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R - The set of real numbers
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Rn - The Euclidean space of dimension n

Ch,n = C ([t0 − h, t0] ,Rn) - The space of continuous functions φ : [t0 − h, t0]→ Rn, h > 0
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[∫ b

a
|φ(θ)| dθ

] 1
p

‖φ‖C - The continuous norm ‖φ‖C = sup
a≤θ≤b

‖φ(θ)‖, where φ ∈ C [a, b]

Vectors and Matrices
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xT - Transpose vector of x
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Chapter 1

General Introduction

Introduction

Steel industry is an advanced manufacturing sector. It includes several complex
processes that transform the raw materials (iron, magnesium, aluminum, copper . . .
etc, or mix of them) into steel products (coils, slabs, beams . . . etc) ready to be used in
other industries (automobiles, trains, rails, food canning, construction . . . etc). These
products must meet international industrial standards in terms of quality, dimensions,
environmental and human health restrictions. During the industrial revolution at the
end of the 19th century and due to the continuous request on metal products, many
steelmakers were founded to supply various industries with their raw metallic pro-
ducts. The competition among those makers pushed them to look for all possible ways
to improve their productivity, product quality and manufacturing costs. Also for the
aim of widening their foundations, high level innovations and research centers are es-
tablished to look out for new technology solutions that facilitate and enhance their
manufacturing. As the demands for steel products with strict specifications keep gro-
wing, marketing and production challenges among steel companies keep growing as
well to satisfy their customers. Thus, new technologies are needed to attain clients’
product standards. One of these technologies are the multivariable control strategies
of steelmaking processes. Therefore, the need to enhance control systems is becoming
an urgent innovation aim to maintain a high level of productivity.

One of these processes is the cold rolling of steel, which aims to produce steel strips
of desired dimensional and mechanical properties. In Tandem Cold Mill (TCM), steel
strips are rolled as shown in Figure 1.1 at normal ambient temperatures to reduce their
thickness and produce hardened thin steel strips. The final product is obtained after
successive rolling steps applied to the strip. In the last few years, the process has under-
gone a significant qualitative development to satisfy product mechanical constraints.
However the new industrial specifications imposed by steel clients added to the neces-
sity to achieve high production rate, require a more advanced tandem process control
methodology.

In the framework of developing new advanced techniques for its factories, Arce-
lorMittal the world leader steel making company, is sharing yearly many projects with

3



Chapter 1. General Introduction

its collaborators to obtain new high tech solutions. The Measurement and Control De-
partment (Process Center) in the largest center of ArcelorMittal Global Research and
Development based in Maizières-lès-Mètz with the collaboration with the Research
Center for Automatic Control of Nancy (CRAN) - University of Lorraine, have propo-
sed the present thesis in a frame of the knowledge building project. The present thesis
treats the problem of establishing new advanced control strategies for cold rolling of
steel that respond to the future production specifications.

FIGURE 1.1 – Passage of the strip through rolling cylinders.

Motivations of this Research

Nowadays, competitivity among steelmaking companies continuously motivates
them to innovate and develop new technologies in the sake of improving their pro-
duction lines and reducing the production costs. In the field of cold rolling, several
motivations guide the manufacturing desire to look progressively for enhanced solu-
tions. Let us highlight some of these motivations
• Steel clients nowadays look forward to obtain large quantities of steel products

within determined time duration. This pushes steel industry to accelerate their
productivity plans to finish fabrication in time. This increase in productivity rate
must conserve high quality products, putting in mind that product quality may
also need to be improved. However productivity rate is affected by the current
control strategy, where strong intolerable process interactions are amplified if
tandem line speed is increased under the actual PID loops.
• Steel products such as coils, beams, slabs, foils, . . .etc, are not oriented for people

usage. They are dedicated for other industries and construction. The various
usage of steel products as a raw material for other industries (air planes, marine
ships, automotive, towers construction, military . . .etc.) require special product
forms and dimensions. In cold rolling of steel, extremely thin hard coils are re-
quested by clients for the purpose of tradeoff between their products’ weight,
durability and cost. Speaking about thin steel strip means that strips must have

4



a thickness around 0.15 mm. Such thickness may lead to strip rupture if it is not
well treated.
• During steel cold rolling, lubricants are injected during the passage of the strip

between rolling cylinders. This reduces the friction and high temperature re-
sulting from this contact, the aim here is to protect strip surface from severe
deformations. However this can generate perturbations in the system following
the quantity of injected lubricant, both excessive and insufficient lubricant injec-
tion are harmful. Industry is aiming to introduce flexible lubrication instead of
constant lubrication, to economize the lubricant cost and also to apply sufficient
lubrication strategy.
• Energy consumption has recently become a significant issue, where companies

try to optimize this consumption to save energy for environmental cause and
reduce production cost for investment cause.
• An important point is that companies try to look for low cost solutions. A basic

modification in the fabrication line is not usually the favorable solution, since
it is an expensive solution. Industries in cold rolling avoids tandem structural
changes as long as they are not essential. Software modifications are more pre-
ferable than machine or hardware changes.

Thesis Objectives

The main objective of this thesis is the synthesis of multivariable control for tandem
cold mill. Such study includes several sub-objectives that are to be treated to reach our
main goal. The present dissertation includes the following objectives as well :
• Establish a multivariable state space model of a typical 5 stand tandem mill.

This model must be based on the functional analysis of the process and how it
is operating nowadays. The obtained model is to be linearized for control design
purposes.
• Propose a suitable multivariable control synthesis problem adapted to the pro-

cess’ desired performance and assuming that all variables are measured.
• Extend the established multivariable control strategy for the case of absence of

several measurements in the tandem process.

Organization of this thesis

The dissertation began already with a general introduction in this chapter about
the process of steel cold rolling which is a vital stage that produces thin hard flat steel
layers. A brief illustration about the cold tandem mill was presented starting from how
it is fed by steel coils till the end where the product is either enrolled to be shipped for
the later production stages, or continue to be treated in the next stages directly. This
thesis considers the application of multivariable control to the tandem cold rolling mill,
so the other chapters are organized as follows :

5



Chapter 1. General Introduction

Chapter 2
Cold Rolling of Steel : Overview about Process Modeling and Control : This

chapter presents a short rich overview about the available literature regarding the
modeling and control of the cold rolling process. Talking about this process, we can’t
avoid talking about the physical modeling of the rolling force and torque. Many litera-
ture [Rob78, Bry73] introduced this topic to be the starting point before moving to the
modeling of the whole chain. Different models of those physical quantities are presen-
ted and detailed explaining the deformation of the metal strip at the level of roll bite,
based on the contribution of [Oro43] and the later approximation models. After that a
summarized part introducing the different tandem modeling and control is provided.
Modeling of the chain includes the modeling of the different devices (motors, actua-
tors), interstand dynamics and perturbations available in the system. A large part of
these studies have used the state space modeling for the tandem process, where each
one differed from the other according to the adapted hypotheses. Some of those multi-
variable models are non-linear, which are linearized to obtain the aimed linear model
to be used for the control objective. Various control strategies are mentioned showing
the evolution of this vital sector in the rolling process and how it is improved during
the last years.

Chapter 3

Mathematical Preliminaries : The aim of synthesis of multivariable control for such
complex process added to its mathematical modeling, necessitates the usage of seve-
ral mathematical theorems, definitions, lemmas . . . etc. This bench of mathematical
preliminaries used for the modeling and control of this process are presented in this
chapter, briefly and arbitrarily for general cases. In this chapter, the classical Linear
Quadratic problem is presented due to its importance in the optimal control synthe-
sis based on minimizing a quadratic cost function. Also notions about stability in the
sense of Lyapunov are introduced therein. Moreover, theorems related to the stability
and stabilization of time delay systems, descriptor systems and time delay descriptor
systems are provided.

Chapter 4

Tandem Cold Mill : Model and Current Control Strategy : The modeling of the
tandem chain is a basic step toward the synthesis of multivariable control. This chap-
ter is concerned with the mathematical multivariable model development, where the
tandem chain is presented in the form of state space. The homogeneity between mill
stands reduces the difficulty to model such a large size process. Modeling an arbitrary
stand in the tandem mill will lead us to the overall model, through the cascaded re-
petition of the stand model. Each stand contains a number of physical dynamics that
govern certain physical laws. Some of these laws are differential and others are alge-
braic, with some of them being strongly non-linear. The transmission of the strip from a
stand to another leads to the presence of variable time delays. The final tandem model
is an algebraic-differential time delay non-linear system. For the purpose of multiva-
riable control synthesis, the model is linearized around a nominal point. The nominal
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point is determined depending on the product’s mechanical and dimensional proper-
ties from one side, and the user plan to roll it from the other side. The last part of this
chapter is dedicated for the actual control method used in the current operating of the
tandem mill.

Chapter 5
State Feedback Control for TCM Process : This chapter is based on the process mo-

del obtained in Chapter 4. The established tandem state space linearized model permits
us to proceed to the control synthesis. The class of time delay singular system where
the tandem model belongs to, requires a special treatment in the sense of providing
the sufficient conditions for the solution existence. The problem of solution existence
and uniqueness for the tandem linearized system is investigated. Sufficient algebraic
conditions are provided within theorems to guarantee the continuity of system tra-
jectory. For the control part, a generalized paradigm is presented including control
synthesis options. The class of this controller is one of the options in the paradigm,
which is to be precised. The paradigm leads to the formulation of a control synthesis
problem where the controller is the solution of this problem. In the first step toward
control synthesis, all physical quantities in the process are assumed measurable and
thus the system state vector is completely accessible. For that the simplest controller
class is the state feedback controller. A numerical test illustrating the resolution of the
control synthesis problem, is applied first to a small size arbitrary time delay singular
system. After that, the state feedback synthesis for the tandem system is carried out via
an iterative tuning algorithm to obtain the best controller that ensures the best perfor-
mance of the system. Simulation of the closed loop system explaining the steps of the
controller tuning are provided. Some conclusions regarding the numerical resolution
of the controller synthesis problem are supplied at the end.

Chapter 6
Dynamic Output Feedback Control for TCM Process : In this chapter, the general

control synthesis problem already presented in the previous chapter is used. This time
the strict assumption regarding the complete accessibility of the system state vector
is relaxed. Depending on the available process measurements, a dynamic output feed-
back controller is to be looked for. This control type is the solution of the general control
synthesis, where new synthesis problem LMI constraints are produced with much hi-
gher size. A numerical explicative example of this synthesis is given to demonstrate
the effectiveness of such method. Several conclusions are given at the end.

Finally, we conclude the dissertation with some suggestions regarding future direc-
tions for this research.
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2.1 Introduction

The tandem cold mill (TCM) is a complex non-linear multivariable process. The
final product emerging from the rolling chain must respect strenuous specifications
regarding the physical dimensions (thickness, width or flatness) and the mechanical
properties (hardness, roughness and rigidity). During strip rolling, many defects are
encountered in metal coils. These defects in the annealed strip come in the form of
thickness irregularities or material composite inhomogeneity, which lead to the gene-
ration of perturbations in the form of speed and tension variations. The structure of the
tandem chain permits those perturbations to propagate through the system leading to
rolling errors. In order to obtain a well rolled flat steel product in the presence of these
errors, a control strategy is needed to supervise the system while processing. During
the last few decades, this topic was investigated by numerous research studies. Several
control strategies where used once man decided to automate the process, seeking for
productivity and quality amelioration. On the other hand, many problems have faced
the development of suitable control strategies such as system non-linearities, coupling
between variables, disturbances, modeling uncertainties (neglected dynamics, process
parameters), time dependent delays. . .etc. For that, optimization and proposition of
new control methods are progressively treated for this large complex process. As this
thesis shed the light on new advanced control strategies for tandem process, a basic
step is to discover physically the rolling process and to have an overview about the
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recent control strategies for such a domain. In this chapter, a short explanation about
the process of metal cold rolling as well as the tandem installation is to be given in
section 2.2. Next in section 2.3, we are going to have a short view over the history of
cold rolling in terms of modeling and control methods developed in this domain. How
did the experts model the mechanism of metal rolling? The idea is to present their
advancements that have been done through time for process modeling and control.
However this overview is not too long because we are going to highlight the most
significant studies related to this topic. Beyond that, other studies are being develo-
ped today revealing the importance in enhancing the control of tandem mills. Finally
a conclusion is to be given in section 2.4.

2.2 Process Overview

Metal Rolling is one of the most wide and important industrial manufacturing de-
formation processes [Rob78,Gin93a,Gin93b]. Many metal products nowadays are sub-
jected to rolling stage. It is the first step that aims to create different metal forms and
shapes (sheets, beams, rails... etc.). Rolling metal process aims to reduce gradually the
rolled material cross sectional thickness, which permits to obtain certain metallic pro-
ducts with desired thickness and mechanical properties. In general, there are two types
of metal rolling : cold and hot rolling. First the metal slabs which come from continuous
casting, are heated to about 1200 ◦C which exceeds the recrystallization temperature
and permits large ability of deformation. Then they are introduced to the hot rolling
stage. The mechanical strength is enhanced and cavities are reduced during this stage,
but it results degradation in the surface precision and flatness. After that the hot rol-
led product moves to the cold section before becoming a finalized product. The cold
processing afford steel with the required final thickness and the final surface appea-
rance and properties. The cold processing phase starts by the pickling stage [Rob78],
where the coiled strip coming from hot rolling is unrolled and passed through acidic
bath. This part is to remove the oxide residues formed during hot rolling and clean the
surface of steel sheets. The cold rolling comes after lubrication inter-stage to prevent
rusting and decreases later contact friction sequences. The cold rolling stage aims to
improve product material properties, surface flatness and dimensional precisions by
applying high pressures on the strip. It does not aim to change the form of the strip,
it is only to reduce its thickness down to 0.15 mm without heating. It improves strip
surface flatness and increases its hardness. Later on, the emerged strip enter an annea-
ling stage to be heated in a furnace between 800 and 1200 ◦C to become well formed
and reserve the actual thickness. Finally a coating stage is applied to cover the steel by
certain material that extends product life and prevents its rusting. After the coating has
been applied, the product goes to other later treatments according to its future use.

The present thesis is concerned by the stage of cold rolling where such a steelma-
king process work to plastically deform metal strip by compressive forces between
consecutive pairs of work rolls as shown in Figure 2.1. The rolled material is submitted
to high forces sufficient to reach the aimed form and shape. The deformation caused
by the high pressure, leads to the re-grouping of material crystals and sticks them to-
gether. The output product is then harder and more rigid. Moreover, the rolled sheets
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2.2. Process Overview

FIGURE 2.1 – Principle of strip cold rolling

have to attain certain level of flatness to be sure that this product is ready for all pos-
sible industrial usages.

During cold rolling of steel, metal strip passes through consecutive pairs of work
cylinders to produce flat metal sheets. Each pair is fixed in a housing cage called mill
stand, where the consecutive set of stands which are basically similar form the tandem
mill-cold rolling process. The work rolls are driven by the stand motor and force va-
riation is managed by the stand actuator. The work rolls in a stand are supported by
another pair of backup cylinders, which are often larger in diameter. They receive the
exerted rolling force applied by hydraulic rams and due to their high rigidity, the force
is transmitted to the work rolls. As the strip passes in the roll gap area, its thickness is
partially reduced due to the very high compression stress result form the applied force.
In this small bite, the metal is plastically deformed. The contact with pressure between
work rolls and the strip lead to a rise in its temperature, which is then cooled by means
of air and lubricants. The necessity of several pairs of work rolls comes from the impos-
sibility to reach our product with the required characteristics in just one passage. Ap-
plying forces intending to obtain the final product by one passage leads to strip sever
damage, distorted flatness or even strip rupture. For that, continuous rolling protects
the strip through performing partial thickness reduction in several cascaded stands.
Between mill stands, the strip is dragged by the effect of tension, the strip propagates
from a stand to another till it traverses the whole chain as depicted in Figure 2.2. Thus
all mill stands are coupled by the rolled strip.

Various quantities are measured in the system, but usually not all of them. Gene-
rally there are sensors to measure roll force at each stand, interstand tension force,
strip thickness and speed at the exit of the first and last stands, work roll speeds, ac-
tuator ram displacement. The existence of measurements differs from a tandem to ano-
ther. There are two types of tandems, stand alone (push pull rolling) tandem mill and
continuous tandem mill. The stand alone mill is isolated from the other steel treatment
stages. Strips are introduced in the form of steel coils, where they are un-rolled at the
entry of the first stand till the head of the coil reaches the last stand. The mill is then
accelerated to work on the desired nominal speed with enrolling of the coil at the exit.
Before the end of the coil, the mill is decelerated till the tail of the coil being reached.
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FIGURE 2.2 – 5 Stand Tandem Cold Mill

Coils are then transferred to the next stages in other places. On the other hand, the
continuous mill works continuously in a continuous line that contains all processing
stages cascaded one after another. The head of the coil introduced at the entry of the
continuous line and welded to the tail of the coil being processed currently. The strip
passes through the pickling stage, and is stored in an accumulator (Figure 2.3) to avoid
process interruption. The difference in processing time between a stage and another,
leads to the interruption of the previous stages. To avoid such blocking, this requires
the presence of a queue system to store the finished strip from the previous stage be-
fore it moves to the next stage. The cold rolling comes after, then the annealing phase
and finally the coating phase. Keep in mind that not all continuous lines are the same,
it may happen that some of them miss certain stages or have additional stages.

In tandem mills, there is no specific form of the rolling line regarding the num-
ber of mill stands. Usually the commercial use and the aimed product determines this
number. Moreover there are mill stands equipped with multiple pairs of backup cylin-
ders [Rob78]. The difference is related to the product type being rolled. For example,
rolling aluminum coils is different from rolling steel coils where the strip is harder.
Not only the metal strip is deformed during the passage between the rolls, but also
the work rolls and the backup cylinders are deformed though in much smaller rate.
Some mills require to set 6, 8 or even 12 backup cylinders to have a full support for
the working cylinders. For more information about mill structure, installation and
schemes, general view about manufacturing industry and the application can be found
in [KS89, KU89].

2.3 TCM Modeling and Control in Literature

According to [Bry73], cold rolling mills have been used since the 15th century in
the form of manual rolling with very low industrial performance and weak producti-
vity. During this time, metal sheets were obtained by means of hot rolling. Referring
to [Rob78] hot mills for iron rolling was established in 1798. However there are limi-
tations to obtain thin metal sheets using hot rolling. This is due to metal melting at
high temperatures, which leads to a sever strip deformation and possible rupture of
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FIGURE 2.3 – Representative interface for the idea of strip accumulator

the sheets when rolled to thin layers. A rolling chain was needed based on metal pres-
sing under force with no heating, to produce thin metal layers. A good work led to
the built of the Lauth mill in the 1850, motivating the industry to process in its deve-
lopment. These mills were developed continuously till the first cold tandem was built
in Czechoslovakia [Bry73] in 1892. Meanwhile this advancement was moving on in
Germany [Ged98], where the first mill was built in 1923 and the second one did not
finish until 1932. Roberts in [Rob78] concentrated on the development of cold mills in
the United States of America with the beginning of the 19th century. In 1926, a 4 stand
mill was finished. The early cold tandems were functioning with loosen strip between
stands. Later on, mills were designed such that the strip between each two stands is
tighten due to a tension force. This force plays a role in the rolling mechanism.

Since that time, the increasing requests on metal sheets due to the industrial evolu-
tion in the manufacturing of automobiles, trains, jets. . .etc, have motivated the deve-
lopment of this process to enhance its productivity and improve the final strip quality.
One of these sophisticated improvements is the automation of the process, such step
has opened a new research door between the fields of automation and steelmaking in-
dustry. Many reasons have played a role in this progress such as the necessity of larger
and faster mills, improvements done in the domains of actuator driving, instrumen-
tation and high level control technology. A brief overview about the existing studies
related to the control of tandem cold mill will be given to enrich us on the road to our
objective.
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2.3.1 Roll Force and Torque Mathematical models

Since 1950, the research efforts were put in developing mathematical models that
demonstrate the evolution of physical variables during the rolling process. These mo-
dels are either related to the whole tandem setup such as state space model for a single
stand mills, or for single physical quantities such as roll force, torque, yield stress . . .etc.
One of the most complicated variables are the rolling force and torque, where they are
applied by the work rolls on the strip to obtain the desired thickness reduction. These
variables are the resultant contribution of several interactions among strip thickness
and hardness, work roll radius and speed, entry and exit tensions. The majority of the
rolling theories [PL91] are based on a specified cause-effect chronological order among
the physical variables. In 1943, E. Orowan [Oro43] developed a detailed systematic cal-
culation of the roll pressure for hot and cold rolling. This was the fundamental work
for the existence of new generation of models in cold rolling. In 1948, R. Bland and H.
Ford [BF48] presented the calculation of roll force and torque in cold strip rolling in
the presence of tensions and assuming that the work rolls are deformed in an elliptical
form according to Hitchcock’s study [Hit35,Hil98]. It is one of the classical models that
are generally used for the analogical calculation, though it possesses high complexity
in its equations. It is composed of set of algebraic equations with integrals for the cal-
culation of rolling force and torque needed to be applied to the strip to obtain a desired
percentage reduction. The calculation of the force in this model version was based on

FIGURE 2.4 – Rolling deformation zone

the assumption that the rolling zone situated between the work rolls is divided into
three regions as shown in Figure 2.4. The entry region, where the applied effort is the
entry elastic force. The middle region where the applied effort is the plastic force and
the exit region where the exit elastic force is applied. The rolling force is the sum of the
three applied efforts. However the specialists in [BF48] have seen that the entry and exit
elastic forces are mush less than the plastic one, and thus they can be negligible. After
that, a second version was presented in [BF52] where these elastic efforts are no more
negligible and they are important in the aim to have a more precise total force values.
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Thus algebraic expressions were assigned to these elastic quantities. It was followed
by another study [BS53] which was given under a note related to the last developed
roll force. This note states that the strip thickness reaches a minimum thickness wi-
thin the rolling bite less than its exit thickness. This was interpreted by explaining that
the strip recovers a little bit of its entry thickness after being deformed at the moment
it is released by the work rolls. An additional algebraic expression was given to the
minimal thickness, which was considered as a corrective parameter in the expression
of the total roll force. The final obtained expressions of the rolling force and torque
were algebraic non-linear coupled equations were used widely such as in [Ged98]. A
simplified model was given in [FEB51] assuming some approximations for the entry
and exit elastic forces which are summed in a single expression. Also the integrals are
approximated by non-integral algebraic expressions, but this only reduces calculation
effort. A noticeable coupling between the roll force and deformed radius was obtained.
The number of algebraic expressions are less than the number of physical intermediate
variables. For that and after some time, Bryant and Osborn in [Bry73,FPS08,ACMH12]
have developed a set of algebraic non-coupled equations with much more approxima-
tions and much less calculative effort. Though it includes many assumptions and mean
values replacing the integral expressions, acceptable results were obtained. This model
was used in all Pittner’s studies [PS04,Pit06,PS06,PS07a,PS07b] in proposing different
multivariable control strategies for cold rolling.

These models are sets of analogical equations, but each one has a different level
of complexity and non-linearity. Another point of view for calculating these variables
was to use numerical finite element methods. Such methods [DMS+13, Cao15, Cao16]
were proposed recently and aim to obtain highly precised values.

2.3.2 Tandem Cold Mill Modeling and Control

The aim of cold rolling is to produce flat sheets or high quality strips. Before star-
ting, the mill setup configuration is important in the operation to fix some factors. For
example the user has to determine the percentage reduction that should be achieved
across each mill stand. This leads to estimate the rolling load needed to be submitted
to the strip within each pair of work rolls. Also the configuration of the interstand ten-
sions as well as the rolling speed references has to be precised. In ideal cold rolling
where the strip does not encounter any physical or mechanical errors, these references
would be sufficient to perform the objective. However ideal rolling does not exist in
reality and strip errors show up continuously as long as the steel coil is not finished.
Thus to arrive to the desired product quality, certain modifications applied to the strip
by process actuators are needed. Moreover controlling these inputs also permit us to
improve chain productivity and its performance. Another reasons revealing the essen-
tial role of control in tandem rolling mill, are the presence of system-entry strip uncer-
tainties as well as the internal and external disturbances result form the environment
of the complex system.

Tandem cold rolling is a complex multivariable process, where the internal physi-
cal quantities interact among each other. The passage of the strip between stands leads
to the coupling of stand variables in the mill. The ability to regulate and manage these
couplings is essential and difficult in the same time. This point becomes more and more
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critical due to the increasing performance requisites. In [Bry73], Bryant has accompli-
shed a basic rich study in the control of cold rolling process in 1973, treating general
cases of tandem mill including the phase of modeling, simulation and control. For the
control part, he followed a strategy based on the concept of non-interactive control
structure. This strategy means that the set of actuators are designed to be able to apply
independent changes to the strip at any location in the mill. Such strategy permits to
separate the interstand tension control from the strip thickness control. This decom-
position enables control methods based on single-input single-output form to be ap-
plied directly. Moreover the similarity between actuators promote the idea of identical
controllers for the tension loops. Bryant proposed another control view which depends
on adding the effect of feedforward to the feedback action. He had considered several
structures based on this combination, the thickness variation measurement in the first
stand was used to apply changes to the strip by feedforward. Also in [Edw78], the
laser gauge thickness measurement just after the first stand is used as a feedforward
for the next stands. In general, in this control loops the tension is controlled by the
mill actuator through variating the work roll gap. Whereas the strip thickness control
is achieved through variating the rolling speed via the stand motor. The control of
thickness is affected by the number of mill stands with respect to the available num-
ber of laser gauge measurements. The mill structure is different from one to another
regarding the available actuators and sensors. Different mill structures can be found
in [Rob78, FS83, Smi87, Gin93a, Gin93b].

As the multivariable control [SP07,BEGFB94] design started to rise up in the field of
process control, it attempts to manage the interaction between process variables. The
application of such control view has been transferred to the rolling problem by many
authors. In [HK93], a wide view of control objectives in the steel making industry has
been given. In this study, more than one control strategies are presented such as bar
gauge control, spindle torsional vibration control and others. These strategies are either
model based or model free control synthesis.

In [HMF+88], a multivariable state space control technique is applied to the cold
rolling of aluminum in 2 stand mill. The author tried to improve the results of the
single-input single-output control approach done in [YK79]. The rolling force model
have been linearized [HSM84] and used to construct the linear state space model. They
focused on regulating the errors on the thicknesses, since they are the crucial points in
his point of view. The disturbances in the system are modeled as constant ones, and
they are estimated with the states by a linear estimator. A feed-forward compensating
the effect of the disturbance is combined with the estimated state feedback. In the fra-
mework of a small system (actuators and motors are considered systems of first order)
size, the gains of the controller are chosen manually by moving the poles of the system
to the left hand side of the complex plane. The parameter uncertainty and transport de-
lays are not mentioned in this study and play no role in the controller synthesis. Ano-
ther study in [HSDB+11] has used the combination between the feed-forward and feed-
back loops. The rolling force model is based on the Orowan’s equations [Oro43,Bry73].
The aim was to improve the performance of the control loops during the Flying Gauge
Change, i.e. passage of inter-coil welding.

In the same field, the multivariable control problem of the aluminum cold tandem
is treated this time by using model-based generalized predictive control in [KJ95]. They
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have used the continuous state space model developed in [HMF+88], where they dis-
cretized it and then modified it by adding the constraints related to the input actuators
and the interstand tension. In this study the transport delay is not considered as an
explicit part of the process model. The thickness variation is considered as disturbance
in the system which is to be rejected. The measurements of the strip exit thickness after
each stand are considered available.

Another approach was adapted in [CJG94] where polynomial-based linear quadra-
tic Gaussian (LQG) methods were applied to a single stand cold mill. This study aim
to reject and regulate the backup cylinder eccentricity effect and the effects of both
thickness and hardness variations of the incoming strip. The results obtained were
motivating although it was applied on a fully measured system of one stand mill.

Other studies have treated the control of tandem cold mills using multiple SISO
control loops. In [CCD+92, DTF91], multiple PID loops where proposed to solve the
problem of thickness and tension control in cold mill. The resultant interactions bet-
ween the control loops from a side and the interactions between the variables have
shown the real challenge that must be managed. For that the idea of feedforward was
proposed in [Bry73] to compensate the interaction effects. PID loops are used widely
due to their low cost and easy maintenance. However they do have some limitations
in their performance, where they can not manage such process interaction especially if
they are strong.

A robust multivariable control was presented in [Ged98, GP94, GP94] where a non-
linear tandem mathematical model is constructed based on the Bland and Ford Rolling
model [BF48, BF52]. A detailed explanation was given for the modeling of each block
in the tandem mill. The motors in the system are considered as first order systems with
no resistive motor torque. The actuators are taken as second order systems with dead
delays. The time delays are approximated using Padé approximation [Luk69,BGM96].
Thus more states are added to the state vector of the linearized model. Once the non-
linear model was validated by real time data, it was linearized around a nominal point.
A robustH∞ multivariable control was established using the frequency approach. The
synthesis included loop shaping for high speeds, specifications for sensibility and com-
plement sensibility functions and pole-zero cancellation.

Regarding the recent results for the tandem process control, the study presented
in [BBCS10] treated the problem of automatic flatness control. This problem is related
to the shape of the obtained strip. During the passage of strip through cylinders, the
deformation of metal may lead to a slight concavity along the width of the strip. This
work proposed control techniques based on quadratic optimization and delay compen-
sation. One of these techniques is to establish a centralized solution using the quadratic
programming (QP). The other control technique is a decentralized control where each
actuator is controlled by its own controller where the latter is optimized locally.

In the last decade, significant studies were initiated by Pittner and his colleagues
in the control of tandem hot and cold mills. His first work [PS04] was proposing a
pointwise optimal linear quadratic control. After using the Bryant and Osborn model
for expressing the roll force and torque, the aim was to establish a multivariable model
based control that improves the performance and robustness of the system. The motors
and actuators are taken simply as first order systems without any load counteractions.
The time delays are approximated using fourth order Padé approximation which led
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to the augmentation of the state vector. The non-linearities of the roll force model lead
to build up a non-linear state space system where the dynamic matrix is function of
the system state. The solution of the control problem was to establish a non-linear state
feedback which minimizes a linear quadratic cost function assuming the availability
of full state measurement. Notions about pointwise controllability and observability
were necessary regarding system matrices and cost function weightings. The results
can be found in details in [Pit06]. This study was denoted later under the name of state
dependent Riccati approach [PS06, PS07b]. This idea was the base for Pittner’s later
studies [PS07a, PSS07, PS10], with the same used multivariable mathematical model
of tandem mill. All his results about the control of cold tandem mill were capitalized
in [PS11]. By the way, a similar linear state space multivariable model for tandem chain
was established in [AMC12]. The roll force model used was also the Bryant and Osborn
model, which is written in the form of numerical linearized equations. Once again, time
delays are approximated by fourth order transfer function, the motors and actuators
are approximated by first order systems. Another work was done by the same authors
in [ACMH12], the objective of this study is to determine the matrices of the state space
system including those partial derivatives coefficients of the linearized roll force model
using numerical identification methods.

