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Résumé étendu de la thèse

Introduction au sujet de thèse

L'industrie automobile évolue vers la conduite autonome, considérée comme

l'avenir de cette industrie. Dans ce type de conduite, le conducteur devient un pas-

sager passif tandis que le véhicule prend en charge complètement de la tâche de

conduite. Actuellement, plusieurs entreprises développent des prototypes qui sont

capables de conduire de manière autonome, sans intervention humaine. Néanmoins,

il y a encore un long chemin à parcourir entre le la preuve de concept et la véritable

extension de cette technologie pour le grand public.

Il y a plusieurs raisons qui justi�ent cela. La première est d'ordre économique

car le prix actuel de la technologie la rend inabordable pour la plupart des consom-

mateurs. La deuxième est l'acceptation des ces technologies par le conducteur ainsi

que sa courbe d'apprentissage de tels systèmes, en vue d'une utilisation responsable.

En�n et non des moindres, les aspects législatifs et la nécessité de s'adapter à cette

nouvelle problématique. Cela signi�e qu'a�n de permettre au grand public, d'accé-

der avec un cout abordable à ce type de technologie, la technique a besoin de gagner

en maturité et d'être encadrée par un cadre juridique sûr.

Un processus d'évolution naturelle de l'industrie automobile est nécessaire, où

les constructeurs envisagent que le développement des Systèmes Avancés d'Aide à

la Conduite (ADAS) permettra à la technologie de devenir mature et de conduire

progressivement au développement des véhicules autonomes. Lorsque nous évoquons

les ADAS, nous considérons la prise en charge par le véhicule d'une certaine partie de

la tâche de conduite, non pas à tous les niveaux de la décision mais sur un périmètre

de scénarios dé�nis et toujours sous supervision humaine. Ce terme couvre donc les

systèmes qui, d'une certaine manière, visent à aider le conducteur dans sa tâche de

conduite ou à en prendre le contrôle dans certaines situations, comme les man÷uvres

de parking, la conduite sur autoroutes ou sur routes � protégées �. Ces dispositifs

améliorent la sécurité et le confort de l'expérience de conduite. Ce type de systèmes

peut être considéré comme une premier pas vers la conduite semi-autonome et qui

ouvrira alors la voie des véhicules entièrement automatisés.

Architecture du système de contrôle - Schéma de hiérar-

chie

Il est fréquent de décrire la tâche de conduite pour un conducteur humain comme

reposant sur trois niveaux de contrôle distincts, généralement connus sous le nom de

stratégique (plani�cation d'itinéraire), tactique (prise de décision, interaction avec

le tra�c environnant) et opérationnel (perception de l'environnement et contrôle).
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La tâche principale des systèmes d'aide à la conduite (ADAS) est de remplacer,

dans une certaine limite, le conducteur humain. Elle est alors divisée de manière

analogue en plusieurs niveaux, pour reproduire le même type de logique. La Figure

1, illustre un schéma simpli�é des niveaux tactique et opérationnel.

Environment

Analysis Trajectory

Planner
Vehicle

Traffic
Longitudinal

Control

Lateral

Control

Sensing & Supervision Reference generation Controllers

-

-

Figure 1 � Schéma de hiérarchie simpli�é

Le niveau tactique est composé de l'analyse des éléments en interaction ainsi que

de l'environnement du véhicule, ce qui inclus ses capteurs et ses algorithmes de fusion

de données qui permettent le recueil de toutes ces données a�n de mettre en place

une l'analyse cohérente de l'environnement du véhicule. Dans un premier temps,

notre travail dans cette s'est concentré sur le niveau opérationnel, où nous pouvons

trouver les algorithmes de plani�cation de trajectoire, qui fourniront les références

appropriées au niveau inférieur, celui des contrôleurs. Dans notre cas, nous disposons

d'une structure découplée pour contrôle de la dynamique longitudinale et latérale

du véhicule. Ce dernier thème représente une part importante de ce travail de thèse

et décrit dans la partie I.

Problèmes ouverts

La �nalité des ADAS est d'être capable de conduire de façon autonome dans

toutes les situations envisageables et ce avec un niveau de sécurité supérieur à celui

d'un conducteur humain. Au-delà de des progrès technologiques en matière de déve-

loppement, il est à noter que la conduite autonome dans l'exhaustivité des situations

de tra�c exige encore beaucoup d'avancées en matière de détection et de capacités

de contrôle par rapport à ce qui est disponible dans l'état de l'art. Cela est en partie

dû au fait que des conditions de conduite ne sont jamais identiques et donc c'est une

point critique pour permettre d'assurer un comportement correct malgré les varia-

tions de paramètres du système ou la présence d'incertitudes. Lorsque l'on se focalise

sur le développement des systèmes de contrôle pour les ADAS, les principaux axes

de recherche visent à identi�er des stratégies de contrôle robustes qui garantissent

le niveau de performance attendu. De plus, des applications où la vie humaine est

impliquée doit trouver les moyens d'assurer la sécurité du système pour les passagers

du véhicule, ainsi que pour les éléments environnants. Dans ce contexte, les straté-
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gies de contrôle qui assurent le traitement des di�érentes contraintes du système dès

l'étape de conception un sujet clé.

En outre, une fois que les blocs de base fonctionnels de contrôle ont atteint

maturité, �abilité et performances satisfaisantes, des man÷uvres de plus en plus

complexes seront progressivement développées, comme par exemple le changement

de voie et dépassement de véhicule. Ce type d'applications nécessite une maitrise

des tâches de niveau inférieur, comme le contrôle de la direction du véhicule. Après

cela, les e�orts de recherche seront orientés vers le développement d'autres types

d'algorithmes nécessaires à la mise en ÷uvre de ces tâches complexes. C'est le cas

des stratégies de plani�cation de trajectoire, qui ont une longue histoire de recherche

dans le domaine de la robotique. Pourtant, il reste un long chemin à parcourir pour

les applications automobiles, où les environnements non contrôlés et très dynamiques

en complexi�ent la conception.

Structure de la thèse

Le manuscrit est divisé selon les deux principaux sujets d'application qui ont été

étudiés lors de ce travail de thèse industrielle. La première partie met l'accent sur

le contrôle contraintes de la dynamique latérale du véhicule. Elle est composée de

trois chapitres, dont le contenu est brièvement présenté plus loin. En�n, la seconde

partie du document est quant à elle composée de deux chapitres, ayant pour thème la

plani�cation de trajectoire pour les man÷uvres de dépassement dans les autoroutes.

Partie I : Contrôle sous contraintes de la dynamique la-

térale du véhicule

Chapitre 2 : Contexte théorique pour le contrôle sûr contraintes

Ce chapitre vise à présenter un ensemble d'outils qui seront utilisés pour la

conception du contrôle sous contraintes dans la première partie du manuscrit. L'idée

est d'o�rir au lecteur un rapide aperçu des concepts théoriques qui sont nécessaires

pour comprendre les travaux présentés dans les deux chapitres suivants.

Contrôle sous contraintes de la dynamique latérale du véhicule

Ce chapitre présente deux approches génériques pour la conception d'un contrô-

leur pour le système Auto-Steering par suivi de cible, où l'incertitude liée à la varia-

tion de la vitesse est prise en considération de manière explicite. Cette variation de

vitesse conduit à un modèle incertain, qui sera décrit par une dynamique couverte

dans le cadre linéaire par une incertitude polytopique. Grâce à la mesure en ligne

du paramètre, la dynamique du système est calculée au niveau de chaque itération

de temps pour résoudre le problème d'optimisation du contrôleur par commande

prédictive du véhicule. Des fonctions de Lyapunov dépendantes des paramètres et la

théorie des ensembles invariants sont utilisés pour assurer la stabilité et la faisabi-

lité d'une telle commande. Après cette étape de base de conception, le contrôle basé
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Figure 2 � Autosteer par poursuite des cible

sur l'interpolation, dont le principe est d'utiliser un contrôle de l'action construit

comme une interpolation entre deux valeurs extrêmes précalculées, est étudié. A

chaque instant de temps, deux problèmes de programmation linéaire sont résolus,

ce qui conduit à un bon compromis entre performances et coût de calcul.

Lane Centering Assistance System

L'attention de ce chapitre se concentre sur l'un des systèmes de contrôle de la

dynamique latérale du véhicule connue sous le nom de système d'Assistance de Cen-

trage de Voie (Lane Centering Assistance system ou encore LCA), qui est dé�nie par

un système Linéaire à Paramètres Variants (LPV) composé à partir des éléments de

la dynamique du système le plus pertinents et de la courbure de la route, modélisée

comme une perturbation additive à paramètre variant et borné.

Figure 3 � Modèle bicyclette par raport au centre de voie

D'un point de vue théorique, la théorie de l'invariance positive robuste est exploi-

tée pour réaliser l'analyse des e�ets qu'une perturbation additive bornée et variable
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a sur un contrôleur linéaire à paramètre variant, utilisés pour assurer la stabilité

d'une stratégie de contrôle prédictif. Après cela, la vitesse du véhicule et la cour-

bure de la route sont pris en compte dès l'étape de conception, a�n de calculer un

observateur-contrôleur par retour d'état qui garantit la performance du contrôle en

présence de ces changements sur les conditions de conduite et les limites du système,

qui sont traduits par des contraintes lors de la conception du contrôleur. En outre, la

satisfaction des contraintes et la maximisation du domaine d'attraction sont consi-

dérés, a�n de fournir une région de fonctionnement certi�ée. Comme dernière partie

de l'étude et a�n de réduire le conservatisme introduit par de grandes variations des

paramètres, une conception avec l'utilisation de multiples fonctions Lyapunov dis-

continues et la prise en compte de l'accélération maximale est proposée. La stabilité

de la boucle fermée du système LPV par commutation est prouvée par l'exploitation

des conditions de temps d'arrêt héritées de la mise en ÷uvre d'hystérésis.

Partie II : Planification des trajectoire pour changement

de voie et dépassement sur autoroutes

Chapitre 5 : Contexte théorique pour la plani�cation de trajectoire

En suivant l'organisation de la première partie, ce premier chapitre o�re un

aperçu des concepts théoriques utilisés à des �ns de plani�cation de trajectoire.

Un état de l'état de l'art des méthodes numériques qui peuvent être utilisées pour

résoudre des problèmes de contrôle optimal et des outils théoriques des arrangements

des hyperplans sont introduites, sont présentés a�n de permettre la compréhension

du chapitre suivant.

Chapitre 6 : Plani�cation de trajectoire sans collision sur autoroutes

Le dernier chapitre du manuscrit aborde le problème du changement de voie du

véhicule et de dépassement sur les routes dans le contexte d'une conduite assistée.

A�n d'e�ectuer de telles man÷uvres, il est fondamental de calculer des trajectoires

Figure 4 � Manoeuvre de changement de voie et depassement

appropriées et confortables pour le conducteur, qui prennent en compte les limites

du véhicule ainsi que les restrictions de sécurité. Au-delà des limitations internes et
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dans un environnement aussi dynamique, l'élément essentiel à prendre en compte

dans la conception est l'interaction avec les véhicules du tra�c dans le voisinage

immédiat. Ces véhicules, qui partagent l'environnement routier avec notre véhicule,

vont dé�nir une région faisable non-convexe qui est décrite dans le présent travail, en

termes d'arrangements des hyperplans, prévoyant une formulation par entiers mixtes

des contraintes d'anticollision. Les travaux antérieurs sur la réduction des variables

Figure 5 � Région faisable non-convexe - Hyperplan arrangement

binaires et les techniques de fusion de cellules sont considérés et appliqués à une

énumération exhaustive des scénarios de dépassements possibles. En�n, un problème

de contrôle optimal est formulé et traduit en un problème de programmation non

linéaire d'optimisation de dimension �nie, résolue via une méthode d'approche de

type direct multiple-shooting.

Contributions de la thèse

Les Systèmes d'assistance à la conduite (ADAS) structurent l'axe principal de ce

travail de thèse industrielle. Ce type de systèmes est considéré comme le premier pas

vers le développement de la conduite autonome, visant à améliorer progressivement

les connaissances technologiques et l'état de l'art des di�érentes tâches de conduite.

Cette évolution permettra de proposer des stratégies de contrôle qui seront réali-

sables et applicables sur des véhicules de série et accessibles pour tout client. Par

ailleurs, la synthèse d'algorithmes e�caces pour la mise en place des choix straté-

giques de conduite représente un compromis entre les performances du système et

la sécurité des passagers et va jouer un rôle fondamental pour l'avenir des solutions

adoptées.

Dans la première partie de ce travail, nous avons mis l'accent dans l'une des

principales tâches de conduite, qui est le contrôle de la direction du véhicle (par

le volant) pour assurer le suivi d'un véhicule (Autosteer par poursuite de cible)

ou le centre de la voie actuel (Lane Centering Assistance). Un accent particulier a

été donné aux implications liées aux variations des paramètres de la dynamique du
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système, issus de la variation de la vitesse. Nous avons adopté des principes de la

commande LPV pour cette application automobile où la dynamique du système est

a�ectée par de larges variations de la vitesse du véhicule.

En outre, la robustesse de la conception des contrôles à l'égard de l'impact de la

courbure de la route, modélisée comme une perturbation additive variable et bornée

a été étudiée à l'aide de la théorie des ensembles invariants positifs robustes, pour

l'analyse et la conception du contrôleur LPV.

Il a été démontré que ces contrôleurs peuvent e�cacement s'appuyer sur la syn-

thèse de lois de commande LPV, fournissant des garanties de faisabilité et cela même

en présence de grandes variations de vitesse au moyen d'une stratégie de contrôle

commuté ou en prenant en compte les capacités d'accélération maximale du véhicule.

Cette question est motivée par la nécessité de disposer du plus grand domaine

d'attraction en présence d'incertitudes, où la satisfaction des contraintes du système

est certi�ée dès l'étape de conception. De plus, les commandes prédictive (MPC) et

par contrôle à base d'interpolation (IBC) sont étudiées a�n d'assurer le respect

des contraintes et l'élargissement du domaine d'attraction, fournis par la stratégie

à l'horizon glissant. La principale contribution de la première partie est d'ordre

méthodologique et prouve qu'une conception intégrée peut faire face à une large

gamme de variations de paramètres et de perturbations additives et peut garantir

la certi�cation de la sécurité et du respects des contraintes sur le fonctionnement en

boucle fermée. En particulier, le IBC est indiqué pour une formulation de la loi de

commande très compacte basée sur l'optimisation.

En tant que perspectives de ce travail, la modélisation et l'intégration des études

de conception du contrôle en présence de contraintes d'entrées variables devrait cer-

tainement être considérées. Plus particulièrement, la variation des limites de l'angle

de direction à l'égard de la vitesse du véhicule représente une direction à privilégier.

En outre, les dynamiques longitudinale et latérale couplées doivent être considérées,

bien qu'elles fournissent des solutions plus complexes basées sur l'optimisation non

linéaire. Ce type de modèle est capable de fournir des solutions pour le contrôle de

man÷uvres plus agressives, comme c'est le cas pour les man÷uvres d'urgence.

Dans la deuxième partie de cette thèse, l'attention a été centrée sur les algo-

rithmes de plani�cation de trajectoire, où l'étude et l'analyse de l'environnement

dynamique dans lequel la man÷uvre est e�ectuée, ainsi que les limites physiques

du véhicule, sont étudiées ensembles pour obtenir des trajectoires de changement de

voie qui permettent d'e�ectuer ce type de man÷uvre avec les garanties de sécurité,

dont la certi�cation de non collision. Comme étude spéci�que, l'attention est foca-

lisée sur la des méthodes de génération de trajectoire basée sur l'optimisation, où

la réduction du niveau du jerk (variation d'accélération ou encore secousses) de la

man÷uvre est le principal objectif, et ce dans le but d'assurer le confort des passa-

gers tout au long de l'exécution de la man÷uvre. La contribution de cette deuxième

partie est la proposition d'une méthode de plani�cation de trajectoire basée sur

l'optimisation qui fournit des trajectoires qui s'assurent le respect des contraintes

de sécurité et de confort, tout en balayant les scenarii possibles en termes d'arran-

gements d'hyperplans autour des obstacles environnants. En outre, la réduction du
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nombre de variables binaires nécessaires et les techniques de fusion de cellules sont

considérées et appliquées à l'énumération exhaustive des scenarii de dépassement

possibles menant à une minimal avec un impact positif sur la complexité du calcul

qui est atténué de manière considérable.

Conclusion

Pour résumer, nous assistons à l'évolution rapide dans le domaine des ADAS au

cours des dernières années. En raison de plusieurs facteurs, il a fallu un certain temps

pour que ces systèmes s'imposent depuis les premières briques théoriques jusqu'à la

production industrielle de masse. Depuis quelques années, une demande croissante

sur le marché se fait sentir également. Deplus, il est envisageable qu'au cours des

prochaines années, cette tendance soit encore plus marquée en raison de nouvelles

réglementations (évolutions de l'Euro NCAP), où la note maximale des cinq étoiles

sera uniquement accordée aux véhicules équipés d'ADAS. En outre, les conducteurs

eux-mêmes commencent à apprécier les avantages de ce type de systèmes, et il

devient de plus en plus disposé à payer le prix pour avoir accès à ces technologies.

La conduite autonome partielle sera une réalité dans les prochaines générations

de véhicules particuliers. Cependant, nous devons garder à l'esprit qu'une régle-

mentation appropriée doit être mise en place et de nombreuses questions di�ciles

d'homologation et de responsabilité doivent être traitées. En�n, d'autres recherches

sur l'évaluation des situations routières et des algorithmes pour la prise de décisions

avec un niveau au moins équivalent à celui de la cognition humaine sont absolument

nécessaires. La recherche fondamentale dans les années à venir va donc jouer un rôle

essentiel pour que les concepts deviennent réalité.
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Advanced Driving Asistance Systems Overview . . . . . 2

1.2.1 System Architecture - Control hierarchy scheme . . . . . 3

1.2.2 Vehicle Instrumentation . . . . . . . . . . . . . . . . . . . 4

1.2.3 Vehicle dynamical modeling discussion . . . . . . . . . . . 5
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1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Motivation

The automotive industry is evolving towards the autonomous driving concept,

considered to be the future of this business. In this kind of driving, the human

plays the role of a passive passenger while the vehicle is completely in charge of

the driving task. It can be seen nowadays that several companies are developing

prototypes [Behringer 2004] that are capable of autonomously driving the vehicle

without human intervention. Nevertheless, there is a long way to go between the

proof-of-concept and the actual spreading of the technology to the general public.

There are several reasons that can justify this time gap, to start with, the current

price of the technology, which is not a�ordable for most of the vehicle consumers.

Then, the drivers learning curve in view of a responsible use and acceptation of such

technologies can be considered as an impediment. Not the least, the legal aspects

need to adapt to the change of framework. This means that in order to fully o�er

this kind of technology at an a�ordable price to the general public, the technique

needs to gain in maturity and to be comforted by a secure legal framework.

A natural evolution process is needed at the vehicle industry, where car manufac-

turers consider that the development of the Advanced Driving Assistance Systems

(ADAS) will allow the technology to become mature and progressively lead to Au-

tonomous Driving vehicles. When speaking of the ADAS systems, one can expect

the vehicle to be in charge of certain driving tasks, not at all levels of decision but at

certain delimited scenarios and always under human supervision. This term covers



2 Introduction

the technological systems that, brie�y speaking, aim to assist the driver or take over

control of the driving task in certain situations, like parking lots, highways or pro-

tected roads, o�ering an improved safety and comfort experience. This kind of sys-

tems can be considered as a �rst generation of assisted or semi-autonomous driving,

that will pave the way to fully automated vehicles [der Automobilindustrie eV 2015].

The ultimate ADAS of the future should be capable of automated driving in

all conceivable situations at a safety level superior to that of a human driver. This

is considered especially important, as the compensation for human error, account-

ing for 90 per cent of all accidents [Treat 1979],[Trucks 2013], is a prerequisite for

accident-free tra�c. In addition, the driving tasks can be broken up into basic func-

tional components or systems that can be technically implemented and developed

up to a certi�ed level of maturity.

1.2 Advanced Driving Asistance Systems Overview

Despite the ADAS technology is a relatively fresh research �eld, it can be seen

that there has been already an important amount of research dedicated to this kind

of systems in the last three decades [Bengler 2014], [Winner 2015].

Initial realizations of driving assistance were mostly based on passive components

whose main idea was to warn the driver or brie�y correct vehicle's trajectory. Here

we can name the Blind Spot Warning (BSW), Lane Departure Warning (LDW)

which evolved lately to security mechanisms as Lane Keeping Assistance (LKA)

[Enache 2008] systems. In the subsequent, more complex systems have been devel-

oped, were the main objective is focused on the complete automation of di�erent

driving tasks to improve the drivers comfort and safety. Some of these systems

are the Parking Assistance, Automatic Emergency Braking (AEB), Longitudinal

dynamics control, Lateral dynamics control or Lane Change Assistance systems.

First versions of Parking Assistance systems have been mostly focused on the

steering wheel control, while the driver was still in charge of controlling the longi-

tudinal movement by accelerating or braking as needed. More recent developments

enable automotive components to be are completely capable of executing the ma-

neuver, without any human intervention.

In addition, a huge improvement on the vehicle's safety has been provided by

the development of the Automatic Emergency Braking [Kusano 2012]. In a nut-

shell, this class of systems are in charge of braking the vehicle if the driver fails

to react whenever facing an imminent longitudinal collision. More evolved systems

will include active obstacle avoidance protection systems, like pedestrians, bicycles

or other vehicles, that may arise provoking hazardous situations both for the vehicle

or the environment [Coelingh 2010], [Dang 2012], indispensable to truly decrease

tra�c-related accidents. This line of developments came with a parallel develop-

ments in modeling in the human behavior and the interaction in an environment as

the urban tra�c.

Longitudinal dynamics control is a mature �eld [Vahidi 2003], where the main
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objective is to regulate vehicle speed and longitudinal distance with the surround-

ing vehicles. This kind of systems, commonly known as Adaptive Cruise Control

(ACC) systems [Winner 2014], are already o�ered by many car manufacturers, and

seem to have been successfully accepted by the customers thus o�ering an impor-

tant argument for the social acceptance of autonomous or semi-autonomous driving

initiatives.

Then, lateral dynamics control has been also subject of several studies for a long

time [Falcone 2007], [Rajamani 2006], [Palladino 2006]. Nevertheless, drivers accep-

tance of these kind of assistance systems seems to be more troublesome and needs

a longer period of time to be completely settled on the market [Brookhuis 2001].

In principle, the main purpose of these systems is to control the steering wheel of

the vehicle, considering di�erent driving objectives. Here we recall the Auto-steer

system, whose main purpose is to follow a vehicle that is in front of the controlled

one at low speed. Then, the Lane Centering Assistance (LCA), the component in

charge of following the center of the lane when driving in the highway, considering

a broad range of vehicle speed.

Lastly, we have the Lane Change assistance, which has been already studied

in several research work but in practice still remains a challenge for the existing

real-life application, mostly due to the inherent complexity of the interaction with

the surrounding dynamical environment [Schubert 2010].

1.2.1 System Architecture - Control hierarchy scheme

Generally, it is common to model the human driver's task as three levels of behav-

ior and control, usually known as strategical (itinerary planning), tactical (decision

making, tra�c interaction) and operational (control and environment perception)

levels respectively [Michon 1985].

The Advanced Driving Assistance Systems (ADAS) main task is to take the role

of the human driver up to a certain point, so the general architecture structure is

usually divided in an analogous way in several layers or levels, replicating the same

kind of logic. In Figure 1.1 a simpli�ed schema of the tactical and operational layers

is shown.

Environment

Analysis Trajectory

Planner
Vehicle

Traffic
Longitudinal

Control

Lateral

Control

Sensing & Supervision Reference generation Controllers

-

-

Figure 1.1 � Simpli�ed schema logic architecture
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The tactical level is comprised of the elements that interact and analyze the

surroundings of the vehicle, which includes all the vehicle instrumentation (Section

1.2.2) and sensor data fusion algorithms that will collect all the data in order to

set up a coherent vehicle environment analysis. As a �rst positioning, our focus in

this thesis has been given to the operational layer, where we can �nd the trajectory

planning algorithms (Part II), that will provide the appropriate references to the

lower level controllers, in this case, having a decoupled structure for longitudinal

and lateral dynamics control, this last topic representing also an important part of

the present thesis as described in Part I.

1.2.2 Vehicle Instrumentation

Having an accurate knowledge of the framework in which the assisted vehicle

is located is a fundamental problem of the ADAS systems: an automated vehicle

cannot act properly without a deep understanding of the environment in which is

driving. It is straightforward to notice that the surrounding conditions cannot be

known in advance, as tra�c interactions are highly dynamical and unpredictable, all

emphasized by the fact that human-driven and semi-automated vehicles are doomed

to co-exist during a certain, yet unde�ned, period of time.

All these factors generate the need to equip the vehicles with a series of on-

board sensors (Figure 1.2) that allow to measure the relevant information of the

environment and the vehicle. Generally speaking, we can distinguish between two

kinds of sensors, denoted as exteroceptive or proprioceptive.

Figure 1.2 � Vehicle instrumentation. Source: www.group.renault.com

On one hand, the �rst type of sensors is in charge of providing environment

measurements as well as the relative state of the vehicle. The main exteroceptive

sensors for the auto-steering systems include a camera and one or several radars,

which are in charge of providing the position of the vehicle with respect to the

lines of the road as well as the movement and location of the surrounding elements.

These technologies currently dominate the ADAS sector, having complementary

capabilities, and the omission of one technology in favor of the other is not to be

expected in the near future.

On the other hand, the second type of sensors has the objective of yielding own

vehicle information. Here we include the measurement of the steering angle, by
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means of a relative or absolute encoder and a gyro for the vehicle yaw rate. For the

rest of LCA non-measured states, an observer that estimates their values is needed.

In addition to this, it has been shown in Figure 1.1 that the systems' correct

operation is ensured by means of several algorithms that collect and analyze all

information before providing it to the control logics. This data fusion algorithms are

a entire topic by itself, and are out of the scope of this thesis work. Nevertheless, the

schemes and methodologies presented here rely on the information provided by these

blocks and here we can mention two di�erent examples: �rstly, there is the driver

monitoring system through torque measurements, that is in charge of detecting if

the steering wheel applied torque is above a minimum threshold, indicating that

if is being hold by the human driver. This detection is important as the auto-

steering assistance system needs to be disconnected for safety reasons. Then, we

have the target selection and tracking algorithms, that are in charge of detecting the

surrounding vehicles and provide the corresponding information to the lower level

controllers.

1.2.3 Vehicle dynamical modeling discussion

Correct vehicle modelization plays a fundamental role for any kind of ADAS

application, particularly in the kind of model-based control design and trajectory

planning methods studied in this thesis. The dynamics of the vehicle have been stud-

ied and targeted in di�erent contexts, [Sename 2013], [Fergani 2013], [Bokor 2005],

[Jazar 2013] being of common knowledge in both mechanical and control �elds.

The strategy to de�ne the model used for the each one of the modules needs

to be de�ned as a trade-o� between complexity, performance and computational

burden. In this context, it could be stated that is of common practice to consider a

higher �delity model for the lower level feedback controllers whereas the trajectory

planner takes into account a simpler model [Gao 2010].

The main distinction can be made in between dynamic and kinematic models.

The �rst kind of modelization is based on the study of the interacting forces be-

tween the vehicle and its environment, while the second group is mainly focused

on the movement of the car, without the study of the forces that generate it. In

[Carvalho 2015] it is provided an interesting performance comparison between the

two groups of models.

Regarding dynamical models, we can �nd complete complex dynamical models,

that consider vehicle movement in the three-dimensional space [Lee 2008]. This kind

of models are mainly used for validation purposes and model-in-the-loop simulations,

but remain too complex for control design or trajectory planning purposes. In order

to reduce this complexity, it is of common practice to assume two-dimensional space

movements, that is, planar displacements in the {X,Y } reference frame. In this

context, 4-wheeled vehicle models have been used in few studies in the literature

[Gao 2010] but still the community seems to retain the 2-wheeled vehicle models,

this being the most widespread modelization for control design purposes, commonly

denoted as bicycle model. In this framework, it is common to �nd a two or three
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Degrees of Freedom (2-DoF or 3-DoF) vehicle models, where the main di�erence

is the disregard of the longitudinal forces e�ects on the 2-DoF models, commonly

used for auto-steering lateral dynamics control. On the contrary, both directional

forces are commonly considered of interest in the case of more aggressive maneuvers,

yielding a nonlinear 3-DoF bycicle model [Frasch 2013]. Nevertheless, in the wide

literature related to assisted driving there is not a clear standard model accepted.

A survey of kinematic models for car-like vehicles was done by [Schubert 2008],

where we can highlight the holonomic point-mass [Falcone 2008] vehicle model or

de Dubins car [Muller 2007], commonly used for parking trajectory planning meth-

ods. In addition, for collision avoidance purposes a point-mass model is commonly

accepted [Falcone 2007]. Needless to say, a higher �delity representation on the

higher level planner would facilitate the control task to the lower level controllers,

but would complexify the required resolution algorithms, thus generating a needed

of trade-o�. However, even for trajectory planning, di�erent complexity models are

considered in the literature, according to the ultimate objective and aggressiveness

of the generated maneuvers.

1.2.3.1 Vehicle lateral dynamics modelization

In [Carvalho 2015] a brief overview of the generally used models for vehicle steer-

ing control are outlined and [Rajamani 2006] provides a complete background on

the topic and allow to understand deeply the interactions of this system with the

environment. In the subsequent, a 2-DoF dynamical model based on the interacting

lateral forces between the vehicle and the road surface through the tires is used.

The adopted dynamical model is based on the widely known bicycle model, as it

exhibits a good compromise between complexity and performance. The main idea

of this model is to merge together each pair of wheels situated at the same axis, as

shown in Figure 1.3.

Figure 1.3 � 2-DoF Bicycle model
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Assumption 1.1 For control design purposes, the lateral and longitudinal dynam-

ics of the vehicle are decoupled, and only lateral forces e�ects are considered for the

2-DoF model.

This means that the interaction between lateral and longitudinal forces is neglected

and only two degrees of freedom (DoF), namely the lateral position y and the heading

angle ψ, are taken into consideration. Hence, only lateral interacting forces and

vertical torque equilibrium de�ne the dynamical equations,

mÿ =
∑

Fy,

Izψ̈ =
∑

Mz.
(1.1)

Considering the lateral and centripetal acceleration that will a�ect the vehicle,

ÿ = ÿ + ψ̇vx, together with the lateral forces acting on the wheels we have

m(ÿ + ψ̇vx) =
∑

Fy = Fyf + Fyr ,

Izψ̈ =
∑

Mz = lfFyf − lrFyr .
(1.2)

The next part that needs to be analyzed is the study of lateral forces acting on

the front and rear wheels, Fyf and Fyr respectively. Regarding auto-steering ap-

plications under regular driving conditions 1, small slip angles 2 consideration is of

common practice, thus the interacting forces between the tyres and the ground

are restricted to their linear region [Pacejka 2005] (Assumption 1.2). However, the

reader is referred to [Di Cairano 2013], [Falcone 2006], for auto-steering applications

under more extreme driving conditions or coupled longitudinal and lateral vehicle

dynamics modeling or tyres working on the nonlinear region [Liu 2010].

Assumption 1.2 Under normal driving conditions, small slip angle values restrict

the range of operation of the lateral forces acting on the wheels to their linear region.

This linear dependence can be written as a proportional relationship of the lateral

forces with respect to the cornering sti�nes C of the tyres and the slip angle α,

Fyf = 2Cfαf = C̄fαf ,

Fyr = 2Crαr = C̄rαr.
(1.3)

Remark 1.1 The cornering sti�ness C̄r and C̄f in (1.3) contain a scaling factor

of 2, which accounts for the e�ects of the two wheels present on the same axis that

have been merged together when de�ning the bicycle modelization.

1. Understood as working in the linear region of the tyres, withought performing aggressive

steering maneuvers.

2. Orientative value:α ∈ [−10o, 10o]. Nevertheless, it will depend on the vehicle tyres model,

and the relationship would need to be studied for each case.



8 Introduction

Then, the slip angle α? is de�ned as the angle between the orientation of the

wheel and the vector speed of the wheel, depicted in Figure 1.3 under the following

assumption.

Assumption 1.3 Only vehicles with front steering con�gurations are considered,

i.e. δr = 0.

Along these lines, the slip angle of the front wheel αf is given by

αf = δf − γf , (1.4)

while the rear slip angle is given by (Assumption 1.3)

αr = −γr, (1.5)

where γf and γr stand for the angle between the longitudinal speed and the longitu-

dinal axis of the vehicle at the front and rear wheels respectively. In the following,

it is obtained from the ratio of the lateral to the longitudinal speed:

tan(γf ) =
ẏ + lf ψ̇

vx
, tan(γr) =

ẏ − lrψ̇
vx

. (1.6)

Using small angle approximations, tan(γf ) ≈ γf and tan(γr) ≈ γr, we can directly

substitute (1.6) on (1.4), (1.5) and obtain the lateral forces in (1.3) as

Fyf = C̄f (δf −
ẏ + lf ψ̇

vx
), Fyr = C̄r(−

ẏ − lrψ̇
vx

). (1.7)

When dealing with lane centering applications, it becomes of interest to do a

change of reference, expressing some of the model states with respect to the road.

In this way, the following change of coordinates has been considered

ψ̇rel = ψ̇ − ψ̇road = ψ̇ − vxρ,
ẏCoG = ẏ − vxψrel.

(1.8)

The resulting dynamical model is shown in the following:

ẋ(t) = Ac(vx(t))x(t) +Bcu(t)

y(t) = Ccx(t)
(1.9)

with:

Ac(vx(t)) =


−(Cf l

2
f+Crl2r)

Izvx(t)
(Cf lf−Crlr)

Iz

−(Cf lf−Crlr)
Izvx(t) 0

1 0 0 0
(Crlr−Cf lf )

mvx(t)
(Cf+Cr)

m
−(Cf+Cr)
mvx(t) 0

0 0 1 0

 , (1.10)
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Bc =


Cf lf
Iz
0
Cf
m

0

 , Cc =

 1 0 0 0

0 1 0 0

0 0 0 1

 . (1.11)

The state vector x ∈ Rnx is de�ned together with the control input u ∈ Rnu and

the measured outputs y ∈ Rny by the following sequence of system states, depicted

in Table 1.1, with nx = 4, ny = 3 and nu = 1.

x =
[
ψ̇ ψrel ẏCoG yCoG

]T
y =

[
ψ̇ ψrel yCoG

]T
u = δ

(1.12)

Table 1.1 � Bicycle model states description
State Description

ψ̇ Rate of change of vehicle orientation (yaw rate)

ψrel Heading angle with respect to the road center line

ẏCoG Lateral speed with respect to the road center line

yCoG Lateral o�set with respect to the road center line

δ Front wheel steering angle

System matrices Ac(vx(t)) ∈ Rnx×nx , Bc ∈ Rnx×nu and Cc ∈ Rnx×ny depend on

several vehicle constants and parameters, described in Table 1.2.

Table 1.2 � Vehicle parameters de�nition
Parameter Description

Cf Equivalent cornering sti�ness of the front wheels [N/rad]

Cr Equivalent cornering sti�ness of the rear wheels [N/rad]

lf Longitudinal distance between CoG and front wheels axis [m]

lr Longitudinal distance between CoG and rear wheels axis [m]

Iz Vehicle moment of inertia along the vertical axis [kgm2]

m Vehicle total mass [kg]

vx Longitudinal speed of the vehicle

1.3 Open problems

Beyond all the development concerning technological progress, it must be noted

that automated driving in all conceivable tra�c situations requires considerably

more development on the sensing and control design capabilities than available at
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the current state-of-the art. This is in part due to the fact that despite the enclosed

context of the ADAS systems, driving conditions are never the same, so it is a critical

feature to ensure a correct behavior under system's variation of parameters or in the

presence of uncertainty. When focusing on the development of ADAS control system,

research directions seek to come up with robust control strategies that will always

keep a correct performance. At the same time, such control applications in which

human life is involved must �nd the means to ensure system safety for the passengers

of the vehicle, as well as for the surrounding elements. In this framework, control

strategies that ensure hard constraints handling from the design stage is becoming

a key subject.

