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Controlled structures for partial differential equations

croire en moi avec une certitude et une énergie incroyables. Merci encore.
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Résumé

Le sujet principal de mon travail de thèse sont les équations aux dérivées partielles stochastiques (EDPS), en particulier les équations paraboliques dans 2 ou 3 dimensions avec termes de perturbation très irréguliers. La diculté qui se présente dans l'étude de ce type d'équations est due au fait qu'on s'attend à ce que les solutions soient des distributions tempérées dans l'espace. En fait, on sait que même si des opérations linéaires comme la différentiation, la transformée de Fourier ou la multiplication par des fonctions susamment régulières sont bien posées sur l'espace des distributions de Schwartz, il n'y a pas de façon canonique de dénir un produit de distributions, et donc les non-linéarités dans les EDPS traitées dans ce travail sont a-priori mal posées. Un sujet complémentaire de mon travail de thèse est l'étude de la tension du champ de magnétisation d'Ising en 2 dimensions, qui est fait en utilisant des techniques en commun avec le sujet principal. L'analyse des EDPS dans cette thèse est basée sur l'ensemble de techniques développées par Gubinelli, Imkeller et Perkowski dans [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF], appelées calcul paradiérentiel, calcul paracontrôlé ou technique des distributions contrôlées. Leur travail peut être considéré comme une généralisation de l'idée de chemins rugueux contrôlés introduite par Gubinelli dans [START_REF] Gubinelli | Controlling rough paths[END_REF], qui à son tour est une généralisation de la théorie des chemins rugueux de Lyons [START_REF] Terry | Dierential equations driven by rough signals[END_REF].

Dans la suite on donne un exemple d'application des techniques du calcul paradiérentiel introduites dans [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] à une EDPS appelée Modèle d'Anderson Parabolique (MAP) :

@ t u ¡ u = u u(t = 0) = 0; (1) 
où @ t est la dérivée par rapport au temps et le laplacien. Le bruit blanc sur le tore 2dimensionnel T 2 = (R/2pZ) 2 peut être considéré formellement comme le champ aléatoire gaussien centré qui a une covariance donnée par E[(x)(y)] = (x ¡ y). Les trajectoires de sont presque sûrement des distributions tempérées dans l'espace S 0 (T 2 ). Pour chaque trajectoire de , soit " une régularisation du bruit blanc par convolution avec une fonction lisse à support compact dans une boule de taille " > 0 (de façon à ce que " ! pour " ! 0).

Il n'est pas dicile d'obtenir des solutions u " pour chaque régularisation de l'équation (1) à l'échelle " > 0 (par exemple en utilisant un théorème de point xe), et si la famille (u " ) "2(0;1] admet une limite u (dans un sens à préciser) on peut dénir cette limite u comme la solution de (1).

Néanmoins, il n'est pas possible d'obtenir une solution trajectoire par trajectoire avec cette méthode, parce qu'on ne s'attend pas à ce qu'une solution u soit plus régulière que # := ¡1 , et sa régularité n'est pas susante à rendre le produit u bien posé. On s'attend donc à ce que la suite u " " soit divergente.

Pour faire face à ce problème, les auteurs de [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] utilisent d'abord des techniques d'analyse que l'on a rappelées dans le chapitre 1. Leur première observation est que le produit u peut se décomposer formellement en somme de paraproduits de Bony [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] :

u = u + u + u
où les paraproduits u et u sont bien posés pour chaque couple de distributions tempérées u; 2 S 0 , et seulement le dernier terme (qu'on appelle produit résonant) est mal posé si la distribution u n'est pas assez régulière, ce qui est notre cas (une caractérisation exacte de la regularité de u en fonction de celle de an de dénir u est donnée dans le chapitre 1). La décomposition en paraproduits est basée sur une partition de l'unité de la transformée de Fourier de u et : on peut en fait voir u comme le produit de avec les petites fréquences de u, ce qui donne une modulation d'amplitude de avec un ltrage passe-bas de u. Le terme u représente un phénomène de résonance dans lequel des fréquences comparables de u et interagissent et causent une explosion. Le problème donc devient celui de contrôler la limite u " " pour " ! 0.

La deuxième observation de [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF], qui trouve son origine dans l'idée de chemin rugueux contrôlé et est appelée Ansatz paracontrôlé, est une conjecture sur la structure de la solution de (1). En particulier, on suppose que u ait la même régularité que # = ¡1 et donc qu'il doive pouvoir s'estimer par une modulation de # avec une fonction plus régulière u 0 . On pourrait assumer donc u = u 0 # + u ] avec u 0 et u ] à déterminer en remplaçant u dans (1), et u ] plus régulier que u, mais pour des raisons techniques on pose u = u 0 # + u ] ;

(2) où le paraproduit modié coïncide avec mais avec une régularisation dans la variable temporelle du premier terme u 0 , qui est nécessaire pour gérer la dérivée temporelle dans (1).

La troisième observation analytique apportée par les auteurs de [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] est que grâce à l'Ansatz (2), le produit résonant u " " peut se décomposer de façon à ce que tous les termes mal posés soient des produits d'intégrales du bruit blanc (on les appelle enhanced noises ou bruits augmentés), qui de conséquence ne contiennent pas des termes u " ; u " 0 ; u " ] à determiner en résolvant une régularisation de (1). L'idée est donc de denir une limite par les termes de bruit augmenté (qui dépendent seulement de " mais pas de la solution), et vu que tous les autres termes qu'on obtient sont bien denis (grâce aux estimations du chapitre 1) on peut de cette façon obtenir une limite u " ! u. Plus en détail, la décomposition (2) donne u " " = (u " 0 # " ) " + u " ] " où on assume que u " ] soit maintenant assez régulier dans la limite pour pouvoir borner u " ] " dans S 0 uniformement sur " 2 (0; 1] (parce que en remplaçant (2) dans (1) on peut obtenir que u " ] résout une équation diérentielle avec terme de droite plus régulier que celui de (1)). Grâce au fondamental lemma de commutation de [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] on écrit (u " 0 # " ) " = C(u " 0 ; # " ; " ) + u " 0 (# " " ) où le commutateur tri-linéaire C(; ; ) a une extension bien dénie sur S 0 et le seul terme qui ne peut pas être contrôlé uniformément sur " 2 (0; 1] avec des estimations d'analyse fonctionnelle est # " " . Si on postule que # " " ait une limite bien dénie dans S 0 et assez régulière pour dénir le produit u " 0 (# " " ) à la limite "! 0, on peut donner du sens au terme de droite de (1). On obtien donc, pour chaque " > 0, le couple d'équations paracontrôlées

( u " = u " 0 # + u " ] (@ t ¡ )u " = u + u + C(u " 0 ; # " ; " ) + u " 0 (# " " ) + u " ] "
dont la famille de solutions (u " 0 ; u " ] ) a une limite (u 0 ; u ] ) 2 S 0 S 0 si on suppose que X " = ( " ; # " " ) converge vers une distribution tempérée X qui soit assez régulière pour donner un sens aux équations ci-dessus.

Cela conclut la partie analytique de la méthode de distributions paracontrôlées de [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. Ce qui reste à montrer, avec des techniques de théorie des probabilités, est que le terme X " , quand on lui applique une renormalisation, converge en probabilité vers une distribution tempérée qu'on appelle X.

Pour résumer la situation : il n'existe pas d'espaces de Banach tels que la fonction de solution : " ! u " soit continue, à cause du fait que le produit de distributions n'est pas bien déni. On peut quand même séparer dans 2 fonctions comme suit : " 7 ! J X " 7 ! u " où est la fonction de solution de l'équation paracontrôlée, qui associe à chaque bruit ( " ; # " " ) la solution (u " 0 ; u " ] ), et qui est déterministe et continue. Malheureusement le terme X " = ( " ; # " " ) ne converge pas, mais on peut démontrer que sa rénormalisation X ^" = ( " ; # " " ¡ E(# " " )) (où on soustrait un terme divergent E(# " " )) converge en probabilité vers une distribution X. On a donc

" 7 ! J ^X ^" 7 ! u ^"
En remplaçant X ^" dans l'équations paracontrôlée on peut retrouver l'équation renormalisée suivante pour chaque " 2 (0; 1] : @ t u ^" ¡ u ^" = u ^" " ¡ u ^"E(# " " ):

Résumé Grâce à la continuité de et à la convergence en probabilité X ^" ! X, les solutions u ^"

de l'équation ci-dessus convergent en probabilité vers une distribution u qui est dénie comme la solution de (1). On remarque enn que pour chaque C 2 R la renormalisation X ^" = ( " ; # " " ¡ E(# " " ) + C) a une limite convergente : on a en fait une famille innie de solutions de (1) qui dépend d'un paramètre.

Cela conclut l'exemple d'application de la méthode paracontrôlée à (1). La fonction et le terme X ^" dépendent évidemment de l'équation considérée, et on doit montrer la continuité de et la convergence de X ^" pour chaque EDPS qu'on étudie.

La technique de distributions paracontrôlées de [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] a été utilisée avec succès pour étudier des EDPS différentes, en commençant par le modèle d'Anderson parabolique généralisé, l'équation de Burgers rugueuse et d'autres équations diérentielles dans [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. Le calcul paracontrôlé a été utilisé aussi pour étudier l'équation de Kardar-Parisi-Zhang (KPZ) [START_REF] Gubinelli | KPZ reloaded[END_REF], le modèle dynamique 3 4 En utilisant des techniques liées au semi-groupe de la chaleur, un calcul paracontrôlé sur des variétés a été développé par Bailleul et Bernicot [START_REF] Bailleul | Heat semigroup and singular PDEs[END_REF].

Dans le cadre du calcul paracontrôlé du premier ordre développé dans [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF], la décomposition paracontrôlée (par exemple (2) dans le cas de l'équation (1)) est typiquement limitée à un développement au premier ordre, c'est à dire que la solution est paracontrôlée par un seul terme stochastique. Cela limite le gain de régularité qu'on peut obtenir dans le terme de reste (u ] dans (2)) par rapport à la solution, et par conséquent limite la singularité des équations qui peuvent être traitées avec cette méthode.

Par exemple l'équation (1) en dimension 3, ou avec un bruit blanc espace-temps, ne peut pas être résolue avec les techniques de [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. Récemment, Bailleul et Bernicot [START_REF] Bailleul | Higher order paracontrolled calculus[END_REF] ont développé un calcul paracontrôlé d'ordre supérieur qui permet de traiter des équations moins régulières.

Cependant, outre ce progrès récent, la théorie plus générale pour les EDPS singulières a été développée par Hairer [START_REF] Hairer | A theory of regularity structures[END_REF][START_REF] Hairer | Singular stochastic PDEs[END_REF][START_REF] Friz | A Course on Rough Paths: With an Introduction to Regularity Structures[END_REF] sous le nom de théorie des structures de régularité. Les structures de régularité sont une généralisation de la théorie des chemins rugueux de Lyons, qui donnent des outils ecaces pour analyser les opérations non-linéaires qui agissent sur certains espaces de distributions, leur renormalisation par soustraction des singularités locales et leur utilisation pour résoudre des EDPS singulières. La théorie des structures de régularité a été appliquée avec succès à tous les modèles répertoriés cidessus [START_REF] Hairer | A theory of regularity structures[END_REF][START_REF] Hairer | Solving the KPZ equation[END_REF], à d'autres modèles comme le modèle de Sine-Gordon [START_REF] Hairer | The dynamical Sine-Gordon model[END_REF] (qui peut être néanmoins résolu avec des techniques de calcul paradiérentiel) et à l'étude de l'universalité faible de certains modèles [START_REF] Hairer | A class of growth models rescaling to KPZ[END_REF][START_REF] Hairer | Large scale behaviour of 3d phase coexistence models[END_REF].

Partie I -Connaissances préalables

Dans la première partie de ma thèse, qui comprend les chapitres 1,2 et 3, j'introduis des concepts et des techniques qui seront largement utilisés dans le reste du travail.

Dans le chapitre 1 je présente la décomposition de Littlewood-Paley (L-P), qui permet de développer une distribution tempérée f en somme de blocs i f qui ont une transformée de Fourier à support compact de l'ordre de '2 i . En particulier, soit ; une partition de l'unité de R d formée par des fonctions lisses à support compact, avec à support dans une boule et à support dans un anneau, tels que

1 = (x) + X j>0 (2 ¡j x)
et les supports de (2 ¡j ) et (2 ¡k ) soient disjoints pour tous jk ¡ j j > 2. On dénit alors pour tous j > 0 le bloc de Littlewood-Paley j-ième d'une distribution tempérée f comme

j f = F ¡1 ((2 ¡j )Ff ) et le bloc ¡1 f comme ¡1 f = F ¡1 (Ff )
où F et F ¡1 sont respectivement la transformée de Fourier et la transformée inverse. On remarque que F et F ¡1 sont bien dénies sur les distributions tempérées S 0 (R d ) et que les blocs sont des fonctions analytiques (en ayant une transformée de Fourier à support compact). On peut prouver facilement que l'équivalence suivante est vériée dans le sens des distributions :

f = X j =¡1 +1 j f :
J'utilise ensuite les blocs de Littlewood-Paley pour dénir les espaces de Besov B p;q 8 2 R, p; q 2 [1; 1]. Ces espaces sont des généralisations des espaces de Sobolev, et une façon de les caractériser est de mesurer la vitesse de divergence à l'inni de la transformée de Fourier, à l'aide des blocs de Littlewood-Paley. On dénit la norme

kf k B p; q = k(2 j k j f k L p ) j >¡1 k `q
où pour une séquence a j : N [ f¡1g ! R on pose la norme k(a j ) j>¡1 k `q q = X j>¡1 a j q :

On denit l'espace de Besov B p;q comme l'ensemble des distributions tempérées qui ont une norme kk B p; q nie. Dans le cas p = q = 1 on pose C := B 1;1 et la norme devient plus simplement

kf k C = sup j>¡1 2 j sup x2R d j j f (x)j;
ce qui met en évidence comme le paramètre 2 R mesure la divergence à l'inni de la transformée de Fourier. Pour 2 R + nN les espaces de Besov C coïncident avec les espaces de Hölder, et on peut voir par des resultats bien connus (estimations de Bernstein) que le laplacien f d'une distribution f 2 C appartient à l'espace C ¡2 . Cela donne une interpretation pour les espaces de Besov avec exposant négatif.

Les résultat de la section 1.1.1 sur les espaces de Besov constituent la base pour l'analyse des EDPS avec la méthode des distributions paracontrôlées.

Dans la section 1.1.2 je donne une autre caractérisation des espaces de Besov de regularité negative, en utilisant la norme suivante :

kf k C := sup 2(0;1] sup x2R d sup 2B r 0 ¡ Z R d
f ¡d ¡x où est une fonction C r (R d ) (avec r = ¡bc, < 0) à support compact sur une boule de rayon 1. Cette dénition est similaire à celle utilisée par Hairer dans [START_REF] Hairer | A theory of regularity structures[END_REF], avec la diérence que dans ma thèse j'utilise la convention d'appeler C la fermeture de C c 1 par rapport à la norme ci-dessus.

Je montre ensuite qu'on peut caractériser ce type d'espaces (et plus en général des espaces de Besov B p;q pour p; q = / 1) en utilisant des ondelettes à support compact de Daubechies. Un des avantages de travailler avec des fonctions test à support compacte, et donc avec une caractérisation locale des espaces de Besov, est la possibilité de dénir des espaces de Besov locaux sur un domaine ouvert quelconque U R d pour des distributions qui peuvent avoir une régularité diérente proche du bord de U . Pour faire ça je montre que pour caractériser un espace de Besov local il sut d'utiliser seulement des ondelettes qui ne touchent pas le bord de U , en prenant des ondelettes centrées à une distance du bord plus grande que le diamètre de leur support. Une dénition des espaces de Besov locaux de ce type est particulièrement utile quand on considère la convergence d'une famille de distributions dans un domaine U 0 U qui tend vers U , dans le cas où la famille ne converge pas dans un domain U nU 0 asymptotiquement proche du bord de U .

À la n de la section 1.1.2 je donne un critère de tension pour des familles de distributions aléatoires dans les espaces de Besov locaux présentés ici. Ce critère est l'instrument principal dans la preuve de la tension du champs de magnétisation d'Ising du chapitre 4.

Je donne aussi une formulation du théorème de continuité de Kolmogorov adaptée à la décomposition en ondelettes présentée dans cette section. Le materiel rédigé dans la section 1.1.2 est déjà apparu dans l'article [START_REF] Furlan | A tightness criterion for random elds, with application to the Ising model[END_REF], qui est un travail joint avec J-C.Mourrat.

Dans la section 1.1.3 je rappelle des résultats d'équivalence entre les diérentes définitions d'espaces de Besov citées précedemment. En particulier, l'espace B p;q de la section 1.1.2 étant déni comme fermeture de fonctions C c 1 , il ne peut pas coïncider avec l'espace B p;q de la section 1.1.1 que quand p et q sont tous les deux nis. Néanmoins, les normes de B p;q et B p;q sont équivalentes sur des fonctions susamment lisses.

La section 1.2 recueille les outils analytiques principaux du calcul paracontrôlé. Une des notions plus importantes est celle de paraproduit de Bony [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]. Pour chaque couple de distributions tempérées u; v 2 S 0 on peut écrire leur décomposition de Littlewood-Paley comme

u = X j >¡1 j u v = X j >¡1 j v :
On peut donc écrire formellement

u v = X j >¡1 X k<j ¡1 j u k v + X k>¡1 X j <k¡1 j u k v + X jk ¡j j61 j u k v
mais j u k v n'est plus un bloc de Littlewood-Paley d'une distribution : il n'est donc pas garanti qu'il converge. D'autre part, l'intuition est que grâce aux propriétés des supports de la partition de l'unité (; ) utilisée dans la dénition de blocs de Littlewood-Paley, pour chaque j > 1 le terme P k<j ¡1 j u k v est une approximation susamment précise d'un bloc de L-P j f (pour une certaine distribution f ) an que la série P j >¡1 P k<j ¡1 j u k v converge dans le sens des distributions. Par symétrie on obtient le même résultat pour le deuxième terme ci-dessus. Le paraproduit est donc

u v := X j >¡1 X k<j ¡1 j u k v
qui est bien posé pour chaque u; v 2 S 0 et, sachant que le bloc j-ième localise la transformée de Fourier autour d'une valeur 2 j , on dit que u v est paracontrôlé par v dans le sens que à petite échelle la contribution de u dans u v est négligeable par rapport à celle de v.

Bony a aussi prouvé que si u 2 C , v 2 C avec + > 0 (C est l'espace de Besov déni dans la section 1.1.1) la série P jk¡ j j61 j u k v converge vers une distribution u v qui appartient à C + , appelée produit résonant. Ce résultat est fondamental dans le calcul paracontrôlé : le produit résonant, s'il est bien déni, est plus régulier du produit u v.

Dans le reste de la section 1.2 je présente les résultats qui sont utilisés dans la partie analytique de la méthode des distributions paracontrôlées.

Résumé

Le chapitre 2 contient des techniques d'estimation des champs aléatoires qui sont nécessaires à l'étude de la convergence des termes de bruit augmenté (X ^" dans l'exemple (1)) dans le cadre des distribution paracontrôlées. Un des concepts principaux utilisés à cette n est la décomposition en chaos de Wiener.

Le bruit blanc sur R d déni sur un espace de probabilité (; F ; P) est un processus aléatoire Gaussien centré = f(f )jf 2 L 2 (R d )g indexé par les fonctions f 2 L 2 (R d ), ayant une covariance determinée par

E((f ); (g)) = hf ; g i L 2 (R d ) :
La décomposition en chaos de Wiener est la suivante : L'intérêt de la décomposition en chaos de Wiener, au délà du fait qu'elle est orthogonale dans L 2 (), est que quand une variable aléatoire X a une décomposition en chaos de Wiener nie, on peut utiliser l'importante proprieté d'hypercontractivité de Nelson :

kX k L p () . p kX k L 2 () :
Cette proprieté est fondamentale dans l'estimation des bruits augmentés (enhanced noises) qui apparaissent dans l'étude d'une EDPS à l'aide de la méthode des distributions paracontrôlées. La procédure expliquée dans la section 2.2 peut se résumer comme suit : soit par exemple X " un champ aléatoire stationnaire lisse sur T d qu'on veut borner uniformement (sur " 2 (0; 1]) dans un espace de Besov C ¡ (T d ) pour chaque > 0 et 2 R xé. Le théorème de plongement d'espaces de Besov (qui est une généralisation du théorème de plongement de Sobolev) donne :

kk C ¡d/p p . kk B p; p p :
On peut donc borner X " comme suit :

E(kX " k C ¡d/p p ) . E ¡ kX " k B p; p p . X j >¡1
2 pj

Z

T d E(j j X " (x)j p )dx:

Si la variable aléatoire j X " (x) a une décomposition en chaos de Wiener nie, grâce à la proprieté d'hypercontractivité, il sut donc d'estimer sa norme L 2 (). Cette norme, à cause du fait que la decomposition en chaos de Wiener est orthogonale pour le produit scalaire de L 2 (), est une somme nie de covariances de variables aléatoires qui appartiennent à H n . Chaque covariance obtenue par cette procédure est sous la forme d'une convolution de fonctions singulières dont on connait le degré d'homogénéité (on appelle cette convolution diagramme en analogie avec les diagrammes de Feynman). Les diagrammes peuvent être bornés avec des lemmes bien connus sur l'estimation des convolutions de fonctions singulières (qui sont rappelés dans la section 2.2.1).

La section 2.3 contient quelques résultats de calcul de Malliavin qui permettent d'estimer des champs aléatoires qui ont une décomposition en chaos de Wiener innie.

En particulier cette section contient une décomposition partielle en chaos de Wiener dans laquelle le reste est écrit sous forme d'intégrale itérée de Skorohod (qui est une généralisation de l'intégrale de Ito ). Ce reste peut être estimé dans la norme L p () en utilisant des résultats de calcul de Malliavin qui sont rappelés dans la section 2.3. Le produit d'intégrales de Skorohod possède une formule du produit (analogue à celle de l'intégrale de Ito et qu'on trouve par exemple dans [Üst14] et [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]) qui est obtenue dans la section 2.3 en partant des résultats de [START_REF] Nourdin | Central limit theorems for multiple Skorokhod integrals[END_REF].

Le chapitre 3 contient une introduction rapide à deux modèles probabilistes bien connus : la percolation FK et le modèle d'Ising en 2 dimensions. La mesure de Edwards et Sokal donne un couplage entre les mesures du modele d'Ising et FK, ce qui permet d'examiner le système en utilisant à la fois des techniques issues de la théorie de la percolation ou de l'étude du modèle d'Ising. Le contenu de ce chapitre est tiré de la monographie [START_REF] Georey | The Random-Cluster Model[END_REF] et a la seule fonction de présenter le cadre dans lequel les résultats du chapitre 4 sont énoncés.

Partie II -Résultats

Chapitre 4

Le contenu de ce chapitre est pris de l'article [START_REF] Furlan | A tightness criterion for random elds, with application to the Ising model[END_REF] qui a été écrit en collaboration avec J-C. Mourrat. On y applique le critère de tension pour les champs aléatoires (qui a été développé dans la section 1.1.2) à l'étude du champ de magnétisation d'Ising à température critique. Soit U R 2 un ensemble ouvert, et pour a > 0 soit U a := U \ (aZ 2 ). On désigne comme ( y ) y2U a les spins du modèle d'Ising à température critique avec (par exemple) spin + sur le borde de U a , et on dénit le champ de magnétisation

a := a ¡ 1 8 X y2U a y 1 S a (y)
où S a (y) est le carré centré dans y avec côtés de longueur a. Dans [START_REF] Camia | Planar Ising magnetization eld I. uniqueness of the critical scaling limit[END_REF] les auteurs ont montré que si U = [0; 1] 2 , pour tous " > 0 la famille ( a ) a2(0;1] est tendue dans l'espace de Besov B 2;2 ¡1¡" (U ), et ils ont analysé aussi des domaines plus généraux. Une question ouverte dans leur travail était de déterminer précisément dans quel espace la famille ( a ) a2(0;1] Résumé est tendue. On a répondu à cette question en montrant que pour chaque ouvert U R 2 et chaque " > 0 le champ de magnétisation est tendu dans B p;q ¡1/8¡";loc (U ) 8p; q 2 [1; 1], et qu'il n'est pas tendu dans B p;q ¡1/8+";loc (R 2 ).

L'ingrédient principal de la preuve de la tension de ( a ) a2(0;1] est la borne superieure sur les corrélations du modèle d'Ising bidimensionnel obtenue par Onsager [START_REF] Onsager | Crystal statistics. I. a two-dimensional model with an order-disorder transition[END_REF] dans sa solution exacte du modèle, qui permet d'obtenir, grâce à l'application de l'inégalité FKG, une estimation de la somme des correlations à p points sur un sous-ensemble borné de Z 2 de taille N . Cette quantité peut être utilisée directement pour déterminer l'espace de Besov B p;q ¡1/8¡";loc (U ) dans lequel ( a ) a2(0;1] est tendue, à l'aide du critère de tension de la section 1.1.2.

Pour démontrer que ( a ) a2(0;1] n'est pas tendue dans B p;q ¡1/8+";loc (R 2 ) on utilise une borne inférieure sur les corrélations du modèle d'Ising, obtenue par Hongler, Duminil-Copin et Nolin dans [START_REF] Hongler | Connection probabilities and RSWtype bounds for the two-dimensional FK Ising model[END_REF] comme corollaire de leurs estimations du type Russo-Seymour-Welsh sur la probabilité de percolation pour le modèle FK. Pour pouvoir montrer qu'aucun point limite de ( a ) a2(0;1] n'appartient à B p;q ¡1/8+";loc (R 2 ), il est nécessaire d'utiliser une caractérisation d'espaces de Besov basée sur des fonctions test positives.

Il a été démontré récemment qu'il existe une limite unique de la famille ( a ) a2(0;1] [START_REF] Camia | Planar Ising magnetization eld I. uniqueness of the critical scaling limit[END_REF][START_REF] Chelkak | Conformal invariance of spin correlations in the planar Ising model[END_REF]. Grâce à notre résultat il est clair que cette limite est singulière (aussi dans des domaines compacts) par rapport au champ libre gaussien, parce que celui-là prend des valeurs dans B p;q ¡";loc (R 2 ) pour chaque " > 0, p; q 2 [1; 1].

Chapitre 5

Dans ce chapitre, qui contient le résultats obtenus dans [START_REF] Furlan | Paracontrolled quasilinear SPDEs[END_REF] en collaboration avec M.Gubinelli, on développe un calcul paracontrôlé non-linéaire an de montrer l'existence locale de solutions à certaines EDPS quasi-linéaires uniformément paraboliques.

On considère principalement les deux équations

@ t u(t; x) ¡ a 1 (u(t; x))u(t; x) = (x); u(0; x) = u 0 (x); x 2 T 2 ; t > 0;
et la plus générale

@ t u(t; x) ¡ a 1 (u(t; x))u(t; x) = a 2 (u(t; x))(x); u(0; x) = u 0 (x); x 2 T 2 ; t > 0 avec a 1 : R ! [; 1], a 2 : R ! [¡L; L] (; L > 0) qui sont des coecients C 3 uniformément bornés, et a i (k)
L 1 6 1 for k = 0; :::; 3. Pour les deux équations on suppose que le bruit aléatoire prenne des valeurs dans l'espace de Besov C ¡2 (T 2 ) avec 2 / 3 < < 1 : cela s'applique par exemple au bruit blanc en espace sur T 2 . Néanmoins, on montre dans la section 5.5 que le calcul paracontrôlé non-linéaire développé dans ce chapitre peut s'appliquer aussi à une classe d'équations de la forme a 3 (u(t; x))@ t u(t; x) ¡ a 1 (u(t; x))u(t; x) = (a 2 (u(t; x)); t; x); x 2 T 2 ; t > 0;

où a 1 ; a 2 ; a 3 sont des coecients non-dégénérés assez réguliers et (z; t; x) est un processus gaussien avec covariance Dans [START_REF] Otto | Quasilinear SPDEs via rough paths[END_REF] les auteurs ont montré que l'équation

E[(z; t; x)(z 0 ; t 0 ; x 0 )] = F (z; z 0 )Q(t ¡ t 0 ; x ¡ x 0 ); x; x 0 2
@ t u(t; x) ¡ a(u(t; x))@ x 2 u(t; x) = f (u(t; x))(t; x); t > 0
est localement bien posée, avec une variable spatiale périodique de dimension 1 et un bruit qui peut être blanc en espace mais coloré dans le temps, et fonctionne essentiellement comme une distribution de régularité parabolique (¡4 / 3; 1). Pour obtenir ce résultat ils introduisent une notion spécique de fonction modelée et des estimations conséquentes, basée sur la théorie des chemins rugueux contrôlés.

Leur Ansatz paramétrique est la source principale d'inspiration pour notre travail [START_REF] Furlan | Paracontrolled quasilinear SPDEs[END_REF]. D'ailleurs, cette observation fondamentale ne nécessite pas le développement d'une théorie alternative des EDPS singulières, qui est le sujet plus important dans leur article, mais peut être mise en place dans le cadre des distributions paracontrôlées.

En eet, dans le chapitre 5 on montre que une extension relativement directe de la méthode paracontrôlée (appelée calcul paracontrôlé non-linéaire) est susante pour obtenir plutôt rapidement les résultats sur les équations quasi-linéaires qui sont contenus dans leur article.

Bailleul, Debussche et Hofmanová dans [START_REF] Bailleul | Quasilinear generalized parabolic Anderson model equation[END_REF] ont montré que l'équation du modèle d'Anderson parabolique généralisé

@ t u(t; x) ¡ a(u(t; x))u(t; x) = g(u(t; x))(x) t > 0; x 2 T 2 :
est bien posée. Les auteurs ont obtenu le même résultat qu'on présente dans la section 5.4 de cette thèse, sans utiliser le calcul paracontrôlé non-linéaire introduit dans le chapitre 5 mais seulement des techniques du calcul paracontrôlé standard et des transformations astucieuses. Cette simplication a comme inconvénient une certaine perte de généralité de la méthode : par exemple une EDPS quasi-linéaire avec coecients de diusion (a ij ) i;j à valeurs dans des matrices, c'est à dire une équation sous la forme

@ t u(t; x) ¡ a ij (u(t; x)) @ 2 @x i @x j u(t; x) = g(u(t; x)); t > 0; x 2 T 2 ;
ne peut pas être traitée par les techniques utilisées dans [START_REF] Bailleul | Quasilinear generalized parabolic Anderson model equation[END_REF] mais elle peut être traitée avec notre calcul paracontrôlé non-linéaire et avec les techniques de Otto et Weber.

Plus récemment, Hairer et Gerencsér ont développé dans [START_REF] Gerencsér | A solution theory for quasilinear singular SPDEs[END_REF] une théorie des structures de régularité paramétriques, et ils ont montré la convergence des modèles aléatoires associés, pour résoudre une large gamme d'EDPS quasi-linéaires (y compris les équations avec bruit trop irrégulier pour pouvoir être analysées avec les méthodes de [START_REF] Furlan | Paracontrolled quasilinear SPDEs[END_REF], [START_REF] Otto | Quasilinear SPDEs via rough paths[END_REF] et [START_REF] Bailleul | Quasilinear generalized parabolic Anderson model equation[END_REF]). Leur théorie généralise considérablement les travaux précédents sur les EDPS quasi-linéaires.

Chapitre 6

Les résultats de ce chapitre ont été obtenus en collaboration avec M.Gubinelli et ils sont apparus en prémier dans [START_REF] Furlan | Weak universality for a class of 3d stochastic reactiondiusion models[END_REF]. On y étudie la famille d'EDPS sur [0; T ] T 3 et indexée par " 2 (0; 1] suivante :

L u " (t; x) = ¡" ¡ 3 2 F " (" 1 2 u " (t; x)) + " (t; x) (3)
où " est un champ aléatoire gaussien sur R T 3 qui converge en loi vers le bruit blanc espace-temps pour " ! 0, et (F " ) " C 9 (R) avec toutes ses dérivées ayant une croissance au maximum exponentielle. On se demande si les solutions (3) convergent en loi vers une limite u " ! u, et si cette limite peut s'identier avec un objet universel.

Soit Y " la solution stationnaire de L Y " = ¡Y " + " . Avec des hypothèses de convergence des premiers 4 coecients de la décomposition en chaos de " ¡3/2 F " (" 1/2 Y " ) (et aussi des hypothèses sur la convergence de la condition initiale u 0;" ) on montre dans ce chapitre que les solutions de (3) convergent en loi vers une limite u " ! u qui dépend seulement de 4 paramètres. Ce type de résultat s'appelle d'universalité faible : le mot universalité vient du fait que, même si les solutions de (3) dépendent de la fonction F " entière (c'est à dire par exemple qu'elles dépendent de toute la décomposition en chaos de F " ), la limite u " ! u dépend seulement d'un nombre ni de paramètres qui sont obtenus des premiers termes de la décomposition en chaos de F " . L'adjectif faible vient du fait que la non-linéarité doit être asymptotiquement petite par rapport au bruit " (ou bien le bruit doit être asymptotiquement petit par rapport à la non-linéarité, mais ce cas est plus facile à traiter et moins intéressant pour ce modèle). Le même résultat de convergence a été obtenu en premier par Hairer et Xu dans [START_REF] Hairer | Large scale behaviour of 3d phase coexistence models[END_REF], mais avec l'importante restriction de supposer que F " soit un polynôme 8" 2 (0; 1].

On peut identier la limite pour "! 0 des solutions de (3) avec la limite des solutions de 

L u " = ¡ 3 u " 3 ¡ 2 u " 2 ¡ c " u " ¡ d " + " (4) avec 3 ; 2 2 R

Introduction

The main subject of this work are Stochastic Partial Dierential Equations (SPDEs), in particular 2 and 3-dimensional nonlinear parabolic equations with very singular stochastic forcing terms. The diculty arising when studying the well-posedness of such equations is that their solutions are expected to be tempered distributions in the space variable.

Indeed, it is well-known that although linear operations on Schwartz' distributions (such as dierentiation, Fourier transform or multiplication with a smooth functions) are well dened, there is no canonical way of dening the product of two distributions, and therefore any nonlinearity in the equations we consider is ill-dened. Another subject of this work is the study of the tightness of the 2-dimensional Ising magnetization eld, which is performed with techniques similar to those used for SPDEs.

The analysis of SPDEs in this work is based on the paracontrolled distributions framework (also called paracontrolled calculus or paradierential calculus), introduced by Gubinelli, Imkeller and Perkowski in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. Their work can be thought of as a generalization and improvement upon the idea of controlled rough paths introduced by Gubinelli in [START_REF] Gubinelli | Controlling rough paths[END_REF], which builds on the theory of rough paths, introduced by Lyons in the seminal article [START_REF] Terry | Dierential equations driven by rough signals[END_REF].

We give an example of the main points of the paracontrolled distributions technique [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] by considering the following equation, called continuous Parabolic Anderson Model (PAM):

@ t u ¡ u = u u(t = 0) = 0; (5) 
where @ t is the time derivative and the Laplacian. is the space white noise on the two dimensional torus T 2 = (R / 2pZ) 2 , which can be identied formally as the centered Gaussian random eld with covariance E[(x)(y)] = (x ¡ y). The trajectories of are almost surely tempered distributions in the space S 0 (T 2 ). For every trajectory of , let " be a regularization of the white noise by convolution with a smooth function compactly supported at scale " > 0 (such that " ! as " ! 0). It is not dicult to obtain solutions u " to a regularized version of (5) for every scale " (for example by a Picard xed-point argument), and if the family (u " ) "2(0;1] has a limit in some sense, we dene it to be the solution of (5).

Nevertheless, it is not possible to obtain a pathwise solution with this method, since a solution u of (5) is not expected to be more regular than # = ¡1 , and this is not enough to make the product u well dened. Therefore, u " " is expected to have a divergent limit.

To overcome this diculty, the authors of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] employ a set of functional analysis tools that we have recalled in Chapter 1. Their rst important observation is that the illposed product u can be (formally) decomposed as a sum of Bony's paraproducts [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]:

u = u + u + u
where the paraproducts u , u can be dened for every couple of tempered distributions u; 2 S 0 and the last term (called resonant product) is ill-dened when the sum of the regularities of u and is below a certain threshold, which is our case (for precise bounds on the regulariteis of u and in a resonant paraproduct u see Chapter 1). The paraproduct decomposition above is based on a partition of unity in Fourier space of u and : we can indeed interpret u as the product of with a high-frequencies cuto of u, which results in some sort of amplitude modulation. On the other hand, the term u models a resonance phenomenon in which two similar frequencies interact catastrophically. The problem now becomes that of controlling the limit u " " for " ! 0.

The second crucial observation of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF], that originates from the notion of controlled rough paths and is called accordingly paracontrolled distribution Ansatz, is a guess on the structure of the distribution u that could solve (5). In particular, we can postulate that u should look like the integral of at small scales (high frequencies), i.e. it should be approximated by a modulation of # = ¡1 with a more regular function u 0 . The Ansatz would then be u = u 0 # + u ] with u ] ; u 0 to be established by equation ( 5) and the remainder term u ] more regular than u, but for technical reasons we set instead

u = u 0 # + u ] ; (6)
where the modied paraproduct coincides with apart from a time-smoothing of the rst variable u 0 to cope with the time derivative in (5).

The third point put forward in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] is that, given the Ansatz (6), u " " can be decomposed in such a way that the ill-posedness appears only in correspondence of products of explicit integrals of the white noise (called enhanced noises), which do not depend on the solution itself but just on " . The idea is then to dene a limit for the enhanced noise terms and since every other operation in (5) is well dened (thanks to the estimations in Chapter 1), it is possible to obtain a limit u " ! u in this way. More precisely, the Ansatz (6) yields

u " " = (u " 0 # " ) " + u " ] "
and we assume that u " ] is regular enough in the limit " ! 0 to obtain a well behaved limit of u " ] " in S 0 (indeed, by substituting (6) into (5) it can be seen that u " ] solves a dierential where the trilinear commutator C(; ; ) can be extended on S 0 and the only term that can't be controlled analytically as "! 0 is # " " . By postulating that the term # " " has a limit in S 0 regular enough to make sense of the product u " 0 (# " " ) as " ! 0, we can make sense of the r.h.s. of (5). Indeed, we have for every " > 0 the couple of paracontrolled equations

( u " = u " 0 # + u " ] (@ t ¡ )u " = u + u + C(u " 0 ; # " ; " ) + u " 0 (# " " ) + u " ] "
which have a solution couple (u " 0 ; u " ] ). If we assume that X " = ( " ; # " " ) converges to a tempered distribution X which is regular enough to make sense of the equations above, we have a limit (u "

0 ; u " ] ) ! (u 0 ; u ] ) 2 S 0 S 0 .
This concludes the analytic part of the theory. What it is left to do, in the probabilistic part of the theory, is to exploit stochastic cancellations on # " " to show that (some renormalized version of) X " converges in probability to a limit distribution X.

We resume the situation as follows: there is no choice of Banach spaces that makes the solution map : " 7 ! u " continuous, because of the ill-posedness of the product of distributions. However, we can split as follows:

" 7 ! J X " 7 ! u "
where is a the continous paracontrolled solution map which associates X " to the solutions (u " 0 ; u " ] ) of the system of equations above. Unfortunately X " does not converge, but after dening the renormalized enhanced noise X ^" = ( " ; # " " ¡ E(# " " )) (where E(# " " ) diverges as " ! 0) it is possible to show that X ^" converges in probability to a distribution X. We have then

" 7 ! J ^X ^" 7 ! u ^"
By retracing the constant E(# " " ) added in the paracontrolled equations we recover a renormalized version of (5) which is:

@ t u ^" ¡ u ^" = u ^" " ¡ u ^"E(# " " ):
From the continuity of together with the convergence in probability of X ^" we obtain that the regular solutions u ^" of the equation above converge to a distribution u which is dened to be a solution of (5). Note that, since for every C 2 R the renormalization X ^" = ( " ; # " " ¡ E(# " " ) + C) has a convergent limit, there is actually a one-parameter family of solutions to (5). This concludes our example of application of the paracontrolled method to a sample equation. Both the function and the term X ^" are specic to the SPDE to be treated, and have to be shown respectively to be continuous and convergent in probability for every model being considered. In the framework of the rst order paracontrolled calculus developed in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF], the paracontrolled Ansatz (for example (6) in our equation above) is typically limited to a rst order expansion, i.e. the solution can only be para-controlled by a single stochastic term. This limits the amount of regularity that the remainder (u ] in eq. ( 6)) can gain, and consequently puts a lower bound on the regularity of the random driving term that is allowed in the equation. For example eq. ( 5) in d = 3, or with a time-space white noise, is out of scope of the theory of [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. Recently, Bailleul and Bernicot [BB16] developed a higher order version of paracontrolled calculus that allows to treat more singular equations.

The paracontrolled distributions

However, apart from this recent development, the most general theory for singular SPDEs has been developed by Hairer [Hai14a,[START_REF] Hairer | Singular stochastic PDEs[END_REF][START_REF] Friz | A Course on Rough Paths: With an Introduction to Regularity Structures[END_REF] under the name of regularity structures theory. Regularity structures are a vast generalisation of Lyons' rough paths which give eective tools to describe non-linear operations acting on certain spaces of distributions, their renormalization by subtraction of local singularities and their use to solve singular SPDEs. Regularity structures have been successfully applied to all the models mentioned so far [START_REF] Hairer | A theory of regularity structures[END_REF][START_REF] Hairer | Solving the KPZ equation[END_REF], to other models like the SineGordon model [START_REF] Hairer | The dynamical Sine-Gordon model[END_REF] (which however can also be handled via paracontrolled techniques) and to study weak universality conjectures [START_REF] Hairer | A class of growth models rescaling to KPZ[END_REF][START_REF] Hairer | Large scale behaviour of 3d phase coexistence models[END_REF].

Part I -Prerequisites

In the rst part of this work, which spans chapters 1,2,3, we introduce some basic concepts and develop some techniques that are widely used in the rest of the work.

In Chapter 1 we begin with introducing the Littlewood-Paley (L-P) decomposition, that is a way of decomposing a tempered distribution f in blocks i f with compactly supported Fourier transform of magnitude '2 i . The L-P blocks are then used to dene Besov spaces B p;q 8 2 R, p; q 2 [1; 1] and some basic properties are proved. The well-known results of Section 1.1.1 constitute the basis for our analysis of SPDEs via paracontrolled calculus.

A characterization of local Besov spaces on bounded domains U R d , based on compactly supported wavelets, is given in Section 1.1.2. We discuss also the equivalence between the denition of Besov spaces given in this section and similar ones given in [START_REF] Hairer | A theory of regularity structures[END_REF][START_REF] Hairer | Multiplicative stochastic heat equations on the whole space[END_REF]. Finally we enounce a tightness criterion for families of random distributions that will be used to study the Ising magnetization eld, and give a formulation of Kolmogorov's continuity theorem in this setting. An advantage of working with compactly supported wavelets is to be able to dene local Besov spaces on U that are tolerant to bad behaviour close to the boundary. This is useful for example when considering families of distributions converging in a domain U 0 U that converges to U . Section 1.1.2 appeared as part of [START_REF] Furlan | A tightness criterion for random elds, with application to the Ising model[END_REF], a joint work with J-C.Mourrat.

In Section 1.1.3 we discuss the equivalence between the two denitions of Besov spaces presented before. Section 1.2 contains the main analytic tools of paracontrolled calculus.

Chapter 2 deals with the techniques needed to estimate random elds for showing the convergence of the enhanced noise (X " in our example eq. ( 5)). One of the main tools for this task is the Wiener chaos decomposition, in which a square-integrable random variable which is measurable with respect to the white noise, has an orthogonal decomposition as a sum of random variables belonging to subspaces H n 8n > 0. For random elds with a nite chaos decomposition, one uses Nelson's hypercontractivity property to estimate L p norms by L 2 norms. The covariance of the random eld obtained in this way takes the form of a convolution of singular functions with known degree of homogeneity (and we call it diagram in analogy with Feynman's diagrams). This well-known procedure is explained in Section 2.2.

In Section 2.3 we recall some results of Malliavin calculus that make it possible to estimate random elds with an innite chaos decomposition.

Finally, Chapter 3 contains an introduction on two closely related models: FK percolation and the 2-d Ising model.

Part II -Results

Chapter 4

The content of this chapter rst appeared in [START_REF] Furlan | A tightness criterion for random elds, with application to the Ising model[END_REF] as a joint work with J-C.Mourrat.

We apply the tightness criterion for random elds developed in Section 1.1.2 to study the magnetization eld of the two-dimensional Ising model at critical temperature. Let U R 2 be an open set, and for a > 0, let U a := U \ (aZ 2 ). Denote by ( y ) y 2U a the Ising spin system at the critical temperature, with, say, + boundary condition, and dene the magnetization

eld a := a ¡ 1 8 X y2U a y 1 S a (y)
where S a (y) is the square centered at y of side length a. In [START_REF] Camia | Planar Ising magnetization eld I. uniqueness of the critical scaling limit[END_REF], the authors showed that for U = [0; 1] 2 and every " > 0, the family ( a ) a2(0;1] is tight in the Besov space B 2;2 ¡1¡" (U ) and proceeded to discuss similar results in more general domains. They asked in which precise function spaces the family ( a ) a2(0;1] is tight. We answer this question by showing that for every open set U R 2 8" > 0 the magnetization eld is tight in B p;q ¡1/8¡";loc (U ) 8p; q 2 [1; 1], and that it is not tight in B p;q ¡1/8+";loc (R 2 ).

It was shown recently that there exists a unique limit point to the family ( a ) a2(0;1] , see [START_REF] Camia | Planar Ising magnetization eld I. uniqueness of the critical scaling limit[END_REF][START_REF] Chelkak | Conformal invariance of spin correlations in the planar Ising model[END_REF]. Our result makes it clear that this limit is singular (even on compact subsets) with respect to the planar Gaussian free eld, since the latter takes values in B p;q ¡";loc (R 2 ) for every " > 0 and p; q 2 [1; 1].

