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Introduction

Cette thèse traite de combinatoire algébrique, c'est-à-dire la manière d'utiliser des
méthodes combinatoires et des algorithmes pour étudier des calculs algébriques, et
réciproquement comment appliquer des outils provenant de l'algèbre à des problèmes
combinatoires tels l'énumération ou l'analyse d'algorithmes. Une des richesses de la
combinatoire algébrique tient à diversité des points de vue qu'elle propose. Ainsi
une simple permutation peut tantôt être vue comme un vecteur , tantôt aussi une
matrice, ou de façon équivalente un opérateur sur un espace vectoriel. Mais on peut
aussi la considérer comme un mot sur un alphabet donné, un mot sur un ensem-
ble générateur soumis à certaines relations, ou encore à une fonction sur les mots.
Cette diversité est illustrée dans cette thèse par l'interaction entre les opérateurs du
tri par bulle, leur pendant algébrique appelé le monoïde dégénéré de Hecke et sa
théorie des représentations , mais aussi la structure de treillis de l'ordre faible, ainsi
que l'interprétation géométrique de ces opérateurs comme vecteurs du permutaèdre.
Nous débutons par donner quelques motivations historiques.

Symétriseur de Jacobi, fonctions de Schur et formule

des caractères de Weyl

La théorie des représentations a pour objectif de comprendre un groupe (ou plus
généralement un monoïde ou une algèbre) à travers l'étude de tous les morphismes
possibles de ce groupe vers le groupe des matrices. La philosophie générale est de
considérer que ce dernier groupe est su�samment bien compris grâce à l'algèbre
linéaire classique, avec des outils théoriques et agorithmiques telles l'élimination
Gaussienne, la théorie des valeurs propres et la réduction des endomorphismes. His-
toriquement tout ce processus a première été utilisé sur les groupes symétriques Sn

et les groupes linéaires généraux GLn(C). Ces groupes sont fondamentaux dans le
sens qu'ils sont universels pour les groupes �nis (c'est le théorème de Cayley) et pour
les groupes de transformation géométriques. De surcroît la notion de groupe elle-
même apparut comme une abstraction de ces groupes. L'une des questions les plus
basiques est donc de trouver tous les morphismes possibles deGLn(C) versGLm(C).
Il est raisonnable de se restreindre aux morphismes polynomiaux , c'est-à-dire ceux
dont les coe�cients de la matrice image sont des polynômes en les coe�cients de la
matrice antécédente. A�n de classi�er toutes les représentations, on peut se concen-

7
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trer sur les représentations irréductibles , car toute représentation se trouve être une
somme directe de représentation irréductibles.

Par sa théorie des caractères , Frobenius comprit le rôle fondamental de la trace
des matrices. Il s'agit en e�et d'un invariant par similitude, et par densité des
matrices diagonalisables la trace d'une représentation est ainsi déterminée par ses
valeurs sur les matrices diagonales. Un résultat fondamental de Schur explique qu'à
une puissance du déterminant près, les représentations polynomiales irréductibles
de GLn(C) sont classi�és par les partitions , c'est-à-dire les suites de nombres de la
forme (λ1 ≥ · · · ≥ λn ≥ 0). En outre, Schur se rendit compte que la trace de la
représentation ρλ associée à λ est donnée par le quotient de Jacobi :

sλ := tr

[
ρλ

(
x1 0

. . .
0 xn

)]
=

∑
ε(σ)σ(xλ+r)∑
ε(σ)σ(xr)

,

où la somme est faite sur toutes les permutations σ ∈ Sn, où ε est la signature, r la
partition (n − 1, n − 2, . . . , 1, 0) et xα est une notation pour le produit xα1

1 . . . xαn
n .

Dans cette formule il apparaît que le numérateur et le dénominateur sont des déter-
minants de matrices, et donc des polynômes antisymétriques en les valeurs propres
x1, . . . , xn. De plus le dénominateur n'est autre que le déterminant de Vander-
monde

∏
i<j(xi − xj), et divise donc tout polynôme antisymétrique. Dès lors sλ est

un polynôme appelé de nos jours le polynôme de Schur .
La formule de Jacobi peut se voir au moyen du symétriseur de Jacobi

J(f) :=

∑
ε(σ)σ(fxr)∑
ε(σ)σ(xr)

,

appliqué au monôme xλ. Le point crucial pour cette thèse est l'observation que cet
opérateur se factorise :

J = π1π2 . . . πnπ1 . . . πn−1 . . . π1π2π1,

où πi est l'opérateur de Jacobi à deux variables appelé la di�érence divisée de New-
ton:

πi(f) =
xif − xi+1f

xi − xi+1

.

Ces opérateurs satisfont les relations suivantes:

π2
i = πi 1 ≤ i ≤ n− 1,

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2,

πiπj = πjπi |i− j| ≥ 2.

Ils engendrent un monoïde H0
n dont l'algèbre est connue comme l'algèbre dégénérée

d'Iwahori-Hecke, notée Hn(0). Un point intéressant est que ces relations sont très
similaires à celles du groupe symétrique Sn engendré par les transpositions élémen-
taires si = (i i+ 1), à savoir:

s2
i = 1 1 ≤ i ≤ n− 1,

sisi+1si = si+1sisi+1 1 ≤ i ≤ n− 2,
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sisj = sjsi |i− j| ≥ 2.

Les similarités entre ces deux présentations ainsi que le théorème de Matsumoto as-
surent pour tout mot réduit si1 . . . siN d'une permutation σ que l'élément πσ :=πi1 . . . πiN
ne dépend que de σ et non du mot réduit choisi. En particulier, le symétriseur de
Jacobi s'avère être J = πw0 où w0 est l'élément maximal du groupe symétrique Sn.
Il se trouve que tout élément de H0

n s'écrit sous la forme πσ de sorte que ce monoïde
est de cardinalité n!.

D'un autre côté, comme on peut le voir illustré sur la Figure 0.1, le graphe de
Cayley sans boucles de H0

n est acyclique et sa clôture transitive dé�ni un ordre sur
les permutations:

σ < µ si et seulement s'il existe ν tel que πσπν = πµ.

C'est équivalent à demander σν = µ avec `(σ) + `(ν) = `(µ), où `(τ) désigne le
nombre d'inversions de la permutation τ . Cet ordre est connu comme l'ordre faible
sur les permutations, et a des propriétés remarquables: c'est un treillis et il peut
être interprété comme une orientation linéaire du 1-squelette du permutaèdre:

Perm(n) := conv ({σ((1, . . . , n)) | σ ∈ Sn}) .

L'existence de cet ordre est un argument central dans la théorie des représentations
de H0

n.
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Figure 0.1: Le graphe de Cayley à droite de H0
4 et le Permutaèdre associé.

Toute cette théorie centrée sur le groupe symétrique se généralise à d'autres
groupes �nis, appelés les groupes de Coxeter et de Weyl . Dans ce cadre, tout
groupe de Weyl W est associé à une algèbre de Lie semi-simple qui joue le rôle de
GLn(k). Le quotient de Jacobi est un cas particulier de la formule des caractères
de Weyl :

χλ =

∑
ε(w)xw(λ+r)

∑
ε(w)xw(r)

,
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où la somme est faite sur tous les éléments w ∈ W , où λ est un poids dominant , r est
la somme des poids fondamentaux et pour tout poids ω de coordonnées (ω1, . . . , ωn)
dans la base fondamentale des poids on écrit xω = xω1

1 . . . xωn
n . Les analogues des

di�érences divisées de Newton s'appellent les opérateurs de Demazure et factorisent
le symétriseur de Weyl comme auparavant. Ils engendrent également un monoïde de
Iwahori-Hecke dégénéré H0

n(W ) associé au groupe de WeylW et dont la présentation
est très semblable à celle de W . Dès lors, ceci permet de dé�nir un symétriseur de
Demazure partiel associé à chaque élément de W , ces symétriseurs ayant aussi une
interprétation en terme de caractères. De plus, le graphe de Cayleur de H0

n(W )
dé�ni un ordre faible sur W . Cet ordre est là-encore un treillis, et une orientation
du graphe duW -permutaèdre obtenu par enveloppe convexe de l'orbite sousW d'un
point générique dans l'espace.

Motivations, contributions et sommaire de cette thèse

Cette thèse traite de di�érentes généralisations de l'ordre faible sur les permutations
et du monoïde de 0-Hecke. La Partie I faits des rappels généraux, et nous référons
à son sommaire pour avoir un aperçu de son contenu. Les Parties II et III traites
d'une première généralisation aux monoïdes de placements de tours . La Partie IV
en�n étudie les Φ-posets.

Algèbre de Hecke, Monoïde de placements de tours et algèbre

de Hopf

Le nom �algèbre dégénérée d'Iwahori-Hecke� provient d'une spécialisation de l'algèbre
de Iwahori-Hecke [Iwa64]. Tout débute par l'étude du groupe général linéaire des
matrices inversibles G := GLn (Fq) sur le corps �ni Fq à q éléments. Le sous-
groupe B de G des matrices triangulaires supérieures est �ni. Si l'on identi�e une
permutation avec sa matrice de permutation associée, la décomposition de Bruhat
[BB05]qui est une application de l'élimination Gaussienne nous dit que pour tout
M ∈ G il existe une unique permutation σ ∈ Sn telle que M ∈ BσB. En d'autres
termes :

G =
⊔

σ∈Sn

BσB.

Iwahori a dé�ni pour w ∈ Sn l'élément Tw de l'algèbre de groupe CG par :

Tw :=
1

|B|
∑

x∈BwB

x.

L'anneau de Hecke H(G,B) est dé�ni comme le Z-anneau engendré par les éléments
Tw. Par ailleurs, pour q ∈ C on dé�nit Hn(q) comme la Z-algèbre dé�nie par
générateurs et relations comme suit:

T 2
i = q · 1 + (q − 1)Ti 1 ≤ i ≤ n− 1,

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n− 2,

TiTj = TjTi |i− j| ≥ 2.
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Si q est la cardinalité d'un corps �ni, Iwahori a prové que l'application Ti 7→ Tsi
s'étend en un isomorphisme d'anneaux de Hn(q) vers H(G,B), et que les équations
précédentes donnent une présentation. En étendant les scalaires à C on obtient une
C-algèbre Hn(q) qui étend la dé�nition d'anneau de Hecke au-delà des puissances
des nombre premiers. Il est bien connu que quand q est non nul et n'est pas une
racine de l'unité (hormis 1), l'algèbre de Iwahori-Hecke est isomorphe à l'algèbre
complexe du groupe symétrique CSn.

En revanche, si dans la présentation précédente on pose q = 0 et que l'on dé�nit
soit πi := −Ti soit πi := Ti + 1 on obtient la présentation déjà mentionnée du
monoïde de 0-Hecke H0

n.

Dans [Sol90; Sol04] Solomon construit un analogue de la construction d'Iwahori
en remplaçant le groupe général linéaire par son monoïde de matrices M = Mn(Fq).
Cette construction procède de la façon suivante : comme auparavant on désigne B
l'ensemble des matrices triangulaires supérieures inversibles. Alors M admet une
décomposition de Bruhat [Ren95] également : l'ensemble des matrices de permuta-
tions est remplacé par l'ensemble Rn des matrices de placement de tours de taille n,
c'est-à-dire les matrices n × n de coordonnées dans l'ensemble {0, 1} avec au plus
une coordonnée non nulle par ligne et par colonne. Ainsi :

M =
⊔

r∈Rn

BrB

Pour toute matrice de placement de tours r ∈ Rn, Solomon dé�nit aussi un élément
Tr de l'algèbre du monoïde CM par

Tr :=
1

|B|
∑

x∈BrB

x.

Ces éléments engendrent une sous-algèbre H(M,B) qui contient H(G,B) avec la
même identité. Solomon a aussi dé�ni l'algèbre In(q) qui étend la dé�nition de
H(M,B) en dehors des puissances de nombre premiers. La question de savoir s'il
existe une dégénérescence intéressante à q = 0 de cet anneau et si tel est le cas, de
savoir si c'est l'anneau d'un monoïde est un travail e�ectué avec F. Hivert [GH18b]
est dès lors très naturelle. L'objectif de la Partie II est de construire un tel monoïde,
appelé le monoïde de 0-placements de tours et noté R0

n de sorte que l'on complète
le diagramme suivant :

Sn
q=1←− Hn(q)

q=0−→ H0
n

↪→ ↪→ ↪→

Rn
q=1←− In(q)

q=0−→ R0
n

En parallèle, il est bien connu que la théorie des caractères de la famille des
groupes symétriques (Sn)n peut être encodé dans les fonctions symétriques par
l'isomorphisme de Frobenius [Mac95]. Par ce morphisme les caractères irréductibles
χλ de Sn sont envoyés vers les fonctions de Schur sλ de degré n. De plus l'induction
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et la restriction le long du morphisme naturel d'inclusion Sm×Sn −→ Sm+n corre-
spondent respectivement au produit et au coproduit (la fameuse règle de Littlewood-
Richardson) de l'algèbre de Hopf Sym des fonctions symétriques .

Selon Krob-Thibon [KT97; Thi98], cette construction a un analogue pour les
monoïdes de 0-Hecke (H0

n)n. Cependant, comme les monoïdes H0
n ne sont pas semi-

simples la situation est davantage compliquée. On rappelle ici les di�érents points.
Notez que la présentation classique de ces résultats se concentre sur l'algèbre Hn(0)
plutôt que sur le monoïde. Tout d'abord, les applications

ρm,n :

{
H0
m ×H0

n −→ H0
m+n

(πi, πj) 7−→ πiπj+m = πj+mπi

sont des morphismes de monoïdes injectifs qui véri�ent de plus certaines condi-
tions d'associativité, ce qui dote (H0

n)n d'une structure de tour de monoïdes [BL09;
Vir14]. On peut construire deux analogues des anneaux de caractères, à savoir
G0 :=

∑
nCG0(H0

n) la somme directe des groupes de Grothendieck(complexi�és) de
H0
n-modules d'une part, et K0 :=

∑
nCK0(H0

n) la somme directe des groupes de
Grothendieck de H0

n-modules projectifs de l'autre. Rappelons que G0 a pour base
les modules simples SI tandis que K0 admet pour base les modules projectifs indé-
composables PI .

Pour deux entiers m et n on désigne par Resm,n le foncteur de restriction des
H0
m+n-modules aux H0

m × H0
n-modules le long des morphismes ρm,n. Il s'avère que

cela dé�nit proprement des coproduits sur G0 et K0. En particulierH0
m+n est projectif

sur H0
m ×H0

n. De façon duale, l'induction Indm,n dé�nit des produits sur G0 et K0.
Ces produits et coproduits sont compatibles et donnent une structure d'algèbre de
Hopf. L'analogue de l'isomorphisme de Frobenius est alors le suivant : on désigne
par QSym l'algèbre de Hopf des fonctions quasi-symétriques de Gessel [Ges84], et
par NCSF l'algèbre de Hopf des fonctions symétriques non commutatives [Gel+95].
On rappelle que ces deux algèbres de Hopf duales ont une base indexée par les
compositions . Alors l'application envoyant le module simple SI vers l'élément FI de
la base fondamentale est un morphisme d'algèbre de Hopf de G0 vers QSym. De façon
duale, l'application envoyant le module projectif indécomposable PI vers l'élément
RI de la base ruban [Gel+95; KT97] est une morphisme d'algèbre de Hopf de K0

vers NCSF. La dualité entre QSym et NCSF se comprend alors simplement de la
dualité de Frobenius entre G0 et K0, l'image commutative c : NCSF→ QSym n'étant
que l'application de Cartan.

Ce résultat de [KT97] est la motivation principale derrière la Partie II. L'objectif
était de comprendre si cette propriétés sont conversées dans le cas des monoïdes de
placements de tours. Ainsi au Chapitre 4 on dé�nira notre monoïde R0

n tout d'abord
en posant q = 0 dans la présentation de Halverson [Hal04] de l'algèbre de Solomon.
Cela nous donnera une première dé�nition (Dé�nition 4.1.1 et Corollaire 4.1.6) de
ce que nous appellerons dans la première partie du chapitre le monoïde G0

n :

Dé�nition 1. Le monoïde G0
n est engendré par π0, . . . , πn−1 soumis aux relations :

π2
i = πi 0 ≤ i ≤ n− 1,

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2,
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π1π0π1π0 = π0π1π0 = π0π1π0π1 ,

πiπj = πjπi 0 ≤ i, j ≤ n− 1, |i− j| ≥ 2.

On reconnaît dans ces relations le monoïde de 0-Hecke, mais aussi un générateur
supplémentaire π0 qui présente G0

n comme un quotient de H0
n(B). En fait on a la

chaîne suivante de surjections (voir Équation 4.30):

H0(Bn)� R0
n � H0(An+1).

On introduit alors une seconde dé�nition du monoïde de 0 placements de tours
comme un monoïde de fonction agissant sur le monoïde de placements de tours. La
première remarque est qu'une matrice de placement de tour (par souci de simplica-
tion, nous ferons l'anglicisme d'appeler cela rook) peut être vu comme un vecteur
d'une permutation partielle. En conservant cette idée en thèse on peut étendre
l'action classique des di�érences divisées de Newton sur les permutations en tant
qu'opérateurs du tri par bulles à tous les rooks:

πi :

∣∣∣∣∣∣∣

Rn −→ Rn

r = r1 . . . rn 7−→
{
r · si if ri < ri+1,

r otherwise.

Le nouveau générateur π0 agit alors comme un opérateur d'e�acement :

π0 :

∣∣∣∣
Rn −→ Rn

r = r1 . . . rn 7−→ 0r2 . . . rn.

Le monoïde de fonctions F 0
n est ainsi dé�ni (Dé�nition 4.2.1) comme le monoïde des

fonctions sur Rn engendré par π0 et π1, . . . , πn−1. La Section 4.3 fournit une preuve
que ces deux dé�nitions sont en fait équivalentes (Corollaire 4.3.14):

Théorème 2. Le monoide des fonctions F 0
n et le monoïde dé�ni par présentation

G0
n sont isomorphes:

F 0
n ' G0

n

Dès lors on note R0
n :=F 0

n ' G0
n. Notre preuve n'utilise pas la présentation bien

connue du monoïde de rook classique, ni de la q algèbre de rook, mais les prouve
à nouveau à partir de rien. Elle s'appuie sur un analogue du code de Lehmer (voir
Section 1.1.6, Dé�nition 4.2.8 et Remarque 4.2.7). Bien que ce soit combinatoirement
très technique, nous soutenons que cette approche présente plusieurs avantages.
Tout d'abord elle est auto contenue et purement monoïdale. Deuxièmement notre
approche est explicite et fournit pour chaque rook et 0-rook un mot réduit canonique
ainsi qu'un algorithme explicite pour amener tout mot sur un mot canonique. En
particulier nous obtenons un analogue du théorème de Matsumoto (Théorème 4.4.3)
pour Rn et pour R0

n, qui était un résultat qui avait été noté comme manquant dans
[Sol04]:

Théorème 3 (Théorème de Matsumoto pour les monoïdes de rook). Si u et v sont
deux expressions réduites sur {π0, s1 . . . , sn−1} (resp. {π0, π1, . . . , πn−1}) du même
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élément r dans Rn (resp. R0
n), alors ils sont congrus en utilisant uniquement les

relations de tresse suivantes:

sisi+1si = si+1sisi+1 1 ≤ i ≤ n− 2,

sisj = sjsi |i− j| ≥ 2,

π0sj = sjπ0 j 6= 1.

(resp.

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2,

πiπj = πjπi 0 ≤ i, j ≤ n− 1, |i− j| ≥ 2.)

Dès lors à chaque rook r ∈ Rn on associe un 0-rook πr. Réciproquement, r
s'appelle le vecteur de rook de πr. Au cours de la preuve, nous montrons aussi des
résultats combinatoires sur les rooks dont le premier zéro est à une position donnée en
Section 4.2.2, donnant pour cela une bijection entre certaines permutations partielles
avec un nombre donné d'éléments dans un cycle, en utilisant un analogue de la
transformation de Foata (voir Section 1.1.7 pour une dé�nition).
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Figure 0.2: Le graphe de Cayley à droite de R0
2 et R0

3.

Comme expliqué au début de l'introduction, nous sommes intéressés à des général-
isations de l'ordre faible. Ainsi le Chapitre 5 étudie leR-ordre du monoïde de 0-rook,
c'esy-à-dire l'ordre dé�ni par x ≤R y ⇐⇒ ∃u ∈ R0

n, x = yu. À la Figure 0.2 on
représente le R-ordre sur le monoïde de 0-rook de taille 2 et 3.

Pour un rook r ∈ Rn on dé�nit (Dé�nition 5.1.1):
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• son ensemble d'inversions par Inv(r) := {(ri, rj) | i < j et ri > rj > 0}.
• son support noté supp(r) comme l'ensemble des lettres non nulles qui appa-
raissent dans son vecteur de rook.
• Pour chaque lettre ` ∈ supp(r), Zr(`) désigne le nombre de 0 qui apparaissent
après ` dans le vecteur de rook de r.

Avec ces dé�nitions, on obtient alors la caractérisation suivante duR-ordre (Théorème 5.1.11):

Théorème 4. Si r, u ∈ Rn, alors:

πr ≤R πu ⇐⇒





supp(r) ⊆ supp(u),

{(b, a) ∈ Inv(u) | b ∈ supp(r)} ⊆ Inv(r),

Zu(`) ≤ Zr(`) pour ` ∈ supp(r).

La principale conséquence est que le monoïde de 0-rook est J -trivial , that c'est-
à-dire que son graphe de Cayley bilatère est acyclique (Corollaire 5.1.12). On prouve
alors que le R-ordre est e�ectivement un treillis (Corollaire 5.2.2) et nous décrivons
explicitement comment obtenir la borne inférieure (Théorème 5.2.1) et la borne
supérieure (Théorème 5.2.5) de deux éléments. On donne aussi le nombre de bornes
inférieures irréductibles pour le R-ordre (Proposition 5.2.10):

Proposition 5. Le nombre de bornes inférieures irréductibles pour ≤R est 3n− 2n.

En Section 5.3 on donne une bijection entre les chaînes maximales de longueur
minimale de R0

n dans le R-ordre et les chaînes maximales de longueur maximaledu
treillis de Tamari . Cette bijection n'est en fait pas qu'entre les chaînes, mais entre
les éléments des chaînes, qui sont les éléments appelés communément singletons
(voir[HL07; HLT11; LL18] et les références qu'ils contiennent). Ils correspondent
aux arbres binaires qui sont des chaînes, ou encore aux arbres binaires admettant
exactement une extension linéaire. De façon équivalente ce sont les permutations
qui évitent les motifs 132 et 312, ou encore les permutations avec exactement un
élément dans leur classe sylvestre. Géométriquement, ce sont les vecteurs communs
entre l'associaèdre et le permutaèdre.

En�n, on s'intéresse aux propriétés géométriques des rooks en Section 5.4. Bien
que le graphe de Cayley de R0

n ne soit pas le 1-squelette d'un polytope, on peut
considérer l'enveloppe convexe des vecteurs de rooks. Le polytope obtenu,

Stelln := {Sn(0 . . . 0k . . . n) | k ∈ J1, nK},

est déjà apparu sous le nom de stelloèdre dans [MP17, Figure18] o où il était dé�ni
comme le graphe associaèdre d'un graphe d'étoile. C'est également le polytope
secondaire de ∆n ∪ 2∆n, deux copies concentrique d'un simplexe de dimension n.

Le fait que R0
n soit J -trivial est d'une grande importance pour sa théorie des

représentations comme T. Denton, F. Hivert, A. Schilling et N. Thiéry l'expliquent
dans [Den+10] (avoir aussi la Section 3.3). Ainsi le Chapitre 6 traite de la théorie
des représentations. Nous décribons l'ensemble des idempotents et leur structure de
treillis (Proposition 6.1.6 et 9.2.8). Nous montrons ensuite que les modules simples
sont tous de dimension 1 (Théorème 6.1.7), décrivons les modules projectifs indé-
composables par des sortes de classes de descentes (Théorème 6.2.7) et décrivons
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le carquois de R0
n (Théorème 6.3.1). On étudie ensuite comment la théorie des

représentations de H0
n et de R0

n sont liées, et prouvons notamment que le dernier
est projectif sur le premier monoïde (Théorème 6.4.5). De surcroît nous donnons le
foncteur de décomposition de cette projectivité (Théorème 6.4.8).

En�n la Section 6.5 est consacrée à la structure de tour de monoïdes de la suite
des monoïdes de 0-rooks. Cependant les belles propriétés trouvées par D. Krob et
J-Y. Thibon ne fonctionnent pas de la façon espérée. Nous présentons une structure
associative comme en Section 3.4.4 mais elle ne remplit pas les critères de N. Berg-
eron et H. Li [BL09] qui permettent d'obtenir une algèbre de Hopf. En particulier
R0
m+n n'est pas projectif sur R0

m ×R0
n. Nous explicitons toutefois la structure de la

tour, et en particulier nous donnons la règle d'induction pour les modules simples
(Théorème 6.5.16).

Théorie des monoïdes algébriques linéaires et monoïdes de

Renner

La Partie III est une généralisation de la Partie II aux groupes de Weyl. C'est un
travail e�ectué avec F. Hivert [GH18a] et la suite de l'article [GH18b]. Rappelons
que les groupes de Weyl sont associés aux algèbres de Lie semi-simples . En fait ces
groupes apparaissent dans de nombreux contextes (voir Chapitre 2, particuièrement
la Section 2.2.4). Dans le context de la théorie des groupes algébriques linéaires ,
supposons que G soit un groupe algébrique linéaire sur un corps K et que T soit un
tore maximal de G. Le groupe de Weyl de T , notéW (T ), est dé�ni comme le groupe
quotient du normalisateur NG(T ) par le tore T :

W (T ) :=NG(T )�T .

La théorie des monoïdes algébriques linéaires , développée principalement par M.
Putcha, L. Renner et L. Solomon, a des connexions profondes avec la théorie des
groupes algébriques. En particulier, le monoïde de Renner [Ren05] joue le rôle
qu'a le groupe de Weyl en théorie des groupes algébriques linéaires. Ces monoïdes
sont dé�nis comme étant le quotient de la complétion du normalisateur d'un tore
maximal d'un sous-groupe de Borel par ce sous-groupe dans un monoid algébrique
irréductible régulier avec un élément zéro. On les désigne par R(T ). La raison pour
laquelle nous introduisons ces objets est que le monoïde de Renner de type A, R(A),
est le monoïde de placements de tours Rn. On veut ainsi généraliser dans cette partie
ce que nous avons fait pour le monoïde de 0-rook. Le prochain diagram montre à
gauche ce que l'on connaît déjà en type A, tandis que notre objectif est présenté à
droite.

Sn = W (A)
∼←→ H0

n = H0
n(A)↪→ ↪→

Rn = Sn
∼←→ R0

n

W (T )
∼←→ H0

n(T )↪→ ↪→

Rn(T ) = W (T )
∼←→ R0

n(T )

Notez que dans ces diagrammes les �èches horizontales sont des bijections alors que
les verticales sont des inclusions de monoïdes.

A�n de dé�nir ces monoïdes de 0-Renner , nous avions besoin d'une présentation.
Dans son article [God09], E. Godelle trouve une telle présentation pour un groupe
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de Weyl générique. Son résultat est obtenu par la théorie générale des monoïdes
linéaires algébriques. Malheureusement en donnant les présentations précises en
type B et D il s'avère qu'il a oublié certaines relations et donne par conséquent des
présentations fausses qui conduisent à des monoïdes in�nis. Nous avons véri�é cela
par programmation informatique et renvoyons le lecteur à la Section 8.5 pour plus
de détails ainsi que les programmes utilisés. Par conséquent nous ne pouvions pas
utiliser ces présentations comme point de départ de nos dé�nitions des monoïdes
de 0-Renner. Nous sommes alors partis d'une dé�nitions des monoïdes de Renner
comme engendré par certaines matrices (Dé�nitions 7.2.1 et 7.2.18, voir [BB05]):

Proposition 6. Dans R2n on dé�nit les éléments suivants :
• S0 est la transposition sn = (n, n+ 1).
• Pour 1 ≤ i ≤ n− 1, Si est la double transposition sn−isn+i.

• Pour 0 ≤ i ≤ n, Ei :=




0
. . .

0
1
. . .

1


 avec les n + i premières colonnes qui

sont nulles.
Le monoïde de Renner de type B, noté Rn(B), est engendré par ces éléments.

Proposition 7. Dans R2n on dé�nit les éléments suivants :
• Sf1 est la double transposition (n− 1, n+ 1)(n, n+ 2).
• Pour 1 ≤ i ≤ n− 1, Si est la double transposition sn−i+1sn+i−1.
• Pour 0 ≤ i ≤ n, Ei := Pn+i.

• La table F :=




0
. . .

0
1

0
1
. . .

1


, avec les n − 1 premières colonnes qui sont

nulles.
Le monoïde de Renner de type D, noté Rn(D), est engendré par ces éléments.

Nous considérons seulement les types B et D, d'abord parce qu'ils conduisent
à des séries de monoïdes in�nies, et deuxièmement parce que la programmation
informatique ne nous a pas permis d'accéder à des grands monoïdes.

Comme nous le voyons dans les dé�nitions précédentes, les éléments des monoïdes
de Renner de type B et D peuvent être vus comme des éléments de type A comme
permutations partielles de n, . . . 1, 1, . . . , n (où i :=−i), que nous appelons µ-vectors.
On désigne par ∅ le zéro. Le premier résultat est de caractériser les éléments de ces
monoïdes. Ce sont les condition B et condition D (Dé�nitions 7.2.5 et 7.2.20):

Dé�nition 8. Soit r ∈ Rn. On dit que le µ-vecteur r = rn . . . r1 | r1 . . . rn obéit à
la condition B si les deux conditions suivantes sont respectées :

• Centralement antisymétrique: pour 1 ≤ i ≤ n

{ri, ri} ∈
{
{∅, ∅}, {k, ∅}, {∅, k}, {k, k}

}
, (0.1)

avec k ∈ {1, . . . , n}.
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• Casse toute les paires : le µ-vecteurr r n'a soit aucune lettre ∅, soit au moins n
et au moins une des deux lettres i ou i est manquante pour tout 1 ≤ i ≤ n.

Dé�nition 9. Si r ∈ Rn est un µ-vecteur, on dit que r obéit à la condition D si et
seulement si les deux conditions suivantes sont respectées :

• B-rook : r obéit à la condition B.

• Parité: Si |r|∅ = 0 alors r doit avoir un nombre pair de nombres positifs dans
sa première moitié. Si |r|∅ = n l'élément r̃ obtenu par antisymétrie véri�ant
|r̃|∅ = 0 doti aussi avoir un nombre pair de nombres positifs dans sa première
moitié.

En utilisant des algorithmes explicites (Algorithmes 7.2.13 et 7.2.32) on montre
que ces conditions sont e�ectivement nécessaires et su�santes (Théorèmes 7.2.14 et
7.2.33) :

Théorème 10. Soit r ∈ R2n. Alors r ∈ Rn(B) (resp. r ∈ Rn(D)) si et seulement si
r obéit à la condition B (resp. D).

On utilise alors ces caractérisations pour compter le nombre d'éléments de type
B-Renner (Corollaires 7.2.15) etD-Renner (Corollaire 7.2.34). Les résultats énumérat-
ifs étaient déjà connus par Z. Li, Z. Li et Y. Cao [LLC06] mais notre approche est
davantage combinatoire.

On dé�nit alors les monoïdes de 0-Renner de type B et D au Chapitre 8. Pour
cela, on suit le même procédé qu'en Partie II, et nous référons le lecteur au som-
maire du Chapitre 8 pour découvrir le plan d'action en détail car il est très tech-
nique. On conserve l'idée générale de donner deux dé�nitions au monoïde, une par
monoïde de fonctions et une par présentation. L'idée est alors premièrement de
dé�nir un monoïde de fonctions F 0

n(T ) avec T ∈ {B,D} (Dé�nition 8.3.1 et 8.3.2)
et de prouver que leur action sur le monoïde de Renner associé procure une bijection
(Théorème 8.3.9) comme en type A.

On introduit alors le monoïde G0
n(T ) (Dé�nitions 8.4.1 et 8.4.22). Nous présen-

tons alors un type particulier de mots réduits, les éléments grassmanniens qui sont
les éléments avec exactement une descente à gauche ou à droite. On introduit aussi
un outil visuel que nous appelons représentation par grille pour trouver les éléments
bi-grassmaniens (c'est-à-dire les éléments ayant une unique descente donnée à gauche
et une unique descente donnée à droite) dans les groupes de Coxeter. Les algorithmes
précédents nous permettent d'obtenir une expression réduite canonique pour chaque
élément des monoïdes R0

n(T ) et Rn(T ), de sorte que nous obtenos (Théorèmes 8.4.17
et 8.4.41) :

Théorème 11. Le monoïde des fontions F 0
n(T ) et le monoïde dé�ni par présentation

G0
n(T ) sont isomorphes :

F 0
n(T ) ' G0

n(T ).

On note désormais R0
n(T ) :=F 0

n(T ) ' G0
n(T ). Le même résultat est obtenu pour

Rn(T ), par conséquent ce théorème corrige les présentations de Godelle [God09] et
nous procure aussi une action naturelle des monoïdes de Renner.
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Au Chapitre 9, nous établissons quelques propriétés de ces monoïdes comme nous
l'avons fait en type A. Ces monoïdes R0

n(T ) sont là encore J -triviaux. Cependant
nous ne sommes pas parvenus à donner une description précise de leur R-ordre, et
nous prouvons que ce ne sont pas des treillis.

Toutefois comme ces monoïdes sont J -triviaux nous pouvons utilisé la théorie
déjà mentionnée de T. Denton, F. Hivert, A. Schilling et N. Thiery pour étudier
les idempotents (Propositions 9.2.6 et 9.2.15), pour déduire les modules simples
(Théorèmes 9.2.7 et 9.2.16) et les modules projecctifs indécomposables (Proposi-
tion 9.2.21). On prouve également la projectivité de R0

n(T ) sur H0
n(T ) comme

en type A (Théorème 9.2.24), et donnons brièvement le résultat sur les carquois
(Théorème 9.2.25).

Relations sur les entiers, ordre faible et systèmes de racines

Dans la Partie IV nous nous concentrons sur l'ordre faible de tout groupe de Coxeter.
Il peut être dé�ni comme l'ordre pré�xe sur les expressions réduites des éléments du
groupe, ou plus géoémtrique comme le poset d'inclusion des ensembles d'inversions
des éléments du groupe. Pour le groupes de Coxeter �nis, l'ordre faible est un
treillis [Bjö84] et son diagramme de Hasse est le graphe du permutaèdre du groupe
orienté dans une direction linéaire. La riche théorie des congruences de l'ordre
faible [Rea04] a conduit à la construction des treillis Cambriens [Rea06] avec des
connexions à la combinatoire de Coxeter Catalan et les algèbres amassées de type
�ni [FZ02; FZ03a]. Ce point de vue était fondamental dans la construction de
l'associaèdre généralisé [HLT11]. Nous renvoyons à [Rea12; Rea16a; Hoh12] pour
davantage de détails sur ces sujets.

Plus récemment des e�orts ont été mis en place pour développer des extensions de
l'ordre faible au delà des éléments du groupe. Ceci a conduit en particulier à la notion
d'ordre faible facial d'un groupe de Coxeter, introduite en type A dans [Kro+01],
dé�nie pour un groupe de Coxeter �ni arbitraire dans [PR06], et prouvé comme
étant un treillis dans [DHP18]. Cet ordre est un treillis sur les faces du permutaèdre
qui étend l'ordre faible sur les sommets.

En type A une notion encore plus générale de l'ordre faible sur les relations
entières binaires a été récemment introduit dans [CPP17], et nous en résumerons les
résultats au Chapitre 10. Cet ordre est dé�ni comme suit (Dé�nition 10.1.1) :

Dé�nition 12. L'ordre faible sur les relations binaires sur [n] est dé�ni par :

R 4 S ⇐⇒ RInc ⊇ SInc et RDec ⊆ SDec,

où RInc := {(a, b) ∈ R | a < b} et RDec := {(b, a) ∈ R | a < b} dé�nissent respective-
ment les sous-relations croissantes et décroissantes de R.

Il s'avère que le sous-poset de cet ordre faible induit par les posets sur [n] est un
treillis (Proposition 10.1.2):

Théorème 13 ([CPP17, Théorème 1]). L'ordre faible sur les posets d'entiers sur [n]
est un treillis.
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De fait, plusieurs treillis connus peuvent être retrouvés comme des sous-treillis
de l'ordre faible sur les posets induit sur une certaine famille de posets. Ainsi
on peut retrouver par ce procédé les sommets, intervalles et faces du permutaèdre
(Section 10.2.1), des associaèdres [Lod04; HL07] (Section 10.2.2), des permutreeè-
dre [PP16], du cube (Section 10.2.4), etc. En ce qui concerne uniquement les som-
mets, les treillis correspondants sont l'ordre faible sur les permutations, le treillis de
Tamari sur les arbres binaires, les treillis Cambriens de type A, les treillis sur les
permutarbres [PP16], le treillis booléen sur les séquences binaires, etc.

Le Chapitre 11 est un travail e�ectué avec V. Pilaud [GP18], dont l'objectif est
d'étendre ces résultats du type A à tous les systèmes de racines cristallographiques
�nis. Pour un système de racines Φ, on dé�nit l'ordre faible (Dé�nition 11.2.1) par

Dé�nition 14. L'ordre faible sur les sous-ensembles d'un système de racines Φ est
dé�ni par :

R 4 S ⇐⇒ R+ ⊇ S+ et R− ⊆ S−. (0.2)

Cet ordre est clairement un treillis sur la collection R(Φ) de tous les sous-
ensembles de Φ. Ces ensembles sont les analogues des relations binaires sur les
entiers en type A. De façon similaire, l'analogue de type A des posets d'entiers
sont les Φ-posets , c'est-à-dire les sous-ensembles R de Φ qui sont simultanément
antisymétriques (α ∈ R implique −α /∈ R) et clos (au sens de [Bou02], α, β ∈ R
and α+β ∈ Φ implique α+β ∈ R). Notre résultat principal est que le sous-ensemble
de cet ordre faible induit sur les Φ-posets est aussi un treillis (Théorème 11.2.16):

Théorème 15. L'ordre faible sur les Φ-posets est un treillis.

Ainsi les ordres faibles sur A2- et G2- sont représentés aux Figures 0.7 et 0.8. La
Figure 0.7 montre la correspondance de representations entre [CPP17] et [GP18]:
une racine α = ei − ej ∈ ΦA correspond à un intervalle [min(i, j),max(i, j)]. A�n
d'obtenir le Théorème 15, on dit qu'une somme de racines est sommable si c'est
encore une racine. Dès lors un de nos outils principaux est de savoir comment retirer
certaines racines à un ensemble sommable de racines de sorte qu'un conserve des
ensembles sommables de racines. Ces résultats sont présentés en Proposition 11.1.11
et aux Théorèmes 11.1.12 et 11.1.13:

Théorème 16. Soit Φ un système de racine cristallographique. Tout ensemble
sommable X ⊆ Φ sans sous-somme qui s'annule admet une �ltration de sous-
ensembles sommables

{α} = X1 ( X2 ( · · · ( X|X|−1 ( X|X| = X

pour tout α ∈ X.

On étudie alors l'ordre faible sur certaines familles de Φ-posets, à savoir les Φ-
posets correspondant aux sommets, intervalles et faces du permutaèdre, des associaè-
dres et du cube de type Φ (Section 11.3). Considérer les sous-posets de l'ordre faible
induit sur ces familles spéci�ques de Φ-posets nous permet de retrouver l'ordre faible
classique, les treillis Cambriens, leurs treillis d'intervalles et leur treillis de faces.
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Introduction

This thesis deals with algebraic combinatorics: how to use combinatorial methods
and algorithms to study algebraic computation, and conversely how to apply alge-
braic tools to combinatorial problems such as enumeration or algorithm analysis.
One of the richness of algebraic combinatorics is the diversity of points of view. For
instance, a mere permutation can be seen as a vector , a matrix , equivalently an
operator on some vector space, but it can also be seen as word over a given alpa-
bet, word over a generating set subject to some relations, or else as a function over
words. This diversity is illustrated in this thesis by the interplay between the bub-
ble sort operators , their algebraic counterpart called the degenerated Hecke monoid
and its representation theory , the lattice structure of the weak order , and their ge-
ometric interpretation as vertices of the permutahedron. We start with historical
motivations.

Jacobi symmetrizer, Schur functions and Weyl char-

acter formula

Representation theory aims at understanding a group (or more generally a monoid
or an algebra) through all its possible morphisms to matrices. The philosophy is that
the latter is su�ciently understood thanks to classical linear algebra, with theoretical
and algorithmic tools such as Gaussian elimination, eigenvalue theory and endomor-
phism reduction. Historically this machinery was �rst applied to the symmetric
groups Sn and the general linear groups GLn(C). These groups are fundamental:
they are universal for �nite groups (Cayley's theorem) and for geometrical transfor-
mation groups, and the notion of groups itself arose as an abstraction of them. One
of the most basic questions is therefore to �nd all possible morphisms from GLn(C)
to GLm(C). It is reasonable to restrict to polynomial morphisms, that is, where
the coe�cients of the output matrix are polynomial functions of the coe�cients of
the input matrix. In order to classify all representations, one focuses on irreducible
representations, as any representation is a direct sum of irreducible ones.

With his character theory , Frobenius identi�ed the fundamental role of the trace.
By invariance of the trace under similarity and by density of the diagonalizable ma-
trices, the trace of a representation is determined by its values on diagonal matrices.
A fundamental result of Schur states that, up to a power of the determinant , the

23
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irreducible polynomial representations of GLn(C) are classi�ed by partitions , that
is integer sequences of the form (λ1 ≥ · · · ≥ λn ≥ 0). Moreover, Schur recognized
that the trace of the representation ρλ associated to λ is given by Jacobi's quotient :

sλ := tr

[
ρλ

(
x1 0

. . .
0 xn

)]
=

∑
ε(σ)σ(xλ+r)∑
ε(σ)σ(xr)

,

where the sums run over all permutations σ ∈ Sn, ε is the signature, r is the
partition (n − 1, n − 2, . . . , 1, 0), and xα is a short hand for xα1

1 . . . xαn
n . In this

formula, the numerator and the denominator are determinants of matrices, hence
antisymmetric polynomials in the eigenvalues x1, . . . , xn. Moreover, the denominator
is the Vandermonde determinant

∏
i<j(xi−xj), and thus divides any antisymmetric

polynomial. Hence, sλ is a polynomial, nowadays called Schur polynomial .
Jacobi's formula can be seen as Jacobi's symmetrizing operator de�ned as

J(f) :=

∑
ε(σ)σ(fxr)∑
ε(σ)σ(xr)

,

applied to the monomial xλ. The crucial observation is that this operator factorizes
as:

J = π1π2 . . . πnπ1 . . . πn−1 . . . π1π2π1,

where πi is the two variables Jacobi operator called Newton's divided di�erence:

πi(f) =
xif − xi+1f

xi − xi+1

.

These operators satisfy the following relations:

π2
i = πi 1 ≤ i ≤ n− 1,

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2,

πiπj = πjπi |i− j| ≥ 2.

They generate a monoid H0
n whose algebra is known as the degenerated Iwahori-

Hecke algebra Hn(0). These relations are very similar to those of the symmetric
group Sn generated by the elementary transpositions si = (i i+ 1), namely:

s2
i = 1 1 ≤ i ≤ n− 1,

sisi+1si = si+1sisi+1 1 ≤ i ≤ n− 2,

sisj = sjsi |i− j| ≥ 2.

The similarity between these two presentations , and Matsumoto's theorem ensure
that for any reduced word si1 . . . siN of a permutation σ, the element πσ :=πi1 . . . πiN
depends only on σ and not on the chosen reduced word. In particular, Jacobi's
symmetrizing operator actually factorizes as J = πw0 for any reduced word of the
maximal element w0 of the symmetric group Sn. In fact, the elements πσ exhaust
all elements of H0

n which is therefore of cardinality n!.
On the other hand, as illustrated in Figure 0.5, the loopless Cayley graph of H0

n

is acyclic, and its transitive closure de�nes an order on permutations:

σ < µ if and only if there exists ν, such that πσπν = πµ.
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This is equivalent to σν = µ and `(σ) + `(ν) = `(µ), where `(τ) denotes the number
of inversions of the permutation τ . This order is known as the weak order on
permutations, and has remarkable properties: it is a lattice and it can be seen as a
linear orientation of the 1-skeleton of the permutahedron:

Perm(n) := conv ({σ((1, . . . , n)) | σ ∈ Sn}) .

The existence of this order is a central argument in the study on the representation
theory of H0

n.
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Figure 0.5: The right Cayley graph of H0
4 , and the associated Permutahedron.

All this theory, centered on the symmetric group, generalizes to other �nite
groups, namely Coxeter and Weyl groups . Any Weyl group W is associated to a
semisimple Lie algebra which plays the role of GLn(k). The Jacobi's quotient is a
particular case of Weyl's character formula:

χλ =

∑
ε(w)xw(λ+r)

∑
ε(w)xw(r)

,

where the sums run over w ∈ W , λ is a dominant weight , r is the sum of fundamental
weights and for any weight ω with coordinates (ω1, . . . , ωn) in the fundamental weight
basis, we write xω = xω1

1 . . . xωn
n . The analogues of Newton's divided di�erences are

called Demazure's operators , and factorize the Weyl's symmetrizer as before. They
also generate a degenerated Iwahori-Hecke monoid H0

n(W ) associated to the Weyl
group W , whose presentation is similar to that of W . This allows us to de�ne a
partial Demazure symmetrizer associated to any element of W which also admits a
character interpretation. Furthermore, the Cayley graph of H0

n(W ) de�nes a weak
order on W . This order is again a lattice, and is an orientation of the graph of the
W -permutahedron obtained as the convex hull of the W -orbit of a generic point.
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Motivations, contributions and outline of this thesis

This thesis deals with di�erent generalizations of the weak order on permutations
and the 0-Hecke monoid. Part I recalls some general background, and we refer to
its summary for an overview of its content. Parts II and III deal with a �rst kind of
generalization to rook monoids . Part IV studies Φ-posets.

Hecke algebra, Rook monoid and Hopf algebra

The name �degenerated Iwahori-Hecke algebra� stems from a specialization of the
Iwahori-Hecke algebra [Iwa64]. It starts with the study of the general linear group
of invertible matrices G := GLn (Fq) over the �nite �eld Fq with q elements. The
subgroup B of G of upper triangular matrices is �nite. If one identi�es a permutation
with its associated permutation matrix, the Bruhat decomposition [BB05] which is
an application of Gaussian elimination tells that for all M ∈ G there is a unique
permutation σ ∈ Sn such that M ∈ BσB, that is:

G =
⊔

σ∈Sn

BσB.

Iwahori de�ned for w ∈ Sn the element Tw of the group algebra CG by:

Tw :=
1

|B|
∑

x∈BwB

x.

The Hecke ring H(G,B) was de�ned to be the Z-ring spanned by the elements Tw.
For q ∈ C, let Hn(q) denote the Z-algebra de�ned by generators and relations as
follows:

T 2
i = q · 1 + (q − 1)Ti 1 ≤ i ≤ n− 1,

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n− 2,

TiTj = TjTi |i− j| ≥ 2.

If q is the cardinality of a �nite �eld, Iwahori proved that the maps Ti 7→ Tsi extends
to a full ring isomorphism from Hn(q) to H(G,B) and that the equations above give
a presentation. By extending the scalar to C we get a C-algebraHn(q) which extends
the de�nition of the Hecke ring outside of prime powers. It is well known that when
q is neither zero nor a root of the unity, the Iwahori-Hecke algebra is isomorphic to
the complex group algebra CSn.

In the previous presentation if instead we let q = 0 and de�ne either πi := −Ti
or πi := Ti + 1 we get the above mentionned presentation of the 0-Hecke monoid
H0
n.

In [Sol90; Sol04], Solomon constructed an analogue of Iwahori's construction
replacing the general linear group by its full matrix monoidM = Mn(Fq). It goes as
follows: as before, let B denote the set of invertible upper triangular matrices. Then
M admits a Bruhat decomposition [Ren95] too: the set of permutation matrices is
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replaced by the set Rn of so-called rook matrices of size n, that is n × n matrices
with entries {0, 1} and at most one nonzero entry in each row and column. Then

M =
⊔

r∈Rn

BrB

For any rook matrix r ∈ Rn, Solomon also de�ned an element Tr of the monoid
algebra CM by

Tr :=
1

|B|
∑

x∈BrB

x.

Those elements span a subalgebra H(M,B) which contains H(G,B) with the same
identity, and de�ned the algebra In(q) which extends the de�nition of H(M,B)
outside of prime powers. The question whether there exists a proper degeneracy at
q = 0 of this ring and if it exists, whether it is the ring of a monoid is a work with
F. Hivert [GH18b] is therefore very natural. The objective of Part II is to construct
such a monoid, called the 0-rook monoid, and denoted R0

n, so �lling the following
diagram:

Sn
q=1←− Hn(q)

q=0−→ H0
n

↪→ ↪→ ↪→

Rn
q=1←− In(q)

q=0−→ R0
n

In the meantime, it is well known that character theory of the family of sym-
metric groups (Sn)n can be encoded into symmetric functions via the Frobenius
isomorphism [Mac95]. Under this morphism, the irreducible characters χλ of Sn

are mapped to the Schur functions sλ of degree n. Furthermore, the induction and
restriction along the natural inclusion Sm ×Sn −→ Sm+n correspond respectively
to product and coproduct (the so called Littlewood-Richardson rule) of the Hopf
algebra Sym of symmetric functions .

According to Krob-Thibon [KT97; Thi98], this construction has an analogue for
the 0-Hecke monoids (H0

n)n. However, due to the non semi-simplicity of H0
n, the

situation is more complicated. Note that the classical presentation deals with the
algebra Hn(0) rather than the monoid. First of all, the maps

ρm,n :

{
H0
m ×H0

n −→ H0
m+n

(πi, πj) 7−→ πiπj+m = πj+mπi

are injective monoid morphisms which moreover verify some associativity conditions
endowing (H0

n)n with a structure of tower of monoids [BL09; Vir14]. One can
build two analogues of character rings, namely G0 :=

∑
nCG0(H0

n) the direct sum
of the (complexi�ed) Grothendieck groups of H0

n-modules on the one hand, and
K0 :=

∑
nCK0(H0

n) the direct sum of the Grothendieck groups of projective H0
n-

modules on the other. Recall that G0 has for basis the simple module SI whereas
K0 has for basis the indecomposable projective modules PI .

Now for two integers m and n we denote by Resm,n the restriction functor from
H0
m+n-modules to H0

m×H0
n-modules along the morphism ρm,n. It turns out that this

de�nes proper coproducts on G0 and K0. In particular, H0
m+n is projective over H

0
m×
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H0
n. Dually, the induction Indm,n de�nes products on G0 and K0. These products

and coproducts are compatible giving the structure of a Hopf algebra. The analogue
of the Frobenius isomorphism goes as follows: let QSym denote Gessel's [Ges84]
Hopf algebra of quasi-symmetric functions , and NCSF denote the Hopf algebra of
noncommutative symmetric functions [Gel+95]. Recall that these two dual Hopf
algebras have their bases indexed by compositions . Then the map sending the simple
module SI to the element FI of the fundamental basis is a Hopf algebra morphism
from G0 to QSym. Dually, the map sending the indecomposable projective module PI
to the so-called ribbon basis element RI [Gel+95; KT97] is a Hopf algebra morphism
from K0 to NCSF. The duality between QSym and NCSF mirrors Frobenius duality
between G0 and K0, the commutative image c : NCSF → QSym being nothing but
the Cartan map.

This result of [KT97] is the main motivation for Part II. The goal was to un-
derstand how this picture translates to rook monoids. So in Chapter 4, we will
de�ne our monoid R0

n �rst by putting q = 0 in Halverson's presentation [Hal04] of
Solomon's algebra. This gives us a �rst de�nition (De�nition 4.1.1 and Corollary
4.1.6) of, what we will call for the �rst part of the chapter, the monoid G0

n:

De�nition 17. The monoid G0
n is generated by π0, . . . , πn−1 together with the re-

lations:

π2
i = πi 0 ≤ i ≤ n− 1,

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2,

π1π0π1π0 = π0π1π0 = π0π1π0π1 ,

πiπj = πjπi 0 ≤ i, j ≤ n− 1, |i− j| ≥ 2.

We recognize in these relations the 0-Hecke monoid, but also an additional gen-
erator π0 which makes G0

n a quotient of H
0
n(B). Actually we have the following chain

of surjections (see Equation 4.30):

H0(Bn)� R0
n � H0(An+1).

We then use a second de�nition of the 0-rook monoid as functions acting on the
rook monoid. The �rst remark is that a rook matrix (or only rook) can be seen
as a one-line vector of a partial permutation. With this in mind, we extend the
classical action of Newton's divided di�erences on the permutations as the bubble
sort operators to all rooks:

πi :

∣∣∣∣∣∣∣

Rn −→ Rn

r = r1 . . . rn 7−→
{
r · si if ri < ri+1,

r otherwise.

We make the new generator π0 acting as a deletion operator :

π0 :

∣∣∣∣
Rn −→ Rn

r = r1 . . . rn 7−→ 0r2 . . . rn.

The monoid of functions F 0
n is thus de�ned (De�nition 4.2.1) as the monoid of

functions over Rn generated by π0 and π1, . . . , πn−1. Section 4.3 provides a proof
that these two de�nitions are equivalent (Corollary 4.3.14):
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Theorem 18. The monoid of functions F 0
n and the monoid de�ned by presentation

G0
n are isomorphic:

F 0
n ' G0

n

Therefore we call R0
n :=F 0

n ' G0
n. Our proof does not use the well-known pre-

sentation of the classical rook monoid or of the q-rook algebra, but proves them
again from scratch. It relies on an analogue of the Lehmer code (see Section 1.1.6,
De�nition 4.2.8 and Remark 4.2.7). Though it is combinatorially technical, we ar-
gue that our approach has several advantages. First it is self contained and purely
monoidal. Second, our approach is explicit and provides a canonical reduced word
for all rooks or 0-rooks together with an explicit algorithm transforming any word in
its equivalent canonical one. In particular, we get an analogue of Matsumoto's theo-
rem (Theorem 4.4.3) for both Rn and R0

n, an ingredient which was noticed missing
in [Sol04]:

Theorem 19 (Matsumoto theorem for Rook monoids). If u and v are two reduced
words over {π0, s1 . . . , sn−1} (resp. {π0, π1, . . . , πn−1}) for the same element r of Rn

(resp. R0
n), then they are congruent using only the braid relations:

sisi+1si = si+1sisi+1 1 ≤ i ≤ n− 2,

sisj = sjsi |i− j| ≥ 2,

π0sj = sjπ0 j 6= 1.

(resp.

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2,

πiπj = πjπi 0 ≤ i, j ≤ n− 1, |i− j| ≥ 2.)

Therefore to every rook r ∈ Rn we associate a 0-rook πr. Conversely, r is called
the rook vector of πr. We prove in the way some combinatorial results on rooks
whose �rst zero is in a given position in Section 4.2.2, giving a bijection with some
partial permutations with given number of element in a cycle, using an analogue of
Foata's transformation (see Section 1.1.7 for a de�nition).

As explained in the beginning of the introduction, we are interested in gener-
alizations of the weak order . Therefore in Chapter 5 studies the R-order on the
0-rook monoid, that is the order de�ned by x ≤R y ⇐⇒ ∃u ∈ R0

n, x = yu. In
Figure 0.6 we represent the R-order on the 0-rook monoid of size 2 and 3.

For a rook r ∈ Rn we de�ne (De�nition 5.1.1):
• its set of inversions as Inv(r) := {(ri, rj) | i < j and ri > rj > 0}.
• its support denoted supp(r) as the set of non-zero letters appearing in its rook
vector.
• For each letter ` ∈ supp(r), Zr(`) is the number of 0 which appear after ` in
the rook vector of r.

With these de�nitions we thus obtain the following characterization of the R-order
(Theorem 5.1.11):
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Figure 0.6: The right Cayley graph of R0
2 and R0

3.

Theorem 20. If r, u ∈ Rn, then:

πr ≤R πu ⇐⇒





supp(r) ⊆ supp(u),

{(b, a) ∈ Inv(u) | b ∈ supp(r)} ⊆ Inv(r),

Zu(`) ≤ Zr(`) for ` ∈ supp(r).

The main consequence is that the 0-rook monoid is J -trivial , that is its bisided
Cayley graph is acyclic (Corollary 5.1.12). We then prove that the R-order is in-
deed a lattice (Corollary 5.2.2) and describe explicity how to obtain the meet (The-
orem 5.2.1) and the join (Theorem 5.2.5) of two elements. We also give the number
of meet irreducibles for the R-order (Proposition 5.2.10):

Proposition 21. The number of meet irreducibles for ≤R, is 3n − 2n.

In Section 5.3 we give a bijection between maximal chains of minimal length of
R0
n in theR-order, and maximal chains of maximal length of the Tamari lattice. This

bijection is in fact not only between chains, but between the elements of the chains,
which are the so-called singletons (see [HL07; HLT11; LL18] and the references in
the latters). They correspond to binary trees which are chains, that is also binary
trees with exactly one linear extension. Equivalently they are permutations avoiding
the patterns 132 and 312, or permutations with exactly one element in their sylvester
class. Geometrically, they are common vertices between the associahedron and the
permutahedron.
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We �nally look at some geometrical properties of rooks in Section 5.4. Although
the Cayley graph of R0

n is not the 1-squeleton of a polytope, we can consider the
convex hull of the rook vectors. The resulting polytope,

Stelln := {Sn(0 . . . 0k . . . n) | k ∈ J1, nK},

already appeared under the name of stellohedron in [MP17, Figure18] where it was
de�ned as the graph associahedron of a star graph. It is also the secondary polytope
of ∆n ∪ 2∆n, two concentric copies of a n-dimensional simplex.

The fact that R0
n is J -trivial is of great importance for its representation theory

as T. Denton, F. Hivert, A. Schilling and N. Thiéry explained in [Den+10] (see also
Section 3.3). Hence Chapter 6 deals with this representation theory. We describe the
set of idempotents and their lattice structure (Proposition 6.1.6 and 9.2.8). We then
show that the simple modules are all 1-dimensional (Theorem 6.1.7), describe the
indecomposable projective modules as some kind of descent classes (Theorem 6.2.7)
and describe the quiver of R0

n (Theorem 6.3.1). We then study how the representa-
tion theory of H0

n and R0
n are related, and notably prove that the later is projective

on the former (Theorem 6.4.5). Furthermore, we give the decomposition functor of
this projectivity (Theorem 6.4.8).

Finally Section 6.5, is devoted to the tower of monoids structure on the sequence
of 0-rook monoids. Here the nice properties found by D. Krob and J-Y. Thibon
do not work as nicely as expected. We present an associative structure as in Sec-
tion 3.4.4 but it does not ful�ll all the requirement of N. Bergeron and H. Li [BL09]
to obtain a Hopf algebra. In particular, R0

m+n is not projective over R0
m × R0

n. We
nevertheless explicit some structure and in particular the induction rule for simple
modules (Theorem 6.5.16).

Linear algebraic monoid theory and Renner monoids

Part III deals with a generalization of Part II to Weyl groups. It is a work with
F. Hivert [GH18a] which is the sequel of [GH18b]. Recall that Weyl groups are
associated to semisimple Lie algebra. In fact these groups appear in many di�erent
contexts (see Chapter 2, especially Section 2.2.4). In the context of the Linear
Algebraic Group theory , suppose that G is a linear algebraic group over a �eld K
and T is a maximal torus of G. The Weyl group of T , denoted W (T ), is de�ned as
the quotient group of the normalizer NG(T ) by the torus T :

W (T ) :=NG(T )�T .

Linear algebraic monoid theory , mainly developed by M. Putcha, L. Renner and
L. Solomon, has deep connections with algebraic group theory. In particular, the
Renner monoid [Ren05] plays the role that the Weyl group does in Linear Algebraic
Group theory. These are originally de�ned to be the quotient of the completion of
the normalizer of a maximal torus of a Borel subgroup by this subgroup in a regular
irreducible algebraic monoid with a zero element. We denote them by R(T ). The
reason why we are introducing these objects is that the Renner monoid of type A,
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R(A) is the rook monoid Rn. Thus we want to generalize in this part what we did in
the 0-rook monoid. We represent what we already know in type A in the following
diagram on the left. The goal is to explain the right one.

Sn = W (A)
∼←→ H0

n = H0
n(A)↪→ ↪→

Rn = Sn
∼←→ R0

n

W (T )
∼←→ H0

n(T )↪→ ↪→

Rn(T ) = W (T )
∼←→ R0

n(T )

Note that in these diagrams the horizontal arrows are bijections, while the vertical
ones are inclusions of monoids.

In order to de�ne these 0-Renner monoids , we needed presentation of them. In
his article [God09], E. Godelle found out such a presentation for a generic Weyl type,
as we have for Coxeter groups. He obtained this result using some general Linear
Algebraic Monoid theory. Unfortunately when he gave the precise presentation of
type B and D, he happened to forget some relations, and consequently the pre-
sentations were wrong and lead to in�nite monoids. We checked this by computer
programming and refer the reader to Section 8.5 for more details and the programs
used. Consequently we could not use these presentations as a starting point of our
de�nitions of 0-Renner monoids. We then started from another de�nition of the
Renner monoids as generated by some matrices (De�nitions 7.2.1 and 7.2.18, see
[BB05]):

Proposition 22. In R2n we de�ne the following elements:
• S0 is the transposition sn = (n, n+ 1).
• For 1 ≤ i ≤ n− 1, Si is the double transposition sn−isn+i.

• For 0 ≤ i ≤ n, Ei :=




0
. . .

0
1
. . .

1


 with the �rst n+ i columns are null.

The Renner monoid of type B, denoted Rn(B), is generated by these elements.

Proposition 23. In R2n we de�ne the following matrices:
• Sf1 is the double transposition (n− 1, n+ 1)(n, n+ 2).
• For 1 ≤ i ≤ n− 1, Si is the double transposition sn−i+1sn+i−1.
• For 0 ≤ i ≤ n, Ei := Pn+i.

• The table F :=




0
. . .

0
1

0
1
. . .

1


, with the �rst n− 1 columns null.

The Renner monoid of type D, denoted Rn(D), is generated by these elements.

We only considered type B and D, �rst because they lead to in�nite series of
monoids, and second because the computer programming did not allow us to look
for huge monoids.

As seen in the previous de�nitions, the elements of the Renner monoids of type B
andD can be seen as elements of type A as partial permutations over n, . . . 1, 1, . . . , n
(where i := − i), or µ-vectors. We denote by ∅ the zero. The �rst result is to char-
acterize the elements of these monoids. These are the B condition and D condition
(De�nitions 7.2.5 and 7.2.20):



Introduction 

De�nition 24. Let r ∈ Rn. We say that the µ-vector r = rn . . . r1 | r1 . . . rn obeys
the B condition if the two following conditions hold:

• Centrally antisymmetric: for 1 ≤ i ≤ n, {ri, ri} ∈ {{∅, ∅}, {∅, k}, {k,−k}} ,
with k ∈ {n, . . . , 1, 1, . . . , n}.

• Break all pairs : the µ-vector r has either no letter ∅, or at least n and at least
one of the two letters i or i is missing for all 1 ≤ i ≤ n.

De�nition 25. If r ∈ Rn is a µ-vector, we say that r obeys the D condition if and
only if the two following conditions hold:

• B-rook : r obeys the B condition.

• Parity : if |r|∅ = 0 then r must have an even number of positive numbers in its
�rst half. If |r|∅ = n, the element r̃ obtained by antisymmetry with |r̃|∅ = 0
must also have an even number of positive numbers in the �rst half.

Using explicit algorithms (Algorithm 7.2.13 and 7.2.32) we show that these con-
ditions are indeed necessary and su�cient (Theorem 7.2.14 and 7.2.33):

Theorem 26. Let r ∈ R2n. Then r ∈ Rn(B) (resp. r ∈ Rn(D)) if and only if r
obeys the B (resp. D) condition.

We use these characterizations to count the B-Renner (Corollary 7.2.15) and
D-Renner (Corollary 7.2.34) elements. The enumerative results were already known
by Z. Li, Z. Li and Y. Cao [LLC06] but our approach is more combinatorial.

Then we de�ne the 0-Renner monoid of type B and D in Chapter 8. We proceed
in the same way as in Part II, and refer to the summary of Chapter 8 to see the
plan of action in detail as it is very technical. We keep the general idea of giving
two de�nitions, one with a monoid of functions and one with a presentation. The
idea is �rst to de�ne a monoid of functions F 0

n(T ) with T ∈ {B,D} (De�nition 8.3.1
and 8.3.2) and prove that its action on the corresponding Renner monoid leads to a
bijection (Theorem 8.3.9) in the same vein than in type A.

Then we introduce the monoid G0
n(T ) (De�nition 8.4.1 and 8.4.22 for type D).

We introduce there a certain kind of reduced word, the grassmannian elements which
are elements with exactly one right or left descent. We also use a graphical trick
called grid representation to �nd bi-grassmanian elements (element having exactly
one left descent and one right descent) in the Coxeter groups. Then the previous
algorithms enable us to get a canonical reduced expression for every element of the
monoids R0

n(T ) and Rn(T ), so that we obtain (Theorem 8.4.17 and 8.4.41):

Theorem 27. The monoid of functions F 0
n(T ) and the monoid de�ned by presen-

tation G0
n(T ) are isomorphic:

F 0
n(T ) ' G0

n(T ).

We therefore de�ne R0
n(T ) :=F 0

n(T ) ' G0
n(T ). The same results holds for Rn,

consequently this theorem corrects the presentation of Godelle [God09] and also
gives a natural action on the Renner monoid.
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In Chapter 9, we establish some properties of the monoid, as we did in type A.
We get that the monoids R0

n(T ) are J -trivial. However we do not manage to have
a precise description of the R-order, and we prove that it is not a lattice.

However, since the monoid is J -trivial we can use the already mentioned the-
ory of T. Denton, F. Hivert, A. Schilling and N. Thiery to study the idempotents
(Propositions 9.2.6 and 9.2.15) to deduce the simple modules (Theorems 9.2.7 and
9.2.16) and the projective indecomposables modules (Proposition 9.2.21). We also
prove the projectivity of R0

n(T ) over H0
n(T ) as in type A (Theorem 9.2.24), and

brie�y give the result for the quivers (Theorem 9.2.25).

Integer relations, weak order and root systems

In Part IV we will focus on the weak order of any Coxeter group. It can be de�ned
as the pre�x order in reduced expressions of the elements of the group, or more
geometrically as the inclusion poset of the inversion sets of the elements of the
group. For �nite Coxeter groups, the weak order is known to be a lattice [Bjö84]
and its Hasse diagram is the graph of the permutahedron of the group oriented in a
linear direction. The rich theory of congruences of the weak order [Rea04] yield to
the construction of Cambrian lattices [Rea06] with its connection to Coxeter Catalan
combinatorics and �nite type cluster algebras [FZ02; FZ03a]. This point of view was
fundamental for the construction of generalized associahedra [HLT11]. We refer to
the survey papers [Rea12; Rea16a; Hoh12] for details on these subjects.

More recently, some e�orts were devoted to develop certain extensions of the
weak order beyond the elements of the group. This led in particular to the notion of
facial weak order of a �nite Coxeter group, pioneered in type A in [Kro+01], de�ned
for arbitrary �nite Coxeter groups in [PR06], and proved to be a lattice in [DHP18].
This order is a lattice on the faces of the permutahedron that extends the weak
order on the vertices.

In type A, an even more general notion of weak order on integer binary relations
was recently introduced in [CPP17], and which we will summarize in Chapter 10.
This order is de�ned (De�nition 10.1.1) as follows:

De�nition 28. The weak order on binary relations on [n] is de�ned as:

R 4 S ⇐⇒ RInc ⊇ SInc and RDec ⊆ SDec,

where RInc := {(a, b) ∈ R | a < b} and RDec := {(b, a) ∈ R | a < b} respectively de�ne
the increasing and decreasing subrelations of R.

It turns out that the subposet of this weak order induced by posets on [n] is a
lattice (Proposition 10.1.2):

Theorem 29 ([CPP17, Theorem 1]). The weak order on the integer posets on [n]
is a lattice.

In fact, many relevant lattices can be recovered as subposets of the weak order on
posets induced by certain families of posets. Such families include the vertices, the
intervals and the faces of the permutahedron (Section 10.2.1), associahedra [Lod04;
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HL07] (Section 10.2.2), permutreehedra [PP16], cube (Section 10.2.4), etc. For the
vertices, the corresponding lattices are the weak order on permutations, the Tamari
lattice on binary trees, the type A Cambrian lattices, the permutree lattices [PP16],
the boolean lattice on binary sequences, etc.

Chapter 11 is a work with V. Pilaud [GP18], whose goal is to extend these results
beyond type A to all �nite crystallographic root systems. For a root system Φ, we
de�ne the weak order (De�nition 11.2.1) by

De�nition 30. The weak order on subsets of a root system Φ is de�ned as:

R 4 S ⇐⇒ R+ ⊇ S+ and R− ⊆ S−. (0.3)

This order is clearly a lattice on the collection R(Φ) of all subsets of Φ. These
sets are the analogues of type A integer binary relations. In turn, the analogues of
type A integer posets are Φ-posets , i.e. subsets R of Φ that are both antisymmetric
(α ∈ R implies −α /∈ R) and closed (in the sense of [Bou02], α, β ∈ R and α+β ∈ Φ
implies α + β ∈ R). Our central result is that the subposet of this weak order
induced by Φ-posets is also a lattice (Theorem 11.2.16):

Theorem 31. The weak order on the Φ-posets is a lattice.

For example, the weak orders on A2- and G2- are represented in Figures 0.7 and
0.8. Figure 0.7 shows the correspondance of representation between [CPP17] and
[GP18]: a root α = ei − ej ∈ ΦA corresponds to an interval [min(i, j),max(i, j)]. In
order to obtain Theorem 31, we say that a sum of root is summable if it is still a root.
Then one of the main tool is to know how to remove some roots to a summable set of
roots so that we still have a summable set of roots. These are the results presented
in Proposition 11.1.11 and Theorems 11.1.12 and 11.1.13:

Theorem 32. Let Φ be a crystallographic root system. Any summable set X ⊆ Φ
with no vanishing subsum admits a �ltration of summable subsets

{α} = X1 ( X2 ( · · · ( X|X|−1 ( X|X| = X

for any α ∈ X.

We then switch to our motivation to study the weak order on Φ-posets. We
consider Φ-posets corresponding to the vertices, the intervals and the faces of the
permutahedron, associahedra and cube of type Φ (Section 11.3). Considering the
subposets of the weak order induced by these speci�c families of Φ-posets allow us
to recover the classical weak order and the Cambrian lattices, their interval lattices,
and their facial lattices.
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 Introduction



Part I

Background
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Summary

This part expose the backgroung and necessary material to understand the thesis
and the di�erent objects we will be dealing with. No result here is from the author
of the thesis, and we try to always give some reference from where the result can be
found in a wider perspective.

One of the richness of algebraic combinatorics is the diversity of points of view.
For instance, a mere permutation can be seen as a vector , a matrix , equivalently
an operator on some vectorial space, but it can also be seen as word over a given
alpabet, word over a generating set , or else as a function over words. It is also
some vertex of a polytope, the Permutahedron, as well as a linear extension of a
poset . In Chapter 1 we introduce all the objects that we will need. We begin with
the permutations, in Section 1.1, and explain with them the question of expressing
our objects in term of words. This will lead us to de�nitions of length, reduced
word but also the so-called �word problem� that will be the main reason of technical
arguments in Part II and III. We also introduce the weak order more precisely in
this section, as well as natural objects when dealing with permuations (inversions ,
descents , compositions and partitions).

Then in Section 1.2 we explain that the idea of giving an order on combinatorial
family is quite classic, which lead us to the notion of posets . This is also the main
idea behind Part IV. In the monoidal case, there are natural order introduced by
Green that we will present in Section 1.3. The posets and lattices obtained with
these orders can also be the 1-squeleton of some polytopes, and we give the necessary
geometric background in Section 1.4. Finally we introduce the rooks (Section 1.5),
the Tamari lattice( Section 1.6) and another way to study these objects as some
basis of a vectorial space (Section 1.7).

One good setup to study the question of reduced words and the �word problem� is
the Coxeter Group theory which we introduce in Chapter 2. The Coxeter Groups can
be de�ned as abstract groups de�ned by a presentation on some generating set (see
Section 2.2) but the good way to understand them is to see them as a set of vectors
(called roots) acting on an euclidian space (see Section 2.1). This duality of points
of view enables us to classify them (Theorem 2.2.3) and especially a certain subclass
of them, the Weyl groups (Theorem 2.2.3). After some properties (Section 2.3) we
explain that this double approach is useful to understand the sorting algorithm with
the Hecke algebra and its generalization (Section 2.4).
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

Finally, a better understanding og these groups, monoids and algebra can be
obtained through the representation theory introduced in Chapter 3. There, after
an introduction on representation theory of �nite group in Section 3.1, we give some
general results on algebra (Section 3.2) before going to the representation theory of
J -trivial monoids of T. Denton, F. Hivert, A. Schilling and N. Thiéry mentionned
in the introduction (Section 3.3). We also give a proper setup of the notion of tower
of monoids and end with some explicit examples (Sections 3.4, 3.5 and 3.6).



Chapter 1
Combinatorics and operators

1.1 Permutations

1.1.1 Permutation and matrices

As explained in the introduction, our main object is the symmetric group Sn and
its generalizations: the rook monoid Rn in Section 1.5, the 0-Hecke monoid H0

n in
Section 2.4, and the Weyl groups in Section 2.1. Hence we will �rst present some
properties of the permutations and the symmetric group that we will later generalize
in these di�erent contexts. We �rst de�ne a permutation in terms of words:

De�nition 1.1.1. A permutation of size n is a word on the alphabet [n] := {1, . . . , n}
where each letter appears exactly once.

For instance the permutations of size 3 are 123, 132, 213, 231, 312 and 321. The
set of all permutations of size n is �nite and has cardinality n!. It is indeed a well-
known group, the symmetric group Sn. In order to see the multiplication of two
permutations, it is more natural to see a permutation σ = σ1 . . . σn as the bijection

σ : [n] −→ [n]
i 7−→ σi

(1.1)

With this functional perspective, the identity is the permutation 123 . . . n while the
multiplication is the composition of functions: if σ, τ ∈ Sn then σ · τ = σ ◦ τ . For
instance if σ = 2431 and τ = 2134 then σ · τ = σ ◦ τ = 4231.

We can also represent a permutation as its permutation matrix which is an n×n
matrix with a 1 in position (i, σi) for all i ∈ [n] and a 0 in any other position, see
Figure 1.2. An alternative way to de�ne a permutation of size n is to say that is
it an n × n matrix with entries in {0, 1} and exactly one nonzero entry in each
column and each row. We will come back to this point of view in Section 1.5. This
representation of permutation as a matrix is also very useful. For instance it is clear
by de�nition that σ−1 is the permutation of the transposed permutation matrix. It
is also compatible with the multiplication of matrices.

We will study the permutation group as acting on the permutations. The action
will just be right or left multiplication.
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 Chapter 1 � Combinatorics and operators

1.1.2 Generation by elementary transpositions

In the symmetric group Sn we consider the elementary transpositions (si)1≤i≤n−1.
The transposition si exchanges the consecutive letters i and i+ 1:

si(j) :=





i+ 1 if j = i

i if j = i+ 1

j otherwise.

(1.2)

These elementary transpositions generate the symmetric group:

Proposition 1.1.2. The symmetric group Sn is generated by s1, . . . , sn−1.

Since (si)1≤i≤n−1 is a generating set, we obtain that a permutation of size n is
also a word on the alphabet (si)1≤i≤n−1. Unfortunately, it is not easy to compare
two elements in term of words on the generators. For instance the si are involutions,
hence sisi = 1. Another example are the braid relations : sisi+1si = si+1sisi+1 and
sisj = sjsi if |i − j| ≥ 2. For instance s1s2s1 = s2s1s2 = 3214 . . . n. Hence the
permutation 3214 . . . n has at least two words representing it: s1s2s1 and s2s1s2.
This problem is known as the �word problem�. It will indeed be the main issue
behind the Part II and III of this manuscript. As explained in the introduction,
in order to tackle this combinatorial problem we will rely on some geometry and
algebraic actions.

As we will encounter such issues in other contexts, we give a general setup and
de�nitions. As we said, we will naturally be dealing with words on some generators.
We recall that a monoid is a setM endowed with a binary operation · : M×M →M
such that we have
• closure: x · y ∈M for all x, y ∈M ,
• associativity : (x · y) · z = x · (y · z) for all x, y, z ∈M ,
• identity : existence of an element 1 ∈ M such that 1 · x = x · 1 = x for all
x ∈M .

In this thesis all monoids will be �nite.
Let M be a monoid generated by a set S. As seen before, an element m ∈ M

can be represented by di�erent words m on S of di�erent lengths |m|. Hence the
following de�nition:

De�nition 1.1.3. [Bou02] If m ∈ M , the length of m is the minimal length of a
word in S whose product is m. Such a minimal length word is called reduced.

This notion of reduced word is quite important for the word problem. For in-
stance, in the case of the group Sn we saw that 1 = s2

i for all i, but ε is the only
reduced expression of 1. However in the case of s1s2s1 = s2s1s2 the two expressions
are reduced. Hence a permutation may have more than one reduced word.

The reduced expressions of words of the symmetric group Sn in the generating
system S = {s1, . . . , sn−1} are encoded in the right-Cayley graph (resp. left) of Sn.
It is the graph whose vertices are the element of Sn and for any g ∈ Sn and s ∈ S
there is a directed edge (g, gs) (resp. (g, sg)) labeled with an s. The bisided Cayley
graph of Sn is graph on Sn with both edges (g, sg) and (g, gs) for g ∈ Sn and s ∈ S.
We represent the bisided-Cayley graph of S4 in Figure 1.1.
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3421

4321

3241

4231

4123

3124 2143

2134

1432

1342 1423

1324 1243

1234

2431

2341

4312

3412 4213

3214 2413

2314

4132

3142

·s1
·s2
·s3

s1·
s2·
s3·

Figure 1.1: The bisided-Cayley graph of S4. The plain arrows represent the right
action and the left action represent the dashed arrows.

1.1.3 Inversions and weak order

As explained in section 1.1.2, one of the main question of the word problem is the
length of a word. It happens that in the case of the symmetric group, there is a
combinatorial characterization of the length.

De�nition 1.1.4. For σ = σ1 . . . σn ∈ Sn we de�ne its right-inversion set by:

InvR := {(σi, σj) | i < j and σi > σj} (1.3)

We similarly de�ne the left-inversion set by:

InvL := {(j, i) | i < j and σi > σj} (1.4)

In this thesis we will be mainly interested in right-inversions. So an inversion will
be a right-inversion unless otherwise stated and we let Inv := InvR. It happens that
a permutation is characterized by its inversion set. For instance the permutation
in S4 whose only inversion are {(2, 1), (4, 3), (4, 2), (4, 1)} is 4213. However we can
already note that not all subsets of ∆ := {(i, j) | i > j, i, j ∈ [n]} are inversion sets
of permutations. Here is the characterization of inversion sets of permutations; it
uses the de�nition of transitivity (see Section 1.2):

Lemma 1.1.5 ([GR63]). Given a set I ⊆ ∆, there exists a permutation σ such
that Inv(σ) = I if and only if I and ∆ \ I are both transitive. When this holds the
permutation σ is unique.
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For instance the set {(2, 1), (4, 3), (4, 2)} in not the inversion set of a permutation.
In Chapter 10 such characterizations of relations will be the starting point of a study
where we will follow an article of G. Châtel, V. Pilaud and V. Pons [CPP17].

From this de�nition of inversions we de�ne the following order on Sn, which
gives us a way to orient its Cayley graph:

De�nition 1.1.6. The right-weak order 4R (resp. left-weak order 4L) on Sn is
de�ned, for σ, τ ∈ Sn, by:

σ 4R τ ⇔ InvR(σ) ⊆ InvR(τ) (resp. σ 4L τ ⇔ InvL(σ) ⊆ InvL(τ)). (1.5)

The minimal element is the identity permutation ε = 12 . . . n, while the maximal is
the maximal element w0 :=n . . . 321 of Sn.

As before, we will mainly be interested in the right-weak order, called the weak
order 4 unless otherwise stated. This de�nition of the weak order has been recently
generalized in [CPP17]. We will see this generalization in Part IV and extend it for
other Coxeter types.

The following property comes quite naturally from the action of the elementary
transpositions, and gives a �rst link between reduced expressions and inversions:

Proposition 1.1.7. For any σ ∈ Sn, we have `(σ) = | Inv(σ)|.

Finally, we note that the right weak order is also the pre�x order in reduced
expressions on the elements of the group.

1.1.4 Descent set and bubble sort

Instead of considering all inversions, we can just consider inversions in consecutive
positions. These are called the descents.

De�nition 1.1.8. A right-descent (resp. left-descent) of σ is a position i ∈ [n− 1]
so that σi > σi+1 (resp. σ−1

i > σ−1
i+1), or equivalently so that `(σsi) < `(σ) (resp.

`(siσ) < `(σ)) Their set, the left-descent set (resp. right-descent set) of σ ∈ Sn is
denoted by DR(σ) (resp. DL(σ)).

We now note a problem of convention. Looking at Figure 1.2 we note that
�descents� in permutation matrices and descent sets are opposite. Hence we de�ne
the permutation table of σ ∈ Sn as the n× n table with a 1 in the box (i, σi) for all
i ∈ [n], where boxes are indexed in cartesian coordinates . As we see in Figure 1.2,
descents in permutation tables and descents of an element are the same. When we
work with a permutation table, the transposition is done with respect to the x = y
diagonal.

A right-descent set DR de�nes a graph on n vertices, called the right-descent
pattern. To do that index that the vertices by [n] and set them in order from left to
right. Only consecutive numbers are linked by an edge, and that this edge is going
upward if i /∈ DR, and downward otherwise. See Figure 1.2.
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Permutation 5 4 2 3 1 2 3 5 4 1

Permutation matrix




0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0







0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0




Right-Descent pattern

•
•

•
•

• •
•

•
•

•

Permutation table

1

1

1

1

1

1

1

1

1

1

Figure 1.2: Some representations and properties of two permutations of S5.

When acting on σ with an elementary transposition si, we have the following
property:

DesR(σ · si) =

{
DesR(σ) ∪ {i} if i /∈ DesR(σ)

DesR(σ) \ {i} otherwise.
(1.6)

When sorting a list with the bubble sort algorithm, we are sorting numbers in
decreasing order, hence we introduce the following operators:

De�nition 1.1.9. For i ∈ [n − 1], we de�ne the bubble sort operator πi as the
function:

πi :

∣∣∣∣∣∣∣

Sn −→ Sn

σ = σ1 . . . σn 7−→
{
σ · si if σi < σi+1,

σ otherwise.
(1.7)

Note that σi < σi+1 if and only if `(σsi) = `(σ) + 1.

With this new formalism, we get another de�nition of descents:

Proposition 1.1.10. The left-descent set and right-descent set of σ ∈ Sn are:

DR(σ) := {i ∈ [n− 1] | σπi = σ}, (1.8)

DL(σ) := {i ∈ [n− 1] | πiσ = σ}. (1.9)

The bubble sort operators are by de�nition related to the elementary transposi-
tions. In fact there are deep connections between these functions, as we will see in
Section 2.4. For now we just mention that the graph of the action of π1, . . . , πn−1 is
in bijection with the Cayley-graph of Sn, see Figure 1.1 and Figure 1.3.
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3421

4321

3241

4231

4123

3124 2143

2134

1432

1342 1423

1324 1243

1234

2431

2341

4312

3412 4213

3214 2413

2314

4132

3142

π1
π2
π3

Figure 1.3: The right-action of the bubble sort operators on S4.

