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General Introduction  

Over the last six decades, the importance of project management and scheduling as a means for 
achieving profit and staying competitive has been proven to many organizations. Subsequently, the 
issues involved in project management and scheduling have drawn the attention of many managers 
and researchers in both practice and academia. A deterministic project comprises a set of activities 
to be processed by following technical/technological precedence, while a set of pre-determined 
criteria needs to be satisfied through the accomplishment of these activities. Motivated by real 
world situations, most projects are constrained by limitations, such as the availability of the 
resources required (resource factors), seen in (Afshar-Nadjafi et al., 2015), or imposed deadlines or 
time windows (time factors), discussed in (Khoshjahan et al., 2013). Additionally, in many practical 
project planning cases, it is very often the case that more than one single project need to be 
performed simultaneously (Browning and Yassine, 2010). Taking extant restriction factors into 
consideration, the management and concurrent scheduling of multiple projects is becoming more 
and more challenging for organizations, particularly when they need to make decisions on how 
capital is allocated amongst the projects (Singh, 2014). In such cases, efforts are generally focused 
on planning, so that the limited resources can be assigned to the multiple projects in a way that 
satisfies the executive expectation of optimal performance. 

In implementing projects, various types of resources are required at the worksite to make progress 
in processing activities. One class of these resources could be those that are consumable, such as 
construction products and raw materials (Dodin and Elimam, 2001). These resources are generally 
supplied to the project worksites by individual suppliers or via a network of inter-related actors, 
known as a supply chain network. This network collaborates to produce and deliver the required 
resources of the projects to their worksites. During recent decades, demand management policies 
have led companies to try to reduce the burden of inventory, especially for products with high 
value and low demand (Stevenson et al., 2005) (Günalay, 2010). This intention has seen the 
emergence of policies involved in “pull” systems, such as Just-In-Time (JIT) and Continuous 
Replenishment Program (CRP) approaches. For pull systems using these approaches, production 
and procurement of the products are totally dependent on definitely confirmed demand. In such 
systems, whilst inventory is kept to a minimum, materials/products are supplied to the end-use 
destinations in the right quantity and at the expected time. Accordingly, in many of these cases of 
project scheduling, which we shall call pull-type project scheduling over the course of this study, 
procurement of the consumable resources to the project worksites is conducted on the basis of the 
pull strategies used in Just-in-Time approaches. A pull-based condition for these projects is defined 
as the circumstances where stocking high-value consumable resources is not allowed on the project 
worksites and the procurement of these resources is only fulfilled on the basis of the demand that 
is generated by the triggering of the activities requiring the resources. Therefore, in projects that 
are conducted using pull-type conditions, until agreement on determining the start date (schedule) 
of the activities demanding the supply chain network resources is not reached, it is strictly 
unworkable to determine an optimal plan for production and procurement of the resources by the 
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manufacturers and suppliers of the supply chain. Figure 1 schematizes how the scheduling of the 
activities affects the operation of the supply chain in procurement of the resources at the project 
worksites in a Just-in-Time manner. On the basis of the figure, an appropriate start date can be 
determined for the activities from their feasible time windows. Once such a time is determined, the 
information regarding the quantity of production and transportation of the required resources can 
be given to the actors of the supply chain by those downstream (worksites) to those upstream 
(suppliers of the raw materials). In the figure, events B, C and D relate to the operations of the 
supply chain in procuring the resources for the worksite with only one single actor of each type, 
i.e. one single raw material supplier, one intermediate products supplier and a manufacturer of the 
final product. It is clear that in cases where more than one single actor exists in the supply chain, 
especially with limited capacity constraints, the decision to assign production and transportation 
operations to the potential actors will become more crucial in achieving optimal performance. 

 

Figure 1- Effect of activity schedules on determining an operating plan for actors of the supply 
chain. 

 

As well as consumable resources, a set of the non-consumable resources such as labor or 
machinery, need to be on hand at the worksites during the execution of the project. In fact, 
determination of the start date for conducting each activity also requires the presence of these non-
consumable resources in the required quantity. With regard to the restrictions in performing the 
activities, such as the time windows or imposed deadlines as well as the project scheduling 
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objectives, an ensuing challenge which comes up is to define a plan for scheduling activities that 
addresses the issues on the availability of non-consumable resources.  

In addition to the issues of decision making in scheduling activities and resources, there are 
concerns today about the protection of the environment and its natural resources, and the need 
for sustainable development has clearly become an unavoidable issue for organizations in their 
decisional procedures   (Hurt and Thomas, 2009) (Robichaud and Anantatmula, 2011). A review 
of works and studies on the subject of sustainability reveals that greening practices can range widely, 
from creating general environmental programs to their implementation and control. In this context, 
the management of the wastes generated in the use destinations, especially in the implementation 
and closure of architectural and construction projects, has become an important subject for 
organizations (Wahi et al., 2016) (Bakshan et al., 2017) (Ajayi et al., 2017). Pursuing this interest, 
any project scheduling arrangements need to include the collection and recycling of the wastes 
produced in the project worksites.  

In aiming to define a modeling framework for planning projects determined in this way and linked 
to environmental concerns, a pioneer question (Q.1) that comes to mind is: “What driving 

parameters could influence the determination of the start dates (schedules) of the activities 

within the projects that are supposed to be performed under the so-called pull-type 

circumstances? And what concerns need to be addressed in the corresponding modeling 

framework?” Answering these questions leads the study to analyze the requirements for 
determining a planning model for such cases and thus establish the perimeter and hypothesis of 
the corresponding model. The motivation to plan the system to the optimal level of efficiency leads 
the study to look at taking advantage of mathematical modeling approaches used in Operations 
Research (OR). In this context, the second question that arises (Q.2), is “How can the problem 

be presented mathematically and what methods can be applied to the model to solve its 

instance problems? Since any model using OR limits its applicability only to those managers who 
are familiar with this field, the question that arises next (Q.3) is “How can the proposed model 

be made useable for those managers of organizations who are not experts in Operations 

Research.” The answer might be to provide an online support system which gives users the 
possibility to exploit and utilize the proposed decision-making framework through the interfaces 
of a web-based application, to create their own projects and run them to find the right solution. 

The present research work is interested in answering the three afore-mentioned questions through 
a research project which is called CRIBA (standing for Construction et Rénovation Industrialisée 
Bois et Acier). The CRIBA project involves the business of industrializing processes for thermal 
renovation of buildings in France. Its main intention is to reduce significantly the total energy 
consumption of the buildings by the use of highly-insulated prefabricated panels. The panels are 
to be shipped to the worksites and installed on the external facades of the buildings for covering 
and insulation. In this framework, several executive projects, each encompassing renovation 
activities for a set of building complexes, have been defined with a view to implementing Just-in-
Time procurement of the panels to the worksites.  With respect to scheduling the executive projects 
of the CRIBA project, the present work is being conducted to provide a decision-making 
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framework and a support tool for SYRTHEA, the company responsible for coordinating the 
projects and providing creative ideas in industrializing the operations and configuration of the 
panels.  

The present report is organized into six main chapters (Seventh chapter is a resume of the report 
in French).  The logical structure of the study, which has been depicted in Figure 2, is determined 
based on the research methodology presented in (Blessing et al., 2009). In consonance with this 
methodology, four parts are set out: 

• Definition: the objective of this step is to define the research context and show the 
motivation of the study in its context. Within this step, the researchers are interested in 
answering several questions related to the research topic, so as to clarify the current 
situation regarding the problem. In the main, the questions deal with key issues of the 
problem, influencing factors, objectives and restrictions whose answers will enable the 
researchers to define a more precise problem set. In this step, a preliminary review of the 
literature will be opportune.  
 
Within Chapter 1 of the current dissertation, the main context of the research is presented 
by an introduction to project management. Next, the phase of the Project Management 
Process (PMP) in which the study has been positioned is identified. While reviewing the 
literature, the chapter clarifies the research requirements in the context of scheduling for 
so-called pull-type projects. Subsequently, it develops the perimeter of the study by 
examining the driving factors for decision making in project scheduling. Finally, it 
determines the main assumptions of the planning mode in the context of the CRIBA 
project.   
 

• Descriptive Study I (DS-I):  this step provides a vision and better understanding of the 
approaches proposed in the literature and helps the researchers to obtain the know-how 
required to define their methodology in representing the model of the problem as well as 
the appropriate solution procedures. 
 
Chapter 2 and Chapter 3 review respectively the literature on project scheduling problems 
and green supply chain planning problems. In this context, studies of the early literature in 
project scheduling and developments in each field of research are outlined in Chapter 2. 
During this chapter, various extensions of project scheduling problems are reviewed and 
different aspects of the models are highlighted. Different solution methodologies that are 
used for solving project scheduling problems are described. Within Chapter 3, the concepts 
and interest in planning for green supply chain networks are discussed. On the basis of the 
synthesis obtained from the model aspects from Chapter 2 and Chapter 3, the requirements 
for developing a new modeling framework in the context of planning for so-called pull type 
project scheduling problems are outlined and the main assumptions of the problem are 
defined.  Exploring the literature, the proper solution methods are also chosen in order to 
solve the instances of the proposed model.  
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• Prescriptive Study (PS): the outcome of the preceding step is used in order to engender the 
representative model of the problem and show the results obtained by using the solution 
methodology/methodologies. 
 
Chapter 4 presents the optimization model that is proposed to respond to the requirements 
of the study. It also outlines the methods that are used for solving the instance problems 
of the model. 
The representation of the web-based tool, which is implemented to support the proposed 
optimization model, is described in Chapter 5.  
  

• Descriptive Study II (DS-II):  mainly, this part provides a critical review on the study and 
presents the perspectives for future research. 
 

Chapter 6 of the current dissertation is dedicated to these statements on the conclusion 
and perspectives for future development. 

Through this structure, Chapter 1 aims to prove insights to answering question Q.1. 
Subsequently, Chapters 2 , 3 and 4 deal with answering the second question, Q.2, and the last 
question of the study, Q.3, is investigated in Chapter 5. 
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Figure 2- Organization of the research in the dissertation.
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1.1 Chapter introduction 

The main objective of the current chapter is to provide a vision on the research and practical 
context of the study and to investigate the planning requirements.  To this end, Section 1.2 presents 
an informative introduction to the project management realm and outlines its different phases. 
Considering that project planning is a key phase of research in this study, Section 1.2.1 outlines the 
major steps that need to be to be streamed within the planning for the projects. Section 1.3 
discusses the issues around procuring the consumable (non-renewable) resources for the project 
and puts forward the ideas of the research in scheduling for the so-called pull-type projects.  Section 1.4 
introduces the specificities of the CRIBA project, which is the research case of the study. It defines 
the main concept of the CRIBA project as well as its different objectives and highlights the position of the 

research in the context of the project. 

 

1.2 The project management process 

Projects are often undertaken as a means to achieve a company’s commercial and business plans. 
According to the given definitions by (Shtub et al., 1994) (Meredith and Mantel, 1995) (Spinner, 
1997) the term “project” can be described as a set of one-time activities with deterministic or 
stochastic processing time that should be realized completely under the presence of a set of given 
restrictions. These restrictions can be understood in terms of the technological/technical executive 
precedence of the activities and/or the availability of resources. Furthermore, the execution of 
these activities is supposed to be carried out by satisfying a set of pre-defined objectives and criteria. 
In the main, these objectives are the minimization of total execution cost, the minimization of the 
project completion time and the maximization of project quality. Once execution of all of the 
activities is accomplished, the project will be terminated.  

On the basis of distinctive characteristics such as duration ranges (i.e. execution horizon on the 
strategic, tactical and operational levels) or organizational boundaries (single managing organization 
or joint-venture and partnering), the projects can be determined in different scopes and assigned 
to the managers. From the definition stage of the project to the completion stage, most projects 
go through similar phases. These phases collectively form the project management process (PBOK 
Fourth Edition, 2008). Depending on the organization and also on the specific nature of the 
project, project management phases may differ slightly from one project to another. However, the 
process can usually be summarized as depicted in Figure 3. 
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Figure 3- The project management process, (adapted from (Klein, 1999) and (PMBOK Fourth 
Edition, 2008)). 
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As this study is positioned within the Project Management Process (PMP), in this section we give 
a short description of the different phases of this process. According to Figure 3, these phases 
come under five headings: 

(1)- Conception: as described by (Cleland, 1999), during the conception phase a project is analyzed 
in its preliminary features from the viewpoints of feasibility and risk. Based on the result of these 
analyses, the organization decides whether to go ahead with the project or not.  

(2)- Definition: Once a project has been accepted as feasible, the definition phase can begin. A more 
precise understanding of project should be provided during this phase. According to (Abdul-Kadir 
and Price 1995), poor specification of projects will prove to be expensive for the organization in 
the later phases. Generally, three major matters are treated within the definition step: i. Process 
organization: referring to (Dvir et al., 2003), the main intention in this step is to define key 
milestones for achieving goals at different time points of the planning horizon, ii. Project 
organization: this serves to determine the functional organizations that will work together to carry 
out the project (Canonico and Söderlund, 2010) and iii.  Budgeting, a step to define the expected 
incoming and outgoing cash flows, which are associated with every milestone (Ammar, 2011).  

(3)- Planning: The planning phase is of interest in the current research study. (Klein, 1999) (Levitt, 
2000) and (Ciutiene and Meiliene, 2015) describe planning as being at the heart of good 
management.  Its main goal is to ensure that all works of the project are integrated and thus ensure 
the quality of the project for the owners, as well as its on-time completion and economic benefit. 
Most commonly, efforts in this step focus on establishing either a multilevel tree or a network-
based representation of the activities/work packages (Structuring and representation).  It also 
involves specifying the start and end dates of the activities ( Scheduling for activities) by considering 
precedence levels for each activity, and assignment of the required resources to each activity during 
its process ( Scheduling for resources). More principles involved in the planning phase are outlined 
in Section 1.2.1.  

(4)- Execution and control: during this step the activities of the projects are executed and monitored. 
Most often, the progress is measured in terms of time (schedule) and cost. Depending on the 
achieved progress and forecasts for required efforts, the current status of the project is updated 
and adapted. Within this phase, performance data are described and reported by using well-known 
key performance indicators such as Earned Value (EV), Return On Investment (ROI), Schedule 
Variance (SV) and so on. For complementary information about the practices in this phase, see 
(Albert P.C. Chan and Ada P.L. Chan, 2004). 

(5)- Reporting and closure: final evaluation and reporting is regarded as a way to learn from the 
experience gained throughout the execution of the project. Once this reporting phase is completed, 
the project can be closed.  
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1.2.1 Principles of project planning 

The aim of this section is to provide a vision of different issues in the planning phase and to present 
the roles that are associated with project planning managers.   

As stated above, project planning can be categorized under three topics: i- Structuring and 
representation, ii-  Scheduling for resources, and iii-  Scheduling for activities.  Parts ii and iii of this 
phase relate to our research work. The main purposes of every part are described in the following:  

 

1.2.1.1 Structuring and representation 

In this context, the content of the project is presented as a series of manageable activities (or work 
packages) and then these activities are inter-related on the basis of the governing technological or 
procedural precedence (Wiley et al., 1998). The point to consider in the structuring and 
representation step is to particularize whether several multiple projects are supposed to be executed 
simultaneously or whether there is only one single project to be planned. When dealing with multi-
project structuring, this can be carried out by two approaches: 1- a single-project approach and 2- 
a multi-project approach (Lova and Tormos, 2001). 

In the first approach all the projects are joined together to make a single mega project. Several 
models have been used to join the multiple projects together. As seen in Figure 4, either every 
project is undertaken in parallel or they are joined together via a serial flow. Regardless of the 
chosen strategy, two starting and ending dummy nodes should be added to complete the final 
network. Within this approach, one single critical path is formed in the scheduling network. It is 
worth remembering that the critical path is the longest sequence of activities which determines the 
shortest time to complete a project. 

 

Figure 4- Single-project approach: serial and parallel linkage, adapted from (Lova and Tormos, 
2001). 

 

In a multiple-project approach, projects are individually treated in parallel. In this approach each 
of the projects can maintain its own critical path, as presented in Figure 5. Therefore, using a 
common pool of resources, each project is scheduled and optimized separately.  
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Figure 5- Multi-project approach, adapted from (Lova and Tormos, 2001). 

 

Both single-project and multiple-project approaches can produce different schedules. According 
to (Browning and Yassine, 2010), compared to a single-project approach, the multiple-project 
approach is more realistic and presents great opportunity for improvement in the planning of the 
projects. 

Having dealt with structuring the multiple projects, the next step is to present the context of the 
project(s) in the form of manageable work packages or activities.  For this purpose, reasonable 
execution size and the level of complexity are factors in constituting the group of work packages 
or single activities. Since the method of forming the activities network is not the point of our study, 
we have omitted more in-depth details and, for further information, we refer the reader to the 
principles of preparing a Work Breakdown Structure (WBS) discussed in (Burghardt, 1997).  

Subsequently, the interrelation of activities (work packages) needs to be determined and presented 
within the structuring and representation phase. Mainly, four types of precedence are determined, 
comprising finish-to-start, start-to-start, start-to-finish and finish-to-finish. Finish-to-start is the 
most commonly used relationship in project planning. It implies that an activity can only start after 
all its predecessor activities in the relationship have been completed. Similarly, start-to-start means 
that the sink activity in the relation cannot start before the source activity starts. By a start-to-finish 
relation, the sink activity in the relationship cannot finish before the source activity starts. Likewise, 
the finish-to-finish precedence states that the source activity in the relation must be completed 
before the sink activity can finish. In the literature, the project scheduling problems under these 
four types of precedence are termed as generalized project scheduling problems (Elmaghraby and 
Kamburowski, 1992).  

In generalized project scheduling problems, as is the case in the majority of practical situations, 
there is considered to be a minimum (maximum) time lag, which corresponds to a minimum 
(maximum) time interval between the start (finish) of the source activity and the finish (start) of 
the target activity. Project planning problems with minimum and maximum time lags are 
respectively known as minimal time lag and maximal time lag project planning problems (Węglarz 
et al., 2011). A negative minimal time lag implies that the corresponding activities may be 
overlapping. It is worth noting that any type of generalized precedence can be transformed into 
another type (Bartusch et al., 1998.), except for the case where there is more than one activity-
processing mode. The transformation formulas are given in Chapter 4, and they are applied to our 
solution approach as well.  
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In order to present the relevance of the activities in the form of a network-based representation, 
two representative modes have been used: Activity-On-Node (AON) and Activity-On-Arc (AOA), 
seen in Figure 6. As a matter of fact, selecting an appropriate representation is an actual step in 
network analysis of project planning problems (Hartmann and Briskorn, 2010). 

 

Figure 6- Activity-On-Node and Activity-On-Arc representation. 

 

In AON, the activities and their related parameters are depicted within the nodes and the 
precedence relations are drawn by directed arcs. In this representation, dummy nodes are used to 
determine a single start and end for the project. Furthermore, dummy activities are deployed to 
preserve the precedence between the activities. Project planning with minimum makespan as well 
as cost minimization objectives are depicted by the AON networks.  

In contrast to AON, in the AOA networks, nodes illustrate execution events and arcs are used to 
represent the activities. Since the AOA representation provides more simplicity and ease in analysis 
of the network data, it is widely regarded as presenting the problem with a view to maximizing net 
present value of money where cash inflows or outflows associated with different events may be 
involved. As with AON, in applying the AOA representation, the use of dummy activities is 
recommended in order to avoid creating false precedence between activities.   

 
 

 
In our study, we deal with the planning of multiple projects where application of the 

multi-project approach for project structuring is of interest. The modeling framework 

encompasses four types of generalized precedence wherein a minimal time lag is associated 

with each of the precedence relationships. As regards the objective function, which is 

determined for minimizing the total cost of the execution of the project, the AON 

representation is used to establish the network-based representation. 
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1.2.1.2  Scheduling for resources 

Basically, the various sorts of project planning resources are categorized in two types, renewable 
and non-renewable resources. 

Renewable resources are those resources that are available at their initial amount in the time periods 
of the planning horizon and they are not depleted by usage (Węglarz et al., 2011). Units of the 
relevant resources are released immediately after the accomplishment of the activities to which they 
were assigned. Therefore, these resources can be used by other activities after release. Typical 
examples of renewable resources include labor and equipment.  Project scheduling with renewable 
resources has been extensively studied in the literature, by (Pritsker et al., 1969) as the first research 
study, and (Krüger and Scholl, 2009) (Kellenbrink and Helber, 2015) and as the most recent ones 
on scheduling for resources in multiple projects, and the work of (Ranjbar et al., 2013) in single-
project planning. The main idea in the scheduling of renewable resources is to allocate the bounded 
units of the resources to the activities so that the criteria of the problem have been satisfactorily 
met. The demand from the activities for these resources can be investigated either by measuring 
units of the resources that are required to be on hand during the processing time of the activity or 
by the workload (intensity) that is required to accomplish a specific activity (Kis, 2005).  

On the other hand, a resource is considered as non-renewable if it is depleted by usage (Węglarz et 
al., 2011). Therefore, it cannot be assigned to any other activity. Examples of these resources may 
be construction materials or capital. Integrating the procurement of non-renewable resources in 
project scheduling problems was initially investigated by (Aquilano and Smith, 1980). The aim of 
this work was to define a procedure to plan the sequencing of the non-renewable resources for the 
project through the possible time windows for their acquisition. As with the other seminal study, 
(Dodin and Elimam, 2001), the authors consider rewards/penalties and discounts for ordering 
non-renewable resources and define a resolution procedure. The main goal in planning for non-
renewable resources is to define a plan for ordering (transportation of) the resources and define a 
procedure that handles the procurement of the resources for the project. 

In real world cases, projects are commonly constrained by several factors. Mainly, these factors are 
regarded in terms of resource and time. The constrained resources imply the limited amount of 
resources that are on hand for performing the project(s). The corresponding models focus on 
scheduling for “resource constrained projects” (Pritsker et al., 1969). On the other hand, the 
bounded time factor could be stated as the time point(s) that are imposed on the project(s), such as 
a deadline for completion. In models known as “time constrained project scheduling problems” 
(described in Section 2.3.2) an additional amount of resources may temporarily have to be added 
to the project (Dekro and Herbert, 1989) in order to meet the deadline that is imposed for 
completion. 
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In this study, our intention is to take advantage of both resource constrained and time  

constrained project scheduling problems and apply them in a unified model in order to 

define a framework for scheduling multiple projects which builds up a trade-off between 

time and resource factors with a view to minimizing the total cost of the execution of the 

projects. In this study, we deal with planning for both renewable and non-renewable 

resources. 

 

1.2.1.3  Scheduling for activities 

Because of the precedence relations between the activities and the factors restricting scheduling, 
start and end dates of the activities can be determined through solution procedures. To determine 
the appropriate dates, various solving methodologies have been developed and applied to project 
scheduling problems. Optimization resolution methodologies produce results where a schedule is 
called time-feasible if it satisfies all precedence and time restrictions.  On the other hand, a schedule 
is fully feasible if it satisfies all the constraints on time and precedence relations as well as on 
resource availability constraints. In this regard, an optimal (global optimum) schedule is a feasible 
solution in that it is determined based on the given objectives (criteria). The optimal solution can 
be obtained by a set of methods that are known as exact procedures. In contrast to the global 
optimum solution, a semi-optimal solution does not present the most suitable feasible solution, but 
rather one that is most suitable within a particular neighborhood of values (Węglarz et al., 2011). 
Depending on the working mechanism used, the algorithms procedure, with so-called meta-
heuristic and heuristic algorithms (discussed in Sections 2.7.2, 2.8.2 and 2.9.2) produces optimal or 
near-optimal solutions. 

 
 

Within the current study, two different solution methodologies are applied for solving 

the proposed modeling framework. The first solution methodology, which is based on 

exact methods (a description of these methods is included in Section 2.9.1), generates 

the optimal results for scheduling of the activities and planning of the system. An 

additional meta-heuristic-based procedure is studied in the second step. Basically, it 

seeks to produce semi-optimal solutions rather than a global optimal. Nonetheless, the 

application of the developed procedure is useful for the scheduling of large projects with 

very many activities in which exact solving methods fail to generate optimal results due 

to the NP-hard nature of the problem, (the complexity issues in solving NP-hard 

problems are outlined in Section 2.4).  

 

 

 

1.3 Requirements for scheduling pull-type projects with environmental 

aspects 

A viable scheduling technique must show promise as an aid in determining appropriate start times 
for the activities based on the (i) Inherit restrictions in executing the activities and also on the (ii) Constrained 
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availability of the resources. Inherit restrictions are the limiting factors that emerge in the executive 
characteristics defined either in precedence relationships between the activities or the supposed 
time windows for their processing. On the other hand, constraints in availability of the resources involve 
concerns about the limited amount of the resources that are totally on hand and can be allotted to 
the activities in the required quantities.  Having considered the two types of resources, renewable 
and non-renewable, scheduling in this regard could be divided up into two distinct aspects as 
follows:  

i. Scheduling for the available quantity of renewable resources to allocate them to the 
activities with the aim to meet the expected objectives and satisfy the constraints 
on performing the project. 

 
ii. Defining a plan to acquire the required non-renewable resources at the project 

worksites to be able to schedule the activities with the proper start times. 

i.) In the literature, scheduling for renewable resources is covered in a large body of works on both 
resource constrained and time constrained project scheduling problems. In the standard form of 
resource constrained project scheduling problems, activities can only be executed in one single 
mode requiring a given fixed duration to process and a given quantity of resources. Starting with 
(Elmaghraby, 1977), this assumption is generalized to allow several alternatives for performing the 
activities. In the model presented, each alternative (mode) reflects a feasible way to accomplish the 
underlying activity and each alternative possesses a given processing time and the requirement for 
the resources, as well as a use cost. This extension constitutes the basic approach to multi-mode 
problems seen in (Kolisch and Drexl, 1997) (Zhu et al., 2006) (Tareghian and Taheri, 2007) (Tiwari 
et al., 2009) (Coelho and Vanhoucke, 2011) (Asta et al., 2016),  wherein the aim is to choose the 
appropriate modes of accomplishing the activities so that the objectives in scheduling the projects 
are met and the constraints of the availability of the resources, as well as the precedence 
relationships, are satisfied. Moreover, the same idea has been used in the case of problems that are 
generally termed as time/cost trade-off problems (TCTP). In TCTP, the project is due at a given 
deadline whilst multiple modes of processing the activities are also used.   The goal in these 
problems is to find an appropriate schedule which  minimizes the total cost of running the project 
by choosing the modes of the activities which cost less and meet the deadline of the project 
(Vanhoucke et al., 2002) (Hadjiconstantinou and Klerides, 2010). The applicability and efficiency 
of the trade-off problems have drawn the attention of many researchers in theoretical and practical 
studies. (Węglarz et al., 2011) provides a comprehensive survey of the works in this field.  

In our modeling framework, the study is interested in taking the advantage of “trade-off problems” 
in determining “balanced” solutions and applying their concepts to project scheduling problems 
with one single mode of processing the activities: 

➢ In the current study the activities are supposed to be due for completion at a given 
deadline. To meet the deadline, a supplementary limited amount of renewable resources 
are assumed to be rented and added over the time periods in which the requirement 
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for the resources may exceed the quantity available. In fact, the aim of this assumption 
of making trade-offs is to enable the modeling framework to decide either to pay for 
renting supplementary quantities of the renewable resources and avoid paying high 
penalty costs for late delivery, or vice versa, that is, to pay low penalty costs instead of 
shelling out the high rental cost for additional amounts of the resources that need to 
be added to meet the given due-date (Gholizadeh-Tayyar et al., 2016a). 
 

ii.) Besides of scheduling for renewable resources, this study also needs to examine planning for 
acquiring the non-renewable resources of the projects. Referring again to the literature, works on 
planning for non-renewable resources have not been widely presented and further new research is 
needed to find decision-aiding tools that adequately conform to real world conditions. In this 
regard, the main focus in this study is on the issue of acquiring the right quantity of non-renewable 
resources at the right time and in the right place for projects that are performed under so-called 
pull-type conditions, as supposed for the CRIBA project. 

In traditional approaches, project scheduling and ordering of materials were treated separately. 
Firstly, appropriate schedules were determined for the activities and then a material ordering plan 
was drawn up to conform to the generated schedules. However, as has been demonstrated by 
project planners,  any initial planning of the project that does not take materials management 
factors into account results in unexpected delays and subsequently leads to higher costs (Aquilano 
and Smith, 1980). Given this potential outcome, several authors have expressed caveats about the 
exclusion of material ordering issues in determining schedules for the activities and resources. As 
a pioneer work, (Aquilano and Smith, 1980) states the need to include the order lead-time for the 
materials in scheduling activities, as well as the records of the amount of storable materials at the 
project worksites. In a later work by Smith-Daniels and Smith-Daniels, (Smith-Daniels and Smith-
Daniels, 1987a), the authors consider the aspect of cost in planning the project and integrate 
material ordering issues. In their study, they take into consideration the various existing sorts of 
cost and they determine the schedule on the basis of a trade-off between these costs.  The cost 
term in their study comprises the cost due to delay in the project completion and the costs related 
to ordering and holding of the materials. Following on from the work of (Smith-Daniels and Smith-
Daniels, 1987b), the works of (Dodin and Elimam, 2001) (Sajadieh and Shadrokh, 2009) (Zoraghi 
et al., 2012) (Fu, 2014) (Tabrizi and Ghaderi, 2015) (Tabrizi and Ghaderi, 2016) use models with 
the same aim: to take into consideration the effects of cost in yielding settled schedules in the 
planning of a project with material-ordering issues. 

By reviewing the literature ( presented in detail in Section 3.3), we note that previous works deal 
with these problems on the assumption that it is possible to stock materials at the project worksites 
and basically do not consider the issues of Just-In-Time procurement of non-renewable resources. 
Therefore, the problem that arises is to define a modeling framework that corresponds to these 
additional constraints. A suitable modeling framework could be provided by determining how to 
establish the appropriate schedules for defining the start dates for activities in such cases and how 
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to define a procurement plan which incorporates shipping the resources to the project worksites. 
These two ‘how’ questions are investigated in the following three paragraphs:   

➢ 1- Influencing factors of multi-project schedules on material ordering: according to the executive 
characteristics for performing the projects, factors such as the given time windows for 
executing activities, precedence relationships and also dedicated due-dates for 
completion of activities constitute restrictions which inductively affect the operations 
of suppliers in providing the required resources. Considering demands that can be 
generated by the triggering of the activites, the just-in-time procurement of the 
resources to project worksites necessitates integrating the project scheduling facts into 
the resource procurement and supplying issues.     Since the products of manufacturers 
(the non-renewable resources of projects) are commonly used on project worksites, the 
issues of projects scheduling are linked to the planning for production and 
transportation of these resources. Taking the definition given in (Chopra and Meindl, 
2007) into account, the supply chain network is considered as a network of distinct 
organizations that work together with the aim of satisfying the final customer demand 
by producing products or providing services. Therefore, in the context of our work on 
the scheduling for pull-type projects, project scheduling issues will be integrated with 
the issues of the supply chain network responsible for producing and procuring the 
production resources to the projects (Gholizadeh-Tayyar et al., 2015). 

 
➢ 2- Influencing factors of material ordering issues on scheduling for the multiple projects: along with the 

influencing factors of projects schedules on material ordering, the characteristics of the 
supply chain, such as limited production, transportation and stock capacity affect the 
procurement of the products and consequently the schedules of the projects. 
Therefore, determining appropriate schedules for the activities inevitably necessitates 
including the effect of the driving factors of the supply chain as well. Besides, the 
influence of the supply chain on the projects becomes more serious when the products 
required at the worksites are customized and a significant variety of products modules 
need to be manufactured. In addition, in cases where there is a significant lead-time for 
transportation or production between the different actors, the operations of the supply 
chain network will influence the scheduling of the activities. In this context, in the 
centralized networks where certain given actors perform to supply the required items, 
the capacity that is negotiated with these actors definitively impacts the scheduling of 
projects activities at the work-sites.   

 
➢ 3- Inherent influencing factors of projects on scheduling of the projects: furthermore, the 

determination of proper schedules for the activities depends on some inherent 
influencing factors that are related to the projects themselves, such as the availability of 
the renewable resources. In our modeling framework, this issue can be addressed 
though assumptions made to build up a trade-off between time and resources. Indeed, 
in the corresponding modeling framework, defining a schedule for activities can be 
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affected by the repercussions of the trade-off between paying for supplementary 
renewable resources to meet the high-cost due-dates and paying for low-cost due-dates 
instead of disbursing for high rental cost of the resources. 

 

Given the afore-mentioned points, a modeling framework that encompasses them can be stated by 
the integration of the time- and resource-constrained multiple project scheduling problems with a typical 

supply chain network planning model (Gholizadeh-Tayyar et al., 2015).   

On the other hand, following the concerns over the increasingly negative impacts of human 
activities on the environment and the need to protect the environment and its natural resources, 
many industries and organizations are steering towards sustainable and green development 
(Musson, 2012) (Hwang and Ng, 2013) (Gosling et al., 2016). While the effects of scheduling for 
resources (specially for renewable resources) on project schedules are well documented in the 
literature, to the best of our knowledge, the effects of respecting the sustainability issues in planning 
to collect the produced wastes from the project worksites and transport them to recycling centers 
have yet to be determined in the form of a mathematical optimization of the problem. Therefore, 
in our study in order to make the decisional model responsible for environmental concerns, we suppose 
that the wastes produced in the worksites will be shipped to the appropriate recycling centers, 
which are located either in manufacturing units or in individual recycling departments, to be 
recycled and recovered. Figure 7 represents the different aspects of the modeling framework 
described above. 
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Figure 7- Presentation of the interacting factors of the supply chain and multiple projects in the 
modeling framework, adapted from (Gholizadeh-Tayyar et al, 2016a). 

 

1.4  The CRIBA project 

Because of the increase in human activities from the Industrial Revolution onwards, the emission 

of greenhouse gases (including CO2 , CH4, N2O, HFCs, PFCs, and SF6) has risen significantly. 
According to statistics published by Goddard Institute for Space Studies, the average temperature 
of the Earth has gone up from 0.1 to 0.6 degrees Celsius between 1880 and 2000, as presented in 
Figure 8. 

According to NASA Earth Observatory research, the rate of increase in temperature has nearly 
doubled in the last 50 years. Concerns about the rising temperature of the Earth have drawn the 
attention of scientists and managers to find either effective scientific solutions or make new policies 
for coping with the issue.  
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Figure 8- Global mean surface temperature, (from Goddard Institute for Space Studies, NASA 
Earth Observatory) 

 

The global warning on the impacts of climate change began with the first world climate conference 
in Geneva, Switzerland in 1979 and continued with growing consensus at the conferences of Rio 
de Janeiro 1992, Kyoto 1997, Marrakech 2001, Montreal 2005, Nairobi 2006, Bali 2007, 
Copenhagen 2009, Cancun 2010, Durban 2011, Doha 2012 and Paris 2015.  

The Earth Summit in Rio de Janeiro in Brazil led to the signing of the United Nations Framework 
Convention on Climate Change (UNFCCC). The Rio Declaration consisted of 27 principles 
intended to guide countries in sustainable development and also to set objectives for stabilizing the 
concentration of greenhouse gases in the atmosphere at a level that prevents dangerous 
anthropogenic interference with the climate system. Followed by the Kyoto protocol in 1997, the 
countries listed in annex B of the protocol, including most of the industrialized nations and 
countries in transition to a market economy, were committed to reducing their overall emission of 
greenhouse gases by at least 5% between 2008 and 2012, compared to the emission level in 1990.  

In 2005, France made its commitments in sustainable development to follow the global warming 
reduction objectives. According to (Légifrance, 2005), the fight against climate change gives priority 
to policies in energy consumption that can reduce the emissions of greenhouse gases in the country 
by 3% per year. Consequently, the government has developed a climate plan, updated every two 
years, with all the national measures to tackle the issue of climate change. Following on from the 
2005 legislation, in 2009 the French government decided to divide by four the emission of 
greenhouse gases in the country by 2050 (Légifrance, 2009). In line with this objective, since 
building sector generates 24% of the total emissions of the country due to consumption of 44% of 
the total energy, (CGDD - SOES, 2013), it is key to reaching the objectives pursued in climate 
change policy. See Figure 9. 
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Figure 9- Energy consumption by sector in France (CGDD, 2013). 

 

CRIBA (the initials come from the French terms “Construction et Rénovation Industrialisée Bois 
et Acier”) is a project created and funded by the ADEME agency for environment and energy 
management, (standing for l’Agence de l’Environnement et de la Maîtrise de l’Energie). ADEME 
has attempted to provide a scientific and applicable solution to reduce the total energy consumption 
level of buildings in France. Under the CRIBA project, energy consumption is targeted to fall to 
only 25 Kwh/m²/year in 500 000 habitations. To achieve this goal, buildings are supposed to be 
renovated fro two ponts of view, from the inside and from the outside:  

- The energy-efficient renovation of buildings from the inside involves establishing more 
efficient controlled mechanical ventilation systems as well as the replacement of heating 
and hot water systems by energy-saving ones. 
 

- On the other hand, outside renovations involve covering the exterior facades of the 
buildings with industrialized pre-fabricated panels that contain new insulating 
carpentries. Covering the buildings with enveloping panels provides the possibility to 
insulate the buildings and thus reduce their energy transmission to the external 
environment. The panels are made up of different materials and components. The main 
composing elements are (i) insulation materials, (ii) wooden/steel frames (iii) joinery 
(doors, windows and shutters), and (iv) covering materials. A cross-section of the 
insulating panels is presented in Figure 10. The prefabricated panels embedded with 
the joinery are carried from the manufacturing centers to the project worksites to be 
installed on the buildings by use of appropriate metal fasteners and frames. Figure 11 
depicts different steps that are followed to position the panels on the buildings. It is 
worth noting that the former carpentries of the buildings are removed after the 
installation of the insulating panels. The removed carpentries are supposed to be carried 
to the proper recycling centers to be recycled and reused in different industries for 
different purposes. 



Chapter 1. Context and problem statement 
 

24 
 

 

 

 

Figure 10- Prefabricated insulating panels integrated with the prefabricated 
carpentries. 

 

 

Figure 11- Steps for installing the insulating panels on an existing building, from (Falcon et al., 
2013).  
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According to the demonstrator of the project (CRIBA project, 2010), the executive process of the 
buildings’ thermal renovation presents several major technological breakthroughs. Figure 12 
summarizes the process of the thermal renovation of the buildings from the preliminary studies of 
the buildings’ situation to production and installation of the panels. With the aim to measure the 
dimension of the buildings and extract the information about the dimension of the panels as well 
the positioning of the carpentries on the facades, plotting of the buildings is done by use of drones. 
The drones are equipped with the existing techniques of laser scanning and photogrammetry 
enriched with photographic tools adapted to high-rise buildings and structures. On the basis of the 
information about the dimension of the panels extracted from the images, design and configuration 
of the pertinent panels will be accomplished. For this purpose a set of digital tools are used to help 
decision makers to evaluate different alternatives in the design and configuration of the cladding. 
On the basis of the results obtained from these analyses, manufacturing plans for the required 
panels and joinery are forwarded to the corresponding manufacturing centers. After that, the off-
site prefabricated panels are directly sent in a just-in-time way from the warehouse of the 
manufacturing centers to the project worksites, based on the demand that is created in the 
worksites.  

 

Figure 12- Executive process of thermal building renovation in the context of the CRIBA 
project. 

 

1.4.1 Scope and coverage 

Having seen the practices that have been determined in order to renovate buildings in the context 
of the CRIBA projects, the research works that will ensure their technical and scientific feasibility 
include the following topics:  
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• Design of appropriate insulating panels with efficiency of 25Kwh/m²/year made up of wood/steel and the 

insulating materials for undertaking the treatment of the facades and roofs with architectural enhancement 

of the buildings: For this purpose, a study has been carried out in the RAPSODEE research 
center of IMT Mines Albi-Carmaux. The research work provides guidelines to design the 
panels that on the one hand are adapted to the specification of the different buildings (such 
as the strength of the building to support the weight of the panels, the current energy 
efficiency of the buildings, etc.) and on the other hand to meet the CRIBA objectives in 
obtaining an energy efficiency of 25Kwh/m²/year. 
 

• Propose a procedure to industrialize the process of thermal renovation of buildings: the research work 
corresponding to this purpose has been set up in the framework of a PhD project involving 
collaboration between the Industrial Engineering department of IMT Mines Albi-Carmaux 
and SYRTHA company, through the work of (Falcon et al., 2013). From a practical 
perspective, the thesis aims to define a procedure to renovate the buildings in an 
industrialized way. From a technical point of view, it attempts to provide a procedural 
decision-making tool to ensure quality in performing the thermal renovation projects.   
 