Some studies have used the H2/H∞ mixed control such as that in [ZZS09] where
a gauge and tension control is used in the process. The used roll force model was the
one developed by H. Ford in [BF52,FEB51]. The purpose of the study is to improve the
head and tail strip thickness accuracy in the first stand of a tandem cold rolling mill
during steel rolling process.

Many research and studies are being initiated today to find control strategies for
this process. The industrial requisites have put a priority to achieve a central multi-
variable control for the whole process, for the capacity it has shown to manage sys-
tem interactions. Some studies are concerned by the automation of the first two stands
only, while others put their effort to control the exit thickness of the last stand. The dif-
ference between control objectives (tension regulation, thickness control, eccentricity
. . .etc) dedicated to tandem mills of different structures gives each study its own im-
portance. Meanwhile the continuity in searching for new control strategies enrich the
field with more contributions.

2.4 Conclusion

As a conclusion, we took an overview about steel cold rolling in the first part of this
chapter including the main stages of the continuous fabrication line. Next, a summari-
zed history about TCM control that has been treated in various research in the past fifty
years. Those studies had focused on the mathematical models of the rolling force and
torque. Also some articles presented the mathematical modeling of the whole chain
for the purposes of offline simulation or control synthesis. Several methods of control
were proposed revealing the revolution of this process with time. Multivariable control
have shown significant capability in managing the complexity and the resultant inter-
actions in the process. For that, this class of control have motivated us to find a new
control solution based on a MIMO tandem state space model.
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3.1 Introduction

In this chapter some mathematical tools and preliminaries, which will be used in
the objective of the multivariable control synthesis for TCM process, are presented
and explained briefly. Several definitions and mathematical topics among these, will
be used during the presentation of our control point of view toward this process. In
several studies [Bry73, Ged98, PS11] dealing with tandem control, each one contains
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a mathematical modeling of the tandem system and some classical control methods.
In the sake of multivariable control for the tandem process, a Multi-Input Multi-Ouput
(MIMO) mathematical state space model is to be build. The special form of the physical
relations governing the evolution of the tandem variables, including coupled relations
and non-linearities require special treatment to reach our desired model. In our work
and specifically in the control part, the known Linear Quadratic Regulation (LQR) will
be presented for the characterization of the cost of the closed-loop system. Thus a short
summary will be provided in section 3.2 of this chapter. After that the notion of stabi-
lity will be presented in section 3.3 in general. Basic definitions about stability in the
sense of Lyapunov as well as the direct Lyapunov method of stability will be provided.
Section 3.4 will treat the notion of Time Delay System (TDS) as the tandem process mo-
del contains time dependent delays. In section 3.5, notions about singular systems will
be explained with some definitions about this class of systems, because the physical
variables in the tandem mill are either given by their differential or algebraic relations.
Thus the use of this algebraic-differential system class is needed during the modeling
of our physical system. Finally in section 3.6, a combination between the singular as-
pect and the time delay aspect will be treated in the time delay singular system.

3.2 Linear Quadratic Regulation

In the theory of system control, several methodologies treat the design of multiva-
riable control [SP07,BEGFB94]. One of the most used fields is the optimal control [KFA69,
KS72]. It is based on optimizing the performance of the system by optimizing a cost
function that characterizes the behavior of the system and under a set of constraints.
These constraints include the physical equations describing the dynamics evolution in
the system. The optimal control uses either Pontryagin’s principle or the Hamilton-Jacobi-
Bellman equation [Bel13] and consequently the principle of dynamic programming for
the objective of problem optimization. A special case of optimal control, is the Linear
Quadratic Regulation (LQR). It is based on minimizing a quadratic cost function that
depends on weighting matrices specified by the user. The usage of this model based
control reduces the hardness of gain tuning through adjusting the weighting of the cost
function. An iterative step of weighting will be applied by the user till he/she reaches
the desired performance. In this case, consider the following Linear Time Invariant (LTI)
system given by

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, t ≥ t0, (3.1)

where x(t) ∈ Rn is the state vector that includes the dynamics of the system. u(t) ∈ Rnu

is the control input vector and A ∈ Rn×n and B ∈ Rn×nu characterize the differen-
tial equations of the system. The objective is to find a control law that minimizes the
following cost function

JLQ(x0, u) :=

∫ ∞
0

xT (t)Qx(t) + uT (t)Ru(t)dt, (3.2)

where 0 ≤ Q ∈ Rn×n and 0 < R ∈ Rnu×nu are the weighting symmetric matrices to be
specified by the user. The optimal control will lead to an optimal cost value. The semi-
definite positive matrix Q represents the penalty incurred at instant t by the deviation
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of the state from its steady equilibrium point. Similarly the definite positive matrix
R represents the control effort at an instant t trying to approach the state toward its
equilibrium. The choice of the weightings Q and R reflects the tradeoff between the
requirements of converging to the desired steady state and the consumption of control
energy. According to [Won74,Ske88], the pair (A,B) must be stabilizable. The solution
of the LQR problem starts as follows :

Theorem 3.1 ( [KS72], Theorem 3.15)
Consider the LTI system (3.1) and the cost function (3.2) which is to be minimized. Assume

that (A,B) is stabilizable and (Q,A) is detectable. Then the optimal control belongs to the class
of state feedback and is given by u?(t) = Kx(t), where K = −R−1BTP with P > 0 is the
unique positive definite solution of the Algebraic Riccati Equation given by

ATP + PA− PBR−1BTP +Q = 0, (3.3)

In addition the optimal controller stabilizes the system, which means that the closed
loop dynamic matrix A + BK = A − BR−1BTP is Hurwitz. The optimal value of the
cost is given by

J ?
LQ = JLQ(x0, u

?) = xT0 Px0. (3.4)

In this thesis, it is interesting to reconstruct this solution with other tools that will be
more suitable for our new contributions. The unique positive definite solution of the
(ARE) is equivalently the solution of the Semi Definite Programming (SDP) [BV03,
AT00, BEGFB94]

max
P∈Rn×n

Tr (P )

subject to


P > 0[
ATP + PA+Q PB

BTP R

]
≥ 0.

(3.5)

It consists of adding a further inequality stating that xT0 Px0 is an upper bound of the
cost JLQ and to minimize this upper bound. To summarize up, the LQ problem permits
to obtain a multi-variable control law by minimizing a cost function over the trajectory
of the system. The interest of using such method is that it avoids direct tuning of the
controller gain and replace it by weighting tuning which is easier.

3.3 Stability

One of the most important notions in the theory of system control is stability. The
stability theory basically is related to the solutions of differential equations. There are
different kind of stability problems that have been studied in details for different types
of systems, such as Lyapunov stability and other types (Structural stability, BIBO stabi-
lity, ISS . . . etc). In this section we are going to present briefly the stability of non-linear
systems at the beginning. After that we will move to the stability in the sense of Lya-
punov for the linear case. Some definitions and tools are to be presented which will
permit us to prove the stability for different system classes.
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3.3.1 Basic Definitions

Based on the basics in [MLSS94, Vid02, Kha02] for stability of non-linear systems,
consider a dynamical non-autonomous system given by

ẋ(t) = f(t, x(t)), x(t0) = x0 ∈ D, (3.6)

where x(t) ∈ D ⊂ Rn, with D is an open set containing the origin. Assume that the
function f : R×D 7−→ Rn satisfy the usual conditions to ensure the existence and uni-
queness of the system trajectory x(t). These conditions state that f is Lipschitz conti-
nuous in D with respect to x, uniformly Lipschitz regarding t, and at least it must be
piecewise continuous in t. Denote xe ∈ D the equilibrium point of the autonomous sys-
tem (3.6) such that f(t, xe) ≡ 0. We say that the equilibrium point xe is locally stable if
all trajectories that start from x0 in the neighborhood of xe remain around it for all time
t ≥ t0. The equilibrium point xe is said to be locally asymptotically stable if xe is locally
stable and in addition if all trajectories that start near xe converge to xe as time tends to
infinity. Talking about the convergence of the trajectory toward the equilibrium point,
it is important to mention in details the famous Lyapunov stability [Lya92]. Consider
the following definitions [LS76, LWY07, Kha15].

Definition 3.1 ( [WHS10], Definition 2.1.1)

1. At instant t0 ≥ 0, if ∀ε > 0, there exists δ(t0, ε) > 0 such that

‖x0 − xe‖ < δ(t0, ε)⇒ ‖x(t)− xe‖ < ε, ∀t ≥ t0, (3.7)

then the equilibrium point xe is stable in the sens of Lyapunov. Moreover if δ(ε) can be
chosen independent of t0, then the system is uniformly stable.

2. If the system is stable at the equilibrium point xe and if there exists δ(t0) > 0 such that

‖x0 − xe‖ < δ(t0)⇒ lim
t→∞

x(t) = xe, (3.8)

then the system is asymptotically stable at the equilibrium point xe. Moreover if δ can
be chosen independent of t0, then the system is uniformly asymptotically stable. Further
more if δ can be arbitrary large, finite number, then the system is globally asymptotically
stable at the point xe for every x0 ∈ Rn.

For the time-invariant autonomous systems, the uniform asymptotic stability is equi-
valent to asymptotic stability.

3.3.2 Lyapunov’s Direct Method for Stability

In the previous definitions, we have seen that to prove the stability of the sys-
tem (3.6) we need to follow its trajectory and verify if it stays in a defined region accor-
ding to (3.7) and (3.8). However another way can be adapted to reach such conclusions,
this way depends on mathematical criteria used to verify the stability of the system wi-
thout integrating entirely the differential equation (3.6). The general idea of these tools
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3.4. Stability of Time Delay Systems

is to propose a function that characterizes the energy stored in the system, this is cal-
led the direct or second Lyapunov method. The study of energy change informs us if
the system is damped and its energy is consumed (decreased), till it reaches a steady
stable situation. Based on this link between stability and energy variation, Lyapunov
constructed a function V (t, x(t)) which stands for the energy stored in the system. This
function must satisfy

V (t, x(t))

{
= 0, if x = xe,

> 0, otherwise,
(3.9)

Denote V̇ (t, x(t)) the time derivative of V , which characterizes the variation of the
energy in the system along its trajectory. It is generally given by

V̇ (x, t)
∣∣∣
ẋ=f(x,t)

=
∂V

∂t
+
∂V

∂x
f. (3.10)

Assume now that the origin is the equilibrium point of the system (3.6) (i.e. xe = 0 and
f(t, 0) = 0). If it is not the case, a translation can be done by using a change of variable
to reset the equilibrium at the origin. According to Lyapunov’s direct method, stability
of system (3.6) can be determined according to the following theorem.

Theorem 3.2 ( [Kha15], Theorem 3.3)
Let V : R+×Rn 7−→ R be a continuous non-negative function with V̇ (t, x) its derivative
along the trajectory of the system.

1. V (t, x) is positive definite and V̇ (t, x) ≤ 0, then the equilibrium point xe is locally
stable in the sense of Lyapunov.

2. V (t, x) is positive definite and V̇ (t, x) < 0, then xe is locally asymptotically stable in
the sense of Lyapunov.

3. V (t, x) is positive definite and unbounded radially with V̇ (t, x) < 0, then xe is uni-
formly asymptotically stable in the sense of Lyapunov.

The term unbounded radially means that the function V (t, x(t)) → ∞ as ‖x‖ → ∞. This
theorem gives sufficient conditions for the stability of the equilibrium point. In the next
sections, for each type of system we will use suitable quadratic functions to verify their
stability. The role of these functions can be extended, they can be used for the synthesis
of control laws under certain sufficient conditions.

3.4 Stability of Time Delay Systems

As we are going to see later on, the tandem process contains time delays which
means that the class of delayed systems will be an important part in the modeling
of our process. These delays affect the stability of the rolling system and degrade its
performance. In this section, we are going to study the stability of Time Delay Systems
(TDSs) where this topic had been treated widely in many research [Nic01,MN14,Fri14].
But before that, we need to present some notions about this type of mathematical mo-
dels. A short illustration will be given for this purpose.
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3.4.1 Time Delay Systems in Brief

Time delay systems (TDSs) also called retarded differential equations (RDEs) belong to
the class of functional differential equations [Hal71,HL93] which are infinite dimensio-
nal systems. These systems are also called delayed differential equation (DDE) [NVDD98,
KNG99, Kha98]. The instantaneous time derivative of the system trajectory ẋ is given
in terms of the function values at previous times. These systems are also called as he-
reditary systems or differential-difference equation systems [Ric03]. The aftereffect of
these systems have motivated their usage and increased their appearance in process
mathematical modeling. In the fields of industry, numerous processes contain delay
effects such as communication networks with transport delays or such as in chemical
process with dead delay effects. Recently TDS show more and more interest especially
in the field of system control. The effects of time delays in the process usually can’t
be easily managed using the classical control methods, whereas some control studies
proposed to approximate or neglect these delays. This might change the system model
with respect to the real process especially in the case of time dependent delays. So lets
start introducing some basic notions about this class of systems. The general form of
TDS can be given by

ẋ(t) = f(t, xt), t ≥ t0,

x(ξ) = φ(ξ), ξ ∈ [t0 − τ, t0] ,
(3.11)

where x ∈ Rn is the trajectory of the system. Also xt(−τ) = x(t − τ) is the delayed
state vector with τ > 0 the time delay of the system. f : R × Cτ,n → Rn is continuous
in its both arguments and locally Lipschitz continuous in the second one. The function
f indicates that the derivative of the state variable x at a time t depends on t and x(ξ)
for ξ ∈ [t0 − τ, t0]. Thus to determine the future evolution of the state, it is necessary to
specify the initial value of the state variable along an interval of length τ . This leads us
to complete the definition of a TDS by providing its initial condition φ over [t0 − τ, t0].
Usually in ordinary differential equation (ODE), the initial condition is referred to the
single initial value x0 = x(t0). However in TDS, the initial condition refers to the func-
tion φ ∈ Cτ,n = C ([t0 − τ, t0] ,Rn) which is the minimum data necessary to construct the
solution of the system (3.11). A fundamental issue in the study of both ODE and DDE
is the existence and uniqueness of a solution. For the case of ODE, the necessary argu-
ments responding to this issue can be found in [Kha02]. On the other hand, it is little
more complicated for TDS, referring to [Ric03, MVAN05, Fri14] we give the following
definition assuming that the delay τ is constant.

Definition 3.2 ( [Fri14], Definition 1.1)
The function x : R→ Rn is a solution of (3.11) with the initial condition φ if ∃ a > 0 such that
x(t) is continuous on [t0 − τ, t0 + a). The solution x(t) is initialized by φ and satisfies (3.11)
for t ∈ [t0, t0 + a).

In other words, if f is continuous in all its arguments and locally Lipschitz in φ, then
there exists a unique solution x traversing φ for the (TDS) in (3.11). Note that if the
time delay τ = τ(t) is a variable one, its must be strictly positive continuous function
to ensure the existence, uniqueness and continuity of the solution x(t). More results
and explanation can be found in [KM99]. The solution x is constructed using the step
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method proposed by Bellman [BC63]. Based on the continuous initial condition φ, the
solution x is constructed for [t0, t0 + τ ] by solving the following differential equation

t ∈ [t0, t0 + τ ] , ẋ(t) = f(t, φ(t− t0 − τ)), x(t0) = φ(t0), (3.12)

Then we continue in the same procedure for the intervals t ∈ [t0 + kτ, t0 + (k + 1)τ ]
where k ∈ N.

3.4.2 Stability Concept for General TDS
Consider the delayed functional differential equation given in (3.11). Without loss

of generality, assume that the origin is the equilibrium point (i.e. f(t, 0) = 0) which
leads us to say that this system has a trivial solution x(t) = 0. If it is not the case and
the system has a non-trivial solution, to study the stability of it a simple translation
change of variable can be made to arrive finally to a system with a trivial solution.
In [GCK03, Fri14], some stability definitions are introduced for the case of time delay
system.

Definition 3.3 ( [Fri14], Definition 3.1)

1. If ∀t0 ∈ R and ∀ε > 0, ∃δ(t0, ε) > 0 such that ‖xt0‖C < δ implies ‖x(t)‖ < ε for t ≥ t0,
then the trivial solution of (3.11) is stable. Moreover if the solution is stable and δ can be
chosen independently from t0, thus it is uniformly stable.

2. If the trivial solution of (3.11) is stable, and if ∀t0 ∈ R and ∀ε > 0, ∃δ(t0, ε) > 0 such
that ‖xt0‖C < δ implies limt→∞ x(t) = 0, then the trivial solution is asymptotically
stable.

3. If the trivial solution is uniformly stable and if ∃δ > 0 such that, ∀η > 0, ∃T (δ, η) such
that ‖xt0‖C < δ implies ‖x(t)‖ < η for t ≥ t0 + T , and t0 ∈ R, then the trivial solution
of (3.11) is uniformly asymptotically stable.

4. If the trivial solution is (uniformly resp.) asymptotically stable and the parameter δ can
be arbitrary large , finite number, then the trivial solution of (3.11) is globally (uniformly
resp.) asymptotically stable.

The system is uniformly asymptotically stable if its solution is uniformly asymptoti-
cally stable. For the time invariant autonomous delayed systems, the uniform asymp-
totic stability is equivalent to asymptotic stability.

3.4.2.1 Lyapunov-Krasovskii Direct Method

As we have seen in Theorem 3.2, Lyapunov functions are used to prove the stability
of non-delayed differential systems. The same approach can be followed when investi-
gating about the stability of TDSs. However in this approach, different functions were
treated. In the case of non-delayed systems, Lyapunov functions are usually quadratic
energy functions which depend on the instantaneous value of the state vector x(t). In
the case of TDS and due to the presence of past state values (i.e. xt) in the differential
equation, the energy function will also depend on xt. Thus the Lyapunov function de-
pends on all the values of the trajectory over the time interval of xt, this means that
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it is function of function and is called functional. N.N. Krasovskii and B.S. Razumi-
khin have proposed Lyapunov functionals [Kra63, EN73, KM99] to establish the direct
method or the stability of these type of functional differential equations. The stability
of the trivial solution is proved by ensuring the decrease of these functional. We will
concentrate only on the Lyapunov-Krasovskii approach for the direct stability method.
According to [GCK03], consider the following theorem.

Theorem 3.3 (Lyapunov-Krasovskii Stability Theorem) ( [Fri14], Theorem3.1)
Suppose that f : R×C [−τ, 0]→ Rn in (3.11) maps R×(bounded sets in C) into bounded sets
in Rn, and let u, v, w : R+ → R+ are continuous non-decreasing functions, where u(s) and
v(s) are positive for s > 0, and u(0) = v(0) = 0. The trivial solution of (3.11) is uniformly
stable if there exists continuous functional V : R × C [−τ, 0] → R which is positive definite
verifying

u(|φ(0)|) ≤ V (t, φ) ≤ v(‖φ‖C), (3.13)

and such that its derivative denoted V̇ (t, xt) is non-positive in the sense that

V̇ (t, φ) ≤ −w(|φ(0)|), (3.14)

If w(s) > 0 for s > 0, then the trivial solution is uniformly asymptotically stable. Moreover if
limt→∞ u(s) =∞, then V is radially unbounded and the trivial solution is globally uniformly
asymptotically stable.

The proof of this theorem can be found in [HL93]. Note that if (3.14) is true, it means
that V (t, xt) ≤ V (t, xt0) which is bounded from above. Let us consider the class of
linear time invariant systems with discrete delays to apply the approach of Lyapunov-
Krasovskii.

3.4.3 Stability of Linear Systems with Time-Varying Delays

In this part, we discuss the stability of linear TDS. We focus on the linear case due
to the objective to model the tandem process in a linear multi-variable system. The
stability of the linear case model will be investigated in the Lyapunov-Krasovskii sense.
Consider the following autonomous time delay system

ẋ = A0x(t) +

q∑
i=1

Aix (t− τi(t)) +Bu(t), t ≥ t0,

xt0(θ) = x(t0 + θ) = φ(t0 + θ), θ ∈ [−τmax, 0] , φ ∈ Cτmax,n = C ([t0 − τmax, t0] ,Rn) ,
(3.15)

where x ∈ Rn, Ai ∈ Rn×n and B ∈ Rnu are constant matrices. The q time dependent
delay are positive bounded delays such that τi(t) ∈ [0, τ̄i]. For the study of stability
of this system, we are going to consider the case of autonomous system , i.e. u ≡ 0.
Based on Theorem 3.3 for stability analysis we have to choose a Lyapunov functional
associated to the system. Certain forms lead to delay dependent stability condition,
whereas others lead to independent ones. We will focus on the functionals that lead
to delay independent conditions. A simple Lyapunov-Krasovskii functional V [Ric03]
has the form

V (t, xt) = xT (t)Px(t) +

q∑
i=1

∫ t

t−τi(t)
xT (s)Six(s)ds, (3.16)
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where P and Si are n×n symmetric positive definite matrices. Assume that the delays
τi(t) are differentiable functions with assumed bounded derivatives from above, such
that τ̇i(t) ≤ di < 1 for all i. For the objective of stability analysis, we differentiate the
functional V along the system (3.15). We can see that V satisfies the positivity condition
in (3.13) for some β > 0 such that β|x(t)|2 ≤ V (t, xt). For the stability of the system,
we just need to prove the condition in (3.14). Denote V̇ (t, xt) the time derivative of the
functional V . Differentiating V along the system (3.15), we obtain

V̇ (t, xt) =
d

dt
V (t, xt) = ẋT (t)Px(t) + xT (t)Pẋ(t) +

q∑
i=1

xT (t)Six(t)

−
q∑
i=1

(1− τ̇i(t))xT (t− τi(t))Six(t− τi(t)),
(3.17)

Furthermore substitute in (3.17) the value of ẋ(t) given by its expression in (3.15). We
arrive to the following inequality ( [Fri14], Page 63)

V̇ (t, xt) ≤ ζT (t)Φ1ζ(t), (3.18)

with

Φ1 =


Ω1 PA1 PA2 · · · PAq
? −(1− d1)S1 0 · · · 0

? ? −(1− d2)S2
. . . ...

? ? ?
. . . 0

? ? ? ? −(1− dq)Sq

 , (3.19)

where

Ω1 = AT0 P + PA0 +

q∑
i=1

Si, (3.20)

and ζ(t) = col {x(t), x(t− τ1(t)), · · · , x(t− τq(t))} 6= 0. According to Theorem (3.3), we
introduce the following proposition.

Proposition 3.1 ( [Fri14], Proposition 3.3)
The system (3.15) is uniformly asymptotically stable for all delays τi ∈ [0, τ̄i] with τ̇i ≤ di < 1
if there exist n × n matrices P > 0 and Si > 0 such that the sufficient condition Φ1 < 0 is
feasible.

If Φ1 is feasible, we conclude that Ω1 < 0. This means that A0 should be Hurwitz. The
stability condition given in (3.19) is a delay independent one. Using other Lyapunov
functionals including additional terms [Ric03] lead to delay dependent stability condi-
tions.

3.4.4 Stabilization of Linear Systems with Time-Varying Delays

Based on the stability results on the stability of linear delayed systems, another
result can be deduced regarding the stabilization of an unstable time delay system.
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Consider the same autonomous time delay system in (3.15) but with the forced case
such that the input u 6= 0. The indicated system is to be stabilized by a state feedback
control given by

u(t) = Kx(t), (3.21)

where K ∈ Rnu×n is the feedback gain. The closed loop system equation can be written
as

ẋ = (A0 +BK)x(t) +

q∑
i=1

Aix (t− τi(t)) , (3.22)

The stability test by Lyapunov functional direct method gives us a tool for the synthesis
of a stabilizing state feedback controller of the forced delayed system. Consider the
following theorem.

Theorem 3.4 : The closed loop system (3.15) with the state feedback control in (3.21) is uni-
formly asymptotically stable for all delays τi ∈ [0, τ̄i] with τ̇ ≤ di < 1 if there exist n × n
matrices W > 0 and Gi > 0 and a matrix Y ∈ Rnu×n such that the LMI

Φ2 =


Ω2 A1W A2W · · · AqW
? −(1− d1)G1 0 · · · 0

? ? −(1− d2)G2
. . . ...

? ? ?
. . . 0

? ? ? ? −(1− dq)Gq

 < 0, (3.23)

is feasible with

Ω2 = He (A0W +BY ) +

q∑
i=1

Gi, (3.24)

also with W = P−1, Gi = P−1SiP
−1, i ∈ {1, . . . , q} and Y = KW .

The proof of this theorem is very close to the steps made between (3.16) and (3.20). The
key of this proof is based on the Lyapunov functional given in (3.16) defined by the
same matrices P and Si.

Proof : Assume that the LMI (3.23) is feasible, this means that there exist matrices W ,
Gi and Y satisfying Φ2 < 0. Through a congruence transformation, we multiply both
sides of Φ2 in (3.23) by L = Iq+1 ⊗W−1 > 0. Using the backward change of variable
P = W−1, Si = W−1GiW

−1 and K = YW−1 we obtain

Φ3 =


Ω3 PA1 PA2 · · · PAq
? −(1− d1)S1 0 · · · 0

? ? −(1− d2)S2
. . . ...

? ? ?
. . . 0

? ? ? ? −(1− dq)Sq

 < 0, (3.25)

where

Ω3 = He (PA0 + PBK) +

q∑
i=1

Si, (3.26)

The sequel of this proof is the same as the one detailed for Proposition 3.1 by substitu-
ting A0 by A0 +BK.

28



3.5. Stability of Singular Systems

3.5 Stability of Singular Systems

In this section, we are going to highlight over the class of singular systems. The form
of such systems are widely used in modeling complex process. An interest is to study
their properties, how to prove their stability and how to stabilize them or modify their
performance. But first of all, let us take a short overview about singular continuous
systems.

3.5.1 Singular Systems in Brief

In ODEs, a set of differential equations characterizes the evolution of the system
dynamics. However there are systems where the dynamics are not characterized by
time derivatives, they are given by static algebraic relations. These ones are called Sin-
gular or Descriptor systems. These systems are found in physical engineering systems
such as chemical processes, power grid systems or electrical circuits. The form in mo-
deling have pulled the attention of many scientist and researchers. Through literature,
the treatment of such systems has been associated with several terms such as impulsi-
veness in solution, non-proper transfer function or compatible initial condition which
render the study of them more sophisticated than the classical non-singular systems.
The definitions of regularity and non-impulsiveness (in the continuous case) or causa-
lity (in the discrete case) have played important roles in the analysis of singular sys-
tems. It is good to mention that these systems contain different kinds of modes [Dai89],
finite dynamic mode, infinite dynamic modes and infinite static modes. The infinite dy-
namic modes can generate impulses in the system solution. In the frame of our work,
we will shed the light only on the case of autonomous continuous descriptor systems.
Several conditions are to be presented regarding their characteristics. For that let us
state down some preliminaries which are essential here and in the next chapters.

3.5.2 Preliminaries on Singular Systems

Consider a linear autonomous singular system given by

Eẋ(t) = Ax(t) +Bu(t), x(t0) = x0, t ≥ t0, (3.27)

where x(t) ∈ Rn is the state vector. E,A ∈ Rn×n and B ∈ Rn×nu are real constant
matrices where rank(E) = n1 < n. The pair (E,A) is called pencil. Let us consider
the case of unforced system where u ≡ 0. Many research studied have treated the
behavior of linear continuous singular systems such as [Dai89, Lew02, YS81] and the
references therein. One of the particularities of such systems is their time response that
may contain impulses, that is discontinuities of time derivatives. Let us introduce some
definitions from [Dai89] regarding unforced singular systems.

Definition 3.4 ( [XL06], Definition 2.1)
Consider the system (3.27) being unforced. The pencil (E,A) is said to be

1. regular if |sE − A| 6= 0.

2. impulse-free if deg(|sE − A|) = rank(E).
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3. stable if all the roots of |sE − A| = 0 have negative real parts.

4. admissible if it is regular, impulse-free and stable.

The unforced system (3.27) is called respectively regular, impulse-free, stable, or admis-
sible if the pair (E,A) is regular, impulse-free, stable, or admissible. According to [Dai89,
XDSL02], if the pencil (E,A) is regular, this means that the system (3.27) being unfor-
ced admits a unique solution. Undesired impulsiveness in the solution can be due to
the non satisfaction of free-impulsiveness, or due to inconsistent (incompatible) initial
condition [Cam80b]. For that the existence of impulsive solutions is studied in terms of
the Weierstrass canonical form and the index of the system. Let us first study the case
of non-satisfaction of free-impulsiveness explained in the following lemma [Dai89].

Lemma 3.1 (Canonical Decomposition) ( [Dai89], Lemma 1.2.2)
The pair (E,A) is regular if and only if there exist two non-singular n × n matrices M1 and
N1 such that

M1EN1 = diag(In1 , J), M1AN1 = diag(A′, In2), (3.28)

with n2 = n− n1 and J ∈ Rn2×n2 is a nilpotent matrix of index ν, i.e. Jν = 0, Jν−1 6= 0.

The index of the singular system is referred to ν. This decomposition permits us to
write the system in the new basis z = col {z1, z2} = N−1

1 x with the following canonical
form

ż1(t) = A′z1(t),

Jż2(t) = z2(t),
(3.29)

By solving (3.29), we obtain

z1(t) = eA
′tz1(t0),

Jz2(t) = −
ν−2∑
k=0

δk(t)Jk+1z2(t−0 ),
(3.30)

where δ(t) is the Dirac delta function and the subscript k denoted the kth distributional
derivative. If ν > 1, the Dirac delta function will appear in the solution and hence
the system will admit impulsive solutions. Therefore to have free impulsive solution,
we must have J = 0, i.e. system of index one. Validating the free-impulsive condition
mentioned in Definition 3.4 based on the result of J = 0, we have

|sE − A| = |sM−1
1 M1EN1N

−1
1 −M−1

1 M1AN1N
−1
1 |

= |M−1
1 ||N−1

1 ||diag(sIn1 − A′,−In2)| = |M−1
1 ||N−1

1 || − In2||sIn1 − A′|,
(3.31)

Obviously |M−1
1 ||N−1

1 || − In2 | = γ ∈ R∗, which means that

deg(|sE − A|) = deg(γ|sIn1 − A′|) = n1 = rank(E). (3.32)

Consider the following lemma that summarizes the conclusions around singular sys-
tems of index one [Dai89].
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Lemma 3.2 ( [XL06], Lemma 2.2)
Suppose that the pair (E,A) is regular and the two non-singular matrices M1 and N1 are

chosen such that (3.28) holds, then the pair (E,A) is

1. impulse-free if and only if J = 0.

2. stable if and only if A is Hurwitz.

3. admissible if and only if J = 0 and A is Hurwitz.