1.1.5 Compositions and ribbons

Here we introduce another combinatorial tool linked to the descent sets of a permu-
tation σ ∈ Sn. Indeed, each subset S of J1, n− 1K of cardinality p can be uniquely
associated with a composition of n of length p + 1 that is a tuple I := (i1, . . . , ip+1)
of positive integers of sum n:

S = {s1 < s2 < · · · < sp} 7−→ C(S) := (s1, s2 − s1, s3 − s2, . . . , n− sp) . (1.10)

The converse bijection, sending a composition to its descent set , is given by:

I = (i1, . . . , ip) 7−→ Des(I) = {i1 + · · ·+ ij | j = 1, . . . , p− 1} . (1.11)

We write I � n when I is a composition of n and write `(I) for the length of I. We
will sometimes extend this de�nition to subsets J ⊂ J0, n − 1K by prepending a 0
to C(S) when 0 ∈ S. For instance, the composition (3, 1, 2, 1, 2, 2) � 11 corresponds
to the subset {3, 4, 6, 7, 9} of J0, 10K and (0, 3, 4, 1) � 8 corresponds to the subset
{0, 3, 7} of J0, 7K.

Compositions can be pictured as ribbon diagrams , that is, a set of rows composed
of square cells of respective lengths ij, the �rst cell of each row being attached under
the last cell of the previous one. I is called the shape of the ribbon diagram. We
saw in De�nition 1.1.8 the de�nition of the descent set Des(σ) of a permutation σ,
and the descent composition C(σ) of σ is the unique composition I of n such that
Des(I) = Des(σ), that is, the shape of a �lled ribbon diagram whose row reading
is σ and whose rows are increasing and columns decreasing. For example, Figure 1.4
shows that the descent composition of σ = 3541276 is I = (2, 1, 3, 1).
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3 5
4
1 2 7

6
ω(I) =

6 7
5
2 3 4

1
α(I) =

1 4
3
2 5 7

6

Figure 1.4: The ribbon diagram of the permutation 3541276.

Conversely, it is well known that the set of permutations whose descent compo-
sition is I is the right weak order interval [α(I), ω(I)] (see e.g. [KT97, Lemma 5.2]).
For example, if I = (2, 1, 3, 1), ω(I) = 6752341 and α(I) = 1432576.

1.1.6 Lehmer code and presentation

The Lehmer code is an alternative way to encode a permutation. It provides a tool
to obtain a presentation of the symmetric group. A presentation of a group (resp.
of a monoid) is a way to express it as a quotient of a free group (resp. monoid),
using equalities which generate all relations in the group (resp. monoid). There are
di�erent possible de�nitions of the Lehmer code. We have given the de�nition most
connected to our work in Part II.

One purpose of the Lehmer code is to obtain a canonical reduced word for per-
mutations by induction along the chain of inclusions

S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 ⊂ Sn ⊂ . . . (1.12)

noticing that the number of cosets in Sn−1\Sn is exactly n. One can for example
take {1, sn−1, sn−1sn−2, sn−1sn−2sn−3, . . . } as a cross-section. In a more combinato-
rial setting, this is equivalent to say that given a permutation σ ∈ Sn−1 there are
exactly n permutations which give back σ when erasing the letter n. Therefore any
permutation can be encoded by a sequence c = (c1 . . . cn) satisfying 0 ≤ ci < i:

De�nition 1.1.11 ([Lot02, page 330]). The Lehmer code of σ ∈ Sn is de�ned by

Lehmer(σ) = c1 . . . cn with ci := |{j > i | σi > σj}| (1.13)

Example 1.1.12. Lehmer(516432) = 403210 and Lehmer(352614) = 231200.

From there Lascoux obtained a canonical reduced expression for every element
of Sn:

Lemma 1.1.13 ([Las02, Lemma 3]). Let σ ∈ Sn and let its Lehmer code be
Lehmer(σ) = c1 . . . cn. The concatenation of right factors (sn−1 . . . s1) . . . (sn−1)()
of respective lengths c1, . . . , cn is then a reduced word for σ.

This allow to reprove algorithmically the following presentation of the symmetric
group, whose relations were already mentioned in Section 1.1.2.
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Theorem 1.1.14. The symmetric group Sn is generated by the simple transpositions
(si)1≤i≤n−1 with respect to the relations:

s2
i = 1 1 ≤ i ≤ n− 1; (A-1)

sisj = sjsi, 1 ≤ i, j ≤ n− 1 and |i− j| ≥ 2; (A-2)

sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 2; (A-3)

The relation A-1 just says that the si are involutions. The relations A-2 and A-3
are called the braid relations . The next theorem, due to Matsumoto, shows one of
their properties:

Theorem 1.1.15 (Matsumoto's theorem, [BB05, Theorem 3.3.1]). If u and v are
two reduced expressions over {s1, . . . , sn−1} for the same element of Sn then they
are congruent using only the braid relations A-2 and A-3.

Theorems 1.1.14 and 1.1.15 give an answer to the word problem in Sn. A direct
consequence of Matsumoto's Theorem is that an element σ has the descent i if and
only if there is a reduced expression for it which ends by si.

1.1.7 Partitions, cycle decomposition and Foata transforma-

tion

Finally we give another bijection in Sn, called the Foata transformation. It was
historically used to prove the equidistribution of cycles and left to right maxima. As
far as we are concerned, this bijection will enable us to do some enumerations on
rooks in Section 4.2.2. We also refer to [Lot02] for more details.

We �rst de�ne a partition of an integer n to be a decreasing sequence of integers
λ = (λ1, . . . , λm) so that λ1 ≥ λ2 ≥ · · · ≥ λm and λ1 + λ2 + · · · + λm = n. We
denote this by λ ` n. It is a classical result that any permutation can be written
as a product of cycles, even of length 1, so that all letters appear in exactly one
cycle. For instance τ = 1256374 admits the cycle decomposition (1)(2)(3, 5)(4, 6, 7).
If we consider the sequence length of the cycles of a given permutation σ ∈ Sn in
decreasing order, we obtain a partition of n. Here 7 = 3 + 2 + 1 + 1. This partition
associated with any given permutation also describes its conjugation class . Indeed it
is another classical result that two permutations σ and τ are in the same conjugation
class if and only if the partitions associated to their cycle decompositions are the
same.

In order to get the Foata transformation F(σ) ∈ Sn of any σ ∈ Sn we do the
following steps:
(i) Write the cycle decomposition of σ.
(ii) Cyclically rearrange each cycle so that it begins with its largest element.
(iii) Arrange the cycles in increasing order of their largest elements.
(iv) Drop commas and parentheses: it is the one-line notation of F(σ).
For instance, for τ = 1256374, τ = (1)(2)(3, 5)(4, 6, 7) = (1)(2)(5, 3)(7, 4, 6) so that
F(τ) = 1253746. The reverse bijection F−1 can be de�ned in the same vein. If
σ ∈ Sn, the steps are the following:
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(i) Write σ in its one-line notation.
(ii) Traverse through the word from left to right, and identify all the elements that

are larger than the elements before them, called the the left-to-right maxima.
The word starting with a given left-to-right maxima and ending just before
the next form the word for the cycles in the canonical notation for the cycle
decomposition of F−1(σ).

For instance if σ = 1253746 we �nd back the cycle decomposition (1)(2)(5, 3)(7, 4, 6)
and the element τ , so that F−1 (F(τ)) = τ . The reader can prove that this is indeed
general, so that F : Sn → Sn is a bijection.

1.2 Posets

In this section we follow V. Pons in [Pon13] and borrow her pictures with permission.
As we saw in Section 1.1, it is quite natural to de�ne relations on combinatorial
objects. Sets with a partial order are called partially ordered sets , or posets for
short. Posets can be studied as combinatorial objects themselves as we will see in
Part IV, but for now we will see them as a structure on combinatorial sets.

1.2.1 First de�nitions

De�nition 1.2.1. A preposet P is a set with a relation ≤ which is
(i) Re�exive: ∀x ∈ P, x ≤ x if x ≤ y and y ≤ z then x ≤ z;
(ii) Transitive: ∀x, y, z ∈ P if x ≤ y and y ≤ z then x ≤ z.
A poset is a preposet with the following additional property:
(iii) Antisymmetric: ∀x, y ∈ P if x ≤ y and y ≤ x then x = y;
Furthermore, if for every x, y ∈ P , we have either x ≤ y or y ≤ x then the order is
said total (sometimes also called linear). We write x < y when x ≤ y and x 6= y.

In this thesis every posets and preposets P will be �nite.

De�nition 1.2.2. An element x ∈ P is minimal (resp. maximal) if there is no
y ∈ P , so that y < x (resp. y > x).

De�nition 1.2.3. For x, y ∈ P we say that y covers x, and we write xl y, if x < y
and there is no z ∈ P so that x < z < y. Such relations are called cover relations.

The cover relations are enough to de�ne the poset, as the other relations can be
deduced by transitivity. Hence in order to represent a poset we can only give elements
and cover relations: we show this in the Hasse diagram of the poset. Usually, the
following convention is applied: xl y if and only if x is linked to y by an edge and
below it. Therefore the smallest elements are at the bottom of the image, cf. Figure
1.5.

For instance in Section 1.1.4, the descent pattern is the Hasse diagram of the
poset given by the inversion set. For a descent set D on permutations of size n, its
associated partial order ≤D on [n] is generated by the cover relations

{i+ 1 ≤D i | i ∈ D} ∪ {i ≤D i+ 1 | i ∈ [n− 1] \D}. (1.14)
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a b

c

d e

Figure 1.5: Example of a Hasse diagram. The cover relations are d l c l b, d l a
and el b. The elements d and e are minimal. The order is partial since a and b can
not be compared.

We now consider a relation R on a set S. Its transitive closureRtc is the smallest
relation on X that contains R and is transitive. For instance if P is a poset, the
transitive closure of its cover relations is the poset itself.

De�nition 1.2.4. A chain of a poset P is a set of elements {x1, . . . , xm} such that

x1 ≤ x2 ≤ · · · ≤ xm. (1.15)

If for all i ∈ J1,m− 1K we have xi l xi+1 the chain is saturated.

For instance in Figure 1.5, dl cl b is a saturated chain.

De�nition 1.2.5. A poset P is graded if there is an application γ : P → N such
that:
(i) γ(x) = 0 if x is minimal,
(ii) γ(y) = γ(x) + 1 if xl y.

Equivalently, a poset is graded if the length of any saturated chain between an
element y ∈ P and a minimal element x does not depend on x nor the chain. Thus
the poset of Figure 1.5 is not graded since dlclb and elb are two saturated chains
of di�erent length from minimal elements to b. We have already seen the following:

Example 1.2.6. The poset (Sn,4) of the weak order is graded by length. Saturated
chains from 1 to w0 correspond to reduced expressions of w0.

The reader could use Figure 1.1 to check the characterization on the length of
saturated chains.

1.2.2 Construction of posets

The following de�nitions explain how to build new posets from old ones. Examples
of any construction (subposet, interval, quotient, etc.) are shown in Figure 1.6.

De�nition 1.2.7. A poset P ′ is a subposet of P if P ′ ⊆ P as a set, and if the partial
order of P ′ is that of P restricted to elements of P ′.

For x, y ∈ P we denote [x, y] := {z ∈ P | x ≤ z ≤ y} the interval between x and
y. A subset P ′ ⊆ P is closed by intervals if for any x, y ∈ P ′, [x, y] ⊆ P ′.
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A poset P
a

b c

d e f

g h

Subposet of P Subposet of P closed by intervals Interval of P
b c

g

b c

d e

g

b

d e

g

Quotient of P Lower ideal generated by e Upper ideal generated by e

{a, b, c, e}

{d, g} {f, h}

e

g h

a

b c

e

Figure 1.6: Examples of construction of posets.

De�nition 1.2.8. Let P be a partition of a poset P . Then P is called a quotient
poset of P if the relation de�ned on P by

ẋ ≤ ẏ ⇔ ∃x ∈ ẋ, y ∈ ẏ such that x ≤ y. (1.16)

for any ẋ, ẏ ∈ P is an order relation.

In [CS98] we can �nd su�cient and necessary conditions for such a partition to
generate a quotient poset.

De�nition 1.2.9. Let P a poset and x ∈ P , the lower ideal (resp. upper) of P
generated by x is the set of all elements y ≤ x (resp. y ≥ x).

Finally we consider extensions of a poset. Let (P,≤P ) and (Q,≤Q) be two posets
over the same set E. If

x ≤P y ⇒ x ≤Q y (1.17)

for any x, y ∈ E, then Q is an extension of P . Building an extension of P amounts
to adding some relations to the poset P . If the order of Q is total, then Q is called
a linear extension of P .

A linear extension of P can be represented as a word u whose letters are the
elements of P with the rule that if a ≤P b then a must be before b in u. For
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instance, the words dceab and edcba are linear extensions for the poset of Figure 1.5.
If the elements of the poset are integers from 1 to n, the linear extensions of the
poset can be seen as permutations, cf. Figure 1.7. We denote by L(P ) the set of
linear extensions of a poset P .

Poset Linear extensions
3

2 4

1

1243
1423
4123

Figure 1.7: Example of linear extensions of a poset.

1.2.3 Lattice

Let X be a subset of the elements of a poset P . The meet of X, denoted by ∧X, is
the unique element z such that

y ≤ z ⇔ ∀x ∈ X, y ≤ x (1.18)

if it exists, and ∅ otherwise. Symmetrically, the join of X, denoted by ∨X is the
unique element z such that

y ≥ z ⇔ ∀x ∈ X, y ≥ x (1.19)

if it exists, and ∅ otherwise. When X = {x, y} we also write x ∧ y := ∧ X and
x ∨ y := ∨X.

De�nition 1.2.10. A meet-semilattice (resp. join semi-lattice) is a poset P such
that, for any subset X of P , ∧X (resp. ∨X) is di�erent from ∅.

A lattice is a poset which is a meet-semilattice and a join semilattice.

It is a folklore result that a meet semilattice (resp. join semillatice) with a unique
maximal element (resp. minimal element) is a lattice. The middle part of Figure 1.8
gives an example of a poset which is not a lattice. Indeed b∧c = ∅ and symmetrically
e ∨ f = ∅. In contrast the left poset is a lattice. Another example of a lattice is the
boolean order on subsets of [n], ordered by inclusion.

Another very important lattice is the weak order on Sn:

Theorem 1.2.11 ([BB05]). The weak order on Sn is a lattice. The meet σ ∧ µ of
σ and τ is characterized by: Inv(σ ∧ µ) is the transitive closure of Inv(σ) ∪ Inv(µ).
The join of σ and τ is characterized by: ∆ \ Inv(σ ∨ µ) is the transitive closure of
(∆ \ Inv(σ)) ∪ (∆ \ Inv(µ)).
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Lattice Poset (not a lattice) Boolean lattice on {1, 2, 3}
a

b c

d

e f

g

a

b c

e f

g

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1.8: Example and counter-example of a lattice.

1.3 Elementary semigroup theory

1.3.1 Green relations

Let M be a �nite monoid. We saw in Section 1.1.2 that we are often considering
an element of M not as the element itself but as a word on some generating set.
In Section 1.1.3 we explained that the weak order happens to be the order on the
pre�x on the reduced expressions of elements of Sn. Green de�ned a similar order
on monoids which measure in a certain way how far the monoid is from a group.
We refer to [Den+10; Pin10; Ste16] for more details. Recall that the left (resp.
right, bi-sided) ideal of M generated by x is the set Mx := {mx | m ∈ M} (resp.
xM := {xm | m ∈M} and MxM := {mxn | m,n ∈M}). In 1951, Green introduced
several preorders on monoids related to inclusion of ideals. The standard terminology
is to write R for right ideal, L for left and J for bi-sided. We hence de�ne the
relations ≤R,≤L,≤J as inclusion of ideals of the corresponding type. That is, if
x, y ∈M :

x ≤R y ⇐⇒ xM ⊆ yM ⇐⇒ x = yu for some u ∈M ; (1.20)

x ≤L y ⇐⇒ Mx ⊆My ⇐⇒ x = uy for some u ∈M ; (1.21)

x ≤J y ⇐⇒ MxM ⊆MyM ⇐⇒ x = uyv for some u, v ∈M. (1.22)

These relations are clearly preorders (re�exive and transitive) and naturally give rise
to equivalence relations:

x R y ⇐⇒ xM = yM ; (1.23)

x L y ⇐⇒ Mx = My; (1.24)

x J y ⇐⇒ MxM = MyM. (1.25)

Beware that 1 is the largest element of these preorders. As mentionned before
in Section 1.2.1, this is the usual convention in the semigroup community, but is
the converse convention from the closely related notions of left/right weak order in
Coxeter groups, see also Chapter 2.



 Chapter 1 � Combinatorics and operators

We give here a small result to see why J -classes are very important in monoid
theory. We de�ne a principal series for M to be a saturated chain of ideals

∅ = I0 ( I1 ( · · · ( Is = M (1.26)

This exist for any �nite monoid, and it turns out that the di�erences Ik�Ik−1
are

precisely the J -classes of M :

Proposition 1.3.1 ([Ste16, Proposition 1.18]). Let 1.26 be a principal series for M .
Then each di�erence Ik�Ik−1

with 1 ≤ j ≤ s is a J -class of M , and each J -class
arises exactly once in this manner.

Next we wonder when Green preorders are orders.

De�nition 1.3.2. A monoid M is called K-trivial with K ∈ {R,L,J } if all K-
classes are of cardinality one, that is if the K-preorder is antisymmetric and therefore
an actual order. Speci�cally, M is J -trivial if MxM = MyM implies x = y.

In term of Cayley graph, this means that the J -sided Cayley graphs has only
trivial (i.e. singletons) strongly connected components. We have seen such an ex-
ample in Figure 1.3, and more examples of J -trivial monoid of interest for this work
will include the 0-Hecke monoid for any Coxeter group [Den+10] see also Section 2.4.

Example 1.3.3. Let M be the monoid generated by {a, b} with a2 = a, b2 = b,
aba = ab and bab = ba. Figure 1.9 shows the three Cayley graphs of M .

ba

b

ab

a

1

ba

b

ab

a

1

ba

b

ab

a

1

Figure 1.9: The left, bisided (middle) and right Cayley-graph of M . We see that M
is R-trivial but not L-trivial nor J -trivial since the strongly connected component
{ab, ba} is not a singleton.

An equivalent formulation of K-triviality is given in terms of ordered monoids.
A monoid M is called:

right ordered if xy ≤ x for all x, y ∈M
left ordered if xy ≤ y for all x, y ∈M
left-right ordered if xy ≤ x and xy ≤ y for all x, y ∈M

for some partial order ≤ on M .
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Proposition 1.3.4 ([Den+10, Proposition 2.2]). M is right ordered (resp. left
ordered, left-right ordered) if and only if M is R-trivial (resp. L-trivial, J -trivial).
When M is K-trivial for K ∈ {R,L,J }, then ≤K is a partial order, called K-order.

Finally, for �nite monoids, R,L and J are related as follows:

Lemma 1.3.5 ([Pin10, V. Theorem 1.9]). A �nite monoid is J -trivial if and only
if it is both R-trivial and L-trivial.

We are looking for another characterization of R-trivial monoid. Let P be a
�nite poset, then a function f : P → P is called regressive if f(x) ≤P x for every
x ∈ P . A function f : P → P is said to be order-preserving if for all x, y ∈ P ,
x ≤P y implies f(x) ≤P f(y). Then an R-trivial monoid can be represented as a
monoid of regressive functions on a �nite poset P , and conversely any such monoid
is R-trivial. Furthermore, a monoid of regressive and order-preserving function is
J -trivial but the converse is false. An example of such a construction is the 0-Hecke
monoid which we will introduce in Section 2.4.1. See [Den+10] for other examples
(notably the non decreasing parking functions) and more details.

1.3.2 Subsemigroup of monoids

We follow [Ste16] in this section. We recall that a semigroup S is a set with a binary
operation · : S × S → S which satis�es associativity. With this de�nition a monoid
is just a semigroup with an identity.

Let M be a �nite monoid and x ∈ M . Then 〈x〉 is a �nite semigroup and
therefore there exists a smallest positive integer c, called the index of x, such that
xc = xc+d for some d > 0. The smallest choice of d is called the period of x. See
Figure 1.10. This gives us a way to know if two elements of 〈x〉 are equal:

Proposition 1.3.6 ([Ste16, Proposition 1.1]). Let x ∈ M have index c and period
d. Then xi = xj if and only if i = j or i, j ≥ c and i ≡ j mod d.

. . .x3x2x xc = xc+d

. . .

xc+2

xc+1

Figure 1.10: A cyclic semigroup in a general monoid.

This enables us to de�ne an idempotent in the semigroup 〈x〉, that is an element
e ∈ M such that e2 = e. These elements will happen to be very important in our
thesis.

Corollary 1.3.7 ([Ste16, Corollary 1.2]). Let x ∈ M have index c and period d.
Then the subsemigroup C := {xn | n ≥ c} is a cyclic group of order d. The identity
of C, denoted xω, is the unique idempotent of C and is given by xm when m ≥ c
and m ≡ 0 mod d.
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If the monoidM is K-trivial for K ∈ {L,J ,R} then the period for every element
is necessary 1. Hence if x ∈ M has index c we deduce that xω = xc = xc+1 = . . . .
Such a monoidM for which for every x ∈M there exist N ∈ N such that xN = xN+1

is called an aperiodic monoid . To see more on aperiodic monoids and the idempotent
xω even in in�nite monoids we refer to [Pin10]. See also Figure 1.11.

. . .x3x2x xω

Figure 1.11: A cyclic semigroup in an aperiodic monoid.

Finally we denote by E(M) := {xω | x ∈ M} the set of idempotents of M .
This set will be of great importance in the representation theory of algebra (see
Section 3.2.3). We just give the following property of idempotents:

Lemma 1.3.8 ([Den+10, Lemma 3.6]). If M is J -trivial, for e ∈ E(M) and y ∈M
the following three statements are equivalent:

e ≤J y, e = ey, e = ye. (1.27)

1.4 Geometry

1.4.1 Polytopes and permutahedron

This section is about the geometry of our combinatorial classes. These classes can
frequently be realized geometrically as polytopes . A polytope P is the convex hull of
�nitely many points in Rn or, equivalently, a bounded intersection of �nitely many
closed a�ne half-spaces in Rn. The dimension of P is the dimension of its a�ne hull
in Rn and, if dimP = d, we say that P is a d-polytope. A supporting hyperplane of
P is an a�ne hyperplane that does not separate any two points of P . A face of P is
the intersection of P with one of its supporting hyperplanes. Faces of a polytope are
themselves polytopes, and we abreviate �face of dimension k� to k-face. We denote
by P(k) the set of k-faces of P . The 0-faces are the vertices , the 1-faces are the edges
and the d− 1 faces are the facets . The 1-skeleton of P is the graph whose vertices
are the vertices of P and whose edges are the pairs of vertices of P belonging to a
common edge of P .

For instance, let us consider the combinatorial class of permutations. To each σ ∈
Sn associate the point xσ := (σ1, . . . , σn) ∈ Rn. Then the permutahedron Perm(n) is
de�ned as the convex hull of all xσ for σ ∈ Sn. All its vertices live in the hyperplane
H with:

H :=

{
x = (x1, . . . xn) ∈ Rn |

∑

i

xi =

(
n+ 1

2

)}
. (1.28)

It is a polytope of dimension n − 1. Furthermore, for any I ⊆ [n], we de�ne the

hyperplane HI :=
{
x = (x1, . . . xn) ∈ Rn |∑i∈I xi =

(|I|+1
2

)}
. Then:

conv(Perm(n)) = H ∩
⋂

I⊂[n]

HI . (1.29)
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We represent the 3-permutahedron Perm(4) in Figure 1.12. If we compare with
Figure 1.1 we see that the 1-skeleton of the n-permutahedron is the Hasse diagram
of the right-weak order.

34123421
4321 4312

2413

4213

3214

14231432

1342

1243 1234
2134

1324

2341

2431

3124
2314

Figure 1.12: The 3-permutahedron Perm(4).

1.4.2 Cones and fans

The de�nitions of cones and fans are closely related to those of polytopes, as they
can be treated in a common setting [Zie95]. A (polyhedral) cone is the positive
span of a �nite set of vectors in Rn. Equivalently a cone is the intersection of �nitely
many closed linear halfspaces. The dimension of a cone is the dimension of its linear
span. The faces of a cone are its intersections with its supporting hyperplanes, that
is the linear hyperplanes that do not strictly separate two of its elements. Faces of
a cone are cones as well and the 1-dimensional faces of a cone are its rays . A cone
is simplicial if it is generated by linearly independent vectors. A simplicial cone is
then generated by its rays and any subset of its rays generate one of its faces.

A (polyhedral) fan is a set of cones closed by faces such that any two faces
intersect in a common face. The maximal faces of the fan are its facets . A fan F is
complete if the union of all of its cones is V , essential (or pointed) if the intersection
of all non-empty cones of F is the origin, and simplicial if every cone is simplicial,
that is, spanned by linearly independent vectors.

For instance we de�ne the braid fan BF(n) as the fan de�ned by the collection of
hyperplanes {x ∈ Rn | xi = xj} for 1 ≤ i 6= j ≤ n; that is to say, the closures of the
connected components of V \⋃i 6=j{x ∈ Rn | xi = xj} together with all their faces.
Note that this fan is not essential as the lines 〈∑i ei〉 are in every hyperplane. But
its intersection with the hyperplane H de�ned in Equation 1.28 is then essential,
pointed and complete in H. We follow [Pil13] in describing this fan. Figures 1.13,
1.14 and 1.15 also come from this paper with permission and minor changes.

The k-dimensional cones of BF(n) correspond to the surjections from the set [n]
to the set [k+1] or, equivalently, to the ordered partitions of [n] into k+1 parts. We
describe here the bijection between ordered partitions and surjections. The �bers of
a surjection from [n] to [k + 1] de�ne an ordered partition of [n] with k + 1 parts.
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Reciprocally, the positions of the elements of [n] in an ordered partition of [n] with
k + 1 parts de�ne a surjection from [n] to [k + 1]. We refer to Figure 1.13.

1234
2134

3124

3214
2314

1324

1243

1423

2413

4213

4312
4321

3421 3412

2431

1432

2341

1342

2211

1211
2212

1212

1112
1222

1221

34|12

134|2
3|124

13|24

123|4
1|234

14|23

2|1|3|4
1|2|3|4

2|3|1|4

3|2|1|4
3|1|2|4

1|3|2|4

1|2|4|3

1|3|4|2

3|1|4|2

3|2|4|1

3|4|2|1
4|3|2|1

4|3|1|2 3|4|1|2

4|1|3|2

1|4|3|2

4|1|2|3

1|4|2|3

Figure 1.13: The 3-dimensional braid fan BF(4). The k-dimensional cones corre-
spond to the surjections from [4] to [k + 1] (left) or, equivalently, to the ordered
partitions of [4] into k+ 1 parts (right). Rays are in red while maximal cones are in
blue. The remaining labels are left to the reader.

If F is a face of a polytope P then the normal cone of F is the cone generated
by the (outer) normal vectors of the facets of P containing F . The normal fan
of P is the set of normal cones of all its faces. See [Zie95] for the connection to
linear programming and maximisation of linear functionals. The normal fan of the
permutahedron is the braid fan. In this fan the set of maximal cones is in bijection
to the permutations via its braid cone:

C(σ) = {x ∈ Rn | xi ≤ xj if σi < σj} . (1.30)

More generally if P is a poset on [n] it corresponds to the following union of cones
of the braid fan:

C(P ) = {x ∈ Rn | xi ≤ xj if i <P j} . (1.31)

In Figure 1.14 we represent the permutahedron Perm(4) and illustrate in comparison
with Figure 1.13 that it is the dual of the braid fan.

Finally we can again generalize the de�nition of braid cone from Equation 1.31
to preposets . A preposet R on [n] can always be decomposed as an equivalence
≡R := {(i, j) ∈ R | (j, i) ∈ R} and a poset structure ≺R on its equivalence classes.
If R is a preposet on [n] we de�ne its braid cone by:

C(R) = {x ∈ Rn | xi ≤ xj if (i, j) ∈ R} . (1.32)

For instance, the cones of BF(V ) are precisely the cones of the linear preposets ;
that is, the preposets L on [n] whose poset ≺L is a linear order on the equivalence
classes of ≡L. The dimension of C(R) is the number of equivalence classes of ≡R
minus 1. There is some correspondance between combinatorial properties of the
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Figure 1.14: The 3-dimensional permutahedron Perm(4). The k-dimensional cones
correspond to the surjections from [4] to [4−k] (left) or, equivalently, to the ordered
partitions of [4] into 4− k parts (right). Facets are in red while vertices are in blue.

preposets and geommetrical ones. In particular, If R and R′ are two preposets on
[n], then the cone C(R) contains the cone C(R′) if and only if R′ is an extension of
R. Furthermore, the cone C(R) of any preposet R is the disjoint union of the cones
of its linear extensions (hence total preposets or equivalently ordered partitions).
We represent in Figure 1.15 such cones for posets.
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Figure 1.15: Some cones corresponding to posets on [4] inside the braid fan BF(4).

1.5 Rooks

We introduce here a natural generalization of the symmetric group made of the
monomial matrices, or the rooks , which will be the main object for Part II.
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De�nition 1.5.1. A rook matrix is an n×n matrix with entries {0, 1} and at most
one nonzero entry in each row and column.

Enumeration of rook matrices has received considerable research e�ort in the
past (See e.g. [Rio02; But+10] and the references therein) and has recently been
renewed by a connection with PASEP [JV11]. The product of two rook matrices is
still a rook matrix. Thus the following de�nition:

De�nition 1.5.2. The rook monoid of size n is the submonoid Rn of the matrix
monoid containing the rook matrices of size n.

Identifying permutations with their matrices, we see that Sn is a submonoid of
Rn. To deal with rook matrices it is easier to have an analogue of the so-called one
line notation for permutations as in [CR12]:

Notation 1.5.3. We encode a rook matrix by its rook vector (or just rook) of size
n whose i-th coordinate is 0 if there is no 1 in the i-th column of r and the index of
the row containing the 1 in the i-th column otherwise.

Example 1.5.4. Here are two matrices with their associated rook vector:



0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 0







0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0




0 4 2 3 1 0 3 0 4 1

Later, we identify rooks matrices and rook vectors and speak about rooks when
there is no ambiguity. This representation as a vector is coherent with the way we
de�ned permutation matrices. With this vector notation, we now consider rooks
just as partial permutations, or words over [n]0 := {0, 1, . . . , n} = {0} ∪ [n] with at
most one letter for each element of [n].

It is quite easy to count the number of rooks.

Proposition 1.5.5.

|Rn| =
n∑

k=0

(
n

k

)2

k!. (1.33)

Example 1.5.6. Here are the �rst few cardinalities of the rook monoids:

n 1 2 3 4 5 6 7 8
|Rn| 2 7 34 209 1546 13327 130922 1441729

We not only want to count rooks but to also generate the rook monoids. We
have the following result:

De�nition 1.5.7. In the monoid Rn, let (si)i=1...n−1 denote the rook matrices of the
elementary transpositions (i, i + 1). Let Pi denote the diagonal n × n matrix with
the �rst i diagonal entries as zero and the remaining ones as 1.
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For example, with n = 4, here are the matrices of s1, s2, s3, P1, P2, P3, P4 and
their associated vectors
(

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

) (
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) (
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) (
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

) (
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

) (
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)

2 1 3 4 1 3 2 4 1 2 4 3 0 2 3 4 0 0 3 4 0 0 0 4 0 0 0 0

It is well-known that the (si)i generate the symmetric group as a group of per-
mutation matrices and (si)i, P1 generate the rook monoid. We will later give a
presentation of the rook monoid (Remark 4.2.2).

1.6 Tamari lattice

In this section we follow [Pon13] and with her permission use her �gures (Fig-
ures 1.16, 1.17, 1.19, 1.22 and 1.23, and the lower part of Figure 1.20).

1.6.1 Dyck paths and trees

The Tamari order is a well-studied order which we introduce here and refer the
reader to [MHPS12; BW91; Rea06] for more details. It is an order on Catalan
objects, and which we choose to describe �rst on Dyck paths; as was historically
done by D. Tamari in [MHPS12]. A Dyck path of length n is a path on the plane
starting from (0, 0) and ending at (2n, 0) made with north-east (NE) (1, 1) and
south-east (SE) (1,−1) steps such that the path is always above the line y = 0.

We identify such paths with a Dyck word , that is a word on the binary alphabet
{0, 1} where a 1 is a NE step, and a 0 is a SE step. The number of 1s is then equal
to the number of 0s and in every pre�x of the word the number of 0s is less or equal
to the number of 1s. This de�nition of Dyck word is equivalent with the de�nition
on bracketing , see Figure 1.16 for some examples. A path is then called primitive if
it is not empty and has no other contact with the line y = 0 except at the starting
and ending points.

If u is a Dyck path such that u has a SE step d followed by a primitive path p the
rotation on u is to exchange the decreasing step d with the primitive path p. The
rotations are the cover relations of the Tamari order �T , as shown in Figures 1.16
and 1.17. It is an order and even a lattice [HT72]. The minimal element is the Dyck
word (10)n and the maximal element is the Dyck word 1n0n.

−→
1101 0 11100100 1001100 −→ 1101 11100100 0 1001100

(()( ) ((())()) ())(()) −→ (()( ((())()) ) ())(())

Figure 1.16: The rotation of Dyck paths, Dyck words and bracketing.

We now introduce another Catalan object. A binary tree T is de�ned recursively
as either the empty tree ∅ (also called a leaf ), or a couple of binary trees, called left
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Figure 1.17: The Tamari order on Dyck paths of length 3 and 4.

child and right child , grafted on a root node. If r is the root, R the right child and
L the left child, we represent the binary tree T = (L, r, R) by:

r

L R

The edges should be oriented towards the root, but we will often forget this con-
vention and rely on the bottom-top order. The height h(T ) of a binary tree T is
recursively de�ned by

h(∅) = −1 and h

(
r

L R

)
= max(h(R), h(L)) + 1. (1.34)

The trees are objects used in several algorithms, for instance in sorting data
[AVL62]. Some trees are easier to use in these algorithms: the balanced trees , which
are characterized by the fact that the di�erence of height between the two children
at any node is at most 1. When a tree is not balanced a rotation is applied on it
which corresponds to the rotation on Dyck paths. The left rotation ρl and right
rotation ρr are de�ned as shown in Figure 1.18. These two operations are inverse
one from the other. Here again, these rotations are the cover relations of the Tamari
order. See Figure 1.19.

•

•

A B

C

ρr

ρl

•

•A

B C

Figure 1.18: Rotation on binary trees. The operation ρr is called the right rotation,
and ρl the left rotation.

We now give the correspondance between Dyck words and binary trees which
shows that the lattices of Figure 1.17 and 1.19 are the same. A Dyck word D
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Figure 1.19: The Tamari lattices of size 3 and 4 on binary trees.

is either empty or can be written as D = D11D20 where D1 and D2 are Dyck
words (take for D1 the path from start to the penultimate return to 0). Then the
corresponding tree is T = (T1, r, T2) where T1 and T2 are binary tree corresponding
respectively to D1 and D2, and x is a root. In particular if D is primitive then D1

is empty, whereas D2 is empty if D ends by 10. See Figure 1.20.

←→

Figure 1.20: The correspondance between Dyck paths and binary trees. On top we
present reccursively the decomposition of the Dyck path. In red it is the left part
and in blue the right part. In bold we represent the NE and SE steps which make
the Dyck word split.

1.6.2 Tamari order and weak order

The connection with the weak order is made by a labeling of the nodes of the trees.
When the nodes of a binary tree T are integers such that any node is greater (resp.
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smaller) than all the nodes of its left (resp. right) child the tree T is called a binary
search tree. If T has n nodes and each number of [n] is a node it is called a standard
binary search tree (SBST). Any binary tree can be labeled to make it a SBST using
the in�x labeling : label recursively the left child L then the root, and then the right
child R. For instance, we represent an in�x labeling in Figure 1.21

•
•

• •
• •

•

•
•

6

2

1 4

3 5

7

8

9

Figure 1.21: A binary tree and its in�x labeling. We see that if the binary tree is
well drawn it corresponds only to reading nodes from left to right.

The in�x labeling is the only way to label a binary tree in order to get a SBST.
The structure of binary search trees is often used in algorithmics to store the data
of a sorted set. In particular, we de�ne the recursive algorithm of insertion of the
integer k in the SBST T as follows: if T is empty then k becomes the root of T ,
otherwise if k ≤ root(T ) (resp. k > root(T )) insert k in the left (resp. right) child of
T . We use this algorithm to associate to each σ ∈ Sn a binary search tree BST(σ)
by successive insertions of integers of the one-line notation from right to left in an
empty tree. This process is explained in Figure 1.22.

13524 4 → 13524 2

4

→ 13524 2

4

5 →

13524

2

3

4

5

→ 13524 1

2

3

4

5

1

2

3

4

5

13254

31254 13524

31524 15324

35124 51324

53124

Figure 1.22: Insertion in a binary search tree and linear extensions.

Now we can look at a binary tree as a poset T with the relation that a root
is above its children. If we consider all the possible linear extensions of T we get



� 1.6 � Tamari lattice 

a morphism from the binary trees with n nodes to the subsets of Sn. In [BW91]
Björner and Wachs proved that the permutations giving the same binary search
tree are all the linear extensions of this tree seen as a poset. Furthermore, these
permutations form an interval in the right weak order on permutations. This set is
called the sylvester class of the tree. In Figure 1.22 we represent one sylvester class.

The sylvester congruence is de�ned on Sn as follows: if σ, τ ∈ Sn then σ ≡
τ ⇔ BST(σ) = BST(τ). With this congruence one can prove that that the Tamari
lattice is not only a sublattice but also a lattice quotient of the right-weak order, see
Figure 1.23 [HNT05; LR98; BW91].
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1
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Figure 1.23: The order of Tamari as a quotient of the right weak order of sizes 3
and 4. Permutations are grouped by equivalence class. The reader can check that
the quotient is a lattice quotient; that is that two comparables permutations have
their associated binary search trees comparable in the Tamari lattice.

Finally, we can also look geometrically at the Tamari lattice. As we saw in
Equation 1.31 we can associate to a poset a cone on the braid fan BF(n). We
consider the fan:

FT := {C(T ) | T tree with n nodes} . (1.35)
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It is a complete essential simplicial fan. It just so happens that there is a polytope
whose normal fan is the fan FT . It is called the associahedron and is obtained
from the permutahedron by a deleting of some facets. More precisely we de�ne the
singletons to be the permutations with exactly one element in their sylvester class.
Then the associahedron is obtained from the permutahedron by keeping only faces
that contain a singleton. See Figure 1.24 taken from [DHP18] with permission, and
also [HL07; HLT11; LL18] and the references therein for more details.

123

321

213 132

312 231

x1=x2 x2=x3

x1=x3 141

Figure 1.24: The associahedron is obtained from the Permutahedron by deleting
some facets.

1.7 Vector spaces and algebras on combinatorial ob-

jects

Each combinatorial object that was introduced until now was a combinatorial class
C; that is a set of objects with a notion of size. In the case of permutations and
rooks, it is the length n of the one-line word or rook vector. In the case of Dyck
paths or equivalently Dyck words, it is half the length of the word. In the case of
trees, it is the number of vertices. A common way to study such objects in algebraic
combinatorics is to introduce formal linear combinations of them. This is done by
considering a vector space E whose basis is indexed by the set C of all the objects.
All vector spaces are considered to be over C. Then E is graded ; that is,

E =
⊕

n∈N

En (1.36)

where En is of basis Cn, the combinatorial objects of size n.
In order to study these objects we often equip the vector spaces with a product

in order to obtain an algebra. We will see in Section 3.4 that we also sometimes
want to associate a coproduct. Nonetheless it is important to note that even if the
combinatorial class C has a product (for instance if it has the structure of a monoid)
the product of the algebra is not necessarily the product of the monoid. For instance,
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in the case of the permutations the combinatorial class is S∞ = tn∈NSn with each
the union of the symmetric groups. But since the structure of group does not allow
multiplying permutations of di�erent sizes we give another product.

Example 1.7.1. If A is an alphabet the product on the vector space generated by
A∗ (that is words over A) is the concatenation of words:

A∗ × A∗ −→ A∗

u · v 7−→ uv
(1.37)

For instance if A = {a, b} then abbab ·aba = abbababa. Similarly we de�ne the shifted
concatenation on permutations. If σ ∈ Sn and τ ∈ Sm then:

σ
→· τ = στn (1.38)

where τn is the word τ with all letters increased by n. Thus σ
→· τ ∈ Sn+m. For

instance 132
→· 2431 = 1325764.

Example 1.7.2. If A is an alphabet the shu�e product on words over A is de�ned
recursively by:

u�v =





u if v = ε,

v if y = ε,

u1(u′� v) + v1(u� v′) otherwise, where u1, v1 ∈ A and u = u1u
′, v = v1v

′.

It is the sum of all possible shu�ing between letters of u and v so that the order
of letters of u and respectively v are preserved. For instance:

ab� ba = abba+ abba+ abab+ baba+ baab+ baab (1.39)

= 2abba+ 2baab+ abab+ baba (1.40)

As we did for concatenation, we can de�ne the shifted shu�e product on permuta-
tions σ ∈ Sn and τ ∈ Sm:

σ�τ = σ� τn. (1.41)

For instance:

12�21 = 1243 + 1423 + 1432 + 4123 + 4132 + 4312. (1.42)

Example 1.7.3. Let T1 and T2 be two binary trees. We de�ne T1 ·L T2 to be the
binary tree obtained by grafting T1 on the leftmost leaf of T1 and T1 ·R T1 to be the
binary tree obtained by grafting T2 on the righmost leaf of T1. Then we de�ne the
following product on trees:

T1 × T2 :=
∑

T1·LT2≤T≤T1·RT2

T, (1.43)

where ≤ is the Tamari order. Then the elements appearing in the product T1×T2 is
the interval [T1 ·L T2, T1 ·R T2] of the tamari order. For an example see Figure 1.25
taken with permission from [Pon13], with minor changes.
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︸ ︷︷ ︸
T1

× ︸︷︷︸
T2

=

︸ ︷︷ ︸
T1·LT2

+ + + + +
︸ ︷︷ ︸
T1·RT2

Figure 1.25: An interval of the Tamari order, and the associated product of trees.

De�nition 1.7.4. The algebra A of a combinatorial class is said to be graded if its
product satis�es the property

|x× y| = |x|+ |y| (1.44)

for all x, y ∈ A. In other words, for all n,m ∈ N the product × is an application
from An × Am to An+m.

The last two examples, the concatenation and shu�e products (resp. the shifted
concatenation and shifted shu�e products) are graded products on words (resp. on
permutations). The products ·L, ·R and × are also products on trees.

The product × on binary trees and the shifted shu�e product are linked in the
following way: let T1 and T2 be two binary trees of respective size n and m. Then
[LR98]:

T1×T2 = BST







∑

σ∈Sn
BST(σ)=T1

σ


�




∑

τ∈Sm
BST(τ)=T2

τ





 =

∑

σ∈Sn,τ∈Sm

BST(σ)=T1,BST(τ)=T2

BST(σ�τ),

(1.45)
where BST is extended by linearity.



Chapter 2
Weyl groups

Coxeter andWeyl groups arise in a multitude of ways in several areas of mathematics.
The symmetric group is what is called the type A Coxeter group, and a seminal
example for it. The purpose of this chapter is to introduce them from geometric and
algebraic points of view.

2.1 Re�ections groups and root systems

2.1.1 First de�nitions and examples

We begin this section by a geometric de�nition of a family of groups. Our main
reference is [Hum90]. Let V be a Euclidean space with its scalar product denoted
by (·, ·). If α ∈ V \ {0} then sα is the re�ection of the hyperplane Hα = Rα⊥ and
line Lα = Rα. It is an involution. There is a simple formula for x ∈ V :

sα(x) = x− 2
(x, α)

(α, α)
α. (2.1)

A �nite re�ection group is a �nite group generated by re�ections.

Example 2.1.1. The group which preserve a square in the Euclidean plane is the
dihedral group of order 8.

Example 2.1.2. Another important example is the symmetric group Sn acting on
Rn by permutation of coordinates. The transposition (i, j) is then the re�ection along
ei − ej. In this example the action �xes pointwise the line spanned by e1 + · · ·+ en.
Hence Sn acts on the hyperplane consisting of vectors whose coordinates add up
to 0.

2.1.2 Root systems

These examples show that the normal vectors of the hyperplanes determine a re�ec-
tion group. Hence the following de�nition.

De�nition 2.1.3. Let Φ be a �nite set of nonzero vectors of V such that

71
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α

β

HβHα

Figure 2.1: The Dihedral group of order 8.

(i) Φ ∩ Rα = {α,−α} for all α ∈ Φ.
(ii) sαΦ = Φ for all α ∈ Φ.
Such a set is called a root system and its elements are the roots.

The group W generated by the re�ections of roots in a root system Φ �xes no
nonzero point in 〈Φ〉 and permutes the roots, hence is �nite.

It is possible to de�ne the dual of a root system. We de�ne the dual root as

α∨ = 2
α

(α, α)
, (2.2)

and de�ne the dual of a root system Φ as Φ∨ = {α∨ | α ∈ Φ}. We also de�ne the
root lattice as the Z-span of Φ, denoted L(Φ). Now 〈β, α∨〉 = 2 (β,α)

(α,α)
so that Equation

2.1 becomes
sα(x) = x− 〈x, α∨〉α. (2.3)

If the number 〈α, β∨〉 is an integer, it is known as a Cartan integer .

De�nition 2.1.4. We say that a root system is crystallographic if it additionally
satis�es:
(iii) For all α, β ∈ Φ, 〈α, β∨〉 is a Cartan integer.

This property is equivalent to W stabilizing L(Φ). When we are dealing with
crystallographic root systems the length of a root (that is, its norm) is important
because it must stabilize the lattice.

2.1.3 Relations between two roots

We will now be interested in relations between two roots in crystallographic type.
This section is based upon [Bou02, Chap. 6, 1.3 and 1.4]. The �rst lemma is called
the Finiteness Lemma.



� 2.1 � Re�ections groups and root systems 

Lemma 2.1.5 (Finiteness Lemma). Let Φ be a crystallographic root system for the
Euclidean space V . Let α, β ∈ Φ so that α 6= ±β. Then

〈α, β∨〉〈β, α∨〉 ∈ {0, 1, 2, 3}. (2.4)

Let α and β be two roots. We assume β is the longer of the two (they can be of
equal length). From here we can use this lemma to classify all potential possibilities
of multiplying two Cartan integers; hence the relative position of α and β. We
also call θ the angle between α and β. By changing β to −β we can assume that
0 ≤ β ≤ π. Thus we see the following:

〈α, β∨〉 〈β, α∨〉 θ ‖β‖2
‖α‖2

0 0 π/2 unde�ned

−1 −1 2π/3 1

1 1 π/3 1

−1 −2 3π/4 2

1 2 π/4 2

−1 −3 5π/6 3

1 3 π/6 3

This allows us to start drawing out what these roots spaces might look like.
When dim(〈Φ〉) = 1 then by the condition (i) we have Φ = {α,−α}. So we begin
with dim(〈Φ〉) = 2.

Example 2.1.6. (i) If dim(〈Φ〉) = 2. We take α, β ∈ ∆. From the study before,
the only possible choices are represented in Figure 2.2 with their names.

A1 × A1 • α

β

−α

−β

A2 • α

β α+ β

−α

−β−(α+ β)

B2, C2
• α

β α+ β 2α+ β

−α

−βα+ β2α+ β

G2 • α

β α+ β 2α+ β

3α+ 2β

3α+ β

−α

−β

3α+ 2β

3α+ β

Figure 2.2: Dimension 2 root systems.
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(ii) If dim(〈Φ〉) = 3, we can always look at the roots pairwise. The subspace they
generate must be of one of the previous type. For instance in type A3 we
have ∆ = {α, β, γ} with {α, β} and {β, γ} of type A2, while {α, γ} is of type
A1 × A1. This lead to Figure 2.3. Another way to represent root spaces of

•
α

β

α+ β

γ

β + γ

α+ β + γ

Figure 2.3: Root space of A3.

dimension 3 comes from [HLR14]. De�ne H to be the hyperplane spanned by
the points corresponding to simple roots. Then the positive roots are in the
convex hull of the simple roots and thus intersect H. We only represent H
intersected with the cone generated by the simple roots. As an example, see
Figure 2.4

•

•

•

• •
•

α

β

γ

α+ β β + γ

α+ β + γ

•

•

•

•

•
•

•
•
•

α

β

γ

α+ β

2α+ β

β + γ

α + β + γ

2α + β + γ

2α + 2β + γ

Figure 2.4: Root spaces of A3 and B3.

2.1.4 Positive and simple systems

Fix a root system Φ in the Euclidean space V andW the re�ection group associated
to it. W is completely determined by Φ but the latter can be very large compared to
the dimension of V . This is the case for dihedral groups for instance where we can
have as many re�ections as we want, but dimV = 2. This led Humphreys [Hum90]
to �nd linearly independant subset of Φ from which Φ can be generated. The �rst
tool for this is a partition of the space between positive and negative roots. A very
simple way to de�ne such a partition is to take a generic linear form λ : V → R,
i.e. λ(α) 6= 0 ∀α ∈ Φ. The hyperplane kerλ then separates V between the positive
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and negative vectors. Then the set Π of positive roots is called a positive system,
while −Π is a negative system. As every root comes in pairs we see that for each
root either α or −α will be in Π (and the other will be in −Π), furthermore Π and
−Π are disjoint and therefore Φ = Π⊕−Π. From here we might wonder if we can
use the elements of Π to form a basis for Φ. Although not trivial, this can be shown
to be the case.

De�nition 2.1.7. Call a subset ∆ of Φ a simple system (and call its elements simple
roots) if

1. ∆ is a basis of 〈Φ〉
2. Each α ∈ Φ is a linear combination of ∆ with coe�cients of the same sign.

These systems exist and are linked to the positive ones:

Theorem 2.1.8 ([Hum90]). Let ∆ be a simple system and Π a positive system in a
root system Φ.

1. For any ∆ there is a unique Π which contains ∆.
2. Every Π contains a unique ∆.

The proof of this theorem led to a small corollary worth mentioning:

Corollary 2.1.9. If ∆ is a simple system in Φ, then (α, β) ≤ 0 for all α 6= β in ∆.

The cardinality of any simple system is an invariant of Φ called the rank of Φ.
For instance the dihedral group has rank 2 while the symmetric group Sn has rank
n− 1.

2.1.5 Conjugation and inversions

We would like to �x a positive system Π and its simple system ∆ in Φ, but we
have not ruled out the possibility that di�erent choices of Π might di�er drastically
as geometric con�gurations. We hence examine the relationship between di�erent
system (which amounts to di�erent choices of the generic linear form λ). The next
proposition is the key element to prove the next theorem, and is linked to the
de�nition of inversions in any Coxeter group.

Proposition 2.1.10. Let ∆ be a simple system, contained in the positive system Π.
If α ∈ ∆ then sα(Π \ {α}) = Π \ {α}.

In other words it characterizes α as the only positive root made negative by sα.
From there we deduce:

Theorem 2.1.11 ([Hum90, Theorem 1.4]). Any two positive (resp. simple) systems
in Φ are conjugate under W .

We now �x ∆ a simple system and its corresponding positive system Π. Since
any two positive systems are conjugate, we denote Π by Φ+ and −Π by Φ− so that
Φ = Φ+ t Φ−. Let α ∈ Φ, then α =

∑
s∈∆ λss. We call h(α) :=

∑
s∈∆ λs the height

of α, and |h|(α) :=
∑

s∈∆ |λs| its absolute height .
Proposition 2.1.10 is a generalization of what we saw in Section 1.1.3: in the

symmetric group Sn, the action of an elementary transposition adds exactly one
inversion. We have the same notion of inversions here:
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De�nition 2.1.12. The inversion set of w ∈ W is the set Inv(w) = Φ+ ∩ w−1(Φ−)
of positive roots sent to negative roots by w.

This de�nition of inversion coincide in type A with right-inversion in a permu-
tation. Furthermore, inversions are linked to the length of an element:

Theorem 2.1.13 ([Hum90]). For w ∈ W ,

| Inv(w)| = `(w). (2.5)

Because of Theorem 2.1.11 the permutation action of W is simply transitive.
Furthermore it is obvious that when Φ+ is a positive system, so is Φ−. Hence there
must exist a unique element w0 ∈ W sending Φ+ to Φ−. It is called the longest
element of a W . By unicity it is an involution and every simple re�ection occurs at
least once in any of its reduced expressions.

Finally, we also de�ne the weak order on W by the inclusion of inversions. If
u, v ∈ W then u ≤ v ⇔ Inv(u) ⊆ Inv(v). In type A we recover the right weak order.

The longest element w0 is maximal in the weak order since Inv(w) = Φ+. The
minimal element is the identity 1. This is again a lattice [Bjö84] which is graded by
the length.

2.1.6 Generators and relations

We now want to �nd a presentation for the re�ection group W . The following
statements are tools in the proof of Theorem 2.1.16, but we mention them because
they illustrate some notions on reduced words. We refer to [Hum90, Section 1.7] or
[Bou02, Chap 4., 1.5] for the proofs.

Proposition 2.1.14 (Deletion condition). For any non reduced expression w =
s1 . . . sr there exist indices 1 ≤ i < j ≤ r such that w = s1 . . . ŝi . . . ŝj . . . sr where the
hat denotes ommission.

Proposition 2.1.15 (Exchange condition). Let w = s1 . . . sr be a not necessarily
reduced expression and s a simple re�ection. If `(ws) < `(w) then there exists
1 ≤ i ≤ r such that ws = s1 . . . ŝi . . . sr.

Proposition 2.1.14 shows that successive omissions of pairs of factors eventually
yield a reduced expression for an element while Proposition 2.1.15 makes explicit
that w has a reduced expression ending with s if and only if `(ws) < `(w).

Fix a simple system ∆ ⊆ Φ. For α, β ∈ ∆, we denote by m(α, β) the order of the
rotation sαsβ inW . For instancem(α, α) = 1. Then (sαsβ)m(α,β) = 1 or equivalently
sαsβsα · · · = sβsαsβ . . . where both side of the equality contain m(α, β) generators.
We de�ne |α, β〉m = sαsβsα . . . with m generators on the left side. Hence we can
rewrite the relation |α, β〉m(α,β) = |β, α〉m(α,β). This notation will be more useful in
Section 2.4.

Theorem 2.1.16. Let ∆ be a simple system in Φ. Then W is generated by the set
S := {sα | α ∈ ∆} subject only to the relations:

(sαsβ)m(α,β) = 1 (α, β ∈ ∆). (2.6)
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2.1.7 Geometry and parabolic subgroup

For α ∈ Φ, the corresponding hyperplane Hα separates the space in two half-spaces:
H+
α = {x ∈ V | (x, α) > 0} and H−α . We de�ne the open cone C :=

⋂
α∈∆ H

+
α , and

D its closure. We can rewrite D as:

D = {x ∈ V | (x, α) ≥ 0,∀α ∈ ∆}. (2.7)

This domain D is a fundamental domain of the action ofW , which means that every
x ∈ V has either a unique conjugate under W in C = D̊ or at least one conjugate
in ∂C = D \ C.

More generally, the Coxeter arrangement A :=
⋃
α∈ΦHα for W is the collection

of all re�ecting hyperplanes for W . Its complement V \ A then consists of open
cones, whose closures are called chambers . The chambers are in canonical bijective
correspondence with the elements ofW . For instance the chamber D corresponds to
the identity, and an element w ∈ W to the chamber w(D). The chamber D is called
the fundamental chamber , see Figure 2.5. The chambers of a Coxeter arrangement
and all their faces A de�ne the Coxeter fan F . This fan is complete, simplicial and
essential, see for instance [Hum90, Sections 1.12�1.15] and [Hoh12].

• α

β

Hα

Hβ

Figure 2.5: Fundamental chamber of A2.

The interesting property of chambers is that we can recover the re�ection group
from it. We call walls the hyperplane de�ning the chamber.

Proposition 2.1.17 ([Bou02]). The re�ections orthogonal to the walls of a chamber
generate the re�ection group.

As in Section 1.4, we can de�ne a polytope associated to each Coxeter group
W . Take a point x of the complement V \ A. The convex hull of its W -orbit is a
polytope, called the W -permutahedron denoted by Permx(W ). Its normal fan is the
Coxeter fan. See Figures 2.6, 2.7 and 2.8 taken with permission from [PS15].

Now we can wonder how the faces of the W -permutahedron are de�ned. More
generally, the question of subgroups of W is really important. Let ∆ be a simple
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Figure 2.6: Coxeter arrangement of type A3 and A3-permutahedron. It is the group
of the tetrahedron.

Figure 2.7: Coxeter arrangement of type B3 and B3-permutahedron. It is the group
of the cube and its dual the octaedron.

Figure 2.8: Coxeter arrangement of type H3 and H3-permutahedron. It is the group
of the icosahedron and its dual the dodecahedron

system and S = {sα | α ∈ ∆}. Then for every I ⊂ S, we de�ne WI to be the
subgroup of W generated by all sα ∈ I, and let ∆I = {α ∈ ∆ | sα ∈ I}. Such a
subgroup WI is called a parabolic subgroup. The set ΦI := Φ∩ 〈∆I〉 is a root system
with corresponding re�ection group WI and its longest element is denoted by w0,I .

The faces of the permutohedron Permp(W ) correspond to the cosets of the stan-
dard parabolic subgroups of W . A standard parabolic coset is a coset under the
action of a parabolic subgroup WI . Such a standard parabolic coset can be written
as xWI where x is its minimal length coset representative (thus x has no descent
in I). See Figure 2.9 taken from [DHP18] with permission.
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Figure 2.9: Faces of the permutohedron of size 3 with cosets. The arrows are linked
to an order on faces that we will see in Chapter 10.

2.1.8 Irreducible root systems

There are a lot of root systems. One �rst idea to simplify is to �nd some elementary
bricks of the root system. This is the idea of an irreducible root system. We say
that Φ is reducible if Φ = Φ1 ∪ Φ2 such that (α, β) = 0 for all α ∈ Φ1, β ∈ Φ2. On
the contrary, we say that Φ is an irreducible root system if it cannot be partitioned
into the union of two proper subsets such that each root in one is orthogonal to each
root in the other. As simple systems generate root systems we might then wonder
whether the irreducibility of Φ is related to the ability to partition its simple system
∆. It turns out [Hum90] that they are very closely related:

Proposition 2.1.18. Φ is irreducible if and only if ∆ cannot be partitioned into the
union of two proper subsets such that each root in one is orthogonal to each root in
the other.

Therefore we will now only consider irreducible root system, unless otherwise
stated.
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2.2 Classi�cation

2.2.1 Coxeter system and re�ection group

We now give a de�nition of a Coxeter group as a group described by a presentation,
coded in a matrix.

De�nition 2.2.1 ([Bou02]). Let S be a set. A Coxeter matrix of type S is an n×n
symmetric matrix M = (mij)i,j∈S with mij ∈ Z ∪ {∞} and with conditions:
• mii = 1 for all i ∈ S
• mij ≥ 2 for all i, j ∈ S, i 6= j.

Now let S be a set of generators for a multiplicative group W such that W is
�nitely generated by S and every element of S has order 2. We again let m(s, s′)
denote the order of ss′ for all s, s′ ∈ S and de�ne I as the set of pairs such that
m(s, s′) is �nite. Hence M := (m(s, s′))s,s′∈S is a Coxeter matrix. We de�ne (W,S)
to be a Coxeter system if the generating set S and the relations (ss′)m(s,s′) = 1 for
(s, s′) ∈ I form a presentation of a group W . The group is then a Coxeter group.

As we saw with Theorem 2.1.16, a �nite re�ection group is a �nite Coxeter group.
Bourbaki [Bou02, Chap. 4, 1.6] also proved that when a group W is generated by a
set of involutions S, the pair (W,S) is a Coxeter system if and only if it satis�es the
exchange condition of Proposition 2.1.15. As a matter of fact, a �nite Coxeter group
happens to be a �nite re�ection group. The idea of the proof is to associate to an
abstract Coxeter group a set of hyperplans in a Euclidean space and to see that a
chamber enables us to generate the group, in the same vein as Proposition 2.1.17.
The reader could read [Bou02, Chap. 5, 4.8, Proposition 9] or [Hum90, section 6.4]
to see that the two notions are equivalent:

Theorem 2.2.2 ([Bou02; Hum90]). There is an equivalence between �nite Coxeter
groups and �nite re�ection groups.

This theorem shows a connection between abstract groups and geometric ones.
In this thesis, it is one of the main ideas behind Part II and Part III: we start with
an abstract group de�ned by a presentation from which we want to �nd properties.
In order to do that we associate to it a �geometric� group, that is, a group de�ned
by an action on a set. Finally we prove the isomorphism between the two groups.

Note however that we should not simply refer to a Coxeter group as the groupW
without also refering to the re�ections generating it. Indeed, a single group might
be generated by two di�erent re�ection groups and thus the Coxeter system would
be di�erent and our theory would break down. A quick example can be found in
[Arm09] where we see the dihedral group of order 12 can be represented as

D6
∼= 〈a, b | a2 = b2 = (ab)6 = 1〉 and (2.8)

D6
∼= 〈x, y, z | x2 = y2 = z2 = (xy)3 = (xz)2 = (yz)2 = 1〉 . (2.9)

We will see that the �rst Coxeter system is of type I2(6) and the second one is of
type A2 × A1. Thus we need to be careful.
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2.2.2 Coxeter graph and classi�cation

Let M be a Coxeter matrix of type I. We de�ne Γ(I,M) to be the graph with
vertices S and with an edge between i and j ∈ I if and only if mij ≥ 3. The edges
are labeled mij. Then Γ(I,M) is the Coxeter graph of (I,M). By convention the
edges labeled with 3 are omitted. For instance we have seen the presentation of the
symmetric group Sn in Theorem 1.1.14. The corresponding Coxeter graph is thus
represented in Figure 2.10.

s1 s2 s3 sn−2 sn−1

Figure 2.10: The Coxeter graph of Sn.

The �rst question is: is the Coxeter graph a criterion of isomorphism between
Coxeter groups? The answer turns out to be positive [Hum90, Prop. 2.1]: if W
and W ′ are two re�ection groups with the same Coxeter graph then there is an
isomorphism between W and W ′.

As we saw Φ is irreducible if and only if ∆ cannot be partitioned in two orthog-
onal sets. Therefore Φ is irreducible if and only if its Coxeter graph is connected.
Furthermore if Γ is the Coxeter graph of the root system Φ, let Γ1, . . . ,Γr be the
connected components of Γ with corresponding root systems Φ1, . . . ,Φr. Then WΦ

is the direct product of the parabolic subgroups WΦ1 , . . . ,WΦr [Hum90, Prop. 2.2].
Therefore, from now on we will only consider irreducible root systems and connected
Coxeter graphs unless otherwise stated.

In [Hum90], Humphreys proved that we can associate to a Coxeter graph a
bilinear form (de�ned by what is called the Cartan matrix of the Coxeter group).
He proved that a Coxeter group is �nite if and only if this bilinear form is a scalar
product, which leads to the following classi�cation.

Theorem 2.2.3 ([Hum90]). The Coxeter graphs of �nite Coxeter groups are those
of Figure 2.11.

We now understand why the symmetric group Sn is the Coxeter group of type
An−1: they have the same Coxeter graph, see Figure 2.10.

Actually in this thesis we will not be interested in every �nite Coxeter group
but only in the crystallographic ones. These groups are called Weyl groups , see
Section 2.2.4. We see from Section 2.1.3 that their Coxeter graph's labels can only
be 3, 4 and 6. The Weyl groups are encoded in Dynkin diagram. These are Coxeter
graphs where an edge labeled 3 is a simple edge, an edge labeled 4 is a double
edge without label, an edge labeled 6 is a triple edge without label. As we can
deduce from Section 2.1.3, when an edge is labeled 4 or 6 that means that the two
roots associated to the vertices have di�erent lengths. We then draw an arrow from
the longer root to the shorter root. See Figure 2.12 for some examples of Dynkin
diagrams. We also represent below each vertex the length of the associated root.
We let λ and λ′ be two roots of (possibly) di�erent length.

We now give the classi�cation of Dynkin diagrams of �nite type or, equivalently,
�nite Weyl groups:
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An (n ≥ 1)

Bn (n ≥ 2)
4

Dn (n ≥ 4)

E6

E7

E8

F4
4

H3
5

H4
5

I2(m)
m

Figure 2.11: Coxeter graphs of �nite Coxeter groups.

λ λ′

(
1 2
2 1

)

λ λ

(
1 3
3 1

)

>

2λ λ

(
1 4
4 1

)

3λ λ

>

(
1 6
6 1

)

Figure 2.12: Examples of Dynkin diagrams for di�erent Coxeter matrices. Note that
the direction of the arrows are arbritrary.

Theorem 2.2.4 ([Hum90]). The Dynkin diagrams of �nite Weyl groups are those
of Figure 2.13.

The reader can now look back at Figure 2.2 to understand why we called our
systems of dimension 2 and 3 like this.

Note that there are two ways of realizing the type B Coxeter group as a Weyl
group: type B and C. This comes from the fact that the length of the root is
important when we consider Weyl groups since these groups stabilize a lattice. The
type B and C are dual root systems.

2.2.3 Presentation and Matsumoto's theorem

For α, β ∈ Φ we recall the notation |α, β〉k = sαsβsα . . . with k factors on the
right hand side. We extend this notation to re�ections |sα, sβ〉k := |α, β〉k. As we
have seen, by the de�nition of a Coxeter system, a Coxeter group generated by
S = {sα | α ∈ ∆} has the following presentation in terms of relations:

s2 = 1 ∀s ∈ S (2.10)

|s, s′〉m(s,s′) = |s′, s〉m(s,s′) ∀s, s′ ∈ S (2.11)



� 2.2 � Classi�cation 

λ λ λ λ λ

An (n ≥ 1)

Bn (n ≥ 2)
λ/2 λ λ λ λ

<

Cn (n ≥ 2)
2λ λ λ λ λ

>

Dn (n ≥ 4) λ

λ

λ λ λ λ

F4

λ λ 2λ 2λ

<

G2

λ 3λ

<

E6

λ λ λ

λ

λ λ

E7

λ λ λ

λ

λ λ λ

E8

λ λ λ

λ

λ λ λ λ

Figure 2.13: Dynkin diagrams of �nite Weyl groups.

As in type A we call Relation 2.11 is a braid relation. In Theorem 1.1.15 we have
already seen that in type A the braid relations are enough to characterize reduced
elements in W :=WΦ. More precisely one can rewrite a given reduced expression
of an element of W to another reduced expression using only the braid relations
(hence with all intermediate expressions which are also reduced). The same holds
for Coxeter groups:

Theorem 2.2.5 (Matsumoto's theorem, [BB05, Theorem 3.3.1]). Let (W,S) be a
Coxeter group associated to the root system Φ. If u and v are two reduced expressions
over S for the same element w ∈ W then they are congruent using only the braid
relations 2.11.

The Coxeter groups hence have a nice structure in regards to the word problem.

2.2.4 Tits system and linear algebraic group theory

This section presents another way to look at the crystallographic Coxeter groups,
in other words the Weyl groups. Since they come from many di�erent backgrounds
we introduce here how they come from the linear algebraic group theory and a
generalization to Tits system [Hum75; Bou02]. We will not give precise de�nitions
since we will not use these objects.

The main purpose of linear algebraic group theory will be to introduce the de�-
nition of Renner monoids from Part III. Suppose G is a Linear Algebraic Group over
a �eld K. A torus of G is a subgroup of G isomorphic over K to a �nite product of
copies of the multiplicative group of K. Let then T be a maximal torus in G (that
is a torus not contained in any proper torus of G). The Weyl group of T , denoted
W (T ), is de�ned as the quotient group of the normalizer NG(T ) by the torus T :

W (T ) :=NG(T )�T . (2.12)
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Under the assumption that the algebraic group is connected and reductive, we �nd
the same Weyl groups and the same classi�cation. We give an example: take G to
be the general linear group of degree n, denoted GLn (K). Then we can take the
maximal torus T of the subgroup of diagonal matrices, which is thus isomorphic
to the direct power of n copy of the multiplicative group of K. Then W (T ) is the
symmetric group Sn.

Actually, one does not need the linearity of these algebraic groups to de�ne the
Weyl groups. It can be de�ned inside group theory, with Tits systems. This comes
from [Bou02, Chap. 4, 2]. We present these systems so that the de�nition of the
Iwahori-Hecke algebra will be more natural in Section 2.4.2.

Let G be a group and B a subgroup of G. The group B × B acts on G by the
action (b, b′) · g = bgb′−1. The orbits of this action are the sets BgB for g ∈ G and
called the (B,B)-double coset of G. The quotient set is denoted by B\G/B.

Then a Tits system is a quadruple (G,B,N, S) where G is a group, B and N are
two subgroups of G, and S is a part of N�B ∩N , such that the following axioms
hold:
(i) G is generated by B ∪N , and T :=B ∩N is a normal subgroup of N .
(ii) The group W :=N�T is generated by S and every element of S is of order 2.
(iii) For all s ∈ S and w ∈ W we have sBw ⊆ BwB ∪BswB.
(iv) For all s ∈ S we have sBs 6⊆ B.

The idea of this de�nition is that B is an analogue of the upper triangular
matrices of the general linear group GLn (K), T is called a torus and an analogue of
the diagonal matrices, and N is an analogue of the normalizer of T . The subgroup
B is sometimes called the Borel subgroup. Then the pair (W,S) is a Coxeter system.
The result interesting to us here is the Bruhat decomposition [FH91; BB05]:

G =
∐

w∈W

BwB. (2.13)

2.3 Some properties in type A, B and D

2.3.1 Type A

The Weyl group An admits the following Dynkin diagram and presentation:

λ λ λ λ λ
s1 s2 s3 sn−1 sn

An (n ≥ 1)

s2
i = 1, 1 ≤ i ≤ n; (A-1)

sisj = sjsi, 1 ≤ i, j ≤ n and |i− j| ≥ 2; (A-2)

sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 1; (A-3)

We recognize here from Theorem 1.1.14 the presentation of the symmetric group of
size n + 1. We have already studied many properties of this group in Section 1.1.
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We recall that a permutation σ ∈ Sn+1 = An will be denoted either by its one-line
word σ = σ(1)σ(2) . . . σ(n+ 1) or by its permutation table.

Permutation 5 4 2 3 1 2 3 5 4 1

Permutation table

1

1

1

1

1

1

1

1

1

1

Right-Descent set

•
•

•
•

• •
•

•
•

•

The root system is given by ΦA = {ei−ej | 1 ≤ i 6= j ≤ n+1} where the (ei) are
the canonical basis of Rn+1 (see [Bou02]). The simple roots are the αi := ei − ei+1

which corresponds to the exchange of coordinates xi ↔ xi+1 and the positive roots
are Φ+

A = {ei− ej | 1 ≤ i < j ≤ n+ 1}. We represent in Figure 2.14 the root poset of
A4, that is the Hasse diagram of the poset on Φ+

A de�ned as α ≤ β if α is a subsum
of β. This poset is graded by the absolute height.

α1 + α2 + α3 + α4

α3 + α4

α1 + α2 + α3

α1

α2 + α3 + α4

α4

α2 + α3

α3

α1 + α2

α2

Figure 2.14: The root poset of A4.

2.3.2 Type B and C

The Weyl groups Bn and Cn admit the following Dynkin diagrams and the same
following presentation:

Bn (n ≥ 2)
λ/2 λ λ λ λ
s1 s2 s3 sn−1 sn

< Cn (n ≥ 2)
2λ λ λ λ λ
s1 s2 s3 sn−1 sn

>

s2
i = 1, 1 ≤ i ≤ n; (BC-1)

sisj = sjsi, 1 ≤ i, j ≤ n and |i− j| ≥ 2; (BC-2)

sisi+1si = si+1sisi+1, 2 ≤ i ≤ n− 1; (BC-3)
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s1s2s1s2 = s2s1s2s1. (BC-4)

The root systems are given in [Bou02] and live in Rn with canonical basis (ei).
In type B we have

ΦB = {±ei ± ej | 1 ≤ i < j ≤ n+ 1} ∪ {±ei | 1 ≤ i ≤ n}, (2.14)

and the simple roots are the αi := ei − ei−1 for 2 ≤ i ≤ n and α1 := e1. In type C we
have

ΦC = {±ei ± ej | 1 ≤ i < j ≤ n+ 1} ∪ {±2ei | 1 ≤ i ≤ n}, (2.15)

and the simple roots are the αi := ei − ei−1 for 2 ≤ i ≤ n and α1 := 2e1. These two
root systems are dual to one another, see Figure 2.15. We represent in Figure 2.16
the root posets of B4 and C4.

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

Figure 2.15: The duality between the root systems of B3 (left) and C3 (right).

2α1 + α2

α2

α3 + α4

α3

2α1 + 2α2 + α3

2α1 + α2 + α3

2α1 + 2α2 + α3 + α4

α1 + α2 + α3

α1 + α2

α1 + α2 + α3 + α4

2α1 + α2 + α3 + α4

α2 + α3

α1 α4

α2 + α3 + α4

2α1 + 2α2 + 2α3 + α4

α1 + 2α2 + 2α3 + α4

α1 + 2α2 + α3

α1 + 2α2

α1 + α2 + α3 + α4

α1 + 2α2 + 2α3

α1 + 2α2 + 2α3 + 2α4

α1 + α2 + α3

α1

α2 + α3 + α4

α2 + α3α1 + α2

α2 α3

α3 + α4

α4

α1 + 2α2 + α3 + α4

Figure 2.16: The root posets of B4 (left) and C4 (right).
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The root systems of B and C may be di�erent, but the presentation are the same,
hence the groups are isomorphic. Hence we will only talk about Cn. The Weyl Group
of type B and C is Bn :=Sn oZ/2Z, where o is the wreath product . More explicitly, Bn

is the set of signed permutations of size n. These are permutations of size n where
each letter has a sign. For instance 142356 belongs to B6 (denoting i = −i). The
group Bn is generated by the elementary transpositions (si)1≤i≤n−1 and the special
generator: t = 123 . . . `. We denote [n, n] := {n, . . . , 1, 1, . . . , n}. Another way to see
the elements of Bn is to note that:

Bn ⊆ A2n−1 = S2n ' S([n, n]) =: Sn,n (2.16)

To see this we use a mirror notation or antisymmetry notation: the element σ =
14235 will instead be denoted by 53241 | 14235 or equivalently 5324114235. These
words are called µ-vectors (µ stands for mirror). We then choose to index a µ-vector
σ ∈ Bn as σ = σn . . . σ1 | σ1 . . . σn rather than σ = σ1 . . . σ2n. The mirror letter of
the letter σi is the letter σi. Consequently the generator s0 ∈ Sn,n exchanges the
letters σ1 and σ1, while si ∈ Sn,n (resp. si ∈ Sn,n) exchanges the letters σi and σi+1

(resp. σi and σi+1) for 1 ≤ i ≤ n− 1.
The element S0 := s0 acts on µ-vectors by exchanging the letters in position 1 and

1 (it plays the role of the element t). The elements Si := sisi = sisi for 1 ≤ i ≤ n− 1
are double transpositions exchanging simultaneously the letters i and i+ 1, and the
letters i and i+ 1. Hence Bn is generated by (Si)0≤i≤n−1 [BB05, Section 8.1]. We
borrow the table representation and the descent set from type A:

Signed permutation 5 3 2 4 1 | 1 4 2 3 5

Permutation table

1

1

1

1

1

1

1

1

1

1

Right-Descent class
•

•
•

•
•

•
•

•
•

•

Because of the notation in µ-vectors, the permutation table and descent class of
elements of Bn are symmetric. When we are dealing with type B (and latter type D)
we will always represent a �mirror� to show the middle of elements, as seen above.

2.3.3 Type D

The Weyl group of type Dn (n ≥ 4) admits the following Dynkin diagram and
presentation:
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Dn (n ≥ 4)
λ

λ

λ λ λ λ

s1

s2

s3 s4 sn−1 sn

s2
i = 1, 1 ≤ i ≤ n; (D-1)

sisj = sjsi, 2 ≤ i, j ≤ n and |i− j| ≥ 2; (D-2)

s1si = sis1 i 6= 3; (D-3)

sisi+1si = si+1sisi+1, 2 ≤ i ≤ n− 1; (D-4)

s1s3s1 = s3s1s3. (D-5)

The root system of type D lives in Rn with canonical basis (ei) [Bou02] and is
given by ΦD = {±ei± ej | 1 ≤ i < j ≤ n+ 1}. Its simple roots are the αi := ei− ei+1

for 1 ≤ i ≤ n− 1 and αn := en−1 + en. We represent in Figure 2.17 the root poset of
D4.

α1 + α2 + α3

α2

α1 + α3 + α4

α1 + α3

α1

α2 + α3 + α4

α4

α2 + α3 α3 + α4

α1 + α2 + α3 + α4

α1 + α2 + 2α3 + α4

α3

Figure 2.17: The root posets of D4.

The Weyl Group of type D consists of the elements of type B with an even
number of positive numbers in the �rst half or, equivalently, an even number of
negative numbers in the second half. We borrow from type B the µ-vectors and
table representation [BB05]. Because of parity the generator S0 does no longer
belong to Dn. We introduce Sf1 := (2, 1)(1, 2). We also denote Se1 :=S1. Then D` is
generated by Se1, S

f
1 , S2, . . . , S`−1 [BB05, Section 8.2].

The element s0 still plays an interesting role since the conjugation by s0 stabilizes
the set of generators: s0 · Se1 · s0 = Sf1 and s0 · Si · s0 = Si for i ≥ 2.

Now we look at the descent set of these elements. We call neighbouring letters two
letters that can be exchanged by a generator. In type A and B the only neighbouring
letters were consecutives ones. It is also true in type D, except for letters 1 and 1
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which are no longer neighbouring, while the pairs (2, 1) and (1, 2) are. When we
represent the descent set we link neighbouring letters rather than consecutive ones.
As before, these links tell us if it is a descent or not. See Figure 2.18.
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•
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•
•
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Figure 2.18: Some descent sets of type D.

2.4 The Iwahori-Hecke algebra

2.4.1 Type A

Before going to the general case, we explain here how the Iwahori-Hecke algebra was
de�ned by Iwahori in [Iwa64]. Let Fq be the �nite �eld with q elements. Also, let
G :=GLn (Fq) be its general linear group of invertible n × n matrices and B ⊆ G
its subgroup of upper triangular matrices. Then B is �nite of cardinality |B| =

(q−1)nq(
n
2). We identify a permutation with is associated permutation matrix. The

Bruhat decomposition seen in Equation 2.13 [BB05] tells that for all M ∈ G there
is a unique permutation σ ∈ Sn such that M ∈ BσB, that is:

G =
⊔

σ∈Sn

BσB. (2.17)

LetW = Sn and, for w ∈ W , let Tw be the element of the group algebra CG de�ned
by:

Tw :=
1

|B|
∑

x∈BwB

x. (2.18)

The Hecke ring H(G,B) is the Z-ring spanned by the Tw. Its identity is then
ε = TId = 1

|B|
∑

b∈B b. Furthermore, H(G,B) = εCGε. Let S = {s1, . . . , sn−1} be
the elementary transpositions which generate W as a group. For q ∈ C, let HZ(q)
denote the Z-algebra de�ned by generators and relations as follows:

T 2
i = q · 1 + (q − 1)Ti 1 ≤ i ≤ n− 1, (H1)

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n− 2, (H2)

TiTj = TjTi |i− j| ≥ 2, . (H3)

If q is the cardinality of a �nite �eld, Iwahori proved that the maps Ti 7→ Tsi extend
to a full ring isomorphism from HZ(q) to H(G,B) and the equations above give us a
presentation. By extending the scalars to C we get a C-algebra HC(q) which extends
the de�nition of the Hecke ring outside of prime powers. It is well known that when
q is neither zero nor a root of unity the Iwahori-Hecke algebra is isomorphic to the
complex group algebra CW .
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We recognize in Relation H2 and H3 the braid relations of the symmetric group,
see Relations A-2 and A-3. Because of Matsumoto's Theorem (Theorem 1.1.15), we
know that the reduced expressions of an element of Sn depends only on these braid
relations. Hence for every w ∈ W we take w = si1 . . . sik a reduced word for it, then
we de�ne

Tw :=Tsi1 . . . Tsik . (2.19)

By Matsumoto's theorem the element Tw ∈ HZ(q) is well-de�ned.
Now we study the degeneracy at q = 0. It has many interesting properties and

applications. Its �rst appearance is perhaps in Demazure character formula [Dem74]
through divided di�erences. Then, its central role in Schubert calculus was dis-
covered by Lascoux [Las01; Las03a; Las03b], with further recent connection with
K-theory through Grothendieck polynomials (see e.g. [Mil05; LSS10]). Its repre-
sentation theory was �rst studied by Norton [Nor79] in type A and Carter [Car86] in
the other types. In type A, Krob and Thibon [KT97] explained how induction and
restriction of these modules give an interpretation of the products and coproducts
of the Hopf algebras of noncommutative symmetric functions and quasi-symmetric
functions, giving thus analogue of the well know Frobenius isomorphism from the
character ring of the symmetric groups to symmetric functions (See e.g. [Mac95],
and Section 3.6). This was the main motivation for Parts II and III at the beginning.
Two other important steps were further made by Duchamp�Hivert�Thibon [DHT02]
for type A and Fayers [Fay05] for the other types, using the Frobenius structure to
get more results, including a description of the Ext-quiver (see Theorem 3.3.11).
Denton [Den10] also gave a family of minimal orthogonal idempotents.

This degeneracy is de�ned by putting q = 0 in the relation of the q-Iwahori-Hecke
algebra:

T 2
i = −Ti 1 ≤ i ≤ n− 1, (2.20)

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n− 2 (2.21)

TiTj = TjTi |i− j| ≥ 2. (2.22)

One interesting remark which has been discovered independently several times is
that this is the algebra of a monoid [Den+10]. To see this, there are two possibilities:
de�ne either πi := −Ti or πi :=Ti+1 and get the following presentation of the Hecke
monoid at q = 0, which we denote H0

n (as opposite to its algebra denoted by Hn(0)):

π2
i = πi 1 ≤ i ≤ n− 1, (M1)

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2, (M2)

πiπj = πjπi |i− j| ≥ 2. (M3)

For a permutation σ we de�ne πσ :=πi1 . . . πik where si1 . . . sik is any reduced word
(word of minimal length) for σ. As before, thanks to the braid Relations M2,M3,
the result is independent of the choice of the reduced word. Then H0

n is nothing but
the set {πσ | σ ∈ Sn} and therefore of cardinality n!.

The choice of notation πi is not harmless. Indeed the reader could think again
at the bubble sort operator introduced in De�nition 1.1.9. In fact, the monoid
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generated by the bubble sort operator is precisely the Hecke monoid at q = 0:

H0
n
∼= 〈π1, . . . , πn−1〉. (2.23)

This is a new way to see that |H0
n| = n! = |Sn|. Furthermore the inverse bijection

of σ ∈ Sn 7→ πσ ∈ H0
n is just πσ ∈ H0

n 7→ 1 · πσ ∈ Sn. We hence have the following
important result:

Proposition 2.4.1. The application
H0
n −→ Sn

h 7−→ 1 · h is a bijection. In other words,

the action on the identity characterizes the element.

For any composition I = (i1, . . . , ip) � n, we consider the parabolic submonoid
H0
I generated by {πi | i /∈ Des(I)}. This submonoid is hence isomorphic to the

direct product H0
i1
×H0

i2
× · · · ×H0

ip . Each parabolic submonoid contains a unique
zero element πJ = πw0,J

where w0,J is the maximal element of the parabolic Coxeter
subgroup SJ . The collection {πJ | J � n} is exactly the set of idempotents in H0

n.

Finally, note that H0
n is R-trivial. Indeed, the R-order is de�ned as πσ ≤R πµ

if and only if µ ≤R σ where ≤R is the right weak order of the symmetric group.
The same holds on the left and actually H0

n is isomorphic to its opposite. Thanks
to Lemma 1.3.5 it is then J -trivial.

