
HAL Id: tel-01857440
https://theses.hal.science/tel-01857440

Submitted on 16 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Contributions to parametric timed model checking:
Theory and algorithms

Étienne André

To cite this version:
Étienne André. Contributions to parametric timed model checking: Theory and algorithms. Logic in
Computer Science [cs.LO]. Université Paris 13, 2018. �tel-01857440�

https://theses.hal.science/tel-01857440
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Mémoire d’habilitation à diriger des recherches

Contributions to parametric timed model

checking: Theory and algorithms

Étienne André

Defended on 25th of June 2018, before the committee composed of

Parosh Aziz Abdulla Uppsala University Sweden Reviewer
Patricia Bouyer-Decitre CNRS France Reviewer
Benoît Caillaud Inria Rennes France Examiner
Thao Dang CNRS, Université Grenoble Alpes France Examiner
Kim Guldstrand Larsen Aalborg University Denmark Reviewer
Giuseppe Lipari Université de Lille France Examiner
Tayssir Touili Université Paris 13 France Examiner
Emmanuel Viennet Université Paris 13 France President

This manuscript is mostly based on joint works with:

Thomas Chatain ENS Paris-Saclay France
Camille Coti Université Paris 13 France
Benoît Delahaye Université de Nantes France
Sami Evangelista Université Paris 13 France
Laurent Fribourg CNRS, ENS Paris-Saclay France
Michał Knapik Institute of Computer Science, PAS Poland
Didier Lime École Centrale de Nantes France
Lin Shang-Wei Nanyang Technological University Singapore
Giuseppe Lipari Université de Lille France
Nicolas Markey CNRS, Univ. Rennes France
Nguyễn Hoàng Gia Université Paris 13 France
Wojciech Penczek ICS PAS, Siedlce University Poland
Laure Petrucci Université Paris 13 France
Mathias Ramparison Université Paris 13 France
César Rodríguez Di�blue Ltd, Oxford England
Olivier H. Roux École Centrale de Nantes France
Romain Soulat Thales R&D France
Sun Jun Singapore University of Technology and Design Singapore
Sun Youcheng University of Oxford England

2

Contents

1 Introduction 6

2 Preliminaries 11
2.1 Parametric timed automata . 11

2.1.1 Clocks, Parameters and Constraints . 11
2.1.2 Parametric Timed Automata . 12
2.1.3 Subclasses of PTAs . 16

2.2 Decision and computation problems . 17
2.2.1 Decision problems . 17
2.2.2 Computation problem . 19

2.3 A semi-algorithm for reachability synthesis . 19
2.4 A semi-algorithm for trace set preservation synthesis . 20

3 Decidability and expressiveness of parametric timed automata 22
3.1 Exploring the jungle of decidability results . 22

3.1.1 Almost everything is undecidable for simple PTAs 22
3.1.2 Bounding the numbers of clocks and parameters 24
3.1.3 L/U-PTAs . 25

3.2 Expressiveness of parametric timed automata . 26
3.2.1 A new subclass: Integer-point parametric timed automata 26
3.2.2 De�ning the expressiveness of parametric timed automata 28
3.2.3 Comparison of the expressiveness of subclasses of PTAs 29

3.3 Decidability of parametric timed automata . 32
3.3.1 EF-emptiness . 32
3.3.2 AF-emptiness . 35
3.3.3 EG-emptiness . 36
3.3.4 AG-emptiness . 37
3.3.5 Nesting quanti�ers . 38
3.3.6 Cycle-existence emptiness . 38
3.3.7 Deadlock-freeness emptiness and synthesis . 39
3.3.8 Language and trace preservation . 42
3.3.9 The one-clock case . 44
3.3.10 Summary of decision problems . 44

3.4 Perspectives . 46

3

4 E�cient veri�cation 47
4.1 Convex state merging . 48
4.2 Dynamic clocks elimination . 49
4.3 Guaranteeing termination with the integer hull . 51

4.3.1 Context and objective . 51
4.3.2 A parametric extrapolation . 52
4.3.3 Ensuring termination of parameter synthesis . 53
4.3.4 Implementation . 55

4.4 Towards distributed parameter synthesis . 55
4.4.1 The behavioral cartography . 56
4.4.2 Distribution policies . 57

4.5 EF-synthesis using reachability preservation . 60
4.5.1 Reachability preservation . 60
4.5.2 EF-synthesis . 62

4.6 Compositional synthesis for parametric event-recording automata 63
4.6.1 Parametric event-recording automata . 63
4.6.2 Learning event-recording automata . 65
4.6.3 Compositional veri�cation of event-recording automata 66
4.6.4 Compositional parameter synthesis . 67

4.7 Perspectives . 68

5 Synthesis algorithms 70
5.1 Parameter synthesis and robustness . 70

5.1.1 Varying the de�nition of robustness . 70
5.1.2 Precise robustness in time Petri nets . 72
5.1.3 Robustness and partial orders . 75

5.2 Non-Zeno synthesis . 78
5.2.1 CUB-parametric timed automata . 79
5.2.2 Non-Zeno synthesis . 80

5.3 Combining timing parameters with action parameters . 80
5.4 Parameter synthesis in probabilistic models . 82

5.4.1 Consistency in interval probabilistic timed automata 84
5.4.2 Consistency synthesis in parametric interval probabilistic timed automata 84

5.5 Perspectives . 85

6 Application to parametric schedulability 87
6.1 Parametric schedulability analysis . 87

6.1.1 Schedulability analysis using parametric stopwatch automata 88
6.1.2 Experiments and comparison . 89

6.2 Parametric task automata: A uni�ed formalism for uniprocessor schedulability 91
6.2.1 Decidability and undecidability . 92
6.2.2 Synthesis . 93

6.3 The Thales FMTV challenge . 94
6.3.1 Challenge description . 94
6.3.2 Solution using IMITATOR . 95

6.4 Perspectives . 97

7 Conclusion 98

4

Acknowledgements

I would like to warmly thank Parosh Abdulla, Patricia Bouyer and Kim Larsen for doing me the great honor
of reviewing my habilitation. I would also like to thank Benoît Caillaud, Thao Dang, Giuseppe Lipari and
Tayssir Touili for accepting to be part of the jury, and Emmanuel Viennet for being the president.

This habilitation would certainly not have been possible without the colleagues who collaborated on
these works. I appreciated not only the scienti�c collaboration, but also the excellent atmosphere in which
these joint works were carried out.

Je remercie le CNRS pour m’avoir o�ert l’opportunité d’une délégation au sein de l’IRCCyN (désormais
LS2N) en 2015–2016, laquelle a permis des travaux de recherche fructueux, et de con�rmer une collabora-
tion soutenue avec mes collègues nantais, notamment Benoît Delahaye, Didier Lime et Olivier Roux. Une
partie de ce manuscrit provient directement des travaux entrepris au cours de ma délégation.

L’Agence Nationale de la Recherche a directement contribué à cette HDR via le soutien du projet ANR
PACS (Parametric Analyses of Timed Systems) 2014–2019 dont je suis porteur. La plupart des résultats pré-
sentés ici ont béné�cié du cadre tant �nancier que scienti�que de ce projet.

Merci à Christophe Fouqeré et Frédérique Bassino pour m’avoir guidé dans la jungle administrative
tridécaparisienne d’une soutenance d’HDR, et à Christine Choppy pour ses conseils.

Je remercie chaleureusement l’équipe systèmes temps-réel de feu l’IRCCyN pour leur très sympathique
accueil d’un « maître de conférences CNRS » (sic), pour avoir généreusement accepté d’avancer certains
jours leur pause-déjeuner dès 13h15, pour les soirées Sergio Leone et Quentin Tarantino dans un cinéma
privé de Carquefou (auquel certaines salles parisiennes n’ont rien à envier quant à la taille de l’écran), pour
la carte cantine magique où plus l’on mange et moins on paie, pour les pauses café, pour les (presque)
soirées raclette, bref pour avoir créé un climat aussi chaleureux que le climat nantais n’est humide.

I would like to thank Dong Jin-Song for hiring me as a post-doc with the National University of Singa-
pore in 2010–2011 and for o�ering me various interesting opportunities since then.

Un grand merci à Laurent Fribourg pour avoir poursuivi un service après-vente plusieurs années
après la �n de ma thèse, par ses conseils toujours judicieux et sa bonne humeur. Et un remerciement tout
particulier à Alain Finkel et Serge Haddad sans qui ce mémoire d’habilitation n’aurait (peut-être) jamais
vu le jour.

En�n, merci à mes parents (qui m’ont notamment o�ert gîte et couvert pendant une partie de la rédac-
tion de ce mémoire) et à mon super-frérot.

5

Chapter 1
Introduction

Context

Since two decades, the number of embedded systems has risen dramatically. Such systems are critical
whenever a failure can have dramatic consequences, such as huge �nancial costs or even possible loss of
human lives. In addition, with the rise of the Internet of Things in a very near future, the number of critical
devices in smart homes, smart cities (including autonomous cars), will also increase dramatically.

The correctness of critical embedded systems must be asserted before execution. This can be achieved
using formal methods, that include mainly model-based testing, theorem proving or model checking. My
contributions in this manuscript focus on model checking. Model checking allows to formally assess the
correctness of a system using a model (a mathematical abstraction) and a property. Three of the main
scientists behind this paradigm (Edmund M. Clarke, Allen Emerson and Joseph Sifakis) were awarded the
ACM’s Turing Award in 2007. In the original setting, model checking can take as input a �nite state au-
tomaton, and a property, typically expressed in a temporal logic such as LTL or CTL. A simple example is
depicted in Figure 1.1.

This simple setting, although used in powerful tools with industrial successes, falls short when the
designers need to model and verify quantitative aspects such as time, energy, probabilities, etc. Timed
automata [AD94] allow for modeling and verifying systems where concurrency is combined with critical
timing aspects. This seminal work [AD94] was awarded the CAV award in 2008, and numerous works
extended this formalism since then.

However, despite some success, (timed) model checking can be seen as slightly disappointing. Two
major reasons are the binary response to properties satisfaction, which may not be informative enough,

A model of the system

?

|= is unreachable

A property

yes/no

Figure 1.1 – Model checking

6

y = p1

x < p2
x := 0

x < p3

A model of the system

?

|= is unreachable

A property

yes if. . .
p2 < p1

Figure 1.2 – Parametric timed model checking

and the insu�cient abstraction to cater for tuning and scalability of systems. Parameters o�er a higher level
of abstraction, by allowing unknown constants in a model. In model checking timed systems, parameters
can model unknown timing constants. The interest is two fold: �rst, it becomes possible to verify a system
at an earlier design stage, when all timing constants are not yet known with full certainty. And, second,
it allows designers to cope with uncertainty even at runtime: some timings constants (e. g., periods of a
real-time system) might be known with only some precision, and parameters can model this imprecision.
In fact, the problem with a binary answer of Figure 1.1 becomes richer when augmented with parameters:
instead of answering “yes” or “no”, parametric model checking synthesizes values for which the system
meets its speci�cation. This is depicted in Figure 1.2.

Parametric timed automata [AHV93] are an extension of timed automata where timing constants can
become unknown, i. e., parameters. They represent a particularly expressive formalism: in fact, its expres-
siveness is Turing-complete and all non-trivial problems are undecidable.

Parametric timed automata su�er from negative results when coming to decidability, but they remain an
extremely powerful formalism. They can help to address robustness (in the sense of possibly in�nitesimal
variations of timing constants [BMS13]), can model and verify systems with uncertain constants, and can
synthesize suitable (possibly unknown) valuations so that the system meets its speci�cation.

In addition, several recent decidability results for subclasses of parametric timed automata (e. g., [BL09;
BO14; JLR15; Ben+15]) made this formalism more promising, while new algorithmic and heuristic tech-
niques (e. g., [KP12; JLR15; Aşt+16]) made the parametric veri�cation for some classes of problems more
scalable, more complete, or more often terminating.

Veri�cation with parametric timed automata had concrete outcomes in various areas, with veri�-
cation of case studies such as the root contention protocol [Hun+02], Philip’s bounded retransmission
protocol [Hun+02]), a 4-phase handshake protocol [KP12], the alternating bit protocol [JLR15], an asyn-
chronous circuit commercialized by ST-Microelectronics [Che+09], (non-preemptive) schedulability prob-
lems [JLR15], a distributed prospective architecture for the �ight control system of the next generation of
spacecrafts designed at ASTRIUM Space Transportation [Fri+12], and even analysis of music scores [FJ13].

In the past decade, I contributes to the state-of-the-art of parametric veri�cation on three directions of
research:

1. exhibit decidable subclasses, and evaluate their complexity;

2. design semi-algorithms (procedures that may not terminate, but if they do, the result is correct), and
perform experiments to evaluate how often they terminate;

7

3. design algorithms with an approximated result (i. e., that may lose the completeness).

I address all three directions in this manuscript. In addition, I focused speci�cally on parametric schedula-
bility analysis (notably for real-time systems), and solved (with two of my colleagues) an industrial chal-
lenge proposed by Thales, using parametric timed automata.

Finally note that abstraction and uncertainty can also be encoded using probabilities: this is also a
setting I used (together with timing parameters) in one of my contributions.

Content of this manuscript

Chapter 2 recalls the necessary material, mainly parametric timed automata and decision problems.

Chapter 3 reports on contributions concerning the decidability of parametric timed automata and their
subclasses. I start by performing a survey of (nearly) all known decidability results for parametric timed
automata, their subclasses or variants. I then present new decidability results, and exhibit several novel
decidable subclasses, namely (variants of) lower-bound/upper-bound parametric timed automata (initially
de�ned in [Hun+02]) and integer-point parametric timed automata [ALR16a].

This chapter is mainly based on [And18; ALR16b; AM15; ALR16a; And16; AL17a; ALR18]. Recurrent
and main collaborators on this topic are Didier Lime, Olivier H. Roux and Nicolas Markey. The beginning
of Mathias Ramparison’s PhD thesis (who started in September 2016) is also integrated [ALR18].

Chapter 4 summarizes contributions related to techniques to speed up parameter synthesis in practice,
independently of the decidability. That is, even in the large class of parametric timed automata, we design
optimizations that may be exact, or approximated—in the latter case, termination is ensured. The �rst
two techniques are techniques initially proposed for timed automata, that we extended to the parametric
setting, i. e., convex state merging (together with Romain Soulat and Laurent Fribourg), and dynamic clock
elimination. Then, the integer hull (in collaboration with Didier Lime and Olivier Roux) is a technique
speci�cally designed for parameter synthesis (together with a new notion of parametric extrapolation),
that ensures termination while synthesizing at least all integer valuations (in a bounded domain).

In a di�erent line of work, we show that parameter synthesis can be sped up using distributed veri�-
cation (with Camille Coti, Sami Evangelista and Nguyễn Hoàng Gia). We then report on an algorithm that
makes the distributed parameter synthesis more e�cient (with Giuseppe Lipari and Sun Youcheng), based
on the notion of preservation of reachability (a given location is reachable for all synthesized valuations i�
it is reachable in a given non-parametric model). Then, using a learning algorithm for a subclass of non-
parametric timed automata (namely event-recording automata [AFH99]), we can infer an abstraction of a
system, that is used in compositional veri�cation (with Lin Shang-Wei). Combining several of this works
together, we can �nally design a semi-algorithm for compositional parameter synthesis for parametric
even-recording automata (again with Lin Shang-Wei).

This chapter is mainly based on [AFS13a; And13a; ACE14; ACN15; And+15; Lin+14; AL17b; AL18].
The results of Nguyễn Hoàng Gia’s PhD thesis are partially integrated in this chapter [ACN15; And+15].

Chapter 5 addresses the problem of synthesis in practice, that is to design (e�cient) algorithms to solve
concrete problems. Notably, I am interested in robustness in parametric timed automata and parametric
time Petri nets [TLR09] (with Thomas Chatain and César Rodríguez), a formalism that resembles parametric
timed automata, but that allows for an explicit notion of concurrency. I also addressed the problem of pa-
rameter synthesis under the non-Zeno assumption (with Nguyễn Hoàng Gia, Laure Petrucci and Sun Jun),
that rules out Zeno runs, i. e., containing an in�nite number of actions in a �nite time. Finally, I consider
two extensions of parametric timed automata. First, extended with action parameters, i. e., when part of the
alphabet can be enabled or disabled once for all, in the framework of a joint project with Michał Knapik
and Wojciech Penczek. And second, extended with probabilistic intervals, where the problem becomes to

8

synthesize timing parameter valuations for which a probabilistic model admits a consistent implementa-
tion; this latter work was done with Benoît Delahaye who brought his expertise in probabilistic interval
Markov chains.

This chapter is mainly based on [AS11; APP13; ACR17; And+17b; And+16; AD16].
The results of Nguyễn Hoàng Gia’s PhD thesis (co-supervised by Laure Petrucci) are partially integrated

in this chapter [And+17b].

Chapter 6 reviews contributions that focus speci�cally on real-time systems. First, parametric schedu-
lability analysis can be performed using parametric timed automata (extended with additional features such
as stopwatches), and can cope with real-time systems where some timings constants (typically periods or
deadlines) may be unknown. With Laurent Fribourg, Giuseppe Lipari and, Sun Youcheng, we performed
a comparison with analytical methods that show that our approach is generally slower, but on the other
hand more complete, and can deal with non-integer valuations. We also review parametric task automata,
a parametric extension of task automata [NWY99; Fer+07] that I recently proposed. Finally, as a more
practical achievement, we report on a challenge by Thales on a aerial video system with uncertain periods,
that we were able to solve using IMITATOR (with Giuseppe Lipari and Sun Youcheng).

This chapter is mainly based on [Sun+13b; And17; ALS15].

Most of the techniques summarized in this manuscript have been implemented (mainly in my tool
IMITATOR [And+12]). This is mentioned after each line of work (when applicable).

Local perspectives are given at the end of each chapter. In Chapter 7, I summarize contributions and
give general perspectives.

Other recent contributions

This manuscript synthesizes a selection of my research works since my PhD thesis in December 2010. I
brie�y mention in the following some contributions that are not included in this manuscript, because they
lie aside from the main research directions of this manuscript. The reader is referred to my Web page1 for
a complete and up-to-date list of publications.

System speci�cation This manuscript mainly focuses on system veri�cation, without much about the
speci�cation phase.

In [And13b], I proposed a set of non-compositional patterns for the veri�cation of timed systems, com-
ing from frequently used properties. The veri�cation of these patterns reduces to reachability; a syntax is
de�ned, and implemented in IMITATOR. We extended these patterns with Laure Petrucci in [AP15], adding
a limited dose of compositionality, while addressing both the speci�cation of systems and of formulas. We
showed that these patterns can encode some well-known patterns of the literature.

In [And+14], I proposed a parametric extension of the process algebra Stateful timed CSP [Sun+13a],
itself a timed extension of Hoare’s communicating sequential processes [Hoa85]. When compared to other
formalisms such as (parametric) timed automata, (parametric) stateful timed CSP has the advantage of
giving the designer the ability to specify hierarchical systems. I implemented this language into a prototype
tool (“PSyHCoS”) with some synthesis algorithms [And+13].

In a di�erent line of work, in particular around Mahdi Benmoussa’s PhD thesis (co-supervised with
Christine Choppy), we equipped a part of the Uni�ed Modeling Language (UML) syntax [OMG12] with a
formal semantics. In [ACK12; ABC14a; ABC14b; ABC16] we translated most syntactic constructs of the
UML state machines into colored Petri nets. In [ACR13; ACN14], with Christine Choppy, Thierry Noulamo

1https://lipn.univ-paris13.fr/~andre/publications.php

9

https://lipn.univ-paris13.fr/~andre/publications.php

and Gianna Reggio, we formalized (and extended) a subset of the syntax of UML activity diagrams, using
a translation into colored Petri nets.

Web services under uncertainty In [Tan+13], I proposed with Tan Tian Huat a method to synthesize
suitable response times of Web services; our method is inspired by state-of-the-art techniques for parame-
ter synthesis in formalisms such as parametric timed automata. We de�ned an extension of BPEL (Business
Process Execution Language) and proposed a symbolic semantics and synthesis algorithms. We then pro-
posed extensions with genetic algorithms [Tan+14] and probabilistic re�nement [Tan+16].

Exploration order In [ANP17], we studied several exploration orders of the symbolic states of paramet-
ric timed automata, so as to gain e�ciency while performing parameter synthesis. This work was carried
out during Nguyễn Hoàng Gia’s PhD thesis, that I co-supervise with Laure Petrucci.

Machine learning In [Li+17], we used active learning and classi�cation techniques to “guess” potential
parameter constraints after repeated calls to the non-parametric model checker Uppaal. Only after a con-
straint is guessed, IMITATOR is invoked to verify this constraint, leading to a dramatic gain in computation
time when compared to a purely parametric analysis. This work was carried out during Li Jiaying’s PhD
thesis, a PhD student of Sun Jun.

Alternating temporal logic Finally, with Wojtek Jamroga, Michał Knapik, Wojciech Penczek and Laure
Petrucci, we recently started in [And+17a] to consider a discrete-time extension of the Alternating temporal
logic (ATL), initially de�ned in [LMO06]. We compared several existing semantics (in addition to a new
counting semantics), and compared their expressiveness. A natural future extension will be to introduce
timing parameters, in the model and/or in the formula.

10

Chapter 2
Preliminaries

We �rst recall the formalism of parametric timed automata (Section 2.1). We introduce decision and com-
putation problems (Section 2.2), and recall a semi-algorithm for reachability synthesis (Section 2.3).

2.1 Parametric timed automata

2.1.1 Clocks, Parameters and Constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-negative rational numbers
and non-negative real numbers respectively.

Throughout this manuscript, we assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued variables
that evolve at the same rate. A clock valuation is a function w : X → R+. We identify a clock valuation w
with the point (w(x1), . . . , w(xH)) of RH+ . We write ~0 for the clock valuation that assigns 0 to all clocks.
Given d ∈ R+, w + d denotes the valuation such that (w + d)(x) = w(x) + d, for all x ∈ X . Given
R ⊆ X , we de�ne the reset of a valuation w, denoted by [w]R, as follows: [w]R(x) = 0 if x ∈ R, and
[w]R(x) = w(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown constants. A parameter valuation v
is a function v : P → Q+. We identify a valuation v with the point (v(p1), . . . , v(pM)) of QM

+ . An integer
parameter valuation is a valuation v : P → N.

In the following, we assume ./ ∈ {<,≤,≥, >}. A linear term overX∪P is of the form
∑

1≤i≤H αixi+∑
1≤j≤M βjpj+d, with xi ∈ X , pj ∈ P , andαi, βj , d ∈ Z. Throughout this paper, plt denotes a parametric

linear term over P , that is a linear term without clocks (i. e., αi = 0 for all 1 ≤ i ≤ H . A constraint C
(i. e., a convex polyhedron) over X ∪ P is a conjunction of inequalities of the form lt ./ 0, where lt is a
linear term. A simple inequality is of the form x ./ p or x ./ d (with d ∈ Q+), and a simple constraint is
a conjunction of simple inequalities. A diagonal inequality is of the form xi − xj ./ plt , and a diagonal
constraint is a conjunction of diagonal inequalities.

Given a parameter valuation v, v(C) denotes the constraint over X obtained by replacing each pa-
rameter p in C with v(p). Likewise, given a clock valuation w, w(v(C)) denotes the expression obtained
by replacing each clock x in v(C) with w(x). We say that v satis�es C , denoted by v |= C , if the set of
clock valuations satisfying v(C) is nonempty. Given a parameter valuation v and a clock valuation w, we
denote by w|v the valuation over X ∪ P such that for all clocks x, w|v(x) = w(x) and for all parameters
p, w|v(p) = v(p). We use the notation w|v |= C to indicate that w(v(C)) evaluates to true. We say that C
is satis�able if ∃w, v s.t. w|v |= C . An integer point is w|v, where w is an integer clock valuation, and v is
an integer parameter valuation.

11

We de�ne the time elapsing of C , denoted by C↗, as the constraint over X and P obtained from C by
delaying all clocks by an arbitrary amount of time. That is,

w′|v |= C↗ i� ∃w : X → R+,∃d ∈ R+ s.t. w′|v |= C ∧ w′ = w + d.

We de�ne the past of C , denoted by C↙, as the constraint over X and P obtained from C by letting time
pass backward by an arbitrary amount of time (see e. g., [JLR15]). That is,

w′|v |= C↙ i� ∃w : X → R+, ∃d ∈ R+ s.t. w′|v |= C ∧ w′ = w − d ∧ ∀x ∈ X : w′(x) ≥ 0.

Given R ⊆ X , we de�ne the reset of C , denoted by [C]R, as the constraint obtained from C by resetting
the clocks in R, and keeping the other clocks unchanged. We denote by C↓P the projection of C onto P ,
i. e., obtained by eliminating the clock variables (e. g., using Fourier-Motzkin [Sch86]).

A parametric guard g is a constraint over X ∪ P de�ned by inequalities of the form x ./ plt .
> denotes the constraint over P containing all parameter valuations, while ⊥ denotes the constraint

containing no valuation.

2.1.2 Parametric Timed Automata

Syntax

De�nition 2.1 (parametric timed automaton [AHV93]). A parametric timed automaton (PTA) is a
tuple A = (Σ, L, l0, F,X, P, I, E), where:

1. Σ is a �nite set of actions,

2. L is a �nite set of locations,

3. l0 ∈ L is the initial location,

4. F ⊆ L is a set of �nal or accepting locations,

5. X is a �nite set of clocks,

6. P is a �nite set of parameters,

7. I is the invariant, assigning to every l ∈ L a parametric guard I(l),

8. E is a �nite set of edges e = (l, g, σ,R, l′) where l, l′ ∈ L are the source and target locations,
σ ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a parametric guard called the transition
guard.

Given a parameter valuation v, we denote by v(A) the non-parametric timed automaton where all
occurrences of a parameter pi have been replaced by v(pi). If v(A) is such that all constants in guards and
resets are integers, then v(A) is a timed automaton [AD94]. In the following, we may refer to as a timed
automaton any structure v(A), by assuming a rescaling of the constants: by multiplying all constants in
v(A) by their least common denominator, we obtain an equivalent (integer-valued) timed automaton.

We say that a PTA is deterministic if, for any l ∈ L, for any σ ∈ Σ, there exists at most one edge
(l, g, σ,R, l′) ∈ E, for some g,R, l′. (Note that it di�ers from a rather common de�nition of determin-
ism for TAs, that allows two or more outgoing transitions with the same action label provided that the
corresponding guards are pairwise disjoint.)

12

idle add sugar

x2 ≤ p2

preparing coffee

x2 ≤ p3

done

x1 ≤ 10

press
x1 := 0
x2 := 0 x1 ≥ p1

press
x1 := 0

x2 = p2

cup

x2 = p3

coffee
x1 := 0

press
x1 := 0
x2 := 0

x1 = 10
idle

Figure 2.1 – A co�ee machine modeled using a PTA

A clock is said to be a parametric clock if it is compared with at least one parameter in at least one guard
or invariant; otherwise, it is a non-parametric clock. This notion is central when studying the decidability
of problems for PTAs with few clocks and parameters.

Example 2.1. Consider the co�ee machine in Figure 2.1, modeled using a PTA with 4 locations, 2 clocks
(x1 and x2) and 3 parameters (p1, p2, p3). Invariants are boxed. The only accepting location (with a double
border) is done. Both clocks x1 and x2 are parametric clocks. Observe that all guards and invariants are simple
constraints.

The machine can initially idle for an arbitrarily long time. Then, whenever the user presses the (unique)
button (action press), the PTA enters location “add sugar”, resetting both clocks. The machine can remain in
this location as long as the invariant (x2 ≤ p2) is satis�ed; there, the user can add a dose of sugar by pressing
the button (action press), provided the guard (x1 ≥ p1) is satis�ed, which resets x1. That is, the user cannot
press twice the button (and hence add two doses of sugar) within a time less than p1. Then, p2 time units after
the machine left the idle mode, a cup is delivered (action cup), and the co�ee is being prepared; eventually, p2

time units after the machine left the idle mode, the co�ee (action coffee) is delivered. Then, after 10 time units,
the machine returns to the idle mode—unless a user again requests a co�ee by pressing the button.

Concrete Semantics

De�nition 2.2 (Concrete semantics of a TA). Given a PTAA = (Σ, L, l0, F,X, P, I, E), and a param-
eter valuation v, the concrete semantics of v(A) is given by the timed transition system (S, s0,→),
with

• S = {(l, w) ∈ L× RH+ | w|v |= I(l)},

• s0 = (l0,~0), and

• → consists of the discrete and (continuous) delay transition relations:

– discrete transitions: (l, w)
e→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists e =

(l, g, σ,R, l′) ∈ E, w′ = [w]R, and w|v |= g.

– delay transitions: (l, w)
d→ (l, w + d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, w + d′) ∈ S.

Moreover we write (l, w)
e7→ (l′, w′) for a combination of a delay and discrete transition where

13

((l, w), e, (l′, w′)) ∈ 7→ if ∃d,w′′ : (l, w)
d→ (l, w′′)

e→ (l′, w′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states of S as the concrete states

of v(A). A (concrete) run of v(A) is a possibly in�nite alternating sequence of concrete states of v(A) and
edges starting from the initial concrete state s0 of the form s0

e07→ s1
e17→ · · · em−17→ sm

em7→ · · · , such that for
all i = 0, 1, . . . , ei ∈ E, and (si, ei, si+1) ∈ 7→. Given a state s = (l, w), we say that s is reachable (or
that v(A) reaches s) if s belongs to a run of v(A). By extension, we say that l is reachable in v(A), if there
exists a state (l, w) that is reachable. By extension, given a set of locations T ⊆ L (T stands for “target”),
we say that T is reachable in v(A), if there exists a location l ∈ T that is reachable in v(A). We denote by
ReachLocs(v(A) the set of reachable locations, i. e., the set of locations belonging to a run of v(A). Given
a set of locations T ⊆ L, we say that a run stays in T if all of its states (l, w) are such that l ∈ T .

A maximal run is a run that is either in�nite (i. e., contains an in�nite number of discrete transitions),
or that cannot be extended by a discrete transition. A maximal run is deadlocked if it is �nite, i. e., contains
a �nite number of discrete transitions. By extension, we say that a TA is deadlocked if it contains at least
one deadlocked run.

Example 2.2. Consider again the PTA modeling a co�ee machine in Figure 2.1. Let v be the parameter
valuation such that v(p1) = 1, v(p2) = 5 and v(p3) = 8.

Given a clock valuation w, we denote it by (w(x1), w(x2)). For example, (0, 4.2) denotes that w(x1) = 0
and w(x2) = 4.2.

The following sequence is a concrete run of v(A).(
idle, (0, 0)

) press7→
(
addsugar, (0, 0)

) press7→
(
addsugar, (0, 1.78)

) press7→
(
addsugar, (0, 4.2)

) cup7→(
preparingcoffee, (0, 5)

) coffee7→
(
done, (3, 8)

) press7→
(
sugar, (0, 0)

)
As an abuse of notation, we write above each arrow the action name (instead of the edge), as edges are

unnamed in Figure 2.1.
This concrete run is not maximal (it could be extended).

Language of timed automata

Let (l0, w0)
e07→ (l1, w1)

e17→ · · · em−17→ (lm, wm)
em7→ · · · be a (�nite or in�nite) run of a TA v(A). The

associated untimed word is σ0σ1 · · ·σm · · · , where σi is the action of edge ei, for all i ≥ 0; the associated
trace1 is l0σ0l1σ1l2 · · ·σmlm+1 · · ·

Given a run (l0, w0)
e07→ (l1, w1)

e17→ · · · em−17→ (lm, wm), we say that this run is accepting if lm ∈ F .

De�nition 2.3 (untimed language of a TA). Given a PTAA = (Σ, L, l0, F,X, P, I, E), and a param-
eter valuation v, the untimed language of v(A), denoted by UL(v(A)), is the set of untimed words
associated with all accepting runs of v(A).

De�nition 2.4 (trace set of a TA). Given a PTAA = (Σ, L, l0, F,X, P, I, E), and a parameter valua-
tion v, the trace set of v(A), denoted by Traces(v(A)), is the set of traces associated with all accepting
runs of v(A).

1This is a nonstandard de�nition of traces (compared to e. g., [Gla90]), but we keep this term as it is used in, e. g., [And+09b;
AM15].

14

Example 2.3. Consider again the PTA A modeling a co�ee machine in Figure 2.1. Let v be the parameter
valuation such that v(p1) = 1, v(p2) = 5 and v(p3) = 8.

The untimed language of v(A) can be described as follows:

press[1..6] cup coffee
(
idle? press[1..6] cup coffee

)∗
where σ[a,b], σ?, σ∗ denote between a and b occurrences, zero or one occurrence, and zero or more occurrence(s)
of σ, respectively.

The trace set of v(A) can be described as follows:

idle (press add sugar)[1..6] cup preparing coffee coffee done(
(idle idle)? (press add sugar)[1..6] cup preparing coffee coffee done

)∗
Symbolic semantics

Let us now recall the symbolic semantics of PTAs (see e. g., [And+09b]).

De�nition 2.5 (Symbolic state). A symbolic state is a pair (l, C) where l ∈ L is a location, and C its
associated parametric zone.

De�nition 2.6 (Symbolic semantics). Given a PTA A = (Σ, L, l0, F,X, P, I, E), the symbolic se-
mantics of A is the labeled transition system called parametric zone graph PZG = (E,S, s0,⇒),
with

• S = {(l, C) | C ⊆ I(l)},

• s0 =
(
l0, (
∧

1≤i≤H xi = 0)↗ ∧ I(l0)
)
, and

•
(
(l, C), e, (l′, C ′)

)
∈ ⇒ if e = (l, g, σ,R, l′) and

C ′ =
(
[(C ∧ g)]R ∧ I(l′)

)↗ ∧ I(l′)

with C ′ satis�able.

That is, in the parametric zone graph, nodes are symbolic states, and arcs are labeled by edges of the
original PTA.

If
(
(l, C), e, (l′, C ′)

)
∈ ⇒, we write Succ(s, e) = (l′, C ′).

A graphical illustration of the computation of Succ is given in Figure 2.2.2
A symbolic run of a PTA is an alternating sequence of symbolic states and edges starting from the initial

symbolic state, of the form s0
e0⇒ s1

e1⇒ · · · em−1⇒ sm, such that for all i = 0, . . . ,m− 1, ei ∈ E, si, si+1 ∈ S
and (si, e, si+1) ∈ ⇒. Given a symbolic state s, we say that s is reachable if s belongs to a symbolic run of
A. In the following, we simply refer to symbolic states belonging to a run of A as symbolic states of A.

2This �gure comes from [AS13], itself coming from an adaptation of a �gure by Ulrich Kühne.

15

C

g

I(l′)

C ′

R

Figure 2.2 – Computing the successor of a symbolic state

Example 2.4. Consider again the co�ee machine example in Figure 2.1. A (non-maximal) symbolic run is as
follows:(
idle, x1 = x2 ∧ x1 ≥ 0

) press7→
(
addsugar, x1 = x2 ∧ 0 ≤ x2 ≤ p2

) press7→
(
sugar, p1 ≤ x2 − x1 ≤ p2 ∧ 0 ≤

x2 ≤ p2

) press7→
(
addsugar, 2× p1 ≤ x2 − x1 ≤ p2 ∧ 0 ≤ x2 ≤ p2

) cup7→
(
preparingcoffee, 2× p1 ≤ x2 − x1 ≤

p2 ∧ p2 ≤ x2 ≤ p3

) coffee7→
(
done, 0 ≤ x1 ≤ 10 ∧ x2 − x1 = 10 ∧ 2 × p1 ≤ p2 ≤ p3

) press7→
(
addsugar, x1 =

x2 ∧ 0 ≤ x2 ≤ p2 ∧ 2× p1 ≤ p2 ≤ p3

)
The parametric zone graph of this example is in�nite.

2.1.3 Subclasses of PTAs

Lower-bound/upper-bound parametric timed automata (L/U-PTAs), proposed in [Hun+02], restrict the use
of parameters in the model.

De�nition 2.7 (L/U-PTA). An L/U-PTA is a PTA where the set of parameters is partitioned into
lower-bound parameters and upper-bound parameters, where an upper-bound (resp. lower-bound)
parameter pi is such that, for every guard or invariant constraint x ./

∑
1≤j≤M βjpj + d, we have:

βj > 0 implies ./ ∈ {≤, <} (resp. ./ ∈ {≥, >}), and βj < 0 implies ./ ∈ {≥, >} (resp. ./ ∈ {≤, <}).

Given an L/U-PTA, we denote by v0/∞ the special parameter valuation (mentioned in, e. g., [Hun+02])
assigning 0 to all lower-bound parameters and∞ to all upper-bound parameters.3

In [BL09], two additional subclasses are introduced: L-PTAs (resp. U-PTAs) are PTAs with only lower-
bound (resp. upper-bound) parameters.

L/U-PTAs enjoy a well-known monotonicity property [Hun+02]: increasing upper-bound parameters
or decreasing lower-bound parameters can only add behaviors.

Example 2.5. Consider again the co�ee machine in Figure 2.1, modeled using a PTA A. This PTA is not
an L/U-PTA; indeed, in the guard x2 = p2 (resp. x2 = p3), p2 (resp. p3) is compared with clocks both as a
lower-bound and as an upper-bound. (Recall that = stands for ≤ and ≥.)

However, if one replaces x2 = p2 with x2 ≤ p2 and one replaces x2 = p3 with x2 ≤ p3, then A becomes

3Technically, v0/∞ is not a parameter valuation, as the de�nition of valuation does not allow∞. However, we will use it only
to valuate an L/U-PTA with it; observe that valuating an L/U-PTA with v0/∞ still gives a valid TA.

16

an L/U-PTA with lower-bound parameter p1 and upper-bound parameters {p2, p3}. Note that equalities are
not forbidden in L/U-PTAs (e. g., x1 = 10), but only equalities involving parameters.

Several case studies �t into the class of L/U-PTAs: the root contention protocol, the bounded retrans-
mission protocol and the Fischer mutual exclusion protocol are all modeled with L/U-PTAs in [Hun+02]; in
[Hun+02; KP12], both the Fischer mutual exclusion protocol and a producer-consumer are veri�ed using
L/U-PTAs. Interestingly, the two case studies of the seminal paper on PTAs [AHV93] (viz., a toy train gate
controller model and a model of Fischer mutual exclusion protocol) are also L/U-PTAs, although the con-
cept of L/U-PTAs had not yet been proposed at that time. In addition, most models of asynchronous circuits
with bi-bounded delays (i. e., where each delay between the change of an input signal and the change of
the corresponding output is a parametric interval) can be modeled using L/U-PTAs.

In this manuscript, we will also consider bounded PTAs, i. e., PTAs with a bounded parameter domain
that assigns to each parameter an in�mum and a supremum, both integers.

De�nition 2.8 (bounded PTA). A bounded PTA is A|bounds , where A is a PTA, and bounds assigns
to each parameter p an interval [inf, sup], (inf, sup], [inf, sup), or (inf, sup), with inf, sup ∈ N. We
use inf(p, bounds) and sup(p, bounds) to denote the in�mum and the supremum of p, respectively.
(Note that we rule out∞ as a supremum.)

We say that a bounded PTA is a closed bounded PTA if, for each parameter p, its ranging interval
bounds(p) is of the form [inf, sup]; otherwise it is an open bounded PTA.

We de�ne similarly bounded L/U-PTAs.

2.2 Decision and computation problems

2.2.1 Decision problems

Acceptance The �rst problem we will investigate in parametric timed automata is in fact a problem not
related to parameters. This problem is called membership (in e. g., [Mil00; And18]) but we rename it into
acceptance-problem so as to avoid confusion with what we call membership in [ALR16a].

acceptance problem:
Input: A PTA A and a parameter valuation v
Problem: Is UL(v(A)) empty?

This problem is typically a timed automata problem as v(A) is a TA, and can be solved using techniques
proposed in [AD94].

Membership The second problem we will investigate in parametric timed automata is the membership
problem, that asks whether a PTA belongs to a given subclass of PTAs.

membership problem:
Input: A PTA A and a subclass of PTAs
Problem: Does A belong to the given subclass of PTAs?

Deciding the membership of a syntactic subclass of PTAs such as L/U-PTAs is trivial; the membership
problem will be harder for some subclasses we will de�ne later though.

17

Emptiness and universality of the valuations set Now, let us move to fully parametric problems. Let
P be a given a class of decision problems (reachability, unavoidability, etc.).

P-emptiness problem:
Input: A PTA A and an instance φ of P
Problem: Is the set of parameter valuations v such that v(A) satis�es φ empty?

P-universality problem:
Input: A PTA A and an instance φ of P
Problem: For all parameter valuations v, does v(A) satisfy φ?

In this manuscript, we mainly focus on the following decision problems:

• reachability (EF4): given a TA v(A), is there at least one run of v(A) that reaches a given location?
That is, EF-emptiness asks: “is the set of parameter valuations v such that the TA v(A) reaches a given
location empty?” And EF-universality asks: “are all parameter valuations such that the corresponding
TA reaches a given location?”

• unavoidability (AF): given a TA v(A), do all runs of v(A) eventually reach a given location?

• EG: given a TA v(A) and a subset T of its locations, is there at least one maximal run of v(A) that
always stays in T ?

• AG: given a TA v(A) and a subset T of its locations, do all runs of v(A) stay in T ?

