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de beaucoup de patience lorsque je lui enlevais son mari à des heures et des jours indus pour
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Avec Franck Laloë, grand physicien quantiste et clarinettiste amateur, nous avons abondam-
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nombreuses personnes issues d’autres milieux m’ont apporté leur soutien. Parmi celles-ci, men-
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Avant-propos

Ce mémoire de thèse est assez atypique à plusieurs titres. Tout d’abord, il a été rédigé
par un musicien (muni d’un simple bac scientifique) qui s’est formé à l’acoustique de manière
autodidacte, sans avoir jamais suivi un seul cours sur les bancs des amphithéâtres des universités.
Il résume certains travaux menés au cours des 17 dernières années, dont la plupart ont été réalisés
sans imaginer qu’ils seraient un jour réunis pour fournir la matière des premiers chapitres de ce
mémoire. L’étendue du sujet traité est aussi assez inhabituelle, puisqu’elle concerne en réalité
tout le domaine de l’acoustique de la clarinette.

Il convient de relater l’enchâınement de circonstances qui m’ont amené à rédiger ce mémoire.

Mon activité professionnelle au début de ma carrière était essentiellement centrée sur la
pratique et l’enseignement de la musique, en particulier autour des instruments historiques. Ce-
pendant, depuis l’obtention de mon Baccalauréat en 1982, je n’ai jamais perdu contact avec les
activités scientifiques. En particulier, lors de mes études musicales à Bâle, j’ai entretenu une
collaboration soutenue avec mon regretté ami, l’archéozoologue Philippe Morel. J’ai réalisé plu-
sieurs études dans des domaines aussi divers que l’ornithologie 1, l’ostéologie [165], l’archéologie
[123] et la spéléologie, dont certaines ont fait l’objet de publications. Ces travaux m’ont per-
mis d’acquérir un certain nombre de connaissances scientifiques qui se sont révélées utiles pour
mes études acoustiques, notamment les techniques d’analyse statistique (analyse en composantes
principales, analyse discriminante, cluster analysis, etc. . . ). Cette période de ma vie a également
été marquée par une activité semi-professionnelle en tant que programmeur-analyste, au cours
de laquelle j’ai réalisé divers projets :

— Pour Ph. Morel, j’ai développé entre 1986 et 1990 une suite de logiciels d’analyse très per-
formants pour l’époque : Archeos. Ces logiciels ont été réalisés � sur mesure �, de manière à
optimiser son travail d’acquisition et d’analyse des données ostéologiques. Un grand soin a
été accordé pour permettre une saisie des données efficace et j’ai développé langage de pro-
grammation et un compilateur permettant de définir des analyses complexes de la banque
de données. A l’époque, mon logiciel était environ 100 fois plus rapide à l’analyse que celui
utilisé par le Laboratoire de Préhistoire de l’Université de Bâle, grâce à une structure per-
mettant un compactage maximal des données. Ce gain de temps était alors très précieux :
une analyse s’effectuait en quelques minutes au lieu de plusieurs heures, pour des fouilles
d’une certaine ampleur, comme celle du campement magdalénien de Champréveyres [122].

— En 1988, un projet de l’Université de Berne [199] m’a chargé de développer une carte
d’acquisition des cris de chauve-souris (à l’époque, ces cartes étaient d’un prix prohibitif),
ainsi que le logiciel autorisant une détermination automatique des espèces, d’après des
mesures de fréquence instantanées, au début, lors du maximum d’amplitude et à la fin du
cri, ainsi que les durées correspondantes.

— J’ai également développé un logiciel pour la correction des examens propédeutiques de
médecine de l’université de Bâle (questionnaires à choix multiples), au moyen d’un lecteur
optique. Ce logiciel a permis la correction des épreuves de médecine durant une bonne
dizaine d’années. J’ai adapté ce programme pour l’évaluation des examens cantonaux des
laborants de chimie.

1. En particulier des études sur les chouettes forestières comme la Chouette de Tengmalm (Aegolius funereus)
et la Chevêchette d’Europe (Glaucidium passerinum), que je poursuis encore actuellement, ayant développé un
logiciel assez performant de détection et détermination bioacoustique des chants d’oiseaux.
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vi Avant-propos

— En 1989, j’ai participé à l’élaboration d’une carte de santé sécurisée Sanacard. J’ai écrit
des logiciels permettant la saisie et le cryptage des données.

Tous ces travaux m’ont permis d’acquérir une certaine rigueur dans le développement de
programmes informatiques et dans la structuration des données. En outre, j’ai pu me familiariser
avec certaines méthodes mathématiques, mises en application dans mes logiciels.

Le projet Claripatch constitue le tournant décisif qui m’a amené à l’acoustique. L’origine
de ce projet remonte à l’an 2000, lorsque la Schola Cantorum Basiliensis (SCB) – institut où
j’enseigne la clarinette historique – décide de mettre sur pied un symposium en mai 2001 sur
le thème � la clarinette autour de 1800 �, en invitant une dizaine de chercheurs et de clarinet-
tistes de premier plan pour y contribuer. Pour ma part, j’ai réalisé une étude musicologique de
l’interprétation des œuvres pour clarinette de Carl Maria von Weber, suivie de la construction
d’un bec permettant de répondre aux exigences artistiques déduites des témoignages historiques
recueillis. En troisième lieu, la SCB m’a chargé de documenter ces recherches par un concert et
l’enregistrement d’un CD avec le pianiste Edoardo Torbianelli. Ce CD a obtenu plusieurs distinc-
tions discographiques (Diapason d’or, 10 de Répertoire, nommé deux fois CD du mois). Quelques
semaines avant l’enregistrement du CD, en septembre 2001, j’ai eu l’idée décisive qui a permis au
projet Claripatch de nâıtre. Comme il était devenu trop risqué de modifier le bec que j’avais mis
au point, j’ai imaginé de modifier virtuellement la courbure de la table en insérant une cale entre
l’anche et le bec. L’enregistrement a été réalisé avec un patch rudimentaire constitué de deux
lames d’acier trempé de 3 centièmes de mm d’épaisseur, fixées au bec avec de la graisse pour
liège (je vous laisse imaginer le goût et les traces de rouille laissées sur les anches). Dans les mois
qui ont suivi, j’ai développé l’idée, puis déposé un brevet le 31.12.2001 (aidé par la fondation
SOVAR pour la promotion économique). Ce brevet (numéro de publication WO2003056543 A1)
a été accordé aux Etats-Unis (US 6,921,853 B2), le 26.07.2005. Les demandes de brevet européen
et japonais ont été abandonnées en cours de procédure, en raison du modeste succès commercial
de l’invention.

Afin de déterminer le profil optimal des différents modèles, j’ai expérimenté plusieurs centaines
de prototypes, essayé des dizaines de modèles mathématiques pour tenter de comprendre com-
ment fonctionne une table de clarinette. J’ai pris conscience de l’extrême subtilité de sa courbure
et du nombre insoupçonné de formes qu’il est possible de lui donner : des modifications locales
de quelque 5 microns produisent des différences de sonorité très audibles. Ainsi sont nés, par
approximations successives, les huit modèles de patches commercialisés, après avoir cerné autant
de problèmes courants rencontrés avec les anches. L’aventure a continué ensuite sur un terrain
plus conventionnel, faisant appel au savoir-faire des écoles techniques et des écoles d’ingénieurs,
pour la conception et la réalisation de l’outillage permettant une production industrielle d’une
étampe de découpage, d’une bôıte de rangement faisant aussi office de bôıte à anches, un anneau
de positionnement et une � Clarimute � (une sorte de sourdine permettant d’exercer silencieu-
sement son embouchure). En 2004, Stephan Siegenthaler – un client fortuné, enthousiasmé par
mon invention - me proposa de fonder une société pour commercialiser ce produit. Ainsi est née
l’entreprise Claripatch S.A.

Le développement de ce produit a fait nâıtre chez moi le désir d’étudier de manière scientifique
le fonctionnement de cette invention et plus généralement, de comprendre l’acoustique de mon
instrument. Une motivation pédagogique m’a également incité à entreprendre cette étude : lors de
l’enseignement de la clarinette (et en particulier des instruments historiques), il n’est pas toujours
évident de poser un diagnostic correct. Est-ce l’anche, le bec, l’instrument ou la technique de
jeu de l’instrumentiste qui est déficient ? Je voulais aussi comprendre pourquoi il était si difficile
de trouver des anches répondant en tous points à mes attentes, dans l’espoir que la science
permettrait peut-être de répondre à cette question.

Au début de l’année 2003, j’ai commencé à m’intéresser aux travaux réalisés par les acousti-
ciens à propos de la clarinette et rapidement, j’ai pu nouer des contacts réguliers avec les meilleurs
spécialistes de la discipline, tout d’abord par courrier électronique, puis je me suis rendu pour
la première fois au LAUM en février 2004. En automne 2004, j’ai été sollicité par Claudia Fritz,
alors doctorante à l’IRCAM, pour l’aider dans le réglage de la bouche artificielles, dans le cadre
des expériences réalisées pour sa thèse. Une collaboration régulière s’est progressivement mise en
place, qui a donné lieu, après plusieurs années, à quelques publications dans des revues à comité
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de lecture.
Jean-Pierre Dalmont a su trouver les arguments et la persévérance nécessaire (à peu près

5 ans. . . ) pour me pousser à mettre de l’ordre dans mes travaux en pagaille et à en terminer
quelques-uns sous forme de mémoire de thèse, en m’incitant à solliciter une validation des acquis
professionnels, pour permettre mon inscription à l’université.

Voici l’origine de ce projet insensé, achevé à un âge où on songe ordinairement plus à terminer
sa carrière qu’à prendre un nouveau départ.

L’essentiel de mon activité dans le domaine de l’acoustique a été réalisée à titre purement
bénévole. J’ai cependant été engagé lors de 2 contrats de type post-doc dans le cadre des pro-
jets SDNS-AIMV (Systèmes Dynamiques Non Stationnaires - Application aux Instruments de
Musique à Vent) de 2011 à 2013 au LAUM et CAGIMA (Conception Acoustique Globale d’Ins-
truments de Musiques à Anches justes et homogènes), de 2013 à 2015 à l’IRCAM, en collabora-
tion avec l’entreprise Buffet Crampon. Depuis septembre 2012, j’enseigne en outre l’acoustique
musicale dans le cadre de la Haute-Ecole de Musique de Genève, site de Neuchâtel.
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Abrégé de la thèse

Ce mémoire de thèse est structuré en 5 parties traitant chacune d’un thème de recherche
différent. Les 3 premières parties examinent sous différents aspects les relations entre l’anche,
l’excitateur et le résonateur. Les 2 dernières parties tentent une synthèse des différents éléments
abordés.

Résumé de la Partie I

Cette partie traite de modèles simples analytiques pour des instruments de type clarinette.
Le comportement acoustique du résonateur cylindrique se résume à une fonction de réflexion
élémentaire - un simple retard - postulant ainsi que les pertes ne dépendent pas de la fréquence.
L’anche est réduite à une simple raideur linéaire sans inertie, venant buter sur le bec en obstruant
le canal. L’anche du modèle de Raman est si simple que les aspects mécaniques et aérauliques
sont complètement confondus. Les sons produits sont bien entendu caricaturaux, puisqu’il s’agit
d’une suite de créneaux (signal carré). Malgré cela, le modèle présente un certain intérêt, puisqu’il
est capable de prédire correctement les seuils de bifurcation et autorise un traitement analytique
permettant de délimiter les divers régimes de fonctionnement. L’excitateur est caractérisé par 2
paramètres essentiels : la raideur (les clarinettistes parlent de ”force de l’anche”) et l’ouverture
à pression d’air nulle. Le modèle établit une relation de récurrence permettant de prévoir l’état
acoustique de l’instrument à partir de son état au temps discret précédant, soit celui nécessaire
à un aller-retour de l’onde dans le résonateur. Les 2 Chapitres de cette partie sont constitués par
des articles publiés en 2010 et 2015.

Le Chapitre 1 revisite l’article de Dalmont et al. [35] ”An analytical prediction of the oscilla-
tion and extinction thresholds of a clarinet” en ciblant plus particulièrement l’effet des pertes. J’ai
en effet remarqué qu’un certain nombre de cas avaient été omis dans l’article initial, notamment
lorsque les pertes sont élevées. Il propose en outre une méthode de calcul nouvelle, beaucoup plus
concise, développée sur l’idée de mon coauteur, Jean Kergomard. Ce modèle est assez éclairant
également pour le musicien, parce qu’il délimite clairement certaines zones de fonctionnement
de l’instrument, en fonction de 2 paramètres de jeu contrôlés par l’instrumentiste : l’ouverture à
pression d’air nulle et le paramètre de perte (que le clarinettiste peut influencer partiellement au
moyen de sa lèvre, mais qui dépend aussi notamment de l’étanchéité des clés ou de la porosité
de l’instrument [14]). La connaissance de ces zones est très utile d’un point de vue pédagogique,
mais également pour perfectionner sa technique instrumentale.

Le Chapitre est focalisé sur les cycles limites correspondant au régime à 2 états, contrairement
à celui du Chapitre 2, focalisé sur les transitoires. Grâce à une formulation basée sur la différence
de pression entre la bouche et le bec, l’effet de la fonction non-linéaire sur la production du régime
à 2 états peut être analysé et en particulier le rôle des pertes. Un diagramme de fonctionnement a
pu être établi, délimitant plusieurs zones. Lorsque le paramètre d’embouchure adimensionné ζ est
petit, les pertes peuvent être trop importantes pour autoriser une production sonore. L’article
complète cette conclusion en ajoutant que pour ζ ≥ 1/

√
5, lorsque les pertes augmentent, la

bifurcation à l’émergence devient inverse, avant que le son ne disparaisse. L’instrument devient
alors plus difficile à jouer. Pour ζ plus petit que cette valeur, lorsque les pertes augmentent, on
passe directement d’une bifurcation directe à l’émergence, à l’absence de son.

Le Chapitre 2 traite des cartes itérées. Le modèle de Raman y est transcrit sous la forme
d’une fonction f qui lie l’onde progressive qui quitte le bec au temps n avec l’onde progressive

ix
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suivante, qui quittera le bec au pas de temps suivant, n + 1, soit le temps nécessaire à l’onde
pour effectuer un aller-retour dans le tuyau cylindrique. Le régime statique est caractérisé par
l’équation x = f(x) et le régime auto oscillant ordinaire à 2 états par l’équation x = f(f(x)).
Ce chapitre étudie la fonction f dans de nombreux cas de figure, en mettant l’accent sur les
régimes ”exotiques”, tels que les doublement de périodes, les cascades sous-harmoniques, les
intermittences et les régimes chaotiques.

On trouvera à la fin du Chapitre 2 un résumé en français sous la forme d’un article de congrès
qui reprend l’essentiel de l’article sous une forme plus concise.

Résumé de la Partie II

Cette partie traite de la caractérisation de l’excitateur de clarinette, en focalisant les études
sur le rôle de l’anche. Il s’agit de décrire de manière objective les différences observées entre
anches et de les projeter sur un modèle simplifié.

Le Chapitre 3 examine la question de la mécanique de l’anche d’un point de vue dynamique.
Il est constitué par un article paru en 2014. On étudie un panel de 55 anches par holographie.
On détecte les fréquences de résonance de l’anche (prise isolément, sans enroulement sur le bec
de clarinette) jusqu’à 20 kHz, soit approximativement les 15 premières résonances de l’anche.
Deux séries de mesures ont été effectuées, avec un taux d’hygrométrie différent.

Dans la première partie de l’article, on décrit les observations d’un point de vue statistique.
Les fréquences de résonance sont souvent hautement corrélées entre elles, particulièrement celles
des modes transverses et dans une moindre mesure, celles des modes de flexion. La force no-
minale de l’anche est étonnamment mieux corrélée avec les fréquences des modes transverses
qu’avec celle des modes de flexion. Les modes de flexion à l’intérieur d’une même série de mesure
présentent des fréquences relativement peu corrélées. Une analyse en composantes principales
(ACP) effectuée sur les fréquences de résonance identifie 4 facteurs capturant 91.2% de la va-
riance de l’échantillon. Les données peuvent donc être reconstituées à partir de 4 facteurs non
corrélés. L’effet du changement d’hygrométrie peut apparemment être décrit à l’aide d’un seul
facteur.

Dans la deuxième partie de l’article, on tente d’établir un modèle d’anche viscoélastique du
matériau composant l’anche qui permettrait d’expliquer les différences observées entre anches.
Le modèle numérique autorise une reconstitution satisfaisante des fréquences de résonances, par
combinaison linéaire avec des paramètres proches de ceux issus de l’ACP. Le module de Young
longitudinal ainsi que le module de cisaillement longitudinal/transverse sont exprimés en fonction
de la fréquence, à l’aide du modèle viscoélastique de Zener. Une corrélation élevée (de l’ordre de
0.96 à 0.98) est observée entre les paramètres du modèle et les facteurs ACP. La méthode proposée
permet de déterminer 3 paramètres mécaniques caractérisant le matériau composant l’anche, à
partir d’une seule série de mesures, effectuée avec une humidité correspondant à celle avec laquelle
les anches sont conditionnées à l’usine, dans leurs emballages scellés. Le quatrième paramètre
ne peut probablement pas être déterminé de manière reproductible, puisque l’exposition des
anches à l’air extrêmement sec du laboratoire d’optique n’a pas été contrôlée. Le même protocole
et le même modèle viscoélastique pourrait être utilisé pour mesurer d’autres types d’anches
simples (clarinette basse ou saxophone). Le changement de géométrie ne requiert qu’une nouvelle
estimation d’une série de coefficients à partir de simulations par éléments finis avec la nouvelle
géométrie. Bien que les modes d’ordre élevé ne jouent probablement aucun rôle décisif dans
le fonctionnement acoustique de la clarinette, l’étude montre qu’ils permettent de révéler la
structure intime du matériau composant l’anche. Ces paramètres pourraient aider à caractériser
le comportement des anches de clarinette.

Malheureusement, l’étude perceptive réalisée (de manière assez informelle) sur les anches
mesurées n’a pas permis d’établir un lien statistiquement très significatif avec les paramètres
dégagés. Cependant, la répétition de résultats � presque significatifs � montre que ces paramètres
ont probablement tout de même une relation avec le comportement musical des anches. Cette
étude a cependant eu le mérite de préparer le développement de la méthode décrite au Chapitre
suivant, qui a permis d’atteindre cet objectif.

Le Chapitre 4 propose une méthode de caractérisation expérimentale statique de l’excitateur
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de clarinette. On évalue deux quantités en fonction de la pression de lèvre et d’air appliquée sur
l’anche : la déflection mécanique à proximité de la pointe de l’anche et le débit d’air pénétrant par
le canal. La méthode utilise une bouteille à laquelle on connecte un bec de clarinette instrumenté.
A l’aide des lois de la thermodynamique, on peut évaluer à tout instant la quantité d’air présente
dans la bouteille. Lors du cycle de mesure, on crée tout d’abord une dépression dans la bouteille,
suffisante pour maintenir l’anche plaquée sur la table du bec durant plusieurs secondes. On mesure
ensuite la quantité d’air qui revient dans la bouteille en traversant le canal entre l’anche et le bec.
Au bout d’un instant, on observe une ouverture assez soudaine de l’anche et la pression ambiante
revient dans la bouteille. Le retour de l’air est cependant suffisamment lent pour qu’on puisse
considérer des conditions quasi statiques. La section aéraulique efficace est déduite en fonction
du débit mesuré, d’après la loi de Bernoulli. Lors de cette expérience, on mesure également la
déflexion mécanique de l’anche par capteur optique.

La méthode ”de la bouteille” permet une mesure très satisfaisante des caractéristiques de
l’excitateur de clarinette, en termes de précision et de reproductibilité. Un point doit cependant
encore être amélioré : la caractérisation des échanges thermiques avec la bouteille, qui a été
effectuée ici de manière empirique. Cette amélioration peut aussi passer par le développement
d’une bouteille ayant un comportement thermique moins critique pour la mesure.

Résumé de la Partie III

Cette partie traite de la simulation temps-réel du son de l’instrument par modèle physique,
en développant un synthétiseur permettant d’évaluer (entre autre) les différences de sonorité
en fonction de l’anche. Elle commence par l’élaboration d’un modèle d’anche réaliste, ayant un
comportement statique conforme aux mesures (et autorisant une transformation aisée en un
modèle dynamique, simple et efficient), puis se concentre sur l’analyse modale de la colonne
d’air des instruments à vent (approches 1) impédance d’entrée et 2) guide d’ondes), résultat de
ma collaboration au projet CAGIMA. Ma tâche au sein de ce projet consistait à développer les
techniques nécessaires au prototypage virtuel des instruments à vent. A partir de la géométrie
de l’instrument et des équations qui décrivent le comportement physique de l’instrument dans
le domaine spectral, il s’agit de développer une méthode d’estimation modale de l’impédance
d’entrée, des fonctions de transfert ou des fonctions des matrices de diffusion qui autorise une
simulation temps-réel, tout en garantissant la passivité de l’instrument simulé à toute fréquence.
Cette formulation dans le domaine temporel discret autorise une simulation du comportement
de l’instrument au moyen d’un synthétiseur. L’un des buts du projet CAGIMA est que le facteur
d’instrument puisse tester virtuellement son instrument d’un point de vue musical (justesse,
facilité d’émission, timbre) avant de construire un prototype réel.

Le Chapitre 5 propose une modélisation de l’excitateur à partir des mesures mécaniques
et aérauliques. Le modèle mécanique statique suppose que la déflection de l’anche en fonction
de la pression appliquée est une fonction décroissante et convexe pouvant s’approximer par
tronçons paraboliques. Le modèle statique peut être aisément converti en un modèle dynamique,
en ajoutant une masse et un amortissement, à l’aide du schéma de contact décrit par [25]. Le
temps de calcul lors de la simulation est à peine plus élevé que celui du schéma traditionnel
d’oscillateur linéaire à un mode. La section aéraulique est évaluée en fonction de la position de
l’anche à partir des mesures, par interpolation.

Le modèle proposé possède 3 propriétés intéressantes : 1) L’estimation des paramètres ne pose
aucune difficulté et se base sur des techniques standard d’optimisation. 2) Le modèle reproduit les
mesures statiques effectuées sur les anches avec une erreur standard typique de l’ordre de quelques
microns. 3) La simulation dynamique est efficiente et bien adaptée pour une simulation temps-
réel. Le calcul ne requiert que quelques multiplications et une racine carrée par pas de temps
(à part lors des transitions entre sections, où 2 évaluations sont nécessaires). Tous les tronçons
de la fonction sont simulés à partir du même historique. Le nombre de tronçons composant la
fonction d’approximation n’a pratiquement aucun impact sur le temps de calcul. Le temps de
recalcul aux transitions entre deux sections adjacentes est négligeable.

Le Chapitre 6 est constitué par un article soumis en 2017 à ”Applied Acoustics”. Il est
focalisé sur l’estimation modale de l’impédance d’entrée des instruments à vent et aborde en
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particulier le cas d’une impédance d’entrée mesurée à l’aide d’un pont d’impédance. Il décrit
comment des techniques d’analyse bien connues peuvent être mises en application, en évitant un
certain nombre de pièges. Un exemple d’application à la clarinette est donné, en détaillant des
algorithmes empiriques simples qui permettent de simuler les transitions entre doigtés et le son
externe à partir du son interne calculé dans le bec.

Cet article passe en revue de nombreux aspect liés à une représentation modale de l’impédance
d’entrée des instruments à vent. La méthode LSCE (Least Squares Complex Exponentials) est
un outil précieux dans ce contexte, mais une application à une impédance mesurée ou analytique
requiert certain nombre de précautions. Parmi les difficultés à résoudre, on peut citer : une
reconstruction physiquement acceptable en basse fréquence, l’implémentation de points fictifs
dans le domaine spectral de manière à assurer la passivité du filtre numérique à toute fréquence,
l’utilisation d’une arithmétique haute précision, suivant le nombre de modes demandés pour la
simulation. La méthode permet de dériver des filtres numériques précis dans la bande de fréquence
mesurée et passifs à toute fréquence, autorisant une synthèse temps-réel. Bien que la méthode
ait servi jusqu’ici uniquement à simuler des clarinettes, son efficacité pour l’estimation modale
de l’impédance d’entrée d’instruments tels que le saxophone, le cor, la trompette et le trombone
a été vérifiée.

Au Chapitre 7, la question de l’estimation modale est étendue au domaine des guide d’ondes.
Il propose une structure logicielle permettant la simulation d’instruments à vent en temps réel. Ce
logiciel permet de construire un synthétiseur, en assemblant les briques élémentaires de chaque
tronçon de l’instrument. Les obstacles principaux ont pu être levés, en utilisant une formulation
basée essentiellement sur les fonctions de réflexion et de transmission des matrices de diffusion
(ondes progressives), pour lesquelles les techniques développées au Chapitre 6 peuvent être ap-
pliquées. On peut ainsi dériver des filtres numériques qui sont à la fois précis dans la bande
de fréquence spécifiée et passifs à toute fréquence. Au besoin, ces filtres peuvent être convertis
aisément en filtres d’impédance ou d’admittance, moyennant 2 multiplications par pas de temps.
La simulation des réflectances de rayonnement est traitée, en cas de pertes linéaires ou non
linéaires. Les retards fractionnaires ont pu être éliminés, comme effet collatéral de l’estimation
modale, en les intégrant directement aux filtres numériques. Le problème des boucles sans délai
a également pu être résolu analytiquement pour chacune des jonctions proposées. Des modèles
d’excitateurs, de pavillons, de cheminées, de pistons et de coulisses ont été implémentés. Une
architecture logicielle orientée objet - basée sur une simulation segmentée de la colonne d’air,
où les segments sont liés au moyen de jonctions répertoriées dans un dictionnaire - y est pro-
posée. Ce dictionnaire implémente plus d’une douzaine de jonctions différentes (plus ou moins
sophistiquées, avec ou sans masse acoustique ajoutée, avec pertes linéaires ou non-linéaires). Le
logiciel gère également certains aspects pouvant être délicats à contrôler, comme celui des tran-
sitions entre doigtés (en régulant le degré d’ouverture de chaque cheminée latérale, ainsi que les
conditions d’embouchure nécessaires à la production de chaque note de la gamme).

Bien que le nombre de cas simulés soit assez restreint, le synthétiseur a permis d’obtenir
certains résultats musicalement convaincants. Des tests systématiques devraient être menés, qui
pourraient amener un lot d’observations intéressantes, comme par exemple celle-ci : l’aisance
d’émission du second régime (registre du clairon) est nettement améliorée par le modèle avec
pertes non-linéaires, particulièrement lors du jeu de grands intervalles. Ceci peut parâıtre sur-
prenant au premier abord, mais l’explication est logique. Les pertes non-linéaires contribuent à
atténuer la première résonance (à cause du débit élevé engendré dans la cheminée du trou de
registre lorsqu’on essaie de jouer le premier régime, ce qui cause des pertes importantes), alors
que la seconde résonance n’est pratiquement pas affectée (puisque le trou de registre est situé près
d’un nœud de pression du second régime, ce qui cause un débit peu important dans la cheminée
de registre et ainsi, des pertes non-linéaires faibles). En d’autre termes, le seuil d’oscillation du
premier régime est haussé par les pertes non-linéaires au-dessus de celui du second régime, qui
demeure pratiquement inchangé, ainsi l’oscillation démarre plus facilement sur le 2ème régime.

Il serait intéressant d’appliquer la méthode pour examiner une question récurrente des clari-
nettistes et hautböıstes : pourquoi les anches semblent-elle plus fortes en altitude qu’en plaine ? Le
synthétiseur permettrait de vérifier si la différence de densité de l’air est suffisante pour expliquer
l’effet constaté. A première vue, il semble que l’influence de ce paramètre devrait principalement
concerner les pertes non-linéaires au niveau des cheminées. Une densité plus élevée implique des
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pertes accrues, ce qui fait baisser le seuil de saturation, donnant ainsi l’impression que l’anche
est plus faible.

L’outil développé offre de nouvelles opportunités pour le développement d’instruments de mu-
sique à vent, particulièrement pour les personnes n’ayant pas un bagage acoustique important
(musiciens et facteurs d’instruments par exemple). Il permet de simuler la plupart des instru-
ments à vents, notamment ceux de la famille des cuivres et des anches faibles. Divers exemples
d’application sont donnés, notamment pour la simulation temps-réel d’une clarinette en sib Buf-
fet Crampon avec 28 tronçons et 22 cheminées latérales avec pertes non linéaires au niveau de
chaque trou. Des synthétiseurs peuvent être générés à partir de la géométrie de l’instrument, à
l’aide des méthodes décrites, en focalisant l’attention du développeur sur les aspects musicaux
(intonation, homogénéité du son et facilité d’émission, par exemple). Le but qui m’a été assigné
lors du projet CAGIMA a ainsi pu être atteint : le prototypage virtuel. Une intégration des
techniques développées au sein du projet PAFI (plate-forme d’aide à la facture instrumentale)
serait souhaitable.

Résumé de la Partie IV

Cette partie tente de faire une synthèse en réunissant les différents développements proposés,
par le biais d’une étude sur la jouabilité d’un panel d’anches de clarinette qui confronte mesures
physiques, évaluations musicales et synthèse sonore. Une méthode de caractérisation des anches
a pu être établie, qui permet de mesurer au moins 4 facteurs corrélés de manière significative
avec les évaluations musicales du clarinettiste.

Le Chapitre 8) confronte 3 types de données récoltées à partir d’un panel de 40 anches de
clarinette : i) mesures physiques objectives, incluant (pour chaque anche et embouchure) des
expériences statiques (mesures aérauliques, déflection mécanique et photographies du canal) et
une expérience dynamique (diagramme de bifurcation, établi sur un crescendo / decrescendo).
ii) évaluation musicales subjectives. L’auteur de ces lignes a joué ces mêmes anches à l’aveugle
(avant que les mesures ne soient analysées) et les a notées sur la base de 4 descripteurs différents.
iii) données issues de la synthèse sonore. Les modèles physiques développés dans la partie III
sont mis en application pour simuler les diagrammes de bifurcation.

Les questions centrales auxquelles répond ce Chapitre sont les suivantes : existe-t-il des in-
formations communes à toutes les données récoltées ? Quelle est leur nature et leur nombre ?
Est-ce que les corrélations détectées sont dues au hasard ? Existe-il un lien avéré entre les me-
sures objectives, les évaluations subjectives et les simulations ? Peut-on proposer aux facteurs
d’anches une caractérisation des anches qui repose sur cette base ? On répond à ces questions en
appliquant une technique statistique : l’analyse canonique des corrélations.

L’étude démontre le rôle essentiel de la statique de l’anche lors du jeu de l’instrument et
détaille la diversité et la complexité des comportements observés. Ces aspects concernent l’exci-
tateur (anche+bec+lèvre) considéré dans son entier et non pas uniquement l’anche seule, prise
isolément. Les photos du canal réalisées avec une anche neuve, en variant l’embouchure, ont une
valeur prédictive permettant d’envisager un tri des anches à l’usine, au moyen de procédures ra-
pides et automatisées. Ainsi, les facteurs d’anche pourraient proposer une catégorisation basée sur
le feed-back de leurs clients. En fonction des mesures effectuées à l’usine et du feed-back renvoyé
par les clients, il sera possible d’évaluer l’importance relative pour les musiciens de chaque facteur
objectif détecté par l’étude et vérifier s’ils permettent une classification du type bon/mauvais, va-
lide pour la majorité des musiciens ou si les préférences exprimées reflètent plutôt des préférences
stylistiques individuelles (ou l’utilisation d’un autre modèle de bec). Il reste encore à montrer
que les mesures réalisées immédiatement après fabrication sont bien représentatives de l’état de
l’anche une fois arrivée chez le client. En particulier, il faut vérifier si le facteur 2 qui caractérise
l’ouverture au repos est déjà mesurable à la fabrication ou s’il résulte d’une maturation du bois
post fabrication. Le cas échéant, un simple retablage permettrait de rendre plus jouables un cer-
tain nombre d’anches, en ajustant l’ouverture au repos. L’influence des déformations plastiques
au cours de la vie de l’anche devrait être analysée. Ceci permettrait probablement d’insuffler une
seconde jeunesse à certaines anches devenues trop fermées, qui devraient sinon être éliminées.

L’étude perceptive montre que les 4 descripteurs proposés sont corrélés de manière statisti-
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quement significative avec les 4 premiers facteurs objectifs détectés (soit 2 ou 3 de plus que ce
qui avait pu être prouvé jusqu’ici à partir de test perceptifs). Ces facteurs correspondent à : 1) la
raideur de l’anche, particulièrement dans sa partie médiane, 2) l’ouverture au repos 3) l’évolution
de la raideur entre la pointe et l’empeigne de l’anche et 4) les déformations plastiques de l’anche
rodée, liées à une différence de raideur entre les côtés et l’axe de l’anche. Les facteurs 5 et 6 sont
liés à des antisymétries de l’anche qui n’ont pas été ciblées par des tests perceptifs spécifiques
(différence de raideur entre les côtés et torsion (plastique) de l’anche). On relèvera que ce lien
significatif a été établi en comparant des mesures objectives (essentiellement statiques), réalisées
sur des anches sèches, au jeu par un clarinettiste de ces mêmes anches à l’état humide. Les ca-
ractéristiques mises à jour permettent de saisir pourquoi des descripteurs vagues comme ”qualité
globale” ou ”brillance” sont mal adaptés, notamment parce qu’ils ne tiennent pas compte des
multiples influences (antinomiques) qui entrent en compte. Des descripteurs plus raffinés pour-
ront être proposés, grâce notamment l’utilisation de la synthèse sonore et aux indications précises
sur les différences de fonctionnement entre anches fournies par les photos du canal. Ces photos
fournissent aussi au clarinettiste des renseignements précieux sur les corrections qu’il est possible
d’apporter à l’anche par grattage, soit en construisant son propre banc d’essai (comportant un
bec, une lèvre artificielle et un appareil de photo), soit en fonction des différences perceptives
notées. Le fabricant de becs peut aussi s’inspirer des techniques développés pour optimiser la
forme de la table en fonction d’un modèle d’anche particulier (ou pour développer un intercalaire
de type Claripatch permettant d’adapter la table du bec à l’anche jouée).

Les simulations ont permis de valider très grossièrement la pertinence des modèles physiques
développés. Une optimisation plus poussée des paramètres permettant une meilleure adéquation
entre mesures et simulations doit être réalisée et une comparaison plus fouillée des signaux
doit être entreprise. Il s’agit aussi de clarifier quel est l’ingrédient manquant au modèle d’anche
pour obtenir une meilleure adéquation avec les CGS des signaux d’anche mesurés. Malgré cela,
le modèle d’anche non linéaire 1D proposé semble assez représentatif du comportement réel de
l’anche. La modélisation du bec doit également être examinée. L’hypothèse usuelle - qui l’assimile
à un cylindre de volume équivalent - doit être révisée, parce que l’évolution spectrale des signaux
est mal reproduite par ce modèle simplifié. Les simulations réalisées à partir d’un relevé de perce
d’une clarinette Buffet Crampon montre de manière convaincante que le réalisme des signaux
synthétisés dépend de manière assez sensible de la géométrie retenue pour simuler le bec.

Le Chapitre 8 présente avant tout des études à caractère exploratoire, réalisée avec un bec
”Vandoren M30” et des anches ”Vandoren classic”. Certaines directions importantes ont pu être
mises en évidence, mais elles doivent encore être confirmées et approfondies par une étude plus
détaillée et plus rigoureuse, comportant plusieurs types de becs et d’anches. En particulier, une
étude de la mécanique de lèvre doit encore être réalisée.

Résumé de la Partie V

Cette partie est consacrée aux conclusions générales et aux perspectives. Elle dresse un bilan
rétrospectif des recherches effectuées durant presque deux décennies, relaté au Chapitre 9 et
traduit en français in extenso ci-après.

Conclusions générales, en forme de postface

Les travaux que menés sur l’acoustique de la clarinette au cours de ces 17 dernières années ont
permis d’effectuer un certain nombre de progrès intéressants, non seulement pour l’acoustique
mais également pour les musiciens. A l’époque, il me semblait évident que les modèles d’anche
développés par les acousticiens (comme celui décrit au Chapitre 1) ne pouvaient pas refléter
toute la subtilité du problème de l’anche et que ces modèles ne permettraient pas d’orienter une
caractérisation objective des anches différente de celle qui est proposée depuis des décennies par
les facteurs d’anches, à savoir par la mesure de la ”force” de l’anche. Ce soupçon s’est révélé
fondé : une part du mystère qui entourait le problème de l’anche a pu être levé, réconciliant ainsi
la perception du musicien avec une modélisation assez réaliste du problème physique, tout en
restant relativement simple et efficiente à simuler.
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La réalisation de cette tâche n’a pas été facile, parce qu’elle a nécessité tout d’abord des
années de formation autodidacte en acoustique, pratiquement sans aide extérieure, essayant de
lire et comprendre de nombreux articles et ouvrages, butant parfois des semaines durant sur
quelques phrases que je n’arrivais pas à saisir, sur une coquille dans une équation ou sur une
notation ambiguë, essayant de refaire certains calculs, avant d’être finalement en état de réaliser
ma première étude digne d’intérêt.

Les premiers travaux réalisés sur le modèle de Raman m’ont montré la beauté d’un monde
mathématique riche, généré à partir de 2 équations apparemment très simples. L’utilité de ces
modèles théoriques pour les musiciens n’est pas évidente à démontrer, parce que les sons produits
sont très caricaturaux. S’ils ne permettent pas de faire véritablement la distinction entre le son
d’un klaxon et celui d’une clarinette, ils autorisent toutefois un certain nombre de conclusions
intéressantes sur les modalités de fonctionnement de ce type d’instruments. Les modèles analy-
tiques permettent d’expliquer pourquoi il est pratiquement impossible de jouer pianissimo avec
un instrument comportant des tampons défectueux, ne bouchant pas les cheminées de manière
étanche. Ils orientent l’instrumentiste et le pédagogue vers les techniques permettant de mâıtriser
le ”pianissimo magique” caractéristique de l’instrument, en modulant le paramètre de pertes au
moyen de la texture et de la position de la lèvre inférieure. La connaissance des modalités phy-
siques régissant le jeu de l’instrument est importante pour comprendre et enseigner correctement
certains aspects importants du contrôle du son par l’instrumentiste. La compréhension des rai-
sons précises qui autorisent ou interdisent tel ou tel comportement permet aussi de disculper
l’instrumentiste en toute bonne foi, sans obliger celui-ci à se justifier, en rejetant ordinairement
la faute sur l’anche. La découverte des sons ”exotiques” comme les doublements de période (mis
en évidence par divers auteurs bien avant mes travaux) fut aussi pour moi une révélation sur
l’utilité musicale de ces modèles théoriques simples.

Mes premières tentatives näıves de simuler certains aspects de la mécanique de l’anche à l’aide
du logiciel CATIA m’ont assez rapidement montré que le secret de l’anche ne pouvait pas résider
dans une manière particulière de vibrer, par exemple grâce à certaines relations harmoniques
privilégiées entre les premières résonances : la moindre modification des conditions aux limites
détruisait cet équilibre supposé optimal. Des simulations statiques du contact entre le bec et
l’anche ont été bien plus instructives et m’ont fait soupçonner qu’une part de la subtilité du
problème de l’anche résidait de ce côté-là. Malheureusement, au lieu de poursuivre mes recherches
dans cette direction, j’ai opté pour une étude qui s’est avérée finalement pas très fructueuse : la
piste de la viscoélasticité.

L’étude des résonances d’un panel par holographie a permis de révéler tout un bestiaire de
déformées, beaucoup moins régulier et symétrique qu’attendu par les simulations par éléments
finis, supposant le matériau idéalement homogène. Le modèle viscoélastique proposé permet
certes de reproduire certaines différences systématiques entre anches, mais les études explora-
toires menées pour tenter de faire un lien avec certains descripteurs musicaux subjectifs n’ont
pas conduit à des résultats très probants. La plupart des tests réalisés n’ont pas pu prouver
l’existence de liens statistiquement significatifs : la plupart du temps, les résultats étaient situés
dans la zone ”grise”, où il est difficile de se prononcer. Cependant, la répétition de ces résultats
”presque significatifs” indique qu’il y a probablement ”quelque chose” derrière les paramètres
mis en évidence. Le modèle proposé ne tient pas compte de l’inhomogénéité du matériau ni des
différences géométriques entre anches, qui sont inévitables, malgré tout le soin apporté à leur
manufacture. Il est toutefois possible que certains paramètres (du modèle viscoélastique) puissent
influencer le comportement de l’excitateur et ainsi jouer un rôle bien plus important qu’un simple
décalage fréquentiel de certains modes d’ordre élevé.

Les années qui ont suivi l’étude holographique ont permis de mettre au point un bec ins-
trumenté performant et de développer des logiciels d’acquisition et d’analyse du jeu de l’instru-
mentiste en temps réel (non décrits dans ce mémoire), dans le cadre du projet SDNS-AIMV. La
méthode mathématique d’approximation des équations différentielles, que j’ai nommée Extended
Discrete Singular Convolutions (EDSC), a été mise au point durant cette période. Initialement,
cette méthode devait servir à simuler le contact de l’anche avec la table de manière grossière et
simplifiée, autorisant un calcul temps-réel. Il s’est avéré qu’elle autorise en outre la résolution
numérique d’équations aux dérivées partielles fractionnaires ou un calcul des modes de poutre
et de plaque avec une précision inégalée, eu égard à la taille du maillage. Malheureusement,
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l’article qui lui a été consacré n’a jamais été finalisé et publié, bien que la majeure partie du
travail ait été réalisée. Le peu d’intérêt rencontré par cette méthode aux yeux des acousticiens
n’est probablement pas étranger à cet abandon. La publication du texte inachevé en annexe de
ce mémoire permettra peut-être de la sauver de l’oubli.

Le projet CAGIMA a orienté ensuite mes recherches dans une direction très différente : l’étude
du résonateur, par le biais des outils de l’analyse complexe, des transformées linéaires (Laplace, en
particulier), des décompositions modales et des filtres numériques. Les deux premières années du
projet ont avant tout constitué un apprentissage de ces méthodes, qui me semblaient initialement
hors de ma portée. Avec les moyens du bord, j’ai tenté une approche de ces domaines assez
hermétiques à l’intuition. Peu à peu, j’ai saisi comment ces domaines étaient interconnectés et
acquis certaines techniques permettant de les aborder avec plus de sûreté. Plus de deux ans
après la fin officielle du projet, j’ai finalement réalisé ce qu’on attendait initialement de moi :
le développement d’une méthode autorisant le prototypage virtuel des instruments à vent. Bien
qu’il reste encore passablement de travail à accomplir pour valider les méthodes développées
et achever l’élaboration d’un simulateur grand public, j’espère que mon apport sera finalement
utile à la communauté et qu’il pourra aider les facteurs d’instrument à concevoir de nouveaux
instruments, plus justes, plus homogènes et faciles à jouer.

Cette épopée s’achève avec la rédaction de ce mémoire, après près de trois années passées en
tant que doctorant de l’université du Maine, qui ont permis l’achèvement de certains projets et
leur mise au propre. Finalement, le ”secret” de l’anche a pu être partiellement percé, en abandon-
nant la piste quasi métaphysique de la ”vibration” de l’anche au profit d’une approche beaucoup
plus basique et terre à terre qui consiste à observer son comportement statique. La méthode ”de
la bouteille” permet une mesure précise et répétable des caractéristiques aérauliques statiques.
Cette méthode fonctionne de manière très satisfaisante, bien que certains progrès concernant la
mâıtrise et la modélisation des échanges de chaleur doivent encore être réalisés. Le bec instru-
menté développé quelques années auparavant, les améliorations apportés à la lèvre artificielle
mise au point par A. Muñoz et les dispositifs bricolés dans mon garage ont permis une mesure
fiable de la déflection de l’anche. Ces mesures ont été complétées par des photographies précises
du canal qui se sont révélées très instructives et assez faciles à interpréter, après traitement des
images par les méthodes développées. Une variété insoupçonnée de comportements a ainsi pu être
observée, accréditant ainsi les témoignages des clarinettistes au sujet de l’importante variabilité
des anches à l’intérieur des emballages vendus dans le commerce (d’une même marque, modèle
et force).

Une précision s’impose cependant au sujet de la ”vibration” de l’anche : l’étude a montré
l’importance des aspects statiques, mais cela ne signifie pas pour autant que les aspects dy-
namiques soient négligeables. Ils sont probablement intimement liés aux aspects statiques, par
l’intermédiaire du matériau constituant l’anche. Cet aspect ne doit pas être minimisé lors de la
recherche de matériaux alternatifs au roseau : il est important de reproduire non seulement le
comportement statique, mais également la fréquence de la première résonance de l’anche en ro-
seau ainsi que son amortissement, sans quoi l’anche ne donnera probablement pas satisfaction. Les
propriétés d’amortissement du roseau humide sont vraisemblablement importantes pour atténuer
toute vibration parasite de l’anche, sans entraver le maintien de l’oscillation de la colonne d’air.

La mise au point d’un modèle non linéaire d’anche (séparant clairement les aspects mécaniques
et aérauliques), conjuguée à l’architecture logicielle développée pour la simulation des guide
d’ondes (incluant des effets non linéaires au niveau des orifices et un modèle de bec plus réaliste)
a permis de vérifier qu’une partie importante du problème est maintenant scientifiquement sous
contrôle. Il reste bien entendu un certain nombre de points à améliorer pour parfaire l’adéquation
entre mesures et simulations (dont l’étude de la mécanique de lèvre), mais cet objectif semble
maintenant plus aisé à atteindre.

L’analyse canonique des corrélations atteste la présence d’un lien très fort entre toutes les
mesures physiques objectives réalisées à l’intérieur d’un panel de 40 anches. L’existence de plus
d’une dizaine de facteurs indépendants a pu être prouvée de manière statistiquement significa-
tive. La confrontation entre les mesures de bifurcation et les données issues de la synthèse sonore
a également montré l’existence de liens solides pour au moins 13 facteurs. L’un des points qui
me réjouissent le plus dans toute cette étude est la mise en évidence du fait que les 4 plus im-
portants facteurs objectifs détectés sont corrélés de manière statistiquement significative avec les
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évaluations subjectives réalisées par le clarinettiste. Cela ouvre la voie à une sélection automatisée
des anches, réalisée directement à l’usine. La nature des descripteurs évalués, la comparaison avec
les diagrammes de bifurcation mesurés et les mesures statiques réalisées permettent d’orienter les
recherches dans des directions négligées jusqu’ici, mettant en évidence le caractère ambivalent de
certains descripteurs, lorsque le contexte d’évaluation n’est pas clairement défini. Ces approches
éclairent de manière pertinente l’échec relatif de certaines tentatives de caractérisation des anches
au moyen de descripteurs subjectifs trop vaguement définis.

Il reste à espérer que les faits révélés seront pris au sérieux par les fabricants d’anches,
qu’ils mettront en œuvre les techniques de caractérisation préconisées, les amélioreront et que
bientôt, les clarinettistes pourront sélectionner leurs anches d’une manière beaucoup plus précise
et efficace que par le passé. J’espère également que cette étude permettra une mise au point
facilitée de nouveaux modèles de becs ou d’anches, notamment lors de la mise en œuvre de
matériaux alternatifs au roseau.
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Introduction

The research studies presented in this dissertation are all related to my interrogations about
the clarinet reed (exciter) and its relationship with the sound production of the instrument
(resonator). Most of these researches have been initiated or realized without imagining that they
would be joined together someday as a PhD.

Traditionally, the Introduction consists in presenting the state of art in the concerned topic
of research before the beginning of the project. With the present project, this approach makes
little sense, because the topic of research is too broad (i.e. the acoustics of wind instruments and
of the clarinet in particular) and because the project started too long ago (about 2001). In this
dissertation, the state of art is presented succinctly for each subproject, at the beginning of each
chapter. The general structure of the project is the subject of this Introduction.

This dissertation is structured in 5 Parts dealing with different topics of research. The first 3
parts examine the relationships between the reed, the exciter and the resonator. The 2 last parts
try to do a synthesis of the findings. The global structure can be summarised as follow:

I) Study of the Raman model (considering the reed as a spring without inertia, characterized
by a linear stiffness and an opening at rest), investigating more particularly:

1) Effect of losses

2) Playing regimes

II) Characterization of clarinet reeds, examined under the following aspects:

3) Dynamic

4) Static

III) Real-time simulations by physical model of:

5) Exciter, according to measurements

6) Resonator, modeled by its input impedance

7) Resonator, modeled by waveguides

IV) Attempt of Synthesis:

8) Study of the playability of a reed panel

V) General conclusions:

9) Concluding reflections to the project

The first part deals with simple analytical models for clarinet-like instruments. The cylindrical
resonator is reduced to an elementary reflection function - a simple delay - postulating that
the losses do not depend on the frequency. The reed is reduced to a simple linear stiffness
without inertia, beating against the lay of the mouthpiece and obstructing the channel. The
reed of the Raman model is so simple that the mechanical and aeraulic aspects are completely
undistinguished. The sounds produced are of course caricatural (square signals). Despite this, the
model is of some interest since it is able to correctly predict the bifurcation thresholds and allows
an analytical treatment to delimit the various operating regimes. The exciter is characterized by
2 essential parameters: the stiffness (the clarinettists say ”strength of the reed”) and the opening
at zero air pressure. The 2 Chapters composing this Part consist of articles published in 2010
and 2015.

Chapter 1 revisits the article by Dalmont et al. [35] An analytical prediction of the oscillation
and extinction thresholds of a clarinet focusing in particular on the effect of losses. I noticed that
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a number of cases had been omitted in the original paper, especially when the losses are high.
The paper also proposes a new calculation method, much more concise, developed on an idea of
my coauthor, Jean Kergomard. This model is quite enlightening also for the musician, because it
clearly delimits certain operating regimes of the instrument, according to 2 playing parameters
controlled by the instrumentalist: the opening at zero air pressure and the loss parameter (that
the clarinettist can influence partially by means of its under lip, but which also depends in
particular on a possible leakage of a keypad or on the porosity of the instrument [14]).

Chapter 2 deals with iterated maps. The Raman model is transcribed in the form of a function
f that links the travelling wave that leaves the mouthpiece at time n with the next travelling
wave, which leaves the mouthpiece at the next time step, n + 1, i.e. the time required for the
wave to make a round trip in the cylindrical pipe. The static regime is characterized by the
equation x = f(x) and the usual two-state oscillating regime by the equation x = f(f(x)). This
chapter examines the function f in many cases, with emphasis on ”exotic” regimes, such as
period doubling, subharmonic cascades, intermittencies and chaotic regimes.

The second Part deals with the characterization of the clarinet exciter, focusing the studies
on the role of the reed. Its main goal is to objectively describe the differences observed between
reeds and to project them on simplified models.

Chapter 3 examines the question of reed mechanics from a dynamic point of view. It is
constituted by an article published in 2014. We study a panel of 55 reeds by holography. The
resonance frequencies of the reed (taken alone, without lip and without bending against the
mouthpiece lay) are detected up to 20 kHz (approximately the first 15 resonances of the reed).
In the first part of the article, the observations are described from a statistical point of view. In
the second part, we try to establish a viscoelastic reed model, which would explain the differences
observed between reeds.

Chapter 4 proposes a method of experimental characterization of the clarinet exciter. Two
quantities are evaluated as a function of the lip and air pressure applied to the reed: the me-
chanical deflection in the vicinity of the reed tip and the air flow entering through the channel.
The method uses a bottle connected to an instrumented clarinet mouthpiece. The thermody-
namical laws allows the evaluation of the quantity of air present in the bottle at any moment.
The measuring cycle starts with creating a moderate vacuum in the bottle, sufficient to maintain
the reed tightly bent against the lay for several seconds. The amount of air returning into the
bottle through the channel is measured. After a while, the sudden opening of the reed occurs
and the ambient pressure is recovered in the bottle. However, the return of the air is slow enough
to consider quasi-static conditions. The effective aeraulic section is deduced from the measured
flow, according to Bernoulli’s law. During this experiment, the mechanical deflection of the reed
is also measured by optical sensors.

The third Part deals with the real-time simulation of wind instrument by physical models
and describes a synthesizer allowing to evaluate (among others) the sound expected for each
reed. This Part begins with the development of a realistic, static reed model, in accordance with
the measurements (and extended to a simple and efficient dynamic model). The next Chapter
focuses on the modal analysis of the input impedance of the air column of wind instruments, as
a result of my collaboration with the CAGIMA [132, 133, 73, 72, 74, 75, 29, 26, 28, 30, 27, 71]
project. My task in this project was to develop the techniques needed for the virtual prototyping
of wind instruments. From the geometry of the instrument and the related physical equations
in the spectral domain, a method is described for the modal estimation of the input impedance,
transfer functions or scattering functions, allowing a real-time simulation, while ensuring the
passivity of the simulated instrument at any frequency. This formulation in the discrete time
domain allows a simulation of the the instrument by means of a synthesizer. One of the goals of
the CAGIMA project is to provide tools to the instrument maker allowing to test virtually its
instrument from a musical point of view (intonation, ease of emission and timbre) before building
a real prototype.

Chapter 5 proposes a model of the exciter, according to the mechanical and aeraulic mea-
surements. The static, mechanical model assumes that the deflection of the reed (with respect
to the applied pressure) is a decreasing, convex function that can be approximated by piecewise-
parabolic sections. The static model can be easily converted into a dynamic model, adding mass
and damping, using the dynamic contact scheme described in [25]. The computation cost of the
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simulation is only slightly higher than that of the traditional one-mode linear scheme. The aer-
aulic section is evaluated with respect to the position of the reed from the measurements, by
interpolation.

Chapter 6 consists of an article submitted in 2017 to ”Applied Acoustics”. It focuses on
the modal estimation of the input impedance of wind instruments and deals in particular with
the case of a measured input impedance. It describes the application of well-known analytical
techniques, avoiding a number of pitfalls. An example of application to the clarinet is given,
detailing simple empirical algorithms that simulate: i) the transitions between fingerings and ii)
the external sound from the internal pressure calculated in the mouthpiece.

In Chapter 7, the question of modal estimation is extended to waveguides, in particular for
a modal estimation of the scattering matrices. A theory of reflection and transmission functions
is developed, focused on the transposition of analytical expressions (in the spectral domain) into
digital filters expressed in the discrete time domain. It is shown how these digital filters can be
adapted to simulate an impedance or admittance relationship. The simulation of the radiation
reflectance is examined in the case of linear and nonlinear losses. An object-oriented software
architecture - based on a segmented simulation of the air column, where the segments are linked
by means of junctions (listed in a dictionary) - is proposed. This software allows to someone with
almost no acoustic knowledge to build its own simulator, by assembling the elementary bricks of
each section of the instrument. Simplified procedures simulate the transitions among fingerings,
by managing the degree of opening of each lateral chimney. Models of valves and slides are given.
This software can simulate the majority of the wind instruments, in particular those of the brass
and the weak reed families. Various application examples are given, in particular for the real-
time simulation of a Buffet Crampon Bb clarinet, with 28 sections and 22 lateral chimneys (and
nonlinear losses at each tonehole).

The fourth Part attempts to summarize the proposed developments, through a study on the
playability of clarinet reeds that confronts objective physical measurements, subjective musical
evaluations and data from sound synthesis, trying to reproduce an experiment conducted with
the artificial mouth.

Chapter 8) confronts 3 types of data collected from a panel of 40 clarinet reeds: i) Objective
physical measurements, including (for each reed and embouchure) static experiments (aeraulic
measurements, mechanical deflection and channel photographs) and a dynamic experiment (bi-
furcation diagram, established on a crescendo / decrescendo). ii) Subjective musical evaluations:
the author played these same reeds blind (before analysis of the measurements) and scored them
on the basis of 4 different descriptors. iii) Sound synthesis: physical models developed in Part III
are used to simulate bifurcation diagrams.

The central questions addressed in this Chapter are the following ones: Are some factors
common to all collected data blocks? Which are their nature and number? Are the detected
correlations due to chance? Is there a statistically proven link between objective measurements,
subjective evaluations and simulations? Can the reeds be characterized on the basis of the de-
tected factors? These questions are answered by applying a statistical technique: the canonical
correlation analysis (CCA).

The fifth part, Chapter 9, is devoted to the general conclusions and future work. The con-
clusions have the character of a postface, reflecting the experience accumulated during this very
long project. The factual conclusions are located at the end of each chapter.

Didactic introduction to the field of research

This section is written for readers with limited experience in clarinet acoustics.
The basic operation of the instrument is explained graphically, by simulating the physical

behavior of the instrument. These graphs will help the reader to intuitively understand how the
instrument works and allow to get an idea about the kind of problems that had to be solved
in order to perform such very realistic simulations. Moreover these examples will allow him to
grasp the practical utility of the tools developed.

The Fig. 1 presents a simulation of a playing clarinet, which was performed by using most of
the methods developed in the present PhD, namely:
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Figure 1 – Simulation of one period of the self-oscillation of a clarinet. The playing frequency is
about 238 Hz. The 14 successive pictures schematize the physical state of the instrument in

time steps of 1/14 of period (i.e. about 0.3 ms). The pressure in the instrument is indicated by
a color code, from red (overpressure of 4200 Pa) to blue (underpressure of -4200 Pa). The

blowing pressure in the mouth (red square on the left) is 4200 Pa. The thin vertical black lines
delimit air particles having all the same initial volume. The position of the reed is represented
by a green rectangle. Below the reed, the channel allows the air to pass from the mouth into

the instrument.

— The reed is simulated according to the measurements of a real (”bad”) reed from the panel
studied in Chapter 8, measured with the method presented in Chapter 4 and simulated
with the method presented in Chapter 5.

— The instrument is simulated in real time with the waveguide technique described in Chapter
7, using the modal estimation described in Chapter 6, incorporating nonlinear losses at the
output of the instrument, as developed in Appendix A and with the software described in
Appendix B.

Actually, the simulated instrument is simply a cylinder of d = 15 mm diameter and of length
L =35 cm (although the developed methods allow a realistic simulation of a full clarinet). The
Fig. depicts one cycle of oscillation (i.e. one period). The pressure p(t, x) in the instrument is
indicated by a color code, from red (overpressure) to blue (underpressure). Waves travel inside
the instrument at the speed of sound (i.e. much faster than the air particles). A period consists
of 4 travels of the wave in the instrument: a round trip of the underpressure wave and a round
trip of the overpressure wave. Note that the playing frequency fplay =238.36 Hz is reasonably
well foreseen by the formula fplay = c/(4(L + 0.8d)) = 239 Hz, where c ' 346 m/s is the speed
of sound at 25◦C (as in the simulation). The displacement of the thin vertical black lines makes
it possible to follow the displacement of the air particles in the air column, from which the flow
rate u(t, x) can be deduced.

The Fig. 2 presents exactly the same simulation, but the time t is coded by colors (hue) and
the longitudinal coordinate x and the physical parameters are represented respectively on the
abscissa and ordinate axes. The period is divided in 2 halves (as in the precedent Fig.) which
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Figure 2 – Same simulation than Fig. 1, with the difference that the time t is coded by a
circular code of colors (hue) and the physical parameters are depicted on the ordinate axis. The
time elapsed between each successive curve is 0.09 ms. The period is divided in 2 halves as in
Fig. 1 (columns of the Fig.). The first row presents the pressure in the instrument p(t, x) as a
function of the x coordinate along the instrument (x = 0: mouthpiece, x = 35 mm: output).

Similarly, the 2nd row presents the flow rate in the instrument u(t, x).

form the columns of the Fig. The first and the second rows depict respectively the pressure p(t, x)
and the flow rate u(t, x) in the instrument.

The Fig. 3 presents once more the same simulation, but x is coded by the colors of the
avocado and the time t and the physical parameters are represented respectively on the abscissa
and ordinate axes. The evolution of the following parameters is presented: p(t, x), u(t, x), z(t)
(deflection of the reed, 6 mm from tip) and S(z(t)) (effective section of the channel through
which the air enters into the instrument, also called aeraulic section of the channel).

The simultaneous examination of these 3 Figs. allows to understand intuitively what is hap-
pening in the instrument.

Let’s first look at the reed. Its position is determined by the difference of pressure between
mouth and instrument and also by the embouchure (which is here quite tight: the clarinettist
compresses the reed pretty strongly with the lips). When the pressure drop is small (red against
orange) the reed is open. It can be seen that it never completely closes the channel, even when
the pressure drop across the reed is large (red against blue). A small leak is always present.
This leak has a noticeable influence on the efficiency of operation of the instrument: the peak
amplitude of the pressure in the mouthpiece is only 70% of that of the blowing pressure (while in
the theoretical models, when the reed closes hermetically the channel during half of each period,
it should be around 100%, see Chapters 1 and 2). This low efficiency is probably one of the
reasons because the clarinettist did not appreciate this reed (R14) for playing the beginning of
the Poulenc Sonata or the ”Hirt auf dem Felsen” by Schubert (see Chapter 8). When the reed
is open, the pressure in the instrument is never exactly equal to the pressure in the mouth:
the generated flow helps to compensate the losses in the instrument, so as to maintain the self-
oscillation of the instrument. Note that the relationship between pressure p(t, x = 0) and reed
deflection z is not always linear: the stiffness of the reed increases when the channel is nearly
closed, while the open reed is quite linear. Each movement of the reed is followed by a few
(here quasi imperceptible) jolts, at the resonance frequency of the reed. These jolts are clearly
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Figure 3 – Same simulation than Fig. 1, with the difference that the time t is represented on
the abscissa axis, the physical parameters are depicted on the ordinate axis and the

longitudinal coordinate x is coded by the colors of the avocado, from dark (mouthpiece, x = 0)
to light (output, x = L), in steps of 25 mm.

observed on the measurements of the same reed with a looser embouchure on Fig. 8.8 (or the
theoretical simulation Fig. 5.3), where it is observed that the resonance frequency varies with
the deflection: it is notably higher when the channel is almost closed, because a reed bending
against the mouthpiece lay works like a stiffening spring.

Why is the zero position of the reed deflection z situated on the plane of the table of the
mouthpiece lay and not at the position where the reed closes the channel, as usual? This is
because the position of the reed is measured about 6 mm away from the tip of the reed. The reed
is therefore able to bend further inside the mouthpiece window, even if the channel is already
closed. The aeraulic section S(z) is considered as a nonlinear function of the reed deflection z.
This way, the mechanical problem (i.e. the jolts of the reed) is considered independently of the
aeraulic problem (how much air enters into the instrument). This nonlinearity can be observed
by comparing z and S on Fig. 3.

We examine now how the air enters into the instrument: it penetrates by blows, mainly when
the reed is open and the air flow reaches its highest value when the reed initiates the closing
phase. It is determined by the Bernoulli’s law from the pressure drop across the reed and the
aeraulic section. The mean flow rate in the instrument is about 12 times lower than the maximal
flow rate at the output, respectively 0.113 and 1.360 liters per second, which corresponds to an
air speed of 0.64 and 7.7 m/s, in a pipe of 15 mm of diameter (i.e. much less than the speed
of sound). Note that at the open end of the pipe, the pressure is nearly zero. Fortunately, this
pressure is not strictly zero, otherwise no sound would be heard outside 2.

The principal aims of the study are to understand :

— how the reed interacts with the instrument

— what is the influence of the reed on the sound production

— how is it possible to select the reeds that best meet the expectations of the clarinettist

2. In this example, the peak-to-peak amplitude of the pressure signal is about 22.5 times smaller at x = L
than at x = 0. Notice the similarity between p(t, x) and u(t+ τ/4, L− x), with τ = 0.0042 s, the duration of one
period, especially when x is near 0 (dark green pressure curve and yellow flow rate curve in Fig. 3). Note also
that ∂tu(t, x = L) is roughly proportional to p(t, x = L).



7

General remark about the bibliography

The Chapters 1, 2, 3, 6 and the Appendices E and F have their own bibliography (since their
texts have been directly imported as pdf files), while all other parts of the text share a common
bibliography, located at the end of the document.



8 Introduction



Part I

Simple analytical Models for
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Chapter 1

An Analytical Prediction of the
Bifurcation Scheme of a
Clarinet-Like Instrument: Effects
of Resonator Losses

Résumé

Les relations entre les paramètres d’excitation et les régimes d’oscillation sont bien connues
pour les instruments à cordes. Une étude similaire a été tentée à propos des instruments à an-
che, dans l’optique d’en déduire certaines conséquences sur la facilité de jeu. Dans un modèle
minimal d’instrument type clarinette, trois paramètres sont pris en compte : i) la pression dans
la bouche, ii) l’ouverture de l’anche au repos, iii) la longueur du résonateur présumé cylin-
drique. Récemment, un paramètre supplémentaire a été ajouté : un paramètre de pertes dans
le résonateur (dans le modèle de Raman, on considère que ces pertes sont indépendantes de la
fréquence). Ceci permet d’expliquer l’extinction du son, lorsque la pression dans la bouche de-
vient très importante. Nos travaux continuent ceux de Dalmont et al. [35], cherchant à établir
un diagramme des régimes d’oscillation en fonction de l’ouverture de l’anche et du paramètre de
pertes. Nous avons développé une méthode de calcul alternative qui permet une généralisation
plus aisée et qui simplifie nettement les développements analytiques. Un accent particulier a été
mis dans l’étude d’un cas apparemment jamais investigué : lors de pertes importantes, la bifur-
cation à l’émergence peut être inverse, de manière similaire à celle à l’extinction, en cas de faibles
pertes. La plupart des calculs sont réalisés de manière analytique et permettent de mettre claire-
ment en évidence l’influence des différents paramètres. Nous avons tenté d’en déduire un certain
nombre conséquences musicales à propos des techniques de jeu à conseiller aux clarinettistes.

Cet article [170] est reproduit avec l’autorisation du coauteur et celle de l’éditeur S. Hirzel,
du 15 janvier 2018.
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Summary
The understanding of the relationship between excitation parameters and oscillation regimes is a classical topic
concerning bowed string instruments. The paper aims to study the case of reed woodwinds and attempts to
find consequences on the ease of playing. In the minimum model of clarinet-like instruments, three parameters
are considered: i) the mouth pressure, ii) the reed opening at rest, iii) the length of the resonator assumed to
be cylindrical. Recently a supplementary parameter was added: the loss parameter of the resonator (using the
“Raman model”, that considers resonator losses to be independent of frequency). This allowed explaining the
extinction of sound when the mouth pressure becomes very large. The present paper presents an extension of the
paper by Dalmont et al. (JASA, 2005), searching for a diagram of oscillation regimes with respect to the reed
opening and the loss parameter. An alternative method is used, which allows easier generalization and simplifies
the calculation. The emphasis is done on the emergence bifurcation: for very strong losses, it can be inverse,
similarly to the extinction one for weak losses. The main part of the calculations are analytical, giving clear
dependence of the parameters. An attempt to deduce musical consequences for the player is given.
PACS no. 43.75.Ef, 43.75.Pq, 43.75.-z

1. Introduction

The understanding of the relationship between excitation
parameters and oscillation regimes is a classical topic con-
cerning bowed string instruments: for instance Shelleng
[1], or Guettler [2], or Demoucron et al. [3] proposed 2D
diagrams with respect to either bow force and bow posi-
tion, or bow position and bow velocity. For reed instru-
ments, this kind of diagrams are less numerous: in [4],
Dalmont et al. proposed a diagram with respect to exci-
tation pressure and reed opening, and recently Almeida et
al. [5] proposed a diagram with respect to blowing pres-
sure and lip force, related to the reed opening.

In the minimum model of reed, clarinet-like instru-
ments, three parameters are considered: i) the mouth pres-
sure, ii) the reed opening at rest, iii) the length of the
resonator assumed to be cylindrical. In [4], a supplemen-
tary parameter was added: the loss parameter of the res-
onator (using the “Raman model”, that considers resonator
losses independent of frequency). This allowed explaining
the extinction of sound when the mouth pressure becomes

Received 03 January 2014,
accepted 15 May 2014.

very large. We notice that the agreement of the theoretical
results with experimental results was satisfactory (see [6]).

The objective of the present paper is to revisit the paper
by Dalmont et al. [4]: the focus is the search for a diagram
of oscillation regimes of reed instruments with respect to
two parameters: the reed opening, and the loss parameter.
The choice of these two parameters is justified by the fact
that the third parameter, the blowing pressure, is the easi-
est to modify for the instrumentalist. The elements of this
diagram were rather complete in [4], but phenomena oc-
curring for strong losses, especially at the emergence of
the sound, were not investigated.

The use of simplified models for the prediction of the
oscillation regimes is classical for musical instruments
producing self-sustained oscillations. For the calculation
of the instability thresholds, linearization was used (see
Wilson and Beavers [7] or Silva et al. [8]), while for ab
initio computation, the iterated map scheme was studied
(see Mc Intyre et al. [9], Maganza et al. [10], Taillard et
al. [11]). The interest of the model chosen in the present
paper is that analytical formulas are possible, given clear
dependence of the parameters (for other models, numer-
ical calculations could be possible by using similar ba-
sic ideas, using for instance continuation methods [12] or
time-domain methods [13, 14]).
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The analytical calculations presented hereafter are
slightly different from those of [4]. They also are limited
to the limit cycles corresponding to the two-state oscillat-
ing regime, but are based upon a generalization of the fact
that for this regime, when no losses are present, the flow
rate is a constant. This regime is the most similar to what
musicians consider as a “normal” sound. In particular the
method allows studying the character of the emergence
and extinction bifurcations of this regime, which are im-
portant properties related to the possibility to play pianis-
simo or not, and more generally to the ease of playing. In
[4] it was shown that the extinction bifurcation can be di-
rect or inverse (supercritical and subcritical, respectively,
see Refs; [15, 16, 17]); here it is shown that this is true
also for the emergence bifurcation.

In Section 2, the basic model of [4] is reminded (see
also [18]), and a treatment of the problem based upon a
unique quantity, the pressure difference Δp, is presented
in Section 3. This leads to a simple graphical analysis of
the two-state regime, explained in Section 4, yielding a
proof that it cannot exist with reverse flow, and an easy
calculation method. Then some blowing pressure thresh-
olds (stability, existence, . . . ) are calculated with respect
to the parameters of interest (loss, reed opening).

In Section 5 the thresholds related to the instability of
the regimes are calculated. Then by making two thresholds
equal, the mouth pressure can be eliminated and limits of
existence and stability of the static and two-state regimes
are found in Section 6: this allows drawing the diagram
sought. Finally a discussion is proposed concerning the ex-
istence of oscillating regimes (Section 7), with an attempt
to consider more realistic models and a discussion about
musical consequences.

2. The model and its parameters

We briefly remind the basic elements of the model, the
non-linear characteristic of the exciter, and the origin of
the iteration method, thanks to a simplified treatment of
the resonator.

2.1. Nonlinear characteristics of the entering flow

In a quasi static regime, the flow U entering the resonant
cavity is modeled with the help of an approximation of
the Bernoulli equation, as discussed e.g. in [19]. Compar-
ison with experiment can be found in [20]. We note Pint
the acoustic pressure inside the mouthpiece, assumed to
be equal to the one at the output of the reed channel, Pm
the pressure inside the mouth of the player. For small val-
ues of the difference,

ΔP = Pm − Pint, (1)

the reed remains close to its equilibrium position, and the
flow U is proportional to sign(ΔP ) |ΔP |; for larger val-
ues of this difference, the reed moves and, when the differ-
ence reaches the closure pressure Pc, it completely blocks

the flow (the reed is beating). These two effects are in-
cluded by assuming that if ΔP ≤ Pc the flow U is propor-
tional to sign(ΔP ) |ΔP | [Pc − ΔP ], and if ΔP > Pc, the
flow vanishes. Introducing the dimensionless quantities

p = Pint/Pc, u = UZc/Pc
γ = Pm/Pc, γc = Pc/Pc = 1, (2)

where Zc = ρc/S is the characteristic acoustic impedance
of the cylindrical resonator, having the cross section S (ρ
is the density of air, c the velocity of sound), we obtain

u = ζf (Δp), (3)

with

Δp = ΔP/Pc = γ − p, (4)

f (Δp) = 0 if Δp > 1, (5)

f (Δp) = sign Δp (1 − Δp) |Δp| if Δp < 1. (6)

The parameter ζ characterizes the intensity of the flow and
is defined as

ζ =
cSop

S

2ρ
Pc

, (7)

where Sop is the opening cross section of the reed chan-
nel at rest. ζ is inversely proportional to square root of the
reed stiffness, contained in Pc. In real clarinet-like instru-
ments, typical values of the parameters are γ ∈ [0, 1.5];
ζ ∈ [0.1, 0.5]; values ζ > 1 will not be considered
here, since they correspond to multi-valued functions to be
solved (see [11]), and this case does not seem very realis-
tic in practice for clarinet-like instruments. The function
f (Δp) is obviously non-analytic; it is made of three sepa-
rate analytic pieces, with a singular point at Δp = 0, and
its derivative is discontinuous at Δp = 1.

2.2. Resonator model

The resonator of length # is assumed to be cylindrical,
with zero terminal impedance. Using the d’Alembert de-
composition, a change in variables at the entry of the res-
onator can be chosen as

p(t) = p+(t) + p−(t), u(t) = p+(t) − p−(t), (8)

with the following relationship between incoming wave
p−(t) and outcoming wave p+(t):

p−(t) = −λp+(t − 2#/c), (9)

where λ is the loss parameter, assumed to be independent
of frequency. This is a strong assumption, necessary to ob-
tain square signals: for certain initial conditions, all quan-
tities remain constant in the time interval 2n#/c < t <
2(n + 1)#/c. The approximation is rough for certain char-
acteristics of the signal, such as the spectrum, but it is use-
ful for the study of the existence, stability and amplitude
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of the produced sound. With this assumption, the resonator
is characterized by a unique (recurrence) relation,

p−n = −λp+n−1, (10)

where 2#/c is the time unit. As discussed further in Sec-
tion 4.2.5, losses can occur either at the extremity (ra-
diation) or during propagation (e.g. in the boundary lay-
ers): in the latter case, if α is the attenuation constant per
unit length, λ = exp(−2α#), and the dimensionless input
impedance at zero frequency is

µ
def
= tanh(α#) =

1 − λ

1 + λ
, or λ =

1 − µ

1 + µ
, (11)

while the input impedance at the operating frequency is
1/µ. In what follows, the losses are characterized by the
parameter µ, varying between 0 (no losses) and 1 (very
strong losses, no wave reflection). This parameter, the reed
opening ζ and the mouth pressure γ are the three parame-
ters of the problem. Several combination parameters will
be useful,

β
def
= ζµ, β1

def
= ζ−1µ or ζ2 = β/β1, µ2 = ββ1. (12)

β is proportional to the input impedance at zero frequency,
while β1 is proportional to the input admittance at the op-
erating frequency. Two pairs of parameters can be used:
either (ζ, µ) or (β, β1). Notice that because ζ and µ are
smaller than unity, β < 1 and β < β1, and ββ1 = µ2 < 1.
Other parameters will be useful1,

β2
def
=

2β1

1 + ββ1
=

tanh 2α#
ζ

, β3
def
=

1
2β

− 3β1

2
. (13)

3. Equations for transients and limit cycles

3.1. Recurrence for the pressure difference

Using Equations (3), (8) and (11), the recurrence relation

(10) can be rewritten with respect to the quantities Δpn
def
=

γ − pn and un. The result is

2γ = (1 + µ)(Δpn + un) + (1 − µ)(Δpn−1 − un−1). (14)

Because the flow rate u = ζf (Δp) is a function of the
pressure difference Δp, this relation is a recurrence for the
quantity Δp, equivalent to the recurrence used in [11] for
the quantity p+,

Δpn = H−1 K(Δpn−1) , (15)

with H (x) = x + ζf (x),

K(x) = γ(1 + λ) − λ x − ζf (x) . (16)

The inverse of function H can be found in [11] (see Ap-
pendix).

1 In [4], the parameters γ and ζ are with dimension, except in the ap-
pendix, and are denoted pm and uA, respectively. β, β1 and β2 are defined
in the same way as in the present paper.

3.2. Basic equations for the static regime

Equation (14) is interesting in particular for the calculation
of the limit cycles. For the static regime, Δp is a constant,
then

γ = Δp + βf (Δp) def
= h(Δp). (17)

It is possible to calculate Δp from the value of γ, or vice-
versa. Concerning the stability, if the iteration function is
denoted g(x) = H−1 [K(x)] , the classical stability condi-
tion is |g�(Δp)| < 1. Because K(x) = H[g(x)], dK/dx =
(dH/dg)(dg/dx), and the condition can be written as2

λ
1 − ζf �(Δp)
1 + ζf �(Δp)

2

< 1 (18)

or f �(Δp) + β1 1 + βf �(Δp) > 0 (19)

(see Equation 12).

3.3. Basic equations for the two-state regime

For the two-state regime, because Δpn+1 = Δpn−1, the fol-
lowing expression is found by eliminating γ from Equation
(14) written for the pairs (n + 1, n) and (n, n − 1)

h1(Δpn) = h1(Δpn−1) (20)

with h1(X) def
= β1X + f (X). (21)

An important property of the two-state regime is the square
shape of the signal, which can be decomposed into the sum
of a mean value pmean (zero frequency component) and an
acoustic component pac (sum of the odd harmonics of the
operating frequency), with zero mean value

pn = pmean + pac with pmean =
1
2
(pn + pn−1)

and pac,n =
1
2
(pn − pn−1). (22)

Notice that pac,n = −pac,n−1, and that a similar equation
can be written for the flow rate. Equation (20) generalizes
the result obtained when losses are ignored (µ = 0), i.e.
the constant flow rate, and it is nothing else than the input
impedance relation for the acoustic component

µ(pn − pn−1) = un − un−1. (23)

It is possible to calculate the values of the two states with-
out knowledge of γ, starting e.g. with the value of Δpn:
Δpn±1 and γ are successively deduced from Equations (20)
and Equation (14). Adding the two equations (14) for the
pairs (n + 1, n) and (n, n − 1), it is obtained

γij =
1
2

h(Δpi) + h(Δpj) , (24)

or γij =
1
2
(Δpi + Δpj)(1 − ββ1) + βh1, (25)

2 Notice that |A/B|2 < 1 is equivalent to (A − B)(A + B) < 0.
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with h1 = h1(Δpi) = h1(Δpj) and i = n, and j = n ± 1.
Similarly for regimes with more than two states, it could
be possible to start the calculation from a given state, and
to deduce the other states, the prior knowledge of γ being
unnecessary. Equation (24) is the input impedance relation
for the mean value component: pn + pn−1 = µ(un + un−1).

For the two-state regime, the stability condition is
|g�(Δpi)g�(Δpj)| < 1, and after some algebra, the result
of [4] is found (see Equation 13),

C < β2 or C >
1

ζ2β2
, (26)

with C = − f �(Δpi) + f �(Δpj)

1 + ζ2f �(Δpi)f �(Δpj)
. (27)

4. Existence of the static and two-state
regimes

The previous results can be applied whatever the shape of
the function f (Δp). The present section investigates the
existence of the static and two-state regimes for the par-
ticular shape of the function given by Equations (5) and
(6).

4.1. Static regime

For negative Δp, the function f (Δp) is negative too, there-
fore the static regime does not exist for negative flow
(and positive excitation pressure γ). For Δp > 1, the
static regime exists for γ = Δp > γc = 1. The pressure
p = γ − Δp vanishes: this is obvious because the reed
closes the input of the resonator.

Otherwise, for a non-beating reed, the study of the func-
tion in the right-hand side of Equation (17) shows that
it increases from 0 to 1 when Δp increases from 0 to 1.
Therefore a unique solution3 exists for 0 < γ < 1.

4.2. Two-state regime

4.2.1. Number of solutions
For the two-state regime, two values of Δp, with the same
value of the function h1(X) are sought. They do not de-
pend on the impedance at zero frequency, i.e. on the value
of β. The study of h1(X) leads to the following results (see
Figure 1): for negative X, the derivative h�1(X) is always
positive, while for positive X, it is positive up to X = ΔM ,
where

√
X is the positive root of the equation

3X − 2β1 X − 1 = 0, i.e. (28)

X = ΔM with ΔM =
1
9

β1 + β2
1 + 3

2

. (29)

3 The expression for the static pressure in the mouthpiece is

ps = γ − 1
9

1
β
+ 2 3 +

1
β2

sin
1
3

arcsin (κ)

2

with κ = −2 + 9(−1 + 3γ)β2 / 2(1 + 3β2)3/2 .

0.5 1.0 1.5
�p

�0.5

0.5

1.0

1.5
h1 �p

0 1
3

1 h1 �M Β1Β1
2 Xa �M Xb Xc

�p

0.1

0.2

0.3

0.4
Β1

h1 Xi

h1 �M

h1 �p

Figure 1. Top: Function h1(Δp) for two values of β1. Dotted
line: β1 = 1.1 (monotonous variation). Solid line: β1 = 0.36.
Bottom: Zoom for the second case. A maximum value exists at
PM = (ΔM , h(ΔM )). The middle horizontal line corresponds to
h1(X) = 0.452, with the 3 solutions Xa, Xb, Xc.The two other
horizontal lines exhibit the limits of existence of the two-state
regime.

For X > 1 (beating reed), the value of the derivative is
β1, and is positive. Two cases need to be distinguished: if
ΔM > 1, i.e. if β1 > 1, the derivative is always positive
and it is impossible to find two values of X with the same
value h1(X). On the contrary, for

β1 < 1, (30)

the function decreases from h1(ΔM ) to β1 when X in-
creases from ΔM to 1, then re-increases. Solutions of
Equation (20) can be found in this case only, and the cor-
responding value of the function is necessarily larger than
β1. A consequence is that Equation (20) has no solution
for h1(X) < β1, and this is true in particular for negative
h1(X). Therefore no two-state regime can be found with
negative flow. This conclusion is compatible with the gen-
eral result obtained for all possible regimes in [11]. Be-
cause of this result, the paper is now focused on positive
pressure differences Δp.

For h1(X) ∈ [β1, h1(ΔM )], three values of X, defined
as Xa < Xb < Xc lead to the same value of the function
(see Figure 1), and three two-state regimes are possible,
which can be either non-beating (for the pair [Xa, Xb]) or
beating (for the pairs [Xa,Xc] and [Xb,Xc]). The intervals
of the three solutions are as follows:Xa ∈ β2

1 ,ΔM ;Xb ∈
[ΔM , 1] ; Xc ≥ 1.

From the solution of Equation (20), the correspond-
ing excitation pressure γ for the two-state regime is
given by Equation (24), for the three pairs of solutions
(Δpi,Δpj) = (Xi, Xj). For the particular case of the

282



Taillard, Kergomard: Clarinet-like bifurcation scheme ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 101 (2015)

beating-reed regime, when h1 = β1Δpc, and i = a, b, the
expression can be also written as

γic =
1
2

h(Δpi) +
h1(Δpi)

β1
(31)

= Δpi +
f (Δpi)
β2

def
= h2(Δpi). (32)

4.2.2. Existence, beating, saturation and extinction
thresholds

• At the limit of existence, when h�1(Δp) vanishes,

Δpa = Δpb = ΔM . (33)

Therefore the existence threshold γth of the two-state
regime is

γth = ΔM + βf (ΔM ) = h(ΔM ). (34)

The solutions can be either stable or unstable, i.e. the
bifurcation can be direct or inverse. This is discussed
hereafter in Section 5.2.2.

• Another limit of existence is given by Xb = 1. Using
Equation (31), this yields: γ = γc = 1. The solutions
can be either stable or unstable, i.e. the bifurcation can
be direct or inverse. This is discussed hereafter in Sec-
tion 5.2.1.

• The beating threshold γb appears when one solution is
X = 1, h1(X) = β1, thus the pair of solution is: Xa =
β2

1 , Xb = 1; therefore, using Equation (31),

γb = h2(β2
1 ). (35)

Because β2
1 < 1, and 0 < β < β1, the threshold γb can be

shown to be always smaller than the closure threshold
γc = 1.

• The saturation threshold is obtained for the beating
regime, with dpa/dγ = 0, with pa = γ − Xa, i.e.
dXa/dγ = 1, therefore Xa = 1/3, γsat = h2(1/3), and

pa =
2

3
√

3β2
, u = f

1
3

=
2ζ

3
√

3
= umax. (36)

At the saturation value, the flow rate is maximum: u =
umax. For β1 > 1/

√
3, the saturation threshold is the

beating threshold, because for β2
1 = 1/3, γsat = γb: the

amplitude of the pressure decreases from the beating
threshold.

• Finally the overcritical (extinction) threshold γe is given
by dγ/dΔpi = 0 in Equation (31). This condition yields
to the result

3Δpa − 2β2 Δpa − 1 = 0, (37)

or Δpa =
1
9

β2 + β2
2 + 3

2

= Δpe (38)

and γe
def
= h2(Δpe). (39)

Because Δpe < 1, it exists if β2 < 1 only. As ex-
plained in [4], when losses tend to 0 (β2 tends to 0),

the extinction threshold tends to infinity. The threshold
γe is always larger than γc = 1, because Δpe − β2 =
(1 − Δpe)/(2 Δpe), thus

γe − γc =
1
β2

(1 − Δpe)2

2 Δpe
≥ 0. (40)

4.2.3. Subcritical threshold at emergence (non-beating
reed)

Results (34) to (38) were obtained with other, equivalent
methods in [4]. However another threshold can exist for
the non-beating case (i = a, j = b): for certain values of
the parameters, the emergence bifurcation can be inverse,
and the threshold of oscillation is different for crescendo
and decrescendo playing. The subcritical threshold γsc can
be calculated by using the change in variables defined in
[4]

Σ
def
= Xa + Xb, Π

def
= Xa Xb. (41)

Equation (20) implies

Π = Σ2 − β1Σ − 1 (42)

(this change in variables is related to the decomposition
into dc and acoustic components, see Equation 22). The
threshold can be calculated by writing dγ/dΣ = 0 in Equa-
tion (24), which can be written as a polynomial in Σ (see
Equation (A17) in [4]) 4 For our purpose, it is convenient
to write this equation as follows (denoting γ = γab)

γ = β(ϕ − β3)(ϕ2 − 1) + γb with ϕ
def
= Σ − β1, (43)

where β3 is given by Equation (13). Notice that for the
beating threshold ϕb = 1. The derivative dγ/dϕ vanishes
for ϕ = ϕsc

3ϕ2
sc − 2β3ϕsc − 1 = 0 (44)

or 2ϕsc(ϕsc − β3) = 1 − ϕ2
sc (45)

or ϕsc =
1
3

β3 + β2
3 + 3 . (46)

Therefore, ϕsc is always positive, and combining Equa-
tions (43) and (45), it is shown that the threshold γsc is
always smaller than the beating-reed threshold

γsc = γb −
β

2ϕsc
(1 − ϕ2

sc)
2. (47)

4 The equation is

γ = βΣ3 − (1 + 3ββ1)Σ2/2 + (β1 − β)Σ + 1.