Theorem 2.4.2. The monoid H0
n is J -trivial.

2.4.2 Coxeter types

The de�nition of the Iwahori-Hecke algebra is exactly the same as in Section 2.4.1.
Now G is a connected reductive algebraic group over an algebraically closed �eld, B
is a Borel subgroup of G and W is a Weyl group of G corresponding to a maximal
torus T of B. The Bruhat decomposition from Equation 2.13 still holds and we can
de�ne elements Tw for w ∈ W as before.

Let (W,S) be a Coxeter system. As before we can de�ne the algebra HZ(W, q)
by the Z-algebra de�ned by generators (Ts)s∈S and relations:

T 2
s = q · 1 + (q − 1)Ts s ∈ S, (HW1)

|Ts, Ts′〉m(s,s′) = |Ts′ , Ts〉m(s,s′) s, s′ ∈ S. (HW2)

The relation HW2 are the braid relations. Thus using again Matsumoto's theorem
2.2.5 we can de�ne the element Tw for w ∈ W for any choice of a reduced word.

As in type A, the degeneracy at q = 0 of this algebra leads to the algebra of a
monoid. This monoid is called the Hecke monoid at q = 0 of type T , and is generated
by Π := {πs | s ∈ S} subject to the relations:

π2
s = π πs ∈ S, (Hz1)

|πs, πt〉m(s,t) = |πt, πs〉m(t,s) ({s, t},m) ∈ E(Γ). (Hz2)

We give the following two examples:
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Example 2.4.3. The monoid H0
n(B) is generated by π0, π1, . . . , π`−1 subject to the

relations:

πi
2 = πi 0 ≤ i ≤ `− 1; (H1-B)

πiπj = πjπi, 0 ≤ i, j ≤ `− 1 and |i− j| ≥ 2; (H2-B)

πiπi+1πi = πi+1πiπi+1, 1 ≤ i ≤ `− 2; (H3-B)

π1π0π1π0 = π0π1π0π1. (H4-B)

Example 2.4.4. The monoid H0
n(D) is generated by πe1, π

f
1 , π2 . . . , π`−1 subject to

the relations:

πi
2 = πi 1 ≤ i ≤ `− 1; (H1-D)

πiπj = πjπi and π
e
1π

f
1 = πf1π

e
1, 1 ≤ i, j ≤ `− 1 and |i− j| ≥ 2; (H2-D)

πiπi+1πi = πi+1πiπi+1, 1 ≤ i ≤ `− 2. (H3-D)

Here, Relations H1-D to H3-D also hold for πi = πe1 or πf1 with i = 1.

As in type A, we can de�ne the generators of type B and D as some special
bubble sorting operators acting on the associated Weyl group. This action is a
bijection given by the action on the identity of the Weyl group as in Theorem 2.4.1.
Since these results will only be used speci�cally in Part III we will introduce them
there. We give the following important result that will be used in the next chapter.

Theorem 2.4.5. The monoid H0
n(T ) is J -trivial for all types T .

2.4.3 Rook monoid and Solomon's algebra

In Section 1.5 we introduced the rook matrices and rook monoid. In [Sol90; Sol04],
Solomon constructed an analogue of Iwahori's construction replacing the general
linear group by its full matrix monoid. The construction is as follows: recall that
B ⊂ M denotes the set of invertible upper triangular matrices. Then M admits a
Bruhat decomposition [Ren95] too: the set of permutation matrices is replaced by
the set Rn of rook matrices of size n, that is n× n matrices with entries {0, 1} and
at most one nonzero entry in each row and column. Then

M =
⊔

r∈Rn

BrB (2.24)

For any rook matrix r ∈ Rn, Solomon de�ned as in Section 2.4.2 an element Tr of
the monoid algebra CM by

Tr :=
1

|B|
∑

x∈BrB

x. (2.25)

Those elements span a subalgebra H(M,B) which contains H(G,B) with the same
identity ε and can also be de�ned by H(M,B) = εCMε.

Halverson [Hal04] further got a presentation of this ring. It is generated by the
two families T1, . . . , Tn−1 and P1, . . . , Pn together with the relations of the Iwahori-
Hecke algebra (Equations H1, H2, H3) and the following extra relations:

P 2
i = Pi 1 ≤ i ≤ n, (RH4)
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PiPj = PjPi 1 ≤ i, j ≤ n, (RH5)

PiTj = TjPi i < j (RH6)

PiTj = TjPi = qPi j < i (RH7)

Pi+1 = qPiT
−1
i Pi 1 ≤ i < n. (RH8)

Note that the last relation can also be reformulated using the �rst as

Pi+1 = PiTiPi − (q − 1)Pi (RH8')

The question whether there exists a proper degeneracy at q = 0 of this ring and
if it exists, if it is the monoid-ring of a monoid, is therefore very natural. The main
goal of the Part II will be to construct such a monoid denoted R0

n, called the 0-rook
monoid. Then in Part III we will generalize this to other Weyl group.
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Chapter 3
Representations

Historically the theory of representations was �rst de�ned for groups (Section 3.1
and [Ser78]). In this thesis however we are not interested in groups but in monoids.
Monoids need the theory of representation of algebra (Section 3.2) since they are
not semisimple.

3.1 Introduction: representations of �nite groups

In this section we introduce the representation theory of �nite groups as it is pre-
sented in [Ser78]. To avoid any complication we will assume that all our vector
spaces are over C and of �nite dimension. We will also assume that our groups are
�nite.

3.1.1 Representation and subrepresentations

Let V be a C-vector space of �nite dimension and G a �nite group. A linear rep-
resentation (or representation) of G is a group morphism ρ : G → GL (V ). The
dimension of V is called the degree of the representation. Such a representation
(ρ, V ) then gives V a structure of a G-module or equivalently of a CG-module. In
this section we will therefore talk about representations as it was done historically,
but in later sections we will adopt the module point of view. We will sometimes
denote a representation (ρ, V ) simply by V . Although it could be misleading this
abuse of notation is standard in the domain.

Two representations (ρ, V ) and (ρ′, V ′) are called isomorphic if there exist an
isomorphism τ : V → V ′ so that the following diagram commutes:

V

V

V ′

V ′

ρ(g) ρ′(g)

τ

τ

∀g ∈ G

95
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If W is a subset of V stable under the action of G then the representation
(ρ|W ,W ) is called a subrepresentation of (ρ, V ). Thus we can de�ne the direct
sum of representations and wonder when a subrepresentation W ⊆ V admits a
supplementary subrepresentation W ′ such that V = W ⊕W ′. As we are working
over the �eld C, we can use Mashke's Theorem which will be formulated in all
generality in Theorem 3.2.5.

Theorem 3.1.1 ([Ser78, Chap. 1, Thm. 1]). Let (ρ, V ) be a representation of G and
W a subspace of V stable under G. Then there exist a supplementary W ′ of W in
V stable under G.

We say that a representation (ρ, V ) is irreducible if V 6= 0 and the only subspaces
of V stable under G are 0 and V . By Theorem 3.1.1 it is equivalent to the fact
that V is not the direct sum of two nontrivial subrepresentations. This equivalence
between no nontrivial stable subspace and no nontrivial decomposition which hold
for groups is far from being a generality. This is the distinction between simple and
indecomposable representations that will be seen in Section 3.2.

3.1.2 Character theory

Let (ρ, V ) be a representation of G. Its associated character χ is the map χ : g 7→
Tr(ρ(g)) where M 7→ TrM is the trace of endomorphisms. This de�nition is very
useful; for instance the character of a direct sum is the sum of the characters of the
subrepresentations. The character is also constant inside a conjugation class: such
a function is called a central function. The set of central functions on G is denoted
FC(G). On this set we de�ne the following scalar product. If ϕ, ψ ∈ FC(G) then:

〈ϕ | ψ〉 :=
1

|G|
∑

g∈G

ϕ(g)ψ(g). (3.1)

We then have the following result:

Theorem 3.1.2 ([Ser78, Chap. 2, Theorem 3, 5 and 7]). If χ is a character of
a representation V then V is irreducible if and only if 〈χ | χ〉 = 1. Furthermore
the characters of irreducible representations form an orthonormal base of FC(G).
Consequently the number of irreducible representations of G is equal to the number
of conjugation classes of G.

With this result we can decompose any given representation V :

Theorem 3.1.3. Let V be a representation of G of character ϕ that we can decom-
pose as

W1 ⊕W2 ⊕ · · · ⊕Wk, (3.2)

where all Wi are irreducible representations. Then if W is irreducible of character
χ then the number of copies Wi isomorphic to W is equal to 〈ϕ | χ〉. In particular
two representations with the same character are isomorphic.

We apply this theory on the regular representation, that is the representation
CG where G acts on CG by right-multiplication. We obtain the following results:
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Theorem 3.1.4 ([Ser78, Chap. 2, Corr 1 and 2]). Every irreducible representation
Wi is contained in the regular representation with multiplicity equal to its degree.
Furthermore if k is the number of irreducible representations of G, and W1, . . . ,Wk

a complete set of irreducible non isomorphic representations of G of respective degree
n1, . . . , nk, then

∑k
i=1 n

2
i = |G|.

3.1.3 Some examples

We will now study di�erent groups and will give all their irreducible representa-
tions. We will do so by giving all irreducible characters. A character is completely
determined by its value on representatives of all conjugation classes. This is repre-
sented in the character table of the group. In the top row we give one element by
conjugation class and the number of such elements in subscript.

Example 3.1.5. We �rst give as an example the symmetric group S3. The number
of irreducible representations is equal to the number of conjugation classes, that is
the number of partitions of 3: 3 = 2 + 1 = 1 + 1 + 1. There is always the trivial
representation and the signature. Finally the last representation is the group which
preserves an equilateral triangle in R2 (even if it is not a complex representation
with this de�nition, we can check that it works).

S3 11 (1, 2)3 (1, 2, 3)2

Id 1 1 1
ε 1 −1 1
∆ 2 0 −1

Figure 3.1: The character table of S3.

Example 3.1.6. Now we look at the symmetric group S4. There are 5 irreducible
representations since there are 5 partitions of 4. We again �nd the trivial and
signature. In S4 the subgroup K := 〈(1, 2)(3, 4), (1, 3), (2, 4)〉 called the Klein group
is distinguished and S4�K ∼= S3. We call p : S4 → S4�K then ∆◦p is an irreducible
character of S4, where ∆ was seen in Figure 3.1. To �nd the last two, we saw in
Figure 2.6 that A3 = S4 is the group of isometry of a tetrahedron. Furthermore in
Figure 2.7 we saw that B3 = S4 oZ/2Z is the group of isometry of a cube acting on
the four big diagonals, so that S4 is the group of rotations of the cube. We hence
�nd the character table of Figure 3.2.

3.2 Representation of �nite dimensional algebras

In this section we will see how the results of Section 3.1 can be generalized to �nite
dimensional algebras. We will give here very general background material. However,
we will not need the general results in this thesis as we will always be working in the
case of J -trivial monoids, which we will tackle in Section 3.3. We refer to [CR90;
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S4 11 (1, 2)6 (1, 2, 3)8 (1, 2, 3, 4)6 (1, 2)(3, 4)3

Id 1 1 1 1 1
ε 1 −1 1 −1 1

∆ ◦ p 2 0 −1 0 2

3 −1 0 1 −1

3 1 0 −1 −1

Figure 3.2: The character table of S4.

Lam91; Ben98; ASS06] for more details or proofs of the material presented in this
section. This section follows the presentation of [Ste16].

Following what we saw in Section 3.1 the notion of representation is equivalent to
that of modules, so we will from now on only speak of modules. The main di�erence
in �nite dimensional algebras is that there are two types of �elementary brick� for
any module. The simple ones and the indecomposable ones. In this section A will
always be a �nite dimensional algebra over a �eld k. In order to simplify, we will
always suppose the �eld k to be algebraically closed.

3.2.1 Simple modules

An A-module S is simple if S 6= 0 and the only submodules of S are 0 and S. In
other words, a non-zero module S is simple if and only if Av = S for all non-zero
vectors v ∈ S. Schur's lemma [CR90, Lemma 27.3] asserts that there are very few
homomorphisms between simple modules.

Lemma 3.2.1 (Schur). If S, S ′ are two simple A-modules then every nonzero ho-
momorphism ϕ : S → S ′ is an isomorphism. Furthermore EndA(S) = k1S ' k.

An A-module M is semisimple if A =
⊕

i∈I Si for some family of simple sub-
modules {Si | i ∈ I}.

Proposition 3.2.2 ([CR90, Theorem 15.3]). Let M be an A-module. Then the
following are equivalent:
(i) M is semisimple.
(ii) M =

∑
i∈I Si with Si ⊆M simple for all i ∈ I.

(iii) For each submodule N ⊆M , there is N ′ ⊆M such that M = N ⊕N ′.

The subcategory of semisimple A-modules is closed under taking submodules,
quotient modules and direct sums. If V is an A-module we de�ne its radical rad(V )
to be the intersection of all maximal submodules of V . Then:

Proposition 3.2.3 ([ASS06, Corollary I.3.8]). Let V be a �nite dimensional A-
module.
(i) V is semisimple if and only if rad(V ) = 0.
(ii) V�rad(V ) is semisimple.
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(iii) If W ⊆ V , then V�W is semisimple if and only if rad(V ) ⊆ W .

Now, as we did in Section 3.1, we can view A itself as a �nite dimensional A-
module called the regular module. This module will be of great importance. First
note that its submodules are just its ideals. In this case radA has a lot of interesting
properties. See [Ste16, Thm. 2.5] for some of them. For our purposes, we only need
the following theorem due to Wedderburn, that we give over C:

Theorem 3.2.4 (Wedderburn, [Ben98, Theorem 1.3.4]). The following are equiva-
lent:
(i) A is semisimple.
(ii) Each A-module is semisimple.
(iii) rad(A) = 0.
(iv) A ∼=

∏r
i=1Mni

(C)
Moreover, if A is semisimple, then A has �nitely many simple modules S1, . . . Sr up
to isomorphism and in (iv) after reordering one has ni = dimSi. Furthermore, there
is an A-module isomorphism

A ∼=
r⊕

i=1

niSi. (3.3)

As before the quotient of a semisimple �nite dimensional algebra is still semisim-
ple. Furthermore if A is any �nite dimensional algebra then A�rad(A) is semisimple.

In the case when A is the algebra of a group, the semisimplicity of A is given by
Maschke's Theorem, which we have already seen in Theorem 3.1.1 in a less general
context:

Theorem 3.2.5 ([CR90, Therorem 15.6]). For a �nite group G and a �eld k the
group algebra kG is semisimple if and only if either the characteristic of k is zero
or it does not divide the order of G.

This theorem is quite logical if we compare it to the results of Section 3.1.

Finally we discuss the Jordan-Hölder theorem for �nite dimensional modules
which gives combinatorial datas associated to a module. If V is a �nite dimensional
A-module a composition series for V is an unre�nable chain of submodules

0 = V0 ( V1 ( · · · ( Vn = V. (3.4)

Then n is the length of the composition series and the modules Vi�Vi−1
are sim-

ple and called the composition factors . The following theorem shows that this is
unambiguous.

Theorem 3.2.6 (Jordan-Hölder, [CR90, Theorem 13.7]). Let V be a �nite dimen-
sional A-module and let

0 = V0 ( V1 ( . . . ( Vn = V, (3.5)

0 = W0( W1 ( . . .( Wn = V, (3.6)

be two composition series for V . Then m = n and there exists σ ∈ Sn such that
Vi�Vi−1

∼= Vσi�Vσi−1
for i ∈ [n].
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It follows that we can unambiguously de�ne the length of V to be the length of
a composition series and we can de�ne, for a simple A-module S, its multiplicity as
a composition factor in V to be the number [V : S] of composition factors in some
composition series that are isomorphic to S.

3.2.2 Indecomposable modules

We introduce here the second notion of �elementary brick�: the indecomposable
modules. A non-zero A-module M is indecomposable if M = M ′ ⊕ M ′′ implies
either M ′ = 0 or M ′′ = 0. For instance, every simple module is indecomposable,
but the converse only holds when A is semisimple. This is the main di�erence with
the group case presented in Section 3.1. The Krull-Schmidt theorem asserts that
each �nite dimensional module admits a unique decomposition into a direct sum of
indecomposable modules.

Theorem 3.2.7 (Krull-Schmidt, [CR90, Theorem 14.5]). If V is a �nite dimen-
sional A-module, then V =

⊕r
i=1 Pi with the Pi indecomposable submodules of V .

Moreover, if we also have V =
⊕s

i=1Ni, then r = s and there exists σ ∈ Sr such
that Pi ∼= Nσi for 1 ≤ i ≤ r.

In general it is di�cult to classify all indecomposable modules of an algebra.
That is why we will only be interested in projective indecomposable modules which
can be counted. Recall that a A-module P is called projective if there exists another
module N such that P ⊕N ∼= An for n ≥ 0. Applying Krull-Schmidt's theorem to
the regular module A we have that A =

⊕r
i=1 Pi where the Pi are indecomposable

and projective. They will be our bricks to any projective modules. First we look
at the regular module. The following theorem combines aspects of [CR90, Theorem
54.11, Corollary 54.13 and 54.14] and the discussion of [Ben98, page 14].

Theorem 3.2.8 ([CR90, Thm. 54.11, Cor. 54.13, Cor. 54.14]). Suppose that we have
the decomposition of A into indecomposable submodules:

A =
r⊕

i=1

Pi (3.7)

Then:
(i) Every projective indecomposable module is isomorphic to Pi for some 1 ≤ i ≤ r.
(ii) Pi�rad(Pi)

is simple.

(iii) Pi ∼= Pj if and only if Pi�rad(Pi)
∼= Pj�rad(Pj)

.

(iv) We have that

A�rad(A) =
r⊕

i=1

Pi�rad(Pi)
. (3.8)

In particular, each simple A-module is isomorphic to one of the form P�rad(P ) for

some projective indecomposable P and the multiplicity of P�rad(P ) as a composition

factor in A�rad(A) coincides with the multiplicity of P as a direct summand in A.
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Projective indecomposable modules are also called principal indecomposable mod-
ules in the literature. Therefore we have a bijection between projective indecom-
posable modules and simple modules. As another consequence, the multiplicity of a
projective indecomposable module Pj in a projective module P is dim Hom(P, Sj).

A notion linking the notion of simple modules and projective indecomposable
modules is the Cartan matrix . As in the previous theorem, let S1, . . . , Sr be a com-
plete set of representatives of the isomorphism classes of simple A-modules and let
P1, . . . , Pr be a complete set of representatives of the isomorphism classes of projec-
tive indecomposable A-modules, ordered so that Pi�rad(Pi)

∼= Si. Then the Cartan

matrix of A is the matrix C = (cij)1≤i,j≤r with cij = [Pj : Si] = dim Hom(Pi, Pj) is
the multiplicity of Si in Pj.

3.2.3 Idempotents

We have already seen that idempotents naturally appear in the theory of monoids
and semigroups. To every x in a �nite semigroup there is an element xω which is
associated to it. We will now see that idempotents in an algebra A (an element
e ∈ A such that e2 = e) govern the representation theory. We will put these two
ingredients together in section 3.3 where we will study the representations of �nite
J -trivial monoids.

The idempotents e1, e2 ∈ E(A) are said to be orthogonal if e1e2 = e2e1 = 0. The
idempotent e is called primitive if e cannot be written as a sum e = e1 + e2 where
e1, e2 are nonzero orthogonal idempotents of A. Every algebra A has two trivial
idempotents 0 and 1. If an idempotent e of A is nontrivial, then 1 − e is also a
nontrivial idempotent. Furthermore, the idempotents e and 1 − e are orthogonal,
and there is a nontrivial decomposition of A in right A-module: A = eA⊕ (1− e)A.
Conversely, if A = M1⊕M2 is a nontrivial decomposition, then 1 = e1 + e2, ei ∈Mi,
then e1 and e2 = 1 − e1 are orthogonal idempotents. Furthermore Mi = eiA, and
Mi is indecomposable if and only if ei is primitive.

Now we look back at the decomposition of A given by Krull-Schmidt's Theo-
rem 3.2.7, A =

⊕r
i=1 Pi where Pi are indecomposable right ideals of A. Then, in the

same way, each Pi = eiA, where e1, . . . , er are primitive pairwise orthogonal idempo-
tents of A such that 1 = e1 + e2 + . . . er. Conversely, every set of idempotents with
these properties induces a decomposition A = P1 ⊕ · · · ⊕ Pr with indecomposable
right ideals P1 = e1A, . . . , Pr = erA. Such a set {e1, . . . , er} is called a complete set
of primitive orthogonal idempotents of A.

We conclude this study with a link between the idempotents of A and its semisim-
ple quotient A�rad(A).

Theorem 3.2.9. [CR90] The following statements holds
1. If {e1, . . . , er} is a complete set of primitive orthogonal idempotents of A, then

so is {e1 + radA, . . . , er + radA} for A�rad(A).

2. Conversely every complete set of primitive orthogonal idempotents of A�rad(A)
is of the form {e1 + radA, . . . , er + radA} with {e1, . . . , er} a complete set of
primitive orthogonal idempotents of A.
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With the point of view of idempotents, the coe�cient cij of the Cartan matrix
is now just dim ejAei[ASS06, De�nition 3.7]. An algebra A is called connected if its
Cartan matrix is not a block diagonal matrix.

Finally, we now consider a new class of algebras. If A is a k-algebra with a
complete set {e1, . . . , en} of primitive orthogonal idempotents. The algebra A is
called basic if eiA � ejA, for all i 6= j. It is shown in [ASS06, p. I.6.10] that
any �nite dimensional algebra can be associated to a basic algebra and that they
have the same category of modules. Hence, we can always assume, regarding the
representation theory of �nite dimensional algebras, that we start with a connected
basic algebra.

3.2.4 Quiver

In this section, we follow [ASS06, Chap. II]. We will show that to each �nite di-
mensional algebra over C corresponds a graphical structure, called a quiver , and
that, conversely, to each quiver corresponds an associative C-algebra, which may
have an identity and be �nite dimensional under some assumptions. We will not
consider representations of quivers here. We refer to [ASS06, Chap. III] and [Gab72]
for more details. In order to introduce the quiver of an algebra we will �rst give
general de�nitions on quivers, eventhough we will not use them much in this thesis.

De�nition 3.2.10. A quiver Q = (Q0, Q1, s, t) is the quadruple consisting of two
sets: Q0 (whose elements are called vertices) and Q1 (whose elements are called
arrows), and of two maps: s, t : Q1 → Q0 which associate to each arrow α ∈ Q1 its
source s(α) ∈ Q0 and its target t(α) ∈ Q0, respectively.

Thus, a quiver is nothing more than an oriented graph which can have multiple
arrows between two vertices, as well as loops and cycles. The quiver Q is said to
be connected if Q is a connected graph. Then if Q = (Q0, Q1, s, t) is a quiver and
a, b ∈ Q0, a path of length ` ≥ 1 with source a and target b is a sequence

(a | α1, . . . , α` | b), (3.9)

where αk ∈ Q1 for all 1 ≤ k ≤ `, and so that s(α1) = a, t(αk) = s(αk+1) for each
1 ≤ k ≤ `, and t(α`) = b. Such a path may be seen as:

a = a0
α1−→ a1

α2−→ a2 −→ . . .
α`−→ a` = b. (3.10)

The set of all paths in Q of length ` is denoted by Q`. Furthermore, to every vertex
α ∈ Q0 we associate a path of length 0, called the stationary path at a, and denoted
by εa = (a || a). Finally a path of length ` ≥ 1 is called a cycle when its source and
target coincide, and a loop when ` = 1. The quiver is called acyclic if it contains no
cycle. We now have all the elements needed to de�ne the path algebra of Q:

De�nition 3.2.11. Let Q be a quiver. The path algebra CQ of Q is the C-algebra
whose underlying C-vector space has as basis the set of all paths (a | α1, . . . , α` | b)
of length ` ≥ 0 in Q and such that the product of two basis vectors is:

(a | α1 . . . α` | b)(c|β1, . . . , βk | d) = δbc(a|α1, . . . , α`, β1, . . . , βk | d), (3.11)

where δbc denotes the Kronecker delta which is 1 if b = c and 0 otherwise.
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For each length ` ≥ 0 we de�ne CQ` to be the subspace of CQ generated by Q`.
We thus get a direct sum decomposition:

CQ = CQ0 ⊕ CQ1 ⊕ CQ2 ⊕ · · · ⊕ CQ` ⊕ . . . (3.12)

It is easy to see that (CQn) · (CQm) = CQn+m for all n,m ≥ 0, because the product
in CQ of a path of length n by a path of length m is either zero or a path of
length n + m. Then the decomposition 3.12 de�nes a grading on CQ. The arrow
radical RQ of Q is the two-sided ideal of CQ generated by all arrows of Q. Note
that RQ =

⊕
`≥1CQ` and more generally Rm

Q =
⊕

`≥mCQ`. See [ASS06, Chap. II,
ex. 1.3] for more details. The path algebra CQ has the following properties.

Proposition 3.2.12 ([ASS06, Chap. II, Lemma 1.4, 1.5 and 1.7]). Let Q be a quiver
and CQ be its path algebra. Then
(i) CQ has an identity element if and only if Q0 is �nite
(ii) CQ is �nite dimensional if and only if Q is �nite and acyclic.
(iii) CQ is connected if and only if Q is a connected quiver.
Furthermore if Q is �nite, then the element 1 =

∑
α∈Q0

εα is the identity of CQ and
the set {εα | α ∈ Q0} is a complete set of primitive orthogonal idempotents for CQ.

We have de�ned how to go from a quiver to a path algebra, but the latter is not
necessarily �nite dimensional. We now explain how to get some �nite dimensional
algebra from a path algebra. This is the role of a certain ideal. Thus, let Q be a
�nite quiver and RQ be the arrow ideal of the path algebra CQ. A two-sided ideal
I of CQ is said to be admissible if there exists m ≥ 2 such that Rm

Q ⊆ I ⊆ R2
Q. See

Figure 3.3 for an example.

1λ

2

3

4

β α

δ β

I = 〈αβ − γδ, βλ, λ3〉

Figure 3.3: A quiver with the ideal I which is admissible. See [ASS06, Chap. II,
ex. 2.2] for more details.

We show that this notion of admissible ideal help us get some �nite dimensional
algebra:

Proposition 3.2.13 ([ASS06, Chap. II, Lemma 2.4, 2.5, Prop. 2.6]). Let Q be a
�nite quiver and I be an admissible ideal of CQ. Then the algebra CQ�I is �nite
dimensional. Furthermore the set {ea = εa + I | a ∈ Q0} is a complete set of
primitive orthogonal idempotents of CQ�I.

Conversely, let A be a �nite dimensional algebra over C. We want to associate
a quiver to it. We have seen that we can assume that A is connected and basic.
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We now show that, under these hypotheses, A is isomorphic to an algebra CQ�I,
where Q is a �nite connected quiver and I an admissible ideal of CQ. We begin by
associating a �nite quiver to each basic and connected �nite dimensional algebra A.

De�nition 3.2.14. Let A be a basic and connected �nite dimensional k-algebra,
and {e1, . . . , er} be a complete set of primitive orthogonal idempotents of A. The
Ext-quiver of A (also called the ordinary quiver, or simply quiver), denoted by QA,
is de�ned by:
• The vertices of QA are the numbers 1 to r, which are in bijective correspondence
with the idempotents e1, e2, . . . , er.
• Given two vertices a, b ∈ (QA)0, the arrows α : a → b are in bijective corre-

spondence with the vectors in a basis of the k-vector space earad(A)�rad2(A)eb.

This Ext-quiver has a lot of properties:

Theorem 3.2.15 ([ASS06, Chap. II, Lemma 3.2, 3.4, 3.6 and Thm. 3.7]). Let A be
a basic and connected �nite dimensional C-algebra, and Q1 its quiver. The following
properties hold:
(i) QA does not depend on the choice of a complete set of primitive orthogonal

idempotents in A.
(ii) QA is connected.
(iii) There exists an admissible ideal I of CQA such that A ∼= CQA�I.
Furthemore, if Q is another �nite connected quiver, I an admissible ideal of CQ,
and A′ := CQ�I then QA′ = Q.

3.3 Representations of J -trivial monoids

We have now given a lot of general de�nitions of objects of interest in doing represen-
tation theory. However in this thesis, we will only be interested in J -trivial monoids.
Their representation theory has been well studied by Denton, Hivert, Schilling and
Thiéry [Den+10]. It turns out that it is combinatorial: more precisely, one can
compute the simple, projective modules, the Cartan matrix and even the quiver by
computations only in the monoid, without requiring linear combinations. For ex-
ample, we saw that the representation theory of any algebra A is largely governed
by its idempotents. However, when dealing with a �nite J -trivial monoid M , it is
su�cient to look for idempotents in the monoid M itself rather than in its monoid
algebra C[M ] (or only CM). Before dealing only with J -trivial monoids, we make
explicit in Section 3.3.1 why J -classes are always interesting in the representation
theory of monoids.

3.3.1 J -classes and representations

Let S be a semigroup. We recall that a J -class is called regular if it contains an
idempotent. If e is an idempotent of S, we call Ge the maximal subgroup of S with
e as the identity. It is also eSe ∩ J (e) where J (e) is the J -class of e. The regular
J -classes are associated with the simple modules by the following result, which we
provide for reference.
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Theorem 3.3.1 (Cli�ord, Munn, Ponizovskii, [Ste16, Theorem 6.2]). Let S be a
semigroup, E = {eJ} an idempotent transversal over the regular J -classes J of S.
Let GJ := GeJ . Then there is a bijection between simple S-modules and simple
GJ-modules for all J .

The aperiodic monoids turn out to be the monoids for which all GJ are trivial.
In particular if S is J -trivial then Theorem 3.3.1 says that all simple S-modules can
be induced from the trivial representation of the GJ .

3.3.2 Simple modules

We now consider only J -trivial monoids. As seen in Theorem 2.4.5 the Hecke
monoids H0

n(T ) are J -trivial for all Weyl types, so that we will always give examples
with these monoids. Let M be a �nite J -trivial monoid, we denote by E(M) the
set of idempotents of M . They parameterize the simple M modules:

Theorem 3.3.2 ([Den+10, Proposition 3.1 and 3.3]). There are as many (isomor-
phism classes of) simple modules Se as idempotents e ∈ E(M), all of dimension 1.
Their structure is as follows: Se is spanned by some vector εe with the action of any
m ∈M given by

m · εe =

{
εe if me = e

0 otherwise.
(3.13)

Note that this result can also be obtained only for R-trivial monoid.
One tool to obtain this result is the precise structure of the radical. As seen in

Section 1.3 to each element x ∈M we can associate an idempotent xω = xn for any
large enough n.

Proposition 3.3.3 ([Den+10, Proposition 3.3 and Corollary 3.8]). The set

{x− xω | x ∈M \ E(M)} (3.14)

is a basis for radCM . It can also be generated by the commutators gh − hg for
g, h ∈M .

Theorem 3.3.4 ([Den+10, Theorem 3.4 and 3.7]). De�ne a product ? on E(M) by
x?y := (xy)ω. Then the restriction of ≤J to E(M) is a lower semi-lattice such that
x ∧J y = x ? y where x ∧J y is the meet of x and y. In particular, (E(M), ?) is a
commutative monoid.

Moreover (C[E(M)], ?) is isomorphic to C[M ]/ rad(C[M ]) and the mapping φ :
x 7→ xω is the canonical algebra morphism associated to this quotient.

Example 3.3.5 ([Den+10, Example 3.9]). Let H0
n(W ) be the Hecke monoid of the

Weyl group W , with index of simple roots I = {1, 2, . . . , n}. For any J ⊆ I, the
submonoid parabolic H0

n(WJ) contains a unique longest element πJ . Consequently
E(H0

n(W )) = {πJ | J ⊆ I} and the simple representations are indexed by subsets of
I or, equivalently, (as seen in Section 1.1.5) compositions of |I|.
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3.3.3 Projective indecomposable modules

We now want to describe the projective indecomposable modules of J -trivial monoids.
As seen in Section 3.2.3, we could try to �nd a decomposition of the identity into
primitive orthogonal idempotents. We refer to [Den+10, Section 3.2 and 3.3] for
such an explicit decomposition.

In order to de�ne the projective indecomposable modules we de�ne

rAut(x) := {u ∈M | xu = x} and lAut(x) := {u ∈M | ux = x}. (3.15)

By [Den+10, Proposition 3.16] their J -smallest elements are such that:

rAut(x) := {u ∈M | rfix(x) ≤J u} (3.16)

and lAut(x) := {u ∈M | lfix(x) ≤J u}. (3.17)

These are called the right and left symbol of x. By Lemma 1.3.8 we deduce:

rfix(x) := min{e ∈ E(M) | xe = x} (3.18)

and lfix(x) := min{e ∈ E(M) | ex = x} (3.19)

the min being taken over the J -order.

Theorem 3.3.6 ([Den+10, Theorem 3.23]). For e ∈ E(M), denote L(e) := Me,
and set

L=(e) := {x ∈Me | rfix(x) = e} (3.20)

and L<(e) := {x ∈Me | rfix(x) <L e} . (3.21)

Then the projective module Pe associated to Se is isomorphic to CL(e)�CL<(e). In

particular, taking as basis the image of L=(e) in the quotient, the action of m ∈ M
on x ∈ L=(e) is given by: m · x = mx if rfix(mx) = e and 0 otherwise.

Of course the corresponding statement holds on the right. With this combinato-
rial description of projective indecomposable modules we also get a way to compute
the Cartan matrix. Let E(M) := {e1, . . . , en} then:

Theorem 3.3.7 ([Den+10, Theorem 3.20]). The Cartan matrix of CM de�ned by
ci,j := dim(eiCMej) is given by

ci,j = |{x ∈M | i = lfix(x) and j = rfix(x)}| . (3.22)

Example 3.3.8 ([Den+10, Example 3.21]). Let H0
n(W ) be the Hecke monoid of the

Weyl group W indexed by simple roots I = {1, 2, . . . , n}. We recall from De�ni-
tion 1.1.8 and Proposition 1.1.10 the de�nition of left and right descent sets , and
de�ne the content of w ∈ W to be:

DL(w) = {i ∈ I | `(siw) < `(w)} = {i ∈ I | πiπw = πw},
DR(w) = {i ∈ I | `(wsi) < `(w)} = {i ∈ I | πwπi = πw},

cont(w) = {i ∈ I | si appears in some reduced word for w},
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where for cont �some� may be replaced by �any�. Write CL, CR and cont for the
associated compositions of n+1. One has cont(πJ) = DL(ωJ) or cont(πJ) = DR(ωJ)
equivalently. Then, for any σ ∈ Sn, we have πωσ = πcont(σ), lfix(πσ) = πCL(σ) and
rfix(πσ) = πCR(σ).

The left projective module PJ corresponding to the idempotent πJ has its basis
bw indexed by the elements of w having J as right descent composition. The action
of πi coincides with the usual left action, except that πi ·bw = 0 if π ·w has a di�erent
right descent composition than w. As noted in Section 1.1.5, all these descent classes
are intervals (see Figure 3.4).

If J,K are two compositions of n then the entry cJ,K of the Cartan matrix is
given by the number of elements w ∈ W having those left and right descent sets. In
Part III we will be interested in �nding all these elements for some special descent
sets, and will introduce a tool, the grid representation, to �nd them.

4312

4321

4213

4231

2341

23142143

2134

1432

1423 1342

1324 1243

1234

4132

4123

3421

34123241

3214 3142

3124

2431

2413

π1
π2
π3

Figure 3.4: The decomposition of H0
4 = H0(S4) into projective indecomposables

modules. We have not represented the loop of the generators for readibility. Note
that we are representing the right descents in ribbon and, consequently, are looking
at the left action ofH0

4 . In each projective module the top element is the idempotent.
The lattice quotient by these projective module is hence the boolean lattice.
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3.3.4 Ext-quiver

We end by the Ext-quiver of J -trivial monoids. Although we will not need this
theory in Part II and III since we will prove everything from scratch, we will present
it brie�y to show the reader that it is again very combinatorial.

De�nition 3.3.9 ([Den+10, De�nition 3.25]). Let x ∈ M and let e := lfix(x) and
f := rfix(x). A factorization x = uv is:
• non-trivial if eu 6= e and vf 6= f
• compatible if u and v are non-idempotent and

lfix(u) = e, rfix(v) = f, and rfix(u) = lfix(v). (3.23)

It can be proven [Den+10, Proposition 3.31] that an element has a non-trivial
factorization if and only if it has a compatible factorization. We call c-irreducible
an element which admits no non-trivial factorization and denote by Q(M) the set of
c-irreducible non idempotent elements. Then [Den+10, Corollary 3.40] the family
(x−xω)x∈Q(M) is a basis of radCM�rad2CM so that we have the following theorem:

Theorem 3.3.10 ([Den+10, Theorem 3.35]). The Ext-quiver of M is the following:
• There is one vertex ve for each idempotent e ∈ E(M).
• For every x ∈ Q(M) there is an arrow from vlfix(x) to vrfix(x).

Note that these results are algorithmic, and that they were implemented by
Hivert, Saliola and Thiéry in sage-semigroups [HST12].

In the case of the Hecke monoid, the Ext-quiver was �rst described in [DHT02]
in type A, then in [Fay05] for arbitrary type. Assume W is a Weyl group with n
simple roots. The result is the following:

Theorem 3.3.11 ([Fay05, Theorem 5.1]). The Ext-quiver of H0
n(W ) has vertices

indexed by J ⊆ [n]. Furthermore if J,K ⊆ [n], there associated vertices are linked
by an edge from K to J and from J to K if and only if:
• neither of J and K is contained in the other, and
• for any j ∈ J \K and k ∈ K \ J , we have mjk ≥ 3.

See Figure 3.5 for an example.

3.4 Induction and restriction

3.4.1 De�nitions

We �rst give de�nitions related to �nite groups as this is easier, see [Ser78]. Let H
be a subgroup of a �nite group G. If (ρ, V ) is a CG-module then (ρ|H , V ) is a CH-
module called the restricted representation of (ρ, V ) to H and denoted by ResGH V .
We call this operation the restriction.

It is also quite natural, though less easy, to ask how to turn any CH-module into
a CG one. For this purpose let G�H be the set of left cosets {giH} of H in G so
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Figure 3.5: The quiver of H0(A4) = H0
5 .

that the elements {gi} are a set of coset representatives. If V is a CH-module, then
the induced representation is de�ned as the following CG-module:

IndGH(V ) :=
⊕

g∈G�H

gV = CG⊗CH V, (3.24)

where CG⊗CH · is the scalar extension. See [Ser78] or [CR90] for more details. This
operation is called the induction. The induction and the restriction are linked by
the Frobenius reciprocity :

Theorem 3.4.1 ([Ser78, Theorem 13]). If ψ is a central function on H and ϕ on
G then:

〈ψ | Resϕ〉H = 〈Indψ | ϕ〉G. (3.25)

More generally, let ϕ : B → A be a morphism from a ring B to a ring A such
that ϕ(1) = 1. Then if M is an A-module we easily obtain the restricted B-module
ResABM by:

b ·m := ϕ(b) ·m, m ∈M, b ∈ B. (3.26)

For the reverse construction, note that A is an (A,B)-bimodule so that we can
obtain from a B-module V the induced A-module IndAB V := A ⊗B V . See [CR90,
Section 10] for more details. In this general context of rings we still have a Frobenius
reciprocity:

Theorem 3.4.2 ([ML98]). If V is an A-module and W a B-module then:

dim Hom(IndABW,V ) = dim Hom(W,ResAB V ). (3.27)

3.4.2 Hopf algebra

In Section 1.7 we saw that combinatorial classes are often seen in a graded algebra
whose vector space admits as a basis the combinatorial class. We de�ne here other
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algebraic structures that can be put on combinatorial classes. We give all de�nitions
over the �eld C which is, of course, not necessary. The reader could refer to [BLL12;
GR14] for more details on these constructions.

We begin by giving a formal de�nition of algebra so that the next de�nitions will
be more natural to introduce.

De�nition 3.4.3. An algebra A is a C-vector space with a multiplication × : A⊗
A→ A and a unit ι : C→ A so that the following diagrams commute:

A⊗ A

A⊗ C

A

A

A⊗ A

A⊗ C

× ×

id⊗ ι ι⊗ idid

×

A⊗ A⊗ A

A⊗ A

A⊗ A

A

×⊗ id

id⊗× ×

×

Let σ : V ⊗ W → W ⊗ V be the transposition function σ(v ⊗ w) = w ⊗ v.
Then if A1, A2 are two algebras then A1 ⊗ A2 is an algebra as well with product
×A1⊗A2 := (×A1⊗×A2)◦(id◦σ◦id) such that ×A1⊗A2 : (a1⊗b1, a2⊗b2) 7→ a1a2⊗b1b2,
and unit ιA1⊗A2 = ιA1 ⊗ ιA2 .

We can now easily introduce the dual notion:

De�nition 3.4.4. A coalgebra C is a C-vector space with a comultiplication ∆ :
A→ A⊗ A and a counit ε : A→ C so that the following diagrams commute:

C ⊗ C

C ⊗ C

C

C

C ⊗ C

C ⊗ C

∆ ∆

id⊗ ε ε⊗ idid

∆

C ⊗ C ⊗ C

C ⊗ C

C ⊗ C

C

∆⊗ id

id⊗∆ ∆

∆

Similarly if C1 and C2 are two coalgebras then C1 ⊗ C2 is a coalgebra as well
with coproduct ∆A1⊗A2 := (∆A1 ⊗∆A2) ◦ (id ◦ σ ◦ id) and counit εA1⊗A2 : c1 ⊗ c2 7→
εA1(c1) · εA2(c2).

These two de�nitions can be put together to form a new object:

De�nition 3.4.5. A bialgebra B is a tuple (B,×,∆, ι, ε) so that (B,×, ι) is an
algebra, (B,∆, ε) is a coalgebra and so that the compatibility relations are veri�ed:
(i) ∆ and ε are coalgebra morphisms.
(ii) × and ι are algebra morphisms.

Now a Hopf algebra is a bialgebra with some special antiautomorphism called the
antipode. However, we are only dealing with graded bialgebras so that the antipode
is automatically given. Hence we will not give a formal de�nition and will talk
instead of Hopf algebras when dealing with bialgebras.
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Finally, when we have an algebra (resp. a coalgebra) and a basis (bi)i, we look at
the coe�cients appearing in the product (resp. coproduct) of elements of the basis:

bibj =
∑

k

pki,jbk

(
resp. ∆(bk) =

∑

i,j

cki,jbi ⊗ bj
)
. (3.28)

The coe�cients (pki,j) (resp. c
k
i,j) are called the structure coe�cients of the product

(resp. coproduct) in the basis (bi)i.

We now give some examples of Hopf algebras which are linked to the combina-
torial objects we have presented thus far. On all these topics about combinatorial
Hopf algebra, we refer the reader to [GR14] for more details.

Example 3.4.6. Let G be a group then H := CG, the group algebra of G, is a
Hopf algebra with coproduct ∆ : g 7→ g ⊗ g and counit ε : g 7→ 1.

Example 3.4.7. The Hopf algebra Sym of symmetric functions is a seminal example
of Hopf algebra and categori�cation, see Section 3.5.3. The symmetric functions are
formal series in an in�nity of variables. For a formal de�nition and more details on
symmetric functions the reader is refered to [Mac95].

We recall that a partition of n is a decreasing sequence of integers λ = (λ1, . . . , λm)
so that λ1 ≥ λ2 ≥ · · · ≥ λm and λ1 + λ2 + · · · + λm = n, and we denoted it λ ` n.
Let (x1, x2, . . . ) be an in�nite set of variables and (α1, . . . , αn) ∈ Nn. We de�ne
xα := xα1

1 x
α2
2 . . . xαn

n and the monomial function mλ :=
∑
xλ where the sum is over

all distinct permutations of the monomial xλ, in other words the sum of all mono-
mials whose permutation obtained by ordering the exponents is λ. For instance:

m(21) = x2
1x2 + x2

2x1 + x2
1x3 + x2

3x1 + x2
2x3 + . . . (3.29)

We de�ne the elementary functions en, power functions pn and homogeneous func-
tions hn by:

en := m(1)n =
∑

i1<···<in

xi1 . . . xin , pn := m(n) =
∑

i≥1

xni , hn :=
∑

λ`n

mλ. (3.30)

By convention e0 = h0 = p0 = 1 and we de�ne for λ = (λ1, . . . , λm) the functions
eλ :=

∏m
i=1 eλi , pλ :=

∏m
i=1 pλi and hλ :=

∏m
i=1 hλi . The comultiplication on these

basis is given by:

∆(pn) = 1⊗ pn + pn ⊗ 1, ∆(en) =
∑

i+j=n

ei ⊗ ej, ∆(hn) =
∑

i+j=n

hi ⊗ hj. (3.31)

Example 3.4.8. The free quasi symmetric functions Hopf algebra FQSym is de-
�ned on permutations. If w is a word over Z the standardization of w, denoted
by Std(w), is the unique permutation with the same inversions as w. For instance
Std(397381182) = 496571283. Now if A is a noncommutative alphabet we de�ne
the quasi-ribbon:

Fσ :=
∑

Std(w)=σ−1

w ∈ Z〈A〉. (3.32)
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For instance if A = {a, b, c, . . . } then F312 = bba+ bca+ cca+ ccb+ cda+ cdb+ . . . .
According to Malvenuto and Reutenauer [MR95a] (see also [DHT02, Proposition
3.2]), if α ∈ Sn and β ∈ Sm, the product is given by:

Fα · Fβ =
∑

σ∈α�β

Fσ, (3.33)

where� has been de�ned in Equation 1.41. For instance F12F1 = F123 +F132 +F312.
We thus de�ne:

FQSym :=
⊕

n≥0

⊕

σ∈Sn

CFσ. (3.34)

It is a self-dual bialgebra with coproduct given by:

∆Fσ =
∑

u·v

FStd(u) ⊗ FStd(v), (3.35)

where u · v denotes the concatenation of u and v, see [DHT02, Proposition 3.4,
Corollary 3.5].

The next two examples will have a major role in the theory of representations of
the tower of monoids (H0

n)n∈N, see Section 3.6.

Example 3.4.9. The application of FQSym sending each noncommutative variable
ai to a commutative one xi sends FQSym to the algebra of quasi-symmetric functions
denoted by QSym and introduced by Gessel in [Ges84].

If X = x1, x2, . . . is a family of commutative variables then QSym is the space
of formal series on X so that the coe�cient of [xα1

i1
. . . xαk

ik
] is equal to the coe�cient

of [xα1
j1
. . . xαk

jk
] for all increasing sequence j1 < · · · < jk. It is not obvious that

it is an algebra and we refer to [Gel+95] for more details. To every composition
I = (i1, . . . , ik) � n we associate the monomial quasi-symmetric functions MI as:

MI :=
∑

j1<···<jk

xi1j1 . . . x
ik
jk
. (3.36)

The family (MI)I�n is a basis of QSymn. We de�ne the order ≤ on compositions
by I ≤ J ⇔ Des(I) ⊆ Des(J). Then the elements of the basis of quasi-ribbons are
de�ned as FI :=

∑
J≥I MJ . For instance F122 = M122 + M1112 + M1211 + M11111.

This basis can also be obtained by the morphism commut : FQSym → QSym with
commut(Fσ) =: FDes(σ). The coproduct is then de�ned as cutting the composition
in two parts anywhere, as shown in the following example:

∆F312 = F∅⊗F312+F1⊗F212+F2⊗F112+F3⊗F12+F31⊗F2+F311⊗F1+F312⊗F∅.

Hence, the rule of product can be computed as follows [Ges84; DHT02]. Let I and J
be two compositions. Choose any permutation σ ∈ Sn whose descent composition
is C(σ) = I, for example w0,I the maximal element of the parabolic subgroup I, and
µ such that C(µ) = J . Then

FI FJ =
∑

ν∈σ�µn
FC(ν). (3.37)
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Example 3.4.10. The algebra of non-commutative symmetric functions introduced
in [Gel+95] and denoted by NCSF is the subalgebra of FQSym generated as an
algebra, for k ∈ N, by the functions Sk := F12...k =

∑
i1≤···≤ik ai1 . . . aik . If I =

(i1, . . . , im) � n we de�ne SI := Si1 . . . Sim . We also de�ned the Schur-ribbons
functions RI for I � n by RI :=

∑
Des(σ)=Des(I) Fσ−1 , or can be deduced by inclusion-

exclusion from the relation SI =
∑

I≥J RJ . The name comes from the fact that the
commutative image of RI are the Schur functions of ribbon shape (see [Thi98]) that
we will introduce in Equation 3.49. For any two compositions I � m and J � n we
have

RIRJ = RI·J +RI.J (3.38)

where I ·J is the concatenation of I and J , and I .J := (i1, . . . ik−1, ik+j1, j2, . . . j`).
For example, R312R322 = R312322 +R31522.

In the previous examples we have described the following commutative diagram
of Hopf algebras morphisms:

Sym

FQSym

QSymNCSF

There is also the Loday-Ronco algebra PBT on binary trees, which is a quotient
and a subalgebra of FQSym, but since it will not be of interest for our thesis, we
refer to [HNT05] and [LR98] for more details.

3.4.3 Grothendieck groups

We introduce here the Grothendieck groups of a �nite monoid M over C which are
some analogue of the abelian group of characters introduced in section 3.1.2. If V
is a CM -module we denote by [V ] its isomorphism class. As an abelian group, the
Grothendieck group G0(CM) (resp. K0(M)) ofM is the free abelian group on the set
of isomorphism classes of �nite dimensional CM -modules (resp. �nite dimensional
projective CM -modules) modulo the relations [V ] = [U ] + [W ] if there is an exact
sequence of the form:

0 −→ U −→ V −→ W −→ 0. (3.39)

Of course if M is semisimple than K0(CM) = G0(CM). The following proposition
shows that the simple modules are really elementary blocks of the ring G0(CM),
and is just a consequence of Jordan-Hölder's theorem (Theorem 3.2.6):

Proposition 3.4.11 ([Ste16, Proposition 7.3]). The additive group of G0(CM) is
free abelian with basis the isomorphism classes of simple CM-modules. Moreover if
V is a �nite-dimensional CM-module then the decomposition:

[V ] =
∑

[S]∈Irr(M)

[V : S][S] (3.40)

holds.
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There is a natural abelian group morphism:

C :
K0(CM) −→ G0(CM)

[P ] 7−→ ∑
[S]∈Irr(M)[P : S][S].

(3.41)

If P1, . . . , Pr is a complete set of projective indecomposable CM -modules and the
Si := Pi�rad(Pi)

are the corresponding simple modules then the matrix for C with

respect to the bases [P1], . . . , [Pr] and [S1], . . . , [Sr] is the Cartan matrix that we
have already seen.

3.4.4 Tower of algebra and categori�cation

Let A be a graded algebra, A =
⊕

n≥0An. The product of A preserves the degree
so that AnAm ⊆ An+m. But we can also try to restrict and induce modules along
this structure. We call such a structure a tower of algebra:

De�nition 3.4.12. Let (Ai)i≥0 be a family of associative algebras endowed with a
collection of algebra morphisms (ρm,n : Am ⊗ An → An+m)n,m≥0 satisfying the fol-
lowing axioms:
(i) For i ≥ 0, Ai is a �nite dimensionnal algebra with unit and A0 ' C.
(ii) The outer product induced by the homomorphisms ρm,n is associative.
Such a structure is called an associative tower of algebras.

A tower of groups (resp. monoids) is thus a family of groups (Gn)n (resp. monoids
(Mn)n) so that the family of their algebras (CGn) (resp. (CMn)) is a tower of alge-
bras. The axiom ensures that the Grothendieck groups

G0(A) :=
⊕

n≥0

G0(An) and K0(A) :=
⊕

n≥0

K0(An) (3.42)

are graded connected.
Now assume that M = (Mn)n≥0 is a tower of monoids. Then we endow the

Grothendieck group G0(CM) (resp. K0(CM)) with the structure of product and
coproduct as follows. If [V ] is a (CMn)-(projective) module and [W ] is a (CMm)-

(projective) module then [V ]·[W ] :=
[
Ind

Mn+m

Mn×Mm
V ⊗W

]
, and ∆ ([V ]) :=

∑
i+j=n

[
ResMn

Mi×Mj
V
]
.

This de�nes a product and a coproduct on G0(CM), and a product on K0(CM).
For the coproduct on K0(CM) we need to add the following axiom:
(iii) For i, j ≥ 0, CMi+j is projective over CMi ⊗ CMj.
In Part II, this axiom will not be satis�ed.

One of the interests for the Grothendieck group G0(CM) is Equation 3.40, so
that we can decompose the product and coproduct of simple modules. We keep the
previous notations:

[V ] · [W ] =
∑

[S]∈Irr(Mn+m)

pSV,W [S] and ∆([V ]) =
∑

i+j=n
[S]∈Irr(Mi), [T ]∈Irr(Mj)

cVS,T [S]⊗ [T ]

(3.43)
where the coe�cients (pSV,W ) and (cUS,T ) are called the structure coe�cients of the
tower of monoids. In the case of the Grothendieck group K0(CM) we also have



� 3.5 � The tower of (Sn)n∈N. 

such a decomposition by Krull-Schmidt theorem (Theorem 3.2.7). However the
product and coproduct on these structures are not always compatible so that the
Grothendieck groups are just an algebra or a coalgebra. In [BL09], Bergeron and
Li propose an axiomatic de�nition on di�erent axioms (with axioms i, ii and 3.4.4
among others) of tower of algebras which guarantees that the Grothendieck groups
of the simple and projective modules are a pair of dual Hopf algebras. They further
prove in [BLL12] that those axioms are very strong, implying that the tower of
algebras is of a precise graded dimension.

If we compare Equation 3.43 to Equation 3.28 where other structure coe�cients
were introduced we can explain the problem which �rst interested us in this thesis.
If we have a tower of algebras, under some hypothesis as in [BL09], the Grothendieck
groups of the simple and projective modules are a pair of dual Hopf algebras. In
other words we can �nd two Hopf algebras such that their structure coe�cients
are the ones given by the induction and the restriction over the tower of algebra.
The reverse question is much more di�cult and is called the categori�cation: if we
have a pair of dual Hopf algebras we look for a tower of algebras with the same
structure coe�cients. We will not address this problem in this thesis since the
tower of monoids that we will introduce in Part II does not seem to provide Hopf
algebras. We give two examples in the next sections and refer the interested reader
to [Vir14] and [Vir16] for some other examples of partial categori�cation. In his
article, Virmaux was notably interested in tower of J -trivial monoids, and proved
the following result, by induction, that we will use later :

Theorem 3.4.13 ([Vir14, Theorem 4.3]). Let (Mi) be a tower of J -trivial monoids
and A := (Ai) the related tower of algebras. Let e ∈ E(Mn) (resp. f ∈ E(Mm)) and
Se (resp. Sf) the simple An-module (resp. Am-module) associated by Theorem 3.3.2.

We de�ne X(e, f) to be the subset of Mm+n which contains all the elements in
ρm,n(e, 1)ρm,n(1, f)Mn+m which are not in ρm,n(R<(e), 1)ρm,n(1, R<(f))Mn+m, where
R<(e) is the set of elements of Mn strictly below e for the J -order. In other words,
identifying Mn and Mm with their copies in Mn+m:

X(e, f) := efMn+m \
⋃

e′∈eMn, f ′∈fMm

(e′,f ′)6=(e,f)

e′f ′Mn+m. (3.44)

Then the induction rule is given by:
[
Ind

Mn+m

Mn⊗Mm
Se ⊗ Sf

]
=

∑

x∈X(e,f)

.
[
Slfix(x)

]
(3.45)

3.5 The tower of (Sn)n∈N.

3.5.1 Partition and Young tableaux

As we have seen in Theorem 3.1.2, the number of irreducible representations up to
isomorphisms of a group is equal to the number of its conjugation classes. We have
also seen in Section 1.1.7 that the conjugation class of an element of Sn is given by
the partition associated to its cycle decomposition.
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A partition (λ1, . . . , λm) can be represented in a Young diagram (also called
Ferrers diagram); that is a �nite collection of boxes, arranged in left-justi�ed rows
with λ1 is the �rst row (the bottom one), λ2 is the second, etc. We call Y the set
of all partitions of any integer. The rows and columns are numbered from bottom
to top and from left to right. A box (i, j) is said removable of a Young diagram of
shape λ if there is no box in positions (i+ 1, j) and (i, j + 1). See Figure 3.6 for an
illustration of these concepts.

X

X
X

X
X
X

X
X
X
X

Figure 3.6: The Young diagrams of (5, 3, 1, 1), (5, 4, 1) and (4, 3, 2, 1). The removable
boxes are shown with an X. For instance, the removable boxes of the Young diagram
(5, 3, 1, 1) are the boxes (4, 1), (2, 3) and (1, 5), while the removable boxes of the
Young diagram (5, 4, 1) are (3, 1), (2, 4) and (1, 5).

A Young tableau of shape λ is a �lling of the Young diagram of shape λ by
some integers. A Young tableau is called semi-standard if the numbers �lled into
the boxes are strictly increasing from top to bottom and nondecreasing from left to
right. A Young tableau is called standard if all integers from 1 to |λ| appear and the
numbers �lled into boxes are strictly increasing both along rows (from left to right)
and along columns (from bottom to top). Note than in a standard Young tableau
the 1 is always in position (1, 1) and the |λ| is in a removable box. See Figure 3.7.
We denote by Tab(λ) the set ot Young tableaux of shape λ.

4
5
10 1 3
2 5 9 7 8

6
4
2 2 5
1 1 4 7 7

8
6
2 4 9
1 3 5 7 10

Figure 3.7: Two Young tableau of shape (5, 3, 1, 1), the �rst one is not semi-standard,
the second one is semi-standard and the third one is standard.

If λ ` n and µ ` n + 1 are such that λ is obtained from µ by removing a
removable box we say that µ covers λ. We call � the transitive closure of these
covers relations on Y. We represent the bottom part of the Hasse diagram of Y in
Figure 3.8, which is also called the branching graph of Y. In this poset a saturated
chain of partitions of decreasing length is called a (Young) path. In other words it
is a sequence p = (λ(n) → λ(n−1) → · · · → λ(k)) with λ(i) ` i for all i and such that
λ(i) covers λ(i−1) for i > 1.
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Figure 3.8: The bottom of the Young branching graph of Y.

3.5.2 Representations of the symmetric group and Schur func-

tions

Forλ ` n, the symmetric group acts on the set Tab(λ) by permutation of the coe�-
cients. Let any T ∈ Tab(λ) and de�ne the two following subgroups of Sn:

PT := {σ ∈ Sn | σ preserves each row of T}, (3.46)

QT := {σ ∈ Sn | σ preserves each column of T}. (3.47)

Corresponding to these subgroups, we de�ne the two vectors in CSn as:

aT :=
∑

σ∈PT

σ and bT :=
∑

τ∈QT

ε(τ)τ, (3.48)

where ε is the signature. Then we �nally de�ne the Young symmetrizer cT := aT ·bT ,
and we de�ne VT := cT · CSn. Then:

Theorem 3.5.1 ([FH91, Section 4]). Let T and T ′ be two tableaux of respective
shape λ ` n and λ′ ` n. Then the CSn-module VT is isomorphic to VT ′ if and only
if λ = λ′. We denote one element of this isomorphism class by Vλ.

Then the family (Vλ)λ`n is a complete family of simple CSn-modules with no two
of them isomorphic. Furthermore dimVλ = |Tab(λ)|.

Now we introduce a new family of symmetric functions and will link them with
the representation theory we have just presented in Section 3.5.3. If T is a semi-
standard Young tableau the weight xT of T over the variables (x1, x2, . . . ) is the
monomial

∏
j∈T xj. In other words, if the maximal value of T is n, then it is xt11 . . . x

tn
n
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where tn is the number of n in T . For instance the monomial associated to the Young
tableau in the middle of Figure 3.7 is x2

1x
2
2x

2
4x5x6x

2
7. For λ ∈ Y, we then de�ne the

Schur functions sλ as:
sλ :=

∑

T

xT , (3.49)

where the summations is over all semi-standard Young tableaux. These functions are
symmetric functions and a basis of Sym. If λ ` n and µ ` m then the multiplication
is given by:

sλsµ =
∑

ν`n+m

cνλ,µsν , (3.50)

where the cνλ,µ are called the Littlewood-Richardson coe�cients and count a certain
type of Young skew-tableaux. We refer to [Mac95] for more details on these topics.

3.5.3 Induction, restriction and categori�cation

We now look at the tower of groups (CSn)n≥0. It is actually entirely combinatorial
and encoded in the branching graph represented in Figure 3.8. We have the following
theorem, illustrated in Figure 3.9:

Theorem 3.5.2 (Branching rule, [CSST10, Corollary 3.3.10 and 3.3.11]). For every
λ ` n we have

ResSn
Sn−1

Vλ =
⊕

µ`n−1
λ→µ

Vµ (3.51)

that is, the sum runs over all partitions µ ` n − 1 that may be obtained from λ by
removing one removable box. Moreover for every µ ` n− 1:

IndSn
Sn−1

Vµ =
⊕

λ`n
λ→µ

Vλ. (3.52)

Consequently if 0 ≤ k < n, λ ` n and µ ` k, the multiplicity mµ,λ of Vµ in ResSn
Sk
Vλ

is equal to the number of paths in Y from λ to µ (possibly zero). The similar result
holds for the induction.

We give a new de�nition of a branching graph based on this example. If we have a
tower of monoids (Mn)n≥0 the branching graph of the restriction of simple modules
is the graded poset on simple modules of Mi, graded by i, with as many arrows
from the simple module V of Mn to a simple module V ′ of Mn−1 as [V : V ′]. We
de�ne similarly the branching graph of the restriction/induction of simple/projective
indecomposable modules.

The branching rule (Theorem 3.5.2) is a special case of the following result. If
λ ` n, µ ` m, we have:

Ind
Sn+m

Sn×Sm
[Vλ]⊗ [Vµ] =

∑

ν`n+m

cνλ,µ[Vν ], (3.53)

where the cνλ,µ are the Littlewood-Richardson coe�cients introduced in Equation 3.50.
Hence the tower of the symmetric groups (Sn)n is a categori�cation of the product
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Figure 3.9: The 6 paths from (4, 3, 3, 2) ` 12 to (3, 3, 2, 1) ` 9. Hence the coe�cient
of V(3,3,2,1) in ResS12

S9
V(4,3,3,2) is 6.

of Sym over the basis (sλ)λ∈Y. The same results hold for the coproduct. Hence we
de�ne the Frobenius isomorphism which maps a simple module Vλ (λ ` n) to the
Schur function sλ of degree n. We thus have seen that induction and restriction along
the natural inclusion Sm ×Sn −→ Sm+n corresponds respectively to product and
coproduct (the Littlewood-Richardson rule) of the Hopf algebra Sym of symmetric
functions. See [Mac95] for much more details.

3.6 The tower of (H0
n)n∈N.

The construction in the symmetric groups and the Littlewood-Richardson rule (Equa-
tion 3.53) has an analogue for (H0

n)n according to Krob and Thibon [KT97; Thi98].
However due to the non semi-simplicity of H0

n the situation is a little more compli-
cated, and we will not give all the details. We nevertheless recall here brie�y the
features as the following categori�cation was the idea for our work on rooks.

First of all, the maps

ρm,n :

{
H0
m ×H0

n −→ H0
m+n

(πi, πj) 7−→ πiπj+m = πj+mπi
(3.54)

are injective monoid morphisms which, moreover, verify the associativity condition of
De�nition 3.4.12 endowing (H0

n)n with a tower of monoids structure. As seen in Sec-
tion 3.4.3, one can de�ne the two Grothendieck groups, namely G0 :=

∑
nCG0(H0

n)
the direct sum of the (complexi�ed) Grothendieck groups of H0

n-modules on one
hand and K0 :=

∑
nCK0(H0

n) the direct sum of the Grothendieck groups of projec-
tive H0

n-modules. As we have seen in the examples of Section 3.3, denoting by I the
compositions of an integer, then G0 has for basis the simple module SI , whereas K0

has for basis the indecomposable projective module PI .

Now �xing two integers m and n, the restriction Resm,n := Res
H0

m+n

H0
m×H0

n
along the

morphism ρm,n de�nes coproducts on G0 and K0. In particular, H0
m+n is projective
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over H0
m×H0

n. Dually, the induction Indm,n := Ind
H0

m+n

H0
m×H0

n
de�nes products on G0 and

K0. The nontrivial fact here is that these products and coproducts are compatible
endowing the two Grothendieck groups with a structure of Hopf algebra.

We now look at an analogue of Frobenius isomorphism for the symmetric group.
It is constructed as follows: let QSym denote Gessel's [Ges84] Hopf algebra of quasi-
symmetric functions introduced in Example 3.4.9 and let NCSF denote the Hopf alge-
bra of noncommutative symmetric functions [Gel+95] introduced in Example 3.4.10.
We have seen that these two Hopf algebras have their bases indexed by compositions.
The basis of NCSF which interests us is the basis of Schur ribbon functions RI and
of quasi-ribbons FI for QSym. Moreover these two Hopf algebras are dual for some
duality product [MR95b; Gel+95]. Krob and Thibon proved the following theorem:

Theorem 3.6.1 ([KT97]). The tower of monoids (H0
n)n categori�es the couple of

dual algebra (NCSF, R) and (QSym,F). In other words:
(i) K0 = NCSF with induction and restruction rule corresponding to the product

on the basis R.
(ii) G0 = QSym with induction and restruction rule corresponding to the product

on the basis F.

The duality between QSym and NCSF mirrors Frobenius duality between G0 and
K0, the commutative image c : NCSF → QSym given by the diagram 3.4.2 being
nothing but the Cartan map.

As an illustration, we give the induction rule on K0 then on G0. For any two
compositions I � n and J � m:

Indn,m([PI ]⊗ [PJ ]) = PI·J ⊕ PI.J (3.55)

where I ·J is the concatenation of I and J and I .J := (i1, . . . ik−1, ik+j1, j2, . . . j`).
For example

Ind6,7(P(3,1,2) ⊗ P(3,2,2)) = P(3,1,2,3,2,2) ⊕ P(3,1,5,2,2). (3.56)

This is the same rule as the multiplication rule of the ribbon basis of NCSF [Gel+95],
see Equation 3.38. For the product on G0 = QSym we recall from Example 3.4.9 that
we have to choose any permutation σ ∈ Sn whose descent composition is C(σ) = I
and µ such that C(µ) = J . Then:

Indn,m[SI ]⊗ [SJ ] =
∑

ν∈σ�µ

[
SC(ν)

]
. (3.57)

As explained by Virmaux [Vir14] this is a direct consequence of Theorem 3.4.13.
For example recalling the calculations of Equation 1.42 we have:

Ind2,2[S(2)]⊗ [S(1,1)] =
∑

ν∈12�21

[
SC(ν)

]

=
[
SC(1243)

]
+
[
SC(1423)

]
+
[
SC(1432)

]
+
[
SC(4123)

]
+
[
SC(4132)

]
+
[
SC(4312)

]

=
[
S(3,1)

]
+
[
S(2,2)

]
+
[
S(2,1,1)

]
+
[
S(1,3)

]
+
[
S(1,2,1)

]
+
[
S(1,1,2)

]
.

We refer to Example 3.4.10 for the coproduct.
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Summary

From now on we will introduce our original work. This part is based upon an article
with F. Hivert [GH18b]. It is organized as follows: in Chapter 4, we turn to the
de�nition of the 0-rook monoid. We actually give two equivalent de�nitions: The
�rst de�nition is by generators and relations (Section 4.1): we show that a suitable
rewriting of Halverson's presentation when specialized at q = 0 is actually a monoid
presentation (De�nition 4.1.1). We then study some particular elements of this
monoid which allows us to give a simpler equivalent presentation (Corollary 4.1.6).

The second de�nition is as operators acting on the rook monoid (De�nition 4.2.1).
To show that these two de�nitions are actually equivalent (Corollary 4.3.14), we
choose to go a somewhat lengthy road, taking the following steps:

1. We �rst notice that the operators verify the relations of the presentation (Re-
mark 4.2.2).

2. We generalize to rooks a variant of the notion of Lehmer code of permutations
(De�nition 4.2.5), building a bijection between rooks and the so-called R-code
(Theorem 4.2.19).

3. After a little combinatorial detour (Section 4.2.2), we associate to each R-
code c, a canonical word πc (De�nition 4.3.2) and its corresponding sc in the
classical rook monoid such that (Proposition 4.3.4) for all rook r ∈ Rn then
1n · πcode(r) = 1n · scode(r) = r.

4. We then translate on R-code c the action on rook (De�nition 4.3.6), and prove
that, for any generator t, the element πct is equivalent to πc·t modulo the
relations of the presentation (Theorem 4.3.9).

5. By induction this shows that any word is equivalent to a word πc, but since
there are as many R-codes as rooks we will conclude that the two de�nitions
are equivalent (Corollary 4.3.14).

Note that we do not use the well-known presentation of the classical rook monoid
or of the q-rook algebra, but prove them again from scratch. Though it is combina-
torially technical, we argue that our way of doing have several advantages. First it
is self content and purely monoidal, providing arguments for monoid theory people
which are not familiar with Coxeter group theory. Second, our approach is very
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explicit and algorithmic providing a canonical reduced word for all rooks or 0-rooks
together with an explicit algorithm transforming any word in its equivalent canoni-
cal one. Moreover, the Lehmer code is central ingredient in the theory of Schubert
polynomials whose modern combinatorial incarnation is the pipedream theory. We
�nd interesting to provide such a combinatorial tool. Finally, this allows us to have
a much �ner understanding of the combinatorics of reduced words. In particular, we
get an analogue of Matsumoto's theorem (Theorem 4.4.3), an ingredient which was
noticed missing in [Sol04]. As a consequence, all the previous proof of presentation
had to rely on some dimension argument so that they were only valid on a �eld.
Notice that, if we had this theorem from the beginning, we could have worked only
on reduced words as we did previously in the usual case.

Chapter 5 is devoted to the study of the analogue of the weak permutohedron
order on rooks or equivalently to Green'sR-order of the 0-rook monoid. Using a gen-
eralization of the notion of inversion sets (De�nition 5.1.1), we provide a algorithm
to compare two rooks (De�nition 5.1.5 and Theorem 5.1.11). A very important con-
sequence in particular for the representation theory is that R0

n is R-trivial, L-trivial
and thus J -trivial (Corollary 5.1.12). We then show that the right order, as for
permutations, is actually a lattice (Corollary 5.2.2), giving algorithms to compute
the meet and the join (Theorem 5.2.1 and 5.2.5). We moreover provide a formula
enumerating the meet irreducibles (Proposition 5.2.11), give a bijection for a certain
subposet with the subposet of singletons in the Tamari lattice (Section 5.3) and
conclude this chapter by some geometric remarks.

Chapter 6 deals with the representation theory of the 0-rook monoid. It heavily
uses the fact that R0

n is J -trivial through the theory of Denton�Hivert�Schilling�
Thiéry [Den+10] seen in Section 3.3. We describe the set of idempotents and their
lattice structure (Proposition 6.1.6 and 9.2.8). We then show that the simple mod-
ules are all 1-dimensional (Theorem 6.1.7), describe the indecomposable projective
module as some kind of descent classes (Theorem 6.2.7) and describe the quiver
(Theorem 6.3.1). We then study how the representation theory of H0

n and R0
n are

related. The main result here is that the later is projective on the former (Theo-
rem 6.4.5). We moreover give the decomposition functor (Theorem 6.4.8).

Finally Section 6.5, is devoted to the tower of monoids structure on the sequence
of 0-rook monoids. Here the work presented in Section 3.6 does not work as nicely
as expected. We present an associative structure as in Section 3.4.4 but it does
not ful�ll all the requirement of Bergeron-Li [BL09]. In particular, R0

m+n is not
projective over R0

m ×R0
n. We nevertheless explicit some structure and in particular

the induction rule for simple modules (Theorem 6.5.16).
A large part of the algorithms of this part are implemented in Sagemath [dev16].

The representation theory where computed using sage_semigroups [HST12] from
the second author, F. Saliola and N. Thiéry. The code is freely accessible at

https://github.com/hivert/Jupyter-Notebooks

Thanks to the binder technology, one can experiment with in online at

https://mybinder.org/v2/gh/hivert/Jupyter-Notebooks/master?filepath=rook-0.ipynb

.

https://github.com/hivert/Jupyter-Notebooks
https://mybinder.org/v2/gh/hivert/Jupyter-Notebooks/master?filepath=rook-0.ipynb


Chapter 4
The 0-rook monoid

4.1 De�nition of R0
n by generators and relations

This section is the sequel of Section 2.4.3 where we introduced Solomon's algebra.
To de�ne the 0-rook monoid, we take back Halverson's relations (Equations H1 to
H3 and RH4 to RH8) and we put q = 0. In order to get a monoid, we write
Equation RH8 as

Pi+1 = PiTiPi + Pi = PiTiPi + PiPi = Pi(Ti + 1)Pi . (4.1)

Setting πi :=Ti + 1, we obtain:

De�nition 4.1.1. We denote by G0
n the monoid generated by the two families

π1, . . . , πn−1 and P1, . . . , Pn together with relations

π2
i = πi 1 ≤ i ≤ n− 1, (R1)

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2, (R2)

πiπj = πjπi |i− j| ≥ 2. (R3)

P 2
i = Pi 1 ≤ i ≤ n, (R4)

PiPj = PjPi 1 ≤ i, j ≤ n, (R5)

Piπj = πjPi i < j (R6)

Piπj = πjPi = Pi j < i (R7)

Pi+1 = PiπiPi 1 ≤ i < n. (R8)

Using Relation R8 we note that it is generated only by π1, . . . , πn−1 and P1.

Notation 4.1.2. To state that two words are equal in G0
n, we rather write explicitely

that they are equivalent modulo the relations above as e ≡0 f .

We recall here the plan we introduced in the summary. De�nition 4.1.1 introduces
a monoid de�ned by generators and relations. The G stands for �generators�. We will
later give a de�nition of the monoid F 0

n (De�nition 4.2.1) as a monoid of operators
acting on rooks (F stands for �functions�). We will actually prove in Corollary 4.3.14
that the two de�nitions actually coincide. We will then call this monoid the 0-rook
monoid, and denote it by R0

n.

We start by focusing on the monoid generated by the (Pi):
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Lemma 4.1.3. PiPk ≡0 Pmax(i,k).

Proof. Thanks to Relation R5, we may assume that k ≥ i. Relation R8 shows
us that there is a word for Pk beginning with Pi. Relation R4 says that Pi is an
idempotent.

Lemma 4.1.4. The element Pn is the unique zero of the monoid G0
n, that is for any

e ∈ G0
n then ePn ≡0 Pne ≡0 Pn. Furthermore Pn have the two following expressions:

Pn ≡0 P1π1P1π2π1P1π3π2π1P1 . . . P1πn−1πn−2 . . . π1P1

≡0 P1π1π2 . . . πn−2πn−1P1 . . . P1π1π2π3P1π1π2P1π1P1.
(4.2)

Proof. We prove this by induction on n ≥ 1. It is obvious that P2 ≡0 P1π1P1 by
Relation R8. To show that P2 is a zero, it is enough to prove that the generators π1

et P1 stabilize it. It is clear for P1 which is idempotent, and π1P1π1P1 ≡0 π1P2 ≡0 P2

by the Relation R7.
Assume that the result is proven for all 1 ≤ k ≤ n. Let us prove it for n+ 1:

Pn+1 ≡0 PnπnPn ≡0 PnπnPn−1πn−1πn−2 . . . π3π2π1P1 (by induction)

≡0 PnPn−1πnπn−1πn−2 . . . π3π2π1P1 (by R6)

≡0 Pnπnπn−1πn−2 . . . π3π2π1P1 (by Lemma 4.1.3).

Thus the result holds. Since all the relations are symmetric, we get the other formula.
To show that Pn+1 is a zero we prove that it is stabilized under multiplication by

any generator among π1, . . . , πn, P1. The stability by P1 is obvious by Lemma 4.1.3.
For all the others, we deduce from Relation R7 that πiPn ≡0 Pn since i ≤ n− 1.

Finally, the uniqueness of the zero holds in any semigroup.

Corollary 4.1.5. In the presentation of G0
n one can replace the Relations R4, R5,

R6 and R7 by the following three and still get the same monoid:

P 2
1 = P1 (R4.1)

P1πj = πjP1 j 6= 1 (R5.1)

π1P1π1P1 = P1π1P1 = P1π1P1π1 (R6.1)

In particular the monoid G0
n is generated by (πi)1≤i≤n−1 and P1 subject to the Rela-

tions R1 to R3 and R4.1 to R6.1; the Relation R8 being seen as a de�nition for Pi
for i > 1.

Proof. Deducing Relations R5.1 and R6.1 from Relations R1 to R8 is obvious: Re-
lation R6.1 is only Relation R7 applied with i = 2 and j = 1.

Let us prove the converse: Relations R1 to R8 can be deduced from Relations R1
to R4, R5.1, R6.1 and R8 seen as a de�nition. We will now prove that Lemma 4.1.3
and Lemma 4.1.4 (and Relation R4) are still true. We prove simultaneously by
induction on n the following statements

• for all k ≤ n, the element Pk is given by the relation of Lemma 4.1.4.

• for all i, k ≤ n, then P 2
k ≡0 Pk and PiPk ≡0 Pmax(i,k).
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The case n = 1 is obvious with Relation R4.
We now assume the statements for n ≥ 1. We only have to prove that two

words for Pn+1 are given by Lemma 4.1.4, that P 2
n+1 ≡0 Pn+1 and that ∀i ≤ n + 1,

Pn+1Pi ≡0 Pn+1.
Regarding the words for Pn+1, a close look to the proof of Lemma 4.1.4 shows

that we use only Relation R6.1 (for the basis step), Relation R6 when i < j ≤ n,
Relation R4 when i ≤ n and Lemma 4.1.3 for i, k ≤ n. But all these relations have
already been proved by induction. Consequently we have the two expressions for
Pn+1.

From there, the relation PiPn+1 ≡0 Pn+1Pi ≡0 Pn+1 for i ≤ n is clear using
these words and the fact that P 2

i = Pi. We only have still to prove that Pn+1 is
idempotent.

P 2
n+1 ≡0 P1π1π2 . . . πn−1πnP1 . . . P1π1π2P1π1P1 · P1π1P1π2π1P1 . . . P1πnπn−1 . . . π1P1

≡0 P1π1π2 . . . πn−1πnP1PnPnπnπn−1 . . . π2π1P1

≡0 P1π1π2 . . . πn−1πnP1Pnπnπn−1 . . . π2π1P1 ,

by induction. Now using R3 and R5.1:

P 2
n+1 ≡0 P1π1π2 . . . πn−1πnP1π1π2 . . . πn−1πnP1 . . . P1π1π2π3P1π1π2P1π1P1 (*)

We continue the beginning of the calculation below. Call ρ, the �rst part of the
previous calculation:

ρ :=P1π1π2 . . . πn−1πnP1π1π2 . . . πn−1πn .

Then

ρ ≡0 P1π1π2P1π1π2 . . . πn−1πnπ2π3 . . . πn−2πn−1 (by R2, R3 and R5.1)

≡0 P1π1P1π2π1π2 . . . πn−1πnπ2π3 . . . πn−2πn−1 (by R5.1)

≡0 P1π1P1π1π2π1π3 . . . πn−1πnπ2π3 . . . πn−2πn−1 (by R2)

≡0 P1π1P1π1π2π3 . . . πn−1πnπ1π2π3 . . . πn−2πn−1 (by R3)

≡0 P1π1P1π2π3 . . . πn−1πnπ1π2π3 . . . πn−2πn−1 (by R6.1)

≡0 P1π1π2 . . . πn−1πnP1π1π2 . . . πn−2πn−1 (by R5.1)

Taking back Relation (*) we thus have:

P 2
n+1 ≡0 P1π1π2 . . . πn−1πn

P1π1π2 . . . πn−2πn−1P1π1π2 . . . πn−2πn−1P1 . . . P1π1π2π3P1π1π2P1π1P1

We recognize the end of the left term to be Equation * for n instead of n+ 1. Thus:

P 2
n+1 ≡0 P1π1π2 . . . πn−1πnPnPn ≡0 P1π1π2 . . . πn−1πnPn ≡0 Pn+1

Finally we have proved that the statement holds for n + 1: indeed, we have thus
Relations R1 to R4 and the two Lemmas 4.1.3 and 4.1.4. Relation R5 follows directly
from Lemma 4.1.3, and Relation R6 can be deduced from Lemma 4.1.4 using R5.1
and R3.
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It remains to prove R7 using only R6.1 and Lemma 4.1.4. Since Lemma 4.1.4
and all the relations are symmetric, we only need to show that πjPi ≡0 Pi for j < i,
the proof of the other case could be conducted the same way.

For j = 1 and i = 2 it is exactly Relation R6.1. For j = 1 without condition
on i, it comes from the fact that, because of Lemma 4.1.4, a word for Pi begin with
P1π1P1, and we conclude with R6.1.

Otherwise, for j ≥ 2 and i > j, we get:

πjPi ≡0 πjP1π1P1π2π1P1 . . . P1πj−1πj−2 . . . π2π1P1πjπj−1 . . . π2π1P1 . . . P1πi−1πi−2 . . . π1P1

with R3 and R5.1:

≡0 P1π1P1π2π1P1 . . . P1πjπj−1πj−2 . . . π2π1P1πjπj−1 . . . π2π1P1 . . . P1πi−1πi−2 . . . π1P1

≡0 P1π1P1π2π1P1 . . . P1πi−1πi−2 . . . π1P1 = Pi (with ρ).

Hence the result.

We �nally get a new shorter presentation for G0
n, by setting π0 :=P1.

Corollary 4.1.6. The monoid G0
n is generated by π0, . . . , πn−1 subject to the rela-

tions:

π2
i = πi 0 ≤ i ≤ n− 1, (RB1)

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2, (RB2)

π1π0π1π0 = π0π1π0 = π0π1π0π1 , (RB3)

πiπj = πjπi 0 ≤ i, j ≤ n− 1, |i− j| ≥ 2, (RB4)

Proof. It is obvious from Corollary 4.1.5 by letting π0 = P1.

Remark 4.1.7. We can see that G0
n is a quotient of the Hecke monoid of type B at

q = 0 (see [Fay05]).

4.2 De�nition by action and R-codes

The goal of this section is to construct a bijection between Rn and R0
n which gen-

eralizes the bijection between Sn and H0
n seen in Proposition 2.4.1. We recall from

Section 2.4 that Matsumoto's theorem (Theorem 1.1.15) is the key ingredient. Un-
fortunately, as noticed by Solomon [Sol04, p. 209, bottom of the middle paragraph],
such a theorem is not known for the rook monoid. So we choose a di�erent path
(see the discussion in the summary of the part) e�ectively ending up proving the
generalization of Matsumoto's theorem. We introduce another monoid de�ned in
term of a faithful action of it on Rn. It will turns out (Corollary 4.3.17) that this
action is nothing but the right multiplication.

De�nition 4.2.1. We denote F 1
n the submonoid of the monoid of functions on

Rn generated by s1, . . . , sn−1, P1 acting on Rn by right multiplication of matrices.
Namely, if (r1, . . . , rn) is a rook then:

(r1 . . . rn) · sk = r1r2 . . . rk−1rk+1rkrk+2 . . . rn, (4.3)
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(r1 . . . rn) · P1 = 0 r2 . . . rn (4.4)

We denote F 0
n the submonoid of the monoid of functions generated by π1, . . . , πn−1,

P1 acting on Rn by the action:

(r1 . . . rn) · πk :=

{
(r1 . . . rn) · sk if rk < rk+1,

(r1 . . . rn) otherwise.
(4.5)

Remark 4.2.2. A simple calculation shows that the generators of F 0
n satisfy the

Relations R1 to R3 and R4.1 to R6.1. Similarly, the generators of F 1
n satisfy

s2
i = 1 1 ≤ i ≤ n− 1, (Rs1)

sisi+1si = si+1sisi+1 1 ≤ i ≤ n− 2, (Rs2)

sisj = sjsi |i− j| ≥ 2. (Rs3)

P 2
1 = P1 (Rs4.1)

P1sj = sjP1 j 6= 1 (Rs5.1)

s1P1s1P1 = P1s1P1 = P1s1P1s1 (Rs6.1)

We denote by G1
n the monoid generated by {s1, . . . , sn−1, P1} with the relations

above. We can rephrase Remark 4.2.2 as follows: there are two surjective morphisms
of monoids:

Φ1 : G1
n � F 1

n and Φ0 : G0
n � F 0

n . (4.6)

Furthermore, these two morphisms give us an action of G1
n and G0

n over Rn.