• Develop a computer based application to create the 2D model for the configuration of the panels: in keeping 
with this aim, a PhD study has been conducted in the Industrial Engineering department 
of IMT Mines Albi-Carmaux. Its purpose is to provide a tool that helps architects with 
their decision-making processes in the configuration and positioning of the panels. Based 
on the driving factors such as configuration costs and aesthetics aspects, a set of solutions 
have been produced and are available through the use of a web-based support system. The 
application provides the possibility for the decision makers to choose the most appropriate 
solution. For further information on the application and its solving procedure, we refer the 
readers to (Barco et al., 2015) and (Barco et al., 2016). 
 

• Provide a decision aiding tool to plan the thermal renovation projects under the just-in-time procurement of 

resources by the corresponding supply-chain network: This part forms the purpose of the current 
research work.  Relying on the primary study in line with this objective presented in 
(Gholizadeh-Tayyar et al., 2014), a comprehensive planning framework, as introduced 
generally in this section, is developed. Subsequently a web-based application is provided to 
support the modeling framework. Three main components of the application are i. data 
queries: to provide infrastructures that allow data entry related to the planning of a set of 
projects with its supply network, ii. model creation and execution interfaces, implemented 
to define functionalities that allow the application to utilize and exploit the decision making 
model for planning of the different cases envisaged,  and iii. reporting and graphics, to 
enable the decision support system to extract and present the results from the solution of 
the model, as shown in Figure 13. 
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Figure 13- Building blocks of the decision-support system provided for the modeling 
framework presented in Figure 7. 

 

A typical instance of the potential actors that may be involved in the CRIBA project 
network is depicted in Figure 14. In general, five sorts of stakeholders can be recognized 
including suppliers of raw materials, manufacturing centers, project worksites, recycling 
centers and organizational management. In the figure, two types of manufacturers have 
been featured: the manufacturing centers for carpentries and the manufacturing centers for 
panels. These two centers were chosen as examples due to the importance of their products. 
Panels and carpentries are customized by the project architects with regard to their covering 
materials and their aesthetics aspects. As a result, there is a high variability in their 
manufacturing. Since these products are critical, their manufacturing centers are highlited 
and their production and supply operations are considered for planning purposes. Other 
products such as fasteners or metal supports are standard and non-customized products 
which could be available at the project worksites without any restrictions. However, for the 
critical products, negotiations on reserving sufficient capacity for producing and supplying 
them to the destinations of use will play a major role in project management at the 
worksites. 
In this project supply chain network, as with conventional supply chain networks, the 
suppliers provide the required raw materials to the manufacturing centers. The carpentries 
are produced and transported to the panel-manufacturing centers to be embedded in the 
panels. Production of these products requires appropriate lead-time. Similarly, there is a 
transportation lead-time to ship the different items to their destination of use. As depicted 
in the figure, after installing the panels, all the waste generated at the worksites is shipped 
to the recycling centers. All the process of supplying the resources to the worksites, carrying 
out the building renovation projects and management of the waste is coordinated under 
the supervision of a managerial enterprise.  The planning model based on the restrictive 
factors in the supply chain and the intrinsic limiting factors of scheduling for the projects 
for comprehensive planning and management of the system is presented in Chapter 4. 
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Figure 14- An illustration of the structural network of thermal renovation projects, with 
multiple project worksites linked to a typical supply chain network. 

 

1.4.2 Research positioning in the CRIBA context 

Considering the planning horizons from a company level perspective, decision making for system 
management can be analyzed in three levels: strategic, tactical and operational (Anthony, 1965) 
(Bilgen and Ozkarahan, 2004): 

• Strategic level: strategic decisions are made at the highest level of management. They mainly 
concern long term policies lasting for several years. Decisions made by managers at this 
level influence all decisions at lower levels. Examples of strategic decisions may be the 
initial selection of the projects, the design of the supply chain, the selection of new 
technologies or locating new facilities. 
 

• Tactical level: Decisions at the tactical level are associated with mid-term planning. The 
planning horizon mainly depends on the tasks the organization needs to perform. 
Commonly, it can vary from one month up to one year. Decisions at this level concern 
planning the procurement of required materials, planning for inventories, planning for 
production, distribution of the products as well as ranking the projects in the portfolio in 
terms of their length or complexity . 
 

• Operational level: at the operational planning level, decision making concerns very short-term 
decisions ranging from a few hours to a couple of weeks. The most detailed and precise 
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instructions for execution of managerial tasks are specified at this level. Control and 
planning for required materials and short-term transportation policies are examples of 
decision-making at the operational level.  

Figure 15 summarizes different decisions corresponding to each level of management of the 
projects subject to material procurement issues. In terms of the hierarchical levels, decision- making 
for the lower levels is impacted by the decisions made in the upper levels. On the other hand, in 
the two upper vertical levels a mutual influence exists between the decisions made regarding 
management of the projects and management for procurement of the resources.  

Typically, at the strategic level, decisions on selection of the suppliers and design of the supply 
chain network mutually depend on the projects that have been selected. That is to say, the design 
of the supply chain for procuring the materials is inevitably associated with the selection of the 
projects and vice versa.   

A similar concept is envisioned for making decisions at the tactical level of planning. At this level, 
decisions regarding management of the multiple projects have been influenced by their scheduling. 
Conversely, scheduling for the projects has been incorporated with planning of the supply chain 
network, wherein the design of the supply network by selection of the suppliers results from 
decision making at the strategic level.  The planning issues discussed in Section 1.3 involve the 
tactical level of decision making for management of the projects, integrated with material 
procurement issues. Depending on the size of the projects (number of activities and number of 
resources), the execution of thermal renovation projects will last for different periods of time. A 
small size project encompassing a single building could be performed at a horizon of less than one 
month while a project including five buildings may last over six months.     

Subsequently, operational decisions in such systems deal with planning of the shop-floor for the 
manufacturing centers of the supply chain network and execution and control of the activities in 
the project worksites.  

 

Figure 15- Levels of decision-making in planning for projects integrated with a supply chain 
representing the positioning of the study throughout the levels.  
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1.5  Chapter conclusion and discussion  

In this chapter, the overall context of the research relating to the first question of the study (Q.1) 
is described. In this regard, three contextual parts of planning for the projects including the 
structuring, scheduling of the resources and scheduling of the activities have been presented. By 
addressing the elements of these three parts, the primary perimeter of the work has been 
determined. Furthermore, the framework of a model has been developed by evaluation of 
requirements for planning of so-called pull-type project scheduling. The proposal for the modeling 
framework is introduced on the basis of simultaneous planning of the projects and the supply chain 
network which procures the resources for the project worksites. In line with current developments 
in green issues, the model has been designed to incorporate the collection and recycling of waste 
generated at the project worksites.  

The CRIBA project has been introduced and its scope and objectives have been described.  The 
last part of the chapter is dedicated to positioning the research work within the CRIBA project. 
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2.1 Chapter introduction 

Having presented the context and problematic of the work in the Chapter 1, the current chapter 
reviews the literature in the field of project scheduling. The objective of the chapter is to (1) 
understand the specifications of the different project scheduling models, (2) review the complexity issues 
in optimization of the constrained project scheduling problems and (3) study the methodologies that 
are used for solving the constrained project scheduling problems. To this end, the chapter starts with 
a brief introduction to the primary research conducted on project scheduling and describes the 
research objectives related to these studies. It then describes the constrained project scheduling 
problems in Section 2.3. The models in this area are classified into two main classes: resource 
constrained project scheduling problems and time constrained problems. Sections 2.3.1 and 2.3.2 
review these problems and outline the mathematical representation of the chosen models. 
Complexity issues for optimizing the constrained project scheduling problems and different criteria 
for scheduling single and multiple projects are reviewed in Sections 2.4 and 2.5. Thereafter, Section 
2.7  and Section 2.8  describe the solving methodologies that are exclusively developed to tackle, 
respectively, resource constrained and time constrained models. Although these methods are 
problem-dependent, they provide building blocks for the improved methods outlined in Section 
2.8.  

 

2.2 Preliminary studies on project scheduling: unconstrained problems 

Early studies on scheduling for projects consisted in planning for so-called unconstrained project 
scheduling problems. The motivation of these studies was simply to determine the start date for 
activities of the projects solely subject to precedence relations, wherein the required resources for 
performing the projects were fully on hand in an unlimited quantity. Although this case is not very 
practical and not adapted to real-world situations due to restricted availability of resources, project 
planning under unconstrained resources has been studied widely for more than thirty years.  Since 
its development by DuPont Corporation during the 1950’s, the Critical Path Method (CPM) has 
been used as a tool for dealing with unconstrained project scheduling problems throughout the 
works of (Ahuja 1976) (Wiest and Levy 1977) (Halpin and Woodhead 1984) (Antill and Woodhead 
1982). 

 

2.2.1 Critical Path Method (CPM) 

The main objective of this method is to define “the shortest possible completion time” for the 
project whilst not violating “the precedence constraints” imposed by the project network. The 
application of the algorithm is dedicated to cases where the activities possess a deterministic 
processing time omitting minimum/maximum time lags, finish-to-start acyclic precedence relations 
and with a single mode of execution. Without loss of generality, two dummy activities, which 
correspond to the beginning and ending activities of the project with zero processing time and zero 
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requirements for the resources, are added to the activity list of the project.  In order to deal with 
the precedence constraints in the representative network, activities are supposed to be numerated 
by use of a topological ordering that determines if activity i is the predecessor of activity j, then i < 

j. In more complex projects with complicated activity relations, the numerating procedure provided 
by (Shtub et al., 1994) includes guidelines for labeling the activities. Using the critical path method, 

the earliest start and finish time (respectively denoted by ESj and EFj) for all the activities are 

defined within a forward pass. Having supposed ES1= EF1= 0 and denoted dj as the processing 

time of activity j, then: 

ESj= max {EFi| i belongs to the predecessors of j}  for j=2, …, n    2-1  

EFj= ESj +dj      for j=2, …, n    2-2 

Subsequently, the latest starting and finishing time are computed for all the activities by a backward 

pass beginning with ESn= EFn 

EFj= min {LSh| h belongs to the successors of j}  for j=n-1,…,1    2-3 

LSj= LFj- dj       for j=n-1,…,1    2-4 

The calculation of these values in the CPM leads the managers to determining a sequence of 
activities which is called the critical path. The critical path is an important concept in planning and 
management of the project due to its impact on the entire project. Indeed, if the activities which 
lie on the critical path are delayed, the planned completion time for the project will be delayed as a 
result. In CPM, the term “float” is used to determine a flexible spare time existing within the 
activities. Two major types of float are introduced: total float and free float. The total float is the 
spare time which is on hand when all preceding activities ensue at the earliest possible time and all 
succeeding activities occur at the latest possible time. Free float is time available when all preceding 
activities again occur at the earliest possible time, but where the succeeding activities also take place 
at the earliest possible time.  

Besides calculating the completion time of the project by applying the forward-backward 
procedure, a linear programming model is formulated with the same intention (Elmaghraby and 

Kamburowski, 1992) (Carruthers and Battersby, 1966). By denoting Sj and Predj respectively as the 

starting time of job j and the predecessors of activity j, the mathematical formulation of the 
problem is presented as follows:  

Minimize Z = Sn          2-5 

s.t. 

Si+ di ≤ Sj      for j=2, …, n and all i ∈ Predj  2-6 

S1= 0             2-7 
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In this formulation, the objective function (equation 2-5) minimizes the total completion time of 
the project. Constraint 2-6 satisfies the precedence relations and equation 2-7 sets the start of the 

project to the beginning of the planning horizon. It is worth noting that the values of Sj may not 

exactly correspond to the earliest starting times calculated by the forward-backward pass. 

Therefore, in order to get the same values, a penalty term (ε.∑ Sj
n
j=2  ) needs to be added into the 

objective function. 

Because it is simple and efficient, the forward-backward pass has been extensively used for 
calculation of the earliest and latest start times as well as for critical path analysis. The optimization 
formulation can be useful when the number of the constraints increases by growth in the number 
of activities in large size projects. Furthermore, the method is well suited to project scheduling 
problems with time lags and more generalized activity networks, i.e. either acyclic or cyclic 
networks. Several extensions of CPM have been introduced in the literature. (Zhan, 1992) addresses 
a critical path method with non-working days. (Chen et al., 1997) deals with problems where the 
activities are supposed to be executed through predefined time windows. (Chen et al., 2015)  
develops a new algorithm which combines a heuristic based on the differential evaluation algorithm 
and the critical-path method to enhance the CPM algorithm in exploring and exploiting the global 
optimal solution more efficiently.  

Although different uses of CPM have emerged in project planning, the method suffers from 
drawbacks owing to unsatisfactory responses in the cases of scheduling for projects with limited 
availability of resources, budget, etc. The requirement to resolve this issue was behind the 
introduction of so-called “Constrained project scheduling” and their solving procedures. 

 

2.3 Constrained project scheduling  

Project scheduling problems with restricting aspects clearly represent “more realistic cases” and 
have thus drawn the attention of many researchers and managers. In contrast to the un-constrained 
project scheduling models, the constrained approach assumes that the projects are bounded in 
terms of some driving factors, which would affect the allocation of resources and, consequently, 
project schedules. These restricting factors can be investigated from two angles, involving time and 
resource aspects. Depending on the factors involved, two major kinds of the problem can be 
envisaged and discussed. They include so-called “Resource Constrained Project Scheduling 
Problems” and “Time Constrained Problems”. Sections 2.3.1  and 2.3.2 provide details about both 
of these models and cite their corresponding literature.  

  

2.3.1 Resource Constrained Project Scheduling Problem (RCPSP) 

Since the early 1970s, a growing interest has been seen in modeling and scheduling of projects with 
limited availability of resources in multiple areas and the associated RCPSP problem has drawn the 
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attention of numerous researchers and managers. The basic RCPSP concept is described as a 
problem of scheduling a project with a given set of activities which are inter-related by finish-to-
start precedence relations. No pre-emption of activities is allowed in the standard form of the 
problem, which means that once an activity starts being performed, it is executed consecutively 
until fully accomplished. The trigger of each activity is subject to the limited availability of the 
resources required as well as the precedence constraints between the predecessor and successor 
activities. In its basic form, a set of renewable resources is considered to be used for processing the 

activities. In every time period, resource availability is a constant number, br denoting the available 
amount of resource r. Over a time period, the total demand for the ongoing activities for a resource 

r, ∑  vrj  
j , must not exceed the total available amount. At any time instant t, if the set of candidate 

activities that qualify to be triggered requires more than br units for any r, then some activities will 
have to be postponed in order to satisfy the resource constraints. 

The main goal of the RCPSP is to determine a non-pre-emptive schedule of activities so that the 
precedence relationship between the activities and the resource constraints is not violated and the 
duration for accomplishing the project is minimized. Figure 16 depicts a typical Activity-On-Node 
(AON) network of a project. According to the characteristics of the model and its distinctive 
aspects, a possible feasible solution for scheduling the events and an optimal solution of the 
problem is presented in Figure 17.  

 

Figure 16- AON precedence presentation for a typical example.  

 

Figure 17- Feasible and optimal solutions for a typical RCPSP. 

 

2.3.1.1  Mathematical representation 

One of the pioneer mathematical representations of RCPSP was formulated by (Pritsker et al., 

1969). In the model, the solutions are determined by 0-1 variables Xjt, where, Xjt  holds the value 

of 1 if activity j is finished at the end of period t, and 0 otherwise. 
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Minimize Z = ∑ t Xnt 
 LFn 
 t=EFn          2-8 

s.t. ∑  Xjt 
LFj 
t=EFj 

=1       for j ∈ J   2-9 

∑  ( t-dj) Xjt 
LFj 
t=EFj 

- ∑  Xit 
LFi 
t=EFi  ≥  0     for j ∈J, i ∈ Predj   2-10 

∑  vr    ∈E t   ∑  Xjq 
min ( t+dj-1, LFj) 
q=max(t, EFj) 

 ≤  br    for r ∈ R, t ∈ T  2-11 

Xjt ∈  {0,1}        for j ∈ J, t ∈ [EFj,  LFj] 2-12 

The objective function in the model (equation 2-8) seeks to minimize the completion time of the 
project. Constraint 2-9 guarantees that exactly one finishing time is assigned to each activity. 
Constraint 2-10 ensures that no job can be started before all its predecessors have been 
accomplished. Therefore, it guarantees the satisfaction of the precedence relationship between the 
activities.  Constraint 2-11 indicates that the resource constraints should be guaranteed over each 
of the time periods for all types of resources. In this context, the total resource demand of the 

activities processed in period t, j ∈ E t , must be determined. An activity j is executed in a period, 

if it is accomplished at the end of the period t, …, t+dj-1. However, the finishing time of the activity 

must hold a value within the time interval [EFj,  LFj].  
The formulation 2-8-2-12 necessitates the definition of up to J.T binary variables and includes up 
to J+|A|+R.T constraints, where A is the set of arcs. In the other words, because it includes at 
most n.(n-1)/2 arcs, the model possesses O (J²+R.T) constraints. Relying on the notation given by 

(Brucker et al., 1999), the basic model of the RCPSP is presented in the form of PSm|prec|Cmax. 
With this notation, the first field is defined to distinguish the resource environment. “PSm” 
indicates m type of renewable resources limited in their availability quantity. The second field 
determines the activity characteristics. In this context, “prec” indicates that precedence constraints 

exist between the activities. The last field relates to the objective function. The notation “Cmax ”is 
used to present the objective for minimizing the makespan of the project. 

 

2.3.1.2 Instances of the problem 

In the literature, the modeling concepts for resource constrained project scheduling problems have 
been extensively studied. This could be because of the large body of real-life cases which are 
motivated by the same intentions as those of RCPSPs. Some of these applications include the 
following examples: 
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2.3.1.2.1 Scheduling for construction projects 

As construction projects involve numerous activities with various types of resources in limited 
available quantities, managing and planning such projects is made more complex when the number 
of the activities increases and more resources are required. Understandably, therefore, the 
application of resource constrained project scheduling methods has been of considerable interest 
to construction managers and researchers.   In scheduling Architecture, Engineering and 
Construction (AEC) projects, the use of RCPSP models adapted to different running conditions 
allows managers to track projects with objectives on minimizing the time and cost or maximizing 
performance quality. Examples of research in this context can be seen in (El-Ray et al., 2005) 
(Senouci and Al-Derham, 2008) (Long and Ohsato, 2009) (Faghihi et al., 2014) (El-Abbasy et al., 
2016). 

The research in (El-Ray et al., 2005) is designed to transform the traditional two-dimensional time-
cost trade-off analysis to an advanced three-dimensional time-cost-quality trade-off analysis. A 
multiple-objective genetic algorithm (the principals of the genetic algorithm are described in 
Section 2.9.3.1) was developed to provide the capability of quantifying and considering quality in 
construction optimization. (Senouci and Al-Derham, 2008) develop a robust multi objective 
optimization model that allows construction planners to generate and evaluate optimal or sub-
optimal construction scheduling plans in which both the project time and cost are minimized. The 
application of an algorithm based on the genetic algorithm is used in order to determine the pareto 
solutions of the model. (Long and Ohsato, 2009) present a method for simultaneously optimizing 
the project completion time and cost. The solution method is based on the genetic algorithm 
approach in that it considers different attributes of activities (such as activities which allow or do 
not allow for interruptions), and different relationships between direct costs and durations for 
activities (such as linear, nonlinear, continuous, or discrete relationships), to design a procedure to 
provide a satisfactory schedule. In (Faghihi et al., 2014), the authors demonstrate a novel approach 
of retrieving enough information from the buildings in order to determine the construction 
sequencing for the project elements. (El-Abbasy et al., 2016) aims to help contractors define 
schedules that are the result of trade-offs between different projects objectives, namely: duration 
of multiple projects, total cost, financing cost, maximum required credit, profit, resource 
fluctuations and peak demand. The principles of the genetic algorithm are used in order to build 
up the resolution procedure.  

 

2.3.1.2.2 Production and operation scheduling problems 

Another application of resources constrained project scheduling problems is dedicated to the 
scheduling of operations viewed in the context of the Job Shop Scheduling Problems (JSSP). The 
problem is described by a set of activities which is to be performed on a set of machines with 
varying processing times. Each job possesses a technological sequence of machines to be operated. 
The data contains the routing of each activity through each machine and the processing time of 
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operating the activities on the machines. The main aim of the problem is to define a schedule which 
minimizes the total makespan (Baker, 1997).  

Additionally, the application of the method can be found in the scheduling of manufacturing 
processes in industries with sensitive operations. Scheduling for multi-stage batch operations, 
wherein an interruption within a process can damage the value of previous operations, has 
warranted great attention from managers and academicians.  Referring to (Dixit and Yadav, 2010), 
examples of this type of process can be viewed in manufacturing of semiconductors where 
production of a wafer requires a set of predefined operations in which a failure in realizing the 
operation may lead to a calamity. Examples of the research works on this topic are (Mönch et al., 
2011) and (Yugma et al., 2012).  

  

2.3.1.3 Variant extensions 

Different extensions of the resource constrained project scheduling problems are reviewed in Sub-
sections 2.3.1.3.1 - 2.3.1.3.3. They involve multi-skill scheduling problems, time-lag problems and 
generalized resources. The outcome of the review within this section results in drawing the 
framework of the project scheduling model as well as showing opportunities for developing the 
mathematical model. 

 

2.3.1.3.1 Multi-skill scheduling problems 

In multi-skill project scheduling problems, the renewable resources of the project are “multi-
skilled”. This is often the case where the resources are mainly labor and human, for instance 
technicians who are performing maintenance activities. In these problems, each activity may require 
several skills. For each skill, the workload necessary for performing the activities is known a priori. 
Commonly, a resource has been contributed with at most one skill to one activity at every time. 
Every resource allotted to an activity during its processing time remains assigned until the activity 
has been accomplished.  Furthermore, the resources allocated to each activity stay together for the 
duration of the activity. The objective of the basic model is to find a solution that minimizes the 
makespan of the project subject to resource and precedence constraints. To the best of our 
knowledge, the research on this topic consists of only a small number of works and contributions 
in the literature. In the work of Fırat and Hurkens,  (Fırat and Hurkens, 2011), the authors present 
a mixed integer mathematical model that is proposed to assign the human resources to  activities 
with multi-level skill requirements. (Heimerl and Kolisch, 2009) consider a multi-skill project 
scheduling model where the objective is to minimize labor costs.  In this work, the authors present 
a mixed integer linear programming model with a tight LP-bound. The performance of the model 
(gap between the optimal solution and computational results) has been assessed through the 
application of model to several IT projects. The work demonstrates the benefit of the mixed integer 
linear programming model compared to simple heuristics models in practice.  
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2.3.1.3.2 Time lag problems 

In the classic model of resource constrained project scheduling problems, an activity has to be 
finished before any of its successors starts. This assumption can be extended by a minimal time 

lag, lagij
FS. The lags in the scheduling provide the possibility to determine either that the predecessor 

and successor activities can be overlapped, or that spare time might be spent between the 
predecessor and successor activity. The employment of minimal time lag are seen in the works of 
(Demeulemeester and Herroelen, 1996) (Chassiakos and Sakellaropoulos, 2005) and (Vanhoucke, 
2006). Similar to the minimal time lags, maximal time lags between the completion time of activity 
i and start time of its successor activity j are introduced to follow the intention in which  the activity 
j may not start later than a given period after the completion time of activity i.  It is worth noting 
that that maximal time lag problem may lead to infeasible models and/or cyclic project networks. 

 

2.3.1.3.3 Generalized resources 

Besides the renewable and non-renewable resources, other kinds of resources have been introduced 
and studied in the literature.  They can be termed as generalized resources. These resources are 
indeed extensions for the common type of renewable and non-renewable resources that are 
brought into study for particular interests.  For instance, synchronizing resources are introduced as 
the resources that can ensure a simultaneous start of a set of activities (Schwindt and Trautmann, 
2003). Doubly constrained resources are resources that can be either used as a renewable or non-
renewable resource from the view point of their depletion after usage. For further detailed 
information in this context and more extensions, we refer the readers to the following surveys: 
(Kolisch and Padman, 2001) and (Węglarz et al., 2011). 

 

2.3.2 Time Constrained Problems 

Taking the “time factor” into consideration, time constrained problems generally refer to 
scheduling problems in which a “strict” deadline is imposed for completion of the projects. In 
these problems, the imposed deadline is too tight to be met using the renewable resources that are 
initially provided. Therefore, the model assumes that the capacity of the renewable resources can 
be temporarily “extended” by renting supplementary quantities. In general, the time-constrained 
models can be classified into three types:  Resource Leveling Problems (RLP), Resource Investment 
Problems (RIP) and Time Constrained Project Scheduling Problems (TCPSP). Having supposed 
the possibility of adding the supplementary resources as a common assumption for the aforesaid 
models, the difference between the models emerges from the objectives they seek to achieve.  
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2.3.2.1 Resource Leveling Problem (RLP) 

Resource Leveling Problems aim to determine a schedule that minimizes the fluctuations in 
patterns of resource usage (Antil and Woodhead, 1982) (Harris, 1990). The problem follows the 
hypothesis that more steady usage leads to significantly lower costs. In order to present the 
objective function mathematically, the demand for each of the renewable resources must be 
determined. Taking the formulation of the RCPSP given in section 2.3.1 into account, the 

constraint 2-11 has to be modified and transformed into equation 2-13. In the formulation, brt is 
instead a variable of a fixed parameter:  ∑  vrj  

j ∈E(t)  ∑  Xjq 
 t+dj-1 
q=t  =  brt   for r ∈ R, t ∈ T    2-13

   

Constraint 2-13 guarantees that the resources demanded for executing the activities will be on hand 
in the required quantity. In addition, the objective function of the model has also to be modified. 

In this context, formulation 2-14 presents the objective function of the model. Herein, wr denotes 
a weight connected with resource type r. 

Minimize z= ∑  wr  R
r=1  ∑  brt² T 

t=1         2-14 

 

2.3.2.2 Resource Investment Problem (RIP) 

The resource-investment problem can be obtained from the resource leveling problems. It 
addresses the scheduling problems which are given with a deadline. The problem makes a decision 
about the quantity of resources that need to be provided in order to carry out the project. 

Considering cr as the expected cost for supplying a single unit of renewable resource type r, the 
objective function of the RLPs can be transformed into equation 2-15. In this context, it should 
be noted that the optimization model is subject to constraints 2-9 to 2-12.  

Minimize z= ∑  crbr 
R 
r=1           2-15 

 

2.3.2.3 Time Constrained Project Scheduling Problem (TCPSP) 

TCPSP attempts to define a schedule in such a way that the project is not only completed on time 
but also that the total cost of adding the supplementary renewable resources is minimized (Dekro 
and Herbert, 1989) (Guldemond et al., 2008) (Hurink, J.L., et al., 2011). Relying on the formulation 
presented in Section 2.3.1 for the RCPSP, the objective function and constraint 2-11 have to be 
modified in order to present the TCPSP mathematically. In this context, equation 2-16 attempts to 

minimize the total cost of adding the resources wherein Addrt presents the additional units of 
resource type r provided in period t. Subsequently, constraint 2-17 states that the total demand for 
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the resources should not exceed the initial availability of the resources plus the quantity that may 
be added. 

Minimize z= ∑  cr  R
r=1  ∑  Addrt T 

t=1          2-16 ∑  vrj  
j ∈E(t)  ∑  Xjq 

 t+dj-1 
q=t  ≤  br + Addrt        2-17 

 

2.4 Complexity issues in constrained project-scheduling problems 

In any discussion of the complexity of the optimization problems, computation time and storage 
space required for solving the problems are major concerns. The NP-hard class includes problems 
for which no polynomial time algorithm has been deployed in order to define “an optimal 
solution”. In this context, the problems wherein at least a “feasible” solution can be found in 
polynomial time are termed as NP-hard in the ordinary/simple sense. In contrast to these “simple” 
NP-hard problems, NP-hard in the strong sense of the term defines problems for which no feasible 
solution can be determined in a polynomial time (Ausiello et al., 2012).  

Resource constrained project scheduling problems can be reduced to a known job shop scheduling 
problem (JSSP). Since the JSSP is NP-hard, the RCPSP and consequently the RCMPSP as well as 
the  GRCMPSP are NP-hard too, (Blazewicz et al., 1983) and (Elmaghraby and Kamburowski, 
1992).  According to (Neumann et al., 2002), the TCPSP problems are considered to be NP-hard 
as well. Nevertheless, these problems are not NP-hard in the strong sense of the term, since a 
feasible solution can be obtained by computing the topological order of the activities in polynomial 
time. For RCPSPs, according to (Herroelen, 2005), once projects become larger, i.e. involving more 
than 60 activities  from Kolisch and Sprecher’s PSPLIB, presented in (Kolisch and Sprecher, 1997), 
the branch-and-bound algorithms become computationally intractable. 

 

2.5  Optimization criteria in project scheduling 

Considering the state of the art in project scheduling, the optimization criteria in scheduling for 
projects fall into six main groups, discussed in (Kolisch and Padman, 2001) (Hartmann and 
Briskorn, 2010) and (Gholizadeh-Tayyar et al., 2014):  

• Time-based objectives, wherein objectives such as completion time, earliness, tardiness and 
lateness are supposed to be minimized (Essafi et al., 2008) (Lamothe et al., 2012) 
(Arabameri and Salmasi, 2013) (Baker, 2014). 
 

• Quality-based objectives, which attempt to maximize the quality of the project.  The primary 
optimization model in this regard has been presented in (Icmeli-Tukel and Rom, 1997). 
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• Cost-based objectives, in which the objective function minimizes the total cost of projects, 
including execution costs, materials costs, inventory holding costs or costs related to the 
tardiness or earliness of the project. Some recent studies in this area are reviewed below: 
(Ranjbar et al., 2012) represents an optimal solution procedure for minimizing total 
weighted tardiness penalty costs in resource constrained project scheduling problems. In 
(Rodrigues and Yamashita, 2010) the authors consider resource availability cost in their 
problem and they propose an exact algorithm to report the results. Their algorithm includes 
a hybrid method where an initial feasible solution is found heuristically and then branching 
concepts are applied to find the results. (Dodin and Elimam, 2001) pursues RCPSP with 
minimization of material costs, inventory costs and activity-crashing costs. In the context 
of the work, activity-crashing costs are the costs of shortening the duration of an activity 
by increasing the required materials. Besides, the authors consider a bonus for early project 
completion time or a penalty coefficient for delay in project completion.  
 

• Net present value objectives are used when certain cash flows come into the project according 
to predefined milestones. Net present value maximization reflects the time value of money 
in project scheduling problems. Some models and solution methods for these problems are 
reviewed by (Demeulemeester and Herroelen, 2002) (“Wiley,” 2008.) and (Wiesemann et 
al., 2010). 
 

• Number of late jobs, wherein the objective is to minimize the total numbers of the late jobs, 
(Dauzère-Pérès, 1995) and (Sevaux and Dauzère-Pérès, 2003). 
 

•  Multiple objectives: in these problems multiple objectives are chosen for optimization, where 
they are in conflict with the unitary dimensions. Examples of these studies can be seen in 
(Al-Fawzan and Haouari, 2005) (Abbasi et al., 2006) (Tavana et al., 2014) (Shahsavar et al., 
2015) and (Tabrizi and Ghaderi, 2016). 

 

2.6 Single project scheduling vs. multi project scheduling  

The resource constrained multi project scheduling problem (RCMPSP) is an extension of the 
RCPSP and consists of concurrent scheduling of two or more projects with a common pool of 
renewable resources, while attempting to satisfy some performance criteria. (Payne, 1995) states 
that 90 % of projects are carried out in a multi-project environment. (Lova and Tormos, 2001) 
made a survey in the construction, textile, IT and public administration sectors about the executive 
environment of the projects. The survey showed that 84 % of correspondents said they work in a 
multiple projects environment. The same survey results reveal that project scheduling software 
packages are not a practical tool for planning multiple projects and that they should be adapted to 
this need.  
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In the formulation of the RCMPSP presented by (Lova and Tormos, 2001), a project portfolio 
encompasses h=1,…, H projects that are targeted for scheduling with a limited portfolio of 

renewable resources. Each project is composed of g=1,…, Hg activities.  The activities can only be 

started once all the predecessors are entirely accomplished. Each activity j of project h requires vhjr 

units of resource type r at every time point of its non-pre-emptive duration dhj. The availability of 

each resource r at each time point is br. The purpose of the model is to schedule the activities in 
the projects so as to satisfying the resource and precedence constraints in such a way that the 

performance measurement related to a time criterion is minimized. In the formulation Xhjt  is 1 if 

an activity j of project h starts at time t and 0 otherwise. 

Minimize f (time)          2-18 

S.T. ∑ Xhjt=1 
t=1       for j ∈J, h ∈H       2-19 ∑ t(Xhqt-Xhjt)   
t=1 ≥ dhj    h ∈H , (j,q) ∈ Predh     2-20 ∑ ∑   

 Jh
j=1  ∑ vrj Xhjt' 

t 
t'=t-dhj+1

H
h=1 ≤  br    for r ∈ R , t ∈T    2-21 

Xhjt ∈ {0,1}       for j ∈ J,h ∈H, t ∈T    2-22 

 

The objective function 2-18 minimizes the “mean project delay” that is calculated by ∑    H
h=1  ∑ (t t 

t Xh,Jh+1,t  - CPh )/H, where CPh is the resource-unconstrained critical path length of the 

project h. Constraint 2-19 and 2-20 guarantee the precedence relations between the activities in the 
projects and assure that the activities will be executed in a non-pre-emptive way. Constraint 2-21 
sets the resource constraints. Finally, the type of the variable is represented by constraint 2-22.   

Classic optimization methods have been used in the literature to solve multiple projects scheduling 
problems. Nevertheless, an increase in the number of activities as well as the number of projects, 
resource types or processing modes of the activities in multi-mode multi-project scheduling 
problems will result in the problem becoming more “complex” (Tseng 2004). To avoid 
intractability in solving large cases by traditional approaches, several heuristics and metaheuristics 
are used. (Kumanan et al., 2006)  provides a heuristic-based procedure for scheduling multi-
projects. The performance of the generated schedules is measured against project completion time. 

(Lova and Tormos, 2001) analyze the use of priority rules (seen in Section 2.7.2.1) to solve multi 
project resource constrained project scheduling problems. The authors study the effect of the two 
components of priority rule-based heuristics (schedule generation and priority rule) by two 
performance measurements. The paper concludes that the parallel generation scheme gives better 
performance in multiple projects. Furthermore, it states that the use of parallel priority rules (e.g. 



Chapter 2. Scheduling for projects: Basics, models and solution methods 
 

47 
 

 

 

MINSLK) leads to good results.  Several studies have used artificial intelligent techniques, such as 
evolutionary algorithms, to generate schedules and resource-allocation results. (Kim et al., 2005) 
proposes a combined genetic algorithm (described in Section 2.9.3.1) to optimize the schedule of 
multiple projects in order to minimize the total project time and the total tardiness penalty on 
completion of the projects. (Singh, 2014) develops a hybrid algorithm to integrate the project 
priorities with the project schedule. The objective of the model is to minimize the project makespan 
and penalty cost when some projects hold higher priority. The schedule is generated by use of a 
hybrid algorithm based on priority rules and the Analytic Hierarchy Process (AHP) approach. The 
proposed method was validated by a case study under various scenarios. In (Yassine et al., 2007) a 
genetic algorithm is hybridized with a local search strategy to minimize the overall duration or 
makespan of the resource constrained multi project scheduling problem. (Geiger, 2017) presents a 
local search approach for the solution of a multi mode, resource constrained multi project 
scheduling problem. Their procedure was tested on the instances of the MISTA 2013 Challenge 
and MMLIB-datasets. The results show the approach described in the article is ranked second. 

 

2.7  Problem-dependent resolution approaches: resource constrained 

problems 

To summarize the literature, we classify solving methodologies to tackle the constrained project 
scheduling problems under two headings: i. Problem-dependent and ii. Problem-independent approaches. 
Problem-dependent approaches are procedures that attempt to take the full advantage of the 
particularities and specifications of the model when constructing feasible or optimal solutions. 
Algorithms used in these methods are completely applicable to a certain given type of problem. 
Lower-bound approaches and heuristics fall into this category. On the other hand, problem-independent 
methods imply procedures that could be used for various problems, regardless of the problem 
category and its specifications.  

Sub-sections in section 2.7 discusses the different problem-dependent approaches used for 
resource-constrained project scheduling problems. The lower bound approaches are classified into 
two main groups, including constructive lower bounds and destructive lower bounds. The constructive lower 
bounds are also grouped in four headings: the critical path bound, the capacity path bound, bin packing 

bounds and constraint relaxation-based bounds. Heuristics methods, in this context, includ priority rule-

based approaches and adaptative heuristics.  

The problem-dependent resolution methods for time-constrained problems are discussed in 
section 2.8 under two main titles, including lower bound approaches and heuristics.  Besides, section 2.9 
outlines the problem-independent resolution approaches. Exact procedures and metaheuristics are 
examples of these methods. 
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2.7.1 Lower bound approaches 

In order theory, the lower bound of a subset S of some partially ordered set (K, ≤) is an element 
of K which is less than or equal to every element of S. In scheduling research, a lower bound is 
commonly known as a value which is less than or equal to an optimal value. The purpose behind 
developing these approaches is threefold:  i. the lower bounds provide values for problems in which 
the optimal value is absent. ii. the computed value for the lower bound presents a measurement 
for judging the performance of algorithms producing semi-optimal/near-optimal solutions. In 
keeping with this purpose, if the gap between the lower bound and the computed value is “tight”, 
the calculation effort of the algorithm can be justified. And, iii. the lower bounds can be used to 
precede a solution approach, e.g. the Branch and Bound algorithm.  

Methods for computing the lower bounds in resource constrained project scheduling problems can 
generally fall under two classes: Constructive methods and Destructive methods. Figure 18 
summarizes the functionality charter of these approaches. The main concept of each of the 
methods is outlined in the following: 

 

 

Figure 18- Classification of the lower bounds for solving RCPSPs by their working mechanism. 

 

2.7.1.1  Constructive lower bounds 

Constructive lower bounds are calculated by relaxing some driving assumptions of the primary 
model. This relaxation significantly reduces the complexity of the model and consequently the 
resolution effort. Nonetheless, for some cases it may not result in bounds that are “tight” enough.  
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2.7.1.1.1 The critical path bound 

The critical path bound relaxes the capacity restrictions. The bound is obtained by computing the 
critical path. The Forward-backward path method (described in Section 2.2.1) is applied on the 
project network to compute the value of the bound. The algorithm completes in O (n²) time.  

 

2.7.1.1.2 The capacity bound 

The algorithm discards the availability of all resources except one. The bound is calculated in 
O(R.n) time. Regarding formula 2-23, the total requirement of the resource is divided by its 
availability and then rounded up to the next large integer value. 

LBCapacity = {⌈ (∑  vrj.dj )/br
n 
j=1 ⌉ |r=1,…,R}        2-23 

 

2.7.1.1.3 Bin packing bounds 

In this algorithm, the precedence constraints are omitted, as are all capacity constraints but one, 
for resource type r. For every resource at a given time, the activities are sorted according to a non-

increasing order of the resource requirement, vrj. Two sorts of set denoting Q1 r  and Q2 are 

established. The set Q1(r) contains the activities whose requirement for the resources exceeds one 

half of the capacity, ( vrj > br/2 ). The value of SL1, denoting the length of the resulting schedule, 

can be taken as an initial lower bound for the project. This bound may be improved by the second 

set Q2(r). The set Q2(r) contains all the activities with vrj ∈ ( br/3 , br /2 ].  Since over every time 

point, the availability of the resources is constrained by a constant value, at most one activity from 

Q2(r) can be executed in parallel with each activity i ∈ Q1(r). In order to determine which activities 

can be performed simultaneously, the activities from Q2(r) are examined according to an inverse 

sorting order. All activities are scheduled as early as possible, respecting the resource constraints. 

With g1 and g2 referring to the latest finishing time of the two latest activities in the schedules, the 

lower bound can be computed as shown in formula 2-24. 

LBBin Packing =  max {SL1,   ⌈(g1+ g2)/2 ⌉}        2-24 

Application of this algorithm can be seen in (Morihara et al., 1983) and (Van Houdenhoven et al., 
2007). 

 

 

 



Chapter 2. Scheduling for projects: Basics, models and solution methods 
 

50 
 

 

 

2.7.1.1.4 Constraint relaxation-based bounds 

As presented in Section 2.3.1.1, the binary variables Xjt, defining whether an activity j finished at 

time t, are generally used to formulate resource constrained project scheduling problems. By 
relaxing the restrictions in 0-1 programming of the problems, linear programming (LP) relaxation 
has been shown to present a new approach for computing the lower bounds. One of the earlier 
studies, (Christofides et al., 1987) modifies the variable types from binary to bounded positive real 

variables. For this purpose, the constraints Xjt ∈ {0,1} are replaced by Xjt ≥ 0   and Xjt ≤ 1  

constraints. In addition, the authors introduce cutting planes in order to strengthen the bounding 
procedure. (Carlier and Néron, 2000) proposes a lower bound based on linear programming 
methods. Relying on a new linear programming formulation, the authors demonstrate how 
resource requirements can be satisfied simultaneously for a given resource capacity. 