The two solutions for ϕ are (see Equation 13):

ϕn =
1
3

β3 + 2δ cos
1
3

(arccos(Φ) + 2nπ)

where Φ =
2ββ3 δ2 − 12 + 27 (γ − γb)

2βδ3

and δ = 3 + β2
3 , n = 0 or 2.
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Figure 2. Two examples of bifurcation schemes for the pressure (γ, p) and the flow rate (γ, u). The emergence bifurcation is direct. The
three dotted (blue in the online version), increasing straight lines indicate the three domains of solutions Xa, Xb, and Xc. Case I, left:
ζ = 0.55, µ = 0.2. The solid curve corresponds to a two-state regime, which is stable (thick line) or unstable (thin line): the emergence
bifurcation is direct, while the extinction bifurcation is inverse. The pale (red in the online version), decreasing line corresponds to the
static regime, which is stable (thick line) or unstable (thin line). The point i indicates the instability threshold γth of the static regime;
the point ii the beating threshold γb of the two-state regime; the point iii is the closure threshold γc = 1, the point iv is the extinction
threshold γe of the two-state regime. Case II, right: ζ = 0.4, µ = 0.3. Both emergence i and extinction bifurcations iii are direct.
The point ii indicates the beating threshold γb of the two-state regime. Because β1 = .75 > 1/

√
3, saturation occurs at the beating

threshold γb.

4.2.4. Solutions

The direct solution of the cubic equation (43) is possi-
ble (see footnote 4). In the present paper we propose a
method based upon Equations (20) and (25). Starting from
a value of Xa ∈ β2

1 ,ΔM , the solution Xc (above unity)
is obtained by Xc = h(Xa)/β1, and the solution Xb is de-
duced by solving the equation h1(Xb) = h1(Xa) for Xb ∈
[ΔM , 1]. The latter equation is cubic in Xb. It has a solu-
tion already known, Xa, therefore Xb can be deduced
as the positive solution of a quadratic equation5, as

x2 − (β1 − Xa)x − h1(Xa)

Xa

= 0, where x = Xb.

Xb =
1
4

β1 − Xa + (β1 + Xa)2 +
4f (Xa)

Xa

2

. (48)

From the knowledge of the three solutions of h1(X) =
h1(Xa), the three values of γij are deduced from Equa-
tion (25). Figures 2 and 3 show 4 examples of bifurca-
tion schemes for different cases. The calculation is done
by varying the starting value Xa and was verified using
the iterated map algorithm ([11]), which obviously gives
stable solutions only. The three straight lines p = γ − β2

1 ,
p = γ − ΔM , and p = γ − 1 delimit the three domains of
solutions, Xa, Xb and Xc. The solution is non-beating for
the pair [Xa, Xb]) or beating, for the pairs [Xa, Xc] and
[Xb, Xc]), see Figure 1.

5 According to Vieta’s formula, the sum of the three solutions is β1, their
product is −h. Notice that the third solution differs from Xc, because
Xc corresponds to a beating reed.

Figure 4 shows the diagram (Δp, γ) for the case I of
Figure 2. This allows exhibiting the function h(Δp), given
by Equation (17), for the static regime and the function
h2(Δp), given by Equation (31), for the beating, two-
state regime. The one-state regime is stable from {0, 0}
to {ΔM , γth} and above {1, 1}. The non-beating two-state
is given by Equations (24) and (48), the beating two-
state is given for Xa < 1 by the function h2(X). The bi-
furcation at emergence is direct, the oscillation is stable
from {ΔM , γth} to {β2

1 , γb}. The beating two-state is stable
from {β2

1 , γb} to {Δpe, γe} and unstable between {Δpe, γe}
and {1, 1}. The oscillation amplitude is at a maximum at
{1/3, γs}, where the slope of h2(X) is unity.

4.2.5. Radiated sound
The radiation losses are small at low frequencies, therefore
it is very simple and classical to deduce them by pertur-
bation from the output flow rate, considering a monopole
radiation. Two cases have to be distinguished: losses oc-
cur at the output, or losses occur during propagation into
the tube. Both cases give the same input impedance, but
not the same transfer functions between input and output.
The latter case is more realistic, and is considered here.
If the output impedance is 0, and losses due to bound-
ary layers only, the output acoustic flow rate is given
by the standard transmission lines relationships: uout =
sinh(jω#/c + α#)pac, where ω#/c = π/2 (see Section
3.2). Therefore the amplitude relationship is

|uout| = |pac| / cosh(α#)

= |pac| 1 − µ2 = |uac|
1 − µ2

µ
.

The maximum output acoustic flow rate is obtained for the
saturation threshold; at the saturation threshold, because
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Figure 3. Two examples of bifurcation schemes for the pressure (γ, p) and the flow rate (γ, u). The emergence bifurcation is inverse.
The three dotted (blue in the online version), increasing straight lines indicate the three domains of solutions Xa, Xb, and Xc. Case III,
left: ζ = 0.88, µ = 0.45. Both emergence and extinction bifurcations are inverse. The point iv indicates the overcritical (extinction)
threshold γe of the two-state regime, and the point iii the closure threshold γc = 1 of the static regime. Case IV, right: ζ = 0.88,
µ = 0.7. The extinction bifurcation is direct.

0 1
3 1Β1

2 �M �pe

�p0

1

ΓbΓth

Γs

Γe

Γ

Figure 4. Representation for (Δp, γ). The function h(Δp) is used
for the static regime (black curve, purple in the online version)
and the function h2(Δp) for the beating, two-state regime (grey
curve, brown in the online version). The non-beating two-state
(light grey, green in the online version) is given by Equations
(24) and (48). Thick lines: stable regime, thin lines: unstable
regime. Dashed lines: solution of the 2-state regime with the
high value of Δp. The points signal the transitions at the different
thresholds.

the reed is beating, |uac| = (umax + 0)/2 = ζ/(3
√

3),(see
Equation 36). For β1 = µ/ζ < 1/

√
3, the saturation

threshold is the beating threshold (see Section 4.2.2), and
pac = (1 − β2

1 )/2, therefore

|uout|max =
1 − µ2

3
√

3β1
if β1 >

1√
3
; (49)

|uout|max =
1
2
(1 − β2

1 ) 1 − µ2 if β1 <
1√
3
.

For a given value of ζ , this is monotonously decreasing
function of µ; for a given value of µ, this is an increasing
function of ζ .

5. Calculation of instability thresholds

The stability conditions (18) and (26) are calculated using
the expression of the derivative f �(Δp)

f �(Δp) =
1 − 3Δp

2 Δp
if Δp < 1,

f �(Δp) = 0 if Δp > 1. (50)

5.1. Instability of the static regime

The condition (18) generalizes the condition f �(Δp) > 0,
as discussed in [21] for the lossless case (see page 349).
For the (static) beating reed case, which exists for γ >
γc = 1 (see previous section), f �(Δp) = 0, thus the static
regime is always stable. For the non-beating reed case, the
first factor of Inequality (18) is equal to h�1(Δp), thus it
vanishes when Δp satisfies Equation (28), i.e. Δp = ΔM .
For this value, ΔM , the second factor of Inequality (18)
is (1 − ββ1), which is positive6. Thus (29) together with
Equations (17) gives the threshold γth, given by Equation
(34).

Therefore the condition h�1(Δp) = 0 gives both the limit
of existence of the two-state regime (see Equation 34), and
the instability threshold of the static regime. Nevertheless
the nature (direct or inverse) of the bifurcation between
the two regimes is not yet solved by this result7. The term
βf (ΔM ) is the static pressure ps in the mouthpiece; the
presence of the parameter β indicates that the threshold
depends on the impedance at zero frequency.

6 Another threshold can be sought when the denominator of Equation
(18) vanishes: this leads to the solution of either 1 = 0 when Δp > 1, or
f �(Δp) = −1/β, with 0 < Δp < 1. These two equations have no solution.
7 In [4], β was assumed to be very small in practice, and Equation (34)
was simplified in γth = ΔM , but the complete equation (34) was given
for the threshold of existence for the two-state regime.
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5.2. Instability of the two-state regime

5.2.1. Beating-reed case: overcritical (extinction)
threshold

For the beating regime f �(Xc) = 0, with Xi < 1, thus, us-
ing Condition (26), C = −f �(Xi) for i = a or b. Because
C < 1, and because ζ2β2 = ζ tanh 2α# < 1, the second
inequality (26) is never valid. Therefore the stability is de-
fined by the condition C < β2.

When β2 > 1, this condition is always satisfied, and the
beating two-state regime is stable (no overcritical thresh-
old γe exists, as noticed in Section 4.2.2).

When β2 < 1, Equation (37) is used, yielding β2 =
(3Δpe − 1)/(2 Δpe). The function (3x − 1)/(2

√
x) be-

ing always increasing for positive x, the inequality C < β2

holds ifXi < Δpe, or pi > pe = γ−Δpe. This distinguishes
in the (γ, p) plane the two branches separated by the over-
critical threshold: the upper one is stable, while the lower
one is unstable8. The unstable branch is the branch joining
the static regime, because the two regimes cannot be stable
for the same value of the parameter γ when they converge
to the same point. This can be explained with mathemat-
ical arguments, based upon either a perturbation method
(see [15]) or the topological degree (see [16]). This can be
also studied by using Inequalities (26), as done in [4].

It can be noticed that because γe is larger than unity, the
beating, two-state regime is always stable for γb < γ <
γc = 1, whatever the value of β2.

5.2.2. Non-beating case: period doubling and subcriti-
cal (emergence) threshold

i) For the non-beating regime (i = a, j = b), an expression
of the instability threshold was given in [4] and it was ex-
plained that the threshold is given by 1/C = ζ2β2. Some
errors were done in the derivation, and they are corrected
in appendix A of the present paper. When the excitation
pressure is larger than this threshold, here denoted γins,
period doubling can occur, then a complex bifurcation sce-
nario (see [11]).

ii) Otherwise, it can be checked that the second con-
dition C = β2 leads to the subcritical emergence thresh-
old γsc: it separates two branches in the (γ, p) plane, the
upper one being stable while the lower one is unstable.
This is similar to what happens for the overcritical thresh-
old. When it exists, the emergence bifurcation is as fol-
lows: when playing crescendo, the oscillation starts for
γ = γth, while playing decrescendo, the oscillation stops
for γ = γsc.

When this subcritical threshold can exist? From Equa-
tions (43) and (44), it is found that

γth − γsc = β(ϕth − ϕsc)2
1

2ϕsc
+
ϕsc

2
+ ϕth , (51)

8 It is possible to show that the interesting solution in this discussion is
Xi = Xb: because β2 > β1, the solution Δpe at the overcritical threshold
is larger than ΔM , thus it is always larger than Xa. Instability occurs for
the pair (Xb, Xc).
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Figure 5. Plane (ζ, µ). The four Regions I to IV correspond to
the different cases presented for the examples shown in Figs. 2
and 3. The chosen values for the examples are indicated by a cir-
cle. In Region V period doubling or other regimes can exist, in
Region 0 no sound is possible. The numbers refer to the equa-
tion number. Above line (53), no sound is possible. Curve (54)
distinguishes the extinction bifurcation (direct above, inverse be-
low). Curve (55) distinguishes the emergence bifurcation (direct
above, inverse below). Below curve (56), complicated regimes
can appear by destabilization of the two-state regime. The two
curves close to the curve (55) correspond to Equations (59), and
(60), from to the top to the bottom (see Section 6.3).

where ϕth = Σth − β1 and ϕth − ϕsc = Σth − Σsc, with

Σth = 2 ΔM =
2
3

β1 + β2
1 + 3 . (52)

Two cases are possible:
• Σsc > Σth: the emergence bifurcation is direct: stable

solutions exist for γ > γth.
• Σsc < Σth: the emergence bifurcation is inverse, and

stable solutions exist for γ > γsc.

When Σsc continues to decrease below Σth, the bifurcation
remains inverse, but the subcritical threshold γsc becomes
the beating threshold γb. This happens when Σsc = Σb =
1+β1, or ϕsc = ϕb = 1 (notice that the inequality Σb ≤ Σth

always holds). The discussion is extended in Section 6.3.

6. Limits of regimes in the plane (µ, ζ)

From the different expressions of the thresholds, it is pos-
sible to deduce the limits separating different domains in
the plane (µ, ζ), as shown in Figure 5. Above the diagonal
(region 0), no two-state regime can exist. Other regions
of the plane are defined by the nature of the emergence
and extinction bifurcations: they are named by the num-
ber of the four cases shown in Figures 2 and 3: in Re-
gions I and III, the extinction bifurcation is inverse, while
in Regions II and IV, it is direct. What is new in this pa-
per is the separation between Regions I and II, with di-
rect emergence bifurcation, and regions III and IV, with
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inverse emergence bifurcation. Finally, in Region V, the
two-state regime can be unstable, and can be replaced by
more complicated regimes, with period doubling, chaos,
intermittences, etc... (see [11]).

6.1. Emergence and extinction bifurcations

• When the instability threshold γth (Equation 34) of the
static regime reaches the closing threshold γc = 1, the
static regime becomes stable whatever the values of all
parameters, and no sound can be expected. This hap-
pens9 for β1 > 1, and this confirms the result explained
in Section 4.2.1 that no two-state regime can exist (this
discussion is extended in the next section). The condi-
tion for the existence of sound can be also written as

µ < ζ or λ >
1 − ζ

1 + ζ
. (53)

• When the overcritical threshold γe (Equation 38)
reaches the closure threshold of the static regime γc = 1
(Equation 35), the extinction bifurcation becomes di-
rect instead of inverse, as explained in the previous sec-
tion. For β2 < 1, the bifurcation is inverse: this is prob-
ably the most frequent case for real clarinets and clar-
inettists, and corresponds to

ζ > tanh 2α# =
2µ

1 + µ2
or λ >

1 − ζ

1 + ζ
. (54)

Between the two limits (53) and (54), the extinction
bifurcation is direct (Regions I and IV).

• When the subcritical threshold γsc (Equation 46)
reaches the instability threshold of the static regime γth
(Equation 34), the emergence bifurcation becomes di-
rect. From Equation (51), this happens when ϕsc = ϕth.
The bifurcation is direct in Regions I and II, with the
condition

β <
Σth − β1

β1Σth + 3
. (55)

6.2. Limit of instability of the two-state, non-beating
regime

Finally, when the instability threshold γins of the oscillat-
ing regime given by the condition 1/C = ζ2β2 (see Sec-
tion 5.2.2) reaches the beating threshold γb, the limit was
given in [4] (with a small error). The formula can be ob-
tained from Equation (26), for Xa = β2

1 , and Xb = 1,
f �(Xb) = −1. The limit ζi is given by the equation

1 − f �

1 − ζ2f � =
1

ζ2β2
, where f � = f �(Xa) =

1 − 3β2
1

2β1
. (56)

This leads to a second order equation in ζ2,

β2
1 (1− 3β2

1 )ζ
4 + (4β2

1 − 3β1 + 1)(β1 + 1)ζ2 − 2β1 = 0.(57)

9 The equation γth = 1 has two solutions: ΔM = 1, and ΔM = 1/β.
Because β is necessarily less than unity, the latter solution is larger than
unity.

A particular value is β1 = 1/3, f � = 1, ζi = 1, µ = 1/3,
λ = 1/2. For a given loss coefficient µ (< ζ), the two-
state regime is always stable when ζ < ζi. For the sake
of simplicity, we remark that an excellent approximation
of the limit, better than 1%, is based upon the fact that for
small losses, the coefficient β = ζ2β1 is small, therefore
β2  2β1

ζ2
i  1

2β1(1 − f �) + f � . (58)

6.3. Limits related to the beating threshold

Another limit is reached when the subcritical threshold
γsc becomes the beating-reed threshold γb, thus the stable
two-state regime is always beating. However the unstable
branch is non-beating (see Figures 2 and 3). Using Equa-
tion (47), it is found to be given by ϕsc = β3 = 1, i.e.

β <
1

3β1 + 2
. (59)

A last limit is reached when the instability threshold of
the static regime γth (34) reaches the beating threshold of
the two-state regime γb, i.e. when ϕth = Σth − β1 = β3 in
Equation (43),

β =
1

β1 + 2Σth
. (60)

For both limits given by Equations (59) and (60), the cor-
responding curves are therefore within Regions III and IV
of Figure 5. They are very close to the limit given by Equa-
tion (55), corresponding to the change in nature of the
emergence bifurcation. The three limits are even equal for
β1 = 1, β = 1/5, µ = ζ = 1/

√
5. For a given ζ , when

losses are small (µ small), the emergence bifurcation is di-
rect. Then, when β reaches the limit (55), the bifurcation
becomes inverse, with a non-beating reed. Then, when β
reaches the limit given by Equation (59), the bifurcation
remains inverse, but the reed becomes always beating in
the two-state regime.

Figure 6 shows details of the bifurcation scheme (Δp, γ)
near the subcritical threshold for different cases between
the non-beating case γth < γb and the beating case γb < γth
(for the latter case, the beating threshold is the subcritical
threshold, as for the points III and IV). The correspond-
ing values of the parameters (ζ, µ) are extremely close to-
gether.

7. Influence of losses on the existence of the
two-state regime

When losses tend to infinity (µ tends to unity), no sound is
possible whatever the value of ζ: this is in accordance with
the intuition that if no reflection exists at the input of the
resonator, no self-sustained oscillation can happen. Never-
theless, we do not prove that other types of regimes cannot
exist, such as four-state, eight-state, . . . In this section, this
issue is discussed together with the influence of the choice
of the model. Moreover, some musical consequences are
discussed.
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7.1. Possibility of existence of other oscillating
regimes

When the static regime is always stable (β1 > 1), it has
been proved that the two-state regime cannot exist. It is
probable that other types of regimes do not exist, but the
general proof is difficult. Using the calculation of the suc-
cessive iterate functions for different values of the initial
condition (see [11]), we verified that when β1 > 1, the
successive iterates converge to the unique point that is the
limit cycle of the static regime, thus no other regime can
exist. This can be done for every set of parameter values,
γ, ζ , µ < ζ: if the convergence is always to a unique state,
then it is sure that no other regime than the static one can
exist. Obviously, this verification is not possible in prac-
tice, but the verification has been done for some set of pa-
rameter values.

We conclude that no oscillating regime exists for β1 > 1,
even if the rigorous sentence should be: no oscillating
regime exists by destabilization of the static regime. A
similar discussion could be done for the destabilization of
the two-state regime into more complicated regimes (see
Section 6.2).

7.2. Influence of the choice of the model

7.2.1. Model for the beating reed
The method used in the present paper can also be used for
any shape of the nonlinear characteristic, at least numer-
ically (the condition being that a nonlinear characteristic
is static). All equations of sections 2 and 3 remain valid
when modifying the nonlinear function f (Δp). In particu-
lar if a smooth beating transition is chosen with no singu-
larity, Figure 1 shows that the condition (30), β1 < 1, can
be generalized into the following condition: the function
h1(Δp) goes through both a maximum and a minimum.

7.2.2. Frequency dependence of losses
The Raman model is interesting because all quantities can
be determined analytically, but it is not very realistic. It is
based upon two important assumptions: losses do not de-
pend on frequency, and the reed has no dynamics. A gen-
eralization of the present study is out of the scope of the
present paper, but it is interesting to note that the condition
β1 < 1 can be easily generalized when these assumptions
are not done, as explained hereafter.

When losses depend on frequency, it is possible to use
the characteristic equation obtained by linearizing the non-
linear equation around the pressure of the static regime ps,
and writing the approximation of the first harmonic

u = F (p)  F (ps) + (p − ps)F �(ps), (61)

u = Y1p, (62)

where Y1 is the admittance of the fundamental frequency.
The characteristic equation is written as

F �(ps) = Y1. (63)

As it is well known (see [22]), this gives the condition
Im(Y1) = 0, thus the playing frequency fp at the threshold
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Figure 6. Zoom of bifurcation diagrams with sub-critical thresh-
old. β1 = 0.68 (a) γsc = γth, β = 0.24419; (b) γsc < γth < γb,
β = 0.24532; (c) γth = γb, β = 0.24584; (d) γsc = γb,
β = 0.24752.

can be deduced. Moreover, if at this frequency, β1
def
= Y1/ζ ,

the pressure threshold is given by

f �(Δps) = −β1 (64)

because F (p) = ζf (Δp). Therefore Δps satisfies Equation
(28),

Δps = ΔM and γth = ΔM + ps, (65)

as expected in Section 5.1. As a consequence, when the
losses depend on frequency, the value of the threshold is
the same as for the Raman model, and the limit of exis-
tence of the two-state regime β1 = 1 is unchanged. Never-
theless the hypothesis has been done that the small oscilla-
tions are sinusoidal (on this subject, see [23], [22] or [24]),
and this is not true for inverse bifurcations. When sev-
eral harmonics interact, the problem becomes much more
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intricate, especially because of resonance inharmonicity.
Moreover taking into account the frequency dependence
of the losses leads to a distinction between the threshold
of the fundamental regime and the “overblown” regimes
(see [12]): this distinction does not exist with the Raman
model, which allows a distinction based upon the initial
conditions only.

As a summary, it can be said that if we suppose that the
impedance peak of the operating frequency is higher than
the other ones, the emergence bifurcation is direct and the
limit β1 = Y1/ζ = 1 is valid. This is true in particular
for the first register of a clarinet and a part of the second
register. The large increase of radiation losses at higher
frequency due to the open toneholes lattice (see e.g. [25])
does not affect the highest peak, therefore the main result
of the present paper can be extrapolated to a large number
of notes of a real clarinet.

7.2.3. Effect of the reed dynamics

When the reed dynamics is taken into account as that of a
1 dof oscillator, the following characteristic equation has
been obtained by Silva et al. [8]:

Y1 = ζ γ
1

1 + jθ/Qr − θ2
− 1 − γ

2γ
, (66)

where θ = ω/ωr, ωr is the reed-resonance angular fre-
quency, and Qr its quality factor. The threshold pressure
and frequency can be deduced from this equation, and
were studied in this paper; here we are interested in the
limit for which the static regime becomes always stable,
i.e. when γ = 1. If the input impedance of the resonator is
considered around a resonance frequency ω1, it is possible
to write

Y = Y1 1 + jQ1
ω

ω1
− ω1

ω
,

where Q1 is the quality factor of the resonance. For γ = 1,
the real part of Equation (66) leads to the result

β1 =
1

1 − θ2 +Q−2
r

θ2

1−θ2

. (67)

For a lossless reed, β1 = 1/(1 − θ2) > 1: the limit of the
losses in the tube allowed for having a sound is increased
by the reed dynamics, which favors the sound production.
But the effect of the reed losses is to decrease the limit.
It can be concluded that reed losses and resonator losses
act in the same sense concerning the range of parameter
allowing sound production (this conclusion is valid for the
direct-bifurcation case).

7.3. Discussion about musical consequences for the
player

The previous results can be useful in order to under-
stand and teach important aspects of the sound control by
the instrumentalist. Such an objective knowledge should
largely increase the pedagogical efficiency. Otherwise the

approach of the problems remains more subjective and the
explanations can be lengthy and less clear. One of the most
useful aspects is about pianissimo playing. The bifurcation
diagrams show that the players have two possibilities: near
the emergence and near the extinction. The first possibil-
ity is used for playing dolce, with a quasi monochromatic
sound, but the sound is noisy and cannot be sustained for a
long time, due to high value of the airflow u (see Figure 2,
case I). The dynamic is not easy to control because of the
steepness of the bifurcation diagram near γth. The second
possibility, near γe, conducts to a clean pianissimo, with a
sound richer in high harmonics. This can however only be
achieved by crossing the curve (54) in Figure 5, in order
to reach the region II where the extinction bifurcation is
direct.

This property is usually unknown by the players (the
ability of playing such a “magical” pianissimo is often at-
tributed exclusively to the “quality” of the reed). The be-
ginners reduce the reed opening (ζ) by “biting” the reed
and this causes unwanted effects: the pitch rises consider-
ably, due to the decrease of the effect of the reed flow rate
(see [26], and such a bending stress can cause a plastic
(irreversible) deformation of the reed). The skilled player
can reach region II by increasing the damping due to the lip
and use a high blowing pressure near the extinction thresh-
old, playing in the reverse way (decreasing the mouth pres-
sure for playing louder, see Figure 2, case II). The lip
comes very near to the tip of the reed, with a moderate
lip pressure. This effect is probably similar to an increase
of β1, resulting in a displacement of the playing param-
eters on the (µ, ζ) plane exactly in the wanted direction,
increasing the value of µ and decreasing the value of the
parameter ζ proportionally to β1. The decrease in ζ is
probably due to an increase of the reed stiffness. Decreas-
ing ζ without “biting” too much could also be achieved
by modifying the hydrodynamics of the airflow entering
the channel, in order to increase the vena contracta, but
to our knowledge no experimental evidence shows that the
player can indeed modify significantly the vena contracta.
Conversely, it seems that the parameter β cannot be sig-
nificantly controlled by the player (in another way than
by modifying the length of the air column). In real life,
this parameter of static airflow resistance may not be de-
termined only by the length and the diameter of the bore
but certainly also by hydrodynamic effects near the chan-
nel, due to the viscosity of the air. This acts in a similar
but possibly stronger way than the static resistance of the
bore. Practical tests show that the effects predicted in the
zones III and IV are indeed observed in some pathologi-
cal situations, despite the fact that our theoretical model
would require many meters of a tube of small diameter to
obtain such high values of β.

To include the musician mouth in the model is obviously
rather complicated, even if at low frequencies, the effect
of the vocal tract is not important. Therefore the previous
analysis requires some conjectures. Besides the problems
of bifurcation, the analysis of the Raman model permits
establishing some facts useful for the musician:
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• The calculation of the mean flow shows that the most
economical blowing pressure is near the beating thresh-
old in Region I (corresponding to normal playing). This
explains that skilled players can sustain the sound sig-
nificantly longer than beginners.

• The transients are much faster if ζ is large (see [18]);
weak reeds help doing this, as well as using a moderate
lip pressure. This simplifies the staccato learning.

• The effects of leaks in the air column (misplacement
of a finger, defective pads) increase the value of β1, so
that regions 0, and probably III or IV can be possibly
visited (see Section 7.2.2). Almost any control can be
destroyed over the dynamics (or at least rendering the
dynamic control more difficult), despite of the attempts
of the clarinettist to supply more energy to the instru-
ment by opening the embouchure, increasing ζ .

8. Conclusion

The present paper is focused on limit cycles correspond-
ing to two-state regimes, and is a complement to the paper
[11], which was focused on transients. Thanks to a formu-
lation focused on the pressure difference between mouth
and mouthpiece, the effect of the nonlinear function on the
production of the two-state regime can be analyzed, and
especially the role of the losses. The map shown in Fig 5
can certainly be improved by using more complex models,
but we think that some results are robust. When the reed
opening at rest is very small or when the reed stiffness
is very large (i.e. when the dimensionless parameter ζ is
very small), losses can be too large and the sound produc-
tion becomes impossible. A complement to this conclu-
sion is the following: for ζ larger than 1/

√
5, when losses

increase, the emergence bifurcation becomes inverse be-
fore the sound disappears, and the instrument becomes
more difficult to play. For ζ smaller than this value, when
losses increase, there is a direct passage from the direct
emergence bifurcation to the absence of sound.

Appendix

A1. Correction to [4]

The instability threshold γins of the oscillating regime is
given by the condition 1/C = ζ2β2 (see Inequalities (26),
it is the limit of unstable solutions toward period-doubling
of the two-state regime). This leads to the following equa-
tion, if Σ and Π are defined by Equation (41),

4Π
ζ2

+ (1 + 3Π)2 − 3Σ2 =
4β1

1 + ββ1
Σ(3Π − 1). (A1)

Together with Equation (42) leads to a fourth-order equa-
tion in Σ; from the solution Σ the value the threshold of
instability γins is deduced by using Equation (43). Another
method is to start from certain values of the parameter β1

and of the solution Σ, then to deduce Π using Equation
(42), then β, which is solution of a second order equation.

In [4], Equation (A23) was correct, but a factor 4 was
missing in Equation (A24), the correct equation being the
present Equation (A1). Then Equation (A25) needs to be
corrected by introducing a factor 4 on the right-hand side,
and the factor (2+ 3Π) needs to be replaced by (12Π− 1)
in Equation (A28) and similarly (2 + 3Π0) needs to be
replaced by (12Π0 − 1) in Equation (A30).

Concerning the limit γins = γb, Equations (A32) to
(A34) of [4] are corrected in Section 6.2 of the present
paper. The last equation gives the coefficient β1 as a series
expansion of the limit ζi,

β1 =
ζ2

2
1 − ζ2 +

5
4
ζ4 − ζ6 . (A2)

This expression corrects Equation (A34) of the previous
paper (the correction is small, because the order 6 in ζ
only is concerned), but this approximation is much less
accurate than the present Equation (58).
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Chapter 2

Iterated maps for clarinet-like
systems

Résumé

Mc Intyre et coll. (1983) ont montré que l’on peut ramener le calcul des oscillations d’une
clarinette à une simple itération, dans un modèle où le résonateur est cylindrique avec des pertes
indépendantes de la fréquence et où l’anche est vue comme un ressort sans inertie. Pour cela on
choisit le couple d’ondes aller/retour comme variables de base. Le système peut alors se ramener à
l’itération d’une fonction f(x) qui relie les amplitudes de ces ondes, conduisant à des oscillations
en signaux carrés. Dans cet article, nous étudions cette fonction de manière plus approfondie
et en déduisons un encadrement des valeurs des paramètres d’excitation pour lesquelles l’anche
peut battre, ou encore pour lesquelles le signe du débit peut s’inverser. Les cartes itérées de
la fonction f(x) renseignent notamment sur la stabilité des régimes périodiques, ou aident à
comprendre l’existence de régimes chaotiques, de fenêtres de périodicité ou d’intermittences.

Cet article [171] est reproduit avec l’autorisation des coauteurs et celle de l’éditeur Springer,
du 11 janvier 2018. Notons qu’un résumé de ce travail est disponible en français [172], figurant
à la fin de ce Chapitre.
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Abstract The dynamical equations of clarinet-like
systems are known to be reducible to a non-linear
iterated map within reasonable approximations. This
leads to time oscillations that are represented by
square signals, analogous to the Raman regime for
string instruments. In this article, we study in more de-
tail the properties of the corresponding non-linear iter-
ations, with emphasis on the geometrical constructions
that can be used to classify the various solutions (for
instance with or without reed beating) as well as on
the periodicity windows that occur within the chaotic
region. In particular, we find a regime where period
tripling occurs and examine the conditions for inter-
mittency. We also show that, while the direct observa-
tion of the iteration function does not reveal much on
the oscillation regime of the instrument, the graph of
the high order iterates directly gives visible informa-
tion on the oscillation regime (characterization of the
number of period doubligs, chaotic behaviour, etc.).
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1 Introduction

Non-linear iterated maps are now known as an uni-
versal tool in numerous scientific domains, includ-
ing for instance mechanics, hydrodynamics, and econ-
omy [1–5]. They often appear because the differen-
tial equations describing the dynamics of a system
can be reduced to non-linear iterations, with the help
of Poincaré recurrence maps for instance. The result-
ing iterations combine a great mathematical simplic-
ity, which makes them convenient for numerical simu-
lations, with a large variety of interesting behaviours,
providing generic information on the properties of the
system. In particular, they are essential to character-
ize one of the routes to chaos, the cascade of period
doublings [6, 7].

In musical acoustics, Mc Intyre et al. have given,
in a celebrated article [8], a general frame for calcu-
lating the oscillations of musical instruments, based
upon the coupling of a linear resonator and a non-
linear excitator (for reed instruments, the flow gen-
erated by a supply pressure in the mouth and modu-
lated by a reed). In an appendix of their article they
show that, within simplified models of self-sustained
instruments, the equations of evolution can also be re-
duced to an iterated map with appropriate non-linear
functions. For resonators with a simple shape such as
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a uniform string or a cylindrical tube, the basic idea
is to choose variables that are amplitudes of the in-
coming and outgoing waves (travelling waves), instead
of usual acoustic pressure and volume velocity in the
case of reed instruments. If the inertia of the reed is ig-
nored (a good approximation in many cases), and if the
losses in the resonator are independent of frequency,
the model leads to simple iterations; the normal os-
cillations correspond to the so called “Helmholtz mo-
tion”, a regime in which the various physical quanti-
ties vary in time by steps, as in square signals. Square
signals obviously are a poor approximation of actual
musical signals, but this approach is sufficient when
the main purpose is to study regimes of oscillation, not
tone-color.

In the case of clarinet-like systems, the idea was
then expanded [9], giving rise to experimental obser-
vations of period doubling scenarios and to considera-
tions on the relations between stability of the regimes
and the properties of the second iterate of the non-
linear function; see also [10] and especially [11] for
a review of the properties of iterations in clarinet-like
systems and a discussion of the various regimes (see
also [12]). More recent work includes the study of
oscillation regimes obtained in experiments [13, 14],
computer simulation [15] as well as theory [16, 17].

The general form of the iteration function that is
relevant for reed musical instruments is presented in
Sect. 3. It is significantly different from the usual iter-
ation parabola (i.e. the so-called logistic map). More-
over, it will be discussed in more detail that the control
parameters act in a rather specific way, translating the
curve along an axis at 45◦ rather than acting as an ad-
justable gain.

The purpose of the present article is to study the
iterative properties of functions having this type of be-
haviour, and their effect on the oscillation regimes of
reed musical instruments. We will study the specifici-
ties and the role of the higher order iterates of this class
of functions, in particular in the regions of the so called
“periodicity windows”, which take place beyond the
threshold of chaos. These windows are known to con-
tain interesting phenomena [2, 3, 18, 19], for instance
period tripling or a route to intermittence, which to our
knowledge have not yet been studied in the context of
reed musical instruments. Moreover, the iterates give
a direct representation of the zones of stability of the
different regimes (period doublings for instance), di-
rectly visible on the slope of the corresponding iterate.

For numerical calculations, it is necessary to select
a particular representation of the non-linear function,
which in turn requires to choose a mathematical ex-
pression of the function giving the volume flow rate as
a function of the pressure difference across the reed.
A simple and realistic model of the quasi-static flow
rate entering a clarinet mouthpiece was proposed in
1974 by Wilson and Beavers [20], and discussed in
more detail in 1990 by Hirschberg et al. [21]. This
model provides a good agreement with experiments
[22] and leads to realistic predictions concerning the
oscillations of a clarinet [23]. Using this mathemat-
ical representation of the flow rate, we will see that
iterations lead to a variety of interesting phenomena.
Our purpose here is not to propose the most elaborate
possible model of the clarinet, including all physical
effects that may occur in real instruments. It is rather
to present general ideas and mathematical solutions as
illustration of the various class of phenomena that can
take place, within the simplest possible formalism; in a
second step, one can always take this simple model as
a starting point, to which perturbative corrections are
subsequently added in order to include more specific
details.

We first introduce the model in Sect. 2, and then
discuss the properties of the iteration function in
Sect. 3. The bifurcations curves are obtained in Sect. 4
and, in Sect. 5, we discuss the iterated functions and
their applications in terms of period tripling and inter-
mittence. In particular, we see how the graph of high
order iterates give visible information on the regime of
oscillation (number of period doublings for instance)
or the appearance of a chaotic regime, while nothing
special appears directly in the graph of the first iterate.
Two appendices are added at the end.

2 The model

We briefly recall the basic elements of the model, the
non-linear characteristics of the excitator, and the ori-
gin of the iterations within a simplified treatment of
the resonator.

2.1 Nonlinear characteristics of the entering flow

In a quasi static regime, the flow U entering the res-
onant cavity is modelled with the help of an approx-
imation of the Bernoulli equation, as discussed, e.g.
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in [21]. We note Pint the acoustic pressure inside the
mouthpiece, assumed to be equal to the one at the out-
put of the reed channel, Pm the pressure inside the
mouth of the player; for small values of the difference:

�P = Pm − Pint, (1)

the reed remains close to its equilibrium position, and
the conservation of energy implies that U is propor-
tional to ηp

√|�P |, where ηp = ±1 is the sign of
�P (we ignore dissipative effects at the scale of the
flow across the reed channel); for larger values of this
difference, the reed moves and, when the difference
reaches the closure pressure Pc , it completely blocks
the flow. These two effects are included by assum-
ing that if �P ≤ Pc the flow U is proportional to
ηp

√|�P |[Pc − �P ], and if �P > Pc, the flow van-
ishes. Introducing the dimensionless quantities:

p = Pint/Pc,

u = UZ∞/Pc,

γ = Pm/Pc,

�p = �P/Pc = γ − p,

(2)

where Z∞ = ρc/S is the acoustic impedance of an
infinitely long cylindrical resonator having the same
cross section S than the clarinet bore (ρ is the density
of air, c the velocity of sound), we obtain:

u = 0 (3)

if �p > 1 i.e. p < γ − 1;
u = ζ(p + 1 − γ )

√
γ − p (4)

if 0 < �p < 1 i.e. γ − 1 < p < γ ;
u = −ζ(p + 1 − γ )

√
p − γ (5)

if �p < 0 i.e. p > γ.

The parameter ζ characterizes the intensity of the flow
and is defined as:

ζ = cSop

S

√
2ρ

Pc

, (6)

where Sop is the opening cross section of the reed
channel at rest. One can show that ζ is inversely pro-
portional to square root of the reed stiffness,1 con-

1The reed remains close to its equilibrium position; the acoustic
flow is then independent of the stiffness of the reed. Equa-

tained in Pc . In real instruments, typical values of
the parameters are γ ∈ [0,1.5]; ζ = [0.1,0.5]; values
ζ > 1 will not be considered here, since they corre-
spond to multi-valued functions u(p), a case that does
not seem very realistic in practice. Figure 1 shows an
example of function defined in (3) to (5). It is obvi-
ously non-analytic; it is made of three separate ana-
lytic pieces, with a singular point at p = γ. The deriva-
tive of the function u(p) is discontinuous at p = γ −1
(point Mb in Fig. 1, the index b being used for the limit
of possible beating); a smoothing of the resulting angle
of the function could easily be introduced at the price
of a moderate mathematical complication, but this is
not necessary for the present discussion.

2.2 Iteration

Waves are assumed to be planar in the quasi one di-
mensional cylindrical resonator. Any wave can be ex-
panded into an outgoing wave p+(t − z/c) and an in-
coming wave p−(t + z/c), where t is the time and z

the abscissa coordinate along the axis of the resonator;
at point z = 0 (at the tip of the reed), the acoustic pres-
sure and flow2 are given by

p(t) = p+(t)+p−(t); u(t) = p+(t)−p−(t) (7)

or

p+(t) = 1

2
[p(t)+u(t)]; p−(t) = 1

2
[p(t)−u(t)].

(8)

We will use variables p±(t) instead of p(t) and u(t). If
we assume that the impedance at the output of the res-
onator is zero (no external radiation, the output pres-
sure remains the atmospheric pressure), we obtain the
reflection condition:

p−(t) = −p+(t − 2�/c), (9)

where � is the resonator length and c the sound veloc-
ity. This equation expresses that the reflected wave has

tion (4) then provides UZ∞/Pc � ζ
√

(Pm − Pint)/Pc , or U �
(ζ

√
Pc/Z∞)

√
(Pm − Pint); but Pc is roughly proportional to the

reed stiffness, so that the independence of the flow with respect
to the stiffness requires that ζ is inversely proportional to the
square root of this stiffness.
2The flow is related to the pressure via the Euler equation:
∂P/∂z = −ρS−1∂U/∂t .
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Fig. 1 Graph showing the
air flow rate u entering the
resonator of a clarinet as a
function of the internal
pressure p (pressure in the
mouthpiece). All physical
quantities are expressed in
dimensionless units, as
explained in the text. Mb

corresponds to the contact
point where the internal
pressure in the mouthpiece
bends the reed sufficiently
to close the channel, so that
the flow vanishes; it
remains zero in all region
p < γ − 1. Mi is the
inversion point where
p = γ and where the
acoustic flow changes sign.
The full line corresponds to
γ = 0.4, the broken line to
γ = 0.6. Here, ζ = 0.8

the same amplitude than the incoming wave. Losses
are not included in this relation, but one can also intro-
duce them very easily by replacing (9) by

p−(t) = −λp+(t − 2�/c), (10)

which amounts to introducing frequency independent
losses; a typical value is λ = 0.9. For a cylindrical
open tube with no radiation at the open end so that
losses only occur inside the tube, λ = exp(−2α�),
where α is the absorption coefficient. Of course, this
is an approximation: real losses are frequency depen-
dent3 and radiation occurs, but since losses remain a
relatively small correction in musical instruments, us-
ing (10) is sufficient for our purposes.

We now assume that all acoustical variables vanish
until time t = 0, and then that the excitation pressure in
the mouth suddenly takes a new constant value γ ; this
corresponds to a Heaviside step function for the con-
trol parameter. Between time 0 and time 2l/c, accord-
ing to (10), the incoming amplitude p−(t) remains
zero, but the outgoing amplitude p+(t) has to jump to
value p+

1 in order to fulfil (3) to (5). At time t = 2l/c,

3The value of α depends on both frequency f and radius R.
For normal ambient conditions (20◦C), α = 2.96 × 10−5√f /R

(see, e.g. [24]).

the variable p−(t) jumps to value −λp+
1 , which im-

mediately makes p+(t) jump to a new value p+
2 , in

order to still fulfil (3) to (5). This remains true until
time t = 4l/c, when p−(t) jumps to value −λp+

2 and
p+(t) to a value p+

3 , etc. By recurrence, one obtains
a regime where all physical quantities remain constant
in time intervals 2nl/c < t < 2(n + 1)l/c, in particu-
lar pn for the pressure and un for the flow, with the
recurrence relation:

p−
n = −λp+

n−1. (11)

In what follows, it will be convenient to use 2l/c as
a natural time unit. We will then simply call “time n”
the time interval (n − 1)2l/c ≤ t < n2l/c. Notice that
in order to get higher regimes (with, e.g. triple fre-
quency), the previous choice of transient for γ needs
to be modified (see, e.g.[11]).

Now, by combining (3) to (5) and (7), one can ob-
tain a non-linear relation g between p+

n and p−
n :

p+
n = g(p−

n ) , (12)

which, combined with (11), provides the relation:

p+
n = g(−λp+

n−1) = f (p+
n−1), (13)

with, by definition: f (x) ≡ g(−λx). The equation of
evolution of the system are then equivalent to a sim-
ple mapping problem with an iteration function f (x).
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Fig. 2 Iteration function f

for ζ = 0.8 and γ = 0.43
Solid line λ = 1 (no loss in
the resonator); mixed line
λ = 0.8; dotted line
λ = 0.4. The circles on the
right indicate the contact
point Mb , those on the left
the flow inversion point Mi

The graph of this function is obtained by rotating the
non-linear characteristics of Fig. 1 by 45◦ (in order to
obtain g), then applying a symmetry (to include the
change of sign of the variable) and finally a horizontal
rescaling by a factor 1/λ; the result is shown in Fig. 2.
This provides a direct and convenient graphical con-
struction of the evolution of the system [9]; Figure 3
shows how a characteristic point 1 is transformed into
its next iterate 2, etc. by the usual construction, at the
intersection of a straight line with the iteration curve,
i.e. by transferring the value of f (x) to the x axis and
reading the value of the function at this abscissa in or-
der to obtain f [f (x)].

In what follows, we consider γ as the main control
parameter of the iteration; it corresponds to a change
of pressure in the mouth of the instrumentalist. A sec-
ond control parameter is ζ , which the player can also
change in real time by controlling the lip pressure on
the reed. For a given note of the instrument, parameter
λ remains fixed, but of course depends on which lat-
eral holes of the clarinet are closed, in other words on
the pitch of the note.

The oscillations where the functions remain con-
stant and jump to a different value at regular interval of
times are reminiscent of the Raman regime for the os-
cillation of bowed strings [25]. McIntyre et al. have in-
deed noticed that, if one replaces the non-linear func-
tion by that corresponding to a bowed string, one ob-
tains the Raman oscillation regime of a string bowed
at its center [8].

Fig. 3 Graphical illustration of the iteration, where an initial
point 1 is iterated into point 2, 3, etc. (similarly for the point
1’, 2’, 3’,. . . ). Since the non-linear iteration function has a
maximum fmax, after a few steps the iteration remains inside
an “iteration square” shown in broken lines. This square has its
upper side tangent to the maximum of the function, at point
Mmax, which after one iteration becomes point Mmin defining
the lowest side of the square (ordinate fmin). Depending on the
parameters, the iteration square contains or does not contain
the contact point Mb and the flow inversion point Mi . Here,
γ = 0.44, ζ = 0.8, λ = 0.95
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3 Properties of the iteration

The analytical expression of the iteration function is
given in Appendix A. Figure 2 shows the function for
given values of the parameters γ and ζ , and three dif-
ferent values of the loss parameter λ.

In the literature, the most commonly studied func-
tions have the following properties (see, e.g. Collet and
Eckman [4, 5] or Bergé et al. [2, 3]):

• They are defined on a finite interval and map this
interval into itself;

• They are continuous;
• They have a unique maximum;
• their Schwarzian derivative is negative.

A function verifying these properties will be called
a “standard” function; the function f (x) of interest in
our case does not fulfil all these requirements.

Domain of iteration Usually, the iteration function
defines an application of the interval 0 ≤ x ≤ 1 over
itself. Here, f (x) is defined on an infinite interval
[−∞,+∞] even if, obviously, very large values of
the variables are not physically plausible. Neverthe-
less, analyzing the different cases corresponding to (3)
to (5), one can show that the function f (x) has a max-
imum fmax obtained for:

xmax = −1

λ

[
γ

2
− 5

18
− χ

(
ζ − 5

3ζ

)]
(14)

with value:

fmax = γ

2
+ Aζ with

Aζ = χ

(
ζ + 1

3ζ

)
− 1

18
,

(15)

where χ is defined by:

χ = 1

9

[√
3 + 1

ζ 2
− 1

ζ

]
. (16)

It can be shown that this maximum is unique for
large value of ζ (ζ > 1/

√
3); for smaller values, a sec-

ond maximum exists at a very large negative values
of x, i.e. for very large negative flow, but we will see
below that such values of the flow cannot be obtained
after a few iterations. Therefore, we focus our atten-
tion only on the maximum fmax, which varies slowly

as a function of ζ because Aζ increases monotonically
from 0 for ζ = 0 to a small value (5/54, for ζ = 1).

The geometrical construction of Fig. 3 shows that,
after a single iteration, the characteristic point M nec-
essarily falls at an abscissa x ≤ fmax. Let us call
fmin = f (fmax) the ordinate of the point on the itera-
tion function with abscissa fmax. The two vertical lines
x = fmin and x = fmax, together with the two horizon-
tal lines y = fmin and y = fmax, define a square in the
x, y plane, from which an iteration cannot escape as
soon as the iteration point has fallen inside it.4 Con-
versely, since every characteristic point has at least two
antecedents, the iteration can bring a point that was
outside the square to inside. In other words, the square
determines a part of the curve which is invariant by ac-
tion of the function. For usual initial conditions, such
as p−

0 = 0, the starting point already lies within the
square, so that all points of the iteration keep this prop-
erty. We have checked that, even if one starts with very
large and un-physical pressure differences (positive or
negative), the iterations rapidly converge to the inside
the square. In what follows, we call it the “iteration
square”.

The net result is that, if we do not consider tran-
sients, we can consider that the function defines an ap-
plication of the interval [fmin, fmax] over itself. We are
then very close to the usual mapping situation, except
that here the interval depends on the control parame-
ters (since the value of fmax depends on γ and ζ ), but
with a relatively slow variation.

Singularities An interesting feature of the iteration
function is the discontinuity of its first derivative oc-
curring at the beating limit point Mb at x = xb , given
by:

xb = 1 − γ

2λ
; f (xb) = γ − 1

2
. (17)

When the reed closes the channel (p+ = p−, p+ +
p− < γ −1), x > xb , f (x) = −λx, the iteration func-
tion is linear.

Another singularity, i.e. a discontinuity of the sec-
ond derivative, is obtained at the crossover between
positive and negative flow, the inversion point Mi

where sign of the flow changes. Its abscissa x = xi is

4We assume that f (fmin) > fmin, which means that the iteration
curve crosses the left side of the square, as is the case in Fig. 3.
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given by

xi = − γ

2λ
; f (xi) = γ

2
. (18)

For 0 < γ < 1, xi is negative and xb positive: there-
fore, the initial point of the iteration (x = 0) lies in the
interval [xi, xb], with neither contact with the mouth-
piece nor negative flow, as one could expect physi-
cally.

Schwarzian derivative The Schwarzian derivative
[4, 5] of f (x) is equal to:

Sf = f ′′′

f ′ − 3

2

[
f

′′

f ′

]2

, (19)

where f ′, f ′′, and f ′′′ indicate the first, second, and
third derivatives of f (x), respectively. If x > xb , it
is zero; if xi < x < xb , using the change of variables
given in Appendix A, Sf can be shown to be equal to

Sf = 8λ2

Y
′4(Y ′ − 2)2

[
Y ′′′Y ′(Y ′ − 2) − 3Y ′′2(Y ′ − 1)

]
,

(20)

where Y is a function of X—see (27) to (29). There-
fore, its sign does not depend on the loss parame-
ter λ. After some calculations, the Schwarzian deriva-
tive is found to be negative for all x ∈ [xi, xb] when
ζ < 1/

√
5. Otherwise, it is negative up to a certain

value, then positive up to x = xb . The calculation of
Sf for the case x < xi shows that it is positive, except
for a small interval. The iteration function therefore
differs from a standard function because of the sign of
the Schwartzian derivative; this is related to the nature
of the bifurcation at the threshold of oscillation [26],
which can be either direct or inverse.

Beating and negative flow limits In Fig. 3, we see
that, depending whether the contact point Mb and flow
inversion point Mi of the iteration curve fall inside or
outside the iteration square, a beating behavior of the
reed and a sign inversion of the air flow are possible or
not.

Point Mb falls inside the iteration square if its ab-
scissa xb given by (17) is smaller than fmax, which
leads to:

γ > γb ≡ 1 − 2λAζ

1 + λ
. (21)

The limiting value γb is less than unity (it tends to 1/2
when ζ tends to 0 and λ tends to unity). This necessary
condition is completely independent of the nature of
the limit cycle, and less stringent than the limit γb2s

obtained in [17], for a 2-state cycle:

γb2s = 1/2
[
1 + ββ1 + β2

1 (1 − ββ1)
]
, (22)

where β = ζ(1 − λ)/(1 + λ) and β1 = β/ζ 2. Figure 4
gives a comparison between the two limits. Similarly,
a necessary condition for possible inversions of the
sign of the air flow is that point Mi falls inside the it-
eration square of Fig. 3, in other words that xi is larger
than fmin. We show in Appendix B that this happens
if:

γi1 < γ < γi2. (23)

The expression of the two limits γi1 and γi2 are given
in the appendix and can be seen on Fig. 4. They are
solutions of xi = fmin, and exist only if the following
condition holds:

λ >
1

1 + 2Aζ

. (24)

Therefore, for a given ζ , negative flow is possible only
above a certain value of λ; this value is 27/32 = 0.84
for ζ = 1, and tends to unity when ζ tends to zero. Us-
ing a more realistic shape for the function f (x) with
a rounding of the kink at xb (no discontinuity of the
derivative) should lead to a shorter range of negative
flow, making the phenomenon even less likely, as il-
lustrated in Fig. 4.

Of course, the two above conditions (21) and (23)
are necessary, but not sufficient; they do not ensure
that either beating or flow inversion will indeed take
place, since this will be true only if the correspond-
ing regions of the non-linear curve are reached dur-
ing the iterations. Generally speaking, this will have
more chance to occur in chaotic regimes, where many
points are explored in the iterations, than in periodic
regimes. Since no observation of negative flow has
been reported in the literature, it is not clear whether
this actually happens in real instruments.

In conclusion of this section, the iteration function
is similar to those usually considered in the context
of iterated maps, without really belonging to the cat-
egory of “standard” functions. The major difference
is actually the effect of the control parameters on the
function, since usually the control parameters acts as a



260 P.-A. Taillard et al.

Fig. 4 In the plane of the
control parameters γ and ζ ,
the line representing γb

gives a border between the
upper region, where reed
beating may occur, and the
lower region where it
cannot—see (21). As a
point of comparison, the
line labelled γb2s

correspond to the limit
obtained in [17] for the
particular case of a 2-state
regime, and given by (22).
The figure also shows the
line γi1 and γi2 associated
with the possibility of
negative flow (the first one
turns out to be very close to
that associated with reed
beating). Small values for
the losses have been
assumed (λ = 0.95)

gain, expanding the vertical axis of the graph; here, the
parameter γ (pressure in the mouth of the instrumen-
talist) translates the iteration function along an axis at
45◦ of the coordinate axis, while the other control pa-
rameter ζ (the pressure of the lip on the reed) expands
the function along the perpendicular axis. It is there-
fore not surprising that we should find a parameter de-
pendence of the dynamical behaviours that is signifi-
cantly different from the standard results.

4 Bifurcation curves

Figure 5 shows an example of bifurcation curves, for
λ = 0.95 and ζ = 0.8, and illustrates the relative com-
plexity of the possible regimes. The upper curve corre-
sponds to the outgoing amplitude p+ (or x), the mid-
dle curve to acoustic pressure p, and the lower curve
to the acoustic flow u. The three curves show the last
20 values obtained after computing 400 iterations for
each value of the mouth pressure γ . By calculating
2,000 iterations for a given value of the parameter γ ,
we have checked that the limit cycle is then reached.
Obviously, this method leads to stable regimes only.

When the control parameter γ increases, the be-
ginning of these curves follows a classical scenario
of successive period doublings, leading eventually to

chaos; as expected, high values of the parameters ζ

and λ favour the existence of chaotic regimes, as well
as beating reed or negative flow. When γ continues to
increase, another phenomenon takes place: chaos dis-
appears and is replaced by a reverse scenario contain-
ing a series of frequency (instead of period) doublings.
We call this phenomenon a “backward cascade” (in or-
der to distinguish it from the usual “inverse cascade”,
which takes place within periodicity windows inside
chaos [2, 3]); this backward cascade is a consequence
of the specificities of the effect of the control parame-
ter on the iteration function in our model, and of the
particular shape of the iteration function (for instance
a straight line beyond the beating limit point). As a
matter of fact, different kinds of cascades have been
studied in the literature (see, e.g. [27] and [28], in par-
ticular Fig. 5).

In Fig. 5, the variations of γ correspond to a
“crescendo”: for a given value of γ , the initial value
for the iteration, p+

0 , is chosen to be equal to the last
value p+

400 obtained with the previous value of γ . But
we have also studied the “decrescendo” regime and
observed that, in the chaotic regimes, the plotted points
differ from the crescendo points; on the other hand,
they remain the same in the periodic regimes, indi-
cating a direct character of the bifurcations (no hys-
teresis). We have found an exception to this rule: be-
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Fig. 5 Bifurcation curve
for λ = 0.95 and ζ = 0.8.
For increasing values of the
abscissa γ (blowing
pressure), corresponding to
a crescendo, the curve show
the values after 400
iterations of the outcoming
wave p+ (top) the pressure
p in the mouthpiece
(middle), and the volume
flow u (bottom). Above
γ � 0.45, the flow can be
negative and the reed can
beat. The top figure also
shows fmax(γ ) and fmin(γ )

(mixed lines) associated to
the “iteration square”

tween values γ = 0.5 and γ = 0.53, 2-state and 4-state
regimes coexist, indicating an inverse bifurcation. An-
other inverse bifurcation, between a 2-state regime and
a static regime, occurs beyond the limit of the fig-
ure, the two regimes coexisting between γ = 1 and
γ = 6.3544; this is not shown here (the shape of the
curve can be found in Ref. [17], see upper Fig. 4).

The two limits of the function f (x), fmax, and
fmin, are also plotted in the upper figure (p+) show-
ing that, as expected, the corresponding values remain
inside the iteration square (Sect. 3). In the figure at
bottom, the results for the flow u exhibit lower limits
for negative flow and for beating, which are very close
to the theoretical limits, respectively, γi1 = 0.4454
and γb = 0.4503, and are located within the chaotic
regime. Negative flow disappears at the bifurcation be-
tween the 4-state and the 2-state regime, γ = 0.5262,
a much lower value than the higher limit for negative
flow γi2 = 1.189.

Table 1 shows the critical values of γ correspond-
ing to changes of regime. Up to the first chaotic regime
(γ = 0.4409), the behaviour follows the usual period
doubling cascade scenario. Between γ = 0.4467 and
γ = 0.4479, a “periodicity windows” [2, 3] is ob-
tained, with 6-state, then 12-state and 24-state regimes
(but no 3-state regime). Above the value γ = 0.4409
for which chaos starts, an “inverse cascade” type sce-
nario is observed, then intermittences occur, chaos
again, and finally the “backward cascade” to the sta-
tic regime. We did not try to obtain the same accuracy
for the values of all different thresholds, because the

ranges for γ have very different widths; for some val-
ues of γ , it has been necessary to make up to 2,000
iterations, and sometimes it is not obvious to distin-
guish between a chaotic regime, a long transient, or an
intermittency regime.

5 Iterated functions

We now discuss how the iterated functions can be used
to study the different regimes and their stability. We
write f (2)(x) the second iterate of f , and more gener-
ally f (n)(x) its iterate of order n; the derivative of f

with respect to x is f ′(x). Around the fixed point x∗
of the first iterate f (x), a Taylor expansion gives

f (x) = f (x∗) + (x − x∗)f ′(x∗) + · · ·
= x∗ + (x − x∗)f ′(x∗) + · · · ,

which provides the well-known stability condition for
a fixed point x∗ of f (x):

|f ′(x∗)| < 1. (25)

Since the derivative of the iterate of order n is given
by:

f (n)′(x∗) = f ′(x∗)f (n−1)′(x∗)

one can show by recurrence that, when x = x∗, it is
equal to the nth power of the derivative of f , so that

f (n)(x) = x∗ + (x − x∗)[f ′(x∗)]n + · · · (26)
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Table 1 Values of the
parameter γ at the lower
limit of the different
regimes, corresponding to
Fig. 5. I = intermittencies;
C = crescendo;
D = decrescendo;
PW = periodicity windows

From γ = Regime Comments From γ = Regime Comments

0 1-state 0.4540 24-state

0.3545 2-state 0.4542 12-state

0.4272 4-state 0.4544 6-state

0.4384 8-state 0.466216 I

0.4403 16-state 0.4664 chaos

0.4408 32-state 0.46945 60-state

0.4409 chaos γi1 = 0.4454 0.4695 20-state

0.4467 6-state PW 0.4696 chaos

0.4474 12-state PW 0.46985 4-state

0.4476 24-state PW 0.5000 2-state (D)

0.4479 chaos γb = 0.4503 0.53 2-state (C)

0.4538 36-state 1. 1-state (D) γi2 = 1.189

0.4539 chaos 6.3544 1-state (C)

If the fixed point is stable (resp. unstable) with respect
to f (x), it is also stable (resp. unstable) with respect
to any iterate. If x is a vector, instead of a scalar, this
linearized approach leads to the Floquet matrix, and
f ′(x) should be replaced by the eigenvalues of the ma-
trix.

5.1 Stability of the period doubling regimes

Examples of iterated functions of order 1, 2, and 4 are
shown in Figs. 6 and 7, with the same values of ζ and
λ as in Fig. 5; in the former, the blowing pressure γ

is 0.31, in the latter, γ is 0.42. The first iterate has a
unique fixed point, M∗ = (x∗, x∗), located by defini-
tion on the first diagonal. The fixed point is stable if the
absolute value of the derivative at M∗ is smaller than
unity, in other words if the tangent line lies between
the first diagonal (with slope +1) and its perpendicu-
lar (with slope −1). When γ = 0.31, we see in Fig. 6
that the fixed point M∗ is stable, so that no oscillation
takes place. When γ increases, M∗ becomes instable
and, at the same time, gives rise to three fixed points
of f (2). For γ = 0.42, Fig. 7 shows that the tangent
is outside the angle between the diagonal and its per-
pendicular, so that the fixed point is now unstable; on
the other hand, the second iterate f (2) now has two
more fixed points M

(2)
1 and M

(2)
2 with slopes less than

1 (in absolute value): we therefore have a stable 2-state
regime.

The same scenario then repeats itself when γ con-
tinues to increase: at some value, points M

(2)
1 and M

(2)
2

Fig. 6 Iteration functions for λ = 0.95, γ = 0.31, and ζ = 0.8.
The 1st iterate f (x) is shown with a mixed line, the 2nd iterate
f (2)(x) with a solid line, and f (4)(x) with a thin mixed line. The
dotted lines are the first diagonal and the straight line perpendic-
ular at the fixed point M∗ of f (x), solution of f (x) = x. The
tangent lines to iterate 1 at the point M∗ is shown with a solid
line

become instable in turn (the corresponding slope ex-
ceeds 1 in absolute value), and both points M

(2)
1 and

M
(2)
2 divide themselves into three fixed points of f (4);

the two extreme new points have small slopes for this
iterate, which leads to a 4-state stable regime. By the
same process of successive division of fixed points
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Fig. 7 Iterates for λ = 0.95, γ = 0.42, and ζ = 0.8, with the
same plots that in Fig. 6. The tangent lines at the new fixed
points of f (2)(x), M

(2)
1 , and M

(2)
2 , are also shown

of higher and higher iterates, one obtains an infinite
number of period doublings, until eventually chaos
is reached. This is the classical Feigenbaum route to
chaos.

Some general remarks are useful to understand the
shape of the iterates in the figures:

• If the value of f (x) for the abscissa x verifies
f (x) = f (x∗), i.e. if the point M(x, f (x)) is on
a horizontal line y = x∗, all iterates go through the
same point;

• The extrema of f (2)(x) verify either f ′(x) = 0 (i.e.
x = xmax) or f (2)(x) = fmax, because df (2)(x)/

dx = f ′[f (x)]f ′(x); therefore, the extrema of
f (2)(x) are at either the same abscissa or the same
ordinate as those of f (x);

• More generally, for n > 1, if f (n−1)(x) = xmax, then
f (n)(x) = fmax, and it is at a maximum (its first
derivative vanishes and the second one is negative),
and if f (n−1)(x) = fmax, then f (n)(x) = fmin, and
it is at a minimum (its first derivative vanishes and
the second one is positive);

• The kink of the first iterate (beating limit point) is
also visible on the iterates;

• A well-known property of the Schwarzian deriva-
tive is as follows. If the Schwarzian derivative of
f (x) is negative, the Schwarzian derivatives of all
iterates are negative as well.

Fig. 8 Iterates for λ = 0.95, γ = 0.42 and ζ = 0.8, of order 1,
2, 4, 8 and 16. The convergence to the 2-state regime is visible

Figure 8 shows the higher order iterates (of order
4, 8 and 16) in the same conditions as Fig. 7. We ob-
serve that the iterates become increasingly close to-
gether when their order increases, with smaller and
smaller slopes at the fixed points corresponding to
the 2-state regime. Moreover, they resemble more and
more a square function, constant in various domains
of the variable. This was expected: in the limit of very
large orders, whatever the variable is (i.e. whatever the
initial conditions of the iteration are) one reaches a
regime where only two values of the outgoing wave
amplitude are possible; these values then remain sta-
ble, meaning that the action of more iterations will
not change them anymore. So, one can read directly
that the limit cycle is a 2-state on the shape of f (16),
which has two values; it would for instance have 4
in the limit cycle was a 4-state regime for these val-
ues of the parameters. For the clarity of the figure, we
have shown only iterates with orders that are powers
of 2, but it is of course easy to plot all iterates. For
a 2-state regime, even orders are sufficient to under-
stand the essence of the phenomenon, since odd or-
der iterates merely exchange the two fixed points M

(2)
1

and M
(2)
2 .

In Table 1, the existence of two different stable
regimes for the same value of the parameters signals
an inverse bifurcation; Figure 9 shows an example
of such a situation. For γ = 1.2, both the static and
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Fig. 9 Iterates for
λ = 0.95, γ = 1.5, and
ζ = 0.8, of order 1, 2, 3, 4,
and 8. The curves of f (8)

and f (16) are almost
perfectly superimposed.
Around x = 0, the
convergence to the static
regime appears to be very
slow. On the contrary the
convergence to the 2-state
regime is rapid

Fig. 10 Iterates for
λ = 0.95, γ = 0.515 and
ζ = 0.8, of order 1, 2, 4, 8,
and 16.

2-state regimes are then stable, depending on the ini-
tial conditions. For the static regime, the curve f (1)

coincides with the second diagonal y = −x, a case in
which the fixed point is presumably stable (the stabil-
ity becomes intuitive when one notices that the tan-
gents of the higher order curves lie within the angle of
the two diagonals). For the 2-state regime, the state of
positive pressure value corresponds to a beating reed.

Finally, Fig. 10 shows another case of existence of
two different regimes for the same value of the para-
meters. A 2-state regime can occur, as well as a 4-state
regimes can occur. It appears that the second one is
more probable than the first one, when initial condi-
tions are varied.

5.2 Periodicity windows; intermittencies

We now investigate some regimes occurring in a nar-
row range of excitation parameter γ .

(i) We first examine a chaotic regime occurring just
before a 6-state regime (period tripling) and the tran-
sition between the two regimes. Figure 11 shows the
iterated functions of order 1, 2, 6, and 12. The 6th it-
erated function crosses the first diagonal at the same
points than the first and the second iterates only, which
means that no 6-state regime is expected. By contrast,
the 12th iterate cuts the diagonal at more points, but
with a very high slope, indicating that the correspond-
ing fixed points cannot be stable. This combined with
the fact that no convergence to a square function (con-
stant by domains), such as f (16) in Fig. 8, suggests an
aperiodic behavior; the time dependent signal shown
in Fig. 12 looks indeed chaotic (nevertheless the flow
always remains positive). The periodic/chaotic char-
acter of the signal can be distinguished by examin-
ing the time series, but a complementary method is
the computation of an FFT. For the signal of Fig. 12,
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Fig. 11 Iterates for
λ = 0.95, γ = 0.4445, and
ζ = 0.8, of order 1, 2, 6,
and 12. A convergence to
an aperiodic regime is
visible. The arrow indicates
a region where f (6)(x) is
very close to the first
diagonal, but does not yet
cross it

Fig. 12 Iteration from
n = 0 for λ = 0.95, ζ = 0.8,
γ = 0.4445, p+

0 = 0; the
upper part shows the
pressure p, the lowest part
the values of the flow u.
The regime looks chaotic

the spectrum is more regular than the spectrum of a
6-state periodic regime. Nevertheless, the frequencies
of the latter (the “normal” frequency f2 of the 2-state
regime with the frequencies f2/3 and 2f2/3) remains
visible in the spectrum of the first one, as it is often the
case for signals corresponding to very close values of
the parameter. A consequence is that these frequencies
clearly appear when listening the sound.

Figure 13 is similar to Fig. 11, but with a slightly
larger value of γ (0.4469 instead of 0.4445). In the re-
gion indicated by the arrow, one notices that the 6th
iterated function now cuts the first diagonal. They are
12 points of intersection (plus 1 common point with

the first iterate as well as two common points with the
second iterate, all unstable); the slope of the tangent
shows that 6 of them are stable, so that one obtains a
6-state, periodic, regime. The variations of higher or-
der iterates, e.g. f (12), remain very fast; the conver-
gence to the limit cycle is then much slower than for
Fig. 8, except if the initial point is close to a limit point
(e.g. that shown by an arrow: it turns out that the 12th
iterated function is very close to the 6th one). As a con-
sequence, the initial transient to the 6-state regime can
be rather chaotic, as shown in Fig. 14, but convergence
to a periodic regime does occur later. This existence
of periodic regimes above the threshold for chaos is
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Fig. 13 Iterates for
λ = 0.95, γ = 0.4469 and
ζ = 0.8, of order 1, 2, 6 and
12. A convergence to a
6-state regime is observed.
The arrow indicates a
region where f (6)(x) cuts
the first diagonal

Fig. 14 Iteration from
n = 0 for λ = 0.95, ζ = 0.8,
γ = 0.4469,
p+

0 = −0.3347. The regime
is periodic (6-state)

called “periodicity windows”, which appears as a nar-
row whiter region in Fig. 5. A difference with the usual
2n-state regimes (when γ is below the chaotic range),
for instance corresponding to Fig. 7, is that one obtains
2n intersections with the diagonal, stable or unstable;
by contrast, for the 6-state regime, they are 6 stable
and 6 unstable points.

(ii) We now examine the transition between a
6-state regime and a 4-state regime through chaotic
regimes or intermittency regimes. For γ = 0.4544,
a 6-state regime is obtained. Figure 15 shows the it-
erates of order 1, 2, 4, and 6. The 4th and 6th iter-
ates have common intersections with the first and sec-

ond iterates, since both 4 and 6 are multiples of 2.
The 6th iterate intersects the first diagonal at 12 other
points, while the 4th cuts the diagonal at 4 points only.
These 4 points are unstable, thus no 4-state regime
can exist. On the contrary, for the 6th iterate, half of
the 12 points are stable (i.e. with a small slope of
the tangent line), so that one obtains a 6-state stable
regime.

What happens for a higher value of γ , namely
0.472 corresponding to a 4-state regime is shown in
Fig. 16, with again the iterates of order 1, 2, 4, 6.
The 4th iterate curve crosses the diagonal for the same
number of points than previously, but the 4 points



Iterated maps for clarinet-like systems 267

Fig. 15 Iterates for
λ = 0.95, γ = 0.4544 and
ζ = 0.8, of order 1, 2, 4,
and 6. A convergence to a
6-state regime is observed

Fig. 16 Iterates for
λ = 0.95, γ = 0.472, and
ζ = 0.8, of order 1, 2, 4,
and 6. A convergence to a
4-state regime is observed

are now stable. The 6th order iterate does not inter-
sect the diagonal, except at the common points with
the two first iterates. Between the two preceding val-
ues of the parameter γ , both chaotic and intermittent
regimes can exist. For γ = 0.46623, Fig. 17 shows
intermittencies between a chaotic and a 6-state be-
haviours (upper curve), and Fig. 18 shows that the
6th iterate is tangent to the first diagonal in 6 points,
so that the resulting permanent regime can be inter-
preted as a kind of “hesitation” between two behav-
iours. The 4 intersections of the 4th iterate remain un-
stable.

The lower curve in Fig. 17 shows another, more vis-
ible, example of intermittencies, obtained with slightly
different values of the parameters, between a chaotic

regime and a 4-state one (actually it is a 8-state one,
very close to a 4-state regime).

6 Conclusion

The study of the iteration model of the clarinet should
not be limited to the first iterate: higher order iter-
ates give interesting information on possible regimes
of oscillation. In the limit of very high orders, their
shape gives a direct indication of the number of states
involved in the limit regime, or of chaotic behavior.
One can also predict an intermittent regime of the it-
erations, which takes place when an iterate is almost
tangent to the first diagonal, so that the iterations are
“trapped” for some time in a narrow channel. The phe-
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Fig. 17 Iteration from
n = 0 for λ = 0.95, ζ = 0.8,
γ = 0.46623, p+

0 = 0
(upper curve):
Intermittencies between
chaos and a 6-state regime
are observed. However, the
lower curve (for λ = 1,
ζ = 0.8, γ = 0.467,
p+

0 = 0) shows a more clear
situation of intermittencies
between chaos and a 4-state
regime

Fig. 18 Iterates for
λ = 0.95, γ = 0.46623,
and ζ = 0.8, of order 1, 2,
4, and 6, corresponding to
intermittencies. The sixth
iterate is tangent to the
diagonal

nomenon might be related to some kinds of multi-
phonic sounds produced by the instrument. It is true
that this phenomenon takes place only in a rather nar-
row domain of parameters, but this is also the case
of the period doubling cascade, which has been ob-
served experimentally. One can therefore reasonably
hope that the present calculations will be followed by
experimental observations.
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Appendix A: Analytical iteration function

A.1 Derivation of the equations

Our purpose is to obtain an analytical expression of
the iteration function p+

n = f (p+
n−1). From the basic

model (Eqs. (3 to 5, 7, 11)), the following quantities
can be defined:

X = γ − pn = γ − p+
n − p−

n = γ − p+
n + λp+

n−1;
Y = un + X = γ − 2p−

n = γ + 2λp+
n−1.
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p+
n = g( p−

n ) can be obtained from the knowledge of
the function X(Y), given by the solving of:

Y = X (beating reed, X > 1); (27)

Y = X + ζ(1 − X)
√

X (non-beating

reed, positive flow, 0 < X < 1); (28)

Y = X − ζ(1 − X)
√−X (non-beating

reed, negative flow, X < 0). (29)

For the non-beating reed case, the study of function
Y(X) leads to a direct analytical solution, as explained
below, at least if ζ < 1 (otherwise it is a multi-valued
function).

Finally, with the notation x = p+
n−1 and f (x) =

p+
n , if Y(X) is the Heaviside function, the iteration

function is obtained as

f (x) = γ − X(Y) + λx, with Y = γ + 2λx and (30)

Y(X) = X + ζ sign(X)Y(1 − X)(1 − X)
√|X|. (31)

A.2 Non-beating reed, positive flow (0≤ Y ≤ 1)

For this case, both X and Y are positive and smaller
than unity, because ζ < 1. Writing Z = √

X, (28) is
written as

G1(Z) = Y,

where G1(Z) = −ζZ

[
Z2 − Z

ζ
− 1

]
. (32)

The study of function G1(Z) shows that it is monoto-
nously increasing from 0 to 1 when Z increases from 0
to 1. Therefore, the equation G1(Z) = Y has a unique
solution when 0 ≤ Y ≤ 1. With this condition, it ap-
pears that the equation has three real solutions, and
that the interesting solution (located between 0 and 1)
is the intermediate one. As a conclusion, it is possi-
ble to use the classical formula for the solution of the
cubic equation:

√
X = Z = −2

3
η sin

[
1

3
arcsin

(
ψ − μ

ζη3

)]
+ 1

3ζ
;

ψ = 1

ζ 2
; η = √

3 + ψ; μ = 9

2
(3Y − 1).

A.3 Non-beating reed, negative flow (Y≤ 0)

For this case, both X and Y are negative. Writing Z =√−X, Equation (29) is written as follows:

G2(Z) = Y, where G2(Z) = −ζZ

[
Z2 + Z

ζ
+ 1

]
.

(33)

The study of the function G2(Z) shows that it is
monotonously decreasing from 0 when Z increases
from 0. Therefore, the equation G2(Z) = Y has a
unique real, positive solution when Y ≤ 0. The two
other solutions are either real and negative or complex
conjugate, with a negative real part, because the sum
of the three solutions is negative (−1/ζ ). As a conclu-
sion, the solution can be written by using the following
formulae:

If the discriminant is positive

discr = q3 + r2 > 0, where

q = 1

9
[3 − ψ]; r = −ψ + μ

27ζ
.

√−X = Z = s1 − q

s1
− 1

3ζ
; s1 = [

r + √
discr

]1/3
.

If the discriminant is negative

discr = q3 + r2 < 0

√−X = Z = 2

3
η′ cos

[
1

3
arccos

(
−ψ + μ

ζη′3

)]
− 1

3ζ
;

η′ = √−3 + ψ.

Appendix B: Negative flow limit

The condition of existence of negative flow is given
by xi > fmin. This is equivalent to the condition on
the antecedents, x′

i < fmax, where x′
i is the larger an-

tecedent of xi , such as x′
i > xmax, because f (x) is de-

creasing for all x > xmax (see Fig. 2). Therefore, the
volume flow is negative at time n + 1.

In order to determine the limit value γi , the follow-
ing equations are to be used:

X = γ − xi + λx′
i = γ

2λ
(1 + λ)2 + λAζ ; (34)
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Fig. 19 Function H(X)

given by (37) and constant
line δ = 2λAζ . Two
solutions X > λAζ exits for
this case (λ = 0.9, ζ = 0.9),
because condition (24) is
satisfied

Y = γ + 2λx′
i = γ (1 + λ) + λ2Aζ . (35)

γ being positive (a reasonable hypothesis for the nor-
mal playing), the unknown X needs to be larger than
the quantity λAζ . Eliminating γ in the above equa-
tions implies the following equation, with X > λAζ :

Y(X) − X = (λ − 1)X + 2λAζ

1 + λ
,

or

H(X) = δ, (36)

with

H(X) = (1 + λ)[Y(X) − X] + (1 − λ)X

for X > λAζ ; δ = 2λAζ . (37)

An example of function H(X) is shown in Fig. 19.
It appears that no solutions exist if H(1) > δ and
two solutions exist if H(1) < δ, i.e. if inequation (24)
holds. The two solutions can be obtained analytically.
However, for sake of simplicity, we give the exact so-
lution for the larger one, γi2, and an approximation
for the smaller one, γi1, obtained at the first order in
ε = 1 − X:

γi2 = 2λ2Aζ

1 − λ2
; (38)

γi1 � 2λ

(1 + λ)2
[1 − λAζ − ε], (39)

with ε = λ − 1 + 2λAζ

(λ + 1)ζ + λ − 1
. (40)

This error is found to be less than 1% in compari-
son with the exact value. Condition (24) can be shown
to be necessary and sufficient. We do not give the en-
tire proof, but it can be shown that another necessary
condition for having two solutions is H ′(1−) < 0, or
ζ(λ + 1) + λ − 1 > 0, but it is implied by condi-
tion (24).

Figure 4 shows that the first negative flow thresh-
old γi1 is very close to the threshold γb , and slightly
smaller. For a given λ, the limit value of ζ such as
λ > 1/(1 + 2Aζ ) corresponds to the equality between
the beating reed threshold and the negative flow one.
For a given ζ , negative flow is possible above a certain
value of λ. For rather strong losses, if λ < 0.84, no
negative flow can occur. For a cylindrical resonator,
this implies that α� > 0.085.
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Mc Intyre et coll. (1983) ont montré que l’on peut ramener le calcul des oscillations d’une clarinette
à une simple itération, dans un modèle où le résonateur est cylindrique avec des pertes indépendantes
de la fréquence, et où l’anche est vue comme un ressort sans inertie. Pour cela on choisit le couple des
ondes aller et retour comme variables de base, et le système peut se ramener à l’itération d’une fonction
f(x) qui relie les amplitudes de ces ondes, conduisant à des oscillations en signaux carrés. Nous donnons
une étude plus approfondie de cette fonction et en déduisons un encadrement des valeurs des paramètres
d’excitation pour lesquelles l’anche peut battre, ou encore pour lesquelles le signe du débit peut s’inverser.
Les fonctions itérées de la fonction f(x) renseignent notamment sur la stabilité des régimes périodiques,
ou aident à comprendre l’existence de régimes chaotiques, de fenêtres de périodicité ou d’intermittences.

1 Introduction

Clarinette et cartes itérées Dans leur article bien
connu, Mc Intyre et coll. [1] ont proposé pour les instru-
ments de musique auto-oscillants un modèle générique
très simple reposant sur deux éléments : une fonc-
tion non linéaire (excitation) et une impédance d’entrée
(résonateur, corde ou tuyau). Dans le cas d’un instru-
ment cylindrique à anche simple, de type clarinette,
ces deux éléments relient pression dans le bec et débit
d’entrée dans le résonateur ; plusieurs articles ont traité
d’un cas très simple, où le résonateur est sans pertes ou
avec pertes indépendantes de la fréquence (l’anche est
vue comme un simple ressort), en calculant des cycles
limites à deux états (signaux carrés) et leur stabilité
[2, 3, 4, 5, 6]. Dans une annexe, Mc Intyre et coll.
remarquent que avec ces hypothèses, si on utilise une
fonction de réflexion - onde retour/onde aller - pour ca-
ractériser le résonateur, le modèle se ramène à un simple
modèle de cartes itérées. La valeur de l’onde aller à deux
instants distants de 2�/c (temps d’aller et retour dans
le tuyau, c étant la vitesse du son, et � la longueur) se
déduit par simple itération d’une fonction non linéaire.
Cette dernière est obtenue par transformation de la fonc-
tion non linéaire physique (débit/pression), appelée ca-
ractéristique non linéaire et notée ci-après C, supposée
quasi-statique.

C’est cette idée que nous avons souhaité développer,
en poussant l’utilisation des itérées plus loin que celles
d’ordre 2, les itérées d’ordre plus élevé donnant des in-
formations utiles sur les régimes d’oscillation possibles.

Caractéristique non linéaire C débit-pression Le
choix de la caractéristique C aujourd’hui le plus courant
repose sur un modèle simplifié d’équation de Bernoulli
pour l’écoulement dans le canal entre anche et bec, et la
création d’un jet à sa sortie [7] (cf fig. 1). La comparai-
son expérience-théorie a été menée avec succès [8] pour

l’amplitude de la pression acoustique dans le bec dans
le cas de sons “normaux”, dont l’approximation est un
signal carré de fréquence fondamentale c/4�.

Ceci justifie le choix de cette forme de caractéristique
pour l’étude avec les cartes itérées. Cette forme se divise
en trois parties :

1. pour les grandes différences de pression entre la
bouche de l’instrumentiste et le bec, l’anche plaque (ou
bat1) et le débit est nul (expérimentalement il ne l’est
pas tout à fait, mais on peut se contenter de ce modèle) ;

2. pour les différences de pression plus faibles mais
positives, le vitesse dans le canal anche-bec crôıt comme
la racine carrée de la différence de pression (équation
de Bernoulli), et donc aussi le débit, mais ce dernier
décrôıt ensuite en raison de la force de rappel de
l’anche, jusqu’à s’annuler ;

3. enfin, si la pression dans la bouche est inférieure
à celle dans le bec, le débit est négatif ; cette partie du
modèle n’a en fait jamais été confrontée à l’expérience.
Elle semble surprenante, puisque la source d’énergie est
bien la surpression dans la bouche du musicien ; nous
discutons cet aspect plus loin.

La figure 1 montre ces trois parties. Elles sont
délimitées par les points de contact Mb et d’inversion
Mi. Il y a trois paramètres, que nous choisissons sans
dimensions, avec les notations d’articles précédents :

1. la pression dans la bouche, supposée constante,
notée γ ; elle est toujours positive, et vaut 1 à la limite
de placage de l’anche en régime statique ;

2. le débit maximum qui peut entrer dans le tuyau,
lié notamment à l’ouverture du canal d’anche au repos
et sa raideur, noté ζ ; les expériences montrent qu’il se

1Nous employons le terme “plaquer” pour le régime statique,
l’anche ne décollant pas, et “battre”, en régime dynamique.



Fig. 1: Caractéristique non linéaire (débit en-
trant/pression dans le bec) pour une valeur
donnée de la pression dans la bouche, supposée
constante, γ = 0.3 (trait plein) et 0.5 (pointillé).
Le paramètre ζ = 0.8, n’est qu’un facteur
multiplicatif. La fonction physique est en fait
une fonction de la différence de pression (bouche
- bec) ; augmenter la pression dans la bouche
γ revient donc à translater cette courbe vers
la droite. Les deux cercles marquent les limites
entre les trois parties de la courbe : la limite de
contact anche-bec, Mb, et le point d’inversion du
débit, Mi.

situe en général entre 0, 2 et 0, 4, mais ce sont les valeurs
élevées qui peuvent produire des régimes “anormaux”
(on suppose cependant qu’il est toujours inférieur à
l’unité) ;

3. le paramètre de pertes λ, rapport des amplitudes
des ondes (retour/aller), des valeurs typiques étant 0, 9
à 0, 95. Il correspond aux pertes près des parois et par
rayonnement, la variation en fréquence étant ignorée.

La simple étude de la fonction non linéaire déduite
de la caractéristique C (cf figure 2) permet de trouver
des conditions pour que l’anche puisse battre ou que le
débit devienne négatif. C’est l’objet du paragraphe 3, le
paragraphe 2 montrant comment on calcule les cartes
itérées. Ayant montré un exemple de schéma de bifur-
cation obtenu par expérience numérique, nous montrons
au § 4 l’intérêt des fonctions itérées pour l’étude de la
convergence, c.-à-d. de la durée des transitoires, et de la
stabilité des régimes (cycles limites).

2 Cartes itérées (calcul ab initio)

La caractéristique C relie débit u entrant dans
le résonateur et pression p dans le bec. D’après la
décomposition de d’Alembert, la pression est à chaque
instant la somme de l’onde aller p+et l’onde retour
p−dans le tuyau, tandis que le débit est leur différence
(compte tenu de l’adimensionnement). À l’instant ini-

Fig. 2: Fonction non linéaire reliant l’onde aller à l’instant
t, notée p+n à l’onde aller à l’instant t−2�/c, p+n−1.
Les paramètres sont γ = 0.4 ζ = 0.8 λ = 0.95
Ėn pointillé le carré limité par les valeurs fmin et
fmax pour l’abscisse et l’ordonnée. Nous montrons
aussi le début d’une itération pour une condition
initiale donnée (points 1, 2, 3)

tial, on suppose que la pression dans la bouche saute
brutalement de t = 0 à la valeur notée γ puis reste
constante. Pendant la durée τ = 2�/c, temps d’un aller-
retour dans le tuyau, il n’y a pas d’onde retour, et on
a donc p = u = p+, ce qui avec la caractéristique non
linéaire donne la condition initiale, inchangée pendant
la durée τ . Puis l’onde retour arrive à l’entrée :

p−(t) = −λp+(t− τ). (1)

Le signe − vient de la simplification de la condition
aux limites (pression nulle). On peut donc en déduire
les grandeurs acoustiques pendant l’intervalle [τ, 2τ ], et
ainsi de suite. Il est alors légitime de discrétiser le temps,
et de ne considérer que les instants nτ. L’équation (1)
est notée :

p−n = −λp+n−1. (2)

On peut la transformer en une relation entre pression
et débit, qui n’est autre qu’une condition d’impédance
(transformée dans le domaine temporel, et déduire à
chaque instant les valeurs des grandeurs physiques grâce
à la caractéristique C, qui lie un à pn. Ceci est utile en
particulier pour rechercher les cycles limites. Mais pour
s’intéresser aux transitoires, mieux vaut conserver l’éq.
(2) et transformer la fonction non linéaire, en recher-
chant la fonction liant p+n et p−n . On tire alors de ces
deux équations la relation de base de la méthode :

p+n = f(p+n−1). (3)

L’onde aller est donc obtenue par un simple calcul
d’itération de la fonction f , ou carte itérée. La fonction
f est obtenue simplement à partir de C, et l’éq. (3) pour
le modèle considéré est une équation du 3e degré. Dans
le cas sans pertes (λ = 1), la fonction est obtenue par



simple rotation de 45̊ de C. Partant de la condition ini-
tiale, on peut donc calculer un transitoire (cf figure 2)
ou, en faisant un varier le paramètre principal, la pres-
sion dans la bouche γ, un schéma de bifurcation avec
par exemple 1000 pas de temps, c.-à-d. 1000 itérations :
pour ce faire, on doit admettre que la convergence a
bien eu lieu, ce qui bien entendu n’est pas vrai pour les
régimes chaotiques, ou les transitoires très longs.