• deadlock-existence (ED): given a TA v(A), is there at least one maximal run of v(A) that is dead-
locked, i. e., has no discrete successor (possibly after some delay)?

• cycle-existence (EC): given a TA v(A), is there at least one run of v(A) with an in�nite number of
discrete transitions?

Note that AF-emptiness is equivalent to EG-universality, while AG-emptiness is equivalent to EF-
universality.

We will �nally consider the following two additional emptiness problems:

Language-preservation-emptiness problem:
Input: A PTA A and a parameter valuation v′
Problem: Is the set of parameter valuations v such that v 6= v′ and for which v(A) has the same
untimed language as v′(A) empty?

Trace-preservation-emptiness problem:
Input: A PTA A and a parameter valuation v′
Problem: Is the set of parameter valuations v such that v 6= v′ and for which v(A) has the same set
of traces as v′(A) empty?

4The names “EF”, “AF”, “EG” come from the TCTL syntax, and are consistent with the notations introduced in [JLR15] and
subsequently used in further papers (such as [ALR16a; AL17a]).

18

2.2.2 Computation problem

Additionally, we de�ne the following computation problem:

P-synthesis problem:
Input: A PTA A and an instance φ of P
Problem: Compute the parameter valuations such that v(A) satis�es φ.

Example 2.6. Let us exemplify some decision and computation problems for the PTA in Figure 2.1. Assume
the unique target location is “done”, i. e., T = {done}. EF-emptiness asks whether the set of parameter val-
uations that can reach location “done” for some run is empty; this is false (e. g., p1 = 1, p2 = 2, p3 = 3 can
reach “done”). EF-universality asks whether all parameter valuations can reach location “done” for some run;
this is false (no parameter valuation such that p2 > p3 can reach “done”). AF-emptiness asks whether the set
of parameter valuations that can reach location “done” for all runs is empty; this is false (e. g., p1 = 1, p2 = 2,
p3 = 3 cannot avoid “done”). EF-synthesis consists in synthesizing all valuations for which a run reaches
location “done”; the resulting set of valuations is 0 ≤ p2 ≤ p3 ≤ 10 ∧ p1 ≥ 0.

2.3 A semi-algorithm for reachability synthesis

I recall in Algorithm 1 the semi-algorithm EFsynth.5 If it terminates, EFsynth synthesizes all parameter
valuations for which a set of location T is reachable, and therefore it is a correct solution to the EF-synthesis
problem. This semi-algorithm was proved correct (sound and complete) in [JLR15]. Although several pro-
cedures to solve EF-synthesis were proposed in the literature (for example [AHV93; Hun+02]), we choose
to give this algorithm for several reasons:

1. It manipulates the same semantics as in De�nition 2.6;

2. A full proof of correctness is available in [JLR15];

3. We will modify it subsequently in Section 4.3.

Algorithm 1: EFsynth(A, s, T, S)

input : A PTA A, a symbolic state s = (l, C), a set of target locations T , a set S of passed states on
the current path

output: Constraint K over the parameters
1 if l ∈ T thenK ← C↓P ;
2 else
3 K ← ⊥;
4 if s 6∈ S then
5 for each outgoing edge e from l in A do
6 K ← K ∪ EFsynth

(
A, Succ(s, e), T, S ∪ {s}

)
;

7 returnK

5Recall that a semi-algorithm is a procedure that may not terminate but, if it does, then its result is exact, i. e., sound and
complete.

19

EFsynth proceeds as a post-order traversal of the symbolic reachability tree, and collects all parametric
constraints associated with the target locations T . The variable S serves to remember the visited states.
The initial call to EFsynth is EFsynth(A, s0, T, ∅).

If the state is a target sate, the projection of its constraint onto the parameters is returned (line 1).
Otherwise, the algorithm returns the union over all outgoing edges of the algorithm recursively applied to
its successors via these edges (line 6).

Proposition 2.1 ([JLR15]). Assume EFsynth(A, s0, T, ∅) terminates with result K . Then v |= K i� T
is reachable in v(A).

2.4 A semi-algorithm for trace set preservation synthesis

I recall in Algorithm 2 the inverse method, originally proposed in a non-deterministic (and potentially in-
complete) version in [And+09b], and extended to a complete result in [AM15]. This is mainly a work
originating from my PhD thesis, and therefore not a contribution of this habilitation manuscript. However,
some of the works described in the following chapters partially rely on IM (namely Sections 4.4 and 5.1).
The goal of IM is, given a PTAA and a parameter valuation v, to synthesize all other valuations giving the
same trace set as v(A).

IM relies on the following notion of v-compatibility.

De�nition 2.9 (v-compatibility). A symbolic state s = (l, C) of a PTA is v-compatible if v |= C .

Algorithm 2: IM(A, v)

input : A PTA A, a parameter valuation v
output: Constraint K over the parameters

1 Kgood ← > ; Kbad ← ⊥ ; Snew ← {s0} ; S← ∅
2 while true do
3 foreach state (l, C) ∈ Snew do
4 if v |= C↓P then Kgood ← Kgood ∧ C↓P ;
5 else Kbad ← Kbad ∨ C↓P ; Snew ← Snew \ {(l, C)} ;
6 if Snew ⊆ S then returnKgood ∧ ¬Kbad ;
7 S← S ∪ Snew ; Snew ← Succ(Snew)

IM maintains two constraints: Kgood is the intersection of the parameter constraints associated with
the v-compatible states met, whereas Kbad is the union6 of the parameter constraints associated with all
v-incompatible states. IM also maintains two sets of states, viz., the set S of all states met, and the set Snew

of states met at the latest iteration of the while loop. IM is a breadth-�rst search algorithm exploring the
parametric zone graph of A. Whenever a new state is met, its v-compatibility is checked (line 4). If it is
v-compatible, its projection onto the parameters is added to Kgood (line 4). Otherwise, its projection onto
the parameters is added toKbad (line 5), and the state is discarded from Snew (line 5), i. e., its successors will
not be explored. When no new states can be explored, i. e., the set Snew is either empty or contains only

6This union of constraints can be seen (and implemented) as a �nite list of convex constraints.

20

states explored earlier (line 6), the intersection of v-compatible parametric constraints and the negation of
the v-incompatible parametric constraints is returned (line 6). Otherwise, the algorithm explores one step
further in depth (line 7). As an abuse of notation, we use Succ(Snew) to denote the set of successors of all
states (l, C) in Snew , for all edges outgoing from l.

Proposition 2.2 ([And+09b; AM15]). LetA be a deterministic PTA, and let v be a parameter valuation.
Assume IM(A, v) terminates with resultK . Then v′ |= K i� Traces(v(A)) = Traces(v′(A)).

21

Chapter 3
Decidability and expressiveness of parametric
timed automata

Parametric timed automata are a very powerful formalism with a high expressiveness, which comes with
the drawback that most interesting problems are undecidable. Studying decidability may not be a goal in its
own end, but is useful to determine whether some problems can be solved. When a problem is undecidable,
it is hopeless to look for exact algorithms—although designing semi-algorithms or procedure returning an
approximate result can still be handful (this will be the subject of Chapter 5). We �rst survey the existing
decidability results for parametric timed automata (Section 3.1); then, we propose a new de�nition of the
expressiveness of parametric timed automata (Section 3.2); �nally, we signi�cantly enhance the knowl-
edge we have on parametric timed automata by studying several problems, and exhibiting new decidable
subclasses (Section 3.3).

3.1 Exploring the jungle of decidability results

Since [AHV93], numerous (un)decidability results have been proposed, in various settings. Our �rst con-
tribution is to summarize the state-of-the-art knowledge of PTAs for several problems. (A complete version
of this survey is available in [And18].)

3.1.1 Almost everything is undecidable for simple PTAs

Simple PTAs We use the following class of simple PTAs as the subclass of PTAs where guards and in-
variants are simple constraints. We propose this class to recall that, even in this restricted situation, all
non-trivial problems are undecidable.

In this entire subsection, we consider simple PTAs without restriction on the number of clocks and
parameters. In that situation, all non-trivial problems studied in the literature are undecidable, with the
exception of the acceptance problem—which is rather a problem for TAs. By non-trivial, we mean requiring
a semantic analysis, and not, e. g., a sole analysis of the syntax of the PTA (e. g., “is the number of clocks
even”, or any problem de�ned in Section 2.2 by setting T = L or T = ∅).

Whereas bounding time or bounding the parameter domain for rational-valued parameters preserves
the undecidability, we will recall in Section 3.1.2 that bounding the number of clocks and/or parameters
brings decidability.

All proofs of undecidability reduce from either the halting problem, or the boundedness problem, of a
2-counter machine, both known to be undecidable [Min67].

22

Decidability of the acceptance

The acceptance problem is not strictly speaking a problem for PTAs, but rather for TAs, since it considers
a valuated PTA.

On the one hand, the acceptance problem is decidable (and PSPACE-complete) for PTAs over discrete
time, over dense time with integer-valued parameters, and over dense time with rational-valued parame-
ters [AD94].

On the other hand, the acceptance problem becomes undecidable with real-valued (in fact irrational)
parameters. Indeed, the reachability of a location in a TA with irrational constants is undecidable [Mil00].
The idea is to encode a 2-counter machine using 2 clocks x1 and x2 (plus an additional third clock), where
the value ci of counter i is encoded using xi = ci × τ , for i ∈ {1, 2}, with τ the irrational constant (the
value

√
2 is suggested for τ).

General undecidable problems

EF-emptiness The seminal paper on PTAs [AHV93] showed that the EF-emptiness problem is undecid-
able for PTAs, both for discrete time and for dense-time.

AF-emptiness In [JLR15], it is proved that the AF-emptiness is undecidable for L/U-PTAs with 3 clocks
and 4 integer-valued parameters, and hence for PTAs as well.

Bounding time

Bounded-time model checking consists in checking a property within a bounded time domain. Undecidable
problems might become decidable in this situation, or be of a lower complexity. For example, the language
inclusion for timed automata becomes decidable over bounded-time [OW10], although it is undecidable in
general. In addition, time-bounded reachability becomes decidable for a special subclass of hybrid automata
with monotonic (either non-negative or non-positive) rates [Bri+13], although it is undecidable in general.

In contrast, the EF-emptiness problem remains undecidable for (general) PTAs over bounded, dense
time [Jov13, Theorem 3.4].

Bounding the parameter domain

Decidability for integer-valued parameters The P-emptiness problem for PTAs with bounded in-
tegers is PSPACE-complete for any class of problems P that is PSPACE-complete for TAs [JLR15]. As a
consequence, EF-, AF-, EG-, AG-emptiness are all decidable; and so are language and trace preservation.
More generally, the whole TCTL model checking, including reachability and unavoidability, is PSPACE-
complete [ACD93], and therefore the corresponding emptiness problems are PSPACE-complete for PTAs
with bounded integer parameters.

In [JLR15], a symbolic method is proposed to compute EF- and AF-synthesis; experiments showed that
this symbolic computation is faster than an exhaustive enumeration (using Uppaal).

Undecidability for rational-valued parameters For rational-valued parameters, the EF-emptiness
problem is undecidable for a single parameter in [1, 2] [Mil00].

23

T P Guards Invariants P-clocks NP-clocks Params Decidability Main ref.
N N x ./ p|d 1 0 �xed (at most) PTIME [Mil00] (consequence)
N N x ./ p|d 1 0 any (at most) NP-complete [Mil00] (consequence)
N N x ≤≥ p|d+ 1 any any NEXPTIME-complete [BO14]
N N x ./ p|d x � p|d+ 1 any any (at most) NEXPTIME [Ben+15] (consequence)
N N x ≤≥ p|d+ 2 any 1 PSPACENEXP-hard [BO14]
N N any 2 any > 1 open
N N x ./ p|d None 3 0 1 undecidable [Ben+15]
N N x = p|d None 3 0 6 undecidable [AHV93]
N N x <> p any any any open
N N bounded x ./ plt x � plt any any any (at most) PSPACE-complete [JLR15] (consequence)
R+ N x ./ p|d 1 0 �xed (at most) PTIME [Mil00] (consequence)
R+ N x ./ p|d 1 0 any (at most) NP-complete [Mil00] (consequence)
R+ N x ./ p|d x � p|d+ 1 any any NEXPTIME [Ben+15]
R+ N any 2 any any open
R+ N x ./ p|d None 3 0 1 undecidable [Ben+15]
R+ N x = p|d None 3 0 6 undecidable [AHV93] (consequence)
R+ N x <> p any any any open
R+ N bounded x ./ plt x � plt any any any PSPACE-complete [JLR15]
R+ Q+ x ./ p|d 1 0 �xed PTIME [Mil00]
R+ Q+ x ./ p|d 1 0 any NP-complete [Mil00]
R+ Q+ any 1 1 or 2 any open
R+ Q+[1; 2] x ./ p|d 1 3 1 undecidable [Mil00]
R+ Q+ any 2 0 or 1 any open
R+ Q+[1; 2] x ./ p|d 2 2 1 undecidable [Mil00] (consequence)
R+ Q+[1; 2] x ./ p|d 3 0 1 undecidable [Mil00]
R+ R+ x = p|d None 3 0 6 undecidable [AHV93]
R+ Q+ x <> p < 2 3 2 open
R+ Q+ x <> p 2 < 3 2 open
R+ Q+ x <> p 2 3 < 2 open

Q+/R+ Q+/R+ x <> p 2 3 2 undecidable [Doy07]

Table 3.1 – Decidability of the EF-emptiness problem for general PTAs

3.1.2 Bounding the numbers of clocks and parameters

EF-emptiness

Since [AHV93], the decidability of the EF-emptiness problem was studied in various settings, by bound-
ing the number of parametric clocks, of non-parametric clocks, and of parameters. The syntax was also
restrained. We summarize these results in Table 3.1 (T and P denote the domain of time and of parameter
valuations respectively).

We need to consider not only the number of clocks and parameters, but also the syntax allowed in
guards and invariants. For example, for the undecidability over discrete time, [Ben+15] improves the num-
ber of parameters when compared to [AHV93] (6 instead of 1), but requires both strict and non-strict
inequalities, whereas [AHV93] uses only equalities in their construction; it is therefore unclear whether
the result of [AHV93] is really subsumed by [Ben+15].

“Consequence” indicates a result originally proved for a less expressive or a more expressive setting; “at
most” in the complexity column indicates in the latter case that the complexity is necessarily lower or equal
to that of the more expressive setting. For example, [Mil00] proved that the single clock case is PTIME over
dense time with a �xed number of rational-valued parameters, and therefore the corresponding problem
cannot be harder over discrete time.

Let us now extract the most important results out of Table 3.1. The decidability is clearly impacted by

24

the number of parametric clocks, and we therefore reason by the number of parametric clocks.

Main results: 1 parametric clock First, let us consider PTAs with a single parametric clock: The EF-
emptiness problem is (at most) NP-complete over discrete and dense time with no non-parametric clock
and arbitrarily many parameters [Mil00].

It is decidable for over discrete time with arbitrarily many non-parametric clocks (NEXPTIME-complete
when only non-strict inequalities are used [BO14], and at most NEXPTIME when both strict and non-strict
inequalities are used but with invariants of the form x � p|d+ [Ben+15]). Over dense-time with arbitrarily
many non-parametric clocks and integer-valued parameters, it is NEXPTIME.

It is undecidable with three non-parametric clocks [Mil00] over dense time with rational-valued pa-
rameters; note that this problem is decidable over discrete time [AHV93; BO14; Ben+15] and over dense
time with integer-valued parameters [Ben+15], which exhibits a di�erence between dense and discrete
time [Mil00], as well as between integer- and rational-valued parameters over dense time.

Main results: 2 parametric clocks The EF-emptiness problem is PSPACENEXP-hard [BO14] over dis-
crete time with two parametric clocks and a single parameter. Over dense-time with rational-valued pa-
rameters, the case with 2 parametric clocks and 2 non-parametric clocks is undecidable. Any other case
with two parametric clocks remains open.

Main results: other undecidability The EF-emptiness problem is undecidable in all settings with three
(or more) parametric clocks.

Finally, using only strict inequalities, the EF-emptiness problem is undecidable over dense time for
two parametric clocks, three non-parametric clocks and two parameters [Doy07]; this situation was not
considered over discrete time.

Open cases The main open case is the “two parametric clocks” case. The decidability is open for 2
parametric clocks with:

• over discrete-time: arbitrarily many non-parametric clocks and more than one parameter;

• over dense-time with integer-valued parameters: arbitrarily many non-parametric clocks and pa-
rameters;

• over dense-time with rational-valued parameters: 0 or 1 non-parametric clock and arbitrarily many
parameters.

In addition, the decidability remains open over dense-time with rational-valued parameters for 1 non-
parametric clock, 1 or 2 non-parametric clocks and arbitrarily many parameters.

Finally, the decidability using only strict inequalities remain open for cases not considered by [Doy07]:
less clocks and parameters, or with integer-valued parameters.

3.1.3 L/U-PTAs

A main decidability result

The �rst (and main) positive result for L/U-PTAs is the decidability of the EF-emptiness problem [Hun+02].
L/U-PTAs bene�t from the following interesting monotonicity property: increasing the value of an upper-
bound parameter or decreasing the value of a lower-bound parameter necessarily relaxes the guards and
invariants, and hence can only add behaviors. Hence, checking the EF-emptiness of an L/U-PTA can be

25

achieved by replacing all lower-bound parameters with 0, and all upper-bound parameters with a su�-
ciently large constant; this yields a non-parametric TA, for which emptiness is PSPACE-complete [AD94].

Further decidability results are exhibited in [BL09], for in�nite runs acceptance properties, i. e., where
a location is visited in�nitely often. Note that, in contrast to [Hun+02] where the parameters are valued
with non-negative reals, the results in [BL09] consider integer-valued parameters (though time is dense,
i. e., clocks are real-valued). It is shown in [BL09] that emptiness, universality, �niteness of the valuation
set are PSPACE-complete for in�nite runs acceptance properties.

Undecidability results

The �rst undecidability results for L/U-PTAs are shown in [BL09]: the constrained EF-emptiness problem
and constrained EF-universality problem (for in�nite runs acceptance properties) are undecidable for L/U-
PTAs. By constrained it is meant that some parameters of the L/U-PTA can be constrained by an initial
linear constraint, e. g., p1 ≤ 2×p2 +p3. Indeed, using linear constraints, one can constrain an upper-bound
parameter to be equal to a lower-bound parameter, and hence build a 2-counter machine using an L/U-PTA.
However, when no upper-bound parameter is compared to a lower-bound parameter (i. e., when no initial
linear inequality contains both an upper-bound and a lower-bound parameter), these two problems retrieve
decidability [BL09].

A second negative result is shown in [JLR15]: the AF-emptiness problem is undecidable for L/U-PTAs.
This is achieved by a reduction from a 2-counter machine where a lower-bound parameter is equal to an
upper-bound parameter i� AF holds. This restricts again the use of L/U-PTAs, as AF is essential to show
that all possible runs of a system eventually reach a (good) state.

Intractability of the synthesis

The most disappointing result concerning L/U-PTAs is shown in [JLR15]: despite decidability of the under-
lying decision problems (EF-emptiness and EF-universality), the solution to the EF-synthesis problem for
L/U-PTAs, if it can be computed, cannot be represented using a formalism for which the emptiness of the
intersection with equality constraints is decidable. A very annoying consequence is that such a solution
cannot be represented as a �nite union of polyhedra (since the emptiness of the intersection with equality
constraints is decidable).

3.2 Expressiveness of parametric timed automata

After surveying decidability in the previous section, we now compare subclasses of parametric timed au-
tomata with each other. This implies to de�ne a notion of expressiveness, which was not done before. We
will in fact propose two di�erent de�nitions. But before that, let us introduce a new subclass of PTAs.

3.2.1 A new subclass: Integer-point parametric timed automata

De�nition 3.1. A PTAA is an integer points PTA (in short IP-PTA) if, in any reachable symbolic state
(l, C) of A, C contains at least one integer point, i. e., ∃v : P → N,∃w : X → N s.t. w|v |= C .

Example 3.1. Consider the PTA in Figure 3.1a. This PTA is not an IP-PTA; indeed, the (unique) symbolic
state with location l3 contains only 1

2 in dimension p, and this symbolic state therefore contains no integer
point.

26

In contrast, it can be shown that the PTA in Figure 3.1b is an IP-PTA. The co�ee machine in Figure 2.1
(which has an in�nite parametric zone graph) is also an IP-PTA.

Comparison with L/U-PTAs

Proposition 3.1 ([ALR16a]). The class of IP-PTAs is incomparable with the class of L/U-PTAs.

Proof idea. • Consider an L/U-PTA with a transition guarded by x > 0 and resetting no clock, followed by a second
location with invariant x < 1; then, necessarily, the symbolic state associated with this second location contains no
integer point (as x ∈ (0, 1) in that symbolic state).

• It is easy to exhibit an IP-PTA that is not an L/U-PTA. This is for example the case of Figures 2.1 and 3.1b.

However, we can prove that any non-strict L/U-PTA, i. e., with only non-strict inequalities, is an IP-PTA.
This gives that the class of non-strict L/U-PTAs is included in IP-PTAs. With additional results, we get the
following comparison:

Theorem 3.1 ([ALR16b]). The class of IP-PTAs is strictly larger than the class of non-strict L/U-PTAs.
The class of bounded IP-PTAs is strictly larger than the class of non-strict bounded L/U-PTAs.
The class of bounded IP-PTAs is incomparable with the class of bounded L/U-PTAs. The class of

bounded IP-PTAs is incomparable with the class of L/U-PTAs.

Membership

A main disappointing result is that the membership problem is undecidable for IP-PTAs, even when
bounded. In other words: it is not possible to decide in general whether a PTA is an IP-PTA.

Theorem 3.2 ([ALR16a]). It is undecidable whether a PTA is an IP-PTA, even when bounded.

Proof idea. The proof reduces from the halting problem of a 2-counter machine: we consider an existing encod-
ing [ALR16a], show that there is an integer point in any symbolic state, and make a slight modi�cation as follows: from
the location encoding the halting state of the 2-counter machine, we add a transition to a state that contains no integer point
(which can easily be enforced using a constraint such as 0 < x < 1 for some clock x). As a consequence, this PTA is an
IP-PTA i� the 2-counter machine does not halt.

Due to the undecidability of membership, the class of IP-PTAs may not seem very interesting. However,
this subclass will help us to exhibit further undecidability for other subclasses of PTAs in Section 3.3.

Theorem 3.1 provides a su�cient syntactic membership condition. In addition, we now de�ne another
new non-trivial set of restrictions leading to IP-PTAs.

De�nition 3.2 (Reset-PTA [ALR16a]). A reset-PTA is a PTA where, for each transition, if at least one
parameter appears in the transition guard or in the source location invariant, then all clocks are reset
along this transition.

27

l1 l2 l3
x1 = p

x1 := 0

x1 = p ∧ x2 = 1

x1 := 0

(a) A PTA which is not an IP-PTA

l1
x ≤ 1

l2

l3
x = 1

a
x := 0

x = 1
∧ x ≤ p2

b
x := 0

x = p1
a

(b) A PTA which is an IP-PTA

Figure 3.1 – Examples of PTA

This kind of restriction is somewhat reminiscent of those enforced by initialized hybrid automata
[Hen+98] to obtain decidability. We now prove that reset-PTAs are IP-PTAs, which in turn means that
any decidable problem for IP-PTAs (which will be studied in Section 3.3) is also decidable for reset-PTAs.

Theorem 3.3 ([ALR16a]). Any reset-PTA is an IP-PTA.

3.2.2 De�ning the expressiveness of parametric timed automata

No paper has compared the expressiveness of PTAs and their subclasses, nor even proposed a de�nition of
the expressiveness. We propose here two de�nitions.

In the following, we denote by V(P) the set of valuations of all the parameters in P .

De�nition 3.3 (untimed language of a PTA). The untimed language of a PTA A, denoted by UL(A)
is the union over all parameter valuations v of the sets of untimed words accepted by v(A), i. e.,⋃

v∈V(P)

{
η | η ∈ UL

(
v(A)

)}

We also propose a second de�nition of language, in which we consider not only the accepting untimed
words, but also the parameter valuations associated with these words; this de�nition is more suited to
compare the possibilities o�ered by parameter synthesis.

De�nition 3.4 (constrained untimed language of a PTA). The constrained untimed language of a
PTA A, denoted by CUL(A), is ⋃

v∈V(P)

{
(η, v) | η ∈ UL

(
v(A)

)}

We use the word “constrained” because another way to represent the constrained language of a PTA is
in the form of a set of elements (η,K), where η is an untimed word, and K is a parametric constraint such
that for all v in K , then η is an untimed word accepted by v(A).

Example 3.2. Let us consider the PTA A of Figure 3.1b.

• Its untimed language is UL(A) = {a} ∪ {ban | n ∈ N} that we note with the rational expression

28

l1

x1 ≤ 1
∧ x2 ≤ p

l2

x1 ≤ 1
∧ x2 ≤ p

l3

x1 ≤ 1
∧ x2 ≤ p

l4

x1 = 1
a

x1 := 0

x1 = 1
∧ x2 = p

a
x1, x2 := 0

x1 = 1
b

x1 := 0

x1 = 1
∧ x2 = p

b
x1, x2 := 0

x1 = 1
c

x1 := 0
x1 = 1
∧ x2 = p

c

Figure 3.2 – A PTA with untimed language anbncn

UL(A) = a+ ba∗.

• Its constrained untimed language is CUL(A) =
{

(a, p1 ≤ 1), (ba∗, p1 ≥ 0 ∧ p2 ≥ 1)
}

.

Note that the idea of combining the untimed language with the parameter valuations leading to it
is close to the idea of the behavioral cartography of parametric timed automata [AF10], that consists in
computing parameter constraints together with a trace set.

In the following, a class refers to an element in the set of TAs, bounded L/U-PTAs, L/U-PTAs, bounded
PTAs and PTAs. An instance of a class is a model of that class.

3.2.3 Comparison of the expressiveness of subclasses of PTAs

Let us now compare the expressiveness of various classes w.r.t. the two de�nitions we proposed above. We
compare here only integer-valued parameters. Some of the results below may not hold for rational-
valued parameters—this is the subject of future work.

Expressiveness as the union of untimed languages

PTAs in the Hierarchy of Chomsky The following result states that Turing-recognizable languages
(type-0 in Chomsky’s hierarchy) can be recognized by PTAs (with enough clocks and parameters), and
derives from the fact that several 2-counter machine encodings using PTAs were proposed in the literature.

Lemma 3.1 ([ALR16b]). Turing-recognizable languages are also recognizable by PTAs.

Lemma 3.1 only holds with enough clocks and parameters, typically 3 parametric clocks and 1 integer-
valued or rational-valued parameter [Ben+15], or 1 parametric clock, 3 non-parametric clocks and 1
rational-valued parameter [Mil00] (see Section 3.1).

In [AM15, Theorem 20], we proved that the parametric zone graph of a PTA with a single (parametric)
clock and arbitrarily many parameters is �nite. This gives that the language recognized by a PTA with a
single clock is regular.

Lemma 3.2 ([ALR16b]). The untimed language recognized by a PTA with a single clock and arbitrarily
many parameters is regular.

We now show that adding to the setting of Lemma 3.2 a single non-parametric clock, even with a
single parameter, may give a language that is at least context-sensitive, hence beyond the class of regular
languages. Consider the PTAA in Figure 3.2. Consider an integer parameter valuation v such that v(p) = i,
with i ∈ N. The idea is that we use the parameter to �rst count the number of as, and then ensure that

29

we perform an identical number of bs and cs; such counting feature is not possible in TAs (at least not for
any value of i as is the case here). Clearly, due to the invariant x1 ≤ 1 in l1, one must take the self-loop
on l1 every 1 time unit; then, one can take the transition to l2 only after i such loops. The same reasoning
applies to locations l2 and l3. Hence, the language accepted by the TA v(A) is ai+1bi+1ci+1.

Hence the union over all parameter valuations of the words accepted by A is {anbncn | n ≥ 1}. This
language is known to be in the class of context-sensitive languages (type-1 in Chomsky’s hierarchy), hence
beyond the class of regular languages (type-3).

Theorem 3.4 ([ALR16b]). PTAs with 1 parametric clock, 1 non-parametric clock and 1 parameter can
recognize languages that are context-sensitive.

This result is interesting for several reasons. First, it shows that adding a single clock, even non-
parametric, to a PTA with a single clock immediately increases its expressiveness. Second, it falls into the
interesting class of PTAs with 2 clocks, for which many problems remain open: the PTA exhibited in the
proof of Theorem 3.4 (1 parametric clock and 1 non-parametric) falls into the class of 1 parametric clock,
arbitrarily many non-parametric clocks and arbitrarily many integer-valued parameters, for which the EF-
emptiness is known to be decidable [Ben+15]. When replacing the integer-valued with a rational-valued
parameter (which does not fundamentally change our example), it also falls into the class of 1 parametric
clock, 1 non-parametric clock and 1 rational-valued parameter, for which the EF-emptiness is known to be
open (see Table 3.1). In both cases, it gives a lower bound on the class of languages recognized by such a
PTA.

Expressiveness of PTAs and subclasses First, we can show using the monotonicity property of L/U-
PTAs that the untimed language of an L/U-PTAA is equal to that of the same L/U-PTA valuated with v0/∞.

Lemma 3.3 ([ALR16b]). Let A be an L/U-PTA. Then: UL(A) = UL(v0/∞(A)).

In addition, since the untimed words recognized by TA form a regular language [AD94], then the PTA
exhibited in Theorem 3.4 recognizes a language not recognized by any TA. Conversely, any TA is a PTA
(with no parameter) which gives that the expressiveness of PTAs is strictly larger than that of TAs.

Also note that, as we consider integer-valued parameters, there is a �nite number of valuations in a
bounded PTA. Since the language recognized by a TA is a regular language, and the class of regular lan-
guages is closed under �nite union, then bounded PTAs also recognize regular languages, and are therefore
equally expressive with TAs.

Finally, the 2-counter machine of [AHV93] is an IP-PTA (see [ALR16a] for a detailed argument), which
gives that Turing-recognizable languages are also recognizable by IP-PTAs.

This all together gives the following result:

Proposition 3.2 ([ALR16b]). TAs, L/U-PTAs and bounded PTAs are equally expressive w.r.t. the union
of untimed languages.

PTAs and IP-PTAs are equally expressive, and are strictly more expressive than TAs w.r.t. the union
of untimed languages.

We summarize the results in Figure 3.4a.

30

l′1 l′2 l′3

x = inf
∧ x ≤ p

ε

x = sup
∧ p ≤ x

ε

(a) Bounding a PTA

l0 l1

x = 0
∧ x ≤ p

a

(b) PTA accepting a for any valuation

Figure 3.3 – A PTA gadget and a PTA

Expressiveness as constrained untimed language

Let us now compare subclasses of PTAs w.r.t. the constrained untimed language.
Bounded PTAs can easily be simulated using a non-bounded PTA, by bounding the parameters using

one clock and appropriate extra locations and transitions prior to the original initial location of the PTA.
For example, if x is reset when entering l′1, the gadget in Figure 3.3a ensures that p ∈ [inf, sup]. All such
gadgets (one per parameter) must be added in a sequential manner, resetting x prior to each gadget, and
resetting all clocks when entering the original initial location after the last gadget.1

Now, it is easy to �nd a PTA that has a larger constrained untimed language than any bounded PTA.
This is the case of any PTA for which a word is accepting for parameter valuations arbitrarily large (e. g.,
Figure 3.3b).

This gives the following result:

Proposition 3.3 ([ALR16b]). Bounded PTAs are strictly less expressive than PTAs w.r.t. the constrained
untimed language.

We now show that, interestingly, this result does not extend to L/U-PTAs, i. e., bounded L/U-PTAs are
not strictly less expressive than but incomparable with L/U-PTAs. On the one hand, let us show that the
constrained untimed language of a given bounded L/U-PTA cannot be obtained for any L/U-PTA. Consider
a bounded U-PTA with a single parameter p+ with bounds such that p+ ∈ [0, 1], and accepting a for any
valuation of p+ ∈ [0, 1]. From the monotonicity of L/U-PTAs, if this run is accepted in an L/U-PTA A′,
then this run is also accepted for any valuation v′ such that v′(p+) ≥ 0, including for instance v′(p+) > 1.
Hence accepting a only for valuations of p+ ∈ [0, 1] cannot be obtained in an L/U-PTA, and therefore no
L/U-PTA yields this constrained untimed language.

This converse is immediate: assume an L/U-PTA with a single parameter p+, accepting a for any val-
uation of p+ ∈ [0,∞). From the de�nition of bounded (L/U-)PTAs, all parameters must be bounded, and
therefore there exists no bounded L/U-PTA that can accept a run for p+ ∈ [0,∞). Hence no bounded
L/U-PTA yields this constrained untimed language.

This gives the following result:

Proposition 3.4 ([ALR16b]). Bounded L/U-PTAs are incomparable with L/U-PTAs w.r.t. the constrained
untimed language.

A consequence is that undecidability results for bounded L/U-PTAs cannot be automatically extended
to L/U-PTAs; conversely, decidability results for L/U-PTAs cannot be automatically extended to bounded
L/U-PTAs.

We summarize the results in Figure 3.4b.
1Technically, this does not preserve the timed language due to the time needed to pass the initial gadgets; but observe that the

untimed language is preserved, provided silent transitions are allowed.

31

TA = L/U-PTA = bounded PTAs

IP-PTA = PTAs

(a) w.r.t. the untimed language

bounded L/U

L/U

IP-PTA

non-strict L/U

bounded PTAs

PTAs

(b) w.r.t. the constrained untimed language

Figure 3.4 – Expressiveness of PTAs and subclasses

What’s beyond. . . ?. In [ALR16b], we also considered the case of hidden parameters, that do not appear in the
constrained untimed language (i. e., they are hidden by existential quanti�cation). Hidden parameters do not
increase the expressiveness of L/U-PTAs. However, PTAs extended with hidden parameters strictly increase
the expressiveness of PTAs.

In addition, we also showed in [ALR16b] that neither PTAs, nor PTAs allowing parametric linear terms
(i. e., plt ./ 0 or plt ./ x) in guards and invariants, augment the expressiveness w.r.t. the constrained untimed
language of PTAs with the most restrictive syntax (x ./ p) but extended with hidden parameters.

3.3 Decidability of parametric timed automata

After investigating the state-of-the-art results concerning decision problems for parametric timed automata
and subclasses in Section 3.1, we now propose a set of results that considerably increase the knowledge
we have of this formalism. While (unsurprisingly) all the decision problems are undecidable for general
parametric timed automata, we exhibit several subclasses for which they turn decidable, with sometimes
subtle di�erences between the decidable and the undecidable class.

3.3.1 EF-emptiness

Undecidability

The EF-emptiness of PTAs is known to be undecidable, except for some bounded number of clocks and/or
parametric clocks (Table 3.1). We provide below a new proof of undecidability for this problem, featuring
1 parametric clock, 3 non-parametric clocks and a single rational-valued (bounded) parameter. We reduce
from the boundedness problem of a 2-counter machine, which is undecidable [Min67]. This proof is not a
particularly signi�cant advance in the state-of-the-art: this setting matches the best known proof [Mil00].

However, we will give this construction in details, because its encoding of the 2-counter machines will
be used in many subsequent results in this manuscript (and was used in several papers [AM15; ALR16a;
AL17a; ALR18]). This encoding of a 2-counter machine was published in [ALR16a] and was originally
proposed by Didier Lime.

Recall that a deterministic 2-counter machine M has two non-negative counters C1 and C2, a �nite
number of states and a �nite number of transitions, which can be of the form:

• when in state qi, increment Ck and go to qj ;

32

l0 l1 l0

x = a ∧ x > 0
x = 1
x := 0

(a) Initial gadget

li li1

li2

l′i2

li3 lj
x = 0

z = 1
z := 0

y = a+ 1
y := 0

y = a+ 1
y := 0

z = 1
z := 0

x = 1
x := 0

(b) Increment gadget (C1)

li li1

li2

l′i2

li3 lj

lk

x = 0

y < 1

z = a+ 1
z := 0

y = 1
y := 0

y = 1
y := 0

z = a+ 1
z := 0

x = a+ 1
x := 0

x = 0
y = 1

(c) 0-test and decrement gadget (C1)

Figure 3.5 – EF-emptiness: gadgets

• when in state qi, if Ck = 0 then go to qk, otherwise go to qj .

The machine starts in state q0 with the counters set to 0; by de�nition, it halts when it reaches a
speci�c state called qhalt. The boundedness problem for 2-counter machines asks whether, along the unique
maximal run, the value of the counters remains smaller than some bound, and is undecidable [Min67].

Given such a machineM, we encode it as a PTA A(M); Let us now describe this encoding in details.
Each state qi of the machine is encoded as a location of the automaton, which we call li. The counters

are encoded using clocks x, y and z and one parameter a, with the following relations with the values
c1 and c2 of counters C1 and C2: when x = 0, we have y = 1 − ac1 and z = 1 − ac2. All three clocks
are parametric2, i. e., are compared with the parameter a in some guard or invariant of the encoding. We
will see that a is a rational-valued bounded parameter, typically in [0, 1] (although not bounding a has no
impact on the proof).

We initialize the clocks with the gadget in Figure 3.5a (that also blocks the case where a = 0). Note
that, in Figure 3.5, we highlight in thick green the locations of the PTA corresponding to a state of the
two-counter machine (in contrast with other locations added in the encoding to maintain the matching
between the clock values and the counter values). Since all clocks are initially 0, in Figure 3.5a, when in l0
with x = 0, we have y = z = 1, which indeed corresponds to counter values 0.

We now present the gadget encoding the increment instruction of C1 in Figure 3.5b. The transition
from li to li1 only serves to clearly indicate the entry in the increment gadget and is done in 0 time unit.
Since we use only equalities, there are really only two paths that go through the gadget: one going through
li2 and one through l′i2. Let us begin with the former. We start from some encoding con�guration: x = 0,
y = 1− ac1 and z = 1− ac2 in li (and therefore the same in li1). We can enter li2 (after elapsing enough
time) if 1 − ac2 ≤ 1, i. e., ac2 ≥ 0, which implies that a ≥ 0, and when entering li2 we have x = ac2,
y = 1 − ac1 + ac2 and z = 0. Then we can enter li3 if 1 − ac1 + ac2 ≤ 1 + a, i. e., a(c1 + 1) ≥ ac2.
When entering li3, we then have x = a(c1 + 1), y = 0 and z = a(c1 + 1)− ac2. Finally, we can go to lj if
a(c1 + 1) ≤ 1 and when entering lj we have x = 0, y = 1− a(c1 + 1) and z = 1− ac2, as expected.

2A transformation to the setting 3 non-parametric clock + 1 parametric clock is given later on in Remark 3.1.

33

We now examine the second path. We can enter l′i2 if 1 − ac1 ≤ a + 1, i. e., a(c1 + 1) ≥ 0, and
when entering l′i2 we have x = a(c1 + 1), y = 0 and z = 1 − ac2 + a(c1 + 1). Then we can go to
li3 if 1 − ac2 + a(c1 + 1) ≤ 1 + a, i. e., a(c1 + 1) ≤ ac2. When entering li3, we then have x = ac2,
y = ac2 − a(c1 + 1) and z = 0. Finally, we can go to lj if ac2 ≤ 1 and when entering lj we have x = 0,
y = 1− a(c1 + 1) and z = 1− ac2, as expected.

Remark that exactly one path can be taken depending on the respective order of c1 + 1 and c2, except
when both are equal or a = 0, in which cases both paths lead to the same con�guration anyway (and the
case a = 0 is excluded by Figure 3.5a anyway).

Decrement is done similarly by replacing guards y = a + 1 with y = 1, and guards x = 1 and z = 1
with x = a+ 1 and z = a+ 1, respectively, as shown in Figure 3.5c. In addition, the 0-test is obtained by
simply adding a transition from li to lk with guard y = 1 ∧ x = 0, which ensures that C1 = 0. Similarly,
the guard from li to li1 ensures that decrement is done only when the counter is not null.

All those gadgets also work for C2 by swapping y and z.
The actions associated with the transitions do not matter; we can assume a single action σ on all

transitions (omitted in all �gures).

Lemma 3.4 ([ALR16a]). The EF-emptiness problem is undecidable for bounded PTAs.

Proof. We now prove that the two-counter machineM halts i� there exists a parameter valuation v such
that v(A(M)) reaches lhalt. First note that if a = 0 the initial gadget cannot be passed, and lhalt is
reachable for no valuation. Assume a > 0. Consider two cases:

1. either the two-counter machine does not halt. Then, for any parameter valuation, at some point
during an incrementation of, say, C1 we will have a(c1 + 1) > 1 when taking the transition from li2
to li3 and the PTA will be blocked. Therefore, there exists no parameter valuation for which lhalt is
reachable.

2. or the two-counter machine halts, along a (unique) run. Let c be the maximal value of this run. In
that case, if c = 0 and 0 < a ≤ 1 or c > 0 and ca < 1, then the PTA valuated with such parameter
valuations correctly simulates the machine, yielding a (unique) run reaching location lhalt. The set of
such valuations for a is certainly non-empty: a = 1

2 belongs to it if c = 0 and a = 1
c does otherwise.

Hence the two-counter machine halts i� there exists a parameter valuation v such that v(A(M))
reaches lhalt.