Remark 4.2.3. The map (r1r2) 7→ (r10) is equal to the composition s1P1s1 and
therefore belongs to F 1

2 . However, it can be checked that it does not belong to F 0
2 ,

neither to its algebra CF 0
2 . More generally, in F 0

n , for any subset I ⊂ J1, nK which
is not of the form J1, kK the maps replacing the letter in position i by 0, does not
belong to F 0

n or CF 0
n .

Our goal is now to show that Φ1 and Φ0 are actually isomorphisms.

4.2.1 R-code and rooks

In this subsection, we build a combinatorial tool, namely the R-code, which allows us
to de�ne for any rook a canonical reduced word. As seen in Section 1.1.6 a classical
way to do that for permutations is done by the Lehmer code of the permutation
(De�nition 1.1.11, considering the chain of inclusions

S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 ⊂ Sn ⊂ . . . (4.7)

See Remark 4.2.7 to see how the Lehmer codes relates to our generalized R-code.

The case of rooks is more involved because some times n does not appear in the
rook vector and to go from Rn to Rn−1 one has to erase a 0. It turns out that the
right choice to minimize the number of moves (since we are looking for a reduced
word) is to remove the �rst 0. However, this means that, given a rook r of size n−1,
the number of rook of size n which give back r depends on r and more precisely on
the position of its �rst 0. We now unravel the corresponding combinatorics, starting
with some notations:
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Notation 4.2.4 (Word and Letter). We recall that the length of a word w is denoted
by `(w). The empty word (the only word of length 0) will be denoted by ε. When we
need to distinguish between words and letters (for example when matching a word),
we use the convention that words will be underlined as in w, while i will rather be a
single letter. If the letter i ∈ Z appears in the word w we write it i ∈ w; it means
for example that w can be written as w = aib.

De�nition 4.2.5. For a rook r of length n, we call the code of r and denote code(r)
the word on Z of length n de�ned recursively by:

1. If n = 0 then code(ε) := ε.

2. Otherwise, if n ∈ r, then r can be written uniquely r = bne. Let r′ := be (that
is, r′ is the subword of r where the unique occurrence of n is removed). Then
code(r) := code(r′) · (`(b) + 1).

3. Otherwise, n /∈ r and r can be written uniquely r = b0e with 0 /∈ b. Let
r′ := be (that is, r′ is the subword of r where the �rst 0 is removed). Then
code(r) := code(r′) · (−`(b)).

Example 4.2.6. Let r = 02401. Then:

code(02401) = code(2401)0 = code(201)20 = code(21)120 = code(1)1120 = 11120.

An easy remark is that r is a permutation if and only if its code contains only
positive letters.

Remark 4.2.7. When r is a permutation σ, the code and Lehmer code are related as
follows: write the code as code(σ) = r1 . . . rn and the Lehmer code as Lehmer(σ) =
c1 . . . cn. Then ci = σ(i) − rσ(i). For example taking σ = 516432, then code(σ) =
122213 and Lehmer(σ) = 403210.

We now describe a subset Cn of Zn that we call the set of R-codes. We will see in
Proposition 4.2.14 and Theorem 4.2.19 that it is exactly the set of codes of a rook.

De�nition 4.2.8. To each word w over Z, we associate a nonnegative number m(w)
de�ned recursively by: m(ε) = 0 and for any word w and any letter d,

m(wd) :=





−d if d ≤ 0 ;

m(w) + 1 if 0 < d ≤ m(w) + 1 ;

m(w) if d > m(w) + 1 .

(4.8)

A word on Z is an R-code if it can be obtained by the following recursive con-
struction: the empty word ε is a R-code, and wd is a R-code if w is a R-code and
−m(w) ≤ d ≤ n. We denote by Cn the set of R-codes of size n.

Notation 4.2.9. In order to make the di�erence between the rook 1234 and the code
1234, we make the convention to write code in sans-serif font.
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Example 4.2.10. m(12836427) = 5: there is no negative letter, thus it only incre-
ments on integers 1, 2, 3, 4 and 2 in this order. m(3644294352538) = 6. Indeed, the
last negative letter is −3, thus m(36442943) = 3 and it increments on letters 2, 5
and 3 in this order. Similarly, m(02111254) = 4.

Example 4.2.11. Here are the �rstR-codes: C1 = {0, 1},C2 = {00, 01, 02, 11, 10, 11, 12}
and

C3 = {000, 001, 002, 003, 011, 010, 011, 012, 013, 020, 021, 022, 023, 111, 110, 111, 112,
113, 100, 101, 102, 103, 112, 111, 110, 111, 112, 113, 122, 121, 120, 121, 122, 123} .

The R-codes of C9 with pre�x 02111254 are 021112544 , 021112543 , . . . , 021112549.

Remark 4.2.12. If c ∈ Cn, then necessarily we have m(c) ≤ `(c).

De�nition 4.2.13. We note FZ (standing for First Zero) the function de�ned for
any rook r = r1 . . . rn by

FZ(r) := min{j ≤ n | rj = 0} − 1 , (4.9)

with the convention that if there is no zero among the rj (that is r is in fact a
permutation), we set FZ(r) = n.

We now show that code is a bijection between R-codes and rook vectors of the
same length.

Proposition 4.2.14. If r ∈ Rn then code(r) ∈ Cn and FZ(r) = m(code(r)).

Proof. We show the result by induction on n: it is trivial for n = 0. We now show
the induction step, assuming that it holds for n− 1. Let r ∈ Rn. Let us �rst prove
the case n ∈ r. We then write r = bne and r′ = be. By induction code(r′) ∈ Cn−1

and code(r) = code(r′) · (`(b) + 1) with (`(b) + 1) ∈ J1, nK ⊂ J−m(code(r′)), nK so
that r ∈ Rn.

The only remaining case is n /∈ r. We write r = b0e with 0 /∈ b, r′ = be.
By induction code(r′) ∈ Cn−1 and code(r) = code(r′) · −`(b). By de�nition of
FZ we have `(b) = FZ(r′), and FZ(r′) = m(code(r′)) by induction. So −`(b) ∈
J−m(code(r′)), 0K ⊂ J−m(code(r′)), nK and so r ∈ Rn.

We have proven the �rst part of the statement in every case. Let us now focus on
the second part. First of all, if 0 /∈ r, then r is a permutation and its code c1 . . . cn
is such that 0 < ci ≤ i. As a consequence m(code(r)) = n = FZ(r).

We �nally need to prove that when 0 ∈ r then FZ(r) = m(code(r)), knowing by
induction that FZ(r′) = m(code(r′)). We distinguish the two nontrivial cases:

• If n ∈ r then r = bne and r′ = be. The number of 0 of r is the same that r′.
We have two possibilities:

� If 0 /∈ b then the �rst zero of r′ is in e. Thus FZ(r) = FZ(r′)+1. But also
code(r) = code(r′) · (`(b) + 1) with `(b) + 1 ≤ m(code(r′)) = FZ(r′). So,
by de�nition of m, m(code(r)) = m(code(r′)) + 1. Hence the equality.
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� If 0 ∈ b then FZ(r) = FZ(r′). Furthermore m(code(r)) = m(code(r′))
by de�nition of m. So that we get FZ(r) = FZ(r′) = m(code(r′)) =
m(code(r)).

• If n /∈ r, then r = b0e with 0 /∈ b, r′ = be and code(r) = code(r′) · −`(b).
Since 0 /∈ b we have FZ(r) = `(b). We write code(r) = c1 . . . cn then FZ(r) =
−cn by de�nition of code. Furthermore m(code(r)) = −cn so that FZ(r) =
m(code(r)).

We now de�ne a candidate for the converse bijection.

De�nition 4.2.15. For c = c1 . . . cn ∈ Cn, we de�ne inductively a vector decode(c)
as follows: �rst, set decode(ε) := ε. Then, let r′ := decode(c1 . . . cn−1). If cn is
nonnegative, insert the letter n in r′ at the position cn. Otherwise insert 0 at −cn+1.

Proposition 4.2.16. If c ∈ Cn then decode(c) ∈ Rn.

Proof. It is clear that we get a rook, since only 0 can be repeated. The size is also
clear.

Example 4.2.17. Let c = 11120. Then decode(1) = 1. decode(11) = 21. decode(111) =
201. decode(1112) = 2401. Finally decode(11120) = 02401.

Proposition 4.2.18. Let c = c1 . . . cn ∈ Cn. Then FZ(decode(c)) = m(c). In
particular, if cn ≤ 0, FZ(decode(c)) = −cn.

Proof. We prove it by induction on n. The assertion is clear for words of length 0.
Otherwise, assume that we have proved the result for all words of length strictly less
than n. Let b := c1 . . . cn−1.

• If cn > 0:

By induction FZ(decode(b)) = m(b). But FZ(decode(c)) = FZ(decode(b)) + 1
if cn ≤ FZ(decode(b)) + 1 and FZ(decode(c)) = FZ(decode(b)) otherwise. By
de�nition of function m we get FZ(decode(c)) = m(c).

• If cn ≤ 0 we have two possibilities:

� If ∀i ≤ n−1, ci > 0 then 0 /∈ decode(b) by de�nition, and so decode(c) has
a single zero which is the one inserted between decode(b) and decode(c),
and is thus at position (−cn + 1)− 1 = m(c).

� Otherwise, by induction m(b) = FZ(decode(b)). By de�nition of m,
m(c) = −cn. By de�nition ofR-codes we get−cn ≤ m(b) = FZ(decode(b)).
Thus the zero inserted at position −cn + 1 is left to the former �rst zero.
Finally FZ(decode(c)) = −cn = m(c).

Theorem 4.2.19. The functions code and decode are inverse one from the other:
for all c ∈ Cn and r ∈ Rn then

code(decode(c)) = c and decode(code(r)) = r. (4.10)
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Proof. We proceed by induction on the size n of r and c. The result is clear if n = 0.
Assume now that we have proved the result up to n− 1. We begin with rooks. Let
r ∈ Rn.

• If n ∈ r, write r = bne and r′ = be with decode(code(r′)) = r′ by induction.
Since code(r) = code(r′) · (`(b) + 1), code(r) is the word code(r′) with the posi-
tion of n as �nal letter. Since decode(code(r)) inserts in decode(code(r′)) = r′

the n at this position, we have the result.

• Otherwise code(r) is the word code(r′) with at the end the opposite of the
position minus 1 of the �rst zero of r. But decode(code(r)) insert a zero in
decode(code(r′)) = r′ at this position.

We now do the proof for R-codes in a similar way: Let c = c1 . . . cn ∈ Cn and
c′ = c1 . . . cn−1, and assume that code(decode(c′)) = c′.

• If cn > 0 then decode(c) inserts in decode(c′) a letter n at position cn. Com-
puting further code(decode(c)) adds at the end of code(decode(c′)) = c′ this
position.

• Otherwise, decode(c) insert in decode(c′) a letter 0 in position −cn + 1. Since
it is the �rst zero of decode(c) by Proposition 4.2.18, code(decode(c)) add cn
at the end of code(decode(c′)) = c′.

In particular, there are as many R-codes of size n as rooks:

Corollary 4.2.20. For all n: |Cn| = |Rn|.

4.2.2 Counting rook according to the position of the �rst 0

This subsection is a little detour through enumerative combinatorics and permuta-
tions statistics. It is interesting to count rooks of size n according to the position of
the �rst zero. We denote R(n, k) := {r ∈ Rn | FZ(r) = k} and r(n, k) := |R(n, k)|.
Here are the �rst values:

n/k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 3 2 2
3 13 9 6 6
4 73 52 36 24 24
5 501 365 260 180 120 120
6 4051 3006 2190 1560 1080 720 720
7 37633 28357 21042 15330 10920 7560 5040 5040

For example, here are the rooks of size 2 sorted according to their �rst zero:

R(2, 0) = {00, 01, 02}, R(2, 1) = {10, 20}, R(2, 2) = {12, 21}
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Lemma 4.2.21. The sequence r(n, k) veri�es the following recurrence relation for
n > 0:

r(n, k) = k r(n− 1, k − 1) + (n− k − 1)r(n− 1, k) +
n∑

i=k

r(n− 1, i) , (4.11)

with the convention that r(n, k) = 0 if k < 0 or k > n.

Proof. To get the set of rooks of size n from the set of rooks of size n − 1, one has
either to insert n or to insert a 0. To make sure to get each rook only once, one
has to insert 0 only before the �rst zero. According to the de�nition of FZ, in what
follows, positions are counted starting with 0. Then

• k ·r(n−1, k−1) is the number of rooks where n is (and therefore was inserted)
before position FZ.

• k(n− k − 1)r(n− 1, k) is the number of rooks where n is after the �rst 0.

• ∑n
i=k r(n − 1, i) is the number of rooks where n doesn't appear. They are

obtained by inserting a 0 in position k, in a rook r such that i := FZ(r) ≥ k.

One recognizes the triangle A206703 of [Slo15]. It is de�ned as the number
C(n, k) of the injective partial function on J1, nK where the union the cycle supports
has cardinality k. Recall that a rook vector r = (r1, . . . , rn) can been seen as
an injective partial function by setting r(i) = ri if ri 6= 0 and r(i) is unde�ned
otherwise. We consider the generalization of the notion of cycle of permutations
to rooks (See [FS09, Example II.21, page 132]), this combinatorics was studied in
details in [GM06]): the sequence of the iterated images (rn(i))n∈N of some integer i
under r can have one of the two following behaviors:

• Either for some n ≥ 1 one has rn(i) = i (the sequence must be periodic and
not only ultimately periodic because of injectivity). We say that i belongs to
a cycle of r.

• Or starting from some n ≥ 1 the iterated image rn(i) stops being de�ned; we
say that i belongs to a chain of r.

Rooks can therefore be decomposed as two sets: the set of its cycles (counting �xed
points) and the set of its maximal chains, that is maximal �nite sequences (c1, . . . , ck)
such that r(ci) = ci+1 if i < k and unde�ned otherwise. Clearly, the supports of the
cycles and the chains of the rook r form a partition of J1, nK.

Example 4.2.22. Consider the rook vector r = 205109706, it corresponds to the
function (

1 2 3 4 5 6 7 8 9
2 ⊥ 5 1 ⊥ 9 7 ⊥ 6

)
,

where ⊥ means unde�ned. It has two cycles (6, 9) and (7) and three maximal chains
(4, 1, 2), (3, 5) and (8).
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Proposition 4.2.23. Let C(n, k) be the set of rooks of size n where the union of
cycle supports has cardinality k, and denote by c(n, k) its cardinality. Then c(n, k) =
r(n, k) for all k and n.

We show here the rooks of size 2 sorted according to their number of points in a
cycle:

C(2, 0) = {00, 01, 20}, C(2, 1) = {10, 02}, C(2, 2) = {12, 21}

Proof. We de�ne a bijection Φ from C(n, k) to R(n, k). It is an adaptation of Foata
fundamental transformation seen in Section 1.1.7. For r ∈ C(n, k), write its cycles
starting from the smallest elements and sort the set of cycles according to their
smallest element in decreasing order. By concatenating those words one obtains a
�rst word CycleW(r). Second, write the maximal chain backward replacing the last
element of the chain (now the �rst of the word) by a 0 and sort the chains according
to their last element in increasing order. By concatenating those words one obtains
a second word ChainW(r). Now de�ne Φ(r) := CycleW(r) ·ChainW(r). Then Φ(r)
is a rook of size n whose �rst zero is in position k, so that Φ(r) ∈ R(n, k).

We now explain how to recover r from s := Φ(r), that is the converse bijection:
cut s at the places just before the zeros replacing those zeros by the values missing
in s in increasing order. The various words obtained except the �rst one are the
(reversed) chains of r. On recover the cycle of r by cutting the �rst word before the
lower records (elements that are only preceded by larger ones) and interpret each
part as a cycle. Knowing all the chains and cycles of r is su�cient to recover r.

Example 4.2.24. We get back to Example 4.2.22. The rook vector r = 205109706
has cycles (6, 9) and (7) and chains (4, 1, 2), (3, 5) and (8). Therefore we deduce
CycleW(r) = 769 and ChainW(r) = 014030, so that Φ(r) = 769014030.

To demonstrate the computation of the inverse, we start with 769014030. The
missing numbers are {2, 5, 8}. Replacing the zeros by them and cutting gives
769|214|53|8. So that we already got the chains (4, 1, 2), (3, 5) and (8). Now the
word 769 is cut as 7|69 recovering the cycles.

Using the so-called symbolic method (See [FS09, Example II.21, page 132]), the
decomposition by cycles and chains shows that the generating series is given by

∑

n,k

r(n, k)
xnyk

n!
=

exp(x/(1− x))

1− xy . (4.12)

4.3 Equivalence of the de�nitions of R0
n

Thanks to the previously de�ned R-code, we are now in position to de�ne the canon-
ical reduced word πc associated to a R-code and thus to a rook. The reader should
compare our instruction to Lemma 1.1.13. To de�ne πc, the following notation is
handy:
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Notation 4.3.1. For i, n ∈ N we will write (with π0 :=P1):

n
...
i

:=





1 if i > n,

πn . . . πi if 0 ≤ i ≤ n,

πn . . . π1π0π1 . . . πi if i < 0,

and
n
...
i

:=





1 if i > n,

sn . . . si if 0 ≤ i ≤ n,

sn . . . s1π0s1 . . . si if i < 0.

A priori
n
...
i

∈ G0
n and

n
...
i

∈ G1
n. Using Φ0 and Φ1 of Remark 4.2.2 we will

sometimes see them as elements of F 0
n or F 1

n .

De�nition 4.3.2. For any R-code c = c1 . . . cn ∈ Cn, we de�ne πc ∈ G0
n and sc ∈ G1

n

by

πc :=
0
...
c1

·
1
...
c2

· · · · ·
n− 1
...
cn

, and sc :=
0
...
c1

·
1
...
c2

· · · · ·
n− 1
...
cn

. (4.13)

Example 4.3.3. Let c = 11120. Then:

πc =
0
...
1

·
1
...
1

·
2
...
−1

·
3
...
2

·
4
...
0

= 1 · π1 · π2π1π0π1 · π3π2 · π4π3π2π1π0

Going further, let us show how πc acts on the identity rook 12345:

12345 · πc = 12345 · 1 · π1 ·
2
...
−1

·
3
...
2

·
4
...
0

= 21345 · π2π1π0π1 ·
3
...
2

·
4
...
0

=

23145 · π1π0π1 ·
3
...
2

·
4
...
0

= 32145 · π0π1 ·
3
...
2

·
4
...
0

= 02145 · π1 ·
3
...
2

·
4
...
0

=

20145 · π3π2 ·
4
...
0

= 24015 · π4π3π2π1π0 = 02401 = decode(c) .

We see that the i-th column of πc places the letter i (or the corresponding zero), at
its place, e�ectively decoding c. This is actually a general fact and it is also true
replacing πi by si:

Proposition 4.3.4. If r ∈ Rn then 1n · πcode(r) = 1n · scode(r) = r.

Proof. We will prove it by induction on n. It is evident for n = 0. Assume that we
have proved the result up to step n− 1, and let r ∈ Rn.

If n ∈ r then r writes r = bne, r′ = be and code(r) = code(r′) · (`(b) + 1). By

de�nition we have πcode(r) = πcode(r′)

n
...

`(b) + 1

. By induction 1n−1 · πcode(r′) = r′. So

1n · πcode(r′) = r′n = ben, since πcode(r′) only acts on the �rst n − 1 coordinates.

Since 0 < `(b) + 1 ≤ n, a direct calculation gives us ben ·
n
...

`(b) + 1

= bne = r. So

1n · πcode(r) = r.
Otherwise n /∈ r. Then r writes r = b0e with 0 /∈ b, r′ = be and code(r) =

code(r′) · −`(b). We get in the exact same way 1n · πcode(r′) = r′n = ben. Since

−`(b) ≤ 0, a simple calculation gives us ben ·
n
...

−`(b)
= b0e = r. So 1n · πcode(r) = r.

The same proof works mutatis mutandis for s.
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Corollary 4.3.5. For all n, |G0
n| ≥ |F 0

n | ≥ |Rn| = |Cn| et |G1
n| ≥ |F 1

n | ≥ |Rn| = |Cn|.
Proof. All the functions πcode(r) and scode(r) for r ∈ Rn are distinct since they have
a distinct action on identity 1n. We conclude with Corollary 4.2.20 and Remark
4.2.2.

The next step is to transfer on R-codes the action on rooks:

De�nition 4.3.6. For c = c1 . . . cn ∈ Cn and t ∈ {π0, π1, . . . , πn−1} ⊂ G0
n we de�ne

c · t recursively the following way:
If n = 1 and t = π0 then c · t := 0
Otherwise we proceed by induction depending on the sign of cn:

Pos. cn = i ≥ 1

a. If t = πi then c · t := c.

b. If t = πi−1 then c · t := c1 . . . cn−1(cn − 1).

c. If t = πj with j < i− 1 then c · t := [(c1 . . . cn−1) · πj] cn
d. If t = πj with j > i then c · t := [(c1 . . . cn−1) · πj−1] cn

Neg. cn = −i ≤ 0

a. If t = πi then c · t := c

b. If t = πj with 0 < j < i then c · t := [(c1 . . . cn−1) · πj] cn.
c. If t = πj with j > i+ 1 then c · t := [(c1 . . . cn−1) · πj−1] cn.

d. If t = π0 then c · t := [(c1 . . . cn−1) · π0 . . . πi−1] 0. (In particular c · t = c if
i = 0.)

e. If t = πi+1 (thus i 6= n) we have two possibilities:

α. If m(c1 . . . cn−1) = i then c · t := c.
β. Otherwise c · t := c1 . . . cn−1 i+ 1.

Lemma 4.3.7. For any code c = c1 . . . cn ∈ Cn and generator t ∈ {π0, π1, . . . , πn−1} ⊂
G0
n, then c · t is a code of size n.

Proof. We will prove the result by induction on n, and we will prove along the way
that m(c · t) ≥ m(c) if t 6= π0. It is evident if n = 1.

For all subcases of case Pos. of De�nition 4.3.6 it is evident that we get a code by
induction since the last value is positive which do not lead to di�culties (we add to
c1 . . . cn−1 either cn or cn − 1). The property of function m is clear for subcase a. In
b. if i− 1 6= 0 then cn − 1 > 0 so m(c1 . . . cn−1(cn − 1)) ≥ m(c). In c. the induction
gives us m((c1 . . . cn−1) · πj) ≥ m(c1 . . . cn−1) and we conclude with the de�nition of
m to get m([(c1 . . . cn−1) · πj] cn) ≥ m(c1 . . . cn−1cn) (we do the same for d.).

The subcase Neg.a. is clear. We prove subcases Neg.b. and Neg.c. using the
induction on the condition of m and the fact that in these two subcases m(c · t) =
cn = m(c). The subcase Neg.d. is clear by induction (we do not have to prove
the condition of m here), as subcase Neg.e.α. The subcase Neg.e.β remains, whose
condition gives us m(c1 . . . cn−1) > i (since c ∈ Cn) so c ·t ∈ Cn and m(c ·t) = i+1 >
m(c) = i.
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It therefore makes sense to apply the decode algorithm to c · t. The crucial fact
that motivated the de�nition of the action on a code is that, forall R-code c

decode(c · t) = decode(c) · t . (4.14)

We could prove this fact right away, by a tedious explicit calculation, distinguishing
all cases. We urge the reader who want to understand the motivation of De�ni-
tion 4.3.6 to do so. For example, in case Neg.e.α, the assumption thatm(c1 . . . cn−1) =
i = −cn shows that, using Proposition 4.2.18, FZ(decode(c1 . . . cn−1)) = i. Therefore
decode(c1 . . . cn−1) is of the form

decode(c1 . . . cn−1) = r1 . . . ri0ri+2 . . . rn−1n ,

where none of the rj for j ≤ i vanish. Decoding further, since cn = −i, on �nds that

decode(c1 . . . cn) = r1 . . . ri00ri+2 . . . rn−1 .

So that, decode(c) · πi+1 = decode(c). That's why, in case Neg.e.α, we de�ned
c · πi+1 := c. Instead of doing the proof in all other cases, we will get the properties
as a corollary of the much stronger fact that πc·t ≡0 πct using the morphism Φ0 :
G0
n � F 0

n .

We turn now to the proof of that later statement. It will use intensively the
following technical lemma:

Lemma 4.3.8. If i > 0, k < 0 and j < i− 1 we have the following identities:

πj
i
...
k

=
i
...
k

πj if 0 < j < |k| and πj
i
...
k

=
i
...
k

πj+1 if j > |k|. (4.15)

In particular, by immediate induction:

j
...
l

·
i
...
k

=
i
...
k

·
j
...
l

if 0 < l ≤ j < min(i, |k|). (4.16)

Proof. We will only use relations (RB1 to RB4) of Remark 4.2.2 written according
to Corollary 4.1.6. For the �rst equality we just apply successively in this order RB4,
RB2, RB4, RB2 and RB4. For the second we only apply RB4, RB2 and RB4.

We may now proceed to the main theorem of this section:

Theorem 4.3.9. For a code c = c1 . . . cn ∈ Cn and a generator t ∈ {π0, π1, . . . , πn−1} ⊂
G0
n, the congruence πc·t ≡0 πct holds. Furthermore `(πc·t) ≤ `(πc) + 1.

Proof. We will only use the relations of the proof of Lemma 4.3.8. We then prove
the theorem by induction on n depending on cn and t. The remark on the length
can be checked systematically in all the cases, we left it to the reader.

If n = 1 and t = π0 then c · t = 0. Then πc·t = π0 = πct by RB1.

Otherwise we write c′ := c1 . . . cn−1 and we recall that πc = πc′
n− 1
...
cn

.
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Pos. cn = i ≥ 1

a. If t = πi then c · t = c. Then πc′
n− 1
...
cn

t = πc′πn−1 . . . πiπi ≡0 πc′
n− 1
...
cn

by RB1.

b. If t = πi−1 then c · t = c′(cn − 1). The relation is just πc′
n− 1
...
cn

πi−1 =

πc′
n− 1
...

cn − 1

.

c. If t = πj with j < i− 1 then c · t = (c′ · πj)cn. Then

πc t = πc′
n− 1
...
cn

πj ≡0 πc′πj
n− 1
...
cn

≡0 πc′·πj
n− 1
...
cn

= π(c′·πj)cn = πc·t.

Indeed, the �rst congruency is Lemma 4.3.8, and the second holds by
induction.

d. If t = πj with j > i then c · t = (c′ · πj−1)cn. We do the same than in
Pos.c. using this time Relation RB2 and Relation RB4.

Neg. cn = −i ≤ 0

a. If t = πi we do the same than in Pos.a. with RB1.

b. If t = πj with 0 < j < i we do the same than in Pos.c. with RB4.

c. If t = πj with j > i + 1 we do the same than in Pos.d. with RB2 and
RB4.

d. If t = π0 (i 6= 0) then c · t = [(c1 . . . cn−1) · π0 . . . πi−1] 0. Furthermore

n− 1
...
cn

π0 = πn−1 . . . π2π1π0π1π2 . . . πiπ0

≡0 πn−1 . . . π2π1π0π1π0π2 . . . πi by RB4

≡0 πn−1 . . . π2π0π1π0π2 . . . πi by RB3

≡0 π0πn−1 . . . π2π1π0π2 . . . πi = π0

n− 1
...
0

π2 . . . πi by RB4

Now using iteratively Lemma 4.3.8, one gets

π0

n− 1
...
0

π2 . . . πi ≡0 π0π1

n− 1
...
0

π3 . . . πi ≡0 · · · ≡0 π0 . . . πi−1

n− 1
...
0

. (4.17)

Thus πcπ0 ≡0 πc′ (π0 . . . πi−1)
n− 1
...
0

≡0 πc′·(π0...πi−1)0 = πc·π0 .

e. If t = πi+1 (so i 6= n) we have two possibilities:

α. Either m(c1 . . . cn−1) = i;

β. Or m(c1 . . . cn−1) 6= i. In this second case c · t = c′ i+ 1, and we
proceeds as in case Pos.b.
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The last remaining case is then cn = −i ≤ 0 with t = πi+1 and m(c1 . . . cn−1) = i.
In this case we have c · t = c.

Let k be the index of the last non-positive ck ≤ 0. Since, by hypothesis,
m(c1 . . . cn−1) = i, there are i − |ck| = i + ck further indexes where the value of
m increase, we write them as k < j1 < · · · < ji+ck < n. In other words, these are
the steps of the inductive construction of decode(c) where the value of FZ change.
For each such index ju, we split the columns of the corresponding decoded word into
two parts as

ju − 1
...
cju

=
ju − 1
...

|ck|+ u+ 1

|ck|+ u
...
cju

(4.18)

For the other indexes not belonging to the ju, we consider them as �rst parts, leaving
their second parts empty. Thanks to Lemma 4.3.8, all the second parts commute
with the �rst parts on their right so that:

πct = πc1...ck−1

k − 1
...
ck

. . .
j1 − 1
...
cj1

. . .
j2 − 1
...
cj2

. . .
ji+ck − 1

...
cji+ck

. . .
n− 1
...
−i

πi+1

= πc1...ck−1

k − 1
...
ck

. . .
j1 − 1
...

|ck|+ 2

|ck|+ 1
...
cj1

. . .
j2 − 1
...

|ck|+ 3

|ck|+ 2
...
cj2

. . .
ji+ck − 1

...
|ck|+ i+ ck + 1

|ck|+ i+ ck
...

cji+ck

. . .
n− 1
...

−i− 1

≡0 πc1...ck−1

k − 1
...
ck

. . .
j1 − 1
...

|ck|+ 2

. . .
j2 − 1
...

|ck|+ 3

. . .
ji+ck − 1

...
i+ 1

. . .
n− 1
...

−i− 1

·
|ck|+ 1

...
cj1

|ck|+ 2
...
cj2

. . .
i
...

cji+ck

.

We similarly further split the column
k − 1
...
ck

into its negative and positive part, and

commute the negative part as

≡0 πc1...ck−1

k − 1
...
1

. . .
j1 − 1
...

|ck|+ 2

. . .
ji+ck − 1

...
i+ 1

. . . π0π1 . . . π|ck|
n− 1
...

−i− 1

|ck|+ 1
...
cj1

. . .
i
...

cji+ck

.

We now focus on the product of the the second parts which we call S. Using RB4,
and striping the second parts from their topmost element, we get:

S :=π0π1 . . . π|ck|
n− 1
...

−i− 1

|ck|+ 1
...
cj1

. . .
i
...

cji+ck

≡0 π0

n− 1
...

−i− 1

π1 . . . π|ck|π|ck|+1 . . . πi
|ck|
...
cj1

. . .
i− 1
...

cji+ck

≡0 π0

n− 1
...
2

π1π0π1 . . . πiπi+1π1 . . . π|ck|π|ck|+1 . . . πi
|ck|
...
cj1

. . .
i− 1
...

cji+ck

≡0

n− 1
...
2

π0π1π0π1 . . . πiπi+1π1 . . . πi
|ck|
...
cj1

. . .
i− 1
...

cji+ck

We can now use RB3 and redistribute the colors:

≡0

n− 1
...
2

π0π1π0π2 . . . π|ck|+1π|ck|+2 . . . πi+1π1 . . . πi
|ck|
...
cj1

. . .
i− 1
...

cji+ck
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Now thanks to Lemma 4.3.8:

≡0 π0

n− 1
...
1

π2 . . . π|ck|+1π|ck|+2 . . . πi+1π0π1 . . . πi
|ck|
...
cj1

. . .
i− 1
...

cji+ck

≡0 π0π1 . . . π|ck|π|ck|+1 . . . πi
n− 1
...
1

π0π1 . . . πi
|ck|
...
cj1

. . .
i− 1
...

cji+ck

= π0π1 . . . π|ck|π|ck|+1 . . . πi
n− 1
...

−i− 1

|ck|
...
cj1

. . .
i− 1
...

cji+ck

Going back to the main computation we can undo the splitting of Equation 4.18:

πct ≡0 πc1...ck−1

k − 1
...
1

. . .
j1 − 1
...

|ck|+ 2

. . .
ji+ck − 1

...
i+ 1

π0π1 . . . π|ck|π|ck|+1 . . . πi
n− 1
...

−i− 1

|ck|
...
cj1

. . .
i− 1
...

cji+ck

≡0 πc1...ck−1

k − 1
...
ck

. . .
j1 − 1
...

|ck|+ 1

. . .
ji+ck − 1

...
i

. . .
n− 1
...
−i
·
|ck|
...
cj1

. . .
i− 1
...

cji+ck

by RB4

≡0 πc1...ck−1

k − 1
...
ck

. . .
j1 − 1
...
cj1

. . .
ji+ck − 1

...
cji+ck

. . .
n− 1
...
−i

by Lemma 4.3.8.

So that we have proved that πct = πc in the last remaining case.
As told at the beginning of the proof, the remark on the length has been checked

through all cases.

Example 4.3.10. Since this last calculation is huge using speci�c notations, we
now give an explicit example of calculation in case Neg.e.α. We take c = 123421264.
Then, with t = π5:

πct =
4
...
−2

·
5
...
1

·
6
...
2

·
7
...
6

·
8
...
−4

π5

≡0

4
...
−2

·
5
...
4

·
6
...
5

·
7
...
6

·
8
...
−5

·
3
...
1

·
4
...
2

by RB4 and Lemma 4.3.8

≡0

4
...
0

·
5
...
4

·
6
...
5

·
7
...
6

·
8
...
−5

π1π2π3π4 ·
2
...
1

·
3
...
2

by RB4

≡0

4
...
1

·
5
...
4

·
6
...
5

·
7
...
6

·
8
...
2

π0π1π0π1π2π3π4π5π1π2π3π4 ·
2
...
1

·
3
...
2

by RB4

≡0

4
...
1

·
5
...
4

·
6
...
5

·
7
...
6

·
8
...
2

π0π1π0π2π3π4π5π1π2π3π4 ·
2
...
1

·
3
...
2

by RB3 and redistributing.

≡0

4
...
1

·
5
...
4

·
6
...
5

·
7
...
6

· π0π1π2π3π4

8
...
2

π1π0π1π2π3π4 ·
2
...
1

·
3
...
2

by RB2 and RB4

≡0

4
...
−2

·
5
...
3

·
6
...
4

·
7
...
6

·
8
...
−4

·
2
...
1

·
3
...
2

≡0

4
...
−2

·
5
...
1

·
6
...
2

·
7
...
6

·
8
...
−4

= πc by Lemma 4.3.8.

Remark 4.3.11. The De�nition 4.3.6, the Lemma 4.3.7 and the Theorem 4.3.9 can
be also adapted to the case of G1

n, using the transformation πi 7→ si for i 6= 0 and
π0 7→ π0. There are only few cases which di�er; they are precisely those where
relation RB1 is used (with i 6= 0), that is case Pos.a. and Neg.a. The modi�cations
in the de�nition are thus the followings:
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Pos.a. cn = i > 0 and t = si then c · si = c1 . . . cn−1(cn + 1).

Neg.a. cn = −i ≤ 0 and t = si then c · si = c1 . . . cn−1(cn + 1).

The equivalent of Lemma 4.3.7 can be proved the same way. Finally the proof of
Theorem 4.3.9 only use the relation s2

i = 1 in these two cases.

Corollary 4.3.12. Let 1cn denote the code of the identity rook of size n. For any
π ∈ G0

n and s ∈ G1
n, the congruencies π ≡0 π1cn·π et s ≡1 s1cn·s hold.

Proof. We use Theorem 4.3.9 and Remark 4.3.11 at c = 1cn and proceed by induction
on the length of the words π or s.

We now have an easy proof of the identities that motivated De�nition 4.3.6:

Corollary 4.3.13. For any generator t the following diagram is commutative:

Rn Cn

Rn Cn

code

·t
decode

·t
code

decode

Proof. We start by Theorem 4.3.9, πc·t ≡0 πct. Now since Φ0 : G0
n → F 0

n is a
morphism, we can apply this relation to the rook 1n. We obtain: 1n·πc·t = 1n·(πc t) =
(1n · πc) t. We conclude thanks to Proposition 4.3.4 and Theorem 4.2.19.

Corollary 4.3.14. The maps

{
Cn�G0

n

c 7→ πc
and

{
Cn�G1

n

c 7→ sc
are surjective; the follow-

ing cardinalities coincide:

|Cn| = |Rn| = |F 0
n | = |G0

n| = |F 1
n | = |G1

n| .

Moreover, F 0
n ' G0

n, F
1
n ' G1

n as monoids.

Proof. Using both Remark 4.2.2 and Corollary 4.3.13, we get the following sequence
of surjective maps: Cn � G0

n � F 0
n . Furthermore |F 0

n | ≥ |Cn| by Corollary 4.3.5.
Consequently |Cn| = |F 0

n | = |G0
n| and F 0

n ' G0
n as monoids.

Example 4.3.15. Let r = 240503 and t = π0. Then r · t = 040503. Let us check
our algorithm.

Firstly code(r) = 013232. Our algorithm gives us the following serie of opera-
tions:

013232 · π0 = [(01323) · π0π1] 0

= [((0132) · π0) 3 · π1] 0 = [((013) · π0) 23 · π1] 0 = [((01) · π0) 323 · π1] 0

= [00323 · π1] 0 = [0032 · π1] 30

= 003130

Finally we really have decode(003130) = 040503.
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Now, there is no need to distinguish between the monoids of functions from the
presented monoids, since we have the proof that they are isomorphic.

Notation 4.3.16. We denote R0
n :=F 0

n ' G0
n the 0-rook monoid.

For any rook r we also denote πr :=πcode(r).

Corollary 4.3.17. πr is the unique element of R0
n such that 1n · πr = r. With the

identi�cation r ↔ πr, the action of R0
n on Rn is nothing but the right multiplication

in R0
n: πrπs = πr·πs.

Proof. The identity 1n · πr = r is Proposition 4.3.4, and πr is unique thanks to
cardinalities. Finally, 1n ·πrπs = (1n ·πr) ·πs = r ·πs and we conclude by unicity.

We have, by the way, re-proven the presentation for the classical rook monoid:

Corollary 4.3.18. For all n, We have the following isomorphisms of monoids:
F 1
n ' Rn ' G1

n.

Proof. The monoid morphism

{
〈s1, . . . , sn−1, π0〉 ⊆ Rn −→ F 1

n ⊆ F(Rn, Rn)
r 7−→ (r′ 7→ r′ · r) is well-

de�ned, and surjective. By Corollary 4.3.14 we can deduce:

〈s1, . . . , sn−1, π0〉 ' Rn ' F 1
n .

Here is a further immediate consequence of the presentation:

Corollary 4.3.19. The monoid R0
n is isomorphic to its opposite.

Proof. It comes from the fact that the relations of the presentation of R0
n are sym-

metrical.

4.4 A Matsumoto theorem for rook monoids

We now turn to the speci�c study of reduced words.

Proposition 4.4.1. The words scode(r) and πcode(r) are reduced expressions (i.e. of
minimal length) respectively for r ∈ Rn and πr ∈ R0

n.

Proof. Corollary 4.3.12 tells us that every element of Rn and R0
n can be written as

πc and sc for some code c. Moreover, according to Theorem 4.3.9 the rewriting of
any word to πc and sc only decrease the length. To conclude, we still have to argue
that πc and sc cannot be obtained with a di�erent shorter code, which is clear from
Proposition 4.3.4.

Remark 4.4.2. The Corollary 4.3.12 gives us a standard expression for every ele-
ment of R0

n. We can now look back at Lemma 4.1.4 and realize that Pn corresponds
to the R-code 00 . . . 0 (n times), and thus to the action of replacing all the entries
by 0.
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A �nal important consequence of our construction is a proof of the analogue of
Matsumoto's theorem (Theorem 1.1.15), answering a question of Solomon [Sol04,
p. 209, bottom of the middle paragraph]:

Theorem 4.4.3 (Matsumoto theorem for Rook monoids). If u and v are two reduced
words over {π0, s1 . . . , sn−1} (resp. {π0, π1, . . . , πn−1}) for the same element r of Rn

(resp. R0
n), then they are congruent using only the two Relations RB2 and RB4,

namely the braid relations:

sisi+1si = si+1sisi+1 1 ≤ i ≤ n− 2, (Rs2)

sisj = sjsi |i− j| ≥ 2. (Rs3)

π0sj = sjπ0 j 6= 1 (Rs5.1)

Respectively:

πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2, (RB2)

πiπj = πjπi 0 ≤ i, j ≤ n− 1, |i− j| ≥ 2, (RB4)

Proof. First of all, we only do the proof at q = 0, the q = 1 case is done similarly.
Moreover, by transitivity, it is su�cient to work in the case where v = πc whith
c = code(1n · r). We proceed by induction on the common length ` of u and v. It
is obvious when ` = 0. We now consider a reduced word v = v′t for an element r.
Then v′ is also reduced for an element r′, so that r′t = r. We assume by induction
that v′ is congruent to πc′ where c′ := code(1n · r′) using only Relations RB2 and
RB4. Therefore v′t and πc′t are congruent too. In the proof of Theorem 4.3.9,
we explicitely gave how to go from πc′t to πc′·t. Hence we only need to check that
Relations RB1 and RB3 are only used in the case where v′t is not reduced that is
when the length of v′t is larger that the length of πc′·t. This indeed holds, namely,
in cases Pos.a., Neg.a which use RB1 on one hand, and cases Neg.d, Neg.e.α which
use RB3 on the other hand.

As a consequence reduced words for R1
n and R0

n are the same:

Corollary 4.4.4. Let w1 ∈ G1
n a word for a rook r and w0 its corresponding word

in G0
n obtained by replacing si by πi and leaving P1. Then w1 is reduced if and

only if w0 is reduced. Moreover, when they are, for any k = 0, . . . , |w|, one has
1n ·w1

1 · · ·w1
k = 1n ·w0

1 · · ·w0
k and the elements (1n ·w0

1 · · ·w0
k)k=0...|w| are all distinct.

Proof. Any reduced word is congruent by braid relations to a canonical one: sc and
πc. Moreover, the canonical words corresponds by the exchange s↔ π and the braid
relations keep this correspondence, so that the �rst statement holds. Now assume
that a word wi is reduced. Thanks to Corollary 4.3.17, we know that the sequence
of elements are distinct, otherwise it would imply that some products wi1 · · ·wik are
equal for two di�erent values of k leading to a shorter word. Now Equation 4.5,
prove the equality.

As explained by Solomon [Sol04], this is su�cient to give a presentation of the
q-rook algebra. Here is a quick sketch on how to do that: �x a parameter q in a ring
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R and de�ne an endomorphism Ti of RRn interpolating between q = 1 and q = 0
by

r · Ti := q(r · si) + (1− q)(r · (πi − 1)) , (4.19)

for i = 1, . . . , n− 1 (where si and πi acts according to Equations 4.3 and 4.5). It is
well known [Las03a; LS87] that these operators generate the Hecke algebra. We now
consider the algebra generated by those generators plus P1 de�ned as in Equation 4.5.
Since P1 commutes with si and πi for i ≥ 2, it commutes with Ti. Therefore for
any rook r, it makes sense to de�ne Tr :=Ti1Ti2 . . . P1 . . . Tik for any reduced word
si1Psi2 . . . P1 . . . sik . Due to the braid relations the result is independent from the
chosen reduced word. Moreover for each of those words

1 · Tr = r + shorter terms, (4.20)

so that these (Tr)r∈Rn are linearly independent. It �nally su�ces to add four more
relations which explain how to simplify non reduced words. Namely:

(Ti + 1)(Ti − q) = 0 (4.21)

P 2
1 = Pi (4.22)

(P1 − 1)T1(P1 − 1)T1 = T1(P1 − 1)T1(P1 − 1) (4.23)

P1(T1 − q)P1(T1(1− P1)T1 − q) = 0 (4.24)

We remark that this presentation is true over Z and therefore over any ring, and not
only on �elds. As far as we know, this was unknown before.

4.5 More actions of R0
n

In De�nition 4.2.1, we have given a right action of R0
n on Rn. It is now clear from

Corollary 4.3.17 that this action is nothing but the right multiplication in R0
n. Under

this action, Pj acts by killing the �rst j entries:

(r1 . . . rn) · Pj = 0 . . . 0 rj+1 . . . rn . (4.25)

The inverse of a permutation matrix is its transpose. Transposing a rook matrix
still gives a rook matrix, so that one can transfer the notion to rook vectors. It is
computed as follows: for a rook r, the i-th coordinate of rt is the position of i in r
if i ∈ r, and 0 otherwise. For instance (105203)t = 146030.

Transposing the natural right action, we naturally get a left action of the opposite
monoid on rooks. However R0

n is isomorphic to its oppose. It is therefore possible
to de�ne a left natural action:

De�nition 4.5.1. For 0 ≤ i ≤ n and r = r1 . . . rn ∈ Rn, de�ne

πi · r := (rt · πi)t so that r · πi = (πi · rt)t . (4.26)

More explicitely, for 0 ≤ j ≤ n, we write j ∈ r if j ∈ {r1, . . . , rn}. Then for any
rook r:
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• π0 replaces 1 by 0 in r if 1 ∈ r, and �xes r otherwise.

• For i > 0, the action of πi on r is

� if i, i + 1 ∈ r, call k and l their respective positions. Then πi �xes r if
l < k, otherwise it exchanges i and i+ 1.

� if i /∈ r and i+ 1 ∈ r, then πi replaces i+ 1 by i.

� if i+ 1 /∈ r then πi �xes r.

Lemma 4.5.2. The previous de�nition is a left monoid action of R0
n on Rn called

the left natural action. Under this action, Pj acts by replacing the entries smaller
than j by 0.

Example 4.5.3. π0·0342 = 0342, π1·0342 = 0341, π2·0342 = 0342, π3 · 0342 = 0432,
π0 · 132 = 032.

This sheds some light on the link with the type B: it is well known that type B
can be realized using signed permutations. The quotient giving the 0-rook monoid
can be realized by replacing the negative numbers by zeros.

Proposition 4.5.4. πr is the unique element of R0
n such that πr · 1n = r. With the

identi�cation r ↔ πr, the left action of R0
n on Rn is nothing but the left multiplication

in R0
n: πrπs = ππr·s.

Proof. For a rook r, let us call temporarily rπ the reverse of the word πrt . Transpos-
ing Corollary 4.3.17 we get that rπ is characterized by rπ · 1n = r and rπsπ = πr·sπ.
However, at this stage it's not clear that rπ = πr (as element of R0

n). Nevertheless,
for generators that is words of length 1, the equality rπ = πr holds. Now given any
reduced word w = w1 . . . wl for an element x ∈ R0

n, set r := 1n ·w = 1n ·w1 ·w2 · · ·wl
so that x = πr in R0

n. Since w is reduced, using Corollary 4.4.4, one gets that r = w1

(the product of the corresponding word in R1
n which is nothing but a matrix prod-

uct). But this gives that r = w1 · 1n so that using the transpose of Corollary 4.4.4,
r = w · 1n. By unicity, one concludes that rπ = πr.

Corollary 4.5.5. The natural left and right actions of R0
n on Rn commute.

Proof. Thanks to 4.3.17 and 4.5.4, this is just associativity in R0
n.

One can also extend the action of H0
n by isobaric divided di�erences on poly-

nomials: the monoid R0
n acts also on the polynomials in n indeterminates over any

ring k, k[X1, . . . , Xn] in the following way.

Lemma 4.5.6. Let f ∈ k[X1, . . . , Xn]. De�ne

f · π0 := f|X1=0 = f(0, X2, . . . Xn), and f · πi :=
Xif − (Xif) · si
Xi −Xi+1

. (4.27)

This de�nition is a right monoid action of R0
n over k[X1, . . . , Xn]. Under this action,

f · Pj = f(0, . . . 0, Xj, . . . Xn) . (4.28)
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Proof. It is a well-known fact [LS87] that isobaric divided di�erences give an action
of the Hecke algebra at q = 0. It remains only to show the relation π1P1π1P1 =
P1π1P1 = P1π1P1π1. We easily check by an explicit computation that the three
members are equals to the operator P2 de�ned by f · P2 = f(0, 0, X2, . . . , Xn). The
action of Pn can be easily obtained by induction with Pi+1 = PiπiPi.

Actually, there is an extra relation, which can be cHecked by a explicit compu-
tation:

f · π1π0π1 = f · π0π1π0 . (4.29)

This shows that the monoid which is actually acting is H0(An+1) (Cartan type An+1)
thanks to the following sequence of surjective morphisms:

H0(Bn)� R0
n � H0(An+1) (4.30)

Finally, we note that it is actually possible to get an action of the full generic q-rook
algebra by taking the same de�nition as Relation 4.19.
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Chapter 5
The R-order on rooks

In this chapter, we seek for combinatorial, order theoretic and geometric analogs of
the permutohedron for rooks. Recall from Part I that the right Cayley graph of the
symmetric group Sn has several interpretations, namely:

• the Hasse diagram of the right weak order of Sn seen as a Coxeter group,
which is naturally a lattice [GR63];

• the Hasse diagram of Green's R-order of the 0-Hecke monoid H0
n [Den+10];

• the skeleton of the polytope obtained as the convex hull of the set of points
whose coordinates are permutations [Zie95, Example 0.10].

As we will see, some of these properties have an analog for rooks.
We �rst notice an important di�erence: on the contrary to Sn the right order is

not graded. This has been already noted for R0
2. Indeed in the left part of Figure 5.1

we see two paths from 12 to 00 namely π0π1π0 on the left and π1π0π1π0 on the right.
Starting with n = 3 the right order is moreover not isomorphic to its dual order.

5.1 R-triviality of R0
n

In this section we study the right Cayley graph of R0
n showing that except for loops

(edge from a vertex to itself) it is acyclic. In monoid theoretic terminology, one says
that R0

n is R-trivial. From Coxeter group point of view, this is the analogue on rook
of the (dual) right weak order. Note that the order considered here is di�erent to
the (strong) Bruhat order. Its analogue for rook is the subject of [CR12].

Having shown this acyclicity, we will deduce from the symmetry of the relations
of R0

n that the left sided Cayley graph is also acyclic. By Lemma 1.3.5, this will
imply that the two-sided Cayley graph is acyclic too, that is that R0

n is actually
J -trivial.

We have seen in Section 2.4.1 that the R-order of the 0-Hecke monoid is equiv-
alent by de�nition to the dual right-weak order of the symmetric group seen as a
Coxeter group [BB05]. The latter order is just de�ned by the inclusion of inversions
(see Section 1.1.3) . Note that, in accord with the monoid convention and contrary
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Figure 5.1: The right Cayley graph of R0
2 and R0

3.

to the Coxeter group convention, the identity is the largest element for this order.
We now show how this extends to rooks:

De�nition 5.1.1. For a rook r, the set of inversions of r is de�ned by

Inv(r) := {(ri, rj) | i < j and ri > rj > 0}. (5.1)

The support of a rook r denoted supp(r) the set of non-zero letters appearing in
its rook vector. For each letter ` ∈ supp(r), we denote Zr(`) the number of 0 which
appear after ` in the rook vector of r. We �nally say that (supp(r), Inv(r), Zr) is the
rook triple associated to r.

Example 5.1.2. For example for r = 2054001, one gets supp(r) = {1, 2, 4, 5},
together with Inv(r) = {(2, 1), (4, 1), (5, 4), (5, 1)}, Zr(1) = 0, Zr(2) = 3 and Zr(4) =
Zr(5) = 2.

We recall from Section 1.1.3 that ∆ := {(i, j) | i > j, i, j ∈ [n]}. Here is a
characterization of the rook triples:

Proposition 5.1.3. A triple (S, I, Z) where S ⊆ {1, . . . n}, I ⊆ ∆ and Z : S 7→ N
is the rook triple of a rook r if and only if:

• I ⊂ ∆ ∩ S2 and I and (∆ ∩ S2) \ I are both transitive.

• for ` ∈ S, 0 ≤ Z(`) ≤ n− |S|;
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• if (b, a) ∈ I then Z(b) ≥ Z(a) else Z(b) ≤ Z(a).

When this holds the rook r is unique.

Proof. We �rst prove the direct implication. The �rst statement says that if one
erases the zeros from a rook, one gets a permutation of its support. The second
statement says that there are n− | supp(r)| zeros. The third statement says that if
a is after b in r, then there are less 0 to the right of a than to the right of b.

Conversely, given such a triple, we can reconstruct a rook r in two steps: the
�rst condition ensures that there is a unique permutation σ of the support S with
this inversions set. The third statement says that the function Z is decreasing along
the word for σ. As a consequence, writing σZi the subword of σ composed by the
letters ` such that Z(`) = i, one has

σ = σZn−| supp(r)| . . . σ
Z
2 σ

Z
1 σ

Z
0 . (5.2)

Note that some of the σZi may be empty. Then the rook

r = σZn−| supp(r)| 0 . . . 0σZ2 0σZ1 0σZ0 . (5.3)

is indeed associated with the triple (S, I, Z) and is by construction unique.

Example 5.1.4. Going back to Example 5.1.2, consider the following triple with
n = 7:

(S, I, Z) = ({1, 2, 4, 5}, {(2, 1), (4, 1), (5, 4), (5, 1)}, ( 1 2 4 5
0 3 2 2 )) .

There is a unique permutation σ of S with inversion set I, namely 2541. Writing
Z(i) below i for each letter of σ, we get ( 2 5 4 1

3 2 2 0 ) and see that Z is indeed decreasing.
We then get that σZ3 = (2), σZ2 = (54), σZ1 = (), σZ0 = (1), so that we recover
r = 2054001.

Our aim is now to show that the R-order is actually an order. To do so, we start
by de�ning combinatorially an order r ≤I u, and then show that ≤I and ≤R are
actually equivalent.

De�nition 5.1.5. Let r and u ∈ Rn. We write r ≤I u if and only if the three
following properties holds

• supp(r) ⊆ supp(u)

• {(b, a) ∈ Inv(u) | b ∈ supp(r)} ⊆ Inv(r)

• Zu(`) ≤ Zr(`) for ` ∈ supp(r).

Remark 5.1.6. If r and u are permutations, then supp(r) = supp(u) = {1, . . . , n},
so that r ≤I u if and only if Inv(u) ⊂ Inv(r).

Moreover, as a consequence of the second condition, if (b, a) ∈ Inv(u) and b ∈
supp(r) then a ∈ supp(r). We abstract this fact with the following de�nition and
lemma:
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De�nition 5.1.7. Let I ⊆ ∆ and S ⊂ J1, nK. We say that S is I-compatible if
(b, a) ∈ I and b ∈ S implies a ∈ S, for all b, a.

Lemma 5.1.8. If r ≤R u then supp(r) is Inv(u)-compatible.

We will further need the following basic facts about compatibility:

Lemma 5.1.9. The union S1∪S2 of two I-compatibles sets S1 and S2 is I-compatible.
If S is I1 and I2-compatible, then it is I1 ∪ I2-compatible.
If S is I-compatible then it is compatible with the transitive closure of I.

Proposition 5.1.10. The set Rn endowed with the relation ≤I is a poset with max-
imal element 1n and minimal element 0n = 0 . . . 0.

Proof. The relation ≤I is re�exive, by de�nition.
If r, u ∈ Rn are such that r ≤I u and u ≤I r then supp(r) = supp(u) and

therefore Inv(r) = Inv(u) and Zr = Zu. As a consequence, the non-zero letters
appear in the same order in r and u and the zeros are in the same places. Thus ≤I
is antisymmetric.

Let r ≤I u ≤I v. Then supp(r) ⊆ supp(v). Let (b, a) ∈ Inv(v) with b ∈ supp(r).
Necessarily b ∈ supp(u) so that (b, a) ∈ Inv(u) and consequently (b, a) ∈ Inv(r).
Finally if ` ∈ supp(r) then Zv(`) ≤ Zu(`) ≤ Zr(`). Thus ≤I is transitive.

Theorem 5.1.11. Let r, u ∈ Rn. Then πr ≤R πu if and only if r ≤I u.

Proof. By de�nition, πr ≤R πu if there exists π ∈ R0
n such that πr = πuπ. Using the

identi�cation r ↔ πr of Corollary 4.3.17, this is equivalent to r = u · π. By abuse
of notation in this proof we will therefore write r ≤R u if there exists π ∈ R0

n such
that r = u · π.

For the direct implication, by induction and transitivity, it is su�cient to assume
that r = u · πi with r 6= u and show r <I u.

• If i 6= 0. Then supp(u) = supp(r). Since r 6= u we must have ui < ui+1 and
also r = u1 . . . ui+1ui . . . un. If ui 6= 0 then Inv(r) = Inv(u) t {(ui+1, ui)} and
Zr = Zu. On the contrary, if ri = 0, then Inv(r) = Inv(u) and Zr(`) = Zu(`)
for ` 6= ui+1 and Zr(ui+1) = Zu(ui+1) + 1.

• If i = 0. Since r 6= u we have r1 6= 0 and u = 0r2 . . . rn. We can deduce that
supp r = suppu ∪ {r1}. Furthermore,

Inv(r) = {(ui, uj) ∈ Inv(u) | i 6= 1} = {(ui, uj) ∈ Inv(u) |ui ∈ r} . (5.4)

Finally for ` ∈ supp(r), Zu(`) = Zr(`)

For the converse implication, assume that r <I u. By induction and transitivity
it is su�cient to show that there exists i such that r ≤I u · πi and u · πi 6= u.
We proceed by a case analysis. First since supp(u) ⊆ supp(u), we can distinguish
whether supp(u) = supp(u) or supp(u) ( supp(u). In the equality case, we further
distinguish whether Zu = Zr or not.
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• If supp(u) = supp(r), and Zu 6= Zr, then there must exist ` ∈ supp(r) such
that Zu(`) < Zr(`). Pick the leftmost ` in u which veri�es this condition.
First, there must be some 0 on the left of ` in u because there are Zu(`) on
the right and at least Zr(`) in the word. Thus ` is not the �rst letter of u.

Let k be the letter immediately preceding ` in u. We claim that either k = 0
or k is after ` in r. Indeed if k 6= 0 and k is before ` in r then we have
Zr(k) ≥ Zr(`). Moreover Zu(`) = Zu(k) because there is no zero in u between
` and k. Therefore Zr(k) ≥ Zr(`) > Zu(`) = Zu(k) which contradicts our
choice of ` as being the leftmost.

Now, call i the position of this k in u. If k = 0, the only di�erence between
the rook triples of u and u · πi is that Zu·πi(`) = Zu(`) + 1 so that r ≤I u · πi.
On the contrary, if k 6= 0, then the only di�erence between the rook triples of
u and u · πi is that Inv(u · πi) = Inv(u) t {(l, k)} so that again r ≤I u · πi.

• If supp(u) = supp(r), and Zu = Zr, then necessarily Inv(u) ( Inv(r). Write r̃
and ũ the words obtained by removing the zeros in r and u. The inclusion of
inversions shows that ũ ≤S r̃ where ≤S is the right order for permutations of
S = supp(u). As a consequence, we know that it is possible to exchange two
consecutive letters a < b in ũ to get a permutation ṽ of supp(u) such that

Inv(ṽ) = Inv(ũ) t {(b, a)} ⊂ Inv(r̃) . (5.5)

From the equality of Z, there cannot be any 0 between a and b in u, thus a
and b are consecutive in u as well. Writing i for the position of a in u, we have
r ≤I u · πi.

• The remaining case is supp(r) ( supp(u). Let ` := max(supp(u) \ supp(r)). If
` is in position 1 in u then r ≤I u · π0 and we are done in this case.

Otherwise if ` is not in position 1, we claim that the letter k immediately
preceding ` in u is smaller than l. If not, then there is an inversion (k, `) in
u. Since supp(r) is Inv(u)-compatible, then k /∈ supp(r). This contradicts our
choice of ` as being the maximum.

Writing i for the position of k in u, we proceed as in the end of the �rst case:
the only di�erence between the rook triples of u and u · πi is that Inv(u · πi) =
Inv(u) t {(`, k)} so that again r ≤I u · πi.

Corollary 5.1.12. The monoid R0
n is R-trivial, L-trivial and thus J -trivial.

Proof. A consequence Theorem 5.1.11 is that the R-preorder is an order so that R0
n

is R-trivial. Moreover, it is isomorphic to its opposite by Corollary 4.3.19 and thus
it is L-trivial. We conclude with Lemma 1.3.5.

5.2 The lattice of the R-order
Our goal here is to show that, similarly to the weak order of permutations, the
R-order for the rooks is a lattice. We start with an algorithm which computes the
meet.
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Theorem 5.2.1. Let u and v be two rooks of size n. De�ne a new rook r by the
following algorithm:

• Let I0 be the transitive closure of Inv(u) ∪ Inv(v).

• Let S be the largest (for inclusion) I0-compatible set contained in supp(u) ∩
supp(v).

• Let I := I0 ∩ S2.

• Finally, for x ∈ s let Z(x) := max{Zu(i), Zv(i) | i = x or (x, i) ∈ I} with the
convention that Zs(i) = 0 if i /∈ supp(s).

Then (S, I, Z) is a rook triple whose associated rook r is the meet u∧R v of u and v
for the R-order.
Proof. We �rst prove that (S, I, Z) is indeed a rook triple.

• By de�nition, I ⊂ ∆∩S2, let us show that I and (∆∩S2)\I are transitive. We
claim that I is the transitive closure of (Inv(u) ∩ S2) ∪ (Inv(v) ∩ S2). Indeed,
for any (b, a) ∈ I, then (b, a) ∈ I0. By de�nition of the transitive closure, there
exists a decreasing sequence of integer b = c1 > c2 > · · · > ck = a such that
(ci, ci+1) ∈ Inv(u) ∪ Inv(v) for i = 1, . . . , k − 1. By induction, since b ∈ S,
compatibility ensures that all of the ci belong to S. Hence the claim.

As a consequence, using Theorem 1.2.11, I is the inversion set of the meet in
the permutohedron of the restriction of u and v to S so that I and (∆∩S2)\ I
are transitive.

• On has |S| ≤ max(| supp(u), supp(v)|). So that the condition 0 ≤ Z(x) ≤
n− |S| holds.

• Write Z(x) := {Zu(i), Zv(i) | i = x or (x, i) ∈ I} so that Z(x) := maxZ(x).
If (b, a) ∈ I, the transitivity of I ensures that as sets Z(b) ⊇ Z(a) so that
Z(b) ≥ Z(a). Conversely write I := (∆ ∩ S2) \ I. If (b, a) ∈ I, the transitivity
of I shows that (a, i) ∈ I implies (b, i) ∈ I. By contraposition, (b, i) ∈ I
implies (a, i) ∈ I so that Z(b) ⊆ Z(a) and therefore Z(b) ≤ Z(a).

Hence, we have proved that (S, I, Z) is a rook triple. It remains to prove that its
associated rook is the meet u∧R v. By construction, r ≤I u and r ≤I v. So that we
only need to prove that for any rook s such that s ≤I u and s ≤I v then s ≤I r.
• Using the rephrasing of Remark 5.1.6 we know that then supp(s) is Inv(u)
and Inv(v)-compatible and therefore compatible with the transitive closure of
their union I0. Since S = supp(r) is de�ned as the largest such set, supp(s) ⊆
supp(r).

• Suppose (b, a) ∈ Inv(r), with b ∈ supp(s). Then by construction of r, there
is a decreasing sequence b = c1 > c2 > · · · > ck = a such that (ci, ci+1) ∈
Inv(u) ∪ Inv(v) for i = 1, . . . , k − 1. By induction, having s ≤I u and s ≤I v,
one prove ci ∈ supp(s) and (ci, ci+1) ∈ Inv(s). One concludes by transitivity
that (b, a) = (c1, ck) ∈ Inv(s).



� 5.2 � The lattice of the R-order 

• Finally, assume x ∈ supp(s). Then Zs(x) ≥ Zu(x) and Zs(x) ≥ Zv(x). More-
over for any i such that (x, i) ∈ Inv(r), by the preceding item, i ∈ supp(s) and
(x, i) ∈ Inv(s). One deduces that Zs(x) ≥ Zs(i) ≥ Zu(i) and Zs(x) ≥ Zs(i) ≥
Zv(i). We just showed that Zs(x) ≥ maxZ(x).

Corollary 5.2.2. The R-order of R0
n is a lattice.

Proof. From the previous theorem, we know that R0
n is a meet semi-lattice. Now it

is well known that a meet semi-lattice with a maximum element is a lattice.

From the proof, we have a more explicit algorithm to compute the meet:

• Start with S := supp(u)∩ supp(v). Then while one can �nd a (b, a) ∈ Inv(u)∪
Inv(v) with b ∈ S and a /∈ S, remove b from S. When no more such (b, a) can
be found, S is the support of u ∧R v.

• Using the usual algorithm for permutations (see the sketch of the proof of
Lemma 1.1.5), compute the meet of the restriction u|S and v|S.

• Compute the Z function using max as in the statement of Theorem 5.2.1.

• Finish inserting the zeros using Z(x) as in the proof of Proposition 5.1.3.

Example 5.2.3. Let u = 25104 and v = 12453. So supp(u)∩ supp(v) = {1, 2, 4, 5}.
But (4, 3) and (5, 3) ∈ Inv(v) and 3 /∈ S. So S = {1, 2}. We then get I = {(2, 1)},
So that (u ∧R v)|S = 21. It remains to insert the zeros. One compute Z(2) = 1 and
Z(1) = 1 so that u ∧R v = 00210. Here is a bigger example: Let us compute r =
31086502 ∧R 02178534. One �nds that S = {1, 2, 3}, and I = {(3, 2), (3, 1), (2, 1)}
and Z = ( 1 2 3

2 2 2 ), so that r = 00032100. Similarly

30175082 ∧R 02154738 = 00308210 43017582 ∧R 02154738 = 75430821

In the case of permutations, the involution σ → σ̃ = σω where ω is the maximal
permutation (otherwise said, σ̃ is the mirror image of σ) is an isomorphism from
the R-order to its dual. A a consequence, one can compute the join using the meet:
σ ∨R µ = ˜̃σ ∧R µ̃. However, as seen for example on Figure 5.1 this doesn't work
anymore for rooks. This ask for an algorithm to compute the join of two rooks.
To describe this algorithm, we need a notion of non-inversion and a dual notion of
compatibility:

De�nition 5.2.4. For any rook r, call set of version of r the set:

Inv(r) := (∆ \ Inv(r)) ∪ {(b, a) ∈ ∆ | a /∈ r and b ∈ r} (5.6)

Let I ⊆ ∆ and S ⊂ J1, nK. We say that S is dual I-compatible if (b, a) ∈ ∆ \ I and
a ∈ S implies b ∈ S.

Theorem 5.2.5. Let u and v be two rooks of size n. De�ne a new rook r by the
following algorithm:

• Let I0 := ∆ \ T where T is the transitive closure of Inv(u) ∩ Inv(v).
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• Let S be the smallest dual I0-compatible set containing supp(u) ∪ supp(v).

• Let I := I0 ∩ S2.

• Finally, for x ∈ s let Z(x) := min{Zu(i), Zv(i) | i = x or (x, i) ∈ ∆ \ I}, with
the convention that Zs(i) = +∞ if i /∈ supp(s).

Then (S, I, Z) is a rook triple whose associated rook r is the join u ∨R v.

The proof is very similar to the meet and left to the reader.

Example 5.2.6. Let us compute r = 30175082 ∨R 72185043. One �nds S =
{1, 2, 3, 4, 5, 7, 8}, I = {(7, 5), (4, 3)} and Z = ( 1 2 3 4 5 7 8

1 0 0 0 0 0 0 ), so that r = 10243758.

We want to enumerate the join-irreducible elements. As in the classical permu-
tohedron, they are related to descents, however, it the case of rooks, they are two
di�erent notions of descents.

De�nition 5.2.7 (Weak and strict descents). Let r ∈ Rn be a rook. For any
0 ≤ i < n, we say that i is a weak (right) descent of r if r · πi = r. We say that i
is a strict (right) descent if there exists a rook s 6= r such that s · πi = r. Moreover,
in the particular case i = 0, we say that 0 is a strict descent with multiplicity k, if
there are exactly k rooks s 6= r such that s · π0 = r.

Any strict descent is a weak descent. Indeed if s·πi = r then r ·π = s·π2
i = s·πi =

r. Weak descent and strict descents are equivalent when restricted to permutations,
but they di�er on rooks. For example, the rook 04003, has 3 weak descent namely
0, 2, 3, but only 0, 2 are strict (04003 = 24003 · π0 and 04003 = 00403 · π2) and 0 has
multiplicity 3: 04003 = 14003 · π0 = 24003 · π0 = 54003 · π0.

Lemma 5.2.8. The multiplicity of 0 as a strict descent in a rook r is 0 if r does
not start with 0 and is the number of 0 in r otherwise.

De�nition 5.2.9. An element z of a lattice L is called meet irreducible if it can
not be obtained as a non trivial meet that is z = z1 ∧ z2 implies z1 = z or z2 = z.

An equivalent de�nition is that z has only one successor in the Hasse diagram of
L. By de�nition, in a �nite lattice, any element can be written as the meet of some
meet irreducible elements. As a consequence, they form the minimal generating set
of the meet semi-lattice.

For permutations, the number of meet irreducible for the R-order (that is per-
mutation with only one descent) is a(n) = 2n − n − 1. It is a particular case of
Eulerian numbers and is recorded as OEIS A000295. Here are the �rst values

0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752 (5.7)

For rooks, the number of meet irreducibles has a very simple expression too:

Proposition 5.2.10. The number of meet irreducibles for ≤R, is 3n − 2n.
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This sequence is recorded as OEIS A001047. Here are the �rst values

0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, 527345, 1586131 (5.8)

We will actually prove a stronger statement, the previous one will follow thanks to
the identity:

3n − 2n =
n∑

i=1

3n−i2i−1 (5.9)

Proposition 5.2.11. For any rook vector r denote p(r) the �rst value r0 if its non
zero, and 1 if its zero. The number of meet-irreducibles r of Rn such that p(r) = i
is 3n−i2i−1.

Proof. A rook is meet irreducible if and only if it has a unique strict descent (counting
multiplicities). Consider a meet irreducible rook r with p(r) = i. There are two
cases:

• if i > 1, then the rook is composed by two nondecreasing sequences, the �rst
one starts with i. So each number smaller than i, either appears in the second
subsequence or, do not appear at all so that the second sequence starts with
some 0. Similarly each number larger than i, may appear in any of those two
subsequences or not at all. So the number of choices is 2i−13n−i.

• if i = 1, then if r start either with 0 or 1. We want to show that the number
of each such rook is 3n−1. We show that the set of those rooks is in bijection
with the set of maps f : J2, nK→ {0, 1, 2}.
In the following, for any set S of integers we write W (S) the word obtained
by writing the letter of S in increasing order. Given such a map f , one build
a sequence starting with 1, then ordering the preimage of 0, putting as many
zero as the preimage of 1, and then ordering the preimage of 2:

r(f) := 1 ·W (f−1(0)) · 0|f−1(1)| ·W (f−1(2)) . (5.10)

By de�nition, the result is a rook of size n with at most one descent. Moreover,
each rook with only one descent is obtained exactly once as the image of some
f .

It remains to show that the maps which give rooks with no descent by the
preceding construction are in bijection with rooks having 0 as unique descent
with multiplicity 1. The point is: r(f) has zero descents, that is r(f) is
nondecreasing, if and only if there exists a 1 ≤ k ≤ n such that

f(i) =

{
0 if i ≤ k

2 otherwise
(5.11)

If it is the case, we rede�ne r(f) as

r1(f) := 0 ·W ({i− 1 | i ∈ f−1(0)}) ·W ({f−1(2)}). (5.12)
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The set of the rooks obtained this way is the set of increasing rooks which
start with a 0. According to Lemma 5.2.8, those are exactly the rooks having
0 as unique descent with multiplicity 1.

There are exactly 3n−1 rooks starting either by 0 or 1.

Example 5.2.12. Consider the function f = ( 2 3 4 5 6 7 8 9
2 0 1 0 1 0 2 1 ). Then r(f) = 1 · 357 ·

000 · 28 which has only one strict descent (the dots are only here to visualize the
di�erent part of the right hand side of Equation 5.10).

Now with f = ( 2 3 4 5 6 7 8 9
0 0 0 0 0 2 2 2 ), Equation 5.10 gives r(f) = 1 · 23456 · ·789 which

has no descent at all. So we take the second de�nition (Equation 5.12) and get the
new value r1(f) = 0 · 12345 · 789 which has 0 as unique strict descent.

On the contrary to permutations, the poset is not self dual. So there is no reason
why the number of meet irreducible elements should be equal to the number of
join irreducible elements. They indeed di�er and we do not have a formula for the
number of join irreducibles:

0, 1, 5, 16, 43, 106, 249 (5.13)

5.3 Chains in the rook lattice

We now consider maximal chains of Rn (thus also R0
n by Corollary 4.3.17). We

see in Figure 5.1 that all the maximal chains are not of equal length. Experi-
mental computation of the numbers of maximal chains give the following sequence:
1, 2, 23, 3625, 16489243. We did not �nd any nice property: it is not refered in OEIS
and the numbers contain big prime factor. A more interesting question is to only
consider maximal chains of minimal length, that is reduced expressions of the max-
imal rook Pn = 0 . . . 0 ∈ Rn. Note by Lemma 4.1.4 that `(Pn) =

(
n+1

2

)
. We �nd the

following numbers of such chains:

1, 2, 12, 286, 33592, 23178480. (5.14)

This sequence is refered as OEIS A003121. It counts, among many other things, the
number of maximal chains of length

(
n+1

2

)
(hence maximal) in the Tamari lattice

Tn+1 seen in Section 1.6. This suggests that there is a bijection between the chains.
It turns out that the coincidence is much stronger: the two posets restricted to the
elements appearing in their respective chains are isomorphic.

We �rst need to describe the elements appearing in a reduced expression of Pn.

Proposition 5.3.1. The rook vectors appearing as a left factor of a reduced expres-
sion of Pn are the rooks:

MCRn := {0 . . . 0� (k + 1) . . . n | 0 ≤ k ≤ n}, (5.15)

where � is the shu�e product de�ned in Example 1.7.2.
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Proof. Let r ∈MCRn as de�ned by Equation 5.15. We assume that r has k zeros, so
that the nonzero letters appearing in r are k+1, . . . , n. Take the reduced expression
for r given by the R-code (De�nition 4.3.2). Since the nonzero letters are in order,
this expression if of length `(r) = 1 + 2 + · · ·+ k +

∑n
i=k+1 Zr(i). In order to bring

r to Pn by right action we repeat the following steps until we reach Pn: let i be
the �rst nonzero letter and p = i − Zr(i) its position. Then multiplying r on the
right by sp−1 . . . s1π0 brings i to the front and kills it. The length of the word for Pn
obtained this way is equal to

`(r) +
n∑

i=k+1

(i− Zr(i)) =
n∑

i=1

i =

(
n+ 1

2

)
. (5.16)

This is the length of Pn, hence the expression is reduced, and r appears in a maximal
chain of minimal length.

Now we prove the converse inclusion by contradiction. Let r ∈ Rn \ MCRn,
with k zeros. We want to show that there is no reduced word for Pn of the form rm
where r is a word for r. Assume that we have such a word. Since r /∈MCRn, then
either there is a nonzero letter k before a nonzero letter k′ with k′ < k, or there is
a nonzero letter k′ while a letter k > k′ is missing. The algorithm computing the
canonical reduced word (De�nition 4.3.2) shows that:

`(r) > 1 + 2 + · · ·+ k +
∑

i∈r, i6=0

Zr(i). (5.17)

We call r̃ ∈MCRn the rook vector obtained from r by replacing the nonzero letters
by k + 1, . . . , n in this order, so that

∑
i∈r, i6=0 Zr(i) =

∑n
i=k+1 Zr̃(i). Then r̃ m gives

Pn as well. Thus `(m) ≥∑n
i=k+1(i−Zr̃(i)). So that `(Pn) = |rm| >

(
n+1

2

)
= `(Pn),

which is absurd.

In particular note that: |MCRn| =
n∑

i=0

(
n

i

)
= 2n.

Example 5.3.2. MCR2 = {12} ∪ {0� 2} ∪ {00} = {12} ∪ {02, 20} ∪ {00}

MCR3 = {123} ∪ {0� 23} ∪ {00� 3} ∪ {000}
= {123} ∪ {023, 203, 230} ∪ {003, 030, 300} ∪ {000},

MCR4 = {1234} ∪ {0� 234} ∪ {00� 34} ∪ {000� 4} ∪ {0000}
= {1234} ∪ {0234, 2034, 2304, 2340} ∪ {0034, 0304, 3004, 0340, 3040, 3400}
∪ {0004, 0040, 0400, 4000} ∪ {0000}.

We now introduce a sequence of bijections from MCRn to some special Dyck
paths, that is vertices of the Tamari lattice. The �rst bijection sends an element of
MCRn to a subset of [n+ 1] the following way:

η :

{
MCRn −→ [n+ 1]

r = r1 . . . rn 7−→ {i | ri 6= 0}. (5.18)
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This application is clearly a bijection since the nonzero letters of r ∈ MCRn are
k + 1, . . . , n in this order, where k is the number of zeros of r. Now that we have
a subset of [n] we can use the bijection C to compositions of n + 1 introduced in
Equation 1.10. If I = (i1, . . . , im) � n+1 the actions of the generators of R0

n through
the bijection C ◦ η are as follows:

I · π0 = (i1 + i2, i3, . . . , im), (5.19)

I · πj =

{
I if j ∈ Des(I);

(i1, . . . , ij−1, ij − 1, ij+1 + 1, ij+2, . . . , im)otherwise,
for j > 0.(5.20)

We �nally send a composition of n+ 1 to a Dyck path as follows:

δ : (i1, . . . , im) � n+ 1 7−→ 1n−m 0i1 1 0i2 1 0i3 . . . 0im−1 1 0im . (5.21)

It is easy to check that the Dyck paths we obtain this way are exactly those for
whose the pattern 011 is forbidden. Note that the action of the generators of R0

n

is thus to replace a 01 by 10 which pictorially inserts a diamond in a �valley�. See
Figure 5.2. We say that a Dyck path D contains another Dyck path D′, and we
denote it D′ ⊆ D, if the path D is above the path D′. Then the R-order on R0

n

is mapped to the order ⊆ on Dyck paths avoiding the pattern 011 by the bijection
δ ◦ C ◦ η. See the �rst line of Figure 5.3 to see all these isomorphisms. We �nally
remark that all these posets are actually lattices.

Figure 5.2: The �ip of a valley in our special Dyck paths. The generator πi adds a
diamond in the i + 1th valley, counting from the left. Thus π0 reduces the number
of valley.

We are interested in Dyck paths in a maximal chain of length
(
n
2

)
in the Tamari

lattice of size n. We denote byMCT n their set. We recall from Section 1.6 that the
Tamari order in denoted by �T .

Proposition 5.3.3. The set MCT n is exactly the set of Dyck paths avoiding 011.
Furthermore the order �T restricted toMCT n is equal to the order of inclusion ⊆.

Proof. The di�erence of diamonds between the minimal element (10)n and the max-
imal element 1n0n is exactly

(
n
2

)
, so that each rotation must add only one diamond.
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But a rotation on a SE step 0 followed by two NE steps 11 adds at least two di-
amonds, so that we can not rotate in such a SE step. Moreover the rotations on
another licit SE step preserve the 011 pattern, so that an element with pattern 011
can not be in MCT n. On the contrary if D is a Dyck path avoiding 011, then a
rotation is exactly to add a diamond in a valley, and the resulting Dyck path also
avoids 011.

Now that we have the description of elements ofMCT n, doing a rotation corre-
sponds to adding a diamond on a valley, so that the order �T implies the order ⊆.
Furthermore, by de�nition of the order �T , the converse also holds.

As a consequence we have proven that the order on MCT n obtained through
the bijection δ ◦C ◦ η is exactly the Tamari order, so that the posets ofMCRn and
MCT n+1 are isomorphic.

The elements appearing in MCT n appears in many di�erent contexts, and we
have already seen them in Section 1.6, see [HL07; HLT11; LL18] and the references
in the latters. They correspond to binary trees which are chains, that is also binary
trees with exactly one linear extension. For this reason we called them singletons .
Equivalently they are permutations avoiding the patterns 132 and 312, or permu-
tations with exactly one element in their sylvester class, that is common vertices
between the associahedron and the permutahedron. Furthemore the historic de�-
nition of the associahedron is to keep only the faces of the permutahedron which
contains such a singleton. See Figure 5.3 for all the bijections seen in this section.

5.4 Geometrical remarks

Recall from Section 1.4 that the right Cayley graph of the symmetric group Sn is
the 1-skeleton of the permutohedron, de�ned as the convex hull of the set of points
whose coordinates are permutations.

Starting with n = 3, we can not hope that the right Cayley graph of Rn could be
the 1-skeleton of a polytope. Indeed in Rn the element 1000 . . . is always of degree
2, being linked only to 0000 . . . and 0100 . . . , whereas the identity 123 . . . is of degre
n. Thus it is impossible to get a polytope.

Nevertheless, one can consider in a n-dimensional space the set of points whose
coordinates are rook vectors (see Figure 5.4). The extremal points of its convex hull
are the points in

Stelln := {Sn(0 . . . 0k . . . n) | k ∈ J1, nK} (5.22)

This polyedron appeared under the name of stellohedron in [MP17, Figure 18] where
it was de�ned as the graph associahedron of a star graph. It is also the secondary
polytope of ∆n ∪ 2∆n (see [GKZ08]), two concentric copies of a n-dimensional sim-
plex, which can also be de�ned as

{ei | i ∈ [n+ 1]} ∪ {(n+ 2)ei − 1 | i ∈ [n+ 1]} (5.23)

So we can see the Cayley graph of Rn as being drawn on the face of the stellohedron.
One can recover this graph from the permutohedron by taking all its projections
on coordinate planes. Indeed, it is just saying that a rook can be obtained from
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54321
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34215
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32145

π0

π1
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Figure 5.3: The lattice of MCR4, send to subsets of [4], compositions of 5 and
MCT 5. On the second row we represent the poset MCT 5 seen on binary trees
which are chains, and permutations alone in their sylvester class or avoiding 132
and 312. We only represent loops on the rook vectors and the permutations, the
other can be deduced by bijection. On the second line we apply generators of H0

5

rather than R0
4. Note that the bijection on the generators is only πi 7→ πi+1.
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Figure 5.4: The Cayley graph of R3 embedded in a 3-dimensional space.

a permutation replacing some entries by zeros and that edges are mapped to an
identical edge or contracted.
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Chapter 6
Representation theory of the 0-Rook
monoid R0

n

The goal of this section is to investigate the representation theory of R0
n. We write

C[R0
n] the monoid algebra of R0

n. In the sequel of the thesis P1 will rather be denoted
by π0. In this section the letter r will usually denote an element of R0

n rather that
a plain rook. We know from Corollary 4.3.17 and Proposition 4.5.4 that for any
r ∈ R0

n there is a unique rook r := 1n · r = r · 1n such that πr = r. When there is a
need to distinguish, We will freely use this boldface notation.

We start by summarizing the main results (in particular Corollary 4.3.17) of the
Section 4 which concerns the representations:

Theorem 6.0.1. The maps

fR :

∣∣∣∣
C[R0

n] −→ C[Rn]
x 7−→ 1n · x , and fL :

∣∣∣∣
C[R0

n] −→ C[Rn]
x 7−→ x · 1n ,

extended by linearity, are two isomorphisms of representations of R0
n between the left

and right regular representations and the natural one (acting on Rn).