Chapter 5

This chapter draws from the paper [START_REF] Furlan | Paracontrolled quasilinear SPDEs[END_REF] which is a joint work with M.Gubinelli. We develop a nonlinear paracontrolled calculus in order to show the local well-posedness of some quasi-linear uniformly parabolic SPDEs. We will consider mainly the two equations

@ t u(t; x) ¡ a 1 (u(t; x))u(t; x) = (x); u(0; x) = u 0 (x); x 2 T 2 ; t > 0;
and the slightly more general @ t u(t; x) ¡ a 1 (u(t; x))u(t; x) = a 2 (u(t; x))(x); u(0; x) = u 0 (x); x 2 T 2 ; t > 0 with a 1 : R ! [; 1], a 2 : R ! [¡L; L] for ; L > 0 uniformly bounded C 3 diusion coecients, and a i (k) L 1 6 1 for k = 0; :::; 3. We assume that the random noise takes values in the Besov space C ¡2 (T 2 ) with 2/3 < < 1: this would apply for example to the space white noise on T 2 . However, we show in Section 5.5 that the nonlinear paracontrolled calculus developed in this chapter allows to deal with a class of equations of the form

a 3 (u(t; x))@ t u(t; x) ¡ a 1 (u(t; x))u(t; x) = (a 2 (u(t; x)); t; x); x 2 T 2 ; t > 0;
where a 1 ; a 2 ; a 3 are suciently smooth non-degenerate coecients and (z; t; x) is a Gaussian process with covariance E[(z; t; x)(z 0 ; t 0 ; x 0 )] = F (z; z 0 )Q(t ¡ t 0 ; x ¡ x 0 ); x; x 0 2 T 2 ; t; t 0 ; z; z 0 2 R;

with F a smooth function and Q a distribution of parabolic regularity > ¡4 / 3. This includes as a special case the space white noise discussed before, but we could consider a time white noise with a regular dependence on the space variable, or some noise which is mildly irregular in space and time.

Recently Otto and Weber [START_REF] Otto | Quasilinear SPDEs via rough paths[END_REF] and Bailleul, Debussche and Hofmanová [START_REF] Bailleul | Quasilinear generalized parabolic Anderson model equation[END_REF] investigated quasilinear SPDEs in the context of pathwise methods and in a range of regularities compatible with the ones we consider in this chapter.

In [START_REF] Otto | Quasilinear SPDEs via rough paths[END_REF] the authors obtained a local well-posedness result for equations of the form

@ t u(t; x) ¡ a(u(t; x))@ x 2 u(t; x) = f (u(t; x))(t; x); t > 0
where the space variable belongs to a one dimensional periodic domain and the noise can be white in time but colored in space, essentially behaving like a distribution of parabolic regularity in (¡4 / 3; 1). In order to do that they introduce a specic notion of modelled function and related estimates. Their parametric controlled Ansatz is the main source of inspiration for the work [START_REF] Furlan | Paracontrolled quasilinear SPDEs[END_REF]. However, this fundamental observation does not necessitate the development of an alternative theory for singular SPDEs, which is the main aim of their work, and can be employed in a paracontrolled distributions framework. Indeed, in Chapter 5 (as done in [START_REF] Furlan | Paracontrolled quasilinear SPDEs[END_REF]) we show that a relatively straightfoward extension of the paracontrolled approach is sucient to retrieve quite directly the results on quasilinear equations contained in their paper.

Bailleul, Debussche and Hofmanová in [START_REF] Bailleul | Quasilinear generalized parabolic Anderson model equation[END_REF] obtained local well-posedness for the generalised parabolic Anderson model equation

@ t u(t; x) ¡ a(u(t; x))u(t; x) = g(u(t; x))(x) t > 0; x 2 T 2 :
The authors obtained the same result as the one presented in Section 5.4 of our work, without the machinery of nonlinear paraproducts introduced here, but using only the basic tools of paracontrolled analysis and some clever transformations. This simplicity comes with a loss of generality, for example a quasilinear SPDE with matrix-valued diusion coecients (a i j ) i;j , i.e. an equation of the form

@ t u(t; x) ¡ a ij (u(t; x)) @ 2 @x i @x j u(t; x) = g(u(t; x)); t > 0; x 2 T 2 ;
is out of reach of the techniques used in [START_REF] Bailleul | Quasilinear generalized parabolic Anderson model equation[END_REF], while can be treated with our techniques and by Otto and Weber's approach.

More recently, Hairer and Gerencsér in [START_REF] Gerencsér | A solution theory for quasilinear singular SPDEs[END_REF] developed a theory of parameterdependent regularity structures, and the corresponding convergence of random models, to solve a wide range of quasilinear SPDEs (including in particular those with noise regularity that is out of reach of the methods of [START_REF] Furlan | Paracontrolled quasilinear SPDEs[END_REF], [START_REF] Otto | Quasilinear SPDEs via rough paths[END_REF] and [START_REF] Bailleul | Quasilinear generalized parabolic Anderson model equation[END_REF]). Their theory generalizes greatly the previous work on quasilinear SPDEs.

Chapter 6

The content of this chapter rst appeared in [START_REF] Furlan | Weak universality for a class of 3d stochastic reactiondiusion models[END_REF] (joint work with M.Gubinelli). We study the following family of SPDEs on [0; T ] T 3 indexed on " 2 (0; 1]

L u " (t; x) = ¡" ¡ 3 2 F " (" 1 2 u " (t; x)) + " (t; x) (7)
with " a stationary centered Gaussian eld on R T 3 converging in law to the time-space white noise for " ! 0, and (F " ) " C 9 (R) with all derivatives having at most exponential growth.

Let Y " be the stationary solution to L Y " = ¡Y " + " . Under some assumptions on the convergence of the rst 4 Wiener chaos decomposition coecients of " ¡3/2 F " (" 1/2 Y " ) (and the convergence of the initial conditions u 0;" ), we show that the solutions of (7) have a limit u " ! u in law that depends just on 4 parameters. This kind of result is called weak universality: the universality comes from the fact that solutions of (7) for a nite " depend on the whole function F " (for example from its complete chaos decomposition), but the limit u " ! u depends only on a nite number of parameters that are obtained from the rst chaos coecients of F " . The adjective weak comes from the fact that we are restricted to nonlinearities that become asymptotically small with respect to the noise " . This convergence result was rst obtained by Hairer and Xu [START_REF] Hairer | Large scale behaviour of 3d phase coexistence models[END_REF], but with the important restriction of assuming F " to be a polynomial 8" > 0.

The limit of the solutions u " of (7) coincides with the limit of the solution of

L u " = ¡ 3 u " 3 ¡ 2 u " 2 ¡ c " u " ¡ d " + " ( 8 
)
for 3 ; 2 2 R and diverging renormalization constants c " ; d " . This equation is called the 3 4 model. In two dimensions, the 2 4 model has been subject of various studies for more than thirty years [JM85, AR91, DD03]. For the three dimensional case, the convergence of the solutions to (8) is originally due to Hairer [START_REF] Hairer | A theory of regularity structures[END_REF][START_REF] Hairer | Regularity structures and the dynamical 3 4 model[END_REF] and constitute one of the rst groundbreaking applications of his theory of regularity structures. A similar result was later obtained by Catellier and Chouk [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF] using the paracontrolled approach of Gubinelli, Imkeller and Perkowski [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. Kupiainen [START_REF] Kupiainen | Renormalization group and stochastic PDEs[END_REF] described a third approach using renormalization group ideas.

The rst result of weak universality for a singular SPDE has been given by Hairer and

Quastel [START_REF] Hairer | A class of growth models rescaling to KPZ[END_REF] in the context the KardarParisiZhang (KPZ) equation in the case of a polynomial non-linearity. Using the machinery developed there, Hairer and Xu [START_REF] Hairer | Large scale behaviour of 3d phase coexistence models[END_REF] proved a weak universality result for three dimensional reactiondiusion equations in the case of Gaussian noise and a polynomial nonlinearity, within the context of regularity structures. Weak universality for reactiondiusion equations driven by non Gaussian noise is analysed by Shen and Xu [START_REF] Shen | Weak universality of dynamical 3 4 : non-Gaussian noise[END_REF]. The recent preprint [START_REF] Oh | Renormalization of the two-dimensional stochastic nonlinear wave equations[END_REF] analyzes an hyperbolic version of the stochastic quantisation equation in two dimensions, including the associated universality in the small noise regime.

Recently, Hairer and Xu [START_REF] Hairer | Large-scale limit of interface uctuation models[END_REF] generalized the result of Hairer et Quastel on the convergence of a certain class of models to the solution of the KPZ equation [START_REF] Hairer | A class of growth models rescaling to KPZ[END_REF]. They use more general hypoteses for the nonlinearity (in particular eliminating the need for it to be polynomial). Their approach diers substantially from ours, but could in principle retrieve the same results as [START_REF] Furlan | Weak universality for a class of 3d stochastic reactiondiusion models[END_REF]. Conversely, it possible to show the convergence of the family of equations considered in [START_REF] Hairer | Large-scale limit of interface uctuation models[END_REF] to the KPZ equation using the theory we rst developed in [START_REF] Furlan | Weak universality for a class of 3d stochastic reactiondiusion models[END_REF].

The paper [START_REF] Furlan | Weak universality for a class of 3d stochastic reactiondiusion models[END_REF], from which this chapter is derived, is the rst to consider in detail the weak universality problem with the technique of paracontrolled distributions, showing that on the analytic side the a priori estimates can be obtained via standard arguments (we rely in particular on the paracontrolled construction of [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF]) and that the major diculty is related to showing the convergence of a nite number of random elds with innite chaos decomposition to universal limiting objects. The main novelty of our work is the use of Malliavin calculus [START_REF] Nualart | The Malliavin calculus and related topics[END_REF][START_REF] Nourdin | Central limit theorems for multiple Skorokhod integrals[END_REF][START_REF] Nourdin | Normal Approximations with Malliavin Calculus: From Stein's Method to Universality[END_REF] to perform the analysis of these stochastic terms without requiring the non-linearity to be polynomial as in [START_REF] Hairer | Large scale behaviour of 3d phase coexistence models[END_REF].

Prerequisites

Chapter 1

Besov spaces and paracontrolled calculus 1.1 Besov spaces

In this chapter we present two dierent (but equivalent) characterizations of nonhomogeneous Besov spaces B p;q (with p; q 2 [1; 1], 2 R) and recall some well-known properties of these spaces. A good book on Littlewood-Paley theory applied to Besov spaces is the one by Bahouri, Chemin and Danchin [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF]. The discussion on Besov spaces dened via compactly supported wavelets is taken from the article [START_REF] Furlan | A tightness criterion for random elds, with application to the Ising model[END_REF], which draws some results from [START_REF] Hairer | Multiplicative stochastic heat equations on the whole space[END_REF], [START_REF] Hairer | A theory of regularity structures[END_REF], [START_REF] Meyer | Wavelets and Operators[END_REF] 

kf k C n := X jaj6n k@ a f k L 1;
where the sum is over multi-indices a 2 N d .

Characterization of Besov spaces via Littlewood-Paley theory

In this section we present a denition of Besov spaces based on Littlewood-Paley decomposition. Due to its localization in Fourier space, this characterization is best suited to introduce Bony's paraproducts (Section 1.2). Let's start with showing that it is possible to construct a smooth partition of unity in R d made of functions with support in concentric annuli, such that in every point there are at most two overlapping functions. An annulus A(r; R) in R d is dened 80 < r < R as follows:

A(r; R) := fx 2 R d jr < jxj < Rg: Proposition 1.1

. (dyadic partition of unity)

There exist radial functions ; 2 C c 1 with values in [0; 1] and constants r; R; R 0 2 R + such that supp A(r; R); supp B(0; R 0 ) and for every x 2 R d :

1 = (x) + X j>0 (2 ¡j x)
with a locally nite sum. Also, if jj ¡ j 0 j > 2 then:

supp (2 ¡j ) \ supp (2 ¡j 0 ) = ? (1.1)
and if j > 1:

supp \ supp (2 ¡j ) = ? (1.2)
In particular, we can take r = 3/4, R = 8/3, R 0 = 4/3. ; 2) = R d ¡ f0g, and then (x) = / 0 for every x 2 R d ¡ f0g. Thus, by the continuity of , we can arm that > 0 on R d . We dene for every j > 0:

Proof

:= := 1 ¡ X j>0 (2 ¡j )
It is now straightforward to show that and have the desired properties.

Remark 1.2. It is worth noting that for all the results of Littlewood-Paley theory it is not important what the functions and are, as long as they satisfy the conditions given in Proposition 1.1.

We adopt the following normalization for the Fourier transform F:

L 1 (R d ) ! L 1 (R d ): f ^() := Ff () := Z R d e ¡ih;xi f (x)dx F ¡1 g(x) := (2p) ¡d Z R d e ih;xi g()d
and we extend it by duality to the space of tempered distributions S 0 (R d ).

Littlewood-Paley decomposition Denition 1.3. (Littlewood-Paley blocks)

Let u 2 S 0 (R d ), for every j 2 N the Littlewood-Paley blocks are dened as follows:

¡1 u := F ¡1 ( u ^) j u := F ¡1 ((2 ¡j ) u ^)
We also dene the high-frequence cut-o operator S j : S 0 (R d ) ! S 0 (R d ) for j 2 N as

S j u := X k<j ¡1 k u (1.3)
Remark 1.4. Note that 8j 2 N:

j f (x) = Z R d K j;x (y)f (y)dy; S j f (x) = Z R d P j;x (y)f (y)dy (1.4) with K j;x (y) := 2 jd K(2 j (x ¡ y)); P j ;x (y) := X j 0 =¡1 j ¡2 K j;x (y)
where K = F ¡1 and K ¡1;x (y) = F ¡1 (x ¡ y). Here K and F ¡1 are radially symmetric and belong to the Schwartz space S(R) of smooth rapidly decreasing functions (since it can be seen easily that the Fourier transform is a continuous endomorphism on

S(R d ) C c 1 (R d )). From Plancherel's theorem one obtains then 8x 2 R d , j 2 N: Z R d K j ;x (y)dy = Z R d 2 jd K(2 j y)dy = (2p) d h; (2 ¡j )i = 0
since is supported away from zero (and 2 S 0 (R d ) is the Dirac's delta), and Z

R d P j ;x (y)dy = Z R d F ¡1 (y)dy = 1
since (0) = 1 by construction.

Remark 1.5. From Young's inequality for convolutions it is easy to see that there exists a positive constant M 2 R such that 8j > ¡1, 8p 2

[1; 1] k j f k L p 6 M kf k L p kS j f k L p 6 M kf k L p since kK j ;x k L 1 = kK k L 1 and kP j;x k L 1 = kP k L 1 8j > 0.
Lemma 1.6. (S 0 convergence of L-P decomposition) Let u 2 S 0 (R d ), then lim n!+1 P j>¡1 n j u = u.

Proof.

The operator j is self-adjoint since the Fourier transform is self-adjont. Therefore we obtain

jhS n u ¡ u; 'ij = jhu; S n ' ¡ 'ij . kS n ' ¡ 'k S ;k 8k 2 N, where we introduced the seminorm k'k S ;k := sup x2R d sup jaj6k (1 + jxj) k j@ a '(x)j:
with the derivative on a multi index a = (a 1 ; :::; a d ) as usual: @ a = @ a 1 @ a d . Since the Fourier transform is a continuous operator over S it is enough to show that F(S n ') converges to F(') in S. From the denition of the L-P blocks j we have

F(S n ') = ' + X j=0 n (2 ¡j ) ' ^:
From the properties of the dyadic partition of unity given in Proposition 1.1 we see that there exists R > 0 such that

F(S n ')(x) = 0 8x 2 B c (0; 2 n R); F(S n ')(x) = 1 8x 2 B(0; 2 n¡1 R); (x) + X j =0 n (2 ¡j x) = (2 ¡n x) 8x 2 B(0; 2 n R)nB(0; 2 n¡1 R):
Within the proof we note B 2 n := B(0; 2 n R). We proceed to estimate F(S n ') ¡ F(') on the three separate regions B 2 n¡1, B 2 n nB 2 n¡1 and (B 2 n) c . On B 2 n¡1 this term is zero, on

(B 2 n) c it is equal to ' ^2 S(R d
) and thus decreases more rapidly than any rational function at innity, and on B 2 n nB 2 n¡1 its derivatives are bounded by a 2 ¡n coecient (because the annuli 2 j A become wider as well as larger). We obtain then for every k 2 N:

kF(S n ' ¡ ')k S ;k = = sup x2(B 2 n¡1) c sup jaj6k (1 + jxj) k j@ a [(2 ¡n x) ' ^(x) + (2 ¡n x) ' ^(x) ¡ ' ^(x)]j 6 sup x2(B 2 n) c sup jaj6k (1 + jxj) k j@ a ' ^(x)j + + sup x2B 2 nnB 2 n¡1 sup jaj6k (1 + jxj) k j@ a [(2 ¡n x) ' ^(x) ¡ ' ^(x)]j 6 sup x2(B 2 n) c sup jaj6k (1 + jxj) k j@ a ' ^(x)j + sup x2B 2 nnB 2 n¡1 sup jaj6k (1 + jxj) k j@ a ' ^(x)j + sup x2B 2 nnB 2 n¡1 sup jaj6k (1 + jxj) k j X jbj<jaj C b @ a¡b (2 ¡n x) @ b ' ^(x)j . sup x2(B 2 n¡1) c
(1 + jxj) ¡1 k' ^kS;k+1 + 2 ¡(n¡1) k' ^kS;k which converges to zero for n ! +1.

Remark 1.7. The Littlewood-Paley blocks j u are smooth functions for every u 2 S 0 (R d ), j > ¡1. This follows from the Paley-Wiener-Schwartz theorem (see [Hör03, Th.7.1.14 and 7.3.1]) since the blocks j u have compactly supported Fourier transform. Another way to see that j u is smooth is by noting that for every u 2 S 0 (R d ) there exists a continuous function f and a 2 N d such that 8' 2 S(R d ):

hu; 'i = Z (¡1) jaj f (x)(@ a ')(x)dx
(see [RS80, Th.V.10] for the proof). Then since

j u = j u with j 2 C 1 (R d ) it is easy to see that 8b 2 N d @ b j u(y) = @ b j u(y) = Z (¡1) jaj f (x)@ a+b j (y ¡ x):

Distributions with compactly supported Fourier transform

We recall here some properties of functions with compactly supported Fourier transform, which will be useful in the following.

Lemma 1.8. (Bernstein inequalities)

Let A be an annulus and B(0; R) a ball in R d (for some R > 0). Then there exists C > 0 such that 8k 2 N, 8 > 0 and for every 1 6 p 6 q 6 +1:

1. if f 2 L p and supp f ^ B(0; R) then:

sup jaj6k k@ a f k L q 6 C k+1 k+d 1 p ¡ 1 q kf k L p 2. if f 2 L p and supp f ^ A then: k kf k L p 6 C k+1 sup jaj6k k@ a f k L p
Proof. The idea of the proof is that, when deriving k times the function f , one obtains a term of order x k in its Fourier transform, which has to be roughly the same size of the support of f ^(which is contained in either B(0; R) or A) and this explains the factor k . The factor d/p¡d/q is simply due to the dierent scaling behaviour of the L p and L q norms. To prove point 1, let = 1. Let 2 C c 1 supported on a ball of R d such that f ^= f ^ , and thus f = g f with g = F ¡1 ( ) as well as @ a f = @ a g f for every multi-index

a 2 N d . From Young's inequality k@ a f k L q 6 k@ a g k L r kf k L p with 1/ q + 1 = 1/ p + 1/ r. From Hölder's inequality k@ a g k L r 6 k(1 + jxj 2 ) ¡d k L r k(1 + jxj 2 ) d @ a g k L 1.
By interpolation and Young's inequality for products 9C > 0 such that:

k@ a g k L r 6 k@ a g k L 1 + k@ a g k L 1 6 C k(1 + jj 2 ) d @ a g k L 1 6 C k(id ¡ ) d () a k L 1 6 C k+1 since x a can be estimated in L 1 on the support of . Let now supp f ^ B(0; R) with = / 1. Dening h(x) = f ( ¡1 x) we obtain F(h) = d (f ^)(
) and then by applying on h the inequality above we obtain the rst claim.

To show point 2, let as before = 1. We have for every x 2 R d :

f ^(x) = jxj ¡2k f ^(x) [(i x 1 )(¡i x 1 ) + ::: + (i x d )(¡i x d )] k = jxj ¡2k f ^(x) X jaj=k A a (i x) a (¡i x) a (1.5) with A a = k a 1 ; :::; a d . If 2 C c
1 with support contained in an annulus is chosen such that f ^= f ^ , then:

f ^(x) = X jaj=k [(i x) a f ^(x)] [A a (¡i x) a jxj 2k (x)] (1.6)
and applying the inverse Fourier transform we obtain

f (x) = X jaj=k F ¡1 [(i x) a f ^] F[A a (¡i x) a jxj 2k (x)] = X jaj=k @ a f g a where g a = F ¡1 (A a (¡i x) a jxj 2k (x)
). We can estimate as before (since

P jaj=k A a = d k ) X jaj=k kg a k L 1 6 C k(1 + jj 2 ) d g a k L 1 6 C X jaj=k A a k(id ¡ ) d (¡i x) a jxj 2k (x)k L 1 6 C k+1 to obtain kf k L p 6 C k+1 sup jaj=k k@ a f k L p
and the second claim follows from the same scaling argument as above.

One can ask when a collection of smooth functions with compactly supported Fourier transforms converges in S 0 . The following lemma answers this question. Lemma 1.9.

Let (u j ) j 2N be a collection of C 1 functions with Fourier transform supported on rescaled annuli 2 j A. If there exists n 2 N such that:

sup j 2N
(2 ¡jn ku j k L 1) < +1 then there exists u 2 S 0 such that

X j=0 n u j ! S 0 u as n ! +1:
Proof. As in the proof of Lemma 1.8 we can write 8k 2 N:

u j (x) = X jaj=k F ¡1 [(i x) a u ^j] 2 j(d¡k) g a (2 j x) = X jaj=k 2 j(d¡k) g a (2 j x) @ a u j
We have for every ' 2 S(R d ):

hu j ; 'i = 2 ¡jk X jaj=k hu j ; 2 jd g a (¡2 j ) (¡@) a 'i
and then:

jhu j ; 'ij 6 2 ¡jk X jaj=k ku j k L 1kg a k L 1k@ a 'k L 1 . 2 ¡jk 2 jn X jaj=k k@ a 'k L 1 :
Choosing k > n the sequence converges.

Besov spaces: denition and rst properties

The reason we introduced the Littlewood-Paley decomposition is to be able to dene Besov spaces as follows:

Denition 1.10. (Besov spaces via L-P decomposition)

Let 2 R, 1 6 p; q 6 1. A tempered distribution u 2 S 0 (R d ) belongs to the Besov space

B p;q (R d ) if the norm kuk B p; q = k(2 j k j uk L p ) j >¡1 k `q (1.7)
is nite. We note C := B 1;1 with the following norm:

kuk C = sup j >¡1 2 j k j uk L 1 : (1.8)
The local Besov space B p;q ;loc (U ) is the completion of C 1 (U ) with respect to the family of semi-norms

f 7 ! k f k B p; q indexed by 2 C c 1 (U ).
Remark 1.11. Besov spaces are Banach spaces [BCD11, Th.2.72] and for p; q 2 [1; +1) C c 1 (R d ) is dense in B p;q for every 2 R [BCD11, Prop.2.74]. In particular B p;q (R d ) is separable for p; q both nite. It is easy to see that if p = 1 or q = 1 the space B p;q (R d ) is not separable (since neither L 1 nor `1 are separable).

Remark 1.12. and it is easy to show that they are independent from the choice of a dyadic partition of unity. Indeed, let ( 0 ; 0 ) a partition of unity that satises (1.1) and (1.2) and j 0 its corresponding Littlewood-Paley blocks for j > ¡1. Then Then there exists n 0 2 N such that for every jj ¡ j 0 j > n 0 :

supp (2 ¡j ) \ supp 0 (2 ¡j ) = ;; supp \ supp 0 (2 ¡j ) = ;; supp (2 ¡j ) \ supp 0 = ;: Then 8u 2 S 0 2 j k j 0 uk L p . 2 j X jk ¡j j6n 0 k k uk L p . X k>¡1 1 [¡n 0 ;n 0 ] (j ¡ k)k k uk L p
and therefore by Young's inequality

k(2 j k j 0 uk L p ) j >¡1 k `q . k(2 k k k uk L p ) k>¡1 k `q :
We remark that B 1;1 coincides with the usual Hölder space when is positive and not integer. Spaces B 1;1 for > 0 are called Zygmund spaces [START_REF] Triebel | Theory of Function Spaces II[END_REF].

Proposition 1.13. Let 2 (0; 1), n 2 N. Then

B 1;1 n+ (R d ) = C n; (R d ) where C n; (R d ) is the Hölder space of C n (R d ) functions such that kf k C n; = sup jaj6n (k@ a f k L 1 + sup x= / y j@ a f (x) ¡ @ a f (y)j jx ¡ yj ) < +1 If 2 N we have C (R d ) B 1;1 (R d
) and the inclusion is strict.

Proof. We start proving the second claim. Let f 2 C n (R d ). By Bernstein inequalities:

kf k B 1;1 n = sup j >¡1 2 jn k j f k L 1 . sup jaj6n k@ a f k L 1 = kf k C n To show that C n ( B 1;1 n , let 8x 2 R d and u j n (x) = 1 i n 2 nj e i2 j x 1 + (¡1) n e ¡i2 j x 1 :
Then sup j >¡1 ku j n k L 1 6 2 ¡nj +1 and 8j > 0 u j n has Fourier transform supported in a rescaled annulus 2 j A. Then by Lemma 1.9 there exists u 2 S 0 (R d ) such that u = P j u j n , and

u 2 B 1;1 n (R d ), but d dx 1 u j n L 1 > j X j u j 0 (0)j = +1:
1.1 Besov spaces Let now f 2 B 1;1 n+ with 2 (0; 1). Then for every multi-index b such that jbj 6 n we have, again by Bernstein inequalities:

k@ b j f k L 1 . 2 ¡j kf k B 1;1 n+ (1.9)
and then P j @ b j f converges in L 1 , and as the derivative is a continuous operator on S 0 we obtain that f 2 C n . We obtain:

j@ b f (y + h) ¡ @ b f (y)j jhj . X j =¡1 k j@ b j f (y + h) ¡ @ b j f (y)j jhj + X j >k+1 k@ b j f k L 1 jhj
with k > ¡1 such that 2 ¡(k+1) 6 jhj 6 2 ¡k (if jhj > 2 just choose j = ¡2). Then using the bound (1.9) for the second term, and

j@ b j f (y + h) ¡ @ b j f (y)j . 2 j(n+1) k j f k L 1jh j
on the rst term we obtain:

j@ b f (y + h) ¡ @ b f (y)j jhj . kf k B 1;1 n+ ( X j =¡1 k 2 (1¡)j jhj 1¡ + X j>k+1 2 ¡j(n+) jhj ¡ ) . kf k B 1;1 n+ Conversely, let f 2 C n;
. We have k ¡1 f k L 1 6 kf k L 1 and for every j > 0 again by Bernstein inequalities one obtains

k j f k L 1 . 2 ¡jn sup jbj6n k@ b j f k L 1.
As noted in Remark 1.4 the kernel K j associated to j has zero mass, and then:

@ b j f (x) = Z K j;x (y) [@ b f (y) ¡ @ b f (x)] dy . kf k C n; 2 jd Z K(2 j (x ¡ y)) jx ¡ yj dy . 2 ¡j kf k C n; : This yields kf k B 1;1 n+ . kf k C n; .
Another well-known characterization of Besov spaces worth noting is their relation with Sobolev spaces. We dene the Sobolev space H (R d ) as the tempered distributions

u 2 S 0 (R d ) such that u ^2 L loc 2 (R d ) and kuk H 2 := Z R d (1 + jxj 2 ) ju ^(x)j 2 dx < +1: Proposition 1.14. H (R d ) = B 2;2 (R d ). Proof. Let u 2 H (R d ).
Then by Plancherel's theorem

k j uk L 2 = [ Z R d (1 + jxj 2 ) ¡ (1 + jxj 2 ) j(2 ¡j x)u ^(x)j 2 dx] 1 2
. 2 ¡j kuk H :

Conversely, let u 2 B 2;2 (R d ). Then u ^2 L loc 2 (R d
) and denoting as j = (2 ¡j ) for j > 0 and ¡1 = the dyadic partition of unity we have:

kuk H 2 = Z R d j X j>¡1 j (x)u ^(x)j 2 (1 + jxj 2 ) dx . X j >¡1 2 j k j uk L 2 2 :
Remark 1.15. One can see immediately that 81 6 p; q 6 +1 and < kk B p; q . kk B p; q and for q < r from the continuous embedding `q ,! `r it follows kk B p;r . kk B p; q :

The following result generalizes Sobolev embeddings to the Besov setting:

Proposition 1.16. (Besov embedding) Let 1 6 p 1 6 p 2 6 +1, 1 6 q 1 6 q 2 6 +1 and 2 R. Then the space

B p 1 ;q 1 (R d ) is continuously embedded in the space B p 2 ;q 2 ¡d 1 p 1 ¡ 1 p 2 (R d ).
Proof. The proof follows from Bernstein inequalities (Lemma 1.8) and the fact that `q1 is continuously embedded in `q2 .

Characterization of local Besov spaces via wavelets

In this section we give an alternative denition of Besov spaces, based on a decomposition on compactly supported wavelets (Daubechies' wavelets). Due to its localization, this characterization is best suited to dene local Besov spaces on a bounded domain U R d and prove a tightness criterion (Theorem 1.46) in this framework. We also give a continuity criterion (analogous to Kolmogorov's continuity theorem, Proposition 1.49). We dene the Hölder space of exponent < 0 very similarly to [Hai14a, Denition 3.7].

Denition 1.17. (Besov-Hölder spaces of negative regularity) Let < 0, r 0 := ¡bc, and B r 0 := f 2 C r 0 : kk C r 0 6 1 and supp B(0; 1)g: 

For every f 2 C c 1 , denote kf k C := sup 2(0;1] sup x2R d sup 2B r 0 ¡ Z R d f ¡d ¡x : (1.10) The Hölder space C (R d ) is the completion of C c 1 (R d )
f 7 ! k f k C ;
where ranges in C c 1 (U ).

Remark 1.18. By denition, an element of C denes a continuous mapping on f( ¡x) 2 C r 0 : x 2 R d ; k k C r 0 6 1 and supp B(0; 1)g and taking values in R. It is straightforward to extend this mapping to a linear form on C c r 0 . In particular, we may and will think of C as a subset of the dual of C c 1 . Similarly, the space C loc (U ) can be seen as a subset of the dual of C c 1 (U ).

Remark 1.19. As will be seen shortly, the topology of C loc (U ) is metrisable.

Denition 1.20. A multiresolution analysis of L 2 (R d ) is an increasing sequence (V n ) n2Z of subspaces of L 2 (R d ), together with a scaling function 2 L 2 (R d ), such that S n2Z V n is dense in L 2 (R d ), T n2Z V n = f0g; f 2 V n if and only if f (2 ¡n ) 2 V 0 ; (( ¡ k)) k2Z d is an orthonormal basis of V 0 .
Denition 1.21. A multiresolution analysis is called r-regular (r 2 N) if its scaling function can be chosen in such a way that

j@ k (x)j 6 C m (1 + jxj) ¡m
for every integer m and for every multi-index k 2 N d with jk j 6 r.

While a given sequence (V n ) can be associated with several dierent scaling functions to form a multiresolution analysis, a multiresolution analysis is entirely determined by the knowledge of its scaling function. We denote by W n the orthogonal complement of V n in V n+1 .

Theorem 1.22. (compactly supported wavelets) For every positive integer r, there exist ,

( (i) ) 16i<2 d such that ; ( (i) ) i<2 d all belong to C c r ;
is the scaling function of a multiresolution analysis (V n );

( (i) ( ¡ k)) i<2 d ;k2Z d is an orthonormal basis of W 0 .
This result is due to [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF] (see also e.g. [Pin01, Chapter 6]). We recall that a wavelet basis on R d can be constructed from one on R by taking products of wavelet functions for each coordinate. We also recall from [Mey92, Theorem 2.6.4] that for every multi-index 2 N d such that j j < r and every i < 2 d , we have

Z x (i) (x) dx = 0: (1.11)
Except for Theorem 1.22, (1.11) and Proposition 1.35, this section is self-contained. From now on, we x both r 2 N and a wavelet basis ;

( (i) ) i<2 d 2 C c r , as obtained with Theorem 1.22. Let R be such that supp B(0; R); supp (i) B(0; R) (i < 2 d ):
(1.12)

For any n 2 Z and x 2 R d , if we dene

n;x (y) := 2 dn/2 (2 n (y ¡ x)) (1.13) and n = Z d /2 n , then ( n;x ) x2 n is an orthonormal basis of V n . Similarly, we dene n;x (i) (y) := 2 dn/2 (i) (2 n (y ¡ x)); so that ( n;x (i) ) i<2 d ;x2 n ;n2Z is an orthonormal basis of L 2 (R d ). For f 2 L 2 (R d ), we set v n;x f := hf ; n;x i; w n;x (i) f := hf ; n;x (i) i; (1.14)
where h ; i is the scalar product on L 2 (R d ). Denoting by V n and W n the orthogonal projections on V n , W n respectively, we have

V n f = X x2 n v n;x (f ) n;x ; W n f = X i<2 d ;x2 n w n;x (i) (f ) n;x (i) ; (1.15)
and for every k 2 Z,

f = V k f + X n=k +1 W n f (1.16) in L 2 (R d ).

Denition 1.23. (Besov spaces via wavelet decomposition)

Let 2 R, jj < r and p; q

2 [1; 1]. The Besov space B p;q is the completion of C c 1 with respect to the norm kf k B p; q := kV 0 f k L p + k(2 n kW n f k L p ) n2N k `q:
(1.17)

The local Besov space B p;q ;loc (U ) is the completion of C 1 (U ) with respect to the family of semi-norms

f 7 ! k f k B p; q indexed by 2 C c 1 (U ).
Remark 1.24. By taking the closure of a family of smooth compactly supported functions, the present denition has the advantage of making the space separable for every p; q. However, in Section 1.1.3 we outline a proof of the equivalence between the norms of Denition 1.17 and Denition 1.10. Thus, assuming that 9C > 0 such that

C ¡1 kf k B p; q 6 kf k B p; q 6 C kf k B p; q for every f 2 C c 1
, one can see that B p;q coincides with B p;q if both p and q are nite, because C c 1 is dense in B p;q as discussed in Remark 1.11.

Remark 1.25. A dierent notion of Hölder space on a bounded domain U R d , encoding more precise weighted information on the size of the distribution as one gets closer and closer to the boundary of the domain, has been introduced in the very recent work [START_REF] Gerencsér | Singular SPDEs in domains with boundaries[END_REF].

Remark 1.26. The space B p;q of Denition 1.23 does not depend on the choice of the multiresolution analysis, in the sense that for any r > jj, any dierent r-regular multiresolution analysis yields an equivalent norm. This will be made explicit in Section 1.1.3 by comparing B p;q with the space B p;q given in Denition 1.10. Recall that throughout this section we x r 2 N, and consider Besov spaces B p;q with 2 R, jj < r.

Remark 1.27. We can obtain inequalities between norms as done in the previous section.

It is clear from Denition 1.23 that if 1 6 2 2 R and q 1 > q 2 2 [1; 1], then kf k B p; q 1 1 6 C kf k B p; q 2 2 ;
where C is independent of f 2 C c 1 . In particular, the space B p;q 2 2 is continuously embedded in B p;q 1 1 . Similarly, for p 1 6 p 2 , q 2 [1; 1] and for a given 2 C c 1 , there exists a constant C < 1 such that for every

f 2 C c 1 , k f k B p 1 ; q 6 C k f k B p 2 ; q :
Indeed, this is a consequence of Jensen's inequality and the fact that for each n 2 N, the support of W n (f ) is contained in the bounded set 2R + supp. Hence, the space B

p 2 ;q ;loc (U ) is continuously embedded in B p 1 ;q ;loc (U ).
The niteness of kf k B p; q can be expressed in terms of the magnitude of the coecients v n;x (f ) and w n;x (i) (f ).

Proposition 1.28. (Besov spaces via wavelet coecients) For every p 2 [1; 1], there exists C 2 (0; 1) such that for every f 2 C c 1 and every n 2 Z,

C ¡1 kV n f k L p 6 2 dn 1 2 ¡ 1 p k(v n;x f ) x2 n k `p 6 C kV n f k L p ;
(1.18)

C ¡1 kW n f k L p 6 2 dn 1 2 ¡ 1 p ¡ w n;x (i) f i<2 d ;x2 n `p 6 C kW n f k L p : (1.19)
Proof. We will prove just (1.18) in detail, since (1.19) follows in the same way. (See also [Mey92, Proposition 6.10].) Recalling the denition of the constant R > 0 in (1.12), we have supp n;x B (x; 2 ¡n R) and thus, for every y 2 R,

V n f (y) = X x2 n ;x2B(y;2 ¡n R) v n;x (f ) n;x (y): (1.20)
Let p < +1. Since the sum P x2 n ;x2B(y;2 ¡n R) is nite uniformly over n, we can use Jensen's inequality to obtain:

kV n f k L p p = Z X x2 n ;x2B(y;2 ¡n R) v n;x (f ) n;x (y) p dy . Z X x2 n ;x2B(y;2 ¡n R) jv n;x (f ) n;x (y)j p dy . X x2 n jv n;x (f )j p Z B(x;2 ¡n R) j n;x (y)j p dy . k(v n;x f ) x2 n k `p p k n;0 k L p p :
The leftmost inequality of (1.18) follows from the scaling properties of n;0 , namely:

k n;x k L p = 2 dn 1 2 ¡ 1 p k 0;x k L p : (1.21) For p = +1 we estimate kV n f k L 1 using jV n f (y)j . R d sup x2 n jv n;x f jj n;x (y)j . k n;0 (y)k L 1 sup x2 n jv n;x f j:
This yields the upper bound for kV n f k L p . As for the rightmost inequality, notice that

v n;x (V n f ) = v n;x f , that is, v n;x f = Z n;x (y) V n f (y) dy :
Let p < +1 and p 0 be its conjugate exponent. By Hölder's inequality

jv n;x f j 6 k n;x k L p 0 kV n f 1 B(x;2 ¡n R) k L p ;
and moreover, X

x2 n Z jV n f (y)j p 1 B(x;2 ¡n R) (y)dy = Z jV n f (y)j p X x2 n 1 B(x;2 ¡n R) (y)dy . kV n f k L p p :
By (1.21), we have

k n;x k L p 0 . 2 dn( 1 2 ¡ 1 p 0 ) = 2 ¡dn 1 2 ¡ 1 p
, and this concludes the proof for the case p < +1. For p = +1, we just notice that jv n;x f j 6

kV n f k L 1k n;x k L 1. Remark 1.29. For each k 2 Z, the norm kf k B p; q ;k = j(v k;x f ) x2 k j `p + 2 n 2 dn 1 2 ¡ 1 p ¡ w n;x (i) f i<2 d ;x2 n `p n>k `q
is equivalent to that in (1.17). This is easy to show using Proposition 1.28 and the denition of multiresolution analysis.

As we now show, for < 0, the Besov space B 1;1 of Denition 1.23 coincides with the Besov-Hölder space C given by Denition 1.17.

Proposition 1.30. Let < 0. There exist C 1 ; C 2 2 (0; 1) such that for every f 2 C c 1 , we have

C 1 kf k C 6 kf k B 1;1 6 C 2 kf k C : (1.22)
Proof. The result is classical and proved e.g. in [START_REF] Hairer | A theory of regularity structures[END_REF]Proposition 3.20]. We recall the proof for the reader's convenience. One can check that there exists C 2 R such that for every

f 2 C c 1 , n 2 Z and x 2 R d , 2 n 2 dn 2 jw n;x (i) f j 6 C kf k C ; (1.23)
and this yields the second inequality in (1.22). Conversely, we let f 2 C 1 satisfy kf k B 1;1 6 1. We aim to show that there exists a constant C 2 R (independent of f ) such that for every y 2 R d , 2 B r 0 (with r 0 = ¡bc) and 2 (0; 1], we have

¡¡d Z R d f ¡y 6 C:
We write ;y := ¡d (( ¡y)/), and observe that Z

f ;y = X x2 0 (v 0;x f ) (v 0;x ;y ) + X i<2 d X n>0 X x2 n (w n;x (i) f ) (w n;x (i) ;y ):
We consider only the second term of the sum above, as the rst one can be obtained with the same technique. By the denition of kf k B 1;1 , for every n > 0, we have

2 dn 2 jw n;x (i) f j 6 C 2 ¡n : (1.24)
By a Taylor expansion of of order r 0 6 r around x ¡ y, and recalling (1.11), we obtain

2 ¡n 6 =) 2 dn 2 jw n;x (i) ;y j 6 C 2 ¡r 0 n ¡d¡r 0 ; (1.25)
and by the boundedness of the L 1 norm of ;y we have

2 ¡n > =) 2 dn 2 jw n;x (i) ;y j 6 C 2 dn : (1.26)
The same bounds hold for 2 dn 2 jv 0;x ;y j. In order for w n;x (i) ;y to be non-zero, we must have jx ¡ yj 6 C ( _ 2 ¡n ). By splitting the sum over n > 0 one can observe that if 2 ¡n 6 the sum P x2 n has less than C d 2 dn terms, and if 2 ¡n > it has less than C terms, and therefore the results follows from the estimations (1.25) and (1.26).

Remark 1.31. Notice that we can replace r 0 = ¡bc by a generic integer r > jj in Denition 1.17, obtaining an equivalent norm. Indeed, Proposition 1.30 shows that it suces to control the behavior of f against shifted and rescaled versions of the wavelet functions and (i) .

We now present an equivalent norm kk E p for Besov spaces, which reduces to Denition 1.17 in the case p = 1.

Denition 1.32. ([HL16, Denition 2.5]) Let f 2 C c 1 . For every < 0 and p 2 [1; 1] we introduce the norm kf k E p := sup 2(0;1] ¡ sup 2B r 0 jhf ; ;x ij L p (dx)
with ;x := ¡d ( ¡1 ( ¡x)) and B r 0 as in Denition 1.17.

The following is a straightforward generalization of Proposition 1.30.

Proposition 1.33. ([HL16, Proposition 2.6]) Let

< 0. There exist C 1 ; C 2 2 (0; 1) such that for every f 2 C c 1 , we have C 1 kf k E p 6 kf k B p;1 6 C 2 kf k E p : (1.27)
Remark 1.34. In view of propositions 1.30 and 1.33, when < 0, we write

C = B 1;1 ; C loc (U ) = B 1;1 ;loc (U );
and we set 8 2 R

C := B 1;1 C loc (U ) := B 1;1 ;loc (U ) E p := B p;1 ; E p ;loc (U ) := B p;1 ;loc (U ) :
The following proposition is a weak manifestation of the multiplicative structure of Besov spaces, which is exposed in more details in Section 1.2.1.

Proposition 1.35. (multiplication by a smooth function)

Let r > jj and p; q 2 [1; 1]. For every 2 C c r , the mapping f 7 ! f extends to a continuous functional from B p;q to itself.

Proof. We give a complete proof just for < 0 and p = q = 1. The general case is a consequence of the paraproduct estimates of Proposition 1.56 and the equivalence between wavelet-Besov norms kk B p; q and Littlewood-Paley-Besov norms kk B p; q , discussed in Section 1.1.3.

Let then f 2 C c 1 and consider the integral

¡d Z f (y) (y) y ¡ x d y:
For every > 0 and x 2 R d , dene ~as: ~;x

¡ y ¡ x = (y) ¡ y ¡ x . Then ~;x (z) = (z + x)(z) for z 2 R d . One can notice that ~;x 2 C c
r 0 and supp ~;x supp . Hence, by Proposition 1.30, there exists C > 0 (possibly dierent in every line) such that:

¡d Z f (y) (y) y ¡ x d y 6C kf k C k ~;x k C c r 0 6C kf k C k( )k C c r 0 6C kf k C kk C c r 0; uniformly over f 2 C c 1 , 2 (0; 1], 2 B r 0 and x 2 R d .
The result follows by the fact that

C c 1 is dense in C .
Remark 1.36. The notion of a complete space makes sense for arbitrary topological vector spaces, since a description of neighbourhoods of the origin is sucient for dening what a Cauchy sequence is. Yet, in our present setting, the topology of B p;q ;loc (U ) is in fact metrisable. To see this, note that there is no loss of generality in restricting the range of indexing the semi-norms to a countable subset of C c 1 (U ), e.g. f n ; n 2 Ng such that for every compact K U , there exists n such that n = 1 on K. Indeed, it is then immediate from Proposition 1.35 that if has support in K, then kf k B p; q 6 C k n f k B p; q for some C not depending on f . Hence, we can view B p;q ;loc (U ) as a complete (Fréchet) space equipped with the metric

d B p; q ;loc (U ) (f ; g) = X n=0 +1 2 ¡n k n (f ¡ g)k B p; q ^1: (1.28)
We now give an alternative family of semi-norms, based on wavelet coecients, that is equivalent to the family given in Denition 1.23 or Remark 1.36. Denition 1.37. (spanning sequence) Let R > 0 such that ( 1.12) holds. Let K U be compact and k 2 N. We say that the pair (K ; k) is adapted if

2 ¡k R < dist(K ; U c ):
(1.29)

We say that the set K is a spanning sequence if it can be written as

K = f(K n ; k n ); n 2 Ng;
where (K n ) n2N is an increasing sequence of compact subsets of U such that S n K n = U and for every n, the pair (K n ; k n ) is adapted.