The proof of this lemma can be found in the mentioned reference. Whenever we have
a singular system, it is always possible to find two non-singular matrices M2 and N2

such that

M2EN2 =

[
In1 0
0 0

]
, M2AN2 =

[
A1 A2

A3 A4

]
, (3.33)

This decomposition can be easily obtained depending on the singular value decompo-
sition of E. The new basis state vector w = col {w1, w2} = N−1

2 x. The decomposition of
the system in the new basis leads to

ẇ1(t) = A1w1(t) + A2w2(t),

0 = A3w1(t) + A4w2(t),
(3.34)

We have the following lemma

Lemma 3.3 ( [XL06], Lemma 2.3) The pair (E,A) is impulse-free if and only if A4 is non-
singular.

Another free impulsiveness condition is available according to the second decompo-
sition in (3.33). The proof of this lemma can be also found in [Dai89]. As it has been
said before, there is another reason that may induce impulses which is the inconsistent
initial condition. According to [Cam80b, Fri02], the initial condition x(t0) = x0 must
be compatible according to the algebraic relation in (3.27). Based on the decomposi-
tion (3.34), we substitute the initial condition in the new basis w0 = col {w1, w2} =
N−1

2 x0 in the equation
ẇ1(t0) = A1w1(t0) + A2w2(t0),

0 = A3w1(t0) + A4w2(t0),
(3.35)

The compatibility of the initial condition meaning that the second algebraic relation
in (3.35) holds. This prevents from the appearance of impulses in the solution of the
system. The system considered here being unforced, in contrast if u 6= 0 then other al-
gebraic relation must be valid where the initial condition w0 must be compatible with
the initial input value u(t0). Consider the forced system in (3.27), choosing M2 and
N2 such that we have the decomposition (3.33) with M2B = col {B1, B2}. Avoiding
impulses or discontinuities in solution derivatives means that the initial condition sa-
tisfies

A3w1(t0) + A4w2(t0) +B2u(t0) = 0, (3.36)
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3.5.3 Stability of Linear Singular Systems

As it was presented for the non-singular system case, the stability is essential to
be investigated in the present case. In this section we are going to present direct way
for proving stability of linear continuous singular systems using Lyapunov direct me-
thod. Several research treated the present case such as [TMK95, Lew02, Liu12, FS02,
XL06, Dai89, YS81, KKO99] and the references therein. Since we are only interested in
the case of linear continuous singular systems, let us concentrate on obtaining suffi-
cient conditions for the stability by using Lyapunov direct approach. Moving directly
to the system (3.27) where we are examining the unforced case and that the system
is regular and impulse free. Without loss of generality, we consider for simplicity a
special case of singular matrix such that E = diag(In1 , 0). If it is not the case, it is al-
ways possible to choose non-singular matrices M2 and N2 such that the decomposition
in (3.33) holds. Then the next results are applied to the new basis system. Applying
this approach we need to choose a Lyapunov candidate according to Theorem 3.2. This
function characterizes the energy stored in the dynamics of the singular system. For
this system, the proposed semi positive function is

V (x(t)) = xT (t)ETPx(t), (3.37)

where P ∈ Rn×n is a non-singular matrix. Consider the following theorem [XL06]

Theorem 3.5 ( [XL06], Theorem 2.1)
: The regular and free impulsive unforced singular system in (3.27) is asymptotically stable if

there exists a non-singular matrix P such that the algebraic relation

ETP = P TE ≥ 0, (3.38)

and the linear matrix inequality
ATP + P TA < 0, (3.39)

are satisfied.

The proof can be found therein.

3.5.4 Stabilization of Linear Singular Systems

As it has been said before, Lyapunov direct method has been used as a tool for the
synthesis of stabilizing state feedback controller that ensures the asymptotic stability
of the closed loop system. Consider the forced singular system in (3.27) and the form
of the state feedback controller given by

u = Kx, (3.40)

The closed loop system simply becomes Eẋ = (A + BK)x. Using the same Lyapunov
function in (3.37), the synthesis of this controller is given in the following theorem.

Theorem 3.6 ( [XL06], Theorem 3.1)
The closed loop singular system in (3.27) is asymptotically stable with the state feedback control
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given in (3.40), if there exists a non-singular matrix W ∈ Rn×n and matrix Y ∈ Rnu×n such
that the algebraic relation

W TET = EW ≥ 0, (3.41)

and the linear matrix inequality

W TAT + AW +BY + Y TBT < 0, (3.42)

are satisfied, where the matrices W = P−1 and the state feedback gainK = YW−1.

The proof can be found therein.

3.6 Stability of Time Delay Singular Systems

Now we arrive to a crossroad where both time delay systems and singular systems
intermingle in the class of singular time delay systems. Let us go directly to some pre-
liminaries related to this type of systems.

3.6.1 Preliminaries of Time Delay Singular Systems

Consider the general continuous autonomous linear system given by

Eẋ(t) = A0x(t) +

q∑
i=1

Aix (t− τi(t)) +Bu(t), t ≥ t0,

xt0(θ) = x(t0 + θ) = φ(t0 + θ), θ ∈ [−τmax, 0] , φ ∈ Cτmax,n = C ([t0 − τmax, t0] ,Rn) ,
(3.43)

where as always x ∈ Rn is the state vector, the matricesE,Ai ∈ Rn×n andB ∈ Rn×nu are
constant matrices. The matrix E is singular with rank(E) = n1 < n. φ is a compatible
vector valued function and the time delays τi satisfy the following{

0 ≤ τi(t) ≤ τ̄i,

τ̇i(t) ≤ di < 1
(3.44)

The existence and uniqueness of solution to a given algebraic differential delayed sys-
tem is not always guaranteed and the system may also have undesired impulsive be-
havior. Discontinuities in the solution derivatives may also appear. Even if the time
delay singular system is regular and impulse-free, the solution may exhibit impulses
due to the incompatibility of initial condition φ. In addition, these jumps most probably
propagate through the solution due to the existence of delayed terms. The interaction
of the algebraic relation with the delayed terms in it leads a special behavior which can
not happen neither in (TDSs) nor in singular systems. Based on [Fri02, FS02, Liu12] we
introduce some definitions regarding this type of systems.

Definition 3.5 ( [XL06], Definition 9.1) System (3.43) is regular and impulse-free if the pen-
cil (E,A0) is regular and impulse-free.
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It can be shown that the free impulsiveness of this system is equivalent to say that the
system is of index one [Fri02]. This can be proved easily using the same transformation
in (3.28). The system matrices are given in the following form

E =

[
In1 0
0 0

]
;Ai =

[
Ai1 Ai2
Ai3 Ai4

]
;B =

[
B1

B2

]
, (3.45)

Note that if the system matrices are not in the form given in (3.45), it can be always be
transformed to this form by choosing conveniently two non-singular matrices M2 and
N2 as presented in (3.33). Consider the case of autonomous system (3.43) where u ≡ 0.
Based on the form in (3.45), the system can be written as the following

ẋ1(t) = A01 x1(t) + A02 x2(t) +

q∑
i=1

2∑
j=1

Ai,j xj (t− τi(t)) ,

0 = A03 x1(t) + A04 x2(t) +

q∑
i=1

2∑
j=1

Ai,j+2 xj (t− τi(t)) .
(3.46)

with its initial condition

x1(t) = φ1(t), x2(t) = φ2(t), t ∈ [t0 − τmax, t0] . (3.47)

Substituting the initial condition φ(t) = col{φ1(t), φ2(t)} in the second equation of (3.47),
we obtain

0 = A03 φ1(t0) + A04 φ2(t0) +

q∑
i=1

2∑
j=1

Ai,j+2 φj (t0 − τi(t0)) . (3.48)

Based on the results found in [Fri02,Fri14,HB08] regarding the solution of autonomous
time delay singular systems, we have two cases related to the type of time delays.
Assume the case that the time delays τi are constants. Then we have the following
proposition.

Proposition 3.2 ( [Fri02], Proposition 1)
For any continuous function φ(t) = col{φ1(t), φ2(t)} that satisfies (3.48), there exist a unique
function x(t) defined and continuous on [t0 − τmax,∞) that satisfy the regular and impulse
free system (3.46) on [t0,∞) and initial condition (3.47).

This result is found also in [XDSL02,XL06,HL93]. Considering the other case where the
time delays are time varying ones as given in (3.44), we present the following lemma
in study stating that the function φ is a compatible vector values function.

Lemma 3.4 ( [HB08], Lemma 3)
Suppose that the system (3.43) is regular and impulse free, then the solution of the system

exists and it is impulse free and unique on [t0,∞).

This result is also given in [LZ13, HB09, HBXL09]. The above lemma is supported and
based on a master thesis (see reference in [HB08]). In this research, it was indicated
that the proof of this lemma is the same as the proof given in [Fri02]. The latter treats
the case of singular delay systems with multiple constant delays. However this proof
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starts by transforming the system (3.46) into an equivalent neutral type differential
equations (NDE) [HL93] with constant delay. The proof continues based on Theorem
7.2 in [HL93] related to solution existent of NDE. This theorem states that if the initial
condition φ of the NDE is continuous on [t0 − τmax, t0), then there exist a unique solu-
tion of the NDE on [t0 − τmax,∞). The last step of this proof states that if (3.48) holds,
then this solution is a unique continuous solution for the initial system (3.46).

From our point of view, we see that generalizing the results of singular systems
with constant delays on systems with time varying delays is not strong enough. Fur-
thermore another proof of the case with time varying delays will be provided later on
in chapter 5. In the case of forced system (i.e. u 6= 0), the algebraic condition in (3.48)
is going to be changed due to the presence of the term B2u(t0). The function φ must
satisfy another algebraic relation, which is given below

A03φ1(t0) + A04φ2(t0) +

q∑
i=1

2∑
j=1

Ai,j+2φj(t0 − τi(t0)) +B2u(t0) = 0, (3.49)

Here we see a strong dependence between φ and u(t0). This algebraic relation risks to
be broken in some times due to the non-compatibility of φ. This is to be discussed later
on in details about the importance of such conditions.

3.6.2 Stability of Time Delay Singular System

In this part we are going to treat the stability of this type of system. As the previous
case, we will focus on the linear autonomous continuous systems, we aim to develop
sufficient conditions that ensure the asymptotic stability of system (3.43). Make use of
the Lyapunov candidates (3.16) and (3.37), we propose the following functional candi-
date

V (t, xt) = xT (t)ETPx(t) +

q∑
i=1

∫ t

t−τi(t)
xT (s)Six(s)ds, (3.50)

where P ∈ Rn×n is a non-singular matrix while Si ∈ Rn×n are definite positive matrices
for all i. The stability of (3.43) is given by the following theorem.

Theorem 3.7 : The unforced regular and impulse-free time delay singular system (3.43) where
the delays τi satisfy the conditions (3.44), is asymptotically stable if there exist n× n matrices
P and Si > 0 such that

ETP = P TE ≥ 0, (3.51)

and the following LMI

Φ4 =


Ω4 P TA1 P TA2 · · · P TAq
? −(1− d1)S1 0 · · · 0

? ? −(1− d2)S2
. . . ...

? ? ?
. . . 0

? ? ? ? −(1− dq)Sq

 < 0, (3.52)

are satisfied with

Ω4 = A0P + P TA0 +

q∑
i=1

Si. (3.53)
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This theorem gives delay independent conditions to prove the stability for this system.
The proof of this theorem is not hard, based on the sequential order used to arrive
to Proposition 3.1 and with the proof of Theorem 3.6 we can easily build the proof of
Theorem 3.7.

3.6.3 Stabilization of Time Delay Singular System
Depending on the conditions found in Theorem 3.7, a useful method can be ela-

borated for the synthesis of state feedback controller for this type of system. Consider
the forced system (3.43) with the Lyapunov candidate (3.50). The usual state feedback
u = Kx can be established using the following theorem.

Theorem 3.8 : The closed loop system (3.43) with the state feedback control u = Kx is uni-
formly asymptotically stable for all delays τi satisfying (3.44), if there exist n × n matrices
W > 0 and Gi > 0 and a matrix Y ∈ Rnu×n such that

W TET = EW ≥ 0, (3.54)

and the LMI

Φ5 =


Ω5 A1W A2W · · · AqW
? −(1− d1)G1 0 · · · 0

? ? −(1− d2)G2
. . . ...

? ? ?
. . . 0

? ? ? ? −(1− dq)Gq

 < 0, (3.55)

are satisfied with

Ω5 = He (A0W +BY ) +

q∑
i=1

Gi, (3.56)

also with W = P−1, Gi = P−TSiP
−1, i ∈ {1, . . . , q} and the feedback gain K = YW−1.

Once again delay independent conditions are given for the synthesis of state feedback
gain K. The proof is build easily based on the proof of theorems 3.4 and 3.6.

3.7 Conclusion

This chapter provides basic knowledge and concepts on the classical optimal li-
near quadratic control. Moreover fundamental concepts regarding stability, including
the concept of Lyapunov stability and some basic definitions and theorems were pro-
vided. We have addressed the stability of time delay continuous systems, linear conti-
nuous singular systems and linear time delay singular systems. For each class, we have
provided necessary definitions about the existence and uniqueness of their solutions.
Also for these system classes, we have presented sufficient conditions which guarantee
the asymptotic stability of their solutions. These conditions are expressed in terms of
LMI’s, which can be efficiently handled by using standard numerical algorithms. It is
worth mentioning that the stability results developed in this chapter played important
roles in dealing with the stabilization problem of those systems. This knowledge is the
foundation for the study of later chapters.
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Tandem Cold Mill : Model and Current
Control Strategy
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4.1 Introduction

Tandem Cold Mill (TCM) as it has been mentioned before is a complex industrial
process, which contains several mechanical and electromechanical subsystems [Rob78].
These ones interact among each other during strip rolling. The behavior of each sub-
system and also the interaction between them are generally governed by physical or
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phenomenological laws, which include the evolution of related physical quantities or
static relations of others. In order to better know the process and to visualize the pos-
sible scenario of rolling, it is essential to have a mathematical model of the system that
demonstrates the modes of operation for TCM. This model will be the base toward
establishing a multivariable control law using a model based strategy. This chapter is
dedicated to establish the model of the whole system, that will be used in the sequel.
We start from the physical and phenomenological laws associated with each subsys-
tem and its interactions. This first step has the benefit to consider elementary and well-
known laws and to describe the suitable degrees of approximation that are chosen
in our framework. Moreover it allows to understand very well the process from the
engineer’s point-of-view. The involved physical laws are presented in section 4.1. In
section 4.2, for the controller design, additional states are concatenated to the real pro-
cess model. The resulting model is then formalized as a non linear MIMO descriptor
system with state dependent delays. To fit to an adequate framework for the controller
design, further approximations are provided and validated in section 4.3. Finally, be-
fore a conclusion, section 4.4 presents the current multi-loop PID control strategy and
the simulator that was available at the beginning of the PhD. The contribution of this
chapter is related to [AJM+16]. It is important to notice that the method used for TCM
can be useful for other industrial processes. Furthermore this method allows easily to
change the model when modifying the real process, for instance by introducing new
actuator as flexible lubrication.

4.2 Description of the Tandem Stand

For the reason of high material resistance (hardness), the final product thickness can
not be reached in just one passage. Successive rolling passages are necessary to reach to
the desired thickness. That’s why we need a chain of cascaded stands. This avoids the
product from rupture, undesirable deformations and damaged flatness. Rolling is car-
ried out by pressing between cylinders and by slight strip elongation between stands.
A cooling phase is made at the entry and exit of each stand to avoid high frictions and
steel deformation for the strip and rolls. The mill installation is composed typically of
five stands [Ged98]. These stands usually have the same structure unless for special
cases. Describing the model of one of these stands can give a generalized model for all
stands. It can then differs in the value of parameters for each stand. Mill stand contains
a pair of work roll cylinders driven by an electric motor. This machine has special cha-
racteristics with very high delivered torque capable of accomplishing this task. The
work rolls rotate in opposite direction during the passage of the strip between them as
shown in figure 4.1.

Each work roll is supported by a backup cylinder with much higher rigidity, and
with larger radius. The pair of backup cylinders exerts the rolling force on the work
rolls, thus the effort is transmitted consequently to the strip. These massive support
cylinders are displaced vertically by a hydraulic actuator. This displacement variates
the work roll gap and thus it vary the rolling effort [Bry73] submitted to the strip. The
actuator reacts rapidly for any input/output tension variations resulting from thick-
ness or material resistance errors. Thus the role of actuators is to maintain nominal
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(a) (b)

FIGURE 4.1 – Passage of strip through work rolls

tensions between stands and avoid their variations at steady state rolling phase. In or-
der to have a better view about the relations among the sub-parts of the mill stand, a
block diagram of an arbitrary mill stand is given in figure 4.2. The functional diagram
including several blocks is here to give a global view of the real process and to facilitate
the description of each element. The distinct blocks may have different natures : some
blocks represent a physical law, for instance mass flow conservation. Other blocks hide
a real subsystem, like the motor or actuator, also some of them denote a physical quan-
tity such as material yield stress. Each block of the schema 4.2 is described in the fol-
lowing subsections. In view of the final concatenation, and specific time dependency,
all the dynamics will be coherently given by differential equation (partial state-space
representation) instead of frequency domain representation. As final global remark, it
is noteworthy that the numerical values related to the model are not mentioned for
confidentiality reasons.
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FIGURE 4.2 – Mill stand-interstand block diagram

4.2.1 Stand Actuator

During the passage of the strip through work rolls, the back up cylinders submit a
high force to reduce its thickness. This rolling force is applied by the stand actuator on
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the backup cylinders whom they transmit it to the work rolls. The actuator then has a
very important role in strip thickness reduction. It is responsible not only applying the
force, but also for its variation to manage any error in the strip thickness. The variations
in the strip thickness or rigidity induce perturbations in stand forward slip as well as
in pre and post tensions. In order to manage these perturbations, a compensation va-
riation in the roll gap and thus in rolling force is needed. The vertical displacement of
work rolls is done by the mill actuator as seen in Figure 4.3a. Basically the actuator is
made up of servo valve or pump that drives a certain liquid (oil) with appropriate vis-
cosity into a hydraulic ram (cylinder). The driven quantity of liquid moves vertically
the cylinder in both senses (4.3b). The displacement of the cylinder leads to the varia-
tion of a screw which is attached to the upper back up cylinder. The backup cylinder is
in direct contact with the upper work roll and thus variation in the work roll gap.
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Figure 1: Schematic diagram of a two-mill stand configuration.

trol concept for the HGC (hydraulic gap control) in rolling
mills can be found in [11], [18]. Maybe, these restrictions
and features of the plant give a possible explanation of the
fact that in the rough industrial environment the realization
of non-linear control concepts is not so popular as the the-
ory for non-linear control design would promise. Moreover,
we have the experience from several practical applications
that a straight-forward application of the available non-linear
control design strategies to practical problems only succeeds
in very rare cases. In this sense also in this paper the flat-
ness (see, e.g., [5], [20], [3], [15]) based thickness control
concept requires some additional considerations in order to
be practically feasible. Throughout the paper we will try to
elaborate the details of the controller design in such a way
that the reader, who is not so familiar with rolling processes,
will also understand the proposed methods.

Another important aspect, which has to be taken into ac-
count, is that the proposed control concept can easily be im-
plemented and realized by the commissioning engineer and
the start-up time of the mill can be kept to a minimum. This
requires that the control concept is extensively tested in ad-
vance on a mill simulator, which contains a much more de-
tailed model than the model which serves as a basis for the
controller design. In the mill simulator all the ”dirty” effects,
like the non-negligible dynamics of the sensors and actua-
tors, the quantization, the transducer noise, the sampling pro-
cess, stick-slip friction effects etc. have to be included and if
possible, the constitutive parameters have to be adjusted by
means of measurement results.

The paper is organized as follows. In Section 2 the var-
ious components of the mathematical model of a two-stand

cold rolling mill with two four-high stands and a hydraulic
adjustment system acting on the upper backup roll will be
presented. This configuration has the advantage that on the
one hand it covers all the essential non-linear coupling ef-
fects and on the other hand the complexity of this model still
allows to understand the underlying physical structure. The
description of the material deformation is based on the roll
force model of Bland, Ford and Ellis for cold rolling with
pure plastic deformation, see [6], [2] and [7]. Section 3 is
devoted to the thickness control concept, which consists of
an inner control loop for the hydraulic servo compensation
and an outer control loop for the thickness and tension con-
trol. The thickness and the tension controller are designed on
the basis of a flatness approach which automatically yields to
a natural decoupling between an average specific interstand
tension and the strip exit thickness. Some simulation results
for the considered two-stand mill configuration on the mill
simulator are presented in Section 4 and the last section, Sec-
tion 5, contains some conclusions.

2 Mathematical Model

Typically, rolling mills consist of several mill stands with a
pay off reel on the entry side and a tension reel on the exit
side. In the case of continuous cold rolling mills in combi-
nation with a pickling line on the entry side the pay off reel
is replaced by a bridle roll. For the sake of clearness we
will subsequently restrict our considerations to two stands
with the associated entry and exit section because this gives
the smallest unit, which contains all the interconnection phe-
nomena. However, without much effort the presented theory

(a) Mill stand (b) Hydraulic Ram

FIGURE 4.3 – Schema of the actuator in mill stand

The actuator system is a complex hydro-mechanical-electrical system. In [KNSA00,
FWW02], the servo valve or pump is modeled as a 2nd order system. Also according
to the fluid mechanical relations, the hydraulic ram is modeled as 2nd order non-linear
system. Thus the actuator model is at least a 4th order non-linear system. For that, the
industrial service in IRSID - USINOR (previous steel company fused in ArcelorMittal
after its emergent in 2006) has obtained a reduced actuator model by identification and
experimental studies given in [SLM97]. The obtained model is a 2nd order linear system
for the ith stand actuator with proper frequency ωAi and a damping parameter ξAi . The
state space model of the actuator is given below

d

dt

[
Si
Ṡi

]
=

[
0 1
−ω2

Ai
−2ξAiωAi

] [
Si
Ṡi

]
+

[
0

KAiω
2
Ai

]
uAi , (4.1)

where Si is stand i work roll position. It can be seen also as roll gap variation size
during the versicle displacement of work rolls. uAi is the ith actuator input representing
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4.2. Description of the Tandem Stand

the voltage applied to the servo valve. ξAi is the damping coefficient. ωAi is the roper
pulsation. KAi is the steady state gain.

4.2.2 Stand Motor

In each stand, the strip passage is due to the rotation of work rolls in opposite di-
rections as shown in figure 4.1. The rolls are driven by an electrical motor. In TCM
modeling [GP94, AMC12, PS11], mostly it is considered as a 1st order system. In order
to have a more precise idea, a technical exchange with the production service in Ar-
celorMittal - Florange was made to collect as much information as possible about this
block. The stand motor is a direct current (DC) separately excited motor of high nomi-
nal power (2MW ). The model of the motor given by the support service is depicted in
Figure 4.4

K1

rad/s→ tr/min

-
+ K2

Kp

1
Ti.s

+
+ K3 -

+
1
Ra

KT +
- 1

J.s

K1

rad/s→ tr/min

uMi

(rad/s) −

−

ωi (rad/s)

Ke

TLi

FIGURE 4.4 – Stand motor block diagram

In this figure, the constant K1 is a conversion parameter from rad/s to tr/min. This
conversion is necessary due to the existence of an internal PI controller inside the motor
represented by the gains Kp and Ti. The internal controller is accompanied by pre and
post gains needed for signal scaling conversion, which are K2 and K3 respectively. KT

is the torque constant and Ke is the back electro-motive force constant. This model
is an approximation taking into account the following standard assumptions, that we
detail as follows. Denote La the equivalent armature inductance, Ra the equivalent
armature resistance, J the motor inertia and b the viscous damping friction. The first
assumption is that the electrical time constant τe = La/Ra is neglected with respect to
the mechanical time constant τm = J/b. The second one is that the ratio b/J is too small
and negligible. These approximations eliminate the inductance La and the damping
friction b in motor modeling. Finally by writing down the equation relating the input to
the outputs, the state space model of the stand imotor is obtained in the representation
below

d

dt

[
ωi
IMi

]
=

[
−K1K2K3KTKp+KTKe

JRa

K1K2K3KT
JRaTi

−1 0

] [
ωi
IMi

]
+

[K1K2K3KTKp
JRa

1

]
uMi

+

[
− 1
J

0

]
TLi ,

(4.2)
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where ωi is the rotation speed of motor i, IMi
is the integral dynamic present in ith

motor internal controller. uMi
is the motor input representing the voltage applied on

the stator terminals, and TLi is load resistive torque. All numerical values of motor
parameters are found depending on its data sheet.

4.2.3 Yield Stress Model

Yield stress is a physical quantity that reveals the hardness of material. During
cold rolling, the strip thickness is reduced and thus the hardness of the exit strip is
increased. Within the gap between work rolls, metal sheet is deformed as shown in
Figure (4.5) and the yield stress increases.

Less	hardened
	entry	strip

More	hardened
	exit	strip

Untitled Diagram.xml https://www.draw.io/

1 sur 1 06/01/2018 à 15:59

FIGURE 4.5 – Schema representing the roll bite zone

The rolling force, rolling speed, entry and exit tensions, contact friction, entry thi-
ckness and entry yield stress are all factors that impact directly the resulted exit yield
stress of the output strip. In the available researches and articles on modeling of this
quantity [PL91,Wan02,DMS+13], several models have been investigated to it. Each ex-
pert tries to establish certain relation between the mentioned factors and the exit yield
stress. It seems that for each one a fitting curve method is used to fit some distributed
points determined by physical tests, added to some corrective constants. Also several
namings are given to this quantity such as hardness, yield compressive stress, compres-
sive yield strength, flow stress, strip deformation resistance. All the provided models
are non-linear and depend on constant coefficients which are determined statistically
with the help of physical tests applied on the produced steel. These models are func-
tion of both plastic strain ε and plastic strain rate ε̇ where the expression of the latter
two quantities depends on strip thickness and the relative thickness reduction during
its passage. The yield stress model used in ArcelorMittal Maizières is called SMATCH
Law model. It depends also on statistical determined constants and function of strains.
In order to present this model quantitatively, some quantities and notations are to be
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4.2. Description of the Tandem Stand

identified. For the ith stand, denote k1,i and k2,i the entry and exit yield stress respec-
tively. By sequence, k1,i is the entry strip yield stress and k2,i is for the exit one. The
subscript 1 refers to the entry values, while subscript 2 is for the exit value. Note that
these subscripts will be used later for several physical quantities. The expression of the
exit yield stress k2,i is given below

k2,i(εp) = (λ1 + λ2εp)
[
1− λ3e

−λ4εp
]

+ λ0 (4.3)

where λ0, λ1, λ2, λ3 and λ4 are constants determined statistically for each class of steel
coils. Note that steel coils are categorized according to their mechanical characteristics
related to the manufacturing material composition. εp is the equivalent plastic strain
given in the expression below

εp = ln

(
h0

h2,i

)
, (4.4)

where h0 is the annealed thickness (thickness of strip entering TCM). h2,i (respecti-
vely h1,i) is the strip exit (entry) thickness of stand i . The strip entering stand i have
same yield stress of that exiting stand i − 1, which leads consequently to the equality
k1,i = k2,i−1.

4.2.4 Sims’ Gauge Relation

During strip rolling, the frame body of the mill stand stretches. The force-mill stretch
characteristic curve has a special form. It is non-linear for small rolling forces, but
for high forces which is the case of cold rolling, it is linear. The major part of the
curve is approximated by a linear slight line of slope M denoted mill modulus, and
horizontal intercept S0. These linearized curves are called BISRA measurements. Ba-
sed on this curve, a linear approximation is given to estimate the strip exit thick-
ness [Rob78,Sim54]. Sims [SA52] has expressed the exit thickness h2,i by an affine rela-
tion given in (4.5) depending on the vertical position Si of upper work roll (work roll
gap variation) and the total rolling force Fi

h2,i = S0 + Si +
Fi
M
. (4.5)

4.2.5 Mass Flow Conservation

During the passage of the strip, the transferred material quantity is conserved. In
order to reach the final mass conservation law, it is sufficient to start by the hypothesis :
the entry mass flow equals to the exit one. Also assuming that both entry and exit strip
have same homogenous material density, and the width of strip does not change after
rolling. The resulting conservation law is given by

h1,iV1,i = h2,iV2,i, (4.6)

where V1,i and V2,i are respectively the entry and exit strip speed in stand i.
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4.2.6 Strip Exit Speed
Strip exit speed depends precisely on the motor’s rotational speed. At the exit of

the roll bite, the strip is dragged out (due to tension force) by the stand coming after.
The strip slips forwardly with a speed V2,i slightly larger than that of the work roll
periphery. The expression of this speed [Rob78,PS11] is given in the following equation

V2,i = VMi
(1 + fi), (4.7)

where VMi
= Riωi is the peripheral work roll speed, Ri is the work roll radius, and fi is

the absolute forward slip.

4.2.7 Interstand Tension
The transfer of strip from a stand to another is due to the existence of dragging ten-

sion forces between each two consecutive stands. The work roll speeds impact directly
the value of these tensions, so the user follows carefully their variation to avoid strip
rupture or deformation. In this section, we deal with the tensile stress denoted σi,i+1,
that is the tension force per unit section. The tension force denoted Ti,i+1 will be obtai-
ned by multiplying the tensile stress by the cross section of the strip. Hook’s law in the
dynamic case leads to

d

dt
σi,i+1 = λi,i+1 (V1,i+1 − V2,i) , (4.8)

where σi,i+1 is the tensile stress in the strip passing from stand i to stand i + 1. The
parameter λi,i+1 is a constant related to the stiffness of material, defined by

λi,i+1 =
Em
Li,i+1

, (4.9)

where Em is the Young’s modulus of steel, also Li,i+1 is the interstand fixed distance
between the stand i and i + 1. Note that with the usage of notation we have σi,i+1 =
σ2,i = σ1,i+1, where σ2,i is the stand i exit tensile stress and σ1,i+1 is the stand i+ 1 entry
tensile stress. The tension force can be approximated by the expression (4.10) assuming
that strip has a constant width w and a nominal thickness h̄2,i between stand i and i+1

Ti,i+1 = h̄2,iwσi,i+1. (4.10)

4.2.8 Interstand Transport Delay
While metal strip passes from one stand to another, it covers the interstand distance

Li,i+1 with a speed Vi,i+1(t). This leads to the presence of transport state dependent
delays denoted τi which are time dependent ones. These delays are expressed by

τi(t) =
Li,i+1

Vi,i+1(t)
, (4.11)

where i ∈ {1, 2, 3, 4} refers to the strip exit stand, in 5 stand mill we have 4 interstand
delays. Based on the definition of this time delay, the relation between the strip exit
thickness h2,i of stand i and the strip entry thickness h1,i+1 of stand i+ 1 is given by

h1,i+1(t) = h2,i(t− τi(t)), (4.12)
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Denote τ(t) =
[
τ1(t) τ2(t) τ3(t) τ4(t)

]
, the delay vector in this process. The inter-

stand strip speed Vi,i+1 varies around its nominal value, this variation may be due to
certain perturbations or error regulations. However its value Vi,i+1(t) is still limited and
bounded by a minimum value denoted

¯
Vi,i+1 6= 0, and by a maximum value V̄i,i+1 6= 0.