6.1 Idempotents and simple modules

Since R0
n is a J -trivial monoid, as shown in Section 3.3, the representation theory

of R0
n is largely governed by its idempotent.

Proposition 6.1.1. For any S ⊂ J0, n− 1K, we denote πS the zero of the so-called
parabolic submonoid generated by {πi | i ∈ S}.
Proof. This submonoid is �nite since the monoid is �nite. By Proposition 5.1.12 it
contains a unique minimal element for the J -order, which is a zero.

Proposition 6.1.2. For any S ⊂ J0, n−1K, write Sc := J0, n−1K\S its complement
and I = C(Sc) = (i1, . . . , i`) its associated extended composition. Then πS = πr
where r is the block diagonal rook matrix of size n whose block are anti diagonal
matrices of 1 of size (i1, . . . , i`), except the �rst block which is a zero matrix.
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Note that if 0 /∈ S then the �rst part of I is zero, so that the �rst zero block is
of size 0 and therefore vanishes.

Example 6.1.3. If n = 12 and S = {0, 1, 2, 5, 7, 8, 11}. Then Sc = {3, 4, 6, 9, 10}
so that I = C(Sc) = (3, 1, 2, 3, 1, 2). Similarly, if T = {2, 4, 5, 7, 8, 9, }, then T c =
{0, 1, 3, 6, 10, 11} so that J = C(T c) = (0, 1, 2, 3, 4, 1, 1). Therefore the associated
matrices are:

πS =




0 0 0
0 0 0
0 0 0

1

0 1
1 0

0 0 1
0 1 0
1 0 0

1

0 1
1 0




and πT =




1

0 1
1 0

0 0 1
0 1 0
1 0 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

1




Proof. We �x some S and consider r the associated matrix. The block diagonal
structure ensures that πr belongs to the parabolic submonoid 〈πi | i ∈ S〉. Indeed,
suppose that there is a reduced word w for πr with some wi /∈ S. Recall, that from
Corollary 4.3.17, this means that 1n · w = r. Choose the smallest such i. There are
two cases whether wi = π0 or not.

• if wi = π0 with 0 /∈ S, then when computing 1n · w1 · · ·wi−1 · wi, the action of
π0 will be to kill a column. In this case, the killed column will never appear
again so that there is no way to get the correct matrix.

• if wi = πi with i 6= 0, when computing 1n · w1 · · ·wi−1 · wi, the action of wi is
to exchange two columns from two di�erent blocks. However, acting by any
πj will never exchange those two columns again, so that it is not possible to
get them back in the correct order.

Hence, we have proven that w only contains πi with i ∈ S that is r ∈ 〈πi | i ∈ S〉.
Furthermore, using the action on matrices one sees that r · πi = r or equivalently
that πrπi = πr if and only if i ∈ S. This shows that πr is the zero of 〈πi | i ∈ S〉.

Remark 6.1.4. If we decompose the set S into its maximal components of consec-
utive letters S1 ∪ S2 ∪ · · · ∪ Sr, then πS =

∏
1≤i≤r πSi

where the product commutes.
Moreover, if 0 ∈ S then πS1 = Pm where m is the size of the �rst block.

During the proof, we got the following Lemma:

Lemma 6.1.5. Let S ⊂ J0, n− 1K. Then πSπi = πS = πiπS if i ∈ S, and πSπi 6= πS
and πiπS 6= πS otherwise.

Proposition 6.1.6. The monoid R0
n has exactly 2n idempotents: these are the zeros

of every parabolic submonoid.
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Proof. We already know that R0
n has at least 2n idempotents. We now have to prove

this exhaust the idempotents of R0
n.

Let e an idempotent of R0
n. Recall that cont(e) is the set of the πi with i ∈

J0, n − 1K appearing in any reduced word of e. Let us show that e = πcont(e): the
zero of the parabolic generated by cont(e). Indeed for a ∈ cont(e), one can write
e = uav for some u and v in R0

n. By de�nition of the J -order, this means that
e ≤J a. Using Lemma 1.3.8, this is equivalent to ea = e and to ae = e, so that e is
stable under all its support.

Theorem 6.1.7. The monoid R0
n has 2n left (and right) simple modules, all one-

dimensional, indexed by the subsets of J0, n− 1K. Let S ⊂ J0, n− 1K. Its associated
simple module SS is the one-dimensional module generated by εS with the following
action of generators:

πt · εS =

{
εS if t ∈ S
0 otherwise.

(6.1)

Proof. We apply Theorem 3.3.2 using Lemma 6.1.5.

We will describe the quiver later in Section 6.3.
Recall that we write xω any su�ciently large power of x which becomes idem-

potent, and that the star product of two idempotents is de�ned as e ∗ f = (ef)ω.
This endows the set of idempotents with a structure of a lattice. We now explicitely
describe this lattice:

Proposition 6.1.8. Let S, T ⊂ J0, n− 1K. Then πS ∗ πT = πS∪T .

Proof. First we note that πS ∗πT is inside the parabolic S ∪T . It is enough to show
that it is a zero of this submonoid, and we will conclude by unicity. This is again a
consequence of Lemma 1.3.8.

Corollary 6.1.9. The quotient CR
0
n�rad(CR0

n) is isomorphic to the algebra of the

lattice of the n-dimensionnal cube.

6.2 Indecomposable projective modules

Extending the de�nition from the Hecke monoid, we de�ne its left and right R-
descents sets as:

DR(r) = {0 ≤ i ≤ n− 1 | rπi = r} (resp. DL(r) = {0 ≤ i ≤ n− 1 | πir = r})
(6.2)

Example 6.2.1. Let r = 0423007 ∈ R0
n. We have 0 < 4 ≥ 2 < 3 ≥ 0 ≥ 0 < 7, and

the �rst letter is 0. So DR(r) = {0, 2, 4, 5}
Notation 6.2.2. We choose to represent an element r ∈ R0

n by a ribbon notation the
usual way, with the di�erence that two zeros are vertical and not horizontal: 0

0
and

not 0 0 . This change of convention compared to e.g. [KT97] is due to our choice
of taking the π and not the Ti for generator of the Hecke algebra. As a consequence,
the eigenvalues 0 and 1 are exchanged.
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For example, r = 0423007 is represented by the ribbon
0 4

2 3
0
0 7

Figure 6.1

shows the ribbon together with their associated descent sets. Figure 6.2 depicts the
associated boolean lattice. With this notation we can easily �nd the idempotents

{}
0

{0} {1} {2} {3}

0

0

{0, 1}

0

{0, 2}

0

{0, 3}

{1, 2} {1, 3} {2, 3}

0

0

0

{0, 1, 2}

0

0

{0, 1, 3}

0

{0, 2, 3} {1, 2, 3}

0

0

0

0

{0, 1, 2, 3}

Figure 6.1: R-descent sets for R0
4.
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π3
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0
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0

0

0

0

0

0

0

0

0

Figure 6.2: The lattice of R-descent sets for R0
4.

of each R-descent set.

Proposition 6.2.3. In each R-descent class there is a unique idempotent. It is
obtained by �lling ribbon shape, going through the columns left to right, bottom to
up by numbers 1 to n in this order. Then if 0 is in the descent class, �ll the �rst
column with zeros.

Proof. The existence and the uniqueness come from Corollary 6.1.5. The way to �ll
in comes from Proposition 6.1.2.

Example 6.2.4. Consider the R-descent set {0, 1, 2, 5, 6, 7} in size 8. We show
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below its associated ribbon shape and its idempotent

0
0
0

0
0
0 4 6

5 8
7

.

We now follow the theory of Section 3.3.3, specializing it to the combinatorics of
R0
n.

Proposition 6.2.5. Let r ∈ R0
n. Then:

rAut(r) = 〈πi | i ∈ DR(r)〉 and lAut(r) = 〈πi | i ∈ DL(r)〉. (6.3)

Proof. We do the proof for rAut. The �rst inclusion 〈πi | i ∈ DR(r)〉 ⊆ rAut(r) is
clear.

Let u ∈ rAut(r). So ru = r. Assume that u /∈ 〈πi | i ∈ DR(r)〉. Let πi1 . . . πim
a reduced expression of u. Let j be the smallest index such that ij /∈ DR(r). Then
ru = rπij . . . πim by minimality. Since ij /∈ DR(r), rπij <J r and by J -triviality we
get ru <J r. This contradict the minimality.

From there we deduce the following corollary:

Corollary 6.2.6. Let r ∈ R0
n

rfix(r) = πDR(r) and lfix(r) = πDL(r). (6.4)

Finally, applying Theorem 3.3.6, we get:

Theorem 6.2.7. The indecomposable projective R0
n-modules are indexed by the R-

descents sets and isomorphic to the quotient of the associated R-descent class by the
�ner R-descent classes.

Remark 6.2.8. Contrary to the classical case presented in Section 1.1.5, these
quotients are not intervals of the R-order: in Figure 6.4 here we have two bottom
elements.

6.3 Ext-Quivers

It turns out that the quiver of rook monoids are not di�erent from 0-Hecke monoids
(Theorem 3.3.11):

Theorem 6.3.1. The kernel of the two following algebra morphisms

CH0(Bn)� CR0
n and CR0

n � CH0(An+1) (6.5)

are included in the square radical of their respective domains. As a consequence,
these three algebras share the same quiver.
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Figure 6.3: The R-descent classes {0, 1}, {0, 1, 3}, {2, 3} and {0, 2}.

Proof. Recall that all of these algebras are monoid algebras of J -trivial monoids.
Thanks to [Den+10, Corollary 3.8], their radical is generated by commutators.
Therefore, the following non zero elements: π0π1π0 − π0π1 and π0π1π0 − π1π0 lie
in the radical of each of these three algebras. The �rst map has for kernel the ideal
generated by the relation

π0π1π0 − π0π1π0π1 = (π0π1π0 − π0π1)(π0π1π0 − π1π0)

which thus lies in the square radical. Similarly the kernel of the second map is the
ideal generated by

π1π0π1 − π1π0π1π0 = (π0π1π0 − π1π0)(π0π1π0 − π0π1)

See Figure 3.5 for a picture of a quiver. Except for trivial cases, they are not of
known type so that the representation theory of R0

n starting from n = 3 is wild.
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3004

Figure 6.4: An example of a R-descent class which is not an interval of the R-order.

6.4 Restriction functor to H0
n

We now further examine the links between representations of H0
n and R0

n. Indeed
H0
n is a submonoid of R0

n, thus it acts by multiplication on R0
n. We can see R0

n as
an H0

n-module.
We �rst look at simple modules whose restriction rule is immediate:

Proposition 6.4.1. Let J ⊂ J0, n−1K, with associated simple R0
n-module SJ . Then:

Res
R0

n

H0
n
SJ = SHJ\{0} , (6.6)

where SHI is the simple H0
n-module generated by the parabolic I ⊆ J1, n− 1K.

The rule of induction for simple H0
n-modules to R0

n-modules is otherwise quite
intricate and would be very technical. It would be very similar to what we will do
in section 6.5.1 for the induction of simple modules of R0

n to another R0
m, which is

already very technical.
We now look at indecomposable R0

n-projective modules.

Proposition 6.4.2. Let I ⊂ J1, n − 1K and PH
I the associated indecomposable H0

n-
projective module. Then:

Ind
R0

n

H0
n
PH
I = PI ⊕ PI∪{0} . (6.7)
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Proof. This is a consequence of Proposition 6.4.1 by Frobenius reciprocity (Theo-
rem 3.4.2). Indeed, since the simple module SRJ is the quotient of the indecomposable
projective PR

J by its radical, the multiplicity of PR
J in a projective module P is equal

to dim HomR(P, SRJ ). By Frobenius reciprocity,

MultPR
J

(IndRH P
H
I ) = dim HomR(IndRH P

H
I , S

R
J ) = dim HomH(PH

I ,ResSRJ ) (6.8)

Now, Proposition 6.4.1 says that this is 1 only if I = J \ {0}, otherwise it is 0.

The restriction of projective modules from R0
n to H0

n is much more interesting.
We will show that R0

n-projective modules are still projective when restricted to H0
n,

and that we have a precise combinatorial rule.

De�nition 6.4.3. Let I ⊂ {1, . . . , n} of size k, and σ = i1 . . . in ∈ Sn. We de�ne
ϕI(σ) to be the rook obtained by removing the �rst k entries of σ and inserting zeros
in positions indexed by the elements of I.

We also denote ψ : Rn → Sn the map which takes a rook, put all zeros at the
beginning of the word and replace them by the missing letters in decreasing order.

Example 6.4.4. For instance ϕ{1,3}(14235) = 02035 and ψ(02410) = 53241.

For the next results, we will consider R0
n to be a left H

0
n-module by left multipli-

cation. Thus the action is on values as in De�nition 4.5.1.

Theorem 6.4.5. R0
n is projective over H0

n. As a consequence any R0
n-projective

module remains projective when restricted to H0
n.

Proof. The main remark is that according to De�nition 4.5.1, the left action of πi
for i > 0 on any rook does not change the zeros: they remain at the same positions
and no one are added.

For any I ⊂ J0, n−1K, let CI the set of rooks with zeros in the positions indexed by
I. Since the action of H0

n does not move zeros, we have the following decomposition
in H0

n-modules:

R0
n '

⊕

I⊂J0,n−1K

CI . (6.9)

It is enough to prove that each summand CJ are projective since direct sums of
projective modules are projective.

For such a summand where zeros are in positions i ∈ I, the map ψ of De�ni-
tion 6.4.3 is an injective H0

n-module morphism. Its image is the set of permutations
which start with |I|−1 descents which is a well known projective H0

n-module. Indeed
it is the H0

n-module generated by the element i, i−1, . . . , 2, 1, i+1, i+2, . . . , n. This
element is the maximal element of the parabolic submonoid {π1, . . . πi−1}, hence
idempotent. Consequently it generates a projective modules. This shows that CI is
projective on H0

n.

We now describe explicitely the restriction functor. Recall from Section 3.6 that
the induction product of two indecomposable projective H0

m-Module (resp. H0
n-

Module) PI and PJ is given by PI ? PJ := Indm,n(PI ⊗ PJ) ' PI·J ⊕ PI.J .
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De�nition 6.4.6. Let I be an extended composition of n. A zero-�lling of I is
a ribbon of shape I with boxes either empty, either with 0 inside according to the
following rules:

• In the �rst column, either every box contains 0 if 0 ∈ Des(I), or none other-
wise.

• Outside of the �rst column, if a box contains 0 then there is no box on its left,
and all the boxes below in the same column also contain zeros.

To each of these �llings f we associate a tuple Split(f) of ribbon as follows

• the �rst entry of the tuple is a column whose size is the total number of zeros
in f

• the other entries of the tuple are the (down-right) connected components of I
where the boxes containing a 0 in f are removed.

To each splitting, it therefore makes sense to consider the ?-product
∏

r∈Split(f) Pr.

Example 6.4.7. The following picture shows an extended composition followed by
some of its 0-�llings. There are 3 ∗ 3 ∗ 2 of them.

0
0

0
0

0

0
0

0

0
0

0
0

0
0

0
0
0

0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0

We now consider two particular 0-�llings and show the ribbons appearing in the
associated respective products (the colors are just to show what happens of each
box):

0
0

0
0
0

7→
∏

≈

0
0

0

0

7→
∏

≈

Theorem 6.4.8. The indecomposable projective R0
n-module PR

I associated to an
extended composition I splits as a H0

n-module as

PR
I '

⊕

f

∏

r∈Split(f)

Pr , (6.10)

where the direct sum spans along all the zero-�llings of I, and the product is for the
induction product ?.

Before giving a proof, here is an example.
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Example 6.4.9. This is an exemple of decomposition of a indecomposable projective
R0
n-module into indecomposable projective H0

n-modules. The colors indicate the
di�erent products of zero-�lling. See Figure 6.5.

0 = 0 + 0

0
= + = + + + + + = + + +2 + .

Proof. Let PI be an indecomposable projective R0
n-module and look at it inside the

regular representation. We proceed as in the proof of Theorem 6.4.5: we cut PI
according to the positions of zeros, which comes down to cutting along the zero-
�llings. Indeed the conditions of zero-�llings give us only valid �llings, because they
still have the good descent set. Moreover, we see all of them appearing in the descent
class: for a given zero-�lling f , we �ll the diagram of I column after column, left to
right, down to up, by the entries starting from the number of zeros in the zero-�lling
plus 1 to n. We get a rook of descent set I with zero in the positions given by f .

Let F be a zero-�lling of shape I with i zeros in positions indexed by elements of
D ⊂ J1, nK. Let MD ⊂ R0

n be the associated H0
n-projective indecomposable module.

We consider the restriction ψF :=ψ|MD
. We need to describe the image of ψF . First

they start with i descents including zeros. We consider the connected components
of J1, nK \ I: the letters at these positions are moved to the right by ψF , but keep
their relative order. It is only between the connected components that we can have
either a rise or a descent. Then we are getting a subset from a product associated to
F . And we get them all: take one of them, and �ll it with the same rule as before;
one gets a permutation and then apply ϕI de�ned in 6.4.3 to get an element with
the good descent set and positions of zeros which will be sent by ψF to an element
of the product.

0324

0104

0401

0301

0423

0302

04130214

0403

04020203

0201

0314

0103

0304

0412

0312

0213

0102

0204

π0

π1

π2

π3

1324

3214

3241

4231

1423

4132

24133214

2143

31424123

4321

2314

4213

2134

3412

4312

4213

4312

3124

Figure 6.5: The decomposition of a R0
4-projective module associated to {0, 2} into

H0
4 -projective modules.
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We can be a little more precise:

Proposition 6.4.10. Let PR be an indecomposable projective module of R0
n. Write

PR =
⊕

PH
I its decomposition into indecomposable H0

n-projective modules. Then the
isomorphism of H0

n-module ϕ̃ :
⊕

PH
I → PR is triangular: ϕ̃(e) = ϕI(e) +

∑
e′<e e

′,
with ϕI de�ned in 6.4.3 and I the zero-set linked to PH

I .

Proof. We consider a R0
n indecomposable projective PR, pick a D ⊂ J1, nK and

denote as in the proof of Theorem 6.4.8 the H0
n submodule MD of rooks whose zeros

are in positions indexed by the elements ofD. The setwise map ψ|MD
extends linearly

to an isomorphism to the projective but not necessarily indecomposable permutation
module

∏
r∈Split(f) Pr. Using [Den+10, Theorem 3.11 and Corollary 3.19], we know

that the basis change decomposing this module to its indecomposable component is
uni-triangular. The statement follows by inverting this map.

Example 6.4.11. We know from Example 6.4.9 that there is a module inside

the Figure 6.5, coming from the zero-�lling
0

0 . This H0
n-module is well-known to

have the elements 3214, 4213 and 4312. So ours must contains ϕ{0,2}(3214) = 0104,
ϕ{0,2}(4213) = 0103 and ϕ{0,2}(4312) = 0102. See Figure 6.5.

Remark 6.4.12. As in Proposition 6.4.2 we could use Frobenius reciprocity to
describe the induction of simple modules from H0

n to R0
n. Another method will also

given in the next section.

6.5 Tower of monoids

The goal of this section is to investigate if the chain of submonoids: R0
1 ⊂ R0

2 ⊂
R0

3 ⊂ · · · ⊂ R0
n ⊂ . . . can be endowed with a structure of a tower of monoids 3.4.4.

Proposition 6.5.1. The maps

ρn,m : R0
n × R0

m −→ R0
n+m

π0, . . . πn−1 7−→ π0, . . . πn−1

Pi 7−→ Pi
π1, . . . πn−1 7−→ πn+1, . . . πn+m−1

Pi 7−→ Pi+n

(6.11)

de�nes an associative tower of monoids.

Notation 6.5.2. If a ∈ R0
n and b ∈ R0

m we denote a · b := ρn,m(a, b).
Furthermore, if w a word on nonnegative integers, wn denotes the word w where

all nonzero entries have been increased by n.

Proof. We �rst show that ρn,m are morphisms. Let a ∈ R0
n et b ∈ R0

m. Then, by
relation of commutation and absorption we get ρ(a, b) = ρ(a, 1) · ρ(1, b) = ρ(1, b) ·
ρ(a, 1).

The proof of the associativity rely on the following lemma:
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Lemma 6.5.3. Let a ∈ R0
n and b ∈ R0

m. Then

a · b =

{
ab

n
if 0 /∈ b,

0 . . . 0b
n

otherwise.
(6.12)

Proof. Indeed ρ(a, b) = ρ(a, 1)ρ(1, b). If 0 /∈ b then π0 does not appear in any
reduced expression of b, thus the reduced expressions of a and b contain generators
which do not act on 1n+m on the same positions. Otherwise Pn+1 appear in ρ(1, b),
and since all elements of ρ(1, a) commute with those of ρ(1, b), Pn+1 absorbs all the
ρ(a).

We now can compute explicitely the products (a · b) · c and a · (b · c), do the four
cases whether 0 ∈ B or not and 0 ∈ C and check associativity.

Remark 6.5.4. The embedding ρ is not injective since ∀a, a′ ∈ R0
n, and b ∈ R0

m

with 0 ∈ b : a · b = a′ · b by Lemma 6.5.3. So we do not have a tower of monoid in
the sense of [BL09].

Remark 6.5.5. To map R0
n × R0

m to R0
n+m, Remark 4.2.3 prevents us to use the

trivial map (a, b) 7→ ab
n
: it is not a monoid morphism.

6.5.1 Simple modules

The goal of this section is to describe the restriction and induction rule of the tower of
the 0-rook monoids. Recall from Section 3.6 that for H0

n this gives the multiplication
and comultiplication rule of the Hopf algebra of quasi-symmetric functions in the
fundamental basis.

Restriction of simples modules

Theorem 6.5.6. Let J ⊂ J0, n+m− 1K a parabolic of R0
n+m. Then:

Res
R0

n+m

R0
n×R0

m
SJ =

{
SJ∩J0,n−1K ⊗ SJ∩Jn+1,n+m−1K if J ∩ J0, nK 6= J0, nK
SJ0,n−1K ⊗ S{0}∪J\J0,nK otherwise.

(6.13)

where X := {x− n | x ∈ X}.

Proof. We know that SJ = 〈εJ〉, and that εJ ·πi = εJ if i ∈ J , and 0 otherwise. The
action of R0

n ⊗ 1m on SJ gives us SJ∩J0,n−1K. The generators 1n ⊗ π1, . . . , 1n ⊗ πm−1

of 1n⊗R0
m act as πn+1, . . . , πn+m−1. It remains only to see how 1n⊗ π0 = Pn+1 acts

on SJ . By Lemma 4.1.4 we have that Pn+1 = π0π1π0π2π1π0 . . . πn . . . π2π1π0. So if
there is 0 ≤ i ≤ n with i /∈ J , εJ · πi = 0 thus εJ · Pn+1 = 0. Otherwise, for all
i ∈ J0, nK, εJ · πi = εJ and so εJ · Pn+1 = εJ .
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Induction of simple modules We can compute the induction of simple module
thanks to the Theorem 3.4.13, which we reformulate in our context here. The
comparisons are done with theR-order in R0

n, which we described in Theorem 5.1.11.

Theorem 6.5.7. If e ∈ E(R0
n) and f ∈ E(R0

m), then

Ind
R0

n+m

R0
n×R0

m
Se ⊗ Sf = (e · f)R0

n+m�[(R<e · f) + (e ·R<f )]R
0
n+m

, (6.14)

where R<e is the set of elements of R0
n strictly smaller than e, and R<f those of R0

m

strictly smaller than f .

Notation 6.5.8. In Equation 6.14, we will denote by Q(e, f) the right hand side
of the equality. It is a R0

n+m-module. It is also a quotient which is compatible with
the canonical basis. By abuse of language, we will say that an element r ∈ R0

n+m

remains in Q(e, f) and write r ∈ Q(e, f) if r is not send to zero in the quotient.

Our �rst goal is to rephrase Theorem 6.5.7 in a more combinatorial way.

Notation 6.5.9. Until now, we used the notation πI to design the idempotent of the
parabolic submonoid associated to I in R0

n. In order to avoid confusion, we will now
denote it by πI,n. Note that as long as n,m ≥ max I + 1, then πI,n and πI,m have
the same reduced expressions and thus the same action of the �rst min(n,m)-letters
on the identity of size max(n,m).

In the sequel of this section, we �x I ⊆ J0, n − 1K and J ⊆ J0,m − 1K. They
encode the data of two simple modules of R0

n and R0
m respectively, or equivalently

of two idempotents. We denote e :=πI,n and f :=πJ,m these two idempotents.
Before giving the induction of the simple modules, we go for a serie of lemmas.

Lemma 6.5.10. The image of (e, f) ∈ R0
n × R0

m in R0
n+m is the element of R0

n+m

associated to ef
n
if 0 /∈ J and to 0 . . . 0f

n
otherwise. In particular we have the

following cases:

• If J = ∅ then e · f = e12 . . .m
n

= πI,n+m.

• If I = ∅ and 0 /∈ J then e · f = 1 . . . nf
n

= π
J
n
,n+m

.

• If I = J0, n− 1K and 0 ∈ J then e · f = 0 . . . 0f
n

= π(
J0,nK∪J\{0}n

)
,n+m

.

Proof. It is straightforward application of Lemma 6.5.3.

Remark 6.5.11. Note that because of the form of idempotents, 0 /∈ I ⇔ 0 /∈ e.

Lemma 6.5.12. Assume that 0 ∈ J and I 6= J0, n− 1K. Then Q(e, f) = 0.

Proof. Since 0 ∈ J then e · f = 0 . . . 0f according to Lemma 6.5.10. On the other
hand, let j ∈ J0, n− 1K \ I. Then in Q(e, f) we are doing a quotient by (e · πj) · 1m
which is above e · f by Theorem 5.1.11. Hence Q(e, f) = 0.

We are now considering cases where 0 /∈ J :
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Lemma 6.5.13. Assume 0 /∈ J . Let r be an element of R0
n+m which does not vanish

in the quotient Q(e, f). Let a and b be two letters of r, not both zero. If a and b
appear both in e (resp. a − n and b − n appear both in f) then they appear in the
same order as in e (resp. f). Furthermore, all the nonzero letters of e appear in r.
Finally, if fi + n is not in r then fj + n is not in r, for all j < i.

Example 6.5.14. If e = 023 and f = 213 then neither 042356, or 005463, or
025306 remain in Q(e, f), respectively because of the �rst, second or third rule.

Proof. For the �rst point, it is su�cient to do the proof when the two letters are
consecutive ones in e. Let r ∈ Q(e, f). So r ≤ ef

n
. Assume e = LabR with a and b

non both zero, and both present in r.
Suppose �rst that a > b, so that a 6= 0 and b 6= 0 since 0 /∈ J . Since r < ef

n
we

deduce that a is before b in r.
Otherwise, a < b. Let i := `(L) be the position of a in e. So i /∈ I. Then e ·πi < e.

Also Inv(e · πi) = Inv(e) ∪ {(b, a)}. Thus, Inv((e · πi)f
n
) = Inv(ef

n
) ∪ {(b, a)} while

(b, a) /∈ Inv(ef
n
). Since r < ef

n
we get {(ri, rj) ∈ Inv(ef

n
) | ri ∈ r} ⊆ Inv(r).

Assume that b is left to a in r. In this case we have {(ri, rj) ∈ Inv(ef
n
)∪{(b, a)} | ri ∈

r} ⊆ Inv(r), so r < (e · πi)f
n
, the latter being an element by which we quotient in

Q(e, f). It is a contradiction.

The proof is the same when a and b both come from f once decreased. The only
change are that the both letter are nonzero, and that we have to decrease by n.

Let us prove the second point by contradiction, assuming that a nonzero letter
b in e is not in r. We �rst show that the �rst nonzero letter of e, a is not either.
Assume also that a ∈ r. If a > b then e has descent (a, b). So r must also have it
since r < ef

n
and a ∈ r, but it is not the case since b /∈ r, which is a contradiction.

Otherwise a < b. Since a ∈ r and b /∈ r, and that the generator π0 can only delete
the �rst letter, r is in the R-order between ef

n
and a rook r′ in which a is there

and b is in �rst position. Because of the �rst point, this element r′ has been sent to
0 in the quotient, and thus r which is below as well. So r = 0, contradiction. We
can note that the latter arguments give also a proof of the third point just adapting
some points.

Thus if there is a nonzero letter of e lacking in r, the �rst one at least is lacking.
We now look at e. If 0 /∈ I, e begins with a. Then q := (e · π0)f

n
is an element by

which we quotient. We have r < ef
n
and a /∈ r so r < q, thus r = 0, contradiction.

Otherwise 0 ∈ I so e = 0 . . . 0a . . . . We denote by i the position of the last 0 and
q := (e · πi)f

n
is an element by which we quotient. Since a /∈ r, r is in the R-order

between ef
n
and a rook r′ in which a is there in �rst position. In particular in r, we

have a 0 right to a. So r < r′ < ef
n
and (a, 0) ∈ Inv(r′), so r′ < q and thus r = 0,

contradiction.

Remark 6.5.15. Let K ⊂ J1, n− 1K and g ∈ R0
n the associated idempotent (hence

0 /∈ g). We write g = g1g2 . . . gn. Because of Proposition 6.2.3 we have that if g1 = `
then g2 = ` − 1, g3 = ` − 2, . . . , g`−1 = 2 and g` = 1. Furthermore ` /∈ K (since
g`+1 > g`) and ` = min (J1, n− 1K \ I).
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We are now in position to state give the formula giving the induction of simple
modules. Recall that � denote the so-called shu�e product introduced in Exam-
ple 1.7.2.

Theorem 6.5.16. For n,m ∈ N, we �x I ⊆ J0, n−1K and J ⊆ J0,m−1K. Denoting
e :=πI,n and f :=πJ,m, the induction of simple modules SI = Se and SJ = Sf is
given by

1. If 0 ∈ J and I 6= J0, n− 1K then Ind
R0

n+m

R0
n×R0

m
SI ⊗ SJ = 0.

2. If 0 ∈ J and I = J0, n− 1K then Ind
R0

n+m

R0
n×R0

m
SI ⊗ SJ =

〈
ef

n
〉
' SJ0,nK∪J\{0}n

3. If 0 /∈ J and I = J0, n− 1K then Ind
R0

n+m

R0
n×R0

m
SI ⊗ SJ =

〈
0 . . . 0� f

n
〉
.

4. If 0 /∈ J and 0 ∈ I, I 6= J0, n − 1K, let ` be the �rst letter of f = f1 . . . fm.
Then:

Ind
R0

n+m

R0
n×R0

m
SI ⊗ SJ =

〈
e� f

n
+ 0e� f2 . . . fm

n
+ 00e� f3 . . . fm

n
+

. . . + 0 . . . 0e� f`+1 . . . fm
n
〉
, (6.15)

where the last term begins with ` letters 0.

5. If 0 /∈ J and 0 /∈ I, let ` be the �rst letter of f = f1 . . . fm. Then

Ind
R0

n+m

R0
n×R0

m
SI ⊗ SJ =

〈
e� f

n
+ 0� e� f2 . . . fm

n
+ 00� e� f3 . . . fm

n
+

. . . + 0 . . . 0� e� f`+1 . . . fm
n
〉
, (6.16)

where the last term begins with ` letters 0.

Proof. 1. This case follows directly from Lemma 6.5.12.

2. Let K := J0, nK ∪ J \ {0}n. Then by Lemma 6.5.10,e · f = πK,n+m. Since I =
J0, n− 1K then

Q(e, f) = πK,n+mR
0
n+m�[(0 . . . 0 ·R<f )]R

0
n+m

. (6.17)

On the other hand, let g :=πK,n+m be the idempotent associated toK in R0
n+m.

By Theorem 6.5.7,

Sg = Ind
R0

n+m

1×R0
n+m

1⊗ Sg = gR0
n+m�[R<g]R

0
n+m

. (6.18)

But since I = J0, n− 1K on has R<g = 0 . . . 0 ·R<f , so that Q(e, f) ' Sg.
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3. Since I = J0, n − 1K then e = 0 . . . 0 and e · f = 0 . . . 0f . Let r ∈ 0 . . . 0� f
n
.

Clearly r < e · f . We know that r has the same number of zeros than e · f and
also that its inversions are those of f increased by n. We deduce that r is not
below e(f · πj)

n
in the R-order for j ∈ J0,m− 1K \ J . Thus r ∈ Q(e, f).

Conversely let r ∈ Q(e, f). Since 0 /∈ J then r 6< e(f · π0)
n
. So the �rst letter

of f increased by n is in r. By Lemma 6.5.13 all the letters of f increased
by n are in r. Again by Lemma 6.5.13 they are in the same order, and so
r ∈ 0 . . . 0� f

n
.

4. Denote Sef := e � f
n

+ 0e � f2 . . . fm
n

+ · · · + 0 . . . 0e � f`+1 . . . fm
n
and let

r ∈ Sef . The same argument than the third point shows that r ∈ Q(e, f).

Conversely, let r ∈ Q(e, f). Since 0 ∈ I (or equivalently, 0 ∈ e) Lemma 6.5.13
tells us that the eventual new zeros of r are before the nonzero letters of e.
By the same lemma, the letters of f disappear in the same order than in f . So
that we have proven:

r ∈ Tef := e� f
n

+ 0e� f2 . . . fm
n

+ · · ·+ 0 . . . 0e� fm
n

+ 0 . . . 0e. (6.19)

We recall that ` = f1. We have to show that elements of Tef \ Sef are not
in Q(e, f). A �rst immediate remark is that all these elements are below
t = 0 . . . 0ef`+2 . . . fm

n
. But t < ef1 . . . f`−1f`+1f`f`+2 . . . fm = (e · (f · π`)).

Thus, since ` /∈ J (by Remark 6.5.15), t = 0 in Q(e, f), and so all Tef \ Sef
also, hence the result.

5. Denote Sef := e� f
n

+ 0� e� f2 . . . fm
n

+ · · ·+ 0 . . . 0� e� f`+1 . . . fm
n
. Let

r ∈ Sef . The argument of the third point proves that r ∈ Q(e, f).

Conversely, for r ∈ Q(e, f), the argument of the fourth point shows that
r ∈ Sef .

Recall that the corresponding rule forH0
n is the multiplication of the fundamental

basis (FI) of quasi-symmetric function [KT97]. To get the analogue of the product
of quasi-symmetric functions, one has to use the Theorem 6.5.16 and then get the
projection of the induced module in the Grothendieck ring. This amounts to compute
the R-descent of every rook vector appearing in the sum Q(e, f) according to Jordan-
Hölder's theorem (Theorem 3.2.6).

Example 6.5.17. If n = 2, m = 3, I = {0, 1} and J = {1}. Then e = 00 and
f = 213. Theorem 6.5.16 says that

Q(e, f) = 〈00� 435〉 = 〈00435,04035,04305,04350,40035,40305,40350,43005,43050,43500〉.

This gives the following R-descent classes:

Element 00435 04035 04305 04350 40035 40305 40350 43005 43050 43500
Descents 0,1,3 0,2 0,2,3 0,2,4 1,2 1,3 1,4 1,2,3 1,2,4 1,3,4

Finally: IndS2
{0,1} × S3

{1} = S5
{0,1,3} + S5

{0,2} + S5
{0,2,3} + S5

{0,2,4} + S5
{1,2} + S5

{1,3}

+ S5
{1,4} + S5

{1,2,3} + S5
{1,2,4} + S5

{1,3,4}
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Example 6.5.18. If n = 3, m = 2, I = {0, 1} and J = {1}. Then e = 003 and
f = 21. Theorem 6.5.16 says that

Q(e, f) = 〈003� 21 + 0003� 1 + 00003〉
= 〈{00321,00231,00213,02031,02013,02103,20031,20013,20103,21003}
∪ {00031,00013,00103,01003,10003} ∪ {00003}〉

Then:
Element 00321 00231 00213 02031 02013 02103 20031 20013
Descents 0,1,3,4 0,1,4 0,1,3 0,2,4 0,2 0,2,3 1,2,4 1,2

Element 20103 21003 00031 00013 00103 01003 10003 00003
Descents 1,3 1,2,3 0,1,2,4 0,1,2 0,1,3 0,2,3 1,2,3 0,1,2,3

IndS3
{0,1}×S2

{1} = S5
{0,1,3,4}+S5

{0,1,4}+2S5
{0,1,3}+S5

{0,2,4}+S5
{0,2}+2S5

{0,2,3}+S5
{1,2,4}

+ S5
{1,2} + S5

{1,3} + S5
{1,2} + S5

{0,1,2,4} + S5
{0,1,2} + 2S5

{1,2,3} + S5
{0,1,2,3}

This de�nes the left (resp. right) dual branching graph, where the arrows I 7→ J
are labelled by the multiplicity of SJ in the induction of SI along the morphism ρ1,n

(resp. ρn,1). The beginning of those two graphs are illustrated in Figures 6.6 and
6.7.

0

0 0

00 0

0
0

0
00

0

0
0

0
0

0
0
0

0
0
0

0
0
0
0

∅
1

2

3

4

5

6

7

Figure 6.6: The left dual branching graph of R0
n.

Hopf algebra On the contrary to H0
n, we do not get a Hopf algebra. Indeed, the

following diagram that express the compatibility of the product with the co-product
does not commute:

R0
a+b ×R0

c+d
Ind−→ R0

a+b+c+d

R
es
×

R
es

←
− R

es
−→

R0
a ×R0

b ×R0
c ×R0

d
Ind× Ind−→ R0

a+c ×R0
b+d



 Chapter 6 � Representation theory of the 0-Rook monoid R0
n

0

0 0

0 00

0
0

0
00

0

0
0

0
0

0
0
0

0
0
0

0
0
0
0

∅

1

2

Figure 6.7: The right dual branching graph of R0
n.

Here is a counter example: Using Theorem 6.5.16, we get Res
R0

3

R0
1×R0

2
S3
{0,1} = S1

{0} ⊗
S2
{0} and Res

R0
2

R0
1×R0

1
S2
{1} = S1

{} ⊗ S1
{}. Then

Ind× Ind
(
Res×ResS3

{0,1} ⊗ S2
{1}
)

= Ind(S1
{0} ⊗ S1

{})⊗ Ind(S2
{0} ⊗ S1

{})

= (S2
{0} + S2

{1})⊗ (S3
{0} + S3

{0,1} + S3
{0,2} + S3

{1})
(6.20)

Hence this sum has 8 elements, with multiplicity. On the other hand, we saw in
Example 6.5.18 that IndS3

{0,1}×S2
{1} is a sum of 16 elements (with multiplicity) and

the Theorem 6.5.6 shows that the multiplicity does not change by restriction. Hence
the result is false.

Induction with H0
n One can wonder what would happen if we rather consider

the induction and restriction along R0
n×H0

m → Rm
n+m. It is not a tower of monoids,

but the morphisms ρ̃n,m := (ρn,m)|R0
n×H0

m
are injective. We just give the result of the

induction of simple modules:

Theorem 6.5.19. For n,m ∈ N, let I ⊆ J0, n − 1K and J ⊆ J1,m − 1K. Denoting
e :=πI,n ∈ R0

n and f :=πJ,m ∈ H0
m, the induction of simple modules SI = Se and

SJ = Sf is given by

1. If 0 ∈ I, let ` be the �rst letter of f = f1 . . . fm. Then:

Ind
R0

n+m

R0
n×H0

m
SI ⊗ SJ =

〈
e� f

n
+ 0e� f2 . . . fm

n
+ 00e� f3 . . . fm

n
+

. . . + 0 . . . 0e� f`+1 . . . fm
n
〉
, (6.21)

where the last term begins with ` letters 0.

2. If 0 /∈ I, let ` be the �rst letter of f = f1 . . . fm. Then



� 6.5 � Tower of monoids 

Ind
R0

n+m

R0
n×H0

m
SI ⊗ SJ =

〈
e� f

n
+ 0� e� f2 . . . fm

n
+ 00� e� f3 . . . fm

n
+

. . . + 0 . . . 0� e� f`+1 . . . fm
n
〉
, (6.22)

where the last term begins with ` letters 0.

Proof. This is a consequence of Theorem 6.5.16.

6.5.2 Projective indecomposable modules

Restriction of indecomposable projective modules In order to get a co-
product on the Grothendieck ring of projective modules, K0, we need that R0

m+n

is projective over R0
m × R0

n. Unfortunately, this is not the case. We will moreover
give counterexamples to the fact that R0

n is projective over R0
n−1 for both embed-

ding ρn−1,1 and ρ1,n−1. This forbids to have any analogues of branching graphs for
projective modules.

Let us take P{0,2,3}. We want to restrict this projective indecomposable module
of R0

4 to R0
2 × R0

2. In Figure 6.8 we have on the left the module P 4
{0,2,3} where we

02100300

0420

0410

0400

0321

0320

0310

0432

0431

0430

0100

0200

0421

π0

π1

π3

P3

02⊗ 43

01⊗ 43

01⊗ 40

01⊗ 30

02⊗ 40

02⊗ 30

π0

π1

π3

P3

Figure 6.8: First counterexample for the restriction of projective modules.

deleted the arrows of π2 and showed the action of P3. Here we see that P3 has a
stable subspace of dimension 1. On the right we represent what would be a necessary
part of the decomposition of P 4

{0,2,3}, that is P
2
{0} ⊗ P 2

{1}. Here we see that P3 (that
is the π0 of the right R0

2 according to the embedding 6.5.1) as a stable subspace of
dimension 2. Hence it is impossible to cut the left one to get a sum of projective
indecomposable modules since the right one must be there and can not be.

We give now two counterexamples which show that it does not work also for the
restriction along both embeddings ρn−1,1 and ρ1,n−1. On the left of Figure 6.9 we
have the projective module P 4

{2}. We see that no element of this module has two
zeros, hence P2 send every element to zero. In the middle of the �gure we have
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1302

3401

1304

2304

2301

1423

3412

3402

1324

2413

2403

2401

2314

12041403

12031402

π0
π1
π2
π3
P2

1302

3401

1304

2304

2301

1423

3412

3402

1324

2413

2403

2401

2314

12041403

12031402

π0
π1
π2
π3
P2

1302

3401

1304

2304
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1423

3412

3402

1324

2413

2403

2401

2314

12041403

12031402

π0
π1
π2
π3
P2

Figure 6.9: Second counterexample for the restriction of projective modules.

the same module where we forgot the action of π3, that is we are looking at the
restriction R0

4 → R0
3 ⊗ R0

1. In the left one we forgot the action of both π0 and
π1 but put the action of P2 (none here): we are looking at the restriction along
R0

4 → R0
1 ⊗R0

3. If the middle and right modules were projective, these �gures could
be cut as projective modules of R0

3. We proceed step by step on the middle one.
First we recognise the �rst chain of �ve elements which is P 3

{2}. Then the element
1423 is P 3

{}. All the cycles below with element on top 2413 is P 3
{1}. The element 1203

is again P 3
{}. But the last two elements do not correspond to any projective modules

of R0
3 (it should correspond to P 3

{2} since 1302 only has the loop of π2, which is not
the case).

We proceed the same way for the right module. We immediatly have a contra-
diction with the �rst element which should generate P 3

{1} (be careful of the labels!)
which is not the case.

As a conclusion of this paragraph, since we do not have the restriction of inde-
composable projective modules, we will not be able to have a tower of monoids as
for the case of H0

n to get NCSF and QSym (Section 3.6).

Induction of indecomposable projective modules For this one we can use
Frobenius reciprocity as we did in Proposition 6.4.2, using Theorem 6.5.6:

Theorem 6.5.20. Let I ⊂ J0, n− 1K and J ⊂ J0,m− 1K. Then

Ind
R0

n+m

R0
n×R0

m
PI ⊗ PJ =





P
I∪Jn ⊕ PI∪{n}∪Jn if 0 /∈ J
PJ0,nK∪J\{0}n if 0 ∈ J and I = J0, n− 1K

0 otherwise.

.

Proof. We reason as in the proof of Proposition 6.4.2, using Frobenius reciprocity:

HomR0
n+m

(
Ind

R0
n+m

R0
n×R0

m
PI ⊗ PJ , SK

)
= HomR0

n⊗R0
m

(
PI ⊗ PJ ,Res

R0
n+m

R0
n×R0

m
SK

)
.

(6.23)
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We are looking for sets K ⊂ J0, n + m − 1K such that the simple R0
n+m-module

SK restricts to SI ⊗ SJ over R0
n × R0

m. If 0 /∈ J then K ∩ J0, n − 1K = I and
K ∩ Jn+ 1, n+m− 1K = J

n
. We conclude considering the two cases whether n ∈ K

or not. On the contrary, if 0 ∈ J then we are in the second case of Theorem 6.5.6.
So either K ∩ J0, nK = J0, nK that is I = J0, n − 1K, and we have the second case,
either it is wrong and in this case no restriction can be obtained.

As we have seen, the natural tower of monoids structure of (R0
n)n∈N described

here does not have a very nice representation theory. However, this is not the only
tower structure, and they may be nice tower structure on their algebras involving
linear combination.

6.6 Tables

Decomposition functor We give the decomposition functor from projective R0
n-

modules into H0
n-modules. They where computed according to Theorem 6.4.8.

PR
(1) ' P(1) PR

(0,1) ' P(1)

PR
(2) ' P(2) PR

(0,2) ' P(1,1) + P(2)

PR
(1,1) ' 2P(1,1) + P(2) PR

(0,1,1) ' P(1,1)

PR
(3) ' P(3) PR

(0,3) ' P(1,2) + P(3)

PR
(2,1) ' P(1,2) + P(2,1) + P(3) PR

(0,2,1) ' 2P(1,1,1) + P(1,2) + P(2,1)

PR
(1,2) ' P(1,1,1) + 2P(1,2) + P(2,1) + P(3) PR

(0,1,2) ' P(1,1,1) + P(1,2)

PR
(1,1,1) ' 3P(1,1,1) + P(1,2) + P(2,1) PR

(0,1,1,1) ' P(1,1,1)

PR
(4) ' P(4)

PR
(0,4) ' P(1,3) + P(4)

PR
(3,1) ' P(1,3) + P(3,1) + P(4)

PR
(0,3,1) ' P(1,1,2) + P(1,2,1) + P(1,3) + P(3,1)

PR
(2,2) ' P(1,2,1) + P(1,3) + P(2,2) + P(3,1) + P(4)

PR
(0,2,2) ' P(1,1,1,1) + 2P(1,1,2) + P(1,2,1) + P(1,3) + P(2,2)

PR
(2,1,1) ' P(1,1,2) + P(1,2,1) + P(1,3) + P(2,1,1) + P(3,1)

PR
(0,2,1,1) ' 3P(1,1,1,1) + P(1,1,2) + P(1,2,1) + P(2,1,1)

PR
(1,3) ' P(1,1,2) + 2P(1,3) + P(2,2) + P(4)

PR
(0,1,3) ' P(1,1,2) + P(1,3)

PR
(1,2,1) ' 2P(1,1,1,1) + 2P(1,1,2) + 3P(1,2,1) + P(1,3) + P(2,1,1) + P(2,2) + P(3,1)

PR
(0,1,2,1) ' 2P(1,1,1,1) + P(1,1,2) + P(1,2,1)

PR
(1,1,2) ' 2P(1,1,1,1) + 3P(1,1,2) + P(1,2,1) + P(1,3) + P(2,1,1) + P(2,2)
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PR
(0,1,1,2) ' P(1,1,1,1) + P(1,1,2)

PR
(1,1,1,1) ' 4P(1,1,1,1) + P(1,1,2) + P(1,2,1) + P(2,1,1)

PR
(0,1,1,1,1) ' P(1,1,1,1)

Cartan matrices We show below the �rst Cartan matrices of the 0-rook monoids
Rn for n = 2, 3, 4, 5. The column on the left shows the associated idempotents.

12
02
21
00

(
1 . . .
. 1 1 .
. 1 2 .
. . . 1

) 123
023
213
003
132
032
321
000




1 . . . . . . .
. 1 1 . 1 . . .
. 1 3 . 2 1 1 .
. . . 1 . 1 1 .
. 1 2 . 2 . . .
. . 1 1 . 2 2 .
. . 1 1 . 2 3 .
. . . . . . . 1




1234
0234
2134
0034
1324
0324
3214
0004
1243
0243
2143
0043
1432
0432
4321
0000




1 . . . . . . . . . . . . . . .
. 1 1 . 1 . . . 1 . . . . . . .
. 1 3 . 3 1 1 . 2 1 2 . 1 . . .
. . . 1 . 1 1 . . 1 1 . 1 . . .
. 1 3 . 4 1 1 . 2 1 3 . 1 . . .
. . 1 1 1 3 3 . . 2 4 1 2 1 1 .
. . 1 1 1 3 5 . . 2 6 1 3 2 2 .
. . . . . . . 1 . . . 1 . 1 1 .
. 1 2 . 2 . . . 2 . . . . . . .
. . 1 1 1 2 2 . . 2 3 . 2 . . .
. . 2 1 3 4 6 . . 3 9 1 4 2 2 .
. . . . . 1 1 1 . . 1 2 . 2 2 .
. . 1 1 1 2 3 . . 2 4 . 3 . . .
. . . . . 1 2 1 . . 2 2 . 3 3 .
. . . . . 1 2 1 . . 2 2 . 3 4 .
. . . . . . . . . . . . . . . 1




12345
02345
21345
00345
13245
03245
32145
00045
12435
02435
21435
00435
14325
04325
43215
00005
12354
02354
21354
00354
13254
03254
32154
00054
12543
02543
21543
00543
15432
05432
54321
00000




1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 1 1 . 1 . . . 1 . . . . . . . 1 . . . . . . . . . . . . . . .
. 1 3 . 3 1 1 . 3 1 2 . 1 . . . 2 1 2 . 2 . . . 1 . . . . . . .
. . . 1 . 1 1 . . 1 1 . 1 . . . . 1 1 . 1 . . . 1 . . . . . . .
. 1 3 . 5 1 1 . 4 2 5 . 2 . . . 2 1 4 . 4 1 1 . 1 . 1 . . . . .
. . 1 1 1 3 3 . 1 3 5 1 3 1 1 . . 2 4 1 4 2 2 . 2 1 2 . 1 . . .
. . 1 1 1 3 5 . 1 3 8 1 5 2 2 . . 2 6 1 6 3 4 . 3 2 4 . 2 . . .
. . . . . . . 1 . . . 1 . 1 1 . . . . 1 . 1 1 . . 1 1 . 1 . . .
. 1 3 . 4 1 1 . 4 1 3 . 1 . . . 2 1 3 . 3 . . . 1 . . . . . . .
. . 1 1 2 3 3 . 1 4 7 1 4 1 1 . . 2 5 1 5 3 3 . 2 1 3 . 1 . . .
. . 2 1 5 5 8 . 3 7 21 2 11 5 5 . . 3 13 2 14 9 13 . 4 4 12 1 4 1 1 .
. . . . . 1 1 1 . 1 2 3 1 3 3 . . . 1 2 1 4 4 1 . 2 4 1 2 1 1 .
. . 1 1 2 3 5 . 1 4 11 1 7 2 2 . . 2 7 1 8 4 6 . 3 2 6 . 2 . . .
. . . . . 1 2 1 . 1 5 3 2 5 5 . . . 2 2 2 6 8 1 . 3 7 2 3 2 2 .
. . . . . 1 2 1 . 1 5 3 2 5 7 . . . 2 2 2 6 10 1 . 3 9 2 4 3 3 .
. . . . . . . . . . . . . . . 1 . . . . . . . 1 . . . 1 . 1 1 .
. 1 2 . 2 . . . 2 . . . . . . . 2 . . . . . . . . . . . . . . .
. . 1 1 1 2 2 . 1 2 3 . 2 . . . . 2 3 . 3 . . . 2 . . . . . . .
. . 2 1 4 4 6 . 3 5 13 1 7 2 2 . . 3 10 1 10 4 5 . 4 2 5 . 2 . . .
. . . . . 1 1 1 . 1 2 2 1 2 2 . . . 1 2 1 3 3 . . 2 3 . 2 . . .
. . 2 1 4 4 6 . 3 5 14 1 8 2 2 . . 3 10 1 11 4 6 . 4 2 6 . 2 . . .
. . . . 1 2 3 1 . 3 9 4 4 6 6 . . . 4 3 4 9 11 1 . 4 10 2 4 2 2 .
. . . . 1 2 4 1 . 3 13 4 6 8 10 . . . 5 3 6 11 18 1 . 5 16 3 6 4 4 .
. . . . . . . . . . . 1 . 1 1 1 . . . . . 1 1 2 . . 1 2 . 2 2 .
. . 1 1 1 2 3 . 1 2 4 . 3 . . . . 2 4 . 4 . . . 3 . . . . . . .
. . . . . 1 2 1 . 1 4 2 2 3 3 . . . 2 2 2 4 5 . . 3 5 . 3 . . .
. . . . 1 2 4 1 . 3 12 4 6 7 9 . . . 5 3 6 10 16 1 . 5 15 2 6 3 3 .
. . . . . . . . . . 1 1 . 2 2 1 . . . . . 2 3 2 . . 2 3 . 3 3 .
. . . . . 1 2 1 . 1 4 2 2 3 4 . . . 2 2 2 4 6 . . 3 6 . 4 . . .
. . . . . . . . . . 1 1 . 2 3 1 . . . . . 2 4 2 . . 3 3 . 4 4 .
. . . . . . . . . . 1 1 . 2 3 1 . . . . . 2 4 2 . . 3 3 . 4 5 .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1



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Introduction

This part is based upon an article with F. Hivert [GH18a] and is the sequel of Part II
(that is [GH18b]). In Chapter 2 we introduced as a special case of Coxeter groups the
Weyl groups that is crystallographic Coxeter groups de�ned as Coxeter group which
stabilize a lattice. Weyl groups appear in many parts of algebra such as Lie algebra
theory or linear algebraic group theory . They are classi�ed by Cartan type T and
denoted by W (T ) [Hum75]. In the latter theory they are de�ned as the quotient of
a normalizer of a maximal torus in an algebraic group by this torus (Section 2.2.4).
Linear algebraic monoid theory mainly developed by Putcha, Renner and Solomon
has deep connections with algebraic group theory. In particular, the Renner monoid
[Ren05] plays the role that the Weyl group does in linear algebraic group theory.
These are originally de�ned to be the quotient of the completion of the normalizer
of a maximal torus of a Borel subgroup by this subgroup in a regular irreducible
algebraic monoid with a zero element. We denote them by R(T ). In [God09] E.
Godelle found out a presentation of these monoids for a generic Weyl type as we
have for Coxeter groups. Unfortunately when he gave the precise presentation of
type B and D he happened to forget some relations as we checked by computer
programming, see Section 8.5.

One purpose of this part is hence to give the presentation of the Renner monoids
in type B and D, but in a di�erent way than in Godelle's work. His work was very
algebraic; we will be more combinatorial and geometric. For this purpose, we try
to adopt the double point of view on Coxeter groups as simultaneously re�ection
groups and groups given by a presentation. This will enable us not only to give
correct presentations but also to give an e�ective proof with some explicit algorithms
(Algorithms 7.2.13 and 7.2.32) and explicit decomposition and reduced expressions.

The Renner monoid of type A is the rook monoid introduced in Section 1.5
and studied in Part II. Recall from Section 2.4.3 that Solomon [Sol04] de�ned a
deformation of this monoid denoted In(q). In Part II we de�ned a rook monoid at
q = 0 �tting the following picture:

Sn
q=1←− Hn(q)

q=0−→ H0
n

↪→ ↪→ ↪→

Rn
q=1←− In(q)

q=0−→ R0
n

189





The main goal for this part is hence to de�ne a 0-Renner monoid in type B and
D, denoted by R0

` (T ) for T ∈ {B,D}, so that we get the following diagram:

W (T ) ←→ H0
n(T )↪→ ↪→

Rn(T ) = W (T ) ←→ R0
n(T )

In this diagram the horizontal arrows are (setwise) bijections, while the vertical ones
are inclusions of monoids.

In Chapter 7 we construct an explicit way to de�ne the elements of the Renner
monoids of type B and D as some special rook vectors. We give two generating
systems for these monoids (De�nitions 7.2.1 and 7.2.18). We then give a condition
for a rook vector to be an element of the Renner monoids of type B and D (De�-
nitions 7.2.5 and 7.2.20). Using explicit algorithms (Algorithms 7.2.13 and 7.2.32)
we show that these conditions are indeed necessary and su�cient (Theorems 7.2.14
and 7.2.33). These characterizations allow to reprove in a short combinatorial way
the enumeration results of Z. Li, Z. Li and Y. Cao [LLC06] (Corollary 7.2.15 and
7.2.34).

In Chapter 8 we go on de�ning the 0-Renner monoid of type B and D. After
some combinatorial descriptions of 0-Hecke monoid of type B and D (Section 8.1) we
introduce the key notion of grassmannian words (De�nition 8.2.1) which are elements
with exactly one descent (Proposition 8.2.3). In order to �nd them we will introduce
the notion of grid representation, which is a visual tool to compute them, in Coxeter
type A (De�nition 8.2.4), B (De�nition 8.2.9) and D (De�nition 8.2.17). Then we
will use these constructions in Sections 8.2.3 and 8.2.4 to give some characterization
for grassmannian words in the Hecke monoids of type B and D and we will �nd
some special bigrassmannian elements (Corollary 8.2.11 and Proposition 8.2.19).

After these combinatorial notions we come back to our �rst objective to de�ne
the 0-Renner monoids of type B and D. We refer to the beginning of Chapter 8 for
a precise description of the strategy and of the results. The idea is �rst to de�ne a
monoid of functions F 0

` (T ) (De�nition 8.3.1 and 8.3.2) and prove that its action on
the corresponding Renner monoid leads to a bijection from F 0

` (T ) to the associated
Renner monoid (Theorem 8.3.9) in the same vein than in type A (Proposition 8.1.1).
Then we introduce the monoidG0

`(T ) (De�nition 8.4.1 and 8.4.22) by a presentation.
Our objective is to prove that F 0

` (T ) ' G0
`(T ) so that we get a presentation and

de�nition by action of our 0-Renner monoids (Theorems 8.4.17 and 8.4.41). For
this purpose, the results over grassmannian elements enable us to get a canonical
reduced expression for every element of the monoids R0

` (T ) and R`(T ).
Finally we look at some properties of the monoid as we did in type A in Chap-

ters 5 and 6. We get that the monoids R0
` (T ) are J -trivial and use the theory devel-

opped by T. Denton, F. Hivert, A. Schilling and N. Thiery (Section 3.3) to study the
idempotents (Propositions 9.2.6 and 9.2.15) to deduce the simple modules (Theo-
rems 9.2.7 and 9.2.16) and projective indecomposables modules (Proposition 9.2.21).
We also prove the projectivity of R0

` (T ) over H0
` (T ) as in type A (Theorem 9.2.24)

and give the result for the Ext-quivers (Theorem 9.2.25).



Chapter 7
Renner monoids

7.1 De�nition

As explained in the introduction the Renner monoid is the quotient of the completion
of the normalizer of a Borel subgroup by this subgroup in a regular irreducible alge-
braic monoid with a zero element, and denoted by R(T ). In [God09], Godelle gave
the following presentation. We have already seen the Relations COX1 and COX2.
The next three Relations, TYM1, TYM2 and TYM3, use new elements in a set
Λ0 which is called a cross section lattice [God09, De�nition 1.12]. We refer to this
article for precise de�nitions in order to understand the next de�nition. However it
is not necessary as we will only use this de�nition as a starting point for our objects.

De�nition 7.1.1. [God09, Theorem 0.1] Let T be a Weyl Type with associated
Dynkin diagram Γ and S the set of its vertices. The Renner Monoid R(T ) admits
the monoid presentation whose generating set is S ∪Λ0 and whose de�ning relations
are:

s2 = 1, s ∈ S; (COX1)

|s, t〉m = |t, s〉m, ({s, t},m) ∈ E(Γ) (COX2)

se = es, e ∈ Λ0, s ∈ λ∗(e); (TYM1)

se = es = e, e ∈ Λ0, s ∈ λ∗(e); (TYM2)

ewf = e ∧w f, e, f ∈ Λ0, w ∈ G↑(e) ∩D↑(f). (TYM3)

The di�cult and important relation for this part is Relation TYM3. Hence it is
crucial to understand and describe explicitly the sets Λ0, G↑(e) and D↑(f). In Weyl
type A these sets are easy to compute: Λ0 = {P1, . . . , Pn} and G↑(Pi) ∩ D↑(Pj) ={
{1, si} if i = j,

∅ otherwise.
. This yields the following presentation:

Example 7.1.2. In type An the last presentation gives us the monoid generated
by s1, . . . , sn−1, e0, e1, . . . , en−1 with the following relations:

s2
i = 1, 1 ≤ i ≤ n− 1; (A-COX1)
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sisj = sjsi, 1 ≤ i, j ≤ n− 1 and |i− j| ≥ 2; (A-COX2a)

sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 2; (A-COX2b)

ejsi = siej, 1 ≤ i < j ≤ n− 1; (A-TYM1)

ejsi = siej = ej, 0 ≤ j < i ≤ n− 1; (A-TYM2)

e2
i = ei, 0 ≤ i ≤ n− 1; (A-TYM3a)

eisiei = ei−1, 1 ≤ i ≤ n− 1. (A-TYM3b)

We recognize here the presentation of the rook monoid given in De�nition 4.1.1,
with the change ei :=Pn−i. In Section 4.3 we gave an explicit algorithm to obtain a
canonical reduced expression of the elements of this monoid.

In type B andD however it is more di�cult to compute the sets G↑(e) andD↑(f).
This di�culty led to incorrect presentations in [God09, section 2.2 and 2.3]. Indeed
computer experiment showed that these presentations led to in�nite monoids, see
Section 8.5.

Our goal in now to develop a new point of view to give accurate presentation
of R(B) and R(D). But it is not our only purpose: we will describe the Renner
monoids both as a presentation and as acting on some matrices, but also de�ne a
Renner monoid at q = 0, following Part II. Since we do not start from the topological
de�nition, neither the presentation of Godelle, our de�nition of Renner monoids will
be based on the matrix de�nition of these monoids given in [LR03], [Li03b], and
[Li03a], and recalled in [God09]. This will be De�nitions 7.2.1 and 7.2.18.

Since the Renner monoid of type A is the rook monoid, we will also call elements
of the Renner monoid R`(T ) the T -rooks for T ∈ {B,D}.

7.2 B and D-elements, with associated µ-vectors

In all this section, we �x some ` ∈ N. As explained in Section 2.3 we consider the
rook monoid over the set [`, `] := {`, . . . , 1, 1, . . . , `} denoted by R`,`.

7.2.1 Type B

Recall that in Section 2.3.2 we already gave a generating set of B`. We recall this
generating system with some new elements in the following de�nition:

De�nition 7.2.1. In R`,` we de�ne the following elements:

• S0 is the transposition s0 = (1, 1).
• For 1 ≤ i ≤ `− 1, Si is the double transposition sisi.
• For 0 ≤ i ≤ `, Ei is the rook diagonal table with the �rst ` + i entries which
are zeros, and the remaining `− i which are 1s.

We call R`(B) the monoid generated by these elements.

Example 7.2.2. We represent these elements in rook tables. The monoid R3(B) is
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generated by:

S0 S1 S2 E0 E1 E2 E3

1
1

1
1

1
1

1

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1

1 1

Notation 7.2.3. We now extend the de�nition of µ-vectors introduced in Sec-
tion 2.3.2 to elements of R`,`. A µ-vector is a word over letters ∅, `, . . . 1, 1, . . . , ` with
every letter appearing at most once except ∅. This letter ∅ will be called zero, and the
only di�erence with a classical zero is that we have the following order on µ-vectors
letters:

∅ < · · · < 3 < 2 < 1 < 1 < 2 < 3 < . . . (7.1)

Example 7.2.4. The rook r =
1

1
1

1

is denoted by its µ-vector 21∅ | 13∅.

De�nition 7.2.5. We say that the µ-vector r = r` . . . r1 | r1 . . . r` ∈ R`,` obeys the B
condition if the two following conditions hold:

• Centrally antisymmetric: for 1 ≤ i ≤ ` then

{ri, ri} ∈
{
{∅, ∅}, {k, ∅}, {∅, k}, {k, k}

}
, (7.2)

for some k ∈ J1, `K.

• Break all pairs: the µ-vector r has either no letter ∅, or at least ` and at least
one of the two letters i or i is missing for all 1 ≤ i ≤ `.

Example 7.2.6. The following µ-vectors obey the B condition: 132 | 231, 3∅1 |
∅∅∅, 3∅∅ | 21∅. The following ones do not: 321 | 321 because the word is not
antisymmetric, 213 | ∅1∅ because there is too few ∅, �nally 3∅1 | ∅3∅ because the
pair {3, 3} is not broken while there is some ∅ letter.

We recall that 1`,` := ` . . . 321 | 123 . . . ` is the one of S`,` and R`,`. The genera-
tors Si act on µ-vectors on the right like the associated permutations, while the Ei
replace the �rst ` + i letters by ∅. We note that these actions stabilise the B-
condition: if r obeys the B condition, then so do r · Si and r · Ei. Our purpose is
now to get the following result:

Theorem 7.2.7. Let r ∈ R`,` which obey the B condition. There exists an explicit
word s over the generators of R`(B) such that r = 1`,` · s.

In order to prove this theorem we will construct an element s with a three-step
algorithm:

1. We act on 1`,` to place in the �rst positions the letters in 1`,` but not in r. We
also want to minimize the number of elements acting.
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2. We delete these letters with the corresponding Ei. We obtain an element with
the same letters as r.

3. We reorder everything and also want to minimize the number of elements
acting.

The similar �rst and third step of the algorithm need a tool which is an elemen-
tary transformation used to bring a given pair of mirror letters to a given pair of
positions. A simple computation gives us the following results:

Lemma 7.2.8. Let i ∈ [`, `], r = r` . . . r1 | r1 . . . r` ∈ R`,` and de�ne the element
r̃ := rir` . . . r̂i . . . | . . . r̂i . . . r`ri, where r̂i means that this letter is missing. Then:
• If i < 0: r̃ = r · (Si . . . S`−1).
• If i > 0: r̃ = r · (Si−1 . . . S1S0S1 . . . S`−1).

More generally if r̃ = r` . . . ri . . . r̂i . . . | . . . r̂i . . . ri . . . r` with ri in j-th position
with j ≤ i then:
• If i < 0: r̃ = r · (Si . . . S`−j).
• If i > 0: r̃ = r · (Si−1 . . . S1S0S1 . . . Sj−1).

By symmetry we can also describe elements which bring a given pair of letters (i, i)
to a pair of positions (j, j) with j ≥ i.

Example 7.2.9.

2143 | 3412 · S1 = 2134 | 4312

2134 | 4312 · S0 = 2134 | 4312

2134 | 4312 · S1 = 2143 | 3412

2143 | 3412 · S2 = 2413 | 3142

2413 | 3142 · S3 = 4213 | 3124

Finally 2143 | 3412 · S1S0S1S2S3 = 4213 | 3124 .

Let us give some de�nitions and a �rst example of the three steps of the algorithm.

Notation 7.2.10. If S ⊆ [`, `] we de�ne sort(S) to be the word of size |S| with the
letter of S sorted in increasing order. We also denote S := {s | s ∈ S}.

De�nition 7.2.11. Let r ∈ R`,` which obeys the B condition. We denote by m1(r)
the word obtained from r the following way. If ∅ /∈ r then m1(r) := 1`,`. Otherwise
let I be the subset of [`, `] of missing letters of r. Then I :=P t R where P is
symmetric (x ∈ P ⇒ x ∈ P ) and R is antisymmetric (x ∈ R ⇒ −x /∈ R).
Then m1(r) is the concatenation sort(R) sort(P ) sort(R). In particular, m1(r) is an
element of B` ⊆ S`,` and obeys the B condition.

We denote by m2(r) the word obtained from r by sorting all its letters in increas-
ing order. It also obeys the B condition.

Proof. The word m1(r) is well-de�ned since if ∅ ∈ r then |I| ≥ ` because r obeys
the B condition and as such has at least ` letters ∅.

The word m2(r) obeys the B condition since it is either the identity, or a word
with at least ` letters ∅ which are then covering the �rst half of the word.
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Example 7.2.12. Let r = 53∅∅1 | ∅2∅∅∅ which obeys the B condition. We denote
by I the set of missing letters. Here I = {5, 4, 1, 2, 3, 4} = P t R with P = {4, 4}
and R = {5, 1, 2, 3}. Then R = {3, 2, 1, 5} and m1(r) = 51234 | 43215. We use
Lemma 7.2.8 to transform 1`,` into m1(r). We proceed step by step so that at
the i-th step the �rst i and last i letters are in place. (Here the �rst step is empty.)

54321 | 12345 · (S1S2S3) = 51432 | 23415

51432 | 23415 · (S0S1S2) = 51243 | 34215

51243 | 34215 · (S0S1) = 51234 | 43215 = m1(r).

Then m1(r) = 15,5 · [(S1S2S3)(S0S1S2)(S0S1)] .

We delete the �rst |I| letters to obtain m2(r) = ∅∅∅∅∅ | ∅3215 = m1(r) · E1.
Applying again Lemma 7.2.8 we want to transform m2(r) into r. We proceed

step by step so that at the i-th step the �rst i and last i letters are in place. Take
care that at each step we are putting a pair of mirror letters in a pair of mirror
positions.

∅∅∅∅∅ | ∅3215 · (S4S3S2S1S0S1S2S3S4) = 5∅∅∅∅ | ∅321∅
5∅∅∅∅ | ∅321∅ · (S1S0S1S2S3) = 53∅∅∅ | ∅21∅∅

53∅∅∅ | ∅21∅∅ · S1S2 = 53∅∅∅ | 21∅∅∅
53∅∅∅ | 21∅∅∅ · S1 = 53∅∅∅ | 12∅∅∅
53∅∅∅ | 12∅∅∅ · S0 = 53∅∅1 | ∅2∅∅∅ = r.

Finally r = m2(r) · [(S4S3S2S1S0S1S2S3S4)(S1S0S1S2S3)(S1S2)(S1)(S0)].

With this example in mind we give the following algorithm for Theorem 7.2.7,
whose name will be justi�ed later (see Proposition 8.4.9)

Algorithm 7.2.13 (Grassmannian factorization). Let r ∈ R`,` which obeys the B
condition. Then we de�ne by the following algorithm a word s on the generators of
R`(B) such that r = 1`,` · s.

1. If ∅ /∈ r, go to step 3 with S ′ = 1. Otherwise apply Lemma 7.2.8 step by step
to 1`,` in order to obtain m1(r) so that at the i-th step the �rst i and last i
letters are in place. We get S ∈ 〈S0, . . . S`−1〉 such that 1`,` · S = m1(r).

2. Apply to m1(r) the generator Ek−`, where k = |r|∅, that is the number of letters
∅ in r. We obtain m2(r) = 1`,` · S ′ where S ′ = SEk−`.

3. Apply Lemma 7.2.8 step by step to m2(r) in order to obtain r, so that at
the i-th step the �rst i and last i letters are in place. If a step must place
a pair of ∅ letters, we choose the closest one. Finally we get S ′′ such that
m2(r) · S ′′ = r = 1`,` · S ′S ′′.

Finally s :=S ′S ′′. Furthermore s is a word for r.

Proof. It is enough to prove that the algorithm ends. It is evident that step 2
ends. For step 1 and 3, it comes from the fact that at the i-th step the �rst i and
last i letters are in place, and the next generators do not move these letters. The
assumption that s is a word for r is also clear if we think of this algorithm not for
µ-vectors but as the matrix product.
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An important remark is that the algorithm is entirely deterministic and, as such,
de�nes an actual word s given by a rook r.

Theorem 7.2.14. Let r ∈ R`,`. Then r ∈ R`(B) if and only if r obeys the B
condition.

Proof. For the �rst implication we note that the identity 1`,` obeys the B condition,
and that if r obeys the B condition, so do the rooks r ·Si or r ·Ei for every available
i. Conversely, it is only Theorem 7.2.7.

This characterization of B-rook vectors enables us to count them, we recover a
formula of [LLC06] in a combinatorial way, and the sequence of numbers is recorded
in OEIS A121079:

Corollary 7.2.15. The size of R`(B) is `!2` +
∑`

k=0 4k
(
`
k

)2
k!.

Proof. First we consider elements of R`(B) without ∅. For every pair {i, i} for
1 ≤ i ≤ ` we choose which number is in the �rst half (2` choices) then the order of the
�rst ` numbers (`! choices). The word is then uniquely determined by antisymmetry.

For elements with ∅, i or i is missing for all 1 ≤ i ≤ `. Let k be the number
of pairs (i, i) where both letters are missing: 0 ≤ k ≤ `. We need to choose these
pairs (

(
`
k

)
choices) and choose their positions (again

(
`
k

)
choices since it is enough

to choose the position of one element by antisymmetry). For the remaining pairs
we have to choose which number remains (2`−k choices) and if this number is in the
�rst or second half (2`−k choices again). Finally these numbers have to be ordered:
(`− k)! (since k numbers are already ordered and in position).

We obtain
∑`

k=0

(
`
k

)2
2`−k2`−k(`− k)! =

∑`
i=0 4i

(
`
i

)2
i!

Example 7.2.16. The sizes of the �rst monoids are:

` 1 2 3 4 5 6 7 8
|R`(B)| 7 57 757 13889 322021 8962225 289928549 10666353409

Remark 7.2.17. Another consequence of Theorem 7.2.14 is that the B condition
is stable under multiplication.

7.2.2 Type D

We now proceed to a similar treatment of type D: we give the Renner generators,
a condition to be an element of R`(D), and an explicit algorithm to generate every
element.

De�nition 7.2.18. In R`,` we de�ne the following matrices:
• Se1 is the double transposition (2, 1)(1, 2) (denoted by S1 in type B context)
while Sf1 is the double transposition (2, 1)(1, 2).
• For 2 ≤ i ≤ `− 1, Si is the double transposition sisi.
• For 0 ≤ i ≤ `, Ei is de�ned as in De�nition 7.2.1.
• F is the rook diagonal table with �rst `−1 diagonal entries are 0, then 1, then

0, then `− 1 entries 1.
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We denote by R`(D) the monoid generated by all these elements.

Example 7.2.19. For ` = 3, R3(D) is generated by:

Se1 Sf1 S2 E0 E1 E2 E3 F

1

1
1

1
1

1

1

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1

1 1

1

1
1

If r is a µ-vector, we denote by |r|∅ the number of letters ∅ in r.

De�nition 7.2.20. If r ∈ R`,` is a µ-vector, we say that r obeys the D-condition if
and only if the two following conditions hold:

• B-rook: r obeys the B condition.

• Parity: if |r|∅ = 0 then r must have an even number of positive numbers in
its �rst half. If |r|∅ = `, the element r̃ obtained by antisymmetry with |r̃|∅ = 0
must also have an even number of positive numbers in its �rst half.

Remark 7.2.21. The Parity condition is equivalent to have an even number of
negative numbers in the second half. Note that when there is exactly ` letters ∅, it
is the element obtained by antisymmetry which must observe the condition of parity.
For instance 1∅3 | ∅2∅ does not obey the D condition since the element obtained by
antisymmetry is 123 | 321.

Example 7.2.22. The following words obey the D condition: 132 | 231, 1∅∅ | 2∅∅,
and 1∅∅ | 23∅.

The generators Se1, S
f
1 , (Si)2≤i≤`−1 act on R`,` as their associated permutations.

The Ei replace the �rst `+ i letters by ∅, while F replaces the �rst `− 1 letters and
the letter in position 1 by ∅. We remark that these actions stabilize the D condition:
if r obeys the D condition, then so do the rook vectors r ·Sf1 , r ·Se1, r ·Si, r ·Ei and
r · F . Similarly to type B, we now wish to get the following result:

Theorem 7.2.23. Let r ∈ R`,` which obey the D condition. Then there exists a
word s on the generators of R`(D) such that r = 1`,` · s.

We will construct the element s explicitly, mimicking the same steps than in type
B. The main di�erence is that we do not have S0 to exchange letters in the middle
of the word, but Sf1 which can only exchange two letters at the same time. We thus
have to be more cautious.

1. We act on 1`,` to move the letters appearing in 1`,` but not in r in �rst positions.
We also want to minimize the number of elements acting.

2. We delete these letters with the good Ei or F . We obtain an element with the
same letters as r.

3. We reorder everything, and do it by minimizing the number of elements acting.
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The similar �rst and third steps of the algorithm need an elementary tool which is
to bring a given pair of elements to a given pair of positions. We recall that S1 = Se1,
and that Se1S

f
1 = Sf1S

e
1. A simple computation gives us the following results:

Lemma 7.2.24. Let i ∈ [`, `], and r = r` . . . r1 | r1 . . . r` ∈ R`,`. Then:
• If i < 0: rir` . . . r̂i . . . | . . . r̂i . . . r`ri = r · (Si . . . S`−1).
• If i > 0: rir` . . . r̂i . . . r2r1 | r1r2 . . . r̂i . . . r`ri = r · (Si−1 . . . S2S

e
1S

f
1S2 . . . S`−1).

More generally, we could also bring a pair of mirror letters (i, i) to mirror positions
(j, j).

Remark 7.2.25. Because of the Parity condition, when a letter cross the middle,
another cross it too (with Sf1 ). We can see this in the second case when the two
middle elements are exchanged. More generally, to bring a given pair of mirror
letters to given mirror positions we will apply the action of a factor of

S`−1 . . . S2S
e
1S

f
1S2 . . . S`−1 = S`−1 . . . S2S

f
1S

e
1S2 . . . S`−1. (7.3)

Here factor means that we can delete some pre�x and su�x.

The following lemma makes explicit how the parity works.

Lemma 7.2.26. Let r ∈ R`,` be a B-rook. We distinguish the letters by color-
ing them as red for the �rst ` entries, and blue for the last ` entries. We act by
S ∈ 〈Sf1 , Se1, S2, . . . , S`−1〉, having the letter keeping their colors. Then for every S
the numbers of blue letters in the �rst half of r · S is even.

Proof. We prove the result by induction on the length of S. For S = 1 it is obvious.
Assume it is true for r′ = r · S. It is enough to prove that the result holds for
every element of {Sf1 , Se1, S2, . . . , S`−1}. The only nontrivial case is Sf1 since it is
the only element which allows an element to cross the middle. We recall that if
r′ := r` . . . r2r1 | r1r2 . . . r` then r′ · Sf1 = r` . . . r1r2 | r2r1 . . . r`. We have two cases:
• If r1 and r2 are of the same color, for instance blue, then r1 and r2 are both
red (by antisymmetry) and the parity for r′ · Sf1 is still even since it was the
case for r′.
• If r1 and r2 are of di�erent color, one is red and the other blue. The same is
then true for r1 and r2, so the parity does not change.

The following de�nition is the case D of De�nition 7.2.11:

De�nition 7.2.27. Let r ∈ R`,` which obeys condition D. We associate to him
the words mD

1 (r) and mD
2 (r) the following way. If ∅ /∈ r then mD

1 (r) := 1`,` and
mD

2 (r) := 1`,`. Otherwise let I be the nonempty subset of [`, `] of missing letters of r.
Then I = P t R with P symmetric and R antisymmetric. Let p(r) be the number
of positives letters of R. We have two cases:
• If p(r) is even then mD

1 (r) :=m1(r) and mD
2 (r) :=m2(r).

• OtherwisemD
1 (r) = m̃1(r), where m̃1(r) is the wordm1(r) where the two mirror

letters 1 and 1 have been exchanged. If |I| > ` then mD
2 (r) :=m2(r), and if

|I| = ` then mD
2 (r) = mD

1 (r) · F .
The words mD

1 (r) and mD
2 (r) obey the D condition.
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Proof. The words mD
1 (r) and mD

2 (r) obey the D condition since m1(r) and m2(r)
obey the B condition, and the change in the middle according to the parity of p(r)
is made so that the condition of parity is true, since p(r) is the number of positives
letters in the �rst half of m1(r). To prove this last part, use the Lemma 7.2.26.

Remark 7.2.28. If |I| > ` then m̃2(r) = m2(r) since the two central letters are
both ∅.

Let us give some examples to see this algorithm and speci�cities of type D.

Example 7.2.29. We take back r := 53∅∅1 | ∅2∅∅∅ from Example 7.2.12 which also
obeys the D condition. Here we have, keeping the notations of De�nition 7.2.27,
I = {5, 4, 1, 2, 3, 4} and p(r) is odd so that mD

1 (r) = m1(r) = 51234 | 43215.
For the �rst step we apply Lemma 7.2.24. We add colors when some other letters

than the red ones are moved.

54321 | 12345 · (Se1S2S3) = 51432 | 23415

51432 | 23415 · (Sf1S2) = 51243 | 34215

51243 | 34215 · (Se1) = 51234 | 43215 = mD
1 (r).

Then mD
1 (r) = 15,5 ·

[
(Se1S2S3)(Sf1S2)(Se1)

]
.

For the second step we delete the �rst |I| = ` + 1 letters using the action of E1

and we obtain mD
2 (r) = ∅∅∅∅∅ | ∅3215 = mD

1 (r) · E1.
For the third step we apply again Lemma 7.2.24 and we want to transformmD

2 (r)
into r. We proceed step by step so that at the i-th step the �rst i and last i letters
are in place. As in type B, all ∅ letters are not equivalent. We �rst do it do it
without being cautious:

∅∅∅∅∅ | ∅3215 ·
(
S4S3S2S

e
1S

f
1S2S3S4

)
= 5∅∅∅∅ | ∅321∅

5∅∅∅∅ | ∅321∅ ·
(
Se1S

f
1S2S3

)
= 53∅∅∅ | ∅21∅∅

53∅∅∅ | ∅21∅∅ · (Se1S2) = 53∅∅∅ | 21∅∅∅

Here we see that we are trapped: we can not change the subword ∅∅ | 12 into ∅1 | ∅2
since the letters can only cross the middle two at a time. The mistake was when we
moved the last couple of ∅ letters. Let's do it in a di�erent way:

∅∅∅∅∅ | ∅3215 ·
(
S4S3S2S

e
1S

f
1S2S3S4

)
= 5∅∅∅∅ | ∅321∅

5∅∅∅∅ | ∅321∅ ·
(
Se1S

f
1S2S3

)
= 53∅∅∅ | ∅21∅∅

53∅∅∅ | ∅21∅∅ ·
(
Sf1S2

)
= 53∅∅2 | ∅1∅∅∅

53∅∅2 | ∅1∅∅∅ · Sf1 = 53∅∅1 | ∅2∅∅∅ = r

Finally r = mD
2 (r) ·

[(
S4S3S2S

e
1S

f
1S2S3S4

)(
Se1S

f
1S2S3

)(
Sf1S2

)(
Sf1

)]
.

A question arising from this example is to know if we have been as fast as possible
in sorting letters. Indeed we can see that some letters keep crossing the middle, which
might be not optimal. In fact it is, as we will see later in Corollary 8.4.42.
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This example showed us a di�culty of the type D. We will show two other
examples to understand it in a better way.

Example 7.2.30. We de�ne r := 53∅12 | ∅∅∅∅∅. The �rst and second steps are the
same. And here we do not have to be cautious.

∅∅∅∅∅ | ∅3215 ·
(
S4S3S2S

e
1S

f
1S2S3S4

)
= 5∅∅∅∅ | ∅321∅

5∅∅∅∅ | ∅321∅ ·
(
Se1S

f
1S2S3

)
= 53∅∅∅ | ∅21∅∅

53∅∅∅ | ∅21∅∅ · (Se1S2) = 53∅∅∅ | 21∅∅∅
53∅∅∅ | 21∅∅∅ ·

(
Sf1S

e
1

)
= 53∅12 | ∅∅∅∅∅ = r.