For every adapted pair

(K ; k), f 2 C c 1 (U ) and n > k, we let v n;K ;p f = 2 dn 1 2 ¡ 1 p k(v n;x f ) x2 n \K k `p;
(1.30)

w n;K ;p f = 2 dn 1 2 ¡ 1 p ¡ w n;x (i) f i<2 d ;x2 n \K `p;
(1.31)

and we dene the semi-norm 1. For every adapted pair (K ; k), the mapping f 7 ! kf k B p; q ;K ;k extends to a continuous semi-norm on B p;q ;loc (U ).

kf k B p; q ;K ;k = v k;K ;p f + k(2 n w n;K ;p f ) n>k k `q: (1.

The topology induced by the family of semi-norms k k B p; q

;K ;k, indexed by adapted pairs (K ; k), is that of B p;q ;loc (U ).

3. Let K be a spanning sequence. Part (2) above remains true when considering only the seminorms indexed by pairs in K .

Remark 1.39. Another metric that is compatible with the topology on B p;q ;loc (U ) is thus given by

d B p; q ;loc (U ) 0 (f ; g) = X n=0 +1
2 ¡n kf ¡ g k B p; q ;Kn;kn ^1;

where K = f(K n ; k n ); n 2 Ng is any given spanning sequence.

Proof. (of Proposition 1.38)

In order to prove parts (1-2) of the proposition, it suces to show the following two statements.

For every adapted pair

(K ; k); there exists 2 C c 1 (U ) and C < 1s.t. 8f 2 C 1 (U ); kf k B p; q ;K ;k 6 C k f k B p; q ; (1.33)
For every 2 C c 1 (U ); there exists (K ; k) adapted pair and

C < 1s.t. 8f 2 C 1 (U ); k f k B p; q 6 C kf k B p; q ;K ;k:
(1.34)

We begin with (1.33). Let (K ; k) be an adapted pair, and let 2 C c 1 (U ) be such that

= 1 on K + B (2 ¡k R). For every n > k and x 2 n \ K, v n;x f = v n;x ( f ); w n;x (i) f = w n;x (i) ( f ) (i < 2 d );
and as a consequence,

v n;K ;p (f ) 6 2 dn 1 2 ¡ 1 p k(jv n;x ( f )j) x2 n k `p 6 C kV n ( f )k L p
(where we used (1.18) in the last step), and similarly with v n;K ;p , v n;x and V n replaced by w n;K ;p , w n;x (i) and W n respectively. We thus get that

kf k B p; q ;K ;k =v k;K ;p f + k(2 n w n;K ;p f ) n>k k `q 6C [kV k ( f )k L p + k(2 n kW n ( f )k L p ) n>n 0 k `q] 6 C k f k B p; q :
We now turn to (1.34). In order to also justify part (3), we will show that we can in fact pick the adapted pair in K = f(K n ; k n ); n 2 Ng. Let (K ; k) be an adapted pair. For every f 2 C 1 (U ), we dene

f K = X x2 k \K v k;x (f ) k;x + X n>k;i<2 d x2 n \K w n;x (i) (f ) n;x (i) : (1.35)
The functions f and f K coincide on

K 0 := fx 2 R d : dist(x; K c ) > 2 ¡k Rg: (1.36)
(Although the notation is not explicit in this respect, we warn the reader that f K and K 0 are dened in terms of the pair (K ; k) rather than in terms of K only.) Let 2 C c 1 (U ) with compact support L U . Assuming that there exists n 2 N such that L K n 0 ;

(1.37) we see that for such an n,

k f k B p; q = k f K n k B p; q 6 C kf K n k B p; q 6 C kf k B p; q
;Kn;kn by Proposition 1.35 and (1.32). Hence, it suces to justify (1.37). Let d = dist(L; U c ). Since x 7 ! dist(x; U c ) is positive and continuous on L, we obtain d > 0. If U is bounded, then there exists n 2 N such that K n contains the compact set fx: dist(x; U c ) > d/2g. We must then have 2 ¡k n R < d/2, so that

x 2 L )dist(x; K n c ) > dist(x; U c ) ¡ d 2 > d 2 > 2 ¡k n R )x 2 K n 0 :
If U is unbounded, we can do the same reasoning with U replaced by

U \ (L + B(0; R));
so the proof is complete.

Remark 1.40. For any adapted pair (K ; k), the quantity kf k B p; q ;K ;k is well dened as an element of [0; +1] as soon as f is a linear form on C c r (U ), through the interpretation of v k;x f and w n;x (i) f in (1.14) as a duality pairing.

The characterization of Proposition 1.38 yields another straightforward proof of the Besov embedding (Proposition 1.16).

Proposition 1.41. (Local Besov embedding) Let 1 6 p 2 6 p 1 6 +1, 1 6 q 2 6 q 1 6 +1, 2 R and

= + d 1 p 2 ¡ 1 p 1 :
If jj; j j < r and (K ; k) is an adapted pair, then there exists C < 1 such that for every linear form f on C c r (U ), kf k B p 1 ; q 1 ;K ;k 6 C kf k B p 2 ; q 2

;K ;k:

In particular, we have B p 2 ;q 2

;loc

(U ) B p 1 ;q 1 ;loc (U ).
Proof. We write the norm (1.32), recall (1.30) and (1.31), and use the fact that kk `p1 6

kk `p2 if p 1 > p 2 .
Due to our denition of the space B p;q ;loc (U ) as a completion of C 1 (U ), the fact that kf k B p; q ;K ;k is nite for every adapted pair (K ; k) does not necessarily imply that f 2 B p;q ;loc (U ). We have nonetheless the following result.

Proposition 1.42. Let j 0 j < r and let p; q 2 [1; 1]. Let f be a linear form on C c r (U ), and let K be a spanning sequence. If for every

(K ; k) 2 K , kf k B p; q 0 ;K ;k < 1;
then for every < 0 , the form f belongs to

B p;1 ;loc (U ).
Proof. We rst check that for every (K ; k) 2 K , there exists a sequence

(f N ;k ) N 2N in C c r (U ) such that kf ¡ f N ;k k B p;1
;K ;k tends to 0 as N tends to innity. The functions

f N ;k := X x2 k \K v k;x (f ) k;x + X k6n6N ;i<2 d x2 n \K w n;x (i) (f ) n;x
satisfy this property. Now notice that for (k ~; K ~) 2 K such that K ~ K, the function f N ;k coincides with f N ;k on the set K 0 of (1.36). Then dening f N = f N ;N , we obtain that for every 2 C c 1 (U ), there exists n 0 ; N 0 (n 0 ) such that for every n > n 0 and N > N 0 ,

k(f N ¡ f ) k B p;1 = k(f N ;k n ¡ f ) k B p;1 ;
where we have indexed the spanning sequence as K = (k n ; K n ) n2N . By (1.34), there exist (k m ; K m ) 2 K , C > 0 with m large enough, such that: 

k(f N ;k n ¡ f ) k B p;1 6 C kf N ;k n ¡ f k B p;1 ;Km;km We can eventually choose m = n to obtain k(f N ¡ f ) k B p;1 ! 0 for every 2 C c 1 (U ),
(U ) is bounded in B p;q 0 ;loc (U ) if and only if for every adapted pair (K ; k), we have sup m2N kf m k B p; q 0 ;K ;k < 1:
We show that for every adapted pair (K ; k), there exists a subsequence

(m n k ) n k 2N and f (K) in B p;s ;loc (U ) such that kf m n k ¡ f (K) k B p;s 0 ;K ;k converges to 0 as n goes to innity.
The assumption that sup m kf m k B p; q 0 ;K ;k < 1 can be rewritten as

k(v k;x f m ) x2 k \K k `p + + (2 n 0 +nd 1 2 ¡ 1 p k(w n;x (i) f m ) i<2 d ;x2 n \K k `p) n>k `q 6 C uniformly over m 2 N.
By a diagonal extraction argument, there exist a subsequence, which we still denote (f m ) for convenience, and numbers v ~k;x , w ~n;x (i) such that

k(v k;x f m ¡ v ~k;x ) x2 k \K k `p + + (2 n+nd 1 2 ¡ 1 p k(w n;x (i) f m ¡ w ~n;x (i) ) i<2 d ;x2 n \K k `p) n>k `s ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! m!1 0 Dening f (K) = X x2 k \K v ~k;x k;x + X n>k;i<2 d x2 n \K w ~n;x (i) n;x (i) ; we have f (K) 2 B p;s ;loc (U ) and kf m ¡ f (K) k B p;s ;K ;k ! 0 as m goes to innity. The subsequence (f m ) is Cauchy in B p;s ;loc (U ). Indeed, for every (K ; k) 2 K , there exists n 0 = n 0 (K) such that for every n; m > n 0 , kf n ¡ f m k B p;s ;K ;k 6 kf n ¡ f (K) k B p;s ;K ;k + kf (K) ¡ f m k B p;s ;K ;k < ":
This completes the proof. This sequence is bounded in every global Besov space B p;q (R d ), but has no convergent subsequence in any of these spaces.

An immediate consequence of Propositions 1.42 and 1.43 is the following:

Corollary 1.45. Let j 0 j < r, p; q 2 [1; 1], let K be a spanning sequence, and for every

(K ; k) 2 K , let M K 2 [0; 1). For every < 0 , s 2 [1; 1], the set n f linear form on C c r (U ) such that 8(K ; k) 2 K ; kf k B p; q 0 ;K ;k 6 M K o (1.38) is compact in B p;s ;loc (U ).

Tightness and continuity criterions for random elds

Theorem 1.46. (Tightness criterion) Recall that ;

( (i) ) 16i<2 d are in C c
r and such that ( 1.12) holds, and x p 2 [1; 1), q 2 [1; 1] and ; 2 R satisfying jj; j j < r, < . Let (f m ) m2N be a family of random linear forms on C c r (U ), and let K be a spanning sequence (see Denition 1.37). Assume that for every

(K ; k) 2 K , there exists C = C(K ; k) < 1 such that for every m 2 N, sup x2 k \K E[jhf m ; (2 k ( ¡ x))ij p ] 1/p 6 C ;
(1.39) and sup

x2 n \K 2 dn E[jhf m ; (i) (2 n (¡x))ij p ] 1/p 6 C 2 ¡n ; (i < 2 d ; n > k):
(1.40)

Then the family (f m ) is tight in B p;q ;loc (U ). If moreover < ¡ d / p, then the family is also tight in C loc (U ).
Remark 1.47. Note that the assumption in Theorem 1.46 simplifies when the field under consideration is stationary, since the suprema in (1.39) and (1.40) can be removed.

Although we are primarily motivated by applications of this result for negative exponents of regularity, the statements we prove are insensitive to the sign of this exponent. Naturally, such tightness statements can then be lifted to statements of convergence in B p;q ;loc (U ) provided that one veries that the sequence (f m ) has a unique possible limit point (and the latter can be accomplished by checking that for each test function 2 C c 1 (U ) the random variable hf m ; i converges in law as m tends to innity).

Proof. (Th. 1.46) By (1.13) and (1.14), we have for every (K ; k) 2 K , uniformly over m that sup

x2 k \K E[jv k;x f m j p ] . 1; sup x2 n \K 2 dnp 2 E w n;x (i) f m p . 2 ¡np (i < 2 d ; n > k):
Recalling the denition of v k;K ;p and w n;K ;p in (1.30) and (1.31) respectively, we have

jv k;K ;p f m j p . X x2 k \K jv k;x f m j p ; so that E[jv k;K ;p f m j p ] . 1: Similarly, jw n;K ;p f m j p . 2 dn ¡ p 2 ¡1 X i<2 d ;x2 k \K w n;x (i) f m p ; so that E[jw n;K ;p f m j p ] . 2 ¡np :
It follows from these two observations and from (1.32) that

sup m2N E h kf m k B p;1 ;K ;k p i < 1: (1.41)
By Chebyshev's inequality, for any given " > 0, there exist (M K ) such that if we set

E := n f linear form on C c r (U )such that 8(K ; k) 2 K ; kf k B p;1 ;K ;k 6 M K o ;
then for every m,

P[f m 2 E ] > 1 ¡ ":
By Corollary 1.45, this implies the tightness result in B p;q ;loc (U ). For the second statement, we note that (1.41) and Proposition 1.41 imply that

sup m2N E h kf m k B 1;1 ¡d/p;K ;k p i < 1:
The conclusion then follows in the same way.

Remark 1.48. We can also infer from the proof that for each 2 C c 1 (U ), there exists a constant C ~ such that under the assumption of Theorem 1.46, we have

sup m2N E h k f m k B p;1 p i < C ~ C ; as well as sup m2N E[k f m k C ¡d/p p ] < C ~ C:
We conclude this section by proving a statement analogous to Kolmogorov's continuity theorem.

Proposition 1.49. (Continuity criterion)

Let (f (); 2 C c r (U )
) be a family of random variables such that, for every ; 0 2 C c r (U ) and every 2 R, there exists a measurable set

A = A(; ; 0 ) with P(A) = 1 such that f ( + 0 )(!) = f ()(!) + f ( 0 )(!) 8! 2 A: (1.42)
Assume also the following weak continuity property: for each compact K 0 U and each sequence n ; 2 C c r (U ) with supp n K 0 , we have

n ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! in C c r ¡1 n!1 =) f ( n ) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! prob.
n!1 f ():

Let p 2 [1; 1), q 2 [1; 1], and let ; 2 R be such that jj; j j < r and < . Let K be a spanning sequence, and assume nally that, for every (K ; k) 2 K , there exists C > 0 such that for every n > k, Proof. For every (K ; k) 2 K and N 2 N, we dene

sup x2 k \K E[jf ((2 k (¡x)))j p ]
f ~N ;k := X x2 k \K v k;x (f ) k;x + X k6n6N ;i<2 d x2 n \K w n;x (i) (f ) n;x (i) ;
where we set

v k;x (f ) := f ( k;x ) and w n;x (i) (f ) = f ( n;x (i) ): Cleary, f ~N ;k is almost surely in C c r .
Following the proof of Theorem 1.46, we get:

E " 2 dn(p/2¡1) X x2 n \K ;i<2 d jw n;x (i) (f )j p # . 2 ¡np ;
where the implicit constant does not depend on n. Hence, for each (i) and the fact that has compact support in U , we have, for k suciently large,

= X x2 k \K h k;x ; i k;x + lim N !+1 X k6n6N ;i<2 d x2 n \K h n;x (i) ; i n;x (i) ;
where we recall that h; i denotes the scalar product of L 2 (R d ). We x such k suciently large, and denote

N := X x2 k \K h k;x ; i k;x + X k6n6N ;i<2 d x2 n \K h n;x (i) ; i n;x (i) :
By a Taylor expansion of and (1.11), one can check that there exists C(d; ) < 1 such that

2 dn 2 h n;x (i) ; i 6 C 2 ¡rn :
From this, together with the expressions for N and above, we obtain that 9C(d; ) < 1 such that for any multi-index 6 jrj

k@ ¡ @ N k L 1 < C X n>N 2 ¡rn 2 jjn
and thus

N ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! in C c r ¡1 N !1 :
Therefore by the weak continuity assumption, we deduce that

f ( N ) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! prob. N !1 f ():
In order to conclude, there remains to verify that

hf ~; N i = f ( N ) almost surely
This follows from the assumption (1.42).

Equivalence of norms

In this section we discuss the equivalence between the characterization of Besov spaces via Littlewood-Paley decomposition of Section 1.1.1 and the characterization via compactly supported wavelets of Section 1.1.2.

Proposition 1.50. ([Mey92, Proposition 2.9.4]) Let > 0, p; q 2 [1; 1] and f 2 L p (R d ). The following two properties are equivalent.

1. Let r > be an integer and ; (V n ) n2Z be a r-regular multiresolution analysis as of Denition 1.20. Then the sequence (2 n kW n f k L p ) n2N belongs to `q and V 0 f belongs to L p (R d ).

2. There exists a sequence of positive numbers (" n ) n2N 2 `q and a sequence of functions f 0 ; g 0 ; g 1 ; :::

2 L p (R d ) such that f = f 0 + P n>0 g n , kg n k L p 6 " n 2 ¡n for n > 0 and k@ k g n k L p 6 " n 2 (m¡)n for some integer m > and every multi-index k 2 N d such that jkj = m.
In particular, the functions

f 0 = V 0 f, g n = W n f verify (2). Moreover, the norms kf 0 k L p + k2 n k g n k L p k `q and kV 0 f k L p + k2 n k W n f k L p k `q are equivalent.
A consequence of this result is the fact that the Besov spaces dened in Section 1.1.2 are independent from the choice of a particular wavelet basis or multiresolution analysis.

Lemma 1.51. (Equivalence of multiresolution analyses) For any 2 Rnf0g and any positive integer r such that r > jj, the norm kk B p; q of Denition 1.23 does not depend on the given r-regular multiresolution analysis, i.e. every r-regular multiresolution analysis yields an equivalent norm.

Proof. Proposition 1.50 gives the equivalence of norms for > 0.

For < 0, p; q 2 [1; 1], dene 0 = ¡, 1 / p + 1 / p 0 = 1 and 1 / q + 1 / q 0 = 1. We introduce the following norm which is clearly independent from the choice of multiresolution analysis:

kf k B ~p;q = sup g2L p 0 kg k B p 0 ; q 0 0 61
hf ; g i (notice that this norm is slightly dierent from the norm of the dual of B p 0 ;q 0 0 , because we chose B p 0 ;q 0 0 to be the complection of C c 1 with respect to the norm kk B p 0 ; q 0 0 ).

We want to show that kk B ~p;q and kk B p; q are equivalent. Let f 2 C c 1 . The bound kf k B ~p;q . kf k B p; q is straightforward: by Proposition 1.50 we can write g = V 0 g + P n W n g and obtain

hf ; gi = hV 0 f ; V 0 g i + X n>0 hW n f ; W n gi 6 kf k B p; q kgk B p 0 ; q 0
thanks to the orthogonality in L 2 between spaces W n and Hölder's inequality.

To show that kf k

B p; q . kf k B ~p;q , recall that if f 2 L p () then kf k L p () = sup g2L p 0 ();kgk L p 061 Z f (x) g(x) (dx)
(see e.g. Lemma 1.2 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF]). Then for every > 0 there exists h 0 2 L p 0 such that kh 0 k L p 0 6 1 and kV

0 f k L p R V 0 f (x) h 0 (x)dx + . Let Q N q 0 = f(a n ) n>0 2 `q0 j ka n k `q0 6 1 , a n = 0 for n > N g:
We have

kf k B p; q = kV 0 f k L p + sup N 2N sup (a n )2 Q N q 0 X n=0 N a n 2 n kW n f k L p :
As above, for every n > 0 there exist

g n 2 L p 0 such that kg n k L p 0 6 1 and kW n f k L p 6 R W n f (x) g n (x)dx + " n . Now we can estimate the norm kf k B p; q 6 hV 0 f ; V 0 h 0 i + sup N 2N sup (a n )2 Q N q 0 X n=0 N hW n f ; 2 n a n W n g n i + " " = + sup N 2N sup (a n )2Q N q 0 X n=0 N 2 n a n " n
where we used the fact that the spaces W n are orthogonal in L 2 . The remainder " can be made arbitrarily small: indeed

P n=0 N 2 n a n " n 6 k2 n k `q sup n0 " n (recall that < 0). Dene g N = V 0 h 0 + X n=0 N 2 n a n W n g n :
The operators V n : L p ! L p and W n : L p ! L p are uniformly bounded: we can estimate the norm of g N as

kg N k B p 0 ; q 0 0 6 kh 0 k L p 0 + k2 n 0 2 n a n k g n k L p 0k `q0 6 C and then kf k B p; q 6 sup N 2N sup (a n )2Q N q 0 hf ; g N i + " = sup g N 2L p 0 kg N k B p 0 ; q 0 0 6C hf ; g N i + " . kf k B ~p;q + ":
This completes the proof of the result for = / 0. The case = 0 can then be recovered by interpolation.

Proposition 1.52. (Equivalence of LP-wavelet Besov spaces) For any 2 Rnf0g there exist C 1 ; C 2 2 (0; 1) such that for every f 2 C c r , we have

C 1 kf k B p; q 6 kf k B p; q 6 C 2 kf k B p; q with kk B p; q
given by Denition 1.23 and kk B p; q given by Denition 1.10

Proof. For > 0 we follow the proof of Proposition 1.50 given in [START_REF] Meyer | Wavelets and Operators[END_REF] to show that the following two properties are equivalent:

1. The sequence (2 j k j f k L p ) j 2N belongs to `q and ¡1 f belongs to L p (R d ).

2. 9(" k ) k2N 2 `q, " k > 0 and 9f 0 ; g 0 ; g 1 ; :::

2 L p (R d ) such that f = f 0 + P k>0 g k , kg k k L p 6 " k 2 ¡k for k > 0 and k@ r g k k L p 6 " k 2 (m¡)k for some integer m > and every multi-index r 2 N d such that jrj = m.
The fact that in point 2 one can take g k = k f is clear from Bernstein inequalites (Lemma 1.8). To show (2) ) (1) we write

j f = j f 0 + X k=0 1 j g k : Then since k j g k k L p 6 C kg k k L p uniformly on j 2 N (see Remark 1.5) we estimate k X k>j j g k k L p 6 C X k>j " k 2 ¡k
and for k 6 j we have, again by Bernstein inequalities k j g k k L p 6 C2 ¡mj 2 (m¡)k " k and then

k j f k L p 6 C2 ¡mj X k6j " k 2 (m¡)k + C X k>j " k 2 ¡k 6 C 0 " j 0 2 ¡j
with " j 0 = P k " k 2 ¡(m¡)jj ¡kj and then (" j 0 ) j 2N 2 `q. For < 0 we proceed as in the proof of Lemma 1.51.

From Proposition 1.52 follows immediately that B p;q B p;q and B p;q ;loc

(U ) = B p;q ;loc (U ).
Remark 1.53. The equivalence between Littlewood-Paley-Besov norms and wavelets-Besov norms holds for = 0 as well, as can be shown by interpolation techniques (for a discussion on interpolation of Besov space we refer to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF]).

Paracontrolled calculus

In this section we rst introduce Bony's paraproducts [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], and then recall the some basic results of paracontrolled calculus introduced by Gubinelli, Imkeller and Perkowski in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] to deal with parabolic SPDEs. We will focus on distributions on the d-dimensional torus

T d = (R d / 2pZ) d , denoted as D 0 (T d ) = S 0 (T d ), and write C := C (T d ), L p := L p (T d ), C n = C n (T d ).
However, the results presented here can be easily carried over to the whole d-dimensional space R d .

Bony's paraproducts and paralinearization

The theory of paraproducts, developed by J. M. Bony in 1981 [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], yields a way to dene the product of two tempered distributions under appropriate assumptions. Let u 2 C and v 2 C as in Denition 1.10 for ; 2 R. We can decompose u; v 2 S 0 as

u = X j>¡1 j u; v = X j>¡1 j v
thanks to Lemma 1.6. For every j ; k > ¡1, the product j u k v is well dened as a C 1 function: showing the convergence of P j ;k j u k v in S 0 would allow to dene the product u v as this limit. We start splitting this sum as:

X j ;k>¡1 j u k v = X k>1 S k u k v + X k>1 k uS k v + X j>¡1 X k:jk¡ j j61 j u k v with S k u = P j <k ¡1 j u as in (1.3). Note that 8k > 1, 8j > ¡1 the products S k u k v; k u S k v; X k:jk ¡j j61 j u k v (1.44)
are well dened as nite sums of smooth functions. As a consequence of the disjointness properties (1.1),(1.2) of the dyadic partition of unity of Proposition 1.1, we obtain that there exists an annulus A R d and a ball B(0; R) R d such that 8k > 1, 8j > ¡1:

supp F(S k u k v) 2 k A; supp F( k u S k v) 2 k A; supp F( X k:jj ¡kj61 j u k v) 2 k B(0; R):
Therefore, by Lemma 1.9 it is immediate to see that P k>1 S k u k v and P k>1 k u S k v are well dened elements of S 0 for every u 2 C ; v 2 C , ; 2 R. On the other hand we cannot apply Lemma 1.9 to the term P j>¡1 P k:jk ¡j j61 j u k v, and this gives some restrictions on ; as shown in the following proposition.

Proposition 1.54. (paraproduct estimates)

1. Let u 2 C , v 2 C , ; 2 R. Then the sum u v := X k>1 S k u k v (1.45) belongs to S 0 . 2. Let u 2 L 1 and v 2 C with 2 R. Then u v 2 C and ku v k C . kuk L 1kv k C (1.46) 3. Let u 2 C and v 2 C with < 0, 2 R. Then u v 2 C + and ku v k C + . kuk C kvk C (1.47) 4. Let u 2 C and v 2 C with + > 0. Then the sum u v := X j>¡1 X k:jj ¡kj61 j u k v (1.48) belongs to L 1 . Moreover, u v 2 C + and ku vk C + . kuk C kvk C (1.49) Proof.
1. Since S k u k v has Fourier transform supported in an annulus 2 k A, we can apply Lemma 1.9 with n = d¡ ¡ e _ 0 to obtain u v 2 S 0 .

Since supp

F(S k u k v) 2 k A there exists N 0 2 N such that (2 N 0 ¡k ) F(S k u k v) = 0; (2 ¡N 0 ¡k ) F(S k u k v) = 0;
and then for every `2 N large enough we have

k `X k>1 S k u k vk L 1 . kS `u `v k L 1 . kuk L 1 2 ¡`k vk
where we used the fact that the operators S `: L 1 ! L 1 `: L 1 ! L 1 with norms independent of `, as shown in Remark 1.5.

3. We have for every k > 1:

k X j <k ¡1 j u k vk L 1 . 2 ¡k kuk C kv k C X j <k¡1 2 ¡j . 2 ¡k(+) kuk C kv k C
and bounding as before k `Pk>1 S k u k vk L 1 we obtain the result.

4. We have 8j > ¡1 k X k:jj ¡kj61 j u k vk L 1 . 2 ¡(+)j kuk C kv k C
and since + > 0 the sum converges in L 1 . Since there exists R > 0 such that supp F(

P k:jk¡j j61 j u k v) 2 k B(0; R), then 9N 0 2 N such that `X j>¡1 X k:jj ¡kj61 j u k v = `X j >`+N 0 X k:jj ¡kj61 j u k v and estimating k X k:jj ¡kj61 j u k vk L 1 . 2 ¡j(+) kuk C kv k C we obtain k `(u v)k L 1 . 2 ¡`(+ ) kuk C kvk C :
Remark 1.55. Proposition 1.54 allows to dene the product between u 2 C and v 2 C when + > 0 as

u v := u v + v u + u v:
In order for this to be a good denition, the paraproduct should verify the Leibniz' property for the derivative of a product. But this is obviously true, knowing that the partial sums (1.44) converge in S 0 and that the derivative is a continuous operator S 0 ! S 0 .

Bony's paraproducts estimates hold for general Besov spaces B p;q as shown in Theorem 2.82 and 2.85 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Dierential Equations[END_REF]. We recall here the result: Proposition 1.56. (Multiplicative inequalities) Let p; p 1 ; p 2 ; q; q 1 ; q 2 2 [1; 1] be such that

1 p = 1 p 1 + 1 p 2 and 1 q = 1 q 1 + 1 q 2 :
1. If > 0, then the mapping

(f ; g) 7 ! f g + g f + f g (1.50) dened on f ,g 2 C c
1 extends to a bilinear continuous functional from B p 1 ;q 1 B p 2 ;q 2 to B p;q .

2. If < 0 < with + > 0, then the mapping ( 1.50) extends to a bilinear continuous functional from B p 1 ;q 1 B p 2 ;q 2 to B p;q .

Parabolic and time-weighted spaces

When dealing with paraproducts in the context of parabolic equations (as will be the case in Chapters 5 and 6) it is possible to dene parabolic Besov spaces on R + T d and related paraproducts. Anyway, in order to keep the setting simpler, we choose to introduce distribution-valued functions of time as follows. Given a Banach space X with norm kk X and T > 0, we note

C T X := C([0; T ]; X)
for the space of continuous maps from [0; T ] to X, equipped with the supremum norm kk C T X , and we set CX = C(R + ; X). For 2 (0; 1) we also dene C T X as the space of -Hölder continuous functions from [0; T ] to X, endowed with the norm

kf k C T X = sup 06t6T kf (t)k X + sup 06s<t6T kf (t) ¡ f (s)k X jt ¡ sj
and we write C loc X for the space of locally -Hölder continuous functions from R + to X. Moreover for convenience we denote

C T := C T C (T d ):
We will avoid to write explicitly the time span T whenever this does not cause ambiguities. We introduce the following time-weighted spaces, also called explosive spaces for the fact that they allow the X norm to diverge as t ! 0 at a speed prescribed by the parameter .

Denition 1.57. (time-weighted spaces) Let X be a Banach space and C T X as above. For > 0, p 2 [1; 1), we dene

M T ;p X = fv: L p ((0; T ]; X) : kv k M T ; p X = kt 7 ! t v(t)k L p ((0;T ];X) < 1g; M T X = fv: C((0; T ]; X) : kvk M T X = kt 7 ! t v(t)k C T X < 1g: (1.51)
The following spaces are the best suited in the framework of parabolic PDEs, and will be useful in the next sections. Denition 1.58. (parabolic spaces) Let 2 (0; 2) and C as in Denition 1.10. Dene the space

L T = C T /2 L 1 \ C T C (1.52)
equipped with the norm

kf k L T = max n kf k C T /2 L 1 ; kf k C T C o :
Dene also the space

L _ T = C T /2 C 0 \ C T C (1.53) equipped with the norm kf k L _ T = max n kf k C T /2 C 0 ; kf k C T C o :
Obviously, kk L _ T . kk L T since kk C 0 . kk L 1 (as discussed in Section 1.1.1). On the other hand, we have the following interpolation result.

Lemma 1.59. Let 2 (0; 2), 0 < " < and u 2 L T _ . Then

kuk C T /2¡"/2 L 1 . kuk L _ T and kuk L T ¡" . kuk L _ T Proof.
We start showing the rst inequality:

sup s= / t ku t ¡ u s k L 1 jt ¡ sj /2¡"/2 6 sup s= / t [ X i6n k i u t ¡ i u s k L 1 jt ¡ sj /2¡"/2 + X i>n k i u t ¡ i u s k L 1 jt ¡ sj /2¡"/2 ]
and choosing 2 ¡n¡1 6 jt ¡ sj 1/2 6 2 ¡n we obtain

X i<n k i u t ¡ i u s k L 1 jt ¡ sj /2¡"/2 . kuk C T /2 C 0 X i6n jt ¡ sj "/2 X i>n k i u t ¡ i u s k L 1 jt ¡ sj /2¡"/2 . kuk C T X i>n 2 ¡i 2 (¡")n
and this yields the result. The second inequality is a direct consequence of the rst one together with the Besov norm inequality kk

C T C ¡" . kk C T C seen in Section 1.1.1.
When working with irregular initial conditions, we need to consider explosive spaces of parabolic type. For > 0, 2 (0; 2), and T > 0 we dene the norm

kf k L T ; = max n kt 7 ! t f (t)k C T /2 L 1 ; kf k M T C o ; (1.54)
and the space

L T ; = ff : [0; T ] ! R: kf k L T ; < 1g. In particular L T 0; = L T .
The following lemma is a direct consequence of the denition (1.54).

Lemma 1.60. For all 2 (0; 2), 2 [0; 1), " 2 [0; ^2), T > 0 and f 2 L T ; with f (0) = 0 we have kf k L T ¡"/2;¡" . kf k L T ; :

(1.55)

Let 2 (0; 2), 2 (0; 1); T > 0, and let f 2 L T

. Then for all 2 (0; ] we have

kf k L T . kf (0)k C + T (¡)/2 kf k L T ; kf k L T ; . T (¡)/2 kf k L T ; :
(1.56)

Schauder estimates

Let

L := @ t ¡ (1.57)
denote the heat operator with periodic boundary conditions on T d . We introduce the linear operator (1.58) for all T > 0. If further > ¡, then 8s 2 [0; T ]:

I: C(R + ; D 0 (T d )) ! C(R + ; D 0 (T d ))
ks 7 ! P s u 0 k L T ( +)/2; . ku 0 k C ¡: (1.59)
For all 2 R, 2 [0; 1), and T > 0 we have

kIf k M T C . kf k M T C ¡2:
(1.60)

We give also some bounds for the solutions of the heat equation with sources in spacetime Lebesgue spaces.

Lemma 1.62. Let 2 R and f 2 L T p B p;1 , then for every 2 [0; 1] we have I f 2 C T /q C +2(1¡)¡(2¡2+d)/p with kIf k C T /q C +2(1¡)¡(2¡2+d)/p . T kf k L T p B p;1 ; with 1 q + 1 p = 1. Moreover, for every < 0 < 1 ¡ 1/ p and every 0 < < (2 ¡ 5/ p + ) ^2 we have kIf k L T 0 ; . T kf k M T ; p B p;1 :
Proof. We only show the second inequality as the rst one is easier and obtained with similar techniques. Let u = If , we have

t k i u(t)k L 1 6 t 1/q 2 di/p Z 0 1 s ¡q e ¡cq2 2i t(1¡s) ds 1/q Z 0 t s p k i f (s)k L p p d s 1/p . ;q 2 id/p 2 ¡2i/q Z 0 t s p k i f (s)k L p p d s 1/p which allows us to bound kIf k M T C . In order to estimate kt 7 ! t 0 If k C T /2
L 1 we write

kt 0 i u(t) ¡ s 0 i u(s)k L 1 . Z s t v 0 ¡1 k i u(v)k L 1dv +jt ¡ sj2 i(d+2)/p k i f k M T ; p L p (T 3 ) + Z s t v 0 i f (v) d v L 1 :
We can estimate the rst term as

Z s t v 0 ¡1 k i u(v)k L 1dv . 2 i(d+2)/p k i f k M T ; p L p (T 3 ) Z s t v 0 ¡ ¡1 dv:
For the third term we have

Z s t v i f (v) d v L 1 . Z s t dv 1/q Z s t v p k i f (s)k L 1 p dv 1/p . 2 id/p jt ¡ sj 1/q k i f k M T ; p L p (T 3 )
We obtain then if 2 2i jt ¡ sj 6 1

kt 0 i u(t) ¡ s 0 i u(s)k L 1 . 2 id/p jt ¡ sj 1/q k i f k M T ; p L p (T 3 ) 1.2 Paracontrolled calculus
and if 2 2i jt ¡ sj > 1 we just use the trivial estimate

kt 0 i u(t) ¡ s 0 i u(s)k L 1 . 2 id/p 2 ¡2i/q k i f k M T ; p L p (T 3 ) . 2 id/p jt ¡ sj 1/q k i f k M T ; p L p (T 3 ) :
Therefore, for every 2 [0; 1]:

kt 0 i u(t) ¡ s 0 i u(s)k L 1 . 2 ( d+2 p ¡2)i 2 2i/q jt ¡ sj /q k i f k M T ; p L p (T 3 ) :
Choosing / q = /2 we obtain the desired estimate.

Time-smoothed paraproduct

In order to deal with parabolic equations involving the heat operator L of (1.57) we need to introduce a modied paraproduct with a smoothing in the time variable that is tuned to the parabolic scaling. Let ' 2 C 1 (R; R + ) be a non-negative function with supp ' R + and such that R '(x)dx = 1, and dene for all k > ¡1 the operator

Q k : CC ! CC ; Q k f (t) = Z 0 1 2 ¡2k '(2 2k (t ¡ s))f (s)ds:
We can extend functions f 2 C T C to functions g 2 f 2 CC by taking g(t) := f (t ^T ) 8t > 0 and thus apply the operator Q k dened on CC . We dene then the paraproduct

f g := X k>1 (Q k S k f ) k g (1.61) for f ; g 2 C(R + ; D 0 (T d )).
We collect in the following lemma some standard estimates for the modied paraproduct f g, whose proof can be found in [START_REF] Gubinelli | KPZ reloaded[END_REF].

Lemma 1.63.

a) For every 2 R and 2 [0; 1) we have

t kf g(t)k C . kf k M t L 1k g(t)k C ; (1.62)
for every t > 0, and for < 0 furthermore

t kf g(t)k C + . kf k M t C kg(t)k C : (1.63) b) Let ; 2 (0; 2), 2 [0; 1), T > 0, and let f 2 L T ; , g 2 C T C , and L g 2 C T C ¡2 . Then kf g k L T ; . kf k L T ;(kg k C T C + kL g k C T C ¡2):
(1.64)

Commutator estimates and paralinearization

The key ingredient at the core of paracontrolled calculus is the following commutation result, rst proved in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. See also [START_REF] Gubinelli | Lectures on singular stochastic PDEs[END_REF]Lemma 14] for the slightly dierent statement recalled here.

Lemma 1.64. (commutator) Assume that ; ; 2 R are such that + + > 0 and + = / 0. Then for f ; g; h 2 C 1 the trilinear operator

com 1 (f ; g; h) := ((f g) h) ¡ f (g h) (1.65)
allows for the bound

kcom 1 (f ; g; h)k C + . kf k C kg k C khk C ; (1.66)
and can thus be uniquely extended to a bounded trilinear operator

com 1 : C C C ! C + :
If + + > 0 with 2 (0; 1), then we have the bound

kcom 1 (f ; g; h)k C + + . kf k C kg k C khk C ; (1.67)
and com 1 can be extended to a bounded trilinear operator

com 1 : C C C ! C + + :
The following commutator is due to Bony [Bon81]:

Lemma 1.65. Let 2 (0; 1), 2 R, and let g 2 C , f 2 L 1 , and h 2 C . Then

kf (g h) ¡ (fg) hk C + . kf k L 1k gk C khk C ; if f 2 C , g 2 L 1 , h 2 C we obtain the estimation kf (g h) ¡ (fg) hk C + . kf k C kgk L 1kh k C :
Proof. From the Fourier support properties of the L-P blocks we obtain easily

k j [f (g h) ¡ (fg) h]k L 1 . kS j f S j g ¡ S j (f g)k L 1k j hk L 1 . 2 ¡j khk C kS j f S j g ¡ S j (f g)k L 1 And since 8x 2 T d j[S j f S j g ¡ S j (f g)](x)j = j Z P j ;x (y)P j ;x (z)f (y)[g(z) ¡ g(y)]dydz j . kg k C kf k L 1 Z jP j ;x (y)P j ;x (z)j jy ¡ z jdydz . 2 ¡j kg k C kf k L 1
we obtain the rst estimation. The second one follows in the same way.

Bony proved also a basic paralinearisation result, soon after improved by Meyer. We give here a particular version suited to our purposes.

Proposition 1.66. (paralinearization)

Let

2 (0; 1), f 2 (C ) d and F 2 C 3 (R d ; R) then R F (f ) := F (f ) ¡ F 0 (f ) f 2 C 2 with kR F (f )k C 2 . kF k C 2(1 + kf k C ) 2 : Moreover the map f 7 ! R F (f ) is locally Lipshitz and kR F (f ) ¡ R F (f ~)k C 2 . kF k C 3(1 + kf k C + kf ~kC ) 2 kf ~¡ f k C :
We introduce some commutators involving the time-smoothed paraproduct, which allow to control its interaction with the heat operator (1.57). The proof can be found in [START_REF] Gubinelli | KPZ reloaded[END_REF].

Lemma 1.67. a) For ; ; 2 R such that + + > 0 and 2 (0; 1) there exists a bounded trilinear map

com 1 : C C C ! C ++ ;
such that for smooth f ; g; h:

com 1 (f ; g; h) = (f g) h ¡ f (g h):
(1.68) b) Let 2 (0; 2), 2 R, and 2 [0; 1). Then the bilinear maps

com 2 (f ; g): =f g ¡ f g: (1.69) com 3 (f ; g): =[L ; f ]g := L (f g) ¡ f L g: (1.70)
have the bounds

t kcom 2 (f ; g)(t)k + . kf k L t ; kg(t)k C ; t > 0: (1.71)
as well as

t kcom 3 (f ; g)(t)k + ¡2 . kf k L t ; kg(t)k C ; t > 0: (1.72)
Chapter 2 Some stochastic calculus

White noise, Wiener chaos and Wick products

In this section we recall some basic stochastic calculus results, following closely [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] and [START_REF] Nualart | The Malliavin calculus and related topics[END_REF].

Denition 2.1. Let H be a real separable Hilbert space. We say that a stochastic process W = fW (h); h 2 H g dened in a complete probability space (; F ; P) is an isonormal Gaussian process indexed by H if W is a family of centered Gaussian random variables such that E(W (g)W (h)) = hg; hi H . We call white noise on R T d the isonormal Gaussian process indexed by L 2 (R T d ).

By Kolmogorov's extension theorem, for every H there exists a probability space and a Gaussian process W dened on it which veries the properties above. For the existsnce of an S 0 (R T d ) valued measure with the properties above, see also [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]. We dene Hermite polynomials with leading coecient =1, i.e.

H n (x) := (¡1) n e x 2 2 d n dx n e ¡ x 2 2 ; H n (x; 2 ) := n H n x :
(2.1)

Observing that e tx¡t 2 /2 = P n>0 t n n! H n (x) we obtain easily the relations

H n 0 (x; 2 ) = n H n¡1 (x; 2 ); H n+1 (x; 2 ) = x H n (x; 2 ) ¡ n 2 H n¡1 (x; 2 ) Lemma 2.2. ([Nua06, Lemma 1.1.1]) Let X ; Y two random variables with joint centered Gaussian distribution with E(X 2 ) = E(Y 2 ) = 2 . Then 8n; m > 0 E(H n (X ; 2 )H m (Y ; 2 )) = 1 m=n n! [E(X Y )] n :
Let H 0 be the set of constants and H n for every n > 1 the closure in L 2 (; F ; P) of the vector space generated by the random variables fH n (W (h))jh 2 H ; khk H = 1g. The decomposition above is called Wiener chaos decomposition. For random variables belonging to a nite chaos decomposition we have the following hypercontractivity property:

Proposition 2.4. Let p > 1, X 2 L n=0 N
H n for some N 2 N and X 2 L p (). Then 8q > p there exists a constant C = C(p; q; N ) such that

kX k L q () 6 C kX k L p () :
This result is due to E.Nelson. For a proof which uses Ito 's lemma see [Nua06, Th.1.4.1].

Let F : R! R be a measurable function such that F (W (h)) 2 L 2 (; (W ); P). Choosing an orthogonal basis of H that contains h, we can write the chaos decomposition of F (W (h)) as

F (W (h)) = X n>0 f n H n (W (h); khk H 2 ) (2.2)
and by Lemma 2.2

f n = 1 n! khk H n E[F (khk H G)H n (G)]
with G N (0; 1). We note J n the projection on H n , and this yields J 0 (X) = E(X).

Denition 2.5. Let W (h 1 ) W (h n ) 2 fW (h); h 2 H g . The Wick product is dened as JW (h 1 ) W (h n )K := J n (W (h 1 ) W (h n ))
Following [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] we call Feynman diagram a graph with n vertices and r 6 n/2 edges without common endpoints. The graph = (V (); E()) has then n ¡ 2r unconnected vertices, which we call V 0 (), and 2r vertices that are connected with exactly one other vertex, called V c (). We call contractions the edges of , and note n() and r() respectively the order and rank of . There are n! 2 r r! (n ¡ 2r)! diagrams of order n and rank r. Each vertex is labelled with a random variable W (h i ), 1 6 i 6 n (and the labels are kept distinguished even when two random variables are equal). The value v() of a Feynman diagram labelled by (W (h 1 ); :::

; W (h n )) is dened as v() = Y hi;j i2E() E[W (h i )W (h j )] Y k2V 0 () W (h k ) :
We list some results of [Jan97, Ch. III] in the following.

Lemma 2.6. Let W (h 1 ); :::

; W (h n ) 2 fW (h); h 2 H g. Then JW (h 1 ) W (h n )K = X (¡1) r() v(); W (h 1 ) W (h n ) = X Jv()K :
where the sum is over all Feynman diagrams labelled by (W (h 1 ); :::; W (h n )). We used above the notation Jv()K := Y hi;j i2E()

E[W (h i )W (h j )] J Y k2V 0 () W (h k )K :
Remark 2.7. From (2.2) and the denition of Wick product, it follows that

JW (h) n K = H n (W (h); khk H 2 );
indeed in this case

f n = 1 n! E[G n H n (G)] = (¡1) n n! 2p p Z R x n d n dx n e ¡ x 2 2 dx = 1; since integrating by parts it is immediate to verify E[G n H n (G)] = nE[G n¡1 H n¡1 (G)] and E(G H 1 (G)) = E(G 2 ) = 1.
Proposition 2.8. ([Jan97, Th.3.9]) Let W (h 1 ); :::; W (h n ); W (g 1 ); :::; W (g m ) 2 fW (h); h 2 H g which is the isonormal Gaussian process of Denition 2.1. Then

E(JW (h 1 ) W (h n )KJW (g 1 ) W (g m )K) = 1 m=n X 2S n Y i=1 n E[W (h i )W (g (i) )] =1 m=n n!hh 1 h n ; g (1) g (n) i H n
where S n is the symmetric group of the permutations of f1; :::; ng. We dened the symmetrization h 1 h n = 1 n! P 2S n h 1 h n and used the notation:

hh 1 h n ; g 1 g n i H n := Y i=1 n hh i ; g i i H :
With the results given above, it is not dicult to obtain a product formula for Wick products (Proposition 2.9 below), i.e. a formula that lets us write products of Wick products as a linear combination of Wick products. This can be seen as a nite-chaos equivalent of Lemma 2.28. Note also that Proposition 2.9 can be written in the form of stochastic integrals [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] 

i := JW (h i;1 ) W (h i;`i )K. Then Y 1 Y k = X Jv()K
where the sum is over all Feynman diagrams labelled by (W (h i;j )) i;j such that no edge joins two variables W (h i 1 ;j 1 ) and W (h i 2 ;j 2 ) when i 1 = i 2 .

Heuristically, noting that for the Feyman diagram with no edges Jv()K is just the full Wick product J Q i;j W (h i;j )K where all contractions are considered, we interpret Proposition 2.9 as the operation of splitting the family of random variables (W (h i;j )) i;j in blocks (Y i ) 16i6k and considering separately contractions inside blocks and contractions between blocks. This same reasoning motivates Lemma 2.28 (see Remark 2.31).