Un exemple de régime chaotique est montré par la
figure 3. Il apparâıt comme une sorte succession de
différents régimes à 6 états. La figure 4 montre le spectre
FFT pour ce régime : on voit qu’il y a une superposi-
tion d’un spectre continu et d’un spectre de raies, conte-
nant principalement la raie principale (fréquence c/2�).
Ceci est classique, car on entend toujours la fréquence
du régime de base (à deux états) dans un régime chao-
tique. La même figure compare ce spectre à celui d’un
régime périodique à 6 états, obtenu pour une valeur très
proche du paramètre d’excitation γ : on n’a pas non
plus exactement un spectre de raies, mais ceci est dû à
la troncature du signal.

Fig. 3: Valeurs de la pression pour 2000 itérations. On
a l’impression d’une succession de régimes à 6
états, la figure 4 montrant que le régime est
chaotique. (γ = 0.4664 ζ = 0.8 λ = 0.95)
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Fig. 4: Spectre de la pression pour le cas montré par
la figure 3 en trait plein, comparé à un régime
périodique à 6 états, en pointillé (γ = 0.4467
ζ = 0.8 λ = 0.95). La fréquence 1, c.-à-d. la
fréquence normale de jeu, c/4�, est très présente.

La figure 5 montre un exemple de schéma de bifurca-
tion : on remarque que le débit peut s’annuler et devenir
négatif. La première partie du schéma, jusque environ
γ = 0.44 est un schéma classique de route vers le chaos
par doublement de période [9, 10, 11]. Il a été montré
que ceci n’est possible qu’avec un grand paramètre ζ,

et de faibles pertes. Expérimentalement un doublement
de période a pu être observé sur certains instruments
(cromorne, basson [12]).

À l’intérieur de la plage de régimes chaotiques, on
trouve les classiques fenêtres de périodicités, avec des
régimes à 6 états (nous n’avons pas trouvé de régimes
à 3 états) ; ensuite on trouve une “cascade à l’envers”,
qui ramène à des régimes périodiques simples, à 4 états,
2 états ou un état. Ceci s’explique par la dépendance
particulière des paramètres de la fonction, les régimes à
deux états en anche battante, pour de grandes pressions
γ, étant toujours stables. Notons que cette cascade à
l’envers doit être distinguée d’une cascade inverse, plus
classique, et que l’on trouve dans la plage de régimes
chaotiques.
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Fig. 5: Schéma de bifurcation obtenu par expérience
numérique de 400 itérations pour des valeurs
croissantes de la pression dans la bouche γ. En
haut l’onde aller p+n , avec en pointillé les valeurs
de fmin et fmax, au milieu la pression pn, en bas
le débit un.

3 Propriétés de la fonction non
linéaire f (itérée d’ordre 1)

La fonction f présente un maximum fmax voisin de
γ/2, qui est unique pour les valeurs de ζ supérieures à
1/
√
3. On a fmax = γ/2 + A(ζ), où A(ζ) est une fonc-

tion croissante de ζ (A(0) = 0, A(1) = 5/54). Pour les
valeurs inférieures de ζ, il existe un maximum pour les
très faibles valeurs de x, qui sont irréalistes, et à partir
de quelques itérations, on arrive toujours en pratique
dans le carré représenté sur la figure 4. On montre que
les limites de ce carré sont fmin = f(fmax), à condi-
tion que la fonction coupe le carré sur son côté gauche
(f(fmin) > fmin). La figure 5 montre en pointillé les
deux valeurs fmin et fmax qui encadrent les valeurs de
l’onde aller p+.

Un résultat intéressant est alors obtenu en cherchant
à quelle condition portant sur γ, les points de contact
Mc et d’inversion Mi sont situés dans le carré. L’anche



ne peut battre qu’ à la condition suivante :

γ >
1− 2λA(ζ)

1 + λ
. (4)

On peut montrer que cette limite est inférieure à celle
qui est appelée “seuil d’anche battante” dans des ar-
ticles récents (voir par ex. [6]), qui ne considèrent que
les régimes à deux états. Pour d’autres types de régimes,
l’anche peut battre pour une pression dans la bouche
plus faible. C’est ce que l’on voit sur les diagrammes
déjà publiés [3]. Précisons que la condition (4) n’est pas
suffisante pour que l’anche batte : il faut en outre que
les régions correspondantes de la courbe soient effective-
ment explorées, et tout ce que l’on peut dire est qu’elles
ont plus de chances de l’être en régime chaotique.

Ceci est un résultat nouveau simple, de même que
celui qui concerne la condition pour que le débit puisse
être négatif. Deux cas existent :

– λ < 1/[1 + 2A(ζ)]. Les pertes ne sont pas très
faibles. Le débit ne peut jamais être négatif, on
peut montrer que c’est le cas le plus courant ;

– λ > 1/[1 + 2A(ζ)]. Il existe pour γ une limite
inférieure, très légèrement inférieure à celle donnée
par (4), et une limite supérieure, entre lesquelles le
débit peut être négatif. Là encore, les conditions
pour que le débit soit négatif sont encore plus res-
trictives pour un régime à deux états.

Notons que la fonction f(x) a une discontinuité de
dérivée première en Mb. Notons enfin que la fonction
f(x) n’a en général pas les propriétés des fonctions les
plus étudiées par les mathématiciens (cf par exemple
[11]), ce que nous avons détaillé dans [13].

4 Emploi des itérées pour l’ana-
lyse des régimes d’oscillations

Nous commençons par rappeler quelques propriétés
des fonctions itérées, notées f (n)(x) = f

[
f (n−1)(x)

]
. Si

x∗ est un point fixe de f(x), c.-à-d. si f(x∗) = x∗, il est
aussi point fixe de toutes les itérées. Ainsi sur la figure
6, l’itérée d’ordre 1 a un point fixe, et les itérées d’ordre
2 et 4 en ont trois.

Le régime correspondant à un point fixe est stable
si la dérivée de f(x) en ce point est en valeur absolue
inférieure à l’unité. La figure 6 montre ainsi le point fixe
0 de l’itérée d’ordre 1 : le régime correspondant est le
régime statique (à un seul état), et pour la valeur de γ
choisie, il est instable parce que la tangente à la courbe
n’est pas située entre les deux diagonales tracées en ce
point. En revanche les points 1 et 2, qui sont les points
fixes de l’itérée d’ordre 2, donnent lieu à un régime stable
à deux états, puisque les tangentes sont bien situées par
rapport aux diagonales. Toujours sur la même figure, on
voit que l’itérée d’ordre 4 ne coupe pas la diagonale en
d’autres points que celles d’ordre 1 et 2, et donc il ne
peut exister de régimes à 4 états, stables ou non.

D’autres propriétés sont aisées à démontrer :
ainsi toutes les itérées passent par le point (x, f(x)),
situé sur la droite horizontale passant par x∗. Les extre-
mums de l’itérée d’ordre 2 sont soit à la même abscisse,
soit à la même ordonnée que ceux de l’itérée d’ordre 1.

Le coin au point Mb (discontinuité de la dérivée) est
également visible sur les itérées.

La figure 7 montre pour les mêmes valeurs des pa-
ramètres les itérées d’ordre 8 et 16. Pour une valeur de
x donnée, donc pour une condition initiale donnée, on
peut voir la convergence vers le régime périodique à 2
états quand le nombre d’itérations augmente. Comme
nous n’avons choisi que des valeurs paires des ordres
d’itérées, on ne voit pas l’alternance entre les points 1
et 2. Mais ceci permet de voir la rapidité de convergence,
indépendamment de la condition initiale.

Pour terminer, nous analysons une situation plus
complexe, celle de régimes chaotiques ou proches du
chaos. La figure 8 nous montre, pour les valeurs des
paramètres de la figure 3, que l’itérée d’ordre 12, pour
l’exemple choisi, présente beaucoup plus d’oscillations
que l’itérée d’ordre 6, ce qu’on peut mettre en relation
avec le caractère chaotique du régime. Cependant l’ana-
lyse doit être très fine, car de tous petits changements
peuvent aboutir à d’autres types de régime. Ainsi on
remarque que l’itérée d’ordre 6 est presque tangente à
la première diagonale en 6 points. En revanche quand
cette itérée traverse la diagonale, elle la coupe donc en
12 points, et la moitié de ces points est nécessairement
stable, ce qui explique le régime (stable) à 6 états. Le
cas intermédiaire est le suivant : quand l’itérée d’ordre
6 est parfaitement tangente, on a un régime d’intermit-
tences entre le régime chaotique, et le régime à 6 états. Il
va de soi que l’observation expérimentale de ce type de
transition est difficile, les régimes de ce genre n’existant
que sur une très faible plage de paramètres. Pour un ins-
trumentiste, c’est chose quasiment impossible, mais une
expérience courante est que en choisissant des doigtés
de fourches, donc un résonateur plus complexe que celui
étudié dans cette communication, on peut obtenir une
très grande variété de régimes, y compris des régimes
à modulation de fréquence, en changeant progressive-
ment le paramètre d’excitation. Un schéma de bifurca-
tion complexe est donc une expérience courante ressentie
par les instrumentistes [14].

5 Conclusion

Les cartes itérées permettent à la fois une in-
terprétation des transitions de régimes, et un calcul
simple de leur stabilité. Et l’étude de la fonction elle-
même, ou itérée d’ordre 1, peut être très instructive
pour analyser le comportement de modèle, comme ici
le modèle de caractéristique non linéaire.
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Fig. 6: Itérées d’ordre 1 , 2 et 4 pour des valeurs des paramètres correspondant à un régime à 2 points (1 et 2) stable,
et un régime à 1 point (0) instable. γ = 0.41, ζ = 0.8, λ = 0.95. Les points fixes des fonctions sont par définition sur
la première diagonale. On a fait figurer les tangentes aux points fixes, ainsi que la deuxième diagonale au point 0.

Fig. 7: Figure identique à la figure 6, avec en outre les itérées d’ordre 8 et 16. La convergence vers le régime à deux
états est très rapide, quelle que soit la condition initiale (abscisse x).



Fig. 8: Itérées d’ordre 1 ,2, 6 et 12 pour les paramètres de la figure 3. La fonction d’ordre 12 présente un grand
nombre d’oscillations, qui peuvent expliquer la nature chaotique, c.-à-d. la très forte dépendance des conditions

initiales du résultat.
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the Clarinet Exciter
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Chapter 3

Statistical Estimation of
Mechanical Parameters of
Clarinet Reeds Using
Experimental and Numerical
Approaches

Résumé

Lors de cette étude, un échantillon de 55 anches de clarinette a été observé par holographie,
en collectant 2 séries de mesures, réalisées avec un taux d’hygrométrie différent. Les fréquences
de résonance des 15 premiers modes ont été déduites de ces observations. Une analyse statis-
tique révèle de bonnes corrélations entre les 2 séries, mais aussi des différences significatives. A
l’intérieur d’une même série, les fréquences des modes de flexion sont relativement mal corrélées,
ce qui n’était pas attendu. Une analyse en composantes principales montre que la variance de
chaque série peut être capturée à 90% à l’aide de 3 facteurs. Le premier facteur est lié aux modes
transverses, le second aux modes de flexions de fréquence élevée et le 3ème au 1er mode de flexion.
Un 4ème facteur est nécessaire pour prendre en compte une sensibilité divergente par rapport
au taux d’humidité entre les 2 séries. Des simulations par éléments finis 3D ont été menées, à
partir d’un modèle orthotrope et de la géométrie de l’anche. Une analyse de sensibilité révèle
que, mis à part la densité, les fréquences de résonance théoriques dépendent principalement de
2 paramètres : EL et GLT (module de Young longitudinal et module de cisaillement longitudi-
nal/transverse). Une formule analytique approximative est donnée pour calculer les fréquences
de résonance en fonction de ces deux paramètres. Le désaccord entre les fréquences observées
et calculées suggère que les modules élastiques des anches mesurées dépendent de la fréquence.
Un modèle viscoélastique est alors développé, dont les paramètres sont calculés par régression
linéaire à partir de 4 composantes orthogonales, ajustées par moindres carrés, ce qui permet de
caractériser de manière objective le matériau composant l’anche (canne de Provence, Arundo
donax L.)

Cet article [173] est reproduit avec l’autorisation des coauteurs et celle de l’éditeur S. Hirzel,
du 15 janvier 2018.
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Summary
A set of 55 clarinet reeds is observed by holography, collecting 2 series of measurements made under 2 different
moisture contents, from which the resonance frequencies of the 15 first modes are deduced. A statistical analysis
of the results reveals good correlations, but also significant differences between both series. Within a given series,
flexural modes are not strongly correlated. A Principal Component Analysis (PCA) shows that the measurements
of each series can be described with 3 factors capturing more than 90% of the variance: the first is linked with
transverse modes, the second with flexural modes of high order and the third with the first flexural mode. A forth
factor is necessary to take into account the individual sensitivity to moisture content. Numerical 3D simulations
are conducted by Finite Element Method, based on a given reed shape and an orthotropic model. A sensitivity
analysis revels that, besides the density, the theoretical frequencies depend mainly on 2 parameters: EL and GLT .
An approximate analytical formula is proposed to calculate the resonance frequencies as a function of these 2
parameters. The discrepancy between the observed frequencies and those calculated with the analytical formula
suggests that the elastic moduli of the measured reeds are frequency dependent. A viscoelastic model is then
developed, whose parameters are computed as a linear combination from 4 orthogonal components, using a
standard least squares fitting procedure and leading to an objective characterization of the material properties of
the cane Arundo donax.

PACS no. 43.75.-z, 43.75.Ef, 43.75.Pq

1. Introduction

Clarinettists experience every day the crucial importance
of clarinet reeds for the quality of sound. Their characteri-
zation is a real challenge for musicians who wish to obtain
reeds that are suited to their personal needs. The present
paper addresses this complex field of research. Its scope
is restricted to the development of an objective method
for a mechanical characterization of single reeds of clar-
inet type. From the shape and the resonance frequencies
of each individual reed (measured with heterodyne holog-
raphy), we intend to deduce the mechanical properties of
the material composing it. A subsequent study should then

Received 9 September 2009,
accepted 17 February 2014.

examine how these mechanical properties are correlated
with the musical properties of the reeds.
Generally, the physicist chooses a model in order to val-

idate it by observations. In the present study, the complex-
ity of the problematic forced us to adopt the reverse atti-
tude: We observe the mechanical behavior of clarinet reeds
with a statistically representative sample and exploit after-
wards the statistical results for establishing a satisfactory
mechanical model designed with a minimal number of pa-
rameters.
Natural materials, such as wood or cane, are often or-

thotropic and exhibit a different stiffness along the grain
(longitudinally) than in the others directions. The problem
is then obviously multidimensional. Nevertheless, reed
makers classify their reeds by a single parameter: the nom-
inal reed “strength” (also called “hardness”), in general

© S. Hirzel Verlag · EAA 555



ACTA ACUSTICA UNITED WITH ACUSTICA Taillard et al.: Mechanical parameters of clarinet reeds
Vol. 100 (2014)

from 1 to 5, which basically reflects the stiffness of the ma-
terial (cane, Arundo donax L.), since all reeds of the same
model have theoretically the same shape. The method of
measurement is generally not publicized by manufactur-
ers, but this “strength” is probably related to the static
Young modulus in the longitudinal direction EL.
“Static” (i.e. low frequency) measurements of the elas-

tic parameters of cane are available in the literature, for in-
stance Spatz et al. [1]. A viscoelastic behavior has been re-
ported in experimental situations (see e.g. Marandas et al.
[2], Ollivier [3] or Dalmont et al. [4]) and this fact seems
generally well accepted in wood sciences and biomechan-
ics (for instance Speck et al. [5, 6]). Marandas et al. pro-
posed a viscoplastic model of the wet reed. Viscoelastic
behavior for cane was already demonstrated by Chevaux
[7], Obataya et al. [8, 9, 10, 11] and Lord [12]. These
authors study only the viscoelasticity of the longitudinal
Young modulus EL, leaving aside the case of the shear
modulus in the longitudinal/tangential planeGLT . Further-
more, they give no really representative statistics about the
variability of the measured parameters.
The observation of mechanical resonance frequencies

can be achieved by different methods. The methods used
by Chevaux, Obataya and Lord are destructive for the
reed, which cannot be used for further musical tests. On
the contrary, holography is a convenient non-destructive
method, the reed being excited by a loudspeaker. For in-
stance Pinard et al. [13] measured with this method the
frequency of the 4 lowest resonances and focused their at-
tention on the musical properties of the reeds.
The digital Fresnel holography method was used by Pi-

cart et al. [14, 15] and Mounier et al. [16] to measure high
amplitude motion of a reed blown by an artificial mouth.
Guimezanes [17] used a scanning vibrometer.
Recent technological developments provide very ef-

ficient and convenient measurements with holography,
without having to manually identify the modes of reso-
nance and to be satisfied with a single picture of their
vibration: in a few minutes hundreds of holograms are
acquired showing the response of a reed for many fre-
quencies. The temperature and the moisture content can
be considered as constant during a measurement series1.
The Sideband Digital Holography technique provides ad-
ditional facilities (see 2.1.1).
Different authors (among them Casadonte [18, 19],

Facchinetti et al. [20, 21] and Guimezanes [17]) mod-
eled the clarinet reed by Finite Elements Method (FEM)
and computed the first few eigenmodes. They chose ap-
propriate values of the elastic parameters in the literature,
ignoring however viscoelastic behavior. The goodness of
fit between observations and model was of secondary im-
portance, except for Guimezanes. This latter author built a
2-D elastic model of the reed with longitudinally varying
parameters. He fitted his model quite adequately with his

1 The significantly lower correlations between resonance frequencies
(compared to our data) shows that it was probably not the case in Pinard’s
study. This fact may also reflect an unprecise determination of the reso-
nance frequencies.

observations (only 5 resonances were measured), but the
fitted parameters seem not really plausible physically. His
model didn’t respect the assumption of a radial monoton-
ically decreasing stiffness from the outer side to the inner
side of the cane. Under such conditions, the frequency of
the first resonance would increase in comparison to ho-
mogeneous material, and not decrease, as observed exper-
imentally.
In section 2 the measurement method is presented. The

experimental setup is described in section 2.1 and the
method for observing resonance frequencies is detailed in
2.2. The results for 55 reeds are given in section 3 (statis-
tics, Principal Component Analysis (PCA)[22]).
In section 4, the development and the selection of a sat-

isfactory mechanical model with minimal structure is de-
scribed. First, a numerical analysis of the resonance fre-
quencies of a reed assumed to be perfectly elastic is done
by Finite Element Method (FEM), and a metamodel com-
puting the resonance frequencies from elastic parameters
is given in section 4.3. This allows solving the inverse
problem in a fast way. However, because the elastic model
is not very satisfactory, viscoelasticity has to be introduced
and some parameters are added to the model in section 4.4.
The viscoelastic model has however too many degrees of
freedom, according to PCA. Consequently, the viscoelas-
tic parameters of the model are assumed to be correlated
and PCA indicates that these parameters can be probably
reconstructed from 4 orthogonal components, as a linear
combination, by multiple regression (section 5). The rela-
tionships between the components and the viscoelastic pa-
rameters is given, and finally the resulting values for these
parameters are discussed in section 5.3 and compared with
the results in the literature.

2. Observations by Sideband Digital Holog-
raphy

2.1. Experimental setup

2.1.1. Holographic setup

The experimental setup is shown schematically in Fig-
ure 1. A laser beam, with wavelength λ = 650 nm (an-
gular frequency ωL) is split into a local oscillator beam
(optical field ELO) and an illumination beam (EI ); their
angular frequencies ωLO and ωI are tuned by using two
acousto-optic modulators (Bragg cells with a selection of
the first order diffraction beam) AOM1 and AOM2: ωLO =
ωL + ωAOM1 and ωI = ωL + ωAOM2, where ωAOM1,2 �
2π × 80MHz. The first beam (LO) is directed via a beam
expander onto a CCD camera, while the second beam (I)
is expanded over the surface of the reed, which vibrates at
frequency f . The light reflected by the reed (field E) is
directed toward the CCD camera in order to interfere with
the LO beam (ELO). 4 phases were used (phase shifting
digital holography) and we select the first sideband of the
vibrating reed reflected light by adjusting ωAOM1,2 to fulfil
the condition: ωAOM1−ωAOM2 = 2π(f +fCCD)/4, where
fCCD is the CCD camera frame frequency. The complex
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Figure 1. Holographic setup. L: main laser; AOM1, AOM2:
acousto-optic modulators; M: mirror; BS: beam splitter; BE:
beam expander; CCD: CCD camera; LS: loudspeaker exciting
the clarinet reed through the bore of a clarinet mouthpiece at fre-
quency f = ω/2π.

hologram signal H provided by each pixel of the camera,
which is proportional to the sideband frequency compo-
nent of local complex field E, is obtained by 4-phases de-
modulation:H = (I0 − I2)+ j(I1 − I3) where I0 . . . I3 are
4 consecutive intensity images digitally recorded by the
CCD camera, and j2 = −1.
From the complex hologram H , images of the reed

vibration are reconstructed by a standard Fourier holo-
graphic reconstruction calculation [23]. These holographic
reconstructed images exhibit bright and dark interference
fringes. Counting these fringes provides the amplitude of
vibration of the object (in the direction of the beam),
which depends on the wavelength λ of the laser, and on the
first Bessel function J1, for instance ±95nm for the first,
±770nm for the 5th and ±1.6µm for the 10th maximum
(bright fringes) [24, 25]2.
This method has 3 main advantages:
1. The time for data acquisition is very short, about 3
minutes for recording 184 holograms, including holo-
graphic reconstruction.

2. The signal to noise ratio is significantly better than with
traditional technology, particularly through the elimina-
tion of signal at zero frequency.

3. The visualization of large-amplitude vibration (order of
magnitude: 0.1mm) is possible by using high harmon-
ics orders (up to several hundred times the excitation
frequency).

2.1.2. Reed excitation
The reed was excited by a tweeter loudspeaker screwed
onto an aluminium plate, connected to a clarinet mouth-
piece. The lay of this mouthpiece was modified to be
strictly flat. A plastic wedge of uniform thickness has been
inserted between the lay and the reed, longitudinally to the
same height as the ligature (Vandoren Optimum), allowing
free vibrations of the entire vamp (length: about 38 mm),

2 The original notation from the cited paper is kept. This notation is only
valid for this paragraph.

see Figure 1. This ensures precise boundary conditions,
avoiding any dependence on deformations of the reed. The
repeatability of the longitudinal placing of the wedge and
of the reed was ensured by a Claripatch ring [26].
This setup requires some comments:
1. The reed is excited exclusively through the bore of the
mouthpiece.

2. The pressure field in the chamber of the mouthpiece
was not measured. As for a real instrument, the edges
of the reed (protected by the walls of the chamber) are
subject to a pressure field, which is probably lower than
the pressure acting on the rest of the vamp.

3. The boundary conditions are very different from those
of a real instrument (no curved lay, no contact with the
lip). In addition, the reed was not moistened for the
measurement.

4. The excitation device is almost closed. The acoustical
resonances of the excitation device are unknown, but
may quite easily be deduced by comparing different
measurements, because they are always present at the
same frequency.

2.2. Observation of resonance frequencies

2.2.1. Experimental protocol

55 clarinet reeds of model Vandoren V12 were purchased
in a music shop: 12, 12, 20 and 11 reeds of nominal
strengths 3, 3 12 , 4 and 4

1
2 , respectively. 29 reeds were used

for two preliminary studies in order to develop the mea-
surement protocol. Each of these reeds was played a total
of some tens of minutes, spread over several weeks before
measurement with the final protocol. The other 26 reeds
were strictly new by measurement, which was performed
immediately after package opening (for 21 of them with
the new hermetically sealed package by Vandoren, ensur-
ing a relative humidity between 45 and 70%, according to
the manufacturer), without moistening the reed.
Each reed was subject to 2 series of measurements:
• Series A (asymmetrical excitation: see Figure2): the
right half of the mouthpiece chamber was filled with
modeling clay to ensure a good excitation of antisym-
metrical modes. 184 holograms were made ranging
from 1.4 to 20 kHz (sinusoidal signal), by steps of 25
cents. The amplitude of the excitation signal was expo-
nentially increased in the range 1.4 to 4 kHz, from 0.5
to 16 V, then kept constant at 16 V up to 20 kHz. This
crescendo limits the amplitude of vibration of the first
two resonances of the reed. The temperature was not
measured (about 20◦C).

• Series B (symmetrical excitation: see Figure3): the
modeling clay was removed. The protocol is otherwise
identical to this of the first series. The reeds were inad-
vertently exposed during one night to the very dry and
warm air from the optical laboratory between the two
series of measurements. The reeds lost between 2 and
4% of their mass. In what follows we try to interpret
the influence of this fact. The temperature was around
23-25◦C.
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Figure 2. Typical holographic patterns of series A (asymmetrical
sinusoidal excitation: the left side of the reed is more strongly
excited than the right side). Frequency range: 1.4 to 20 kHz by
steps of 25 cents (181 pictures ordered from left to right, contin-
ued on the next row; the tip of the reed is down on each picture).
Some modes are easily identified: F1 (1st row, 19th picture), T1
(3rd row, 10th picture), F2 (4th row, 7th picture), T2 (4th row,
penultimate picture), X1 (5th row, 5th picture) etc... Modes T3
and F3 are almost at the same frequency (6th row, 4th and 5th
pictures, probably). The last picture of the 3rd row corresponds
to an acoustic resonance of the excitation device. It is present on
all holograms of both series at the same frequency (examine Fig-
ure 3). The excitation amplitude exponentially increases until the
73rd picture (3rd line, 21th picture), being held constant beyond.

Figure 3. Typical holographic patterns of series B (symmetrical
sinusoidal excitation). The modes X1 and T3 cannot be distin-
guished anymore. Notice that T1 is less marked than under asym-
metrical excitation (for some reeds even difficult to identify) and
that the pattern has a significant flexural component, strongly de-
pendent on the lateral placing of the reed on the mouthpiece. No-
tice that the symmetry of the patterns near T1 depends on the
excitation frequency.

2.2.2. Nomenclature of normal modes

Distinguishing 3 morphological classes, we classify the
modes of a clarinet reed as follow : i) The “flexural”
(or “bending”, or “longitudinal”) modes, listed below
F , whose frequencies mainly depend on the longitudinal
Young modulus (EL) and polarized mainly in the z axis,
ii) the “transverse” (or “torsional”, or “twisting” ) modes,
listed below T , mainly dependent on the shear modulus
in the longitudinal / tangential plane (GLT ), and iii) the

(a)

(b) (c)

Figure 4. (a) Flexural modes F1, F2, F3, F4 and F5. Side
view. (b) transverse modes T1, T2, T3, T4, T5. Front view. (c)
Generic modes:X1,X2,X3,X4,X5 andX6. View from above.
The intersections of nodal lines with the sides of the reed are
symbolized by the dark dots.

Figure 5. The clarinet reed: coordinates system. (a) top view, (b)
front view, (c) side view. x, y, z: Cartesian axes of the object. L,
T, R: axes of the orthotropic material (L: longitudinal, T: tangen-
tial, R: radial). In the software Catia used for the simulations, the
orthotropic model is Cartesian and not cylindrical. Therefore an
exact equivalence between x, y, z, and L, T, R respectively can
be assumed since we observed no important deviation between
the direction of the grain and the axis of symmetry of the reed.

“generic” (or “mixed”) modes, listed below X, sensitive
to both moduli EL and GLT (see Figure 4). A subclass of
flexural modes may be distinguished: the “lateral” modes
(listed below L), polarized mainly in the y axis (see Fig-
ure 5). These modes were not observed in our study.
The modes have been numbered after the order of in-

creasing frequencies from a preliminary modal analysis
we performed. In our analysis, however, the identification
of a mode is based upon morphological criteria. As a mat-
ter of fact, the mode number and the order of observed
frequencies are not necessarily identical for all reeds.
Strictly speaking, the optical method only allows us to

observe the resonance frequencies of the reed and not the
eigenfrequencies. Therefore the observed deformation pat-
terns are a priori not identical to the eigenmodes of the
reed. Nevertheless in practice no major differences have
be found between the computed eigenmodes (see sec-
tion 4) and the observed or computed deformation for a
forced asymmetrical excitation at the corresponding fre-
quency. For this reason we use the terminology “mode”
for the maximum amplitude of the response of the reed
to a forced excitation. This is somewhat abusive, because
the small shift between the resonance frequencies due
to damping and the eigenfrequencies computed by FEM,
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(a) (b)
(c)

Figure 6. Qualitative comparison with FEM computation, and typical variability of the experimental results. (a) First row: Quasi-
static pattern (at 605Hz, with strong excitation by the LS). 2nd to 5th row: Flexural modes F1, F2, F3 and F4. Leftmost column:
numerical simulation of eigenmodes by FEM. Columns 2 to 7: Arbitrary selection representing the observed variability (The first two
rows correspond to the same selection of reeds). Notice the marked asymmetries and the differences in the curvature of the interference
fringes near the tip of the reed. (b) Rows 1 to 5: transverse modes T1, T2, T3, T4 and T5 (probably). Columns: see (a). (c) Rows 1 to
6: Generic modes X1, X2, X3, X4, X5 and X6. The identification with X6 is sometimes unlikely. Columns: see (a).

without damping, is ignored. Besides damping, the acous-
tic load is also able to shift the resonance frequencies. We
assume that this discrepancy is approximately the same for
all reed.

2.2.3. Analysis of holograms; mode identification
More than 30000 holograms were made for this study and
analyzed as follows: The picture where the number of in-
terference fringes is locally maximum is determined. For
some cases, we chose the hologram that is most similar
to our numerical simulations (by Finite Element Method,
see section 4) or to other holograms (see Figure 6). The
holograms corresponding to an acoustical resonance of
the system, present at the same frequency (4309Hz) for
all reeds, have been eliminated. The identification of the
different patterns to those calculated by FEM was often
quite simple. Exceptions have been encountered for F3
and T3, whose frequencies were often so close that our
identification is sometimes uncertain. More sophisticated
techniques would certainly solve this problem. Notice that
other boundary conditions (e.g. with clamping closer to
the tip of the reed) would also easily separate these two
modes. The frequency of some higher modes could not al-
ways be measured, either because their frequency was be-
yond 20 kHz, or because their pattern could not be clearly
identified.

3. Statistical analysis of resonance frequen-
cies

4 flexural, 5 transverse, and 6 generic modes have been
identified, namely all 15 first modes of the reed, exclud-

ing lateral modes. This number is significant, compared
to the 4 modes detected by Pinard et al. [13]. The 6th
mode (L1) could not be identified, as it is a lateral mode
(flexural mode moving mainly in the y axis), not excited
by our loudspeaker. We tried to observe it by rotating the
mouthpiece to the side, without success. Notice that higher
modes could probably be identified using an ultrasonic
loudspeaker.

3.1. Statistics

The statistics are displayed on Figure 7 and detailed in Ap-
pendix A1, with the analysis of correlations. For 14 mea-
surements of resonance frequencies of the two series, iden-
tification of the total number of reeds (55) has been done.
For other measurements, identification has been done only
for a part of this number. The value of the ratio of the stan-
dard deviation σ to the mean value µ, i.e. the relative stan-
dard deviation, is found to be between 2 and 5% (about
1/3 tone). If we admit Gaussian distribution for the mea-
sured frequencies, 99% of the observations typically range
about ±1 tone (±200 cents) around the mean value (i.e.
µ ± 3σ), for all frequencies.
The identification of the modeX6 is uncertain: it seems

to appear for frequencies lower than those of our simula-
tions. Mode T5 is on the limit of the range we studied: this
explains the small value of the standard deviation.
Between series A and B, the flexural modes F1 to

F4 decrease their average frequency, while the transverse
modes slightly increase it. The difference between the two
series probably lies mainly in the drying of the reeds, and
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Figure 7. Observed resonance frequencies for the different reeds
of each series, according to the results of Table A1. AF1 signi-
fies mode F1, series A. The series A is in black, and the series
B in white (yellow online). In abscissa the frequencies in loga-
rithmic (musical) scale (so the musical intervals appear clearly).
From the left to the right, the different notes correspond to the fol-
lowing frequencies: 1568, 2093, 2637, 3136, 4186, 5274, 6272,
8372, 10548, 12544, 16744, 21096Hz

this seems to have a statistically significant effect. This
is surprising, because drying decreases the density of the
reed, and theoretically this should proportionally increase
all frequencies. In addition, according to Obataya et al.
[11], drying is expected to increase E �

L (at least around
400Hz), which should also increase the resonance fre-
quencies. However Chevaux [7] observed that drying di-
minishes E �

L for material extracted from the inner side
of the cane and augments slightly E �

L for material ex-
tracted nearer from the outer side (for cane suitable for
oboe reeds), at least in the frequency range 100-500Hz.
The hypothesis of an influence of the excitation method

on the resonance frequencies seems unlikely, as well as
the hypotheses of a poor reproducibility of the position of
the reed on the mouthpiece between measurements or of
the modification of the acoustic load, due to the modeling
clay.

3.2. Principal component analysis

Principal Component Analysis (PCA) is mathematically
defined as an orthogonal linear transformation transform-
ing the data to a new coordinate system, such that the

greatest variance by any projection of the data comes to
lie on the first coordinate (called the first principal com-
ponent or first factor), the second greatest variance on the
second coordinate, and so on [27]. Theoretically PCA is
the optimum linear transform for given data in terms of
least squares. PCA is based upon the calculation of the
eigenvalue decomposition of the covariance (or of the cor-
relation) matrix (see e.g. [22]).
A PCA has been performed using the FACTOR module

of SYSTAT [28]. The 14 variables (observed frequencies)
presenting complete measurements for all reeds have been
selected (all variables having 55 identified pattern, NA or
NB = 55, see Table A1). Frequencies are rated in cents.
The 4 largest eigenvalues have been selected. They cap-

ture 91.2% of the total variance of our sample (respec-
tively 53.6%, 21.4%, 10.8% and 5.4% for each factor). A
fifth factor would capture only 2.5% variance more. The
14-dimensional data have been linearly projected onto a
4-dimensional factor space.
The factor space can afterwards be orthogonally rotated,

for instance for maximizing the correlations between ro-
tated factors and observed variables. In the studied case,
no a priori knowledge about the orientation of the fac-
tor space is available. For an easy comparison, using the
VARIMAX algorithm, we choose to maximize the corre-
lations between rotated factors and all available variables
(observed resonance frequencies and theoretical compo-
nents from the model described hereafter in section 5.2).
We performed also a PCA separately for each measure-

ment series (A and B: 9 and 5 variables, respectively).
From series A we detected 3 important factors capturing
90.8% of the variance (56.9, 23.0, 11.0%, respectively).
From series B we detected also 3 important factors cap-
turing 94.1% of the variance (54.0, 26.8, 13.3%, respec-
tively). A 4th factor would capture only 3.6% more for se-
ries A and 3.4% for series B. One factor seemingly disap-
peared, compared with the PCA performed on both series.
A hypothesis is that this factor is related to the hygrometric
change between the two series.
From Table I, we see that all transverse and generic

modes are well correlated with factor1; factor2 corre-
lates with high frequency flexural modes of both series
(however notably better with those of series A); factor3
well correlates with F1 of both series (and somewhat with
other low frequency modes: AT1, BT1 and AF2), whereas
factor4 correlates quite well with high frequency flexural
modes of series B.

3.3. Conclusions from the statistical analysis

Fifteen modes of vibration of the clarinet reed have been
observed, while previous studies investigated 4 to 5 modes
only [17, 13]. The observed resonance frequencies are of-
ten highly correlated, especially those among the “trans-
verse” modes and, to a lesser extent, those among the
“flexural” modes. The nominal reed strength is surpris-
ingly better correlated with the frequencies of “transverse”
modes as with those of “flexural” modes. The flexural
modes within the same series are poorly correlated.
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Table I. Correlation (loadings) between rotated factors from PCA
and : i) variables (measured resonance frequencies) or ii) com-
ponents from viscoelastic model (e[n], see section 5.2), for com-
parison, sorted in reverse order of magnitude. In bold: greater
correlation for each variable.

factor1 factor2 factor3 factor4

AT2 0.973 0.054 0.078 -0.008
BT2 0.953 0.055 -0.025 0.085
AT3 0.898 0.198 -0.237 -0.032
AX2 0.853 0.273 -0.073 -0.123
AT1 0.776 0.017 0.577 0.087
BT1 0.762 -0.033 0.541 0.177
AX3 0.761 0.472 0.090 0.217
AX1 0.740 0.451 0.356 0.115
AF3 0.223 0.891 0.076 0.080
AF2 0.143 0.791 0.519 0.064
AF1 0.085 0.360 0.870 -0.141
BF1 0.104 0.385 0.835 0.209
BF3 0.059 0.596 0.050 0.755
BF2 0.147 0.561 0.290 0.710

e1 0.958 -0.080 0.105 0.005
e2 0.059 0.969 0.082 0.098
e3 -0.075 -0.073 0.971 0.042
e4 -0.009 -0.081 -0.039 0.979

A principal component analysis of the resonance fre-
quencies identifies 4 main factors, capturing 91.2% of the
variance of the sample. The data can therefore be recon-
structed with 4 uncorrelated factors only (error: RMSD =
21.8 cents, see Appendix A3.2 and A4). The effect of hy-
grometric change between both measurement series can
seemingly be described with 1 factor only.
These statistical facts offer a guidance for modeling ap-

propriately the mechanics of the clarinet reed.

4. Development of a mechanical model

4.1. Choice of a viscoelastic model

In the present study our concern is to develop a model with
a minimal number of physically related components, that
adequately reconstructs the observed resonance frequen-
cies of our reeds. We presume that these components of-
fer an objective characterization of the material compos-
ing each reed. A sensitivity analysis by FEM calculation
assuming an orthotropic, elastic material has been con-
ducted, and showed that the longitudinal Young modulus
EL and the longitudinal / transverse shear modulus GLT

play a leading role. Nevertheless taking into account the
previous result of 4 factors given by PCA, we will see that
an elastic model is not sufficient to establish a satisfac-
tory model with 2 degrees of freedom only (i.e. variables
EL and GLT per series. Therefore a viscoelastic model is
sought.
It is well known that the stiffness of natural materials

like wood or cane varies with the frequency of the applied
stress and with the temperature. The material is stiffer at
low temperature and at high frequency. At low frequency

or high temperature the material is almost perfectly elastic
and reaches the rubbery modulus. At high frequency or at
low temperature the glassy modulus is reached; the mate-
rial is almost perfectly elastic, also, but stiffer. At mid fre-
quency or mid temperature, the apparent modulus (called
storage modulus, i.e. the real part of the complex Young
modulus for this frequency) is between the two values.
For a particular frequency, called relaxation frequency, the
storage modulus is exactly at the average of glassy and
rubbery moduli. Around this frequency dissipation is max-
imum. Once the characteristic curve is known (for given
temperature and different frequencies, or for given fre-
quency and different temperatures), the Arrhenius equa-
tion3 offers usually an adequate estimate of the stiffness for
any frequency and any temperature, within a quite broad
range [29].
The determination of the mechanical parameters of a

natural material requires determination for each axis of the
orthotropic material of the value of 3 parameters (Young
modulus, shear modulus and Poisson’s ratio). These 9 pa-
rameters may exhibit viscoelastic behavior, requiring the-
oretically for each one the fit of a viscoelastic model, such
as the general linear solid (also called Zener model or
3-parameter model, see [29, 30, 31, 32])4. The chosen
model is based on 6 parameters (3 parameters for both
variables EL and GLT ). Therefore the viscoelastic model
(section 4.4) has many degrees of freedom (6, for each of
the 2 series of measurements, compared to the 4 factors
detected by PCA for both series), for solving adequately
the inverse problem (see section 5 for the reduction of the
number from 12 to 4).

4.2. Computation method

Considering viscoelasticity leads to complex modes with
complex eigenfrequencies. Compared to the non-dissi-
pative, elastic case computed by FEM, the main conse-
quence of viscoelasticity, besides dissipation, is that stress
and strain are not in phase. For sake of simplicity, we limit
the computation to eigenfrequencies only, and assume that
they depend on the storage moduli only (i.e. dissipation
has a negligible influence). Having reduced the viscoelas-
tic problem to an associated elastic one, the elastic solution
may be used (see e.g. Ref. [29]). In order to compute the
resonance frequency ωr after an elastic model, according
to Ref. [32], we admit that E � E �(ωr), where E �(ωr)
is the real part of the complex modulus in the frequency

3 The shift in relaxation time is: Ln(shift) = (Ea/R)(1/T − 1/Tref ),
where Ea is the activation energy, R is the gas constant (8.314 J/K mol)
and T and Tref the absolute temperatures in K. For instance, a shift of
+10◦C from a reference temperature of 20◦C decreases the relaxation
time by 16%, if Ea is 13 kJ/mol.
4 Other multidimensional viscoelastic models could be also considered.
In order to fit a wide range of frequencies (more than 2 decades), a 4-
parameter model with fractional derivative would be required [32]. In
addition, these parameters are known to be sensitive to moisture content.
Moreover, the cane is not homogeneous. The stiffness varies in radial
direction [7] and local irregularities may be important, as shown by J.-M.
Heinrich [33].

561



ACTA ACUSTICA UNITED WITH ACUSTICA Taillard et al.: Mechanical parameters of clarinet reeds
Vol. 100 (2014)

Table II. One-At-a-Time sensitivity study by FEM: Averaged ratio between relative change in frequency and relative change for each
elastic coefficient (i.e. ±10%), sorted by decreasing order of magnitude, for the first 16 eigenmodes. F : flexural modes (F1 to F4),
T : transverse modes (T1 to T4), X: generic modes (X1 to X6), L: lateral modes (L1 and L2; these modes were not observed in our
study), All modes: averaged ratio over all modes. In bold: maximum absolute value for each coefficient of the orthotropic material: EL,
ET and ER: Young moduli; νLT , νLR and νTR: Poisson coefficients; GLT , GLR and GTR: shear moduli.

Coefficient F T X L All modes

EL 0.4087 0.1053 0.1835 0.2093 0.2235
GLT 0.0140 0.2681 0.1962 0.1067 0.1575
ET 0.0076 0.0976 0.0741 0.0166 0.0562
GLR 0.0438 0.0131 0.0257 0.0818 0.0341
ER 0.0176 0.0120 0.0135 0.0662 0.0207
GTR 0.0046 0.0092 0.0077 0.0215 0.0091
νTR 0.0015 0.0009 0.0015 0.0054 0.0019
νLT 0.0018 -0.0031 0.0004 0.0007 -0.0001
νLR 0.0009 0.0002 0.0005 0.0013 0.0007

domain. This hypothesis implies that the calculation of
the eigenfrequencies from the values of the storage mod-
ulus is done by an iteration procedure, and allows use of
a FEM software (Catia) which does not allow computing
with frequency-dependent coefficients.
Therefore we first present results of FEM simulations

(section 4.3), assuming an elastic and orthotropic behav-
ior of the reed (modeled in section 4.3.1). This helps to
identify the modes in experiments, and allows obtaining a
fit formula (section 4.3.3) for computing the 11 lower res-
onance frequencies with respect to two parameters only,
EL and GLT , detected after a sensitivity analysis (sec-
tion 4.3.2). The fit formula, called “metamodel”, is then
used in the iterative procedure for the computation of the
viscoelastic model. It allows a great reduction of computa-
tion time, compared to the FEM, and this is very useful for
the inverse problem. Such a metamodel could be directly
computed for the viscoelastic model with an appropriate
software, but starting with the elastic model simplifies the
fitting procedure.

4.3. Elastic model

4.3.1. Modeling the reed

The clarinet reed is defined in a Cartesian axis system
x, y, z (see Figure 5). The origin is located in the bottom
plane, at the tip of the reed. The material is defined as 3D
orthotropic and assumed to be homogeneous, whose lon-
gitudinal direction L is parallel to the x axis, the tangential
direction T parallel to the y axis and the radial direction R
parallel to the z axis5.
The dimensions in the xy plane are consistent with the

measurements given by Facchinetti et al. [21]. The heel
of the reed is made out of a cylinder section, diameter
34.8mm, maximum thickness 3.3mm. The shape of the
reed is defined in section A2.
During playing, the reed has two contact surfaces with

the ligature. For the present simulations, the reed is

5 Do not confuse the morphological mode classes L1, L2, T1, T2, T3
and T4 with the axes L and T of the orthotropic material.

clamped in the same way than for normal playing, on two
rectangular surfaces 23× 1mm, spaced laterally by 5mm,
38.2mm from the tip of the reed, simulating the contact
surfaces on the Vandoren Optimum ligature. However, un-
like normal playing, the whole vamp of the reed is free to
vibrate (see Figure 1).
For the simulations, the “Generative Part Structural

Analysis” module by Catia v.5.17 (Dassault Technolo-
gies) is used, with mesh Octree3D, size 2mm, absolute
sag 0.1mm, parabolic tetrahedrons. The generated mesh
involves 5927 points, allowing both a good accuracy and a
reasonable computing time (around 35 seconds).

4.3.2. Sensitivity analysis of elastic coefficients

For selecting the most relevant parameters, we conducted
a One-At-a-Time sensitivity analysis [34], varying each
coefficient by ±10% and computing the first 16 modes,
based on the following reference values:EL =14000MPa,
ET = ER = 480 MPa, νLT = νLR = νTR = 0.22,
GLT = 1100 MPa, GLR = GTR = 1200 MPa. The den-
sity ρ was set to 520 kg/m3, according to the estimation
by Guimezanes [17]. The results are shown in Table II.
Notice that EL and GLT plays a decisive role, while ET

plays a marginal role and all other parameters have an al-
most negligible influence on the resonance frequencies. As
a consequence, the moduli EL and GLT are the variables
retained in the model. The approximate value of ET has
been estimated according to the morphology of the pat-
terns of higher order modes. This value is consistent with
measurements given by Spatz et al. [1].
Notice that these results show the validity of a 2D ap-

proach, the reed being modeled as a thin plate. This should
be used for further studies.

4.3.3. Metamodel approximating the resonance fre-
quencies

The following analytic formula (“metamodel”) predicts
quickly and efficiently the resonance frequencies of a
clamped/free clarinet reed. It was established in the fol-
lowing way: Frequencies of the first 16 modes were com-
puted by FEM, according to a network of 92 separate
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pairs of values for EL and GLT , ranging from 8000 to
17000 MPa and 800 to 1700 MPa, respectively. The other
elastic coefficients were held constant, according to the
reference values cited above. For the range of simulation
values, this arbitrary formula (developed by trial and error)
provides a very good fit (generally better than ±5 cents,
see Table A3). Expected resonance frequencies f are first
found in cents (FC) from the note F6 (1396.9 Hz), and
finally in Hz:

f (m, EL, GLT ) = 1396.9 · 2FC/1200,

where FC = am,0 + am,1 Ep + am,2Gp (1)

+ am,3 Ep Gp + am,4 E2
p + am,5G

2
p ,

Ep = EL
−0.66643 and Gp = GLT

0.7627.

The index m is the number of the mode defined in Ta-
ble A5, Table A3, where the values of the coefficients am,q

are given (EL and GLT are expressed in MPa).
The influence of the density is easy to predict: frequen-

cies vary proportionally to ρ−1/2. The computing cost of
this metamodel is about 107 times lower than with FEM,
largely simplifying the inverse problem.

4.3.4. Efficiency of the metamodel
Equation (1) can be used to estimate the values of EL

and GLT , providing a faithful reconstruction of the ob-
served resonance frequencies. Theoretically these values
could be computed for any pair of modes, after their re-
spective observed frequencies. Unfortunately, this method
gives no consistent results. A least squares fit is a more
robust technique for such a computation. This leads how-
ever to systematic errors in the predicted frequencies: low-
order modes are systematically overestimated, while high-
order modes are underestimated. This can be corrected by
adjusting the coefficients am,0 (from Table A3), but this
cannot explain the bad correlation among flexural modes
within the same series (see Table VI). According to the
elastic model, these correlations should be in all cases
greater than 0.998. A hypothesis for resolving this contra-
diction is that the moduli are varying with the frequency
in an individual way for each reed. Thus in the next para-
graph we consider a viscoelastic model, where EL and
GLT are frequency dependent. This leads to the addition
of some parameters, which are to our mind more important
that the other elastic coefficients. The fit of such a model
requires many observations at different frequencies, in or-
der to reduce the influence of measurements errors and of
local irregularities in the structure of cane.
Alternative hypotheses could be considered in this con-

text, such as damping, acoustic load [21], local variations
in stiffness or in density, local deviations in thickness,
compared to the assumed theoretical model. However,
these hypotheses are probably unable to explain the hygro-
metric-induced individual variations we observed for each
reed, thus our preference for the viscoelastic hypothesis.

4.4. Viscoelastic model

In this section, a Zener model is considered (see e.g.
[29, 30, 31, 32]). This model is applied to both moduli EL

E2E1

E3

Figure 8. Schematic representation of the standard linear solid:
two springs E1, E2 and a dashpot E3.

and GLT . The scheme of the standard viscoelastic solid is
presented in Figure 8, with two springs E1 and E2 and a
dashpot E3

6. At low frequencies, E2 and E3 have prac-
tically no effect (the rubbery modulus E1 dominates). At
high frequencies, E3 has practically no effect (the glassy
modulus E1 + E2 dominates). In the frequency range near
E2/(2πE3) the dissipation due to E3 is maximal and the
apparent modulus (storage modulus) is in the mid-range.
The stress σ and the strain ε are related by the constitutive
equation,

σ + τ1
.
σ = E1(ε + τ2

.
ε), (2)

in which τ1 = E3/E2 is called the relaxation time and
τ2 = E3(E1 + E2)/(E1E2) the retardation time. E1 is
called rubbery modulus and E1 + E2 glassy modulus. In
harmonic regime, for an angular frequency ω, the Young
modulus is complex,

E∗(ω) = E1 + E2 −
E2
2

E2 + jωE3

= E1 + E2 +
−E2 + jωE3

1 + (ωE3/E2)2
. (3)

The second formulation separates the real part (E �(ω):
storage modulus) and the imaginary part (E ��(ω): loss
modulus) ofE∗(ω). The storage modulus can thus be writ-
ten as

E �(ω) = E1 + E2 −
E3
2

E2
2 + ω2E2

3

= E1
1 + ω2τ1τ2

1 + ω2τ21
. (4)

Notice the properties:

E �(0) = E1, E �(1/τ1) = E1 + E2/2

E �(∞) = E1 + E2,
∂E �

∂ω

� 1
τ1

�
=

E3
2

.

For the sake of simplicity, the parameters corresponding
to EL and GLT are denoted E1, E2, E3, and G1, G2, G3,
and the storage moduli given by equation (4) E �(ω) and
G�(ω), respectively. Therefore for each reed (and each se-
ries), the model requires 6 parameters instead of 2 (while

6 This notation allows us to write the parameters of the model as a vec-
tor, as required by the computations, but unfortunately it hides the fact
that the nature of E3 (dashpot) is physically different from E1 and E2
(springs).
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experiments gave 4 main factors only for the whole set of
results).
From the knowledge of the 6 parameters, the resonance

frequencies can be deduced by an iteration procedure. For
each mode the starting point of the iteration is the mean
value f (0) of the experimental resonance frequency (see
Table A1), then the storage moduli are deduced from equa-
tion (4), then a new value f (1) by using equation (1), etc...
The convergence of the iteration method is fast, actually
one iteration is enough. This can be understood by the fact
that the derivative of the iterated function is small (notice
that the two first rows of Table II correspond to the deriva-
tive of EL and GLT with respect to frequency). If we give
an arbitrary value, for instance f (0) = 6000, one itera-
tion more is required for a comparable precision. In all hy-
potheses (see Appendix A3.6), we used one iteration only.
This procedure allows the determination of f (m) from the
coefficients E1, E2, E3, G1, G2, G3 for a given reed and a
given series.

5. Inverse problem and selection of a ro-
bust model

5.1. Simplification of the model by multiple regres-
sion

In order to solve the inverse problem for each reed (and
each series), we use a classical Mean Squared Deviation
method, from the experimental values of the 11 resonance
frequencies listed in Table A3 (see Table A5). The results
are given and discussed in section 5.3.
However for each reed the viscoelastic model provides

12 parameters, i.e., 12 DoF, and the PCA showed that this
number needs to be reduced. Actually this model conducts
sometimes to non-physical results (negative rubbery mod-
ulus, for instance). This problem comes out because the
observed resonance frequencies are far from 0, so the rub-
bery modulus E1 cannot be estimated precisely. For that
purpose multiple regression (see Appendix A3 for details)
is used, by introducing correlations among parameters and
reducing the degrees of freedom to a number of 4, called
“components”, which are linearly related to the parame-
ters. The 4 components are very similar to the 4 factors
computed by the PCA, but, because equations (1) and (4)
are nonlinear, a small deviation is inevitable for optimal
results. Factors and components are consequently strongly
correlated (>0.95, see Table I).
We tested different hypotheses to establish a satisfac-

tory robust model (denoted H1 to H9 and described in
Appendix A3), together with the detailed computation
method. Each hypothesis leads to a given number of com-
ponents related to the parameters through the regression
coefficients. Notice that the parameters and components
depend on both the reed and series, while the regression
coefficients which correlate the parameters are indepen-
dent of the reed and the series. A constant value elastic
model (the parameters are fixed, and do not depend on the
reed or the series, Hypothesis H1) is not sufficient. Simi-
larly a 2-parameter elastic model (EL and GLT , indepen-

dent of the series, Hypothesis H2) is not sufficient as well.
Conversely a linear model without constraints (with 60 in-
dependent coefficients, corresponding to a matrix of or-
der 12(4+1) elements7, Hypothesis H7) is not necessary,
because many coefficients are very small. Eventually a 9
coefficient linear model (H4) has been found to be very
satisfactory and is described in section 5.2. The follow-
ing ideas were applied: after eliminating the very small
coefficients and fitting the observations with the remain-
ing coefficients, it is observed that the predictive quality
of the model is almost not affected by the simplification.
This was done step by step. The problem of non-physical
values for certain parameters can be corrected by setting
the damping parameters E3 and G3 constant, independent
of the reeds and of the series (typical values: E3 = 0.28
and G3 = 0.02). There remain 4 parameters for each series
and reed, E1, E2 and G1, G2 (i.e. 8 parameters for each
reed). This ensures generally that these parameters fall in
a plausible range, when fitting the model. Moreover a hi-
erarchical structure can be introduced in the model, isolat-
ing the hygrometric component, bringing the remaining 3
components to a common basis (section 5.2) and simplify-
ing the problem (reduced to only 9 regression coefficients)
and giving some insight in the data structure.
The RMSD (Root Mean Square Deviation, see Ap-

pendix A3.2) is found to be 30.4 cents for Hypothesis
H4, very close to 29.8 cents for H5 with 9 coefficients
more. Moreover the standard deviation of the residuals for
Hypothesis H4 (and also Hypothesis H5) varies very lit-
tle over the different resonance frequencies (all around 30
cents).
The fit quality cannot be considered as a perfect and

definitive proof that our model reflects the true values of
the corresponding storage moduli. The influence of some
missing parameters in the model should be examined (for
instance differences in thickness between reeds, non con-
stant modulus ET , non constant density ρ or radial vari-
ation of EL). Anyway, the presented model reflects real
mechanical differences between the reeds, very similar to
those objectively detected by the PCA.

5.2. Robust estimation of the parameters of the vis-
coelastic model (Hypothesis H4)

Hypothesis H4 is chosen so that no coefficient can be re-
moved without impacting notably the quality of fit. It can
be thought of as the minimal structure allowing an ade-
quate reconstruction of the observed resonance frequen-
cies, in conjunction with the viscoelastic model (equa-
tion 4) and the metamodel (equation 1). This minimal
structure makes the model more robust against measure-
ments errors, even if it probably introduces some bias.
As a first step, our concern is to eliminate the influence

of the moisture content and to bring both series of mea-
surements to a common basis (i.e. predict the effect of dry-
ing on the viscoelastic parameters of series B, the series A

7 For this example, the component vector has 4 elements to be deter-
mined, plus a fifth element, which is a constant.
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being taken as a reference). e1[n], e2[n], e3[n] and e4[n] are
the 4 independent components characterizing the mechan-
ical properties of the reed n. The choice of the notations
is as follows: ek[n] is the kth element of the vector e[n].,
which depends on n. These components are conditioned
similarly to PCA as orthogonal factors: mean 0, standard
deviation 1 and intercorrelation 0. The elimination of the
moisture content can be achieved by reducing the compo-
nents to a number of 3 for each series s = 1 (series A)
and s = 2 (series B): for reasons explained in Appendix
A3.4, these components are denoted ě1[s, n], ě2[s, n] and
ě3[s, n].
For series A, the components remain unmodified (series

A is taken as reference),

ě1[s = 1, n] = e1[n],

ě2[s = 1, n] = e2[n], (5)

ě3[s = 1, n] = e3[n].

For series B, the effect of drying on the components is pre-
dicted by

ě1[s = 2, n] = c10 + e1[n],

ě2[s = 2, n] = c20 +
1
2
(e2[n] + e4[n]), (6)

ě3[s = 2, n] = c30 + e3[n].

With this choice of components, the viscoelastic parame-
ters of the model for series s and reed n can then be esti-
mated as

E1 = d10 + d12(ě2[s, n] + ě3[s, n]),

E2 = d20 + d12(2ě2[s, n] − ě3[s, n]),

E3 = d30, (7)

G1 = d41(6 + ě1[s, n]),

G2 = 2d41(3 + ě1[s, n] − ě3[s, n]),

G3 = d60.

This implies some other interesting relationships,

E1 + E2 = d10 + d20 + 3d12ě2[s, n],

G1 + G2 = d41(12 + 3ě1[s, n] − 2ě3[s, n]),
2E1 − E2 = 2d10 − d20 + 3d12ě3[s, n], (8)

2G1 − G2 = 2d41(3 − ě3[s, n]).

Notice that the glassy modulus of EL (i.e., E1 + E2) de-
pends linearly only on ě2[s, n]. The quantities 2E1 − E2
and 2G1 − G2 depend linearly only on ě3[s, n], however
with opposed signs.
The values of the 9 coefficients are: c10=1.011, c20 =

−2.197, c30 = 0.8294, d10 = 10300, d12 = 640.5, d20 =
7309, d30 = 0.2822, d41 = 115.7, d60 = 0.02038. The co-
efficients in equation (1) are adjusted (in order to remove
systematic errors) by adding to am,0 (from Table A3) the
following values, for m = 1 to 11: −26.27, 32.24, −50.05,
4.80, −26.87, −65.28, −48.64, 0.07, −52.98, −76.61 and
−111.55 cents.
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Figure 9. Hypothesis H4: plot of the storage moduli E �
L(ω) and

G�
LT (ω) [in MPa], according to equations (4) to (7), computed
for the mean value of all reeds. (a): E �

L series A, (b): E
�
L series

B, (c): G�
LT series A and (d): G

�
LT series B. For G�

LT , the moduli
are multiplied by 10. The abscissa of the relaxation frequencies
[inHz] is denoted by dashed lines (series A) and dotted lines
(series B). The corresponding numerical values are listed in Ta-
bles IV and V. Only the portions of the curves between 2 and 18
kHz could be fitted adequately. The curves outside this range are
purely hypothetical: we have no measurements.

Table III. Optimal 9-coefficients model (hypothesis H4): Statis-
tics of the frequency-dependent increase in storage modulus
(for Series A or B and EL or GLT ), between the 1st and the
4th flexural mode: 1 − E �(2πfF1)/E �(2πfF4) or 1 − G�(2πfF1)
/G�(2πfF4), with fF1 = 1996Hz and fF4 = 16784Hz. Between
both series, the correlation is 0.83 for EL and 1 for GLT (as a
consequence of the simplification of the model).

EL GLT

Series A Series B Series A Series B

Mean 31% 16% 38% 36%
Stand. dev. 5% 6% 10% 9%
Minimum 20% 1% 13% 15%
Maximum 44% 32% 52% 49%

The change in density between the two series of mea-
surements was not measured precisely (about −2 to −4%).
In the model, density is considered as constant.
Figure 9 shows an approximation of the frequency de-

pendence of EL and GLT , computed for the mean value
of all reeds. For Series A, the storage modulus E �(ω) in-
creases from 11700 MPa at 2 kHz (F1) to 17200 MPa at
16.8 kHz (F4), while for Series B, it increases from 11100
to 13300 MPa. Therefore under “normal” hygrometry the
reed bends in a notably viscoelastic manner, whereas the
ultra-dry reed bends in an more elastic manner. For GLT ,
the reed is generally notably viscoelastic, according to our
model. The corresponding values are: 783 to 1290MPa for
Series A, and 896 to 1436 MPa for Series B. Correspond-
ing statistics are displayed on Table III. Drying seems to
increase GLT and decrease EL (except around 2300Hz),
explaining the good correlation between the variables AF1
and BF1.
This simplified model permits interesting conclusions

about the structure of our data:
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• The component e1 is related exclusively to GLT ;
• e2 is related exclusively to EL;
• e3 increases proportionally to the rubbery modulus of

EL (and not its glassy modulus), and decreases propor-
tionally to the glassy modulus of GLT (and not its rub-
bery modulus); it regulates therefore the viscous com-
ponent common to EL and GLT

8;
• e4 takes into account the variation in moisture content
between series A and B.
Notice that the product of the rubbery moduli for the

series A, E1G1 is correlated at 72% with the nominal reed
strength. Individually, these moduli correlate only at 50%
and 55% with the nominal reed strength, respectively.

5.3. Results and discussion

Tables IV and V show our results for hypotheses H4 and
H5. A comparison with results by other authors is difficult
or even quite impossible, because of the disparate struc-
ture of the measurements. Such a comparison requires the
reconstruction of the measurement data (when possible),
the fit of a viscoelastic model or the extrapolation of the
values, in order to reach the frequency and temperature
range of our measurements. The validity of such a highly
speculative task is questionable. For the storage modulus
E �

L, all reconstructed values from other authors fall in the
range around the average of our measurements ±3 times
the standard deviation, however most of the time in the
lower range. This probably shows that the selected value
for the density ρ is somewhat too high. No representative
statistics are available by the other authors.
The most important disagreement, compared with our

model (hypotheses H4 and H5), is about the relaxation
frequency. The explanation is probably because the stud-
ied frequency range was not same. For GLT , we found no
viscoelastic measurements by other authors. Our results
are summarized in Tables IV and V. For E �

L, between
hypotheses H4 and H5, fr and E �

L at 4 kHz agree well,
whereas E1 and E2 diverge by about 1-2 SD. This diver-
gence comes because the observed frequency range was
not broad enough. For the shear modulus, G1 and G2 are
in good agreement for both hypotheses (and consequently
fr and G�

L at 4 kHz also).
Our model is valid only for “ambient dry” reeds (since

the ultra-dry conditioning was not controlled), in a fre-
quency range which should not exceed one decade. We
checked that a fractional derivative model after Gaul et
al. [32] is not necessary in our narrow frequency range.
Such models are however really efficient to cover a broad
frequency range. For instance, the data by Lord for dry
material [12] could be fitted very well (E0 = 8108 MPa,
E1 = 2964 MPa, p = 0.298 MPa·sα , α = 0.546). Notice
that the order of the derivative (α) is 1 in our viscoelastic
model.

8 The parameter E2 (respectively G2) determines the influence of the
Maxwell arm in the Zener model, since E3 (respectively G3) is constant
in our simplified model; if E2 = 0 the model is perfectly elastic and the
viscous component disappears

Our viscoelastic model is able to partially explain the
bad correlations observed between flexural modes. In Ta-
ble VI, the correlations are compared among observed res-
onance frequencies and computed modal frequencies, ac-
cording to the viscoelastic model (hypothesis H4 and H5).
It seems that additional hypotheses (such as an irregular
thickness) should perhaps be considered for improving the
model. However, we should remember that the determina-
tion of resonance frequencies carries some uncertainties,
especially for the modes F3 and T3.

In order to clarify this issue, let us examine if the resid-
uals (observed resonance frequencies minus computed
modal frequencies with hypothesis H59) contain some per-
tinent information. A PCA shows that perhaps 2 residual
factors contain some interesting information (explaining
30% and 18% of the residual variance). The first resid-
ual factor is correlated with AT3 (0.86), BT2 (0.74), AT2
(0.73) and AX2 (0.66). All these modes depend strongly
on GLT . An adjustment of the coefficient am,2 from the
metamodel for the transverse modes could probably cancel
this systematic bias (remember that the coefficients am,q

are computed from a theoretical model, which is proba-
bly also biased). Indeed, an increase by 14, 21, 16 and
11% of this coefficient affecting the modes T1, T2, T3
and T4 makes the RMSD drop from 29.8 to 28.5 cents.
The second residual factor is correlated with AF1 (0.36),
AF2 (0.29), AT2 (−0.29), BF1 (0.28) and BT1 (−0.23).
This probably reveals a competition between flexural and
transverse modes when fitting the model. The bias proba-
bly comes from the coefficient am,1, regulating the linear
dependence to EL in the metamodel. Adjusting the coef-
ficients am,1 for all modes and the coefficients am,2 for all
transverse and generic modes makes the RMSD drop down
to 26.2 cents, reaching the size of the measurement steps
(25 cents). The adjustments of am,1 are very small for the
flexural modes F1 to F4: -6, 1, 6 and 1%.

This shows that the most important bias depends lin-
early on the 2 most important parameters (EL and GLT )
of our FEM computations. No supplementary parameter is
required until this bias is removed (theoretically down to
a RMSD of 21.8 cents, according to H10). For hypothesis
H4, the same linear adjustment of the metamodel lets the
RMSD drop from 30.4 down to 27.0 cents.

6. Conclusion

The numerical model is satisfactory. From the statistical
analysis discussed in section 3.3, it allows selection of the
most important parameters describing the mechanical be-
havior of a reed.

The efficient elastic metamodel can be extended to a
viscoelastic behavior of the reeds, approximating the res-
onance frequencies from the longitudinal Young modulus
EL and the longitudinal / transverse shear modulus GLT

9 Because H5 is probably less biased than H4 with its minimal structure
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Table IV. Summary of our results for hypotheses H4 and H5 about the viscoelastic behavior of the longitudinal Young modulus EL

in cane. E1, E2 and fr (relaxation frequency): parameters from Zener model. E �
L at 4 kHz: storage modulus at 4 kHz [in MPa]. SD:

standard deviation (the value preceding SD is the average). The model is valid only between 2 and 18 kHz.

Model Storage Young modulus E �
L(ω) at about 20

◦C
E1 [MPa] E2 [MPa] fr [Hz] E �

L at 4 kHz

Hypothesis H4, series A 10300, SD 906 7309, SD 1432 4123, SD 808 13781, SD 897
Hypothesis H5, series A 9377, SD 844 8336, SD 1552 4027, SD 750 13449, SD 839
Hypothesis H4, series B 9423, SD 784 3964, SD 1109 2236, SD 626 12338, SD 885
Hypothesis H5, series B 7844, SD 753 5459, SD 1217 1947, SD 434 12168, SD 882

Table V. Summary of our results for hypotheses H4 and H5 about the viscoelastic behavior of the shear modulus in longitudinal /
tangential plane GLT in cane. G�

LT at 4 kHz: storage modulus at 4 kHz. Same structure as Table IV. The model is valid only between 2
and 18 kHz.

Model Storage Shear modulus G�
LT (ω) at about 20

◦C
G1 [MPa] G2 [MPa] fr [Hz] G�

LT at 4 kHz

Hypothesis H4, series A 694, SD 116 694, SD 327 5420, SD 2555 926, SD 102
Hypothesis H5, series A 752, SD 119 628, SD 328 6310, SD 3296 924, SD 105
Hypothesis H4, series B 811, SD 116 736, SD 327 5749, SD 2555 1042, SD 99
Hypothesis H5, series B 774, SD 119 769, SD 328 5622, SD 2401 1022, SD 103

Table VI. Correlations of resonance frequencies between flexural modes within the same series, after observations and viscoelastic
models H4 and H5. AF1, AF2, AF3, BF1, BF2 and BF3: correlations with modal frequencies F1, F2 and F3 within series A or
series B. Lines: corresponding flexural mode between which the correlations are computed.

Model Mode AF1 AF2 AF3 Mode BF1 BF2 BF3

AF2 0.73 BF2 0.63
observations AF3 0.34 0.75 BF3 0.43 0.84

AF4 0.28 0.65 0.74 BF4 0.00 0.43 0.45

AF2 0.93 BF2 0.79
H4 AF3 0.69 0.90 BF3 0.62 0.97

AF4 0.56 0.81 0.98 BF4 0.36 0.82 0.91

AF2 0.90 BF2 0.69
H5 AF3 0.57 0.87 BF3 0.52 0.98

AF4 0.43 0.77 0.98 BF4 0.26 0.84 0.92

and considering the hypothesis of their frequency depen-
dence. A reconstruction of the observed resonance fre-
quencies can be achieved with a good accuracy, estimat-
ing for each reed only 4 components, from which the pa-
rameters of a viscoelastic model are computed as a linear
combination. The selected model (according to hypothe-
sis H4) is probably slightly biased, but it is more robust
against measurement errors than more refined models.
Table I shows that these components are highly corre-

lated to the factors computed by PCA (0.96 to 0.98).
The proposed method allows the determination of 3 me-

chanical parameters characterizing the material compos-
ing each reed, with a single series of measurements, using
equations (1), (4) and (7). The reed should be conditioned
with a relative humidity corresponding to the one ensured
by the hermetically sealed package by Vandoren (about
55%). The fourth parameter cannot be determined in a
reproducible way, since the exposure of the reeds to the
ultra-dry air of the optical laboratory was not controlled.

The same protocol and the same viscoelastic model can be
used for other kinds of single reeds (bass clarinet, saxo-
phone). Only the coefficients of Table A3 have to be re-
computed after a FEM simulation of the corresponding
reed shape.
Despite the fact that the eigenmodes of higher order

probably play no important role in the acoustics of the
clarinet, the present study shows that they reveal the in-
ner structure of the material building the tip of the reed,
so a new step could be done for an objective mechanical
characterization of the clarinet reed. A subsequent study
should examine if the obtained components are correlated
with some musical qualities of the reeds. This could help
the reed makers to gain a better control on their products.

Appendix
A1. Statistics and correlations

Table A1 gives the detailed statistics. Linear correla-
tions have been computed between all possible couples
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Table A1. Observed resonance frequencies, sorted by frequency (in Hz). NA (resp. NB): Number of identified pattern for each mode
of series A (resp. B). µ: Mean value of the resonance frequency, σ: Standard deviation, min: Minimum, max: Maximum. Total: total
number of identified patterns for each series.

Series A Series B
Mode NA µ σ min max NB µ σ min max

F1 55 1996 77 1838 2154 55 1960 66 1812 2093
T1 55 3377 132 3091 3676 55 3436 129 3136 3729
F2 55 5130 161 4767 5669 55 4856 189 4435 5351
T2 55 6108 261 5587 6939 55 6193 247 5669 7040
X1 55 6869 198 6455 7458 45 6801 217 6363 7458
T3 55 9571 500 8617 11014 54 9590 458 8742 11014
F3 55 10146 419 9262 10857 55 9213 414 8372 10396
X2 55 11521 387 10701 12187 54 11688 379 10857 13098
X3 55 12294 368 11502 13482 11 12290 471 11839 13482
T4 53 14011 756 12186 16503 54 14111 763 12186 16503
F4 45 16784 552 15803 18524 54 15363 663 14079 17484
X6 41 16984 972 15133 18793 30 16888 734 15577 18258
X4 24 18497 518 17234 19067 23 17544 772 16033 19911
X5 0 54 18896 501 17484 19911
T5 0 14 19668 329 19067 19911

Total 658 668

of variables in the usual way (all the variables from Ta-
ble A1, except X5 and T5 of series A, i.e. 13 variables
for series A and 15 for series B, plus the nominal reed
strength). Results of series A for the mode F1 are denoted
AF1, and similarly for the other results. The following
12 pairs have a correlation greater than 0.9: AF1/BF110,
AT1/BT1, AT2/BT2, AT3/AT4, AT3/BT3, AT3/BT4,
BT3/BT4, AT4/BT3, BX1/BX3, AT4/BT4, BT4/BX6
and BX3/BX4. 54 pairs of variables have a correlation be-
tween 0.8 and 0.9, 50 other pairs between 0.7 and 0.8 and
262 other pairs, below 0.7.

Between the two series, the correlation is excellent for
corresponding transverse modes (T1 (i.e. AT1/BT1): 0.97,
T2: 0.97, T3: 0.96 and T4: 0.98), and generally good for
corresponding generic modes (X1: 0.87, X2: 0.84, X3:
0.87 and X4: 0.55). For flexural modes, the correlation is
good for F1 and progressively lower for increasing mode
order (F1: 0.92, F2: 0.66, F3: 0.57 and F4: 0.47).

Within the same series, on the contrary, there is a poor
correlation between AF1 and all measurements of series
A, and similarly for BF1 and series B. This is striking: the
two best correlated variables are AF2 and AX1 (0.73 and
0.49, respectively) for AF1 and BF2 and BT1 (0.63 and
0.49, respectively) for BF1. Moreover, these correlations
are quite low among all flexural modes: see Table VI. This
fact is discussed in section 5.3.
The nominal reed strength correlates at 0.7 with AT1

and AX4. We expected a better correlation with F1 (only
0.6). This is surprising, since the reeds were probably
sorted by a quasi-static bending method by the manufac-
turer. This would mean that the storage modulus of EL at

10 AF1/BF1 means AF1 versus BF1. The correlations are computed be-
tween AF1[n] and BF1[n], for n = 1 to N , where N = 55; missing
observations are deleted.

Table A2. Network of points for interpolating the thickness of the
vamp. See explanations in the text.

s0 [mm] s1 [mm] s2 [mm]
x [mm] y=0 mm y=4mm y=6mm

0 0.074 0.080 0.042
5 0.343 0.293 0.197
10 0.648 0.542 0.377
15 1.047 0.847 0.571
20 1.451 1.135 0.745
25 1.926 1.527 1.078
30 2.540 2.084 1.589
35 3.351 2.817 2.256

very low frequency is not well correlated with its value at
the frequencies of the measured resonances. The influence
of density has also to be considered. However, Obataya
et al. [9] observed a good correlation between density and
EL. This point has to be investigated (see also section A3.4
in Appendix A3).

A2. Defining the shape of the reed

The thickness of the vamp at point (x, y) is interpolated as
follows: first, we interpolate 3 points at y=0, 4 and 6mm,
with 3 cubic splines, according to Table A2. These three
points (s0(x), s1(x) and s2(x)) define a biquadratic poly-
nomial,

vamp(x, y) = p0(x) + p1(x) y2 + p2(x) y4,

with p0(x) = s0(x),
p1(x) = (−65 s0(x)+81 s1(x)−16 s2(x))/720 and p2(x) =
(5 s0(x) − 9 s1(x) + 4 s2(x))/2880, allowing an interpola-
tion on the y axis. The network of points above was es-
timated using a least squares fit, based on a network of
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Table A3. Coefficients of the metamodel, equation (1). The maximum negative and positive deviations of the model (compared to the
values calculated by FEM) are given by δ− and δ+ [in cents]. The mode L1 (6th mode) has been deleted from the Table, since we
didn’t observe it.

mode m am,0 am,1 am,2 am,3 am,4 am,5 δ− δ+

F1 1 2334.56 -1165877 0.2763 -21.99 145883795 -0.000324 -2 4
T1 2 1481.70 -642027 5.0725 569.69 83451520 -0.005886 -3 3
F2 3 3651.79 -1060625 0.7082 -123.77 130061359 -0.000786 -2 5
T2 4 2403.82 -493591 3.8130 501.70 64716271 -0.003741 -9 5
X1 5 3153.73 -822597 3.1425 604.29 105032670 -0.003785 -3 4
F3 6 4669.87 -1009348 0.7623 -101.18 122741172 -0.000877 -3 6
T3 7 3015.77 -275531 3.5285 250.00 29933670 -0.003016 -2 1
X2 8 3874.44 -633268 2.0921 589.25 83462866 -0.001958 -9 6
X3 9 4381.85 -926543 1.9907 730.31 122925338 -0.002593 -3 3
T4 10 2659.08 588457 6.6088 -1269.38 -120493740 -0.005269 -19 26
F4 11 6450.01 -1689363 -2.5544 1282.75 247738162 0.001631 -32 42

12 × 24 thickness measurements, achieved with a dial in-
dicator and a coordinates-measuring table (estimated ac-
curacy: ±5µm in z, ±50µm in x and y). We measured
twenty reeds and select a particularly symmetrical one as
reference. This method allows the reconstruction of the
measurement network with an accuracy of ±10µm.
The thickness of the heel is defined to be

heel(y) = −14.1 +
�
17.42 − y2.

The contour of the reed in the xy-plane is defined by

contour(x) =

����������������������������

0
for x < 0 or x ≥ 67.5,�

(24.4 − x)x
for x < 1.13196,

4.08044 +
�
−5.31 + 6.8x − x2

for x < 2.94661,

263
40

− 11
900

x

for x < 67.5.

The thickness of the reed at point (x, y) is defined by

thickness(x, y) =


min

�
heel(y), vamp(x, y)

�
for Abs(y) < contour(x),

0 otherwise.

A3. Development and selection of a simplified vis-
coelastic model

In this section we describe how the proposed model was
developed and selected. Alternate options are presented.

A3.1. Data structure

We need a specific notation for denoting our complicated
multivariate data structure as arrays, after a list of indices
(see Table A4). The 11 modes are defined after Table A3
(from 1 to 11: F1, T1, F2, T2, X1, T3, F3, X2, X3, T4,
F4).

Table A4. List of indices.

Indice from to numbering
n 1 N=55 reeds
s 1 S=2 series of measurements

A (s=1) and B (s=2)
m 1 M=11 modes
q 0 Q=5 coefficients for

equation (1)
i 1 I=2 moduli EL (i=1) or

GLT (i=2)
j 1 J=3 viscoelastic parameters
k 0 K=2,3 or 4 or 12 components (factors)

We define a variable vn,s,i,j holding all parameters of our
viscoelastic model,

vn,s,1,j = Ej and

vn,s,2,j = Gj for reed n and series s. (A1)

The array rn,s,m holds the reconstructed resonance frequen-
cies computed for all reed, series and modes, with the pa-
rameters vn,s,i,j of our viscoelastic model (see section 4.4).

A3.2. Mean Squared Deviation

As a cost function to minimize, we define the Mean
Squared Deviation MSD (also called Mean Squared Er-
ror) between reconstructed and measured resonance fre-
quencies on,s,m,

MSD =
1

NSM

N�
n=1

S�
s=1

M�
m=1

(onsm − rnsm)2. (A2)

With equation (A2), the components of array v can be fit-
ted by any appropriate algorithm for minimizing a mul-
tivariate function. All available measurements can be uti-
lized for fitting the models11. Missing observations om,s,n

are then eliminated while computing MSD.
Our model allows a quite good reconstruction of the res-

onance frequencies, with a
√
MSD ≡ RMSD (Root Mean

11 This was not the case with PCA.
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Square Deviation) smaller than 20 cents (it is very small
for lower modes, and always smaller than 25 cents). This
corresponds to the hypothesis named H9 (all hypotheses
H1 to H11 are presented and commented in section A3.6),
but, as explained in section 5, the values of the coefficients
are not always plausible physically. In section A3.3, we
examine how to regulate this drawback by multiple regres-
sion.

A3.3. Estimating the parameters of the viscoelastic
model by multiple regression

Multivariate linear regression consists in projecting lin-
early a n dimensional space on a onedimensional space.
The generic equation is

y = a0 +
N�

n=1

anxn =
N�

n=0

anxn, if x0 = 1. (A3)

Equation (A3) can be generalized for multiple regression
as

y = Ax, (A4)

where x and y are column vectors and A a matrix. In what
follows, in order to use conventional vectors and matrices
(with respectively one and two dimensions), we use the
following notation: vj[n, s, i] = vn,s,i,j is the jth element of
the column vector v[n, s, i].
In our case, we have no prior knowledge about the rela-

tionships among the parameters of our model. We assume
that each parameter in the model can be computed as a
linear combination of some unknown independent compo-
nents by multiple regression. The multiple regression for-
mula can be written as

vj[n, s, i] =
K�

k=0

Mjk[s, i] · ek[n]. (A5)

In conventional vectors and matrices notation, equation
(A5) reads

v[n, s, i] = M[s, i] · e[n],
where e[n] is the vector of the orthogonal components for
each observed reed n,M[s, i] is the regression matrix, in-
dependent of the reed number, depending on the series and
the kind of modulus (EL or GLT ). v[n, s, i] is the vector of
the parameters of the viscoelastic model.
We have only to choose an arbitrary number of compo-

nents, for instance K = 4, referring to our PCA. We in-
troduce arbitrary constraints in order to obtain more com-
parable results: over the different reeds, we state that the
components must be orthogonally normalized (mean 0,
standard deviation 1 and intercorrelation 0). The matrix
of components e has consequently to satisfy

e · eT =





N 0 0 0 0
0 N − 1 0 0 0
0 0 N − 1 0 0
0 0 0 N − 1 0
0 0 0 0 N − 1

��� . (A6)

Each individual column vector e[n] from this matrix is
written as (for the component e0[n] = 1: see equation A3)

e[n] =
�
1 e1[n] e2[n] e3[n] e4[n]

T
. (A7)

The components of M are fitted by minimizing MSD in
equation (A2). As starting value for the orthogonal com-
ponents we set : ek[n] = factork[n], where factork[n]
are the factors computed by PCA (see Section3.2). After a
first estimation ofM , it is possible to release the approxi-
mation about e: all components and all coefficients in the
matrices can be fitted by the fitting procedure. However
the number of variables to fit is probably much higher than
allowed by most algorithms of function minimizing. The
fitting procedure has to be carried “by hand” with subsets
of variables. The procedure we used is described below.
For K = 4 (the dimension of vector e[n] being 5), and

some supplementary choices, the model works very well.

A3.4. Empirical simplification of a 4-parameter model

We observed that the effect of hygrometric changes be-
tween both measurements series can be taken into account
with one parameter only, practically without drop in qual-
ity of fit. This effect can be isolated on component e4[n]
and the remaining components can be transformed lin-
early, so the further computations can be achieved from
a common basis. Equation (A5) is then structured as

M[s, i] = M̂[i] · M̌[s]. (A8)

The reasoning considers the situation where the two se-
ries of observations are independent, with a number of
components in vector ě[s, n] = M̌[s] · e[n] reduced to
Ǩ = K − 1 = 3. As a consequence the number of rows
of matrix M̌[s] is 4, as well as the number of columns of
M̂[i]. This approach, which allows separating hygrometry
effects, offers a comfortable way to test different hypothe-
ses, without changing the structure of the computation, by
setting some coefficients in the matrices at some arbitrary
values or by introducing some linear relationship between
coefficients. We get fewer “active” coefficients to fit in the
model: the fitting procedure is much faster and this raises
the probability to find the best possible fit.
We tried to minimize the number of coefficients differ-

ent from zero in the matrices, without substantial drop in
quality of fit. The model was fitted “by hand”, using the
solver of Excel (Microsoft Office). We found empirically
that a quite sparse setup still gives a good fit12:

M̂[EL] =

 d10 0 d12 d13
d20 0 d22 d23
d30 0 0 0

 , (A9)

12 The fitting process was realized by repeatedly performing four kinds
of procedures, in an arbitrary order:
1. Fit the active coefficients in model, without adjusting the coefficients

am,0.
2. Fit the active coefficients in model and adjust the coefficients am,0 (or
fit all coefficients: am,q ).

3. Fit the en,k components (individually for each reed, irrespective of
equation A6), then then normalize and orthogonalize components (in
order to satisfy equation A6), finally rotate components (for improv-
ing the fit).
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Table A5. Synthesis of some hypotheses tested with our model.K: Number of components for each reed n;model: elastic, viscoelastic
or multiple regression (with the elastic model, EL and GLT are independent from frequency; the elastic model is computed after the
viscoelastic one by setting very small values for the coefficients affecting E2, E3, G2 and G3, in order to avoid division by 0; multiple
regression (see equations A14 and A15); #ActiveCoef: number of active coefficients in the matricesM or M̂ and M̌ (fitted through the
fitting procedure); #OtherCoef: number of other coefficients estimated in model (am,0: adjusted so that the mean error for each mode m
and both series is zero,Ws,m,k: computed analytically, otherwise: fitted through the fitting procedure); RMSD [in cents] after equation
(A2): this is a measure of goodness of fit (remember that the vibration patterns of the reeds were observed in steps by 25 cents).

Hypothesis K model #ActiveCoef #OtherCoef RMSD

H1 0 elastic 2 am,0 → 11 76.2
H2 2 elastic 4 am,0 → 11 54.8
H3 3 elastic 7 am,0 → 11 43.9
H4 4 viscoelastic 9 am,0 → 11 30.4
H5 4 viscoelastic 18 am,0 → 11 29.8
H6 4 viscoelastic 44 am,0 → 11 29.1
H7 4 viscoelastic 60 am,0 → 11 28.6
H8 4 viscoelastic 60 am,q → 66 23.2
H9 12 viscoelastic - am,q → 66 19.8
H10 4 regression - Ws,m,k → 110 21.8
H11 4 regression 4 Ŵm,ǩ → 44 24.7

M̂[GLT ] =

 d40 d41 0 0
d50 d51 0 d53
d60 0 0 0

 , (A10)

M̌[SeriesA] =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

� , (A11)

M̌[SeriesB] =



1 0 0 0 0

c10 1 0 0 0
c20 0 c22 0 c24
c30 0 0 1 0

� . (A12)

This corresponds to the hypothesis named H5. Further-
more some coefficients may be proportional to others,
without noticeable drop in quality of fit. This diminishes
the number of active coefficients in the different matrices
from 18 to 9 (hypothesis H4),

d22 = 2d12, d13 = d12 = −d23,

d40 = d50 = 6d41 d51 = 2d41 = −d53, (A13)

c22 = c24 = 1/2.