Remark 3.1. We can adapt our proof to �t in the most restrictive guard syntax (x ./ p) as follows:
transitions with y = a + 1 guards and y := 0 reset can be equivalently replaced by one transition
with a “y = 1” guard and a reset of some additional clock w, followed by a transition with a w = a
guard and the y := 0 reset (and similarly for x and z is the decrement gadget). This also allows the
proof to work without complex parametric expressions in guards, using three additional clocks (we
conjecture that a smarter encoding can be exhibited to factor these additional clocks, so as to use a
single additional clock).

Decidability

The only non-trivial general class with a decidability result for EF-emptiness is L/U-PTAs [Hun+02]. We
now extend this class, by proving a main positive result for IP-PTAs below:

34

Theorem 3.5 ([ALR16a]). The EF-emptiness problem is decidable (and PSPACE-complete) for bounded
IP-PTAs.

Proof idea. Let A be a bounded IP-PTA. EF-emptiness is false for A i� there exists a valuation v such that a run of v(A)
reaches a location in some prede�ned set T . Assume there exists a valuation v such that a run of v(A) reaches l, with l ∈ T .
From [Hun+02, Proposition 3.17], there exists a symbolic run of A reaching a symbolic state (l, C), for some C . Since A is
an IP-PTA, C contains at least one integer point. Hence there exists an integer parameter valuation v′ |= C↓P ; hence from
[Hun+02, Proposition 3.18], there exists a concrete run of v′(A) reaching l. This gives that EF-emptiness is false for A i�
there exists an integer valuation v′ such that a run of v′(A) reaches a location in T .

Hence, deciding whether some valuation permits to reach l reduces to deciding whether some integer valuation permits
to do so, which, for bounded PTAs, is PSPACE-complete [JLR15].

As any reset-PTA is an IP-PTA from Theorem 3.3, the EF-emptiness problem is decidable for reset-
PTAs. Since bounded IP-PTAs are incomparable with L/U-PTAs from Theorem 3.1, and since L/U-PTAs are
the only non-trivial subclass of PTAs for which the EF-emptiness problem is known to be decidable, then
Theorem 3.5 strictly extends the subclass of PTAs for which this problem is decidable.

In order to get a full picture of decidability results for all subclasses of PTAs, we show the following,
which comes almost directly from [Hun+02]:

Lemma 3.5 ([ALR16a]). The EF-emptiness and EF-universality problems are decidable for closed
bounded L/U-PTAs.

Proof idea. Let A|bounds be a closed bounded L/U-PTA. The result for EF-emptiness (resp. EF-universality) is obtained
by replacing any lower-bound parameter p with inf(p, bounds) (resp. sup(p, bounds)) and any upper-bound parameter p
with sup(p, bounds) (resp. inf(p, bounds)), and testing reachability in the obtained TA, in the spirit of [Hun+02; BL09].

Synthesis

Although the EF-emptiness problem is decidable for L/U-PTAs [Hun+02], the synthesis seems to pose
practical problems: recall that the solution to the EF-synthesis problem for L/U-automata, if it can be
computed, cannot be represented using any formalism for which emptiness of the intersection with equality
constraints is decidable, which rules out the possibility of computing the solution set as a �nite union of
polyhedra.

We reuse the intuition of this result and extend it to non-strict bounded L/U-PTAs. Because non-
strict bounded L/U-PTAs are IP-PTAs (Theorem 3.1), this result extends to (bounded) IP-PTAs too, despite
decidability of the EF-emptiness problem for this latter class (Theorem 3.5).

Theorem 3.6 ([ALR16a]). If it can be computed, the solution to the EF-synthesis problem for non-strict
bounded L/U-automata and for IP-PTAs cannot be represented using any formalism for which emptiness
of the intersection with equality constraints is decidable.

3.3.2 AF-emptiness

It is known that AF-emptiness is undecidable for L/U-PTAs [JLR15]; reusing the encoding of the 2-counter
machine proposed in our proof of Lemma 3.4, we now show that this result holds even for bounded L/U-
PTAs. We modify the encoding by splitting the unique parameter a into a lower-bound parameter a−

35

l0

y ≤ a+
l1

y ≤ a+

s0

x ≤ 0

lsink

y ≥ a−
x := 0

y := 0

a− ≤ x ≤ 0

Figure 3.6 – AF-emptiness for bounded L/U-PTAs: initial gadget

and an upper-bound parameter a+. The proof mainly relies on the gadget initializing the parameters. We
initialize the parameters a− and a+ with the gadget in Figure 3.6 leading to the location s0. Clearly, starting
from l0, we have AF(s0) if and only if a− = a+ > 0, because

1. if a− = 0 then it is possible to reach lsink and therefore we do not have AF(s0), and

2. any run that reaches l1 before y is equal to a+ can be extended by delaying a non-null amount of
time into a run that will be blocked by the invariant of s0.

So all runs should enter l1 with y = a+, which is the case if and only if a− = a+. We therefore obtain an
L/U-automaton with a− = a+ and a+ > 0.

Then, the encoding is such that lsink can be reached from any location. Eventually, only if a− = a+ = 0
and only if the machine halts, then lhalt is unavoidable.

As bounded L/U-PTAs are less expressive than bounded IP-PTAs and IP-PTAs, and as the proof can
also work with unbounded parameters, we get a complete undecidability result for all considered subclass
of PTAs:

Theorem 3.7 ([ALR16a]). The AF-emptiness problem is undecidable for (bounded) IP-PTAs, for
(bounded) L/U-PTAs and for (bounded) PTAs.

3.3.3 EG-emptiness

Recall that the EG-emptiness problem is false if there exists at least one parameter valuation for which
a maximal run remains entirely within some prede�ned set T of locations. That is, either this run is an
in�nite run, and therefore contains a cycle (remaining within T); or this run is a �nite run (remaining
within T), and therefore ends with a deadlock, i. e., ends with a state from which no discrete transition can
be taken, even after letting some time elapse.

We will see in the following that the EG-emptiness problem stands at the frontier between decidability
and undecidability for the class of L/U-PTAs. while this problem is decidable for L/U-PTAs with a bounded
parameter domain with closed bounds, it becomes undecidable if either the assumption of boundedness or
of closed bounds is lifted.

Theorem 3.8 ([AL17a]). The EG-emptiness problem is decidable for closed bounded L/U-PTAs.

Proof idea. Let A|bounds be a closed bounded L/U-PTA and T be a subset of its locations.
The basic monotonicity property of L/U-PTAs ensures that the TA vinf/sup(A), where vinf/sup is obtained by valuating

lower-bound parameters p− by inf(p−, bounds) and upper-bound parameters p+ by sup(p+, bounds), includes all the runs
that could be produced with other parameter valuations. Consequently, if there is an in�nite path for some valuation, there
is one for vinf/sup.

36

In vinf/sup(A), it is decidable to �nd an in�nite path staying in T , or conclude that none exist: this can be encoded
into the CTL formula EG(T ∧ EXT), to be veri�ed on the (�nite) region graph of A [AD94]. Since the region equivalence
is a time-abstract bisimulation [TY01], this means for A “there exists a path that remains in T and in which every state has
a discrete successor (possibly after letting some time elapse) in T ”. That path therefore has an in�nite number of discrete
actions. If we do �nd such a path, we can then terminate by answering yes to the EG-emptiness problem. If we do not, then
in vinf/sup(A), all paths staying in T are �nite. If we keep only discrete actions and locations, which are in �nite number,
the resulting paths therefore form a �nite tree.

We can then explicitly compute the symbolic states (following the symbolic semantics in De�nition 2.6) for all the paths
in the �nite tree (not only those that are maximal), and look for valuations that contain a deadlock, using techniques from
e. g., [And16; AL17a].

If we �nd a deadlock, then we can terminate and answer yes to the EG-emptiness problem. Otherwise, we can terminate
and answer no, because we have checked all the potential discrete paths staying in T for any parameter valuation.

Now, relaxing either the boundedness or the closedness yields undecidability, as stated in the following
theorems.

Theorem 3.9 ([AL17a]). The EG-emptiness problem is undecidable for open bounded L/U-PTAs.

Proof idea. This idea is to reuse the 2-counter machine encoding of Lemma 3.4, so that it works in constant time (1 time
unit). We replace any occurrence of “1” with either a new lower-bound parameter b− or a new upper-bound parameter b+
(depending on whether “1” appears as a lower bound or an upper bound). We also modify the zero-test gadget so that it
takes a duration strictly greater than 0, namely in [b−, b+]. We add a global invariant w ≤ 1, where w is a fresh clock.
Finally, we add a new location l′halt, to which one can go from lhalt i� a− < a+ or b− < b+. Therefore, provided we exclude
valuations such that a− > a+ or b− > b+, there is a deadlock in lhalt i� a− = a+ and b− = b+. Parameters are such that
a−, a+, b+ ∈ [0, 1] while b− ∈ (0, 1]; the interval open in 0 is essential for the proof to work.

Using an appropriate reasoning, we then haveM halts i� EG(L \ {l′halt} holds.

Theorem 3.10 ([AL17a]). The EG-emptiness problem is undecidable for L/U-PTAs, and therefore for
PTAs.

Proof idea. We use a reasoning similar to that of Theorem 3.9. However, we need to completely change the encoding of
the 2-counter machine, and go for a discrete time encoding (that also works in dense time) inspired by a 2-counter machine
encoding in [Ben+15]. The rest of the reasoning is similar to Theorem 3.9.

3.3.4 AG-emptiness

We proved that AG-emptiness is undecidable for our new subclass of IP-PTAs. This result di�erentiates
the classes of (bounded) L/U-PTAs and bounded IP-PTAs as AG-emptiness is decidable for (bounded) L/U-
PTAs [Hun+02], and helps to understand better the boundary between decidability and undecidability for
subclasses of PTAs.

Theorem 3.11 ([ALR16a]). The AG-emptiness problem is undecidable for bounded IP-PTAs, and there-
fore for (bounded) PTAs.

Proof idea. We reuse the encoding in our proof of Lemma 3.4. The main idea is, for all valuations of the parameter a that
are not small enough to properly encode the counters (i. e., for some value c of a counter, 1− ac < 0), to allow the PTA to
directly go to an lerror location. In order for our encoding to be an IP-PTA (in particular the lerror symbolic states), we add
a new parameter b, the value of which can be typically in [0, 1].

We then reduce the problem of knowing whether the counters of the machine grow unbounded along its execution,

37

which is undecidable [Min67], to the universality of the set of parameters that allow the encoding PTA to reach lerror (i. e.,
EF-universality, which is equivalent to AG-emptiness).

3.3.5 Nesting quanti�ers

We show below that using nested quanti�ers (i. e., beyond EF, EG, AF, AG) automatically leads to the
undecidability, even for the very restricted class of U-PTAs with a single parameter (that can even be
integer-valued).

Theorem 3.12 ([ALR18]). The emptiness problem of a nested TCTL formula is undecidable for U-PTAs.

Proof idea. The construction is inspired by the 2-counter machine encoding of [Ben+15], with several major adaptations.
Among the many modi�cations (including duplicating most locations, adding transitions to a new location, etc.), the key
idea is to replace guards x = a with x ≤ a, as the obtained encoding must be a U-PTA, and then use a nested TCTL formula
EGAG=0 to ensure that all guards will be taken “at the latest possible moment”, i. e., when x = a.

We may wonder if the timed aspect of TCTL (and notably the urgency required by the TCTL formula
EGAG=0) is responsible for the undecidability. In fact, it is not, and we could modify the proof to show
that CTL itself leads to undecidability, i. e., that EGAX-emptiness is undecidable.

We conjecture the construction could be adapted so as to work over bounded time, or with a bounded
parameter domain, reusing the encoding of Lemma 3.4 instead of our encoding; it should also be possible
to adapt it to the dual class of L-PTAs.

Theorem 3.12 is of importance for two reasons:

• it justi�es the thorough study of non-nested formulas (i. e., EF, EG, AF, AG), and

• it constitutes the �rst undecidable result of the literature for the class of U-PTAs, that was until then
completely open (the only decidable results came from the decidable results of the larger class of
L/U-PTAs, and no undecidability result was known).

A future objective will be to precisely draw the border between decidability and undecidability for
U-PTAs and L-PTAs.

3.3.6 Cycle-existence emptiness

In contrast to deadlock-freeness that is consistently undecidable (see Section 3.3.7 below), and to EG-
emptiness for which the frontier between decidability and undecidability is thin, the existence of a pa-
rameter valuation for which there exists at least one in�nite run is consistently decidable for L/U-PTAs.

Theorem 3.13 ([AL17a]). The cycle-existence problem is decidable for both closed bounded L/U-PTAs
and for (unbounded) L/U-PTAs.

Proof idea. The result for closed bounded L/U-PTAs derives from the following observation: in the TA obtained by val-
uating upper-bound (resp. lower-bound) parameters with their largest (resp. smallest) bound, there is no cycle in the zone
graph i� the cycle-existence problem is true.

The result for unbounded L/U-PTAs follows from the fact that the cycle-existence problem is PSPACE-complete for
integer-valued L/U-PTAs [BL09], together with a technical result [AL17a] that shows that there is a rational valuation yield-

38

l1 x ≤ p1 + 5

l2 x ≤ 10

x ≥ p2
a

a
x := 0

(a) PTA deadlocked for some valuations

l1

l2

x ≤ p
aa

(b) PTA deadlocked for all valuations

Figure 3.7 – Examples of PTAs with potential deadlocks

ing a cycle i� there is an integer-valuation yielding a cycle.

Unsurprisingly, with the rule of thumb that any non-trivial problem for PTAs is undecidable, this prob-
lem becomes undecidable for the full class of PTAs.

Theorem 3.14 ([AL17a]). The cycle-existence problem is undecidable for PTAs.

Proof idea. By reduction from the halting problem of a 2-counter machine, using an encoding not fundamentally di�erent
from that of Lemma 3.4.

Remark 3.2. The reader will have noted that one subclass is not treated in this section, i. e., the class
of open bounded L/U-PTAs: We conjecture that this is decidable using techniques derived from the
robustness results of [San11] but the adaptation appears to require rather non-trivial developments,
with techniques quite di�erent from those we used in [AM15; ALR16a; AL17a], and is thus left to
future work.

3.3.7 Deadlock-freeness emptiness and synthesis

Checking the absence of deadlocks in the model of a real-time system is of utmost importance. First,
deadlocks can lead the actual system to a blockade when a component is not ready to receive any action.
Second, a speci�city of models of distributed systems involving time is that they can be subject to situations
where time cannot elapse. This situation denotes an ill-formed model, as this situation of time blocking
(“timelock”) cannot happen in the actual system due to the uncontrollable nature of time.

Example 3.3. Consider the PTA in Figure 3.7a: deadlocks can occur if the guard of the transition from l1 to l2
cannot be satis�ed (when p2 > p1 +5) or if the invariant of l2 is not compatible with the guard (when p2 > 10).
In Figure 3.7b, the system may risk a deadlock for any parameter valuation as, if the guard is “missed” (if a run
chooses to spend more than p time units in l1), then no transition can be taken from l1.

Undecidability

The deadlock-existence emptiness problem is undecidable, even for the restricted class of closed bounded
L/U-PTAs.

39

Theorem 3.15 ([AL17a]). The deadlock-existence-emptiness problem is undecidable for closed bounded
L/U-PTAs, for open bounded, for (unbounded) L/U-PTAs, and for PTAs.

Proof idea. By reduction from the halting problem of a 2-counter machine, using an encoding based on Lemma 3.4.

Synthesis

Despite the undecidability in Theorem 3.15, we can address the problem of (trying to) synthesizing valu-
ations for which a PTA is deadlock-free. We de�ne a semi-algorithm and, when this �rst procedure does
not terminate, we provide a second algorithm that always terminates with an approximated result.

Asemi-algorithm for deadlock-freeness synthesis First, let us introduce below our procedurePDFC,
that makes use of an intermediate, recursive procedure DSynth. Both are written in a functional form in
the spirit of, e. g., the reachability and unavoidability synthesis algorithms in [JLR15]. Given s = (l, C),
we use sC to denote C . The notation g(s, s′) denotes the guard of the edge from s to s′. As an abuse of
notation, we write Succ(s) to denote the set of successors of s for all possible edges.

DSynth(s,Passed) =

⊥ if s ∈ Passed(⋃

s′∈Succ(s) DSynth(s′,Passed ∪ {s})
)

∪
(
sC \

(⋃
s′∈Succ(s)

(
sC ∧ g(s, s′)

)↙ ∧ s′C↓P)
))
↓P otherwise

PDFC(A) = ¬DSynth(sA0 , ∅)
First, we use a functionDSynth(s,Passed) to recursively synthesize the parameter valuations for which

a deadlock may occur. This function takes as argument the current state s together with the list Passed of
passed states. If s belongs to Passed (i. e., s was already met), then no parameter valuation is returned. Oth-
erwise, the �rst part of the second case computes the union over all successors of s of DSynth recursively
called over these successors; the second part computes all parameter valuations for which a deadlock may
occur, i. e., the constraint characterizing s minus all clock and parameter valuations that allow to exit s to
some successor s′, all this expression being eventually projected onto P .

Finally, PDFC (“parametric deadlock-freeness checking”) returns the negation of the result of DSynth
called with the initial state of A and an empty list of passed states.

We show below thatPDFC is sound and complete. Note however that, in the general case, the algorithm
may not terminate, as DSynth explores the set of symbolic states, of which there may be an in�nite number.

Proposition 3.5 ([And16]). Assume PDFC(A) terminates with result K . Given a parameter valua-
tion v, v |= K i� v(A) is deadlock-free.

PDFC outputs an over-approximation of the parameter set when stopped before termination:

Proposition 3.6 ([And16]). Fix a maximum number of recursive calls in DSynth. Then PDFC termi-
nates and its result is an over-approximation of the set of parameter valuations for which the system is
deadlock-free.

40

s0

s1 s2

s3 s4

×× ×

(a) Partial state space

s0

s1 s2

s3 s4

×× ×

(b) Iteration 1

s0

s1 s2

s3 s4

×× ×

(c) Iteration 2

Figure 3.8 – Application of BwUS

Under-approximated synthesis A limitation of PDFC is that either the result is exact, or it is an over-
approximation when stopped earlier than the actual �xpoint. In the latter case, the result is not entirely
satisfactory: if deadlocks represent an undesired behavior, then an over-approximation may also contain
unsafe parameter valuations. More valuable would be an under-approximation, as this result (although
potentially incomplete) �rmly guarantees the absence of deadlocks in the model.

Our idea is as follows: after exploring a part of the state space in PDFC, we obtain an over-
approximation. In order to get an under-approximation, we can consider that any unexplored state is
unsafe, i. e., may lead to deadlocks. Therefore, we �rst need to negate the parametric constraint associated
with any state that has unexplored successors. But this may not be su�cient: by removing those unsafe
states, their predecessors can themselves become deadlocked, and so on. Hence, we proposed in [And16] a
procedure BwUS that performs a backward-exploration of the state space by iteratively removing unsafe
states, until a �xpoint is reached (or the constraint becomes false).

The procedure BwUS maintains several variables. Marked denotes the states that are potentially dead-
locked, and the predecessors of which must be considered iteratively. Disabled denotes the states marked
in the past, which avoids to consider several times the same state. K+ is an over-approximated constraint
for which there are deadlocks; the negation of K+ is eventually returned, and therefore the algorithm re-
turns an under-approximation. Initially, K+ is set to the (under-approximated) result of DSynth, and all
states that have unexplored successors in the state space (due to the early termination) are marked.

Example 3.4. Let us apply BwUS to a (�ctional) example of a partial state space, given in Figure 3.8a. We
only focus on the backward exploration, and rule out the constraint update (constraints are not represented in
Figure 3.8a anyway). s3 and s4 have unexplored successors (denoted by ×), and both states are hence unsafe
as they might lead to deadlocks along these unexplored branches.

Initially, Marked = {s3, s4} (depicted in yellow with a double circle in Figure 3.8a), and no states are
disabled. First, we add s3C↓P ∪ s4C↓P to K+. Then, preds is set to {s1, s2}. We recompute the deadlock
constraint for both states. For s2, it now has no successors anymore, and clearly we will have s2C↓P ⊆ K+,
hence s2 is marked. For s1, it depends on the actual constraints; let us assume in this example that s1 is still
not deadlocked for some valuations, and s1 remains unmarked. At the end of this iteration, Marked = {s2}
and Disabled = {s3, s4}.

For the second iteration, we assume here (it actually depends on the constraints) that s1 will not be marked,
leading to a �xpoint where s2, s3, s4 are disabled, and the constraint¬K+ therefore characterizes the deadlock-
free runs in Figure 3.8c. (Alternatively, if s1 was marked, then s0 would be eventually marked too, and the result
would be ⊥.)

Experiments Both PDFC and BwUS have been implemented in IMITATOR. We ran experiments
in [And16] on a set of case studies taken from the IMITATOR benchmarks library. Our benchmarks

41

come from teaching examples (co�ee machines, nuclear plant, train controller), communication protocols
(CSMA/CD [Kwi+07], RCP [CS01]), asynchronous circuits (and–or [CC05], �ip-�op [CC04]), a distributed
networked automation system (SIMOP [And+09a]) and a Wireless Fire Alarm System (WFAS) [Ben+15].

If an experiment has not �nished within a prede�ned duration (in [And16], we use 300 s), the re-
sult is still a valid over-approximation; in addition, IMITATOR then runs BwUS to also obtain an under-
approximation.

Analyzing the experiments, several situations occur: the most interesting result is when an exact (i. e.,
sound and complete) constraint is derived. For example, the constraint synthesized by IMITATOR for the
PTA in Figure 3.7a is

p1 + 5 ≥ p2 ∧ p2 ≤ 10,

which is exactly the valuation set ensuring the absence of deadlocks. In several cases, the synthesized
constraint is ⊥, meaning that no parameter valuation is deadlock-free; this may not always denote an
ill-formed model, as some case studies are “�nite” (no in�nite behavior), typically some of the hardware
case studies (e. g., �ip-�op); this may also denote a modeling process purposely blocking the system (to
limit the state space explosion) after some property (typically reachability) is proved correct or violated.
When no exact result could be synthesized, our second procedure BwUS allows to get both an under-
approximated and an over-approximated constraint (except in one case where only an over-approximation
can be synthesized). This is a valuable result, as it contains valuations guaranteed to be deadlock-free,
others guaranteed to be deadlocked, and a third unsure set. Full details can be found in [And16].

3.3.8 Language and trace preservation

Both the language-preservation-emptiness and the trace-preservation-emptiness problems are undecidable
for PTAs, even with simple constraints in guards and invariants [AM15]. The continuous (or robust) ver-
sions of those problems additionally require that the language (resp. set of traces) is preserved under any
intermediary valuation of the form λ ·v+(1−λ) ·v′, for λ ∈ [0, 1] (with the classical de�nition of addition
and scalar multiplication).

Theorem 3.16 ([AM15; ALM18]). The language-preservation-emptiness problem and its continuous
version are undecidable for PTAs.

The trace-preservation-emptiness problem and its continuous version are undecidable for PTAs.

Proof idea. The proof of the language-preservation-emptiness problem reduces from the halting problem for 2-counter
machines, using an original encoding. Two clocks are used to encode the value of the two counters, while a third clock is
used to count modulo p (the only, integer-valued, parameter). A fourth clock is speci�cally used to block the computation
after p time units, and is used by the language-preservation-emptiness problem.

The proof of the trace-preservation-emptiness problem is rather technical, and comes with three �avors:
1. the �rst proof involves diagonal constraints (i. e., of the form xi−xj ./ plt , which goes beyond the syntax of PTAs),

but only a �xed number of parametric clocks [AM15];
2. the second proof does not involve diagonal constraints. It involves a bounded number of locations (but with an

unbounded number of transitions) and an unbounded number of parametric clocks; by unbounded we mean not
constant but depending on the size of the counter-machine [AM15];

3. the third proof uses a bounded number of clocks and parameters, and an unbounded number of locations [ALM18].

The need for an unbounded number of clocks in the �rst two versions of this proof comes from the
fact that the proof encodes the 2-counter machine with a �xed number of locations (to reduce easily from

42

language-preservation to trace-preservation), which thus requires to encode each location with a di�erent
clock. Note that the �rst two versions of the proof are, to the best of our knowledge, the only attempt to
model a 2-counter machine using PTAs with a constant number of locations (at the cost of an unbounded
number of clocks).

The language-preservation-emptiness problem is also undecidable for L/U-PTAs.

Theorem 3.17 ([AM15]). The language-preservation-emptiness and trace-preservation-emptiness prob-
lems and their continuous versions are undecidable for L/U-PTAs.

Proof idea. The construction reuses the reasoning used in Theorem 3.16, with an additional initial gadget: we split the
parameter p into an upper-bound and a lower-bound parameter, and force them to be equal to each other to preserve the
language of a given parameter valuation.

What’s beyond. . . ?. Most of the results of [AM15] were initially de�ned for a di�erent version of the language:
the language is de�ned as the set of untimed words associated with all maximal runs (without any acceptance
condition), i. e., all deadlock runs and all in�nite runs. However, we show in [ALM18] that both these results
extend in a straightforward manner to the de�nition in De�nition 2.3.

In addition, we show in [ALM18] that looking for valuations for which the language (or trace set) is included
/ is strictly included / includes / strictly includes the language (or trace set) of the reference valuation preserves
the undecidability of the problem.

Finally, the results remain valid even over bounded-time [ALM18].
The language and trace preservation can therefore seen as consistently undecidable.

Our undecidability results can be put into perspective with the decidability results for the larger class
of hybrid automata of [Bri+13]. In [Bri+13], time-bounded reachability is proved decidable for a subclass of
hybrid automata with monotonic (either non-negative or non-positive) rates: parametric timed automata
can �t into this framework: clocks and parameters all have non-negative rates (1 for clocks, and 0 for
parameters). To “initialize” parameters, one can initialize them to 0, let time elapse for an arbitrary amount
of time (for each parameter), and then set their rate to 0 (while resetting all clocks). However, to compare
clocks and parameters together in a hybrid automaton, one needs diagonal constraints—that are not allowed
in [Bri+13]. As we showed that our undecidability results hold over bounded-time with a single parameter,
one can revisit the result of [Bri+13] as follows: allowing a single variable (our parameter) in diagonal
constraints, with only one location with a non-zero rate for this variable (the initialization location for this
parameter) renders the decidable problem of [Bri+13] undecidable.

In addition, we can compare the undecidability of the language-preservation-emptiness problem with
some related results.

In timed automata, the (untimed) language robustness problem asks whether there exists a ∆ > 0 for
which the TA where all guards are enlarged by ∆ gives the same untimed language as the original TA.
The result is decidable [San11] for some assumptions: beyond some mild restrictions (closed guards and
bounded clocks), this work requires the progress cycle assumption, i. e., that any cycle in the structural
automaton resets all clocks at least once. The complexity is 2EXPTIME (under these assumptions) and
PSPACE with the additional requirement of deterministic TAs.

In [SBM14], the shrinkability problem is considered: instead of enlarging guards, the existence of a
positive constant (possibly di�erent for each guard) such that the TA where each guard is shrinked by this
constant time-abstract bisimulates the original TA is decidable.

In time Petri nets, the robust untimed language preservation is studied in [Aks+16]: “given a bounded
TPN N , does there exist a ∆ > 0 such that the untimed language of N is equal to the untimed language

43

Class U-PTAs bL/U-PTAs L/U-PTAs bIP-PTAs IP-PTAs bPTAs PTAs
closed open

EF [Hun+02] [ALR16a] open [Hun+02] [ALR16a] [ALR16a] [Mil00] [AHV93]
AF open [ALR16a] [JLR15] [ALR16a] [ALR16a] [ALR16a] [JLR15]
EG open [AL17a] [AL17a] [AL17a] open [AL17a]
AG [AL17a] [ALR16a] open [AL17a] [ALR16a]

TCTL [ALR18] [ALR16a] [JLR15] [ALR16a] [Mil00] [AHV93]
EC [AL17a] [AL17a] open [AL17a] open [AL17a]
ED open [AL17a] open [AL17a] [And16]
LgP open [AM15] open [AM15]
TrP open [AM15] open [AM15]

Table 3.2 – Decidability of the emptiness problems for PTAs and subclasses

of N where each �ring interval is enlarged by ∆”? This problem is undecidable in general [Aks+16], but
becomes decidable for distinctly labeled bounded TPNs, i. e., when all transitions are labeled with di�erent
labels. The result comes from a translation from TAs to TPNs and the decidability of the robustness of
timed automata w.r.t. ω-regular properties [BMS11]. The setting of distinctly labeled transitions was not
considered in [AM15], and would deserve investigation too.

3.3.9 The one-clock case

In [AM15], we show that the parametric zone graph PZG is �nite for a single (parametric) clock and
arbitrarily many rational-valued parameters over dense time. This result is not fundamentally new:
in [AHV93], using a dynamic programming fashion procedure, the set of all disjunctive path constraints
can be computed, from which emptiness can be inferred.3 However, our result extends to rational-valued
parameters and, most importantly, is rede�ned for the case of the zone graph, that is manipulated by many
synthesis algorithms in the literature. This implies that all problems that reason on the zone graph can
be decided; in addition, exact synthesis can be achieved. This includes in particular EF-, EG-, AF and AG-
emptiness: two semi-algorithms based on the zone graph are proposed in [JLR15] that compute (if they
terminate) all valuations for EF-synthesis and AF-synthesis respectively. Since the zone graph is �nite and
both procedures are semi-algorithms, they output an exact result for EF- and AF-synthesis in the form of a
�nite union of polyhedra. From these results, one can trivially derive not only EF- and AF-emptiness, but
also EG- and AG-emptiness since they are equivalent to AF- and EG-universality respectively.

The language- and trace-preservation-emptiness problems are decidable for deterministic PTAs with a
single (parametric) clock, and with linear parameter constraints allowed in guards and invariants, i. e., of
the form x ./ plt or plt ./ 0 [AM15]. The procedure IM (recalled in Algorithm 2 in Section 2.4) synthesizes
(when it terminates) all parameter valuations with the same trace set as a given valuation, that is complete
only for deterministic PTAs, and terminates in the case of a single clock.

3.3.10 Summary of decision problems

We give a summary in Table 3.2. We give from left to right the (un)decidability for U-PTAs, bounded L/U-
PTAs (with either closed or open bounds), bounded IP-PTAs, L/U-PTAs, IP-PTAs, bounded PTAs, and PTAs.
We review the emptiness of TCTL subformulas (EF, AF, EG, AG), full TCTL, cycle-existence, deadlock-

3In fact, the result in [AHV93] even extends the decidability to a single parametric clock with arbitrarily many non-parametric
clocks. This is not the case of our result.

44

bounded L/U

L/U

IP-PTA

non-strict L/U

bounded PTAs

PTAs

(a) EF-emptiness

bounded L/U

L/U

IP-PTA

non-strict L/U

bounded PTAs

PTAs

(b) AF-emptiness

bounded L/U

L/U

IP-PTA

non-strict L/U

bounded PTAs

PTAs

(c) EG-emptiness

bounded L/U

L/U

IP-PTA

non-strict L/U

bounded PTAs

PTAs

(d) AG-emptiness

Figure 3.9 – Decidability results for PTAs and subclasses

existence and language- and trace-preservation. Decidability is given in green, whereas undecidability is
given in italic red. Our contributions are emphasized in bold using a plain background, whereas existing
results are depicted using a light background. When several papers in the literature proved the same result,
we only give the earliest result, and not necessarily the best (in terms of number of clocks and parameters,
or complexity). For EF-emptiness, a full table with all best results was given in Table 3.1.

We give another summary in Figure 3.9. Recall that bounded L/U-PTAs and L/U-PTAs are in fact incom-
parable; they are therefore not included into each other in the �gures. Decidability (resp. undecidability) is
depicted in plain green (resp. dashed red); open problems are depicted in dotted black. Our contributions
are depicted in thick.

What’s open? Beyond the open problems for IP-PTAs (that are mainly open because we did not study
them), we discuss in the following the interesting open problems. I highly suspect that EF-emptiness and
AG-emptiness (in fact EF-universality) are decidable for open bounded L/U-PTAs: note that decidability
holds both for closed bounded and unbounded L/U-PTAs. In both cases, it must be possible to consider
the TA valuated with the parameter (possibly open) bounds: EF-emptiness could be solved by replacing
non-strict inequalities with strict inequalities, while AG-emptiness could be solved by studying the region
graph [AD94]. This is the subject of ongoing work.

I suspect that robustness results of [SBM14] might be used to prove the decidability of the EC-emptiness
problem for open bounded L/U-PTAs; however, preliminary discussions with Didier Lime and Ocan Sankur
showed that this involves some technicalities—and will be the subject of future work.

Finally, results on U-PTAs are highly challenging, and will make an interesting future work.

45

3.4 Perspectives

Expressiveness A comparison of the expressiveness of these di�erent syntactic models remains to be
done. Whereas it is likely that allowing constraints of the form x ./ plt may be simulated using constraints
of the form x ./ p | d+ (perhaps adding additional locations, clocks and parameters), the expressiveness
may di�er when adding a set of accepting locations (just as the timed expressive power of TSA is strictly
less than that of TBA [HKW95]).

The question of the relationship between syntax and expressiveness: allowing a richer syntax than
x ./ p in guards and invariants (e. g., x ./ p + 1) may have an impact on the expressiveness, at least in
terms of numbers of clocks and parameters; and since the number of clocks has an impact on decidability,
this is to be studied. For example, in [ALR16b], we showed that allowing fully parametric constraints does
not change the expressiveness of parametric timed automata, but at the cost of a larger number of clocks
and parameters. An interesting direction of research would be to de�ne an equivalence such as “x ./ p+ 1
is equivalent to x ./ p at the cost of one extra clock”.

Our de�nitions of expressiveness only hold for integer-valued parameters. Extending them to rational-
valued parameters is interesting (and will have an impact, for example for bounded PTAs).

Two open and promising formalisms Exhibiting the precise border between decidability and unde-
cidability for U-PTAs and L-PTAs is of interest, as these classes remain largely open, while still allowing
expressive models. In fact, they can somehow be considered as the simplest extension of timed automata
with timing parameters.

Beyond parametric timed automata Our syntactic class of reset-PTA seems promising, especially aug-
mented with some features. Mathias Ramparison’s PhD work focuses on an extension of reset-PTAs for
which the EF-emptiness problem remains decidable. Also combining this restriction with the restriction of
initialization in hybrid automata [Hen+98] seems of interest.

46

Chapter 4
E�cient veri�cation

After studying theoretical issues on parametric timed automata in Chapter 3, we summarize here more
practical contributions, that all aim at making synthesis more e�cient. These can be seen as pragmatic
contributions: since most problems are undecidable, let us de�ne optimizations with the hope that they
will help most case studies terminating.

We �rst adapt to parametric timed automata two existing techniques de�ned for timed automata, i. e.,
convex state merging (Section 4.1, with Laurent Fribourg and Romain Soulat) and dynamic clock elimina-
tion (Section 4.2).

Then, we show in Section 4.3 (with Didier Lime and Olivier Roux) that the notion of integer hull,
proposed in [JLR15] to perform symbolic synthesis for bounded integer-valued parameters, can be used to
ensure termination of algorithms returning a rational-valued, i. e., dense, result; while completeness may
be lost, we do keep the integer-completeness.

We then use distributed computing techniques (running on a cluster, i. e., on a set of computers with
their own memory and linked by a network) to perform parameter synthesis (Section 4.4, with Camille
Coti, Nguyễn Hoàng Gia and Sami Evangelista). Distributing veri�cation has been addressed in several
earlier works, e. g., statistical model checking [Bul+11], or veri�cation of probabilistic [Ces+16] or timed
systems [ZNL16a; ZNL16b]. Also, multi-core LTL veri�cation [Eva+12] and emptiness checking of timed
Büchi automata [Laa+13] was considered; but these run on multicore computers (with a shared memory)
whereas our primary goal is to run veri�cation on a cluster (where each node has its own memory). In fact,
to the best of our knowledge, our work is the �rst attempt to distribute parameter synthesis, particularly
in parametric timed formalisms.

We then propose a new algorithm that preserves the reachability of a location for a given valuation,
and show that, by performing repeated applications on di�erent valuations, it can outperform the classical
EFsynth, especially when distributed (Section 4.5, with Giuseppe Lipari and Sun Youcheng).

Finally, we use learning-based techniques for (non-)parametric synthesis, and show that in a syntactic
subclass of PTAs, namely parametric event-recording automata, we can outperform EFsynth by an order
of magnitude using compositional veri�cation (Section 4.6, with Lin Shang-Wei).

IMITATOR Most of these contributions (as well as those of Chapters 5 and 6) have been implemented in
IMITATOR [And+12], a tool supporting (extensions of) parametric timed automata as an input language.
I initiated the development of IMITATOR in 2008 (during my PhD thesis) and, although I implemented most
algorithms in IMITATOR, some of my colleagues (namely Camille Coti, Sami Evangelista, Nguyễn Hoàng
Gia and Romain Soulat) took part to some development too.

47

(l0, C0)

(l1, C1) (l2, C2)

(l3, C3) (l3, C
′
3)

(l4, C4) (l4, C
′
4) (l5, C5)

(l6, C6) (l6, C
′
6) (l6, C

′′
6)

js1 js2

js2 js1

jf1 jf1

jf2

jf2 jf2 jf1

(a) Trace set of v(A)

(l0, C0)

(l1, C1) (l2, C2)

(l3, C3)

(l4, C4) (l5, C5)

(l6, C6)

js1 js2

js2 js1

jf1 jf2

jf2 jf1

(b) Symbolic semantics

(l0, C0)

(l1, C1) (l2, C2)

(l3, C3) (l3, C
′
3)

(l4, C4) (l5, C5) (l5, C
′
5)

(l6, C6) (l6, C
′
6) (l6, C

′′
6)

js1 js2

js2 js1

jf1 jf2 jf2

jf2 jf1 jf1

(c) Trace set of v′(A)

Figure 4.1 – Trace sets of A

4.1 Convex state merging

In order to fasten the computation of the symbolic state space of PTA according to De�nition 2.6, we can
merge states together using convex state merging: if two states share the same location, and the union of
their continuous part is included into their convex hull, then the two states can be replaced with their hull.

In [BBM06], it is shown that, in a network of TAs, all the successor states can be merged together when
all the interleavings of actions are possible. However, this result does not seem to extend to the parametric
case. In [Dav05; Dav06], it is proposed to replace the union of two states by a unique state when the union
of their continuous part (i. e., the symbolic clock values) is convex, and the discrete part (i. e., the location)
is identical. This technique is applied to timed constraints represented in the form of Di�erence Bound
Matrices (DBMs) (see e. g., [BY03]).

Here, we attempt to extend the merging described in [Dav05; Dav06] to the parametric case. This ex-
tension is not trivial, and the implementation is necessarily di�erent, since DBMs (in their original form)
do not allow the use of parameters. Instead, we implemented our approach in IMITATOR using polyhe-
dra [BHZ08].

De�nition 4.1 (Merging). Two states (l1, C1) and (l2, C2) are mergeable if l1 = l2 and C1 ∪ C2 is
convex; then, (l1, C1 ∪ C2) is their merging.

We showed in [AFS13a] that, while convex state merging can be used to improve the e�ciency
of EFsynth, it cannot be used for the inverse method (recalled in Section 2.4).

Example 4.1. We use here a typical jobshop example in the setting of parametric schedulability [Fri+12], in
order to show that the traces are no longer preserved with the inverse method when state merging is used.
This system (modeled by a PTA A) contains 2 machines on which 2 jobs should be performed. The system
parameters are pi (for i = 1, 2) that encode the duration of each job. The system actions are js1 (job 1 starting),
jf1 (job 1 �nishing) and similarly for job 2.

Consider v = {p1 ← 1, p2 ← 2}. The trace set of v(A) is given in Figure 4.1a (in the form of a
graph). Applying the inverse method to A and v gives K = p2 > p1. From the correctness of the inverse
method [And+09b], the trace set of v(A), for all v′ |= K , is the same as for v(A). Now, applying the inverse
method toA and v while merging states on-the-�y givesK ′ = >; the parametric reachability graph built using
state merging is given in Figure 4.1b. Then, let v′ = {v1 ← 2, v2 ← 1} be a valuation in K ′ but outside of
K . The trace set of v′(A) is given in Figure 4.1c. The trace sets of v(A) and v′(A) are di�erent: the trace

48

l0
js2⇒ l2

js1⇒ l3
jf1⇒ l4

jf2⇒ l6 exists in v(A) but not in v′(A); the trace l0
js1⇒ l1

js2⇒ l3
jf2⇒ l5

jf1⇒ l6 exists in v′(A) but
not in v(A). Note that the reachable locations and executable actions are the same in these two trace sets.

However, in general, using convex merging may even not preserve the set of “reachable actions”, i. e.,
actions belonging to a run of the original TA.

Nevertheless, we proved that merging still preserves the set of reachable locations in the framework of
the language or trace-preservation-synthesis.

Theorem 4.1 ([AFS13a]). Let K be the result of the inverse method applied to a PTA A and a pa-
rameter valuation v while merging states on-the-�y. Then, for all v′ |= K , ReachLocs(v′(A)) =
ReachLocs(v(A)).

What’s beyond. . . ?. In fact, we can improve these theoretical results in two ways [AFS13a]:

1. By adding the assumption of backward-determinism, i. e., for any location, at most one action is used on
its incoming edges (which can be checked syntactically), then the set of actions is preserved too.