Consequently this leads to upper and lower bounds of the variable time delay τi. These
boundaries are given in the expression below

Li,i+1

V̄i,i+1︸ ︷︷ ︸
¯
τi

≤ τi ≤
Li,i+1

¯
Vi,i+1︸ ︷︷ ︸
τ̄i

, (4.13)

Denote the delay upper bound τ̄i = Li,i+1/
¯
Vi,i+1 and lower bound

¯
τi = Li,i+1/V̄i,i+1,

this means that the variable time delay varies within the interval [
¯
τi; τ̄i]. Knowing the

interval of variation of these delays helps in the study of system robustness. To know
more about these delays, it is important to study their variations. A significant term to
be examined is the delay time derivative denoted τ̇i(t) = dτi(t)/dt. The analysis of the
derivative gives an idea about its speed of variation. The expression of τ̇(t) is given
below

τ̇i = −Li,i+1

V 2
i,i+1

ai,i+1, (4.14)

where ai,i+1 = V̇i,i+1 is the acceleration of the strip during its passage from a stand
to another. The support service have mentioned in the specifications that both motor
acceleration and deceleration are bounded. The acceleration and deceleration of the
strip depends on that of the work rolls and thus they are bounded as well. This means
that the delay derivative τ̇i is also bounded.

An important condition concerning delay derivative is to be discussed. Imagine
that the strip between stands is sampled into cross-section elements called slices. While
the strip moves forward, there is no recoiling or back fold of the strip. Thus all strip
slices arrive to the next stand in the same order they have left the previous stand. The
order of slices is conserved, and no overlapping between them. Consider a strip slice
denoted s1 arriving to stand i+1 at instant t1, this means it had left stand i at the instant
t1 − τi(t1). Consider now another slice denoted s2 lags s1 and arrives to stand i + 1 at
instant t2 such that t2 > t1. This means that s2 had left stand i at instant t2 − τi(t2), and
that due to the order conservation of slices s1 and s2 we have

t2 − τi(t2) > t1 − τi(t1), (4.15)

Moving the terms in the inequality (4.15) to one side, the obtained sum appears the
function

∫ t2
t1

(1− τ̇i) dt such that∫ t2

t1

(1− τ̇i) dt = (t2 − τi(t2))− (t1 − τi(t1)) > 0, (4.16)

The approximation
∫ t2
t1

(1− τ̇i) dt ≈ (1− τ̇i) δt is always true for a small δt = t2 − t1.
From the expression (4.16), this gives the condition below

1− τ̇i ≥ 0⇔ τ̇i ≤ 1. (4.17)
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Based on the result in (4.17) which is independent of the stand number, we conclude
that the derivative of all delays are upper bounded by 1. Nevertheless τ̇i will interfere
in the stability conditions that are to be introduced later on. Based on the expression of
these derivatives given in (4.14), we need to study quantitatively the variations of these
time functions. Motors have maximum speeds, which means that we can say so for the
strip speeds Vi,i+1. Based on the numerical values, we have calculated the maximum
time delay derivatives considering the worst case and we found that they are less than
1. Hence for the rest of the work, we are going to assume the following hypothesis in
the way that these time delay derivatives τ̇i are upper bounded by constants 0 < di < 1
such that

τ̇i(t) ≤ di < 1, ∀t ≥ t0. (4.18)

In the present work, the variable time delays will be kept in their time domain mathe-
matical form (i.e. time dependent functions). This not only creates a strong challenge
to be resolved in tandem control, but also it motivates the research to discover new so-
lutions for this type of process models. As a strong contribution here, TCM modeling
will conserve the delays in their explicit form given in (4.11). Exploring a solution for
this type of models will be very helpful not just for cold rolling of steel, but also for
other problems included in this type of modeling.

4.2.9 Rolling Force Model

The rolling force is the central development of the TCM model, it includes the cal-
culation of the specific rolling force, specific rolling torque and forward slip. The term
"specific" means the value per unit width. In this part, theory and iterative methods
collaborate to determine the values of these physical quantities taking place at the bite
between work rolls. The rolling force resembles the interaction between the actuator
and the strip which posses certain mechanical properties. Other variables contribute
in this interaction such as the entry and exit tensions in the presence of material fric-
tion between strip and work rolls as seen in figure (4.6). The contribution of work roll
speed is induced in the entry and exit tensions. In 1943, E. Orowan [Oro43] developed
a detailed systematic calculation of the roll pressure for hot and cold rolling. This was
the fundamental work for the existence of new generation of models in cold rolling.
In 1948, R. Bland and H. Ford [BF48] have presented the calculation of roll force and
torque in cold strip rolling in the presence of tensions. The model expressed in this
study was the base of their later models. It was necessary to do further corrections to
arrive to a more accurate model. The later corrections result in decomposing the rol-
ling force into plastic and elastic parts. The Bland and Ford force model is one of the
classical well known models in the field of cold rolling. Though it possesses high com-
plexity in its equations, it is widely used. It is composed of a set of algebraic and dif-
ferential equations for the calculation of rolling force, torque, forward slip and contact
arc length. A significant point to mention is that the number of elaborated equations is
less than the number of included variables, which led to a mutual coupled relation bet-
ween the deformed work roll radius and rolling force. The derived expressions of the
rolling force are too complicated as well as that for the rolling torque. The forward slip
was also expressed by more than one expression in the literature [Ged98, PS11]. Other
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FIGURE 4.6 – Schema representing the roll bite zone

models for cold rolling force where developed [Rob78, PL91], these ones assume seve-
ral hypotheses to reduce the complexity of these equations. These simplifications were
performed to reduce time calculation, taking into account the importance to maintain
an acceptable precision. In the present work, the dependent model to be used is called
Roll-Gap [DMS+13, DML14]. This model was developed initially through collabora-
tions between ArcelorMittal Maizières Research and academic partners. It is a protec-
ted code that works as a function which receives inputs and performs a number of
iterations to give its outputs.

Roll Gap Model

h1,i

h2,i

σ1,i

σ2,i

k1,i

k2,i

w

µi

Pi

Gi

fi

lc,i

FIGURE 4.7 – Inputs/Outputs of Roll Gap model
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Roll Gap is based on the well known slap method for the strip, in general it is a code
including a non-linear algebraic list of equations with some coupled variables. The
coded model is a protected one due to confidentiality reasons. Figure (4.7) represents
the I/O block of Roll Gap. The inputs are already introduced above, while the outputs
are the specific rolling force Pi of stand i. It is the force per unit width, thus the total
rolling force applied to strip of width w is Fi = wPi. Also Gi is the specific rolling
torque per unit width, the total rolling torque is TMi

= wGi which stands for the needed
motor torque to roll the strip. fi is the forward slip at the exit of roll bite. It is seen as
the difference between the strip exit speed V2,i and VMi

relative to the latter one. The
output lc,i represents the length of arc contact between each work roll and the strip
within the roll bite.

In the next section, a general multivariable model of TCM is to be presented. This
model depends on the set of mathematical systems presented above for the different
parts of mill stand. It is important to follow carefully the construction of this model,
since there are 5 typical stands in the mill.

4.3 TCM Multivariable Model

In this section, the MIMO model will be established. In our framework, the construc-
tion of the 5-stand TCM model is carried out by concatenating the differential and al-
gebraic equations that have been detailed in the previous section taking into account
the interactions among them. In order to complete the model, few additional improve-
ments are provided :

- Auxiliary dynamics are added to be ready for taking into account specific requi-
rements related to the controller design.

- The presence of delays is pointed out by replacing delayed thicknesses (all the
entry thickness, except the initial one which is considered as exogenous one) by
auxiliary inputs. In addition, to maintain the validity of the model extra rela-
tions impose that these auxiliary inputs are the delayed exit thicknesses of the
previous stands. This elegant presentation allows to decompose the difficulties
of the model and treat separately the delays.

- A compact descriptor form of the system will be reached, which is adequate
to represent the concatenation of the differential and algebraic equations. An
additional advantage of considering a compact and generic form is that it can
be used for others processes.

4.3.1 Exit Thickness Integral Action

One of the control aims is to ensure a zero static error of the ith exit thickness h2,i

with respect to its nominal value h̄2,i, that is the error denoted ∆h2,i = h2,i − h̄2,i, tends
to zero robustly with respect to perturbations. This property is guaranteed thanks to
an integral action.

∆h2,i = ∆Si +
w

M
∆Pi (4.19)
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The integral action added to the whole model, is described in (4.20){
d
dt
Ii(t) = ∆h2,i

Ii(t0) = 0,
(4.20)

where Ii(t) is the integral of the h2,i error and Ii(t0) is its initial condition at the initial
instant t0, i ∈ {1, 2, 3, 4, 5}. Adding the artificial variable Ii(t) to the TCM model is a
tool that help us to reach our the desired behavior of the system.

4.3.2 Multivariable Non-linear Descriptor Model
As it has been shown, the subsystems in TCM are expressed by either differen-

tial or algebraic delayed equations. Therefore the final general model is an algebraic-
differential non-linear time delay system. This class of mathematical models are also
called singular or descriptor systems. Singular systems are widely used in representing
complex processes such as cold rolling of steel [Dai89,Cam80b]. This representation en-
capsulates all internal inter-actions and coupling between sub-systems. The obtained
model will depend on both differential and algebraic state vectors, as well as input,
output and exogenous vectors. The general form of this model is given below in (4.21)[

I 0
0 0

]
d

dt
x(t) = f (x(t), u(t), µ(t), d(t), hen(t)) ,

y(t) = g (x(t), u(t)) ,

z(t) = h (x(t), u(t)) ,

hen(t) = Γ (hex(t), τ(t)) .

(4.21)

where the matrix denoted E = diag{In1 , 0n2} is a singular matrix such that rank(E) =
n1 < n. The input vector u(t) ∈ Rnu , includes motor and actuator inputs. The state vector
is x(t) = col{x1(t), x2(t)} ∈ Rn. The differential state vector x1(t) ∈ Rn1 contains dynamics
of interstand tensile stress, motor, actuator and exit thickness integral dynamics. The
algebraic state vector x2(t) ∈ Rn2 includes the rolling forces, rolling torques and forward
slips. The special structure of E comes from placing the differential vector x1 above
and the algebraic vector x2 below. The exogenous vector d(t) ∈ Rnd includes the entry
annealed thickness, and TCM entry and exit tension stresses. The measured output vector
y(t) ∈ Rny includes all measured quantities in the TCM process such as tension forces,
rolling forces, work roll speeds... etc. Entry thickness vector hen(t) ∈ Rnh is the vector
representing the entry thicknesses for all stands except the first one. Exit thickness vector
hex(t) ∈ Rnh includes the exit thicknesses of all stands except the last one. Friction vector
µ(t) ∈ Rnµ includes the frictions between strip and work rolls in all stands. Complete
output vector z(t) ∈ Rnz which includes all outputs in TCM process, where some of
them are not measured in reality. Each vector size will be given in the description of the
associated vector. The non-linear function f represents the evolution of the non-linear
singular system, while the non-linear function g represents the measured outputs in the
system. The function h represents all outputs in the system including non-measured
ones. The function Γ is a delay function, which lags the ith element of hex(t) by the ith

element of τ(t) (i.e. τi(t)) and affects it to the ith element of hen(t).
This facilitates the representation of TCM model (4.21).
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- State vector : The state vector x of the above model includes both differential
state vector x1 and algebraic state vector x2. Each stand i has a differential state-
part x1,i and an algebraic state-part x2,i. The concatenation of these parts build
up both vectors x1 and x2. The differential state-part x1,i contains the dynamics
of its motor, actuator, exit tensile stress and exit thickness integral. The indexed
form of the differential part of the first 4 mill stands (i = 1 . . . , 4) is given in (4.22)

x1,i =
[
σi,i+1 ωi IMi

Si Ṡi Ii
]T
. (4.22)

As the 5th stand is the last one, there is no tension force after it. Thus the dif-
ferential state-part of this stand contains no tensile stress. So its form is given
in (4.23)

x1,5 =
[
ω5 IM5 S5 Ṡ5 I5

]T
. (4.23)

Concatenate the differential state-parts in one vector, we obtain the vector x1

in (4.24)
x1 =

[
xT1,1 xT1,2 xT1,3 xT1,4 xT1,5

]T
. (4.24)

The algebraic state-part x2,i depends on the chosen rolling force model. Since
the numerical Roll-Gap model is adapted in this work to express the rolling
force, the algebraic state-part will contain only its outputs whom are the rolling
specific force, specific torque and forward slip. The algebraic state-part x2,i as
well as the algebraic state vector x2 is given in (4.25)

x2,i =
[
Pi Gi fi

]T
; x2 =

[
xT2,1 xT2,2 xT2,3 xT2,4 xT2,5

]T
. (4.25)

Finally concatenate both vectors x1 and x2 of size n1 = 29 and n2 = 15 respecti-
vely to get the state vector x. The size of the state vector is n = n1 + n2 = 44.

- Input vector : It includes the inputs of TCM motors and actuators. The input of
the motor uMi

and that of actuator uAi in the ith stand are put in the stand-input
vector ui = col{uMi

, uAi}. The concatenation of the stand-input vectors gives out
the input vector u in (4.26) of size nu = 10.

u2,i =
[
uT1 uT2 uT3 uT4 uT5

]T
. (4.26)

- Friction vector : This vector characterizes the friction variation in the five stands.
The friction is due to the contact between the work rolls and the strip passing
through them. Several expressions were given to friction parameter [Ged98,
Wan02,PS11] depending on constant coefficient, work roll deformed radius, rol-
ling speed, material hardness and others. Until the moment, there is no model
expressing the friction parameter in function of the mentioned variables. Thus
the friction parameter was considered as an external perturbing parameter. This
vector denoted µ of size nµ = 5 is given by

µ =
[
µ1 µ2 µ3 µ4 µ5

]T
. (4.27)

- Exogenous vector : During cold rolling, the mill is submitted to a strip of annea-
led thickness h0 (Note that by stand indexing, h1,1 = h0). The strip traverses the
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five stands and is handled either by the strip accumulator (before 1st stand in the
case of continuous rolling) or by uncoiler (in the case of push-pull rolling). This
impose a mill entry tension denoted Σ1 at the entry of the 1st stand. At the exit
of the last stand, the strip is dragged by a tension denoted Σ2. These tensions
rarely variate from their nominal values. These external signals are grouped in
the vector d of size nd = 3 given by

d =
[
h0 Σ1 Σ2

]T
. (4.28)

- Entry and Exit thickness vectors : The time delays between mill stands are seen
in the strip thicknesses. The strip entry thickness h1,i+1 is that exiting the pre-
vious stand h2,i but delayed by the time dependent function τi. This permits to
establish the following relation in (4.29)

h1,i+1(t) = h2,i (t− τi(t)) , (4.29)

A 5-stand mill posses 4 time delays, and thus both entry and exit thickness vec-
tors, denoted hen and hex respectively, contain 4 signals each (i.e. nh = 4). These
vectors can be written as in (4.30)

hen =
[
h1,2 h1,3 h1,4 h1,5

]T
; hex =

[
h2,1 h2,2 h2,3 h2,4

]T
. (4.30)

- Measured output vector : In TCM, some quantities are difficult to be measu-
red such as strip exit speed V2,i or exit thickness h2,i. Due to the complexity of
process, some factors (lubrication, temperature...etc) prevent measuring physi-
cal values or lead to a noised measurements. This differs from tandem site to
another, some companies have equipped the installation with full sensor net-
work that is capable of providing complete measures. In the framework of this
study, the production service has provided the available measurement, they are
grouped in the measured output vector denoted y. The measurements in each
stand is given in the output sub-vector yi listed in (4.31)

y1 =



h2,1

V2,1

T1,2

VM1

S1

F1

TM1


; y2 =


T2,3

VM2

S2

F2

TM2

 ; y3 =


T3,4

VM3

S3

F3

TM3

 ; y4 =


T4,5

VM4

S4

F4

TM4

 ; y5 =


h2,5

V2,5

VM5

S5

F5

TM5

 (4.31)

The concatenation of these sub-vectors gives the output vector y, with ny = 28
- Complete output vector : Due to the absence of several needed measurements

in the output vector y, the signals needed to be examined regularly during strip
rolling are grouped in the complete output vector z. Important variables such
as strip exit thickness and forward slip are so important to be followed and seen
at each instant. Their absence imposes to establish a larger set of outputs to be
observed or estimated later on. The whole outputs in each stand is grouped in
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the vector zi given in the list below (4.32)

z1 =



h2,1

V2,1

T1,2

VM1

Iω1

S1

Ṡ1

I1

F1

TM1

f1


; z2 =



h2,2

V2,2

T2,3

VM2

Iω2

S2

Ṡ2

I2

F2

TM2

f2


; z3 =



h2,3

V2,3

T3,4

VM3

Iω3

S3

Ṡ3

I3

F3

TM3

f3


; z4 =



h2,4

V2,4

T4,5

VM4

Iω4

S4

Ṡ4

I4

F4

TM4

f4


; z5 =



h2,5

V2,5

VM5

Iω5

S5

Ṡ5

I5

F5

TM5

f5


(4.32)

The concatenation of the sub-vectors zi build up the complete output vector z of
size nz = 54.

4.4 TCM Linearized Model

In the previous section, a non-linear singular system (4.21) is established describing
the process of cold rolling. In this section, we are going to deal with the non-linearity
of the model and how the TCM model will be simplified in order to be adapted for
the control synthesis. For that it is usual to define the steady state or equilibrium point
for the TCM non-linear system. As it has been described in section 4.2, the steel coils
are categorized according to their mechanical and chemical properties. Each coil pos-
sess a nominal profile characterized by its nominal annealed thickness h̄1,1, nominal
yield stress (hardness) k̄1,1, and of nominal width w̄. The operator chooses nominal
interstand tensions T̄i,i+1 and forward slips f̄i to design the suitable nominal mode of
operation. This mode results in nominal values of rolling force, torque, exit strip speed
and motor speeds. Define the nominal state vector x̄ for the nominal vectors ū, d̄, µ̄ and
h̄en satisfying the following list of equations given in (4.33)

0 = f
(
x̄, ū, µ̄, d̄, h̄en

)
,

ȳ = g (x̄, ū) ,

z̄ = h (x̄, ū) .

(4.33)

During rolling, the system deviates around this point due to the real time errors
in the input exogenous or friction vector. Here comes the control task to maintain the
system in its equilibrium point, and reject any error or perturbation. The linearization
of the model in (4.21) will be in the neighborhood of this nominal point which is rela-
ted to the rolling scenario of a specified coil. Let us define the notations which will be
used later on, denote θ(t) any physical variable in the system (i.e. speed, force, thick-
ness, ...etc). Denote θ̄ the nominal value of the arbitrary variable θ(t). The relative error
denoted ∆θ(t) defined by

∆θ(t) = θ(t)− θ̄, (4.34)
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In equation (4.34), ∆θ can also be a vector (i.e. x, u, µ, ...etc) expressing the relative error
between the vector instantaneous value and its fixed nominal value.

The TCM model (4.21) has a compact explicit form. Around a nominal point, this
model is linearized to obtain a unique linear model. Nevertheless, in practice and from
the numerical point of view, the linearization should be done using a precise method
that takes into account the variety of nature of the whole system components. The
delicate points are as follows

(i) Several subsystems are already linear. This is the case of the motor, actuator and
integral action.

(ii) "Simple" explicit non-linearities can be linearized analytically using the first order
Taylor expansion. This technique is applied for the interstand tensile stress given
in its detailed form (4.8). This form is obtained by using the mass conservation
law in (4.6) to express the strip entry speed and the exit strip speed given in (4.7).

1

λi,i+1

d

dt
σi,i+1 =

h2,i+1

h1,i+1

(1 + fi+1)VMi+1
− (1 + fi)VMi

(4.35)

The first order Taylor expansion of the tensile stress is

d

dt
∆σi,i+1 = Aσi,i+1

∆h1,i+1 +Bσi,i+1
∆h2,i+1 + Cσi,i+1

∆fi+1

+Dσi,i+1
∆VMi+1

+ Eσi,i+1
∆fi + Fσi,i+1

∆VMi

(4.36)

where the involved constants are given in Table (4.1).

Aσi,i+1
= −λi,i+1

h2,i+1

h
2

1,i+1

(
1 + f i+1

)
V Mi+1

Bσi,i+1
= λi,i+1

1

h1,i+1

(
1 + f i+1

)
V Mi+1

Cσi,i+1
= λi,i+1

h2,i+1

h1,i+1

V Mi+1
Dσi,i+1

= λi,i+1
h2,i+1

h1,i+1

(
1 + f i+1

)
Eσi,i+1

= −λi,i+1V Mi
Fσi,i+1

= −λi,i+1

(
1 + f i

)
TABLE 4.1 – Constants of the linearized tensile stress expression

(iii) "Complex" implicit non-linearities are handled in practice by using iterative algo-
rithms. This is the case of the rolling force model, the Roll-Gap model, for which
a numerical code (hidden protected code for confidentiality reasons) is provided
by ArcelorMittal Maizières - Down Stream Service. The black box presented by
the diagram of Figure (4.7) is only available statically via a code. The variations
of the entry and exit yield stress (k1,i and k2,i respectively) are considered negli-
gible and small enough to not affect the resultant rolling force and torque. Writing
down the first order Taylor expansion to express the Roll-Gap outputs in linear
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expressions function of its inputs. The obtained expressions are given below

Pi = P̄i +
∂Pi
∂h1,i

∆h1,i +
∂Pi
∂h2,i

∆h2,i +
∂Pi
∂σ1,i

∆σ1,i +
∂Pi
∂σ2,i

∆σ2,i +
∂Pi
µi

∆µi︸ ︷︷ ︸
∆Pi

,

Gi = Ḡi +
∂Gi

∂h1,i

∆h1,i +
∂Gi

∂h2,i

∆h2,i +
∂Gi

∂σ1,i

∆σ1,i +
∂Gi

∂σ2,i

∆σ2,i +
∂Gi

µi
∆µi︸ ︷︷ ︸

∆Gi

,

fi = f̄i +
∂fi
∂h1,i

∆h1,i +
∂fi
∂h2,i

∆h2,i +
∂fi
∂σ1,i

∆σ1,i +
∂fi
∂σ2,i

∆σ2,i +
∂fi
µi

∆µi︸ ︷︷ ︸
∆fi

,

(4.37)

The coefficients in (4.37) are the partial derivatives of each output with respect to
each input. To obtain them numerically we assume the standard approximation
meaning that it is equal to the related rate of change. For instance

∂Pi
∂h1,i

=
Pi − P̄i
∆h1,i

∣∣∣∣
∆h2,i=0,∆σ1,i=0,∆σ2,i=0,∆µi=0

(4.38)

where the other inputs are set to zero. The partial derivatives are obtained by a
set of applications of the Roll-Gap code for elementary inputs. This approach has
been validated numerically by comparing the non-linear Roll-Gap curves with
the linearized expressions. Figure (4.8a) shows the normalized relative percen-
tage variation ∆P1 with respect to the normalized relative percentage variation
∆h1,1, the tangent drawn at the origin which corresponds to the normalized re-
lative nominal point (h̄1,1, P̄1). The discontinuities present in the blue curve are
related to the numerical errors related to the convergence criteria in the Roll-Gap
algorithm. The periodic repetition of this discontinuity proves that this error is
neglected and not to be considered. It does not effect the results since they are too
small in amplitude.
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FIGURE 4.8 – 2-D Roll-Gap linearization validation
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The curves shown in figure (4.8a) of the Roll-Gap curve ∆P1 = fRoll Gap (∆h1,1) in
blue and the linearized model in black, validates that the linearization is accep-
table. The non-linear model (blue) is quite close to the linearized one (black) in
the neighborhood of the nominal operation. It is important to keep in mind that
this approximation is valid just around the nominal point. An error around 2% in
the linearized model for a 6% variation in h1,1 is obtained as seen in figure (4.8b).
This means that this error is small and the linearized model can replace the non-
linear one. To see the validation in clearer side, a simultaneous variation of two
inputs is applied to Roll-Gap to examine the surface 3D distance between the
non-linear surface and linear surface. The inputs h1,1 and µ1 only are disturbed
simultaneously around their nominal values, the output P1 is examined for both
Roll-Gap and linearized P1 expression. The relative nominal surface percentage
variation of both models are traced in figure (4.9a). The colored surface represents
the output of Roll-Gap while the green plane surface represents the linearized
model.
From the 3D plot, it is clear that the green plane superposes the colored surface
in the central part and deviates from it at the edges. A 6% relative percentage
variation in the entry thickness h1,1, and 40% relative percentage variation in the
friction µ1 are introduced. The error at the edges is not more than 3% at most in
∆P1 as seen in figure (4.9b). This means that once again the linearization of the
force non-linear model is acceptable and valid.
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FIGURE 4.9 – 3-D Roll-Gap linearization validation

By this section, the non-linearities in the TCM process model are linearized and
their validation are presented. In the next section the linearized multivariable mo-
del of TCM will be given.

4.4.1 TCM Time Delay Singular System

The model given in (4.21) is a singular non-linear multivariable one which contains
variable time delays implicitly. The presence of time delays (4.11) in equation (4.29)
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comes from the relation between the entry thickness h1,i+1 of stand i + 1 and the exit
thickness h2,i of the previous stand as expressed by the delay function Γ. Based on
the Sims’ mill stretch expression given in (4.5), the relation between the relative entry
thickness ∆h1,i+1 and the relative delayed exit thickness ∆h2,i is the following

∆h1,i+1(t) = ∆h2,i (t− τi(t)) = ∆Si (t− τi(t)) +
w

M
∆Pi (t− τi(t)) (4.39)

Recall that the differential state ∆Si is an element of the vector x1,i and the algebraic
state ∆Pi is an element of x2,i. Hence ∆Si and ∆Pi are elements of x1 and x2 respecti-
vely. Therefore the entry thickness ∆h1,i+1(t) can be written in function of the delayed
state vector x (t− τi(t)) as it is given below

∆h1,i+1(t) = ∆h2,i (t− τi(t)) = Λi∆x (t− τi(t)) , (4.40)

where Λi is a matrix of appropriate dimension that transforms the equation (4.39) into a
matrix form. This matrix form is important to transform the implicit delayed variables
into explicit delayed vectors in the linearized system.

Using the linearizations given in (4.36) and (4.37) with the matrix explicit form of
the entry thickness vector given in (4.40), the TCM linearized model expressed by the
relative values is given below

E
d

dt
∆x(t) = A0∆x(t) +

4∑
i=1

Ai∆x (t− τi(t)) +Bu∆u(t) +Bd∆d(t) +Bµ∆µ(t),

∆y(t) = Cy∆x(t),

∆z(t) = Cz∆x(t),

∆x(t0 + ξ) = φ(t0 + ξ) ; ξ ∈ [−τmax; 0] ; φ ∈ Cτmax,n = C ([t0 − τmax, t0] ,Rn)
(4.41)

where the matrices Ai, E ∈ Rn×n, Bu ∈ Rn×nu , Bd ∈ Rn×nd , Bµ ∈ Rn×nµ have the
following specific structure related to the decomposition of x in function of x1 and x2

basis

E =

[
In1 0
0 0

]
, Ai =

[
Ai1 Ai2
Ai3 Ai4

]
, Bu =

[
Bu,1

0

]
, Bd =

[
0
Bd,2

]
, Bµ =

[
0
Bµ,2

]
, (4.42)

Also the fourth line in the equation (4.41) represents the history of the time delay singu-
lar system, this completes the definition of our system by introducing its initial condi-
tion. The function φ(t) = col{φ1(t), φ2(t)} ∈ Rn is induced by the decomposition of x.
The maximum delay τmax = maxi{τ̄i}where τ̄i is given in (4.13). Additional conditions
allowing φ (·) to be compatible, that is ensuring the existence and the uniqueness of a
continuous trajectory will be given later on.

In TCM non-linear model (4.21), the functions g and h are linear and represented
respectively by the matrices Cy ∈ Rny×n and Cz ∈ Rnz×n. These functions generate res-
pectively the output vectors y and z from the state vector x only, they are independent
from the input or exogenous vectors. Figure (4.10) shows the inputs and outputs of
the TCM linearized model looped with delayed exit thicknesses. These delayed thick-
nesses are seen as delayed states in the TCM linearized model.
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FIGURE 4.10 – TCM Linearized Model

4.5 Current Multi-loop PID Control for Tandem Process

Today the tandem cold rolling is controlled by means of multi-loop SISO (Single
Input Single Output) PID controllers. In industrial processes the majority of control-
lers are PID’s since they present a good range of advantages. The simplicity of their
installation, cheap cost, easiness in tuning and maintenance explain their wide use in
industry. For a complex process containing several actuators and numerous sensors
such as cold rolling, it is possible to adjust a control strategy by several independent
local loops with PID controllers as seen in the Figure (4.11). This strategy is useful as
long as the internal interactions in the system are in the safe range. For tandem mill,
the actual controllers show good performance regarding the requested industrial spe-
cifications for steel manufacturing. In TCM, the stands are coupled through the strip
passing through the 5 pairs of work rolls in same time. The appearance of any error
(thickness, yield stress, or flatness) leads to disturb the stand receiving this error.

FIGURE 4.11 – Multi-loop PID Control Diagram

Since the PID local loops are independent, those in this stand will exert the ne-
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cessary effort to reject this error either by motor speed or by roll bite variation. This
provokes variations on strip speed and stand forward slip, result in variation in inter-
stand tensions with the pre and post stands. Due to the presence of coupling, the error
will be transmitted to other stands, especially if the rolling is done with high speeds
or in supple coils. The loops of other stands will begin to apply their regulation each
one independently no matter the error that can result from its own regulation. As a
result, a set of internal perturbations propagate through the chain, which may lead to
additional energy consumption and possible thickness and hardness errors. The SISO
controller is capable of realizing only one error, and actuate only one input. This means
that its effort has a perturbing effort on the other loops. On the other hand, the future
industrial objectives require an increase in the productivity rate keeping the same high
quality of steel. The interactions between stands become strong and no more negli-
gible. The generated perturbations between loops prevent reaching these goals, the
control loops attend their limits and are unable any more to compensate the transmit-
ted perturbations in the system. Though the PIDs are easy to be tuned, the presence
of several PID loops render the tuning to be hard and confusing. In addition, the first
stand a feed-forward is used to reject the errors in the entry annealed thickness as seen
in Figure (4.12). For the delay between the first two stands, a Smith predictor is used
(usually this predictor is used for the case of constant delays, here it is used for the
state dependent delay).

4.6 Conclusion

The tandem process is a complex process as it contains large number of physical
quantities. The equations explaining the variation and evolution of these quantities
are non-linear differential algebraic relations. The presence of variable time delays add
more difficulty to the process equations. The resultant TCM model is build up by grou-
ping the relations of all stands. The obtained non-linear system possess some difficul-
ties due to the coupled non-linear algebraic set of equations. This model is linearized
in the neighborhood of its nominal operating point, the linearization of some parts is
validated with small range of error. The form of the linearized TCM model is a singu-
lar time delay system. The final part introduced the current control methodology used
today in tandem mills. This control strategy has advantages and disadvantages which
require to upgrade it to new control design convenient to the tandem process and its
conflicts.

