des QSO en utilisant le test V/V,,q., en partic-
ulier sur le sous-échantillon le plus homogéne. Ces deux tests nous ont permis
de déterminer une constante cosmologique positive avec une faible valeur de
densité de matiére pour une courbure positive (Fig6.4)).

Grace aux techniques statistiques utilisées dans ce travail, les QSOs ont
des inférences de ’accélération cosmique bien qu’elles ne soient pas classées
comme des bougies standard.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.4: Les courbes de corrélation nulles dans le diagramme(2,, \,) cor-
respondant aux échantillons EDR, DR1, DR3, DR7 et aux sous-échantillons
DR3. Les courbes sont situées dans la région avec une courbure positive x, > 0
(au-dessus de la ligne droite). Toutes les courbes sont en accord et proches
I'une de 'autre, sauf la courbe rouge qui correspond a I’échantillon EDR.

6.5 Modélisation d’échantillon de supernova et
résultats sur les données de SDSS-I1/SNLS3

La supernova (SN) est I'un des objets les plus lumineux dans 'univers dé-
couvert jusqu’aujourddhui. Ce type d’objet est le résultat de 'explosion des
étoiles massives avec une intensité phénomeénale. Cette explosion est le signe
du changement d’état d’une étoile a la fin de sa vie. La SN est un objet tres
lumineux (galactique et extragalactique) avec une luminosité qui peut corre-
spondre a celle de sa galaxie hote dans certains cas. Grace a leurs luminosités
intrinséques, les SNe sont observés a des distances cosmologiques. FElles ont
été classées et distinguées en groupes, dont 'une est considérée comme une
famille de bougies standard.

Puisque la dispersion de la luminosité au maximum de la courbe de lu-
miére (CL) des SNe du type la est susceptible d’étre faible, elles sont con-
sidérées comme de bons candidats des bougies standard, ce qui en fait les
meilleurs outils pour estimer les distances cosmologiques et ensuite contrain-
dre les paramétres cosmologiques avec une grande précision. |[M. M. Phillips
1993|, [Hamuy et al. 1995, [1996a|, [Riess et al 1995] et [1996a] ont démontré
la corrélation entre un parameétre de la CL et la magnitude absolue, Mp, au
maximum de luminosité. Ce paramétre est le taux de déclin de la CL, noté
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Amys ou x1, sachant que la notation et la signification du paramétre de forme
dépendent de la méthode de standardisation choisi. On mentionne spéciale-
ment, z; utilisé avec le modéle de standardisation SALT2.

La description des événements avec une durée de vie finid'| comme c’est
le cas pour les SNe de type Ia, nécessite une détermination sensible de leurs
quantités (variables) intrinséques. L’événement SN Ia est un flash puissant
caractérisé par sa courbe de lumiére, c’est-a-dire I’évolution de sa luminosité
intrinséque avec le temps. La courbe de lumiére est identifiée par la date
au maximum de luminosité, notée t*, et par la magnitude absolue qui corre-
spond & ce maximum, noté M*. Ces deux variables intrinséques caractérisent
I'évolution de la magnitude absolue avec le temps, M(t), qui est également
paramétré par un parameétre de forme xq, c’est-a-dire la dilatation ou la con-
traction de la durée de vie par rapport a un courbe patron. Le paramétre
de forme x; représente la durée de vie de chaque SN et il est supposé d’étre
linéairement corrélé avec M*.

Pour prendre en compte les effets de sélection, nous avons étudié le com-
portement des courbes de lumiére d’un échantillon de SN donné afin de souligner
un critére général qui peut étre utilisé pour distinguer les SNe et, par con-
séquent, éliminer les SNe avec des courbes de lumiére de mauvais échantillon-
nage. Un supernova a une courbe de lumiére bien échantillonnée si elle a eu
suffisamment du temps pour montrer une évolution de sa luminosité au-dessus
du flux limite fy;,, qui correspond au flux de la magnitude apparente limite
Miim-

Il faut rappeler que la courbe de lumiére observée se caractérise par la
magnitude apparente au maximum de luminosit¢ m* et par le taux de dé-
clin Amys (de plus Amys est grand, de plus la diminution de la courbe de
lumiére est vite). La courbe de lumiére doit présenter un écart significatif
entre la magnitude apparente limite de my,, et son pic de magnitude ap-
parente m* d’une part, et d’autre part un petit Amis pour avoir un temps
suffisant pour échantillonner la courbe de lumiére. Dans cette vision, les tech-
niques d’observation susmentionnées permettent de déterminer une courbe de
lumiére, définie comme une courbe de lumiére limite, pour laquelle les exi-
gences minimales sont assurées. Cette courbe limite dépend fortement de la
capacité des techniques d’observation de chaque enquéte et elle se caractérise
par mj;,, et Amys ;m. En conclusion, cette courbe de lumiere limite est utilisée
pour juger la sélection des SNe en fonction du pic de la magnitude apparente
m*, ol une SN est observée avec succés et sélectionnée si son m* <mj;,,. Avec
ce critére de sélection, nous incluons non seulement le biais de Malmquist, mais

1Un objet non pérenne
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aussi les biais qui dues au mauvais échantillonnage des courbes de lumiére, en
particulier pour les SNe avec des courtes durées de vie.

Avec cette description des effets de sélection, nous avons introduit dans la
densité de probabilité des objets observés, une fonction technologique ¢p(m*)
qui dépend du pic de la magnitude apparente dans la bande B:

dPyys = ¢p(m™)g(M*, x1)dM*dz,dt*dV (6.17)

La couleur est utilisée pour rendre la distribution de la magnitude absolue
au maximum de luminosité plus étroite. Ensuite, nous notons M} pour la
valeur corrigée de la magnitude absolue:

M* = M* — fe (6.18)

ou [ est un coefficient correctif positif. Par conséquent, la couleur doit étre
prise en compte dans la loi sur la densité de probabilité de I’événement. Alors,

Eql6.17 est écris:
dPys = ¢p(m™)g(M*, x1)dM*dz19c(c; 0, 0. )dedt*dV (6.19)

o M} s’écris:

ax; +b— Be if M2 e < 101°M
M; = (6.20)

ary +b— fc+ 6 otherwise

ol ¢ est le coefficient de corrélation entre la magnitude absolue et la masse stel-
laire de la galaxie hote M2 .. [Sullivan, M. et al 2010|, [Conley et al 2011].
Le coeflicient de standardisation hote-masse est évalué dans [Betoule, M. et al
2014] pour la valeur § = —0.070 £ 0.023 en utilisant 'analyse de I’échantillon

JLA (pour Joint Light-curve Analysis) qui se compose de 740 SNe.

Les paramétres a, b et o, sont calculés selon les formules suivantes:

a= Couv(1, M7) (6.21)

2
O'x1

0c = open/1 — p2(zq, M¥) (6.22)
ou p(x1, M*) est le coefficient de correlation.
b= (M*) —alx,) + yo.? (6.23)
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6.5 Modélisation d’échantillon de supernova et résultats sur les données de
SDSS-I1/SNLS3

Les mémes étapes de calibration sont effectuées pour déterminer les paramétres
de corrélation linéaire dans le plan (M}, c).

Nous avons adapté le test de corrélation nulle pour un échantillon de super-
nova. Nous avons appliqué ce test sur les échantillons de SDSS-II et SNLS. On
a trouvé que I’échantillon de SN de SDSS-IT n’est pas approprié avec les hy-
pothéses de travail. Autrement-dit, le diagramme magnitude absolue-volume
ne montre pas une distribution uniforme sur 'axe de volume, on a remarqué
un structure et une concentration sur ce diagramme. Par conséquent, le test
de corrélation nulle avec cet échantillon n’a pas trouvé des candidats pour les
paramétres cosmologiques (c.a.d on n’a pas trouvé la courbe de corrélation
nulle). En revanche, I'application de ce test a 1’échantillon de SNLS nous a
permis d’obtenir un ensemble de candidats de modéles cosmologiques ot les
données s’accordent avec les hypothéses de travail. La courbe de corrélation
nulle obtenu avec ’échantillon de SNLS conforte les résultats obtenus avec les

échantillons de QSOs de SDSS (Figl6.5).

T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Q.

Figure 6.5: Les courbes de corrélation nulles dans le diagramme (£2,, A,) qui
correspondent aux échantillons QSO et & échantillon SNLS (le plus élevé).