Example 7.2.31. Let us take r = 9∅8∅∅56∅7 | ∅4∅∅∅∅∅∅∅. Here mD
1 (r) = 19,9 so

the �rst step is trivial, and the second is mD
2 (r) = 19,9 ·E3. Let us do the third one:

∅∅∅∅∅∅∅∅∅ | ∅∅∅456789 ·
(
S8S7S6S5S4S3S2S

e
1S

f
1S2S3S4S5S6S7S8

)
= 9∅∅∅∅∅∅∅∅ | ∅∅∅45678∅

9∅∅∅∅∅∅∅∅ | ∅∅∅45678∅ · (S3S4S5S6S7) = 9∅∅∅∅∅∅∅∅ | ∅∅45678∅∅
9∅∅∅∅∅∅∅∅ | ∅∅45678∅∅ ·

(
S6S5S4S3S2S

e
1S

f
1S2S3S4S5S6

)
= 9∅8∅∅∅∅∅∅ | ∅∅4567∅∅∅

9∅8∅∅∅∅∅∅ | ∅∅4567∅∅∅ · (S2S3S4S5) = 9∅8∅∅∅∅∅∅ | ∅4567∅∅∅∅

For the next step, if we do it forward we will be trapped again. So we have to make
the last pair of zero cross the middle.

9∅8∅∅∅∅∅∅ | ∅4567∅∅∅∅ ·
(
Sf1S2S3S4

)
= 9∅8∅∅∅∅∅4 | ∅567∅∅∅∅∅

9∅8∅∅∅∅∅4 | ∅567∅∅∅∅∅ ·
(
Sf1S

e
1S2S3

)
= 9∅8∅∅5∅∅∅ | 467∅∅∅∅∅∅

9∅8∅∅5∅∅∅ | 467∅∅∅∅∅∅ ·
(
Sf1S

e
1S2

)
= 9∅8∅∅56∅4 | ∅7∅∅∅∅∅∅∅

9∅8∅∅56∅4 | ∅7∅∅∅∅∅∅∅ · Sf1 = 9∅8∅∅56∅7 | ∅4∅∅∅∅∅∅∅

Finally the question of whether to make a zero pair cross or not seems to be only
for the last pair: indeed it is a question of parity of crossing, and the last pair of
zero is used to adjust this criterion. The reader could �nd strange that some letters
keep crossing the middle. He could try to be more optimal in term of crossings,
but he will discover that it takes the same number of generators (but will give him
some nice relations between generators). Indeed we will show that the expressions
obtained with this algorithm are reduced.

With these examples in mind we now give the algorithm to get Theorem 7.2.23.
The name of this algorithm will be justi�ed in Proposition 8.4.32:

Algorithm 7.2.32 (Grassmannian factorization). Let r ∈ R`,` which obeys the D
condition. We give an algorithm to get s ∈ R`(D) so that r = 1`,` · s.

1. If ∅ /∈ r, go to step 3 with S ′ = 1. Otherwise apply Lemma 7.2.24 step by step
in order to obtain mD

1 (r) so that at the i-th step the �rst i and last i letters
are in order. We get S ∈ 〈Sf1 , Se1, S2, . . . , S`−1〉 so that 1`,` · S = mD

1 (r).
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2. Let k := |r|∅. If k > ` apply generator Ek−` to mD
1 (r): mD

2 (r) := 1`,` · S ′ with
S ′ = SEk. If k = ` apply E0 if p(r) is even, and F otherwise.

3. Now r andmD
2 (r) have the same letters with multiplicity. Apply again Lemma 7.2.24

to mD
2 (r) step by step so that at the i-th step the �rst i and last i letters are

in order. If a step must place a pair of ∅ letters choose the closest one ex-
cept if it is the last such pair. If it is the last pair of zero letters, count
the number of nonzero letters in the �rst half of r: if it is even choose the
closest zero, otherwise make its conjugate cross the middle. Finally we get
S ′′ ∈ 〈Sf1 , Se1, S2, . . . , S`−1〉 so that mD

2 (r) · S ′′ = r.

We de�ne s :=S ′S ′′

Proof. It is enough to show that the algorithm terminates. For the �rst step, the
di�erent use of Lemma 7.2.24 put in place the �rst and last letters, and then do
not touch them again. Applying Lemma 7.2.26 on 1`,` we see that at every step
the number of positive letters in the �rst half is even, as in mD

1 . There is no
incompatibility. For the second step, all is entirely deterministic, and the choice
between E0 and F is linked to the very de�nition of mD

2 . For the last step, the
argument is the same than in the �rst step. The only speci�c questions is linked to
pairs of zeros. Applying Lemma 7.2.26 we see that the condition on the number of
nonzero letters in the �rst part is the good one: the last pair of zero letters is used
to adjust the coloring of Lemma 7.2.26.

An important remark is that the algorithm is also entirely deterministic and, as
such, will always give us the same word s on a given rook r (up to the exchange
Se1S

f
1 = Sf1S

e
1).

Theorem 7.2.33. Let r ∈ R`,`. Then r ∈ R`(D) if and only if r obeys the D
condition.

Proof. For the direct implication, we note that the identity 1`,` obeys the D condi-
tion and that if r obeys the D condition, then so do the rook obtained under the
action of every generators on r. The converse implication is only the algorithm of
Theorem 7.2.23.

This characterization of D-rooks vectors enables us to count them, �nding back
a formula of [LLC06] and the sequence of numbers recorded in OEIS A121080:

Corollary 7.2.34. The size of R`(D) is `!2`−1(1− 2`) +
∑`

k=0 4k
(
`
k

)2
k!.

Proof. We take back the proof of Corollary 7.2.15. Compared to the B condition
we must delete the half of elements without ∅ and the half of elements with exactly
` zeros.

The number of elements with no letter ∅ in type B is `!2`. With exactly ` zeros
it is `!4`. Then:

|R`(D)| = `!2`−1 + `!22`−1 +
`−1∑

k=0

4k
(
`

k

)2

k!
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= `!2`−1(1 + 2`) +
`−1∑

k=0

4k
(
`

k

)2

k!

= `!2`−1(1 + 2`)− `!4` +
∑̀

k=0

4k
(
`

k

)2

k!

= `!2`−1(1 + 2` − 2`+1) +
∑̀

k=0

4k
(
`

k

)2

k!

= `!2`−1(1− 2`) +
∑̀

k=0

4k
(
`

k

)2

k!

Example 7.2.35. The sizes of the �rst monoids are:

` 1 2 3 4 5 6 7 8
|R`(D)| 4 37 541 10625 258661 7464625 248318309 9339986689

Note that these monoids are really di�erent from Rn(A). Even if the Dynkin
Diagram of D3 and A3 are the same, the Renner monoids do not have the same
cardinality.

Remark 7.2.36. Another consequence of Theorem 7.2.14 is that the D condition
is stable under multiplication, which is not obvious.

7.2.3 Twist in type D

In type D we see that the two middle rows and columns of a table play symmetric
roles. This is due to the fact that the two left nodes of the Dynkin diagram of
type D commute. To show this symmetry between the generators πe1 and πf1 we
will use s0 which is the transposition (1, 1). It acts on µ-vectors of type D, and its
right action on µ-vectors exchanges the letters in position 1 and 1. Its left action on
µ-vectors replaces the letter 1, if it exists, by 1, and conversely. In other words the
conjugation by s0 exchanges the two middle rows and the two middle columns of a
table permutation of type D. We then have the two following lemmas:

Lemma 7.2.37. For all v ∈ R`(D), s0 · (v · s0) = (s0 · v) · s0 =: s0 · v · s0.

Proof. If there is no 1 nor 1 in v, or if this mirror pair of letter exist but is not in
the positions 1, 1 the result is clear. We then assume that this pair of letter is in the
middle. We have the following cases:

v v · s0 s0 · (v · s0) s0 · v (s0 · v) · s0

. . . 1 | 1 . . . . . . 1 | 1 . . . . . . 1 | 1 . . . . . . 1 | 1 . . . . . . 1 | 1 . . .

. . . 1 | 1 . . . . . . 1 | 1 . . . . . . 1 | 1 . . . . . . 1 | 1 . . . . . . 1 | 1 . . .

. . . 1 | 0 . . . . . . 0 | 1 . . . . . . 0 | 1 . . . . . . 1 | 0 . . . . . . 0 | 1 . . .

. . . 0 | 1 . . . . . . 1 | 0 . . . . . . 1 | 0 . . . . . . 0 | 1 . . . . . . 1 | 0 . . .

. . . 1 | 0 . . . . . . 0 | 1 . . . . . . 0 | 1 . . . . . . 1 | 0 . . . . . . 0 | 1 . . .

. . . 0 | 1 . . . . . . 1 | 0 . . . . . . 1 | 0 . . . . . . 0 | 1 . . . . . . 1 | 0 . . .
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The result of the third and �fth columns are always equal, hence the result.

Lemma 7.2.38. For all v ∈ R`(D), s0 · v · s0 ∈ R`(D).

Proof. We use the characterization of Theorem 7.2.33. First of all, the conjugation
by s0 does not change the fact that pairs of mirror letters are in mirror positions.
Furthermore it does not create or delete ∅ letters. So s0 · v · s0 is still centrally
antisymmetric and still breaks all pair, hence it obeys the B condition. Now if v
has strictly more than ` zeros then it is still the case for s0 · v · s0. So it obeys the
D condition. Let v 7→ ṽ be the operation of completion by antisymmetry. If v has
no letter ∅ or exactly ` letter ∅, then ṽ does not have the ∅ by antisymmetry (and
ṽ = v in the �rst case). This word has an even number of positive letters in its �rst
half since v ∈ R`(D). Hence ṽ · s0 has an odd number of positive letters in its �rst
half since we exchanged the middle pair. But once again s0 · (ṽ · s0) = s0 · ṽ · s0 has
an even number of positive letters in its �rst half since we exchanged 1 and 1. Hence
s0 · ṽ · s0 obeys the D condition. Furthermore it is clear that ˜s0 · v · s0 = s0 · ṽ · s0 ,
hence s0 · v · s0 also obeys the D condition.

Finally, a simple computation on tables gives the following result:

Lemma 7.2.39. The application v ∈ R`(D) 7→ s0 · v · s0 is an involutive morphism
which enjoys the following identities:

s0·Sf1 ·s0 = Se1, ∀i ≥ 2, s0·Si·s0 = Si, s0·F ·s0 = E0, ∀i ≥ 1, s0·Ei·s0 = Ei.
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Chapter 8
0-Renner monoid of type B and D

The purpose of this chapter is to de�ne an equivalent of the 0-rook monoid for Renner
monoids in type B and D, following Part II. Adter some material on Hecke monoid
(Section 8.1) and a study on grassmannian words, that is, words with exactly one
descent (see De�nition 8.2.1 and Proposition 8.2.3) we adopt the following strategy.

In Section 8.3, we introduce a monoid of functions F 0
` (T ) (De�nition 8.3.1 for type

B, De�nition 8.3.2 for type D) which acts on its associated Renner monoid R`(T ).
We then study these actions in order to get Theorem 8.3.9 which is a bijection
between F 0

` (T ) and R`(T ) in the same vein as Proposition 8.1.1.
In section 8.4 we introduce the monoid G0

`(T ) (De�nition 8.4.1 for type B, Def-
inition 8.4.22 for type D) de�ned by presentation on the generators of H0

` (T ) and
the elements of the cross section lattice Λ0 (see [God09, De�nition 1.12] and De�ni-
tion 7.1.1). The relations to which the generators are submitted will show that only
few elements of Λ0 are necessary: E0 in type B, E0 and F in type D.

Our objective is to prove that F 0
` (T ) ' G0

`(T ) (Theorem 8.4.17 for type B,
Theorem 8.4.41 for type D). The strategy of proof is the following:

1. We check in typeB (resp. typeD) that Algorithm 7.2.13 (resp. Algorithm 7.2.32)
gives a unique way to decompose an element w ∈ F 0

` (B) (resp. w ∈ F 0
` (D)) as

the product of a right grassmannian element of B` (resp. D`), an element of the
cross section Λ0, and an element of B` (resp. D`). We prove this uniqueness
under two di�erents conditions in Lemma 8.4.12 and Theorem 8.4.13 (resp.
Lemma 8.4.35 and Theorem 8.4.36).

2. We prove that a reduced word of G0
`(B) (resp. G0

`(D)) has at most two letters
E0 in Proposition 8.4.16) (resp. E0 and F in Proposition 8.4.40)). We will
get this result by studying the product of an element of Λ0, a bigrassmannian
element of B` (resp. D`), and another element of Λ0. See Proposition 8.4.14 for
F 0
` (B) and Proposition 8.4.15 for G0

`(B) (resp. Proposition 8.4.38 for F 0
` (D)

and Proposition 8.4.39 for G0
`(D)).

3. We �nally prove the bijection F 0
` (T ) ' G0

`(T ) in Theorem 8.4.17 (resp. Theo-
rem 8.4.41).

4. We deduce from this isomorphism the presentation of the Renner monoid of
type B in Theorem 8.4.19 (resp. type D in Theorem 8.4.43).
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The step 2 and 3 are very similar to what Godelle did [God09]. The step 1 using
Algorithms 7.2.13 and 7.2.32 is an explicit description of a unique decomposition of
elements of Renner monoids.

8.1 0-Hecke monoid

8.1.1 Reduced and action-reduced words

In Section 2.4.2 we introduced the 0-Hecke monoid H0
` (T ) for all Weyl types T .

Currently, an element of H0
` (T ) is de�ned as an abstract word of some generat-

ing system S = {g1, . . . , gm}. To get rid of the word question, we will rather see
H0
` (T ) as acting on W (T ) as follows: by Matsumoto's Theorem (Theorem 2.2.5),

the word obtained by replacing si by πi (for all i) in a reduced word of W (T ) is a
reduced word of H0

` (T ). In other words to each σ = si1 . . . sik ∈ W (T ) we associate
πσ :=πi1 . . . πik ∈ H0

` (T ). This de�nition makes sense since it does not depend on
the reduced word chosen for σ. Therefore the right multiplication πτ = πσπµ can be
seen as a right action σ · πµ := τ . Using this right action the converse bijection of
σ 7→ πσ is as follows:

Proposition 8.1.1. The application
H0
` (T ) −→ W (T )

h 7−→ 1W · h is a bijection, where 1W

is the identity of W (T ). In other words, the action on the identity characterizes the
element.

We also consider a de�nition of reduced word with regard to this action:

De�nition 8.1.2. Let m ∈ H0
` (T ) and m = g1 . . . gk a word for m. Then m is

action-reduced if and only if :

∀1 ≤ j ≤ k − 1, 1W · (g1 . . . gj) 6= (1W · (g1 . . . gj)) · gj+1. (8.1)

The following remark gives a link between the two notions:

Remark 8.1.3. Using this de�nition by action of the πi ∈ H0
` (T ), we see that

these generators do not stabilize an element of W (T ) if and only if they increase
the length of this element. In particular m ∈ H0

` (T ) is reduced if and only if it is
action-reduced. Note that in general the two notions are not equivalent: for instance
sisi is action reduced in Sn and not reduced.

8.1.2 Description of H0
` (B) and H0

` (D)

We will now describe combinatorially the actions of the generators of H0
` (B) and

H0
` (D). We will not deal with type A in this part, thus we denote the generators of

theH0
n(A) by πA1 , . . . , π

A
n . For instance in typeA if σ ∈ An−1 = Sn and 1 ≤ k ≤ n−1:

σ · πAk :=

{
σ · sk if σk < σk+1,

σ otherwise.
(8.2)

These operators are the bubble sort operators seen in De�nition 1.1.9. In type B
and D, to respect the antisymmetry we will rather act on S`,`

:=S([`, `]).
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De�nition 8.1.4. For i, j ∈ [`, `] with i < j we de�ne πAi,j to be the following
functions on S`,`:

(σ` . . . σi . . . σj . . . σ`) · πAi,j =

{
σ` . . . σj . . . σi . . . σ` if σi < σj,

σ` . . . σ` otherwise.
(8.3)

We note that if i, j, k and h are all di�erents, the operators πAi,j and π
A
k,h act on

di�erent coordinates, hence commute. On the contrary to what is suggested by the
notation, πAi,j belongs to H

0
`,`

(A) if and only if j = i + 1. We de�ne the following
generators:

πAi :=

{
πAi,i+1 if i > 0;

πA
i+1,i

if i < 0.
(8.4)

We now give the description of the action of H0
` (B) and H0

` (D) and we will prove
in De�nitions 8.3.1 and 8.3.2 in a more general context that these actions stabilize
the Weyl group.

Proposition 8.1.5. The monoid H0
` (B) acts on B` with the generators π0 :=πA

1,1

and the elements πi := πA
i
πAi = πAi π

A
i
for 1 ≤ i ≤ `− 1.

Proposition 8.1.6. The monoid H0
` (D) acts on D` with the generators πe1 :=π1,

π2, . . . , π`−1 of type B, and the generator πf1 :=πA
1,2
πA

2,1
= πA

2,1
πA

1,2
.

Note that H0
` (B) ⊂ H0

`,`
(A) while H0

` (D) 6⊂ H0
`,`

(A). Now we will just give some
interesting properties on elements of these monoids. First as we see with Proposi-
tion 8.1.1 we have |H0

` (T )| = |W (T )| <∞. We can prove [Bjö84] that these monoids
are in fact lattices, and hence have a maximal element. Because of Remark 8.1.3
these maximal elements are the element of longest length. We now describe their
action. We recall that 1` is the permutation 12 . . . ` while 1`,` := ` . . . 2 1 1 2 . . . `.

Proposition 8.1.7. [BB05] Let i ≤ ` and ωi be the maximal element of H0
i (T ).

Then:

1` · ωi = i(i− 1) . . . 3 2 1(i+ 1) . . . ` if T = A,

1`,` · ωi = `(`− 1) . . . (i+ 1)i . . . 2 1 | 1 2 . . . i(i+ 1) . . . (`− 1)` if T = B,

1`,` · ωi = `(`− 1) . . . (i+ 1)i . . . 2 1 | 1 2 . . . i(i+ 1) . . . (`− 1)` if T = D and i even,

1`,` · ωi = `(`− 1) . . . (i+ 1)i . . . 2 1 | 1 2 . . . i(i+ 1) . . . (`− 1)` if T = D and i odd.

Lemma 8.1.8. Let i ≤ `, and ωi be the maximal element of H0
i (T ). Let u, v in

H0
` (T ) so that ωiu = ωiv, with these two expressions reduced. Then u = v.

Proof. The two elements ωiu and ωiv are reduced, hence action reduced by Re-
mark 8.1.3 hence every generator of u and v acts. Since the generator of H0

` (T ) sort
letters we deduce that u and v have the same action on 1 (a word with more letters
in increasing order). Because of Proposition 8.1.1 we deduce that u = v.
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8.2 Grassmannian elements

8.2.1 De�nition

We are interested in reduced expressions of elements of H0
` (T ). An interesting notion

[LS96] is the notion of grassmannian elements :

De�nition 8.2.1. Let M be a monoid generated by a set S. For s, t ∈ S, an
element m ∈M is called left-grassmannian in s (resp. right-grassmannian in t), or
s-grass (resp. grass-t) for short, if all its reduced words begin with s (resp. end with
t). It is called bi-grassmannian in (s, t), or s-grass-t if it is both left-grassmannian
in s and right-grassmannian in t.

We will now describe precisely grassmanian elements of type B and D. We will
need them to give the relations in the presentation of the Renner monoids. These
relations were precisely the ones forgotten by Godelle in [God09]. We recall from
Section 1.1.4 the following de�nition:

De�nition 8.2.2. Let x be an element of H0
` (T ) = 〈(πi)i∈I〉. For i ∈ I, x has the

right (resp. left) descent i if and only if x ·πi = x (resp. πi ·x = x). The right (resp.
left) descent set of x is the set of every i ∈ I which is a right (resp. left) descent of
x.

As another consequence, the grassmannian elements are more easily character-
ized:

Proposition 8.2.3. An element x ∈ H0
` (T ) is right (resp. left) grassmannian in πi

if and only if its right (resp. left) descent set is {i}.

Proof. It is just an application of Matsumoto's theorem and more precisely the
exchange condition [Hum90, Section 1.7].

8.2.2 Descents and grid representation in type A

We are interested in the permutation tables with a given right-descent set and/or a
given left-descent set. In other words permutations which are linear extensions of
the associated posets de�ned in Section 1.2.1.

De�nition 8.2.4. Let R be a right-descent set given by its poset ≤R over [n]. For
1 ≤ j ≤ n we de�ne uj(R) := |{k ∈ [n] | j <R k}| and dj(R) := |{k ∈ [n] | j >R k}|.
The grid representation grA − R is a table n × n where we cross vertically the top
uj(R) boxes and the bottom dj(R) boxes of column j for all j. Let L be a left-descent
class we also de�ne the grid representation L − grA by transposition, and the grid
representation L− grA −R.

The idea of this de�nition is that a box that is crossed can not be an acceptable
position for a 1 in the permutation table with the given left and right descent set.
A linear extension of the descent sets thus gives us a permutation whose table must
have its 1 in the non crossed boxes.
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Figure 8.1: The grid representations grA−{1, 2, 4}, {1, 3, 4}− grA and the twosided
{1, 3, 4} − grA − {1, 2, 4}. The boxes crossed vertically are colored red, while the
boxes crossed horizontally are colored in blue.

Example 8.2.5. The grid representation on the right of Figure 8.1 shows that
54231 and 52143 are the only two permutations with left-descent set [1, 3, 4] and
right-descent set [1, 2, 4].

We use the grid representation along the characterization of Proposition 8.2.3
between grassmannian elements and element with exactly one descent to �nd the
grassmannian elements of type B and D. We do each case separately.

8.2.3 Type B
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Figure 8.2: Right descents sets of right grassmannian in type B (in π0 on the left,
and πi for i > 0 on the right).

Corollary 8.2.6. For i ≥ 0 the descent set of right grassmannian elements of H0
` (B)

in πi is of the form of Figure 8.2. In other words, these elements are B-words of the
form σ = σ` . . . σ1 | σ1 . . . σ` with:
• σ` < · · · < σ2 < σ1 > σ1 < σ2 < · · · < σ` if i = 0,
• σ` < · · · < σi+1 > σi < σi−1 < · · · < σi−1 > σi < σi+1 < · · · < σ` otherwise.

Proof. As a consequence of Proposition 8.2.3 their right-descent is only {i}. So
σ1 > σ1 (if i = 1) or σi+1 > σi ⇔ σi > σi+1 otherwise. For all j 6= i, wπj 6= πj: all
other two consecutives letters are in increasing order.

Proposition 8.2.7. We de�ne in H0
` (B) for 0 ≤ i ≤ `− 1 the following element:

Πi :=π0 . . . πiπ0 . . . πi−1π0 . . . πi−2 . . . π0π1π0. (8.5)

It is a π0-grass-π0 element.
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Proof. The action of Πi on 1`,` is ` . . . i+ 2 1 2 . . . i i+1 | i+ 1 i . . . 2 1 i+2 . . . `.
Corollary 8.2.6 shows that Πi is grass-πi. Furthermore this permutation is equal to
its inverse so it is also πi-grass.

Example 8.2.8. We give the values of Πi for 0 ≤ 1 ≤ 3: Π0 = π0, Π1 = π0π1π0,
Π2 = π0π1π2π0π1π0 and Π3 = π0π1π2π3π0π1π2π0π1π0.

We are now looking at the grid representations of elements πi-grass-πj. We
borrow the de�nition of grid representation and adapt it to this particular case of
type B and D for grassmannian elements.

De�nition 8.2.9. Let L and R be two descent sets, and λ = minL, µ = minR.
The grid representation L − grB − R is the grid representation L − grA − R with
an additional rule that the columns −λ to λ (resp. rows −µ to µ) are also crossed
above (resp. right to) the diagonal in the negative half, and below (resp. left to) the
diagonal in the positive half.

The additional rule comes only from the antisymmetry of B-elements. See Fig-
ure 8.3 for some examples. When L or R only contains one descent {i} we write i
rather than {i}.
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Figure 8.3: Grid representations 0− grB − 0 and 4− grB − 0 in size 7.

Proposition 8.2.10. Let 0 ≤ i, j ≤ ` − 1 and i − grB − j the associated grid
representation. Then the top right corner of the columns j + 1 to ` and of the rows
i + 1 to ` rows is entirely crossed, except all boxes on the diagonal but the leftmost
one.

Consequently, when we are looking for linear extensions of the grid representa-
tion, if there is a 1 in this diagonal, then all the following 1 are on the diagonal.

Figure 8.3 illustrates this proposition.
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Proof. By antisymmetry of elements we can consider the �rst rows and columns.
The rows ` to i (resp. columns ` to j) are precisely the rows (resp. columns) before
the �rst descent. We consider the columns. Let ` ≤ k ≤ i+ 2, then k has ` − |k|
elements below in the poset. Hence the strict subdiagonal is entirely �lled in red.
For the column i+ 1 there is even `− i vertices below, hence the subdiagonal boxes
and the diagonal box are crossed vertically. The same goes for rows. So all boxes of
this corner are �lled, except boxes of the diagonal but the leftest (i+ 1) one. The
second property can be deduced easily from the fact that between columns i+1 and
`, a linear extension of the poset must be increasing.

Corollary 8.2.11. The bi-grassmannian elements in π0 are precisely the elements
(Πi)0≤i≤`−1.

Proof. We look at the grid representation 0 − grB − 0 of size `. The right descent
graph has only one descent in the middle. So for the column k with ` ≤ k ≤ 2, we
cross vertically the top |k| − 1 boxes and the bottom `− |k|. In column 1 we �ll the
bottom ` in red. The columns 1 to ` are �lled antisymmetrically and the rows are
crossed horizontally similarly. In the end, the grid representation has four quarters
separated by the middle horizontal and vertical lines. By Proposition 8.2.10 the
quarter below left and above right have all their boxes crossed except boxes on the
diagonal but the ones in columns 1 and 1. The sector above left has all the blocks
of its strict upperdiagonal �lled, and subdiagonal for the below right sector.

We now look at linear extensions of this grid representation. Let k be the index
of the �rst column where 1 is not in the diagonal. Note that k ≤ 1. If k = 1 we �nd
back the table of π0 = Π0. Otherwise we get the following block table, where Ik the
table of square k with the diagonal bottomleft to topright �lled with 1:

I`−k

Ik

Ik

I`−k

= Πk−1.

(8.6)

8.2.4 Type D

We now switch to type D.

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

Figure 8.4: Descents sets of right grassmannian in type D (in πi for i > 1 on the
left, πe1 on the middle and πf1 on the right).

For the next proposition we use the following notation: π1e :=πe1 and π1f :=πf1 .
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Proposition 8.2.12. For i ∈ {1e, 1f , 2, . . . , `− 1}, the descent set of grass-πi ele-
ments of H0

` (D) is of the form of Figure 8.4. As a consequence, such an element
σ = σ` . . . σ1 | σ1 . . . σ` has the following shape:
• σ` < · · · < σ2 < σ1 > σ2 < · · · < σ` and σ2 > σ1 < σ2 if i = 1e,
• σ` < · · · < σ2 < σ1 > σ2 < · · · < σ` and σ2 > σ1 < σ2 if i = 1f ,
• σ` < · · · < σi+1 > σi < σi−1 < . . . σ1, σ1 < · · · < σi−1 > σi < σi+1 < · · · < σ`
and σ2 < σ1 ⇔ σ1 < σ2 if i ≥ 2.

Proof. As a consequence of Proposition 8.2.3 the right-descent set is only {i}. So
σ1 > σ2 ⇔ σ2 > σ1 if i = 1f , and σi+1 > σi ⇔ σi > σi+1 otherwise. For all j 6= i,
wπj 6= πj: all other two neighbouring letters are in increasing order.

Notation 8.2.13. We de�ne the following two elements for i ≥ 0:

πef1,i
:=

{
πe1 if i is even,

πf1 otherwise.
πfe1,i

:=

{
πf1 if i is even,

πe1 otherwise.

De�nition 8.2.14. We de�ne for i ≥ 1 the following elements.

∆f
i

:=πf1π2 . . . πiπ
e
1π2 . . . πi−1π

f
1π2 . . . πi−2 . . . π

fe
1,iπ2π

ef
1,i

= πf1π2π
e
1 . . . πi−2 . . . π2π

f
1πi−1 . . . π2π

fe
1,iπi . . . π2π

ef
1,i,

∆e
i :=πe1π2 . . . πiπ

f
1π2 . . . πi−1π

e
1π2 . . . πi−2 . . . π

ef
1,iπ2π

fe
1,i

= πe1π2π
f
1 . . . πi−2 . . . π2π

e
1πi−1 . . . π2π

ef
1,iπi . . . π2π

fe
1,i.

The equality between the two expressions of ∆f
i and of ∆e

i comes from Re-
lation H2-D of the presentation of H0

` (D). We will see that s0∆f
i s0 = ∆e

i by
Lemma 7.2.39. We give some examples before going further.

Example 8.2.15. ∆e
1 = πe1, ∆f

1 = πf1 , ∆e
2 = πe1π2π

f
1 , ∆f

2 = πf1π2π
e
1, ∆e

3 = πe1π2π3π
f
1π2π

e
1,

∆f
3 = πf1π2π3π

e
1π2π

f
1 , ∆e

4 = πe1π2π3π4π
f
1π2π3π

e
1π2π

f
1 and ∆f

4 = πf1π2π3π4π
e
1π2π3π

f
1π2π

e
1.

As suggested in Example 8.2.15, the next proposition explains the notation: the
element ∆f

i (resp. ∆e
i ) always begins with π

f
1 (resp. πe1).

Proposition 8.2.16. ∆e
i is π

e
1-grass-π

fe
1,i while ∆f

i is πf1 -grass-π
ef
1,i.

Proof. It is just an explicit calculation of the action of ∆e
i and ∆f

i on the identity.
There are four possibilities depending of the parity of i and which element we are
looking at:
• If i even, 1`,` · ∆e

i = ` . . . i+ 2 12 . . . i i + 1 | i+ 1 i . . . 2 1 i + 2 . . . `, hence

∆e
i is π

e
1-grass-π

f
1 .

• If i is even, 1`,` · ∆f
i = ` . . . i+ 2 1 . . . i i+ 1 | i + 1 i . . . 1 i + 2 . . . `, hence

∆f
i is πf1 -grass-π

e
1.

• If i is odd, 1`,` ·∆e
i = ` . . . i+ 2 12 . . . i i+ 1 | i+ 1 i . . . 2 1 i+ 2 . . . `, hence

∆e
i is π

e
1-grass-π

e
1.

• If i is odd, ∆f
i , 1`,` ·∆f

i = ` . . . i+ 2 1 . . . i i+1 | i+ 1 i . . . 1 i+2 . . . `, hence

∆f
i is πf1 -grass-π

f
1 .
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We now apply Proposition 8.2.12 to see that each of these elements are right grass-
mannians. We �nally inverse the word (transpose the table with respect to the x = y
diagonal) and see that they are left-grassmannian.

We adapt the de�nition of grid representation to type D:

De�nition 8.2.17. For i, j ∈ {1e, 1f , 2, . . . , `−1}, the grid representation i−grD−j
is the grid representation i− grA− j with the additional rule that the topleft quarter
and bottomright quarter of a linear extension must have an even number of 1's.

See Figure 8.5 for some examples. As in type B we �nd the following Proposition:

Proposition 8.2.18. Let i− grD − j be a grid representation of type D. Then the
top right corner of the columns j + 1 to ` and of the rows i+ 1 to ` rows is entirely
crossed except the boxes on the diagonal but the leftmost one. Consequently, for
linear extensions of the grid representation, if there is a 1 in this diagonal, then all
the following 1 are on the diagonal.

Proof. The proof is exactly the same as in 8.2.10. Note that for column 2 there may
be even more crossed elements below the diagonal. Also note that column 1 is never
considered in this lemma.

Proposition 8.2.19. The elements both left and right grassmannian in πe1 or πf1
are exactly the ∆e

i and ∆f
i .

Proof. The proof is exactly the same as in Proposition 8.2.11, taking into account
the question of parity.

8.3 0-Renner as transformation monoids

Let ` ∈ N. We extend the de�nition of generators of H0
` (B) from Proposition 8.1.5

by having them acting not only on permutations but on rooks:

De�nition 8.3.1. Let p0, . . . , p`−1, ε0, . . . , ε` be the following functions on R`(B):
• p0 :=πA

1,1

• For 1 ≤ i ≤ `− 1, pi :=πA
i
πAi = πAi π

A
i

• For 0 ≤ i ≤ `, εi :=Ei.
Let F 0

` (B) be the monoid generated by these elements. It naturally has left and right
actions on tables and, equivalently, µ-vectors.

Proof. We have to check that these elements stabilize R`(B). We do it on the
right side and deduce the left side by transposition. We use the characterization of
Theorem 7.2.14. The elements p0 and (εi)0≤i≤` stabilize the B condition. Let us
check for (pi)1≤i≤`−1. Since pi is the product of the two generators πA

i
and πAi , we

will show that one generator acts if and only if the other one does. This implies
that the condition B is stabilized since pi has either the action of Si or that of the
identity. In order to get this equivalence, we look at the di�erent possibilities of
type B in the following chart, according to the values of ri = j and ri+1 = k. In this
chart j 6= ∅ and k 6= ∅.
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Figure 8.5: Grid representations of 1e− grD − 1e (topleft), 1e− grD − 1f (topright),
1f − grD − 1e (bottomleft) and 1f − grD − 1f (bottomright) of size 5.
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ri+1 ri ri ri+1 Action of pi

k j j k j < k ⇔ k < j so kj . . . jk or jk . . . kj
∅ j ∅ k j∅ . . . k∅
k ∅ j ∅ k∅ . . . j∅
∅ ∅ j k ∅∅ . . . jk or ∅∅ . . . kj whether k < j

k j ∅ ∅ kj . . . ∅∅ or jk . . . ∅∅ whether k > j
∅ ∅ j ∅ ∅∅ . . . j∅
∅ ∅ ∅ k ∅∅ . . . k∅
k ∅ ∅ ∅ k∅ . . . ∅∅
∅ j ∅ ∅ j∅ . . . ∅∅
∅ ∅ ∅ ∅ ∅∅ . . . ∅∅

We see that in every case the condition B remains true, hence the result.

We extend the de�nition of πAi,j seen in De�nition 8.1.4 to functions on R`,`.
Similarly we can also extend De�nition 8.1.6:

De�nition 8.3.2. We de�ne on R`(D) the function pf1 := πA
2,1
πA

1,2
= πA

1,2
πA

2,1
and the

function ϕ:
(r1 . . . rn) · ϕ = ∅ . . . ∅r1 | ∅r2 . . . r`. (8.7)

Then pf1 , p
e
1 := p1, p2, . . . , p`−1, ε0, . . . , εl, ϕ are functions which stabilize R`(D). Let

F 0
` (D) be the monoid generated by these elements. It naturally has left and right

actions on tables and, equivalently, µ-vectors.

Proof. We use Theorem 7.2.33. For pe1 = p1, . . . , p`−1 and ε0, . . . , ε` we have already
seen that the condition B is stabilized, and the condition of parity also holds. For ϕ
everything is clear. It remains to see for pf1 . We have to check the di�erent possible
behaviors:

r2 r1 r1 r2 Action of pf1
k j j k k < j ⇔ j < k so kj | jk or jk | kj.
∅ j ∅ k ∅k | ∅j or ∅j | ∅k whether j < k

k ∅ j ∅ j∅ | k∅ or k∅ | j∅ whether k < j

k j ∅ ∅ kj | ∅∅
∅ ∅ j k jk | ∅∅
k ∅ ∅ ∅ k∅ | ∅∅
∅ j ∅ ∅ ∅j | ∅∅
∅ ∅ j ∅ j∅ | ∅∅
∅ ∅ ∅ k ∅k | ∅∅
∅ ∅ ∅ ∅ ∅∅ | ∅∅

Finally, we see that pf1 stabilize the B condition since the two comparisons of
pf1 are always equivalent. The condition of parity remains also true: check only the
�rst �ve cases.

The involutive element s0 de�ned previously can be seen as an action on R`(D)
which does not stabilize it. We can nevertheless obtain the following lemma by
conjugation on functions:
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Lemma 8.3.3. For v ∈ F 0
` (D), the function s0 · v · s0 = s0vs0 is in F 0

` (D). Furthe-
more, the application v ∈ F 0

` (D) 7→ s0 · v · s0 is an involution of F 0
` (D) acting on

generators as follows:

s0 ·pf1 ·s0 = pe1, ∀i ≥ 2, s0 ·pi ·s0 = pi, s0 ·ϕ·s0 = ε, ∀i ≥ 1, s0 ·εi ·s0 = εi.

Proof. We �rst prove the special cases. For i ≥ 2 and j ≥ 1, s0pi = pis0 and
s0εj = εjs0 since they do not act on the same positions. Since s0 is an involution we
deduce that s0pis0 = pi and s0εjs0 = εj. For the last two equalities, we look directly
at the action on some r:

r` . . . r2r1 | r1r2 . . . r`
s0−→ r` . . . r2r1 | r1r2 . . . r`
ϕ−→ ∅ . . . ∅r1 | ∅r2 . . . r`
s0−→ ∅ . . . ∅ | r1 . . . r`.

Hence s0ϕs0 = ε. For the last case, �rst assume that r1 < r2 ⇔ r2 < r1:

r` . . . r2r1 | r1r2 . . . r`
s0−→ r` . . . r2r1 | r1r2 . . . r`

pf1−→ r` . . . r1r2 | r2r1 . . . r`
s0−→ r` . . . r1r2 | r2r1 . . . r`

Otherwise:

r` . . . r2r1 | r1r2 . . . r`
s0−→ r` . . . r2r1 | r1r2 . . . r`

pf1−→ r` . . . r2r1 | r1r2 . . . r`
s0−→ r` . . . r2r1 | r1r2 . . . r`

Hence s0p
f
1s0 = pe1. Since s

2
0 = 1 this application is an involution. Finally let t1 and

t2 be generators. Then s0 · t1 · s0 = t′1 and s0 · t2 · s0 = t′2 are also generators. So:

s0 · t1t2 · s0 : r 7→ r · (s0t1t2s0) = r · (s0t1s0s0t2s0) = r · (t′1t′2) ∈ R`(D). (8.8)

Therefore s0 · v · s0 ∈ F 0
` (D) for all v ∈ F 0

` (D).

Proposition 8.3.4. For T ∈ {B,D} and every v ∈ R`(T ) there exists wπ ∈ F 0
` (T )

such that 1`,` · wπ = v.

Proof. In type B we use the word ws obtained by Algorithm 7.2.13, and replace all
si by the corresponding pi to get wπ. We have to check that wπ is action reduced.
But we note that in part 1 and 3, when we are in step i setting the i-th letter, all
letters between the �rst i and the last i positions are sorted in increasing order. This
means that every pk and sk have the same action. Hence 1`,` · ws = 1`,` · wπ = v.

In type D we use Algorithm 7.2.32. The di�erence is that at step i, two consec-
utives letters between the �rst i and last i are not necessarily sorted in increasing
order. Indeed there could be a problem between letters 1 and 1. However it is true
for neighbouring letters which are the only one that can be exchanged. So again
every generator pk and sk has the same action.
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Remark 8.3.5. By transposition for every v ∈ R`(T ) there exists wπ ∈ F 0
` (T ) such

that wπ · 1`,` = v.

Now we also want to prove that the action on the identity is injective. We will
use the left and right actions to do this, but we �rst have to prove that these actions
commute. We begin with a technical lemma:

Lemma 8.3.6. For r ∈ R`(B) and g a generator of F 0
` (D), we have:

s0 · (r · g) = (s0 · r) · g and g · (r · s0) = (g · r) · s0. (8.9)

Proof. A generator g of F 0
` (D) never exchanges mirror letters, hence can not ex-

change the letters 1 and 1. These letters are exchanged, if they exist, by the left
action of s0. Furthemore, since these two letters are two consecutives values, let a
be a letter in r, then 1 < a⇔ 1 < a and 1 > a⇔ 1 > a. Hence s0 ·(r ·g) = (s0 ·r) ·g.
The other equality is obtained by transposition.

Proposition 8.3.7. The right and left action of F 0
` (T ) over R`(T ) commute.

Proof. In type B it follows from the commutation between the right and left action
of R0

n(A) over Rn(A) (Corollary 4.5.5) since the generators of F 0
` (B) are product

of functions of type A. Type D is more involved. Since elements of R`(D) obey
the B condition, we deduce from type B the commutation of generators in the set
{pe1 = p1, p2, . . . p`−1, ε0, . . . , ε`}:
∀v ∈ R`(D), ∀g, h ∈ {pe1, p2, . . . p`−1, ε0, . . . , ε`}, (g · v) · h = g · (v · h) . (8.10)

We want to prove that ((s0 · g · s0) · v) · h = (s0 · g · s0) · (v · h). We have:

((s0 · g · s0) · v) · h = (s0 · (g · (s0 · v))) · h = s0 · ((g · (s0 · v)) · h) by Lemma 8.3.6

= s0 · (g · ((s0 · v) · h)) by (8.10)

= s0 · (g · (s0 · (v · h))) by Lemma 8.3.6.

= (s0 · g · s0) · (v · h)

We also have (g · v) · (s0 ·h · s0) = g · (v · (s0 ·h · s0)). By Lemma 8.3.3 we then deduce
from (8.10) the commutation of every generator of type D.

Corollary 8.3.8. The application r ∈ F 0
` (T ) 7→ 1`,` · r ∈ R`(T ) is injective.

Proof. Let r, r′ ∈ F 0
` (T ) be so that 1`,` · r = 1`,` · r′. Let v ∈ R`(B) and wπ ∈ F 0

` (T )
according to Remark 8.3.5 so that wπ · 1`,` = v. Hence:

1`,` · r = 1`,` · r′
wπ · (1`,` · r) = wπ · (1`,` · r′)
(wπ · 1`,`) · r = (wπ · 1`,`) · r′ by Proposition 8.3.7,

v · r = v · r′.
Finally the two functions r and r′ are equal.

We conclude by a generalization of Proposition 8.1.1.

Theorem 8.3.9. The map r ∈ F 0
` (T ) 7→ 1`,` · r ∈ R`(T ) is a bijection. Therefore

we have |F 0
` (T )| = |R`(T )|.

Proof. This map is injective by Corollary 8.3.8 and surjective by Proposition 8.3.4.
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8.4 Generators

We now want to de�ne a 0-Renner monoid of type B and D by generators and
relations as we did in type A (Part II). These monoids will be generated by a set
Π = (πs)s∈S and the same cross-section Λ0 than in the Renner monoid. Taking back
Godelle's De�nition 7.1.1, and changing the Coxeter Relations to Hecke Relations
we would want to de�ne R0

` (T ) to be generated by Π ∪ Λ0 subject to the relations:

π2
s = πs, π ∈ Π; (H1)

|πs, πt〉m = |πt, πs〉m, ({s, t},m) ∈ E(Γ) (H2)

πse = eπs, e ∈ Λ0, s ∈ λ∗(e); (TYM1)

πse = eπs = e, e ∈ Λ0, s ∈ λ∗(e); (TYM2)

eπwf = e ∧πw f, e, f ∈ Λ0, w ∈ G↑(e) ∩D↑(f). (TYM3)

We note that with this de�nition the submonoid generated only by Π is the Hecke
monoid H0

` (T ). In De�nition 8.4.1 and 8.4.22 we will give an explicit presentation
and prove that the monoids de�ned by such a presentation are isomorphic to the
corresponding monoids F 0

` (T ) in Theorems 8.4.17 and 8.4.41.

8.4.1 Type B

We will use the element Πi de�ned in Proposition 8.2.7. This special element cor-
responds to the elements of Relation TYM3 for the type B. We will now describe
precisely the 0-Renner monoid of type B with the following de�nition.

De�nition 8.4.1. The 0-Renner monoid of type B and size `, denoted by G0
`(B),

is generated by π0, . . . , π`−1, e0, . . . , e` subject to the relations:

π2
i = πi 0 ≤ i ≤ `− 1; (H1-B)

πiπj = πjπi, 0 ≤ i, j ≤ `− 1 and |i− j| ≥ 2; (H2-B)

πiπi+1πi = πi+1πiπi+1, 1 ≤ i ≤ `− 2; (H3-B)

π1π0π1π0 = π0π1π0π1, (H4-B)

ejπi = πiej = ej, 0 ≤ i < j ≤ `; (Abs-B)

ejπi = πiej, 0 ≤ j < i ≤ `− 1; (Com-B)

eiej = ejei = emax(i,j), 0 ≤ i, j ≤ `; (E-B)

eiπiei = ei+1, 0 ≤ i ≤ `− 1; (Rec-B)

e0Πie0 = ei+1, 0 ≤ i ≤ `− 1. (Red-B)

The Relations Rec-B and Red-B show that G0
`(B) = 〈π0, . . . π`−1, e0〉. The Re-

lation Rec-B gives us a de�nition of (ei)i>0 (as in type A, Equation R8), and we
will show that the Relation Red-B gives a reduced expression of these elements. We
de�ne e := e0.

Example 8.4.2. Using Example 8.2.8, we explicit the relations Red-B for i from 0
to 5:

eπ0e =e1; (Red-0)
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eπ0π1π0e =e2; (Red-1)

eπ0π1π2π0π1π0e =e3; (Red-2)

eπ0π1π2π3π0π1π2π0π1π0e =e4; (Red-3)

eπ0π1π2π3π4π0π1π2π3π0π1π2π0π1π0e =e5; (Red-4)

eπ0π1π2π3π4π5π0π1π2π3π4π0π1π2π3π0π1π2π0π1π0e =e6. (Red-5)

Note that the relations missing in Godelle's work [God09] are precisely these relations
for i equal or greater than 2.

Lemma 8.4.3. The morphism of monoids Φ : G0
`(B)� F 0

` (B) de�ned by Φ(πi) = pi
and Φ(ei) = εi is a surjection.

Proof. We have to show that the generators of F 0
` (B) satisfy the relations of G0

`(B).
Relations H1-B, H2-B, H3-B, Abs-B, Com-B, E-B and Rec-B are deduced from
relations of type A (Corollary 4.1.6). Relation H4-B can be seen as the result of the
classic folding A2`−1 → B` or by computation:

p0p1p0p1 = πA1,1π
A
1 π

A
1 π

A
1,1π

A
1 π

A
1

= πA1,1π
A
1 π

A
1,1π

A
1 π

A
1,1π

A
1

= πA1 π
A
1,1π

A
1 π

A
1 π

A
1,1π

A
1

= πA1 π
A
1,1π

A
1 π

A
1 π

A
1,1π

A
1

= πA1 π
A
1,1π

A
1 π

A
1,1π

A
1 π

A
1,1

= πA1 π
A
1 π

A
1,1π

A
1 π

A
1 π

A
1,1 = p1p0p1p0

Because of Theorem 8.3.9, we can deduce Relation Red-B only by considering
the action on matrices of Πi. We recall from the proof of Proposition 8.2.11 that
1i,i · Πi−1 = 12 . . . i | i . . . 21 for all i ≥ 1. Then 1`,` · e = ∅ . . . ∅ | 1 . . . `, and
1`,` · (eΠi−1) = ∅ . . . ∅1 . . . i | ∅ . . . ∅(i + 1) . . . `, with ` − i zeros in the �rst half.
Finally 1`,` · (eΠi−1e) = ∅ . . . ∅ | ∅ . . . ∅(i+ 1) . . . ` = 1`,` · ei.

Because of Lemma 8.4.3 when speaking about words and actions we do not need
to distinguish between πi and pi on the one hand, and ei and εi. In other words, πi is
the element pi of F 0

` (B), and ei the element εi. With this notation, we can give the
de�nition of reduced words in our case. It is just the application of De�nition 1.1.3
with the choice that (ei)i>0 are not in the generating set.

De�nition 8.4.4. A word on F 0
` (B) or G0

`(B) is reduced if it is written with only
a minimal number of e and πi.

Lemma 8.4.5. A reduced word in F 0
` (B) is also reduced in G0

`(B).

Proof. Let w ∈ F 0
` (B) be reduced. By Lemma 8.4.3 let ω ∈ G0

`(B) so that Φ(ω) = w.
If ω is not reduced, then so do Φ(ω) = w which is a contradiction.

Remark 8.4.6. Remark 8.1.3 provides an equivalence between reduced and action-
reduced words for elements of H0

` (B). Let w ∈ F 0
` (B), then it admits the word

w = w1eiw2 by Algorithm 7.2.13. The proof of the algorithm shows that every
generator of w1 and w2 has a nontrivial action. Hence these two words are action-
reduced so reduced. Furthermore the whole word w1eiw2 is action-reduced.
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Corollary 8.4.7. A reduced element r ∈ F 0
` (B) is action-reduced.

Proof. Let r = r1 . . . rk and assume by contradiction that there exists j ≤ k−1 such
that 1`,` · (r1 . . . rj) = 1`,` · (r1 . . . rj+1). By Theorem 8.3.9 the elements r1 . . . rj+1

and r1 . . . rj are equal since they have the same action on the one 1`,`, hence r was
not reduced.

The goal of this section is to prove that F 0
` (B) = G0

`(B). Algorithm 7.2.13
happens to give a canonical reduced element for each word. Before that, we �rst
give a reduced expression for ei with i ≥ 1.

Proposition 8.4.8. Relation Red-B gives a reduced expression of ei for i ≥ 1.

Proof. We �rst consider ei ∈ F 0
` (B). Since ei has at least ` + 1 zeros, there are

at least two e in a reduced word for ei. Furtermore e only deletes the letters with
negative positions. But ei also deletes letters in position 1 to i. So these letters have
to be brought to the negative part. To bring a letter from position k to position 1,
we need at least the action of k generators (πk−1, πk−2, . . . , π1, π0). Furthermore a
generator πk only move one letter in the positive part closer to the negative part at
a time. Hence we need at least 1+2+ · · ·+ i = i(i+1)

2
generators πk to move all these

letters in the negative part. But Πi−1 has precisely
i(i+1)

2
generators πk, and has the

needed properties. Finally eΠi−1e is reduced, and is equal to ei in F 0
` (B).

We saw that if w ∈ F 0
` (B) is written w = w1eiw2 by Algorithm 7.2.13, then w1 is

reduced. We will now show that it is in fact either the identity, or right grassmannian
in πi. From there we will get that Algorithm 7.2.13 gives us a �unique� decomposition
of every element. We must �rst describe the shape of w1.

Proposition 8.4.9. If w ∈ F 0
` (B) and w = w1eiw2 is its B-factorization according

to Algorithm 7.2.13, then w1 is either the identity or is right grassmannian in πi

Proof. Indeed, by construction w1 is either the identity or its descents are those
described in Corollary 8.2.6. In the latter case, i is the number of pairs of ∅ letters.

This proposition explains why the factorization of Algorithm 7.2.13 is called the
grassmannian factorization.

Proposition 8.4.10 (Unicity of w1). If w ∈ F 0
` (B) admits the two expressions

w = w1eiw2 = v1eiv2 with w1, w2, v1, v2 ∈ H0
` (B), and where w1 and v1 are both

right grassmannian in πi, then w1 = v1.

Proof. Otherwise, since the action of w on the identity is well-de�ned, so are its
missing letters. Since the letters are deleted by the action of ei only, the actions of
v1 and w1 take the same set of ` + i letters in the �rst positions. But since w1 and
v1 are both right grassmannian in πi, the action of w1 and v1 must have the shape
of Corollary 8.2.6. And there is only one way to sort these letters with respect to
the antisymmetry of B-elements and the poset conditions of Corollary 8.2.6: it is
m1(w). By Proposition 8.1.1, we conclude that w1 = v1.
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As a consequence, we see that the grassmannian factorization of Algorithm 7.2.13
gives us unicity on w1. We prove the same result for w2 under the assumption that
we have action-reduced elements.

Proposition 8.4.11 (Unicity of w2). If w ∈ F 0
` (B) admits two action reduced

expressions w = w1eiw2 = w1eiv2 with w1, w2, v2 ∈ H0
` (B) and w1 is right grass-

mannian in πi or the identity, then w2 = v2.

Proof. We �rst note that 1`,` · w1ei is of the shape r = ∅ . . . ∅ri+1 . . . r`, with ` + i
zeros, and with ri+1 < ri+2 < · · · < r` by Proposition 8.2.6. Since the value of letters
does not change the action, we conclude that w2 and v2 have the same actions on

∅ . . . ∅ | ∅ . . . ∅ i+ 1 i+ 2 . . . `. (8.11)

Since the generators of w2 and v2 act on every word antisymmetrically, they also
have the same action on

` . . . i+ 2 i+ 1 ∅ . . . ∅ | ∅ . . . ∅ i+ 1 i+ 2 . . . `. (8.12)

Since the two words for w are action-reduced, every generator of w2 and v2 has a
nontrivial action on 1`,` · w1ei. In particular they never exchange a pair of nonzero
letters. Hence they have the same actions on

` . . . i+ 2 i+ 1 i . . . 2 1 | 1 2 . . . i i+ 1 i+ 2 . . . `. (8.13)

Using Lemma 8.1.8 we conclude that w2 = v2.

The following lemma considers only product of the type wej with w ∈ H0
` (B).

Lemma 8.4.12. Let 0 ≤ i ≤ ` and w ∈ F 0
` (B) so that eiw = ei. Choose a word w

for w. If πk ∈ w then k < i. The same result holds for wei = ei.

Proof. Assume w = πi1 . . . πim and suppose by contradiction that there is k > 0
so that ik ≥ i, and take such a k minimal. The action of ei on the identity is
∅ . . . ∅ | ∅ . . . ∅ i+ 1 . . . ` with i zeros in the second half. But eiπi1 . . . πik−1

= ei since
it only acts on pair of ∅ letters. Now eiπik 6= ei. We standardize this B rook element,
seeing it as a permutation. The standardization of ei is 1`,` and the standardization
of eiπik is 1`,` · (πAikπAik) (or πA

1,1
if ik = 0). Now we are inside elements of H0

`,`
(A), and

these elements are ordered by the inclusion of inversions. The last element is strictly
below the identity, and since H0

`,`
(A) is J -trivial [Den+10] it is not possible to use

generators of H0
`,`

(A) to get back to 1`,`. But eiw = ei, so 1`,` · w̃ = 1`,`, (where w̃ is

w seen as product of generators of H0
`,`

(A)) which is a contradiction.

The following statement summarizes these results:

Theorem 8.4.13. For any w ∈ F 0
` (B), the grassmannian factorization of Al-

gorithm 7.2.13 provides the unique action reduced expression w = w1eiw2 with
w1, w2 ∈ H0

` (B) and w1 is either the identity or right grassmannian in πi.
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Proof. Let v1ejv2 be another reduced expression with v1 either equal to the identity
or right grassmannian in πj. We �rst have i = j since they are both equal to |w|∅.
The missing letters of w being well-de�ned, the actions of w1ei and v1ei on the
identity are the same. If w1 = 1 then by Lemma 8.4.12 we get that v1 can not
be right grassmannian in πi, so v1 = 1. If w1 6= 1 then so do v1. Finally w1 and
v1 are either both right grassmannian in πi, either both equal to the identity. By
unicity of w1 (Proposition 8.4.10) we have w1 = v1 in both cases. By unicity of w2

(Proposition 8.4.11) we �nally get w2 = v2.

Theorem 8.4.13 gives uniqueness is the case where we have an action reduced
word. We will sometimes want to drop this condition, and will use Lemma 8.4.12
to keep the unicity on w2. Now, we have �nished the part 1 of the proof and move
to part 2. From now on we will use these two ways to assert unicity of words to
prove some special relations with left and right grassmannian elements. We �rst
show these relations in the functions (Proposition 8.4.14), then in the presentation
(Proposition 8.4.15). Finally this will be enough to get the necessary condition that
reduced word of G0

`(B) have at most two letters e (Proposition 8.4.16).

Proposition 8.4.14. Let 1 ≤ i, j ≤ `, w ∈ H0
` (B) an element πi-grass-πj and

w a given word for it. Let k := max{s | πs ∈ w}. Then eiwej = ek+1 in F 0
` (B).

Moreover k depends only on w and not of the choice of w.

Proof. We are looking at the action of eiwej on the identity. The action of w is
given by a linear extension of the grid representation i− grB − j. Left-multiplying
by ei amounts to delete the �rst ` + i rows, and right-multiplying by ej amounts
to delete the �rst ` + j columns. By Proposition 8.2.10, in the table eiwej there is
at most min(` − i − 1, ` − j − 1) letters 1 on the diagonal. Consider the rightmost
box on the diagonal which is zero. By Proposition 8.2.10, all the following boxes
of the diagonal have a 1. Let k be the index of this column if it is in the second
half, and 0 otherwise. So we got the rook table of ek. By Lemma 8.4.12 w does
not contain generators (πs)s≥k. By contraposition of Lemma 8.4.12 since k ≥ i, w
contains πk−1, otherwise the diagonal of the column k − 1 would be a 1. Since the
action of eiwej is well de�ned, it also shows that it does not depend on the choice
of the word for w.

The Relations 8.4.14 are a priori in F 0
` (B) and not in G0

`(B). We will now show
that we can deduce them from relations of G0

`(B) with a proof inspired from [God09,
Proposition 1.24]. We recall that Proposition 8.4.8 gives the reduced expression and
de�nes the length of ei. The general idea is to change a word using commutation
relations until it becomes bigrassmannian.

Proposition 8.4.15. Let 1 ≤ i, j ≤ `, w an element πi-grass-πj, w any word for
it, and r := 1 + max{s | πs ∈ w}. The relation eiwej = er for w πi-grass-πj hold in
G0
`(B), and the left side of this equality has a length greater than the right side.

Proof. We prove the claimed result by induction of the length of w. If it has length
0 then it is the empty word, and the relation is 12 = 1. Otherwise, let w an element
πi-grass-πj, and choose w a reduced expression for w. Assume that j 6= 0 or i 6= 0
otherwise we are only considering Relation Red-B by Corollary 8.2.11.
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We �rst assume i 6= j, for instance i < j. Consider πk ∈ w with i ≤ k < j
(take πi for instance). By E-B we get eiwej = eiwekej = eiw1ekw2ej where we
used Relation Com-B and H2-B to H4-B to obtain w1 right grassmannian in πk and
w = w1w2 with |w1| > 0. To see that we do not use Relation Abs-B, we check
by an explicit computation that if an element would be absorbed by ek it would
also be absorbed by ej. Since the Relation Abs-B was not used, w1 is still left-
grassmannian in πi, and also right grassmannian in πk. Furthermore since k < j,
we have |w2| > 0 so |w1| < |w|. By induction there is m such that eiw1ek = em. So
eiwej = emw2ej. Applying Relations Abs-B, Com-B, and H2-B to H4-B we write
eiwej = emw2ej = w3emw4ejw5 with w4 πm-grass-πj. Then |w4| ≤ |w2| < |w| so
eiwej = w3epw5 in G0

`(B). Applying Relation Com-B, Abs-B and H2-B to H4-B
we can assume that w3 is right grassmannian in πp. We also know that eiwej = er
in F 0

` (B). So the action of w3emw5 is the same as the action of er in F 0
` (B). By

unicity of w1 (Proposition 8.4.10) we deduce that w3 = 1 in F 0
` (B), so w4 = 1 by

Lemma 8.4.12. Since it is an element of H0
` (B) it also holds in G0

`(B).
We now consider the case i = j. We write eiwei = eiwe0Πi−1e0 by Relation Red-

B and then we get back to the previous proof.

eiwei = eiwe0Πi−1e0 = eiw1e0w2e0 with w1 πi-grass-π0,

= ekw2e0 by induction,

= w3ekw4e0w5 with w4 πk-grass-π0.

We conclude in the same way. The assumption on the length can be checked by
induction in each case.

Proposition 8.4.16. A reduced word w ∈ G0
`(B) has at most two letters e.

Proof. Let w ∈ G0
`(B). Assume that w has a reduced word w with strictly more

than three e. It is enough to prove that a word with three e can be reduced to two.
Assume then that w = w1ew2ew3ew4. Applying Relation Com-B and H2-B to H4-B
we can assume that w3 is π0-grassmannian-π0. By Corollary 8.2.11, w3 = Πi for
some i. We use Relation Red-B to get w = w1ew2ei+1w4. Applying again Com-B
and H2-B to H4-B we can assume that w2 is π0-grass-πi+1. By Proposition 8.4.14
and Proposition 8.4.15 we get w = w1ekw4. In particular we managed to write w
with only two e, and the size of the word only decreased since the beginning of the
proof. Hence the word with three e was not reduced.

With this proposition we conclude the part 2 of the proof. We now go for part 3.
We prove the isomorphism between the monoid of functions F 0

` (B) (De�nition 8.3.1)
and the monoid obtained by presentation G0

`(B) (De�nition 8.4.1). The proof is
inspired from [God09, Proposition 1.22].

Theorem 8.4.17. We have the isomorphism of monoids F 0
` (B) ' G0

`(B).

Proof. We have seen in Lemma 8.4.3 the surjection Φ : G0
`(B) � F 0

` (B). Let
w ∈ F 0

` (B), represented by the grassmannian factorization (Algorithm 7.2.13) by
the word w = w1eiw2. Let w′ be another reduced expression of w, hence action-
reduced. Considering the number of e in w′, we will prove that we can write w′ as
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w1eiw2 applying only relations of G0
`(B). By Proposition 8.4.16, w′ can not have

more than two e letters. We will see separately the cases 0, 1 and 2 letters e.
If e /∈ w′ then w has no zeros and the grassmannian factorization gives w = w2.

But w′ and w2 have the same action on the identity and are elements of H0
` (B)

so all the computation is in H0
` (B) applying only Relations H2-B, H3-B and H4-B

(not H1-B by Matsumoto's Theorem).
If w′ contains exactly one e, then w has exactly ` zeros and so Algorithm 7.2.13

gives w = w1ew2. We write w′ = v1ev2. Applying Relations Com-B, and H2-B
to H4-B we can assume that v1 is right grassmannian in π0. Since v1ev2 is still
action-reduced, by Theorem 8.4.13 we get v1 = w1 and v2 = w2 in H0

` (B), therefore
we can get from one element to another by the relations of H0

` (B).
If w′ has exactly two e, then w′ = v1ev2ev3. Applying Relation Com-B and H2-B

to H4-B we can assume that v2 is π0-grass-π0. By Corollary 8.2.11, v2 = Πi for
some i. Hence by Relation Red-B we write w′ = v1ei+1v3. So w has ` + i + 1 zeros
and so Algorithm 7.2.13 gives w = w1ei+1w2 with w1 right grassmannian in πi+1.
Applying again Relations Com-B and H2-B to H4-B we can assume that v1 is also
right grassmannian in πi+1. Since v1ei+1v2 is still action-reduced, Theorem 8.4.13
ensures that v1 = w1 and v2 = w2 in H0

` (B)

We de�ne R0
` (B) :=G0

`(B). Theorem 8.4.17 corrects the missing relations that
were forgotten in [God09] and also gives an e�ective way to do the computation:

Corollary 8.4.18. For any w ∈ R0
` (B) the grassmannian factorization of Algo-

rithm 7.2.13 gives a canonical reduced expression.

Proof. Let w ∈ R0
` (B). We saw in the proof of Theorem 8.4.17 that any word for w

can be rewritten to the expression given by Algorithm 7.2.13, using only relations
which reduce the length by Proposition 8.4.15.

Theorem 8.4.17 �nally gave us a presentation of R0
` (B). Note that we deduce

the presentation for R`(B) just by changing the Relation H1-B by π2
i = 1. So we

also got canonical reduced expressions for the elements of R`(B).

Theorem 8.4.19. The Renner monoid R`(B) is generated by s0, . . . , s`−1, e0, . . . , e`
subject to relations:

s2
i = 1 0 ≤ i ≤ `− 1; (R1-B)

sisj = sjsi, 0 ≤ i, j ≤ `− 1 and |i− j| ≥ 2; (R2-B)

sisi+1si = si+1sisi+1, 1 ≤ i ≤ `− 2; (R3-B)

s1s0s1s0 = s0s1s0s1, (R4-B)

ejsi = siej = ej, 0 ≤ i < j ≤ `; (AbsR-B)

ejsi = siej, 0 ≤ j < i ≤ `− 1; (ComR-B)

eiej = ejei = emax(i,j), 0 ≤ i, j ≤ `; (ER-B)

eisiei = ei+1, 0 ≤ i ≤ `− 1; (RecR-B)

e0Sie0 = ei+1, 0 ≤ i ≤ `− 1. (RedR-B)

with Si := s0 . . . sis0 . . . si−1s0 . . . si−2 . . . s0s1s0.
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Proof. The proof is similar to that of Theorem 8.4.17. Let us de�ne the monoid
generated by this presentation G`(B). It is a simple computation that the tables of
generators of R`(B) satisfy the same relations. The point is that an action-reduced
element for the 0-Renner monoid has the same action on R`(B) than the element
obtained by replacing each πi by si. This follows exactly the same lines as the proofs
of Proposition 8.3.4 to Theorem 8.4.17.

This proof illustrates that working at the level of the Hecke monoid rather than
the Weyl group makes quite an advantage: we can use the idea of action reduced
element. This also explains why we prefered to �rst �nd the presentation for R0

` (B)
before the one for R`(B).

This proof also suggests us the following conjectures:

Conjecture 8.4.20. Let s be a word on s0, . . . , s`−1, e0, . . . , e` and π the word on
π0, . . . , π`−1, e0, . . . , e` obtained by replacing si by πi, then s is reduced if and only if
π is reduced.

Conjecture 8.4.21 (Matsumoto's theorem for R`(B) and R0
` (B)). Two reduced

words on s0, . . . , s`−1, e0, . . . , e` (resp. on π0, . . . , π`−1, e0, . . . , e`) give the same ele-
ment if and only if they are linked using only length-preserving relations of Theo-
rem 8.4.19 (resp. De�nition 8.4.1).

8.4.2 Type D

We will do again the part 1 to part 4 of the proof, but in type D. Hence this
section will be very similar to the previous one. The main di�erence is linked to
the condition of parity of De�nition 7.2.20, which add many di�culties that did not
exist in type B. We will use the elements ∆e

i and ∆f
i de�ned in De�nition 8.2.14.

These elements correspond to the elements of Relation TYM3 of type D.

De�nition 8.4.22. The 0-Renner monoid of type D and size `, denoted by G0
`(D),

is generated by πf1 , π
e
1, π2, . . . , π`−1, f, e0, e1, . . . , e` subject to the relations:

π2
i = πi 1 ≤ i ≤ `− 1; (H1-D)

πiπj = πjπi and π
e
1π

f
1 = πf1π

e
1, 1 ≤ i, j ≤ `− 1 and |i− j| ≥ 2; (H2-D)

πiπi+1πi = πi+1πiπi+1, 1 ≤ i ≤ `− 2; (H3-D)

ejπi = πiej = ej, 1 ≤ i < j ≤ `; (Abs-D)

ejπi = πiej and fπi = πif, 0 ≤ j < i ≤ `− 1 and i > 1; (Com-D)

πe1e = eπe1 and fπf1 = πf1f, (ComEF-D)

eiej = ejei = emax(i,j), 0 ≤ i, j ≤ `; (E-D)

eif = fei = ei and f
2 = f 1 ≤ i ≤ `; (EF-D)

e0f = fe0 = e1 (E0F-D)

eiπiei = ei+1, 1 ≤ i ≤ `− 1; (Rec-D)

f∆e
ie0 = ei+1 and e0∆f

i f = ei+1, 1 ≤ i ≤ `− 1, i even. (Red-D-even)

f∆e
if = ei+1 and e0∆f

i e0 = ei+1, 1 ≤ i ≤ `− 1, i odd. (Red-D-odd)
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We de�ne e := e0 and e−1 := f . The Relations E0F-D, Rec-D, Red-D-even and Red-
D-odd show that G0

`(D) = 〈πe1, πf1 , π2, . . . π`−1, e, f〉. The Relations E0F-D and Rec-
D give us a de�nition of (ei)i>0, and we will show that the Relations Red-D-odd
and Red-D-even are a reduced expression of the (ei)i (Proposition 8.4.29).

Example 8.4.23. Using Example 8.2.15 we explicit the relations Red-D-even and
Red-D-odd for i from 1 to 4:

fπe1f =e2 and e2 = eπf1 e; (Red-1)

fπe1π2π
f
1 e =e3 and e3 = eπf1π2π

e
1f ; (Red-2)

fπe1π2π3π
f
1π2π

e
1f =e4 and e4 = eπf1π2π3π

e
1π2π

f
1 e; (Red-3)

fπe1π2π3π4π
f
1π2π3π

e
1π2π

f
1 e =e5 and e5 = eπf1π2π3π4π

e
1π2π3π

f
1π2π

e
1f ; (Red-4)

The relation Red-3, Red-4 and further are precisely the ones missing in Godelle's
presentation [God09].

Lemma 8.4.24. The morphism of monoid Φ : G0
`(D)� F 0

` (D) de�ned by πi 7→ pi,
ϕ 7→ f and ei 7→ εi is a surjection.

Proof. We have to show that the generators of F 0
` (B) satisfy the relations of G0

`(D)
Relations H1-D, H2-D, H3-D, Abs-D, Com-D, E-D, EF-D, E0F-D and Rec-D are
deduced from relations of type A (De�nition 4.1.1). Because of Theorem 8.3.9, we
can deduce Relations Red-D-even and Red-D-odd only by considering the action on
matrices of ∆e

i and ∆f
i . In Proposition 8.2.16 we gave these actions (see below).

Recall that the left-action of e deletes the letters ` to 1, while its right-action deletes
the �rst ` letters. Furthermore the left-action of w deletes the letters ` to 2 and
letter 1, while its right-action deletes the �rst `− 1 letters and the letter in position
1. We check case by case. (We color the generator and the elements they will delete
in the same color. If an element is deleted by both we show it in gray.)
• i even, look at f∆e

ie. But 1`,` ·∆e
i = ` . . . i+ 2 12 . . . i i+ 1 | i+ 1 i . . . 2 1 i+

2 . . . `.
• i even, look at e∆f

i f . But 1`,` ·∆f
i = ` . . . i+ 2 1 . . . i i+ 1 | i+ 1 i . . . 1 i +

2 . . . `.
• i odd, look at f∆e

if . But 1`,` ·∆e
i = ` . . . i+ 2 12 . . . i i+ 1 | i+ 1 i . . . 2 1 i+

2 . . . `.
• i odd, look at e∆f

i e. But 1`,` · ∆f
i = ` . . . i+ 2 1 . . . i i+ 1 | i+ 1 i . . . 1 i +

2 . . . `.

Because of this lemma, we can now call the generators of F 0
` (D) via this surjec-

tion: πi 7→ pi, ϕ 7→ f and ei 7→ εi. With this new notation, we can give the de�nition
of reduced words in this new context. It is just the application of De�nition 1.1.3
with the choice that (ei)i>0 are not in the generating set.

De�nition 8.4.25. A word on F 0
` (D) or G0

`(D) is reduced if it is written with only
a minimal number of e, f and πi.

Remark 8.4.26. As in type B, because of the surjection of Lemma 8.4.24, a reduced
word in F 0

` (D) is also reduced in G0
`(D).
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Remark 8.4.27. As before, if w ∈ F 0
` (D) it admits the word w1eiw2 by Algo-

rithm 7.2.32 (recall that e−1 = f). The proof of the algorithm shows that every
generator of w1 and w2 has a nontrivial action. Hence these two words are action
reduced elements of H0

` (D), so reduced. By the same argument, we see that ∆e
i and

∆f
i of De�nition 8.2.14 are reduced.

As in Corollary 8.4.7 in type B, we have:

Corollary 8.4.28. A reduced element r ∈ F 0
` (D) is action-reduced.

Before going to the properties of Algorithm 7.2.32 we check the reduced expres-
sion for the ei.

Proposition 8.4.29. Relations Red-D-even and Red-D-odd give two reduced expres-
sions for ei with i ≥ 1.

Proof. For i = 1 it is clear that e1 = ef is a reduced expression since e1 deletes `+ 1
letters while the only generator deleting letters, e and f , deletes ` letters only. So
we need two of these, and ef is enough.

Now if i ≥ 2, we �rst consider ei ∈ F 0
` (D). Since ei has at least ` + 1 zeros,

there are at least two elements of {e, f} in a reduced word for ei. Furtermore e only
deletes the letters with negative positions, and f deletes letter in position ` to 2 and
1. But ei also deletes letters in position 2 to i. So these letters have to be brought
to a position j ≤ 1. To bring a letter from position k to position 1 or 1, we need at
least the action of k − 1 generators (πk−1, πk−2, . . . , π2 and πe1 or πf1 ). Furthermore
a generator πk only move one letter in the positive part closer to the negative part
at a time. This is not true for generator πf1 , which can bring two letters in the
negative part at a time. But this is compensated by the fact that we would need to
put a letter in position 1, which uses one more generator. Finally we need at least
1+2+ · · ·+ i−1 = i(i−1)

2
generators πk to move all these letters in the negative part.

But ∆e
i−1 and ∆f

i−1 has precisely i(i−1)
2

generators πk and all the needed properties.
Finally the expressions f∆e

i−1e and e∆f
i−1f if i is even, f∆e

i−1f and e∆f
i−1e if i is

odd, are reduced, and are equal to ei in F 0
` (D). Now we have a reduced expression

in F 0
` (D), hence it is reduced in G0

`(D) and is equal to ei by Relations Red-D-even
and Red-D-odd.

Again, we will see that if w ∈ F 0
` (D) is written w = w1eiw2 by the grassmannian

factorization of Algorithm 7.2.32, then w1 is either the identity or right grassmannian
in some πi. But there is more cases in type D because of question of parity.

Example 8.4.30. Assume |w|∅ = `+ 1 and look at the results of Algorithm 7.2.13.
We can �nd three di�erent cases:
• w = ∅∅∅∅∅ | ∅1345, then mD

1 (w) = 54312 | 21345 and w1 = πe1.
• w = ∅∅∅∅∅ | ∅1235, then mD

1 (w) = 54214 | 41245 and w1 = π3π2π
f
1 .

• w = ∅∅∅∅∅ | ∅2345, then mD
1 (w) = 54321 | 12345 and w1 = πf1π

e
1 = πe1π

f
1 .

Recall that we identify an element of F 0
` (D) with its image on the identity which

is a D-rook. We see with these examples that some elements w1 are no longer
grassmannian in a πi. We would like to consider πe1π

f
1 as a new element to mimic
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what we did in type B. Recall that if w ∈ F 0
` (D), we denote by I(w) the set of

the missing letters of w. Then I(w) = P (w) t R(w) with P (w) the symmetric
part of I(w) (k ∈ P (w) ⇒ −k ∈ P (w)) and R(w) the antisymmetric part of I(w)
(k ∈ R(w)⇒ −k /∈ R(w)).

De�nition 8.4.31. If w ∈ F 0
` (D) then we de�ne:

δi(w) :=





πe1 if i = −1,

πf1 if i = 0,

πe1 if i = 1 and p(w) is even and max I(w) = maxP (w),

πf1 if i = 1 and p(w) is odd and max I(w) = maxP (w),

πf1π
e
1 = πe1π

f
1 if i = 1 otherwise,

πi if i ≥ 2.

(8.14)

Proposition 8.4.32. If w ∈ F 0
` (D) and w = w1eiw2 is its D-factorization according

to Algorithm 7.2.32, then w1 is right grassmannian in δi(w) or is the identity.

Proof. First note that the action of w1 is the identity or the element mD
1 (w) whose

descents are always those described in Corollary 8.2.6. We check case by case the
form of this element. We write m1(w) = r` . . . r1 | r1 . . . r` and assume it is not the
identity.

When i ≥ 2, m1(w) is increasing in its �rst half except a descent between the
letters ri+1 and ri. Between letters ri to ri it is increasing and antisymmetric. To
get mD

1 (w) there is sometimes an exchange between the two middle letters, but since
r2 < r1 < r1 < r2 then r2 < r1. So w1 is grass-πi.

If i = 1 we have r` < · · · < r2 > r1 < r1 > r2 < · · · < r`. If p(w) is even then
m1(w) = mD

1 (w) so there is the descent in πe1 = π1. Because of the order of elements,
maxR(w) = −r2 = r2, while maxP (w) = r1. So if r2 > r1 we get the descent πe1π

f
1 ,

and otherwise the descent πe1. So w1 is right grassmannian in δi(w). When p(w) is
odd then mD

1 (w) = r` . . . r2r1 | r1r2 . . . r` with r2 > r1 so there is the descent πf1 .
We also get maxR(w) = r2, and the two cases depending on the order between r2

and r1.
If |w|∅ = ` we know that r` < · · · < r2 < r1 > r1 < r2 < · · · < r` in type B.

If p(w) is even, then ei = e and mD
1 (w) = m1(w). If r2 < 0, then r1 < 0 since

p(w) is even, thus m1(w) = 1 which is absurd. So r2 > 0 and r1 > 0. Therefore
r2 > r1 and the descents are those of type πf1 . Now if p(w) is odd, then ei = f and
mD

1 (w) = r` . . . r2r1 | r1r2 . . . r`. Since r1 > r1, r1 < 0. If r2 < r1 then ri < r2 < 0
for all i ≥ 2. Hence mD

1 (w) does not obey condition D, absurd. Hence r2 > r1, and
w has the descents of type πe1.

As before this explains the name of Algorithm 7.2.32 the grassmannian factoriza-
tion of D-rooks. Proposition 8.4.32 proved what we announced: we have to consider
the elements grassmannian in the product πe1π

f
1 = πf1π

e
1. In other words, since it

is not a generator, such an element grassmannian in πe1π
f
1 has all its reduced ex-

pressions which begin by either πe1 or πf1 . For now we consider it as a whole new
type of element, but by Proposition 8.4.39 we will see that we do not need this. In
Figure 8.6 we give the descent set of such an element.
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•
•

•
•

•
•

•
•

Figure 8.6: Descent set of right grassmannian element in πe1π
f
1 = πf1π

e
1 in type D.

Proposition 8.4.33 (Unicity of w1). If w ∈ F 0
` (D) admits the two expressions

w = w1eiw2 = v1eiv2 with w1, w2, v1, v2 ∈ H0
` (D), and where w1 and v1 are both

right grassmannian in δi(w), then w1 = v1.

Proof. Otherwise, consider the missing letters of w. Since the letters are deleted
by the action of ei only, the actions of v1 and w1 take the same set of ` + i letters
in the �rst positions (and positions ` to 2 and 1 when i = −1). We proceed as in
Proposition 8.4.10 and check in each case according to the value of δi(w) that the only
way to sort the �rst `+ i letters (and positions ` to 2 and 1 when i = −1) is precisely
mD

1 (w). To prove each case, we use the poset conditions of Proposition 8.2.12 and
Figure 8.6, the antisymmetry of words, and the condition of parity of p(w).

Thus as in type B we have the unicity on the �rst element of the grassmannian
factorization of Algorithm 7.2.32. We now look at the other element.

Proposition 8.4.34 (Unicity of w2). If w ∈ F 0
` (D) admits two action reduced

expressions w = w1eiw2 = w1eiv2 with w1, w2, v2 ∈ H0
` (D) and w1 is right grass-

mannian in δi(w) or is the identity, then w2 = v2.

Proof. If i ≥ 1 then 1`,` · w1ei is of the shape r = ∅ . . . ∅ri+1 . . . r`, with ` + i zeros
and ri+1 < ri+2 < · · · < r` by Proposition 8.2.6. Since the value of letters does not
change the action, we conclude that w2 and v2 have the same actions on

∅ . . . ∅ | ∅ . . . ∅ (i+ 1)(i+ 2) . . . `. (8.15)

Since the generators of w2 and v2 act on every word antisymmetrically, they also
have the same action on

` . . . (i+ 2) (i+ 1) ∅ . . . ∅ | ∅ . . . ∅ (i+ 1)(i+ 2) . . . `. (8.16)

Since the two words for w are action-reduced, every generator of w2 and v2 has a non-
trivial action on 1`,` ·w1ei. In particular they never exchange a pair of nonzero letters.

Hence they have the same actions on ` . . . (i+ 2) (i+ 1) i . . . 2 1 | 1 2 . . . i(i+1)(i+
2) . . . ` if i is even, and on ` . . . (i+ 2) (i+ 1) i . . . 2 1 | 1 2 . . . i(i+ 1)(i+ 2) . . . ` if
i is odd. Because of Lemma 8.1.8 we can conclude that w2 = v2.

Now assume that i ≤ 0. The letters di�erent from ∅ are in increasing order: we
can replace them by the value of their position. Then if we do the antissymmetry
we �nd that w2 and v2 have the same action on the identity, hence are equal.

The following lemma consider only product of the type wej with w ∈ H0
` (D).

Lemma 8.4.35. Let −1 ≤ i ≤ ` and w ∈ H0
` (D) so that eiw = ei, and we choose a

word w. Then if πk ∈ w, we have k < i. The same result holds for wei = ei.
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Proof. If ei 6= f the proof is the same that in Lemma 8.4.12. If ei = f then we
conjugate by s0: s0 · fw · s0 = s0 · f · s0 ⇔ es0 · w · s0 = e by Lemma 8.3.3. So we
apply the result to s0 · w · s0 = 1 hence w = 1.

The following statement summarizes these results:

Theorem 8.4.36. For any w ∈ F 0
` (D), Algorithm 7.2.32 provides the unique action

reduced expression w = w1eiw2 with w1, w2 ∈ H0
` (D) and w1 is right grassmannian

in δi(w) or is the identity.

Proof. Let v1ejv2 another reduced expression with v1 either the identity or right
grassmannian in πi. The number |w|∅ and the parity of p(w) gives that i = j. The
missing letters of w being well-de�ned, the actions of w1ei and v1ei on the identity
is the same. If w1 = 1 then by Lemma 8.4.35 we get that v1 can not be right
grassmannian in πi, so v1 = 1. If w1 6= 1 then so do v1. Finally w1 and v1 are either
both right grassmannian in πi or both equal to the identity. By Proposition 8.4.33
we then have w1 = v1. By Proposition 8.4.34 we get w2 = v2.

As in type B, Theorem 8.4.36 gives uniqueness is the case where we have an
action reduced word. We will sometimes want to drop this condition, and will use
Lemma 8.4.35 to keep the unicity on w2. Now, we have �nished the part 1 of
the proof and move to part 2. From now on we will use these two ways to assert
unicity of words to prove some special relations with left and right grassmannian
elements. We �rst show these relations in the functions (Proposition 8.4.38), then
in the presentation (Proposition 8.4.39). Finally this will be enough to get the
necessary condition that reduced word of G0

`(D) have at most two letters e or f
(Proposition 8.4.40). But �rst we have to de�ne the following element.

De�nition 8.4.37. We de�ne δi :=πi if 2 ≤ i ≤ ` − 1, δ−1 :=πe1, δ0 :=πf1 , and
δ1 ∈ {πe1, πf1 , πe1πf1}. For the later case we will say that a proposition is true for δ1 if
it true for all the three cases.

Proposition 8.4.38. Let −1 ≤ i, j ≤ `, w ∈ F 0
` (D) an element δi-grass-δj and w

a given word for it. Let k := max{s | πs ∈ w}. Then eiwej = ek+1. Moreover k
depends only on w and not of the choice of w.

Proof. The proof is the same than Proposition 8.4.14 in type B. Simply apply Propo-
sition 8.2.18 (resp. Lemma 8.4.35) instead of Proposition 8.2.10 (resp. Lemma 8.4.12).
The only di�erence is that we also have to check that Proposition 8.2.18 which give
the available boxes of the grid representations is also true for element right grass-
mannian in πe1π

f
1 .

The following Proposition is very similar to Proposition 8.4.15. We nevertheless
give the whole proof since the relations are not the same. We recall that according to
Proposition 8.4.29 Relations Red-D-even and Red-D-odd give reduced expressions
for ei with i ≥ 2. Here again the relations of commutation are used to change an
element into a bigrassmannian element.

Proposition 8.4.39. Let 1 ≤ i, j ≤ `, w an element πi-grass-πj, w any word for it,
and r := 1 + max{s | πs ∈ w}. The relation eiwej = er hold in G0

`(D), and the left
side of this equality has a length greater than the right side.
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Proof. We do the proof by induction of the length of w. If w is of length 0 then it
is the empty word, hence i = j = −2 and the identity is 12 = 1. Otherwise, let w a
δi-grass-δj element, and choose w a reduced expression for it.