58



4.6.
C

onclusion

h2_4

V2_4	

V1_5

Delayed	h2_4

T45

Interstand	45

h2_3

V2_3	

V1_4

Delayed	h2_3

T34

Interstand	34

h2_2

V2_2	

V1_3

Delayed	h2_2

T23

Interstand		23

Rolling
Force	3

Rolling
	Force	2

Rolling	
Force	1 Rolling

Force	5

Rolling	
Force	4

T45 u_A_5

Tension	45
regulator

T34 u_A_4

Tension	34
regulator

T23 u_A_3

Tension	23	
regulator

T12 u_A_2

					Tension	12	
regulator

1
0.015625s			+0.25s+12Motor	5

1
0.015625s			+0.25s+12Motor	3						1

0.015625s			+0.25s+12Motor	2							1
den(s)

Motor	1							

h2_5

V2_5

Delayed	h2_5

Stand	5	delayed	
exit	thickness

h2_1	

V2_1	

V1_2	

Delayed		h2_1

T12

Interstand	12

h0

Annealed	
Thickness

h0

Stand	1										
entry	thickness					

T45

Interstand	
tension	45

T34

Interstand
tension	34

T23

Interstand	
tension	23

T12

Interstand	
tension	12

h2_1

								Stand	1								
			exit	thickness			

h2_1

Stand	1	
exit	thickness

h0

Speed

h1_1

Sigma1

Delay

S5

h1_5

T45

w5

F5

h2_5

V2_5

V1_5

Stand	5

S4

h1_4

T34

T45

w4

F4

h2_4

V2_4

V1_4

Stand	4

S3

h1_3

T34

T45

w3

F3

h2_3

V2_3

V1_3

Stand	3

S2

h1_2

T12

T34

w2

F2

h2_2

V2_2

V1_2

Stand	2

S1

h1_1

Sigma1

T12

w1

F1

h2_1

V2_1

V1_1

Stand	1

h2_5

w5_ref

u_M_5

dv4	[%]

AVC5

h2_1AVC1

Stand	1	exit	
thickness	regulator

T45

w4_ref

%V	AMC5

u_M_4

AMC4

h2_1

w1_ref

u_M_1

Stand	1	
exit	thickness	
regulator

h0 AMC1

Stand	1	entry	
thickness	regulator

1
1/50^2s			+2/50s+12Actuator	5						

1
1/50^2s			+2/50s+12Actuator	4							

1
1/50^2s			+2/50s+12Actuator	3							1

1/50^2s			+2/50s+12Actuator	2							
1

1/50^2s			+2/50s+12Actuator	1						

w2_ref

Motor	2	speed	reference w4_ref

Motor	4	speed	reference

w1_ref

4

w5_ref

Motor	5	speed	reference
w3_ref

Motor	3	speed	reference

1
0.015625s			+0.25s+12	Motor	4						

FIGURE 4.12 – Simulink schema of multi-loop PID control of TCM

59



Chapter 4. Tandem Cold Mill : Model and Current Control Strategy

60



Chapter 5

State Feedback Control for TCM
Process

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Existence and Uniqueness of Solution . . . . . . . . . . . . . . . . . . 62
5.3 Controller Synthesis Paradigm . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Formulation of Controller Synthesis as a Constrained Optimi-
zation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 Process Performance translated as a Quadratic Cost . . . . . . . 67

5.3.3 Stability and Performance Optimization via Lyapunov-Krasovskii
Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.4 Control solution of the Optimization Synthesis Problem . . . . 70

5.4 State Feedback Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.1 Controller Synthesis via LMI Problem . . . . . . . . . . . . . . . 71

5.4.2 Majorant Minimization . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.3 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 TCM Controller Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.1 Controller Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Introduction

In the previous chapter the linearized TCM model was established for a specified
operating point. This opens now the road toward the control synthesis. The objective is
to build up a multi-variable controller that takes into account the various TCM difficul-
ties and industrial needs. But in order to reach this goal, an efficient study and analysis
of the TCM linearized model is to be made regarding its form. In literature, stability
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analysis and control design for time delay systems is a problem of continuous inter-
est [Nic01,Ric03]. Although there exists already a wide literature on the analysis of sys-
tems affected by constant delays, there are many results related to dynamics affected
by distributed [Ver95,Gu03,XC04] and time varying delays [GCK03,Kha12,MVAN05].

In the present chapter, the problem of controller synthesis of time delay singular
system will be described in details. In section 5.2, an important discussion will be pre-
sented about the existence and uniqueness of the trajectory of this type of system class.
In section 5.3, a general multivariable control paradigm will be presented in a well
explained framework. This paradigm will be the generic framework for the present
chapter as well as for chapter 6, by considering several assumptions and choices that
are conditioned by the industrial constraints and specifications. Section 5.4 explains
this paradigm in the case where the state vector is completely available for the design
of the control law, and also provides a semi-definite algorithm to obtain the control
solution. Academic examples are proposed to support further discussions. Section 5.5
applies the contributions of section 5.4 in the case of TCM process, before providing
concluding remarks in section 5.6.

Remark 5.1 : To facilitate the reading of the following chapters, the relative quantity
∆θ will be simply denoted θ except in the figures labeling to avoid confusions.

5.2 Existence and Uniqueness of Solution

Before moving to the formulation of control synthesis problem, it is essential to
discuss important issues related to the solution of our treated time delay singular sys-
tem. The existence and the uniqueness of a solution of the TCM system given in (4.41,
4.42) with the delay conditions in (4.13, 4.18), is not always guaranteed due to the pre-
sence of the singular matrix E. In this section, we are going to determine sufficient
conditions on the initial condition φ (·) ensuring the existence and uniqueness of a
continuous trajectory of the system (4.41). Through studies on the solution of mathe-
matical systems, many contributions already exist on the existence and uniqueness of
solution for descriptor systems. According to [Cam80a,Dai89,XL06], the regularity and
free impulsiveness of the delay-free singular system ensure the existence and unique-
ness of its solution. In the case of singular systems with constant delays, as mentioned
in [XDSL02,XL06] the regularity and the free impulsiveness accompanied by a compa-
tible continuous initial condition φ (·) ensure the existence and uniqueness of the solu-
tion. The regularity and free impulsiveness are required to be able to locally propagate
the definition of a continuous trajectory. The compatible initial condition is required
to avoid jumps at the initial instant t0. This issue is known as the Initial Value Problem
(IVP). Inappropriate initial conditions can lead to jumps [HL93] which may propagate
through the solution due to delays. This may affect the uniqueness of the solution.

A classical way of proving the existence and uniqueness of continuous solution for
singular systems with constant delays is to reformulate the system as a Neutral Func-
tional Differential System with constant coefficients [XDSL02,XL06,Fri14]. However it is
not trivial to extend this approach to the case of descriptor systems with time varying
delays. The main difficulty is related to the fact that, in this case, the delay derivative is
not zero and supplementary terms appear in the neutral dynamics formulation. First
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of all, a generic result will present sufficient conditions for the existence and unique-
ness of a continuous solution for the general case of time delay singular system. In
a second step, a detailed discussion will be provided about adjusting the results of
Proposition 5.1 in order to be applied in the framework of TCM process. Necessary
arguments are also to be given therein. Define a generic case of time delay singular
system

E
d

dt
x(t) = A0x(t) +

q∑
i=1

Aix (t− τi(t)) +Buu(t) +Bww(t),

x(t0 + ξ) = φ(t0 + ξ) ; ξ ∈ [−τmax; 0] ; φ ∈ Cτmax,n = C ([t0 − τmax, t0] ,Rn)

(5.1)

where x ∈ Rn is the state vector. Also we have the input vector u ∈ Rnu as well as
the exogenous vector w ∈ Rnw . The state vector will be partitioned without loss of
generality such that x = col{x1, x2} as in the case of TCM system. Denote x1 the diffe-
rential sub-vector and x2 is the algebraic one. The matrices Ai, E ∈ Rn×n, Bu ∈ Rn×nu ,
Bw ∈ Rn×nw , have the following general structure

E =

[
In1 0
0 0

]
, Ai =

[
Ai1 Ai2
Ai3 Ai4

]
, Bu =

[
Bu,1

Bu,2

]
, Bw =

[
Bw,1

Bw,2

]
, (5.2)

This specific structure is considered to keep the same form as that of TCM system.
This permits us to make use of the later obtained general results directly. If it is not
the case of such structure, a regular impulse free system can be always written in this
form using change of basis to obtain the second equivalent form in [Dai89]. As we see,
the system contains q continuous time dependent delays where these delays τi(t) and
their derivatives τ̇i(t) are bounded such such that

0 <
¯
τi ≤ τi(t) ≤ τ̄i ≤ τmax,

τ̇i(t) ≤ di < 1.
∀i ∈ {1, . . . , q}, ∀t ≥ t0. (5.3)

The function φ represents the initial condition of the system.

Remark 5.2 : According to Definition 3.4, the pair (E,A0) in (5.2) can be shown that it is
regular and impulse free. These properties for the tandem system (5.1) can be guaran-
teed by proving that |sE −A0| 6= 0 and deg(|sE −A0|) = rank(E). The complexity here
lies in the large size of the system (n = 44). Using the MATLAB functions charpoly
and degree, this can be easily carried out. Note that the matrix A04 is non-singular ac-
cording to its numerical value, which is another proof that the pair (E,A0) is impulse
free following Lemma 3.3. Recall that if the pair (E,A0) is regular and impulse free,
this means that the corresponding time delay singular system has the same properties
as well.

For the purpose of studying the solution existence of system (5.1), we are going to
consider its isolated version (i.e. w = 0). The elements of the vector w represents the
exogenous external signals in the system, which we don’t know any thing about them
except their range of variations. Generally these inputs are the perturbations (in the
case of tandem process : stand 1 entry thickness, mill input and output tensions and
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friction variation) which are not available or known. Discontinuities on the algebraic
state x2(t) issued from the exogenous inputs are inevitable and can’t be compensated
by the control input generally. In the case where Bw,2 is not zero, we will impose that
w(t) = 0 ensuring that Bw,2w(t0) = 0 and thus we focus on the discontinuities gene-
rated by the system initial condition φ (·). For that we are going to study the existence
of system solution independently from these signals. Another assumption to be taken
here is that we are going to treat also the autonomous version of system (5.1). This is to
make use of the results already exist in the literature [XL06, Fri14, HB08, HL93], where
most of them if not all, are given for the case of isolated autonomous systems.

Based on the matrices structure given in (5.2), the regular impulse free isolated au-
tonomous system (5.1) can be written in the form of

ẋ1(t) = A01 x1(t) + A02 x2(t) +

q∑
i=1

2∑
j=1

Ai,j xj (t− τi(t)) ,

0 = A03 x1(t) + A04 x2(t) +

q∑
i=1

2∑
j=1

Ai,j+2 xj (t− τi(t)) .
(5.4)

with its initial condition

x1(t) = φ1(t), x2(t) = φ2(t), t ∈ [t0 − τmax, t0] . (5.5)

Substituting the initial condition φ(t) = col{φ1(t), φ2(t)} in the second equation of (5.4),
we obtain

0 = A03 φ1(t0) + A04 φ2(t0) +

q∑
i=1

2∑
j=1

Ai,j+2 φj (t0 − τi(t0)) . (5.6)

Based on the system description and properties, we can provide the following propo-
sition in the same reasoning in [Fri02] regarding the existence and uniqueness of its
trajectory.

Proposition 5.1 For any continuous function φ(t) = col{φ1(t), φ2(t)} that satisfies (5.6),
with 0 < τi(t) ∈ C1 [t0,∞) verifying (5.3), there exists a unique continuous function x(t)
defined on [t0 − τmax,∞) that satisfy the regular and impulse free system (5.4) on [t0,∞) and
initial condition (5.5).

The proof of this proposition is similar to the one in [Fri02] and [Fri14]. This same result
is also referenced in [HB08, HB09, HBXL09].

Proposition 5.1 indicates that the initial condition (5.5) of the isolated autonomous
regular impulse free delay singular system (5.4) must satisfy the algebraic relation
in (5.6). However, this algebraic relation changes for the case of forced system (i.e.
u 6= 0). According to the structure of matrix Bu in (5.2), the initial condition φ must
satisfy the following algebraic relation

0 = A03 φ1(t0) + A04 φ2(t0) +

q∑
i=1

2∑
j=1

Ai,j+2 φj (t0 − τi(t0)) +Bu,2u(t0). (5.7)

According to theorems 5.1 and 5.2 in [KM99], the input signal u(t) ∈ L1 [t0,∞). This
means implicitly that u(t) must be continuous over [t0;∞). The relation in (5.7) is a
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strong relation between the initial condition φ (·) and the control input u (·). This cou-
pling is a constraint that should be taken into account in the synthesis of the control
law. In practice, the dependency on the initial state x(t0) = φ(t0) must be avoided to
allow an offline synthesis. For this purpose, we will consider later on the framework
for which Bu,2u(t0) = 0.

Remark 5.3 :The condition (5.6) reveals an easier case where the effect of control input
at the initial instant u(t0) is absent. The provided algebraic condition is already pre-
sented in some studies such as [XDSL02,HBXL09,Fri14]. The compatibility of φ to this
relation is sufficient to ensure the continuity of the trajectory. On the other hand, the
algebraic relation in (5.7) is much more difficult to be respected. This is due to the pre-
sence of the term Bu,2u(t0) in the equation, which may lead to the presence of jumps in
the trajectory of the system.

The framework Bu,2u(t0) = 0 required to break the dependency between φ and u(t0)
may be ensured via two possibilities :

a) Concerning the specific application here for TCM model given in (4.41, 4.42), we
have Bu,2 = 0 which implies that Bu,2u(t0) = 0 in particular. Then the design of
the continuous control law u (·) has no additional constraints related to u(t0).

b) In a more general case for which Bu,2 6= 0, we should impose u(t0) = 0. For
this purpose, we introduce a weighted control uδ(t) replacing u(t) such that it is
defined by

uδ(t) = δ(t)u(t), ∀t ≥ t0, (5.8)

where u(t) is designed by a dedicated method allowing u(t0) 6= 0 and the weight
δ(t) is defined by :

δ(t0) = 0

δ (·) ∈ Ct0 = C [t0;∞) is an increasing function

∃ε > 0 : δ(t) = δ(ε) = 1,∀t ≥ ε.

(5.9)

An example of the weight δ (·) will be given at the end of this chapter for an academic
illustration. The idea of this weighted control is to maintain a design that does not
impose u(t0) = 0. The duration ε is an extra parameter that can be interpreted as the
transient of the control or establishing time of the control. Of course, this duration ε
should be as small as possible to reduce the degradation of closed loop performance
that are obtained by applying uδ (·) instead of u (·). The next section below introduce
the controller synthesis paradigm.

5.3 Controller Synthesis Paradigm

The synthesis of a controller is a usual problem in control system theory. Several
approaches exist, that are more or less dedicated to the class of systems under study
and also the specifications/constraints of the control design. In the present thesis, it is
focused on the list of the TCM process characteristics (time varying delays, descriptor
model, possible uncertainties, lack in process measurements . . . etc) and the constraints
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of the industrial requirements. Thus we need to present a generic framework for the
controller synthesis that remains flexible in terms of the chosen tools, and furthermore
compatible with the tandem system and the control objectives.

5.3.1 Formulation of Controller Synthesis as a Constrained Optimi-
zation Problem

As frequently encountered in the control system theory, the controller synthesis is
carried out by formulating and solving a constrained optimization problem [ZDG+96,
ZD98]. Roughly speaking, the control law is the variable and the solution of this op-
timization problem. Usually a cost function, translating the specific industrial requi-
rements, is proposed. This cost is to be minimized. On the other hand, other control
purposes such as stabilization and other points (process uncertainties, system limita-
tions . . . etc) are taken into account as constraints of the optimization problem.

An intuitive approach to solve such synthesis optimization problem is to use the
tools of optimal control (Dynamic programming or Pontryagin Maximum Principle)
[Ber95, Bry75, Pon87]. However, that will not be a suitable track to be followed in our
framework due to these reasons

a) An optimal control result from applying Dynamic Programming [Bel13] or Pon-
tryagin Maximum Principle, will require to have access to the whole state of the
system. Even if it is possible assuming a hypothesis in a first step that all states
measurements available, that will prevent in a second step to consider an output
based control.

b) Optimality is based on the full and exact knowledge of the model of the system.
In order to keep the same framework in view of extension to treat uncertainties
(model uncertainties issued from system linearization, parametric uncertainties
and also unknown exogenous inputs seen as perturbations), optimal control is
not an appropriate approach.

The provided general framework is inspired by the following observation about
LQ regulator. It is pointed out in chapter 3 that this regulator problem is solved by an
Algebraic Riccati Equation (ARE). The solution of this equation has been shown to be
equivalently the solution of a Semi Definite Program (SDP) that consists of a cost to
be minimized (i.e. an upper bound of the desired performance cost) where problem
constraints are formulated as LMI’s. In the case of LQR problem, the minimal upper
bound is proved to be the optimal cost. Here in our study concerning the multivariable
control of the TCM process, first we will adapt this idea to define an upper bound of
the cost and second we will minimize this upper bound under the specifications of the
system, even if the gap between the "optimal" cost and the upper bound is not comple-
tely filed. This controller synthesis paradigm [AJM+17] is depicted in Figure 5.1. The
following subsection will discuss the different aspects of this constrained optimization
problem and moreover their related choices.

It should be noticed that this general point-of-view may be considered for other
industrial processes, for which the performance cost and the desired specifications are
to be well chosen and formulated.
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min
u ∈K⊆Rnu

V

subject to J ≤ V,

equations in (4.41).

(5.10)

Class of controllers :

→ State feedback.

→ Delayed state feedback.

→ Static output feedback.

→ Dynamic output feedback.

Stability tools :

→ Lyapunov function.

→ Lyapunov-Krasovskii
functional.

→ Lyapunov-Razumikhin
functional.

Performance Costs :

→ H∞ performance.

→ Linear quadratic cost JLQ.

→ H2 performance.

→ Bounds on peak to peak
gain.

→ Regional pole placement.

Formulated constraints :

→ LMI’s.

→ Parameter uncertainty
polytopes.

→ Robustness criterion.

FIGURE 5.1 – Summarize of the controller synthesis paradigm

5.3.2 Process Performance translated as a Quadratic Cost

As a result, the industrial specifications create a multiple objective performance,
which can be modeled by means of linear quadratic cost [ZDG+96]. The importance
of such cost is that it gives a weighting factor for each dynamic, which affects prio-
rity for some dynamics with respect to others. Also the sum of quadratic terms can be
seen as energetic sum (i.e. kinetic energy related to the speeds, potential energy related
to the tensions) to be minimized over the system trajectory. Some physical quantities
such as strip exit thickness (h2,i) or strip exit speed (V2,i) are expressed by algebraic
relations and they are not included in the state vector x. The objective performance
most probably imposes to tune the weightings of these values, thus the quadratic cost
will depend on the whole outputs and the system inputs. The form of the total out-
put vector z in (4.21) depends only on x, this advantage can be used to include all
the elements of z in the quadratic cost without any change in the controller synthesis.
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Another point to be mentioned here is that the cited performance cost integrates the
instantaneous cost which is a sum of quadratic terms function of x(t) and u(t) over
[t0;∞). This means that the performance cost is dependent on the values of φ(t0) and
u(t0). Using the relation between z and x given in (4.41), its expression denoted by JLQ

has the form

JLQ(φ, u) =

∫ ∞
t0

xT (s)CT
z QzCz︸ ︷︷ ︸
Qx

x(s) + uT (s)Ruu(s)

 ds, (5.11)

where the matrices 0 ≤ Qz = QT
z ∈ Rnz×nz , 0 ≤ Qx = QT

x ∈ Rn×n and 0 < Ru =
RT
u ∈ Rnu×nu are the weighting matrices. These matrices ensure correct quantitative

weighting between physical parameters in the presence of different units (i.e. tonnes
and millimeters as an example). They have special structure in the presence of several
industrial specifications. The desired requirements concerning the performance of the
controlled system may be related to several quadratic energies to be minimized. For
that, the integrand term is a sum of normalized weighted energies, which gives the
matrices Qz and Ru the following form given below

Qz =
∑
i

αiQi ; Ru =
∑
j

βjRj, (5.12)

where αi > 0 is the weighting coefficient of the ith output cost and Qi is the normalized
weighting matrix corresponding to it. βj ≥ 0 is the weighting of the jth system input
and Rj is the weighting matrix corresponding to it. The normalizing selective matrices
Qi andRj given in (5.13) normalize the energies (dynamics and inputs quadratic terms)
through dividing the corresponding physical quantity by the square of its nominal
value. The matrix Qi has a non zero value 1

z̄2i
in the ith diagonal element and zeros

elsewhere, similarly the matrix Rj has the non-zero element 1
ū2j

and zeros elsewhere.
Then the weightings αi and βj play the role of associating the priority within the energy
sum.

Qi =

ith



0 · · · 0 0 0 · · · 0
... . . . ...

...
... . . . ...

0 · · · 0 0 0 · · · 0
0 · · · 0 1

z̄2i
0 · · · 0 ith

0 · · · 0 0 0 · · · 0
... . . . ...

...
... . . . ...

0 · · · 0 0 0 · · · 0

;Rj =

jth



0 · · · 0 0 0 · · · 0
... . . . ...

...
... . . . ...

0 · · · 0 0 0 · · · 0
0 · · · 0 1

ū2j
0 · · · 0 jth

0 · · · 0 0 0 · · · 0
... . . . ...

...
... . . . ...

0 · · · 0 0 0 · · · 0

,

(5.13)

5.3.3 Stability and Performance Optimization via Lyapunov-Krasovskii
Functional

The performance cost function JLQ introduces an easy way to include industrial
constraints with the ability to apply tuning phase to adapt these weightings to the
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precised specifications. The presence of time delays in the TCM model imposes a more
general controller synthesis way than using the Algebraic Riccati Equation. In our case
the optimization will be carried out by defining a majorant V which upper bounds the
performance cost JLQ. This majorant will be minimized and consequently the value
of JLQ is optimized. On the other hand, the upper bound V will ensure the stability
of the closed loop system if it satisfies the conditions in the direct Lyapunov stability
theorem. The chosen class of upper bounds is the set of Lyapunov functionals already
used in many studies [Lya92, Vid02] to obtain sufficient stability conditions. Referring
to the synthesis optimization problem mentioned in (5.10), the optimization strategy
is based on upper bounding the the value of JLQ by the majorant initial value V (t0) at
t0 over the whole trajectory. For minimizing JLQ we need to minimize V (t0) and thus
JLQ is optimized. The interpretation of this special case of upper bound comes from
the comparison test of improper integrals. Assume that the instantaneous performance
cost is upper bounded according to the following inequality

xT (t)Qxx(t) + uT (t)Ruu(t) ≤ −V̇, t ≥ t0. (5.14)

then if the integral of the upper bound −V̇ over [t0;∞) converges, the integral of
xT (t)Qxx(t) + uT (t)Ruu(t) on the same interval converges. By integrating both sides
of (5.14) over [t0;∞), we obtain the inequality below∫ ∞

t0

(
xT (s)Qxx(s) + uT (s)Ruu(s)

)
ds ≤ V (t0)− V(∞)︸ ︷︷ ︸

0

. (5.15)

This inequality is the same as the one given in the synthesis problem (5.10), since at
the infinite horizon the functional V vanishes (i.e. limt→∞ x(t) = 0) assuming that the
closed-loop system is asymptotically stable. Thus if the inequality in (5.15) holds, the
inequality in (5.14) holds. By moving all the terms in (5.14) to the LHS, we obtain that
xT (t)Qxx(t)+uT (t)Ruu(t)+V̇ ≤ 0. This characterize the stability condition of the closed
loop system.

After we have determined the class of this upper bound, the next step is to inves-
tigate the convenient form adapted to our problem regarding the class of TCM model.
In the field of Time Delay Systems (TDS), many research had been done related to
control of such systems. Time delays are examined in both time and frequency do-
mains [Ric03, Fri14, GCK03, Kha12, Nic01]. Stability, robustness and analysis of this
class of systems are widely studied for the cases of constant or variable time delays
as well as for single or multiple delays. In the case of TCM model, the form of the
function V must lead us to a condition or conditions satisfying the Lyapunov stabi-
lity criterion. The usual quadratic Lyapunov function V (x) = xTPx with P > 0, may
not be a suitable choice since it does not lead us to a direct explicit stability sufficient
condition after time derivation of V . This is due to the presence of the singularity and
delay aspects in the system. A function of this form may exist leading to sufficient
stability condition, but it is hard to find it. More adaptable forms for the case of singu-
lar time dependent delay system already exist. Through literature, asymptotic stability
for TDS are treated by different methods such as Lyapunov-Krasovskii and Lyapunov-
Razumikhin methods. In these methods, Lyapunov like functions called functionals
are proposed [Nic01,Fri14,Ric03] to derive stability sufficient conditions in the form of
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Linear Matrix Inequality (LMI). In our work, we will select the Lyapunov-Krasovskii
option since the Lyapunov-Razumikhin requires additional parameters. For time de-
lay singular systems, there is a term to be added to manage the descriptor aspect of
the system. This type of systems has also been studied in [Kha12, Cam80a, Fri02, FS02,
Lew02, Liu12], many functionals were proposed to treat the associated different pro-
blems. The selected Lyapunov-Krasovskii functional denoted V (t, xt) is given in the
expression below

V (t, xt) = xT (t)ETPx(t) +
4∑
i=1

∫ t

t−τi(t)
xT (s)Six(s)ds, (5.16)

where E is the singular matrix of the TCM linearized model given in (4.42). The pre-
sence of this matrix in the expression is to include the descriptor aspect of the TCM
model (4.41). P ∈ Rn×n is a non-singular matrix and the matrices 0 < Si = STi ∈ Rn×n

are positive definite symmetric ones. The sum of integrals is for the delay aspect in
the system. Finally giving the expression of the value V (t0, xt0) in terms of the initial
condition φ, we have the upper bound condition

JLQ ≤ V (t0, φ) = φT (t0)ETPφ(t0) +
4∑
i=1

∫ t0

t0−τi(t0)

φT (s)Siφ(s)ds, (5.17)

As we can see, the initial value V (t0, φ) depends on the value of φ.

5.3.4 Control solution of the Optimization Synthesis Problem

In the previous sections of this chapter, we have formulated the control synthesis
problem combining the performance as well as the stability of the closed loop system.
A final point to be discussed about this problem is the control solution which is the
key in the control of the TCM process. In the field of control for delayed singular sys-
tem, several linear control input types are presented. In the paradigm of the synthesis
problem in (5.10), we have seen the possible control types for the multi-variable linear
case. The choice of the control type depends usually on the available measurements in
the process. As we are dealing with time delays, it is possible to affect a state feedback
with possible delayed state feedback such that u = Kx+Kτxτ where xτ includes all the
delayed states for all delays and K and Kτ are the control gains. However the absence
of time delay in the measured data prevents us from using delayed state feedback. In
addition not all states in the vector x are available. By looking to the vector y in (4.31)
and comparing it to the vector x in (4.22) and (4.23), we find that many variables are
not measured, especially the exit thicknesses between stands as well as the inter-stand
strip speeds and others. This guides us to use either the static output feedback (SOF)
or dynamic one (DOF), which is a situation where all the challenges (time delay singu-
lar system control, large size system, unavailable measurements, system performance
characterization) are accumulated one with the other and this is difficult to be solved.
An obvious idea is to isolate the difficulties in this synthesis by assuming that all states
in the process are measured at the beginning. After that and in the later steps, this as-
sumption will be treated and raised to have a control type that deals with the present
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situation. For the instant, a state feedback control will be used assuming that all the si-
gnals and necessary data are available. As a conclusion the solution of the optimization
problem given in (5.10) is

u(t) = Kx(t) (5.18)

with K ∈ Rnu×n is the control gain to be determined. The minimization of V (t0, φ)
will lead to the synthesis of optimal gain K which will guarantee an optimal trajectory
under the specified weightings.

5.4 State Feedback Synthesis

This section is dedicated to the design of a state feedback control that is the solution
of the problem in (5.10). Some mathematical tools will be presented in details for the
solution of the optimization problem that is to be clarified.

5.4.1 Controller Synthesis via LMI Problem

Usually the stability of time delay singular system can be studied and verified ba-
sed on Lyapunov-Krasovskii Functional [Ric03, FS02]. The synthesis of the controller
can be carried out using stability sufficient conditions for the closed loop system. Pro-
posing a convenient Lyapunov-Krasovskii functional V and by obtaining its time de-
rivative, we can reach a sufficient stability condition by the fact that if V̇ < 0 then
the closed loop system is asymptotically stable. In the present case we will use the
combined performance stability inequality given in (5.10) to reach the aimed synthe-
sis conditions. In the beginning, assume that the exogenous inputs are set to zero (i.e.
d(t) = 0, µ(t) = 0) to find the state feedback controller independent of their impact on
the system. Consider the following theorem that explains the steps of synthesis.

Theorem 5.1 : Consider the regular impulse free time delay singular system given in (4.41).
The closed loop system with the state feedback gain given in (5.18) is asymptotically stable if
there exist symmetric positive definite matrices Gi ∈ Rn×n, a non-singular matrix W ∈ Rn×n

and a matrix Y ∈ Rnu×n such that the algebraic equality

W TET = EW ≥ 0, (5.19)

and the LMI below

Ψ1 W THx Y T A1W · · · A4W
? −In 0 0 · · · 0
? ? −R−1

u 0 · · · 0

? ? ? −(1− d1)G1
. . . ...

? ? ? ?
. . . 0

? ? ? ? ? −(1− d4)G4


< 0, (5.20)

are satisfied, with

Ψ1 = He (A0W +BY ) +
4∑
i=1

Gi, (5.21)
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and Hx ∈ Rn×n defined by Qx = HxH
T
x , the matrices P = W−1 and Si = P TGiP

−1. The
state feedback input is given by

u = YW−1︸ ︷︷ ︸
K

x, (5.22)

where K = YW−1 is the state feedback gain that stabilizes asymptotically the TCM model.
Also this gain will keep the value of the cost J over the whole trajectory below the initial value
of the majorant V .

Proof : Assume that the conditions (5.19) and (5.20) in Theorem 5.1 are verified. The
algebraic equality in (5.19) gives a specific form of the non-singular n × n matrix W .
Using the form of the singular matrix E given in (4.42), the form of W is

W =

[
W1 0
W3 W4

]
, (5.23)

with 0 < W1 = W T
1 ∈ Rn1×n1 , W3 ∈ Rn2×n1 , and non-singular sub-matrix W4 ∈ Rn2×n2 .