Dans ce travail, nous avons effectué une nouvelle modélisation d’un échan-
tillon de supernova du type Ia en tenant compte de la corrélation entre la mag-
nitude absolue et le parameétre de forme de la courbe de lumiére. L’application
du test de corrélation nulle & I’échantillon de SNLS a confirmé un modéle
cosmologique avec une courbure positive et une présence faible de la matiére
noire.
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APPENDIX A

Probability density functions

The probability density function (pdf) of a Gaussian distribution with a
standard deviation o, and an average x, is defined by:

2
1 (z :260)

T Ty, 04) = e 20z Al
gG( 0 ) m ( )

The probability density function for the Gumbel (named for German
mathematician Emil Julius Gumbel) distribution is:

—(z=20)/v>
p(x; 20, 7z) = 67—6_6 ( OWI, (A.2)

where xg is the mode, a location parameter, and ~, is the scale parameter.
- 2
The pdf has a mean of xg + 0.577217, and a variance of %%f
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APPENDIX B

Calculation of the weighting factor

With Eq/1.37] one computes the weighting factors depending of the sign of the
reduced curvature, and the intermediate results are given as follows

e For the case of the close Universe k. > O:

oV T 10T LOT 1
E Z[Q & — 2/€o & COS(2KJO )}
2w 0T
= I{—oa[l — COS<2KJO )]

1
~ 27 | 1—cos(2k3T)

(B.1)
o | (1+2)2/P(7)
o s 9((12)sin(s )
0z In(10) (1+2) Sin(KéT)
5 1 N /<;: cot(k é )
In(10) | (14 2) (14 2)? /P<ﬁ)
I [(1+2) P(11) + K& cot(kéT) B2
In(10) (1+2)2,/P(:5)

Then, we obtain:
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oV 2rIn(10) (1-— cos(2n§7’))
ov _ - - (B.3)
¢ Ko [(1+2)1/P() + k& cot(k2T)]

e With the similar calculation for the negative k., we obtain:

9V _ 2xIn(10) (cosh(2|ks|?7) — 1)
¢ ARl [+ 2)y/P(gks) + Il coth((ol7)]

(B.4)
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APPENDIX C

Calculation of V(M)

Here, we detail the determination of the curve of the equation m(M,V) =
Myim- In other words, the volume V as a function of M at a limiting apparent
magnitude my;,,. We note that the absolute magnitude M is replaced by the
reduced absolute magnitude for reasons of simplicity in the calculation.

e For Kk, = 0:

1 3(M iy — M)
P10 C.1
0T 2] (D)
where
Zlim = Cil(mlim - M) (02)

the source of absolute magnitude M remains visible up to a redshift z;,,
under a given limited apparent magnitude my;,,, therefore, using Eqs1.37
and the volume becomes:

47 1 3(m i, —M)
V(M;myim, 2tim) = ————10 C.3
e For k., > 0:
V(z) = L(QTHi/Q — SiH(QTHi/Q)) (C.4)

3/2
pl

o

(14 2) sin(T/-si/Q)
172

d, =
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therefore, one obtains:

1/2

o (m im )
SiIl(T/ii/2> = (]_—/T——lem> 10 : 5 = (CG)
/431/2 (M —M)
k% = arcsin | ———— 10 (C.7)
( +lem)

since from the trigonometric relations we have, sin(2«a) = 2sin(«)cos(«)
and cos(arcsin(«)) = sin(arccos(a)) = V1 — a? where a € |-1,1], so:

V(M Myin, 21im) = (27’/@1/2 — 2sin(7kY/?) cos(rmiﬂ)) (C.8)

o

3/2
K}o/

V(M myim, Ztim) = 3L/2 2 arcsin(ag) — 2044/ 1 — 0412] (C.9)
Ko

where:
(M ) R (C.10)
o = ol M Miims 2lim) = 77— .
! 1 1 0+ 20
e For k, < 0:
V(z) = ﬁ(sinh(%\moﬁﬂ) — 27|k, |1/2) (C.11)
Ko
(1 + Z) . 1/2 (M —M)
d, = PRI sinh(27|ko| /) =10 5 (C.12)
1/2 (my;,, —M)
sinh(7]k.|/?) = L o C.13
() = o (€13
o 1/2 (M —M)
R L (C.14)
(1 —+ le‘m)
Ko Y/2 om0
a; = a(M; My, Ziim) = ————— 5 C.15
! ( 1 lim) 0+ 20m) ( )

the trigonometric relations allow us to write: sinh(2a) = 2sinh(a)cosh(«)

and cosh((a)) = v1+ o2, then:

m
V(M Miim, 21im) = PAEE [2041\/ 1+af — 2(041)} (C.16)
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APPENDIX D

Code Python

#!/usr/bin /python2.7.3
# —x— coding: latin —1 —x—

1

#author :Dyaa Chbib
#date 12014 _11_28
#version 5011

#python version :2.7.3

1

from pylab import x*
import pylab as pl

; import matplotlib.pyplot as plt

from numpy import x*

5 import numpy as np

from mpl toolkits.mplot3d import Axes3D
from random import *

s import scipy.integrate as si

import math
import os
import sympy
import socket

import Methods
from Methods import Functions

; from Cosmological Model import Model

H 0= 70.0 #Km.s —1.Mpc—1
LightVelocity = 2.99792458x10%%5.0 # Km.s—1

class ApparentMagnitude:
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def _ init__ (self, z, lambda 0, omega 0, M, Kcorrection, redsh k
, k z):

self . Kcorrection — Kcorrection
self .redsh k = redsh k
self . k z =k z

self .param = Functions (lambda 0, omega 0)

self.z = 7

self M =M

self .cosmoModel = Model (lambda_ 0, omega 0)

self .d L = self.cosmoModel.curvature (self.z, lambda 0, omega 0
;M) [2]

self.comobileDistance = self.cosmoModel. curvature (self .z,

lambda_ 0, omega 0, M) [0]
- K-—correction
if self.Kcorrection = ’Kcorrection OK ’:

dkcorr = []

for i in range(len(redsh k)):
if i==0 or i==(len (redsh k)-1):
dkcorr.append(k z[i])
else:

dkcor = (k_z[i+1] — k_z[i—1])/(redsh _k[i+1] — redsh kJ[i
—1])

dkcorr . append (dkcor)

dkcorr = array(dkcorr)
d_kcorr = []
kcorr = []
for 1 in range(len(self.z)):
k cor = Functions(lambda0, omega0).Nonlinear Interpolation

(k_z, redsh k, self.z[i])
kcorr.append (k_cor)

for i in range(len(self.z)):
d k cor = Functions (lambda0, omega0) .
Nonlinear Interpolation (dkcorr, redsh k, self.z[i])
d_kcorr.append(d_k_cor)

#alfa nu = —0.5
#self .kcorr = kcorr_con + kcorr em
self .kcorr = array(kcorr)

self.d kcorr = array(d_kcorr)

elif self.Kcorrection = ’Kcorrection NO ’:
pass
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A/:Ja(‘,obian_ 1

else:
print "You must determine the condition of the Kcorrection

as ’'Kcorrection OK’ or ’Kcorrection NO’. "  "\n"
H

def m_theor(self , z, lambda 0, omega 0, M):
if self.Kcorrection = ’'Kcorrection OK ’:
m_theorie = self M + 5.xnp.logl0(self.d L/10.0) + self.kcorr
elif self.Kcorrection == ’Kcorrection NO ’:

m_theorie = self M + 5.%np.logl0(self.d L/10.0)

else:
print "You must determine the condition of the Kcorrection
as ’'Kcorrection OK’ or ’Kcorrection NO’. "  "\n"

return m_theorie

def Jacobian(self, z):
if self.Kcorrection = ’'Kcorrection OK ’:
tau = self.comobileDistance
if self.param.kappa 0 =— 0.0:
jac_1 = (1./(tauxx2.))*( (1. + self.z)*sqrt(self.param.P

(1. + self.z))) + (1./tau) + self.d kcorrxsqrt(self.param.P
(1. + self.z)))*(1. + self.z)*%x2. )

(1./
(1./
elif self.param.kappa 0 > 0.0:
epsilon = 2xtauxsqrt (self.param.kappa 0)

jac_ 1 = ((1. + self.z)xsqrt(self.
param .P(1./(1. + self.z))) + (sqrt(self.param.kappa_0) /((sin(
epsilon /2.0))/cos(epsilon /2.0) ) ) + ((((1. + self.z)*x2.)%xsqrt
(self.param.P(1./(1. + self.z))))xself.d_kcorr)) /(1. — cos(
epsilon))

elif self.param.kappa 0 < 0.0
epsilon = 2.xtauxsqrt (abs(self.param.kappa 0))

jac_1 = ((1. + self.z)xsqrt(self.param.P(1./(1. + self.z))
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) + (sqrt(abs(self.param.kappa 0))/tanh(epsilon /2.0)) + ((((1.
+ self.z)*%x2.)xsqrt (self.param.P(1./(1. + self.z))))*self.
d_kcorr)) /(cosh(epsilon) — 1.)

else:
pass
elif self.Kcorrection == ’Kcorrection NO ’:
tau = self.comobileDistance

if self.param.kappa 0 =— 0.0:
jac_1 = (1./(taux%3.))*( taux(l. + self.z)*sqrt(self.param
P(1./(1. + self.z))) + 1. )

elif self.param.kappa 0 > 0.0:
epsilon = 2xtauxsqrt (self.param.kappa 0)

jac_1 = ((1. + self.z)xsqrt(self.param.P(1./(1. + self.z))
) + (sqrt(self.param.kappa 0)/((sin(epsilon /2.0))/cos(epsilon
/2.0) ) )) /(1. — cos(epsilon))

elif self.param.kappa 0 < 0.0
epsilon = 2.xtauxsqrt (abs(self.param.kappa 0))

jac_1 = ((1. + self.z)xsqrt(self.param.P(1./(1. + self.z))
) + (sqrt(abs(self.param.kappa_0))/tanh(epsilon /2.0))) /(cosh(
epsilon) — 1.)