Estimation of nite chaos stochastic terms

In this section we present some techniques for estimating the stochastic noise terms (also called enhanced noises) appearing in both paracontrolled distributions theory [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] and regularity structures theory [START_REF] Hairer | A theory of regularity structures[END_REF]. Due to our treatment of a class of models rescaling to 3 4 in Chapter 6, we will focus here on the 3 4 noise terms, although many of the results presented below apply as well to other nite chaos terms with similar structure. For a complete treatment of 3 4 noise terms using a Fourier transform approach, we refer to [START_REF] Mourrat | Construction of 3 4 diagrams for pedestrians[END_REF]. We will work instead in real space variables because this technique is better adapted to the calculations of Chapter 6.

We start taking " to be a space-time mollication of the Gaussian white noise on R T 3 of Denition 2.1. Its stationary covariance is

C " (t ¡ s; x ¡ y) := E[ " (t; x) " (s; y)] such that 8" 2 (0; 1] C " (t; x) = " ¡5 (" ¡2 t; " ¡1 x) (2.3)
where is a smooth even function compactly supported in [¡1; 1] B R 3(0; 1). Indeed, let 2 C c 1 (R T d ) compactly supported on [¡1 / 2; 1 / 2] B R 3(0; 1 / 2) and let " (t; x) = " ¡5/2 (" ¡2 t; " ¡1 x). If we dene " = " (where is the white noise on R T d ) we obtain = . Let P be the heat kernel on R R 3 , i.e.

P (t; x) = 1 (4p t) 3/2 e ¡ jxj 2 4t 1 t>0
(2.4) and call P (t; x) also its periodized version on R T 3 (with an abuse of notation) which for (t; x) 2 R T 3 can be obtained as P j 2Z d P (t; x + 2pj). Let X " be the stationary Gaussian eld which solves L X " = ¡X " + " :

(2.5)

In order for X " to satisfy eq. (2.5) we introduce the following modied heat kernel for

(t; x) 2 R T d P (t; x) = X k2Z d 1 (4p t) d/2 e ¡ jx+2p kj 2 4t
e ¡t 1 t>0 (2.6) and take

X " (t; x) = Z ¡1 t Z T d P (t ¡ s; x ¡ y) " (s; y)dsdy: (2.7)
From Denition 2.1 we see that X " (t; x) is a centered Gaussian random variable and that there exists h ";(t;x) 2 H with H := L 2 (R T 3 ), such that X " (t; x) = W (h ";(t;x) ). The exact form of h ";(t;x) can be read in (2.7), but we are not going to use it here. We call C " the covariance of X " , and then:

C " (t ¡ s; x ¡ y) := E[X " (t; x)X " (s; y)] = hh ";(t;x) ; h ";(s;y) i H :

The 3 4 noise terms are the limits for " ! 0 of:

X " := JX " 2 K X " (t; x) := Z 0 t Z T 3 P (t ¡ s; x ¡ y)JX " 3 (s; y)Kdsdy X " := X " X " X " := X " X " ¡ E(X " X " ) X " := X " X " ¡ E(X " X " )X " (2.8)
with the resonant paraproduct given in Section 1.2.1. The convergence in probability of

X " := X " ; X " ; X " ; X " ; X " ; X " 2 C T C ¡1/2¡ C T C ¡1¡ L T 1/2¡ C T C ¡ C T C ¡1/2¡
8 2 (0; 1) to a distribution X = (X ; X ; X ; X ; X ; X ) was rst established in [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF] and is thoroughly explained in [START_REF] Mourrat | Construction of 3 4 diagrams for pedestrians[END_REF]. In this section we just give a quick overview on uniform (in ") bounds for the quantity X " in L p (), in order to show how the diagrams I , I , I k;`;m;n of Lemmas 2.20 and 2.21 arise in the estimation of X " . It is not dicult to see (for example using time-space Littlewood-Paley blocks on R T 3 ) that for every N 6 4 the term JX " N K converges in probability in S 0 (R T 3 ) to a well-dened tempered distribution that we call JX N K. From the results presented in this section the uniform bound on JX " N K is appearent (and so is the reason why N 6 4).

Recall from Section 1.1.1 that, for every q 2 N, K q;x (y) = 2 3q K(2 q (x ¡ y)) is the kernel associated to the q-th Littlewood-Paley block q on R 3 , i.e.

q f (x) = Z R d K q;x (y)f (y)dy with K 2 S(R 3 ) f : R 3 ! R.
For a function f dened on the torus T 3 we still write q f (x) = R T 3 K q;x (y)f (y)dy where with an abuse of notation K q;x stands for the kernel on T 3 , which is P j 2Z 3 K q;x (y + 2pj). For X " 2 X " , j j 2 R and xed t > 0, we rst use Besov embedding (Lemma 1.16) to bound

E(kX " (t; )k C j j¡3/p p ) . E kX " (t; )k B p; p j j p . X q 2 j jpq Z T 3 E(j q X " (t; x)j p )dx:
Due to the stationarity in space of X " , it suces to bound E(j q X " (t; x )j p ) for some xed x 2 T 3 . From Proposition 2.9 it is clear that every X " 2 X " belongs to the nite chaos decomposition L n=0 5

H n . In this case one can use hypercontractivity (Proposition 2.4) to estimate the p-th moment of q X " (t; x ) with its second moment:

k q X " (t; x )k L p () . k q X " (t; x )k L 2 () :
Let us proceed therefore with the estimation of the second moment of q X " (t; x ). We have

q X " (t; x ) = Z K q;x (y)JX " 2 (t; y)Kdy; q X " (t; x ) = Z K q;x (x)P (t ¡ s; x ¡ y)JX " 3 (s; y)Kdsdxdy :
The resonant products X " X " , X " X " , X " X " can be written as:

q (X " X " 0 ) = Z JX " n ( 1 )KJX " m ( 2 )K q; 1 ; 2
with 1 = (s 1 ; x 1 ), 2 = (s 2 ; x 2 ) and the measure q; 1 ; 2 on (R T 3 ) 2 given by q; 1 ; 2 := [

Z x;y K q;x (x) X ij K i;x (y)K j ;x (x 2 )P t¡s 1 (y ¡ x 1 )]1 [0;+1) (s 1 )(t ¡ s 2 )d 1 d 2 :
Proposition 2.8 allows to bound the second moment of a Wick product of random variables with products of their covariances. In order to be able to apply this result to terms of the type JX " n ( 1 )KJX " m ( 2 )K, we develop them as linear combinations of Wick products using Proposition 2.9. We obtain respectively for X " X " , X " X " , X " X " :

JX "; 1 3 KJX "; 2 K = JX "; 1 3 X "; 2 K + 3C " ( 1 ; 2 )JX "; 1 2 X "; 2 K; JX "; 1 2 KJX "; 2 2 K = JX "; 1 2 X "; 2 2 K + 4C " ( 1 ; 2 )JX "; 1 X "; 2 K + 2C " 2 ( 1 ; 2 ); JX "; 1 3 KJX "; 2 2 K = JX "; 1 3 X "; 2 2 K + 6C " ( 1 ; 2 )JX "; 1 2 X "; 2 K + 6C " 2 ( 1 ; 2 )JX "; 1 K;
with C " ( 1 ; 2 ) = hh "; 1 ; h "; 2 i being the covariance of X " as before. Graphically, we represent this decomposition as

X " = JX " K + 3X " X " = JX " K + 4X " + [2X " ¡ E(X " X " )] = JX " K + 4X " X " = JX " K + 6X " + [6X " ¡ E(X " X " )X " ]
(2.9)

Having obtained a Wiener chaos decomposition of q X " (t; x ), we proceed to bound separately the L 2 norm of each term using Proposition 2.8. The terms JX " K, JX " K, JX " K can be estimated as:

kJ m+n [ q X " (t; x )]k L 2 () 2 = h Z h "; 1 m h "; 2 n q; 1 ; 2 ; Z h "; 1 m h "; 2 n q; 1 ; 2 i H n+m 6 (m + n)! Z h "; 1 m h "; 2 n q; 1 ; 2 H m+n 2 .
Z jC " ( 1 ; 1 0 )j m jC " ( 2 ; 2 0 )j n j q; 1 ; 2 jj q; 1 ; 2 j (2.10) by Jensen's inequality. In next section we present some tools to bound terms like (2.10), which we call 3 4 diagrams. All the relevant quantities for the estimation of X " can be bounded by 3 4 diagrams as (2.10): we give the details (for a more general case) in Section 6.3.

Estimation of nite chaos diagrams

In this section we recall some results from [Hai14a, Chap.10] that can be used to estimate nite choas diagrams like the one in (2.10).

First of all, we need to estimate the covariance C " of X " . One can see easily that

C " = P (¡) P C " (2.11)
with time-space convolutions in R T d and the kernel P (¡) that has reversed time. We are going to estimate the convolution above using some results from [START_REF] Hairer | A theory of regularity structures[END_REF].

In the following we use the notations

jkj s = 2k 1 + X j=2 d+1 k j for k 2 N d+1 k k s = jtj 1/2 + X j=1 d jx j j for = (t; x) 2 R T d
where the index s stands for the fact that we are using a non-euclidean scaling (in this case a parabolic one).

Lemma 2.10. (estimation of heat kernel) Let P (t; x) be dened in ( 2.4). Then

8(t; x) 2 R R d jP (t; x)j . (jtj 1/2 + jxj) ¡d :
Moreover, for every multi-index k 2 N d+1 with jk j s = 2k 1 + k 2 + + k d+1 we have:

j@ k P (t; x)j . (jtj 1/2 + jxj) ¡d¡jkj s Proof. jP (t; x)j(jtj 1/2 + jxj) d . " 1 + jxj jtj 1/2 ! d # e ¡ jxj 2 4jtj
and 8d 2 N 9C > 0 such that (1 + jj d )e ¡ jj 4 6 C for every 2 R. Calling k t = k 1 and k x = (k 2 ; :::; k d+1 ) one can see directly by taking derivatives of P (t; x) that j@ k t @ k x P (t; x)j .

X j =0 jk t j jxj 2j jtj j jtj ¡ d+jkxj+2jk t j 2 e ¡ jxj 2 4t
and then j@ k t @ k x P (t; x)j(jtj 1/2 + jxj) d+jk x j+2jk t j 6 C.

Remark 2.11. It is immediate to note that the estimation of Lemma 2.10 holds as well for the kernel P (t; x) on the torus R T 3 and for the stationary kernel P (t; x).

We recall [Hai14a, Lemma 10.14] in a restricted formulation that is enough for our purposes.

Lemma 2.12. (estimation of convolutions) Let K 1 ; K 2 : R d+1 n f0g ! R smooth and such that 9; 2 (¡d ¡ 2; 0), 9m 2 N such that 8jkj s 6 m, 8 2 R d+1 n f0g j@ k K 1 ()j . k k s ¡jkj s and j@ k K 2 ()j . k k s ¡jkj s :

(2.12)

Let = + + d + 2. If < 0 then j@ k (K 1 K 2 )()j . k k s ¡jkj s 8jkj s 6 m; 2 R d+1 n f0g:
Proof. (sketch) The idea behind the proof is easy and gives a good intuition of the problem: we recall it briey. Let B s ( ; r) = f 0 2 R d+1 jk ¡ 0 k s < rg a parabolic ball. For each = (t; x) the domain of integration of the convolution

K 1 K 2 () = Z R d+1 K 1 ( ¡ 0 )K 2 ( 0 ) d 0
(2.13) can be split as

R d+1 = B s (0; r) [ B s ( ; r) [ [R d+1 n(B s (0; r) [ B s ( ; r))]
with r < k k s / 4 such that k ¡ 0 k s and k 0 k s are small respectively for 0 2 B s ( ; r) and 0 2 B s (0; r). Then R B s (0;r) K 1 ( ¡ 0 )K 2 ( 0 ) d 0 can be bounded by the L 1 norm of K 1 (which is of order k k s ) times the L 1 norm of K 2 (which is of order k k s +d+2

). By symmetry the term R B s ( ;r) K 1 ( ¡ 0 )K 2 ( 0 ) d 0 yields the same estimation. Consider now the case 0 2 R d+1 n(B s (0; r) [ B s ( ; r)). First we note that if both

k 0 k s > k k s / 4 and k ¡ 0 k s > k k s / 4 we must have k 0 k s & k ¡ 0 k s , indeed k ¡ 0 k s 6 k k s + k 0 k s 6 5k 0 k s . Then jK 2 ( 0 )j & k ¡ 0 k s and Z R d+1 n(B s (0;r)[B s ( ;r)) K 1 ( ¡ 0 )K 2 ( 0 ) d 0 . Z k 0 k s >k k s /4 k 0 k s + d 0 . k k s + +d+2
In order to consider derivatives @ k (K 1 K 2 ) it suces to take a smooth partition of unity to split the domains of integration as above.

Remark 2.13. It is clear that the argument of Lemma 2.12 works as well for space-periodic kernels K 1 ; K 2 : R T d n f0g ! R.

We recall now [Hai14a, Lemma 10.17].

Lemma 2.14. Let K: R d+1 n f0g ! R smooth and such that 9m 2 N, 9 2 (¡d ¡ 2; 0) such that

j@ k K()j . k k s ¡jkj s 8jkj s 6 m; 2 R d+1 n f0g: Let 2 C c 1 (R d+1
) with unit mass. Let " (t; x) = " ¡d¡2 (" ¡2 t; " ¡1 x) and dene K " = K " . Then

j@ k K " ()j . (k k s + ") ¡jkj s 8jkj s 6 m; 2 R d+1 : Proof. Let w.l.o.g. " be supported on B s (0; ") = f 2 R R d jk k s < "g. For k k s > 2" we bound @ k K " as Z @ k K( ¡ 0 ) " ( 0 )d 0 6 sup k 0 k<" j@ k K( ¡ 0 )j Z j " ( 0 )jd 0 . k k s ¡jkj s . " ¡jkj s since for k 0 k < " we have k ¡ 0 k > k k ¡ " > k k/2. For k k s 6 2" we bound Z K( ¡ 0 )@ k " ( 0 )d 0 . " ¡d¡2¡jkj s Z k ¡ 0 k63" jK( ¡ 0 )jd 0 . " ¡jkj s .k k s ¡jkj s :
Lemma 2.15. (covariance estimation) The covariance C " on R T 3 has the bound, for every multi-index k 2 N 4 :

j@ k C " (t; x)j . (jtj 1/2 + jxj + ") ¡1¡jkj s 8(t; x) 2 R T 3 ; " 2 (0; 1]:
Proof. Note that from Lemma 2.10 it follows immediately that P satises the assumptions of Lemma 2.12. We obtain then the estimation

j@ k [P (¡) P ]()j . k k ¡1¡jkj s
for every multi-inded k 2 N 4 , and from Lemma 2.14 we obtain the result.

Lemma 2.16. We have for every 2 [0; 1]

sup x2T 3 jC " (t; x) ¡ C " (0; x)j . " ¡1¡2 jtj
Proof. Since for every " 2 (0; 1] C " is smooth, the result is immediately obtained by Taylor expansion and interpolation from the bound of Lemma 2.15.

Lemma 2.17. For every t > 0 and every " > 0 we have

A 2;" := Z RT 3 P s (x)[C " (s; x)] 2 1 [0;t] (s) dxds . jlog "j;
and for every n > 3

A n := " n¡2 Z RT 3 P s (x)jC " (s; x)j n 1 [0;t] (s) dxds . 1:
Proof. From the estimations of Lemma 2.10 and Lemma 2.15 we have A 2;" .

Z RT 3 1 (jsj 1/2 + jxj) 3 1 (jsj 1/2 + jxj + ") 2 1 [0;t] (s) dxds . Z R(" ¡1 T) 3 1 (jsj 1/2 + jxj) 3 1 (jsj 1/2 + jxj + 1) 2 1 [0;" ¡2 t] (s) dxds . Z R 4 1 (jsj 1/2 + jxj) 3 1 (jsj 1/2 + jxj + 1) 2 1 [0;" ¡2 t] (s) 1 B(0;" ¡1 ) (x) dxds
. jlog(")j :

In the same way for n > 3 Proof. We start with inequality (2.14), which can be obtained in a similar way as Lemma 2.14. When jtj 1/2 > 2 ¡i _ jxj we have Z

A n . " n¡2 Z RT 3 1 (jsj 1/2 + jxj) 3 1 (jsj 1/2 + jxj + ") n 1 [0;t] (s) dxds . Z R 4 1 (jsj 1/2 + jxj) 3 1 (jsj 1/2 +
T 3 jK i;x (y)j (jyj + jtj 1/2 ) dy . 1 t /2 Z T 3 jK i;x (y)jdy . 1 t /2 . (jxj + t 1/2 + 2 ¡i ) ¡ :
When 2 ¡i > jtj 1/2 _ jxj we estimate for 2 (0; 3) Z

T 3 jK i (x ¡ y)j (jyj + jtj 1/2 ) dy . 2 i Z T 3 jK(y)j j2 i x ¡ yj dy . 2 i sup z2(2 i T) 3 Z (2 i T) 3 jK(y)j jz ¡ yj dy . 2 i . (jxj + jtj 1/2 + 2 ¡i ) ¡ :
Finally, when jxj > 2 ¡i _ jtj 1/2 we split the domains jxj > 2 ¡i+1 jyj or jxj < 2 ¡i+1 jyj. In the rst region jx ¡ 2 ¡i yj & jxj so Z

T 3 jK i (x ¡ y)j (jyj + jtj 1/2 ) dy . Z (2 i T) 3 jK(y)j jx ¡ 2 ¡i yj dy . jxj ¡ . (jxj + jtj 1/2 + 2 ¡i ) ¡ ;
while in the second region jyj > 2 i jxj / 2, then jK(y)j 6 jK(y)j 1/2 f (2 i jxj / 2) where f is another rapidly decreasing function which can be dened on the torus as f () = P j 2Z 3 f ( + 2pj) by an abuse of notation. Then for 2 (0; 3) Z

T 3 jK i (x ¡ y)j (jyj + jtj 1/2 ) dy . f (2 i jxj/2) Z (2 i T) 3 jK(y)j 1/2 j2 ¡i yj dy . 2 i f (2 i jxj/2) . jxj ¡ . (jxj + jtj 1/2 + 2 ¡i ) ¡ ;
concluding the argument. Taking the integral over R 3 in (2.14) does not change the estimations, and the second inequality (2.15) is obtained in the same way.

Let us show (2.16). Note that since 8i > 0; 8x 2 R 3 R K i;x (y)dy = 0 (obvious from its Fourier transform) we have 4 dy where P 0 denotes the derivative of P with respect to the space variable and can be estimated with Lemma 2.10. As before we can bound (jtj 1/2 + jx + 2 ¡i yj) ¡4 by considering three separate regions: when jtj 1/2 > 2 ¡i _ jxj we have

I = Z R 3 K i;x (y)P (t; y)dy = Z R 3 K i;x (y)[P (t; y) ¡ P (t; x)]dy = Z 0 1 d Z R 3 K i;x (y)[P 0 (t; x + (y ¡ x))(y ¡ x)]dy jI j . Z 0 1 d Z R 3 j(y ¡ x)K i (x ¡ y)jjP 0 (t; x + (y ¡ x))jdy . 2 ¡i Z 0 1 d Z R 3 jyK(y)jjP 0 (t; x + 2 ¡i y)jdy . 2 ¡i Z 0 1 d Z R 3 jyK(y)j 1 (jtj 1/2 + jx + 2 ¡i yj)
jI j . 2 ¡i jtj ¡2 6 2 ¡i jtj ¡3¡ 2 . 2 ¡i (jxj + jtj 1/2 + 2 ¡i ) ¡3¡ :
When 2 ¡i > jtj 1/2 _ jxj we estimate simply

jI j . Z R 3 jK i (x ¡ y)jjP (t; y)jdy . 2 3i . 2 ¡i (jxj + jtj 1/2 + 2 ¡i ) ¡3¡
since P (2 ¡2i t; 2 i y) = 2 ¡3i P (t; y). When jxj > 2 ¡i _ jtj 1/2 we have instead that either jxj > 2 2 ¡i jyj or jxj < 2 2 ¡i jyj. In the rst region jx + 2 ¡i yj & jxj so jI j .

2 ¡i Z 0 1 d Z R 3 jyK(y)j 1 jxj 4 dy . 2 ¡i jxj ¡4 . 2 ¡i (jxj + t 1/2 + 2 ¡i ) ¡3¡ :
In the region jyj > 2 i jxj/(2 ) we have jyK(y)j . (2 i jxj/(2 ))K(2 i jxj/(2 )) and then the integral can be estimated as follows:

jI j . 2 ¡i Z 0 1 d Z R 3 jyK(y)j 1 jx + 2 ¡i yj 4 dy . 2 ¡i jxj 4 Z 0 1 d (2 i jxj/(2 ))K(2 i jxj/(2 )) Z R 3 (1 + 2 ¡i jxj jyj) ¡4 dy . 2 ¡i jxj 4 Z 0 1 d (2 i jxj/(2 )) 4 K(2 i jxj/(2 )) Z R 3 1 (1 + jyj) 4 dy . 2 ¡i jxj ¡4 . 2 ¡i (jxj + t 1/2 + 2 ¡i ) ¡3¡ :
This concludes the proof for (2.16).

Lemma 2.19. We have for every 2 (0; 3) Bounding the sum over i with an integral, we conclude that Z

X ij Z K i;x (
0 1 d (jxj + jtj 1/2 + ) 4+ = 1 (jxj + jtj 1/2 ) 3+ Z 0 1/(jxj+jtj 1/2 ) d (1 + ) 4+ . 1 (jxj + jtj 1/2 ) 3+ : Lemma 2.

(estimation of simple diagrams)

For a xed = (t; x ) 2 R T 3 and 8q 2 Z; q > ¡1 dene the measures q; := K q;x (y)(t ¡ s)d ; with = (s; y);

~q; := [ Z R 3 K q;x (x)P (t ¡ s; x ¡ y)dx]1 [0;+1) (s) d ; with = (s; y):
Let C " () for 2 R R 3 be the ( T 3 -periodic) covariance of Y " . Then for every < 3

I (t; x ) := Z (RT 3 ) 2
jC " ( ¡ 0 )j j q; j j q; 0j . 2 q :

For every 2 (3; 5)nf4g

I (t; x ) := Z (RT 3 ) 2
jC " ( ¡ 0 )j j ~q; j j ~q; 0j . 2 ( ¡4)q

Proof. We have

I (t; x ) =
Z jK q;x (y)K q;x (y 0 )jjy ¡ y 0 j ¡ dydy 0 by Lemma 2.15. By (2.15) we have Z jK q;x (y)jjy ¡ y 0 j ¡ dy . (jx ¡ y 0 j + 2 ¡q ) ¡ . jx ¡ y 0 j ¡ and using again (2.15) we obtain the result. For the second estimation we obtain from (2.16) that j ~q; j . 2 ¡q (jt ¡ sj 1/2 + jx ¡ yj + 2 ¡q ) 4 dsdy;

and from Lemma 2.10

j ~q; 0j . Z R 3
jK q;x (x 0 )j(jt ¡ s 0 j 1/2 + jx ¡ y 0 j) 3 dx 0 ds 0 dy 0 :

By the estimation on convolutions of Lemma 2.12 we obtain then

I (t; x ) . 2 ¡q Z jK q;x (x 0 )jjx ¡ x 0 j 3¡ dx 0 . 2 ( ¡4)q
by (2.15), and this concludes the proof.

Lemma 2.21. (estimation of composite diagrams)

For a xed = (t; x ) 2 R T 3 and 8q 2 Z; q > ¡1 dene the measure

q; 1 ; 2 := [ Z R 6 K q;x (x) X ij K i;x (y)K j;x (x 2 )P (t ¡ s 1 ; y ¡ x 1 )dxdy]1 [0;+1) (s 1 )(t ¡ s 2 )d 1 d 2 :
with the notation i = (s i ; x i ) 2 R T d for i = 1; 2. For k; `2 [0; 2) and m 2 (0; 5), n 2 (0; 3) dene

I k;`;m;n := (2.17) Z (RT d ) 2 jC " ( 1 ¡ 2 )j k jC " ( 1 0 ¡ 2 0 )j `jC " ( 1 ¡ 1 0 )j m jC " ( 2 ¡ 2 0 )j n j q; 1 ; 2 jj q; 1 0 ; 2 0j
If k + m ¡ 1 2 (0; 5) or `+ m ¡ 1 2 (0; 5), k + `+ m ¡ 4 2 (¡2; 5) we have the bound

I k;`;m;n . 2 (k+`+m+n¡4)q :
Proof. Note from the Fourier support properties of the L-P decomposition (Prop.1.1) that there exists

N 2 N such that if i < q ¡ N we have Z R 6 K q;x (x) X j=i¡1 i+1 K i;x (y)K j;x (x 2 )P (t ¡ s 1 ; y ¡ x 1 )dxdy = 0
and then the sum in q; 1 ; 2 becomes P ij &q (a notation to indicate that we sum over i > q ¡ N and i ¡ 1 6 j 6 i + 1). Moreover, there exists N 2 N (which we can take w.l.o.g. to be the same as before) such that if i > q + N we have Z R 6

K q;x (x) X j >i+1;j <i¡1 K i;x (y)K j ;x (x 2 )P (t ¡ s 1 ; y ¡ x 1 )dxdy = 0:

Therefore, since P j K j ;x (x 2 ) = (x ¡ x 2 ) (as is readily seen again in Fourier space) we can write

q; 1 ; 2 = [ Z R 6 K q;x (x) X ijq K i;x (y)K j ;x (x 2 )P (t ¡ s 1 ; y ¡ x 1 )dxdy]1 [0;+1) (s 1 )(t ¡ s 2 )d 1 d 2 +[ Z R 6 K q;x (x) X i&q K i;x (y)P (t ¡ s 1 ; y ¡ x 1 )(x ¡ x 2 )dxdy]1 [0;+1) (s 1 )(t ¡ s 2 )d 1 d 2 = q; 1 ; 2 + ~q; 1 ; 2 :
By Cauchy-Schwarz inequality it suces then to bound the terms I k;`;m;n and I ~k;`;m;n where q; 1 ; 2 in (2.17) is replaced respectively by q; 1 ; 2 and ~q; 1 ; 2 . The rst term can be estimated by repeated change of variables, using the fact that P (2 ¡2i s; 2 ¡i y) = 2 ¡3i P (s; y) and jC " (2 ¡2i s; 2 ¡i y)j . 2 i (jsj 1/2 + jyj) ¡1 . Note that although after rescaling s 2 [0; 2 2i t], to integrate at innity one can just bound P in L 1 (R 3 n B(0; 1)) and obtain P (s; y) . jsj ¡3/2 . The space integrals are bounded thanks to the rapid decreasing of the kernel K.

To bound the term ~q; 1 ; 2 note that from (2.16)

j Z X i&q K i;x (y)P (t ¡ s 1 ; y ¡ x 1 )dyj . X i&q 2 ¡i (jt ¡ s 1 j 1/2 + jx ¡ x 1 j + 2 ¡i ) ¡3¡
and we can choose 2 [0; 1] such that the hypotheses of Lemma 2.12 are satised. A repeated application of its convolution estimations yields the result.

Introduction to Malliavin calculus

We recall here some tools of Malliavin calculus that can be used to estimate stochastic terms that do not belong to any nite Wiener chaos decomposition. A more detailed introduction to Malliavin calculus, and the proofs of some results of this section, can be found in [START_REF] Nualart | The Malliavin calculus and related topics[END_REF][START_REF] Nourdin | Normal Approximations with Malliavin Calculus: From Stein's Method to Universality[END_REF][START_REF] Shigekawa | Stochastic Analysis[END_REF]. Lemma 2.28 was inspired by the calculations of [START_REF] Nourdin | Central limit theorems for multiple Skorokhod integrals[END_REF].

Basic denitions and notations

Let fW (h)g h2H be an isonormal Gaussian process indexed by a real separable Hilbert space H. Let (; F ; P) a probability space with F generated by the isonormal Gaussian process W . We note L 2 (; F ; P) = L n>0 H n the Wiener chaos decomposition of L 2 () and write J n the projection on H n of the random variable 2 L 2 ().

Let V be a real separable Hilbert space. For smooth functions F 2 L p (; V ) of the form

F = X j=1 m F j v j with v j 2 V , F j = f (W (h 1 ); :::; W (h n )); f 2 C 1 (R n )
with polynomial growth of all the derivatives, we dene the Malliavin derivative

DF = X j=1 m X i=1 n @ i f (W (h 1 ); :::; W (h n )) h i v j :
For every k 2 N the k-th derivative D k F can be dened consequently. For p > 1 we will write D k;p (V ) L p (; V ) for the closure of smooth random variables with respect to the norm

k k D k; p (V ) = [E(k k V p ) + X j =1 k E(kD j k H j V p )] 1/p
with the notation D k;p := D k;p (R). The Malliavin derivative can be extended to an operator

D k : D k;p (V ) L p (; V ) ! L p (; H k V ) :
For p = 2 we denote as k the unbounded operator on L 2 (;

H k V ) with values on L 2 (; V ) dened as the adjoint of D k : i.e. (u) is the element of L 2 (; V ) such that E(hF ; k (u)i V ) = E(hD k F ; ui H k V ) 8F 2 D k;2 (V )
and the domain of k consists of all u 2 L 2 (; H k V ) such that the expression above makes sense. is called divergence operator or Skorohod integral. Let fP t g t2R + the Ornstein-Uhlenbeck semigroup dened as

P t = X n=0 1 e ¡nt J n 8 2 L 2 () and L: L 2 () ! L 2 () dened as L = X n=0 1
¡n J n be its innitesimal generator, i.e. e tL = P t [Nua06, Prop.1.4.2]. Following [START_REF] Shigekawa | Stochastic Analysis[END_REF] we introduce the Green operator

G j = (j ¡ L) ¡1
with the notation

G [j] [m] := Y k= j m G k for 1 6 j 6 m (2.18) so that G [j]
[j] = G j . To avoid confusion, it is worth stressing that G [j] [m] is not the m-th power of the operator G j but just a shortcut for

Q k=j m G k .

Partial chaos expansion

Let 2 L 2 () which has the Wiener chaos decomposition = P n>0 J n . Then by Proposition 1.2.2 of [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]:

DJ n = J n¡1 D ;
and knowing that LJ n = ¡n J n we obtain the commutation property

D (j ¡ L) ¡ = D X n>0 1 (j + n) J n = X n>1 1 (j + n) J n¡1 D = (j + 1 ¡ L) ¡ D (2.19)
for every > 0, j > 0. The above formula holds also for j = 0 if E( ) = 0.

The results we have recalled so far enable us to write a partial chaos expansion to the nth-order for a random variable in D n;2 : Lemma 2.22. Let 2 D n;2 and G [j]

[m] as in ( 2.18). Then for every

n 2 Nnf0g G [1] [n] D n 2 Dom n , J 0 D k 2 Dom k 80 6 k < n and n G [1]
[n] D n = (id ¡ J 0 ¡ :::

¡ J n¡1 ) = ¡ X k=0 n¡1 1 k! k J 0 D k : (2.20)
Proof. We have for any 2 L 2 (), since L = ¡D ([Nua06], Proposition 1.4.3):

¡ E( ) = LL ¡1 ( ¡ J 0 ) = ¡ D L ¡1 ( ¡ J 0 ) = (1 ¡ L) ¡1 D
where we used (2.19), and the fact that (1 ¡ L) ¡1 D 2 Dom is obvious by construction. This yields the rst order expansion

= E( ) + (1 ¡ L) ¡1 D :
Iterating this formula up to order n we obtain (2.20). It is clear that

J 0 D k 2 Dom k since J 0 D k is constant with values in H k . The second equality comes from the fact that k J 0 D k 2 H k 8k 2 N, indeed 8 0 2 D k;2 : E( k (J 0 D k ) J k 0 ) = hJ 0 D k ; J 0 D k 0 i L 2 (;H k ) = E( k (J 0 D k ) 0 )
In order to obtain L p estimations of the remainder term n G [1]

[n] D n generated by expansion (2.20), one can use the following lemmas:

Lemma 2.23. ([Nua06], Prop. 1.5.7) Let V be a real separable Hilbert space. For every p > 1 and every q 2 N; k > q and every 2 D k;p (H q V ) we have

k q ( )k D k¡q; p (V ) . k;p k k D k; p (H q V )
Remark 2.24. Let V be a real separable Hilbert space. For every v 2 V and every 2 D q;2 (H q ) with q 2 N we have v 2 Dom q and q ( )v = q ( v):

Indeed, notice that for every smooth 0 2 D q;2 (V ) and every smooth 2 D q;2 (H q ) we have E(h q ( v);

0 i V ) = E(h v; D q 0 i H q V ) = E(h q ( )v; 0 i V ):
Now since D q ( v) = D q v and 2 D q;2 (H q ), we have v 2 D q;2 (H q V ). Lemma 2.23 yields the bound k q ( v)k L 2 (V ) . k v k D q;2 (H q V ) which allows to pass to the limit for 0 and q ( v) in L 2 (V ).

Lemma 2.25. ([Shi04], Prop. 4.3) For every j > 0 the operator (j ¡ L) ¡1/2 is bounded in L p for every 1 6 p < 1.

Lemma 2.26. Let j 2 Nnf0g and V a real separable Hilbert space. There exists a nite constant c p such that for every 2 L p (; V ):

kD (j ¡ L) ¡1/2 k L p (;H V ) 6 c p k k L p (;V )
(where the operator D(j ¡ L) ¡1/2 is dened on every which is polynomial in W (h 1 ); :::; W (h n ) and can be extended by density on L p ).

Proof. First notice that we can suppose w.l.o.g. E( ) = 0 thanks to (2.19). Therefore we can write D (j ¡ L)

¡ 1 2 as D(j ¡ L) ¡1/2 = D(¡C) ¡1 (¡C) (j ¡ L) ¡1/2
with C = ¡ ¡L p . We decompose the second part as

¡C (j ¡ L) ¡1/2 = X n=1 1 n j + n 1/2 J n = T
with T := P n=0 1 (n)J n . We apply Theorem 1.4.2 of [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] to show that T is bounded in L p , indeed (n) = h(1 / n) and h(x) = (j x + 1) ¡1/2 which is analytic in a neighbourhood of 0. Finally, we can apply Proposition 1.5.2 of [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] to show that DC ¡1 is bounded in L p , thus concluding the proof.

The two lemmas above give the following immediate corollary:

Corollary 2.27. For every 1 6 m 6 n the operator

G [m] [n] := Q j=m n (j ¡ L) ¡1 is bounded in L p for every 1 6 p < 1.
Moreover, Let j 2 Nnf0g and V a real separable Hilbert space. Then for every 2 L p (; V ) we have:

kD(j ¡ L) ¡1 k L p (;H V ) . k k L p (;V ) :
Moreover, for every 0 6 k 6 2m, i > 0 we have

D k G [i+1] [i+m] L p (;H k V ) . k k L p (;V ) :
The next lemma allows to write products of decompositions of the type (2.20) as sums of iterated Skorohod integrals. From now on we will note h; i H r or h; i r the r-th contraction, which to avoid inconsistency has to be taken between symmetric tensors. We also note h v 1 ;:::;v n n := h v 1 ::: h v n for h v 1 ; :::; h v n 2 H.

Lemma 2.28. (product formula)

Let u = f (W (h u ))h u m and v = F h v 1 ;:::;v n n with f 2 C m+n (R) and F 2 D m+n;2 . Then m (u) n (v) =
(2.21) X (q;r;i)2I m;n C m;n;q;r;i m+n¡q ¡r [f (r¡i) (W (h u ))hh u m¡i ; D q ¡i F i q ¡i hh u r ; h v 1 ;:::

;v n n i r ]
with C m;n;q;r;i := m q n r q i r i i!;

I m;n := f(q; r; i) 2 N 3 : 0 6 q 6 m; 0 6 r 6 n; 0 6 i 6 q ^rg :

A trivial change of variables gives also

m (u) n (v) = X I m;n 0 C m;n;q+i;r+i;i m+n¡ q¡r ¡2i [f (r) (W (h u ))hh u m¡i ; D q F i q hh u r+i ; h v 1 ;:::;v n n i r+i ]
with I m;n 0 := f(i; q; r) 2 N 3 : 0 6 i 6 m ^n; 0 6 q 6 m ¡ i; 0 6 r 6 n ¡ ig.

Remark 2.29. In the special case v = g(W (h v ))h v n eq. (2.21) takes the form

m (u) n (v) = X (q;r;i)2I m;n
C m;n;q;r;i m+n¡q ¡r (hD r ¡i u;

D q¡i v i H q+r ¡i) (2.22)
which is just a generalization to Skorohod integrals of the multiplication formula for multiple Wiener integrals ([Shi80], [Üst14]). We can write the above formula more explicitly as

m (u) n (v) = X I m;n C m;n;q;r;i m+n¡q ¡r [f (r¡i) (W (h u )) g (q ¡i) (W (h v )) h u m¡q h v n¡r ]hh u ; h v i q+r ¡i :
Remark 2.30. Note that one can assume w.l.o.g. the argument of m+n¡q ¡r in (2.21) to be symmetric, and this would allow to iterate Lemma 2.28.

Remark 2.31. We can give the following intuition for the second formula in Lemma 2.28. The random variables m (u) and n (v) have an innite chaos decomposition, and following the tree notation of (2.8) (see also [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF], [START_REF] Hairer | A theory of regularity structures[END_REF]) they could be represented as trees with at least m (respectively n) leaves, which need to be contracted with each other as in (2.9) when decomposing the product m (u) n (v). One can either contract the existing leaves or perform the Malliavin derivative that makes a new leave appear in the notation.

It is therefore clear that the index i in the second equation of Lemma 2.28 denotes contractions between the already existing leaves of the trees u; v. The indexes r and q count new leaves in each vertex that are created by the Malliavin derivatives, which are then contracted with other leaves from the other tree. There are then m + n ¡ r ¡ q ¡ 2i overall unmatched leaves which are arguments to the iterated Skorokhod integral.

The more intuitive interpretation of the second equation in Lemma 2.28 is the reason why we gave two distinct expression for the same quantity. Nevertheless, the formula (2.21) is more practical in the calculations and is more widely used throughout this work.

Proof. (Lemma 2.28) Using Cauchy-Schwarz inequality and Lemma 2.23 we can show that hD r n (v); j (u)i H r 2 L 2 (; H m¡j ¡r ) for every 0 6 r + j 6 m. Then we apply Lemma 2.32 to get:

m (u) n (v) = X r=0 n n r n¡r (hD r m (u); vi H r):
Using the commutation formula (2.23) we rewrite the r.h.s. as

m (u) n (v) = X r=0 n n r X i=0 r^m r i m i i! n¡r (h m¡i (D r ¡i u); vi H r):
We obtain

h m¡i (D r ¡i u); vi H r = m¡i (f (r ¡i) (W (h u )) h u m¡i )F hh u r ; h v 1 ;:::;v n n i H r
and using again Lemma 2.32 we obtain

h m¡i (D r ¡i u); vi H r = X `=0 m¡i m ¡ i ` m¡i¡`( f (r ¡i) (W (h u ))hh u m¡i ; D `F i `hh u r ; h v 1 ::: h v n i r )
where we used k ( )h n¡r = k ( h n¡r ) for 2 Dom k , as seen in Remark 2.24. Substituting this expression into m (u) n (v) we get

m (u) n (v) = X J m;n A m;n;r;i;` m+n¡r¡i¡`[ f (r ¡i) (W (h u ))hh u m¡i ; D `F i `hh u r ; h v 1 ::: h v n i r ]
where we set

A m;n;r;i;`: = m i n r m ¡ i ` r i i!;
J m;n := f(r; i; `) 2 N 3 : 0 6 r 6 n; 0 6 i 6 r ^n; 0 6 `6 m ¡ ig :

In order to complete the proof we just have to perform some basic changes of indexes. Taking q = `+ i and noting that

m i m ¡ i q ¡ i = q i m q we have A m;n;r;i;`= m q q i n r r i i!
and this yields (2.21). Finally, we perform the change of variables q ¡ i ! q, r ¡ i ! r to get the second formula.

We list below the tools we used to prove Lemma 2.28.

Lemma 2.32. ([NN10], Lemma 2.1) Let q 2 Nnf0g, 2 D q;2 , u 2 Dom q and symmetric. Assume also that 80 6 r + j 6 q hD r ; j (u)i H r 2 L 2 (; H q ¡r ¡j ):

Then 80 6 r < q hD r ; ui r 2 Dom q ¡r and q (u) = X r=0 q q r q ¡r (hD r ; ui H r):

Remark 2.33. Note that n (h n ) = JW n (h)K with the Wick product JK dened in Section 2.1. Indeed 8 2 D 1;2 we know that

E[(h n ) ] = E[W (h) h n¡1 ] using the facts that (h) = W (h) and (h n ) = (h)h n¡1 , therefore n (h n ) = n¡1 (W (h)h n¡1 ).
From Lemma 2.32 we have, since DW (h) = h:

n¡1 (W (h)h n¡1 ) = n¡1 (h n¡1 )W (h) ¡ (n ¡ 1)hh; hi n¡2 (h n¡2 )
which gives by induction n (h n ) = JW n (h)K.

Lemma 2.34. Let j ; k 2 N, u 2 D j+k;2 (H j ) symmetric and such that all its derivatives are symmetric. We have

D k j (u) = X i=0 k^j k i j i i! j ¡i (D k ¡i u) (2.23)
Proof. If j = 0, k = 1 or k = 0; j = 1 eq. (2.23) is trivial. Let j = k = 1 and u 2 D 2;2 (H) D 1;2 (H). We can apply Proposition 1.3.2 of [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] to obtain hD(u); hi = hu; hi + (hDu; hi) 8h 2 H. Since by hypothesis Du is symmetric we have (hDu; hi) = hDu; hi, and then D(u) = u + Du. The proof by induction is easy noticing that D j = j D + j j ¡1 .

Chapter 3 Brief introduction to FK percolation and the Ising model

The random cluster model

The random cluster model, or FK percolation model, was rst introduced by Fortuin and Kasteleyn in [START_REF] Cees | On the random-cluster model: I. introduction and relation to other models[END_REF]. We refer to comprehensive book on the subject [START_REF] Georey | The Random-Cluster Model[END_REF], and introduce here just some notations that will be used in Chapter 4. Let Z d bounded, = f0; 1g E d with E d the set of edges of the graph Z d , and F be the -algebra generated by cylinder sets. For ! 2 , let ! e be the component of ! at e 2 E d . Let

E = fe = hx; yi 2 E d j x 2 ; y 2 g (3.1)
the set of edges with both endpoints in . For 2 , dene the following nite subset of : = f! 2 j ! e = e 8e 2 E d n E g: Denition 3.1. Let p 2 [0; 1], q 2 (0; 1). The FK probability measure on (; F ) with boundary condition is Remark 3.2. For both free and wired boundary conditions, if the domain is the union of two subsets 1 and 2 such that E 1 \ E 2 = ;, then the congurations on 1 and 2 are independent. Indeed, calling k (!;

;p;q (!) = 8 < : 1 Z ; [ Q e2E p ! e (1 ¡ p) 1¡! e ] q k(!) if ! 2 0 otherwise (3.2) with Z ; (p; q) = P ! 2 [ Q e2E p ! e (1 ¡ p) 1¡! e ] q k(!)
E d n E ) the number of open clusters of ! that do not intersect E d n E , we have k (!; E d n E ) = k (!; E d n E 1 ) + k (!; E d n E 2 ).
Although in general the states on two dierent edges are not independent, the model exhibits a domain Markov [START_REF] Hongler | Connection probabilities and RSWtype bounds for the two-dimensional FK Ising model[END_REF] or nesting [START_REF] Georey | The Random-Cluster Model[END_REF] property. Let F (respectively T ) be the -algebra generated by the states of edges in E (respectively in E d n E ). We have the following result.

with E 1 = fe = hx; yi 2 E d j x 2 _ y 2 g and Z I 1 () = P 2 1 e ¡H 1 () . From now on, random variables x for x 2 Z d are (unsurprisingly) called spins. Remark 3.6. Traditionally, the Hamiltonian of the Ising model is written as

H 0 () = ¡ X x y x y
with x; y nearest neighbours. Dening 0() / e ¡ 0 H 0 () for the usual Ising measure, we recover it as /2 = .

The Edwards-Sokal coupling on with boundary condition 2 f0; 1g consists of dening a probability measure on as

(; !) = 1 Z es Y e2E [(1 ¡ p) 1 ! e =0 + p 1 ! e =1 1 e =1 ] 1 (!) (3.6)
with Z es such that P (;!)2 (; !) = 1. From now on we x e ¡ = 1 ¡ p and q = 2:

(3.7)
It is easy to obtain the following lemma (see [START_REF] Georey | The Random-Cluster Model[END_REF]).

Lemma 3.7. Let p 2 [0; 1], e ¡ = (1 ¡ p), q = 2 and 2 f0; 1g. Let be dened as in ( 3.6). Then:

The marginal of on is .

The marginal of on is ;p;2 .

In order to characterize the regularity of the Ising magnetization eld on an unbounded domain U R 2 , in Chapter 4 we will use the well-known FK-Ising coupling for innite volume measures. Let ! be sampled from = f0; 1g E 2 with law p;q 1 . Conditionally on !, each vertex is assigned a random spin x 2 f¡1; +1g such that:

1. x = 1 if x $ 1 (i.

e. if x belongs to an innite open cluster)

2. x takes values in f¡1; 1g with probability

1 2 if x = 1 3. x = y if x $ y

spins in dierent open clusters are independent.

Then the conguration = f x g x2Z d is distributed according to the weak limit 1 of Ising measures with + boundary condition.

Let be sampled from = f¡1; +1g Z d with the Ising limit law 1 . Conditionally on , each edge is assigned a random state ! e 2 f0; 1g such that:

1. the states of dierent edges are independent 2. ! e = 0 if x = / y 3. if x = y , then ! e = 1 with probability p and 0 otherwise.