A3.5. Adjusting coefficients for removing systematic
errors

After fitting the different models, we observed some sys-
tematic deviations in the resonance frequencies between
model and observations. This error has probably two dif-
ferent origins: an inevitable inaccuracy in the FEM com-
putation (and in our metamodel) and an error for param-
eters not included in the model. A straightforward way
to minimize the residuals is to fit the coefficients am,0 in

4. Eliminate some active coefficients (set them as 0, 1 or some other
constant value; set some arbitrary linear dependence from other coef-
ficients)

equation (1)13. Fitting all coefficients in equation (1) is
doubtless a more questionable way to reduce this error
(hypotheses H8 and H9). This can reduce the mean devia-
tion between model and observations, but greatly increase
the number of coefficients in the model (see however the
discussion in Section5.3).

A3.6. Testing different hypotheses

We tested different hypotheses with our model, in order
to select a particularly efficient model. Some of them are
summarized in the Table A5.

Hypotheses H1 to H3 (elastic model) present a poor fit;
the adjustments for coefficients am,0 are large, compensat-
ing partially for the missing viscoelastic components. All
viscoelastic models are notably better and exhibit smaller
adjustments for am,0. Frequency dependence for EL and
GLT seems evident. Hypothesis H4 shows a good accu-
racy, with only 9 fitted coefficients (and 11 adjustments).
Increasing the number of coefficients up to 60 brings only
a marginal contribution (H5 to H7). Adjusting the other
coefficients of equation (1) in H8 and H9 improve the
model, especially for the higher modes (Notice that no
multiple regression is used for H9). Our FEM computa-
tions (and consequently our metamodel) are probably af-
fected by systematic errors in this frequency range. The in-
fluence of ET should possibly be considered. Between H8
and H9, the total number of components (N×K) increases
from 220 to 660. The adjustments within morphological
classes are related: “flexural” modes shows systematically
lower values than neighboring “transverse” modes.

13 These coefficients can be fitted through the fitting procedure (some
constraints have however to be introduced, to avoid an important devia-
tion from their theoretical values) or merely adjusted a posteriori, so that
the total averaged deviation for each mode and both series is 0.
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A3.7. Backward random validation

Following a suggestion by a referee, we applied a prin-
cipal component analysis to simulated data computed af-
ter hypothesis H5: we assigned randomly a value for the
4 components and 55 reeds, following a normal distribu-
tion. We repeated this operation ten times. As expected,
the PCA detected 4 factors capturing 91.2% (Standard De-
viation 1.3%) of the variance of the simulated data (mean:
42.6, 20.9, 16.2 and 11.5% for each factor). This seems
compatible with the analysis performed on the observed
frequencies (section 3.2): 4 factors: 91.2% of the variance
(53.6, 21.4, 10.8 and 5.4% for each factor).

A4. Reconstructing observed resonance frequencies
by multiple regression

The scheme of our viscoelastic model is:
�vector e� → {multiple regression, equation (A5)} →
�viscoelastic coefficients v� → {viscoelastic model, equa-
tion (4)} → � moduli E �

L and G�
LT � → {metamodel, equa-

tion (1)} → � reconstructed resonance frequencies r�.
It has a very interesting property: the same model of

cane can be used for any kind of reeds (for instance bass
clarinet or saxophone) or for any other boundary condi-
tions. Only equation (1) has to be changed (or at least, the
coefficients am,q have to be recomputed).
Within our particular setup, the viscoelastic model is

however not required for reconstructing the observed res-
onance frequencies: PCA is theoretically the optimal lin-
ear scheme, in terms of least mean square error, for com-
pressing a set of high dimensional vectors into a set of
lower dimensional vectors and then reconstructing the
original set by multiple regression. The shortened scheme
is merely: �vector factor� → {multiple regression} →
�reconstructed resonance frequencies r�.
Let us examine this option. For this purpose we use

the array factorn,k computed in section 3.2, holding our 4
principal components (factors). As before (section A3.3),
we set factorn,0 = 1. The array of reconstructed resonance
frequencies rn,s,m can be computed by multiple regression
using an array of matricesWs,m,k,

r[n, s] = W [s] · factor[n]. (A14)

As before (section A3.4), we have also the option to re-
duce the dimensionality fromK to Ǩ, using the previously
defined array of matrices M̌[s] and then use a unique ma-
trix Ŵm,ǩ to operate the multiple regression,

r[n, s] = Ŵ · M̌[s] · factor[n]. (A15)

We call these two options: hypotheses H10 and H11. For
H11, we performed a small orthogonal rotation of the fac-
tors to concentrate the information about the hygrometric
material properties in factorn,4, for a better fit. The results
are summarized in Table A5.
Multiple regression is an accurate way to retrieve our

measurements, comparable to H8 and H9. With only 48
coefficients, H11 is very efficient, even better for “trans-
verse modes” than H10. The results of the regressive

model are more difficult to interpret than those of the vis-
coelastic model. As en,4 before, factorn,4 serves uniquely
to adjust factorn,2 relatively to series B. As expected,
factorn,1 influences mainly the “transverse modes” and
factorn,2 the “flexural modes”. Their respective coeffi-
cients in the matrix Ŵ reflect this antinomy. “Transverse”
and “flexural modes” are affected by factorn,3 in a quite
similar way, but the slope is not same.
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Chapter 4

Static Characterization of the
Clarinet Exciter

Résumé

Ce Chapitre propose une méthode originale pour mesurer la caractéristique non linéaire
statique de l’excitateur de clarinette, qui lie le débit d’air entrant dans la clarinette en fonction du
saut de pression ∆p à travers l’anche et de l’embouchure (pression de lèvre appliquée sur l’anche).
Ce méthode utilise un bec de clarinette instrumenté, muni d’une anche et d’une lèvre artificielle
dont la position ψ est contrôlée par une vis micrométrique. Le bec est connecté à une bouteille
dans laquelle on génère un vide modéré en début d’expérience, puis l’air revient peu à peu dans
la bouteille à travers le canal (fente entre le bec et l’anche). Après un certain laps de temps,
l’anche s’ouvre et la pression ambiante est rétablie dans la bouteille. Les lois thermodynamiques
en conditions isochores permettent de calculer à chaque instant le débit entrant dans la bouteille
à travers le bec, à partir des mesures de pression. Cette mesure du débit permet d’estimer la
section aéraulique efficace S(∆p, ψ) à l’aide de la loi de Bernoulli.

4.1 Introduction

Backus was a pioneer in investigating the opening of the channel in playing situation [8]
and developed an empirical model used by some early authors. Among them [198, 52, 53, 54,
131, 142, 10] should be mentionned. Hirschberg, Zon and col. established the foundations of the
aeraulic model, which is now generally used for the calculation of the airflow entering through
the channel. [96, 193, 194, 101, 66, 55]. Ollivier [135] and Dalmont [36] developed a measurement
device on this this background, which was used for instance by [32, 33, 40]. The measurement
technique proposed in this Chapter is a continuation of this work. The main goal of the present
development is to enhance the precision of the measurements, especially at high ∆p, when the
flow rate is low and difficult to measure with the method described in [135]. Other works should
be mentioned on this topic, for instance [21, 1, 138].

This chapter describes an experimental device [168] measuring the static characteristics of
the clarinet exciter (consisting of a mouthpiece, a reed and a lip). This device measures the
quantity of air entering the instrument, according to the deflection of the reed caused by the
applied pressure (lip + air). Chapter 3 is devoted to dynamical measurements, while the present
Chapter is devoted exclusively to static measurements. This limitation is justified by a personal
belief that has slowly grown up over the years: I am now convinced that the most important
concerns about clarinet reeds are related to subtleties in the contact with the lay. We have to
relativise the importance of the traditional dynamic approach, which states that a good reed
has a good ”vibration”. In my mind, a good clarinet reed must above all not interfere negatively
with the operation of the instrument, so as not to hinder the vibration of its air column. The
higher modes of vibration of the reeds play probably a quite anecdotal role in the operation of the
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74 Chapter 4 Static Characterization of the Clarinet Exciter

instrument (except perhaps the first torsion mode, which can be excited quite easily, according
to my experimental observations). The dynamical problem consists essentially in determining
the mass and the damping of a 1D oscillator with nonlinear stiffness. In the playing situation,
this task is complicated by the fact that the lip is an integral part of the exciter and that it
continuously modulates the dynamic parameters of mass and damping, while its elasticity varies,
according to its muscular tension, modifying the ”mask” of the instrumentalist. I renounced to
study the question of lip mechanics (for this topic, see the attempts in [64, 76]), approximating
mass and damping by optimization, comparing measurements and simulations (see Chapter 8).

4.2 Principle of measurement

The device measures the airflow entering the instrument in function of the exciter, with respect
to the pressure exerted by the lip on the reed and to the pressure drop across the reed. From
this flow rate measurement, the effective aeraulic section is determined by Bernoulli’s law. The
measuring device consists of an instrumented clarinet mouthpiece connected to a bottle of known
volume. The measurement principle is relatively simple: a moderate vacuum (about -15 kPa) is
created in the bottle, using a vacuum cleaner. The depression is measured by a piezoelectric
sensor. From the knowledge of the initial conditions, from the evolution of the pressure recovery
in the bottle and according to the thermal behavior of the bottle, the thermodynamical laws
allow to deduce at any moment the quantity of air present in the bottle, and thus measuring the
air flow penetrating through the channel (slot between the mouthpiece and the clarinet reed).
Very low flow rates can be measured with remarkable precision thanks to the integrating effect
of the bottle. A measurement in quasi-static condition requires to avoid any self oscillation of the
device. For this purpose, a diaphragm is inserted between the mouthpiece and the bottle, which
greatly increases the losses, preventing generally any oscillation [135, 36].

When the depression is large, the reed bends tightly against the mouthpiece lay and the air
returns very slowly into the bottle, then, as the depression decreases, this quantity of air becomes
more important, and after a while, the sudden opening of the reed occurs, typically during a tenth
of a second. The speed of the discharge is slow enough, so that quasi-static conditions can be
considered.

4.3 Measurement Bench

The measurement bench is designed to allow several types of measurements (static and dy-
namic), while ensuring a good reproducibility, without requiring any modification of the em-
bouchure between two experiments of different natures. Fig. 4.3 gives an overview of the experi-
mental setup.

4.3.1 Instrumented mouthpiece

Sensors

The instrumented mouthpiece is made from a Vandoren clarinet mouthpiece model M30, in
which different sensors are installed:

— a pressure sensor (Model Endevco 8507C-2) measures the pressure (relatively to the atmo-
spheric pressure, via a capillary duct) into the mouthpiece bore at 65 mm from the tip of
the mouthpiece.

— 2 optical sensors (reflection coupler ITR8307, consisting of an infrared LED (light source)
and a phototransistor (actual sensor)) are installed in the mouthpiece chamber (baffle)
about 6 mm from the tip of the mouthpiece, at the left and right edges of the window. The
average distance between the reed bent against the lay and the sensor is about 2.5 mm.

The optical sensors were installed by hand in the mouthpiece. Their positions are not perfectly
symmetrical.
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Conditioning and acquisition of signals

The pressure signals are conditioned by the Endevco amplifier, model 126 and the optical
signals by the operational amplifier OP491GPZ.

The signals are acquired using a National Instruments NI9222 acquisition card, at the max-
imum sampling rate (500 kHz), then downsampled at 10 kHz (in real time) by averaging over
50 successive samples. This procedure reduces the measurement noise considerably, without sig-
nificant aliasing problems, given the low amplitude of the signals measured above 5 kHz. The
reed displacement is obtained (at relatively low speed) with an estimated accuracy of the order
of 100-200 nm. The precision is of the order of one micron for fast movements (the reduction of
the measurement noise is less efficient).

Immobilization of the mouthpiece

The instrumented mouthpiece is secured in a vise, the jaws of which have been machined and
corked, to allow a stable immobilization, without damaging the mouthpiece (see Fig. 4.1). The
reeds are attached to the mouthpiece by a Vandoren Optimum ligature, exactly as in a playing
situation. The precision of the longitudinal and lateral positioning of the reeds is ensured by two
positioning stops, against which the heel of the reed abuts. To improve the reproducibility of
positioning, the reeds are pressed against the left guide before clamping the ligature, since the
width of each reed is slightly different and varies moreover with the hygrometry.

4.3.2 Artificial lip

The artificial lip consists of a silicone parallelepiped of approximate dimensions 11 X 13 X
10 mm. The lip is glued on a steel rod 3 mm in diameter (artificial teeth), maintained by a
metal stirrup. The lip has been glued in such a way that the face in contact with the reed is
approximately parallel to the surface of the reed vamp, ensuring however that the side near
to the reed tip comes first into contact with the reed, so as to avoid as much as possible the
nonlinearity caused by a progressive longitudinal bending of the lip on the surface of the reed.
The artificial lip is screwed to the spindle of a digital dial gauge. The vise and the dial gauge
are fixed to the frame of an old 2-axis milling machine. Stoppers keep the vise stationary in the
axes x (longitudinal) and y (transverse). A toggle lever allows to lift the dial gauge (with the
artificial lip) to mount the reeds to be tested. A stop allows a precise repositioning of the lip (of
the order of one micron) in the z axis (vertical). A micrometric screw is used to finely adjust the
displacement of the artificial lip in the vertical axis, denoted ψ, while checking its position with
the digital dial gauge (resolution of the display: 0.001 mm). The zero is fixed arbitrarily approx.
0.3 mm before contact of the lip with the reed. The longitudinal and transverse position of the
lip was not modified during all the experiments. The axis system is illustrated in Fig. 5 of the
paper presented in Chapter 3. Fig. 4.4 presents the artificial lip in a measurement situation.

Issues

Preliminary tests revealed several problems related to the artificial lip: a very pronounced
viscoelastic behavior was observed. It turned out that this is due to the lateral and longitudinal
deformation of the silicone under pressure. Because of friction with the reed, the relaxation is
not instantaneous and remains measurable for several minutes. The silicone migrates gradually
on the surface of the reed, releasing the tension. Another problem has annoying consequences
(see Fig. 4.2): the reed is relatively transparent to infrared 1. The optical signal therefore also
depends on the reflection due to the lip and its state of deformation. A remedy could be found
for these two problems: a piece of aluminized Mylar is glued on the face of the lip in contact
with the reed. This eliminated practically all traces of viscoelasticity, except that intrinsic to the
reed, which proved to be much weaker than that due to the lip. The reflective aluminum surface
improves also significantly the quality and reliability of the optical signals.

1. The relative transparency of the reed also works in the opposite direction: we must guarantee constant light-
ing throughout the measurement. This problem is particularly sensitive in cloudy weather: changes in brightness
affect the reproducibility of measurements, so a darkening of the windows was necessary.
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Figure 4.1 – Instrumented mouthpiece. Observe the vise with corked jaws immobilizing the
instrumented mouthpiece and the ligature, the 2 optical sensors at the tip of the mouthpiece
and the 2 positioning stops, against which the heel of the reed abuts. The gray mass fills an

experimental hole (drilled in the mouthpiece for the installation of a pressure sensor).

Figure 4.2 – Reed mounted on the instrumented mouthpiece showing by transparency the 2
illumination spots of the infrared LEDs of the optical sensors (the photo camera is sensitive to

near-infrared).

Figure 4.3 – Overview of the experimental device during aeraulic measurements. Compare with
the scheme of the same device in Fig. 4.5. From left to right: the thermally insulated bottle
(about 3L), the plug, the cock valve, the connection joint (with insulating foam), the vise

immobilizing the instrumented mouthpiece, the digital dial gauge to which the artificial lip is
attached, the micrometric adjustment screw, the frame of the old milling machine, the camera

with macro lens (for the calibration of the optical sensors).

4.3.3 Bottle

The bottle is a mechanically rigid container, hermetically closed, thermally insulated and
opaque to light. Since the measurement principle is based on the thermodynamical laws, the
dynamics of the heat exchange between the bottle and the air inside the bottle has to be well
controlled. Two antinomic variants can be envisaged to optimize the measurement accuracy:

1. Insulating version: the insulation between the walls of the bottle and the air inside the
bottle is optimized, so a quasi adiabatic situation can be considered.

2. Thermostatic version: according to the advice of A. Hirschberg (pers. comm.), the bottle
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Figure 4.4 – View of the instrumented mouthpiece and the artificial lip in measurement
situation. Observe the instrumented mouthpiece immobilized in the vise, one of the positioning

stops (lateral and longitudinal) of the reed, the ligature, the reed, the millimeter scale, the
artificial lip and its stirrup screwed to the spindle of a digital dial gauge. The elastic

counterbalance the spring of the dial gauge, so as to press the spindle of the dial gauge against
the micrometer screw.

is filled with fine steel wool, so that the return to room temperature is fast, after each
pressure variation.

Tests were carried out using a container of about 100 liters filled with 6 kg of steel wool. It turned
out that this rather complicates the problem of heat exchange. I did not experiment if the use
of a fan inside the container would allow a better homogenization of the air masses, which could
facilitate the modeling of the thermal behavior.

The bottle used in the experiments is made of glass with relatively thick walls. Its volume
is 3.178 liters. The neck of the bottle is capped with a plastic plug, allowing a tight connection
with the neck. An Endevco 8507C-2 pressure sensor is installed in the plug and also a cock valve,
connected to a vacuum cleaner. To avoid the problems caused by the airflow in front of the sensor,
a thin flexible tube (inner diameter about 1 mm) is connected, so that the sensor measures the
pressure inside the bottle. Calibrated diaphragms can be inserted into a cylindrical slot drilled
in the center of the plug.

This bottle has an intermediate thermal behavior (between the two variants mentioned),
relatively easy to model empirically. However, the kinetics of the airflow inside the bottle must
be taken into account, which can accelerate the heat exchange at the walls.

4.3.4 Connection joint between mouthpiece and bottle

A cylindrical pipe, 9.1 mm long and 16 mm inner diameter, joins the instrumented mouthpiece
and the bottle. The additional volume provided by this pipe retards slightly the pressure recovery
(when the pressure difference across the diaphragm is large), which improves slightly the accuracy
of the measurements. This additional volume may promote unwanted reed squeaks, which must
be damped with absorbing foam, thus constituting a kind of low-pass filter. However, the DC
resistance to the airflow should kept relatively low by inserting a pipe of small diameter (about
5 mm), passing through the foam from one side to the other.
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4.4 Calibration of Diaphragms (1) and Air Flow Measure-
ment (2)

Before proceeding with flow measurements, the diaphragm must first be calibrated. The
process is divided in 2 phases: 1) calibration of the diaphragm, 2) measurement of the nonlinear
characteristics of the reeds. The underlaying thermodynamic problem must be solved for each
phase.

b)d)

a)

c)

b)d)

a)

c)

g)

h)

f)
k)

e)

i) j)

1) 2)

Figure 4.5 – Schematic setup of the problems 1) and 2). a) diaphragm, b) piezoelectric pressure
sensor (bottle), c) thin tube (about 1 mm inner diameter), d) cock valve, e) adaptation barrel

with absorbing foam (damping the acoustical oscillations), f) piezoelectric pressure sensor
(mouthpiece), g) clarinet mouthpiece, h) artificial lip (silicon 10 mm thick), i) steel rod

(diameter 3 mm) glued to the artificial lip, j) micrometer screw (controlling the position ψ of
the artificial lip), k) clarinet reed
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Figure 4.6 – Typical measurements of ∆P during the discharge (zoom) for Problems 1) and 2):
1) diaphragm of 1.5mm diameter. 2) reed measured with a moderately tight embouchure.

Problem 1): discharge through a diaphragm

A diaphragm is connected to the bottle. A moderate vacuum (about 15-20 kPa) is generated
in the bottle trough a cock valve at the beginning of the experiment (while the diaphragm is
closed). After about 1 minute (allowing the observation of the heat exchange with the bottle),
the diaphragm is quickly opened and the discharge starts (the air comes back into the bottle).
The pressure in the bottle is measured with a piezoelectric sensor. See Fig. 4.5.

The purpose is to determine the effective aeraulic section of the diaphragm Sdia from the
pressure measurement (via the computation of temperature and flow rate).
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Problem 2): discharge through a varying aeraulic section

The setup of Problem 1) is completed by a clarinet mouthpiece and a reed. An artificial
lip (silicon) compresses the reed against the lay of the mouthpiece. The position of its support
(stirrup holding the artificial teeth) is denoted ψ and is controlled by a micrometer screw. The
reed is not moistened before measurement, in order to avoid a bias in the measurement due to
drying.

The purpose is to determine the effective aeraulic section of the channel (slit between reed
and mouthpiece) in quasistatic conditions from the pressure measurement inside the mouthpiece
p and the aeraulic section of the diaphragm Sdia calibrated with Problem 1). The measurement
of the pressure in the bottle serves only as a control for the computations. This way the delicate
problem of pairing between sensors can be avoided and the precision and the reproducibility of
the measurements is increased.

Typical discharge measurements for problems 1) and 2) are depicted on Fig. 4.6. The total
duration of one experiment is about 90 s.

4.5 Thermodynamical model

4.5.1 Laws of thermodynamics

This subsection recalls some laws of thermodynamics, using mainly the traditional notations.
These laws are well known and can be found in every book about thermodynamics and also in
every handbook of chemistry and physics, for instance in the one of my regretted father [136].

Constants and parameters

Description Identifier Typical value Unit
Ideal gaz constant R 8.314 J/mol/K

Constant for diatomic gazes γ 1.4 adim
Density of air ρ kg/m3

Viscosity of air ν 15.6× 10−6 (at 25◦C) m2/s
Pressure P Pa

Atmospheric pressure P0 101300 Pa
Pressure drop ∆P = P − P0 Pa

Volume V 0.003178 m3

Flow rate U m3/s
Aeraulic section S m2

R×number of moles of gaz N = nR J/mol/K
Absolute temperature T K
Ambient temperature T0 295 K
Temperature of the jet Tjet K

Temperature of the thermostat Tth K
Constant of the thermostat r

Heat capacity at constant volume Cv = N/(γ − 1) J/mol/K
Internal energy E J

Work W J
Heat Q J/K

Sample rate fs 10000 Hz
Time t s

Time step ts = 1/fs 0.0001 s

Identifiers written with uppercase generally refer to values inside the bottle. In lowercase the
same identifiers refer to the value inside the mouthpiece.
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Laws

Ideal gas law
P V = N T = nRT (4.1)

and its differential form:

dP V + P dV = dN T +N dT (4.2)

First principle of thermodynamics:

dE = dW + dQ (4.3)

Newton’s empirical law of cooling (thermostat):

dTth/dt = −r(T − T0) (4.4)

r is a positive constant, which has to be determined experimentally.

Bernoulli’s law:
U = sign(∆P )S

√
2/ρ|∆P | (4.5)

This Eq. is valid valid for incompressible fluids and large ducts, comparatively to the aeraulic
section S, for Reynolds numbers Re ' U/(ν

√
πS) > 2000. For compressible fluids the equation

is approximately valid for the conditions at the output of the jet.

4.5.2 Isochoric model

The heat variation due to the thermostatic effect of the bottle is:

dQ = Cv dTth (4.6)

The work of small air volume dV leaving the jet outgoing the diaphragm with a temperature
Tjet and a pressure P is dW = dV P = dN Tjet. On the other side, the variation of energy is
dE = 1/(γ − 1)((N + dN)(T + dT ) − (dN Tjet + N T )). Applying Eqs. 4.1, 4.3, 4.4 and 4.6,
we obtain the equation of our thermodynamic model in isochoric conditions (i.e. at constant
volume):

dN =
dP V +N r (T − T0)dt

γ Tjet
(4.7)

Considering an adiabatic expansion in the jet, the temperature of the air leaving the jet is

Tjet = T0 (P/P0)
γ−1
γ .

4.5.3 Discrete time scheme for Problem 1

During an experiment, the pressure in the bottle P [t] is measured with time steps ts : Pm =
P [mts]. We have to deduce from the equations above the temperature Tm and the number of
moles (×R) of air in the bottle, Nm.

Initialization
At time step m = 0 (before generating the vacuum), the air in the bottle is at ambient

temperature T0 and atmospheric pressure P0. Applying Eq. 4.1, the initial quantity of air in the
bottle is: N0 = P0V/T0.

Iterations for m > 0

dN =
V (Pm − Pm−1) +Nm−1 r ts (Tm−1 − T0)

γ Tjet
Nm = Nm−1 + dN

Tm = PmV/Nm

Um = dN Tm/(Pm ts) (4.8)



4.5 Thermodynamical model 81

4.5.4 Validation with known diaphragms
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Figure 4.7 – Color lines: effective aeraulic diameter of the tested diaphragms computed with
the isochoric scheme Eq. 4.8. Each diaphragm is measured 3 times with different initial

conditions. Thin dark thin lines: nominal diameter of the diaphragms.

A validation of the model was performed with a series of chamfered diaphragms of nominal
diameters 1, 1.5, 2, 2.5, 3 and 3.5mm. Eq. 4.5 allows the computation of the equivalent aeraulic
section S from U , ρ (in the bottle) and ∆P , from which we deduce the equivalent aeraulic
diameter of the diaphragms.

Fig. 4.7 depicts the results. The following values of r were determined by optimization (among
3 tests with different initial depressions for each diaphragm): 0.25, 0.32, 0.39, 0.46, 0.54, 0.61,
for the diameters 1 to 3.5mm. This accounts approximately for the greater heat exchange with
the bottle when the flow rate through the diaphragm is high. Before the discharge r = 0.20
(measured value in static conditions).

The aeraulic section of the diaphragm Sdia used in Problem 2) is calibrated with this method
(in our case 2.9mm). The adaptation barrel with absorbing foam (damping the acoustic os-
cillations) belongs formally to the diaphragm (like every aeraulic resistance downstream the
mouthpiece sensor).

4.5.5 Discrete time scheme for Problem 2

This problem is subdivided in 2 subproblems:
A) compute the net mass flow dn entering into the mouthpiece
B) compute the net mass flow dN entering into the bottle

The total mass flow entering trough the channel is dNch = dn + dN , from which Uch =

T0 (p/P0)
γ−1
γ dNch/(p dt) and its corresponding aeraulic section Sch is deduced with Eq. 4.5.

Subproblem A) The mouthpiece is treated with Eq. 4.8 in which the variables of the mouth-
piece replace those of the bottle (P → p, U → u, and so on). An adiabatic approximation can
be used for this case : dQ = 0, thus r = 0.

Subproblem B) the combination of Eq. 4.7 with Bernoulli’s law Eq. 4.5 enables the calculation
of the pressure in the bottle Pm (at discrete time m) from the corresponding measurement of
the pressure in the mouthpiece, denoted pm.

Initialization Like Problem 1), additionally: p0 = P0.
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Iterations for m > 0

δp = pm−1 − Pm−1, ρ = (M Nm−1)/V

dN = sign(δp)Pm−1 Sdia
√
|2δp/ρ|) ts/Tm−1

dP = (Nm−1 r ts (T0 − Tm−1) + dN γ Tjet)/V

Nm = Nm−1 + dN

Pm = Pm−1 + dP

Tm = PmV/Nm

Um = dN Tm/(Pm ts) (4.9)

with M = 0.028965/R = 0.00348388 for the air.
This scheme is not very critical toward the duration of the time step ts, because it used with

measured values: deviations are naturally corrected by the scheme (it ”waits” until physically
plausible conditions are recovered). In principle it is expected that: ts ≤ 0.001 s.

4.6 Examples of measurements

The Figs. 4.8 to 4.13 depicts the results of the aeraulic measurements performed on 4 reeds
selected from the panel studied in Chapter 8 (see §8.3.2 and the Table of symbols 8.1) and treated
with the methods described in the present Chapter. These Figs. depicts respectively the channel
height h(ψ, y), the reed deflection left and right zL(∆p, ψ) and zR(∆p, ψ), the aeraulic section
S(∆p, ψ) and the nonlinear characteristic u(∆p, ψ). These 4 reeds were selected here because
they are typical for the CCA factor 1 (stiffness, called ”reed strength” by the clarinettists, reeds
R06 and R07) and factor 2 (opening at rest, reeds R02 and R05). Observe their locations on the
factor plot of staticF, Fig. C.2, top left graph.

The measurements of the soft reed (R06) differs essentially from that of the stiff reed (R07)
in the following points:

— The channel h is more closed for all embouchures ψ. This is also the case for the reed
deflection z and the aeraulic section S at ∆p = 0.

— The maximal height of the nonlinear characteristic u is much lower.

— The difference of stiffness appears clearly (at low ∆p) on the graph of the reed compliance
z′ (and also on the gradient of h and z).

— The main ”elbow” in z or S occurs for a much lower value of ∆p. The beating threshold is
therefore much lower (observe the graph of u).

The measurements of the closed reed (R02) differs essentially from that of the open reed
(R05) in the following points:

— The channel h is more closed for the loose embouchure (orange), but not for the tight
embouchure (blue). This is also the case for the reed deflection z and the aeraulic section
S at ∆p = 0. This difference is especially important for the reed at rest, without contact
with the lip (not illustrated on the graphs).

— The aeraulic section S and the nonlinear characteristic u exhibits a very broad elbow at
closure, unlike the theoretical characteristic (see Eq. (5) and (6) in Chapter 1). At the
contrary, R05 exhibits curves that are more closely related to the theoretical characteristic.

A general property of S appears clearly for all reeds: an increase of displacement of the
support of the artificial lip ψ causes a shift of the curve in direction of the negative ∆p. This
is observed on Fig. 4.13 which depicts S as a function of z, by eliminating ∆p. Basing on this
observation, a simplified model of the exciter is proposed in the next Chapter, which hypothesizes
a linear equivalence between ∆p and ψ.

Note that the slope of the curves is practically the same for all reeds, except when the
channel is nearly closed. In other words, when the channel is more or less widely open, the width
is constant for all reeds (about 20 mm), in a rectangular model of the channel. See also 8.5.6 for
this topic.
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Figure 4.8 – Channel height h(ψ, y) measured by photo (see §8.3.1) for 4 different reeds and 7
embouchures selected from the panel studied in Chapter 8. The 7 embouchures tested are

encoded by the colors from orange (loose embouchure, ψ = 1.750 mm) to blue (tight
embouchure, ψ = 2.500 mm).

4.7 Conclusions and future work

The measurement of the static characteristics of the exciter with the ”bottle method” provides
very satisfactory results in terms of accuracy and reproducibility.

One point was not investigated: the transition between turbulent and laminar flow at very
low pressure. The device is not well suited for a precise measurement of this transition. The
aeraulic section is approximated from the optical signals at very low pressure. It is well known
that the viscosity is the main parameter in this pressure range (cf. Poiseuille flow). This point is
not very relevant for the simulation of a clarinet, but it may be important for stability issues in
the simulation of a saxophone (pers. comm. Ph. Guillemain).

An other point needs to be improved: the characterization of thermal exchanges with the
bottle, which has been carried out empirically. This improvement can also be realized through
the development of a bottle having a thermal behavior which is less critical. The temperature
could also be measured, for instance by evaluating the speed of sound in the bottle during the
most critical moments: when the pressure inside the bottle slowly varies. During these moments,
it is difficult to separate the effects of temperature exchange and variation of air quantity. The
measurement of the phase shift between the signals of an emitting loudspeaker and a receiving
microphone located at opposite sides in the bottle would probably work, because only variations
of the speed of sound relative to ambient conditions have to be measured, in order to deduce the
temperature. This way, the main drawback related to the quasi-adiabatic case could be probably
resolved.
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Figure 4.9 – Reed deflection at the tip measured by optical sensors, for 4 different reeds and 7
embouchures selected from the panel studied in Chapter 8. The 7 embouchures tested are

encoded by the colors from orange (loose embouchure, ψ = 1.750 mm) to blue (tight
embouchure, ψ = 2.500 mm). Plain lines: left sensor, zL(∆p, ψ). Dashed lines: right sensor

zR(∆p, ψ). Observe that the right sensor is situated on the left side of the photo of the channel
illustrated on Fig. 4.8.
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Figure 4.10 – Reed compliance (derivative of zL and zR with respect to ∆p) corresponding to
the deflection illustrated on Fig. 4.9, depicted with the same color code.
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Figure 4.11 – Aeraulic section S(∆p, ψ) determined with Eqs. 4.5 and 4.9 for 4 different reeds
and 7 embouchures selected from the panel studied in Chapter 8. The 7 embouchures tested are

encoded by the colors from orange (loose embouchure, ψ = 1.750 mm) to blue (tight
embouchure, ψ = 2.500 mm). Below 1 kPa, S is approximated from the signal measured by the

optical sensors inside the mouthpiece.
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Figure 4.12 – Nonlinear characteristic u(∆p, ψ) associated to the aeraulic section illustrated on
Fig. 4.11, depicted with the same code of colors.
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Figure 4.13 – Aeraulic section S as a function of the mean reed deflection at the tip z (mean of
the measures of the optical sensors). This graph combines the Figs. 4.9 and 4.11, by eliminating

∆p.
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Chapter 5

Nonlinear Model of the Clarinet
Exciter

Résumé

Ce Chapitre propose un modèle simplifié d’excitateur basé sur les mesures expérimentales
réalisées avec les techniques décrites au Chapitre 4.

Dans un premier temps, ce modèle simule les caractéristiques mécaniques non linéaires de
l’excitateur (mesurées ici par capteur optique). Pour ce faire, on établit un modèle de raideur
non linéaire purement statique, en formulant certaines hypothèses simplificatrices. Ce modèle
est ensuite transformé en un modèle dynamique 1D relativement simple, en ajoutant des effets
inertiels et amortissants, en combinant le modèle de contact développé par [25] et le schéma
numérique proposé par van Walstijn et Guillemain [70, 191]. Le modèle suppose que la masse et
l’amortissement ne varient pas en fonction de la position de l’anche. La validité de cette hypothèse
sera évaluée en partie IV) en comparant simulations et diagrammes de bifurcation mesurés.

Dans un deuxième temps, la section aéraulique est interpolée à partir de la position mécanique
de l’anche, en faisant l’hypothèse que la relation statique mesurée entre ces deux paramètres est
également valide en régime dynamique.

5.1 Introduction

A reed attached to a clarinet mouthpiece (exciter) behaves mechanically like a stiffening
spring, while closing the channel with the lip or air pressure. In the open position, the reed can
be modeled as an unilaterally clamped plate having a nearly linear elasticity [17]. Similarly, in
the closed position, it behaves like a clamped plate on one side and simply supported plate on the
other sides and its elasticity is again almost linear (but its stiffness is significantly higher than
in open position). Between these 2 positions, the contact surface between reed ans lay increases
with the pressure, then, the tip of the reed comes into contact with the lay, usually somewhat
asynchronously between the right and left side and the channel closes progressively. This behavior
is attested by the photographs of the channel presented in Chapter 8 (see Fig. 8.3).

Among the various 1D reed models (lumped models) proposed in the literature, many locate
the center of mass at the tip of the reed [164, 162, 190, 7, 20, 22, 13, 30, 19], although it is
physically quite unrealistic to assume that the reed is instantaneously stopped at the moment of
contact with the table (inelastic shock). Other models consider a ”phantom” reed penetrating
”inside” the mouthpiece, with constant linear stiffness [70]. A more realistic model considers that
the equivalent mass is concentrated further away from the tip, in the plane of symmetry of the
reed. No inelastic shock is required, since the equivalent mass is concentrated somewhere in the
middle of the window and can therefore penetrate inside the mouthpiece chamber: a progressive
increase in stiffness of the 1D model is sufficient to take into account most of the observed
phenomena. The resonance frequency of the reed thus increases gradually while bending, as

91
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observed experimentally.
Van Walstijn [190, 191] proposes a nonlinear 1D reed model. His numerical scheme unfor-

tunately does not have the required stability, because it does not separate the mechanical and
the aeraulic effects, in my opinion. Chaziioannou [17] proposes a model of a 2D reed, simulating
the contact with the lay, which is by nature not well adapted for a simulation in real time. To
overcome this drawback, he proposes a 1D approximation of his model, [17, 23], which still does
not separate the mechanical and the aeraulic effects. These two authors propose in 2015 a con-
servative scheme allowing a real-time simulation of the contact dynamics [25, 24]. This model
was adopted by Muñoz [125] for the clarinet reed. I propose a piecewise adaptation of the model,
allowing a simulation based on measurements, by splitting the measured range into a succes-
sion of sections, each of them being simulated by the cited contact model. Moreover my model
separates the mechanical and the aeraulic problems, reducing this way drastically the numeric
instabilities in the simulations.

The present model should be considered as a ”work in progress”: the stability of the numer-
ical scheme remains largely uninvestigated (although no noticeable problems related with the
numerical stability were observed during all performed simulations). The principal aim of the
present study is to develop a pragmatic model which is able to:

1. simulate the static, mechanical and aeraulic behavior of reeds according to measurements

2. allow a stable dynamic simulation in usual playing conditions

5.2 Static mechanical model

We seek to define a nonlinear, static 1D model to approximate the mechanical stiffness of
the reed. The deflection of the reed y is a function of the position of the lip holder ψ and of the
air pressure drop ∆p across the reed. This model results from the observation (see Fig. 4.11)
that the measurements for the different embouchures are quasi perfectly superimposed, when the
origin of the pressures is shifted in a suitable way (at least when the lip is positioned relatively
forward on the reed, see Fig. 4.4). This offset depends quite linearly on ψ. The proposed model
satisfies a number of constraints, based on simplifying assumptions, and possess the following
properties:

1. Given these experimental observations, a linear relation is assumed between ψ and ∆p,
through an equivalent pressure x, of the form

x = ∆p+ µ(ψ − ψ0) (5.1)

where µ is a positive constant that depends on the elasticity of the lip and ψ0 is an arbitrary
reference embouchure (usually a moderately tight embouchure, here ψ0 = 2.125 mm).
If desired, the model can be refined by adding a 2nd order term in ψ, so as to better fit
the experimental data.

2. The static model should be easily converted into a dynamic model. For this purpose, a
”reverse” definition is preferable: the equivalent pressure x is defined according to the
mechanical deflection of the reed y:

x = f(y) (5.2)

3. The origin and position at which y is measured is arbitrary. Here, y corresponds to the
distance between the plane of the mouthpiece lay and the point measured by optical sensor,
about 6 mm from the tip of the reed (after averaging this distance between the 2 sensors,
calibrating y according to the photos of the channel).

4. The function f(y) is decreasing and convex (stiffening spring, closing under pressure): its
second derivative f ′′(x) is non-negative (i.e. positive or zero).

5. The function f(y) is a piecewise function. The discrete points (yn, xn), 0 ≤ n ≤ N constitute
the junctions between the pieces. At the junctions, we have: xn = f(yn).

6. Typically, 3 ≤ N ≤ 20, depending on the precision of the measurements and on the
refinement that one wishes to give to the model.
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7. The function f(y) is linear for x ≤ x0.

8. For x > x0, each piece is parabolic.

9. The junctions between the pieces are of type C1: the function f and its derivative f ′ are
continuous.

10. The parabola of the section number n (xn ≤ x ≤ xn+1) is defined using 2 stiffness constants
(kn and κn), a constant of height at the origin, hn (i.e. at x = 0) and by the equation 1

x = fn(y) = kn(hn − y) + κnbyn − yc2 (5.3)

Observe that fn(yn) = xn = kn(hn − yn). The constraints on the decrease and convexity
of f imply: kn ≥ 0, κn ≥ 0. Within the section n, these constraints imply; yn ≥ y ≥ yn+1.

11. The discrete points are chosen to be representative of the measurements made on the same
reed and different embouchures. The mesh can be set arbitrarily in one of the dimensions
(for example xn) and the coordinates in the other dimension (in this example, yn) are
estimated by least squares, according to the measurements and respecting the constraints
on kn and κn. The evaluation of the parameters from xn and yn is described below.

12. Given the constraints, the inverse function is written:

y = f−1
n (x) =

{
Yn(x) x ≤ xn

yn +
kn−
√
kn(kn+4κn(yn−Yn(x)))

2κn
x > xn

(5.4)

Yn(x) = hn −
x

kn
(5.5)

Notice that: Yn(x = 0) = hn, Yn(x = xn) = yn = f−1
n (xn) et yn − Yn(x > xn) ≥ 0.

13. The deflection of the reed y with respect to x (equivalent pressure applied on the reed) is
defined by the function:

y = f−1(x) =

{
Y0(x) x ≤ x0

f−1
n (x) xn < x ≤ xn+1

(5.6)

Note that the function fn(y) formally corresponds to the equation (C.7) of Muñoz (model KNL)
defining the behavior of a reed without mass and damping, with parabolic stiffness, after cor-
recting the sign of ∆P (compare with Eq. (C.4)) and performing the following substitutions:
y → y(t), yn → yc, kn → K, κn → Kc, hn → H and x→ ∆P (t).

5.2.1 Parameter evaluation

First section

On the first section (y0 ≥ y ≥ y1), the parameters of f0 are evaluated by solving the system
of 3 equations: f0(y0) = x0, f0(y1) = x1 and f0(y2) = x2.

Solution:

κ0 =
y2(x1 − x0) + y1(x0 − x2) + y0(x2 − x1)

(y0 − y1)(y0 − y2)(y1 − y2)

k0 =
−κ0(y0 − y1)2 − x0 + x1

y0 − y1

h0 = y0 +
x0

k0
(5.7)

Next sections

On the section n (yn ≥ y ≥ yn+1), the parameters of fn are evaluated by solving the system
of 3 equations: fn(yn) = xn, fn(yn+1) = xn+1 and f ′n(yn) = f ′n−1(yn).

1. The notation b·c = (·)Heaviside (·) is already introduced here, but for now, b·c could be replaced with (·)
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Solution:

kn = −f ′n−1(yn)

κn =
−kn(yn − yn+1)− xn + xn+1

(yn − yn+1)2

hn = yn +
xn
kn

(5.8)

y0y1y2y3

x0

x1

x2

x3

Figure 5.1 – Example of a nonlinear stiffness, represented by the convex, decreasing function
x = f(y), modeled piecewise with N = 3 parabolic sections. The functions f0, f1 and f2 are

shown in broken lines, from black to orange. The function f is depicted in thick green
continuous line. The discrete points (yn, xn) are in black, from which the parameters kn, κn

and hn of the different pieces of the function f are calculated.

A didactic example with N = 3 is illustrated in Fig. 5.1.
Notes: With this evaluation scheme, the first 2 sections have the same curvature κn and can

therefore be merged into a single section ranging from x0 to x2. For the last section, the model
can be evaluated beyond xN , if necessary.

In the simulations described in Chapter 8, the model has N = 20 sections. The error between
model and measurements rarely exceeds 0.01 mm, regardless of the embouchure. The standard
deviation of the error is of the order of 4 microns. An example if given on Fig. 5.2 for 4 selected
reeds. The reeds R06 and R07 differ principally by the stiffness (CCA factor 1 of objectiveF,
see §8.5). The reeds R02 and R05 differ principally by the opening at rest (CCA factor 2 of
objectiveF ). The simulations of the bifurcation diagrams in Chapter 8 for these reeds rely on this
segmentation of f(y).

5.3 Dynamic mechanical model

The nonlinear, static model Eq. 5.3 is converted to a nonlinear dynamic 1D model, having a
mass m and a damping r. Its differential equation reads (see Chatziioannou [23], Eq 3 or Muñoz
Eq C.50):

mÿ(t) + r ẏ(t) + kn(y(t)− hn) = −x(t) + κnbyn − y(t)c2 (5.9)

Basing on the original paper by Chatziioannou et al. [25], Muñoz [125] gives a numerical scheme
to solve this equation in discrete time, by operating a bi-linear transform (see Eq C.61). With
our notations, his numerical scheme reads (at discrete time i):

Yn[i] = −bn,1y[i− 1]− bn,2y[i− 2]− Λn(x[i] + 2x[i− 1] + x[i− 2]) + βn (5.10)
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Figure 5.2 – Examples of discrete points (yn, xn) used for the piecewise definition of the
function f(y), for the 4 different reeds illustrated on Figs. 4.8 to 4.12. The derivative of f with

respect to y is depicted in the right column.

y[i] =

{
Yn[i] Yn[i] ≥ yn

1−
√

4κnΛn(−κnΛn((y[i−2]−yn)2+2(y[i−1]−yn)2)−Yn[i]+yn)+1

2κnΛn
+ yn Yn[i] < yn

(5.11)

with βn = hn(1 + bn,1 + bn,2), Λn = 1
kn+2fsr+4f2

sm
, bn,1 = Λn(2kn − 8f2

sm) and bn,2 = Λn(kn −
2fsr + 4f2

sm), where fs is the sampling frequency.
For the linear component (Eq. 5.10), instead of the bi-linear scheme, I propose to use an

explicit scheme with a zero instantaneous response developed by Walstijn and Guillemain [70,
191]. This scheme has the great advantage of relying only on past values of x. The coupling with
the air column can be solved much more easily, as explained in the article cited. With the explicit
scheme, the linear component is written:

Yn[i] = −bn,1y[i− 1]− bn,2y[i− 2]− anx[i− 1] + βn (5.12)

with an,1 = − 2
2mf2

s+rfs
, bn,1 = an,1

(
2mf2

s − kn
)

and bn,2 = 1
2fsan,1 (r − 2mfs). The resonance

pulsation of the linear oscillator n is given by: ωn =
√
kn/m and the quality factor by: qn =

r/
√
knm.

For the quadratic component, Eq. 5.11 is used, with Λn = −an,1/4.
This alternative scheme is not proved to be well posed in energetical terms. The simulations

exhibit no really noticeable difference with the bi-linear scheme (the difference does not exceed
0.1 % of the total amplitude, for the example illustrated in Fig. 5.3). The fact that the resonance
frequency of the clarinet reed is usually much smaller than fs reduces the difference between the
two schemes.

5.3.1 Simulation of the dynamic model

Algorithm Before the simulation, initialize i = 0 and the excitation signal x[−1], x[0], ac-
cording to the initial values of ψ and ∆p. The position of the reed is determined from its static
position, given by Eq. 5.6 : y[−1] = y[0] = f(x[0]). Determine n̂ such that yn̂ ≥ y[0] ≥ yn̂+1.
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Figure 5.3 – Example of dynamic simulation (680 discrete points) with an arbitrary pressure
signal. The corresponding static nonlinear stiffness is shown in Fig. 5.1. (a) excitation signal
x[i]. (b) dynamic response y[i] of the nonlinear 1D oscillator. In solid blue line, scheme

according to Eq. 5.10. In broken orange line, scheme according to Eq. 5.12.

The simulation is performed with the following pseudo-code:

1. Increment i

2. Compute y[i] with n = n̂, Eqs. 5.12 and 5.11

3. If y[i] > yn̂ and n̂ > 0, decrement n̂, then goto 6.

4. Else if y[i] < yn̂+1 and n̂ < N − 1, increment n̂, then goto 6.

5. Otherwise Goto 7 (because n̂ remained unchanged)

6. compute y[i] with (the new value) n = n̂, Eqs. 5.12 and 5.11

7. Determine the excitation x[i] then goto 1.

As already mentioned, the great advantage of the explicit scheme is that the excitation x[i]
can be computed once y[i] is known. With the bi-linear scheme, x[i] must be determined before
calculating y[i].

This pseudo-code expects that the reed motion is slow enough to visit the sections one after
another, which is usually true. The violations of this principle have generally no consequence,
since (in the playing situation) the motion of the reed is, most of the time, relatively slow, either
in the open position or in the closed position (see Fig. 5.3). These violations occur only during
the transitions and are quickly resorbed, without significant numerical instability, because the
potential instabilities on the mechanical simulation have only a minor influence on the aeraulic
section which drives the acoustical part of the simulation, which itself determines finally the
mechanical force acting on the reed.

An example of a dynamic simulation is given in Fig. 5.3, with N = 3. The excitation signal
corresponds very schematically to the one observed in the playing situation. Note the change
in resonance frequency, according to the position of the reed y. This characteristic is typically
observed in the experimental measurements.

5.4 Model of Aeraulic Section

In the proposed model, the mechanical position of the reed (situated in the middle of the
reed, a few mm away from the tip, as measured by the optical sensors) determines the effective
aeraulic section (area of the slit between the mouthpiece lay and the reed at the periphery of
the reed, including the vena contracta effect). As already explained, this model presents valuable
properties for the stability of the simulations, since the mechanical and the aeraulic problems
are well separated: the point determining the mechanical position of the reed is not situated
at the periphery of the reed (like in the usual models described in the literature). Thus the
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mechanical behavior can be modeled as observed experimentally by the optical sensors and the
aeraulic behavior can be modeled as observed experimentally by the bottle method, according
to the corresponding mechanical position of the reed, determined by the optical sensors.

More precisely, the amount of air entering the instrument through the channel depends on the
embouchure ψ, on the pressure drop across the reed ∆p, and on the exciter (i.e. on the reed and
mouthpiece used, on the lip position and how the reed is mounted). For each couple (ψ,∆p), the
airflow entering the instrument through the exciter can be measured in quasi-static conditions
as described in §4.2. Bernoulli’s law allows the computation of the effective aeraulic section S
corresponding to the measured flow. A function can be determined, which links the mechanical
position of the reed y (measured at some arbitrary point, such as that located approximately
6 mm from the tip of the reed, measured by optical sensors) and the aeraulic section S(y). In
the model proposed here, the quasi-static relationship is assumed to be also valid in dynamic
conditions.

The function S(y) is generally convex and increasing, but this is not always the case in the
measurements. In the high pressure range (high negative values of y), the reed reopens slightly,
because of the sharp angles of the mouthpiece window. The only imperative condition is that
S(y) ≥ 0.

Any interpolation function may be suitable for evaluating S(y) according to measurements
(polynomials, splines, etc.). I used the piecewise parabolic interpolation proposed in §5.2, based
on a mesh of discrete points optimized by least squares. By construction, the function is linear
above y0, but the parabolic continuation cannot be used below yN (because it is not physical). A
straightforward solution (with C0 continuity) consists in keeping the function constant below yN ,
with value xN . A crossfade to a constant value (performed with a sigmoid ramp) could also be
considered for the last piece of the interpolation function (in order to preserve a C1 continuity).
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Figure 5.4 – Example of least squares approximation of the function S(y) linking the position
of the reed y and the aeraulic section S, according to the measurements of the reed R14, for

different embouchures ψ. The function is optimized for the reference embouchure
ψ0 = 2.125 mm.

The Fig. 5.4 illustrates the shape of the function S(y) determined by least squares fit for the
reed R14. Compare with the measurements for the reeds R02, R05, R06 and R07 depicted on
Fig. 4.13.

An alternative solution consists in fitting by least squares the second derivative of S(y) with
the EDSC method (Appendix E), using the kernel

δ(x) =

{
− 1

16

(
x2 − 1

)2 (
7x2 − 16

)
−1 < x < 1

0 Otherwise
(5.13)

The second antiderivative of the kernel builds an ”elbow” function:

δ(−2)(x) =





0 x ≤ −1
− 1

128 (x+ 1)4
(
x4 − 4x3 + 2x2 + 12x− 19

)
−1 < x < 1

x x ≥ 1
(5.14)

This δ kernel is suited for realtime applications and the nonnegativity and the convexity of S(y)
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are guaranteed if the weights found by least squares are nonnegative (which can be set as a
constraint for the fitting procedure).

5.5 Conclusions

The proposed model exhibits 3 interesting properties: 1) The estimation of the parameters is
straightforward and rely on standard optimization techniques. 2) The model reproduces the static
measurements with a typical error of the order of a few microns. 3) The dynamic simulation is
very efficient, apparently stable and suited for real time applications. The computations requires
only a few multiplications and a square root per time step (except during the transitions between
sections, where 2 evaluations are necessary). All sections are simulated on the basis of the same
history (x[i], y[i]). The number of simulated sections thus has no impact on the computation
time. The recalculation time at the transitions between two adjacent sections, is negligible.



Chapter 6

Modal Analysis of the Input
Impedance of Wind Instruments.
Application to the Sound
Synthesis of a Clarinet

Résumé

Cet article traite de l’analyse modale des instruments à vent examinés à partir de l’entrée
de leur colonne d’air. Outre le traitement des modèles analytiques, un accent particulier est
mis sur l’estimation modale d’une impédance d’entrée mesurée. Cela nécessite un soin parti-
culier car les mesures ne couvrent qu’une bande de fréquence limitée et sont affectés par des
erreurs difficiles à évaluer. Cet article décrit comment les techniques classiques de l’analyse de
Prony et des Least Squares Complex Exponentials (LSCE) peuvent être utilisées dans ce con-
texte, en décrivant notamment comment les pièges principaux peut être évités lors de l’analyse.
Une méthode permettant une reconstruction physiquement acceptable de la bande des basses
fréquences est proposée. Une technique utilisant des points fictifs dans la gamme des hautes
fréquences est développée de manière à assurer la passivité du résonateur dans l’intégralité de
la bande de fréquence simulée. Un exemple d’application permettant une synthèse temps-réel
de sons de clarinette à partir d’une représentation modale du résonateur est présenté. On y
traite notamment des questions de la gestion modale durant les transitions entre les doigtés et
de celle de la simulation du son externe. Un exemple musical significatif illustre les possibilités
de l’analyse modale appliquée aux instruments à vent.

Cet article a été soumis à Applied Acoustics en date du 12 avril 2017. Il a été accepté pour
publication le 15 juillet 2018, soit 2 semaines après la soutenance de la présente thèse. Il est
reproduit ici, y compris la section 6.3 et la Fig. 8 dont la suppression a été exigée par l’un des
reviewers, alors que les deux rapporteurs de cette thèse ont unanimement salué cette section
comme étant l’une des plus enrichissantes de ce chapitre.

D’autre part, Esteban Maestre m’a aimablement signalé une référence en relation avec le sujet
de l’article, dont j’ignorais l’existence lors de la rédaction de l’article [111], ainsi que 2 références
postérieures au dépôt initial de l’article, [113, 112].

Cette contribution a été réalisée dans le cadre du projet CAGIMA, entre 2013 et 2016.
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Modal analysis of the input impedance of wind instruments. Application to the
sound synthesis of a clarinet
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Abstract

This paper investigates the modal analysis of wind instruments as seen from the input of their air column.
Beside the treatment of analytical models, a particular emphasis is given to the analysis of measured input
impedances. This requires special care because the measurements cover only a limited frequency band and
are affected by some unknown errors. This paper describes how the Prony analysis and the Least Squares
Complex Exponential (LSCE) classical techniques can be used in this context and how the main pitfalls
can be avoided in their application. A physically acceptable method of reconstruction of the low frequency
band is proposed. A technique using fictitious points in the high frequency range is described in order to
ensure the passivity of the resonator in the whole frequency band. The principles of a real-time synthesis of
clarinet sounds based on the modal representation of the resonator is given as an application, with a method
to efficiently handle the modal representation during the transition between fingerings. A musically relevant
example finally illustrates the possibilities of the modal analysis applied to wind instruments.

Keywords: Wind Instruments; Modal Analysis; Sound Synthesis.

1. Introduction

Analysis-synthesis of musical sounds produced by self-sustained oscillations in wind instruments is a
difficult task, not yet fully attained for some synthesis models. This goal has been achieved for decades
for some linear models, despite the difficulty to control such simple models. However, when the synthe-
sis model relies on the physics of the functioning of the instrument, it may include strong nonlinearities
that make the estimation of the parameters from the analysis of natural sounds challenging. The synthesis
model incorporates playing parameters that generally remain unknown, unless they can be measured simul-
taneously with the sound. Many subsystems are present (excitation, nonlinear coupling by the input flow,
resonator with a complex geometry, nonlinear effects at loud level) and the target is also difficult to define
(radiated sound, mouthpiece pressure). The approach proposed in this paper aims at modeling precisely one
of these subsystems, the resonator, from experimental data. The resonator is assumed to be linear (its fea-
tures are independent of the sound level) and is coupled to a classical simple production model. Moreover
this allows, by comparison with naturally produced sounds, to collect information on the shortcomings of
both the production and the radiation models.
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Following the pioneering work of Helmholtz [1], sound production in wind instruments is explained as
the mutual coupling of a resonator and an exciter, such that it is often enough to know the behavior of the
acoustical resonator as seen from the coupling point only. For this reason, the bore is often characterized,
experimentally or theoretically, by its input impedance. For example, the latter has been extensively used
for the prediction of the oscillation frequency of the full instrument based on the resonance frequencies [2],
or transformed either into the impulse response [3] or into the reflection function [4] to be used in numerical
schemes for sound synthesis. Another usage relates to the prediction of the steady state periodic regime by
means of the harmonic balance method [5]. To the best of our knowledge, Ref. [6] is the first to explore the
modal analysis of woodwinds with the parametrization of the reflection function in damped exponentials,
with an application to the simulation of some regimes of the tenora [7]. According to McIntyre et al [8], us-
ing the reflection function is allegedly more efficient than the impulse response for time-domain simulation.
However, this is only true for schemes involving convolutions. Ref. [9] shows that the modal representation
of the input impedance replaces the convolution by lightweight IIR filters and enables synthesis schemes
that are at least as efficient. The modal series can then be used directly for time-domain simulations of
self-sustained oscillations (as in Ref. [10]) or the estimation of oscillation thresholds [11].

Experimental modal testing is a broad topic in acoustics and vibration. It usually benefits from the ob-
servation of the quantities of interest (e.g., displacement, velocity, acceleration, acoustic pressure) at several
locations, but also from the use of multiple actuators (multiple-input-multiple-output, MIMO) to efficiently
excite and identify the various modal shapes and frequencies [12]. In fact, the modal poles are intrinsic
characteristics of the tested system and are therefore common to all observations. As a consequence, the
redundancy of the information improves the robustness of the identification techniques. Modal analysis us-
ing single-input-single-output (SISO) configurations entails particular difficulties, some of which relate to
the loss of redundancy. This is the case of wind instruments characterized solely by their input impedance.
Similarly to Ref. [13] which showed the way to acceptable estimations of reflection function, the present
paper aims at exposing the possible pitfalls of the modal analysis of wind instruments and how to avoid
them.

In the case of an analytical model for the acoustic resonator, the modal parameters can be theoretically
derived from the poles of the input impedance, but it generally accounts for an infinite number of modes due
to the transcendental equations arising from the modeling of the wave propagation in the bore. The trunca-
tion of the modal series leads to a degraded reconstruction of the impedance, as explained in Ref. [9] and
again in Sec. 3. This also applies for the modal analysis of systems modeled by partial differential equations
and discretized by the finite elements methods, such as the approach used by the Modalys software [14].
The structural dynamics community proposes several methods to compensate for the effect of neglected
modes on the low-frequency range (known as static condensation techniques, see, e.g., Ref. [15]) which
is not typically relevant in the field of acoustics. Dynamic condensation methods try to restore the inertial
effect of the deleted modes but result in a nonlinear problem in order to determine the modal frequencies
and shapes.

Modal analysis is usually performed for wind instruments as an optimization process that minimizes
the error between the measured impedance and the impedance reconstructed from the finite modal series.
The optimized variables may be the poles and the modal coefficients (see Refs. [16, 11]) or the poles only
(Ref [17], where the modal coefficients are explicitly determined within the evaluation of the cost function).
Both these methods rely on an iterative procedure that requires a decent initialization to guarantee feasibility
and a fast convergence.

The main goal of this paper is to propose an efficient method for the parametrization of theoretical or
measured input impedances of acoustic waveguides in order to make them suitable for, e. g., the real-time
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physics-based synthesis of the sound of wind instruments or for the analysis of their functioning using
methods from the dynamical systems community [11]. The parametrization must preserve the passivity of
the resonator over the full frequency range, while the above mentioned applications additionally require
the models to introduce a low number of parameters (here a reasonable number of modes to be taken into
account).

This paper is organized as follows: Sec. 2 reviews the basis of acoustic waveguides and of the modal
analysis. Sec. 3 exposes the problems related to the truncation of the modal series of a transfer function.
Sec. 4 treats the case of fitting a given transfer function to a modal series. Sec. 5 describes an application
of the fitting method to the modeled or measured acoustic resonator. Sec. 6 shows how the results of the
modal analysis can be used for sound synthesis and, in particular, how the transition between fingering can
be handled. It also includes a musical example based on measurements of the input impedance of a clarinet,
followed by a conclusion in Sec. 7.

2. Modal analysis in acoustic waveguides

2.1. Input impedance and reflection coefficient

Within linear acoustic theory, when the acoustic wavelength is large compared to the cross section
dimensions of the bore, it is usual to consider one-dimensional models where acoustics is described in
terms of the flow rate u(t, x) and the pressure p(t, x), or on their frequency-domain counterparts U(ω, x)
and P (ω, x), respectively. These only depend on the angular frequency ω and on the axial abscissa x in the
waveguide.

At the input of the duct (x = 0), the flow rate U(ω) = U(ω, 0) and the pressure P (ω) are related by the
dimensionless input impedance Zin(ω) or the input admittance Yin(ω), both being frequency-dependent

Zin(ω) =
1

Yin(ω)
=

P (ω)

ZcU(ω)
. (1)

The characteristic impedance Zc = ρc/Sin depends on the density of air ρ, the speed of sound c and the
cross section area at the input of the pipe Sin. The reflection coefficient R(ω) is defined as follows

R(ω) =
Zin(ω)− 1

Zin(ω) + 1
⇔ Zin(ω) =

1 +R(ω)

1−R(ω)
. (2)

The inverse Fourier transforms of the input impedance and the reflection coefficient are called the impulse
response h(t) and the reflection function, respectively.

Traditional wind instruments are passive device as there is no energy production within the bore. Acous-
tical energy can only be dissipated. This implies that the energy flux at the input is positive, which is ensured
by the constraint Re[Z(ω)] ≥ 0, or, equivalently, |R(ω)| ≤ 1, over the full frequency range. In addition,
some other properties are commonly found in waveguides. At very low frequencies, the duct is mainly
resistive: the flow behaves as a slowly-varying laminar one and the flow rate responds in phase with the
input pressure in a way similar to that of the Poiseuille flow. The input impedance may even be assumed to
vanish at zero frequency, as is the case in this paper. Conversely, at very high frequencies, dissipation be-
comes strong enough to damp any resonance, so that Zin approaches 1 (i.e., R approaches 0). This applies
approximately for woodwind instruments and for brass instruments (when one removes the mouthpiece that
would otherwise lead to an instantaneous reflection at the input of the bore.)
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2.2. Example: the cylindrical pipe
Consider a cylindrical pipe with radius r and length `. Following Ref. [19], the visco-thermal boundary

layer losses are taken into account by means of the first-order approximation of the propagation constant Γ

Γ(ω) =
jω

c
+

3.10−5

r

√
jω

π
, (3)

where R and the ω are expressed in MKS units, j =
√
−1 is the imaginary unit. The value of the char-

acteristic impedance is assumed to be the lossless value Zc = ρc/(πr2) as explained in [19]. In Eq. (3),
the term

√
jω could lead to difficulties related to its branch cut [20]. However for visco-thermal losses, the

use of the complete formula by Zwikker and Kosten leads to functions having only poles (see [21, 22]).
Therefore Eq. (3) is an excellent approximation except at extremely low frequencies, so we assume that the
calculation of the poles at higher frequencies is satisfactory.

At the open end, the radiation is modeled by the dimensionless radiation impedance ZR given by Silva
et al [23] (see also [24]) as a fraction of two polynomials NR(ω)/DR(ω). Then, accounting for the transfer
matrix between the input and the output of the pipe, the dimensionless input impedance can be expressed
as the ratio of two functions Z(ω) = N(ω)/D(ω), N and D having zeros only (i.e., no poles)

(
N(ω)
D(ω)

)
=

(
cosh (Γ(ω)`) sinh (Γ(ω)`)
sinh (Γ(ω)`) cosh (Γ(ω)`)

)(
NR(ω)
DR(ω)

)
. (4)

This can easily be extended to other geometries like pipes with tone holes or branched tubes.
Fig. 1 shows an example of the input impedance representation for a clarinet-like bore. It is evident that

the waveguide is passive (| arg (Z(ω)) | ≤ π/2 ⇒ Re[Z(ω)] ≥ 0) and that the modulus of the reflection
coefficient monotonically decreases with ω. A strong feature of wind instrument bores is the existence
of weakly damped resonances visible on the modulus of the input impedance, that enable the musician to
produce stable and clear tones. For most woodwind bores, the resonances are approximately harmonic,
which influences the tuning and timbre of the self-sustained oscillations (see, e.g., [16]).

2.3. Modal analysis
As mentioned in the introduction, a parametrization of the input impedance or of the reflection coef-

ficient is required for numerical studies such as real-time simulation, or bifurcation analysis. A classical
method is based upon the identification of the resonances in terms of angular frequencies ωm, quality fac-
tors Qm and magnitude Zm. We prefer the more general parametrization in terms of poles sm and modal
coefficients Cm to reconstruct the impedance as a series of modal contributions

Zin(ω) =
∑

m

Zm

1 + jQm

(
ω
ωm

− ωm
ω

) =
∑

m

Cm
jω − sm

. (5)

For a bore with a high number of resonances M , the parametrization relies on 2M complex quantities, Cm
and sm, which may become computationally prohibitive. A model reduction can be achieved by truncating
the series to account only for the resonances that are significant in the frequency range of interest.

Resonance frequencies above some cutoff frequency Fcut are discarded, and the frequency range above
Fcut is referred to as the stop band, similar to the stop band of lowpass analog and digital filters. This
definition has nothing to do with the distinction introduced by Benade [25] about the effects of a tone hole
lattice on the input impedance of wind instruments. In addition, we denote Fmin the lower bound for which
the model or measurement is valid, and the frequency range between Fmin and Fcut is referred to as the
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Figure 1: Modulus and argument of the input impedance Z (top left and bottom left, respectively), modulus of the reflection
coefficient R (top right) and group delay τg = −d(arg (R))/dω (bottom right) from the analytical model (Eq. (4)). ` = 1m,
r = 1 cm.

pass band. Finally, from the zero frequency to the lower bound Fmin, the model or the measurement has
to be extrapolated according to some physically acceptable rules. This frequency range is thus named the
reconstructed band.

3. Effect of the truncation of a modal series

The purpose of this section is to highlight the influence of the truncation of the modal series. This
truncation is required as only a finite number of modes can be dealt with numerically. To remove any
bias from measurements, the analysis is performed on an input impedance calculated by classical analytical
models. It is thus possible to compute a theoretically exact modal expansion using complex analysis. This
is of limited utility as the models are not valid across the entire frequency range, and cumbersome in that
it requires the model to be extended to the Laplace domain, i.e., as a function of the Laplace variable s.
However it is useful to demonstrate the consequences of the truncation.

Considering the input impedance Zin(s) = N(s)/D(s) of the cylindrical pipe (see Sec. 2), there are an
infinite number of poles sm, i.e., of roots of D(s). The application of the Cauchy’s integral theorem shows
that the poles sm have negative real parts, so that the corresponding time-domain functions exp (smt)
decrease with time. The application of the residue calculus [26] to the input impedance yields

Zin(s) =
∑

m∈N

Cm
s− sm

with Cm =
N(sm)

D′(sm)
, (6)

where the Cm are the residues of Zin at the poles sm, assuming the poles to be simple (i.e., of order one).
The denominator D′(sm) of the residue is the derivative of D with respect to the variable s at the pole sm.
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A finite number of poles are estimated numerically using the Newton-Raphson method. For each of the
first M poles with a positive imaginary part, the iterative algorithm is initialized using one of the resonance
frequency of the input impedance Zin(s = jω) evaluated on the frequency axis. The resulting poles are
shown in Fig. 2, and evidence that eigenfrequencies Im[sm] are almost odd multiples of the first one, and
that damping increases with frequency.

0 500 1000 1500 2000 2500 3000
Im sm/(2π) (Hz)

−10

−5

R
e

s m
/
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Figure 2: Location of the poles sm of the input impedance of a cylindrical pipe (r = 1 cm and ` = 1m) with radiation and
boundary layer losses in the complex plane.

The residues Cm can be analytically derived using the expressions of the radiation impedance and
of the propagation constant, and the modal expansion of the input impedance is computed using Eq. (6)
considering the M first poles (indexed from zero)

Zmodal(s) =

M−1∑

m=0

Cm
s− sm

+
C∗
m

s− s∗m
= 2

M−1∑

m=0

sRe[Cm]−Re[Cms∗m]
s2 − 2sRe[sm] +|sm|2

. (7)

The resulting impedance and the related reflection coefficient evaluated on the frequency axis (i.e., for
s = jω) are displayed in Fig. 3. Several drawbacks can be mentioned. First the modal impedance restores
the resonant behaviour in the vicinity of the first resonances and then slowly decays to 0 with a −π/2
argument. This induces a reflection coefficient that asymptotically tends to unity above the last resonance
frequency taken into account. The resulting resonator thus poorly dissipates power at high frequencies.
Furthermore, the poles/residues expansion is exact when considering the infinite summation. Its truncation
still preserves the resonances of the input impedance but the anti-resonances are perturbed due to the missing
inertial contribution of the ignored higher frequency poles. This may have strong consequences (for example
on the magnitude of the even harmonics of the mouthpiece pressure) and results from the choice of the
elementary functions in Eq. (5) that essentially focuses on the resonances, the reconstruction out of the
resonances being a by product that is only correct when accounting for the infinite set of poles. This is also
visible on the modulus of the reflection coefficient that is correct at the resonance frequencies but oscillates
in-between with a deviation that comes close to 1 near the truncation limit.

As a conclusion, the theoretical modal expansion is a powerful mathematical tool but it shows practical
limitations due to the truncation of the series. In regard to the constraint of the finite number of poles
that can be represented numerically, the poles/residues decomposition has to be adapted, for example, by
allowing the poles sm to deviate from the analytical ones. This reverts to a fitting procedure as the one
described in the next sections.

Other options are possible, for example, adding a corrective term such as the one introduced by Guille-
main and Silva [9] in the specific case of a clarinet-like bore. It is designed as a high-pass filter that is able
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Figure 3: Modulus and argument of the input impedance Z (top left and bottom left, respectively), modulus of the reflection
coefficient R (top right) and group delay τg = −d(arg (R))/dω (bottom right) from the analytical model (Eq. (4), thin black line,
same as Fig. 1) and from the modal expansion truncated to 20 modes (see Sec. 3, Eq. (7), thick red line). ` = 1m, r = 1 cm.

to restore the contribution of the ignored higher order poles in the low or mid frequency range and, as a
consequence, the position of the anti-resonances. It also tends to the characteristic impedance above the
frequency of truncation and thus ensures that the reflection coefficient decays to zero in the high frequency
range. The parameters are determined based only on the analytical expression. The generalization of this
method is outside the scope of the current paper. In the next section, a fitting procedure is proposed.

4. Fitting a given transfer function to a finite modal expansion

4.1. Prony analysis
Prony analysis, from the name of the French mathematician who developed the method in the late 18th

century, is the transposition of the Fourier analysis for damped oscillations. It relies on the assumption that
a given causal signal h(t) expands on a series of damped sinusoids

h(t) = Heaviside(t)
M−1∑

m=0

Cme
smt, (8)

or, considering the Laplace transform H(s) of the signal

H(s) =
M−1∑

m=0

Cm
s− sm

, (9)

where the modal frequencies sm and the modal coefficients Cm are such that the frequency responseH(s =
jω) is hermitian symmetric, or, equivalently, that h(t) is a real function. This applies whenH(s) is an input
impedance and h(t) the related impulse response.
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A measured signal, sampled with a time step T and assumed to vanish for negative time is expressed as

∀n ≥ 0, h[n] =
M−1∑

m=0

Cmy
n
m ≡

M−1∑

m=0

Cme
nsmT , (10)

for ym = esmT or, equivalently, sm = (log |ym|+ j arg (ym)) /T . This expansion implies that the signal
h[n] is autoregressive, i.e., there exists a set of coefficients (β0, β1 . . . βM−1, βM = 1) such as

∀n ≥M,h[n] +
M∑

k=1

βM−kh[n− k] = 0. (11)

In fact it is possible to build an M -order polynomial with roots ym. Its coefficients are denoted as βk (with
leading coefficient βM = 1), so that ∀n ≥M

M∑

k=0

βM−kh[n−k] =
M∑

k=0

βkh[n+k−M ] =
M∑

k=0

βk

M−1∑

m=0

Cmy
n+k−M
m =

M−1∑

m=0

Cmy
n−M
m

M∑

k=0

βky
k
m

︸ ︷︷ ︸
=0

= 0.

(12)

The evaluation of Eq. (11) for n ∈ [M, 2M − 1] defines the matrix equation



h[M ]
h[M + 1]

...
h[2M − 1]




︸ ︷︷ ︸
h′

= −




h[0] h[1] . . . h[M − 1]
h[1] h[2] . . . h[M ]

...
...

...
h[M − 1] h[M ] . . . h[2M − 2]




︸ ︷︷ ︸
A

·




β0
β1
...

βM−1




︸ ︷︷ ︸
β

. (13)

The basic idea of the Prony analysis is that the poles sm derive from the roots ym of a polynomial whose
coefficients are the βk which in turn can be obtained by numerically solving Eq. (13).

4.2. Least squares complex exponentials (LSCE)
The Prony method can deal with noisy data by considering more than M evaluations of the autoregres-

sive equation (11), e.g. for n ∈ [M,M +N ′ − 1] with N ′ > M . The matrix A is then rectangular and the
matrix equation Aβ = −h′ is overdetermined. It is solved using the least squares Moore-Penrose pseu-
doinverse of A. This extension of the Prony analysis is the so-called Least squares complex exponentials
method (LSCE, see, e.g., Ref. [12]).

4.3. Evaluation of modal coefficients
The coefficients Cm can be estimated from Eq. (10) for 0 ≤ n < M




h[0]
h[1]
h[2]

...
h[M − 1]




︸ ︷︷ ︸
h

=




1 1 . . . 1
y0 y1 . . . yM−1

y20 y21 . . . y2M−1
...

...
...

yM−1
0 yM−1

1 . . . yM−1
M−1




︸ ︷︷ ︸
B

·




C0

C1
...

CM−1




︸ ︷︷ ︸
C

(14)
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where B is a Vandermonde matrix and is invertible for simple poles. This equation can be problematic if h
is obtained using a discrete Fourier transform (see last paragraph in Sec. 4.4).

An evaluation in the spectral domain is usually preferable. The coefficients Cm can be obtained from
Eq. (9) by using the frequency response function (FRF) Hn = H(s = jn∆ω) measured on a regularly
sampled frequency grid

B′ ·C = H ′ (15)

where H ′ =
[
H−N ′+1 . . . HN ′−1

]T and B′ is a (2N ′ − 1) × M matrix with generic term B′
nm =

1/ (j(n−N ′)∆ω − sm+1). This includes the evaluation of the FRF for both positive and negative fre-
quencies, spanning from low frequencies to the cutoff frequency, so that ∆ω = 2πFcut/(N

′ − 1). In order
to make the estimation robust with respect to noise, the number N ′ of computed or measured frequencies is
generally much larger than M . The matrix B′ is thus rectangular and the system has to be solved again in
the least squares sense, using the pseudo inverse of B′.

Taking the z-transform of Eq. (10)

H(z) =
∑

n≥0

h[n]z−n =
M−1∑

m=0

Cm
1− ymz−1

, (16)

the same procedure as Eq. (15) can be applied considering the frequency-domain characterization of the
discrete-time transfer function, i.e., H(z) evaluated on the unit circle (z = ej(n−N

′)∆ωT for n ∈ [1, 2N ′ −
1]). The generic term of the matrix B′ is

B′
nm =

1

1− ymej(n−N
′)∆ωT

. (17)

4.4. Numerical considerations
The methods proposed in the previous sections need to be treated carefully from a numerical perspective.

First, the calculations involve exponentiation and high orders polynomials (see, e.g., Eqs. (12) and (14))
which is known to be problematic. Furthermore, when some modes are highly damped or when theCm span
on many orders of magnitude, rounding errors may degrade the numerical accuracy of the computations.
The use of high precision arithmetic is necessary essentially in the evaluation of the poles. Once this
evaluation is done, the remaining operations do not need to be performed in high precision.

A second point concerns the fact that unstable poles (poles sm with positive real part) may emerge as
roots of the polynomial defined by the coefficients βm. They may result from an overestimate of the number
of modes M : the Prony analysis then uses the additional degrees of freedom to overfit noisy data. They
have no physical meaning and can lead to growing exponentials in the modal synthesis. Once the poles have
been estimated using Eq. (12), values of ym such that |ym| > 1 are discarded.

There is also a visible violation of the Nyquist-Shannon sampling theorem as the modal expansion
in Eq. (9) has an unlimited bandwidth. Although the Prony’s method is somewhat resilient to moderate
violations of the sampling theorem, the estimation is improved if the transfer function H(ω) is guaranteed
to converge towards zero instead of a finite non zero value. This may require a shift of the transfer function
H → H −H(ω → ∞) which corresponds to an additional pole sm → −∞ such that ym = 0, i.e., a Dirac
impulse in h(t).

Another important issue concerns Eqs. (15) and (17): the frequencies considered in the estimation of the
modal coefficients only span the pass band. Without any additional constraint, the least squares fit may lead
to unwanted behaviors in the stop band, for example violating the passivity property at high frequencies.
This can be problematic when using the modal series for synthesis with a sampling frequency Fs is much
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higher than the cutoff frequency Fcut. It is thus necessary to enforce fictitious target points between Fcut
and Fs/2 in order to guarantee the passivity, without degrading the fit in the pass band. This is done by
extending the matrix B′ and the vector H ′ by N ′′ fake values Ĥn for angular frequencies ω̂n > 2πFcut
and their N ′′ corresponding hermitian symmetric counterparts Ĥn+N ′′ = Ĥ∗

n and ω̂n+N ′′ = −ω̂n.




H ′

Ĥ1

...

Ĥ2N ′′




︸ ︷︷ ︸
H′′

=




B′
(
1− y0e

jω̂1T
)−1

. . .
(
1− yM−1e

jω̂1T
)−1

...
...

(
1− y0e

jω̂2N′′T
)−1

. . .
(
1− yM−1e

jω̂2N′′T
)−1




︸ ︷︷ ︸
B′′

·C. (18)

The choice of the fictitious points (ω̂n, Ĥn) for the case of the modal analysis of wind instruments is dis-
cussed in Sec. 5.

Finally, in musical acoustics, the measurements are usually performed in the spectral domain. As exten-
sively explained in Ref. [13], when the impedance Z(ω) is not purely resistive at the maximum measured
frequency fcut (i.e., the impedance does not coincide with a resonance or an antiresonance at that fre-
quency), strong ripple appears on the time-domain signals r(t) and h(t) obtained by the discrete inverse
Fourier transform. This is known to lead to simulations with no physical sense. In the present problem, the
ripple can also interfere with the evaluation of the modal coefficients Cm by means of the Eq. (14). Con-
versely, the evaluation in the spectral domain as in Eqs. (15) and (18) does not suffer from this phenomenon.

5. Modal analysis of an acoustic resonator

The method described in the previous section is now applied to the input impedance of an acoustic
resonator, first in the case where the impedance is known over the full frequency range (Sec. 5.1), and then
when the measurements needs to be preprocessed (Sec. 5.2). The passivity over the stop band is constrained
using fictitious points as described in Sec. 5.3, before an example of application is given in Sec. 5.4.

5.1. Analysis of an input impedance known over the pass band

When the input impedance is sampled from DC to the desired sampling frequency, we apply the LSCE
method to the shifted variant of the impedanceH = Zin−1 in agreement with the requirement of a transfer
function decreasing to 0 when the frequency increases. The procedure is as follows:

1. Shift the input impedance so that H decreases to 0 for growing frequencies: usually H = Zin − 1.
2. Sample the frequency response Hn = Zin(n∆ω)− 1 for −N ′ < n < N ′.
3. Compute the discrete-time inverse Fourier transform h[n] from the values Hn.
4. Assemble matrix A and vector h′ from Eq. (13), and solve for β.
5. Compute the roots ym of the polynomial P (X) =

∑M
k=0 βkX

k.
6. Append pole y0 = 0 to account for the shift of the input impedance.
7. Add fictitious points and solve Eq. (18) for C.
8. Add 1 to the modal coefficient C0, in order to cancel the shift in Zin.
9. Check whether the passivity is respected over the full frequency range. If not, correct the modal

coefficient C0 related to the shift, or update the set of fictitious points and solve Eq. (18) again.
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It is also possible to apply the procedure to the reflection coefficient R without the shift (steps 2 to 7
and 9). Even if the reflection coefficient does not have visible resonances, the method can parametrize it
as a modal series (as in Eq. (9)), generally with highly damped poles. As this is a smoother function of
the frequency, the matrix B′′ should be better conditioned. Furthermore, a better balance is maintained
between impedance and admittance peaks than when applying LSCE to the shifted input impedance (which
attaches more importance to the impedance peaks). However, there is a drawback as the results must be
converted back to modal parameters for the impedance. This is done by searching the roots of the high order
polynomial R− 1 (see Eq. (2)) which requires high precision arithmetics again.

5.2. Analysis of an input impedance with missing data in the low frequency range
The case of measured input impedances requires special care because the measurements may be noisy

and/or available and reliable only on a partial range of the frequency domain. The proposed procedure is as
follows:

Extrapolation steps. It is known that the input impedance measurements are have limited validity at very
low frequencies and the LSCE analysis appears to be very sensitive to the physical plausibility of the re-
construction in the low range. Therefore an extrapolation is required below the lower bound Fmin of the
acceptable data. According to our experience, the reflection coefficient is a smoother function than the in-
put impedance, and is the most suitable for its modulus and its argument to be approximated by low order
polynomials.

1. Compute the reflection coefficient Rmeas from the measured input impedance, using Eq. (2).
2. Select a frequency range [Fmin, Fmax] whereRmeas has an acceptable signal-to-noise ratio (typically

from 120 to 230Hz, depending on the signal-to-noise ratio of the measurement).
3. Fit an even polynomial qeven(ω) to the modulus |Rmeas| on the selected frequency range. The order

is typically set to 10, with the lowest coefficient set to 1 to enforce an input impedance vanishing at
zero frequency.

4. Fit an odd polynomial qodd(ω), typically of order 11, to the unwrapped argument of (−Rmeas).

Merging measured and extrapolated data. The two previous steps lead to the function

Rextrap(ω) = −qeven(ω)ejqodd(ω) (19)

that is hermitian symmetric and is used in the [0, Fmin] frequency range. In order to overcome noisy
measurements in the pass band and a possible too high frequency resolution (i.e., ∆ω too small, leading to
huge dimensions of the matrix B′), a smoothing downsampling is desirable in the pass band.

5. The reflection coefficient is reconstructed in the low frequency range as follows:

R(ω) =





Rextrap(ω) for 0 ≤ ω < 2πFmin;

crossfade (Rextrap, Rmeas) for 2πFmin ≤ ω < 2πFmax;

Rmeas(ω) for 2πFmax ≤ ω ≤ 2πFcut;

R(−ω)∗ for ω < 0;

(20)

where the crossfade is performed using the sigmoid function:

crossfade (Rextrap, Rmeas) = Rextrap +
Rmeas −Rextrap

1 + exp [−2a (ω − π(Fmin + Fmax))]
. (21)

a is chosen so that the sigmoid equals 1% and 99% at 2πFmin and 2πFmax, respectively.
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Downsampling data.

6. Define a downsampling factor ds so that the frequency resolution becomes typically ∆ω/2π = 0.2Hz
after downsampling.

7. The smoothing downsampling filtering is applied on the samples of R(ω) in the pass band: consider
4ds + 1 samples, fit a low-order polynomial (typically order 3) on these samples and retain the eval-
uation of the polynomial at the center frequency of the frame. Advance ds samples, and repeat the
procedure. It can be described as a moving average process applying on frequency-domain frames of
length 4ds + 1 with a 3ds + 1 overlap.

Modal analysis on the reconstructed data.

8. Compute Zin using Eq. (2).
9. Apply Sec. 5.1 on Zin.

Modal analysis can again be performed on the reflection coefficient R with the drawback mentioned
above. In our experience, the analysis of measured reflection coefficient requires an additional pole y0 = 0
as for the input impedance (step 6 in Sec. 5.1) even without any shift of the data.

5.3. Choice of the fictitious points

In most cases, this issue is not complicated to solve for clarinet-like instruments. According to our
experience, the fictitious points in the stop band should be spaced about 20∆ω to 200∆ω apart from another.

A crude initialization is Ĥ(0)
n = 0, for which the least squares solution of Eq. (18) usually is a convenient

solution C(0). The stop band constraint is weakened in a second step by choosing new fictitious values Ĥ(1)
n

from the last 2N ′′ values of B′′ · C(0). Again solve Eq. (18) for vector C(1), this time with source term
H ′′(1).

A known difficult case is that of brass instruments measured with their mouthpieces. Because of the
small cavity of the mouthpiece, the damping of the acoustic waves is low and R exhibits a modulus near
to unity, even at high frequency. Thus more care is required for the initialization in order to preserve
the passivity in the stop band. Notice that B′′−1 has to be computed only once, which means that many
"guesses" can quickly be tested in a trial and error process. Providing a general methodology for such a
search is beyond the scope of this paper.

5.4. Example of application

The input impedance of the fingeringF ]3 of a professional clarinet was measured with a CTTM impedance
head [27]. The measurements are processed according to Sec. 5.2. Typical values provided in previous sec-
tions were adopted for this analysis.

Fig. 4 shows the reconstruction of the reflection coefficient in the low frequency range. Fig. 5 depicts
the result of the modal analysis performed on the reconstructed data, according to Sec. 5.1. The modulus of
the reconstructed impedance deviates from the measurement with a standard error of 0.19 dB, the maximal
error being obtained for the first antiresonance (1.5 dB local error). This is probably related to a lower
signal-to-noise ratio of the measurements at the deepest antiresonance as also visible in Fig. 4. Concerning
the argument, the standard deviation is 0.02 rad with a maximal error of 0.1 rad at the first and third an-
tiresonance. The corresponding reflection coefficient R is illustrated in Fig. 6, including fictitious points,
extrapolated up to Fs/2.
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group delay (bottom) of the measured data (dots), the extrapolated data (thick dashed line), the reconstructed downsampled data
(thin line) and of the result of the modal analysis (dash-dotted line). The bounds of the frequency range used for the extrapolation
step are also shown (vertical dotted lines).

6. Application to sound synthesis

6.1. Principles of modal synthesis

A direct application of modal analysis of the input impedance (or reflection coefficient) of wind in-
struments lies in the design of algorithms for real-time sound synthesis. In fact, the functioning of wind
instruments is classically viewed as the coupling of an acoustic resonator and a nonlinear excitation system,
and this physics-based modeling paradigm can be used for sound synthesis (see Ref. [28] for a review).
The numerical scheme then relies on two discrete-time models, one for the exciter and one for the acoustic
resonator.