From the LMI in (5.20), we have the LHS of the following equivalenceΨ1 W THx Y T

? −In 0
? ? −R−1

u

 < 0⇐⇒ Ψ1 +W T (Hx)In(HT
x )︸ ︷︷ ︸

Qx

W + Y TRuY < 0 (5.24)

Since−In < 0 and−R−1
u < 0, the Schur’s complement can be applied twice on the LHS

of (5.24). This leads to the RHS of the same equivalence with Qx = HxH
T
x . From this

transformation above, the inequality below is deduced directly from the LMI (5.20)
Ψ1 +W TQxW + Y TRuY A1W A2W · · · A4W

? −(1− d1)G1 0 · · · 0

? ? −(1− d2)G2
. . . ...

? ? ?
. . . 0

? ? ? ? −(1− d4)G4

 < 0,

(5.25)
The non-singularity of the matrix W permits us to post-multiply and pre-multiply the
inequality in (5.25) by diag (W−1,W−1,W−1,W−1,W−1) and its transpose respectively,
this leads to the following inequality

Φ1 =


Ω1 P TA1 P TA2 P TA3 P TA4

? −(1− d1)S1 0 0 0
? ? −(1− d2)S2 0 0
? ? ? −(1− d3)S3 0
? ? ? ? −(1− d4)S4

 < 0, (5.26)

where

Ω1 = He
(
AT0 P +KTBTP

)
+Qx +KTRuK +

4∑
i=1

Si, (5.27)
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We denote

ζ(t) =


x(t)

x (t− τ1(t))
x (t− τ2(t))
x (t− τ3(t))
x (t− τ4(t))

 . (5.28)

From (5.26) we have ζT (t)Φ1ζ(t) < 0 for all ζ(t) 6= 0. The equality condition in (5.19)
with W = P−1 induces the following relation through pre and post multiplying by P T

and P respectively
ETP = P TE ≥ 0, (5.29)

This algebraic condition introduces a specific form of P where the interpretation of this
form is the same as that for W given in (5.23).

P =

[
P1 0
P3 P4

]
, (5.30)

with 0 < P1 = P T
1 ∈ Rn1×n1 , P3 ∈ Rn2×n1 , and non-singular sub-matrix P4 ∈ Rn2×n2 .

Using the expression of Eẋ(t) given in (4.41) and the equality in (5.29), the develop-
ment of the quantity ζT (t)Φ1ζ(t) < 0 gives the middle side of the order relation in (5.31)
for all ζ(t) 6= 0.

xT (t)
[
Qx +KTRuK

]
x(t) + ẋT (t)ETPx(t) + xT (t)ETPẋ(t)

+
4∑
i=1

xT (t)Six(t)−
4∑
i=1

(1− τ̇i(t))xT (t− τi(t))Six(t− τi(t))

≤ xT (t)
[
Qx +KTRuK

]
x(t) + ẋT (t)ETPx(t) + xT (t)ETPẋ(t)

+
4∑
i=1

xT (t)Six(t)−
4∑
i=1

(1− di)xT (t− τi(t))Six(t− τi(t)) < 0.

(5.31)

Depending on the delay derivative boundedness τ̇i ≤ di given in (4.18), the order rela-
tion in (5.31) can be easily deduced by doing simple mathematical ordering. The LHS
of this relation stands for xT (t)Qxx(t) + uT (t)Ruu(t) + V̇ (t, xt), where V̇ (t, xt) is the
time derivative of V (t, xt) given by the expression below

V̇ (t, xt) =
d

dt
V (t, xt) = ẋ(t)ETPx(t) + xT (t)ETPẋ(t) +

4∑
i=1

xT (t)Six(t)

−
4∑
i=1

(1− τ̇i(t))xT (t− τi(t))Six(t− τi(t)).
(5.32)

This derivative exists due to the conditions of boundedness and continuity for time
delays. For that, from the relation (5.31) we obtain the following condition for all ζ(t) 6=
0

V̇ (t, xt) + xT (t)Qxx(t) + uT (t)Ruu(t) ≤ ζT (t)Φ1ζ(t) < 0, (5.33)
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From the definition of the cost function JLQ given in (5.11), the quadratic integrand
term possess the following condition

0 ≤ xT (t)Qxx(t) + uT (t)Ruu(t). (5.34)

This implies that V̇ (t, xt) < 0, where according to Theorem 3.3 we deduce the global
asymptotic stability for the system (4.41). This condition means that the trajectory of
the system converges and that

lim
t→∞

V (t, xt) = 0, (5.35)

Integrating both sides of the inequality in (5.33) under the limit in (5.35), we obtain the
upper bound condition given in (5.17). This completes the proof.

Solving the LMI synthesis problem introduced in Theorem 5.1 leads to a feasible so-
lution with respect to the condition of functional V matrices existence. The obtained
decision variables P , Si and Y only respect the conditions (5.19) and (5.20) and are not
optimized such that the functional V is minimized as stated in (5.10). The obtained va-
lues here will lead to one of the feasible state feedback gains K = YW−1, which is not
the optimal since the performance cost JLQ is not minimized. So in order to obtain an
optimal gain K, the minimization of the upper bound V (t0, φ) has to be performed as
mentioned in the optimization problem. Consequently the value of the cost JLQ will be
minimized over the whole trajectory x. In the next section we will present the necessary
tools for this optimization.

5.4.2 Majorant Minimization

The Lyapunov-Krasovskii functional V (t, xt) is seen as a generic energetic functio-
nal for the TCM system. The existence of this functional satisfying some conditions
ensures the asymptotic stability of the closed loop system. The previous section in-
troduced the problem to arrive to a feasible solution which is a state feedback gain.
Among the obtained results, we have the matrices P and Si that define the expression
of V (t, xt). Based on Theorem 5.1, these matrices including the controller are feasible
solution to the LMI problem and does not correspond to the optimum (minimum) va-
lue of JLQ. Minimizing the upper bound V (t0, φ) in (5.17) leads to the minimization of
JLQ, then the solution of the LMI problem will be optimized. The minimization of the
upper bound V (t0, xt0) = V (t0, φ) which is related to the initial condition φ needs to
be well explained because this minimization has to be independent of φ. This function
is seen as a stochastic variable that can take many forms. This follows on the value
of V (t0, φ) to be stochastic also, thus minimizing its value can be carried out through
minimizing the value of its expectation, denoted E [V (t0, φ)] where E is the expectation
operator.

The value of this expectation still not obvious, since it is an expectation of a func-
tional. The initial condition φ can be any continuous compatible function (constant,
affine, harmonic, . . ., etc) that verifies the algebraic condition (5.6). Let Θ be the set of
all the possible continuous compatible functions φ that verifies the equations of the
TCM model. Obviously we do have a very large number (number of elements in Θ) of
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choices for φ assumed finite, where all of them have the same possibility of occurrence.
Thus the initial condition φ can be seen as a discrete random function with a discrete
uniform distribution, since all elements φ ∈ Θ have equal probabilities. For simplicity,
we are not going to make difference between the random function (capital letter) and
its values (small letter). Assume that this random function has a zero mean and unity
variance, that is E [φ(t)] = 0 and E

[
φ(t)φT (t)

]
= In, ∀t ∈ [t0 − τmax, t0]. Using the pro-

perties of the expectation and the trace operators, the expectation of the upper bound
can be given by (see Appendix A for details)

E [V (t0, φ)] = Tr

(
ETP +

4∑
i=1

τi(t0)Si

)
, (5.36)

This expectation is not completely defined due to the existence of the terms τi(t0) that
depend on the value of the delay at the instant t0 which is unknown. For that we can
minimize an upper bound of this expectation deduced from τi(t) ≤ τ̄i, ∀i ∈ {1, 2, 3, 4}.

E [V (t0, φ)] ≤ Tr

(
ETP +

4∑
i=1

τ̄iSi

)
, (5.37)

The obtained upper bound (5.37) depends only on the variable matrices P and Si.
These matrices do not exist explicitly in the LMI constraint (5.20) given in Theorem 5.1,
but they are related implicitly through the variable matrices W = P−1 and Gi =
P−TSiP

−1. An additional upper bound of the right side of the inequality (5.37) de-
noted U ∈ Rn×n is introduced. This produces an additional variable in the problem,
but it will lead to an optimal solution for it. The minimization of trace(U ) leads to the
minimization of E [V (t0, φ)]. The tools behind this optimization of U will be presented
and explained in the next lemma.

Lemma 5.1 Consider a symmetric positive definite matrix U ∈ Rn×n verifying the following
inequality

ETP +
4∑
i=1

τ̄iSi < U, (5.38)

The inequality (5.38) holds as long as the following LMI holds :

U

[
In1

0

]
In · · · In

? W1 0 · · · 0

? ? W +W T − τ̄1G1
. . . ...

? ? ?
. . . 0

? ? ? ? W +W T − τ̄4G4


> 0, (5.39)

Proof : The variables in the LMI (5.39) are U , W and Gi. Assume that this LMI is fea-
sible, then the positive definite matrices Gi exists. Consider the following matrix pro-
duct as a tool idea to prove this lemma. The following inequality holds for all Gi > 0
and τ̄i > 0 :

(W − τ̄iGi) (τ̄iGi)
−1 (W − τ̄iGi)

T ≥ 0, (5.40)
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which leads to the following inequality

W +W T − τ̄iGi ≤ W (τ̄iGi)
−1W T . (5.41)

Based on the feasibility of the LMI (5.39), we deduce for the diagonal term that W +
W T − τ̄iGi > 0 for all i and this sum is invertible. By inverting both sides in (5.41), we
deduce that

0 < W−T (τ̄iGi)W
−1 ≤

(
W +W T − τ̄iGi

)−1
. (5.42)

which is equivalent to say that

−
4∑
i=1

(
W +W T − τ̄iGi

)−1 ≤ −
4∑
i=1

W−T (τ̄iGi)W
−1 < 0, (5.43)

From the expression of W and P given in (5.23) and (5.30) respectively, also the form
of matrix E given in (4.42) and the product WP = In gives the following condition
concerning the matrix P1 > 0 and W1 > 0

P1 = W−1
1 ; ETP =

[
In1

0

]
W−1

1

[
In1 0

]
, (5.44)

Based on (5.43) with the LMI constraint (5.39) assumed to be true, using Schur’s com-
plement we can write the following inequality

0 < U −
[
In1

0

]
W−1

1

[
In1 0

]
−

4∑
i=1

(
W +W T − τ̄iGi

)−1

≤ U −
[
In1

0

]
W−1

1

[
In1 0

]
−

4∑
i=1

W−T (τ̄iGi)W
−1,

(5.45)

Finally from (5.44) and (5.45), we deduce that

0 < U − ETP −
4∑
i=1

τ̄iSi, (5.46)

where as it is defined before, we have Si = W−T (Gi)W
−1 and this completes the proof.

After introducing the feasibility synthesis problem in Theorem 5.1 and the optimi-
zation of this solution in Lemma 5.1, we have to relate these points in a single optimi-
zed control synthesis. The constraints for the synthesis problem which guarantee the
feasibility given in (5.19) and (5.20) as well as the optimization one in (5.39) will all be
included. To sum up the optimization synthesis problem under the attached constraint,
consider below the following optimization problem.

min
U,W,G1,...,G4,Y

Tr(U)

subject to equations in (5.19, 5.20, 5.39).
(5.47)
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Remark 5.4 : An important notification is to be mentioned regarding the above synthe-
sis problem. In fact the variable decision matrices included in the optimization problem
with LMI constraints are not all symmetric due the singularity of the TCM model. The
matrix W (P−1) is not symmetric, the sub-matrix W4 is a non-singular full rank n2 × n2

matrix. Usually, these problems nowadays are solved using MatLab (LMI toolbox or
Yalmip package). From this point-of- view and through the algorithm of solving the
SDP problem, it is very possible to obtain singularity in this matrix. This leads to ob-
tain a set of decision variables where they do not satisfy the synthesis constraints, since
the solver considers thatW4 in only a square full matrix with no condition provided for
its non-singularity. In order to avoid such a problem and to guarantee a non-singular
solution for W , the sub-matrix W4 is considered as a symmetric positive definite (i.e.
W4 > 0). This conditioning is conservative, but it is sufficient to avoid singularity.

5.4.3 Numerical example

In order to illustrate the above results, a numerical example is proposed. The objec-
tive of this example is to consider an arbitrary small-size time-delayed singular system
and establish a state feedback controller based on the optimization problem in (5.47).
For that let us consider the following system with the same general form of (5.1) but
with n = 2 and n1 = 1, and with two time varying delays (q = 2) and for simplicity we
set Bw = 0. The system is given by the following equation

Eẋ(t) = A0x(t) + A1x (t− τ1(t)) + A2x (t− τ2(t)) +Buu(t), (5.48)

where the matrices are given below

E =

[
1 0
0 0

]
, A0 =

[
2 −2
−0.7 −6.4

]
, A1 =

[
−0.5 0.3

0 −0.9

]
,

A2 =

[
−0.4 0

1 −0.6

]
, Bu =

[
2
1

]
,

(5.49)

Note that the matrixA0 is not Hurwitz. This system (5.48) presents the case given in 5.7)
where Bu,2 6= 0. This case is not exactly the one for TCM model (4.41) where Bu,2 = 0.
This case which has been already presented in the mentioned theorem, is little more
complicated than the one for TCM model since it will impose a discontinuity at t0. An
intermediate solution is to be provided later on to guarantee a continuous solution.
We set the initial instant t0 = 0. The time varying delays are given by the following
continuous-time functions

τ1(t) = 0.5 + 0.3 sin(t), τ2(t) = 1 + 0.5 sin(0.4t),∀t ≥ 0, (5.50)

The bounds concerning time delays and their derivatives are given numerically by
τ̄1 = 0.8, τ̄2 = 1.5, d1 = 0.3 and d2 = 0.2. The maximum delay is τmax = τ̄2 = 1.5. The
plot of these continuous delays are given in the figure below.

The time delay descriptor system is not completely defined yet, we need to choose
a compatible initial condition φ(·) that verifies the relation (5.6) in the case of two delay
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FIGURE 5.2 – System time delays τ1 and τ2 in function of time t.

descriptor system. φ can take any form. It is selected in the class of time affine functions
of the form

φ(t) =

[
a1t+ b1

a2t+ b2

]
, (5.51)

where the numerical values a1 = 1.3, b1 = 2.5, b2 = 0.2 are chosen in the following way.
For the aim of ensuring continuity in trajectory at instant t0, the value of a2 will be de-
termined verifying the relation (5.6) with q = 2. The found value is a2 = 2.028. Unfortu-
nately this is not sufficient for the continuity of the trajectory at t0, since the calculated
value of a2 stands for an autonomous system. Once the system is forced and enclosed
by its state feedback gain, the equations of the system changes and φ is no more com-
patible. The discontinuity comes from the presence of the term Bu,2u(t0) = Bu,2Kφ(t0).
Forcing this term to be zero by using the input by using uδ(t) = δ(t)u(t) instead of u(t),
the continuity of the trajectory at t0 can be guaranteed. δ(t) is a growth function that sa-
tisfies (5.9). Initializing the controller synthesis problem (5.47), the weighting matrices
of this simple problem are chosen arbitrary such that

Qx =

[
10 0
0 1

]
, Ru = 1, (5.52)

The state feedback controller is obtained by solving the constrained optimization pro-
blem in (5.10) written in MATLAB R2016b using the SDP convex problem solver SDPT3-
4.0 [TTT99,TTT03] and the convex programming package Yalmip [Löf04,Löf09,Löf12].
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The numerical results are

W =

[
0.192 0
0.168 1.220

]
;P = W−1 =

[
5.200 0
−0.719 0.819

]
;G1 =

[
0.005 0.070
0.070 1.764

]
;

G2 =

[
0.034 −0.098
−0.098 0.333

]
;S1 = P TG1P =

[
0.535 −0.740
−0.740 1.185

]
;

S2 = P TG2P =

[
1.838 −0.617
−0.617 0.224

]
;U =

[
11.472 −0.877
−0.877 1.614

]
;Y =

[
−2.000 −1.000

]
,

(5.53)
The state feedback gain can be found by the relation K = YW−1 giving the numerical
value

K =
[
−9.682 −0.819

]
, (5.54)

Note that the resolution of this optimization problem has resulted the values of trace(U)
= 13.087 and trace(ETP +

∑2
1 τ̄iSi) = 10.490. The difference between these two values

comes from the linearization of the non-linear inequality (5.38) in Lemma 5.1. As we
have written for the definition of the compatible function φ, the used control input is
uδ(t) = δ(t)u(t) = δ(t)Kx(t) with δ(·) is given by

δ(t) =

{
1−e−500t2

1−e−500ε2
, t ∈ [0, ε] ,

1, t ≥ ε,
(5.55)

with ε = 0.5. The weight δ is traced in the figure below. Simulating the closed loop
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FIGURE 5.3 – Growth function δ in function of time t.

system under the effect of its initial condition φ, we obtain the curves in Figure 5.4 that
show the evolution of the states x1 and x2 as well as control inputs uδ(t) and u(t). It is
clear that the state trajectory converges to the origin.
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(b) System trajectory (x1(t), x2(t)).

FIGURE 5.4 – Simulating the closed loop system with uδ(t) = δ(t)Kx(t) .

Looking carefully to the curves in the upper sub-plot of Figure 5.4a, we see the
continuity of the states at the initial instant t0. This is obtained thanks to the effect of
the continuous input uδ that starts from 0 value (black curve) satisfying the algebraic
relation (5.6) at t0. In contrast the initial value of the input u (blue dotted curve) at this
instant is u(t0) = −24.37 which will lead to a definite jump in the states trajectories if it
is used instead of uδ. Tracing down the trajectory of the system (x1, x2) in Figure (5.4b)
in order to visualize the convergence, we see that it settles down at the origin corres-
ponding to its equilibrium point denoted xe. The red straight line corresponds to the
history of the system defined by the compatible initial condition φ over the interval
[t0 − τmax, t0].

In order to point out how the user may modify the behavior of the trajectories x(t)
and the controlled input u(t), the same optimization problem is considered by modi-
fying only the weights of the cost JLQ, all other parameters kept the same.

Qx =

[
10 0
0 1

]
, Ru = 0.001. (5.56)

Without providing the obtained decision variable of the synthesis problem where
they validate the associated synthesis constraints, the tuning of the performance weigh-
tings leads to the state feedback

K =
[
−1245.767 −219.595

]
, (5.57)

The values of the components in the gain K in (5.57) are amplified compared to
those in the previous gain (5.54), as if they are divided by the new value of Ru which
was reduced from 1 to 0.001. Simulating once again the closed loop system with the
new obtained gain under the same initial condition, we obtain the new state and input
curves traced in the figure below.
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FIGURE 5.5 – Performance improvement induced by weighting tuning.

Based on the traced curves in Figure 5.5, the continuous line curves characterize
the 1st case, while the dotted curves characterize the 2nd one. Comparing the plots
associated with the state x1, the dotted curve associated to the 2nd weighting case tends
to converges much more faster than the first one. For the other state x2(t), we can see
the same rapidity in the convergence with small overshoot indicating the strong effort
exerted by the input which contain approximately the same overshoot at the same
instant. The difference in the obtained performance between the two weighting cases
can be visualized clearer by tracing the system trajectories, (x1, x2)old and (x1, x2)new
for the 1st and 2nd cases respectively. The dotted black curve undergoes an overshoot
before it is directed toward the equilibrium point xe, which means that the control
input accelerates the system to converge faster than the case before.

This short summarized example was given to motivate the methodology propo-
sed in the synthesis (5.47). The same steps followed here will be applied for the TCM
model. The scenario of controller synthesis is to be presented in details.

5.5 TCM Controller Synthesis

In this section the results obtained in section 5.2 concerning the state feedback syn-
thesis will be applied on the TCM time delay singular system (4.41) as done in the pre-
vious numerical example. An important point to start with is to define completely the
TCM system by providing its initial condition. According to Proposition 5.1, the sys-
tem initial condition must satisfy certain algebraic condition to ensure the continuity
at the initial instant. Based on the TCM model given in (4.41) and (4.42) and comparing
it to the arbitrary time delay singular system given in (5.1), we find that the matrix Bu,2

is zero. This recalls the case given in the algebraic condition (5.6). This means that the
initial condition φ presented in (4.41) has to verify the relation in (5.6), such that it is
compatible and ensures free impulsiveness within the trajectory. As the TCM process
rolls cascaded steel coils consecutively, the history of the process can be easily reco-
vered by visualizing the rolling measurement of the previous coil. For simplicity in
the coming work, the function φ will be considered as a zero function for all the states
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(i.e. φ = 0). This chosen value satisfies the condition (5.6) and thus it guarantees the
trajectory continuity at the instant t0.

The large size of the state vector as well as the input vector renders this step to
be complicated, thus several consecutive synthesis of controllers are in need to arrive
to the convenient one. Furthermore the numerical resolution and computation of the
synthesis algorithm is not easy as in the case of the example given above, which takes
few seconds to arrive to calculate the controller matrix and to simulate the closed loop
system. The order of the TCM system impacts the resolution of the controller synthesis
problem from the computational point of view, and also it impacts the simulation of the
closed loop system under specific exogenous inputs. The cost function JLQ defined by
the matrices Qx and Ru are to be precised to initialize the synthesis problem. The idea
behind precising these matrices is to force the system to attain certain performance in
converging and rejecting the errors in the controlled outputs. This surely will need to
tune these matrices conveniently according to the desired specifications. This tuning
phase includes chronological steps which are to be applied to reach the targeted gain.
These steps will be given as an algorithm in the next paragraph.

5.5.1 Controller Tuning

To start the simulation scenario of the TCM process, the tuning algorithm including
the necessary steps are :

Step 1 : Define the set of exogenous inputs (annealed thickness h1,1, Tandem entry and
exit tensions Σ1 and Σ2).

Step 2 : Define or tune the matrices Qz and Ru by precising the coefficients αi and βj .

Step 3 : Initialize the optimization synthesis problem (5.47) under the constraints (5.20)
and (5.39) and obtain the state feedback gain K.

Step 4 : Simulate the closed-loop system and analyze the errors on the outputs as well
as the transient behavior of the system.

Step 5 : if the desired performance, error ranges and transient performances are accep-
table, then the synthesis is done. If not, go back to Step 2.

Applying these steps will permit us to find the controller, starting by this list we have :
— Step 1 :

Defining the exogenous inputs : these inputs are chosen in a way to simulate
the behavior of the system. Suppose that the tandem will face an error in the
annealed thickness in the form of a single square signal which reveals deviation
from the nominal value. An 0.4 mm error in the annealed thickness h1,1 that
resembles about 15% of the nominal thickness value, is applied at the instant t =
10s as shown in the Figure (5.6). This error is considered to be high compared to
the real industrial errors that usually do not exceed 7% of the annealed nominal
value h̄1,1. Keep in mind that we plot here the relative values of the physical
quantities denoted (∆θ).
As we look to this error, we find that it is not an exact square shaped one as al-
ready mentioned. At the instants t = 10s and dt = 30s, we observe a respective
smooth rise and smooth fall in this error. This shape is produced by filtering a
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FIGURE 5.6 – Step error in the entry thickness h1,1.

single period square signal by means of a first order lagging system. This fil-
tering was applied to remove the sharp discontinuity produced at the instants
t = 10s and dt = 30s, which they will be transmitted to the outputs in the case
they were left in ∆h1,1. The propagation of discontinuities from inputs to the
outputs can be easily interpreted according to the linearity property of the TCM
system. For the other two exogenous inputs, the entry and exit tensions Σ1 and
Σ2 we have done the same filtering to remove step rising discontinuity as it is
shown in the Figure (5.7).
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(a) Step error in the entry tension Σ1.
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(b) Step error in the exit tension Σ2.

FIGURE 5.7 – Errors in the entry and exit tension forces of TCM.

Errors of approximately 2.5% and 1% are applied to the entry and exit TCM
tensions, these values are chosen conveniently with the real time variations of
these quantities. They are applied respectively at the instants t = 10s and t = 20s
to superpose them from the annealed thickness step error. This will permit us to
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visualize separately the effect of each error on the system.
— Step 2 :

In this step the weighting matrices given in (5.12) have to be defined. As it is
the case of first synthesized controller, the values of αi and βj are all set to unity
(i.e. αi = βj = 1, ∀i, j). Surely there will be a second tuning step after this one
since in the first step, all the quantities have same importance thanks to the
normalization matrices Qi and Rj .

— Step 3 :
After initializing the necessary data, the resolution of the OP in (5.10) can be
started.

Denote K0 the controller established from the initial synthesis. The resolution of an
execution of this algorithm for the synthesis of one controller takes about 35 minutes
for 67 iterations. During the execution 6 GB of the available RAMs was used, it is im-
portant to mention that the computing machine needs to reserve a memory size larger
than the average memory size used during LMI resolution. At the end, we obtain our
state feedback gainK0 and thus we can simulate now our closed loop system under the
impact of the chosen exogenous inputs. Assume that the frictions in all stands are fixed
to their nominal values (i.e. ∆µi = 0). Due to the large number of physical quantities
in the TCM model (44 states, 10 inputs and 54 outputs), it is hard to present them all.
For that we have chosen only some quantities that we can count-on in the evaluation
of the system performance. The chosen quantities result from the closed loop simula-
tion, are traced in Figure 5.8. Referring to Figure 5.8a the maximum error in the exit
thickness of the first stand is about 13.2% while that in the fifth stand is about 16.4% as
shown Figure 5.8b. Further more about 6% maximum error has obtained in the tension
T12 as seen in Figure 5.8c as well as 28% in the tension T45 traced in Figure 5.8d. The
stands exit thicknesses h2,i are traced in Figure 5.8e next to the interstand tensions in
Figure 5.8f to visualize the errors in these quantities. We noticed that the variation in
Σ1 and Σ2 have no direct effect on the system outputs. The errors mainly are affected
by that in h1,1. The presence of these errors requires a modification in the performance
of the closed loop system. Tuning the weightings αi and βj in (5.12) in the cost JLQ

in (5.11) permits to reduce these errors and improve the behavior of the closed-loop
system. The errors are to be managed one by one in the tuning phase, hence we should
go back to step 2. In order to decrease the error in the exit thickness of the first stand,
we need to increase the weight of the integral action of h2,1 which is I1 the 8th com-
ponent in the vector z, thus α8 = 104. Moving to step 3, we run the algorithm to obtain
K1. The simulation of the closed loop system with the new gain K1 gives the signals in
Figure 5.9.

As we see in Figure 5.9a the maximum error of h1,1 is reduced to about 10% with an
exponential decreasing slope, but taking a look on the interstand tensions T12 and T45

we notice that they attain high overshoot error as shown in figures 5.9c and 5.9d. Also
an increase in the error of the exit thickness h2,5 from 5% to about 6.5%. Thus further
tuning steps are necessary to arrive to an acceptable weighting configuration. Succes-
sive weighting combinations were tested and examined, but it is difficult to introduce
all of them. For this reason only one more tuning step is to be presented just to show
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FIGURE 5.8 – Closed loop system response in the case of K0
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FIGURE 5.9 – Closed loop system response in the case of K1
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the scenario of tuning. A new combination given in the table 5.1 below produces K2.
These parameters aim to reduce significantly the overshoot error in the all interstand
tensions, and in priority the error in the exit thickness h2,5.

weight αi(θ) Value
α3(T12) 107

α8(I1) 108

α51(I5) 106

TABLE 5.1 – Tuning weighting coefficients αi

Recall that Ii are the integral actions defined in (4.20). Simulating the closed loop
system under the exogenous inputs given in figures 5.6 and 5.7 we obtain the following
curves shown in Figure 5.10.

Observing the results of the simulation of the TCM model coupled with the control-
ler K2, we can see that the overshoot errors are reduced and minimized very well. Fi-
gure 5.10b shows an efficient regulation of the error in the exit thickness h2,5, the error
is reduced from 6.5% to 2% which is an acceptable result as required by the industrial
specifications which demand an error less than 2.5%. Moreover the errors in interstand
tensions are reduced very well from a value around 300% referring to the Figure 5.9f
to a value below 80% as shown in Figure 5.10f which is permitted compared to the
industrial tension variation limits that allow tensions to variate between 3 tonnes and
120 tonnes.

This simulation demonstrates that the tuning of the controller can be continued to
investigate and treat other specifications. It is a suitable method for regulating such
large size complicated process. A user can easily manage the control strategy through
configuring the suitable combination of weightings. Behind this tuning, a mono-objective
problem includes a multi-objective synthesis problem characterized by the different
goals in the industrial specifications. Important issues are to be mentioned for the
above simulations regarding the complexity of the resolved synthesis problem.

5.6 Conclusion

In this chapter, various fundamental points were treated regarding the treatment
of the problem of multi-variable control for Tandem Cold Mill. After investigating
the necessary conditions for the existence, uniqueness and continuity of the solution
for the TCM model, a general control methodology was provided. It includes the va-
rious control options that can be considered during this multi-variable model based
control. Meanwhile a first control approach for state feedback synthesis was presen-
ted. This synthesis based on proposing cost performance function and energy upper
bound functional, was explained and treated. Many notifications and remarks were
given to well explain and clarify the strategy of synthesis. Illustrative examples on
arbitrary system case as well as on the TCM system was given with their associated
simulating results. The case treating the example of the TCM process model provides
detailed algorithm about controller tuning. This reveals that the state feedback synthe-
sis has reached its objectives and the general control paradigm is suitable and can be
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FIGURE 5.10 – Closed loop system response in the case of K2
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used generally for other multi-variable control synthesis. As a conclusion, this para-
digm will be used furthermore in the next chapter to establish another control strategy
for the process.
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Dynamic Output Feedback Control for
TCM Process
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6.1 Introduction

In the case of TCM multivariable control problem, a basic assumption is considered
in the previous chapter to build up the state feedback gain. This solution was esta-
blished assuming that all physical variables are measured, which is not the case in the
real tandem process. Several physical quantities are unmeasured due to the complexity
of the process or the absence of a corresponding sensor. For that a control solution
based on the measured outputs is to be synthesized. The problem now is modified
to a synthesis of an output based controller for the TCM process. The absence of se-
veral measurements in the tandem process imposes to find another solution for the
associated control problem. It is possible to estimate the unmeasured quantities by es-
tablishing an estimator or observer such as Kalman-observer. For the TCM problem
and due to the noises in the available measurements added to the model uncertain-
ties issued from linearization, it requires a special control strategy. A dynamic output
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feedback (DOF) controller can be a solution. In the literature, several LMI based analy-
sis and synthesis methods have been introduced for singular system control problems
such as [MKOS97, TK98]. In this chapter we consider the LMI approach for the mul-
tiple objective output feedback control problem for descriptor systems. The method for
non-descriptor system is given in [SGC97] with different multiple objective characte-
rization. The idea is to control a generalized linear plant such that the closed loop is
asymptotically stable. The motivation of considering multiple objectives is due to the
practical requirements, not only to have for example a desired performance but also to
guarantee a certain robustness [Sch95b].

6.2 Output Feedback Synthesis

Here we consider the generic form of the optimization problem discussed in details
in chapter 5. The single difference relies in the assumption relative to the state availabi-
lity. In this chapter, only the measured output are accessible instead of the whole state.
The main consequence is the class of controllers to reach a solution of the optimization
problem : a dynamic output feedback (DOF) will be used.

6.2.1 Problem Formulation

In this chapter a multiple objective control by a dynamic output feedback for time
delay singular system will be treated. Consider first of all the TCM system given
in (4.41) with the including matrices given in (4.42). The initial condition φ of the TCM
system verifies the compatibility condition given in (5.6), while those regarding time
delay and their derivatives are provided in (4.13) and (4.18) respectively. These condi-
tions added to the continuity constraint of the variable delays ensure the existence and
uniqueness of the system trajectory. Our aim is to find a dynamic output feedback
controller which is seen as another system coupled to the process system. Consider the
following general model of the mentioned controller

EK
d

dt
η(t) = A0

Kη(t) +
4∑
i=1

AiKη (t− τi(t)) +BKy(t),

u(t) = CKη(t) +DKy(t),

η(t0 + ξ) = φK(t0 + ξ) ; ξ ∈ [−τmax; 0] ; φK ∈ Cτmax,nK = C ([t0 − τmax; t0] ,RnK ) ,
(6.1)

where AiK , E ∈ RnK×nK , BK ∈ RnK×ny , CK ∈ Rnu×nK and DK ∈ Rnu×ny . The matrix EK
will be discussed later if it is singular or not. The initial condition φK is a compatible
function representing the history of the dynamic output feedback. The function φK sa-
tisfies certain conditions similar to that in (5.6) for φ, which ensures the continuity at
the instant t0. This general time delay descriptor form should be discussed and explai-
ned in terms of its state vector size nK , the existence of the delayed states η (t− τi(t))
and the condition needed to be satisfied by φK to ensure continuity at the initial ins-
tant. The controller is taken in this form to include the same aspects as that of the TCM
system (4.41). We are going to consider some assumptions in order to precise enough

92



6.2. Output Feedback Synthesis

the structure of the controller. So before proceeding to the synthesis of this controller,
it is important to indicate some points.

(i) State vector size nK
It is important to precise the size of the state vector of the controller in order to
fix the size of the matrices we are looking for. In order to release the constraints,
a full order controller is chosen, that is nK = n.

(ii) Singularity of the dynamic controller
The presence of the singular matrix E in the model (6.1) asks here whether the
output feedback controller is a simple LTI delayed system (EK is invertible non-
singular) or delayed descriptor system (EK being singular). If the controller is
taken as an LTI delayed system, this will introduce a number of differentials su-
perior to that of the process. Using more derivatives in the controller than the
TCM model will be redundant, so it is sufficient to take the differential part of the
controller the same as that of the process system. Thus the matrix EK is a singu-
lar matrix such that EK = E, and the controller differential state vector denoted
η1 is of size n1 same as x1. On the other hand, the rest of the state vector is the
controller algebraic vector denoted η2 of size n2 same as x2.

(iii) Delayed states in the controller
The presence of delayed states in the dynamic controller (6.1) compensates the
delay effects in the process system (4.41). But in our case, the controller input y
contains no time delay states. Moreover, the delays in the process are not measu-
red (inter-stand strip speeds Vi,i+1 are not measured). Thus we can’t use controller
delayed DOF state. Hence there will be no delayed states in the structure of the
controller (i.e. AiK = 0 ; i = 1, 2, 3, 4). But the use of delayed time controllers to
compensate the delays in processes is becoming more important in the domain
of time delay control. If these delays or some of them are measured, it might be
an alternative tool to manage directly the delays in the TCM model. For that we
have introduced a generalized model for the controller in (6.1).

In the frame of the above mentioned points and for simplicity denote AK := A0
K , the

output feedback dynamic controller can be written in the form below

EK
d

dt
η(t) = AKη(t) +BKy(t),

u(t) = CKη(t) +DKy(t).
(6.2)

The partition of the state vector between differential sub-vector η1 and algebraic sub-
vector η2 permits to write the matrices EK ,AK and BK in the following form

EK =

[
In1 0
0 0

]
;AK =

[
A1,K A2,K

A3,K A4,K

]
;BK =

[
B1,K

B2,K

]
. (6.3)

The model of the controller in (6.1) is a descriptor system which has to be regular
and impulse free [Dai89, HB09] for the existence and uniqueness of its solution trajec-
tory which is already discussed for the TCM system. The initial condition η0 = η(t0)
must satisfy certain relation to avoid discontinuity at the initial instant t0. Rewriting
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the first equation in (6.2) using the decomposition of controller matrices in (6.3) and
the expression of y(t) in (4.41), we obtain the differential and algebraic equation below

η̇1 = A1,K η1(t) + A2,K η2(t) +B1,KCy x(t),

0 = A3,K η1(t) + A4,K η2(t) +B2,KCy x(t),
(6.4)

The evolution of the states of the output feedback controller must be continuous,
because any discontinuity in their evolution will lead to presence of discontinuities in
the states of the process and the latter propagates through the trajectory due to the
delay effect. From (6.4) we conclude that the initial condition in the controller η0 =
col {η1(t0), η2(t0)} satisfies the following condition

0 = A3,K η1(t0) + A4,K η2(t0) +B2,KCy x(t0). (6.5)

Remark 6.1 : As it was mentioned in the description of the DOF controller, it must be
regular and impulse free. This means that the controller will not have impulses and
will admit a unique trajectory solution η(t, η0) over [t0;∞). The existence and unique-
ness of this solution can be proved in the same way as x(t, φ) for the TCM system (4.41)
given in Proposition 5.1. Note that free impulsiveness means thatA4,K is a non-singular
matrix [XDSL02, XL06]. Knowing the value of x(t0) = φ(t0), the value of η1(t0) is to be
fixed by the user and the value of η2(t0) will be calculated using (6.5) to obtain a com-
patible initial condition η0. If the initial condition η0 can not be chosen conveniently, an
alternative tool may be used to avoid impulsiveness in the TCM trajectory x(t). This
tool is already used in the previous chapter in the case of Bu,2 6= 0. In order to impose
the continuity of the closed loop trajectory, the control input will be modified to the
new input uδ(t) = δ(t)u(t) where δ(t) is a weighting continuous growth function.

6.2.2 Closed Loop System Model

As it has been introduced in chapter 5, the controller has been obtained by the
optimization problem given in (5.10). By considering here the DOF defined by (6.2)
and by assuming for the moment that ∆d = 0 and ∆µ = 0, we obtain the following
closed loop system :

E d
dt
xc(t) = A0xc(t) +

4∑
i=1

Aixc (t− τi(t)) ,

z(t) = Czxc(t),

φc(t0 + ξ) =



[
φ(t0 + ξ)

0

]
, ∀ξ ∈ [−τmax; 0[

[
φ(t0)

η0

]
, ξ = 0,

xc(t0 + ξ) = φc(t0 + ξ); φc ∈ Cτmax,2n = C
(
[t0 − τmax; t0] ,R2n

)
; η0 ∈ RnK

(6.6)

94



6.2. Output Feedback Synthesis

where xc = col{x, η} ∈ R2n as in our case we admitted that n = nK . The matrices E ,A0,
Ai ∈ R2n×2n and Cz ∈ Rnz×2nhave the following structure

E =

[
E 0
0 EK

]
;A0 =

[
A0 +BuDKCy BuCK

BKCy AK

]
;Ai =

[
Ai 0
0 0

]
; Cz =

[
Cz 0

]
, (6.7)

Also the initial conditions φ and η0 satisfy respectively the algebraic equations (5.6)
and (6.5), which render φc to be compatible. The controller compatible initial condition
η0 = col {η1(t0), η2(t0)} depends only on the choice of η1(t0), since η2(t0) is deduced
directly based on the algebraic relation (6.5) guaranteed by the non-singularity of A4,K .
This ensures that the closed loop system admits a solution and it is unique. If the user
chooses both components of η0 not respecting this relation, a discontinuity will ap-
pear for sure. Therefore it is important to consider this point at the moment of initial
condition definition. On the other hand the regularity and free impulsiveness of the
TCM model as well as its DOF controller render the same characterization for the clo-
sed loop system (6.6). The idea of this synthesis is to obtain finally the stability of the
closed loop system.

6.2.3 Control Design : Synthesis Analysis

After the definition of the general form of the closed loop system, we can begin
the design of our DOF controller. The solution of the paradigm in (5.10) is the DOF
controller. Thus the synthesis algorithm under the constraint equations given in (6.6)
and other derived LMI constraint will establish the DOF solution. In the frame of this
type of control, various researches have been developed for the singular systems such
as [TK98,MKOS97,RA99] with different performance characterizations in each one. But
for the delayed descriptor systems, the work done is limited since the treated problem
leads usually to non-linear matrix inequality constraints which are hard to be resolved.
Some techniques to avoid non-linearity in problem constraint were developed. One of
them is the change of variable technique given in [SGC97]. From the optimization pro-
blem given in the previous chapter, consider the same framework related to the perfor-
mance cost functionJLQ given in (5.11) and the general energetic Lyapunov-Krasovskii
upper bound functional given in (5.16) to be used in this case. A homologous paradigm
is going to be followed but with different mathematical tools to be adapted to arrive
to LMI formulation. Shedding the light on the criterion inequality in (5.10), the cost
JLQ is expressed in the previous chapter by the state vector x and the input vector
u. For the closed loop system in the present case, the problem is based on the vector
xc = col {x, η} and the vector u = CKη + DKy =

[
DKCy CK

]
xc. It is good to mention

that the presence of time delays in the closed loop system establishes a dependency of
the cost JLQ on the initial compatible conditions φ and η0 (i.e. φc), since the cost inte-
grates the trajectory from the initial instant t0. Also the control input u depends on the
same initial conditions at initial instant, since we have u(t0) = CKη(t0) + DKCyx(t0).
Thus we can write JLQ = JLQ(φc). Referring to the equations in (6.3) and (6.6), JLQ can
be expressed in terms of the vector xc only as the following

JLQ(φc) =

∫ ∞
t0

(
xT (s)Qxx(s) + uT (s)Ruu(s)

)
ds =

∫ ∞
t0

xTc (s)
[
Qc + CTRuC

]
xc(s)ds,

(6.8)
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where the matrices Qx and Ru are the same ones presented in (5.11) and (5.12). The
new matrices Qc and C are defined by

Qc =

[
Qx 0
0 0

]
; C =

[
DKCy CK

]
, (6.9)

This quadratic function which includes implicitly the weightings αi and βj ensures the
desired performance of the closed loop system through tuning these coefficients. On
the other hand, a Lyapunov-Krasovskii functional can be chosen as a candidate to be
the upper bound energy functional of the closed loop system which is a time delay
singular system. In this case, the functional is expressed below in terms of the closed
loop system vector xc.

V (t, xct) = xTc (t)ETPxc(t) +
4∑
i=1

∫ t

t−τi(t)
xTc (s)Sixc(s)ds, (6.10)

where P ∈ R2n×2n is a non-singular matrix and the matrices Si ∈ R2n×2n are positive
definite symmetric ones, the singular matrix E is given already in (6.7). After we have
defined the structure of the DOF controller, we will move now for LMI analysis to
elaborate the constraint of the synthesis problem.

Theorem 6.1 : Consider the time delay singular system given in (6.6) under the conditions
concerning the time delays given in (4.13) and (4.18), also the initial conditions φ and η0 that
validate the algebraic constraints in (5.6) and (6.5) respectively. The closed loop system with
the DOF is asymptotically stable if there exist symmetric positive definite matrices 0 < Si =
STi ∈ R2n×2n, where i ∈ {1, 2, 3, 4}, a non-singular matrix P ∈ R2n×2n and the DOF matrices
AK , BK , CK and DK such that the equation (6.11)

ETP = PTE ≥ 0, (6.11)

and the non-linear inequality below

Φc =


Ω1 PTA1 PTA2 PTA3 PTA4

? −(1− d1)S1 0 0 0
? ? −(1− d2)S2 0 0
? ? ? −(1− d3)S3 0
? ? ? ? −(1− d4)S4

 < 0, (6.12)

are verified, with

Ω1 = AT0P + PTA0 +
4∑
i=1

Si +Qc + CTRuC, (6.13)

and the constants di already defined in (4.18).

Proof : In the synthesis problem present in (5.10), the inequality criterion expressed
with the new chosen functions is

JLQ(φc) ≤ V(t0, φc) = φTc (t0)ETPφc(t0) +
4∑
i=1

∫ t0

t0−τi(t0)

φTc (s)Siφc(s)ds. (6.14)

96



6.2. Output Feedback Synthesis

If we look carefully to the inequality constraint (6.12), we’ll realize that it is not linear.
The non-linearity of the obtained constraint is again a problem and it need to be ma-
naged. Thus using some mathematical tools we can find an equivalent LMI sufficient
for our controller synthesis.

The proof of the theorem here is easy and very close to that in theorem (5.1), for
that we need to consider that the included assumptions (6.11) and (6.12) are verified.
Denote the vector ζc given below

ζc(t) =


xc(t)

xc (t− τ1(t))
xc (t− τ2(t))
xc (t− τ3(t))
xc (t− τ4(t))

 . (6.15)

By pre and post multiplying of Φc < 0 by the vector ζTc (t) and ζc(t) respectively, we
obtain ζTc (t)Φcζc(t) < 0 which is equivalent to the constraint (6.12) for all ζc(t) 6= 0.

ζTc (t)Φcζc(t) = xTc (t)
[
Qc + CTRuC

]
xc(t) +

[
A0xc(t) +

4∑
i=1

Aixc(t− τi(t))

]T
Pxc(t)

+ xTc (t)PT
[
A0xc(t) +

4∑
i=1

Aixc(t− τi(t))

]
+

4∑
i=1

xTc (t)Sixc(t)

−
4∑
i=1

(1− di)xTc (t− τi(t))Sixc(t− τi(t)) < 0,

(6.16)
Analyzing carefully the inequality in (6.16), with the condition related to delay deri-
vatives such that τ̇i(t) ≤ di < 1 given in (4.18), we can write the following ordered
relation

xTc (t)
[
Qc + CTRuC

]
xc(t) +

[
A0xc(t) +

4∑
i=1

Aixc(t− τi(t))

]T
Pxc(t)

+ xTc (t)PT
[
A0xc(t) +

4∑
i=1

Aixc(t− τi(t))

]
+

4∑
i=1

xTc (t)Sixc(t)

−
4∑
i=1

(1− τ̇i(t))xTc (t− τi(t))Sixc(t− τi(t)) ≤ ζTc (t)Φcζc(t) < 0,

(6.17)

Under the assumed valid equality condition given in (6.11), the LHS in the ordering
relation given in (6.17) is the LHS given in the inequality below (6.18)

xTc (t)
[
Qc + CTRuC

]
xc(t) + V̇ (t, xct) < 0, (6.18)

where V̇ (t, xct) is the time derivative of the Lyapunov-Krasovskii functional defined
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in (6.10), where its expression is given by

V̇ (t, xct) =
d

dt
V (t, xct) = ẋc(t)ETPxc(t) + xTc (t)ETPẋc(t) +

4∑
i=1

xTc (t)Sixc(t)

−
4∑
i=1

(1− τ̇i(t))xTc (t− τi(t))Sixc(t− τi(t)),
(6.19)

By definition of the quadratic cost function JLQ given in (6.8), the quadratic inte-
grand inside the integral xTc (s)

[
Qc + CTRuC

]
xc(s) ≥ 0 leads to the conclusion based

on the inequality (6.19) that
V̇ (t, xct) < 0, (6.20)

This means that the TCM system (4.41) is stabilized asymptotically by the DOF (6.2)
and that

lim
t→∞
V (t, xct) = 0. (6.21)

Finally by integrating the inequality (6.18), and with the value of the limit in (6.21)
we obtain the upper bound relation (6.14). This completes the proof.

The result obtained in the above theorem provides a non LMI constraint for the syn-
thesis of the DOF for the TCM system. Nevertheless it is not easy to solve, it can lead
us to an equivalent LMI constraint by applying some mathematical tools to the inequa-
lity (6.12). Note that the resolution of the mentioned inequality (if it is possible), will
lead to one of the feasible solutions. The optimization synthesis problem in (5.10) re-
quires to minimize V

(
t0, xct0

)
which is not included. The next step then is to find an

LMI synthesis constraint from the obtained inequality in Theorem 6.1. In chapter 5,
an LMI constraint in Theorem 5.1 was obtained by applying a congruence transfor-
mation and a simple change of variable. However the case of state feedback is much
easier than the DOF case. Thus a more complex congruence transformation is to be ap-
plied now for the case of DOF synthesis. This transformation is the same as that given
in [SGC97,RA99] where they treat the multiple objective output feedback synthesis for
LTI systems. In our work the treated problem is different, so this needs to adjust their
approach in order to be applicable to our case.

6.2.4 LMI formulation of the Synthesis Problem

Usually, a non-linear inequality constraint containing unknown variable matrices
is not easy to solve. The limitation of the semi definite programming to be solved with
just linear constraints imposes to linearize the constraint of a convex problem. This
means that the constraint (6.12) will be submitted to some mathematical manipula-
tions to change its form and to separate the product of unknown matrices. We propose
chronological steps to turn it to an LMI constraint on the synthesis variables. But be-
fore moving to the LMI solution of this problem, let us make benefit of the equality
condition given in (6.11) to decompose the decision matrix P as well as its inverse
denotedW = P−1. The latter exists due to the non-singularity of P as stated in Theo-
rem 6.1. As we did for the decomposition of the matrix P and its inverse W in (5.23)

98



6.2. Output Feedback Synthesis

and (5.30) respectively, based on the form of the matrix E given in (6.7) the matrix P
can be decomposed as the following form

P =

[
P1 P2

P3 P4

]
=


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

 , (6.22)

where Pi ∈ Rn×n, the element matrices P11, P33 ∈ Rn1×n1 and P22, P44 ∈ Rn2×n2 . The
size of the other matrices Pij with i 6= j are easily deduced from the matrices Pii. This
decomposition is completely the same forW . By applying a pre and post multiplying
of the equality (6.11) by P and P−1, we obtain the following equation in function ofW

WTET = EW ≥ 0. (6.23)

As the decomposition of P , the form ofW can be deduced directly as

W =

[
W1 W2

W3 W4

]
=


W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44

 , (6.24)

where the size ofWij is the same as Pij , ∀i, j. By a simple substitution of the matrices P
andW in the equations (6.11) and (6.23) respectively, we deduce their following form

P =

[
P1 P2

P3 P4

]
=


P11 0 P13 0
P21 P22 P23 P24

PT13 0 P33 0
P41 P42 P43 P44

 ;

W =

[
W1 W2

W3 W4

]
=


W11 0 W13 0
W21 W22 W23 W24

WT
13 0 W33 0
W41 W42 W43 W44

 ,
(6.25)

where we obtain that P11 = PT11 > 0, P33 = PT33 > 0, P22 and P44 are non-singular
matrices. The same properties are obtained for W such that WT

11 = W11 > 0, W33 =
WT

33 > 0, also W22 and W44 to be non-singular. Also we have P31 = PT13 and W31 =
WT

13, they are replaced directly in (6.25). The form of the matrices Pi andWi are easily
deduced from (6.22), (6.24), and (6.25).

Back to the linearization of the inequality (6.12), a congruence multiplication and
a change of variable is to be applied to obtain an LMI synthesis problem. Distinct to
the state feedback case, the DOF case will use a more complicated change of variable
already present in several studies for LTI systems [MP96,MOS98,MKOS97] which can
be very useful in our case. Depending on the block partition in (6.25) and on the tri-
vial equation PW = I2n, we have P

[
WT

1 WT
3

]T
=
[
In 0

]T . This leads to define the
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following transformation matrices

Π1 :=

[
W1 In
W3 0

]
=


W11 0 In1 0
W21 W22 0 In2

WT
13 0 0 0
W41 W42 0 0

 ;

Π2 :=

[
In P1

0 P3

]
=


In1 0 P11 0
0 In2 P21 P22

0 0 PT13 0
0 0 P41 P42

 ,
(6.26)

These transformation matrices lead to the equality PΠ1 = Π2. It is important to
have the non-singularity condition of the used transformation matrices. Without loss of
generality, the matricesP3 andW3 can be assumed to be non-singular matrices [SGC97]
to guarantee the non-singularity of the matrices Π1 and Π2 respectively. Denote the
matrix Ξ := diag(Π1,Π1,Π1,Π1,Π1) to be the congruence used matrix, applying a pre
and post multiplying the matrix Φc in (6.12) by ΞT and Ξ respectively leads to the
following identities to be expressed before giving the obtained LMI.

ΠT
1PTA0Π1 = ΠT

2A0Π1 =

[
A0W1 +BuĈ A0 +BuD̂Cy

Â PT1 A0 + B̂Cy

]
,

ΠT
1PTAiΠ1 = ΠT

2AiΠ1 =

[
AiW1 Ai
Âi PT1 Ai

]
,

CΠ1 =
[
Ĉ D̂C

]
,

ΠT
1 SiΠ1 = Gi,

(6.27)

where the matrices A0, Ai, Bu and Cy are given in (4.42). The matrices Â0 ∈ Rn×n,
Âi ∈ Rn×n, B̂ ∈ Rn×ny , Ĉ ∈ Rnu×n and D̂ ∈ Rnu×ny are the change of variable matrices
defined by

Â0 := PT1 (A0 +BuDKCy)W1 + PT1 BuCKW3 + PT3 BKCyW1 + PT3 AKW3,

Âi := PT1 AiW1,

B̂ := PT1 BuDK + PT3 BK ,

Ĉ := DKCyW1 + CKW3,

D̂ := DK ,

(6.28)

It is assumed that the matrices P3 and W3 are full ranked non-singular ones. This
leads to unique matrices AK , BK , CK and DK . This change of variable was also used
in [Gah96] in the context of H∞ control as well as in [MP96, Sch95a] in other multiple
objective control synthesis. After introducing the necessary change of variable, it is
the time to present the linearization of the constraint inequality (6.12). The congruence
multiplication ΞTΦcΞ leads to the following inequality
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ΠT1 PTA0Π1+ΠT1 AT0 PΠ1+
∑4
i=1 ΠT1 SiΠ1

+ΠT1 QcΠ1+ΠT1 CTRuCΠ1
ΠT

1PTA1Π1 ΠT
1PTA2Π1 · · · ΠT

1PTA4Π1

? −(1− d1)ΠT
1 S1Π1 0 · · · 0

? ? −(1− d2)ΠT
1 S2Π1

. . . ...

? ? ?
. . . 0

? ? ? ? −(1− d4)ΠT
1 S4Π1

 < 0,

(6.29)
For the term ΠT

1QcΠ1, we can write it in the form of

ΠT
1QcΠ1 =

[
WT

1 Hx 0
Hx 0

]
I2n

[
WT

1 Hx 0
Hx 0

]T
, (6.30)

where Qx = HxH
T
x . Developing now the terms inside the inequality in (6.29) and using

the change of variable defined in (6.27) and (6.28), we obtain another inequality given
below
Ω2

[
A1W1 A1

Â1 PT1 A1

] [
A2W1 A2

Â2 PT1 A2

] [
A3W1 A3

Â3 PT1 A3

] [
A4W1 A4

Â4 PT1 A4

]
? −(1− d1)G1 0 0 0
? ? −(1− d2)G2 0 0
? ? ? −(1− d3)G3 0
? ? ? ? −(1− d4)G4

 < 0, (6.31)

where Ω2 is given by

Ω2 = He

[
A0WT

1 +BuĈ A0 +BuD̂Cy
Â0 PT1 A0 + B̂Cy

]
+

4∑
i=1

Gi

+

[
WT

1 Hx 0
Hx 0

]
I2n

[
WT

1 Hx 0
Hx 0

]T
+
[
Ĉ D̂Cy

]T
Ru

[
Ĉ D̂Cy

]
.

(6.32)

From the inequality (6.31), we have Ω2 < 0. Thus by applying the Schur’s complement
twice, we have

Ω2 < 0⇐⇒

Ω3

[
WT

1 Hx 0
Hx 0

] [
Ĉ D̂Cy

]T
? −I2n 0
? ? −R−1

u

 < 0. (6.33)

where Ω3 is given by

Ω3 = He

[
A0WT

1 +BuĈ A0 +BuD̂Cy
Â0 PT1 A0 + B̂Cy

]
+

4∑
i=1

Gi. (6.34)

Using the transformation present in (6.33), we obtain the following LMI from the in-
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equality (6.31)

Ω3

[
WT

1 Hx 0
Hx 0

] [
Ĉ D̂Cy

]T [
A1W1 A1

Â1 PT1 A1

]
· · ·

[
A4W1 A4

Â4 PT1 A4

]
? −I2n 0 0 · · · 0
? ? −R−1

u 0 · · · 0

? ? ? −(1− d1)G1
. . . ...

? ? ? ?
. . . 0

? ? ? ? ? −(1− d4)G4


< 0, (6.35)

The obtained LMI in (6.35) is not the only constraint for the synthesis problem given
by Theorem 6.1. The equality condition given in (6.11) is also a constraint in the pro-
blem which determines the structure of the matrices P and W . As the latter matrices
are no more included entirely in the LMI (6.35), the congruence transformation is also
applied to the equality (6.11) to elaborate a new algebraic equality condition under the
applied transformation. By pre and post multiplying by ΠT

1 and Π1 to both sides of the
equality (6.11), the obtained equality ΠT

1 ETPΠ1 = ΠT
1PTEΠ1 ≥ 0 leads to the following

matrix equality given below
W11 0 W11P11 +W13PT13 0

0 0 0 0
In1 0 P11 0
0 0 0 0

 =


W11 0 In1 0

0 0 0 0
P11W11 + P13WT

13 0 P11 0
0 0 0 0

 ≥ 0. (6.36)

The equality above uses the partition indicated in (6.25) which leads to two conditions.
The first one is trivial and given in the equation below

W11P11 +W13PT13 = In1 ⇐⇒ W13PT13 = In1 −W11P11. (6.37)

The other one depends on the RHS of (6.36) coming from ΠT
1 ETPΠ1 ≥ 0. Using Schur’s

complement, the RHS of (6.36) leads to the inequality at the LHS of the following equi-
valence under the condition P11 > 0

W11 −
(
W11P11 +W13PT13

)
P−1

11 ≥ 0 ⇐⇒ −W13PT13 ≥ 0. (6.38)

The RHS of (6.38) is obtained by developing the LHS of the same equivalence which
will give −W13PT13P−1

11 ≤ 0. An important assumption to considered here is for the
matrices P13 andW13 to be non-singular ones, which is a condition needed for the non-
singularity of Π1 and solution unicity of Â0, Âi, B̂, Ĉ and D̂. This assumption with the
right hand side of the equivalence in (6.38) leads us to say that

W13PT13 < 0. (6.39)

Thanks to equations (6.37) and (6.39), we have

W13PT13 < 0 ⇐⇒ In1 −W11P11 < 0 ⇐⇒ P11 −W−1
11 > 0, (6.40)

Finally by applying once again the Schur’s complement on the inequality (6.40), we
obtain our complementary LMI constraint of the synthesis problem.[

P11 In1

In1 W11

]
> 0, (6.41)
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6.3 Dynamic Output Feedback Feasibility Problem

In this section, we have to propose a new theorem with the linear inequality constra-
ints. But before this, it is important to discuss few points to complete the synthesis
procedure. These points are essential to pay attention for, since they avoid algorithm
failure.

(i) As we visualize the LMI constraints (6.35) and (6.41) elaborated from (6.11) and
(6.12), it is clear that the only matrices to be found automatically by the SDP al-
gorithm are P1, W1, P11 and W11. An important trivial question comes directly :
What about the other sub matrices of P3 and W3 used in the change of variable
in (6.28)? Don’t forget to mention that they are also used to determine the ma-
trices Π1 and Π2 and last but not least the matrices P := Π2Π−1

1 andW := Π1Π−1
2 .

A direct simple answer is that the other matrices are to be determined manually
by the user under specified conditions. For sure they won’t be chosen randomly,
as algebraic equality or inequality conditions have to be respected. Referring to
the inequality (6.39), the two matricesW13 andP13 of common size n1×n1 are cho-
sen such thatW13PT13 < 0. The latter matrices will be used to determine the values
of P3 andW3 as given in (6.25) which still miss other matrices. The matrices P41,
P42,W41 andW42 have to be chosen such that P3 andW3 are non singular as men-
tioned in [RA99]. A very important hided point which was not mentioned before
is needed to be highlighted though it seems obvious. Assume that the non-linear
problem given in Theorem 6.1 admits a stabilizing solution. This means that the
inequality (6.12) is true and we have Ω1 < 0. According to the expression of Ω1

given in (6.13), we have

Ω1 = AT0P + PTA0 +
4∑
i=1

Si +Qc + CTRuC < 0. (6.42)

The stabilizability solution of this problem means the existence of the non-singular
matrix P as well as the matrices Si > 0 such that (6.12) is true. From the definition
of Qc ≥ 0 and Ru > 0 in (6.8), we have the following condition{

Ω1 < 0

Qc ≥ 0, Ru > 0, Si > 0 ,∀i.
⇐⇒ AT0P + PTA0 < 0. (6.43)

Consequently the stabilizability of the closed loop system (6.6) means that the
matrixA0 is Hurwitz [Hur95,Kha02]. This means that, though the matrices P and
W are non-symmetric, they are still full rank matrices with positive eigenvalues.
As a result the matrices P41, P42, W41 and W42 have to be chosen such that the
matrices P andW have no negative or zero eigenvalues.

(ii) An important hint was given in [SGC97, RA99] to avoid the near singularity of
the inequality In1 − W11P11 < 0 given in (6.40). The resolution of the SDP syn-
thesis may lead to saturation at the optimum and thus a bad conditioned LMI
in (6.41). To avoid such difficulties, a useful idea might help which is to replace
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the inequality (6.41) by the following one[
P11 ρIn1

ρIn1 W11

]
> 0, (6.44)

where ρ > 0 is an additional variable to be maximized. It is clear that if ρ = 1,
we go back to the LMI in (6.41). This tool maximizes the minimal eigenvalue of
W11P11 and hence its eigenvalues are pushed away from unity such that In1 −
W11P11 < 0 is expected to be well conditioned.

6.3.1 Controller Synthesis via LMI Feasibility Problem

In view of the obtained results in the previous section and also the above described
points, it is useful to sum up the above work by a theorem based on Theorem 6.1, as
well as synthesis steps and finally by illustrative examples.

Theorem 6.2 : Consider the time delay singular system given in (6.6) under the conditions
concerning the time delays given in (4.13) and (4.18), also the initial conditions φ and η0

that validate the algebraic constraints in (5.6) and (6.4) respectively. The closed loop system is
asymptotically stable if there exist matrices Gi = GTi > 0, P11 = PT11 > 0,W11 =WT

11 > 0, as
well as the new variable matrices Â0, Âi, B̂, Ĉ and D̂ such that the LMIs (6.35) and (6.41) are
satisfied.

Proof : The proof of this theorem can be easily constructed using that of Theorem 6.1,
and the steps followed for LMI formulation through congruence transformation and
change of variable given from (6.22) till (6.41).

Once the decision matrices indicated in the above theorem are determined valida-
ting the corresponding LMIs, P3 andW3 are to be determined manually. The matrices
P13 andW13 are to be chosen such that (6.38) is satisfied. Finally the matrices P41, P42,
W41 andW42 have to be chosen such that P3 andW3 are non singular and the matrices
P (implicitlyW) has no negative eigenvalues. The matrices of the DOF controller AK ,
BK , CK and DK can be easily found through reversing the change of variable used
in (6.28) by applying some mathematical manipulations. For that to give directly the
controller matrices in function of the determined LMI variables, we have

DK := D̂,

CK :=
(
Ĉ −DKCyW1

)
W−1

3 ,

BK := P−T3

(
B̂ − PT1 BuDK

)
,

AK := P−T1

[
Â0 − PT1 (A0 +BuDKCy)W1 − PT1 BuCKW3 − PT3 BKCyW1

]
W−1

3 .

(6.45)

Note that the manually chosen matrices to complete P3 and W3 affect directly the
performance of the DOF controller. The methods state that these matrices are chosen
as long as Π1 and Π2 are non-singular and P (implicitly W) does not have negative
or zero eigenvalues, but it does not guarantee that any choice of these matrices will
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lead to the same DOF controller with specified performance included in JLQ. Different
set of choice will lead to different controller. Another point to be discussed is the size
of synthesis problem from regarding the number of variables. Solving the problem
given in Theorem 6.2 leads to a feasible solution which is the existence of the decision
matrices that satisfy only the LMI constraints in (6.35) and (6.41). The upper bound
V (t0, φc) is not minimized as well as the performance cost JLQ.

6.3.2 Numerical example

Consider in this part the same example already given in chapter 5, section 5.4.3
where the time delay singular system is given by the following equation

Eẋ(t) = A0x(t) + A1x (t− τ1(t)) + A2x (t− τ2(t)) +Buu(t)

y(t) = Cyx(t),
(6.46)

and the matrices are given below

E =

[
1 0
0 0

]
;A0 =

[
2 −2
−0.7 −6.4

]
;A1 =

[
−0.5 0.3

0 −0.9

]
;

A2 =

[
−0.4 0

1 −0.6

]
;Bu =

[
2
1

]
;Cy =

[
1 0

]
.

(6.47)

The time varying delays are given by the following continuous time functions

τ1(t) = 0.5 + 0.3 sin(t), τ2(t) = 1 + 0.5 sin(0.4t),∀t ≥ t0. (6.48)

The bounds concerning time delays and their derivatives are given numerically by
τ̄1 = 0.8, τ̄2 = 1.5, d1 = 0.3 and d2 = 0.2. The maximum delay is τmax = τ̄2 = 1.5. The
plot of these continuous delays are given in Figure 5.2. Usually the initial condition φc
has to be compatible and before the synthesis of the controller, but it is worthless since
once the weighting matrices are tuned φc is no more compatible. Thus φc is chosen
such that φ and η0 independent from the algebraic condition (5.6) and (6.5). For that
the modified input uδ is to be used instead of using the input u directly to ensure the
continuity of the closed loop trajectory. The function φc is defined by the following

φ(t) =

[
1.3t+ 2.5
2t+ 0.2

]
,∀t ∈ [t0 − τmax; t0]; η0 = η(t0) =

[
0.3
−0.8

]
. (6.49)

The weighting matrices characterizing the performance cost JLQ are fixed such that

Qx =

[
10 0
0 1

]
, Ru = 1. (6.50)

Solving the DOF synthesis problem present in Theorem 6.2 using the SDP solver SDPT3
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and the Yalmip package in MATLAB, the numerical results are

P11 = 15.729;W11 = 0.089;P1 =

[
15.72 0
4.40 5.11

]
;W1 =

[
0.08 0
0.732 2.79

]
;

G1 =


2.36 4.71 −0.21 0.29
4.71 13.04 −0.98 1.25
−0.21 −0.98 24.46 −0.54
0.29 1.25 −0.54 22.55

 ; G2 =


2.18 3.94 −0.07 0.05
3.94 9.93 −0.38 0.24
−0.07 −0.38 21.68 0.21
0.05 0.24 0.21 20.36

 ;

Â0 =

[
−2.22 2.85
0.869 2.48

]
; Â1 =

[
−0.07 2.11
−3.36 −12.8

]
; Â2 =

[
−2.36 −7.36
−2.16 −8.55

]
; B̂ =

[
−69.7
63.5

]
;

Ĉ =
[
−1.79 −0.67

]
; D̂ =

[
−0.04

]
.

(6.51)
From the obtained value ofP11 andW11 we can find the productW13PT13 from (6.38), the
obtained value isW13PT13 = −0.403 which validates that the product is strictly negative
as shown in (6.40). By choosing W13 = 0.08 non-singular random value, we obtain
P13 = −5.044. Now it is the time to complete the non-singular matrices P3 andW3 by
assigning the following values to the included sub-matrices

P41 = 0.7; P42 = −0.8; W41 = 0.2; W42 = 0.5 (6.52)

These values in (6.52) as well as those for P13 and W13 are chosen such that the
product Π2Π−1

1 gives an invertible matrix with no zero or negative eigenvalues. Now
we can determine the value of the matrices P = Π2Π−1

1 andW = Π1Π−1
2 , their obtained

values

P =


15.72 0 −5.04 0
4.40 5.11 14.49 −26.63
−5.04 0 5.62 0
0.70 −0.80 −4.59 4.47

 ; W =


0.08 0 0.08 0
0.73 2.79 7.05 16.64
0.08 0 0.24 0
0.20 0.50 1.64 3.19

 . (6.53)

As we see the obtained numerical values of P and W have the same form as that
given in (6.27), also their eigenvalues are positive. Now all the matrices used in the
change of variable in (6.35) are determined, to find the DOF controller it is sufficient to
use the inverse of the change of variable given in (6.45). The obtained controller of this
case is given by

[
1 0
0 0

]
d

dt
η(t) =

AK︷ ︸︸ ︷[
−57.54 −110.32
151.49 −242.89

]
η(t) +

BK︷ ︸︸ ︷[
2.49
−79.71

]
y(t),

u(t) =
[
−19.05 −1.34

]︸ ︷︷ ︸
CK

η(t) +
[
−0.04

]︸ ︷︷ ︸
DK

y(t).

(6.54)

An important point to be mentioned regarding the choice of the doublet (P13,W13)
that satisfies (6.38). The above chosen doublet leads to the following transfer function
of the DOF controller, denoted GDOF (s)

GDOF (s) =
−0.04183s2 + 47.29s− 174700

s2 + 300.4s+ 30690
. (6.55)
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Just for information, we notice that trying another values of the doublet (P13,W13)
satisfying the same condition such as (−8.07, 0.05), (−0.26, 1.5) or (−0.016, 25), the
same transfer function GDOF (s) is obtained. Meanwhile considering other values for
the quadruplet (P41,P42,W41,W42) lead us to another controller. Let us consider the
value of the quadruplet as (10.7,−12.8, 0.2, 0.5) with the doublet (P13,W13) = (−5.044,
0.08), they will lead us to another DOF controller given by the following transfer func-
tion denoted G′DOF (s)

G′DOF (s) =
−0.04183s2 − 53.32s− 10920

s2 + 73.67s+ 1918
. (6.56)

Looking for the numerator and denominator coefficients in 6.55 and 6.56, they are
far from each other which may be seen as badly conditioned system. The difference
between these coefficients is first due to the feasibility resolution of the SDP problem,
which gives out the matrices once the LMI constraints are satisfied. Second, the diffe-
rence is due to the randomness in the manual choice of some parameters of the matrices
P1, P3,W1 andW3.

Back to the case of the obtained controller in (6.54) and as it has been said about
avoiding the discontinuity at the instant t0, uδ(t) will be used instead of u(t) in order to
impose the continuity of the trajectories of the closed loop system under the incompa-
tible condition (6.49) for all controller cases. The input uδ is given by

uδ(t) = δ(t)u(t) = CKδ(t)η(t) +DKCyδ(t)x(t), (6.57)

where the function δ is a rapid growth function defined over [t0;∞) by

δ(t) =

{
1−e−500t2

1−e−500ε2
, t ∈ [0, ε] ,

1, t ≥ ε,
(6.58)

where ε = 0.5. The function δ(t) is traced in the figure below
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FIGURE 6.1 – Growth function δ in function of time t.

107



Chapter 6. Dynamic Output Feedback Control for TCM Process

Simulating the closed loop system and plotting the states trajectories x1 and x2, the
inputs u and uδ as well as that for the DOF controller η1 and η2, the obtained curves are
depicted in figures 6.2 and 6.3.
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FIGURE 6.2 – System states x1 and x2, inputs uδ and u in function of time t.

Figure 6.2 shows the evolution of the system (6.46) states as well as its output y(t) =
x1(t). The system is stabilized by the obtained DOF controller (6.54) and the states x1

and x2 converge to zero after 2.5 seconds as shown in the first plot of this figure. The
second plot shows the two control inputs uδ(t) in dotted blue which starts from zero
as it is forced by δ(t), and also the input u(t) in black. As we can see in the upper
plots of x1 and x2, they are continuous at the instant t0 = 0 thanks to the modified
control uδ(t). The history φ (in red) of the system as well as its trajectory (in black) are
traced in Figure 6.3a where the system converges to its equilibrium point denoted xe.
In Figure 6.3b, we have plotted the evolution of the states of the controller η1 and η2 to
visualize what it was happening in the controller. As we can see the controller states
converge to zero after stabilizing those of the system.

Now in order to modify the performance of the system and to show the possibility
to change the behavior of the system, the same synthesis method is applied with tuning
the weighting matrices of the cost JLQ so they become

Qx =

[
105 0
0 1

]
, Ru = 1. (6.59)

We have only modified the first weighting in the matrixQx, all the other parameters
as well as the manual chosen matrices are kept the same, the obtained DOF controller
in this case is given by
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(a) System trajectory (x1, x2).
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(b) Controller states η1(t) and η2(t).

FIGURE 6.3 – Simulation of the closed loop system.

[
1 0
0 0

]
d

dt
η(t) =

AK︷ ︸︸ ︷[
−743.08 −1259.42
9579.54 −93914.59

]
η(t) +

BK︷ ︸︸ ︷[
−376.57
−44113.98

]
y(t),

u(t) =
[
−18.11 −2.69

]︸ ︷︷ ︸
CK

η(t) +
[
−9.66

]︸ ︷︷ ︸
DK

y(t),

(6.60)

All obtained decision matrices elaborated from the synthesis problem verify their
corresponding LMI constraints. As we compare the values of the controller matrices
between the first case (6.54) and the second case (6.59), we can see the clear difference
between the values. As we have forced the system to enhance its performance by in-
creasing the x1 weight from 10 to 105 in the second case, the numerical values of the
matrices AK and BK have increased approximately in the same ratio (i.e. 104). This in-
crement in the values of these matrices will speed up the states of the controller and
thus will influence the rapidity of the states of the system (6.46). Figure 6.4 shows the
evolution of the system states x1 and x2 as well as the modified input uδ of both weigh-
ting cases. By looking to the dotted curves associated to the new weighting in (6.59),
we can see that they converge faster than the previous case (continuous line curves).
As seen in the figure of uδ(t), a more energy is put to accelerate the system. Thanks to
uδ the continuity is always guaranteed.

The new trajectory in Figure 6.5a is different from the old case as indicated by the
black dotted curve. The controller states are traced in Figure 6.5b. This reveals a more
rapid aspect as shown for η2(t) by comparing the new curve (dashed blue) and the old
one (continuous line). This is explained by the larger matrix values of AK and BK .
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FIGURE 6.4 – Comparison of system states x1 and x2 and input uδ between two weigh-
ting cases.
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(a) System trajectory (x1, x2).
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(b) Controller states η1(t) and η2(t).

FIGURE 6.5 – Simulation of the closed loop system.

This small illustrative simulation is applied on a small size arbitrary system to vali-
date the synthesis method. Solving the synthesis problem corresponding to this system
takes no time (<6 seconds). For this system, the vector sizes are given in Table 6.1
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vector size
x1 n1 = 1
x2 n2 = 1
η1 n1 = 1
η2 n2 = 1
u nu = 1
y ny = 1

TABLE 6.1 – System vector sizes in numerical example.

Based on this table, we found that the synthesis problem contains 43 variables
which is still an easy SDP problem to be solved. In the later part of this chapter, we
will shed the lights on the synthesis of the DOF of the TCM system and we will look at
this algorithm from an SDP problem size point of view.

6.4 DOF Synthesis for the TCM Process

After presenting the feasible synthesis of DOF for a time delayed singular system
in Theorem 6.2, it is the time to try to apply this method on the TCM process model
given in (4.41). The MATLAB has returned an error with "out of memory" message. It
was not even capable to load the variable data necessary to start the first iteration of
the algorithm. The LMI feasibility problem contains 29648 variable. It is important to
mention that the used solver which is SDPT3-4.0 defines also itself another variables
used in its iterations referring to [TTT03]. Such an SDP problem is impossible to be
solved on an Intel core i5 4th generation with 16 GB RAMs. It is the time to start looking
to the problem from the informatics point of view.

6.5 Conclusion

As a conclusion we have presented a multivariable control strategy of a time de-
layed singular system, this control method is associated with a performance cost that
can be tuned following the desirable behavior of the system. The control method is ap-
plicable in the case of missing measurements of system dynamics, a dynamic output
feedback replaces the estimator or observer of the system. This synthesis is based on
SDP feasible algorithm with LMI constraints. An illustrative example is provided at the
end to validate the capacity of the method. For the case of tandem cold rolling, the high
size of the system results in a heavy synthesis SDP problem containing a large num-
ber of variables. Supplementary techniques should be examined to reduce the size of
the SDP problem. The large LMI constraints are too heavy to be resolved and we need
mathematical tools to reduce them. One of these techniques, is the use of Riccati like
non-linear inequalities to replace these LMIs.
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Chapter 7

General Conclusion

Cold rolling of steel is a vital manufacturing process. It is an important stage in
the metal strip processing line. This chain supplies many heavy and light industries
with steel sheets needed for their products. This process is very complex where several
mechanical and electrical active and passive systems interfere to accomplish product
finishing. Steel client continuous demands in improving tandem products have mo-
tivated steelmakers to enhance tandem mill performance. Moreover, the requests in
production acceleration pushes the actual control strategy to attain its limit against the
strong variations of tensions and thickness errors inside the system.

Through this dissertation, many studies dealing with the control of tandem pro-
cess where over viewed in chapter 2. Several modeling and control approaches have
been developed during the last few decades in the field of cold rolling. Each study
concentrate on specified objective in its control. Many approximations and special case
studies were treated and used. Different mathematical models for the mechanism of
strip rolling were also found in the sake of cold rolling mathematical modeling. These
models have high complexity and strong non-linearity in their equations dedicated to
the calculation of the rolling force and torque. As our objective is to establish a multiva-
riable control strategy for the tandem process, we started by building a multivariable
mathematical model that presents the offline behavior of the process. This modeling
was carried out in chapter 4 in details. By writing down the physical and algebraic
equations describing the evolution of each physical quantity, the larger part of the sys-
tem modeling is accomplished. The remaining part is related to the model of rolling
force and torque. A numerical algorithm developed in ArcelorMittal Maizières for the
purpose of calculation of these variables, was used as a part of tandem modeling. The
advantage of this algorithm is that it is much more accurate than the rolling force mo-
dels developed by Bland and Ford [BF52], Bryant and Osborn [Bry73] and others, since
it is based on finite element methods for the calculation of the total rolling force. Hence
a multivariable state space model representing the 5 stand tandem is obtained. This
model is a non-linear time delay singular system, due to the presence of algebraic and
differential equations as well as the presence of time dependent delays in the system.
The non-linear part in the obtained state space system, concerning the roll force and
torque model, is then linearized in the neighborhood of a nominal point. The compari-
son have shown that the error between the non-linear and the linearized models does
not exceed 4% in the neighborhood of the nominal point. This linearization is done for
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the purpose of multivariable control synthesis. A final singular time delay system is
obtained and will be used in the control synthesis. At the end of this chapter, the cur-
rent control strategy adapted today is illustrated by its advantages and disadvantages
on the rolling process.

In chapter 5, we have started the procedures of system control by providing expla-
nations about time delay singular systems. The problem of system trajectory existence
and uniqueness was explained and guaranteed by providing sufficient algebraic condi-
tions. In addition the continuity of the trajectory is also treated through giving the suffi-
cient interpretations related to the class of the TCM model with its IVP. A mathematical
tool is provided to ensure a definite continuity for this system in all cases by introdu-
cing a weighting function to be multiplied by the state feedback vector. The control
approach is then started by indicating the major points that must be considered by the
controller synthesis. The control approach used in this chapter, stands for proposing
a cost function that characterizes the performance of the system (LQ, H2, H∞ . . . etc).
This performance cost is bounded by a general energetic quadratic function, where the
latter satisfies certain conditions related to the Lyapunov direct method for stability ve-
rification. The synthesis problem solution is the type of control, which is to be chosen
by the user following problem environment. In the case of our work, the performance
cost is chosen as a quadratic function. The upper bound energetic function is chosen
as the Lyapunov-Krasovskii functional. The solution of the control synthesis problem
is chosen to be a state feedback gain assuming that the state vector is fully accessible.
The upper bound value is minimized to optimize the performance of the system by
introducing additional LMI constraints. The synthesis of the state feedback is carried
out through solving an optimization problem under linear inequality constraints. The
control methodology is applied at the beginning on a small size system to validate it.
The simulation have shown satisfying results and give the ability to modify system
behavior through tuning the weightings of the performance cost function. The final
part of this chapter was dedicated to apply the control synthesis problem of the case of
tandem process. Using the linearized model of TCM, the state feedback controller was
established by solving the optimization problem with its LMI constraints. An alterna-
tive method has been provided to reach a suitable controller answering the problem.
Only some of the simulations outputs were introduced due to the large number of out-
puts in the system. The errors in the system were managed and the time responses of
the process were improved.

Finally our attention was turned to the application of the formalized synthesis pro-
blem on the TCM process, but this time depending only on the available measure-
ments. Chapter 6 examines in a systematic way the application of the Bounded Perfor-
mance Method to the case of non-fully accessible state vector. The approach is to adapt
the DOF as a solution of the synthesis problem. Our primary interest was to define the
form of the DOF controller regarding its class and its size. This step replaces the idea
of observer synthesis and ensure an asymptotic stability of the closed loop system by
only using the available measurements. The considered class of the DOF is the singular
system. Applying the control synthesis problem proposed in chapter 5, new inequality
constraints were elaborated for the synthesis in the case of DOF. These constraints are
mush larger in size than those elaborated in the case of state feedback synthesis. In ad-
dition they are not linear, a special change of variable was used to solve the problem.
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The complexity of the case study required special treatment in order the synthesis LMI
constraints were obtained. The inverse change of basis was also provided to find the
DOF controller matrices after solving the synthesis problem. Once again this method
was applied to a small size arbitrary system to prove the capability of finding the DOF
controller. The mission was accomplished and the controller matrices were calculated.
This was followed by a simulation step and then performance tuning step to show
that ability to modify the behavior of the closed loop system. The final step was the
calculation of the DOF controller for the case of tandem process. This step was unable
to be accomplished due to the unavailability of the necessary informatics material to
performance the resolution of the synthesis problem.

Perspectives and Suggestions for Future Research

Cold rolling of steel is one of the major stages in the fabrication of steel sheets. It
represents one of the major areas of technological development within the steel indus-
try. New technologies are under rapid development and are driven by many factors
including low capital and operating costs. Also these new technologies respect strict
environmental and client requisites. Future development will be directed toward pro-
cess control which opens many opportunities for cold rolling of metals.

In conclusion, the research study described herein have shown that the new me-
thod of synthesis is applicable and obtain very good results, at least in the case of full
equipped tandems where state feedback control can be applied. The control strategy is
very easy to be used by the tandem users, whom their aims is directly oriented toward
reducing output errors and reduce internal strong interactions. Also it provides a si-
gnificant improvement in performance over typical industrial control strategies such
as multiple loop PIDs. However other challenges still remain and need to be investiga-
ted. Future directions of this research should include the following points.

� For the solution of the DOF controller for the case of tandem process, the usage
of powerful calculator with the presence of large memory size is a necessity
for the solution of the problem. In addition, manipulating the problem in other
language than MATLAB such as C++ can be beneficial since it may reduce the
calculation load and time.

� An effective approach may be helpful for such problem, which is reducing the
size of the synthesis problem. This can be carried out by reducing the size of
the TCM model through neglecting rapid dynamics in motors and actuators.
The reduction of synthesis problem size can be also achieved through transfor-
ming the large LMI constraints into Riccati like inequalities. It is true that these
inequalities will be non-linear, but by using some kind of matrix forms and as-
sumptions it can be solved using iterative algorithms.

� The usage of Lyapunov-Krasovskii second method for the guarantee of stability
is very effective. However it is very important to use other control frequency
approach such asH∞ control.

� Inclusion of the yield stress model uncertainties in the controller design. The
empirical formula of the SMATCH Law contains 5 estimated parameters. These
parameters are not exact and the stress model of the strip varies longitudinally
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and transversely. This is due to the material mixing during the continuous cas-
ting which is not homogeneous and in addition the coils enrolled after the hot
rolling are put to cool down which results in non-uniformity in product yield
stress. To add this effect to the TCM model, two additional inputs can be added
to the rolling force model (ex. Roll-Gap) one for the input yield stress k1,i and
another for the exit one k2,i. The uncertainty in these parameters lead to uncer-
tainty in the partial derivatives extracted for the linearization of the force model.
Surely this will lead to complexity in the controller synthesis.

� Inclusion of the exogenous perturbations in the controller design. The control-
ler in the thesis is designed without taking into consideration the presence of
external perturbations, however it was tested and verified under these signals.
This can be carried out using Input to State Stability or any other method. The
methodology becomes more complicated since this will lead to the increase of
the LMI constraints of the synthesis problem.

� The TCM mathematical model is a non-linear one, trying to apply one of the
multivariable non-linear control methods could be useful such as sliding model
control in its multivariable version [ES98, UGS09]. In addition, recent studies
are treated using the well known Model Predictive Control for its convenience
for time delay systems. The usage of this methodology does not require the
linearization if the process and can be applied to the non-linear cases directly.

� Simulation of the obtained state feedback controller on the TCM non-linear si-
mulator. This step is very important and shows if the controller synthesis is
effective or not.

� Through TCM modeling, the multivariable model used for the synthesis is ob-
tained by linearizing the TCM non-linear multivariable model. This can result
is adding uncertainties in model matrices. In addition, process parameters (mo-
tors, actuators, yield stress) are probably inexact and can be as parametric uncer-
tainties. Finally, external exogenous perturbations are signals of unknown form
or model. Hence robustness is very essential and must be included in the TCM
controller synthesis
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Appendix A

Developing the expression of E [V (t0, φ)]

Recall φ, the discrete random function with discrete uniform distribution and Θ
is the finite set of its possible compatible forms. Denote µφ := E [φ(t)] and Σφ :=
Var(φ(t)) = E

[
φ(t)φT (t)

]
for every t ∈ [t0 − τmax, t0]. For simplicity, we assume that

µφ = 0 and Σφ = In since we don’t know much information about the form of the ran-
dom initial condition φ. Let us derive the expression of E [V (t0, φ)]. According to the
expression of V (t0, φ) in (5.17), its expectation is

E [V (t0, φ)] = E

[
φT (t0)ETPφ(t0) +

4∑
i=1

∫ t0

t0−τi(t0)

φT (s)Siφ(s)ds

]
, (A.1)

where the matrices E, P and Si are already presented therein. Based on the linearity
property of the expectation operator, we obtain

E [V (t0, φ)] = E
[
φT (t0)ETPφ(t0)

]
+ E

[
4∑
i=1

∫ t0

t0−τi(t0)

φT (s)Siφ(s)ds

]
, (A.2)

Since the integrals over [t0 − τmax, t0] in the second part of the RHS of (A.2) is inde-
pendent of the random function, it gives

E [V (t0, φ)] = E
[
φT (t0)ETPφ(t0)

]
+

4∑
i=1

∫ t0

t0−τi(t0)

E
[
φT (s)Siφ(s)

]
ds, (A.3)

Note that the product terms φT (t0)ETPφ(t0) and φT (s)Siφ(s) are scalars, which means
that the value of the product equals to the trace of the product. Thus we have

E
[
φT (t0)ETPφ(t0)

]
= E

{
Tr
[
φT (t0)ETPφ(t0)

]}
,

E
[
φT (s)Siφ(s)

]
= E

{
Tr
[
φT (s)Siφ(s)

]}
.

(A.4)

where Tr is the trace operator. Using the linearity property of the both trace and ex-
pectation operators, the composition between the two operators is commutative. Thus
we have

E
[
φT (t0)ETPφ(t0)

]
= Tr

{
E
[
φT (t0)ETPφ(t0)

]}
,

E
[
φT (s)Siφ(s)

]
= Tr

{
E
[
φT (s)Siφ(s)

]}
.

(A.5)
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Recall the cyclic permutation property of the trace operator. For any three matrix A, B
and C of appropriate dimensions, we have

Tr(ABC) = Tr(CAB) = Tr(BCA). (A.6)

Based on this property, the expressions of (A.5) leads to

E
[
φT (t0)ETPφ(t0)

]
= Tr

{
E
[
ETPφ(t0)φT (t0)

]}
,

E
[
φT (s)Siφ(s)

]
= Tr

{
E
[
Siφ(s)φT (s)

]}
.

(A.7)

The matrices ETP and Si are seen by the expectation operator as constant matrices.
Thus once again the expressions in (A.7) gives

E
[
φT (t0)ETPφ(t0)

]
= Tr

{
ETP × E

[
φ(t0)φT (t0)

]}
,

E
[
φT (s)Siφ(s)

]
= Tr

{
Si × E

[
φ(s)φT (s)

]}
.

(A.8)

Recall the following relation for the expectation of product of random variables based
on the formula of covariance. Suppose X and Y are two random variables, then

E
[
XY T

]
= E [X]E [Y ]T + Cov(X, Y ). (A.9)

where Cov is the covariance operator. Applying the relation in (A.9) on the product of
same random variable X , we obtain

E
[
XXT

]
= E [X]E [X]T + Var(X). (A.10)

under the fact that Cov(X,X) = Var(X), where Var is the variance operator. Based on
the relation in (A.10), the expression in (A.8) can be written as

E
[
φT (t0)ETPφ(t0)

]
= Tr

{
ETP ×

[
E [φ(t0)]E [φ(t0)]T + Var(φ(t0))

]}
,

E
[
φT (s)Siφ(s)

]
= Tr

{
Si ×

[
E [φ(s)]E [φ(s)]T + Var(φ(s))

]}
.

(A.11)

Based on the expressions in (A.11), the expression of E [V (t0, φ)] from (A.3) can be
written as

E [V (t0, φ)] = Tr
{
ETP ×

[
E [φ(t0)]E [φ(t0)]T + Var(φ(t0))

]}
+

4∑
i=1

∫ t0

t0−τi(t0)

Tr
{
Si ×

[
E [φ(s)]E [φ(s)]T + Var(φ(s))

]}
ds,

(A.12)

Recall µφ = E [φ(t)] and Σφ = Var(φ(t)) = E
[
φ(t)φT (t)

]
for every t ∈ [t0 − τmax, t0].

From (A.12), we obtain

E [V (t0, φ)] = Tr
{
ETP ×

[
µφµ

T
φ + Σφ

]}
+

4∑
i=1

∫ t0

t0−τi(t0)

Tr
{
Si ×

[
µφµ

T
φ + Σφ

]}
ds

= Tr
{
ETP ×

[
µφµ

T
φ + Σφ

]}
+

4∑
i=1

Tr
{
Si ×

[
µφµ

T
φ + Σφ

]} ∫ t0

t0−τi(t0)

ds

= Tr
{
ETP ×

[
µφµ

T
φ + Σφ

]}
+

4∑
i=1

τi(t0)Tr
{
Si ×

[
µφµ

T
φ + Σφ

]}
.

(A.13)
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By substituting µφ = 0n and Σφ = In, we obtain

E [V (t0, φ)] = Tr

(
ETP +

4∑
i=1

τi(t0)Si

)
. (A.14)
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Abstract

The steel industry has been developing for years. The characteristics of the products
intended for the various industrial sectors are becoming more and more demanded.
Currently advanced PID controllers are used with a local multi-loop structure. In or-
der to deal with the increasingly constrained specifications, it is interesting to review
this control strategy. This CIFRE PhD thesis between ArcelorMittal and CRAN aims to
propose new advanced control strategies for the cold rolling of thin sheet steel strips,
including centralized control strategies replacing local and independent control loops,
to broaden the scope of treatable materials, increase and optimize process productivity
and capabilities, and minimize production costs. In a first part, a bibliographic study
will be carried out in order to better define the various metallurgical and dynamic mo-
dels of the system to be controlled. In a second part, the specifications will be translated
in terms of an optimization problem whose solution is the state feedback controller. Fi-
nally, in a third and final part, a dynamic output feedback synthesis will be proposed
to solve the problem of missing measurements.

Keywords : Cold rolling, Multivariable Control, Time Delay System.

Résumé
L’industrie sidérurgique rencontre depuis des années un développement impor-

tant. Les caractéristiques des produits destinés aux différents secteurs industriels de-
viennent de plus en plus exigeantes. Actuellement des régulateurs avancés de type
PID sont utilisés avec une structure multi-boucles locales. Afin de traiter les cahiers
des charges de plus en plus contraints, il devient intéressant de revoir cette stratégie
de contrôle. Ce sujet de thèse CIFRE entre ArcelorMittal et le CRAN a pour objec-
tif de proposer de nouvelles stratégies de contrôle avancé pour le laminage à froid
des bandes d’acier de type tôle fine, notamment des stratégies centralisées de contrôle
remplaçant des boucles de régulation locales et indépendantes, afin d’élargir le champ
des matériaux traitables, d’augmenter et d’optimiser la productivité et les capabilités
du procédé ainsi que de minimiser les coûts de production. Dans une première partie,
une étude bibliographique sera effectuée afin de mieux cerner les différents modèles
métallurgiques et dynamiques du système à piloter. Dans une seconde partie, le cahier
des charges sera traduit en termes d’un problème d’optimisation dont la solution est
un contrôleur de type retour d’état. Enfin dans une troisième et dernière partie, une
synthèse de retour de sortie dynamique sera proposée pour résoudre le problème des
mesures manquantes.

Mots-clefs : Laminage à froid, Commande Multivariable, système retardé.
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