Besides linear programming relaxation, Lagrangian Relaxation (LR) is also used to produce the 
lower bounds. With LR, a set of constraints are removed from the original model. However, they 
are included in the objective function, making the resulting model easier to solve. To achieve this, 
the weighted slacks of the removed constraints are added to the objective function. The challenge 
in applying the algorithm is to determine a set of the accorded weights, which are also known as 
the Lagrangian multipliers. (Geoffrion, 1974) (Christofides et al., 1987) and (Domschke, 1997) 
present the application of the algorithm in defining the lower bounds for RCPSPs. (Möhring et al., 
2003) examines the procedure proposed by (Christofides et al., 1987) and improves it by integration 
of a minimum cut problem. (Kimms, 2001)  proposes resource constrained project scheduling 
through maximizing the net present value of capital (cash). The paper contributes to tight upper 
bounds on the basis of a Lagrangian relaxation of the resource constraints. The author uses this 
approach as a basis for a heuristic and shows that the heuristic as well as the cash flow weight 
heuristic proposed by (Baroum and Patterson, 1996) results in tight bounds for the optimum value.  

 

2.7.1.2 Destructive lower bounds 

Destructive lower bounds, introduced by (Klein and Scholl, 1999), bound a resource constrained 
project scheduling model by determining a maximal objective function, value D. Subsequently, the 
destructive procedure attempts to contradict the feasibility of the reduced model. In case of 
success, the value of D (as well as D+1) can be presented as the lower bound. (Brucker and Knust, 
2003) defines a destructive lower bound for the multi-mode resource constrained project 
scheduling problem with minimal and maximal time lags. Two methods are used for calculation of 
the lower bound. The first uses constraint propagation techniques, while the second is based on a 
linear programming formulation which is solved by a column generation procedure.  

(Akker et al., 2006) presents a solution framework to find a feasible schedule that minimizes the 
objective function of minimax type on a set of parallel, identical machines, under the constraints 
of release dates, deadlines, and/or generalized precedence constraints.  The authors develop a 
bounding procedure by applying the column-generation approach to linear-programming 
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relaxation. In the following work, (Akker et al., 2007), the authors adapt the procedure to the 
problem of minimizing maximum lateness on a set of identical, parallel machines. (Haouari et al., 
2012) presents new and effective lower bounds for the RCPSPs. The bounds are calculated using 
the formulations found in concepts of energetic reasoning. Computational evaluation of the 
formulation resulting from several enhanced new feasibility tests proves that the new formulation 
outperforms the classic energetic-reasoning- based lower bound. 

 

2.7.2 Heuristics 

Since “time” and “resource” constrained project scheduling models belong to the class of NP-hard 
problems, the complexity of the problems sets limitations on employing exacte solving procedures 
discussed in Section 2.9.1. The model instances can be solved by exact methods only for small 
projects with a limited number of activities, resources and/or processing modes. However, 
effective solutions obtained during a reasonable effort can be obtained by employing heuristic as 
well as meta-heuristics approaches. While reducing the computational effort, these methods are 
likely to result in optimal or near-optimal solutions. This part discusses various heuristics used for 
solving the RCPSPs. In general, heuristic-based approaches can fall into two categories: Priority 
rule based approaches and Adaptive heuristics. 

 

2.7.2.1 Priority rule based approaches 

Priority rule based heuristics are stepwise procedures, where a schedule is built up by selecting a 
subset of legible activities through the steps, assigning a start time until all the activities are 
scheduled. In this context, the activities are ranked using “priority rules”. Motives for using and 
improving these methods can be justified for the following reasons:  

• Heuristics are usually adapted to the problem. Using the problem specificities (such as 
precedence information on the activities or execution time windows for a scheduling 
problem), they are capable of providing a solution in a reasonable search time where the 
optimal solution is not available.   

• The output of a priority rule based heuristic can be used as a starting point for other 
solution approaches. 

• Heuristic methods are widely used by developers to provide software environments for 
project management and scheduling purposes (Klein, 1999).   

Priority rule based heuristics rely on two main concepts, the Scheduling Generation Scheme (SGS) 
and Priority Rules (PR):  

▪ The SGS determines a stepwise process to build up a feasible schedule of activities. It uses 
priority rules to rank activities for scheduling.  Two scheduling schemes are introduced in 
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the literature, the Serial Scheduling Generation Scheme (SSGS) and the Parallel Scheduling 
Generation Scheme (PSGS): 
 
The SSGS was first proposed by (Kelley, 1963). It is an activity-oriented approach which 
constructs the schedule in “exactly n” iterations, where n is the number of activities. Two 
disjoint activity lists are defined to arrange and schedule the activities: the list of activities 
already scheduled and the list of eligible activities for scheduling, members of which are those 
activities whose predecessors belong to the set of activities already scheduled. In each 
iteration of the algorithm, one single activity is chosen by a priority rule from the eligible 
list and then scheduled at the earliest feasible time point. Through every iteration, when an 
activity is chosen from the eligible list and scheduled, the residual availability of the 
resources is modified and the earliest start time for the activities from the eligible list is 
updated.   
 
On the other hand, the Parallel Scheduling Generation Scheme (PSGS) is a time-oriented 
scheme. The approach is proposed by (Kelley, 1963) and later developed by (Brooks, 1982).  
In this procedure, the schedule is built up in “at most n” iterations. In every iteration, a set 
of activities, which could be empty, is scheduled. A time point tn is associated with an 

iteration n. If   m ≤ n, then, tm ≤ tn. Three adjoin lists including eligible, complete and in-process 

are defined. Regarding the time point tn, the list of scheduled activities from the serial 
scheme is partitioned into two subsets: scheduled activities which are accomplished up to 
the time point make up the members of the complete list and those which are not 
accomplished are in the in-process list. The eligible list includes all the activities which are not 
scheduled and are available for scheduling without violating the precedence and resource 
constraints.  The schedule time within the iteration is the earliest finish time of the activities 
scheduled during all earlier stages. Within the procedure, the new schedule time is 
determined and activities with a finish time equal to the new schedule time are removed 
from the in-process set and added into the complete set. That may place a set of activities into 
the eligible set. Subsequently, one activity from the eligible set is selected by employing a 
priority rule and scheduled to start at the current schedule time taking into account the 
availability of the resources. Thereupon, this activity is deleted from the eligible list and 
added into the in-process list. The procedure continues until the eligible set becomes empty. 

▪ Priority rules sort a set of eligible activities in the scheduling process. To this end, a priority 
value (or an index) is calculated for every activity. Depending on the rule type, one activity 
with a lower or upper value is selected for scheduling. In case of equality, an additional rule 
can be applied to decide the order of scheduling. Every rule results in different schedules. 
Summarized by Table 1 from (Kurtulus and Davis, 1982), some of the best-known priority 
rules are the Shortest Processing Time (SPT), Latest Finish Time (LFT), Minimum Total 
Slack (MINSLK), Most Total Successor (MTS) and Greater Resource Demand (GRD). For 
multiple projects, some of the more successful heuristics introduced in the literature are 
the Shortest Activity from Shortest Project (SASP), Maximum Total Work Content 
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(MAXTWK), Maximum Total Work Content-earliest Latest Start Time (TWK-LST) and 
First Come First Serve (FCFS). 

Table 1- A set of well-known heuristics and their working mechanism. 

Heuristic Initialism/ 

Acronym 

Working mechanism 

Shortest 

Processing Time 

SPT Give preference to activities with smaller processing time. 

Latest Finish Time LFT Give preference to activities with smaller late finish time. 

Minimum Total 

Slack 

MINSLK Give preference to activities with smaller total slack. 

Most Total 

Successor 

MTS Give preference to activities which have more total 
successors. 

Greater Resource 

Demand 

GRD Give preference to activities with greatest resource demand. 

Shortest Activity 

from Shortest 

Project 

SASP Having determined the shortest project by use of CPM, give 
preference to shortest activity from the shortest project.  

Minimum Worst 

Case Slack 

MINWCS Min( LSj − M ax[ E(j,i)|(i, j) ∈ APt ]), where E(j,i) is the 

earliest time to schedule activity i if activity j is started at time 

t, and  APt is the set of all feasible pairs of eligible, un-started 
activities at time t. 

Maximum Total 

Work Content 

MAXTWK Give priority to activities with maximum total work content, 

Max(∑ ∑ djarjak
 
j ∈ ASa

K
k=1 + dja ∑ rjak

K
k=1  , with ASa: set of 

activities already scheduled in project a, dja: duration of 

activity j in project a, rjak demand of activity j of project a to 

resource k. 

Maximum Total 

Work Content- 

earliest Latest 

Start Time 

TWK-LST First prioritize projects by MAXTWK and then the activities 

within the project by M in(LSja), where LSja is latest start 

time activity j from project a.  

First Come First 

Serve 

FCFS M in(ESja), where ESja is the earliest start time of activity j 

from project a. 

 

In general, priority rule based algorithms have been categorized in the single-path method and 
multi-pass method.  

 

2.7.2.1.1 Single pass method 

The single pass method constructs only one single schedule on the basis of one single Scheduling 
Generation Scheme and Priority Rule. (Panwalkar and Iskander, 1977) presents a summary of over 
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100 priority rules. Their work provides a classification of the schemes and affords a list of the 
existing heuristics in the different research works. (Lova and Tormos, 2001) studies the effect of 
the schedule generation schemes (including both serial and parallel schemes) and priority rules 
(containing MINLFT, MINSLK, MAXTWK, SASP and FCFS) in scheduling for multi project and 
single project cases. The study concludes that the performance of the parallel schedule generation 
scheme is superior in cases of scheduling for multi project scheduling problems. (Lova et al., 2006) 
deal with a typical multi-mode resource constrained project scheduling model. Taking a well-known 
set of project instances into account, the performance of the priority rule based heuristics presented 
within the work are evaluated against the best ones published in the literature and the results are 
summarized for the different chosen test problems. (Browning and Yassine, 2010) addresses a 
resource constrained multi project scheduling problem with two lateness objectives, project 
lateness and portfolio lateness. The paper provides a comprehensive analysis of 20 priority rules 
on 12,320 test problems. From an individual project manager’s perspective, TWK-LST performs 
well under high network complexity, while SASP performs well under low complexity. From a 
portfolio manager’s Perspective, MINWCS performs well regardless of complexity.  

 

2.7.2.1.2 Multi pass method 

In contrast to the singlepass methods, the multi-pass method, also known as X-pass method, 
constructs more than one single schedule. Indeed, this solution approach extends the single-pass 
method by performing several passes. The basic idea of such methods originates from the 
integration of scheduling generation schemes with various priority rules. The approaches in this 
context may be classified into three methods: multi priorityrule methods, forward-backward 
scheduling methods and sampling methods.  

 

2.7.2.1.2.1 Multi priority rule methods 

Multi priority rule methods use scheduling generation schemes several times with a different 
priority rule being employed each time. The best solution is finally chosen amongst the multiple 
solutions. Various studies including (Boctor, 1990) (Özdamar and Ulusoy, 1994) (Kolisch and 
Hartmann, 1999) have been conducted to solve the RCPSP by use of multi priority rule techniques. 
(Fündeling and Trautmann, 2010) presents a resource constrained project scheduling problem that 
is formulated on the basis of a concept called “work content”.  The work content implies resource-
time units, for instance person-days. The problem aims to define a feasible resource usage for each 
activity so that the project duration is minimized. To this end, a multi priority rule scheduling 
method is developed by the authors. The numerical results illustrate that the method is an 
encouraging procedure for solving project instances. These procedures show promise in providing 
a better solution quality compared to a set of algorithms from the literature. (Almeida et al., 2016) 
studied a parallel heuristic for the multi skill resource constrained project scheduling problem. The 
authors define two concepts called the resource weight and the activity grouping, which are used 
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to construct a new heuristic framework. Several single- and multi priority rules are considered to 
compare the performance of the heuristics. The evaluation shows that the developed heuristic is 
able to find high-quality solutions within a very small CPU time with a gap of less than 2.65%. For 
larger instances, the heuristic is able to obtain feasible solutions quickly. (Hasan et al., 2008) 
considers a Job Shop Scheduling Problem. The objective of the model is to minimize the makespan 
of the project subject to satisfying the constraints. A number of priority rules such as partial 
reordering, gap reduction and restricted swapping are developed to improve the performance of a 
solution approach which is mainly based on the genetic algorithm. 

 

2.7.2.1.2.2 Forward-Backward scheduling methods 

Forward-backward scheduling methods use a SGS to schedule a project by turning from forward 
and backward scheduling passes. The method was proposed in the work of (Li and Willis, 1992) 
and subsequently used in  (Özdamar and Ulusoy, 1994).   In the basic presentationof the Forward-
Backward method, activities are started as early as possible in the forward loading technique while 
they are started as late as possible through scheduling in the backward technique. (Lova et al., 2000) 
extends the procedure of (Li and Willis, 1992) to deal with scheduling for multi-project problems.  
The algorithm is based on the concepts of the “forward and backward free slack of the activities”. 
The backward pass is employed on a feasible schedule. With the “forward free slack”, activities are 
shifted to the latest feasible position.  Then, they are rescheduled in decreasing order of their 
scheduled finish times.  The forward pass is applied to the feasible schedule resulting from the 
backward pass and the activities are shifted left to the earliest feasible position in their “backward 
free slack”. The iterative backward-forward procedure shows encouraging solutions in scheduling 
multi-projects, minimizing the mean project delay as well as minimizing the multi-project duration. 
(Chtourou and Haouari, 2008) designed a forward-backward procedure to tackle a RCPSP for 
minimum project duration and for maximum quality-robustness. The work addresses the 
development of a simple priority rule-based algorithm. It possesses two stages. The first stage 
solves the RCPSP for minimizing the makespan by using a priority rule based heuristic called an 
enhanced multi-pass random-biased serial schedule generation scheme. Using the makespan 
resulting from the first stage, the problem is then solved in a similar way for maximizing the 
schedule robustness. Twelve alternative robustness-predictive indicators are employed to select the 
best schedule in the problem.  

 

2.7.2.1.2.3 Sampling methods 

Referring to the literature, the main concept of this approach relies on the use of Random Sampling 
methods wherein a probability of being chosen has been associated with each activity. The sampling 
methods form a set of feasible schedules by use of associated random numbers and they appoint 
the best schedule obtained.  
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The common characteristic of the multi priority rule methods and forward-backward scheduling 
methods is that they attain the same final schedule even if they are run several times (Tormos and 
Lova, 2001). The difference between random sampling methods and forward-backward scheduling 
approaches is that a different schedule can result from each pass using sampling methods wherein 
the best schedule is selected as the final result. 

Several studies have been conducted to solve resources-constrained project-scheduling problems 
by applying sampling methods (Kolisch, 1996) and (Tormos and Lova, 2001). According to 
(Tormos and Lova, 2001), the most powerful random-sampling method is the Parameterized 
Regret-Based Biased Random Sampling (RBRS) method that chooses the activities according to a 
procedure which generates random numbers. In (Tormos and Lova, 2001), the authors develop a 
robust technique for resource constrained project scheduling  problems.  The  algorithm  presents  
a combination of  multi- pass  random-sampling  methods  with  backward–forward  scheduling.  
Both serial and parallel scheduling generation schemes are undertaken in the solving approach. The 
authors conclude that the combination of sampling methods and backward–forward scheduling 
can be taken into consideration as a promising approach to develop further heuristic-based 
resolution methods. Also, they indicate that the procedure can easily be integrated into commercial 
project-management software such as Microsoft Project, CA-SuperProject or Time Line. 

 

2.7.2.2 Adaptive heuristics 

In the literature, a set of procedures is used for constructing feasible solutions in resource 
constrained project scheduling problems. The methods can be described separately, since they do 
not completely belong to a specific group of the aforementioned algorithms. Terming the methods 
as “Adaptive heuristics” in the course of this study, the truncated branch and bound approach as 
one of the corresponding algorithms is brought into focus: 

 

2.7.2.2.1 Truncated branch and bound approach 

Instead of exhaustively searching the solution tree through the procedure of Branch and Bound 
(viewed in Section 2.9.1.2), the truncated branch and bound approach evaluates the capacity of 
each node to find the best solution. The algorithm then constructs the schedules from the most 
promising node. Therefore, by following only one single path, it partially explores the search space. 
To the best of our knowledge, these methods are used in only a few research works in the literature. 
Applications of this approach can be found in (Franck et al., 2001) and (Klaus and Jürgen, 2002). 
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2.8 Problem-dependent resolution approaches: time constrained problems  

This section discusses the solution procedures that are specifically adapted to time constrained 
problems. Since the specification of a time constrained problem is mainly different from that of a 
resource constrained problem, the procedures viewed in Section 2.7 cannot be completely suitable 
for this category and would need to be adapted to the problem. Although imposed deadlines and 
the addition of supplementary resources often occur in real-world projects, to the best of our 
knowledge, the corresponding models, in the context of time constrained problems, have not been 
extensively studied by researchers as dedicated solution methodologies (termed as problem-
dependent solving approaches in the course of this report) and there are only a scattering of studies 
in the literature. Having been confirmed by (Guldemond et al., 2008) and (Verbeeck et al., 2016), 
as relevant to time constrained project scheduling problems (TCPSPs), these methods suffer from 
the shortage of research in the literature into developing the models and solving methods. 
Nevertheless, the motivation in studying so-called problem-independent approaches, including 
meta-heuristic approaches and Zero-One programming models on RLP and RIP have been 
extensively described in the literature by researchers.  Similarly to resource constrained project 
scheduling problems, problem-dependent solution approaches are categorized into two headings: 
Lower bound and Heuristic. 

 

2.8.1 Lower bound approaches 

(Drexl and Kimms, 2001) presented the pioneer work in computing the lower bounds for resource 
investment problems. As mentioned by the authors, up to the work date, only exact algorithms 
were used in order to tackle the RIPs. The research presents two algorithms. The first one is based 
on Lagrangian relaxation with sub-gradient optimization. Given a set of Lagrangian multipliers, the 
resulting sub-problem can be solved in polynomial time by use of the procedure. The second 
algorithm uses column generation techniques. The computational results shows that, compared to 
Lagrangian relaxation, column generation solves the instances more slowly, but it results in tight 
enough bounds. 

 

2.8.2 Heuristics 

(Neumann and Zimmermann, 1999) presents a polynomial multi-priority rule-based heuristic for 
different types of resource leveling problems with minimum and maximum time lags between 
project activities. The algorithm can be suitable for time constrained project scheduling problems 
as well.  (Guldemond et al., 2008) proposes a two-stage heuristic for an extension of the TCPSP. 
In the first stage, the algorithm constructs partial schedules. Then, in the second stage, an ILP 
formulation is used to change the partial schedule into a feasible solution. 
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The first heuristic procedure for a resource leveling problem was proposed by (Burgess and 
Kilebrew, 1962). The procedure is a single pass algorithm using a single mode of representation 
and a single priority rule. It attempts to determine the start time based on a concept which is termed 
as minimum squares. The proposed procedure readjusts the start time of each activity and decreases 
the variability of the resource use. In the first stage, it constructs the start time of the activities by 
their positioning at the earliest start time. Then, the activities are selected based on a priority rule, 
which is considered to be the earliest finishing time rule. Latter, the best time point for starting the 
activities is determined by the minimum squares. The start date holds a value which minimizes the 
total sum of the squares of the resource consumption for each time period. (Leachman, 1983) 
studied resource leveling problems in order to develop a heuristic procedure. The work provides 
an algorithm which is based on the activities’ demand rate for resources. It seeks to minimize the 
resource capacity costs in an iterative procedure in order to satisfy the planned deadlines.  
(Neumann and Zimmermann, 1999) presents adapted priority rule based algorithms to solve a 
typical resource leveling problem with maximizing net present value subject to general temporal 
constraints given by minimum and maximum time lags between activities. (Harris, 1990) presents 
a new heuristic for resource leveling problems using the critical path method. The minimum 
moment of the resource histogram is considered to compute the level of resources. The procedure 
allots project activities to specific days so that the final resource histogram approaches a rectangle 
shape and its moment approaches a minimum value. In the work, incremental moments have been 
introduced by use of each activity’s resource rate with penalties to recognize network interactions. 
Each activity is scheduled in a way that the sum of the incremental moments holds a minimum 
value. In a following work, (Hiyassat, 2000) modifies Harris' procedure by using the value of the 
activity's free float and its resource rate in the selection criteria. 

 

2.9  Problem-independent resolution approaches  

Regardless of the type of constrained project scheduling model, a set of approaches and their 
solution procedures can be applied for solving both time constrained and resource constrained 
project scheduling problems. It is worth noting that since the modeling framework of the current 
study inherits the specifics of both resource-constrained project scheduling problems and time 
constrained project scheduling problems, problem-independent resolution methods could come to 
be of interest for the application in the course of this work. The approaches in this context can be 
classified into two main groups including exact procedures and meta-heuristics: 

 

2.9.1 Exact procedures 

This section presents the exact procedures that are used in solving constrained project scheduling 
problems. The most widely-used methods can be classified into three approaches: Zero-One 
programming, Dynamic programming and Branch and Bound procedures.  
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In the current study, a Zero-One formulation is employed to model the problem. Through Exact 
procedures, a Branch-and-Bound algorithm using the CPLEX solver is employed for primary 
resolution of the model.  

 

2.9.1.1  Zero-One programming 

Besides the mathematical formulation that is presented in Section 2.3.1.1 for resource constrained 
project scheduling problems, other models have been proposed and developed in the literature for 
different orientations of interest. (Haït and Artigues, 2011) presents an alternative for modeling 
project-scheduling problems with a continuous scale of time. The formulation focuses on the 
relative positions of tasks and time periods. The proposed modeling framework improves the 
computation time significantly. (Koné et al., 2011) proposes new mixed integer linear programming 
formulations for the RCPSP based on the concept of events with constant availability of the 
required resources: the Start/End formulation and the On/Off formulation. Since the variables 
used for modeling the problem are not a function of the time horizon, the formulations present 
the advantage of involving fewer variables. The authors compare the linear relaxations of these 
new formulations with the existing ones in the literature. The results prove that On/Off 
formulation outperforms all other MILP formulations and obtains results close to those of a 
specialized method. (Kopanos et al., 2014) gives details of some of the existing mathematical 
formulations of resource constrained project scheduling problems in the literature. The models are 
reviewed and presented in terms of discrete and continuous time scales. In the paper, the authors 
propose two binary integer programming discrete time models and two precedence based mixed 
integer programming models with continuous time formulations. The discrete-time models are 
formulated on the basis of binary variables that describe the processing state of every activity 
between two consecutive time points. On the other hand, the continuous time models are based 
on the concept of overlapping of activities, and the definition of a “number of newly introduced 
sets”. A computational evaluation is carried out by use of four comparison factors: Feasible (%): 
percentage of instances that gave an integer solution (i.e., optimal, suboptimal, or non-proven 
optimal) in a limited resolution time, Good (%): the percentage of instances that gave a good integer 
solution (i.e., optimal, or suboptimal with a gap < 3% from the optimal solution) through a given 
resolution time. Optimal (%) is the percentage of proven optimal solutions found in a given 
resolution time. Gap (%): the average gap between the integer non-proven optimal solutions and 
the optimal solution. This evaluation shows the relative success of the different models, those 
models developed by the authors and those from the literature. 

(Easa, 1989) presents an integer linear optimization model of resource leveling with single resource 
type. The model minimizes the absolute deviations between the resource requirements and a 
uniform resource level, between consecutive resource requirements, or between the resource 
requirements and desirable non-uniform resource levels. (Son and Mattila, 2004) presents a linear-
program binary model for leveling resources in situations where the activities can be split. (Rieck 
et al., 2012) proposes a new mixed-integer linear model formulation for the classic resource-leveling 
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problem which solves the small and medium-size problem efficiently by use of the standard solver 
CPLEX. 

 

2.9.1.2 Branch and Bound procedures 

The basic rational of a Branch and Bound (B&B) algorithm is to build a search tree with nodes and 
branches that explores the solution space of the problem to find the optimal solution. In the 
simplest form, the branches can be defined as scheduling decisions on which activities need to be 
delayed, and the bounds are the precedence and resource constraints (Bartusch et al., 1988) (De 
Reyck and Herroelen, 1998).  Figure 19 depicts a typical example of the search tree in a Branch and 
Bound algorithm. As shown in the figure, the root of the tree relates to the first activity that can 
be scheduled. The second level of the tree encompasses the set of activities that can be scheduled 
after scheduling the first activity, and so forth. Every sequence from the root to the leaf of the tree 
represents a feasible schedule. The searching process in Branch -and -Bound traverses the tree until 
the best solution is found. Regarding the number of activities, it is obvious that when this value 
increases in large projects, the tree grows quickly. For problems with multi-mode execution of the 
activities, each execution mode adds another layer into the structure of the research tree and this 
increases the computation effort of the algorithm. These procedures are the main dissolution 
procedures in optimization software, like as CPLEX Studio, LINGO, GAMS and so forth, to solve 
to optimality the linear integer programming model with a given level of gap. 

 

 

 Figure 19- (a): AON representation of a project plan. (b): Search tree of a Branch and Bound 
procedure for generating feasible solutions.   
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A Branch and Bound algorithm developed by (Patterson et al., 1990) creates a set of nodes in the 
solution tree that stands for certain partial schedules. The partial solutions possess the important 
particularity that they are always feasible from the viewpoint of satisfying the resource and 
precedence constraints. The algorithm adds a new eligible activity to a partial schedule by a 
“Branching” procedure. As the number of feasible combinations of the eligible activities increases, 
the algorithm creates as many new partial schedules. Various exact approaches based on implicit 
enumeration with Branch and Bound have been presented in the literature: (Christofides et al., 
1987) (Brucker et al., 1998) (Dorndorf et al., 2000). An effective Branch and Bound algorithm 
developed by (Demeulemeester and Herroelen, 1992) for RCPSPs outperforms all the other exact 
methods in the literature. The algorithm is based on a depth-first solution strategy in which the 
nodes represent resources and precedence feasible partial schedules. The branching scheme 
emanates from a parent node and corresponds to exhaustive and minimal combinations of 
activities. A time-oriented Branch and Bound algorithm for the RCPSP explores the set of 
schedules by enumerating possible activity start times (Dorndorf et al., 2000). (Bellenguez-
Morineau and Néron, 2007) proposes a Branch and Bound procedure for solving a multi-skill 
project scheduling problem.  (Heilmann, 2003) presents a Branch and Bound algorithm for a typical 
resource constrained project scheduling problem where multiple modes are available for executing 
activities. Besides, minimum and maximum time lags between the different activities are also given. 
The results of the experimental performance analysis are quite encouraging.  However, the authors 
indicate that for larger problem instances, with a higher number of activities and modes of 
processing, the computation of an optimal solution does not seem to be reachable in reasonable 
time. Hence, for such instances, they suggest applying a heuristic based solution approach. (Gather 
et al., 2010) presents a new enumeration scheme based on Branch and Bound approaches to solve 
resource-leveling problems to optimality for small (10 activities) and medium (20 activities) 
instances.  

 

2.9.1.3 Dynamic programming 

Dynamic programming is an algorithmic paradigm which is used to decompose a problem into 
different sub-problems and tackle the decomposed problems one by one.  The solutions from each 
sub-problem are combined into a complete solution in order to determine the final solution of the 
main problem. A procedure built up by Carruthers and Battersby, (Carruthers and Battersby, 1966), 
was the first work to apply dynamic programming for solving resource constrained project 
scheduling problems. Its objective is to find the expected maximum path length by reinterpreting 
the original problem as finding the maximum path length of the final activity of the network using 
the symmetry of the problem. The approach constitutes an advance in critical path methods, but it 
cannot handle practical networks. (Bandelloni et al., 1994) used dynamic programming to solve a 
resource leveling problem to optimality. (Baptiste et al., 2008) assume the JJSP with earliness and 
tardiness penalties. The authors offer two Lagrangian relaxations of the problem. The first one is 
based on the relaxation of precedence constraints while the second one intends to relax machine-
availability constraints.  Two adjoin algorithms are introduced to solve the corresponding dual 
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problems. The first procedure employs Branch and Bound, whereas the second is based on a simple 
dynamic programming algorithm. In both cases, the relaxations provide lower bounds. 

 

2.9.2 Metaheuristics 

Metaheuristics are used to cope with complexity in the solution of NP-hard problems. The main 
purpose of using these approaches is to find optimal or near optimal solutions within a reasonable 
computational effort. The difference between heuristics and metaheuristics can be stated from four 
points of view: 1- heuristics are totally “problem-dependent” algorithms whereas metaheuristics 
are “problem-independent” procedures. 2- In the main, heuristics are “constructive” procedures. 
They start from an initial state and follow a set of operations in order to obtain a solution. However, 
metaheuristics are “improver” methods. They begin with an initial feasible solution, which can 
result from a heuristic, and transform it into another solution by iteratively executing a set of 
procedures.  While attempting to improve the obtained results, the quality of the solution does not 
get worse in every run of the metaheuristics and at the very least it remains the same. 3- Heuristics 
are greedy approaches and therefore they usually get stuck in local optima. Metaheuristics, however, 
are not completely greedy procedures. As such, by allowing an intermediate deterioration of the 
objective function, the algorithms provide the possibility to avoid getting stuck in the local optima. 
And finally, 4- metaheuristics can be applied on the different multi objective problems in order to 
find Pareto solutions. Despite the potential advantages of metaheuristics, they have one major 
drawback, in that these techniques require a fine-tuning of their intrinsic parameters that is not easy 
to perform in a thorough manner. 

Six common design questions concern all iterative metaheuristics:  1- Representation and 
generation of initial solutions, 2- Objective (fitness) function 3- Search operators, 4- Constraint 
handling, 5- Stop criteria 6- Parameter tuning (Coello Coello, 2002) (Blum and Roli, 2003) (Salcedo-
Sanz, 2009) (Siva Sathya and Kuppuswami, 2011) (Kaveh, 2016). 

1- Representation and generation of initial solutions: since a solution (or a set of solutions) is supposed 
to be modified and optimized during the search process by use of the metaheuristics, 
encoding (representation) of any given solution plays a major role in the efficiency and 
effectiveness of any types of these algorithms, and the “representation” needs to be relevant 
to the target problem.. Generally, direct and indirect representations can be distinguished 
when establishing a solution. Using a direct representation, solutions are represented in 
their appropriate search space and no mapping (decoding) step is required to transform a 
representation into a real solution. In contrast to direct representation, an indirect 
representation requires an explicit mapping. With this sort of the representation, a tentative 
solution to the problem is presented as standard data structures (for instance string of 
binaries, integers, etc) and then a procedure is used to transform these solutions into a 
corresponding solution in the feasible research space.  Indirect encoding is widely used in 
optimization problems and deals with many of the constraints in a scheduling problem. 
Referring to (Rothlauf, 2006), indirect representation makes it possible to use standard 
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search operators. Furthermore, employing indirect representation facilitate resolution by 
reducing the difficulty of the problem.  

Figure 20 depicts some classic encodings for a set of optimization problems. They include 
permutation, binary, continuous and discrete encoding. 

 

 

Figure 20- Permutation, binary and real encoding represented for some optimization 
problems, adapted from (Talbi, 2009). 

 
Besides classic encodings, non-classic representations such as “Random key encoding” 
have also been used to tackle optimization problems. When using the “key representation”, 
each object is assigned a random value that is generated uniformly from [0, 1). The 
decoding procedure sorts the objects in an ascending order. Then, each element of the 
representation is decoded by its rank in the sequence. Probable ties can be broken 
arbitrarily. Figure 21 schematizes the encoding based on these random-key procedures. 
This encoding type can be useful for many sequencing problems that are viewed as 
permutation problems, including scheduling and routing problems. In the scheduling 
problems, an Activity List is an arrary that is obtained by applying the random key 
representation on a permution of numbers. 
 

 

Figure 21– Encoding in the random key-based representation. 

 

Depending on the metaheuristic used (either population-based or single solution based 
algorithms), one or more solutions need to be initialized in order to begin the search 
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process. If some problems specific information about the high quality solution(s) is on 
hand, an initial solution can be built up by use of this knowledge. In cases of deficiency or 
lack of good solutions, the initial solution has to be created, either randomly, or by 
sequential diversification or heuristic initializations.  When using the population-based 
algorithms, a diversity of solutions must be engendered in the population in order to ensure 
an effective application of the metaheuristic. 

 
2- Objective (fitness) function: the objective function, also known as the fitness function or 

evaluation function, assigns a fitness value to each solution. It guides the procedure towards 
good solutions. Indeed, the fitness function states the quality of a solution with regard to 
the assumed goal. In many cases, especially for continuous linear and nonlinear 
optimization problems, the evaluation function corresponds to the objective function 
(Talbi, 2009). However, sometimes it is modified to improve the efficiency of the procedure 
or to involve additional characteristics of a corresponding solution. For other problems 
that do not belong to linear or nonlinear optimization problems, the definition of an 
appropriate fitness function is a challenging task. For instance, with satisfiability problems 
(in which the aim is to find an assignment that satisfies a given Boolean formula), the 
objective function must be transformed into other terms to provide a better convergence 
for the algorithm.  
Figure 22 schematizes the concept of the fitness value associated to a solution obtained 
from a decoding process.  
 

 

 Figure 22- Fitness value of a solution from a decoding process,  from (Talbi, 2009). 

   
3- Search operators: metaheuristics search strategies generally rely on two main concepts: 

exploration and exploitation (Rothlauf, 2006). In exploration, the algorithm searches for 
new areas and new solutions, whereas exploitation focuses on promising regions in the 
search space.  In metaheuristics, the search operators can be grouped as local-search and 
recombining operators. A local-search operator moves from a given solution to a neighbor 
solution in the space of candidate solutions. The concept of neighborhood implies 
similarity between the solutions. In contrast to local search, recombination operators 
require at least two solutions to build up more than one new solution.    
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4- Constraint handling:  dealing with constraints in constrained optimization problems is another 
important point to consider for the efficient design of metaheuristics. Generally, the 
constraint-handling methods act on the representation of the solution or the objective 
function. Various approaches in this context can be classified as reject strategies, repairing 
strategies, penalty methods and decoding strategies. Other constraint-handling approaches, 
which do not rely on the representation of the solution or the objective function, such as 
multi-objective optimization and co-evolutionary models, are also used. 
 

Reject strategies: this approach keeps only feasible solutions and rejects all infeasible ones. 
This sort of strategy is credible if the portion of infeasible solutions in the research space 
is small. In some optimization problems where the search space is discontinuous, the 
procedure does not result in good solutions. This is because of the fact that the algorithm 
strictly rules out exploring any infeasible boundaries (Luke, 2015). 
 
Repairing strategies: this strategy uses some operations and heuristics to transform an 
infeasible solution into a feasible one. The strategy is a promising procedure for cases 
where the search operators used in the optimization procedure may result in infeasible 
solutions, (Krawiec, 2014). 
 
Penalty methods: The penalizing strategy is the most popular approach for dealing with 
constraints in the optimization process by use of metaheuristics. Within this strategy, a 
constrained problem transforms to unconstrained one by use of a fining term which is 
added to the object function to penalize infeasible solutions (Richardson et al., 1989). 
Various alternatives can be used to determine penalties (Kuri-Morales and Gutiérrez-
García, 2002). They generally involve “additive forms” and “multiplicative forms”. One 
method of using the “additive form” is described as follows:  
Having considered a typical minimization problem given below, the additive method can 
be stated as follows: 
 
Min f(x) 
s.t. 

g(x) ≤ g0 

      

Objective function = { f ( X'),  if  X' is feasible
f ( X')+ p ( X'),  otherwise

 

 

Where p ( X') is the cost of the constraint violation. If no violation exists, p ( X') will 
be zero and positive otherwise.  
The additive penalty function can be calculated by use the relation 2-25: 
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 ∑ keGee=1           2-25
  

Where Ge is function of the constraints and ke are penalty parameters, see 2-26: 

Ge= max (0, (ge(X')
g0

) -1)
β
         2-26 

 
In formulation 2-26, β holds a positive value that can be estimated by the algorithm 
designer. 
 
Another common way is to use “multiplicative form”, as shown below: 
 

Objective function = { f ( X'),  if  X' is feasible
f ( X') p ( X'),  otherwise

 

 

When dealing with minimization problems, if no violation occurs, p ( X') is one and 
otherwise it holds a value more than one. 
In classic optimization, exterior penalty functions relying on an additive form are also 
used, with the calculation based on equation 2-25. The main reason for this is the fact 
that there is no need to start with a feasible solution.  
 
Decoding strategies: a decoding procedure can be defined as a function R→S in which a 
feasible solution s ∈ S is related to a representation r ∈ R. In this approach, indirect 
encoding is used in the representation and the decoding process is applied to transform 
the representation to the solution. The decoding function should have the following 
properties (Michalewicz, 1997) and (Talbi, 2009):  
 

- For each representation r ∈ R, a feasible solution s ∈ S exists. 

- For each feasible solution s ∈ S, a representation r ∈ R exists.  

- The decoder reduces the computational complexity. 

- The representation space must have the locality property in the sense that 
distance between solutions in R must be positively correlated with the distance 
between feasible solutions in S. 

 
5- Stop criteria:  the search process using the metaheuristic is stopped when a given condition 

is satisfied. Commonly, the algorithm terminates when either a maximum number of 
iterations has been reached or a satisfactory fitness level has been obtained or if a given 
computational time has elapsed. 
 

6- Parameter tuning (setting): each metaheuristic possesses a given set of parameters that must be 
initialized. A proper initial parameter setting has an important impact on the solution 
procedure for pursuing the exploitation and exploration objectives of the algorithm in 
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searching the solution space, and subsequently, it has a significant influence on the quality 
of the obtained results. However, there is no general optimal initialization available for the 
parameters of the metaheuristics and they should be calibrated within the application of 
the algorithm to the problem.  
In traditional approaches, the parameters of the algorithms are tuned one at a time and 
their values are defined empirically. In these approaches, interactions between parameters 
is not taken into consideration, so there is no guarantee that the algorithm will find the 
optimal setting. In order to cope with this problem, experimental design is a focus of 
investigation (Fığlalı et al., 2009). One of the promising approaches in this context is known 
as Design of Experiments, or DOE.  DOE is used as a powerful tool to allow multiple 
inputs (factors) to be manipulated simultaneously. It considers the concurrent impact of 
these factors on a desired output (response). Therefore, by manipulating the multiple 
factors at the same time, it can undertake important interactions that may otherwise be 
missed in the defining of optimal outputs.  
When using DOE concepts, all possible combinations of the factors (known as full factorial 
experimentation), or, only a portion of the possible combinations (fractional factorial 
experimentation) can be investigated. The application of these methods in optimization of 
metaheuristics can be seen in (Lucas et al., 2006) (Kramer et al., 2007) (Zoraghi et al., 2012) 
and (Tabrizi and Ghaderi, 2016). 

 

2.9.3 Most widely-used metaheuristics for project scheduling  

With a view to finding the most successful metaheuristics used for tackling constrained project 
scheduling problems, 259 research works conducted from 2000 to 2016 on “constrained project 
scheduling problems” have been reviewed, in Web of knowledge, ScienceDirect and SpringerLink 
data bases.  

Figure 23 summarizes the results of the review. The five most widely-applied algorithms are the 
Genetic Algorithm, Particle Swarm Optimization, Ant Colony Optimization, Tabu Search and 
Simulated Annealing.    Note that the meta-heuristics for solving the multi-objective problems are 
included in the class of each one’s basic search procedure. For example the NSGA-II algorithm, in 
order to solve multi-objective scheduling problems, is incorporated in the GA class.  The following 
Sections 2.9.3.1-2.9.3.5 look at the processing mechanism of these algorithms. 
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Figure 23- Research results on different metaheuristic-based search algorithms used for solving 
constrained project-scheduling problems from 2000 to 2016. 