We �rst assume that i 6= 1 and j 6= 1. So δi and δj are πk and not πe1π
f
1 . If

i, j ∈ {−1, 0} then we are considering Relations Red-D-even and Red-D-odd by
Corollary 8.2.19. Now i ≥ 2 or j ≥ 2. We assume that i 6= j, for instance i < j.
Consider that there is πk ∈ w with i ≤ k < j (take πi for instance). By E-D
and EF-D we get eiwej = eiwekej = eiw1ekw2ej where we used Relation Com-
D, ComEF-D, H2-D and H3-D to obtain w1 right grassmannian in δk and w = w1w2,
with |w1| > 0. To see that we do not use Relation Abs-D, we check by an explicit
computation that if an element would be absorbed by ek it would also be absorbed
by ej. Therefore, the Relation Abs-D was not used, w1 is still left-grassmannian in
πi, and also right grassmannian in δk. Furthermore since k < j, we have |w2| > 0
so |w1| < |w| (w is reduced). By induction there is m such that eiw1ek = em. So
eiwej = emw2ej. Applying Relations Abs-D, Com-D, ComEF-D, H2-D and H3-D we
write eiwej = emw2ej = w3emw4ejw5 with w4 δm-grass-πj. Then |w4| ≤ |w2| < |w|
so eiwej = w3epw5 in G0

`(B). Applying Relation Com-D, ComEF-D, Abs-D, H2-
D and H3-D we can assume that w3 is right grassmannian in πp. We also know
that eiwej = er in F 0

` (D). So the action of w3emw5 is the same as the action of
er in F 0

` (D). By Proposition 8.4.33 we deduce that w3 = 1 in F 0
` (D), so w4 = 1

by Lemma 8.4.35. Since it is an element of H0
` (D) it is also holds in G0

`(D). We
now consider the case i = j 6= 1. We use Relations Red-D-even or Red-D-odd ac-
cording to the parity of i = j to get back to the previous case. We conclude as in
Proposition 8.4.15.

Now assume that i = 1 or j = 1. For instance i = 1, and the case j = 1 is done
similarly. Then eiwej = e1wej = efwej. Applying Relation Com-D, ComEF-D, H2-
D and H3-D we get efwej = ew1fw2ej with w2 is left-grassmannian in πe1 and still
right grassmannian in πj. Since |w1| 6= 0 (at least πf1 ∈ w1) we can proceed by
induction and get eiwej = ew1er, with r > 1 (since |w2| 6= 0 ). Again, we get
eiwej = w3ew4erw5 with w4 π

f
1 -grass-πr. We are then brought back to the previous

case, with just w3 at the beginning and w5 at the end, but they will again be equal
to 1 in the last step using Proposition 8.4.33 and Lemma 8.4.35.

We check by induction that the size of words has decreased. Keep in mind
that we use the reduced expression of ei given in Proposition 8.4.29. In particular
`(e1) = 2.

Proposition 8.4.39 hence shows that we do not need to consider the words grass-
mannian in πe1π

f
1 since we can bring them back to some product of πe1 and π

f
1 grass-

mannian element. Finally the next proposition concludes the part 2 of the proof.

Proposition 8.4.40. A reduced word w ∈ G0
`(D) has at most two letters from the

set {e, f}.

Proof. For this proof, we denote for all k, gk ∈ {e, f}. If g ∈ {e, f} then πg :=πe1
if g = f and πg :=πf1 otherwise. Let w ∈ G0

`(D). Assume that w is a reduced
word with strictly more than three gk, for instance 3. Then w = w1g1w2g2w3g3w4.
Applying Relation Com-D, ComEF-D, H2-D and H3-D we can assume that w3 is
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πg2-grass-πg3 . By Corollary 8.2.19, w3 = ∆g
i for some i and some g ∈ {e, f}. We

use the Relation Red-D-even or Red-D-odd to get w = w1g1w2ei+1w4. Applying
again Com-D, ComEF-D, H2-D and H3-D we can assume that w2 is πg1-grass-πi+1.
By Proposition 8.4.38 and Proposition 8.4.39 we get w = w1ekw4. In particular we
managed to write w with only two elements of {e, f}, and the size of the word only
decreased since the beginning of the proof. Hence the �rst word was not reduced.

Finally we can prove the following result:

Theorem 8.4.41. We have the isomorphism of monoids F 0
` (D) ' G0

`(D).

Proof. We have seen in Lemma 8.4.3 the surjection Φ : G0
`(D) � F 0

` (D). Now let
w ∈ F 0

` (D) which we can write by grassmannian factorization (Algorithm 7.2.32)
as w = w1eiw2. Let w′ be another reduced expression for w, hence action-reduced.
Considering the number of e and f in w′, we will prove that we can write w′ as
w1eiw2 applying only Relations of G0

`(D). By Proposition 8.4.40, w′ can not have
more than two elements of {e, f}. We will separate the three cases.

If e /∈ w′ and f /∈ w′ then w has no ∅ and Algorithm 7.2.32 gives w = w2. But w
and w2 have the same action on the identity and are elements of H0

` (D) so they are
egal and all the computation is in H0

` (D) applying only Relations H2-D, and H3-D
(not H1-D by Matsumoto's theorem).

If w′ contains exactly one element of {e, f}, then w has exactly ` zeros. Algo-
rithm 7.2.32 gives w = w1ew2 or w = w1fw2. We assume that w = w1ew2, and the
other case is done similarly. Because the parity of p(w) depends only on w, it is nec-
essary than w′ contains the same generator e or f than w. Here we write w′ = v1ev2.
Applying Relations Com-D, ComEF-D, H2-D and H3-D we can assume that v1 is
right grassmannian in πf1 . Since v1ev2 is still action-reduced, by Theorem 8.4.36 we
get v1 = w1 and v2 = w2 in H0

` (D), therefore we can get from one element to another
by the relations of H0

` (D).
If w′ has exactly two elements of {e, f}, then w′ = v1g1v2g2v3 with g1, g2 ∈ {e, f}

as in proof of Proposition 8.4.40. Applying Relations Com-D, ComEF-D, H2-D
and H3-D we can assume that v2 is πg1-grass-πg2 . By Corollary 8.2.19, v2 = ∆g

i

for some i and g ∈ {e, f}. Hence by Relation Red-D-even or Red-D-odd we write
w′ = v1ei+1v3. So w has `+ i+1 zeros, so Algorithm 7.2.32 gives w = w1ei+1w2 with
w1 right grassmannian in πi+1. Applying again Relations Com-D, ComEF-D, H2-D
and H3-D we can assume that v1 is also right grassmannian in πi+1. Since v1ei+1v2 is
still action-reduced, Theorem 8.4.36 ensures that v1 = w1 and v2 = w2 inH0

` (D).

We de�ne R0
` (D) :=G0

`(D). This theorem not only corrects the missing relations
that were forgotten in [God09]. It also gives an e�ective way to do the computation:

Corollary 8.4.42. For any w ∈ R0
` (D) the grassmannian factorization of Algo-

rithm 7.2.32 gives a canonical reduced expression.

Proof. Let w ∈ R0
` (B). We saw in the proof of Theorem 8.4.41 that any word for w

can be rewritten to the expression given by Algorithm 7.2.32, using only relations
which reduce the length by Proposition 8.4.39.
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Theorem 8.4.41 �nally gave us a presentation of R0
` (D). But we can deduce the

presentation for R`(D) just by changing the Relation H1-D by π2
i = 1. So we also

got canonical reduced expression of elements in R`(D).

Theorem 8.4.43. The Renner monoid R`(D) is generated by se1, s
f
1 , s2, . . . , s`−1, f ,

e0, . . . , e` subject to relations:

s2
i = 1 1 ≤ i ≤ `− 1; (R1-D)

sisj = sjsi and s
e
1s
f
1 = sf1s

e
1, 1 ≤ i, j ≤ `− 1 and |i− j| ≥ 2; (R2-D)

sisi+1si = si+1sisi+1, 1 ≤ i ≤ `− 2; (R3-D)

ejsi = siej = ej, 1 ≤ i < j ≤ `; (AbsR-D)

ejsi = siej and fsi = sif, 0 ≤ j < i ≤ `− 1 and i > 1; (ComR-D)

se1e = ese1 and fsf1 = sf1f, (ComEFR-D)

eiej = ejei = emax(i,j), 0 ≤ i, j ≤ `; (ER-D)

eif = fei = ei and f
2 = f 1 ≤ i ≤ `; (EFR-D)

e0f = fe0 = e1 (E0FR-D)

eisiei = ei+1, 1 ≤ i ≤ `− 1; (RecR-D)

fDe
i e0 = ei+1 and e0∆f

i f = ei+1, 1 ≤ i ≤ `− 1, i even. (RedR-D-even)

fDe
i f = ei+1 and e0∆f

i e0 = ei+1, 1 ≤ i ≤ `− 1, i odd. (RedR-D-odd)

with Df
i (resp. De

i ) being the word obtained by replacing πi by si in ∆f
i (resp. ∆e

i )
of De�nition 8.2.14.

Proof. The proof is similar to that of Theorem 8.4.41. Let us de�ne the monoid
generated by this presentation, named G`(D). It is a simple computation that the
tables of generators of R`(D) satisfy the same relations. Then the point is to note
that an action-reduced element for the 0-Renner monoid has the same action on
R`(D) than the element obtained by replacing each πi by si. This follows exactly
the same lines as the proofs of Proposition 8.3.4 to Theorem 8.4.41.

This proof also suggests us the following conjectures:

Conjecture 8.4.44. Let s be a word on se1, s
f
1 , s2, . . . , s`−1, f, e0, . . . , e` and π the

word on πe1, π
f
1 , π2, . . . , π`−1, f, e0, . . . , e` obtained by replacing si by πi, then s is

reduced if and only if π is reduced.

Conjecture 8.4.45 (Matsumoto's theorem for R`(D) and R0
` (D)). Two reduced

words on se1, s
f
1 , s2, . . . , s`−1, f, e0, . . . , e` (resp. on πe1, π

f
1 , π2, . . . , π`−1, f, e0, . . . , e`)

give the same element if and only if they are linked using only length-preserving
relations of Theorem 8.4.43 (resp. De�nition 8.4.22).

8.5 Code and programming

A huge part of this part aims to give a correct presentation for the monoid R0
` (B)

and R0
` (D). We claimed that the presentation of Godelle [God09] led to in�nite
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monoid. Here we give the code in GAP to check this [Gap]. The reader could then
use GAP with the package kbmag to check our computation.

In this code, we are computing the quotient the free monoid on the generators
by the relations of our presentation. Then we use the algorithm of Knuth Bendix
[KB70] in order to �nd a con�uent system of rewriting rules, which would then enable
to count the elements. This algorithm relies a lot on the order of the generators,
and its behavior is quite unpredictable. For instance, in the next program, we apply
a function to change the order of the generators in the end, and we obtain a result
in about 3 seconds. Without changing the order it took us about 800 seconds on
our computer. Another order ran for three weeks, without giving the results. This
shows that this calculation is not easy and that these kinds of calculus is hard to
check.

# Our presentation of R_5(B)

LoadPackage("kbmag");

F := FreeMonoid(11);

id := Identity(F);

s := GeneratorsOfMonoid(F);

s4 := s[1]; s3 := s[2]; s2 := s[3]; s1 := s[4]; s0 := s[5];

e5 := s[6]; e4 := s[7]; e3 := s[8]; e2 := s[9]; e1 := s[10]; e := s[11];

Q := F/ ([ \ # quotient by the relations

# s_i are reflections

[s0^2, id], [s1^2, id], [s2^2, id], [s3^2, id], [s4^2, id], \

# e_i are idempotents

[e^2, e], [e1^2, e1], [e2^2, e2], [e3^2, e3], [e4^2, e4], [e5^2, e5], \

# braid relations

[(s0*s1)^2, (s1*s0)^2], [s1*s2*s1, s2*s1*s2], [s2*s3*s2, s3*s2*s3], \

[s3*s4*s3, s4*s3*s4], \

# commutation between s_i

[s0*s2, s2*s0], [s0*s3, s3*s0], [s0*s4, s4*s0], [s1*s4, s4*s1], \

[s1*s3, s3*s1], [s2*s4, s4*s2], \

# product of e_i

[e *e5, e5], [e *e4, e4], [e *e3, e3], [e *e2, e2], [e*e1, e1], \

[e1*e5, e5], [e1*e4, e4], [e1*e3, e3], [e1*e2, e2], [e1*e, e1], \

[e2*e5, e5], [e2*e4, e4], [e2*e3, e3], [e2*e1, e2], [e2*e, e2], \

[e3*e5, e5], [e3*e4, e4], [e3*e2, e3], [e3*e1, e3], [e3*e, e3], \

[e4*e5, e5], [e4*e3, e4], [e4*e2, e4], [e4*e1, e4], [e4*e, e4], \

[e5*e4, e5], [e5*e3, e5], [e5*e2, e5], [e5*e1, e5], [e5*e, e5], \

# commutation between s_i and e_j

[e3*s4, s4*e3], [e2*s4, s4*e2], [e2*s3, s3*e2], [e1*s4, s4*e1], \

[e1*s3, s3*e1], [e1*s2, s2*e1], [e*s4, s4*e], [e*s3, s3*e], \

[e*s2, s2*e], [e*s1, s1*e], \

# absorption between s_i and e_j

[s0*e1, e1], [e1*s0, e1], [s0*e2, e2], [e2*s0, e2], [s0*e3, e3], \

[e3*s0, e3], [s0*e4, e4], [e4*s0, e4], [s0*e5, e5], [e5*s0, e5], \

[s1*e2, e2], [e2*s1, e2], [s1*e3, e3], [e3*s1, e3], [s1*e4, e4], \

[e4*s1, e4], [s1*e5, e5], [e5*s1, e5], [s2*e3, e3], [e3*s2, e3], \
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[s2*e4, e4], [e4*s2, e4], [s2*e5, e5], [e5*s2, e5], [s3*e4, e4], \

[e4*s3, e4], [s3*e5, e5], [e5*s3, e5], [s4*e5, e5], [e5*s4, e5], \

# reccurence relation

[e*s0*e, e1], [e1*s1*e1, e2], [e2*s2*e2, e3], [e3*s3*e3, e4], \

[e4*s4*e4, e5],

# reduced expression of e_i

[e*s0*s1*s0*e, e2], [e*s0*s1*s2*s0*s1*s0*e, e3], \

[e*s0*s1*s2*s3*s0*s1*s2*s0*s1*s0*e, e4], \

[e*s0*s1*s2*s3*s4*s0*s1*s2*s3*s0*s1*s2*s0*s1*s0*e, e5] \

]);

R := KBMAGRewritingSystem(Q);

# The Algorithm of Knuth Bendix relies a lot on the order of variables.

# The next order happens to be a fast one.

ReorderAlphabetOfKBMAGRewritingSystem(R,(4,1)(3,2)(10,5)(9,6)(8,7));

KnuthBendix(R);

Size(R);

The answer of the last instruction is 322021 which is the cardinality given in Example
7.2.16. We can reduce to R4(D) by deleting all relations containing s4 and e5 and
will �nd 13889. On the contrary, in size 4 if we follow the presentation from Godelle
we replace the previous relations which give reduced expression of ei by the relations:

# reduced expression of e_i

[e*s0*s1*s0*e, e2], [e*s0*s1*s2*s0*s1*s0*e, e3]]) ;

Then the system will be found to be con�uent, but the size is in�nity.
As explained, these algorithms on GAP are hard to use so we received the help

of James Mitchell which is one of the authors of the library libsemigroup. It uses
di�erent algorithms, but in particular an algorithm of Knuth Bendix in order to
�nd a con�uent system, then an algorithm of Froidiure-Pin which use the con�uent
system to count the number of elements. Thanks to his help we managed to check
the size of the monoids R`(B) and R0

` (B) obtained with our presentation for ` from
2 to 5, and of the monoids R`(D) and R0

` (D) for ` from 2 to 6.
We also checked that the presentation of Godelle does not work for R3(B) and

R4(D). In fact we were able to obtain the result that these monoids are in�nite
but it seemed to loop for ever, so we stopped it. At this time, the algorithm of
Froidiure-Pin was already launched and we saw that it has found far more elements
that what was expected, which prove that the latter presentation does not lead to
the good monoid.
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Chapter 9
Order and representations of the 0-Renner
monoids

In this section we present some properties of the 0-Renner monoids of type B and
D. We will be mainly interested in the Green relations over these monoids, and the
representation theory. We will not always go through all the details since the results
do not change that much from type A (Chapters 5 and 6).

9.1 J -triviality
We recall what we did in Chapter 5. For a rook r ∈ Rn(A), we de�ned its set of
inversions by

Inv(r) := {(ri, rj) | i < j and ri > rj > 0}. (9.1)

We also called its support , denoted supp(r), the set of non-zero letters appearing
in its rook vector. Furthermore, for each letter p ∈ supp(r), we denoted Zr(p)
the number of 0 which appear after p in the rook vector of r. We said that
(supp(r), Inv(r), Zr) is the rook triple associated to r.

Then if r, u ∈ Rn(A) we de�ned the partial order ≤I as below. We wrote r ≤I u
if and only if the three following properties holds:

• supp(r) ⊆ supp(u)

• {(b, a) ∈ Inv(u) | b ∈ supp(r)} ⊆ Inv(r)

• Zu(`) ≤ Zr(`) for ` ∈ supp(r).

Then given r and u ∈ R0
n(A) there exists s ∈ R0

n(A) such that r = us if and only if
r ≤I u (Theorem 5.1.11).

Let T ∈ {B,D}. We extend the latter de�nitions to R`(T ) by replacing the
letter 0 by the letter ∅. Let r, u ∈ R0

` (T ) then:

• Inv(r) := {(ri, rj) | i < j and ri > rj > ∅}.

• supp(r) is the set of non-∅ letters appearing in the rook vector of r.

237
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• For each p ∈ supp(r), Zr(p) is the number of ∅ which appear after p in r.

The relation ≤I is then de�ned as before, we prove that (R`(T ),≤I) is a poset.

Lemma 9.1.1. The relation ≤I is a partial order on R`(T ) with maximal element
1`,` and minimal element ∅` = ∅ . . . ∅.

Proof. The proof is the same than in Proposition 5.1.10.

Hence let T ∈ {B,D}, r ∈ R`(T ), and t a generator of R0
` (T ). If we make explicit

the action of t, we see that r >I r · t. From there we deduce that R0
` (T ) is a monoid

of regressive functions on the poset R`(T ). By a result from [Den+10, Section 2.1]
the monoid R0

` (T ) is hence R-trivial. Since the relations of the presentation of
R0
` (B) and R0

` (D) are symmetrical (for Red-B use Proposition 8.2.7) these monoids
are isomorphic to their opposites. Because these monoids are �nite we know from
Lemma 1.3.5 that these monoids are J -trivial. See Figure 9.1 and Figure 9.2, where
∅ is replaced by 0 for more lisibility. Hence we can carry on with the representation
theory in the next subsection.

01 | 02

10 | 00

21 | 0000 | 10

21 | 12

00 | 01

02 | 00

02 | 01

12 | 00

00 | 12 00 | 21

00 | 12

10 | 20

12 | 21

12 | 00

20 | 00

00 | 00

00 | 01

01 | 02

00 | 21

20 | 10

21 | 12

21 | 0012 | 00

12 | 21

10 | 20

10 | 00

10 | 20

12 | 21

12 | 00

20 | 00

20 | 10

02 | 01

21 | 00 21 | 00

21 | 12

20 | 10

00 | 20

01 | 02

01 | 00

02 | 01

02 | 00

00 | 12

00 | 02

00 | 12

00 | 1000 | 20

21 | 12

20 | 10

00 | 21

02 | 01

00 | 21

01 | 02

12 | 21

00 | 02

01 | 00

10 | 20

π0

π1

e

Figure 9.1: The monoid R0
2(B).

But before going there, we can wonder whether the order ≤I is equivalent to
the R-order on R`(T ), and if this monoid is a lattice, as it was the case in Rn(A).
However it is not the case for both statements. In type B for instance, let a = 2∅ | 1∅
and b = ∅1 | ∅2. Then a ≤I b while a and b can not be compared in the R-order, see
Figure 9.1. Here the problem is linked to the antisymmetry condition. In type D
let a = ∅2 | ∅1 and b = 12 | 21, then a ≤R b see Figure 9.2, while a and b can not
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12 | 00

00 | 10

20 | 00

01 | 00

02 | 01 00 | 2101 | 02

00 | 12

00 | 20

00 | 02

00 | 1002 | 00

02 | 0010 | 20

01 | 02

01 | 00

20 | 10

20 | 00

21 | 12

21 | 00 10 | 20

10 | 00

12 | 21

12 | 00 00 | 01

00 | 00

12 | 21

10 | 00

20 | 10

00 | 21 21 | 12

00 | 12

02 | 01

21 | 0000 | 02 00 | 01

00 | 20

πf
1

πe
1

e

f

Figure 9.2: The monoid R0
2(D).

be compared in the ≤I order. Hence in both type, the order ≤I is not equivalent to
order ≤R.

Concerning the question whether these monoids are lattices, the answer is no.
Indeed let us take the elements a = 2∅1 | ∅3∅ and b = 1∅2 | ∅3∅ in R3(D). Then we
check on the computer than the elements ∅∅∅ | ∅3∅ and 12∅ | 3∅∅ are two maximal
elements below both a and b, and are not comparable. As these elements exist in
type B and D, it gives a counterexamples in both types.

9.2 Representation theory

9.2.1 Idempotents and simple modules

As we did in Chapter 6 we recall that in Section 1.1.5 we associated to each subset
S of J1, `− 1K of cardinality p a composition of ` of length p+ 1.

De�nition 9.2.1. In type B (resp. D), we de�ne G(B) := {π0, . . . , π`−1, e} (resp.
G(D) := {πe1, πf1 , π2, . . . , π`−1, e, f}). For I ⊆ G(B) (resp. I ⊆ G(D)) we de�ne πBI
(resp. πDI ) to be the idempotent of the monoid generated by (πi)i∈I .

Proof. These submonoids are �nite since the monoids is �nite. Since R0
` (B) and

R0
` (D) are J -trivial, they contain a unique minimal element for the J -order, which

is a zero.

Since the two types B and D are quite di�erent we �rst go for type B and
describe its idempotents and simple modules. Then we will study the type D in a
similar way.

De�nition 9.2.2. We call antidiagonal block of size m to be a diagonal rook table
of 1 with respect to the y = −x diagonal of size m.

Proposition 9.2.3. For any S ⊆ J0, ` − 1K denote by Sc := J0, ` − 1K \ S its com-
plement, I :=C(Sc) = (i1, . . . , ip) its associated extended composition and de�ne the
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associated set of generators S̃ := {πi | i ∈ S}. Then 1`,`·πBS̃ = r (resp. 1`,`·πBS̃∪{e} = r)
where r is the block diagonal rook table of size 2` whose blocks are antidiagonal rook
tables of size (ip, . . . , i2, i1 + i1, i2 . . . , ip) (resp. (`+ i1, i2 . . . , ip) except the �rst block
which is a zero table).

Note that if 0 /∈ S then i1 = 0, therefore the middle block of size i1 + i1 vanishes.
For readability, we write i for πi, identifying S and S̃.

Example 9.2.4. If ` = 6 and S = {1, 4, 5} then Sc = {0, 2, 3} so that we have
I :=C(Sc) = (0, 2, 1, 3). Similarly if T = {0, 1, 4} then T c = {2, 3, 5} so that
J :=C(T c) = (2, 1, 2, 1). Therefore the rook tables associated to πBS , π

B
T and πBT∪{e}

are:

πBS πBT πBT∪{e}

1
1

1

1
1

1

1
1

1

1
1

1

1

1
1

1

1
1

1
1

1

1
1

1

1

1
1

1

Proof of Proposition 9.2.3. We �x some S and consider r the associated rook table
of πBS . The block diagonal structure ensures that π

B
S belongs to parabolic submonoid

〈πi | i ∈ S〉. Indeed, suppose that there is a reduced word w = w1 . . . wn for πBS with
some wi /∈ {πi | i ∈ S}. This means that the table of 1`,` · w is r by Theorem 8.3.9.
Choose the smallest such i. There are two cases whether wi = e or not.

• if wi = e, then when computing 1`,` · w1 · · ·wi−1 · wi, the action of e will be to
kill half of the column. In this case, the killed columns will never appear again
so that there is no way to get the correct table.

• if wi = πi, when computing 1`,` ·w1 · · ·wi−1 ·wi, the action of wi is to exchange
two columns from two di�erent blocks. However, acting by any πj will never
exchange those two columns again. So that it is not possible to get them back
in the correct order.

Hence, we have proven that w only contains πi with i ∈ S that is πBS ∈ 〈πi | i ∈ S〉.
Furthermore, using the action on tables one sees that r · πi = r or equivalently that
πBS πi = πBS if and only if i ∈ S, and that πBS e 6= πBS . This shows that π

B
S is the zero

of {πi | i ∈ S}.
The same proof works for πBS∪{e}.

During the proof, we got the following Lemma:

Lemma 9.2.5. If S ⊆ G(B), we have for t ∈ G(B) that πBS t = πBS if and only if
t ∈ S.
Proposition 9.2.6. The monoid R0

` (B) has exactly 2`+1 idempotents: these are the
zeros of every parabolic submonoid.
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Proof. We already know that R0
` (B) has at least 2`+1 idempotents. We now have to

prove this exhaust the idempotents of R0
` (B).

Let m an idempotent of R0
` (B). We de�ne cont(m) to be the set of the πi with

i ∈ J0, n − 1K appearing in any reduced word of m, and we de�ne εm := ∅ if ∅ is
not in m, and εm = e otherwise. Let us show that m = πBcont(m),εm

: the zero of the
parabolic generated by cont(m) and εm. Indeed for a ∈ cont(m)∪ εm, one can write
m = uav for some u and v in R0

` (B). By de�nition of the J -order, this means that
m ≤J a. Using Lemma 1.3.8, this is equivalent to ma = m and to am = m, so that
m is stable under all its support.

Theorem 9.2.7. The monoid R0
` (B) has 2`+1 simple modules, all one-dimensional,

indexed by the subsets of G(B). Let S ⊆ G(B). Its associated simple module SS is
the one-dimensional module generated by εS with the following action of generators:

εS · g =

{
εS if g ∈ S
0 otherwise.

(9.2)

Proof. We apply Theorem 3.3.2 using Lemma 9.2.5.

Recall that we write xω any su�ciently large power of x which becomes idempo-
tent, and that the star product of two idempotent is de�ned as e ∗ f = (ef)ω. This
endows the set of idempotents if a J -trivial monoid with a structure of a lattice.
We now explicitely describe this lattice:

Proposition 9.2.8. Let S, S ′ ⊆ G(B). Then πBS ∗ πBS′ = πBS∪S′.

Proof. First we note that πS ∗ πS′ is inside the parabolic 〈S ∪ S ′〉. It is enough to
show that it is a zero of this submonoid, and we will conclude by unicity. This is
again a consequence of Lemma 1.3.8.

Corollary 9.2.9. The quotient KR
0
` (B)�rad(KR0

` (B)) is isomorphic to the algebra

of the lattice of the `+ 1-dimensionnal cube.

In type D the results are more intricate. The main problem is for the relations
between πe1, π

f
1 , e and f . So we begin by making explicit the idempotents of R0

2(D).

De�nition 9.2.10. Let T ⊆ {πe1, πf1 , e, f} then we de�ne its D-closure T
D
by:

T
D

:=

{
{πe1, πf1 , e, f} if {πe1, f} ⊆ T or {πf1 , e} ⊆ T ;

T otherwise.
(9.3)

Proposition 9.2.11. There are ten idempotents of R0
2(D): they are indexed by the

closed subsets T
D
where T ⊆ {πe1, πf1 , e, f}.

Proof. Since {πe1, πf1 , e, f} is a generating idempotent set of R0
2(D), the same proof

than Proposition 9.2.6 shows that there is at most 24 = 16 idempotents, that is
the idempotents of every parabolic submonoid. The Figure 9.2 shows that some of
these idempotents are the same, we therefore �nd the list of Figure 9.3 with the
corresponding rook tables.
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∅ πe1 πf1 e f

1

1

1

1

1

1

1

1 1

1

1

1

1

1
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1

πe1, π
f
1 πe1, e πf1 , f e, f πe1, π

f
1 , e, f

1

1

1

1

1

1

1

1

1

Figure 9.3: Idempotents of R0
2(D)

De�nition 9.2.12. We call parity antidiagonal block of size 2m to be a antidiagonal
rook table of size 2m with the two middle columns exchanged if m is odd.

Proposition 9.2.13. For any S ⊆ J2, ` − 1K, write Sc := J1, ` − 1K \ S its comple-
ment with 1, Sc1 := J2, ` − 1K \ S without 1, and de�ne I :=C(Sc) = (1, i2, . . . , ip)
and J :=C(Sc1) = (j1, . . . , jm) the associated extended compositions. Then for any
T ⊆ {πe1, π1, e, f} we have 1`,` · πDS∪T = r where r is a block diagonal rook table of
size 2`. There are di�erent cases:

• If T
D

= ∅ the blocks are antidiagonal blocks of size (ip, . . . , i2, 1, 1, i2 . . . , ip).

• If T
D

= {e} the blocks are antidiagonal blocks of size (`, 1, i2, . . . , ip) except
the �rst one which is zero.

• If T
D

= {e, f} the blocks are antidiagonal blocks of size (`+1, i2, . . . , ip) except
the �rst one which is zero.

• If T
D

= {πe1} the blocks are antidiagonal blocks of size (jm, . . . , j2, j1, j1, j2 . . . , jm).

• If T
D

= {πe1, e} the blocks are antidiagonal blocks of size (`, j1, j2, . . . , jm)
except the �rst one which is zero.

• If T
D

= {πe1, πf1} the blocks are antidiagonal blocks of size (jm, . . . , j2, j1 +
j1, j2 . . . , jm) with the middle one being a parity antidiagonal block.

• If T
D

= {πe1, πf1 , e, f} the blocks are antidiagonal blocks of size (`+j1, j2, . . . , jm)
except the �rst one which is zero.

• In any other case then r = s0 · (1`,` · πDs0·(S∪T )·s0) · s0 where s0 · (S ∪ T ) · s0 is
the set (S ∪ T ) where each element is conjugate by s0.

Note that by de�nition of T
D
, the last case amounts to the three possibili-

ties T
D

= {f}, TD = {πf1} or T
D

= {πf1 , f}. For the conjugation by s0 we use
Lemma 8.3.3. See Figure 9.4 for some examples, where the idempotents obtained
by conjugation are side by side.
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Figure 9.4: Idempotents of R0
4(D).



 Chapter 9 � Order and representations of the 0-Renner monoids

Proof. The proof is the same than the proof of Proposition 9.2.3. We see that every
rook table is stable under the action of {πi | i ∈ S} ∪ TD. We then prove that for
other generators the action on the rook table can not be reverted. Thus the given r
are inside 〈{πi | i ∈ S} ∪ TD〉, and the zero of this submonoid.

During the proof, we also got the following Lemma:

Lemma 9.2.14. Let S ⊆ G(D). Then πD
S
Dt = πD

S
D if and only if t ∈ SD.

Finally we get the following result whose proof is the same than in Proposi-
tion 9.2.5.

Proposition 9.2.15. The monoid R0
` (D) has exactly 10 · 2`−2 idempotents: these

are the πD,`
S
D for S ⊆ G(D).

Now that we have the idempotents we can deduce the representation theory.

Theorem 9.2.16. The monoid R0
` (D) has 10·2`−2 simple modules, all one-dimensional,

indexed by the D-closure of subsets S ⊆ G(D). Then S
S
D is the one-dimensional

module generated by ε
S
D with the following action of generators:

ε
S
D · t =

{
ε
S
D if t ∈ SD

0 otherwise.
(9.4)

Proof. We apply Theorem 3.3.2 using Lemma 9.2.14.

Proposition 9.2.17. Let S, S ′ ⊆ G(D). Then

πD
S
D ∗ πD

S′
D = πD

S∪S′D
. (9.5)

Proof. First we note that πS ∗πS′ is inside the parabolic S∪S ′. It is enough to show
that it is a zero of this submonoid, and we will conclude by unicity. This is again a
consequence of [Den+10, Lemma 3.6],

From [Den+10, Lemma 3.6], the star product is the meet of a lattice illustrated in

Figure 9.5. Moreover the semisimple quotient KR
0
` (D)�rad(KR0

` (D)) is isomorphic

to the algebra of this lattice.

9.2.2 Projective indecomposable modules

Similarly to type A we also prove that the right (resp. left) descents sets describe
the projective modules. See [Den+10] for precise de�nitions. Here we recall some
de�nitions for M a monoid and x ∈M .

rAut(x) := {u ∈M | xu = x}, and lAut(x) := {u ∈M | ux = x}, (9.6)

rfix(x) := min rAut(x) = min{e ∈ E(M) | xe = x}, (9.7)

lfix(x) := min lAut(x) = min{e ∈ E(M) | ex = x}, (9.8)
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e
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∅
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e
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1f πf

1

e, f
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πf
1 , f

πe
1, π

f
1 , e, f2, πe

1, e

2, e2, f

Figure 9.5: The star lattice on idempotents of R0
3(D).

the min being taken for the J -order (which exists according to [Den+10, Proposi-
tion 3.16]).

We use these de�nitions in type T (T ∈ {B,D}). Let G(B) := {e, π0, . . . , π`−1}
and G(D) := {e, f, πe1, πf1 , π2, . . . , π`−1}. We generalize the notion of descents to ele-
ments of R0

` (T ):

De�nition 9.2.18. Let x ∈ R0
` (T ). Then:

DT
R(x) := {t ∈ G(T ) | xt = x} and DT

L(x) := {t ∈ G(T ) | tx = x} (9.9)

We get the following result by the same proof than in type A (Proposition 6.2.5):

Proposition 9.2.19. Let x ∈ R0
` (T ). Then rAut(x) = 〈DT

R(x)〉 and lAut(x) =
〈DT

L(r)〉.
We get the following immediate corollary for a J -trivial monoid. We recall that

when S ⊆ G(T ), then πS is the idempotent of the submonoid of R0
` (T ) generated

by S (or its closure if T = D).

Corollary 9.2.20. Let x ∈ R0
` (T ), then rfix(x) = πT

DT
R(r)

and lfix(x) = πT
DT

L (r)
.

Applying [Den+10, Theorem 3.23]:

Proposition 9.2.21. The indecomposable projective R0
` (T )-modules are indexed by

the descents classes and isomorphic to the quotient of the associat descent class by
the �ner descent classes.

9.2.3 Restriction to H0
` (T )

As in Section 6.4 we consider the restriction of projective modules of R0
` (T ) toH0

` (T ).

De�nition 9.2.22. Let T ∈ {B,D}. We de�ne Ψ : R`(T ) → W (T ) to be the map
which takes r ∈ R`(T ), replaces the k nonzero letter by letters ` − k + 1 to ` in
the same order, replaces k zeros by antisymmetry, and replace all the others ∅ by
the missing letter in decreasing order (except in type D where it might exchange the
smallest (i,−i) pair of missing letters so as to obeys condition D).
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21 | 00

21 | 12

20 | 00

21 | 00

10 | 00

12 | 00

10 | 00

12 | 00

20 | 00

00 | 21
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00 | 21
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00 | 12

00 | 10

00 | 12

00 | 20

e

π0

π1

and

00 | 21

00 | 20

00 | 1000 | 10

00 | 12

00 | 20
21 | 00

21 | 12

20 | 00

20 | 10

10 | 00

10 | 20

10 | 00

12 | 00

20 | 00

e

f

πf
1

πe
1

Figure 9.6: From left to right the descent classes {π0, π1} and {e, π1} in R0
2(B), and

the descent classes {πe1, e} and {πe1, πf1} in R0
2(D). The corresponding legends are

above. Note that we are in the left Cayley graph since we consider right-descent.

Example 9.2.23. In type B, if r := ∅2∅3∅ | ∅∅4∅∅ ∈ R5(B) is �rst changed to
∅4∅3∅ | ∅∅5∅∅ , to ∅453∅ | ∅354∅, �nally to 24531 | 13542 ∈ B`.

In type D, if r := ∅531∅ | ∅∅∅∅∅ ∈ R5(D) is �rst changed to ∅354∅ | ∅∅∅∅∅ , to
∅354∅ | ∅453∅, �nally to 23541 | 14532 ∈ D`.

Theorem 9.2.24. The monoid R0
` (T ) is projective over H0

` (T ). As a consequence
any R0

` (T )-projective module remains projective when restricted to H0
` (T ).

Proof. Let I ⊆ [`, `], and CI be the H0
` (T )-module spanned by the elements r of

R0
` (T ) with supp(r) = I (note that a lot of CI are empty because of the B condition).

Since the right-action of H0
` (T ) does not change the value of letters, we have the

following decomposition in H0
` (T ) modules:

R0
` (T ) =

⊕

I⊆[`,`]

CI . (9.10)

It is thus enough to prove that every CI is projective over H0
` (T ). Let I ⊆ [`, `] so

that CI 6= ∅. In other words, we ask I to obey the B condition (note that the parity
condition of condition D does not determine the support).

Now for all r ∈ CI , Ψ(m2(r)) (resp. Ψ(mD
2 (r)) in type D) does not depend in

r ∈ CI but only in I. We denote it by mI . It is an idempotent, which can be seen by
checking its table for instance. Hence the ideal mIH

0
` (T ) is projective over H0

` (T ).
Furthermore it is isomorphic as H0

` (T )-module to CI , and the isomorphism is given
by Ψ.

9.2.4 Ext-quivers

Finally we look at the quivers of our two monoids R0
` (B) and R0

` (D) as we did in
Section 6.3. It turns out that the result is the same than the general result of Fayers
in 0-Hecke monoid [Fay05, Theorem 5.1]. We refer to this paper to see the proof, as
it is the same here.
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Theorem 9.2.25. Let T ∈ {B,D}. The quiver is the digraph whose vertices are
the idempotents πTI for I ⊆ G(T ). For I, J ⊆ G(T ), there is an edge between πTI
and πTJ i� I ( J , J ( I, and for every u ∈ J \ I and v ∈ I \ J the generators u and
v do not commute.

We have an example in Figure 9.7.

πe
1, π

f
1

e, πe
1, 2 f, πf

1 , 2

e, πe
1 f, πf

1

2

πe
1, 2πf

1 , 2
f, 2e, 2

πe
1πf

1

fe

e, f

πe
1, π

f
1 , 2

e, f, 2

e, f, πe
1, π

f
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∅

e, f, πe
1, π

f
1 , 2

Figure 9.7: The Quiver of R0
3(D).
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Part IV

Lattice Structure on sets of roots
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Summary

This part deals with combinatorics of posets and combinatorial families that we have
already met. More precisely its purpose is to understand some classical orders on
these combinatorial families as a special case of an order on posets. We announced
this in the introduction of Section 1.2.

Chapter 10 is a summary of the results of G. Chatel, V. Pilaud and V. Pons
presented in [CPP17]. All results of this chapter were proved by them, and we refer
to their article for some proofs. We have chosen to brie�y present their results in this
thesis as it provides the framework and the motivations necessary to present our work
on Weyl groups. Their starting point is the weak order presented in Section 1.1.3,
which is a lattice (Theorem 1.2.11) and is de�ned as the inclusion order of inversions.
The weak order naturally extends to all integer binary relations , i.e. binary relations
on [n]. Namely, for any two integer binary relations R, S on [n], C. Chatel, V. Pilaud
and V. Pons de�ned

R 4 S ⇐⇒ RInc ⊇ SInc and RDec ⊆ SDec,

where RInc := {(a, b) ∈ R | a ≤ b} and RDec := {(b, a) ∈ R | a ≤ b} respectively denote
the increasing and decreasing subrelations of R. They called this order the weak
order on integer binary relations, see Figure 10.1. The central result of their paper
is the following, illustrated in Figure 10.5.

Theorem IV.1 ([CPP17, Theorem 1]). The weak order on the integer posets on [n]
is a lattice.

Their motivation for this result was that many relevant combinatorial objects
can be interpreted by speci�c integer posets, and the subposets of the weak order
induced by these speci�c integer posets often correspond to classical lattice structures
on these combinatorial objects. By this systematic approach, they rediscovered and
shed light on many lattice structures. Here we will only illustrate this with the study
of speci�c integer posets corresponding to the elements, to the intervals, and to the
faces in the classical weak order, the Tamari lattice [MHPS12], the type A Cambrian
lattices and the boolean lattice. We refer to [CPP17] and the references therein for
more details.

All the results of G. Chatel, V. Pilaud and V. Pons are dealing with �type A
objects�: the symmetric group Sn, the Permutohedron, the Tamari lattice and the
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boolean lattice, and all their derivatives. Chapter 11 will deal with a work with V.
Pilaud [GP18] which extends all these de�nitions to the other types. The remark is
that the roots of type A are ΦA = {ei − ej | 1 ≤ i, j ≤ n+ 1} (see Section 2.3.1). In
other words binary relations corresponds to subsets of ΦA. The notions of symmetry,
antisymmetry and transitivity on binary relations translate to symmetry, antisym-
metry and closedness of subsets of ΦA. This provides a natural notion of Φ-posets
for arbitrary root systems Φ. We obtain the following result:

Theorem IV.2. The weak order on the Φ-posets is a lattice.

From there we will see what we can conclude on this order with some other
special families.

Note that this work is not just a mere translation of the work of [CPP17]. The
most important question was to �nd the convenient notion of �transitivity� in subsets
of Φ. In her article [Pil06], A. Pilkington proved that there are several non equivalent
de�nitions of transitivity, and that they coincide in type A but not in other types
(see Remark 11.1.4). In Remark 11.2.19 we will indeed see that not all of these
notions of transitivity lead to a lattice on Φ-posets. In order to understand these
di�erences, we will thus begin by studying very precisely the root poset of every
Coxeter groups, and the properties of the sum of roots (Section 11.1). In particular,
we will see that the �natural� geometric de�nition of transitivity given by conical hull
does not lead to a lattice structure. We will thus focus on crystallographic Coxeter
groups, aka Weyl groups. For example, the weak orders on A2-, B2- and G2-posets
are represented in Figure 11.2 and 11.3.

We then switch to our motivation to study the weak order on Φ-posets. We
consider Φ-posets corresponding to the vertices, the intervals and the faces of the
permutahedron, the associahedra and the cube of type Φ. Considering the subposets
of the weak order induced by these speci�c families of Φ-posets allow us to recover
the classical weak order and the Cambrian lattices, their interval lattices, and their
facial lattices.



Chapter 10
Poset on posets

10.1 The weak order on integer posets

10.1.1 The weak order on integer binary relations

Integer binary relations

As explained in the summary of this part, G. Chatel, V. Pilaud and V. Pons focused
on binary relations on integers. An integer (binary) relation of size n is a binary
relation on [n] := {1, . . . , n}, that is, a subset R of [n]2. We have seen such relations
in Section 1.2. However we were at the time the order induced by relations on some
combinatorial family. We will now study them as combinatorial objects themselves.
We therefore use a new formalism to denote them: we write equivalently (u, v) ∈ R
or uR v, and similarly, we write equivalently (u, v) /∈ R or u 6R v. In this formalism,
we recall that a relation R ∈ [n]2 is called:
• re�exive if u R u for all u ∈ [n],
• transitive if u R v and v R w implies u R w for all u, v, w ∈ [n],
• antisymmetric if u R v and v R u implies u = v for all u, v ∈ [n].

We will only consider re�exive relations. We denote byR(n) (resp. T (n), resp.A(n))
the collection of all re�exive (resp. re�exive and transitive, resp. re�exive and anti-
symmetric) integer relations of size n. We denote by P(n) the collection of integer
posets of size n, that is, re�exive transitive antisymmetric integer relations.

A subrelation of R ∈ R(n) is a relation S ∈ R(n) such that S ⊆ R as subsets
of [n]2. We say that S coarsens R and R extends S. The extension order de�nes
a graded lattice structure on R(n) whose meet and join are respectively given by
intersection and union. Note that T (n) and A(n) are stable by intersection but
not by union. In other words, (T (n),⊆) and (A(n),⊆) are meet-semisublattice
of (R(n),⊆,∩) but not sublattices of (R(n),⊆,∩,∪). However, (T (n),⊆) is a lattice.
To see it, we recall the de�nition of transitive closure of a relation R ∈ R(n):

Rtc :=
{

(u,w) ∈ [n]2
∣∣ ∃ v1, . . . , vp ∈ [n], u = v1 R v2 R . . .R vp−1 R vp = w

}
. (10.1)

It follows that (T (n),⊆) is a lattice where the meet of R, S ∈ R(n) is given by R∩S
and the join of R, S ∈ R(n) is given by (R ∪ S)tc.
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Weak order

Let In := {(a, b) ∈ [n]2 | a ≤ b} and Dn := {(b, a) ∈ [n]2 | a ≤ b}, so that In∪Dn = [n]2

while In ∩ Dn = {(a, a) | a ∈ [n]}. We say that the relation R ∈ R(n) is increasing
(resp. decreasing) when R ⊆ In (resp. R ⊆ Dn). We denote by I(n) (resp. D(n)) the
collection of all increasing (resp. decreasing) relations on [n]. The increasing and
decreasing subrelations of an integer relation R ∈ R(n) are the relations de�ned by:

RInc := R ∩ In =
{

(a, b) ∈ R
∣∣ a ≤ b

}
∈ I(n) (10.2)

RDec := R ∩Dn =
{

(b, a) ∈ R
∣∣ a ≤ b

}
∈ D(n). (10.3)

In the pictures of this chapter, taken from [CPP17] with permission, we always
represent an integer relation R ∈ R(n) as follows: we write the numbers 1, . . . , n
from left to right and we draw the increasing relations of R above in blue and the
decreasing relations of R below in red. Although we only consider re�exive relations,
we always omit the relations (i, i) in the pictures. See e.g. Figure 10.1.

Besides the extension lattice mentioned above, there is another natural poset
structure on R(n), whose name will be justi�ed in Section 10.2.1.

De�nition 10.1.1. The weak order on R(n) is the order de�ned by

R 4 S ⇐⇒ RInc ⊇ SInc and RDec ⊆ SDec. (10.4)

The weak order on R(3) is illustrated in Figure 10.1. Observe that the weak
order is obtained by combining the extension lattice on increasing subrelations with
the coarsening lattice on decreasing subrelations. In other words, R(n) is the square
of an

(
n
2

)
-dimensional boolean lattice. It explains the following statement:

Proposition 10.1.2 ([CPP17, Proposition 3]). The weak order (R(n),4) is a
graded lattice whose meet and join are given by

R ∧R S = (RInc ∪ SInc) ∪ (RDec ∩ SDec) (10.5)

and R ∨R S = (RInc ∩ SInc) ∪ (RDec ∪ SDec). (10.6)

10.1.2 The weak order on integer posets

In this section, we show that the three subposets of the weak order (R(n),4) induced
by antisymmetric relations, by transitive relations, and by posets are all lattices
(although the last two are not sublattices of (R(n),4,∧R,∨R)).

Antisymmetric relations

We �rst deal with antisymmetric relations. Figure 10.2 shows the meet and join of
two antisymmetric relations, and illustrates the following statement.

Proposition 10.1.3 ([CPP17, Proposition 5]). The meet ∧R and the join ∨R both
preserve antisymmetry. Thus, the antisymmetric relations A(n) induce a sublattice
of the weak order (R(n),4,∧R,∨R).
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R ∈ A(4) S ∈ A(4) R ∧R S ∈ A(4) R ∨R S ∈ A(4)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Figure 10.2: The meet R ∧R S and join R ∨R S of two antisymmetric relations R, S.

Semitransitive relations

Note that the subposet (T (n),4) of (R(n),4) is not a sublattice since ∧R and ∨R
do not preserve transitivity (see e.g. Figure 10.4). The idea of G. Chatel, V. Pilaud
and V. Pons [CPP17, Section 1.2] was therefore to transform R ∧R S to make it a
transitive relation R ∧T S. They proceeded in the two steps described below.

The �rst step is to introduce the intermediate notion of semitransitivity. A
relation R ∈ R is called semitransitive when both RInc and RDec are transitive. We
denote by ST (n) the collection of all semitransitive relations of size n. Figure 10.3
illustrates the following statement.

R ∈ ST (4) S ∈ ST (4) R ∧R S /∈ ST (4) R ∧ST S ∈ ST (4)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Figure 10.3: Two semi-transitive relations R, S and their meets R∧R S and R∧ST S.

Proposition 10.1.4 ([CPP17, Proposition 8]). The weak order on semi-transitive
relations (ST (n),4) is a lattice whose meet and join are given by

R ∧ST S = (RInc ∪ SInc)tc ∪ (RDec ∩ SDec), (10.7)

and R ∨ST S = (RInc ∩ SInc) ∪ (RDec ∪ SDec)tc. (10.8)

Transitive relations

The second step is to pass from semitransitive to transitive relations. For R ∈ R,
de�ne the transitive decreasing deletion of R as

Rtdd := Rr
{

(b, a) ∈ RDec
∣∣ ∃ i ≤ b and j ≥ a such that i R b R a R j while i 6R j

}
,

(10.9)
and the transitive increasing deletion of R as

Rtid := Rr
{

(a, b) ∈ RInc
∣∣ ∃ i ≥ a and j ≤ b such that i R a R b R j while i 6R j

}
.

(10.10)
Note that in these de�nitions, i and j may coincide with a and b since R is re�ex-
ive. Figure 10.4 illustrates the transitive decreasing deletion: the rightmost relation
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R ∈ T (4) S ∈ T (4) R ∧R S /∈ ST (4) R ∧ST S ∈ ST (4) \ T (4) R ∧T S ∈ T (4)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Figure 10.4: Two transitive relations R, S and their meets R∧RS, R∧ST S and R∧T S.

R ∧T S is indeed obtained as (R ∧ST S)tdd. Observe that two decreasing relations
have been deleted: (3, 1) (take i = 2 and j = 1, or i = 3 and j = 2) and (4, 1)
(take i = 4 and j = 2). The idea of the transitive decreasing deletion is to delete all
decreasing relations which prevent the binary relation to be transitive. We therefore
have the following result:

Lemma 10.1.5 ([CPP17, Lemma 12]). If R ∈ R is semitransitive, then Rtdd

and Rtid are transitive.

We use the maps R 7→ Rtdd and R 7→ Rtid to obtain the main result of this
section. Figure 10.4 illustrates all steps of a meet computation in T (4).

Proposition 10.1.6 ([CPP17, Proposition 15]). The weak order on transitive rela-
tions (T (n),4) is a lattice whose meet and join are given by

R ∧T S =
(
(RInc ∪ SInc)tc ∪ (RDec ∩ SDec)

)tdd
, (10.11)

and R ∨T S =
(
(RInc ∩ SInc) ∪ (RDec ∪ SDec)tc

)tid
. (10.12)

Integer posets

We �nally arrive to the subposet of the weak order induced by integer posets. The
weak order on P(3) is illustrated in Figure 10.5. We now have all tools to show
Theorem IV.1 announced in the introduction.

Proposition 10.1.7 ([CPP17, Proposition 18]). The transitive meet ∧T and the
transitive join ∨T both preserve antisymmetry. In other words, (P(n),4,∧T ,∨T ) is
a sublattice of (T (n),4,∧T ,∨T ).

10.2 Weak order induced by some relevant families

of posets

In this section we present how G. Chatel, V. Pilaud and V. Pons used Theorem IV.1
to revisit classical orders on some families of combinatorial objects [CPP17, Sec-
tion 2]. The �rst observation is that many relevant combinatorial objects (for exam-
ple permutations, binary trees, binary sequences, ...) can be interpreted by speci�c
integer posets. We will see that the subposets of the weak order induced by these
speci�c integer posets often correspond to classical lattice structures on these com-
binatorial objects (for example the classical weak order, the Tamari lattice, the
boolean lattice, etc.). For each of these objects the authors gave:
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1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 31 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3 1 2 3

Figure 10.5: The weak order on integer posets of size 3.

• a combinatorial model using integer posets;

• a characterization of the resulting integer posets;

• a connection between the weak order induced by these posets and some classical
order on the combinatorial objects;

• a detailed study of the lattice and sublattice properties of this order.

We follow them, and as we will only work with posets, we prefer to use the notationC
rather than R.

10.2.1 From the permutahedron

We start with relevant families of posets corresponding to the vertices, the intervals,
and the faces of the permutahedron.

For σ ∈ Sn, we recall from Section 1.1.3 the de�nition of inversion and borrow
from [KLR03] the de�nition of version de�ned as:

Ver(σ) :=
{

(a, b) ∈ [n]2
∣∣ a ≤ b and σ−1(a) ≤ σ−1(b)

}
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and Inv(σ) :=
{

(b, a) ∈ [n]2
∣∣ a ≤ b and σ−1(a) ≥ σ−1(b)

}
.

Clearly, the versions of σ determine the inversions of σ and vice versa. We have seen
in De�nition 1.1.6 that the weak order on Sn is de�ned as the inclusion order of
inversions, or as the reverse inclusion order of the versions:

σ 4 τ ⇐⇒ Inv(σ) ⊆ Inv(τ) ⇐⇒ Ver(σ) ⊇ Ver(τ). (10.13)

We denote by ∧S and ∨S the meet and join of the weak order (Sn,4).

Weak Order Element Posets

A permutation σ ∈ Sn is seen as a total orderCσ on [n] de�ned by u Cσ v if σ−1(u) ≤
σ−1(v) (i.e. u is before v in σ). In other words, Cσ is the chain of relations σ(1) Cσ
. . . Cσ σ(n) as illustrated in Figure 10.6.

σ = 2143 ←→ Cσ = 1 2 3 4

Ver(σ) = {(1, 3), (1, 4), (2, 3), (2, 4)} ←→ CInc
σ = 1 2 3 4

Inv(σ) = {(2, 1), (4, 3)} ←→ CDec
σ = 1 2 3 4

Figure 10.6: A Weak Order Element Poset (WOEP).

We say that Cσ is a weak order element poset , and we denote by

WOEP(n) :=
{
Cσ
∣∣ σ ∈ Sn

}
(10.14)

the set of all total orders on [n]. The following characterization of these elements is
immediate.

Proposition 10.2.1 ([CPP17, Proposition 22]). A poset C ∈ P(n) is in WOEP(n)
if and only if ∀ u, v ∈ [n], either u C v or u B v.

The following proposition justi�es the term �weak order� used in De�nition 10.1.1:

Proposition 10.2.2 ([CPP17, Proposition 23]). For any σ ∈ Sn, the increas-
ing (resp. decreasing) relations of Cσ are the versions (resp. the inversions) of σ:
CInc
σ = Ver(σ) and CDec

σ = Inv(σ). Therefore, for any permutations σ, σ′ ∈ Sn, we
have σ 4 σ′ if and only if Cσ 4 Cσ′.

Consequently, the subposet of the weak order (P(n),4) induced by the setWOEP(n)
is isomorphic to the weak order on Sn, and thus is a lattice. In fact we have the
stronger statement:

Proposition 10.2.3 ([CPP17, Proposition 24]). The set WOEP(n) induces a sub-
lattice of the weak order (P(n),4,∧T ,∨T ).
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Weak Order Interval Posets

For two permutations σ, σ′ ∈ Sn with σ 4 σ′, we denote by

[σ, σ′] := {τ ∈ Sn |σ 4 τ 4 σ′} (10.15)

the weak order interval between σ and σ′. As illustrated in Figure 10.7, we can see
such an interval as the set of linear extensions of a poset.

Proposition 10.2.4 ([CPP17, Proposition 25]). The permutations of [σ, σ′] are
precisely the linear extensions of the poset

C[σ,σ′] :=
⋂

σ4τ4σ′

Cτ = Cσ ∩Cσ′ = CInc
σ′ ∪CDec

σ . (10.16)

σ′ = 4231

2431 4213

2413

σ = 2143

Cσ′= 1 2 3 4

Cσ= 1 2 3 4

C[σ,σ′]= CInc
σ′ ∪CDec

σ = 1 2 3 4

Figure 10.7: A Weak Order Interval Poset (WOIP).

We say that C[σ,σ′] is a weak order interval poset , and we denote by

WOIP(n) :=
{
C[σ,σ′]

∣∣ σ, σ′ ∈ Sn, σ 4 σ′
}

(10.17)

the set of all weak order interval posets on [n]. We get the following characterization
of these posets:

Proposition 10.2.5 ([BW91, Theorem 6.8], [CPP17, Proposition 26]). An integer
poset C ∈ P(n) is in WOIP(n) if and only if ∀ a < b < c,

a C c =⇒ a C b or b C c and a B c =⇒ a B b or b B c. (10.18)

We now describe the weak order on WOIP(n).

Proposition 10.2.6 ([CPP17, Proposition 27]). For any σ 4 σ′ and τ 4 τ ′:

C[σ,σ′] 4 C[τ,τ ′] ⇐⇒ σ 4 τ and σ′ 4 τ ′. (10.19)

It follows that (WOIP(n),4) gets the lattice structure of a product, described in
the next statement. Another description of the order is given in the paper [CPP17,
Section 2.1.4]. It consisted on de�ning a new operation compatible with the weak
order in the same vein as the previously de�ned transitive decreasing deletion. We
refer there for more details.
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Corollary 10.2.7 ([CPP17, Proposition 28]). The weak order (WOIP(n),4) is a
lattice whose meet and join are given by

C[σ,σ′] ∧WOIP C[τ,τ ′] = C[σ∧Sτ, σ′∧Sτ ′] (10.20)

and C[σ,σ′] ∨WOIP C[τ,τ ′] = C[σ∨Sτ, σ′∨Sτ ′]. (10.21)

Note however that the lattice (WOIP(n),4,∧WOIP,∨WOIP) is not a sublattice
of (P(n),4,∧T ,∨T ). For example,

C[231,321] ∧T C[312,321] = 1 2 3 ∧T 1 2 3 = 1 2 3

while C[231,321] ∧WOIP C[312,321] = C[123,321] = ∅ (trivial poset on [3]).

Weak Order Face Posets

We now come back to some notions we introduced in Section 2.1.7. As seen previ-
ously, the permutations ofSn correspond to the vertices of the permutahedron Perm(n),
and we now consider all the faces of the permutahedron, what we called previously
standard parabolic cosets. We give here another description of these faces. The codi-
mension k faces of Perm(n) correspond to ordered partitions of [n] into k parts, or
equivalently to surjections from [n] to [k], see Figure 1.15. We see an ordered parti-
tion π as a poset Cπ on [n] de�ned by u Cπ v if and only if u = v or π−1(u) < π−1(v),
that is, the part of π containing u appears strictly before the part of π containing v.
See Figure 10.8. Note that a permutation σ belongs to the face of the permutahe-
dron Perm(n) corresponding to an ordered partition π if and only if Cσ is a linear
extension of Cπ.

π = 125|37|46 ←→ Cπ = 1 2 3 4 5 6 7

Figure 10.8: A Weak Order Face Poset (WOFP).

We say that Cπ is a weak order face poset , and we denote by

WOFP(n) := {Cπ |π ordered partition of [n]} (10.22)

the set of all weak order face posets on [n]. We �rst characterize these posets.

Proposition 10.2.8 ([CPP17, Proposition 30]). The following conditions are equiv-
alent for a poset C ∈ P(n):
(i) C ∈ WOFP(n),
(ii) ∀ u, v, w ∈ [n], u C w =⇒ u C v or v C w,
(iii) C ∈ WOIP(n) and for all a < b < c with a, c incomparable in C:

a C b ⇐⇒ b B c and a B b ⇐⇒ b C c. (10.23)
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We now consider the weak order on WOFP(n), which happens to be precisely
the facial weak order on the permutahedron Perm(n) studied by A. Dermenjian,
C. Hohlweg and V. Pilaud in [DHP18]. Figure 2.9 illustrates this order, and was
borrowed from the latter article. The authors proved in particular that this order
coincides with the pseudo-permutahedron originally de�ned by D. Krob, M. Latapy,
J.-C. Novelli, H.-D. Phan and S. Schwer [Kro+01] on ordered partitions as the
transitive closure of the relations

λ1| · · · |λi|λi+1| · · · |λk ≺ λ1| · · · |λiλi+1| · · · |λk ≺ λ1| · · · |λi+1|λi| · · · |λk, (10.24)

if max(λi) < min(λi+1). This order is known to be a lattice [DHP18; Kro+01].
Note however that the lattice (WOFP(n),4,∧WOFP,∨WOFP) is not a sublattice

of (P(n),4,∧T ,∨T ), nor a sublattice of (WOIP(n),4,∧WOIP,∨WOIP). For example,

C2|13 ∧T C123 = C2|13 ∧WOIP C123 = {(2, 3)} (10.25)

while
C2|13 ∧WOFP C123 = C12|3 = {(1, 3), (2, 3)}. (10.26)

10.2.2 From the associahedron

Similarly to the previous section, we now brie�y discuss some relevant families of
posets corresponding to the elements, the intervals, and the faces of the associa-
hedron de�ned in Section 1.6.2. We denote by B(n) the set of rooted binary trees
with n nodes. As explained in Section 1.6, the vertices of a tree T ∈ B(n) are
labeled in a standard way, and we identify a vertex and its label. We described
also an algorithm to associate to every permutation σ a standard binary search tree
BST(σ), so that the �ber of a tree T is precisely the set of linear extensions of T .
Therefore it is an interval of the weak order whose minimal and maximal elements
respectively avoid the patterns 312 and 132. Moreover, we saw that these �bers
de�ne a lattice congruence of the weak order and that the set B(n) of binary trees
is thus endowed with a lattice structure 4 de�ned by

T 4 T ′ ⇐⇒ ∃ σ, σ′ ∈ Sn such that BST(σ) = T, BST(σ′) = T ′ and σ 4 σ′

(10.27)
whose meet ∧B and join ∨B are given by

T ∧B T ′ = BST(σ ∧S σ′) and T ∨B T ′ = BST(σ ∨S σ′) (10.28)

for any representatives σ, σ′ ∈ Sn such that BST(σ) = T and BST(σ′) = T ′. This
lattice structure is the already seen Tamari lattice (see Section 1.6).

Tamari Order Element Posets

We consider the tree T as a poset CT , de�ned by i CT j when i is a child of j in T .
In other words, the Hasse diagram of CT is the tree T oriented towards its root, as
illustrated in Figure 10.9.

We say that CT is a Tamari order element poset , and we denote by

TOEP(n) :=
{
CT

∣∣ T ∈ B(n)
}

(10.29)

the set of all Tamari order element posets on [n]. We �rst characterize them:
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T =

7641 2 3 5

←→ CT = 1 2 3 4 5 6 7

Figure 10.9: A Tamari Order Element Poset (TOEP).

Proposition 10.2.9 ([CPP17, Proposition 39]). A poset C ∈ P(n) is in TOEP(n)
if and only if
• ∀ a < b < c, a C c =⇒ b C c and a B c =⇒ a B b,
• for all a < c incomparable in C, there exists a < b < c such that a C b B c.

Now we connect the Tamari order on B(n) to the weak order on TOEP(n):

Proposition 10.2.10 ([CPP17, Proposition 40]). For any binary trees T, T ′ ∈ B(n)
we have T 4 T ′ in the Tamari lattice if and only if CT 4 CT ′ in the weak order on
posets.

It follows that the subposet of the weak order (P ,4) induced by the set TOEP(n)
is isomorphic to the Tamari lattice on B(n), and is thus a lattice. Finally we have
on TOEP(n) the following stronger statement:

Proposition 10.2.11 ([CPP17, Proposition 41]). The set TOEP(n) induces a sub-
lattice of the weak order lattice (P(n),4,∧T ,∨T ).

Tamari Order Interval Posets

As we did for permutations, for two binary trees T, T ′ ∈ B(n) with T 4 T ′, we
denote by [T, T ′] := {S ∈ B(n) |T 4 S 4 T ′} the Tamari order interval between T
and T ′. We can see this interval as the poset

C[T,T ′] :=
⋂

T4S4T ′

CT = CT ∩CT ′ = CInc
T ′ ∩CDec

T . (10.30)

This poset C[T,T ′] was introduced in [CP15] with the motivation that its linear ex-
tensions are precisely the linear extensions of all binary trees in the interval [T, T ′].
We say that C[T,T ′] is a Tamari order interval poset , and we denote by

TOIP(n) :=
{
C[T,T ′]

∣∣ T, T ′ ∈ B(n), T 4 T ′
}

(10.31)

the set of all Tamari order interval posets on [n]. We have the following characteri-
zation of these posets:

Proposition 10.2.12 ([CP15, Theorem 2.8], [CPP17, Corollary 42]). An integer
poset C ∈ P(n) is in TOIP(n) if and only if for all a < b < c,

a C c =⇒ b C c and a B c =⇒ a B b. (10.32)
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We now describe the weak order on TOIP(n):

Proposition 10.2.13 ([CPP17, Proposition 43]). For any S 4 S ′ and T 4 T ′

C[S,S′] 4 C[T,T ′] ⇐⇒ S 4 T and S ′ 4 T ′. (10.33)

Proposition 10.2.14 ([CPP17, Corollary 44]). The weak order (TOIP(n),4) is a
lattice whose meet and join are given by

C[S,S′] ∧TOIP C[T,T ′] = C[S∧BT,S′∧BT ′] (10.34)

C[S,S′] ∨TOIP C[T,T ′] = C[S∨BT,S′∨BT ′]. (10.35)

In fact, G. Chatel, V. Pilaud and V. Pons derived the following statement:

Proposition 10.2.15 ([CPP17, Proposition 45]). The set TOIP(n) induces a sub-
lattice of the weak order (P(n),4,∧T ,∨T ).

Tamari Order Face Posets

It would be natural now to do the same thing that was done in Section 10.2.1,
and consider the faces of the associahedron Asso(n) constructed e.g. by J.-L. Loday
in [Lod04]. As explained in Section 1.6.2, its vertices correspond to the binary
trees of B(n). We now consider all the faces of the associahedron Asso(n) which
correspond to Schröder trees , i.e. rooted trees where each node has either none or at
least two children. Given a Schröder tree S, we label the angles between consecutive
children of the vertices of S in inorder, meaning that each angle is labeled after
the angles in its left child and before the angles in its right child. Note that a
binary tree T belongs to the face of the associahedron Asso[n] corresponding to a
Schröder tree S if and only if S is obtained by edge contractions in T . The set of
such binary trees is an interval [Tmin(S), Tmax(S)] in the Tamari lattice, where the
minimal (resp. maximal) tree Tmin(S) (resp. Tmax(S)) is obtained by replacing the
nodes of S by left (resp. right) combs as illustrated in Figure 10.10.

S =

76421 3 5

←→

7641 2 3 5 7641 2 3 5

, ←→ CS = 1 2 3 4 5 6 7

Figure 10.10: A Tamari Order Face Poset (TOFP).

We associate to a Schröder tree S the poset CS := C[Tmin(S),Tmax(S)]. Equiva-
lently, i CS j if and only if the angle i belongs to the left or the right child of the
angle j. See Figure 10.10. Note that
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• a binary tree T belongs to the face of the associahedron Asso(n) corresponding
to a Schröder tree S if and only if CT is an extension of CS, and

• the linear extensions of CS are precisely the linear extensions of CT for all
binary trees T which belong to the face of the associahedron Asso(n) corre-
sponding to S.

We say that CS is a Tamari order face poset , and we denote by

TOFP(n) :=
{
CS
∣∣ S Schröder tree on [n]

}
(10.36)

the set of all Tamari order face posets. We �rst give the characterization of these
posets:

Proposition 10.2.16 ([CPP17, Proposition 46]). A poset C ∈ P(n) is in TOFP(n)
if and only if C ∈ TOIP(n) and for all a < c incomparable in C, either there
exists a < b < c such that a 6B b 6C c, or for all a < b < c we have a B b C c.

G. Chatel, V. Pilaud and V. Pons also proved that the weak order on TOFP(n)
on Schröder trees coincides with the facial weak order on the associahedron Asso[n]
studied in [PR06; NT06; DHP18]. This order is a quotient of the facial weak order
on the permutahedron by the �bers of the Schröder tree insertion ST. In particular,
the weak order on TOFP(n) is a lattice.

The example of Equation 10.25 shows that (TOFP(n),4,∧TOFP,∨TOFP) is not a
sublattice of (P(n),4,∧T ,∨T ), nor a sublattice of (WOIP(n),4,∧WOIP,∨WOIP), nor
a sublattice of (TOIP(n),4,∧TOIP,∨TOIP).

10.2.3 From other associahedra

Cambrian lattice

In Section 1.6 we introduced the binary trees, the Tamari order, and Loday's associ-
ahedron [Lod04]. In [Rea06; RS09], N. Reading introduced a natural generalization
to Cambrian lattices, and their polytopal realizations were later constructed by C.
Hohlweg, C. Lange and H. Thomas [HL07; HLT11]. We follow [CP14] in this de-
scription and borrow their pictures with permission. We will focus on type A in the
following description.

Consider a directed tree T on a vertex set V with |V | = n, and a vertex v ∈ V .
As for binary trees, children (resp. parents) of v are the sources of the incoming
arcs (resp. the targets of the outgoing arcs) at v, and descendants (resp. ancestors)
subtrees of v the subtrees attached to them. The new object is the following:

De�nition 10.2.17. A Cambrian tree is a directed tree T with vertex set V endowed
with a bijective vertex labeling p : V → [n] such that for each vertex v ∈ V :
(i) v has either one parent and two children (its descendant subtrees are called

left and right subtrees) or one child and two parents (its ancestor subtrees are
called left and right subtrees),

(ii) all labels are smaller (resp. larger) than p(v) in the left (resp. right) subtree
of v.
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The signature of T is the n-tuple ε(T ) ∈ {+,−}n de�ned by ε(T )p(v) = − if v has
two children and ε(T )p(v) = + if v has two parents. We denote by Camb(n, ε) the
set of all Cambrian trees on n vertices with signature ε

For instance the standard binary search trees are the Cambrian trees of signature
−− · · ·−. If T is a Cambrian tree and v a vertex of T with ε(T )p(v) = − (resp. +),
we represent a �wall� under v (resp. above v) to separate its right and left subtrees,
as represented in Figures 10.9 and 10.11. We de�ne the signature on elements of [n]
by ε(i) = ε(T )i.

A Cambrian tree T being a directed tree, it is naturally a poset on [n]. We
denote by E(T ) the set of permutations of size n which are linear extensions of the
Cambrian tree T seen as a poset on [n].

Cambrian tree T Linear extensions E(T )
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2173546
2713546
7213546
2175346
2715346
7215346
2751346
7251346
7521346
0
0

Figure 10.11: A Cambrian tree (left) and its linear extensions (right).

As in the case of binary trees, we have an operation called rotation, which maps
a Cambrian tree to another Cambrian tree with the same signature. The main
di�erence with the case of the binary trees is that rotations depend on the signs of
the nodes involved. In Figure 10.12 we represent all cases, and recognize the classical
rotation on binary trees when both signs are negative. The rotations are the cover
relations of the Cambrian order .

Reading proved [Rea06] that Cambrian orders are lattices over the Cambrian
trees of a given signature ε. Note that the �rst and last signs of the signature ε
are not important regarding the Cambrian lattice. Compare Figure 1.19 which is
the Cambrian lattice with signature − − −− with the right one of Figure 10.13 of
signature +−−−.

Weak order on Cambrian trees

The end of this section is not in the original article [CPP17], but can be extracted
from their general study on permutrees .

As explained in the previous paragraph, a Cambrian tree T corresponds to the
following partial order CT on [n] (see also Figure 10.14):

CT := {i C j | ∃ an oriented path i→ j in T}. (10.37)
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Figure 10.12: Rotations in Cambrian trees: the tree T (top) is transformed into the
tree T ′ (bottom) by rotation of the edge i → j. The four cases correspond to the
possible signs of i and j.

Figure 10.13: The ε-Cambrian lattices on ε-Cambrian trees, for the signatures
ε = −+−− (left) and ε = +−−− (right).

In other words, CT is the transitive closure of the oriented tree T .
We say that CT is a Cambrian order element poset , and we denote their set by:

COEP(ε) :=
{
CT

∣∣ T ∈ Camb(ε)
}
. (10.38)

We have the following result on the comparisons of order:

Proposition 10.2.18 ([CPP17, Proposition 50]). For any two Cambrian trees T ,
T ′ ∈ Camb(ε), we have T 4 T ′ in the Cambrian lattice if and only if CT 4 CT ′ in
the weak order on posets.

Contrary to what we did for the permutahedron and classical associahedron we
begin by the study of the intervals, as its characterization is easier.
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Figure 10.14: A Cambrian Order Element Poset (COEP).

Cambrian Order Interval Posets

For two Cambrian trees T, T ′ ∈ Camb(ε) with T 4 T ′, we denote the Cambrian
order interval between T and T ′ by [T, T ′] := {S ∈ Camb(ε) |T 4 S 4 T ′}. We see
this interval as the poset

C[T,T ′] :=
⋂

T4S4T ′

CT = CT ∩CT ′ = CInc
T ′ ∩CDec

T . (10.39)

We say that C[T,T ′] is a Cambrian order interval poset , and we denote by

COIP(ε) :=
{
C[T,T ′]

∣∣ T, T ′ ∈ Camb(ε), T 4 T ′
}

(10.40)

the set of all Cambrian order interval posets with signature ε. We have the following
characterization of these posets:

Proposition 10.2.19 ([CPP17, Corollary 55]). A poset C ∈ P(n) is in COIP(ε) if
and only if for all a < b < c,

a C c =⇒
{
a C b if ε(b) = +,

b C c if ε(b) = −;
(10.41)

and a B c =⇒
{
b B c if ε(b) = +,

a B b if ε(b) = −. (10.42)

This last statement should be compared with Corollary 10.2.12 which gives the
characterization of TOIP. We now describe the weak order on COIP(ε):

Proposition 10.2.20 ([CPP17, Proposition 57]). For any S 4 S ′ and T 4 T ′

C[S,S′] 4 C[T,T ′] ⇐⇒ S 4 T and S ′ 4 T ′. (10.43)

Corollary 10.2.21 ([CPP17, Corollary 58]). For any signature ε ∈ {1,−1}n, the
weak order (COIP(ε),4) is a lattice whose meet and join are given by

C[S,S′] ∧COIP(c) C[T,T ′] = C[S∧CambT,S′∧CambT ′] (10.44)

and C[S,S′] ∨COIP(c) C[T,T ′] = C[S∨CambT,S′∨CambT ′]. (10.45)
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Furthermore, we also have the following results:

Proposition 10.2.22 ([CPP17, Theorem 81 and 84]). For any signature ε ∈ {1,−1}n
the set COIP(ε) induces a sublattice of the weak order (P(n),4,∧T ,∨T ) and also of
(WOIP(n),4,∧WOIP,∨WOIP).

Cambrian Order Element Posets

We now consider the Cambrian order element posets de�ned in Equation 10.2.3 and
want to characterize them. We need a last de�nition, illustrated in Figure 10.15

De�nition 10.2.23 ([CPP17, Section 2.3.3]). For ε ∈ {+,−}n and a, b ∈ [n], an
ε-snake is a sequence x0 < x1 < · · · < xk < xk+1 such that:

• either x0 C x1 B x2 C x3 B . . . such that for all i ∈ [k],

{
ε(i) = − if i is odd,

ε(i) = + if i is even.

• or x0 B x1 C x2 B x3 C . . . such that for all i ∈ [k],

{
ε(i) = + if i is odd,

ε(i) = − if i is even.
Such a snake is said to join x0 and xk+1.
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Figure 10.15: Two ε-snakes.

We �nally get the following characterization:

Proposition 10.2.24 ([CPP17, Proposition 60]). A poset C ∈ P(n) is in COEP(ε)
if and only if C ∈ COIP(ε) and for every a, b ∈ [n] there is a ε-snake joining a to b.

Furthermore, we also have the following result:

Proposition 10.2.25 ([CPP17, Theorem 88]). For any signature ε ∈ {1,−1}n the
set COEP(ε) induces a sublattice of the weak order (P(n),4,∧T ,∨T ).

Cambrian Order Face Posets

We will not give the rules for the faces of the Cambrian order. They are a mix
between Cambrian trees and Schröder trees . We refer to [CPP17] for details.

10.2.4 From the cube

This last part is also not in the original article [CPP17], but can be extracted
from their general study on permutrees and permutreehedra (see also [PP16] for a
de�nition). The �gures were made using theirs as a basis.

We denote by B(n) the set of all binary sequences of size n which are vertices
of the n-dimensionnal cube. We shall represent them as a sequence of plus (+) and
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minus (−). To every binary sequence b = b1b2 . . . bn ∈ B(n) we associate its binary
set :

Bset(b) := {i | bi = “− ”}. (10.46)

The boolean order on binary sequences is just the inclusion on binary sets, its mini-
mum being the sequence + + · · ·+ and the maximum being −− · · ·−.

A binary sequence b = b1b2 . . . bn of size n is seen as a poset Cb on [n+1] de�ned
by the cover relations i Cb (i + 1) if bi = “ + ” and i Bb (i + 1) if bi = “ − ”, as
illustrated in Figure 10.16.

b = + +−+−− ←→ Cb = 1 2 3 4 5 6 7

Figure 10.16: A Boolean Order Element Poset (BOEP).

We say that Cb is a boolean order element poset , and we denote their set by:

BOEP(n) :=
{
Cb

∣∣ b ∈ B(n− 1)
}
. (10.47)

We have the following proposition:

Proposition 10.2.26. For any binary sequences b, b′ ∈ B(n) we have b 4 b′ in the
boolean lattice if and only if Cb 4 Cb′ in the weak order on posets.

As for the Cambrian order, we begin by the study of the intervals, as its charac-
terization is easier.

Boolean Order Interval Posets

For two binary sequences b, b′ ∈ B(n) with b 4 b′, we denote the boolean order
interval between b and b′ by [b, b′] := {c ∈ B(n) | b 4 c 4 b′}. We see this interval
as the poset

C[b,b′] :=
⋂

b4c4b′

Cb = Cb ∩Cb′ = CInc
b′ ∩CDec

b . (10.48)

We illustrate this in Figure 10.17. We say that C[b,b′] is a boolean order interval
poset , and we denote by

BOIP(n) :=
{
C[b,b′]

∣∣ b, b′ ∈ B(n− 1), b 4 b′
}

(10.49)

the set of all boolean order interval posets on [n]. We have the following character-
ization of these posets:

Proposition 10.2.27 ([CPP17, Corollary 55]). A poset C ∈ P(n) is in BOIP(n) if
and only if for all a < b < c,

a C c =⇒ a C b and b C c and a B c =⇒ a B b and b B c (10.50)
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b′ = +−−−−

+ +−−− +−+−−

b = + + +−−

Cb′= 1 2 3 4 5 6

Cb= 1 2 3 4 5 6

C[b,b′]= CInc
b′ ∪CDec

b = 1 2 3 4 5 6

Figure 10.17: A Boolean Order Interval Poset (BOIP).

We now describe the weak order on BOIP(n):

Proposition 10.2.28 ([CPP17, Proposition 57]). For any c 4 c′ and b 4 b′

C[c,c′] 4 C[b,b′] ⇐⇒ c 4 b and c′ 4 b′. (10.51)

Corollary 10.2.29 ([CPP17, Corollary 58]). The weak order (BOIP(n),4) is a
lattice whose meet and join are given by

C[c,c′] ∧BOIP C[b,b′] = C[c∧Bb,c′∧Bb′] (10.52)

and C[c,c′] ∨BOIP C[b,b′] = C[c∨Bb,c′∨Bb′]. (10.53)

Furthermore, we also have the following results:

Proposition 10.2.30 ([CPP17, Theorem 81 and 84]). The set BOIP(n) induces a
sublattice of the weak order (P(n),4,∧T ,∨T ) and also of (WOIP(n),4,∧WOIP,∨WOIP).

Boolean Order Element Posets

We now consider the boolean order element posets de�ned in Equation 10.47, and
give its characterization:

Proposition 10.2.31 ([CPP17, Proposition 60]). A poset C ∈ P(n) is in BOEP(n)
if and only if:
• C ∈ BOIP(n);
• for every i < n, i C i+ 1 or i B i+ 1.

Furthermore, we also have the following result:

Proposition 10.2.32 ([CPP17, Theorem 88]). The set BOEP(n) induces a sublat-
tice of the weak order (P(n),4,∧T ,∨T ).

Boolean Order Face Posets

The faces of the cube are the same as the intervals, hence we have already given the
results.
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Chapter 11
Poset on sets of roots

11.1 Subsets of root systems

In Chapter 2 we have already introduced some classical notions on �nite root sys-
tems Φ and Coxeter groups, and refered to the books by J. Humphreys [Hum90],
N. Bourbaki [Bou02], and A. Björner and F. Brenti [BB05] for more details. We are
interested here in some subsets of Φ, and their properties regarding sum of roots.

11.1.1 Φ-posets

Let Φ be a root system. In Section 11.2, we will consider certain speci�c families of
collections of roots. We start by the de�nition of closed sets. The next statement is
proved by A. Pilkington [Pil06, Sect. 2] for subsets of positive roots. The proof for
subsets of all roots is identical.

Lemma 11.1.1. The following conditions are equivalent for R ⊆ Φ:

(i) α + β ∈ R for any α, β ∈ R such that α + β ∈ Φ,

(ii) mα + nβ ∈ R for any α, β ∈ R and m,n ∈ N such that mα + nβ ∈ Φ,

(iii) α1 + · · ·+ αp ∈ R for any α1, . . . , αp ∈ R such that α1 + · · ·+ αp ∈ Φ.

De�nition 11.1.2. A subset R ⊆ Φ is closed if it satis�es the equivalent conditions
of Lemma 11.1.1. We denote by C(Φ) the set of closed subsets of roots of Φ.

De�nition 11.1.3. The closure of a subset R ⊆ Φ is the set Rcl :=NR ∩ Φ.

The map R 7→ Rcl is a closure operator on Φ, meaning that

∅cl = ∅, Φcl = Φ, R ⊆ S =⇒ Rcl ⊆ Scl and (Rcl)cl = Rcl (11.1)

for all R, S ⊆ Φ. Moreover Rcl is closed and R is closed if and only if R = Rcl.

Remark 11.1.4. As studied in details by A. Pilkington in [Pil06], there are other
possible notions of closed sets of roots. Namely, one says that R ⊆ Φ is

273



 Chapter 11 � Poset on sets of roots

• N-closed ifmα+nβ ∈ R for any α, β ∈ R andm,n ∈ N such thatmα+nβ ∈ Φ,

• R-closed if xα+ yβ ∈ R for any α, β ∈ R and x, y ∈ R such that xα+ yβ ∈ Φ,

• convex if R = Φ ∩ C for a convex cone C in V .

Note that convex implies R-closed which implies N-closed, but that the converse
statements are wrong even for �nite root systems [Pil06, p. 3192]. In this chapter,
we will only work with the notion of N-closedness in crystallographic root systems,
as it is discussed in [Bou02]. A good justi�cation for this restriction will be presented
in Remark 11.2.19.

Moreover, we will consider the following subsets of roots.

De�nition 11.1.5. A subset of roots R ⊆ Φ is symmetric if −R = R and anti-
symmetric if R ∩ −R = ∅. We denote by S(Φ) (resp. A(Φ)) the set of symmetric
(resp. antisymmetric) subsets of roots of Φ.

Example 11.1.6 (Type A). In Section 2.3.1, we have described the root system of
type A. The roots are the vectors ei−ej for i, j ∈ [n]. Therefore, a subset of roots can
be seen as an integer binary relation via the bijection (i, j) ∈ [n]2 ←→ ei−ej ∈ ΦA.
A subset of roots is antisymmetric (resp. closed) if the corresponding integer binary
relation is antisymmetric (resp. transitive). (Note that in type A the three notions
of closed sets of roots coincide.)

This example motivates the de�nition of the central object of this chapter.

De�nition 11.1.7. A Φ-poset is an antisymmetric and N-closed subset of roots
of Φ. We denote by P(Φ) the set of all Φ-posets.

We speak of Weyl posets when we do not want to specify the root system. We
will introduce in Section 11.2.4 a natural lattice structure on Φ-posets. We will see
in Section 11.3 various subfamilies of Φ-posets arising from classical Coxeter and
Coxeter Catalan combinatorics.

To conclude this preliminary section on Φ-posets, we gather simple observations
on their subsums and their extensions.

Lemma 11.1.8. For R ∈ P(Φ) and α1, . . . , αp ∈ R we have α1 + · · ·+ αp 6= 0.