2. By proposing a variant of the combination of the inverse method with the merging (by changing the
time where merging is performed), we again retrieve the preservation of the set of actions. This comes
at the cost of a less e�cient algorithm in practice according to our experiments.

Convexmerging in practice We conducted experiments in [AFS13a] comparing the e�ciency of merg-
ing w.r.t. the traditional algorithms. For the inverse method, and for reachability analysis, despite the very
high cost of the mergeability test (performed in IMITATOR by PPL [BHZ08]), the improvement is often
dramatic, especially for parametric schedulability analyses. This comes from the fact that, due to merging,
the number of symbolic states is decreased by an order of magnitude, leading to a much more e�cient
inclusion check when new symbolic states are computed. This led us to set as default convex merging in
most algorithms in IMITATOR, when the equality of trace sets is not required.

4.2 Dynamic clocks elimination

It is well known that the fewer clocks, the more e�cient real-time model checking is [BY03]. Furthermore,
a smaller number of clocks may imply a more compact state space: when constraints are represented using
arrays and matrices, the fewer clocks, the smaller the constraints are, the more compact the state space
is. Formalisms such as (parametric) timed Petri nets [TLR09] or (parametric) stateful timed CSP [Sun+13a;
And+14] have the advantage to dynamically create and discard clocks (called “�ring times” in Petri nets).
Hence, clocks only appear in symbolic states when they are actually useful. In contrast, in (parametric)
timed automata, according to their standard semantics, clocks must be present in all states.

In [DY96], two methods are proposed to reduce the number of clocks in TAs:

1. the detection of active clocks (the other clocks can be safely eliminated), and

2. the detection of clocks equal to each others (in which case only one such clock can be kept).

It is shown that the resulting automaton is bisimilar to the original one, and experiments show large state
space reductions.

We extended the �rst method to the parametric case. However, there are technicalities: in [DY96], the
constraints are implemented in the form of di�erence bound matrices, where adding and removing clocks

49

l1

l2

l3 l4

x2 ≤ p2

x1 ≤ p2

x1 = p1

x1 := 0
x2 := 0

x2 = p1

x2 := 0

(a) A toy PTA A

l1

l2

l3 l4

x2 ≤ p2

x1 ≤ p2

x1 = p1

x1 := 0
x2 := 0

x2 = p1

x2 := 0

(b) Not marked in red: locations where x1 is irrelevant

l1

l2

l3 l4

x2 ≤ p2

x1 ≤ p2

x1 = p1

x1 := 0
x2 := 0

x2 = p1

x2 := 0

(c) Not marked in red: locations where x2 is irrelevant

Figure 4.2 – Static computation of the useless clocks: an example

is straightforward. In contrast, we use polyhedra in IMITATOR, where such operations are much more
costly. Finally, our original motivation was to ensure termination of some systems, which is not necessary
in the non-parametric setting since most algorithms rely on symbolic state space partitions guaranteeing
termination.

We introduced in [And13a] a technique to eliminate clocks on-the-�y, when it is guaranteed that they
will not be read in guards and invariants until their next reset. Our approach is based on a static compu-
tation of the locations where clocks can be safely eliminated, as well as on a dynamic elimination of these
clocks during the analysis.

Example 4.2. Consider the toy PTA A in Figure 4.2a. Our aim is to detect in which locations which of the
two clocks x1 and x2 can be safely eliminated, because its current value does not have impact on the analysis,
nor its future—until the next reset of that clock. The results of the application of our static procedure toA and
to x1 and x2 are given in Figures 4.2b and 4.2c, respectively. The only location for which x1 is useless is l4,
while the locations for which x2 is useless are l2 and l3.

In the case of a network of PTA (i. e., several PTAs in parallel, synchronizing using shared actions, as
allowed by the input syntax of IMITATOR), the list of useless clocks in a global location is the union, for
each of the PTA in parallel, of the clocks useless in the local location for this PTA.

Dynamic clocks elimination in practice We implemented our approach in IMITATOR. Experiments
tabulated in [And13a] show a diminution of the number of states and of the computation time, and in some
cases allow termination of the analysis of models that could not terminate otherwise. Surprisingly, even
when the number of clocks (and hence of states) remains constant, the computation time does not increase,
i. e., there is little noticeable overhead in applying the proposed clock elimination. This tends to show that
the dynamic elimination of clocks should become default in IMITATOR.

50

··
··
·

··
··
·

··
··
·

··
··
·

··
··
·

··
··
·

··
··
·

p

x

Figure 4.3 – Illustration of the integer hull

4.3 Guaranteeing termination with the integer hull

4.3.1 Context and objective

In [JLR15], a focus is made on integer-valued bounded parameters (still over dense-time), for which many
problems are obviously decidable (in fact PSPACE-complete). The authors provided symbolic algorithms
to compute the exact set of correct integer parameter values ensuring a reachability (EF) or unavoidability
(AF) property, using two ad-hoc algorithms called IEFsynth and IAFsynth, respectively. These algorithms
are shown to be more e�cient in practice than an exhaustive enumeration with Uppaal. A drawback is that
returning only integer points prevents designers to use the synthesized constraint to study the robustness
or implementability of their system (in the sense of e. g., [De +08; Mar11; BMS13]).

IEFsynth is a classical synthesis algorithm that traverses the symbolic semantics of a PTA (De�ni-
tion 2.6), with a main exception: when �nding a new symbolic state, instead of comparing its constraint
with the constraint of already visited states, it compares their integer hull. Let us recall this notion.

Integer hulls Let C be a convex polyhedron. C is topologically closed if it can be de�ned using only
non-strict inequalities.1

De�nition 4.2 (integer hull). The integer hull of a topologically closed polyhedron, denoted by IH(C),
is de�ned as the convex hull of the integer vectors of C , i. e., IH(C) = Conv(IV(C)), where Conv
denotes the convex hull, and IV the set of vectors with integer coordinates.

Example 4.3. Consider the polyhedron with a blue background in Figure 4.3. Then its integer hull is the
polyhedron delimited with a black thick line; observe that it contains all integer points of the original polyhe-
dron.

IEFsynth is recalled in Algorithm 3. It di�ers from EFsynth (recalled in Algorithm 1) with only two
points (highlighted in Algorithm 3):

1. the integer hulls of the symbolic states are compared to each other (lines 4 and 6), and

2. the projection onto the parameters of the integer hull of the target states is returned (line 1).

Whereas EFsynth does not necessarily terminate, IEFsynth terminates with an exact result interpreted
over integer parameter valuations.

1We only de�ne here the integer hull of a topologically closed polyhedron. In fact, any non-closed polyhedron can be repre-
sented by a closed polyhedron with one extra dimension [HPR94]. Direct handling of not-necessarily-closed (NNC) polyhedra
raises no theoretical issue but would impair the readability of this manuscript (see [JLR15] for details).

51

Algorithm 3: IEFsynth(A, s, T, S)

input : A PTA A, a symbolic state s = (l, C), a set of target locations T , a set S of passed states on
the current path

output: Constraint K over the parameters
1 if l ∈ T thenK ←

(
IH(C)

)
↓P ;

2 else
3 K ← ⊥;
4 if IH(s) 6∈ S then
5 for each outgoing edge e from l in A do
6 K ← K ∪ IEFsynth

(
A, Succ(s, e), T, S ∪ {IH(s)}

)
;

7 returnK

l1 l2

l3l4

x = 1

x := 0

x ≥ 1
∧ y = 0

y = 1
y := 0

y ≤ p
y := 0

Figure 4.4 – A PTA motivating the need for an extrapolation

Proposition 4.1 ([JLR15]). Given a bounded PTA, IEFsynth always terminates. In addition, given an
integer parameter valuation v, v |= IEFsynth(A, s0, T, ∅) i� T is reachable in v(A).

A natural question follows: since the result of IEFsynth comes in the form of a convex constraint, can
this convex constraint be interpreted over the set of rationals (instead of integers)?

4.3.2 A parametric extrapolation

First, let us motivate the use of an extrapolation.

Example 4.4. Consider the PTA in Figure 4.4. The duration between any two resets of x is 1, while the
duration between any two resets of y is in [1, 1 + p], which requires p to be arbitrarily small to do arbitrarily
many loops through l1l2l3. In fact, assuming p ∈ [0, 1], the (desired) answer to the EF-synthesis with l4 as the
goal location would be 0 < p ≤ 1. After a number n of times through the loop, we get constraints in l1 of the
form 0 ≤ x − y ≤ n × p, with n growing without bound. Even if the parameter p is bounded (e. g., in [0, 1]),
the time necessary to reach location l4 is unbounded. This was not the case in [JLR15] due to the fact that
parameters were bounded integers. Hence, on this PTA, we cannot just apply the integer hull (as in [JLR15]) to
ensure termination and integer-completeness of our algorithms.

Let us now show that the union for all values of the parameters of the classical k-extrapolation used
for the zone-abstraction for timed automata (see e. g., [Beh+06]) leads to a non-convex polyhedron.

Example 4.5. Let us consider the PTA in Figure 4.5a with a parameter p such that 0 ≤ p ≤ 1. By taking n

52

times the loop we obtain:

0 ≤ x ≤ p ∧ 0 ≤ y − x ≤ (n+ 1)× p ∧ 0 ≤ p ≤ 1

The greatest constant of the model is k = 1. After one loop, y can be greater than 1. Then, for each
value of p, we can apply the classical k-extrapolation used for timed automata (as recalled in [Beh+06]) of the
corresponding zone. The union for all values of p of these extrapolations, projected to the plan (y, p) is depicted
by the plain blue part (light and dark blue) of Figure 4.5b. The obtained polyhedron is non-convex.

l0 l1

x ≤ p

x := 0

y > 1

(a) PTA (assume p ∈ [0, 1])

y

p

0 1 2 3
0

1

(b) Extrapolation

Figure 4.5 – Example illustrating the non-convex parametric extrapolation

For any zone C and variable x, we denote by Cylx(C) the cylindri�cation of C along variable x, i. e.,
Cylx(C) = {w | ∃w′ ∈ C,∀x′ 6= x,w′(x′) = w(x′) and w(x) ≥ 0}. This is a usual operation that consists
in unconstraining variable x.

De�nition 4.3 ((M,x)-extrapolation). Let C be a polyhedron. Let M be a non-negative integer
constant and x be a clock. The (M,x)-extrapolation of C , denoted by ExtMx (C), is de�ned as:

ExtMx (C) =
(
C ∩ (x ≤M)

)
∪ Cylx

(
C ∩ (x > M)

)
∩ (x > M).

Given s = (l, C), we write ExtMx (s) for ExtMx
(
C
)
.

Example 4.6. To illustrate the (M,X)-extrapolation, we go back to the example of Figure 4.5a after one
loop. C is the polyhedron for n = 1. Ext1y(C) is depicted in Figure 4.5b by the plain blue part as follows:(
C ∩ (y ≤ 1)

)
is in light blue and Cyly

(
C ∩ (y > 1)

)
∩ (y > 1) is in dark blue.

We can now consistently de�ne the (M,X)-extrapolation operator:

De�nition 4.4 ((M,X)-extrapolation). Let M be a non-negative integer constant and X be a set of
clocks. The (M,X)-extrapolation operator ExtMX is de�ned as the composition (in any order—which
we showed in [ALR15] to be equivalent) of all ExtMx , for all x ∈ X .

4.3.3 Ensuring termination of parameter synthesis

Using our extrapolation, we will now ensure termination of IEFsynth even for rational-valued parameters.
The modi�ed version, called RIEFsynth (“R” stands for “robust”) is given in Algorithm 4, and di�ers from
IEFsynth in two points:

53

Algorithm 4: RIEFsynth(A, s, T, S)

input : A PTA A, a symbolic state s = (l, C), a set of target locations T , a set S of passed states on
the current path

output: Constraint K over the parameters
1 if l ∈ T thenK ←C↓P ;
2 else
3 K ← ⊥;
4 if IH(ExtMX (s)) 6∈ S then
5 for each outgoing edge e from l in A do
6 K ← K ∪ RIEFsynth

(
A,Succ(s, e), T, S ∪ {IH(ExtMX (s))}

)
;

7 returnK

l0 l1
1 ≤ x ≤ 2p

Figure 4.6 – A PTA for which RIEFsynth synthesizes a more complete result than IEFsynth

1. contrarily to IEFsynth, RIEFsynth does not return the projection of the integer hull of the target
constraint, but the projection of the full constraint C (line 1); and

2. RIEFsynth compares integer hulls of extrapolations of constraints (lines 4 and 6).

Example 4.7. Consider the PTA in Figure 4.6 (assume the unique goal location is l1). To ensure the EF{l1}
property, we just need to be able to go through the transition from l0 to l1. The parametric zone C1 obtained
in l1 is 1 ≤ x ∧ 1 ≤ 2p, which implies p ≥ 1

2 . The integer hull of C1 is 1 ≤ x ∧ 1 ≤ p, which implies p ≥ 1.
Algorithm IEFsynth gives the result p ≥ 1∧p ∈ N, while algorithm RIEFsynth gives (here) the exact result

p ≥ 1
2 .

As there is a �nite number of integer hulls of extrapolations of symbolic states [ALR15], RIEFsynth
explores only a �nite number a symbolic states.

Theorem 4.2 ([ALR15]). For any bounded PTA A, the computation of RIEFsynth(A, s0, T, ∅) termi-
nates.

Upon termination of RIEFsynth, we have:

1. Soundness: If v ∈ RIEFsynth(A, s0, T, ∅) then T is reachable in v(A).

2. Integer completeness: If v is an integer parameter valuation, and T is reachable in v(A) then
v ∈ RIEFsynth(A, s0, T, ∅).

Observe that our method allow us to obtain a result arbitrarily precise: by rescaling the constants, in-
stead of synthesizing (at least) all integer-points, we can also synthesize all points multiple of an arbitrarily
small value (e. g., 10−n, with n as large as desired). Also note that, contrarily to discrete model checking,
arbitrarily large constants have an impact near-to-null in parametric model checking (the only impact is
the management of these large constants in exact arithmetics, which remains almost negligible in imple-
mentations such as IMITATOR when compared to the high cost of other operations).

54

a

b

Figure 4.7 – Comparison of the results of IEFsynth and RIEFsynth

4.3.4 Implementation

The integer hull was not implemented in IMITATOR, but an implementation in Roméo was performed by
Didier Lime. Polyhedra operations (both convex and non-convex) are handled by the PPL library [BHZ08].
To illustrate this, we refer the reader to the scheduling example of [JLR15]. It consists in three tasks t1, t2, t3
scheduled using static priorities (t1 > t2 > t3) in a non-preemptive manner. Task t1 is periodic with
period a and a non-deterministic duration in [10, b], where a and b are parameters. Task t2 only has a
minimal activation time of 2a and has a non-deterministic duration in [18, 28] and �nally t3 is periodic
with period 3a and a non-deterministic duration in [20, 28]. Each task is subject to a deadline equal to
its period so that it must only have one instance active at all times. We ask for the parameter values that
ensure that the system does not reach a deadline violation.2 Algorithm IEFsynth produces the constraint
a ≥ 34, b ≥ 10, a− b ≥ 24 in 7.4 s on a Core i7/Linux computer, while algorithm RIEFsynth produces the
constraint a > 562

17 , b ≥ 10, a− b > 392
17 in 12.7 s.

As illustrated here, the result of RIEFsynth is indeed a bit more precise (a graphic visualization is given
in Figure 4.7: the improvement of RIEFsynth over IEFsynth is depicted in light green) but the main improve-
ment is of course the guaranteed density of the result and the termination. Also, RIEFsynth is generally
slower than IEFsynth and pro�ling shows that this is due to a decreased e�ciency in computing the integer
hull: we start each time from the whole symbolic state instead of starting from the successor of an already
computed integer hull. This could be mitigated using a cache for the constraints generated in computing
the integer hulls.

What’s beyond. . . ?. In [ALR15], we also considered the case of unavoidability (AF). Contrarily to IEFsynth,
the result output by IAFsynth (as de�ned in [JLR15]) when interpreted over rational valuations can even be
wrong. Our extension RIAFsynth [ALR15] addresses these issues, and was implemented in Roméo. We also
considered a similar extension of IM (not published in [ALR15] due to space constraints).

4.4 Towards distributed parameter synthesis

Parameter synthesis for PTA is often very expensive, often by an order of magnitude more than the non-
parametric veri�cation on TAs. This comes among other reasons from the fact that no e�cient data struc-
ture is known for PTAs—in contrast to TAs which bene�t from the relatively e�cient DBMs.3

An option to partially leverage this problem is to use distributed veri�cation over a cluster, i. e., a set of
dozens, hundreds or sometimes thousands of computers (often called nodes), that have their own memory
and processor, and communicate with each other over a network.

2The result is therefore the complement of the result given by IEFsynth and therefore an over-approximation containing no
incorrect integer value.

3A parametric extension of DBMs (“PDBMs”) was proposed in [Hun+02], but it bene�ts from two drawbacks: �rst, the successor
of a PDBM is not unique, i. e., it may be a list of PDBMs, and second and most importantly, beyond the usual matrix, we still need
to handle polyhedra (on parameters only), which still requires a polyhedra library.

55

K

v v′ v′′

(a) Graphical example

K2v1 v2

v3 v4

(b) Redundancy

v1 v2 v3 K

(c) Choosing points

Figure 4.8 – Graphical representations and challenges

We show here that a parameter synthesis algorithm proposed during my PhD thesis, namely the behav-
ioral cartography, can relatively be e�ciently distributed over a cluster. We will then reuse the distributed
algorithms in the subsequent sections (Section 4.5).

4.4.1 The behavioral cartography

The Inverse Method

Recall from Section 2.4 that the inverse method IM is a semi-algorithm solving the trace-preservation-
synthesis problem. We call the result of IM a tile. Note that, in general, tiles have no prede�ned “shape”:
they are general polyhedra in |P | dimensions that can have arbitrary size, number of vertices, and edge
slope. The computation time of IM also greatly varies, from milliseconds to several hours, depending on
the complexity of the model, and the size of the trace set.

The behavioral cartography

Given a bounded PTAA|bounds the behavioral cartography (BC) [AF10] repeatedly calls IM on (some of the)
integer points of bounds (of which there is a �nite number), so as to cover bounds with tiles. The result
gives a tiling of bounds such that the trace set is the same for all valuations in a given tile.

Example 4.8. In Figure 4.8a, BC �rst considers point v, and computes K = IM(A, v). Then, BC iterates on
the subsequent points, all already covered by K , until it meets v′′, that is not yet covered. Hence, BC will then
compute IM(A, v′′), and so on, until all integer points in bounds are covered.

BC can be used for several applications: �rst, it identi�es the system robustness in the sense that, in
each tile, parameters can vary as long as they remain in the tile, without impacting the system’s discrete
behavior. Second, BC can be used to perform parameter optimization; the weakest conditions of the input
signal of an industrial asynchronous memory circuit (SPSMALL) were derived using BC [AS13]. Third,
given a set of linear time properties (i. e., that can be veri�ed on the trace set), it su�ces to compute only
once BC, and then to check each property on the trace set generated for each tile in order to know a
complete (or nearly complete) set of parameter valuations satisfying each property.

Remark 4.1. BC does not guarantee the full, dense coverage of bounds for two reasons.

1. IM may not terminate, as the corresponding problem is undecidable (Theorem 3.16).

2. Even if all calls to IM terminate, there is no (theoretical) guarantee than any point other than
integers will be covered. IM may generalize integer points in the form of dense, rational-valued
constraints, but it could happen that some (uncomputed) tiles do not contain any integer points.
This sometimes happened in our experiments (e. g., in Figure 4.9a around x = 100 and y = 55).

56

(a) SPSMALL (b) Flip-�op circuit (c) Schedulability (d) RCP

Figure 4.9 – Examples of graphical behavioral cartographies in 2 dimensions

In practice, BC frequently covers (parts of) the parametric space beyond bounds ; this is the case in
Figures 4.9b to 4.9d (in Figure 4.9b, the entire parametric space is even covered).

4.4.2 Distribution policies

Our objective is to take advantage of the iterative nature of the cartography, and to distribute it on N
processes. There is no theoretical obstacle in doing so, since all calls to IM are independent from each
other. The challenge is rather to select e�ciently the points on which IM is called, so that as few redundant
constraints as possible are computed. The main goal will be to propose an e�cient distribution policy,4 i. e.,
a method to e�ciently use the power of all nodes.

Static domain decomposition

A straightforward distribution policy is the static domain decomposition (“Static”). That is, the (hy-
per)rectangle bounds is split into N subdomains, and then each process is responsible for handling its
own subdomain in an independent manner (with no communication).

For example, in Figure 4.8b, the domain bounds (the external dashed rectangle) is split into four equal
subdomains (the four internal dashed rectangles); vi, 1 ≤ i ≤ 4 represents a possible �rst point on which
to call IM in each subdomain. (K2 in Figure 4.8b will be used later on.)

This static decomposition is straightforward but is not satisfactory for BC for three main reasons.
First, the general “shape” of the cartography is entirely arbitrary and unknown beforehand, since tiles

can themselves have any shape. Figure 4.9 gives examples of cartographies in 2 parameter dimensions:
although the geometrical distribution of the tiles of Figure 4.9a within bounds is rather homogeneous, this
is not true at all for the others. For example, splitting the domain of Figure 4.9b (resp. Figure 4.9d) into four
equal parts would be very unfair for the node responsible of the lower-left (resp. upper-right) subdomain,
since most tiles are concentrated there; this would also be ine�cient, since the other nodes will rapidly
become idle.

Second, the geometrical distribution of the tiles says nothing on the time necessary to compute each
tile. Even when the tiles are homogeneously located within bounds , some tiles may require much more
time than others. Again, this would result in a loss of e�ciency due to load unbalance since not all of the
nodes are working actively.

Third, the absence of communication between nodes may result in redundant computations. Let us go
back to the example of cartography in Figure 4.8b. Assume that node 2 �nished �rst to compute a tile, say

4The proper word is a scheduling policy. However, since it (somehow) di�ers from the notion of scheduling used in Chapter 6,
and in order to avoid any confusion, we use here distribution policy.

57

K2. This tile not only covers the entire subdomain of node 2, leading to the termination of process 2, but it
also covers node 4’s subdomain entirely and a large part of node 2’s subdomain. Without communication,
these nodes will keep working without knowing that their subdomain has already been covered.

De�ning more distribution policies

In [ACE14; ACN15], we proposed several distribution policies, that we evaluated. All of them rely on a
“master-worker” scheme. In short, a node plays the role of a “master”, that sends other nodes (“workers”)
some work to complete. Here, the work will typically consist of running an instance of IM on a given
parameter valuation chosen by the master. When a worker �nishes its computation, it sends back the result
of IM and asks for another work—until all integer points in bounds are covered by some tile. We review
some of the distribution policies of [ACE14; ACN15] below. In all of them, the master also periodically
informs the workers of the constraints computed by all nodes, so as to reduce the probability of redundant
computations.

Sequential choice The �rst distribution policy (Seq) is a direct extension of the monolithic (i. e.,, non-
distributed) algorithm: as in the non-distributed BC, the master enumerates all the points of bounds in a
sequential manner.

The main advantage of Seq is that it is inexpensive on the master’s side. Its main drawback is the
risk of redundant computations by the workers, due to the situation depicted graphically in Figure 4.8c:
for instance, at the beginning, the N processes will ask for work, and the master will give them the �rst
sequentialN points, all very close to each other, with a high risk of redundant computation. (in Figure 4.8c,
all three nodes would compute the same constraint K).

Random + sequential In the second distribution policy (Random) selects points randomly, and then in
a second phase performs a sequential enumeration of all integer points in bounds to check the full coverage
of integers in bounds . This second phase is necessary to guarantee that all the integer points have been
covered. The second phase starts after a given number of consecutive failed attempts to �nd an uncovered
point randomly.

This policy is e�cient to quickly cover a large part of the parameter domain, but becomes much slower
when all points need to be enumerated in the second phase, especially for very large integer domains.

Shu�le The main problem of Random is the fact that the second phase, necessary to check the full
coverage of integers, may be very costly. To alleviate this problem, we propose a new policy Shu�le that
�rst computes statically a list of all integer points in bounds , then shu�es this list, and then selects the
points of the shu�ed list in a sequential manner. The sequential phase of Random is then dropped, at the
cost of being able to compute, store statically and shu�e a potentially very large quantity of points.

Dynamic decomposition This policy consists in performing a dynamic decomposition of the parameter
domain, and letting the workers selecting themselves the points, with some regulation by a coordinator.
This policy does not entirely �t into the “master-worker” scheme, and is rather a “coordinator-worker”
scheme.

Initially, the master splits in bounds intoN subdomains, and distributes the subdomains to the workers.
In contrast to the previous policies, the workers are now responsible for checking whether all the points
in their subdomain have been covered yet or not. This mechanism reduces the load on the master without
leading to redundant point coverage checks. Then, when a worker has covered all the integer points in its
subdomain (because the points are covered by tiles computed either by this worker, or by other workers),

58

Case study Flip-�op4 RCP Sched3-2 Sched3B-2 Sched3B-3 Sched5 SiMoP Average
Model

Clocks 5 6 13 13 13 21 8
Parameters 4 2 2 2 3 2 2

Integers in bounds 386,400 3,050 286 14,746 530,856 1,681 10,201
Cartography

Tiles 190 19 59 71 378 177 48
Nmax 128 32 64 128 128 128 64

Monolithic 1341.0 1992.0 46.0 61.2 865.0 3593.0 111.6
Execution time at Nmax (s)

Static 33.0 2108.0 4.0 26.6 181.0 213.0 21.4
Seq 2059.0 653.0 4.6 11.0 810.0 219.0 36.1

Random 652.0 635.0 3.6 8.4 524.0 148.0 23.6
Shu�le 670.0 624.0 3.1 7.6 243.0 140.0 18.7

Subdomain 24.0 622.0 4.0 11.0 81.0 199.0 23.2
Hybrid 24.0 624.0 3.1 7.6 81.0 140.0 18.7

Ratio at Nmax w.r.t. slowest at Nmax (%)
Static 2 100 56 100 22 78 59 60
Seq 100 31 64 41 100 80 100 74

Random 32 30 50 32 65 54 65 47
Shu�le 33 30 43 29 30 51 52 38

Subdomain 1 30 56 41 10 73 64 39
Hybrid 1 30 43 29 10 51 52 31

Speedup at Nmax (%)
Static 32 5 19 3 4 13 11 12
Seq 1 16 17 8 1 13 6 9

Random 2 17 22 10 1 19 10 11
Shu�le 2 17 25 11 3 20 12 13

Subdomain 44 17 19 8 8 14 10 17
Hybrid 44 17 25 11 8 20 12 20

Table 4.1 – Summary of distributed experiments

it informs the master; the master dynamically splits a subdomain (typically, one that has only been covered
a little) and sends it back to the idle worker.

Experiments and conclusion We implemented these policies in a distributed version of IMITATOR, and
we performed extensive experiments on two clusters of Grid’5000: Pastel (located in Toulouse, France), and
Gri�on (located in Nancy, France). Pastel is made of 140 nodes, each of which features two dual-core AMD
Opteron 2218 running at 2.6 GHz, 8 GiB of RAM and a GigaEthernet interconnection network. Gri�on is
made of 92 nodes, each of which features two quad-core Intel Xeon L5420 running at 2.5 GHz, 16 GiB of
RAM and both GigaEthernet and 20G In�niBand network interconnection networks.

Among other metrics, we mainly evaluated the speedup, that evaluates the scalability of each algorithm:
for each algorithm and each case study, we compute the time for this case study and this algorithm for N
nodes divided by the time needed for a perfect algorithm (i. e., the monolithic time divided by N), and
multiplied by 100. A number close to 100 means a very scalable algorithm, whereas a number close to 0
indicates an algorithm that does not scale well.

Our experiments are tabulated in Table 4.1 (a full version is available in [ACN15]). Overall, no algorithm
is perfect on all case studies. The speedup also greatly varies depending on the case study. However,
trends show that Static, Seq and Random overall scale badly with a speedup of 12, 9 and 11 respectively.
In contrast, Shu�le (despite an average of 13) is often the best on the case studies with a small parameter
domain (less than 100, 000 points). And Subdomain (with an average speedup of 17) behaves best on the
larger case studies.

We therefore propose an hybrid policy (Hybrid), that selects Shu�le if the parameter domain is small,
and Subdomain otherwise. This policy reaches a speedup of 20.

An average speedup of 20 % for Hybrid can seem relatively low; this means that a perfect distribution

59

algorithm (that would always divide the monolithic computation time by N) would be 5 times faster. Still,
we �nd it promising. First, all distributed algorithms su�er from the time spent in communication, which
always lowers the speedup. Second, this con�rms that distributing BC is far from trivial, due to the un-
known shape of the cartography, the unknown computation time for each tile, and the risk for redundant
computations. Third, and most importantly, a speedup of 20 % means that, when using 128 nodes, the com-
putation time is still divided by more than 25—which leads to an impressive decrease of the veri�cation
time.

4.5 EF-synthesis using reachability preservation

We address here a method to solve the EF-synthesis problem using an original manner. We assume a single
“bad” location lbad . Instead of attacking the problem by exploring (most of) the symbolic state space as in
EFsynth, we will perform repeated computations of a limited part of the state space.

4.5.1 Reachability preservation

First, we introduce here an original procedure PRP(A, v), that synthesizes valuations preserving the reach-
ability of lbad .

De�nition 4.5 (reachability preservation). Given two TA v(A) and v′(A), we say that v′(A) preserves
the reachability of lbad in v(A) when lbad is reachable in v(A) if and only if lbad is reachable in v′(A).

PRP (standing for parametric reachability preservation) is at �rst close to a variant of IM (called IMK ,
presented in [AS11] and brie�y mentioned later in Section 5.1.1)), and then switches to an algorithm that
resembles EFsynth:

• As long as no bad location is reached, PRP generalizes the trace set of v(A) by removing v-
incompatible states; this is done by negating v-incompatible inequalities, and returning the inter-
section of such negated inequalities, in the line of IM.

• When at least one bad location is met, PRP switches to an algorithm close to EFsynth, i. e., it simply
gathers the constraints associated with the bad locations, and returns their union. However, a main
di�erence with EFsynth is that PRP does not explore v-incompatible states: although this is not
necessary to ensure correctness (in fact, this makes PRP not complete), this is a key heuristics to
keep the state space of reasonable size.

We introduce PRP in Algorithm 5. It is a breadth-�rst exploration procedure that maintains the following
variables: Passed (resp. Waiting) is the set of states computed at the previous (resp. current) iterations;
Bad is a Boolean �ag that remembers whether a bad location has been met; Kgood is the intersection of the
negation of all v-incompatible inequalities, that will be returned if no bad state is met; Kbad is the union of
the projection onto P of all bad states, that will be returned otherwise; i remembers the exploration depth.

The procedure consists in a (potentially in�nite) while loop. First, lines 4–6 take care of the v-
incompatible states. These states are discarded from the exploration, i. e., they are removed from the set
of waiting states (line 5). Then, if the exploration has not yet met any bad state, Kgood is re�ned so as to
prevent any such v-incompatible state (l, C) to be reached: the negation of C↓P is added to Kgood .

Second, lines 7–9 take care of the bad states. If any bad state is reached (line 7), then the Bad �ag is set
to true, the union of the projection onto P of the constraints associated with these bad states is added to
Kbad , and these states are discarded, i. e., their successor states will not be computed (line 9).

60

l1
x ≤ b

l2

x ≥ a
x := 0

y ≥ 20

Figure 4.10 – An example of a PTA A1

The third part is a classical �xpoint condition: if no new state has been met at this iteration (line 10),
then the result is returned, i. e., either Kbad if some bad states have been met, or Kgood otherwise. If new
states have been met, then the procedure explores one step further in depth (line 13).

Algorithm 5: PRP(A, v) [And+15]
input : PTA A of initial state s0, parameter valuation v
output: Constraint preserving the reachability of lbad in v(A)

1 Passed← ∅ ; Waiting← {s0} ;
2 Bad ← false ; Kgood ← > ; Kbad ← ⊥ ; i← 0
3 while true do
4 foreach v-incompatible state (l, C) inWaiting do
5 Waiting←Waiting \ {(l, C)}
6 if Bad = false then Kgood ← Kgood ∧ ¬C↓P ;
7 foreach bad state (lbad , C) inWaiting do
8 Bad ← true ; Kbad ← Kbad ∨ C↓P ;
9 Waiting←Waiting \ {(lbad , C)}

10 if Waiting ⊆ Passed then
11 if Bad = true then returnKbad else returnKgood ;
12 Passed← Passed ∪Waiting ;
13 Waiting← Succ(Waiting) ; i← i+ 1

Theorem 4.3 ([And+15]). LetA be a PTA, and v a parameter valuation. Suppose PRP(A, v) terminates
with resultK . Then, v |= K and, for all v′ |= K , lbad is reachable in v(A) i� lbad is reachable in v′(A).

PRP may not terminate, which is natural since we showed that the reachability preservation emptiness
(which is very similar to EF-emptiness) is undecidable [And+15]. Furthermore, even if it terminates, the
result output by PRP may be non complete; in fact, this is designed on purpose (since we stop the exploration
of v-incompatible states) so as to prevent a too large exploration. Enlarging the output constraint can be
done by repeatedly calling PRP on other points than v, which will be done in the following.

Example 4.9. Consider the PTA A1 in Figure 4.10 [JLR15], with clocks x and y and parameters a and b.
Assume lbad = l2. EFsynth(A1, s0, {l2}, ∅) does not terminate, and neither does it if the range of the parameters
is bounded from above (e. g., a, b ∈ [0, 50]).

61

(a) PRPC (b) EFsynth

Figure 4.11 – EF-synthesis using PRPC and EFsynth for A1

Let us now apply PRP to A1. For valuation v1 : (a ← 20, b ← 10), PRP outputs 20 > b ∧ a > b ∧ b ≥ 0,
which prevents the reachability of lbad . For valuation v2 : (a← 0, b← 40), PRP does not terminate.

4.5.2 EF-synthesis

We saw in Section 4.4.1 that, given a bounded parameter domain, IM can be iterated on integer points to
perform a behavioral cartography. In fact, PRP can be used in place of IM within BC, giving birth to a
procedure PRPC (see Algorithm 6). PRP is called repeatedly with as an argument the �rst integer point not
yet covered by any constraint (line 2 in Algorithm 6).

Algorithm 6: PRPC(A, bounds) [And+15]
input : PTA A, bounded parameter domain bounds
output: Set K of constraints over the parameters (initially empty)

1 while there are integer points in bounds not covered byK do
2 Select an integer point v in bounds not covered by K
3 K ← K ∪ PRP(A, v)

4 returnK

In reality, PRPC maintains (and returns) two constraints, one for good valuations, and the other for bad
valuations (not shown in Algorithm 6 as it would require to modify PRP itself to return a “�ag” indicating
whether the constraint is good or bad).

In the general case, PRPC may not terminate, due to the non-termination of PRP. However, it is possible
to set up a maximum exploration depth for PRP: when this depth is reached, the algorithm stops. If some
bad states have been met, the resulting constraint can be safely used (from a technical result in [And+15]);
otherwise the constraint is just discarded and the reference point on which PRP was called will never be
covered. In this case, termination of PRPC is always guaranteed, with a partial result (some integer points
may still be uncovered).

Example 4.10. Consider again the PTAA1 in Figure 4.10, and let us apply EFsynth and PRPC with a bounded
exploration depth of 10; this will result in correct under-approximations (from a technical result in [And+15]).
We apply PRPC to an unconstrained model with bounds : a, b ∈ [0, 50]. We apply EFsynth to a model where
a and b are constrained to be in [0, 50]. We give in a graphical manner in Figure 4.11a (resp. Figure 4.11b)

62

the results output by PRPC (resp. EFsynth). PRPC synthesizes all the good parameter valuations (below, in
green), i. e., that do not reach l2, and all the bad parameter valuations (above, in red), i. e., that reach l2, with the
exception of a small area near (0, 0) (in white). All constraints output by PRPC are in�nite (which is not shown
in the �gure), and hence cover the whole part outside bounds too. As of EFsynth, the same bad valuations as
for PRPC are covered, but only within bounds , and no information is given about the good valuations. Hence,
since EFsynth was stopped prematurely, no information can be given for the non-covered part: in particular,
the white part of bounds cannot be decided, whereas PRPC covers everything except the small area near (0, 0).
This is a major advantage of PRPC over EFsynth in terms of precision of the result. Also recall that EFsynth
covers only (a part of) bounds whereas PRPC covers here the whole parameter space beyond bounds .

Experiments We implemented PRP and PRPC in IMITATOR and conducted experiments in [And+15]
to compare EFsynth, BC and PRPC.

PRPC dramatically outperforms BC for all case studies. This is due to the fact that the constraints output
by PRP (that preserve only non-reachability) are much weaker than those output by IM (that preserve trace
set equality). Second, PRPC compares rather well with EFsynth, and is faster on three case studies; PRPC
furthermore outputs a more valuable constraint for A1 (see Example 4.10). PRPC can even verify case
studies that EFsynth cannot.

Then, we can also use a distributed version of PRPC in the line of the distribution policies for BC in
Section 4.4. We used the Subdomain as a distribution policy for PRPC, and used a cluster with 12 nodes.
The distributed version of PRPC is shown to be faster than PRPC for all case studies. Most importantly, the
distributed PRPC outperforms EFsynth for all but two case studies. The good timing e�ciency of PRPC is
somehow surprising, since it was devised to output a more precise result and to use less memory, but not
necessarily to be faster. We believe that PRPC allows to explore small state spaces at a time and, despite the
repeated executions, this is less costly than handling a large state space (as in EFsynth), especially when
performing equality checks when a new state is computed.

4.6 Compositional synthesis for parametric event-recording automata

Here, I synthesize several lines of works, the ultimate goal of which is to perform compositional parameter
synthesis. First, we introduce parametric event recording-automata (Section 4.6.1) as a subclass of PTAs.
Then, we show propose an algorithm to learn an unknown (non-parametric) event-recording automaton
by interacting with a teacher (Section 4.6.2), and we use this learning algorithm to perform compositional
veri�cation (Section 4.6.3). Finally, we de�ne a new framework reusing both non-parametric compositional
veri�cation and the PRPC algorithm presented above, so as to perform compositional parameter synthesis
(Section 4.6.4).

4.6.1 Parametric event-recording automata

Event-recording automata (ERAs) [AFH99] are a subclass of timed automata, where each action label is
associated with a clock such that, for every edge with a label, the associated clock is reset. We propose
here a parametric extension of ERAs, following the parameterization of TAs into PTAs.

Formally, let Σ be a set of actions: we denote by XΣ the set of clocks associated with Σ, i. e., {xσ | σ ∈
Σ}. A Σ-guard is a guard on XΣ ∪ P .

De�nition 4.6 ([AL17a]). A parametric event-recording automaton (PERA) is a tuple
(Σ, L, l0, F, P, I, E), where:

1. Σ is a �nite set of actions,

63

l1 l2 l3
a

xa ≤ p
b

c

Figure 4.12 – An example of a PERA

2. L is a �nite set of locations,

3. l0 ∈ L is the initial location,

4. F ⊆ L is a set of accepting locations,

5. P is a �nite set of parameters,

6. I is the invariant, assigning to every l ∈ L a Σ-guard I(l),

7. E is a �nite set of edges e = (l, g, σ, xσ, l
′) where l, l′ ∈ L are the source and target locations,

σ ∈ Σ, xσ is is the clock to be reset, and g is a Σ-guard.

Just as for ERAs, PERAs can be seen as a syntactic subclass of PTAs: a PERA is a PTA for which there
is a one-to-one matching between clocks and actions and such that, for each edge, the clock corresponding
to the action is the only clock to be reset.

Following the conventions used for ERAs, we do not explicitly represent graphically the clock xσ reset
along an edge labeled with σ: this is implicit.

Example 4.11. Figure 4.12 depicts an example of PERA with 3 actions (and therefore 3 clocks xa, xb and xc),
and one parameter p. Only clock xa is used in a guard.

Since ERAs are strictly less expressive than TAs w.r.t. the timed language, we may wonder whether
some problems undecidable for PTAs become decidable for PERAs. In fact, since PERAs mostly impose
restrictions on the timed language of a PTA, the proofs of undecidability that do not fundamentally rely on
the language can be kept (with mild modi�cations). For example, our proof in Lemma 3.4 does not assume
any action on the transitions; therefore, to obtain a PERA, when a clock x is reset, it su�ces to label the
transition with the action σ this clock is associated with. When no clock is reset, we can reset a fresh clock
never used elsewhere in the PERA and label the transition with its associated action. Finally, when more
than one clock is reset, a possibility is to duplicate the transition into several transitions in 0-time, each of
them resetting exactly one clock (some care may be needed to avoid unwanted behaviors). In particular,
the EF-emptiness problem remains undecidable for PERAs.

Theorem 4.4 ([AL17b]). The EF-emptiness problem is undecidable for PERAs, even with bounded pa-
rameters.

Proof idea. By adapting to PERAs the proof of Lemma 3.4.

We conjecture that the proofs of undecidability of the emptiness of other quanti�ers (AF, EG, AG) could
be adapted in a similar fashion to PERAs.

64

However, a less trivial problem is whether the language- and trace-preservation-emptiness problems
are decidable for PERAs. Indeed, both problems heavily rely on actions. In particular, the proof of [AM15]
cannot be reused, as it fundamentally relies on the fact that all transitions should be labeled with the same
action—which is not possible in a PERA, as it would imply that the same clock is reset on all transitions.
Still, we proposed a new proof of undecidability for the language-preservation-problem.

Theorem 4.5 ([AL18]). The language-preservation-emptiness problem is undecidable for PERAs.

Proof idea. We use the original de�nition of the language of [AM15], i. e., the set of all maximal words (no accepting
locations are used). We allow all possible in�nite (untimed) words for the reference valuation. The main idea is as follows:
for other valuations, we also allow all possible in�nite words, and we allow entering a 2-counter machine encoding; if the
machine does not halt, the encoding will block, therefore adding a new �nite word which is not part of the language of the
reference valuation. If the machine halts, thanks to a self-loop, the word simulating the machine is in�nite, and therefore
part of the language of the reference valuation.

This proof can be adapted to other de�nitions of the languages, just as in Section 3.3.8. In addition, we
conjecture it can be adapted for L/U-PERAs, following the reasoning used in Theorem 3.17.

However, the proof of Theorem 4.5 requires unbounded parameters, and the case of bounded PERAs
is therefore open. In addition, the trace-preservation-emptiness seems to pose practical problems, and we
were not able to solve it: it is open too.

The negative results in Theorems 4.4 and 4.5 rule out the possibility to perform exact synthesis for
PERAs. Still, in the following, we will propose an approach for EF-synthesis that is sound, though maybe
not complete: the synthesized valuations are correct, but some may be missing. More pragmatically, we
aim at improving the synthesis e�ciency.

4.6.2 Learning event-recording automata

Learning an unknown system through a teacher (that has an access to the system) has been the object of
several lines of works. In [Ang87], the L∗ algorithm learns an unknown language described using a �nite-
state automaton using two types of queries to the teacher: �rst, a membership query asks whether a given
word is accepted by the unknown automaton. After several membership queries, the L∗ algorithm con-
structs a candidate automaton, and makes a candidate query for it. That is, it asks whether the automaton
accepts the same language as the candidate automaton. The L∗ algorithm is sound and complete.

Learning timed automata is not possible, because the language inclusion (required by the candidate
query) is undecidable for TA [AD94]. The class of ERAs is however a good candidate to de�ne a timed
extension of the L∗ algorithm, since the language inclusion becomes decidable [AFH99].

In [GJL10], L∗ is extended to ERAs with three new algorithms TL∗sg , TL∗nsg , and TL∗s . Their learning
algorithms deal with timed words, which makes the complexity blow up as the learning algorithm has to
actively infer the time condition of each event by performing successive guesses.

In [Lin+11], we proposed a new algorithm named TL∗ for learning ERAs. Di�erent from [GJL10], it
relies on guarded words, i. e., the counterexample returned by the teacher already contains some clocks
and some clock guards, which makes the learning process easier. We proved that the learning process
terminates in a �nite number of iterations with a minimal number of locations in the learned ERA. In
addition, our algorithm TL∗ works in polynomial time; in contrast, the algorithms of [GJL10] may yield an
ERA that can be doubly exponentially larger than the ERA representing the same language to be learned,
as the algorithms may have to explore the entire zone graph.

A main drawback of our algorithm TL∗ is that it relies on guarded words, which can be seen as a
sort of “cheating”: in a real-world application, the teacher may not want (or be able) to return a guarded

65

A ‖ B̃ |= ϕ

B |= B̃

A ‖ B |= ϕ

(a) AGR proof rule

TL* Teacher

membership query

candidate query

yes/no

yes/no, counterexample

black-box

(b) TL∗ and Teacher

Figure 4.13 – AGR proof rule (left) and TL∗ (right)

TL∗

A ‖ B̃ |= ϕ?

B |= B̃ ?

Abstraction(B̃)

ρ accepted by B?

ρ accepted by A? Counterex(trace(ρ))

Counterex(trace(ρ))

B̃

yes

no, ρ
nore�ne B̃ with ρ

no

re�ne B̃ with ρ

yes
(i. e., A ‖ B |= ϕ)

no, ρ

yes
(i. e., A ‖ B 6|= ϕ)

yes
(i. e., A ‖ B 6|= ϕ)

Figure 4.14 – LearnAbstr(B,A, ϕ)

word, but rather a timed word. However, this setting is very useful in the framework of compositional
veri�cation—which is the purpose of the next section.

4.6.3 Compositional veri�cation of event-recording automata

Figure 4.13a recalls the common proof rule used in Assume-Guarantee Reasoning (AGR), which is one of
the compositional veri�cation techniques. Given two components A, B and a safety property ϕ, the proof
rule tells that if A can satisfy the property ϕ under an assumption B̃ and B can guarantee this assumption
B̃, then we can conclude that A ‖ B satis�es ϕ. One can observe that the proof rule decomposes one model
checking problem (A ‖ B |= ϕ) into two sub problems (A ‖ B̃ |= ϕ and B |= B̃).

A main issue in AGR is that computing the abstraction B̃ requires non-trivial human creativity. A way
to compute B̃ automatically is to use learning, i. e., the TL∗ algorithm presented above. In [Lin+14], we
proposed an automated procedure for compositional veri�cation of ERAs. Figure 4.14 shows our over-
all procedure LearnAbstr(B,A, ϕ) that returns either an assumption (denoted by Abstraction(B̃)) when
it is proved that A ‖ B |= ϕ holds, or a counterexample (denoted by Counterex(τ)) otherwise. The two
condition checks in Figure 4.14 (A ‖ B̃ |= ϕ and B |= B̃) can be done by model checking, and coun-
terexamples given by model checking can also serve as counterexamples to the TL∗ algorithm. Counterex
and Abstraction are “tags” containing a value. We omit the technical details of LearnAbstr(B,A, ϕ) here.
Interested readers are referred to [Lin+14].

This framework can be extended to the case of more than two components.

Experimental validation Lin Shang-Wei implemented this algorithm into a tool [Lin+12], reusing in
part the PAT model-checking library [Sun+09]. Experiments on a set of ad-hoc case studies showed a dra-
matic decrease of the computation time when compared to the monolithic (non-compositional) veri�cation.
The e�ciency is sensitive to the partitioning of the components, and we proposed heuristics. Uppaal runs
out of memory on most of these case studies (converted into TAs), while our algorithm terminates in a few
seconds with a very limited memory usage (see [Lin+14] for details).

66

Algorithm 7: CompSynth(A,B, bounds, T)

input : PERA A, ERA B, parameter domain bounds , subset T of locations
output: Good and bad constraint over the parameters

1 Kbad ← ⊥ ; Kgood ← ⊥
2 while bounds ∩ N ∩ (Kbad ∪Kgood) 6= ∅ do
3 Pick v in bounds ∩ N ∩ (Kbad ∪Kgood)
4 switch LearnAbstr(B, v(A),AG¬T) do
5 case Abstraction(B̃) do
6 Kgood ← Kgood ∪ PRP(A ‖ B̃, v, T)
7 case Counterex(τ) do
8 Kbad ← Kbad ∪ ReplayTrace(A ‖ B, τ)

9 return (Kgood ,Kbad)

4.6.4 Compositional parameter synthesis

Combining our framework for (non-parametric) compositional veri�cation together with the reachability-
preservation synthesis algorithm PRPC, we can de�ne a framework for compositional parameter synthe-
sis [AL17b]. The key idea is to partition parametric components in A and non-parametric components in B,
and try to learn an abstraction of B, using a valuated version of A (i. e., v(A)) in the AGR framework of
Figure 4.13a. Then, we iterate over integer-valuations of a bounded domain as in PRPC.

Our procedure (given in Algorithm 7) takes as arguments a set of PERA components A, a set of ERA
components B, a bounded parameter domain bounds and a set of locations to be avoided. We maintain a
safe non-convex parameter constraint Kgood and an unsafe non-convex parameter constraint Kbad . Then
CompSynth iterates on integer points: while not all integer points in bounds are covered, such an uncov-
ered point v is picked (line 3). Then, we try to learn an abstraction of B w.r.t. v(A) (line 5) so that T is
unreachable. If an abstraction is successfully learned, then PRP (given in Algorithm 5) is called on v and
the abstract model A ‖ B̃ (line 6); the constraintKgood is then re�ned. Note thatKgood is re�ned because, if
an abstraction is computed, then necessarily the property is satis�ed and therefore the (abstract) system is
safe. Alternatively, if LearnAbstr fails to compute a valid abstraction, then a counterexample trace τ is re-
turned (line 7); then this trace is “replayed” using a procedure ReplayTrace (line 8), that synthesizes exactly
the parameter valuations corresponding to a (necessarily �nite) trace [AL17b], and the constraint Kbad is
updated.

Experiments We implemented our method in a toolkit made of IMITATOR [And+12] and of CV (Compo-
sitional Veri�er), a new implementation (in C++) of the proposed learning-based compositional veri�cation
framework for ERAs initially presented in [Lin+12]. The leading tool is IMITATOR, that takes the input
model (in the IMITATOR input format), and eventually outputs the result. IMITATOR implements both
algorithms CompSynth and ReplayTrace, while CV implements LearnAbstr. The interface between both
tools is handled by a Python script, that is responsible for retrieving the abstraction of B computed by CV
and re-parameterizing the components A.

Experiments are tabulated in Table 4.2 (full details are available in [AL17b]). CompSynth is faster than
EFsynth for most case studies. In addition, whereas EFsynth often does not terminate, CompSynth always
outputs a result (except for one case study: the Fischer mutual exclusion protocol). In some cases, EFsynth
is much faster because it immediately derives⊥, whereas CompSynth has to compute the abstraction �rst.
Even in these unfavorable cases, CompSynth is never much behind EFsynth. This suggests that CompSynth

67

PRPC CompSynthCase study #A #X #P Spec EFsynth #iter total #abs #c.-ex. learning total

FMS-1 6 18 2
1 0.299 2 0.654 1 1 0.074 0.136
2 0.010 1 0.372 0 1 0.038 0.046
3 0.282 1 0.309 1 0 0.090 0.242

FMS-2 11 37 2

1 T.O. - T.O. 1 1 84.2 88.9
2 T.O. - T.O. 1 0 81.4 85.2
3 0.051 - T.O. 0 2 1.10 2.44
4 0.062 - T.O. 0 1 1.42 1.53
5 T.O. - T.O. 1 0 31.4 40.8
6 T.O. - T.O. 1 0 37.2 42.4

AIP 11 46 2

1 0.551 - T.O. 0 1 0.086 0.114
2 2.11 - T.O. 0 1 1.22 1.25
3 3.91 - T.O. 0 1 8.50 8.54
4 0.235 - T.O. 1 1 8.39 8.42
5 T.O. - T.O. 1 0 0.394 0.871
6 T.O. - T.O. 1 0 5.32 9.58
7 T.O. - T.O. 1 0 1.76 3.19
8 T.O. - T.O. 1 0 1.13 4.35
9 T.O. - T.O. 1 1 0.762 1.84
10 0.022 - T.O. 0 1 0.072 0.094

Fischer-3 5 12 2 2.76 4 14.0 0 1 - T.O.
Fischer-4 6 16 2 T.O. - T.O. 0 1 - T.O.

Table 4.2 – Summary of compositional veri�cation experiments

may be preferred to EFsynth for PERAs benchmarks.
Interestingly, in almost all benchmarks, at most one abstraction (for good valuations) and one counter-

example (for bad valuations) is necessary for CompSynth. In addition, most of the computation time of
CompSynth (71 % in average) comes from LearnAbstr; this suggests to concentrate our future optimization
e�orts on this part. Perhaps an on-the-�y composition mixed with synthesis could help.

For Fischer, CompSynth is very ine�cient: this comes from the fact that the model is strongly synchro-
nized, and the abstraction computation does not terminate within 600 s. In fact, in both cases, LearnAbstr
successfully derives very quickly a counter-example that is used by CompSynth to immediately synthesize
all “bad” valuations; but then, as LearnAbstr fails in computing an abstraction, the good valuations are not
synthesized. Improving the learning phase for strongly synchronized models is on our agenda.

What’s beyond. . . ?. Of course, CompSynth is close to PRPC and could therefore bene�t from a distributed
version, following the distributed policies presented in Section 4.4.

4.7 Perspectives

Clock elimination Our clock elimination technique for PTAs is fairly simple, but could be improved
with the detection of quasi-equal clocks: this line of work [Her+12; MWP13; HW16] consists in detecting
clocks not necessarily equal in all locations, but that may di�er only in 0-time before their reset (e. g., in
di�erent locations met in 0-time that reset successively these clocks). An additional di�culty is that the
notion of quasi-equality may depend on the parameter valuations, since it may have an impact on the
“0-time”.

Distributed veri�cation Beyond, our distributed procedure in [ACE14; ACN15], I am interested in
swarm parameter synthesis, i. e., with many autonomous machines. Several procedures for swarm veri-
�cation using Uppaal were proposed in [ZNL16b]; adapting these procedures to synthesis and developing
new ones would be of interest.

68

Compositional veri�cation When considering compositional parameter synthesis, our algorithm
in [AL17b] may not terminate; therefore, an interesting future work would be to address the full class
of parametric timed automata. Indeed, although language inclusion is undecidable for timed automata, an
e�cient algorithm was proposed in [Wan+14], that often terminates. Combining this with our synthesis
framework [AL17b] would allow us to address the full class of PTAs (without guarantee on termination).
Also, combining the compositional veri�cation mechanism of [Aşt+16] (that uses completely di�erent tech-
niques from ours) would be an interesting future work.

Machine learning The paradigm of machine learning could help to increase the e�ciency of parameter
synthesis. We studied preliminary results in [Li+17], where we used classi�cation techniques to “guess”
potential parameter constraints after repeated calls to the non-parametric model checker Uppaal. Only
after a constraint is guessed, IMITATOR is invoked to verify this constraint, leading to a dramatic gain
in computation time when compared to a purely parametric analysis. So far, only “simple” constraints
can be e�ciently guessed; this approach should therefore be extended to more complex constraints. More
generally, combining testing (or veri�cation of a non-parametric timed system) with parameter synthesis
looks promising, so as to gain from the e�ciency of the former.

Stochastic optimization Stochastic optimization, e. g., used to falsify properties of hybrid systems
in [AH15], seems also an interesting paradigm to exhibit synthesize optimal (or near-to-optimal) parameter
valuations w.r.t. to an optimization criterion.

69

Chapter 5
Synthesis algorithms

After studying decidability (Chapter 3) and proposing techniques to speedup the veri�cation (Chapter 4),
we introduce here synthesis (semi-)algorithms to solve practical problems. We do not address the termi-
nation of these algorithms as a main goal, as underlying decision problems are almost always undecidable;
however, whenever possible, we try to improve termination, i. e., make them terminate for larger classes of
models.

These works �t into a line of works related to synthesis for parametric timed automata or parametric
extensions of timed automata, regardless of their decidability (e. g., [Tra12; San15]). Finally, while looking
for decidable subclasses, [CPR08; JLR15] also de�ne semi-algorithms for (general) PTAs.

We �rst show that parameter synthesis using parametric timed automata and parametric time Petri nets
can be used to measure the system robustness, in the sense of the measure of the admissible variability of
the timing constants while preserving the untimed language (Section 5.1).

Second, we introduce a synthesis algorithm for parametric model checking under the non-Zeno as-
sumption (Section 5.2).

We also propose synthesis algorithms in the setting of two richer models than parametric timed au-
tomata, i. e., augmented with controllable actions seen as parameters (Section 5.3) and with interval prob-
abilistic distributions (Section 5.4).

5.1 Parameter synthesis and robustness

5.1.1 Varying the de�nition of robustness

The inverse method [And+09b; AS13] (recalled in Section 2.4) is a semi-algorithm solving the trace-
preservation-synthesis problem. In [AS11], we relaxed the de�nition of the preservation of the untimed
language and designed variants of IM. Given a PTAA and a reference parameter valuation v, the constraint
synthesized by these variants preserve:

• the reachability of locations of v(A): algorithm IM⊆;

• the fact that each trace is a pre�x of a trace of v(A): algorithm IMK ;

• the inclusion into the trace set of v(A) and the preservation of at least one maximal trace: IM∪.

In addition, all variants preserve safety properties: a location unreachable in v(A) remains unreachable for
any valuation satisfying the constraint synthesized by any of these algorithms.

We summarize in Table 5.1 the properties satis�ed by these algorithms.

70

Property IM IM⊆ IM∪ IMK

Equality with the trace set of v(A)
√

× × ×
Inclusion into the trace set of v(A)

√
×

√ √

Preservation of at least one trace of v(A)
√

×
√

×
Equality of location sets of v(A)

√ √
× ×

Preservation of non-reachability
√ √ √ √

Table 5.1 – Comparison of the properties of the variants of IM

Remark 5.1. The names of the algorithms may be a bit misleading (for example, IMK could have been
named IM⊆ as it guarantees a trace set included in that of v(A)); these names come from the operators
used in the actual algorithm (for example, IM⊆ uses an inclusion test instead of an equality test as
in IM; IMK returns a constraint named “K” instead of the intersection of all constraints associated to
the explored states; and so on). We nevertheless keep these names in this manuscript by consistency
with [AS11; ACR17].

In addition, we showed that all these algorithms enhance the termination of IM. That is, givenA and v,
if IM terminates, then all variants terminate—but the converse is not true.

Finally, and this is probably the most interesting in practice, the constraint output by these variants is
larger (i. e., contains more valuations) than that returned by IM.

l0 l1 l2

l3

l4
x1 ≤ 2p1

∧ x1 ≤ 2 x2 ≤ p2

x1 ≤ p2

a
x1 := 0
x2 := 0

x1≥ p2

c

a

x1≥ 3
b

x1 ≥ p1

a
x1 := 0

b

c

Figure 5.1 – A PTA Avar for comparing the variants of IM

Example 5.1. Let us consider the PTAAvar depicted in Figure 5.1. We consider the following v: p1 = 1∧p2 =
4. In v(A), location l4 is not reachable, and can be considered as a “bad” location.

Let us suppose that a bad behavior ofAvar corresponds to the fact that a trace goes into location l4. Under v,
the system has a good behavior. As a consequence, since all algorithms preserve the safety, the constraint
synthesized by any algorithm also ensures l4 remains unreachable.

We give in Figure 5.2 the four constraints synthesized by IM, IM∪, IMK and IM⊆, respectively. For each
graphics, we depict in dark blue the parameter domain covered by the constraint, and in light red the parameter
domain corresponding to a bad behavior. The “good” zone not covered by the constraint is depicted in very
light gray. The dot represents v.

Implementation I implemented all these algorithms in IMITATOR, and experiments on a set of bench-
marks show the practical interest of the variants in terms of memory and time, when compared to IM
(see [AS11]).

71

p1

p2

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

IM

p1

p2

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

IM∪

p1

p2

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8 IMK

p1

p2

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

IM⊆

Figure 5.2 – Comparison of the constraints synthesized for Avar

What’s beyond. . . ?. We also considered combinations of the properties of these algorithms, such as IMK
⊆ and

IM∪⊆. See [AS11] for details.

5.1.2 Precise robustness in time Petri nets

In [APP13], we rede�ned the inverse method in the context of parametric time Petri nets (PTPNs), and
showed how it can be used to measure the robustness. Let us �rst recall PTPNs, as they will be used here
and in Section 5.1.3 below.

(Parametric) time Petri nets

Parametric time Petri nets (PTPNs) [TLR09] are a parametric extension of time Petri nets [Mer74], where
the temporal bound of each transition can either be a rational number,∞ or a parameter.

De�nition 5.1 (parametric time Petri net). A parametric time Petri net (PTPN) is a tuple N =
(P, T , P, pre, post , pefd , plfd ,M0,K0) where

• P and T are non-empty, disjoint sets of places and transitions respectively,

• P = {p1, . . . , pM} is a �nite set of parameters,

• pre and post map each transition t ∈ T to its (nonempty) preset, denoted by •t = pre(t) ⊆ P ,
and its (possibly empty) postset, denoted by t• = post(t) ⊆ P ;

• functions pefd : T → Q+ ∪ P and plfd : T → Q+ ∪ P ∪ {∞} and associate the earliest �ring
delay pefd(t) and latest �ring delay plfd(t) with each transition t,

• M0 ⊆ P is the initial marking, and

• K0 is the initial constraint over P giving the initial domain of the parameters, and must at least
specify that the �ring intervals are nonempty (

∧
t∈T pefd(t) ≤ plfd(t)).

As usual, we graphically represent places as circles and transitions as rectangles. We write the time
interval [pefd(t), plfd(t)] next to the transition.

Example 5.2. Consider the PTPN in Figure 5.3. Initially, one token is in place pl1 and one in pl3 while other
places contain no token. Transition t1 can �re at least a1 and at most b1 time units after its input place (here
only pl1) contains a token; as this is the case, it will �re at least a1 and at most b1 time units after the system

72

pl1

pl2

pl3

pl4

pl5

pl6 pl7

t0[a0, b0]

t1[a1, b1]

t2[a2, b2]

t3[a3, b3]

Figure 5.3 – An example of a PTPN

start—unless another transition (typically t0) consumes the token of pl1 before.

Given a parameter valuation v, we denote by v(N) the non-parametric PTPN where all occurrences of
a parameter pi have been replaced by v(pi). We say that v(N) is a time Petri net (TPN).

We consider only safe time Petri nets (TPNs), i. e., TPNs where there is never more than one token in a
place.

We do not recall the semantics of time Petri nets, as it is available in many documents (e. g., [ACR17]
using almost the same notations as in this manuscript).

A timed word is a possibly in�nite sequence of pairs made of a transition and a �ring time. A sequence
associated to a timed word is the sequence of transitions, i. e., the untimed support of the timed word; it
is the equivalent of a trace for PTAs. Given a TPN N , we denote by Sequences(N) the set of sequences
associated with all timed words of N , among which we distinguish the set MaxSequences(N) of maximal
sequences, i. e., sequences which are not the pre�x of any other sequence.

Example 5.3. Consider the simple TPN in Figure 5.4a (from [Aks+16]). According to the semantics of TPNs,
place C is unreachable, that is, there exists no reachable marking such that the number of tokens in C is greater
than 0. Indeed, starting from marking A (i. e., a marking with 1 token in place A), t1 can �re anytime between
1 and 2 time units after the system start. At time 2, t1 must �re if it has not yet �red, because its associated
interval is about to expire and no other transition is �rable (t2 will be �rable right after time 2). Hence, C is
unreachable.

The set of sequences of this TPN is therefore simply {(t1)}, and its set of maximal sequences is the same.

Example 5.4. Consider again the PTPN in Figure 5.3. Fix a0 = b0 = a1 = b1 = a2 = b2 = a3 = b3 = 1.
Then the set of maximal sequences of this TPN is {(t1, t2, t3), (t2, t1, t3)}.

Now �x a0 = b0 = a2 = b2 = a3 = b3 = 1, a1 = 1 and b1 = 4. The set of maximal sequences of this TPN
becomes {(t1, t2, t3), (t2, t1, t3), (t2, t3, t0)}.

PTPNs can be given a symbolic semantics (initially de�ned in [TLR09], and recalled using our notations
in [ACR17]), that resembles very much the symbolic semantics of PTAs (De�nition 2.6).

Precise robustness

In this section, just as in [APP13], we will consider an extension of PTPNs that allow inhibitor arcs [TLR09],
abbreviated as (P)ITPNs. Inhibitor arcs can stop time elapsing, and can be seen as equivalent to stopwatches

73

t1[1, 2] t2(2, 3]

A

B C
(a) Example of undesired reachability

A

t1[1, 1]

B

t2[1, 1]

C D

t3[0,∞)

E
(b) Example of unlikely reachability

Figure 5.4 – Examples of non-robust (I)TPNs

in timed automata [CL00]. Inhibitor arcs do have an impact on the decidability of non-parametric time
Petri nets [Rou04] but, in the parametric settings, as the interesting problems are undecidable, this does
not fundamentally change the results.

Example 5.5. In Figure 5.4b, the arc connecting place D to transition t3 is inhibiting D: that is, if D contains
a token, then t3 cannot �re.

Motivating the robustness Consider again the PTPN in Figure 5.4a. We showed in Example 5.3 that
place C cannot be marked. Now suppose that the upper bound of the �ring interval of t1 is increased, even
by an in�nitesimal duration. Then, t2 is �rable immediately after time 2, and C can be reached in some
executions.

Now consider the ITPN in Figure 5.4b. According to the semantics of ITPNs, place E is reachable.
Indeed, starting from a marking AB (i. e., a marking with 1 token in place A and 1 token in place B), t1 can
�re at time 1, giving marking CB. Then, after a null duration, t3 can �re due to the absence of token in D.
Finally, again after a null duration, t2 �nally �res. This sequence of transitions is unlikely to happen in
practice due to delays exactly equal to zero; if the bounds of t1 or the lower bound of t3 become slightly
larger, or the bounds of t2 becomes slightly smaller, E becomes unreachable.

That is, both examples in Figures 5.4a and 5.4b are not robust w.r.t. the sets of sequences, as an in-
�nitesimal change of the bounds may yield di�erent sets of sequences.

Precise robustness In [APP13], we proposed a precise version of robustness—precise because it is mul-
tidimensional, i. e., we measure the variability of all timing bounds independently. Our method is only a
semi-algorithm and therefore may not terminate. We used a version of the inverse method IM adapted to
parametric time Petri nets; despite some technical speci�cities for PTPNs, it is essentially the same algo-
rithm as for PTAs (see Section 2.4) and we do not recall it (see [APP13]).

Theorem 5.1 ([APP13]). Suppose IM(N , v) terminates with resultK .
Then, for all v′, Sequences(v(N)) = Sequences(v′(N)) i� v′ |= K .

Now, assume an ITPN N . Assume a parameterized version N of N where each lower (resp. upper)
bound of a transition ti is replaced with a fresh parameter p−i (resp. p+

i).

74

A B

t1[5, 6] t2[3, 4] t3[1, 2]

C D E
(a) An ITPN

A B

t1[p−1 , p
+
1] t2[p−2 , p

+
2] t3[p−3 , p

+
3]

C D E
(b) Parameterized version

Figure 5.5 – An ITPN and its parameterized version

Example 5.6. Consider the ITPN in Figure 5.5a. Its parameterized version is shown in Figure 5.5b.

De�nition 5.2. An ITPNN is robust with respect to linear-time properties (or LT-robust) if there exists
γ > 0 such that for any linear time property ϕ, N ′ |= ϕ if and only if N |= ϕ, where N ′ is an ITPN
similar to N where each timing bound c can be replaced with any value within [c− γ, c+ γ].

For example, the ITPN in Figure 5.5b is LT-robust (with e. g.,γ = 1), whereas the ITPNs in Figure 5.4
are not.

We showed in [APP13] that we can use the result of IM to measure the system robustness, i. e., to
determine whether an ITPN is LT-robust. In addition, when it is not, we can exhibit which timing constants
are i. e., critical, i. e., responsible for the non-robustness. Finally, we give a su�cient condition to improve
the system robustness, i. e., to re�ne some values of the critical timing bounds so that the system becomes
LT-robust.

This work can be put into perspective with the literature on TAs and TPNs: the simpler problem of ro-
bust untimed language preservation is already undecidable even for bounded TPNs [Aks+16]. In contrast,
language robustness is decidable for TAs with some assumptions [San11]. However, in our case, we address
the general class of (I)TPNs and, when our semi-algorithm terminates, we can evaluate the system robust-
ness even if only some �ring times can be enlarged or shrinked, while most of the literature considers that
a system with at least one guard non-enlargeable (or non-shrinkable) is simply non-robust.

5.1.3 Robustness and partial orders

In [ACR17], we considered a concurrent setting, and showed that it is possibly to signi�cantly relax the
result of the variant of the inverse method IMK when preserving the traces up to partial orders.

Due to the fact that in a TPN a given maximal sequence for a given valuation is also maximal for any
other parameter valuation where this sequence is allowed (which is not the case in PTAs, notably due to
invariants), the correctness of IMK slightly di�ers from the PTA setting:

Theorem 5.2 ([ACR17]). Suppose IMK(N , v) terminates with resultK .
Then, for all v′, Sequences(v′(N)) ⊆ Sequences(v(N)) i� v′ |= K .

The result of IMK can be seen as too rigid. Consider again the PTPN of Figure 5.3. Consider v0 such
that a0 = 0, b0 = 3, a1 = 0, b1 = 1, a2 = 2, b2 = 3, a3 = 1, b3 = 2. Because the initial parameter valuation
v is such that b1 < a2, the constraint output by IMK forces this ordering and allows only valuations for
which the only maximal sequence possible is (t1, t2, t3), like in v(N).

75

pl1 pl2

pl3 pl4

a[0,∞) b

[0, 5]

c [3, 4]d[2, 4]

(a) A TPN

pl1 pl2

pl3 pl4

pl1 pl2

pl3

e1 a(3) e2 c(3)

e3 b(5)

e4 a(9)

(a)

(b) Graphical representation of a process

Figure 5.6 – TPN and process

With other parameter valuations, three other maximal sequences appear, viz., (t2, t1, t3), (t2, t3, t1),
(t2, t3, t1) and (t2, t3, t0) (all already considered in Example 5.4). It is reasonable that a parameter synthesis
method prevents valuations of the parameters which allow the last sequence, because it �res t0 which di�ers
qualitatively from the reference behavior. But the other sequences do not �re any undesired transition; they
just reorder the �ring of t1, t2 and t3. Observing carefully the model, one even remarks that t1 is actually
concurrent to t2 and t3, and that the sequences (t2, t1, t3) and (t2, t3, t1) are simply obtained by changing
the index where t1 is inserted in the sequence (t2, t3).

A process is a representation of an execution of a (time) Petri net. Executed actions (called events) are
not totally ordered, as in timed words. For untimed Petri nets, only causality orders the events. For time
Petri nets, the �ring time of each event can still be represented together with the event, but the partial-
order causality indicates the structural dependencies between events due to creation and consumption of
tokens.

An execution of a TPN N is represented as a labeled acyclic Petri net where every transition (called
event and labeled by a transition t of N and a �ring date) stands for an occurrence of t, and every place
(called condition and labeled by a place p of N) refers to a token produced by an event in place p or to a
token of the initial marking. The arcs represent the creation and consumption of tokens. Because fresh
conditions are created for the tokens created by each event, every condition has either no input arc (if it is
an initial condition) or a single input arc, coming from the event that created the token. Symmetrically, each
place has no more than one output arc since a token can be consumed by only one event in an execution.

Example 5.7. Figure 5.6b shows an example process of the TPN in Figure 5.6a. This process corresponds to
the sequential execution

(
(a, 3), (c, 3), (b, 5), (a, 9)

)
. The dates of the events are in parentheses. Observe that

this process also represents the timed word
(
(c, 3), (a, 3), (b, 5), (a, 9)

)
.

An abstract process is a set of events of a TPN that represent an abstract representation of processes. In
short (see [ACR17] for a complete de�nition), this set must be causally closed (the past of this set must be
the set itself), and con�ict free (the predecessors of any two events must be disjoint). LetMaxProcesses(N)
denote the set of maximal abstract processes of N .

Example 5.8. The PTPN of Figure 5.3 has two maximal abstract processes: one where transitions t1, t2 and

76

t3 �re (giving rise to, resp. events e1, e2, e3), the second with t2, t3 and t0 (giving rise to, resp. events e2, e3

and e0).

We now de�ne a procedure IMKPO (standing for “inverse method based on partial-orders”) for synthe-
sizing parameters in a PTPNN that guarantee the preservation of partial-order semantics. More precisely,
givenN and v, IMKPO will synthesize valuations guaranteeing that the set of maximal processes of v(N)
contains the set of maximal processes of v′(N) for any v′ satisfying the constraint. Note that this require-
ment concerns only maximal processes: asking for preservation of all processes would limit the freedom in
the interleavings of concurrent transitions. For the PTPN of Figure 5.3, the only (maximal) sequence feasi-
ble with the initial valuation v0 (given above) is (t1, t2, t3). Consider another valuation v that would force
(t2, t1, t3) (which we consider correct). A (non-maximal) timed word with only t2 yields a (non-maximal)
abstract process which is not feasible under v0. On the other hand, the maximal abstract processes are the
same for both valuations.

IMKPO terminates for PTPNs where all the abstract processes are �nite. It relies on the computation
of the unfolding of the untimed support of the PTPN. E�cient tools exist for computing unfoldings [Kho12;
Sch14]. The procedure IMKPO(N , v0) operates as follows:

1. Compute the unfolding of the untimed support ofN (i. e., the Petri net obtained fromN by removing
all the temporal constraints). The unfolding has �nite depth when the length of the abstract processes
is bounded; hence it can be computed entirely.

2. Extract the set MP of maximal processes1; they are the abstract processes of our PTPN N .

3. For every E ∈ MP , construct the constraint Kp
E on the parameters of N under which the process

is feasible.

4. Output the conjunction of the initial constraint K0 with the negation of all constraints associated to
processes which are not feasible under v:

K0 ∧
∧

E∈MP , with v 6|=Kp
E

¬Kp
E .

Theorem 5.3 ([ACR17]). Let N be a PTPN, let v be a parameter valuation. Assume IMKPO(N , v)
terminates with resultK . Then for all valuation v′ of the parameters satisfying the initial constraintK0

of the model,
v′ |= K ⇐⇒ MaxProcesses(v′(N)) ⊆ MaxProcesses(v(N)) .

In particular v |= K .

Example 5.9. For the PTPN of Figure 5.3, recall that there are two maximal abstract processes {e1, e2, e3}
and {e2, e3, e0}. Only the �rst one is feasible in v(N), i. e.,, v 6|= Kp

{e2,e3,e0}. Then our procedure IMKPO
outputs the constraint

K0 ∧ a2 + a3 + a0 > b1,

which is the negation of Kp
{e2,e3,e0}. Remember from De�nition 5.1 that K0 is assumed to specify at least that

the �ring intervals are nonempty.

1The maximal processes can be extracted for instance by a SAT solver using an appropriate SAT encoding, or using the optimal
partial-order reduction algorithm of [Rod+15].

77

In contrast, IMK , would synthesizeK0∧a2 > b1; therefore, the constraint synthesized by IMKPO is much
more permissive than the constraint output by IMK . While IMK requires t1 to �re strictly before t2, IMKPO
only requires that it �res before being disabled by t0.

We now state that the output of IMKPO is always equally or more permissive than the output of IMK .

Theorem 5.4 ([ACR17]). LetN be a PTPN with only �nite executions, and let v0 be a parameter valu-
ation. DenoteKIMK = IMK(N , v) andKIMKPO = IMKPO(N , v). ThenKIMK ⊆ KIMKPO.

Implementation and experiments As a proof of concept, César Rodríguez implemented both IMK

and IMKPO in a prototype tool, that relies on the Cunf Petri net unfolder [RS13] to build the (untimed)
unfolding of the input net, and on PolyOp (a prototype tool I implemented to support polyhedra operations,
which can be seen as a wrapper around the Parma Polyhedra Library (PPL) [BHZ08]). Our implementation
�rst enumerates all maximal (untimed) con�gurations, by means of an ad-hoc concretization of the Optimal
Dynamic Partial-Order Reduction (ODPOR) algorithm presented in [Rod+15]. We then applied IMK and
IMKPO to a few case studies modeling asynchronous circuits (see [ACR17]).

What’s beyond. . . ?. Recall that IMKPO can only be applied if all abstract processes are �nite. This is the
case of some application domains such as acyclic asynchronous (such a case study is handled in [ACR17]).
In [ACR17], we also de�ned two variants of IMKPO that (may) terminate even when abstract processes are not
�nite.

5.2 Non-Zeno synthesis

Model checking TAs may consist in checking whether there exists an accepting cycle (i. e., a cycle that
visits in�nitely often a given set of locations) in the automaton made of the product of the TA modeling
the system with the TA representing a violation of the desired property. However, the existence of such an
accepting cycle does not necessarily mean that the property is violated: indeed, a known problem of TAs
is that they allow Zeno behaviors. An in�nite run is Zeno if it takes a �nite amount of time; otherwise it
is non-Zeno. Zeno runs are infeasible in reality (because processors have a �nite speed, and only a �nite
number of actions can occur in a bounded time), and thus they must be pruned during system veri�cation.
Note that the Zeno phenomenon in TAs is close to the chattering phenomenon in the larger class of hybrid
systems (see e. g., [AC15; Alj+16]).

The problem of checking whether a timed automaton accepts at least one non-Zeno run has been tack-
led previously (e. g., [Tri99; TYB05; BG06; GB07; HSW13; Wan+15]). However, the synthesis of valuations
satisfying some property in a PTA while guaranteeing the non-Zeno assumption had not been addressed.

We addressed in [And+17b] the synthesis of parameter valuations for which there exists at least one
non-Zeno cycle in a PTA. Recall that the emptiness of the valuations set for which there exists at least one
in�nite run is undecidable (Theorem 3.14). The following result comes therefore without much surprise.

Lemma 5.1 ([And+17b]). The emptiness of the valuations set for which there exists at least one non-Zeno
in�nite accepting run in a PTA is undecidable.

78

Proof idea. Using a reasoning based on the 2-counter machine encoding proposed in [AM15].

5.2.1 CUB-parametric timed automata

Nevertheless, we proposed a semi-algorithm to synthesize valuations for which there exists at least one
non-Zeno accepting in�nite run. Just as for TAs, the parametric zone graph of PTAs (used in e. g., [Hun+02;
And+09b; JLR15]) cannot be used to check whether a cycle is non-Zeno. Therefore, we introduced clock
upper bound PTAs (CUB-PTAs), a subclass of PTAs satisfying some syntactic restrictions. First, we assume
throughout this section that PTAs are enriched with an initial parameter constraint K0 (similarly to our
de�nition of PTPNs in De�nition 5.1). This initial constraint can be seen as an extension of the bounded
parameter domain (De�nition 2.8) using linear constraints such as p1 ≤ p2.

We give below an informal de�nition of CUB-PTAs.

De�nition 5.3 (CUB-PTA [And+17b]). A PTA is a CUB-PTA if for each edge (l, g, σ,R, l′), for all
clocks x ∈ X , for any parameter valuation in K0, both the upper bound of x in g and the upper
bound of x in I(l′) are larger or equal to the upper bound of x in I(l).

Example 5.10. Consider the PTA in Figure 5.7a. This PTA is a CUB-PTA i� K0 is such that p2 ≥ p1: indeed,
on the unique edge, the upper bound of x on the guard is larger or equal to the source invariant.

Whereas any TA can be transformed into a CUB-TA [Wan+15], this does not hold for PTAs.

Example 5.11. No equivalent CUB-PTA exists for the PTA in Figure 5.7b, where K0 = >. Indeed, the edge
from l1 to l2 (resp. l3) requires p1 ≤ p2 (resp. p1 > p2). It is impossible to transform this PTA into a PTA where
K0 (which is >) is included in both p1 ≤ p2 and p1 > p2.

However, we can use a �nite union of CUB-PTAs (each of them with a di�erent bounded parameter
domain).

Proposition 5.1 ([And+17b]). Any CUB-PTA can be transformed into a �nite union of CUB-PTAs with
the same constrained timed language.

We can then turn a �nite union of CUB-PTAs into a PTA, by adding a fresh initial location pointing to
each of the initial locations of the CUB-PTAs Ai with an edge with guard Ai.K0, in 0-time with a silent
transition.

Example 5.12. In Figure 5.7c (without the dotted, blue elements), two CUB-PTAs are depicted, one (say A1)
on the left with locations superscripted by 1, and one (sayA2) on the right superscripted with 2. AssumeA1.K0

is p1 ≤ p2 and A2.K0 is p1 > p2. Then the full Figure 5.7c (including dotted elements) is the PTA associated
with the CUB-PTAs A1 and A2, and is equivalent to the PTA in Figure 5.7b.

79

l1
x ≤ p1

x ≤ p2

(a) Example 1

l1

l2 l3x ≤ p1
x ≤ p2

x := 0
x ≤ p1

p1 ≤ x ≤ p2 p1 > x > p2

(b) Example 2

l0

l21x ≤ p1

l23x ≤ p1

l11
x ≤ p2

l12l12
′

x ≤ p2

p1 > p2
p1 ≤ p2

x ≥ p1

∧x ≤ p2

x ≥ p1

∧x ≤ p2 x ≤ p2

∧x := 0x ≤ p2

∧x := 0

p1 > x > p2

x ≤ p1

(c) Transformed version of Figure 5.7b

Figure 5.7 – Examples: detection of and transformation into CUB-PTAs

5.2.2 Non-Zeno synthesis

Similarly to TAs, it is not possible to synthesize valuations corresponding to non-Zeno behaviors on the
parametric zone graph of PTAs. However, in contrast to classical PTAs, we show that we can design a
semi-algorithm synthesizing valuations for CUB-PTAs such that there exists an in�nite non-Zeno cycle
can be done based on (a light extension of) the parametric zone graph. The idea of the procedure is as
follows [And+17b]:

1. transform the PTA into a �nite union of CUB-PTAs;

2. synthesize its parametric zone graph;

3. look for strongly connected components (SCC) in the zone graph for which:

(a) at least one location is accepting;
(b) there is some time progress (this can be measured with an additional extra clock); and
(c) for each clock the upper bound of which is not∞, this clock is reset at least once in the com-

ponent;

4. return the parameter valuations associated with all the aforementioned SCCs.

This procedure is a semi-algorithm as the parametric zone graph may be in�nite.

Implementation The transformation of a PTA into a �nite union of CUB-PTAs was implemented by
Nguyễn Hoàng Gia in IMITATOR. Although the general scheme is relatively simple, the transformation is
quite complex, with a lot of practical technical details. I implemented the actual synthesis algorithm, which
is a simple variant of the cycle detection synthesis algorithm. We performed various experiments on a set
of case studies (see [And+17b]).

What’s beyond. . . ?. In [And+17b], we also provided an alternative method: instead of transforming a PTA into
a �nite union of CUB-PTAs, we can also detect whether a PTA already satis�es the CUB assumption for some
valuations. In this latter case, one can directly apply the SCC detection, with the limitation that the result only
holds for the synthesized valuations belonging to the set for which the PTA satis�es the CUB assumption.

5.3 Combining timing parameters with action parameters

In the remaining two sections, we show that the model of parametric timed automata can be extended to
capture richer models. Let us �rst combine timing parameters with action parameters. Action parameters

80

out in treasure safe x ≤ 15

y ≥ p
break_glass
y := 0

y ≥ 2
walk_corridor

y := 0

y ≥ 3
fly_away

y ≥ q
crawl_vent
x, y := 0

y ≥ q
crawl_vent

Figure 5.8 – The burglar action-controlled parametric timed automaton

can be seen as Booleans constants allowing or disallowing once for all some actions within a set of con-
trollable actions. In [KMP15], an algorithm is proposed to compute symbolically the set of controllable
actions for which a given formula (expressed in a parametric extension of CTL) is satis�ed. An e�cient
implementation using the tool SPATULA is proposed.

In [And+16], we combined the action parameters [KMP15] with the timing parameters [AHV93] into
the uni�ed framework of action-controllable parametric timed automata (APTA). Before our work, little had
been done to combine di�erent types of parameters, typically discrete (actions) and continuous (timing)
together. A notable exception is [DAr+97] where constraints are derived to ensure the correctness of the
bounded retransmission protocol (BRP); one of them involves a discrete parameter (an integer-valued max-
imum number of retransmissions) multiplied by a continuous timing parameter. However, the procedure
proposed seems to be speci�c to this case study.

De�nition 5.4 (APTA [And+16]). An action-controllable PTA is a PTA enriched with a set of con-
trollable actions.

Example 5.13. Consider the example of a burglar that wants to steal a treasure in a museum, described by
the APTA in Figure 5.8. Initially, the burglar is outside (location out). First, (s)he can decide to break a window
(action break_glass), which triggers an alarm at the police station. Clock x counts the time since the alarm is
raised. The time necessary for the police to reach the museum is 15 minutes. Therefore, the burglar will be
safe if (s)he has escaped the building before the police arrives (invariant x ≤ 15 associated with location safe).
Breaking the glass takes at least p minutes. Once the window is broken, the burglar is in and takes at least
2 minutes to walk to the treasure room (action walk_corridor). The other possibility to reach the treasure is
to crawl in a ventilation (action crawl_vent) which has the advantage of not triggering the alarm until in the
treasure room. This takes at least q minutes. To escape the treasure room, the burglar can be picked up by a
friend �ying an helicopter (action fly_away), after running to the roof of the building in at least 3 minutes. Or
else, (s)he can decide to crawl back through the ventilation system.

We considered only the reachability problem in [And+16], i. e., the synthesis of action and timing pa-
rameters for which a discrete location is reachable. The following result trivially comes from the fact that
the class of APTAs can be seen as an extension of PTAs.

Lemma 5.2 ([And+16]). The EF-emptiness problem is undecidable for APTAs.

Nevertheless, we proposed a semi-algorithm for synthesizing the set of actions and timing parameters
(in the form of a set of linear constraints on controllable actions seen as Booleans, and timing parameters)
for which a given location is reachable. Our procedure can be summarized as follows [And+16]:

81

1. given an APTA, we enable all controllable actions, which gives a PTA A;

2. we compute a mixed transition system, which is essentially the parametric zone graph PZG of A;

3. for each target state in PZG, we synthesize using techniques from [KMP15] the constraint on the
controllable actions such that this target state is reachable in PZG, and we return the conjunction
of the timing parameter constraint and the action parameter constraint;

4. we return the union of all the aforementioned computed constraints.

Example 5.14. Consider again the burglar example in Figure 5.8. The constraint for which the safe location
is reachable (which is the unsafe location from the point of view of the museum!) is

break_glass ∧ walk_corridor ∧ fly_away ∧ p ≤ 10
∨ crawl_vent ∧ q ≤ 15

The system designers can therefore disable some actions and/or tuning some timing parameters so as to make
the system safe. Examples of possibilities to make the treasure safe can be:

• disabling crawl_vent (e. g., by installing some proper bars) and fly_away (e. g., by installing some net on
the rooftop); or

• disabling break_glass (e. g., by installing an armored window) and tuning q > 15 (e. g., by increasing
the length of the ventilation pipes); or

• tuning p > 10 (e. g., by installing a solid enough window) and q > 15.

Implementation Our implementation is made of IMITATOR linked to SPATULA with a Python script.
In [And+16], we applied our toolkit to a sample example of a railway gate controller. Experiments show
that our method outperforms exhaustive enumeration, even when the timing parameter domain is �nite
(e. g., bounded integers).

Future works include the extension to a larger subset of TCTL, at least AF—which is not trivial though.

5.4 Parameter synthesis in probabilistic models

Another natural way to extend parametric timed automata is to add probabilities. The setting of timing pa-
rameters with (non-parametric) probabilities was considered in some earlier works, e. g., [Cha+08; AFS13b;
JK14].

Here, we consider a slightly di�erent setting, inspired by interval Markov chains [JL91], a formalism
that takes into account imprecision in the transition probabilities. This formalism extends Markov chains
by allowing to specify intervals of possible probabilities on transitions instead of exact values. Methods
have then been developed to decide whether there exists Markov Chains with concrete probability values
that match the speci�ed intervals [Del+12].

In [AD16], we combined both abstraction approaches into a single speci�cation theory: Parametric In-
terval Probabilistic Timed Automata (PIPTAs for short). In this setting, parameters can be used in order to
abstract timed constants on transition guards while intervals can be used to abstract imprecise transition
probabilities. It is important to be able to decide whether the probability intervals that are speci�ed in a
model allow de�ning consistent probability distributions (i. e., can be matched in a real-life implementa-
tion). This is called the consistency problem.

82

l0

l1

l2 l5

l′2

y < 2

a 0.6
y := 0

0.4
x := 0 x = 1 ∧ y ≤ 2

c

0.1
x := 0

0.1
x := 0

0.8

x = 1 ∧ y ≤ 2
c

0.1
x := 0

0.9

(a) A PTA

l0

l1

l2 l5

l3

l4
y < 2

a [0, 1]
y := 0

[0, 0.5]
x := 0

2 ≤ x ≤ p
b [0, 0.2]

y := 0

[0, 0.3]
x, y := 0

x = 1 ∧ y ≤ 2
c

[0, 0.2]
x := 0

[0.8, 1]

x = 5
d

x, y := 0

2 ≤ x ≤ p
e

x := 0

(b) An example of PIPTA

Figure 5.9 – Examples of IPTA and PIPTA

Given an arbitrary setS, we call an interval distribution overS a function Υ that assigns to each element
of S an interval of probabilities [a, b] ⊆ [0, 1]. Let Int[0,1](S) denote the set of all interval distributions
over S.

De�nition 5.5 (PIPTA [AD16]). A Parametric Interval Probabilistic Timed Automaton (PIPTA) is a
parametric timed automaton without invariant, and with edges of the form (l, g, σ,Υ), where l ∈ L,
g is a guard, σ ∈ Σ, and Υ ∈ Int[0,1](2

X × L) is an interval distribution.

An interval probabilistic timed automaton (IPTA) is a PIPTA without timing parameters. A probabilistic
timed automaton (PTA) is an IPTA with punctual distributions (i. e., intervals reduced to a point).

Example 5.15. Figure 5.9a presents an example of a PTA with two clocks x and y. For example, l0 can be
exited whenever y < 2; then, with probability 0.4 the target location becomes l2, resetting x; or with probability
0.6 the target location is l1, resetting y. The transition from l2 can be explained similarly.

Once a parameter valuation is �xed, the resulting IPTA represents a potentially in�nite set of PTAs.
In order to relate a given IPTA with the PTAs it represents, we use the notion of implementation de-
�ned hereafter. This notion is similar to the one de�ned in the context of (parametric) Interval Markov
Chains [DLP16]. Remark that a PTA implementing an IPTA needs to conserve the exact same clocks,
guards and resets. This de�nition is rather technical, and is central is the correctness of our framework.

83

De�nition 5.6 (Implementation of an IPTA). Let P = (Σ, L, l0, X, prob) be a PTA and IP =
(Σ, L′, l′0, X, I) be an IPTA.

We say that P is an implementation of IP , written P |= IP , i� there exists a relation RP ⊆
L′ × L, called an implementation relation (l′0, l0) ∈ RP and, whenever (l′, l) ∈ RP , we have

• ∀(l′, g′, σ, υ) ∈ prob,∃(l, g′, σ,Υ) ∈ I υ �RP
Υ, and

• ∀(l, g, σ,Υ) ∈ I,∃(l′, g, σ, υ) ∈ prob υ �RP
Υ,

where υ �RP
Υ i� ∃δ ∈ Dist(L′ × L)

• ∀(R′, l′) ∈ 2X × L′, υ(R′, l′) > 0⇒
∑

l∈L(δ(l′, l)) = 1,

• ∀(R, l) ∈ 2X × L,
∑

l′∈L′(υ(R, l′) · δ(l′, l)) ∈ Υ(R, l), and

• δ(l′, l) > 0⇒ (l′, l) ∈ RP .

Example 5.16. Consider the PIPTA PIP given in Figure 5.9b. When a distribution is made of a single target
location with probability 1, we simply omit the distribution (e. g., between l3 to l4).

First, observe that PIP cannot be consistent if the edge labeled with b can be taken: indeed, no implemen-
tation of the intervals [0, 0.3] and [0, 0.2] is such their sum is equal to 1.

Now, let v1 be the parameter valuation such that v1(p) = 1. In the IPTA v1(PIP), the transition outgoing
from l1 can never be taken, as its guard becomes 2 ≤ x ≤ 1, which is unsatis�able. Then, it is clear that the
PTA P given in Figure 5.9a is an implementation of v1(PIP). As a consequence, v1(PIP) is a consistent
IPTA.

5.4.1 Consistency in interval probabilistic timed automata

First, in the context of interval probabilistic timed automata with no timing parameters (IPTAs), we propose
an algorithm that solves the consistency problem, i. e., the existence of at least an implementation.

Theorem 5.5 ([AD16]). The consistency problem is decidable for IPTAs.

Proof idea. The proof requires several results. First, we de�ne the symbolic semantics of an IPTA as an interval Markov
chain. Then, we de�ne a consistency de�nition for interval Markov chains that matches our consistency de�nition for IPTAs.
We then show that there exists an implementation of an interval Markov chain i� there exists one with the same structure.
We then prove that an IPTA is consistent i� its probabilistic zone graph is consistent. The proof of this latter result requires to
reconstruct an IPTA from a zone graph. Finally, we introduce an algorithm for checking the consistency of interval Markov
chains, in the lines of [Del15].

5.4.2 Consistency synthesis in parametric interval probabilistic timed automata

In the parametric setting, the following problem asking for the existence of a parameter valuation for which
the resulting IPTA is consistent is undecidable.

84

Theorem 5.6 ([AD16]). The consistency-emptiness problem is undecidable for PIPTAs.

Proof idea. Almost immediate from the undecidability of the EF-problem for PTAs (we reused the 2-counter machine
encoding of [Ben+15]).

Now, we retrieve the decidability if we add the restriction that the parameters set must be partitioned
into lower-bound parameters and upper-bound parameters.

Theorem 5.7 ([AD16]). The consistency-emptiness problem is decidable for L/U-PIPTAs.

Proof idea. The proof relies on the monotonicity property of L/U-PIPTAs, requires to rebuild an L/U-PTA from the zone
graph of the PIPTA, and �nally reuses the decidability of the EF-universality problem for L/U-PTAs [AL17a].

Finally, we proposed a semi-algorithm that synthesizes parameters for which a PIPTA becomes consis-
tent (see [AD16] for details).

Example 5.17. Consider again the PIPTA in Figure 5.9b. The set of valuations for which the resulting IPTA
is consistent is p < 2.

5.5 Perspectives

Robustness Let us put our de�nition of precise robustness into perspective with other works on robust-
ness, where decidability is obtained, such as [San11; Bri+13; SBM14] for timed automata or [Aks+16] for
time Petri nets.

On the one hand, our de�nition is more precise, as it allows to measure the variability in several di-
mensions w.r.t. the untimed language, or the untimed language up to partial orders. In contrast, in these
previous works, the timing constants can all vary in only one direction (enlarging or shrinking) and with
the same variability (or a “vector of variations”), while our de�nition that replaces timing constants with
parameters allows to consider both shrinking and enlarging, and allows to have some parameters not vary-
ing, which is usually not allowed in the literature (in this case, the system is simply considered non-robust).

On the other hand, our algorithms are not guaranteed to terminate in contrast to [San11; Bri+13;
SBM14] (the case of [Aks+16] is di�erent as the restriction to ensure decidability seems very strong).

Future works should take advantage of the decidability results for the classes of L/U-PTAs and U-
PTAs: these classes can be seen as formalisms modeling multidimensional guard enlargement and shrink-
ing. While some problems are undecidable for L/U-PTAs (e. g., robust preservation of the untimed lan-
guage [AM15]), some syntactic restrictions (e. g., U-PTAs) could be added to ensure decidability of problems
related to a more precise de�nition of robustness than the usual unidimensional one.

Decision problem Concerning parametric timed Petri nets, the language-preservation-emptiness was
not proved undecidable (contrarily to what we achieved for PTAs). While we suspect this would be the
case too, the demonstration does not seem to be easy, and the proof remains to be done. The same problem
up to partial orders would be an interesting theoretical challenge.

85

Multiview parameter synthesis Formalisms mixing timing parameters and probabilities are very ex-
pressive, and problems are highly challenging. Adding probabilistic parameters (with or without timing
parameters) to our parametric interval probabilistic timed automata would open interesting perspectives.

86

Chapter 6
Application to parametric schedulability

Beyond the theoretical aspects of Chapter 3 and the algorithmic aspects of Chapters 4 and 5, parametric
timed model checking can be used for solving practical problems. In this chapter, we focus notably on
schedulability analysis for real-time systems under uncertainty, i. e., where some timing constants may be
known with a limited precision or completely unknown.

We propose techniques to perform parametric schedulability analysis with parametric timed automata
and compare them to analytical methods (Section 6.1). We then introduce the formalism of parametric
task automata (Section 6.2). Finally, we describe our solution to the industrial FMTV challenge by Thales
(Section 6.3).

6.1 Parametric schedulability analysis

The schedulability problem Real-time systems are systems for which computing a correct result is im-
portant, but also for which computing this result in a timely manner is just as important as the correctness.
Critical real-time systems are real-time systems for which failing to compute a result in a timely manner
may result in dramatic consequences, such as high �nancial costs, or loss of human lives.

A real-time system comprises of a set of tasks, to be executed on one processor (“uniprocessor”) or
several processors (“multiprocessor”). Tasks generally feature a period (i. e., the time every which occur-
rence an instance of the task is activated), a relative deadline (i. e., the time after the activation by which
the instance must complete) and an execution time (possibly in the form of a best-case and a worst-case
execution time).

A scheduler decides which task to execute at a given time. Common schedulers include �xed-priority
scheduling (each task is statically assigned a priority, and whenever a task is terminated, the highest priority
task in the queue will be selected) or earliest-deadline �rst (the task with the most urgent deadline is selected
�rst). Schedulers can possibly be preemptive, i. e., temporarily interrupt a lower-priority task in order to
execute a higher-priority task (and then resume the execution of the lower-priority task later).

In order to guarantee the timely answer in a critical real-time system, a schedulability analysis is ab-
solutely necessary. The schedulability analysis consists in verifying statically (before the execution of the
system) whether the system is schedulable; or, in other words, for any execution, all task instances will
always be completed before their relative deadline, according to the scheduler.

Since the seminal work by Liu and Layland [LL73] on scheduling real-time systems, many works
addressed the schedulability in various settings, notably on uniprocessor environments: for deadline-
monotonic scheduling policies without [LW82] or with [Aud91] o�sets, for earliest-deadline �rst with
various assumptions on the deadlines, periods and o�sets [LL73; BRH90; Spu96] and with shared re-

87

sources [CL90; Bak91], or in the presence of precedence constraints (e. g., some task instance must be
completed before an instance of another task is executed) [CSB90; For+10; For+11].

6.1.1 Schedulability analysis using parametric stopwatch automata

In [AM01; AM02], timed automata and stopwatch automata are used to perform schedulability analysis.
Stopwatch automata extend timed automata with the power of stopping the elapsing of some clocks in
some locations. This feature makes the model very expressive, and the mere reachability problem for TAs
becomes undecidable [CL00].

In [CPR08], PTAs are used to perform parametric schedulability analysis: whereas the general case
is unsurprisingly undecidable, the authors exhibit a subclass for which the schedulability-synthesis (i. e.,
synthesizing all valuations for which the system is schedulable) can be performed exactly.

In [Fri+12], the goal was to perform parametric schedulability analysis, i. e., synthesizing the timing
constants seen as parameters (that can be deadlines, periods. . .) so that the system becomes schedulable
for a given scheduling policy. They proposed an ad-hoc method consisting in running the behavioral car-
tography BC [AF10] on parametric stopwatch automata. Their approach was then applied to a prospective
architecture for the �ight control system of the next generation of spacecrafts designed at ASTRIUM Space
Transportation.

While Giuseppe Lipari was an MSC fellow in LSV, ENS Cachan, we started to work together on schedu-
lability analysis, together with Laurent Fribourg, Romain Soulat and Sun Youcheng. In [Sun+13b], we pro-
posed a more systematic method for analyzing the schedulability of preemptive �xed priority real-time
distributed systems. More precisely, we considered applications modeled by a set of pipelines (also called
transactions in [PG98]), where each pipeline is a sequence of periodic tasks to be executed in order, and all
tasks in a pipeline must complete before an end-to-end deadline. All processors in the distributed system
are connected by one or more CAN bus [Dav+07], a network standard used in automotive applications. A
pipeline is assigned two �xed elements: T j is the pipeline period andDj

e2e is the end-to-end deadline. This
means that all tasks of the pipeline are activated together every T j units of time; and all tasks should be
completed within a time interval of Dj

e2e. Each task ti is characterized by the following elements:

• a period Ti;

• a deadline Di;

• a worst-case computation time Wi;

• a processor on which to execute; and

• a priority.

The deadlines, periods and worst-case computation times are all considered to be (potentially) unknown,
i. e., parameters.

Example 6.1. Consider the example in Figure 6.1a of two pipelinesP1,P2 withP1 = {t1, t2},P2 = {t3, t4},
with t1 and t4 to be executed on processor 1, while t2 and t3 are to be executed on processor 2. We assume that
t1 has higher priority than t4, and that t3 has higher priority than t2.

We are concerned with the following goal of schedulability synthesis: for what values of the timing
constants (periods, deadlines. . .) seen as parameters is the system schedulable?

To achieve this goal, we de�ne a natural extension of PTAs:

88

t1

t4

Proc. 1

t2

t3

Proc. 2

(a) Two pipelines

t1 waiting
urgent t1 released

t2 waiting
urgent

t2 releasedP1 complete
xP1 ≤ T1

t1 release
t1 completed

t2 release

t2 completed

xP1 = T1

P1 restart
xP1 := 0

(b) PSwA modeling pipeline P1 with two tasks t1, t2

Figure 6.1 – Two pipelines, and the modeling of one of them as a parametric stopwatch automaton

De�nition 6.1 (Parametric stopwatch automata [Fri+12; Sun+13b]). A parametric stopwatch au-
tomaton (PSwA) is a PTA where the elapsing of some clocks can be stopped in some locations.

Our approach for schedulability synthesis can be summarized as follows [Sun+13b]:

1. we transform each pipeline into a PSwA;

2. we transform the scheduler of each processor into a PSwA;

3. we build a PSwA resulting from the parallel composition of all aforementioned PSwAs, synchronizing
on actions corresponding to tasks releases and completions;

4. we reduce schedulability synthesis to (the negation of the) EF-synthesis of a failure location (corre-
sponding to a deadline miss) of that PSwA.

(In fact, in [Sun+13b], for mainly practical reasons—EFsynth was not implemented in IMITATOR at the
time of that work—, we used instead repeated calls to the inverse method IM.)

Example 6.2. Consider again the pipelines example in Example 6.1. Figure 6.1b shows the PSwA model of
pipeline P1. Urgent locations (labeled with the keyword “urgent”) are locations in which time cannot elapse:
they can be encoded using an additional clock set to be 0 when entering the location, and constrained to be
equal to 0 in the location invariant (some tools encode urgent locations natively—this is the case of IMITATOR).

Figure 6.2 shows the PSwA model of the preemptive processor 2 (on which tasks t1 and t4 shall execute).
Recall that task t1 has higher priority over task t4. The keyword “stopped” in a location denotes the set of
clocks to be stopped in that location. The processor starts by being idle, waiting for a task release. As soon as
a request has been received (e. g., action “t4 release”), it moves to one of the states where the corresponding
task is running (“t4 running”). If it receives another release request (“t1 release”), it moves to the location
corresponding to the higher priority task running (“t1 release, t4 released”). The fact that t1 does not execute
anymore is modeled by the blocking of the clock xt4 corresponding to task t4. This is where preemption is
needed. Moreover, while a task executes, the scheduler automaton checks if the corresponding pipeline misses
its deadline (e. g., guard xP1 > D1

e2e, where D1
e2e is the pipeline deadline). In the case of a deadline miss, the

processor moves to a special failure location (“deadline missed”).

6.1.2 Experiments and comparison

We implemented our approach in IMITATOR and compared it with two other tools:

89

Idle
xt1 ,xt4 stopped

t1 running
xt4 stopped

t4 running
xt1 stopped

t1 running
t4 released
xt4 stopped

Deadline missed

t1 release

t4 release

xt1 = C1

t1 completed
xt1 := 0

t4 release

xP1 > D1
e2e

Deadline miss

xt4 = C4

t4 completed
xt4 := 0

t1 release

xP2 > D2
e2e

Deadline miss

xt1 = C1

t1 completed
xt1 := 0

xP1 > D1
e2e

or xP2 > D2
e2e

Deadline miss

Figure 6.2 – PSwA modeling the preemptive processor 2 with two tasks t1, t4

• Mast [Gon+01] is implemented and maintained by the CTR group at the Universidad de Cantabria
and performs schedulability analysis for distributed real-time systems; and

• RTScan is a prototype tool implementing an analytical method proposed in [Sun+13b] by Sun
Youcheng and Giuseppe Lipari that extends the test proposed in [SLS98] .

Note that the results output by Mast and RTScan are integer-valued, whereas IMITATOR synthesizes
dense constraints over rational-valued parameters; therefore only IMITATOR can give a measure of the
system robustness.

We ran two test cases:

1. The �rst test case [PG98] consists of three simple periodic tasks and one pipeline, running on two
processors, connected by a CAN bus. The pipeline models a remote procedure call from processor 1 to
processor 3. All tasks have deadlines equal to periods, and also the pipeline has end-to-end deadline
equal to its period.

2. The second test case [Wan+06] consists of two pipelines on three processors and one network, where
pipeline P 1 is periodic with period 200 ms and end-to-end deadline equal to the period.

Full details about the test cases can be found in [Sun+13b].
In order to simplify the visualization of the results, for each test case we present the schedulability

region generated for two parameters only. However, all three methods are general and can be applied to
any number of parameters.

Results We give the results of our experiments in Figure 6.3. Without surprise, as it synthesizes an
exact result when it terminates (which is the case here), the schedulability region computed by IMITATOR
dominates the other two tools.

90

(a) Test case 1 (b) Test case 2

Figure 6.3 – Schedulability regions produced by RTScan (hatched), Mast (dark blue, below), and IMITATOR
(light green, above)

6.2 Parametric task automata: A uni�ed formalism for uniprocessor
schedulability

In [And17], I introduced parametric task automata (PTaskA), as a parametric extension of task automata
introduced in [NWY99; Fer+07]. Parametric task automata allow a compact representation of a real-time
system, and can be seen as a uni�ed formalism to model uniprocessor schedulability problems with several
types of tasks (periodic, sporadic, or more complex). Most types of schedulers, including EDF (earliest-
deadline �rst), FPS (�xed-priority) and SJF (shortest job �rst), with or without preemption, can be used.
Most importantly, uncertain or unknown timing constants can be used thanks to timing parameters.

A PTaskA is essentially a PTA enriched with tasks, an instance of which is activated every time the
PTA enters a location. Let T = {t1, t2, · · · } be a set of tasks. Each task is characterized by three timings,
i. e., constants in P ∪Q+:

1. B: its best-case execution time,

2. W : its worst-case execution time, and

3. D: its relative deadline (i. e., the latest time after the release of the task by which it must be com-
pleted).

Given a task t and a parameter valuation v, we denote by v(t) the task where the parameters in the timings
(i. e., B, W and D) are replaced with their value in v.

Each task can have several instances, i. e., copies of the same task. An instance of task t is written
(t, b, w, d) where b ∈ R+ (resp. w ∈ R+) is the best-case (resp. worst-case) remaining computation time,
and d ∈ R+ the remaining time before the deadline.

De�nition 6.2 (PTaskA [And17]). A parametric task automaton is a PTA extended with

1. T : a set of tasks, and

2. T : L ⇀ T : a partial task function, assigning to some locations a task.

91

l2
t2

l1
t1

l0
a

x1 := 0
x2 := 0

x1 ≥ 10
∧ x2 ≤ 40

a
x1 := 0

b

x1 := 0

x1 > 10
b

x1 := 0

x2 > p
c

(a) An example of a PTaskA

(b) Schedulability region

Figure 6.4 – A parametric task automaton and its schedulability region

Example 6.3. Figure 6.4a (coming from [And17] and inspired by [Fer+07, Fig.1]) describes a PTaskA with 2
clocks, and 2 tasks: t1, an instance of which is activated every time the PTaskA enters l1, and t2 (in l2). For t1,
we have B = 1, W = 2 and D = 10; for t2, B = 2, W = p′ and D = 8. Note that our formalism allows one
to de�ne parameters both in the automaton (p) and the task timings (p′).

Basically, this PTaskA can create in l1 between 1 and 5 instances of t1 (but no more frequently than every
10 time units); then, it moves to l2 where it can remain as long as wished, creating instances of t2 (again no
more frequently than every 10 time units). Eventually, the PTaskA can move back to the initial location no
sooner than p time units since the entering of l1.

Intuitively, this PTaskA will be schedulable only if p′ (W of t2) is not too large, and only when p is not too
small (otherwise one may loop too fast through the automaton for all tasks to terminate before their deadline).

Thanks to the expressive power of PTAs, this formalism is richer than the traditional periodic tasks
(characterized by their period) or sporadic tasks (characterized only by their minimal inter-arrival time).

We address here the following problem.

Schedulability-emptiness problem:
Input: A PTaskA A and a scheduling strategy Sch
Problem: is the set of valuations v for which v(A) is schedulable for strategy Sch empty?

6.2.1 Decidability and undecidability

The following result comes immediately on the one hand from the undecidability of the EF-emptiness
problem for PTAs [AHV93] and on the other hand from the undecidability of the schedulability problem
for task automata [Fer+07].

Theorem 6.1 ([And17]). The schedulability-emptiness problem is undecidable for PTaskA with at least
three parametric clocks and a single timing parameter, whatever the scheduling strategy.

The schedulability-emptiness problem is undecidable for general PTaskA.

In the non-parametric setting, the number of instances of a task t (with timingsB, W , D) is intuitively
bounded by dD/W e; indeed, when the number of instances exceeds this bound, the queue will be over�own
in the sense that it will be impossible to �nish that many instances before the deadline D. Therefore, as

92

soon as the queue exceeds this value, the system is non-schedulable and therefore, it is su�cient to consider
a bounded queue for schedulability analysis. However, this reasoning does not hold for general PTaskA, as
W can be arbitrarily small, and D arbitrarily large. This motivates the following de�nition.

De�nition 6.3. A PTaskA has schedulable-bounded parameters if, for each task t, its worst-case exe-
cution time W is bounded in [a,∞) or [a, b] with a > 0, and its deadline D is bounded in [a, b], with
a, b ≥ 0.

That is, the W cannot be 0, and the deadline cannot be in�nite. Therefore, the maximum number of
instances to be considered for a task is bounded by dmax(D)/min(W)e, where max (resp. min) denotes
the upper (resp. lower) bound of a parameter.

Example 6.4. The PTaskA in Figure 6.4a trivially meets the schedulable-boundedness assumption, as neces-
sarily p′ ≥ B = 2 > 0. In addition, the maximum number of instances necessary to check schedulability is
10/2 = 5 for t1 and 8/2 = 4 for t2.

We then slightly restrain the use of parameters in PTaskA in the following de�nition, following the
similar restriction in L/U-PTAs.

De�nition 6.4. A PTaskA is an L/U-PTaskA if its parameters set is partitioned into lower-bound
parameters and upper-bound parameters.

We then obtain the following decidability result.

Theorem 6.2 ([And17]). The schedulability-emptiness problem is decidable for L/U-PTaskAs with
schedulable-bounded parameters, for non-preemptive FPS and SJF, and non-preemptive EDF without
parametric deadlines.

Proof idea. The proof works in two steps. First, we prove that the non-preemptive scheduler can be encoded into an L/U-
PTA. Second, following an encoding in [Fer+07], we transform the actual task automaton into another L/U-PTA—which is
possible from the assumptions of the schedulable-bounded parameters and the non-preemptive scheduling. Then we reduce
the schedulability-emptiness to the EF-emptiness problem, which is decidable for L/U-PTAs.

6.2.2 Synthesis

We can adopt a more pragmatical view. Since we only constrain a scheduler to be encoded using a stop-
watch automaton, we therefore directly translate any scheduler (preemptive or not) into a (parametric)
stopwatch automaton. Even in the decidable cases (where we showed that stopwatches are not needed),
we potentially use stopwatches.

General idea. We will consider the synchronous product of two PSwAs in parallel: the actual PTaskAA,
and the translation of the scheduler Sch into a second PSwA Aenc(Sch). As noted earlier, a PTaskA is just
a PTA, where some locations activate task instances. Therefore, the PTaskA can be transformed into an
almost-identical PSwA (without stopwatches), by labeling each edge going into a location where task t is

93

activated by a fresh action activating t. Then, the scheduler will synchronize on these activation actions,
and manage the tasks queue according to its strategy.

The locations of Aenc(Sch) are all possible con�gurations of the discrete part of the tasks queue, of
which there is a �nite number thanks to the schedulable-boundedness assumption. At any time, if the
size of the queue over�ows the maximal queue size implied by the schedulable-boundedness assumption,
Aenc(Sch) will go to a special error location, which denotes that the system is non-schedulable.

Using the above construction Aenc, we have:

Proposition 6.1 ([And17]). Given a PTaskAA and a scheduling strategy Sch, the system is schedulable
exactly for the parameter valuations for which the error location is unreachable in A ‖ Aenc(Sch).

Implementation

As writing such a scheduler quickly becomes tedious and error-prone, we implemented an external program
(650 lines of Python) that takes as input on the one hand a scheduling strategy Sch and on the other hand
the list of tasks of the PTaskA A (with their timings, their priority (for FPS), their maximum number
of instances. . .), and automatically generates the corresponding PSwA Aenc(Sch) in the IMITATOR input
format. Then, it su�ces to pass to IMITATOR the model made of A and Aenc(Sch).

We demonstrated the expressive power of our formalism on several examples, allowing also for robust
schedulability (see [And17]).

Example 6.5. Let us go back to Figure 6.4a, and assume a preemptive FPS scheduler. First, we set p = 100,
and we obtain that the system is schedulable for p′ ∈ [2, 3]. Second, we set p′ = 3, and we obtain that the
system is schedulable for p ≥ 42. This con�rms both intuitions that p′ should be not too large, and p large
enough for the system to be schedulable. Finally, we run an analysis with both parameter dimensions, which
gives:

p′ ∈ [2, 3] ∧ p ≥ 42 ∨ p′ = 2 ∧ p ∈ [8, 42) ∨ p′ > 2 ∧ p < 42 ∧ p ≥ 36 + 2× p′

A graphical representation output by IMITATOR is given in Figure 6.4b (where p100 stands for p and Q_WCET
for p′).

6.3 The Thales FMTV challenge

In 2014, Thales R&D published an open industrial challenge in the framework of the Formal Methods for
Timing Veri�cation workshop (FMTV 2015).1

6.3.1 Challenge description

The description of the challenge was done in the form of a picture (given in Figure 6.5), together with some
additional explanations in English (ommited here). There are four tasks T1, T2, T3 and T4, distributed
in di�erent processing units and performing respective functionalities. The task T1 periodically receives
frames from the camera and pre-processes them. Task T2 embeds further tracking information into the
video frame pre-processes by Task T1. Task T2 then inserts the video frame into a register, denoted as
Register23. Then Task T3 reads the frame from the register, removes the noise and tries to put the resulting

1The full (informal!) speci�cation can be found at http://waters2015.inria.fr/challenge.

94

http://waters2015.inria.fr/challenge

Figure 6.5 – The FMTV challenge as described by Thales

video frame into a bu�er, denoted as Bu�er34. In the end, Task T4 reads frames from the bu�er, converts
them from digital to analogue and sends the �nal frame to the display.

Tasks T1, T3 and T4 are periodic, but their triggering clocks are subject to drift. That is, their periods
P1, P3 and P4 are unknown constants. More speci�cally, P1 ∈ [40 − 40 × 0.01%, 40 + 40 × 0.01%] ms,
P3 ∈ [40

3 −
40
3 × 0.05%, 40

3 + 40
3 × 0.05%], and P4 ∈ [40− 40× 0.01%, 40 + 40× 0.01%] ms. Task T2 is

triggered by the completion of T1.
Each task has its Best-Case and Worst-Case Execution Time (BCET and WCET) or Latency (BCL and

WCL): BCET1 = WCET1 = 28 ms, BCL2 = 17 ms, WCL2 = 19 ms, BCET3 = WCET3 = 8 ms. As
for task T4, when it reads Bu�er34 and there is no frame within the bu�er, it performs an empty cycle with
execution 1ms; otherwise, it executes 10 ms and sends the result to display.

Challenge:
Compute the minimum and maximum latencies for a given frame from the camera output to the
display input, for a bu�er size n = 1 and n = 3.

6.3.2 Solution using IMITATOR

Although the challenge is not explicitly a parametric model checking problem, it does feature parameters:
the uncertainty in the periods are not jitters, but constant uncertain periods. The informal speci�cation is
clear about that point: the period is not fully known, but may not vary during one execution. This is exactly
the de�nition of a timing parameter—that is, an unknown constant.

We proposed a solution in [ALS15] using parametric timed automata and IMITATOR.
Our key element in the solution is to consider a single arbitrary frame processing. Thanks to the

symbolic representation o�ered by IMITATOR, we can start from an arbitrary state, and perform a �nite
number of actions simulating this arbitrary frame. Measuring the time from its input to the output, we will
therefore obtain a (parametric) best and worst case time. We use parameters (i. e., unknown constants) to
model the uncertain periods; we also use an additional parameter E2E ≥ 0 which represents the end-to-
end latency of the target frame.

95

In our modeling, the period of Task T3 is a parameter P3_uncertain, initialized as follows:

P3_uncertain ∈ [40− P3_delta, 40 + P3_delta]

where P3_delta = 0.05 % × 40 = 1
150 . Recall that parameters in PTA are unknown constants, i. e., the

value of which cannot evolve during the execution; this is exactly what we need to model P3_uncertain.
Similarly, the period of Task T4 is a parameter P4_uncertain, initialized as follows:

P4_uncertain ∈ [40− P4_delta, 40 + P4_delta]

where P4_delta = 0.01 %× P4 = 0.004.
At �rst, we solve the case with n = 1 for Bu�er34. We extensively used the features o�ered by IMI-

TATOR, and notably the discrete variables, which are rational-valued global variables that can be read in
guards and invariants, and modi�ed along transitions (they are mostly syntactic sugar for extra locations,
but greatly ease the modeling).

Modeling Camera, Task T1, Task T2 First, let us explain the camera, and tasks T1 and T2. In order to
reduce the state space, we model the camera, Task T1 and Task T2 into a single PTA. We also use this PTA
to non-deterministically initialize the bu�er and the frame currently processed by Task T4.

We choose an arbitrary frame with index target for end-to-end latency estimation and we start from
the exact point such that the target frame is handled from Task T1 to task T2. A clock ckT1T2 is initialized
to be WCET1 and measures the end-to-end latency of target frame.

We do not model the period of the camera (or task 1), since we are only interested in a single frame.
The bu�er is modeled using discrete variables.

Task T3 Task T3 is modeled by a periodic PTA. At the initial point, the PTA T3 is non-deterministically
waiting for a new activation or executing. When T3 �nishes execution, it writes into Bu�er34 if the bu�er
is empty and its current frame has not been put into the bu�er. Otherwise, task 3’s writing fails, as stated
in the challenge speci�cation.

Task T4 Task T4 is modeled by a periodic PTA, and is essentially similar to task T3.

Deriving the latency for n = 1 Now, let us derive the latency for n = 1. As we have seen, in order to
avoid exploring the exact con�gurations in the system, we target a single frame that is output from task 1
at t = WCET1. The main idea is that, at t = WCET1, the initial state must be arbitrary, i. e., encode all
possible con�gurations that could happen in the system. However, such a model may be pessimistic for
containing behaviors that cannot really happen in the system. Again, we aim to derive upper and lower
bounds on end-to-end latency of an arbitrary frame.

After developing the model, we use IMITATOR to perform EF-synthesis of location T4end_ok. Then,
IMITATOR hides (using existential quanti�cation) all parameters exceptE2E, and then returns the follow-
ing:

E2E ∈ [63, 145.008].

Quite interestingly, not hiding the other parameters gives a parametric interval, i. e., it is possible to
know for which values of the parameters (P3_uncertain and P4_uncertain) the best and worst cases
occur.

96

Deriving the latency for n = 3 For the case of n = 3 for Bu�er34, we can keep the same IMITATOR
model, with the exception of the bu�er modeling. We encode the bu�er using extra variables. Details are
given in [ALS15].

We obtain the following result:
E2E ∈ [63, 225.016].

Interestingly, our solution using IMITATOR was, to the best of our knowledge, the only one to com-
pute these exact values—with one exception: a solution computed using simulation obtained 226 for n = 3
(rounded to the upper integer), which is correct, but could only be considered as a lower bound as it was
computed by simulation (other runs could have been missed). Still, thanks to our result, we can con�rm
their solution is correct. This justi�es my interest in studying the combination of simulation with para-
metric timed model checking.

6.4 Perspectives

Decidability There is still some gap between our decidability result (Theorem 6.2) and our undecidability
results (Theorem 6.1) for PTaskAs. A promising way to improve the knowledge of decidability would be
to show that L/U-parametric timed automata with bounded subtractions are decidable, which would allow
in turn to extend our decidable subclass of PTaskA. Conversely, a likely candidate for undecidability is
non-preemptive strategies without the schedulable-boundedness assumption.

In [Bér+13] parametric interrupt timed automata are proposed: this class inspired by PTAs is such
that, at any time, at most one clock is active. This class allows a kind of preemption, and the reachability-
emptiness problem is decidable. While it does not seem to be able to model general real-time systems,
extending this class to model real-time systems while preserving decidability would be an interesting per-
spective.

Scalability While formal methods with timing parameters might not scale to verify the schedulability of
very large systems with all details, we believe they can provide designers with �rst schedulability results
on subparts of the system, or to derive timing bounds on abstractions of it.

Still, trying to achieve a better scalability is an important future work. Beyond promising methods not
speci�cally dedicated to real-time systems (such as compositional parametric veri�cation [Aşt+16; AL17b],
or the algorithms and heuristics of Chapters 4 and 5), dedicated methods for achieving real scalability so
as to compete with the scalability o�ered by analytical methods remains to be done. A �rst step towards
this goal is the timed interfaces for real-time components we de�ned in [Lip+14]; further works (notably
with Giuseppe Lipari and Sun Youcheng) could be based on this �rst step to improve scalability.

IMITATOR and real-time systems So far, IMITATOR takes as input networks of parametric timed au-
tomata extended with some convenient features such as variables, stopwatches or synchronization. Never-
theless, IMITATOR does not interface yet with common input formats for real-time systems. An ongoing
work is the translation from a standard developed by Thales to the input format of IMITATOR so as to
allow a smooth interface. Future works also include providing a better feedback (e. g., using graphics) to
real-time systems experts.

97

Chapter 7
Conclusion

This thesis summarizes a selection of my contributions in parametric timed model checking. I studied the
decidability and the expressiveness of the very expressive class of parametric timed automata, and several
of its subclasses, and exhibited decidability results (Chapter 3). I then addressed the more practical problem
to devise e�cient algorithms for parameter synthesis (Chapter 4). I then devised algorithms dedicated to
solving parametric problems for parametric timed automata (or parametric time Petri nets) extended with
stopwatches, with action parameters or with probabilities (Chapter 5). Finally, I showed that parametric
timed automata (and close formalisms) can be used to solve parametric schedulability analysis problems
for real-time systems, with applications to actual industrial case studies (Chapter 6).

At the end of each chapter, I gave some research perspectives; I summarize the most important below.

Theory

Open subclasses L-PTAs and U-PTAs [BL09] are very open classes, in the sense that the only known
decidability results come from the larger class of PTAs, and no undecidability result was known—with the
exception of our recent result concerning TCTL-emptiness [ALR18]. To summarize, the EG-emptiness, AG-
emptiness and AF-emptiness problems, as well as the language- and trace-preservation problems, are all
undecidable for (general) L/U-PTAs, but remain open for L-PTAs and U-PTAs. Similarly, the EF-synthesis
problem (shown intractable for L/U-PTAs in [JLR15] despite the decidability of the EF-emptiness problem)
remains open for L- and U-PTAs, and would signi�cantly increase the interest of these subclasses if it was
shown to be computable.

Beyond timed automata Hybrid automata represent a generalization of timed automata, and become
very powerful, with mostly undecidability results for the general class, while decidable subclasses were
proposed (e. g., [Hen+98; Bri+13]), and several tools have been developed, notably SpaceEx [Fre+11]. Hy-
brid systems represent a challenging opportunity with many applications, notably in biology (e. g., [Sch+12;
DD13; Roc+16; Lan+17], or more generally the entire “Hybrid Systems Biology” series). Adding timing pa-
rameters (that have natural applications, notably in biology) is a natural extension of hybrid systems. On
the theoretical side, the work can be twofold: on the one hand, extending existing decidable subclasses
of parametric timed automata with more general variables than clocks; a promising option is our class of
reset-PTA that could be extended with initialization conditions [Hen+98]. And, on the other hand, extend-
ing existing decidable subclasses of hybrid systems with parameters; possible candidates are O-minimal
hybrid systems [Bri+04], and hybrid automata with monotonic variables [Bri+13]. The ongoing PhD of
Mathias Ramparison (co-supervised by Didier Lime) should address this direction of research.

98

From a more pragmatic point of view, some of the results of this manuscript could be extended to hybrid
systems or combined with existing results for hybrid systems, such as combining concrete and symbolic
executions, or studying various de�nitions of robustness in the hybrid setting (e. g., [FK13; AC15; AH15]).

Finally, the class of (parametric) polynomial interrupt automata [Bér+15] combines parameters with a
generalization of the notion of clock (with some restriction though), and may be extended further.

Beyond timing parameters I mainly considered a unique type of parameters, i. e., timing parameters.
On the one hand, discrete parameters in the sense of an unbounded number of (identical) processes, which
represent a long line of work (e. g., [AJ03; ADM04; Abd+16] for timed extensions) could be extended with
timing parameters. While the general class would be with no doubt undecidable, combining decidable sub-
classes of parametric timed automata (e. g., 1-clock, or L/U-PTA) with decidable subclasses of networks of
processes (depending on the number of clocks, or on communication topologies) is a promising future work.
This should be considered in the remainder of the ANR PACS project. Also note that other formalisms, not
necessarily automata-based, such as regular model-checking [Bou+00], could also be extended to timing
parameters.

On the other hand, the combination of (parametric) timed systems with probabilistic parameters (which
were considered in e. g., [LMT04; LMT07; Ces+16; Su+16; Qua+16; DLP16]) would lead to powerful systems
with challenging problems.

Controller synthesis Parameter synthesis consists in tuning a part of the model so that it satis�es its
speci�cation. A natural future work is controller synthesis, which consists in synthesizing the model itself.
Combining controller synthesis and parameter synthesis is challenging, with potential industrial applica-
tions. A �rst approach relied in [JLR13] on the integer-parameter synthesis from [JLR15] and was able to
compute the set of winning states for a parametric game automaton together with the (bounded) integer
parameter valuations. Extending this work with rational-valued parameters (e. g., starting from [ALR15])
would be a �rst natural extension.

Applications

I have always been interested in the practical applications of theoretical research, and will continue to
do so. The success of IMITATOR in the FMTV challenge (Section 6.3) led to a collaboration with Thales
R&D. This collaboration will be a natural source of case studies, calling for new techniques, new heuristics,
perhaps even new formalisms to solve practical problems in a reasonable time.

More generally, parametric timed formalisms could be used in the domain of cybersecurity (as showed
a sample example in [And+16], and more in-depth algorithms for the veri�cation of security protocols
under uncertainty [Li+15; LSD16]).

Last modi�cation: August 16, 2018

99

My publications

[ABC14a] Étienne André, Mohamed Mahdi Benmoussa, and Christine Choppy. “Formalising Concurrent
UML State Machines Using Coloured Petri Nets”. In: KSE. Ed. by Viet-Ha Nguyen, Anh-Cuong
Le, and Van-Nam Huynh. Vol. 326. Advances in Intelligent Systems and Computing. Hanoi,
Vietnam: Springer, 2014, pp. 473–486. doi: 10.1007/978-3-319-11680-8_38 (cit. on p. 9).

[ABC14b] Étienne André, Mohamed Mahdi Benmoussa, and Christine Choppy. “Translating UML State
Machines to Coloured Petri Nets Using Acceleo: A Report”. In: ESSS. Ed. by Yang Liu and
Jun Pang. Vol. 150. Electronic Proceedings in Theoretical Computer Science. Singapore, 2014,
pp. 1–7. doi: 10.4204/EPTCS.150.1 (cit. on p. 9).

[ABC16] Étienne André, Mohamed Mahdi Benmoussa, and Christine Choppy. “Formalising concurrent
UML state machines using coloured Petri nets”. In: Formal Aspects of Computing 28.5 (2016),
pp. 805–845. doi: 10.1007/s00165-016-0388-9 (cit. on p. 9).

[ACE14] Étienne André, Camille Coti, and Sami Evangelista. “Distributed Behavioral Cartography of
Timed Automata”. In: EuroMPI/ASIA. Ed. by Jack Dongarra, Yutaka Ishikawa, and Hori At-
sushi. Kyoto, Japan: ACM, 2014, pp. 109–114. doi: 10.1145/2642769.2642784 (cit. on pp. 8, 58,
68).

[ACK12] Étienne André, Christine Choppy, and Kais Klai. “Formalizing non-concurrent UML state ma-
chines using colored Petri nets”. In: ACM SIGSOFT Software Engineering Notes 37.4 (2012). Pro-
ceedings of the 5th International workshop UML and Formal Methods (UML&FM), pp. 1–8.
doi: 10.1145/2237796.2237819 (cit. on p. 9).

[ACN14] Étienne André, Christine Choppy, and Thierry Noulamo. “Modelling Timed Concurrent Sys-
tems Using Activity Diagram Patterns”. In: KSE. Ed. by Viet-Ha Nguyen, Anh-Cuong Le, and
Van-Nam Huynh. Vol. 326. Advances in Intelligent Systems and Computing. Hanoi, Vietnam:
Springer, 2014, pp. 339–351. doi: 10.1007/978-3-319-11680-8_27 (cit. on p. 9).

[ACN15] Étienne André, Camille Coti, and Hoang Gia Nguyen. “Enhanced Distributed Behavioral Car-
tography of Parametric Timed Automata”. In: ICFEM. Ed. by Michael Butler, Sylvain Conchon,
and Fatiha Zaïdi. Vol. 9407. Lecture Notes in Computer Science. Paris, France: Springer, 2015,
pp. 319–335. isbn: 978-3-319-25422-7. doi: 10.1007/978-3-319-25423-4_21 (cit. on pp. 8, 58,
59, 68).

[ACR13] Étienne André, Christine Choppy, and Gianna Reggio. “Activity Diagrams Patterns for Mod-
eling Business Processes”. In: SERA. Ed. by Roger Y. Lee. Vol. 496. Studies in Computational
Intelligence. Prague, Czech Republic: Springer, 2013, pp. 197–213. doi: 10.1007/978-3-319-
00948-3_13 (cit. on p. 9).

100

http://dx.doi.org/10.1007/978-3-319-11680-8_38
http://dx.doi.org/10.4204/EPTCS.150.1
http://dx.doi.org/10.1007/s00165-016-0388-9
http://dx.doi.org/10.1145/2642769.2642784
http://dx.doi.org/10.1145/2237796.2237819
http://dx.doi.org/10.1007/978-3-319-11680-8_27
http://dx.doi.org/10.1007/978-3-319-25423-4_21
http://dx.doi.org/10.1007/978-3-319-00948-3_13
http://dx.doi.org/10.1007/978-3-319-00948-3_13

[ACR17] Étienne André, Thomas Chatain, and César Rodríguez. “Preserving Partial Order Runs in Para-
metric Time Petri Nets”. In: Transactions on Embedded Computing Systems 16.2 (2017), 43:1–
43:26. doi: 10.1145/3012283 (cit. on pp. 9, 71, 73, 75–78).

[AD16] Étienne André and Benoit Delahaye. “Consistency in Parametric Interval Probabilistic Timed
Automata”. In: TIME. Ed. by Curtis E. Dyreson, Michael R. Hansen, and Luke Hunsberger.
Kongens Lyngby, Denmark: IEEE Computer Society, 2016, pp. 110–119. doi: 10.1109/TIME.
2016.19 (cit. on pp. 9, 82–85).

[AF10] Étienne André and Laurent Fribourg. “Behavioral Cartography of Timed Automata”. In: RP.
Ed. by Antonín Kučera and Igor Potapov. Vol. 6227. Lecture Notes in Computer Science. Brno,
Czech Republic: Springer, 2010, pp. 76–90. doi: 10.1007/978-3-642-15349-5_5 (cit. on pp. 29,
56, 88).

[AFS13a] Étienne André, Laurent Fribourg, and Romain Soulat. “Merge and Conquer: State Merging
in Parametric Timed Automata”. In: ATVA. Ed. by Dang-Van Hung and Mizuhito Ogawa.
Vol. 8172. Lecture Notes in Computer Science. Hanoi, Vietnam: Springer, 2013, pp. 381–396.
doi: 10.1007/978-3-319-02444-8_27 (cit. on pp. 8, 48, 49).

[AFS13b] Étienne André, Laurent Fribourg, and Jeremy Sproston. “An Extension of the Inverse Method
to Probabilistic Timed Automata”. In: Formal Methods in System Design 2 (2013), pp. 119–145.
doi: 10.1007/s10703-012-0169-x (cit. on p. 82).

[AL17a] Étienne André and Didier Lime. “Liveness in L/U-Parametric Timed Automata”. In: ACSD.
Ed. by Alex Legay and Klaus Schneider. Zaragoza, Spain: IEEE, 2017, pp. 9–18. doi: 10.1109/
ACSD.2017.19 (cit. on pp. 8, 18, 32, 36–40, 44, 63, 85).

[AL17b] Étienne André and Shang-Wei Lin. “Learning-based compositional parameter synthesis
for event-recording automata”. In: FORTE. Ed. by Ahmed Bouajjani and Silva Alexandra.
Vol. 10321. Lecture Notes in Computer Science. Best FORTE paper award and best DisCoTec
paper award. Neuchâtel, Switzerland: Springer, 2017, pp. 17–32. doi: 10.1007/978-3-319-
60225-7_2 (cit. on pp. 8, 64, 67, 69, 97).

[AL18] Étienne André and Shang-Wei Lin. “The language preservation problem is undecidable for
parametric event-recording automata”. In: Information Processing Letters 136 (2018), pp. 17–
20. doi: 10.1016/j.ipl.2018.03.013 (cit. on pp. 8, 65).

[ALM18] Étienne André, Didier Lime, and Nicolas Markey. Language Preservation Problems in Paramet-
ric Timed Automata (extended version). arXiv:1807.07091. arXiv, 2018 (cit. on pp. 42, 43).

[ALR15] Étienne André, Didier Lime, and Olivier H. Roux. “Integer-Complete Synthesis for Bounded
Parametric Timed Automata”. In: RP. Ed. by Mikołaj Bojańczyk, Sławomir Lasota, and Igor
Potapov. Vol. 9328. Lecture Notes in Computer Science. Warsaw, Poland: Springer, 2015, pp. 7–
19. doi: 10.1007/978-3-319-24537-9_2 (cit. on pp. 53–55, 99).

[ALR16a] Étienne André, Didier Lime, and Olivier H. Roux. “Decision Problems for Parametric Timed
Automata”. In: ICFEM. Ed. by Kazuhiro Ogata, Mark Lawford, and Shaoying Liu. Vol. 10009.
Lecture Notes in Computer Science. Tokyo, Japan: Springer, 2016, pp. 400–416. doi: 10.1007/
978-3-319-47846-3_25 (cit. on pp. 8, 17, 18, 27, 28, 30, 32, 34–37, 39, 44).

[ALR16b] Étienne André, Didier Lime, and Olivier H. Roux. “On the Expressiveness of Parametric Timed
Automata”. In: FORMATS. Ed. by Martin Fränzle and Nicolas Markey. Vol. 9984. Lecture Notes
in Computer Science. Québec, Canada: Springer, 2016, pp. 19–34. doi: 10.1007/978-3-319-
44878-7_2 (cit. on pp. 8, 27, 29–32, 46).

101

http://dx.doi.org/10.1145/3012283
http://dx.doi.org/10.1109/TIME.2016.19
http://dx.doi.org/10.1109/TIME.2016.19
http://dx.doi.org/10.1007/978-3-642-15349-5_5
http://dx.doi.org/10.1007/978-3-319-02444-8_27
http://dx.doi.org/10.1007/s10703-012-0169-x
http://dx.doi.org/10.1109/ACSD.2017.19
http://dx.doi.org/10.1109/ACSD.2017.19
http://dx.doi.org/10.1007/978-3-319-60225-7_2
http://dx.doi.org/10.1007/978-3-319-60225-7_2
http://dx.doi.org/10.1016/j.ipl.2018.03.013
http://dx.doi.org/10.1007/978-3-319-24537-9_2
http://dx.doi.org/10.1007/978-3-319-47846-3_25
http://dx.doi.org/10.1007/978-3-319-47846-3_25
http://dx.doi.org/10.1007/978-3-319-44878-7_2
http://dx.doi.org/10.1007/978-3-319-44878-7_2

[ALR18] Étienne André, Didier Lime, and Mathias Ramparison. “TCTL model checking lower/upper-
bound parametric timed automata without invariants”. In: FORMATS. Ed. by David N. Jansen
and Pavithra Prabhakar. Vol. 11022. Lecture Notes in Computer Science. To appear. Beijing,
China: Springer, 2018, pp. 1–17. doi: 10.1007/978-3-030-00151-3_3 (cit. on pp. 8, 32, 38, 44,
98).

[ALS15] Étienne André, Giuseppe Lipari, and Youcheng Sun. “Veri�cation of Two Real-Time Systems
Using Parametric Timed Automata”. In: WATERS. Ed. by Sophie Quinton and Tullio Var-
danega. Lund, Sweden, 2015 (cit. on pp. 9, 95, 97).

[AM15] Étienne André and Nicolas Markey. “Language Preservation Problems in Parametric Timed
Automata”. In: FORMATS. Ed. by Sriram Sankaranarayanan and Enrico Vicario. Vol. 9268.
Lecture Notes in Computer Science. Madrid, Spain: Springer, 2015, pp. 27–43. doi: 10.1007/
978-3-319-22975-1_3 (cit. on pp. 8, 14, 20, 21, 29, 32, 39, 42–44, 65, 79, 85).

[And+09a] Étienne André, Thomas Chatain, Olivier De Smet, Laurent Fribourg, and Silvain Ruel. “Syn-
thèse de contraintes temporisées pour une architecture d’automatisation en réseau”. In: MSR.
Ed. by Didier Lime and Olivier H. Roux. Vol. 43. Journal Européen des Systèmes Automatisés
7-9. Nantes, France: Hermès, 2009, pp. 1049–1064 (cit. on p. 42).

[And+09b] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fribourg. “An Inverse
Method for Parametric Timed Automata”. In: International Journal of Foundations of Computer
Science 20.5 (2009), pp. 819–836. doi: 10.1142/S0129054109006905 (cit. on pp. 14, 15, 20, 21, 48,
70, 79).

[And+12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. “IMITATOR 2.5: A Tool
for Analyzing Robustness in Scheduling Problems”. In: FM. Ed. by Dimitra Giannakopoulou
and Dominique Méry. Vol. 7436. Lecture Notes in Computer Science. Paris, France: Springer,
2012, pp. 33–36. doi: 10.1007/978-3-642-32759-9_6 (cit. on pp. 9, 47, 67).

[And+13] Étienne André, Yang Liu, Jun Sun, Jin Song Dong, and Shang-Wei Lin. “PSyHCoS: Parameter
Synthesis for Hierarchical Concurrent Real-Time Systems”. In:CAV. Ed. by Natasha Sharygina
and Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Saint Petersburg, Russia:
Springer, 2013, pp. 984–989. doi: 10.1007/978-3-642-39799-8_70 (cit. on p. 9).

[And+14] Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. “Parameter Synthesis for Hierarchical
Concurrent Real-Time Systems”. In: Real-Time Systems 50.5-6 (2014), pp. 620–679. doi: 10.
1007/s11241-014-9208-6 (cit. on pp. 9, 49).

[And+15] Étienne André, Giuseppe Lipari, Hoang Gia Nguyen, and Youcheng Sun. “Reachability Preser-
vation Based Parameter Synthesis for Timed Automata”. In:NFM. Ed. by Klaus Havelund, Ger-
ard J. Holzmann, and Rajeev Joshi. Vol. 9058. Lecture Notes in Computer Science. Pasadena,
CA, USA: Springer, 2015, pp. 50–65. doi: 10.1007/978-3-319-17524-9_5 (cit. on pp. 8, 61–63).

[And+16] Étienne André, Michał Knapik, Wojciech Penczek, and Laure Petrucci. “Controlling Actions
and Time in Parametric Timed Automata”. In: ACSD. Ed. by Jörg Desel and Alex Yakovlev.
Toruń, Poland: IEEE Computer Society, 2016, pp. 45–54. doi: 10.1109/ACSD.2016.20 (cit. on
pp. 9, 81, 82, 99).

[And+17a] Étienne André, Michał Knapik, Wojciech Jamroga Wojciech Penczek, and Laure Petrucci.
“Timed ATL: Forget Memory, Just Count”. In: AAMAS. Ed. by Kate Larson, Michael Winiko�,
Sanmay Das, and Edmund Durfee. São Paulo, Brazil: ACM, 2017, pp. 1460–1462 (cit. on p. 10).

102

http://dx.doi.org/10.1007/978-3-030-00151-3_3
http://dx.doi.org/10.1007/978-3-319-22975-1_3
http://dx.doi.org/10.1007/978-3-319-22975-1_3
http://dx.doi.org/10.1142/S0129054109006905
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-642-39799-8_70
http://dx.doi.org/10.1007/s11241-014-9208-6
http://dx.doi.org/10.1007/s11241-014-9208-6
http://dx.doi.org/10.1007/978-3-319-17524-9_5
http://dx.doi.org/10.1109/ACSD.2016.20

[And+17b] Étienne André, Hoang Gia Nguyen, Laure Petrucci, and Jun Sun. “Parametric model checking
timed automata under non-Zenoness assumption”. In: NFM. Ed. by Clark Barrett and Temes-
ghen Kahsai. Vol. 10227. Lecture Notes in Computer Science. Mo�ett Field, CA, USA: Springer,
2017, pp. 35–51. doi: 10.1007/978-3-319-57288-8_3 (cit. on pp. 9, 78–80).

[And13a] Étienne André. “Dynamic Clock Elimination in Parametric Timed Automata”. In: FSFMA. Ed.
by Christine Choppy and Jun Sun. Vol. 31. OpenAccess Series in Informatics (OASIcs). Singa-
pore: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2013, pp. 18–
31. doi: 10.4230/OASIcs.FSFMA.2013.18 (cit. on pp. 8, 50).

[And13b] Étienne André. “Observer Patterns for Real-Time Systems”. In: ICECCS. Ed. by Yang Liu and
Andrew Martin. Singapore: IEEE Computer Society, 2013, pp. 125–134. doi:10.1109/ICECCS.
2013.26 (cit. on p. 9).

[And16] Étienne André. “Parametric Deadlock-Freeness Checking Timed Automata”. In: ICTAC. Ed. by
Augusto Cesar Alves Sampaio and Farn Wang. Vol. 9965. Lecture Notes in Computer Science.
Taipei, Taiwan: Springer, 2016, pp. 469–478. doi: 10.1007/978-3-319-46750-4_27 (cit. on
pp. 8, 37, 40–42, 44).

[And17] Étienne André. “A uni�ed formalism for monoprocessor schedulability analysis under un-
certainty”. In: FMICS-AVoCS. Ed. by Ana Cavalcanti, Laure Petrucci, and Cristina Seceleanu.
Vol. 10471. Lecture Notes in Computer Science. Best paper award. Torino, Italy: Springer, 2017,
pp. 100–115. doi: 10.1007/978-3-319-67113-0_7 (cit. on pp. 9, 91–94).

[And18] Étienne André. “What’s decidable about parametric timed automata?” In: International Journal
on Software Tools for Technology Transfer (2018). To appear. doi: 10.1007/s10009- 017-
0467-0 (cit. on pp. 8, 17, 22).

[ANP17] Étienne André, Hoang Gia Nguyen, and Laure Petrucci. “E�cient parameter synthesis using
optimized state exploration strategies”. In: ICECCS. Ed. by Zhenjiang Hu and Guangdong Bai.
Fukuoka, Japan: IEEE, 2017, pp. 1–10. doi: 10.1109/ICECCS.2017.28 (cit. on p. 10).

[AP15] Étienne André and Laure Petrucci. “Unifying Patterns for Modelling Timed Relationships in
Systems and Properties”. In: PNSE. Ed. by Daniel Moldt, Heiko Rölke, and Harald Störrle.
Vol. 1372. Brussels, Belgium: CEUR-WS, 2015, pp. 25–40 (cit. on p. 9).

[APP13] Étienne André, Laure Petrucci, and Giuseppe Pellegrino. “Precise Robustness Analysis of Time
Petri Nets with Inhibitor Arcs”. In: FORMATS. Ed. by Víctor Braberman and Laurent Fribourg.
Vol. 8053. Lecture Notes in Computer Science. Buenos Aires, Argentina: Springer, 2013, pp. 1–
15. doi: 10.1007/978-3-642-40229-6_1 (cit. on pp. 9, 72–75).

[AS11] Étienne André and Romain Soulat. “Synthesis of Timing Parameters Satisfying Safety Proper-
ties”. In: RP. Ed. by Giorgio Delzanno and Igor Potapov. Vol. 6945. Lecture Notes in Computer
Science. Genova, Italy: Springer, 2011, pp. 31–44. doi: 10.1007/978-3-642-24288-5_5
(cit. on pp. 9, 60, 70–72).

[AS13] Étienne André and Romain Soulat. The Inverse Method. FOCUS Series in Computer Engineer-
ing and Information Technology. 176 pages. ISTE Ltd and John Wiley & Sons Inc., 2013. isbn:
9781848214477 (cit. on pp. 15, 56, 70).

[Li+17] Jiaying Li, Jun Sun, Bo Gao, and Étienne André. “Classi�cation based Parameter Synthesis for
Parametric Timed Automata”. In: ICFEM. Ed. by Zhenhua Duan and Luke Ong. Vol. 10610.
Lecture Notes in Computer Science. Xi’An, China: Springer, 2017, pp. 243–261. doi: 10.1007/
978-3-319-68690-5_15 (cit. on pp. 10, 69).

103

http://dx.doi.org/10.1007/978-3-319-57288-8_3
http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.18
http://dx.doi.org/10.1109/ICECCS.2013.26
http://dx.doi.org/10.1109/ICECCS.2013.26
http://dx.doi.org/10.1007/978-3-319-46750-4_27
http://dx.doi.org/10.1007/978-3-319-67113-0_7
http://dx.doi.org/10.1007/s10009-017-0467-0
http://dx.doi.org/10.1007/s10009-017-0467-0
http://dx.doi.org/10.1109/ICECCS.2017.28
http://dx.doi.org/10.1007/978-3-642-40229-6_1
http://dx.doi.org/10.1007/978-3-642-24288-5_5
http://dx.doi.org/10.1007/978-3-319-68690-5_15
http://dx.doi.org/10.1007/978-3-319-68690-5_15

[Lin+11] Shang-Wei Lin, Étienne André, Jin Song Dong, Jun Sun, and Yang Liu. “An E�cient Algorithm
for Learning Event-Recording Automata”. In: ATVA. Ed. by Tev�k Bultan and Pao-Ann Hsi-
ung. Vol. 6996. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2011, pp. 463–
472. doi: 10.1007/978-3-642-24372-1_35 (cit. on p. 65).

[Lin+12] Shang-Wei Lin, Yang Liu, Jun Sun, Jin Song Dong, and Étienne André. “Automatic Composi-
tional Veri�cation of Timed Systems”. In: FM. Ed. by Dimitra Giannakopoulou and Dominique
Méry. Vol. 7436. Lecture Notes in Computer Science. Paris, France: Springer, 2012, pp. 272–
276. doi: 10.1007/978-3-642-32759-9_24 (cit. on pp. 66, 67).

[Lin+14] Shang-Wei Lin, Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. “Learning Assumptions
for Compositional Veri�cation of Timed Systems”. In: Transactions on Software Engineering
40.2 (2014), pp. 137–153. doi: 10.1109/TSE.2013.57 (cit. on pp. 8, 66).

[Lip+14] Giuseppe Lipari, Youcheng Sun, Étienne André, and Laurent Fribourg. “Toward Parametric
Timed Interfaces for Real-Time Components”. In: SynCoP. Ed. by Étienne Andre and Goran
Frehse. Vol. 145. Electronic Proceedings in Theoretical Computer Science. Grenoble, France,
2014, pp. 49–64. doi: 10.4204/EPTCS.145.6 (cit. on p. 97).

[Sun+13a] Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, and Étienne André. “Modeling and Verify-
ing Hierarchical Real-time Systems using Stateful Timed CSP”. In: ACM Transactions on Soft-
ware Engineering and Methodology 22.1 (2013), pp. 3.1–3.29. doi: 10.1145/2430536.2430537
(cit. on pp. 9, 49).

[Sun+13b] Youcheng Sun, Romain Soulat, Giuseppe Lipari, Étienne André, and Laurent Fribourg. “Para-
metric Schedulability Analysis of Fixed Priority Real-Time Distributed Systems”. In: FSTCS.
Ed. by Cyrille Artho and Peter Ölveczky. Vol. 419. Communications in Computer and Infor-
mation Science. Auckland, New Zealand: Springer, 2013, pp. 212–228. doi: 10.1007/978-3-
319-05416-2_14 (cit. on pp. 9, 88–90).

[Tan+13] Tian Huat Tan, Étienne André, Jun Sun, Yang Liu, Jin Song Dong, and Manman Chen. “Dy-
namic Synthesis of Local Time Requirement for Service Composition”. In: ICSE. Ed. by Betty
H.C. Cheng and Klaus Pohl. San Francisco, USA: IEEE, 2013, pp. 542–551. doi: 10.1109/ICSE.
2013.6606600 (cit. on p. 10).

[Tan+14] Tian Huat Tan, Manman Chen, Étienne André, Jun Sun, Yang Liu, and Jin Song Dong. “Auto-
mated Runtime Recovery for QoS-based Service Composition”. In: WWW. Ed. by Chin-Wan
Chung, Andrei Z. Broder, Kyuseok Shim, and Torsten Suel. Seoul, Korea: ACM SIG Proceed-
ings, 2014, pp. 563–574. isbn: 978-1-4503-2744-2. doi: 10.1145/2566486.2568048 (cit. on
p. 10).

[Tan+16] Tian Huat Tan, Manman Chen, Jun Sun, Yang Liu, Étienne André, Jin Song Dong, and Yinx-
ing Xue. “Optimizing Selection of Competing Services with Probabilistic Hierarchical Re-
�nement”. In: ICSE. Ed. by Willem Visser and Laurie Williams. Austin, Texas, USA: ACM,
2016, pp. 85–95. isbn: 978-1-4503-3900-1. doi: http://doi.acm.org/10.1145/2884781.
2884861 (cit. on p. 10).

104

http://dx.doi.org/10.1007/978-3-642-24372-1_35
http://dx.doi.org/10.1007/978-3-642-32759-9_24
http://dx.doi.org/10.1109/TSE.2013.57
http://dx.doi.org/10.4204/EPTCS.145.6
http://dx.doi.org/10.1145/2430536.2430537
http://dx.doi.org/10.1007/978-3-319-05416-2_14
http://dx.doi.org/10.1007/978-3-319-05416-2_14
http://dx.doi.org/10.1109/ICSE.2013.6606600
http://dx.doi.org/10.1109/ICSE.2013.6606600
http://dx.doi.org/10.1145/2566486.2568048
http://dx.doi.org/http://doi.acm.org/10.1145/2884781.2884861
http://dx.doi.org/http://doi.acm.org/10.1145/2884781.2884861

References

[Abd+16] Parosh Aziz Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sangnier, and Riccardo
Traverso. “Parameterized veri�cation of time-sensitive models of ad hoc network protocols”.
In: Theoretical Computer Science 612 (2016), pp. 1–22. doi: 10.1016/j.tcs.2015.07.048
(cit. on p. 99).

[AC15] Ayman Aljarbouh and Benoît Caillaud. “Robust Simulation for Hybrid Systems: Chattering
Bath Avoidance”. In: SIMS. Linköping, Sweden, 2015, pp. 175–185. doi:10.3384/ecp15119175
(cit. on pp. 78, 99).

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. “Model-Checking in Dense Real-Time”.
In: Information and Computation 104.1 (1993), pp. 2–34 (cit. on p. 23).

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (1994), pp. 183–235. issn: 0304-3975 (cit. on pp. 6, 12, 17, 23, 26, 30, 37, 45, 65).

[ADM04] Parosh Aziz Abdulla, Johann Deneux, and Pritha Mahata. “Multi-Clock Timed Networks”. In:
LICS. Turku, Finland: IEEE Computer Society, 2004, pp. 345–354. doi: 10.1109/LICS.2004.
1319629 (cit. on p. 99).

[AFH99] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. “Event-Clock Automata: A Determinizable
Class of Timed Automata”. In: Theoretical Computer Science 211.1-2 (1999), pp. 253–273. doi:
10.1016/S0304-3975(97)00173-4 (cit. on pp. 8, 63, 65).

[AH15] Takumi Akazaki and Ichiro Hasuo. “Time Robustness in MTL and Expressivity in Hybrid Sys-
tem Falsi�cation”. In: CAV, part II. Ed. by Daniel Kroening and Corina S. Pasareanu. Vol. 9207.
Lecture Notes in Computer Science. San Francisco, CA, USA: Springer, 2015, pp. 356–374. doi:
10.1007/978-3-319-21668-3_21 (cit. on pp. 69, 99).

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In:
STOC. Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California,
United States: ACM, 1993, pp. 592–601. isbn: 0-89791-591-7 (cit. on pp. 7, 12, 17, 19, 22–25, 30, 44, 81,
92).

[AJ03] Parosh Aziz Abdulla and Bengt Jonsson. “Model checking of systems with many identical
timed processes”. In: Theoretical Computer Science 290.1 (2003), pp. 241–264. doi: 10.1016/
S0304-3975(01)00330-9 (cit. on p. 99).

[Aks+16] S. Akshay, Loïc Hélouët, Claude Jard, and Pierre-Alain Reynier. “Robustness of Time Petri
Nets under Guard Enlargement”. In: Fundamenta Informaticae 143.3-4 (2016), pp. 207–234. doi:
10.3233/FI-2016-1312 (cit. on pp. 43, 44, 73, 75, 85).

105

http://dx.doi.org/10.1016/j.tcs.2015.07.048
http://dx.doi.org/10.3384/ecp15119175
http://dx.doi.org/10.1109/LICS.2004.1319629
http://dx.doi.org/10.1109/LICS.2004.1319629
http://dx.doi.org/10.1016/S0304-3975(97)00173-4
http://dx.doi.org/10.1007/978-3-319-21668-3_21
http://dx.doi.org/10.1016/S0304-3975(01)00330-9
http://dx.doi.org/10.1016/S0304-3975(01)00330-9
http://dx.doi.org/10.3233/FI-2016-1312

[Alj+16] Ayman Aljarbouh, Yingfu Zeng, Adam Duracz, Benoît Caillaud, and Walid Taha. “Chattering-
Free Simulation for Hybrid Dynamical Systems Semantics and Prototype Implementation”. In:
CSE, EUC, DCABES. Paris, France: IEEE Computer Society, 2016, pp. 412–422. doi: 10.1109/
CSE-EUC-DCABES.2016.217 (cit. on p. 78).

[AM01] Yasmina Abdeddaïm and Oded Maler. “Job-Shop Scheduling Using Timed Automata”. In: CAV.
Ed. by Gérard Berry, Hubert Comon, and Alain Finkel. Vol. 2102. Lecture Notes in Computer
Science. Paris, France: Springer, 2001, pp. 478–492. isbn: 3-540-42345-1. doi: 10.1007/3-540-
44585-4_46 (cit. on p. 88).

[AM02] Yasmina Adbeddaïm and Oded Maler. “Preemptive Job-Shop Scheduling using Stopwatch Au-
tomata”. In: TACAS. Ed. by Joost-Pieter Katoen and Perdita Stevens. Vol. 2280. Lecture Notes
in Computer Science. Grenoble, France: Springer-Verlag, 2002, pp. 113–126 (cit. on p. 88).

[Ang87] Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”. In: Information
and Computation 75.2 (1987), pp. 87–106. doi: 10.1016/0890-5401(87)90052-6 (cit. on p. 65).

[Aşt+16] Lăcrămioara Aştefănoaei, Saddek Bensalem, Marius Bozga, Chih-Hong Cheng, and Harald
Ruess. “Compositional Parameter Synthesis”. In: FM. Ed. by John S. Fitzgerald, Constance L.
Heitmeyer, Stefania Gnesi, and Anna Philippou. Vol. 9995. Lecture Notes in Computer Science.
2016, pp. 60–68. doi: 10.1007/978-3-319-48989-6_4 (cit. on pp. 7, 69, 97).

[Aud91] Neil C. Audsley. Optimal Priority Assignment And Feasibility Of Static Priority Tasks With Ar-
bitrary Start Times. Tech. rep. YCS 164. Dept computer science, University of York, 1991 (cit. on
p. 87).

[Bak91] Theodore P. Baker. “Stack-based Scheduling of Realtime Processes”. In: Real-Time Systems 3.1
(1991), pp. 67–99. doi: 10.1007/BF00365393 (cit. on p. 88).

[BBM06] Ramzi Ben Salah, Marius Bozga, and Oded Maler. “On Interleaving in Timed Automata”. In:
CONCUR. Ed. by Christel Baier and Holger Hermanns. Vol. 4137. Lecture Notes in Computer
Science. Bonn, Germany: Springer, 2006, pp. 465–476. isbn: 3-540-37376-4. doi: 10.1007/
11817949_31 (cit. on p. 48).

[Beh+06] Gerd Behrmann, Patricia Bouyer, Kim Guldstrand Larsen, and Radek Pelánek. “Lower and up-
per bounds in zone-based abstractions of timed automata”. In: International Journal on Soft-
ware Tools for Technology Transfer 8.3 (2006), pp. 204–215. doi: 10.1007/s10009-005-0190-
0 (cit. on pp. 52, 53).

[Ben+15] Nikola Beneš, Peter Bezděk, Kim G. Larsen, and Jiří Srba. “Language Emptiness of Continuous-
Time Parametric Timed Automata”. In: ICALP, Part II. Vol. 9135. Lecture Notes in Computer
Science. Springer, 2015, pp. 69–81. doi: 10.1007/978-3-662-47666-6_6 (cit. on pp. 7, 24, 25,
29, 30, 37, 38, 42, 85).

[Bér+13] Béatrice Bérard, Serge Haddad, Aleksandra Jovanovic, and Didier Lime. “Parametric Interrupt
Timed Automata”. In: RP. Ed. by Parosh Aziz Abdulla and Igor Potapov. Vol. 8169. Lecture
Notes in Computer Science. Springer, 2013, pp. 59–69. doi: 10.1007/978-3-642-41036-
9_7 (cit. on p. 97).

[Bér+15] Béatrice Bérard, Serge Haddad, Claudine Picaronny, Mohab Safey El Din, and Mathieu Sas-
solas. “Polynomial Interrupt Timed Automata”. In: RP. Ed. by Mikolaj Bojanczyk, Slawomir
Lasota, and Igor Potapov. Vol. 9328. Lecture Notes in Computer Science. Warsaw, Poland:
Springer, 2015, pp. 20–32. doi: 10.1007/978-3-319-24537-9_3 (cit. on p. 99).

[BG06] Howard Bowman and Rodolfo Gómez. “How to stop time stopping”. In: Formal Aspects of
Computing 18.4 (2006), pp. 459–493. doi: 10.1007/s00165-006-0010-7 (cit. on p. 78).

106

http://dx.doi.org/10.1109/CSE-EUC-DCABES.2016.217
http://dx.doi.org/10.1109/CSE-EUC-DCABES.2016.217
http://dx.doi.org/10.1007/3-540-44585-4_46
http://dx.doi.org/10.1007/3-540-44585-4_46
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1007/978-3-319-48989-6_4
http://dx.doi.org/10.1007/BF00365393
http://dx.doi.org/10.1007/11817949_31
http://dx.doi.org/10.1007/11817949_31
http://dx.doi.org/10.1007/s10009-005-0190-0
http://dx.doi.org/10.1007/s10009-005-0190-0
http://dx.doi.org/10.1007/978-3-662-47666-6_6
http://dx.doi.org/10.1007/978-3-642-41036-9_7
http://dx.doi.org/10.1007/978-3-642-41036-9_7
http://dx.doi.org/10.1007/978-3-319-24537-9_3
http://dx.doi.org/10.1007/s00165-006-0010-7

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Za�anella. “The Parma Polyhedra Library: Toward
a Complete Set of Numerical Abstractions for the Analysis and Veri�cation of Hardware and
Software Systems”. In: Science of Computer Programming 72.1–2 (2008), pp. 3–21. doi: 10.
1016/j.scico.2007.08.001 (cit. on pp. 48, 49, 55, 78).

[BL09] Laura Bozzelli and Salvatore La Torre. “Decision problems for lower/upper bound parametric
timed automata”. In: Formal Methods in System Design 35.2 (2009), pp. 121–151. doi: 10.1007/
s10703-009-0074-0 (cit. on pp. 7, 16, 26, 35, 38, 98).

[BMS11] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. “Robust Model-Checking of Timed Au-
tomata via Pumping in Channel Machines”. In: FORMATS. Ed. by Uli Fahrenberg and Stavros
Tripakis. Vol. 6919. Lecture Notes in Computer Science. Aalborg, Denmark: Springer, 2011,
pp. 97–112. doi: 10.1007/978-3-642-24310-3_8 (cit. on p. 44).

[BMS13] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. “Robustness in timed automata”. In: RP.
Ed. by Parosh Aziz Abdulla and Igor Potapov. Vol. 8169. Lecture Notes in Computer Science.
Invited paper. Uppsala, Sweden: Springer, 2013, pp. 1–18. doi: 10.1007/978-3-642-41036-
9_1 (cit. on pp. 7, 51).

[BO14] Daniel Bundala and Joël Ouaknine. “Advances in Parametric Real-Time Reasoning”. In: MFCS,
Part I. Ed. by Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik. Vol. 8634. Lecture
Notes in Computer Science. Budapest, Hungary: Springer, 2014, pp. 123–134. isbn: 978-3-662-
44521-1. doi: 10.1007/978-3-662-44522-8 (cit. on pp. 7, 24, 25).

[Bou+00] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. “Regular Model Check-
ing”. In: CAV. Ed. by E. Allen Emerson and A. Prasad Sistla. Vol. 1855. Lecture Notes in Com-
puter Science. Chicago, IL, USA: Springer, 2000, pp. 403–418. doi: 10.1007/10722167_31
(cit. on p. 99).

[BRH90] Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. “Algorithms and Complexity Con-
cerning the Preemptive Scheduling of Periodic, Real-Time Tasks on One Processor”. In: Real-
Time Systems 2.4 (1990), pp. 301–324. doi: 10.1007/BF01995675 (cit. on p. 87).

[Bri+04] Thomas Brihaye, Christian Michaux, Cédric Rivière, and Christophe Troestler. “On O-
Minimal Hybrid Systems”. In: HSCC. Ed. by Rajeev Alur and George J. Pappas. Vol. 2993.
Lecture Notes in Computer Science. Springer, 2004, pp. 219–233. doi: 10.1007/978-3-540-
24743-2_15 (cit. on p. 98).

[Bri+13] Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine, Jean-François Raskin, and
James Worrell. “Time-Bounded Reachability for Monotonic Hybrid Automata: Complexity
and Fixed Points”. In: ATVA. Ed. by Dang Van Hung and Mizuhito Ogawa. Vol. 8172. Lecture
Notes in Computer Science. Hanoi, Vietnam: Springer, 2013, pp. 55–70. doi: 10.1007/978-
3-319-02444-8_6 (cit. on pp. 23, 43, 85, 98).