In addition, once the basic functional control logic blocks are gaining in maturity,

reliability and performances, more complex maneuvers will be progressively come

into the picture, like the case of semi-automated lane change or overtaking. This

group of applications will require to master the lower level tasks, like the lower level

steering control. After that, the research e�orts will be oriented towards the devel-

opment of other kinds of algorithms needed to implement these complex tasks. This

is the case of trajectory and planning strategies, which have a long research history

in the �eld of robotic manipulators. Still, there is a long way to go when speaking

of vehicle applications, where highly dynamic and uncontrolled environments make

the task considerably more complex.

1.4 Thesis structure

The manuscript's structure has been divided according to the two main applica-

tion topics that have been studied along this industrial thesis work. The �rst part,

focused on the constrained control of vehicle lateral dynamics, is composed of three

chapters, whose main content is brie�y introduced in the subsequent. After that,

the second part of the document is compounded by two chapters, where trajectory

planning for overtaking in highways is the driving axis.

Part I: Vehicle lateral dynamics constrained control

Chapter 2: Theoretical background for constrained control

This chapter aims to introduce a set of tools that will be used in for the con-

strained control purposes in the �rst part of the manuscript. The idea is to o�er to

the reader a brief insight into the theoretical concepts that are needed to understand

the work presented in the following two chapters.

Chapter 3: Lateral Dynamics constrained control

This chapter presents two di�erent generic approaches for the control design of

a vehicle Auto-Steering by Target tracking system, where the uncertainty produced

by the variation on the speed is considered explicitly. This speed variation brings

an uncertain model, that will be described by dynamics with polytopic uncertainty.
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Thanks to the online measurement of the parameter, the system dynamics will be

computed at each sample time to solve a Model Predictive Control optimization

problem. Parameter-dependent Lyapunov functions and positive set invariance the-

ory are used to ensure stability and feasibility. After that, Interpolation Based

control, whose principle is to use a control action constructed as an interpolation

between two computed extreme values, is studied. Each time, two linear program-

ming problems are solved, which makes this approach to be a suitable trade-o�

between performance and computation cost.

Chapter 4: Lane Centering Assistance System

The attention of this chapter is focused on one of the lateral dynamics control

system known as the Lane Centering Assistance system, which is de�ned by Lin-

ear Parameter-Varying (LPV) model comprising the most relevant system dynamics

and the curvature of the road, modeled as a bounded parameter-varying additive

disturbance. From a theoretical point of view, robust positive invariance theory is

exploited in order to perform the analysis of the e�ects that a bounded parameter-

varying additive disturbance has on a linear parameter-varying controller used to

ensure stability of a model predictive control strategy. After that, vehicle speed and

curvature of the road variations are considered at the design stage, in order to com-

pute a suitable observer-based feedback controller that ensures performance under

these changes on the driving conditions and system limitations, translated into con-

trol design constraints. In addition, constraint satisfaction and the maximization

of the domain of attraction are considered, in order to provide a certi�ed region of

operation. As a last part of the study, in order to reduce the conservativeness intro-

duced by large parameter variations, a discontinuous multiple parameter-dependent

design and maximal acceleration considerations are proposed.

Part II: Trajectory planning for lane change and over-

taking on highways

Chapter 5: Theoretical background for trajectory planning

Accordingly to the structure of the �rst part, this �rst chapter includes an

overview of the theoretical concepts used for trajectory planning purposes. In short,

state-of-art of numerical methods that can be used to solve Optimal Control Prob-

lems and hyperplane arrangements theoretical tools are brought into the picture,

ensuring an initial base for the understanding of the next chapter.

Chapter 6: Collision-free trajectory planning on highways

The �nal chapter of the manuscript addresses the problem of vehicle lane change

and overtaking on highways in the assisted driving framework. In order to perform

such maneuvers, it is fundamental to compute safe and comfortable trajectories that

take into account the vehicle limitations as well as safety restrictions. On top of
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the internal limitations, the critical feature to be considered in the design is the

interaction with the surrounding vehicles when driving in such a dynamic environ-

ment. These vehicles, sharing the environment, de�ne a non-convex feasible region

which is described in the present work in terms of hyperplane arrangements leading

to mixed-integer formulation of the anti-collision constraints. Previous work on the

reduction of the necessary binary variables and cell merging techniques presented

in Chapter 5 are considered and applied to an exhaustive enumeration of possible

overtaking scenarios. Finally, a constrained optimal control problem is formulated

and translated into a �nite dimension non-linear programming problem via direct

optimization multiple-shooting approach that is solved in a receding horizon fashion.

1.5 Thesis contributions

The overall topic of the thesis is Advanced Driving Assistance Systems (ADAS).

In the �rst part of this thesis work, a particular focus is given to autosteering sys-

tems control, understood as lateral dynamics constrained control design and the

implications of the parameter-varying nature of the system dynamics, provided by

the variation of the speed of the vehicle. In addition, the robustness of the control

design with respect to the impact of the curvature of the road, modeled as a bounded

parameter-varying additive disturbance is studied using Robust Positive Invariance

theory for the analysis and design of the Linear Parameter Varying (LPV) system.

This subject is motivated by the need of a large robust domain of attraction, where

system constraints satisfaction is certi�ed from the design stage. On top of this,

Model Predictive Control (MPC) and Interpolation Based Control (IBC) methods

are studied in order to enforce constraint satisfaction and the enlargement of the

domain of attraction, provided by the receding horizon strategy. The main con-

tribution of the �rst part is methodological and proves that an integrated design

can cope with a large range of parameter variation and the modeled additive dis-

turbances and could provide certi�cation for the safety and other constraints on

the closed-loop functioning. In particular, IBC is shown to lead to a very compact

optimization-based control law.

In the second part of this thesis, attention has been focused on the trajectory

planning algorithms, where the study and analysis of the dynamical environment

in which the maneuver will be performed, together with the physical limitations

of the vehicle, are studied together to obtain suitable lane change trajectories that

allow to perform this kind of maneuver with safety certi�cations, understood as

anti-collision enhancements. Once this is set, attention is given to optimization-

based trajectory generation, where the minimization of maneuver jerk is the main

objective, ensuring passenger's comfort all along the trajectory execution. The

contribution of this second part corresponds to an optimization based trajectory

planning method that provides suitable trajectories that ensure safety and comfort

constraints, all in addition to the exhaustive description of the possible scenarii in

terms of hyperplane arrangements. Moreover, the reduction of the necessary binary
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variables and cell merging techniques are considered and applied to the exhaustive

enumeration of possible overtaking scenarii leading to a minimal representation in

terms of binary variable.
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Constrained control theory can be considered by now a mature �eld, which is

increasingly attracting the attention of the research community [Goodwin 2006],

[Borrelli 2003], [Nguyen 2014], and industrial applications [Qin 2003]. Automotive

applications are deeply engaged with safety certi�cations, thus this kind of control

strategies are of special interest due to their inherent capability of enforcing the

system physical limits as well as safety limitations from the control design stage.

In this chapter, we start by setting the theoretical base for the �rst part of the

manuscript, bringing together the most signi�cant ideas and concepts that will be

further used for control design purposes. Our aim is not to o�er a panorama of the

constrained control design, as long as the topic and an exhaustive coverage of this

methods is too complex to be covered in this framework and stays out of the scope
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of the chapter. The point of view is conducted by the predictive strategies that have

been e�ectively deployed in the present research work.

First of all, the class of systems that we have focused on are presented: discrete-

time Linear Parameter Varying systems subject to parameter-varying additive dis-

turbances. Secondly, we revisit the main concepts and procedures in the set invari-

ance theory, as this theoretical tools allow to analyze essential regional features of

the control strategies, such as stability and robustness.

Once the framework will be set, Section 2.3 presents three di�erent control strate-

gies for constrained systems that will be ultimately studied for the lateral dynamics

control application in the subsequent chapters of this �rst part of the manuscript.

The �rst control strategy (Section 2.3.1), denoted by LPV control design, is a con-

troller synthesis founded on the computation of a stabilizing parameter-varying

static feedback control law. Then, Implicit Model Predictive Control (Section 2.3.2),

based on the resolution of a �nite-horizon constrained optimal control problem will

be described. At last, Interpolation Based Control (Section 2.3.3) is introduced, this

last methodology bringing a series of novelties in the constrained control, presenting

an appealing trade-o� between performance and complexity.

2.1 Linear Parameter Varying systems

The class of Linear Parameter Varying (LPV) systems encompass the dynami-

cal systems whose state-space representation depends linearly on an external time-

varying parameter. In addition, we can mention also the quasi-LPV systems, where

the varying parameter is a sub-state of the system dynamics itself.

2.1.1 General considerations on LPV models

De�nition 2.1 A linear parameter varying system is represented by a dynamical

model that depends linearly on a time-varying parameter. The generic state-space

representation for a dynamical system in discrete-time form depending linearly on

a varying parameter θk ∈ Rnθ reads as follows,

xk+1 = A(θk)xk +B(θk)uk + E(θk)wk

yk = C(θk)xk
(2.1)

where xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny and wk ∈ Rnw are the states, input, output

and additive disturbances vectors respectively. The matrices A(θ) : Rnθ → Rnx×nx ,

B(θ) : Rnθ → Rnx×nu , C(θ) : Rnθ → Rny×nx and E(θ) : Rnθ → Rnx×nw de�ne the

system dynamical behavior.

The characterization in (2.1) de�nes a family of admissible dynamical models.

Accordingly, LPV analysis concerns assessing properties (such as control design,

stability or disturbance rejection) that hold for the full family of LPV systems,

rather than the sub-class of LTI system [Mohammadpour 2012].
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Remark 2.1 For each particular case, system dynamics may depend on several

parameters θ ∈ Θ, with Θ ∈ Rnθ being the group of varying parameters appearing

on the system dynamics. Moreover, not all the system matrices A, B, C and E

will necessarily depend on the parameters θ as it will be seen in the next chapters

dedicate to speci�c automotive applications.

Remark 2.1 opens the discussion to endless variety of possibilities. Nevertheless,

as an special case and for the sake of clarity, let us continue the exposition under

the following assumptions.

Assumption 2.1 Input and output matrices B and C respectively are constant ma-

trices and do not depend on any varying parameter θ.

Under Assumption 2.1, the LPV dynamical system reads as follows

xk+1 = A(θk)xk +Buk + E(θk)wk

yk = Cxk
(2.2)

Controllability of LPV systems has been introduced in serveral references on the

literature [Bokor 2005], [Mohammadpour 2012]. In the remaining of this part, the

following assumption is considered:

Assumption 2.2 LPV system (2.2) is controllable.

2.1.2 Polytopic representation of LPV systems

There exist several ways of representing a dynamical system containing a para-

metric uncertainty, where structured feedback uncertainty, a�ne representation

(nonlinear systems) and polytopic uncertainty description [Kothare 1996], [Bemporad 1999]

are the most widespread methods.

Assumption 2.3 The parameter θk ∈ Θ, where Θ is a convex set in Rnθ , also the

vector θk is measured at each sample time but unknown a priori on a future horizon.

Whenever the LPV model is used for the prediction, the luck of future infor-

mation lead to interpretation of the Assumption 2.3 in the sense that the varying

parameter is lying in a bounded polytope Θ ∈ Rnθ×nv , de�ned by

Θ = ConvHull {θ1, . . . θnv} , (2.3)

with nv being the number of parameter vertices and nθ the dimension of the param-

eter. Clearly, as the parameter θ varies inside the convex polytope Θ, the system

matrices (2.2) vary inside a corresponding polytope, de�ned by the convex hull of

the nv local matrix vertices at the vertex of the parameters value.

PAE = Conv
{[
A1(θ1) E1(θ1)

]
, . . .

[
Anv(θnv) Env(θnv)

]}
. (2.4)
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Hence, the system matrices in (2.2) (with a straightforward extension to the matrices

in (2.1)) that depend on a varying parameter and under Assumption 2.3 can be

obtained as a convex combination of the system's vertex realizations that de�ne

PAE (2.4),

A(θ) =
∑nv

i=1 λiAi(θi), E(θ) =
∑nv

i=1 λiEi(θi), (2.5)

with λi belonging to the unitary nv-simplex, λi ∈ Λ,

Λ =

{
λi ∈ Rnv :

nv∑
i=1

λi = 1, λi ≥ 0

}
. (2.6)

2.2 Set invariance theory for input-free discrete-time LPV

systems

Set invariance theory is a fundamental concept for the design of controllers for

constrained systems by the fact that they characterize the regions guaranteeing

a certain dynamical property which can be certi�ed in conjunction with the con-

straints. The computation of this kind of sets represent an important step on the

control synthesis and analysis, as these tools allow to asses critical features such as

feasibility, stability or robustness of the strategy. A complete survey on the subject

can be found in [Blanchini 1999] and the monography [Blanchini 2008]. Let us recall

two formal de�nitions.

De�nition 2.2 [Blanchini 2007]. A set S ⊂ Rnx is a positive invariant set for an

autonomous discrete-time system xk+1 = f(xk, θk) if for any initial state x0 ∈ S the

system evolution satis�es xk ∈ S for all future times k > 0.

Moreover, it can be of interest as well to determine whether the trajectory of

the system remains inside the given set in the presence of (bounded) additive dis-

turbances in addition to the parametric uncertainties.

De�nition 2.3 [Blanchini 2007]. A set S ⊂ Rnx is a robust positive invariant

set for an autonomous discrete-time system xk+1 = f(xk, θk, wk) if and only if for

any initial state x0 ∈ S, xk ∈ S, for k > 0 independent of the bounded additive

disturbance realization wk ∈W .

Invariant sets are generally represented or approximated by means of polyhedral

or ellipsoidal sets. The remaining of this section brings together useful concepts and

de�nitions, setting up an appropriate set-theoretic framework for the subsequent.

2.2.1 Polyhedral sets

2.2.1.1 Basic de�nitions

De�nition 2.4 An hyperplane H(H, g) is a set of the form,

H(H, g) = {x ∈ Rnx : HTx = g}, (2.7)
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where H ∈ Rnx×nx , g ∈ Rnx×1.

De�nition 2.5 A closed half-space H+, H− is a set of the form,

H+ = {x ∈ Rnx : HTx ≤ g},
H− = {x ∈ Rnx : HTx > g},

(2.8)

where H ∈ Rnx×nx , g ∈ Rnx×1.

De�nition 2.6 A convex polyhedral set P(H, g) ∈ Rnx is de�ned by the intersec-

tion of a �nite set of halfspaces in Rnx ,

P(H, g) = {x ∈ Rnx : HTx ≤ g}, (2.9)

whith H ∈ Rnx×nx and g ∈ Rnx×1. This representation is known as the half-space

representation. A polyhedral set contains the origin if and only if g ≥ 0, and includes

the origin in its interior if and only if g > 0.

De�nition 2.7 A bounded polyhedral set is a polytope.

A dual representation for a polytope is the vertex representation [Schneider 2014],

where a polyhedron is de�ned by the convex hull of a series of points, denoted as

vertex, vi, i = 1, . . . p,

P(V ) = Conv{v1, . . . , vp} =

{
x ∈ Rnx : x =

p∑
i=1

αivi

}
, (2.10)

with
∑p

i=1 αi = 1, αi ≥ 0 and vi ∈ Rnx is the i-th column of the vertices matrix

V ∈ Rnx×p.

De�nition 2.8 The Minkowski sum of two polytopes, P1 ⊂ Rnx , P2 ⊂ Rnx de�ned
as

P1 ⊕ P2 = {x1 + x2 : x1 ∈ P1, x2 ∈ P2}. (2.11)

If the polytopes are given by their vertex representation (2.10), their Minkowski

sum is computed as

P1 ⊕ P2 = Conv{v1i+ v2j}, i = 1, . . . p, j = 1, . . . q, (2.12)

with p and q being the number of vertices of P1 and P2 respectively.

De�nition 2.9 The Pontryagin di�erence of two polytopes , P1 ⊂ Rnx , P2 ⊂ Rnx
is the polytope,

P1 	 P2 = {x1 ∈ P1 : x1 + x2 ∈ P1, ∀x2 ∈ P2}. (2.13)

Remark 2.2 Note that the Pontryagin di�erence and the Minkowski sum are com-

plementary but not inverse operations. Given two polytopes, P1 ⊂ Rnx , P2 ⊂ Rnx ,
it holds that P1 ⊕ P2 	 P2 = P1 but (P1 	P2)⊕P2 ⊆ P1 and only under particular

homothetic sets lead to equality.
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2.2.1.2 Polyhedral invariant sets

Let us consider a closed-loop stable LPV dynamical system in the form

xk+1 = Acl(θk)xk + E(θk)wk, (2.14)

where the closed-loop form corresponds to the stabilized system by means of a

parameter-dependent gain, with uk = K(θk)xk, thus Acl(θk) = A(θk) + BK(θk).

This uncertain closed-loop dynamics can be embedded in a polytopic representation

as shown in Section 2.1.2,

Acl(θ) =

nv∑
i=1

λiA
i
cl(θi) =

nv∑
i=1

λi(Ai(θi)−BKi(θi)), (2.15)

with λi lying in the unitary simplex (2.6) and Aicl(θi) being the extreme realizations

of the stabilized closed-loop dynamics.

The system dynamics are subject to polytopic constraints on the states and

inputs,

x ∈ X, X = {x ∈ Rnx : HXx ≤ gX} (2.16a)

u ∈ U, U = {u ∈ Rnu : HUu ≤ gU}, (2.16b)

where X ⊂ Rnx and U ⊂ Rnu are respectively the bounded sets of admissible states

and inputs, both containing the origin in their interior.

• Maximal positively invariant and constrained admissible set.

De�nition 2.10 [Gilbert 1991]. A set Ω is positive invariant constrained

admissible with respect to (2.14) with wk = 0 if x0 ∈ Ω implies that xk ∈ Ω

for all future times, k > 0, without activating the constraints (2.16a), (2.16b).

This is equivalent to

xk ∈ Ω→ xk+1 ∈ Ω, ∀k and K(θk)xk ∈ U. (2.17)

De�nition 2.11 [Gilbert 1991]. A set Ω is a Maximal Admissible Set (MAS)

or maximal positive invariant constrained admissible if it contains any other

positive invariant constrained admissible set.

In [Gilbert 1991] and [Borrelli 2015], the properties of this kind of sets are

characterized and recursive algorithms are introduced in order to compute

them. Based on these algorithms which involve closed operations over the class

of polyhedral sets, we can obtain the positive invariant constrained admissible

set Ω

Ω = {x ∈ Rnx : HΩx ≤ bΩ} (2.18)
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for the constrained closed-loop stable parameter-varying system in (2.14) with

wk = 0, where HΩ and bΩ are computed recursively through Procedure 2.1.

Procedure 2.1 Maximal Admissible Set (MAS) computation for LPV con-

strained stable closed-loop dynamics

1. Compute initial conditions at k = 0 from the state-admissible space

de�ned by the system constraints:

Ω0 = {x ∈ Rnx : HΩ0x ≤ bΩ0}, (2.19)

where

HΩ0 =

[
HX

HUKi

]
, bΩ0 =

[
gX
gU

]
,with i = 1 . . . nv. (2.20)

Set Ωk = Ω0.

2. Compute image set Ωi
k+1 = {x ∈ Rnx : H i

Ωk+1
x ≤ biΩk+1

}, with

i = 1 . . . nv, where

H i
Ωk+1

=

[
HΩk

HΩkA
i
cl(θi)

]
, biΩk+1

=

[
bΩk
bΩk

]
. (2.21)

3. Suppress redundant constraints.

4. Set Ωk+1 = ∩nvi=1Ωi
k+1.

5. If Ωk+1 = Ωk stop and return Ωk. Else k = k + 1 and go to Step 2.

Finite determinedness of the MAS set is guaranteed in the absence of ad-

ditive disturbances by the the stability of the stable closed-loop dynamics

[Blanchini 1996], [Gilbert 1991]. For the LPV systems represented in poly-

topic form, the �nite determinedness is related to the robust asymptotic sta-

bility [Olaru 2008].

• Maximal and Minimal robust positively invariant admissible set.

De�nition 2.12 [Borrelli 2015]. A set Ω is robust positive invariant and con-

strained admissible or, in short, robust positive invariant (RPI) with respect

to (2.14) if x0 ∈ Ω implies that xk ∈ Ω for all future times, k > 0, despite the

presence of bounded additive disturbances wk ∈ W and without activating

the constraints. This is equivalent to

xk ∈ Ω→ xk+1 ∈ Ω and uk ∈ U ∀k and ∀w ∈ W. (2.22)

In addition, in the presence of such additive disturbances, the analysis of the

Maximal Robust Positively Invariant and Minimal Robust Positively Invariant
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sets becomes of interest to study quantitatively the e�ect of the disturbances

on the system dynamics.

De�nition 2.13 A Maximal Robust Positively Invariant (MRPI) set ΩM ⊂
X is a RPI set that contains any other RPI set contained in X.

The computation of the MRPI, ΩM , can be done by means of a recursive al-

gorithm, extracted from [Nguyen 2011], where more details on the topic and

proof of convergence for (2.23) are detailed.

Procedure 2.2 Maximal Robust Positive Invariant Set (MRPI) computa-

tion for LPV constrained stable closed-loop dynamics

ΩM (s) =


{x} ⊆ X

x : {Aix} ⊕ EiW ⊆ X
. . .

{As−1
i x} ⊕

⊕s−2
k=0(Aki )EiW ⊆ X

 . (2.23)

The presence of additive disturbances bounds the convergence of the system

state to a region of the space around the origin. This region of the space

can be delimited by the analysis of the minimal robust positive invariant set,

which provides a quantitative measurement of the uncertainty introduced on

the system dynamics due to the presence of additive disturbances: the larger

the mRPI set is, the more the system is a�ected by the disturbances.

De�nition 2.14 A minimal Robust Positively Invariant set (mRPI) Ωm ⊂ X
is the RPI set which is contained in any other RPI set contained in X.

This set represents the set of states that can be reached from the origin un-

der a bounded additive disturbance a�ecting the system dynamics. The exact

computation of this kind of sets still remains a challenge for the general case

of dynamics [Mayne 1997], and usually an ε-outer approximation of this set

needs to be computed [Rakovic 2005]. In the following, we present an al-

gorithm following the lines of [Olaru 2010] where the approximation of the

mRPI is computed starting from an initial RPI set, that is afterwards re�ned

by means of a recursive strategy, adapted for the kind of LPV system dynam-

ics we are studying in this work.
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Procedure 2.3 Minimal Robust Positive Invariant Set (mRPI) computa-

tion for LPV constrained stable closed-loop dynamics

1. Set initial condition, Ωmk = ΩMk
, with Ωmk being RPI (Procedure 2.2).

2. Compute image of the RPI set Ωmk and add the bounded additive dis-

turbances set W , for i = 1 . . . nv,

Ωmk+1
= ConvHull{Aicl(θi)Ωmk} ⊕ ConvHull{Ei(θi)W}. (2.24)

3. If Ωmk+1
= Ωmk stop and return Ωmk . Else k = k + 1 and go to Step 2.

• Controlled positively invariant set.

De�nition 2.15 Given a LPV dynamical system subject to polytopic con-

straints, a set C ⊆ X is controlled positively invariant if x0 ∈ C implies that

∃uk ∈ U such that xk ∈ C for all k > 0 and θ ∈ Θ.

C∞ = {x ∈ Rnx : ∃u ∈ U s.t. (A(θ)x+Bu(θ)) ∈ C∞}. (2.25)

Ideally, the maximal controllable set C∞ would be of interest but this con-

struction is �nitely-determined only for particular cases and is particularly

complex for certain parameter-varying systems.

In these cases, it is possible to compute the controlled positively invariant set

of states that can be brought into the MAS set Ω (2.18) in no more than

N steps through a trajectory that ful�lls system's constraints. The index N

becomes a tuning variable in between the complexity of the construction and

the "volume" of the invariant set.

De�nition 2.16 Given a positive invariant set Ω ⊂ X, a set CN is N-step

controlled invariant if any x0 ∈ CN can be driven into a maximal admissible

set Ω in N-steps, while satisfying the constraints and applying admissible

control inputs, uk ∈ U .

Such a polytopic N-step controlled invariant set will be denoted as

CN = {x ∈ Rnx : HCNx ≤ gCN }. (2.26)

This set can be computed for the constrained LPV system by means of re-

cursive pre-image set construction with respect to Ω and for each extreme

realization of the polytopic uncertainty description.
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De�nition 2.17 [Kvasnica 2015]. A pre-image set Pre(S) is the set of states

from which the evolution of the LPV system enters in the set S in one time

step.

Pre(S) = {x ∈ Rnx : ∃u ∈ U s.t. (A(θ)x+Bu(θ)) ∈ S}. (2.27)

Procedure 2.4 Pre-image set computation for a LPV constrained con-

trolled system.

1. Given a constrained controlled system, xk+1 = A(θ)xk + Buk(θ), with

A(θ) invertible and x ∈ S and u ∈ U , the pre-image of a set S ⊂ X is

computed as follows,

Pre(S) =

nv⋂
i=1

A−1
i (θi)(S ⊕ (−BU)). (2.28)

In few words, the construction of CN (Procedure 2.5) is based on the iterative

computation of the set of states from which we could reach the original set

despite the worst parametric uncertainty and input constraints. Starting from

a polyhedral set, the pre-image preserves the polyhedral structure and thus a

polyhedral control invariant set CN is guaranteed.

Procedure 2.5 N -step controlled invariant set CN computation for LPV

constrained dynamics

1. Set initial conditions at k = 0, C0 = Ω

2. Compute pre-image set,

Cik = {x ∈ X : ∃u ∈ U : HC(Ai(θi)x+Bu(θi)) ≤ gC}, (2.29)

with i = 1 . . . nv. Or equivalently (Procedure 2.4),

Pre(Cik) =

nv⋂
i=1

A−1
i (θi)(Cik ⊕ (−BU)). (2.30)

3. If Ck+1 = Ck stop and return. Else k = k + 1 and go to Step 2.

If the procedure is initiated with an invariant set Ω then CN is ensured to be

an invariant set too.

Remark 2.3 With N going to in�nity we obtain the maximal controllable

set and thus CN is an approximation of this limit which preserves the robust

controlled invariance properties.
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• Robust controlled positively invariant set.

De�nition 2.18 Given a LPV dynamical system subject to polytopic con-

straints and bounded additive disturbances, wk ∈ W, a set C ⊆ X is positively

controlled invariant if x0 ∈ C implies that ∃uk ∈ U such that xk ∈ C for all

k > 0 and ∀wk ∈ W.

C∞ = {x ∈ Rnx : ∃u ∈ U s.t. (A(θ)x+Bu(θ) + E(θ)wk) ∈ C∞. (2.31)

Again, if the maximal robust controlled positive invariant set is not �nitely

determined, it is possible to compute the N -steps robust controlled positive

invariant set, CN , for the uncertain system subject to bounded additive dis-

turbances with a parameter varying disturbances matrix E(θ). Following the

principles of Procedure 2.5, Procedure 2.7 shows how to compute CN in the

presence of bounded additive disturbances, where the main di�erence is the

consideration of the disturbances set when computing the robust pre-image

set (Procedure 2.6), following a worst-case disturbances strategy.

Procedure 2.6 Robust pre-image set computation for a constrained con-

trolled system.

1. Given a constrained controlled LPV system, xk+1 = A(θ)xk +Buk(θ) +

E(θ)wk, with x ∈ S, wk ∈W and u ∈ U .

Pre(S) =

nv⋂
i=1

A−1
i (θi)((S 	 Ei(θi)W )⊕ (−BU)). (2.32)

Procedure 2.7 Robust N -step controlled invariant set CN computation for

LPV constrained dynamics subject to polytopic uncertain additive distur-

bances
1. Set initial conditions at k = 0, C0 = Ω

2. Compute pre-image set,

Cik = {x ∈ Rnx : ∃u ∈ U : HC(Ai(θi)x+Bu+ E(θi)wk) ≤ gC}, (2.33)

with i = 1 . . . nv. Or equivalently (Procedure 2.6),

Pre(Cik) = A−1
i (θi)((S 	 Ei(θi)W )⊕ (−BU)). (2.34)

3. Compute Ck+1 from the intersection of the intermediary sets,

Ck+1 = X
⋂(

nv⋂
i=1

Cik

)
. (2.35)

4. If Ck+1 = Ck stop and return. Else k = k + 1 and go to Step 2.
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Remark 2.4 The Multi-parametric Toolbox [Herceg 2013] is a free-software tool

that provides a series of performant and optimized methods to compute all this sets.

2.2.2 Ellipsoidal sets

Positive invariant sets are commonly approximated by means of ellipsoids. This

kind of convex sets are widely used on the literature due to the compactness of their

representation and the straightforward connection with the Linear Matrix Inequal-

ities framework and quadratic Lyapunov functions.

2.2.2.1 Linear Matrix Inequalities framework

First of all, let us brie�y introduce Linear Matrix Inequalities (LMI) basic tools

that will be used along this manuscript. For more details on the subject, the readers

are referred to [Boyd 1994]. In practice, there exists nowadays a solid collection of

open-software tools that allow to state and solve problems in the LMI framework in

a simpli�ed manner. We highlight the Yalmip toolbox, that o�ers both a modeling

framework and a parser to di�erent optimization problems [Lofberg 2005].

De�nition 2.19 [Boyd 1994]. A Linear Matrix Inequality (LMI) in a variable x ∈
Rnx has the form

F (x) , F0 +

nx∑
i=1

xiFi � 0, (2.36)

where the symmetric matrices Fi = F Ti ∈ Rm×m, i = 0, . . . nx are given and F (x)

is a positive de�nite matrix, that is, F (x) > 0 is such that uTF (x)u > 0 for all

nonzero u ∈ Rn.

Schur complement lemma

The Schur complement is a powerful tool that allows to translate convex quadratic

inequalities in a LMI form. Let Q(x) = Q(x)T , R(x) = R(x)T , and S(x) depend

a�nely on x. Then the LMI [
Q(x) S(x)

S(x)T R(x)

]
� 0 (2.37)

is equivalent to the following matrix inequalities

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T � 0

Q(x) > 0, R(x)− S(x)TQ(x)−1S(x) � 0.
(2.38)

S-procedure for quadratic forms

The S-procedure allows to determine whether or not some quadratic function is

(non)negative whenever some other quadratic functions are all (non)negative. The
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problem that the S-procedure addresses can be transposed by a simple principle as

follows: �nd when does the (non)negativity of a set of quadratic forms imply the

(non)negativity of another.

De�nition 2.20 [Boyd 1994]. Let T0 . . . Tp ∈ Rnx×nx , be symmetric matrices. We

consider the following condition on T0 . . . Tp,

xTT0x > 0 for all x 6= 0 such that xTTix > 0, i = 1, . . . , p. (2.39)

If there exists

τ1 ≥ 0, . . . , τp ≥ 0 such that T0 −
p∑
i=1

τiTi > 0, (2.40)

then (2.39) holds.

2.2.2.2 Basic de�nitions for ellipsoids

De�nition 2.21 An ellipsoid E(P, x0) centered at x0 with shape matrix P is the

convex set given by

E(P, x0) = {x ∈ Rnx : (x− x0)TP−1(x− x0)}, (2.41)

with P ∈ Rnx×nx being a positive de�nite matrix. For the particular case of an

ellipsoid centered at the origin, x0 = 0, we have

E(P ) = {x ∈ Rnx : xTP−1x ≤ 1}. (2.42)

There are alternative ways of representing ellipsoids. Let us consider the matrix Q,

given by the Cholesky factor of the ellipsoid's shape matrix Q =
√
P that satis�es,

QTQ = QQT = P. (2.43)

Considering Q, the above de�nition can be re-written as

E(P ) = {x ∈ Rnx : (x− x0)TQQT (x− x0) ≤ 1} (2.44)

E(P ) = {x ∈ Rnx : ||QT (x− x0)|| ≤ 1}, (2.45)

which is equivalent to:

E(P ) = {x ∈ Rnx : x = x0 +Q−T z, ||z|| ≤ 1}. (2.46)

In the following, the size of an ellipsoid will become a property of interest. This

attribute can be directly related with the length of the semi-axis of the ellipsoid,

which is given by the square root of the eigenvalues
√
λi of the shape matrix P−1,

with i = 1 . . . nx being the ellipsoidal dimension.
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De�nition 2.22 [Hindi 2004]. The volume of an ellipsoid is proportional to the

product of the eigenvalues of P−1, or inversely proportional to the product of the

eigenvalues of P . The direction of the semi-axis are given by the eigenvectors of the

corresponding shape matrix.

Remark 2.5 Ultimately, the product of the eigenvalues of the shape matrix can be

related to the det(P−1), thus

V ol(E(P )) ∝ det(P−1) ≡ V ol(E(P )) ∝ 1

det(P )
(2.47)

Remark 2.6 Sometimes, it is desirable to use the trace(P−1) criterium, due to its

linearity. The trace of a square matrix is de�ned as the sum of the elements of the

main diagonal. Thus the maximization of the trace of a matrix is equivalent to the

maximization of the sum of the eigenvalues of the matrix.

2.2.2.3 Other remarks involving ellipsoids

• Intersection of an ellipsoid with a sub-subspace. [Blanchini 2008].

The intersection of an ellipsoid with a lower dimension sub-subspace is also

an ellipsoid Ex̄. The shape matrix of the intersection is obtained through a

suitable matrix T ,

Ex̄ = {x̄T (TP−1T T )x̄ ≤ 1, x̄ = Tx}. (2.48)

• Projection of an ellipsoid. [Blanchini 2008]. The projection of an el-

lipsoid in a lower dimension sub-subspace is also an ellipsoid Ex̄. The shape

matrix of the projected ellipsoid is obtained through a suitable matrix T ,

Ex̄ = {x̄T (TPT T )−1x̄ ≤ 1, x̄ = Tx}. (2.49)

• Ellipsoids containment test. Given two ellipsoids E1(P1) = {x ∈ Rnx :

xTP−1
1 x ≤ 1} and E2(P2) = {x ∈ Rnx : xTP−1

2 x ≤ 1}, the objective is to

check if E2(P2) ⊆ E1(P1). We have

xTP−1
2 x− xTP−1

1 x ≤ 0→ xT (P−1
2 − P−1

1 )x ≤ 0. (2.50)

We know that xTx ≥ 0, so in order to ful�ll (2.50), (P−1
2 − P−1

1 ) ≺ 0.

2.2.2.4 Ellipsoidal invariant sets

Positive invariance concepts presented for polyhedral sets (Section 2.2.1.2) apply

analogously to ellipsoidal positive invariant sets, so we will not duplicate here all the

de�nitions already introduced. Instead, we focus exclusively on the basic procedures

that can be used to compute this kind of ellipsoidal sets for a given LPV system in

the form of (2.14)-(2.15) subject to symmetric polytopic constraints approximated

by means of ellipsoids.
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• Positive invariant ellipsoidal set. The set E(P ) = {x ∈ Rnx : xTP−1x ≤
1} is positive invariant for the closed-loop stable LPV system xk+1 = Acli(θi)xk
if ∀xk ∈ E(P ), xk+1 ∈ E(P ). This is equivalent to

xTP−1x− xT (ATcli(θi)P
−1Acli(θi))x ≥ 0, with i = 1, . . . nv, (2.51)

or equivalently,

P−1 −ATcli(θi)P
−1Acli(θi) � 0. (2.52)

This expression can be written in the LMI form by means of the Schur com-

plement, [
P−1 ATcli(θi)P

−1

P−1Acli(θi) P−1

]
� 0, with i = 1, . . . nv. (2.53)

After pre- and post-multiplication with the symmetric and full rank matrix

blkdiag(P, P ), we obtain the following invariance condition.[
P PATcli(θi)

Acli(θi)P P

]
� 0, with i = 1, . . . nv. (2.54)

• Maximal and Minimal robust positive invariant ellipsoidal set.