 

2.9.3.1 Genetic Algorithm (GA) 

Genetic algorithm (GA) is a metaheuristic that derives its behavior from Darwin’s’ theory of natural 
selection. It was first proposed by J.Holland in the 1970s, (Holland, 1975) and applied by De Jong, 
(De Jong, 1975) and Goldberg, (Goldberg, 1989) for solving complex optimization problems. 
Unlike the single solution based optimization metaheuristics, such as simulated annealing, seen in 
Section 2.9.3.5, it maintains a population of solutions. The size of the population can be denoted 
as the PopSize. The first step in the use of any GA is to provide a representation for the solutions, 
or population members. Generally, the representation is made in the form of a string, also known 
as a chromosome, see Figure 24. Each allele of the chromosome is referred to as a gene. Both 
binary and non-binary representations have been favored by many genetic algorithm designers 
(Bean, 1994). Like all population-based metaheuristics, the deployment of a GA starts with 
initializing a population of chromosomes. The individuals of the population are evaluated by their 
fitness and elitism.  Afterward, they are submitted to specific operators to reproduce new 
individuals. The aim of this reproduction is to give more chance to the search procedure to find 
better solutions regarding the fitness function value. The next generation is formed by three 
operators of elitism, cross-over and mutation. In elitism, a number of best individuals in terms of 
fitness function value survive, and are transferred directly to the next generation. In addition, the 
variation operators including crossover and mutation are used to exploit and explore the solutions 
in the search space. For that purpose, each of the cross-over and mutation operators is 
implemented by appropriate rates that are known as the Cross-over Rate and Mutation Rate. Generally, 
when using the cross-over operator, two individuals of the population, called parents, are selected 
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to reproduce two new solutions, called offspring. Various types of crossovers have been proposed 
in the GA literature. The most popular ones are one-point, two -point and three-point cross-overs. 
Figure 25 illustrates the operation of a two-point crossover over two parents. The mutation 
operator is applied on a gene of an individual to alter its value, in order to create a new individual, 
as shown in Figure 26. The search procedure continues until one of the stop criteria mentioned in 
Section 2.9.2 has been met.  The working process of the genetic algorithms is illustrated in Figure 
27.  

 

Figure 24- Presentation of a chromosome and a gene for a permutation-based representation. 

 

Figure 25- Two-point cross-over operated on two binary represented parents. 

 

 Figure 26- Representation of an operating procedure of mutation in a genetic algorithm. 

 

The advantage of the genetic algorithm is in its intrinsically parallel search, due to it being a 
population-based search approach and its strong ability to explore and exploit the solution space. 
Nevertheless, like other metaheuristic-based approaches, it requires fine-tuning of the parameters, 
including the crossover rate, mutation rate, size of the population and the stop criteria (such as the 
number of iterations) in order to avoid getting stuck in local optima. Therefore, the performance 
is directly dependent on the values of these design variables (Talbi, 2009). 
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Figure 27- Genetic algorithm flowchart, adapted from (Renner and Ekárt, 2003). 

 

Several studies have been conducted to solve the RCPSP using a genetic algorithm, presented in 
(Hartmann, 1998) (Kohlmorgen et al., 1999) (Alcaraz and Maroto, 2001) (Hartmann, 2002)  (Valls 
et al., 2004) (Valls et al., 2005) (Najafi and Niaki, 2006) (Shadrokh and Kianfar, 2007) (Gonçalves 
et al., 2008) (Zhang and Wong, 2015) and  (Maghsoudlou et al., 2016). 
 
A permutation based genetic algorithm proposed by (Hartmann, 1998) makes use of activity-list 
representation and serial schedule generation scheme. It. outperforms a set of  heuristics and 
algorithms that are presented in (Sampson and Weiss, 1993) (Leon and Balakrishnan, 1995) 
(Özdamar and Ulusoy, 1996) (Kolisch, 1996) and  (Cho and Kim, 1997). In addition the algorithm 
results in better performance compared to the simulated annealing algorithm  of (Bouleimen and 
Lecocq, 2003). A genetic algorithm proposed by Alcaraz and Maroto , (Alcaraz and Maroto, 2001), 
consists in the generalization of the activity list of (Hartmann, 1998). The research uses the serial 
SGS and includes the representation scheme which involves an additional gene to present whether 
the activity list is scheduled in a forward or backward direction. From extensive computational 
experiments on the basis of instances of PSPLIB, (Kolisch and Sprecher, 1997), the procedure 
shows a good performance. The study involves two different levels of crossover and mutation 
probabilities, 0.5, 0.8 and 0.05, 0.01, respectively. 

An extended self-adapting genetic algorithm (SAGA) designed by (Hartmann, 2002) is developed 
on the basis of the previous genetic algorithm (Hartmann 1998). SAGA has several new aspects: 
an extended representation of an individual that involves an additional gene which decides the 
decoding procedure, adapted crossover and mutation operators, and a new method for computing 
an initial population. Although the quality of solutions is increased, a computational effort is 
required. 
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(Toklu, 2002) develops a GA that is applied directly on schedules using a vector of start times. In 
the study, the author introduces a penalty function in order to repair infeasible offspring schedules 
that the genetic operators may produce. 

(Valls et al., 2005) proposes an extended activity list based genetic algorithm by integrating the 
forward-backward improvement of (Valls et al., 2003). A peak crossover operator is introduced 
and developed with the aim of inheriting those parts of the parents’ activity lists which correspond 
to peaks in resource usage. (Gonçalves et al., 2008) studies a GA for the resource constrained multi-
project scheduling problem. The chromosomes in the algorithm are represented on the basis of 
random keys. The initialization of the procedure relies on a heuristic that generates parameterized 
active schedules based on priorities, delay times, and release dates.  (Montoya-Torres et al., 2010) 
proposes a genetic algorithm to solve the problem in which the chromosome representation is 
based on the features of object-oriented programming. 

(Zhang and Wong, 2015) studies a process planning for a job shop planning problem as a 
generalization of resource constrained project scheduling problems. The work develops a genetic 
algorithm named object-coding GA. In the proposed algorithm the operation sequences are used 
directly as chromosomes. The search operators, crossover and mutation, are customized to cope 
with the new genetic representation. (Kaiafa and Chassiakos, 2015) studied a multi-objective 
resource constrained project scheduling problem. The problem aims to minimize the total cost that 
is associated with (a) resource over-allocation, (b) project deadline exceedance, and (c) day-by-day 
resource fluctuations. The authors develop a genetic algorithm. They evaluate the performance of 
the algorithm on several test problems and they compare the results with the output of Microsoft 
Project. The evaluation shows that the procedure can provide adequately- balanced solutions. 

(Najafi and Niaki, 2006) develops a genetic algorithm for solving a resource investment problem 
where the objective is to maximize the discounted cash flow of the project payments. The use of a 
heuristic based on the forward and backward approach is made to initialize the population. The 
research operators (crossover and mutation) are adapted to the proposed representation. (Najafi et 
al., 2009) develops a previous work of (Najafi and Niaki, 2006) for a resource investment problem 
with discounted cash flows and maximal/minimal time lags. To improve the efficiency of the 
proposed GA, its parameters were fine-tuned using response surface methodology by a central 
composite face-centered design on 45 test problems. In (Shadrokh and Kianfar, 2007), a genetic 
algorithm is proposed to solve a resource investment problem. The model supposes that the 
tardiness of the project is permitted with a defined penalty.  Each individual includes two parts. 
The first part uses an activity sequence approach that is presented in the work of (Hartmann, 1998) 
and the second is a list that verifies the resource capacities to start the activities.  

(Maghsoudlou et al., 2016) represents a new multi-skill, multi-mode resource constrained project 
scheduling problem. The model pursues multiple objectives encompassing:   minimization of the 
makespan of the project, minimization of the total cost of allocating workers to skills, and 
maximizing total quality of the processing activities. A metaheuristic, namely the multi-objective 
invasive weeds optimization algorithm (MOIWO) is developed to solve the model. Two other 
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metaheuristics, called non-dominated sorting genetic algorithm (NSGA-II) and multi-objective 
particle swarm optimization algorithm (MOPSO) are employed to validate the solutions resulting 
from the developed MOIWO. The Taguchi method is used to tune the parameters of the model.  

 

2.9.3.2 Particle Swarm Optimization (PSO) 

PSO is a population-based method which is inspired from the social behaviour of flocking birds 
and schooling fish when searching for food. It was developed by Kannedy and Eberhart in the 
mid-1990s, (Kennedy, Eberhart, 1995). Unlike the genetic algorithm, it does not resample 
individuals to produce new ones. Instead, the algorithm holds a single static population whose 
members are tweaked according to new information in the research space. In the initial form of 
the algorithm, a swarm of particle is moving in different dimensions. Each particle represents a 
solution of the given optimization model. Every particle possesses a position and a velocity. The 
search process takes advantage of the particles’ intelligence in finding the good solutions. Indeed, 
each particle adjusts its own position toward a global optimum relying on two main factors that are 
i. the best position visited by itself and ii. the best position found by the whole swarm. The particle-
updating for particle flying (i.e., the search process) can be formulated as: 

Vi t  = w t  Vi t-1  + c1r1 (Xi
L- Xi( t-1 ) ) + c2r2(Xi

G- Xi ( t-1 ) )      2-32 

Xi t  = Vi t + Xi t-1         2-33 

Where X 
G represents the local best of the ith  particle after t -1 iterations, c1 and c2 hold positive 

constant values, r1 and r2 are random values from (0,1], w (t) is an inertia weight employed to 
control the effect of the previous velocities over the current velocity.  Equation 2-32 is utilized to 
calculate a particle’s new velocity. And, formula 2-33 is employed to find the particle’s new position. 

(Zhang et al., 2006) uses a PSO procedure to resolve resource constrained project scheduling 
problems with the objective function of minimizing the project makespan. In the study, activity 
priorities are represented by particles. Thereafter, a parallel scheme is utilized to transform the 
particle to a feasible schedule subject to the precedence and resource constraints. 

(Jarboui et al., 2008) uses the PSO algorithm to solve a multi-mode resource constrained project 
scheduling problem. The problem consists of two separate sub-problems, the assignment of modes 
to the activities and the scheduling of the activities. The PSO procedure deals with the first problem 
to produce an assignment of modes to activities, which are the particles. Then, a local search 
optimizes the sequences. 

(Joy et al., 2016) develops a PSO algorithm for solving a resource-constrained project-scheduling 
problem with varying resource levels. The objective is to schedule the activities in a way in which 
effective utilization of resources is achieved by utilizing varying resource levels. The authors use 
the serial scheduling scheme to create the schedules of the activities subject to the constraints of 
the problem. 
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2.9.3.3 Ant Colony Optimization (ACO) 

The fundamental idea of Ant Colony Optimization (ACO) is to imitate the behaviour of ants in 
the rapid discovery of food. In a real colony of ants, when the ants are searching for food, they 
leave a chemical trail (known as pheromone) on the path from their colony to the food source. 
Pheromone is a volatile substance. Its role is to guide the other ants toward a target point where 
the food is located. The paths that contain larger volumes of the pheromone have a high probability 
of being visited by the ants. Typically, an ant from the swarm chooses a path wherein a large 
quantity of pheromone can be smelt. The amount of the pheromone left on the ground decreases 
over time by evaporation. Moreover, the quantity of pheromone spattered by an ant directly relates 
to the amount of the food it has found. The ACO algorithm as an optimization technique explicitly 
imitates these natural phenomena. In the ACO algorithm, every ant builds a candidate solution. 
The solution is evaluated according to its fitness. The pheromone on each path to the fitted 
solutions increases. In order to avoid quick convergence of the algorithm through the paths with 
high value of the pheromone, the algorithm assumes that the pheromone of the path can be 
decreased as well. 

This search algorithm was introduced by (Dorigo et al., 1996) and the algorithm was applied in 
order to solve the classic traveling salesman problem. The main features of the ant system are the 
positive feedback that accounts for rapid discovery of good solutions, distributed computation that 
avoids premature convergence, and the utilization of a constructive greedy heuristic that helps to 
obtain acceptable solutions in the early stages of the search process.  

The first application of the ant colony optimization approach to a resource constrained project 
scheduling problem is found in the work of (Merkle et al., 2002). The study combines the ACO 
with various other heuristics found in the computational study of (Hartmann and Kolisch, 2000). 
In the study, the serial SGS representation is used to construct the schedules. Based on a weighted 
evaluation of the latest start time priority rule and so-called pheromones that represent the learning 
effect of previous ants, the eligible activity to be scheduled next is selected. The computational 
results show that the ACO algorithm performed best on average against several other heuristics, 
including simulated annealing, tabu search, and different sampling methods. 

 

2.9.3.4 Tabu Search (TS) 

The tabu search algorithm was created by Glover in 1986, (Glover, 1986). The basic idea of this 
research system was also outlined by Hansen at the same time in an approach that is named steepest 
ascent/mildest ascent (Hansen, 1986). When using the tabu search, the procedure forbids making 
certain moves. Such forbidden moves constitute a list that is called the tabu list. This list is 
dynamically updated during the execution of the algorithm. The application of the tabu list gives 
the algorithm the capacity to discard those neighbors that have been visited previously. In so doing, 
the search system avoids getting stuck in the probable cycles. Relying on the memory created by 
the tabu list, the algorithm always accepts the best neighbor that is not tabu.  
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A tabu search method introduced by (Tormos and Lova, 2003) operates directly on schedules by 
defining three different moves. This approach requires a repair procedure to change an infeasible 
schedule into a feasible one in cases where the resulting schedules may be infeasible. A tabu search 
procedure named RETAPS (Reactive Tabu Search for Project Scheduling) was presented by (Klein, 
2000) and tested on the J30 and J60 standard instances (Kolisch and Sprecher, 1997) for a project 
scheduling problem in which the availability of resources varies over time. 

 A tabu search approach developed by (Nonobe and Ibaraki, 2002) is a generalized variant of the 
resource constrained project scheduling problem. In the proposed procedure activity list 
representation, serial SGS, shift moves, and a specific neighborhood-reduction mechanism were 
employed. Major features of the model include multi-mode processing and variable availability of 
renewable and non-renewable resources. A tabu search procedure with an insertion technique 
devised by (Artigues et al., 2003) iteratively chooses an activity, in which the activity is first removed 
from the schedule and then reinserted with a network flow-based insertion algorithm. (Mika et al., 
2005) uses the tabu search for solving a multi-mode resource constrained project scheduling 
problem with positive discounted cash flows and different payment models. In (Skowroński et al., 
2013) two approaches based on the tabu search are proposed to solve a multi-skill, resource 
constrained project scheduling problem. The objective of the paper is to research the usability and 
robustness of proposed approaches in solving different models. 

 

2.9.3.5 Simulated Annealing (SA) 

Simulated annealing (SA) was first proposed by  Kirkpatrick, Galtt and Vecchi, (Kirkpatrick et al., 
1983). The basic concept of the algorithm relies on the principles of statistical mechanics in which 
the annealing operations require the heating and then gradual cooling of a material to obtain a 
strong crystalline structure. Within the annealing process, if the initial temperature of the material 
is not sufficiently high or a fast cooling occurs, immature and unreliable products will be obtained. 
The SA accordingly simulates this behavior in order to find high-quality solutions for an 
optimization problem. Basically, it begins with one solution and then moves in a direction that 
brings improvement and attractive solutions. The fitness function of the problem is similar to the 
energy state of the cooling system. A solution of the research space is equivalent to a system state. 
Various possible values of the decision variables give the different molecular positions. During the 
research process, the SA prefers to move to a new solution if the direction is downhill, that is, 
going towards a better value of the fitness function. However, in order to avoid getting entrapped 
in local optima, it allows an occasional uphill move. This movement is made under the influence 
of a random number generator and a control parameter that is based on the temperature. The 
algorithm attempts to delay the temperature convergence and escape from local optima. The search 
and improvement process continues until one of the stop criteria occurs.  

Various studies have been carried out to solve the resource constrained project scheduling 
problems (RCPSP) by applying the simulated annealing approach: ( Boctor, 1996)  (Bouleimen and 
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Lecocq, 2003) (Mika et al., 2005) (Chen and Shahandashti, 2009) (Yannibelli and Amandi, 2013a) 
(Yannibelli and Amandi, 2013b). 

(Boctor, 1996) makes use of simulated annealing for solving non-pre-emptive RCPSP problems. 
The performance of the algorithm is compared with the tabu search algorithm. The procedure 
developed shows efficiency in resolution of the model. A simulated annealing algorithm presented 
by (Bouleimen and Lecocq, 2003)  covers RCPSP and the multiple mode project scheduling 
problems (MRCPSP). An activity list representation that is similar to that of ( Boctor, 1996) and a 
serial SGS to schedule activities are utilized for both RCPSPs and MRCPSPs. For RCPSPs, the 
search is based on an alternated activity. On the other hand, for MRCPSP, it is based on two 
embedded search loops alternating activity and mode neighborhood exploration. The 
computational results on the benchmark instances (Kolisch and Sprecher, 1997) show the 
promising performance of the algorithm, placing it among the most competitive algorithms for 
RCPSPs. (Mika et al., 2005) develops a simulated annealing algorithm for solving multi-mode 
resource constrained project scheduling problems with the objective of maximizing the net present 
value of cash flows. A feasible solution is represented by two n-element lists, wherein n is the 
number of activities. The first corresponds to the activity list, that is, a procedure for sorting the 
activities based on their precedence relation. The second relates to the mode assignment. Having 
obtained a feasible solution from the two lists, the serial SGS is utilized to determine the start time 
of the activities.  

(Chen and Shahandashti, 2009) develops a hybrid genetic-simulated annealing approach for solving 
a multi-project and multiple resources project scheduling problem. The work introduces the 
concept of a “system of coding and priority index” to set the priority among all the activities and 
determine the start time of activities based on the availability of resources. 

 (Yannibelli and Amandi, 2013a) develops a hybrid simulated annealing and evolutionary algorithm 
to solve a multi-objective project scheduling problem. The objective of the problem is to minimize 
the makespan of the project and assign the most effective set of renewable resources. The 
representation of the solution is based on the work of (Yannibelli and Amandi, 2013b). Using the 
encoding procedure, also similar to the work of (Mika et al., 2005),  the solutions are represented  
by two lists, the activity list and resource assignment list. The serial schedule generation method is 
used to generate the start time of the activities.  

 

2.10 Chapter conclusion and discussion 

The main objective of this chapter was to provide a state of the art analysis of project scheduling 
techniques. After a brief introduction to the primary research works on scheduling for un-
constrained project scheduling problems, the chapter continues with an overview of the literature 
in scheduling for constrained project scheduling problems. In this context, two categories of such 
problems, resource constrained and time constrained problems, are presented and their specific 
approaches and the different extensions of the problems have been discussed. Specific 
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methodologies that are dedicated to solving each of the resource constrained and time constrained 
project scheduling problems have been presented and discussed within the chapter. Next, a 
category of solution methodologies that are not specific to the type of problem, known as problem 
independent methods, are described and their resolution mechanisms outlined. Since the project 
scheduling of the current study inherits the attributes of the resource constrained project 
scheduling problems and the time-constrained project scheduling problems, the problem-
independent resolution methods are of particular interest in the course of this work.
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3.1 Chapter introduction 

As discussed in Section 1.3 of Chapter 1, the scheduling of projects with just in time procurement 
of non-renewable resources is associated with the planning of the supply chain network that 
supplies the required non-renewable resources to the project worksites.At the same time, the goal 
of developing environmentally responsible decision making tools has led the study to consider 
greening factors in the modeling framework. The current chapter reviews the main concepts of 
green supply chain networks in Section 3.2. In Section 3.2.1 it discusses the key elements that are necessary 

in the planning of the green supply chain by closed networks. And finally, it reviews the literature on 
material ordering issues in scheduling for the projects in Section 3.3 and concludes by positioning the study 
and its contributions in Section 3.4. 

 

3.2  Introduction to Green Supply Chain Management (GSCM) 

A “supply chain” implies a network of organizations that are incorporated, through upstream and 
downstream interconnections in different processes and activities to produce value in the form of 
products or services and deliver them to the ultimate users ( Christopher, 1999). Basic concepts of 
“supply chain management” (SCM) can be traced back to systems integration research done in the 
1960s, seen in (Bucklin et al., 1966). However, it first appeared in the literature in the 1980s with 
the work of (Keith and Webber, 1982) (Houlihan, 1985) and (Thomas C. Jones and Daniel W. 
Riley, 1985). The Council of Supply Chain Management Professionals describes “Supply Chain 
Management” (SCM) as follows, seen in (Vitasek, 2010): 

 

 “Supply chain management encompasses the planning and management 
of all activities involved in sourcing, procurement, conversion, and all 
logistics management activities. Importantly, it also includes the 
coordination and collaboration with channel partners, which can be 
suppliers, intermediaries, third-party service providers, and customers. 
In essence, supply chain management integrates supply and demand 
management within and across companies. Supply chain management is 
an integrating function with primary responsibility for linking major 
business functions and business processes within and across companies 
into a cohesive and high-performing business model. It includes all the 
logistics management noted above, as well as manufacturing operations, 
and it drives coordination of processes and activities with and across 
marketing, sales, product design, finance and information technology.” 

 

 

Conventional SCM decision-making practices focus only on economic and financial criteria. 
However, with increasing public attention on environmental issues and greater regulatory 
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requirements, as well as consumers’ awareness of the need for the protection of the environment 
and its natural resources, green and sustainable subjects have become a major competitive factor 
for firms and also an unavoidable part of decision making, (Benita M. Beamon, 1999). The term 
“Green Supply Chain Management” has been introduced to add environmental concerns to the 
decision-making issues of supply chain networks (Dekker et al., 2012). Indeed, it is based on 
different environmental initiatives that attempt to decrease or eliminate the adverse impact of 
logistic activities. There are different definitions of GSCM:  

 

 (Srivastava, 2007) defines GSCM as “integrating environmental thinking 
into supply-chain management, including product design, material 
sourcing and selection, manufacturing processes, delivery of the final 
product to the consumers as well as end-of-life management of the 
product after its useful life.” 
 
(Sarkis et al., 2011) presents green supply chain management as 
“integrating environmental concerns into the inter-organizational 
practices of supply chain management including reverse logistics”. 

 

 

Based on a study conducted on the wood processing sector in Spain in 2012, the authors in 
(Cordero and Poler, 2012) note that the main benefits of green practices are not only from reducing 
the environmental impacts but also from the diverse gains obtained in the company’s image and 
the opening of new marketing opportunities, in addition to meeting legislative requirements. The 
GSCM scope ranges widely, from creating general environmental programs to their 
implementation and control. Generally, it encompasses five major headings including green design, 
green purchasing, green manufacturing, and green transport as well as waste management and 
backward logistics: 

 

Green design:  

Green design is an important sub-topic of the GSCM. Studies in the literature show that 80% of 
the costs and the environmental impacts of products relates to their specifications at the design 
stage in regards to the products’ structure, packaging, and market positioning, (“Product Design 
for Manufacture and Assembly, Third Edition,” 2010). The literature emphasizes both 
environmentally sustainable design and life cycle assessment/analysis (LCA) of the product. 
(Gungor and Gupta, 1999) comments that life cycle analysis “examines and quantifies the energy 
and materials used and wasted and it assesses the impact of the product on the environment.” 
Practices on this issue, regardless of the field of the application, look for incorporating 
environmentally preferable outcomes such as: 
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• Lower consumption of energy and water throughout the entire lifecycle from 
manufacturers to the ultimate destinations of use and to disposal. 

• Restricting resource consumption through waste-free manufacturing, with priority given to 
the use of renewable (recyclable) resources, and an emphasis on recycled materials in the 
production of the products and their packaging. 

• Enhancement of quality and durability over price. 

• Minimization of the emission of greenhouse gases by the employment of carbon 
neutralizing activities. 

• Reducing or eliminating waste by minimizing consumption, by reusing when possible, and 
recycling when necessary. 
 

Green purchasing:  

Green Purchasing refers to the procurement of items and services that have a less harmful effect 
on human health and the environment compared to other products or services that serve the same 
purpose. The items under this condition encompass the raw materials, manufactured products, 
packaging materials and the products after use. Green purchasing is also known as environmentally 
responsible purchasing and affirmative procurement. According to (Zsidisin and Siferd, 2001) and 
(Alberg Mosgaard, 2015)  the practices on green purchasing mainly encompass: 

• Purchasing environmentally friendly materials which are recyclable, biodegradable and 
reusable. 

• Selecting suppliers who have environmental certifications, such as ISO 14001, etc.  

• Making partnerships with suppliers who seek environmental solutions and develop 
environmentally friendly products. 
 

Green manufacturing:  

In the process of green production, the input and output of the production process as well as the 
resource consumption are considered to be effectuated in an environmentally friendly way. This 
includes mainly the following aspects: 

• Production of products according to their impact on the environment. 

• Recovery and remanufacturing of materials or failed components. 

• Recycling and reuse of materials or product components after the end of their lifespan. 

• Productive and higher levels of processing technologies with the aim of reducing waste and 
scrap material. 

• Preventive and predictive maintenance of equipment in order to provide suitable 
functioning and increased lifespan. 
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In (Fercoq et al., 2016), the authors conduct a study that aims to reduce waste in manufacturing 
processes. The study measures the influence of the different methods (based on lean manufacturing 
concepts and green management philosophies) and adapts an approach using a design of 
experiments tool. The analysis of the results gives rise to a hierarchy of progress factors for a waste 
minimization plan. (Garrone et al., 2016) studies the reduction of waste in food manufacturing 
centers. The authors consider 10 cases from different food manufacturing companies in Italy. The 
work contributes to some points that are important in waste minimization of the companies. In 
general, they include the identification of a clear method that enables the manufacturers to establish 
an efficient procedure for managing surplus foods and in particular for transporting them to the 
proper food assistance centers. 

 

Green transport: 

This is mainly based on the logistic process. Green transports in general include the evaluation of 
distribution centers and the consumption of resources and energy for transportation as well as 
reasonable shipment route planning. Many of the studies on this context in the literature are 
conducted to decrease the negative effect of transportation by reducing the amount of greenhouse 
gases emitted from delivery of materials and products (Li et al., 2008) (Elhedhli and Merrick, 2012) 
(Trappey et al., 2012) (Bazan et al., 2015) (Huang et al., 2016). The subjects related to the selection 
of transportation modes, seen in (Mallidis et al., 2010) and (Goel, 2010), as well as routing 
definitions in order to reach a minimum level of greenhouse gas emissions, studied in (Bektaş and 
Laporte, 2011), are also of interest in the literature in this research area. In (Absi et al., 2013), the 
authors introduce four types of constraints for limiting the emission of carbon by companies in a 
lot sizing problem. The constraints include i. periodic carbon emission constraints: these are used 
for the cases in which companies must ensure that the emission of carbon in every time period of 
the planning horizon does not exceed the maximum permitted level of emissions, ii. cumulative 
carbon emissions: this assumes that the amount of unused carbon emission in a given time period 
can be used in the following periods so that the cumulative capacities are not exceeded, iii. global 
carbon emission constraints: this guarantees that the unitary carbon emission over the whole 
horizon cannot be greater than the maximum unitary environmental impact allowed and, iv. rolling 
carbon emission constraints: in contrast to the global carbon emission constraints, these constraints 
presume that the compensation of the emission can be used only on a rolling period of the planning 
horizon. The authors demonstrate that the periodic case is solvable in polynomial time, while the 
cumulative, global and rolling cases are NP-hard. 

 

Waste management and backward logistics:  

Waste management refers to the collection, transportation and disposal of solid and liquid waste 
as well as the treatment of atmospheric emissions prior to their release into the environment with 
monitoring and regulation. Concepts of waste management are not uniform and they vary among 
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countries and regions. Traditionally, waste management operations for solid and liquid garbage 
involve “reducing”, “reusing”, and “recycling”.  (Jayal et al., 2010) argues for a need to move from 
a 3R to a 6R concept, including “reduce”, “reuse”, “recover”, “redesign”, “remanufacture” and 
“recycle”. (Scur and Barbosa, 2017) summarizes the 6Rs as follows: 

““Reduce” refers to the reduced use of resources in pre-manufacturing stages, reduced use 
of energy and materials during manufacturing and the reduction of waste during the use 
stage. “Reuse” refers to the reuse of a product or its components after its first life cycle. 
“Recycle” involves the process of converting material that would otherwise be considered 
waste into new materials or products. “Recover” is related to the process of collecting 
products at the end use destinations and disassembling, sorting and cleaning the products 
for use in subsequent product life cycles. “Redesign” simplifies the post-use processes. 
“Remanufacture” involves the re-processing of used products for restoration to their 
original state or a like-new form through the reuse of as many parts as possible without loss 
of functionality.” 

 

3.2.1 Closed-Loop Supply Chain: Key elements for tactical level planning 

The closed-loop supply chain includes the backward flows related to the take-back of products and 
waste from the customers to the recycling centers as well as the forward flows of the supply chain 
which are used for shipping the required materials and products from the suppliers toward the 
customers and end-use destinations (Kumar et al., 2009). Figure 28 details a typical supply chain 
network for closed loop environments. As shown in the diagram, the recovery and recycling of the 
waste and used products can be done in the individual recycling centers as well as in the recycling 
lines of the manufacturers of the products. 

Combining the forward and backward flows comprises issues related to different decision-making 
practices in different corresponding time horizons ranging from operational to strategic, (as seen 
in Section 1.4.2). At the tactical level of planning, which is also the planning level in the current 
study, the decision-making practices in a closed-loop supply chain can be divided into two main 
headings: 
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Figure 28- Structure of the forward-backward supply chain network, adapted from (Kumar et al., 
2009). 

 

3.2.1.1  Planning for forward supply chain 

 In general, this includes the planning for procuring raw materials, the production of the products 
and their distribution.  

 

3.2.1.1.1 Procurement planning   

According to (Sun et al., 2010) “material procurement” is the process of obtaining raw materials 
from potential suppliers.  It is considered a capital-intensive decision. In general, planning for the 
procurement of materials and components determines what to buy from which source(s), how 
much and when, in order to be able to respond to the customers’ demands at the right time in the 
right quantity and at a predetermined quality level. To assure optimal input into the production 
system at all time periods of the planning horizon, the managers need to manage the levels of 
inventory for the raw materials and intermediate products they receive from the different suppliers 
under different supply conditions in terms of time and cost. In order to achieve this purpose, a 
two-level decision-making tool is usually constructed with different decision epochs (Bengtsson 
and Nonås, 2010): At the upper planning level, external suppliers are chosen and the order amounts 
for the selected suppliers are commonly decided on a monthly or weekly basis; at the lower 
scheduling level, more detailed operational schedules for unloading shipped orders are decided on 
a faster time scale; for instance, daily. Thus, one planning period is the overall decision horizon of 
the scheduling level, and the detailed schedule in each planning period is required for executing the 
plan under the various operational constraints and supplier availabilities.  
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In (Shin and Lee, 2016) a general inventory control problem for supplying raw materials from 
multiple suppliers to the manufacturers at the tactical level is studied. The planning problem is 
considered to be a Markov decision process in order to incorporate the uncertainty in supply and 
demand. The planning problem was integrated with a MILP model at the scheduling level and 
solved by the dynamic programming methods. (Arnold et al., 2009) presents a deterministic optimal 
control approach optimizing the procurement and inventory policy of an enterprise that is 
processing a raw material while the purchasing price, holding cost, and demand rate fluctuate over 
time. (Hnaien et al., 2009) uses genetic algorithm approaches in order to optimize decision making 
in a two-level assembly system with random lead times for minimizing the tardiness cost for late 
delivery of the finished products as well as minimizing the holding cost of the semi-finished 
products in the layers of the supply chain.   

(Wong et al., 2016) aims to provide insight into the driving factors for green procurement of 
resources in construction projects and attempts to suggest recommendations for the effective 
adoption of green procurement in construction projects. For this purpose, the authors take the 
results of the analysis from surveys and interviews with experts. They indicate that advanced 
construction methods have to be employed to stimulate the construction process into respecting 
environmental considerations. Furthermore, the deployment of a fully functioning green material 
market may help to promote the approaches of green procurement. In addition, the active 
engagement of suppliers with the aim of providing performance details of construction materials 
is recommended as well. 

 

3.2.1.1.2 Production planning 

Production planning (also known as lot sizing) pertains to the manufacturing of products in a 
company or industry and planning for producing the ordered modules as well as the management 
of the inventory levels of the necessary materials  and the fabricated products (Wei et al., 2017). 
This utilizes the allocation of the resources and materials as well as the production capacities in 
order to carry out the manufacturing and subsequently reduce costs for the customers. Production 
planning problems have been modeled and solved as optimization problems since the early 1950s, 
and an extensive literature and reviews have been developed. In this context, (Missbauer and Uzsoy, 
2011) focuses on models that support decisions on production quantities and order releases over 
time. The study highlights related issues on determining planned lead times. . (Li et al., 2007) uses 
a genetic algorithm for solving a capacitated production planning problem with dynamic lot sizing. 
(Gen and Syarif, 2005) addresses a production and distribution problem in which the objective is 
to minimize the production, inventory and transportation costs of the supply chain network so that 
the total demand of the customers of the products is satisfied. Furthermore, the model deals with 
the availability of resources. Indeed, production in each period is constrained by the availability of 
resources. Typical resources include labor, material handling equipment and transportation modes. 
In order to solve the instances of the proposed model, the paper develops a solution methodology 
based on the genetic algorithm. 
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(Mula et al., 2014) studies a multi-tier supply chain network problem in which the objective of the 
model is to reduce the bullwhip effect in the supply network and decrease inventory and cycle 
times. With this aim in view, the authors develop an optimization linear programming model. In 
order to tackle more complex problems, they suggest the use of metaheuristic-based algorithms. 
(Trochu et al., 2015) develops a study of the problem of production planning along with 
environmental considerations. The study proposes an integer linear programming model 
corresponding to the tactical level of the supply chain. The proposed model allows the use of clean 
production technologies to produce one product family based on two types of bills of materials, 
standard and green. Since compensation regulations fine companies for the excessive weight of 
products, a green bill of material is used to demonstrate the impact of these regulations using a 
case study from Quebec. 

There are generally different accepted production environments currently used in various 
companies and firms. The main difference between the manufacturing environments is how 
customer demand is fulfilled through existing inventory stocks and customer waiting periods. 
These strategies can be categorized into four main approaches: 

•Make-To-Stock (MTS): In MTS environments, customer orders are filled from existing 
products in stock. The method requires a precise forecast of demand in order to define 
how much stock should be produced. The downfall of this strategy is production due to 
unreal forecasting of demand. However, it can be effective when the products are 
standardized and frequently demanded in the market. With this strategy, an important 
challenge is to define a proper replenishment policy for stocking the finished products and 
raw materials (Carr and Duenyas, 2000) (Rajagopalan, 2002). 

• Make-To-Order (MTO): The Make-To-Order strategy, also known as Build-To-Order 
(BTO) is a demand driven approach where a product is built once a customer order has 
been received and confirmed. Manufacturing to customer demand implies a trigger of the 
pull-type supply chain operations. The method is considered suitable for highly configured 
and customized products with high stocking costs. The final product in MTO is often a 
combination of standard and customized items that satisfy the customer’s specific 
requirements. Having long transportation lead time as well as long production lead time 
due to highly engineered production operations, the customers are expected to wait in order 
to receive their unique feature products (Rajagopalan, 2002) (Gupta  and Benjaafar, 2004). 

• Assemble-To-Order (ATO): In ATO environments, products are assembled from 
components or modules that are required in customer orders.  This strategy is a hybrid of 
MTO (pull-type production) and MTS (push-type production). The components use a 
forecast and the MTS policy, while the finished product is driven by customer orders in the 
MTO approach. With this strategy, the key components are produced and stocked in 
anticipation of customer orders. Then, the assembly of the final product is accomplished 
upon receipt of the customer order. The policy is suitable for products that are more highly 
customized in comparison to the standard products in MTS. Nevertheless, the modules for 
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assembly of the components are not entirely known a priori (Harris and Pinder, 1995) (Song 
and Zipkin, 2003) (Benjaafar and ElHafsi, 2006). 

• Engineer-To-Order (ETO): Engineer-to-order is generally more complex compared to 
the MTS, MTO and ATO environments. In ETO, customer specifications for the final 
product require special engineering design, indicative customization, and/or specific 
materials. The policy also tends to entail smaller lot sizes. ETO products are expensive and 
the slowest in terms of production and design time. In addition, the raw materials and some 
of the major components used in the products are often difficult to source or to design and 
manufacture. In order to deal with the due dates  required by the customers of ETO 
products, high manufacturing flexibility is required on the shop floors (Gosling and Naim, 
2009).  

Part of the challenge for the suppliers of a supply chain network is in the identification of 
a point that defines which products and materials have to be forecast-driven and which 
should be order-driven. Such a point is known as the “customer decoupling point”. Figure 
29 shows the mechanism of the above-stated strategies regarding the position of the 
decoupling points. 

 

 

Figure 29- Customer order decoupling points in MTS, ATO, MTO and ETO production 
environments, from (Higgins et al., 1996).  

 

3.2.1.1.3 Distribution planning 

The planning and management of distribution include the determination of optimal quantities of 
the products that are supposed to be delivered to the customers to provide them with the right 
quantity of demand at the right place and at the right time using the proper modes of transportation. 
In the planning and management of distribution practices, the transportation lead time and the 
transportation capacity of the supply chain actors play a crucial role in achieving the most efficient 
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delivery (Akkerman et al., 2010).  In general, the production and distribution issues of supply chain 
network planning are simultaneously optimized in the literature. (Meisel et al., 2013) presents a 
model, solution methods and a case study for the integrated planning of production and intermodal 
transportation in supply chain networks. The model jointly decides on production setups to 
indicate whether a product is set up at a potential production site or not, as well as on the 
management of inventory at the production sites, the output quantities and the reservation of the 
capacity of road and rail transportation means in a multi-period. The paper proposes exact and 
heuristic based algorithms to tackle the model and provides the results by applying them to a case 
study from a company in the chemical industry.  (Azadian et al., 2015) studies an integrated problem 
of production and logistics planning for a MTO contract manufacturer looking to minimize the 
total cost of fulfilling its contract. On the production side, the authors consider a production 
planning problem where orders hold release dates, sequence dependent setup times and delivery 
due dates with nonlinear tardiness penalties. The logistics problem involves a variety of pre-
determined shipping options with different lead times and costs. The formulation of the model is 
presented by the use of mixed integer programming approaches. Since the problem is considered 
to be in the NP-hard class of optimization problems, they propose a heuristic for solving the 
problem. (Pal et al., 2011) addresses the problem of integrated procurement, production and 
shipment planning for a supply chain in order to minimize the total cost of the system including 
total transportation costs, total inventory holding costs, total set-up costs for the value-addition 
process, and the total ordering cost of the retail centers over the planning horizon. The problem is 
constrained to establish the lead times at three echelons, maintain demand-supply balance 
equations and keep inventory within the maximum holding capacities. Particle swarm optimization 
and artificial bee colony optimization algorithms are used for solving the given model. (Fallah-
Jamshidi et al., 2011) uses a genetic algorithm-based procedure in order to find optimal order 
release dates of the components in a two-level supply chain with random lead times. (Fahimnia et 
al., 2012) develops a mixed integer non-linear formulation to support the decisions for production, 
transportation, warehousing and inventory management of the required products in the supply 
chain network. The constraints of the model mainly pertain to the limited capacity of the suppliers 
of raw materials, the constrained production capacity of manufacturers and the limited capacity for 
stocking the work-in-process items in the buffer as well as the warehouses. The authors use the 
genetic algorithm in order to solve the model.  

 

3.2.1.2 Planning for backward supply chain 

The term backward logistics, according to (Fleischmann et al., 2001) (Badurdeen et al., 2009) and 
(Agrawal et al., 2015), is for all operations that: 

• Collect products after the end of their lifespan and ship them to the manufacturing centers 
or recycling departments for remanufacturing, recovery and recycling. 

• Return and/or replace defective products that are out of specification, malfunctioning or 
damaged in transportation. 
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• Characterize and classify the garbage and its disposal in accredited and authorized 
companies or individual recycling centers. 

Studies on planning for backward flows in supply chains mainly regard the practices on the 
collection and transportation of waste and/or used products from the customers to the proper 
recycling centers. The decision making at the tactical level for backward logistics encompasses 
determining the optimum quantity of the waste/used products to be transported to each of the 
existing recycling centers while minimizing the total cost and/or total environmental impacts of 
the system (Aksen et al., 2009).  (Kannan et al., 2010) aims to develop a multi-echelon, multi-period, 
multi-product closed-loop supply chain network model that determines the raw material level, 
production level, inventory-distribution level, disposal level, and recycling level at the different 
facilities of the supply chain while minimizing the total supply chain costs. The authors develop a 
resolution methodology based on the genetic algorithm to solve the mixed integer linear 
programming models. In the work, the computational results obtained through the GA are 
compared with those obtained by GAMS optimization software to validate the performance of the 
resolution algorithm. 

 

3.3 Planning for ordering materials in project scheduling: review and bridging 

the gap  

This section seeks to describe the state of the art on the scheduling of projects with a focus on 
planning for the procurement of non-renewable resources. In this context, various key words of 
the research area and their combinations are explored in the literature. The most important terms, 
involving “supply chain planning”, “environmentally responsible project scheduling”, 
“optimization”, “resource constrained project scheduling problems”, “multi project scheduling”, 
“resource investment problems”, “material ordering”, “production planning” and “ordering 
resources in project scheduling”, are reviewed through different databases including the Web of 
Knowledge, ScienceDirect, SpringerLink and Google Scholar. Table 2 summarizes all the existing 
research from the primary work in the 1980s up to the latest ones in 2016. A more detailed 
description of the problems, including model assumptions and solution methodologies, are given 
below:  

(Aquilano and Smith, 1980) introduces the integrated problem of scheduling the project with 
ordering the material. In the work, the authors state the necessity of capturing the order lead time 
of the materials in the scheduling of the activities as well as the records of the amount of storable 
materials at the project worksites and they outline a set of algorithms that are developed to deal 
with the model. In the given solution technique, the schedules are initially designed by use of the 
CPM algorithm subjected only to the precedence relation between the activities. Subsequently, 
additional procedures are implemented to consider the restrictions on material ordering.  The 
problem in the study is determined for situations where no limitations exist in the available amount 
of resources.  
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In a following study, Smith-Daniels and Aquilano extend the former work to adapt it more closely 
to real world circumstances, (Smith-Daniels and Aquilano, 1984).  The authors therefore impose a 
limit on the maximum availability of renewable resources and deal with scheduling for both 
renewable and non-renewable resources. The work presents a heuristic based on the least-slack 
rule that extends the applicability of the model to large projects.  

Relying on the previously mentioned works, (Smith-Daniels and Smith-Daniels, 1987a) develops 
an optimization mixed integer programming model wherein the net present value of the money is 
the criterion of performance of the project to be maximized.  The scheduling model in the study 
is due at a maximum completion time. The major benefit of the model is in investigating the effects 
of capital and material costs and attempting to optimize the monetary objectives for a project. 

Subsequently, (Smith-Daniels and Smith-Daniels, 1987b) develops a mixed integer 0-1 
programming model for scheduling projects with material ordering issues. The model assumes lead 
time for receiving the materials at the project worksite and imposes a due date for the completion 
time of the project. The objective of scheduling is defined in minimizing the total cost of system 
execution. Using a heuristic based on the Wagner-Whitin lot-sizing algorithm, (Wagner and Whitin, 
1958), they show that an optimal solution might be defined by decomposing the problem into a 
derivation of the project schedules and the subsequent material lot sizes. 

In the following work, (Dodin and Elimam, 2001) extends the work of (Smith-Daniels et al., 1987b) 
to incorporate variability into the duration of the activities while they attempt to minimize the total 
execution cost of the projects.  

(Sajadieh and Shadrokh, 2009) considers the discount for various ranges of ordering the materials. 
The model proposes the schedules for processing the activities as well as the proper processing 
time for every activity in order to minimize the total cost of performing the projects. The authors 
use a genetic algorithm to solve the model. 

(Zoraghi et al., 2012) proposes a mixed integer programming model to handle materials in the 
scheduling of a project with regard to the project completion deadline. They apply a meta-heuristic 
based on a genetic algorithm and simulated annealing to solve the mathematical model. In addition, 
the Taguchi method is employed to tune the parameters of the proposed algorithm. In order to 
evaluate the performance of the algorithm, the authors compare the results of the algorithm with 
the results of the test problems which are solved by LINGO software. 

(Fu, 2014) considers a multi mode project scheduling problem integrated with the handling of 
materials. In the model, the availability of renewable resources is bounded. However, this implies 
no limit in capacity for supplying non-renewable resources to the project worksite. Furthermore, 
the model considers a due date for accomplishing the project. The goal of the model is to minimize 
the total cost of the system which is comprised of renewable resource costs, material costs, ordering 
costs, inventory holding costs, backorder costs and delay penalties or rewards for early completion. 
An adapted genetic algorithm is used to solve the model. 
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(Zoraghi et al., 2014) extends their previous work, (Zoraghi et al., 2012), by considering order lead 
time and scheduling for renewable resource constraints in terms of availability. They employ two 
hybridized metaheuristic algorithms based on a genetic algorithm and simulated annealing to solve 
the integrated problem. In addition, statistical methods are employed to calibrate the parameters 
of both algorithms.  

(Tabrizi and Ghaderi, 2015) develops the study of (Sajadieh and Shadrokh, 2009) to include the 
limited capacity for stocking material at the worksite of the project. They use the GAMS 22.1 solver 
to solve the instances of the model.  

In (Tabrizi and Ghaderi, 2016), which is the subsequent work of (Tabrizi and Ghaderi, 2015), the 
authors consider the uncertainty in the duration of the activities as well as the execution costs and 
they develop a robust model which seeks to minimize the total cost of executing the activities and 
to maximize the robustness of the produced schedules. NSGA-II and a modified version of the 
multi-objective differential evolution algorithm have been used as solution approaches in the 
model. In this context, the parameters of the algorithm are tuned by the Taguchi method and the 
application of the algorithm is verified by comparing the results obtained from the algorithm and 
those obtained from the ε-constraint method.  
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Table 2 -Classification of the literature in project scheduling integrated with ordering issues from 
1980 to 2016. 
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1980 to 2016. 
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In referring to Table 2, one could conclude that the research work on this topic forms a small part 
of the literature and that there is still a need for developing models adapted to practical situations, 
especially on our research topic on planning for multiple projects accorded to Just-in-Time 
procurement of non-renewable resources.  

On the basis of the rationales given in Sections 1.3 and 1.4.2, the main idea for dealing with this 
challenge is to integrate the planning of the supply chain network into the scheduling of a typical 
multiple project scheduling problem. Since the modeling framework includes the management of 
waste produced at the project worksites, by planning for the backward flows, the network of the 
model involves both the forward and backward flows; namely, a closed-loop supply-chain network. 

From the point of view of the solution methodologies, since the methods presented in Section 2.8 
are generally applicable to different problems regardless of their type (either resource constrained 
project scheduling or time constrained project scheduling, as well as supply chain planning 
problems), the methods classified as the “problem -ndependent resolution approaches” are mainly 
of interest for solving the proposed optimization model in the course of this study. In this context, 
Branch and Bound and metaheuristic procedures are undertaken. The Branch and Bound 
procedure of CPLEX solver version 12.6.1 is used for the primary resolution of the model and its 
analyses of the results. Then, in order to tackle the untraceability of the model in large size 
problems, the application of a proper metaheuristic is targeted. According to the statistics presented 
in Section 2.9.3 on the application of the different metaheuristic-based algorithms, the genetic 
algorithm (GA) is chosen to be studied in our constrained project scheduling problems linked to 
the planning of a closed-loop supply chain, due to its significant dominance and success in the 
literature applications. The motivation for such an application originates from its strengths in 
exploring and exploiting the research space, the use of probabilistic transition rules and not 
deterministic ones, as well as its inherent characteristic of searching multiple solutions in every run 
of the algorithm that reduces the probability of getting stuck in local optima. Thus, the intention 
of this study on applying a proper metaheuristic-based search procedure focuses on the GA. The 
modeling framework with its assumptions and the application of the GA to the model brings 
novelties into constrained project scheduling problems.  

 

3.4  Chapter conclusion and discussion 

The objective of this chapter is to review the main concepts of the literature in planning for green 
supply chain networks and to study the issues for ordering materials in constrained project 
scheduling problems. To this end, the chapter starts with an informative introduction to the green 
supply chain in Section 3.2 and then discusses the main issues in planning for closed-loop supply 
chain networks in Section 3.2.1. Then it reviews the literature on ordering materials for project 
scheduling problems. Combining the results of the literature review and the requirements of the 
industry creates the possibility of designing the framework of the model.  
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The modeling framework in this study develops a multiple projects scheduling model which 
inherits some specifications of time constrained problems (imposed deadlines) and resource 
constrained project-scheduling problems (limited availability of renewable resources and the 
limited adding of new capacities to these resources), (Contribution 1). In order to plan the receiptof 
non-renewable resources in the worksites under Just-in-Time circumstances, the planning of a 
supply chain network, which is responsible for the procurement of non-renewable resources, is 
integrated into the project scheduling framework, (Contribution 2). Furthermore, in order to adapt 
the model to sustainable and green decision-making factors, the waste produced at the project 
worksites is collected and recycled, (Contribution 3). In this context, the model aims to define a plan 
for the transportation of waste from the worksites and its recycling in the appropriate recycling 
centers. Regarding solution methodologies, the resolution of the model is done by employing the 
branch and bound procedure of an optimization solver. In addition, a genetic algorithm is used to 
tackle the resolution of large-size problems, (Contribution 4). 
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4.1 Chapter introduction 

This chapter focuses on the contributions of the research stemming from the bibliography study 
in the previous chapters 2 and 3 and the requirements of real-world cases for scheduling 
constrained multi project problems. Two main objectives pursued within the chapter encompass:  

- The presentation and application of the mathematical model: In this context, Section 4.2 
describes the main characteristics of the proposed optimization model in detail. Specific assumptions 
of the problem are outlined in Section 4.2.1. Relying on the notations presented in Section 
4.2.2, Section 4.2.3 represents the mathematical formulation of the problem.  The application 
of the model is studied on a use case related to the CRIBA project. The results of the 
application and the analysis are provided in Section 4.2.5 and Section 4.2.5.1. 

- The implementation of a metaheuristic-based search procedure: Concerning the last 
contribution of the dissertation, this chapter also studies the application of a metaheuristic-
based algorithm on the proposed optimization model. The main purpose of this application 
is to determine a search procedure that tackles the intractability of the problem in the 
resolution of large-size instances. To this end, Section 4.3.1- Section 4.3.3 present the 
principals of the method used.  The presentation of the solutions and the methods for 
handling the constraints as well as the scheme that has been used for tuning the driving 
parameters of the algorithm are discussed in this context. On the basis of the results 
obtained from the calibration of the parameters from Section 4.3.3, several experiments 
have been conducted to show the performance of the algorithm. The results of the 
experiments are summarized in Section 4.3.4. 

 

4.2  Problem definition 

The main intention of the problem is to provide an optimization-based decision-making tool for 
scheduling multiple projects at a tactical level of planning subject to the just-in-time supply of 
required consumable resources to the project worksites. The mathematical objective of the model 
is to determine a solution that minimizes the total cost of executing the system.  

The model considers a set of projects to be scheduled in parallel while they are sharing a common 
pool of renewable resources (the attributes of the resource constrained projectscheduling problem). 
However, the possibility remains for extending the available capacity of these resources by renting 
a limited supplementary quantity (seen in the attributes of the time constrained project scheduling 
problem). Among the renewable resources, a set of these has high use cost, e.g. cranes. Therefore, 
a point of interest in the model is to shorten the time interval in which these resources are 
maintained at the project worksites. 

Each project encompasses a set of activities. Every activity of the project is associated with certain 
parameters involving earliest start time, latest start time, processing time, demand for renewable 
resources, demand for non-renewable resources and the amount of waste generated by executing 
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the activity. In addition, a due date is assigned to the completion of the activities so that in the case 
of exceeding the due date, an extra cost will be imposed on the system as a penalty cost.  

The supply chain network of the system generally encompasses four types of the stakeholders. It 
includes the suppliers of the raw materials, the manufacturing centers or the manufacturing centers 
with waste recycling departments, the project worksites and the individual recycling centers. The 
suppliers provide the raw materials to the proper destinations under their limited transportation 
capacity. The required intermediate products as well as the final products are produced in the 
manufacturing centers subject to the limits of their production capacity. To increase reliability in 
production, the manufacturing centers are flexible so they can increase their production capacity. 
However, the supplementary capacities in this context are limited by a given value. Two types of 
stock are considered for the stock of the items. They include the stock of inputs and outputs. The 
stock of inputs encompasses the holding of items that are received in a unit that will be used in 
that corresponding unit, e.g. raw material or intermediate products which are received in a 
manufacturing center in order to be used in producing the final product.  The stock of outputs 
involves the holding of items that have been processed in a unit and can be sent to the next 
destination of use, e.g. the final products fabricated in a manufacturing center. The waste produced 
at the worksites is supposed to be shipped to the recycling departments. These departments are 
located either in a set of individual recycling centers or in the manufacturing centers that have 
recycling departments. As with the possibility of increasing production capacity, the recycling 
capacity can be extended as well. However, this supplementary capacity is constrained by a given 
value. 

Figure 30 presents the model framework schematizing the concept of the stocking of input and 
output items. Other characteristics of the problem are outlined below.  

 



Chapter 4. Mathematical model and resolution 
 

101 
 

 

 

 

Figure 30- General presentation of the modeling framework schematizing the concept of the 
stocking of input and output items. 

 

4.2.1 Assumptions 

Following the points presented in the previous section, other assumptions of the model include 
the points below: 

• The pre-emption of activities is not allowed; once an activity has started, it cannot be 
interrupted until it is entirely accomplished. 

• The processing time of the activities is a fixed value and known a priori. 

• Four types of generalized precedence relation are used in the model. In addition, each 
precedence can be identified as a wait or no-wait precedence. 

• The no-wait precedence implies situations in which a sink activity in a precedence 
relationship should be followed immediately after the process of its source activity while 
considering the extant time lag to be spent if needed. 

• In contrast to the no-wait precedence, the wait precedence excludes the necessity of an 
immediate process of a successor activity after the processing of its predecessor.     

• The calculation for per-period running cost of the project excludes the costs related to the 
resources that have a high rental/utilization cost. 

• The model hybridizes the time constrained project scheduling problem with the resource 
constrained multiple project scheduling problem by taking the characteristics of the model 
that allow the possibility of adding supplementary renewable resources while setting a due 
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date for the activities and giving a limitation in the total availability of the renewable 
resources.   

• The stock of inputs at the project worksites is not allowed. 

• The requirements of each activity for each of the renewable and non-renewable resource 
types as well as the waste generated by the activities are known. 

• The time windows for executing the activities (earliest start and latest start time) and the 
due date are known and estimated by the experts. 

• The actors of the supply chain have been selected by the superior decision-making process 
at the strategic level. 

• The capacities of transportation, production and stocking of the materials/products as 
well as the maximum adding to the capacity in the production/recycling lines are known 
beforehand. 

• The model considers lead times for transportation and the producing/recycling of the 
items. The value of the lead times is known a priori. 

 

4.2.2 Notations 

The following notations are used to present the problem mathematically:  

Indexes: 

i: index of activities. 
t: index of time periods. 
w: index of project worksites. 
m: index of manufacturing centers. 
c: index of recycling centers. 
mc: index to present a set of units including the recycling and manufacturing 

centers. 
u: index to show all units of the network, including the project worksites, 

manufacturing centers, recycling centers, and suppliers of raw materials. 
l: index to present the various lines existing in the manufacturing/recycling 

centers, including production lines lp and recycling lines lc. 
nr: index of products used at the worksites (non-renewable resources of the 

projects). 
g: index of waste types generated at the worksites. 
pr: index of network items, including the non-renewable resources required at the 

project worksites, the waste generated at the worksites, intermediate products 
and raw materials.  

pt index of items including the intermediate products, the final products of the 
supply chain network and generated waste. 

r index to present renewable resources used at the worksites. 
r' index to present renewable resources used at the worksites with high rental 

cost, 
r'є R. 
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f (o,d,p): index to present flows which are to determine the shipment of item p from 
origin o to destination d, o є U, d є U, p є PR. 

in (d,p): index of pairs which are to show item p received at destination d, d є U, p є PR. 
out (o,p): index of pairs used to determine an item p which is sent from origin o, o є U-S, 

p є PR. 
line (l,mc): index to relate production/recycling lines l to the corresponding 

manufacturing/recycling center mc. 
pro (l,mc,pt): index of triplets presenting the production/recycling of item pt in line l at 

manufacturing/recycling center mc. 
b (p, p'): index of pairs to present the linkage between composing element p and final 

product  p', p є PR, p'є PR. 
Sets: 

I: set of activities. 
T: set of time periods. 
W: set of project worksites 
PR: set of various items of the network, including the non-renewable resources of 

the projects, the waste generated at the worksites, intermediate products and 
raw materials. 

PT: set of items including the intermediate products, the final products of the 
supply chain network and generated waste. 

U: set of all units of the network, including the project worksites, manufacturing 
centers, recycling centers, and suppliers of the raw materials. 

MC: set of units including the recycling and manufacturing centers. 
L: set of various lines existing in the manufacturing/recycling centers, including 

production lines lp and recycling lines lc. 
NR: set of non-renewable resources. 
R: set of renewable resources. 
Flow(o,d,p): set of flows which are to determine the shipment of item p from origin o to 

destination d, o є U, d є U, p є PR. 
IN(d,p): set of pairs which are to show item p received at destination d, d є U, p є PR. 
OUT(o,p): set of pairs used to determine an item p which is sent from origin o, o є U-S, p 

є PR.  
LINE(l,mc): set of pairs used to determine the relationship of the production/recycling 

lines l to the corresponding manufacturing/recycling center mc. 
Iw : set of activities that belong to worksite w, (Iw ⊂ I). 
SSpre

 
: start-to-start precedence relation of activity j, denoted by pair (i, j). 

SFpre
 
: start-to-finish precedence relation of activity j, denoted by pair (i, j). 

FSpre
 
: finish-to-start precedence relation of activity j, denoted by pair (i, j). 

FFpre
 
: finish-to-finish precedence relation of activity j, denoted by pair (i, j). 

Nowait SSpre : 1 if activity j of precedence relation SSpre starts immediately after activity i has 
started, 0 otherwise. 

Nowait SFpre : 1 if activity j of precedence relation SFpre finishes immediately after activity i 
has started, 0 otherwise. 

Nowait FSpre : 1 if successor activity j of precedence relation FSpre starts immediately after 
finishing the predecessor activity i, 0 otherwise. 
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Nowait FFpre : 1 if successor activity j of precedence relation FFpre finishes immediately after 
finishing the predecessor activity i, 0 otherwise. 

φw 
: a linkage between i and j to determine beginning activity i and ending activity 

j of worksite w. 
φr' w

'  : a linkage between i and j where activity i represents the activity of placing high-
rental-cost renewable resource r' in worksite w and activity j represents the 
activity of displacing the high-rental-cost renewable resource r' in worksite w. 

Parameters: 

ETi : earliest start time of activity i . 
LTi : latest start time of activity i . 
DDi : due date of activity i. 
Dui : duration of activity i. 
Dnri,nr : demand of activity i for non-renewable resource nr. 
Drir : demand of activity i for renewable resource r. 
FSij : minimum time lag between the end of activity i and the start of activity j. 

SSij : minimum time lag between the start of activity i and the start of activity j. 

SFij : minimum time lag between the start of activity i and the end of activity j. 

FFij : minimum time lag between the end of activity i and the end of activity j. 

Arr : initial availability of renewable resource r. 
Maxr : maximum addable quantity of resource r. 
Pcw :  per-period cost of running worksite w. 
Ccr'w :  cost of using renewable resource r' at worksite w. 
Rcr : rental cost of renewable resource r. 
Penci : penalty cost for one period of delay in the accomplishment of activity i. 
StinCapu : capacity for stocking the incoming items in unit u. 

StoutCapu : capacity for stocking the outgoing items in unit u except for the suppliers of 
the raw materials. 

TnCapu : transportation capacity of unit u. 

LAvCapline l,mc t: production/recycling capacity of line l in center mc  at time period t. 

MaxAddline(l,mc):  maximum capacity that can be added to the initial capacity of line l in center 
mc. 

Wlpt,l : workload of the process of item pt  in line l. 

Tcf(o,d,p) : cost for shipping a unit of item p from origin o to destination d. 

Tlf(o,d,p) : lead time for shipping item p from origin o to destination d. 

Plpro(l,mc,pt) : lead-time for production/recycling item pt  in line l of manufacturing center 
mc. 

StinCpr : cost for stocking a unit of used item pr. 

StoutCpr : cost for stocking a unit of produced item pr. 

StCofpr : coefficient which presents the space occupied by a unit of item pr.  

ProdCpt : production/recycling cost of product pt. 

AddCLline l,mc : cost for adding a unit of capacity to line l in center mc. 
Vb(p,p') : amount of composing element p in product p'. 
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Gpgi : amount of type g waste generated by activity i. 

 

4.2.3 Mathematical formulation 

Using the above-mentioned notations, the decision variables, constraints and objective functions 
of the model are defined below. Figure 31 summarizes the decision variables used for modeling 
schematically.   

Decision variables: 

Zit : 1 if activity i starts at time t, 0 otherwise. 
Uit : 1 if activity i is processing over time t, 0 otherwise. 
Ltnsi : lateness of activity i. 
Si : start date of activity i. 
AddRrt : added quantity of renewable resource r over time period t. 
TQf o,d,p ,t : transported quantity of item p from origin o to destination d at time t, o є U, 

d є U, p є PR. 
Stinin d,p ,t : stock quantity of item p that is received at destination d at time t, d є U, p є 

PR. 
Stoutout o,p ,t : stock quantity of item p that is sent from origin o at time t, o є U, p є PR. 

ProdQpro l,mc,pt ,t  produced/recycled quantity of item pt in line l of unit mc at time t. 

AddLline l,mc ,t : quantity of added supplementary capacity to line l in unit mc at time t. 
 

 

Figure 31- Classifying the decision variables of the mathematical model. 
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Objective Function 

 

Min OF = [ ∑ ∑ (Sj+i,j є φw  
Duj-Si )Pcw w + ∑ ∑ ∑ (Sj+i,j  є φ

r' w
'   Duj-r'w 

Si )Ccr' w + ∑ Ltnsi Pencii  

+ ∑ ∑ AddRrt Rcr tr   ] + 

 

[∑ ∑ TQf o,d,p ,tt  TCf o,d,p ,tf(o,d,p) + ∑ ∑ Stinin d,p ,tt  StinCpin(d,p) + ∑ ∑ Stoutout o,p ,tt  SoutCpout(o,p)  + ∑ ∑ ProdQpro l,mc,pt ,tt  ProdCptpro(l,mc,pt)  + ∑ ∑ AddLline l,mc ,t   AddCLline l,mc  tline(l,mc)  ] 
 

 
 
 
 
 
 
 
 
 

3-1 

The objective, equation 3-1, of the model is to minimize the total cost of the system. It includes 
two types of costs: 
 
 - Costs of projects: These costs are mathematically presented by terms included in the first bracket of 
the objective function. They involve respectively the total cost of running the projects, the cost 
related to use of renewable resources whose rental cost is high (where the objective is to minimize 
the duration that these resources will be used at the worksites), the total penalty cost for late 
completion of the activities and the total cost of adding supplementary renewable resources.  
- Costs of supply chain, the terms included in the second bracket are associated with supply chain 
planning costs. They are respectively the total transportation cost of shipping the items, the stock 
cost of the incoming items into units, the stock cost of the outgoing items from units, the 
production/recycling cost of products/waste and the cost related to adding new 
production/recycling capacities in the related lines, discussed in (Gholizadeh-Tayyar et al., 2016b). 
 
Subject To 

Project planning constraints :  
   ∑ Zit

LTi 
t= ETi 

=1 ∀i є I 3-2 ∑ Uit
ETi +Dui −
t= ETi 

= Dui   ∀i є I 3-3 
Sj  ≥ Si  + Dui +FSij  ∀ i, j є FSpre , Nowait FSpre 

=0 3-4 
Sj  ≥ Si  +SSij    ∀ i, j є SSpre, Nowait SSpre=0 3-5 
Sj  +Duj ≥ Si  +SFij  ∀ i, j є SFpre, Nowait SFpre=0 3-6 
Sj  + Duj ≥ Si  + Dui + FFij  ∀ i, j є FFpre, Nowait FFpre=0 3-7 
Sj  = Si  + Dui +FSij  ∀ i, j є FSpre , Nowait FSpre 

=1 3-8 
Sj  = Si +SSij  ∀ i, j є SSpre, Nowait SSpre=1 3-9 
Sj  + Duj = Si  +SFij   ∀ i, j є SFpre, Nowait SFpre=1 3-10 
Sj  + Duj = Si  + Dui + FFij  ∀ i, j є FFpre, Nowait FFpre=1 3-11 ∑  Uik

t-1+Dui
k=t  ≥ Dui Zit    ∀i є I, t є {ETi , …, LTi } 3-12 

Si = ∑ t Zit
LTi 
t= ETi 

  ∀i є I 3-13 
Ltnsi ≥ ��  + Dui - DDi   ∀i є I 3-14 
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∑ Dririє I  Uit≤ Arr+ AddRrt   ∀r є R, ∀t є T 3-15 AddRrt ≤ Maxr    ∀r є R, ∀t є T 3-16 
 
Constraints that link the project planning problem to the closed-loop supply chain planning problem: 
 ∑ TQf o,w,nr ,   t - Tlf(o,w,nr)

 f   = ∑  Zitiє Iw 
Dnri, nr ∀ w є W, nr є NR, t є T 3-17 

 
Stinin m,p ,   t-1+∑ TQf o,m,p ,   t -Tlf o,m,p

 f = 

 Stinin m,p ,   t +  ∑ ∑ ProdQpro(lp, m,p'),tpro  Vb(p,p')b(p,p')  ∀ in(m,p) є IN(d,p), t єT 3-18 
Stinin d,g ,t-1+ ∑ TQf o,d,g ,t-Tlf o,d,g

 f = 

Stinin d,g ,   t+∑ ProdQpro lc,d,g ,   tpro  ∀in(d,g) є IN(d,p), t єT 3-19 
Stoutout m,p ,   t-1 + ∑ ProdQpro lp,m, p ,   t-Plpro lp,m, p

 pro = ∑ TQf o,m,p ,t f +Stoutout m,p ,   t ∀out(m,p) є OUT(o,p), t єT 3-20 
Stoutout w,g ,   t-1+  ∑  Ziti є Iw 

Gpg,   i = ∑ TQf w,d,g ,   t f + Stoutout w,g ,   t ∀out(w,g) є OUT(o,p), t єT 3-21 ∑ ProdQpro l,mc,pt ,t Wlpt,l pro ≤ 

LAvCapline l,mc ,t + AddLline l,mc ,t  ∀ line l,mc  є LINE l,mc , t єT 3-22 
AddLline l,mc ,t  ≤  MaxAddline (l,mc) ∀ line l,mc  є LINE l,mc , t єT 3-23 ∑ Stinin d,p |d=u,  tp StCofp ≤ StinCapu  ∀ u є U, t єT 3-24 ∑ Stoutout o,p |o=u, tp  StCofp ≤ StoutCapu ∀ u є U, t єT 3-25 
TQf o,d,p |o=u,t≤ TnCapu ∀ u є U, f(u,d,p) є F(o,d,p),t єT 3-26 

 
Stinin d,p ,t = 0 ∀ in(d,p)є IN(d,p), t є{ 0,T} 3-27 
Stoutout o,p ,t = 0 ∀out(o,p)є OUT(o,p), t є{ 0,T} 3-28 
 

Decision variables: 
 

0 ≤ Uit ≤ 1 ∀ i є I , t є T 3-29 
Ltnsi , Si, Rrt , TQf o,d,p ,t , Stinin d,p ,t , Stoutout o,p ,t ,  
AddLline l,mc ,t , ProdQpro l,mc,pt ,t ≥ 0  

∀ f o,d,p є F o,d,p , 
in d,p  є In d,p ,  
out o,p є OUT o,p , 
pro l,mc,pt  є PRO l,mc,pt , 
i є I, r є R 

 
 
 
3-30 

Zit є {0,1} ∀ i є I , t є T 3-31 
   

 

Constraint 3-2 guarantees that all activities of the projects will be started at a time point from the 
interval between their earliest start times to their latest start times. Equation 3-3 represents the sum 
of the periods in which an activity is running from its earliest start to the latest finish time, ETi +
Dui , should be equal to its processing time. Constraints 3-4-3-11 deal with the precedence 
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constraints between the activities. In this context, constraint 3-4 defines the start time for successor 
activities subject to the “wait” condition, the finish-to-start relation and the extant time lag in the 
precedence relation. Similarly, constraints 3-5-3-7 deal with the determination of the start time for 
the activities subject to the “wait” condition respectively under start-to-start, start-to-finish, and 
finish-to-finish relations wherein a time lag accorded to the precedence that might be spent. 
Equation 3-8 considers the activities under a finish-to-start precedence relation with a “no-wait” 
condition and determines the start time of a successor activity with regards to the time lag in the 
precedence relationship. Similarly, this purpose is followed in equations 3-9-3-11 for the activities 
respectively subjected to the start-to-start, start-to-finish, and finish-to-finish precedence relations. 

Constraints 3-12 and 3-13 link the decision variables Zit, Uit and Si. Constraint 3-14 calculates the 
lateness that may occur in the completion of the activities. This is defined by the difference between 
the due date imposed for the accomplishment of an activity and its real completion time. 
Constraints 3-15 and 3-16 deal with the availability of renewable resources. In this context, 
constraint 3-15 guarantees that the requirement for renewable resources at every time period must 
not exceed the initial quantity of the renewable resources plus the supplementary quantity that 
could be added in. Constraint 3-16 limits the quantity of the added supplementary renewable 
resources. Taking the transportation lead time into account, equation 3-17 guarantees that at every 
time period t the total quantity of non-renewable resources that are transported to the worksites 
satisfies the total demand of the activities, which are going to be started in that time period, for 
every non-renewable resource nr. Constraints 3-18-3-19 deal with the constraints related to the 
balance of the flow. In this context, constraint 3-18 considers the materials and/or intermediate 
products received in a production center.  Considering the transportation lead time, the equation 
states that in every time period t, the inventory level of these incoming products that are available 
from the former period plus the quantity which is going to be received in the production center 
from their suppliers is equal to the quantity of the raw materials/products that are used for 
producing the products of the production center plus the quantity of the incoming items that are 
stocked at the end of time period t at the manufacturing center. Constraint 3-19 applies the same 
approach for the different waste types that are received in the recycling centers. Equations 3-20 
and 3-21 determine the balance of the flow for the items that are going to be delivered from a unit 
to their end-use destinations, (out-going products). In this context, equation 3-20 regards the 
production centers. Considering production lead-time, this guarantees that the level of inventory 
for products that are available from the former period in the corresponding manufacturing center 
plus the quantity that will be produced is equal to the quantity that will be sent to the next 
destination of use and the quantity that will be stocked in the unit at the end of the period. 
Constraint 3-21 employs the same concept to the waste that is transported from the project 
worksites to the recycling centers. Constraint 3-22 requires that the production/recycling of the 
products cannot exceed the available production/recycling capacities plus the capacity that could 
be added. Constraint 3-23 defines a limit on extending the production/recycling capacity. 
Equations 3-24 and 3-25 respectively deal with the limited capacity for stocking the incoming and 
outgoing products. Constraint 3-26 considers the limited transportation capacity. Equations 3-27 
and 3-28 define the initial and final states of the products in stock, respectively for incoming and 
outgoing items. And finally, constraints 3-29-3-31 determine the type of decision variables. It is 
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worth noting that in the model the only binary decision variables are Zit.  Indeed, considering 

constraints 3-12 and 3-3 on one hand and constraint 3-29 on the other hand, Uit will always result 
in 0 or 1.  

 

4.2.4 Instance problem and data setting 

The above-mentioned modeling framework has been applied to a case study related to the CRIBA 
Project. The dimension of the instance problem includes two worksites of the projects that are 
integrated into a supply chain network. The forward supply chain network includes one supplier 
of raw materials, two carpentry manufacturing centers and two panel manufacturing centers. The 
backward supply chain encompasses one individual recycling center and one recycling center 
located in one of the carpentry manufacturing centers (intermediate products), Figure 32.  

 

Figure 32- Presentation of a typical problem instance under the CRIBA project. 
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Table 3 -Activity list of the projects and their data settings 
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The list of the activities to perform in each of the projects and their data settings are presented in 
Table 3-Table 5. The parameter settings related to the different actors of the supply chain network 
regarding their stock, production and transportation capacity, the costs related to production, 
stock, transportation and the adding of supplementary production/recycling capacities as well as 
the production/recycling lead times and bills of materials (BOM) are outlined in Table 6-Table 12. 

Table 4 -Precedence relations between the activities and the associated time lags. 

 

Table 5-Data settings related to use of renewable resources and the execution of the projects. 

 

Table 6-Data setting related to the stock capacity of the units for incoming and outgoing items as 
well as the units’ transportation capacity. 

 

  Activity ID Predecessor activity Time-lag Precedence type No-wait   Activity ID Time-lag
Precedence 

type
No-wait

2 1 1 Finish-to-Start 0 18 1 Finish-to-Start 0

3 1 1 Finish-to-Start 0 19 1 Finish-to-Start 0

4 2 1 Finish-to-Start 0 20 1 Finish-to-Start 0

5 2 1 Finish-to-Start 0 21 1 Finish-to-Start 0

5 3 -1 Finish-to-Start 0 21 -1 Finish-to-Start 0

6 3 1 Finish-to-Start 0 22 1 Finish-to-Start 0

7 4 0 Finish-to-Start 1 23 0 Finish-to-Start 1

8 5 0 Finish-to-Start 1 24 0 Finish-to-Start 1

9 6 0 Finish-to-Start 1 25 0 Finish-to-Start 1

10 7 0 Finish-to-Start 1 26 0 Finish-to-Start 1

11 8 0 Finish-to-Start 1 27 0 Finish-to-Start 1

12 10 1 Finish-to-Start 0 28 1 Finish-to-Start 0

12 11 1 Finish-to-Start 0 28 1 Finish-to-Start 0

13 11 1 Finish-to-Start 0 29 1 Finish-to-Start 0

14 10 1 Finish-to-Start 0 30 1 Finish-to-Start 0

15 9 -1 Finish-to-Start 0 31 -1 Finish-to-Start 0

15 13 1 Finish-to-Start 0 31 1 Finish-to-Start 0

16 14 1 Finish-to-Start 0 32 1 Finish-to-Start 0

16 15 1 Finish-to-Start 0 32 1 Finish-to-Start 0

Cost/period Max-add Availability Cost by type Start activity End activity Cost/period

Workers 120 25 10 Run 1 16 2500

Crane 1200 5 2 Run 17 32 2500

Truck 250 15 5 Crane use 2 12 1200

Crane use 18 28 1200

Project ID Max finish date

Ch1 35

Ch2 35

Unit ID Input stock capacity(m3) Output stock capacity(m3) Supply capacity(m3)

Ch1 1 0.05 4 10

Ch2 1 0.05 4 10

SA1 2 10 12 50

SA2 2 11 12 50

SB 2 60 50 100

SC 2 60 50 100

SD 3 50 0 60

Re 4 20 2 10
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Table 7 –Production, recycling and stock costs of the different items in the units. 

 

Table 8 -Processing workloads and lead times of the different items on their corresponding lines. 

 

Table 9 -Available production and recycling capacity in every line. 

 

Table 10- Maximum capacity addable to every line with the associated costs.  

 

 

 

Item ID Production/ recycling cost(Euro) Stock cost(Euro) Stock coefficient (m3/unit)
P1 1 200 5 1

P2 1 210 8 1

P3 1 300 10 1

B 2 40 3 1

C 2 50 4 1

D1 3 0 3 1

D2 3 0 3 1

D3 3 0 5 1

D4 3 0 5 1

W1 4 1 0.2 1

W2 4 1 0.2 1

Workload Production/recycling 

(Machine-Day) lead-time (Day)

L1 P1 1 1

L1 P2 1 1

L1 P3 1 1

L2 P3 1 1

L2 P1 1 1

L2 P2 1.2 1

L3 B 1 1

L4 C 1 1

ReTrai W1 1 1

Lre W1 1 1

ReTrai W2 1 1

Processing line Item

Available capacity

in Line 1 2 3 4 … 8 9 10 11 … 33 34 35

L1 50 50 50 50 ... 50 50 50 50 … 50 50 50

L2 50 50 50 50 … 50 50 50 50 … 50 50 50

L3 20 20 20 20 … 20 20 20 20 … 20 20 20

L4 20 20 20 20 … 20 20 20 20 … 20 20 20

Lre 4 4 4 4 … 4 4 4 4 … 4 4 4

ReTrai 4 4 4 4 … 4 4 4 4 … 4 4 4

Time Periods

Line Type Site Maximum add into capacity Cost of adding capacity
L1 Production SA1 50 300

L2 Production SA2 50 240

L3 Production SB 20 210

L4 Production SC 20 60

Lre Recycling SB 5 60

ReTrai Recycling Re 5 60
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Table 11 -Transportation of items between units, the cost and lead time associated with each 
transportation. 

 

Table 12- Presentation of the Bill of Materials. 

 

 

4.2.5 Experimental results: exact procedure 

The instance problem presented in the previous section has been solved by use of CPLEX solver 
version 12.6.1 implemented in Java version 8 in a notebook Intel® Core i7 CPU, 2.20 GHz 

Origin Destination Item
SD SB D1 2 10

SD SB D2 2 10

SD SC D1 2 10

SD SC D2 2 10

SB SA1 B 1 20

SB SA2 B 1 10

SC SA1 C 1 10

SC SA2 C 1 10

SA1 Ch1 P1 1 20

SA1 Ch1 P2 1 10

SA1 Ch1 P3 1 10

SA2 Ch2 P2 1 20

SA2 Ch2 P3 1 10

SA2 Ch2 P1 1 20

SA2 Ch1 P1 1 20

SA2 Ch1 P2 1 20

SA2 Ch1 P3 1 20

Ch1 SB W1 1 20

Ch2 Re W1 1 20

Ch1 Re W2 1 20

Ch2 Re W2 1 20

SD SA1 D3 2 10

SD SA1 D4 2 10

SD SA2 D3 2 10

SD SA2 D4 2 10

Transportation

Flow

Lead-time(Day) Cost(Euro)

Product Used element Quantity (Unit)
P1 B 2

P1 C 3

P2 B 4

P2 C 5

P3 B 1

P3 C 1

B D1 2

B D2 1

C D1 1

C D2 3

P1 D3 2

P2 D3 1

P3 D3 1

P1 D4 2

P2 D4 1

P3 D4 1

BOM
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processor and with 8 GB of the memory. The resolution process contains two phases: the pre-process 

phase and the main phase. These phases are explained in the following section: 

 

4.2.5.1 Implementation of a pre-processing phase: results and sensitivity 

analysis 

The main idea of the pre-process phase is to define a procedure to modify the activities’ earliest start 
times and latest start times, which are initially estimated by the experts, and provide new efficient 
bounds which can decrease the complexity of the instance problem to solve to optimality.  Having 
considered mixed-integer programming models, since the complexity of the models is related to 
the number of the binary-decision variables, (Wolsey and Nemhauser, 2014), reducing the 
computational efforts for the resolution of complex problems can be obtained by decreasing the 
total number of binary decision variables. In the proposed mathematical model, the total number 

of the binary variables of the problem is equal to N= ∑ (LTi
I
i=1 -ETi). Therefore, an efficient way 

to decrease N is to tighten the interval [LTi , ETi] for every activity. To achieve this, a two-step 
algorithm based on linear-programming relaxation is proposed, (Gholizadeh-Tayyar et al., 2014). 
The first step of the procedure modifies the earliest start of the activities by attempting to raise the 
corresponding value for each activity as much as possible. On the other hand, the results obtained 

from the first step for  ETi are used to determine a modified  LTi in the second step. Subsequently, 

within the second step, the algorithm decreases the value of  LTi for each activity, in order to 
tighten the bound as much as possible. The pseudo-code of the algorithm (Algorithm 1) is 
presented in the following:  

Algorithm1: Pre-processing phase  
Step 1:   1. Relax binary variables  Zit     

2. for all i  do     
3.           ETi ⃪ ETi ,  LTi ⃪T       
4. end for     
5. while no change between two sequential  ETi       
6.       for all i do     
7.                    OF'⃪ Minimum  Si subject to constraints 3-2 to 3-30     
8.                     OF' → ETi      
9.        end for     

 10. end while      
Step2:  11. for all i  do     

12.            LTi ⃪ LTi   ,  ETi ⃪ ETi     
13. end for     
14. while no change between two sequential  LTi       
15.          for all i do     
16.                    OF''⃪ Maximum  Si subject to constraints 3-2 to 3-30     
17.                     OF''→ LTi      
18.           end for     
19. end while     
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Table 13 summarizes the results obtained from the pre-processing phase: 

Table 13 –Performance of the propsed exact procedure obtained by its application on a set of 
data. 

Activity 
ID 

Activity description Initial Estimated values Modified values 
Earliest 
start time 

Latest  
start time 

Earliest 
start time 

Latest 
start time 

1 Start 7 20 7 16 
2 Crane assembly 7 21 7 16 
3 Preparing for access  15 21 15 17 
4 Building 2, ground floor 16 18 16 18 
5 Building 1, ground floor 17 25 17 18 
6 Building 3, ground floor 19 27 19 26 
7 Building 2, first floor 8 26 17 19 
8 Building 1, first floor 9 27 18 19 
9 Building 3,first floor 10 28 21 28 
10 Building2, second floor 12 29 18 20 
11 Building1, second floor 14 27 19 20 
12 Crane disassembly 15 28 20 28 
13 Building1, annex 7 21 20 21 
14 Building2, finishing 18 30 20 30 
15 Building1&3, finishing 22 29 22 29 
16 Finish 24 31 24 31 
17 Start 7 20 7 16 
18 Crane assembly 7 21 7 16 
19 Preparing for access  15 21 15 17 
20 Building 2, ground floor 16 18 16 18 
21 Building 1, ground floor 17 25 17 18 
22 Building 3, ground floor 19 27 19 26 
23 Building 2, first floor 8 26 17 19 
24 Building 1, first floor 9 27 18 19 
25 Building 3,first floor 10 28 21 28 
26 Building2, second floor 12 29 18 20 
27 Building1, second floor 14 27 19 20 
28 Crane disassembly 15 28 20 28 
29 Building1, annex 7 21 20 21 
30 Building2, finishing 18 30 20 30 
31 Building1&3, finishing 22 29 22 29 
32 Finish 24 31 24 31 

 

Resolution Time (s) 
Using Initial Estimated Earliest and Latest 

Start Times 
Using Initial Modified Earliest and Latest 

Start Times 
 1265   738  

 

The modified earliest starts and latest starts are used to solve the problem in the main phase. The 
results of the instance problem are presented in Figure 33 - Figure 36. 

Figure 33 depicts the Gantt chart of the activities. Although both of the projects are identical in 
terms of the number of the activities, their activity network structure and data settings, different 
start and finish dates (which are related to the “Start” and “Finish” activities in the activity list) 
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ensue. Similarly, other equivalent activities in the projects (for instance, Activity 2 from project Ch1 
and Activity 18 from project Ch2) have unequal start and finish dates as well. This difference is 
due to the fact that the optimization procedure attempts to balance the workload for production, 
transportation and stock throughout the supply chain network. Indeed, based on the different 
demand that could be generated at the start of the activities, the supply chain aims to postpone or 

expedite the activities throughout their feasible time windows, [ ETi , LTi ],  so that the total 
workload is adjusted in the different units of the supply chain network. Furthermore, the different 
start date for the seminal activities of the projects can stem from the assignment of renewable 
resources to the activities. In this context, regarding the limited quantity available of renewable 
resources, since renting a supplementary quantity will cost the system, the model attempts to avoid 
renting as much as possible and to allocate the renewable resources available for the activities while 
considering the due dates and the probable penalty cost resulting from late completion of the 
activities. Therefore, taking the existing constraints in performing the activities into account, the 
model postpones or expedites the activities in their executive time windows. 

Figure 34 summarizes the results obtained for adding renewable resources to the projects over 
different time periods. The time periods from 14 to 22 of the instance problem present significant 
numbers for employing supplementary resources. This interval involves the execution of a major 
number of activities demanding renewable resources. Obviously, the graphs related to the adding 
of these resources as well as the lateness of the corresponding activities, Figure 35, are dense in this 
time area. In fact, considering the limitations that exist in the system in terms of limited production, 
stock and transportation capacity of the supply chain network as well as the time windows of 
executing the activities, the model allocates the renewable resources that are initially available for 
the projects and it also adds the supplementary capacities of the resources in order to be able to 
satisfy the planning constraints and find a solution to achieve optimality. On the other hand, the 
lateness of the activities in this time interval originates from the intention of the model to find a 
balance between either delaying the activity or adding renewable resources in some cases of 
executing the activities as well as the precedence constraints under the wait and no-wait types. 

Figure 36 depicts the results obtained for the total transportation and production quantity of 
different items in the supply chain network as well as the values for the supplementary capacities 
which are added to the different production/recycling lines. Considering the start time of the 
project activities, the production and transportation operations of the supply chain network are 
adjusted accordingly. In this context, taking the production and transportation lead times into 
account, the procurement of the raw materials and the production of the intermediate products as 
well as the production and procurement of the final products are done before the start time of the 
projects. Regarding Figure 36 and the data setting of the problem of the transportation and 
production lead time of the final products (panels) in Table 8 and  
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Table 11 as well as the start time of the projects, it is clear that for some of the items (such as the 
panels), a quantity of them are produced in the former time periods and they are stocked in their 
manufacturing centers.  

 

 Figure 33- Start and finish dates of the activities.   

 

Figure 34- Number of renewable resources added to every time period. 

 

Figure 35- Number of time periods late for the due date for the different activities of the 
projects. 
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Figure 36- Results for the transported, produced and recycled quantities of every item of the 
network. 
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Then, they are gradually allotted to the worksites by the demand generated at the worksites. 
Similarly, the produced waste is shipped to the recycling centers over different time periods. 
However, for the most optimum solution, some quantities of waste are stocked at the project 
worksites (see Figure 36, time period 35 for the transported quantity of waste W1 and W2) and 
then they are shipped to the proper recycling centers. 

However, since the manufacturers of the supply chain networks are selected at the strategic level 
of planning based on their capacity for production and supply, in the solution of the basic problem, 
where no risk of losing the production/recycling capacity of the corresponding units is considered, 
there is no need to add extra production/recycling capacities. 

Sensitivity analysis: As an alternative, due to the sensitivity of the optimal solution to the different 
parameters of the model, the model must be resolved several times with slight variations in the 
coefficients and parameters of the problem under study, to see its sensitivity to different data before 
choosing a solution for implementation.  

 

Figure 37- Variation of the total penalty cost and total resource add cost to the variation in unit 
cost for one period of delay. 
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Figure 38- Presentation of the impact of the change in transportation capacity on project 
planning and supply chain cost. 

In keeping with the current instance problem, Figure 37 indicates the variation of the total “penalty 
cost” and total “resource add cost” to the variation by 50% in the unit cost of the penalty for late 
completion of the activities. As can be seen from the figure, by increasing the unit “cost of penalty” 
to 30%, there is an increase in the total cost of adding the renewable resources. Indeed, this matter 
stems from the fact that the optimization model attempts to employ supplementary resources with 
the aim of avoiding high penalty costs for late completion of the activities. However, since the 
behavior of the model depends totally on the characteristics of the activities in the network, in 
terms of the precedence relations based on wait and no-wait types and also on the limit for the 
maximum adding of renewable resources, the increase in the unit penalty cost could lead to an 
increase in the total penalty cost. 

Figure 38 depicts the behavior of the model through the change in transportation capacity. As the 
graph illustrates, reducing the transportation capacity to 40% and 50% less than its initial value 
does not result in a solution. The reason relates to the matter of the selection of the suppliers and 
the design of the supply chain network at the higher level of decision making in strategic planning. 
In fact, in decision making for the design of the supply chain network, the actors of the supply 
chain have been chosen for their ability to supply the required items. Therefore, having considered 
this criterion, a large amount of the capacity loss (40-50%) obviously leads the problem to fail in 
resolution. Decreasing the transportation capacity makes the model start and finish the activities 
late (the impact of the supply chain as the bottleneck of the system),  Table 14. Therefore, in the 
graph related to the total penalty cost of the model, by decreasing the transportation capacity, the 
penalty cost for the late completion of the activities and, consequently, the total cost of running 
the projects increase. However, after the point related to a 15% decrease in transportation cost, the 
graphs corresponding to the total penalty cost, total resource add cost, total supply chain cost, total 
project planning cost and, consequently, total cost of the system remain comparatively stable. 
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 Table 14 –Start time, finish time and lateness of the activities at the level of 30%, 20% and 15% 
in decreases to transportation capacity.   

Activity 

ID 

Transport capacity 30% 

decreased 

Transport capacity 20% 

decreased 

Transport capacity 15% 

decreased 

Start 

date 

Finish 

date Lateness 

Start 

date 

Finish 

date Lateness 

Start 

date 

Finish 

date Lateness 

1 13 13 0 13 13 0 12 12 0 
2 14 16 1 14 16 1 13 15 0 
3 15 16 0 15 16 0 15 16 0 
4 18 19 2 18 19 2 16 17 0 
5 17 18 0 17 18 0 17 18 0 
6 25 27 5 21 23 1 20 22 0 
7 19 20 1 19 20 1 17 18 0 
8 18 19 0 18 19 0 18 19 0 
9 27 28 4 23 24 0 22 23 0 
10 20 22 0 20 22 0 18 20 0 
11 19 20 2 19 20 2 19 20 2 
12 23 24 3 23 24 3 21 22 1 
13 21 22 0 21 22 0 21 22 0 
14 28 29 4 24 25 0 22 23 0 
15 27 29 3 23 25 0 23 25 0 
16 30 30 2 26 26 0 26 26 0 
17 12 12 0 12 12 0 13 13 0 
18 13 15 0 13 15 0 14 16 1 
19 15 16 0 15 16 0 15 16 0 
20 16 17 0 16 17 0 18 19 2 
21 17 18 0 17 18 0 17 18 0 
22 23 25 3 23 25 3 22 24 2 
23 17 18 0 17 18 0 19 20 1 
24 18 19 0 18 19 0 18 19 0 
25 25 26 2 25 26 2 24 25 1 
26 18 20 0 18 20 0 20 22 0 
27 19 20 2 19 20 2 19 20 2 
28 22 23 2 21 22 1 23 24 3 
29 21 22 0 21 22 0 21 22 0 
30 26 27 2 26 27 2 25 26 1 
31 25 27 1 25 27 1 24 26 0 
32 28 28 0 28 28 0 27 27 0 

 

The behaviour of the instance problem in the variation in production capacity is presented in Figure 
39. Definitively losing production/recycling capacities in the facilities (because of technological 
problems or production risks) makes the model take positive values for the decision variable related 
to the quantity of added supplementary capacities to the lines and this subsequently increases the 
total cost of the system. 
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Figure 39- Presentation of the impact of the change in production/recycling capacity on project 
planning and supply chain cost. 

 

Taking the “production” and “transportation” capacities as the sensitive parameters of the model, the 
results of the sensitivity analysis related to these two parameters lead decision makers to choose an 
alternative. Regarding Figure 38 and Figure 39, the optimal solution for the instance problem can 
be obtained from the data related to the case of the 15% reduction in transportation capacity. 
Therefore, modifying the transportation capacity to a 15% decrease can be recommended for the 
current instance problem. Similarly, a reduction of 20% in production capacity at the manufacturing 
centers can be proposed to the manufacturers to allow them to reassign this capacity elsewhere.   

 

4.3 Development of a metaheuristic-based solution methodology  

This section aims to present a metaheuristic-based search procedure that is applied to the proposed 
modeling framework. On the basis of study presented in (Tayyar et al., 2016), two main objectives 
have been taken into consideration in this context. They include i. development of a pre-processing 
phase and ii. deployment of the genetic algorithm: 

 

4.3.1 Pre-processing phase 

Before adaptation of the genetic algorithm to the model, the pre-processing phase has been 
delineated and utilized. Its objective is to simplify the method of the search procedure in 
encountering the modeling framework and enhance the working mechanism of the 
algorithm in obtaining the results. In general, this phase involves two steps:  
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a. Converting a generalized constrained multiple-project scheduling problem to a constrained multiple-

project scheduling problem: In this respect, the precedence relations in the form of start-to-
start, start-to-finish and finish-to-finish are reformulated as an equivalent finish-to-start 
and the start dates of activities are calculated by using the following relations 3-32-3-
34: 
 

Start datej  ≥ Finish datei - Durationi  +Start to start time lag ij                  3-32 

To convert a start-to-start precedence to a finish-to-start with wait condition. 

Start datej  ≥ Finish datei - Durationi +Durationj +Start to finish time lag ij     3-33 

To convert a start-to-finish precedence to a finish-to-start with wait condition. 

Start datej  ≥ Finish datei - Durationj +Finish to finish time lag ij      3-34 

To convert a finish-to-finish precedence to a finish-to-start with wait condition. 

It is worth noting that the inequalities 3-32, 3-33 and 3-34 are used in the form of 
equality in order to convert the no-wait start-to-start, start-to-finish and finish-to-finish 
to the finish-to-start no-wait precedence. 
 
b-Deploying Critical Path Method forward-backward passes, in order to correct and rectify the 

estimated earliest start and latest start of the activities: Since all the time points belong to the 
interval from the activities’ earliest start to the latest start time initially estimated by the 
managers, and may not provide the totally right time points to trigger the activities, the 
forward and backward procedures of the Critical Path Method (seen in Section 2.2.1) 
are used to correct and modify the estimated bounds and provide new feasible and 
proper time intervals. In this context, Figure 40 schematizes how a potential time point 

t =15 from the estimated time window [ ETi , LTi ] for a predecessor activity i could 
cause a failure in the start of a successor activity j.  

 

Figure 40- An illustrative example presenting the requirement for applying a forward-
backward procedure of the CPM to correct the estimated bounds for execution of 

activities. 

Pursuant to the objectives of modifying the estimated time windows, within this step a 
permutation of the activities is generated based on the random key representation 
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concepts seen in Section 2.9.2. The permutation list is transformed into what is called 
the activity list by applying the precedence constraints. Then, the new modified earliest 
and latest start dates are attained by deploying the forward-backward paths of the CPM 
on the activity list. The pre-processing procedure is described below in Algorithm 2: 
 

Algorithm 2 : Pre-processing phase for correcting the initial estimated earliest and latest 
start time of the activities 
 
1. 

 
Convert generalized precedence into finish-to-start relation by use of the expressions seen 
in Section 4.3.1.a 

2. Generate a permutation list of activities using random key representation 
3. Ordered  ⃪ order the activities based on the precedence relations 
4. for all activity in Ordered 
5.       if predecessors of activity is not empty 
6.          X ⃪ duration(predecessor)+modified earliest start(predecessor) + time-lag predecessor 

         (predecessor-activity) 
7.          modified earliest start (activity) ⃪ max(X, earliest start(activity))     
8.      else 
9.      modified earliest start (activity) ⃪ earliest start(activity)) 
10.      endif 
11. endfor 
12. Ordered  ⃪ reverse Ordered from end to start 
13. for all activity in Ordered 
14.       if successors of activity is not empty 
15.          X ⃪ modified latest start(successor) -duration(activity) - time-lag successor (successor – 

        activity) 
16.          modified latest start (activity) ⃪ min(X, latest start (activity))     
17.      else 
18.      modified latest start start (activity) ⃪ latest start (activity)) 
19.      endif 
20. endfor 

 

4.3.2 Application of the genetic algorithm 

After employing the pre-process phase, the approaches of the genetic algorithm are adapted to the 
problem. This section outlines the principles of the proposed search algorithm through six 
common questions (seen in Section 2.9), which are involved in the design of metaheuristic-based 
search procedures:  

1- Representation and generation of initial solutions: Each individual of the algorithm is made up of 
different arrays and strings. Every part of the individual is used to save the results for 
different knowledge for a solution. This knowledge may include either the values of the 
decision variables, here, the decision variables of the supply chain planning and project 
scheduling, or specific information of a solution, such as the “ActivityPermutation” within 
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this study. In this context, it is worth mentioning that “ActivityPermutation” is a 
permutation of the activities built upon random key representation approaches. This list is 
used in the main procedure of the algorithm to determine the start date of the activities. 
The representation of a typical individual of the genetic algorithm in this study has been 
illustrated in Figure 41. 

[  
   
   
   
   

ActivityPermutation(I)…………………………… . 
SortedList I

S(I)
Ltns I

AddR(R ×T)
TQ(U× U× PR ×T)

prod(MC× L ×PT×T)
AddL(MC×L ×T)
stin(U×PR × T)

stout(U× PR × T) ]  
   
   
   
  
 

Figure 41- Presentation of an individual in the search algorithm with its key arrays. 

 
The key element of the chromosome (arrays in boldface in the chromosome 
representation), on which the working mechanism of the search algorithm relies, is related 
to the part that determines the feasible start date for the activities. Indeed, the main 
intention of the search procedure is to define the feasible start dates for the activities of the 
projects in interaction with project planning constraints and supply chain constraints 
(generally transportation and production capacity constraints of the forward supply chain 
and the constraints related to the balance of the flows) and then to propagate the impact 
of the generated schedules into the resolution procedure throughout the algorithm. Figure 
42 describes this mechanism.  
As shown in the figure, the start dates of the activities that have been generated by 
considering the project planning constraints are verified throughout the production and 
transportation capacities of the forward supply chain network. In the cases where the 
generated start dates lead to the creation of demands that cause the transportation and total 
available production capacity of the forward supply chain network to be exceeded, the 
schedule of the activities are recalculated until an appropriate one that meets the production 
and transportation capacities is obtained. Obviously, with this strategy the generated 
schedules ultimately satisfy the constraints on executing the activities at the worksites under 
the project scheduling constraints as well as the forward supply chain network capacity 
limitations (output of Step 1, beginning of Step 2). Once such an admissible date has been 
determined, the other variables of the chromosome related to the production, stock and 
transportation of the items from the downstream (worksites of the projects) to the 
upstream supply chain (suppliers of the raw materials) are calculated and stored in the 
corresponding alleles (output of Step 2). At the next step, the algorithm seeks to determine 
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the feasible values for transportation of the waste which is generated at the worksites of 
the projects in order to recycle it in the proper recycling centers (output of Step 3). And 
the last step of the algorithm, (Step 4), calculates the lateness of the activities and the added 
quantity of renewable resources.  
 
  

 

Figure 42- General working mechanism of the search procedure. 

 
Regarding Figure 42, with the aim of generating the feasible start dates within Step 1, the 
procedure fundamentally uses the concept of random key representation. In this context, 
once a permutation of the activities has been generated, the “activity list” (denoted as 
SortedList in the chromosome) of the problem is formed on the basis of the permutation 
list by exerting the precedence constraints. Then, the Serial Scheduling Generation Scheme 
(SSGS), seen in Section 2.7.2.1, is used and adapted to the activity list in order to define the 
feasible start dates. It is worth mentioning that the determination of the feasible start dates 
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using the SSGS follows some principles that are developed in the course of this study to 
respond to the execution and scheduling circumstances of the activities. These principles 
can be seen in three major points: i. execution time windows of the activities: the start date of the 
activities must be in a time point from its modified earliest time to its modified latest start 
time. ii. no-wait conditions: the no-wait activities in the precedence relation must be performed 
immediately after their predecessors have been completely accomplished. In the cases 
where the available quantity of renewable resources is not sufficient, the required amounts 
are added to the resource portfolio. iii. wait conditions: the activities under wait conditions 
have the possibility of being started when their required renewable resource are totally on 
hand during their execution time. Nevertheless, in the situations where the renewable 
resources are not sufficiently available over the time windows (the time interval from the 
modified earliest start to the modified latest start), the missing quantities could be rented 
and added to the resource pool at any time point. Therefore, in order to specify a 
deterministic time point for the start of the activity, a compromise is made between delaying 
the activities and paying for added renewable resources. To do so, the algorithm calculates 
a “cost indicator” to decide which time would be less expensive in relation to the activity. 
This indicator for a presumed time point t is built up by calculating the total cost of adding 
the resources at time t over the processing time of the activity plus the penalty cost for late 
completion of the activity plus an inner penalty cost which penalizes the time t in which 
the added quantity of the resources exceeds the limitation in maximum addable value of 
the resources. Finally, out of the candidate time points, the time that holds the minimum 
value of the cost indicator is selected to be assigned to the activity as its start time. The 
pseudo code of the algorithm has been described below: 
 
 
Algorithm 3: Determination of start dates for the activities  
   
Step 1 of Figure 42: 
 
1. Generate a permutation list of activities using random key representation 
2. OrderedList  ⃪ order the activities based on the precedence relations 
 for activity in OrderedList 
3.       if predecessors of activity is not empty 
4.          for all predecessor of activity  
5.                finish time  ⃪calculate finish time for predecessors of activity 
6.                t ⃪ max(finish time, modified earliest start(activity)) 
7.          endfor 
8.      else 
9.      t ⃪ modified earliest start(activity)+ rand (modified latest start(activity) -  

     modified earliest start(activity)) 
10.     endif 
11.    wait=true 
12.    if any predecessors of activity is no-wait 
13.       wait=false 
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14.   endif 
15.   renewable resource is enough=true 
16.   if demand of (activity) exceeds the resource availability from t to t +  

     duration(activity)-1  
17.      renewable resource is enough=false 
18.   endif 
19.   if wait=false 
20.      if renewable resource is enough=true 
21.         start time(activity) = t 
22.         finish time  ⃪ calculate the finish time of activity 
23.         update the availability of the resources  
24.     endif 
25.     if renewable resource is enough=false 
26.          start time(activity)= t 
27.          finish time  ⃪calculate the finish time of activity 
28.          add the required quantity of the renewable resources 
29.     endif   
30. endif 
31. if wait=true 
32.    if renewable resource is enough=true 
33.       start time(activity)=t 
34.       finish time  ⃪ calculate the finish time of the predecessors of activity 
35.       update the availability of the resources 
36.    endif 
37.    if renewable resource is enough=false 
38.          for t' =t to modified latest start(activity) 
39.               Y  ⃪ Calculation of the cost indicator for t' 
40.               start time(activity)  ⃪ find time point related to minimum(Y) 
41.               finish time  ⃪ calculate the finish time of the predecessors of activity 
42.               update the availability of the resources 
43.         endfor 
44.    endif 
45.      endfor 

 
 
Step 2 deals with the planning of the supply chain network which is supposed to be 
measured level by level, from the worksites to the manufacturers and then to the suppliers 
of the raw materials. The general ideas of the definition of the search procedure in this step 
rely on the research work of (Dellaert et al., 2000). In this context, in every time period the 
total demand of the worksites for each type of non-renewable resource, which has been 
generated by the start of the activities, is calculated. Taking the transportation lead time to 
ship a typical non-renewable resource from its manufacturer to the worksite into account, 
the calculated amount of the resource demanded is transported to the project worksites 
using just-in-time. The demand is divided into random values among the manufacturers of 
the non-renewable resources (flows ending at the worksite which is carrying the product 
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from its potential origins) in a way so that the sum of the associated values with the flows 
is equal to the value of the demand; that is to say, the satisfaction of the demand.  
In order to initialize the values for the stock (stock of outputs denoted by stouts) of the 
items in the corresponding actors of the supply chain network (for instance, in the 
manufacturing center), it is presumed that a random fraction of the generated demand 
(from the worksite of a project) at time t for the consumable resources (i.e. demand * 
random value between 0 and 1) can be produced in supplement at time t minus the 
production lead time and stocked in the manufacturing units. These created stocks can be 
used in the following time periods while the stock at the end and beginning period of the 
planning horizon has to be kept to zero. The stock of inputs (denoted by stin in the model) 
will be calculated on the basis of the bill of materials taking into account the supplementary 
quantities of the products that are created and stocked. This impact of generating the stocks 
will be imposed upon the actors of the supply chain network from the downstream 
manufacturers to the upstream ones.  
Relying on the information from the bill of materials and the probable stocks, the workload 
for the transportation of the intermediate products as well as the raw materials and the 
production of the products on the production lines of the factories are determined for all 
the potential actors that can supply and produce the required items while considering the 
associated production and transportation lead times. If these workloads cause the 
transportation and production capacities of the manufacturers (as well as the supply 
capacity of the raw material suppliers) to be violated, the created start time for the activities 
will be rejected and the search algorithm will try to generate another solution (schedule) 
which satisfies these capacity constraints as well. Once such schedules are determined, the 
demand of the worksites will be divided among the potential manufacturers for their 
production and transportation while taking into account the production and transportation 
lead times. Similarly, the production and transportation of the required intermediate 
products and raw materials will be regarded by the potential manufacturing centers and 
suppliers of the raw material taking into account the transportation and production lead 
times.  
 
As with Step 2, in Step 3, the potential destinations for sending the waste are proposed and 
a random fraction of the generated waste is divided among the potential flows while the 
transportation for the shipments of the waste from the worksite to the selected recycling 
center has been considered. Then, the transported quantities are assigned to the proper 
recycling lines at the destinations taking the recycling time into account.  
 
In the last step, Step 4, the lateness of the activities and the total quantity of the added 
renewable resources have been calculated and saved in the chromosome. The pseudo code 
of these processes is provided in the following:  
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Algorithm 4: Planning for a closed-loop supply chain problem, the lateness of 
activities and the value of the added renewable resources 
  
Step 2 of Figure 42: 
 
1. for each worksite to worksites  
2.       for each nr to non-renewable resources 
3.             for each t to time 
4.                   calculate demand of worksite for nr at time t 
5.                   find origins that can supply the demand 
6.                   for origin to origins 
7.                         considering the transportation lead-time, assign random division        

                        of the demand to transportation from origin 
8.                         extra=random fraction of demand 
9.                         if t > start time(last activity of worksite that consumes nr) 
10.                             extra=0 
11.                        endif 
12.                        considering production lead-time, assign the value of  (demand) + 

                       (extra) – (available stock from the former time period) to 
                       production  

13.                        calculate value of supplementary production capacity if necessary 
14.                        calculate workload of the current solution on the supply 

                       chain(calculation for transportation of the required quantities from 
                       the potential upstream actors of the supply chain to origin and  
                       calculation for supplementary production capacities)   

15.                        while workload of the current solution exceeds the capacities 
16.                                  reject the solution 
17.                                  generate a new schedule 
18.                                  retrieve the results from 4. to 13. 
19.                       endwhile 
20.                 endfor 
21.            endfor 
22.      endfor 
23. endfor 
 
Step 3 of Figure 42: 
 
24. for each worksite to worksites 
25.       for each w waste 
26.            for each t to time 
27.                   calculate generated waste w at worksite at time t 
28.                   find destinations can receive the waste 
29.                   for destination to destinations 
                         considering the transportation lead-time, assign random division 

of  
                        the generated waste to transportation of w to destination 

                         considering the recycling lead-time, assign the value of the 
                        transported waste to recycled quantity         
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30.                        calculate value of supplementary production capacity if necessary 
31.                  endfor 
32.           endfor 
33.     endfor 
34. endfor 
35. Retrieve the value of start time for activities 
 
Step 4 of Figure 42: 
 
36. for activity in activities  
37.      calculate the lateness of activity 
38. endfor 
39. for t in time  
40.      for r in renewable resources 
41.            calculate the value of added  r at t  
42.      endfor 
43. endfor 

 
 

2- Cost (fitness) function: The fitness of the generated solutions is evaluated by their cost. The 
fitness function of the algorithm includes two terms: i. the cost of the solution, which is 
equal to the value of the objective function for the solution and ii. the penalty cost, for the 
individuals that are infeasible. It is worth mentioning that the infeasible solutions of the 
algorithm are penalized according to their degree of violation: see equations 2-30 and 2-31 
from chapter 2. In this regard, in the cases where a low (small) degree of violation has been 
reached, the penalty terms will slightly increase the value of the cost function. Therefore, 
the fitness of the solution will be slightly decreased.  In contrast, the penalty terms will 
significantly increase the value of the cost function when reaching a high degree of 
violation. In addition, the corresponding constant multipliers of the penalty terms are set 
to large-enough constant values according to the importance of their corresponding 
constraints on the instance problems. The seminal works on the application of the penalty 
terms in calculating the fitness function can be seen in (Xie and Dong, 2002) (Alba and 
Francisco Chicano, 2007)  (Chang et al., 2010) (Fahimnia et al., 2012) (Lin, 2013) (Kong et 
al., 2015). 
 

3- Search operators:  After creating a set (population) of the solutions (individuals) and the 
calculation of the cost function for each of the individuals, the genetic algorithm uses the 
crossover operator to combine the contents of two parents in order to generate two new 
solutions. However, not all the individuals can participate in the reproduction; only the 
fittest ones (i.e. the elite solutions) are selected for this purpose. The selection of the elite 
solutions is made by the “selection operators”. One of the most widely used operators, 
which is utilized in this study as well, is known as the roulette wheel (Srinivas and Patnaik, 
1994) (Maulik and Bandyopadhyay, 2000). By employing the roulette wheel, the fitness 
value is utilized to associate a probability of selection with each of the individuals (Holland, 
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1975). In this concept, if fi  is the fitness of individual i, its probability of being selected as 

an individual is equal to pi= fi/∑ fj
N
j=1  , where N is the number of individuals in the 

population.  
 
It is worth noting that since the key element of an individual in the genetic algorithm 
adapted to this problem relates to the arrays defining the start time of the activities, the 
crossover operator is performed on the main string that results in calculating the start dates, 
that is, the permutation list of activities. In this regard, order 1 crossover, as one of the 
most successful operators in the literature (denoted by OX1) has been utilized to perform 
the reproduction (Starkweather et al., 1991) (Tseng and Liang, 2006). Using this operator, 
each of the new solutions (offspring/children) inherits the elements between the two 
crossover points from the corresponding parent in the same position as they are placed in 
the parent’s gene. The remaining elements are taken from the other parent in the order in 
which they emerge in that parent, starting from the first position following the second 
crossover point and ignoring the elements that have already been presented in the 
offspring, Figure 43. 
 

 

 Figure 43- Illustration of the OX1 crossover operator. 

 

As well as crossover operators, mutation operators have been used in order to create a 
possibility for the algorithm to move from a current solution to one of its neighbors. 
Getting the permutation list of the activities as the decisive part of the chromosome, a 
hybrid mutation operator between the swap, reversion and insertion operators has been 
exploited. The swap operator chooses two genes from the chromosome at random and it 
swaps their values, as shown in Figure 44, (Moon et al., 2002). The inversion operator 
selects a part of the chromosome and it orders the element of the selected part inversely, 
(Fogel and Atmar, 1990) and (Albayrak and Allahverdi, 2011). The insertion operator 
specifies two genes of the chromosome. Without changing the order, it replaces the one 
next to the other, (Fogel, 1988). These mechanisms are schematized in Figure 44. 
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Figure 44- Illustration of the swap, reversion and insertion mutation operators. 

  
It is worth mentioning that in order to manage the size of the population in the algorithm, 
the new individuals are added to the current population list. Then, all the individuals are 
sorted according to their fitness value. The fittest individuals are selected to form the 
members of the new population while the size of the population is kept equal to the number 
of the population size. 
  

4- Constraint handling: As pointed out in Section 2.9.2, several methods such as the rejection, 
repair and penalization approaches have been used for handling constraints. As seen in 
(Orvosh and Davis, 1993) and (Chang, 2008), the advantage of the rejection and repair 
strategies is that only feasible solutions are generated in the search process. However, for 
highly constrained problems, these methods could make the resolution process difficult 
and inefficient in finding solutions. Furthermore, they may cause a strong bias toward the 
repaired local solution space. In order to eliminate these difficulties, penalization 
approaches have been used to deal with highly constrained problems. 
 
The constraints of the problem are divided into two main categories involving soft 
constraints and hard constraints. The soft constraints are allowed to violate, and be fined 
by, the penalty terms within the fitness function whereas the hard constraints are supposed 
to be strictly respected without any violation.  The soft constraints of the model involve: 
1-The stock capacity in the forward supply chain and 2-The capacity constraints of the 
backward supply chain network. 
 
The hard constraints include the following constraints: 1- Each activity should be executed 
exactly between its earliest and latest start time. 2- The precedence and resource constraints 
of the projects should be met. 3- The interruption of the activities is not allowed. 4- The 
no-wait activities must be started immediately after their predecessor activities have 
accomplished. 5- The demand of the worksites for non-renewable resources must be 
satisfied with a just-in-time approach. 6-Considering the transportation and production 
lead times, the required raw material and intermediate products should be supplied to their 
destinations of use in the required quantity. 7- The production workload must not exceed 
the initial available production capacity plus the maximum capacity which could be added. 
8-The stock of the incoming and outgoing items in the supply chain actors should be equal 
to zero at the beginning and the end of the planning horizon.     
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According to the points that have previously been presented in “Representation and generation 

of initial solutions”, besides the rejection-repair approaches, penalization methods have been 
exploited to tackle the soft constraints of the problem. 
 

5- Stop criteria:  the stop criterion of the algorithm has been defined in the number of iterations. 
Therefore, once a maximum number of repetitive runs of the algorithm is reached, the 
procedure terminates. 
Figure 45 summarizes the search procedure of the algorithm. 

 

Figure 45- Flowchart of the GA adapted to the model. 
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6- Parameter tuning (setting): As seen in Section 2.9.2, the performance of the metaheuristics 
depends to a significant extent on the values of their parameters. On the basis of the various 
values (levels) that every parameter (factor) of the algorithm could potentially hold, the aim 
of the parameter design is to assign the optimal values to the parameters so that they 
ultimately lead the algorithm to a high level of performance and make it robust against 
noise and variations. Instead of performing the full factorial experimentation for the design 
of the parameters, in which the responses (outputs of the algorithm) are used for all 
possible combinations of factors at their potential levels through M= 

Number of levels Number of factors experimentation, the fractional factorial experimentation has 
been brought into view. In fact, within fractional factorial experimentation, due to the time 
and cost, only a reasonable part of the experimentation has been chosen for stating the 
behaviour of the system (here, the algorithm). One of the methods that has been developed 
to support fractional factorial experimentation is the Taguchi method, (Taguchi, 1986). The 
Taguchi method relies on two main concepts: i. orthogonal arrays and ii. Signal-to-Noise 
ratio.  The inclusion of orthogonal arrays in the Taguchi model allows the method to take 
a large number of influencing factors at their different levels into account and to conduct 
a limited number of experiments by considering the sufficient preservation of the 
information. Therefore, assuming a system in which four factors and three levels of value 

for the factors are encountered, instead of performing 3 4 =81 experiments, 9 experiments 
have been proposed according to the array L9 (3**4) of the orthogonal arrays in the 
Taguchi model. Since in the present study, the algorithm possesses four factors which 
include the size of the population, the number of iterations, the crossover rate and the 
mutation rate, and also three different levels containing upper value, medium value, and 
lower value, therefore, the orthogonal array L9 (3**4) is the proper array for the current 
application. This array is utilized in Table 17 - Table 19.  
On the other hand, the signal-to-noise ratio in the Taguchi model measures the robustness 
of the responses. In this context, the term signal is introduced to measure the values of the 
responses (response variable) whereas the term noise measures the variability in the 
responses and represents the undesired components (standard deviation). By merging the 
signal and noise factors, the Signal-to-Noise (S/N) ratio is employed as a unified 
measurement for determining the robust values for the design factors, (Hajiaghaei-Keshteli 
et al., 2014). In this study, since the problem is related to minimizing the objective function, 
idiomatically “the smaller value is better”. Referring to the literature on the Taguchi 
method, for the cases where “the smaller is better”, the signal-to-noise indicator is 
calculated by using formulation 3-35: 
 

S/N = -10 log (∑ Y /n         3-35 
 
In the equation, Y holds the value of the response factor and n is equal to the number of 
experiments.  
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Using the signal-to-noise ratio, it is important to note that in training the algorithms, when 
different features may influence the algorithms’ performance, the results might be 
completely dominated by the magnitude of the responses in their range. Therefore, it is 
recommended that the response values of the algorithm be normalized in order to bring all 
of the variables into proportion with one another. In the literature on scheduling problems 
(Gangadharan and Rajendran, 1993) (Ruiz and Stützle, 2007) and (Vallada and Ruiz, 2011) 
have used the Relative Percentage Deviation (RPD) index for rescaling the response values 
by the use of the expression 3-36: 
 

Relative Percentage Deviation (RPD) = 
|ResponseAlgorithm - Response Best|

Response Best
 × 100  3-36 

 

In the formula, ResponseAlgorithm  stands for the values resulting from the algorithm in the 

given experiment and Response Best is the best response value that is obtained from any 

experiment of the instance problems.   
 

4.3.3 Instance problems and design of the parameters 

To illustrate the application of the proposed solution procedure and its effectiveness in the 
resolution of the test problems, three sizes of the problem including small, medium and large have 
been developed.  The dimensions of the instances and the pattern for their data setting have been 
presented in Table 15. In addition, the levels of the GA parameters for each of the instances are 
outlined in Table 16.  

Using Table 15 and Table 16, the Taguchi experiments have been carried out. The numerical results 
of this application for the different test instances have been presented in Table 17 through Table 
19. 
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Table 15-Generation of random data for problem instances.   

Parameters 

Problem size 
Small 

( 16*I×3*R×3*NR×35*T ) 

Medium 
( 32×4×3×35 ) 

Large 
( 64×4×3×35 ) 

Dnri,nr : DU*~ (0, 2) DU~ (0, 3) DU~ (0, 4) 
Drir : DU~ (0, 2) DU~ (0, 5) DU~ (0, 10) 
FSij : DU~(0,1) DU~(0,1) DU~(0,2) 

SSij : DU~(0,1) DU~(0,1) DU~(0,2) 

SFij : DU~(0,1) DU~(0,1) DU~(0,2) 

FFij : DU~(0,1) DU~(0,1) DU~(0,2) 

Arr : DU~(2,7) DU~(5,10) DU~(10,20) 
Maxr : DU~(2,12) DU~(5,25) DU~(10,50) 
Pcw :  U*~(2000,2500) U~(2200,2700) U~(2400,2900) 
Ccr'w :  U~(1100,1400) U~(1100,1400) U~(1100,1400) 
Rcr : U~(120,1400) U~(120,1400) U~(120,1400) 
Penci : U~(250,350) U~(250,350) U~(250,350) 
StinCapu : U~(0,30) U~(0,60) U~(0,120) 

StoutCapu : U~(1,25) U~(2,50) U~(4,100) 

TnCapu : U~(5,50) U~(10,100) U~(20,200) 

LAvCapline l,mc t: U~(1,25) U~(2,60) U~(4,100) 

MaxAddline(l,mc):  U~(2,25) U~(5,50) U~(10,70) 

Wlpt,l : U~(1,2) U~(1,2) U~(1,2) 

Tcf(o,d,p) : U~(10,20) U~(10,20) U~(10,20) 

Tlf(o,d,p) : U~(0,2) U~(0,2) U~(0,2) 

Plpro(l,mc,pt) : U~(0,1) U~(0,1) U~(0,1) 

StinCpr : U~(0.2,20) U~(0.2,20) U~(0.2,20) 

StoutCpr : U~(0.2,20) U~(0.2,20) U~(0.2,20) 

StCofpr : U~(1,2) U~(1,2) U~(1,2) 

ProdCpt : U~(1,300) U~(1,300) U~(1,300) 

AddCLline l,mc : U~(60,300) U~(60,300) U~(60,300) 
Vb(p,p') : U~(1,5) U~(1,5) U~(1,5) 

Gpgi : U~(0,2.8) U~(0,2.8) U~(0,2.8) 

*I: number of activities, *R: number of renewable resources, *NR: number of non-renewable resources 
and *T: number of time periods DU*: Discrete uniform distribution, U*: Continuous uniform distribution 
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Table 16- Levels of the Taguchi design for different factors of the instance problems. 

Factor Number of  
levels 

Project size 
Small Medium Large  

      
Population  
size 
(Npop) 

3 Npop(1)=20 
Npop(2)=25 
Npop(3)=30 

Npop(1)=70 
Npop(2)=85 
Npop(3)=100 

Npop(1)=150 
Npop(2)=175 
Npop(3)=200 

 

      
Maximum 
number of 
iterations 
(NIt) 

3 NIt(1)=25 
NIt(2)=30 
NIt(3)=35 

NIt(1)=80 
NIt(2)=90 
NIt(3)=100 

NIt(1)=180 
NIt(2)=195 
NIt(3)=210 

 

      
Crossover  
rate 
(CrR) 

3 CrR(1)=0.6 
CrR(2)=0.7 
CrR(3)=0.75 

CrR(1)=0.65 
CrR(2)=0.75 
CrR(3)=0.8 

CrR(1)=0.75 
CrR(2)=0.8 
CrR(3)=0.85 

 

      
Mutation  
rate 
(MuR) 

3 MuR (1)=0.2 
MuR (2)=0.25 
MuR(3)=0.3 

MuR(1)=0.2 
MuR(2)=0.3 
MuR(3)=0.35 

MuR(1)=0.2 
MuR(2)=0.35 
MuR(3)=0.4 

 

 

In the tables, the column “factor levels” presents the values set to the parameters of the algorithm 
using the design information of “orthogonal array levels” provided in the Taguchi method. The 
column “response value” shows the fitness value of the best solution found by the procedure in 
the experiment. On the basis of the obtained response values, the RPD is calculated and listed in 
the “RPD” column.  The time elapsed for terminating the search procedure in the experiment is 
represented in the last column.. To present the convergence of the algorithm in the different sizes 
of the model, the graphs depicting the fitness value through the iterations of the algorithm have 
been created. Figure 46 shows three graphs related to the conducted instances. 

 

Table 17 -Taguchi experiments for small-size problem instances. 