else:
pass
else:
print "You must determine the condition of the Kcorrection
as ’Kcorrection OK’ or ’Kcorrection NO’. "  "\n"

return jac_1

#——Weighting factor

def Weightingfactor(self, z, beta):
tau = self.comobileDistance
if self.Kcorrection = ’Kcorrection OK ’:

if self.param.kappa 0 = 0.0:
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weighing = self.Jacobian(z)x( ((1. + z)*taux10.xx(self.
kcorr))*xbeta )

elif self.param.kappa 0 > 0.0:
epsilon = taussqrt(self.param.kappa 0)
weighing = self.Jacobian(z)*( ((1. + z)*abs(sin(epsilon))
x10.xx(self.kcorr)/sqrt(self.param.kappa 0))=*xbeta )

elif self.param.kappa 0 < 0.0 :
epsilon = taussqrt(abs(self.param.kappa 0))
weighing = self.Jacobian(z)*( ((1. + z)*sinh (epsilon)
x10.xx(self.kcorr)/sqrt (abs(self.param.kappa 0)))xxbeta )
else:
pass

elif self.Kcorrection == ’Kcorrection NO’:
if self.param.kappa 0 =— 0.0:
weighing = self.Jacobian(z)*( ((1. + z)*tau)=xbeta )
elif self.param.kappa 0 > 0.0:
epsilon = taussqrt(self.param.kappa 0)
weighing = self.Jacobian (z)=*( ((1. + z)xsin(epsilon)/sqrt (
self .param.kappa 0))#*xbeta )
elif self.param.kappa 0 < 0.0
epsilon = tauxsqrt(abs(self.param.kappa 0))

weighing = self.Jacobian(z)*( ((1. + z)xsinh(epsilon)/sqrt
(abs(self.param.kappa 0)))s*xbeta )

else:
pass
else:
print "You must determine the condition of the Kcorrection
as ’Kcorrection OK’ or ’'Kcorrection NO’. "  "\n"

return weighing

def VOLUME(self , M, zz, ZETA, m 1):

z_ 1 = self.param.Nonlinear Interpolation(zz, ZETA, m 1 — M)

if self.param.kappa 0 = 0.0:
mu =M + 5xlogl0 (((LightVelocity *10%x6.0) /(10.xH _0)))
if self.Kcorrection = ’'Kcorrection OK ’:

V= (4.%pi/3.)*((1/(1. + z_1))*x3.)*«10**(3.%(m_| — mu —
self .kcorr) /5.)
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210

211 elif self.Kcorrection == ’Kcorrection NO ’:

212 V= (4.%pi/3.)*((1/(1. + z_1))*%3.)*10%*(3.*(m_1 — mu) /5.)

213 else :

214 print "You must determine the condition of the Kcorrection
as ’Kcorrection OK’ or ’'Kcorrection NO’. "  "\n"

215

216 elif self.param.kappa 0 > 0.0:

217

218 mu =M + 5xlogl0 (((LightVelocity*10xx6.0) /(10.«H _0)))

219

220 if self.Kcorrection — ’'Kcorrection OK’:

221

222 alfa_1 = (sqrt(self.param.kappa_0) /(1 + z_1))*(10%*((m_1 —
mu — self . kcorr)/5.))

223 elif self.Kcorrection = ’Kcorrection NO ’:

224

225 alfa_1 = (sqrt(self.param.kappa_0)/(1 + z_1))*(10%x((m_1 —
mu) /5.) )

226 else :

227 print "You must determine the condition of the Kcorrection
as ’Kcorrection OK’ or ’'Kcorrection NO’. "  "\n"

SN
[CEY]

V = (pi/self .param.kappa 0x%(3./2))*(2xarcsin(alfa 1) — 2x
alfa lxsqrt (1 — alfa 1xx%2.))

w W
= O

elif self.param.kappa 0 < 0.0

[

mu =M + 5xlogl0 (((LightVelocity*10xx6.0) /(10.*H_0)))
34 alfa 1 = (sqrt(abs(self.param.kappa 0))/(1 + z_ 1)) *(10%x((
m 1 —mu)/5.))

NN N NN
% o et

236 if self.Kcorrection — ’'Kcorrection OK’:

238 alfa 1 = (sqrt(abs(self.param.kappa 0))/(1 + z_1))*(10*x((
m_l — mu — self.kcorr)/5.))

239 elif self.Kcorrection = ’Kcorrection NO ’:

240

241 alfa 1| = (sqrt(abs(self.param.kappa 0))/(1 + z_1))*(10%x((
m 1 — mu)/5.))

242 else:

243 print "You must determine the condition of the Kcorrection
as ’Kcorrection OK’ or ’'Kcorrection NO’. "  "\n"

244

245 V = (pi/abs(self.param.kappa_0)*%(3./2))*(2xalfa_lxsqrt (1 +
alfa 1x%2.) — 2xarcsinh (alfa 1))

246

247 else:

248 pass

249

250 return V

251
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def _ init__ (self , lambda_ 0, omega 0):

~

Ies

self .param = Functions (lambda 0, omega 0)
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60 def curvature(self, z, lambda 0, omega 0, M):

61

62 zz = self .param.LowerBound (z)

63 comobileDistance = self.param.Trapeze(self.param.
Functiontolntegrate , zz, 1.0)

264 lookback time = self.param.Trapeze(self.param.
FunctiontoIntegrate2 , zz, 1.0)

265 if self.param.kappa 0 > 0.0:

266

267 epsilon = comobileDistancexsqrt (self.param.kappa 0)

268 volume = pix*(2.0xepsilon — sin (2.0xepsilon))/(self.param.
kappa_0x%(3./2.))

269 d L = (LightVelocity*10%x6.0)x(1. + z)*(sin(epsilon))/(H_0x*
sqrt (self .param.kappa 0))

270

271

272 elif self.param.kappa 0 < 0.0:

274 epsilon = comobileDistancexsqrt(—self.param.kappa 0)

27 volume = pix*(sinh (2.0xepsilon) — 2.0xepsilon)/((—self.param.
kappa_0) *%(3./2.))

276

277 d L = (LightVelocity*10%%6.0)%(1. + z)*sinh (epsilon) /(H 0%
sqrt(—self .param.kappa 0))

279 elif self.param.kappa 0 — 0.0:

280

281 volume = 4.%pix(comobileDistance*%3.0) /3.

283 d L = (LightVelocity*10xx6.0)*(1. + z)*comobileDistance/H 0

284 else:

86 pass

89 return comobileDistance , volume, d L, lookback time

1+ class SIMULATED:

o6 def __init__ (self , lambda_0, omega_0):

[V no (V] (V) (V) [V [V (V] [V (V) [ V) oo no
=
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self .param = Functions (lambda 0, omega 0)

def Sample(self , M 0, sigma, m lim, zform, z max, z min,

Sizeofsample , NumbOfSamples, Kcorrection, redsh k, k z):

lambda0, omega0 = self.param.lambda 0, self.param.omega 0
kappa0 = self.param.kappa 0
print "kappa0 = ", kappa0O, "\n"

print Functions(lambda0, omega0).NoBigBang(omegal, ’permission

")
Betalist = linspace (np.float64(0.01), np.float64 (6), 600)
Beta = array ([array ([a]) for a in Betalist])
f———K-correction————

t = asc.read(’/SDSS-DR3/K—correction.dat’, guess=False)
#redsh k, k z = t[’redsh’], t[’kcorre’]

dkcorr = []

for i in range(len(redsh k)):
if i==0 or i==(len(redsh_k)—1):
dkcorr.append(k z[i])
elllslel:
dkcor = (k_z[i+1] — k_z[i—1])/(redsh k[i+1] — redsh kJ[i
~1))
dkcorr.append (dkcor)

dkcorr = array (dkcorr)

zz = np.linspace (z_min, zform, 10xx4)
if Kcorrection == ’Kcorrection NO ’:
redsh k 1, k z 1=1], []
pass
elif Kcorrection — ’Kcorrection OK’:

List_of Poly = []
for i in range(int(len(t[’kcorre’])/5)):
j = i%5
fitd = np.polyfit (t[ redsh’|[j:j+5+1], t[ kcorre’|[]j:]
+5+1], int(len(t[ kcorre’ |[j:j+5+1])))
fit _fn = np.polyld(fit4d)
List _of Poly.append ((min(t[’ ’redsh’][j:j+5+1]), max(t[’
redsh’|[j:j+5+1]), fit_fn))

def Fit of Kcorrection(List of Poly, z):

i=20

Condition = z>List_of Poly[i][1]

while Condition = True and i<=len (List_of_ Poly) —2:
i =i+l

Condition = z>List_of_ Poly[i][1]
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if Condition — True:

value = —0.2135964
else:

value = List _of Poly[i][2](z)
return value

redsh_k_1 = []

for i in range(len(zz)):
if i==0 or i==(len(zz)—-1):
redsh _k 1.append(Fit_of Kcorrection(List of Poly, zz[i]))
elliSiek:
redsh _k 1.append ((Fit_ of Kcorrection(List of Poly, zz][i
+1])—Fit _of Kcorrection(List of Poly, zz[i—1]))/(zz[i+]1]—zz]1i
~1))

redsh k 1 = array(redsh _k 1)
k z 1 =1]

for i in range(len(zz)):
k z l.append(Fit of Kcorrection(List of Poly, zz[i]))

k z 1 = array(k _z 1)

else:
print "You must determine the condition of the Kcorrection
as ’Kcorrection OK’ or ’Kcorrection NO’. "  "\n"

ZETA = ApparentMagnitude(zz, lambda0, omega0, 0.0, Kcorrection
, redsh k 1, k z 1).m theor(zz, lambda0, omega0O, 0.0)

paths of samples = []
for bb in range (0, NumbOfSamples) :

Number of simulation = bb

m_app = |[]

redshift = []

redred = []

Mlist , Volume, Volume 1, redshift 1 =[], [], [], T[]

HH = np.random.uniform (low=0.0, high=1, size=(Sizeofsample))
Mlistl = linspace(—30, —22., 2xSizeofsample)

F M= []
F _th = quad(Functions (lambda0, omega0).Pro_ DensityFunction ,

—70, 70, args=(z_min, m_lim, MO, sigma))[0]
for i in range(2xSizeofsample):
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z_1 = Functions (lambda0, omega0).Nonlinear Interpolation (
zz, ZETA, m lim — Mlistl[i])

f M = quad(Functions (lambda0, omega0).Pro DensityFunction
—70, Mlistl[i], args=(z_l, m_lim, MO, sigma))[0]

F M. append (f M)

F M = array (F M)/F_th
#H M = array (F_ M) /max(F M)

for i in range(Sizeofsample):
F _cap = np.random. uniform (low=0.0, high=1, size=(1))[0]
M _k = Functions (lambda0, omega0).Nonlinear Interpolation (
Mlistl, F M, F cap)
Mlist . append (M_k)

Mlist = array (Mlist)

plt.hist (Mlist , bins=50, histtype=’step’, normed—=False ,
color="r")

plt .show ()

if Kcorrection = ’Kcorrection NO ’:
if kappaO > 0:

Angular distance = Model (lambda0, omega0).curvature (np.
linspace(z_min, 1100, 10xx4), lambda0, omegaO, 0.0)[0]*sqrt(
kappa0)

z_pi = Functions(lambda0, omega0).