The analysis of the robust positive invariant ellipsoidal sets condition can be

studied on a similar basis to what has been presented for positive invariance,

augmented with the explicit consideration of the presence of bounded additive

disturbances a�ecting the system dynamics: an ellipsoid E(P ) = {x ∈ Rnx :

xTP−1x ≤ 1} is robust positive invariant ellipsoid if xk ∈ E(P ) =⇒ xk+1 ∈
E(P ) in the presence of normalized bounded additive disturbances, that is

w ∈W and ||w||2 ≤ 1,

xk+1P
−1xk+1 ≤ 1, (2.55)

which is equivalent to

(Aclixk + Eiwk)
TP−1(Aclixk + Eiwk) ≤ 1, (2.56)

with i = 1, . . . , nv, when

xkP
−1xk ≤ 1 (2.57a)

wTw ≤ 1. (2.57b)

In a LMI form, [
xk wk

] [AcliP−1Acli ATcliP
−1Ei

EiP
−1Acli ETi P

−1Ei

] [
xk
wk

]
≤ 1, (2.58)

with i = 1, . . . , nv, when[
xk wk

] [P−1 0

0 0

] [
xk
wk

]
≤ 1 (2.59a)

[
xk wk

] [0 0

0 I

] [
xk
wk

]
≤ 1. (2.59b)
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By means of the S-procedure, the enforced condition for robust positive in-

variance (2.58) when (2.59a) and (2.59b) holds if ∃ τ1, τ2 ∈ R such that:[
AcliP

−1Acli ATcliP
−1Ei

EiP
−1Acli ETi P

−1Ei

]
� τ1

[
P−1 0

0 0

]
+ τ2

[
0 0

0 I

]
, (2.60)

for τ1 ≥ 0, τ2 ≥ 0 and τ1 + τ2 ≤ 1 with i = 1, . . . , nv.

Reordering terms,[
τ1P

−1 0

0 τ2I

]
−
[
Acli
Ei

]
P−1

[
Acli Ei

]
� 0, (2.61)

and using the Schur complement, we �nally obtain the equivalent BMI robust

invariance criterium for the constraction of the RPI ellipsoidal set:τ1P
−1 0 Acli
0 τ2I Ei
Acli Ei P−1

 � 0, (2.62)

with i = 1, . . . , nv.

By exploiting the worst case combination of scalar variables, τ1 + τ2 = 1 →
τ = τ2 = 1 − τ1, the nonlinearity on the scalar values is eliminated, so one

scalar variable can be dropped: (1− τ)P 0 PATcli
0 τI ETi

AcliP Ei P

 � 0, (2.63)

for 0 < τ < 1 and i = 1, . . . , nv.

Finally, this invariance condition can be exploited to compute the maximal or

minimal robust invariant set by means of the maximization or minimization of

the trace(P ) subject to the system constraints in the LMI form [Nguyen 2014],

[Luca 2011b].

2.3 Control design for LPV systems

Now that the most relevant theoretical tools are set, let's consider the problem

of regulating to the origin a LPV system in the form (2.2) subject to polytopic

constraints on the state, output and input (2.16a) - (2.16b).

We are going to consider three di�erent control approaches: the �rst method is

based on the de�nition of a linear static state-feedback or a parameter-dependent

feedback that de�nes a common or parameter-dependent quadratic Lyapunov func-

tion for the LPV closed-loop system dynamics. In a second methodology, the domain

of attraction of such LPV controller is enhanced by means of a receding horizon

strategy, using a classical Model Predictive Control strategy whose stability and

recursive feasibility is based on the previous LPV design. Finally, we look at the In-

terpolation Based Control, where a novel convex optimization-based control action

is used to stabilize the system dynamics.
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2.3.1 LPV Control Design

In the following, we recall the classical LPV control design in the LMI frame-

work. This is a mature technique, based on the computation of a parameter-varying

stabilizing state feedback gain. The exposition is organized in an incremental way,

where we start from the basic constrained case, going through an enhanced con-

strained contractive control and ending up with the case of an observer-controller

structure.

Classical LPV control design

Lyapunov stability theory has been largely used in classical control applications

to proof stability of closed-loop system dynamics. This theory is based on the study

of existence of Lyapunov functions describing or bounding the closed-loop dynamics

of the system object of study.

In [de Oliveira 1999] a stability condition that allows to check the stability of

discrete-time systems with polytopic uncertainties is presented. This approach is

based on the computation of a common Lyapunov function, suitable for the full

range of variation of the parameter. A direct application of these results is the

computation of a parameter-dependent stabilizing gain for the constrained system:

in the following we focus on the design for the unperturbed discrete parameter-

dependent closed-loop system i.e. wk = 0,

xk+1 = Ak(θk)xk +Buk(θk), (2.64)

with Ak(θk) =
∑nv

i=1 λiAi(θi) and the parameter-dependent control law

uk(θ) =

nv∑
i=1

λiKi(θi)xk. (2.65)

The controller design builds on the guaranteed decrease of the Lyapunov func-

tion, i.e.,

xTk P
−1xk − xTk+1P

−1xk+1 ≥ 0, with i = 1, . . . nv. (2.66)

Now, substituting the system dynamics and considering all the system realizations

for i = 1...nv,

P−1 − (Ai +BKi)
TP−1(Ai +BKi) � 0. (2.67)

By using the Schur complement , this condition can be rewritten as[
P−1 (Ai +BKi)

TP−1

P−1(Ai +BKi) P−1

]
� 0. (2.68)

Finally, by pre- and post-multiplication with the symetric and full rank matrix,

blkdiag(P ) we obtain the condition for an ellipsoid E(P ) to be positive invariant,[
P P (Ai +BKi)

T

(Ai +BKi)P P

]
� 0. (2.69)
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Condition (2.69) contains bilinear terms issued from the products of Ki and P , and

thus it is nonlinear. Nevertheless, it can be easily linearized by de�ning

Yi = KiP (2.70)

and solving the LMIs,[
P PATi + Y T

i B
T

AiP +BY P

]
� 0, with i = 1, . . . nv. (2.71)

The set of state constraints X = {x ∈ Rnx : HXx ≤ gX} is symmetric and

approximated by an ellipsoid for all states i = 1, . . . , nx, (HXi/gXi)x ≤ 1⇔ Fixx ≤
1. This kind of constraints can be captured by the following LMI for each state

constraint Fix. [
1 FixP

PFi
T
x P

]
� 0. (2.72)

In the case of input constraints, we consider symmetric limits, −umin = umax =

umax. Then, we have one input constraint of the form −uimax ≤ Kix̄ ≤ uimax. This
is expressed in the LMI form as follows[

u2
max KiP

PKT
i P

]
� 0. (2.73)

Performing again the linearizing change of variable (2.70) to formulate the con-

straints in a linear form,[
u2
max Y T

ij

Yij P

]
≤ 0, with i = 1, . . . , nv, j = 1, . . . , nx. (2.74)

Solving the following optimization problem with the objective of enlarging the

domain of attraction of the controller max trace(P−1), we obtain a control design

that ensures asymptotic stability for all the states inside a quadratic domain of at-

traction for all the range of parameters and in the absence of additive disturbances

with Ki(θi) = YiP
−1. Furthermore, in the presence of (bounded) additive distur-

bances, it will ensure that the states remain in a neighborhood of the origin upon a

input-to-state stability argument.

Problem 2.1 Classical LPV control design

min
P,Yi

trace(P ) (2.75)

subject to:

• Invariance condition (2.71). (2.76a)

• State constraints (2.72). (2.76b)

• Input constraints (2.74). (2.76c)
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Remark 2.7 The LMIs are a�ne in the parameter through the a�ne dependence

of A(θ) on θ. Since B is independent of θ, the overall set of LMIs depend a�nely

on θ in the same manner if we introduce an a�ne dependence of K and P in the

parameter.

Overall, we solve simultaneously the LMIs for each extreme value of the param-

eter range, allowing the controller to be di�erent for each extreme realization of the

system dynamics.

After this development, in [Daafouz 2001] necessary and su�cient conditions for

the computation of a parameter-varying Lyapunov functions which are quadratic on

the system state and depend a�nely on the uncertain parameter are presented.

Theorem 2.1 [Daafouz 2001]. The system xk+1 = A(θk)xk+Buk is poly-quadratically

stable if and only if there exists symmetric positive de�nite matrices Si, Sj and Gi
of appropriate dimensions such that[

Gi +Gi
T − Si Gi

TAi
T

AiGi Sj

]
> 0, (2.77)

for all i = 1, ..., nv and j = 1, ..., nv. Where the parameter varying Lyapunov func-

tion is given by

P(θk) =

nv∑
i=1

λiS
−1
i (θi). (2.78)

Again, this theoretical development is exploited to compute a parameter-varying

stabilizing gain that ensures the closed-loop stability of the system dynamics, build-

ing up from the guaranteed decrease of the Lyapunov function, with an extra degree

of freedom.

Theorem 2.2 [Daafouz 2001]. The system xk+1 = A(θk)xk + Buk(θk) is poly-

quadratically stable by a parameter-dependent control law uk(θk) =
∑nv

i=1 λiKi(θi)xk
if and only if there exists symmetric positive de�nite matrices Si, Sj and Gi, Ri of

appropriate dimensions such that[
Gi +Gi

T − Si Gi
TAi

T +RTi B
T

AiGi +BRi Sj

]
> 0, (2.79)

for all i = 1, ..., nv and j = 1, ..., nv. Where the parameter dependent Lyapunov

function is given by (2.78) and

Ki = RiG
−1
i . (2.80)
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Enhanced LPV control design

The solution of problem (2.1) leads to an ellipsoid E(P ) that is positive invariant

but may not be contractive. This means that the system trajectories will stay inside

the de�ned positive invariant ellipsoid but may not converge to the origin. In order

to enhance this last property, we can opt for de�ning condition (2.71) as a strict

inequality, enforcing implicitly a certain contractivity of the closed-loop dynamics.

A second option is to de�ne explicitly a contraction factor, denoted by γ > 0 in the

following, that ensures the controller's performance in terms of exponential decay

of the Lyapunov function by the right hand side in (2.81),

xTP−1x− xT (Ai +BKi)
TP−1(Ai +BKi)

Tx ≥ γ(xTP−1x), with i = 1, . . . nv,

(2.81)

which can be reformulated as

(1− γ)P−1 − (Ai +BKi)
TP−1(Ai +BKi) > 0, (2.82)

with i = 1, . . . nv, thereby,

[
(1− γ)P P (Ai +BKi)

T

(Ai +BKi)P P

]
� 0, with i = 1, . . . nv, (2.83)

that can be transformed in the linear contractive invariance LMI condition (2.70)

for a �xed γ,

[
(1− γ)P PATi + Y T

i B
T

AiP +BY P

]
� 0, with i = 1, . . . nv. (2.84)

On top of this formulation, it may be of interest to impose the inclusion of

priority directions in the state space de�ned by zi inside the computed ellipsoid.

This allows to increase the domain of attraction of the designed controller in certain

directions of special interest. This means that the largest invariant ellipsoid will

include the point σzi, where σ is a scaling factor on the prede�ned direction in the

state space. This kind of requirement is translated into an ellipsoidal containment

constraint, σzTi P
−1σzi < 1, that can be converted into a LMI form using one more

time the Schur complement:

[
1 σzTi
σzi P

]
� 0. (2.85)

With all this in mind, we are in the position of formulating a constrained opti-

mization problem that will enlarge the size of the obtained ellipsoid.
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Problem 2.2 Enhanced LPV control design

min
P,Yi,σ

{trace(P ) + σ} (2.86)

subject to:

• Invariance condition (2.84). (2.87a)

• State constraints (2.72). (2.87b)

• Input constraints (2.74). (2.87c)

• Directional enhancements (2.85). (2.87d)

Remark 2.8 It has to be taken into account that this strategy enhances the con-

troller performance in terms of convergence rate, but the size of the Positive Con-

trolled Contractive sets will be relatively reduced, thus a trade-o� between these two

features needs to be done when de�ning the contraction factor value γ.

Additive disturbances: robust LPV control design

The following approach is based on the design of a robust LPV control law that

maximizes the domain of attraction of the controller, understood as the domain of

the state-space were system constraints are ful�lled even in the presence of additive

disturbances wk.

This maximization of the domain of attraction is directly related with the exis-

tence of a maximal robust positive invariant set (Section 2.2.2.4): we can formulate

a constrained optimization problem [Nguyen 2015], where the robust positive invari-

ance condition (2.63) for Acli = Ai +BKi, with Ki = YiP is enforced together with

the system constraints in a LMI form.

Problem 2.3 Robust LPV control design

min
P,Yi,σ

{σ + trace(P )} (2.88)

subject to:

• Invariance condition (1− τ)P 0 PATi + Y T
i B

T

0 τI ETj
AiP +BYi Ej P

 � 0, (2.89)

for all i = 1 . . . nv, j = 1 . . . nv, 0 < τ < 1 and Ki = YiP
−1.

• Constraints satisfaction (2.72), (2.74).

• Directional enhancements (2.85).
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Simultaneous design of LPV observer-based static feedback controller

When dealing with real dynamical systems, it is very common to �nd that all not

the model states are measurable, thus generating the need to include an estimation

strategy to cope with the unmeasured but observable states. Although this thesis

work is mainly focused on the control design for LPV discrete-dime systems, some

attention has been driven to the simultaneous design of a LPV observer and feedback

controller, by extending the results from [Luca 2011b] to the LPV class of systems

arising in the automotive application. Nevertheless, interested readers on the subject

are addressed to this previous reference as well as to [Davins-Valldaura 2017], where

a deeper study on the estimation for automotive steering applications is presented.

Theorem 2.3 [Luca 2011b]. Let us consider a discrete-time LPV system with para-

metric polytopic uncertainty. If there exist Gi = GTi � 0, Pi = P Ti � 0, QGi , QPi ,

Yi, Zi of appropriate dimensions, with i, l = [1 . . . nv] and τ > 0, β ≥ 0, λ ≥ 0 such

that: 
QTGi +QGi−Gi 0 τQTGi QTGiĀ

T
i −Y T

i B̄
T

? βI 0
[
Ēi 0

]T
? ? τGi 0

? ? ∗ Gj

 � 0, (2.90)


Pi 0 τPi ĀTi Q

T
Pi
−C̄TZTi

? λI 0 [QPiĒi −ZiEv]T
? ? τPi 0

? ? ? QTPi +QPi−Pj

�0, (2.91)

τ − β ≥ 0, τ − λ ≥ 0, i, j = [1 . . . nv], (2.92)

then the system is input-to-state stable in the case of bounded norm disturbances

||w||2 ≤ 1. The feedback and observer gains that stabilize the system are de�ned by:

Ki = YiQ
−1
Gi
, Li = Q−1

Pi
Zi, i = [1 . . . nv]. (2.93)

We can calculate F (θ) and L(θ) at any working point as a convex combination of

the vertex realizations:

K(θk) =

nv∑
i=1

µikKi(θi) and L(θk) =

nv∑
i=1

µikLi(θi). (2.94)

with
∑nv

i=1 µik = 1, µik ≥ 0.

Again, we can formulate a constrained optimization problem that takes into

account system constraints.
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Problem 2.4 Robust observer-based LPV control design

min
P,Yi,Zi,QPi ,QGi

trace(Pi) (2.95)

subject to:

• ISS condition (2.90), (2.91), (2.92). (2.96a)

• State constraints:

[
1 F Tx Q

T
Gi

QGiFx QTGi +QGi−Gi

]
� 0. (2.96b)

• Input constraints:

[
QTGi +QGi−Gi Y T

i

Yi u2
maxI

]
� 0. (2.96c)

• Output constraints:

[
QTGi +QGi−Gi QTGiC̄

T
i

C̄iQGi y2
maxI

]
� 0, (2.96d)

with i = 1, . . . , nv.

2.3.2 Model Predictive Control

In the last decades, the control research community has driven attention to

Model Predictive Control (MPC) or Receding Horizon Control (RHC) [Camacho 2013],

[Rawlings 2008], [J.M.Maciejowski 2002]. This strategy has progressively become a

mature �eld, gaining great importance on the advanced multivariable constrained

control industrial applications [Hrovat 2012]. MPC is an optimization based control

strategy, where the plant model is used to predict the system's behavior along a cer-

tain time window, denoted as prediction horizon, N . Such prediction is initialized

at the current state of the system, and each time instant k, the controller computes

an optimal control sequence according to a de�ned criterium. After that, only the

�rst computed optimal control input for the current time uk is applied to the plant,

while the tail of the optimal sequence is discarded. Then, the time window is shifted

and the full procedure is repeated at time k+1 in a receding horizon fashion, taking

into account the new available plant information.

The main feature of this kind of control that makes it desirable for industrial

applications is its inherent capability of considering system constraints in a �nite

optimization framework. This allows to o�er the best possible performance of the

controlled plant, while staying inside the safety bounds or the actuation limits.

There exist two main trends of MPC: Implicit and Explicit MPC. Brie�y speak-

ing, Implicit MPC formulates a �nite horizon Optimal Control Problem (OCP)

which is solved online each time step [J.M.Maciejowski 2002].

Explicit MPC [Alessio 2009], [Bemporad 2002] computes o�ine the optimal con-

trol strategy for the full range of the admissible state-space, de�ning a control piece-

wise a�ne function when the system and constraints are linear. After that, the on-

line computation is reduced to a point location problem. This kind of problem has

an exponential complexity growth with respect to the number of states of the model
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and the prediction horizon length, which prevents the application of this kind of

MPC for large scale systems. Nevertheless, recent research work on the algorithms

for the exploration of the regions [Ahmadi-Moshkenani 2016] and cell complexity

reduction [Munir 2016] is working towards the attenuation of this major drawback

of explicit MPC.

A second classi�cation can be made depending on the model that is used for

the plant behavior prediction: linear MPC deals with linear plant models (even

though the dynamics of the closed-loop system is nonlinear due to the presence of

constraints), which provide convex quadratic programs for the implicit formulations.

Nonlinear MPC is focused on the study of systems with nonlinear dynamics, which

generally yield non-convex and/or nonlinear optimization problems.

In this work, we have focused on the application of implicit linear MPC for the

class of LPV systems, due to the LPV nature of the vehicle dynamics and the control

architecture.

Implicit MPC formulation for LPV systems

In the following, the formulation of a linear MPC for a given LPV system in the

form of (2.2) is introduced. As it has been stated, this kind of controller is based

on the resolution of a �nite horizon optimal control problem, which is characterized

by a cost function and a group of constraints.

Whenever the control objective is to stabilize the LPV system dynamics to the

origin, the formulated cost function penalizes the deviation of the states together

with the control signal along the prediction horizon N . Using quadratic norms, it

takes the form

min
U

J(xk, U) = ‖xN‖2P +
N−1∑
k=1

‖xk‖2Q + ‖uk‖2R, (2.97)

where Q ∈ Rnx×nx , Q � 0 and R ∈ Rnu×nu , R � 0 represent respectively the positive

de�nite state and input weighting matrices and ‖xN‖2P is the cost-to-go related to

the controller stability guarantees that will be further detailed in the end of this

section.

Next, in order to reformulate the control problem in a more convenient way, we

express (2.97) in matrix form

Jk = XT Q̃X + UT R̃U, (2.98)

where Q̃ ∈ RNnx×Nnx , R̃ ∈ R(N−1)nu×(N−1)nu represent all the weighting matrices

along the prediction horizon and X ∈ RNnx×1, U ∈ R(N−1)nu×1 are the vectors

containing the sequence of predicted future states and inputs respectively,

X = [xTk , x
T
k+1, . . . , x

T
k+N ]T , U = [uTk , u

T
k+1, . . . , u

T
k+N−1]T . (2.99)

The input vector U remains as the vector of optimization variables, while the state

prediction vector X needs to be computed by the propagation of the system dy-

namics along the prediction horizon under the assumption of constant parameter
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pro�le,

xk+1 = A(θk)xk +Buk + E(θk)wk

xk+2 = A(θk)xk+1 +Buk+1 = A(θk)
2xk +A(θk)Buk +Buk+1+

+A(θk)E(θk)wk + E(θk)wk+1

...

xk+N = A(θk)xk+N−1 +Buk+N−1E(θk)wk+N−1 = A(θk)
Nxk +A(θk)

N−1Buk

+ . . .+Buk+N−1 +A(θk)
N−1E(θk)wk + . . .+ E(θk)wk+N−1.

(2.100)

In a compact matrix form:

X = Ψ(θk) xk + Θ(θk) U + Γ(θk) W (2.101)

with:

Ψ(θk) =
[
A(θk) A(θk)

2 . . . A(θk)
N
]T
, (2.102)

Θ(θk) =


B 0 · · · 0

A(θk)B B · · · 0
...

...
. . .

...

A(θk)
N−1B A(θk)

N−2B · · · B

 , (2.103)

Γ(θk) =


E(θk) 0 · · · 0

A(θk)E(θk) E(θk) · · · 0
...

...
. . .

...

A(θk)
N−1E(θk) A(θk)

N−2E(θk) · · · E(θk)

 , (2.104)

W =
[
wk wk+1 . . . wk+N−1

]T
. (2.105)

Remark 2.9 The matrix W represents the prediction of the additive disturbances

acting on the system in the future N steps. If the additive disturbances dynam-

ical model is known, such prediction can be made by the propagation of the dis-

turbances model along the horizon. If not, common standard assumptions are the

constant additive disturbance wk+i = wk, for i = 1 . . . N −1 or white noise modeling

[Camacho 2013].

Substituting (2.101) in (2.98) and gathering together the terms depending on

the optimization variable, a quadratic cost function is obtained:

arg min
U

Jk = arg min
U

1

2
UTH(θk)U + F (θk)U, (2.106)

with H(θk) = Θ(θk)
T Q̃Θ(θk) + R̃, F (θk) = 2

[
xTk Ψ(θk)

T +W TΓ(θk)
]
Q̃Θ(θk).

Once this is set, input, state and output constraints can be included on the

problem formulation, but they need to be reformulated in terms of the optimization
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variable U . As an illustrative example, let us consider box constraints on the system

state vector x ∈ X (2.16a). If we enforce such constraints on the state along the

prediction horizon we obtain,
xmin
xmin
...

xmin

 ≤


xk
xk+1
...

xk+N

 ≤

xmax
xmax
...

xmax

 . (2.107)

Considering the prediction model (2.101) and reordering terms,

[
Θ(θk)

Θ(θk)

]
︸ ︷︷ ︸

Gx

U ≤


xmax...
xmax

 , −
xmin...
xmin



T

︸ ︷︷ ︸
Wx

+

[
−Ψ(θk)

Ψ(θk)

]
︸ ︷︷ ︸

Tx

xk. (2.108)

By concatenating the corresponding matrices G?, T?, W? for the input, output and

states, we de�ne a polyhedral feasible domain for the constrained problem,

GU ≤ Txk +W. (2.109)

Finally, the �nite horizon optimal control problem consists of solving a quadratic

programming (QP) in order to minimize the control input along the prediction

horizon subject to linear inequality constraints.

Problem 2.5 MPC optimization problem

U∗ = min
U

1

2
UTH(θk)U + F (θk)U (2.110)

subject to:

GU ≤ Txk +W (2.111a)

H(θk) = Θ(θk)
T Q̃Θ(θk) + R̃ (2.111b)

F (θk) = 2
[
xTk Ψ(θk)

T +W TΓ(θk)
]
Q̃Θ(θk) (2.111c)

xN ∈ Ω (2.111d)

Procedure 2.8 sumarizes the Implicit MPC algorithm for LPV systems,

Procedure 2.8 Implicit Model Predictive Control

1. Read measurement of current state xk and parameter value θk and update

problem formulation.

2. Solve QP (2.110) subject to (2.111a) - (2.111d).

3. Obtain U∗.

4. Apply �rst optimal control U∗(1) to the plant.

5. Shift horizon one step forward.

6. Go to step 1.
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Remark 2.10 Normally, the parameter trajectories are unknown a priori along the

prediction horizon. A common way of proceeding is to �x its value according to

the last available measurement for the propagation of the system dynamics model

(2.101).

Robust feasibility and stability

In a nutshell, the proof for stability of a �nite-horizon MPC strategy is based

on the use of a Lyapunov cost-to-go function [Mayne 2000], having a strictly de-

creasing cost function and ensures that the state and input converge to the origin.

In addition, recursive feasibility is shown by means of proving that the feasibility

of the optimization problem at one sample time implies feasibility at the next time

step. This is handled by the de�nition of a robustly stabilizing controller for the

unconstrained system, which de�nes the region of attraction of the origin, denoted

terminal set, where the state xN at the end of the prediction horizon is enforced to

lay. Such sets can be de�ned within the class of polyhedral or ellipsoidal robustly

terminal sets.

A �rst survey on the subject was introduced by [Bemporad 1999]. Then, an im-

portant study with a strong theoretical contribution was presented by [Kothare 1996],

where a robust MPC controller for LPV systems with polytopic uncertainty is de-

signed based on the online computation of a linear feedback controller that mini-

mizes a worst-case in�nite horizon objective function in the LMI framework. After

this, [Cuzzola 2002] reduced the conservatism of the previous approach by using

parameter-varying Lyapunov functions on the design, instead of a common one.

In [Mao 2003] some initially incorrect proofs from [Cuzzola 2002] were recti�ed.

Finally, [Wada 2004] introduced an additional degree of freedom in the LMI formu-

lation, going one step forward in reducing such conservatism.

The major drawback of the previous approaches is induced by the computational

online workload, coming from the calculation of the terminal invariant ellipsoid

each time step. This tried to be attenuated in [Wan 2003], where the major part

of the process e�ort is moved to the o�ine part: the basic idea is to compute a

series of robust positive invariant sets for di�erent initial states and the associated

controllers beforehand, and store them in a lookup table. Then, the online part is

in charge of determining which is the smallest of the computed sets that contains

the current state and apply the associated optimal control. Although this approach

reduces considerably the online computation e�ort, it still has a major disadvantage,

which comes from the selection of the initial states for which the invariant sets are

computed in advance.

These major problems on this kind of approaches drive the discussion to a re-

cent work on the subject, presented by [Di Cairano 2015], where the terminal cost is

based on the construction of a parameter-dependent Lyapunov function, following

the lines of [Daafouz 2001]. This allows to achieve a �nite-time receding-horizon

formulation, by means of enforcing a cost decrease leading to a parameter-varying

terminal cost and a stabilizing control law for the unconstrained system. The LMI
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designed to obtain a parameter-dependent terminal cost for θ ∈ Θ is recalled in the

following. We point the interested readers to [Di Cairano 2015] for further discus-

sions on the subject and proof for Lemma 2.1.

Lemma 2.1 Let the symmetric positive de�nite matrices Si, Sl and Gi, Yi, Yl of

appropriate dimensions, be such that
Gi +Gi

T − Si (AiGi +BYi)
T Yi

T Gi
T

(AiGi +BYi) Sl 0 0

Yi 0 R−1 0

Gi 0 0 Q−1

 > 0 (2.112)

subject to:

• State constraints:

[
1 F Tx Q

T
Gi

QGiFx QTGi +QGi−Gi

]
� 0. (2.113a)

• Input constraints:

[
QTGi +QGi−Gi Y T

i

Yi u2
maxI

]
� 0. (2.113b)

for all i = 1, ..., nv and l = 1, ..., nv. Then Gi is full rank and the parameter-

dependent Lyapunov function is given by P (θ) =
∑nv

i=1 λiPi(θi), with Pi = Si
−1, and

the parameter-dependent stabilizing gain by Ki = YiGi
−1 which yields the stabilizing

parameter dependent control law u(θ) =
∑nv

i=1 λiKi(θi)xk.

For ensuring stability, the obtained parameter-dependent Lyapunov function is

used for the terminal cost formulation in the MPC design, adjusting each time step

its value by an appropriate convex combination of the extreme values depending on

the parameter value. In addition, a family of terminal sets is obtained for each one

of the controllers following the lines presented in Section 2.2.

Remark 2.11 The number of degrees of freedom introduced in the problem through

the matrices Gi, Si, Sl can be again adapted to obtain a common Lyapunov function

for all the parameter values, denoted P , by imposing Si = Sl = S and Gi = G or a

parameter-dependent one P (θ), that will change depending on the current measured

value of the parameter.

2.3.3 Interpolation based control

This section introduces the main idea of the Interpolation Based Control (IBC),

a relatively novel constrained control approach whose online computational load

is considerably lower than the MPC method [Nguyen 2014]. The main idea on

this strategy is to interpolate between two control action extreme values. Each

time, two linear programming problems are solved, which makes this approach to

be a suitable trade-o� between performance and computational cost. Moreover,

this control strategy is of interest for its ability to treat problem constraints and

actuator limits in a systematic manner, as well as its capability to include changes

of the behavior on a LPV system. This makes this controller a compelling candidate

for embedded control applications.
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IBC formulation

The interpolation based control strategy is built on the fact that any state xk
which belongs to the controlled invariant set at a given time k can be expressed as

a linear convex combination of two sub-states, xck and xok ,

xk = ηkxck + (1− ηk)xok , (2.114)

where 0 ≤ ηk ≤ 1, xck ∈ CN , xok ∈ Ω, with CN being a Controlled Invariant

Set (CIS) and Ω being the Maximal Positive Invariant Constrained Admissible set

(Section 2.2.1).

In an analogous way, the control action that would be applied to such state xk,

can be obtained from a convex combination of the control action that would be

applied to each one of the previously de�ned sub-states,

uk = ηkuck + (1− ηk)uok , (2.115)

where uok is obtained using the parameter-varying stabilizing feedback gain K(θk)

computed at the interior of the maximal output admissible set Ω and uck is com-

puted by solving an optimization-based control problem which exploits the control-

invariance characteristics of the CIS, CN .

Once the basis are set, the �rst step is to compute the coe�cient ηk that de�nes

the a�ne convex decomposition of the state and the input (2.114), (2.115). An

optimization problem whose objective will be to minimize this coe�cient is build.

This will provide a control action that is as close as possible to the unconstrained

local controller performance, even when we are out of the MAS, Ω.

η∗k = min
xck ,xok ,ηk

{ηk} (2.116)

subject to

HCxck ≤ gC , xck ∈ CN . (2.117a)

HΩxok ≤ gΩ, xok ∈ Ω. (2.117b)

xk = ηkxck + (1− ηk)xok , State convex decomposition (2.114). (2.117c)

0 ≤ ηk ≤ 1, A�ne parameter. (2.117d)

To transform the non-linear optimization problem (2.116), (2.117a)-(2.117d)

in a linear programming problem, the following change of variables can be done

[Nguyen 2013]:

rck = ηkxck , (2.118)

rok = (1− ηk)xok . (2.119)

We know that xck ∈ CN so it follows that rck ∈ ηkCN . Similarly, xok ∈ Ω so

rok ∈ (1− ηk)Ω, yielding

HCrck ≤ ηkgC , (2.120)

HΩrok ≤ (1− ηk)gΩ. (2.121)
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All considered, the resulting LP is formulated,

Problem 2.6 Interpolation factor optimization problem

η∗k = min
rck ,ηk

{ηk} (2.122)

subject to:

HCrck ≤ ηkgC , rck ∈ ηkCN . (2.123a)

HΩ(xk − rck) ≤ (1− ηk)gΩ, rok ∈ (1− ηk)Ω. (2.123b)

and rok = xk − rck from (2.119), (2.114).

0 ≤ ηk ≤ 1, A�ne parameter. (2.123c)

In order to enforce a certain contractiveness on the controller, constraint (2.123c)

can be substituted for the non-strict case with η < 1.

Once the optimal interpolation factor η∗k is known, the states xck and xok can

also be obtained as a by-product by means of (2.118) and (2.119).

After these steps, the only missing element is the admissible input signal corre-

sponding to xck , that is, an input signal uck that will keep a state that belongs to the

border of CN inside it. A simple one-step linear programming problem constructs

this control action by maximizing the contraction factor γk that the computed input

will produce on they state.

Problem 2.7 IBC contraction factor

γ∗k = min
uck ,γk

{γk} (2.124)

subject to:

HC(Aixck +Buck) ≤ γkgC , Recursive feasibility condition, xk+1 ∈ CN .
(2.125a)

HUuck ≤ gU , Input constraints. (2.125b)

0 ≤ γk, Positive contractiveness. (2.125c)

with i = 1, 2, ...nv.

As it can be seen (Procedure 2.9), the interpolation based control method con-

sists of a pair of linear programming problems with n + 1 arguments, which are

considerably simpler than the N−step MPC optimization (QP).
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Procedure 2.9 Interpolation Based Control.

1. Read measurement of current state xk.

2. Compute η∗, rck from LP (2.122), (2.123a)-(2.123c).

3. Obtain rok = xk − rck , xck (2.118) and xok (2.119).

4. Solve LP (2.124), (2.125a)-(2.125c) to obtain γ∗ and uck .

5. Compute uok = K(θk)xok .

6. Obtain interpolated control action uk (2.115).

Stability and feasibility

The interpolation based control scheme ensures asymptotic stability for all initial

states inside the controlled invariant set, CN , with the interpolation factor ηk playing
the role of a Lyapunov function on CN \ Ω [Nguyen 2013]. Let us consider a non-

negative candidate Lyapunov function,

V (xk) = η∗k, for all xk ∈ CN \ Ω, (2.126)

for any xk ∈ CN \ Ω, we can decompose the state (2.114)

xk = η∗kx
∗
ck

+ (1− η∗k)x∗ok . (2.127)

Similarly (2.115),

uk = η∗ku
∗
ck

+ (1− η∗k)u∗ok . (2.128)

Going one step forward,

xk+1 = Aixk +Buk, i = 1, . . . , nv, (2.129)

which corresponds to

xk+1 = η∗kx
∗
ck+1

+ (1− η∗k)x∗ok+1
(2.130)

where

x∗ck+1
= Aix

∗
ck

+Bu∗ck ∈ CN , (2.131a)

x∗ok+1
= Aix

∗
co +Bu∗ok ∈ Ω. (2.131b)

Which means that η∗k provides a feasible decomposition for xk+1. In addition, by

solving (2.122) s.t. (2.123a)-(2.123c), we can obtain a di�erent and optimal solution

for the decomposition,

xk+1 = η∗k+1x
∗
ck+1

+ (1− η∗k+1)x∗ok+1
. (2.132)

It follows that η∗k+1 ≤ η∗k and V (xk) is a non-increasing function and a Lyapunov

function (in the weak sense because the inequality is non-strict). In addition, by

exploiting the invariance condition in CN , we can ensure that the state reaches the set
Ω in �nite time, or equivalently, there will be a �nite time k when η∗k = 0. Moreover,
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once the state enters in Ω, the optimization problem has a trivial solution, with η∗k =

0, so the interpolated controller will turn out to be the local contractive controller

uk = uok , thus the interpolation based controller will ensure asymptotic stability for

all x ∈ CN . In addition, by exploiting the controlled-invariance properties of CN , it
can be proven that the problem (2.124) subject to (2.125a)-(2.125c) is recursively

feasible [Nguyen 2013]. This can be checked if ∀xk ∈ CN and constrained input,

xk+1 ∈ CN :

HUuk ≤ gU , (2.133a)

xk+1 = Aixk +Buk ∈ CN . (2.133b)

Input constraints inequality (2.133a) can be easily checked,

HUuk = HU (ηkuck + (1− ηk)uok)

= ηkHUuck + (1− ηk)HUuok

≤ ηkgU + (1− ηk)gU = gU ,

(2.134)

and (2.133b),

xk+1 = Aixk +Buk

= Ai(ηkxck + (1− ηk)xok) +B(ηkuck + (1− ηk)uok)

= ηk(Aixck +Buck) + (1− ηk)(Aixok +Buok).

(2.135)

Since Aixck +Buck ∈ CN and (Aixok +Buok) ∈ Ω ⊆ CN , it follows that xk+1 ∈ CN .

Remark 2.12 The optimization with ηk < 1 has a domain of guaranteed feasi-

bility restricted when the parameter θ is uncertain within Θ. More than that, the

optimization should be solved without the hard constraint ηk < 1 thus allowing in

the virtue of the feasibility and constraints satisfaction, an enlargement of the do-

main of attraction with a design formulation which is independent of the parameter

realization.

2.4 Conclusion

This chapter has set up the general framework for the constrained control design

that will be developed in the remaining chapters of this �rst part of the thesis

manuscript.

We will see in the next chapters that the vehicle lateral dynamics model can

be included into the class of LPV systems, introduced at the �rst Section of this

introductory chapter. After that, Set Invariance theory has been presented, in order

to set the appropriate framework that allows to proof important properties such as

stability and recursive feasibility of the Model Predictive Control and Interpolation

Based Control, included in the last section of the chapter, together with classical

control design strategies for LPV systems.
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The main application area which is investigated in this �rst part of the thesis

work is the control of the lateral dynamics of the vehicle. In this chapter, we focus

on lateral dynamics control in the absence of exogenous additive disturbances and

particularly on how this kind of constrained system can be modeled.

Model Predictive Control (MPC) and Interpolation Based Control (IBC) ap-

proaches are studied on a similar model-based design framework. Both are seen as

powerful tools due to their inherent capability of ensuring constraint satisfaction

in a systematic manner from the design stage, as well as their capability to in-

clude changes of the behavior of the system dynamics when the speed of the vehicle

changes.

Finally, a comparison based on the performance and applicability of both control

strategies is provided, based on numerical simulation of a selected scenario.

3.1 Problem formulation

Vehicle lateral dynamics control generally refers to the group of applications

whose objective is to regulate the driving path of the vehicle, generally actuating

on the steering wheel as a human driver would.

Several auto-steering control systems have already been developed in the litera-

ture and industry. First realizations of this kind of systems had the main objective of

enhancing vehicle's safety, like the case of Lane Keeping Assistance [Enache 2008]
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or Stability Control [Doumiati 2013], [Di Cairano 2013] where combined steering-

braking strategies are studied. When speaking of ADAS applications, a second

objective is driver's comfort, where Target Tracking or Lane Centering Assistance

Systems (Chapter 4), are the principal applications.

In the following, the lateral dynamics control application denoted by Autosteer

by Target Tracking is considered. This system is in charge of the vehicle steering

angle at a low speed range when a target vehicle is detected, that is, the vehicle

which runs ahead of our vehicle in the same road lane. The controller �nal task is to

follow the target's lateral position and yaw angle. This goal is achieved by tracing

the denoted by perfect following vehicle (Figure 3.1), which is a phantom car that

copies the target's lateral movement, taking into account the existing longitudinal

distance between both vehicles xm.

Figure 3.1 � Auto-steering for target tracking

In this �rst application study we select to model the lateral dynamics by means of

the bicycle model with respect to the target vehicle, which is equivalent to the change

of variables that can be done to express the dynamics with respect to the center

of the road (Section 1.2.3). This model shows an appropriate trade-o� between

complexity and performance, being on common use for control design purposes.

The system state-space representation is recalled here for convenience of the

reader.

ẋ(t) = Ac(vx)x(t) +Bcu(t)

y(t) = Ccx(t),
(3.1)

with:
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Ac(vx) =


−(Cf l

2
f+Crl2r)

Izvx

(Cf lf−Crlr)
Iz

−(Cf lf−Crlr)
Izvx

0

1 0 0 0
(Crlr−Cf lf )

mvx

(Cf+Cr)
m

−(Cf+Cr)
mvx

0

0 0 1 0

 ,

Bc =


Cf lf
Iz
0
Cf
m

0

 , Cc =

(
1 0 0 0

0 −xm 0 1

)
.

(3.2)

Where x(t) is the state vector [ψ̇, ψrel, ẏCoG, yCoG]T ∈ Rnx . u is the control input

∈ Rnu which represents the steering angle δc and y ∈ Rny holds by the vector of

system outputs, that will be [ψ̇, ycam]T (Table 1.1).

System matrices Ac(vx), Bc, and Cc depend on several vehicle parameters: Cf
and Cr denote the cornering sti�ness of the front and rear wheels respectively. The

distances from the front and rear axis to the center of gravity are lf and lr, m stands

for the vehicle mass and Iz for the total yaw moment of inertia (Section 1.2.3.1). In

addition to this, the observation matrix Cc depends on xm which is the longitudinal

distance with respect to the followed target.

Finally, one of the main parameters appearing in (3.2) is the longitudinal speed

of the vehicle vx which is time-varying. As it has been stated in Section 1.2.1, the

lateral controller cooperates with the longitudinal vehicle dynamics control, that is

an independent system which is in charge of the vehicle's longitudinal speed, accel-

eration and distance with the preceding vehicle, if any. These longitudinal control

variables are measured or estimated at each sample time by the longitudinal logic,

and provided to the lateral control system, that has no in�uence over them. Thus,

the speed of the vehicle enters on the lateral controller as an external parameter,

bringing an uncertain LPV model. In addition, with respect the framework of the

present application, the speed is bounded, as the speed range in which the autosteer

system is active is de�ned a priori by the system requirements, vx ∈ [1, 40][km/h].

Moreover, we can de�ne a new parameter as the inverse of the longitudinal speed

of the vehicle ν = 1/vx, in such a way that the state matrix Ac(ν) presents a linear

dependence on this parameter.

Remark 3.1 Such dynamical model depending on the parameter ν = 1/vx has a

singularity when the vehicle is standing still, vx = 0. This aspect can present serious

drawbacks that prevent this model to be used for low speed applications, like parking

maneuvers. Nevertheless, the current application will be only active in a speed range

that does not include such singularity, thus remaining appropriate for the stated

purposes.

Assumption 3.1 All the vehicle parameters, except the longitudinal speed, are con-

sidered known and �xed during the simulation, so they do not introduce any uncer-

tainty to the model.
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In the following, discrete-time formulation is used. For doing so, the forward

Euler discretization method based on a truncated Taylor series expansion with

Ts = 0.01[s] which has been applied to the system state-space continuous-time rep-

resentation matrices displayed in (3.1), under the assumption of constant parameter

evolution along the sampling window:

A(νk) = I+Ac(ν)Ts,

B = BcTs.
(3.3)

All by considering the time-varying (at integer multiples of Ts), bounded and

measured characteristics of the speed yields a discrete-time LPV model (Section 2.1).

In this respect, we can perform a polytopic decomposition of the system matrix, such

that

xk+1 = A(νk)xk +Buk. (3.4)

Where the A(ν), B matrices are described by after discretization (3.3), and A(ν)

satis�es:

A(νk) =

nv∑
i=1

λkAi(νi), (3.5)

with
∑nv

i=1 λk = 1, λk ≥ 1.

Augmented state formulation

It has been set that the steering controller objective is to stabilize the vehicle

lateral dynamics with respect to the target vehicle. For doing so, the system will

need to act on the steering angle within the admissible bounds and by avoiding

aggressive inputs that makes abrupt maneuvers. This means that when performing

optimal control, the desired behavior is not one that minimizes the steering angle,

but minimizes its rate of variation.

In this lines, we adapt the dynamical model by an augmented state formulation

that will take the input as a state and will allow us to formulate the system dynamics

related to the rate of change of the input, ∆uk = uk−uk−1, known as velocity form,

which has additional interesting properties from the o�set free tracking point of view

[Pannocchia 2001].

The new state vector is

x̄k = [xTk u
T
k−1]T . (3.6)

The system dynamics will be expressed as follows

x̄k+1 = Ā(νk)x̄k + B̄∆uk, (3.7)

(3.8)

with:

Ā(νk) =

[
A(νk) B

0 1

]
B̄ =

[
B

1

]
, (3.9)

where (3.5) holds for Ā(νk) too.
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3.1.1 Autosteer constraints

Real systems are commonly subject to constraints, coming from physical limita-

tions on the system actuation: the steering angle cannot exceed a certain value, at

the same time, there is a turning limit and rate of variation that avoids producing

too aggressive maneuvers. State constraints often arise due to safety or environment

restrictions: the lateral o�set must be within the limits to keep the vehicle inside the

corresponding lane and the lateral speed must be restricted to avoid uncomfortable

maneuvers for the passengers.

The control design methods considered next are appealing for this constraint

handling capability, which allows to guarantee a correct performance while having

an optimal performance pushing the system close to its limits without running any

risks.

Table 3.1 � Trajectory Constraints De�nition for Autosteer System
Magnitude Range De�nition

ψ̇ [±0.05] Heading angle derivative [rad/s]

ψrel [±0.5] Heading angle [rad]

ẏ [±0.2] Lateral speed [m/s]

yCoG [±0.3] Lateral position [m]

u [±0.17] Steering angle [rad]

∆u [±0.52] Steering angle variation rate [rad/s]

System constraints on the states and input are de�ned by the numerical limits

shown in Table 3.1, that de�ne the polytopic sets of bounded admissible states and

inputs X ⊂ Rnx and U ⊂ Rnu ,

x ∈ X, X = {x ∈ Rnx : Hxx ≤ gx}. (3.10a)

u ∈ U, U = {u ∈ Rnu : Huu ≤ gu}. (3.10b)

3.1.2 Note on ycam and xm

Magnitude xm and output ycam appearing in the state-space representation of

the autosteer system are not considered for the control design, as complete mea-

surements of the states are assumed to simplify the study in the subsequent. Nev-

ertheless, when performing a complete analysis of this application, we notice that

not all the system states are measured, and this will trigger the need of observation

techniques. This note intends to brie�y clear up this two elements appearing in the

dynamical model.

First, we have xm, which is de�ned by the longitudinal distance between the ego

and the target vehicle,

xm = vx tfollow + dstop, (3.11)
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where tfollow and dstop represent tuned values that specify, respectively, the following

time between the vehicles and the minimum safety distance that must be kept

between the vehicles when a complete stop is reached. This longitudinal distance

appears on the system observability matrix, Cc (3.2), so it can be proved that the

autosteer system dynamics will be observable only for certain range of xm. In

[Davins-Valldaura 2017] a complete study on the subject is done and we point the

reader to the respective details underlying the model we further use in the present

study.

Vehicle instrumentation's (Section 1.2.2) camera provides the measurement of

ycam, which corresponds to the lateral o�set between the ego vehicle and the target.

Nevertheless, we need to transform this lateral o�set between the real vehicles into

an o�set between the ego vehicle and a virtual perfect following vehicle, yCoG (Figure

3.1)

yCoG = xmψrel + ycam. (3.12)

This transformation takes into account the longitudinal distance that exists between

the vehicles, that produces a certain space delay that needs to be considered by

means of the term xmψrel.

3.2 Constrained Control for Lateral Dynamics

Once the base model is set, we continue the exposition with the design of a MPC

(Section 2.3.2) and IBC (Section 2.3.3) for the autosteering system. For the control

design purposes, complete measurements of the states are assumed in both cases.

3.2.1 Model Predictive Control for Lateral Dynamics

The application of implicit Model Predictive Control is based on the theoretical

tools that have been introduced in Section 2.3.2. The main elements that need to

be investigated and tuned whenever studying the implementation of this control

strategy are listed and analyzed here.

Cost function criterion. Whenever developing an optimization-based con-

trol, we need to set the system objectives and tune the controller accordingly to

obtain a desired optimal performance. In this control application, we seek for a

system that converges to the origin, which represents the reference Perfect following

vehicle. With this in mind, we de�ne a cost function that minimizes the quadratic

norm of the states and the system's input,

J(k) = ‖x̄N‖2P +

N−1∑
i=1

‖x̄‖2Q + ‖∆u‖2R. (3.13)

Once the cost function is de�ned, we need to tune the state and input weighting

matrices Q � 0 and R � 0. Firstly, state weighting matrix Q can be used to give

convergence priority to certain states of interest over the rest. From this point of

view, the �rst relevant state is yCoG, as that will generate a control tuning that



3.2. Constrained Control for Lateral Dynamics 55

eliminates the vehicle lateral o�set with respect to the target vehicle in priority. In

addition, the importance of the heading angle correction cannot be neglected. In

order to show this, Figure 3.2 pictures two di�erent initial conditions, one of them

denoted as favorable initial conditions, and the other non-favorable ones, depending

on the sign relationship between yCoG and ψrel. When the system is activated in

a favorable position, the system lateral o�set will instantaneously start converging

to the origin. However, when the system is activated in a non-favorable initial

condition, the lateral position will not exhibit a monotone decrease before the sign

of the heading angle is corrected, thus, this state will have a considerable in�uence

on the generalized convergence of the system states and must be tuned accordingly.

Unfavorable initial conditions Favorable initial conditions

ycog < 0 and ψrel < 0 ycog < 0 and ψrel > 0

ycog > 0 and ψrel > 0 ycog > 0 and ψrel < 0

Figure 3.2 � Note on initial conditions

Then, we have input weighting matrix R, which is used to de�ne the behavior

of the controller and takes the form of scalar for the present model. If this value

is set to a low constant, the control action is seen as cheap, so the optimization

problem will tend to provide higher values in order to produce a fast and aggressive

convergence on the states. On the contrary, if the control action has a higher cost,

this takes the role of a penalty on the aggressiveness, and the convergence will be

slower. As a consequence, a classical trade-o� needs to be achieved along the tuning.

LPV Prediction Model. The autosteer system has been modeled by means

of a LPV system, where the speed variation brings an uncertain model that will be

described by a polytopic class of dynamics (3.7). Thanks to the online measurement

of the parameter, the system dynamics will be updated at each sample time, using

the available information (the current speed value). This means that the parame-

ter value will be set as constant when propagating the system dynamics along the

prediction horizon 1.

System Constraints. State and input polytopic constraints described in Sec-

tion 3.1.1 are included in the optimization problem. This allows to certify from the

design stage that the optimal solution does not violate safety and physical limits of

1. If the future trajectory is known, and with it the future desired speed pro�le, one could make

a more precise MPC formulation, computing the future system matrices using that information.
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the autosteer system. The tuning of these values comes both from the actual phys-

ical limits and the expertise on the human perception when driving in an assisted

vehicle.

Stability and Feasibility. Ensuring stability and recursive feasibility is

based on the existence of a parameter-dependent stabilizing feedback gain in the

neighborhood of the origin. Two di�erent sets have be computed (Figure 3.3),

corresponding to two di�erent stabilizing control laws used to de�ne the closed loop

system (Section 2.3.2): on one hand, a common output admissible set, denoted

by ΩP , can be obtained by considering the parameter-dependent stabilizing gain

which is obtained with a common Lyapunov function P for the full range of the

parameter variation. On the other hand, a parameter-dependent set, ΩP (ν), can

be computed using a parameter-varying control based on the parameter-varying

Lyapunov function P (ν). In the case of this second design, it is necessasry to

update each sample time the terminal set constraint xN ∈ ΩP (ν) to the last speed

measurement.

ΩP and ΩP (ν) cut [x1, x2, 0, 0, 0] ΩP and ΩP (ν) cut [0, 0, x3, x4, 0]

Figure 3.3 � ΩP and ΩP (ν) comparison

Once all the elements are set, we are in the position of formulating an optimiza-

tion problem in the lines of (2.110) subject to (2.111a)-(2.111d), which is solved

online in a receding horizon fashion according to the classical implicit MPC formu-

lation.

Before presenting the results, let us introduce an alternative design procedure

which will allow a comparative study of the numerical simulations.

3.2.2 Interpolation-Based Control for Lateral Dynamics

Keeping the same control objective, the application of IBC introduced in Section

2.3.3 is studied. As it has been shown, the application of this kind of control is based

on the decomposition of the current state into two sub-states, one belonging to the

Maximal Controlled Invariant Set (CIS) and the other contained in the Maximal

Admissible Set (MAS), providing a control action that is interpolated between the

control values that would be applied to each one of these virtual states. As an

initial step of the strategy, the design has to include the o�ine computation of the
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corresponding invariant sets.

For the MAS set, we use the same ones we obtain when studying the system

dynamics for the MPC design so it can be considered that both strategies share this

element. In the case of the CIS (Section 2.2.1), its asymptotic iterative construction

for the model of lateral dynamics leads to a relative complex set in R5, so the

computational load becomes excessive. Due to this limitations, the 3-steps controlled

invariant set, C3 has been used in the present study as an approximation of the CIS

(Figure 3.4).

C3 and X cut [x1, x2, 0, 0, 0] C3 and X cut [0, 0, x3, x4, 0]

Figure 3.4 � C3 and state admissible space X

In order to have an illustration (and a relative measure), in Figure 3.5, the MAS

ΩP (ν) and the CIS C3 for the LPV system are shown via cuttings together with the

state admissible set X (3.10a). It can be seen that the limits in ψ̇, ẏCoG and yCoG
are close to the state constraints at the cutting values, while for ψrel the di�erence

is relatively important, thus the initial conditions for this state will highly condition

the feasibility of the control problem.

ΩP (ν), C3 and X cut [x1, x2, 0, 0, 0] ΩP (ν), C3 and X cut [0, 0, x3, x4, 0]

Figure 3.5 � ΩP (ν), C3 and state admissible space X

Enhanced feasibility scheme

From the construction of the invariant set in Figure 3.5, the strict inclusion of

the CIS, or in the present case CN , in the satisfaction of the state constraints was

obvious for the initial conditions inside these sets. However, the question arises on

the treatment of the states that lay out of these boundaries, which would bring up
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an unfeasible problem when solving (2.122), (2.123a)-(2.123c) in X \ CN . A simple

way to avoid the infeasibility for the states out of CN , is to soften the constraints in

order to contain the current state. The minimum scaled polyhedron C′N imposed on

the interpolation factor that contains the current system state xk is computed form

the original CN solving the following LP:

β∗k = min{β}
s.t. HCxk ≤ βbC .

(3.14)

Once β∗k is known, the scaled set for the current iteration is de�ned C′N = {x ∈ Rn :

HC′x ≤ bC′} with HC′ = HC and bC′ = β∗kbC . This artifact ensures the feasibility

in (2.124) s.t. (2.125a)-(2.125c). However the stability will be guaranteed only for

β∗ < 1, which is the guaranteed range of decrease independent of the parameter

variation.

Procedure 3.1 Interpolation Based Control with feasibility enhancements.

1. Read measurement of current state xk.

2. If xk ∈ Ω compute uok = K(θ1k)xok . Set uk = uok and go to Step 8.

else go to Step 3.

3. If xk ∈ CN go to Step 4.

else solve (3.14) s.t. (2.125a)-(2.125c) and compute C′. Go to Step 4.

4. Compute η∗, rck from LP (2.122), (2.123a)-(2.123c).

Obtain rok = xk − rck , xck (2.118) and xok (2.119)

5. Solve LP (2.124), (2.125a)-(2.125c) to obtain γ∗ and uck .

6. Compute uok = K(θ1k)xok .

7. Obtain interpolated control action uk (2.115).

8. Return uk.

Remark 3.2 There will be cases in which the current state is out of the computed

CN , but only in a certain direction. The scaling technique is not always applicable,

as (3.14) may produce a scaled polytope C′ that is out of the admissible state-space

X , and in these cases the intersection with the admissible set should be performed.

These infeasibility issues are concerning the regions outside CN and it should be

recalled that absolute guarantees of recursive feasibility can be obtained only within

C∞.

3.3 Simulation Results: MPC vs IBC

In this section the two controllers derived in Sections 3.2.1 and 3.2.2 are tested

on a simulation basis. In order to present a relevant comparison for an usual con�g-

uration, a scenario with a trapezoidal pro�le of varying speed between the minimum

and maximum values vx ∈ [1, 40][km/h] with the maximal longitudinal acceleration

values 2 has been de�ned. The simulated vehicle will be running in a straight road

2. amax = 4[m/s], amin = −3[m/s]
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and initialized at a perturbed initial state, simulating extreme conditions. All the

results have been obtained using the open-source programming framework Yalmip

[Lofberg 2005] and the optimization solver Sedumi [Labit 2002].

3.3.1 MPC feasibility analysis

We have seen that the safe behavior of the controller is a critical feature when

driving an application in which human life is involved. We want to ensure robust

feasibility of the problem from the design stage. For doing so, we have to be able

to steer the system state to the terminal set Ω in N steps ahead in time, ful�lling

all the system input and output constraints no matter the (bounded) speed of the

vehicle.

This feature is mainly in�uenced by three arguments of the MPC design: �rst,

the initial conditions x0. Second, the length of the prediction horizon N and last,

the size of the MAS, Ω. If we start at initial conditions that are far away from the

terminal set MAS, we will need to increase the prediction horizon, in order to get

a feasible problem with xN ∈ Ω. At the same time, the size of the MAS will make

this task easier to achieve at the price of an increase complexity of the respective

polyhedral set within the optimization constraints.

In a �rst test the in�uence of the prediction horizon length and the termi-

nal set constraint size has been analyzed. For doing that, we have run a simu-

lation starting from the possible maximum values of the initial conditions x0 =

[0.05, 0.05, 0.2, 0.3, 0.15]T , checking which would be the necessary prediction hori-

zon length in order to derive a feasible optimization problem when the terminal set

is either ΩP or ΩP (ν). With the �rst MPC choice, we have not been able to solve

the problem, even considering a prediction horizon up to a prediction window of

N = 500 steps, which yields a problem without a practical meaning, due to the

huge dimension of the optimization problem. On the other hand, the MPC con-

troller with ΩP (ν) provides a solution when N ≥ 173. This is mainly due to the

di�erence on the size of the terminal sets ΩP and ΩP (ν).

In addition to this, it has been showed in Figure 3.5 that the size of ΩP (ν) in

the ψrel dimension is very restrictive. That means that the domain of attraction

for this particular state is relatively low, constraining the initial conditions for this

angle at the 10% of its maximal value, 0.5[rad], being the most sensitive from the

prediction horizon point of view.

Remark 3.3 It should be noted anyways that in practical implementations of the

autosteer system, ψrel values remain small, reducing the possibility of worst case

combinations of parameters and/or initial conditions, as those discussed from a

theoretical perspective as limit cases herex.

3.3.2 IBC feasibility analysis

As a continuation of the study, IBC feasibility is analyzed. In this case the control

technique is not a�ected by a prediction horizon but by the size and complexity of
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the positive invariant sets used in the formulation.

This controller ensures feasibility to those points that belong to the original CIS,

CN (Section 2.3.3) or the scaled one C′N . In order to check the closed loop behavior,

we have performed several simulations for a grid of initial conditions, varying from

[0, 0, 0, 0, 0]T to the maximum values inside a R5 box. Four di�erent IBC controllers

have been tested. In Table 3.2 it can be seen that the use of the bigger MAS,

ΩP (ν) together with the scaling technique for CN (3.14) provides improved feasibility

results.

Table 3.2 � Interpolation based control tests

MOAS CN N◦ feasible x0

ΩP̄
Fixed 50.76%

Scaled 57.36%

ΩP (ν)
Fixed 80.24%

Scaled 85.23%

3.3.2.1 Numerical simulation

In order to allow a detailed graphical analysis, a simulation case is presented

together with the time-signals. The initial conditions have been �xed to x0 =

[0.025, 0.02, 0.15, 0.25, 0]T , which represent a common situation in which the system

would be activated. The speed pro�le with maximum acceleration and deceleration

considerations used for the simulation, simulating aggressive variations on the pa-

rameter value. For the MPC, the prediction horizon has been �xed according to the

minimal Time-to-Collision (TTC) 3, that is generally �xed at 2[s], which ensures

problem feasibility as well (Section 3.3.1). This corresponds to N = 200. Weighting

matrices are set to

Q =


1 0 0 0 0

0 15 0 0 0

0 0 0.8 0 0

0 0 0 5 0

0 0 0 0 1

 ,

and R = 1.

The �rst MPC design (using P̄ for the terminal cost formulation and ΩP̄ for the

terminal set constraint) has a domain of attraction which makes the MPC policy

unfeasible for this case study, being unable to solve the problem for such initial

conditions. Even with N = 500 the feasibility is not achieved, so it has been

discarded from the test.

3. TTC is the time required for two vehicles to collide if they continue at their present speed

and on the same path.
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In Figures 3.7, 3.6 and 3.8, the time-trajectory for the MPC and IBC controller

using P (ν) for the terminal cost formulation and ΩP (ν) for the terminal sets con-

straint are shown.
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Figure 3.6 � System states trajectory
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Figure 3.7 � System outputs trajectory

In Figure 3.9 it can be seen the interpolation parameter. Its positivity con�rms

the Lyapunov interpretation given in 2.3.3, the interpolation coe�cient playing the

role of a Lyapunov function. It is interesting to note as well that η∗k = 0 for all

k ≥ 245, implying that from that time instant, the state of the closed-loop system is

in the invariant set Ω. Note also the input constraint satisfaction, thus showing the

ability of IBC to perform as a true active-constraint methodology. This is not the

case for vertex control strategy which historically has the capability of handling a

scaling of the maximal control invariant set as a basic element in the optimization-

based design. Indeed, the vertex control has an active input control capability only

on the boundary of the feasible set and doesn't use the full control capability in the

interior of the feasible set.
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3.4 Conclusion

Two di�erent approaches for the design of autosteering target tracking control

have been considered, when the system dynamics are described by a parameter-

varying model where the parameter, speed of the vehicle, is bounded and measured.

On one hand, the MPC has been studied, starting from a recognized technique

with a mature theoretical background. The online resolution of an optimization

problem in the available embedded control units for the ADAS becomes nowadays

feasible due to the computational power available for embedded control. However,

the long prediction horizon remains the main bottle neck and the recent inverse op-

timality arguments [Nguyen 2014] o�er the framework for compact representation of

the same control law by an alternative low-complexity multi-parametric optimiza-

tion.

As an alternative optimization-based control, the IBC proposes a computational

complexity on a par with the one step horizon MPC controller, while keeping the

constraints handling feature. This makes this controller an interesting candidate for

applications where the computation power available is not high. The main problem

of this kind of controller is the complexity of the positive controlled invariant set,

CN . Although the computation of this set is made o�ine and does not a�ect the

online load solver, this set increases tremendously its complexity each step we take

backwards when computing it the backward reachability construction, thus, its size

is relatively small comparing to the admissible state space set X. This drawback

has been improved by a scaling technique that increases the domain of attraction

of the interpolation based controller. However, this kind of controller would not be

advisable for a system with complex positive invariant sets, as those issued from the

iterative construction of [Dorea 1999] in large state space. The construction of con-

trolled invariant sets of low complexity represents a fundamental o�-line requirement

for on-line computational e�ciency. The research on these type of constructions are

representing currently a very active trend and we choose not to report them here as

they do not represent the main research topic for the present thesis. We point the

reader to the recent papers [Hovd 2014], [Munir 2016], [Laraba 2016] for a complete

account of the state of the art and mention that these can be further improved with

polynomial type of controlled invariant sets.

From the application point of view, the system studied in the present work has

been reduced in order to provide an scenario where the attention is focused in the

variation of the speed. There are more features which can be considered: these

include actuator dynamics and additive disturbances, like wind forces acting on the

vehicle or the curvature of the road, which are covered in the next chapter.
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This chapter devoted to the Lane Centering Assistance (LCA) System study

closes the lateral dynamics constrained control design part. This application can be

seen as the major goal of the auto-steering applications, as it is the base for both

lateral control dynamics and for more complex maneuvers, like the lane change or

overtaking, studied in the second part of this manuscript.

Up to this stage, we have studied LPV control considering a measured and

bounded parameter, which is, the vehicle speed. In the following, we consider not

only the internal variation of this parameter, but also the e�ect that other external

elements have in the vehicle dynamics: the curvature of the road, modeled as a

parameter-varying additive disturbance, is brought into the picture and included

in the system model. In addition, actuator dynamics are included in the system

modelization.

Once the complete model is set, this chapter is focused on the design of a pre-

stabilizing LPV controller when the speed of the vehicle changes inside a large range

of values. Thereafter, robust positive invariance theory is used to analyze the e�ect
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of the curvature of the road on the obtained controller, and how the uncertainty

decreases the domain of attraction of the LPV control. After this analysis, a redesign

phase that explicitly takes the additive disturbances into account is performed to

increase such domain of attraction, followed by the design of a observer-based robust

LPV controller.

These robust designs have a correct performance, but still their domain of attrac-

tion does not seem satisfactory, so two di�erent strategies are proposed afterwards

to improve the control design. First, a switched LPV control strategy is proposed,

which attenuates the e�ect of the large speed variation range. Then, the maximal

acceleration capabilities of the vehicle are considered. This reduces the conserva-

tiveness of the previous approaches, induced by an in�nite rate of variation of the

parameter.

Finally, on top of the previous designs, a MPC scheme is used to enhance the

constraint handling capacities and enlarge the domain of attraction thanks to the

receding horizon strategy.

4.1 Dynamical model for LCA

We recall that the LCA system's main purpose is to stabilize the lateral dynamics

of the vehicle to follow the center line of the lane by acting on the steering wheel of

the vehicle (Figure 4.1). The dynamical model presented in the following comprises

the most representative characteristics of the vehicle lateral dynamics behavior, as

well as system actuator dynamics and the in�uence of the curvature of the road.

The lateral dynamics are modeled once more by the bicycle model, which has already

Figure 4.1 � Bicycle model referenced to the center line
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been introduced in Section 1.2.3.1, so next we concentrate on the modelization of

the road curvature e�ect and the actuator dynamics, before introducing the full

dynamical model.

4.1.1 Additive disturbances modeling

When driving in a dynamical environment, perturbations may arise due to dif-

ferent sources, such as a lateral slope on the road, di�erence of pressure in the tyres,

actuation perturbations or crosswind [Hanke 2001]. This kind of perturbations can

be modeled as an additive white noise [wnf , wnr ]
T in the front and rear lateral forces

Fyf , Fyr (Section 1.2.3.1), yielding the disturbances matrix

H =

[
lf
Iz 0 −lr

Iz 0 0 0
1
m 0 1

m 0 0 0

]T
. (4.1)

In addition to these, an important disturbance a�ecting the lateral dynamics is

the curvature of the road wk, due to its direct in�uence on the steering input signal.

This perturbation a�ects the lateral dynamics behavior of the system, by adding

an extra term to the lateral equations of motion, which is related to the centripetal

acceleration that appears when driving in a curve

ÿCoGρ(t) = −v2
x(t)ρ(t).

In consequence, the required steering wheel angle is directly a�ected, as we will need

to steer as much as it is needed to follow the curve and keep the vehicle centered.

This e�ect is included in the system dynamics model by means of a bounded additive

disturbance, ρ ∈ R, de�ned by the disturbances matrix

E(vx(t), v2
x(t)) =

[
0,−vx(t),−v2

x(t), 0
]T
, (4.2)

with E(vx(t), v2
x(t)) ∈ Rnx×np. It can be seen in (4.2) that this matrix depends on

the vehicle speed, thus we have a parameter-varying disturbances matrix.

In the following, three di�erent modeling abstractions are presented in decreasing

conservativeness order. The �rst one is based on the independent consideration of

the speed realizations appearing in E(vx(t), v2
x(t)). Then, a polytopic representation

is proposed and thereafter re�ned to obtain a more precise representation of the

disturbances.

Superposition principle

To begin with, the two realizations of the speed parameter, v and v2 are de-

�ned respectively as ν1 and ν2, yielding E(ν1k , ν2k). Due to the linearity of the

dynamics of the parameter-varying matrix E(ν1, ν2), a superposition principle can

be employed in order to separate the in�uence of the two uncertainty sources,

E(ν1, ν2) = E1(ν1) +E2(ν2), and analyze independently their impact on the closed

loop dynamics. Again, this parameter uncertainty can be embedded in a polytopic
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approach, obtaining each value inside the bounded working range of speed as a

convex combination of the two extreme values:

E(ν1k , ν2k) =

nv∑
i=1

βiE1i(ν1k) +

nv∑
i=1

ηiE2i(ν2k), (4.3)

with
∑nv

i=1 βi = 1, βi ≥ 0,
∑nv

i=1 ηi = 1, ηi ≥ 0 and the matrix E de�ned by the

addition of the matrices E1 and E2, that are linear on the corresponding parameters,

E(ν1k , ν2k) = E1(ν1k) + E2(ν2k) = [0,−ν1k , 0, 0, 0]T + [0, 0,−ν2k , 0, 0]T .

Moreover, the dependency of the matrices E1 and E2 on the parameters ν1k , ν2k can

be eliminated by scaling the disturbances boundaries with the maximum values of

the parameter:

xk+1 = Acl(νk)xk + E(ν1k , ν2k)ρk =

= Acl(νk)xk + E1(ν1k)ρk + Ē2(ν2k)ρk =

= Acl(νk)xk + E1 ν1ρk︸︷︷︸
ρ1k

+E2 ν2ρk︸︷︷︸
ρ2k

,
(4.4)

where E1 = [0,−1, 0, 0, 0]T and E2 = [0, 0,−1, 0, 0]T are now parameter independent

constant matrices, and the pair of rede�ned disturbances are ρ1k ∈ R1, ρ2k ∈ R2,

with R1 = ν1maxR = vxmaxR and R2 = ν2maxR = v2
xmaxR.

Note however, that the superposition of the e�ects of these two parameters

will only o�er a over approximation as long as the co-variance of the sources of

disturbances is lost when considering this representation.

Worst case polytopic representation

In order to preserve the existing relationship in between the parameters ν1 and

ν2 it can be seen that the domain of variation of ν1, ν2 is certainly de�ned by the

curve f(v) = v2, scaled by the constant value ρm, which is the maximal value of the

road curvature.

The function can be represented by a polytopic embedding, approximated for ex-

ample by a trapezoidal shape (Figure 4.2) for the sake of simplicity of the vertex rep-

resentation. This is �rst limited by the segment [ρmν1min , ρmν2min ], [ρmν1max , ρmν2max ].

Then, we consider a line which is parallel to the �rst segment and tangent to the

curve and the last two edges are de�ned by intersection of this line and the ones tan-

gent at the extreme vertex. This provides a polyhedron with four vertices, nv = 4,

each one de�ning an extreme matrix realization Ei such that

E(ν1k , ν2k) =

nv∑
i=1

αiEi(ν1kρm, ν2kρm), (4.5)

with
∑nv

i=1 αi = 1 and αi ≥ 0. Alternatively, a containment optimization problem

can be performed [Lombardi 2009] to obtain a tight polyhedral embedding of the

curve.



4.1. Dynamical model for LCA 69

Figure 4.2 � Polytopic approximation of the curve vxρm = v2
xρm

Still, it is necessary to note that we are considering the same maximal value of

the curvature of the road ρm for all the range of speed, which remains an important

source of conservativism: road conception directives [Vertet 2006] dictate from the

design stage of the infrastructure facilities that the maximal road curvature and

the maximal driving speed regulation are directly related. These considerations

are considered in the next formulation and integrated in the additive disturbance

analysis.

Re�ned polytopic representation

Following up with the polytopic representation, it is possible to go forward by

means of considering that the maximal value of the curvature is speed-dependent

too, that is, there exists a series of rules and conventions that are taken into account

when the roads are designed, in order to ensure safety and comfort of the drivers.

These conventions set a tight relation between the speed limit at a given road and

the minimal radius for the road pro�le. Table 4.1 shows the convention for the

design of highways in France.

Table 4.1 � Radius-speed values for design on highways [Vertet 2006]

Speed [km/h] 50 70 90 110 130

Comfort Rmin [m] 98 242 473 808 1267

Safety Rmin [m] 66 162 318 541 848

When we consider this formulation, we are highly reducing the conservatism of

the previous two formulations, where a polytopic representation of the disturbances
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Figure 4.3 � Polyopic representation from Table 4.1 data (comfort)

matrix is proposed, whose de�ning vertex Ei (Figure 4.3) are de�ned by each one

of the maximal curve-speed pairs shown in Table 4.1. In this way, the disturbances

matrix can be parametrized as a function of a unique parameter, de�ned by the

a�ne combination of the vertex de�ned polytope Ej(γj):

E(γ) =

nv∑
j=1

αjEj(γj), (4.6)

with αj laying in the unit simplex Λnv given by Λnv =
{
α ∈ R :

∑nv
j=1 αj = 1, αj ≥ 0

}
and nv = 5.

Finally, the inclusion of the maximal curvature on the disturbances matrix allows

to de�ne a normalized disturbances vector,

wj ∈ Wj =
{
wTj wj ≤ 1

}
. (4.7)

4.1.2 Actuator dynamics

In the auto-steering context, it is necessary to actuate on the direction system

[Reimpell 2001] as the driver would. With this in mind, a control action needs to

be provided to the steering system via an actuator, in order to completely eliminate

the human action. The wide majority of vehicles that are nowadays in the market

are equipped with a Steering Assistance System (SAS), which supports the driver

by reducing the needed e�ort when actuating on the steering column to turn the

vehicle wheels. Some applications have been recently included to improve driver's

ergonomics, like direction torque hardening at high speed.

In the present work, a steer-by-wire schema is considered. This kind of design is

controlled electronically, eliminating any mechanical coupling between the steering
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wheel and the wheels. Instead, two actuators are installed, generally two electric

motors, which are in charge of steering the front wheels and the steering wheel

independently. Both actuators are associated, providing the direction, speed and

force of the steering wheel and sending it to the steering system at the wheels. In

the same way, the driver receives an e�ort feedback through the steering wheel.

This kind of system presents several advantages from the mechanical point of view,

eliminating a great quantity of physical components, reducing the probability of

mechanical failure and can be monitored for the possibility of electronic failures.

Both the assistance and the actuation actions for the auto-steering application

are provided by the same (electric) motor, that will set the commanded position.

There are other kinds of SAS, which include hydraulic or hybrid designs, interested

readers are referred to [Enache 2008] for a deeper discussion on the topic. In addi-

tion to this, the installed instrumentation includes sensors that allow to detect the

torque τ and position of the steering column, δ. Torque measurements are used to

monitor the driver, and check if the measured torque is above a minimum thresh-

old, indicating that the steering wheel is being hold. Otherwise, the auto-steering

assistance system is disconnected for safety reasons.

In the following, the actuator dynamics are presented, considering an electric

motor under position control, which is part of the steer-by-wire system and that

is in charge of transforming the commanded steering angle δc into front wheels

steering angle δ. This model follows the lines of the steering actuator presented in

[Ackermann 2012], where a linearized steering actuator model transfer function is

given by a second order system transfer function,

δ =
ω2

s2 + 2ξωs+ ω2
δc. (4.8)

Translated into a state-space representation, we obtain

d

dt

[
δ̇

δ

]
=

[
−2ξω −ω2

1 0

] [
δ̇

δ

]
+

[
ω2

0

]
δc, (4.9)

where the damping factor is represented by ξ and ω stands for for the cut frequency

of the modeled dynamics. Numerical values of the parameters are not included for

con�dentiality reasons.

4.1.3 Full dynamical model

Integrating all the elements together, we can formulate the complete dynamical

model in view of LCA system control that includes the formulation of the lateral

dynamics of the vehicle with respect to the road, the curvature in�uence and the

actuator behavior.

ẋ(t) = Ac(ν(t))x(t) +Bcu(t) + Ec(γ(t))w(t)

y(t) = Ccx(t)
(4.10)
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where Ac(ν(t)), Bc, Cc, EC(γ) are de�ned by the concatenation of the corresponding

models presented in the precedent sections,

Ac(ν(t)) =



−(Cf l
2
f+Crl2r)ν(t)

Iz

(Cf lf−Crlr)
Iz

−(Cf lf−Crlr)ν(t)
Iz

0 0
Cf lf
Iz

0

1 0 0 0 0 0 0
(Crlr−Cf lf )ν(t)

m
(Cf+Cr)

m
−(Cf+Cr)ν(t)

m 0 0
Cf
m 0

0 0 1 0 0 0 0

0 0 0 0 −2ξω −ω2 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0


,

Bc =



0

0

0

0

ω2

0

0


, C =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

 , Ec =



0

− 1
ν(t)ρ(t)

− 1
ν2(t)

ρ(t)

0

0

0

0


.

(4.11)

with the following state, output and input vectors (Table 1.1)

x =
[
ψ̇ ψrel ẏCoG yCoG δ̇ δ

∫
−yCoGdt

]T
y =

[
ψ̇ ψrel yCoG δ

∫
−yCoGdt

]T
u = δc

(4.12)

It has to be noted that this reformulation includes an integral action on the

lateral position of the vehicle with respect to the road, in order to eliminate the

steady-state error. In the following, system dynamics are discretized by a �rst order

Euler method with Ts = 10ms.

Where matrices A(ν), E(γ) satisfy:

A(νk) =

nv∑
i=1

λkAi(νi), with

nv∑
i=1

λk = 1, λk ≥ 1,

E(γk) =

nv∑
j=1

αkEj(γj), , with

nv∑
j=1

αk = 1, αk ≥ 1.

(4.13)

Remark 4.1 It is important to notice that the vehicle and actuator dynamics are

modeled in terms of the front wheels steering angle δ. Nevertheless, our actuator and

the correspoding sensor is connected to the steering system through a rack. Thus, it

is crucial to consider the reduction ratio ir between the front wheels and the vehicle

steering wheel when interacting with the system, sending the control signals δ̄c or

transforming the received the measurements δmeas in the proper reference.

δ̄c = δcir,

δ = δmeas/ir.
(4.14)
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4.1.4 LCA system constraints

Control design strategies considered in the following take into account LCA

system constraints as well. States and input limits are de�ned by the numerical

values shown in Table 4.2, that de�ne the polytopic sets of bounded admissible

states X ⊂ Rnx and inputs U ⊂ Rnu .

Table 4.2 � Trajectory Constraints De�nition for LCA System
Magnitude Range De�nition

ψ̇ [±3.78] Heading angle derivative [rad/s]

ψrel [±0.3] Heading angle [rad]

ẏ [±1] Lateral speed [m/s]

yCoG [±2] Lateral position [m]

δ̇ [±0.43] Steering angle variation rate [rad/s]

δ [±0.52] Steering angle [rad]

δc [±0.52] Steering angle requested [rad]

4.2 Control design for LCA system

Let us recall that the LCA system objective is to control the vehicle to the center

of the current lane. Due to the fact that the system dynamics have been expressed

with respect to the road, such an objective is translated into a stabilization of system

dynamics to the origin.

Robustness is a general concept that analyzes or takes into account the e�ect of

mismatch between a nominal plant and the reality, as well as possible plant variations

that may occur. In this section robustness of a LPV control design is analyzed via

mRPI tools. After that, built-in robustness is considered from the design stage, and

enhanced by means of a switching strategy and parameter variation considerations.

The main objective is to compute a certi�ed range of operation for designed LPV

controllers in the presence of parameter variations, additive disturbances and system

constraints. In this way, it is important to delimit the region of the state-space

in which the conceived tuning forthe LPV system satis�es the system constraints

regardless the driving conditions. Again, such region is approximated by an ellipsoid

E(P ) = {xTP−1x ≤ 1} centered at the origin, that is RPI with respect to the

closed loop dynamics if ∀x ∈ E(P ) then Acl(ν)xk + E(γ)ρk ∈ E(P ),∀ρk ∈ R and

∀ν ∈ V, ∀γ ∈ Γ, with Acl denoting the closed-loop system dynamics. Moreover, any

initial state that belongs to E(P ) will satisfy system constraints and not leave the

computed admissible set under any (bounded) parameter variation or disturbance.

These ellipsoids E(P ) will be the limit set of all the trajectories of the system

controlled with the LPV feedback gain (4.18). This means that all the trajectories

that start on the computed ellipsoid will remain inside with certi�cation of the

constraints satisfaction and all the ones starting outside this region will converge
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to it [Luca 2011b]. Nevertheless, in the later case no certi�cation of constraint

satisfaction is provided.

4.2.1 LPV design and robustness analysis via mRPI tools

As a �rst approach, the application of a LPV classical control design presented in

Section 2.3.1 by means of Problem 2.2 is used to stabilize the LCA model dynamics

presented in Section 4.1.3. Moreover, enhancing constraints on the direction of

the states ψrel and yCoG have been included, due to their special importance on

the application. The last parameter that needs to be tuned is the contraction

factor of the system, (1 − α). This parameter increases the speed of convergence

of the closed-loop dynamics, while decreasing the size of the obtained ellipsoid. A

common approach in the literature is to consider a value which is slightly smaller

than the largest eigenvalue of the system transformation matrix, A, in this case,

(1− α) = (1− 0.999).

The obtained parameter-varying feedback stabilizing gain for the constrained

system,

u1k(νk) =

nv∑
i=1

λiK1i(νi)xk, (4.15)

with with
∑nv

i=1 λi = 1, λi ≥ 0, nv = 2 and

vx1 = 50[km/h]

K11(ν1) = [−0.0275,−0.8287,−0.5265,−0.1157,−0.3317,−17.7578, 0.0096]

vx2 = 70[km/h]

K12(ν2) = [−0.0220,−0.8462,−0.5489,−0.1173, 0.3361,−18.0146, 0.0097]

This design ensures asymptotic stability for all the states inside the domain

of attraction of the controller (Figure 4.4) for all the range of speed and in the

absence of additive disturbances. Furthermore, in the presence of (bounded) additive

disturbances, it will ensure that the states remain in a neighborhood of the origin.

Nevertheless, the presence of unmodeled additive disturbances that have not been

considered on the design may drive the system state out of its domain of attraction,

where the controller performance is lost or, at least, not guaranteed in the presence

of both constraints and parameter variation.

The continuation of this section performs the analysis of the impact of the these

unmodeled additive disturbances on the closed-loop dyamics, by means of the mRPI

set (Procedure 2.3) tools, as the size of this set provides a measurement of the

uncertainty that the bounded disturbances produce on the closed loop dynamics

of a system: the larger the mRPI set is, the more the system is a�ected by the

disturbances.

Along these lines, the corresponding mRPI set has been computed for the closed-

loop LCA system, and proves to not be included in the domain of attraction of the

nominal LPV control (Figure 4.4). This is not surprising since the tuning of the

LPV controller is done based on aggressive contractiveness objectives in spite of
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robustness. This means that the performance of this controller is not kept for any

speed-curvature variation.

Figure 4.4 � Domain of attraction controller E(P1) and computed mRPI set

In practice, what can be done is the computation of the maximal range of speed

variation that would be admissible for a given curvature value, naming admissible

those speed limit values that provide a mRPI set which is smaller than the con-

troller's domain of attraction E(P1). In Figure 4.5, the speed ranges for which the

computed E(PmRPI) ⊆ E(P1) for �xed curvature values are shown 1. It can be seen
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Figure 4.5 � Admissible speed range in curve for the parameter-varying controller

for �xed ρ values

1. Due to con�dentiality reasons the numerical details on the speed range and curvature values

are omitted from the �gure
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that for lower curvature values the controller could be suitable in part of the speed

range activation zone. However, if the curvature is higher, this kind of control would

not be able to control the lateral dynamics of the system unless the speed was much

lower than the range activation of the LCA system. Moreover, the size of the com-

puted mRPI sets is relatively big compared to the size of the controller domain of

attraction E(P1) (Figure 4.6), so the resulting invariant set XN obtained from the

re�nement of E(P ′N ) turns out to be relatively small.
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Figure 4.6 � Computed mRPI set E(Pi) for �xed ρi values (Fig. 4.5)

4.2.2 LPV controller redesign for built-in robustness

RPI tools used for the analysis of the previous design strategy can be used as

well for synthesis purposes: in spite of pre-computing a stabilizing gain for the un-

perturbed system, the design is improved when the stabilizing gain computation is

done at the same time as the RPI set computation, obtaining in this way a robust

stabilizing gain that maximizes the RPI set, in which the input and output con-

straints are ful�lled in the presence of parameter-varying disturbances. This can be

done by solving the LMI Problem 2.3 for a common RPI set.

The obtained parameter-varying linear state feedback gain provides a parameter-

dependent control law leading to the limit state feedback gains with

u2k(νk) =

nv∑
i=1

λiK2i(νi)xk, (4.16)

with
∑nv

i=1 λi = 1, λi ≥ 0, nv = 2 and

vx1 = 50[km/h]

K21(ν1) = [−0.1792,−1.9435,−0.0684,−0.1877, 0.2399,−1.2312, 0.0615]

vx2 = 70[km/h]

K22(ν2) = [−0.1892,−1.9962,−0.0713,−0.1929,−0.2486,−1.2918, 0.0632]

which maximizes the size of the RPI set in the presence of system constraints

and disturbances (Figure 4.7).
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(a) Proy(x1, x2) plane (b) Proy(x3, x4) plane

(c) Proy(x5, x6) plane

Figure 4.7 � LPV Robust control design with RPI maximization domain of attraction

Remark 4.2 As an alternative, we can also seek for a control law that minimizes

the size of the mRPI set, that is, a control design whose main objective is to coun-

teract the additive disturbances, by inverting the cost function objective in Problem

2.3:

min
Pi,Yi,σ

−{σ + trace(Pi)}.

In order to o�er a complete robustness analysis of the redesigned LPV strategy

with respect to the additive disturbances acting on the lateral dynamics of the

system, we can compute the mRPI once more with Ej = H (4.1) in order to compute

the mRPI set (ellipsoidal approximation) corresponding to the additive disturbances

that can be modeled but cannot be predicted, which are represented by white noises

that model other uncertainties acting on the lateral forces Fyf , Fyr (Section 4.1.1),

shown in Figure 4.8.

4.2.2.1 Comparative simulation LPV vs Robust LPV control design

In the following, we present the time evolution of the system states subject to a

speed and curvature variation pro�le (Figures 4.9(a) and 4.9(b)), starting from the

initial conditions de�ned by x0 = [0.02,−0.05, 0, 1, 0, 0], which represent a common

situation in which the LCA system can be activated.

As expected, it can be seen in Figures 4.10 and 4.11 that the temporal responses

of the robust LPV controller are slower than the ones of the LPV controller, never-

theless the domain of attraction if bigger as can be seen in Figure 4.12.
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LPV and Robust LPV designs comparison
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4.2.3 Simultaneous observer-controller design

The next step that is performed is to consider that not all LCA system states

are measured, thus an observer-based controller state feedback for the LPV system

in the presence of parameter-varying additive disturbances and speed variations is

obtained in this section. Moreover, parameter-dependent Lyapunov function are

brought into the picture to improve the �exibility of the problem formulation.

First of all, we need to revisit observability of the LCA system dynamics.

Observability of the auto-steering system

Observability of a LPV system (4.10) can be dealt with based on the following

theorem [Tóth 2007], [Sename 2013], which is recalled here for completeness.

Theorem 4.1 A LPV system is xk+1 = A(θk)xk + Buk, yk = Cxk is completely

observable if rank On(θk:k+n−1) = n for all k ∈ Z, where On(θk:k+n−1) is the

parameter-varying state-observability matrix of the system de�ned as

On(θk:k+n−1) =


C

CA(θk)
...

C
∏n−2
l=1 A(θk+n−2−l)

 , (4.17)

where θk:k+n−1 = [θk, · · · , θk:k+n−1].

This means that the concept of observability is similar to the linear time-invariant

(LTI) systems case but considering all the possible trajectories of the parameter

νk ∈ V. Despite the fact that in [Sename 2013] it is shown that observability of the

vertex realizations of the polytopic representation of the system dynamics for the

extreme values of the parameter, is not a su�cient condition for the observability of

the LPV system for the whole range of the parameter, we can exploit the structure

of the LCA system dynamics in (4.10), (4.11) and show that it is an observable

system no matter the speed value.

Let us consider the �rst two blocks of the observability matrix On(γ) de�ned

as in (4.17), obtaining [C, CA(νk)]
T . From this two blocks, it is possible to obtain

a full rank matrix that does no depend on the speed of the vehicle, for example

[C, CA(νk)(2:3×7)]
T , thus, the LCA system is observable no matter the parameter

value.

Observer-based controller design

The problem design is formulated in terms of LMI, following the lines introduced

in Section 2.3.1. The resolution of Problem 2.4 provides a suitable parameter-varying

tuning that ensures input-to-state stability for a LPV system which is a�ected by

additive disturbances. This approach allows to extend the speed variation range

by 10[km/h] with respect to the previous approaches. The following results are

computed for v ∈ [50 : 70][km/h].
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K(νk) =

nv=2∑
i=1

µikKi(νi) and L(νk) =

nv=2∑
i=1

µikLi(νi). (4.18)

with:

vx1 = 50[km/h] K1(ν1) = [0.1623, 1.6356, 0.0611, 0.0791, 0.2513, 0.9753, 0.0125]

L1(ν1) =



−0.2026 0.0399 2.2221 −0.2363 −0.0263

−0.1095 0.9944 0.1537 −0.0536 −0.0022

−5.1466 15.7732 43.6395 −7.9471 −0.2940

−0.1654 0.1597 1.6289 −0.1342 −0.0053

0.3689 −0.0002 −0.8396 −2.8496 0.0180

−0.1077 −0.0000 0.1355 0.9414 −0.0021

0.0013 −0.0008 −0.0138 0.0011 1.0000


vx2 = 70[km/h] K2(ν2) = [0.1667, 1.6606, 0.0598, 0.0784, 0.2515, 0.9782, 0.0124]

L2(ν2) =



−0.1862 −0.0462 2.0594 −0.1507 −0.0244

−0.1047 0.9943 0.0677 −0.0148 −0.0025

−5.2740 16.1991 44.6131 −8.0724 −0.2878

−0.1662 0.1617 1.6455 −0.1457 −0.0051

0.3557 −0.0002 −0.8315 −2.7252 0.0177

−0.1090 −0.0000 0.1396 0.9508 −0.0020

0.0013 −0.0008 −0.0140 0.0021 1.0000


where the computed invariant ellipsoids Pi for the extreme parameter realization

are shown in Figure 4.13.

It can be noticed that both ellipsoidal sets in Figure 4.13 are quite similar. This

comes from the conservative consideration that the parameter variation can happen

in�nitely fast, so the invariant sets tend to overlap to ensure that no matter the

change on the parameter, the state belongs to the a�ne combination of these two

extreme realizations of the RPI set. This conservativeness source is dealt with in

the subsequent of this section.

4.2.3.1 Comparative simulation LPV robust control and observer-based

designs

In the following, we picture the time evolution of the system states (Figure

4.16) subject to the same speed and curvature variation pro�le than in Section

4.2.2.1, (Figures 4.9(a) and 4.9(b)), starting from the same initial conditions de�ned

by x0 = [0.02,−0.05, 0, 1, 0, 0]. In this case, we will compare the performance of

both robust controllers, where the observer-based design shows an improvement

due to the additional degree of freedom introduced in the formulation by means of

the parameter-varying Lyapunov functions Pi in exchange of a slower closed-loop

convergence speed.
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(a) Proy(x1, x2) plane (b) Proy(x3, x4) plane

(c) Proy(x5, x6) plane

Figure 4.13 � Robust domain of attraction for simultaneous robust observer-

controller design, E(Pi)
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Figure 4.14 � Speed and Curvature Pro�le
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comparison
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Figure 4.16 � System states trajectory Robust and Observer-based LPV designs

comparison
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(a) Proy(x1, x2) plane (b) Proy(x3, x4) plane

(c) Proy(x5, x6) plane

Figure 4.17 � System states trajectory and ellipsoidal invariant sets projections for

Robust and Observer-based LPV designs comparison

4.2.4 Advanced tools I: Switched LPV design

Where have progressively reached a LPV design with a proper performance and

domain of attraction in the presence of speed variation and curved roads. Neverthe-

less, there are certain sources of conservativeness in the previous designs that have

not been considered yet. The �rst one comes from the large range of variation on

the vehicle speed: whenever we have a large parameter variation, it could remain

conservative to use a single LPV controller over the whole admissible range of the

parameter variation, up to the extent that only a solution existed for a 20[km/h]

speed variation range in the previous designs. In order to reduce such conservative-

ness, it is possible to tune multiple LPV controllers, each one suitable for a de�ned

parameter subspace. This provides more �exibility on the design stage, but global

stability of the switched LPV system needs to be checked a posteriori.

In this thesis six di�erent overlapped switching modes denoted by the subindex

σ ∈ {σ1, . . . , σ6} de�ning an hysteresis switch [Lu 2004], [Lu 2006] have been consid-

ered. Each mode will be active at consecutive 20[km/h] intervals, covering the full

range of speed v ∈ [30 : 150]km/h. In this way, a discontinuous parameter-dependent

Lyapunov function (4.19) is de�ned over the range of operation by means of mul-

tiple parameter-dependent Lyapunov functions, each one ensuring the closed-loop

stability on the corresponding parameter subspace.

Vσ(x, ν) = xTG−1
σ (ν)x. (4.19)

For the LPV switched closed-loop system working under the hysteresis switching

strategy to be stable, the value of the discontinuous Lyapunov function is not neces-
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sary decreasing along the whole range of the parameter and may have discontinuities

due to the switch. Nevertheless, it needs to be ensured that the switch is performed

safely, this means that the value of the Lyapunov function has to be globally de-

creasing along the dwell time (kdw):

Vσ1(xk, ν) > Vσ2(xk+kdw , ν). (4.20)

In Figure 4.18, the evolution of a switching signal between σ1 and σ2 is shown.

It can be seen that when the vehicle is running at low speed, the �rst mode σ1

with Āclσ1 (ν) and the G−1
σ1 matrix de�ning the Lyapunov function of the closed-loop

system is active. Then, when the vehicle increases its speed, the overlapping region

is reached. Nevertheless, the �rst mode is active until the switching surface S12

is reached. If the controller switching ful�lls (4.20), the LPV closed-loop switched

system is ensured to be stable. This is translated into the following condition

xTkG
−1
σ1 (ν)xk − xTk+kdw

G−1
σ2 (ν)xk+kdw > 0, (4.21)

or equivalently,

xTk (G−1
σ1 (ν)−Akdwclσ1

(ν)G−1
σ2 (ν)Akdwclσ1

)xk > 0, (4.22)

where

Akdwclσ
(ν) =

d=kdw∏
d=k

Aclσ(νd). (4.23)

Via Schur complement [Boyd 1994], the following LMI is obtained[
G−1
σ2 (ν) Akdwclσ1
? Gσ1(ν)

]
� 0. (4.24)

In a similar way, when the vehicle is traveling at higher speed, the second mode σ2

with ĀCLσ2 (ν) and Gσ2 is active. If then the vehicle decelerates, the switch will be

performed if the switching surface S21 is reached, and the following LMI must hold

in order to ensure the global decrease of the discontinuous Lyapunov function:[
G−1
σ1 (ν) Akdwclσ2
? Gσ2(ν)

]
� 0. (4.25)

In practice, the switching strategy is based on the parameter ν, de�ned by

the vehicle speed. This means that the parameter variation is delimited by the

maximal acceleration capabilities of the vehicle. In this way, once the subspace

regions are de�ned and the respective closed-loop controllers are designed, the closed

loop dynamics are known along the dwell time, and inequalities (4.24), (4.25) can

be veri�ed in a straightforward manner.

The obtained tuning provides the following ellipsoidal invariant sets for each one

of the parameter sub-spaces, shown in Figure 4.19.

In Figures 4.20(a) and 4.20(b) a speed-curvature pro�le varying from 30 to 150

[km/h] with the di�erent switching modes is introduced in order to show the per-

formance of this switched LPV control design strategy. Figure 4.21 depicts the
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Figure 4.18 � Hysteresis switching strategy

(a) Proy(x1, x2) plane (b) Proy(x3, x4) plane

(c) Proy(x5, x6) plane

Figure 4.19 � Robust domain of attraction for parameter-dependent switched LPV

design, Eσi(Pi)
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Figure 4.20 � Speed and Curvature Pro�le for switched LPV design
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Figure 4.21 � System input trajectory for switched LPV design

evolution of the switching signal along the simulation, activating and deactivating

the corresponding modes with the increment of the vehicle speed.

In Figures 4.22 and 4.23, we can observe that the system performance is kept

even in the presence of large speed variations together with the consideration of

curved roads, providing a control design suitable for the full range of the system

operating conditions.
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Figure 4.22 � System input trajectory for switched LPV design

4.2.5 Advanced tools II: Acceleration considerations

A second source of conservatism is the consideration of a control design that

needs to be performant in a large range and under any sudden change on the pa-

rameter value. Brie�y speaking, such a design is theoretically seeking for a tuning

which works under any in�nitely huge variation on the parameter, which is trans-

lated in a reduced domain of attraction. In order to mitigate this e�ect, it can be

taken into account the limited range of variation of the parameter.

The maximal parameter's rate of change ∆ν can be translated into a maximal

variation of the Lyapunov function, including this information in the LMI condition

of robust positive invariance (2.90), this information will be taken into account, and

the in�nite variation of the parameter is no longer assumed. The parameter value at
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Figure 4.23 � System states trajectory for switched LPV design

(a) Proy(x1, x2) plane (b) Proy(x3, x4) plane

(c) Proy(x5, x6) plane

Figure 4.24 � System states trajectory and ellipsoidal invariant sets projections for

switched LPV design
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time k can be expressed as an a�ne combination of the parameter extreme values,

νk =

nv∑
i=1

λikνi. (4.26)

If we de�ne the maximal variation on the parameter between time instant k and

k + 1 as ∆ν, we have

||νk|| − ||∆ν||max ≤ ||νk+1|| ≤ ||νk||+ ||∆ν||max, (4.27)

For the robust control design purposes, we start from the de�nition of a decreasing

parameter-varying Lyapunov function,

Vk+1 − Vk = xTk+1P(νk+1)xk+1 − xTkP(νk)xk < 0, (4.28)

in LMI form,

[
xk ρk

] [ATcl(ν)P(νk+1)Acl(ν)− P(νk) ATcl(ν)P(νk+1)E(γk)

? ET (γk)P(νk+1)ET (γk)

] [
xk
ρk

]
, (4.29)

where Acl(ν) = (A(νk) +BK(ν))xk, with

Pk(νk) =

nv∑
i=1

λikPi(νi), with i = 1 . . . nv (4.30)

being the Lyapunov function at time instant k. And

Pk(νk+1) =

nv∑
i=1

λik+1
Pi(νi) (4.31)

being the Lypunov function at time instant k + 1 with i = 1 . . . nv.

In addition, the maximal variation on the parameter (4.27) can be translated

into a maximal variation on the Lyapunov function, hence

Pk+1(νk+1) =

nv∑
i=1

λik+1
Pik+1

(νik+1
) = (4.32)

=

nv∑
i=1

λikPik(νik) +

nv∑
i=1

∆λik+1
Pik(νik) = (4.33)

= Pk(νk) +

nv∑
i=1

∆λik+1
Pik(νik). (4.34)

Assumption 4.1 There is an order in the obtained Lyapunov functions for each

one of the vertex realizations, we have

P1 ≺ P2 ≺ . . .Pnv . (4.35)
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This assumption can turn to be conservative and can be proven that there exists

solutions that do not verify this condition, for example by imposing that the obtained

solutions Pk+1(νk+1) are bounded by:

Pk(νk)+||∆ν||max
nv∑

j=1,i 6=j
(Pi−Pj) ≺ Pk+1(νk+1) ≺ Pk(νk)+||∆ν||max

nv∑
j=1,i 6=j

(Pj−Pi)

(4.36)

for Pi ≺ Pj , j = 1, . . . , nv and j 6= i. That is, we assume that Pi is the smallest of

the obtained Lyapunov functions.

In the following, we seek for the LMI condition that ensures that (4.28) holds

∀xk and ρk satisfying

xTk+1P(νk+1)xk+1 ≤ 1, (4.37a)

wTw ≤ 1. (4.37b)

In LMI form,

[
xk wk

] [P−1 0

0 0

] [
xk
wk

]
≤ 1, (4.38a)

[
xk wk

] [0 0

0 I

] [
xk
wk

]
≤ 1. (4.38b)

By means of the S-procedure [Luca 2011a] we arrive to the RPI invariance condition

with a parameter-varying Lyapunov function,


QTGi +Q−1

Gi
−Pk−1 0 τQTGi QTGiĀ

T
i −Y T

i B̄
T

? βI 0
[
Ēi 0

]T
? ? τP−1

k 0

? ? ∗ P−1
k+1

 � 0. (4.39)

Considering the information on maximal variation on the Lyapunov function (4.36),

equation (4.39) can be transformed in order to contain such information. In order to

do this, we consider the worst case of variation for Pk + ||∆ν||max
∑nv

j=1,i 6=j(P
−1
i −

P−1
j ) ≺ Pk+1. We obtain,


QTGi +Q−1

Gi
−Pk−1 0 τQTGi QTGiĀ

T
i −Y T

i B̄
T

? βI 0
[
Ēi 0

]T
? ? τP−1

k 0

? ? ∗ P−1
k + ||∆ν||max

∑nv
j=1,i 6=j(P

−1
i − P−1

j )

 � 0.

(4.40)
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Replacing Pk =
∑nv

i=1 λiPi, we have,
QTGi +Q−1

Gi
−Pi−1 0 τQTGi QTGiĀ

T
i −Y T

i B̄
T

? βI 0
[
Ēi 0

]T
? ? τP−1

i 0

? ? ∗ P−1
i + ||∆ν||max

∑nv
j=1,i 6=j(P

−1
i − P−1

j )

 � 0.

(4.41)
QTGi +Q−1

Gi
−Ph−1 0 τQTGi QTGiĀ

T
i −Y T

i B̄
T

? βI 0
[
Ēi 0

]T
? ? τP−1

h 0

? ? ∗ P−1
h + ||∆ν||max

∑nv
j=1,i 6=j(P

−1
i − P−1

j )

 � 0.

(4.42)

for h = 1, . . . , nv, and h 6= i. Recalling Assumption 4.1, we are supposing that

P1 is the smallest Lyapunov function. Nevertheless, we do not know a priori

in which vertex of the polytopic system this holds. Thus, we need to check all

the possibilities: the smallest value of P−1
i + ||∆ν||max

∑nv
j=1,i 6=j(P

−1
i − P−1

j ) or

P−1
j + ||∆ν||max

∑nv
j=1,i 6=j(P

−1
j − P−1

i ) would be obtained for the smallest Pi for
i = 1, . . . nv.

QTGi +Q−1
Gi
−Pi−1 0 τQTGi QTGiĀ

T
i −Y T

i B̄
T

? βI 0
[
Ēi 0

]T
? ? τP−1

i 0

? ? ∗ P−1
i + ||∆ν||max

∑nv
j=1,i 6=j(P

−1
i − P−1

j )

 � 0.

(4.43)
QTGi +Q−1

Gi
−Ph−1 0 τQTGi QTGiĀ

T
i −Y T

i B̄
T

? βI 0
[
Ēi 0

]T
? ? τP−1

h 0

? ? ∗ P−1
h + ||∆ν||max

∑nv
j=1,i 6=j(P

−1
i − P−1

j )

 � 0.

(4.44)

for h = 1, . . . , nv, and h 6= i. Than can also be written as,
QTGi +Q−1

Gi
−Pi−1 0 τQTGi QTGiĀ

T
i −Y T

i B̄
T

? βI 0
[
Ēi 0

]T
? ? τP−1

i 0

? ? ∗ P−1
i + ||∆ν||max

∑nv
j=1,i 6=j(P

−1
i − P−1

j )

 � 0.

(4.45)

for i = 1, . . . , nv, and
QTGi +Q−1

Gi
−Ph−1 0 τQTGi QTGiĀ

T
i −Y T

i B̄
T

? βI 0
[
Ēi 0

]T
? ? τP−1

h 0

? ? ∗ P−1
h + ||∆ν||max

∑nv
j=1,i 6=j(P

−1
j − P−1

i )

 � 0.

(4.46)
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for i = 1, . . . , nv, h = 1, . . . , nv and h 6= i.

Considering this information at the design stage, we reduce the conservative

consideration on the in�nitely large variation of the parameter, thus we are able to

compute a robust LPV control design for the full range of variation of the speed of

the vehicle v ∈ [30 : 150]km/h and the curvature of the road additive disturbances.

(a) Proy(x1, x2) plane (b) Proy(x3, x4) plane

(c) Proy(x5, x6) plane

Figure 4.25 � Robust domain of attraction for parameter-dependent LPV design,

E(Pi) with maximal acceleration considerations

It is straightforward to notice in Figure 4.25 that the ellipsoidal sets for the

extreme values of the parameter are not so similar to each other as in the previously

developed designs, as the conservativeness of the previous designs produces this

similarity between the extreme invariant sets, as we need to be able to change from

one to the other in�nitely fast.

Considering this controller design for the same speed-curvature values shown in

Figure 4.20, we can see that a robust control design can be obtained for the full range

of variation of the speed and in the presence of modeled parameter disturbances, as

a convex combination of two unique extreme values, nv = 2. Temporal results of

the state and input trajectories are shown in Figures 4.26, 4.27 and 4.28.

4.2.6 MPC for LCA system control

To end up the control design section, Model Predictive Control (MPC) (Section

2.3.2) strategy is proposed to enhance the constraints handling capabilities and the

domain of attraction by using a �nite horizon optimization, all by relaxing the linear

structure of the LPV feedback computed in the previous designs.

Within this framework, it is necessary to foresee the geometry of the road tra-
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Figure 4.26 � System input trajectory for LPV design with maximal acceleration

considerations
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Figure 4.27 � System states trajectory for LPV design with maximal acceleration

considerations
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(a) Proy(x1, x2) plane (b) Proy(x3, x4) plane

(c) Proy(x5, x6) plane

Figure 4.28 � System states trajectory and ellipsoidal invariant sets projections for

LPV design with maximal acceleration considerations

jectory. Up to this point the curvature has been considered in terms of its bounded

variation without any supplementary restrictions. However, local information on

the longitudinal direction can be used for extrapolation. This allows transform the

MPC prediction model to include the curvature of the road.

In the following, a third order polynomial is used c(χ) = c0 + c1χ+ c2χ
2 + c3χ

3,

where χ represents the longitudinal distance with respect to the current position

of the vehicle and ci are the online measured coe�cients of the reference trajectory

that approximates the lane. From this model, it is possible to compute the curvature

of the road at any distance χk where we will be at any future time k by means of

equation (4.47), where (.)′ implies the derivative of the polynomial with respect to

χ.

ρk =
c′′(χk)

(1 + c′(χk))(3/2)
(4.47)

When there is such a prediction model available (4.47) to calculate the incoming

additive disturbance along the prediction horizonN , its e�ect can be incorporated to

the predictive control strategy [J.M.Maciejowski 2002] by inclusion on the system

dynamics model (4.10) and approximately cancel it by a suitable control action,

commonly known as feedforward control. The �nal MPC problem formulation is



4.3. Conclusion 95

stated in the following

min
U

J(xk,wk, U) = ‖xN‖2P +

N−1∑
k=1

‖xk‖2Q + ‖uk‖2R

s.t. xk+1 = A(νk)xk +Buk + E(γk)ρk

yk = Cxk

x ∈ X, u ∈ U
xN ∈ X̃N (4.48)

with Q, R, U and xk de�ned as in Section 2.3.2 and ρk being the curvature of the

road. Finally, the quadratic terminal cost P and terminal set X̃N are de�ned by

the RPI set.

Remark 4.3 System performance can be improved by means of using the curvature

value measured at a certain longitudinal distance from the current vehicle position,

as a human driver naturally does when looks at a point in the horizon.

4.3 Conclusion

LCA system dynamics modeling in the presence of speed variation have been

described by a parameter-varying model, where the parameter is bounded and mea-

sured. In the same way, di�erent methods for modeling the e�ects of a curved

road on the system have been introduced, by means of di�erent parameter-varying

additive disturbances models which di�er on the level of conservativeness.

Once the system has been delimited, robust positive invariance theory has been

exploited as a main tool to certify the behavior of a LPV controller that does not

take the impact of the additive disturbances into account on the design stage. After

that, the design of an ISS LPV observer-based controller design that maximizes the

size of the RPI set, taking into account input, and internal states constraints has

been proposed. In addition to this, two strategies that reduce the conservativeness

have been studied: a LPV switched control strategy and acceleration considerations.

The application of such techniques has allowed to largely expand the range of speed

variation with respect to the initial robust LPV techniques.

Nevertheless, its working area is still limited, and a Model Predictive Control

strategy that predicts the curvature of the road by means of a polynomial model and

anticipates to its e�ect is considered. Moreover, a terminal cost and a parameter-

varying stabilizing gain that maximizes the robust terminal set in the presence of

system constraints and the modeled additive disturbances are designed to ensure

the controller recursive stability for such scenarios.

Numerical simulations on an example scenario have been provided, showing the

proposed solution performance in the presence of both speed and curvature varia-

tions.
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This chapter brings into focus the relevant theoretical framework for the second

part of this manuscript, namely the trajectory generation in the context of over-

taking or lane change maneuvers on highways and in the presence of other vehicles,

described as possible obstacles.

The proposed framework is based on optimization, so the �rst section's attention

is dedicated to the Optimal Control theory, providing a brief overview of most of

the existing numerical methods. To complement this part, basic concepts of �atness

theory are recalled, in view of addressing trajectory planning objectives. Finally,

Section 5.3 introduces the main notions related to Hyperplane Arrangements, which

constitute the theoretical foundation for the anti-collision constraints formulation

in the proposed solution.
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5.1 Optimal Control

Optimal Control theory is a broad topic itself, covering more than half-century of

the control research. In the following, the major lines of some of the existing methods

are drawn in order to provide an insight on this well established control problem.

Furthermore, references are provided all along the section, and the reader is referred

to those and the bibliographical references therein for and in depth coverage of the

subject.

5.1.1 Basic De�nitions

In order to establish the mathematical framework let us consider a dynamical

model in the form of an Ordinary Di�erential Equation (ODE) whose behavior is

characterized on a given time interval [tinit, tend]. This represents the simplest case

for describing the evolution of a controlled dynamic system, given by

ξ̇ = f(ξ(t), u(t), t) (5.1)

where t ∈ R is the time, u(t) ∈ Rnu are the controls, and ξ(t) ∈ Rnx is the state. The
function f is a map from the states, controls and time to the range of change of the

state, i.e. f : Rnx × Rnu × [tinit, tfin] → Rnx . Due to the explicit time dependence

of the function f , this formulation covers the class of time-variant systems.

Remark 5.1 An ODE leads to the de�nition of a solution in terms of a function of

one variable ξ(t), which is the time. The case of di�erential equations with solutions

characterized by functions of more than one variable are denoted as part of the class

of Partial Di�erential Equations (PDE) and are not considered here, mainly due to

the fact that the automotive applications as the one considered in the longitudinal

and lateral control cases are seldom varying in space.

De�nition 5.1 Initial Value Problem (IVP). Given a set of initial values for the

dependent variables ξ(t), called the initial conditions, one must determine their

values at some other �nal point TF . The problem would be stated as follows:

Compute the value of ξ(TF ) for some initial value at T0 < TF that satis�es (5.1)

with the known initial value ξ(T0) = ξT0. This kind of problem will thus be fully

de�ned by the ODE and a given initial condition:

ξ̇ = f(ξ(t), u(t), t), ξ(T0) = ξT0 (5.2)

De�nition 5.2 Boundary Value Problem (BVP). Given a set of initial and �nal

values for the dependent variables, one must determine the dependent variables

such that they have these speci�c values at two (or more) points, denoted as T0

and TF . The conditions that de�ne the dependent variables are called the boundary

conditions, ξ(T0) = ξT0 , ξ(TF ) = ξTF .
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De�nition 5.3 A Continuous Optimization problem is such that the decision vari-

able is part of a smooth manifold, for example, real valued vectors x ∈ Rnx .

De�nition 5.4 An Integer Optimization problem is such that the decision variable

is an integer value z ∈ Znz , discrete or belongs to a set of binary choices z ∈ {0, 1}nz .
This last case is also known as combinatorial optimization.

Remark 5.2 [Prodan 2015]. If an optimization problem has both, continuous and

integer variables, it is called a mixed-integer optimization problem.

5.1.2 Optimal Control Problem formulation

Getting closer to the models used in automotive dynamics representation, let us

consider the following dynamical system:

ξ̇(t) = f(ξ(t), u(t)) (5.3)

where ξ(t) stands for the dynamical system states vector and u(t) denotes the system

input. The problem of selection of a solution can be formulated in terms of a conven-

tional Continuous Optimal Control problem (OCP) including Ordinary Di�erential

Equations (ODE) constraints,

min
ξ(t),u(t),TF

J = min
ξ(t),u(t),TF

∫ TF

T0

L(ξ(t), u(t))dt+ E(ξ(TF )) (5.4)

s.t. ξ(0)− ξT0 = 0, Initial conditions

ξ̇(t)− f(ξ(t), u(t)) = 0, ODE model

q(ξ(t), u(t)) ≥ 0, Path constraints

ξ(TF )− ξTF = 0, Final conditions

(5.5)

with t ∈ [T0, TF ] and TF being the time horizon length. This scalar value can be set

beforehand or left as an optimization parameter.

The performance objective of the cost function, denoted L(ξ(t), u(t)) is also

known as the Lagrange term and the terminal cost E(ξ(TF )) is often referred to as

Mayer term [Diehl 2014]. In Figure 5.1 a visualization of this generic OCP formu-

lation together with the problem constraints is shown.

5.1.3 Numerical methods for solving Optimal Control Problems

There exists a wide range of numerical methods that can be used to solve con-

strained OCP (5.4, 5.5), the maturity of this �eld being sustained by he abundant

literature concerned with this subject. In the subsequent, a brief overview based on

[Betts 2010], [Bryson 1975], [Hull 2013], [Kirk 2012], [Diehl 2014] is presented.

The exposition is divided in three di�erent approaches that can be considered

when solving this kind of problems: Dynamic programming, Indirect and Direct

methods (Figure 5.2).
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Figure 5.1 � Optimal control problem
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Figure 5.2 � Optimal Control methods classi�cation

5.1.3.1 Dynamic Programming

This class of methods is based on the approach which considers that is possible

to enumerate in a suitable way all possible trajectories of the system dynamics,

based on Bellman's principle of optimality.

De�nition 5.5 [Bellman 1957]. The Principle of Optimality states that and opti-

mal policy has the property that whatever the initial state and initial decision are,

the remaining decisions must constitute an optimal policy with regard to the state

resulting from the �rst optimal decision.

In other words, this means that any subarc of an optimal trajectory is also optimal.

This principle can either be applied on a discrete-time Dynamic Programming (DP)

recursion [Bertsekas 1995] or in the continuous-time framework with in�nitely small

steps, leading to the Hamilton-Jacobi-Bellman (HJB) partial di�erential equations
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(PDE) on the states [Kirk 2012]. This class of method exploits the principle of

optimality for the computation of a sequence of trajectory (sub-arcs), which together

de�ne an optimal trajectory. Let us start from the optimal control problem cost

function in (5.4), de�ning a BVP in the time interval [T0, TF ].

Starting from a given initial condition ξ̄tk , with a time grid of K steps de�ned

on the interval [T0, TF ], the cost function can be rewritten for a generic time sub-

interval [tk, tk+1],

min
ξ(t),u(t),tk+1

Jk(ξ(tk), u(t), tk) = min
ξ(t),u(t),tk+1

∫ tk+1

tk

L(ξ(t), u(t))dt+E(ξ(tk+1)) (5.6)

s.t.

ξ(tk)− ξ̄tk = 0, Sub-arc initial conditions

ξ̇(t)− f(ξ(t), u(t)) = 0, ODE model

q(ξ(t), u(t)) ≥ 0, Path constraints

ξ(tk+1)− ξtk+1
= 0, Sub-arc �nal conditions

(5.7)

where Jk(ξ(tk), tk) is denoted as the optimal cost-to-go at time tk when starting at

the de�ned state ξ̄tk . Moreover, by means of the principle of optimality (De�ni-

tion 5.5), E(ξ(tk+1)) corresponds with Jk+1(ξ(tk+1), tk+1), wich will be de�ned by

the cost-to-go of the following trajectory sub-arc, when starting at the given point

ξ̄tk+1
= f(ξ(tk), u),

Jk(ξ̄(tk)) = argmin
u
L(ξ(tk), u) + Jk+1(f(ξ(tk), u)) (5.8)

In this way, the main idea of this methodology is to propagate recursively the

cost-to-go function (5.6, 5.7) backwards in time, starting from JTF (ξ(TF ), TF ) =

E(ξ(TF )), and computing the function value Jk(ξ(tk), tk) for the whole tabulated

state space ξ̄tk ∈ X for the de�ned time grid with k ∈ {K−1, . . . 0}. This essentially
would be a matter of trying all the allowable control values at each of the allowable

state points, identifying the optimal control u∗(ξ(tk), tk) with the one that provides

the minimum value of the cost function, J∗k (ξ̄(tk)).

u∗(ξ(tk), tk) = argmin
u
L(ξ(tk), u) +J∗k+1(f(ξ(tk), u)), for k ∈ {K−1, . . . 0} (5.9)

5.1.3.2 Indirect methods

The basis of indirect methods is the Pontryagin's maximum principle [Pontryagin 1987],

which is used to solve the �rst-order optimality conditions [Bryson 1975], [Hull 2013]

of an OCP in order obtain an optimal solution.

The solution of the OCP being considered is a control input function u(t) that

minimizes the cost function (5.4) subject to the di�erential constraints and the

given initial and �nal conditions (5.5). Let us recall that the Hamiltonian function

is de�ned for the considered performance function (5.4) as

H(ξ(t), u(t), λ(t), t) = L(ξ(t), u(t) + λT f(ξ, u(t) (5.10)
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where the Lagrangian will be de�ned as

L(ξ(t), u(t)) = f(ξ, u(t)) + λT q(ξ, u(t)) (5.11)

where λ represents the vector of lagrangian multipliers. considering the �rst order

optimality conditions, we obtain the optimal control by minimizing the Hamiltonian

function H with respect to u(t)

∂H

∂u
= 0→ u∗(t) (5.12)

Once the optimal signal u∗(t) is available, we compute the trajectories of all the

states, that will provide the desired reference trajectories. These will be computed

through the trajectories of the Lagrangian multipliers, using the adjoint di�erential

equations,

λ̇i(t) = −∂H
∂ξi

= 0 (5.13)

Practically, integrating over time, we can obtain the Lagrange multipliers and states

trajectories, whose parameters can be computed from the de�ned boundary condi-

tions.

5.1.3.3 Direct methods

Direct methods seek for the optimal solution of the OCP by directly minimizing

the problem's cost function. A main step on this methodologies is to perform the

discretization of the state and/or control trajectories, approximating the original

continuous time in�nite dimension OCP by a �nite dimensional Nonlinear Pro-

gram (NLP), which can be afterwards solved by the corresponding strategies. This

goal can be achieved by transcribing the in�nite dimensional problem into a �nite-

dimensional approximation. This reformulation has three fundamental steps:

1. Convert the continuous control problem into a problem with a �nite set of

variables.

2. Solve the �nite-dimensional problem using an optimization method (the NLP

subproblem).

3. Assess the accuracy of the �nite-dimensional approximation and if necessary

repeat the transcription and optimization steps.

In the following, a review on the transcription methods that can be used to ap-

proximate an OCP into a NLP problem is provided, focusing on the �rst step of the

process, that is, identifying the NLP variables, constraints and objective function. A

further classi�cation of the direct methods can be done regarding the discretization

approach, denoted as sequential or simultaneous discretization direct approaches

(Figure 5.2). In the �rst class, discretization is carried out only for the control

vectors, while the simultaneous discretization will do for both states and control

trajectories.
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Sequential approach

As it has been previously stated, only the control inputs are discretized in this

strategy, leaving the states vector ξ(t) as a dependent variable of the control input

vector u(t) and the initial state vector ξ0. In other words, only the controls are the

decision variables of the resulting NLP. The state trajectories are explicitly han-

dled by an additional numerical integration method (Section 5.1.4) in a sequential

manner, starting from ξ0 and using the computed controls to forward integrate the

system dynamics.

• Single Shooting method. Control parameterization is performed by means

of polynomials, piecewise constant functions or, more generally, piecewise poly-

nomials. In the following, piecewise constant controls parameterization is con-

sidered, as it is the most widespread parameterization. A �xed grid with K

steps is de�ned along the time horizon t0 < t1 < · · · < tK = TF , obtaining the

vector of parameterized controls qi ∈ Rnu , with i = 0 . . .K − 1. After that,

the resulting control function u(t, q) can be obtained by

u(t, q) = qi for t ∈ [ti, ti+1] (5.14)

Then, the state integration ξ(t, q) can be solved as a initial value problem

over the entire prediction, using the controls u(t, q) (5.14). Finally, inequality

Figure 5.3 � Direct single-shooting, NLP variables

constraints are discretized and enforced at each one of the time grid nodes ti,

leading to the following NLP formulation:

min
q∈Rnu

∫ TF

0
L(ξ(t, q), u(t, q))dt+ E(ξ(TF , q) (5.15)

s.t.

ξ(T0)− ξT0 = 0, Initial conditions

h(ξ(ti, qi), u(ti, qi)) ≥ 0, Discretized path constraints

ξ(TF , q)− ξTF = 0, Final conditions
(5.16)

with i ∈ [0,K − 1].
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Simultaneous approach

The second group of direct methods discretize the system states as well as the

control inputs, hence the decision vector of the resulting NLP will consist of both the

parametrized states and inputs, so it can be expected that the size of the resulting

NLP problem is larger compared to the sequential approach. The direct simultane-

ous approach can in turn be divided into collocation and multiple shooting methods,

which are outlined in the following.

• Collocation method. Direct collocation methods are based on the param-

eterization of the state and control trajectories using basis functions such as

piecewice constant, polynomials or B-splines. They are both discretized over

a relatively �ne time grid, whose nodes ti de�ne the states si = ξ(ti) and the

control parameters, qi, that yield the control function ui(t, qi). For example,

if a piecewise constant function is chosen as the control parameterization, we

would obtain a constant control u(t) = qi on each interval.

The core concept of the collocation method is to de�ne a set of m colloca-

tion points on each subinterval of the grid t
(1)
i , . . . t

(m)
i , also known as �nite

elements. There exists di�erent strategies when de�ning the set of colloca-

tion points, where Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR), and

Legendre-Gauss-Lobatto(LGL) are the most popular ones [Pietz 2003].

Afterwards, the state trajectory can be approximated by a polynomial pi(t, ci) ∈
Rnx , with ci ∈ Rnx(m+1) coe�cients. Such polynomials integrate the trajec-

tory over each interval [ti, ti+1], by a suitable choice of the coe�cients ci, which

is made by means of a set of algebraic equations that ensure that the com-

puted polynomial is a realistic representation of the state trajectories, known

as collocation conditions (5.17).

si = pi(ti, ci), Initial conditions

f(pi(t
(1)
i , ci︸ ︷︷ ︸
ci,1

), ui(t
(1)
i , qi)) = ṗi(t

(1)
i , ci), Model dynamics satisfaction

...

f(pi(t
(m)
i , ci︸ ︷︷ ︸
ci,m

), ui(t
(m)
i , qi)) = ṗi(t

(m)
i , ci).

(5.17)

These collocation conditions can be enforced as equality constraints of the

generated NLP for each one of the collocation points, compacted as a vector

equation gi(si, ci, qi) = 0,

gi(si, ci, qi) =


ci,0 − si

ṗi(t
(1)
i , ci)− f(ci,1, ti,1)

...

ṗi(t
(m)
i , ci)− f(ci,m, ti,m)

 = 0 (5.18)
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In addition, continuity between the di�erent intervals of the time grid needs

to be ensured by means of the following continuity conditions, enforced for

each transition between the subintervals.

p(ti+1, ci)− si+1 = 0 for i = 0 . . . N (5.19)

The ending step is to approximate the integrals
∫ i=K−1
i=0 L(ξ, u)dt by a quadra-

ture formula, using the same collocation points, denoted as li(si, ci, ui) in the

following.

Finally, the following NLP is formulated:

min
s,c,u

K−1∑
i=0

li(si, ci, ui) + E(sTF ) (5.20)

s.t.

sT0 − ξT0 = 0, Initial conditions

gi(si, ci, qi) = 0, Collocation conditions

p(ti+1, ci)− si+1 = 0, Continuity conditions

h(si, qi) ≤ 0, Discretized path constraints

sTF − ξTF ≤ 0, Final conditions

(5.21)

with i ∈ [0,K − 1].

• Multiple Shooting method. [Bock 1984], [Bock 2000]. Again, as part of

the simultaneous approach group, both the state trajectory and the control in-

put over the receding prediction horizon are discretized. The major di�erence

with the collocation method and the sequential direct single-shooting method

is that in the multiple shooting method, the system is separately integrated in

each interval between the discretization (shooting) nodes, based on an initial

guess of the initial state at each node si.

Accordingly, the prediction horizon TF is divided in a time grid with K sub-

intervals, and the input control signals are discretized on a piecewise constant

grid, u(t) = qi, for t ∈ [ti, ti+1] (5.14). After that, the ODE is solved indepen-

dently at each one of the generated intervals, starting from a virtual initial

value si, assigned to each grid node.

ξ̇ = f(ξ(t), si), t ∈ [ti, ti+1]

ξ(ti) = si
(5.22)

Once this is settled, a �nite number of Initial Value Problems (IVP) are de-

�ned, so that the state trajectory pieces ξi(ti, si, qi) can be obtained by means

of an integration approach (Section 5.1.4), providing the parametrized trajec-

tory pieces li(si, qi) over each subinterval.

li(si, qi) =

∫ ti+1

ti

L(ξ(ti, si, qi))dt (5.23)
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Figure 5.4 � Multiple-shooting, NLP variables

In order to avoid discontinuity on the trajectories between the �nal and ini-

tial state of the successive sub-intervals of the grid, continuity constraints

between them need to be enforced explicitly. This is done by imposing si+1 =

ξ(ti+1, si, qi).

All considered, the resulting NLP problem can be written as follows:

min
s,q

K−1∑
i=0

li(si, qi) + E(sTF ) (5.24)

s.t.

sT0 − ξT0 = 0, Initial conditions

si+1 − ξ(ti+1, si, qi) = 0, Continuity conditions

h(ξ(ti, qi), u(ti, qi)) ≥ 0, Discretized path constraints

s(TF )− ξTF = 0, Final conditions

(5.25)

with i ∈ [0,K].

Remark 5.3 When dealing with real-time applications, a possible enhance-

ment of the multiple shooting algorithm would be to exploit its nature and be

implemented in a parallel computation fashion [Betts 1991]. In this kind of

implementation, each segment could be implemented on an individual proces-

sor.

5.1.4 Numerical Integration - Runge-Kutta scheme

Previous section shows that shooting methods require the propagation of the

system dynamics, so the numerical solution of the formulated IVP (De�nition 5.1)

is fundamental for the resolution of the OCPs via direct methods (Section 5.1.3.3).

Numerical methods for solving the ODE IVP are a relative mature �eld in optimal

control [Betts 2010], [Quirynen 2017].



5.1. Optimal Control 109

The main objective of any numerical integration method is to take a step forward

over a certain interval of time, t ∈ [ti, ti+1], in order to �nd an approximate value

for the point ξ̃i+1, based on the previously computed solution values and the system

ODE, written in the form (5.1). Formally, the integration of the system dynamics

yields

ξi+1 = ξi +

∫ ti+1

ti

ξ̇(t)dt = ξi +

∫ ti+1

ti

f(ξ(t), u(t), t)dt (5.26)

Traditionally, numerical integration methods are divided into one-step and multi-

step approaches. Brie�y speaking, the main di�erence between both strategies is

that one-step methods use only the previous solution point, while multi-step ap-

proach consider a certain amount of previous points. In the following, attention is

given to one-step Runge-Kutta (RK) methods, witch are the most widely used. The

basic idea of the RK methods is to perform several evaluations of the function at

intermediate stage points, providing a higher accuracy on the resulting solution. In

order to evaluate the integral (5.26), the time interval is divided into k subintervals,

tj = ti + hiκj , with 0 ≤ κ1 ≤ κ2 ≤ · · · ≤ κk ≤ 1, for 1 ≤ j ≤ k. After de�ning the

subdivided interval, a quadrature formula within a quadrature formula is applied:∫ ti+1

ti

f(ξ(t), u(t), t)dt ≈ hi
k∑
j=1

βj f̃j (5.27)

where f̃j ≡ f(tj , ξ̃j), and ξ̃j is the approximation of the system variables at the

intermediate points of the subgrid, computed by means of the following expression:∫ tj

ti

f(ξ(t), u(t), t)dt ≈ hi
k∑
l=1

αjlfl (5.28)

with 1 ≤ j ≤ k. Condensing the results from (5.26) - (5.28), the general formulation

for the one-step k-stage Runge-Kutta scheme is obtained:

ξi+1 = ξi + hi

k∑
j=1

βjfij (5.29)

with

fij = f


[
hi

k∑
l=1

αjlfil

]
︸ ︷︷ ︸

ξ̃j

, [ti + hiκj ]︸ ︷︷ ︸
tj

 (5.30)

where κk, βj , αjl are known constants, often represented in a compact by means of

the Butcher's array [Butcher 2016].

κ1 α11 . . . α1k
...

...
...

κk αk1 . . . αkk
β1 . . . βk

(5.31)
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A further classi�cation of this methods can be made based on the αjl coe�cients,

denoted as explicit if αjl = 0 for l ≥ j and implicit otherwise.

To conclude this section, two common examples of the explicit k-stage Runge-

Kutta schemes are introduced below.

Explicit Euler integration method

The simplest explicit RK method is the forward Euler integration of order 1,

with k = 1, whose Butcher array and common representation are depicted in (5.32),

(5.33)

0 0

1
(5.32)

ξ̃j+1 = ξj + hjf(xj , tj) (5.33)

Classical Runge-Kutta method

One of the most widespread integration methods is the Runge-Kutta Method of

order four, usually denoted by RK4, whose Butcher array is de�ned by the coe�-

cients.
0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1/6 1/3 1/3 1/6

(5.34)

Considering the constant control input uconst, one step of the RK4 methods proceeds

as follows:

κ1 = f(ξ̃i, uconst)

κ2 = f(ξ̃i +
h

2
κ1, uconst)

κ3 = f(ξ̃i +
h

2
κ2, uconst)

κ4 = f(ξ̃i + hκ3, uconst)

ξ̃i+1 = ξ̃i +
h

6
(κ1 + 2κ2 + 2κ3 + κ4)

(5.35)

5.2 Flatness

Di�erential �atness (or �atness) was originally studied by [Fliess 1992]. Gener-

ally speaking, it is a property of some controlled dynamical systems which allows

a complete parameterization of all system variables (states, inputs and outputs) in

terms of a �nite set of independent variables, called the �at outputs, and a �nite

number of its time derivatives. The �at outputs are internal variables to the sys-

tem, so they are a function of the states and of a �nite number of derivatives of

the inputs. By specifying the desired �at outputs trajectories, the nominal state
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and input trajectories are completely de�ned without integrating the system ODE.

Nevertheless, establishing which are the �at outputs of a dynamical system is gen-

erally hard, as there is no systematic method to determine them, except on the

case of linear systems and a�ne nonlinear single input cases [Sira-Ramirez 2004],

[Fliess 1995].

De�nition 5.6 [Murray 2009]. A controlled nonlinear system expressed as in 5.1

is di�erentially �at if there exists a function f such that

z = f(ξ, u, u̇, . . . , u(p)) (5.36)

and we can write the solutions of such nonlinear system as functions of z, denoted

as the system's �at output and a �nite number q of its derivatives

ξ = f(z, ż, . . . , z(q)),

u = f(z, ż, . . . , z(q))
(5.37)

Remark 5.4 The number of �at outputs nz is equal to the number of system inputs.

Example 5.1 Let us consider a simple system, a nonholonomic integrator taken

from [Brockett 1982]:

ξ̇1 = u1, ξ̇2 = u3, ξ̇3 = ξ2u1 (5.38)

This systems presents the di�erential �atness property, with z = (ξ1, ξ3). This means

that once the trajectories of the �at variables are known, the states trajectories can

be obtained straightforward:

ξ1 = z1, ξ2 = ξ̇3/ξ̇1 = ż2/ż1, ξ3 = z2 (5.39)

�

5.3 Hyperplane Arrangements

5.3.1 Basic de�nitions

In the following, a series of relevant de�nitions are recalled, following the nomen-

clature introduced in [Ziegler 2012], where the reader is addressed for further con-

cepts study.

De�nition 5.7 An hyperplane arrangement A(H) is a collection of regions gener-

ated by N hyperplanes H = {Hi}i=1:N that partition the whole �nite dimensional

space in which they are de�ned.



112 Chapter 5. Theoretical background for trajectory planning

De�nition 5.8 A cell or region A(σ) represents a disjoint partition of the hyper-

plane arrangement A(H) characterized by a sign tuple σ ∈ {+,−}N , de�ned as:

A(σ) =

N⋂
i=1

Hσ(i)
i (5.40)

Remark 5.5 [Buck 1943]. Given an hyperplane arrangement A(H), the number of

feasible regions γ(N) in relation with the space dimension nx, and the number of

hyperplanes N , is bounded by the Buck's formula:

γ(N) ≤
nx∑
i=0

(
N

i

)
(5.41)

In this way, the whole state-space can be de�ned by an hyperplane arrangement

A(H) as a union of all the feasible disjoint cells A(σj),

A(H) =
⋃

j=1,...,γ(N)

A(σj) =
⋃

j=1,...,γ(N)

(
N⋂
i=1

Hσj(i)i

)
(5.42)

where

Σ = {σj ∈ {+,−}N : A(σj) 6= ∅} (5.43)

de�nes the collection of feasible tuples that provide combinations of the half-spaces

(2.8) that yield non-empty intersections of regions and γ(N) is the number of cells,

bounded by the Buck's formula (Remark 5.5). E�cient algorithms for mode enu-

meration can be found in [Avis 1996], [Geyer 2010].

Example 5.2 Consider the hyperplane arrangement depicted in Figure 5.5(a), de-

scribed by the hyperplanes Hi, with i ∈ 1, . . . 4, that is, N = 4. These divide the

full space in 9 feasible cells, each one de�ned by a unique sign tuple σ. The fea-

sible combinations Σ (5.43) are (+ + −−), (− + −−), (− − −−), (− − −+), (− +

−+), (+ +−+), (+ + ++), (−+ ++), (−−++). In addition, the shadowed region

corresponds to a cell A(σ) =
⋂N=4
i=1 H

σ(i)
i = H−1

⋂
H+

2

⋂
H−3

⋂
H+

4 , given by the tu-

ple σ = (−+−+). It can be seen that the remaining tuple combinations (24−9 = 7)

are unfeasible, for example A(σ) =
⋂N=4
i=1 H

σ(i)
i = H−1

⋂
H+

2

⋂
H+

3

⋂
H−4 = ∅.

Figure 5.5(b) shows a perturbed version of the original hyperplane arrangement.

It can be seen that the arrangement in Figure 5.5(a) is not in general position,

hence the bound given by Buck's formula is not reached (Remark 5.5). Moreover,

the translation of the hyperplane generates new cells on the arrangement, that now

has 10 regions. �
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(a) Hyperplane arrangement (b) Perturbed hyperplane arrangement

Figure 5.5 � Hyperplane Arrangements

5.3.2 Non-convex non-connected regions characterization

In practical applications, it may be of interest to divide the space into feasible

(F) and unfeasible (T) regions. Typically, these regions are not necessarily convex

or connected, still, they can be expressed as the union of convex cells (Fl or Tt
respectively), covering the corresponding sub-space:

F = C(T) =
⋃

l=1,...,Nf

Fl (5.44)

with Fl = {A(σf ) ⊂ A(H) : σf ∈ Σf}, and Σf ⊂ Σ,

Σf = {σ ∈ Σ : A(σf ) ∩ T = ∅} (5.45)

representing the collection of feasible tuples. In a similar way, the forbidden region

can be expressed as the union of the Nt unfeasible cells,

T = C(F) =
⋃

t=1,...,Nt

Tt (5.46)

with Ft ∈ {A(σt) ∈ A(H) : σt ∈ Σt}, and Σt ⊂ Σ,

Σt = {σ ∈ Σ : A(σt) ∩ F = ∅} (5.47)

representing the collection of unfeasible tuples.

Remark 5.6 Note that Σf∩Σt = ∅ and that Σf∪Σt = Σ, according to the de�nition

in (5.43).

In these lines, there are two ways of proceeding. The �rst option would be to pre-

de�ne an hyperplane arrangement and afterwards de�ne the existing forbidden cells,

while in a second approach the forbiden regions can be represented by polyhedra

whose de�ning hyperplanes generate an hyperplane arrangement.



114 Chapter 5. Theoretical background for trajectory planning

Remark 5.7 As introduced in Chapter 2 (2.9), a polyhedron is in fact an intersec-

tion of half-spaces (2.8). In this context, it is possible to de�ne a forbidden region

as a polyhedron Tt, whose facets partition the space and generate an hyperplane

arrangement.

Example 5.3 Let us consider the hyperplane arrangements from Figure 5.6, where

the shadowed zones represent the forbidden space. In the �rst case (Figure 5.6(a)),

the hyperplane arrangement has been prede�ned as a constant grid, and the for-

bidden space is de�ned as T =
⋃
l=1,...,5 Tl (5.46), with Tl = A(σt), and σt ∈ Σt =

{(−++−−−+)(−−+−−−+)(−−+−−++)(−++−−++)(−−+−+++)}.
The corresponding feasible region is non-convex, still, it can be expressed in terms

of (5.44), with F =
⋃
l=1,...,15Fl, with Fl = A(σf ), and σf ∈ Σf = {(+ + +−−−

−)(−+ +−−−−)(−−+−−−−)(−−−−−−−)(−−−−−−+)(−−−−−+

+)(−−−−+ + +)(−−−+ + + +)(−−+ + + + +)(−+ + + + + +)(+ + + + + +

+)(−+ +−+ + +)(+ + +−+ + +)(+ + +−−+ +)(+ + +−−−+)}.

(a) Prede�ned hyperplane arrangement (b) Hyperplane arrangement from for-

bidden regions

Figure 5.6 � Feasible and Unfeasible cells de�nition

In the second case, (Figure 5.6(b)), the arrangement has been created from the

delimiting hyperplanes of the shaded regions, de�ned as polyhedra, T1, T2 respec-

tively (Remark 5.7). In this case, the forbidden space is de�ned as T =
⋃
t=1,...,4 Tt

(5.46), with Tt = A(σt), and σt ∈ Σt = {(+ + − − ++)(+ + + + ++)(+ −
+ + ++)(+ − − + ++)}. Analogously, F =

⋃
l=1,...,17Fl, with Fl = A(σf ), and

σf ∈ Σf = {(++++−−)(+++−−−)(+++−−+)(++−−−+)(+−−−−+)(+−



5.3. Hyperplane Arrangements 115

−−++)(−−−−++)(−−−+ ++)(−−−+ +−)(−−+ + +−)(−+ + + +−)(+−
+ + +−)(+ + + + +−)(+ + +−+−)(+ + +−++)(−−+ + ++)(+−+−++)}.

Remark 5.8 As a practical note, it can be noted that neighboring cells only have

one di�erent sign on their de�ning tuple.

It can be seen that both approaches have their pros and cons, in the �rst one,

the representation is simpler, but the obstacles are highly over-approximated. On

the other hand, the second approach is more precise, at the expense of a higher

complexity. �

5.3.3 Cell Merging

The number of convex cells describing a non-convex non-conected region can

be quite important, and the analysis within cell merging techniques [Prodan 2012],

[Prodan 2015], [Geyer 2004] that allow to obtain a simpli�ed representation is of

interest in most of the applications.

De�nition 5.9 The union of cells A(σ) that preserve the same sign value over a

subset of indices i ⊂ I of their sign tuple σ and present all the possible combinations

for the rest of indices k ⊂ I is a merged cell A(σ∗), de�ned as follows,

A(σ∗) =
⋃
σ∗

A(σ) =
⋂

σ∗(i)6=′∗′,i∈I

Hσ
∗(i)

i (5.48)

with σ∗ ∈ {+, ∗,−}N being the sign tuple of the merged cell, where σ∗ is de�ned

as σ∗(i) = σ(i) and σ∗(k) =′ ∗′, with i and k described above.

There exist several algorithms that allow to compute merged cells. A �rst trend

is based in a "branch and bound" strategy proposed in [Geyer 2004]. A second

approach is based on the use of Boolean algebra, where the merging problem is

translated into the optimization of a Boolean function given in the Sum of Products

(SOP) form (for example, via Karnaugh maps. In this approach, merged cells will

be described by the Boolean miniterms of the optimized function. Such a Boolean

function can be de�ned from the collection of the hyperplane arrangement tuples,

by means of the following Theorem.

Theorem 5.1 [Prodan 2015]. Consider the forbiden and admissible regions (5.44),

(5.46) characterized respectively by the sign tuples (5.45), (5.47). Then, the feasible

region is compactly described as a union of merged cells (5.48):

F =
⋃
σ∗

A(σ∗), (5.49)

where σ∗ ∈ {−, ∗,+}N are given by the sum of products representation of the

Boolean function f : {−,+}N → {0, ∗, 1} verifying:

f(σ) = 0, ∀σ ∈ Σf

f(σ) = 1, ∀σ ∈ Σt

f(σ) = ∗, ∀σ ∈ {−,+}N \ Σ

(5.50)
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Proof: Using this formulation, we obtain a truth table for the function in (5.50),

where the value '0' is assigned to a forbidden cell, and '1' represents a feasible one.

Moreover the symbol '*' is assigned to the rest of cells, that is, the ones that are

related to an empty tuple combination. If we simplify the obtained Boolean function

and express it on its canonical SOP, each one of the terms will describe a region of

the form (5.48), which is equivalent to (5.49).

In [Prodan 2015] the techniques to build up these Boolean functions maps are re-

visited in detail.

Example 5.4 We continue with the hyperplane arrangement depicted in Figure

5.6(b). For the small number of hyperplanes appearing on this example, graphical

merging cell techniques based on Boolean algebra and Karnaugh maps are an at-

tractive approach. First of all, the Boolean function has been obtained by means

of Theorem 5.1. Then, Figure 5.7 shows the corresponding Karnaugh map and

the constructed groups, obtaining the reduced canonical SOP form of the original

function (5.51).

σ5σ6

σ2σ3
00 01 11 10

00

01

11

10

* * *1

* * **

* * **

* * *

(a) Map 1: σ1 = 0, σ4 = 0

σ5σ6

σ2σ3
00 01 11 10

00

01

11

10

* * 11

* * 11

* * **

* * 1*

(b) Map 2: σ1 = 0, σ4 = 1

σ5σ6

σ2σ3
00 01 11 10

00

01

11

10

0 1 *1

* * *1

* 1 *0

1 1 11

(c) Map 3: σ1 = 1, σ4 = 0

σ5σ6

σ2σ3
00 01 11 10

00

01

11

10

* * *0

* * 10

* * **

1 * 10

(d) Map 4: σ1 = 1, σ4 = 1

Figure 5.7 � Karnaugh map representation for hyperplane arrangement in Fig. 5.6(b)
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f(σ) = ¯σ(1) + ¯σ(5) + ¯σ(6) + ¯σ(2) ¯σ(4) + σ(3) ¯σ(4), (5.51)

so the merged cells A(σ∗) (5.48), shown in (Figure 5.8), are de�ned by the following

collection of tuples σ∗ ∈ Σ∗ = {(−∗∗∗ ∗∗), (∗ ∗ ∗ ∗−∗), (∗ ∗ ∗ ∗ ∗−), (∗−∗−∗∗), (∗ ∗
+− ∗∗)}.

Figure 5.8 � Merged Cells

�

5.3.4 Mixed Integer representation

In the constrained optimal control framework, it may be of interest to enforce

the inclusion of a certain state ξ on a given non-convex and/or non-conected feasible

region. If an hyperplane arrangement A(H) (5.42) is de�ned on the state-space, such

non-convex region can be expressed as the union of Nf convex disjoint cells which

are de�ned by a collection of N hyperplane inequalities (2.8), that is, ξ ∈ F (5.44).

Mixed Integer Programming (MIP) framework provides a set of tools that allow

to express such containment condition in an extended space X×{0, 1}N de�ned by

the state space and a set of auxiliary binary variables, α = (α1, . . . , αN ) ∈ {0, 1}N :

−hTi ξ ≤ −gi +Mα(1)

...

−hTi ξ ≤ −gi +Mα(N)

N∑
i=1

α(i) ≤ N − 1

(5.52)

with i = 1 . . . N andM being a scalar relatively bigger than the variables at the right

hand side of the inequalities. The use of this scalar value on the formulation, together
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with the binary variables, allows to manage the collection of constraints, relaxing

the inequality when the corresponding hyperplane is not active for a given cell. This

approach is denoted in the MIP framework as the big M strategy [Vielma 2008].

Remark 5.9 [Prodan 2015]. For a �nite selection of a su�ciently large M, the

following Linear Programing (LP) problem can be solved, which alows to obtain a

bounded M that makes the inequalities redundant with respect to the state space X.

M = max
i,Mi≥0

(
max
ξ∈X
{Mi = gi − hiξ}

)
(5.53)

Example 5.5 Let us continue with the analysis of the hyperplane arrangement

from Figure 5.6(b), where any cell of the the feasible space can be expressed in the

augmented space as:

−h1ξ ≤ −g1 +Mα(1)

−h2ξ ≤ −g2 +Mα(2)

−h3ξ ≤ −g3 +Mα(3)

−h4ξ ≤ −g4 +Mα(4)

−h5ξ ≤ −g5 +Mα(5)

−h6ξ ≤ −g6 +Mα(6)

6∑
i=1

αi(i) ≤ 5

(5.54)

For example, for (α1, . . . , αN ) = (1, 0, 0, 0, 1, 1), we would obtain the region F6, by

activating the corresponding H−{2,3,4} inequalities, while the rest of them would be

made redundant by means of the scalar value M . �

Remark 5.10 It must be noted that the last condition that is enforced on the for-

mulation (5.52) prevents the solution to degenerate (with α = 0), and ensures that

at least one constraint is active.

5.3.4.1 MIP formulation complexity reduction

We have shown that the representation of the containment into a non-convex

non-connected region can be divided into a collection of convex sub-problems, by

means of a augmented state-binary space and mixed-integer programming formula-

tion. Nevertheless, it is straightforward to notice that the number of hyperplanes

de�ning the arrangement, N , increases the number of binary variables that is needed

in the formulation and as a by-product, directly a�ects the computational burden

of the generated MIP problem.

In the subsequent, the techniques that allow to reduce the number of binary

variables are revisited. We start by introducing the logarithmic representation of
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the binary part, where one binary tuple βl assigned to each feasible convex cell Fl is
enough to distinguish between the cells of the arrangement. Following up with this

enumeration logic, the least number of regions, the least number of binary variables,

so cell merging techniques (Section 5.3.3) are also a powerful tools to lighten the

computational burden.

Based on a binary representation, each one of the cells of the hyperplane ar-

rangement can be coded in terms of N0 bits, assigning a unique number to each one

of them, starting from zero and taking the numbers successively:

N0 = dlog2(Nf )e (5.55)

Let us recall Proposition 5.1 from [Stoican 2011b].

Proposition 5.1 [Stoican 2011b]. A mapping αl(β) : {0, 1}N0 → R which veri�es

that αl(β
l) = 0 and αl(β

j) ≥ 0 for any j 6= l is given by:

αl(β) =

N0∑
k=1

plk, where plk =

{
βk, if βlk = 0

1− βk, if βlk = 1
(5.56)

where βk denotes the kth variable and βlk its value for the tuple associated to the

region Fl(5.44), with l = 1 . . . Nf .

This kind of mapping keeps the linear nature of the expression appearing on

the inequalities (5.52), while reducing the number of necessary binary variables to

enumerate each cell. Nevertheless, it has to be taken into account that there may

be some tuples that provide an empty region, that is, their representation in the

extended space is degenerated. To avoid this situation, the following logic is included

in the formulation, in order to enforce the unfeasibility of such tuple realizations:

Corollary 5.1 [Stoican 2011b]. Let there be a tuple βl ∈ {0, 1}N0: The point it

describes is made unfeasible with respect to the constraint:

−
N0∑
k=1

plk ≤ −ε (5.57)

with plk de�ned as in Proposition 5.1 and ε ∈ {0, 1} being a scalar value that makes

the corresponding tuple inequalities to vanish.

In this way, any variable α is written as a linear combination in the space of

variables β = (β1, . . . βN0), following Proposition 5.1 for the feasible tuples (5.43)

and Corollary 5.1 for the non-allocated ones, which will be individually assigned to

each cell.

The full non-convex non-connected feasible region F (5.44) is then reformulated

and de�ned by the following set of inequalities in the extended space:

Fl


σl(1)h1ξ ≤ σl(1)g1

...

σl(N)hNξ ≤ σl(N)gN

+Mβll

...

(5.58)
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for l = 1 . . . Nl covering the number of cells on the feasible space with their cor-

responding sign tuples σl ∈ Σf (5.45) and the tuple of assigned binary variables

βl.

Example 5.6 Let us continue with the analysis of the hyperplane arrangement

from Figure 5.6(b) with Nl = 17. By considering the binary representation, it is

enough to use N0 = dlog2(17)e = 5 binary variables to distinguish between the

cells of the arrangement. Using the list of feasible cells, together with the variable

mapping stated in Proposition 5.1, we can assign a unique number for each cell,

coded in the corresponding tuples βl (Figure 5.9), obtaining the following mixed-

integer representation of the feasible region is as follows:

F1



h1ξ ≤ g1

h2ξ ≤ g2

h3ξ ≤ g3

h4ξ ≤ g4

−h5ξ ≤ −g5

−h6ξ ≤ −g6

+M(β1 + β2 + β3 + β4 + β5)

F2



h1ξ ≤ g1

h2ξ ≤ g2

h3ξ ≤ g3

−h4ξ ≤ −g4

−h5ξ ≤ −g5

−h6ξ ≤ −g6

+M(1 + β1 + β2 + β3 + β4 − β5)

F3



h1ξ ≤ g1

h2ξ ≤ g2

h3ξ ≤ g3

−h4ξ ≤ −g4

−h5ξ ≤ −g5

h6ξ ≤ g6

+M(1 + β1 + β2 + β3 − β4 + β5)

...

(5.59)

Since only 17 tuples of the 32 in total are related to a feasible cell, we need to add

the remaining inequalities to ensure that the following unalocated tuples remain

unfeasible:

−(2− β1 + β2 + β3 + β4 − β5) ≤ 0.5

−(2− β1 + β2 + β3 − β4 + β5) ≤ 0.5

−(3− β1 + β2 + β3 − β4 − β5) ≤ 0.5

. . . remaining unalocated tuples

(5.60)

�

A second simpli�cation that can be considered comes in a straightforward man-

ner from the tools introduced in Section 5.3.3, where a reduced number of regions
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Figure 5.9 � Feasible cells binary enumeration

implies the need of less binary variables β. Moreover, the representation is made

more compact by means of the following Remark 5.11.

Remark 5.11 There is no need to describe each one of the individual cells in (5.58)

by the full collection of N hyperplanes de�ning the arrangement. Instead, the number

of inequalities can be cut down to just the Nla active ones of each feasible region Fl,

eliminating the redundant hyperplane inequalities from the description.

Example 5.7 We continue with the hyperplane arrangement from Figure 5.6(b).

Once a cell merging technique has been applied (Example 5.4, Section 5.3.3), N0 =

dlog2(5)e = 3 binary variables su�ce to de�ne the convex feasible region (Figure

5.10).

M1

{
−h1ξ ≤ −g1 +M(β1 + β2 + β3)

M2

{
−h5ξ ≤ −g5 +M(1 + β1 + β2 − β3)

M3

{
−h6ξ ≤ −g6 +M(1 + β1 − β2 + β3)

M4

{
−h2ξ ≤ −g2

−h4ξ ≤ −g4
+M(2 + β1 − β2 − β3)

M5

{
h3ξ ≤ g3

−h4ξ ≤ −g4
+M(1− β1 + β2 + β3)

(5.61)

Similarly to Example 5.6, the remaining unalocated tuples are made unfeasible by
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means of the following inequalities:

−(2− β1 + β2 + β3) ≤ 0.5

−(2− β1 − β2 + β3) ≤ 0.5

−(3− β1 − β2 − β3) ≤ 0.5

(5.62)

�

Figure 5.10 � Merged Cells

5.4 Conclusion

This chapter has brought into the picture the main tools that will be used in the

following chapter for an optimization-based trajectory planning with anti-collision

enhancements algorithm. The present thesis is the �rst work which aims to bring

together the optimal control approach with a hyperplane arrangement modeling

from the collision avoidance. This methodology is one of the contribution of the

thesis and will be illustrated in the automotive application next.

Several state-of-art optimization techniques for the resolution of Optimal Control

Problems have been reviewed. Firstly, Dynamic Programming has been introduced.

In this methodology, most of the computational burden is made o�ine, generating

a series of optimal control inputs depending on the current state, providing the so-

lution that represents the global minimum. Nevertheless, such kind of technique

requires afterwards to store this information in a tabular form, that shall be ex-

tracted afterwards on the online execution. This represents the major drawback of

this method denoted by Bellman as the curse of dimensionality, which con�nes its
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practical application to systems without a high number of states. In addition, as the

optimal input computation is made o�ine, system constraints must be �xed a priori,

limiting this technique to static environments. This makes this method inapplicable

for the trajectory planning case, where we are dealing with a dynamic environment,

and anti-collision constraints may never be the same: we cannot predict beforehand

how the other vehicles may behave. This �exibility limitation appears as well when

considering Indirect Methods, that search for an analytical solution of the optimal

control by means of the resolution of the optimality conditions. In addition, the

need of knowing when the constraints are activated adds an extra degree of rigidity.

In other words, this technique allows to obtain the knowledge of the form of the

optimal control and a statement of the two-point boundary-value problem, which,

when solved, yields an explicit relationship for the optimal control, but is complex

to apply in the presence of system constraints. Due to all these limitations of the

previous methods, a direct optimization method will be considered in the follow-

ing chapter, due to the capability of these kind of methods to deal with inequality

constraints arising from path limitations in a systematic way without su�ering of

dimensionality problems.

As a complement, di�erential �atness concept has been introduced and it will

be exploited to reduce the complexity of the model used at the generation stage.

To �nish with, Hyperplane Arrangements theory has been described together with

a series of illustrative examples that allow to understand this not so well known

technique, used in the next chapter to de�ne the feasible free space for the trajectory

generation algorithm.
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This chapter converges towards the algorithm that has been proposed to solve

the problem of overtaking and lane change in a generic formulation based on op-

timization. We start from a formal description of the overtaking and lane change

maneuvers, de�ning this ADAS function's objective. Then, di�erent methods that

can be used to treat this kind of maneuvers are revisited in a brief review of the state-

of-the-art main trends on the trajectory planning methods and obstacle avoidance

alternative formulations.

Afterwards, the chosen methodology is detailed, starting from the delimitation

of the collection of scenarii that may arise when performing this kind of maneuvers
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and the formulation of the anti-collision constraints. Then, an mixed-integer OCP

is developed together with a series of tools that allow to lighten the a priori com-

binatorial computational burden of the formulation and bring it to a polynomial

formulation in terms of binary variables. Utimately, the goal is to give the reader

an insight on the implementation details and understand the speci�c framework for

the overtaking and lane change algorithm. Simulation results close this second part

of the manuscript.

6.1 Problem formulation

Before proposing a formal description, let us begin with the discussion on what

exactly an overtaking and lane change means in the ADAS framework. This can be

stated in words: An optimal lane change maneuver is such that drives the assisted

vehicle to the adyacent lane by means of a comfortable and safe movement, after a

driver's request is received through an indicator activation. In addition, an overtak-

ing maneuver is related to a similar action performed in order to overpass a vehicle,

where the main di�erence comes from the fact that the initial and �nal lane of the

movement are the same one and it is performed in the presence of other vehicles.

In practice, the overtaking maneuver can be seen as an operation composed

of three stages, identi�ed with a lane change phase, a lane centering phase and

a second lane change movement that brings back the vehicle to the original lane

(Figure 6.1). This means that both maneuvers can be executed by an assistance

system that is equiped with the lane change, the lane centering (Chapter 4) and the

cruisse adaptive control features (Chapter 1).

Remark 6.1 Overtaking maneuver passing over two lanes can be considered as a

consecutive lane change maneuver.

Figure 6.1 � Lane change and Overtaking maneuver

Technically speaking, an optimal, comfortable and safe maneuver is translated

in terms of aggresive movements which need to be avoided, limiting the variation

on the vehicle acceleration, that is, jerk. At the same time, the lateral acceleration

and all system states must maintained in safe bounds, all units stay within the lane
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boundaries and the actuator constraints must be complied with. Likewise, on top of

the internal limitations, safety is directly related with the exogenous factors, like the

presence of sorrounding vehicles, where the certi�cation of no collision represents a

critical feature to be considered in the design stage.

In Figure 1.1 a schematic representation of the overall ADAS control hierarchy

has been depicted. In the following, attention is driven to the trajectory planner

layer, while underlying control loops are assumed to be functioning in closed loop

with appropriate feedback controllers (as discussed in the �rst part of the mansu-

cript). The trajectory generator receives external information about the road (such

as lane width, number of lanes or computed curvature of the road). Also, with

rescpet to the obstacles, the relative position and movement is considered known

with the onboard instrumentation. As a result this, the vehicle state vector is also

available.

6.1.1 Trajectory planning strategies review

There exists a broad variety of trajectory planning methods. Traditionally, non-

optimization based strategies [Chee 1994] have been used to generate trajectories for

point-to-point motion. These are mostly based on prede�ned continuous-curvature

paths, where trapezoidal, B-splines, clothoids or cosine pro�les can be pointed out.

The choice of these classes of curves aim to avoid non-smooth trajectories, that

result in undesirable wear of tires [Vorobieva 2013].

A second group of methods are the exploration-based techniques, like the Rapidly

Random Exploring Trees (RTT) algorithms [Pepy 2006], [Hwan 2011], where model

dynamics are integrated to explore the surrounding environment and decide on the

best feasible path. However, there are still critical issues, related to the computa-

tional burden, that prevent this technique to be used in real-time applications. A

certain attention has been recently driven to this kind of techniques in [Weiss 2017],

where the combination of the exploration technique with constraint admissible pos-

itively invariant sets provides a promising new insight with appropriate theoretical

guarantees for the method.

There is also an important amount of work where optimization-based methods

are used. Within this framework, 5th order polynomial parameterization is widely

used, which results from the resolution of an Optimal Control Problem (OCP) via

indirect optimization techniques [Rathgeber 2015]. As it has been stated in the

previous chapter, the major drawback of this approach is the inherent di�culty to

consider trajectory constraints, mainly related to the non-convexity of the feasible

domain.

However, recently, direct optimization techniques are generating an increasing

interest due to its ability to manage constrained systems in a systematic manner

and important advances on the real-time capabilities on the resolution of the op-

timization problems [Diehl 2005]. In the same time, in [Mercy 2014] time-optimal

collision-free trajectories are computed for a holonomic vehicle in terms of spline pa-

rameterizations of the trajectory, exploiting its geometric properties to reduce the
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number of constraints. In [Gao 2010] a two-level Model Predictive Control (MPC)

scheme is proposed, where the main objective is to enhance collision avoidance when

following the center of the lane in terms of a distance-based term in the cost function.

With this in mind, [Gao 2012] and [Frasch 2013] introduce a spatial reformulation

of the vehicle model dynamics to eliminate model's speed dependency and formulate

the anticollision constraints in terms of state constraints.

Finally, �atness-based trajectory planning methods [Murray 2009], [Milam 2003]

can be seen as a complementary methodology to Optimal Control which is based on

a property of some systems, that allows to compute the trajectories without having

to integrate their dynamics: given a di�erentially �at system (Section 5.2), all its

feasible trajectories can be written as a function of the �at output and its derivatives

(De�nition 5.6). This property is specially useful for trajectory generation applica-

tions, where the trajectories can be planned in the �at output space and afterwards

being mapped to the appropriate inputs space. Nevertheless, the complexity of this

methods arise from the nonlinearity of the system state limits when expressing them

as �at output constraints, rendering nonlinear optimization problems.

6.1.2 Alternative obstacle avoidance formulations

The inclusion of obstacle avoidance capabilities in the trajectory planning al-

gorithms remains a complex problem within dynamic environments, thus several

techniques have been developed in the literature to formulate this particular kind

of problem.

Potential �elds methods (PFM) rapidly gained importance in the obstacle avoid-

ance for robot manipulators framework, due to its simplicity in dealing with obstacle

integration in the classical trajectory design. The main idea builds up from the def-

inition of a potential �eld function around each one of the obstacles that need to be

avoided, whose value increases inversely to the distance to the obstacle. With this

in mind, the minimization of a cost function including the potential �eld functions

will generate a path that does not collide with the obstacles. As a word of caution,

in [Koren 1991] a series of disadvantages and identi�ed problems of this kind of

methods were analyzed, among which we can mention local minima problems due

to the presence of several obstacles or non-passing trajectories when two obstacles

are close to each other. All in all, active research interest has been manifested in

this direction in connection with the automotive trajectory planning framework.

Focusing on the optimization-based trajectory planning methods, obstacle avoid-

ance can be formulated by means of system state constraints, enforcing the contain-

ment of the solution in a certain region of the state-space, corresponding to the region

free of collision. In these lines, separating hyperplane theory [Ziegler 2012] has been

proposed in [Mercy 2014], where the enforcement of existence of a separating hy-

perplane between the obstacle and the ego vehicle ensures that both bodies remain

separated along the generated trajectory. An alternative formulation is suggested in

[Stoican 2011a], where hyperplane arrangement theory is exploited to de�ne the free

space for the trajectory generation purposes. The major advantage of this method
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is the pre-de�nition of the separating hyperplanes, avoiding its online computation

each iteration, thus reducing the computation burden. As a downside, this kind of

method induces a mixed-integer formulation, which has been enhaced with certain

simpli�cations as proposed in [Jane£ek 2017] and the enclosed overtaking and lane

change framework allows to reduce the computational burden of this approach, as

it will be presented later on this chapter.

6.2 Exhaustive scenarii description

This section characterizes the collection of possible situations that may arise in

terms of collision avoidance formulation in the lane change and overtaking maneuver,

allowing to delimit the context of the algorithm and argument for the choice of

suitable modeling formalism. In this work, the addressed general scenario considers

a two or three lanes one-way road (i.e. highways), where the �nal objective is to

perform a lane change or overtaking maneuver (Section 6.1) in the presence of other

vehicles, denoted as objects in the subsequent.

These vehicles, sharing the environment, can be located by mutual exclusion in

three di�erent relative positions with respect to the controlled vehicle, denoted as

ego. This means that all the possible objects on this kind or roads are easily identi�ed

as one of the following prede�ned types (Table 6.1), and then characterized in real-

time by its dimensions and movement information (and prediction), provided by the

data fusion algorithms (Section 6.2).

Table 6.1 � Target de�nition
Target Description Schema (Figure 6.2)

Type 1 Object at original lane in front of Ego T1

Type 2 Object at objective lane behind Ego T2

Type 3 Object at objective lane in front of Ego T3

Figure 6.2 � Target de�nition schema

Assumption 6.1 The right lines are functioning with a lower speed that render
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infeasible double lane undertaking maneuvers as long as the ego vehicle is in the

range of action on a lane positioned at the left.

Assumption 6.2 The cars manouvring on the orignal lane behind the ego car are

gouvered by a certi�ed algorithm that avoids collision from behind with the ego vehicle

and interdict the undertaking manouvers

Once these object types have been de�ned, they can be combined in order to

prede�ne the context in which the maneuver will take place. A complete description

of the considered scenarii when changing to the left lane is shown in Table 6.2.

Likewise, the same object types and symmetric scenarii can be considered when

performing a change to the right lane.

Target detection

Surrounding vehicles are detected by the vehicle's on-board instrumentation

(1.2.2), whose captured information is provided to the sensor fusion algorithm. In

the following, a brief description of the logic and the available information about

the obstacles is given.

For the object detection and tracking feature, input information mainly comes

from the radars located at the front bumper and back corners of the vehicle. This

sensor will provide a collection of points, that are corelated to a object with a shape

(i.e. a rectangle). Measured information comprises relative position with respect to

the center of gravity of the ego vehicle and its derivatives up to the acceleration,

together with the relative heading angle of the detected shape (6.1). A time-stamp

tk de�ning the detection time is assigned to each group of measurements.

ξobjectk = [pk, vk, ak, ψk, ψ̇k]
T (6.1)

where pk = [pxk , pyk ]T , vk = [vxk , vyk ]T and ak = [axk , ayk ]T are provided in relative

coordinates with respect to the ego vehicle.

Moreover, the object type (i.e. motorbike, truck, car) can be detected by eval-

uating the Radar Cross Section (RCS) of the object. This factor is in�uenced by

several characteristics of the detected vehicle, where we can identify its building

material or size. The higher the RCS is, the easier the object is detected. This

feature allows to de�ne a catalog of prede�ned vehicles, where the default size is

registered and can be used in the case of a detection failure.

Whenever a new group of data at a generic time tk is available, the information

is checked against the processed in the previous time stamp tk−1, and tracking and

detection algorithm is executed (Algorithm 1).
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Table 6.2 � Scenario de�nition
Scenario Description Schema

Scenario 1 One object detected

1.1 T1

1.2 T2

1.3 T3

Scenario 2 Two objects detected

2.1 T1&T2

2.2 T1&T3

2.3 T2&T3

Scenario 3 Three objects detected

3 T1&T2&T3
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Algorithm 1 Target detection and tracking (pseudocode)

1: Input:

2: Read information ξ̂objectik−1
at previous time stamp tk−1, (Figure 6.3(a)).

3: Measure new states ξobjectik
and assign tk as current time stamp (Figure 6.3(b)).

4: Tracking:

5: for Each detected object i at previous time stamp tk−1 do

6: Update initial conditions: ξobjecti0
= [pik−1

, vik−1
, aik−1

, ψik−1
, ψ̇ik−1

]T .

7: Compute predicted states for time tk: ξ̃objectik
by a constant acceleration or

constant turn ratio and speed model from T0 = tk−1 to TF = tk (Figure 6.3(b)).

8: end for

9: Compare distrubution of predicted ξ̃objectik
and measured ξobjectik

states at time

stamp tk, compute Mahalanobis distance [Mahalanobis 1936], that provides a

measurement on the similarity between two multidimensional variables.

10: Identify tracked objects by maximum superposing area χ2
ij , and/or de�ne new

objects, if any.

11: Estimation:

12: for Each new or tracked object, i do

13: Compute ξ̂objectik
by Kalman estimation.

14: Save object states ξ̂objectik
and time stamp tk values for next iteration.

15: end for

16: return Estimated state ξ̂objectik
= [p̂k, v̂k, âk, ψ̂k,

ˆ̇
ψk]

T and object bounding box

length Li, and width Wi.

(a) Time stamp tk−1, (b) Time stamp tk,

Figure 6.3 � Points detection and tracking at time tk
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6.3 Methodology

Once the obstacles and scenarii are characterized, we are ready to describe in

a mathematical form the trajectory planning problem by means of the theoretical

background that has been set up in Chapter 5 and formally describe the available

data for the decision making.

First of all, the selected vehicle model is described. After that, we focus on the

description of the feasible space in which the ego vehicle can move over, de�ned as a

non-convex feasible region which is described in terms of hyperplane arrangements,

leading to a mixed-integer formulation of the anticollision constraints. Moreover,

the reduction of the necessary binary variables and cell merging techniques are

considered and applied to the exhaustive enumeration of possible overtaking scenarii

leading to a minimal representation in terms of binary variable (and represetning

one of the contributions of the present approach). Concerning the on-line control,

attention is given to the formulation of a constrained optimal control problem which

is translated into a �nite dimension non-linear programming problem via direct

optimization multiple-shooting approach that is solved in a receding horizon fashion,

leading to the desired reference trajectory after a suitable change of coordinates.

6.3.1 Ego vehicle description

The �rst assumption coming from lower level controllers structure, shown in

Figure 1.1, is the decoupling between the longitudinal and the lateral dynamics.

This given schema provides a sub-optimal solution for the problem of trajectory

generation. Nonetheless, such a control design structure has been set to allow a

paralel development process for industrialization purposes. As stated in Section 6.1,

the aim of the present section is to design a technique which provides the reference

trajectory for the lower level controllers, which are already available and will function

based on higher �delity models. Hence, it will be acceptable to approximate the

longitudinal and the lateral motion of the vehicle by a �rst-order di�erential equation

in the jerk.

ξ̇(t) = Aξ(t) +Bu(t)

ξ(t) =
[
x(t) ẋ(t) ẍ(t) y(t) ẏ(t) ÿ(t)

]T
u(t) =

[ ...
x (t)

...
y (t)

]T (6.2)

where x(t), y(t) represent the longitudinal and lateral position respectively and {̇}
denotes time derivatives. State matrix A is a two block diagonal matrix, where each

block is de�ned by a Jordan block, J0,3 and B = [0, 0, 1, 0, 0, 1]T . The longitudinal

position reference point will be set at the current position of the vehicle, while the

lateral reference is set at the center of the lane from which the vehicle is starting

the maneuver. The whole planning procedure is stated in these coordinates and

represent the �rst stage of the trajectory generation.

In a second stage, the plani�ed trajectory is used to generate the reference

states provided to the underlying controllers. This transformation from planning to



134 Chapter 6. Collision-free trajectory planning on highways

reference trajectory is performed by the use of the di�erentially �at vehicle kinematic

model (Section 5.2), which reads as follows,

ẋ(t) = V (t)cos(ψ(t))

ẏ(t) = V (t)sin(ψ(t))

ψ̇(t) =
V (t)

L
tan(δ(t))

(6.3)

with ψ(t) being the heading angle of the vehicle and L its length. Input sig-

nals of the model are the front wheels steering angle δ and vehicle speed V (t) =√
ẋ2(t) + ẏ2(t). The state and input vectors are represented by

η(t) = [x(t), y(t), ψ(t)]T

u(t) = [δ(t), V (t)]T
(6.4)

The objective here is to provide the reference [ηref (t), uref (t)] that guides the

vehicle from one lane to the adjacent one. Since the adopted kinematic model is

di�erentially �at, [Murray 2009], [Sira-Ramirez 2004], the system states and inputs

can be computed as a function of the �at outputs z(t) and a �nite number of its

time derivatives. In this particular case,

z(t) = [z1(t), z2(t)] = [x(t), y(t)]T (6.5)

Hence, once the trajectory for the �at outputs and its derivatives has been

computed by means of the model (6.2), we can obtain the required references by

using a prede�ned basis function for the �at outputs as follows:

ηref (t) =

[
z1(t), z2(t), atan

(
ż2(t)

ż1(t)

)]
uref (t) =

[
atan

(
L
z̈2(t)ż1(t)− z̈1(t)ż2(t)

(ż2
1(t) + ż2

2(t))3/2

)
,
√
ż2

1(t) + ż2
2(t)

] (6.6)

This strategy represents an open-loop control policy, so the mismatch between

the model and the real system needs to be regulated based on a feedback loop, that is

executed at the operational level (Section 1.2.1). On top of this, the saturations can

play an important role in the tracking performances according to their activation

in the process of transition from the model (6.2) to (6.3) and in general in the

trajectory planning step.

6.3.2 Mathematical modeling of the highway scenarii: feasible non-

convex region characterization

We start by the account of the feasible region for the overtaking and lane change

maneuver: Whenever performing an overtaking or lane change maneuver on a high-

way, the feasible space will de�ned by the road phisical limits, together with the
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presence of other vehicles in the surroundings. These will be de�ned by their shape,

size, relative position and movement. In addition, safety tra�c standards must be

considered, such as the minimum safety distance that must be kept between all the

vehicles and the interdiction of undertaking. In practice, the neighboring vehicles

are seen as obstacles that can be identi�ed with a polyhedral shape (the convex

hull of its extreme points), which is ultimately correlated to a collection of hy-

perplanes that partition the maneuver space into feasible and unfeasible regions

(Section 5.3.2). Thus, in order to de�ne the corresponding hyperplane arrangement

for each scenario, we need to compute the location of the limiting hyperplanes,

which is directly obtained from the relative position and size of the targets, that are

obtained from the bounding box information provided by the ego vehicle on-board

instrumentation and the target detection and tracking algorithm (Section 6.2).

In addition, it needs to be noted that a point-mass model (6.2) has been chosen

to represent the ego vehicle. This means that only a point located at its center

of gravity is considered and its neglected dimensions could produce a collision by

entering in the forbidden region of the space even if the center of gravity remains

inside the feasible non-convex region. This can be overcome in terms of polyhedral

Minkowski addition (2.8) of the ego vehicle shape E to each one of the targets,

T̄j = Tj ⊕ −E. In this way, the ego vehicle can be appropriately condensed to a

point with respect to an obstacle that integrates the information of the collision

geometry. In addition to this, as it has been established at the beginning of this

section, road safety legislation needs to be considered, and the ego vehicle must keep

a certain longitudinal distance dsfty with the targets, so each one of the obstacles'

polyhedral approximation has been enlarged horizontally to enforce such distance

(Figure 6.4).

Figure 6.4 � T̄j de�nition

Once this is settled, hyperplane arrangements theory (Section 5.3) can be used

to divide the space into feasible and unfeasible cells, where the latest will be de�ned

by the presence of the obstacles (T̄j , with j = 1 . . . nobstacles) that need to be avoided

and road tra�c rules.
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Remark 6.2 At this point, we may ask what is set �rst, the hyperplane arrange-

ment or the obstacles? The answer is that it depends on the problem at hand. Should

the design start with prede�ned obstacles (polyhedral sets) and �nd the hyperplane

arrangement associated to them? Or, should the procedure start with a prede�ned hy-

perplane arrangement (e.g., by grid-ing the space and assigning to the resulting cells

admissible/forbidden values)? Each approach has its merits. On one hand, gridding

may produce over-approximations of the obstacles, in exchange of a reduced/�xed

complexity and, on the other hand, pre-de�ning the hyperplane arrangemen can speed

up the anti-collision constraints computation.

In the kind of scenario we are working with, pre-de�nition of the hyperplane

arrangement is an appealing option, as the enclosed collection of scenarii that may

arise in terms of the lane change or overtaking maneuvers allows to pre-de�ne the

situtaion and speeding up the anticollision constraints. Typically, for the de�ned

scenarii, this feasible region will be non-convex, still, it can be expressed as the union

of l scenario-dependent convex overlapping cells Fl covering the whole feasible space
(5.46). Table 6.3 1 shows the feasible (green) and unfeasible (grey) cells for each one

of the scenarii introduced in Section (6.2) under Assumption 6.3.

Assumption 6.3 The ego vehicle is the only one changing the lane. This rule can

be enforced in the case of communicating vehicles or simply handled by a supervisory

level which switch the autonomous driving to a di�erent (safety) maneuver whenever

the hypothesis is not ful�lled.

However, it may be conservative to consider that only the ego vehicle is performing

a lane change when we are driving in a dynamic environment such as the highway.

In addition, available current camera image processing algorithms are able to de-

tect target's lateral indicators, and thus target maneuver, known by cut-in cut-out

maneuver, can be detected on the data fusion algorithms level. Hence, if a target

indicator is deteted, an update on the convex feasible region is needed, where the

overtaking of the target which is changing the lane is forbidden. This provides the

scenarii description depicted in Table 6.3.

Furthermore, it must be considered that the collection of scenarii and the corre-

sponding hyperplane arrangement have been de�ned for a set of prede�ned targets

(Table 6.2) that are in a straight position, that is, their heading angle is not con-

sidered.

Assumption 6.4 Rotated targets, de�ned by its length (Ltarget), width (Wtarget)

and rotation angle (ψ), are overapproximated by a bounding box whose heading angle

is zero (Figure 6.5). The size of the approximating box is de�ned by

Lbox = Wtarget sin(ψ) + Ltarget cos(ψ)

Wbox = Wtarget cos(ψ) + Ltarget sin(ψ)
(6.7)

1. The squemas are not drawn in a real scale.
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Table 6.3 � Scenario feasible and unfeasible regions

Scenario type Assumption 6.3 Target modification

Scenario 1 One target detected

1.1

Eventually, the scenario evolves towards

a 1.3 type.

1.2 �

1.3

Eventually, the scenario evolves towards

a 1.1 type.

Scenario 2 Two targets detected

2.1

Eventually, the scenario evolves towards

a 2.3 type.

2.2 �

2.3

Eventually, the scenario evolves towards

a 2.1 type.

Scenario 3 Three targets detected

3 �
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Figure 6.5 � Rotated target bounding box de�nition

Assumption 6.4 allows to generalize the application framework of the pre-de�ned

scenarii (Tables 6.2 and 6.3) and the corresponding hyperplane arrangements to a

wider collection of situations that may arise, at the cost of overapproximating the

target size. Once the feasible and unfeasible regions are de�ned, the notions of merg-

ing techniques (Section 5.3.3) are applied to minimize the number of cells that can be

described by a reduced amount of binary variables (Section 5.3.4.1). In this way, the

containment of the �at output z(t) (6.5) inside the corresponding convex merged fea-

sible regions Fl can be enforced in terms of mixed-integer formulation (Section 5.3.4).

Procedure 6.1 Feasible non-convex region de�nition for each scenario.

1. Obstacle de�nition (Section 6.2)

2. Hyperplane arrangement de�nition (5.7).

3. Identify feasible (5.44), (5.45) and forbidden cells (5.46), (5.47).

4. Study cell merging posibilities (5.48).

5. De�ne binary variables (5.55).

6. Formulate non-convex region inequalities (5.58).

In order to provide a better exposition of Procedure 6.1, an illustrative example

is depicted in the following.

Example 6.1 Figure 6.6 shows a representation of an Scenario type 2.3, where a

target of type T2 and type T3 are present (Table 6.2). The �nal objective here is to

compute the region of space where the ego vehicle must stay during the maneuver,

that is, ξ̄ = [ξ(1), ξ(4)]T ∈ C(T̄).

This feasible space is de�ned by the complement of the union of the two regions

delimited by the targets and road standards T̄ = T̄2 ∪ T̄3 ∪ Tb. We consider the
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collection of H = {H}i=1:4 hyperplanes, from which we obtain a total of 9 cells

(Section 5.3.1). On one hand, the unfeasible ones are de�ned by the presence of

the two targets T̄2 = H+
1 ∩ H

−
4 , T̄3 = H−2 ∩ H

−
3 and T̄b = H−2 ∩ H

+
3 (5.46), de�ned

unfeasible to avoid undertaking maneuvers. On the other hand, the non-convex

Figure 6.6 � Hyperplane arrangement scenario 2.3

feasible region is de�ned by 5 cells (5.44), Fj , j = 1 . . . 5. Following the lines

introduced in Section 5.3.4.1, we can describe the feasible region C(T̄) with the

following set of inequalities (6.8), expressed in the form (5.58). Moreover, it can be

seen that each one is described by unique tuple β ∈ {0, 1}N0 with N0 = log2(5) = 3

(5.55).

F1

{
h1 ξ̄(t) ≤ g1

h3 ξ̄(t) ≤ g3
+M(3− β1 − β2 − β3)

F2


−h1 ξ̄(t) ≤ −g1

h3 ξ̄(t) ≤ g3

h2 ξ̄(t) ≤ g2

+M(2 + β1 − β2 − β3)

F3


h1 ξ̄(t) ≤ g1

−h3 ξ̄(t) ≤ −g3

h4 ξ̄(t) ≤ g4

+M(2− β1 + β2 − β3)

F4


−h1 ξ̄(t) ≤ −g1

−h3 ξ̄(t) ≤ −g3

h2 ξ̄(t) ≤ g2

h4 ξ̄(t) ≤ g4

+M(1 + β1 + β2 − β3)

F5


−h1 ξ̄(t) ≤ −g1

−h4 ξ̄(t) ≤ −g4

h2 ξ̄(t) ≤ g2

+M(β1 + β2 + β3)

(6.8)

The next natural step is to review the possibility of cell merging (Section 5.3.3), to

analyze if the feasible region can be further simpli�ed. For the lane change maneuver,

the scenarii are simple enough to study cell merging by means of a Karnaugh map

(Section 5.3.3), obtaining a simpli�ed formulation with Cf regions, where f ∈ {1, 2}.
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In this manner, C1 = F1 ∪ F2 ∪ F3 ∪ F4 de�ned by the tuple σ∗1 = (∗, ∗,−) and

C2 = F4 ∪ F5 with σ∗2 = (−,−, ∗). Accordingly, only one binary variable λ is now

needed to de�ne the anticollision constraints, No = log2(2) = 1.

C1

{
h2 ξ̄(t) ≤ g2

h4 ξ̄(t) ≤ g4
+M(λ)

C2


−h1 ξ̄(t) ≤ −g1

h3 ξ̄(t) ≤ g3

h2 ξ̄(t) ≤ g2

+M(1− λ)

(6.9)

�

Figure 6.7 � Non-convex feasible region de�nition: C1 ∪ C2

Remark 6.3 For the other scenarii depicted in Table 6.2, two convex feasible re-

gions can be de�ned in a similar manner, thus only one binary variable is needed

in each case, with the exception of Scenarios 1.2 and 1.3, where there is a unique

convex feasible region.

6.3.3 Optimal Control Problem formulation for collision-free tra-

jectory planning

In the subsequent, the main objective of trajectory planning problem is stab-

lished. After that, the collection of constraint inequalities that ensure the full�ll-

ment system and environment limitations are de�ned to �nally get to the �nal OCP

problem formulation for collision-free trajectory planning on highways.

In practice, a direct multiple shooting strategy (Section 5.1.3.3) with K sub-

intervals has been used to transform the constrained OCP into such NLP, which

is afterwards solved by one of the e�cient state-of-the-art available NLP solving

methods, like the sequential quadratic programming (SQP) or the real-time iteration

scheme [Diehl 2006], [Diehl 2005].
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6.3.3.1 Objective function

Maximizing the driver comfort is one of the main priorities of ADAS, alongside

ensuring safety through collision avoidance and stabilizing the vehicle dynamics.

Driver comfort is typically measured via the jerk levels perceived by the passen-

gers, very sudden movements that would arise in aggressive or evasive maneuvers,

which would be only used in emergency situations, are to be avoided. A successful

trajectory generator ought to e�ectively address these priorities.

The solution that maximizes passenger comfort but does not unnecessarily ex-

tend the maneuver 2 is de�ned. Hence, an objective function which minimizes the

control input, regarding the �nal time of the maneuver is settled, providing a suit-

able trajectory which renders a trade-o� between a minimum-jerk trajectory and

maneuver total time.

min
ξ(t),u(t),TF

∫ TF

T0

uT (t)Q̄u(t)dt+ R̄T 2
F (6.10)

6.3.3.2 Problem constraints

Constraints ful�llment guarantees is one of the most attractive features of the

on-line constrained optimization-based approaches. Generally, constraint sources in-

clude vehicle limitations, which must be considered when designing control systems

as well as for performing trajectory planning strategies, together with maneuver

characterization and environment limitations, that need to be included in the for-

mulation (Figure 6.8).

• System limits. This kind of constraints are de�ned by the dynamical be-

haviour of the system, which is encoded by the model ODE (6.2). In addition,

its physical restrictions and actuation limits, are formulated by state and input

constraints in a polytopic form (2.16a, 2.16b). Here we can include maximal

acceleration capability of the car or the maximal desired jerk of the maneuver.

• Maneuver characterization. Constraints on the initial and �nal states

de�ne the boundary conditions of the desired trajectory, providing the starting

and �nal point to the algorithm. Moreover, the maneuver can be characterized

by additional features, where we can mention the maximum duration of the to-

tal maneuver time, which is enforced by tra�c regulations or the directionality

of the lane change (right-to-left or left-to-right).

• Environment limitations. This type of exhogeneous restrictions comprise

the collection of constraints that come from external elements to the ego ve-

hicle. Here we can mention the road speed limits or width of the lanes Wl.

2. In the absence of obstacles, if time is not included in the problem cost function J , it is trivial

to notice that the optimal solution renders a enlarged maneuver (or TF ≈ Tmax if constrained)

over space and time in such a way the jerk is kept close to zero.
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Figure 6.8 � Trajectory planning OCP constraint sources

On top of this, anticollision constraints are enforced by means of the feasi-

ble non-convex domain of the space where the vehicle must stay during the

maneuver.

In this context, the de�ned numerical values for the state and input limits are

depicted in Table 6.4.

Table 6.4 � Numerical values for trajectory states and input constraints
State Range De�nition

ẋ(t) [60, 130] Longitudinal speed by road limits [km/h]

ẍ(t) [±3] Longitudinal accel. by comfort limits [m/s2]
...
x (t) [±1.3] Longitudinal jerk by comfort limits [m/s3]

y(t) [−0.5Wl, 1.5Wl] Lateral displacement by road width [m]

ẏ(t) [±2.5] Lateral speed by comfort limits [m/s]

ÿ(t) [±0.5] Lateral accel. by comfort limits [m/s2]
...
y (t) [±0.7] Lateral jerk by comfort limits [m/s3]

6.3.3.3 Complete OCP formulation

Previous sections have described all the ingredients that are needed to formulate

the general planning optimization problem to be solved to obtain a suitable collision-
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free trajectory, that will be translated (via �atness) into a suitable reference provided

to the lower level controllers. We see in this section that the OCP is formulated as an

optimization that involves a quadratic cost function and the description of the non-

convex anticollistion constraints formulated in terms of hyperplane arrangements,

that introduce an integer binary variable in the formulation.

min
ξ(t),u(t),TF

∫ TF

T0

uT (t)Q̄u(t)dt+ R̄T 2
F (6.11)

subject to TF ≤ Tmax, Maximum maneuver time (6.12a)

ξ(0)− ξT0 = 0, Ego initial conditions (6.12b)

ξ(TF )− ξTF = 0 Ego �nal conditions (6.12c)

q(ξ(t), u(t)) ≥ 0, Path constraints (Table 6.4) (6.12d)

ξ̇(t)− f(ξ(t), u(t)) = 0 Ego ODE model (6.2) (6.12e)

ξ̄ ∈ C(T̄) Anticollision constraints (5.58) (6.12f)

gi(0)− gi0 = 0, Hyperplanes Hi initial conditions (6.12g)

ġi(t)− f(gi(t), ui) = 0, Hyperplanes Hi ODE (6.13) (6.12h)

with t ∈ [0, TF ] and Q̄ � 0, R̄ � 0 denoting the weighting matrices. The total time

of the maneuver TF has been left as an optimization parameter within a certain

value that limits the maximal duration of the generated trajectory, Tmax (6.12a). In

addition to this, (6.12b) de�nes the initial conditions ξ0, which are set according to

latest measurements. (6.12d) includes the path constraints that take into account

actuator, road and comfort limits on the system states (Section 6.3.3.2). Final

conditions (6.12c) are designated at the objective lane, with zero acceleration and

jerk values. Final speed is adapted accordingly and left as a free optimization

parameter if a target type T2 or T3 (Table 6.1) is involved. If not, desired set speed

is used.

In addition, if other vehicles are detected on the scene, anticollision constraints

(6.12f - 6.12h) are considered, enforcing the inclusion of the trajectory waypoints

into the scenario-dependent non-convex feasible region ξ̄ ∈ C(T̄) (Table 6.3), where

ξ̄ = [x, y]T . In this way, it is ensured that the position way-points of the generated

trajectory corresponds to a collision-free maneuver and remains inside the feasible

space. Nevertheless, to be able to ensure this containment along the full generated

trajectory, it is necessary to take into account the fact that the target vehicles are

moving (Remark 6.4).

Remark 6.4 The feasible region is de�ned by the limiting hyperplanes of the target

vehicles T̄j, which are moving and changing their position along the period of time

in which the maneuver is calculated and executed.

The main consequence coming from this fact is that the feasible region is evolving,

thus the anticollision constraints are time-dependent, making it necessary to predict



144 Chapter 6. Collision-free trajectory planning on highways

their position along the time window in which the maneuver is computed. For this

purpose, it has been considered that the hyperplanes Hi (2.4) de�ning the scenario-
dependent hyperplane arrangement have constant orientation, so only the right hand

side part of the inequalities depends on time gi(t).

Accordingly, the dynamics of each hyperplane i ∈ [1, N ] have been modelled as a

constant speed integrator (6.13), where the input ui is de�ned by the target's longi-

tudinal or lateral speed for vertical or horizontal hyperplanes respectively. If target

acceleration was to be considered, the order of the integrator could be accordingly

augmented to consider such information.

ġi(t) =

[
0 1

0 0

]
gi(t) +

[
0

1

]
ui (6.13)

Once the full in�nite-dimensional OCP is de�end, the corresponding �nite-

dimensional NLP is fromulated and solved to generate the collision-free trajectory

(Section 5.1.3). In our implementation, a direct method (5.1.3.3) is used to solve

the OCP. More precisely, a direct multiple shooting approach is used.

The major reason that leads to the general preference for direct methods when

solving OCPs in most engineering applications is that indirect methods are very

accurate, but they are based on the resolution of the necessary conditions for an

optimal trajectory (Section 5.1.3.2). This means that the knowledge on active and

inactive inequality constraints in advance is required. Moreover, any switching of

inactive and active constraints need to be parameterized up front. State-space

methods will su�er from the same limitation as well, together with their inherent

curse of dimensionality (Section 5.1.3.1).

It is straightforward to realize that this is a su�cient condition to rule out this

two methods, as the studied application needs a strategy that is able to deal with

highly dynamic scenarii, where the location of the targets can be parametrized in

terms of the exhaustive scenario description, but their behaviour and movement

cannot be predicted beforehand.

Including all this preliminary considerations, the resulting NLP problem is for-

mulated:

min
s,q,λk,TF

K−1∑
k=0

lk(sk, qk, TF ) + E(sTF ) (6.14)
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subject to

TF ≤ Tmax, Maximum maneuver time

(6.15a)

s(0)− sT0 = 0, Ego initial conditions (6.15b)

s(TF )− sTF = 0, Ego �nal conditions (6.15c)

sk+1 − ξ(tk+1, sk, qk) = 0, Continuity conditions (6.15d)

h(ξ(tk, qk), u(tk, qk)) ≥ 0, Discretized path constraints

(6.15e)

gi(0)− gi0 = 0, Hyperplanes initial conditions

(6.15f)

Fl


σl(1)h1ξ̄ ≤ σl(1)gik

...

σl(Na)hNa ξ̄ ≤ σl(Na)gNak

+Mλk, Discretized anticollision constraints

(6.15g)

λk ∈ {0, 1}N0 , Binary variable (6.15h)

with k ∈ [0,K], i ∈ [0, Na] and l ∈ [1, Nl]. (6.15a) keeps the same form as in (6.12a).

Then, (6.15b- 6.15c) correspond to the initial and �nal states of si, which is the

initial guess at each node of the time grid, which arises from the application of the

multiple-shooting strategy to transcribe the in�nite dimensional OCP into the NLP,

together with the continuity constraints (6.15d) between consecutive subintervals.

In addition, (6.15f - 6.15h) translate the anticollision constraints (6.12f - 6.12h),

where the RK4 numerical integration method is used to compute the predicted i-th

hyperplane right hand side gik at the corresponding k-th time node, considering a

constant input and starting from the initial conditions (6.15f), updated according to

the last available target measurements. (6.15g) lists the group of de�ning inequalities

for each feasible cell, which will be activated by means of the binary variables vector

λk (6.15h).

6.3.3.4 Illustrative simulation

In the following, we compare two generated trajectories: the �rst one is a single

lane change maneuver in the absence of other vehicles, so no anti-collision constraints

are needed on the formulation, the obtained solution is a pure optimal jerk-time

trajectory (Figure 6.11). Then, we introduce another vehicle of type T1 in the

scene, which is driving at a relative speed of −10[m/s]. This slower vehicle produces

the generation of several feasible trajectories, where the di�erence between them is

the moment when the switch in the binary variable indicating the state containment

in the convex feasible region C1 or C2 is performed. Two main kinds of trajectories

can be distinguished, where some of them are based on aggressive maneuvers with
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early stage switch or maneuvers where the ego vehicle brakes before changing the

lane. We can see on Figure 6.9 the values of the cost function and total time of the

maneuver with respect to the multiple shooting node k when the switching takes

place. It can be seen that the ones with a later switch are closer to the optimal

solution in the absence of obstacles.
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Figure 6.9 � Cost Function value and Total time of the maneuver

Figure 6.10 shows the computation time of each one of the generated maneuvers

in a i7-6700 CPU at 3.4GHz. As expected, the inclussion of anticollision enhance-

ments ensures the generation of a safe trajectory from the design stage, but at the

cost of more computational resources. The numerical solution is computed using

the open-source framework Yalmip [Lofberg 2005].

0 5 10 15 20 25 30 35

Switching Node [k]

0

10

20

30

40

S
o

lv
e

r 
T

im
e

 [
m

s
]

Figure 6.10 � Computation time for maneuver generation

6.3.4 Trajectory reference transformation step

Once the planning step is executed, and the formulated NLP (6.14), subject to

(6.15a)-(6.15h) is solved, the plani�ed trajectories for system (6.2) are available. As

it has been previously introduced in Section 6.3.1, underlying controllers references

will be provided in a di�erent set of coordinates, that is, ηref , uref , that can be

obtained from the �at non-holonomic kinematic model (6.3).

Two di�erent strategies could be considered at this stage. First, the computed

trajectories for ξ can be seen as colission-free intermediate waypoints, used as bound-
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Figure 6.11 � Lane change generated trajectories in the absence of other vehicles

(green) and collection of all feasible trajectories in the presence of an slower obstacle

of type T1.
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ary conditions to perform a replanning of the �nal trajectory with a parameteriza-

tion in the �atness-based framework (Section 6.3.1). Neverthess, this strategy has

a major drawback: computational burden is clearly increased, as we are computing

the trajectory twice. Moreover, if constraints on the reference states ηref are to be

added, they would result in non-linear constraints on the �at output, so computa-

tion load is increased anyways. In addition, an oscilatory behaviour in between the

way-points is induced in the trajectory, as we are �tting 5th-order polynomials in

between the points. This is shown in Figure 6.14.

Alternatively, the strategy that has been considered is to directly de�ne the

�at output by means of the optimal trajectories of ξ, that is, z(t) = ξ̄(t) and

the corresponding derivatives. Then, linear evolution in between the waypoints is

considered, avoiding the oscilatory behaviour on the generated trajectory (Figure

6.15) and reducing the computational burden. In this lines, we do not strictly

parametrize the �at output, but we use an OCP to compute its trajectories. Again,

the formulated OCP (6.11), (6.12a)-(6.12h)) does not consider constraints on the

ηref states, so saturations need to be checked a posteriori.

6.3.4.1 Numerical simulation

This section presents the results from the generation of a reference trajectory for

a lane change in the presence of surounding vehicles in a Scenario type 2.3 (Table

6.2). The objective is to generate a trajectory that changes the lane in the presence

of these two vehicles and ends up the maneuver in between both of them, staying

within the safety distance and internal kinematic constraints. Again, the numerical

solution is computed using the open-source framework Yalmip [Lofberg 2005] and

the formulated NLP by means of the multiple-shooting method for its discretization

has been solved by means of the open-source NLP solver Ipopt [Wächter 2006].

(a) Scenario 2.3 schema (b) Scenario 2.3 feasible region

Figure 6.12 � Scenario type 2.3

Target T3 is initially at 120[m] ahead the ego vehicle, driving at a positive relative

speed −2.5[m/s]. The lateral relative distance between both is 3.2[m]. Target T2

is approaching the ego vehicle from 70[m] behind with a relative speed of 2.5[m/s].

This kind of scenario will produce an adaptation on the longitudinal speed in order

to get incorporated into the objective lane withouth interceding on the target T2

trajectory and not get too close to target T3. The time evolution of the generated

pro�les are shown in Figures 6.13. It can be seen that the generated trajectory
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produces a longitudinal and lateral accelerated movement, allowing the ego vehicle

to get incorporated in the existing gap between the obstacles without collission.

Once this is achieved, the trajectory smoothly converges to the �nal conditions.
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Figure 6.13 � Lane change generated trajectory for Scenario 2.3

Now, we can use the generated optimal trajectory as a base that ensures that

we have a collision free trajectory. Now, in a second stage, we generate trajectories

based on the �atness properties of model (6.3), using the �rst reference path as

waypoints that will de�ne the initial and �nal conditions of the subintervals.
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Figure 6.14 � Flatness-based generated trajectory with 5-th order polynomial pa-

rameterization in between waypoints

6.4 Problem computation reduction

The inclusion of the anticollision constraints by means of inequalities (6.15g)

translates the original OCP into a mixed-integer problem formulation, due to the

presence of the binary decision variable, λk ∈ {0, 1}N0 , that de�nes which feasible

convex region (Fl) is active along the discretized trajectory waypoints. It must

be noted that this kind of problem is NP-hard, and has important computation

drawbacks due to its combinatorial nature (Figure 6.17).

Theorem 6.1 Given a combinatorial search tree (Figure 6.17), any combination

that belongs to a branch derived from an unfeasible combination node will also be

unfeasible in all the sub-branches and can be directly suppressed from the exploration

algorithm.

Proof: Any combination derived from an unfeasible node will preserve the un-

feasible sequence, and remains unfeasible independent of the choice of the successive

values of the array. This is practically related to a collision in the early part of the

trajectory and can be eliminated from the enumeration.

Theorem 6.2 Any branch with more than one switch on the binary variable is sub-

optimal and can be pruned for the search tree.

Proof: The switch on the binary variable value occurs when the trajectory

changes from one convex feasible region C1 with λk = 0 to the another one C2, with

λk = 1. Any trajectory that contains a second switch in practice involves going back

to the �rst convex region C1, which mathematically is translated on an increase on

ξ(4) = y.

Let us consider a constrained time-optimal motion planning, where the objective

is to minimize the total time in which the maneuver is executed. The optimal solu-

tion of this kind of problem provides for a linear system is a bang-bang control input,

with n− 1 switches [Patil 2013], [Olech 1966], with n being the number of states. If

we consider the lateral dynamics sub-model, with ξ̃1(τ) = [y(τ), ẏ(τ), ÿ(τ)]T and



6.4. Problem computation reduction 151

0 5 10 15

Time [s]

0

100

200

300

400

z
1
=

η
r
e
f

1

(a) ηref1 (t)

0 5 10 15

Time [s]

-2

0

2

4

6

z
2
=

η
r
e
f

2

(b) ηref2 (t)

0 5 10 15 20

Time [s]

0

0.01

0.02

0.03

z
3
=

ψ
lc
h

(c) ηref3 (t)

Figure 6.15 � Flatness-based generated trajectory with linear parameterization in

between waypoints, ηref (t)

ũ1(τ) =
...
y (τ) being the input, the time-optimal solution will have n − 1 = 2

switches on the trajectory jerk, that is, the optimal control input is piecewise con-

stant with at most two discontinuities. In a similar way, if now we consider a

double integrator subsystem where acceleration is the control input, u2(τ) = ÿ(τ)

and ξ̃2(τ) = [y(τ), ẏ(τ)]T , we would obtain 1 switch on the acceleration trajectory.

Finally, we consider u3(τ) = ẏ(τ) and ξ̃3(τ) = y(τ), the optimal solution will have

no switches at the control input and the state ξ̃3(τ) = y(τ) trajectory is monotonic.

The inclusion of the control input on the performance index produces a trade-o�

between arrival time and comfort of the maneuver. This means that the optimal

control input will not necessarily hit the constraints. Nevertheless, the monotonicity

on the ξ(4) = y is still kept.

In order to reduce the computational burden of this kind of problems, an iterative

approach can be introduced, where the sequence of values for the parameter λk
at each node of the time griding is de�ned before solving the constrained NLP

(6.14, 6.15a-6.15h) and furthermore reduce the computational complexity. In this

way, the integer variable is eliminated from the decision variables, it would still be

necessary to solve 2K NLPs, one for each possible combinations of the λk sequence.

Nevertheless, by means of Theorem 6.1, a simpli�ed combinatorial enumeration can

be obtained (Figure 6.18), where the branch elimination has been made in terms

of the one-switching condition introduced by Theorem 6.2. In addition to this,

an early-stopping criteria can be used from the unfeasibility guarantee condition,

presented in Lemma 6.1, which allows to stop the computation once an unfeasible
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Figure 6.16 � Flatness-based generated inputs with linear parameterization in be-

tween waypoints, uref (t)
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Figure 6.17 � λk combinatorial search tree

constrained NLP is obtained for a given λk sequence (Algorithm 2).
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Figure 6.18 � λk simpli�ed combinatorial search tree

Considering these simpli�cations, the maximal number of NLP that need to be

solved is drastically reduced from 2K to K at the worst case scenario (changing from

the exponential complexity to a polynomial and even linear complexity with respect

to the number of binary varaibles), where all the λ sequences provide a feasible

solution. Finally, robustness is guaranteed from the superposition of both convex

feasible regions, ensuring that the state is contained in at least one of the feasible

regions at all times tk.
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Lemma 6.1 Given an unfeasible trajectory provided by a branch {0 . . . 0︸ ︷︷ ︸
p

, 1 . . . 1︸ ︷︷ ︸
m

},

any other trajectory obtained for a sequence with m − k ones is unfeasible too. In

a similar way, given an unfeasible trajectory obtained from a sequence with p zeros,

any other which contains p− k zeros is unfeasible.

Proof: Let us consider a trajectory that starts at the �rst convex region,

C1 with λk = 0. A trajectory where the switch occurs at time k = p + 1 being

unfeasible means that the system cannot reach C2, in p + 1 steps, due to system's

constraints. If such trajectory is not possible, it is straightforward to notice that any

other trajectory with an earlier switch at time k = p− i will violate the constraints
in a similar way and be unfeasible too. Equivalently, an unfeasible trajectory that

stays m steps in the second convex region is in practice a trajectory that does not

get into the second convex region in time, and the �nal conditions cannot be reached

without violating the constraints. This means that any trajectory that stays m− i
steps will su�er from the same kind of unfeasibly.

6.5 Implementation remarks

6.5.1 Receding horizon strategy

Once a suitable trajectory that performs the lane change maneuver is generated

at a given time t, it will be provided to the lower level controllers as the reference

to track. Nevertheless, it has to be taken into account that the vehicle is driving

a dynamic environment, so the conditions that are used to generate the trajectory

at the �rst place can change along the e�ective time of the maneuver realization.

Moreover, there will be unmodeled dynamics and disturbances that need to be con-

sidered. In the same way, the lane change maneuver could be aborted or interrupted

due to numerous situations that are treated at the strategical level, producing the

need of a new trajectory that would bring back the vehicle to the initial lane, for

example. As a result of these factors in the decision making, a receding horizon

strategy is used, recomputing the reference trajectory in an iterative way by means

of Algorithm 2, providing replanned references every Tstraj under normal driving

circumstances or triggered by the strategical level if an exception arises.

6.5.2 Decision making algorithm

The decision making algorithm is a key component for the automated lane change

and overtaking system. Initiating and aborting this kind of maneuver are inherently

decisions of this logic. In this thesis work, no attempt is made to introduce an

intelligent algorithm regarding this matter. Instead, some key points that this kind

of algorithm needs to address are listed, but a much deeper study on the matter

would be needed for a series implementation (and remain outside of the scope of the

present work).
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Algorithm 2 Trajectory Generation Block (pseudocode)

1: Initialize:

2: Select scenario: de�ne convex feasible regions Cj
3: De�ne �nal maneuver conditions ξTF

4: Update initial conditions ξ0, kf0 , λ = {1}1×N .

5: Update Tmax = Tmaxlch
− Telapsed

6: for tk = 1 : K do

7: for Each hyperplane i do

8: Integrate hyperplane dynamics (6.13)

9: end for

10: if ξ̄0 3 C2 then

11: λ = {0, λ(1 : (N − 1))}
12: end if

13: Solve constrained NLP (6.14) subject to (6.15a - 6.15h)

14: if Feasible trajectory found then

15: Compute trajectory total cost Jj function (6.10)

16: if Jj < Jj−1 then

17: Save new feasible trajectory

18: else Keep previous feasible trajectory

19: end if

20: else Uneasible trajectory

21: break (Lemma 6.1)

22: end if

23: end for

24: Compute lower level controllers reference signals (6.6)

25: return ηref (t), uref (t)
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• Lane change request. Flag activation through lateral indicator, activated

by the driver. This will de�ne the laterality of the lane change maneuver:

right-to-left or left-to-right.

• Define maneuver characteristics. Detect and process targets informa-

tion, if any. Check and select scenario, kinematical constraints, convex feasible

regions for anticollision constraints and �nal point of the maneuver. Decide if

the maneuver is can take place.

• Maneuver re-definition. If environment changes are detected, change the

previously stated maneuver characteristics.

• Maneuver computation. Following the receding horizon strategy, a new

trajectory computation will be requested every Tstraj seconds, or if an excep-

tion arises.

• Handling unfeasibility or Abort maneuver It can occur that the op-

timization problem is infeasible. Infeasibility can occur because of several

reasons, here we can mention,

− Initial or �nal state are out of trajectory planner constraints.

− Final state is not reachable from the current position for the constrained

problem case.

− Anticollision constraints are unfeasible.

− Target vehicles change their lane and scenario becomes unfeasible.

If such a situation arises, decision making algorithm is the one in charge to

decide the strategy to follow. If the scenario has become unfeasible, a new tar-

get position may be de�ned, and a new trajectory that bring the vehicle back

to the initial lane may be generated. Moreover, if unfeasibility arises from the

optimization problem, an alternative plan can be applied. The solution algo-

rithm generates a trajectory of length TF . Hence, the last feasible solution of

the NLP has a predicted optimal trajectory for several control intervals in the

future. If the previously computed trajectory is stored and the optimization

problem provides an error exit �ag, we could take the most recent solution or

use the previous optimal trajectory. Note that no guarantee exists that the

system will recover from the infeasibility using this strategy, but it provides a

tool that is considered a better alternative compared to the usage of the latest

unfeasible solution.

• Lane change completion. Once the trajectory has been completed, acti-

vate LCA system to follow the center of the new lane until new lane change

is requested.
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6.6 Conclusion

A crucial component that is needed for automated maneuvers such as lane chang-

ing or overtaking, is the trajectory generation algorithm. For safe operation, the

algorithm needs to be su�ciently sophisticated to capture the real-time complexity

of the problem along the maneuver. However, available computational resources

and measurements are constrained by the typically low cost hardware utilized in

passenger cars.

An optimization-based trajectory generation strategy to perform lane change or

overtaking maneuvers in multiple-lanes one-way roads in the presence of surrounding

vehicles has been proposed. Overall, the whole control problem is decomposed in a

hierarchical structure, where a high level planner provides a collision-free reference

to the lower level tracking controllers. This chapter has been focused on the �rst

layer, where the reference trajectory is computed by means of a NLP that is obtained

from the formulated optimal control problem via a widely known direct optimization

method, the multiple shooting approach. This optimization problem includes a

simpli�ed model of the vehicle dynamics and ensures that the computed collision-free

trajectory maximizes passenger comfort and ful�lls vehicle kinematic constraints.

Once this trajectory is obtained, the di�erentially �at vehicle kinematic model is

used to adapt the reference and provide suitable signals to the controllers.

Optimal control and hyperplane arrangements theoretical tools have been used

to de�ne the anticollision constraints that are to be used at the generation phase.

To the best of our knowledge the present work is the �rst to provide an exhaustive

description in terms of hyperplane arrangemnts for the non-convex feasible region

in which the ego vehicle has to stay when performing the maneuver by means of the

union of convex cells, de�ned by a set of polyhedra and a unique binary variable.

Moreover, a thorough scenario description has been presented for the overtaking and

lane changing in connection with optimal control problems. This enclosed framework

has lead to an important simpli�cation from the computational point of view, and

the inherent complexity of the mixed-integer nature of the formulation has been

attenuated.
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Advanced Driving Assistance Systems (ADAS) has been the conducting axis of

this industrial thesis work. This kind of systems are considered to be the initial

steps towards the research and development of future autonomous driving vehicles,

helping to progressively improve the technological knowledge and state-of-art of

di�erent driving tasks. This evolution will help to come up with control strategies

that are feasible and applicable for real world products accessible for all customers.

At the same time, e�ciently make driving choices as a trade o� between system

performance and passenger safety will play a fundamental role for the future adopted

solutions.

In the �rst part of this work, we have focused in one of the main driving tasks,

which is the control of the steering wheel in order to follow another vehicle (Autosteer

by target tracking) or the center of the current lane (Lane Centering Assistance).

We have adopted state-of-art LPV control theory for this automotive application

when the system dynamics are a�ected by broad vehicle speed variations and curved

roads. It has been shown that this lower level controllers can e�ciently rely on LPV

control designs, providing feasibility guarantees even for large speed variations by

means of an enhanced switching strategy or by taking into account the maximal

acceleration capabilities of the vehicle.

On top of this formulation, Model Predictive Control is increasingly gaining im-

portance in the industrial framework, due to its optimal performance and system

together with system's and environmental constraints satisfaction guarantees. At

the same time, computationally cheaper strategies like Interpolation Based Control

are proven to be a promising alternative on the constrained optimization control

theory. As further perspectives of this work, the modelization and control design

studies in the presence of parameter-varying input constraints should de�nitely be

considered. More particularly, the variation of the steering angle's limits with re-

spect to the vehicle speed is a fundamental problem that should be addressed in the

future for the case of steering control applications. In addition, coupled longitudinal

and lateral dynamics can be considered, although this would provide more complex

solutions based on nonlinear optimization that may pose complexity problems when

considering the full ADAS structure.

The second part of this work has been focused on a maneuver-oriented develop-

ment, where the need of generating a driving reference path comes into the picture.

An extensive description of the possible scenarios that may arise when driving in

one-way roads (i.e. highways) and its characterization for anti-collision constraints
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considerations has been introduced. This allows to formulate an optimization-based

trajectory planner, that takes into account both internal and external limitations

of the highly dynamical environment around the controlled vehicle. In addition,

computation complexity coming from the proposed mixed-integer formulation of

the anti-collision constraints has been mitigated thanks to this exhaustive scenario

description. Such collection of scenarios has been proposed in the consideration of

straight roads, so it would de�nitely be interesting to extend this work for the case

of curved roads (Figure 6.19). Practically, the curvature of the road could be dealt

with a geometric transformation of an equivalent trajectory generated in straight

lane.

Figure 6.19 � Hyperplane arrangement example for a curved road

This transformation would add an additive heading angle ψρ to the previously

generated one ψref for the lane change on a straight line scenario. The sign of

this additive heading angle will depend on the relation between the curve and the

directionality of the lane change. Moreover, a steady-state lateral acceleration is

expected due to the road curvature alone, which can result in high accelerations

for the driver comfort when added to the lane change movement. A natural action

would be to slow down when a curve is too tight. In this lines, whenever a curve

is detected, speed and acceleration constraint limits could be accordingly reduced

when formulating the trajectory planning Optimal Control Problem. Finally, it

must be noted that this approach is applicable as long as the saturation on the

steering angle is not activated, as then the trajectory would stop being feasible. In

this last case, the responsibility is derived to the decision making algorithm, that

shall change the maneuver conditions, de�ne a new objective point or interrupt the

maneuver.

As a �nal re�ection, we have seen a fast evolution on the ADAS research �eld

in the last decades. Due to several reasons, it has taken some time to these systems

to go from theory to industrial massive production. Only for the last few years we

are having an increasing demand on the market. Nevertheless, we think that in

the course of the next years, this trend will be even more pronounced due to the

new regulations of the Euro NCAP, where the maximum score of �ve stars will be

only awarded to cars equipped with basic ADAS. In addition, drivers themselves
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are beginning to appreciate the advantages of these kind of systems, increasingly

becoming more willing to pay their price.

Partly autonomous driving is becoming a reality within the next few generations

of passenger cars, and even highly automated driving no longer appears completely

out of reach. However, we must keep in mind that a suitable regulation framework

must be developed and many arduous issues of homologation and liability have to

be addressed. Finally, further research on situation assessment and improvement

on the decision making algorithms that are capable of being in a par with human

cognition capabilities is highly needed. Fundamental research in the upcoming years

will play a vital role to bring these concepts to the real world.
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Abstract: The thesis work contained in this 

manuscript is dedicated to the Advanced Driving 

Assistance Systems, which has become nowadays a 

strategic research line in many car companies. This 

kind of systems can be seen as a first generation of 

assisted or semi-autonomous driving, that will set the 

way to fully automated vehicles. 

The first part focuses on the analysis and control of 

lateral dynamics control applications - Autosteer by 

target tracking and the Lane Centering Assistance 

System (LCA). In this framework, safety plays a key 

role, bringing into focus the application of different 

constrained control techniques for linear parameter-

varying (LPV) models. Model Predictive Control 

(MPC) and Interpolation Based Control (IBC) have 

been the selected ones in the present work. 

 

In addition, it is a critical feature to design robust 

control systems that ensure a correct behavior under 

system's variation of parameters or in the presence of 

uncertainty. Robust Positive Invariance (RPI) theory 

tools are considered to design robust LPV control 

strategies with respect to large vehicle speed 

variations and curvature of the road changes.  

The second axis of this thesis is the optimization-

based trajectory planning for overtaking and lane 

change in highways with anti-collision 

enhancements. To achieve this goal, an exhaustive 

description of the possible scenarios that may arise is 

presented, allowing to formulate an optimization 

problem which maximizes passenger comfort and 

ensures system constraints' satisfaction. 
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Résumé: Le travail de thèse décrit dans ce manuscrit 

concerne les Systèmes Avancés d’Aide à la Conduite 

(ADAS) qui sont devenus de nos jours un axe de 

recherche stratégique chez de nombreux 

constructeurs automobiles. Ce type de systèmes 

peuvent être considérés comme la première 

génération de dispositifs de conduite assistée ou 

semi-autonome et qui ouvrira la voie aux véhicules 

pleinement autonomes. La première partie de ce 

manuscrit concerne l’analyse et la commande pour 

les applications de contrôle de la dynamique latérale 

du véhicule – autoguidage par suivi de cible et aide 

au maintien au centre de la voie (LCA). Dans ce 

cadre, la sécurité joue un rôle clé, mettant en lumière 

la mise en œuvre différentes techniques de 

commande contrainte pour des modèles linéaires à 

paramètres variants (LPV). La commande prédictive 

(MPC) et la commande par interpolation (IBC) ont 

été sélectionnés dans ce travail. 
 

De plus, la conception d’un système de commande 

robuste qui assure un comportement correct malgré 

la variation des paramètres du système ou la présence 

d’incertitudes est une caractéristique critique. Les 

outils de la théorie de l’invariance positive robuste 

(RPI) sont pris en considération pour la conception 

de stratégies de commande robustes LPV par rapport 

aux larges variations de la vitesse véhicule et aux 

changements de courbure de la route. Le second axe 

de cette thèse est la planification optimale de 

trajectoire pour les manouvres de dépassement et de 

changement de voie sur autoroute, avec réduction des 

risques de collision. Pour atteindre cet objectif, la 

description exhaustive des scénarios possible est 

présentée, permettant de formuler un problème 

d’optimisation qui maximise le confort du 

conducteur et assure la satisfaction des contraintes du 

système. 
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