Problem size: Small 
 

Experi- 
ment 

Orthogonal array levels Factor levels Response 
 value 

RPD Time 
(s) Npop NIt CrR MuR Npop NIt CrR MuR 

1 1 1 1 1 20 25 0.6 0.2 91596,52 0 18 
2 1 2 2 2 20 30 0.7 0.25 91596,52 0 21 
3 1 3 3 3 20 35 0.75 0.35 91896,52 0.326454 27 
4 2 1 2 3 25 25 0.7 0.35 91596,52 0 23 
5 2 2 3 1 25 30 0.75 0.2 91896,52 0.326454 27 
6 2 3 1 2 25 35 0.6 0.25 91896,52 0.326454 29 
7 3 1 3 2 30 25 0.75 0.25 91596,52 0.326454 28 
8 3 2 1 3 30 30 0.6 0.35 91596,52 0 32 
9 3 3 2 1 30 35 0.7 0.2 91596,52 0 38 
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 Table 18-Taguchi experiments for medium-size problem instances. 

Problem size: Medium 
 

Experi- 
ment 

Orthogonal array levels Factor levels Response 
 value 

RPD Time 
(s) Npop NIt CrR MuR Npop NIt CrR MuR 

1 1 1 1 1 70 80 0.65 0.2 215848.04 1.9017745 414 
2 1 2 2 2 70 90 0.75 0.3 215848.04 1.9017745 590 
3 1 3 3 3 70 100 0.8 0.35 214528.04 1.2786030 705 
4 2 1 2 3 85 80 0.75 0.35 215443.04 1.7105742 620 
5 2 2 3 1 85 90 0.8 0.2 214528.04 1.2786030 712 
6 2 3 1 2 85 100 0.65 0.3 214963.04 1.4839664 691 
7 3 1 3 2 100 80 0.8 0.3 211819.70 0 727 
8 3 2 1 3 100 90 0.65 0.35 215848.04 1.9017745 756 
9 3 3 2 1 100 100 0.75 0.2 214963.04 1.4839664 804 

 

Table 19-Taguchi experiments for large-size problem instances. 

Problem size: Large 
 

Experi- 
ment 

Orthogonal array levels Factor levels Response 
value 

RPD Time 
(s) Npop NIt CrR MuR Npop NIt CrR MuR 

1 1 1 1 1 150 180 0.75 0.25 423143.4 0.345930 2697 
2 1 2 2 2 150 195 0.8 0.35 421852.3 0.039753 3527 
3 1 3 3 3 150 210 0.85 0.4 422890.316 0.285912 4431 
4 2 1 2 3 175 180 0.8 0.4 427379.733 1.350551 4210 
5 2 2 3 1 175 195 0.85 0.25 422780.066 0.259767 4366 
6 2 3 1 2 175 210 0.75 0.35 424080.066 0.568054 4613 
7 3 1 3 2 200 180 0.85 0.35 421684.666 0 5150 
8 3 2 1 3 200 195 0.75 0.4 425649.05 0.940129 4743 
9 3 3 2 1 200 210 0.8 0.25 426286.45 1.091285 4593 

 

 

Figure 46- convergence of the algorithm in different instances, including small, medium and large 
sizes. 
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Figure 47- S/N ratio plots for experiments on small-size problems. 

 

Figure 48- S/N ratio plots for experiments on medium-size problems. 

 

Figure 49- S/N ratio plots for experiments on large-size problems. 
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On the basis of the calculated normalized values of the algorithm response (presented in the RPD 
column), the Taguchi model analysis is carried out and the results of this application are displayed 
from Figure 47 to Figure 49 by the use of Minitab 16. According to the principles of the Taguchi 
design using the S/N ratio, the parameters are chosen from the positions in which their 
corresponding graphs hold the peak value. The results for the adjustment of the parameters are 
thus determined, as reported in Table 20. 

 

Table 20 -Calibration of the parameters of the genetic algorithm for instance problems. 

Size of the instance 
problems 

Driving factors of the algorithm 
Npop NIt CrR MuR 

 
Small size 

 
30 

 
25 

 
0.75 

 
0.25 

Medium size 85 100 0.8 0.2 
Large size 150 195 0.85 0.35 

 
 

 

4.3.4 Performance of the algorithm 

The performance of the algorithm is investigated from two points of view: Time elapsed to find the 

results and Quality of the solutions.  

From the elapsed time point of view, a random set of data is generated for the small and large cases using 
the distributions given in Table 15. The data for the medium size instance is the same one which 
have been presented in Section 4.2.4. The model is solved by CPLEX using the generated data. 
The resolution time of the solver for small and medium instances is respectively 4 and 1265 
seconds. For the large size instances, the solver ends up after 4h and 59 minutes without returning 
a solution. On the other hand, the elapsed time for solving the model instances, while using the 
results of the Taguchi method on the same data, is 16 seconds, 699 seconds and 4442 seconds 
respectively for small, medium and large sizes. 

In terms of the solution quality, 50 more instances have been generated and the results obtained from 
the algorithm are compared to those of resolution by CPLEX. In this context, the gap of the 
solution is calculated by the use of equation 3-37. The seminal works on this subject can be seen 
in (Sajadieh and Shadrokh 2009) (Kannan et al., 2010) (Ghodratnama et al., 2010) and (Zoraghi et 
al, 2015).  Since the resolution of the model by CPLEX solver is traceable for small and medium 
instances, 50 instances of these sizes have been regarded for the illustration of the algorithm’s 
performance. Expression 3-38 is used to compare the best solution of the initial population (BI) 
with the best solution of the algorithm (BA), according to (Zoraghi et al., 2012). The results are 
summarized in Table 21and Table 22. 
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GAP = 
Genetic AlgorithmResult- cplexResult

cplexResult
 *100           3-37 

Improvement= BI – BA
BI

 *100           3-38 

 

Table 21 –Results of the small-size problem. 

Test Objective 
function value 

by cplex 

Fitness value of 
the initial 
solution 

Fitness value of 
the best 
solution 

Gap  
(%) 

Improvement 
(%) 

      
1 90692.136 94338.395 91596.52 1.0 2.9 
2 90872.136 92376.52 91656.52 0.9 0.8 
3 91353.136 92887.3533 92258.395 1.0 0.7 
4 90873.536 93798.86 91656.52 0.8 2.3 
5 105929.136 109308.395 106364.645 0.4 2.7 
6 105839.336 109248.395 107244.645 1.3 1.8 
7 90752.136 94458.395 91656.52 1.0 3.0 
8 97736.136 100732.77 99629.2283 1.9 1.09 
9 95194.656 96457.3533 95797.3533 0.6 0.7 
10 104162.936 106078.395 104270.895 0.1 1.7 
11 95285.256 98540.895 95827.3533 0.6 2.7 
12 91326.336 94677.145 91656.52 0.4 3.2 
13 103635.536 104094.645 103990.895 0.3 0.1 
14 102165.536 105343.811 102243.8117 0.08 2.9 
15 91163.136 94622.77 91616.52 0.5 3.2 
16 91256.536 92337.3533 91646.52 0.4 0.7 
17 91437.736 92486.52 91706.52 0.3 0.8 
18 91879.136 92917.3533 92166.52 0.3 0.8 
19 93360.136 93992.145 93406.52 0.05 0.6 
20 90842.536 94797.145 91686.52 0.9 3.3 
21 103541.746 104185.324 103780.452 0.2 0.6 
22 101987.346 104125.522 102031.4578 0.04 2.1 
23 92210.746 95252.5349 92518.4916 0.3 3.3 
24 91456.244 92457.3541 91786.59 0.4 1.1 
25 91824.156 92398.4721 91901.43 0.08 0.6 
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Table 22 –Results of the medium-size problem. 

Test Objective 
function 
value by 

cplex 

Fitness value of 
the initial 
solution 

Fitness value of 
the best 
solution 

Gap  
(%) 

Improvement 
(%) 

      
1 196844.657 202379.2452 199894.9231 1.5 1.2 
2 188374.537 201587.4252 189173.8113 0.4 6.1 
3 202770.142 232752.6175 211882.41 4.3 9.0 
4 184485.748 201881.12 187354.7232 1.5 7.2 
5 178952.832 191496.3733 181668.04 1.5 5.1 
6 175959.592 190809.7067 180138.04 2.3 5.6 
7 173243.832 194497.0572 175923.04 1.5 9.5 
8 183056,832 201592.03 190596.8733 3.9 5.4 
9 174685.192 189353.04 178978.04 2.4 5.5 
10 172491.232 193708.04 177563.04 2.8 8.3 
11 199734.826 203389.1341 201239.5132 0.7 1.05 
12 174387.992 186753.04 178708.04 2.4 4.3 
13 203690.146 206849.9443 204052.4582 0.2 1.3 
14 186282.232 196869.7067 189528.04 1.7 3.7 
15 189641.032 201008.04 190278.04 0.3 5.3 
16 191385.192 202396.3733 194596.3733 1.6 3.8 
17 193381.992 204439.7067 197418.04 2.0 3.4 
18 201987.842 224513.51 202526.24 0.2 9.8 
19 178353.832 194411.3733 181068.04 1.5 6.9 
20 187512.422 194285.0151 188512.2146 0.5 3.0 
21 181541.845 192154.1287 185035,4412 1.9 5.8 
22 175872.542 185413.391 178787.65 1.6 5.4 
23 204571.156 207752.3421 205141.412 0.2 1.5 
24 198571.181 206751.5266 203198.239 2.3 4.1 
25 190623.124 200418.64 192102.29 0.7 5.1 
      

 

According to the different generated instances, the gap and the improvement indicators ranges in 
[ 0.04 , 1.9 ] and [ 0.1, 3.3 ] for the small size of the problem. On the other hand, they are [0.2, 4.3] 
and [1.05, 9.8] for the instances of the medium size of the problem. Taking the results of the gap 
and improvement indicators into account, it could be mentioned that by accepting a slight increase 
in the gap of the solution and decreasing the algorithm’s effort in calculation for small-size 
instances (by decreasing the population size and the number of iterations), the algorithm could be 
accelerated in terms of the resolution time.  
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4.4  Chapter conclusion and discussion 

The main objective of the current chapter is to respond to Q.2 and Q.3 of this study. It presents 
an optimization model for concurrent planning of multiple projects in which both renewable and 
non-renewable resources are required. The renewable resources of the projects are available in a 
limited quantity. However, a limited quantity of these resources could be added to the projects. On 
the other hand, the activities of the projects are due on the due dates. The possibility of adding 
resources makes the model able to decide whether to rent additional capacities of renewable 
resources and avoid paying for high penalty costs or to pay low penalty costs instead of paying for 
high-cost additional resources. Four types of precedence, including finish-to-start, start-to-start, 
start-to-finish and finish-to-finish are considered in the modeling framework. Each of the 
precedence relations could be determined as wait or no-wait. The no-wait precedence implies 
conditions wherein a target activity in a precedence relationship must be followed immediately after 
the process of its sink activity while considering the extant time lag to be spent if necessary. 
Nevertheless, the wait situation eliminates this obligation. The model is developed for projects with 
just-in-time procurement of non-renewable resources (the pull-type project scheduling problems 
in the course of the current dissertation). Because of the mutual influence between project 
scheduling and resource ordering issues, especially in planning under just-in-time reception of non-
renewable resources, the problem of scheduling for the projects is proposed to be integrated with 
the problem of planning the supply chain network which is responsible for supplying the resources.  

In the supply chain network, the required consumable resources are produced and transported to 
the worksites to optimality through the forward flows and then the generated waste of the project 
worksites is shipped to the proper recycling centers through the backward supply chain. Both the 
forward and backward supply chain networks encompass the limited capacities for the 
transportation and the stock of the items. Each of the manufacturing and recycling centers holds 
an initial production/recycling capacity. However, the model presumes that these capacities could 
be increased by a limited value over every time period of the planning horizon. 

The objective of the model is to minimize the total performance cost of the system involving the 
scheduling of the projects and the planning for the supply chain network. Using a resolution 
algorithm on the basis of the principles of linear relaxation, the primary resolution of the model is 
done by the CPLEX solver in a case study from the CRIBA project. The results of the algorithm 
and the sensitivity analysis of the parameters have been presented in this chapter. Then, in order 
to deal with the large-size instances of the model, the deployment of the genetic algorithm has been 
studied. The proposed search procedure attempts to define the feasible start dates based on the 
project scheduling constraints and the constraints of the forward supply chain. Afterwards, the 
backward supply chain’s functioning and the calculation of the activities’ lateness and the added 
renewable resources are adapted to the created dates. The optimization procedure of the algorithm 
is presumed to be terminated after the accomplishment of a given value of iterations. In addition, 
the order 1 crossover and a hybrid operator between swap, insertion and reversion have been 
presumed as respectively the crossover and mutation operators of the algorithm. On the other 
hand, the parameters of the algorithm are tuned by use of the principles of the Taguchi method. 
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In this regard, three different dimensions of the instance problems including the small, large and 
medium sizes are considered and the algorithm parameters are tuned for each of the instances. The 
performance of the proposed search procedure is investigated with a set of the generated test 
instances. 
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5.1 Chapter introduction 

This chapter aims to characterize the decision support tool that is provided to support the modeling 
framework proposed in the course of this study. Various components of the application, its architecture 
and license specifications as well as an implementation of a case are outlined in the current chapter. 

 

5.1.1 Development of a web-based decision support system 

According to (Ghasemzadeh and Archer, 2000) ‘‘A Decision Support System (DSS) is an 
interactive, flexible, and adaptable computer-based information system, specially developed for 
supporting the solution of a non-structured management problem for improved decision making. 
It utilizes data, provides an easy-to-use interface, and allows for the decision maker’s own insights. 
A DSS to support the main stages in the framework requires a carefully designed model 
management module to handle models of the many different types, which may be chosen. Its 
implementation requires considerations of the model representation and integration.” During the 
last decade, web technologies have had a great impact on design, development and implementation 
processes for all kinds of DSSs and these systems are employed by organizations as a decision-
making tool for their employees as well as their customers. According to (Bharati and Chaudhury, 
2004), DSSs on the web have engendered three main changes in the environments in which they 
are employed: change in the user community, change in the underlying technology architecture and 
change in the problem domain. With the advent of these systems, their use is no longer restricted 
to managers or users who are experts in business-related problems. CRIBA Logistics is a web-
based application that implements the modeling approach described in Chapter 4. It allows users 
to: 

1- Create a new project for planning the CRIBA project(s) with the corresponding supply chain 
network. 

2- Launch the pre-processing phase in order to improve the earliest and latest start times estimated 
by users and to enhance the efficiency of the application. 

3- Run the project and retrieve the results in Excel spreadsheets. 

 

5.1.2 Architecture and license 

The CRIBA logistics application can be used with Linux or Microsoft Windows operating systems. 
The communication between the client and the server of the application is provided by using the 
Representational State Transfer (REST) architectural style. REST can be understood as a set of 
principles for the design of network applications. These principles describe how network resources 
are defined and taken into account. The idea of using REST is to apply HTTP (Hyper Text Transfer 
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Protocol) to make inter-machine calls rather than using complex mechanisms such as Common 
Object Request Broker Architecture (CORBA), Remote Procedure Call (RPC), or Simple Object 
Access Protocol (SOAP) to connect machines. Figure 50 shows the architecture of the CRIBA 
Logistics web application. It consists of three levels: 1- Front-end, 2- Server-Software and 3- Back-
end. Each of the levels is outlined in the following: 

 

Figure 50- The architecture of the CRIBA Logistics application. 

 

1-Front-end: The front-end side is the upper layer of the architecture that is visible and interactive 
for the users. The graphical interface of the application is developed by use of HTML 5 (Hyper 
Text Markup Language 5) and JavaScript (AngularJS and Fabric.js). HTML 5 is a markup language 
that allows developers to structure and present the contents on the World Wide Web. JavaScript is 
a scripting language that is used in interactive web pages. AngularJS is a free and open-source 
JavaScript framework that allows developers to use HTML as a template language and also extends 
the HTML syntax to express the components of the application clearly and succinctly. Fabric.js is 
a JavaScript library that makes it possible to create graphics (templates) on web pages. 

2- Server-Software: The role of the server-software is to accept the requests for the actions and 
execute them. Indeed, it manages and synchronizes events and requests. In this regard, the 
Dropwizard framework is used in the CRIBA logistics application. It brings together the strong 
libraries of Java in a package including Jetty (to integrate an HTTP server set directly into the 
application), Jersey (to build the application in REST style) and Jackson (to process with JSON 
files). 
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3- Back-end: The external server is the part of the web-based DSS where the functionalities and 
logics are implemented. These features support the remote connection, authentication and data 
transfer that is provided and apply the concepts of the optimization model. To create these 
functionalities, the application relies on the programming language Apache CXF implemented in 
the Java and Optimization Programming Language (OPL). 

All components of the application are subject to AGPL (GNU Affero General Public License) 
licenses. The AGPL is designed to guarantee the freedom to use, share and change all versions of 
an application or any part of the programming. It protects the rights of the user under two 
agreements: 1- to assert the author’s rights to the software and 2- to offer users this license which 
gives them the legal authorization to copy, distribute and/or modify the software. As the AGPL is 
a copyleft license, it removes the transformation of free software into proprietary software.  

5.1.3 Implementation of a use case 

In order to illustrate the know-how in the use of the application, the implementation of a case is 
presented in the following section.  

 

5.1.3.1   Creating the network of the supply chain with multiple projects 

Figure 51 shows the host page of the application. It includes an editor icon (Project Editor) and 
two modeler icons (Products Modeller) and (Logistics Modeller). The "Project Editor" icon allows 
users to create and manage their own projects for planning the single/multiple CRIBA project(s) 
integrated with the supply chain network. The "Products Modeller" and "Logistics Modeller" icons 
respectively allow users to design the product view, which is used for establishing the bill of 
materials, and the logistics view, which builds the logistics network linked to the project worksites. 
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Figure 51- Presentation of the home page of the CRIBA logistics application. 

 

The "Project Editor" link directs users to a new page allowing them to: 

I. Establish a new project for planning the project(s) with the corresponding supply chain 
network as well as connecting to projects previously created by users by using the "Projects 
management" tab. 

II. Consult and collaborate with other users of the CRIBA Logistics application using the 
"Users management" tab, (Figure 52). 

In the following text, the functionalities of the "Projects management" tab are discussed. The 
"Create new project" link allows users to build a new project which is a project for planning a single 
or multiple CRIBA project(s) with the corresponding supply chain network. By clicking on the link, 
the users can: (i) define the name of the project, (ii) add a description to the project, (iii) select the 
time unit for the planning horizon, and (iv) characterize the renewable resources of the project 
with the name of the resources, the initial availability of resources, the cost of renting the resources 
and the maximum amount that can be rented as a supplement, Figure 53. 
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Figure 52- Presentation of the Project Editor interface. 

 

 

Figure 53- Screen shot of the "Create new project" page. 
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Figure 54- Screen shot of the "Products Modeller” page with an example of the bill of materials. 

After entering the data into the queries, the users can click on the "Save" button to register the 
manipulations and continue the next steps or they can click on the "Cancel" button to abort the 
request. 

The next step after the creation of the project is to establish the bill of materials. By clicking on the 
“Modeller” button of the application located in the upper left corner of the project edit page and 
by using the "Products Modeller" link, the users are led to establish the bill of materials, Figure 54. 
On the page that appears after clicking on “Products Modeller”, the "Palette" tab provides four 
entities to present the different items which can be included in the supply chain network: (i) 
products, (ii) raw material, (iii) waste material and (iv) required, seen in Figure 54. In order to use 
each of the entities, the users click on them in the palette list and drag and drop them in the 
interface. Having added all the items, they can create a relationship between the components and 
the final product by use of the “required” entity and then enter the information in the 
corresponding queries by double-clicking on the entities. Figure 55 presents the queries that must 
be entered for a product-type entity.  At the end of this step, the users synchronize the 
manipulations by clicking on the "Synchronize" link available from the "Action" button, seen in 
Figure 56.  

The next step after establishing the product view is to construct the logistics view. The users click 
on the button of the modeller of the application and then choose the "Logistics Modeller" link, as 
shown in Figure 57. At the "Logistics Modeller" interface, the Palette icon provides a set of entities 
that can be used to build the integrated logistics network with the project working site(s). They 
include: (i) supplier, (ii) production unit, (iii) work site, (iv) recycling center, and (v) flow, which is 
an entity that connects the units together. 
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Figure 55- Product view with the requested data to enter. 

 

Figure 56- Presentation of the "Action" button and the link to synchronization. 

 

Figure 57- Presentation of the link to the “Logistics Modeller”. 

 

In addition, the entities (vi) Start Event, for presenting the start-of-site activity, (vii) End Event, 
for presenting the end-of-site activity, (viii) Task, for representing activities carried out in the 
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project worksites, (ix) No-Wait transition to present an immediate precedence relationship between 
two activities, and (x) Transition, in order to present a normal (wait) precedence relationship, are 
used for defining the logistics view as well as the activity networks, seen in Figure 58. By clicking 
on each of the palette entities, the users can add them to the interface. Once all the entities are 
added, they can double-click on the entities in order to enter the corresponding data. The queries 
for the data entry are associated with the different parameters of the model that are seen in Section 
4.2. Figure 59 and Figure 60 illustrate the queries required for the suppliers and production units.  

 

 

Figure 58- Screen shot of the "Logistics Modeller" page with an example. 
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Figure 59- Screen shot presenting the queries of "Supplier". 

 

Figure 60- Screen shot presenting the queries of "Production Unit". 
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Figure 61- Screen shot of the page that appears after double-clicking on “Worksite Units”, 
including an example. 

 

 

Figure 62- Screen shot presenting part of the required data to enter by double-clicking on the 
“Activity” entities. 
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Double-clicking on the worksite entity directs users to an interface allowing them: (i) to enter the 
parameters necessary for the planning of the CRIBA projects and (ii) to define all the activities of 
the projects by right-clicking on the interface and choosing the proper entities from the pick-list, 
Figure 61. 

In order to define the activities of the project, the users click on the interface. A list opens that 
allows them to select the start/finish activities of the worksites as well as the normal tasks. Having 
added all the activities, the users create the precedence relationship between the activities. To do 
so, they click on each of the added entities. A list appears that allows them to choose either "no 
wait transition" or "transition" to make their proper connections.  

In this interface, once the users double-click on an activity, a window appears which allows them 
to determine certain characteristics for the execution of the activities, Figure 62. They include: 
name, description, due date, penalty cost, earliest start, latest start, processing time, consumable 
resources, renewable resources and waste. At the end of this step, users save the created view by 
clicking on the "Save" button and then synchronize the view by clicking on the "Synchronize" link 
from the “Action” tab. 

 

5.1.3.2 Execution and retrieving the results 

To start the execution of the created project, the users select the "Project Edit" tab and choose 
their project from the "Project list". Clicking on the "Run" button leads the users to the execution 
of the model for the created project, (Figure 63). 

During the execution of the application, two phases of resolution are solved: (i) the pre-processing 
phase and (ii) the main phase of the resolution. The improved earliest and latest start times as well 
as the values of the decision variables of the optimization are saved in Excel spreadsheets. 
Examples of the outputs are presented in Figure 64 - Figure 66. 

 

Figure 63- Screen shot of the interface for executing the application. 
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Figure 64- Presentation of the output of the pre-processing phase with the CRIBA Logistics 
application. 

 

Figure 65- Gantt chart of the activities provided by the CRIBA Logistics application. 

 

Figure 66- Screen shot showing the display of the results for "Production unit" type entities. 
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5.2  Chapter conclusion and discussion 

This chapter has presented the web-based application that has been developed to support the 
modeling framework of the dissertation. The specificities of the application on the architecture and 
licenses are discussed and the implementation of the CRIBA projects are illustrated in the chapter. 
The optimization procedure of the application encompasses two main phases: the pre-processing 
phase and the main phase. The major goal of the pre-processing phase is to improve the earliest 
and latest starts that are estimated for the activities and, therefore, to increase the efficiency of the 
application. The results of the pre-processing phase have been deployed in the main phase in order 
to provide the ultimate resolution of the model through the created use case.
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6.  General conclusion and perspectives 

 

Planning is one of the crucial steps in project management, and its strong influence on the success 
of projects has long been recognized by managers and coordinators of projects. Depending on the 
different viewpoints of organizations, successful planning for projects can be achieved if they have 
performed optimally within the time, cost, and quality factors and/or with the efficient allocation 
of resources. Planning for the assignment of resources becomes more complex for the organization 
in the cases where a set of multiple projects is managed simultaneously. Indeed, in such situations, 
the challenge is to allocate the available resources among the projects while optimally satisfying the 
executive criteria of the projects. In general, two types of resources, including renewable and non-
renewable resources, are used in scheduling the projects. Renewable resources such as machinery 
and labor are available at the project worksites in limited quantities. However, non-renewable 
resources are supplied to the worksites by the corresponding supply chain network through its 
limited capacity of procurement. 

The global objective of this study is to develop a decision-making tool to help managers in planning 
multiple projects to optimality while dealing with resource allocation issues. To determine the 
planning framework of the model, several specifications have been assumed that are generally 
defined on the basis of the existing gap in the literature and the requirements of managerial 
organizations for planning practical cases. Generally, they encompass the three points mentioned 
below: 

• Planning for just-in-time reception of non-renewable resources at the project worksites:  
Due to the growing interest of organizations in performing according to “pull” strategies 
in acquiring required materials, the procurement of non-renewable resources for various 
projects has also been accomplished with a “just-in-time” method. The requirement for 

“This chapter came to an end but the story goes on…” 
  Translated from the ghazalyat of Saadi Shirazi 
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determining a planning framework for such situations leads the framework of project 
scheduling problems to be extended from one planning solely for the projects to the 
integrated planning of the projects and the supply chain network, which produces and 
procures the required resources for the projects. The interest for this integration stems 
from three points of view summarized as following: 
 

- Project planning constraints impacting supply chain network planning: taking the 
executive constraints imposed on the effectuation of projects into account, factors 
such as the given time windows, precedence relationships between the activities 
and also dedicated due dates for the completion of the activities implicitly create 
the constraints for the operations of the supply chain network. Consequently, the 
optimization of the supply chain network without integrating project scheduling 
constraints will end up being unachievable.  

 

- Supply chain network constraints impacting the scheduling of projects:  On the 
other hand, the limitations and constraints of the supply chain network, such as the 
transportation, production and stock capacities of the supply chain actors, as well 
as the transportation and production lead times, inductively influence the 
procurement of the final products to satisfy the demand which can be generated at 
the project worksites. Therefore, the generation of demand at the worksites, that is 
to say the schedules of the activities, necessitates considering the constraints of the 
supply chain network in production, stock and transportation capacities.  

 

- Inherent project scheduling constraints: The schedules of the activities at the 
project worksites also depend on the inherent constraints of projects in terms of 
the availability of renewable resources. Therefore, the optimal planning of the 
system and the ability to provide a planning solution which is applicable to both 
the supply chain network and the schedules of the projects can be attained in their 
concurrent planning and in undertaking the optimization criteria subject to the 
constraints of both the projects and the supply chain planning.   

 

• Trade-off between time and the assignment of the renewable resources:  
The model attempts to build up equilibriums between time costs and renewable resource 
costs. To this end, it presumes that the activities are due on given deadlines. However, the 
model assumes that a limited quantity of the renewable resource has to be temporarily 
allocated to the projects over the time periods in which the demand for the resources may 
exceed the available amounts. These assumptions make the model capable of deciding to 
either rent the auxiliary resources and avoid paying the high penalty costs originating from 
late completion of the activities or to pay for low penalty costs instead of paying for the 
high cost of adding resources. 
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• Inclusion of green criteria in planning projects:  
In order to respect environmental concerns and develop the decision-making tool 
responsive to these issues, the model incorporates the collection of waste generated at the 
worksites and its recycling in appropriate recycling centers that are located either in the 
recycling departments of the manufacturing centers or in the individual recycling centers in 
the closed-loop supply chain network.  
 

The planning framework of the problem has been mathematically modeled by the use of operation 
research approaches. The application of the model is verified with a case study related to the 
CRIBA project. Since the constrained project scheduling problems belong to the NP-hard class of 
optimization problems, two resolution algorithms have been developed and are used to deal with 
the complexity issues of the model: 

• The first algorithm aims to reduce the number of binary decision variables that are involved 
in the resolution of the instance problem using the exact procedures. Having considered 

that the total number of binary decision variables of the model is equal to ∑ (Li
I
i=1 -Ei), the 

algorithm attempts to reduce the total number of binary variables that are involved in the 

resolution of the problem instances by tightening the interval [Li , Ei] for each of the 
activities. The algorithm and its application are presented in Chapter 4 Section 4.2.5.1. 

• The second algorithm is based on the principles of genetic algorithms. In the early stage of 
the algorithm, the search procedure attempts to determine a set of solutions by meeting 
the project-planning constraints as well as the capacity constraints of the forward supply 
chain network and it promotes the influence of the created start dates in the model to deal 
with the planning of the system. Then, the procedure attempts to improve the quality of 
the created solution throughout the different iterations of the algorithm. The parameters 
of the algorithm are calibrated by utilizing the principles of the DOE seen in the Taguchi 
method. In this regard, three different dimensions of the instance problems, including 
small, large and medium sizes, are used and the algorithm parameters are tuned for each of 
the instances. Finally, the performance of the proposed search procedure is investigated 
with a set of generated test instances. The results of the study are outlined in Section 4.3.3 
and 4.3.4 of Chapter 4. 

In order to extend the use of the model to users who are not familiar with operation research, a 
web-based decision support system has been developed. Chapter 5 offers an example to illustrate 
the deployment of the developed web-based application. 

The statements on the perspectives and future developments of the study are discussed within the 
current chapter. They fall into six headings: 
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• Involvement of uncertainty: 
In the proposed modeling framework, all of the parameters are supposed to be 
deterministic. However, this is not the case in most real-world situations. In fact, in practical 
cases of scheduling projects, poor estimation of the duration of activities and the executive 
time windows, as well as the availability of resources, imposes a degree of uncertainty on 
the planning parameters of the model. Furthermore, due to a lack of information, the 
driving factors of the supply chain such as the transportation and production capacities 
and/or the supply lead times can be subject to uncertainty. Therefore, for the future 
development of the modeling framework, the involvement of uncertainty in the duration 
of activities and the transportation capacity of the supply chain are of interest. In this 
context, the employment of uncertainty programming approaches such as stochastic 
programming and robust optimization could be promising.  
 

• Development of socially and environmentally responsible models:   
Reviewing the state of the art in scheduling projects by the use of optimization approaches, 
it is clear that problems of cost and time criteria have been largely studied. In addition, the 
models with quality issues as well as the minimization of tardy jobs have also been well 
reviewed by researchers. Nevertheless, the constrained project scheduling problems with 
environmentally and socially responsible objectives have yet to be determined in the form 
of optimization models and, to the best of our knowledge, the literature shows a deficiency 
in this context. In line with environmentally responsible purposes, the current study deals 
with the management of waste in its collection from the project worksites and the recycling 
of waste in the proper recycling centers. Meanwhile, other practices with environmental 
concerns, such as limiting the greenhouse gas emissions per unit of product supplied by 
the different modes of transportation from the different suppliers can be regarded as new 
developments in these models. In addition, the integration of social factors, such as labor 
unemployment in planning for the projects, could be included in the modeling framework. 
 

• Extension of constrained project scheduling with objectives in resource leveling and assignment:  

In the proposed modeling framework, an initial availability of renewable resources has been 
assumed for the projects and the resources are assigned to the activities based on their 
initial availability and the amounts which can additionally be rented. However, the 
objectives of the model regarding resource leveling problems are to minimize the 
fluctuation in patterns of resource usage (seen in Section 2.3.2.1) which could provide 
guidelines for future extensions of the model. In addition, approaches for solving resource 
investment problems, (seen in Section 2.3.2.2), with the aim of defining the total quantity 
of resources required for performing the projects within the dedicated deadlines, could be 
of interest. 
 

• Extending the assumptions of the model: 
The framework of the model could be extended on the basis of supply chain network 
parameters such as the transportation modes, discount levels for purchasing raw materials 
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and intermediate products, setups in production, lot sizes, etc. In addition, it could be 
developed from viewpoints of project scheduling parameters such as the multi-mode, 
multi-skill and generalized resource issues seen in Section 1.3, Section 2.3.1.3.1 and Section 
2.3.1.3.3.  
 

• Development of additional search procedures and their implantation in decision support systems:  

In this context, the study is still open to being developed with new search procedures for 
scheduling projects and planning the supply chain network. Furthermore, the application 
of other metaheuristic-based algorithms could be undertaken. The implementation of the 
developed metaheuristic-based resolution approaches in decision-support systems could 
also be of interest for future studies and development of the present work. 
 

• Directions for the CRIBA Project:  
According to the principles of the CRIBA project as determined in the demonstration of 
the project, (CRIBA project, 2010), in order to increase the satisfaction of the people living 
in the buildings undergoing thermal renovation activities, it is presumed that the inhabitants 
of the buildings will be staying in their buildings during the inside and outside renovation 
activities. However, several strategies could be applied to minimize the disruption for the 
residents. These could be applied to a complete renovation of a complex throughout all its 
facades or throughout a key unit including the paths of access to the complex. Therefore, 
the structure of the Work Breakdown Structure (WBS) of the projects and the 
determination of the precedence of the renovation activities will play a consequential role. 
In this context, the dependency between the configuration of the panels and the internal 
and external thermal renovation activities could provide the guidelines for structuring the 
renovation activities in order to increase the satisfaction of the inhabitants.  
In addition, the application of Integrated Building Design approaches (IBD), in order to 
improve the confort and productivity of building occupants by considering the integrated 
design strategies and taking into account the interactions among all of the building’s 
systems, could be of interest. On the other hand, the use of Building Information Modeling 
(BIM) softwares that create the models to share knowledge and information about the 
facility can form a reliable basis for decisions through the lifecycle of buildings under 
thermal renovation practices of the CRIBA Project.  
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7.1 Contexte et problématique du travail 

La planification constitue une des étapes importantes de la gestion de projets. Son influence sur la 
réussite des projets a été largement reconnue. S’adaptant à une organisation, une planification 
réussie des projets doit viser une réalisation optimale des activités du projet en considérant les 
facteurs de temps/ coût/ qualité ainsi que l’affectation efficace des ressources. Cette affectation 
des ressources devient plus complexe pour une organisation qui doit réaliser plusieurs projets en 
parallèle (multi-projet). Dans ce cas, l'effort des organisations porte principalement sur l'allocation 
du capital entre les projets tout en poursuivant les objectifs de planification optimale de chacun des 
projets (Browning and Yassine, 2010) et (Singh, 2014).  
En général, deux types de ressources sont demandées pour réaliser des activités. Les ressources, 
comme les produits utilisés pour la construction et les matières premières sont dites non-
renouvelables. Une fois utilisées, elles ne sont plus disponibles. Ces ressources sont généralement 
fournies par un ou plusieurs fournisseurs à travers un réseau appelé « chaîne logistique ». En tenant 
compte des politiques de gestion de la demande, au cours des dernières années, les entreprises ont 
eu une motivation croissante pour réduire le fardeau des stocks, en particulier pour les ressources 
peu demandées à forte valeur ajoutée, (Stevenson et al. 2005) et (Günalay, 2010). Ce travail de thèse 
s’intéresse à la planification des multi projets avec un approvisionnement en juste-à-temps des 
ressources non-renouvelables. Ceci oblige à synchroniser la planification des projets avec celle de 
la chaîne logistique. 
Les ressources telles que la main d’œuvre ou les engins de chantier sont dites renouvelables. Une 
fois la tâche réalisée, elles redeviennent disponibles pour effectuer d’autres tâches. Dans la 
littérature de l’ordonnancement de projets, la planification des ressources non-renouvelables se 
retrouve sous deux approches : la planification des projets à contrainte de ressources (en Anglais : 
Resource Constrained Project Scheduling Problem, RCPSP) et la planification des projets à 
contrainte de temps (en Anglais : Time Constrained Project Scheduling Problems, TCPSP), (Klein, 
1999). Dans le RCPSP le montant des ressources est limité et la planification de projets se fait au 
mieux en tenant compte de ces limites et des contraintes de précédence, (Pritsker et al., 1969) et 
(Hartmann and Briskorn, 2010). Dans les modèles TCPSP, les projets ont une date d’achèvement 
imposée (deadline) et des quantités supplémentaires de ressources peuvent être mobilisées afin de 
respecter ces dates de fin imposées (Dekro and Herbert, 1989).  
 
Dans notre étude, les dates de fin des projets et de certaines tâches sont souhaitées et il y a des 
coûts à payer si ces dates sont dépassées. Il est possible de mobiliser des quantités supplémentaires 
de ressources non-consommables. Nous devons trouver le meilleur compromis entre les coûts de 
retards et les coûts des ressources supplémentaires. Nous retenons ainsi les principes des deux 
problèmes RCPSP et TCPSP et nous les appliquons dans un modèle unifié. 
 
En outre, aujourd'hui avec l’augmentation de la préoccupation mondiale pour la protection de 
l'environnement et la préservation des ressources naturelles, la nécessité d'un développement 
durable est devenue un facteur inévitable pour les organisations, (Robichaud et Anantatmula, 2011) 
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et (Hurt et Thomas, 2009). Bien que la planification des ressources (spécialement des ressources 
renouvelables) soit largement documentée dans la littérature en management de projets, à notre 
connaissance, peu de travaux abordent les aspects de la durabilité des ressources sous forme d'un 
modèle d’optimisation mathématique. Au cours de cette étude, nous supposons que les déchets 
produits sur les chantiers des divers projets doivent être collectés et recyclés dans des lignes de 
recyclages. Ces lignes de recyclage sont soit présentes sur un site de production pour faciliter la 
réutilisation des composants, soit associés à un centre dédié au recyclage. 
Dans le but de définir un cadre la modélisation qui correspond aux besoins décrits ci-dessus, la 
première question qui émerge est (Q.1), « Quels paramètres importants influencent la planification 
de multi projets dont les ressources non-renouvelable sont approvisionnés en juste à temps et 
comment affecter ces ressources renouvelables en considérant les aspects recyclage des déchets ? » 
La réponse à cette question nous conduit à analyser les exigences et à établir les hypothèses du 
modèle. Afin de planifier le système de manière optimale nous avons retenu les approches de 
modélisation mathématique.  
Dans ce contexte, la deuxième question qui s’est posée (Q.2) est « Comment formuler le modèle 
d’optimisation et quelles méthodes peuvent être appliquées pour résoudre les instances de ce 
modèle ? ». 
Comme l’optimisation mathématique limite l’applicabilité du modèle aux gestionnaires qui 
connaissent ce type d’optimisation, la question qui se pose ensuite (Q.3) est « Comment rendre le 
modèle proposé utilisable par et pour les gestionnaires des organisations qui ne sont pas forcément 
familiers avec l’optimisation mathématique ». La réponse à cette question est de développer un 
système d’aide à la décision au travers d'une application web. Les utilisateurs pourront y créer leurs 
propres projets, modifier les données et récupérer les résultats après résolution. 
Ces trois questions sont abordées au travers d’un projet appelé CRIBA (Construction et 
Rénovation Industrialisée Bois et Acier) subventionné par l’ADEME. L’objectif du projet est 
d’industrialiser le processus de rénovation énergétique des bâtiments et de réduire la consommation 
d’énergie des bâtiments jusqu’à 25 Kwh/m²/an en utilisant des panneaux isolants avec des 
menuiseries intégrées. Les panneaux préfabriqués en usine sont transportés sur les chantiers en 
juste à temps et ils sont posés sur les façades extérieures des bâtiments. Après avoir installés les 
panneaux, les anciennes menuiseries des bâtiments sont enlevées et sont transportées dans des 
centres de recyclage. Le cadre général de la modélisation de la problématique de thèse est présenté 
sur la Figure 7, (Section 1.3).  
Les Figure 11 et Figure 12 (Section 1.4) schématisent les processus de la rénovation des bâtiments 
dans le contexte du projet CRIBA. Les travaux de cette thèse s’appliquent ainsi sur la planification 
tactique du projet CRIBA, Figure 67 (Section 1.4.2). Ils comprennent les décisions sur la 
planification des tâches, l’affectation des ressources renouvelables, la planification de production 
et le transport des ressources non-renouvelables ainsi que le transport et le recyclage des déchets 
produits par les chantiers.  
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7.2 Revue de la littérature 

7.2.1 Méthode de résolution des modèles de planification des projets 

Les méthodes de résolution des problèmes de planification de projets à contrainte de ressources/ 
temps peuvent se classifier en quatre catégories incluant 1- La modélisation PLNE et la résolution 
par des méthodes exacts, 2- Les bornes inférieures, 3- Les heuristiques, et 4- Les méta-heuristiques: 

 

7.2.1.1  La modélisation PLNE et la résolution par de méthodes exacts : 

Le modèle de base de RCPSP est présenté par (Pritsker et al., 1969). En utilisant la notation en 

trois champs de (Brucker et al., 1999), le problème se présente sous la forme de PSm|prec|Cmax 
où la premier champ indique la disponibilité de m type de ressources renouvelables. Le second 

champ indique des contraintes de précédence et Cmax donne l'objectif du modèle qui est la 
minimisation de la durée totale du projet. En outre, le modèle TCPSP présenté par (Dekro and 
Herbert, 1989) peut s’exprimer comme un modèle de planification du projet où la capacité des 
ressources renouvelables peut augmenter pour pouvoir satisfaire une deadline qui est imposé sur 
le projet. Le modèle vise à satisfaire les contraintes de précédence et l’objectif à minimiser est le 
coût de l’ajout des ressources. 