Then the edge conguration ! = f! e g e2E 2 has law p;q 1 . A similar argument is valid for p;q 0 and the innite-volume Ising measure 0 , with the dierence that no xed value is assigned to x in the case x $ 1.

Results

Chapter 4

Tightness of the 2-d Ising magnetization eld at criticality

In this chapter we study the magnetization eld of the two-dimensional Ising model introducted in Chapter 3, at critical (inverse) temperature c = ln(1 + 2 p ) and associated FK percolation parameter p c = 1 ¡ e ¡ c . The problem of nding the exact regularity for the magnetization eld was rst posed in [START_REF] Camia | Planar Ising magnetization eld I. uniqueness of the critical scaling limit[END_REF]. Let U R 2 be an open set, and for a > 0, let U a := U \ (aZ 2 ). Denote by ( y ) y2U a the Ising spin system at critical temperature, with boundary condition (either + or free), and dene the magnetization eld

^a := a 15 8 X y2U a y y ; (4.1)
where y is the Dirac mass at y. It is easy to see that Dirac masses do not belong to B 2;2 ¡1 (U ), and thus prevent the family ( ^a) a2(0;1] from being tight in this space. However, we can dene the piecewise constant random eld

a := a ¡ 1 8 X y 2U a y 1 S a (y) ; (4.2)
(as done in [START_REF] Camia | Planar Ising magnetization eld I. uniqueness of the critical scaling limit[END_REF]) where S a (y) is the square centered at y of side length a. We note that the set of limit points of ( ^a) a2(0;1] and of ( a ) a2(0;1] coincide. Indeed, one can check using Denition 1.17 that the dierence a ¡ ^a converges to zero almost surely in, say, C loc (U ), for every < ¡3.

In [START_REF] Camia | Planar Ising magnetization eld I. uniqueness of the critical scaling limit[END_REF], the authors showed that for U = [0; 1] 2 and every " > 0, the family ( a ) a2(0;1] is tight in B 2;2 ¡1¡" (U ), and proceeded to discuss similar results in more general domains. (In Proposition 1.14 we showed the equivalence between Sobolev spaces H ¡1¡" used in [START_REF] Camia | Planar Ising magnetization eld I. uniqueness of the critical scaling limit[END_REF] and Besov spaces B 2;2 ¡1¡" ). They asked in which precise function spaces the family ( a ) a2(0;1] is tight.

Using the Onsager correlation bounds (Lemma 4.4) and the tightness criterion of Theorem 1.46 (together with the equivalence of norms of Proposition 1.52), we prove the following result. We also prove, in Section 4.1 that the previous result is essentially sharp, when U = R 2 : Theorem 4.2. Let " > 0 and p; q 2 [1; 1]. If is a limit point of the family of Ising magnetization elds ( a ) a2(0;1] on R 2 , then 2 / B p;q ¡ 1 8 +";loc (R 2 ) with positive probability.

In particular, the family ( a ) a2(0;1] is not tight in B p;q

¡ 1 8 +";loc (R 2 ).
It was shown recently that there exists a unique limit point to the family ( a ) a2(0;1] , see [START_REF] Camia | Planar Ising magnetization eld I. uniqueness of the critical scaling limit[END_REF][START_REF] Chelkak | Conformal invariance of spin correlations in the planar Ising model[END_REF]. Theorem 4.2 gives a characterization of the regularity of this limit.

In order to prove Theorem 4.1, we choose a spanning sequence K of U (as specied in Denition 1.37) and bound (1.39), (1.40) for the family of random linear forms ( a ) a2(0;1] . For p 2 [2; 1) the terms (1.39), (1.40) become:

a ¡ 1 8 sup x2 k \K 2 4 X y 1 :::y p 2U a E U a ( y 1 y p ) Y j=1 p Z S a (y j ) ' (2 k (z ¡ x)) dz 3 5 1 p ; (4.3) a ¡ 1 8 2 2n sup x2 n \K 2 4 X y 1 :::y p 2U a E U a ( y 1 y p ) Y j=1 p Z S a (y j ) (i) (2 n (z ¡ x)) dz 3 5 1 p ; (4.4) with (K ; k) 2 K .
Here E U a ( y 1 y p ) is the expectation with respect to the Ising-Potts measure U a at critical temperature with either free or + boundary condition (see (3.4) and (3.5)).

In the following discussion we will exploit the Ising-FK relation discussed in Section 3.2 and introduce some lemmas which are useful to prove Theorem 4.1.

Let Z 2 be a nite set. Dene A y 1 :::y n 1 f0; 1g E the event that each open cluster of the FK model on contains an even number of the points y 1 ; :::; y n , or is connected to the boundary @. Dene also A y 1 :::y n 1;1 f0; 1g E 2 the event that each open cluster of the FK model on Z 2 contains an even number of the points y 1 ; :::; y n , or is innite. Finally, let A y 1 :::y n 0 be the event that each open cluster contains an even number of the points y 1 ; :::; y n . It is easy to notice that all these events are increasing, i.e. they are preserved when switching any ! e from 0 to 1. Lemma 4.3. Let be the FK probability measure with p 2 [0; 1] and q = 2, and take e ¡ = (1 ¡ p). Then for any n > 1:

1. E + ( y 1 y n ) = 1 (A y 1 :::y n 1
).

2. E Z 2 + ( y 1 y n ) = Z 2 1 (A y 1 :::y n 1;1 ).

E

free ( y 1 y n ) = (A y 1 :::y n 0 ). 4. E Z 2 free ( y 1 y n ) = Z 2 0 (A y 1 :::y n 0 )
Proof. We only prove the rst point in this lemma, as the other equalities can be obtained with the same arguments, using Theorem 3.8. Let f : 7 ! y 1 y n , from Lemma 3.7 and (3.6) we can write

E + [f ] = X 2 1 f () X !2 1 (; !) = 1 Z es 1 X 2 1 f () X !2 1 Y e2E [(1 ¡ p) 1 ! e =0 + p 1 ! e =1 1 e =1 ] = 1 Z es 1 X !2 1 (1 ¡ p) jE n (!)j p j (!)j X 2 1 f () Y e2 (!) 1 e =1
with (!) = fe 2 E j ! e = 1g.

Now take ! 2

1 such that one or more of its clusters contain an odd number of points in y 1 ::: y n . The sum

P 2 1 f () Q e2 (!
) 1 e =1 is zero (indeed, each odd cluster takes the values +1 and ¡1 and all terms cancel out). Conversely, if ! 2 A y 1 :::y n 1 , the product y 1 y 2k in the same cluster is equal to 1. We can write then:

E + [f ] = 1 Z es 1 X !2 1 1 A y 1 ::: yn 1 (!) (1 ¡ p) jE n (!)j p j (!)j X 2 1 Y e2 (!) 1 e =1 = 1 Z es + X !2 1 1 A y 1 ::: yn 1 (!) (1 ¡ p) jE n (!)j p j (!)j 2 k(!;E 2 nE )
Here k (!; E 2 n E ) is the number of connected clusters of ! that do not intersect E 2 n E .

The following equivalence between partition functions yields the result:

Z es 1 = X !2 1 (1 ¡ p) jE n (!)j p j(!)j X 2 1 Y e2 (!) 1 e =1 = 1 2 X !2 1 (1 ¡ p) jE n (!)j p j (!)j 2 k(!;E ) = 1 2 Z FK 1;
(p; 2):

We are going to need a well-known inequality for the 2-d Ising model of Onsager [START_REF] Onsager | Crystal statistics. I. a two-dimensional model with an order-disorder transition[END_REF], formulated using connection probabilities for the FK model. See also [START_REF] Hongler | Connection probabilities and RSWtype bounds for the two-dimensional FK Ising model[END_REF]Lemma 5.4].

Lemma 4.4. Let m 2 N and B

m = [¡m; m] 2 \ Z 2 . At critical temperature p c = 1 ¡ e ¡ c , there exists C > 0 such that: B m ;p c ;q=2 1 (0 $ @ B m ) 6 C m ¡ 1 8 :
The following proposition is known (see [CGN15, Prop. 3.9] for a sketch of the proof), but we give here a dierent (and complete) proof which employs the pin and sum argument with hairy cycles of A.Abdesselam [START_REF] Abdesselam | A second-quantized Kolmogorov-Chentsov Theorem[END_REF]. Proposition 4.5. Let p 2 N. There exists C > 0 such that, for every N 2 N:

X y 1 ;:::;y p 2U N E U N (Z 2 ) ( y 1 y p ) 6 C (N + 1) 15 8 p (4.5) with U N = [0; N ] 2 \ Z 2 and E U N (Z 2 )
being the expectation on either U N or Z 2 at critical temperature c .

Proof. The events A y 1 :::y p are increasing, and we have A y 1 :::y p 0 A y 1 :::y p 1 when the events are on the same domain (nite or innite). From the coupling of Lemma 4.3, and using the monotonicity properties of Lemma 3.5 it is easy to obtain E U N (Z 2 ) 6 E U N + . We are then left to show the inequality for this term.

We start by showing that X y 1 ;:::;y p 2U N y i = / y j 8i= / j

E U N + ( y 1 y p ) 6 C N
The event A y 1 :::y p 1 of Lemma 4.3 implies that every point in fy 1 ; :::; y p g is connected by an open path to another point in fy 1 ; :::; y p g or to the boundary @ U N , which from now on is identied with the point y 0 . For every 1 6 i 6 p, call `i = min j >0;j= / i d(y i ; y j ) where d(y i ; y j ) is the Z 2 distance between y i and y j , and dene

B i = y i + [¡`i/4; `i/4] 2 \ Z 2 , F = S i=1 p B i .
Notice that the graph F Z 2 has p disjoint components. From Lemma 3.3, Remark 3.2 and since

U N + (A) = P ! U N + (Aj T F )(!) U N + (!),
we obtain

E U N + ( y 1 y p ) 6 U N + \ i=1 p fy i $ @ B i g ! 6 Y i=1 p B i + (y i $ @ B i );
where we used the monotonicity property of Lemma 3.5 in the second inequality. Lemma 4.4 yields: (0 6 j i 6 p; j i = / i) (4.8)

X
we need to nd the right order in which to compute the sums P y i . We associate then (4.8) to a graph with p + 1 vertices labelled f0; 1; :::; pg and p directed edges, such that to d(y i ; y j i ) corresponds an edge going from i to j i .

Notice that every vertex in f1; :::; pg has exactly one edge going to a vertex in f0; 1; :::; pg and the vertex 0 (which is a notation for the boundary @ U N ) has no outgoing edges. Therefore, following the directed edges starting from any vertex in f1; :::; pg one either ends up at the vertex 0, or enters a cycle (because every vertex except 0 has an outgoing edge). This cycle cannot be escaped, again because vertices in f1; :::; pg have only one outgoing edge (indeed, to every y i there is only one y j i associated to it).

This said, we can conclude that our graph has one or more connected components, each of which can be of two distinct types: a tree with root in the vertex 0 a cycle, possibly with branches attached to it (i.e. each point of the cycle can be the root of a tree).

We can then proceed to estimate every sum in (4.8) in the order given by the oriented graph, starting from the leaves. This is just a repeated application of (4.7), until we reach the root (0) or a circle. Hence every connected component with root in 0 and k edges gives a term of order N 15 8 k . For example we can estimate the following term as follows (starting from the leaves y 1 and y 3 ):

X y 1 ;y 2 ;y 3 ;2U N y i = / y j 8i= / j d(y 1 ; y 2 ) ¡ 1 8 d(y 2 ; y 0 ) ¡ 1 8 d(y 3 ; y 2 ) ¡ 1 8 6 X y 2 2U N d(y 2 ; y 0 ) ¡ 1 8 X y 1 2U N y 1 = / y 2 d(y 1 ; y 2 ) ¡ 1 8 X y 3 2U N y 3 = / y 2 d(y 2 ; y 3 ) ¡ 1 8
. N 45 8

Summing on circles does not pose any additional problem: indeed one can just choose a point within the circle (call it y ^2) and sum keeping xed both the inbound point y ^1 and the outbound point y ^3:

X y ^22U N y ^2= / y ^1;y ^2= / y ^3 d(y ^1; y ^2) ¡ 1 8 d(y ^2; y ^3) ¡ 1 8 6 X y ^22U N y ^2= / y ^1 d(x ^1; x ^2) ¡ 1 4 2 + X y ^22U N y ^2= / y ^3 d(y ^2; y ^3) ¡ 1 4 2 .N 2¡ 1 4
where we used Young inequality. Then (for a circle with k edges) the sum over the remaining vertices y ^3 ::: y ^k gives an estimation of order

N 15 8 (k¡2) 
. This proves (4.6). Now consider the general case in which two or more points concide. At the price of a factor p! we can reorder the points, and take the last p ¡ k points to be all dierent from each other (with 2 6 k 6 p). Conversely, fy 1 ; :::; y k g can be partitioned in m subsets such that all the points in the same subset are equal: we call k i the number of points in the ith subset with k = k 1 + ::: + k m , and therefore m 6 k /2. We want to show that: X y 1 ;:::;y m 2U N ; y i = / y j ;i6m;j 2[k+1;p] X y k+1 ;:::;

y p 2U N y i = / y j E U N + ( y 1 k 1 y m k m y k+1 y p ) 6 C N 15 8 p :
As before we dene `i = min j >0;j = / i d(y i ; y j ) for every k + 1 6 i 6 p and

B i = y i + [¡`i/4; `i/4] 2 \ Z 2 .
Notice that the event A y 1 :::y p 1 implies that every y i with i > k + 1 is connected by an open path to the boundary of B i . Then using the results already obtained: X y 1 ;:::;y m 2U N y i = / y j ;i6m;k+16j 6p X y k+1 ;:::;

y p 2U N y i = / y j E U N + ( y 1 k 1 y m k m y k+1 y p ) . N 2m U N + \ i=k+1 p fy i $ @ B i g ! . N 2m N 15 8 (p¡k) 6 N 15 8 p :
We are now ready to prove Theorem 4.1.

Proof. (Theorem 4.1)

By Theorem 1.46, the result is proved as soon as we can bound (4.3) and (4.4) for any even p > 2. If the domain U is bounded, we choose K = (K n ; n) n2N as its spanning sequence, with:

K n = fx 2 R 2 j dist(x; U c ) (2 + ) R 2 ¡n g (4.9)
for > 0 and R such that (1.12) holds. If U is unbounded, it suces to take

K ^n = K n \ B (0; n):
in both cases we have a valid spanning sequence according to Denition 1.37. We rst consider (4.4). From the support properties of (i) (2 n ( ¡x)) given in (1.12) we can restrict the sum over y j to the set n;x = fy 2 U a j d(y; x) < 2 ¡n R + a/ 2 p g:

Now we bound (4.4) separately for small and large values of n. If 2 n > R a ¡1 we have

X y 1 :::y p 2U a E U a ( y 1 y p ) Y j =1 p Z S a (y j ) (i) (2 n (z ¡ x)) dz 6 X y 1 :::y p 2 n;x Y j=1 p Z S a (y j ) j (i) (2 n (z ¡ x))j dz 6 X y 1 :::y p 2 n;x 2 ¡2pn . 2 ¡2pn :
This gives the estimation

a ¡ 1 8 2 2n sup x2 n \K [ X y 1 :::y p 2U a E U a ( y 1 y p ) Y j=1 p Z S a (y j ) (i) (2 n (z ¡ x)) dz] 1 p . 2 1 8 n : Conversely, if 2 n < R a ¡1 we rst notice that n;x U ~a;x = [x ¡ 2 R 2 ¡n ; x + 2 R 2 ¡n ] 2 \ a Z 2
and then using Lemma 3.5: 

X

Absence of tightness in higher-order spaces

In this section, we prove Theorem 4.2. The proof is based on the following lemma, which is a consequence of the RSW-type bounds for the FK model obtained in [START_REF] Hongler | Connection probabilities and RSWtype bounds for the two-dimensional FK Ising model[END_REF].

Lemma 4.6. ([HDN11, Proposition 27])

There exists c > 0 such that for any y 1 ; y 2 2 Z 2 with d(y 1 ; y 2 ) > 0:

E Z 2 ( y 1 y 2 ) > c d(y 1 ; y 2 ) ¡ 1 4
for any boundary condition .

In order to show the absence of tightness we only need the following partial converse to Proposition 4.5 for two-points correlations.

Lemma 4.7. There exists c > 0 such that, for every N 2 N: X

y 1 ;y 2 2U N E Z 2 ( y 1 y 2 ) > c (N + 1) 15 4 with U N = [0; N ] 2 \ Z 2 and E Z 2
being the expectation on Z 2 with arbitrary boundary conditions.

Proof. The result is immediate since there are (N + 1) 4 terms in the sum, each being larger than c (N + 1) ¡ 1 4 for some xed constant c > 0.

Note that in the proof of Theorem 4.2 we make use of Proposition 1.33, which allows us to easily obtain lower bounds on the Besov norm of some distribution by testing against a non-negative function.

Proof. (Proof of Theorem 4.2)

We decompose the proof into three steps.

1. In this rst step, we recall that for a non-negative random variable X, we have

P X > E[X] 2 > (E[X]) 2 4 E[X 2 ] : (4.10)
Indeed, this follows from

E[X] = E[X 1 X 6E[X]/2 ] + E[X 1 X >E[X]/2 ] 6 E[X]/2 + E[X 2 ] 1 2 P[X > E[X]/2] 1 2 ;
by the Cauchy-Schwarz inequality.

2. Let be a smooth non-negative function supported on the ball B(0; 1) and such that 1 on B (0; 1/2). We set ;x := ¡2 ( ¡1 ( ¡x)) and

X a; := Z B(0;1)
jh a ; ;x ij dx:

4.1 Absence of tightness in higher-order spaces

In this step, we show that there exists a constant c > 0 such that 8a < 2 (0; 1],

P h X a; > c ¡ 1 8 i > c: (4.11)
As in the proof of Theorem 4.1, we can use Proposition 4.5 to show that there exists a constant C < 1 such that for every p 2 f2; 4g, a < 2 (0; 1] and

x 2 R 2 , E[(h a ; ;x i) p ] 6 C ¡ p 8 : (4.12)
By a similar reasoning, we obtain from Lemma 4.7 that there exists a constant c > 0 such that for every a < 2 (0; 1] and

x 2 R 2 , E[(h a ; ;x i) 2 ] > c ¡ 1 4 : (4.13)
Combining (4.10), (4.12) with p = 4 and (4.13), we deduce that 8a < 2 (0; 1] and

x 2 R 2 , P jh a ; ;x ij > c p 2 ¡ 1 8 > c C :
In particular, after reducing the constant c > 0 as necessary, we obtain that for every a < 2 (0; 1] and

x 2 R 2 , E[jh a ; ;x ij] > c ¡ 1 8 ; (4.14) and thus that E[X a; ] > c ¡ 1 8 :
Using (4.12) with p = 2 and Jensen's inequality, we also have, for every a < 2 (0; 1],

E[X a; 2 ] 6 C ¡ 1 4 :
We therefore obtain (4.11) by another application of (4.10).

Let > ¡

1 8 , and let be a possible limit point of the family ( a ) a2(0;1] . Passing to the limit along a subsequence in (4.11), we get that for every 2 (0; 1],

P Z B(0;1) jh ; ;x ij dx > c ¡ 1 8 > c: (4.15)
By the embedding of Besov spaces discussed in Remark 1.27 and Proposition 1.52, in order to prove Theorem 4.2 it suces to show that 2 / B 1;1 ;loc (R 2 ) with positive probability.

Let then be a non-negative smooth function of compact support such that 1 on B(0; 2). By Proposition 1.33, there exists a constant c 0 > 0 such that for every 2 (0; 1],

k k B 1;1 > c 0 ¡ Z R 2 jh ; ;x ij dx > c 0 ¡ Z B(0;1) jh ; ;x ij dx:
Combining this with (4.15) yields

P h k k B 1;1 > c c 0 ¡¡ 1 8 i > c: Since > ¡ 1 8 , letting tend to 0 gives P [k k B 1;1 = +1] > c > 0;
which completes the proof.

Chapter 5

Quasi-linear paracontrolled PDEs

Introduction

In this chapter we study a class of general quasilinear equations of which one of the simplest examples is the following parabolic SPDE:

@ t u(t; x) ¡ a(u(t; x))u(t; x) = (x); u(0; x) = u 0 (x); x 2 T 2 ; t > 0;
(5.1) with a: R ! [; 1] for > 0 a uniformly bounded C 3 diusion coecient, and ka (k) k L 1 6 1 for k = 0; :::; 3. We assume that 2 C ¡2 (T 2 ) with 2/3 < < 1 where C (T 2 ) is the Besov space introduced in Chapter 1 (this would apply for example to the space white noise on T 2 ). In this case, we expect (by analogy with the Schauder estimates of Section 1.2.3) that u(t; ) 2 C (T 2 ). Therefore, as one can see from the paraproduct theory introduced in Section 1.2.1, the product a(u(t; ))u(t; ) cannot be well posed whenever 2 ¡ 2 < 0.

Equation (5.1) is a quasilinear generalisation of the twodimensional periodic parabolic Anderson model (PAM).

The techniques developed in this section allow to deal with a class of equations of the form @ t u(t; x) ¡ a 1 (u(t; x))u(t; x) = a 2 (u(t; x))(x) t > 0; x 2 T 2 ;

(5.2) and the more general equations a 3 (u(t; x))@ t u(t; x) ¡ a 1 (u(t; x))u(t; x) = (a 2 (u(t; x)); t; x); x 2 T 2 ; t > 0;

(5.3)

where a 1 ; a 2 ; a 3 are suciently smooth non-degenerate coecients, a 1 ; a 3 : R ! [; 1], a 2 : R ! [¡L; L] 2 (0; 1); L > 0 and (z ; t; x) is a Gaussian process with covariance

E[(z; t; x)(z 0 ; t 0 ; x 0 )] = F (z; z 0 )Q(t ¡ t 0 ; x ¡ x 0 ); x; x 0 2 T 2 ; t; t 0 ; z; z 0 2 R;
with F a smooth function and Q a distribution of parabolic regularity > ¡4 / 3. This includes as a special case the space white noise discussed before, but we could consider a time white noise with a regular dependence on the space variable, or some noise which is mildly irregular in space and time. Moreover, with our technique we are able to treat equations with matrix-valued coecients like @ t u(t; x) ¡ a ij (u(t; x)) @ 2 @x i @x j u(t; x) = g(u(t; x)); t > 0; x 2 T 2 ;

(5.4)

provided the template problem associated to it (see (5.5) and Remark 5.17) is uniformly parabolic.

For the sake of clarity and simplicity we will discuss mainly the basic example (5.1) since this contains already most of the technical diculties. The study of this equation will we carried on in full detail in Section 5.3, employing the theory developed in Section 5.2. We will be able to treat equation (5.2) in Section 5.4 and equation (5.3) in Section 5.5 with slight modications of the results of Section 5.2.

Our approach can be described as follows. For an equation of the form (5.2) we consider at rst a parametric template problem, with constant coecients 1 ; 2 replacing a 1 (u),a 2 (u):

@ t #(; t; x) ¡ 1 #(; t; x) = 2 (t; x) (5.5) with = ( 1 ; 2 ) 2 R 2 , 1 2 [; 1], 2 2 [¡L; L] for 2 (0; 1); L > 0.
We introduce a nonlinear paraproduct and formulate the Ansatz:

u = (a(u); #) + u ] ;
where it will be shown that u ] denes a more regular remainder term which solves a standard PDE. With this decomposition the equation can be treated along the lines of standard paracontrolled calculus presented in Section 1.2, and all the arguments introduced there can be extended in a straightforward manner to the quasilinear setting.

A notation shortcut widely used in this chapter is to write R x;y for integrals on T 2 or R with respect to the measures dx and dy without specifying the integration bounds, whenever this does not create ambiguity. We will write as usual

P i j = P i>¡1 P j =i¡1 i+1 
and P i&j = P i>j +1 when summing over Littlewood-Paley blocks. We will also use the notation

f sy tx = f (t; x) ¡ f (s; y) and f sy tx = f (s; y) + (f (t; x) ¡ f (s; y)) for 2 [0; 1].

Nonlinear paracontrolled calculus

In this section we present the main tools of nonlinear paradierential calculus, which is an extension of linear paracontrolled calculus presented in Section 1.2.

Nonlinear paraproducts

Let g [i] : [0; T ] T 2 ! R for i 2 f1; :::; ng and h: R n [0; T ] T 2 ! R be smooth functions. We write g = (g [1] ; :::; g [n] ) and decompose h(g(); ) via nonlinear paraproducts as follows.

Recall from Remark 1.4 that K q is the kernel associated to the Littlewood-Paley block q and P j is the kernel associated with the operator P q< j ¡1 q . Dene (g; h)(t; x) := X q>1 Z y;z P q;x (y)K q;x (z)h(g(t; y); t; z) (5.6) Let V be a Banach space of functions on [0; T ] T 2 (typically V = C T or V = L _ T as dened in Section 1.2.2). We x a compact set K R n and introduce the notation

(g; h)(t; x) := X k>¡1 X jk¡ qj61 Z y;z K k;x (y)K q;x (z)
kF k C k V = sup 2K sup jaj6k k@ a F (; )k V ;
(5.9) for functions F : (; t; x) ! R depending on (t; x) 2 R T 2 and on an additional parameter = ( 1 ; :::; n ). We note C k V the Banach space with norm (5.9). For g = (g [1] ; :::; g [n] ) we use the notation kg k V := P j kg [j] k V . Denitions (5.6), (5.7), (5.8) yield a map (g; h) 7 ! } (g; h) := (g; h) + (g; h) + (g; h) = h(g(); )

(5.10) that can be uniquely extended to

} : C T C 2 C T ! C T ^ 2 (0; 1); 2 R; + > 0
thanks to the following bounds.

Lemma 5.1. (Nonlinear paraproduct estimates)

Let g; g 1 ; g 2 : [0; T ] T 2 ! K R n g; g 1 ; g 2 2 C T for some 2 (0; 1), and h 2 C 2 C T for any 2 R. Then k (g; h)k C T . khk C C T ; k (g; h)k C T ^(+ ) . kg k C T khk C 1 C T ; and k (g 1 ; h) ¡ (g 2 ; h)k C T . kg 1 ¡ g 2 k C T L 1kh k C 1 C T ; k (g 1 ; h) ¡ (g 2 ; h)k C T ^(+ ) . kg 1 ¡ g 2 k C T L 1(kg 1 k C T + kg 2 k C T )khk C 2 C T +kg 1 ¡ g 2 k C T khk C 1 C T : Moreover if + > 0 we have also k (g; h)k C T + . khk C 1 C T kg k C T ; k (g 1 ; h) ¡ (g 2 ; h)k C T + . kg 1 ¡ g 2 k C T L 1(k g 1 k C T + kg 2 k C T )khk C 2 C T +kg 1 ¡ g 2 k C T khk C 1 C T :
In particular if + > 0 the composition } (g; h) = h(g(); ) is linear in h and locally Lipshitz in g:

k } (g; h)k C T . khk C 1 C T kg k C T ; k } (g 1 ; h) ¡ } (g 2 ; h)k C T . kg 1 ¡ g 2 k C T (1 + kg 1 k C T + kg 2 k C T )khk C 2 C :
Remark 5.2. The inequalities above are a direct generalization of Bony's paraproduct estimations of Proposition 1.54.

Proof. (Lemma 5.1) We consider g; g 1 ; g 2 : [0; T ] T 2 ! K R, as the extension to vector-valued g; g 1 ; g 2 is straightforward. Due to the support properties of the Fourier transforms of the kernels K q and P q , it is easy to see that Z y;z P q;x (y)K q;x (z)h(g(t; y); t; z)

has Fourier transform compactly supported in an annulus 2 q A, and the same holds for Z y;z K k;x (z)P k;x (y)h(g(t; z); t; y); while the resonant term

X q=k¡1 k+1 Z y;z K k;x (y)K q;x (z)h(g(t; y); t; z)
has Fourier transform supported in a ball of radius 2 q . This allows us to estimate Besov norms of paraproducts via L 1 norms of Littlewood-Paley blocks in the usual way (as done in Section 1.2). Using the fact that

k k h(g(t; y); t; )k L 1 . 2 ¡k khk C C T ; k k h(g(t; y); t; ) ¡ k h(g(t; y 0 ); t; )k L 1 . 2 ¡k khk C 1 C T kg k C T jy ¡ y 0 j ;
and

k k h(g 1 (t; y); t; ) ¡ k h(g 2 (t; y); t; )k L 1 . 2 ¡k khk C 1 C T kg 1 ¡ g 2 k C T L 1:
we obtain the bounds on (g; h), (g; h), (g; h) and (g 1 ; h) ¡ (g 2 ; h). We proceed to estimate the term (g 1 ; h) ¡ (g 2 ; h). We will use the following notation for brevity: 

g 2z 1 y : =g 1 (t;
K k;x (z)P k;x (y)@ h( g 2x 1x ; t; y)(g 2z 1z ¡ g 2x 1x )j . kg 1 ¡ g 2 k C T L 1(kg 1 k C T C + kg 2 k C T C )khk C 2 C T C 2 ¡k X q<k¡1 2 ¡q +kg 1 ¡ g 2 k C T C khk C 1 C T C 2 ¡ k X q<k ¡1 2 ¡q :
With the same reasoning we can bound the norm of (g 1 ; h) ¡ (g 2 ; h).

We introduce a time-smoothed version of , in the exact same way as done with linear paraproducts in Section 1.2.4. Let

(g; h)(t; x) := X i>1 Z y;s Q i;t (s)P i;x (y)( i h(g(s; y); t; ))(x); (5.11) with Q 2 C c 1 (R) with total mass 1, and Q i;t (s) := 2 2i Q(2 i (t ¡ s)).
In (5.11) we use the convention that a continuous function t 7 ! g(t) on R + is extended to R by dening g(t) = g(0) for t 6 0. This preserves the Hölder norms of index in [0; 1]. The modied nonlinear paraproduct enjoys similar bounds to the regular one.

Lemma 5.3. Let g; g

1 ; g 2 : [0; T ] T 2 ! K R n g; g 1 ; g 2 2 C T L 1 and h 2 C 1 L T _ for 2 (0; 2). Then k (g; h)k C T . khk C C T and k (g; h)k L _ T . khk C L _ T :
Moreover, (g; h) is linear in h and:

k (g 1 ; h) ¡ (g 2 ; h)k C T . kg 1 ¡ g 2 k C T L 1kh k C 1 C T ; k (g 1 ; h) ¡ (g 2 ; h)k L _ T . kg 1 ¡ g 2 k C T L 1kh k C 1 L _ T :
Proof. In order to bound k (g; h)k L _ T , we note that the norm k (g; h)k C T C can be treated in the same way as in Lemma 5.1, and k (g; h)k C T /2 C 0 can be estimated as follows:

k j (g; h)(t 1 ) ¡ j (g; h)(t 2 )k L 1 . sup x j Z z K j;x (z) X i j Z y;s Q i;t 1 (s)P i;z (y)[ i h(g(s; y); t 1 ; z) ¡ i h(g(s; y); t 2 ; z)]j +sup x j Z z K j ;x (z) X ij Z y;s [Q i;t 1 (s) ¡ Q i;t 2 (s)]P i;z (y) i h(g(s; y); t 2 ; z)j . kh(; t 1 ; ) ¡ h(; t 2 ; )k C C 0 + jt 1 ¡ t 2 j /2 khk C C T :
The second inequality can be obtained easily with the same techniques used so far.

Remark 5.4. Using the Fourier support properties of the kernel P q;x () it is easy to see that 8x 2 T 2 , 8q > 0: R y P q;x (y) = R y K ¡1;x (y) = 1 and R y K q;x (y) = 0. Then for a constant function g(t; x) = g one can write

} (g ; h) = (g ; h) + X q60 q h(g ; )
and using the fact that the kernel Q in the denition of has mass 1, we have (g ; h) = (g ; h):

Nonlinear commutator

The next technical ingredient is a commutator lemma between the non-linear paraproduct of (5.11) and the standard resonant product. Since it will be needed below to analyse a term of the form (g; h) (g; h), we will specialise our discussion to this specic structure. Notice that in the following the various spacetime operators act pointwise in the parameter , in the sense that, for example:

(h h)(; t; x) = (h(; t; ) h(; t; ))(x): Lemma 5.5. Dene : C 1 ([0; T ]; T 2 ) C 2 C 1 ([0; T ]; T 2 ) ! C 1 ([0; T ]; T 2 ) by (g; h) := [ (g; h) (g; h)] ¡ } (g; h h):
Then for all 2 (0; 1), < 1 " > 0 such that 2 ¡ 2 + ¡ " > 0 and g; g 1 ; g 2 :

[0; T ] T 2 ! K R n , we have k(g; h)k C T 2 ¡2+ ¡" . (1 + kg k L _ T )khk C 1 C T 2 ; k(g 1 ; h) ¡ (g 2 ; h)k C T 2 ¡2+ ¡" . kg 1 ¡ g 2 k C T L 1(kg 1 k L _ T + kg 2 k L _ T )khk C 2 C T 2 +kg 1 ¡ g 2 k L _ T khk C 1 C T 2 :
As a consequence can be uniquely extended to a locally Lipshitz function

: L T _ C 2 C T ! C T 2 ¡2+¡" :
Proof. As for the proof of Lemma 5.3, we consider scalar-valued functions g; g 1 ; g 2 not to burden the notation. We can approximate (g; h) (g; h) with its value for a xed g = g(t; z), to obtain

q (g; h)(t; x) = = Z z K q;x (z)( (g(t; z); h) (g(t; z); h))(t; z) ¡ Z z K q;x (z) } (g; h h)(t; z) + Z z K q;x (z)( (g; h) ( (g; h) ¡ (g(t; z); h)))(t; z)
(5.12) This yields (5.15)

+ Z z K q;x (
( (g(t; z); h) (g(t; z); h))(t; z) ¡ } (g; h h)(t; z) = X ij i (g(t; z); h)(t; z) j (g(t; z); h)(t; z) ¡ X ij i h(g(t; z); t; )(z) j h(g(t; z); t; )(z) = X q=1 2 1 q h(
Note that xing the value of the function g in (5.14) makes it localized in Fourier space: i.e. 9n 0 2 N such that 8k > n 0 :

Z z K k;x (z) X q=1 2 1 q h(g(t; x); t; )(z) X `=1 2 1 `h(g(t; x); t; )(z) = 0
and this last term can be easily bound in L 1 by khk C C T

2

. Thus, we add and subtract to (5.14) the terms

X q=1 2 1 q h(g(t; x); t; )(z) X `=1 2 1 `h(g(t; x); t; )(z) ; X q=1 2 1 q h(g(t; z); t; )(z) X `=1 2 1 `h(g(t; x); t; )(z)
and we are left estimating , and this gives a bound on C T 2 ¡2+¡" for < 1, " > 0. The exact same reasoning can be applied to (5.15) to obtain the same estimation.

Z z K k;x (z) X q=1 2 1 q h(g(t; z); t; )(z) X `=1 2 1 [ `h(
Consider now (5.12) and (5.13). We obtain

Z z K q;x (z)[( (g; h) ¡ (g(t; z); h)) (g(t; z); h)](t; z) = Z z K q;x (z) X ij &q ( i (g; h)(t; z) ¡ i (g(t; z); h)(t; z)) j (g(t; z); h)(t; z):
Using Lemma 5.3 we have j j (g(t; z); h)(t; z)j . 2 (2¡)j khk C C T : Lemma 5.6 gives

j i ( (g; h) ¡ (g(t; z); h))(t; z)j . 2 ¡(+¡")i kgk L _ T khk C 1 C T ;
and thus (5.13) is bounded by 2 ¡(2+¡2¡")q kg k L _ T khk C T 2 . We can easily bound (5.12) in the same way, and this proves the rst inequality.

The second result of this lemma can be obtained following the same reasoning as above, noting that 8k; q > ¡1:

Z z K k;x (z)[ q h(g 1 (t; z); t; )(z) ¡ q h(g 1 (t; x); t; )(z) + + q h(g 2 (t; x); t; )(z) ¡ q h(g 2 (t; z); t; )(z)] .2 ¡k ¡ kg 1 ¡ g 2 k C T khk C 1 C T + kg 1 ¡ g 2 k C T L 1(kg 1 k C T + kg 2 k C T )khk C 2 C T
and using the estimations of Lemma 5.6. The extension of to L T _ C 2 L T is standard (see e.g. the proof of the commutator lemma [GIP15, Lemma 2.4]).

Lemma 5.6. Let us introduce the shortcut notation

} i (g; h)(t; z) := i (g; h)(t; z) ¡ i (g(t; z); h)(t; z)
Then, with the same assumptions of Lemma 5.5, we have

j} i (g; h)(t; z)j . 2 ("¡ ¡)i kg k L _ T khk C 1 C T and j} i (g 1 ; h)(t; z) ¡ } i (g 2 ; h)(t; z)j .2 ("¡¡ )i kg 1 ¡ g 2 k L _ T khk C 1 C T +kg 1 ¡ g 2 k C T L 1(k g 1 k L _ T + kg 2 k L _ T )khk C 2 C T :
Proof. 

[ i (g; h) ¡ i (g(t; z); h)](t; z) = X ki Z x; y s; K i;z (x)Q k;t (
jK i;z (x)Q k;t (s)P k ¡1;x (y)jk@ k hk C T L 1jt ¡ sj (¡")/2 kg k C T /2¡"/2 L 1 + X ki Z x; y s; jK i;z (x)Q k;t (s)P k¡1;x (y)jk@ k hk C T L 1jy ¡ z j kg k C T . 2 ¡(¡")i 2 ¡i k@ hk C T kg k C T C 0 + kg k C T
where we used the notation g tz sy = g(s; y) ¡ g(t; z), g tz sy = g(t; z) + (g(s; y) ¡ g(t; z)) and Lemma 1.59. This proves the rst bound.

The second inequality can be obtained in the same way with the techniques already used here and in Lemma 5.1.

Approximate paradierential problem

In this section we present the last ingredient of our theory, i.e. the construction of an approximate solution to the equation

(@ t ¡ g )u = f ; u(0; ) = 0;
(5.16) with data f 2 C ¡2 and g: [0; T ] T 2 ! [; 1] 2 (0; 1), g 2 L _ T , for some xed ; 2 (0; 1).

We rst introduce the operator L acting on functions of (; t; x) with = ( 1 ; :::; n ), 1 2 [; 1] as (L U )(; t; x) := @ t U (; t; x) ¡ 1 U (; t; x):

(5.17)

We will also use the notation L 1 := @ t ¡ 1 .

Observe that if u does not depend on we can dene (g; L )u := (g; L u) (5.18) and from denition (5.6) with h = L u we obtain (g; L )u = @ t u ¡ g u that is the operator appearing in (5.16).

We can describe the commutation between the dierential operator L and the para- product (g; ) via the following estimate:

Lemma 5.7. Let 2 (0; 1), 2 R. Let U 2 C 2 C T and g: [0; T ] T 2 ! [; 1], g 2 L _ T . Dene (g; U ) := R 1 + R 2
with R 1 and R 2 as in ( 5.21), ( 5.22). Then for every " > 0

k (g; U )k C T + ¡2¡" . (1 + kg k C T L 1)kg k L _ T kU k C 1 C T : (5.19) Moreover, (g; U ) is linear in U and k (g 1 ; U ) ¡ (g 2 ; U )k C T + ¡2¡" . kg 1 ¡ g 2 k L _ T (1 + kg 1 k L _ T + kg 2 k L _ T )kU k C 2 C T :
Indeed:

([@ t ; (g; )]U )(t; x) = X i Z y;s (@ t Q i;t )(s)P i;x (y)( i U (g(s; y); t; x)); ([; (g; )]U )(t; x) = X i Z y;s Q i;t (s)P i;x (y)( i U (g(s; y); t; x)) (5.23) +2 X i Z y;s Q i;t (s)rP i;x (y)(r i U (g(s; y); t; x)):
This shows that (5:20) holds for smooth functions.

With the techniques used in Lemma 5.6 we can estimate

j q R 1 (t; x)j . X kq (2 ¡(¡")k kg k C T /2 C 0 + 2 ¡k kg k C T )2 (2¡)k kU k C C T :
By the spectral support properties of the commutators we have that

k[; (g; )]U k C T + ¡2 . kg k C T kU k C 1 C T ; and k q [@ t ; (g; )]U k C T L 1 . (2 (2+"¡¡)q kg k C T /2 C 0 + 2 (2¡¡)q kg k C T )kU k C 1 C T :
This yields

kR 2 k C T + ¡2¡" . (1 + kg k C T L 1)k gk L _ T kU k C 1 C T :
We have so far proved (5.19) and then (5.20) follows by continuity. The local Lipshitz dependence on g can be obtained via similar computations.

Remark 5.8. If f does not depend on we can take = 1 2 [; 1] and consider the parametric problem

(@ t ¡ 1 )U f ( 1 ; t) = f ; U f ( 1 ; 0) = 0; (5.24)
which is solved by

U f ( 1 ; t) = Z 0 t e 1 (t¡s) f ds: Remark that @ 1 U f ( 1 ; t) = Z 0 t e 1 (t¡s) (t ¡ s)f ds and @ 1 2 U f ( 1 ; t) = Z 0 t e 1 (t¡s) (t ¡ s) 2 2 f ds:
We have, thanks to the well-known Schauder estimates of Lemma 1.61 (since 1 > ):

kU f k C 1 2 L _ T := sup k=0;1;2 sup 1 2[;1] k@ 1 k U f ( 1 )k L _ T . kf k C T ¡2
(5.25)

We dene then

u(t; x) := (g; U f )(t; x) (5.26)
and observe that u(t; x) is an approximate solution of equation (5.16), indeed

(@ t ¡ g )u = (g; L (g; U f )) = (g; L U f ) ¡ (g; U f ) = f ¡ (g; U f )
and the estimation in Lemma 5.7 together with the bound (5.25) yield immediately the following inequality:

k (g; U f )k C T + ¡2¡" . kg k L _ T (1 + kg k C T L 1)kf k C T ¡2 :
(5.27)

Solution theory for quasi-linear equations

Let us state one simple result on equation (5.1) that can be obtained via the theory developed in the previous section:

Theorem 5.9. Fix 2 /3 < < 1. Let 2 C ¡2 (T 2 ) be a space white noise with zero average on the torus, u 0 2 C an initial condition and a: R ! [; 1] for some > 0, a 2 C 3 (R) and ka (k) k L 1 6 1 8k 2 0; :::; 3. Let ( " ; u 0;" ) ">0 be a family of smooth approximations of ; u 0 obtained by convolution with a rescaled smoothing kernel and u " the classical solution to the Cauchy problem @ t u " ¡ a(u " )u " = " + " a 0 (u " ) a(u " ) 2 ; u(0) = u 0;" :

(5.28)

Then we can choose a sequence of constants ( " ) ">0 and a random time T > 0 in such a way that the family of r.v.

(u " ) ">0 L _ T (T 2 ) converges almost surely as " ! 0 to a random element u 2 L _ T (T 2 ), where L _ T is the parabolic space C([0; T ]; C (T 2 )) \ C /2 ([0; T ]; C 0 (T 2 )).
This element can be characterised as the solution to a paracontrolled singular SPDE (see Theorem 5.11 for more details).

In order to devise a suitable formulation of eq. (5.1) and obtain a theory with u 2 C we start decomposing the non-linear diusion term in the l.h.s. with the help of Bony's paraproducts and write

@ t u ¡ a(u) u = + (u) (5.29) with (u) := a(u) u + a(u) u (5.30) 
where ; are standard paraproducts and denotes the resonant product (see Section 1.2 for the denitions). By Proposition 1.54 the l.h.s. of (5.29) is always well dened, irrespectively of the regularity of the function u, and the problem becomes that of controlling the resonant product a(u) u appearing in the r.h.s. . The two key points of the analysis put forward below is that this term can be expected to be of regularity 2 ¡ 2 > ¡ 2, better than the leading term 2 C ¡2 , and that the dierential operator of (5.29) can be approximately inversed using Lemma 5.7.

Paracontrolled structure

In order to give a meaning to the PDE in (5.29) with initial condition u 0 2 C , our initial goal will be to get informations on solutions = (g) of the equation

@ t ¡ g = ; for a xed g 2 C T , 2/3 < < 1, g 2 [; 1].
Using the results of Section 5.2.3, we consider to this eect the parametric problem

(@ t ¡ )#(; t) = ;
for 2 [; 1]. We will consider the stationary solution of this problem which has the form

#(; x) = Z 0 1 e s ds = (¡) ¡1
(5.31) and in order for (5.31) to be well dened we impose that the noise has zero mean on T 2 (this is a simplifying assumption which can be easily removed, e.g. at the price of adding a linear term to the equation). We can control (5.31) by bounding its Littlewood-Paley blocks with a Bernstein lemma for distributions with compactly supported Fourier transform (Lemma 1.8) to obtain:

k#k C 2 L _ T = k#k C 2 C T . k k C ¡2 :
(5.32)

We dene now for every t 2 [0; T ]

(t; x) := (a(u); #):
Thanks to paraproducts estimates of Lemma 5.3 we have the bound

kk L _ T . k#k C L _ T . k k C ¡2 :
We observe that this denition together with Lemma 5.7 gives

@ t ¡ a(u) = ¡ (a(u); #) with k (a(u); #)k C T 2¡2¡" . ka(u)k L _ T 2 k k C T ¡2
. We expect then (a(u); #) to be bounded in C T 2¡2¡" for any " > 0. At this point let us introduce the Ansatz

u = + u ] = (a(u); #) + u ] :
(5.33)

Remark 5.10. Notice that we are not making any assumption on the existence of such u, which is the subject of Section 5.3.2. Our aim here is to nd the equation that a couple (u; u ] ) 2 C T C T 2 verifying (5.33) must solve, in order for u to solve (5.29).