Proof. Assume that R is a Φ-poset and that there are α1, . . . , αp ∈ R such that
α1 + · · ·+ αp = 0. Then α2 + · · ·+αp = −α1 is a root, so Lemma 11.1.1 (iii) ensures
that α2 + · · · + αp ∈ R since R is closed. We obtain that α1 ∈ R and −α1 ∈ R,
contradicting the antisymmetry of R.

Finally, we need Φ-poset extensions. The subsets of Φ are naturally ordered by
inclusion, and we can consider the restriction of this inclusion order on Φ-posets.
For R ∈ P(Φ), we call extensions of R the Φ-posets S containing R, and we
let E(R) := {S ∈ P(Φ) |R ⊆ S}. Note that R ⊆ ⋂ E(R) but that the reverse in-
clusion does not always hold (consider for example R = {α1 + α2, α2} in type B2).
For later purposes, we are interested in maximal Φ-posets in the extension order.



� 11.1 � Subsets of root systems 

Proposition 11.1.9. For R ∈ P(Φ), we have:

E(R) = {R} ⇐⇒ ∀α ∈ Φ, {α,−α} ∩ R 6= ∅. (11.2)

Proof. Clearly if {α,−α} ∩ R 6= ∅ for all α ∈ Φ, then adding any root to R breaks
the antisymmetry, so that E(R) = {R}. Reciprocally, assume that there exists α ∈ Φ
such that {α,−α}∩R = ∅. Let S := (R∪{α})cl and T := (R∪{−α})cl. By de�nition,
both S and T are closed, and we claim that at least one of them is antisymmetric, thus
proving that R admits a non-trivial extension. Assume by means of contradiction
that neither S nor T are antisymmetric. Let β ∈ S ∩ −S and γ ∈ T ∩ −T. By
de�nition of the closure, we can write

β =
∑

δ∈R

λδδ + λαα = −
∑

δ∈R

κδδ − καα (11.3)

and γ =
∑

δ∈R

µδδ − µαα = −
∑

δ∈R

νδδ + ναα, (11.4)

where λδ, κδ, µδ, νδ are non-negative integer coe�cients for δ ∈ R, and where λα + κα 6= 0 6= µα + να.
This implies that

∑

δ∈R

(
(λα + κα)(µδ + νδ) + (µα + να)(λδ + κδ)

)
δ = 0. (11.5)

Lemma 11.1.8 thus ensures that (λα + κα)(µδ + νδ) + (µα + να)(λδ + κδ) = 0 which
in turns implies that λδ = κδ = µδ = νδ = 0 for all δ ∈ R, a contradiction.

11.1.2 Sums of roots in crystallographic root systems

We conclude this preliminary section by gathering useful statements on sums of roots
in crystallographic root systems that we consider interesting for their own sake. We
start by a statement from [Bou02] providing su�cient conditions for the sum or
di�erence of two roots to be again a root in a crystallographic root system Φ.

Theorem 11.1.10 ([Bou02, Chap. 6, 1.3, Thm. 1]). For any α, β in a crystallo-
graphic root system Φ,

(i) if 〈α | β〉 > 0 then α− β ∈ Φ or α = β,

(ii) if 〈α | β〉 < 0 then α + β ∈ Φ or α = −β.

We say that a set X ⊆ Φ

• is summable if its sum ΣX is again a root of Φ,

• has no vanishing subsum if ΣY 6= 0 for any ∅ 6= Y ⊆ X.

Proposition 11.1.11 and Theorems 11.1.12 and 11.1.13 ensure that a summable set
of roots with no vanishing subsum has many summable subsets. We start on sums
of 3 roots.
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Proposition 11.1.11. Let Φ be a crystallographic root system. If α, β, γ ∈ Φ are
such that α + β + γ ∈ Φ has no vanishing subsum, then at least two of the three
subsums α + β, α + γ and β + γ are in Φ.

Proof. By contradiction, assume that α+β /∈ Φ and α+γ /∈ Φ. Since α+β+γ has no
vanishing subsum, α 6= −β and α 6= −γ. By contraposition of Theorem 11.1.10 (ii),
we obtain that 〈α | β〉 ≥ 0 and 〈α | γ〉 ≥ 0. Therefore,

〈α + β + γ | β + γ〉 = 〈α | β〉+ 〈α | γ〉+ 〈β + γ | β + γ〉 > 0 (11.6)

since β + γ 6= 0. It follows that either 〈α + β + γ | β〉 > 0 or 〈α + β + γ | γ〉 > 0.
Assume for instance 〈α + β + γ | β〉 > 0. Theorem 11.1.10 (i) thus implies that
either α + γ ∈ Φ or α + γ = β ∈ Φ.

It is proved in [Bou02, Chap. 6, 1.6, Prop. 19] that any summable subset X of
positive roots admits a �ltration of summable subsets

X1 ( X2 ( · · · ( X|X|−1 ( X|X| = X. (11.7)

We now use Proposition 11.1.11 to extend this property in two directions: �rst we
consider subsets of all roots (positive and negative), second we show that we can
additionally prescribe the initial set X1 to be a choosen root of Φ.

This latter improvement will be crucial all throughout the chapter.

Theorem 11.1.12. Let Φ be a crystallographic root system. Any summable set
X ⊆ Φ with no vanishing subsum admits a �ltration of summable subsets

{α} = X1 ( X2 ( · · · ( X|X|−1 ( X|X| = X

for any α ∈ X.

Proof. The proof works by induction on |X|. It is clear for |X| = 2, so that we
consider |X| > 2. By induction, it su�ces to �nd a summable subset X|X|−1 of
size |X| − 1 such that α ∈ X|X|−1 ⊂ X. Since

∑
β∈X〈β |ΣX〉 = 〈ΣX |ΣX〉 > 0,

there exists β ∈ X such that 〈β |ΣX〉 > 0. Since X has no vanishing subsum,
β 6= ΣX. Theorem 11.1.10 (i) thus ensures that X r {β} is summable. If α 6= β,
then we set X|X|−1 := Xr{β} and conclude by induction. Otherwise, we proved that
both {α} and Xr {α} are summable. Let Y be inclusion maximal with α ∈ Y ( X
such that both Y and XrY are summable. Assume that |Xr Y| ≥ 2. By induction
hypothesis, there exists Z ⊂ XrY summable with |Z| = |Xr Y| − 1 ≥ 1. Let γ be
the root in (XrY)rZ. Since γ, ΣY and ΣZ are roots and γ+ ΣY + ΣZ = ΣX ∈ Φ,
Proposition 11.1.11 a�rms that either {γ} ∪Y or Y ∪ Z is summable, contradicting
the maximality of Y. We therefore obtained a summable subset Y with α ∈ Y ⊆ X
with |Y| = |Y| − 1. We set X|X|−1 := Y and conclude by induction.

Finally, we obtain the following generalization of Proposition 11.1.11.

Theorem 11.1.13. Let Φ be a crystallographic root system. Then any summable
set X ⊆ Φ with no vanishing subsum admits at least p distinct summable subsets of
size |X| − p+ 1, for any 1 ≤ p ≤ |X|.
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Proof. Note that it holds for p = 1 and p = |X|. We now proceed by induction on |X|
to prove the result for 1 < p < |X|. By Theorem 11.1.12, X admits a summable
subset Y of size |X| − 1. Since 1 < p, we can apply the induction hypothesis to �nd
p− 1 distinct summable subsets Z1, . . . ,Zp−1 of Y of size |Y| − p+ 2 = |X| − p+ 1.
Moreover, by Theorem 11.1.12 there exists at least one summable subset Zp of X of
size |X| − p + 1 containing the root α in Xr Y. This subset Zp is distinct from all
the subsets Z1, . . . ,Zp−1 of Y, since it contains α. This concludes the proof.

11.2 Weak order on Φ-posets

11.2.1 Weak order on all subsets

Let Φ be a �nite root system, with positive roots Φ+ and negative roots Φ−. We de-
note by R(Φ) the set of all subsets of Φ. For R ∈ R(Φ), we denote by R+ := R ∩ Φ+

its positive part and R− := R ∩ Φ− its negative part. The following order was con-
sidered in type A in [CPP17].

De�nition 11.2.1. The weak order on R(Φ) is de�ned by R 4 S if and only if
R+ ⊇ S+ and R− ⊆ S−.

Remark 11.2.2. The name for this order relation will be transparent in Sec-
tion 11.3. Note that there is an arbitrary choice of orientation in De�nition 11.2.1.
The choice we have made here may seem unusual, as the apparent contradiction in
Proposition 11.3.5 suggests. However, it is more coherent with the case of type A
as treated in Chapter 10 and it simpli�es the presentation of Section 11.3.1.

Proposition 11.2.3. The weak order 4 on R(Φ) is a graded lattice with meet and
join

R ∧R S = (R+ ∪ S+) t (R− ∩ S−) (11.8)

and R ∨R S = (R+ ∩ S+) t (R− ∪ S−). (11.9)

Furthermore, its cover relations are all of the form R 4 R \ {α}, α ∈ R+ and
R \ {β} 4 R, β ∈ R−. Therefore the weak order is graded by R 7→ | R− | − | R+ |.

Proof. It is the Cartesian product of two boolean lattices (on inclusion posets on
the positive and on the negative parts respectively).

Example 11.2.4 (Type A). For the type An root system, a subset of roots R ∈ RAn

can be considered as a re�exive binary relation. The weak order of De�nition 11.2.1
was considered in this context in Chapter 10.

The end of this section is devoted to show that the restriction of the weak order to
certain families of subsets of roots (antisymmetric, closed and Φ-posets) still de�nes
a lattice structure and to express its meet and join operations. For example, the
weak orders on A2-, B2- and G2-posets are represented in Figures 11.2 and 11.3.
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11.2.2 Weak order on antisymmetric subsets

We start with the antisymmetry condition.

Proposition 11.2.5. The meet ∧R and the join ∨R both preserve antisymmetry.
Thus, the set A(Φ) of antisymmetric subsets of Φ induces a sublattice of the weak
order on R(Φ).

Proof. Consider two antisymmetric subsets R, S ∈ R(Φ) and let α ∈ (R ∧R S)+ =
R+ ∪ S+. Assume for instance α ∈ R+. Since R is antisymmetric, −α /∈ R−, so
that −α /∈ R− ∩ S− = (R ∧R S)−. We conclude that R ∧R S is antisymmetric. The
proof for R ∨R S is similar.

Proposition 11.2.6. All cover relations in the weak order on A(Φ) are cover re-
lations in the weak order on R(Φ). In particular, the weak order on A(Φ) is still
graded by R 7→ |R+| − |R−|.
Proof. Let R 4 S be a cover relation in the weak order on A(Φ). We have R+ ⊇ S+

and R− ⊆ S− where at least one of the inclusions is strict. Suppose �rst that
R+ 6= S+. Let α ∈ R+ r S+ and T := Rr{α}. Note that T ∈ A(Φ) and R ≺ T 4 S.
Since S covers R, we get S = T = Rr {α}. Similarly if S− 6= R− let α ∈ S− r R−

and T := S− r{α}. Then T ∈ A(Φ) and R 4 T ≺ S implies that T = R = Sr {α}.
In both cases, R 4 S is a cover relation of the weak order on R(Φ).

Corollary 11.2.7. In the weak order on A(Φ), the antisymmetric subsets that cover
a given antisymmetric subset R ∈ A(Φ) are precisely the relations

• Rr {α} for any α ∈ R+,

• R ∪ {β} for any β ∈ Φ− r R− such that −β /∈ R+.

11.2.3 Weak order on closed subsets

We aim at proving that the weak order on closed subsets of Φ is a lattice. Un-
fortunately, as C(Φ) is stable by intersection but not by union, it is not preserved
by the meet ∧R and the join ∨R, so that it does not induce a sublattice of the
weak order on R(Φ). Proving that it is still a lattice requires a little more work.
Following [CPP17], we start with a weaker notion of closedness. We say that a sub-
set R = R+ tR− is semiclosed if both R+ and R− are closed. We denote by SC(Φ)
the set of semiclosed subsets of Φ. Note that C(Φ) ⊆ SC(Φ) but that the reverse
inclusion does not hold in general.

Proposition 11.2.8. The weak order 4 on SC(Φ) is a lattice with meet and join

R∧SC S = (R+∪S+)clt(R−∩S−) and R∨SC S = (R+∩S+)t(R−∪S−)cl. (11.10)

Proof. Observe �rst that R∧SC S is indeed semiclosed (Tcl is always closed and C(Φ)
is stable by intersection). Moreover, R ∧SC S 4 R and R ∧SC S 4 S. Assume now
that T ⊆ Φ is semiclosed such that T 4 R and T 4 S. Then T+ ⊇ R+ ∪ S+ and
T− ⊆ R− ∩ S−. Moreover, since T+ is closed, we get that T+ ⊇ (R+ ∪ S+)cl so
that T 4 R ∧SC S. We conclude that R ∧SC S is indeed the meet of R and S. The
proof is similar for the join.
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Proposition 11.2.9. All cover relations in the weak order on SC(Φ) are cover
relations in the weak order on R(Φ). In particular, the weak order on SC(Φ) is still
graded by R 7→ |R−| − |R+|.

Proof. Consider a cover relation R 4 S in the weak order on SC(Φ). We have
R+ ⊇ S+ and R− ⊆ S− where at least one of the inclusions is strict. We distinguish
two cases.

Suppose �rst that R+ 6= S+, and consider α ∈ R+ r S+ of minimal height in
R+rS+. Observe that α cannot be decomposed in R+: if α = γ+ δ with γ, δ ∈ R+,
then h(γ), h(δ) < h(α), so γ, δ /∈ S+ by minimality of h(α), which contradicts the
closedness of S+. Consider now T := R r{α}. Let γ, δ ∈ T+ with γ + δ ∈ Φ.
Then γ, δ ∈ R+ so that γ + δ ∈ R+ since R+ is closed. Since γ + δ 6= α, this implies
that γ + δ ∈ T+. This shows that T+ is closed. Since T− = R− is also closed,
we obtain that T is semiclosed. Since R 6= T and R 4 T 4 S, this proves that
T = S = Rr {α}.

Assume now that R− 6= S−, and let β ∈ S− r R− of minimal height (or equiva-
lently maximal absolute height). Consider T := R∪{β}. Let γ, δ ∈ T− with γ+δ ∈ Φ.
If γ, δ ∈ R−, then γ + δ ∈ R− since R− is closed. Assume now that δ = β.
Then γ, β ∈ S− and S− is closed, we have γ + β ∈ S− and h(γ + β) < h(β), which
ensures that γ + β ∈ R− by minimality of h(β). This shows that T− is closed.
Since T+ = R+ is also closed, we obtain that T is semiclosed. Since R 6= T and
R 4 T 4 S, this proves that T = S = R ∪ {β}.

Corollary 11.2.10. In the weak order on SC(Φ), the semiclosed subsets of Φ that
cover a given semiclosed subset R ∈ SC(Φ) are precisely the relations:

• Rr {α} for any α ∈ R+ such that there is no γ, δ ∈ R+ with α = γ + δ,

• R ∪ {β} for any β ∈ Φ− r R− such that β + γ ∈ Φ =⇒ β + γ ∈ R for all
γ ∈ R−.

We now come back to closed subsets of Φ. Unfortunately, C(Φ) still does not
induce a sublattice of SC(Φ). We thus need a transformation similar to the clo-
sure R 7→ Rcl to transform a semiclosed subset of Φ into a closed one. For R ∈ R(Φ),
we de�ne the negative closure deletion Rncd and the positive closure deletion Rpcd by

Rncd := Rr
{
α ∈ R−

∣∣ ∃X ⊆ R+such that α + ΣX ∈ Φr R
}
,

Rpcd := Rr
{
α ∈ R+

∣∣ ∃X ⊆ R−such that α + ΣX ∈ Φr R
}
.

As in Section 11.1.2, the notation ΣX in these formulas denotes the sum of all roots
in X.

Remark 11.2.11. In the case that R is semiclosed, we can assume that the set X
in the de�nitions of Rncd and Rpcd is such that the α+ ΣX has no vanishing subsum.
Observe �rst that no vanishing subsum can contain α. Indeed, if Y ⊆ X is such
that α+ ΣY = 0, then XrY ⊆ R− and R− closed implies α+ ΣX = Σ(XrY) ∈ R.
Now if Y ⊆ X is such that ΣY = 0, then α + Σ(Xr Y) = α + ΣX /∈ R, so that we
can replace X by Xr Y.
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Lemma 11.2.12. For any R ∈ R(Φ), we have Rncd 4 R 4 Rpcd.

Proof. Since Rncd (resp. Rpcd) is obtained from R by deleting negative (resp. positive)
roots, we have (Rncd)+ = R+ ⊇ (Rpcd)+ and (Rncd)− ⊆ R− = (Rpcd)−, so that
Rncd 4 R 4 Rpcd.

Lemma 11.2.13. If R is semiclosed, then both Rncd and Rpcd are closed.

Proof. Assume by means of contradiction that R is semiclosed and Rncd is not closed.
Then there are roots α, β ∈ Rncd such that α + β ∈ Φ r Rncd. Consider two such
roots such that α + β has minimal absolute height. We distinguish four cases:

• If α, β ∈ Φ+, then α, β ∈ (Rncd)+ = R+, which is closed, so that we obtain
α + β ∈ R+ = (Rncd)+. Contradiction.

• If α ∈ Φ− and β ∈ Φ+, we distinguish again two cases:

� If α + β /∈ R, then the set {β} ensures α /∈ Rncd. Contradiction.

� If α+ β ∈ R, then since α+ β ∈ RrRncd, there exists X ⊆ R+ such that
α + β + ΣX ∈ Φr R. Since β ∈ R+, the set {β} ∪ X ensures α /∈ Rncd.
Contradiction.

• If α ∈ Φ+ and β ∈ Φ−, the argument is symmetric.

• If α, β ∈ Φ−, then α + β ∈ R− since R− is closed. Since α + β ∈ R r Rncd,
there exists X ⊆ R+ such that (α+ β) + ΣX ∈ ΦrR. By Remark 11.2.11, we
can assume that (α + β) + ΣX has no vanishing subsum. By Theorem 11.1.12,
there exists γ ∈ X such that α + β + γ ∈ Φ. By Proposition 11.1.11, we can
assume without loss of generality that β + γ ∈ Φ. We now distinguish four
cases:

� If β + γ /∈ R, then the set {γ} ensures β /∈ Rncd. Contradiction.

� If β + γ ∈ R+, then we de�ne T := {β + γ} ∪ (X r {γ}) ⊆ R+ so that
α + ΣT = α + β + ΣX ∈ Φr R and consequently α /∈ Rncd. Contradic-
tion.

� If β+γ ∈ R−rRncd there exists T ⊆ R+ such that β + γ + ΣT ∈ Φr R.
Since γ ∈ R+, the set {γ} ∪ T ensures that β /∈ Rncd. Contradiction.

� If β + γ ∈ (Rncd)−, then we have α ∈ Rncd and β + γ ∈ Rncd with
α + β + γ ∈ Φ. Moreover, h(α + β + γ) < h(α + β) since α + β ∈ Φ−

while γ ∈ Φ+ and β + γ ∈ Φ−. By minimality in the choice of α + β,
we obtain that α + β + γ ∈ Rncd. Observe now that X r {γ} ⊆ R+

and α + β + γ + Σ(Xr {γ}) = α + β + ΣX ∈ Φr R. Therefore:

∗ If α + β + γ is negative, the set X r {γ} ensures α + β + γ /∈ Rncd.
Contradiction.

∗ If α + β + γ is positive, then R+ is not closed. Contradiction.

In all cases, we have reached a contradiction. We conclude that if R is semiclosed,
then Rncd is closed. The proof is symmetric for Rpcd.



� 11.2 � Weak order on Φ-posets 

Proposition 11.2.14. The weak order on C(Φ) is a lattice with meet and join

R ∧C S =
(
(R+ ∪ S+)cl t (R− ∩ S−)

)ncd
, (11.11)

R ∨C S =
(
(R+ ∩ S+) t (R− ∪ S−)cl

)pcd
. (11.12)

Proof. First, the weak order 4 on C(Φ) is a subposet of the weak order 4 on R(Φ),
and it is bounded below by Φ+ and above by Φ−. We therefore just need to show
that there is a meet and a join and that they are given by the above formulas.

Let R, S ∈ C(Φ) and M = R ∧SC S so that Mncd = R ∧C S. Observe that we
have Mncd 4 M 4 R and Mncd 4 M 4 S by Lemma 11.2.12. Moreover, since M is
semiclosed, Mncd is closed by Lemma 11.2.13. Therefore, Mncd is closed and below
both R and S.

Consider now T ∈ C(Φ) such that T 4 R and T 4 S. Since T ∈ SC(Φ) and
M = R ∧SC S, we have T 4 M. Therefore, T+ ⊆ M+ = (Mncd)+ and T− ⊆ M−.
Assume by means of contradiction that T 64 Mncd. Then we have T− 6⊆ (Mncd)−.
Consider α ∈ T−r (Mncd)− of minimal absolute height. By de�nition of Mncd, there
exists X ⊆ M+ such that α + ΣX ∈ ΦrM. Since M+ = (R ∧SC S)+ = (R+ ∪ S+)cl,
we can assume without loss of generality (up to developing each root of X) that
X ⊆ (R+ ∪ S+). By Remark 11.2.11, we can moreover assume that α + ΣX has no
vanishing subsum. By Theorem 11.1.12, there exists β ∈ X such that α + β ∈ Φ.

Since β ∈ X ⊆ (R+ ∪ S+), we can assume that β ∈ R+. Since α ∈ T− ⊆ R−,
β ∈ R+ ⊆ T+ and both R and T are closed, we obtain that α+ β ∈ R∩T. We now
distinguish two cases:

• If α + β is positive, then α + β ∈ R+ ⊆ M+. Since Xr {β} ⊆ M+ and M+ is
closed, we obtain that α + ΣX = (α + β) + Σ(Xr {β}) ∈ M+. Contradicion.

• If α+β is negative, we have α+β ∈ T−. Moreover, α+β has smaller absolute
height than α since α ∈ Φ−, β ∈ Φ+ and α + β ∈ Φ−. By minimality in the
choice of α, we obtain that α + β ∈ Mncd. Since X r {β} ⊆ M+ this implies
that α + ΣX = (α + β) + Σ(Xr {β}) ∈ M. Contradiction.

Since we reached a contradiction in both cases, we obtain that T 4 Mncd. Hence,
Mncd is indeed the meet of R and S for the weak order on C(Φ). The proof is similar
for the join.

Remark 11.2.15. In contrast to Propositions 11.2.6 and 11.2.9 and Corollaries 11.2.7
and 11.2.10, the cover relations in the weak order on C(Φ) are more intricate and
the weak order on C(Φ) is not graded in general, see Figure 11.1.

11.2.4 Weak order on Φ-posets

Recall from De�nition 11.1.7 that P(Φ) denotes the set of Φ-posets, i.e. of antisym-
metric closed subsets of Φ. We �nally show that the restriction of the weak order
to the Φ-posets still de�nes a lattice structure. The weak orders on A2-, B2- and
G2-posets are represented in Figures 11.2 and 11.3. One could compare the weak
order on A2 with Figure 10.5.
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Theorem 11.2.16. The meet ∧C and the join ∨C both preserve antisymmetry. Thus,
the set P(Φ) of Φ-posets induces a sublattice of the weak order on C(Φ).

Proof. Let R, S ∈ P(Φ) and M = R ∧SC S so that Mncd = R ∧C S. Assume
that Mncd is not antisymmetric, and let α ∈ (Mncd)+ such that −α ∈ (Mncd)−.
Since (Mncd)− ⊆ M− = R− ∩ S− and both R and S are antisymmetric, we obtain
that α /∈ R+ ∪ S+. Since α ∈ (Mncd)+ = (R+ ∪ S+)cl, there exists X ⊆ R+ ∪ S+

such that |X| ≥ 2 and α = ΣX. By Theorem 11.1.12, there exists β ∈ X such
that Σ(Xr {β}) ∈ Φ. Since Xr {β} ⊆ M+ ⊆ Mncd, −α ∈ Mncd and Mncd is closed,
we obtain that Σ(X r {β}) + (−α) = −β ∈ (Mncd)− ⊆ R− ∩ S−. As β ∈ R+ ∪ S+,
this contradicts the antisymmetry of either R or S.

Proposition 11.2.17. All cover relations in the weak order on P(Φ) are cover
relations in the weak order on R(Φ). In particular, the weak order on P(Φ) is still
graded by R 7→ |R−| − |R+|.

Proof. Consider a cover relation R 4 S in the weak order on P(Φ). We have R+ ⊇ S+

and R− ⊆ S− where at least one of the inclusions is strict. Suppose �rst that
R+ ⊇ S+ and consider the set X := {α ∈ R+ r S+ | 6 ∃ β, γ ∈ R+ with α = β + γ}.
This set X is nonempty as it contains any α in R+ r S+ with |h|(α) minimal. Con-
sider now α ∈ X with |h|(α) maximal and let T := R r{α}. We claim that T is
still a Φ-poset. It is clearly still antisymmetric. For closedness, assume by means
of contradiction that there is β, γ ∈ T such that α = β + γ. Since α ∈ X ⊆ Φ+

we can assume that β ∈ R− and γ ∈ R+, and we choose β so that |h|(β) is
minimal. We claim that there is no δ, ε ∈ R+ such that γ = δ + ε. Other-
wise, since α = β + γ = β + δ + ε ∈ Φ, we can assume by Proposition 11.1.11 that
β+δ ∈ Φ∪{0}. If β+δ ∈ Φ−, then β+δ ∈ R− (since R is closed) which contradicts
the minimality of β. If β + δ ∈ Φ+, then β + δ ∈ R+ (since R is closed), which
together with γ ∈ R+ and (β + δ) + γ = α contradicts α ∈ X. Finally, if β + δ = 0,
then β = −δ which contradicts the antisymmetry of R. This proves that there is
no δ, ε ∈ R+ such that γ = δ + ε. By maximality of h(|α|) in our choice of α this
implies that γ ∈ S. Since β ∈ R− ⊆ S−, we therefore obtain that β + γ = α ∈ S
and α /∈ S, contradicting the closedness of S. This proves that T is closed and thus
it is a Φ-poset. Moreover, we have R 6= T and R 4 T 4 S where S covers R,
which implies that S = T = R r {α}. We prove similarly that if R− 6= S−, there
exists α ∈ Φ− such that S = R∪{α}. In both cases, R 4 S is a cover relation in the
weak order on R(Φ).

Corollary 11.2.18. In the weak order on P(Φ), the Φ-posets that cover a given
Φ-poset R ∈ SC(Φ) are precisely the relations:

• Rr {α} for any α ∈ R+ so that there is no γ, δ ∈ R+ with α = γ + δ,

• R∪{β}, for any β ∈ Φ−rR− such that −β /∈ R+ and β+γ ∈ Φ =⇒ β+γ ∈ R
for all γ ∈ R.

Remark 11.2.19. As mentioned in Remark 11.1.4, there are di�erent possible no-
tions of closed subsets (which all coincide in type A). The notion used here (De�-
nition 11.1.2) only makes sense for crystallographic types. For non crystallographic
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types, this notion is empty hence the result on posets (Theorem 11.2.16) is equivalent
to the result on antisymmetric subsets of roots (Proposition 11.2.5). Unfortunately,
it turns out that Proposition 11.2.14 and Theorem 11.2.16 do not hold for the other
notions of closed sets. The smallest counter-example is in type B3. Consider the
convex antisymmetric sets of roots

R := {−α1, α3}
S := {−α1 − 2α2 − 2α3, α3}
X := {−α1 − α2 − α3,−α1,−α1 − 2α2 − 2α3}
Y := {−α1 − α2,−α1,−α1 − 2α2 − 2α3,−α1 − α2 − α3, α3}.

Then X and Y are two minimal convex antisymmetric sets of roots which are both
bigger than R and S in weak order. In other words, R and S have no join in the
weak order on convex antisymmetric sets of roots.

Note also that R∨C S = {−α1,−α1−2α2−2α3, α3} is N-closed but not R-closed
as (−α1)/2 + (−α1 − 2α2 − 2α3)/2 = −α1 − α2 − α3 ∈ Φ.

Remark 11.2.20. We have gathered in Table 11.1 the number of Φ-posets for the
root systems of type An, Bn, Cn and Dn for small values of n (the other lines of the
table will be explained in the next section). Note that there are 1235 B4-posets and
only 1225 C4-posets. This should not come as a surprise since the notion of closed
sets used in this chapter (De�nition 11.1.2) is not preserved when passing from roots
to coroots.

type A B/C D (n ≥ 4)
# Φ-posets 1, 3, 19, 219, 4231 [A001035] 1, 3, 37, 1235 / 1225 219
# WOEP 1, 2, 6, 24, 120 [A000142] 1, 2, 8, 48, 384 [A000165] 192 [A002866]
# WOIP 1, 3, 17, 151, 1899 [A007767] 1, 3, 27, 457 3959
# WOFP 1, 3, 13, 75, 541 [A000670] 1, 3, 17, 147, 1697 [A080253] 865 [A080254]
# COEP 1, 2, 5, 14, 42 [A000108] 1, 2, 6, 20, 70 [A000984] 50 [A051924]

# COIP(bip) 1, 3, 13, 70, 433 1, 3, 18, 138, 1185 622
# COIP(lin) 1, 3, 13, 68, 399 [A000260] 1, 3, 18, 132, 1069 578
# COFP 1, 3, 11, 45, 197 [A001003] 1, 3, 13, 63, 321 [A001850] 233
# BOEP 1, 2, 4, 8, 16, 32 [A000079] 1, 2, 4, 8, 16, 32 [A000079] 16 [A000079]
# BOIP 1, 3, 9, 27, 81 [A000244] 1, 3, 9, 27, 81 [A000244] 81 [A000244]
# BOFP 1, 3, 9, 27, 81 [A000244] 1, 3, 9, 27, 81 [A000244] 81 [A000244]

Table 11.1: Numerology of Φ-posets in types An, Bn, Cn and Dn for small values
of n. Further values can be found using the given references to [Slo15].

11.3 Some relevant subposets

In this section, we consider certain speci�c families of Φ-posets corresponding to
the vertices, the intervals and the faces in the permutahedron (Section 11.3.1), the
generalized associahedra (Section 11.3.2), and the cube (Section 11.3.3).

https://oeis.org/A001035
https://oeis.org/A000142
https://oeis.org/A000165
https://oeis.org/A002866
https://oeis.org/A007767
https://oeis.org/A000670
https://oeis.org/A080253
https://oeis.org/A080254
https://oeis.org/A000108
https://oeis.org/A000984
https://oeis.org/A051924
https://oeis.org/A000260
https://oeis.org/A001003
https://oeis.org/A001850
https://oeis.org/A000079
https://oeis.org/A000079
https://oeis.org/A000079
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
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11.3.1 Permutahedron

TheW -permutahedron Permp(W ) is the convex hull of the orbit underW of a point p
in the interior of the fundamental chamber of W . It has one vertex w(p) for each
element w ∈ W and its graph is the Cayley graph of the set S of simple re�ections
of W . Moreover, when oriented in the linear direction w◦(p) − p, its graph is the
Hasse diagram of the weak order on W . Recall that the weak order is de�ned
equivalently for any v, w ∈ W by v 4 w if and only if

• `(v) + `(v−1w) = `(w),

• v is a pre�x of w, in other words there exists u ∈ W such that w = vu and
`(w) = `(v) + `(u),

• Inv(v) ⊆ Inv(w), where Inv denotes the inversion set Inv(w) := Φ+ ∩ w(Φ−),

• there is an oriented path from v(p) to w(p) in the graph of the permutahedron
oriented in the linear direction w◦(p)− p.

In the sequel, we will often drop p from the notation Permp(W ) as the combinatorics
of Permp(W ) is independent of p as long as this point is generic. Figure 11.5 represent
the subsets of roots corresponding to elements, intervals and faces of a root system
and summarize the results of this section.

Elements

For an element w ∈ W , we consider the Φ-poset

R (w) :=w(Φ+). (11.13)

We say that R(w) is a weak order element poset and letWOEP(Φ) := {R(w) |w ∈ W}
denote the collection of all such Φ-posets.

Remark 11.3.1. Table 11.1 reports the cardinality of WOEP(Φ) in type An, Bn,
Cn and Dn for small values of n. It is just the order of W , which is known as the
product formula

|WOEP(Φ)| = |W | =
∏

i∈[n]

di, (11.14)

where (d1, . . . , dn) are the degrees of W .

Remark 11.3.2. Geometrically, R(w) is the set of roots of Φ not contained in the
cone of Permp(W ) at the vertex w(p), i.e. R(w) = Φrcone {w′(p)− w(p) |w′ ∈ W}.
See Figure 11.4.

We now characterize the Φ-posets of WOEP(Φ).

Proposition 11.3.3. A Φ-poset R ∈ P(Φ) is in WOEP(Φ) if and only if α ∈ R
or −α ∈ R for all α ∈ Φ.

Proof. This is folklore. See for instance [Bou02, Chap. 6, 1.7, Coro. 1].
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Remark 11.3.4. We have already encountered these Φ-posets in Proposition 11.1.9:
a poset is in WOEP(Φ) if and only if it is its unique extension. In other words, the
maximal extensions of a Φ-poset R are all in WOEP(Φ), and it is thus natural to
consider L(R) := {w ∈ W |R ⊆ R(w)}. For example, in type A, L(R) are the set of
linear extensions of the poset R.

The following statement connects the subposet of the weak order induced by
WOEP(Φ) with the classical weak order on W , and thus justi�es the name in De�-
nition 11.2.1.

Proposition 11.3.5. For w ∈ W , we have Inv(w) = Φ+ ∩ − R (w) and

R(w) =
(
Φ+ r Inv(w)

)
t − Inv(w). (11.15)

In particular, for v, w ∈ W , we have that R(v) 4 R(w) in the weak order onWOEP(Φ)
if and only if v 4 w in the weak order on W .

Proof. The �rst equality is just the de�nition of Inv(w) and the second comes from
the fact that |{α,−α}∩R(w)| = 1, so that R(w)− = Φ−r−R(w)+ = Φ−r− Inv(w).
Finally, v 4 w in the weak order onW if and only if Inv(v) ⊆ Inv(w) or equivalently
Φ+ r Inv(v) ⊇ Φ+ r Inv(w). This shows the equivalence with R(v) 4 R(w).

Remark 11.3.6. In fact we have the equivalences:

R (v) 4 R(w) ⇐⇒ R(v)+ ⊇ R(w)+ ⇐⇒ R(v)− ⊆ R(w)− ⇐⇒ v 4 w. (11.16)

Corollary 11.3.7. The weak order on WOEP(Φ) is a lattice with meet and join

R(v)∧WOEPR(w) = R(v∧Sw) and R(v)∨WOEPR(w) = R(v∨Sw). (11.17)

See Figure 11.5 as an illustration. The following statement connects this lattice
structure on WOEP(Φ) with that on P(Φ).

Proposition 11.3.8. The set WOEP(Φ) induces a sublattice of the weak order
on P(Φ).

Proof. Let R, S ∈ WOEP(Φ) and M = R ∧SC S = (R+ ∪ S+)cl t (R− ∩ S−) so
that Mncd = R∧CS. Assume by means of contradiction that Mncd is not inWOEP(Φ),
and consider α ∈ Φ+ with |h|(α) minimal such that {α,−α} ∩Mncd = ∅.

Since (Mncd)+ = M+ = (R+ ∪ S+)cl, we have α /∈ R+ and α /∈ S+. Consequently,
since R, S ∈ WOEP(Φ), we get −α ∈ R− and −α ∈ S−, so that −α ∈ M−. There-
fore −α ∈ MrMncd, so that there exists X ⊆ M+ such that ΣX − α ∈ Φ r M.
Since M+ = (R+ ∪ S+)cl, we can even assume that X ⊆ R+ ∪ S+. We moreover
choose an inclusion minimal such subset X.

Assume �rst that X = {β}. We have β ∈ R+ ∪ S+, say for instance β ∈ R+.
Since −α ∈ M− = R− ∩ S−, β ∈ R and R is closed, we obtain that β − α ∈ R.
Since β−α /∈ M+ we have β−α ∈ Φ−. As β ∈ Φ+ we have |h|(β − α) < |h|(α). By
minimality of |h|(α), we obtain that α− β ∈ Mncd. We conclude that α− β ∈ Mncd

and β ∈ R+ ⊆ Mncd while α /∈ Mncd, contradicting the closedness of Mncd.
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Assume now that |X| ≥ 2. Since α /∈ M+ = (R+ ∪ S+)cl and X ⊆ R+ ∪ S+, we
obtain that X ∪ {−α} has no vanishing subsums. Therefore, Proposition 11.1.13
ensures that X∪{−α} has at least two strict summable subsets. In particular, there
is Y ( X such that ΣY − α ∈ Φ. By minimality of X, we obtain that ΣY − α ∈ M.
We distinguish two cases:

• If ΣY − α ∈ M+, then ΣX − α /∈ M+ while ΣY − α ∈ M+ and X r Y ⊆ M+

contradicts the closedness of M+.

• If ΣY − α ∈ M−, then |h|(ΣY − α) < |h|(α). By minimality of |h|(α), we
obtain that

� either ΣY − α ∈ Mncd thus ΣX − α = (ΣY − α) +
(
Σ(X r Y)

)
∈ M, a

contradiction.

� or α − ΣY ∈ Mncd which implies α = (α − ΣY) + ΣY ∈ Mncd, which
contradicts our assumption on α.

As we reached a contradiction in all cases, we conclude that Mncd ∈ WOEP(Φ). The
proof is similar for the join.

Intervals

For w,w′ ∈ W with w 4 w′, we denote by [w,w′] := {v ∈ W |w 4 v 4 w′} the weak
order interval between w and w′. We associate to each weak order interval [w,w′]
the Φ-poset

R (w,w′) :=
⋂

v∈[w,w′]

R(v) = R(w) ∩ R(w′) = R(w)− t R(w′)+. (11.18)

Say that R(w,w′) is a weak order interval poset and we denote the collection of all
such Φ-posets by:

WOIP(Φ) := {R(w,w′) |w,w′ ∈ W, w 4 w′} . (11.19)

Table 11.1 reports the cardinality of WOIP(Φ) in type An, Bn, Cn and Dn for small
values of n.

Recall from Remark 11.3.4 that we denote by L(R) := {w ∈ W |R ⊆ R(w)} the
set of maximal extensions of a Φ-poset R.

Lemma 11.3.9. A Φ-poset R ∈ P(Φ) is in WOIP(Φ) if and only if L(R) has a
unique weak order minimum w (resp. maximum w′) that also satis�es R(w)− = R−

(resp. R(w′)+ = R+).

Proof. Remark 11.3.6 implies that R(w,w′) ⊆ R(v) ⇐⇒ R(w)− ⊆ R(v)− and R
(w′)+ ⊆ R(v)+ ⇐⇒ v ∈ [w,w′]. Therefore, L

(
R (w,w′)

)
has a unique weak

order minimum w and a unique weak order maximum w′ and R(w)− = R(w,w′)−

while R(w′)+ = R(w,w′)+.
Conversely, if L(R) has a unique weak order minimum w and a unique weak order

maximum w′ with R(w)− = R− and R(w′)+ = R+, R = R(w)− t R(w′)+ = R(w,w′)
by de�nition.



 Chapter 11 � Poset on sets of roots

Remark 11.3.10. In Lemma 11.3.9, the �nal hypothesis is crucial as it may happen
that R 6= ⋂ E(R) (consider for example R = {α1 + α2, α2} in type B2).

We can now characterize the Φ-posets of WOIP(Φ).

Proposition 11.3.11. A Φ-poset R ∈ P(Φ) is in WOIP(Φ) if and only if α+β ∈ R
implies α ∈ R or β ∈ R for all α, β ∈ Φ− and all α, β ∈ Φ+.

Proof. By Lemma 11.3.9, this boils down to show that the following assertions are
equivalent:

(i) L(R) has a unique weak order minimum w (resp. maximum w′) that moreover
satis�es R(w)− = R− (resp. R(w′)+ = R+),

(ii) α + β ∈ R implies α ∈ R or β ∈ R for all α, β ∈ Φ− (resp. for all α, β ∈ Φ+).

We prove the result for the maximum and α, β ∈ Φ+. The result for the minimum
and α, β ∈ Φ− follows by symmetry.

Assume �rst that (ii) holds. Consider the subset of roots S := R+ ∪(Φ−r−R+).
Note that R ⊆ S (since R is antisymmetric), that S is antisymmetric, and that
T 4 S for any antisymmetric T such that R ⊆ T (as R has been completed with all
possible negative roots to obtain S). We moreover claim that S is closed. Indeed,
consider α, β ∈ S such that α + β ∈ Φ. We distinguish four cases:

• If α ∈ R and β ∈ R, then α + β ∈ R ⊆ S.

• If α /∈ R and β ∈ R, then α ∈ Sr R ⊆ Φ− so that −α ∈ Φ+ r R+. Then,

� if α + β ∈ Φ+, then we have −α ∈ Φ+ r R+ and α + β ∈ Φ+ with
−α + (α + β) = β ∈ R so that Condition (ii) ensures that α + β ∈ R,

� if α + β ∈ Φ−, then −(α + β) /∈ R (as otherwise we would have the con-
tradiction −α = −(α + β) + β ∈ R). Therefore α + β ∈ Φ− r−R+ ⊆ S.

• If α ∈ R and β /∈ R, the argument is symmetric.

• If α /∈ R and β /∈ R, then α, β ∈ S r R ⊆ Φ− and −α,−β ∈ Φ+ r R. By
condition (ii), this implies that −α − β ∈ Φ+ r R. Therefore, we deduce
α + β ∈ Φ− r−R ⊆ S.

We thus obtained in all cases that α + β ∈ S so that S is closed. We conclude
that S is a Φ-poset and that T 4 S for any antisymmetric T such that R ⊆ T. In
particular, S is the unique maximum of the set E(R) of extensions of R. Moreover,
S+ = R+. Using Propositions 11.1.9 and 11.3.3, we obtain that there exist w′ ∈ W
such that S = R(w′). This concludes the proof that (ii) =⇒ (i).

Conversely, assume by means of contradiction that (i) holds but not (ii). Let w′

denote the weak order maximal element of L(R), and let α, β ∈ Φ+ r R be such
that α + β ∈ R. We then distinguish two cases:

• If α ∈ R(v) for all v ∈ L(R), then α ∈ R(w′)+ = R+. Contradiction.
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• Otherwise, there exists v ∈ L(R) such that −α ∈ R(v). Since v 4 w′,
this gives −α ∈ R(w′). Since α + β ∈ R ⊆ R(w′) and R(w′) is closed, we
get β ∈ R(w′)+ = R+. Contradiction.

We now describe the weak order on WOIP(Φ). It corresponds to the Cartesian
product order on intervals of the weak order.

Proposition 11.3.12. For v 4 v′ and w 4 w′, we have R(v, v′) 4 R(w,w′) if and
only if v 4 w and v′ 4 w′.

Proof. From the de�nition of R(w,w′) and Remark 11.3.6, we have

R(v, v′) 4 R(w,w′) ⇐⇒ R(v, v′)+ ⊇ R(w,w′)+ and R(v, v′)− ⊆ R(w,w′)−

⇐⇒ R(v′)+ ⊇ R(w′)+ and R(v)− ⊆ R(w)−

⇐⇒ v′ 4 w′ and v 4 w.

Corollary 11.3.13. The weak order on WOIP(Φ) is a lattice with meet and join

R(v, v′) ∧WOIP R(w,w′) = R(v ∧S w, v′ ∧S w′), (11.20)

R(v, v′) ∨WOIP R(w,w′) = R(v ∨S w, v′ ∨S w′). (11.21)

Remark 11.3.14. It follows from the expressions of ∧WOIP and ∨WOIP thatWOEP(Φ)
also induces a sublattice of WOIP(Φ). See Figure 11.5 as an illustration.

Remark 11.3.15. To conclude on intervals, we however observe that the weak
order on WOIP(Φ) is not a sublattice of the weak order on Φ-posets. For example,
in type A2 we have

{α1, α1 + α2} ∨C {α2, α1 + α2} = {α1 + α2}, (11.22)

while {α1, α1 + α2} ∨WOIP {α2, α1 + α2} = ∅. (11.23)

Faces

The faces of the permutohedron Permp(W ) correspond to the cosets of the stan-
dard parabolic subgroups of W . Recall that a standard parabolic subgroup of W
is a subgroup WI generated by a subset I of the simple re�ections of W . Its
simple roots are the simple roots ∆I of ∆ corresponding to I, its root system
is ΦI = WI(∆I) = Φ ∩ R∆I and its longest element is denoted by w◦,I . A standard
parabolic coset is a coset under the action of a standard parabolic subgroup WI .
Such a standard parabolic coset can be written as xWI where x is its minimal
length coset representative (thus x has no descent in I, see Section 11.3.3). Each
standard parabolic coset xWI (with I ⊆ S disjoint from the descent set Des(x) of x)
corresponds to a face

F(xWI) = x
(
Permp(WI)

)
= Permx(p)

(
xWIx

−1
)
. (11.24)

See Figure 11.4 for an illustration in type A2 and B2.
In [DHP18], A. Dermenjian, C. Hohlweg and V. Pilaud also associated to each

standard parabolic coset xWI the set of roots R(xWI) :=x(Φ−∪Φ+
I ). These Φ-posets

were characterized in [DHP18] as follows.
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Proposition 11.3.16 ([DHP18, Coro. 3.9]). The following assertions are equivalent
for a subset of roots R ∈ R(Φ):

(i) R = R(xWI) for some parabolic coset xWI of W ,

(ii) R = {α ∈ Φ |ψ(α) ≥ 0} for some linear function ψ : V → R,

(iii) R = Φ ∩ cone(R) is convex closed and |R ∩ {α,−α}| ≥ 1 for all α ∈ Φ.

Moreover, they used this de�nition to recover the following order on faces of the
permutahedron, de�ned initially in type A in [Kro+01] and latter for arbitrary �nite
Coxeter groups in [PR06].

Proposition 11.3.17 ([DHP18]). The following assertions are equivalent for two
standard parabolic cosets xWI = [x, xw◦,I ] and yWJ = [y, yw◦,J ] of W :

• x 4 y and xw◦,I 4 yw◦,J ,

• R(xWI)
+ ⊆ R(yWJ)+ and R(xWI)

− ⊇ R(yWJ)−,

• xWI 4 yWJ for the transitive closure 4 of the two cover relations xWI ≺ xWI∪{s}
for s /∈ I ∪Des(x) and xWI ≺ (xw◦,Iw◦,Ir{s})WIr{s} for s ∈ I.

The resulting order on standard parabolic cosets is the facial weak order de�ned
in [Kro+01; PR06; DHP18]. This order extends the weak order on the group W
since xW∅ 4 yW∅ ⇐⇒ x 4 y for any x, y ∈ W . Moreover, it de�nes a lattice on
standard parabolic cosets of W with meet and join

xWI ∧FW yWJ = z∧WK∧ where z∧ = x ∧S y and K∧ = Des
(
z−1
∧ (xw◦,I ∧S yw◦,J)

)
,

xWI ∨FW yWJ = z∨WK∨ where z∨ = xw◦,I ∨S yw◦,J and K∨ = Des
(
z−1
∨ (x ∨S y)

)
.

Note that R(xWI) is not a Φ-poset as it is not antisymmetric when I 6= ∅. Here,
we will therefore associate to xWI the set of roots

R (xWI) := Φr R(xWI) = x(Φ+ r Φ+
I ). (11.25)

Note that R(xWI) coincides with the weak order interval poset R(x, xw◦,I). We say
that R(xWI) is a weak order face poset and we let

WOFP(Φ) := {R(xWI) |xWI standard parabolic coset of W} (11.26)

denote the collection of all such Φ-posets. Table 11.1 reports the cardinality ofWOFP(Φ)
in type An, Bn, Cn and Dn for small values of n.

Remark 11.3.18. Geometrically, R(xWI) is the set of roots of Φ not contained in
the cone of Permp(W ) at the face F(xWI), i.e.

R (xWI) = Φr cone {w′(p)− w(p) |w ∈ xWI , w
′ ∈ W} . (11.27)

See Figure 11.4.

Proposition 11.3.16 yields the following characterization of the Φ-posets inWOFP(Φ).
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Figure 11.4: The sets R(xWI) of the standard parabolic cosets xWI in type A2 (left)
and B2 (right). Note that positive roots point downwards.

Proposition 11.3.19. The following assertions are equivalent for R ∈ R(Φ):

(i) R is a weak order face poset of WOFP(Φ),

(ii) R = {α ∈ Φ |ψ(α) < 0} for some linear function ψ : V → R,

(iii) R = Φ ∩ cone(R) is convex closed and |R ∩ {α,−α}| ≤ 1 for all α ∈ Φ.

Proof. This immediately follows from the characterization of R(xWI) in Proposi-
tion 11.3.16 and the de�nition R(xWI) := Φr R(xWI).

We now observe that the weak order induced by WOFP(Φ) corresponds to the
facial weak order of [PR06; DHP18].

Proposition 11.3.20. For any standard parabolic cosets xWI and yWJ , we have
R(xWI) 4 R(yWJ) in the weak order on WOFP(Φ) if and only if xWI 4 yWJ in
facial weak order.

Proof. By de�nition of R(xWI) and Proposition 11.3.17, we have

R(xWI) 4 R(yWJ) ⇐⇒ R(xWI)
+ ⊇ R(yWJ)+ and R (xWI)

− ⊆ R(yWJ)−

⇐⇒ R(xWI)
+ ⊆ R(yWJ)+ and R(xWI)

− ⊇ R(yWJ)−

⇐⇒ xWI 4 yWJ .

Corollary 11.3.21. The weak order on WOFP(Φ) is a lattice with meet and join

R(xWI) ∧WOFP R(yWJ) = R(xWI ∧FW yWJ) (11.28)

and R (xWI) ∨WOFP R(yWJ) = R(xWI ∨FW yWJ). (11.29)

Remark 11.3.22. To conclude, note that the weak order on WOFP(Φ) is a lattice
but not a sublattice of the weak order on P(Φ), nor on WOIP(Φ). This was already
observed in Section 10.2.1 in type A. See Figure 11.5 as an illustration.
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Figure 11.5: The subsets of roots corresponding to elements (left), intervals (middle)
and faces (right) of type B2.

11.3.2 Generalized associahedra

We now consider Φ-posets corresponding to the vertices, the intervals and the faces
of the generalized associahedra of type Φ. These polytopes provide geometric real-
izations of the type Φ cluster complex, in connection to the type Φ cluster algebra
of S. Fomin and A. Zelevinsky [FZ02; FZ03a]. A �rst realization was constructed by
F. Chapoton, S. Fomin and A. Zelevinsky in [CFZ02] based on the compatibility fan
of [FZ03b; FZ03a]. An alternative realization was constructed later by C. Hohlweg,
C. Lange and H. Thomas in [HLT11] based on the Cambrian fan of N. Reading and
D. Speyer [RS09].

Although the sets of roots that we consider in this section have a strong connec-
tion to these geometric realizations (see Remarks 11.3.24 and 11.3.38), we do not
really need for our purposes the precise de�nition of the geometry of these associ-
ahedra or of these Cambrian fans. We rather need a combinatorial description of
their vertices and faces. The combinatorial model behind these constructions is the
Cambrian lattice on sortable elements as developed by N. Reading [Rea06; Rea07a;
Rea07b], which we brie�y recall now.

Let c be a Coxeter element, i.e. the product of the simple re�ections of W
in an arbitrary order. The c-sorting word of an element w ∈ W is the lexico-
graphically smallest reduced expression for w in the word c∞ := ccccc · · · . We write
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this word as w = cI1 . . . cIk where cI is the subword of c consisting only of the
simple re�ections in I. An element w ∈ W is c-sortable when these subsets are
nested: I1 ⊇ I2 ⊇ · · · ⊇ Ik. An element w ∈ W is c-antisortable when ww◦ is (c−1)-
sortable. See [Rea07a] for details on Coxeter sortable elements and their connections
to other Coxeter-Catalan families.

For an element w ∈ W , we denote by πc↓(w) the maximal c-sortable element
below w in weak order and by π↑c (w) the minimal c-antisortable element above w
in weak order. The projection maps πc↓ and π↑c can also be de�ned inductively,
see [Rea07b]. Here, we only need that these maps are order preserving projections
from W to sortable (resp. antisortable) elements, and that their �bers are intervals
of the weak order of the form [πc↓(w), π↑c (w)]. Therefore, they de�ne a lattice con-
gruence ≡c of the weak order, called the c-Cambrian congruence. The quotient of
the weak order by this congruence ≡c is the c-Cambrian lattice. It is isomorphic to
the sublattice of the weak order induced by c-sortable (or c-antisortable) elements.
In particular, for two c-Cambrian classes X, Y , we have X 4 Y in the c-Cambrian
lattice ⇐⇒ there exists x ∈ X and y ∈ Y such that x 4 y in the weak order on W
⇐⇒ πc↓(X) 4 πc↓(Y ) ⇐⇒ π↑c (X) 4 π↑c (Y ). We denote by X ∧c Y and X ∨c Y the
meet and join of the two c-Cambrian classes X, Y .

Let w◦(c) = q1 . . . qN denote the c-sorting word for the longest element w◦. It
de�nes an order on Φ+ by αq1 <c q1(αq2) <c q1q2(αq3) <c · · · <c q1 . . . qN−1(αqN ). A
subset R of positive roots is called c-aligned if for any α <c β such that α+ β ∈ R,
we have α ∈ R. It is known that w ∈ W is c-sortable if and only if its inversion
set Inv(w) is c-aligned [Rea07b]. We refer to Figure 11.7 for an illustration the
pictures of this section.

Elements

For a c-Cambrian class X, we consider the Φ-poset

R (X) :=
⋂

w∈X

R(w) = R
(
πc↓(X)

)
∩ R

(
π↑c (X)

)
= R

(
πc↓(X)

)− t R
(
π↑c (X)

)+
. (11.30)

By de�nition R(X) coincides with the weak order interval poset R
(
πc↓(X), π↑c (X)

)
.

We say that R(X) is a c-Cambrian order element poset and we denote the collection
of all such Φ-posets by COEP(c) := {R(X) |X c-Cambrian class}.
Remark 11.3.23. Table 11.1 reports the cardinality of COEP(c) in type An, Bn,
Cn and Dn for small values of n. Observe that this cardinality is independent on
the choice of the Coxeter element c, and is the Coxeter-Catalan number (counting
many related objects from clusters of type Φ to non-crossing partitions of W ):

|COEP(c)| = Cat(W ) =
∏

i∈[n]

1 + di
di

, (11.31)

where (d1, . . . , dn) still denote the degrees of W .

Remark 11.3.24. Geometrically, R(X) is the set of roots of Φ not contained in the
cone of the vertex corresponding to X in the generalized associahedron Asso(c) of
C. Hohlweg, C. Lange and H. Thomas in [HLT11]. See Figure 11.6.
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Let us now take a little detour to comment on a conjectured characterization of
these Φ-posets, inspired from a similar characterization in type A proved in [CPP17,
Prop. 60]. Note that it uses the c-Cambrian order interval posets formally de�ned
in the next section and characterized in Proposition 11.3.32. It also requires the
notion of c-snakes. A c-snake in a Φ-poset R is a sequence of roots α1, . . . , αp ∈ R
such that

• either α2i ∈ Φ−, α2i+1 ∈ Φ+ and α1 <c −α2 >c α3 <c −α4 >c . . .

• or α2i ∈ Φ+, α2i+1 ∈ Φ− and −α1 >c α2 <c −α3 >c α4 <c . . .

A c-snake decomposition of a root α in R is a decomposition α =
∑

i∈[p] λiαi,
where λi ∈ N and α1, . . . , αp is a c-snake of R. The following conjectural characteri-
zation of c-Cambrian order element posets was proved in type A in [CPP17, Prop. 60]
and has been checked computationally for small Coxeter types using [dev16].

Conjecture 11.3.25. A Φ-poset R ∈ P(Φ) is in COEP(c) if and only if it is
in COIP(c) (characterized in Proposition 11.3.32) and any root α ∈ Φ admits a
c-snake decomposition in R.

Even without this characterization, we can at least describe the weak order on
these posets.

Proposition 11.3.26. For any two c-Cambrian classes X and Y , we have that
R(X) 4 R(Y ) in the weak order on COEP(c) if and only if X 4 Y in the c-Cambrian
lattice.

Proof. By de�nition, a c-Cambrian class X admits both a minimal element πc↓(X)

and a maximal element π↑c (X). Therefore, R(X) = R
(
πc↓(X), π↑c (X)

)
∈ WOIP(Φ).

Moreover, for two c-Cambrian classes X and Y , Proposition 11.3.12 implies that
R(X) 4 R(Y ) in the weak order on WOIP(Φ) if and only if πc↓(X) 4 πc↓(Y )

and π↑c (X) 4 π↑c (Y ) in weak order on W . But this is equivalent to X 4 Y in
the c-Cambrian lattice as mentioned above.

Remark 11.3.27. In fact, we have the equivalences:

R(X) 4 R(Y ) ⇐⇒ R(X)+ ⊇ R(Y )+ ⇐⇒ R(X)− ⊆ R(Y )− ⇐⇒ X 4 Y.

Corollary 11.3.28. For any Coxeter element c, the weak order on COEP(c) is a
lattice with meet and join

R(X) ∧COEP(c) R(Y ) = R(X ∧c Y ) (11.32)

and R (X) ∨COEP(c) R(Y ) = R(X ∨c Y ). (11.33)

We refer to Figure 11.7 as an illustration. Although it anticipates on the c-
Cambrian order interval posets studied in the next section, let us state the following
result that will be a direct consequence of Corollary 11.3.34 and Proposition 11.3.35.

Proposition 11.3.29. For any Coxeter element c, the set COEP(c) induces a sub-
lattice of the weak order on COIP(c) and thus also a sublattice of the weak order
on WOIP(Φ).
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We conclude our discussion on COEP(c) with one more conjecture, which was
proved in typeA in [CPP17, Coro. 88] and checked computationally for small Coxeter
types using [dev16]. Note that there is little hope to attack this conjecture before
proving either Conjecture 11.3.25 or Conjecture 11.3.36.

Conjecture 11.3.30. For any Coxeter element c, the set COEP(c) induces a sub-
lattice of the weak order on P(Φ) and of the weak order on WOIP(Φ).

Intervals

For two c-Cambrian classes X,X ′ with X 4 X ′ in the c-Cambrian order, we denote
by [X,X ′] := {Y c-Cambrian class |X 4 Y 4 X ′} the c-Cambrian order interval be-
tween X and X ′. We associate to each c-Cambrian order interval [X,X ′] the Φ-poset

R (X,X ′) :=
⋂

Y ∈[X,X′]

R(Y ) = R(X) ∩ R(X ′) = R(X)− ∪ R(X ′)+. (11.34)

By de�nition R(X,X ′) coincides with the weak order interval poset R
(
πc↓(X), π↑c (X

′)
)
.

We say that R(X,X ′) is a c-Cambrian order interval poset and we denote the col-
lection of all such Φ-posets by

COIP(c) := {R(X,X ′) |X,X ′ c-Cambrian classes, X 4 X ′} . (11.35)

Remark 11.3.31. Table 11.1 reports the cardinality of COIP(c) in type An, Bn,
Cn and Dn for small values of n and di�erent choices of the Coxeter element c. We
have denoted by bip the bipartite Coxeter element, and by lin the linear one (with
the special vertex �rst in type B/C and the two special vertices �rst in type D).
Note that in contrast to COEP(c), the cardinality of COIP(c) depends on the choice
of the Coxeter element c (this comes from the fact that the c-Cambrian lattices for
di�erent choices of Coxeter element c are not isomorphic and have distinct intervals,
although they have the same number of elements).

We now characterize the Φ-posets in COIP(c).

Proposition 11.3.32. A Φ-poset R ∈ P(Φ) is in COIP(c) if and only if α+ β ∈ R
and α <c β implies β ∈ R for all α, β ∈ Φ+ (resp. α ∈ R for all α, β ∈ Φ−).

Proof. Let R ∈ P(Φ). By de�nition, R is in COIP(c) if and only if R = R(w,w′) is in
WOIP(Φ) where w is c-sortable while w′ is c-antisortable. However, w is c-sortable
if and only if Inv(w) = Φ+ ∩ −R(w) = −R(w)− = −R(w,w′)− = −R− is c-aligned,
i.e. if and only if α + β ∈ R− =⇒ α ∈ R− for any α <c β. Similarly, w′ is
c-antisortable if and only if α + β ∈ R+ =⇒ β ∈ R+ for any α <c β.

Proposition 11.3.33. For two c-Cambrian intervals X 4 X ′ and Y 4 Y ′, we
have R(X,X ′) 4 R(Y, Y ′) in the weak order on COIP(c) if and only if X 4 Y
and X ′ 4 Y ′ in the c-Cambrian order.

Proof. By de�nition of R(X,X ′) and Remark 11.3.27, we obtain

R(X,X ′) 4 R(Y, Y ′) ⇐⇒ R(X,X ′)+ ⊇ R(Y, Y ′)+ and R(X,X ′)− ⊆ R(Y, Y ′)−

⇐⇒ R(X ′)+ ⊇ R(Y ′)+ and R(X)− ⊆ R(Y )−
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Corollary 11.3.34. For any Coxeter element c, the weak order on COIP(c) is a
lattice with meet and join

R(X,X ′) ∧COIP(c) R(Y, Y ′) = R(X ∧c Y,X ′ ∧c Y ′) (11.36)

and R (X,X ′) ∨COIP(c) R(Y, Y ′) = R(X ∨c Y,X ′ ∨c Y ′). (11.37)

We refer to Figure 11.7 as an illustration. The following statement connects this
lattice structure on COIP(c) with that on WOIP(Φ).

Proposition 11.3.35. For any Coxeter element c, the set COIP(c) induces a sub-
lattice of the weak order on WOIP(Φ).

Proof. Consider two c-Cambrian intervalsX 4 X ′ and Y 4 Y ′. By Corollary 11.3.13,
we have

R(X,X ′) ∧WOIP R(Y, Y ′) = R
(
πc↓(X), π↑c (X

′)
)
∧WOIP R

(
πc↓(Y ), π↑c (Y

′)
)

= R
(
πc↓(X) ∧S πc↓(Y ), πc↓(X

′) ∧S πc↓(Y ′)
)

= R
(
πc↓(X ∧c Y ), πc↓(X

′ ∧c Y ′)
)
,

where the last equality follows from the fact that c-sortable elements (resp. c-
antisortable elements) induce a sublattice of the weak order.

The following conjecture indicates that COIP(c) behaves much better thanWOIP(Φ)
as subposet of P(Φ). This conjecture unfortunately remains open for now but was
proved in type A in [CPP17, Coro. 82] and veri�ed for small Coxeter types us-
ing [dev16]. Note that it is not implied by Proposition 11.3.35 since WOIP(Φ) is not
a sublattice of P(Φ). Observe also that it would imply Conjecture 11.3.30.

Conjecture 11.3.36. For any Coxeter element c, the set COIP(c) induces a sublat-
tice of the weak order on P(Φ).

Faces

To remain at a combinatorial level and avoid any geometric description (see also
Remark 11.3.38), we consider a combinatorial model for the faces of the associa-
hedron Asso(c) that rely on results of [DHP18, Sec. 4]. The c-Cambrian congru-
ence ≡c extends to the c-Cambrian facial congruence on all faces of the permu-
tahedron Perm(W ) de�ned by xWI ≡c yWJ ⇐⇒ x ≡c y and xw◦,I ≡c yw◦,J . This
relation is a lattice congruence of the facial weak order on faces of the permuta-
hedron Perm(W ) [DHP18, Prop. 4.12] and we denote by Πc

↓ and Π↑c its down and
up projections. Moreover, the c-Cambrian facial congruence classes precisely corre-
spond to the faces of the associahedron Asso(c) of [HLT11].

For a c-Cambrian facial congruence class F , we consider the Φ-poset

R (F ) :=
⋂

xWI∈F

R(xWI) = R
(
Πc
↓(F )

)− ∩ R
(
Π↑c(F )

)+
. (11.38)

Note that if Πc
↓(F ) = xWI and Π↑c(F ) = yWJ , then R(F ) coincides with the weak

order interval poset R(x, yw◦,J). We say that R(F ) is a c-Cambrian order face poset
and denote the set of such Φ-posets by

COFP(c) := {R(F ) |F c-Cambrian facial congruence class} . (11.39)
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Figure 11.6: The sets R(F ) for the faces F of the c-associahedron in type A2 (left)
and B2 (right). Note that positive roots point downwards.

Remark 11.3.37. Table 11.1 reports the cardinality of COFP(c) in type An, Bn,
Cn and Dn for small values of n. Note that this cardinality is again independent
of the choice of the Coxeter element c (it is the number of faces in the general-
ized associahedron, i.e. the number of partial clusters in the corresponding cluster
algebra).

Remark 11.3.38. Geometrically, R(F ) is the set of roots of Φ not contained in the
cone of the face F in the generalized associahedron Asso(c) of C. Hohlweg, C. Lange
and H. Thomas in [HLT11]. See Figure 11.6.

It would be interesting to have a characterization of the Φ-posets in COFP(c)
similar to that given in [CPP17] in type A (see Proposition 10.2.16 for the Tamari
faces and [CPP17, Prop. 63] for the type A Cambrian faces in general).

Here, we just connect the weak order on COFP(c) with the facial weak order
on the associahedron Asso(c) considered in [DHP18, Sec. 4.7.2]. This order is the
quotient of the facial weak order on the faces of the permutahedron Perm(W ) by the
c-Cambrian facial congruence ≡c.
Proposition 11.3.39. For any two c-Cambrian facial congruence classes F and G
we have R(F ) 4 R(G) in the weak order on COFP(c) if and only if F 4 G in the
c-Cambrian facial lattice.

Proof. This is immediate from the de�nitions:

R(F ) 4 R(G) ⇐⇒ R
(
Π↑c(F )

)+ ⊇ R
(
Π↑c(G)

)+
and R

(
Πc
↓(F )

)− ⊆ R
(
Πc
↓(G)

)−
⇐⇒ Π↑c(F ) 4 Π↑c(G) and Πc

↓(F ) 4 Πc
↓(G)

⇐⇒ F 4 G.

Corollary 11.3.40. For any Coxeter element c, the weak order on COFP(c) is a
lattice.

Remark 11.3.41. To conclude, note that the weak order on COFP(c) is a lattice
but not a sublattice of the weak order on P(Φ), nor on WOIP(Φ), nor on COIP(c).
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This was already observed in Section 10.2.2 in type A. For example, consider the
example of Remark 11.3.22 for the Coxeter element s1s2 in type A2.

Figure 11.7: The subsets of roots corresponding to cambrian elements (�rst on the
left) and intervals (second on the left) of type B2 with coxeter element s1s2, and
cambrian elements (second on the right) and intervals (�rst on the right) of type G2

with coxeter element s1s2, .

11.3.3 Cube

To conclude this chapter, we consider Φ-posets corresponding to the vertices, the
intervals and the faces of the cube (see Remarks 11.3.42 and 11.3.48), corresponding
to the descent congruence on W . We represent the results in Figure 11.9. Recall
that a (left) descent of w ∈ W is a simple root α ∈ ∆ such that sαw 4 w, or
equivalently α ∈ Inv(w). The descent set of w is Des(w) := Inv(w)∩∆. The descent
class of w is the set of elements of W that have precisely the same descent set as w.
Note that descent classes correspond to subsets of ∆: for A ⊆ ∆, we denote by ZA
the descent class of elements of W with A as descent set. These classes de�ne the
descent congruence on W , whose down and up projections we denote by πd↓ and π

↑
d.

Elements

For a subset A ⊆ ∆ corresponding to the descent class ZA, we consider the Φ-poset

R(A) :=
(
− A t (∆r A)

)cl
= Φ ∩ N

(
− A t (∆r A)

)
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=
⋂

w∈ZA

R(w) = R
(
πd↓(ZA)

)
∩ R

(
π↑d(ZA)

)
= R

(
πd↓(ZA)

)− t R
(
π↑d(ZA)

)+
.

By de�nition R(A) coincides with the weak order interval poset R
(
πc↓(ZA), π↑c (ZA)

)
.

We say that R(A) is a boolean order element poset and we denote the collection
of all such Φ-posets by BOEP(Φ) := {R(A) |A ⊆ ∆}. Note that there are 2n many
Φ-posets in BOEP(Φ), see Table 11.1.

Remark 11.3.42. Geometrically, R(A) is the set of roots of Φ not contained in the
cone of the vertex corresponding to A in the parallelepiped generated by the simple
roots ∆. See Figure 11.8.

These Φ-posets are characterized in the next statement. Its proof is delayed to
Section 11.3.3 as it requires the characterization of the boolean order interval posets.

Proposition 11.3.43. A Φ-poset R ∈ P(Φ) is in BOEP(Φ) if and only if

• α + β ∈ R =⇒ α ∈ R and β ∈ R for all α, β ∈ Φ+ and all α, β ∈ Φ−,

• α ∈ R or −α ∈ R for any simple root α ∈ ∆.

The following statement characterizes the weak order induced by BOEP(Φ).

Proposition 11.3.44. For any subsets A,B ⊆ ∆, we have R(A) 4 R(B) in the
weak order on BOEP(Φ) if and only if A ⊆ B in boolean order.

Proof. From the de�nition R(A) = Φ ∩ N
(
− A t (∆r A)

)
, we obtain that

R(A) 4 R(B) ⇐⇒ R(A)+ ⊇ R(B)+ and R(A)− ⊆ R(B)−

⇐⇒ ∆r A ⊇ ∆rB and A ⊆ B. (11.40)

Remark 11.3.45. In fact we have the equivalences:

R(A) 4 R(B) ⇐⇒ R(A)+ ⊇ R(B)+ ⇐⇒ R(A)− ⊆ R(B)− ⇐⇒ A ⊆ B.

Corollary 11.3.46. The weak order on BOEP(Φ) is a lattice with meet and join

R(A) ∧BOEP R(B) = R(A ∩B) (11.41)

and R (A) ∨BOEP R(B) = R(A ∪B). (11.42)

This is illustrated in Figure 11.9. Although it anticipates on the boolean order
interval posets studied in the next section, let us state the following result that will
be a direct consequence of Corollary 11.3.51 and Proposition 11.3.52.

Proposition 11.3.47. The set BOEP(Φ) induces a sublattice of the weak order
on BOIP(Φ) and therefore on the weak orders on P(Φ), on WOIP(Φ) and on COIP(c)
for all Coxeter element c.
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Figure 11.8: The sets R(F ) for the faces F of the cube in type A2 (left) and B2

(right). Note that positive roots point downwards.

Intervals and Faces

We �nally consider intervals in the boolean order, or equivalently faces of the cube
(see Remark 11.3.48). For two subsets A ⊆ A′ of ∆, we consider

R (A,A′) := =
⋂

A⊆B⊆A′
R(B) = R(A) ∩ R(A′) = R(A)− t R(A′)+. (11.43)

By de�nition R(A,A′) coincides with the weak order interval poset R
(
πc↓(ZA), π↑c (ZA′)

)
.

Observe also that BOIP(Φ) ⊆ COIP(c) for any Coxeter element c since the descent
congruence coarsens the c-Cambrian congruence. We say that R(A,A′) is a boolean
order interval poset and we denote the set of such Φ-posets by

BOIP(Φ) := {R(A,A′) |A ⊆ A′ ⊆ ∆} . (11.44)

Remark 11.3.48. Geometrically, R(A,A′) is the set of roots of Φ not contained in
the cone of the face corresponding to A ⊆ A′ in the parallelepiped generated by the
simple roots ∆. See Figure 11.8.

These Φ-posets are characterized as follows.

Proposition 11.3.49. For a Φ-poset R ∈ P(Φ) we have:

R ∈ BOIP(Φ) ⇐⇒ ∀α, β ∈ Φ+ and ∀α, β ∈ Φ−, (α + β ∈ R =⇒ α, β ∈ R).

Proof. Consider �rst R(A,A′) ∈ BOIP(Φ) and α + β ∈ R(A,A′) with α, β ∈ Φ−.
For γ ∈ ∆, denote by [α : γ] the coe�cient of γ in the decomposition of α on the
simple root basis. If [α : γ] 6= 0, then we have [α + β : γ] 6= 0 which implies
that γ ∈ A since α + β ∈ R(A,A′)− = R(A)− ⊆ N(−A). We therefore obtain that
α ∈ Φ∩N(−A) = R(A)− ⊆ R(A,A′). By symmetry, we conclude that α ∈ R(A,A′)
and β ∈ R(A,A′) for any α, β ∈ Φ− such that α+β ∈ R(A,A′). The proof is similar
when α, β ∈ Φ+.

Conversely, consider R ∈ P(Φ) such that α + β ∈ R =⇒ α ∈ R and β ∈ R for
all α, β ∈ Φ+ and all α, β ∈ Φ−. De�ne A := − (R ∩ −∆) and A′ := Φ r (R ∩ ∆).
We claim that R = R(A,A′), i.e. that R− = R(A)− and R+ = R(A′)+. We prove
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the latter, as the former would be similar. Observe �rst that ∆ r A′ ⊆ R, so that
R(A′)+ = Φ ∩ N(∆r A′) ⊆ R since R is closed. Conversely, we prove by induction
on |γ| that any γ ∈ R+ belongs to R(A′)+. Consider γ ∈ R+, and let X be the
multiset of simple roots such that γ = ΣX. By Theorem 11.1.12, there exists α ∈ X
such that β = Σ(Xr {α}) ∈ Φ. Since α+β = γ ∈ R, we get that α ∈ R and β ∈ R.
Therefore, we have α ∈ ∆ ∩ R = Φr A′ ⊆ R(A′)+ and β ∈ R(A′)+ (by induction
hypothesis). Since R(A′)+ is closed, this shows γ = α + β ∈ R(A′)+.

We are now in position to provide the proof of Proposition 11.3.43 postponed in
Section 11.3.3.

Proof of Proposition 11.3.43. Observe �rst that for A ⊆ ∆, the boolean order el-
ement poset R(A) satis�es (i) by Proposition 11.3.49 and (ii) since α ∈ R(A)
if α ∈ ∆r A and −α ∈ R(A) if α ∈ A.

Conversely, consider a Φ-poset R satisfying (i) and (ii). The proof of Proposi-
tion 11.3.49 ensures that R = R(A,A′) where A := −(R∩−∆) and A′ := Φr(R∩∆).
Condition (ii) ensures that A = A′ so that R = R(A,A) = R(A) ∈ BOEP(Φ).

The following statement characterizes the weak order induced by BOIP(Φ).

Proposition 11.3.50. For two boolean intervals A ⊆ A′ and B ⊆ B′, we have
R(A,A′) 4 R(B,B′) in the weak order on BOIP(Φ) if and only if A ⊆ B and A′ ⊆ B′

in boolean order.

Proof. Using Remark 11.3.45, we obtain that

R(A,A′) 4 R(B,B′) ⇐⇒ R(A,A′)+ ⊇ R(B,B′)+ and R(A,A′)− ⊆ R(B,B′)−

⇐⇒ R(A′)+ ⊇ R(B′)+ and R(A)− ⊆ R(B)−

⇐⇒ ∆r A′ ⊇ ∆rB′ and A ⊆ B
⇐⇒ A′ ⊆ B′ and A ⊆ B.

Corollary 11.3.51. The weak order on BOIP(Φ) is a lattice with meet and join

R(A,A′) ∧BOIP R(B,B′) = R(A ∩B,A′ ∩B′) (11.45)

and R (A,A′) ∨BOIP R(B,B′) = R(A ∪B,A′ ∪B′). (11.46)

This is illustrated in Figure 11.9. We conclude with a connection between the
lattice structure of the weak orders on BOIP(Φ) with that on P(Φ), WOIP(Φ)
and COIP(c).

Proposition 11.3.52. The set BOIP(Φ) induces a sublattice of the weak order
on P(Φ), on WOIP(Φ) and on COIP(c) for all Coxeter element c.

Proof. Let R = R(A,A′) and S = R(B,B′) be two boolean order interval posets,
and consider M = R ∧SC S. Observe that

M− = R− ∩ S− = −Acl ∩ −Bcl = −(A ∩B)cl

and M+ = (R+ ∪ S+)cl =
(
(∆r A′)cl ∪ (∆rB′)cl

)cl
=
(
∆r (A′ ∩B′)

)cl
.

In other words, we obtain that M = R ∧BOIP S is already in BOIP(Φ), and conse-
quently

R ∧CS = Mncd = M = R ∧BOIP S ∈ BOIP(Φ). (11.47)
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As BOIP(Φ) ⊆ COIP(c) ⊆ WOIP(Φ) ⊆ P(Φ), we have

R ∧BOIPS 4 R ∧COIP(c) S 4 R ∧WOIP S 4 R ∧BOIP S (11.48)

so that all these meets coincide. The proof is similar for the join.

Figure 11.9: The subsets of roots corresponding to booleand elements (left) and
intervals/faces (right) of type G2.
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Titre : Représentations de Monoïdes et Structures de Treillis en Combinatoire des groupes de Weyl

Mots-clés : Informatique fondamentale; Combinatoire algébrique et géométrique; Algorithmique; Représentations de
groupe et des monoïdes; Combinatoire des permutations; des arbres et des tableaux; Théorie des polytopes.

Résumé : La combinatoire algébrique est le champ de recherche qui utilise des méthodes combinatoires et des algorithmes
pour étudier les problèmes algébriques, et applique ensuite des outils algébriques à ces problèmes combinatoires. L'un
des thèmes centraux de la combinatoire algébrique est l'étude des permutations car elles peuvent être interprétées de
bien des manières (en tant que bijections, matrices de permutations, mais aussi mots sur des entiers, ordre totaux sur
des entiers, sommets du permutaèdre...). Cette riche diversité de perspectives conduit alors aux généralisations suivantes
du groupe symétrique. Sur le plan géométrique, le groupe symétrique engendré par les transpositions élémentaires est
l'exemple canonique des groupes de ré�exions �nis, également appelés groupes de Coxeter. Sur le plan monoïdal, ces
même transpositions élémentaires deviennent les opérateurs du tri par bulles et engendrent le monoïde de 0-Hecke, dont
l'algèbre est la spécialisation à q = 0 de la q-déformation du groupe symétrique introduite par Iwahori. Cette thèse se
consacre à deux autres généralisations des permutations.
Dans la première partie de cette thèse, nous nous concentrons sur les matrices de permutations partielles, en d'autres
termes les placements de tours ne s'attaquant pas deux à deux sur un échiquier carré. Ces placements de tours engendrent
le monoïde de placements de tours, une généralisation du groupe symétrique. Dans cette thèse nous introduisons et
étudions le 0-monoïde de placements de tours comme une généralisation du monoïde de 0-Hecke. Son algèbre est la
dégénérescence à q = 0 de la q-déformation du monoïde de placements de tours introduite par Solomon. On étudie par la
suite les propriétés monoïdales fondamentales du 0-monoïde de placements de tours (ordres de Green, propriété de treillis
du R-ordre, J -trivialité) ce qui nous permet de décrire sa théorie des représentations (modules simples et projectifs,
projectivité sur le monoïde de 0-Hecke, restriction et induction le long d'une fonction d'inclusion).
Les monoïdes de placements de tours sont en fait l'instance en type A de la famille des monoïdes de Renner, dé�nis
comme les complétés des groupes de Weyl (c'est-à-dire les groupes de Coxeter cristallographiques) pour la topologie de
Zariski. Dès lors, dans la seconde partie de la thèse nous étendons nos résultats du type A a�n de dé�nir les monoïdes de
0-Renner en type B et D et d'en donner une présentation. Ceci nous conduit également à une présentation des monoïdes
de Renner en type B et D, corrigeant ainsi une présentation erronée se trouvant dans la littérature depuis une dizaine
d'années. Par la suite, nous étudions comme en type A les propriétés monoïdales de ces nouveaux monoïdes de 0-Renner
de type B et D : ils restent J -triviaux, mais leur R-ordre n'est plus un treillis. Cela ne nous empêche pas d'étudier leur
théorie des représentations, ainsi que la restriction des modules projectifs sur le monoïde de 0-Hecke qui leur est associé.
En�n, la dernière partie de la thèse traite de di�érentes généralisations des permutations. Dans une récente séries
d'articles, Châtel, Pilaud et Pons revisitent la combinatoire algébrique des permutations (ordre faible, algèbre de Hopf
de Malvenuto-Reutenauer) en terme de combinatoire sur les ordres partiels sur les entiers. Cette perspective englobe
également la combinatoire des quotients de l'ordre faible tels les arbres binaires, les séquences binaires, et de façon plus
générale les récents permutarbres de Pilaud et Pons. Nous généralisons alors l'ordre faibles aux éléments des groupes de
Weyl. Ceci nous conduit à décrire un ordre sur les sommets des permutaèdres, associaèdres généralisés et cubes dans le
même cadre uni�é. Ces résultats se basent sur de subtiles propriétés des sommes de racines dans les groupes de Weyl qui
s'avèrent ne pas fonctionner pour les groupes de Coxeter qui ne sont pas cristallographiques.

Title: Representation of Monoids and Lattice Structures in the Combinatorics of Weyl groups

Keywords: Theoretical computer science; Algebraic and geometric combinatorics; Algorithm; Representation of groups
and monoids; Combinatorics of permutations, trees and tableaux; Polytope theory.

Abstract: Algebraic combinatorics is the research �eld that uses combinatorial methods and algorithms to study algebraic
computation, and applies algebraic tools to combinatorial problems. One of the central topics of algebraic combinatorics
is the study of permutations, interpreted in many di�erent ways (as bijections, permutation matrices, words over integers,
total orders on integers, vertices of the permutahedron...). This rich diversity of perspectives leads to the following gener-
alizations of the symmetric group. On the geometric side, the symmetric group generated by simple transpositions is the
canonical example of �nite re�ection groups, also called Coxeter groups. On the monoidal side, the simple transpositions
become bubble sort operators that generate the 0-Hecke monoid, whose algebra is the specialization at q = 0 of Iwahori's
q-deformation of the symmetric group. This thesis deals with two further generalizations of permutations.
In the �rst part of this thesis, we �rst focus on partial permutations matrices, that is placements of pairwise non attacking
rooks on a n by n chessboard, simply called rooks. Rooks generate the rook monoid, a generalization of the symmetric
group. In this thesis we introduce and study the 0-Rook monoid, a generalization of the 0-Hecke monoid. Its algebra is a
proper degeneracy at q = 0 of the q-deformed rook monoid of Solomon. We study fundamental monoidal properties of the
0-rook monoid (Green orders, lattice property of the R-order, J -triviality) which allow us to describe its representation
theory (simple and projective modules, projectivity on the 0-Hecke monoid, restriction and induction along an inclusion
map).
Rook monoids are actually type A instances of the family of Renner monoids, which are completions of the Weyl groups
(crystallographic Coxeter groups) for Zariski's topology. In the second part of this thesis we extend our type A results
to de�ne and give a presentation of 0-Renner monoids in type B and D. This also leads to a presentation of the Renner
monoids of type B and D, correcting a misleading presentation that appeared earlier in the litterature. As in type A we
study the monoidal properties of the 0-Renner monoids of type B and D : they are still J -trivial but their R-order are
not lattices anymore. We study nonetheless their representation theory and the restriction of projective modules over the
corresponding 0-Hecke monoids.
The third part of this thesis deals with di�erent generalizations of permutations. In a recent series of papers, Châtel,
Pilaud and Pons revisit the algebraic combinatorics of permutations (weak order, Malvenuto-Reutenauer Hopf algebra)
in terms of the combinatorics of integer posets. This perspective encompasses as well the combinatorics of quotients of
the weak order such as binary trees, binary sequences, and more generally the recent permutrees of Pilaud and Pons.
We generalize the weak order on the elements of the Weyl groups. This enables us to describe the order on vertices of
the permutahedra, generalized associahedra and cubes in the same uni�ed context. These results are based on subtle
properties of sums of roots in Weyl groups, and actually fail for non-crystallographic Coxeter groups.
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