Les approches exactes de type séparation-et-évaluation et la programmation dynamique sont 
utilisés pour traiter ces modèles dans la littérature. L’idée de base de la séparation-et-évaluation 
consiste à créer un arbre de recherche avec des nœuds et des branches qui explorent l'espace de 
solution du problème pour trouver la solution optimale. Dans une version simple de cette 
approche, les nœuds et les branches peuvent utilisés respectivement pour montrer 
l’ordonnancement des tâches et les contraintes de ressources-précédence, (Bartusch et al., 1988) et 
(De Reyck and Herroelen, 1998). Les versions développées de cette procédure sont implantées 
dans les logiciels commerciaux pour répondre aux besoins en recherche et en pratique. 

La programmation dynamique est un paradigme algorithmique qui permet de décomposer un 
problème en différents sous-problèmes et de résoudre les problèmes décomposés l’un après l’autre. 
Les solutions de chaque sous-problème sont combinées en une solution complète afin de 
déterminer la solution finale du problème principal, (Carruthers and Battersby, 1966).  

 

7.2.1.2 Les bornes inférieures: 

Les calculs de bornes inférieures ont un objectif triple : i. Ils fournissent des valeurs pour les 
problèmes dans lesquels la valeur optimale est absente. ii. La valeur calculée présente une mesure 
pour juger la performance des algorithmes qui génèrent des solutions semi-optimales. 
Conformément à cet objectif, si l'écart entre la limite inférieure et la valeur calculée est « serrée », 
l’effort de calcul par l'algorithme peut être justifié. Et, iii. Les bornes inférieures peuvent être 
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utilisées dans une approche exacte comme l'algorithme de la séparation-et-évaluation. Dans ce 
contexte, (Christofides et al., 1987) présente une procédure pour calculer une borne inférieure pour 
le modèle RCPSP en utilisant les concepts de la relaxation continue. 

 

7.2.1.3 Les heuristiques:  

Selon (Blazewicz et al., 1983), (Elmaghraby et Kamburowski, 1992) et (Neumann et al., 2002), les 
modèles de planification de projets à contrainte de ressources sont NP-difficiles. La complexité de 
ces problèmes empêche de résoudre les problèmes de grandes tailles en utilisant les méthodes 
exactes comme la séparation-et-évaluation. De ce fait, des solutions efficaces peuvent être obtenues 
avec un effort raisonnable en utilisant des approches heuristiques et méta-heuristiques.  

Les heuristiques sont généralement adaptées au problème et à ses spécificités. Dans le contexte de 
la planification de projets, elles se divisent en deux catégories : 1-les heuristiques de résolution de modèles 

à contrainte de ressource, comme les algorithmes basés sur les règles de priorité : les solutions sont 
définies en utilisant des règles de priorité et les schémas de génération de l’ordonnancement 
incluant le schéma de génération de planification en série (SSGS) et le schéma de génération de 
planification parallèle (PSGS), (Kelley, 1963) et (Kurtulus and Davis, 1982). 2-les heuristiques de 

résolution des modèles à contrainte de temps, comme les heuristiques basées sur la relaxation Lagrangienne, 
(Drexl and Kimms, 2001).  

 

7.2.1.4 Les méta-heuristiques:  

Les méta-heuristiques sont des procédures indépendantes du type de problème. Elles partent d'une 
ou plusieurs solutions initiales, qui peuvent résulter d'une heuristique, et les transforment en une 
autre en exécutant un ensemble de règles. La Figure 23 résume les méta-heuristiques les plus 
utilisées pour la planification des projets en se basant sur 264 papiers figurant dans les bases de 
données Web of knowledge, ScienceDirect et SpringerLink. D’après la revue de la littérature, 
l’algorithme génétique est l’algorithme le plus appliqué dans le domaine de la planification des 
projets. Le mécanisme de fonctionnement de cet algorithme est présenté en Figure 27. L'avantage 
de l'algorithme génétique est dans sa recherche intrinsèquement parallèle et sa forte capacité à 
explorer et à exploiter l'espace des solutions. Néanmoins, comme les autres approches méta-
heuristiques, il faut un réglage précis des paramètres, en particulier le taux de croisement, le taux 
de mutation, la taille de la population et les critères d'arrêt (comme le nombre d'itérations). En 
planification de projets, la représentation d’une solution s’appuie généralement sur une liste de 
permutation sur laquelle s’appliquent les opérateurs de voisinage, croisement et mutation. Un 
algorithme de type SSGS permet ensuite de générer les dates des tâches conformément aux 
contraintes du projet. 
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7.2.2 Planification pour l’approvisionnement des ressources non-

renouvelables dans la planification des projets 

L’approvisionnement de ressources non-renouvelables sur un projet représente la base du couplage 
entre un modèle de planification de projets et celui de planification d’une chaine logistique. Afin 
de faire une revue de la littérature sur l’approvisionnement des ressources non-renouvelables dans 
la planification des projets, les différents mots clés concernant ce sujet et les combinaisons de ces 
mots ont été rentrés dans les bases de données suivantes : Web of Knowledge, ScienceDirect, 
SpringerLink et Google Scholar. Les mots clés comprennent les termes « supply chain planning », 
« environmental responsible project scheduling », « optimization », « resource constrained project 
scheduling problem », « multi project scheduling », « resource investment problems », « material 
ordering », « production planning » et «ordering the resources in project scheduling ». Le tableau 
23 (Section 3.3) résume toutes les recherches existantes dans ce domaine depuis 1980 jusqu’à 2016.  

(Aquilano et Smith, 1980) présente le problème intégré de la planification de projet avec la 
commande de matériel. Les auteurs indiquent la nécessité de considérer les délais de commande 
dans la planification de projet ainsi que les quantités de matériaux stockables sur les chantiers. Leur 
travail présente un ensemble d'algorithmes développés pour traiter le modèle.  

Dans une étude postérieure, Smith-Daniels et Aquilano adaptent cette approche à des cas réels 
(Smith-Daniels et Aquilano, 1984). Les auteurs imposent une limite pour la disponibilité maximale 
des ressources renouvelables. Ils présentent une heuristique qui traite la planification des ressources 
renouvelables et non renouvelables.  

(Smith-Daniels et Smith-Daniels, 1987a) développent un modèle PLNE pour maximiser la Valeur 
Actuelle Nette (VAN) dans les modèles de planification de projet afin de valoriser le coût du capital 
et des matériaux. 

Par la suite, (Smith-Daniels et al., 1987b) présente un modèle PLNE dans lequel un délai 
d’approvisionnement des ressources et un deadline sont considérés. L'objectif de la planification 
est défini comme la minimisation du coût total de l'exécution du système. Une heuristique sur la 
base de l’algorithme de (Wagner and Within, 1958) est développée pour résoudre le modèle. 

Dans le travail suivant, (Dodin et Elimam, 2001) étend le travail de (Smith-Daniels et al., 1987) 
pour intégrer la variabilité dans la durée des activités en minimisant le coût d'exécution des projets. 

(Sajadieh et Shadrokh, 2009) considèrent différents seuils de commande des matériaux. Le modèle 
détermine l’ordonnancement des tâches afin de minimiser le coût total de réalisation des projets. 
Les auteurs utilisent un algorithme génétique pour résoudre le modèle. 

(Zoraghi et al., 2012) propose un modèle de programmation en nombre entier mixte pour gérer la 
commande de matériaux dans la planification de projet en considérant un deadline associé au 
projet. Les auteurs appliquent un algorithme hybride entre l'algorithme génétique et le recuit simulé 
pour résoudre le modèle mathématique. En outre, ils utilisent la méthode Taguchi pour régler les 
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paramètres de l'algorithme proposé. Afin d'évaluer la performance de l'algorithme, ils comparent 
les résultats de l'algorithme avec les résultats des problèmes de test résolus par le logiciel LINGO. 

(Fu, 2014) considère un problème de planification de projet multi modes intégré à la commande 
des matériaux. Dans ce modèle, la disponibilité des ressources renouvelables est limitée. Cependant, 
cela ne suppose pas une capacité limitée pour fournir les ressources non renouvelables sur le site 
de travail du projet. En outre, le modèle considère une deadline pour l'exécution du projet. Le but 
du modèle est de minimiser le coût total du système. Ce coût comprend les coûts d’utilisation des 
ressources renouvelables, le coût du matériel, le coût de la commande, le coût de stockage, le coût 
de l'expédition et la pénalité de retard. Un algorithme génétique est utilisé pour résoudre le modèle. 

Zoraghi et al. (2015) étendent leurs travaux antérieurs, (Zoraghi et al., 2012), en considérant le délai 
d’approvisionnement des ressources non-renouvelables et la planification des ressources 
renouvelables limitées en quantité. Les auteurs utilisent deux méta-heuristiques hybrides basées sur 
un algorithme génétique et un recuit simulé pour résoudre le problème intégré. En outre, des 
méthodes statistiques sont utilisées pour régler les paramètres des deux algorithmes. 

(Tabrizi et Ghaderi, 2015) développe l'étude de (Sajadieh et Shadrokh, 2009) pour inclure des 
capacités limitées de stockage sur le site de travail du projet. Ils utilisent le solveur GAMS 22.1 pour 
résoudre les instances du modèle. 

Tabrizi et Ghaderi (2016) considèrent ensuite l'incertitude dans la durée des activités ainsi que le 
coût d'exécution. Ils développent un modèle robuste qui cherche à minimiser le coût total 
d’exécution des activités et la maximisation de l’ordonnancement de tâches. NSGA-II et une 
version modifiée de l'algorithme d’évolution différentielle multi-objectif ont été utilisés comme 
approche de solution dans le modèle. Les paramètres de l'algorithme sont ajustés par la méthode 
de Taguchi et l'application de l'algorithme est vérifiée en comparant les résultats obtenus à partir 
de l'algorithme et les résultats obtenus à partir de la méthode du ε-constraint.  

 

7.2.3 Planification d’une chaîne logistique verte 

(Sarkis et al., 2011) présente la gestion de la chaîne logistique verte comme intégrant les 
préoccupations environnementales dans les pratiques inter organisationnelles de la gestion de la 
chaîne logistique, y compris la logistique inverse. 

La chaîne logistique inverse gère les flux liés au retour des déchets, des produits abimés ou non 
conformes depuis les clients vers les centres de recyclage en les coouplant avec les flux directs, 
c’est-à-dire les flux reliés à l'approvisionnement des matériaux et produits demandés vers les clients 
(Kumar et al., 2009). La planification des flux directs comprend la planification d’achat des matières 
premières, la planification de production et la planification de distribution et transport, (Sun et al., 
2010), (Bengtsson and Nonås, 2010), (Akkerman et al., 2010) and (Wei et al., 2017). 
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7.2.4 Positionnement des travaux 

En se référant au tableau 2 (Section 3.3), nous pouvons conclure que les travaux de recherche sur 
ce sujet constituent une petite partie de la littérature. Il existe encore des besoins pour développer 
des modèles adaptés aux situations pratiques, en particulier sur notre sujet de recherche dans la 
planification des projets avec l'acquisition en juste à temps des ressources non renouvelables.  

Le modèle de notre étude développe un cadre de planification de multi projets qui hérite de 
certaines spécifications de problèmes à contraintes de temps (jalons imposés sur les activités) et de 
problèmes de planification de projets à contraints de ressources (disponibilité limitée de ressources 
renouvelables et ajout limité de nouvelles capacités de ces ressources), (Contribution 1). Afin de 
planifier la réception des ressources non renouvelables sur les chantiers en juste à temps, la 
planification de la chaîne logistique (planification de production, stock et transport) est intégrée à 
la planification des projets, (Contribution 2). En outre, afin de rendre le modèle adapté aux facteurs 
décisionnels durables et écologiques, la collecte et le recyclage des déchets produits dans les 
chantiers sont considérés (Contribution 3). La résolution du modèle est faite par un algorithme 
exact et un algorithme de type génétique (Contribution 4). 

 

7.3 Modélisation et résolution 

7.3.1 Description du modèle 

L'objectif mathématique du modèle est de minimiser le coût total du système, c’est-à-dire, les coûts 
liés aux projets et les coûts liés à la chaîne logistique. Le modèle considère un ensemble de projets 
à effectuer en parallèle (multi projet). Les projets doivent se partager une quantité limitée de 
ressources renouvelables (pour CRIBA, cela concerne essentiellement main d’œuvre et certains 
engins de chantier). Cependant, il est possible d’augmenter, dans une certaine mesure, les capacités 
disponibles de ces ressources en les payants. Parmi les ressources renouvelables, certaines de ces 
ressources ont un coût d'utilisation élevé (ex : location d’une grue). Pour ces ressources, le modèle 
vise à raccourcir l'intervalle de temps pendant lequel elles sont présentes sur les chantiers.  
Chaque projet est constitué d’un ensemble d’activités. Ces activités possèdent certains attributs : 
durée, date de début au plus tôt, date de début au plus tard, demande de chaque type de ressources 
renouvelable, demande de chaque type de ressource non-renouvelable et quantité de déchets 
produits. De plus, une date jalon est associée à certaines activités. En cas de dépassement de cette 
date, il y a un coût de pénalité supplémentaire pour chaque période de retard. 
La chaîne logistique du modèle contient quatre types de partenaires : les fournisseurs de matières 
premières, les fabricants (avec ou sans centre de recyclage des déchets, potentiellement sur plusierus 
niveaux), les chantiers et les centres dédiés au recyclage des déchets. 
Les fournisseurs fournissent les matières premières aux fabricants de produits finis ou 
intermédiaires sous contrainte de capacité limitée de transport. Les produits intermédiaires ainsi 
que les produits finis sont fabriqués dans les centres de fabrication ayant une capacité limitée de 
production. Pour accroître la fiabilité, les centres de fabrication sont flexibles pour augmenter leur 
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capacité de production. Cependant, cette capacité supplémentaire est limitée. Deux types de stock 
sont pris en compte. Ils comprennent des stocks d'entrées et des stocks de sortis. Le stock d'entrée 
comprend les articles qui sont reçus dans une unité. Ils seront utilisés pour des objectifs de 
production/recyclage, par exemple des matières premières ou des produits intermédiaires. D'autre 
part, le stock de sorties stocke des éléments qui fabriqués dans une unité, en attente de livraison à 
un autre acteur. Les déchets produits sur les chantiers sont censés être expédiés aux lignes de 
recyclage. Ces lignes sont situées soit dans les centres de recyclage, soit dans les centres de 
fabrication qui possèdent également des lignes de recyclage. La capacité de recyclage peut aussi être 
étendue. Toutefois, la capacité supplémentaire est limitée par une valeur donnée 
Les hypothèses supplémentaires du modèle sont établies comme suit : 
 

• La préemption des activités n'est pas autorisée. 

• La durée de réalisation des activités a une valeur fixe et connue à priori. 

• Quatre types de précédence (fin-début, fin-fin, début-début et début-début) existent dans 
le modèle.  

• Entre certaines tâches, il existe des relations d’enchainement immédiat : la tache B doit 
démarrer dès que la tache A est terminée. 

• Les demandes de chaque activité pour chacune des ressources renouvelables et non 
renouvelables sont connues. La quantité de production des déchets par chacune des 
activités est connue a priori. 

• Les fenêtres de temps [date de début au plus tôt -plus tard des activités] et les dates jalons 
sont estimées par des experts. 

• Les acteurs de la chaîne d'approvisionnement sont choisis par le processus décisionnel 
supérieur au niveau stratégique. 

• Les capacités de transport, de production et de stockage ainsi que l'ajout maximal de 
capacité sur les lignes de production / recyclage sont connues à priori. 

• Des délais de transport et production/recyclage sont intégrés dans le modèle.  
 

III.II Formulation mathématique 

 
Le modèle mathématique est présenté dans (Gholizadeh-Tayyar et al., 2016). La fonction objective 
du modèle minimise le coût total du système. Elle comprend deux types du coût : (i) les coûts liés 
aux projets, incluant le coût des chantiers, les coûts liés à l'utilisation des ressources renouvelables 
dont le coût du loyer est élevé, le coût total de pénalité pour l'achèvement tardif des activités et le 
coût total de l'ajout des ressources renouvelables supplémentaires, et (ii) les coûts liés à la chaîne 
logistique qui incluent le coût total de transport des articles, le coût de stockage des articles d’entrées 
et de sortis, le coût de production / recyclage et le coût lié à l'ajout de capacités supplémentaire de 
production / recyclage. 
Les contraintes sont présentées comme suit (voir Section 4.2.3): 
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 (i) Une seule date de démarrage est imposée pour chaque tâche des projets. 
 (ii) Chacune des tâches doit démarrer entre les dates de début plus tôt et plus tard. 
 (iii) Les contraintes de précédence (quatre types généraux de précédence et deux types 

de précédence d’enchainement immédiats ou non) doivent être respectées. 
 (iv) L’interruption des tâches n’est pas permise. 
 (v) Une valeur de retard est calculée pour les tâches qui dépassent leur deadline. 
 (vi) La demande des tâches pour les ressources renouvelables ne doit pas dépasser la 

quantité disponible des ressources plus la quantité qui peut être louée. 
 (vii) L’ajout supplémentaire des ressources renouvelables est limité.  
 (viii) La demande des tâches pour chaque type de ressource non-renouvelable doit être 

satisfaite en considérant le délai de transport.  
 (ix) En considérant des délais de transport et de production, les contraintes de 

conservation de flux pour les articles d’entrées et de sorties dans chaque unité de la 
chaîne logistique sur chaque période de temps doit être respecté.   

 (x) La charge de production ou de recyclage sur les lignes de production ou de recyclage 
ne doit pas dépasser la capacité disponible plus la capacité qui peut être ajoutée. 

 (xi) La capacité rajoutée de production ou recyclage est limitée. 
 (xii) La capacité de transport est limitée. 
 (xiii) Le niveau de stock des articles d’entrée et sorti au début et fin de horizon de planning 

est égale à zéro. 
 

7.3.2 Résolution du modèle 

Le modèle proposé est résolu par deux approches : (i) Algorithme exact basé sur l’approche de 
relaxation continue et (ii) Algorithme génétique.  
 

(i) Algorithme exact basé sur l’approche de relaxation continue :  

 

Dans cette approche, le logiciel Cplex version 12.6.1 est utilisé. Comme la complexité 
des PLNE est liée au nombre de variables de décision binaires (Wolsey et Nemhauser, 
2014), la réduction des efforts de calcul pour la résolution de ces problèmes peut 
s’obtenir en diminuant le nombre total de variables de décision binaires. Dans le modèle 
mathématique proposé, le nombre total des variables binaires du problème est égal à 

N= ∑ (Li
I
i=1 -Ei), ou, Li est la date de début au plus tard de la tâche i, et Ei est la date de 

début au plus tôt de la tâche i. De ce fait, un moyen efficace de diminuer N est de 

resserrer l'intervalle [Li , Ei] pour chaque tâche, (Gholizadeh-Tayyar et al., 2014) à l’aide 
d’un pré-traitement. Il est ici basé sur la relaxation des variables entières. 
La première étape de la procédure modifie la date de début au plus tôt en minimisant 
la valeur correspondante pour chaque activité. D'autre part, la deuxième étape maximise 
les dates de début afin de calculer les nouvelles dates de début au plus tard. Cette 
procédure est décrite par l’Algorithme 1 de ce mémoire (Section 4.2.5.1). Les valeurs 
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obtenues sont exploités pour la résolution finale. Les résultats de l’application de cet 
algorithme sur un test du modèle sont présentés dans le Tableau13. 
 

(ii) Algorithme génétique: 

 

Sur la base du travail présenté dans (Tayyar et al., 2016), cette méthode de résolution 
comprend deux phase: (i) Phase de prétraitement, (ii). Application de l’algorithme 
génétique (GA). 
 
(i). Phase de prétraitement :  

La procédure de prétraitement inclue deux étapes : (a) Convertir les précédence fin-fin, 
début-début et début-fin en une précédence fin-début, et (b) Déployer la méthode CPM 
afin de corriger et modifier les dates estimées de début au plus tôt et plus tard des 
tâches, Algorithme 2 (Section 4.3.1). 
 
(ii). Application de l’algorithme génétique (GA) : 

 Les éléments clés du chromosome, Figure 41, sont liés à la détermination de la date de 
début possible pour les tâches. L’objectif principal de GA adapté au modèle est de 
définir les dates de début pour les activités des projets dans une interaction entre les 
contraintes de planification du projet et les contraintes de la chaîne logistique avancée 
( les contraintes de capacité du transport et de la production de la chaîne logistique et 
les contraintes liés à la conservation des flux) et puis de propager l’effet des dates de 
débuts générées sur la chaîne logistique inverse afin de planifier le transport et le 
recyclage des déchets. Les Algorithme 3 et Algorithme 4 (Section 4.3.2) décrivent ce 
mécanisme de calcul. 
 
L'aptitude des solutions générées est évaluée par leur coût. Il comprend deux termes: 
a. Le coût de la solution, qui est égal à la valeur de la fonction objective pour la solution 
et b. Le coût de la pénalité, pour les solutions qui ne sont pas faisable. 
 
Après avoir créé une population des solutions et le calcul de la fonction d'aptitude pour 
chacun des individus, l'algorithme génétique utilise l'opérateur de croisement d’ordre 1 
pour combiner le contenu de deux parents afin de générer des enfants. La sélection des 
solutions élitiste est utilisée dans l’opérateur de Roulette Wheel. De plus, un opérateur 
hybride entre les opérateurs d’échange, d’inversion et d’insertion est implanté afin de 
définir l’opération de mutation. 
 
Les contraintes du problème sont divisées en deux catégories : des contraintes souples 
et des contraintes dures. Les contraintes souples peuvent être violées. Dans ce cas, elles 
induisent des pénalités dans la fonction de coût, alors que les contraintes dures doivent 
impérativement être respectées. 
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Les contraintes souples du modèle sont: 1-La capacité de stockage dans la chaîne 
d'approvisionnement avancée et 2-Les contraintes de capacité du réseau de la chaîne 
d'approvisionnement inverse. 
Les contraintes dures incluent : 1- Chaque activité doit être exécutée exactement entre 
sa date de début au plus tôt et au plus tard, 2- les contraintes de précédence et de 
ressource doivent être respectées. 3- L'interruption des activités n'est pas autorisée. 4- 
Les activités avec enchainement immédiat doivent être lancées immédiatement après 
l'accomplissement des activités précédentes. 5- La demande des chantiers pour les 
ressources non renouvelables doit être satisfaite en juste à temps. 6 - Compte tenu des 
délais de transport et de production, la matière première et les produits intermédiaires 
requis doivent arriver à leur point d'utilisation avec la quantité requise. 7- La charge de 
travail en production ne doit pas dépasser la capacité de production initiale disponible 
plus la capacité maximale pouvant être ajoutée. 8-Les stocks des éléments entrants et 
sortants chez les différents acteurs de la chaîne logistique doivent être égaux à zéro au 
début et à la fin de l'horizon de planification. 
 
L’algorithme s’arrête après un nombre maximum d’itérations. Les paramètres de 
l’algorithme sont ajustés en utilisant la méthode Taguchi (Section 4.3.3) pour trois tailles 
du modèle (petite, medium et grande), Tableau 24- Tableau 25. L’algorithme est testé 
sur 50 instances. La performance de l’algorithme est rapportée sur les Tableau 26 et 
Tableau 27. La convergence est analysée sur laFigure 46. 

 

7.4 Implémentation du système d’aide à la décision 

CRIBA Logistics est une application web qui implémente l'approche de modélisation décrite dans 
les Sections 7.3.1 et Section 7.3.2, méthode (i)  permet aux utilisateurs de : 

• Créer et modéliser un nouveau projet pour la planification des chantiers avec leur 
chaîne logistique. 

• Lancer la phase de prétraitement afin d'améliorer la date de début la plus tôt et plus 
tard des tâches estimées par les utilisateurs et de ce fait améliorer l'efficacité de 
l'application. 

• Exécuter la résolution et récupérer les résultats dans les feuilles Excel en utilisant la 
première méthode de solution. 

Un éditeur (Project Editor) et deux modeleurs (Product Modeller et Logistics Modeller) sont 
développés : 
Project Editor permet aux utilisateurs de créer et de gérer leur propre projet de planification des 
multi projets de la rénovation énergétique des bâtiments. Les icônes « Product Modeller » et 
« Logistics Modeller » permettent respectivement de concevoir la vue nomenclature des produits 
et la vue logistique c'est-à-dire le réseau des fournisseurs, fabricant, centres de recyclage liés aux 
sites de travail des projets. 
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7.5 Conclusion 

L'objectif global de ce mémoire est de développer un outil de prise de décision pour aider les 
gestionnaires à planifier des multi projets avec leurs chaînes logistiques. D’une part, les projets se 
partagent des ressources renouvelables présentent en une quantité limitée. D’autre part, les 
ressources non-renouvelables sont fournies avec une capacité limitée d’approvisionnement de la 
chaîne logistique. Pour déterminer le cadre de la planification du problème, plusieurs spécifications 
ont été retenues. Elles sont généralement définies en fonction du gap existant dans la littérature et 
les exigences des organisations. Généralement, le modèle englobe trois points mentionnés ci-
dessous : 

• Approvisionnement en juste à temps des ressources non-renouvelables sur les chantiers des projets:  

En raison de l'intérêt croissant des organisations pour supprimer les stocks des produits 
peu demandés et à forte valeur, ces ressources sont livrées en juste à temps sur les chantiers. 
Cela conduit à étendre le cadre de la planification du problème. Il faut non seulement 
planifier les projets mais faire une planification intégrée des projets et leurs chaînes 
logistiques. La motivation pour cette intégration est due aux trois points suivants : 

 
- Les contraintes temporelles du projet affectent la planification de la chaîne logistique :  

La prise en compte des contraintes imposées pour l'exécution des projets, des facteurs 
tels que les fenêtres de temps pour l’exécution des tâches, des relations de précédence 
entre les tâches et le deadline des activités créent des contraintes sur les opérations de 
production et d'approvisionnement de la chaîne. Par conséquent, l'optimisation de la 
chaîne logistique doit intégrer les contraintes de planification. 

 
- Les contraintes de la chaîne logistique ont un impact sur la planification des tâches des 

projets :  
Les limites et contraintes de la chaîne d'approvisionnement telles que les capacités de 
transport, de production et de stockage ainsi que les délais de transport et de production 
influent sur la livraison des produits finaux sur les chantiers. Par conséquent, le 
démarrage des tâches des chantiers et l’approvisionnement des ressources demandée 
nécessitent de considérer les contraintes de la chaîne logistique. 

 
- Les contraintes de gestion des ressources renouvelable des projets affectent la 

planification de la chaîne logistique et des projets : l’ordonnancement et la planification 
des activités sur les chantiers dépendent également de la disponibilité des ressources 
renouvelables.  
 

• Compromis entre la durée des projets et l’affectation des ressources renouvelables : 

Dans ce modèle, certaines tâches ont des dates de fin souhaitées et il existe des pénalités de 
retards si ces dates ne sont pas respectées. D'autre part, les ressources renouvelables 
disponibles initialement sont en capacité limitée mais il est possible d’acquérir des capacités 
supplémentaires (location, intérim). Le modèle tente de créer un équilibre entre les coûts 
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de pénalité dûs au dépassement des dates de fin souhaitées et les coûts d’ajout des 
ressources renouvelables.  
 

• Inclusion des critères verts dans la planification des projets: 
Afin de respecter les préoccupations environnementales, le modèle prend en compte le 
transport des déchets des chantiers et leur recyclage dans les centres appropriés. Ces centres 
sont situés soit dans les centres de fabrication, soit sont des centres spécialisés de recyclage. 
 

Le problème de planification est modélisé sous forme d’un système d’équations et résolu par des 
approches de recherche opérationnelle. Une application du modèle a été réalisée sur un cas relatif 
au projet CRIBA. Étant donné que les problèmes de planification de projet sous contraintes 
appartiennent à la classe NP-difficile des problèmes d'optimisation, deux algorithmes de résolution 
sont développés et utilisés pour traiter les problèmes : un algorithme exact basé sur la relaxation 
continue qui essaye de réduire la complexité de résolution des problèmes de test du modèle et une 
méta-heuristique du type de algorithme génétique qui présente une procédure de construction de 
solution semi-optimale.  
 
Les perspectives sont développées ci-dessous. 
 

• Implication de l'incertitude: 

Dans le modèle proposé, tous les paramètres sont déterministes. Cependant, ce n'est pas le cas 
dans la plupart des situations réelles : la durée des activités, les fenêtres de temps pour l’exécution 
des tâches et la disponibilité des ressources sont souvent estimées avec un certain degré 
d’incertitude. En outre, en raison du manque d'information, les paramètres de la chaîne logistique 
tels que les capacités de transport et de production, les délais d'approvisionnement peuvent être 
incertains. Par conséquent, pour le développement futur du cadre de modélisation, introduire de 
l'incertitude quant à la durée des activités et à la capacité de transport de la chaîne 
d'approvisionnement est intéressante. Dans ce contexte, la programmation stochastique ou 
l’optimisation robuste pourraient constituer des pistes prometteuses.  
 

• Développement de modèles sociaux et environnementaux responsables: 

En regardant l'état de l'art sur la planification de projets avec des approches d'optimisation, nous 
pouvons constater que les problèmes liés aux coûts et au temps ont été largement étudiés. Par 
ailleurs, les chercheurs ont également considéré les modèles prenant en compte les aspects qualité 
ainsi que la minimisation des travaux en retards. Néanmoins, les problèmes de planification de 
projets avec des objectifs environnementaux et sociaux n'ont pas encore mis sous la forme de 
modèles d'optimisation. A notre connaissance la littérature montre une certaine lacune dans ce 
contexte. Dans le cadre de la responsabilité environnementale, l'étude actuelle traite de la gestion 
des déchets. Cependant, d’autres pratiques en matière d'environnement telles que la limitation des 
émissions de gaz à effet de serre par unité de produit fournie par les différents modes de transport 
des divers fournisseurs peuvent être considérées dans les développements de ces modèles. De plus, 
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l'intégration des facteurs sociaux tels que le chômage dans la planification des projets pourrait être 
également inclue. 
 

• Extension de la planification des projets contraints avec des objectifs dans le nivellement et l'affectation des 

ressources 

Dans le modèle proposé, les ressources renouvelables sont affectées aux activités en fonction de 
leur disponibilité initiale et des capacités qui peuvent être louées en plus. Pour minimiser les 
fluctuations d'utilisation des ressources, les problèmes de nivellement des ressources peuvent 
fournir des pistes pour de futures extensions du modèle.  
 

• Extension des hypothèses du modèle 

Le cadre du modèle pourrait être étendu en jouant sur les paramètres du réseau de la chaîne 
d'approvisionnement, comme les modes de transport, les niveaux de rabais pour l'achat des 
matières premières et des produits intermédiaires, la production ou l’achat par lots etc. De plus, le 
modèle peut être enrichi en considérant qu’il existe plusieurs manières d’exécuter une tâche ou en 
ayant des ressources (humaines en particulier) ayant des compétences multiples. 
 

• Développement et implémentation de procédures supplémentaires de résolution dans les systèmes de l’aide à 
la décision 

Dans ce contexte, l'étude reste encore ouverte pour de nouvelles procédures de résolution pour la 
planification des projets et la planification du réseau de la chaîne logistique. En outre, l'application 
d’autres algorithmes basés sur des méta-heuristiques pourrait être entreprise.  
 

• Directions pour le projet CRIBA 

Dans le projet CRIBA qui fait l’objet du démonstrateur (projet CRIBA, 2010), les habitants restent 
dans leur logement pendant les travaux de rénovation énergétique. Ceci pose de nombreuses 
contraintes (par exemple : synchroniser les travaux sur la façade extérieure et la rénovation 
intérieure pour minimiser la gêne). D’autres stratégies peuvent être envisagées pour accroître la 
satisfaction des habitants (exemple : relogement provisoire) et la performance du projet de 
rénovation (coût, délai).  
De plus, l'application des pratiques de Integrated Building Design (IBD) pourrait être intéressante. 
Il s’agit d'améliorer le confort des occupants et la performance du bâtiment en considérant des 
stratégies de conception intégrée et en tenant compte des interactions entre tous les systèmes du 
bâtiment. En outre, l'utilisation de logiciels de modélisation de Building Information Modeling 
(BIM), qui assurent le partage des connaissances et des informations sur les bâtiments, peut 
constituer une base fiable pour accélérer la structuration et la modélisation du projet de rénovation 
énérgétiques d’un bâtiment. Le but serait de développer l’usage de la planification couplée dans les 
phases d’appel d’offre. 
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Glossary 

Analytic Hierarchy Process (AHP) is a 
method that uses hierarchical decomposition 
to deal with multi-criteria decision making in 
complex problems showing the relationships 
of the criteria and alternatives. 
 
AngularJS is a JavaScript structural 
framework for dynamic web applications. It 
can be added to an HTML page in order to 
use HTML as the template language and its 
syntax to express the application's 
components. 
 
Apache cxf provides an open-service 
framework to build and develop services 
using frontend programming interfaces. 
 
Bill of Material (BoM) presents a list of the 
raw materials, intermediate products, 
components and the quantities of each of 
these items that are required to produce a 
final product. 
 
Continuous Replenishment Program 
(CRP) is a concept for improving the flow of 
products in the supply chain network. It 
focuses on reducing inventory levels, 
decreasing stocks and boosting efficiency in 
warehousing.  
 
Common Object Request Broker 
Architecture (CORBA) is an architecture 
and style for creating, distributing, and 
managing distributed program objects in a 
network. It enhances the collaboration 
between systems. 
 
Earned Value (EV) indicates how much of 
the resources, budget and time should have 
been spent while considering the amount of 
work done up to the present. 
 
 
 
 

 GNU Affero General Public License is 
a free, copyleft license for software 
development objectives that is provided to 
ensure cooperation with the community 
for network server software. It provides 
the possibility to distribute and modify the 
versions while keeping track of the 
changes and the date of the changes. 
 
Hyper Text Markup Language 
(HTML) is a standard markup language 
which is used to create the pages displayed 
on the World Wide Web. 
 
Hyper Text Transfer Protocol (HTTP) 
is a protocol used in the World Wide Web 
to determine how messages will be 
formatted and transmitted and what 
actions have to be taken in response to 
various commands. 
 
JSON is used for data interchanging. It is 
based on a subset of the JavaScript 
language. It enables the system to store 
information in an easy-to-access way. 
 
Just-in-Time (JiT) is a demand-driven 
strategy in which the product is sent to the 
destination of use once a demand has been 
created. Its objective is to eliminate 
product inventory. 
 
Project Management Process (PMP) 
addresses the various phases of the project 
lifecycle. It includes scope management, 
schedule management, budget 
management, quality management, team 
management, stakeholder management, 
information management, risk 
management and contract management. 
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Optimization Programming Language 
(OPL) provides a programming language and 
syntax that support all expressions needed to 
code and solve problems in both 
mathematical and constraint programming. 
 
Operation research (OR) applies methods 
of mathematical models, statistics and 
algorithms to help decision makers in 
improving the performance of systems. 
 
Remote Procedure Call (RPC) is a protocol 
that enables users to request a service from a 
program located in another computer in a 
network without having to know the 
specifications of the network. 
 
Representational State Transfer (REST) is 
an architectural style and an approach that 
describes how networked resources are 
defined and addressed in the development of 
web services. Since REST does not require 
much bandwidth, it is practical for using on 
the Internet. 
 
Return On Investment (ROI) measures the 
efficiency of an investment. It is also utilized 
to compare the efficiency of the various 
investments.  
 
Simple Object Access Protocol (SOAP) is 
a XML-based messaging protocol that is used 
to exchange information among computers. 
 
Schedule Variance (SV) measures the 
difference between the earned value and 
planned value. Positive values of SV show that 
the project is ahead of schedule. 
 
Work Breakdown Structure (WBS) 
according to (PMBOK, Fourth Edition, 
2008), WBS is defined as a deliverable-
oriented hierarchical decomposition of the 
work to be executed by the project team. 
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Résumé court en Français 

 

Une approche basée sur l'optimisation pour la planification simultanée de multi projets 
et réseaux logistique : application aux projets de la rénovation de bâtiments 

 

 

Le contexte d’application de cette recherche a été le projet CRIBA. CRIBA vise à industrialiser une 
solution intégrée de rénovation et d’isolation de grands bâtiments. De ce fait, une part importante 
de la valeur ajoutée est transférée des chantiers de rénovation vers des usines de fabrications devant 
être synchronisées avec les chantiers. 

La planification est l'une des étapes importantes de la gestion de projets. S’adaptant à une 
organisation, elle vise une réalisation optimale en considérant les facteurs de temps, coût, qualité 
ainsi que l’affectation efficace des ressources. Cette affectation est d’autant plus complexe lorsqu’ 
un ensemble de projets se partagent les ressources, renouvelables ou non renouvelables. L'objectif 
global de notre étude est de développer un outil d’aide à la décision pour un décideur visant à 
planifier plusieurs projets en intégrant l'allocation des ressources renouvelables, et la planification 
des flux de ressources non-renouvelables vers ces projets. Dans ce cadre, les ressources non 
renouvelables telles que les machines et la main-d'œuvre ont une disponibilité initiale limitée sur 
les chantiers. Cependant, nous supposons que des quantités limitées supplémentaires peuvent être 
achetées. En outre, nous prenons en compte la volonté des coordinateurs des projets pour 
l’approvisionnement des chantiers en juste à temps (just in time), en particulier pour les ressources 
peu demandées, encombrantes et à forte valeur. Ceci oblige à étendre le cadre du modèle de la 
planification des projets en incluant la planification de la chaîne logistique qui approvisionne les 
ressources non renouvelables des chantiers. Enfin, pour répondre au besoin d’outils décisionnels 
responsables sur le plan environnemental, le modèle prévoit le transport et le recyclage des déchets 
des chantiers dans les centres appropriés. Un modèle linéaire mixte du problème est ainsi posé. 
Puisqu’il rentre dans la classe des modèles d'optimisation NP-durs, une double résolution est 
proposée. D’abord à l’aide d’un solveur puis une meta-heuristique basée sur un algorithme 
génétique. De plus, pour faciliter l'utilisation du modèle par des utilisateurs peu familiers avec la 
recherche opérationnelle, un système d'aide à la décision basé sur une application web a été 
développé. L’ensemble de ces contributions ont été évaluées sur des jeux de test issus du projet 
CRIBA. 

Mots clés: Optimisation combinatoire, Planification de multi projets, Planification de chaîne 
logistique, Algorithme génétique, Rénovation énergétique de bâtiments.  
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Short English abstract 

 

An optimization-based framework for concurrent planning of multiple projects and 
supply chain: application on building thermal renovation projects 

 

The application context of the current study is on a CRIBA project. The CRIBA aims to 
industrialize an integrated solution for the insulation and thermal renovation of building complexes 
in France. As a result, a significant part of the added value is transferred from the renovation sites 
to the manufacturing centers, making both synchronized. 

Planning is one of the important steps in project management. Depending on the different 
viewpoints of organizations, successful planning for projects can be achieved by performing to 
optimality within the time, cost, and quality factors as well as with the efficient assignment of 
resources. Planning for the allocation of resources becomes more complex when a set of projects 
is sharing renewable and non-renewable resources. The global objective of the study is to develop 
a decision-making tool for decision-makers to plan multiple projects by integrating the allocation 
of the renewable resources and planning the flow of non-renewable resources to the project 
worksites. In this context, non-renewable resources such as equipment and labor have a limited 
initial availability at the construction sites. Nevertheless, we assume that additional limited amounts 
can be added to the projects. In addition, we take into account the interest of the project 
coordinators in supplying the non-renewable resources in a just-in-time manner to the projects, 
especially for low-demand resources with a high price. This requires extending the framework of 
the project planning by including the planning of the supply chain which is responsible. Finally, in 
order to meet the requirements for environmentally responsible decision-making, the model 
envisages the transportation and recycling of waste from project sites to appropriate centers. A 
mixed integer linear model of the problem is proposed. Since it falls within the class of NP-hard 
optimization models, a double resolution is targeted: first, using a solver and then a metaheuristic 
based on the genetic algorithm. In addition, in order to facilitate the use of the model by users 
unfamiliar with operational research, a web-based decision-making support system has been 
developed. All the contributions are evaluated in a set of case studies from the CRIBA project. 

Key words: Combinatorial optimization, Resource- and time-constrained multi-project scheduling 
problem, Closed-loop supply chain planning, Genetic algorithm, Building energy efficiency. 
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