Observe that

@ t u ¡ a(u) u = (@ t ¡ a(u) ) + (@ t ¡ a(u) )u ] = + (@ t ¡ a(u) )u ] ¡ (a(u); #): It follows that u ] must solve ( (@ t ¡ a(u) )u ] = (u) + (a(u); #) u ] (t = 0) = u 0 ] := u 0 ¡ (a(u 0 ); #)(t = 0) 2 C (5.34)
with (u) = a(u) u + a(u) u, and if we can make sense of the resonant term a(u) u, it is reasonable to expect u ] (t; ) 2 C 2 8t 2 (0; T ]. Indeed, take U ] := U Q to be the solution of

L U ] () := (@ t ¡ )U ] () = Q; U ] (; t = 0) = 0 (5.35) for some Q = Q(u ]
) to be determined and 2 [; 1]. Using again Lemma 5.7 as shown in Remark 5.8 we have

(@ t ¡ a(u) ) (a(u); U ] ) = Q(u ] ) ¡ (a(u); U ] ):
For 2 [; 1] we dene P t u 0 ] () := e t u 0 ] so that L (P t u 0 ] ) = 0, with L as in (5.17). We set u ] := (a(u); U ] ) + (a(u); P u 0 ] ) :

(5.36)

Taking

Q(u ] ): =(u) + (a(u); #) + (a(u); U ] ) + (a(u); P u 0 ] ) ;
we obtain that U ] solves equation (5.35) if and only if u ] solves equation (5.34). As we will see, Q(u ] )(t) belongs to C 2¡2 8t 2 (0; T ] but not uniformly as t ! 0. However it belongs to C ¡2 uniformly as t ! 0. It remains to control the resonant term a(u) u appearing in (u). We have

a(u) u = a(u) + a(u) u ] : By paralinearization (see Theorem 1.66) a(u) = a 0 (u) u + R a (u) with kR a (u)k C T 2 . 1 + kuk C T 2 ;
and then

a(u) = (a 0 (u) u) + R a (u) :
We can write

a(u) = a 0 (u)(u ) + C(a 0 (u); u; ) + R a (u)
where C(a 0 (u); u; ) := ((a 0 (u) u) ) ¡ a 0 (u) (u ) is the commutator of Lemma 1.64. In order to estimate C(a 0 (u); u; ) we can bound a 0 (u), recalling that 2 (0; 1), as

ka 0 (u)k C T . ka 00 k L 1ku k C T ; Ansatz (5.33) gives a(u) = a 0 (u)( ) + a 0 (u)(u ] ) + C(a 0 (u); u; ) + R a (u) :
Summarizing, we have:

(u) = a 0 (u)( ) + a(u) u + a 0 (u)(u ] ) +C(a 0 (u); u; ) + R a (u) + a(u) u ]
Thanks to the nonlinear commutator (Lemma 5.5), we can decompose the resonant term to obtain

(u) = a(u) u + a 0 (u)(u ] ) + C(a 0 (u); u; ) + R a (u) +a 0 (u)(a(u); #) + a 0 (u) } (a(u); 2 ) + a(u) u ] and (a(u); #) 2 C T L 1 if u 2 L _ T .
Here we dened

2 (; x) := (# #)(; x) = X i j i #(; )(x) j [#(; )](x) (5.37)
Finally, recalling the decomposition of u ] in two terms (5.36) we obtain

(u) = a 0 (u) } (a(u); 2 ) + 1 (u) + 2 (u)
where

1 (u) := a(u) u + C(a 0 (u); u; ) + R a (u) + a 0 (u)(a(u); #) +a 0 (u)( (a(u); U ] ) ) + a(u) (a(u); U ] ) ; 2 (u) := a 0 (u)( (a(u); P u 0 ] ) ) + a(u) (a(u); P u 0 ] ):
Thanks to Lemma 5.1 the terms a 0 (u) } (a(u); 2 ) and 1 (u) can be estimated in

C T 2¡2 , provided 2 2 C 2 C T 2¡2
(see Section 5.3.3). On the other hand the term 2 (u)(t) can be estimated in C 2¡2 only for strictly positive times t > 0 due to the lack of regularity of the initial condition u 0 ] which a priori lives only in C . Note moreover that the specic form of allows to deduce that if we replace 2 by

~2 = 2 ¡ H with H 2 C 2 C T
2¡2 then this is equivalent to consider an equation for u of the form

@ t u(t; x) ¡ a(u(t; x))u(t; x) = (x) ¡ a 0 (u(t; x))

H(a(u(t; x)); t; x):

Let us resume this long discussion in the following theorem:

Theorem 5.11. (paracontrolled equation) Assume that 2 C 0 ; u 0 2 C 2 ; H 2 C 2 C T 0 . u 2 C T 1 C 2 is the classical solution to the equation @ t u(t; x) ¡ a(u(t; x))u(t; x) = (x) ¡ a 0 (u(t; x))H(a(u(t; x)); t; x); u(0) = u 0 ; (5.38) up to time T > 0 if u = (a(u); # + U ] + P u 0 ] );
where # is the solution to equation ( 5.31) and U ] is the solution to the PDE

(@ t ¡ )U ] () = F (u; U ] ; u 0 ] ) U ] (; 0) = 0 2 [; 1] (5.39) with F (u; U ] ; u 0 ) = a 0 (u) } (a(u); 2 ) + 1 (u) + 2 (u) + (a(u); #) + (a(u); U ] ) + (a(u); P u 0 ]
)

and 2 = # # ¡ H.
Denition 5.12. (enhanced noises) For any 2 R we dene the enhanced noise

X C 2 C C 2 C 2¡2
as the closure of the image of the map

(; H) 2 C 2 C 2 C 2 C 0 7 ! J (; H) = (; ¡ H) 2 C 2 C 2 C 2 C 0 (in the topology of C 2 C C 2 C 2¡2 ).

Local well-posedness

The main result of this section is the local wellposedness for equations (5.33) and (5.39) when (#; 2 ) 2 X and u 0 2 C for 2/3 < < 1. This yields a unique solution to (5.38), thanks to Theorem 5.11.

Theorem 5.13. Let 2 (2 / 3; 1): Then for any (#; 2 ) 2 X and u 0 2 C there exists a time T > 0 depending only on k(#; 2 )k X and ku 0 k up to which the system of equations ( 5.33) and ( 5.39) has a unique solution

(u; U ] ) 2 L _ T C 2 L _ T 2
for all < such that 2 + > 2. For any xed > 0 there exist a ball B C X such that the solution map

: (u 0 ; #; 2 ) 2 B 7 ! (u; U ] ) 2 L _ C 2 L _ 2 108
Quasi-linear paracontrolled PDEs is well dened and Lipshitz continuous in the data.

Remark 5.14. The proof is based on a Picard xed point argument. In order to have a contraction map on a small time interval [0; T ], we carry on our analysis of U ] in the space

C 2 L _ T 2 C 2 L _ T 2
and make use of the estimates on time-weighted spaces of Lemma 1.61 to obtain a factor T " for some " > 0 small enough.

Proof. (Th. 5.13)

Let G T = L _ T C 2 L _ T 2 .
We introduce the map

¡: (u; U ] ) 2 G T 7 ! (¡ u (u; U ] ); ¡ U ](u; U ] )) 2 G T by ¡ u (u; U ] ) := (a(u); #) + (a(u); ¡ U ](u; U ] )) + (a(u); P u 0 ] )
and

(@ t ¡ )¡ U ](u; U ] )() = F (u; U ] ; u 0 ] ); ¡ U ](u; U ] )()(0) = 0; 2 [; 1];
We will establish that this map is a contraction in the space G T : First, we have to show that there exists a ball B G T such that ¡(B) B. We have the bound

kP u 0 ] k C 1 L _ T . ku 0 ] k C T .
It is easy to obtain, using the estimates of Section 5.2.1 and Lemma 1.61:

k Z 0 T e ¡(t¡s) [ 1 (u) + (a(u); #) + (a(u); U ] ) + (a(u); P u 0 ] )] s dsk C 2 L _ T 2 .T (1 + kuk L _ T ) 4 (1 + k k C ¡2) 2 ku 0 ] k C 1 + kU ] k C 2 L _ T 2
for some > 0.

By the assumption that (#; 2 ) 2 X we deduce that there exists M > 0 such that

k 2 k C 2 C T 2¡2 6 M . We have k Z 0 T e ¡(t¡s) [a 0 (u) } (a(u); 2 )] s dsk C 2 L _ T 2 . T ¡ (1 + kuk C T ) 2 k 2 k C 2 C T 2¡2 :
To bound the term 2 (u) we observe that

kP t u 0 ] k C 2 C 2 . t ¡ 2 ku 0 ] k C thanks to Lemma 1.61. This gives k Z 0 T e ¡(t¡s) 2 (u) s dsk C 2 L _ T 2 . T ¡ (1 + kuk C T )(1 + k k C ¡2)ku 0 ] k C and then ¡ U ](u; U ] ) is bounded in C 2 L T 2
_ for T small enough. We have also

k¡ u (u; U ] )k L _ T . k k C ¡2 + ku 0 ] k C + k¡ U ](u; U ] )k C L _ T . k k C ¡2 + ku 0 ] k C + T 2 ¡ 2 k¡ U ](u; U ] )k C 2 L _ T 2
and these bounds show that ¡(B) B. The contractivity of ¡ U ](u; U ] ) can be obtained in the same way. Now consider ¡ u (u; U ] ): we have

k (a(u 1 ); U 1 ] ) ¡ (a(u 2 ); U 2 ] )k L _ T . T 2 ¡ 2 kU 1 ] ¡ U 2 ] k C L _ T 2 + ku 1 ¡ u 2 k C T L 1kU 2 ] k C 1 L _ T 2
while for the other terms in

¡ u (u 1 ; U 1 ] ) ¡ ¡ u (u 2 ; U 2 ] ) we remark that sup s2[0;t] ku 1;s ¡ u 0 ¡ u 2;s + u 0 k L 1 . t "/2 ku 1 ¡ u 2 k C [0;t] "/2 L 1 :
Then 80 < " < , using Lemma 5.3 and Lemma 1.59:

k (a(u 1 ); #) ¡ (a(u 2 ); #)k L _ T . ka(u 1 ) ¡ a(u 2 )k C T L 1k# k C 1 L _ T . ku 1 ¡ u 2 k C T L 1k k C ¡2 . T "/2 ku 1 ¡ u 2 k C T "/2 L 1 k k C ¡2 . T "/2 ku 1 ¡ u 2 k L _ T k k C ¡2 :
With the same reasoning we estimate k (a(u 1 );

P u 0 ] ) ¡ (a(u 2 ); P u 0 ] )k L _ T . T "/2 ku 1 ¡ u 2 k C T "/2 L 1 kP u 0 ] k C 1 L _ T . T "/2 ku 1 ¡ u 2 k L _ T ku 0 ] k C T
and then ¡ is a contraction for small times.

The uniqueness of the solution

(u; U ] ) 2 L _ T C 2 L _ T 2
and the Lipshitz continuity of the localized solution map can be proved along the same lines via standard arguments.

Renormalization

At this point we want to construct an enhanced noise 2 X associated to the white noise . Already in the standard setting of the generalised PAM model with constant diusion matrix, the construction of the enhancement requires a renormalization since the resonant product # # is not well dened.

Let 2 S(T 2 ) be a cuto function and let " (x) = " ¡2 (x / "). Then dene a regularised noise by " = " and let # " = (¡) ¡1 " . Notice that

H " () := E[# " (; x) # " (; x)] = E[# " (; x)# " (; x)] = ¡ X k2Z 2 nf0g ^"(k) 2 2 jkj 2 = ¡ " 2
where

" := X k2Z 2 nf0g ^"(k) 2 jkj 2 ' jlog "j
as " ! 0. Subtracting the diverging quantity H " to # " # " and then taking the limit as " ! 0 delivers a nite result.

Theorem 5.15. Take < 1 and let " = ( " ; 2;" ): =( " ; # " # " ¡ H " ). Then the family ( " ) " X converges a.s. and in L p to a random element = (; 2 ) 2 X .

Proof. The proof is a mild modication of the proof for PAM found in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. In order to establish the required C 2 C T 2¡2 regularity for 2 we follow the computations for the case where the diusion coecient is constant. We only have to discuss the additional regularity in the parameter . In order to do so observe that 2;" () = X i j

J i # " () j # " ()K
where JK denotes the Wick product with respect to the Gaussian structure of . Then we have

@ 2;" () = X ij J i @ # " () j # " ()K + X ij J i # " () j @ # " ()K; and @ 2 2;" () = X i j J i @ 2 # " () j # " ()K + X ij J i # " () j @ 2 # " ()K + X ij 2J i @ # " () j @ # " ()K:
Now the computations relative to the regularities of these additional stochastic objects are equivalent to those for the term 2;" where one or two instances of # " () are replaced by Gaussian elds of similar regularities of the form @ # " () and @ 2 # " (). A direct inspection of the proof contained in [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] allows us to deduce that we have almost sure C 2¡2 regularity for these terms and also for random elds @ n 2;" for any nite n. This allows also to deduce that the random eld is almost surely smooth in the parameter . Similar computations allow to prove continuity in " for " > 0. The rest of the proof is standard.

In conclusion we see that in order to be able to use this convergence result we need to modify our approximate PDE and consider instead

@ t u " ¡ a(u " )u " = " ¡ a 0 (u " )H " (a(u " ))
which gives the renormalised equation (5.28).

Our wellposedness results for the paracontrolled formulation of this equation together with the convergence result of Theorem 5.15 allow to deduce that u " ! u in C T for any 2 / 3 < < < 1 and that the limiting process u satises a modied version of eq. (5.1), namely

@ t u ¡ a(u)u = ; u(0) = u 0 ;
where a(u)u denotes a renormalized diusion term given by a(u)u := a(u) u + a 0 (u) } (a(u); 2 ) + 1 (u) + 2 (u):

(5.40)

Nonlinear source terms

In this section we want to solve equation (5.2):

@ t u ¡ a 1 (u)u = a 2 (u)
where a 1 : R ! [; 1], 2 (0; 1) is a non-linear diusion coecient as before and a 2 : R! [¡L; L], L > 0 is another bounded function with suciently many bounded derivatives. We rewrite this equation as

(a(u); L )u = a 2 (u) + a 1 (u) u + a 2 (u) + a 1 (u) u + a 2 (u)
where now a(u) = (a 1 (u); a 2 (u)) is a vector valued non-linearity. Since we don't need u to depend on any parameter = ( 1 ; 2 ), we have dened L as L () := @ t ¡ 1 and used the identity (a(u); L )u = (@ t ¡ a 1 (u) )u, similarly to what done in (5.18). As before we make the Ansatz u = (a(u); #) + u ]

Nonlinear source terms

where now #() for

= ( 1 ; 2 ) 2 [; 1] [¡L; L] solves L ()#() = (@ t ¡ 1 )#() = 2 ;
The bounded domain [; 1] [¡L; L] for is important to be able to have uniform estimates and re-use the estimates proved in the past sections for the simple situation of 2 = 1. The solution of this equation is

#(; ) = 2 Z 0 1 e 1 s ds = ¡ 2 1 ¡1 :
Observe that

(a(u); L )u = (a(u); L ) (a(u); #) + (a(u); L )u ]
and recall that by Lemma 5.7

(a(u); L ) (a(u); #) = (a(u); L #) + (a(u); #):

Now (L #)() = (@ t ¡ 1 )#(; t; x) = (); = ( 1 ; 2 ) 2 [; 1] [¡L; L]
with the denition ()(t; x) := 2 (x) and then

(a(u); L #) = (a(u); ) = a 2 (u) :
In conclusion

(a(u); L ) (a(u); #) = a 2 (u) + (a(u); #)
and the equation for u ] reads

(a(u); L u ] ) = a 1 (u) u + a 2 (u) + [a 2 (u) ¡ a 2 (u) ] +a 1 (u) u + a 2 (u) ¡ (a(u); #)
where now all the terms on the r.h.s. can be considered remainder terms. Let us just remark that the commutation term a 2 (u) ¡ a 2 (u) can be handled easily via Lemma 1.67. Of course, the rst two terms in the equation above require to be treated as resonant terms. Note that, modulo terms of order C T 3¡2 (or M T /2 C 2¡2 as dened in Lemma 1.61) the terms a 1 (u) u + a 2 (u) are equivalent to

a 1 0 (u) } (a(u); # #) + a 2 0 (u)( (a(u); #) )
and that by Lemma 5.5 we have that

( (a(u); #) ) = } (a(u); # ) + C T 3¡2
so the resonant terms are comparable to the sum of the two terms

a 1 0 (u) } (a(u); # #) + a 2 0 (u) } (a(u); # )
which require renormalization of the form

a 1 0 (u)a 2 (u) 2 a 1 (u) 2 " ¡ a 2 0 (u)a 2 (u) a 1 (u) " (5.41)
and the convergence follows with the same arguments of Section 5.3.3.

Remark 5.16. The structure of the second renormalisation term, which is due to the r.h.s. in the equation, is the same of that found by Bailleul, Debussche and Hofmanová in [START_REF] Bailleul | Quasilinear generalized parabolic Anderson model equation[END_REF] with dierent methods.

Remark 5.17. Our approach works in the same way for equation (5.4), namely

@ t u(t; x) ¡ a ij (u(t; x))@ ij 2 u(t; x) = g(u(t; x))
with a: R ! M 2 (R) such that P i;j a(u) ij x i x j > C jxj 2 8x 2 R 2 for C > 0 and @ ij 2 := @ 2 @ x i @x j . To see that, let a(u) := (a ij (u); g(u)) 2 R 5 and = ( i;j ; g ) 2 R 5 . Let L () := @ t ¡ ij @ i j 2 ; () := g ; with the uniform ellipticity condition

P i;j ij x i x j > C jxj 2 8x 2 R 2 .
It is easy to see that Lemma 5.7 and Lemma 5.5 hold within this setting, just considering nonlinear paraproducts for functions depending on 5 parameters. We have then:

u = (a(u); # + U ] + P u 0 ] )
with #() stationary solution of L #() = (), P t u 0 ] := e ij @ i j 2 t u 0 ] and U ] () which solves

L U ] () = } ((a(u); a 0 (u)); 1 ) + } ((a(u); a 0 (u)); 2 ) + Q(u; U ] ) with Q(u; U ] ) 2 C 2¡2¡" , 1 2 C 2 C 0 2 C 2¡2 = #() ij 0 @ ij 2 #(), 2 (; 0 ) = #() g 0 and U ] (t = 0) = 0. Note that we can write # as #() = g Z 0 1 e t i j @ i j 2 dt # ^(k) = g ^(k) ij k i k j ; k 2 Z 2 nf0g:
From the uniform ellipticity condition we have k#k C k C . k k C , and Schauder estimates analogous to those of Lemma 1.61 hold as well. Now consider the renormalization. We have

H 1 " (; 0 ) := E( 1 (; 0 )) = ¡ g 2 X k2Z 2 nf0g ^"(k) 2 P i;j ij 0 k i k j ( P i;j ij k i k j ) 2 ; H 2 " (; 0 ) := E( 2 (; 0 )) = g g 0 X k2Z 2 nf0g ^"(k) 2 P i;j ij k i k j : We note that the convergence of 1 " ¡ H 1 " , 2 " ¡ H 2 " in C (; 0 ) k C 2¡2 (T 2
) can be obtained with the same techniques as in [GIP15, Section 5.2], although we do not discuss it here.

Full generality

Within the framework of the present work we are actually able to treat equations of the form (5.3), which if a 3 takes values in [; 1] for some > 0 is just:

@ t u(t; x) ¡ a 1 (u(t; x))u(t; x) = (a 2 (u(t; x)); x) (5.42)
where ( 2 ; x) is a Gaussian process with covariance

E[( 2 ; x)( ~2; x ~)] = F ( 2 ; ~2)(x ¡ x ~)
where F is a smooth covariance function. Let as before 2/3 < < 1. In this case we can take as a parametric equation L ()# := @ t #(; t; x) ¡ 1 #(; t; x) = ( 2 ; x) whose solution # is a Gaussian process, smooth with respect to the variable = ( 1 ; 2 ) which we assume taking value in a compact subset of R 2 for which 1 > > 0 with xed . Letting a(u) = (a 1 (u); a 2 (u)) we can rewrite the l.h.s. of eq. (5.42) in the form @ t u ¡ a 1 (u)u = } (a(u); L u) and the r.h.s. as

(a 2 (u(t; x)); x) = } (a(u); )
where (; x) = ( 2 ; x). Now perform the paraproduct decomposition to get (a(u); L u) ¡ (a(u); ) = (a(u); ) + (a(u); Du) + (a(u); ) + (a(u); Du):

We have introduced here the parametric dierential operator D() := 1 for = ( 1 ; 2 ). Let P t () := e t 1 as before, and set the paracontrolled Ansatz in the usual form

u = (a(u); # + U ] + P u 0 ] ):
Using that

(a(u); L (a(u); # + U ] + P u 0 ] )) = (a(u); L (# + U ] + P u 0 ] )) + (a(u); # + U ] + P u 0 ] )
and observing that we can take L # = and that L P u 0 ] = 0 we get

(a(u); L U ] ) = F (u; U ]
) where F (u; U ] ) = (a(u); ) + (a(u); Du) + (a(u); ) + (a(u); Du)

+[ (a(u); ) ¡ (a(u); )] ¡ (a(u);

# + U ] + P u 0 ] ) which is solved by U ] satisfying L U ] = F (u; U ] ):
Indeed (a(u); F (u; U ] )) = F (u; U ] ), since F (u; U ] ) does not depend on the additional parameter. The term (a(u); ) ¡ (a(u); ), which does not appear in the simpler case, can be treated with the following lemma:

Lemma 5.18. Let g 2 L _ T , h 2 C 1 C T with 2 (0; 1), 2 R. We have, 8" > 0 k (g; h) ¡ (g; h)k C T + ¡" . kg k L _ T khk C 1 C T :
The proof consists in a straightforward adaptation to the nonlinear case of inequality (1.69).

It remains now to discuss the handling of the resonant products under the paracontrolled assumption, namely (a(u); ) and (a(u); Du). Next lemma is a paralinearization result adapted to our non-linear context.

Lemma 5.19. Assume that u 2 C T and Z 2 C 2 C T then if + 2 > 0 we have C(u; Z) := (a(u); Z) ¡ u ((a(u); a 0 (u)); DZ) 2 C T +2
where DZ((; 0 ); t; x) :=

P i i 0 @ i Z(; t; x). Proof. (a(u); Z)(t; x) = X ij Z y;z K i;x (y)K j ;x (z)Z(a(u(t; y)); t; z) = X ij ;k Z y;z 0 z;z 00 K i;x (y)K j ;x (z)P k;z (z 00 )K k;z (z 0 )Z(a(u(t; y)); t; z 0 ) = X ij ;k Z y;z 0 z;z 00 K i;x (y)K j ;x (z)P k;z (z 00 )K k;z (z 0 ) [Z(a(u(t; y)); t; z 0 ) ¡ Z(a(u(t; z 00 )); t; z 0 )] = X ij ;k Z y;z 0 z;z 00 K i;x (y)K j ;x (z)P k;z (z 00 )K k;z (z 0 ) [ X `a0 (u(t; z 00 ))u tz 00
ty @ a `Z (a(u(t; z 00 )); t; z 0 )]

+ X i j k j Z y;z 0 z ;z 00 K i;x (y)K j;x (z)P k;z (z 00 )K k;z (z 0 ) O((u tz 00 ty ) 2 )@ 2 Z(a(u(t; y)); t; z 0 )
and observe that the rst term is equal to u ((a(u); a 0 (u)); DZ) while the second term can be easily estimated in C T +2 .

Using this result and Lemma 5.18 we can expand in the same way as done for Lemma 5.5 to obtain:

(a(u); ) = u ((a(u); a 0 (u)); D) + C T 3¡2 = (a(u); #) ((a(u); a 0 (u)); D) + C T 3¡2 = } ((a(u); a 0 (u)); # D) + C T 3¡2 :
Similarly, noting that ((a(u); a 0 (u)); (DD)u) = ((a(u); a 0 (u)); (DD) (a(u); #)) + C T 3¡2 = ((a(u); a 0 (u)); (DD)#) + C T

3¡2

where (DD)(; 0 ) = 1 0 , we have by a straightforward generalization of Lemma 5.5:

(a(u); L u) = u ((a(u); a 0 (u)); (DD)u) + C T 3¡2 = (a(u); #) ((a(u); a 0 (u)); (DD)#)

+ C T 3¡2 = } ((a(u); a 0 (u)); # (DD)#) + C T 3¡2 :
Finally the equation for U ] reads

L U ] = } ((a(u); a 0 (u)); # D + # (DD)#) + C T 3¡2 :
This can be solved essentially as we did in the simpler context. We see that the general enhancement has the form

(; # D + # (DD)#)
which of course will require renormalization like we did before. In particular

(# D + # (DD)#)(; 0 ) = #() 2 0 @ 2 ( 2 ; ) + #() 1 0 #() = ¡ 2 0 1 ( ¡1 ( 2 ;
)) @ 2 ( 2 ; )

+ 1 0 1 2 ( ¡1 ( 2 ; )) ( 2 ; )
where we used that 1 #() = ¡( 2 ; ). Now observe that E[( ¡1 " ( 2 ; )) " ( 2 ; )] = ¡F ( 2 ; 2 ) "

and that E[( ¡1 " ( 2 ; )) @ 2 " ( 2 ; )] = ¡(@ 1 F )( 2 ; 2 ) " with @ 1 F denoting the derivative with respect to the rst entry.

In the end the renormalised enhanced noise is obtained as the limit in X of ( " ; 2;" ) where 2;" (;

0 ) = ¡ 2 0 1 ( ¡1 " ( 2 ; )) @ 2 " ( 2 ; ) + 1 0 1 2 ( ¡1 " ( 2 ; )) " ( 2 ; ) ¡ H " (; 0 ) with H " (; 0 ) = 2 0 1 (@ 1 F )( 2 ; 2 ) " ¡ 1 0 1 2 F ( 2 ; 2 ) " :
We do not discuss the convergence of the noise ( " ; 2;" ) here, as the purpose of this section is just to show that a paracontrolled structure can be obtained for quasi-linear equations of the type (5.42) with the theory developed in Section 5.2. We just remark that if we take F ( 2 ; ~2) = 2 ~2 we obtain again the situation treated in Section 5.4. Indeed in this case

} ((a(u); a 0 (u)); H " ) = a 2 0 (u)a 2 (u) a 1 (u) " ¡ a 1 0 (u)a 2 (u) 2 a 1 (u) 2 " :
which coincides with (5.41).

Remark 5.20. Consider the more general equation (5.3), where the noise depends explicitly on time, e.g. with a covariance E[(; t; x)( 0 ; t 0 ; x 0 )] = F (;

0 )Q(t ¡ t 0 ; x ¡ x 0 )
with F a smooth function and Q a distribution of parabolic regularity > ¡4 / 3. Note that as before the coecient a 3 (u) 2 [; 1] in front of the time derivative can be eliminated trivially by dividing. In order to handle the time dependence of the noise, the framework of Section 5.2 will still apply, provided we consider spacetime paraproducts instead of paraproducts which act only on the space variable. However, the constraint of regularity > ¡4/3 does allow to treat a noise which is white in time and smooth in space, but not a spacetime white noise. It is well known that the rst order paracontrolled approach that we presented in Section 1.2 does not allow to treat this kind of irregular signals in full generality.

Chapter 6

Weak universality for a class of 3d stochastic reaction-diusion models

Introduction

Consider a family of stochastic reactiondiusion equations in a weakly nonlinear regime: L u(t; x) = ¡" F " (u(t; x)) + (t; x);

(t; x) 2 [0; T /" 2 ] (T/") 3 (6.1)

with " 2 (0; 1], T > 0, initial condition u 0;" : (T / ") 3 ! R, F " 2 C 9 (R) with exponential growth at innity, > 0 and L : =(@ t ¡ ) the heat ow operator and T = R/(2Z). Here denotes a family of centered Gaussian noises on [0; T / " 2 ] (T / ") 3 with stationary covariance E((t; x)(s; y)) = C ~"(t ¡ s; x; y) such that C ~"(t ¡ s; x; y) = (t ¡ s; x ¡ y) if dist(x; y) 6 1 and 0 otherwise where : R R 3 ! R + is a smooth function compactly supported in [¡1; 1] B R 3(0; 1). We assume also that there exists a compactly supported function such that = (this is true e.g. when is obtained by space-time convolution of the white noise with ).

We look for a large scale description of the solution to eq. ( 6.1) and we introduce the mesoscopic scale variable u " (t; x) = " ¡ u(t / " 2 ; x / ") where > 0. Substituting u " into (6.1) we get L u " (t; x) = ¡" ¡2¡ F " (" u " (t; x)) + " ¡2¡ t " 2 ;

x " : (6.2)

In order for the term " ¡2¡ (t / " 2 ; x / ") to converge to a nontrivial random limit we need that = 1/2. Indeed the Gaussian eld " (t; x): =" ¡5/2 (t/" 2 ; x/") has covariance " ¡5 C ~"(t/" 2 ; x/") and converges in distribution to the space-time white noise on R T 3 . For large values of the nonlinearity will be negligible with respect to the additive noise term. Heuristically, we can attempt an expansion of the reaction term around the stationary solution Y " to the linear equation

L Y " = ¡Y " + " ; (6.3) i.e. Y " (t; x) = R ¡1 t P (t ¡ s; x ¡ y) " (s; y)dsdy with P (t; x) = 1 (4pt) 3/2 e ¡ jxj 2
4t e ¡t 1 t>0 .

Let us denote with C " the covariance of Y " . We approximate the reaction term as " ¡5/2 F " (" 1/2 u " (t; x)) ' " ¡5/2 F " (" 1/2 Y " (t; x)):

The Gaussian r.v. " 1/2 Y " (t; x) has variance " 2 = "E[(Y " (t; x)) 2 ] = "E[(Y " (0; 0)) 2 ] = "C " (0; 0) independent of (t; x). Although " 2 depends on ", it can be bounded from above and below by two positive constants uniformly on " 2 (0; 1]. We can expand the random variable F " (" 1/2 Y " (t; x)) according to the chaos decomposition relative to " 1/2 Y " (t; x) (as done in (2.2)) and obtain

F " (" 1/2 Y " (t; x)) = X n>0 f n;" H n (" 1/2 Y " (t; x); " 2 ); (6.4)
where H n (x; " 2 ) are standard Hermite polynomials with variance " 2 and highest-order term normalized to 1. Note also that the coecients (f n;" ) n>0 do not depend on (t; x) by stationarity of the law of " 1/2 Y " (t; x) since they are given by the formula

f n;" = 1 n! " 2n E[F " (" 1/2 Y " (t; x))H n (" 1/2 Y " (t; x); " 2 )] = 1 n! " n E[F " ( " G)H n (G)]
where G is a standard Gaussian variable of unit variance.

Let X be the stationary solution to the equation

L X = ¡X + ;
with the spacetime white noise on R T 3 and denote by JX N K the generalized random elds given by the N -th Wick power of X, which are well dened as random elements of S 0 (R T 3 ) as long as N 6 4. The Gaussian analysis which we set up in this chapter shows in particular that if " (n¡N )/2 f n;" ! g n as " ! 0 for every 0 6 n 6 N , N 6 4, and (F " ) " C N +1 (R) with exponential growth, then the family of random elds

F " N : (t; x) 7 ! " ¡N /2 F " (" 1/2 Y " (t; x)); (t; x) 2 R T 3 ;
converges in law in S 0 (R T 3 ) as " ! 0 to P n=0 N g n JX n K. Consider the smallest n such that f n;" converges to a nite limit as " ! 0. Since H n (" 1/2 Y " ; " 2 ) = " n/2 JY " n K, the n-th term in the expansion (6.4) is f n;" " +(n¡5)/2 JY " n K. Therefore, the equation yields a non-trivial limit only if = (5 ¡ n)/2. We are interested mainly in the case n = 3 ) = 1 and n = 1 ) = 2. The case = 2 gives rise to a Gaussian limit and its analysis is not very dicult. In the following we will concentrate on the analysis of the case = 1 where the limiting behaviour of the model is the most interesting and given by the 3 4 family of singular SPDEs. In this case we obtain the family of models L u " (t; x) = ¡" ¡ 3 2 F " (" 1 2 u " (t; x)) + " (t; x) (6.5) with initial condition u 0;" () := " ¡ 1 2 u 0;" (" ¡1 ) where u 0;" is the initial condition of the microscopic model (6.1).

In order to state our main result, Theorem 6.3 below, let us introduce some notations and specify our assumptions. Let F ~" be the centering (up to the third Wiener chaos relative to " 1/2 Y " (t; x)) of the function F " , i.e.

F ~" (x) := F " (x) ¡ f 0;" ¡ f 1;" x ¡ f 2;" H 2 (x; " 2 ) = X n>3 f n;" H n (x; " 2 ): (6.6)
The decomposition of F ~" is obviously the same as in (6.4) except for the fact that we have discarded the orders 0,1,2. Let F ~"(m) be the m-th derivative of the function F ~" for 0 6 m 6 9 and dene the following "dependent constants:

d " := " ¡2 9 Z s;x P s (x)E[F ~"(1) (" 1/2 Y " (s; x))F ~"(1) (" 1/2 Y " (0; 0))];
d " := 2 " ¡1/2 f 3;" f 2;"

Z s;x P s (x)(C " (s; x)) 2 ; d " := " ¡2 6 Z s;x P s (x)E[F ~"(0) (" 1/2 Y " (s; x))F ~"(2) (" 1/2 Y " (0; 0))]; d " := " ¡5/2 3 Z s;x P s (x)E[F ~"(0) (" 1/2 Y " (s; x))F ~"(1) (" 1/2 Y " (0; 0))];
(6.7)

where P s (x) is the heat kernel and R s;x denotes integration on R + T 3 . Assumption 6.1. All along this chapter we enforce the following assumptions: a) (u 0;" ) " converges in law to a limit u 0 in C ¡1/2¡ and is independent of ; b) (u 0;" ) " is uniformly bounded in L 1 in probability, i.e. 9C > 0 such that 8" 2 (0; 1] ku 0;" k L 1 ((T/") 3 ) 6 C; c) (F " ) " C 9 (R) and there exists constants c; C > 0 such that sup ";x X k=0 9 j@ x k F " (x)j 6 Ce cjxj ; (6.8) d) the family of vectors " = ( 0;" ; 1;" ; 2;" ; 3;" ) 2 R 4 given by 3;" := f 3;" 1;" := " ¡1 f 1;" ¡ 9d " ¡ 6d " 2;" := " ¡1/2 f 2;" 0;" := " ¡3/2 f 0;" ¡ " ¡1/2 f 2;" d " ¡ 3d " ¡ 3d " (6.9) has a nite limit = ( 0 ; 1 ; 2 ; 3 ) 2 R 4 as " ! 0.

Remark 6.2. Note that under Assumption 6.1 we do not allow initial data (u 0;" ) " to be mollications at size " of a distribution u 0 2 C ¡1/2¡ . Indeed, that would verify 6:1:a) but not 6:1:b), as it is clear from the norm of C ¡1/2¡ given in Denition 1.17. The reason we need the rescaling u 0;" = " 1/2 u 0;" (" ) to be bounded in probability in L 1 is to be able to perform the estimations of Section 6.4.1 on the remainder R " (which accounts for the exponential divergence of F " ). Simply assuming 6:1:a) would result on a non-integrable singularity in t = 0, as noted in [START_REF] Hairer | A class of growth models rescaling to KPZ[END_REF] and [START_REF] Hairer | Large scale behaviour of 3d phase coexistence models[END_REF]. Note also that our Assumption 6.1 does not allow to restart the solution in time, but since we are aiming for a local-in-time convergence of the solutions u " , this is not a big problem. It is possible to show that 6:1:b) follows from more specic assumptions on F " (for example by assuming F " : R ! R coercive and using a maximum principle to obtain 6:1:b)), but since the main point of this chapter is the estimation of innite-chaos stochastic terms (Section 6.3) we don't develop this idea further. Theorem 6.3. (Convergence of the solution) Under Assumption 6.1 the family of random elds (u " ) " given by the solution to eq. ( 6.5) converges in law and locally in time to a limiting random eld u() in the space C T C ¡ (T 3 ) for every 1/2 < < 2/3. The law of u() depends only on the value of and neither on the other details of the nonlinearity nor on the covariance of the noise term. We call this limit the dynamic 3 4 model with parameter vector 2 R 4 .

Here C T C ¡ (T 3 ) denotes the space of continuous functions from [0; T ] to the Besov space C ¡ (T 3 ) = B 1;1 ¡ (T 3 ) (see Chapter 1 for a brief introduction of Besov spaces and paraproducts). Theorem 6.3 is actually just a corollary of the more precise result Theorem 6.7, in which we identify the paracontrolled equation satised by the limiting random eld u().

Remark 6.4. We are interested only in local-in-time convergence of u " , as a way to show the potential of our method for controlling stochastic terms with innite chaos decomposition (developed in Section 6.3). Nevertheless, we expect it to be possible to obtain globalin-time convergence of the solution with more stringent assumptions on F " , although we do not treat this problem here.

We write u " = Y " + v " with Y " as in (6.3), and perform a Taylor expansion of F ~"(" 1/2 Y " + " 1/2 v " ) around " 1/2 Y " up to the third order to get

L u " = " ¡ " ¡ 3 2 F ~"(" 1 2 Y " ) ¡ " ¡1 F ~"(1) (" 1 2 Y " )v " ¡ 1 2 " ¡ 1 2 F ~"(2) (" 1 2 Y " )v " 2 ¡ 1 6 F ~"(3) (" 1 2 Y " )v " 3 ¡" ¡3/2 f 0;" ¡ " ¡1 f 1;" (Y " + v " ) ¡ " ¡1/2 f 2;" (JY " 2 K + 2v " Y " + v " 2 ) ¡ R " (v " ):
(6.11)

where R " (v " ) is the remainder of the Taylor series and we use the fact that H 2 (" 1/2 Y " ; " 2 ) = "JY " 2 K. Notice that we stopped the Taylor expansion at the rst term for which " does not appear anymore with a negative exponent (that is F ~"(3) ("

1 2 Y " )).
One can then expect the remainder R " (v " ) to converge to zero in some sense. On the other hand, all the other terms except F

~"(3) (" 1 2 Y " ) and R " (v " ) appear to diverge in the limit "! 0, but in analogy with wellknown renormalization methods for random elds, we try to nd a combination of them that can be made to converge in some function space. Dene the following random elds:

L Y " := ¡Y " + " Y " := " ¡1/2 f 2;" JY " 2 K L Y " := Y " ; Y " := " ¡ 3 2 F ~"(" 1 2 Y " ) L Y " := Y " ; Y " := 1 3 " ¡1 F ~"(1) (" 1 2 Y " ) L Y " := Y " Y " := 1 6 " ¡ 1 2 F ~"(2) (" 1 2 Y " ) Y " ? := 1 6 F ~"(3) (" 1 2 Y " ) Y " := Y " Y " ¡ d " Y " := Y " Y " ¡ d " ; Y " := Y " Y " ¡ d " ; Y " := Y " Y " ¡ d " 0 Y " ¡ d " ;
(6.12)

with Y " stationary solution, while Y " ; Y " ; Y " ; Y " have 0 initial condition in t = 0. The last four trees Y " , Y " , Y " , Y " are obtained from the others via the resonant Bony's paraproduct dened in Section 1.2, and d " , d " , d " , d " 0 , d " are just "-dependent constants whose exact value will matter only in Section 6.3. Indeed, in the scope of this section we only need the following relation to be veried:

d " 0 = 2 d " + 3 d " :
(6.13)

The notation Y " denotes that this tree has nite chaos expansion and can be treated with the well-known techniques of [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF] or [START_REF] Mourrat | Construction of 3 4 diagrams for pedestrians[END_REF] (we put a bar on Y " just because it is the only tree obtained from Y " ). With the denitions (6.12), equation (6.11) takes the form

L v " = Y " ¡ Y " ¡ Y " ¡ 3Y " v " ¡ 3Y " v " 2 ¡ Y " ? v " 3 ¡" ¡3/2 f 0;" ¡ " ¡1 f 1;" (Y " + v " ) ¡ " ¡1/2 f 2;" (2Y " v " + v " 2 ) ¡ R " (v " ) : (6.14)
At this point it is worth noting that the trivial case

F ~"(x) = H 3 (x; " 2 ) yields Y " = JY " 3 K, Y " = JY " 2 K, Y " = Y " , Y ? = 1.
By comparing these random elds to the ones dened in [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF] we can guess that Y " ; Y " ; Y " ; Y ? can be controlled respectively in C 1/2¡ ; C ¡1¡ ; C ¡1/2¡ ; C ¡ 8 > 0 for any F " satisfying Assumption 6.1, and carry on the paracontrolled analysis of (6.14) as if it were the case. Clearly, the paracontrolled structure is robust and does not depend on how the terms Y " ; Y " ; Y " ; Y ? are dened as long as they have the desired regularity.

From these observations, we do not expect to be able to control the products Y " v " , Y " v " 2 and Y " v " in eq. (6.14) uniformly in " > 0. In order to proceed with the analysis we make the Ansatz:

u " = Y " + v " ; v " = ¡Y " ¡ Y " ¡ 3v " Y " + v " \ (6.15)
and proceed to decompose the ill-dened products using the paracontrolled introduced in Section 1.2. We start by writing v " Y " = v " Y " + v " Y " + v " Y " . The resonant term, together with Ansatz (6.15), yields:

v " Y " = ¡Y " Y " ¡ Y " Y " ¡ 3 v " (Y " Y " ) ¡3 com 1 (v " ; Y " ; Y " ) + v " \ Y " ;
with the denition and bounds of com 1 (; ; ) given in Lemma 1.67. Then we dene

Y " ^v" := v " Y " ¡ v " Y " + (3 v " d " + d " 0 Y " + d " + d " ) = v " Y " ¡ Y " ¡ Y " ¡ 3v " Y " + v " \ Y " ¡ 3 com 1 (v " ; Y " ; Y " ):
Moreover we have for v " Y " :

v " Y " = ' " Y " ¡ Y " Y " ¡ Y " Y " ¡ Y " Y " ;
where we introduced the shorthand ' " := v " + Y " . So we let

v " Y " := v " Y " + d " = ' " Y " ¡ Y " Y " ¡ Y " Y " ¡ Y " ;
Finally to analyse the product Y " v " 2 we write

Y " v " 2 = Y " (Y " ) 2 ¡ 2Y " Y " ' " + Y " ' " 2 ;
and consider the products involving only Y factors: rst

Y " Y " = Y " Y " + Y " Y " + Y " + d " =: Y " Y " + d " ;
and then we dene the term Y " (Y " ) 2 as follows:

Y " (Y " ) 2 := Y " (Y " ) 2 ¡ 2d " Y " = Y " (Y " ) 2 + Y " (Y " ) 2 + Y " (Y " Y " ) +2com 1 (Y " ; Y " ; Y " ) + 2Y " Y " ; so that Y " v " 2 := Y " v " 2 + 2d " v " = Y " (Y " ) 2 ¡ 2 (Y " Y " )' " + Y " ' " 2 :
We note also that

L v " = ¡L Y " ¡ L Y " + L v " \ ¡ 3v " L Y " ¡ 3com 3 (v " ; Y " ) ¡ 3 com 2 (v " ; Y " );
with com 2 (; ) and com 3 (; ) specied in Lemma 1.67. Substituting these renormalized products into (6.14) and recalling the denition (6.9) for " = ( 0;" ; 1;" ; 2;" ; 3;" ), we obtain the following equation for v " \ :

L v " \ = 3 com 3 (v " ; Y " ) + 3 com 2 (v " ; Y " ) ¡Y " ? v " 3 ¡ 3Y " v " 2 ¡ 3Y " ^v" +Y " ¡ 2;" (2v " Y " + v " 2 ) ¡ 1;" (Y " + v " ) + [9d " + 6d " ¡ 3d " 0 ]v " ¡ 0;" ¡ R " (v " );
where we can use the constraint (6.13) to remove the term proportional to v " . Summarizing, we obtain the following equation, together with Ansatz (6.15):

( v " = ¡Y " ¡ Y " ¡ 3v " Y " + v \ L v " \ = U ( " ; Y " ; v " ; v " \ ) ¡ R " (v " ) (6.16)
with initial condition v ";0 = u 0;" ¡ Y " (0) and U given by

U ( " ; Y " ; v " ; v " \ ) : = 3 com 3 (v " ; Y " ) + 3 com 2 (v " ; Y " ) ¡ Y " ? v " 3 ¡3Y " v " 2 ¡ 3Y " ^v" + Y " ¡ 2;" (2v " Y " + v " 2 ) ¡ 1;" (Y " + v " ) ¡ 0;" ¡ R " (v " ):
(6.17)

The enhanced noise vector Y " is dened by

Y " := (Y " ? ; Y " ; Y " ; Y " ; Y " ; Y " ; Y " ; Y " ; Y " ) 3 
X T := C T C ¡ C T C ¡ 1 2 ¡ (C T C ¡1¡ ) 2 L T 1/2¡ (C T C ¡ ) 3 C T C ¡ 1 2 ¡ (6.18)
for every > 0, T > 0. We use the notation kY " k X T = P kY " k X for the associated norm where Y " is a generic tree in Y " . The homogeneities j j 2 R are given by

Y " = Y " ? Y " Y " Y " Y " Y " Y " Y " Y " j j = 0 ¡1/2 ¡1 ¡1 1/2 0 0 0 ¡1/2
Note that for every " > 0 eq. (6.16) is equivalent to eq. (6.5).