Accounting for the bore, the transposition of the continuous time model to the discrete time is performed
in order to preserve the impulse response. The continuous time impulse response h(t) is obtained by the
inverse Fourier transform of the modal series in Eq. (5) and the discrete time impulse response h[n] equals
h(t) at the positive sampled times

h(t ≥ 0) =
∑

m

Cme
smt ⇒ h[n ≥ 0] = h(nTs) =

∑

m

Cme
nsmTs =

∑

m

Cmx
n
m (22)

where xm = esmTs and Ts = 1/Fs are related to the sampling frequency Fs. The latter is in general higher
than the cutoff frequency Fcut. Typical values for Fs and Fcut are 4 kHz and 44.1 kHz, respectively. The
z-domain impedance is then

H(z) =
∑

m

Cm
1− xmz−1

.
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Because h(t) is real, the coefficients sm must be either real (monopole) or complex conjugates (bipole),
in order to respect the Hermitian symmetry. The same applies to the discrete-time response h[n] and the
coefficients xm. Nevertheless, since a monopole and a discrete Dirac are degenerate bipoles, we can use the
generic 2nd order IIR digital filter [29]

H(z) =
∑

m
Im[sm]≥0

Hm(z) with Hm(z) =
bm,0 + bm,1z

−1

1 + am,1z−1 + am,2z−2
(23)

where the values of the coefficients bm,0, bm,1, am,1 and am,2 are computed from the poles sm and the modal
coefficients Cm according to Table 1. This filter design combines the contributions of complex conjugate
poles sm and s∗m into a single bipole.

Type Root bm,0 bm,1 am,1 am,2
Dirac x0 = 0 C0 0 0 0

Monopole xm > 0 Cm 0 −xm 0
Bipole (xm, x

∗
m) 2Re[Cm] −2Re[Cmx∗m] −2Re[xm] |xm|2

Table 1: Coefficients of the digital filters with respect to xm and Cm.

It is also important to note that the time steps used in measurements (T in Eq. (10)) and in the synthesis
(Ts in Eq. (22)) usually differ. This implies that the roots ym = exp (smT ) of the former have to be
converted into xm = exp (smTs). There may exist roots ym on the negative real axis (Re[ym] < 0 and
Im[ym] = 0, i.e., a contribution oscillating at the cutoff frequency), and they have to be split into a pair
of complex conjugate values xm and x∗m, increasing the number M of poles. As a consequence, when
applying the procedure described in Sec. 5, the modal coefficients Cm must be evaluated (step 7. in Sec. 5.1
after converting ym into xm.

The filter H(z) enables the evaluation of the pressure p[n] at the input of the waveguide when it is
excited by the flow rate u[n]. The pressure is the sum of the partial pressures pm[n], each one accounting
for a real pole sm or a pair of complex conjugate poles (sm, s∗m) and obeying the difference equation

pm[n] = bm,0u[n] + bm,1u[n− 1]− am,1pm[n− 1]− am,2pm[n− 2]. (24)

It is possible to arrange the relations so that the (total) pressure at the input of the bore at the current time
depends on the current flow rate value and on some previous values

p[n] =
∑

m

pm[n] = V1u[n] + V2

with





V1 =
∑

m

bm,0,

V2 =
∑

m

bm,1u[n− 1]− am,1pm[n− 1]− am,2pm[n− 2].
(25)

This representation of the pressure at the input of the resonator is more convenient to couple with the clas-
sical representation of the exciter. The latter is generally described by a nonlinear time-domain relationship
u[n] = F (p[n]) that may account for unsteady effects. In the general case, the coupling would require an
iterative solution to the following problem

p[n] = V1u[n] + V2 and u[n] = F (p[n]) (26)
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at each time step n. However, some discrete-time models of the exciter, such as the one given in Appendix
A, have an explicit solution. The current pressure p[n] and flow rate u[n] can be efficiently obtained and
real-time implementation is achievable.

6.2. Transitions between fingerings

In real instruments, when the instrumentalist changes the pitch from some note A to another note B,
he opens and/or closes one or many holes at the same time. According to Ref. [30], a simple crossfade
model between the input impedances at the beginning and at the end of the transition is shown to lead to
perceptually satisfactory simulations of the transitions between fingerings. This model is only required to
be able to simulate the response of the bore for the initial and the final states during the Nr time steps of the
transition. The partial pressures pm,A and pm,B are computed simultaneously for the two configurations.
At time step n ∈ [N0, N0 +Nr], the pressure p[n] is the result of the linear crossfade

p[n] =
∑

m

pm,A[n] +
n−N0

Nr
(pm,B[n]− pm,A[n]) . (27)

as if the two pipes were simultaneously excited with the same flow rate. This can still be written as p[n] =
V1u[n] + V2. Consequently the synthesis scheme remains unmodified. At the beginning of the transition,
the pipe B is assumed to be silent (i.e. pm[N0 − 1] = 0 and pm[N0 − 2] = 0 for all m). Coupling through
the flow transfers some energy from the pipe A to the pipe B.

We tested the refinement proposed by Guillemain and Terroir [30] on the basis of the input impedances
of a clarinet measured with a tone hole being progressively closed. Their measurements show that the
first resonance frequency varies gradually, like a glissando, while the amplitude of the peak decreases to
a minimal value before increasing to the final value, approximately following the shape of a parabola.
This behavior can be simulated in real-time for the most important peaks, such as the one that sustains
the oscillation (so-called master mode, indexed as m̄) and, optionally, the peaks that are strongly excited
in the playing situation. The modal coefficient Cm̄ follows a parabola-like evolution between the initial
value Cm̄,A and the final value Cm̄,B while the pole sm̄ varies linearly from sm̄,A to sm̄,B . The transition
for less important peaks is still simulated using the simple crossfading algorithm at a lower computational
cost. This algorithm is acceptable for simulating relatively small musical intervals (e.g., opening a single
tone hole, as in Ref. [30]). During big jumps, the glissando-like transition sometimes sounds strange [31].
Such transitions are known by clarinetists to be difficult to achieve with a good legato. In some cases,
different playing techniques are used to overcome this difficulty on the real instrument (such as: opening
some holes earlier than others; half closed holes; glissando-like opening and closing of some holes working
acoustically as "speaker keys"; subtle adaptations of the embouchure and the air pressure during the jump;
special tuning of some resonances of the vocal tract; modification of the glottis using the crico-thyroid
muscle; and others, according to the practice of the first author as a professional clarinetist). However, the
MIDI wind controllers used to interface with the synthesizer do not allow such subtle controls.

A pragmatic solution consists of injecting some energy in the mode m̄ of note B in order to initiate a
bifurcation. At the beginning of the transition, all modes of the pipe B are silent, except mode m̄ whose
history is set to pm̄ [N0 − 1] = cjump p[N0 − 1] and pm̄ [N0 − 2] = cjump p[N0 − 2]. The constant cjump
controls the amount of injected energy. With cjump = 0, the simulated instrument sounds like the playing
of an inexperienced beginner unable to control the jumps (but the legato between neighboring notes sounds
good), whereas with cjump = 1 the jumps are much more secure (but the legato sounds strange because
every note starts with a small accent). The good balance is about 0.4 < cjump < 0.7, depending on the
piece being played.
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The second concern deals with the computational cost, a critical factor for real-time implementations
when the number of modes M is large. The simulation of low pitched wind instruments is particularly
sensitive to this problem. In Eq. (27), both pipes are played in parallel. Therefore, the computational cost
doubles during the transition. This issue is resolved using the algorithm depicted in Fig. 7. Prior to the
simulation, the modes of each fingering are classified as primary modes (from 0 up to about M/2) and
secondary modes (from about M/2 + 1 up to M ). The contribution of the latter to the input impedance is
marginal, while the primary modes have either a big amplitude or are necessary to ensure the passivity of the
filter. The transition begins with a decrescendo al niente of the secondary modes of fingering A, followed
by the transition Eq. (27) applied to the primary modes of both fingerings and ends with a crescendo of the
secondary modes of fingering B. The decrescendo and the crescendo are realized by multiplying the partial
pressure of the secondary modes by a coefficient progressively varying respectively from 1 to 0 and from 0
to 1. Typically, the duration of each phase of the transition is 2ms, 20ms and 2ms, respectively. With this
algorithm, the computing cost remains approximately constant at every time step.

N0

2ms

N0 +Nr

2ms Time index

0

0

Storage
mode index

1 → M/2

M/2 + 1 → M

Primary modes of A

Secondary modes of A

Secondary modes of B

Primary modes of B

Crossfade Eq. (27)

Figure 7: Diagram illustrating the processing of the primary and secondary modes of the initial (A) and final (B) configurations
during a transition between two fingerings.

6.3. An example: sound synthesis of a clarinet

This section shows how the modal analysis performed on measured input impedances of a real instru-
ment can be used to achieve the real-time synthesis of a musically relevant illustration, an excerpt of the
Brahms Sonata Op. 120 no. 2 (see Fig. 8a).

The input impedance of a professional clarinet has been measured for each fingering used in the excerpt
using the device described in Ref. [27], and the data was processed according to Sec. 5.2. The motion of
the reed tip (see Ref. [32]) and the pressure in the mouth and in the mouthpiece were then measured while
an experienced musician played the excerpt on the same instrument. These signals are used to provide the
rough estimation of the control parameters γ and ζ, as defined in Appendix. A. This is known to be a
difficult task as many quantities involved in the computation of the control parameters are still unavailable
(see, e.g., Ref. [33] for clarinet and Refs. [34][35] for brass instruments). However, their time evolutions are
estimated using the short-term average (10ms frames) of the measured signals and then arbitrarily scaled
to the dimensionless control parameters γ and ζ shown in Fig. 8b. This simplistic procedure should provide
acceptable estimates for steady-state oscillations, but decreases the bandwidth of the signals which results
in slower attack transients. The timings of the transition between fingerings had also to be retrieved from the
recorded sound, which may introduce some mismatch between the measured and the synthesized sounds.

For real instruments, the transfer function between the mouthpiece pressure and the external pressure is
different for each fingering. This would introduce another series of modal coefficients, thereby increasing
the memory storage requirements and computing time. Appendix B gives the details of the design of an
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Figure 8: a: Excerpt of the first edition (1895) of Brahms Sonata Op 120 no. 2 that is played on a professional clarinet made
in 1981. b: Control parameters γ and ζ estimated from measurements of the mouth pressure and of the reed motion (with an
optical sensor) while playing the excerpt. c-d: Spectrograms of the external pressure obtained by applying the radiation filter (see
Appendix B) to the mouthpiece pressure (c) measured on the real instrument or (d) produced by the synthesis model described
in Sec. 6 using the estimated signals γ and ζ. e-f: Deviation from the tempered scale (e) and spectral centroid (f) calculated on
the reconstructed external pressures for the real instrument (black thin markers) and for the synthesis (red thick markers). The
parameters used in the synthesis are ωr = 2π × 1340 rad s−1, qr = 0.3, and cjump = 0.7.
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empirical transfer function. It is applied to the mouthpiece pressure measured on the real instrument and on
the synthesized mouthpiece pressure signal, in order to produce comparable external sound estimates.

The real-time implementation in Max/MSP of the sound synthesis scheme (accounting for the resonator,
the exciter and the radiation) requires no more than 25% of CPU time on a modern personal computer.
Many aspects of the simulations are satisfactory (see Fig. 8, and sound files available as supplementary
material1). The proposed algorithm performs the excerpt noticeably well, without any unwanted squeaks,
wrong notes, or absent notes, despite the difficult bindings and jumps in the excerpt. The spectral content
of the synthesized external sound (Fig. 8d) is also quite similar to the real one (Fig. 8c).

Fig. 8e provides some insights on the oscillation frequency and the deviation in cents. The musician
performance has a mean deviation close to zero (0.5 ± 10 cents), with smooth variations of the playing
frequency within almost all notes. The modal-based sound synthesis exhibits a higher overall deviation
(15 ± 11 cents) without modulation within the notes. This has implications for the expressiveness of the
musical performance [36] and relates to the artificial nature of the sound that can be perceived by expe-
rienced listeners. This is also noticeable in Fig. 8f, where the spectral centroid of the synthesized signal
exhibits the same note-to-note trends as the reference, but lacks the variations within the notes.

The synthesis inherits problems relating to measurement inaccuracies such as the difference in tempera-
ture between the measurement and playing situations, or the use of an adapter that replaces the mouthpiece
for the the input impedance measurements. These elements, in addition to the approximate control param-
eters, could explain the differences between the oscillation frequencies of the original and the synthesized
sounds. The simulation of the nonlinear behavior of the tone holes, a more realistic model of the reed, the
inclusion of a vocal tract and the treatment of the sound radiation will likely make the synthesized model
more closely resemble the real one.

7. Conclusions

This paper investigates many aspects related to the modal representation of the input impedance of wind
instruments. The LSCE method is a powerful tool in this context, but a careful treatment of its application
to measured or analytical input impedance is necessary. The possible issues include: physically acceptable
reconstruction of the impedance in the low range, implementation of fictitious points in the spectral domain
ensuring the passivity of the digital filter at every frequency, use of high precision arithmetics depending
of the required number of simulated modes, for instance. The described method allows to derive valuable
digital filters for real-time synthesis. Though the usefulness of the method is only demonstrated on a clarinet
model, the authors have investigated the relevance of the modal analysis on other wind instruments, notably
on saxophone, french horn, trumpet and trombone.
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Appendix A. Excitation model used in the sound synthesis scheme

The reed displacement is modeled as a single degree of freedom oscillator with natural angular fre-
quency ωr and damping qr, driven by the dimensionless difference ∆p(t) = γ(t)−p(t) between the mouth
pressure γ(t) and the mouthpiece pressure p(t)

1

ω2
r

d2y(t)

dt2
+
qr
ωr

dy(t)

dt
+ y(t) = −∆p(t) (A.1)

when the reed channel is open, and with an additional unilateral contact force ensuring

dy(t)

dt
= 0 (A.2)

when the channel is closed (y ≤ −1). The flow rate which excites the acoustic resonator takes into account
the Bernoulli flow ub(t), proportional to a dimensionless embouchure parameter ζ(t) (related to the maxi-
mum flow rate that can enter the mouthpiece, see, e.g., Ref. [19]), as well as the flow rate ur(t) induced by
the reed motion (with a factor λ)

u(t) = ub(t) + ur(t) with ur(t) = λ
dy(t)

dt
,

and ub(t) = ζ(t)(1 + y(t))sgn(∆p(t))
√
|∆p(t)|.

(A.3)

A discrete implementation is proposed by Coyle et al [37]. It uses a finite difference method for the
reed displacement and the induced flow rate that are explicit:

y[n] = a1y[n− 1] + a2y[n− 2]− b1∆p[n− 1] and ur[n] = λ (y[n]− y[n− 1]) , (A.4)

with b1 = 1/(κ+ ν), a1 = (2κ− 1)b1, a2 = (ν − κ)b1, κ = 1/(T 2
s ω

2
r ) and ν = qr/(2Tsωr). In Eq. (A.4),

the current displacement y[n] is independent of p[n]. This implies that the current Bernoulli flow ub[n] and
pressure p[n] are related by

p[n] = V1 (ub[n] + ur[n]) + V2, (A.5)

ub[n] =W sgn(γ − p[n])
√
|γ − p[n]|, (A.6)

where W = ζfreg (1 + y[n]) is the smoothed channel opening accounting for the regularization function

freg(θ) = 1
2

(
θ +

√
ε+ θ2

)
where ε is typically set to 0.04. This function is similar to the one provided

in Ref. [38] (Sec. V.E) and operates when the reed beats against the lay. It follows that the Bernoulli flow
ub[n] solves a simple 2nd order polynomial such that

ub[n] =
1

2
sgn (γ − V2 − V1ur[n])

(
−V1W 2 +W

√
(V1W )2 + 4

∣∣∣γ − V2 − V1ur[n]
∣∣∣
)
, (A.7)

and, finally, Eq. (A.5) can be used to compute p[n].
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Appendix B. Filter used to estimate the external pressure

Sound radiation is certainly important for the musical quality of an instrument. Until now, this aspect
was largely neglected by the musical acoustics community due to the complexity of the radiated field and
the fact that it exerts only a minor influence on the functioning of the instrument. The literature offers
expressions for the transfer function between the velocity at the open end of a waveguide and the radiated
pressure in free space only for academic configurations: the plane and spherical wave approximations
(see, e.g., Refs. [19] and [39], respectively), the radiation of a semi-infinite circular pipe that is either
unflanged [40], infinitely flanged [41], or partially flanged [42]. The case of waveguides with several orifices
is even more complex as the orifices radiate in a common space and external interaction can then not be
ignored. Ref. [19] (Sec. 14.5) explains the role of the tone hole lattice and Ref. [43] provides an illustration
of real instruments with finite elements computations.

In the context of real-time synthesis, we seek a very simplified model of radiation characterized by low
computational cost; a single model common to all the fingerings; and one that creates perceptually realistic
sounds. Simple models of radiation are available in the literature, but fail to satisfy the last requirement.

We made an attempt to derive such a model from experimental data: for all the fingerings of a profes-
sional clarinet, we measured the internal pressure in the mouthpiece p(t) and the external pressure pext(t)
on a microphone situated about 1.5 m in front of the player, in the practice room of a musician (i.e., not in
an anechoic room [44]).

The signals p(t) and pext(t) were averaged over all fingerings. The global transfer function was com-
puted by dividing the discrete Fourier transforms of both averaged signals. The phase was eliminated in the
computation of the impulse response by taking the discrete inverse Fourier transform of the modulus of the
transfer function. The human ear is known to be practically insensitive to the phase [45]. The simplified
discrete time impulse response gk, shown in Fig. B.9(a), is obtained by truncation in the vicinity of a zero
crossing and multiplication by a Gaussian window. The external pressure can then be approximated by a
discrete convolution of the internal pressure with the impulse response gk. The resulting simplified transfer
function G is depicted in Fig. B.9(b). Notice that the symmetry of gk divides by 2 the computing cost of the
convolution.
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Chapter 7

Simulation of Wind Instruments
with Waveguides in Real Time

Résumé

Ce Chapitre décrit les méthodes nécessaires à la simulation temps réel du comportement
physique de de la colonne d’air des instruments à vent au moyen de guide d’ondes. Le modèle
est développé essentiellement sur une estimation modale des matrices de scattering de chaque
segment composant le guide d’onde. On montre comment les techniques décrites au Chapitre 6
peuvent être appliquées à ces matrices, pour obtenir des filtres précis dans la bande passante et
passifs à toutes fréquences. Au besoin, les filtres numériques peuvent être facilement convertis
en filtres d’impédance et d’admittance. Un dictionnaire composé d’une douzaine de jonctions de
différents types permet d’incorporer des excitateurs, de concaténer des tronçons et d’inclure des
dérivations latérales (cheminées). Pour chacune de ces jonctions, le problème des boucles sans
retard a été résolu analytiquement. L’estimation modale est également utilisée pour simuler le
comportement des réflectances des orifices (pavillon ou trous latéraux), soit de manière linéaire,
soit de manière non linéaire (faisant intervenir la loi de Bernoulli). Le modèle non linéaire proposé
se différencie par le fait qu’il tend vers le modèle linéaire en petites oscillations, contrairement aux
modèles usuels, qui tendent vers une réflection sans pertes. Des modèles de piston et coulisse sont
implémentés. Le problème des délais fractionnaires a été solutionné en les incorporant directement
lors de l’estimation modale.

Une architecture logicielle écrite dans un langage orienté objet (C++) permet de construire
tous type d’instrument à vent de la famille des cuivres ou des instruments à anche faible, de
manière très intuitive (en assemblant des pièces, à la manière d’un jeu de construction), sans
grandes connaissances acoustiques préalables, grâce à une formulation reposant entièrement sur
le domaine temporel discret. Le logiciel prend en charge certains aspects pouvant être délicats
à contrôler, comme les transitions entre doigtés ou les adaptations d’embouchure en fonction de
la note souhaitée. Quelques exemples d’utilisation sont donnés, incluant la simulation temps-réel
d’une clarinette en sib Buffet Crampon avec 28 tronçons et 22 cheminées latérales avec pertes
non linéaires au niveau de chaque trou.

7.1 Introduction

Since Helmholtz [196], the sound production in wind instruments is explained as the mutual
coupling of a resonator (bore of the instrument) and an exciter (mouthpiece, reed and lips).
Schumacher [149, 150] and McIntyre [114] proposed the first calculations of the self-sustained
oscillation of a clarinet using time domain discretization of the equations. They showed the
superiority of the reflection function over the impulse response (respectively the reciprocals of
the input reflectance and the input impedance in the time domain) for the simulation of such
instruments, because they have a much shorter support. This approach was adopted for instance
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by Gazengel [60, 63] and Vergez [195, 2] for time domain simulations based upon measurements of
the input impedance. The computation of convolutions are however an obstacle for the efficiency
of real time simulations. The digital waveguide method was initiated in this field of research
by Smith [160, 161], followed by Välimäki [187, 188], Scavone [143, 148, 147, 146, 151, 144],
Berners [11], Ducasse [45], van Walstijn [190, 7, 191], Hélie [81], Mignot [115], Silva [153, 152, 23,
158, 154, 51, 157, 141, 50, 175, 156], Debut [41], Chatziioannou [17, 18, 20, 22, 19] and Hézard
[94] for instance. This approach considers generally the incoming and outgoing waves (traveling
waves) at the junctions of the segments composing the pipe, although a formulation based on
the physical state variables p (pressure) and u (flow rate) is also possible. Guillemain [68, 70]
and Meastre [111, 113, 112], for instance, proposed the use of digital impedance models for real
time simulations.

In my point of view, the main benefit of the waveguide implementation (over the input
oriented implementation proposed in Chapter 6) is that non linear interactions can be easily
simulated at any location in the instrument. This point is crucial for a realistic simulation of a
clarinet, with nonlinear losses at each tonehole, as we will see. Of course this advantage is related
to a drawback: the computing cost can be critical for real time applications, especially when the
number of segments is important. We will see however that a simulation of a full clarinet in real
time is possible (on a standard PC) without using special programming techniques.

The present work completes the contribution of the author to the CAGIMA project, initi-
ated in 2013 by two and a half years of collaboration with IRCAM in Paris. One of the main
goals of this project is to develop methods for the virtual prototyping of wind instruments, so
that instrument makers and musicians can virtually play the instrument and optimize some of
its characteristics (like intonation or ease of emission), before a real prototype is build by the
instrument maker. This chapter proposes a general framework and practical solutions for the
virtual prototyping and waveguide simulation of wind instruments in real time from a given
geometry.

The contribution of the present study to the state of art can be summarized as follow:

— Develop a general framework for the simulation of wind instruments with digital filters
based on travelling waves

— Show that these filters are well suited for this task, as they can simulate indifferently
impedance or admittance relationships

— Demonstrate that an efficient and precise implementation of such filters is quite straight-
forward. The coefficients can be determined with the proposed application of the LSCE
(Least Square Complex Exponential) method, combining 2 main goals: precision in the
low frequency range and passivity at all frequencies. The issues related to the passivity are
easier to solve than with the formulation based on an impedance relationship. Moreover
the behaviour of the filter in the stop band can be designed to mimic the general shape of
the computed curves.

— Eliminate the need of fractional delays (except for slides and other length varying segments).

— Solve the problem of delay-free loops.

— Establish a dictionary of junctions, solving the coupling problem at the junctions.

— Implement a software (written in Mathematica) for the computation of the filter coefficients
(simulating the transfer functions of each segment), according to the geometry.

— Implement a software (written with the object oriented programming language C++) for
the real-time simulation of waveguides.

This chapter is organised as follows: the terminology and a mono-dimensional acoustical
model is recalled in Sec 7.2 and 7.3. In Sec. 7.4, a general method is proposed for the design of
passive digital filters implementing the reflectance and transmittance functions of the scattering
matrices, followed in Sec. 7.5 by a dictionary of junctions and a software impementation (reported
in Appendix A and B). The conclusions end this chapter in Sec. 7.6.
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7.2 Terminology and background

This paragraph reviews the terminology, the background and defines some basic elements in
relation with the implementation of waveguides for the simulation of wind instruments.

7.2.1 Bore

The bore of an axisymmetric pipe is defined as a function of the radius of the pipe r(x) at the
curvilinear coordinate x along the wall of the pipe (this is required by the acoustical model: see
§7.3.1). Optionally, one may define the radius of the pipe with the axial coordinate ξ, denoted
r(ξ). Both quantities are related by the equation:

x(ξ) =

∫ ξ

0

√
1 + r′(z)2dz (7.1)

and r(ξ) = r(x(ξ)). By convention, the bore of a pipe of length L begins at x = 0 and ends at
x = L. L is measured in curvilinear coordinates.

7.2.2 Segmentation of a pipe

We refer to a segment of pipe with two indices designating the coordinates of the extremities
of a segment (sections), for instance g and d (like gauche and droite) for a segment of pipe
beginning upstream at x = xg and ending downstream at x = xd. Each segment can itself
be composed as a concatenation of subsegments. For instance, the first segment of a clarinet
begins at the mouthpiece and ends at the first side tonehole. This segment may be composed
of the subsegments: mouthpiece chamber, mouthpiece bore, barrel, upper joint. Generally, the
subsegments have a constant curvature and are connected together with a C1 regularity, (i.e.
r(x) and r′(x) are continuous functions). The segmentation seeks to minimize the number of
segments. The junctions between segments are positioned in function of time varying commands
(like opening and closing toneholes) or of nonlinear interactions. In principle, linear time invariant
segments are merged together by concatenation.

The minimal length ` = xd−xg of a segment is imposed by the sampling frequency Fs of the
simulation: ` ≥ c/Fs. Typically, for Fs = 44100 Hz, ` ≥ 7.79 mm. This way, the segments can be
decoupled, since the propagation time of the waves through the segment is at least one discrete
time step.

7.2.3 Physical state variables

In a mono-dimensional model, the physical state variables p(x, t) (pressure) and u(x, t) (flow
rate also called volume velocity) are related to their mean value across the section of the pipe
S(x) = πr(x)2.

7.2.4 Travelling waves

Travelling wave variables (p+/− or φ+/−) may substitute the physical variables p(x, t) and
u(x, t). The key idea behind this variable substitution is that the pipe may be approximated as
a concatenation of cylindrical segments of infinitesimal length. Therefore, the mean pressure and
flow rate across the section S(x) may be approximated locally with plane waves. The substitution
can be expressed in 2 different ways:

(
p+(x, t)
p−(x, t)

)
=

1

2

(
1 zc
1 −zc

)
·
(
p(x, t)
u(x, t)

)
(7.2)

or (
φ+(x, t)
φ−(x, t)

)
=
r(x)

2

(
1 Zc(x)
1 −Zc(x)

)
·
(
p(x, t)
u(x, t)

)
(7.3)

where Zc(x) = ρc
S(x) is the characteristic impedance, ρ the density of air and c the speed of sound.
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The first substitution projects the acoustical variables onto plane waves in an hypothetical
reference cylinder of arbitrary characteristic impedance zc. The second substitution projects the
acoustical variables onto plane waves in a cylinder of cross section S(x). The projection is valid
on an infinitesimal length (see Ducasse [45] and Hélie[83, 85, 79, 78]).

7.2.5 Laplace domain

Many analytical solutions of the governing equations of acoustical systems are known only in
the frequency domain. The Laplace transform is often used in this context. The Laplace transform
of a function f(t), using the Laplace variable s is defined as follows:

L{f}(s) =

∫ ∞

0

f(t)e−stdt (7.4)

For instance, the Laplace transform of a delayed Dirac impulse δ(t− τ) is:

L{δ(t− τ)}(s) = e−τs (7.5)

Frequently, the solution cannot be converted analytically back to the time domain (with the
inverse Laplace transform). In this case, the solution is approximated for instance with a modal
estimation, which can be converted back to the time domain. A digital filter can also be designed
to perform this conversion in the discrete time domain.

The Fourier transform is equivalent to the bilateral Laplace transform with imaginary argu-
ment s = jω, with j =

√
−1. The imaginary axis of the Laplace transform correspond therefore

to the frequency axis of the Fourier transform.

7.2.6 Impedance

The impedance Z(x, s) defines the relationship between the pressure and the flow rate in the
frequency domain [100, 65, 31]:

Z(x, s) =
P (x, s)

U(x, s)
(7.6)

Z(x = 0, s) and Z(x = L, s) are called respectively the input impedance and the output
impedance of a pipe of length L. For an open pipe, the output impedance is called the radi-
ation impedance. The impedance Z(x, s) is often adimensioned by division by the characteristic
impedance Zc(x)

7.2.7 Reflectance

The reflectance R(x, s) defines the relationship between the incoming and outgoing travelling
waves in the frequency domain:

R(x, s) =
p−(x, s)

p+(x, s)
=
φ−(x, s)

φ+(x, s)
(7.7)

R(x = 0, s) and R(x = L, s) are called respectively the input reflectance (or reflection coefficient)
and the output reflectance of a pipe of length L. For an open pipe, the output reflectance is called
the radiation reflectance.

The reflectance is related to the impedance by:

R(x, s) =
Z(x, s)− Zc(x)

Z(x, s) + Zc(x)
⇔ Z(x, s)

Zc(x)
=

1 +R(x, s)

1−R(x, s)
. (7.8)

The inverse Laplace transforms of the input impedance and of the input reflectance are called
the impulse response and the reflection function, respectively.
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Reflectance of a cylindrical orifice I propose a new approximation of the output reflectance
of a cylindrical orifice (more accurate than that proposed in [152, 155]), based on the exact
computations by Levin and Schwinger [109] (unflanged case) and by Zorumski [200] (flanged
case):

R(s) =

4∑

n=1

cn
(s+ sn)n+1

(7.9)

with

c1 c2 c3 c4
Unflanged -8.04398 8.47733 82.8937 28388
Flanged -7.31824 9.06885 101.345 35481

s1 s2 s3 s4

Unflanged 1.34120 1.56315 3.26795 8.84056
Flanged 1.18055 1.46214 3.27813 9.44612

1 2 3 4
ka

-1.0

-0.5

0.5

Re[R], Im[R]

Re, flanged

Im, flanged

Re, unflanged

Im, unflanged

Figure 7.1 – Real and imaginary parts of the reflectance of a cylindrical orifice, approximated
with Eq. 7.9, for the flanged (continuous lines) and unflanged (dashed lines) cases. In abscissa,

the reduced frequency ka=ωa/c, where a is the radius of the orifice.
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error

● error Re, flanged

■ error Im, flanged

◆ error Re, unflanged

▲ error Im, unflanged

Figure 7.2 – Real and imaginary parts of the error between the exact reflectance of a cylindrical
orifice and the approximation with Eq. 7.9, for the flanged and unflanged cases. The cutoff
frequency of the exact model (planar mode) is located at ka=3.832 (1st zero of the Bessel

function J1).

These approximations are depicted on Fig. 7.1.
The reflection function r̃(t) (inverse Laplace transform of Eq 7.9) is:

r̃(t) =

4∑

n=1

cn t
ne−sn t

n!
(7.10)

These formulas apply for the reduced frequency: s → ajω/c, where a is the radius of the
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opening and c is the speed of sound. They approximate the exact results with a precision better
than 0.5% (except near to the cutoff frequency: ω > 3.5, see Fig. 7.2).

A modal estimation based on other geometries can be performed, according to [49].

Polynomial low frequency estimation The following formula proposes a low frequency
(0 < ka < 0.5) polynomial approximation of the reflectance of cylindrical orifices from the exact
computations (planar mode).

R(ka) = −1 +

(
4∑

n=1

bn (−1)n+1 jn kan

)
+O(ka5) (7.11)

with ka=aω/c.

b1 b2 b3 b4
Unflanged 1.25587 1.29000 1.24326 1.28836
Flanged 1.51025 2.13417 1.51404 2.13449

7.2.8 Causality

The causality principle states that an effect cannot precede a cause. The travelling waves
preserves the principle of causality: the incident wave is scattered into two components: a reflected
component and a transmitted component. These components cannot precede the incident wave.

Computations can be performed in the Laplace domain without respecting the principle of
causality. However, the final solution can be approximated in the time domain with a stable
digital filter only if the causality principle is respected.

7.2.9 Representative matrices

In the context of wavegides, the generic term ”representative matrix” refers to a matrix
linking the state variables in two different locations of an acoustical system (c.f. quadripole).
These two locations are typically the extremities (sections) of a segment of pipe. Depending on
the kind of the state variables involved, the matrix is called admittance matrix, transfer matrix
or scattering matrix, for instance. In this chapter, these 3 kinds of representative matrices are
used. Let us define them and describe how they are related.

Admittance matrix

The admittance matrix A(g,d) for the segment of pipe xg to xd links the pressure and the
flow rate at both extremities of the segment:

(
ug
ud

)
= A(g,d) ·

(
pg
pd

)
(7.12)

where pi = p(xi, s), ui = u(xi, s) and A
(g,d)
1,2 = −A(g,d)

2,1 .

Transfer matrix for travelling waves

Using Eqs. 7.3 and 7.12, the transfer matrix for travelling waves C(g,d) reads:

(
φ+
d

φ−d

)
= C(g,d) ·

(
φ+
g

φ−g

)
(7.13)

where

C(g,d) =
1

a4

(
a1 + a2 − a3 + 1 a1 − a2 − a3 − 1
a1 − a2 + a3 + 1 a1 + a2 + a3 − 1

)

Zg = Zc(xg), Zd = Zc(xd), a1 = −ZgA1,1, a2 = ZdA2,2, a3 = ZgZd
(
A2

1,2 +A1,1A2,2

)
and

a4 = 2
√
ZgZdA1,2. Notice that C1,1 =

1+C1,2C2,1

C2,2
.
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For sake of conciseness, the indices g and d are not explicitly written when referring to the
elements of a matrix (here the admittance matrix A(g,d)), provided that the other matrix bear

the same indices (here C(g,d)).

In a segment of pipe of arbitrary profile, C(g,d) can itself be expressed as the concatenation
of subsegments, computing the product of the transfer matrices of each subsegment in reverse
order:

C(g,d) = C(d−1,d) ·C(d−2,d−1) · . . . ·C(g+1,g+2) ·C(g,g+1) (7.14)

Notice that the transfer functions of this matrix are not causal: they cannot be transposed in
the time domain with stable filters.

Scattering matrix for travelling waves

Finally, the scattering matrix for travelling waves Φ(g,d) is obtained from C(g,d):
(
φ−g
φ+
d

)
= Φ(g,d) ·

(
φ+
g

φ−d

)
(7.15)

Φ(g,d) =

(
−C2,1

C2,2

1
C2,2

1
C2,2

C1,2

C2,2

)
=

(
Rg T
T Rd

)

The scattering matrix respects the principle of causality and is composed of two propagators
T = Tg,d = Td,g and two reflectors Rg and Rd.

Notice that:

C(g,d) =

(
T − RgRd

T
Rd
T

−RgT 1
T

)

A(g,d) =




πr2g(T
2+Rd−Rg(Rd+1)+1)

cρ(−T 2+Rd+Rg(Rd+1)+1) − 2πTrgrd
cρ(−T 2+Rd+Rg(Rd+1)+1)

2πTrgrd
cρ(−T 2+Rd+Rg(Rd+1)+1)

πr2d((Rg+1)(Rd−1)−T 2)
cρ(−T 2+Rd+Rg(Rd+1)+1)




with ri = r(xi).

7.2.10 Digital IIR filters

A generic transfer function H(z) may be approximated by modal estimation (see Chapter 6).
This approximation relies on the LSCE (Least Squares Complex Exponential) method, as a least
squares fit in the low frequency range, up to some cut frequency Fcut. The filter is required to
be passive at all frequencies (notably above the cutoff frequency, in the stop band of the filter,
up to half the sampling frequency Fs ). In the z-domain (counterpart of the Laplace domain, for
discrete time), this approximation takes the form:

H(z) =
∑

m

Cm
1− xmz−1

. (7.16)

with 1 xm = esmTs . Ts = 1/Fs is the sampling period and sm are the poles of the transfer
function in the Laplace domain H(s). Because the corresponding impulse response h(t) is real,
the coefficients sm must be either real (monopole) or complex conjugates (bipole) in order to
respect the Hermitian symmetry. Since a monopole and a discrete Dirac are degenerate bipoles,
H(z), they may be simulated with a generic 2nd order IIR digital filter:

H(z) =
∑

m
Im(sm)≥0

Hm(z) with Hm(z) =
am,0 + am,1z

−1

1 + bm,1z−1 + bm,2z−2
(7.17)

where the values of the coefficients am,0, am,1, bm,1 and bm,2 are computed from the poles sm
and the modal coefficients Cm according to Table 7.1.

1. We preserve the original notations of Chapter 6. xm is in this paragraph a pole in the z-domain.
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Type Root am,0 am,1 bm,1 bm,2
Dirac x0 = 0 C0 0 0 0

Monopole xm > 0 Cm 0 −xm 0
Bipole (xm, x

∗
m) 2 Re(Cm) −2 Re(Cmx

∗
m) −2 Re(xm) |xm|2

Table 7.1 – Coefficients of the digital filters with respect to xm and Cm.

In order to fix the ideas, let us assume that H(z) represents the input impedance of an
hypothetical pipe. The filter H(z) enables the evaluation of the current pressure p[n] at the
input of the waveguide when it is excited by the flow rate u[n]. The pressure is the sum of the
partial pressures pm[n], each one accounting for a real pole sm or a pair of complex conjugate
poles (sm, s

∗
m) and obeys the difference equation:

pm[n] = am,0u[n] + am,1u[n− 1]− bm,1pm[n− 1]− bm,2pm[n− 2]. (7.18)

It is possible to arrange the relations so that the (total) pressure at the input of the bore at the
current time depends on the current flow rate value and on some history:

p[n] =
∑

m

pm[n] = V1u[n] + V2

with





V1 =
∑

m

am,0,

V2 =
∑

m

am,1u[n− 1]− bm,1pm[n− 1]− bm,2pm[n− 2].
(7.19)

This way the filter is easier to couple with other elements like an exciter or with another
filter.

Application to travelling waves

The application of digital filters to travelling waves is straightforward: the transfer function
H(z) corresponds now to the input reflectance R(z) (in order to fix the ideas). We need only to
operate the substitution p → p− and u → p+. Let us substitute additionally Vi → vi. Eq 7.19
reads then:

p−[n] = v1p
+[n] + v2 (7.20)

Besides the ”natural” excitation with an incoming wave p+, the filter can easily be converted as
an impedance filter. According to Eq 7.2:

p[n] =
zc(1 + v1)

1− v1
u[n] +

2v2

1− v1
= V̂1u[n] + V̂2 (7.21)

or as an admittance filter:

u[n] =
1− v1

zc(1 + v1)
p[n]− 2v2

zc(1 + v1)
= V̌1p[n] + V̌2 (7.22)

Notice that the structure of Eq. 7.19 is recovered and that only one additional multiplication
is required, in order to compute V̂2, compared to the impedance filter case (because V̂1 is a
constant). The solution of the coupling problem with a clarinet mouthpiece (Eq. A.7 in Chapter
6) can therefore be directly applied. The excitation of the filter is obtained by:

p+[n] =
zcu[n] + v2

1− v1
=
p[n]− v2

1 + v1
(7.23)

Similarly, the filter:
φ−[n] = ν1φ

+[n] + ν2 (7.24)
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is converted as an impedance filter according to Eq 7.3:

p[n] =
(ν1 + 1)Zc

1− ν1
u[n] +

2ν2

(1− ν1) r
= V́1u[n] + V́2 (7.25)

or as an admittance filter:

u[n] =
1− ν1

(ν1 + 1)Zc
p[n]− 2ν2

(ν1 + 1) rZc
= V̀1p[n] + V̀2 (7.26)

The excitation of the filter is obtained by:

φ+[n] =
r Zc u[n] + ν2

1− ν1
=
r p[n]− ν2

ν1 + 1
(7.27)

7.2.11 Differentiators and Integrators

Differentiators obey to the difference equation:

output[n] = k Fs(input[n]− input[n− 1]) (7.28)

The output of the filter is an approximation of k times the derivative of the input (Fs is the
sampling frequency and k is the gain of the filter).

Similarly, integrators obey to the difference equation:

output[n] = output[n− 1] + k/(2Fs)(input[n] + input[n− 1]) (7.29)

The output of the filter is an approximation of k times the integral of the input.

For sake of simplicity, differentiators and integrators are treated as reflectors, because of the
delay-free response and because they can be written with the IIR filter structure (as degenerated
bipoles).

7.3 Mono-dimensional acoustical model

Let us summarise briefly the linear, mono-dimensional acoustical model for axisymmetric
ducts. Detailed explanations can be found in Mignot [115], chapters 1 and 2.

7.3.1 The Webster-Lokshin and Euler equations

The Webster-Lokshin equation [89, 119, 88, 86, 117, 84, 82, 80, 90, 91, 116, 39, 118, 119, 120]
describes the behavior of the acoustic pressure waves p(x, t) in an 1D axisymmetric duct

(
∂2
x +

2r′(x)

r(x)
∂x

)
p(t, x) =

(
1

c2
∂2
t +

2

c
3
2

ε(x)∂
3/2
t

)
p(t, x) (7.30)

This model considers a linear propagation of the acoustical waves with viscothermal losses near
the walls. The flow rate u(x, t), dual quantity to the pressure, is described by the Euler equation

− ρ

S(x)
∂tu(t, x) = ∂xp(t, x) (7.31)

with parameters ε(x) = κ0

√
1− r′(x)2/r(x), coefficient of viscothermal losses, and κ0 ' 3.5 ×

10−4 m1/2.
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7.3.2 Analytical expression of the admittance matrix

For a segment where the loss parameter ε(x) can be approximated by a constant and with

constant curvature Υ = r′′(x)
r(x) , the admittance matrix can be expressed analytically (formula

from [119], with simplification and rectification of the typographical errors):

A(g,d) =

(
πr2g(ζg+coth(LΓ(s))Γ(s))

sρ −πrgrdcsch(LΓ(s))Γ(s)
sρ

πrgrdcsch(LΓ(s))Γ(s)
sρ

πr2d(ζd−coth(LΓ(s))Γ(s))
sρ

)
(7.32)

with L = xd − xg, ζi = r′(xi)/r(xi) and Γ(s) =

√(
s
c

)2
+ 2ε

(
s
c

) 3
2 + Υ.

7.3.3 Analytical expression of the scattering matrix

For a segment with approximatively constant ε(x) and constant curvature Υ, the propagator

T and the reflectors Rg and Rd of the scattering matrix Φ(g,d) are approximated with following
expressions:

T =
2 c sΓ(s) csch(LΓ(s))

d1
(7.33)

Rg =
(s− c ζg) (s− c ζd)− d2

d1

Rd =
(s+ c ζg) (s+ c ζd)− d2

d1

d1 = (s+ c ζg) (s− c ζd) + 2c sΓ(s) coth(LΓ(s)) + d2

d2 = c2 Γ(s) ((ζg − ζd) coth(LΓ(s)) + Γ(s))

In the case of a cylinder, the analytic solution simplifies to:

T = D̆(s) exp (−Ls/c) (7.34)

Rg = Rd = 0

D̆(s) = exp(−ε̆√s), ε̆ = ε(x)L/
√
c

Observe that this is not merely a simplification of Eq. 7.33. The inverse Laplace transform of
D̆(s) is:

d̆(t) = L−1{D̆}(t) =
ε̆

2
√
π t3

exp

(
− ε̆

2

4 t

)
, t > 0. (7.35)

The delay exp (−Ls/c) is implemented with a delay line (c.f. Eq. 7.5). See however §7.4.1 if the
delay is not commensurable to the sampling period.

7.4 Modal estimation

This section presents an estimation algorithm optimized for travelling waves. The method of
modal estimation is detailed in Chapter 6.

A modal estimation can be performed on all causal transfer functions related to travelling
waves (i.e. propagators, reflectors and reflectances) with a single algorithm. The issues associated
to the passivity of the filters are less severe than in the case of impedance relationships. The
analytical expression of these functions in the spectral domain can be found in the literature, for
instance [115, 119, 155, 92].

7.4.1 Elimination of fractional delays

The propagation delay should be eliminated from the propagators (and also from the reflectors
and reflectances, when the pipe begins with a cylindrical portion), by multiplication with exp(τs).
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Figure 7.3 – Simulated flared duct with constant curvature (rg = 10 mm, rd = 20 mm,
L = 200 mm, Υ = 30).
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Figure 7.4 – Modal estimation (with 15 dipoles) of the reflector Rg of the scattering matrix

Φ(g,d) of a flared duct illustrated on Fig. 7.3. Blue: Re(Rg), Orange: Im(Rg). Thick lines:
modal estimation, thin lines: analytical function. The modal coefficients Cm are fitted by least

squares in the following frequency bands: (a) 0 to Fcut, (b) 0 to 3Fcut, Fcut = 5000 Hz.

If the delay is not commensurable to the sampling period Ts, τ should be chosen slightly smaller

than this delay, typically τ = Ts max
(⌊

L
Tsc

⌋
− 2, 1

)
. The modal estimation of a generic transfer

function H(s) is then operated on H ′(s) = exp(τs)H(s). This procedure automatically eliminates
the need of fractional delays. A delay of at least 1 sampling period decouples the junctions. The
Fig. 7.7 depicts the modal estimation of a propagator T with and without partial elimination of
the propagation delay.

7.4.2 Estimation of the discrete time impulse response

In the LSCE method, the poles are estimated from the discrete time impulse response hn =
h[nTcut] (respectively h′[nTcut], if the propagation delay has been eliminated), with sampling
period Tcut = 1/(2Fcut). The samples hn are obtained by following algorithm:

1. Oversample H(s) up kosFcut, with oversampling factor typically kos = 16.

2. Compute the discrete time impulse response by inverse Discrete Fourier Transform

3. Downsample the discrete time impulse response down to Fcut with respect to its integral,
in order to obtain the samples hn

Discussion of the downsampling process A centered estimation of the integral is not
optimal, despite of the fact that the error is minimal in the low frequency band (when taking
the Discrete Fourier Transform of hn), because the error increases exponentially up to Fcut. This
characteristic is not optimal in order to guarantee the passivity of the filter at all frequencies,
when fitting the modal coefficients Cm. A forward estimation works better, because the absolute
value of the error exhibits a parabola shape: the error is small around F = 0 and small again
around F = Fcut. This way a precise, passive filter is easily obtained. The following method works
fine for estimating the integral: h0 is taken as the sum of the kos first samples of the oversampled
discrete time impulse response, and so on. This procedure eliminates practically all ripples from
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Figure 7.5 – Discrete impulse response of the reflector Rg of the flared duct depicted on
Fig. 7.3. Blue: after oversampling / downsampling of the analytical function, as discussed in
§7.4.2. Orange: discrete impulse response of the filter illustrated on Fig. 7.4 (b). The Gibbs

phenomenon is a consequence of the frequency band limitation (see Appendix E). The
amplitude of the ripples has to be controlled by the least squares fit in such a way that the

simulated scattering matrix remains i) passive at every frequency and ii) accurate in the pass
band.

the impulse response (see Fig. 7.5). Usually the LSCE method do not detect any poles xm with
real negative values (corresponding to components oscillating at the frequency Fcut. These poles
(if any) should be eliminated before estimating the modal coefficients.

7.4.3 Estimation of the modal coefficients

An exemple of a modal estimation is given for the flared duct depicted on Fig. 7.3. The modal
estimation of the reflector is illustrated on Fig. 7.4 (spectral domain) and Fig. 7.5 (discrete time
domain). The corresponding poles are shown in Fig. 7.6, as well as the propagator in Fig. 7.7.

The modal coefficients are estimated in the z-domain as described in in Chapter 6 (Eq.
18). Usually, no fictitious points are required in order to guarantee the passivity of the filter
at all frequencies. The requirements to the filter can be specified in a more flexible way than
with impedance filters. With a sampling grid up to about 0.95 to 1.0 Fcut, the precision of the
estimation is optimal in the pass band (but it must be verified that the filter is still passive).
An uneven sampling grid may be specified in order to enhance the precision of the filter in some
frequency band. The sampling grid may be extended into the stop band. This way the response
in the stop band mimics the general shape of the transfer function (see Fig. 7.4). This behavior
is however obtained at the cost of a reduced precision in the pass band.

Passivity

The passivity of each individual filter is not a sufficient condition to guarantee the passivity
of the waveguide. It must be checked at the extremity of each segment that the energy of the
scattered waves do not exceed that of the incident wave. In other words, it must be verified that
input impedance (upstream) of the scattering matrix remains passive at any frequency, when a
lossless impedance is connected to the output (downstream). If required, the modal coefficients
of the filters are reduced proportionally 2.

2. Instead of this coarse and straightforward treatment, a more careful and refined procedure should be devel-
oped.
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Figure 7.6 – Poles xm (in the unit circle of the z plane) of the modal estimation of the reflector
Rg of the flared duct depicted on Fig. 7.3.

7.4.4 Estimation via the poles of the analytical function

Alternatively, the poles may be determined directly from the analytical functions. This may
be done for instance with the NSolve procedure of Mathematica, applied to a limited portion of
the complex plane (because the number of poles is infinite). These poles have an imaginary part
situated in the vicinity of the odd multiples of 2πc/(4L), except the first poles which depend
strongly on the geometry. The poles of the transfer function H(s) are found by the Mathematica
request (limited here to a portion of the real negative and imaginary positive quadrant):

NSolve

[
1

H(s)
= 0 ∧ −5Fcut ≤ Re(s) ≤ 0 ∧ 0 ≤ Im(s) ≤ 2πFcut, s

]

The modal coefficients are estimated as already described. However a direct estimation is not
satisfactory. A precise estimation can be done only up to fcut/2. Unfortunately this causes severe
problems with the passivity in the stop band. An empirical recipe can however be formulated to
overcome this issue:

1. Take the set of analytical poles up to Fcut (in the Laplace domain). Restore the hermitian
symmetry, if necessary.

2. Add (to this set) a copy of these poles with a higher damping (i.e. multiply the real part
of the poles by an arbitrary coefficient, typically between 2 and 5).

3. Add a few (1 to 3) real negative poles (for instance {−200,−2000,−20000}), in order to
enhance the precision of the filter in the very low frequency band and also in order to mimic
the behavior of the transfer function in the stop band.

4. Estimate the modal coefficient (according to §7.4.3) associated with this set of poles (after
conversion of the poles into the z-domain). A fit is possible also for the full frequency
band, up to Fs/2. The same set of poles is used for all transfer functions of the scattering
matrix (because they share the same set of analytical poles; this remains true also after
the (partial) elimination of the delay in the propagator).

Notice that this procedure generates poles which are approximatively those of the modal estima-
tion (see Fig. 7.6). This procedure cannot be applied to a modal estimation of Eq.7.34, because
it has no poles (but it has a branch cut). The poles of Eq.7.33 can be used instead, but an esti-
mation via §7.4.2 is usually more economical, in terms of computational efficiency of the derived
filter.
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Figure 7.7 – Modal estimation (with 15 dipoles) of the propagator T of the scattering matrix

Φ(g,d) of the flared duct depicted on Fig. 7.3. Blue line: Re(T ), Orange line: Im(T ). Thick lines:
frequency band over which the fit by least squares was performed, medium lines: modal

estimation, dashed lines: analytical function. (a) fitted function, after partial removal of the
propagation delay (23 samples, instead of fs L/c = 25.683 samples, which would require a

fractional delay line for the simulation), (b) frequency response of the simulated propagator T
(including delay line).

7.4.5 Discussion

It should be examined if a more economical recipe can be formulated with approximately
the same accuracy. The proposed recipe shows that a simulation with waveguides is about 4-8
times more demanding in terms of computer power than the linear simulation of the sole input
impedance. Indeed, the corresponding transfer functions for a segment of pipe of same length
have approximatively the same number of analytical poles. The difference is explained by: 1)
simulation of 4 transfer functions instead of 1 (plus radiation reflectance), 2) solving the coupling
problem at each junction, and 3) difference in the number of additional poles that are necessary
to account for the truncation of the modal series and to ensure the passivity. This is however
not true for cylindrical pipes, for which the waveguide formulation is generally more economical
than the impedance formulation, because: 1) only 2 propagators have to be simulated, 2) the
total number of poles of the digital filters of both propagators and of the radiation reflectance
is generally lower than that of the input impedance filter, 3) this number do not depend on the
length of the pipe, 4) the frequency response of the waveguide is accurate practically up to Fs/2
and 4) no coupling problem has to be to solved at the output of the pipe. The most efficient
linear implementation of a cylindrical pipe is however done with a single reflectance filter and
a delay line, which requires approximately the same number of poles than a single propagation
filter (see implementation in B.3.1).

The extremely light implementation proposed by Guillemain [69] should be mentioned in
this context. It is however inaccurate in the high frequency range (because of the shift of the
impedance peaks) and requires a pipe length commensurate with the sampling frequency.

7.5 Dictionary of junctions and Architecture of the syn-
thesizer

A dictionary of junctions is proposed in Appendix A. This Appendix treats some technical
aspects related to the junctions, like analytical solution of the coupling problem for different kind
of junctions or the incorporation of nonlinear losses in the toneholes.

The software structure and the technical issues related to the implementation and the simu-
lation of digital instruments are described in Appendix B.

An exemple of simulation is given on Fig. 7.8 for a Buffet Crampon Clarinet, model Prestige,
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Figure 7.8 – Input impedance and input reflectance of the fingering F#3 of a Buffet Crampon
clarinet, model Prestige. Red: measurement. Blue: waveguide simulation with a cylindrical

mouthpiece bore (corresponding to the adaptation piece with which the instrument was
measured). Green: waveguide simulation with a conical mouthpiece bore, as as described in
8.3.4. The input impedance is adimensioned by the characteristic impedance of a circular
section of 15 mm diameter in the 3 cases, in order to allow an absolute comparison of the

magnitudes.

simulated with 28 segments and 22 lateral toneholes (with linear losses, in order to allow a com-
parison with the linear measurements), see §B.3.3. The geometrical dimensions of this instrument
are given in [174]. Minor modifications of the geometry were necessary in order to respect the
minimal length imposed to the segments (see §7.2.2). The toneholes labeled trille2 and Mib3 F
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in ”Tableau 2” were suppressed and the toneholes Mib3 C and Si2F were located respectively
at 203.1 and 281.0 mm, instead of 199.8 and 279.0 mm.

The numerical filter corresponding to the fingering F#3 is excited by a discrete impulse and
the input impedance Zin is computed by Fourier transform of the impulse response. This exercice
is repeated for 2 different geometries of the mouthpiece bore:

1. Cylindrical bore (diameter 15.0 mm, length 64.5 mm) corresponding to the interior volume
of the mouthpiece and also to the adaptation piece with which the input impedance of the
instrument was measured at LMA Marseille (in collaboration with P. Sanchez).

2. Conical bore as described in 8.3.4.

In the Fig. the simulated input impedances are compared with the measured input impedance.
Compare also with the modal estimation of this measurement in Chapter 6, Fig. 5.

7.6 Conclusions and future work

This chapter proposes a software structure (based on the concept of waveguides) for the
simulation of wind instruments in real time. The main obstacles could be overcome, using a
formulation relaying essentially on the reflection and transmission functions of the scattering
matrices (traveling waves), for which the techniques described in Chapter 6 could be applied.
So, accurate digital filters (in some specified pass band) could be designed, which are passive at
all frequencies. If required, digital filters can be easily converted into impedance or admittance
filters. Fractional delays have been eliminated as a side effect of the modal estimation, integrating
them directly into the digital filters. The problem of delay free loops could be solved analytically
for each of the proposed junctions. Models of exciters, bells, horns, chimneys, valves and slides
are implemented. The software architecture (written in C++) is designed for a simulation of the
instrument in segments, which can be concatenated by the mean of a dictionary of junctions. The
dictionary implements a dozen of junctions (more or less sophisticated, with or without added
acoustic mass, with linear or nonlinear losses). The software supports also some tricky aspects of
the synthesis, such as the transitions between fingerings or embouchure adaptations depending
on the played note.

So far, the simulations seem convincing, although the number of simulated cases is still
relatively small. Systematical tests should be conducted and could possibly lead to interesting
observations, like the following one: the ease of emission in the second regime of the clarinet
(clarion register) is notably better with the nonlinear loss model, especially while playing large
intervals. This may be surprising at first glance, but the explanation is logical. The nonlinear
losses contribute to attenuate the first resonance peak (due to the high flow rate generated in
the register hole when the instrument plays a 2nd register-fingering in the first regime, causing
high nonlinear losses), whereas the second peak is practically unaffected (since the register hole
is located near a pressure node of the second regime, causing a low flow rate in the chimney, so
the nonlinear losses are negligible). In other words, the oscillation threshold of the first regime
is increased by the nonlinear losses above that of the second regime, which remains practically
unchanged, so the oscillation starts on the second regime.

It would be interesting to apply the method to examine a recurring question of clarinettists
and oboists: why do the reeds seem stronger at altitude than in the plains? The developed
synthesizer allows to check if the difference in air density is sufficient to explain the effect. At
first sight, it seems that the influence of this parameter should mainly concern nonlinear losses at
the chimneys. A higher density implies increased losses, which lowers the saturation threshold,
giving the impression that the reed is weaker.

This tool opens new opportunities for the design of wind instruments, especially for people
who are not really skilled in acoustics (musicians and instrument maker, for instance). Synthe-
sizers can be implemented from the geometry of the instrument with the described methods,
focussing the attention of the designer on the musical aspects (intonation, homogeneity of sound,
ease of emission, for example), achieving thus the principal aim set for my participation to the
CAGIMA project: the virtual prototyping. An interaction with the PAFI (plate-forme d’aide à
la facture instrumentale) project should be considered [46].
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The potential of the software remains for the moment completely under exploited and nu-
merous improvements are still needed to make it fully operational:

— The implemented models must be validated in detail, in particular the model of nonlinear
losses in chimneys.

— Presently, the modal estimation is implemented only in the Mathematica language. An
implementation in C ++ would be desirable for a broader use and for a faster recalculation
of the filters, after each modification of the geometry of the instrument.

— A development effort is needed to facilitate the automated design of the filters. Currently,
some parameters (like the number of modes or some constraints imposed to the fit by least
squares) must be optimized by hand.

— The filter optimization must be improved with respect to passivity, especially for short
segments, where the losses are very low. Accuracy and passivity aspects are then critical
to balance.

— The low frequency optimization needs to be reviewed. In this frequency range (where the
losses are very small), the preservation of the relative precision between the filters is more
important than the absolute precision of each filter. Otherwise, aberrant results may occur,
such as the simulation of a larger main flow in the speaker hole than in the main bore.

— An interface with standard synthesizers (like Max MSP) has yet to be realized.

— Different software objects are not yet implemented, for example: alternative exciter models,
exciters for other instruments like flutes, radiation models computing the external sound
perceived at any point in the space [145], interactions between toneholes due to external
radiation [121, 102, 105, 103, 137, 108].
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Chapter 8

Study of a Panel of Clarinet
Reeds confronting Objective
Measurements, Subjective
Evaluations and Sound Synthesis

Résumé

Ce Chapitre réalise une synthèse entre les éléments développés lors des chapitres précédents,
en confrontant 3 types de données récoltées à partir d’un panel de 40 anches de clarinette:
i) Mesures physiques objectives: pour chaque anche (et différentes embouchure), les données
collectées comportent des expériences statiques (mesures aérauliques, déflection mécanique et
photographies du canal) et une expérience dynamique (diagramme de bifurcation, établi sur un
crescendo / decrescendo). ii) Evaluations musicales subjectives: un clarinettiste a joué ces mêmes
anches à l’aveugle (avant que les mesures ne soient analysées) et les a notées sur la base de 4
descripteurs différents. iii) Synthèse sonore: les modèles physiques développés dans la partie III)
sont mis en application pour simuler les diagrammes de bifurcation.

L’analyse canonique des corrélations atteste la présence d’un lien très fort entre toutes les
mesures physiques objectives réalisées à l’intérieur du panel d’anches étudié. L’existence de plus
d’une dizaine de facteurs indépendants est prouvée de manière statistiquement significative. La
confrontation entre les mesures objectives et les données issues de la synthèse sonore montre
l’existence de liens indubitables pour au moins 13 facteurs. Les 4 plus importants facteurs objec-
tifs détectés sont corrélés de manière statistiquement significative avec les évaluations subjectives
réalisées par le clarinettiste. Cela ouvre la voie à une sélection automatisée des anches, réalisée
directement à l’usine.

8.1 Introduction

This study aims at summarizing the work done in recent years and described in the Parts
II and III, by investigating a reed panel through various approaches (acoustics, music, sound
synthesis, statistics). Its main purpose is to verify the solidity of the link between the physical
measurements acquired from this panel of reeds and the subjective musical evaluation of these
same reeds, blindly, by a clarinettist. The second aim of the study is to check summarily the
relevance of the physical models developed, by confronting them with the experimental data
acquired by playing this panel of reed by an artificial mouth.

This study is conducted in three successive phases: In the first phase, 3 categories of data are
collected, namely:

— objective physical measurements

143
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— subjective musical evaluations

— simulations by physical model

The second phase consists of confronting these data on a statistical basis, by canonical cor-
relation analysis and to verify the statistical significance of the correlations found. In the third
phase the acoustic and musical results are interpreted in the light of the statistically significant
correlations found between canonical factors. Incidentally, it will also be necessary to check if the
objective measurements made on dry reeds (in ambient conditions, without prior humidification)
are well representative of the behavior of the wet reed, in playing situation.

The present study establishes also a link with the initial sparkle that conducted me to acous-
tics in 2001: the invention of the Claripatch system 1. To develop the range of commercially
available models, I performed a perceptive study by Principal Component Analysis (PCA) in
2002, using a panel of about thirty reeds. On the basis of the determined factors, I selected
8 reeds located at the extremes of the first 4 factors and I empirically tried to improve their
functioning, according to the thickness profile conferred to the patch.

Since then, many authors have performed perceptual studies on simple reeds and have tried to
find a connection with objective measurements. Pinard [140, 47], Stetson [163], Mukhopadhyay
[124], Casadonte [15], Kolesik [104], Obataya [134], Gazengel [61, 62], Petiot [139] and Muñoz
[128, 127, 126, 129] can be cited. A good summary of these works can be found in the first chapter
of Muñoz’s thesis [125]. The studies - whose statistical significance has been evaluated - have
come to the conclusion that the reeds can be classified on the basis of 2 descriptors (playability
and timbre). This is for instance the case of the study described in the cited thesis, Chapter
3, as well as that of Gazengel [62]. Muñoz has evaluated 20 reeds of 4 different brands, using
a panel of 7 musicians. Large differences were found between musicians: some discern reliably
the differences between reeds, others do not. There is no general consensus about the analyzed
descriptors: a musician has evaluated the same descriptor in a way that is reproducible but
very different from the other musicians, whom evaluations are more coherent among themselves.
The descriptors ”ease of playing” and ”timbre” are correlated to 0.95. No canonical correlations
analysis has been made, so it is not possible to know if more than one statistically significant
canonical factor could be highlighted by this panel of musicians. The only significant factor is
correlated with the stiffness of the reed at low pressure (linear component of the stiffness of the
reed at rest). In order to allow a fair comparison, Muñoz’s data should be analyzed with the
methods proposed in this Chapter.

The investigations comparing a synthesis model and experimental measurements are not very
numerous and are generally based on the study of a single reed, which prohibits any validation on
a statistical basis, among which [17] and [125] can be cited. In this sense, the proposed approach
is innovative.

The study of Guillemain [9] comparing perceptively the sounds generated by a synthesis
model should be mentioned, as well as a study of scraping techniques for correcting the function
of the reed [167].

The experimental setup is described in Sec. 8.2 and the collected data are detailed in Sec. 8.3.
The methods of analysis are presented in Sec. 8.4, with which the data is analysed, in Sec. 8.5,
then an interpretation of the detected factors is attempted in Sec 8.6, followed by the conclusions
in Sec. 8.7.

8.2 Experimental setup

The measuring bench is described in §4.3. The physical symbols related to the measurements
are listed in Table 8.1.

1. This system allows the clarinetist to regulate the behavior of his reeds by modifying the shape of the
mouthpiece lay, by the mean of a wedge (patch). This wedge has a variable thickness, precisely defined, which
modifies the bending of the reed against the lay [166].
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8.2.1 Reed panel

40 ”Vandoren classic” clarinet reeds were purchased in a music shop, of strength 2, 2.5, 3,
3.5 (10 of each). The reeds were randomly numbered from R00 to R39. In principle, all reeds
should have the same geometry, since they were all manufactured in the same way. Theoretically,
only the stiffness and the homogeneity of the wood differs, but in reality, the machining is not
as regular as supposed, as showed a preliminary (unpublished) study on a panel of 15 reeds.
Significant differences in geometry were found, which correlate with aeraulic measurements. The
geometry of the reeds of the studied panel has not (yet) been measured.

During the measurements, the reeds undergo all the same ”aging” protocol and have an
equivalent hydric history (see §8.3.6). However, it is questionable whether this treatment is
comparable to a normal playing situation.

8.2.2 Photographs of the channel

The photographs of the channel (slot between reed and mouthpiece through which the air
enters into the instrument) were made by a Nikon D5200 SLR camera attached to a tripod and
equipped with a macro lens 2 Micro Nikkor AF, 105 mm 1/2.8 D. The focal plane of the device is
approx. 32 cm away from the tip of the mouthpiece, frontally to the channel. This relatively large
distance comparatively to the about 1 mm height of the channel, allows to neglect the effects of
parallax.

The size of the pixel at the tip of the reed is determined by a millimeter scale (4.15 microns).
The origin of the coordinate system is defined by the intersection between the plane of the
mouthpiece lay and the median plane of symmetry of the reed, at the tip (see Fig. 3 in Chapter
3). The reference line - corresponding on the photos to the plane of the mouthpiece lay - is
determined photographically, by clamping on the lay a flat, reed-like metal plate. The pictures
are deliberately overexposed, so as to optimize the exposure of the reed. The illumination is
provided by the flash of the camera.

8.2.3 Artificial mouth

The measuring bench was transformed into an artificial mouth in ”suction” (i.e. working
with a negative pressure in the instrument) by connecting a 261 mm long PVC tube (15.5 mm
inner diameter) to the instrumented mouthpiece. The end of the tube was inserted (in airtight
manner) into a circular hole made in the smallest face of a parallelepipedic container (volume:
about 100 liters). The hole was off centered by a few centimeters from the center of the face, to
avoid unwanted acoustical effects due to symmetry.

The dimensions of the container (410 × 510 × 600 mm) have been optimized so as to spread
the first acoustic resonances as evenly as possible. Pieces of carpet were glued on all interior walls,
so as to dampen these resonances. An Endevco sensor was introduced through a small orifice to
measure the pressure in the container. A cock valve allows to establish a moderate vacuum in
the container, using a vacuum cleaner.

8.3 Collected data

8.3.1 Channel height

Several thousands photographs were made to determine the height of the channel h(ψ, y),
as a function of the embouchure ψ and the transverse coordinate y 3. Only two series of photos
(denoted PhotoNew and PhotoBreakIn) were included in the analysis.

For PhotoNew, 16 embouchures were measured for the position of the lip support ψ ranging
from 3.400 to 0.400 mm, in 0.200 mm increments, plus 2 photos without lip contact, before

2. This professional lens was kindly lent by the naturalist and wildlife photographer Jean-Lou Zimmermann,
whom I thank warmly.

3. Since y is the transverse coordinate, the deflection of the reed (traditionally denoted y, like in Chapter 5)
is now denoted z, in this Chapter.
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Figure 8.1 – Scheme of the artificial mouth in ”suction” for the bifurcation measurements. The
position ψ of the artificial lip support is regulated by a micrometer screw. The measured

parameters are: pmp (pressure in mouthpiece), pcont (pressure in container), h (height of the
channel, measured by photo), z (deflection of the reed tip, measured by optical sensor,

calibrated with h and pcont = 0). The reference plane for h and z (plane of the mouthpiece lay)
is indicated by a dashed line. The zero for ψ is fixed arbitrary about 0.3 mm before contact

between the artificial lip and the reed.

and after measurement. For PhotoBreakIn, 25 embouchures were measured for ψ ranging from
3.750 to 0.750 mm, in 0.125 mm increments, plus 2 photos without lip contact before and after
measurement.

Note that the term ”channel height” (or ”reed height”) is used abusively (for sake of brevity)
to refer to the distance between the tip of the reed and the plane of the mouthpiece lay.

Treatment of the photos

The photos were subjected to image processing, from which 30 measurements of the channel
height are extracted per photo, evenly distributed over the entire width of the reed.

The photos were processed in the following way: First, the pictures are centered according
to a reference picture, to take into account the small offset (a few hundredths of a millimeter)
due to manual shooting 4. The outer front edge of the mouthpiece is painted in light blue with
fine Indian ink dots, which facilitates the automated image centering (accuracy: ' 0.01 mm),
maximizing the correlations between reference and photo, from 3 target areas of about 1.2 ×
1.2 mm.

The area of interest of the picture is converted to black-white by substraction between the
”Brightness” component (HSB decomposition) and the ”Yellow” component (MCYK decompo-

4. A remote trigger would minimize this problem, as would the use of a more stable and massive stand.
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patm atmospheric pressure (patm = 0)
pmp pressure measured in mouthpiece
pcont pressure measured in the container
∆p = patm − pmp (pressure drop across the reed)

psupply = patm − pcont (corresponds to the blowing pressure in the usual situation)
y transverse coordinate (channel)
ψ position of the micrometer screw attached to the support of the artificial lip

h(ψ, y) measured channel height (by photo of the channel)
zL(∆p, ψ) measured reed deflection, left optical sensor
zR(∆p, ψ) measured reed deflection, right optical sensor
z(∆p, ψ) = 1/2 (zL(∆p, ψ) + zR(∆p, ψ))
S(∆p, ψ) measured aeraulic section
fplay measured playing frequency

Table 8.1 – List of physical symbols

Reed R14 new

Reed R14 after break-in

Figure 8.2 – Photos of the reed R14 before and after break-in for an embouchure ψ = 3.0 mm.
The color difference of the silicone, artifical lip is due to the erosion of the graphite after several

thousands of manipulations, including 200 bifurcation measurements, where the reeds are
played; this graphite was deposited on the artificial lip to make its appearance more matt on
the photographs and to facilitate the automated analysis of the photographs. One of the dots

with India ink, allowing the centering of the pictures, is visible at the bottom left.

sition), enhancing the contrast on the reed (see Fig. 8.2).

A mask is applied to restrict the analysis area to the relevant region (low-pass filtered, so
as not to create a clean cut that would disturb the edge detection) and then the Mathematica
EdgeDetect procedure is applied, followed by a morphological component analysis of the image
(MorphologicalComponents procedure), selecting the component with the largest number of
points. This gives the outline of the reed. Finally, the lower contour is taken, which corresponds
to the lower front edge of the reed. Scaling by the determined size of the pixel, we obtain a scaled
graph of the lower contour of the reed. From these about 32’000 pixels, 30 measurements are
extracted by averaging over a regularly grid, distributed over the entire width of the reed. The
estimated accuracy is of the order of a few microns.

Fig. 8.3 illustrates the contour obtained by this method for the reed R14, in new condition
(16 different embouchures) and after break-in (25 different embouchures). The average values
observed on 40 reeds is also depicted. The break-in process reduces the opening of the channel
by about 0.1 mm. The contour of the reed R14 shows some constancy in the deformation of
its tip. After breaking in, the deformation becomes more angular and more pronounced. This is
observed practically for all reeds.
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Figure 8.3 – Channel height h(ψ, y) (distance between the tip of the reed and the plane of the
lay, depending on the embouchure). The embouchures ψ are encoded by the colors of the

rainbow, from red (reed at rest, without contact with the lip) to blue-purple (tight
embouchure). (a) new reeds (PhotoNew series): 16 different embouchures (in 0.200 mm

increments) and 2 resting positions, without lip pressure (before and after measurement, in
red). (b) break-in reeds (PhotoBreakIn series): 25 different embouchures (in 0.125 mm

increments) and 2 resting positions. The measurements extracted from the pictures of Fig. 8.2
are shown in thick green lines.

8.3.2 Aeraulic and optical measurements

The measurements of the aeraulic section were performed with the ”bottle” technique de-
scribed in Chapter 4, for 7 different embouchures (ψ varying from 2.500 to 1.750 mm, in steps
of 0.125 mm) and discretized for a pressure drop ∆p from 0 to 14 kPa, in steps of 0.2 kPa.
The optical signals measuring the deflection on the left and on the right (data blocks OptoLeft
and OptoRight) of the reed were acquired simultaneously with the aeraulic measurements (data
block Aero). They were calibrated according to the photos of the channel made at the end of
each aeraulic measurement.

Figs. 8.4 and 8.5 respectively illustrate the aeraulic section S(ψ,∆p) and deflection on the
left zL(ψ,∆p) and on the right zR(ψ,∆p) for reed R14 and also the average value over 40 reeds.
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Figure 8.4 – Aeraulic section S(ψ,∆p). The 7 embouchures tested are encoded by the colors
from yellow (loose embouchure, ψ = 1.750 mm) to black (tight embouchure, ψ = 2.500 mm).
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Figure 8.5 – Deflection of the reed on the left zL(ψ,∆p) and on the right zR(ψ,∆p),
respectively solid lines and dashed lines, measured by optical sensor during the aeraulic

measurements. The 7 embouchures tested are coded by the colors from yellow (loose
embouchure, ψ = 1.750 mm) to black (tight embouchure, ψ = 2.500 mm).

8.3.3 Bifurcation diagrams

A 261 mm long cylinder is played with the artificial mouth (see §8.2.3), increasing the de-
pression in the container until the extinction threshold is reached (crescendo), then cock valve is
closed and the decrescendo is measured (which regulates itself according to the air consumption).
The experiment is repeated for 4 different lip positions 5 (ψ ranging from 2.125 to 1.750 mm, in
steps of 0.125 mm). The variation of the pressure supply in the crescendo phase is approximately
equal for all reeds, because the action of the vacuum cleaner is nearly equal in all experiments.
In order to accelerate the pressure recovery in the container, a diaphragm (diameter 1 mm)
was inserted in the cock valve after closing the valve and the valve was reopened. This ”leak”
ensures that the inverse threshold is obtained in similar conditions for all reeds (same slope in
the pressure supply until the reed reopens). This limits also the duration of one experiment to
about 2 minutes and the asymmetry of the pressure supply between crescendo and decrescendo
ramps is reduced. The emergence and extinction thresholds measured with this procedure are
fairly comparable between reeds, although they do not coincide with the ”true” thresholds which

5. The embouchure ψ = 2.250 mm was also measured, but no sound was obtained for some reeds, so these
measurements were discarded in the analysis.
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are obtained by infinitesimally increasing or decreasing ramps.

8.3.4 Synthesis by physical model
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Figure 8.6 – Example of bifurcation measurement (reed R14, with embouchure ψ = 1.750 mm).
(a) pressure signal pmp measured in the mouthpiece during a crescendo / decrescendo. (b)

deflection of the reed tip (enveloppe of the signals zR and zL) measured by the optical sensors
R (red) and L (blue). (c) AC component of the pressure signal pcont measured in the container.

(d) blue: AC component of signal (a): pmp, green: DC component of signal (a): pmp, orange:
pressure supply, i.e. the DC component corresponding to signal (c): pcont. For the orange and

green curves, the sign is inverted, in order to correspond to the usual situation (when the
pressure supply psupply is the blowing pressure in the mouth of the player). (e) resulting
bifurcation diagram, i.e. enveloppe of the AC component of pmp as a function of psupply

(purple: crescendo, magenta: decrescendo). The black dotted line corresponds to the expected
asymptotic trend in a lossless case. (f) Playing frequency fplay as a function of psupply (purple:

crescendo, magenta: decrescendo).

An example of bifurcation measurement is given on Fig. 8.6. The raw signals are illustrated
on the subgraphs (a) pressure in the mouthpiece pmp, (b) deflection of the reed, zR and zL,
and (c) pressure in the container pcont, AC component. The subgraph (d) show the result of the
separation of the ”DC” component (i.e. components below 100 Hz) of pmp and pcont and the
”AC” component (i.e. components above 100 Hz) of pmp. An intriguing difference has been noted
between the DC component of both pressure sensors. It seems that a positive static pressure is
present between pmp and pcont when the sound level is high. Is this related to non linear losses at
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Figure 8.7 – Data processing of the bifurcation measurements of reed R14 illustrated on Fig.
8.6 prior to statistical analyses. Temporal signal (resampled on 60 discrete points) over 1 period
for 2× 40 blowing pressures regularly distributed between the 2× 2 thresholds (respectively for
the crescendo, left column and the decrescendo, right column). The blowing pressure is coded

between emergence and extinction thresholds by the colors from light blue (lowest value
allowing auto oscillation) to dark blue (highest value allowing auto oscillation). (a) pressure

measured in mouthpiece (crescendo, AC component of pmp), 40× 60 = 2400 discrete points. (b)
idem but in decrescendo. (c) same data as (a), but partitioned into 40 blowing pressures (over

one period, i.e. 60 discrete points). (d) same data as (b), but partitioned into 40 blowing
pressures. (e) pressure measured in the container (crescendo, AC component of pcont),

partitioned into 40 blowing pressures. (f) idem but in decrescendo.

the output of the instrument or is it merely an artifact of the pressure sensor? Notice that both
curves (green and orange) are perfectly superimposed after extinction. The so-called bifurcation
diagram is depicted on subgraph (e). The typical hysteresis between the extinction threshold in
crescendo and the emergence threshold in decrescendo (also called inverse threshold) is observed
for all reeds. The measured emergence and extinction thresholds are 4.11 and 13.87 kPa for
the crescendo and 11.02 and 3.65 kPa for the decrescendo. The measurement of the ”true”
emergence and extinction thresholds would require a infinitesimally slow increase or decrease
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Figure 8.8 – Data processing of the bifurcation measurements of reed R14 prior to statistical
analyses (continued). Optical signals partitioned into 40 blowing pressures. (a) deflection of the
reed tip, left sensor, zL (crescendo). (b) idem but in decrescendo. (c) deflection of the reed tip,

right sensor, zR (crescendo). (d) idem but in decrescendo.

of the pressure supply. For this reason, the measured emergence threshold in crescendo and the
extinction threshold in decrescendo are not equal. The beating threshold corresponds to the point
of the bifurcation diagram which is the closest to the black, dotted line 6. The air consumption
reaches a minimum at this point (see Chapter 1, Fig. 2, Case I). The subgraph (f) illustrates
the playing frequency fplay. The pitch is higher at low and at high pressure supply. While the
increase of the playing frequency is well explained by the model at high pressure, the increase at
low pressure is probably related to the acoustical behavior of the mouthpiece. A modest increase
was obtained in the simulations (only) with a conical mouthpiece bore (see next § and Fig.
8.9). The discrepancy between crescendo and decrescendo is probably related to a temperature
drop due to the fast decrease of pressure in the container, in the crescendo phase, while a partial
temperature recovery happened in the slower decrescendo phase. A viscoelastic explanation seems
less likely: in such a case, both curves in the bifurcation diagram (e) would noticeably diverge in
the middle part.

Fig. 8.7 depicts the treatment applied to the measured signals of reed R14 prior to the statis-
tical analysis. In the subgraphs (a) and (b) one period of the pressure signal (AC component of
pmp, respectively for the crescendo and the decrescendo ramp) is collected for 40 blowing pres-
sures regularly distributed between the emergence and extinction thresholds. In the subgraphs
(c) and (d) the same data is partitioned into 40 blowing pressures (from light blue: lowest pres-
sure allowing auto-oscillation to dark blue: highest pressure allowing auto-oscillation). In (e) and
(f) the same treatment is applied to the AC component of pcont, while Fig. 8.8 shows the same
treatment applied to the optical signals zL and zR.

Fig. 8.9 illustrates some indicators extracted from the bifurcation measurements (solid lines),
averaged over 40 reeds: (a) the playing frequency fplay, (b) the envelope of the pressure signal

6. This pragmatic definition of the beating threshold do not correspond necessarily with the theoretic definition
given in Chapter 1, because real reeds never close the channel hermetically.
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in the mouthpiece (AC component of pmp), (c) the Spectral Centroid (SC) of pmp and (d) the
SC of the reed signal 1/2(zL + zR). The dashed lines correspond to the average of the synthesis
model described hereafter.
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Figure 8.9 – Comparisons between the average of the measurements (solid lines) and the
average of the simulations (dashed lines) of the bifurcation diagrams. In each diagram, the

pressures (abscissa) are adimensionned by the thresholds of emergence and extinction (between
-1 and 0 for the crescendo and between 0 and 1 for the decrescendo). The 4 embouchures tested

are coded by the colors from yellow (loose embouchure, ψ = 1.750 mm) to black (tight
embouchure, ψ = 2.125 mm). (a) playing frequency. (b) envelope of the pressure signal in the

mouthpiece. (c) Spectral Centroid (SC) of the pressure signal in the mouthpiece. (d) SC of the
reed signal (average between left and right signals).

The ”instrument” played by the artificial mouth is simulated by physical model synthesis,
using the waveguide techniques detailed in Chapter 7. The aim of the simulations is also to
perform a first rough validation of the model, without investing too much time in optimizing the
parameters, so as to reproduce the measured signals as accurately as possible. A more elaborate
study and a more detailed comparison of the signals must be conducted in the future.

The determination of the geometry of the cylindrical pipe is straightforward, which is not the
case for the bore of the mouthpiece. Indeed, in the mouthpiece chamber, the hypothesis of plane
(or quasi-spherical) waves is probably no longer valid (J. Kergomard pers. comm.), whereas this
hypothesis is probably valid within the bore of the mouthpiece, which is conical. We assume
here that the mouthpiece chamber can be modeled by a cone having a downstream diameter
equal to that of the input of the conical bore and simulate a few different input diameters (8,
10, 13, 15.5 and 20 mm), keeping the internal volume of the mouthpiece constant (11.2 cm3,
according to volumetric measurements). The results obtained for the diameter of 10 mm were
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found to be the most consistent with the measurements. They are depicted for the reed R14
on Fig. 8.11, and compared to measurements and to simulations with a cylindrical mouthpiece
model of same volume (and of same diameter than the main bore). Chaziioannou [17] has reached
similar conclusions, using other methods.

The geometry of the simulated ”instrument” 7 is depicted on Fig 8.10.

Figure 8.10 – Selected geometry for the simulation of the ”instrument” played during
bifurcation measurements. The dimensions are in meters.
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Figure 8.11 – Influence of the mouthpiece model on the Spectral Centroid (SC) of the
mouthpiece pressure pmp, in the bifurcation diagrams for the reed R14. Solid thick lines,

measurements. Dashed lines, simulations with the proposed conical mouthpiece bore. Dotted
lines, simulations with a cylindrical mouthpiece bore (d=15.5 mm). The 4 embouchures are

coded by the colors from yellow (loose embouchure, ψ = 1.750 mm) to black (tight
embouchure, ψ = 2.125 mm). (a) SC as a function of the pressure supply (crescendo only; the
curves in decrescendo are practically superimposed and not given here for readability reasons).

(b) Same data, prepared for the statistical analysis, adimensioned by the emergence and
extinction thresholds. From -1 to 0, crescendo. From 0 to 1 decrescendo.

The corresponding waveguide involves 3 segments. The first segment lays between the reed and
the pressure sensor located in the mouthpiece bore. The 2nd segment simulates the mouthpiece
bore, downstream to the sensor, while the 3rd segment simulates the cylinder.

The (linear) input impedance of the simulated instrument is shown in Fig. 8.12.
The nonlinear model of radiation proposed in §A.3.11 is used 8 as well as the nonlinear reed

7. The geometry of the simulated mouthpiece is very similar to the one I determined by optimization from
an impedance measurement of the ”output” impedance of the mouthpiece, the window of the mouthpiece being
rigidly and tightly sealed by a metal reed. With this configuration, the 1D linear acoustical behavior is at least
correct when the reed closes the channel. Notice that a mouthpiece with full cylindrical bore fails to reproduce the
hump observed on the SC around the beating threshold of the pressure signals measured in the mouthpiece (see
Fig. 8.9, bottom left and 8.11). The conical mouthpiece geometry produces also realistic signals in association with
the full clarinet model described in B.3.3. This geometry enhances the absolute amplitude of the resonance peaks
(except the first peak, which remains almost unchanged). The input impedance at frequencies corresponding to
even harmonics of the playing frequency of first regime are considerably increased (because the frequency of the
antiresonances is notably lowered by this geometry). The differences among reeds appear also more clearly.

8. It seems that the pressure loss coefficient is overestimated by about 15-20%. To compensate, the output
radius of the tube was increased by 10% when calculating the Bernoulli’s law, so that the thresholds correspond
better to the measured ones (otherwise the extinction is too early, whereas it is much too late and brutal with
the linear model, the sound level increasing significantly faster than the measured level).
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Figure 8.12 – Input impedance of the waveguide, simulated here with a linear radiation
impedance. This input impedance corresponds to that of the waveguide with nonlinear

radiation impedance, simulated at a very low level.

model, which is described in Chapter 5. In the dynamic model, all reeds are assumed to have the
same mass and the same damping. The (unmeasured) value of these parameters was determined
very roughly (0.75 mg and 0.0028 kg/s), comparing measurements and simulations. Thus, the
first resonance frequency of the reed depends solely on the measured static stiffness. At first
sight, the damping parameter seems to be somewhat underestimated.

The blowing pressure (equivalent of the mouth pressure, in the usual playing situation) is
determined from the measurements provided by the Endevco sensor located in the container,
low-pass filtered with Fourier transform, so as to eliminate completely the components of the
sound radiated in the container of frequency higher than 100 Hz (one octave and a half below the
playing frequency) and which could otherwise interfere during the synthesis. Thus the conditions
of measurements with the artificial mouth are quite perfectly reproduced and the measured and
simulated signals can be compared at any moment.

The synthesized data was analyzed with the procedure used to analyze the measured data.
The analyzed signals are in principle the same, with 3 differences:

1. The 1D reed model does not differentiate the deflection of the reed on the right and left
sides. The simulated reed signal has therefore only one channel.

2. The radiated pressure in the container at the sensor location is not simulated.

3. The calculated flow rate signal in the channel is added to the data .

8.3.5 Subjective musical evaluation

A subjective musical evaluation is performed in blind conditions, based on 4 descriptors allow-
ing absolute comparisons between reeds within the panel 9. These descriptors include the ability
of the reed to meet certain requirements, and not some abstract properties, which are usually
imprecisely defined. It is far more relevant to ask the clarinetist to perform some familiar aptitude
tests, such as those he uses when selecting his reeds before a concert. An important aspect is often
neglected in perceptual studies: the accuracy of intonation, which poses a number of constraints
on the embouchure, when playing with other instrumentalists (about the influence of the reed
on intonation, see [130, 34, 157, 30, 37]). Three of the four subjective musical descriptors were
selected during a preliminary study (from a battery of approximately 40 different descriptors).
They proved relatively repeatable: from a panel of 15 reeds, statistically significant correlations
were found between two series of tests carried out a few days apart. These descriptors were also
selected because they are relatively uncorrelated.

9. Absolute comparisons are more difficult to perform reliably than relative comparisons in pairs, but they
are much less demanding to perform. The evaluation of a single descriptor with a panel of 40 reeds requires 40
evaluations instead of 780 (for all possible pairs). On the other hand, it is essential to evaluate the repeatability,
in order to verify that the clarinettist presents a certain constancy in his judgments. Another advantage of
the absolute comparisons: they allow a comparison between reeds having an equivalent hydric state (the same
humidification procedure is used for each reed before the test, which is impossible with pairwise comparisons).
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In the present study, each test was repeated 4 times (during 5 consecutive days), for the
following descriptors :

1. StrengthSubj : The subjective strength of the reed is evaluated, blindly, without knowing
its nominal strength (indicated by the manufacturer), but knowing that it is comprised
between 2 and 3.5. The purpose of the test is not to retrieve the nominal strength, but to
evaluate the subjective strength felt in the playing situation, so as to assess its adequacy
with the nominal strength (or not). If necessary, the scale can be extended, so as to signal
a particularly weak or strong reed.

2. Poulenc: The ability of the reed to play the first lines of the Poulenc sonata, which requires
a particularly abrupt and aggressive fortissimo, is evaluated. The reeds are scored on a
scale of 1 to 6 (but in practice, the scores 4 and 5 were mainly used). In the 4th evaluation,
an alternative test was performed, based on an excerpt from the 3rd movement of the 1st
Brahms Sonata (which was statistically significantly correlated with the original test).

3. Schubert : The ability of the reed to play the first lines of Schubert’s ”Der Hirt auf dem
Felsen”, which requires a soft, expressive sound, is evaluated. The reeds are scored from
1 to 6 (but in practice, the scores 4 and 5 were mainly used). In the 4th evaluation, an
alternative test was performed, based on the beginning of Stravinsky’s first solo piece for
clarinet (which was statistically significantly correlated with the original test).

4. Intonation: The fingering G4 (all fingers open) is played for a few seconds, with a full and
round sound. When the sound is judged ”optimal”, the player open his eyes and record
the first value read on the chromatic tuner. With a weak reed, the embouchure should
not be too loose, so as to limit the flattening of the intonation. With a strong reed, the
embouchure should be tighten just what is necessary to diminish the turbulence noise. A
small volume of air is exhaled before playing, so as to eliminate the CO2-poor air contained
in the upper airways.

StrengthNom, the nominal strength of the reed, indicated by the manufacturer was included in
the analysis. It is merely compared to the measurements.

The test series 2 to 4 have been recorded by an external microphone (to allow a possible
future analysis). It turned out that recording is impairing the judgment: the player must focus
his attention on playing the right notes, respecting the timing and the tempo, in order to make
the audio recording suitable for further analysis. The faculty of judgment is distracted (often,
the beginning of the excerpt must be repeated several times to make a more accurate judgment).
I quickly decided to assign the scores for the ”Poulenc” and ”Schubert” descriptors after the end
of the recording, by freely testing the reed.

The third series was spread out over 2 days. Between the evaluations of each reed, approxi-
mately 15 minutes of manipulations were necessary to carry out the aeraulic measurements for
11 different embouchures (unfortunately unusable). The ambient temperature ranged from 19 to
21◦C in this series. A lower repeatability is therefore expected for this series.

During the 4th (and last) series, the ”Poulenc” and ”Schubert” descriptors were evaluated
using alternative musical excerpts (some musical excerpts recorded during the 3rd series seemed
to be quite equivalent to the original ones and I wanted to check this point). During this last
series, I tried to widen the scale of evaluation (being less restrictive in the evaluation of the
scores).

It should be noticed, that the instrumented mouthpiece was not used for the perceptual tests
(it was used exclusively for the objective measurements). I played a mouthpiece of the same
model (Vandoren M30).

8.3.6 Data acquisition

The reeds were subjected to several measurement sessions 10. The first session was performed
immediately after opening the sealed package, ensuring a stable hygrometry since manufactur-

10. The adopted protocol reflects some imperatives of efficiency : I had to do all the operations myself (prepa-
ration of the reeds, perceptual tests, protocol, technical manipulations). The fact that several minutes can pass
between two successive subjective evaluations does not improve by the repeatability (but this allows on the other
hand to regenerate the concentration)
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ing. A series of photos of the channel was made for the new reed, with 16 different embouchures.
The reeds have been then subjected to fifteen cycles of humidification (brief soaking in water)
and drying (at least one day, with a relative air humidity between 70 and 75%). From the first
humidification / desiccation cycle, the author of these lines played each reed for a few minutes.
After the 3rd cycle, each reed was played and then subjectively noted. This was repeated during
4 consecutive cycles. The reeds were no longer played by a human in the subsequent cycles, but
only by the artificial mouth. At the end of this treatment, the reed is considered to be ”break-
in”, according to the terminology of clarinettists. A series of aeraulic, optical and photographic
measurements were carried out at each cycle, but only the last series of measurements is incor-
porated into the measurement corpus of the present study, for the sake of simplicity 11. For the
bifurcation study, the reeds were played by the artificial mouth in dry conditions (i.e. without
humidification). Finally, a series of photographs of the break-in reed were made for 25 different
embouchures.

8.4 Data Analysis Methods

An brief introduction to statistical analysis methods is given for readers who are not very
familiar with this discipline and with its terminology. Different linear statistical methods are
presented, using deliberately similar notations so as to emphasize the similarities among them
(see Tables 8.2 and 8.3).

8.4.1 Preparation of data matrices

We aim at analyzing by statistical methods measurements made on a sample of N individuals
taken from a population. In our study we have taken N = 40 reeds of the brand Vandoren
”classic”, among those which are put on sale. On each individual reed, we perform P distinct
measurements (which are called variables, in statistics). The collected data thus forms a matrix
X, consisting in N rows and P columns (this is denoted in short form X : N × P ).

Prior to processing the data with linear algebra techniques, one of the following treatments
is generally applied to X, so as to eliminate the affine component:

— Centering: the function X → center(X) subtracts the mean from each variable. This way,
the average of each column of X is zero.

— Standardization: the function X → std(X) subtracts the mean from each variable, then
divides it by the standard deviation. This way, the average of each column of X is zero
and the standard deviation is 1.

In principle, centering is applied to matrices with homogeneous measurements (same physical
units, comparable variations among measures). Otherwise, standardization is applied.

In order to obtain a 2D data matrix, notice that the measurement structure must be even-
tually flattened, so as to obtain a single vector per reed (i.e. one row of the matrix X). This is
for instance the case for the photos of the channel which repeat similar measurements made on
a series of embouchures ψ. After the statistical analysis, the results may be partitioned (”deflat-
tened”) in order to recover the orignal measurement structure.

Many statistical analyses do not allow missing data. We have to structure the data in such a
way, that measurements are available for all reeds and all variables. For instance, a data structure
based on the pressure supply (psupply) is not recommended for the bifurcation analysis, because
we have to eliminate the measurements for all pressures for which no sound was obtained for at
least one reed. A good practice is to recast psupply by the emergence and extinction thresholds
(i.e. to sample the measurements on a dimensionless grid of supply pressures). This way, data is
available for all adimensioned pressures and all reeds. Some non-linearities can also be (partially)
removed with similar techniques.

11. This is also due to technical problems (disconnection of the calibrated diaphragm and disturbances in the
stabilized power supply of the optical sensors). These defects were noticed only after the end of the subjective
tests (since the requirements of a blind test prohibit any analysis before the end of the data acquisition). Once
the defects were found and repaired, new measurement sessions were carried out. No subjective evaluation has
been done since that moment.
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Method Symbol Dim. Designation
MLR N scalar number of individuals
MLR P scalar number of variables (predictors)
MLR Py scalar number of dependent variables
MLR X N × P data block
MLR Y N × Py dependent variables

MLR Ŷ N × Py linear approximation of Y
MLR A P × Py regression coefficients
PCA N scalar number of individuals
PCA P scalar number of variables
PCA Q scalar number of factors taken into account
PCA X N × P data block

PCA X̂ N × P linear approximation of X
PCA Y N × P principal components scores
PCA A P × P component loadings
PCA λq scalar qth largest eigenvalue of Σ
PCA Λ P × P diagonal matrix of the eigenvalues of Σ (Λq,q = λq)
PCA ΛQ Q×Q diagonal matrix of the Q largest eigenvalues
PCA F N ×Q PCA factors : first Q columns of Y
PCA B P ×Q first Q columns of the component loadings
PCA ηQ scalar proportion of variance captured with Q factors
CCA N scalar number of individuals
CCA J scalar number of data blocks
CCA Pj scalar number of variables of the jth data block
CCA Q scalar number of factors taken into account

CCA Q̆ scalar number of statistically significant factors
CCA Xj N × Pj jth data block

CCA X̂j N × Pj linear approximation of Xj

CCA Y N ×N group configuration

CCA Ŷ j N ×N canonical variates
CCA Aj Pj ×N canonical weights
CCA V j Q× Pj reconstruction matrix
CCA F N ×Q CCA factors : first Q columns of Y

CCA G N ×N =
∑J
j=1 XjX

+
j

CCA λq scalar qth largest eigenvalue of G
CCA Λ Q×Q diagonal matrix of the Q largest eigenvalues (Λq,q = λq)
CCA rj,q scalar canonical correlation for block j and factor q
CCA r̄2

q scalar mean square correlation for the qth factor
CCA r̆2

q scalar limit value of statistical significance for r̄2
q

CCA r̄q scalar =
√
r̄2
q

CCA r̆q scalar =
√
r̆2
q

CCA ηj,q scalar proportion of variance of the block j captured with q factors

CCA λ̂j,q scalar = ηj,q − ηj,q−1

Table 8.2 – Comparison of the symbols used for statistical analyses: Multivariate Linear
Regression (MLR), Principal Component Analysis (PCA) and Canonical Correlation Analysis

(CCA).
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Scores and ranks

If some irregularities (for instance non normal distribution or presence of outliers) are sus-
pected in a variable (i.e. in one of the columns of X) , the measured values (called ”scores” in
statistics) may be transformed into ranks, by sorting the scores in increasing order and replacing
the corresponding column in X by the ranks obtained for each individual in the sorted list (in
our example the ranks are natural numbers from 1 to 40, because we have 40 reeds). Statistical
methods can be applied to ranks instead of to scores. The main advantage is that the results are
more robust, while the main drawback is that a part of the information is lost, thus statistical
tests become less sensitive. In other words: this technique increases the robustness of the analysis,
to the detriment of finesse.

A well known example of application is the Spearman’s rank correlation coefficient which may
substitute the (usual) Pearson correlation coefficient for the evaluation of the degree of similarity
between two variables. The former is actually a Pearson correlation coefficient applied to the
ranks obtained by each variable. A ”mixed” correlation coefficient could also be evaluated when
only one of the variables is transformed into ranks. In this PhD, the word ”correlation” always
refers to the Pearson correlation formula, while the nature of the analysed variables (scores or
ranks) has to be specified.

Identification of outliers

Our aim is to find the individuals who have a preponderant influence on a given statistic we
want to compute. One of the simplest methods to identify these outliers is the deviation-based
approach: we delete one individual from the database and compute the statistic again and repeat
the operation in turn until all individual have been deleted once. The individuals who provoked
a noticeable deviation of our statistic may be discarded definitively from the database in the
future analyses.

8.4.2 Covariance and Correlation

The covariance (cov) between two vectors x and y is estimated by:

cov(x,y) =
1

N − 1
center(x)T center(y) (8.1)

where xT is a row vector and y is a column vector.
The correlation ρ between two vectors x and y is estimated by:

ρ(x,y) =
1

N − 1
std(x)T std(y). (8.2)

The covariance matrix of the population is estimated from our sample by:

cov(X) =
1

N − 1
center(X)T center(X) (8.3)

where XT is the transpose of X.
The correlation matrix of the population is estimated from our sample by:

ρ(X) =
1

N − 1
std(X)T std(X). (8.4)

Observe that the covariance and correlation are P × P matrices. The main diagonal of the
correlation matrix is filled with 1 (the correlation of a variable with itself is always 1).

8.4.3 Pseudoinverse of a matrix (inverse of Moore-Penrose)

When the columns of a real matrix X are linearly independent of one another, the matrix
XTX is invertible. Its pseudoinverse X+ is defined as:

X+ = (XTX)−1XT , (8.5)
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in which case: X+X = I.

Notice the similarity with the covariance matrix.

The pseudoinverse is commonly used to solve an overdetermined system of linear equations
in the sense of least squares.

8.4.4 Linear regression and Multivariate Linear Regression (MLR)

The purpose of linear regression is to provide an estimation (by linear combination) of a
vector containing the dependent variables y from a sample matrix X containing the independent
variables (regressors, also called predictors) and a vector a containing the regression coefficients.
From a random observation x, we seek to predict by linear combination a convenient value for y
as:

y = xTa. (8.6)

How can we estimate an optimal value for a?

For our sample matrix of independent variables X, this equation reads:

y = Xa.

This system has generally no solution (because N � P , usually).

We seek a solution that minimizes the quadratic error S(a):

S(a) = (y −Xa)T (y −Xa) = yTy − aTXTy − yTXa + aTXTXa.

Here, (aTXTy)T = yTXa has the dimension of a scalar. It is therefore equal to its own trans-
pose, hence aTXTy = yTXa. The quantity to be minimized becomes:

S(a) = yTy − 2aTXTy + aTXTXa.

Differentiating this with respect to a and equating to 0 to satisfy the first-order conditions gives

−XTy + (XTX)a = 0.

A sufficient condition for the satisfaction of the second-order conditions for a maximum is that
X have full column rank, in which case XTX is positive definite. Finally we get:

a = (XTX)−1XTy = X+y

.

This result can be generalized to a multivariate linear regression model (MLR, also called
general linear model):

Y = XA (8.7)

where Y is a data matrix and A is the matrix of the regression coefficients. The minimization
problem becomes:

Minimize
A

tr (Y −XA)
T

(Y −XA) (8.8)

assuming that X is of full column rank.

The least squares solution is:

A = X+Y . (8.9)

Regression is often used to predict Y from X or to reconstruct the original data Y from
a small set of orthogonal variables, X, which are generally obtained by Principal Component
Analysis or by Canonical Correlation Analysis (see next paragraphs): Ŷ = XA.

As explained in §3.6, the affine component may be reintroduced in the regression, by append-
ing a column to X filled with 1. This ”variable” bears ordinarily the index 0.
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Method Input Solution Projection Norm. Minimize

MLR X, Y A = X+Y Ŷ = XA tr
(
Y − Ŷ

)T (
Y − Ŷ

)
PCA X AΛAT = cov(X) Y = XA ATA = I

= 1
N−1

XTX

CCA Xj Y ΛY T =
∑

XjX
+
j Ŷ j = XjAj Y TY = I tr

∑(
Y − Ŷ j

)T (
Y − Ŷ j

)
Aj = X+

j Y

Table 8.3 – Summary of the essential differences and similarities between the described
statistical methods: multivariate linear regression (MLR), Principal Components Analysis

(PCA) and Canonical Correlation Analysis (CCA)

8.4.5 Principal component analysis (PCA)

This analysis method is described by Jolliffe, [97], as follows:
The central idea of principal component analysis (PCA) is to reduce the dimensionality of a

data set consisting of a large number of interrelated variables, while retaining as much as possible
of the variation present in the data set. This is achieved by transforming to a new set of variables,
the principal components (PCs), which are uncorrelated, and which are ordered so that the first
few retain most of the variation present in all of the original variables.

Having defined PCs, we need to know how to find them. Consider, for the moment, the case
where the vector of random variables x has a known covariance matrix Σ : P × P . This is the
matrix whose (i, j)th element is the (known) covariance between the ith and jth elements of
x when i 6= j, and the variance of the jth element of x when i = j. The more realistic case,
where Σ is unknown, follows by replacing Σ by a sample covariance matrix. It turns out that for
k = 1, 2, · · · , P , the kth PC is given by yk = aTk x where ak is an eigenvector of Σ corresponding
to its kth largest eigenvalue λk. Furthermore, if ak is chosen to have unit length (aTk ak = 1),
then var(yk) = λk, where var(yk) denotes the variance of yk.

To derive the form of the PCs, consider first aT1 x; the vector a1 maximizes var(aT1 x) =
aT1 Σa1. To maximize aT1 Σa1 subject to aT1 a1 = 1, the standard approach is to use the technique
of Lagrange multipliers. Maximize

aT1 Σa1 − λ(aT1 a1 − 1),

where λ is a Lagrange multiplier. Differentiation with respect to a1 gives

Σa1 − λa1 = 0 = (Σ− λIP )a1.

Thus, λ is an eigenvalue of Σ and a1 is the corresponding eigenvector. To decide which of
the P eigenvectors gives aT1 x with maximum variance, note that the quantity to be maximized
is aT1 Σa1 = aT1 λa1 = λaT1 a1 = λ, so λ must be as large as possible. Thus, a1 is the eigenvector
corresponding to the largest eigenvalue of Σ, and var(aT1 x) = aT1 Σa1 = λ1, the largest eigenvalue.
In general, the kth PC of x is aTk x and var(aTk x) = λk, where λk is the kth largest eigenvalue of
Σ, and ak is the corresponding eigenvector. The proof of this is given in [97], p. 5 ff.

In matrix form, this is written
Y = XA, (8.10)

where the columns of A are the eigenvectors of Σ (i.e. Σ = AΛAT , where Λ is the diago-
nal matrix of the eigenvalues of Σ, sorted from the largest to the smallest and ATA = I).
This orthonormal transformation do not change the total variance of the sample: tr (cov (Y )) =
tr (cov (X)) = tr (Λ).

We examine now how to compress the information with minimal loss. For any integer Q,
1 ≤ Q ≤ P , let us consider the matrix B : P×Q of the Q first columns of A and the orthonormal
transformation:

F = XB (8.11)

It can be shown that B maximize tr(cov(F )), subject to the constraint BTB = I, because
cov(F ) = 1/(N − 1)F TF = 1/(N − 1)BTXTXB = BTAΛATB = ΛQ, where ΛQ is the
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diagonal matrix of the Q largest eigenvalues of Σ. Note that F is (generally) of full column rank
if Q ≤ min(N,P ).

F , the N ×Q matrix of the PC scores captures

ηQ =
tr (cov (F ))

tr (cov (Y ))
=

tr
(

cov
(
X̂
))

tr (cov (X))
=

tr (ΛQ)

tr (Λ)
=

∑Q
k=1 λk∑P
k=1 λk

(8.12)

100 × ηQ percent of the variance of X. The plot of λk as a function of k is called ”scree plot”.
The number Q of factors to retain for an optimal compression of the data can be determined by
inspection of the scree plot, by finding an ”elbow” in the curve.

The PCA can be viewed as a method of compression of data (from P down to Q components)
with minimal loss of information in the sense of least squares. The original data can be approx-
imated (reconstructed) by Multivariate Linear Regression, taking the pseudoinverse of Eq 8.11:

X̂ = FB+ = F (BTB)−1BT = FIBT = FBT (8.13)

The reconstructed data is denoted X̂.

8.4.6 Canonical-correlation analysis (CCA)

The statistical methods described in the previous § apply to a single set of variables (i.e.
to a single data block), X. Let us consider now J data blocks Xj of dimension (N × Pj). We
assume that all the columns of Xj are linearly independent of each another. Xj is therefore of
full column rank. This implies in particular that Pj ≤ N . If this is not the case, a PCA can be
applied to the data, for instance, in order to get a full column rank matrix Xj .

The Canonical Correlation Analysis (CCA) [185, 197, 12, 77, 48, 186, 182, 189, 180, 179, 181,
178] compares J = 2 groups of quantitative variables (data blocks) taken on the same individuals.
The purpose is to compare these two blocks to see if they describe the same phenomenon.
According to [189], the aim of CCA is to find linear combinations for two sets of variables in such
a way that the correlation between the two linear combinations is maximal. Let: X1 : N × P1

and X2 : N × P2 denote centered and standardized data matrices. The idea is to construct
ŷ1 = X1a1 and ŷ2 = X2a2 so that the correlation between ŷ1 and ŷ2 is maximal:

Maximize
aj , ŷj

ρ(ŷ1, ŷ2)

subject to ŷTj ŷj = 1
(8.14)

The vectors ŷ1 and ŷ2 are the canonical variates. These canonical variates are standardized:
ŷTj ŷj = 1. The vectors a1 and a2 are often referred to as canonical weights. Instead of obtaining
only two canonical variates, additional variates may be constructed that are orthogonal with
respect to the previous ones. Then: Ŷ 1 = X1A1 and Ŷ 2 = X2A2, suject to the constraint

Ŷ
T

j Ŷ j = I.
The generalized canonical correlation analysis performs this analysis simultaneously on J

data blocks inside the measurement corpus. Many different algorithms have been proposed for
this purpose. In an early stage, the methodology described in [180] was applied to our data.
Following the advice of a jury member, Jean-François Petiot, the method proposed in 1968 by
Carroll was finally retained for the analysis of the data presented here. This method is easy to
apply, concise and well suited for our purpose 12.

Crucial in Carroll’s method is the introduction of a so-called group configuration Y . The
canonical variates Ŷj = XjAj are chosen in such a way that the sum of squared correlations
between them and the group configuration is at a maximum. This is equivalent to the following
minimization problem:

Minimize
A,Y

tr
∑J
j=1 (Y −XjAj)

T
(Y −XjAj)

subject to Y TY = I
(8.15)

12. The statistical significance of the results obtained with both method is practically identical. It was tested
for both methods with the same algorithm: by Monte-Carlo simulation.
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The group configuration matrix Y can be obtained by solving the eigenequation:

GY = Y Λ (8.16)

where G =
∑J
j=1 XjX

+
j and Λ is the diagonal matrix of the eigenvalues of G. The columns

of Y are the eigenvectors of G. As before, the eigenvalues are sorted from the largest to the
smallest. The matrices Aj can be calculated as

Aj = X+
j Y .

For the jth data bloc, the qth canonical correlation (denoted rj,q) is computed as the corre-

lation between the qth column of respectivelyŶj and Y :

rj,q = ρ(Ŷj,•,q, Y•,q) (8.17)

The symbol • indicates that all occurrences of the corresponding index are retained (i.e. the
correlation rj,q is computed between two vectors).

The mean square correlation for the qth canonical factor, denoted r̄2
q , is:

r̄2
q =

1

J

J∑

j=1

r2
j,q (8.18)

Notice that maximizing
∑N
n=1 r̄

2
n is equivalent to minimizing Eq. 8.15.

Number of statistically significant factors

The probability (P-value) that a mean square correlation greater than the observed value r̄2
q

can be obtained although the null hypothesis H0 is true (i.e. there is no relationship between
the data blocks Xj for the factor q) can be computed by the Monte-Carlo method, for instance.
Alternatively, a limit value, r̆2

q , can be determined for a given threshold of significance (for
instance at the 1% level). If r̄2

q > r̆2
q , H0 is rejected: the qth CCA factor is statistically significant

(or shortly: the qth factor is significant). Once a non-significant factor has been detected, all
subsequent factors are considered non-significant 13.

Generally, the threshold of significance is set between 1 and 5%. Here, we are more restrictive:
in most cases the 0.1% level is considered. An example of computation of the limit of significance
r̆q by Monte-Carlo with 10’000 random draws (with gaussian distribution) is given on Fig. 8.13
for the case: N = 40 reeds, J = 5 blocks and Pj = 15 variables.

The detection of significant factors is sensitive to the number of variables in each block. This
number must be determined carefully, especially when the blocks are compressed by PCA: if too
much of meaningless random noise is included in Xj , the number of significant factors decreases,
because some of the pertinent information which is difficult to detect is drowned in the noise.
Similarly, if too less degrees of freedom are given to build Y , the number of significant factors
decreases. A good balance has to be found between these two extremes. As a rule of thumb, this
number should be 2-5 units larger than Q̆ (but also not much higher than N/4 - N/3).

Reconstruction of the information

Once the number Q of retained factors is determined (usually Q ≤ Q̆), the matrix F of the
CCA factors is obtained by taking the Q first columns of Y . The matrix F is considered as
the quintessence of the data, summarizing the relevant information which is common to all data
blocks of the analysis. One expects that every data block can be reconstructed with minimal loss
of information by MLR:

X̂j = FV j (8.19)

13. In order to allow a comparison with the magnitude of the correlations, we perform the statistical tests on

the square root of the mean square correlation: r̄q =
√
r̄2q and the limit of significance is: r̆q =

√
r̆2q
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Figure 8.13 – Limit value r̆q for the thresholds of significance 5%, 1% and 0.1% (respectively
from light to dark), for the case: N = 40 reeds, J = 5 blocks and Pj = 15 variables, assuming
gaussian distribution. If the observed value of r̄q is greater than r̆q, the null hypothesis H0 is

rejected (i.e. we admit that the qth canonical correlation is greater than 0 for a least 2 blocks,
with a probability of being wrong smaller than the threshold of significance we have chosen).

The square root of r̆2
q is illustrated on this plot, in order to allow a direct comparison with the

magnitude of the canonical correlations.

Taking the pseudoinverse, the reconstruction matrix V j is obtained from the original data Xj :

V j = F TXj (8.20)

because, by construction F TF = I, therefore F+ = F T .

The MLR can be applied not only to the J data blocks analysed by CCA, but also to
every kind of data that could possibly share some common information: raw data, excerpts of
data, transformed data, data of other measurements, data from a simulation model, and so on.
For instance, the subjective evaluations by the clarinettist can possibly be reconstructed by the
matrix F obtained from a CCA made on objective measurements. If this succeeds, F is considered
as a relevant indicator for predicting the musical evaluation of the reeds (see §8.5.5). An other
concern is to find a measurement method which is able to provide a good estimation of F , at
minimal cost, in our example for instance by analysis of the photos of the channel made directly
by the reed maker in the manufacture (see §D.2). This way a rating method may be developed.

Number of factors to retain for a robust prediction, Scree plot

In order to enhance the robustness of the prediction, the number Q of factors used as predic-
tors should not be taken too large. A reasonable choice is Q < N/6, so maximally 6 factors have
been retained as predictors for our sample of N = 40 reeds, even if more significant factors are
available.

The number of factor to retain can also determined by examination of the scree plot (via the
proportion of explained variance). Similarly to Eq. 8.12, the proportion of variance captured by
the reconstruction is:

ηj,q =
tr
(

cov
(
X̂j

))

tr (cov (Xj))
(8.21)

The scree plot is obtained by plotting λ̂j,q = ηj,q − ηj,q−1 as a function of q and j. Similarly to
the PCA case, the number of factors to retain can be determined by inspection of the scree plot,
by finding an ”elbow” in the curve.

It should be mentioned that the amount of reconstructed variance must be considered carefully
with respect to the context: for instance the value of ηj,q may be much higher for a measured
quantity than for its derivative. The physical context must be considered.

A more didactic introduction to CCA can be found in Appendix C.
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8.4.7 Philosophy adopted for the data analysis

Given the considerable amount of data collected (around 100 GB), prior to analysis, it is
essential to concentrate the information using parsimonious representations. For physical mea-
surements, which are particularly varied and voluminous - even after linear compression of each
collected block of data by Principal Component Analysis (PCA, §8.4.5) - we will take advan-
tage of the diversity of the experiments to gain some knowledge on the hidden structures (CCA
factors) common to all data blocks, by Canonical-Correlation Analysis (CCA, §8.4.6). The fac-
tors obtained by PCA and by CCA will serve as a basis for further analyses. This supposes a
hierarchical organization of the analyses.

Interpretation of the results

The results of a CCA may be interpreted in different ways. In the following, each data matrix
Xj included in the analysis is considered as a block (even if it is derived from a group of blocks).

statistical significance The number Q̆ of statistically significant factors is a measure of the
dimensionality of the redundancy among the analysed blocks. Factors are detected if similar
information is present in more than one block. Pertinent information which is present only
in one block is discarded by the analysis. We must bear this in mind by the interpretation
of the results.

inspection of rj,q The inspection of the canonical correlations rj,q reveals the degree of con-
gruence of each block, within the qth CCA factor. A comparison with the limit value of
significance r̆q is instructive: the contribution of each block to r̄q can be evaluated. A cor-
relation higher than this value is a signal that the block is well representative of some
properties characterizing the reeds for this factor. A relatively low correlation is more dif-
ficult to interpret. It may signal:

— presence of irrelevant measures

— presence of artifacts

— human errors in the measurement protocol

— uncertainties on the measured quantities

scree plot The optimal number of factors to retain, Q, can be determined by inspection of the
scree plot (λ̂j,q), by finding ”elbows” in the curves.

inspection of V j The results may also be interpreted in a more intuitive way: in the light
of the raw physical measurement, without any compression or treatment of the data, by
inspection of the matrix V j , Eq. 8.20.

Designation of the factors

In this PhD, the Principal Component scores (Q first columns of the matrix Y , in §8.4.5) are
named ”PCA factors”, in contrast to ”CCA factors” (Q first columns of the group configuration
matrix Y , in §8.4.6).

8.4.8 Database and analyse structure

The database and the analyses are structured according to 3 hierarchical levels of ”concen-
tration” of the information:

1. raw data blocks

2. blocks of PCA factors (each block concentrates most of the information of one block of raw
data into a matrix of orthogonal PCA factors of full column rank)

3. blocks of CCA factors (each block concentrates most of the information common to all
members of a group of blocks, into a matrix of orthogonal CCA factors of full column
rank)
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Further hierarchical levels could be considered (i.e. groups of groups of blocks of factors). I
prefer a ”recursive” definition of hierarchical level 3: any group of blocks of factors taken in the
hierarchical levels 2 and 3 can be analysed by CCA to form a new group at level 3, concentrating
most of the information common to all members of the group, into a matrix of orthogonal CCA
factors.

The hierarchical level 1 is never analyzed by CCA for 2 reasons:

1. The number of variables Pj exceeds N in practically all cases. A data compression by PCA
is mandatory since Carroll’s CCA requires full rank column matrices.

2. The statistical tests I developed require that the variables in each data block are indepen-
dent from each other (i.e. Xj must be orthogonal).

A hierarchical structuration is also helpful for the following reasons:
In a CCA, all analyzed data blocks are treated with the same weight. The CCA does not

make any distinction among data blocks (such as a distinction between predictors and dependent
data blocks, like in MLR). The proposed hierarchical structure helps to focus the analysis at the
desired level of abstraction. This restores a good balance between the weights of the analysed
groups, especially if the number of members of each group is very different (this would not be
the case if all blocks were put in one single melting pot for the CCA analysis). Moreover, this
structuration helps also the reader to identify easily the members of each group composing an
analysis, thanks to a convention about the identifiers of the blocks at the different hierarchical
levels:

level 1 First letter of the identifier in uppercase, see Table 8.4.

level 2 First letter and last letter of the identifier in lowercase, see Table 8.5.

level 3 First letter of the identifier in lowercase and last letter of the identifier in uppercase, see
Table 8.6. The last letter indicates if the CCA is performed:

”F” : directly on the factor scores of all blocks involved in the analysis.

”R” : after conversion of the factor scores into ranks.

The data blocks containing the raw measurements are detailed in Table 8.4. The number of
measurements made for each of the 40 reeds is indicated in the Table. This Table summarizes
the first hierarchical level of the data structure (raw measurements).

The raw data blocks are then compressed by PCA to constitute blocks of PCA factors (or-
thogonal to each other; no rotation of VARIMAX type has been performed). The details can be
taken from Table 8.5. This table summarizes the second hierarchical level of the data structure
(measurements, compressed by PCA).

The information is then concentrated by CCA, for different groups of PCA blocks. This
constitute the superior hierarchical structure of the database. Details are recorded in Table 8.6
(CCA factors).

Table 8.7 presents an overview of the different analyses of hierarchical level 3, according to
the category of the analysed data.

8.5 Data analysis

In this section, the corpus of data is analysed with the methods described in the previous
section.

8.5.1 Diagnosis about irregularities in the data

In order to detect possible irregularities in the data let us examine the number Q̆ of sta-
tistically significant factors at the 0.1% level, indicated in Table 8.6, column 4. A very good
concordance is observed between all analyses performed on factor scores (identifier ending with
letter ”F”) and the corresponding analyses after transformations of the factor scores into ranks
(same identifier ending with letter ”R”). As expected, Q̆ is sometimes lower for the rank based
analyses, since some information is lost in the transformation. The difference is quite marginal:
maximally one significant factor less (and this for 3 blocs only: static, subjective and objective).
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number of
Identifier measurements Comment
PhotoNew 540 pictures of the channel for the new reed, 16 embouchures

and 2 pictures at rest (before and after measurement)
PhotoBreakIn 810 pictures of the channel for the break-in reed, 25 embouchures

and 2 pictures at rest (before and after measurement)
Aero 497 aeraulic section, as a function of ψ and ∆p

OptoLeft 497 mechanical deflection of the reed on the left side during the
aeraulic measurements, as a function of ψ and ∆p

OptoRight 497 mechanical deflection of the reed on the right side during the
aeraulic measurements, as a function of ψ and ∆p
Measured diagrams of bifurcation:

MThres 16 Emergence and extinction thresholds
(4 embouchures × 2 ramps × 2 thresholds)

MPlayFreq 320 Playing frequencies
(4 embouchures × 2 ramps × 40 adim. supply pressures)

M### 32× 2400 Measured signals (4 sensors × 4 embouchures × 2 ramps)
× (40 adimensioned supply pressures × 60 discrete points)
Synthesized diagrams of bifurcation:

SThres 16 Emergence and extinction thresholds
(4 embouchures × 2 ramps × 2 thresholds)

SPlayFreq 320 Playing frequencies
(4 embouchures × 2 ramps × 40 adim. supply pressures)

S### 24× 2400 Synthesized signals (3 signals × 4 embouchures × 2 ramps)
× (40 adimensioned supply pressures × 60 discrete points)

ReedDeflec 71 reed deflection: discrete points from which the reed model
described in Chapter 5 was fitted for the simulations

ReedAero 71 aeraulic section: discrete points from which the reed model
described in Chapter 5 was fitted for the simulations

Test1 4 Subjective evaluation of 4 descriptors, 1st repetition
Test2 4 Subjective evaluation of 4 descriptors, 2nd repetition
Test3 4 Subjective evaluation of 4 descriptors, 3rd repetition
Test4 4 Subjective evaluation of 4 descriptors, 4th repetition

StdSubj 4 Standardized mean of each of the 4 subjective descriptors
over the 4 repetitions

StrengthNom 1 Nominal strength of the reed, indicated by the manufacturer

Table 8.4 – Hierarchical level 1: Raw data of the corpus of measurements, collected for each of
the 40 reeds. For the bifurcation diagrams: The 4 sensors are 1: pressure in mouthpiece, 2:
pressure in container, 3: reed deflection, left optical sensor, 4: reed deflection, right optical

sensor. The 3 synthesized signals are 1: pressure in mouthpiece, 2: flow rate in mouthpiece, 3:
reed deflection. The 4 embouchures are 1 : ψ1= 2.125 mm, 2 : ψ2= 2.000 mm, 3 : ψ3=

1.875 mm and 4 : ψ4 = 1.750 mm. The 2 ramps are: 1: crescendo, 2: decrescendo.
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Centered or raw data to
Identifier Q Standardized compress
photoNew 15 C PhotoNew

photoBreakIn 15 C PhotoBreakIn
aero 15 C Aero

optoLeft 15 C OptoLeft
optoRight 15 C OptoRight
mThres 15 C MThres

mPlayFreq 15 C MPlayFreq
m### 32× 15 C M###
sThres 15 C SThres

sPlayFreq 15 C SPlayFreq
s### 24× 15 C S###

reedDeflec 15 C ReedDeflec
reedAero 15 C ReedAero

test1 4 S Test1
test2 4 S Test2
test3 4 S Test3
test4 4 S Test4

Table 8.5 – Hierarchical level 2: blocks of PCA factors. The PCA is computed from the
eigenvalues of the covariance matrix for the blocks indicated with ”C” in the third column (and

of the correlation matrix for the blocks indicated with ”S” ).
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Figure 8.14 – Detection of outliers by a deviation-based approach: for the CCA analysis
staticF, r̄q is computed by deleting in turn each reed of the panel. Note the relative importance

of the reeds R05, R12 and R32 for the factors q = 2 to 4. The limit of significance r̆q at the
0.1% level is 0.899 for q = 2.

We have therefore no serious problems with outliers or with nonlinear distribution of the data.
All subsequent analyses can safely be performed exclusively on the factor scores.

In Fig. 8.14, an attempt is made to identify possible outliers among the static measurements
by CCA. It is observed that the reeds R05 and R12 have a noticeable influence on the factors
2 and 3 and that the reed R32 has a noticeable influence on the factor 4. This influence is
considered to be not problematic (provided r̆2 = 0.899 at the 0.1% level), so the corresponding
reeds were not deleted from the data corpus. Note that these reeds are particularly soft or strong:
reed R05 is of strength 2, while the 2 others are of strength 3 1/2. Their particular influence in
the analyses is probably due to nonlinear effects in the measures.
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Identifier Pj J Q̆ Analysed group of data blocks
staticF 15 5 14 photoNew, photoBreakIn, aero, optoLeft, optoRight
staticR 15 5 13 photoNew, photoBreakIn, aero, optoLeft, optoRight

bifurcationF 15 34 14 mThres, mPlayFreq, m111 to m424 (2+32 blocs)
bifurcationR 15 34 14 mThres, mPlayFreq, m111 to m424 (2+32 blocs)
synthesisF 15 26 15 sThres, sPlayFreq, s111 to s324 (2+24 blocs)
synthesisR 15 26 15 sThres, sPlayFreq, s111 to s324 (2+24 blocs)

reedF 15 2 4 reedDeflec, reedAero
reedR 15 2 4 reedDeflec, reedAero

subjectiveF 4 4 3 test1, test2, test3, test4
subjectiveR 4 4 2 test1, test2, test3, test4

objectiveF 15 6 14 photoNew, photoBreakIn, aero, optoLeft,
optoRight, bifurcationF

objectiveR 15 6 13 photoNew, photoBreakIn, aero, optoLeft,
optoRight, bifurcationF

objSubjF 6 2 4 objectiveF, subjectiveF
objSubjR 6 2 4 objectiveF, subjectiveF
statSubjF 6 2 4 staticF, subjectiveF
statSubjR 6 2 4 staticF, subjectiveF
bifSubjF 6 2 3 bifurcationF, subjectiveF
bifSubjR 6 2 3 bifurcationF, subjectiveF

synthSubjF 6 2 2 synthesisF, subjectiveF
synthSubjR 6 2 2 synthesisF, subjectiveF
bifSynthF 15 2 13 bifurcationF, synthesisF
bifSynthR 15 2 13 bifurcationF, synthesisF
bifStatF 15 2 11 bifurcationF, staticF
bifStatR 15 2 11 bifurcationF, staticF

statReedF 6 2 5 staticF, reedF
statReedR 6 2 5 staticF, reedF

synthReedF 6 2 5 synthesisF, reedF
synthReedR 6 2 5 synthesisF, reedF

totalF 6 5 6 staticF, bifurcationF, synthesisF, reedF, subjectiveF
totalR 6 5 6 staticF, bifurcationF, synthesisF, reedF, subjectiveF

Table 8.6 – Hierarchical level 3: blocks of CCA factors. Column 1: identifer of the CCA
analysis. The last letter indicates if the CCA is performed directly on the factor scores of each
block (”F”) or after conversion of the factor scores of each block into ranks (”R”). Column 2:
number of variables in each block Pj . Column 3: number of blocks J . Column 4: number Q̆
of statistically significant factors at the 0.1% level. Column 5: list of blocks involved in the

CCA. The CCAs involving CCA factors are in the lower part of the Table.
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Identifier objective synthesis subjective static dynamic
staticF � N
bifurcationF � N
synthesisF � N
reedF � N
subjectiveF � N
objectiveF � N N
objSubjF � � N N
statSubjF � � N N
bifSubjF � � N
synthSubjF � � N
bifSynthF � � N
bifStatF � N N
statReedF � � N
synthReedF � N N
totalF � � � N N

Table 8.7 – Hierarchical level 3: overview of the analyses, according to the categories objective,
synthesis and subjective and according to the static and dynamic nature of the data.

Identifier Pj J Q̆ fact. 1 fact. 2 fact. 3 fact. 4 fact. 5 fact. 6
staticF 15 5 14 0.9947 0.9757 0.9645 0.9319 0.9104 0.8674
bifurcationF 15 34 14 0.9986 0.9878 0.9666 0.9517 0.9411 0.8993
synthesisF 15 26 15 0.9992 0.9962 0.9877 0.9825 0.9684 0.9678
reedF 15 2 4 0.9995 0.9976 0.9893 0.9727 0.9558 0.8820
subjectiveF 4 4 3 0.9519 0.8808 0.6963 0.5935
objectiveF 15 6 14 0.9952 0.9768 0.9660 0.9339 0.9151 0.8695
objSubjF 6 2 4 0.9880 0.9601 0.9095 0.8848 0.7916 0.7746
statSubjF 6 2 4 0.9883 0.9571 0.9092 0.8845 0.7928 0.7781
bifSubjF 6 2 3 0.9840 0.9547 0.9008 0.8425 0.7659 0.7184
synthSubjF 6 2 2 0.9843 0.9347 0.8722 0.8309 0.7906 0.7491
bifSynthF 15 2 13 0.9998 0.9986 0.9969 0.9934 0.9905 0.9890
bifStatF 15 2 11 0.9997 0.9983 0.9972 0.9951 0.9917 0.9869
statReedF 6 2 5 0.9989 0.9943 0.9829 0.9756 0.8913 0.7362
synthReedF 6 2 5 0.9979 0.9872 0.9742 0.9342 0.8507 0.7589
totalF 6 5 6 0.9859 0.9409 0.8827 0.8352 0.7578 0.6816

Table 8.8 – Square root of the mean square correlations r̄q =
√
r̄2
q for all (scores based) CCAs

of Table 8.6 for the factors q = 1, . . . , 6. Statistically non significant correlations at the 0.1%
level are indicated in italic.
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Pj J factor 1 factor 2 factor 3 factor 4 factor 5 factor 6
15 2 0.997 0.991 0.984 0.975 0.964 0.953
15 5 0.923 0.899 0.883 0.866 0.853 0.839
15 6 0.902 0.879 0.862 0.847 0.833 0.822
15 26 0.772 0.756 0.744 0.734 0.726 0.718
15 34 0.754 0.739 0.729 0.720 0.713 0.706
6 2 0.955 0.921 0.891 0.859 0.825 0.785
6 4 0.832 0.787 0.754 0.726 0.697 0.672
4 2 0.934 0.883 0.842 0.796
4 4 0.791 0.734 0.694 0.660
1 4 0.685

Table 8.9 – Significance limit r̆q at the 0.1% level (N = 40 reeds), assuming gaussian
distribution of the data, for scores based CCAs in function of Pj and J . If r̄q is smaller than

the limit, the corresponding factor is statistically non significant. These limits are computed by
Monte-Carlo, with 10’000 random draws (although the limit cannot be precisely determined

with only 10’000 random draws).

8.5.2 Evaluation of the repeatability of the subjective evaluations

Inside each individual descriptor (Pj = 1 variable, J = 4 repetitions), very significant mean
square correlations are found by a CCA analysis 14. The values of r̄1 obtained for each descriptor
(ForceSubj, Poulenc, Schubert and Intonation) are respectively: 0.930, 0.813, 0.807 and 0.868.
A value higher than 0.685 is sufficient to assert a statistically significant link between the 4
repetitions of the evaluation of one descriptor, at the 0.1% level (see r̆1, Table 8.9, Pj = 1 and
J = 4). The result is quasi identical, if the analysis is performed on the ranks: r̄1 = 0.930, 0.813,
0.807 and 0.870. r̆1=0.675.

To allow a comparison with the study of Muñoz [125], let us perform a one-way ANOVA
for the 4 repetitions of each descriptor (despite the fact that their distributions are possibly not
normal, as required by test). We obtain a F -ratio for each respective descriptor of 18.9, 4.9,
4.8 and 5.2, which corresponds - for the worst of them (Schubert) - to a p-value lower than
1.53 × 10−11. We conclude again that there is indeed a strong link between the 4 repetitions of
the test of each descriptor, taken separately.

These analyses showed that the evaluations of the clarinettist are not dictated by chance. Ad-
ditionally, the fact that the 4th evaluation of the descriptors Poulenc and Schubert was performed
on an alternative test has no major influence on the results, seemingly. This result however did
not tell us how many dimensions are present in the data (because each descriptor was taken
separately).

For this, we have to analyse by CCA simultaneously the 4 repetitions of the 4 subjective
tests (Pj = 4 variables, J = 4 repetitions). For a score based test (see Table 8.6, subjectiveF),
a statistically significant link is demonstrated for the first 3 CCA factors at the 0.1% level. For
a rank based test (subjectiveR), only 2 factors are significant at the 0.1% level (or 3 significant
factors at the 2.5% level). We conclude that we are very confident that at least 2 dimensions are
pertinent in the subjective evaluations and that the presence of a third pertinent dimension is
very likely.

8.5.3 Inspection of the canonical correlations

The mean square correlations of all CCA listed in Table 8.6 are recorded in Table 8.8, up
to the 6th canonical factor. The non significant values at the 0.1% level are indicated in italic.
The limit of significance at the 0.1% level are computed by Monte-Carlo and are summarized in
Table 8.9. A detailed analysis of the canonical correlations is given only for the most important
analyses.

14. The reader unfamiliar with the CCA is invited to read the Appendix C, which introduces this analysis
technique in a didactic way, developing and commenting the principles underlying the analyzes carried out in this
paragraph.
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In Fig. 8.22, the canonical correlations are depicted for each individual block of the analyses:
staticF, totalF and subjectiveF. The limit of significance is indicated by a dotted gray line. For the
staticF analysis, the 4th factor is beyond the limit of significance for the block photoNew. This
is probably related to the break-in process. Indeed, a plastic deformation of the reed caused by
the break-in process is observed in Fig. 8.17, between photoNew and photoBreakIn. The factors 3
and 4 are particularly well related to the aeraulic measurements (aero, optoLeft and optoRight),
while the factor 6 is related to the photos of the channel (photoNew and photoBreakIn). In the
subjectiveF analysis, the 2 first factors are clearly significant for all repetitions of the subjective
tests, while for the 3th factor (the last significant factor), the contribution of the 4th test is under
the limit. Only the 2 first factors are above the limit for subjectiveF. In the totalF analysis, the
4 first factors bind especially well staticF, bifurcationF and reedF (and to a smaller extent
synthesisF ).

In Fig. 8.23, the canonical correlations are depicted for each individual block of the analyses:
bifurcationF and synthesisF. The contribution of all blocks (34 and 26, respectively) are above the
limit of significance for the 6 first factors (and mostly well above the limit). No really noticeable
differences are observed among sensors, among embouchures or among ramps (crescendo and
decrescendo). The relatively poor contribution of mThres (measured emergence and extinction
thresholds) to the factors 4 to 7 should be mentioned, while this is not the case for sThres
(thresholds of the simulations). The factor 8 links all sensors except optoRight. Does this reveal
a minor problem with the right optical sensor?

8.5.4 Number of statistically significant factors

For all data blocks of the categories objective and synthesis, the number of statistically signif-
icant factors at the 0.1% level is very high: it is comprised between 13 and 15 factors. This means
that practically all PCA factors which have been retained after data compression (at hierarchical
level 2) are significant. This is not really a surprise, because the quality of the collected data
allows theoretically an individual identification of each reed. Moreover, it is no doubt that the
measured quantities are strongly related to one another.

As already mentioned, for subjectiveF, 3 factors are significant at the 0.1% level. This seems
a quite low number, but it should be remembered that until now, to my knowledge, the existence
of only 1 significant factor for subjective evaluations could be demonstrated by other researchers.
The subsequent pairwise confrontations of subjectiveF with objectiveF, staticF, bifurcationF and
synthesisF reveal respectively 4, 4, 3 and 2 significant factors. This confirms that the number of
significant factors is around 3 for the subjective evaluations. Moreover, this proves the existence
of a link between subjective evaluations and objective measurements (and also between subjective
evaluations and simulations). Notice that the static measurements are particularly well related
to the subjective evaluations (which are principally of dynamic nature).

Results for other analyses are found in Table. 8.6.

8.5.5 Relations between objective measurements and subjective eval-
uations

One of the most tremendous points of the study is to investigate the relations between objec-
tive measurements and subjective evaluations. This could have important consequences for the
assessment of clarinet reeds, especially for sorting the reeds after manufacture. In order to sim-
plify the analyses, the comparaisons are not performed on each individual test of each subjective
descriptor, but on the standardized mean of each descriptor over the 4 repetitions of the test.
This data block is denoted StdSubj.

Correlations between staticF and StdSubj are shown in the table 8.10 and graphically illus-
trated in Fig. 8.15.

Let us refine the CCA analyses 15 and examine in turn each individual block of the static
measurements (photoNew, photoBreakIn, aero, optoLeft and optoRight) with StdSubj. The aim of
these analyses is to examine to which extent each block is related to StdSubj, so as to determine

15. These subsequent analyses are not recorded in Table 8.6.
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fact. 1 fact. 2 fact. 3 fact. 4 fact.5 fact.6
StrengthNom 0.9100 -0.1388 0.2823 0.0788 -0.0300 0.061
StrengthSubj 0.9052 0.0982 0.1742 0.1270 0.0666 -0.0196
Poulenc 0.6010 0.5071 0.3611 0.1968 0.1679 -0.1273
Schubert 0.1060 0.3161 0.4748 0.1200 0.2910 0.1498
Intonation 0.6739 -0.4989 0.1055 -0.0518 -0.0536 0.0101

Table 8.10 – Correlations between the CCA factors staticF and StdSubj (standardized mean of
each subjective descriptor). For comparison, the correlation with StrengthNom (nominal

strength) is indicated. Noticeable correlations are written in bold.
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Figure 8.15 – ”Moving average” of StdSubj (subjective descriptors, standardized mean score for
the 4 repetitions of the same test), along the first 4 factors of staticF. The reeds are sorted

according to the rank obtained inside each factor, and StdSubj is smoothed by a Gaussian filter
of radius 10. The rank of the reed inside the factor is indicated on the abscissa. The nominal

strength (StrengthNom) is added to the graph, as information.

the kind of measurements which is best suited to predict the subjective evaluations by the
clarinettist.

The results are given in Table 8.11. At the 0.1% level, at least 2 factors are significant for
all pairs of blocks, while 3 factors are significant for photoBreakIn, aero and optoLeft. At the 5%
level, 3 factors are significant for all pairs of blocks, while 4 factors are significant for photoNew
and photoBreakIn.

This result is important for the clarinettist: a prediction (for at least 3 factors) of his subjective
musical evaluation of a wet reed is possible by simple linear regression, from a single objective
measurement technique, applied to the dry reed (all 6 proposed techniques are well suited for this
task). In particular, the prediction of the musical behavior of the reed after break-in is possible
from 4 photos of the channel of the new reed (see D.2). This is decisive for the reed maker,
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Block j = 1 Block j = 2 fact. 1 fact. 2 fact. 3 fact. 4
StdSubj photoNew 0.9857 0.9359 0.8259 0.7716
StdSubj photoBreakIn 0.9764 0.9171 0.8734 0.8187
StdSubj aero 0.9826 0.9147 0.8659 0.7099
StdSubj optoLeft 0.9649 0.9497 0.8455 0.7297
StdSubj optoRight 0.9680 0.9355 0.8331 0.7167

Table 8.11 – Canonical correlations obtained by performing 5 pairwise CCA between StdSubj
(standardized mean of the subjective descriptors) and the static, objective measurements, after
PCA compression. The significant correlations at the 0.1% level are written in bold. The non

significant correlations at the 5% level are written in italic.

Descriptor
√
R2 coef. 1 coef. 2 coef. 3 coef. 4

StrengthSubj 0.905 N
Poulenc 0.865 N N N
Schubert 0.475 N
Intonation 0.838 N N

Table 8.12 – Linear regression for the prediction of the subjective descriptors StdSubj from the
first 4 factors of staticF. The correlation coefficient for the regression is given and the

significant coefficients used for the regression are indicated by N. Non significant coefficients are
set to 0 in the regression.

which can therefore categorize the reeds immediately after manufacture (if the maturation post
production is negligible).

Although a prediction of the first 4 subjective factors from 4 individual measurements seems
possible for PhotoNew a reed categorization by the manufacturer based on objective factors is
probably more relevant, since they are less affected by errors and do not depend on the personal
preferences of the clarinettist who performed the tests.

Let us verify this result by predicting each descriptor in StdSubj by linear regression, from
the first 4 factors of staticF used as predictors. The statistical significance of each regression
coefficient is tested by ANOVA at the 0.2% level. The significant regression coefficients are given
on Table 8.12.

The corresponding regression plots are given on Fig. 8.16. One outlier (the extremely strong
reed R12) is observed in Schubert which has an important influence on the correlation.

I renounce giving the numerical values allowing the prediction of the factors, since these
are device dependent (in particular on the elasticity, the thickness and the zero position of the
artificial lip).

8.5.6 Inspection of the matrix V j

The inspection of the matrix V j , Eq. 8.20, is instructive for many reasons. First of all, this
restores an intuitive link with the underlaying physical problem, when this Eq. is applied to the
raw data from which the factors are derived.

The columns of matrix V j = F TXj are depicted graphically on Figs. 8.17 to 8.21 for different
data blocks. In these Figs. each vector is depicted as a 2D structure. The apparent contradiction
(regarding the 1D structure of a vector) must be clarified. For solving Eq. 8.19, the measurement
structure must be flattened, so as to obtain a single vector per reed, in order to build the mea-
surement’s matrix Xj . For the graphical representation, the columns of V j are then partitioned
(”deflattened”) in order to recover the measurement structure (for each embouchure ψ).

The vector of the nth factor is normalized by construction so as to correspond to +1 stan-
dard deviation of the scores of the nth factor. Thus, the relative weight of each factor for the
reconstruction of the variance is well reflected on the graphs Fig. 8.17 to 8.21. The scale is the
same for all factors of a data block. For convenience, the mean of the data is stored in the vector
Vj,•,0 (as if it was the 0th factor).
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Figure 8.16 – Prediction of the subjective evaluations StdSubj from the the first 3 CCA factors
of staticF . All correlations are statistically significant. The identifiers of each reed are

indicated on the plot.

Fig. 8.17 depicts the matrix V j for the raw data PhotoNew, PhotoBreakIn, OptoLeft and
OptoRight. Fig. 8.18 depicts the matrix V j for the raw data MPlayFreq, SPlayFreq and the
spectral centroid (SC) of the measured pressure in mouthpiece in the bifurcation diagrams M111
to M142 (and similarly for the synthesized signals S111 to S142 ). The Fig. 8.19 represents
in a similar way the envelope of the pressure in mouthpiece and the SC of the reed signals
(measured and synthesized), while the Fig. 8.20 represents one period of the measured optical
signals, respectively near beating threshold and near extinction threshold (M3111 to M442 ). The
symmetric (L+R) and the antisymmetric (L-R) components of the optical signals is represented.
Finally, Fig. 8.21 presents the components of the reed model described in Chapter 5, fitted from
ReedDeflec and ReedAero.
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Didactic examples of interpretation

The reader is encouraged to examine carefully Fig. 8.17 which summarizes one of the most
important results of the study. It illustrates graphically the most important differences of static
nature observed among reeds (photoNew, photoBreakIn, aero, optoLeft and optoRight). The first
raw of the Fig. recall the mean of the observations, already illustrated on Figs. 8.3, 8.4 and 8.5.
The 6 lower rows illustrate V j for the first 6 factors, for each data block j (columns of the Fig.).
They are scaled so as to correspond to +1 standard deviation of the factor scores.

Let us explain how to interpret this Fig. For instance, we want to represent mentally how
the photos of the channel of a new reed look like, for a reed having a standardized score of 1 for
factor 1 and 0 for all other factors. We have simply to add to the top leftmost picture (mean
for photoNew) 1 time the leftmost picture of the 2nd row (factor 1 for photoNew). Such a reed
has an opening at rest (without lip contact) which is about 0.02 mm more open than average
(because a stiffer reed is also stiffer in the radial direction, when compressed by the ligature?).
For a quite tight embouchure (depicted in green), the channel is about 0.08 mm more open than
average in the middle an 0.06 mm more open than average on the sides. This means that the
reed is stiffer than average, especially on the axis.

Let us examine now the aeraulic measurements. We notice that the aeraulic section, column
(c), is affected mostly by the factors 1 to 4, while factors 5 and 6 have negligible influence. It
is observed that the corresponding reed deflection, column (d), is fairly symmetrical for the left
and right optical sensors, while factor 5 affects practically only the left sensor and factor 6 the
right sensor.

An interesting observation can be made on Fig. 8.21. Note that the factors 1 to 6 practically
do not modify the slope of the aeraulic section S(y). This means that in a rectangular model of
the channel, the width is constant for all reeds (about 20 mm). Consequently the air flows also
through the sides into the mouthpiece, since the physical width of the reeds at the tip is only
13 mm.

Nonlinearities

The data is known to have nonlinear components, so it is questionable if a linear reconstruction
is plausible. In Appendix §D.3, an attempt is made to examine the data along each factor, in
order to identify some nonlinear behaviors, by comparing the linear vectors in Fig. 8.17 to 8.21
and their (possibly nonlinear) counterparts in Fig. D.11 and following. Unfortunately, our panel
is too small to show such a dependence in a convincing way, because the 2 first factors are quite
linear and strongly dominating. The ”pollution” of the data by these 2 factors can hardly be
removed from the subsequent factors, with such a small number of reeds. As a consequence, the
linear model remains useful for interpreting the data.

8.6 Results interpretation

8.6.1 General observations

A good homogeneity is observed in the data distribution of each block and solid inter-block
correspondences are noted. The differences between reeds are especially marked for the opening
at rest and when the channel section is small. The characteristics of this ”leak” have a significant
influence on the operation of the instrument, since this determines its efficiency in converting a
source of continuous pressure into an oscillating pressure signal in the mouthpiece.

It will be noted (see Fig. 8.3, for example) that the break-in process causes a plastic defor-
mation of the reed at rest, which closes the channel in a relation reasonably well foreseen by the
equation h′ = −0.10 + 1.08h, where h is the average height of the new reed at rest and h′ is its
average height after break-in (with a maximum error of about 0.02 mm). Plastic deformations
are observed on the break-in reed, whose shape corresponds quite exactly to those caused by
the lip pressure, on the new reed (see Fig. D.11). On the other hand, surprisingly, none of the
first 8 CCA factors shows a divergent evolution of the opening at rest between the new and the
break-in reed.
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8.6.2 Description of the objective factors

The description of the objective factors (objectiveF ) is based partly on the inspection of the
vectors Vj,•,f , Figs. 8.17 to 8.21 and partly on the examination of the related (possibly nonlinear)
trend along a factor, Figs. D.11 to D.21. The negative direction of a factor is referred to ”left” and
the positive direction, to ”right”. It should be remembered that these directions are arbitrary.

Let us perform a detailed analysis for each factor.

1. The factor 1 is strongly correlated with the reed strength (nominal or subjective, which
are almost superimposed, see Fig. 8.15). PhotoNew and PhotoBreakIn show a channel
deformation more concave than average for strong reeds and vice versa for weak reeds
(see Figs. 8.17 and D.11). We will note the apparent contradiction between the playing
frequency (descending, while traversing the factor and very dependent on the embouchure)
of the bifurcation measurements (Figs. 8.18 and D.12) and the (ascending) intonation noted
during the perceptive tests (Fig. 8.15). The contradiction is explained by the fact that a
strong reed must be played with a tighter embouchure, otherwise the turbulence noise
is considered too important by the clarinettist, in order to produce an ”optimal” sound
and vice versa for the weak reed, which would produce a ”narrow” sound with a normal
embouchure. With the artificial mouth, on the contrary, the same lip position induces a
more closed channel with a weak reed than with a strong reed. The examination of Fig. D.14
reveals that this factor has a very important influence on the functioning of the instrument,
including for elementary physical models like that of Raman model studied in Chapter 1,
because the factor influences at the same time the parameters Pc and ζ, for a constant
value of ψ.

2. The factor 2 is characterized by an opening at rest (without lip pressure) which increases
linearly along the factor (see Figs. 8.17 and D.11), whereas the opening with a tight em-
bouchure follows a reverse trend . This is interpreted as a more pronounced bending of the
reed at rest on the mouthpiece lay, at the ”left” end of the factor (examine the evolution
of the compliance as a function of ∆p in Fig. D.15). The concavity of the channel evolves
in the opposite direction, than for the factor 1. The intonation, almost insensitive to the
embouchure, decreases linearly through the factor (objective measurements (Figs. 8.18 and
D.12), subjective evaluations (Fig. 8.15) and simulations agree on this point), while the SC
increases linearly. The reeds which are more open at rest and more flexible (Fig. D.14) are
more appreciated by the clarinettist for playing Poulenc and Schubert (Fig. 8.15).

3. The factor 3 links the different blocks of data to the airflow that can enter the instrument
(Fig. 8.22), probably also from the sides of the reed (Figs. 8.17, 8.21 and D.11). This may
indicate a progressive bending before contact of the tip of the reed with the lay, to ”right”
of the factor and a more sudden contact of the tip with the lay, with a more linear reed
stiffness before contact, to ”left” (Fig. D.15). It may be that this is related to a relative
difference in stiffness between the tip and the vamp of the reed (in particular in the so-called
”heart” region), which provides a rather logical interpretation of the observed differences.
The bifurcation diagrams (Figs. D.12) show a gradual and slight increase in brightness (SC
of pressure signals) with a tight embouchure (compared to the average) and vice versa for
the loose embouchures. The examination of the nonlinear reed model in Fig. D.15 shows
that the factor 3 is related to the derivative of the reed compliance around ∆p =6 kPa.

4. The factor 4 is related to the break-in process and links the elastic deformation of the new
reed with a rather tight embouchure and the plastic deformations at rest observed on the
break-in reed (see Figs. 8.17 and D.11 and 8.22). In the linear model, these deformations
look like a period of a cosine function. Observed along the factor, these deformations are
quite asymmetrical at the 2 ends of the factor and are more regularly concave in the middle
of the factor. At ”right”, the general deformation is convex. It can be seen that a reed at the
”left” of the factor modifies its brightness with the embouchure in a much more sensitive
way than at the right (Figs. 8.18 and D.12). It is observed in Fig. D.15 that the factor
4 is related to the derivative of the compliance of the reed, for high values of ∆p. These
differences are probably linked with the stiffness ratio between the axis and the sides of the
reed.
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5. The factor 5 reveals a bending asymmetry of the reed. In the linear model, these defor-
mations look like a period of a sine function (see Fig. 8.17). Observed along the factor,
these deformations are quite antisymmetrical at the 2 ends of the factor(see D.11), while
the reeds in the center of the factor are fairly symmetrical. Asymmetry is already present
on the new reed (with lip pressure) and a corresponding plastic deformation is observed
on the break-in reed. The left and right optical signals confirm the bending asymmetry,
in both static and dynamic cases (Figs. 8.20 and D.13). It is observed that the brilliance
of the symmetrical reeds is greater than that of the asymmetric reeds (Fig. D.12). These
differences are particularly marked near the beating threshold. It can be seen in Fig. D.15
that the factor 5 is related to the derivative of the compliance of the reed, at low ∆p. These
differences are probably linked with the stiffness ratio between the left and the right side
of the reed.

6. The factor 6 is characterized by an antisymmetry (torsion) which is very visible in the
dynamics of the reed, played with the artificial mouth (difference between right and left
optical signals Figs. 8.20 and D.13). A parabolic trajectory is observed for the brightness
along this factor (Fig. D.12), both on the measurements and on the synthesis. This evolution
is particularly marked for the tight embouchures, while it is more monotonous for the loose
embouchures. Fig. D.15 shows that the factor 6 is related to the compliance of the reed, at
relatively strong ∆p (around 10 kPa).

8.7 Conclusion

This study demonstrates the essential role of the static features for the playability of the reed
and details the diversity and the complexity of the observed behaviors. These features characterize
the exciter as a whole (reed+mouthpiece+lip) and not merely the reed taken alone. The photos
of the channel made with a new reed, varying the embouchures, have a predictive value, which
could be useful at the factory for a classification of the reeds, using a fast, automated procedure.
The manufacturers could thus propose a categorization based on the feedback returned by their
customers. From the measurements made at the factory and the feedback returned by the clients
for the same individual reeds, it will be possible to evaluate the relative importance given to each
factor by the musicians and to check whether a factor allows a good / bad classification, which is
valid for the majority of the musicians or which rather reflects individual, stylistical preferences
(or the use of another type of mouthpiece). It remains to show that the measurements made
immediately after manufacture are well representative of the state of the reed once arrived at the
customer. In particular, it must be verified whether the factor 2 (which characterizes the opening
at rest) is already measurable at the manufacturing stage or if it results from a maturation (post-
production) of the wood. It could be that a simple retouching of the bottom table would make a
number of reeds more playable (adjusting for an optimal opening at rest). The influence of the
progressive plastic closure during the aging process should be investigated (in order to give a
second youth to reeds, that should be otherwise be discarded).

The perceptual study showed that the 4 proposed perceptive descriptors are correlated in a
statistically significant way with the first 4 objective factors (i.e. 2 or 3 more than what could
be proved so far from perceptual tests). These factors correspond to: 1) the general stiffness of
the reed, especially in its middle part, 2) the opening at rest, 3) the evolution of the stiffness
between the tip and the vamp of the reed and 4) the plastic deformations of the break-in reed
(linked possibly with the stiffness ratio between sides and axis). Factors 5 and 6 are related
to reed antisymmetries that have not been targeted by specific perceptual tests (difference of
stiffness between the sides of the reed and (plastic) torsion of the reed). It should be noted that
this significant link was established by comparing (essentially static) objective measurements,
performed on dry reeds, with the subjective feeling of a clarinettist playing these same reeds
in a wet state. A detailed analysis make it possible to understand why vague descriptors such
as ”overall quality” or ”brilliance” are poorly adapted, in particular because they do not take
into account the multiple (antinomic) influences that come into play. The importance of the
constraints related to the playing frequency could be emphasized, in relation with the musical
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playability of the reeds. More refined descriptors can be proposed, thanks in particular to the use
of the sound synthesis and the precise indications on the differences of functioning between reeds,
provided by the photos of the channel. These photos also provide the clarinettist with valuable
information on possible corrections to the reed, either by building his own test bench (including
a mouthpiece, an artificial lip, and a camera), or by perceiving the related musical differences.
The mouthpiece manufacturer can also draw on the developed techniques to optimize the shape
of the mouthpiece lay according to a particular reed model (or to develop a wedge of Claripatch
type, to optimize the adequation between the lay and the reed which is played).

The simulations made it possible to validate very roughly the relevance of the physical models
developed in the preceding Chapters. Further optimization of the parameters, allowing a better
match between measurements and simulations, must be carried out and a more thorough com-
parison of the signals must be undertaken. It is also to clarify what is the missing ingredient in
the reed model to get a better match with the spectral centroid of the measured reed signals.
Despite this, the proposed 1D nonlinear reed model seems quite representative of the real behav-
ior of the reed. The modeling of the mouthpiece must also be examined. The usual hypothesis
- which assimilates it to a cylinder of equivalent volume - must be revised, because the spectral
evolution of the signals is poorly reproduced by this simplified model. The simulations made from
the measured geometry of a Buffet Crampon clarinet showed that the realism of the synthesized
signals depends clearly on the geometry of the mouthpiece and on the incorporation of non linear
losses.

First and foremost, this Chapter has presented exploratory studies, performed with a ”Van-
doren M30” mouthpiece and ”Vandoren classic” reeds. Some important directions have been
highlighted, but they still need to be confirmed and deepened by a more detailed and rigor-
ous study, with many different mouthpieces and reed designs. In particular, a study of the lip
mechanics has yet to be carried out.



180 Chapter 8 Study of a Panel of Clarinet Reeds confronting different Approaches

(a) [mm×mm] (b) [mm×mm] (c) [kPa×mm2] (d) [kPa×mm]

-6 -4 -2 0 2 4 6

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

M
e
a
n

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

fa
c
to
r
1

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

fa
c
to
r
2

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

fa
c
to
r
3

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

fa
c
to
r
4

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

fa
c
to
r
5

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

fa
c
to
r
6

-6 -4 -2 0 2 4 6

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

-6 -4 -2 0 2 4 6

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14
-1.3

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

0 2 4 6 8 10 12 14
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

Figure 8.17 – Plot of the vectors Vj,•,f (see Eq. 8.20), for the staticF CCA factors. Each vector
is ”deflattened” in order to recover the measurement structure (by embouchures). Columns:
measurements blocs j: (a) channel of the new reed (PhotoNew). (b) channel of the reed after

break-in (PhotoBreakIn). (c) aeraulic section (Aero). (d) reed deflection (OptoLeft, solid lines,
OptoRight, dashed lines). Rows: factors q from 0 (top) to 6 (bottom). Same color code as in

Fig. 8.3, 8.4 and 8.5. The vectors Vj,•,q are normalized to +1 standard deviation. By
convention, Vj,•,0 represents the mean of the measurements of the jth block.
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Figure 8.18 – Plot of the vectors Vj,•,f (see Eq. 8.20), for the staticF CCA factors. Each vector
is ”deflattened” in order to recover the measurement structure (by embouchures). Bifurcation

diagrams. The abscissa of each graph is adimensioned in function of the emergence and
extinction thresholds: from -1 to 0, crescendo, from 0 to 1, decrescendo. Columns: (a) measured
playing frequency. (b) synthesized playing frequency. (c) spectral centroid of measured pressure

in mouthpiece. (d) idem for the synthesis. Rows: factors q from 0 (top) to 6 (bottom). Same
color code as in Fig. 8.9.
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Figure 8.19 – Plot of the vectors Vj,•,f (see Eq. 8.20), for the staticF CCA factors. Each vector
is ”deflattened” in order to recover the measurement structure (by embouchures). Columns: (a)

enveloppe of the measured pressure signal in the mouthpiece. (b) idem for the synthesis. (c)
spectral centroid of measured reed signal. (d) idem for the synthesis. Rows factors q from 0

(top) to 6 (bottom). Same conventions as in the precedent Fig.
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Figure 8.20 – Plot of the vectors Vj,•,f (see Eq. 8.20), for the staticF CCA factors. Each vector
is ”deflattened” in order to recover the measurement structure (by embouchures). One period
of the measured reed signal (L: left, R: right). Columns: (a) 1/2(L+R) near beating threshold.
(b) 1/2(L+R) near saturation threshold. (c) 1/2(L-R) near beating threshold (d) 1/2(L-R) near

saturation threshold. Rows: factors q from 0 (top) to 6 (bottom). Same conventions as in the
precedent Fig.
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Figure 8.21 – Plot of the vectors Vj,•,f (see Eq. 8.20), for the staticF CCA factors, for the
reconstruction of the reed model proposed in Chapter 5. (a) function y = f−1(x), Eq. (5.6). (b)

function S(y), as described in Fig. 5.4. Compare with D.14 to D.16.
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Figure 8.23 – Canonical correlations rj,n for the CCAs of the bifurcation diagrams. The limit of
significance r̆q of r̄q at the 0.1% level is indicated in grey (dotted line). The embouchures are

coded from black (tight embouchure) to light (loose embouchure). Plain lines: crescendo.
Dashed lines: decrescendo, except for (a1) and (b1). Left column: measurements of the

bifurcation diagrams. Right column: simulation of the bifurcation diagrams. (a1) MThres (blue)
and MPlayFreq (orange). (b1) SThres (blue) and SPlayFreq (orange). (a2) M111 to M142

(measured pressure in mouthpiece). (b2) S111 to S142 (simulated pressure in mouthpiece). (a3)
M211 to M242 (measured pressure in container). (b3) S211 to S242 (simulated flow rate in
mouthpiece). (a4) M411 to M442 (measured reed deflection Left sensor). (b4) S411 to S442

(simulated reed deflection). (a5) M511 to M542 (measured reed deflection Right sensor).
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Chapter 9

General Conclusions and future
Work

The present conclusions have the character of a postface, reflecting the meandering progress
of the study and pointing out the most important findings. The factual conclusions are found at
the end of each chapter.

The studies realized on clarinet acoustics over the past 17 years have achieved a number of
interesting advances, useful not only in acoustics, but also for the musicians. From the beginning,
it seemed obvious to me that the simplified reed models developed by the acousticians (as the
one described in Chapter 1) could not reflect all the subtlety of the reed problem and that
they could not orient an objective characterization of the reeds different from the one proposed
for decades by the reed manufacturers, namely by measuring the ”strength” of the reed. This
suspicion proved true: parts of the mystery surrounding the reed ”problem” could be unveiled,
reconciling the perception of the musician with a fairly realistic modeling of the physical problem,
while remaining relatively simple and efficient to simulate.

The accomplishment of this task was not easy for a musician, because it required an intensive
self-taught training in acoustics during the first years, practically without external help, trying
to read and understand many articles and books, sometimes stopping during weeks on a few
sentences that I could not grasp, on a typographical error in an equation or an ambiguous
notation, trying to redo some calculations, before finally being able to realize my first study,
worthy of interest.

My early studies about the Raman model revealed to me the beauty of a rich mathematical
world, generated from 2 seemingly very simple equations. The usefulness of these theoretical
models for musicians is not obvious to demonstrate, because the sounds produced are very
caricatural. Although they do not really tell the difference between the sound of a car horn and
that of a clarinet, they do allow a number of interesting conclusions about the functioning of this
kind of instruments. Analytical models explain why it is almost impossible to play pianissimo
with an instrument having defective keypads. They orient the instrumentalist and the pedagogue
towards the playing techniques of the ”magical pianissimo” which is idomatic for the instrument,
by modulating the loss parameter by means of the texture and the position of the lower lip. The
knowledge of these operating regimes is very useful in order to understand and teach important
aspects of the sound control by the instrumentalist. The precise knowledge of the physical reasons
that authorize or prohibit some behavior, allows the clarinettist to be exonerated in good faith,
without rejecting the fault on the reed. The discovery of some ”exotic” sounds, as period doubling
(discovered by various authors well before my works) was also for me a revelation on the musical
usefulness of these simple theoretical models 1.

My first naive attempts to simulate some aspects of reed mechanics using the CATIA software
quickly showed me that the reed’s secret could not reside in a particular vibrating way, for
example through some special harmonic relations between the first resonances: the smallest
modification of the boundary conditions destroyed this supposed optimal equilibrium. Static

1. The finding about the musical consequences for the player are summarized in §1.7.3
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simulations of the contact between the lay of the mouthpiece and the reed were much more
instructive, stirring within me a flicker of suspicion that an important part of the subtlety of the
reed problem could lie actually on that side. Unfortunately, instead of continuing my research
in this direction, I opted for a study that proved ultimately not very successful: the track of
viscoelasticity in the high frequency range.

The study of the resonances of a reed panel by holography revealed a whole bestiary of
modal shapes, that were much less regular and symmetrical than expected by the simulations
by finite elements, which suppose an ideally homogeneous material. A posteriori, it turned out
that this approach is not very successful for the characterization of reeds from a musical point
of view. While the proposed viscoelastic model reproduces adequately some of the systematic
differences observed between reeds, the exploratory studies about the relationships with some
subjective musical descriptors did not lead to very convincing results. Most of the performed tests
could not prove the existence of statistically significant links: most of the time, the results were
located in the ”gray” zone of uncertainty. However, the repetition of these ”almost significant”
results indicates that there is probably ”something” behind the parameters of the model. The
proposed model does not take into account the inhomogeneities of the material, nor the geometric
differences between reeds, inevitable despite all the care taken in their manufacture. However,
it is possible that certain parameters (of the proposed viscoelastic model) could influence the
static behavior of the exciter and thus play a much more important role than a simple shift in
frequency of some modes of high order.

The years following the holographic study led to the development of an efficient instrumented
mouthpiece and of a software for the acquisition and analysis of the instrumental gesture in real
time (not described in this dissertation), as part of the SDNS-AIMV project. A mathematical
method for the approximation of differential equations, which I named Extended Discrete Singu-
lar Convolutions (ESDC), was developed during this period. Initially, this method was thought to
simulate the contact between reed and lay in a coarse and simplified way, authorizing a real-time
calculation. It proved to be efficient in the numerical resolution of fractional partial differential
equations or in a calculation of the beam and plate modes, with an unparalleled accuracy, for a
given mesh size. Unfortunately, the article devoted to it has never been finalized and published,
although most of the work has been done. The lack of interest among acousticians is probably
not unrelated to this abandonment. The publication of the unfinished text as an Appendix to
this dissertation may save it from oblivion.

The CAGIMA project oriented then my research in a very different direction: the study of the
resonator, through the tools of complex analysis, linear transformations (Laplace, in particular),
modal decompositions and digital filters. The first two years of the project consisted primarily to
learn these methods, which initially seemed beyond my reach. With the means at hand, I tried to
understand these quite hermetic topics to my intuition. Gradually, I understood how these areas
were interconnected and acquired certain techniques to approach them more safely. More than
two years after the official end of the project, I finally realized what was initially expected of me:
the development of a method allowing the virtual prototyping of wind instruments. Although
there is still a lot of work to be done to validate the developed methods and to finalize the
simulator for a broader audience, I hope that my contribution will ultimately be useful to the
community and that it will help musicians and instrument makers to design new instruments,
more accurate in intonation, more homogeneous and easy to play.

The saga ends with the writing of this dissertation, after about three years as a doctoral
student at the University of Maine, which allowed the completion of some projects. Finally, the
”secret” of the reed could be partially unveiled, abandoning the almost metaphysical quest about
the ”vibration” of the reed in favor of a much more basic and elementary approach: observing
its static behavior. The ”bottle” method allows accurate and repeatable measurement of the
static, aeraulic characteristics. This method works very satisfactorily, although some progress in
the control and in the modeling of the heat exchanges have yet to be made. The instrumented
mouthpiece developed a few years ago, the improvements to the artificial lip developed by A.
Muñoz and the devices crafted in my garage have allowed a reliable measurement of the reed
deflection. These measurements were supplemented by precise photographs of the channel, which
proved very instructive and fairly easy to interpret, after an image processing based on the
developed methods. An unsuspected variety of behaviors could be observed, accrediting thus the
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clarinettists’ testimony about the great variability of the reeds inside a package (of the same
brand, model and strength).

However, some clarification is required about the ”vibration” of the reed: the study showed
the importance of the static aspects, but that does not mean that the dynamic aspects are
negligible. They are probably closely related to the static ones, through the material constituting
the reed. This should not be minimized when looking for alternative materials for reed making:
it is important to reproduce not only the static behavior, but also the frequency of the first
reed resonance and its damping, otherwise it will probably not be satisfactory. The damping
properties of the reed material are likely important to mitigate any parasitic vibration during
operation, without hindering the oscillation of the air column.

The development of a nonlinear reed model (clearly separating the mechanical and aeraulic
aspects), combined with the software architecture developed for the simulation of waveguides
(including nonlinear effects at the orifices) allowed to verify that an important part of the problem
is now scientifically under control. Of course, a number of improvements should perfect the match
between measurements and simulations (including the study of the lip mechanics), but this aim
seems henceforth easier to achieve.

The canonical correlation analysis proves the existence of a very strong link between all ob-
jective physical measurements performed within a panel of 40 reeds. The existence of more than
a dozen independent factors has been proved in a statistically significant way. The confrontation
between bifurcation measurements and data from sound synthesis has also shown the existence of
strong links for at least 13 factors. One of the most thrilling findings of this study is the following
one: the 4 most important objective factors detected are correlated in a statistically significant
way with the subjective evaluations performed blindly by the clarinettist. This opens the way to
an automated selection of the reeds, made directly at the factory. The nature of the descriptors
evaluated, the comparison with the measured bifurcation diagrams and the static measurements
make it possible to orient the research in directions neglected so far, highlighting the ambivalent
character of certain descriptors, when the evaluation context is not clearly defined. These ap-
proaches provide relevant insights into the relative failure of some attempts to characterize the
reeds by means of subjective descriptors, that are too vaguely defined.

It is to be hoped that the findings of this study will be taken seriously by the reed manu-
facturers, that they will implement the proposed characterization techniques, improve them and
that, in a near future, the clarinettists will get reeds, that are selected in a much more efficient
and precise manner than in the past. I also hope that this study will facilitate the development of
new models of mouthpieces or reeds, especially trough the use of alternative materials to Arundo
donax.
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Appendix A

Dictionary of Junctions

A.1 Structure of the Dictionary and Notations

A.1.1 Structure of the entries

Each entry of the dictionary has the same structure. After a short description of the func-
tionality of a junction, the lists of constants, commands, propagators, reflectors and outputs are
given, followed by the equations and the solution of the coupling problem (in generic form, valid
for the current discrete time step and the current junction). The equations and solutions are
written in a programming style (c.f. Mathematica notation), in order to facilitate the implemen-
tation. The following generic identifiers refer to values at the current discrete time step and the
current junction.

A.1.2 Identifiers related to digital filters

We propose a notation to facilitate the handling of filters, the computations of the interactions
between reflectors and propagators, the pre-computation of constants in order to accelerate the
computations in real time and the conversion between wave variables and physical variables and
vice versa. The first character of the identifier describes the kind of filter, the second character
defines the index of the segment and finally a suffix distinguishes the different components of the
filters, according to the following tables:

1st char Description
R reflector filter
T propagator filter
Z impedance filter
Y admittance filter
D other filter

2nd char Description
1 upstream segment (relatively to the current junction)
2 downstream segment (relatively to junction)
3 lateral derivation (chimney)

suffix Description
V1 coefficient V1 (affecting the current excitation)
V2 coefficient V2 (sum of terms from the past)
K1 conversion factor 1
K2 conversion factor 2
In input value (excitation) sent to the filter
Out output value (response) of the filter
in incoming propagator in the junction
out outgoing propagator in the junction

For instance, T1in refers to the current value of the incoming propagator of the upstream
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segment. R1V1 refers to the V1 component of the upstream reflector and Eq. 7.19 reads:
R1out = R1V1 R1in + R1V2. The extra filters (such as integrators or differentiators) are listed
among the reflectors with letter D (and the 2 concerned segment numbers). The forward con-
version refers to the conversion between wave variables {φ+, φ−} and physical variables {P,U},
and vice versa for the backward conversion.

A.1.3 Identifiers describing the current acoustical state at the junction

P Pressure at the junction
U : Flow rate at the junction
Pexcit: Blowing pressure imposed to the exciter
W : Aeraulic section of the exciter
Ur: Reed induced flow rate (exciter)
Ukey: Key induced flow rate (tonehole)
θ: Degree of aperture of a tonehole
r: radius of the section
rinv: =1/r
Zc: = (ρc)/(πr2)
Yc: = 1/Zc
Zr: = r Zc
Yr: = 1/Zr

If necessary, diverging parameters are distinguished by the segment index, for instance : r1, r2,
if the upstream and downstream segments have different radii at the junction.

For the current discrete time step and the current junction, Eq. 7.3 reads:

r P = φ+ + φ−

ZrU = φ+ − φ−

The function RxV2=computeV2(Rx) is called at the beginning of each time step and com-
putes the value of the parameter V2 (sum of terms from the past) for each reflector (Rx and Dxx
filters). The function RxOut = updateR(Rx,TxOut) updates the history of the reflector Rx and
computes the output of the filter, RxOut, where x stays for the index of the filter.

A.2 Basic equations

For the segment x (x=1,2,3), using the signed constants SZr1=-r1 Zc1 , SZr2=r2 Zc2 and
SZr3=r3 Zc3, the pressure Px and flow rate Ux can be expressed according to Eq. 7.3 as:

rx Px = Txout + (RxV1 Txout + RxV2 + Txin) = φ+
x + φ−x (A.1)

SZrx Ux = Txout− (RxV1 Txout + RxV2 + Txin) = sgn(SZrx)(φ+
x − φ−x )

A.2.1 Impedance formulation

Eq. A.1 can be rewritten as an impedance relationship:

Px = ZxV1 Ux + ZxV2 (A.2)

ZxV1 =
(1 + RxV1) SZrx

(1− RxV1)rx

ZxV2 = ZxK2 (RxV2 + Txin)

ZxK2 =
2

(1− RxV1) rx
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After solving the coupling problem, the filter Rx is excited by RxIn=Txout and updated:

Txout = ZxK1(RxV2 + Txin + SZrx Ux) (A.3)

ZxK1 =
1

1− RxV1
RxOut = updateR(Rx,Txout)

The constants used in real-time computations are: SZrx, ZxV1, ZxK1, ZxK2.

A.2.2 Admittance formulation

Eq. A.1 can be rewritten as an admittance relationship:

Ux = YxV1 Px + YxV2 (A.4)

YxV1 =
(1− RxV1) rx

(1 + RxV1)SZrx

YxV2 = YxK2 (RxV2 + Txin)

YxK2 =
−2

(1 + RxV1) SZrx

After solving the coupling problem, the filter Rx is excited by RxIn=Txout and updated:

Txout = YxK1(Px rx− RxV2− Txin) (A.5)

YxK1 =
1

1 + RxV1
RxOut = updateR(Rx,Txout)

The constants used in real-time computations are: rx, YxV1, YxK1, YxK2.

A.2.3 Special case of cylindrical segments

A cylindrical segment x is simulated with propagators only (no reflectors, consequently no
instantaneous reflection). This reverts to set RxV1=RxV2=0 in the equations above.

A.3 Dictionary of Junctions

A.3.1 Flow controlled input junction

The downstream segment (index 2) is excited with a flow U=U2. Typically the flow controlled
input junction is used to compute the input impedance of the simulated waveguide, according
to its response to a discrete Dirac flow rate impulse.

Constants: SZr2, Z2V1, Z2K1, Z2K2
Inputs: U
Propagators: T2
Reflectors: R2
Outputs: P

Equations to solve:

P2 = Z2V1 U2 + Z2V2

P = P2

U = U2
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Solution:

P = Z2V1 U + Z2V2

A.3.2 Pressure controlled input junction

The downstream segment is excited with a pressure P=P2. Typically the pressure controlled
input junction is used to compute the input admittance of the simulated waveguide, according
to its response to a discrete Dirac pressure impulse.

Constants: r2, Y2V1, Y2K1, Y2K2
Inputs: P
Propagators: T2
Reflectors: R2
Outputs: U

Equations to solve:

U2 = Y2V1 P2 + Y2V2

U = U2

P = P2

Solution:

U = Y2V1 P + Y2V2

A.3.3 Flow controlled and pressure controlled output junction

The downstream outpout of a waveguide can also be controlled in pressure or flow rate.
Typically, a zero flow rate is imposed to each tonehole or output end that remains closed during
the simulation. This is more economical in terms of computer resource than simulating a closed
tonehole with the junction JLinearHole. The equations are straightforward to derive from the
input control case: this reverts to substitute the index 2 by 1.

A.3.4 Input coupled with a pressure controlled exciter

The excitation parameters are: Pexcit (excitation pressure, ordinarily the quasi-static pressure
inside the mouth), Ur (reed induced flow) and W (aeraulic section).

Constants: SZr2, Z2V1, Z2K1, Z2K2
Inputs: Pexcit, W, Ur
Propagators: T2
Reflectors: R2
Outputs: U, P

Equations to solve:

P2 = Z2V1 U2 + Z2V2

U2 = U = Ub + Ur

Ub = W sgn(Pexcit− P2)
√
|Pexcit− P2|
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Solution:

b1 = Pexcit−Ur Z2V1− Z2V2

W2 = W 2 Z2V1

b2 = W
√

4 |b1|+ Z2V1 W2−W2

U = 0.5 sgn(b1)b2 + Ur

A.3.5 Exciter inserted between 2 segments

The exciter is driven by the pressure drop ∆P = P1 − P2 between the upstream and the
downstream segments. This is the usual playing situation: the pressure in the mouth is not static
and depends from the resonances of the vocal tract and from the quasi-static pressure in the
lungs.

Constants: SZr1, Z1V1, Z1K1, Z1K2, SZr2, Z2V1, Z2K1, Z2K2,
V1 = Z1V1− Z2V1

Inputs: Pexcit, W, Ur
Propagators: T1, T2
Reflectors: R1, R2
Outputs: U, P1, P2

Equations to solve:

P1 = Z1V1 U1 + Z1V2

P2 = Z2V1 U2 + Z2V2

∆P = P1− P2 = V1 U + V2

U1 = U2 = U = Ub + Ur

Ub = W sgn(∆P )
√
|∆P |

Solution:

V2 = Z1V2− Z2V2

b1 = Ur V1 + V2

W2 = W 2 V1

b2 = W
√

4 |b1|+ V1 W2 + W2

U = 0.5 sgn(b1)b2 + Ur

P1 = Z1V1 U + Z1V2

P2 = Z2V1 U + Z2V2

A.3.6 Simple junction of 2 segments

If the 2 segments present a C1 continuity at the junction or if the 2 segments are cylindrical
and present a small difference of section , the acoustic Kirchhoff laws (continuity of the pressure
and mass conservation) apply at the junction and therefore the addition of an acoustic mass is
not necessary.
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Constants: SZr1, Z1V1, Z1K1, Z1K2, SZr2, Z2V1, Z2K1, Z2K2
k1 = 1

Z1V1−Z2V1

Inputs: None
Propagators: T1, T2
Reflectors: R1, R2
Outputs: P, U

Equations to solve:

P1 = Z1V1 U1 + Z1V2

P2 = Z2V1 U2 + Z2V2

P = P1 = P2

U = U1 = U2

Solution:

U = k1(Z2V2− Z1V2)

A.3.7 Junction of 2 cylindrical segments with added acoustical mass

If the difference in the cross section of the 2 cylinders is important, an acoustical mass should
be added to the system in order to simulate adequately the behavior of the junction.

Constants: SZr1, Z1V1, Z1K1, Z1K2, SZr2, Z2V1, Z2K1, Z2K2,
k1 = 1

−D12V1+Z1V1−Z2V1

Inputs: None
Propagators: T1, T2
Reflectors: R1, R2, D12
Outputs: P1, P2, U

This junction requires additionally a differentiator Eq. 7.28, called D12, in order to simulate
the effect of an added acoustical mass across the junction (with gain k = Md). According to
Kergomard [16, 43, 38, 44], the discontinuity in the cross section can be approximated for cylin-
drical, concentric ducts with a low frequency approximation:
P1(s) − P2(s) = Md sU(s). I propose a new formulation for Md, which summarizes quite ade-
quately the 2 formulas given by Kergomard:

Md =
ρ

rmin

(
0.09616α6 − 0.12386α5 + 0.03816α4 + 0.0809α3 − 0.353α+ 0.26164

)
(A.6)

rmin = min(r1, r2), rmax = max(r1, r2) and α = rmin/rmax.

Equations to solve:

P1 = Z1V1 U1 + Z1V2

P2 = Z2V1 U2 + Z2V2

U = U1 = U2

P1− P2 = D12V1U + D12V2
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Solution:

U = k1(D12V2− Z1V2 + Z2V2)

P1 = Z1V1 U + Z1V2

P2 = Z2V1 U + Z2V2

A.3.8 Simple junction of 3 segments

We assume that the Kirchhoff laws apply (P=P1=P2=P3 and U1=U2+U3) at the junction.
Constants: SZr1, Z1V1, Z1K1, Z1K2, SZr2, Z2V1, Z2K1, Z2K2,

SZr3, Z3V1, Z3K1, Z3K2, k1= −1
Y1V1−Y2V1−Y3V1

Inputs: None
Propagators: T1, T2, T3
Reflectors: R1, R2, R3
Outputs: P, U1, U2, U3

Equations to solve:

U1 = Y1V1 P1 + Y1V2

U2 = Y2V1 P2 + Y2V2

U3 = Y3V1 P3 + Y3V2

P = P1 = P2 = P3

U1 = U2 + U3

Solution:

P = k1(Y1V2−Y2V2−Y3V2)

U2 = Y2V1 P + Y2V2

U3 = Y3V1 P + Y3V2

U1 = U2 + U3

Remark: if a lateral derivation comes back into the main duct, the case U1 + U2 = U3 must
also be solved. This reverts to change the sign affecting the filters with index 2 in the equations
above.

A.3.9 Junction of 3 segments with added acoustical masses

According to Kergomard the planar mode in the pipe can be linked to the median plane of
the tonehole (which is called chimney), thanks to a lower frequency approximation with added
acoustical masses, ma and mS :

ma =
b(0.087δ − 0.37)δ2ρ

πa2
(A.7)

mS =

(
−0.71δ4 + 1.27δ3 − 1.09δ2 − 0.193δ + 0.82

)
ρ

πb

where δ = b/a is the radius ratio (b and a are the radii of the tonehole and the main duct,
respectively). The pressures and the flow rates across junction are linked by:




P1

U2

U3


 = M ·




U1

P2

P3


 (A.8)
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with

M =
1

ma + 4mS




4 smamS 4mS −ma 2ma

4mS −ma −4/s 4/s
2ma 4/s −4/s




An inspection of the matrix M reveals the need of 1 differentiator (Eq. 7.28, called D11 hereafter)
and 2 integrators (Eq. 7.29, called D22 and D23 hereafter). The gains of these filters are given
by Kij = Mi,j , s→ 1. Notice that K12+K13=K21+K31=1 and U1=U2+U3.

Constants: SZr1, Z1V1, Z1K1, Z1K2, SZr2, Z2V1, Z2K1, Z2K2,
SZr3, Z3V1, Z3K1, Z3K2, K12
k1 = 1-K12 , k2 = Z3V1 D23V1, k3 = Z2V1 K12,
k4 = 1 - Z2V1 D22V1 + k2, k5 = 1/k4, k6 = k4 D11V1 + Z3V1 k12,
k7 = Z2V1 (-k1 D22V1 + K12 D23V1),
k8 = 1/(k4 - Y1V1 (k6 + k7 Z3V1 + k3 K12)), k9 = K12 + k2,
k10 = 1/(1 + R1V1), k11 = 1/(1 - R2V1), k12 = 1/(1 - R3V1)

Inputs: None
Propagators: T1, T2, T3
Reflectors: R1, R2, R3, D11, D22, D23
Outputs: P1, P2, P3, U1, U2, U3

Equations to solve:

U1 = Y1V1 P1 + Y1V2

P2 = Z2V1 U2 + Z2V2

P3 = Z3V1 U3 + Z3V2

P1 = (D11V1 U1 + D11V2) + K12 P2 + (1−K12)P3

U2 = (D22V1 P2 + D22V2) + (D23V1 P3 + D23V2) + K12 U1

U3 = −(D22V1 P2 + D22V2)− (D23V1 P3 + D23V2) + (1−K12)U1

Solution:

s1 = D22V2 + D23V2

s2 = D23V1 Z3V2

s3 = D22V1 Z2V2 + s1

s4 = k1 Z3V2

s5 = D11V2 + K12(k3 Y1V2 + Z2V2) + k6 Y1V2 + s4

s6 = D23V1(D11V2 + Z2V2K12)− k1 s3

s7 = Z2V1 (K12(s1 + s2)−D22V1(D11V2 + s4))

P1 = k8 (s7 + Z3V1(k7 Y1V2 + s6) + s5)

U1 = Y1V1 P1 + Y1V2

U2 = k5(k9 U1 + s2 + s3)

U3 = U1−U2

P2 = Z2V1 U2 + Z2V2

P3 = Z3V1 U3 + Z3V2

A.3.10 Output coupled with a linear reflectance and key controlled
aperture

With an open tonehole, this case can be viewed as a particular case of a simple junction of
2 segments §A.3.6, where T2in = 0 and the reflectance filter is R2. When the tonehole remains
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open all the time, the simulation is more economical this way.

Progressive closure of a tonehole

In our model, the progressive closure of a tonehole is simulated by a diminution of the radius
r = θ r2 of an imaginary diaphragm progressively obturating the chimney (or the main pipe) at its
downstream output. The ”degree of aperture of the tonehole”, θ, is a parameter varying between
0 (tonehole closed) and 1 (tonehole open). The output reflectance of the tonehole during closure
is interpolated with 2 reflectance filters, R2a and R2b. The reflectance of the open tonehole is
simulated in discrete time by R2a, and the reflectance of the partially closed tonehole with degree
of aperture θ1 is simulated by R2b. θ1 is an arbitrary constant with typical value: θ1 = 0.1. R2a
and R2b are converted to impedance filters with Eq. A.4. For apertures 1 ≥ θ > θ1, the output
impedance of the tonehole is approximated with a linear crossfade between the 2 impedance
filters 1. The resulting intermediate filter, Z2c, is written:

P2 = Z2cV1 U2 + Z2cV2,

where Z2cVx varies linearly between Z2aVx and Z2bVx, when θ varies from 1 to θ1.

For θ1 ≥ θ ≥ 0, the flow rate U2 is approximated with a crossfade between the flow rate
at θ = θ1 and 0 (tonehole hermetically closed). The results are qualitatively similar to the
measurements of Terroir [183, 184]. See also [192, 106, 107].

Approximation of the reflectance of small orifices

The LSCE method is not well suited for the approximation of reflectance filters for small
orifices, because of passivity issues. An analytical expression is preferable.

We seek a numerical reflectance filter of the form:

H(z) = c1

(
1

1− y1z−1
− 1

1− y1

)
+ c2

(
1

1− y2z−1
− 1

1− y2

)
− 1 (A.9)

with y2 = y∗1 and c2 = c∗1.

It can be verified that with the substitutions:

z → exp(j ω)

c1 → (y1 − 1) 3 (d2 (y2 − 1) + d1 (y2 + 1))

2y1 (y2 − y1)

c2 → (y2 − 1) 3 (d2 (y1 − 1) + d1 (y1 + 1))

2y2 (y1 − y2)

the filter has the following properties:

H(z)|ω=0 = −1

∂ωH(z)|ω=0 = j d1

∂2
ωH(z)|ω=0 = d2

Approximation of the parameters:

y1 c1
Flanged −0.2064 + 0.2797 j (0.06945− 0.7939 j) r + (0.1963 + 0.3777 j) r2

Unflanged −0.4102 + 0.1751 j (0.2306 + 0.8818 j) r + (0.08649− 0.5486 j) r2

The radius r of the orifice is expressed in mm. The formula for c1 is obtained with a low
frequency estimation of the derivatives d1 and d2 (see Eq. 7.11) and with Fs = 44′100 Hz and
c = 343.4 m/s. The filter is passive for 0 < r < 3mm.

1. The crossfade technique is probably more efficient than updating the filter coefficients during the transition.
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Key induced flow

During the closure or the opening phase, the key (or the finger) moves some air flow Ukey
inside or outside the tonehole. Similarly to the exciter case, Ukey is assumed to be proportional
to the velocity of the key Ukey=λkeyFs(θ[n]− θ[n− 1]), where λkey is a constant proportional to
the area of the key.

Constants: SZr1, Z1V1, Z1K1, Z1K2, SZr2, Z2V1, Z2K1, Z2K2
SZr3, Z3V1, Z3K1, Z3K2, θ1,
k1=1/(Z1V1-Z2aV1), k2=1/(Z1V1-Z2bV1), k3=1/(1-θ1), k4=1/θ1

Inputs: θ, Ukey
Propagators: T1
Reflectors: R1, R2a, R2b
Outputs: P, U1

Equations to solve:

P1 = Z1V1 U1 + Z1V2

P2 =





Z2aV1 U2 + Z2aV2, θ = 1
Z2cV1 U2 + Z2cV2, 1 > θ > θ1

Z2bV1 U2 + Z2bV2, θ1 ≥ θ ≥ 0

U1 =





U2 + Ukey, θ > θ1

(θ/θ1)U2 + Ukey, θ1 ≥ θ > 0
0, θ = 0

P = P1 = P2

Z2cV1 =
θ − θ1

1− θ1
Z2aV1 +

1− θ
1− θ1

Z2bV1

Z2cV2 =
θ − θ1

1− θ1
Z2aV2 +

1− θ
1− θ1

Z2bV2

Solution:

U2 =





k1(Z2aV2− Z1V2), θ = 1
Z2cV2−Z1V2−Ukey Z1V1

Z1V1−Z2cV1 , 1 > θ > θ1

k2(Z2bV2− Z1V2−Ukey Z1V1), θ1 ≥ θ > 0
Ukey, θ = 0

U1 =





U2 + Ukey, θ > θ1

(θ/θ1) U2 + Ukey, θ1 ≥ θ > 0
Ukey, θ = 0

P = Z1V1 U1 + Z1V2

A.3.11 Output coupled with a reflectance with nonlinear losses and
key controlled aperture

During clarinet playing, important AC pressure levels are measured inside the clarinet. This
causes important flow rates at the orifices of the instrument (mainly in the side toneholes).
Relevant nonlinear losses result from this situation. According to Atig [3, 5, 6, 4], these NL losses
can be modelled by the addition of a quadratic term (see also Disselhorst [42], Skulina [159]
and Temiz [176, 177]). In his model, adapted later by Terroir [183] for the simulation of the
progressive closure of a tonehole, the output impedance is assumed to be 0 (i.e. P2=0, whatever
the frequency). In our model, the output impedance is assumed to remain that of the linear case
(i.e. P2 is frequency dependant, but it still tends to 0 when the frequency tends to 0). As before,
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the progressive obturation of the tonehole is modelled with a progressively closing diaphragm.
Bernoulli’s law is assumed to be valid for the simulation of the effect of the diaphragm:

U = π(r2 θ)
2 sgn(P1 − P2)

√
2|P1 − P2|/ρ

A vena contracta coefficient may be introduced via θ. It may take two different values, αOut or
αIn, depending if the flow is outgoing or incoming from the tonehole inside the instrument. This
is achieved by the substitution:

θ →
{
αOut θ, U2 ≥ 0
αIn θ, U2 < 0

This way the simulation scheme remains unmodified by the vena contracta coefficient 2. These
parameters can also be used to simulate the presence of a key pad in rest position in the vicinity
of the tonehole.

The model for the progressive closure of the tonehole and for the key induced flow are the
same as before.

Constants: SZr1, Z1V1, Z1K1, Z1K2, SZr2, Z2V1, Z2K1, Z2K2,

αIn, αOut, k1=ρ
(
π r22

)−2
, k2=1/k1,

k3=1/(1-θ1), k4=1/θ1

Inputs: θ, Ukey
Propagators: T1
Reflectors: R1, R2a, R2b
Outputs: P1, P2, U1, U2

Equations to solve:

P1 = Z1V1 U1 + Z1V2

P2 =





Z2aV1 U2 + Z2aV2, θ = 1
Z2cV1 U2 + Z2cV2, 1 > θ > θ1

Z2bV1 U2 + Z2bV2, θ1 ≥ θ ≥ 0

U1 =





U2 + Ukey, θ > θ1

(θ/θ1)U2 + Ukey, θ1 ≥ θ > 0
Ukey, θ = 0

2(P1− P2) =

{
k1/θ4 U22, U2 ≥ 0
−k1/θ4 U22, U2 < 0

Z2cV1 =
θ − θ1

1− θ1
Z2aV1 +

1− θ
1− θ1

Z2bV1

Z2cV2 =
θ − θ1

1− θ1
Z2aV2 +

1− θ
1− θ1

Z2bV2

2. A transition model should be considered when the flow inverts its direction. See also the remark about the
pressure loss coefficient in §8.3.4
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Solution:

θ :=

{
αOut θ, Z2aV2 ≤ Z1V2
αIn θ, Z2aV2 > Z1V2

d1 =





(Z2aV1− Z1V1), θ = 1
θ2(Z2cV1− Z1V1), 1 > θ > θ1

θ2
1(Z2bV1− Z1V1), θ1 ≥ θ > 0

Ukey, θ = 0

d2 =





2(Z1V2− Z2aV2), θ = 1
2(Ukey Z1V1 + Z1V2− Z2cV2), 1 > θ > θ1

2(Ukey Z1V1 + Z1V2− Z2bV2), θ1 ≥ θ > 0
Ukey, θ = 0

U2 =





θ2 k2
(√

d12 + k1 d2− d1
)
, d2 > 0

θ2 k2
(

d1−
√

d12 − k1 d2
)
, d2 < 0, θ > θ1

θ2
1 k2

(
d1−

√
d12 − k1 d2

)
, d2 < 0, θ ≤ θ1

0, d2 = 0

U1 =





U2 + Ukey, θ > θ1

(θ/θ1) U2 + Ukey, θ1 ≥ θ > 0
Ukey, θ = 0

P1 = Z1V1 U1 + Z1V2

P2 =





Z2aV1 U2 + Z2aV2, θ = 1
Z2cV1 U2 + Z2cV2, 1 > θ > θ1

Z2bV1 U2 + Z2bV2, θ1 ≥ θ ≥ 0

A.3.12 Junction of 2 segments with a short chimney with nonlinear
losses

When the chimney is short comparatively to the wave length corresponding to the sampling
period (typically < 30 mm for the usual audio sampling rate), the nonlinear resistance of the
tonehole can be approximated at the upstream section of the chimney (instead of the external
output of the chimney). This design is more economical in terms of computer resources and avoids
the generation of artifacts if the filters are not accurate in the high frequency range. A single
reflectance filter replaces the 2 propagators and the radiation reflectance filter. The transition is
easier to manage comparatively to the output coupling. No filter for the quasi closed tonehole
is required, because no transition to an infinite impedance is needed. Usually two filters are
required (one for the open tonehole and one for the closed tonehole). A simple crossfade between
the two filters is performed during the transition. In the case of a cylindrical chimney, the filter
for the closed case is simply the propagator corresponding to a cylinder of same diameter and
twice the acoustical length of the chimney. The acoustical length h′ is determined with the length
correction proposed in [16] h′ = h + tw, with tw = 1

8bδ
(
0.207δ2 + 1

)
(as before, b is the radius

of the chimney and δ is ratio of the diameters).

Notice that in the linear case and in absence of key induced flow, the junction with the
input reflectance of the chimney can be performed directly with the standard J3Section or
J3SectionMass procedures.

We assume that the Kirchhoff laws apply (P=P1=P2 and U1=U2+U3) at the junction.
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Constants: SZr1, Z1V1, Z1K1, Z1K2, SZr2, Z2V1, Z2K1, Z2K2,
SZr3, Z3V1, Z3K1, Z3K2, V1 = -Y1V1 + Y2V1 + Y3V1,
k1=1/(2(Y2V1 - Y1V1) Y3V1), k2=1/(Y1V1-Y2V1), k3=1/Y3V1

Inputs: None
Propagators: T1, T2, T3
Reflectors: R1, R2, R3
Outputs: P, U1, U2, U3

Equations to solve:

U1 = Y1V1 P1 + Y1V2

U2 = Y2V1 P2 + Y2V2

U3 = Y3V1 P3 + Y3V2

P = P1 = P2

U1 = U2 + U3

U3 = Ukey + sgn(∆P )W
√
|∆P |

∆P = P− P3

W = S
√

2/ρ

S is the cross section of the (open or partially closed) chimney.

Solution:

b1 = Y3V1(Y1V1−Y2V1)(Ukey V1−Y1V2 Y3V1 + Y1V1 Y3V2−Y2V1 Y3V2 + Y2V2 Y3V1)

W2 = V1W 2

b2 = W
√

4 |b1|+ V1W2−W2

U3 = k1 b2 sgn(b1) + Ukey

P = k2 (U3−Y1V2 + Y2V2)

U1 = Y1V1 P + Y1V2

U2 = Y2V1 P + Y2V2

P3 = k3 (U3−Y3V2)
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Appendix B

Architecture of the synthesizer

Résumé

Cet appendice décrit la structure et les modalités techniques permettant l’implémentation et
la simulation d’un instrument à vent numérique. On y décrit également la résolution analytique
du problème des boucles sans retard, pour chaque type de jonction proposé dans le dictionnaire
de jonctions.

L’instrument numérique est structuré par différents niveaux d’abstraction. Au plus haut
niveau, le musicien ne voit que l’instrument numérique, qui peut être joué par un synthétiseur de
type Max MSP. Le fabricant d’instruments se situe au second niveau d’abstraction: l’instrument
est assemblé et interfacé au moyen de différents objets, de manière similaire à un jeu de construc-
tion, en jonctionnant différents segments. Le troisième niveau d’abstraction concerne le traite-
ment du signal. Son objet principal est la construction filtres numériques. L’acousticien gère le
niveau d’abstraction le plus bas. Son travail consiste à modéliser les excitateurs et à calculer les
fonctions de transfert correspondant à la géométrie de l’instrument dans le domaine fréquentiel et
à les �traduire� dans le domaine temporel, en tant que filtres numériques. Cette tâche, effectuée
principalement pour les ondes progressives, est décrite essentiellement au Chapitre 7.

B.1 Introduction

This Appendix describes the structure and the technical aspects related to the implementation
and the simulation of a digital instrument. Its main purpose is to solve analytically the problem
of delay free loops for each type of junction proposed in the dictionary of junctions.

The digital instrument is structured in different levels of abstraction. At the highest level, the
musician see only the digital Instrument, which can be played by a synthesizer like Max MSP.
The instrument maker is situated at the second highest level of abstraction: the instrument is
assembled and interfaced by the mean of the following objects:

— Section: cross cut through the instrument’s bore at some location, across which the acous-
tical parameters are to be determined.

— Segment: portion of the bore delimited by 2 Sections. This is a non local element which
simulates the acoustical behavior of this portion of the bore, characterized by a non zero
propagation time of the acoustical waves from one section to the other.

— Orifice: downstream or upstream end of a wave guide (usually a chimney or the bell of
instrument), delimited by a single Section. This is a local element, which simulates the
acoustical interactions with the outside world.

— Exciter: nonlinear, local element interacting with the bore (for instance clarinet mouth-
piece and reed)

— Junction: binding element between the objects Exciter, Segment and Orifice, which
couples locally the waves in order to satisfy the acoustical equations across the Junction.

209
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— Command: primary playing parameter. Commands are generated for instance by a MIDI
device or a command file and define sequentially the playing parameters like the blowing
pressure, the lip pressure and the fingering to be played.

— Action: user defined procedure, which is performed at each discrete time step. Example:
a MIDI code (primary command) is interpreted and executed as a progressive closure or
aperture of some toneholes (depending commands). The object Action is also used to
simulate commands.

— Output: channel through which the results of the simulation are sent (for instance a loud-
speaker or a WAV file).

The third highest level of abstraction is the signal processing. Its main object is the construction
of digital Filters.

Last but not least, the acoustician deal with the lowest level of abstraction. His job is to model
exciters and to compute the transfer functions corresponding to the instrument’s geometry in
the frequency domain and to ”translate” them into the time domain, as digital filters. This task
is described here only for travelling waves, mainly in Chapter 7.

Finally, the digital instrument is simulated by the following procedure:

1. Compute the transfer functions of each segment and the reflectance of each orifice.

2. Perform a modal estimation of these functions, allowing a simulation with digital IIR filters.

3. Implement digital exciters

4. Solve the coupling problem at the junctions. Since the waves travel through a segment with
a non zero propagation time, the coupling problem can be solved independently for each
junction.

5. Simulate the acoustical response of the instrument to commands and actions.

6. Send the results to the output channels.

B.2 Structure of the digital instrument

The implementation of a digital instrument is realized with the objects listed in the previous
section. These objects are of three kinds:

— Interface objects: Commands, Actions and Outputs

— Topological objects: Sections, Segments, Orifices and Junctions

— Filter objects: Filters

Each of these objects are briefly described. The class declaration is given (in C++). A list of the
derived classes is given with a comment about the purpose.

B.2.1 The object Instrument

The object Instrument is the upmost structure and implements the synthesizer itself. The
lists of objects {Command, Action, Junction and Output} which are stored into the variable
InstrumentData define the behavior of the instrument. These lists are created by the mean of the
functions incorporateCommand, incorporateAction, incorporateJunction and incorporateOutput.
Any object that is not incorporated into the instrument by the mean of these functions has no
effect and is not simulated (except if it is called by one of the incorporated objects).

class Instrument {

public:

InstrumentData*iData; //lists of objects

Instrument(); //constructor

virtual void play(); //simulate the instrument

};

Typically the response of the instrument (member function play()) is simulated with the fol-
lowing pseudo code:
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Initializations

WHILE commands are read() DO

Perform actions

Collect next output values of propagators from delay lines

Solve the coupling problem at the junctions

Manage output streams

END

Close output streams

Depending classes: none.

B.2.2 The object Command

At the beginning of each time step, the object Command reads an array of commands specifying
the values of the playing parameters. Commands are read until the function read() return
false. Theses commands may be the blowing pressure (and other excitation parameters), the
lip pressure, the degree of aperture of a key, the state of a valve, the position of a slide, and so
on. The mapping between a command and the receiver of the command must be specified by
the mean of pointers. This way, any change in the command array is immediately echoed to the
objects depending from this command.

class Command {

public:

double* command; //ptr to array of commands

unsigned int len; //length of the array

Command(unsigned int); //constructor (number of commands)

virtual bool read(); //read next command array

};

Depending classes:
Function Status Description

CGenerate Implemented

Generate a stream of commands with
fixed length. Each individual command
has to be setted by an individual
Action (with ramps for instance)

CFile Implemented

Read a binary command file (finger-
ing, blowing pressure, lip pressure) and
perform a low pass filtering of the
commands, in order to remove the
sharp steps between the successive com-
mands.

CMidiFile Implemented

Read a MIDI file (fingering, blowing
pressure, lip pressure) and perform a
linear interpolation of the commands,
in order to remove the sharp steps be-
tween the successive MIDI commands.

CMidiDevice Project

Read a MIDI device (fingering, blow-
ing pressure, lip pressure) and perform
a low pass filtering of the commands,
in order to remove the sharp steps be-
tween the successive MIDI commands.

B.2.3 The object Action

Objects of the class Action define procedures which are performed at each discrete time step.
Actions may be chained. For instance: a trill is activated (which performs in turn 2 distinct
actions : up and down sigmoidRamps), the result is low pass filtered with filterAction and
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the output of the filter is defined (via pointer) as the physical memory address of the parameter
theta of the junction JNonLinearHole, which defines the degree of aperture of a tonehole. The
first action of a chain must be incorporated into the instrument before the dependent actions,
except if the dependent actions want to refer to the value of the first action one time step behind.

class Action {

public:

Action(); //constructor

virtual void start();

//give the order to start the action

virtual void update();

//wait on start or perform next action step

};

Depending classes:
Function Status Description

waitUntil Implemented
wait until the settled discrete time is
elapsed, then perform the defined ac-
tion

trill Implemented

wait until the settled discrete time is
elapsed, then perform in turn the 2 de-
fined actions (for instance generate up
and down ramps), until stop time is
reached

linearRamp Implemented Generate a linear ramp

sigmoidRamp Implemented
Generate a sigmoid-like ramp, imple-
mented with the function −x2(2x− 3).

elbowRamp Implemented
Generate an elbow shaped ramp, imple-
mented with the function − 1

2x
2(x− 3).

diracImpulse Implemented Generate a discrete Dirac impulse

filterAction Implemented
Filter a command or any input param-
eter inside or outside the instrument
structure

basicFinger Implemented

Interpret a MIDI code as a progressive
closure or aperture of toneholes or a
modification other playing parameters,
like the reed frequency

B.2.4 The object Output

The class Output specifies an array of output channels, opens an output stream for these
channels, writes data to the stream and closes the stream. Each Output object has its own
output stream, so many output files can be created during one simulation.

class Output {

public:

double** output;

int len; //number of output channels

Output(int); //constructor (number of output channels)

virtual void setOutput(unsigned int, double*);

// (channel nr, pointer to output value)

virtual void write(); //write outputs to stream

virtual void close(); //close output stream

};

Depending classes:
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Function Status Description
consoleOutput Implemented display the output on the console

WAVOutput Implemented
cast output to integer value (accord-
ing to conversion factors) and write to
WAV file

binaryOutput Implemented write to binary file

audioOutput Project send output to an audio device

B.2.5 The object Exciter

The present application implements only one category of exciters : the reed exciter. In a mono-
dimensional implementation, this exciter is modelled by a 1-D mechanical oscillator, driven by
the air pressure difference ∆P across the reed, whose position is denoted yn in discrete time.
The aeraulic section of the channel Wn is a function of the position of the oscillator Wn = S(yn)
and the reed flow Ur is proportional to the velocity of the reed Ur = λ(yn − yn−1)Fs.

The stiffness of the reed is given by the reed-mouthpiece interaction and determines the
static mechanical behavior of the reed. Different kind of active controls can be specified in the
implementation: lip pressure, reed-lip damping and reed-lip mass, for instance.

The single reed, the double reed and the lip exciter for brass instruments [95, 110, 39, 93, 87],
can be simulated with the implemented exciters.

class Exciter {

public:

double lastInput; //remember last input value

double W; //Aeraulic cross section

double ur; //reed flow

double y1, y2; //reed positions in the near past

Exciter(); //constructor

virtual double nextOutput(double input);

//(pressure drop across exciter)

virtual void clearExciter();

};

Depending classes:
Function Status Description

phantomReed Implemented
simple reed model with constant stiff-
ness, where the reed is allowed to pen-
etrate inside the mouthpiece

shockReed Implemented
simple reed model simulating a shock of
the reed on the lay

convexReed Implemented

the simple reed is modelled piecewise
with nonlinear springs. The parame-
ters can be fitted according to measure-
ments. Described in Chapter 5.

lippalReed Implemented lip model for brass instruments

B.2.6 The object Section

The object Section stores the parameters of a cross section: radius, characteristic impedance,
direction (downstream or upstream) and simulation filters (impedance and admittance virtual
filters). It defines a port of a junction.

class Section{

public:

Section(); //constructor

double r; //radius of the cross section

double Zc; //characteristic impedance
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double SZr; //=r*Zc*direction

short int direction; //1: downstream, -1:upstream

Filter*Z,*Y; //impedance and admittance filters

void setSection(double, short int, Filter*, Filter*);

//(radius, direction, Z filter, Y filter)

};

Depending classes: none.

B.2.7 The object Orifice

The object Orifice delimits the downstream or the upstream end of a waveguide and simu-
lates the relationships with the external world. This is usually a chimney of a bell, but this can
also be the whole bore of the instrument, if the filter Z is simulating the input impedance of the
instrument.

class Orifice {

public:

Section*in; //downstream end of waveguide

Section*out; //upstream end of waveguide

Orifice(); //constructor

};

Depending classes:

Function Status Description

OpenHole Implemented interface a single reflectance filter

ChimneyHole Implemented

interface a variable reflectance fil-
ter (usually used in conjunction with
CrossfadeFilter in order to simulate
the progressive closure of a tonehole)

inputImpedance Implemented simulates an input impedance

B.2.8 The object Segment

The object Segment simulates a portion of a bore delimited by 2 Sections. It contains 2
propagator filters.

class Segment {

public:

Section*in,*out; //input et output sections

Filter*Tdown,*Tup; //propagators

Segment(); //constructor

virtual void computeV2();//forecast next output

};

Depending classes:
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Function Status Description

StdSegment Implemented
simulate a segment of bore with 4 linear
filters (2 reflectors and 2 propagators)

CylSegment Implemented
simulate a cylindrical segment with 2
linear filters (propagators)

SlideSegment Implemented

simulate a cylindrical segment with
varying length (c.f. trombone slide)
with 4 linear filters (propagators),
crossfade and linear interpolation in de-
lay line (fractional delay)

TuningSegment Implemented

simulate a cylindrical segment with
slightly varying length for tuning pur-
poses (c.f. clarinet barrel) with 2 linear
filters (propagators) and linear interpo-
lation in delay line (fractional delay)

ValveSegment Implemented

simulate the transitions between 2
cylindrical segments (c.f. trumpet
valve) with a crossfade between 2 × 2
linear filters (propagators)

NLCylSegment Implemented

simulate the nonlinear propagation of
waves in a cylinder (2 NL propagators),
with the algorithm proposed by Vergez
[195].

B.2.9 The object Junction

The object Junction binds Section objects together and solve the coupling problem at
each discrete time step. The Junction is responsible for the management and the update of
Exciter and Section objects (i.e. reflectors, propagators and other filters local to the junction,
like integrators or differentiators).

class Junction {

public:

Junction(); //constructor

virtual void solveCoupling();

};

Depending classes:
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Function Status Ports Description
JFlowControl Implemented 1 Flow controlled input junction

JPressureControl Implemented 1 Pressure controlled input junction

JFlowControlOut Implemented 1 Flow controlled output junction

JPressureControlOut Implemented 1 Pressure controlled output junction

JExciterControl Implemented 1
Input coupled with a pressure con-
trolled exciter

JExciterInserted Implemented 2 Exciter inserted between 2 segments

J2Segments Implemented 2 Simple junction of 2 segments

J2SegmentsMass Implemented 2
Junction of 2 cylindrical segments
with added acoustical mass

J3Segments Implemented 3 Simple junction of 3 segments

J3SegmentsMass Implemented 3
Junction of 3 segments with added
acoustical masses

J3ChimneyNL Implemented 3
Junction of 2 segments and a short,
nonlinear chimney

cLinearHole Implemented 2
Output coupled with a linear re-
flectance and key controlled aper-
ture

cNonLinearHole Implemented 2
Output coupled with a nonlinear re-
flectance and key controlled aper-
ture

B.2.10 The object Filter

The object Filter is the foundation of the simulation structure. It implements a linear
approximation of the transfer functions in the discrete time domain, as IIR (infinite impulse
response) or FIR (finite impulse response) digital filters. Differentiators and integrators are also
simulated with the Filter structure. A delay line can be coupled to a filter by the mean of the
object CircularBuffer.

At a given discrete time step, the input and the output of a filter are linked with the linear
equation: output= V1 input+V2 (see Eq. 7.19). This equation is used to solve the coupling
problem. A call to the method computeV2() computes V2 according to the history of the filter.
Its value is stored in the filter structure. Once the input is determined, the history of the filter
must be updated with a call to output=update(input), even if the output value is already known
(history update). If the input value is known a priori, the slightly faster method nextOutput is
used instead: output=nextOutput(input). Both approaches cannot be combined during a single
time step.

class Filter {

public:

double V1; //coefficient affecting the present input value

double V2; //sum of terms depending from history

double lastInput; //remember last input

double lastOutput; //remember last output

Filter(); //constructor

virtual void computeV2();

//compute V2 and update partially the history

virtual double update(double input);

//compute the final output from V2 and complete history update

virtual double nextOutput(double input);

//compute directly the final output and update history

virtual void clearFilter();

//clear history of the filter

};
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Depending classes:
Function Status Description

IIRFilter Implemented Infinite Impulse Response Filter

FIRFilter Implemented Finite Impulse Response Filter

SymKerFilter Implemented FIR filter with symmetrical kernel

OscGuillemain Implemented
linear oscillator proposed by Ph. Guille-
main

DelayedFilter Implemented conjugation of a filter and a delay line

CrossfadeFilter Implemented

performs a crossfade between 2 filters,
according to a weight Θ (for filter 2 and
1 − Θ for filter 1). If Θ = 0, filter 2 is
not simulated; If Θ = 1, filter 1 is not
simulated

virtualZFilter Implemented virtual impedance filter (see Eq. 7.25)

virtualYFilter Implemented virtual admittance filter (see Eq. 7.26)

derivationFilter Implemented differentiator

integrationFilter Implemented integrator

InstrFilter Implemented

simulates the input impedance of
an instrument from a collection of
impedance filters (one for each finger-
ing) and manages the transitions be-
tween fingerings

InstrRFilter Implemented

simulates the input impedance of an
instrument from a collection of re-
flectance filters (one for each fingering)
and manages the transitions between
fingerings

B.3 Examples of instruments

The purpose of this section is to give a first overview of how to use the software (and not to
be a kind of user manual). The 3 examples below show how to define a new class derived from the
base class Instrument (for instance lateralHoleInstrument, in Example 3). The instrument
can then be simulated in 2 steps:
1) declare an instrument of the new derived class:

lateralHoleInstrument myClarinet;

2) simulate the instrument by invoking the method play():

myClarinet.play();

All objects that have been incorporated to the instrument (during the initialization of the class)
are called in turn at each time step during the simulation. In order to understand how the objects
are incorporated to the instrument and how the instrument is simulated, it is probably useful to
study the source code implementing these methods:

void InstrumentData::play() {

discreteTime=0;

while(command->read()){

for (vector<Action*>::iterator it = actions.begin() ; it != actions.end(); ++it){

(*it)->update();

}

for (vector<Segment*>::iterator it = segments.begin() ; it != segments.end(); ++it){

(*it)->computeV2();

}

for (vector<Junction*>::iterator it = junctions.begin() ; it != junctions.end(); ++it){

(*it)->solveCoupling();
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}

for (vector<Output*>::iterator it = outputs.begin() ; it != outputs.end(); ++it){

(*it)->write();

}

discreteTime++;

}

for (vector<Output*>::iterator it = outputs.begin() ; it != outputs.end(); ++it){

(*it)->close();

}

Compare with the pseudo code in §B.2.1.

Incorporation methods:

}

void InstrumentData::incorporateCommand(Command* cmd) {

command=cmd;

}

void InstrumentData::incorporateSegment(Segment* segment) {

segments.push_back(segment);

}

void InstrumentData::incorporateAction(Action* action) {

actions.push_back(action);

}

void InstrumentData::incorporateJunction(Junction* junct) {

junctions.push_back(junct);

}

void InstrumentData::incorporateOutput(Output* out) {

outputs.push_back(out);

}

B.3.1 Simulation of the impulse response of a cylinder
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Figure B.1 – Input impedance of the cylinder of Example B.3.1, simulated with a single linear
reflector (composed of 1 dipole, 6 monopoles and 1 Dirac).

The following example define a very simple instrument, testImpulseResponse, which sim-
ulates the response of a cylinder (length 24 cm) to a discrete flow impulse at its input, using a
single reflector and a delay line (see discussion in §7.4.5). The filter is automatically converted
by the software into an impedance filter, at the junction with the impulse generator. The filter
response (in pressure) is exported in two different formats: a WAV file (here mono canal, casted
to 16 bits integer values, according to the settled conversion factor) and a binary file (double
precision reals). The dimensionless input impedance of the filter (depicted on Fig. B.1) is calcu-
lated by a discrete Fourier transform of the impulse response, after dividing the pressure by the
characteristic impedance Zc.
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The simulation is about 110 times faster than real time, excluding the time of writing files, or
70 times faster than real time, including the time of writing files. In this example, the simulation
time does not depend basically on the length of the cylinder, but only on the number of poles
of the reflector, provided the (fractional) delay has been eliminated as described in §7.4.1. The
number of poles of the reflector (here 1 dipole, 6 monopoles and 1 Dirac) can then be kept more
or less constant (during the modal estimation process), whatever the length of the cylinder. The
length of the delay line is modified accordingly.

In order to keep the example simple, the filter coefficients are declared directly in the code.
Usually these coefficients are read from a data file. In this example the whole instrument is
considered as a single orifice (ChimneyHole), and not as a segment, because no propagator is
required : we have to simulate only its input impedance.

class testImpulseResponse:

public Instrument{

public:

//Command

CImpulse* myCommand;

//Filters

IIRFilter* filterR;

DelayedFilter* delayFilter;

//Orifice

ChimneyHole* myReflector;

//Junction

JFlowControl* jFlowControl;

//Outputs

WAVOutput* wavOutput;

binaryOutput *binOutput;

testImpulseResponse():

Instrument(){

// create objects

myCommand = new CImpulse(1);

filterR = new IIRFilter();

delayFilter = new DelayedFilter();

myReflector = new ChimneyHole();

jFlowControl = new JFlowControl();

wavOutput = new WAVOutput(1);

binOutput = new binaryOutput(1);

//parameters of the pipe

double radiusPipe=0.008;

unsigned delay=60;

//initializations

//reset the impulse generator and set the duration of the simulation to 10 seconds

myCommand->resetImpulse(1,10*fe);

//set the reflector filter

filterR->setFilter(&filterRData[0],filterRLen);

//append a delay line to the filter

delayFilter->setFilter(filterR,delay);

//set the input radius of the "orifice" (delayed reflector)

myReflector->set(delayFilter,radiusPipe);

//set the parameters of the junction (flow command and input section)
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jFlowControl->incorporateJunction(iData,&(myCommand->command[0]),

myReflectance->in);

//export the generated pressure to WAV file

wavOutput->createFile("example.WAV",256,&conversion);

wavOutput->setOutput(0,&(jFlowControl->P));

iData->incorporateOutput(wavOutput);

//export the generated pressure to binary file

binOutput->createFile("example.dat",256);

binOutput->setOutput(0,&(jFlowControl->P));

iData->incorporateOutput(binOutput);

}

protected:

static const int filterRLen=8;

//filter coefficients

double filterRData[filterRLen*4]=

{ 1.56177255682538, 0, 0, 0,

-0.00685882662363974, 0, -0.741750668457406, 0,

0.00187968803501007, 0, -0.846006652548808, 0,

-0.000415472500341695, 0, -0.912613646131213, 0,

0.0000781941831989475, 0, -0.953970614839499, 0,

-0.0000108276247890862, 0, -0.978463985204081, 0,

0.00000067960367332951, 0, -0.993366650105859, 0,

-1.74803256664622, 0.49331398574302,

-0.598810896410137, 0.0920637930780157};

//conversion factor for WAV export

double conversion = 1/1000.;

};

The instrument can be played with a clarinet mouthpiece by replacing the junction JFlowControl

by a junction JExciterControl. Naturally the specification of an exciter is required. This is
demonstrated in the next example.

B.3.2 Simulation of a cylindrical clarinet with 1 chimney

The Instrument defined in this example simulates 3 cylindrical segments of length 30, 10
and 1 cm. The third segment is a chimney which is connected between the 2 first segments (see
scheme on Fig. B.2). A clarinet exciter (of type phantomReed) is connected to the input of the
pipe. The outputs of the bore and of the chimney are simulated with nonlinear losses. Because
each tonehole can be progressively closed (via the value of the parameters theta or thetaEnd),
2 reflectors are required for each tonehole (one for the open tonehole and one for the nearly
closed tonehole, see §A.3.10). Two actions are chained in order to obtain the following effect:
wait 1 second (action1), then close progressively the tonehole with a linear ramp during 1 second
(action2). A third action (not represented on Fig. B.2) computes the external pressure from the
pressure signal inside the mouthpiece, with the algorithm described in Chapter 6, Appendix B.

The simulation is about 10 times faster than real time, including the time of writing files.

class cylinderWithChimney:

public Instrument{

public:

//Command

CtanhRamp *myCommand;

//Actions

waitUntil *action1;

linearRamp *action2;

filterAction *projectOutside;



B.3 Examples of instruments 221

jonct2 jonct3

jonct4

quasiClosedEnd

exciter

endOpen

quasiClosedChimneychimneyOpen

exciterControl

myCommand

segment1 segment2

segment3

action1 action2

Figure B.2 – Scheme of the instrument defined in Example B.3.2, showing the different kinds of
objects involved: Commands in green, Actions in orange, Exciter in brown, Segments in light
blue, Orifices in blue, Junctions in magenta (a non zero thickness is given here for graphical

reasons, but in reality, a junction is merely a surface). The shape of the arrows distinguishes if
informations are exchanged between objects (thick arrows) or if the identifier indicates only the

name of the illustrated object (thin arrows).

//Exciter

phantomReed *exciter;

//Filter

SymKerFilter*radiation;

//Segments

CylindricalSegment *segment1, *segment2, *segment3;

//Orifices

OpenHole *endOpen, *chimneyOpen, *quasiClosedEnd, *quasiClosedChimney;

//Junctions

JExciterControl *exciterControl;

J3Segments *jonct2;

JNonLinearHole *jonct3, *jonct4;

//Output

WAVOutput *wavOutput;

//parameters

double zeta=0.3, phi=1.0, epsilon=0.04, lambda=0., PMax=6000., fReed=900., qReed=.8,

theta=1., thetaEnd=1., radiusBore=.0075, radiusChimney=.003,

radiusQuasiClosed=.00075, alphaOut=1., alphaIn=1., lambdaKey=0.1, durationRamp=2.;

cylinderWithChimney():

Instrument(){
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// create objects

myCommand = new CtanhRamp(1);

action1 = new waitUntil();

action2 = new linearRamp();

projectOutside = new filterAction();

exciter = new phantomReed();

radiation = new SymKerFilter();

segment1 = new CylindricalSegment();

segment2 = new CylindricalSegment();

segment3 = new CylindricalSegment();

endOpen = new OpenHole();

quasiClosedEnd = new OpenHole();

chimneyOpen = new OpenHole();

quasiClosedChimney = new OpenHole();

exciterControl = new JExciterControl();

jonct2 = new J3Segments();

jonct3 = new JNonLinearHole();

jonct4 = new JNonLinearHole();

wavOutput = new WAVOutput(1);

//initializations

//commands

//simulate the mouthpressure with a tanh ramp

myCommand->incorporateCommand(iData, .05, 3., .8*PMax, 3*fe);

//action1 and action2 : wait 1 s then close the tonehole

action2->set(&theta, 1/(durationRamp*fe), 0.); //set ramp to close tonehole via theta

action1->set(iData, 1*fe, action2); //wait 1 second until closing tonehole

iData->incorporateAction(action1);

//sound radiation

projectOutside->setFilter(&(exciterControl->P),radiation);

radiation->setFilter(&kerData[0],kerLen);

iData->incorporateAction(projectOutside);

//exciter

zeta=0.3*sqrt(PMax)*square(radiusBore)/rhoCbyPi;

exciter->set(&zeta, &phi, &lambda, &epsilon,1/PMax, fReed, qReed);

//segments

segment1->incorporateSegment(iData, &filterTData[0], filterTLen, delay1,

radiusBore);

segment2->incorporateSegment(iData, &filterT2Data[0],filterT2Len, delay2,

radiusBore);

segment3->incorporateSegment(iData, &filterT3Data[0],filterT3Len, delay3,

radiusChimney);

//orifices

endOpen->set(&filterRData[0],filterRLen,radiusBore);

chimneyOpen->set(&filterRChimData[0],filterRChimLen,radiusChimney);

quasiClosedEnd->set(&filterRClosedData[0],filterRClosedLen,radiusQuasiClosed);

quasiClosedChimney->set(&filterRClosedData[0],filterRClosedLen,radiusQuasiClosed);

//junctions

exciterControl->incorporateJunction(iData, &(myCommand->command[0]), exciter,

segment1->in);

jonct2->incorporateJunction(iData, segment1->out, segment2->in, segment3->in);

jonct3->incorporateJunction(iData, &thetaEnd, radiusQuasiClosed/radiusBore,

alphaOut, alphaIn, lambdaKey, segment2->out, endOpen, quasiClosedEnd);

jonct4->incorporateJunction(iData, &theta, radiusQuasiClosed/radiusChimney,
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alphaOut, alphaIn, lambdaKey, segment3->out, chimneyOpen,

quasiClosedChimney);

//export radiated sound as WAV file

wavOutput->createFile("exportSound.WAV",256,&WAVconversion);

wavOutput->setOutput(0,&(projectOutside->lastOutput));

iData->incorporateOutput(wavOutput);

}

protected:

//filter coefficients

static const int filterTLen=15;

static const int delay1=36;

double filterTData[filterTLen*4] ={/*data deleted*/};

static const int filterRLen=8;

double filterRData[filterRLen*4] ={/*data deleted*/};

static const int filterRClosedLen=2;

double filterRClosedData[filterRClosedLen*4] ={/*data deleted*/};

static const int filterRChimLen=7;

double filterRChimData[filterRChimLen*4] ={/*data deleted*/};

static const int delay2=10;

static const int filterT2Len=18;

double filterT2Data[filterT2Len*4] ={/*data deleted*/};

static const int delay3=1;

static const int filterT3Len=13;

double filterT3Data[filterT3Len*4] ={/*data deleted*/};

static const int kerLen=49;

double kerData[kerLen]={1., 0.5355, 0.2572, 0.0911, -0.0950, -0.2203, -0.2211,

-0.1484, -0.1093, -0.0745, -0.0377, -0.0603, -0.0996, -0.1088, -0.0989, -0.0682,

-0.0402, -0.0226, -0.0105, -0.0141, -0.0152, 0.0043, 0.0352, 0.0502, 0.0593,

0.0642, 0.0450, 0.0271, 0.0129, 0.0041, 0.0015, -0.0120, -0.0122, -0.0184,

-0.0182, -0.0211, -0.0180, 0.0072, 0.0070, -0.0023, -0.0072, -0.0255, -0.0250,

-0.0088, 0.0135, 0.0301, 0.0269, 0.0165, 0.0005};

//conversion factor to integer (WAV export)

double WAVconversion = 1.;

};

Notice that for a short chimney (like in this example) the junctions junc2 and junc4 could
be replaced by a single junction of type J3ChimneyNL and the orifices chimneyOpen and qua-
siClosedChimney and the segment3 could be replaced by 2 orifices of type ChimneyHole (tone-
hole+chimney open or totally closed). The simulation is much more efficient, as described in
§A.3.12. This case is shown in the next example.

B.3.3 Generic clarinet with lateral toneholes

This example shows the implementation of a generic wind instrument with lateral toneholes
+ bell (here blown with the single reed exciter (of type convexReed, described in Chapter 5).
All lateral toneholes are simulated with nonlinear losses.

Warning: this code is not complete: for sake of concision, some object declarations and ini-
tializations were removed. The purpose of this example is only to show the basic structuration
of a fully developed instrument.
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The structure of the instrument (geometry, number of segments and toneholes) is read from
a data file. The user of the synthesizer has to supply this file and the files containing the filter
coefficients obtained from to the modal estimation (see §7.4) of the scattering matrices of each
segment and the reflectances of the chimneys and the bell. This example demonstrates the use
of the short chimneys, which are computationally much more efficient, than the structure shown
in Example 2.

This code is used for the simulation of a Buffet Crampon B-Clarinet (instrument measured
and described in [174]) with 28 segments and 22 lateral toneholes, playing the beginning of a
Brahms sonata from a MIDI file (same data as in Chapter 6, Fig. 8). The simulation is about
1.6 times faster than real time. The simulation of the bifurcation diagrams in §8.3.4 is also based
on this code.

class lateralHolesInstrument:

public Instrument{

public:

//Commands

CMidiFile *cmdMidi;

//Actions

sigmoidRamp *crossfade;

basicFinger *manageFingerChart;

filterAction *projectOutside;

//Filters

CrossfadeFilter *chimneyCross;

DelayedFilter *chimneyOpen, *chimneyClosed;

IIRFilter *chimneyOpenIIR, *chimneyClosedIIR;

SymKerFilter *radiation;

//Exciter

convexReed *reedExciter;

//Segments

Segment **pipe;

CylindricalSegment *pipeCyl;

StdSegment *pipeStd;

//Orifices

ChimneyHole *chimney;

OpenHole *endOpen, *quasiClosedEnd;

//Junctions

JExciterControl *exciterControl;

J2SegmentsMass *Jpipe;

JLinearHole *terminationLin;

J3ChimneyNL *Jchimney;

//Outputs

WAVOutput *wavOutput;

binaryOutput *binOutput;

lateralHolesInstrument(): Instrument()

{

///////////////////////////////////////

//initialize instrument

//read instrument structure

readStructure("instrStructure.DAT", nbSegm, cylQ, chemQ, noFiltre);
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//incorporate MIDI Command file

cmdMidi->incorporateCommand(iData, "Brahms.MID");

//incorporate fingering chart management

readFinger("fingering.DAT", nbFinger, nbHoles, midiCode, myFingerChart);

manageFingerChart->set(nbHoles, nbFinger, &myFingerChart[0], &midiCode[0], crossfade,

&(cmdMidi->command[0]), lambdaKey);

crossfade->set(&(manageFingerChart->theta),1/(durationRamp*fe),1.);

iData->incorporateAction(manageFingerChart);

//set exciter

reedExciter->set(reedNr,&(cmdMidi->command[1]),&(cmdMidi->command[2]), &lambda,

&lambda2,&myNoise,&(exciterControl->U),masse,amor);

///////////////////////////////////////

//orifices : read and set filters

//bell

readFilter("bell.DAT", typePav, nbFiltrersPav, nbCoefTotPav, nbCoefPav, adrCoefPav,

delaysPav, radiusPav, dataPav);

endOpen->set(&dataPav[0],nbCoefPav[0],radiusPav[0]);

quasiClosedEnd->set(&filterRClosedData[0],filterRClosedLen,radiusQuasiClosed);

//chimneys open

readFilter("chimneysOpen.DAT", type, nbFiltrers, nbCoefTot, nbCoef, adrCoef, delays,

radius, data);

for(int n=0;n<nbFiltrers;n++){

chimneyOpenIIR[n].setFilter(&(data[adrCoef[n]]),nbCoef[n]);

chimneyOpen[n].setFilter(&chimneyOpenIIR[n],delays[n]);

}

//chimneys closed

readFilter("chimneysClosed.DAT", type, nbFiltrers, nbCoefTot, nbCoef, adrCoef, delays,

radius, data);

for(int n=0;n<nbFiltrers;n++){

chimneyClosedIIR[n].setFilter(&data[adrCoef[n]],nbCoef[n]);

chimneyClosed[n].setFilter(&chimneyClosedIIR[n],delays[n]);

chimneyCross[n].setFilter(&(manageFingerChart->command[n]),&chimneyClosed[n],

&chimneyOpen[n]);

chimney[n].set(&chimneyCross[n],radius[n]);

}

///////////////////////////////////////

//segments : read filters

readFilter("propagators.DAT", type, nbFiltersTot, nbCoefTot, nbCoef, adrCoef, delays,

radius, data);

readFilter("reflectionUpstream.DAT", typeUp, nbFiltrersUp, nbCoefTotUp, nbCoefUp,

adrCoefUp, delaysUp, radiusUp, dataUp);

readFilter("reflectionDownstrean.DAT", typeDown, nbFiltrersDown, nbCoefTotDown,

nbCoefDown, adrCoefDown, delaysDown, radiusDown, dataDown);

//incorporate segments

int cpte=0;

for(int n=0;n<nbFiltersTot;n++){

if(cylQ[n]>0){ //Cylindrical segment

pipeCyl=new CylindricalSegment;

pipeCyl->incorporateSegment(iData, &data[adrCoef[n]],nbCoef[n], delays[n],

radius[n]);

pipe[n] =pipeCyl;

}
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else{ //Standard (i.e. non cylindrical) segment

pipeStd=new StdSegment;

pipeStd->incorporateSegment(iData, &data[adrCoef[n]],nbCoef[n], delays[n],

&dataUp[adrCoefUp[cpte]],nbCoefUp[cpte],&dataDown[adrCoefDown[cpte]],

nbCoefDown[cpte],radiusUp[cpte],radiusDown[cpte]);

pipe[n] =pipeStd;

cpte++;

}

}

///////////////////////////////////////

//incorporate junctions

cpte=0;

for(int n=0;n<nbFiltersTot-1;n++){

if(chemQ[n]>0){

Jchimney[cpte].incorporateJunction(iData, (pipe[n]->out), (pipe[n+1]->in),

(chimney[cpte].in),&(manageFingerChart->commandSpeed[cpte]));

cpte++;

}

else{

Jpipe = new J2SegmentsMass;

Jpipe->incorporateJunction(iData, (pipe[n]->out), (pipe[n+1]->in));

}

}

//terminate the bore with the bell

terminationLin->incorporateJunction(iData, &thetaEnd, radiusQuasiClosed/radiusPav[0],

lambdaKey,(pipe[nbFiltersTot-1]->out), endOpen, quasiClosedEnd);

//command the exciter blowing pressure from MIDI file and

//connect the exciter at the input of the pipe

exciterControl->incorporateJunction(iData, &(cmdMidi->command[1]), reedExciter,

(pipe[0]->in));

///////////////////////////////////////

//incorporate sound radiation

radiation->setFilter(&kerData[0],kerLen);

projectOutside->setFilter(&(exciterControl->P),radiation);

iData->incorporateAction(projectOutside);

///////////////////////////////////////

//export results

//export radiated sound as WAV file

wavOutput->createFile("exportSound.WAV",256,&WAVconversion[0]);

wavOutput->setOutput(0,&(projectOutside->lastOutput));

iData->incorporateOutput(wavOutput);

//export data as binary file

binOutput->createFile("exportBinaryData.dat",256);

binOutput->setOutput(0,&(exciterControl->P)); //export mouthpiece pressure

binOutput->setOutput(1,&(exciterControl->U)); //export flow into mouthpiece

binOutput->setOutput(2,&(manageFingerChart->command[0])); //export fingering

// command

binOutput->setOutput(3,&(Jchimney[0].P3)); //export pressure in speaker hole

binOutput->setOutput(4,&(Jchimney[0].U1)); //export flow upstream speaker hole

binOutput->setOutput(5,&(Jchimney[0].U2)); //export flow downstream speaker hole

binOutput->setOutput(6,&(Jchimney[0].U3)); //export flow in speaker hole

iData->incorporateOutput(binOutput);

}};

This generic model was modified in order to simulate also brass instrument by adding valves,
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slides and nonlinear propagation. This model was tested for the simulation of a Courtois bass
trombone and a Blessing trumpet. The geometric measurements of these instruments were kindly
provided by Joël Gilbert and René Caussé.
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Appendix C

Introduction to the Canonical
Correlation Analysis

Résumé

Cet appendice est écrit à l’intention des lecteurs peu familiers avec les techniques d’analyse
canonique des corrélations (CCA). Il prend comme exemple didactique l’analyse de répétabilité
effectuée à l’intérieur de la catégorie ”subjective”, au §8.5.2. On passe en revue différentes no-
tions élémentaires liées aux tests statistiques, comme les hypothèses et seuils statistiques, la
différence entre statistiques paramétriques et non paramétriques, le problème du nombre de
blocs de données indépendants et des simulations Monte-Carlo. On présente succinctement le
principe sur lequel est basée la CCA et on discute la différence entre la CCA et l’analyse en
composantes principales (PCA).

C.1 Introduction

This appendix is written for readers unfamiliar with CCA techniques. The repeatability anal-
ysis performed inside the ”subjective” category, in §8.5.2 is taken as a didactic example.

C.2 Statistical hypotheses

Our aim is to evaluate the repeatability of the subjective measures and to check if the judg-
ments made by the clarinettist during the 4 repetitions of the test have a certain reliability or if
they are rather dictated by chance. To fix the ideas, let’s say that we evaluate the reliability of
the descriptor ForceSubj. For this, we must determine what is the most likely hypothesis:

— hypothesis H1: there is a link between the different successive evaluations of the reed
strength by the clarinettist. It can be assumed that the mean correlation between the
different evaluations of the test is greater than 0.

— hypothesis H0: there is no link. We will favor this hypothesis if the observed mean corre-
lation has a significant probability of being due to chance

C.3 Significance threshold (or significance level)

To decide which hypothesis we should favor, we set a threshold quantifying the risk of being
wrong, say a threshold of 1%. If the observed mean correlation has a probability less than 1% of
being due to chance, we reject the hypothesis H0 and we deduce that the clarinettist is indeed
able to discern blindly the different strengths of reed, favoring H1. The observed correlation is
considered to be statistically significant at the level of 1%.

229
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C.4 Parametric and non-parametric statistics

What does ”chance” mean? For this, we must make an assumption on the statistical distri-
bution of the studied parameter among the population. One could for example assume that the
measured parameter has a normal (Gaussian) distribution. In our sample (reed panel) we have a
reed strength distribution evenly distributed between 2 and 3.5. We could therefore compare the
mean square correlation observed during the 4 repetitions of the test to those obtained by arti-
ficially generating 4 tests where the reed strengths are drawn at random, uniformly distributed
between 2 and 3.5. By repeating this simulation thousands of times (Monte-Carlo simulation
method), we can establish the statistical distribution of the simulated statistic (the mean square
correlation, r̄2). A difficulty arises however: how to be sure that the subjective strength of the
reed has the same distribution as the nominal strength of the reed indicated by the manufacturer?
We do not know it. An elegant way to overcome this difficulty is to perform the statistic not on
the score attributed by the clarinettist to ForceSubj, but on the rank occupied by each reed
within our panel, by sorting the reeds according to ForceSubj, from the weakest to the strongest.
Our statistical test is then called ”non-parametric”.

C.5 Number of independent data blocks

If we have only 2 repetitions of the test to compare, the task is easy: there is only one corre-
lation and it is sufficient to perform the Spearman correlation test. If the studied parameter has
a normal distribution, we may perform the Pearson correlation test. Here, we have 4 repetitions
of the test: the clarinettist evaluated 4 times the descriptor ForceSubj blind.

Carroll’s proposed following principle to perform this comparison: we seek a kind of ideal
measure of the descriptor (called group configuration, denoted Y ), which is optimally correlated
with all repetitions of the test. In 1 dimension, a good solution is easy to guess because we
have no liberty for the choice of a direction in the space: this ideal measure must be something
like the mean of ForceSubj over all J = 4 blocks. Indeed, this guess for Y works well: the
canonical correlations (between Y and the canonic variates Ŷ j ) are respectively: 0.9337, 0.9596,
0.9413 and 0.9413. The mean square correlation is then r̄2

1 = 0.8912 (i.e. r̄2
1 = 0.9440). The

optimal choice (determined analytically) is quite near: the optimal canonical correlations are
respectively: 0.9459, 0.9714, 0.9413 and 0.9486. The mean square correlation is then r̄2

1 = 0.9061
(i.e. r̄2

1 = 0.9518, wich is the value recorded in Table 8.8, subjectiveF ).

At first glance, the idea to compute canonical correlations may seem strange. Wouldn’t it be
easier to compute the correlations directly between Y and Xj? This wouldn’t work if Xj has
more than 1 variable!

In Carroll’s proposal, the group configuration is unique for all blocks: Y . Notice that other
authors propose models of CCA with such a configuration for each block: Y j

C.6 Statistical tests and Monte Carlo Simulations

Once Y has be computed, our aim is now to determine which canonical correlations are
statistically significant. For this, we must know the statistical distribution of the mean square
correlation when the null hypothesis H0 is true (i.e. in the case where the blocks are completely
independent of each other).

With one dimension, this distribution can be calculated analytically. With several dimensions
(in our example: taking into account simultaneously 4 descriptors at each repetition of the test),
the task is more complicated. I have chosen to perform a Monte Carlo simulation. A new difficulty
arises then: during the random draw, it is necessary to take into account the correlation between
the different descriptors. The simplest way to overcome this problem is to project the data onto
an orthogonal axis system (rotation), where the descriptors are uncorrelated. This reverts to
perform beforehand a PCA with the data of each repetition of the test (i.e. take the data blocks
test1, test2, test3 and test4, instead of Test1, Test2, Test3 and Test4). Random samples can then
be drawn independently for each variable in the Monte Carlo simulation.
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Figure C.1 – Plot of the canonical factors 1 to 3 of subjectiveF (after standardization). The
identifier of each individual reed is indicated on the graphs.

C.7 Inspection of the canonical factors

A plot of the canonical factors allows to situate each individual reed inside the data corpus.
This plot is ordinarily not very easy to interpret, because of the multiple dimensions involved.
An example of factor plot is given on Fig. C.1 for the analysis subjectiveF, for the 3 significant
dimensions (i.e. by plotting all possible pairs of factors: 1× 2, 1× 3 and 2× 3). The inspection
of the plot reveals no anomalous behavior: the reeds are distributed quite homogeneously in the
3D space. No reed is clearly an outlier.

At the contrary, the inspection of the first 4 factors of staticF on Fig. C.2 reveals clearly a
problem of outlier on the factor 3, with the very strong reeds R12 and R21 (which did never
completely close the channel in PhotoBreakIn, even with the tightest embouchure). Moreover,
a nonlinearity can be noticed in the distribution of factor 1 (the weak reeds are closer together
than the strong reeds). For these reasons, all analyses were carried out also on the basis of the
ranks and not only on the scores (see Table 8.6).

It seems logical to compare the CCA factors obtained for the analyses staticF and subjectiveF.
The comparison is illustrated on Fig. C.3. Obviously, the factor 1 is quite similar among both
analyses, while this relation is less pronounced for the factors 2 and 3. This appears clearly
by inspection of the correlation matrix, comparing each factor of staticF with each factor of
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Figure C.2 – Plot of the canonical factors 1 to 4 of staticF (after standardization). The
identifier of each individual reed is indicated on the graphs. The very strong reeds R12 and R21

appear as outliers for factor 3.
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Figure C.3 – Comparison between the CCA factors 1 to 3 of staticF and subjectiveF (after
standardization).

subjectiveF :

ρ(staticF•,p, subjectiveF•,q) =




0.903 −0.025 −0.111
−0.036 0.605 −0.456
0.222 0.319 0.317




The correlation matrix confirms that both factor 1 are well related, while the situation is different
for the factors 2 and 3: one observes that an ad hoc rotation of the factors of one of the blocks
along factor 1 would simplify the interpretation, because the correlation matrix will become
essentially diagonal. The next step in the analysis is to find a way for doing this. Actually, this
task is easy to do: we have only to apply again a CCA between the blocks staticF and subjectiveF
(which were themselves already obtained by CCA). In Table 8.6, this analysis is called statSubjF.
Its group configuration Y and its canonical variates Ŷ j are plotted on Fig. C.4 for the 3 first
factors.

As before, let us compute the correlation matrix for the 3 first factors (which is now perfectly
diagonal):

ρ(Y •,p, Ŷ 1,•,q) = ρ(Y •,p, Ŷ 2,•,q) =




0.988 0. 0.
0. 0.957 0.
0. 0. 0.909




Both correlation matrices (for j = 1 and j = 2) are equal, because we have only J = 2 blocks.
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Figure C.4 – Plot of the group configuration Y (CCA factors) and the canonical variates Ŷ j

(after standardization) for the analysis statSubjF, which which extracts the information
common to staticF and subjectiveF, see Table 8.6.

The diagonal elements of the correlation matrix are therefore equal to r̄q, and can be found in
Table 8.8 up to factor q = 6 (although only the 4 first factors are significant). Finally the plot
of the ”new” factors (i.e. the new group configuration Y ) resuming the information common to
staticF and subjectiveF is depicted on Fig. C.5. As before, the very strong reed R12 appears
clearly as an outlier for factor 3.

Facit : a ”naive” analysis of the results requires the presentation of many graphs (cf. Fig. C.1
to C.5) that can be advantageously summarized in a single table of correlations (c.f Table 8.8),
provided the reader understands the philosophy behind this treatment of the information. I hope
that this didactic presentation and the plots of this section will clarify this point.

C.8 Difference between CCA and PCA

What is the difference between CCA and PCA?

The PCA is performed inside a single data block (consisting of a large number of interrelated
variables) in order to reduce its dimensionality, while retaining as much as possible of the variation
present in the data set. In other words, it seeks to capture so much variance of the original data
block as possible, on a small number of components.

By contrast, the CCA is performed among J different data blocks and seeks to capture as
much of the variation which is shared by all data blocks. In other words, it focus on the analysis
of the redundancy among data blocks.

Both methods can sometimes lead to similar results, but the PCA is usually much less efficient
than the CCA in discovering relevant hidden structures. It is likely to imagine some data where
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Figure C.5 – Plot of the CCA factors 1 to 3 of statSubjF (after standardization). The identifier
of each individual reed is indicated on the graphs.

the first PCA factor is composed essentially of unsignificant noise. The CCA seeks exclusively
information that is common to all data blocks (and tries to ignore noise). This is the reason
explaining why its analyzes are often more relevant and easier to interpret than those of the
PCA.
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Appendix D

Complements to Chapter 8

Résumé

Cet Appendice examine des aspects plus techniques des analyses CCA effectuées au Chapitre
8, notamment ceux liés à la reconstruction des données brutes à partir des facteurs CCA, à la
détection de non-linéarités parmi les facteurs à l’aide d’une méthode graphique, à la prédiction
des facteurs à l’aide d’un nombre minimal de mesures et à une comparaison entre mesures de
bifurcation et simulations.

This Appendix is devoted to the examination of some complementary aspects about nonlin-
earities, predictions and comparison between measurement and simulations in relation with the
CCA.

D.1 Reconstruction of raw data with CCA factors

Let us reconstruct some of our raw data according to §8.4.6. An example of raw data recon-
struction is given on Fig. D.1 for the reed R14. The measurements (solid lines) are compared with
the reconstruction (dashed lines) for different data blocks. For each data block, a reconstruction
with Q = 2 and Q = 6 factors is given.

The reconstructed variance gives some insight about the relationships among blocks and also
about the minimal number of dimensions to retain for an efficient reconstruction. We will see
that in all cases 3 or 4 dimensions are necessary in order to capture most of the variance. An
”elbow” is observed most of the time around this number of factors on the graphs depicting the
proportion of explained variance.

Let us examine first the reconstruction of staticF presented on Fig. D.2. The proportion
of variance λ̂j,n explained by each factor is depicted on the left column of the Fig. while the
reconstructed variance ηj,n is depicted on the right column. The exercice is done from the own
”eigenfactors” (i.e. staticF ) and also for 3 ”foreign” CCA factors (subjectiveF, bifurcationF and
totalF ). Without surprise, the own ”eigenfactors” are more efficient for the reconstruction, while
subjectiveF is less efficient than the others. The variance of the aeraulic measurements (espe-
cially that of aero) is significantly better reconstructed than that of the photos of the channel.
Nevertheless, for the worst case, 4 factors of subjectiveF allow to reconstruct about 70% of the
variance of aero and photoNew, 65% of the variance of optoLeft and optoRight and 50% of the
variance of photoBreakIn.

Let us repeat the exercice in Fig. D.3 for the subjective evaluations subjectiveF (test1, test2,
test3 and test4 ). The reconstruction of the mean of the descriptors over the 4 repetitions of the
test (StdSubj ) is also depicted on this Fig. About 70% of the variance of StdSubj is reconstructed
with 4 factors taken among foreign CCA factors (staticF, bifurcationF and totalF ), while the 4
own ”eigenfactors” reconstruct more than 95% of the variance of StdSubj.

The reconstruction of the measured bifurcation diagrams is done with the own ”eigenfactors”
(i.e. bifurcationF ) and also with the static factors (staticF ). This is depicted on Figs. D.4 and D.5.
The difference of efficiency is not important. This reveals that the static features determine most

237
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of sound production of the instrument (at least in the first regime). The variance is systematically
better reconstructed for the loose embouchures than for the tight ones. The curves are really
similar for all sensors. Practically no difference in the reconstruction is observed between the
ramps (crescendo and decrescendo). However, it should be observed that the reconstruction of
the measured pressure in the container is significantly determined by the factors 5 to 9. The
reasons of this interesting behavior should be examined.

Similarly, the reconstruction of the synthesized bifurcation diagrams is done with the own
”eigenfactors” (i.e. synthesisF ) and also with the static factors (staticF ). Again, the difference
of efficiency of reconstruction is not important, but the curves are quite different of those of the
measurements. The differences among embouchures are much more pronounced.

D.2 Prediction of objective factors from a minimum num-
ber of measurements

We seek a prediction by Multivariate Linear Regression (MLR) of the first 6 CCA factors of
objectiveF (called ”objective factors”) with a minimal number of physical measurements, after
selection of the most relevant ones for this task. This selection is performed with a procedure
similar to stepwise regression forward. First, the most discriminant measurement for the factor
1 is selected, then the 2nd most discriminating measurement for the factor 2 is selected, when it
is associated with the 1st measurement selected, and so on.

Instead of selecting among all individual measurements in all data blocks, we seek instead to
select more general measurements, such as the average channel height or such as some discrete
points of the nonlinear reed model (which assumes a linear relation between ψ and ∆p).

The following data was used in turn as predictors:

1. Mean channel height

2. Parameters of the nonlinear reed model

3. Bifurcation diagrams

D.2.1 Mean channel height

The mean channel height is calculated for different embouchures, among the PhotoNew and
PhotoBreakIn series. We select which embouchures ψ allow an optimal prediction of the first
6 factors. These embouchures are illustrated in Fig. D.8. The associated mean channel height
allows to predict by MLR the rank occupied by each reed for the first 6 objective factors with
a correlation respectively of 0.96, 0.90, 0.58, 0.62, 0.61 and 0.44, for PhotoNew and 0.95, 0.96,
0.83, 0.69, 0.49 and 0.44, for PhotoBreakIn.

D.2.2 Parameters of the nonlinear reed model

Six of 142 discrete points specifying the nonlinear reed model are selected (blocks ReedDe-
flec and ReedAero). The 6 selected values come all from the optical measurements ReedDeflec
(defining the mechanical stiffness in the reed model). They are illustrated in Fig. D.9 and allow
a prediction by MLR of the rank occupied by each reed for the 6 first objective factors with a
correlation respectively of 0.98, 0.95, 0.86, 0.84, 0.64 and 0.41.

D.2.3 Bifurcation diagrams

A prediction is possible for different measurements, for instance from the playing frequency
fplay or from the envelope of the pressure signal in the mouthpiece pmp. The respective correla-
tions for the first 6 objective factors are: 0.92, 0.92, 0.82, 0.67, 0.59 and 0.68 (playing frequency)
and 0.98, 0.92, 0.69, 0.73, 0.54 and 0.69 (envelope). The selected points are illustrated in Fig.
D.10. These points are located near the emergence or extinction thresholds.
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D.3 Detection of nonlinear components among the CCA
Factors

In our data, nonlinear relationships are expected among factors, because of the physical nature
of the measurements. For examining this topic, a graphical method is proposed in this paragraph.
The analysis is based exclusively on raw data, because the interpretation is more intuitive: The
reeds are sorted according to the rank obtained for each CCA factor and the trend of the raw
measurements along each factor is examined, after smoothing using a Gaussian filter of radius
8. The data is smoothed (in the kind of a moving average) in order to obtain 8 ”snapshots”
(subgraphs) taken at regular intervals, when going through each factor, after subtracting the
average value observed for all reeds (enhancing thus the differences). Such graphs have been
established and examined for all data blocks, searching for the most striking features of each
factor.

These graphs take up a lot of space and can not all be reproduced here. I chose to present
the most outstanding of them. Fig. D.11 illustrates (for the first 6 factors) the evolution of the
detected trends for the photos of the channel (PhotoNew and PhotoBreakIn). Fig. D.12 concerns
the measurements of the playing frequency and the SC of the pressure signal in the mouthpiece
(bifurcation diagrams), while Fig. D.13 shows the asymmetry of the optical signals near the
beating and saturation thresholds, for this same series of measurements. Fig. D.14 highlights the
differences in the reed model used for the synthesis. These graphs are easier to interpret than the
previous ones, because they have one dimension less: the model considers a linear dependence
between ψ and ∆p. In addition, the differences between reeds are sufficiently visible so that it is
not necessary to enhance them by subtracting the average value. Derivatives with respect to ∆p
(aeraulic and mechanical compliance) are shown in Fig. D.15.

D.4 Summary comparison of time signals between mea-
surement and synthesis

The evolution 1 of time signals along each factor is depicted using the same graphical tech-
nique. The smoothing of the data with a Gaussian filter makes it possible to illustrate the (linear
or nonlinear) trend within a factor, without disturbing the graphs with noise caused by individ-
ual variations between reeds (which may be important for the factors of high rank). Here, unlike
the preceding figures, the radius of the Gaussian filter has been reduced to 3 units (instead of 8),
which increases the variability while increasing the detection limit of some features. Figs. D.14
to D.21 can be conveniently compared to each other, since they share the same color code to
represent the data of each reed, according to its relative ranking inside each factor.

Figs. D.18 and D.19 show the evolution of the reed signal within each factor, comparing the
signals measured with the artificial mouth (a) and the signals from of the synthesis model (b), this
for 2 different blowing pressures 2. We will notice a fairly good match between measurement and

1. The terms ”evolution” or ”trend” are used in order to describe how the measured signals are becoming
different from one another when the reeds are situated at different locations of a factor, for the same blowing
pressure.

2. For readers who may have difficulty reading these graphs, let’s perform a detailed interpretation of Fig.
D.18 (a), Factor 1. The factor 1 is strongly correlated with the strength of the reed. For the relatively loose
embouchure (ψ = 1.250 mm) and for a blowing pressure of 4 kPa corresponding to the measured signal, one
expects a quasi-sinusoidal signal for a strong reed, since the oscillation threshold should be close to this pressure.
There is indeed such a signal, illustrated in dark green. This curve is very close to the one obtained by averaging
the signals observed for the 7 strongest reeds, located at the ”right” end of the factor (the Gaussian filter is a kind
of improved version of a moving average). For the weakest reeds, it is expected on the contrary to observe a beating
reed regime for this blowing pressure. It can be seen that the yellow curves exceed the coordinate z = 1.2 mm,
signaling a contact between the reed and the lay. For reeds of intermediate strength, an intermediate behavior is
expected, represented by shades of green. Let’s continue our interpretation for factor 2: from Fig. D.11, we find
that, for the embouchure corresponding to the signal we are studying (ψ = 1.250 mm, in light green in Fig. D.11
(b), Factor 2, which color corresponds to an opening of about -0.7 mm according to Fig. 8.3 (b), illustrating the
average opening of the break-in reeds), the reeds ”left” to the factor have an opening (at ∆p = 0) which is about
0.06 mm more closed than at the opposite end of the factor. In Fig. D.18 (a), Factor 2, there is indeed a difference
of this order of magnitude when the reed is in the opening phase, (around the coordinate -0.7 mm). According
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synthesis, when we compare the relative trend within each factor. Some systematic differences
in the rebound of the reeds suggest that the damping parameter is probably underestimated in
the simulations.

Figs. D.20 and D.21 allow the same comparison at the level of the pressure signals measured
and synthesized in the mouthpiece. For the lowest blowing pressure (4 kPa), the proximity of the
oscillation threshold (causing pronounced nonlinearity) makes the comparisons more delicate,
especially for very strong reeds (R07, R12 and R21), of which the data has been eliminated in
the graphical representation. Similarly, for the high blowing pressure (10 kPa), the 3 weakest
reeds (R00, R06 and R39) had to be removed from the graphs, because the extinction threshold
is exceeded. The very low variability between reeds for the blowing pressure of 8 kPa is striking
(not shown here, but still much lower than at 10 kPa, as depicted; seemingly, all reeds have
the same sound at this pressure for this embouchure), while the reed signal has a much greater
variability. Systematic differences in the aspect of the temporal signal between measurement and
synthesis are quite obvious. Further study should be conducted to better understand the origin
of these differences, in particular by clarifying the role of the mouthpiece geometry in the model.

We will observe in Fig. D.12 the marked (negative) correlation between the playing frequency
and the SC of the pressure signal in the mouthpiece, for all factors. This correlation is even
clearer for tight embouchures.

It should be noted, however, that the synthesis model has not been optimized very extensively,
particularly with respect to reed dynamics (the mass and damping parameters are considered
constant for all reeds ). There are examples in the literature ([17] and [125]) where the match
between measurement and simulation is better, but these examples concern a single reed, mouth-
piece and blowing pressure for which the parameters of the model have been optimized. Here,
the model has a much more general validity, largely independent of the blowing pressure and
the embouchure. The reed parameters were determined by static measurements, performed in-
dependently of the bifurcation measurements in question, without any optimization between
simulations and measurements.

to Fig. D.15 (a), Factor 2, we note that this factor is also related to a more or less pronounced bending of the
reed on the lay, as indicated by the difference in slope observed. For this, it is necessary to evaluate the value of
∆p, which is obtained by subtracting the pressure in the mouthpiece (indicated in Fig. D.14 (a), Factor 2) to the
blowing pressure (here 4 kPa), in order to compare two curves of the same color.
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Figure D.1 – Reconstruction of the raw data of the reed R14 by staticF : (see Eq. 8.20) with
Q = 2 factors (left picture) or Q = 6 factors (right picture) for the matrix F . Solid lines:

measurement Xj,14. Dashed lines: reconstruction X̂j,14. (a) PhotoNew. (b) PhotoBreakIn (c)
Aero. (d) OptoLeft. (e) MPlayFreq (playing frequency, measure). (f) Idem synthesis. (g) SC
pressure in mouthpiece, measure. (h) Idem synthesis. (i) Enveloppe pressure in mouthpiece,

measure. (j) Idem synthesis. (k) reed signal 1/2(L+R) near beating threshold, measure. (l) reed
signal 1/2(L+R) near saturation threshold, measure. Same conventions as in the precedent Figs.
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Figure D.2 – Reconstruction of the objective static measurements: staticF.
(a1) to (a4): Proportion of variance λ̂j,n explained by each factor. For the computation of this

proportion, the total variance of the raw data of each block was taken into account.
(b1) to (b4): Reconstructed variance ηj,n, as a function of the number of factors taken into

account. This graph cumulates the variance λ̂j,q explained by each factor.
(a1) and (b1): Reconstruction with staticF (own ”eigenfactors”).
(a2) and (b2): Reconstruction with subjectiveF (foreign factors).

(a3) and (b3): Reconstruction with bifurcationF (foreign factors).
(a4) and (b4): Reconstruction with totalF (”mixture” of factors of all categories).
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Figure D.3 – Reconstruction of the subjective musical evaluations: subjectiveF and
StdSubj (standardized mean of each subjective descriptor).

(a1) to (a4): Proportion of variance λ̂j,q explained by each factor. For the computation of this
proportion, the total variance of the raw data of each block was taken into account.

(b1) to (b4): Reconstructed variance ηj,q, as a function of the number of factors taken into

account. This graph cumulates the variance λ̂j,q explained by each factor.
(a1) and (b1): Reconstruction with subjectiveF (own ”eigenfactors”).

(a2) and (b2): Reconstruction with staticF (foreign factors).
(a3) and (b3): Reconstruction with bifurcationF (foreign factors).

(a4) and (b4): Reconstruction with totalF (”mixture” of factors of all categories).
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Figure D.4 – Reconstruction of the measured bifurcation diagrams, with the own
”eigenfactors” (bifurcationF ) and with foreign factors (staticF ). Proportion of variance λ̂j,q

explained by each factor. For the computation of this proportion, the total variance of the raw
data of each block was taken into account. The embouchures are coded from black (tight

embouchure) to light (loose embouchure). Plain lines: crescendo. Dashed lines: decrescendo,
except for the first line. Column (a): measurements of the bifurcation diagrams, reconstructed
with bifurcationF. Column (b): measurements of the bifurcation diagrams, reconstructed with
staticF. (a1) and (b1) MThres (blue) and MPlayFreq (orange). (a2) and (b2) M111 to M142

(measured pressure in mouthpiece). (a3) and (b3) M211 to M242 (measured pressure in
container). (a4) and (b4) M411 to M442 (measured reed deflection Left sensor). (a5) and (b5)

M511 to M542 (measured reed deflection Right sensor).
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Figure D.5 – Reconstruction of the measured bifurcation diagrams, with the own
”eigenfactors” (bifurcationF) and with foreign factors (staticF). Reconstructed variance ηj,q, as

a function of the number of factors taken into account. This graph cumulates the variance λ̂j,q
explained by each factor (see Fig. D.4). The embouchures are coded from black (tight

embouchure) to light (loose embouchure). Plain lines: crescendo. Dashed lines: decrescendo,
except for the first line. Column (a): measurements of the bifurcation diagrams, reconstructed
with bifurcationF. Column (b): measurements of the bifurcation diagrams, reconstructed with
staticF. (a1) and (b1) MThres (blue) and MPlayFreq (orange). (a2) and (b2) M111 to M142

(measured pressure in mouthpiece). (a3) and (b3) M211 to M242 (measured pressure in
container). (a4) and (b4) M411 to M442 (measured reed deflection Left sensor). (a5) and (b5)

M511 to M542 (measured reed deflection Right sensor).
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Figure D.6 – Reconstruction of the synthesized bifurcation diagrams, with the own
”eigenfactors” (synthesisF ) and with foreign factors (staticF ). Proportion of variance λ̂j,q

explained by each factor. For the computation of this proportion, the total variance of the raw
data of each block was taken into account. The embouchures are coded from black (tight

embouchure) to light (loose embouchure). Plain lines: crescendo. Dashed lines: decrescendo,
except for the first line. Column (a): measurements of the bifurcation diagrams, reconstructed
with bifurcationF. Column (b): measurements of the bifurcation diagrams, reconstructed with

staticF. (a1) and (b1) SThres (blue) and SPlayFreq (orange). (a2) and (b2) S111 to S142
(simulated pressure in mouthpiece). (a3) and (b3) S211 to S242 (simulated flow rate in

mouthpiece). (a4) and (b4) S311 to S342 (simulated reed deflection).
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Figure D.7 – Reconstruction of the synthesized bifurcation diagrams, with the own
”eigenfactors” (synthesisF) and with foreign factors (staticF). Reconstructed variance ηj,q, as a

function of the number of factors taken into account. This graph cumulates the variance λ̂j,q
explained by each factor (see Fig. D.6). The embouchures are coded from black (tight

embouchure) to light (loose embouchure). Plain lines: crescendo. Dashed lines: decrescendo,
except for the first line. Column (a): measurements of the bifurcation diagrams, reconstructed
with bifurcationF. Column (b): measurements of the bifurcation diagrams, reconstructed with

staticF. (a1) and (b1) SThres (blue) and SPlayFreq (orange). (a2) and (b2) S111 to S142
(simulated pressure in mouthpiece). (a3) and (b3) S211 to S242 (simulated flow rate in

mouthpiece). (a4) and (b4) S311 to S342 (simulated reed deflection).
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Figure D.8 – Mean channel height (average over the width of the reed, for all reeds) as a
function of the embouchure ψ showing the location of the 6 embouchures selected to optimally
predict the classification of the reeds reeds for the first 6 CCA factors of objectiveF. In orange:

PhotoNew (new reed). In blue: PhotoBreakIn (break-in reed)
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Figure D.9 – Mean value (over all reeds) of the nonlinear mechanical model Eq. 5.6 (see §5.2)
showing the location of the 6 selected points allowing an optimal prediction of the ranking of
the reeds, for the first 6 CCA factors of objectiveF. These points are discriminant respectively

for the objective factors 2, 5, 1, 3, 6 and 4, taken in the order of increasing pressures. The
proximity of the first 2 selected points reveals that the second derivative of the mechanical

deflection (thus the first derivative of the mechanical compliance around ∆p = 0) is
discriminating for the factor 5 (see Fig. D.15). (a) mechanical deflection of the reed with

respect to ∆p. (b) corresponding mechanical compliance.
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Figure D.10 – Bifurcation diagrams (mean values over all reeds) showing the location of the 6
selected points allowing an optimal prediction of the ranking of the reeds, for the first 6 CCA

factors of objectiveF. In each diagram, the pressures (abscissa) are adimensionned by the
thresholds of emergence and extinction (between 0 and 1 for the crescendo and between 1 and

2 for the decrescendo). The 4 embouchures are coded by the colors from yellow (loose
embouchure, ψ = 1.250 mm) to black (tight embouchure, ψ = 2.000 mm). (a) prediction from

the playing frequency; (b) prediction from the envelope of the pressure signal in the mouthpiece.
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Figure D.11 – Channel height, measured by photo, for the reed seen frontally. (a) new reed
(PhotoNew), (b) break-in reed (PhotoBreakIn). The trend of the channel section (in relation to

the average section, given in Fig. D.11) is represented by ranking the reeds (from 0 to 100%)
according to the first 6 CCA factors of objectiveF (objective factors). Each graph is divided

into 8 sub-graphs, which illustrate the trends observed among the reeds, when they are sorted
from the ”left” to the ”right” of the factor (i.e. from the first to the last reed inside a factor).