Nonlinear Interpolation(np.linspace(z _min, 1100, 10xx4),
Angular distance, pi)

zz. — np.linspace (z_min, z pi, 10%x%4)

ZETA pi = ApparentMagnitude (zz, lambda0, omegaO, O,
Kcorrection, 0, 0).m _ theor(zz, lambda0, omegaO, 0)

M star = m_lim — max(ZETA pi)

ZETA form = ApparentMagnitude(z pi, lambda0, omega0,
0.0, Kcorrection, 0, 0).m_ theor(z_ pi, lambda0, omega0O, 0.0)

M form = m_lim — ZETA form

for ii in range(Sizeofsample):
M k = Mlist [ ii]
mu_lim = m_lim — M k

if M kM star and M kM form:

ZETA jj = ZETA%1.0
z7Z _j] = zzx1.0
z_1_jj =[]

for jj in range(10):
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z _1jj = Functions(lambda0, omega0) .
Nonlinear Interpolation(zz jj, ZETA jj, mu lim)

z_ 1 jj.append(z_ljj)

index of mu lim = list (abs(ZETA jj — mu lim)).
index (min(abs (ZETA jj — mu_lim)))

ZETA jj = list (ZETA jj*1)

zz_jj = list (zz_jj*1)

ZETA jj.remove(ZETA jj[index of mu lim])

zz _jj.remove(zz jj[index of mu lim])

ZETA jj = array (ZETA jj*1)

zz._jj = array(zz jj*1)

z 1 jj = array(z_1 jj)
z 1 jj.sort ()
Distanguish of solutions = [str(gg)[0:5] for gg in
2 1_jj]
z 1 1=
z_1_l.append(z_1_jj[0])
for i in range(l, len(z_ 1 jj)—1):
condition = (Distanguish of solutions|[i]==
Distanguish of solutions[i—1])
if condition — False:
z_1 l.append(z 1 jj[i])
else :
pass

Distanguish of solutions = [str(gg)[0:4] for gg in
z_1 1]
g_ll =
z_1.append(z_1_1]0])
for 1 in range(l, len(z 1 1)):
conditionl = (Distanguish of solutions[i]==
Distanguish of solutions[i—1])
condition2 = (abs(float (Distanguish of solutions]i
]) — float (Distanguish_of_solutions[i—1]))>= 0.06)
if conditionl = False and condition2 = True:
z_l.append(z_1 1[i])
elisiex:
pass

if (len(z_1) % 2 = 0): #even

print "len(z 1)", len(z 1)

z_1.append (zform)

z_1l.sort ()

z_ 1 = array(z_ 1)

Volume _list = list (Model(lambda0, omega0) .
curvature (z_1, lambda0, omega0, 0.0)[1])

V_1 = Volume list[0]

RandomChoiceList _of Volume = []

for i in range(l, int ((len(Volume_list)—1)/2)+1):

V 1 4= Volume list[2%xi] — Volume list[2xi—1]
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Volume 1.append(V _1)

ZoneProhibited _of Volume = []
ZoneProhibited of redshift = []
for i in range(int(len(Volume list)/2)):
ZoneProhibited of Volume.append ((Volume list[2x1i
], Volume list[2xi+1]))
ZoneProhibited of redshift.append((z 1[2%i], z 1

[2+1+1]))
HH list — []
condition on HH = (len(HH list) =— 0)
ij = —1
V_z list = []
condition on V_z = (len(V _z list) = 0)
while condition on_ V =z == True and condition on HH
— True:
ij o= ij + 1
if ij > len (HH)—1:
break
else:
V K = HH[ij[+V_1
Vz=VK
RandomChoiceList of Volume.append (V_z)
for i in range(len(Volume_list)—1):
if (i %2 —=—0):
V 7z += — Volume list[1i]
elliSiek:
V_z 4= Volume _list[1i]
RandomChoiceList of Volume.append(V_z)
for dd in range(len (RandomChoiceList of Volume
)):
V_z = RandomChoiceList of Volume|[dd]
for i in range(len (ZoneProhibited of Volume)
)

condition = (V_z > min(
ZoneProhibited of Volume[i]) and V_z < max(
ZoneProhibited _of Volume[i]))

if condition = True:
continue
else:
if V_z > max(ZoneProhibited of Volume][i
) |
continue
else:

V _z list.append(V_z)
HH list.append (HH[ij ])
HH.remove (HH[ ij |)
break
condition_on_HH = (len (HH_list) = 0)
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condition _on V_z = (len(V_z list) = 0)
if condition on V z — True and
condition on HH == True:
continue
else:
pass

V_z=V_z_list[0]
Volume . append (V_z)
Mlistlist .append (Mlist [ ii])

else: #odd
z_l.sort ()
z_ 1 = array(z 1)
Volume _list list (Model (lambda0, omega0) .
curvature (z_1, lambda0, omegaO, 0.0)[1])
V_1 = Volume list[0]
RandomChoiceList_of _Volume = []
for i in range(l, int ((len(Volume_list)—1)/2)+1):
V 1 4= Volume list[2%xi] — Volume list[2xi—1]

Volume 1.append(V _1)

ZoneProhibited _of Volume = []
ZoneProhibited of redshift = []
for i in range(int(len(Volume list)/2)):
ZoneProhibited of Volume.append ((Volume list[2x1i
|, Volume list[2xi+1]))
ZoneProhibited of redshift.append((z_ 1[2xi], z 1

[2+1+1]))
HH list = []
condition on HH = (len(HH list) = 0)
ij — —1
V_z list = []
condition on V _z = (len(V _z list) = 0)
while condition on_ V 7z = True and condition on HH
— True:
ij =1j +1
if ij > len (HH)—-1:
break
else:
V K = HH[ij|+V_1
V z=VK

RandomChoiceList_of _Volume.append (V_z)
for i in range(len(Volume_list)—1):
if (i%2=—0):
V_z += — Volume _list[i]
elge ¢
V_z += Volume_list[1i]
RandomChoiceList _of _Volume.append (V_z)
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for dd in range(len (RandomChoiceList of Volume
V_z = RandomChoiceList of Volume[dd]
for i in range(len (ZoneProhibited of Volume)

I
condition = (V_z > min(
ZoneProhibited _of Volume[i]) and V_z < max(
ZoneProhibited of Volume[i]))
if condition = True:
continue
elge ¢
if V_z > max(ZoneProhibited of Volume]|i

continue
else:
V _z list.append(V_z)
HH list.append (HH[ij])
HH.remove (HH[ ij |)
break
condition _on HH = (len(HH list) = 0)
condition _on_V 7z = (len(V_z list) = 0)
if condition on V z — True and
condition on HH == True:
continue
else:
pass

V z=V _z list[0]
Volume . append (V_z)
Mlistlist .append ( Mlist [ ii])

else:

z_1 = Functions (lambda0, omega0).
Nonlinear Interpolation (zz, ZETA, mu_ lim)

redshift 1.append(z 1)

V 1 = Model (lambda0, omega0).curvature(z 1, lambda0,
omega0, 0.0)[1]

Volume_1.append (V_1)

V K = HH| ii |[+V_1

Volume . append (V_K)

Mlistlist .append (Mlist [ ii])

elg®
for ii in range(Sizeofsample):
M k = Mlist[ii]

mu lim = m lim — M k

z_1 = Functions (lambda0, omega0).
Nonlinear Interpolation(zz, ZETA, mu_lim)
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612 redshift 1.append(z_1)

613 V_1 = Model (lambda0, omega0).curvature(z_1, lambda0,
omega0, 0.0)[1]

614 Volume_1.append(V_1)

615 V K = HH[ii]|+V_1

616 Volume . append (V_K)

617 Mlistlist .append (Mlist [ ii])

618

619 elif Kcorrection = ’'Kcorrection OK ’:

21 if kappaO > O0:

623 Angular_distance = Model(lambda0, omega0).curvature (np.
linspace(z_min, 1100, 10xx4), lambda0, omegaO, 0.0)[0]*sqrt(
kappa0)

624 z_pi = Functions (lambda0, omega0).

Nonlinear Interpolation(np.linspace(z min, 1100, 10xx4),
Angular distance, pi)

626 M star = m_lim — max(ZETA)

627 k 7z zform = Fit of Kcorrection(List of Poly,zform)

628 ZETA form = ApparentMagnitude (zform , lambda0, omega0,
0.0, Kcorrection, 0, k z zform).m theor(zform, lambda0, omega0,

0.0)

629 M form = m_lim — ZETA form

630

631 for ii in range(Sizeofsample):

632 M k = Mlist [ ii ]

633 mu_lim = m_lim — M k

634

635 if M kM star and M kM form:

636

ZETA jj = ZETA%1.0

638 zz _jj — zz*1.0

2 1 3j — ]

640 for jj in range(20):

641 z_1jj = Functions(lambda0, omega0) .
Nonlinear Interpolation(zz jj, ZETA jj, mu_lim)

642 z_1 jj.append(z_ljj)

643 index of mu lim = list (abs(ZETA jj — mu lim)).
index (min (abs(ZETA jj — mu lim)))

644 ZETA jj = list (ZETA jj*1)

645 77 _jj = list (zz_jj*1)

646 ZETA jj.remove(ZETA jj[index of mu lim])

647 zz _jj.remove(zz jj[index of mu lim])

648 ZETA jj = array (ZETA jjx1)

649 zz _jj = array(zz_ jj*1)

650

651 z_1 jj = array(z_1 jj)

652 z 1 jj.sort ()

653 Distanguish of solutions = [str(gg)[0:5] for gg in
2 1]
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z 1 1=1]]

Z_I:I.append(z_l_jj [0])

for 1 in range(1l, len(z_ 1 jj)—1):

condition = (Distanguish of solutions|[i]==

Distanguish of solutions[i—1])

z_1 1]

if condition = False:
z_1 l.append(z 1 jj[i])
else:
pass

Distanguish of solutions = [str(gg)[0:4] for gg in

z_Il = ]
z_1.append(z_1_1]0])
for i in range(l, len(z 1 1)):

conditionl = (Distanguish of solutions[i]==
Distanguish of solutions[i—1])
condition2 = (abs(float (Distanguish of solutions]i
]) — float (Distanguish_of_solutions[i—1]))>= 0.06)
if conditionl = False and condition2 = True:
z_l.append(z_ 1 1[i])
elisiex:
pass

if (len(z_1) % 2 = 0): #even

print "len(z_1)", len(z_1)

z_1.append (zform)

z_l.sort ()

z_ 1 = array(z 1)

Volume _list = list (Model(lambda0, omega0) .

curvature (z_1, lambda0, omegaO, 0.0)[1])

V_1 = Volume list[0]

RandomChoiceList_of _Volume = []

for i in range(1l, int ((len(Volume_ list)—1)/2)+1):
V_ 1 4= Volume list[2xi] — Volume list[2x*i—1]

Volume 1.append(V _1)

ZoneProhibited _of Volume = []

ZoneProhibited of redshift = []

for 1 in range(int(len(Volume list)/2)):
ZoneProhibited of Volume.append ((Volume list[2x1i

], Volume list[2xi+1]))

ZoneProhibited of redshift.append((z_ 1[2%i], z 1

[2+1+1]))
HH list = []
condition on HH = (len (HH list) = 0)
ij — -1
V_z list = []
condition on V_z = (len(V _z list) = 0)
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while condition on_ V z = True and condition on HH
— True:
ij = ij + 1
if ij > len (HH)—-1:
break
elge ¢
V K — HH[ij[+V_l
V z=V K
RandomChoiceList _of Volume.append (V_z)
for i in range(len(Volume list)—1):
it (i %2 = 0):
V_z += — Volume _list[i]
ele@ g
V_z 4= Volume_list[1i]
RandomChoiceList _of _Volume.append (V_z)

for dd in range(len (RandomChoiceList of Volume
V_z = RandomChoiceList of Volume|[dd]
for i in range(len (ZoneProhibited of Volume)

JE
condition = (V_z > min(
ZoneProhibited _of Volume[i]) and V_z < max(
ZoneProhibited _of Volume[i]))
if condition == True:
continue
elge ¢
if V_z > max(ZoneProhibited of Volume]|i

continue
else:
V _z list.append(V_z)
HH list.append (HH[ij])
HH.remove (HH[ ij |)
break
condition _on HH = (len(HH list) = 0)
condition _on V 7z = (len(V _z list) = 0)
if condition on V z — True and
condition on HH == True:
continue
else:
pass

V z=V _z list[0]
Volume . append (V_z)
Mlistlist .append (Mlist [ ii])

else: #odd

print "len(z 1)", len(z 1)
z_l.sort ()
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744 z_1 =12 1][0]
745 redshift 1.append(z 1)
746 V_1 = Model(lambda0, omega0).curvature(z_1,

lambda0, omegal, 0.0)[1]
747 Volume 1.append(V _1)

748 V K = HH[ ii |*V_1

749 Volume . append (V_K)

750 Mlistlist .append (Mlist [ii])
751 elser:

758 ZETA jj = ZETA%1.0

754 zz _jj = zz%1.0

2 1 jj = []

756 for jj in range(20):

757 z_1jj = Functions (lambda0, omega0).
Nonlinear Interpolation(zz jj, ZETA jj, mu_lim)

758 z_1 jj.append(z_ljj)

759 index of mu lim = list (abs(ZETA jj — mu_ lim)).
index (min(abs(ZETA jj — mu lim)))

760 ZETA jj = list (ZETA_jj=1)

761 77 _jj = list (zz_jj*1)

762 ZETA jj.remove(ZETA jj[index of mu lim])

763 zz _jj.remove(zz_jj[index of mu lim])

764 ZETA jj = array (ZETA jjx1)

765 zz_jj = array(zz_ jjx1)

766

767 z_ 1 jj = array(z_1 jj)

768 z_1 jj.sort ()

769 Distanguish of solutions = [str(gg)[0:5] for gg in
2 1_ji]

770 z 1 1 =1]

771 z_1 l.append(z_1 jj[0])

772 for i in range(l, len(z_1 jj)-1):

773 condition = (Distanguish of solutions|[i]==
Distanguish of solutions[i—1])

774 if condition == False:

775 z_1 l.append(z 1 jj[i])

776 elge ¢

777 pass

779 Distanguish of solutions = [str(gg)[0:4] for gg in
z_1 1]

780 z_ 1 =[]

781 z_1l.append(z_ 1 1[0])

782 for i in range(l, len(z 1 1)):

783 conditionl = (Distanguish of solutions|[i]==
Distanguish of solutions|[i—1])

784 condition?2 (abs(float (Distanguish of solutions]|i
]) — float (Distanguish of solutions[i—1]))>= 0.06)

785 if conditionl — False and condition2 — True:
786 z_l.append(z_1_1[i])
787 else:
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pass

if (len(z_1) % 2 = 0): #even

z_ 1 =2 1]0]

redshift 1.append(z 1)

V_1 = Model (lambda0, omega0) .curvature(z 1,
lambda0, omega0, 0.0)[1]

Volume_1.append (V_1)

V. K = HH[ii [*V ]

Volume . append (V_K)

Mlistlist .append (Mlist [ii])

else: #odd

z_l.sort ()

z_1 = array(z_1)

Volume list = list (Model(lambda0, omega0) .
curvature (z_1, lambda0, omegaO, 0.0)[1])

V_1 = Volume_list[0]

RandomChoiceList _of _Volume = []

for i in range(l, int ((len(Volume list)—1)/2)+1):

V | += Volume list[2xi] — Volume list[2xi—1]

Volume_1.append (V_1)

ZoneProhibited of Volume = []
ZoneProhibited of redshift = []
for i in range(int(len(Volume list)/2)):
ZoneProhibited _of Volume.append (( Volume _list[2x1i
|, Volume list[2xi+1]))
ZoneProhibited of redshift.append((z_ 1[2%i], z 1

[2xi+1]))
HH list = []
condition_on_HH = (len(HH_list) = 0)
ij = -1
V_z list = []
condition _on V_z = (len(V _z list) = 0)
while condition on V z — True and condition on HH
— True:
ij = ij + 1
if ij > len (HH)—1:
break
ellisiek:
V_K =HH[ij|*V_l
V z=V K

RandomChoiceList _of Volume.append (V_z)
for i in range(len(Volume list)—1):
it (i %2 = 0):
V_z += — Volume_list[1i]
ele® g
V_z += Volume_list[1i]
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RandomChoiceList of Volume.append(V_z)
for dd in range(len (RandomChoiceList of Volume
V_z = RandomChoiceList _of Volume[dd]
for i in range(len (ZoneProhibited of Volume)

):
condition = (V_z > min(
ZoneProhibited of Volume[i]) and V_z < max(
ZoneProhibited of Volume[i]))
if condition == True:
continue
else:
if V_z > max(ZoneProhibited of Volume]|1i

continue
else:
V _z list.append(V_z)
HH list.append (HH[ij])
HH.remove (HH[ij |)
break
condition on HH = (len(HH list) — 0)
condition _on V _z = (len(V _z list) = 0)
if condition on V z = True and
condition on HH == True:
continue
elliSiek:
pass

V z=V_z list[0]
Volume. append (V_z)
Mlistlist .append (Mlist [ii])

else:
for ii in range(Sizeofsample):
M k = Mlist [ ii]

mu lim — m lim — M k

ZETA jj = ZETA%1.0
z7 _jj = zz%1.0
213 = [
for jj in range(20):
z 1jj = Functions (lambda0, omega0).
Nonlinear Interpolation(zz jj, ZETA jj, mu lim)
z 1 jj.append(z_ljj)
index of mu lim = list (abs(ZETA jj — mu lim)).index(
min (abs (ZETA jj — mu_lim)))
ZETA jj = list (ZETA_jj*1)
zz_jj = list (zz_jjx1)
ZETA jj.remove(ZETA jj[index of mu lim])
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892

900

z7 _jj.remove(zz_jj[index of mu lim])
ZETA jj = array (ZETA jjx1)
zz._jj = array(zz_ jjx1)

z 1 jj = array(z_1_jj)
z 1 jj.sort ()
Distanguish of solutions = [str(gg)[0:5] for gg in

2 1 i
g_l_I =
z_1 l.append(z_1 jj[0])
for i in range(l, len(z_1 jj)-1):
condition = (Distanguish of solutions[i]==
Distanguish of solutions[i—1])
if condition = False:
z 1 l.append(z_ 1 jj[i])
else:
pass
Distanguish of solutions = [str(gg)[0:4] for gg in
z 1 1]

z_ 1 =]
z_l.append(z_ 1 1][0])
for i in range(l, len(z 1 1)):
conditionl = (Distanguish of solutions|i]==
Distanguish of solutions[i—1])
condition2 = (abs(float (Distanguish of solutions[i])
— float (Distanguish of solutions[i—1]))>= 0.06)

if conditionl — False and condition2 — True:
z_l.append(z_1 1[i])

else:
pass

if (len(z_ 1) % 2 = 0): #even
z_1=12z_1[0]
redshift 1.append(z 1)
V_1 = Model(lambda0, omega0).curvature(z_1, lambda0,
omega0, 0.0)[1]
Volume 1.append(V _1)
V K = HH[ ii |*V_1
Volume . append (V_K)
Mlistlist .append (Mlist [ii])
else: #odd
z_1l.sort ()
z_1 = array(z_1)
Volume_list = list (Model(lambda0, omega0).curvature (
z_1, lambda0, omega0, 0.0)[1])
V_1 = Volume_list[0]
RandomChoiceList _of Volume = []
for i in range(l, int ((len(Volume list)—1)/2)+1):
V_1 4= Volume list[2xi] — Volume list[2xi—1]

Volume_1.append (V_1)
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ZoneProhibited _of Volume = []
ZoneProhibited of redshift = []
for i in range(int(len(Volume_list) /2)):
ZoneProhibited of Volume.append ((Volume list[2xi],
Volume list[2xi+1]))
ZoneProhibited of redshift.append((z 1[2xi], z 1

[2+1+1]))
HH list = []
condition _on HH = (len(HH list) = 0)
ij - -1
V_z list = []
condition on V _z = (len(V _z list) = 0)
while condition on V 2z == True and condition on HH
— True:
ij = ij +1
if ij > len (HH)—1:
break
elisler:
V. K =HH[ij]*xV_I
Vz=VK
RandomChoiceList _of Volume.append (V_z)
for i in range(len(Volume_list)—1):
if (i % 2 = 0): #even
V 7z += — Volume list[i]
else: #odd
V_z += Volume list[1i]
RandomChoiceList of Volume.append(V_z)
for dd in range(len (RandomChoiceList of Volume
)):
V_z = RandomChoiceList _of Volume[dd]
for i in range(len (ZoneProhibited of Volume)
):

condition = (V_z > min(
ZoneProhibited of Volume[i]) and V_z < max(
ZoneProhibited of Volume[i]))
if condition == True:
continue
else:
if V_z > max(ZoneProhibited of Volume][i

continue

else:
V _z list.append(V_z)
HH list.append (HH[ij ])
HH.remove (HH[ij |)

break
condition on HH = (len (HH list) =— 0)
condition_on_V_z = (len(V_z_list) = 0)
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if condition on V z — True and
condition on HH —— True:
continue
elisier:
pass

V. z =V _ 1z list[0]
Volume . append (V_z)
Mlistlist .append (Mlist [1i])

else:
print "You must determine the condition of the Kcorrection
as ’'Kcorrection OK’ or ’Kcorrection NO’. "  "\n"

Mlistlist = np.asarray(Mlistlist)
Mlist = Mlistlist *1.0
Volume = np.asarray (Volume)

Mlist second = []

Volume_second = []

Volume_ 1 second = []

redshift 1 second = []

V = Model (lambda0, omegaQ).curvature (zz, lambda0, omega0,
0.0)[1]

for ii in range(Sizeofsample):

red = Functions(lambda0, omega0).Nonlinear Interpolation (
zz, V, Volume][ii])

redshift .append(red)

redred . append(red)

Mlist _second .append (Mlist [ ii])

Mlist = array(Mlist second)
Sizeofsample = len(redshift)
redshift = array(redshift)
#——K-corrections————

if Kcorrection — ’Kcorrection NO ’:
redsh k, k z = [0]*Sizeofsample, [0]xSizeofsample
pass
elif Kcorrection = ’'Kcorrection OK ’:
redsh k, k z = t[’kcorre’], t[’redsh’]
kcorr = []
d_kcorr = []
for i in range(len(redshift)):
#print i
k_cor = Functions (lambda0, omega0) .

Nonlinear Interpolation(t[’kcorre’], t[’redsh’], redshift[i])
kcorr . append (k_cor)

for i in range(len(redshift)):
d k cor = Functions (lambda0, omega0) .
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Nonlinear Interpolation (dkcorr, t[’redsh’], redshift[i])
d_kcorr.append(d_k_ cor)

kcorr = array (kcorr)
d_kcorr = array(d_kcorr)
else:
print "You must determine the condition of the Kcorrection
as ’Kcorrection_ OK’ or ’Kcorrection_NO’. ", "\n"

1/
7

m_app — ApparentMagnitude(redshift , lambda0, omega0O, Mlist ,
Kcorrection, redsh k, k z).m theor(redshift , lambda0, omega0,
Mlist)

redred . sort ()

Mlist = np.asarray (Mlist)
m_app = np.asarray (m_app)
redred = np.asarray (redred)
redshift = np.asarray (redshift)

print "max(redshift) = ", max(redshift)
print "max(m_app) = ", max(m_app)

Mlistl = Mlist*1.0
m_appl = m_appx1.0
Mlistl.sort ()
m_appl.sort ()

#———weighting factor

WeightingManifold = ApparentMagnitude(redshift , lambdaO,
omegal, 0.0, Kcorrection, redsh k, k z).Weightingfactor (
redshift , Beta)

WeightingSum = [a/sum(a) for a in WeightingManifold ]
DetermineBeta = [abs(max(b) — min(b)) for b in WeightingSum |
beta = Beta|DetermineBeta.index (min(DetermineBeta))][0]
Weighting = ApparentMagnitude(redshift , lambda0, omega0,
0.0, Kcorrection, redsh k, k z).Weightingfactor(redshift , beta)

SumWeighting = sum(Weighting)
factorWeighting = array (Weighting) /SumWeighting

ff—————saving data——

filename = ’SimulationData ’+str (lambda0)+’—’+str (omega0)+’
_NbOfObjects '+str (Sizeofsample )+’ limitMag ’+str (m_lim)+’
_NbOfSimulation '+str (Number_of _simulation)+’Beta’+str (beta)+’.
dat’
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1057

1058

1059

1060
1061

1062

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1079

1080
1081

1082

1083

1084

1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098

listofarrays = [Mlist, m_app, redshift , redshift 1, Volume,
Volume 1, Weighting, factorWeighting, redred, zl, redsh k, k z]

stringlistofarrays = [’Mlist’, 'm app’, ’redshift’, ’
redshift 1’, "Volume’, ’Volume 1’, ’*Weighting’, °’
factorWeighting >, ’redred’, ’z1’, ’redsh k’, 'k z’]

Save(listofarrays , stringlistofarrays , filename).ReadWrite(
True, ’work’)

path = Save(listofarrays , stringlistofarrays , filename).
ReadWrite (True, ’work’)

paths of samples.append (path)

/,
print "Number of simulation = ", Number of simulation, "\n"
print "path =", path, "\n"

return paths of samples

class NullCorrelation:
""" NullCorrelation Method to seek the cosmological parameters"""
def init

__(self):
#self , Booleen
#self . Booleen = Booleen
pass

def SeekOfParameters(self , m app, redshift , lambda0 Model,

omega0 Model, couleur, Kcorrection, redsh k, k z):

omegalist = linspace(np.float64 (10xx—6), np.float64(1.0), 30)
490

lamdalist = linspace(np.float64 (10xx—6), np.float64 (1.5), 30)
420

17

#omegalist = linspace (np.float64 (10%x*—6), np.float64(0.2), 50)
#20

#lamdalist = linspace (np.float64(1.0), np.float64(1.4), 50)
#20

Betalist = linspace (np.float64(0.01), np.float64(3.9), 150)
#Betalist = linspace (np.float64 (0.01), np.float64 (3.9), 100)

Beta = array ([array ([a]) for a in Betalist])
All models = []

for 1 in range(len (lamdalist)):
for j in range(len(omegalist)):
All models.append ((lamdalist[i], omegalist[j]))

def func(a, z, bet): # a = All _models; 2z = redhsift; bet
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1130
1131
1132
1133
1134
1135
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— Beta

aa=|]
for 1 in range(len(a)):

Bounced limit = Functions(a[i][0],a[i][1]) .NoBigBang(a|1i
][1], ’permission’)

if Bounced limit==0:
aa.append (int (0))
else:

WeightingManifold = ApparentMagnitude(z, a[i][0],a[i
1[1], 0.0, Kcorrection, redsh_k, k_z).Weightingfactor (z, bet)
# a[i]]0],a]i][1l] = (lamda, omega)

WeightingSum = [b/sum(b) for b in WeightingManifold ]

DetermineBeta = [abs(max(b) — min(b)) for b in
WeightingSum |

beta = Beta|[DetermineBeta.index (min(DetermineBeta))][0]

#L _1_Manifold = [1.0 + (1./np.log(len(b))=*sum(b*np.log(b
))) for b in WeightingSum |

#beta = Beta[L 1 Manifold.index (min(L_1 Manifold))][0]

w_k = ApparentMagnitude(z, a[i][0],a[i][1], 0.0,
Kcorrection , redsh_k, k_z).Weightingfactor (z, beta)/sum(
ApparentMagnitude(z, a[i][0],a[i][1], 0.0, Kcorrection, redsh k
, k z).Weightingfactor(z, beta))

Mlist tild = m_app — ApparentMagnitude(z, a[i][0],a[i
, Kcorrection, redsh_k, k_z).m_theor(z, a[i][0],a[i
)

COVA riance = sum(w_kx(Mlist tild — sum(w_kxMlist tild )
)x(m_app — sum(w_kxm _app)))

COR _elation = (1./(sqrt (sum(w_kx(Mlist tild — sum(w_kx
Mlist tild))*%2.0))*sqrt (sum(w_kx(m_app — sum(w_k+m app))*%2.0)
)))*COVA _riance

#COR _elation = COVA riance

aa.append (COR _elation)

1[1], 0.0
I[1], 0.0

Y

#aa .append ((w_k, Mlist tild))

nmnn

plt.figure (4)

z2 = zx1.0

72 .sort ()

ww = ApparentMagnitude(z2, a[i][0],a[i][1], 0.0).
Weightingfactor (z2, beta, 0.0)

wk = ww/sum (ww)

plt.plot (z2, len (z2)xwk)

plt. flbule( )
L_1 = + (1. /np 105,(len (wk) ) *sum (wkxnp . log (wk) ) )
plt . plot(a[l][ |,

0 marker="+", color="g’)
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1136
1137
1138
1139

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

1166

1167

1168

1169

1170
1171
1172

1173
1174
1175
1176
1177
1178
1179
1180
1181

plt .plot(a[i][1], L_1, marker="+4’, color="r"’)

plt.figure (6)
V = Model(a[i][0], a[i][l]) .curvature(z2, a[i][0],a[i
I[1], 0.0)[1]

plt.plot (z2, V)

nnn

return aa

Cov_All Models = func(All models,redshift , Beta)

#print "Cov_All Models = ", Cov_All Models, "\n"
print "len (Cov_All Models) = ", len(Cov_All Models), "\n"
print "len (All models) = ", len(All _models), "\n"

All models = np.asarray (All models)
Cov_All Models = np.asarray (Cov_All Models)

Hxxxkkkxkkkx grid of covariance sorsskorsskor ks kokokokok

# figure of 3D(surface)

#All_models[:,0] is a liste of lamda
#All _models[: ,1] is a liste of omega

fig = plt.figure(7)
ax = fig.add subplot(111)

col = plt.scatter (All models[:,1], All models[:,0], marker="."
, s=150, c=Cov_All Models, linewidths=0.3, cmap=plt.cm.
Spectral _r)

#for vv, ww, dd in zip (All models[:,1], All models[:,0],
Cov_All Models) :

# pl.text(vv, ww, %.2f> % dd, ha=’center’, va=’'bottom ’)
plt.plot ([omega0 Model] ,[lambda0 Model], marker="0’, color="m

)

# Add a colourbar.

Y

#cax = fig.colorbar(col, orientation=’vertical ’,format="%.30f
’)
cax = fig.colorbar(col, orientation=’vertical’  format="%.2f")

cax.set_label (’Covariance’)

plt . xlabel (7$\\Omega_ {\\circ}$’, fontsize=14)
plt.ylabel (’$\\lambda {\\circ}$’, fontsize=14)

#——————For the save of the data
OmegaOfGrid = All_models[:,1]%1.0
LambdaOfGrid = All_models[:,0]*1.0
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1182 CorrCoefficient = Cov_All Modelsx1.0

1183 /

1184

1185

1186 #plt . figure (8)

1187 #for i in range(len (Cov_All Models)):

1188 # plt.plot (Cov_All Models[i], All models[i][0], marker='o’,
color="r ")

1189

1190 #n, bins, patches = plt.hist (Cov_All Models,40 ,normed="True )

1191 #(mu_hist, sigma hist) = norm. fit (array (Cov_All Models))

1192 #y = mlab.normpdf( bins, mu_hist, sigma hist)

1193 #plt .plot (bins, y, ’r——’, linewidth=2)

1194 #plt . title (r’$\rho_{0}=%.7f,\ \sigma {0}=%.3f$’ %(mu_hist,
sigma_hist), color="r")

1195 #plt .xlabel (’ Correlation coefficient ’, fontsize=14)

1196

1197 ko o o ok o R KKK KRR R R R R R R R R R KR KKK KK

1198

1199 Covariance_Vert = []

1200 Covariance Hor = []

1201

1202 omegaOCovariance Vert = []

1203 lambda0Covariance_Vert = []

1204 q0Covariance_Vert = []

1205

1206 omegaOCovariance Hor = []

1207 lambda0Covariance Hor = []

1208 q0Covariance _Hor = []

1209

1210 # make the array as matrix to search the null correlation
curve on the grid!

1211 Cov_All Models = Cov_All Models.reshape (int (sqrt(len (
All_models[:,1]))), int(sqrt(len (All_models[:,0]))))

1212

1213 All_modelslambda = All_models[: ,0].reshape(int (sqrt(len (

All _models[:,0]))), int(sqrt(len(All models[:,0])))) # For
matrix of lambda

1214 All modelsomega = All models[:,1].reshape(int(sqrt(len(
All_models[:,1]))), int(sqrt(len(All_models[:,0])))) # For
matrix of omega

1215

1216 #To make the contours of confidence levels

1217 #CS = pl.contour (All modelsomega, All modelslambda, abs(
Cov_All Models), 3, linewidths=np.arange (.5, 4, .5), colors=('r
’, ’green’, ’blue’, (1,1,0), ’#afeeee’, ’0.5"))

1218 #plt.clabel (CS, inline=1, fontsize=10)

1219 #plt .show ()

1220

1221 #search of covariance zero by HORIZONTAL interpolation

1222 for i in range(len (omegalist)):

1223 #

182



ot

w w w w w [ [ V) V) [\~ [ V] [
AL KB~ O © ®» N o ot g

w W W
= o © oo ~ D O

g A A A A A AR A A A OB W
= o © oo ~ [=2} ot S W

ot ot
W o

e el o o o o o o i T e Y R R el e o e e

NN NN NN N NN N NN N NN NN NN NN NNN NN N NN NN

ot
SN

1265
1266
1267
1268
1269
1270

o N

2
o

2)

2)

e e

7
273
7

274

Condition 1 = any(Cov_All Models[i] =— 0.0)
if Condition 1 = True:
rr = Cov_All_Models|[1i]
bb = All_modelsomegali|
while Condition 1 —— True:
rr = list (rr)
bb = list (bb)

bb.remove (bb[rr.index (0.0)])
rr.remove (0.0)

rr array (rr)
bb = array (bb)

Condition 1 = any(rr = 0.0)

elg® g
rr = Cov_All_Models[1i]
bb = All modelsomegali]

rr = array(rr)
bb = array (bb)

Condition 2 = all(sign(rr)> 0)
Condition 3 = all(sign(rr)< 0)

if Condition 1 = False and Condition 2 = False:
Cov_0 = 0.0
lambda0 = All_modelslambda[i][0]
omegal = Functions (0.7, 0.3).Nonlinear Interpolation (bb,
rr, Cov_0)
q0 = omega0 /2. — lambda0

Covariance_Hor . append (Cov_0)
omegaOCovariance Hor . append (omega0)
lambda0Covariance Hor .append (lambda0)
q0Covariance Hor .append (q0)

else:
pass

#search of covariance zero by VERTICAL interpolation
for 1 in range(len (lamdalist)):

H

Condition_1 = any(Cov_All_Models[:,i] = 0.0)
if Condition 1 = True:
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1275 rr = Cov_All Models[:,1i]

1276 bb = All modelslambda|: ,i]

1277

1278 while Condition 1 == True:

1279 rr = list (rr)

1280 bb = list (bb)

1281

1282 bb.remove (bb|[rr.index (0.0)])

1283 rr.remove (0.0)

1284

1285 rr = array(rr)

1286 bb = array (bb)

1287

1288 Condition_1 = any(rr = 0.0)

1289

1200 else:

1291 rr = Cov_All Models[:,1i]

1292 bb = All modelslambda|: ,i]

1293

1294

1295 rr = array (rr)

1296 bb = array (bb)

1297

1208 Condition_2 = all (sign(rr)> 0)

1299 Condition_3 = all (sign(rr)< 0)

1300

1301 if Condition 1 — False and Condition 2 — False:

1302 COV_O = 0.0

1303 lambda0 = Functions (0.7, 0.3).Nonlinear Interpolation (bb,
rr, Cov_0)

1304 omega0 = All_modelsomega[:,i][0]

1305 q0 = omega0/2. — lambda0

1306

1307 Covariance_Vert.append (Cov_0)

1308 omega0Covariance Vert.append (omega0)

1309 lambda0Covariance _Vert .append (lambda0)

1310 q0Covariance Vert.append (q0)

1311

1312 else:

1313 pass

1314

1315 #

1316

1317

1318 #plt . figure (9)

1319

1320 Y Fit, X_Fit =[], []

132 lambda0OCovariance = lambdaOCovariance Hor +
lambdaO0Covariance Vert

1322 omegalCovariance = omegaOCovariance Hor +
omegalOCovariance Vert

1323 lambda0Covariancel = list (array (lambdaOCovariance)*1.0)

184



omegaOCovariancel = list (array (omegaOCovariance) *1.0)

print "lambdaOCovariancel = ", lambdaOCovariancel
print "omegaOCovariancel = ", omegaOCovariancel

for i in range(len (lambda0Covariance Vert)):
plt . plot (omegaOCovariance Vert[i], lambdaOCovariance Vert|i
|, marker=".", color="1")

for i in range(len (lambda0Covariance Hor)):
plt . plot (omegaO0Covariance Hor[i], lambdaOCovariance Hor[i],
marker=".", color="g")

for i in range(len(lambdaOCovariance)):
X _Fit. append (min (omega0Covariancel))
Y Fit.append(lambda0Covariancel [omegaOCovariancel .index (min (
omegalOCovariancel))])

lambda0Covariancel .remove (lambda0Covariancel |
omegalOCovariancel .index (min (omega0Covariancel)) |)
omegaOCovariancel .remove (min(omegaOCovariancel))

Y Fit2, X Fit2 = list (array(lambdaOCovariance)*1.0), list (
array (omega0Covariance) *1.0)
[

X_Fit3, Y_Fit3 = [], |]

for i in range(len(X_Fit2)):

if X Fit2[i] = min(X_Fit2) or Y Fit2[i] == min(Y_Fit2):
pass

elif X Fit2[i] = max(X_Fit2) or Y _ Fit2[i] =— max(Y_Fit2):
pass

elge ¢

X_Fit3.append (X_Fit2[i])
Y _ Fit3.append (Y _Fit2[i])

X, Y=1], [l
for i in range(len(X_Fit3)):
Y. append (min (Y _Fit3))
X.append (X Fit3[Y Fit3.index (min(Y_Fit3))])
X Fit3.remove(X Fit3[Y Fit3.index (min(Y_ Fit3))])
Y Fit3.remove(min(Y Fit3))

print "len(X) = ", len(X)
print "len (Y) = ", len(Y)
print "X =", X
print "Y =" Y
if omega0 Model < min(X):
omegalist2 = linspace (omega0_Model —0.02, max(X), 200)

elif omega0_Model > max(X) :
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1371 omegalist2 = linspace (min(X), omega0 Model+0.02, 200)
1372

1373 else:

1374 omegalist2 = linspace (min(X), max(X), 200)

1376 plt.plot (X, Y, color=couleur)

1378 Lamdalimit =[]

1379 omegalist = linspace (min(omegalist), max(omegalist), 200)

1380

1381 for i in range(len (omegalist)):

1382 Lamdalimit . append (Functions (0.7, 0.3) .NoBigBang(omegalist |1
|, ’limit "))

1383

1384 plt.fill between (omegalist , Lamdalimit, max(Lamdalimit), color
=(0.5,0.5,0.5))

1385 plt.text (0.001, 1.468, ’No Big Bang’, color="w’)

1386 plt.text (0.7, 1.32, ’($\\Omega {\\circ}$, $\\lambda_{\\circ}$)
= (+str (omega0_Model)+’, ’+str (lambda0_Model)+’)’, color="r")

1387

1388 plt . plot ([omega0 Model] ,[lambda0 Model], marker="0’, color="r’
)

1389 plt.xlabel (7$\\Omega {\\circ}$’, fontsize=16)

1390 plt.ylabel (’$\\lambda {\\circ}$’, fontsize=16)

1301 grid (True)

1392

1393 plt.figure (9)

1394

1395 Y _Fit, X_Fit = [], []

1396 lambda0Covariance = lambda0Covariance Hor +
lambdaOCovariance Vert

1397 omegal0Covariance = omegaOCovariance Hor +
omegaOCovariance Vert

1398 lambda0Covariance . append (lambda0_ Model)

1399 omegaOCovariance . append (omega0 Model)

1400

1401 lambda0Covariancel = list (array(lambda0OCovariance) *1.0)

1402 omegaOCovariancel = list (array (omegaOCovariance) *1.0)

140

1404 print "lambdaOCovariancel = ", lambdaOCovariancel

1405 print "omegaOCovariancel = ", omegaOCovariancel

1406

1407 for i in range(len (lambda0Covariance Vert)):

1408 plt . plot (omegaOCovariance Vert[i], lambdaOCovariance Vert|i
|, marker=".", color="r")

1409

1410 for i in range(len (lambdaOCovariance Hor)):

1411 plt . plot (omegaOCovariance Hor[i], lambdaOCovariance Hor[i],
marker=".", color="g"’)

1412

1413 for i in range(len(lambdaOCovariance)):

1414 X _Fit.append (min (omega0Covariancel))
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1415

1416
1417

1418
1419

1420

1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462

1463

Y Fit.append(lambda0Covariancel [omega0Covariancel .index (min (
omegalOCovariancel))])

lambda0Covariancel .remove (lambda0Covariancel |
omegalCovariancel .index (min (omegaOCovariancel))|])
omegalOCovariancel .remove (min(omegaOCovariancel))

Y _Fit2, X_Fit2 = list (array (lambdaOCovariance)*1.0), list (
array (omega0Covariance) *1.0)
X _Fit3, Y_Fit3 = [], []

for i in range(len(X_ Fit2)):
if X Fit2[i] =— min(X_Fit2) or Y _Fit2[i] == min(Y_Fit2):
pass
elif X Fit2[i] = max(X_Fit2) or Y Fit2[i]|] = max(Y_Fit2):
pass

elg® g
X_Fit3.append (X _Fit2[i])
Y _ Fit3.append (Y _Fit2[i])

%SvY: (1, 1

for i in range(len(X_Fit3)):
Y. append (min (Y _Fit3))
X.append (X _Fit3[Y _Fit3.index (min(Y_Fit3))])
X Fit3.remove (X Fit3[Y_Fit3.index (min(Y_ Fit3))])
Y Fit3.remove(min(Y Fit3))

nnn
for i in range(len(X_Fit3)):
X.append (min (X _Fit3))
Y.append (Y Fit3[X Fit3.index (min(X_ Fit3))])
Y _ Fit3.remove(Y_Fit3[X_Fit3.index (min(X_Fit3))])
X_Fit3.remove (min(X_Fit3))
nnn

e

print "len(X) = ", len(X)
print "len (Y) =", len (Y)

print "X =" X
print "Y =" Y
if omega0 Model < min(X):
omegalist2 = linspace (omega0_Model —0.02, max(X), 200)

elif omega0_Model > max(X) :
omegalist2 = linspace (min(X), omega0 Model+0.02, 200)

elg® g
omegalist2 = linspace (min(X), max(X), 200)
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1465
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1468
1469
1470
1471

1476

1478
1479
1480
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1485
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1500
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1503
1504
1505
1506
1507
1508
1509
1510
1511
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|

plt

.plot (X, Y, color=couleur)

Lamdalimit =[]
omegalist = linspace (min(omegalist), max(omegalist), 200)

for
L

)
’

plt

i in range(len(omegalist)):
amdalimit . append (Functions (0.7, 0.3).NoBigBang(omegalist |1
limit ”))

.fill _between (omegalist , Lamdalimit, max(Lamdalimit), color

=(0.5,0.5,0.5))

)

nnn

def

plt
plt

f("

plt.

plt
plt

)

.text (0.001, 1.468, ’No Big Bang’, color="w’)
.text (0.7, 1.35, ’($\\Omega_ {\\circ}$, $\\lambda_ {\\circ}$)
+str (omegal0_Model)+’, ’+str (lambda0_Model)+’)’, color="r")

plot ([omega0 Model] ,[lambda0 Model], marker="0’, color="r’

.xlabel ("$\\Omega_ {\\circ}$’, fontsize=16)
.ylabel (’$\\lambda_ {\\circ}$’, fontsize=16)

grid (True)

return OmegaOfGrid, LambdaOfGrid, CorrCoefficient , X, Y

class Save:
Registration of all lists and arrays in one file
__init _ (self , listofarrays , stringlistofarrays , filename):

nnn

self .listofarrays = listofarrays
self .stringlistofarrays = stringlistofarrays
self.filename = filename

def ReadWrite(self , header, private pc):

path = str(self.filename)

f:

open (path, ’'w’)

if header =— True:

for 1 in range(len(self.stringlistofarrays)):

f

listname = self.stringlistofarrays|[]]
listname = str(listname)
f.write(listname)

f.write (" ")

.write ("\n")

elif header — False:

p

ass
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1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532

1533

length = [len(a) for a in self.listofarrays]
for 1 in range(max(length)):

for 1 in range(len(self.listofarrays)):

if i < len(self.listofarrays[l]):

element = self.listofarrays[l][1]
element = str(element)
f.write(element)
f.write (" ")

else:
f.write("Nan")
f.write(" ")

f.write("\n")

f.close ()

print path, "\n"
return path

Listing D.1: Python example
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