Remark 6.6. The paracontrolled structure we developed in this section is the same as in the work of Catellier and Chouk [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF], plus an additive source term (which is R " (v " ) in equation (6.16)). Therefore, there exists T = T (kY " k X T ; ku ";0 k C ¡1/2¡; j " j) such that we can dene for 2 (1/2; 2/3), p 2 [4; 1), >

1 4 + 3 2 a solution map ¡: C ¡1/2¡ X R 4 M T ;p L p (T 3 ) ! C T C ¡ (T 3 ) (u ";0 ; Y " ; " ; R) 7 ! u "
so that u " = ¡(u ";0 ; Y " ; " ; R) with u " = Y " + v " and v " that solves (6.16) with the remainder R " (v " ) replaced by R. The space M T L p (T 3 ) is specied in Section 1.2.2. Indeed, we can use Lemma 1.60 and Lemma 1.62 to control IR as

kIRk L T 1/2;1+2 . T kRk M T ; p L p
for > 0 small enough, and thanks to this bound it is easy to see that the the xed point procedure of Section 3 of [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF] still holds with a xed additive source term R. In the same way, the continuity of the solution map ¡ follows easily as in Theorem 1.2 of [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF].

Identication of the limit

In order to identify interesting limits for equation (6.5), we introduce for every parameter = ( 0 ; 1 ; 2 ; 3 ) 2 R 4 the enhanced noise Y() which is constructed from universal noises X as 

:= ( 3 ; 3 X ; 3 X ; 2 X ; 3 X ; ( 3 ) 2 X ; ( 3 ) 2 X ; 3 2 X ; ( 3 ) 2 X ) (6.19)
where X is the stationary solution to to the linear equation L X = ¡X + and is the time- space white noise on R T 3 . We will sometimes use the shorter notation Y() = (Y ()) for (6.19).

We dene the universal elds X through their Littlewood-Paley decomposition 8(t; x ) 2 R + T 3 as:

X := JX 3 K; L X = X with X (t = 0) = 0; X := JX 2 K; q X (t; x ) := q (1 ¡ J 0 )(X X )(t; x ) = Z 1 ; 2 (1 ¡ J 0 )(JX 2 ( 1 )KJX 2 ( 2 )K) q; 1 ; 2 ; q X (t; x ) := q (X X)(t; x ) = Z 1 ; 2 JX 3 ( 1 )KX( 2 ) q; 1 ; 2 ; q X (t; x ) := Z 1 ; 2 (1 ¡ J 1 )(JX 3 ( 1 )KJX 2 ( 2 )K) q; 1 ; 2 +6 Z s;x [ q X(t + s; x ¡ x) ¡ q X(t; x )]P s (x)[C(s; x)] 2 ; (6.20)
where as before JK stands for the Wick product, i = (x i ; s i ) 2 R T 3 , C(; ) is the covariance of X and q; 1 ; 2 is the measure

q; 1 ; 2 := 1 [0;+1) (s 1 )(t ¡ s 2 )d 1 d 2 Z x;y K q;x (x) X ij K i;x (y)K j ;x (x 2 )P t¡s 1 (y ¡ x 1 )
with the usual heat kernel P t (x) =

1 (4pt) 3/2 e ¡ jxj 2
4t 1 t>0 . We commit an abuse of notation by writing X() since X is actually a distribution in space: the integrals in (6.20) should obviously be intended as functionals.

Standard computations (see e.g. [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF] or [START_REF] Mourrat | Construction of 3 4 diagrams for pedestrians[END_REF]) show that, 8 2 R 4 and for any

T > 0, 0 < < 0 Y() 2 C T C ¡ 1 2 ¡2 0 (C T C ¡1¡2 0 ) 2 C T C 1 2 ¡2 0 (C T C 0¡2 0 ) 2 C T C T ¡ 1 2 ¡2 0 ; almost surely.
Using the paracontrolled structure we developed in Section 6.2.1 we can identify the limiting solution u() introduced in Theorem 6.3. Theorem 6.7. The family of random elds u " given by the solutions of eq. ( 6.5) converges in law and locally in time to a limiting random eld u() in the space C T C ¡ (T 3 ) for every 1/2 < < 2/3. The limiting random eld u() solves the paracontrolled equation

8 > > > < > > > : u() = X + v() v() = ¡ 3 X ¡ 2 X ¡ 3 3 v() X + v \ () L v \ () = U (; Y(); v(); v \ ()) v \ ()(t = 0) = v 0 + 3 X (t = 0) + 2 X (t = 0) + 3 3 v ";0 X (t = 0) (6.21)
with U dened in ( 6.17) and v 0 = u 0 ¡ X(t = 0).

Proof. Fix T > 0. Let u " = Y " + v " be the solution of eq. (6.5) for xed " > 0, which is seen to be unique in the ("-dependent) time interval [0; T " ] by a usual xed-point argument on the original equation (without resorting to the paracontrolled decomposition). Let u " = ¡(u ";0 ; Y " ; " ; R " (v " )) on [0; T " ] with ¡ dened as in Remark 6.6 and R " (v " ) seen as an exogenous source term. We know from the a priori estimations of Section 6.4.2 that there exists a time T ? = T ? (kY " k X T ; ku ";0 k C ¡1/2¡; j " j) and a family of events (E " ) ">0 such that P(E " ) ! 1 for " ! 0 and we can control kv " k M T?

1/4+3/2 L 1 . Thus, we can control the L 1 norm of v " (t) in [T " / 2; T " ] and extend the solution v " on [0; T ? ] for every ". Denote by u " ? = ¡ ? (u ";0 ; Y " ; " ; R " (v " )) the process u " stopped at time T ? and ¡ ? the corresponding stopped solution map.

Note that u() solves the same equation as u " ? with Y " replaced by Y(), u ";0 replaced by u 0 , " replaced by and R " (v " ) = 0. So u() = u ? = ¡ ? (u 0 ; Y(); ; 0) up to time T ? . Let us introduce the random eld u " ? = ¡ ? (u ";0 ; Y " ; " ; 0) with v " ? = u " ? ¡ Y " that solves the paracontrolled equation (6.16) but with remainder R " (v " ) = 0.

Consider the n-tuple of random variables (u ";0 ; Y " ; u " ? ; u " ? ) and let " be its law on Z = C ¡ X T (C T C ¡ ) 2 conditionally on E " . Observe that ¡ ? is continuous as discussed in Remark 6.6, and this gives that 8 > 0, " (ku " ? ¡ u " ? k C T C ¡ > ) ! 0 as " ! 0. Indeed R " (v " ) ! 0 in probability in the space M T ?

;p L p (T 3 ) by Lemma 6.19. This shows that " concentrates on C ¡ X T f(z; z) 2 (C T C ¡ ) 2 g. Let any accumulation point of ( " ) " .

Then

(C ¡ X T f(z; z) 2 (C T C ¡ ) 2 g) = 1.
The a priori estimations of Section 6.4.2 yield the tightness of " and from the concentration of on the diagonal we know that there exists a subsequence such that for any test function We can identify the limit distribution by noting that since P(E " ) ! 1 we have

E[ (u ";0 ; Y " )jE " ] = E[ (u ";0 ; Y " )I E " ] P(E " ) ! E[ (u 0 ; Y())]
for any test function . So the rst two marginals of have the law of (u 0 ; Y()) and they are independent since (u ";0 ; Y " ) are independent for any ". which implies that is unique and that the whole family ( " ) " converges to . We can conclude that u " ? ! u ? in law with u ? = u() up to the time T ? (kY()k X T ; ku 0 k C ¡1/2¡; jj) since the function T ? is lower semicontinuous (as obtained from the a priori estimates).

Convergence of the enhanced noise

This is the most importante section of this chapter, in which we present a new method to estimate certain random elds that do not have a nite chaos decomposition, and we apply it to the treatment of the random elds Y " of (6.12).

An example of convergence

We choose to give rst a complete example (the convergence of the tree Y " to Y ()) in order to put in evidence the main idea in the proof of Theorem 6.8. Recall its denition (6.12):

Y " = " ¡1 3 F ~"(1) (" 1 2 Y " );
with F ~"(1) being the rst derivative of the centered function F ~" dened in (6.6). Since

d dx H n (x; " 2 ) = n H n¡1 (x; "
2 ) the Wiener chaos decomposition of Y " reads:

" ¡1 3 F ~"(1) (" 1 2 Y " ) = " ¡1 3 X n>3 n f n;" H n¡1 (" 1/2 Y " ; " 2 ) = " ¡1 f 3;" H 2 (" 1/2 Y " ; " 2 ) + " ¡1 3 X n>4 n f n;" H n¡1 (" 1/2 Y " ; " 2 ) = f 3;" JY " 2 K + " ¡1 3 X n>4 n f n;" H n¡1 (" 1/2 Y " ; " 2 ); (6.24)
where JK is the Wiener product and we used the fact that "

¡ n 2 H n (" 1/2 Y " ; " 2
) = JY " n K. Now one can use hypercontractivity (as done in [START_REF] Hairer | A class of growth models rescaling to KPZ[END_REF], [START_REF] Hairer | Large scale behaviour of 3d phase coexistence models[END_REF]) to control the L p norm of each chaos order by its L 2 norms. However this strategy does not give useful bounds for the innite series in the second term of (6.24). Instead, we just observe that

X n>4 n f n;" H n¡1 (" 1/2 Y " ; " 2 ) = (id ¡ J 0 ¡ ::: ¡ J 2 )F ~"(1) (" 1 2 Y " );
where J i is the projection of on the i-th chaos, and look for a dierent way to write this remainder. One of the main insights of this chapter's work is that we can write it as:

(id ¡ J 0 ¡ ::: ¡ J 2 )F ~"(1) (" 1 2 Y " ) = 3 G [1] [3] D 3 F ~"(1) (" 1 2 Y " )
where D, are the Malliavin derivative and divergence operators, and

G [1] [3] = (1 ¡ L) ¡1 (2 ¡ L) ¡1 (3 ¡ L) ¡1
with L the Ornstein-Uhlenbeck operator. This is proven in Lemma 2.22.

To compute the Malliavin derivative of F ~"(1) (" 1 2 Y " ) we observe that for every " > 0 (t; x) 2 R T 3 there exists h (t;x) 2 L 2 (R T 3 ) such that the Gaussian random variable Y ";(t;x) := Y " (t; x) can be written as

Y ";(t;x) = law h; h (t;x) i: (6.25)
Here is the Gaussian white noise on R T 3 , which can be seen as a Gaussian Hilbert space h; hi h2H = fW (h)g h2H indexed by the Hilbert space H := L 2 (R T 3 ). This is the framework in which we apply the Malliavin calculus results of Section 2.3. Notice that by construction

hh (t;x) ; h (t 0 ;x 0 ) i = C " (t ¡ t 0 ; x ¡ x 0 ) := E[Y ";(t;x) Y ";(t 0 ;x 0 ) ]: (6.26)
The function h (t;x) can actually be written as the space-time convolution h (t;x) = P " (t; x);

with P (t; x) = 1 (4pt) 3/2 e ¡ jxj 2
4t e ¡t 1 t>0 and " s.t. " = " , " (t; x) = " ¡5/2 (" ¡2 t; " ¡1 x).

We omit the dependence on " of h (t;x) not to burden the notation.

Going back to the calculations, we obtain from (6.25) that

DF ~"(1) (" 1 2 Y " ) = " 1 2 F ~"(2) (" 1 2 Y " )h: Then (noting that F ~"(4) = F " ( 4) 
):

Y " = f 3;" JY " 2 K + " 1/2 3 3 G [1] [3] F " (4) (" 1 2 Y " )h 3 = f 3;" JY " 2 K + Y ^" ; : (6.27)
It can be easily seen from (6.25) that Y " has the same law of a time-space mollication of X by convolution (with X dened in Section 6.2.2). Then the convergence in law of f 3;" JY " 2 K to Y () can be easily established by standard techniques (see [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF] or [START_REF] Mourrat | Construction of 3 4 diagrams for pedestrians[END_REF]). We are only left to show that Y ^" in (6.27) converges to zero in C T C ¡1¡ .

It is well known (see Section 6.3.2 for details) that in order to control the norm of Y ^" (t; ) for t 2 (0; T ] in the Besov space C ¡¡ 8 > 0 and in probability, it is enough to have suitable estimates for sup

x2T 3 q Y ^" (t; x ) L p () = q Y ^" (t; x ) L p () ;
for any x 2 T 3 since Y ^" is stationary in space. We then proceed to compute:

q Y ^" (t; x ) L p () = " 1/2 3 3 G [1] [3] Z K q;x (x)F " (4) 
("

1 2 Y ";(t;x) )h (t;x) 3 dx L p ()
where K q;x (x) is the kernel associated to the Littlewood-Paley block q . Observe that F " (4) 

(" 1/2 Y ";(t;x) ) L p p = R R F " (4) (z 
3 G [1] [3] Z K q;x (x)F " (4) (" 1 2 Y ";(t;x) )h (t;x) 3 dx L p () . X k=0 3 D k G [1] [3] Z K q;x (x)F " (4) (" 1 2 Y ";(t;x) )h (t;x) 3 dx L p (;H 3+k ) . Z K q;x (x)F " (4) (" 1 
Y ^" (t; x ) L p . " 1/2 Z K q;x (x)F " (4) 
("

1 2 Y ";(t;x) )h (t;x) 3 dx H 3 2 L p/2 1/2 . " Z jK q;x (x)K q;x (x 0 )j F " (4) (" 1 2 Y ";(t;x) )F " (4) 
("

1 2 Y ";(t;x 0 ) ) L p/2 jhh (t;x) ; h (t;x 0 ) ij 3 dxdx 0 1 2 :
The norm containing F ~"(4) can then be easily estimated using Hölder's inequality as F "

(4) ("

1 2 Y ";(t;x) )F " (4) 
("

1 2 Y ";(t;x 0 ) ) L p/2 6 F " (4) (" 1 2 Y ";(t;x) ) L p F " (4) (" 1 2 Y ";(t;x 0 ) ) L p
. 1:

This yields q Y ^" (t; x ) L p () . " Z jK q;x (x)K q;x (x 0 )j jhh (t;x) ; h (t;x 0 ) ij 3 dxdx 0 1 2
which is a standard 3 4 diagram that can be analysed with the techniques of [Hai14a] (recalled in Section 2.2.1). We just remark that hh (t;x) ; h (t;x 0 ) i = C " (0; x ¡ x 0 ) and from the bound "jC " (t; x)j . 1 of Lemma 2.15 we obtain 8 2 (0; 1):

q Y ^" (t; x ) L p () . " 2 Z jK q;x (x)K q;x (x 0 )j jC " (0; x ¡ x 0 )j 2+ dxdx 0 1 2 . " 2 2 (1+/2)q
and then Y ^" (t; ) converges to zero in probability in the space C ¡1¡/2 8 2 (0; 1), as "! 0.

The time regularity of Y ^" needed to obtain the convergence in C T C ¡1¡/2 does not need new ideas, and it is done in Section 6.3.3. The method shown in this section is valid verbatim for the trees Y " ? , Y " , Y " , while for the composite trees in (6.12) (namely Y " ; Y " ; Y " ; Y " ) that are obtained via paraproducts of simple trees, one has to be able to write the remainder Y ^" as an iterated Skorohod integral n (:::) in order to exploit the boundedness of this operator. Moreover, these trees require a second renormalization (on top of the Wick ordering) which is not easy to control for innite chaos decompositions. We deal with both these diculties employing the product formula (2.22) of Section 2.3, which allows to write products of iterated Skorohod integrals as combinations of iterated Skorohod integrals. The details and calculations for composite trees can be found in Section 6.3.4.

Main theorem and overview of the proof

Theorem 6.8. Under Assumption 6.1 there exists C > 0 such that for any p 2 [2; 1) we

have kY " k X T < C in L p (). Moreover, Y " ! Y() 2 X T and Y " ! X 2 C T C ¡1/2¡ in law.
The rest of Section 6.3 is dedicated to the proof of Theorem 6.8. From the denition Y() = (Y ()) of (6.19) it is clear that we need to prove that Y " ! Y () for every tree . Note that we can write each tree Y () as Y () = f ()K (X) for a the measurable function K of the Gaussian process X 2 C T C ¡1/2¡ dened (6.20), and a suitable deterministic function f () of . For example, we can write Y () = 3 JX 2 K with K (X) = X = JX 2 K and f () = 3 . We will show (eqs. (6.36) and (6.44)) that every random eld Y " dened in (6.12) can be decomposed with the same functions f () and K as

Y " = f ( " )K (Y " ) + Y ^" (6.28)
where Y ^" are suitable remainder terms. For all p > 2 it is well-known (see [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF], [START_REF] Hairer | A theory of regularity structures[END_REF]) that the term f ( " )K (Y " ) is uniformly bounded in L p (; X ) (with X given by (6.18)). Thus, we will prove that Y ^" converges to zero in L p (; X ). This can be done by showing that, by Besov embedding, for p 2 [2; 1) and 8 < j j we have

E( Y ^" (t) C ¡3/p p ) . E Y ^" (t) B p; p p 6 X q 2 pq Z T 3 q Y ^" (t; x) L p () p dx ! 0 (6.29)
thanks to the stationarity of the process Y (t; x). In order to prove the bound (6.29) it suces to show that 8t 2

[0; T ] X q 2 pq sup x q Y ^" (t; x) L p () p ! 0 as " ! 0, (6.30)
which is one of the key estimation of this chapter and will be performed in Sections 6.3.3 and 6.3.4.2.

In order to obtain uniform convergence for t 2 [0; T ] it suces to show that 8 2 [0; 1 /2], q > ¡1:

sup x q Y ^" (t; x) ¡ q Y ^" (s; x) L p () p 6 C " jt ¡ sj p 2 ¡(¡2)pq with C " ! 0: (6.31)
Indeed, by the Garsia-Rodemich-Rumsey inequality we obtain for > 0 small enough and p large enough sup

" E Y ^" C T ¡2/p B p; p ¡2 ¡ p 6T 2 X q 2 (¡2¡)pq sup s<t2[0;T ] sup x q Y ^" (t; x) ¡ q Y ^" (s; x) L p () p jt ¡ sj p 6C " T 2 X q 2 ¡pq
which by the standard Besov embedding (Proposition 1.16) yields an estimation on

E kY " k C T ¡/2 C ¡2 ¡
for > 0 small enough. This gives us the necessary tightness to claim that Y " has weak limits along subsequences. The only thing left after proving (6.28), (6.30) and (6.31) is that for each we have K (Y " ) ! K (X) in law. However this is clear and already well-known, since by hypothesis we can introduce a space-time convolution regularisation of X (let's call it X " ) which has the same law of Y " for any " > 0. This yields immediately the convergence Y " ! X in law. At this point an approximation argument gives that K (Y " ) has the same law of K (X " ). Transposing the regularisation to the kernels of the chaos expansion we can write K (X " ) = K " (X) and now it is easy to check that K " (X) ! K (X) in probability (as done systematically in [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF], [START_REF] Mourrat | Construction of 3 4 diagrams for pedestrians[END_REF]). We can then conclude that K (Y " ) ! K (X) and therefore Y " ! Y () in law for every , since from Assumption 6.1 we have immediately f ( " ) ! f ().

Let us give some more details on how to prove the decomposition (6.28) and the bounds (6.30) and (6.31). As seen in Section 6.3.1 we have Y "; = h; h i in law for = (t; x) 2 R T 3 and this gives

D n F ~"(m) (" 1/2 Y "; ) = F ~"(m+n) (" 1/2 Y "; )h n :
We dene for m 2 N, 2 R T 3 :

[m] := " m¡3 2 F ~"(m) (" 1/2 Y "; ) (6.32)
Note that the term [m] above is not the m-th derivative of some function (we use the square parenthesis notation to emphasize this fact). It easy to see from (6.32) that D k

[m] =

[m+k] h k . Therefore, the partial chaos expansion (2.20) takes a more explicit form when applied to

[m] : [m] = X k=0 n¡1 E ¡ [m+k] k! JY "; k K + n ¡ G [1] [n] [m+n] h n = X k=0 n¡1 " (m+k¡3)/2 (m + k)! k! f ~m+k;" JY "; k K + n ¡ G [1]
[n]

[m+n]

h n (6.33)

with G [1]

[n] dened in (2.18). Here we used the fact that n (h n ) = JY "; n K (see Remark 2.33) and that by the denition of [m] we obtain 8 2 R T 3 :

E ¡ [m+k] = " (m+k¡3)/2 (m + k)! f ~m+k;"
with f ~n;" the coecients in the decomposition F ~" ("

1 2 Y " ) := P n>0 f ~n;" H n (" 1 2 Y " ; " 2 ). Choosing n = 4 ¡ m in eq. (6.33) we obtain [m] = 3! (3 ¡ m)! f 3;" JY "; 3¡m K + ^ [m] (6.34) 
and a remainder with an innite chaos decomposition strictly greater that 3 ¡ m:

^ [m] = 4¡m (G [1] [4¡m] [4] h 4¡m ): (6.35)
This is a key step in the proof of Theorem 6.8. Indeed, it suces to substitute (6.34) into denition (6.12) to identify the remainder Y ^" in decomposition (6.28) that has to converge to zero, and see that it always contains the term ^

[m]
. Moreover, the structure (6.35) of ^ [m] makes it possible to bound its L p norm and obtain (6.30), (6.31) in the same way as done in Section 6.3.1 for Y " . We will consider separately simple trees (namely Y " ? ; Y " ; Y " ; Y " ; Y " ) which are linear functions of [m] in Section 6.3.3, and composite trees (namely Y " ; Y " ; Y " ; Y " ) which are quadratic in simple trees and need to be further renormalized in order to converge to some limit as " ! 0. We will show the decomposition (6.28) for composite trees in Section 6.3.4.1 and the bounds (6.30), (6.31) in Section 6.3.4.2. Remark 6.9. We can easily estimate terms of the form " ¡(m¡3)/2

[m] for 3 6 m 6 9 and every p 2 [2; 1). We have (as already observed for F " (1) ):

" ¡ m¡3 2 [m] L p p = F " (m) (" 1/2 Y "; ) L p p = Z R F " (m) (x) p (dx)
where (dx) is the density of a centered Gaussian with variance " 2 . The integral is nite by Assumption 6.1: in particular we only need to assume that the rst m derivatives of F " have exponential growth (actually, it is easy to see that one can require even weaker growth conditions).

Analysis of simple trees

First of all note that the term Y " has no remainder, and then it can be shown to converge in law to (2) Y by usual techniques (see [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF]). In this section we show the convergence of the trees Y " ? , Y " , Y " , Y " . We obtain easily from (6.34):

q Y " (t; x) := (3 ¡ m)! 3! Z [m] q; = f 3;" Z q Y "; (3¡m) y + (3 ¡ m)! 3! Z ^ [m] q; = f ( " ) q K (Y " )(t; x) + q Y ^" (t;
x); (6.36) with = (s; y) and either q; = (t ¡ s)K q;x (y)dsdy; for q Y " ? ; q Y " ; q Y " ;

q; = 1 [0;+1) (s) dsdy Z K q;x (z)P t¡s (z ¡ y)dz; for q Y " ; (6.37)

where K q;x (y) is the kernel associated to the Littlewood-Paley block q and P t (x) is the heat kernel.

As said before, f 3;" R q Y "; (3¡m) y q; converges in law in L p for every 2 6 p < +1 to 3 R q Y (3¡m) y q; since f 3;" ! 3 by Assumption 6.1. We can bound the remainder term R ^ [m] q; in L p () using Lemma 2.23 and the denition of the norm kk D 4¡m; p (H 4¡m )

to obtain:

Z ^ [m] q; L p () = 4¡m G [1] [4¡m] Z [4] h 4¡m q; L p () . G [1] [4¡m] Z [4] h 4¡m q; D 4¡m; p (H 4¡m ) . X k=0 4¡m D k G [1] [4¡m] Z [4] h 4¡m q; L p (;H 4¡m+k ) :
From Corollary 2.27 we know that (j ¡ L) ¡1 and D(j ¡ L) ¡1 are bounded in L p for every p 2 [2; 1) and every j > 1. Applying repeatedly these estimations we obtain:

D k G [1] [4¡m] Z [4] h 4¡m q; L p (;H 4¡m+k ) . Z [4] h 4¡m q; L p (;H 4¡m ) :
Now we can proceed to implement the idea we already described in Section 6.3.1, i.e.

estimating out the term "

¡ 1 2 [4] L p ()
(which is bounded by Remark 6.9 but with innite chaos decomposition) and considering the nite-chaos term that is left. We do this by decomposing the L p (; H 4¡m ) norm as norms on H 4¡m and L p/2 () as follows:

Z [4] h 4¡m q; L p (;H 4¡m ) . Z [4] h 4¡m q; H 4¡m 2 L p/2 () 1/2 . Z [4] 0 [4] hh 4¡m ; h 0 4¡m i H 4¡m q; q; 0 L p/2 () 1/2 . Z ; 0 [4] 0 [4]
L p/2 () jhh ; h 0ij 4¡m j q; q; 0j 1/2 : Finally, putting the estimations together and using Hölder's inequality, together with the bound "jhh ; h 0ij = "jC " ( ¡ 0 )j . 1 of Lemma 2.15, we obtain for every 2 (0; 1]:

Z ^ [m] q; L p () . " Z ; 0 " ¡ 1 2 [4] L p () " ¡ 1 2 0 [4] L p () jhh ; h 0ij 4¡m j q; q; 0 j 1 2 . " Z ; 0 " ¡ 1 2 [4] L p () " ¡ 1 2 0 [4] L p ()
jhh ; h 0ij 3¡m+ j q; q; 0 j 1 2 Now using Remark 6.9 (note that to bound " ¡ 1 2 [4] we only need to control the rst 4 derivatives of F " ) and the fact that hh ; h 0i H = C " ( ¡ 0 ) we obtain as a nal estimation

Z ^ (m) q; L p ()
. " 2 Z jC " ( ¡ 0 )j 3¡m+ j q; q; 0 j 1/2 : (6.38)

From the denition (6.37) of the measure q; , the l.h.s of (6.38) can be estimated in a standard way using Lemma 2.20 to obtain for every x 2 T 3 , q > 0:

q Y ^" (t; x) L p () . "

2 2 ¡ 1¡ 2 q q Y ^" (t; x) L p () . " 2 2 1+ 2 q ; q Y ^" (t; x) L p () . " 2 2 2+ 2 q q Y ^"? (t; x) L p () . " 2 2 2 q :

Time regularity of trees

We want to show (6.31). In order to do that, we compute in the same way as before:

Z ¡ ^t;x [m] ¡ ^s;x [m] q; L p () . 4¡m Z G [1] [4¡m] ¡ t;x [4] h t;x 4¡m ¡ s;x [4] h s;x 4¡m q; L p () . Z ¡ t;x [4] ¡ s;x [4] h s;x 4¡m q; H 4¡m 2 L p/2 () 1/2 + Z s;x [4] (h t;x 4¡m ¡ h s;x 4¡m ) q; H 4¡m 2 L p/2 () 1/2 :
We focus on the rst term above to obtain that it is bounded by

Z ¡ t;x [4] ¡ s;x [4] ¡ t;x 0 [4] ¡ s;x 0 [4] hh s;x 4¡m ; h s;x 0 4¡m i H 4¡m q; q; 0 L p/2 () 1/2 . Z ; 0 ¡ t;x [4] ¡ s;x [4] ¡ t;x 0 [4] ¡ s;x 0 [4] L p/2 () jhh s;x ; h s;x 0ij 4¡m j q; q; 0j 1/2 . " Z ; 0 " ¡1 ¡ t;x [4] ¡ s;x [4] ¡ t;x 0 [4] ¡ s;x 0 [4] L p/2 () jhh s;x ; h s;x 0ij 4¡m j q; q; 0j 1 2 . " Z ; 0 " ¡1 ¡ t;x [4] ¡ s;x [4] ¡ t;x 0 [4] ¡ s;x 0 [4] L p/2 () jhh s;x ; h s;x 0ij 3¡m+ j q; q; 0j 1 2 : Now note that " ¡ 1 2 ¡ t;x [4] ¡ s;x [4] = F (4) (" 1 2 Y " (t; x)) ¡ F (4) (" 1 2 Y " (s; x)) = " 1 2 Z 0 1 F (5) [" 1 2 Y " (s; x) + " 1 2 (Y " (t; x) ¡ Y " (s; x))] (Y " (t; x) ¡ Y " (s; x));
with i:= (s i ; x i ) for i = 1; 2, K being the kernel associated to the Littlewood-Paley decomposition and P being the heat kernel. The rst step for decomposing (6.39) is to expand them using the partial chaos expansion (2.20) to obtain

1 [0] 2 [2] = E 1 [0] 2 [2] + G 1 D ( 1 [0] 2 [2] ); 1 [1] 2 [1] = E 1 [1] 2 [1] + G 1 D ( 1 [1] 2 [1] ); 1 [0] 2 [1] = E 1 [0] 2 [1] + J 0 D ¡ 1 [0] 2 [1] + 2 G [1] [2] D 2 ( 1 [0] 2 [1] ) = E 1 [0] 2 [1] + Y " ( 1 )E 1 [1] 2 [1] + Y " ( 2 )E 1 [0] 2 [2] + 2 G [1] [2] D 2 ( 1 [0] 2 [1] ):
(6.40)

Like the trees appearing in the 3 4 model, we expect composite trees to require a further renormalisation, on top of the Wick ordering. We developed (6.40) to the smallest order that allows us to see the eect of renormalization.

Renormalisation of composite trees

In this section we show how to renormalize (6.39) by estimating terms of the type

E 1 [m] 2 [n]
in expansion (6.40). This poses an additional diculty, as in principle we would need to compute an innite number of contractions between 1

[m] and 2

[n]

. However, we can again decompose [m] as in (6.34), and then the product formula (2.22) ensures that we only need to control a nite number of contractions. This is another important step in the proof and will be carried out in Lemma 6.12. First we need some preparatory results: Lemma 6.10. We have

Z 1 ; 2 Y " ( 1 )E[ 1 [1] 2 [1] ] q; 1 ; 2 = Z s;x q Y " (s; x ¡ x) G(t ¡ s; x): and Z 1 ; 2 Y " ( 2 )E[ 1 [0] 2 [2] ] q; 1 ; 2 = Z x q Y " (t; x ¡ x)H(t; x);
where we introduced the kernels:

G(t ¡ s; x) := Z x 1 0 ;x 2 X ij K i;x (x 1 0 )K j ;x (x 2 )P t¡s (x 1 0 )E 0 [1] (t¡s;x 2 ) [1] ; H(t; x) := Z s;x 1 ;x 1 0 X i j K i;x (x 1 0 )K j ;x (0)P t¡s (x 1 0 ¡ x 1 )E 0 [0]
(t¡s;¡x 1 )

[2] : Remark 6.11. Some caveat on the notation: although we use the same letter for the kernel G(; ) and the Green operator G [m]

[n] , those two are not related in any possible way.

It is always clear which one the notation refers to.

Proof. We have Z

1 ; 2 Y " ( 1 )E 1 [1] 2 [1] q; 1 ; 2 = Z s 1 ;x 1 ;x 2 ;x;x 1 0 K q;x (x) X ij K i;x (x 1 0 )K j ;x (x 2 )P t¡s 1 (x 1 0 ¡ x 1 )Y " (s 1 ; x 1 )E 0 [1] (t¡s 1 ;x 2 ¡x 1 ) [1]
and by change of variables, exploiting the translation invariance of the problem we obtain:

= Z s 1 ;x 1 ;x K q;x (x + x 1 )Y (s 1 ; x 1 ) Z x 1 0 ;x 2 X ij K i;x (x 1 0 )K j;x (x 2 )P t¡s 1 (x 1 0 )E 0 [1] (t¡s 1 ;x 2 ) [1] :
Using the denition of K q we have = Z

s 1 ;x q Y " (s 1 ; x ¡ x) Z x 1 0 ;x 2 X ij K i;x (x 1 0 )K j ;x (x 2 )P t¡s 1 (x 1 0 )E 0 [1] (t¡s 1 ;x 2 )
[1] :

Finally we can write

Z 1 ; 2 Y " ( 1 )E 1 [1] 2 [1] q; 1 ; 2 = Z s 1 ;x q Y " (s 1 ; x ¡ x) G(t ¡ s 1 ; x):
Similar computations holds for the other term, indeed

Z 1 ; 2 Y " ( 2 )E 1 [0] 2 [2] q; 1 ; 2 = Z s 1 ;x 1 ;x 2 ;x;x 1 0 K q;x (x) X ij K i;x (x 1 0 )K j ;x (x 2 )P t¡s 1 (x 1 0 ¡ x 1 )Y " (t; x 2 )E 0 [0] (t¡s 1 ;x 2 ¡x 1 ) [2] = Z x 2 K q;x (x + x 2 )Y " (t; x 2 ) Z s 1; x 1 ;x;x 1 0 X ij K i;x (x 1 0 )K j ;x (0)P t¡s 1 (x 1 0 ¡ x 1 )E 0 [0] (t¡s 1 ;¡x 1 ) [2] = Z x q Y " (t; x ¡ x) Z s 1; x 1 ;x 1 0 X i j K i;x (x 1 0 )K j ;x (0)P t¡s 1 (x 1 0 ¡ x 1 )E 0 [0] (t¡s 1 ;¡x 1 ) [2] = Z x q Y " (t; x ¡ x)H(t; x)
Substituting the lemma above and (6.40) in the expressions (6.39), we can write them as:

q Y " ( ) = 1 9 Z 1 ; 2 G 1 D ( 1 [1] 2 [1]
) q; 1 ; 2 + q (1)( ) 1 9

Z s;x G(t ¡ s; x) ¡ d " q Y " ( ) = 1 3 Z 1 ; 2 G 1 D ( 1 [1] 2 [1]
) q; 1 ; 2 + q (1)( ) 1 3

Z s;x G (t ¡ s; x) ¡ d " q Y " ( ) = 1 6 Z 1 ; 2 G 1 D ( 1 [0] 2 [2] ) q; 1 ; 2 + q (1)( ) 1 6 Z x H(t; x) ¡ d " q Y " ( ) = 1 3 Z 1 ; 2 2 G [1] [2] D 2 ( 1 [0] 2 [1] ) q; 1 ; 2 + q (1)( ) 1 3 Z 1 ; 2 E 1 [0] 2 [1] q; 1 ; 2 ¡ d " + q Y " ( ) 1 3 Z s;x G(t ¡ s; x) + 1 3 Z x H(t; x) ¡ d " 0 + 1 3 q R " ( ) + 1 3 q R " ( )
with the additional denitions

G (t ¡ s; x) := Z x 1 ;x 1 0 X ij K i;x (x 1 0 )K j ;x (0)P t¡s 1 (x 1 0 ¡ x 1 )E 0 [1] (t¡s;¡x 1 ) [1] ; q R " ( ) := Z s;x [ q Y " (s; x ¡ x) ¡ q Y " (t; x )] G(t ¡ s; x); q R " ( ) := Z x [ q Y " (t; x ¡ x) ¡ q Y " (t; x )] H(t; x):
Now we can characterise the local behaviour of E[ 1 [m] 2 [n] ] appearing in the integrals above.

Decomposing separately 1 [m] and 2 [n] as in (6.34) we obtain:

E 1 [m] 2 [n] = 3! 2 (3 ¡ m)!(3 ¡ n)! (f 3;" ) 2 E[JY "; 1 3¡m KJY "; 2 3¡n K] + 3! (3 ¡ m)! f 3;" E JY "; 1 3¡m K ^2 [n] + 3! (3 ¡ n)! f 3;" E JY "; 2 3¡n K ^1 [m] + E ^1 [m] ^2 [n] ;
where

E[JY "; 1 3¡m KJY "; 2 3¡n K] = (3 ¡ m)!(3 ¡ m; 3 ¡ n)C " ( 1 ¡ 2 ) 3¡n
and to bound all other terms we introduce the following result.

Lemma 6.12. Under Assumption 6.1 (in particular if F 2 C 8 (R) with exponentially growing derivatives) we have, for every 0 6 m; n 6 3 and m 6 n:

E ^1 [m] ^2 [n] . X i=0 4¡n " 1+ n¡m 2 +i jhh 1 ; h 2 ij 4¡m+i . " jhh 1 ; h 2 ij 3¡ m+n 2 + ; 8 2 [0; 1]:
Moreover for every 0 6 m; n 6 3,

E JY "; 1 m K ^2 [n] . " m+n¡3 2 jhh 1 ; h 2 ij m if m > 4 ¡ n; E JY "; 1 m K ^2 [n] = 0 if m < 4 ¡ n: Proof. Using formula (2.21) we decompose E ^1 [m] ^2 [n] = E 4¡m (G [1] [4¡m] 1 [4] h 1 4¡m ) 4¡n (G [1] [4¡n] 2 [4] h 2 4¡n ) = X i=0 4¡n 4 ¡ m i 4 ¡ n i i! E ¡ G [5¡n¡i] [8¡m¡n¡i] 1 [8¡n¡i] G [5¡m¡i] [8¡m¡n¡i] 2 [8¡m¡i] hh 1 ; h 2 i 8¡m¡n¡i :
We can bound the term

" m+n 2 +i¡5 E ¡ G [5¡n¡i] [8¡m¡n¡i] 1 [8¡n¡i] G [5¡m¡i] [8¡m¡n¡i] 2 [8¡m¡i] . " n+i¡5 2 1 [8¡n¡i] L 2 " m+i¡5 2 2 [8¡m¡i] L 2 knowing 8 ¡ n ¡ i _ 8 ¡ m ¡ i 6 8 
derivatives of F " (see Remark 6.9) and using the bound on the covariance "jC

" ( 1 ¡ 2 )j . 1 of Lemma 2.15 with jhh 1 ; h 2 ij = jC " ( 1 ¡ 2 )j we have: E ^1 [m] ^2 [n] . X i=0 4¡n " 1+ n¡m 2 +i jhh 1 ; h 2 ij 4¡m+i . " jhh 1 ; h 2 ij 3¡ m+n 2 + :
For the second bound we recall that JY "; 1 m K = m (h 1 m ) by construction (Remark 2.33) and compute: m+n] ] . 1:

E h JY "; 1 m K ^2 [n] 2 i = E m (h 1 m ) 4¡n (G [1] [4¡n] 2 [4] h 2 4¡n ) = X i=0 m^4¡n m i 4 ¡ n i i! E ¡ D 4¡n¡i (h 1 m ); G [m+1¡i] [m+4¡n¡i] 2 [4+m¡i] h 2 m+4¡n¡i H m+4¡n¡i : Since Dh 1 m = 0 we obtain E JY "; 1 m K ^2 [n] = 0 if m < 4 ¡ n and E JY "; 1 m K ^2 [n] . " m+n¡3 2 E[" ¡ 3¡m¡n 2 G [m+n¡3] [m] 2 [m+n] ]jhh 1 ; h 2 ij m if m > 4 ¡ n, with E[" ¡ 3¡m¡n 2 G [m+n¡3] [m] 2 [
Using Lemma 6.12 we obtain

E 1 [1] 2 [1] = 9 E (f 3;" JY "; 1 2 K + ^"; 1 [1] )(f 3;" JY "; 2 2 K + ^2 [1] ) = 18 (f 3;" ) 2 [C " ( 1 ¡ 2 )] 2 + E ^1 [1] ^2 [1]
and thus

G(t ¡ s; x) = 18(f 3;" ) 2 Z x 1 0 ;x 2 X ij K i;x (x 1 0 )K j ;x (x 2 )P t¡s (x 1 0 )[C " ( 1 ¡ 2 )] 2 +G ^(t ¡ s; x)
with the remainder term dened by

G ^(t ¡ s; x) := Z x 1 0 ;x 2 X ij K i;x (x 1 0 )K j;x (x 2 )P t¡s (x 1 0 )E ^0 [1] ^(t¡s;x 2 )
[1] :

We have the estimation

E ^1 [1] ^2 [1] . " C " ( 1 ¡ 2 ) 2+ : (6.41) Similarly E 1 [1] 2 [1]
= 3 " ¡1/2 f 2;" E JY "; 1 2 K(f 3;" JY "; 2 2 K + ^2

[1] ) = 6 " ¡1/2 f 2;" f 3;" [C " ( 1 ¡ 2 )] 2 ;

and E 1 [0] 2 [2] = E ¡ f 3;" JY "; 1 3 K + ^1 [0] ¡ 6f 3;" Y "; 2 + ^2 [2]
. jf 3;" j E JY ";

1 3 K ^2 [2] + E ^1 [0] ^2 [2]
. " (jf 3;" j + 1)C " ( 1 ¡ 2 ) 2+ ;

(6.42) and E 1

[0]

2 [1] = E [0] ¡ 3f 3;" JY ", 2 2 K + ^[1]
. jf 3;" jE JY ";

1 3 K ^2 [1] + E ^1 [0] ^2 [1]
. " 1/2 (jf 3;" j + 1)C " ( 1 ¡ 2 ) 3 : (6.43)

We have by Lemma 2.19 that for all 2 (0; 1) jG ^(t ¡ s; x)j . " (jt ¡ sj 1/2 + jxj) ¡5¡ : Using estimate (2.16) together with Lemma 2.12, we have that 8 2 (0; 1), 0 2 (0; ) jH(t; x)j . " 0 jxj ¡ . Furthermore, we have

1 3 q R " = 6(f 3;" ) 2 Z s;x
[ q Y " (t + s; x ¡ x) ¡ q Y " (t; x )]P s (x)[C " (s; x)] 2 + 1 3 q R ^"

with the remainder term q R ^" given by q R ^" = Z s;x [ q Y " (t; x ¡ x) ¡ q Y " (t; x )] G ^(t ¡ s; x):

The term 6(f 3;" ) 2 Z s;x [ q Y " (t + s; x ¡ x) ¡ q Y " (t; x )]P s (x)[C " (s; x)] 2 can be shown to converge in law to

6 ( 3 ) 2 Z s;x
[ q Y (t + s; x ¡ x) ¡ q Y (t; x )]P s (x) E(Y (0; 0)Y (s; x)) 2 in C T C ¡1/2¡2 with the standard techniques used in the analysis of the 3 4 model. On the other hand, for all > 0 suciently small we have the bounds q R " L 1 + q R ^" L 1 6 " kY " k C T C ¡1/2¡22 q(1/2+2+2) Z s;x (jxj + jt ¡ sj 1/2 ) ¡5

. " kY " k C T C ¡1/2¡22 q(1/2+2+2) ; which shows that these remainders go to zero in C ¡1/2¡2 as " ! 0, since kY " k C T C ¡1/2¡2 is bounded in L p (). Moreover, it is easy to see that k q R " ¡ q R ^" k L p () O L 1(2 q(1/2+2+2) ) : ^(s;x)

Note that Z

[2] :

Here we used the fact that Z x X i j K i;x (x 1 0 )K j ;x (0) = Z x X i;j K i;x (x 1 0 )K j ;x (0) = (x 1 0 ); since R x K i;x (x 1 0 )K j ;x (0) = 0, where ji ¡ j j > 1. This is readily seen in Fourier space taking into account the support properties of the Littlewood-Paley blocks. Now, Z = O(" ¡1/2 ):

Indeed Lemma 2.17 again yields " R s;x P s (x)C " (s; x) 3 . 1. Thus R

1 ; 2 E 1 [0] 2 [1]
q; 1 ; 2 gives a diverging constant which depends on all the (f n;" ) n . Making the choice to dene the renormalisation constants d as in eq. (6.7) we cancel exactly these contributions which are either (F " ) " dependent and/or diverging. In particular we verify that we can satisfy the constraint (6.13).

In (6.45), the terms which do not contain ^ [n] will generate nite contributions in the limit, as seen in Section 6.3.4.1 by writing the decomposition (6.44). We just consider the terms proportional to ^1

[4¡m] ^2 [4¡n] , because all the other similar terms featuring at least one remainder ^ [m] can be estimated with exactly the same technique, and are easily shown to be vanishing in the appropriate topology. We can use one of the key observations of this chapter, the product formula (2.22), to rewrite products of Skorohod integrals in the form m (u) n (v) as a sum of iterated Skorohod integrals `(w), which are bounded in L p by Lemma 2.23. We obtain

^1 [4¡m] ^2 [4¡n] = m (G [1] [m] 1 [4] h 1 m ) n ¡ G [1] [n] 2 [4]
h 2 n = X (q;r;i)2I

C q;r;i m+n¡q ¡r ¡ D r¡i G [1] [m] 1 [4] h 1 m ; D q ¡i G [1] [n] 2 [4]
h 2 n H q+r ¡i = X I C q;r;i "

2+r+ q ¡2i 2 m+n¡ q¡r ¡ [1+r ¡i] [m+r¡i] ( 1 )h 1 m+r¡i ; [1+q ¡i] [n+q ¡i]
( 2 )h 2 n+q ¡i H q+r ¡i with I = f(q; r; i) 2 N 3 : 0 6 q 6 m; 0 6 r 6 n; 0 6 i 6 q ^rg and the notation shortcut:

[i]

[j]

() := "

¡ i 2 G [i] [j] [3+i] :
By Remark 2.24, for every n; m > 1 and 2 Dom n we can write n ( )h m = n ( h m ), and therefore Z ^1 ( 2 ) h 1 m¡q h 2 n¡r h 1 k h 2 `j hh 1 ; h 2 ij q+r¡i q; 1 ; 2 With the term to estimate in this form, we can proceed as in Section 6.3.1 to estimate separately the terms [i]

[j] 3+i] in L p (), which are bounded as discussed in Remark 6.9. ( 2 ) h 1 m¡ q h 2 n¡r h 1 k h 2 `j hh 1 ; h 2 ij q+r ¡i q; 1 ; 2 2 can be bounded as .

() = " ¡ i 2 G [i] [j] [
Z jhh 1 ; h 1 0ij m+k¡q jhh 2 ; h 2 0ij n+`¡r jhh 1 ; h 2 ij q+r ¡i jhh 1 0; h 2 0ij q+r ¡i j q; 1 ; 2 jj q; 1 0 ; 2 0j:

Proof. Thanks to Lemma 2.23 the integral can be estimated with jhh 1 ; h 1 0ij m+k¡ q jhh 2 ; h 2 0ij n+`¡r jhh 1 ; h 2 ij q+r ¡i jhh 1 0; h 2 0ij q+r ¡i j q; 1 ; 2 jj q; 1 0 ; 2 0j) (with h 6 j 6 m + n ¡ q ¡ r and a = r ¡ i) we can use the boundedness of the operator

X
D h G [1+a]
[m+a] for h 6 2m given by Corollary 2.27. Consider the two regions h 6 2m and h > 2m.