The embouchures are coded by the colors of the rainbow, from red (reed at rest) to violet (very
tight embouchure)
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Figure D.12 – Bifurcation diagrams: (a) playing frequency, (b) spectral centroid (SC) of the
pressure signal in the mouthpiece. Each graph is divided into 8 subgraphs, which illustrate the
trends observed among the reeds, sorted from ”left” to ”right” (i.e. from first (0%) to last reed

(100%) of each objective factor). Each subgraph represents the trend (with respect to the
average, given in Fig. D.12) during a crescendo and decrescendo (adimensionned by the

pressures of the thresholds of emergence and extinction). The embouchures are coded by the
colors of the sunset, from yellow (loose embouchure) to black (tight embouchure)
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Figure D.13 – Bifurcation diagrams (asymmetry of optical signals): difference between left and
right optical channel. (a) near the beating threshold, (b) near the saturation threshold. Each

graph is divided into 8 subgraphs, which illustrate the trends observed among the reeds, sorted
from ”left” to ”right” (i.e. from first (0%) to last reed (100%) of each objective factor). Each
subgraph represents the difference to the average for all reeds during one oscillation period.
The embouchures are coded by the colors of the sunset, from yellow (loose embouchure) to

black (tight embouchure)
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Figure D.14 – Nonlinear reed model used for the synthesis (corresponding to an intermediate
embouchure: ψ = 2.125 mm). (a) aerodynamic section S, as a function of ∆p, (b) mechanical
deflection z, as a function of ∆p. The model considers a linear relationship between ∆p and ψ
(position of the lip support). The rank of each reed inside the factor is coded by the colors of

the avocado, from light yellow (first reed of the factor) to black (last reed of the factor), this for
each objective factor. Compare with Fig. D.9 (a), which indicates the location of the most

discriminating points for the different factors.
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Figure D.15 – Nonlinear reed model used for synthesis (corresponding to an intermediate
embouchure: ψ = 2.125 mm). (a) aeraulic compliance as a function of ∆p, (b) mechanical

compliance of the reed as a function of ∆p. These graphs correspond to the derivatives with
respect to ∆p of those illustrated in Fig. D.14 and share the same color code. Compare with
Fig. D.9 (b), which indicates the location of the most discriminating points for the different

factors.
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Figure D.16 – Nonlinear reed model used for synthesis (corresponding to an intermediate
embouchure: ψ = 2.125 mm). (a) Aeraulic section S(z) as a function of the channel height z,
according to Fig. 5.4. (b) first derivative S′(z). With a rectangular model of the channel, this

corresponds to the effective width of the reed. Notice that the actual width of the reeds is
13 mm. The additional width accounts for the air entering from the sides of the reed. Same

color code as the 2 preceding Figs.
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Figure D.17 – Nonlinear reed model used for synthesis (corresponding to an intermediate
embouchure: ψ = 2.125 mm). (a) 1st derivative of the compliance as a function of ∆p, (b) flow

rate as a function of ∆p (nonlinear characteristic), according to Bernoulli’s law. Same color
code as the 3 preceding Figs.
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Figure D.18 – Trend (within each factor) of the deflection signal of the reed, for a blowing
pressure of 4 kPa, with a loose embouchure (ψ = 1,250 mm). (a) measured with the artificial

mouth. (b) according to the synthesis model. Same color code as the 4 preceding Figs.
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Figure D.19 – Trend (within each factor) of the deflection signal of the reed, for a blowing
pressure of 10 kPa, with a loose embouchure (ψ =1,250 mm). (a) measured with the artificial

mouth. (b) according to the synthesis model. Same color code as the 5 preceding Figs.
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Figure D.20 – Trend (within each factor) of the pressure signal in the mouthpiece, for a blowing
pressure of 4 kPa, with a loose embouchure (ψ = 1, 250 mm). (a) measured with the artificial

mouth. (b) according to the synthesis model. Same color code as the 6 preceding Figs.
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Figure D.21 – Trend (within each factor) of the pressure signal in the mouthpiece, for a blowing
pressure of 10 kPa, with a loose embouchure (ψ = 1.250 mm). (a) measured with the artificial

mouth. (b) according to the synthesis model. Same color code as the 7 preceding Figs.



Appendix E

Improvements to the Discrete
Singular Convolution method and
application to beam analysis

Résumé

Ce projet d’article propose une introduction simplifiée à l’algorithme Discrete Singular Con-
volution, incluant plusieurs améliorations. Grâce à l’utilisation d’un noyau régularisé pouvant
être analytiquement intégré, cette méthode baptisée EDSC (Extended Discrete Singular Con-
volution) ouvre de nouveaux champs d’application, comprenant tout type de transformations
linéaires (dérivées et intégrales, transformées de Fourier et de Laplace et leurs inverses, par ex-
emple), et offre simultanément une flexibilité supplémentaire, associée à une précision numérique
souvent meilleure que la méthode originelle, selon les tests de benchmark effectués à l’aide de
différents problèmes de mécanique des poutres dont on connâıt la solution analytique. Une ap-
proche unifiée et simplifiée est également développée pour la mise en œuvre de points fictifs pou-
vant prendre en compte des conditions aux limites d’ordre arbitraire. L’EDSC apparâıt comme
une méthode numérique fiable pour intégrer, dériver et interpoler une fonction à bande limitée,
définie par une série tronquée de points discrets, de même que pour résoudre numériquement des
équations différentielles .
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Abstract
This paper proposes a simplified introduction to the Discrete Singular Convolution al-

gorithm, including several improvements. Through the use of a regularized kernel that can
be analytically integrated, this Extended Discrete Singular Convolution (EDSC) method
opens new fields of application, including any kind of linear transformations (i.e. derivatives
and integrals, Fourier and Laplace transforms and their inverses), and offers simultaneously
an additional flexibility, combined with a numerical accuracy favorably comparable to the
original method, according to various benchmark beam problems. A unified, simplified ap-
proach is also developed for implementing fictitious points with any number of boundary
conditions. The EDSC appears as a reliable numerical method for integrating, differentiat-
ing and interpolating a band limited function defined as a truncated series of discrete points,
and for solving numerically differential equations.

1 Introduction
Whenever the mathematical distributions involved in a given scientific problem are thought
to be band limited, the Discrete Singular Convolution method (DSC) should be considered,
especially for solving numerically differential equations. This algorithm emerged in the early
2000’s as a wavelet collocation scheme for the computer realization of singular convolutions
[1, 2]. Its foundation is the Shannon theorem and the theory of distributions [3] and it is therefore
optimally suited for handling such functions. Zaho et al.[4] describe its main features as follows:
" The DSC algorithm has the global methods’ accuracy and the local methods’ flexibility for
handling complex geometry and boundary conditions in the analysis of fluid dynamics [5] and
electrodynamics problems [6]. It is a simple and robust approach for structural analysis, and has
found its success in structural analysis, including the vibration and buckling of beams [7], plate
vibration under various edge and internal supports [8, 9, 10, 11, 12, 13, 14, 15, 16]. The DSC
algorithm was extensively validated by analytical and exact solutions and carefully compared
with other existing methods, including the series expansion [17], integral equation approach
[18, 19], finite strip and finite element methods [20, 21, 22], Galerkin methods [23], differential
quadrature methods [24, 25, 26], and Rayleigh-Ritz variational methods [27, 28, 29]. The most
distinguished feature of the DSC algorithm is its high level of accuracy and reliability. At present,

1



it is the only available method that is able to predict accurately thousands of vibration modes
of plates and beams without encountering numerical instability [7, 13].

This method can be used for other kinds of problems, for instance when a compact and
parsimonious support is needed for a smooth, continuous interpolation of a multidimensional
measurement data set or for capturing the main features of a complex physical model with a
simple mathematical model (metamodel). For example we used this method for modeling the
static bending of a clarinet reed with only 12 points from a Finite Element Method computation
involving more than 4’000 points [30]. Throughout the analytical nature of the equation, a
continuous interpolation of the function and its derivatives and integrals is possible.

Until now, the method was difficult to apply without a fairly good understanding of the
underlying mathematics and without some previous experience with numerical solving of dif-
ferential equations. Its application for an arbitrary number of boundary conditions was not
described. We wish to introduce this method to a broader public, proposing a formulation based
only on elementary matrix operations. We try to show the essential features through an intuitive
and direct approach, without overwhelming the reader with mathematical details, which can be
found in the appendix or in the original publications.

In the DSC algorithm, differential equations are numerically solved through the derivatives
of a kernel of delta type. This gives rise to principally two types of difficulties :

• When an integration is required, the matrix of the differential operator must be inverted
and this may impact negatively upon the accuracy of the computation. Besides the re-
quired computing power, the inversion can be critical to achieve, especially for differential
operators of odd orders.

• When the function is truncated, the accuracy of the DSC method near the boundary of the
computation domain is highly corrupted by the phenomenon of ripple, which is especially
important when the derivation order is high. The function must be extended beyond the
truncation with fictitious points (FPs) to retrieve a good accuracy [14]. Typically, 25
FPs are added on the left and on the right of the computation domain, which leads to
a substantial inflation in the size of matrices, growing moreover exponentially with the
number of variables of the problem.

One of the goals of the present paper is to investigate if the primitives of the kernel help to
eliminate these drawbacks. To our knowledge, theses primitives have never been used with the
DSC method, allowing on one hand to build directly the desired integral operator, and on the
other hand, to lower the number of required FPs. Indeed, the phenomenon of ripple decreases
as the order of integration rises, allowing sometimes a quite accurate computation without FPs.
Unfortunately, no analytical primitive of the Regularized Shannon Kernel (RSK) is known so
far. A numerical integration of the kernel is possible, but this may be difficult to achieve up to
the required accuracy. We propose to use a new kernel, written as a rapidly convergent series,
which can be integrated analytically. This new kernel also permits the analytical calculation of
many kinds of integral transformations.

The application of the method is illustrated with some elementary 1D beam analysis problems
and the results are compared to the analytical solutions.

The theoretical background to the DSC and the EDSC algorithms are succinctly presented
in §2.1. The accuracy of the new kernel for interpolating, differentiating and integrating a band
limited function is studied, and a numerical method for solving differential equations is sketched
in §2.2. A novel approach for implementing FPs is proposed in §2.3, which allows an implicit
formulation for any number of boundary conditions. Finally, the method is validated in §3 with
some problems having a known analytical solution and the results compared to those of the
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Figure 1: Plot of the Sinus Cardinal function (thick line), the Regularized Shannon Kernel (RSK)
Equation (3), with σ = 4π (dashed line) and the envelope of both functions: (respectively dotted
and dash-dotted lines).

standard DSC method. These problems include the bending of beams under transverse load
(§3.1) and free vibrations of beams (§3.2). Conclusions are the subject of §4.

2 Extended Discrete Singular Convolution method
2.1 Method
The Nyquist–Shannon sampling theorem states that, if a continuous function1 y̌[ť] contains no
frequencies higher than F, it is completely determined by giving its ordinates at a series of points
spaced T = 1/(2F ) seconds apart. T is the sampling interval. For convenience, let us normalize
the variable t ≡ ť/T and center the function: y[t] ≡ y̌[ť+ τ ]. The constant τ allows to shift the
function if necessary, to center its region of interest around 0. The variable t can describe the
time or any other parameter like the space coordinate as shown in some following examples. The
Whittaker–Shannon interpolation formula [31] permits the reconstruction of the band limited
function as a discrete convolution:

y[t] =
∞∑

m=−∞
ym · Sinc [π(t−m)] (1)

with ym = y[m]. This equation is exact for all t ∈ R. The Sinus cardinal function [32, 33, 34] is
defined as: Sinc[x] ≡ Sin[x]/x. Notice that Sinc[ť/T ]/T tends to the Dirac δ distribution when

1Notation conventions: In this paper, the arguments of a function are systematically enclosed between square
brackets []. If necessary, the constant parameters of the function are given as indices. f

(d)
a [x] denotes the dth

derivative with respect to x of a function f [x] having a constant parameter a. A sequence of scalars is denoted
by curly brackets {}; this notation is also used for vectors and matrices. For instance v = {m2}, m ∈ {0, .., 2}

denotes the vector v =

(
0
1
4

)
. The components of v are referred by an index, as usual. The notation above

is equivalent to vm+1 = m2; it avoids the problem of translation of the indices in the vector, in order to ensure
that the first component of the vector has index 1. If 2 indices are involved, this notation builds a matrix.
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T tends to 0 and Equation (1) tends consequently to y[t] =
∫∞
−∞ y[t] · δ [(t−m)] dm = y ∗ δ, the

δ distribution being the neutral element of the convolution product [33]. Notice also that the
envelope of the Sinc[x] function decreases according to 1/x. The formula is therefore extremely
sensitive to truncations of the infinite series. For a numerical interpolation of y[t] with 15 digits
of precision (the usual machine precision), for a particular value of t, at least 2 × 1015 terms
around t should be taken into account in the truncated series. The Sinc kernel can be replaced
by any other kernel of δ type, such that δkernel[0] = 1 and δkernel[πn] = 0, ∀n ∈ Z∗. Wei et al.
[14] give many examples of such kernels. This leads to:

y[t] '
M∑

m=−M
ym · δkernel [π(t−m)] (2)

This equation is slightly inexact2 except for the integer values of −M ≤ t ≤M , whereas outside
this interval (i.e. outside the computational domain) it is inexact. It is desirable to choose a
kernel which tends rapidly to 0 when |x| → ∞, in order to lower the number 2M + 1 of terms in
the series. Wei [9] propose to use the Regularized Shannon Kernel (RSK, shown in Figure 1)

RSK[x] = Sinc[x] Exp
[
− x2

2σ2

]
(3)

This lowers considerably the number of terms to take into account, with negligible loss of preci-
sion. The parameters M and σ can be adapted to the desired computational accuracy. Wei [9]
found an approximate formula to determine them. With σ = 3π, |RSK(πx)| < 8.6 × 10−15 for
|x| > 22.5, reaching the order of magnitude of the machine precision, therefore the value for an
optimal precision around t = 0 should be at least M = 23 (in other words: the first 15 digits
remain practically unchanged if M > 23). In practice, the value taken as M is much larger than
this, in order to extend the interval on which the accuracy is optimal (i.e. the interval on which
Equation (2) is translation invariant, with respect to the accuracy determined by the choice of σ)
and the effective kernel support can be truncated around this value, to reduce the computational
burden, without loss of precision.

Equation (2) can be generalized to any linear transformation L of y[t], including the Fourier
transform, the bilateral Laplace transform, the Hartley transform, the Weierstrass transform and
the Hilbert transform:

L y[t] '
M∑

m=−M
ym ·L δkernel [π(t−m)] (4)

In particular, for derivatives (d > 0) and antiderivatives (d < 0) this equation can be written:

y(d)[t] ' πd
M∑

m=−M
ym · δ(d)

kernel [π(t−m)] (5)

Again, the accuracy of this equation is excellent in the middle of the computational domain
but may be poor near the boundaries, especially for the derivatives. An example is given on
Fig. 2 in which the interpolation of a truncated Cosine function and some of its derivatives and
antiderivatives are depicted. The error of this interpolation compared to the analytic derivatives
and antiderivatives (relative to the maximum amplitude of these analytical derivatives and an-
tiderivatives) is also given. The accuracy is optimal in the interval −M + 23 to M − 23; the

2The proof of this is beyond the scope of this paper. The problem can be addressed via the distribution theory
or (Philipppe pourrait donner quelques références sur Galerkin).
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error increases considerably from the boundaries of this interval to the boundaries of the com-
putational domain (|t| = M). The antiderivatives are always more precise than the derivatives.
Near the boundaries, the 4th antiderivative is about 3 × 106 times more accurate than the 4th
derivative, because antiderivatives are far less sensitive to the phenomenon of ripple. For a pre-
cise numerical computation, the computation domain has to be extended by adding fictitious
points (FPs), which are eliminated after computation. This is the subject of § 2.3.

Observe that Equation (5) builds formally a discrete convolution. The use of a dedicated
convolution algorithm reduces significantly the computing time, especially for big values of M .

EDSC Method Equation (5), with d ≥ 0, correspond to the standard DSC method, as
described in [9]. The scope of the DSC method can be extended through different improvements.
Let us examine how to use Equation (5) analytically also with d < 0. So far, our equation
has no constants of integration: y(d)[t] is merely one out of an infinity of antiderivatives. In
order to build a convenient function y(d)

C [t] matching given boundary conditions, |d| constants of
integration ai must be introduced into the equation, as a polynomial pd[x] of degree |d| − 1:

y
(d)
C [t] = y(d)[t] + pd[t]

pd[x] =
{ 0, d ≥ 0;∑|d|−1

i=0 1/i! a|d|−1−i xi, d < 0. (6)

The integration constants ai are solutions of a system of |d| equations, according to |d|
conditions given on the derivatives of y(d)

C [t]. Example: for a bar clamped at its extremities at
x = −M and x = M , the boundary conditions are y(−4)

C [−M ] = 0, y(−4)
C [M ] = 0, y(−3)

C [−M ] = 0
and y(−3)

C [M ] = 0. Applying 4 times Equation (6), we get 4 equations: 1
6a0(−M)3 + 1

2a1(−M)2 +
a2(−M) + a3 + y(−4)[−M ] = 0, etc... The solutions are easily found: a0 → 3(M(y(−3)[−M ] +
y(−3)[M ]) + y(−4)[−M ]− y(−4)[M ])/(2M3), etc... Notice that the solutions depend on ym, since
y(−3)[t] and y(−4)[t] depend on ym.

There is now the limitation that the antiderivatives of the function RSK are not known
analytically and a numerical integration must be carefully conducted, in order to reach a suf-
ficient precision. In order to avoid this numerical integration we define a new kernel (with a
supplementary parameter N ∈ N∗):

RSKN [x] = RSK[x]
Sinc [x/(2N)] (7)

which can be integrated analytically, as:

RSKN [x] = 1
N

N− 1
2∑

n= 1
2

<
[
Exp

[
inx

N − x2

2σ2

]]
(8)

with i =
√
−1 (see proof in Appendix A.1, Equation (36)).

Equation (7) shows that the RSKN is a kernel close to RSK and tends to RSK when
N → ∞, because Sinc [0] = 1. It can be shown that RSKN,σ2 [x] ' RSK[x] where σ2 =(
1/σ2 + 1/(12N2)

)−1/2 ≈ σ(1− σ2

24N2 ) with an absolute difference lower than 0.000007 forN = 15
and σ = 3π, for instance. It should be emphasized that this kernel exhibits a numerical accuracy
comparable (or sometimes even better) than the RSK-Kernel (see Fig. 3, down). Optimal values
for N have linear dependence on σ in the range σ = 2.5π (⇒ N ≥ 10) to σ = 4π (⇒ N ≥ 25).
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Figure 2: Interpolation and extrapolation of a sampled truncated Cosine function and of some
of its derivatives and antiderivative, computed according to Equation (5) with RSKN -Kernel,
σ = 3π, M = 30 and N = 15. Left: From top to bottom: derivatives 1, 0 (with sampled
points as blue dots) and -1 (i.e. 1st antiderivative). The Gibbs phenomenon appears clearly
especially for the 1st derivative. Right: Absolute value of the error between the interpolated
and the analytic normalized derivatives of the same function. Interpolation (and extrapolation)
grid: from -38 to 38 by 0.2. Antiderivatives 0 to 4 (from dark to light, smaller values of the
error). Derivatives 0 to 4 (from dark to light, higher values). Near the boundaries (t ' −M
or t ' M), the 4th antiderivative is up to 3 × 106 times more accurate than the 4th derivative
because derivatives are more sensitive to the Gibbs phenomenon than antiderivatives.

With this formulation, the derivatives and especially the antiderivatives of RSKN can be
evaluated to an arbitrary precision. They are given in Appendix A for integer values of d, −4 ≤
d ≤ 4. In our computations, the kernel is sampled with 40 significant digits and the computations
are performed with this precision, in order to ensure an irreproachable final accuracy in any cases.

In Fig. 3, the accuracy of Equation (5) is evaluated with a truncated Cos[2π φ t] and different
values of the frequency φ. The frequencies are normalized according to the Shannon theorem:
1 corresponds to the Nyquist rate (2 samples per period). M = 219 was used in all cases and
the standard deviation of the error was computed for 75 points in the center of the computation
domain. Upper left: the order of the derivative is varied between -4 and 4 and the error is
normalized according to a relative amplitude of 1. It shows clearly that the antiderivatives are
more precise in all cases. For low frequencies the 4th antiderivative is up to 1015 more precise
than the 4th derivative. Of course, this result can only be achieved if the computations are
performed with 30 or 40 significant digits. Upper right: the influence of the parameter σ is
depicted (N = 40 in all cases). As expected, the maximum absolute precision (10−36) is reached
for the highest value of σ (4π). Again, this requires a computation with at least 40 significant
digits and about 130 points have to be dropped on each side of the computation domain, in order
to reach the sector of optimal precision. All curves converge for the Nyquist rate to a value of
about 0.677. Bottom: the influence of N (number of terms in the series) is depicted (σ = 3π in
all cases). The result with N = 15 is up to 3.3 times better than with N = ∞ (RSK-Kernel,
therefore without respect to the correction σ → σ2 proposed above, which explains mainly this
difference). Values of N < 15 are not optimal.
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Figure 3: Frequency dependence of the standard deviation of the relative error in the optimal
sector (75 central points with M = 219), between the interpolated and the analytic derivatives
and antiderivatives of a truncated sampled Cos[2π φ t] computed with Equation (5) and different
values of the frequency φ; freq=1 correspond to the Nyquist frequency (2 samples per period).
Upper left: Influence of the derivative (same colors as Figure 2). Upper right: Influence of
the parameter σ: From dark to light: σ = 4π, 3.5π, 3π, 2.5π and 2π, with N = ∞. Bottom:
Influence of the number of terms in Equation (8): From dark to light: N =∞, N = 15, N = 12,
N = 10 and N = 8, with σ = 3π.
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2.2 Solving differential equations and linear transformations with EDSC
In a linear problem (with a source term f) of the form L y = f in which the operator L cannot
be analytically inverted, it is necessary to discretize the computational domain. With the DSC
method, the solution y[t] of the linear equation is presumed to be bandlimited. This assumption
implies that y[t] can be approximated with Equation (2). The left member of the differential
equation may be written by discretizing the independent, continuous variable3 t in Equation (4):

L y[t] = f [t], ⇒ L · y ' f (9)

where f is a discrete source term and L is a square Toeplitz matrix, implementing the discrete
linear operator:

L = {L δkernel[π(i− j)]} , −M ≤ i, j ≤M (10)
If the matrix L is invertible, Equation (9) can be solved for y:

y ' L−1 · f (11)

The solution y is however merely one out of an infinity of solutions of the linear equation4. The
particular solution respecting the boundary conditions yc is obtained by adding an integration
vector c, satisfying L · c ' 0, cf. continuous problem, Equation (6). We obtain finally:

yc ' L−1 · f + c (12)

Practical remarks: For the particular case of the derivative operator of order d, (i.e.L y[t]→
y(d)[t]), we denote the corresponding discrete operator of derivation L → A(d). This notation
remembers that the discrete operator is built on the dth derivative of the kernel. Observe that(

A(d)
)−1
' A(−d).

When the order of the derivative or of the antiderivative is odd, the number of discrete points
must be even, since Equation (10) can produce a skew-symmetric matrix and skew-symmetric
matrices of odd rank are singular (after Jacobi’s theorem). Moreover some matrices can be badly
conditioned and therefore difficult to invert.

Examples: The differential equation ∂4

∂x4w[x] = f [x], may be written:

∂4

∂x4 y[x] = f [x], y[x] = w[x]

∂3

∂x3 y[x] = f [x],
∫
y[x] dx = w[x]

∂2

∂x2 y[x] = f [x],
∫ ∫

y[x] dx = w[x]

· · ·
These cases can be expressed with Equations (9 or 11) for the unknowns w and y. Ignoring the
integration vector c, we may write:

w ' A(0) · y ' A(0) · (A(4))−1 · f
3In the present paper, for sake of simplicity, only equations with one independent variable are treated. A

multivariate formulation of the DSC-Method is however possible (see for instance Wei et al. [14]).
4From now, without loss of generality, we consider that the linear operator is a derivative or an antiderivative.
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w ' A(−1) · y ' A(−1) · (A(3))−1 · f
w ' A(−2) · y ' A(−2) · (A(2))−1 · f

· · ·
The cases A(0) ·(A(4))−1 = (A(4))−1 and A(−4) ·(A(0))−1 = A(−4) are particularly interesting,

numerically, and are studied in §3.
Other example (see hereafter beam problem § 3): EI ∂

4w
∂x4 + 2∂EI∂x

∂3w
∂x3 + ∂2EI

∂x2
∂2w
∂x2 can be

implemented alternatively as:

L = EI(0) ·A(4) + 2EI(1) ·A(3) + EI(2) ·A(2), if y[x] = w[x]

or as:

L = EI(0) · I + 2EI(1) ·A(−1) + EI(2) ·A(−2), if
∫ ∫ ∫ ∫

y[x] dx = w[x]

with EI(d) = Diag[{EI(d)[m]}], m ∈ {−M, . . . ,M}. Both options are compared in §3.1.2.

2.3 Implementation of boundary conditions
When L−1 → A−d, the boundary conditions can be implemented easily via the integration vector
c, by solving Equation (6). With this method, a computation is possible without using fictitious
points (FPs) outside the boundary, with a reasonable accuracy (cf. Fig. 2 and 3). However, this
might be insufficient when a high precision is required. The precision can be notably increased
by the use of FPs, which allows a correct implementation of a translation invariant kernel near
the boundaries of the linear problem. Both difficulties of implementation (writing the boundary
conditions implicitely and implementing a translation invariant kernel near the boundaries) can
be solved at the same time. For this, the right member of Equation (12) needs to be written
as a product. We have then to deduce some properties of this product, to expand the size of
the computational domain, to compute the required matrix and finally, we have to reduce this
matrix back to the original size of the problem. Let us examine each step with more details:

The coordinate system of our linear problem must be chosen such that the problem is strictly
linear (i.e. if f = 0 ⇒ yc = y + c = 0 : Any affine component must be removed). This
implies that the integration vector c depends linearly on f (otherwise the problem would not
be strictly linear), according to some matrix C (a priori unknown): c = C · f . As already
mentioned, the integration vector has the property L · c ' 0. This implies that:

L ·C · f ' 0, ∀f ⇒ L ·C ' O (13)

where 0 is the null vector and O is the null matrix. Moreover, Equation (12) can be written:

yc ' (L−1 + C) · f = (I + C ·L) ·L−1 · f = B−1 ·L−1 · f (14)

with B−1 ≡ I + C ·L.
We demonstrate now that the inverse of B−1 is B ' I + C ·L:

B−1 ·B ' (I + C ·L) · (I −C ·L) = I −C ·L ·C ·L ' I (15)

because B−1 ·B = I and because L · C ' O. Thus, Equation (9) and its solution, Equation
(12), may be written:

L ·B · yc ' f ⇔ yc ' B−1 ·L−1 · f (16)
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Writing explicitly the expression of matrix B is however not straightforward. This can be
achieved by extending the computation domain outside the boundaries of the linear problem.
This allows simultaneously a correct implementation of a translation invariant kernel near the
boundaries of the linear problem. An expression of this matrix in the computational domain
extended by FPs, called BFP , satisfying Equation (15) stricto sensu, is given in Appendix
B. Two different methods are proposed, called the Simple Extension (SX) and the Polynomial
Extension (PX).

The idea is to increase the size of the vector yc by zero-padding (i.e. extending a vector
of size Inner by concatenating Left zeros to the left and Right zeros to the right): yc → yzp
and then replace the padded 0’s by fictitious points (FPs) extrapolated with respect to the
boundary conditions of the problem: yzp → yFP . The zero-padding ensures that the FPs
depend only on the Inner points of vector yc, as required by an implicit implementation. If a
matrix BFP holds the coefficients defined in Appendix B for the required boundary conditions,
then yFP = BFP · yzp. Let us rewrite Equation (16) in the extended computational domain as:

fFP = Lext ·BFP · yzp (17)

Lext is a version of the discrete linear operator extended to the ad hoc size (i.e. 2M + 1 =
Left + Inner + Right). We compute the product LFP ≡ Lext ·BFP . The resulting equation
fFP = LFP · yzp can be viewed as a system of R equations with R unknowns (R is the rank of
the matrix LFP ). By extending the computational domain, we have introduced new unknowns
in the problem: the values of the components of the source term fFP outside the boundaries of
the linear problem. The system can be resolved only after elimination of all these "unnecessary"
equations. These are easily identified as the lines where the value 0 was imposed in the vector
yzp, either because of the zero padding for creating the FPs or because the boundary conditions
require this value (for instance: simply supported or clamped condition in a beam problem). We
have then simply to drop all corresponding lines and columns in LFP → LB , fFP → f and
yzp → yc. Finally, solving for yc leads to:

yc = L−1
B · f (18)

Notice that the expression of the matrix B = L−1 · LB in Equation (16) does not need to be
known explicitly.

If L can be analytically inverted, a matrix inversion is not required, however the "unneces-
sary" equations must be eliminated with Gaussian elimination in order to obtain L−1

B . With an
auxiliary matrix K ≡ B−1

FP ·L−1
ext and R = rank(K), compute:

Kn,m := Kn,m −K1,mKn,1/K1,1 for n,m ∈ {2 . . . R},

then drop line 1 and column 1 in K. Repeat this operation for each equation to eliminate.

3 Validation with benchmark beam problems
For an Euler-Bernoulli 1D-beam, the governing equation is:

EI
∂4w

∂x4 + 2∂EI
∂x

∂3w

∂x3 + ∂2EI

∂x2
∂2w

∂x2 = f (19)

where the function w[x] represents the deflection of the beam. The function EI[x] is called
the flexural rigidity of the beam. It is composed as the product of the Young modulus E[x] and
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the moment of inertia of the cross section I[x]. If the beam has uniform section and constant
Young modulus, EI[x] is constant. In this case, we take a value of EI = 1 for the benchmark
tests.

f is a source term, depending on the problem under consideration.
In the benchmark beam problems, we used 3 different boundary conditions:

the simply supported condition:

w = 0 ; ∂2w

∂x2 = 0 (20)

the clamped condition:
w = 0 ; ∂w

∂x
= 0 (21)

and the free condition:
∂2w

∂x2 = 0 ; ∂3w

∂x3 = 0 (22)

at the boundaries (in our problem (without FPs), at x = −M or x = M)
Hereafter, we use the abbreviation S, C and F for refering to these boundary conditions (S:

simply supported, C: clamped, F: free).

3.1 Bending under transverse load
3.1.1 Uniform thickness

In this paragraph, cases with uniform thickness (i.e. with constant flexural rigidity EI[x]) and
sinusoidal load are explored. The source term in Equation (19) is f [x] = sin[αx+β]. The generic
solution of the differential equation has the form:

w[x] = a3x
3 + a2x

2 + a1x+ a0 + sin[β + αx]
α4EI (23)

The values of the constants of integration ai are easily determined for the boundary conditions
selected in our benchmark tests: SS, CS, CC and CF. The maximum admissible value for α in
the DSC algorithm is π (the Nyquist rate for the sinusoidal load). In the benchmark tests, the
values 1/25 ≤ α ≤ 1 (by steps of 1/25) and β = 1 were used. This ensures that the analytical
solution is neither a pure, even function, a pure, odd function, nor a pure polynomial (i.e. the
simple extension or the polynomial extension cannot be the exact continuation of the analytical
solution of the equation).

Let us examine concretely how to perform such a computation with the DSC algorithm for the
boundary condition FC (free/clamped). First, we have to set the desired precision (for machine
precision, typically σ = 3π andN = 15) and the size of the computational domain (i.e. we have to
set values for Left, Inner and Right; M is then determined as 2M+1 = Left+Inner+Right).
Next, we have to choose the linear operator (let us take A(4), like in the standard DSC method)
and the kind of extension. We take for this example the polynomial extension (PX) for realizing
the free condition at x = −(M − Left) and the simple extension (SX) for realizing the clamped
condition at x = (M −Right). For the PX, a value for K has to be chosen (how many points in
the inner zone next to the boundary are taken into account in the interpolation/extrapolation
polynomial).

The construction of the discrete linear operator of derivation A(4) with Equation (10) is
straightforward; the 4th derivative of the RSKN kernel is given by Equation (48). Our differential
equation has only one operator (since EI[x] is constant), thus Lext = A(4), cf. § 2.3. The
construction of the matrix BFP is described in Appendix B. The main difficulty consists in the
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implicit formulation of a polynomial of degree K+ 2 having its 2nd and 3rd derivatives vanishing
at x = −(M − Left), as required by the free condition, Equation (22). The construction of
such a polynomial is explained in Appendix B.2. In our example, we have: d = {2, 3} and
D = Length[d] = 2. Equation (53) gives the analytical expression of such a polynomial (however
relatively to a boundary at x = 0). The matrix LB is computed with the procedure described
in § 2.3 and finally, the solution yc is obtained according to Equation (18), for any load f . In
the benchmark tests, we set fm = sin[αm+β] in order to compare the result with the analytical
solution.

Let us detail the construction of the matrix BFP with a minimal, numerical example (however
much too small to allow a precise computation with the DSC algorithm, because the assumptions
behind the truncation of the series in Equation (2) are strongly violated). Following values are
used for this pedagogical example: Left = Right = 3, Inner = 5 and K = 3, thus M = 5.

From Equation (53), we get the expression of the Lagrange polynomials respecting the bound-
ary condition "free end at x = 0":

p3,d,0[x] = − 1
102(x− 1)(x− 2)(x− 3)(5x2 + 12x+ 17)

p3,d,1[x] = 1
510x(x− 2)(x− 3)(57x2 + 90x+ 108)

p3,d,2[x] = − 1
510x(x− 1)(x− 3)(39x2 + 36x+ 27)

p3,d,3[x] = 1
510x(x− 1)(x− 2)(7x2 + 6x+ 4)

It is easy to verify that the 2nd and 3rd derivatives of these polynomials vanish at x = 0 and that
they fulfill the properties required in Appendix B.2 for the interpolating/extrapolating function
PK,d[x], Equation (52). These polynomials are discretized for x ∈ {−Left, ..,−1}, in order to
obtain the sub-matrix G, composing the matrix BFP , as described in Appendix B:

BFP =




1 0 0 520
17 − 1053

17
648
17 − 98

17 0 0 0 0
0 1 0 130

17 − 208
17

111
17 − 16

17 0 0 0 0
0 0 1 40

17 − 30
17

8
17 − 1

17 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 −1 0 0 0 0 0 1




The basics of the implicit implementation of boundary conditions and FPs can be well un-
derstood with this example: multiply this matrix with the corresponding zero-padded vector

yzp = {0, 0, 0, y0, y1, y2, y3, 0, 0, 0, 0}

and observe the result, yFP . Notice that y4 = 0, because the clamped condition requires this
value.

The first 3 lines and columns and the last 4 lines and columns (because y4 = 0) of the matrix
LFP = A(4) · BFP have to be dropped, in order to get an invertible matrix (i.e. eliminate a
division by 0 at the clamped boundary) and to reduce the size of the matrix to the points inside
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the beam. Notice that in this case, the final size of the matrix is Inner − 1 (unless a line and a
column filled with 0 is added at the clamped boundary, subsequently to the matrix inversion).

In the benchmark tests, following values were used for the computations: Left = Right = 58,
Inner = 61 and K = 25. The relative error of our algorithm (compared to the maximum deflec-
tion of the beam according to the analytical solution) is depicted in Fig. 4, for 2 constructions
of the linear operator (A(−4) or (A(4))−1), 2 kinds of extensions (SX and PX) and 4 boundary
conditions (SS, CS, CC and CF). For α/π ≤ 0.1, A(−4) associated with PX gives the best results
(up to 22 correct digits), whereas both linear operators are quasi equivalent for higher values
of α and the boundary conditions never significantly affect the precision (with PX). The results
for SX are mostly many orders of magnitude less precise, except near α/π = 0.3. No noticeable
differences were found between linear operators for SX. The boundary conditions SS and CS
exhibit similar (lack of) precision for all values of α, whereas CC is often about 2 digits more
precise.

3.1.2 Parabolic thickness

If the thickness of the beam is parabolic: H[x] = κ0 +κ1x/L+κ2(x/L)2, the differential equation
can be solved analytically. In this case: EI[x] = E b H[x]3/12, where E is the Young Modulus
and b the width of the beam. We examine only the boundary conditions "clamped" at x = L
and "free" at x = 0:

w[x] = 3
(
L3 (f1(L− x)

(
f2 + f3x+ f4x

2)− f5 f6
))/

(f7 E b)

f1 =
√
−κ2

1 + 4κ0κ2

f2 = κ0
(
κ1
(
6κ2

0 + 9κ0κ1 + 2κ2
1
)

+ κ1(10κ0 + κ1)κ2 + 8κ0κ
2
2
)
L2

f3 =
(
4κ3

0κ2 + κ3
1(2κ1 + κ2) + κ2

0
(
5κ2

1 + 4κ1κ2 + 4κ2
2
)

+ κ0κ1
(
8κ2

1 + 9κ1κ2 + 8κ2
2
))
L

f4 = κ2
(
κ2

0(6κ1 − 4κ2) + κ2
1(3κ1 + 2κ2) + 2κ0

(
5κ2

1 + 3κ1κ2 + 2κ2
2
))

f5 = 4(κ0 + κ1 + κ2)2 (3κ0κ1L+ κ2
1x+ 2κ0κ2x

) (
κ0L

2 + x(κ1L+ κ2x)
)

f6 = ArcTan
[
κ1 + 2κ2

f1

]
−ArcTan

[
κ1L+ 2κ2x

f1L

]

f7 = (κ0 + κ1 + κ2)2f5
1
(
κ0L

2 + x(κ1L+ κ2x)
)

(24)

Three different profiles are tested: profile P1: κ0 = 0.025, κ1 = 10−9 and κ3 = 0.975; profile
P2: κ0 = 0.08, κ1 = 0.92 and κ3 = 10−9; profile P3: κ0 = 0.1, κ1 = 1.6 and κ3 = −0.8. These
profiles are depicted on Fig. 5, left. We examined 3 options for the construction of the linear
operator:

L1 = EI(0) ·A(4) + 2EI(1) ·A(3) + EI(2) ·A(2)

L2 =
(

EI(0) · I + 2EI(1) ·A(−1) + EI(2) ·A(−2)
)
·A(4)

L3 =
(

EI(0) · I + 2EI(1) ·A(−1) + EI(2) ·A(−2)
)
·
(

A(−4)
)−1

In the construction of the linear operators, 3 kinds of difficulties are encountered:
1. The use of FPs requires that a value for the flexural rigidity EI[x] outside the boundaries

must be defined. Our function EI[x] is a polynomial of the 6th degree and may vary up to
10 orders of magnitude within the computational domain (extended by the FPs). Moreover
the values may be negative, which is physically a nonsense. In order to test the algorithm
under rough conditions, we choose one of the worst options: use the function EI[x] as
defined above, without any modification.
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2. The matrices of the operators L2 and L3 are badly conditioned. In many cases, they cannot
be inverted up to the required precision, despite of the use of 40 digits in the computations.

3. For the case L2, the multiplication by A(4) generates very strong ripples near the bound-
aries of the matrix. Extra FPs (30 points on each side) must be introduced prior to the
multiplication. These extra FPs must be eliminated before multiplication by BFP .

The relative precision of the algorithm (compared to the maximum deflection of the beam
according to the analytical solution) is depicted on Fig. 5, for different sizes of the computational
domain (31 ≤ Inner ≤ 301, with Left = Right = 35 and PX with K = 25). The option L1 is
reliable for all tested values of Inner and the computations are less time consuming than for the
other options. As expected, the general accuracy is many orders of magnitude smaller than for
the beam with uniform thickness. The option L2 gives very coarse results if Inner < 100 (not
depicted); this option is always less precise than L1. The option L3 is slightly more precise for
the profiles P2 and P3, but the matrix could not be inverted with a satisfactory accuracy for
Inner > 101.

3.2 Free vibrations of beams
Considering the dynamic problem of the free vibrations of a beam of uniform section, an inertial
term must be added to the beam equation. This is achieved by equating the source term according
to Newton’s 2nd law:

f = −ρS ∂
2w

∂t2
(25)

where ρ is the density of the material, t is the time and S is the area of the cross section.
Assuming that the solution has the form: Cos[ωt] w[kx], Equations (19 and 25) can be rewritten
as:

EI Cos[ωt] ∂
4

∂x4w[kx] = ω2ρS Cos[ωt] w[kx]

or, with ω2 = k4EI
ρS :

∂4

∂x4w[kx] = k4w[kx] (26)

The general solution is found to be:

w[kx] = β1Cosh[kx] + β2Sinh[kx] + β3Cos[kx] + β4Sin[kx] (27)

The βn coefficients of a particular solution can be deduced from the boundary conditions. The
angular eigenfrequencies ω can be numerically computed from an analytical formula: see Table
1.

This problem can also be solved numerically with the EDSC method, since the solutions (and
their derivatives) are bandlimited, as recognized from the analytic solutions. Equation (26) can
be written in discrete form as an eigenvalue problem, using Equation (18):

LB ·w = k4w (28)

The unknown function w[kx] is identified as yc, the source term k4w[kx] as f and the differential
operator ∂4

∂x4 as LB , in which the boundary conditions are implemented implicitely according to
Equation (18). The eigenvalues vn of matrix LB are determined with an eigenvalue solver and
compared to the corresponding analytical values, denoted kn.
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Boundary Eigenfrequencies
conditions depend from:

SS sin kL = 0
CF cos kL cosh kL = −1

CC and FF cos kL cosh kL = 1
CS and SF tan kL = tanh kL

Table 1: The angular eigenfrequencies ω = k2
√

EI
ρS are solution of the equations above, for a thin,

freely vibrating beam of uniform thickness, constituted from an homogeneous elastic material.
L is the length of the beam.
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Figure 4: Maximum relative error in the deflection of a beam with uniform thickness under
sinusoidal load: f = sin[αx + β], computed according to Equation (18), 58 FPs on each side,
Inner = 61, N = 15, σ = 3π and β = 1. The parameter α varies from 1/25 to 1. Dividing α by π
normalizes the load relative to the Nyquist frequency of the sampled load (2 samples per period).
Filled circles: computation with A(−4) and polynomial extension (K = 25); Empty circles:
computation with (A(4))−1 and polynomial extension (K = 25). Filled squares: computation
with A(−4) and simple extension (the computation with (A(4))−1

gives approximately the same
result). From dark to light: boundary conditions SS, SC, CC and CF. The condition CF cannot
be realized with the simple extension.
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Figure 5: Left: parabolic profiles P1, P2 and P3, defining the thickness of the beam (here
with Inner = 31). Right: Maximum relative error of the deflection, for different sizes of the
computational domain (31 ≤ Inner ≤ 301), for each parabolic profile (from dark to light: P1,
P2, P3), under uniform load, for the clamped/free condition, computed according to Equation
(18), with 35 FPs on each side, σ = 3π, N = 30, PX with K = 25. Empty circles: computation
with L1. Filled triangles: computation with L2. Filled circles and thick lines: computation with
L3.
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Figure 7: Influence of the size of the computational domain on the relative precision of the
eigenvalues (EV), computed according to Equation (28), with 58 FPs on each side, N = 15,
σ = 3π and SS boundary condition. From dark to light: Inner = 31, 61, 91, 121, 151. Left:
computation with A(−4) and polynomial extension (K = 25). Right: computation with A(−4)

and simple extension.
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Figure 8: Left: Influence of the number of FPs on the relative error in the first 20 eigenvalues
(EV), with Inner = 61, N = 15, σ = 3π and SS boundary condition. From dark to light: Left =
Right = 58, 25, 17, 10, 5. Filled circles: computation with A(−4) and polynomial extension
(K = 25); Empty circles: computation with (A(4))−1 and polynomial extension (K = 25).
Right: Influence of the degree of the polynomial used for the PX, on the relative error in the
first 20 eigenvalues, with Inner = 61, N = 15, σ = 3π and SS boundary condition. From
dark to light: K = 30, 25, 20, 15, 10, 5. Filled circles: computation with A(−4); Empty circles:
computation with (A(4))−1.
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The relative precision of the algorithm (i.e. v
1/4
n /kn − 1) is depicted in Fig. 6, for 2 con-

structions of the linear operator (A(−4) or (A(4))−1), 2 kinds of extensions (SX and PX) and 4
boundary conditions (SS, CS, CC and CF). The discrete linear operators are therefore exactly
the same as in § 3.1.1. The similarity with Fig. 4 is striking for the PX. The results differ
somehow for the SX, especially for the condition SS. The good result for SS has an explanation:
the SX imposes a characteristic of the analytical solution: the function is odd, relatively to each
boundary. Notice the positive influence of the operator A(−4) for this case, whereas it has almost
no influence for the CS and CC conditions (with SX).

The influence of the size of the computational domain is studied on Fig. 7, for the SS condition
and the operator A(−4). The polynomial extension confirms its extreme accuracy for the first
eigenvalues, whatever the size of the computational domain (at least for 31 ≤ Inner ≤ 151).
The increase of precision for the first (Inner/2) eigenvalues is approximately proportional to
Inner, in the studied domain. The simple extension confirm also the good results obtained for
this special case (the analytical solution is an odd function), also for quite high eigenvalues (not
depicted on Fig. 6).

The influence of 2 other parameters (number of fictitious points and degree of the polynomial
for the PX) are illustrated on Fig. 8. In the studied range, increasing the number of FPs or
increasing the degree of the polynomial enhances favorably the accuracy of the computations.
Most of the time the computations with the operator A(−4) are more precise than with the
operator (A(4))−1. This is particularly striking for the first 8 eigenvalues, Left = Right = 58
and K = 30. As expected, the computations based on antiderivatives are more precise than
the computations based on derivatives, when the number of FPs is small (as a result of the
sensitivity to the phenomenon of ripple). The fact that the computations were conducted with
40 significant digits must be emphasized. With a standard machine precision (15 digits), the
advantages of the antiderivatives become less obvious. If possible, the operator LB should be
constructed with high precision computations, especially if the FPs are numerous and if high
values of K are used. Otherwise, the substraction of the integration polynomial can degrade
notably the final numerical precision of the operator. Afterwards, the operator can be rounded
down to standard machine precision, for further use.

4 Conclusions
The proposed improvements of the DSC method could be positively evaluated. The new RSKN
kernel exhibits an accuracy comparable to that of the RSK kernel (standard DSC method).
The analytical integrability of the proposed kernel opens new fields of application, including
any kind of linear transformations. This offers a new flexibility in the construction of discrete
operators. In particular, the proposed kernel allows the construction of integration operators
with an arbitrary precision. This avoids a numerical inversion of the operator in some cases.
The structured description of the implementation of fictitious points facilitates the use of the
DSC method. Moreover the proposed formulation of the polynomial extension has proved its
flexibility and its reliability in all performed benchmark tests. The benchmark results published
by Wei [8] and Zhao et al. [4] show approximately the same precision than our results with
the derivatives of the RSKN kernel. In the low frequency range, the computations based on
the antiderivatives of the RSKN kernel can be up to 8 digits more precise than those based
on derivatives. The EDSC appears therefore as a reliable numerical method for integrating,
differentiating and interpolating a band limited function defined as a truncated series of discrete
points, and for solving numerically differential equations.
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APPENDICES

A Analytic expressions for RSKN

A.1 Analytic proofs
Proposition:

2 Sin [x/(2N)]
N∑

n=1
e−ix(n−1/2)/N = Sin[x] + i(Cos[x]− 1) (29)

We assume that: x ∈ R, N, n ∈ N∗

Proof. The equation above is a geometric series of the form:

b

N2∑

n=N1

ean = b
ea(N2+1) − eaN1

ea − 1 = b
ea(N2+1/2) − ea(N1−1/2)

ea/2 − e−a/2 (30)

with a = −ix/N, b = 2 Sin [x/(2N)] = i(ea/2 − e−a/2), N1 = 1/2 and N2 = N − 1/2. This
equation can therefore be simplified as:

i
(
e−ix − 1

)
= Sin[x] + i(Cos[x]− 1) = Sin[x]− 2 i Sin

[x
2

]2
(31)

Corollary:
According to our assumptions, x(n− 1/2)/N is real. This implies that:

2 Sin [x/(2N)]
N∑

n=1
Cos [x(n− 1/2)/N] = Sin[x] (32)

Sin [x/(2N)]
2N∑

n=1
Sin [x(n− 1/2)/N] = Sin[x]2 (33)

Dividing both sides of these equations respectively by

xSinc [x/(2N)]
x2Sinc [x/(2N)] (34)

we get finally:

1
N

N∑

n=1
Cos [x(n− 1/2)/N] = Sinc[x]

Sinc [x/(2N)]

1
2x N

2N∑

n=1
Sin [x(n− 1/2)/N] = Sinc[x]2

Sinc [x/(2N)] (35)
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Figure 9: Fourier Transform of RSKN Equation(37), for σ ∈ {π, 2π, 4π, 8π,∞} and N = 50. The
last case corresponds to the Fourier Transform of the function Sinc.

Notice that limN→∞ Sinc [x/(2N)] = 1. We could not find these series developments for the Sinc
and the Sinc2 functions in the literature.

Equation (35) implies that:

Sinc[x] Exp
[
− x2

2σ2

]

Sinc [x/(2N)] = RSK[x]
Sinc [x/(2N)] = 1

N

N− 1
2∑

n= 1
2

<
[
Exp

[
inx

N − x2

2σ2

]]
(36)

The similarity between our formula

N− 1
2∑

n=−N+ 1
2

einx = 2
N∑

n=1
Cos [x(n− 1/2)] = Sin[Nx]

Sin[x/2]

and the Dirichlet kernel
N∑

n=−N
einx = 1 + 2

N∑

n=1
Cos[nx] = Sin[(N + 1/2)x]

Sin[x/2]

should be emphasized. Both formulas exploit the fact that:
Cos[x] + Cos[−x] = 2Cos[x] and Sin[x] + Sin[−x] = 0.

A.2 Fourier Transform
We refer to the following definition of the Fourier Transform:

f̃ [ω] = 1√
2π

∫ ∞

−∞
f [t]e−iωtdt

The Fourier transform of Sinc[t] is a rectangular function: 1
2
√

π
2 (Sign[1 − ω] + Sign[1 + ω]).

The Fourier transform of RSKN (see Fig. 9) can be evaluated analytically using Equation (8):

R̃SKN [ω] = σ

2N

N− 1
2∑

n=−N+ 1
2

Exp
[
−σ

2

2

( n
N + ω

)2
]

(37)
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The Fourier Transform of Equation (5) is then:

ỹ(d)[ω] = (iω)d
π

R̃SKN [ω
π

]
M∑

m=−M
ym · e−imω (38)

It is the Centered Discrete Fourier Transform of the sampled data y multiplied by the Fourier
Transform of the dth derivative of RSKN [πx].

A.3 Antiderivatives
The antiderivatives of Equation (8) can be written as:

RSK(d)
N [x] = 1

N

N∑

n=1
<
[
D(d)[x]

]
(39)

with D[x] = Exp
[
−ibx− x2

2σ2

]
and b=(n-1/2)/N.

The first 4 antiderivatives of D are:
antiderivative 1

D(−1)[x] =
√
π

2 σ Exp
[
−1

2b
2σ2
]
Erf
[
x+ ibσ2
√

2σ

]
] (40)

antiderivative 2
D(−2)[x] = D(−1)[x] g(2)[x] + σ2D[x] (41)

antiderivative 3
D(−3)[x] = D(−1)[x] g(1)[x] + 1

2σ
2g(2)[x]D[x] (42)

antiderivative 4
D(−4)[x] = D(−1)[x] g[x] + 1

6

(
σ4 + 2σ2g(1)[x]

)
D[x] (43)

with

g[x] = 1
6
(
x+ ibσ2) (3σ2 +

(
x+ ibσ2)2)

g(1)[x] = 1
2

(
σ2 +

(
x+ ibσ2)2)

g(2)[x] = x+ ibσ2 (44)

A.4 Derivatives
The derivatives of RSKN , Equation (8) are:
derivative 1

RSK(1)
N [x] = k1k2

4σ2N2
(
2Nσ2Cos[x]−

(
2Nx+ σ2k3

)
Sin[x]

)

k1 = e−
x2

2σ2

k2 = 1
Sin [x/(2N)]

k3 = 1
Tan [x/(2N)] (45)
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derivative 2

RSK(2)
N [x] = k1k2

8σ4N3 (a1Cos[x] + a2Sin[x])

a1 = −4Nσ2 (2Nx+ 9π2k3
)

a2 = 81
(
−1 + 2k2

1
)
π4 + 4N2 (−9

(
π2 + 9π4)+ x2)+ 36Nπ2xk3 (46)

derivative 3

RSK(3)
N [x] = k1k2

16σ6N4 (b1Cos[x] + (b2 + b3) Sin[x])

b1 = −6N
(
81
(
1− 2k2

2
)
π4 − 36k3Nπ2x+ 4N2 (9π2 + 27π4 − x2))σ2

b2 = 2Nx
(
243

(
1− 2k2

2
)
π4 + 4N2 (27

(
π2 + 9π4)− x2))

b3 = −27k3π
2 (27

(
−1 + 6k2

2
)
π4 + 4N2 (−9

(
π2 + 9π4)+ x2)) (47)

derivative 4

RSK(4)
N [x] = k1k2

32σ8N5
(
8N σ2(c1 + c2) Cos[x] + (c3 + c4 + c5)Sin[x]

)

c1 = 2Nx
(
243

(
1− 2k2

2
)
π4 + 4N2 (27π2 + 81π4 − x2))

c2 = −27k3π
2 (27

(
−1 + 6k2

2
)
π4 + 4N2 (−9

(
π2 + 3π4)+ x2))

c3 = 6561π8 + 16N4 (243
(
π4 + 18π6 + 27π8)− 54π2 (1 + 9π2)x2 + x4)

c4 = 8k3Nx
(
81
(
−1 + 6k2

2
)
π4 + 4N2 (−27

(
π2 + 9π4)+ x2))σ2

c5 = 54k2
2π

2σ2
(

54
(
−5 + 6k2

2
)
π4 − 2N2 (9π2 + 81π4 − x2) (3 + Cos

[ x
N

]))
(48)

At x = 0 these derivatives have to be evaluated to their limit values, respectively as:

RSK(1)
N [0] = 0

RSK(2)
N [0] = −1

3 −
1
σ2 + 1

12N2

RSK(3)
N [0] = 0

RSK(4)
N [0] = 1

5 + 3
σ4 + 2

σ2 −
3 + σ2

6N2σ2 + 7
240N4 (49)

A.5 Fractional derivatives and antiderivatives
Taking the inverse Fourier transform of the derivative of the kernel in Equation (38) leads an
analytical expression for the fractional derivatives and antiderivatives of the kernel:

RSK(d)[t] = 2 d−2
2 πd−

5
2σ2−d

9N

(
cos
(
πd

2

)
u[t, 0] + d sin

(
πd

2

)
u[t, 1]

)
(50)
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with

u[t, s] = Γ
(
d+ 1− s

2

) N− 1
2∑

n= 1
2−N

e−
n2σ2
2N2 ν[t]s 1F1

[
1
2(d+ s+ 1); s+ 1

2;−ν[t]2
]

ν[t] = −Nt− inσ
2

√
2Nσ

; Γ[t] =
∫ ∞

0
xt−1e−x dx

1F1[a; b; z] =
∞∑

k=0

akz
k

bkk! ; a0 = 1 ; ak = a(a+ 1)(a+ 2)...(a+ k − 1)

This formula is valid for all reals d, except zero and negative integers, for which the Γ function
tends to infinity. In this case, the limit leads to Equation (39). The computing time for one
discrete point is about 0.09 seconds (machine precision), or about 0.2 seconds with 40 significant
digits.

As a conclusion of this section, the new RSKN kernel allows to express analytically with
Equation (5) any integer or fractional (anti-)derivative of any bandlimited function, up to any
arbitrary precision.

B Implementation of fictitious points
The matrix BFP from § 2.3 is structured with Left FPs on the left of the left boundary, Inner
inner points including both boundaries and Right FPs on the right of the right boundary:

BFP =




ILeft G 0
0 IInner 0
0 D IRight


 (51)

where ILeft, IInner and IRight are identity matrices of rank Left, Inner, and Right.
In the following subsections, only the content of the rectangular (Left×Inner) matrix G will

be described. Matrix D is built exactly in the same way, but the order of the lines and columns
has to be reversed afterward. In other words, if a matrix D′ is computed with the procedure
described for G, the components of matrix D are Dn,m = D′Right+1−n,Inner+1−m.

By default, Gn,m = 0, if not otherwise specified.

B.1 simple extension (SX)
An even, bandlimited function has the properties f(x) = f(−x) and f ′(0) = 0. This case
applies for the clamped condition at x = 0 and matrix G is written: Gn,Left+2−n = 1. An odd,
bandlimited function has the properties −f(x) = f(−x) and f ′′(0) = 0. This case applies for
the simply supported condition and matrix G is written: Gn,Left+2−n = −1. The SX did not
apply for the free condition. For details, see Wei et al. [14].

Remark: The SX imposes some additional (probably unwanted) conditions on the derivatives,
because an even, bandlimited function has also the property that all derivatives of odd order
vanish at x = 0 (respectively all derivatives of even order, for an odd, bandlimited function).
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Appendix F

Numerical Computation of the
Transfer Functions of an
Axisymmetric Duct with the
Extended Discrete Singular
Convolution Method

Résumé

Ce travail [169] s’inscrit dans le cadre du projet ”CAGIMA” (soutenu par l’agence de recherche
française ANR) qui étudie la justesse des instruments de musique à anche ainsi que leur ho-
mogénéité d’émission et de timbre. L’objectif consiste à remplacer l’approche incrémentielle tra-
ditionnellement adoptée par les facteurs d’instruments par une approche globale et rationnelle
dans la conception de nouveaux instruments ab initio (appelés �instruments logiques�), en min-
imisant certains défauts identifiés. Dans ce contexte, un modèle virtuel interactif, prédictif et
configurable est proposé. Plusieurs approches sont décrites dans la littérature pour simuler ce
type de modèle, mais la difficulté principale consiste à concevoir des instruments numériques à
la fois précis (selon les calculs analytiques ou les mesures) et pouvant être simulés en temps réel.
Dans cet article, une approche basée sur la méthode Extended Discrete Singular Convolution
(EDSC) est proposée. L’opérateur temporel (incluant un terme avec dérivée fractionnaire pour
les pertes viscothermiques) est implémenté selon le formalisme EDSC. La méthode permet un
calcul rapide, direct et précis des fonctions de transfert d’un conduit axisymétrique ayant un
profil arbitraire. Le calcul du cas où les pertes dépendent du diamètre ne provoque aucune diffi-
culté notable. Les résultats sont comparés aux mesures de l’impédance d’entrée d’un pavillon de
trombone.
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This work takes part of the ”cagima” project (supported by the ANR) which investigates the defects of
the tuning of reed musical instruments as well as their homogeneity of emission and timbre. The goal
consists in replacing the traditional approach adopted by instrument makers by a global and rational
approach in the design of new instruments /ab initio/ (called ”logical instruments”), minimizing some
identified defects. In this context, an interactive virtual model, predictive and configurable is proposed.
Several approaches are available in the literature but the main difficulty is to design digital instruments
that are accurate (according to measurements) and that can be implemented in real-time. In this
paper, an approach based on the Extended Discrete Singular Convolution method (EDSC) is proposed.
The temporal operator (including the fractional derivative term for viscothermal losses) is implemented
according to the EDSC formalism. The method allows a fast, straightforward and accurate computation
of the transfer functions of an axisymmetric duct with an arbitrary profile. The computation of the
case where the losses are dependent from the diameter causes no noticeable difficulty. The results are
compared to measurements of a trombone bell.

1 Introduction

This work takes part of the ”Cagima” project
(supported by the French national research agency
ANR) which investigates the defects of the tuning of
reed musical instruments as well as their homogeneity
of emission and timbre. The goal consists in replacing
the traditional approach adopted by instrument makers
by a global and rational approach in the design of new
instruments ab initio (called ”logical instruments”),
minimizing some identified defects. In this context, an
interactive virtual model, predictive and configurable
has to be developed. Several approaches are available
in the literature but the main difficulty is to design
digital instruments that are accurate (according to
measurements) and that can be implemented in
real-time.

The present paper investigates how the Extended
Discrete Singular Convolution (EDSC) method [1]
can be used for the acoustical simulation of the bore
of wind instruments. This method is an extension
of the original DSC method proposed by Wei et al.
[2], which has proved its efficiency and accuracy for
solving differential equations. Technically, this method
is based on a ”well-suited” family of time-continuous
interpolation kernels (delta sequence kernels), which
provide the continuous signal from its sampled version.
Here, this is used to simulate a 1D model of acoustic
propagation in axisymmetric lossy pipes, established
in [3] and validated in [4] for straight, conical and flared
pipes: the Webster-Lokshin model with curvilinear
abscissa (named WL model in the sequel). In this
context, the main interest of EDSC (besides accuracy
and parsimony) is that the fractional derivative of
a signal (operator involved in the model) is derived
from the interpolation formula by using the fractional
derivative of the kernel, that makes the computation
easy. With this method, simulations are performed
in the time domain, from which the acoustic transfer
functions are deduced in the spectral domain.

This paper is organized as follow: in section 2, the
principles of the EDSC method are presented. The
section 3 is devoted to the application of this method to
the Webster-Lokshin equation. In section 4, a method
is given for obtaining numerically the transfer functions
from the EDSC simulations. Section 5 is dedicated to
the validation of the results with some known analytical
results and with measurements of a trombone bell,

followed by the conclusions, Section 6.

2 Kernel methods and EDSC

Ideal bandlimited signals y ∈ L2(R) (finite energy)
with a frequency range included in [−1/2, 1/2] are
known to be such that

y(t) =
∑
m∈Z

y(m) sinc (π(t−m)) , (1)

where sinc(x) = sin(x)/x is the Shannon-Whittaker
interpolation kernel [5, 6]. The sampling period is
therefore Δt = 1. This kernel is non causal and with
infinite support.
The DSC method has been built in a practical way,
so that: (i) an interpolation formula similar to (1) is
fulfilled; (ii) the band-limited property is numerically
satisfied up to a fixed precision (typically, that of
floats); (iii) the kernel magnitude is larger than
the fixed precision, on a bounded centered support
(−M ≤ t ≤ M). Such approximations can be recasted
in the general framework of Reproducing Kernel Hilbert
Spaces [7, cf. p.433] [8], which is not investigated here.
The generic formula for the continuous interpolation
ỹ(t) of a bandlimited function y(t), its derivatives of
order d > 0 and its antiderivatives (d < 0) is

ỹ(d)(t) =
M∑

m=−M

y(m) · k(d) (t−m) . (2)

Different functions can implement the kernel k(t). If
k(t) = sinc(πx), d = 0 and M → ∞, Eq (1) is retrieved.
The kernel has to satisfy (at least up to a fixed precision)

lim
α→∞αk(αt) = δ(t) (3)

where δ(t) is the Dirac delta distribution. In [2], many
kernels are proposed. Among them, an interesting
family of symmetrical kernels, efficiently focusing
the energy close to t = 0, allowing a control of the
bandlimited approximation, is defined by the following
Regularized Shannon Kernels (labeled RSK in the
sequel), for σ > 0,

RSK(x) = Sinc(x) Exp(− x2

2σ2
) (4)

Note that with k(t) = RSK(πt), ỹ and y coincide at
each sample t = m and that, tuning σ and M , their
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difference can be made as small as wanted. For a relative
level of numerical precision η, the length of the effective
numerical kernel support is defined as follows: if |t| > �k
then k(t) < η. Typical value for double precision1 reals,
η � 10−15, gives rise to σ = 3π and �k � 23.

Because a general expression for k(d) is difficult to
find with the RSK kernel, we propose to use another
kernel [1]

RSKN (x) =
1

2N

N− 1
2∑

n=−N+ 1
2

Exp

(
inx

N
− x2

2σ2

)
=

RSK(x)

sinc (x/(2N))

(5)

with i =
√−1. Notice that RSK∞(x) = RSK(x) and, if

k(t) = RSKN (πt), d = 0 and M,N, σ → ∞, Eq (1) is
also retrieved.

This series (5) is rapidly convergent. Moreover it can
be shown that a value as small as N = 15 builds a kernel
which has a numerical accuracy in Eq (2) comparable
to that of the RSK kernel (with σ = 3π). In the sequel,
the kernel k(t) = RSKN (πt) with parameters σ = 3π
and N = 15 is used, and simply denoted k for sake of
conciseness. All numerical examples are computed with
this kernel. A general expression for k(d) is given in
Appendix A (see also figure 1). For the discrete times

�6 �4 �2 2 4 6

�2

�1

1

2

Figure 1: Kernel k(t) = RSKN (πt) and its derivatives
of order d = 1

2 , 1 and 3
2 , according to Eq(13) (from dark

to light).

t = m, the interpolation formula (2) can be written

in vector form as a convolution, ỹ(d) = k(d) ∗ y, with

k
(d)
j = k(t)(d)|t=j and j = −2M to 2M by step 1. The

vector y has to be padded with M zeros on the left
and M zeros on the right, in order to meet the size of
the vector k(d). Efficient numerical techniques based
on the Fast Fourier Transform can be used to compute
this convolution. Doing so, the computing time has
approximately linear dependence to M (and not to M2,
as it could be suggested by Eq (2)).

The range [−M . . .M ] is called ”computing
domain”. The formula has an optimal accuracy in the
”optimal domain” [−M + �k . . .M − �k], whereas in the
”truncation domain” [−M . . .−M + �k, M − �k . . .M ],
it may have a poor accuracy, except if y(m) displays
small values in this range. This is the main drawback
of the method. In the EDSC method, fictitious
points are generally implemented in this range [1],
in order to perform the most relevant part of the
computation in the optimal domain, for instance as

1Notice that with k(t) = sinc(πt), a numerical computation up
to that precision would be difficult because �k = 1015.
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Figure 2: Numerical computation of the derivatives
d = 1, 2, 3, 4 of a cosine function with Eq (2): Relative
error

∣∣y(d)(t)− ỹ(d)(t)
∣∣, with y(t) = cos(t) and M =

50, comparatively to the exact analytical derivatives
y(d)(t) = cos(t+ dπ/2). From dark to light: derivatives
1 to 4. Length of the effective numerical kernel support:
�k � 23. The plateau of the ”optimal domain” appears
clearly.

a polynomial continuation of y(t), which fulfills some
boundary conditions, or with the requirement that y(t)
is symmetrical or antisymmetrical at the boundaries
of the physical problem (located generally at −M + �k
and at M − �k). These different domains appear
clearly in Fig. 2 where the cosine function is chosen
as an example (however with Δt = 1/4, in order to
be representative of the accuracy of Eq (2) in the low
frequency range).

3 Application to the WL equation

3.1 The Webster-Lokshin equation

The Webster-Lokshin equation (hereafter abreviated
WL equation) [4, 9] describes the behavior of the
acoustic pressure waves p(x, t) in an 1D axisymmetric
duct(

∂2
x +

2r′(x)
r(x)

∂x

)
p(t, x) =

1

c2

(
∂2
t + 2ε(x)∂

3/2
t

)
p(t, x)

(6)
and the flow u(x, t), dual quantity to the pressure, is
described by the Euler equation

− ρ

A(x)
∂tu(t, x) = ∂xp(t, x) (7)

with parameters r(x) : radius of the duct, A(x) =
πr2(x) : area of the cross section, ρ: density of air,
ε(x) = κ0

√
1− r′(x)2/r(x) : coefficient of viscothermal

losses, and κ0 � 3.5 × 10−4 m1/2. The curvilinear
abscissa is denoted x in this paper. In order to simplify
the discussion, the speed of sound is considered to be
c = 1.

The analytical solution of this equation for constant

ε(x) and constant r′′(x)
r(x) is described in [9] and

the transfer functions for an arbitrary profile are
approximated by concatenation of pieces of pipe with
constant curvature and C1 regularity.

In the present paper we investigate purely numerical
solutions of the WL equation for an arbitrary
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bandlimited function describing the radius of the
duct r(x). A numerical solution can be approximated
with the EDSC method. This solution is accurate up
to approximately half the Nyquist rate of the temporal
mesh.

3.2 Numerical solution with EDSC

We propose an explicit scheme, mixing the ability
of the EDSC method for approximating the temporal
derivative (including the fractional derivative) and
the classical finite differences scheme for the spatial
derivative. In order to avoid the problems of accuracy
in the ”truncated domain” (see Fig. 2), the computing
domain must be broad enough to ensure that the
acoustic waves have always negligible values in the
”truncation domain”. A consequence of this choice
is that the initial conditions can be specified only for
the spatial variable x. This correspond to the physical
situation where the pressure and the flow signals are
known at a particular coordinate x0 (or equivalently:
where the pressure signals are known at the particular
coordinates x0 and x0 − h, h being a small distance,
because flow and pressure are bounded by Eq (7)).

If the signals p(t, x = x0) and p(t, x = x0 − h) are
bandlimited, Eq (2) permits to approximate the right
member of the WL equation (6), at the coordinates
x = x0 and x = x0 − h for all times t (in particular
for the discrete times m from −M to M). Let us write
these signals in discrete form as a vectors: pj = {p(t =
m,x = j)}, for all discrete steps m defined above. For
any coordinate x, the left member of Eq (6) can be
approximated with a classical finite differences centered
scheme. This gives rise to the discretization of the WL
equation

px−h − 2px + px+h

h2
+

rp(x)
(
px+h − px−h

)
h

(8)

� 1

c2

(
k(2) ∗ px + 2ε(x)k(3/2) ∗ px

)

and leads to the explicit scheme for the propagation of
the signal in forward direction

px+h � (h rp(x)− 1)px−h + 2px + h2 kx ∗ px

h rp(x) + 1
(9)

with rp(x) = 2r′(x)
r(x) and kx = 1

c2

(
k(2) + 2ε(x)k(3/2)

)
.

The spatial progression of the waves in the (infinite)
duct can be computed for any arbitrary, bandlimited
initial condition (px0

, px0−h), by applying the
scheme (9) for each spatial step, starting from x0

and progressing in forward or in backward direction.
Since the classical finite differences scheme is much less
precise than the EDSC scheme, the spatial step h must
be notably smaller than Δt (approximately h = Δt/10
to Δt/20), in order to ensure the numerical stability of
the scheme2.

2The EDSC scheme has a remarkable, numerical stability,
because the RSK kernel damps the high frequency components.

3.3 Practical considerations

In our simulations, the arbitrary initial conditions
are defined as a ”RSK-impulses”:

p(t, x = 0) = RSK(πt/γ)

p(t, x = h) = RSK(π(t− h)/γ)

or

p(t, x = L) = RSK(π(L− t)/γ)

p(t, x = L− h) = RSK(π(L− h− t)/γ)

with γ = 1.5. This choice is motivated by the following
considerations: the duration of the RSK-impulse is
optimally short (only 70 points are numerically non
zero) and it contains all frequencies up to 2/3 of
frequency bound of the kernel. The impulse is not
centered on zero, because kx is strongly asymmetrical.
On the contrary, the impulse is placed to the leftmost
position ensuring that no noticeable numerical reflection
occurs on the left boundary. With this placement,
the ”viscothermal relaxation” due to the ”memory” of
fractional derivative can be optimally developed.

Despite of this manoeuvre, some numerical reflection
occurs on the right boundary, because the ”memory”
of the 3/2 derivative is very long. This happens even if
a temporal mesh of many thousands of points is used,
although this makes little sense and wastes computer
power only to simulate a sum of decreasing exponentials.
The following procedure is more efficient and falsifies
the results in a very marginal manner (only on the
very low frequency range, where the WL equation has
no validity anyway): compute the wave propagation
with a quite small value of M (800 or less), cut away
the pollution due to the numerical reflection on the
right boundary, fit a recursive linear filter according to
the ”clean” portion of the relaxation ”tail” (where the
computed signal looks like a decreasing exponential)
and extrapolate the decreasing exponential until very
small values are reached. In our simulations we used
the following recursive linear filter:

p(m) = a1p(m−n1)+a2p(m−n2)+a3p(m−n3)+a4p(m−n4)
(10)

For the trombone bell simulation (see hereafter), the
numerical values are: M = 800, n1 = 1, n2 = 2, n3 =
645, n4 = 1291. The simulation of the wave propagation
was conducted on 20 spatial unities (by steps h = 1/20).
The RSK-impulse used as initial condition (at x = 0 or
at x = L) was centered 81 points away from the left
boundary. The 40 rightmost points of the signal were
cut away. The relaxation ”tail” was extrapolated up to
a total length of 8192 points.

4 Transfer functions

According to the theory of wave guides, the acoustic
behavior of a piece of tube of length L (as seen from the
input of the piece of tube at x = 0 and from the output
at x = L) can be linked in the frequency domain by a
scattering matrix:(

U0

UL

)
=

(
H11 H12

H21 H22

)(
P0

PL

)
(11)

When this system of equations is solved for U0 and
UL (like here), it is named ”scattering matrix with
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admittance representation”. We refer to the functions
H11, H12, H21 and H22 with the generic denomination
”transfer functions”.

Our concern now is to obtain a discrete numerical
version of these transfer functions, computed according
to our scheme (9). For this, we have to compute the
wave propagation in the piece of tube between x = 0 and
x = L for 2 different arbitrary initial conditions A and
B. The corresponding flows are computed with Eq (7).
We notate P0A the Discrete Fourier Transform of the
pressure signal p0 for the arbitrary initial condition A,
and similarly for P0B , P1A and P1B . The corresponding
flows are denoted: U0A, U0B , U1A and U1B . Applying
Eq (11) for the arbitrary initial conditions A and B leads
to:

H11 = (−P2BU1A + P2AU1B)/C

H12 = (P1BU1A − P1AU1B)/C

H21 = (−P2BU2A + P2AU2B)/C

H22 = (P1BU2A − P1AU2B)/C

C = (P1BP2A − P1AP2B) (12)

5 Validation

5.1 Comparison with the analytic
formula

We conducted many simulations for different pieces
of pipe with constant curvature and compared the
results with the analytical formula given in [9]. The
following parameters are used: length of the pipe
L = 70cm, spatial step h = 1/20cm, M = 400,
extrapolation of the relaxation ”tail” on 16384 points.
We observed practically no differences in the precision
reached by the simulations, between the different
curvatures and the different loss coefficients ε.

Results: inside the frequency band of validity of the
WL equation (about up to 2kHz), the deviation for all
transfer functions compared to the analytic formula do
not exceed 0.015dB on the module and 0.003rad on the
argument. Up to 8kHz, the maximal deviation is: 0.6dB
on the module and 0.12rad on the argument.

0.1 0.2 0.3 0.4 0.5 0.6
x

0.2

0.4

0.6

0.8

1.0

Figure 3: Bell profil of a trombone. Abscissa x [in
m] and from dark to light: profile of the bell r(x) [in
dm], r′(x) and r′(x)/r(x) [arbitrary units].

5.2 Validation with measurements of a
trombone bell

The simulation results are compared to the
measurements of the input impedance published in [10]

500 1000 1500 2000 2500
f�Hz�

�40

�20

20

40
Abs�Z� �dB�

500 1000 1500 2000 2500
f�Hz�

�2

�1

1

2
Arg�Z� �rad�

Figure 4: Normalized input impedance of the bell. Top:
modulus in dB (20 log10) Bottom: phase in radians.
From dark to light: measurement, simulation with the
EDSC method and simulation with 5 pieces of pipe with
constant curvature, according to [4]
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Figure 5: Modulus of the reflection coefficient of the
bell. From dark to light: measurement, simulation with
the EDSC method and simulation with 5 pieces of pipe
with constant curvature, according to [4]

for a trombone bell (Courtois 155R). The curvilinear
abscissa x is extracted from the measurements of the
radius of the bore (43 points unequally spaced). The
radius r(x) and its first derivative r′(x) are interpolated
according to Eq (2). The length of the bore is divided
in 20 equally spaced steps (plus 5 fictitious points on
each side). The corresponding weights y(m) (equally
spaced) are obtained by a least squares fit. Fig. 3
illustrates the radius of the trombone bell r(x), its first

derivative r′(x) and the ratio rp(x) = 2r(x)
r′(x) , plotted

along the axis x.
The radiation impedance was simulated according

to the model Z5 used in [4, 11]. The results for the
normalized input impedance Zin = A(0)/(ρc)Pin/Uin

are depicted on Fig. 4. The accuracy is very satisfactory
and even better than the best model (M�) in [4],
especially for the phase (between 800 and 1300Hz) and
for the reflection coefficient Rin = (Zin − 1)/(Zin + 1)
(see Fig. 5). We explain this result because the loss
coefficient ε(x) varies with the diameter in our model,
while in [4], it was taken constant for each piece of pipe
constituting the trombone bell.
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5.2.1 Computing time

In the context of an interactive design of wind
instruments, the recomputing time after a modification
of the bore has to be short. We give here some
indications of the computing time for the transfer
functions of the trombone bell on a quite archaic
PC with Intel processor 2.66 GHz. Simulation of 2
propagations with different initial conditions: 0.546 s.
Extrapolation of the signals, Fourier Transform and
computation of the transfer functions: 0.421 s. Total
computing time. 0.967 s.

Computing time of the transfer functions according
to [4], as a concatenation of 5 pieces of pipe with
constant curvature, according to the analytical formula:
1.186 s. The computing time for the division of the bell
into 5 pieces with constant curvature and C1 regularity
is not included.

6 Conclusions

The EDSC method appears to be efficient and
accurate for the computation of the transfer functions
with the proposed algorithm. The duct has not to be
subdivided as usual into different pieces of pipe, which
have to be concatenated afterwards. Any bandlimited
function can be used in order to define the radius of
the duct. The simulation of the wave propagation in
the duct requires the computation of one convolution
per spatial step. Efficient algorithms are available
for this task. The only delicate step is the accurate

discretization of ∂
3/2
t RSKN (t) with the analytical Eq

(13), which has to be performed only once and can be
stored as a lookup table (see Appendix). The method
is promising for solving other equations with fractional
derivatives.
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[11] Thomas Hélie and Xavier Rodet. Radiation of
a pulsating portion of a sphere: Application to
horn radiation. Acta Acustica united with Acustica,
89(4):565–577, 2003.

A Derivatives of the RSKN

kernel

The RSKN kernel (5) can be analytically integrated.
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2
d−2
2 πd− 5

2 σ2−d
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Notice that the formula (13) is not valid for zero and
negative integer values of d, because the Γ function is not
defined (analytical formulas for these cases can be found
in [1]). The function 1F1 is called ”Kummer confluent
hypergeometric function”.
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[39] Brigitte D’Andréa-Novel, Jean-Michel Coron, and Thomas Hélie. Asymptotic state ob-
servers for a simplified brass instrument model. Acta Acustica united with Acustica,
96(4):733–742, 2010.

[40] Andre Goios Borges de Almeida. The physics of double-reed wind instruments and its
application to sound synthesis. PhD thesis, 2006.

[41] Vincent Debut. Deux études d’un instrument de musique de type clarinette: analyse des
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[44] Véronique Dubos. Etude de l’effet d’une cheminee laterale sur un guide d’onde acoustique.
Etude theorique de l’interaction de deux cheminees. PhD thesis, Le Mans, 1996.

[45] Eric Ducasse. Modélisation et simulation dans le domaine temporel d’instruments à vent
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des instruments à vent à anche simple. PhD thesis, Université du Maine, 1994.
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synthèse sonore temps réel: écueils et solutions. In 10ème Congrès Français d’Acoustique,
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2010.
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de l’impédance d’entrée mesurée ou calculée des instruments à vent. In 13ème Congrès
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[177] Muttalip Aşkın Temiz, Jonathan Tournadre, Ines Lopez Arteaga, and Avraham Hirschberg.
Non-linear acoustic transfer impedance of micro-perforated plates with circular orifices.
Journal of Sound and Vibration, 366:418–428, 2016.

[178] Arthur Tenenhaus, Cathy Philippe, and Vincent Frouin. Kernel generalized canonical
correlation analysis. Computational Statistics & Data Analysis, 90:114–131, 2015.

[179] Arthur Tenenhaus, Cathy Philippe, Vincent Guillemot, Kim-Anh Le Cao, Jacques Grill,
and Vincent Frouin. Variable selection for generalized canonical correlation analysis. Bio-
statistics, 15(3):569–583, 2014.

[180] Arthur Tenenhaus and Michel Tenenhaus. Regularized generalized canonical correlation
analysis. Psychometrika, 76(2):257, 2011.

[181] Arthur Tenenhaus and Michel Tenenhaus. Regularized generalized canonical correlation
analysis for multiblock or multigroup data analysis. European Journal of operational re-
search, 238(2):391–403, 2014.

[182] Michel Tenenhaus, Vincenzo Esposito Vinzi, Yves-Marie Chatelin, and Carlo Lauro. Pls
path modeling. Computational statistics & data analysis, 48(1):159–205, 2005.

[183] Jonathan Terroir. Mesures, modélisation et synthèse des transitions entre notes et des
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Titre :  Étude théorique et expérimentale du rôle de l’anche dans le jeu de la clarinette 

Mots clés :  Instruments à vent, clarinette, caractérisation des anches, estimation modale, synthèse sonore par 
modèle physique, guide-ondes 

Résumé : Ce mémoire traite de l'acoustique de la 
clarinette et du rôle de l'anche, résumant des travaux 
menés entre 2001 et 2018 sur divers sujets: 
 
I) Étude de modèles analytiques élémentaire focalisée 
sur:  1) le rôle des pertes. 2) les cartes itérées, mettant 
en évidence divers régimes de fonctionnement, utiles 
aussi pour la pédagogie instrumentale. 
 
II) Étude de caractérisation des anches:  1) Étude 
dynamique des résonances de l'anche réalisée par 
holographie. Elle conduit à un modèle de matériau 
viscoélastique expliquant certaines différences 
observées dans les fréquences des 15 premiers modes 
de l'anche. 2) Étude statique des caractéristiques 
mécaniques et aérauliques de l'excitateur 
(anche+bec+lèvre). La méthode mesure précisément la 
quantité d'air entrant dans l'instrument en fonction de la 
pression de lèvre et d'air. 
 
 

III) Synthèse sonore par modèle physique en temps 
réel: 1) Modélisation mécanique et aéraulique de 
l'anche, d'après mesure. Le modèle de ressort 
raidissant non linéaire proposé autorise une simulation 
dynamique efficace. 2) Estimation modale de 
l'impédance d'entrée (mesurée) des instruments à 
vent. On montre les techniques de conception de 
filtres numériques précis et passifs à toute fréquence. 
3) Modélisation et simulation instruments à vent au 
moyen de guide-ondes, par estimation modale, 
implémentée dans un logiciel en C++. 
 
IV) Une étude de jouabilité d'un panel de 40 anches 
par analyse canonique des corrélations révèle des 
liens statistiquement solides entre mesures physiques, 
évaluations subjectives et synthèse sonore. Elle 
autorise une caractérisation des anches pouvant être 
réalisé par le fabricant, selon au moins 4 facteurs 
indépendants. 

 

Title :  Theoretical and experimental study of the role of the reed in clarinet playing 

Keywords :  Wind instruments, clarinet, reed characterization, modal estimation, sound synthesis by physical 
model, waveguides 

Abstract :  This thesis deals with the acoustics of the 
clarinet and the role of the reed, summarizing studies 
carried out between 2001 and 2018 on various topics: 
 
I) Study of elementary analytical models, focused on 
1) role of losses. 2) iterated maps, highlighting various 
operating regimes, which are also useful for the 
instrumental pedagogy. 
 
II) Reed characterization study : 1) Dynamic study of 
the reed resonances, by holography. It leads to a 
model of viscoelastic material explaining some 
differences observed in the frequencies of the first 15 
modes of the reed. 2) Static study of the mechanical 
and aeraulic characteristics of the exciter (reed + 
mouthpiece + lip). The method accurately measures 
the airflow entering the instrument as a function of lip 
and air pressure. 
 

III) Sound synthesis by physical model in real time: 
1) Mechanical and aeraulic modeling of the reed, 
according to measurements. The proposed nonlinear 
stiffening spring model allows for an efficient 
dynamic simulation. 2) Modal estimation of the 
(measured) input impedance of wind instruments. 
Design techniques for accurate digital filters, passive 
at any frequency, are described. 3) Modal estimation 
and simulation of wind instruments by waveguides, 
implemented in C ++ software. 
 
IV) A playability study of a panel of 40 reeds by 
canonical correlation analysis reveals statistically 
strong links between physical measurements, 
subjective evaluations and sound synthesis. It allows 
a characterization of the reeds that can be made by 
the manufacturer, according to at least 4 
independent factors. 
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