[Bul+11] Peter E. Bulychev, Alexandre David, Kim Guldstrand Larsen, Marius Mikucionis, and Axel
Legay. “Distributed Parametric and Statistical Model Checking”. In: PDMC. Ed. by Jiri Barnat
and Keijo Heljanko. Vol. 72. EPTCS. Snowbird, Utah, USA, 2011, pp. 30–42. doi: 10.4204/
EPTCS.72.4 (cit. on p. 47).

[BY03] Johan Bengtsson and Wang Yi. “Timed Automata: Semantics, Algorithms and Tools”. In: Lec-
tures on Concurrency and Petri Nets, Advances in Petri Nets. Ed. by Jörg Desel, Wolfgang Reisig,
and Grzegorz Rozenberg. Vol. 3098. Lecture Notes in Computer Science. Eichstätt, Germany:
Springer, 2003, pp. 87–124. doi: 10.1007/978-3-540-27755-2_3 (cit. on pp. 48, 49).

107

http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1007/s10703-009-0074-0
http://dx.doi.org/10.1007/s10703-009-0074-0
http://dx.doi.org/10.1007/978-3-642-24310-3_8
http://dx.doi.org/10.1007/978-3-642-41036-9_1
http://dx.doi.org/10.1007/978-3-642-41036-9_1
http://dx.doi.org/10.1007/978-3-662-44522-8
http://dx.doi.org/10.1007/10722167_31
http://dx.doi.org/10.1007/BF01995675
http://dx.doi.org/10.1007/978-3-540-24743-2_15
http://dx.doi.org/10.1007/978-3-540-24743-2_15
http://dx.doi.org/10.1007/978-3-319-02444-8_6
http://dx.doi.org/10.1007/978-3-319-02444-8_6
http://dx.doi.org/10.4204/EPTCS.72.4
http://dx.doi.org/10.4204/EPTCS.72.4
http://dx.doi.org/10.1007/978-3-540-27755-2_3

[CC04] Robert Clarisó and Jordi Cortadella. “Veri�cation of timed circuits with symbolic delays”. In:
ASP-DAC. Ed. by Masaharu Imai. Yokohama, Japan: IEEE Computer Society, 2004, pp. 628–
633. isbn: 0-7803-8175-0. doi: 10.1109/ASPDAC.2004.208 (cit. on p. 42).

[CC05] Robert Clarisó and Jordi Cortadella. “Veri�cation of Concurrent Systems with Parametric De-
lays Using Octahedra”. In: ACSD. Saint-Malo, France: IEEE Computer Society, 2005, pp. 122–
131. isbn: 0-7695-2363-3. doi: 10.1109/ACSD.2005.34 (cit. on p. 42).

[Ces+16] Milan Ceska, Petr Pilar, Nicola Paoletti, Lubos Brim, and Marta Z. Kwiatkowska. “PRISM-
PSY: Precise GPU-Accelerated Parameter Synthesis for Stochastic Systems”. In: TACAS. Ed.
by Marsha Chechik and Jean-François Raskin. Vol. 9636. Lecture Notes in Computer Science.
Eindhoven, The Netherlands: Springer, 2016, pp. 367–384. doi: 10.1007/978-3-662-49674-
9_21 (cit. on pp. 47, 99).

[Cha+08] Najla Chamseddine, Marie Du�ot, Laurent Fribourg, Claudine Picaronny, and Jeremy Spros-
ton. “Computing Expected Absorption Times for Parametric Determinate Probabilistic Timed
Automata”. In: QEST. Saint-Malo, France: IEEE Computer Society, 2008, pp. 254–263. doi: 10.
1109/QEST.2008.34 (cit. on p. 82).

[Che+09] Rémy Chevallier, Emmanuelle Encrenaz-Tiphène, Laurent Fribourg, and Weiwen Xu. “Timed
Veri�cation of the Generic Architecture of a Memory Circuit Using Parametric Timed Au-
tomata”. In: Formal Methods in System Design 34.1 (2009), pp. 59–81. doi: 10.1007/s10703-
008-0061-x (cit. on p. 7).

[CL00] Franck Cassez and Kim Guldstrand Larsen. “The Impressive Power of Stopwatches”. In: CON-
CUR. Ed. by Catuscia Palamidessi. Vol. 1877. Lecture Notes in Computer Science. Springer,
2000, pp. 138–152. doi: 10.1007/3-540-44618-4_12 (cit. on pp. 74, 88).

[CL90] Min-Ih Chen and Kwei-Jay Lin. “Dynamic Priority Ceilings: A Concurrency Control Protocol
for Real-Time”. In: Real-Time Systems 2.4 (1990), pp. 325–346. doi: 10.1007/BF01995676 (cit.
on p. 88).

[CPR08] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. “Symbolic Computation of Schedula-
bility Regions Using Parametric Timed Automata”. In: RTSS. Barcelona, Spain: IEEE Computer
Society, 2008, pp. 80–89. isbn: 978-0-7695-3477-0. doi: 10.1109/RTSS.2008.36 (cit. on pp. 70,
88).

[CS01] Aurore Collomb–Annichini and Mihaela Sighireanu. “Parameterized Reachability Analysis of
the IEEE 1394 Root Contention Protocol using TReX”. In: RT-TOOLS. Alborg, Danemark, 2001
(cit. on p. 42).

[CSB90] Houssine Chetto, Maryline Silly, and T. Bouchentouf. “Dynamic Scheduling of Real-Time
Tasks under Precedence Constraints”. In: Real-Time Systems 2.3 (1990), pp. 181–194. doi: 10.
1007/BF00365326 (cit. on p. 88).

[DAr+97] Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and Jan Tretmans. “The Bounded
Retransmission Protocol Must Be on Time!” In: TACAS. Ed. by Ed Brinksma. Vol. 1217. Lecture
Notes in Computer Science. Enschede, The Netherlands: Springer, 1997, pp. 416–431. isbn: 3-
540-62790-1. doi: 10.1007/BFb0035403 (cit. on p. 81).

[Dav+07] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. “Controller Area Net-
work (CAN) schedulability analysis: Refuted, revisited and revised”. In: Real-Time Systems
35.3 (2007), pp. 239–272. doi: 10.1007/s11241-007-9012-7 (cit. on p. 88).

[Dav05] Alexandre David. “Merging DBMs E�ciently”. In: NWPT. DIKU, University of Copenhagen,
2005, pp. 54–56 (cit. on p. 48).

108

http://dx.doi.org/10.1109/ASPDAC.2004.208
http://dx.doi.org/10.1109/ACSD.2005.34
http://dx.doi.org/10.1007/978-3-662-49674-9_21
http://dx.doi.org/10.1007/978-3-662-49674-9_21
http://dx.doi.org/10.1109/QEST.2008.34
http://dx.doi.org/10.1109/QEST.2008.34
http://dx.doi.org/10.1007/s10703-008-0061-x
http://dx.doi.org/10.1007/s10703-008-0061-x
http://dx.doi.org/10.1007/3-540-44618-4_12
http://dx.doi.org/10.1007/BF01995676
http://dx.doi.org/10.1109/RTSS.2008.36
http://dx.doi.org/10.1007/BF00365326
http://dx.doi.org/10.1007/BF00365326
http://dx.doi.org/10.1007/BFb0035403
http://dx.doi.org/10.1007/s11241-007-9012-7

[Dav06] Alexandre David. Uppaal DBM Library Programmer’s Reference. http://people.cs.
aau.dk/~adavid/UDBM/manual-061023.pdf. 2006 (cit. on p. 48).

[DD13] Thao Dang and Tommaso Dreossi. “Falsifying Oscillation Properties of Parametric Biological
Models”. In: HSB. Ed. by Thao Dang and Carla Piazza. Vol. 125. EPTCS. Taormina, Italy, 2013,
pp. 53–67. doi: 10.4204/EPTCS.125.4 (cit. on p. 98).

[De +08] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. “Robust safety of
timed automata”. In: Formal Methods in System Design 33.1-3 (2008), pp. 45–84. doi: 10.1007/
s10703-008-0056-7 (cit. on p. 51).

[Del+12] Benoît Delahaye, Kim Gulstrand Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej Wa-
sowski. “Consistency and re�nement for Interval Markov Chains”. In: Journal of Logic and
Algebraic Programming 81.3 (2012), pp. 209–226. doi: 10.1016/j.jlap.2011.10.003 (cit. on
p. 82).

[Del15] Benoît Delahaye. “Consistency for Parametric Interval Markov Chains”. In: SynCoP. Ed. by
Étienne André and Goran Frehse. Vol. 44. OASICS. London, United Kingdom: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2015, pp. 17–32. doi: 10.4230/OASIcs.SynCoP.2015.17
(cit. on p. 84).

[DLP16] Benoît Delahaye, Didier Lime, and Laure Petrucci. “Parameter Synthesis for Parametric Inter-
val Markov Chains”. In: VMCAI. Ed. by Barbara Jobstmann and K. Rustan M. Leino. Vol. 9583.
Lecture Notes in Computer Science. St. Petersburg, FL, USA: Springer, 2016, pp. 372–390. doi:
10.1007/978-3-662-49122-5_18 (cit. on pp. 83, 99).

[Doy07] Laurent Doyen. “Robust Parametric Reachability for Timed Automata”. In: Information Pro-
cessing Letters 102.5 (2007), pp. 208–213. doi: 10.1016/j.ipl.2006.11.018 (cit. on pp. 24,
25).

[DY96] Conrado Daws and Sergio Yovine. “Reducing the number of clock variables of timed au-
tomata”. In: RTSS. Washington, DC, USA: IEEE Computer Society, 1996, pp. 73–81. isbn: 0-
8186-7689-2. doi: 10.1109/REAL.1996.563702 (cit. on p. 49).

[Eva+12] Sami Evangelista, Alfons Laarman, Laure Petrucci, and Jaco Van de Pol. “Improved Multi-Core
Nested Depth-First Search”. In: ATVA. Ed. by Supratik Chakraborty and Madhavan Mukund.
Vol. 7561. Lecture Notes in Computer Science. Thiruvananthapuram, India: Springer, 2012,
pp. 269–283. isbn: 978-3-642-33385-9. doi: 10.1007/978-3-642-33386-6_22 (cit. on p. 47).

[Fer+07] Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. “Task automata: Schedulability,
decidability and undecidability”. In: Information and Computation 205.8 (2007), pp. 1149–1172.
doi: 10.1016/j.ic.2007.01.009 (cit. on pp. 9, 91–93).

[FJ13] Léa Fanchon and Florent Jacquemard. “Formal Timing Analysis Of Mixed Music Scores”. In:
ICMC. Perth, Australia: Michigan Publishing, 2013 (cit. on p. 7).

[FK13] Laurent Fribourg and Ulrich Kühne. “Parametric Veri�cation and Test Coverage for Hybrid
Automata Using the Inverse Method”. In: International Journal of Foundations of Computer
Science 24.2 (2013), pp. 233–249 (cit. on p. 99).

[For+10] Julien Forget, Frédéric Boniol, Emmanuel Grolleau, David Lesens, and Claire Pagetti.
“Scheduling Dependent Periodic Tasks without Synchronization Mechanisms”. In: RTAS. Ed.
by Marco Caccamo. Stockholm, Sweden: IEEE Computer Society, 2010, pp. 301–310. doi: 10.
1109/RTAS.2010.26 (cit. on p. 88).

109

http://people.cs.aau.dk/~adavid/UDBM/manual-061023.pdf
http://people.cs.aau.dk/~adavid/UDBM/manual-061023.pdf
http://dx.doi.org/10.4204/EPTCS.125.4
http://dx.doi.org/10.1007/s10703-008-0056-7
http://dx.doi.org/10.1007/s10703-008-0056-7
http://dx.doi.org/10.1016/j.jlap.2011.10.003
http://dx.doi.org/10.4230/OASIcs.SynCoP.2015.17
http://dx.doi.org/10.1007/978-3-662-49122-5_18
http://dx.doi.org/10.1016/j.ipl.2006.11.018
http://dx.doi.org/10.1109/REAL.1996.563702
http://dx.doi.org/10.1007/978-3-642-33386-6_22
http://dx.doi.org/10.1016/j.ic.2007.01.009
http://dx.doi.org/10.1109/RTAS.2010.26
http://dx.doi.org/10.1109/RTAS.2010.26

[For+11] Julien Forget, Emmanuel Grolleau, Claire Pagetti, and Pascal Richard. “Dynamic priority
scheduling of periodic tasks with extended precedences”. In: ETFA. Ed. by Zoubir Mammeri.
Toulouse, France: IEEE, 2011, pp. 1–8. doi: 10.1109/ETFA.2011.6059015 (cit. on p. 88).

[Fre+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebel-
tel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. “SpaceEx: Scalable Veri�ca-
tion of Hybrid Systems”. In: CAV. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806.
Lecture Notes in Computer Science. Snowbird, UT, USA: Springer, 2011, pp. 379–395. doi:
10.1007/978-3-642-22110-1_30 (cit. on p. 98).

[Fri+12] Laurent Fribourg, David Lesens, Pierre Moro, and Romain Soulat. “Robustness Analysis for
Scheduling Problems using the Inverse Method”. In: TIME. Ed. by Mark Reynolds, Paolo Teren-
ziani, and Ben Moszkowski. Leicester, UK: IEEE Computer Society Press, 2012, pp. 73–80. doi:
10.1109/TIME.2012.10 (cit. on pp. 7, 48, 88, 89).

[GB07] Rodolfo Gómez and Howard Bowman. “E�cient Detection of Zeno Runs in Timed Automata”.
In: FORMATS. Ed. by Jean-François Raskin and P. S. Thiagarajan. Vol. 4763. Lecture Notes in
Computer Science. Salzburg, Austria: Springer, 2007, pp. 195–210. doi: 10.1007/978-3-540-
75454-1_15 (cit. on p. 78).

[GJL10] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. “Learning of event-recording automata”.
In: Theoretical Computer Science 411.47 (2010), pp. 4029–4054. doi: 10.1016/j.tcs.2010.
07.008 (cit. on p. 65).

[Gla90] Rob J. van Glabbeek. “The Linear Time-Branching Time Spectrum (Extended Abstract)”. In:
CONCUR. Ed. by Jos C. M. Baeten and Jan Willem Klop. Vol. 458. Lecture Notes in Com-
puter Science. Amsterdam, The Netherlands: Springer, 1990, pp. 278–297. doi: 10 . 1007 /
BFb0039066 (cit. on p. 14).

[Gon+01] Michael González Harbour, J. J. Gutiérrez García, José C. Palencia Gutiérrez, and J. M. Drake
Moyano. “MAST: Modeling and Analysis Suite for Real Time Applications”. In: ECRTS. Delft,
The Netherlands: IEEE Computer Society, 2001, pp. 125–134. doi: 10.1109/EMRTS.2001.
934015 (cit. on p. 90).

[Hen+98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. “What’s Decidable
about Hybrid Automata?” In: Journal of Computer and System Sciences 57.1 (1998), pp. 94–124.
doi: 10.1006/jcss.1998.1581 (cit. on pp. 28, 46, 98).

[Her+12] Christian Herrera, Bernd Westphal, Sergio Feo Arenis, Marco Muñiz, and Andreas Podelski.
“Reducing Quasi-Equal Clocks in Networks of Timed Automata”. In: FORMATS. Ed. by Marcin
Jurdzinski and Dejan Nickovic. Vol. 7595. Lecture Notes in Computer Science. London, UK:
Springer, 2012, pp. 155–170. doi: 10.1007/978-3-642-33365-1_12 (cit. on p. 68).

[HKW95] Thomas A. Henzinger, Peter W. Kopke, and Howard Wong-Toi. “The Expressive Power of
Clocks”. In: ICALP. Ed. by Zoltán Fülöp and Ferenc Gécseg. Vol. 944. Lecture Notes in Com-
puter Science. Szeged, Hungary: Springer, 1995, pp. 417–428. doi: 10.1007/3-540-60084-
1_93 (cit. on p. 46).

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. International Series in Computer Science.
Prentice-Hall, 1985 (cit. on p. 9).

[HPR94] Nicolas Halbwachs, Yann-Éric Proy, and Pascal Raymond. “Veri�cation of Linear Hybrid Sys-
tems by Means of Convex Approximations”. In: SAS. Ed. by Baudouin Le Charlier. Vol. 864.
Lecture Notes in Computer Science. Namur, Belgium: Springer, 1994, pp. 223–237. doi: 10.
1007/3-540-58485-4_43 (cit. on p. 51).

110

http://dx.doi.org/10.1109/ETFA.2011.6059015
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1109/TIME.2012.10
http://dx.doi.org/10.1007/978-3-540-75454-1_15
http://dx.doi.org/10.1007/978-3-540-75454-1_15
http://dx.doi.org/10.1016/j.tcs.2010.07.008
http://dx.doi.org/10.1016/j.tcs.2010.07.008
http://dx.doi.org/10.1007/BFb0039066
http://dx.doi.org/10.1007/BFb0039066
http://dx.doi.org/10.1109/EMRTS.2001.934015
http://dx.doi.org/10.1109/EMRTS.2001.934015
http://dx.doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1007/978-3-642-33365-1_12
http://dx.doi.org/10.1007/3-540-60084-1_93
http://dx.doi.org/10.1007/3-540-60084-1_93
http://dx.doi.org/10.1007/3-540-58485-4_43
http://dx.doi.org/10.1007/3-540-58485-4_43

[HSW13] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. “Lazy Abstractions for Timed Au-
tomata”. In: CAV. Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in
Computer Science. Saint Petersburg, Russia: Springer, 2013, pp. 990–1005. doi: 10.1007/978-
3-642-39799-8_71 (cit. on p. 78).

[Hun+02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. “Linear parametric
model checking of timed automata”. In: Journal of Logic and Algebraic Programming 52-53
(2002), pp. 183–220. doi: 10.1016/S1567-8326(02)00037-1 (cit. on pp. 7, 8, 16, 17, 19, 25, 26, 34,
35, 37, 44, 55, 79).

[HW16] Christian Herrera and Bernd Westphal. “The Model Checking Problem in Networks with
Quasi-Equal Clocks”. In: TIME. Ed. by Curtis E. Dyreson, Michael R. Hansen, and Luke Huns-
berger. Kongens Lyngby, Denmark: IEEE Computer Society, 2016, pp. 21–30. doi: 10.1109/
TIME.2016.10 (cit. on p. 68).

[JK14] Aleksandra Jovanović and Marta Z. Kwiatkowska. “Parameter Synthesis for Probabilistic
Timed Automata Using Stochastic Game Abstractions”. In: RP. Ed. by Joël Ouaknine, Igor
Potapov, and James Worrell. Vol. 8762. Lecture Notes in Computer Science. Oxford, UK:
Springer, 2014, pp. 176–189. doi: 10.1007/978-3-319-11439-2_14 (cit. on p. 82).

[JL91] Bengt Jonsson and Kim Guldstrand Larsen. “Speci�cation and Re�nement of Probabilistic
Processes”. In: LICS. Amsterdam, The Netherlands: IEEE Computer Society, 1991, pp. 266–
277. doi: 10.1109/LICS.1991.151651 (cit. on p. 82).

[JLR13] Aleksandra Jovanovic, Didier Lime, and Olivier H. Roux. “Synthesis of Bounded Integer Pa-
rameters for Parametric Timed Reachability Games”. In: ATVA. Ed. by Dang Van Hung and
Mizuhito Ogawa. Vol. 8172. Lecture Notes in Computer Science. Hanoi, Vietnam: Springer,
2013, pp. 87–101. doi: 10.1007/978-3-319-02444-8_8 (cit. on p. 99).

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. “Integer Parameter Synthesis for
Timed Automata”. In: IEEE Transactions on Software Engineering 41.5 (2015), pp. 445–461 (cit.
on pp. 7, 12, 18–20, 23, 24, 26, 35, 40, 44, 47, 51, 52, 55, 61, 70, 79, 98, 99).

[Jov13] Aleksandra Jovanović. “Parametric Veri�cation of Timed Systems”. PhD thesis. École Centrale
Nantes, 2013 (cit. on p. 23).

[Kho12] Victor Khomenko. Punf. http : / / homepages . cs . ncl . ac . uk / victor .
khomenko/tools/punf/. 2012 (cit. on p. 77).

[KMP15] Michał Knapik, Artur Męski, and Wojciech Penczek. “Action Synthesis for Branching Time
Logic: Theory and Applications”. In: ACM Transactions on Embedded Computing 14.4 (2015).
doi: 10.1145/2746337 (cit. on pp. 81, 82).

[KP12] Michał Knapik and Wojciech Penczek. “Bounded Model Checking for Parametric Timed Au-
tomata”. In: Transactions on Petri Nets and Other Models of Concurrency. Lecture Notes in Com-
puter Science 6900 (2012). Ed. by Kurt Jensen, Susanna Donatelli, and Jetty Kleijn, pp. 141–159.
doi: 10.1007/978-3-642-29072-5_6 (cit. on pp. 7, 17).

[Kwi+07] Marta Z. Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi Wang. “Symbolic Model
Checking for Probabilistic Timed Automata”. In: Information and Computation 205.7 (2007),
pp. 1027–1077 (cit. on p. 42).

[Laa+13] Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard, Kim Guldstrand Larsen,
and Jaco Van De Pol. “Multi-Core Emptiness Checking of Timed Büchi Automata using In-
clusion Abstraction”. In: CAV. Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lec-
ture Notes in Computer Science. Saint Petersburg, Russia: Springer, 2013, pp. 968–983. doi:
10.1007/978-3-642-39799-8_69 (cit. on p. 47).

111

http://dx.doi.org/10.1007/978-3-642-39799-8_71
http://dx.doi.org/10.1007/978-3-642-39799-8_71
http://dx.doi.org/10.1016/S1567-8326(02)00037-1
http://dx.doi.org/10.1109/TIME.2016.10
http://dx.doi.org/10.1109/TIME.2016.10
http://dx.doi.org/10.1007/978-3-319-11439-2_14
http://dx.doi.org/10.1109/LICS.1991.151651
http://dx.doi.org/10.1007/978-3-319-02444-8_8
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://dx.doi.org/10.1145/2746337
http://dx.doi.org/10.1007/978-3-642-29072-5_6
http://dx.doi.org/10.1007/978-3-642-39799-8_69

[Lan+17] Rom Langerak, Jaco Van de Pol, Janine N. Post, and Stefano Schivo. “Improving the Timed
Automata Approach to Biological Pathway Dynamics”. In: Models, Algorithms, Logics and
Tools – Essays Dedicated to Kim Guldstrand Larsen on the Occasion of His 60th Birthday. Ed. by
Luca Aceto, Giorgio Bacci, Giovanni Bacci, Anna Ingólfsdóttir, Axel Legay, and Radu Mardare.
Vol. 10460. Lecture Notes in Computer Science. Springer, 2017, pp. 96–111. doi:10.1007/978-
3-319-63121-9_5 (cit. on p. 98).

[Li+15] Li Li, Jun Sun, Yang Liu, and Jin Song Dong. “Verifying Parameterized Timed Security Proto-
cols”. In: FM. Ed. by Nikolaj Bjørner and Frank S. de Boer. Vol. 9109. Lecture Notes in Computer
Science. Oslo, Norway: Springer, 2015, pp. 342–359. doi: 10.1007/978-3-319-19249-9_22
(cit. on p. 99).

[LL73] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment”. In: Journal of the ACM 20.1 (1973), pp. 46–61. issn: 0004-5411. doi:
10.1145/321738.321743 (cit. on p. 87).

[LMO06] François Laroussinie, Nicolas Markey, and Ghassan Oreiby. “Model-Checking Timed”. In:
FORMATS. Ed. by Eugene Asarin and Patricia Bouyer. Vol. 4202. Lecture Notes in Computer
Science. Paris, France: Springer, 2006, pp. 245–259. doi: 10.1007/11867340_18 (cit. on p. 10).

[LMT04] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. “Decidability Results for
Parametric Probabilistic Transition Systems with an Application to Security”. In: SEFM. Bei-
jing, China: IEEE Computer Society, 2004, pp. 114–121. doi: 10.1109/SEFM.2004.12 (cit. on
p. 99).

[LMT07] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. “Parametric probabilistic
transition systems for system design and analysis”. In: Formal Aspects of Computing 19.1
(2007), pp. 93–109. doi: 10.1007/s00165-006-0015-2 (cit. on p. 99).

[LSD16] Li Li, Jun Sun, and Jin Song Dong. “Automated Veri�cation of Timed Security Protocols
with Clock Drift”. In: FM. Ed. by John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi,
and Anna Philippou. Vol. 9995. Lecture Notes in Computer Science. Limassol, Cyprus, 2016,
pp. 513–530. doi: 10.1007/978-3-319-48989-6_31 (cit. on p. 99).

[LW82] Joseph Y.-T. Leung and Jennifer Whitehead. “On the complexity of �xed-priority scheduling
of periodic, real-time tasks”. In: Performance Evaluation 2.4 (1982), pp. 237–250. doi: 10.1016/
0166-5316(82)90024-4 (cit. on p. 87).

[Mar11] Nicolas Markey. “Robustness in Real-time Systems”. In: SIES. Ed. by Iain Bate and Roberto
Passerone. Västerås, Sweden: IEEE Computer Society Press, 2011, pp. 28–34. doi: 10.1109/
SIES.2011.5953652 (cit. on p. 51).

[Mer74] Philip Meir Merlin. “A study of the recoverability of computing systems.” PhD thesis. Univer-
sity of California, Irvine, CA, USA, 1974 (cit. on p. 72).

[Mil00] Joseph S. Miller. “Decidability and Complexity Results for Timed Automata and Semi-linear
Hybrid Automata”. In: HSCC. Ed. by Nancy A. Lynch and Bruce H. Krogh. Vol. 1790. Lecture
Notes in Computer Science. Pittsburgh, PA, USA: Springer, 2000, pp. 296–309. isbn: 3-540-
67259-1. doi: 10.1007/3-540-46430-1_26 (cit. on pp. 17, 23–25, 29, 32, 44).

[Min67] Marvin L. Minsky. Computation: �nite and in�nite machines. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1967. isbn: 0-13-165563-9 (cit. on pp. 22, 32, 33, 38).

[MWP13] Marco Muñiz, Bernd Westphal, and Andreas Podelski. “Detecting Quasi-equal Clocks in
Timed Automata”. In: FORMATS. Ed. by Víctor A. Braberman and Laurent Fribourg. Vol. 8053.
Lecture Notes in Computer Science. Buenos Aires, Argentina: Springer, 2013, pp. 198–212. doi:
10.1007/978-3-642-40229-6_14 (cit. on p. 68).

112

http://dx.doi.org/10.1007/978-3-319-63121-9_5
http://dx.doi.org/10.1007/978-3-319-63121-9_5
http://dx.doi.org/10.1007/978-3-319-19249-9_22
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1007/11867340_18
http://dx.doi.org/10.1109/SEFM.2004.12
http://dx.doi.org/10.1007/s00165-006-0015-2
http://dx.doi.org/10.1007/978-3-319-48989-6_31
http://dx.doi.org/10.1016/0166-5316(82)90024-4
http://dx.doi.org/10.1016/0166-5316(82)90024-4
http://dx.doi.org/10.1109/SIES.2011.5953652
http://dx.doi.org/10.1109/SIES.2011.5953652
http://dx.doi.org/10.1007/3-540-46430-1_26
http://dx.doi.org/10.1007/978-3-642-40229-6_14

[NWY99] Christer Norström, Anders Wall, and Wang Yi. “Timed Automata as Task Models for Event-
Driven Systems”. In: RTCSA. Hong Kong, China: IEEE Computer Society, 1999, pp. 182–189.
doi: 10.1109/RTCSA.1999.811218 (cit. on pp. 9, 91).

[OMG12] OMG. Uni�ed Modeling Language Superstructure, Version 2.5. https://www.omg.org/
spec/UML/2.5/About-UML/. 2012 (cit. on p. 9).

[OW10] Joël Ouaknine and James Worrell. “Towards a Theory of Time-Bounded Veri�cation”. In:
ICALP Part II. Ed. by Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis. Vol. 6199. Lecture Notes in Computer Science. Springer,
2010, pp. 22–37. doi: 10.1007/978-3-642-14162-1_3 (cit. on p. 23).

[PG98] José C. Palencia Gutiérrez and Michael González Harbour. “Schedulability Analysis for Tasks
with Static and Dynamic O�sets”. In: RTSS. Madrid, Spain: IEEE Computer Society, 1998,
pp. 26–37. doi: 10.1109/REAL.1998.739728 (cit. on pp. 88, 90).

[Qua+16] Tim Quatmann, Christian Dehnert, Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen.
“Parameter Synthesis for Markov Models: Faster Than Ever”. In: ATVA. Ed. by Cyrille Artho,
Axel Legay, and Doron Peled. Vol. 9938. Lecture Notes in Computer Science. Chiba, Japan,
2016, pp. 50–67. doi: 10.1007/978-3-319-46520-3_4 (cit. on p. 99).

[Roc+16] Alexandre Rocca, Thao Dang, Eric Fanchon, and Jean Marc Moulis. “Application of the Reach-
ability Analysis for the Iron Homeostasis Study”. In: HSB. Ed. by Eugenio Cinquemani and
Alexandre Donzé. Vol. 9957. Lecture Notes in Computer Science. Grenoble, France, 2016,
pp. 67–84. doi: 10.1007/978-3-319-47151-8_5 (cit. on p. 98).

[Rod+15] César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. “Unfolding-based Par-
tial Order Reduction”. In: CONCUR. Ed. by Luca Aceto and David de Frutos-Escrig. Vol. 42.
LIPIcs. Madrid, Spain: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 456–469.
doi: 10.4230/LIPIcs.CONCUR.2015.456 (cit. on pp. 77, 78).

[Rou04] Olivier H.and Didier Lime Roux. “Time Petri Nets with Inhibitor Hyperarcs. Formal Seman-
tics and State Space Computation”. In: ICATPN. Ed. by Jordi Cortadella and Wolfgang Reisig.
Vol. 3099. Lecture Notes in Computer Science. Bologna, Italy: Springer, 2004, pp. 371–390. doi:
10.1007/978-3-540-27793-4_21 (cit. on p. 74).

[RS13] César Rodríguez and Stefan Schwoon. “Cunf: A Tool for Unfolding and Verifying Petri Nets
with Read Arcs”. In: ATVA. Ed. by Dang Van Hung and Mizuhito Ogawa. Vol. 8172. Lecture
Notes in Computer Science. Hanoi, Vietnam: Springer, 2013, pp. 492–495. doi: 10.1007/978-
3-319-02444-8_42 (cit. on p. 78).

[San11] Ocan Sankur. “Untimed Language Preservation in Timed Systems”. In: MFCS. Vol. 6907. Lec-
ture Notes in Computer Science. Warsaw, Poland: Springer, 2011, pp. 556–567. doi: 10.1007/
978-3-642-22993-0_50 (cit. on pp. 39, 43, 75, 85).

[San15] Ocan Sankur. “Symbolic Quantitative Robustness Analysis of Timed Automata”. In: TACAS.
Ed. by Christel Baier and Cesare Tinelli. Vol. 9035. Lecture Notes in Computer Science. Lon-
don, UK: Springer, 2015, pp. 484–498. doi: 10.1007/978-3-662-46681-0_48 (cit. on p. 70).

[SBM14] Ocan Sankur, Patricia Bouyer, and Nicolas Markey. “Shrinking timed automata”. In: Informa-
tion and Computation 234 (2014), pp. 107–132. doi: 10.1016/j.ic.2014.01.002 (cit. on pp. 43,
45, 85).

[Sch+12] Stefano Schivo, Jetse Scholma, Brend Wanders, Ricardo A. Urquidi Camacho, Paul E. Van der
Vet, Marcel Karperien, Rom Langerak, Jaco Van de Pol, and Janine N. Post. “Modelling bio-
logical pathway dynamics with Timed Automata”. In: BIBE. Larnaca, Cyprus: IEEE Computer
Society, 2012, pp. 447–453. doi: 10.1109/BIBE.2012.6399719 (cit. on p. 98).

113

http://dx.doi.org/10.1109/RTCSA.1999.811218
https://www.omg.org/spec/UML/2.5/About-UML/
https://www.omg.org/spec/UML/2.5/About-UML/
http://dx.doi.org/10.1007/978-3-642-14162-1_3
http://dx.doi.org/10.1109/REAL.1998.739728
http://dx.doi.org/10.1007/978-3-319-46520-3_4
http://dx.doi.org/10.1007/978-3-319-47151-8_5
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.456
http://dx.doi.org/10.1007/978-3-540-27793-4_21
http://dx.doi.org/10.1007/978-3-319-02444-8_42
http://dx.doi.org/10.1007/978-3-319-02444-8_42
http://dx.doi.org/10.1007/978-3-642-22993-0_50
http://dx.doi.org/10.1007/978-3-642-22993-0_50
http://dx.doi.org/10.1007/978-3-662-46681-0_48
http://dx.doi.org/10.1016/j.ic.2014.01.002
http://dx.doi.org/10.1109/BIBE.2012.6399719

[Sch14] Stefan Schwoon. Mole. http://lsv.ens- cachan.fr/~schwoon/tools/
mole/. 2014 (cit. on p. 77).

[Sch86] Alexander Schrijver. Theory of linear and integer programming. New York, NY, USA: John
Wiley & Sons, Inc., 1986 (cit. on p. 12).

[SLS98] Danbing Seto, John P. Lehoczky, and Lui Sha. “Task Period Selection and Schedulability in
Real-Time Systems”. In: RTSS. Madrid, Spain: IEEE Computer Society, 1998, pp. 188–198. doi:
10.1109/REAL.1998.739745 (cit. on p. 90).

[Spu96] Marco Spuri.Analysis of Deadline Scheduled Real-Time Systems. Research Report RR-2772. Pro-
jet REFLECS. INRIA, 1996 (cit. on p. 87).

[Su+16] Guoxin Su, Yuan Feng, Taolue Chen, and David S. Rosenblum. “Asymptotic Perturbation
Bounds for Probabilistic Model Checking with Empirically Determined Probability Param-
eters”. In: Transactions on Software Engineering 42.7 (2016), pp. 623–639. doi: 10.1109/TSE.
2015.2508444 (cit. on p. 99).

[Sun+09] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. “PAT: Towards Flexible Veri�cation un-
der Fairness”. In: CAV. Ed. by Ahmed Bouajjani and Oded Maler. Vol. 5643. Lecture Notes
in Computer Science. Grenoble, France: Springer, 2009, pp. 709–714. isbn: 978-3-642-02657-7.
doi: 10.1007/978-3-642-02658-4_59 (cit. on p. 66).

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. “Parametric Model-Checking of
Stopwatch Petri Nets”. In: Journal of Universal Computer Science 15.17 (2009), pp. 3273–3304
(cit. on pp. 8, 49, 72, 73).

[Tra12] Louis-Marie Traonouez. “A Parametric Counterexample Re�nement Approach for Robust
Timed Speci�cations”. In: FIT. Vol. 87. Electronic Proceedings in Theoretical Computer Sci-
ence. Tallinn, Estonia, 2012, pp. 17–33 (cit. on p. 70).

[Tri99] Stavros Tripakis. “Verifying Progress in Timed Systems”. In: ARTS. Ed. by Joost-Pieter Katoen.
Vol. 1601. Lecture Notes in Computer Science. Bamberg, Germany: Springer, 1999, pp. 299–
314 (cit. on p. 78).

[TY01] Stavros Tripakis and Sergio Yovine. “Analysis of Timed Systems Using Time-Abstracting
Bisimulations”. In: Formal Methods in System Design 18.1 (2001), pp. 25–68. issn: 0925-9856.
doi: 10.1023/A:1008734703554 (cit. on p. 37).

[TYB05] Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. “Checking Timed Büchi Automata
Emptiness E�ciently”. In: Formal Methods in System Design 26.3 (2005), pp. 267–292. doi: 10.
1007/s10703-005-1632-8 (cit. on p. 78).

[Wan+06] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse. “System architecture
evaluation using modular performance analysis: a case study”. In: International Journal on
Software Tools for Technology Transfer 8.6 (2006), pp. 649–667. issn: 1433-2779. doi: 10.1007/
s10009-006-0019-5 (cit. on p. 90).

[Wan+14] Ting Wang, Jun Sun, Yang Liu, Xinyu Wang, and Shanping Li. “Are Timed Automata Bad for
a Speci�cation Language? Language Inclusion Checking for Timed Automata”. In: TACAS.
Ed. by Erika Ábrahám and Klaus Havelund. Vol. 8413. Lecture Notes in Computer Science.
Grenoble, France: Springer, 2014, pp. 310–325. doi: 10.1007/978-3-642-54862-8_21 (cit. on
p. 69).

114

http://lsv.ens-cachan.fr/~schwoon/tools/mole/
http://lsv.ens-cachan.fr/~schwoon/tools/mole/
http://dx.doi.org/10.1109/REAL.1998.739745
http://dx.doi.org/10.1109/TSE.2015.2508444
http://dx.doi.org/10.1109/TSE.2015.2508444
http://dx.doi.org/10.1007/978-3-642-02658-4_59
http://dx.doi.org/10.1023/A:1008734703554
http://dx.doi.org/10.1007/s10703-005-1632-8
http://dx.doi.org/10.1007/s10703-005-1632-8
http://dx.doi.org/10.1007/s10009-006-0019-5
http://dx.doi.org/10.1007/s10009-006-0019-5
http://dx.doi.org/10.1007/978-3-642-54862-8_21

[Wan+15] Ting Wang, Jun Sun, Xinyu Wang, Yang Liu, Yuanjie Si, Jin Song Dong, Xiaohu Yang, and
Xiaohong Li. “A Systematic Study on Explicit-State Non-Zenoness Checking for Timed Au-
tomata”. In: IEEE Transactions on Software Engineering 41.1 (2015), pp. 3–18. doi: 10.1109/
TSE.2014.2359893 (cit. on pp. 78, 79).

[ZNL16a] Zhengkui Zhang, Brian Nielsen, and Kim Guldstrand Larsen. “Distributed Algorithms for
Time Optimal Reachability Analysis”. In: FORMATS. Ed. by Martin Fränzle and Nicolas
Markey. Vol. 9884. Lecture Notes in Computer Science. Quebec, QC, Canada: Springer, 2016,
pp. 157–173. doi: 10.1007/978-3-319-44878-7_10 (cit. on p. 47).

[ZNL16b] Zhengkui Zhang, Brian Nielsen, and Kim Guldstrand Larsen. “Time optimal reachability anal-
ysis using swarm veri�cation”. In: SAC. Ed. by Sascha Ossowski. Pisa, Italy: ACM, 2016,
pp. 1634–1640. doi: 10.1145/2851613.2851828 (cit. on pp. 47, 68).

115

http://dx.doi.org/10.1109/TSE.2014.2359893
http://dx.doi.org/10.1109/TSE.2014.2359893
http://dx.doi.org/10.1007/978-3-319-44878-7_10
http://dx.doi.org/10.1145/2851613.2851828

	Introduction
	Preliminaries
	Parametric timed automata
	Clocks, Parameters and Constraints
	Parametric Timed Automata
	Subclasses of PTAs

	Decision and computation problems
	Decision problems
	Computation problem

	A semi-algorithm for reachability synthesis
	A semi-algorithm for trace set preservation synthesis

	Decidability and expressiveness of parametric timed automata
	Exploring the jungle of decidability results
	Almost everything is undecidable for simple PTAs
	Bounding the numbers of clocks and parameters
	L/U-PTAs

	Expressiveness of parametric timed automata
	A new subclass: Integer-point parametric timed automata
	Defining the expressiveness of parametric timed automata
	Comparison of the expressiveness of subclasses of PTAs

	Decidability of parametric timed automata
	EF-emptiness
	AF-emptiness
	EG-emptiness
	AG-emptiness
	Nesting quantifiers
	Cycle-existence emptiness
	Deadlock-freeness emptiness and synthesis
	Language and trace preservation
	The one-clock case
	Summary of decision problems

	Perspectives

	Efficient verification
	Convex state merging
	Dynamic clocks elimination
	Guaranteeing termination with the integer hull
	Context and objective
	A parametric extrapolation
	Ensuring termination of parameter synthesis
	Implementation

	Towards distributed parameter synthesis
	The behavioral cartography
	Distribution policies

	EF-synthesis using reachability preservation
	Reachability preservation
	EF-synthesis

	Compositional synthesis for parametric event-recording automata
	Parametric event-recording automata
	Learning event-recording automata
	Compositional verification of event-recording automata
	Compositional parameter synthesis

	Perspectives

	Synthesis algorithms
	Parameter synthesis and robustness
	Varying the definition of robustness
	Precise robustness in time Petri nets
	Robustness and partial orders

	Non-Zeno synthesis
	CUB-parametric timed automata
	Non-Zeno synthesis

	Combining timing parameters with action parameters
	Parameter synthesis in probabilistic models
	Consistency in interval probabilistic timed automata
	Consistency synthesis in parametric interval probabilistic timed automata

	Perspectives

	Application to parametric schedulability
	Parametric schedulability analysis
	Schedulability analysis using parametric stopwatch automata
	Experiments and comparison

	Parametric task automata: A unified formalism for uniprocessor schedulability
	Decidability and undecidability
	Synthesis

	The Thales FMTV challenge
	Challenge description
	Solution using IMITATOR

	Perspectives

	Conclusion