In the rst region we just use Corollary 2.27 to obtain:

D h [1+a]
[m+a]

(); D h [1+a]

[m+a]

( 0 )

H h L p . D h G [1+a] [m+a] " ¡ 1+a 2 1 [4+a] L 4p (H h ) 2 D h G [1+a] [m+a] " ¡ 1+a 2 1 0 [4+a]
. " From Remark 6.9 we see that this last term is bounded by a constant if F 2 C 4+a+h¡2m (R) with the rst 4 + a + h ¡ 2m derivatives having an exponential growth, with a = r ¡ i and h 6 m + n ¡ q ¡ r.

Applying the same reasoning to

D j ¡h [1+q ¡i] [n+q ¡i] ( 2 ); D j ¡h [1+q ¡i] [n+ q¡i] ( 2 0 )
H j ¡h L p we conclude that we need to control 4 + n _ 4 + m derivatives of F " in order to perform the estimates of this Lemma. From the constraints (6.46) we see that 4 + n _ 4 + m 6 8.

From Lemma 6.13 we obtain 8 2 [0; 1/2): "

2+ q+r ¡2i 2 k" 2+q+r ¡2i 2 m+n¡ q¡r [ Z [1+r¡i] [m+r ¡i] ( 1 ) [1+ q¡i] [n+q ¡i] ( 2 )
h 1 m¡q h 2 n¡r h 1 k h 2 `j hh 1 ; h 2 ij q+r¡i q; 1 ; 2 ]k L p (H k+`)

. " (" 2+q+r¡2i¡ Z jhh 1 ; h 1 0ij m+k ¡q jhh 2 ; h 2 0ij n+`¡r jhh 1 ; h 2 ij q+r¡i jhh 1 0; h 2 0ij q+r¡i j q; 1 ; 2 jj q; 1 0 ; 2 0j 1 2 := " 2 (I)

1 2 :
Our aim now is to estimate the quantity I. The idea is to use the bound "jhh ; h 0ij = "C " ( ¡ 0 ) . 1 of Lemma 2.15 to cancel strategically some of the covariances jhh ; h 0ij. We will consider three regions:

If q + r 6 2 we use the bounds " q+r¡2i jhh 1 ; h 2 ij q+r ¡i jhh 1 0; h 2 0ij q+r ¡i . " 2 jhh 1 ; h 2 ij q jhh 1 0; h 2 0ij r and then (we suppose r < 2) " 2¡r¡ jhh 2 ; h 2 0ij n+`¡r . jhh 2 ; h 2 0ij n+`¡2+ to obtain

I . " r ¡
Z jhh 1 ; h 1 0ij m+k¡ q jhh 2 ; h 2 0ij n+`¡2 jhh 1 ; h 2 ij q jhh 1 0; h 2 0ij r j q; 1 ; 2 jj q; 1 0 ; 2 0j . Z jhh 1 ; h 1 0ij m+k ¡q jhh 2 ; h 2 0ij n+`¡2+ jhh 1 ; h 2 ij q j q; 1 ; 2 jj q; 1 0 ; 2 0j: (6.47) (If vice-versa q < 2 it suces to put on the term jhh 1 ; h 2 ij q+ .) Notice that in this case m + k ¡ q > 0:

In the case q + r = 3 if m + k ¡ q > 2 we estimate like before to obtain

I . " 2¡
Z jhh 1 ; h 1 0ij m+k¡q jhh 2 ; h 2 0ij n+`¡r jhh 1 ; h 2 ij q+r 2 jhh 1 0; h 2 0ij q+r 2 j q; 1 ; 2 jj q; 1 0 ; 2 0j . Z jhh 1 ; h 1 0ij m+k¡ q jhh 2 ; h 2 0ij n+`¡r jhh 1 ; h 2 ij 1+ j q; 1 ; 2 jj q; 1 0 ; 2 0j: (6.48)

Note that m + k ¡ q + ¡ 1 > 0 and m + k ¡ q + 2 ¡ 3 > ¡1 here. If m + k ¡ q = 1 we bound I .

Z jhh 1 ; h 1 0ij m+k¡q jhh 2 ; h 2 0ij n+`¡r¡2 jhh 1 ; h 2 ij 3+ 2 jhh 1 0; h 2 0ij 3+ 2 j q; 1 ; 2 jj q; 1 0 ; 2 0j (6.49) and note that m + k ¡ q ¡ 1/2 + /2 > 0, m + k ¡ q ¡ 1 + > 0, n + `¡ r ¡ 2 > 0. Finally if m + k ¡ q = 0 we can only have m + k = 3; q = 3; r = 0; i = 0 and thus

I . " 3¡2
Z jhh 2 ; h 2 0ij n+`j hh 1 ; h 2 ij 2¡ jhh 1 0; h 2 0ij 2¡ j q; 1 ; 2 jj q; 1 0 ; 2 0j . Z jhh 2 ; h 2 0ij n+`+m+k¡6 jhh 1 ; h 2 ij 2¡ jhh 1 0; h 2 0ij 2¡ j q; 1 ; 2 jj q; 1 0 ; 2 0j (6.50)

If q + r > 4 we bound rst " 2q+2r¡2i+¡4 jhh 1 ; h 2 ij q+r ¡i jhh 1 0; h 2 0ij q+r ¡i . jhh 1 ; h 2 ij 2¡ 2 jhh 1 0; h 2 0ij 2¡ 2 (note that 2q + 2r ¡ 2i + ¡ 4 > ) to obtain:

I . " 6¡q¡r¡
Z jhh 1 ; h 1 0ij m+k¡q jhh 2 ; h 2 0ij n+`¡r jhh 1 ; h 2 ij 2¡ 2 jhh 1 0; h 2 0ij 2¡ 2 j q; 1 ; 2 jj q; 1 0 ; 2 0j

Now in the cases m + k = 3; n + `= 3 and m + k = 4; n + `= 2 we can just write " 6¡ q¡r ¡ = " m+k¡ q " 6¡m¡k¡r ¡ and cancel the corresponding number of covariances to obtain I .

Z jhh 2 ; h 2 0ij jhh 1 ; h 2 ij 2¡ 2 jhh 1 0; h 2 0ij 2¡ 2 j q; 1 ; 2 jj q; 1 0 ; 2 0j (6.51) while for the case m + k = 4; n + `= 3 we have either `> 1 or k > 1 and therefore with one of the following bounds " m+k ¡1¡q " n+`¡r ¡ jhh 1 ; h 1 0ij m+k ¡q jhh 2 ; h 2 0ij n+`¡r . jhh 1 ; h 1 0ijjhh 2 ; h 2 0ij " m+k ¡q " n+`¡1¡r ¡ jhh 1 ; h 1 0ij m+k ¡q jhh 2 ; h 2 0ij n+`¡r . jhh 2 ; h 2 0ij 1+

we obtain the estimates I .

Z jhh 2 ; h 2 0ij 1+ jhh 1 ; h 2 ij 2¡ 2 jhh 1 0; h 2 0ij 2¡ 2 j q; 1 ; 2 jj q; 1 0 ; 2 0j (6.52)

I .
Z jhh 1 ; h 1 0ijjhh 2 ; h 2 0ij jhh 1 ; h 2 ij 2¡ 2 jhh 1 0; h 2 0ij 2¡ 2 j q; 1 ; 2 jj q; 1 0 ; 2 0j: (6.53)

We can use directly Lemma 2.21 to obtain a nal estimate of (6.47), (6.48), (6.49), (6.52).

For (6:50); (6:51) and (6.53) notice that the integral over 1 ; 1 0 is nite and thus the whole quantity is proportional to jhh 2 ; h 2 0ij n . Globally, we have I . 2 (m+k+n+`¡6)q as needed to prove (6.30). Remark 6.14. Finally, by controlling one more derivative of F " as done in Section 6.3.3, we can show (6.31) for Y = Y " ; Y " ; Y " ; Y " , thus proving that Y ^ ! 0 in C T /2 C ¡ in probability 8 < j j. From the proof of Lemma 6.13 together with this observation, we conclude that we need to control the derivatives of F " up to order 9 to be able to show the convergence for composite trees.

Convergence of the remainder and a priori bounds

In this section we prove the convergence of the remainder (Lemma 6.19), as well as some technical results on the norm of the solution, needed in the proof of Theorem 6.7. In order to prove Lemma 6.19 we need rst to prove Lemma 6.15, Lemma 6.16 and Lemma 6.17 in this order.

Boundedness of the remainder

We show that the remainder R " (v " ) that appears in equation (6.16) can be controlled by a stochastic term M "; that converges to zero in probability, times a function of the solution v " . Let.

M "; (Y " ; u 0;" ) := " /2 ke c" 1/2 jY " j+c" 1/2 jP (u 0;" ¡Y " (0))j k L p [0;T ]L p (T 3 ) :

(6.54)

for p 2 [1; 1), 2 [0; 1] and dene with M " as in ( 6.54), v " as in ( 6.55) and M T /(3+);p L p (T 3 ), M T /(3+)

L 1 (T 3 ) dened in ( 1.51).

for any v " that solves equation ( 6.16). Moreover, still conditionally on E " we have kv " k C T? L 1 6 C(1 + j " j) (1 + kY " k X T ) 3 (1 + ku ";0 k C ¡1/2¡) 3 with v " as in ( 6.55).

Proof. We know from Lemma 6.18 that the bounds on kv " k

C T? C ¡ 1 2 ¡ + kv " k M T? 1 4 + 3 2 L 1
and kv " k C T? L 1 hold whenever M "; 6 T ? /2 . The event E " = M "; 6 T ? /2 has P(E " ) ! 1 by Lemma 6.16 and this proves the result.

The only thing left to prove is Lemma 6.18, which just a standard application of some well-known bounds on paraproducts, that are introduced in Sections 1.2.3, and 1.2.1.

First observe that for " > 0 a pair (v " ; v " \ ) solves the paracontrolled equation (6.16) if and only if v " \ = v " [ + v " ] and (v " ; v " [ ) solves: 8 > > < > > :

v " = ¡Y " ¡ Y " ¡ 3v " Y " + v " [ + v " ] L v " [ = U ( " ; Y " ; v " ; v " [ + v " ] ) ¡ R " (v " ) v "
[ (0) = Y " (0) + Y " (0) + 3v ";0 Y " (0) (6.56)

Here U is the same as in (6.16). The initial condition of (6.56) is given by v ";0 := u 0;" ¡ Y " (0). The a priori bounds of Lemma 6.18 come from being able to nd closed estimates for (6.56).

Let us specify now all the notations we are going to use in the rest of this section. We consider the spaces V T [ := L T 2 \ L T 1/4;1/2+2 \ L T 1/2;1+2 ; V T := L T 1/2;1/2¡ \ L T 1/4+3/2;2 ; (6.57)

with
kv " k V T := kv " k L 1/2;1/2¡ + kv " k L 1/4+3/2;2: (6.58)

We refer to Section 1.2.2 for the denition of the parabolic spaces L T ; . We let

v " := v " ¡ v ] = ¡Y " ¡ Y " ¡ 3(v " + v " ] ) Y " + v " [ ; v " := v " + Y " = ¡Y " ¡ 3(v " + v " ] ) Y " + v " [ ;
and v " (t = 0) = v " (t = 0) = 0. We dene also the norm

kv " k V T := kv k L T 2 + kv k M T 1/4 C 1/2+2 ;
with M T 1/4 C 1/2+2 given in Section 1.2.2. In order not to get lost in these denitions the reader can keep in mind the following: ¡ v " is the solution without the linear term; ] is the contribution of the initial condition, which give origin to some explosive norm (near the initial time); We choose > 2 small enough so that L T ¡+3/2;2 \ L T 1/4¡+3/2;1/2+2 \ L T 1/2¡+3/2;1+2 V T [ :

¡ v "
¡ v " [ is
Now kv " k V T . kY " + Y " k V T + kv " k C T L 1(kY " k C T C 1¡ + kY " k C T C ¡1¡) + kv " ] k C T C ¡1/2¡ + kv " ] k M T 1/4 C ¡ (kY " k C T C 1¡ + kY " k C T C ¡1¡) +kv " [ k V T . kY " k X T + T kv " k V T + kv ";0 k C ¡1/2¡ + kv " [ k V T [
where we used that v (0) = 0 and as a consequence that

kv " k C T L 1 6 T kv " k C T L 1 6 T kv " k V T
to gain a small power of T . So provided T is small enough (depending only on Y " ) this yields the following a priori estimation on v "

:

kv " k C T L 1 . kv " k V T . kY " k X T + kv ";0 k C ¡1/2¡ + kv " [ k V T [ :
Therefore we have an estimation on v " :

kv " k V T 6 kv " ] k V T + kv k V T . kv ";0 k C ¡1/2¡ + kv " k V T . kY " k X T + kv ";0 k C ¡1/2¡ + kv " [ k V T [ :
In order to estimate terms in U ( " ; Y " ; v " ; v "

[ + v " ]
) we decompose the renormalised products as

Y " ^v" = v " Y " ¡ Y " ¡ Y " ¡ 3v " Y " + v " [ Y " +v " ] Y " ¡ 3 com 1 (v " ; Y " ; Y " ) v " Y " = ¡Y " Y " ¡ 3(v " Y " )Y " + Y " 4 (v " [ + v " ] ) + Y " (v " [ + v " ] ) ¡Y " Y " ¡ Y " Y " ¡ Y " Y " v " 2 = Y " (Y " ) 2 + 2(Y " Y " )(Y " + 3v " Y " ) ¡2 (Y " Y " ) 4 (v " [ + v " ] ) + 2 (Y " Y " ) (v " [ + v " ] ) +Y " 4 (v " + v ] ) 2 + Y " (v " + v ] ) 2 :
We decompose U ( " ; Y " ; v " ; v " [ + v " ] ) as U ( " ; Y " ; v " ; v " [ + v " ] ) = Q ¡1/2 ( " ; Y " ; v 0;" ; v " ; v " [ ) + Q 0 ( " ; Y " ; v 0;" ; v " ; v "

[ ) + Q " ;Y " Q ¡1/2 := ¡3[v " Y " ¡ 3 com 1 (v " ; Y " ; Y " ) + Y " (v " + v ] ) 2 ] ¡6[(Y " Y " )(3v " Y " ) + (Y " Y " ) (v " [ + v " ] )] +2 2;" (3(v " Y " )Y " ¡ Y " (v " [ + v " ]
)) +3 com 3 (v " ; Y " ) + 3 com 2 (v " ; Y " )

Q 0 := 9v " Y " ¡ 3v " [ Y " ¡ 3v " ] Y " + 6 (Y " Y " ) 4 (v " [ + v " ] ) ¡3Y " 4 (v " + v ] ) 2 ¡ Y " ? v " 3 ¡ 2;" [v " 2 + 2Y " 4 (v " [ + v " ] )] Q " ;Y " := (1 ¡ 1;" )Y " ¡ 0;" + 3 [Y " + Y " ¡ Y " (Y " ) 2 ¡ 2(Y " Y " )Y " ] +2 2;" (Y " Y " + Y " Y " + Y " Y " + Y " ):
Here Q " ;Y " does not depend from the solution but only on " ; Y " (as the notation suggests) and we have grouped the other terms which we expect to have regularity C ¡1/2¡2 in Q ¡1/2 , (and the same for Q 0 and regularity C ¡k ). With the same technique we used above for v "

, we obtain the following estimate on v " kv " k L T 1/2+3/2;1/2+2 + kv "

k L T 1/4+; . kY " k X T + kv ";0 k C ¡1/2¡ + kv " [ k V T [
and this yields k(v "

) 2 k L T 3/4+5/2;1/2+2 + k(v "

) 2 k L T 1/2+2; . ¡ kY " k X T + kv ";0 k C ¡1/2¡ + kv " [ k V T [ 2 :
Then we are ready to bound Q ¡1/2 ; Q 0 ; Q " ;Y " using the standard paraproducts estimations recalled in Section 1.2.1:

kQ ¡1/2 k M T 1/2+2 C ¡1/2¡2 + kQ 0 k M T 1¡ C ¡ .(1 + j " j)(1 + kY " k X T ) 3 ¡ 1 + kv ";0 k C ¡1/2¡ + kv " [ k V T [ 3 kQ " ;Y " k C T C ¡1/2¡ . (1 + j " j) (1 + kY " k X T ) 3 :
In order to conclude the estimation of kv " [ k V T [ we have to control kIR " (v " )k V T [ . This is achieved easily by the using the results of Section 6.4.1. Thanks to Lemma 6.15 8 2 (0; 1), 8 > 0 such that 

V S + [ 6 4D 
. This implies S = T ? (by contradiction). From the construction of T ? it is easy to see that T ? (kY " k X T ; ku ";0 k C ¡1/2¡; j " j) is lower semicontinuous.

Convergence of the remainder

It suces to put together the results obtained in Sections 6.4.1 and 6.4.2 to obtain the convergence of R " (v " ):

Lemma 6.19. The remainder R " (v " ) that appears in equation ( 6.16) converges in probability to 0 as " ! 0 in the space M T ? ;p L p (T 3 ).

Proof. From the estimation on R " (v " ) of Lemma 6.15, together with the fact that M "; ! 0 in probability (Lemma 6.16) and the bounds on kv " k M T? 
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The main aim of this thesis is to investigate the well-posedness of distribution-valued stochastic partial differential equations (SPDEs) in the framework of paracontrolled distributions, which employs both functional analytic and probabilistic methods. We develop a non-linear paracontrolled calculus to obtain a local well-posedness result for quasi-linear SPDEs. Using the paracontrolled approach and some techniques from Malliavin calculus to control generalized stochastic integrals, we are able to study the weak universality of a class of nonlinear reaction-diffusion models rescaling to the Φ 4 3 stochastic quantization equation. Another subject of this thesis is the study of the tightness of the 2dimensional Ising magnetization field at critical temperature, for which we obtain an essentially sharp characterization in local Besov spaces. 
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  [CC13] et l'existence et unicité d'une solution pour tous les temps [MW17b], l'existence et unicité globale d'une solution de 2 4 [MW17a] et le spectre de l'opérateur hamiltonien de Anderson en dimension 2 [AC15].

  L 2 (; (); P) = M n=0 1 H n où () est la tribu engendrée par le bruit blanc et H n est l'espace engendré par les variables aléatoires fH n ((f ))jf 2 L 2 (R d ); khk L 2 (R d ) = 1g avec H n les polynômes de Hermite.

4 .

 4 et des constantes de renormalisation divergentes c " ; d " . Cette équation s'appelle modèle 3 Dans 2 dimensions le modèle 2 4 a été le sujet de diérents travaux pendant plus de trente ans [JM85, AR91, DD03]. Dans le cas tridimensionnel 3 4 , la convergence des solutions de (4) a été obtenue d'abord par Hairer [Hai14a, Hai15] et constitue une première application révolutionnaire de sa théorie des structure de régularité. Un résultat similaire a été obtenu après par Catellier et Chouk dans [CC13] en utilisant le calcul paracontrôlé développé par Gubinelli, Imkeller et Perkowski [GIP15]. Kupiainen dans [Kup14] a aussi résolu cette équation en utilisant des techniques de groupe de renormalisation. Le premier résultat d'universalité faible pour une EDPS singulière a été donné par Hairer et Quastel [HQ15] dans le cadre de l'equation de Kardar-Parisi-Zhang (KPZ) avec une non-linéarité donnée par un polynôme pair. En utilisant la théorie développée dans ce dernier article, Hairer et Xu ont montré dans [HX16] l'universalité faible d'une famille d'équations de réaction-diffusion tridimensionnelles dans le cas d'un bruit gaussien et d'une non-linéarité polynomiale. L'universalité faible pour des équations de réaction-diffusion perturbées par un bruit non-gaussien a été traitée par Shen et Xu dans [SX16]. La pré-publication [OGK17] analyse une version hyperbolique de l'équation de quantication stochastique bidimensionnelle, en incluant un résultat d'universalité faible (pour un bruit asymptotiquement petit). Récemment, Hairer et Xu [HX18] ont obtenu une généralisation du résultat précedent de Hairer et Quastel sur la convergence d'une certaine classe de modèles vers la solution de l'équation KPZ [HQ15], avec des hypothèses plus générales sur la non-linéarité et une méthode essentiellement diérente de celle introduite d'abord dans [FG18]. Les techniques que je présente dans le chapitre 6 de ma thèse s'appliquent aussi bien aux modèles considérées dans [HX18], et vice-versa la technique de [HX18] pourrait en principe rétrouver les même resultats qui sont énoncés ici. L'article [FG18], dont le chapitre 6 de ma thèse tire son origine, est le premier à considérer dans tous les détails un problème d'universalité faible en utilisant la technique des distributions paracontrôlées. Cela permet de montrer que les résultats analytiques peuvent s'obtenir facilement avec le calcul paracontrôlé standard qui a été présenté dans le chapitre 1 (en particulier dans [FG18] on se base sur la construction de Catellier et Chouk [CC13]), et que la seule diculté est de prouver la convergence d'un certain nombre de champs aléatoires, ayant un développement en chaos inni, vers des objets limites universels. La nouveauté plus importante de notre article [FG18] est le fait d'utiliser le calcul de Malliavin [Nua06, NN10, NP12] pour analyser ces termes stochastiques sans devoir supposer que la non-linéarité soit polynomiale comme dans [HX16].

  technique recalled above and first introduced in [GIP15] (see also the lecture notes [GP15]) has been used successfully to study a variety of SPDEs, starting from generalized PAM, rough Burgers' equation and other rough differential equations in [GIP15]. Paracontrolled calculus has been used also to study the KPZ equation [GP17], the dynamic 3 4 model [CC13] and its global wellposedness in time [MW17b], the global well-posedness of 2 4 model [MW17a], and the spectrum of the continuous Anderson Hamiltonian in d = 2 [AC15]. By using heatsemigroup techniques, paracontrolled calculus has been extended to the manifold context by Bailleul and Bernicot [BB15].

32 )

 32 Proposition 1.38. (Local Besov spaces via wavelet coecients) Let p; q 2 [1; 1].

  The space L 2 (; (W ); P) has the orthogonal decompositionL 2 (; (W ); P) = M n=0 1 H n :

  and k(!) the number of connected components of the graph (Z d ; (!)), with (!) = fe 2 E d j ! e = 1g. We will call the edge e open if ! e = 1, and closed otherwise. We call open clusters the connected components of (Z d ; (!)), and write x $ y if x; y are in the same open cluster, x = y otherwise. An open path is a (possibly innite) sequence (e i ) of edges belonging to (!). The boundary condition is free if e = 0 8e 2 E d and wired if e = 1 8e 2 E d . One can see from Denition 3.1 that for q = 1 the model corresponds to the standard Bernoulli bond percolation, with edges being independently open or closed at random.

  Let p 2 [0; 1], q = 2, e ¡ = (1 ¡ p).

Theorem 4. 1 .

 1 Fix an open set U R 2 . For every " > 0 and p; q 2 [1; 1], the family of Ising magnetization elds ( a ) a2(0;1] on U is tight in B p;q

  Y ? (); Y (); Y (); Y (); Y (); Y (); Y (); Y (); Y ())

  ] [m+r¡i] ( 1 ) [1+q ¡i] [n+ q¡i]

:L

  If h > 2m we rst use the bound D 2m G [1+a][m+a] and then take the remaining h ¡ 2m derivatives on " 4p (H h¡2m )

  v " := v " ¡ v " ] with v " ]: t 7 ! P t (u 0;" ¡ Y " (0)): (6.55) Lemma 6.15. (Boundedness of remainder) For every 2 (0; 1), 2 [0; 1] we havekR " (v " ; v " [ ; v " ] )(t; x)k M T ; p L p (T 3 ) . M " (Y " ; u 0;" )kv " k M T /(3+) L 1 (T 3 ) 3+ e c" 1/2 kv " k C T L 1

:

  that it is possible to choose > 2 that satises this property as long as k and are small enough) we have:k R " (v " )k M T 1¡; p L p (T 3 ) . M "; (Y " ; u 0;" )kv " k V T 3+ e c" 1/2 kv " k V TBy Lemma 1.62 together with (1.55) we obtain thenk IR " (v " )k V T [ . M "; (Y " ; u 0;" )kv " k V T kP v " [ (0)k V T [ . kv " [ (0)k C T C 1/2¡2
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  . We will consider Besov spaces on either R d , an open bounded domain U R d or the d-dimensional torus T d := (R d /2pZ) d . All the results for Besov spaces on R d also hold mutatis mutandis for T d .We begin by introducing some general notation. If u = (u n ) n2I is a family of real numbers indexed by a countable set I, and p 2 [1; 1], we write

	kuk `p = (	X n2I	ju n j p ) 1/p ;
	with the usual interpretation as a supremum when p = 1. We write B(x; R) for the open Euclidean ball centred at x and of radius R. For every open set U R d and n 2 N [ f1g, we write C n (U ) to denote the set of n times continuously dierentiable functions on U ,
	and C c n (U ) the subset of C n (U ) of functions with compact support. We simply write C n
	and C c n for C n (R d ) and C c n (R		

d ) respectively. For f 2 C n , we write

  with respect to the norm kk C .

	For
	(U ) is the completion of C 1 (U ) with every open set U R d , the local Hölder space C loc respect to the family of seminorms

  which by Proposition 1.38 is the needed result.Naturally, tightness criteria rely on the identication of compact subsets of the space of interest.

Proposition 1.43. (Compact embedding) Let U be an open subset of R d . For every < 0 and p; q; s 2 [1; +1], the embedding B p;q 0 ;loc (U ) B p;s ;loc (U ) is compact. Proof. By Proposition 1.38 and the denition of boundedness in Fréchet spaces, a sequence (f m ) m2N of elements of B p;q 0 ;loc

(product formula, [Jan97, Th.3.15]

  Proposition 1.1.3].

	Proposition 2.9.

) Let (W (h i;j )) 16i6k;16j 6`b elong to the isonormal Gaussian process of Denition 2.1. Dene Y

  Therefore, by the tightness criterion of Theorem 1.46 we have shown that the family ( a ) a2(0;1] is tight in B

							p;q ¡ 1 8 ¡";loc (U ) for p > 2 and even, and by the equivalence of norms
	of Proposition 1.52 it is tight in B p;q ¡ 1 8 ¡";loc (U ). The embedding described in Remark 1.27
	yields the result for all p 2 [1; 1].
		2 R 2 ¡n a	c. By Proposition 4.5, we nally obtain X E U a ( y 1 y p ) . a ¡ 15 8 p 2	¡	15 8 pn
							y 1 :::y p 2U ~a;x
	uniformly over x. As a result, (4.4) can be bound from above by C 2	1 8 n for some C > 0.
	Using the same techniques it is easy to obtain the following bound for (4.3):
	a	¡	1 8	sup	[	X
				x2 k \K	

y 1 :::y p 2U ~a;x E U a ( y 1 y p ) . X y 1 :::y p 2U ~a;x E U a + ( y 1 y p ) . X y 1 :::y p 2U ~a;x

E U ~a;x + ( y 1 y p ) . X y 1 :::y p 2[¡N ;N ] 2 \Z 2 E [¡N ;N ] 2 \Z 2 + ( y 1 y p ) with N = b y 1 :::y p 2U a E U a ( y 1 y p ) Y j=1 p Z S a (y j ) ' (2 k (z ¡ x)) d z] 1 p . 1:

  (z)j jz ¡ xj . 2 ¡k allows to bound the terms above in L 1 with 2 ¡k kg k C T khk C 1 C T

	and						
	Z	z	K k;x (z)	X q=1 2	1 [ q h(g(t; z); t; ) ¡ q h(g(t; x); t; )](z)	2 X `=1	1 `h(g(t; x); t; )(z)
	As already noted in the proof of Lemma 5.1 we have
			k q h(g(t; z); t; ) ¡ k h(g(t; x); t; )k L 1 . 2 ¡q khk C 1 C T k `h(g(t; z); t; ) ¡ `h(g(t; x); t; )k L 1 . 2 (2¡ )`k hk C 1 C T kg k C T kg k C T jz ¡ xj ; jz ¡ xj
	and this, together with the estimation Z	
								2	. Summing up, we have
	seen that (5.14) can be bound in C T	by (1 + kgk C T	)khk C 1 C T 2

g(t; z); t; ) ¡ `h(g(t; x); t; )](z) z jK k;x

  Then note that we can decompose the norm kuk L p (;H 3 ) = kkuk H 3 L p (; H 3 ) and since the norm of the Hilbert space H 3 is given by the scalar product kh 3 k H 3

		2	k L p/2 1/2 for u 2
	2	= hh; hi H 3 we obtain
	q	

2 Y ";(t;x) )h (t;x)

3 dx L p (;H 3 ) :

  converge to nite constants due to the bounds (6.41) and (6.42) and by Lemma 2.17 R s;x P s (x)C " (s; x) 2 . jlog"j: Finally, from (6.43) we have Z

					Z		
		;x	P s (x)E	^0 [1] ^(s;x) [1]	;	s;x P s (x)E	0 [0] ^(s;x) [2]	;
					Z		
	1 ; 2	E	1 [0] 2 [1]	q; 1 ; 2 =	s;x P s (x)E	0 [0] (s;x) [1]

Lemma 6.13. Under

  Assumption 6.1 (in particular if F " 2 C 8 (R) and the rst 8 derivatives have exponential growth) the norm kk L p (H k+`)

		2	of the term
	Z	
	m+n¡ q¡r	[1+r ¡i] [m+r ¡i] ( 1 ) [1+q ¡i] [n+q ¡i]

  H m+k+n+`¡q ¡r+j . We have that kk L p (H k+`)( 1 )D j ¡h [1+ q¡i] [n+q ¡i] ( 2 ); D h [1+r ¡i] [m+r ¡i] ( 1 0 )D j ¡h [1+q ¡i] [n+q ¡i] ( 2 0 )

	we can bound each term in the sum above as Z	2	= kkk H k+2	1/2 and therefore k L p/2
	.(	[m+r¡i] D h [1+r¡i]			H j	L p/2

j =0;h6j m+n¡q ¡r k Z D h [1+r ¡i] [m+r¡i] ( 1 ) D j ¡h [1+q ¡i] [n+q ¡i] ( 2 ) h 1 m¡q h 2 n¡r h 1 k h 2 `j hh 1 ; h 2 ij q+r¡i q; 1 ; 2 k L p (V ) 2 ;

with V =

  1/2 Using Hölder's inequality we get the estimate D h [1+r ¡i] [m+r ¡i] ( 1 )D j ¡h [1+q ¡i] [n+q ¡i] ( 2 ); D h [1+r ¡i] [m+r ¡i] ( 1 0 )D j ¡h [1+q ¡i]

				[n+ q¡i] ( 2 0 )	H j	L p/2
	.	D h [1+r ¡i] [m+r ¡i] ( 1 ); D h [1+r ¡i] [m+r ¡i] ( 1 0 ) D j ¡h [1+ q¡i] [n+q ¡i] ( 2 ); D j ¡h [1+ q¡i] [n+q ¡i] ( 2 H h 0 ) H j ¡h L p	L p
	Now to bound	
		D h [1+a] [m+a] (); D h [1+a] [m+a] ( 0 )	H h	L p

  There exists T ? = T ? (kY " k X T ; ku ";0 k C ¡1/2¡; j " j) 2 (0; T ] a lower semicontinuous function depending only on kY " k X T , ku ";0 k C ¡1/2¡ and j " j, a constant M "; = M "; (Y " ; u 0;" ) > 0 dened by ( 6.54), and a universal constant C > 0 such that, wheneverM "; 6 T ? /2 we have kv " [ k V T? [ 6 C(1 + j " j) (1 + kY " k X T ) 3 (1 + ku ";0 k C ¡1/2¡) 3 ; kv " k V T? 6 C ¡ kY " k X T + ku ";0 k C ¡1/2¡ + kv " [ k V T? [ :Proof. Using the well-known Schauder estimates of Lemma 1.61 (and the fact that kf k L T ; . T kf k L T ) we obtain for ; > 0 small enough

	kIf k L T ¡+2;2 + kIf k L T 1/4¡+2;1/2+2 + kIf k L T 1/2¡+2;1+2 .T 2 ¡ kf k M T 1¡ C ¡ + kf k M 1/2+2 C ¡1/2¡2 :	(6.59)

the regular part of the solution;

¡ v " ; v "

enter in the estimation of the remainder, they are just convenient shortcuts for certain contributions appearing in v " . Lemma 6.18.

  . (1 + kv ";0 k C ¡1/2¡)kY" k X T we obtain that 9C 0 > 0 such that v " n [ V T [ 6 C 0 (1 + j " n j) (1 + kY " n k X T ) 3 (1 + kv ";0 k C ¡1/2¡) 3 +C 0 T /2 (1 + j " j)(1 + kY " k X T ) 3 kv " [ k V T [ 3 +C 0 M "; (Y " ; u 0;" )e c" 1/2 ¡ kY " k X T +kv ";0 k C 0 (1 + j " j)(1 + kY " k X T ) 3 +C 0 e c" 1/2 ¡ kY " k X T +kv ";0 k C ¡1/2¡ (1 + (kY " k X T + kv ";0 k C ¡1/2¡) 3+ ); D := C 0 (1 + j " n j) (1 + kY " n k X T ) 3 (1 + kv ";0 k C ¡1/2¡) 3 :Let T ? 2 (0; T ] such that: Let us assume that S < T ? , then we can take > 0 small enough such that S + < T ? and by continuity kv "[ k V S +

			C ¡1/2¡ [ + C T /2 kv " [ k V T c" 1/2 kv " 6 D + C M "; (Y " ; u 0;" )e [ k V T [ e c" 1/2 kv " [ k V T [ kv " k V T 3+ 3 +C M "; (Y " ; u 0;" )e c" 1/2 kv " [ k V T [ kv " [ k V T [ 3+
	with				
	C := C T ? /2 [(5 D) 2 + e c" 1/2 (5D) (5 D) 2+ ] 6	1 2	, and C T ? /2
	creasing and		v " n [	V 0 [ 6 4D. [	6 5D, then	[ is continuous and nonde-V t
	[ v " n	V S +	c" 1/2 kv " [ k V S + [ e c" 1/2 (5C) (5D) 2+ kv " /2 +C T ? [ k V S + kv " [ k V S + /2 (5 D) 2 kv " [ k V S + [ [ 6 2D + 1 2 kv " [ k V S + [
	which gives	v " n [		

e c" 1/2 (5D) 6 D: Assume that M "; 6 T ? /2 . Dene a closed interval

[0; S] = ft 2 [0; T ? ]: v " n [ V t [ 6 4Dg [0; T ? ]

This interval is well dened and nonempty since

t 7 ! v " n [ [ 6 D + C M "; (Y " ; u 0;" )e c" 1/2 kv " [ k V S + [ + C (S + ) /2 kv " [ k V S + [ 3 +C M "; (Y " ; u 0;" )e [ 3+

6

D + C M "; (Y " ; u 0;" )e c" 1/2 (5D) + C T ?

  RésuméLe sujet principal de cette thèse sont les équations aux dérivées partielles stochastiques (EDPS) présentant des solutions distributionnelles. L'étude de ces équations se déroule dans le cadre du calcul paracontrôlé, qui comprend des techniques issues de l'analyse fonctionnelle et de la théorie des probabilités. On développe un calcul paracontrôlé non-linéaire pour obtenir un résultat d'existence locale pour des EDPS quasi-linéaires. En utilisant le calcul paracontrôlé et des techniques de calcul de Malliavin pour borner des intégrales stochastiques généralisées, on étudie l'universalité faible d'une classe d'équations nonlinéaires de réaction-diffusion qui convergent vers l'équation Φ 4 3 de quantification stochastique. Une autre partie de cette thèse est dédiée à l'étude de la tension du champ de magnétisation d'Ising bidimensionnel à température critique, pour lequel on obtient une caractérisation précise dans des espaces de Besov locaux.

	Mots Clés				
	Equations aux Dérivées Partielles,				
	EDP Stochastiques, Paraproduit, Es-				
	pace de Besov, Espace de Besov				
	Local, Distributions Paracontrôlées,				
	Calcul de Malliavin, Modèle d'Ising,				
	EDP Quasi-linéaires, Universalité Faible, Equation de Quantisation Stochastique	4	+	3 2 L 1	and kv "

k C T L 1

of Lemma 6.17 we see immediately that kR " (v " )k M T? ; p L p ! 0 in probability.
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Lemma 3.3. ([Gri09, Lemma 4.13]) Let p 2 [0; 1], q 2 (0; 1), and let ; be nite subsets of Z d with . For every 2 , every event A 2 F and every ! 2 :

;p;q (Aj T )(!) = ;p;q ! (A):

(3.3)

The set = f0; 1g E d has a partial ordering given by ! 6 ! 0 if 8e 2 E d ! e 6 ! e 0 . A function X: ! R is called increasing if ! 6 ! 0 ) X(!) 6 X(! 0 ). Likewise, an event A 2 F is called increasing if the random variable 1 A is increasing. Denition 3.4. (FKG inequality) A probability measure on is said to be positively associated, or to verify the FKG inequality, if for every increasing events A; B we have

The probability measure ; p; q of Definition 3.1 is positively associated [START_REF] Georey | The Random-Cluster Model[END_REF]Lemma 4.14]. As a direct consequence we have the following monotonicity properties. Lemma 3.5. Let p 2 [0; 1], q > 1 and Z d nite sets. Then: For every 6 2 and for every increasing event A 2 F :

;p;q (A) 6 ;p;q (A):

For every increasing event A 2 F :

;p;q 1 (A) 6 ;p;q 1 (A) :

For p 2 [0; 1], q > 1, the random cluster measure ;p;q for both free and wired boundary conditions admits a thermodynamic limit as ! Z d [Gri09, Theorems 4.17 and 4.19], which we call p;q . For every boundary condition such that ;p;q admits a limit and every increasing event A, we have: p;q 0 (A) 6 p;q (A) 6 p;q 1 (A):

Relation with the 2-d Ising model

We introduce now the Ising-Potts model on a nite set Z d . Take a conguration space 0 = f¡1; 1g with F the -algebra generated by cylinder events. For 2 0 and x 2 we call x the function that associates with its value in x, and e = x y with e = hx; yi 2 E . The Ising probability measure on ( 0 ; F ) with free boundary condition is dened 8 2 

In particular, we have

(5.20) whenever this expression makes sense.

Proof. We start considering g 2 C 1 ([0; T ]; T 2 ) and U 2 C 2 C 1 ([0; T ]; T 2 ), and prove (5:20) in this setting. Note that (g(t; y); L g(t;y) U ) = L U (g(t; y)). As a consequence, we can estimate

with the commutators [; (g; )]U := (g; U ) ¡ (g; U ); [@ t ; (g; )]U := @ t k (g; U ) ¡ k (g; @ t U ):

We have ) + " 3/2 ( 0 + 0;" ) so that f 3;" = 3 ; " ¡1/2 f 2;" = 2 ; " ¡1 f 1;" = 1 + 1;" ; " ¡3/2 f 0;" = 0 + 0;" ;

and

where

we obtain " ! ( 0 ; 1 ; 2 ; 3 ). This shows that all the possible limits 2 R 4 are attainable.

In this case (6.5) takes the form

The name dynamic 3 4 equation (or stochastic quantisation equation) derives from the fact that the simplest class of models which approximate the limiting random eld u() is precisely obtained by choosing a cubic polynomial like in (6.10) as non-linear term (which is the gradient of a fourth order polinomial playing the role of local potential).

Weak universality is the observation that the same limiting object describes the large scale behaviour of solutions of more general equations, in particular that of the many parameters present in a general model, only a nite number of their combinations survive in the limit to describe the limiting object. The adjective weak is related to the fact that, in order to control the large scale limit, the non-linearity has to be very small in the microscopic scale. This sets up a perturbative regime which is well suited to the analysis via regularity structures or paracontrolled distributions.

Analysis of the mesoscopic model

The goal of this section is to obtain a paracontrolled structure for equation (6.5) analogous to that introduced by R.Catellier and K.Chouk [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF] for the cubic polynomial case (the 3 4 model), and use it to set up the limiting procedure. Convergence of the stochastic terms and some a priori estimates will be the subject of the following sections. Denitions and a reminder of the basic results of paradierential calculus needed here can be found in Section 1.2.

Paracontrolled structure

Let us start our analysis by centering the reaction term F " (" 1/2 u " ) in (6.5) using decomposition (6.6) to obtain:

and we can estimate

by hypercontractivity and using Lemma 2.16 as

The other term can be estimated more easily by "

jhh s;x ; h s;x 0ij 3¡m++2 j q; q; 0j 1 2 ;

and nally obtain

. " /2¡2 jt ¡ sj Z ; 0 jhh s;x ; h s;x 0ij 3¡m++2 j q; q; 0j 1 2 :

Which yields estimation (6.31) by applying Lemma 2.20 as before. This concludes the treatment of simple trees. Notice that in this section we only needed F " 2 C 5 (R) with the rst 5 derivatives having exponential growth: indeed we need to take 4 derivatives to bound " 1/2 [4] as of Remark 6.9, plus one more derivative for the time regularity of " 1/2 [4] .

Analysis of composite trees

In this section we show the decomposition (6.28) and the bound (6.30) for the trees Y " ; Y " ; Y " ; Y " . The time regularity (6.31) of Y ^" can be obtained with the same technique as in the previous section, assuming that we can control one more derivative of F " than what is needed to prove the boundedness of Y " (thus we will need F " 2 C 9 (R) with exponential growth, as discussed in Remark 6.14). Looking at the denitions in (6.12) it is clear that we can write the q-th Littlewood-Paley blocks of Y " , Y " , Y " and Y " 8" > 0 as:

(6.39) for any time-space point = (t; x ) that we keep xed throughout this section. In order to keep the notation shorter we dened 1

[1] := " ¡1/2 f 2;" JY " 2 ( 1 )K;

which can be thought of as a nite-chaos equivalent of " [1] (modulo a constant f 2;" / f 3;" ) in the same way as Y " is a nite-chaos equivalent of Y " . The measure q; 1 ; 2 on (R T 3 ) 2 is given by

we can write the trees of (6.39) as

) q; 1 ; 2

) q; 1 ; 2 :

(6.44)

Let us summarize our results so far. We have shown that

in L p () and then these terms converge to 0 in the right topology as " ! 0. As already mentioned, the convergence in law of

is easy to establish with standard techniques (as done in [START_REF] Catellier | Paracontrolled distributions and the 3-dimensional stochastic quantization equation[END_REF], [START_REF] Mourrat | Construction of 3 4 diagrams for pedestrians[END_REF]) assuming the convergence of " as in (6.9) to . Then, comparing (6.44) with the canonical trees in (6.20) we can identify the remainder terms q Y ^" that still need to be bounded, that are precisely those in which ^ [n] appears. Estimating these terms is the content of next section.

Estimation of renormalised composite trees

In this section we prove the bound (6.30) for composite trees. The diculty we encounter here is that the remainder Y ^" cannot be written as an iterated Skorohod integral as in Section 6.3.1, but instead as a product of iterated Skorohod integrals. We will then use the product formula (2.22) to write the remainder in the desired form. We can write (6.44) in a much shorter way as:

In order to treat all trees at the same time, we can write the rst terms in the r.h.s. above (modulo a constant that we discard) as:

) q; 1 ; 2 with r = 1; i + j = 2 or r = 2; i + j = 1.

First notice that by Lemma 2.23 we have

and from the boundedness of the operator D G [1] [r] given by Corollary 2.27 we obtain:

Computing the r-th derivative of the integrand we obtain

6.45)

for m + n = 5 and 0 6 k + `6 2. The constraints on m; n; k; `are related to the number of branches in the graphical notation of the trees: each tree has m + k ¡ 1 leaves with height 2 and n + `¡ 1 leaves with height 1, as follows

Proof. We can write the remainder in two ways:

From assumption (6.8) on F " we obtain by interpolation of these two expressions, 8 2 [0; 1], 8t > 0; x 2 T 3 , jR " (v " )(t; x)j . " /2 jv " (t; x)j 3+ e c" 1 2 jY " (t;x)j+c"

and we estimate, 8 2 [0; 1),

.kt

We can also verify that M "; ! 0 in probability for every > 0: Lemma 6.16. (Convergence of the stochastic term) Under Assumption 6.1 the random variable M "; (Y " ; u 0;" ) dened in ( 6.54) converges to zero in probability 8 2 (0; 1].

Proof. We can use Young's inequality to estimate M "; (Y " ; u 0;" ) for some c 0 > 0 as

+" /2 T 1/p e c 0 k" 1/2 u 0;" k L 1 :

Under Assumptions 6.1 the term k" 1/2 u 0;" k L 1 (T 3 ) is uniformly bounded, so the third term above converges to zero in probability. Note that " 1/2 Y " (t; x) and P t " 1/2 Y " (t = 0) are centered Gaussian random variables, and then both Eke c 0 " 1/2 jY " j k L p [0;T ]L p (T 3 ) p and Eke c 0 " 1/2 jP . Y " (0)j k L p [0;T ]L p (T 3 ) p are uniformly bounded in " > 0 for every p 2 [1; 1). This yields the convergence in probability of M "; (Y " ; u 0;" ).

In order to show that kR " (v " )k M T 0 ; p L p ! 0 in probability for 0 > 1 4 + 3 2 as needed in the proof of Theorem 6.7, we still need to control the norms kv " k M T /(3+) L 1 3+ and kv " k C T L 1 that appear in Lemma 6.15. This is done in next section.

A priori bounds on the solution Lemma 6.17. (A priori bound on the solution)

Fix T > 0. There exists > 0, T ? = T ? (kY " k X T ; ku ";0 k C ¡1/2¡; j " j) 2 (0; T ] a lower semicontinuous function depending only on (kY " k X T ; ku ";0 k C ¡1/2¡; j " j) and a collection of events (E " ) ">0 such that P(E " ) ! 1

as " ! 0 and conditionally on E " there exists a universal constant C > 0 such that: