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1

General introduction

In the nineteenth century, the thinking was characterized by the certainty. It was marked by a confidence in
the power of science and technology. Newtonian physics, for instance, showed that the universe functions
according to rigid laws and that its course could be predicted with total confidence and certainty. But, a
scientific revolution began to take shape when the Quantum Theory and the Theory of Relativity proved
that the knowledge was incomplete since there as places in the universe such as black holes from which no
information at all could be obtained. Chaos Theory also showed the limits of predicting or controlling the
world. Thus, the twentieth century was marked by the emergence of uncertainty and the fall of certainty.
This new perception of the world has made a revolutionary effect not only in physics, but in all disciplines:
economy, decision-making, policy, computational modelling and simulation, etc..

In computational modelling, optimization and simulation, uncertainty is inevitable when we consider
real-world problems, systems or phenomena. In this discipline, the uncertainty faced by the modellers can
basically arise from the model form or from the empirical data (See Morgan and Henrion (1990) classification
in Appendix A). The model form uncertainty can be defined as an inadequacy in the representation of the
problem due to simplifications and reasoning approximations. Sometimes, it can also arise from the difficulty
to choose among alternative models. But, as a model is a simplified representation intended to enhance our
ability to understand, simulate, predict and control a system, a perfect compliance between the model and
the reality never exists in an absolute sense. In the other hand, the model form uncertainty can be overcome
only through model validation. Once the model form is validated, the model’s usefulness will depend on
high part on the accuracy of the data. In fact, data uncertainty can make the exploitation of the optimization
and simulation results far from the desired goal in most of real-world applications.

In scheduling, the gap between the results provided by the classical scheduling algorithms and their
applicability in production environment requirements was pointed out by both researchers and practitioners.
One of the reasons of such a gap is connected with the assumptions that data (related to jobs and/or machines)
are known with certainty. However, scheduling in production environment is recognized to be a complex and
dynamic activity in which job processing times can take longer or shorter than forecast, release dates and due
dates may change, jobs may have to be inserted or canceled. Besides, the resources may become unavailable
due to unforeseen events as breakdowns, accidents, operator absenteeism, etc.. Assuming a certain data
can make the classical scheduling approach inadequate to solve scheduling problems under uncertainty.
Several publications claimed that ignoring data uncertainty can lead the decision-maker to be confronted
with infeasible or sub-optimal schedules. Thus, computing an optimal schedule has become less important
than protecting the schedule from uncertainty. We should recognize that we are no longer at the beginning
of the road to develop approaches and models for dealing with optimization problems under uncertainty in
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general and scheduling ones in particular. The number of published works in this issue exploded, but the
number of problems affected with data uncertainty is unlimited. Besides, there is neither a unique approach
nor a unique model to deal with uncertainty arising in a given problem. For these reasons, optimization under
uncertainty provides fertile ground for researchers.

Thesis objectives and contributions: In this thesis, we focus on the makespan minimization on
parallel machines with splitting (resp. preemption) under uncertain processing times. Parallel Machine
Scheduling (PMS) consists in sequencing n jobs on m same function machines in order to optimize the
objective. The processing time of a job on a machine represents the duration required by this machine to
process this job.

PMS is a very common problem in many manufacturing industries and also in multiprocessor comput-
ing applications. In PMS, we distinguish three environment machines: the identical, the uniform, and the
unrelated parallel machines. In the identical parallel machines, the job processing time is independent of
the machine where it is processed. In the uniform parallel machines, each machine has a different speed
and the processing times of a job in two different machines are proportional. In unrelated parallel machines,
no particular relationship exists between the processing times on the different machines, i.e., there is no
proportionality between the processing time of a job on a given machine and its processing time on another
machine. From a mathematical point of view, the unrelated parallel machines represent the general case of
PMS.

The splitting and the preemption often take place in problems. Indeed, we consider that we can divide
each job into sub-jobs that can be processed independently on the machines. When we accept to overlap the
sub-jobs of the same job, we address the PMS under job splitting otherwise we address the preemptive PMS.
The makespan minimization on parallel machines with job splitting is a relaxed version of the preemptive
problem. In environments that are not affected by uncertainty, the makespan minimization on parallel ma-
chines under job splitting (resp. preemption) can be solved in polynomial time. Indeed, the most general
case which is the makespan minimization on preemptive unrelated parallel machines has been shown to be
polynomial by Lawler and Labetoulle (1978). However, the uncertainty of processing times is prevalent
in such problems. When we consider this uncertainty, the deterministic models can lead to schedules with
poor performance when applied to the actual realizations of processing times. Therefore, we investigate the
makespan minimization on parallel machines, under both splitting and preemption, taking into account the
uncertain processing times. Thus, our contributions can be described in response to the following research
questions:

Research question 1: How to provide solutions that withstand the uncertain processing times?
To reach this goal, we adopt a proactive approach under which we anticipate the uncertainty in order to

provide robust solutions. We consider then, that in a lot of activities, the experts are able to describe uncertain
data realizations by the construction of a set of discrete scenarios representing several potential futures. But,
in our problems, a subsequent difficulty is related to the feasibility of the constraints under all the scenarios.
We initially propose two different approaches to deal with the uncertain processing times. The first approach
aims to enforce the feasibility of the schedule under different scenarios by tolerating the violations of some
processing requirements. Slack variables are used to compensate such a loss. In the second approach, we
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propose an artificial scenario solution based algorithm. Under this approach, we construct a set of feasible
solutions and we choose among them the most robust. This choice is based on an evaluation algorithm that
computes a robustness measure under each solution. Thanks to this second approach, we respect the hard
constraints and ensure their feasibility under all the scenarios without any violations. However, the artificial
scenario solutions are not optimal. Therefore, we propose a third approach in which we use the min-max
objective -widely used in robust optimization- to generate optimal robust schedules.

The second question that we propose to answer through this thesis is related to the robustness cost of
the solutions. Indeed, several authors and practitioners highlight that robustness has a cost: the more you
robustify the solution, the more you deteriorate the performance and consequently the more you pay, and
vice versa. In this thesis, we propose to quantify the cost of robustness of each solution in order to verify this
postulate. We formulate this question as follows:

Research question 2: What is the robustness cost when we use each of the computed robust solutions?
To answer this question, we define a robustness cost indicator and then we analyse and compare the

evolution of the robustness cost of the robust solutions according to different parameters: the problem size,
the discrete scenario set size and the degree of uncertainty. Indeed, we distinguish low uncertainty degree,
medium uncertainty degree and high uncertainty degree.

When we answer the previous questions, new research questions arise:
Research question 3: When the future turns out differently than considered, does a robust solution guar-

antee a good performance under the new scenario? And how much adjustment is needed to be also protected
against this new scenario?

To answer these questions, we propose to evaluate the stability of the robust solutions under new scenar-
ios. We evaluate both the performance stability and the structure stability.

Thesis outline: This thesis is divided into six chapters, providing an introduction, the major contribu-
tions and an outlook on further research questions and perspectives.

Chapters 1 and 2 provide the materials to the understanding of the issue of optimization under uncertainty
in general and scheduling under uncertainty in particular. In chapter 1, we provide a background for the
understanding of the various aspects of data uncertainty. We explore the existing concepts and classifications
of uncertainty from different fields. Then, we propose a unified taxonomy of uncertainty in computational
modeling and simulation. We propose a synthesized view of uncertainty type representations. We also survey
their related optimization approaches and models. At the end, we propose a general methodology to deal
with data uncertainty in optimization problems. In chapter 2, we focus on scheduling. We present the general
form of the scheduling problem and define its fundamental notions. We discuss the limitations of scheduling
under the hypothesis of certainty and we show the necessity to take into account uncertainty. Besides, we
briefly review the representations of uncertainty in scheduling. And then, we survey the existing approaches
to deal with uncertainties and disruptions when the objective is robustness and/or stability. In light of this,
we show that globally there exist a lot of opportunities for future developments and we identify some areas
for future research. Regarding our research questions, we identify the key tracks for the development of clear
answers to these questions.



4 GENERAL INTRODUCTION

Chapters 3, 4, 5 and 6 contain the major ideas and contributions of this thesis. In Chapter 3, we focus
on the makespan minimization on unrelated parallel machines under splitting and preemption respectively.
We present these problems in the static deterministic cases and stress the need to consider processing time
uncertainty. We provide the main motivations for our work by examples. Therefore, we show that the op-
timal solutions computed based on a unique scenario lead to schedules with poor performance when the
processing times turn to be different from the forecast one. Then, we propose to model the uncertainties by
considering a set of potential scenarios (discrete scenario representation) and we show that the uncertainty
in these problem models is affecting the equality constraints which impacts the feasibility. As initial con-
tributions, we propose two different approaches to deal with the uncertainty of processing times. The first
approach aims to enforce the feasibility of the schedule under different scenarios by tolerating the violations
of some processing requirements. In the second approach, we propose an artificial scenario based approach.
Under this approach, we construct a set of feasible solutions and we choose the robust solutions based on an
evaluation algorithm that compute the robustness measures of each solution. We do extensive computational
experiments to test the validity of the third approach in both splitting and preemption cases. These results
are serving to a comparable basis in the next chapters.

In Chapter 4, we show that the direct application of robust optimization techniques leads to no solution.
To overcome this difficulty, we propose formulations in which the uncertainty appears in the objective instead
of the assignment constraints. Thus, we provide robust solutions in polynomial time, and we extend these
results to the special cases of uniform and identical parallel machines. Extensive numerical experiments are
carried out to illustrate these new proposals. We extend the application of the robust discrete optimization to
the preemptive unrelated parallel machines under discrete processing time scenarios in Chapter 5. A major
difference between the preemptive case and the splitting one is due to the computation of a sequence. We
consider that the decision-maker is interested in computing a unique assignment solution under the set of
discrete scenarios and that he accepts to have different sequences. Here again, we provide robust assignment
solutions in polynomial time while the sequence construction remains the same as in the deterministic case.
The same test protocol is applied to evaluate the robustness cost of the solutions.

Finally, Chapter 6 is devoted to evaluating the stability of the structure and the performance of the
robust solutions when adding a new scenario. In this approach, the term stability is used for the algorithm
step at which robust solutions of the problem have been already computed, and additional calculations are
performed in order to investigate how these solution structures and performances depend on changes in the
set of potential scenarios. In the experimental results, we focus on the splitting case.
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Chapter 1

Uncertainty: Conceptual classifications,
Representations and Solving Approaches

Abstract: The goal of this chapter is to provide a background for the understanding of the various aspects
of uncertainty. We introduce the existing concepts and classifications of uncertainty from different fields.
In light of this, we propose a unified taxonomy of uncertainty in computational modeling and simulation.
Besides, we review the uncertainty models developed by the mathematical community and we classify them
according to their potential to represent the uncertainty types. Then, we focus on the approaches and mod-
els to formulate and solve optimization problems under uncertainty. We identify the main objectives of
optimization models under uncertainty and propose a cross classification of the optimization models under
uncertainty according to the objectives and to the uncertainty types. Lastly, we provide a guide to optimiza-
tion under uncertainty.
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Introduction

Data uncertainties are various. When they affect a modeling and simulation problem, they may require
different modeling techniques and elicit divergent resolution approaches. The uncertainty conceptual classi-
fications the most considered in the literature are based on two dimensions which are the type and the level.
By the type of uncertainty, we mean its whatness i.e. the nature resulting from its inherent characteristics.
And by the level of uncertainty, we mean its rank between full knowledge and total ignorance, if it is closer
to certainty or to ignorance, and where it can be situated between them. In Section1, we review some of
these conceptual taxonomies provided by different communities. The objective of this section is to highlight
the convergences between existing conceptual taxonomies. Indeed, we show that there exists a consensus
about uncertainty types contrary to what it is often thought. Moreover, we show that the uncertainty type and
the uncertainty level classifications are highly linked. Based on this review, we propose a unified taxonomy
of uncertainty considering a type-level dimension. In Section2, we review the models (formal and practical)
developed by the mathematical community in order to represent the uncertainties. We show that the un-
certainty models can also be classified according to their potential to represent adequately each uncertainty
type. In Section3, we address the modeling approaches and formulations to solve a decision problem under
uncertainty. Given that each optimization problem under uncertainty may require a particular approach, we
introduce a guide to choose the adequate model based on different entries.

1.1 Uncertainty conceptual classifications

1.1.1 Uncertainty type classification

The economist philosophy introduced by Knight (1921) and Keynes (1936) was the first to build the modern
history of uncertainty. Motivated by the need to develop a realistic economic theory under which the full
knowledge does not exist.

a) Uncertainty vs Risk:
Knight (1921) introduced the notion of uncertainty in a distinct sense of the notion of risk that was

familiar to the economists at that time. Knight (1921) considered that uncertainty refers to situations where
the probability of future events is unknown and immeasurable while risk refers to situations where future
events occur with measurable probability. For Knight (1921), the probability distribution under uncertainty
is unknown because the uncertain events are unique, they can not be reducible to a group of similar cases
which does not allow the use of probabilities contrarily to risk under which probabilities could either be
theoretically identified or determined from empirical frequencies. Knight (1921) called this distinction as
the ’practical difference’ between risk and uncertainty and he wrote that "the practical difference between

the two categories, risk and uncertainty, is that in the former the distribution of the outcome in a group of

instances is known (either through calculation a priori or from statistics of past experience), while in the case

of uncertainty this is not true, the reason being in general that it is impossible to form a group of instances,

because the situation dealt with is in a high degree unique."
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Keynes (1936) defended similar ideas about uncertainty based upon the impossibility of determining
accurate probabilities. Keynes (1936) affirmed that uncertainty concerns basically future events that are
influenced by various changes (economical, social, political) which make their extrapolation from the actual
events impossible: "By uncertain knowledge, let me explain, I do not mean merely to distinguish what

is known for certain from what is only probable. The game of roulette is not subject, in this sense, to

uncertainty... The sense in which I am using the term is that in which the prospect of a European war is

uncertain, or the price of copper and the rate of interest twenty years hence... About these matters, there is

no scientific basis on which to form any calculable probability whatever. We simply do not know."

Knight (1921) and Keynes (1936) classifications appeared to be very similar. However, the interpre-
tations of their texts emphasized that when talking about missing probabilities, Keynes and Knight have
something very different in mind. In Knight (1921), the decision-maker lack of information to construct
a probability distribution while in Keynes (1936) such a probability does not exist in a non-ergodic world.
Many debates and analyses were constructed around these interpretations ((See for example the analysis of
Davidson (1996)).

b) Risk and Savage’s uncertainty vs Ambiguity:
By the mid-20th century and under the influence of ’the theory of games and economic behavior’ devel-

oped by Von Neumann and Morgenstern (1944) and ’the equilibrium’ of Nash et al. (1950), a new uncertainty
classification has emerged which is about the environmental uncertainty and the behavioral uncertainty. En-
vironmental uncertainty is when the management of a firm has little information about its environment that
is unpredictable while behavioral uncertainty arises from the difficulty to predict the actions of other relevant
actors in a multi-actor system, particularly in view of the potential for opportunistic ((See Koopmans (1957)
and Williamson (1993) for more discussion). Indeed, if decisions are made in a social context, the data of
the problem may be determined by the decisions made by other actors who are in situations similar to our
situation.

Following this, the future is unknown and decisions must be taken under uncertainty because probability
can base only on individual’s subjective estimates or what is called subjective probabilities. Therefore,
Savage (1954) claimed that objective probabilities which are related to a randomness of the real world do not
exist, decision-makers can only assign subjective probabilities reflecting their degrees of belief to the events.
Savage’s uncertainty has been used to describe subjective risk under which the probabilities are "personal" as
termed in Savage (1954). He proved that, if the decision-maker adheres to the axioms of rationality, believing
an uncertain event has possible outcomes each with a utility function, then the decision -maker choices can
be explained as arising from the combination of this utility function and the subjective probability attached to
each outcome. Under this subjectivist viewpoint of uncertainty, he made the implication that all uncertainties
can be reduced to risk. But, Ellsberg (1961) and Shackle et al. (1972), who were among the first economists
to insist on the importance of uncertainty, rejected the use of numerical probabilities (even subjective) for
representing the uncertainty in situations where it is impossible to distinguish meaningfully between the
relative "likelihood" of the outcomes. Relying on the psychology literature, Ellsberg (1961) chose the term
ambiguity to describe the situations under which it might not be desirable to behave according to the postulate
of Savage.
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c) Ambiguity Vs Fundamental uncertainty:
A new refinement of the uncertainty concept has been given by Dequech (2000) who noticed that the

Keynesian uncertainty refers not only to ambiguity, but also to fundamental uncertainty without any distinc-
tion between them. Therefore, he defined the fundamental uncertainty as a significant indeterminacy in the
future that reflects situations under which not only decision makers cannot attach probabilities to the future
events but a scenario that is not completely imagined may occur. Accordingly, the fundamental uncertainty is
characterized by the possibility of creativity, innovation and structural change in a dynamic context which is
not the case under ambiguity ((See Freeman (1982), Davidson (1991), Dosi and Egidi (1991)). Furthermore,
Dequech (2000) argued that fundamental uncertainty is not synonymous with ignorance since its degrees
vary according to many factors as human creativity and technological innovations, in contrary to ignorance
that is absolute. Dow (2016) proposed a diagrammatic representation of the different understanding of un-
certainty according to the economist philosophies.

The economist classifications have been very influential, especially among decision-making and manage-
ment community. Based on the Keynesian classification, Luce and Raiffa (1957) divided decision situations
into three classes based on whether it has been carried out under conditions of certainty, risk or uncertainty.
They distinguished: decision under certainty, decision under risk, and decision under uncertainty. This clas-
sification is discussed and used until now to precise the context under which a decision has to be made
(Armbruster and Delage (2015), Kochenderfer et al. (2015)). The risk was refereed in the early papers of
global optimization by Dantzig et al. (1955) while the vagueness or fuzziness dates back to Zadeh (1965)
who means by decision-making in a fuzzy environment, a decision process in which the goals and/or the
constraints constitute classes of alternatives whose boundaries are not sharply defined. In which concerns
the ambiguity, this later was addressed by Kouvelis and Yu (1997).

d) Aleatory uncertainty Vs Epistemic uncertainty:
Since the 90’s, the risk analysis community has manifested a growing interest to the definition of uncer-

tainty and to the classification of uncertainty types. The risk analysis community has distinguished mainly
two natures of uncertainty which are the aleatory uncertainty and the epistemic uncertainty ((See for instance:
Hammonds et al. (1994), Helton (1994), Rowe (1994), Hora (1996), Ferson and Ginzburg (1996), Bedford
and Cooke (2001), Der Kiureghian and Ditlevsen (2009)). The aleatory uncertainty is defined as the inherent
variation associated with the physical system or the environment under consideration while the epistemic
uncertainty is defined as the lack of knowledge or information. The epistemic uncertainty could be reduced
by enhancing the state of knowledge and not the aleatory uncertainty. The refinement of this classification by
different communities, through the works of Smithson (1989, 2012), Klir and Wierman (1998), Oberkampf
et al. (2004), Ayyub and Klir (2006) and Wierman (2010), revealed a consensus about three distinct types of
uncertainty in spite of the use of different semantics. These uncertainty types are the aleatory uncertainty,
the ambiguity and the vagueness ((See definitions and synonyms in table 1.1 and figure 1.1).

In behavioral sciences, Smithson (1989, 1990, 2012) divided uncertainty into three types which are
the probability, the non specificity (ambiguity) and the vagueness ((See their typology and definitions in
appendix B table B.1). A much closed taxonomy to those of Smithson (1989) has been developed in en-
gineering and sciences by Ayyub and Klir (2006). Their taxonomy also reported in Appendix B table B.3,
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FIGURE 1.1: Uncertainty types identified by different communities

Uncertainty

Epistemic

AmbiguityVagueness

Aleatory

TABLE 1.1: Uncertainty type meanings and synonyms

Type Definition Synonyms
Aleatory Inherent variation associated with - likelihood (Ayyub and Klir (2006)),

the physical system or the environment - probability (Smithson (1989)),
(Oberkampf et al. (2004)) - randomness or frequency (Ayyub and Klir (2006)),

Vagueness Information imprecisely defined, - imprecision or approximation (Ayyub and Klir (2006)),
or indistinct - fuzziness (Wierman (2010))
(Oberkampf et al. (2004))

Ambiguity Multiplicity of alternatives without - non-specificity Smithson (1990)
preference to any alternative
Wierman (2010)

considered that uncertainty can be a likelihood, an ambiguity or an approximation. Klir and Wierman (1998)
and Wierman (2010) whose research was about the development of measures of uncertainty in mathematical
systems also identified ambiguity and vagueness to be two distinct types of uncertainty ((See the appendix B
figure and table B.4). Accordingly, ambiguity deals with the multiplicity without preference to an alternative,
we (See multiple concepts but what is (Seen does not allow to identify precisely the concept (Seek. Vague-
ness deals with lack of definite or sharp distinction, we (See one concept, but it does not have the resolution
to determine its identity or its frontier. Oberkampf et al. (2004) considered that the epistemic uncertainty
includes the vagueness, the ambiguity ((See the appendix B figure and table B.5).

1.1.2 Uncertainty level classification

Walker et al. (2003) defined uncertainty to be "any departure from the unachievable ideal of complete deter-

minism" where determinism reflects the situations where we know exactly everything. He used the level of
uncertainty as a dimension for its classification. Accordingly, he divided the spectrum between certainty and
total ignorance to three intermediate levels of uncertainty. These three intermediate levels are: L1- Statistical
uncertainty, L2- Scenario uncertainty, L3 Recognized ignorance.

Statistical uncertainty concerns uncertainty that can be described adequately in statistical terms. Scenario
uncertainty is when a range of possible alternatives is known, but it is not possible to describe the probability
distribution of any of them. And recognized ignorance is when ignoring the statistical properties and we are
unable to develop scenario representation. Walker’s level dimension has been used as a starting point for new
uncertainty classifications in different applications. Courtney (2003), Makridakis and Taleb (2009), Kwakkel
et al. (2010), Walker et al. (2010), and Walker et al. (2013)) identified five levels of uncertainty including
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TABLE 1.2: Uncertainty levels according to the economist risk analysis community

Uncertainty level Meaning
L1 Decision-maker admits that he is not absolutely certain,

but he is able to measure the degree of uncertainty explicitly
L2 Statistical uncertainty (Walker et al. (2003))
L3 Decision-maker is able to enumerate multiple alternatives

and is able to rank them in term of perceived likelihood.
L4 Scenario uncertainty (Walker et al. (2003)): Decision-maker is able to

enumerate multiple alternatives
and is not able to rank them in term of perceived likelihood.

L5 Recognized ignorance (Walker et al. (2003))

the levels identified by Walker ((See Table 1.2). Walker et al. (2013) referred to scenario uncertainty and
recognized ignorance as "deep uncertainty".

The levels of uncertainty appeared also in the economy. Dequech (2011) has proposed a typology of the
main concepts of uncertainty used by economists in which he has introduced indirectly the uncertainty levels.
Indeed, he has distinguished between weak and strong uncertainty. Under weak uncertainty, the decision-
maker can form a unique, additive, and fully reliable probability distribution. In contrast, strong uncertainty
is characterized by the absence of such a distribution. According to this, Dequech (2011) combines the
levels with the uncertainty types. He considered that both weak and strong uncertainties are composed of
two subcategories each. The first subcategory is the Keynesian risk while the second is Savage’s uncertainty.
The first subcategory of strong uncertainty is ambiguity while the second is fundamental uncertainty.

Likewise, in computational modeling and simulation, the levels of uncertainty are found basically in
manufacturing systems, a classification which is about known uncertainties, suspicions about the future
and complete unknowns has a large spread ((See McKay and Wiers (1999), Vieira et al. (2003), Aytug
et al. (2005a), Wojakowski and Warżołek (2014)). In this classification the known uncertainties are those
for which some information is available, the suspicions about the future arise from the intuition and the
experience of the human scheduler and unknowns are unpredictable events.

In the next section, we propose to initiate a unified taxonomy of uncertainty based on the reviewed
literature. For this purpose, we have to answer these questions:

- Is there a consensus about uncertainty types? And is there a link between uncertainty types and uncer-
tainty levels?

1.2 Toward a unified taxonomy of data uncertainty

1.2.1 The consensus about uncertainty types

In the timeline represented in Figure E.17, we represent the evolution of the uncertainty concept through the
different communities cited above. We consider three categories: the blue color represents the economists,
the purple color represents the decision-making community while the green color represents the scientific
communities (risk analysis, engineering, etc.), and orange for behavioral science. From the timeline, we
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remark a first consensus about two distinct types of uncertainty which are the aleatory uncertainty and the
ambiguity. The aleatory uncertainty is termed risk by the economists and decision-making community, prob-
abilistic, statistical or likelihood by the others. This reveals that aleatory uncertainty is of two distinct types
which are: the objective aleatory uncertainty under which an objective probability distribution exists, and
the subjective aleatory uncertainty under which only a subjective probability distribution can be constructed
based on expert’s belief. They are both characterized by the existence of an underlying probability distribu-
tion. The ambiguity definitions are often related to the multiplicity of alternatives without a preference to
anyone, the lack of knowledge under ambiguity is related to the probability of each alternative.

Indeed, We can also remark a second consensus from the different communities except the economists,
about the vagueness (fuzziness) as a distinct type. Ambiguity is then characterized by the lack of knowledge.
Consequently, ambiguity is an epistemic uncertainty.

The second consensus that completes the first one considers besides ambiguity another epistemic uncer-
tainty type which is vagueness (i.e. fuzziness). This type of uncertainty was defined by all the communities
except the economists. The definition of fuzziness is basically related to the imprecision. The lack of knowl-
edge under vagueness is related to the frontier that allows to make a sharp distinction.

The economist community identified another type which is the fundamental uncertainty defined as the
impossibility to build any scenario, the lack of knowledge under fundamental uncertainty is related to the
information that allow to construct a scenario because of a dynamic nature of the environment.

As a result, we can consider that uncertainty is of 5 types (objective risk, subjective risk, ambiguity,
vagueness and fundamental uncertainty) that can be classified according to two categories (aleatory uncer-
tainty and epistemic uncertainty) as given in Figure 1.2.

FIGURE 1.2: A unified taxonomy of uncertainty types

Uncertainty

Epistemic

Fundamental uncertaintyVaguenessAmbiguity

Aleatory

Subjective riskObjective risk

1.2.2 The link between uncertainty types and uncertainty levels

The level classification given by Dequech (2011) showed that the type and the level of uncertainty in econ-
omy are linked ((See Table 1.3).

The same observation can be made for the level classification, in Table 1.4, proposed by Walker et al.

(2003), Courtney (2003), Makridakis and Taleb (2009), Kwakkel et al. (2010), Walker et al. (2010), and
Walker et al. (2013). Indeed, when we analyze the classification that was given by Walker et al. (2003),
we deduce that the statistical uncertainty is linked to the objective risk, the scenario uncertainty is linked
to ambiguity and the recognized ignorance is associated to the fundamental uncertainty. In the improved
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TABLE 1.3: Uncertainty types and levels according to the economist philosophy

level Associated type

Weak Aleatory

Subjective risk
Strong Ambiguity

Fundamental uncertainty

TABLE 1.4: Uncertainty types and levels according to risk analysis community

Level Associated type
L1 Decision-makers is not absolutely certain, but he is

able to measure the degree of uncertainty explicitly
L2 Statistical uncertainty (Walker et al. (2003)) Aleatory (objective risk)
L3 Decision-maker enumerate multiple alternatives Aleatory (subjective risk)

rank them in term of perceived likelihood
L4 Scenario uncertainty (Walker et al. (2003)) Ambiguity
L5 Recognized ignorance (Walker et al. (2003)) Fundamental uncertainty

classification given by Walker et al. (2013), we can also link the fourth level of uncertainty with the subjective
risk.

Based on this, the level dimension and the type dimension are linked. These uncertainty types represent
different level of severity, consequently we consider that the data uncertainty type dimension is correlated to
what is called the level dimension.

1.2.3 A unified taxonomy of data uncertainty

In the modeling, optimization and simulation problems under uncertainty, the different uncertainties need to
be represented with different models and require divergent solving approaches. From a modeling point of
view, the type dimension is useful as it permits to choose an adequate representation of the uncertain data, and
from a decision-making point of view considering the level (severity) is necessary to choose an appropriate
approach to deal with the uncertainty. Therefore, we propose a taxonomy in which the uncertainties are
classified into types that are ranked according to levels.

FIGURE 1.3: Known uncertainty types

Uncertainty

Known

Epistemic

VaguenessAmbiguity
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We consider at first that the spectrum of data knowledge can be divided into three domains: a) certain
data, b) known uncertainties, c) unknowns.

Data is certain when the knowledge about it is complete. Known uncertainties are uncertain data that
experts/modelers are able to describe somehow by using historical information or by relying on their belief
degree. And the unknowns are uncertainties that cannot be described, in this state, values that are not at
all imagined could be taken by the uncertain data because unimaginable events may occur (for example in
situations of crisis or natural disaster).

Based on these definitions, the aleatory uncertainty, the ambiguity and the vagueness belong to known
uncertainties(Figure 1.3) while fundamental uncertainty belongs to unknowns. Consequently, fundamental
uncertainty represents the highest level of uncertainty that we denote L5 while the known uncertainties can
be classified according to four levels:

• L1 uncertainty corresponds to objective risk: probability distribution is available.

• L2 uncertainty corresponds to subjective risk: multiple alternatives with attached probabilities.

• L3 uncertainty corresponds to ambiguity: multiple alternatives without attached probabilities.

• L4 uncertainty to vagueness: the boundaries between alternatives are imprecise.

The progressive transition from certainty (that we classify at L0) to unknowns (that we classify at L5)
can be described through a diagrammatic representation in which the types of uncertainty are ranked as given
in Figure 1.4.

FIGURE 1.4: The progressive transition from certainty to unknowns

In the next section, we focus on the modeling of data uncertainties.
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1.3 Uncertainty representations

The literature offers a variety of models to represent uncertainty types. These models can be classified
into two distinct categories: formal models, and practical models. Formal representations gather all the
mathematical theories that require effort and time for development, they are used in particular in theoreti-
cal disciplines and in applications that relate to economy, science and engineering (e.g. Dubois and Prade
(2009), Wierman (2010)). Practical representations gather all the models that provide satisfactory represen-
tation of the uncertain data (Halpern (2005)), they are used in particular in risk analysis, decision-making
and management sciences, and computational and simulation community (e.g. planning and scheduling,
transportation and logistics, etc.).

Each of these models is developed to represent a particular type of uncertainty. In this section, we present
a brief survey of the formal and practical models of uncertainty with regard to their potential to represent
each uncertainty type.

1.3.1 Formal uncertainty representations

The study of probability dates back to Pascal and Fermat in the 17th century, but the complete axiomatic
foundation of probability theory was given by Kolmogorov (1933). The theory of probability is adequate to
represent probabilistic uncertainty. But, the probability has two interpretations. The first interpretation of
probability is the frequentist interpretation called objective probability, where the probability is the limit on
the frequency of the event when the experiment is repeated many times (Bernouilli’s law of large numbers).
The second interpretation of the probability is when the notion of repeatability of an experiment is excluded.
The probability is then a subjective value quantifying the belief that the expert gives to the occurrence of an
event (Ramsey (1931), De Finetti (1937), Savage (1954)).

Dempster-Shafer theory of evidence (Dempster (1967) and Shafer et al. (1976)), possibility theory has
been identified as attractive alternatives to model belief when the probability distribution is not known. These
theories are primarily adequate to model epistemic uncertainty. The common point between these theories is
to present the uncertainty by a family of probability distributions and not by a single probability distribution
since this unique probability distribution is hard to identify. Thus, the idea is to build from the available data,
two functions as an envelope containing the unknown distribution. The difference between the two functions
reflects the uncertainty.

The theory of evidence is considered as a generalization of the theory of subjective probabilities in that
it is based on less restrictive assumptions on the measures of belief, with the idea to use the only available
information to reason. It is fundamentally based on the use of the mass function (or mass distribution) and
two non-additive measures, belief and plausibility functions. The belief function takes into account all the
available evidence. During the same period, Zadeh (1965) has introduced the theory of possibilities based on
fuzzy set theory. Fuzzy set theory provides using necessity and possibility measures to express belief degree.
An expert may believe that a given parameter is within a certain range and may even have an intuitive feel
for the best value within that range.
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For an extensive review on formal representations of uncertainty, the reader is referred to Dubois and
Prade (2009).

1.3.2 Practical uncertainty representations

Almost all practical representations are based on scenario model. Rockafellar and Wets (1991) considered
scenario model as a common approach to model uncertainty in practice:" The uncertainty about parameters
of the system is modeled by a small number of versions of sub-problems derived from an underlying op-
timization problem. These correspond to different scenarios a word that is used to suggest some kind of
limited representation of information on the uncertain elements or how such information may evolve." The
major motivation to choose the models based on scenarios is to get relatively a modest number of constructed
representative instances so that the equivalent problem can be computationally tractable.

Kouvelis and Yu (1997) claimed that scenario model is one of the important tools in structuring data un-
certainty when multiple future alternatives are potentially realizable without any attached probabilities. The
scenario model requires the construction of a set of instances or data sets containing numerical values that
will represent several contrasting futures (economic, technological and business possibilities of tomorrow).

Beside the purpose of modeling future alternatives, scenario model is also suitable to model objective risk
(e.g. Nowak and Tomasgard (2007), Schütz et al. (2009)). Indeed, for the sake of simplicity, a discretization
of probability distribution can lead to the construction of discrete scenarios with attached probabilities. For
example, if there are three random variables with six outcomes, and the random variables are independent,
we can build 6x6x6=864 scenarios with attached probabilities. To reduce the scenario tree to a manageable
size, Monte Carlo simulation is commonly used. In some other situations, especially when dealing with
subjective risk, it is possible to construct a tree of scenarios by eliciting expert’s opinion about the future
alternatives and their attached probabilities. The interval representation is also widely used in practice. It is
better known as bounded uncertainty representation (Ben-Tal and Nemirovski (2000); Lin et al. (2004)). The
interval represents the range of all possible realizations of the uncertain data. This model is useful when only
the upper and lower bounds can be determined with certainty and the decision-maker is not able to choose
specific scenarios. It is a continuous set representation.

The polyhedral sets based representations also represent a practical tool to model uncertainty. The un-
certain data vary within a specific set. For instance, d0 is the nominal value of the uncertain data and Z is
the user specified primitive uncertainty set:

d = d0 +
L∑
l=1

ζldl : ζ ∈ Z (1.1)

The geometry of the convex set Z leads to different uncertainty sets as box set, ellipsoidal set, polyhedral
set, etc. ((See Ben-Tal et al. (2009)).

The main objective of these representations is to bring back the uncertain problem into a deterministic
one. The focus on polyhedral set representations is mainly related to the tractability of the mathematical
models contaminated with the uncertainty of data. They do not increase the complexity of the problem i.e.
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for some of the most important convex optimization problems (linear optimization particularly). For more
discussions on the choice of the uncertainty sets, the reader is referred to Li and Floudas (2014) and Gorissen
et al. (2015).

1.3.3 Uncertainty representations and types relationship matrix

From the reviewed literature, we notice that each type of uncertainty (aleatory, ambiguity and vagueness)
can be represented adequately with at least one formal and one practical representations (Table 1.5).

TABLE 1.5: Uncertainty representations and uncertainty types relationship matrix

Objective risk Subjective risk Ambiguity Vagueness
Objective Probability x
Subjective Probability x
Possibility theory x
Evidence theory x
Scenarios x
Weighted scenarios x x
Intervals x
Fuzzy intervals x
Polyhedral sets x x x

Objective probability can be used to describe objective risk. For instance, it is frequent to consider that
the demand uncertainty is random and to represent its probability distribution (e.g. Liao and Rittscher (2007),
You et al. (2011),Wang et al. (2015), Ji et al. (2016)).

The subjective probability, called also Bayesian probability was introduced to model subjective risk
(Savage’s uncertainty). For example, when managers have only some partial information about the demand
distribution in addition to demand observations, they cannot consider the demand as a random variable
(e.g. Saghafian and Tomlin (2016)) but, they could assign subjective probabilities to the demand based on
their beliefs. Nevertheless, the fact that additive axiom is still considered even under subjective probabilities
makes this theory not really adequate for modeling belief degree (Colyvan (2008), Liu (2015)). In accordance
with the axiom of additivity, if we believe that demand will increase with a probability equal to 60%, we
should automatically attribute a probability equal to 40% to the fact that demand will decrease even if we do
not have any belief about demand decrease. When we use belief functions based on the evidence, the 60%

reflects the level of belief that demand will increase, but no belief that demand will decrease is expressed thus
the belief that ’demand will decrease’ is equal to 0% while 40% is undecided, it may pertain to ’the demand
will increase’ or to ’the demand will decrease’ depending on the additional evidence. Based on the belief,
the plausibility that demand will increase is 100% (60% level of belief comes from the direct evidence and
40% level of belief comes from the ambiguity), and the plausibility that demand will decrease is 40%. Thus,
the belief function measure is more conservative than the one obtained using the probabilistic framework.
Accordingly, the theory of evidence is suitable to model ambiguity.

Scenario model is suitable to model ambiguity. Under ambiguity, the uncertain demand can be repre-
sented by a vector of potential demands: d ∈ {d1, d2, ..., dn}. Under objective or subjective risk, the aleatory
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demand can be represented by a vector of potential demand scenarios with attached probabilities pi: d ∈
{(d1, p1), (d2, p1), ..., (dn, pn)}. These probabilities represent the weights of scenarios. Interval model can
be considered as a scenario representation under which the number of scenarios is infinite. Therefore, we can
consider that interval model can also be suitable to model ambiguity but with a continuous set. For example,
if an expert can express its uncertainty as "demand will not be more than d and not less than d but I do not
know exactly which value it will take", the most appropriate model is the interval model: d ∈ [d, d].

The theory of possibility provides the appropriate framework to model vagueness (i.e. fuzziness). For
instance, an expert may believe that a given parameter is within a certain range and may even have an
intuitive feel for the best value within that range. For example, if demand can be vaguely expressed in
different linguistic terms like ’demand is about dm but definitely not less than dl and not greater than du’.
Then, the demand is a fuzzy variable with triangular possibility distribution where dm is the most possible
value that definitely belongs to the set of available values. Another example is when the decision maker
expresses the vagueness as ’demand is much larger than dl. The reader is referred to Petrovic et al. (1999)
for more insight on the use of fuzzy sets to model demand uncertainty.

The polyhedral sets based representations are appropriate models to represent ambiguity (Ben-Tal et al.

(2009), Bertsimas and Sim (2003)). Also, in the case of aleatory uncertainty, some authors claimed that there
are probabilistic arguments allowing to uncertainty polyhedral sets to represent the random uncertainty (e.g.

Bertsimas and Brown (2009); Bandi and Bertsimas (2012)).

1.4 Optimization under uncertainty: Approaches and models

Optimization is a central issue to a number of disciplines as production and logistics, engineering design,
policy-making and many others. We speak about optimization under uncertainty when we have a problem
involving data uncertainty with one (or more) objective(s) to optimize. The basic idea of optimization under
uncertainty is to integrate the available information about the uncertain data into the optimization prob-
lem formulation in order to compute solutions that withstand the uncertainty with a performance guarantee.
The literature distinguishes mainly two optimization approaches under uncertainty: stochastic optimiza-
tion where uncertainty data is assumed to follow a known probability distribution and robust optimization
approach where uncertain data has an unknown probability distribution ((See Kouvelis and Yu (1997)). Be-
sides, Sahinidis (2004) considered fuzzy optimization as a proactive optimization approach.

1.4.1 Stochastic optimization approach and models

Stochastic optimization approach assumes that the uncertainty has a probabilistic description. In the stochas-
tic optimization, three modeling variants are studied: the stochastic recourse models without control, the
controlled stochastic recourse models and the chance constrained models. Recourse models often apply to
situations in which decisions are made repeatedly in essentially the same circumstances, and the goal is to
compute a solution that will perform well on average. The philosophy behind recourse stochastic models
is to take some actions in the first stage of optimization. Then, when a random event occurs and affects
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the outcome of the first-stage decision, recourse decisions can be made in the following stages as correc-
tive actions to compensate any bad effects that might have been experienced as a result of the first-stage
decision. Stochastic models with recourse are widely used in multi-stage decision problems. The most ap-
plied and studied multi-stage stochastic recourse models are the two-stage linear programs. The treatment
of these models and their resolution methods can be found in (Birge and Louveaux (2011); Van Slyke and
Wets (1969); Ruszczynski and Shapiro (2003)). Sahinidis (2004) and Mulvey et al. (1995) considered that
the two stage stochastic optimization model does not account for the variability of the second stage costs
and might lead to solutions where the actual second-stage costs are unacceptably high. Indeed, a decision
is based on a first-stage and expected second-stage costs with the assumption that the decision-maker is
risk-neutral. To capture the notion of risk in stochastic optimization, Mulvey et al. (1995) integrate goal
optimization formulations with a scenario-based description of problem data. Their robust stochastic opti-
mization model formalizes a way to measure the trade-off between feasibility and optimality and enforce
a restricted recourse. Mulvey et al. (1995) proposed the minimization of the variance of the second stage
decision variables. But, the variance is a symmetric risk measure penalizing costs, both above and below
the expected recourse cost equally. Besides, it made the problem non linear. Therefore, Vladimirou and
Zenios (1997) restricted the dispersion of the second-stage solutions to a prescribed level ε while Ahmed and
Sahinidis (1998) introduced an index that is asymmetric, which measures only costs that are higher than the
expected one and insures the linearity of the problem. Kuhn et al. (2011) and Georghiou et al. (2015) also
proposed special restricted recourse to multi-stage stochastic optimization problems. In chance constrained
models, the focus is put on the reliability of the constraints which is the ability to meet feasibility in an un-
certain environment. This reliability is expressed as a minimum requirement on the probability of satisfying
constraints. There is often uncertainty regarding the constraint matrix, and the system is required to satisfy
the corresponding constraint with a fixed probability ((See Charnes and Cooper (1959), Kall (1976)).

1.4.2 Robust optimization approach and models

In the robust optimization approach, the uncertainty model is not stochastic, but rather deterministic and
set-based. The objective of robust models is to provide solutions that are feasible for all the realizations
of the uncertain data, and that perform well in the worse-case. They use min-max and min-max regret
objectives that were originally defined in the strategic decision-making literature by Gupta and Rosenhead
(1968),Rosenhead et al. (1972a), and introduced later in operations research problems by Rosenblatt and
Lee (1987). But, the issue of robustness can be historically traced back to robust control concepts developed
in the early 30s by Bode and others, in the context of feedback amplifiers. The robust control policy is
static rather than adapting to measurements of variations, the controller is designed to work assuming that
variables are uncertain but bounded. Questions such as the stability margin, which is the amount of feedback
gain required to destabilize a controlled system, led naturally to a "worst-case" point of view, in which bad
parameter values are too dangerous to be allowed, even with low probability.

The robust optimization models date back to Soyster (1973). But, the large part of robust optimiza-
tion literature has been developed since the publication of the works of Mulvey et al. (1995); Kouvelis and
Yu (1997); Ben-Tal and Nemirovski (1998); El Ghaoui et al. (1998) in the late 1990’s. Those works have
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developed many min-max and min-max regret models along with tractable solving techniques for both prac-
tical and polyhedral set uncertainty representations, especially in linear cases. This has made robust mod-
els computationally more attractive than stochastic models ((See Ben-Tal et al. (2009),Bertsimas and Sim
(2004),Averbakh (2006)). The basic robust optimization approach paradigm was based on three assumptions
formulated in Ben-Tal et al. (2009). First, all variables should have values as a result of solving the problem
before the actual data reveals itself. Secondly, the decision maker is fully responsible for the consequences
of the decisions to be made when, and only when, the actual data are within the pre-specified uncertainty
set. And finally, the constraints of the uncertain problem in question are hard i.e., the decision maker cannot
tolerate violations of constraints when the data are in the pre-specified uncertainty set. Robust models deal
with hard constraints that cannot be relaxed while stochastic models deal with soft constraints since we can
tolerate the infeasibility of some constraints in the first optimization stage ((See Mulvey et al. (1995); Kou-
velis and Yu (1997); Ben-Tal et al. (2009); Bertsimas et al. (2011)). But, in the recent development of robust
optimization models, the multi-stages notion has been introduced to robust optimization. Therefore, the first
assumption has been relaxed: the first-stage decisions are made before the uncertainty is revealed and the
second stage decisions can be adjusted later according to the actual data. Robust optimization was extended
to a multi-stage setting and to random data sets, where the recourse decisions are adapted to the realization of
the random data as they unfold in stages. Nemirovski et al. (2009) proposed to restrict the recourse decisions
to be affine dependent on the random parameters. This approach could perform reasonably well and even
achieve optimality ((See for example, Bertsimas et al. (2010) and Iancu and Trichakis (2013)). The robust
discrete optimization, introduced by Mulvey et al. (1995); Kouvelis and Yu (1997), is a framework of robust
optimization under which the uncertainty representation is scenario based. It has been applied as a way of
self-protection in many industrial applications against undesirable impacts due to uncertain data. Decisions
made according to min-max, min-max regret are the most used whenever the uncertain data are modeled
using discrete scenarios.

1.4.3 Fuzzy optimization approach and models

Fuzzy optimization approach dates back to the seminal work by Bellman and Zadeh (1970) who founded
the basis of decision-making in a fuzzy environment. The spread of fuzzy optimization models dates back
to Zimmermann (1978, 2010). Fuzzy optimization models are useful when the problems under considera-
tion include vaguely defined relationships, or human evaluations Kacprzyk and Orlovski (2013). In these
models, uncertain data are considered as fuzzy numbers and constraints are treated as fuzzy sets. The degree
of satisfaction of a constraint is defined as the membership function of the constraint and some constraint
violation is allowed. Objective functions in fuzzy optimization are treated as constraints. The membership
function is used to represent the degree of satisfaction of constraints, the decision-maker expectations about
the objective function level, and the range of uncertainty of data. Flexible optimization models and possi-
bilistic optimization models are two variants of fuzzy optimization. The former considers uncertainty only
in the constraint coefficients while the second recognizes uncertainties in the objective function coefficients
as well as in constraint coefficients. For a comprehensive review on fuzzy optimization, the reader is referred
to Sahinidis (2004) and Lodwick and Untiedt (2010).
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In the next section we propose a general methodology for optimization under data uncertainty. In this
methodology, we introduce a global reasoning under data uncertainty.

1.5 A general framework for optimization under data uncertainty

The general framework for optimization under data uncertainty can be described through five major steps
((See Figure 1.6):

Step 1 (COLLECT AND ANALYZE) aims to collect and analyze the available knowledge about the
uncertain data based on existing databases and expert opinions.

Step 2 (TYPIFY) aims to the identification of the uncertainty type and level dealt with based on the
analysis of the available knowledge about the uncertain data. And, Step 3 (REPRESENT UNCERTAINTY)
aims to represent the uncertain data based on the analysis and typification. In steps 2 and 3, we can be
aided by the unified taxonomy given in Figure 1.3 and the adequacy matrix between uncertainty types and
uncertainty representations provided in Table 1.5.

FIGURE 1.5: Optimization approaches under data uncertainty

STEP 4 (SELECT APPROACH) aims, in parallel to step 3, to select an appropriate optimization ap-
proach based on the data uncertainty analysis and the environment requirements. This choice can be guided
by the uncertainty level classification. According to the level of uncertainty, we can distinguish:

• Deterministic optimization approach when one considers that the data is certain (L0)

• Sensitivity analysis when we are certain but to go further we analyse the sensitivity of the deterministic
solution under small variations of data (complementary to the deterministic approach under L0).

• Proactive optimization approaches where we anticipate known uncertainties (Stochastic for L1 and
L2, Robust for L3 and Fuzzy for L4).
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• And online optimization approaches under unknowns, here the decision is constructed in a dynamic
way as the unknown data become known (under L5).

Step 5 (VERIFY) aims to verify of the adequacy between the optimization approach and the uncertainty
type-level ((See Figure 1.5). And finally, Step 6 (MODEL AND SOLVE), in this step the choice of the
optimization model is related to two components: the objective and the uncertainty type (objective risk,
subjective risk, ambiguity, fuzziness). The review of the optimization approaches and models in Section1.4
reveals 5 distinct objectives. Under these objectives the decision- maker aims to provide:

- A solution that insures a reliability over a given threshold or,
- A solution that performs well on average, without control of the corrective actions or,
- A solution that performs well on average, with control of the corrective actions or,
- A solution that performs well in the worst-case or,
- A solution to adapt in case conditions change or,
- A solution that satisfies fuzzy constraints.
Therefore, the existing optimization models can be classified as follows:

• Chance constrained models to deal with risk whenever the objective is to provide a reliable solution.

• Stochastic recourse models to deal with the aleatory uncertainty whenever the objective is to come up
with a solution that perform well in average without any control of the corrective actions.

• Stochastic models with restricted recourse to deal with risk whenever the objective is to come up with
a solution that perform well on average with control of the corrective actions.

• Robust stochastic models to deal with risk whenever the objective is to come up with a solution that
perform well in the worst-case.

• Robust static models to deal with ambiguity whenever the objective is to come up with a solution that
perform well in the worst-case without any changes.

• Robust adjustable models to deal with ambiguity whenever the objective is to come up with a solution
that perform well in the worst-case and prepare to adapt in case conditions change.

• Fuzzy models to deal with vagueness and to come up with a solution that satisfies fuzzy (imprecise)
constraints.

For each model or formulation, there exists prescribed rules for resolution that are developed in the
literature.

The last step is STEP 7 (ANALYZE), it is common to all optimization problems and it aims to analyze
the results, to test their applicability.
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FIGURE 1.6: General framework for optimization under data uncertainty
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Conclusion

In this chapter, we reviewed some conceptual classifications of uncertainty based on two dimensions: the type
and the level of uncertainty. We showed through the discussed taxonomies that a consensus about uncertainty
types exists between different communities. Besides, we showed that the type and the level dimensions are
linked. Therefore, we proposed a unified taxonomy of uncertainty according to a type-level dimension. In
this taxonomy we distinguished four uncertainty types which are: the objective risk, the subjective risk, the
ambiguity and the vagueness. Each uncertainty type reflects an uncertainty level. Besides, we reviewed the
models developed by the mathematical community in order to represent the different uncertainty types and
we classify these models according to their potential to represent the uncertainty types. Then, we addressed
the mathematical approaches and models to formulate and solve a decision problem under uncertainty. We
identified the main objectives in optimization under uncertainty and proposed to classify the optimization
models under uncertainty, according to these objectives and to the uncertainty types. The organization of
these informations built the general methodology for optimization under uncertainty.

In the next chapter, we will focus on scheduling under uncertainty. We aim to review how uncertainty is
considered in scheduling problems, what are the approaches and the objectives of scheduling under uncer-
tainty.
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Chapter 2

Robustness and Stability in scheduling
under uncertainty

Abstract: The goal of this chapter is to provide an overview of the state of the art in scheduling under
uncertainty. We present the general form of the scheduling problem and define its fundamental notions. We
discuss the limitations of the classical scheduling approach under uncertainty and disruptions. Furthermore,
we review the representations of the uncertainties or disruptions faced in scheduling and we survey the
existing approaches to deal with them. Then, we focus on robustness and stability issues in scheduling under
uncertainty. We survey the existing contributions in robust scheduling, and scheduling for stability purpose.
In light of this, we show that there exist a lot of opportunities for future works in this area.
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Introduction

Scheduling is an optimization problem that aims to allocate resources to jobs over time in order to optimize
one or more objectives under given constraints (Pinedo (2012)). A large variety of algorithms -exact or
approximate- are designed to solve scheduling problems, but the vast majority of these algorithms is based on
the assumption of a predictable environment where information about data are complete and are not subject
to change. They generate a predictive schedule, assuming a deterministic, certain and static environment.
However, manufacturing environments are subject to numerous sources of uncertainty as demand and cost
fluctuations, process variability, resources reliability/availability, etc.. Under these uncertainties, an optimal
predictive schedule with respect to the deterministic model and the initial data will turn to be suboptimal or
infeasible during the execution. Therefore, an increasing attention was paid to scheduling problems under
uncertainty in both academic and industrial research areas. The objective is to provide robust solutions that
schedule jobs in such a way as to use the resources efficiently under uncertain processing times.

In this chapter, we review the existing approaches to deal with uncertainty in scheduling, and we focus
on the proactive scheduling approach. We survey approaches and models to provide the robustness and the
stability.

2.1 Scheduling Generalities

2.1.1 General form of the scheduling problem

Scheduling is an optimization problem that aims to allocate and sequence jobs on resources over time in
order to optimize one or more objectives under given constraints. In its most general form, the scheduling
problem is defined as follows:

Given
-a set J of n jobs that must be executed,
-a set M of m resources to process the activities,
-a set of constraints which must be satisfied, and
-a set of objectives to judge a schedule’s performance,

what is the best way to assign and sequence the jobs on the resources over time such that all of the
constraints are satisfied and the best performance is reached?

A job j ∈ J consists of a number of tasks. If a job j is composed of only one task, then we denote pj
the processing requirement of j. Furthermore, a job may have a release date rj on which the job became
available for processing, a due date dj which is the date in which the job is promised to be finished, a starting
time sj which is the effective date in which a job starts its processing and a completion time cj , which is the
date at which the processing of the job is finished. If the different jobs have priorities, a weight wj can be
associated with each job to reflect the priority. Any job may require a single resource or a set of resources.

A resource i ∈ M is an equipment, an operator or a financial capital. A resource i may be renewable
or non-renewable. Renewable resources are available at each period without being depleted (e.g. labor and
many types of equipment). Non-renewable resources are depleted as they are used (e.g. capital and raw
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materials). The resource usage may vary over the duration of the job depending on the characteristics of
jobs. Some jobs, once begun, may not be interrupted until completion. Alternatively, some jobs may be
interrupted at any time, possibly with some corresponding cost. Job and resource characteristics will define
the constraints of the scheduling problem. Thus, constraints are often task-based and/or resource-based.

The constraints define the feasibility of a schedule while the objectives define the optimality of a sched-
ule. Objectives should be optimized while constraints must be satisfied. The objectives often relate to per-
formance measures called criteria. The criteria that are commonly used are related to time, resource usage,
or to costs induced by the schedule.

A feasible schedule satisfies all of the constraints. An optimal schedule not only satisfies all of the
constraints, but also has the best performance measure over all the feasible schedules. Schedules may be
represented by Gantt charts. In scheduling, Gantt charts are often machine-oriented (Figure 2.1).

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M1 J1 J2 J3

M2 J4

M3 J2 J4

FIGURE 2.1: A machine oriented Gantt chart

2.1.2 Graham notation and problem classification under certainty

The theory of scheduling is characterized by an unlimited number of problems (see e.g. Błażewicz et al.

(2012), Pinedo (2012)). To classify deterministic scheduling problems under certainty, Graham et al. (1979)
proposed a three-field notation α|β|γ where α describes the machine environment, β describes the job char-
acteristics and γ describes the optimality criteria. This classification is widely used in the literature.

Machine environment: The machine environment is characterized by the field α which is composed of
two parameters α1 and α2. α1 describes the machine environment, it can be ∅, P,Q,R, F, J,O.

If α1 = ∅, then all jobs are processed on a single machine.
If α1 ∈ {P,Q,R}, then we have parallel machines, i.e. , each job can be processed on each of the

machines. If α1 = P , then the parallel machines are identical parallel machines. Thus the processing time
of job j on machine i is the same for all machines pij = pj . If α1 = Q, then the parallel machines are
uniform parallel machines, i.e. pij = pj/vi where vi is the speed of machine i. Finally, if α1 = R, then the
parallel machines are unrelated parallel machines, i.e. pij = pj/vij where vij is job dependent speeds of
machine i. Parallel machine problems are considered as a generalization of single machine problems.

If α1 ∈ {F, J,O}, then we have multi-task models. Non-renewable resources are depleted as they are
used (e.g. capital and raw materials). When α1 = F , we deal with a flow shop, it means that the order of
execution on different machines is the same for all jobs. We determine a job shop problem by α1 = J , in
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this configuration each job has its own order. Finally, α1 = O is used for open shop problem where the order
of execution on the machines is totally free.

α2 denotes the number of machines if it is a positive integer. If α2 = m then m is an arbitrary but fixed
number. Whereas, if the field α2 is empty, the number of machines is arbitrary.

Job characteristics The field β describes the job and machine characteristics, it often describes the
constraints of the scheduling problem. β may be composed of many sub-fields, for instance:

If β1 = Split, the jobs can be split into independent tasks, and the task can be processed with allowed
parallelism. If β1 = pmtn: the processing of a job can be interrupted and later resumed (on the same or on
another machine). A job may be interrupted several times. But, the parts of the same job cannot be processed
in parallel.

If β2 = prec, then precedence constraints exist between jobs. Certain jobs must be completed before
another job can be started.

If β3 = ri, then release date may be specified for each job.
Similarly, if β4 = di, then a deadline di is imposed for each job. When the completion time of a job

exceeds its due date, the job is late.
We notice that when there are no constraints related to a sub-field βk, this sub-field simply does not

appear in the notation.
Optimality criteria The field γ describes the optimality criteria. There exist essentially two types of

cost functions (criteria), γ = fmax called bottleneck objectives and γ =
∑

j fi called sum objectives. The
most common criteria used through literature are :

• the makespan maxj cj which is the maximal completion time over jobs, γ is denoted Cmax,

• the total flow time where γ =
∑

j cj and the weighted total flow time written as γ =
∑

j wjcj .

• and the criteria depending on due dates such as the maximal tardiness Tmax = maxjmax{0, cj−dj},
and the maximal lateness Lmax = maxj{cj − dj}.

In these cases, we write respectively, γ = Tmax and γ = Lmax. The total number of late jobs is also
widely considered, in this case:

Uj =

1 if j is late

0 otherwise

and γ =
∑

j Uj

Examples: To illustrate the three field notation of Graham, we present some examples.
- 1||

∑
cj : total flow time minimization on a single machine, and 1||

∑
wjcj weighted total flow time

minimization on a single machine
- F2||Cmax: makespan minimization in 2-machine flow shop.
- Rm|Split|Cmax: makespan minimization on m unrelated parallel machines with splitting, and
Rm|pmtn|Cmax: makespan minimization on m unrelated parallel machines with preemptive jobs.
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2.1.3 The limits of classical scheduling approach under uncertainty

The classical approach in scheduling relies on one typical instance called the nominal instance, under which
the problem data are assumed to be completely known in advance (during the generation of the schedule) and
to be constant (during the execution of the schedule). The schedule performance is optimized and evaluated
only with respect to the nominal instance. The resulting schedule is called the predictive schedule. Unfortu-
nately, scheduling is recognized to be a complex and dynamic activity in which job processing times can take
longer or shorter than forecast, release dates and due dates may change, jobs may have to be inserted or can-
celed. Besides, the resources may become unavailable due to unforeseen events as breakdowns, accidents,
operator absenteeism, etc.. Assuming a certain data and a static environment makes the classical scheduling
approach inadequate in modeling and solving scheduling problems under uncertainties or disruptions. As it
was emphasized in several publications, ignoring uncertainties and disruptions can lead to:

• infeasible schedules when the uncertainties or the disruptions modify the constraints of the problem,
thus the computed schedule no longer respect the constraints of the real problem,

• sub-optimal schedules when the computed schedule is still feasible, but its performance is affected,

• and unstable schedules when the frequent adjustments to restore the schedule feasibility highly modify
the assignment and the sequence which leads to many re-configurations and adjustment efforts. Vieira
et al. (2003) has pointed out that these aspects are known as nervousness syndromes.

Therefore, practically speaking, computing an optimal schedule is often less important than protecting
the schedule from uncertainties and disruptions. For these reasons, the issue of scheduling under uncertainty
have received a lot of attention from both academic and industrial communities.

In the next section, we focus on scheduling under data uncertainty. We survey the uncertainty types and
disruptions besides their representations. Then, we review the scheduling approaches under uncertainties
and disruptions. Finally, we focus on the different objectives used through literature to protect a schedule
from the negative effects of uncertainties and disruptions.

2.2 Scheduling under data uncertainties and disruptions

2.2.1 Uncertainties and disruptions in scheduling

Uncertainties concern job data whose exact values cannot be predetermined with accuracy. The most faced
are: processing time uncertainties (e.g. Daniels and Kouvelis (1995a), Kouvelis et al. (2000), Petrovic
et al. (2008), Rahmani and Heydari (2014)), due date uncertainties (e.g. Aissi et al. (2011), Kasperski and
Zieliński (2016), Ebrahimi et al. (2014)), and release date uncertainties (Lai and Sotskov (1999), etc.), job
weight uncertainties (e.g. Pereira (2016)). Disruptions are discrete unforeseen events that occur and change
the structure of the ongoing schedule, they concern both resources and jobs. The disruptions that are the
most faced in production environments are machine breakdowns (e.g. Xiong et al. (2013), Shi et al. (2014),
Wang et al. (2015) Ahmadi et al. (2016)), new job arrivals (Malve and Uzsoy (2007), Yang and Geunes
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(2008), Hosseini and Tavakkoli-Moghaddam (2013), Rahmani and Heydari (2014)), job cancellations (e.g.

Abumaizar and Svestka (1997), Jain and Elmaraghy (1997), Wang and Truong (2015), Rao and Janardhana
(2016)) and rush orders (e.g. Jain and Elmaraghy (1997)). In the scheduling community, it makes sense to
distinguish disruptions from uncertainty, but for modelers, the treatment of disruptions is quite similar to the
treatment of uncertainties (we will show later that disruptions are considered as aleatory uncertainties in the
modeling step).

The uncertainties and disruptions in scheduling could be divided into known uncertainties and unknown
one (see the classification given in chapter 1). Known uncertainties and disruptions can be measured and
represented somehow during the schedule generation while unknowns are revealed progressively during the
schedule execution. Based on the level of knowledge, we can classify scheduling problems into three cat-
egories: scheduling under certain data, scheduling under known uncertainties or known disruptions, and
scheduling under unknowns. Known uncertainties and disruptions are often observed in static environments
while unknowns are often observed in dynamic environments. Processing times, due dates and release dates,
are often treated as known uncertainties. And machine breakdowns are often treated as known disruptions
(see for instance Xiong et al. (2013), Shi et al. (2014), Wang et al. (2015)). In contrary, new job arrivals
and job cancellations are often treated as unknowns (e.g. Zhou et al. (2014) and Pei et al. (2016) assumed
dynamic job arrivals as dynamic). Nevertheless, this classification can be different depending on the context
and the application. For example, processing times could be considered as unknowns in a dynamic envi-
ronment where their values are revealed progressively during the schedule execution and decision-makers
do not have any knowledge to represent their values prior to the execution (see for instance Chiang et al.

(2010)).
In scheduling problems, the practical representation have more spread than the formal representations.

Under aleatory uncertainty/disruption, it is usual to construct scenarios with attached probabilities in order
to represent the random parameters. And when these probabilities are unknown i.e. under ambiguity, the
discrete scenario and interval representations are widely used to model the uncertain parameters. Moreover,
to describe fuzzy parameters, it is frequent to use fuzzy intervals.

2.2.2 Scheduling approaches under uncertainties and disruptions

To deal with uncertainties and disruptions in scheduling, there are basically two approaches: proactive
scheduling approach and reactive scheduling approach (see Beck and Davenport (2002),Herroelen and Leus
(2004b) Herroelen and Leus (2005), Billaut et al. (2008), Ouelhadj and Petrovic (2009)).

Proactive approach algorithms anticipate the uncertainties and the disruptions in order to generate solu-
tions whose performances (or structures) are insensitive to the potential realization of data (see the illustration
in Figure 2.2), while reactive approach algorithms respond once the uncertainties are revealed (or the dis-
ruptions occur) in order to build a new schedule or to adjust an existing schedule. In completely reactive
scheduling, the scheduling will generate a response to the uncertainty or the disruptions in real time (see
the illustration in Figure 2.3). But, the totally reactive scheduling in real time can also result in greater cost
and lower performance as explained in He and Sun (2013). The proactive approach is extensively studied
since it allows the anticipation of the uncertainty and the generation of baseline schedules that does not need
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FIGURE 2.2: Purely proactive scheduling approach

FIGURE 2.3: Purely reactive scheduling approach

to be repaired to meet the realization of uncertain data. This baseline schedule is of crucial importance for
decision visibility in an uncertain environment since it gives a starting point for communication and co-
ordination between the production, suppliers and customers. Many authors have outlined the purposes of
scheduling beyond that of job-resource allocation and sequencing. Indeed, a schedule enables a better co-
ordination in order to increase the productivity and reduce the costs. It can identify resource conflicts and
ensure the availability of the required raw materials. It also identifies time periods of preventive maintenance
and verifies the coordination with deliveries. A schedule is also a starting point for communication and co-
ordination with external entities in the company’s outbound (see Vieira et al. (2003) Aytug et al. (2005a)).
The reader is referred to Mehta and Uzsoy (1998), Herroelen and Leus (2005), and Aytug et al. (2005b) for
extended discussion of the proactive scheduling approach advantages. The proactive approach is suitable to
deal with known uncertainties and known disruptions as explained in Chapter 1. Based on the uncertainty
or disruption representations, we can distinguish: stochastic scheduling under probabilistic representations
of uncertain data (Pinedo (2012)), robust scheduling under set representations of uncertain data (Kouvelis
and Yu (1997)), and fuzzy scheduling under fuzzy representation of uncertain data (Dubois et al. (2003)).
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According to Moukrim et al. (2003), an algorithm is proactive (off-line) if the schedule is determined before
the execution begins.

In the reactive scheduling approach, uncertainties and disruptions are not anticipated because they are
often unknowns due to the dynamic of the environment. Consequently, the schedule is built in a reactive way
during the execution. Reactive scheduling is also called on-line scheduling. According to Moukrim et al.

(2003), an algorithm is reactive (on-line) if the schedule is built during the execution.

FIGURE 2.4: Predictive-reactive scheduling approach

FIGURE 2.5: Proactive-reactive scheduling approach

Decision-makers consider that a baseline schedule should coordinate activities to increase the produc-
tivity and reduce the operating costs. In dynamic environments, scheduling algorithms should also react
quickly to unexpected events and repair the baseline schedules. Therefore, decision-maker may opt for
hybrid scheduling approaches. The hybrid approaches are necessary composed of two steps:

• Step 1: in the off-line phase, we compute a baseline schedule that will serve as a starting point of
coordination between the production and the supporting activities.

• Step 2: in the on-line phase, we react to new data and disruptions and repair the baseline schedule.
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Hybrid approaches could be divided into two sub-approaches: the predictive reactive approach (see the illus-
tration in figure 2.4) and the proactive-reactive approach (see the illustration in figure 2.5). The distinction
is related to the model used to compute the baseline schedule:

If the baseline schedule is computed using a deterministic algorithm that considers an instance of refer-
ence (nominal scenario), then the approach is predictive-reactive.

If the baseline schedule is computed using a proactive model (robust, stochastic, fuzzy) in which we
take into account not only an instance, but a set of uncertainties, then the approach is proactive-reactive. An
example of the application of such approach is given in the case of parallel machines with communication
delays.

When some activities are realized, the decision-maker will have more reliable information which may
be used reactively to make the necessary adjustments. The reactive strategy should use fast polynomial-time
algorithms. Vieira et al. (2003) have defined rescheduling as the process of updating an existing schedule
baseline in response to disruptions or uncertainties. Therefore, the predictive-reactive and proactive-reactive
approaches can be viewed as a rescheduling process.

2.2.3 Scheduling objectives under uncertainty and disruptions: robustness and flexibility

Under uncertainties and disruptions, the decision-maker can be interested in computing a set of solutions
that adapt well and that offer a freedom during the execution phase, or he/she can be interested on computing
a solution that withstand a set of known uncertainties or disruptions without any change (or little changes)
during the execution phase. In the former case, the objective is the flexibility of the schedule, while in the
second the objective is the robustness of the schedule.

Flexibility refers to a degree of freedom available during the execution phase (Billaut et al. (2008)).
It can be temporal (i.e. regarding the starting times of jobs), or sequential (i.e. regarding the sequence
in which the jobs are sequenced), or a flexibility of assignment (i.e. regarding the machines that execute
jobs). Given that disruptions will occur and unforeseen circumstances arise, the aim is to propose one or
more solutions that adapt well to disruptions and then produce reactive decisions with fast implementation.
Robustness refers to the aptitude of a solution to withstand areas of ignorance, and to provide protection
against deplorable impacts, such as results that are much worse than expected Roy (2010). A robust schedule
is a proactive schedule that is able to absorb some level of unexpected events without rescheduling (Herroelen
and Leus (2005)). A robust schedule is often calculated by anticipating uncertainty and optimizing robustness
measures that are often related to the schedule performance. There exists also a range of techniques for
generating robust schedules based on the insertion of temporal protection (see slack based techniques in Gao
(1996), Davenport et al. (2014)).

In the scheduling literature, we can distinguish two kinds of robustness: the robustness of the perfor-
mance and the robustness of the structure. A robust schedule according to its performance is a schedule
whose performance is insensitive to the data uncertainty and does not significantly degrade under disrup-
tions. A robust schedule according to its structure is commonly known as stable schedule. The structure
stability is commonly referred to as stability and it is defined as the aptitude of a solution to stay close to the
solution of reference if small perturbations of data occur (Leus and Herroelen (2004)). A stable schedule is a
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schedule whose realization does not deviate much from the schedule of reference under disruptions, and this
deviation concerns the difference between the schedule of reference and the realized schedule themselves
in term of structure rather than performance Sabuncuoglu and Goren (2009). A stable schedule can be ob-
tained by optimizing stability measures. When the robustness concerns a performance, the robust schedule
is usually a proactive schedule computed according to robust optimization models and it does not need to
be repaired to meet the realizations of uncertain data. When robustness concerns the structure of the solu-
tion, the stability models always require the computation of a reference solution. The stability measures are
relative to the job characteristics of this solution. In addition, the stability can be deployed under different
approaches: proactive, predictive-reactive, proactive-reactive, and post-optimization. When the solution of
reference is deterministic and the stability is optimized off-line by anticipating the uncertainties that could
occur, the stability is deployed under a proactive approach. But when the solution of reference is deter-
ministic and the stability is optimized on-line in response to an uncertainty or a disruption that occurs, the
stability is then deployed under a predictive-reactive approach. Under both proactive and predictive-reactive
approaches, the stability and the performance are conflicting objectives: the optimization of the stability
measures leads to the degradation of the schedule performances (e.g. Jorge Leon et al. (1994); Sabuncuoglu
and Goren (2009)). Therefore, most of the studies that belong to this class propose a bi-objective function to
optimize the schedule stability without loss of performance. To anticipate the loss of performance, the stabil-
ity could also be deployed under a proactive-reactive approach by computing a robust solution of reference
and optimizing the stability to make few adjustments on-line. The stability as a post-optimization approach
was introduced by Sotskov (1991). Under this approach, an optimal solution of reference is computed in a
deterministic way and its stability is evaluated ex-post like in sensitivity analysis. The research question is
formulated around how one can vary the data in the problem in such a way that an optimal schedule remains
optimal. The answer conducts to the calculation of the stability radius of an optimal schedule which is the
largest quantity of independent data variations under which an optimal schedule remains optimal.

In the next section, we will review the works dealing with uncertainties and disruptions through robust-
ness and stability models.

2.3 Literature review on robustness in scheduling

2.3.1 Performance robustness optimization

The worst-case performance and the maximum regret are reference criteria and starting point in robustness
analysis. The best worst-case performance and the best maximal regret refer respectively to min-max and
min-max regret objectives that were originally defined in the strategic decision-making literature by Gupta
and Rosenhead (1968); Rosenhead et al. (1972b), and that were introduced later in operations research
problems by Rosenblatt and Lee (1987).

Under discrete scenario representation, Kouvelis and Yu (1997) define the worst-case performance and
the maximal regret as follows:

• S is the set of discrete scenarios that represent the uncertainty,
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• X is a feasible solution,

• Zs∗ is the optimal performance criterion under scenario s ∈ S,

• Zs(X) is the performance criterion when solution X is applied to scenario s ∈ S.

The worst-case performance of solution X is given in Equation 2.1 as

Zw(X) = max
s∈S
{Zs(X)}. (2.1)

And the maximum regret of solution X is given in equation Equation 2.2 as

Zr(X) = max
s∈S
{Zs(X)− Zs∗}. (2.2)

The worst-case performance of a given solution over all the scenarios measures the maximal cost of this
solution. The worst-case performance is often used for non-repetitive decisions, in environments where pro-
tection measures are indispensable. The maximum regret measures the maximal deviation from the optimal
performance over all the discrete scenarios when we use a solution instead of the optimal one. The maximal
regret is more suitable in situations where the magnitude of deviations varies strongly among the scenarios.
In other words, minimizing the worst-case performance aims to find the cheapest schedule, while minimizing
the maximal regret aims is to reduce the opportunity loss, rather than the cost.

The worst-case performance and the maximal regret measures have been used to compute robust sched-
ules under discrete scenario representation of uncertain processing times in different machine environment
studies and with various scheduling criteria.

For many polynomial solvable scheduling problems, their corresponding robust versions (min-max or
min-max regret) are weakly or strongly NP-hard when taking into account the uncertainty, even in the case
of the single machine (Table 2.1). For the sake of simplicity, we propose to use a short notation that combines
the notations of Averbakh (2006), and Aloulou and Della Croce (2008) to represent the robust versions of
a scheduling problem α|β|γ. Let θ be the set of uncertain problem data, we will denote: DmM(α|β|γ; θ)

the min-max version of α|β|γ under discrete scenario representation of θ (resp. DmMR(α|β|γ; θ) the min-
max regret version of α|β|γ under discrete scenario representation of θ). Under interval representations, we
denote ImM(α|β|γ; θ) and respectively ImMR(α|β|γ; θ).

Daniels and Kouvelis (1995b) considered the single machine scheduling problem with a total flow time
criterion (1||

∑
cj) under uncertain processing time, to formalize the concept of robust scheduling and to

introduce the worst-case and the maximal regret measures under uncertain processing times. They showed
that DmM(1||

∑
cj ; pj) and DmMR(1||

∑
cj ; pj) are NP-hard even in the case of two scenarios. Yang and

Yu (2002) confirmed that minimizing the worst-case total flow time and the maximal regret in total flow
time of the single machine problem under uncertain processing times are NP-hard and have proposed a
dynamic algorithm, as well as polynomial heuristics to solve it. But, the complexity of these methods in-
creases with the number of discrete scenarios. In the more general case, de Farias et al. (2010) proposed
a cutting-plane algorithm for solving the DmM(1||

∑
wjcj ; pj) with the weighted sum of completion time
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TABLE 2.1: Complexity of min-max scheduling problems under discrete scenario represen-
tation of data uncertainty

D(I)mM(R)(α|β|γ; θ) Complexities References

DmM(R)(1||
∑
cj ; pj) NP-hard Daniels and Kouvelis (1995b),

Yang and Yu (2002)
DmM(1||

∑
wjcj ; pj) NP-hard de Farias et al. (2010)

Mastrolilli et al. (2013)
DmM(1|prec|fmax; pj) Polynomial Aloulou and Della Croce (2008)
DmM(1|prec|fmax; dj) Polynomial Aloulou and Della Croce (2008)
DmM(1|prec|fmax; pj , dj) Polynomial Aloulou and Della Croce (2008)
DmM(1||

∑
Uj ; pj) NP-hard Aloulou and Della Croce (2008)

DmM(1|
∑
Uj ; dj) Polynomial Aloulou and Della Croce (2008)

DmM(1||
∑
Uj ; dj) NP-Hard Aissi et al. (2011)

DmM(1||
∑
Uj ; pj , dj) NP-hard Aloulou and Della Croce (2008)

DmMR(F2||Cmax; pj) NP-hard Kouvelis et al. (2000)
DmMR(F2||Cmax; pj) strongly NP-hard Kasperski et al. (2012)
IMm(1|prec|Lmax; pj , dj) Polynomial Kasperski (2005)
ImMR(1|prec|

∑
cj ; pj) NP-hard Kasperski and Zielienski (2008)

ImMR(1|prec|
∑
cj ; pj) NP-hard Conde (2010)

ImMR(1||
∑
wjcj ; pj) NP-hard Pereira (2016)

ImMR(1||
∑
wjUj ; pj) NP-hard Drwal (2017)

ImMR(Pm||Cmax; pj) NP-hard Xu et al. (2013)
ImMR(Pm||

∑
cj ; pj) NP-hard Drwal and Rischke (2016)

ImMR(Qm||
∑
cj ; pj) NP-hard Xu et al. (2014)

ImMR(Rm||
∑
cj ; pj) NP-hard Conde (2014)

ImMR(Rm||
∑
cj ; pj) NP-hard Siepak and Józefczyk (2014)

criterion. Several inapproximability results for this problem are established in Mastrolilli et al. (2013).
Aloulou and Della Croce (2008) studied several robust single machine scheduling problems. They proved
that the minimization of the worst-case of general maximum cost function fmax ∈ {Cmax, Lmax, Tmax}
with job precedence under uncertain processing times (i.e. DmM(1|prec|fmax; pj)) is optimally solved in
a polynomial time by the MinMax-Lawler algorithm. Moreover, they proved that DmM(1||

∑
Uj ; pj) is

NP-hard even if there are two scenarios. Kouvelis et al. (2000) considered the two machines permutation
flow shop problem with makespan minimization under uncertain processing times. F2||Cmax is is known to
be polynomially solvable by using Johnson’s algorithm. Kouvelis et al. (2000) showed that the minimiza-
tion of the maximal regret in makespan of two machine permutation flow shop under uncertain processing
times, DmMR(F2||Cmax; pj), is weakly-NP-hard. For the same scheduling problem, Kasperski et al. (2012)
has shown later that DmM(F2||Cmax; pj) and the DmMR(F2||Cmax; pj) are strongly NP-hard even for two
scenarios.

Other uncertainties were considered in scheduling problems as due dates (dj), release dates (rj) and
job priorities (wj). Aloulou and Della Croce (2008) proved that DmM(1|prec|fmax; dj) can be optimally
solved in polynomial time by means of Lawler’s algorithm applied to the worst-case artificial scenario under
which all the processing times take their maximal values. They proved that DmM(1|prec|fmax; dj , pj) is
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solved to optimality in polynomial time by the MinMax-Lawler algorithm. Besides, they showed that the
minimization of the number of late jobs on a single machine when the processing times are certain and due
dates are uncertain, DmM(1||

∑
Uj ; dj), can be optimally solved by means of Moore’s modified algorithm

applied to the worst-case artificial scenario smax under two due date scenarios. For a variable number of
scenarios and two distinct due dates over all scenarios, the problem is NP-hard in the strong sense and
non-approximable in pseudo-polynomial time with approximation ratio less than 2 according to Aissi et al.

(2011). It is polynomially solvable if the number of scenarios and the number of distinct due dates over
all scenarios are given constants. When the job weights are uncertain, Aloulou and Della Croce (2008)
proved that the minimization of the total weighted flow time in single machine DmM(1||

∑
wjcj ;wj) is

NP-hard even if the number of scenarios equals 2 and the processing time of each job equals the unit. The
minimization of the weighted sum of late jobs under uncertain weights is known to be NP-hard for two
weight scenarios, strongly NP-hard and hard to approximate within any constant factor if the number of
weighted scenarios is a part of the input (The reader is referred to Kasperski and Zieliński (2014)).

When we consider the interval representation of uncertain parameters as an extension of discrete sce-
nario representation where the number of scenarios is infinite, we could also focus on the following studies.
Kasperski (2005) have considered the single machine sequencing problem with maximum lateness criterion
where the parameters are uncertain and belong to intervals. He has shown that the IMm(1|prec|Lmax; pj , dj)

is polynomial. Lebedev and Averbakh (2006) have proved that the min-max regret version of under uncertain
processing times that belong to intervals, i.e. ImM((1||

∑
cj ; pj) is NP-hard. They showed that in the case

where all intervals of uncertainty have the same center, the problem can be solved in polynomial time if the
number of jobs is even, and is NP-hard if the number of jobs is odd. Kasperski and Zielienski (2008) consid-
ered the general ImMR(1|prec|

∑
cj ; pj), which is total flow time minimization with precedence constraints,

under uncertain processing times. The general deterministic problem is strongly NP-hard (Lenstra and Rin-
nooy Kan (1978)). Kasperski and Zielienski (2008) proved that the optimal schedule under the midpoint sce-
nario is a 2-approximation for ImMR(1|prec|

∑
cj ; pj). Conde (2010) developed a 2-approximation method

for min-max regret optimization problems which extends the work of Kasperski and Zielienski (2008) from
finite to compact constraint sets. Pereira (2016) considered the single machine sequencing problem with
total weighted flow time under interval processing times. He showed thatImMR(1||

∑
wjcj ; pj) is NP-hard

and presented an exact branch-and-bound method to solve the problem. Conde (2014) has proposed a Mixed
Integer Programming formulation of the unrelated parallel machine with total flow criterion under uncer-
tain processing times. Each processing time belongs to a known interval. In this context, they showed
that the problem is NP-hard and considered that an optimal solution of ImMR(Rm/sumcj ; pj) is a suitable
approximation to the optimal schedule under an arbitrary choice of the possible processing times. Siepak
and Józefczyk (2014) also the same problem. They proposed a simple 2-approximate middle interval time
efficient algorithm besides a scatter search based heuristic algorithm. They showed via experiments that
this latter is more time consuming, but it is better in terms of the quality of solutions. Xu et al. (2013)
addressed the min-max regret version of the makespan minimization on identical parallel machines under
interval processing times. They showed that ImMR(Pm||Cmax; pj) is NP-hard and they proved that a regret-
maximizing scenario for any schedule belongs to a finite set of extreme point scenarios. Then they derived
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two exact algorithms using a general iterative relaxation procedure. Xu et al. (2014) considered the total
flow time minimization on uniform parallel machines under interval processing times. They proved that
the optimal schedule under the midpoint scenario is a 2-approximation for the ImMR(Qm||

∑
cj ; pj). Dr-

wal and Rischke (2016) showed that the ImMR(Pm||
∑
cj , pj) is strongly NP-hard. Cwik and Józefczyk

(2015) considered the makespsan minimization in a flow-shop problem with interval processing times. The
maximal regret is used to evaluate a solution which gives the min-max regret binary optimization problem.
They proposed an evolutionary heuristic solution algorithm to solve ImMR(F ||Cmax; pj) and compared it
with a simple middle interval heuristic algorithm for three machines instances. Drwal (2017) considered
the minimization of the total weight of late jobs in a single machine under interval processing times. They
showed that ImMR(1||

∑
wjUj ; pj) is NP-hard and proposed a heuristic algorithm based on mixed-integer

linear programming to compute a robust solution.
Besides theoretical scheduling, the robustness under scenario uncertainty or interval uncertainty has been

spread to several applications as project scheduling, line balancing, energy optimization, etc.. In project
scheduling, Artigues et al. (2013) examined the min-max regret Resource-Constrained Project Scheduling
Problem. They showed that the robust problem turned out to be exceptionally difficult, in that even exact
objective-function evaluation is intractable and computationally overly demanding, even for medium-sized
instances. They implemented a scenario-relaxation algorithm that produces optimal solutions but requires
excessive running times even for medium-sized instances. Furthermore, they proposed a scenario-relaxation-
based heuristic that produces high-quality solution for medium-sized instances in less CPU times. In robust
line balancing, Dolgui and Kovalev (2012) studied the line balancing problem under uncertain processing
times where the objective is to minimize the worst-case maximum execution time of the same station. They
represented uncertainty by a set discrete scenarios and proposed an approach to reduce its cardinality. They
showed that several special cases of the problem are NP-hard and strongly NP-hard. Furthermore they
suggested enumerative dynamic programming algorithms and problem-specific polynomial time algorithms
for some cases. For more examples, the reader is referred to Bentaha et al. (2015). The min-max and
min-max regret criteria lead to a risk-averse decision since they assume that decision makers risk-averse
(or pessimistic). It follows from the fact, that the computation of schedules that minimize the worst-case
performance (resp. the maximal regret) is particularly constrained with the worst-case scenarios, ignoring
the information connected with the remaining scenarios. In some context where protection measures should
be taken, the choice of these criteria is crucial. But, in context where decision makers are less risk averse,
other approaches can be applied. Instead of seeking for a solution that optimize the robustness measure,
the decision makers impose conditions that solutions must satisfy in order to be considered as robust. For
instance, Daniels and Carrillo (1997) defined a β-robustness measure that is based on the likelihood of
achieving system performance no worse than a given target level. Daskin et al. (1997) proposed a α-reliable
min-max regret model to compute a solution that minimizes the maximum regret with respect to a selected
subset of scenarios whose probability of occurrence is at least α (a value defined by the decision maker).
Kalaï and Lamboray (2007), Kalaï et al. (2010) proposed an approach called lexicographic α-robustness
which considers all scenarios in lexicographic order from the worst to the best, and where α is a tolerance
threshold in order to not discriminate among solutions with similar values.
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The expected performance is known to be the most-appropriate for a risk-neutral decision maker. It
is widely used in scheduling under both random processing times and under random machine breakdowns
Jorge Leon et al. (1994); Wu et al. (1999); Goren and Sabuncuoglu (2009)).The study of the performance
distribution is also important when dealing with stochastic scenarios. For example, in project scheduling
under stochastic durations, Ballestin and Leus (2009) minimized the expected makespan and studied the
distribution of makespan realizations for a given scheduling policy. The analytic calculation of the expected
performance measure is often complicated when the probability distribution is continuous which justify the
use of simulation or surrogate measures to estimate this value. When decision-makers are able to assign
discrete probabilities or sampling, the expected performance of solution X could be calculated as given in
Equation 2.3

Ze(X) =
∑
s∈S
{psZs(X)}, (2.3)

where ps is the probability attached to scenario s.
The expected performance minimization is often combined with a stability objective as we will see in

Table 2.2. In the next section, we focus on the studies that considers the stability issue in scheduling under
uncertainty.

2.3.2 Structure robustness optimization

To construct stable schedules, the stability measures proposed in the literature are basically related to: the
starting times or the completion times deviations (e.g. Wu et al. (1993); Abumaizar and Svestka (1997);
Mehta (1999); Dong and Jang (2012)), the sequence deviation (e.g. Wu et al. (1993); Abumaizar and Svestka
(1997); Cowling and Johansson (2002); Leus and Herroelen (2004)), the number of disrupted jobs (e.g. Ozlen
and Azizoğlu (2011)).

Starting time and completion time deviations are very useful measures of stability, especially in shop
environments where secondary resources such as tooling and handling should be prepared. A change in job
starting or completion time may incur carrying costs if the material is delivered earlier than expected, or
perhaps more importantly, rush order costs if the tools and material are requested earlier than expected (Wu
et al. (1993)). An example of such stability measure in Equation 2.4 is given by summing the absolute value
of the differences in job starting times between the realized schedule and the schedule of reference:

Starting time deviation =
∑
j∈J
| sj − sinitialj | (2.4)

Where sj and sinitialj are respectively the starting time of job j in the realized schedule and the initial
schedule. The absolute values permit to report both delay and rush.

The sequence deviation measure is critical if machine setups are prepared in advance based on the initial
sequence. For instance, jobs may wait in a sequence queue, and tooling may be planned in advance according
to the initial sequence. Thus, a sequence deviation will incur costs in handling and reallocating the jobs, and
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re-planning the tools changeover (Wu et al. (1993)). An example of such measure is defined by Abumaizar
and Svestka (1997) as follows:

• S1: set of jobs processed before operation j in the initial schedule.

• S2: set of operations processed after operation j in the new schedule.

• Nij : cardinality of S = S1 ∩ S2.

The formula in Equation 2.5 gives the measure of jobs sequence deviation over all the machines:

sequence deviation =
∑
i∈I

∑
j∈J

Nij (2.5)

Starting/Completion times deviations, and sequence deviation are widely used in single machine, job
shop and project scheduling problems under stochastic machine breakdowns and/or stochastic processing
times. The vast majority of these studies are bi-objective. They consider both stability and efficiency, for
instances:

Wu et al. (1993) considered the makespan minimization on a single machine under stochastic machine
breakdowns. They proposed a bi-objective heuristics in order to optimize the stability and to maintain a
good makespan. For this purpose, they used the total deviation in starting times and the sequence deviation as
stability measures. Their computational results show that the schedule stability can be increased significantly
with little or no sacrifice on the makespan. Abumaizar and Svestka (1997) considered a job shop problem
affected by disruptions modelled as stochastic machine breakdowns. They also considered starting time
deviation and sequence deviation as stability measures, and they presented a heuristic that optimizes both the
makespan and the stability measures to produce an efficient and stable schedule.

Mehta and Uzsoy (1998) consider job shop environment under machine breakdowns. They present a lin-
ear programming based heuristic that minimizes the deviation of the starting times compared with a schedule
that contains ample slack, while respecting a deadline for the project. They insert additional idle time into
the schedule to absorb the impact of breakdowns, and invoke earliness or lateness penalties whenever the last
operation of a job ends sooner or later than planned. Mehta (1999) considered the maximum lateness min-
imization on a single machine under stochastic machine breakdowns. The effects of disruption on planned
activities are measured through job completion time deviation. Cowling and Johansson (2002) considered
the single machine problem with the objective of minimizing the average completion time with no allowed
preemption. They used the sum over all jobs of the starting time and completion time deviation divided
by the number of jobs to measure the impact of moving from the initial schedule to the repaired schedule.
Mehta and Uzsoy (1998) considered job shop environment under stochastic machine breakdowns. They
presented a linear programming based heuristic that minimizes the deviation of the starting times, while
respecting a deadline for the project. They inserted additional idle time into the schedule to absorb the im-
pact of breakdowns, and invoked earliness or lateness penalties whenever the last operation of a job ends
sooner or later than planned. Herroelen and Leus (2004a) adapted the linear programming based heuristic
that was developed by Mehta and Uzsoy (1998) to run in a project scheduling environment. They gave two
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mathematical programming models to minimize the expected weighted starting time deviation in order to
construct a stable baseline project schedule, when the activities durations increase. Yang (2013) considered
a single machine rescheduling problem. Disruptions such as new job arrivals and cancelled jobs occur after
the initial scheduling. The objective is the minimization of the completion times deviation while preserving
a small makespan. The artificial due dates for the remaining jobs are set to completion times in the original
schedule while newly arrived jobs do not have due dates. The objective of rescheduling is to minimize the
maximum earliness without tardiness. They developed three simple heuristics and demonstrated that two
heuristics perform much better than the other one. Yin et al. (2016) considered identical parallel machines
subject to machine disruptions with the objective of minimizing the total completion time. The objective
is to schedule the affected jobs and maximize the stability with respect to the original schedule. Schedule
stability is measured by the completion time deviation. The study is bi-objective and focuses on the trade-off
between the total completion time of the adjusted schedule and completion time deviation. They developed
pseudo-polynomial-time solution algorithms for the problem with a fixed number of machines and conduct
extensive numerical studies to evaluate the performance of the proposed algorithms.

In project scheduling, Herroelen and Leus (2004a) devoted their attention to the development of the
stable pre-schedule under uncertainty. They proposed two mathematical formulations to minimizing the ex-
pected weighted deviation of starting times under job disruption. In the former, they anticipate the disruption
of one job duration while in the second one, they anticipate two disruptions. To serve as benchmark, they
proposed three additional models. Some of these models are adapted from original version provided by
the literature of machine scheduling as the linear programming based heuristic given in Mehta and Uzsoy
(1998).

Only few studies considered both stability and robustness. Jorge Leon et al. (1994) considered the job
shop problem with stochastic machine breakdowns and processing time variations. The authors addressed
the case of single disruption which serves as a basis for treatment of the more general case. The model is
bi-objective and is based on the minimization of the expected makespan of the realized schedule (robust-
ness) and the expected deviation from the original schedule makespan (stability). The experimental results
showed that the bi-criterion approach significantly outperforms the deterministic approach based only on
makespan. Goren and Sabuncuoglu (2008) addressed the problem of finding robust and stable schedule in
a single machine environment under stochastic machine breakdowns. Many schedule performances were
studied: makespan, total flow time, and total tardiness. The robustness of the schedule is measured through
the expected performance of the realized schedule, while the stability is measured through the expected sum
of absolute deviations in job completion times. The surrogate measures of robustness and stability are em-
bedded in a tabu-search algorithm. Goren and Sabuncuoglu (2009) extended the list of stability measures to
the sum of the squared differences of the job completion times, the sum of absolute differences of the job
completion times and the sum of the variances of the realized completion times.

In project scheduling, Van de Vonder et al. (2006) addressed the trade-off between stability and robust-
ness in resource constrained project scheduling. They proposed a heuristic algorithm that minimizes the
weighted deviation of starting times and provided an extensive simulation experiment to assess the trade-off
between stability and robustness (measured through the completion time).
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In parallel machine scheduling, the authors used, particularly, two measures which are the number of
disrupted jobs and the total cost of reassignments. As the jobs could be assigned to different machines after
the disruption, the research question is often about finding the solution that offers the best trade-off between
stability and performance. Azizoglu and Alagöz (2005) defined the number of disturbed jobs as given in
Equation 2.6 such that

Disturbed jobs =
∑
j

nj where nj =

1 if j changes of machines in the new schedule

0 otherwise
(2.6)

Azizoglu and Alagöz (2005) considered a rescheduling problem on identical parallel machine environ-
ment subject to stochastic machine breakdowns. They addressed the trade-off between between efficiency
and stability. They considered the total flow time as an efficiency measure while the stability is measured
in terms of the number of disrupted jobs that are processed on different machines in the original and new
schedules. Özlen and Azizoğlu (2009) considered unrelated parallel machine subject to stochastic machine
breakdowns. They consider the total flow time as a performance measure and the total reassignment cost
caused by the schedule deviation as stability measure. They illustrated that the efficient schedules with re-
spect to the two objectives can be found in polynomial time. Ozlen and Azizoğlu (2011) also considered
unrelated parallel machines under stochastic machine breakdowns. The affected jobs are rescheduled by
optimizing the total flow time, and the total reassignments cost caused by the differences between the initial
and current schedules. They provided polynomial-time solution methods to the problems of minimizing to-
tal disruption cost among the minimum total flow time schedules and minimizing total flow time among the
minimum total disruption cost schedules. Besides, they proposed exponential-time algorithms to generate
all efficient solutions. The computational tests on large size problem instances show that the algorithm finds
the best solution by generating only a small portion of all efficient solutions.

Curry and Peters (2005) examined the rescheduling in parallel machine problems due to the arrival
of new jobs. They considered machine reassignment costs to minimize the instability. Their simulation
experiments showed significant gains in schedule stability by selecting the alternative optimal solution with
the fewest machine reassignment cost. Besides, Kaplan and Rabadi (2015) considered the parallel machine
disrupted by the arrival of new jobs, the departure of an existing job, and changes to job priority. A bi-criteria
objective function was considered to simultaneously minimize both the total weighted tardiness and schedule
instability. They formulated the problem by extending the mixed integer linear programming model of the
scheduling problem in Kaplan and Rabadi (2012). Five heuristic algorithms are introduced to handle the
bi-objective problem using algorithms by Kaplan and Rabadi (2013). Their experiments solved small size
and large size problems for different types of disruptions.

The complexity of machine scheduling for stability is rarely addressed in the literature, to the best of
our knowledge, only Leus and Herroelen (2005) studied the complexity of machine scheduling for stability.
They used the expected weighted deviation in start times as stability measure. They showed that single
machine, single machine with unequal ready times, and single machine with precedence constraints under
single-disruption are NP-hard. Then, they considered parallel machine problem. They also showed that the
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single-disruption stability problem with free number of parallel machines is strongly NP-hard.
To evaluate the stability of optimal solutions, the stability as post-optimality analysis has been used in

single machine scheduling (Sotskov and Lai (2012), in job (general) shop scheduling problems (Sotskov
(1991); Sotskov et al. (1997)), in assembly line problem (Sotskov and Dolgui (2001); Sotskov et al. (2006).
Sotskov et al. (2010) discussed the application of this approach to the job (and general) shop problem with
the makespan and the total flow time criteria. This approach is based on the separation of the structural
input data (precedence and capacity constraints) from the numerical input data. The approach is based on an
improved stability analysis of an optimal digraph. In application to semi-conductor production environment,
Rossi (2003, 2010) presented an approach for measuring the stability of a configuration of parallel multi-
purpose machines under demand uncertainty. They assessed the minimum magnitude of forecast demand
perturbations that may lead to breaking the deadline provided by the decision maker. They showed accord-
ingly the practical use of "the stability radius" in industry. The stability analysis approach was also applied
to several scheduling problems, where the deterministic versions allow a polynomial-time solution. Sotskov
et al. (2010) presented additional results for the two-machine flow (and job) shop problem with interval
processing times both the off-line scheduling problem and the on-line problem is considered. The stability
approach was also implemented for the single machine mean flow time problem with interval processing
times (Sotskov et al. (2010, 2011)).

2.4 Literature review synthesis and research potential issues

2.4.1 Literature synthesis

We have surveyed published works on scheduling under uncertainties for robustness and/ or stability objec-
tive published between 1995 and 2017 (Table 2.2). The total population of published works on the topic falls
into one of four clusters organized around 4 seminal publications:

- Cluster 1 (Robust scheduling) includes all the works based on the approach of Daniels and Kouvelis
(1995a). These works belong to the purely proactive approach aim to compute robust schedule under am-
biguity. Most of the addressed problems belong to theoretical scheduling problems. Single machine envi-
ronment is the most considered. Processing times, followed by due dates and then job weights are the most
frequently analysed uncertainties. The uncertain data are modeled by discrete scenarios (or intervals) and
the authors use min-max (regret) objectives or extension of these objectives. An unavoidable question under
these works is related to the complexity of the robust versions of the scheduling problems. The vast majority
of these robust version is NP-hard. Therefore, the authors propose, design and evaluate multiple algorithms
to compute the robust solutions.

- Cluster 2 (Stable scheduling) includes all the works that extend the research question of Wu et al.

(1993). These works which belong to the predictive reactive approach use bi-objective function to optimize
the stability and to maintain a good performance under stochastic uncertainty or disruptions. The authors
use the expected performance as performance objective and stability measures.
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FIGURE 2.6: A simplified clustering diagram on robustness and stability issues in scheduling
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- Cluster 3 (Robust Stable scheduling) includes all the works that extend the research question of Jorge Leon
et al. (1994). These works which belong to the proactive-reactive approach or to the purely proactive ap-
proach. They use bi objective function to optimize the robustness and the stability of the schedule under
stochastic uncertainty/disruptions, the processing times followed by machine breakdowns being the most
frequently addressed uncertain parameters.

- Cluster 4 (Stability as post-analysis) includes all the works that extend Sotskov (1991) research ques-
tions. Under this approach, an optimal solution of reference is computed in a deterministic way and its
stability is evaluated a-posteriori under small perturbations of the data. The research question is formulated
around how one can vary the data in the problem in such a way that an optimal schedule remains optimal.
The answer conducts to the calculation of the stability radius (resp. a ball or a box).
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TABLE 2.2: Literature review synthesis (an overview)
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2.4.2 Research potential issues

From these clusters, we can remark that there exist a lot of opportunities for future works. Here some points:
i) Cluster 1 works can provide schedules that are immune against uncertainties and disruptions for a

described uncertainty. But, some robust solutions may fail when the future turns out differently than consid-
ered. A robust model may not guarantee a good performance under a scenario outside the set of considered
discrete scenarios or interval. The robustness oriented studies rarely addressed these questions. There is a
lack of studies that address the stability of robust solutions from both structural and performance viewpoints.

ii) Cluster 2 and Cluster 3 works deal basically with stochastic uncertainties and disruption (frequently
processing times and machine breakdowns). The future research might focus on other uncertainties and
disruptions as the due dates, the release dates, the setup times, etc..They can also model the uncertainties
and the disruptions using other representations as intervals or scenarios instead of probability distributions.
The existing works in cluster 2 can also be extended to consider robustness objective besides the stability
objective. The results provided by the works of Cluster 1 can be embedded in these works to provide robust
solutions using min-max and min-max regret objectives.

iii) Stability as post optimization analysis is a promising approach for further research since it focus until
now on deterministic solutions and use complicated measure to answer only one question "what is the data
change for which the optimality is not affected?". This question is important in Cluster 1 as we have pointed
out. Thus, the basic idea of stability analysis can be used to answer the question. But we can also address
the stability with a different research question as What is the impact of a given data change on the robust
solution?

TABLE 2.3: Parallel machine scheduling under uncertainty: review synthesis

Scheduling problem Objectives
References

Environment Performance Uncertainty disruption Model Rob Stab
Pm Makespan pj D x Xu et al. (2013)
Pm Total flow time pj D x Drwal and Rischke (2016)
Qm Total flow time pj D x Xu et al. (2014)
Rm Total flow time pj D x Conde (2014)
Rm Total flow time pj D x Siepak and Józefczyk (2014)
Pm Total flow time brdwn S x Azizoglu and Alagöz (2005)
Pm Total flow time brdwn S x Özlen and Azizoğlu (2009)
Rm Total flow time brdwn S x Özlen and Azizoğlu (2009)
Pm Total tardiness new job S x Kaplan and Rabadi (2015)
Pm Total tardiness new priority S x Kaplan and Rabadi (2015)
Pm Total flow time brdwn S x Yin et al. (2016)

vi) Parallel machine scheduling problem under uncertainty, which constitutes our subject of study, is
treated with different approaches in the literature for robustness or stability objective. Under robustness,
the objective is to deal with uncertain processing times while under stability the objective is principally to
deal with machine breakdowns. The robustness and the stability in parallel machine scheduling are rarely
addressed jointly. Besides, the preemptive version is rarely addressed.
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Conclusion

In this chapter, we presented the general form of the scheduling problem and define its fundamental notions.
We discussed the limitations of scheduling under the hypothesis of certainty based on previous work claims.
Then, we reviewed the representations of the uncertainties and disruptions in scheduling. We classified the
scheduling approaches and objectives under uncertainties and disruptions. In the review, we focused on the
works that are oriented toward robustness and stability.

The survey revealed that the contributions are organized around four clusters. The analysis of these
clusters showed that there exist a lot of opportunities for future developments. Robust optimization can
provide schedules that are immune against uncertainties and disruptions but, robust solutions may fail when
the future turns out differently than considered. The robustness oriented studies do not consider this issue
while stability models do. However, stability and robustness are mentioned to be conflicting objectives.
Besides, most of the studies that consider robustness focus on the performance robustness and do not address
the robustness of the structure that is in part very important for practitioners. Stability analysis approach
focuses on deterministic solutions and use complicated measures. Based on these remarks, we will consider
a parallel machine scheduling environment under processing times uncertainty under which we will address
all these points:

Research question 1: How to provide robust solutions that withstand the uncertain processing times?
Research question 2: What is the robustness cost when we use a robust solution in order to withstand the

uncertainty?
Research question 3: Which solutions are robust stable when confronted to a new scenario?
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Chapter 3

Toward a robust schedule on unrelated
parallel machines under uncertain
processing times

Abstract: The goal of this chapter is to address the makespan minimization on parallel machines with job
splitting (resp. preemption) under uncertain processing times. We show that when the processing times are
uncertain, the optimal solutions computed based on the nominal scenario can lead to infeasible schedules, or
schedules with poor performance. To remedy this, we anticipate the uncertainty by constructing proactively
robust schedules. In the first approach, we enforce the feasibility of the schedule under the set of potential
scenarios by tolerating the violations of some processing requirements. We use a weighted function of slack
variables to control the violations. We show that the schedule constructed under this approach can lead
to important overproduction and underproduction for some jobs. In the second approach, we guaranty the
feasibility under a set of potential scenarios without violations: we construct a set of feasible solutions based
on artificial scenario schedules and we choose over this set the solution that leads to the best performance
in the worst-case. This second approach allows to respect the constraints of the problem under any potential
scenario, and allows to construct a schedule with a good performance.
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Introduction

Parallel machine scheduling was and is still a rich and promising field of research with numerous applications
in manufacturing lines, computer processing, preemptive multitasking, and multi-stage systems (see Cheng
and Sin (1990)). The following examples illustrate the role of parallel machines in different applications(e.g.

semi-conductors: Rossi (2003, 2010), Bilyk and Mönch (2012), Aubry et al. (2012), processors: Guinand
et al. (2004), textile: Silva and Magalhaes (2006), aircraft planning: Hancerliogullari et al. (2013), etc.).

The classical problem of scheduling parallel machines consists in sequencing n jobs onm same function
machines in order to optimize the objective. Each job j must be performed on a machine with a fixed
processing time pij . pij represents the processing time of job j in machine i. In parallel machine scheduling,
we distinguish three environments of the machines. In the case of parallel identical machines (α = Pm),
the job processing time is independent of the machine where it is processed. For uniform parallel machines
α = Qm, each machine has a different speed. The processing time is equal to the processing requirement
divided by the speed of the machine. In unrelated parallel machines α = Rm, no particular relationship
exists between the processing times on the different machines, i.e. there is no proportionality between the
processing time of a job on a given machine and the processing time of the same job on another machine.

The literature on scheduling parallel machine problems is abundant, a deep review is provided in (Mokotoff
(2001)). Among all possible objectives, the most widely used in scheduling parallel machines is the makespan
minimization. Indeed, the makespan minimization allows the maximization of machine utilization and pro-
vides a good load-balance. The makespan minimization is denoted as γ = Cmax.

In general, the classical scheduling problems in parallel machines assume that:
- Each job cannot be processed in more than one machine simultaneously;
- A job once started should be completed;
- Processing time does not depend on the sequence;
- The job can wait for a free machine;
- No machine can process more than a job at a time;
- The number of jobs n is known and fixed;
- The number of machines m is known and fixed;
- Processing times are known and certain;
- During the schedule, no machine breakdowns are considered.
When the processing requirement of a job is considered as its total demand (e.g. lot), we can split the

jobs into sub-jobs (e.g. sub-lots) that can be processed independently on the machines. Under splitting,
we accept to overlap the sub-jobs so as to finish the processing requirement as soon as possible. Potts and
Van Wassenhove (1992) referred to this process as lot-streaming or lot-sizing and Xing and Zhang (2000)
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denote the job characteristic as β = Split. When the processing of a job can be interrupted several times
and later resumed but, the sub-jobs of the same job cannot be processed in parallel, we denote β = pmtn to
mean preemption.

In the classical scheduling algorithms, it is assumed that the scheduler has full information about the
problem instance before the process of scheduling actually starts (e.g. the number of machines, the number
of jobs, the processing times are known with exactitude). However, the uncertainty of processing times
is prevalent in the applications that involves such problems. In Section 3.1, we describe the problems
Rm|Split|Cmax and Rm|pmtn|Cmax and we show the limits of the classical deterministic algorithms in
solving these problems under uncertain processing times. Besides, we propose a preliminary approach that
aims to enforce the feasibility of the schedule under different scenarios by tolerating the violations of some
processing requirements, and we show that under this approach the overproduction or the shortage can be
very important. To avoid this, we propose in Section 3.2 an artificial scenario based approach under which
we construct a set of feasible solutions based on a set of generated artificial scenarios. We choose the robust
solutions based on an evaluation algorithm that computes a robustness measure of each solution. In Section
3.3, we report the results of the computational experiments respectively in splitting and preemptive cases.

3.1 The need for robustness under uncertain processing times

3.1.1 Makespan minimization on unrelated parallel machines under splitting and preemp-
tion

The makespan minimization on unrelated parallel machines with splitting denoted Rm|Split|Cmax is de-
fined as follows. n independent jobs are allowed to be processed by any of them unrelated parallel machines.
The processing times pij depends on job j and machine i. Each job can be split into continuous sub-jobs
and processed independently on themmachines with allowed parallelism so as to finish the processing of all
demands as soon as possible. For a high utilization of the machines and a good load-balancing, the objective
is to determine the optimal schedule so as to minimize the makespan Cmax. According to Xing and Zhang
(2000), this process is referred to as lot-sizing or lot-streaming and the split parts as continuous sub-lots.
The deterministic problem Rm|Split|Cmax was formulated by Xing and Zhang (2000) as a linear problem
(LPSplit):

Minimize Cmax (3.1)

Subject to

m∑
i=1

tij
pij

= 1, j = 1, . . . , n (3.2)

n∑
j=1

tij − Cmax ≤ 0, i = 1, . . . ,m (3.3)

0 ≤ tij , i = 1, . . . ,m, j = 1, . . . , n (3.4)



52 Chapter 3. Toward a robust schedule on unrelated parallel machines under uncertain processing times

where each temporal variable tij is the total amount of time spent by job j on machine i and Cmax is the
makespan which is the maximum job completion time over the m machines. The objective function (3.1) in
(LPSplit) minimizes the makespan. Constraints (3.2) ensure that each job j receives the required amount of
processing, while constraints (3.3) enforce that the total processing on each machine i is less or equal to the
makespan. Lastly, constraints (3.4) imply that each temporal variable tij is positive.

The given formulation can be solved in polynomial time. An optimal solution which is a matrix of
durations T allows to construct an optimal schedule. Indeed, all the sequences are feasible.

In the preemptive case, the makespan minimization on unrelated parallel machines, denotedRm|pmtn|Cmax,
is as an extension of the split case. The major difference between the preemptive problem and the split one
is that in the makespan minimization on unrelated parallel machines with preemption, the computation of a
sequence is also a part of the decision. In fact, each job can be split into continuous sub-jobs that can be
processed independently on the m machines without parallelism (no overlapping). Lawler and Labetoulle
(1978) have suggested a two step algorithm to solve Rm|pmtn|Cmax. The first step consists in solving a
linear formulation (LPpmtn) given as follows:

Minimize Cmax (3.5)

Subject to

m∑
i=1

tij
pij

= 1, j = 1, . . . , n (3.6)

n∑
j=1

tij − Cmax ≤ 0, i = 1, . . . ,m (3.7)

m∑
i=1

tij − Cmax ≤ 0, j = 1, . . . , n (3.8)

0 ≤ tij , i = 1, . . . ,m, j = 1, . . . , n (3.9)

where each temporal variable tij is the total amount of time spent by job j on machine i and Cmax is the
makespan. Constraints (3.6) ensure that each job j is receiving the required amount of processing. The
constraints (3.7) ensure that the (workload) total amount of processing on each machine i is less or equal
to Cmax while the constraints (3.8) also insures that the total processing time of each job do not exceed the
makespan. The constraints (3.8) prohibit the overlap between job parts of the same job. Lastly, constraints
(3.9) imply that variable tij is positive. The objective (3.5) minimizes the makespan.

The linear formulation can be solved in polynomial time, but the solution of (LPpmtn) does not prescribe
an actual schedule. The second step, then, consists of the construction of the optimal schedule with the
information provided by (LPpmtn) resolution. Indeed, for any feasible solution to the linear program, there
exists a feasible schedule with the same values of tij and Cmax. To prove this assertion, Lawler and La-
betoulle (1978) solved the preemptive open-shop scheduling problem Om|pmtn|Cmax defined by Gonzalez
and Sahni (1976). It comes back to consider that once the durations and the corresponding makespan are
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computed, the problem becomes a sequencing problem of a set of jobs that are composed of a number of
tasks (that we call the sub-jobs) where no restrictions are placed in the order in which the tasks (sub-jobs)
of any job should be processed. The only constraint to respect is that a machine can process only one job
at a time and a job can be worked by only one processor at a time. There is no restriction on the order in
which a given job can be worked on by the different processors, or on the order in which a given processor
can work on jobs (Hence the term "open shop."). However, the construction of a sequence might require ad-
ditional preemption. It means that the tijs once assigned to a given machine can be interrupted and resumed
later in that machine. According to Gonzalez and Sahni (1976), Om|pmtn|Cmax is solvable in polynomial
time. An analysis of computations done by Gonzalez (1979) has shown that the Om|pmtn|Cmax is solvable
in O(r + min(r2, n4,m4)) where r is the number of nonzero elements in T the matrix of durations tij’s.
The maximum number of preemptions introduced is min{rn, rm, n3,m3}. And according to Lawler and
Labetoulle (1978), an upper bound on the number of preemptions required for a Cmax-optimal schedule on
unrelated parallel machines is 4m2 − 5m+ 2.

3.1.2 Limitations of the classical algorithms under uncertain processing times

In practice, the processing times pijs are not often certain. In fact, each processing time pij depends both on
the processing requirement pj of the job j representing its demand, and the speed vij of machine i to process
the job j. Each pij can be decomposed as: pij = pj/vij . If the demands are uncertain, which is often the
case in reality, the processing times become also uncertain. Under these uncertainties, the solving approaches
introduced in the previous sections, LPSplit and the 2 step algorithm of Lawler based on LPpmtn, may lead
to schedules that cannot be executed as planned: when applied to the actual realization of processing times,
the optimal schedules based on the nominal instance of processing times become sub-optimal and sometimes
infeasible. To point out this claim we will consider the following example:

Example 3.1.1 We consider an example in which 4 jobs are to be processed by 3 unrelated parallel ma-

chines. The vijs are certain and depend on both machines and jobs as given in Table 3.1.

We consider a forecast instance of pnijs called the nominal instance In (Table 3.2) corresponding to the

demand: Dn = (30, 50, 30, 100).

TABLE 3.1: Matrix of speeds

vij J1 J2 J3 J4

M1 3 2 4 1
M2 3 1 3 2
M3 3 4 4 4

a- In the splitting case: according to LPSplit resolution, Job 1 and Job 3 are entirely processed on

machine 1 for 10 units and 7.5 units respectively, Job 2 is processed for 5.62 units on machine 1 and for 9.69

units on machine 3, and Job 4 is processed for 23.12 units on machine 2 and for 13.44 units on machine 3.

The optimal makespan, which is equal to 23.12 units, features a high utilization of the three machines with
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TABLE 3.2: Nominal Instance

pnij J1 J2 J3 J4

M1 30/3 50/2 30/4 100/1
M2 30/3 50/1 30/3 100/2
M3 30/3 50/4 30/4 100/4

TABLE 3.3: Real instance

prij J1 J2 J3 J4

M1 50/3 30/2 80/4 50/1
M2 50/3 30/1 80/3 50/2
M3 50/3 30/4 80/4 50/4

FIGURE 3.1: An optimal schedule of the nominal instance in the splitting case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M1 J1 J2 J3

M2 J4

M3 J2 J4

a strict load balancing (Figure 3.1). But, under demand uncertainty, the realization of processing times will

be different from the nominal instance. For a real demand given as: Dr = (50, 30, 80, 50), the real instance

Ir of prijs is represented in Table 3.3. In that case, the decision-maker may have two basic strategies:

FIGURE 3.2: An optimal schedule of the real instance in the splitting case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

M1 J3

M2 J1 J3 J4

M3 J2 J4

The first strategy is to adapt the schedule to the new instance Ir by the computation of its corresponding

optimal schedule. Accordingly, the four jobs are to be scheduled as shown in Figure 3.2: Job 1 is entirely

processed on machine 2 for 16.67 units, Job 2 is to be entirely processed on machine 3 for 7.5 units, Job

3 is processed on machine 1 for 19.23 units and on machine 2 for 1.02 units, Job 4 is processed for only

1.53 units on machine 2 and for 11.73 units on machine 3. Nevertheless, this strategy is not stable because

it requires new machine setup and changeover (even if we do not consider explicitly these costs), besides

job handling to make the needed adjustments. The more different the structures of the two schedules are,

the more important the adjustment efforts will be. These syndromes of schedule nervousness, as called by

practitioners, can turn out to be a serious problem under big instances because they generate a considerable

amount of efforts and hidden costs as well as a general loss of confidence in the scheduling function.
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The second strategy is to schedule the real instance according to the optimal nominal schedule. There-

fore, we propose to calculate the machine participation ratios to process jobs according to the optimal

schedule of the nominal instance as given in table of Figure 3.3:
tnij∗
pnij

and then we apply these ratios to

schedule the real instance.

FIGURE 3.3: Schedule of the real instance according to the nominal instance solution in the
splitting case

tnij
pnij

J1 J2 J3 J4

M1 1 0.22 1 0
M2 0 0 0 0.46
M3 0 0.78 0 0.54

Participation ratios

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

M1 J1 J2 J3

M2 J4

M3 J2 J4

Schedule of the real instance

By applying the optimal nominal solution to schedule the real instance Ir we obtain a schedule that

requires a makespan equal to 40.04 time units (Figure 3.3). The generated decision is suboptimal: the

makespan Cmax has increased over 108% time units compared to the optimal makespan of the real scenario

Cr∗
max. Besides the load balancing is altered as the machine M1 is overused while machines M2 and M3 are

more than half schedule time in the idle time.

b- In the preemptive case: The observations are similar to those in the splitting case, i.e. when we

ignore the uncertainty, the optimal preemptive schedule based on the nominal instance become vulnerable

when applied to the real instance.

FIGURE 3.4: An optimal schedule of the nominal instance in the preemptive case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M1 J2

M2 J1 J3

M3 J4

According to the resolution of (LPpmtn), the preemptive optimal schedule of the nominal instance In

can handle all jobs with a makespan equal to 25 time units (see Figure 3.4). As we can observe, for this

particular instance, each job was completely assigned to only one machine without any preemption: Job 2

is processed on machine 1 and Job 4 is processed on machine 3 for 25 units respectively, whereas Job 1

and job 3 are processed on machine 2 for 10 units respectively. Consequently, there is no need to solve the

corresponding preemptive open shop in order to construct the schedule.
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FIGURE 3.5: An optimal schedule of the real instance in the preemptive case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M1 J3

M2 J1 J4

M3 J4 J2 J3

FIGURE 3.6: Schedule of the real instance according to the nominal instance solution in the
preemptive case

tn∗
ij

pnij
J1 J2 J3 J4 ≺

M1 0 1 0 0 J2
M2 1 0 1 0 J1 ≺ J3
M3 0 0 0 1 J4

Participation ratios

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

M1 J2

M2 J1 J3

M3 J4

Schedule of the real instance

If we again consider the real instance of processing times given in (Table 3.3), the two basic strategies

have weakness points. When we totally adapt the schedule to the real instance, we construct an optimal

schedule which is very different from the nominal schedule (see Figure 3.5) under which Job 1 is processed

for 16.67 units on machine 2, Job 2 is processed for 7.5 units on machine 3, Job 3 is processed for 18.32 units

on machine 1 and for 1.66 units on machine 3, and Job 4 is processed for 3.25 units on machine 2 and for

10.75 units on machine 3. The makespan is equal to 20 units. But, as we can observe, the total adaptation

can imply high deviations in terms of assignments, starting times and completion times. Consequently, the

nervousness aspects can be accurate under a totally adaptive strategy in the preemptive case.

When we schedule the real instance based on the permutation and the machine participation ratios to

process jobs according to the optimal schedule of the nominal instance (see Figure 3.6), we notice that the

degradation of the makespan is very significant (see Figure 3.6).

The example shows that a nominal schedule which is determined to be optimal regarding the makespan

criterion prior to its execution can turn to be vulnerable under minor or serious uncertainty. Furthermore,

the calculation of a new solution under each new scenario can also lead to hidden costs due to nervousness

aspects.

The major weakness of the classical scheduling approach, when the processing times are uncertain, is
that the schedules which are optimal with respect to the nominal instance (forecast instance) might be sub-
stantially infeasible or yield poor performance when evaluated relatively to the actual processing times. For
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decision makers that have to face the consequences regardless of the realized instance, schedule infeasibility
or sub-optimality are unacceptable, even though that schedule is the "optimal" one for the nominal scenario.

It is generally admitted that forecast values are usually wrong. Any scheduling algorithm that ignores
this fact, and is focused on the "nominal" instance of forecast processing times, is unacceptable for decision
environments subject to uncertainty. As shown in the example, the schedules which are determined to be
optimal based on the nominal instance can lead to poor performances when applied to the real instance.
Furthermore, the calculation of a new schedule under each new instance does not provide a baseline schedule
and requires adjustment efforts. In light of this, the scheduling approach to develop should be designed to
take into account the uncertainty of processing times.

Stochastic scheduling models adopt a probabilistic viewpoint, treating uncertain processing times as
random variables. Under this scheme, a probability distribution of the processing times should be available
and the scheduling model is formulated with the objective to optimize the expected makespan. However, in
many cases, such a distribution is not available.

When schedulers are confronted with a significant uncertainty of processing times that cannot be approx-
imated with a probability distribution, many authors claimed that non-probabilistic discrete scenarios offer
a good representation of uncertainty (e.g. Kouvelis and Yu (1997), Averbakh (2006), Aissi et al. (2011),
Kasperski et al. (2012), Roy (2010), etc.). As discussed earlier in Chapter 1 and Chapter 2, the discrete
scenarios are suitable in situation of ambiguity when there is a lack of information about the probabilities
and when the schedulers aim to be protected against any potential future. They are widely used to represent
the uncertain processing times in scheduling problems especially when the uncertainty is due to uncertain
demand. Furthermore, many approaches called robust result from the use of discrete scenarios. Under these
approaches, we generally seek for solutions that optimize a global performance instead of seeking for solu-
tions that optimize a local performance as the performance of the decision is evaluated across all the potential
scenarios.

From the foregoing, we assume that the uncertainty of processing times can be represented by a set of
discrete scenarios Ωk = {s1, s2, . . . , sk}. Each scenario s ∈ Ωk represents a potential realization of the
uncertain processing times and captures a situation that might occur. We denote by psij the processing time
of job j on machine i under scenario s, and Cs∗

max the optimal makespan under scenario s. The nominal
scenario is also included in the set Ωk which makes the deterministic formulation only a special case.

Based on the deterministic linear formulation of Rm|Split|Cmax (resp.. Rm|pmtn|Cmax), the un-
certainty of processing times is affecting the data in the equality constraints. Thus, the robust problem is
equivalent to a constraint feasibility problem where the objective is to find the schedule that is feasible under
any scenario as expressed in the constraints Equation 3.10.

m∑
i=1

tij
psij

= 1, j = 1, . . . , n, s = s1, . . . , sk. (3.10)

Under this formulation, the set of solutions may be empty since the equality constraints cannot be insured
for different scenarios.
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To overcome the infeasibility, a first solution consists in adding slack variables in the equality constraints
as suggested in Mulvey et al. (1995). This approach that we call "slack based approach" is explained in
details in the next section.

3.2 Slack based approach under discrete processing time scenarios

Mulvey et al. (1995) suggested a general robust optimization framework for mathematical programs with
continuous variables. This framework integrates a goal programming formulation with a scenario-based
representation of uncertain problem data. The model based on Mulvey’s framework recognizes that it may
not always be possible to get a feasible solution to a problem under all the potential scenarios. Therefore,
the model through the use of error terms and penalty function allows to find a solution that violates the
constraints by the least amount. Its objective is to compute a solution that remains "almost" feasible for
any realization of s: a model robust solution. When we assume a discrete scenario representation of the
processing times, based on Mulvey’s approach, we propose a robust reformulation that admits the violation
of these constraints. For this purpose, we add slack variables in the equality constraints as follows:

m∑
i=1

tij + zs+ij − z
s−
ij

psij
= 1, j = 1, . . . , n, s = s1, . . . , sk (3.11)

We distinguish two kinds of error terms in (3.11):
- The zs+ij express the necessity of a replenishment to reach the processing times required by jobs under

each scenario ( case of under-production).
- The zs−ij compensate an overrun of the processing times under each scenario (case of overproduction).
We control the violations due to the slacks through a weighted penalty function ρ(.):

ρ(.) =
w

k

sk∑
s=s1

Zs
max or ρ(.) = w. max

s∈{s1,...,sk}
Zs
max (3.12)

where Zs
max is the maximal violation induced by the use of slacks under a scenario s, w is the weight of the

penalty and k the number of potential scenarios.
One can choose over different strategies:
- Case 1: Zs

max is the maximal violation over machines computed according to the following constraints:

n∑
j=1

(zs+ij + zs−ij ) ≤ Zs
max, i = 1, . . . ,m, s = s1, . . . , sk, (3.13)

- Case 2: Zs
max is the maximal violation over jobs computed according to the following constraints:

m∑
i=1

(zs+ij + zs−ij ) ≤ Zs
max, j = 1, . . . , n, s = s1, . . . , sk, (3.14)
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- Case 3: Zs
max is the maximal violation over jobs and machines computed according to the following

constraints

zs+ij + zs−ij ≤ Z
s
max, i = 1, . . . ,m, j = 1, . . . , n, s = s1, . . . , sk (3.15)

- Case 4: Zs
max is the total of all violations over jobs and machines computed as

m∑
i=1

n∑
j=1

(zs+ij + zs−ij ) = Zs
max, s = s1, . . . , sk (3.16)

The objective is to: Minimize Cmax + ρ(.) The minimization of the makespan Cmax aims to optimize
the performance of the schedule while the penalty function ρ(.) aims to minimize the violation over all the
potential scenarios (average or max) .

Here, we present some cases of the slack based approach to compute model robust schedules in the case
of the makespan minimization on unrelated parallel machines with splitting (resp.. preemption). We can
propose different formulations.

Formulation 1:

Minimize Cmax + w
|k|

∑k
s=1 Z

s
max (3.17)

Subject to

m∑
i=1

tij + zs+ij − z
s−
ij

pij
= 1, j = 1, . . . , n, s = s1, . . . , sk (3.18)

n∑
j=1

tij − Cmax ≤ 0, i = 1, . . . ,m (3.19)

m∑
i=1

(zs+ij + zs−ij ) ≤ Zs
max, j = 1, . . . , n, s = s1, . . . , sk (3.20)

0 ≤ tij + zs+ij − z
s−
ij , i = 1, . . . ,m, j = 1, . . . , n, s = s1, . . . , sk (3.21)

0 ≤ tij , zs+ij , z
s−
ij , i = 1, . . . ,m, j = 1, . . . , n, s = s1, . . . , sk (3.22)

Formulation 2:

Minimize Cmax + w
|k|

∑k
s=1 Z

s
max (3.23)

Subject to 3.18, 3.19, 3.21, 3.22 and

m∑
i=1

n∑
j=1

(zs+ij + zs−ij ) ≤ Zs
max, s = s1, . . . , sk (3.24)

In the formulations 1 and 2, we minimize the sum of the makespanCmax and the total weighted violation over
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all the scenarios
∑k

s=1 Z
s
max. The slack variables in the constraints (3.18) allow the feasibility of the equality

under all the scenarios. Constraints (3.21) combined with the objective function imply the computation of
non-null matrix T . In the formulation 1, Zs

max is computed as the total violation over jobs under the scenario
s (c.f. constraints (3.20)) while in the formulation 2 it is computed as the total violation by machines and
jobs (c.f. constraints (3.24)). The temporal variables tij and the slack variables zs+ij , zs−ij are positive (3.22).

Formulation 3:

Minimize Cmax + Zmax (3.25)

Subject to 3.18, 3.19, 3.21, 3.22 and

m∑
i=1

n∑
j=1

(zs+ij + zs−ij ) ≤ Zs
max, s = s1, . . . , sk (3.26)

Zs
max ≤ Zmax, s = s1, . . . , sk (3.27)

In the formulation 3, we minimize the sum of the makespan Cmax and the maximal violation over all the
scenarios Zmax. Zmax = maxk

s=1 Z
s
max is computed as the maximal total violation over jobs and machines,

over the scenario s (c.f. constraints (3.26),(3.27)).
In order to extend the formulations to the preemptive case, one should add the constraints of non over-

lapping (Equation 3.8) .
We illustrate the proposed approach through the example initiated in section 3.1.1.

Example 3.2.1 We assume that uncertain processing times are due to uncertain demands. We represent the

uncertainty of demand by 5 potential scenarios corresponding to the future realizations (Table 6.1). The

matrix of job-machine dependant speeds vij is invariant (Table 3.5).

TABLE 3.4: Potential scenar-
ios of demand

p1 p2 p3 p4

s1 30 50 30 100
s2 50 30 80 50
s3 40 50 100 80
s4 35 40 50 70
s5 40 60 100 50
s6 60 50 80 70

TABLE 3.5: Matrix of
speeds

J1 J2 J3 J4

M1 3 2 4 1
M2 3 1 3 2
M3 3 4 4 4

a- In the case of splitting: The resolution of the slack based approach applied to Rm|Split|Cmax gives

the following results. Under formulation 1, for w = 6, the produced quantities according to the robust

schedule are: (48.75, 35, 75, 55) with a makespan equal to 20 units (see Table 3.6). The demand deviations

(%) due to the error terms are represented in Table 3.7. This shows that the over productions and the under

productions are important for all the scenarios except for s2.
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TABLE 3.6: A slack based
schedule based on formula-

tion 1

tij J1 J2 J3 J4

M1 1.25 0 18.75 0
M2 15 0 0 5
M3 0 8.75 0 11.25

TABLE 3.7: Job processing
requirement deviations in the
splitting case based accord-
ing to formulation 1 resolu-

tion

p1 p2 p3 p4

s1 +62.5% -30% +150% -45%
s2 -2.5% +16.6% -6.25% -10%
s3 +21.87% -30% -25% -43.75%
s4 +39.2% -12.5% +50% -21.42%
s5 +21.87% -41.66% -50% +10%
s6 -18.75% -30% -6.25% -21.42%

Under formulation 2, for w = 6, the produced quantities are: (40, 50, 80, 70) with a makespan equal to

23.33 time units (Table 3.8). The produced demand deviations are given in Table 3.9.

TABLE 3.8: A slack based
schedule according formula-

tion 2 resolution

J1 J2 J3 J4

M1 3.33 0 20 0
M2 10 0 0 13.33
M3 0 12.5 0 10.83

TABLE 3.9: Job processing
requirement deviations in the
splitting case based on for-

mulation 2

p1 p2 p3 p4

s1 +33.33% 0% +16.66% -30%
s2 -20% +66.6% 0% +40%
s3 0% 0% -20% -12.5%
s4 +14.28% +25% -60% 0%
s5 0% -16.66% -20% +40%
s6 -33.33% 0% 0% 0%

TABLE 3.10: Model robust solution in the preemptive case based on formulation 2

J1 J2 J3 J4

M1 1.66 1.66 20 0
M2 11.66 0 0 11.66
M3 0 11.66 0 11.66

b- In the case of preemption: For w = 6, the resolution of formulation 1 leads to the same schedule

and the same quantities as in the case of splitting. In contrary, the resolution of formulation 2 leads to an

equivalent solution with a makespan that is also equal to 23.33 units (Table 3.10). This solution is also
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a solution to the case of splitting. The jobs are assigned to the machines with different durations, but the

produced theoretical quantities are the same as in the case of splitting: (40, 50, 80, 70). Consequently, the

over productions and the under productions are the same as those obtained in Table 3.9.

We can notice from the example that the overproduction and the underproduction quantities are important
for all the scenarios. Nevertheless, the penalty function in formulation 2 lead to better results than the penalty
function in formulation 1. The slack based formulations lead to solutions that correspond to scenarios which
are not in the set of the potential realizations.

When the demand is uncertain and its satisfaction is a must, accepting overproduction or underproduc-
tion does not solve the real problem but only a relaxed version of this problem. Therefore, this modelling
approach cannot be used in all activity sectors because overproduction and underproduction are not often
accepted in practice. Ben-Tal et al. (2009) claimed that one should avoid whenever possible using slack
variables in order to ensure the feasibility of the constraints. Therefore, we will present in section 3 another
approach that provides feasible solutions under the discrete processing time scenarios without introducing
slack variables. This approach called artificial scenario solution based approach is a constructive approach
designed for decision-makers interested in using simple heuristics to generate robust solutions.

3.3 Artificial scenario solution based approach under discrete processing
time scenarios

In contrary to the slack based approach, the artificial scenario solution based approach aims to construct a
set of feasible solutions without introducing slack variables.

The artificial scenario solution approach is based on scenario analysis, is a form of projection under
which we evaluate a solution under a scope of possible futures instead of considering a single exact fu-
ture. The uncertainty of processing times is represented by discrete scenarios that reflect the future data
realizations. And, the scope of their related future decisions is observed and evaluated.

3.3.1 The global approach description

The artificial scenario solution based approach is divided into four successive steps as described in algo-
rithm 1.

Algorithm 1: Artificial scenario solution approach
Data:
Ωk: the set of potential scenario.

1 Construct the set of artificial scenarios of processing times Ωa
k from Ωk the set of potential scenarios;

2 Construct the set of feasible solutions based on the artificial scenario solutions;
3 Compute the local performances of the artificial scenario solutions;
4 Compute the robustness measures of the artificial scenario solutions and their ranking;
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In Step 1, from the set of potential scenarios Ωk, we construct a set of artificial scenarios Ωa
k. We consider

scenarios that are commonly used in practice by decision-makers. These artificial scenarios are:

• smax the scenario in which the processing times take the maximal values among all the values of the
potential scenario processing times in Ωk,

• saverage the scenario in which the processing times take the average values among all the values of the
potential scenario processing times in Ωk, it represents the called "forecast" scenario,

• smedian the median scenario in which the processing times are computed by sorting the values of the
potential scenario processing times in Ωk, and picking the middle ones,

• smin the min scenario in which processing times take the minimal values among all the values of the
potential scenario processing times in Ωk,

The term artificial is used to mean that these scenarios do not necessarily belong to the set of potential
scenarios.

The artificial worst-case scenario smax is the scenario in which processing times take the maximal values
among all the values of the potential scenarios. This scenario can inherently provide temporal protection due
to the fact that the processing times are extended, and it can provide flexibility thanks to the offered margins.
But, the worst-case scenario is often viewed as pessimistic.

The average scenario saverage can be used as an alternative scenario to smax since it increases only the
processing times under the average while it reduces the processing times that are over the average. However,
the average values do not reflect the tendency of the distribution. For this reason, we proposed also to
compute the median scenario smedian. The processing times of smedian are values that divide the list of
processing times among Ωk into a list of higher half and a list of lower half. psmedian

ij is found by arranging
all the values from lowest value to highest value and picking the middle one.

smin is the scenario in which the processing times take the minimal processing times values over all
the potential scenarios values. It represents the best-case scenario in opposite to smax. And finally, we
construct random scenarios by picking processing time values on the potential scenario processing times,
and we denote:

• srandom the scenario of randomly picked processing times in Ωk,

The objective is to compare the artificial scenario solutions that are commonly used in practice between
them, and also to compare them to random solutions. For smax solution and smedian solution particularly,
some optimality (or approximation) results are provided in robust scheduling literature (seeAloulou and
Della Croce (2008), Kasperski and Zieliński (2016)). We will verify if these properties can be extended to
the studied problems.

In Steps 2 and 3, we generate a set of feasible solutions based on the artificial scenario solutions, and we
compute their local performances when applied to each potential scenarios s ∈ Ωk.

An artificial scenario solution is composed of two decisions which are the matrix of assignments and the
job permutations on machines. We will distinguish the case of splitting and the case of preemption:
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a- In the case of splitting, for each artificial scenario sa, we solve the deterministic formulation LPSplit

by considering the processing time of the artificial scenario as data entry of the linear program. This leads to
a matrix durations T s∗a . Then, we compute the assignment ratio of each job j to each machine i according to
the considered artificial scenario solution such as:

x
s∗a
ij =

t
s∗a
ij

psaij
, ∀sa ∈ Ωa

k (3.28)

We choose any feasible permutation to construct the optimal schedule. The algorithm 2 gives the example
of smax solution computation under splitting.

Algorithm 2: Computation of the artificial scenario smax solution in the case of splitting
Data:
psmax
ij : processing times under the artificial scenario smax

Result: Xs∗max optimal assignment ratio matrix of smax

1 Solve (LPSplit) by considering the processing times (psmax
ij ) of the scenario smax ;

T smax ← optimal duration matrix of scenario smax;
2 Compute the ratio of participation of each machine i to the realization of a job j under the considered

artificial scenario solution
foreach (i ∈M, j ∈ N) do

x
s∗max
ij ← tsmax

ij

psmax
ij

end
return Xs∗max

Let M be the set of m machines and N the set of n jobs. For each artificial scenario solution, we
calculate the local performances of the potential scenarios under this solution. For this purpose, we schedule
each potential scenario s ∈ Ωk according to the assignment ratios of Xs∗a and then we compute its makespan
under Xs∗a

Cs
max(Xs∗a) = max

i∈M

n∑
j=1

psijx
s∗a
ij , (3.29)

and its regret

Cs
max(Xs∗a)− Cs∗

max (3.30)

where Cs∗
max is the optimal makespan of the potential scenario s.

b- In the case of preemption, for each artificial scenario sa, we solve the deterministic formulation
LPpmtn by considering the processing times of the artificial scenario as data entry of the linear program. We
compute the ratio of participation of each machine i to the realization of a job j (assignment ratios) under
the considered artificial scenario solution as given in (3.28).

The algorithm 3 describes the computation of the artificial scenario smax solution under preemption:
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Algorithm 3: Computation of the artificial scenario smax based solution in the preemptive case
Data:
psmax
ij : processing times under the artificial scenario smax

Result: Xs∗max optimal assignment ratio matrix of smax

1 Solve (LPpmtn) by considering the processing times (psmax
ij ) of the scenario smax ;

T smax ← optimal duration matrix of scenario smax;
2 Compute the ratio of participation of each machine i to the realization of a job j under the considered

artificial scenario solution
foreach (i ∈M, j ∈ N) do

xsmax
ij ← tsmax

ij

psmax
ij

end
return Xs∗max

As the sequence is part of the decision in the preemptive case, we solve the open shop corresponding to
T s∗a according to (Gonzalez and Sahni (1976)). We then deduce a permutation σs

∗
a and we denote:

σ
s∗a
i (j) = j′, if j is scheduled before j′ on machine i. (3.31)

We could schedule each potential scenario s ∈ Ωk according to the optimal schedule of sa, i.e. we
assign the jobs according to the assignment ratio solution Xs∗a and we sequence the jobs with respect to the
permutation σs

∗
a . To correct the jobs overlapping, we use the right-shift algorithm introduced in Abumaizar

and Svestka (1997). The second alternative is to compute the durations of the potential scenarios according
to the artificial scenario assignment ratios and then construct for each scenario a feasible sequence by solving
a preemptive open shop. The sequence is not necessary the same for all scenarios.

A feasible schedule for each scenario is then obtained: - psijx
s∗a
ij is the sub-job j duration in machine i

under scenario s according to sa assignment,
- ssij(X

s∗a) is the starting time of job j in machine i under scenario s.
We compute the maximal completion time of scenario s such as:

Cs
max(Xs∗a) = max

i∈M
max
j∈N

(ssij(X
s∗a) + psijx

s∗a
ij ). (3.32)

Finally, in Step 4, we evaluate the robustness of the computed solutions under the set of discrete scenarios
Ωk. We use the classical robustness measures which are the worst-case makespan and the maximal regret
under both splitting and preemption.

The worst-case makespan of the artificial scenario solution Xs∗a across all the scenarios of Ωk measures
the maximal cost of Xs∗a . It is defined as

max
s∈Ωk

{Cs
max(Xs∗a)}, (3.33)
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And the maximal regret of the artificial scenario solution Xs∗a across all the scenarios of Ωk measures
the maximal deviation from the optimal makespans of the potential scenarios. It is defined as:

max
s∈Ωk

{Cs
max(Xs∗a)− Cs∗

max}, (3.34)

Let us consider the same example as given in the previous section to implement the artificial scenario
solution based approach under both splitting and preemption:

Example 3.3.1 In the example 3.2.1, we represented the uncertainty of demands by 6 different scenarios cor-

responding to the future realizations of demands (Table 6.1), the matrix of speeds vij is invariant (Table 3.5).

TABLE 3.11: Optimal makespans of the potential scenarios in the splitting case

s1 s2 s3 s4 s5 s6

Cs∗
max 23.12 19.23 25.83 19.79 23.46 25.0

Step 1: From the set of potential scenarios Ω6, we construct the set of artificial scenarios: we represent

in Table 3.12 the job processing requirements (demands) of the artificial scenarios. The matrix of speeds is

invariant.

TABLE 3.12: Job processing requirements of the artificial scenarios

Ωa
k p1 p2 p3 p4

smax 60 60 100 100
saverage 42.5 46.66 73.33 70
smedian 40 50 80 70
smin 35 30 30 50
srandom 40 60 100 50

a- In the splitting case:
Step 2: For each artificial scenario, we solve using CPLEX the corresponding LPSplit model to compute

the optimal durations and then we compute the assignment ratios. These decisions are reported in Table 3.13.

Step 3: We schedule the potential scenarios according to the artificial scenario schedules (see C and

Appendix C). We compute the local performances: the makespan and the regret of each potential scenario

scheduled according to the artificial scenario schedule (Table 3.14).

To compute the regrets, we compute the optimal makespans of the potential scenarios:

Step 4: We compute the global performances, i.e. the worst-case makespans and the maximal regrets

over the potential scenarios (Table 3.15). In this example, the ranking of the artificial scenario solutions

according to the global performances shows that if the decision-maker aims to minimize the worst-case



3.3. Artificial scenario solution based approach under discrete processing time scenarios 67

TABLE 3.13: Optimal schedules of the artificial scenarios in the splitting case: durations
(ratios)

Xmax J1 J2 J3 J4

M1 6.25 (0.31) 0.0 (0.0) 25.0 (1.0) 0.0 (0.0)
M2 13.75 (0.69) 0.0 (0.0) 0.0 (0.0) 17.5 (0.35)
M3 0.0 (0.0) 15.0 (1.0) 0.0 (0.0) 16.25 (0.65)

Xaverage J1 J2 J3 J4

M1 4.37 (0.31) 0.0 (0.0) 18.33 (1.0) 0.0 (0.0)
M2 9.79 (0.69) 0.0 (0.0) 0.0 (0.0) 12.91 (0.37)
M3 0.0 (0.0) 11.66 (1.0) 0.0 (0.0) 11.04 (0.63)

Xmedian J1 J2 J3 J4

M1 3.33 (0.25) 0.0 (0.0) 20.0 (1.0) 0.0 (0.0)
M2 10.0 (0.75) 0.0 (0.0) 0.0 (0.0) 13.33 (0.38)
M3 0.0 (0.0) 12.5 (1.0) 0.0 (0.0) 10.83(0.62)

Xmin J1 J2 J3 J4

M1 6.9 (0.69) 0.0 (0.0) 7.5 (1.0) 0.0 (0.0)
M2 3.1 (0.31) 0.0 (0.0) 0.0 (0.0) 11.25 (0.45)
M3 0.0 (0.0) 7.5 (1.0) 0.0 (0.0) 6.87 (0.55)

Xrandom J1 J2 J3 J4

M1 0.0 (0.0) 0.0 (0.0) 23.46 (0.93) 0.0 (0.0)
M2 13.33 (1.0) 0.0 (0.0) 2.05 (0.07) 8.07 (0.33)
M3 0.0 (0.0) 15.0 (1.0) 0.0 (0.0) 8.46 (0.67)

TABLE 3.14: Local performances of the artificial scenario solutions in the splitting case

Measures s1 s2 s3 s4 s5 s6

Xmax Makespan 28.75 25.20 29.16 21.37 29.16 26.25
Regret 5.62 5.97 3.33 1.58 5.701 1.25

Xaverage Makespan 28.27 25.14 29.11 21.04 29.11 26.74
Regret 5.14 5.91 3.28 1.25 5.65 1.74

Xmedian Makespan 27.97 24.16 28.33 22.08 28.33 28.33
Regret 4.85 4.93 2.49 2.29 4.87 3.33

Xmin Makespan 26.25 31.456 34.16 20.52 34.16 33.75
Regret 3.12 12.22 8.33 0.72 10.70 8.75

Xrandom Makespan 29.42 26.38 28.30 24 23.46 32.95
Regret 6.3 7.15 2.47 8.51 0 7.95

makespan or the regret, then the solution to choose is the artificial scenario smedian solution (Xmedian).



68 Chapter 3. Toward a robust schedule on unrelated parallel machines under uncertain processing times

TABLE 3.15: Robustness measures of the artificial scenario solutions in the splitting case

Artificial scenario solution Worst-case makespan Maximal regret

Xmax 29.16 5.97
Xaverage 29.11 5.91
Xmedian 28.33 4.93
Xmin 34.16 12.22
Xrandom 32.95 8.51

But, we can notice that the gap between the global performances of smedian, saverage and smax is relatively

low. We also compare the global performances of the robust artificial solutions and the optimal solution

of the nominal scenario. The robustness measures of the nominal scenario solution given Table 3.16 show

that the worst-case makespan and regret of snominal are superior to those provided by the robust artificial

scenario solutions.

TABLE 3.16: Local performances of the nominal scenario solution in the splitting case

Xs1 s1 s2 s3 s4 s5 s6

Makespan 23.12 40.04 43.95 28.66 45.08 45.62
Regret 0.0 20.81 18.12 8.875 21.625 20.62

See the schedules in Appendix C.
b- In the preemptive case:
Similarly, we apply the artificial scenario solution based approach to the preemptive problemRm|pmtn|Cmax

under uncertain processing times. Contrarily to theRm|Split|Cmax, the preemption requires to compute the
sequence. We consider the same data example, as used in the previous section.

Example 3.3.2 We have 6 scenarios of processing requirement and an invariant matrix of speed.

TABLE 3.17: Optimal makespans of the potential scenarios in the preemptive case

s1 s2 s3 s4 s5 s6

Cs∗
max 25.0 20.0 25.88 20.0 25.0 25.0

Step 1: The set of the artificial scenarios is the same as given in Table 3.12.

Step 2: For each artificial scenario, we solve using CPLEX the corresponding LPpmtn model to compute

the optimal durations. We construct an optimal permutation of each artificial scenario solution by solving

the subsequent preemptive open shop.

Step 3 and Step 4: We use the ratios and the permutation of the potential scenarios (see Table 3.18) to

schedule the potential scenarios according to the artificial scenario schedule (see Appendix D). Then, we

compute the local performances (see Table 3.19) and the robustness measures of each artificial scenario

solution over the set of potential scenarios (see Table 3.20). As we can notice, the ranking of the artificial
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TABLE 3.18: Optimal schedules of the artificial scenarios in the preemptive case: durations
(ratios) and permutation

smax J1 J2 J3 J4 ≺

M1 1.25 (0.06) 4.5 (0.16) 25.0 (1.0) 0.0 (0.0) J1 ≺ J3 ≺ J2

M2 18.75 (0.94) 0.0 (0.0) 0.0 (0.0) 12.5 (0.25) J4 ≺ J1

M3 0.0 (0.0) 12.50 (0.83) 0.0 (0.0) 18.75 (0.75) J2 ≺ J4

saverage J1 J2 J3 J4 ≺

M1 1.87 (0.13) 2.50 (0.11) 18.33 (1.0) 0.0 (0.0) J1 ≺ J3 ≺ J2

M2 12.22 (0.87) 0.0 (0.0) 0.0 (0.0) 10.45 (0.30) J4 ≺ J1

M3 0.0 (0.0) 10.41 (0.89) 0.0 (0.0) 12.29 (0.70) J2 ≺ J4

smedian J1 J2 J3 J4 ≺

M1 1.66(0.12) 1.66 (0.07) 20.0 (1.0) 0.0 (0.0) J2 ≺ J3 ≺ J1

M2 11.66 (0.88) 0.0 (0.0) 0.0 (0.0) 11.66 (0.33) J1 ≺ J4

M3 0.0 (0.0) 11.66 (0.93) 0.0 (0.0) 11.66 (0.67) J4 ≺ J2

smin J1 J2 J3 J4 ≺

M1 0.0 (0.0) 7.35 (0.50) 7.06 (0.94) 0.0 (0.0) J2 ≺ J3

M2 10.0 (1.0) 0.0 (0.0) 0.59 (0.06) 3.82 (0.15) J3 ≺ J1 ≺ J4

M3 0.0 (0.0) 3.82 (0.50) 0.0 (0.0) 10.59 (0.84) J2 ≺ J4

srandom J1 J2 J3 J4 ≺

M1 0.0 (0.0) 0.0 (0.0) 25.0 (1.0) 0.0 (0.0) J3

M2 13.33 (1.0) 0.0 (0.0) 0.0 (0.00) 5.0 (0.2) J1 ≺ J4

M3 0.0 (0.0) 15.0 (1) 0.0 (0.0) 10.0 (0.8) J4 ≺ J2

TABLE 3.19: Local performances of the artificial scenario solutions in the splitting case

Measures s1 s2 s3 s4 s5 s6

Xmax Makespan 31.25 23.5 30 22 30.83 27.5
Regret 6.25 3.5 4.12 2 5.83 2.5

Xaverage Makespan 32.5 23.81 29.44 22.9 30 27.9
Regret 7.5 3.81 3.56 2.9 5 2.9

Xmedian Makespan 33.3 25 28.33 23.33 28.66 31.66
Regret 8.3 5 2.45 3.33 3.66 6.66

Xmin Makespan 35.19 27.73 37.7 25.75 40.2 32.65
Regret 10.19 7.73 11.82 5.75 15.2 7.65

Xrandom Makespan 32.5 21.66 28.5 24 25 27
Regret 7.5 1.66 2.62 4 0 2

scenario solutions according to the robustness measures shows that for the decision-maker who aims to
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TABLE 3.20: Robustness measures of the artificial scenario solutions in the preemptive case

Artificial scenario solution Worst-case makespan Maximal regret

Xmax 31.25 6.25
Xaverage 32.5 7.5
Xmedian 33.3 8.3
Xmin 40.02 10.19
Xrandom 32.5 7.5

TABLE 3.21: Local performances of the nominal scenario solution in the preemptive case

Xs1 s1 s2 s3 s4 s5 s6

Makespan 25 43.33 46.67 28.34 46.67 46.67
Regret 0 23.33 20.78 8.34 21.67 21.67

minimize the worst-case makespan and the maximal regret, the solution to choose is the artificial scenario

smax solution. We notice a good improvement compared to the robustness measures of snominal . In fact, the

worst-case makespan of the nominal scenario is equal to 46.8 units (see Table 3.21).
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3.4 Computational results

3.4.1 Data generator and test protocol

In the numerical experiments, we consider different problem sizes (Table 3.22):

TABLE 3.22: Instance size generation

small size medium size high size
low variety (m=3,n=10) (m=7,n=10) (m=15,n=15)
medium variety (m=3,n=50) (m=7,n=50) (m=15,n=50)
high variety (m=3,n=200) (m=7,n=200) (m=15,n=200)

For each instance, a nominal scenario of processing times pnij is randomly generated using a uniform
distribution in the interval I=[5, 50]. Around this nominal scenario, we generate the potential scenarios
according to the following formula:

psij = pnij(1 + ζij) ∀s, ∀i,∀j (3.35)

Where ζij is a random variable that reflects the variation. According to ζij we distinguish three uncer-
tainty degree:

• for d = 1 we have a low uncertainty degree where the potential scenarios vary between −10% and
10% around the nominal scenario: ζij ∼ U[−0.1,0.1],

• for d = 2 we have a medium uncertainty degree where the potential scenarios vary between −50%

and 50% around the nominal scenario: ζij ∼ U[−0.5,0.5],

• and for d = 3 we have a high uncertainty degree where the potential scenarios vary between −100%

and 100% around the nominal scenario: ζij ∼ U[−1,1].

The artificial scenario based approach algorithm is coded in Java using ILOG CPLEX Concert to
solve the mathematical formulations LPSplit and LPpmtn. We have generated 1000 replications of nominal
scenarios for each combination of m, n. We have varied the number of scenarios around the nominal one
from 1 to 100 scenarios. Over the computational results, we use as robustness cost indicator the worst-
case makespan deviation from the nominal makespan (Equation 3.36). This indicator allows to measure the
rate of increase in the makespan when we opt for a robust solution X instead of a classical one, and it is
computed below. Cs∗n

max is the optimal makespan of a nominal instance when we suppose that the problem is
not affected by uncertainty of processing times.

maxs∈Ωk
{Cs

max(X)} − Cs∗n
max

C
s∗n
max

, (3.36)

In all the reported figures, the horizontal axis represents the number of potential scenarios and the vertical
axis represents the mean values of the worst-case makespan robustness cost (the standard deviations are
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negligible). Each curve is relative to an artificial scenario solution. We report the results according to the
three uncertainty degrees (d = 1, 2, 3). We distinguish the case of splitting and the case of preemption.

3.4.2 Robustness cost of the artificial scenario solution evaluation

Artificial scenario solution robustness cost evaluation in the case of splitting

In the case of splitting, under low uncertainty degree, the results show that the worst-case makespan robust-
ness cost of all the artificial scenario solutions follow a logarithmic trend line (e.g. Figure 3.7 and Figure 3.8).
For all the curves, the R-squared value are superior to 0.95, which is a good fit of the line to the data.

The analytic equation of the logarithmic trend line is given as:

y = b.ln(x) + b0 (3.37)

where y is the worst-case makespan robustness cost and x is the number of potential scenarios considered
besides the nominal one. The interpretation of the coefficients is as follows. When we add the first potential
scenario to the nominal one (x = 1), the worst-case makespan robustness cost is equal to b0. Thus, b0 can be
considered as the initial robustness cost: when we cover a scenario besides the nominal one, the makespan
increase by b0% compared to the case under which the processing times are certain.

dy

dx
=
b

x
(3.38)

Thus,

b =
dy
dx
x

(3.39)

i.e
b

100
=

dy
100dx

x

(3.40)

If the number of scenarios increases with one percent (dxx = 1%), then the robustness cost will increase with
b

100 . Thus, b can be considered as the increase rate: Each percent change in x is associated with a change of
0.01b in y.

In small size workshops under small variety of jobs (Figure 3.7 graph a. and table d), the robustness
costs are comprised between 3.5% and 8%. The logarithmic functions of the artificial solutions (Xaverage

and Xmedian) have very similar coefficients: around 3.7% as initial robustness cost and around 0.9% as an
increase rate. Xmax initial robustness cost is slightly inferior to 3.3% but its increase rate is around 1%.
Xmin has the highest initial robustness cost 4.77% but the lowest increase rate 0.62%.

When we increase the number of jobs, both the initial robustness costs and the increase rates de-
crease. For instance, under medium job variety (Figure 3.7 graphic b. and table d.), the robustness costs are
comprised between 0.5% and 3.5%. The initial robustness costs are around 0.5% and the maximal rate of
increase is equal to 0.63% and under high job variety (Figure 3.7 graph c. and table d.), the robustness costs
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FIGURE 3.7: Artificial scenario solution worst-case makespans in the splitting case: small
size workshops under low uncertainty
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c. (m=3,n=200,d=1)

m=3 n y R2

Xmax

10 0.99ln(x) + 3.37 0.97

50 0.58ln(x) + 0.49 0.97

200 0.14ln(x) + 0.11 0.97

Xaverage

10 0.93ln(x) + 3.76 0.96

50 0.62ln(x) + 0.4148 0.96

200 0.14ln(x) + 0.08 0.98

Xmedian

10 0.93ln(x) + 3.74 0.98

50 0.63ln(x) + 0.51 0.97

200 0.11ln(x) + 0.12 0.96

Xmin

10 0.62ln(x) + 4.77 0.96

50 0.63ln(x) + 0.57 0.97

200 0.11ln(x) + 0.12 0.96

d. logarithmic trends

are comprised between 0.12% and 0.8%, the initial robustness costs are around 0.1% and the rate of increase
are also around 0.1%.

When we increase the number of machines, the initial robustness costs increase, but the increase is
small. For instance, in medium size workshops under small job variety (Figure 3.8 graphic a. and table d.),
the robustness costs are comprised between 4.8% and 12%. Xmax is the most robust while Xmedian is the
least robust. The initial robustness cost of Xmax equals 4.8% and its increase rate is small (0.68%). The
initial robustness cost of Xmedian equals 6.8% and its increase rate is small (0.98%). Xaverage robustness
cost gets close to Xmax robustness cost as the number of scenarios increases. The initial robustness cost
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FIGURE 3.8: Artificial scenario solution worst-case makespans in the splitting case: medium
size workshops under low uncertainty
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c. (m=7,n=200,d=1)

m=7 n y R2

Xmax

10 0.68ln(x) + 4.82 0.97

50 0.8ln(x) + 2 0.963

200 0.38ln(x) + 0.54 0.96

Xaverage

10 0.60ln(x) + 6.47 0.96
50 0.53ln(x) + 2.90 0.96

200 0.37ln(x) + 0.51 0.97

Xmedian

10 0.98ln(x) + 6.80 0.97

50 0.65ln(x) + 3.80 0.97

200 0.35ln(x) + 0.72 0.96

Xmin

10 0.43ln(x) + 7.77 0.96

50 0.42ln(x) + 3.00 0.99

200 0.37ln(x) + 0.62 0.98

d. logarithmic trends

of Xmin equals 7.7% and its increase rate is very small (0.43%). When we increase the number of jobs
(Figure 3.8 graphics b. c. and table d.), once again both the initial robustness costs and the increase rates of
the artificial scenario solutions decrease. The solution ranking according to the robustness cost is the same.

When we increase the degree of uncertainty, the robustness costs highly increase.
Under medium degree of uncertainty, we observe an important increase in which concern both the initial

robustness cost and the increase rate of all the artificial scenario solution logarithmic trend lines. Xmin is
clearly the less robust, its robustness cost become more significant as the job variety become important.
For instance, in small size workshops under low job variety (Figure 3.9 graphic a. and table d.), the initial
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FIGURE 3.9: Artificial scenario solution worst-case makespans in the splitting case: small
size workshops under medium uncertainty
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10 4.69ln(x) + 18.22 0.98

50 2.85ln(x) + 7.98 0.96

200 1.12ln(x) + 4.71 0.97

Xaverage

10 4.93ln(x) + 17.68 0.95

50 2.85ln(x) + 8.03 0.96

200 1.27ln(x) + 3.90 0.97

Xmedian

10 4.63ln(x) + 19.26 0.96

50 2.86ln(x) + 9.07 0.97

200 1.16ln(x) + 4.35 0.96

Xmin

10 3.51ln(x) + 23.45 0.96

50 2.74ln(x) + 10.22 0.97

200 1.50ln(x) + 4.49 0.98

d. logarithmic trends

robustness cost of Xmin is equal to 23% which represents a huge increase compared with the case of low
uncertainty degree (more than five times more expensive) and the increase rate is equal to 3.5%. Xmax,
Xaverage and Xmedian solutions have closest trend lines. Their initial robustness cost is around 18.22%

(more than five times more expensive) and their increase rate is around 5%.
The impact of the number of machines and the number of jobs increasing is still the same (e.g. Figure 3.9

graphic b. and Figure 3.10).
Under high uncertainty degree, the robustness cost of Xmax, Xaverage and Xmedian are still following

logarithmic trend lines. The increase in both the initial robustness cost and the increase rate of Xmax,
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FIGURE 3.10: Artificial scenario solution worst-case makespans under splitting: medium
size workshops under medium uncertainty
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Xaverage

10 3.43ln(x) + 34.98 0.96
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10 2.50ln(x) + 41 0.96
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Xmin

10 1.50ln(x) + 44 0.95
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d. logarithmic trends

Xaverage and Xmedian is huge. For instance, in small size workshops under small job variety (Figure 3.11
graphic a. and table d.), the initial robustness cost of Xmax, Xmedian and Xaverage is around 40% (the
robustness cost is 10 times more expensive compared to low uncertainty). The increase rates have also
increased: around 10% for Xmax and Xmedian and around 9.2% for Xaverage.
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FIGURE 3.11: Artificial scenario solution worst-case makespans under splitting: small size
workshops under high uncertainty
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m=3 n y R2

Xmax

10 9.86ln(x) + 40.27 0.97

50 5.59ln(x) + 18.89 0.97
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Xaverage

10 9.27ln(x) + 41.60 0.96
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200 2.86ln(x) + 8.96 0.96

Xmedian

10 10.21ln(x) + 40.28 0.97

50 5.64ln(x) + 18.78 0.96

200 2.75ln(x) + 8.33 0.97

Xmin

10 -0.03x2 + 7.8x+69.1 0.99

50 -0.03x2 + 7.3x + 29.6 0.96

200 -0.03x2 + 6.4x + 35.07 0.97

d. logarithmic trends

Under high uncertainty degree particularly, the robustness cost of Xmin follows a polynomial trend
line instead of logarithmic trend line in the tested interval of scenario numbers, we approximate its trend
line by a second degree polynomial function when x ∈ [1, 100]:

y = a2x
2 + a1x+ a0 i.e.

dy

dx
= 2a2x+ a1 (3.41)

This means the variation of the robustness cost y is linear according to the number of scenarios x. This



78 Chapter 3. Toward a robust schedule on unrelated parallel machines under uncertain processing times

FIGURE 3.12: Artificial scenario solution worst-case makespans under splitting: medium
size workshops under high uncertainty
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10 9.43ln(x) + 55.75 0.97

50 7.87ln(x) + 30.14 0.98
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Xaverage

10 4.23ln(x) + 82.39 0.96

50 7.97ln(x) + 29.83 0.99

200 4.58ln(x) + 15.89 0.96

Xmedian

10 2.78ln(x) + 95.70 0.96

50 7.76ln(x) + 32.47 0.97

200 4.32ln(x) + 15.28 0.96

Xmin

10 -0.1x2 + 30.1x + 259.4 0.99

50 -0.1x2 + 24.7x + 127.0 0.96

200 -0.1x2 + 20.9x + 80.6 0.96

d. logarithmic trends

tendency could be explained by the fact that when the number of scenarios increases, the minimal process-
ing times over the scenarios does not increase, in contrary they are more subject to decrease. Under high
uncertainty degree, as the number of scenarios increases, the difference between smin and the worst-case
scenario that leads the worst-case makespan will be important. Consequently, and contrarily to Xmax which
the solution of the upper extreme scenario, the robustness of Xmin will highly decrease and consequently,
its robustness cost will increase. The trend line increase will continue until we reach the minimum scenario
and cover the worst-case scenario over all the potential scenarios that could be generated.

Under high uncertainty degree, we also notice that when we increase the number of jobs, the robustness
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costs of the artificial scenario solutions decrease slightly. However, they increase very significantly as the
number of machines increases (Figure 3.12): the increasing tendencies are more accurate under high un-
certainty than the decreasing tendencies. The computational tests in high size workshops lead to the same
conclusions (see Appendix E).

Artificial scenario solution robustness cost evaluation in the case of preemption

FIGURE 3.13: Artificial scenario solution worst-case makespans in the preemptive case:
small size workshops under low uncertainty
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c. (m=3,n=200,d=1)

m=3 n y R2

Xmax

10 1.02ln(x)+4.2 0.97

50 0.69ln(x) + 0.88 0.97

200 0.16ln(x) + 0.24 0.975

Xaverage

10 1.16ln(x) + 4.35 0.954

50 0.77ln(x) + 0.98 0.966

200 0.18ln(x) + 0.37 0.958

Xmedian

10 1.19ln(x) + 4.65 0.968

50 0.80ln(x) + 1.09 0.973

200 0.17ln(x) + 0.42 0.956

Xmin

10 1.22ln(x) + 5 0.968

50 0.83ln(x) + 1.19 0.973

200 0.15ln(x) + 0.62 0.956

d. logarithmic trends

In this section, we report the computational results in the preemptive case. We remark that the preemp-
tive case shares common properties with the splitting case concerning the evolution of the robustness costs
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according to the number of scenarios, the number of jobs, the number of machines and the uncertainty de-
grees. The robustness costs of the artificial scenario solutions also follow a logarithmic trend line under low
and medium uncertainty degrees (see Figure 3.13, Figure 3.14).

FIGURE 3.14: Artificial scenario solution worst-case makespans in the preemptive case:
medium size workshops under low uncertainty
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c. (m=7,n=200,d=1)

m=7 n y R2

Xmax

10 1.11ln(x) + 7.2 0.967

50 0.92ln(x) + 3.14 0.963

200 0.51ln(x) + 0.81 0.969

Xaverage

10 1.14ln(x) + 8.14 0.964
50 0.83ln(x) + 4.59 0.962

200 0.53ln(x) + 1.25 0.974

Xmedian

10 1.25ln(x) + 8.3 0.954

50 1.2ln(x) + 4.76 0.975

200 0.60ln(x) + 1.52 0.966

Xmin

10 1.63ln(x) + 9.1 0.962

50 1.28ln(x) + 4.82 0.979

200 0.62ln(x) + 1.5 0.968

d. logarithmic trends

The robustness costs increase as the number of machines increases and decrease as the number of jobs
increases. But we notice a major difference compared to the splitting case: overall, Xmax is the most robust
andXmin is the less robust. Moreover, the robustness costs are slightly more important compared to the case
of splitting. For instances:

For instance, under low uncertainty degree in small size workshops under small job variety (Figure 3.13
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graphic a. and table d.), the robustness costs of the artificial scenario solutions are comprised between 4.2%

and 11%. The initial robustness cost of Xmax which is the most robust is equal to 4.2% and its increase rate
is equal to 1%. Xmin is the less robust, its initial robustness cost is equal to 5% and its increase rate is equal
to 1.2%. When we increase the number of jobs, both the initial robustness costs and the increase rates
decrease. Under medium job variety Figure 3.13 graphic b. and table d.), the robustness costs of the artificial
scenario solutions are comprised between 1.2% and 4.8% i.e. 3.5 times less expensive.

When we increase the numbers of machines, we notice an important increase in the robustness cost.
And this increase is also significant compared to the splitting case. For instance in medium size workshops
under small job variety Figure 3.14 graphic a. and table d.), the robustness costs are comprised between 13%

and 23%.
Under medium degree of uncertainty, in small size workshops under low job variety (Figure E.2 graphic

a. and table d.), the robustness cost of Xmax is comprised between 21.18% and 42% while the robustness
costs of the other solutions are comprised between 23% and 110%. The initial robustness cost of Xmax is
equal to 21.18% and its increase rate is equal to 15.21%. The initial robustness cost of Xaverage is equal to
23% and its increase rate is equal to 15.60%. The initial robustness cost of Xmedian is equal to 27.18% and
its increase rate is equal to 17.25%. The initial robustness cost of Xmin is equal to 28.45% and its increase
rate is equal to 1.69%.

Finally, under high uncertainty degree, the robustness cost of Xmax, Xaverage and Xmedian, like in the
splitting case, still follow a logarithmic trend lines while the robustness cost of Xmin follow a polynomial
trend line exactly like in the case of splitting. For example, in small size workshops under small job variety
(Figure 3.15 graphic a. and table d.), the worst-case makespan deviations of Xmax, Xmedian and Xaverage is
between 44% and 53%. The initial robustness cost of Xmax is equal to 44.31% and its increase rate is equal
to 11.23%. The initial robustness cost ofXaverage is equal to 45.56% and its increase rate is equal to 12.57%

and the initial robustness cost of Xmedian is equal to 53% and its increase rate is equal to 13.24%. When we
increase the number of job, the robustness cost decreases. Under medium job variety (Figure 3.15 graphic
b. and table d.), the initial robustness cost of Xmax and Xaverage is around 24% while the initial robustness
cost of Xmedian is equal to 26.45%. The increase rate is equal to 11.43% for Xmax, 12.13% for Xaverage,
and 13.45% for Xmedian. Under high job variety (Figure 3.15 graphic c. and table d.), the initial robustness
cost of Xmax is around 12% while the initial robustness cost of Xaverage and Xmedian is around 14%. The
increase rate is equal to 5.5% for Xmax and 6.73% for Xaverage, and its around 6.85% for Xmedian. The
computational tests in high size workshops lead to the same conclusions (see Appendix E).



82 Chapter 3. Toward a robust schedule on unrelated parallel machines under uncertain processing times

FIGURE 3.15: Artificial scenario solution worst-case makespans in the preemptive case:
small size workshops under high uncertainty

  

R
e
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

%
)

0

200

400

600

800

  

0 20 40 60 80 100

X-max

X-average

X-median

X-min

a. (m=3,n=10,d=3)

  

R
e
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

%
)

0

200

400

600

800

  

0 20 40 60 80 100

X-max

X-average

X-median

X-min

b. (m=3,n=50,d=3)

  

R
e
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

%
)

0

100

200

300

400

500

600

  

0 20 40 60 80 100

X-max

X-average

X-median

X-min

c. (m=3,n=200,d=3)

m=3 n y R2

Xmax

10 11.23ln(x) + 44.31 0.978

50 11.43ln(x) + 24.05 0.978

200 5.5ln(x) +13.2 0.973

Xaverage

10 12.57ln(x) + 45.56 0.950

50 12.13ln(x) + 24.44 0.971

200 6.73ln(x) +13.08 0.956

Xmedian

10 13.24ln(x) + 53 0.954

50 13.45ln(x) + 26.45 0.956

200 6.85ln(x) +13 0.952

Xmin

10 -0.02x2 + 8.4x+72 0.994

50 -0.03x2 + 8.67x + 35.16 0.956

200 -0.02x2 + 7.48x + 29.07 0.952

d. line trend functions

3.4.3 Results discussion and analysis

From the computational results, we can deduce that the robustness cost of the robust artificial scenario
solutions increases as the number of scenarios increases or the degree of uncertainty increases. Indeed,
when we need to cover more potential scenarios, we need to pay additional cost to be protected against
uncertainty. But, as it was shown in the results, most of the robust artificial solutions follow a logarithmic
trend line which means that the robustness cost increases quickly when we cover the first potential scenarios
besides the nominal one (the initial robustness cost) then for each additional scenario, we pay a marginal
cost.
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Under small, medium and high uncertainty degree, Xmax, Xaverage and Xmedian follow logarithmic
trend lines. Their robustness costs increase as the degree of uncertainty increases. Both the initial robustness
cost and the increase rate are concerned by a such increase and this can be explained by the fact that the
scenarios become very different.

In which concerns Xmin, we observe that this solution also follows logarithmic trend lines under small
and medium uncertainty degrees. However, under high uncertainty degree, the trend line of Xmin is no
longer logarithmic but it is polynomial for the considered interval of scenario numbers. As explained in the
previous sections, the polynomial tendency could be explained by the fact that when the number of scenarios
increase, the minimal processing times over the scenarios does not increase, in contrary they are more subject
to decrease. As the number of scenarios that belongs to high uncertainty degree increase, the difference
between smin and the worst-case scenario over the set of scenarios becomes important. Consequently, the
ability of Xmin to withstand the worst-case scenario is small because when constructing smin, we do not
provide any temporal margin. Consequently, Xmin do not absorb the variations which lead to a robustness
cost that highly increases.

Furthermore, we observed that the robustness cost of the solutions increases as the number of machines
increases and decreases as the number of jobs increases. This tendency can be related to the performance
of the nominal solution more than the performance of the robust solutions. Indeed, when the number of
machines is important, the optimization in the deterministic case of the nominal scenario can lead to a small
makespan value which makes the deviation between this one and the worst-case makespan very important
and consequently, it increases the robustness cost. But when the number of jobs is important while the
number of machines is small, the optimization in the deterministic case of the nominal scenario can lead to
an important makespan value which make the deviation between this one and the worst-case makespan very
small and consequently it decreases the robustness cost which makes the robust solutions more interesting.

In the case of splitting under small and medium uncertainty degrees, the robust scenario solutions Xmax,
Xaverage, Xmedian and Xmin lead to similar robustness costs except when the number of jobs is close to
the number of machines. Under this special case, Xmax solution is clearly more robust. And under high
uncertainty degree, the robustness cost of Xmin is extremely high.

Contrarily to the splitting case, in the preemptive case, the artificial scenario solution Xmax is more
robust than the other artificial scenario solutions, followed by Xaverage and Xmedian, while Xmin solution is
the least robust. This ranking is the same for all problem sizes and under all the uncertainty degrees. Besides,
the artificial scenario solutions follow the same trend lines as in the splitting case but their initial robustness
costs and their increase rates are more important. This increase is due to the non-overlapping constraints
that induces idle times under the preemptive case. Moreover, the non-preemptive constraints allow to Xmax,
which offers temporal protection, to perform better than the other robust solutions.

Conclusion

In this chapter, we have considered the makespan minimization on parallel machines under both splitting
and preemption under uncertain processing times. We have shown first that the optimal solutions computed
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based on the nominal scenario leads to infeasible schedules, or schedules with poor performance when the
processing times are uncertain. We then proposed a preliminary approach that aims to enforce the feasibil-
ity of the schedule under different scenarios by tolerating the violations of some processing requirements.
Slack variables are used to compensate a such a loss. However, the results show that under this approach
the overproduction or the shortage are very important. Consequently, additional costs are needed to make
the adjustments for all the scenarios. To avoid such efforts, we have proposed an artificial scenario based
approach that does not require the slacks.

Under this approach, we have constructed a set of feasible solutions based on a set of artificial scenarios.
Then, we have chosen the robust solutions based on an evaluation algorithm that compute a robustness
measure of each solution. The approach is resumed on a general algorithm composed of 4 steps with specific
instructions in the case of preemption (to take into account the sequence decision). Thanks to this approach,
the hard constraints are respected and the feasibility is insured without recourse actions.

We have done extensive computational experiments to test the validity of such an approach. Besides,
we have shown that in both splitting and preemption case, the robustness cost of the artificial scenario solu-
tions follow logarithmic line-trends according to the number of scenarios under low and medium uncertainty
degrees. Under high uncertainty degree, the robustness cost of the considered artificial scenario solutions
follow logarithmic line-trends except smin solution that has a polynomial line-trend which is very huge. Nev-
ertheless, it will be necessary to verify this logarithmic tendency on other data generated differently to be sure
that it does not depend on the data generation. Moreover, the interpretation of the solution Xmin polynomial
trend line should be questioned especially that the number of considered scenarios in the computational test
was limited to 100 scenarios.

In the next chapter, we will use the robust discrete optimization framework developed by Kouvelis and
Yu (1997) to compute the optimal robust solutions for the makespan minimization on unrelated parallel
machines with job splitting (resp.. preemption) under uncertain processing times. The objective is to reduce
more the robustness cost of the solutions.
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Chapter 4

Robust parallel machine scheduling with job
splitting under uncertain processing times

Abstract: The goal of this chapter is to propose robust formulations, based on the robust discrete opti-
mization framework developed by Kouvelis and Yu (1997), to compute the optimal robust solutions for the
makespan minimization on unrelated parallel machines with job splitting under uncertain processing times.
We show that the direct application of robust optimization techniques leads to no solution. To overcome this
difficulty, we propose a formulation in which the uncertainty appears in the objective instead of the assign-
ment constraints. Accordingly, we propose two formulations to compute robust solutions with min-max and
min-max regret objectives. The computational tests show that these formulations are able to provide robust
solutions in polynomial times. Extensive numerical experiments show that these formulations improve the
robustness cost compared with the artificial scenario solutions. Lastly, we extend the robust formulations to
the special cases of uniform and identical parallel machines.
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Introduction

In this chapter, we apply the robust discrete optimization framework developed by Kouvelis and Yu (1997)
to compute optimal robust schedules under uncertain processing times. The robust discrete optimization
framework is a comprehensive mathematical programming framework for robust decision making under
which the uncertainty is represented by discrete scenarios and the objective is to optimize a robustness
measure. Accordingly, the deterministic linear formulation is extended to incorporate a discrete scenario
representation and the objective is to optimize a global performance. Under the robust discrete optimization,
the constraints are hard i.e.„ they must be satisfied for all the scenarios.

In Chapter 3, we have shown that in the formulation of the problem Rm|Split|Cmax, the uncertainty
of processing times is affecting the data in the equality constraints while the objective and the inequality
constraints are not affected with the uncertainty. Thus, the robust counterpart, which is an extension of the
deterministic linear formulation, is a constraint feasibility problem. In this constraint feasibility problem, the
objective is to find the schedule that is feasible under any scenario as expressed in the constraints below:

m∑
i=1

tij
psij

= 1, j = 1, . . . , n, s = s1, . . . , sk. (4.1)

But, the equality constraints cannot be insured for different scenarios. In order to construct a feasible
schedule under all the scenarios, we propose to change the decision variables in the deterministic problem.
We will consider xij as the assignment ratio of job j to machine i: xij=

tij
pij

. This transformation will lead to
the deterministic linear programming (LPassign) below:

Minimize Cmax

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n, s = s1, . . . , sk

n∑
j=1

pijxij − Cmax ≤ 0, i = 1, . . . ,m

0 ≤ xij ≤ 1, i = 1, . . . ,m j = 1, . . . , n

LPassign will return assignment ratios as decision variables instead of temporal durations. Accordingly,
the processing times appear in the inequality constraints instead of the equality constraints. Based on this re-
mark, we will be able to formulate and solve the robust versions according to the robust discrete optimization
framework.

Let us denote M the set of m machines, N the set of n jobs, S the set of k discrete scenarios, and F the
set of all feasible solutions under the constraints of the deterministic LPassign i.e

F = {(xij)i∈M,j∈N ∈ [0, 1]mn/

m∑
i=1

xij = 1, ∀j ∈ N}.
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To compute optimal robust solutions, we consider: the worst-case makespan which is already presented
in Chapter 3 and the maximal regret.

We define the optimal robust solutions as follows:

Definition 4.0.1 We call a solution X optimal robust with respect to the worst-case makespan if it satisfies

the following conditions:

• X is feasible for each scenario s ∈ S taken independently.

• Whatever the values of the processing times psij , X minimizes the worst-case makespan over all sce-

narios.

Definition 4.0.2 We call a solution X optimal robust with respect to the regret if it satisfies the following

conditions:

• X is feasible for each scenario s ∈ S taken independently.

• Whatever the values of the processing times psij , X minimizes the maximal deviation from the optimal

makespans over all scenarios.

In Section 4.1, based on the ratio transformation and the robust solution definitions, we formulate and
solve the robust versions of Rm|Split|Cmax under discrete processing times scenarios. In Section 4.1.1, we
formulate the mathematical model that minimizes the worst-case makespan (DmM(Rm|Split|Cmax; pij)),
respectively, we formulate the model that minimizes the maximal regret (DmMR(Rm|Split|Cmax; pij)).
We use the same example presented in Chapter 3 to illustrate the approach. In Section 4.2„ we report
the computational results based on the data generator given in Chapter 3. We report the computational
times required to solve the proposed formulations under different problem sizes. Besides, we evaluate
and compare the optimal robust solutions by measuring their the robustness cost, we compare them also
to the artificial scenario solutions. In Section 4.3, we address the robust versions of parallel uniform ma-
chines Qm|Split|Cmax: DmM(Qm|Split|Cmax; pij) and DmMR(Qm|Split|Cmax; pij) and extend the re-
sults to the robust version of identical parallel machines Pm|Split|Cmax): DmM(Pm|Split|Cmax; pij) and
DmMR(Pm|Split|Cmax; pij).

4.1 Formulations of the robust unrelated parallel machine scheduling prob-
lem with splitting under discrete processing time scenarios

In this section, we provide mathematical formulations to compute the optimal robust schedules on the unre-
lated parallel machine under splitting. We formulate the discrete min-max version of Rm|Split|Cmax under
uncertain processing times to compute the robust solution minimizing the worst-case makespan in Section
4.1.1. And we formulate the discrete min-max regret version of Rm|Split|Cmax under uncertain processing
times to compute the robust solution minimizing the maximal regret in Section 4.1.2.

We remind that in the splitting case, an optimal robust assignment solution leads to an optimal robust
schedule with the same makespan without any sequencing constraints.
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4.1.1 Formulation of discrete min-max version of Rm|Split|Cmax under discrete processing
time scenarios

Let X be an element of F the set of feasible solutions. The completion time of machine i when the solution
X is applied to the scenario s is defined as

Cs
i (X) =

n∑
j=1

psijxij ,

and the makespan is defined as
Cs
max(X) = max

i∈M
{Cs

i (X)}.

The worst-case makespan of solution X over all the scenarios of S is then :

Za(X) = max
s∈S
{Cs

max(X)}.

The discrete min-max version of Rm|Split|Cmax under uncertain processing times can be formulated as
the problem of finding X∗ the optimal robust solution in absolute sense, i.e the solution that minimizes the
worst-case makespan among all feasible solutions. It can be stated as

min
X∈F

max
s∈S

max
i∈M
{Cs

i (X)}.

Thus, the discrete min-max version of Rm|Split|Cmax under uncertain processing times could be formu-
lated as the following mathematical model:

Minimize maxs∈S maxi∈M{Cs
i (X)}

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.

This formulation is nonlinear, we linearize maxi∈M{Cs
i (X)} by introducing a variable Cs

max such that

Cs
i (X) ≤ Cs

max, i = 1, . . . ,m, s = s1, . . . , sk.

This lead to the following (still nonlinear) formulation:
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Minimize maxs∈S{Cs
max}

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

psijxij − Cs
max ≤ 0, i = 1, . . . ,m, s = s1, . . . , sk

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n

We linearize also maxs∈S{Cs
max} by introducing a variable y such that

Cs
max ≤ y, s = s1, . . . , sk. (4.2)

Hence, we obtain the following formulation:

Minimize y

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

Cs
max ≤ y, s = s1, . . . , sk

n∑
j=1

psijxij − Cs
max ≤ 0, i = 1, . . . ,m, s = s1, . . . , sk

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.

Cs
max is an intermediate variable that could be eliminated, and then discrete min-max version ofRm|Split|Cmax

under uncertain processing times can be solved to optimality by the linear program below LPw−Split:
Minimize y

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

psijxij ≤ y, i = 1, . . . ,m, s = s1, . . . , sk

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.
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The uncertain processing times appear in the inequality constraints instead of equality constraints which
makes the model solvable.

The robust discrete min-max version of (Rm|Split|Cmax) under uncertain processing times remains an
LP. The proposed mathematical formulation has the same number of decision variables (mn + 1) as the
(Rm|Split|Cmax) reformulation and a set of additional constraints proportional to the number of scenarios:
n+m ∗ k. Hence, and based on Khachian (1979); Karmarkar (1984), we have the following result:

Corollary 4.1.1 DmM(Rm|Split|Cmax; pij), the robust version the polynomial-time solvable

Rm|Split|Cmax, is also polynomial.

Let us go back to our example 3.2.1.

Example 4.1.1 We solve LPw−Split, the formulation of the discrete min-max version of (Rm|Split|Cmax),

under the six scenarios of processing requirements. The optimal robust solution in the absolute sense Xw

is reported in Table 4.1. Under this robust solution: 55% of J1 is processed on machine 1, and 45% on

machine 2. J2 is mainly processed on machine 3, only 5% of its requirement is processed on machine 1.

72% of J3 is processed on machine 1, 12% is processed on machine 2 and 16% is processed on machine 3.

And finally, 43% of J4 is processed on machine 2 and 56.4% is processed on machine 3 and only 0.6% is

processed on machine 1. The optimal worst-case makespan is equal to 27.16 time units. We notice that in

TABLE 4.1: An optimal robust solution minimizing the worst-case makespan in the splitting
case: (Xw)

xwij J1 J2 J3 J4

M1 0.55 0.05 0.72 0.006
M2 0.45 0 0.12 0.43
M3 0 0.95 0.16 0.564

TABLE 4.2: The worst-case makespan gaps under Xw in the splitting case

X Worst-case makespan Gap(%)
Xsnominal

45.62 67%
Xmax 29.16 7.3%
Xaverage 29.11 7.17%

this example, the worst-case makespan of the optimal robust solution Xw is less expensive compared to the

worst-case makespan of the robust artificial scenarios and the worst-case makespan of the nominal solution.

The gaps reported in Table 4.2 measure the relative deviation between the worst-case makespan of each

solution and the worst-case makespan of Xw.
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FIGURE 4.1: Potential scenarios scheduled according to Xw in the splitting case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

s1: M1 J1 J2 J3 J4

M2 J1 J3 J4

M3 J2 J3 J4

s2: M1 J1 J2 J3 J4

M2 J1 J3 J4

M3 J2 J3 J4

s3: M1 J1 J2 J3 J4

M2 J1 J3 J4

M3 J2 J3 J4

s4: M1 J1 J2 J3 J4

M2 J1 J3 J4

M3 J2 J3 J4

s5: M1 J1 J2 J3 J4

M2 J1 J3 J4

M3 J2 J3 J4

s6: M1 J1 J2 J3 J4

M2 J1 J3 J4

M3 J2 J3 J4
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4.1.2 Formulation of robust discrete min-max regret version of Rm|Split|Cmax under dis-
crete processing time scenarios

In this section, we propose the mathematical formulation that computes the optimal robust solution minimiz-
ing the regret over all the scenarios.

Let X be an element of F . The maximal deviation of solution X is such that

Zr(X) = max
s∈S
{Cs

max(X)− Cs∗
max}.

where Cs∗
max is the optimal makespan of Rm|Split|Cmax under the scenario s.

The robust discrete min-max regret version of Rm|Split|Cmax can be formulated as the problem of
finding X the optimal robust solution in relative sense, i.e., the solution minimizing the maximal deviation
from the optimal makespan over all the scenarios among all feasible solutions X ∈ F . It can be stated as

min
X∈F

max
s∈S
{max
i∈M
{Cs

i (X)} − Cs∗
max}.

Thus, the robust discrete min-max regret version of (Rm|Split|Cmax) under uncertain processing times
could be formulated as the following mathematical model:

Minimize maxs∈S{maxi∈M
∑n

j=1 p
s
ijxij − Cs∗

max}
Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.

This formulation is nonlinear. By the same reasoning as proposed in the previous section, we linearized
maxi∈M

∑n
j=1 p

s
ijxij by introducing a variable zs

Minimize maxs∈S{zs − Cs∗
max}

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

psijxij ≤ zs, i = 1, . . . ,m, s = s1, . . . , sk

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.

We linearise also maxs∈S{zs − Cs∗
max} by introducing a variable y:
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Minimize y
Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

zs − Cs∗
max ≤ y, s = s1, . . . , sk

n∑
j=1

psijxij ≤ zs, i = 1, . . . ,m, s = s1, . . . , sk

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.

This leads to the following linear program:
Minimize y

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

pij
sxij − Cs∗

max ≤ y, i = 1, . . . ,m, s = s1, . . . , sk

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.

For each scenario s, we must solve a deterministic problem Rm|Split|Cs
max. Moreover, we can prove that

for each scenario s there exists an optimal schedule such that themmachines complete simultaneously. This
property can be formulated as

Cs∗
max =

∑n
j=1 p

s
ijx

s∗
ij , ∀i ∈M, ∀s ∈ S.

Indeed, let us suppose that there exists an optimal schedule in which the m machines do not complete
simultaneously. There exists a machine in which the completion time is higher than the completion times of
the other machines. If j is the job that increases the completion time, we can split this job j and assign the
sub-jobs of j to the other machines. By this procedure, the completion times of jobs are not increasing. We
can repeat this procedure until we get an optimal schedule in which themmachines complete simultaneously.

By using this recent property, the new formulation of the problem is (LPr−Split):
Minimize y

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

pij
s(xij − xs∗ij ) ≤ y, i = 1, . . . ,m, s = s1, . . . , sk

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.
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Consequently, robust discrete min max regret version of Rm|Split|Cmax under uncertain processing time
can be solved to optimality according to the proposed linear formulation.

The mathematical formulation of the robust discrete min-max regret version ofRm|Split|Cmax remains
a LP as the optimal deterministic solutions of the discrete scenarios can be already calculated by determin-
istic LPs. Compared to the mathematical model of Rm|Split|Cmax, the mathematical model of the robust
discrete min-max regret version of Rm|Split|Cmax has the same number of decision variables and a set of
additional constraints related to the discrete scenarios. Hence, and based on Khachian (1979); Karmarkar
(1984), we have the following result:

Corollary 4.1.2 DmMR(Rm|Split|Cmax; pij), the robust version the polynomial-time solvable problem

Rm|Split|Cmax, is also polynomial.

Example 4.1.2 We solveLPr−Split the robust discrete formulation of min-max regret version ofRm|Split|Cmax.

The optimal robust solution minimizing the maximal regret Xr is represented in Table 4.3. Under this robust

solution: 57% of J1 is processed on machine 1, and 43% on machine 2. J2 is processed on machine 1 for

25%, and for 75% on machine 3. 47% of J3 is processed on machine 1, 21% is processed on machine 2 and

32% is processed on machine 3. And finally, 40% of J4 is processed on machine 2 and 60% is processed on

machine 3. The optimal regret is equal to 3.5 units. Under 4 scenarios: s1, s2, s3 and s5, the regret is equal

to 3.5 units while it is equal to 3.22 under s6 and 2.82 under s4 (See Figure 4.2).

TABLE 4.3: An optimal robust solution minimizing the maximal regret in the splitting case:
(Xr)

J1 J2 J3 J4

M1 0.57 0.25 0.47 0
M2 0.43 0 0.21 0.40
M3 0 0.75 0.32 0.6

TABLE 4.4: The worst-case makespan gaps under Xr in the splitting case

X Worst-case makespan Gap(%)
Xsnominal

45.62 55.4%
Xmax 29.16 -0.6%
Xaverage 29.11 -0.7%

We notice in this example that the worst-case makespan of the optimal robust solutionXr is less expensive

compared to the worst-case makespan of the nominal solution but its is quite similar to the worst-case

makespan of the robust artificial scenario solutions Xmax and Xaverage (See Table 4.4). We will examine if

this property could be generalized or not through the computational results.
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FIGURE 4.2: Potential scenarios scheduled according to Xr in the splitting case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

s1: M1 J1 J2 J3

M2 J1 J3 J4

M3 J2 J3 J4

s2: M1 J1 J2 J3

M2 J1 J3 J4

M3 J2 J3 J4

s3: M1 J1 J2 J3

M2 J1 J3 J4

M3 J2 J3 J4

s4: M1 J1 J2 J3

M2 J1 J3 J4

M3 J2 J3 J4

s5: M1 J1 J2 J3

M2 J1 J3 J4

M3 J2 J3 J4

s6: M1 J1 J2 J3

M2 J1 J3 J4

M3 J2 J3 J4
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In this section, we have formulated the robust versions of the problem Rm|Split|Cmax using two differ-
ent objectives and we have shown that the robust solutions in the example have led to good improvements. In
the next section, we have carried out extensive numerical experiments to test the performance of the proposed
robust formulations.

4.2 Computational results

In these numerical experiments, we consider the different problem sizes and the three uncertainty degrees
introduced in the test protocol Chapter 3. The objectives of the computational results are summarized in 2
points:

1. We report the CPU times required to solve the robust formulations for different problem sizes.

2. We analyse the robustness cost of the optimal robust solutions (as given in Chapter 3). We also com-
pare the optimal robust solutions to Xmax and Xaverage solutions.

TABLE 4.5: CPU times for the optimal worst-case makespan computation under different
problem sizes

CPU(ms)

m n |S| = 3 |S| = 6 |S| = 12 |S| = 24 |S| = 48 |S| = 64 |S| = 96

7

10 2.1 3.4 3.7 5.8 7.3 9.6 37.9

50 10.0 11.5 12.7 46.5 66.0 93.0 110.6

200 35.2 45.7 119.3 155.9 468.0 591.2 791.2

15

15 3.1 5.4 7.5 9.2 9.3 11.6 56.2

50 30.0 45.5 62.7 96.2 116 154 278.5

200 105.2 130.9 215.9 270.5 540.4 1250.9 1930.5

TABLE 4.6: CPU times for the optimal regret computation under different problem sizes

CPU(ms)

m n |S| = 3 |S| = 6 |S| = 12 |S| = 24 |S| = 48 |S| = 64 |S| = 96

7

10 2.9 4.1 4.7 6.3 7.3 10.4 42.5

50 12.0 15.4 16.3 57.2 87.0 112.0 147.5

200 45.7 56.2 123.4 176.1 494.0 620.4 810.2

15

15 4.6 6.6 8.8 11.2 13.2 14.6 69.1

50 42.0 62.5 62.7 96.2 130 173 298.2

200 114.1 160.1 250.2 346.7 892.3 1506.5 2305.2
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FIGURE 4.3: CPU times of the robust formulations resolution in the case of splitting
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With respect to point (1), the results regarding the computational times for varying problem sizes have
been summarized in Table 4.6. The reported CPU times clearly illustrate the effect of the problem size on the
CPU times. We notice that the computational times increases highly as the size of the deterministic problem
increases while the curve maintain the same trends. For both worst-case makespan and maximal regret, the
computational time increases as the number of scenarios increases. As expected, the computational times
required to obtain the optimal regret are more important than the computational time required to obtain the
optimal worst-case makespan. But, we can observe that the CPU times demonstrate that the approach is able
to solve medium-sized and high-sized instances with modest computational efforts.

FIGURE 4.4: Optimal robust solution worst-case makespans in the splitting case: small size
workshops under low uncertainty
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3 machines n y R2

Xmax

10 0.99ln(x) + 3.37 0.97

50 0.58ln(x) + 0.49 0.97

200 0.14ln(x) + 0.11 0.97

Xaverage

10 0.93ln(x) + 3.76 0.95

50 0.62ln(x) + 0.41 0.96

200 0.14ln(x) + 0.08 0.95

Xw

10 1.06ln(x)+1.07 0.96

50 0.50ln(x) + 0.006 0.95

200 0.00515ln(x) 0.96

Xr

10 0.69ln(x)+2.7 0.96

50 0.65ln(x) + 0.004 0.97

200 0.05ln(x) + 0.005 0.96

d. logarithmic trends
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With respect to point (2), we address the evolution of the robustness cost of the optimal robust solutions
according to the number of discrete scenarios introduced in Chapter 3. We analyse the results according to
the problem size and we distinguish the three uncertainty degrees. The first observation that can be made
is that the worst-case relative deviation of the optimal robust solutions minimizing the worst-case makespan
Xw (resp. the maximal regret Xr) also follows a logarithmic line-trend. Moreover, we can easily remark
that these solutions highly reduce the robustness cost in comparison with the artificial scenario solutions.
For instance, under low uncertainty degree, in small size workshops under a low job variety (Figure 4.4

FIGURE 4.5: Optimal robust solution worst-case makespans in the splitting case: medium
size workshops under low uncertainty
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m=7 n y R2

Xmax

10 0.91ln(x) + 4.82 0.96

50 0.8ln(x) + 2.09 0.96

200 0.38ln(x) + 0.54 0.96

Xaverage

10 0.60ln(x) + 6.47 0.96
50 0.53ln(x) + 2.90 0.96

200 0.37ln(x) + 0.51 0.97

Xw

10 1.29ln(x) +2.3 0.95

50 0.75ln(x) + 0.1 0.97

200 0 0.96

Xr

10 1.49ln(x) + 3.8 0.96

50 1.04ln(x) + 0.3 0.97

200 0.32ln(x) + 0.06 0.96

d. logarithmic trends

graph a. and table d.), the worst-case relative deviation of Xw is comprised between 1% and 6%. Its initial
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robustness cost is around 1% and the increase rate is also around 1%. The improvement in comparison with
Xmax is very notifiable especially concerning the initial robustness cost (1% instead of 4%) which makes
the robustness cost 4 times less expensive. The robustness cost of Xr is comprised between 2.7% and 7%.
Its initial robustness cost is around 2.7% and the increase rate is around 1%. Here again, the improvement in
comparison with Xmax is notifiable, the initial robustness cost is equal to 2.7% instead of 4%. Furthermore,
we notice that the robustness cost of the robust optimal solutions become more and more interesting as
the number of jobs increases. For instance, under high job variety (Figure 4.4 graph c. and table d.),
the robustness cost of Xw is almost null while the initial robustness cost and the increase rate of Xr are
negligible: the robustness cost of Xr is comprised between 0.01% and 0.25%.

When we increase the number of machines, the robustness costs of the robust optimal solutions in-
crease as it was the case for the artificial scenario solutions. For example, in medium size workshops under
low job variety (Figure 4.5 graph a. and table d.), the robustness cost of Xw is comprised between 2.3% and
7%. Its initial robustness cost is around 2.3% and its increase rate is around 1.29%. The improvement in
comparison with Xmax is still significant as the initial robustness cost is equal to 2.3% under Xw instead
of 4.82% under Xmax but, we can observe that the ratio has decreased: the robustness cost is only 2 times
inferior. The of Xr is comprised between 3.8% and 8.2%. Its initial robustness cost is around 3.8% and the
increase rate is around 1.5%. Once again, there is an improvement when we apply Xr instead of Xmax, but
the improvement ratio has decreased (only 1.26 times less expensive).

Under medium and high degrees of uncertainty, the the robustness costs of Xw and Xr increase but
their trend lines are also logarithmic. For instance, under medium uncertainty in small size workshops
under low job variety (Figure 4.6 graph a. and table d.), the worst-case relative deviation of Xw is comprised
between 4.44% and 27%. Its initial robustness cost is around 4.4% and the increase rate is also around
4.73%. In this case, the improvement in comparison withXmax is very significant, we observe that the initial
robustness cost of Xw is more than four times less expensive (4.4% instead of 18.22%). The robustness cost
of Xr is comprised between 7.9% and 30%. Its initial robustness cost is around 8% and the increase rate is
around 4.8%.

Furthermore, under high uncertainty degree, in small size workshops under low job variety (Figure E.4
graph a. and table d.), the initial robustness cost of Xw is around 9%. The rate change is around 11%.
The initial robustness cost of Xr is around 13% and its increase rate is around 3.4%. In both cases, the
improvement in comparison with artificial scenario solutions is very significant. The initial robustness cost
is 5 times less expensive when we use Xw instead of Xmax and it is 3 times less expensive when we use Xr

instead of Xmax.
The curves in high size workshops lead to the same conclusions (See Appendix E).
Overall, the robustness costs of the robust optimal solution are very interesting. The initial robustness

costs are relatively low besides the increase rates are insignificant. These properties are more accurate
when the variety of jobs is important while the number of machines is small. In these special cases, the
robust optimal solutions are very favourable and not expensive compared to the nominal solution under the
deterministic case.
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FIGURE 4.6: Optimal robust solution worst-case makespans in the splitting case: small size
workshops under medium uncertainty
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Xmax

10 4.69ln(x) + 18.22 0.98

50 2.85ln(x) + 7.98 0.95

200 1.12ln(x) + 4.71 0.978

Xaverage

10 4.93ln(x) + 17.68 0.95

50 2.85ln(x) + 8.03 0.96

200 1.27ln(x) + 3.90 0.97

Xw

10 4.73ln(x)+4.44 0.96
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10 4.8ln(x)+7.96 0.96

50 3.22ln(x)+2.56 0.97

200 1.51ln(x)+0.96 0.96

d. logarithmic trends

4.3 Robust makespan on uniform and identical parallel machine scheduling
problems with splitting under discrete processing time scenarios

In this section, we are interested in the robust makespan on uniform parallel machines Q and identical par-
allel machines P with splitting. Given that Q and P are special cases of R and based on the complexity
results of DmM(Rm|Split|Cmax; pij) and DmMR (Rm|Split|Cmax; pij), we deduce that the robust versions
DmM(α|Split|Cmax; pij) and DmMR(α|Split|Cmax; pij) are polynomial when α ∈ {Qm,Pm}. Further-
more, we will show in this section that their optimal robust solutions can be identified without solving the



102 Chapter 4. Robust parallel machine scheduling with job splitting under uncertain processing times

linear programs when the uncertainty of processing times is due to the uncertainty of demands.

4.3.1 Discrete min max versions of Qm|Split|Cmax under discrete processing time scenarios

When the parallel machines are uniform, the machine speeds are not job dependent:

pij = pj/vi,∀i ∈M,∀j ∈ N.

where vi is the speed of machine i and pj the processing requirement of job j.
In the deterministic case, there exists an optimal solution that consists in splitting each job intom subjobs,

the size of the subjob of job j to assign to machine i is equal to the ratio vi∑m
i=1 vi

. The optimal assignment
solution X∗ of Qm|Split|Cmax depends only on machine speeds.

x∗ij = vi∑m
i=1 vi

,∀i ∈M,∀j ∈ N. (4.3)

Consequently, the optimal makespan is such that:

C∗max(X∗) =

n∑
j=1

pijx
∗
ij

=
n∑

j=1

(
pj
vi

)
vi∑m
i=1 vi

=

∑n
j=1 pj∑m
i=1 vi

The deterministic makespan calculation is done in O(n).
Case1: If the processing times are uncertain due to the uncertainty of job requirements, we will denote:

psij = (psj)/vi

where psj is the processing requirement of job j under scenario s.
Given that the optimal solution X∗ depends only on machine speeds (See equation 4.3), X∗ is also an

optimal solution for any scenario from S. The worst-case makespan of X∗ is then:

max
sk∈S

Csk
max(X∗) = max

sk∈S

∑n
j=1 p

sk
j∑m

i=1 vi

=
1∑m
i=1 vi

max
sk∈S

n∑
j=1

pskj .

Based on this equality, the worst-case scenario sw is the scenario where the total quantity of demand over
jobs is maximal. Consequently, we have the following results:
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Corollary 4.3.1 DmM(Qm|Split|Cmax; pj) could be solved to optimality in O(n | S |) time by mean of the

optimal deterministic solution X∗ where: x∗ij = vi∑m
i=1 vi

∀i ∈M , ∀j ∈ N .

The worst-case makespan is equal to the makespan of X∗ applied to the worst-case scenario sw where

the total of job processing requirements is maximal..

Moreover, the maximal deviation of the solution X∗ over scenarios is

max
sk∈S
{Csk

max(X∗)− Csk∗
max} = max

sk∈S
{Csk∗

max − Csk∗
max}

= 0

which gives the following result:

Corollary 4.3.2 DmMR(Qm|Split|Cmax; pj) could be solved to optimality in constant time by mean of the

deterministic optimal solution X∗ that depends only on machine speed such that x∗ij = vi∑m
i=1 vi

, and the

maximal deviation of X∗ is equal to zero.

4.3.2 Discrete min max versions of Pm|Split|Cmax under discrete processing time scenarios

When the parallel machines are identical pij = pj . We can then draw the same results as for the case uniform
parallel machines with further simplification.

In the deterministic case, there exists an optimal assignment solution that consists in splitting each job j
into m subjobs, the size of the subjob of j to assign to each machine i is equal to pj

m .

x∗ij =
1

m
,∀i ∈M,∀j ∈ N.

Consequently:

C∗max(X∗) =

n∑
j=1

pjx
∗
ij

=

n∑
j=1

pj
1

m

=
1

m

n∑
j=1

pj .

The deterministic makespan calculation is done in O(n).
If the processing times are uncertain and the uncertainty is due to job requirements, we will denote:

psij = psj
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Given that X∗ depends only on machines number, X∗ is also an optimal solution for any scenario from
S. The worst-case makespan of X∗ is then:

max
sk∈S

Csk
max(X) = max

sk∈S

n∑
j=1

1

m
pskj

=
1

m
max
sk∈S

n∑
j=1

pskj

Based on this equality, the worst-case scenario sw is the scenario where the total quantity of demand over
jobs is maximal. Consequently, we have the following result:

Corollary 4.3.3 DmM(Pm|Split|Cmax; pj) could be solved to optimality in O(n | S |) time by mean of the

optimal deterministic solution X∗ where all the jobs are split into m equal sub-jobs:

x∗ij=
1
m , ∀i ∈M , ∀j ∈ N .

And the worst-case makespan is equal to the makespan of X∗ applied to the worst-case scenario sw
where the total of job processing requirements is maximal..

The maximal regret of the solution X∗ over scenarios is

max
sk∈S
{Csk

max(X∗)− Csk∗
max} = max

sk∈S
{
∑n

j=1 p
sk
j

m
−

∑n
j=1 p

sk
j

m
}

= 0

Thus, we have the following results:

Corollary 4.3.4 DmMR(Pm|Split|Cmax; pj) could be solved to optimality in constant time by mean of the

deterministic optimal solution X∗ where all the jobs are split into m equal sub-jobs, and the maximal

deviation of X∗ is equal to zero.

Conclusion

In this chapter, we have applied the robust discrete optimization framework developed by Kouvelis and
Yu (1997) to compute the optimal robust solutions for the makespan minimization on unrelated parallel
machines with job splitting under uncertain processing times. We showed that the direct application of
robust optimization techniques led to no solution. To overcome this difficulty, we proposed a formulation
in which the uncertainty appears in the objective instead of the assignment constraints. For this purpose,
We used assignment ratios as decision variables instead of temporal variables, to insure the feasibility. We
provide robust solutions in polynomial time using respectively the minimization of the worst-case makespan
and respectively the minimization of the maximal regret. We also considered the special cases of uniform
and identical parallel machines. The complexity results in the case of splitting are summarized in the table
below:
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TABLE 4.7: Complexity results in the case of splitting

DmM(R)(α|β|γ; θ) Complexities References

DmM(Rm|Split|Cmax; pij) Polynomial Section 4.1.1
DmMR(Rm|Split|Cmax; pij) Polynomial Section 4.1.2
DmM(Qm|Split|Cmax; pij) Polynomial Section 4.3.1
DmMR(Qm|Split|Cmax; pij) Polynomial Section 4.3.1
DmM(Pm|Split|Cmax; pij) Polynomial Section 4.3.2
DmMR(Pm|Split|Cmax; pij) Polynomial Section 4.3.2

For the unrelated parallel machines, the computational results show that the robust formulations can
be solved with modest CPU times even for large size instances. The CPU time required to minimize the
maximal regret is not so much higher than the CPU time required to minimize the worst-case makespan.
Besides, the computational results show that the robustness costs of the optimal robust solutions minimizing
the worst-case makespan (resp. the maximal regret) also follow logarithmic trend lines. They increase
when we increase the number of machines, the number of scenarios or the degree of uncertainty. But, they
decrease when we increase the number of jobs. Moreover, these solutions reduce considerably the robustness
cost compared to Xmax and Xaverage solutions. The optimal robust solution that minimizes the worst-case
makespan Xw leads to very interesting results in term of robustness cost, followed by the optimal robust
solution that minimizes the maximal regret Xr.

In the next chapter, we extend the robust formulations to compute optimal robust solutions when we
consider the preemptive case (Rm|pmtn|Cmax) under discrete processing time scenarios.
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Chapter 5

Robust parallel machine scheduling with job
preemption under uncertain processing
times

Abstract: The goal of this chapter is to extend the robust formulations developed in Chapter 4 to compute the
optimal robust solutions for the makespan minimization on unrelated parallel machines with job preemption
under uncertain processing times. The major difference between the preemptive case and the splitting one is
due to the computation of a sequence decision. We consider in this work that the decision-maker is interested
in computing a robust assignment solution which is unique and accepts to have different sequences (one per
scenario). Thus, we propose robust formulations of (Rm|pmtn|Cmax) that allow to construct robust sched-
ules based on robust assignment solutions. We respectively use the worst-case makespan minimization and
the maximal regret minimization to compute robust assignment solutions. We can use preemptive open shop
algorithm given by Gonzalez and Sahni (1976) to construct each scenario sequence. In the computational
results, once again, we quantify the robustness costs of the optimal robust solutions and to compare them to
those of the artificial scenario solutions in the case of preemption.
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Introduction

In this chapter, we extend the application of the robust discrete optimization framework to the preemptive
unrelated parallel machines under discrete processing time scenarios. The major difference between the
preemptive case and the splitting case is due to the computation of a sequence decision. Indeed, as it was
mentioned earlier in chapters 3 and 4, the computation of a robust preemptive schedule on parallel machines
is composed of two steps: the computation of a duration matrix and then the construction of a feasible
sequence.

Under a set of discrete potential scenarios, some decision-makers might be interested in computing a
robust assignment solution which is unique. In which concerns the sequence, they may tolerate to have
different sequences (one per scenario). In Section 5.1, we propose robust formulations of (Rm|pmtn|Cmax)

that allow to answer the former concern. In Section 5.2, we present the computational results that allow to
quantify the robustness cost of the optimal robust solutions and to compare them to the artificial scenario
solutions.

5.1 Robust schedules based on the robust assignment solutions: A sequential
approach

When decision makers are interested in computing a unique assignment solution and they accept to have
different sequences and permutations (one per scenario), the problem can be solved in two steps as follows:

- The first step consists in computing a robust assignment solution x∗ij in a proactive way as done in the
case of splitting. This solution can be obtained by solving different robust formulations (see Sections 5.1.1
and 5.1.2). Therefore, we propose to change the decision variables in the static preemptive problem proposed
by Lawler and Labetoulle (1978). We consider xij as the assignment ratio of job j to machine i: xij=

tij
pij

.
This transformation will lead to the deterministic linear programming (LPpmtn−assign) below:

Minimize Cmax

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n, s = s1, . . . , sk

n∑
j=1

pijxij − Cmax ≤ 0, i = 1, . . . ,m

n∑
i=1

pijxij − Cmax ≤ 0, j = 1, . . . , n

0 ≤ xij ≤ 1, i = 1, . . . ,m j = 1, . . . , n

LPpmtn−assign will return assignment ratios as decision variables instead of temporal durations. Based
on this, we will formulate and solve the robust versions of the preemptive problem by extending the robust
formulations given in the case of splitting (see Chapter4). The proofs are very similar.
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- The second step consists in constructing a sequence for each scenario. This step can be postponed
until the real scenario is revealed, or it can be executed in a proactive way under a reasonable number
scenarios. We compute the duration matrix of each scenario according to the robust assignment solution as:
dsij = psijx

∗
ij and then, we solve for each scenario s a preemptive open shop problem (Om|pmtn|Cmax)

according to (Gonzalez and Sahni (1976))’s algorithm by considering the durations dsijs as data entries.
In Section 5.1.1, we develop the robust assignment formulation to compute a solution minimizing the

worst-case makespan. And in Section 5.1.2, we develop robust assignment formulation to compute a solution
minimizing the maximal regret.

5.1.1 Formulation of the min-max version of Rm|pmtn|Cmax under discrete processing time
scenarios

To provide a robust assignment solution minimizing the worst-case makespan, we can solve the discrete
min-max version of Rm|pmtn|Cmax that we formulate as follows (LPw−pmtn):

Minimize Cw

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n (5.1)

n∑
j=1

psijxij − Cw ≤ 0, i = 1, . . . ,m, s = s1, . . . , sk (5.2)

m∑
i=1

psijxij − Cw ≤ 0, j = 1, . . . , n, s = s1, . . . , sk (5.3)

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n (5.4)

In this formulation, xij is the robust assignment ratio of job j to machine i that minimizes the worst-case
makespan Cw over all the scenarios (the proof is similar to the proof of the Rm|Split|Cmax).

The mathematical formulation of the robust discrete min max version of Rm|pmtn|Cmax for the com-
putation of the robust assignment solution is an LP. Thus, the assignment problem is polynomial based on
Khachian (1979); Karmarkar (1984). Moreover, for each scenario s the construction of the resolution of the
preemptive open shop is polynomial, solvable in O(r + min(r2, n4,m4)) where r is the number of nonzero
elements in X the matrix of assignments xij’s, and consequently:

Corollary 5.1.1 DmM(Rm|pmtn|Cmax; pij), the robust version of the polynomial-time solvable

Rm|pmtn|Cmax, is polynomial.

Example 5.1.1 By solving LPw−pmtn, the optimal robust assignment solution over the six scenarios (cf.

Figure 5.1) has a worst-case makespan of 28.92 units. Under this solution, J1 is processed for 43% on

machine 1 and for 57% on machine 2. J2 is processed for 52% on machine 1, and for 48% on machine 3.
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J3 is processed for 31% on machine 1 and for 45% on machine 2 and for 24% on machine 3 while J4 is

processed for 16% on machine 2 and for 84% on machine 3 (see Table 5.1).

TABLE 5.1: An optimal solution minimizing the worst-case makespan in the preemptive case:
(Xw)

X∗
w J1 J2 J3 J4

M1 0.43 0.52 0.31 0
M2 0.57 0 0.45 0.16
M3 0 0.48 0.24 0.84

TABLE 5.2: The worst-case makespan gaps under Xw in the preemptive case

X Worst-case makespan Gap(%)
Xsnominal

46.67 61%
Xmax 31.25 7.8%
Xaverage 32.5 12.1%

Based on the robust assignment ratio solution Xw, we construct the duration matrices corresponding to

the six potential scenarios. Each scenario can be scheduled independently according to the robust assign-

ment solution without exceeding the robust makespan. For this purpose, we can solve the six independent

preemptive open shop problems. These schedules are represented in Figure 5.1. Compared to the nom-

inal scenario solution Xsnominal
and the artificial scenario solutions Xmax and Xaverage, the worst-case

makespan has been reduced under Xw (see Table 5.2).
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FIGURE 5.1: Potential scenarios scheduled according to Xw in the preemptive case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

s1: M1 J2 J1 J3 J2 J3

M2 J1 J3 J4

M3 J4 J2 J3 J4

s2: M1 J1 J2 J3

M2 J3 J1 J4

M3 J2 J4 J3 J4 J3

s3: M1 J1 J3 J2

M2 J4 J1 J3

M3 J3 J2 J4

s4: M1 J2 J3 J1

M2 J3 J1 J4

M3 J4 J2 J3

s5: M1 J2 J1 J3

M2 J1 J3 J4

M3 J3 J4 J2

s6: M1 J2 J3 J2 J1

M2 J1 J3 J4

M3 J3 J4 J2
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5.1.2 Formulation of the min-max regret version of Rm|pmtn|Cmax under discrete process-
ing time scenarios

We can also provide a robust assignment solution by solving the min-max regret version of Rm|pmtn|Cmax

under discrete processing time scenarios. Based on the proof given in Section (4.1.2) and by considering the
constraints that prohibit the overlapping, we can formulate the problem as (LPr−pmtn):

Minimize rmax

Subject to

m∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

pij
sxij − Cs∗

max ≤ rmax, i = 1, . . . ,m, s = s1, . . . , sk

n∑
i=1

pij
sxij − Cs∗

max ≤ rmax, j = 1, . . . , n, s = s1, . . . , sk

0 ≤ xij ≤ 1, i = 1, . . . ,m, j = 1, . . . , n.

In this formulation, xij is the robust assignment ratio of job j to machine i that minimizes the maximal
regret rmax over all the scenarios. Cs∗

max is the optimal makespan under scenario s. For each scenario s, we
solve the deterministic problem Rm|pmtn|Cs

max under the scenario s to obtain Cs∗
max.

The computation of the robust assignment solution minimizing the maximal regret for the preemptive
unrelated parallel machine is an LP. The optimal deterministic solutions of the discrete scenarios are already
computed by solving the deterministic LPs of each scenario. Thus, the assignment problem is polynomial
based on Khachian (1979); Karmarkar (1984). Moreover, for each scenario s the construction of the resolu-
tion of the preemptive open shop is polynomial, solvable in O(r + min(r2, n4,m4) where r is the number
of nonzero elements in X the matrix of assignments xij’s, which leads to the following:

Corollary 5.1.2 DmMR(Rm|pmtn|Cmax; pij), the robust version the polynomial-time solvable

Rm|pmtn|Cmax, is also polynomial.

Example 5.1.2 By solving LPr−pmtn, the optimal robust solution Xr that minimizes the maximal regret has

a maximal regret equal to 4.02 units. The assignment ratios according to this solution are as follows: J1

is processed on machine 1 and 2 for 58% and 42% respectively. J2 is processed on machine 1 for 43%, on

machine 2 for 1% and on machine 3 for 47%. J3 is processed for 34% on machine 1, for 37% on machine 2

and for 29% on machine 3. And finally, J4 is processed for 16% on machine 2 and for 84% on machine 3.

Each scenario can be scheduled independently according to the robust assignment solution Xr.

For this purpose, we construct the duration matrices corresponding to the six potential scenarios and

solve their corresponding preemptive open shop problems. These schedules are represented in Figure 5.2:
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FIGURE 5.2: Potential scenarios scheduled according to Xr in the preemptive case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

s1: M1 J3 J1 J2

M2 J2 J3 J1 J4

M3 J4 J2 J3 J4

s2: M1 J1 J2 J3

M2 J3 J4 J1 J2

M3 J2 J4 J3 J4

s3: M1 J3 J2 J1 J3

M2 J2 J3 J4 J3 J1

M3 J4 J3 J4 J2 J3

s4: M1 J2 J3 J1

M2 J3 J1 J2 J4

M3 J4 J3 J2

s5: M1 J1 J3 J2 J2

M2 J4 J2 J1 J3

M3 J2 J3 J4 J2 J4 J3

s6: M1 J1 J3 J1 J2

M2 J4 J1 J2 J3 J1 J3

M3 J2 J4 J3 J4 J3
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TABLE 5.3: An optimal solution minimizing the maximal regret in the preemptive case: (Xr)

Xr J1 J2 J3 J4

M1 0.58 0.43 0.34 0
M2 0.42 0.1 0.37 0.16
M3 0 0.47 0.29 0.84

TABLE 5.4: The worst-case makespan gaps under Xr in the preemptive case

X Worst-case makespan Gap(%)
Xsnominal

46.67 55%
Xmax 31.25 4.16%
Xaverage 32.5 8.3%

Compared to the nominal scenario solution Xsnominal
and the artificial scenario solutions Xmax and

Xaverage, the worst-case makespan has also been reduced under Xr and it does not deviate too much from

the worst-case under Xw (see Table 5.4).

In the next section, we report the computational results under which we focus on the robustness cost of
the optimal robust solutions in the preemptive case.

5.2 Computational results

The computational tests considered in this section are the extension of the computational results presented
in Chapter 3 and Chapter 4. We base on the results provided in Chapter 3 (i.e. the robustness costs of Xmax

and Xaverage ) to evaluate the improvements with respect to the robust optimal solutions.
We again distinguish the three degrees of uncertainty.
The first observations show that the robustness cost of the optimal robust solutions minimizing the worst-

case makespan (resp. the maximal regret) also follows a logarithmic line-trend as it was the case under
splitting under the three uncertainty degrees.

Under low uncertainty degree, we notice that the logarithms coefficients values are very similar to
the case of splitting. For instance, in small size workshops under small job variety (Figure 5.3 graphic a.
table d.), the robustness cost of Xw is comprised between 2.1% and 6.1%. Its initial robustness cost is
equal to 2.2% and its increase rate is equal to also 0.85%. The improvement in comparison with Xmax is
significant as the initial robustness cost is two times less expensive. The robustness cost of Xr is comprised
between 2.9% and 7%. Its initial robustness cost is around 3.5% and the increase rate is around 1.1%. The
improvement under Xr in comparison with Xmax is less important, the ratio is equal to only 1.1. Besides,
the effect of the number of jobs increase is also less important than in the case of splitting. As we can
observe, under high job variety (Figure 5.3 graphic c. table d.), the robustness cost of Xw is no longer null
as it was the case under splitting but the values are still insignificant. Its initial cost is equal to 0.06% and
its increase rate is equal to 0.05%. The improvement in comparison with Xmax is significant as the initial
robustness cost is four times less expensive. In the case of Xr, this claim is more notifiable as the initial
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FIGURE 5.3: Optimal robust solution worst-case makespans in the splitting case: small size
workshops under low uncertainty
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c. (m=3,n=200,d=1)

m=3 n y R2

Xmax

10 1.02ln(x)+4.2 0.97

50 0.69ln(x) + 0.88 0.97

200 0.16ln(x) + 0.24 0.97

Xaverage

10 1.16ln(x) + 4.35 0.954

50 0.77ln(x) + 0.98 0.96

200 0.18ln(x) + 0.37 0.98

Xw

10 0.85ln(x) + 2.22 0.961

50 0.5ln(x) + 0.60 0.96

200 0.05ln(x)+0.06 0.969

Xr

10 1.1ln(x)+3.5 0.98

50 0.4ln(x) + 0.70 0.95

200 0.07ln(x)+0.14 0.96

d. logarithmic trends

robustness cost of Xr is equal to 0.14% and the increase rate is equal to 0.07%. The improvement under Xr

in comparison with Xmax has become more important, the ratio is equal to 1.74 instead of 1.1.
When we increase the number of machines, the optimal solution robustness costs increase and this

effect is more important than in the case of splitting. For instance, in medium size workshops under small
job variety (Figure 5.4 graphic a. table d.), the robustness cost ofXw is comprised between 3.6% and 10.5%.
Its initial robustness cost is equal to 3.6% and the increase rate is around 1.11%. The robustness cost of Xr

is comprised between 4.2% and 11.8%. Its initial robustness cost 4.2% and its increase rate is around 1.6%.
The improvement in comparison with Xmax notifiable especially for Xw, the improvement ratio is equal to
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FIGURE 5.4: Optimal robust solution worst-case makespans in the preemptive case: medium
size workshops under low uncertainty
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c. (m=7,n=200,d=1)

m=7 n y R2

Xmax

10 1.11ln(x) + 7.2 0.967

50 0.92ln(x) + 3.14 0.96

200 0.51ln(x) + 0.81 0.96

Xaverage

10 1.14ln(x) + 8.14 0.96
50 0.83ln(x) + 4.59 0.96

200 0.53ln(x) + 1.25 0.97

Xw

10 1.5ln(x) +3.6 0.95

50 0.61ln(x) + 0.5 0.975

200 0.06ln(x)+0.01 0.96

Xr

10 1.6ln(x) + 4.2 0.962

50 0.9ln(x) + 2.8 0.979

200 0.5ln(x) + 0.4 0.96

d. logarithmic trends

2. In the case of Xr, this ratio is equal to 1.7

When we increase the degree of uncertainty, we observe a notifiable increase in the robustness cost
of the optimal solution, and the effect of uncertainty degree is very significant. For instance, under
medium uncertainty degree, in small size workshops under small job variety (Figure 5.5 graphic a. table d.),
the initial robustness cost is equal 8.1% and its increase rate is equal to 5.3%. Here, we can observe that the
improvement ratio between Xw and Xmax become more interesting around 2.6. The robustness cost of Xr

is comprised between 16.07% and 40%. Its initial robustness cost is equal to 16.07% and its increase rate is
equal to 6.14%. We notice that the improvement ratio between Xr and Xmax is around 1.3. And under high
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FIGURE 5.5: Optimal robust solution worst-case makespans in the preemptive case: small
size workshops under medium uncertainty
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c. (m=3,n=200,d=2)

m=3 n y R2

Xmax

10 5.21ln(x) + 21.18 0.98

50 3.26ln(x) + 9.12 0.96

200 1.61ln(x) + 5.45 0.97

Xaverage

10 5.6ln(x) + 23 0.95

50 3.24ln(x) + 10.53 0.96

200 1.63ln(x) + 5.61 0.97

Xw

10 5.3ln(x)+8.1 0.96

50 2.96ln(x)+2.31 0.96

200 1.1ln(x)+1.5 0.97

Xr

10 6.14ln(x)+16.07 0.96

50 3.27ln(x)+7.09 0.97

200 1.2ln(x)+3.8 0.95

d. logarithmic trends

uncertainty degree, for the same problem size (Figure 5.6 graphic a. table d.), the initial robustness cost of
Xw is equal to 12%. The increase rate is equal to 13%. The improvement ratio has increased under Xw and
it is around 3.6 which means that Xw is 3.6 times less expensive than Xmax. For Xr, the initial robustness
cost is equal to 15% and its increase rate is equal to 13.1%. We notice here that Xr is 3 times less expensive
than Xmax.

Globally, when the variety of jobs is important while the number of machines is small, the robust optimal
solutions are very favourable and not expensive compared to the nominal solution in the deterministic case.
This observation is due to the fact that when the number of jobs is important while the number of machines is
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FIGURE 5.6: Optimal robust solution worst-case makespans in the preemptive case: small
size workshops under high uncertainty
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c. (m=3,n=200,d=3)

m=3 n y R2

Xmax

10 11.23ln(x) + 44.31 0.98

50 11.43ln(x) + 24.05 0.97

200 5.5ln(x) +13.2 0.97

Xaverage

10 12.57ln(x) + 45.56 0.96

50 12.13ln(x) + 24.44 0.97

200 6.73ln(x) +13.08 0.96

Xw

10 13ln(x) + 12 0.96

50 12ln(x) + 6 0.965

200 4.5ln(x) + 3 0.96

Xr

10 13.16ln(x) + 15 0.960

50 12.9ln(x) + 8.7 0.965

200 4.8ln(x) + 5 0.96

d. logarithmic trends

small, the optimization in the deterministic case of the nominal scenario can lead to an important makespan
value, which makes the relative deviation between this one and the worst-case makespan of the robust optimal
solution very small. And consequently, it makes the robust solution cost very interesting.

5.3 Conclusion

In this chapter, we have used the robust optimization techniques to address the preemptive unrelated par-
allel machine scheduling under uncertain processing times. We have proposed robust formulations of the
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(Rm|pmtn|Cmax) based on the linear formulation proposed by Lawler and Labetoulle (1978) in which we
propose to compute robust optimal assignment solutions first. Secondly, for each scenario, we constructed
schedules corresponding to these robust assignment solutions. These algorithms are interesting when the
decision makers are interested in computing a unique assignment solution. In which concerns the sequence,
they may tolerate to have different sequences and permutations (one per scenario). We used the same ratio
technique as in Chapter4. Consequently, we obtained the following complexity results:

TABLE 5.5: Complexity results in the case of preemption

DmM(R)(α|β|γ; θ) Complexities References

DmM(Rm|Split|Cmax; pij) Polynomial Section 5.1.1
DmMR(Rm|Split|Cmax; pij) Polynomial Section 5.1.2

The computational results showed that the optimal robust solution that minimizes the worst-case makespan
(respectively the maximal regret) improved the results and lead to robust schedules with acceptable robust-
ness costs under uncertainty. They follow the same trend line as in the splitting case. However, their initial
robustness costs are slightly superior but the improvement ratios compared toXmax andXr are still interest-
ing. To go further, we propose in the next chapter to evaluate the stability of the robust solutions when a new
scenario that is not taken into account is faced. The objective is to show that the proposed robust solutions
are robust stable outside the set of discrete scenarios that is defined.
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Chapter 6

Stability analysis in unrelated parallel
machines under uncertain processing times

Abstract: In this chapter, we develop a framework to support decision in unrelated parallel machine schedul-
ing under uncertain processing times. The uncertainty arising from a range of plausible futures is anticipated
through a set of potential scenarios as shown in the previous chapters. Alternative robust solutions are gen-
erated and ranked according to a robustness measure. But because the future could change, the stability of
these robust solutions should be evaluated under new scenarios induced by variations. We define the stability
of a robust solution as its ability to cover a new scenario with minor deviations in both the solution structure
and the solution performance. We use classical and new stability measures to evaluate the structural stabil-
ity of the robust solutions and we calculate the worst-case makespan increase to evaluate the performance
stability. Our motivation is to provide a decision support to help the decision-maker to choose among the
robust solutions those with the most stable structure and the most stable performance. We perform an exper-
imental study of these different metrics and run the model that includes the alternative solutions many times
to determine how these solutions perform in a range of uncertainty degree.
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6.1 Introduction

To further develop the work presented in the previous chapters, we consider the fact that in manufacturing
systems, discrete scenario representation permit to limit the set of possible futures but, in reality the work-
shop will often face new scenarios because of numerous factors of perturbations. Thus, focusing on the
robustness as a unique objective can be restrictive. In fact, the solution robustness is guaranteed only for
processing time realizations that belong to the represented scenario set. Consequently, from one hand, the
robust solution might have no robustness guarantee if the real scenario is a new one. On the other hand, the
robust approach is not useful to help the decision-maker understand how much the objective could deviate,
nor how much adjustment should be taken to cover it. Indeed, depending on whether a plausible scenario is
taken into account or not, the structure of the robust solution could be very different. This aspect of robust-
ness dependency to the chosen scenarios was already pointed out by Roy (2010) who claims that "adding or
removing a scenario from the set of scenarios may lead to defining very different solutions as robust". From
practitioners viewpoint, the quantification of these deviations under new scenarios both in terms of structure
and performance is a very important question. Moreover, schedulers confronted with data uncertainty agree
that it is difficult to list all the potential scenarios. Therefore, it is crucial to identify robust solutions whose
structure and performance do not deviate significantly under new scenarios or to be able to choose the desired
trade-off. In other words, it is important to choose among the robust solutions those with the most stable
structure and the most stable performance.

In Chapters 3, 4 and 5, we dealt with the uncertain processing times in unrelated parallel machine
scheduling under splitting (resp. preemption) by providing robust solutions under discrete processing time
scenarios. The proposed approaches provided an efficient way to incorporate uncertainty in the models and
to provide robust solutions. But, for both practical and computational reasons, it is impossible to take into
account all the uncertainties. Demand uncertainty that induces uncertain processing times results from a
variety of reasons: seasonal effect, changes in customers interests and needs, the number and the product
quality/price of the competitors, etc. Consequently, it could be difficult for some sector of activity or during
some economic periods to list all the potential scenarios, which means that a new scenario is always suscep-
tible to occur. As the structure and the performance of the robust solution are very dependent on the set of
discrete scenarios, the stability of the solutions can be affected if the real scenario is a not captured by the
scenario generation process. Therefore, we evaluate the stability of the structure and the performance of the
robust solutions when adding new scenarios. In this approach, the term stability is used for the algorithm
step at which robust solutions of the problem have been already computed, and additional calculations are
performed in order to investigate how these solution structure and performance depend on changes in the
set of potential scenarios. In Section 6.2, we describe a robust solutions generation and stability analysis
approach. In Section 6.3, we make a statistical analysis of the results. We choose the splitting problem as a
case study to apply the approach and we show accordingly that the robust solution computed in Chapters 3,
4 are globally stable.
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6.2 Robust solution stability analysis approach

The robust solution stability analysis approach is mainly based on a 2-stage algorithm (see Algorithm 4). The
first stage is the Robust Solution Generation (RSG) module while the second stage (or step) is the Robust
Solution Stability Evaluation (RSSE) module. We suppose that a scenario of reference always exists, we
call this scenario: the nominal scenario. The algorithm starts with this nominal scenario snominal, the set
of discrete scenarios is initially reduced to a single element: Ωk={snominal}. We set up the deterministic
problem (Rm/Split/Cmax) with the nominal scenario snominal and compute its optimal solution denoted
as X1

robust.

Algorithm 4: Robust solution stability analysis algorithm
Data: snominal the nominal scenario
K: the number of iterations

1 Generate a nominal scenario;
2 Set up the deterministic problem based on the nominal scenario snominal;
k ← 1 ;
sk ← snominal ;
Ωk ← {sk} ;
repeat

k ← k + 1 ;
3 Generate a new potential sk ;
4 Increase the size of potential scenario set Ωk ;

Ωk ← Ωk−1 ∪ sk ;
5 Generate robust solutions for the set Ωk through RSG module;
6 Evaluate the stability of robust solutions through RSSE module;

until k = K;
7 analyse the trade-off robustness stability of each robust solution;

The module RSG is designed to compute a set of robust solutions and their worst-case makespan at each
iteration. For this purpose, at each iteration k, we generate a new potential scenario sk that is a variation
around the nominal scenario and we add it to the set of potential scenarios: Ωk= Ωk−1 ∪ {sk}. Then, we
calculate a set of robust solutions. We call Xk

robust the robust solution that considers the k scenarios that
belong to Ωk. RSG uses all the approaches developed in the previous Chapters (3,4 and 5). It computes the
set of robust solutions: Xk

max, Xk
average, Xk

median, Xk
min, Xk

w and Xk
r and it computes their corresponding

worst-case makespans over Ωk.
In the same iteration k, RSSE module is designed to evaluate the stability of each robust solution when

we confront a new potential scenario i.e, it measures the deviation between Xk−1
robust and Xk

robust. For this
purpose, we evaluate the stability of each robust solution according to two components: the stability of its
performance and the stability of its structure.

The iterations go on until the stopping criterion is satisfied: a stability threshold fixed by the decision-
maker is reached by a robust solution or the variations of the stability measures over the iterations become
negligible. Once, a robust solution is satisfying the stability objectives, ΩK could be defined as the minimal
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scenario set to consider in order to compute a robust stable solution: "ΩK is the best uncertainty-immunized
scenario set" that can be associated to our uncertain problem.

In the last step of the algorithm, the robustness and stability measures computed over the iteration per-
mit to compare the different robust solutions and allow the analysis of the trade-off that offers each robust
solution. We will use visualization and statistical analysis of the resulting runs to help decision-makers dis-
tinguish solutions that perform well from those that perform poorly. These informations can help decision-
makers identify, evaluate, and choose robust strategies that resist over a wide range of futures and that are
most stable under changes.

6.2.1 Robust Solution Generation

In the Robust Solution Generation module (RSG), at each iteration k, we update the set of potential scenarios
Ωk and we compute over Ωk the optimal robust solutions (Xk

w and Xk
r ) and the robust solutions based on

the artificial scenario approach (Xk
max, Xk

average, Xk
median and Xk

min). Then, we measure the performance
stability and structure stability of each solution.

6.2.2 Stability Analysis of robust solution performances

Algorithm 5: Robust Solution Generation algorithm at iteration k

1 Compute a robust solution Xk−1
robust for Ωk−1 ;

2 Compute the local performances of Xk−1
robust when applied to Ωk−1 ;

3 Compute and save the robustness measures of Xk−1
robust when applied to Ωk−1 ;

4 Update the set of potential scenarios by adding sk: Ωk=Ωk−1 ∪ sk ;
5 Compute the local performances of Xk−1

robust when applied to sk ;
6 Compute and save the robustness measures of Xk−1

robust when applied to Ωk ;
7 Compare the robustness measures of Xk−1

robust for the two successive sets ;

At each iteration k, to measure the performance stability of a robust solution Xrobust, we quantify the
deviations of the robustness measure of each robust solution Xk−1

robust when we consider a new potential
scenario (see Algorithm 5). For this purpose, for each robust solution Xk−1

robust, we calculate the difference
between the worst-case makespan of Xk−1

robust when applied to the set of scenarios Ωk−1 and its worst-case
makespan when applied to the set of scenarios Ωk. We call this difference the worst-case makespan deviation
at iteration k and we calculate it as:

WCMDk(Xrobust) = max
s∈Ωk

max
i∈M

n∑
j=1

psijx
k−1
ij − max

s∈Ωk−1

max
i∈M

n∑
j=1

psijx
k−1
ij
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6.2.3 Stability analysis of robust solution structures

When adding a new potential scenario, the instability of solutions in parallel machine results primarily in
machine assignment. At each iteration k, to measure the structure stability of a robust assignment solution
Xrobust, we compare Xk

robust and Xk−1
robust by computing:

• the number of perturbed jobs PJk
j (Xrobust) (see Algorithm 7);

• the number of perturbed machines PMk
i (Xrobust) (see Algorithm 8);

• the number of changing ratios CRk(Xrobust) (see Algorithm 6):

• the number of new assignments NAk(Xrobust) (see Algorithm 9);

• the number of cancelled assignments CAk(Xrobust) (see Algorithm 10);

• the magnitude of ratio changes MCk(Xrobust) (see Algorithm 11).

Algorithm 6: The number of changing ratios computation at iteration k
Data: M = {1, . . . ,m} the set of m machines, N = {1, . . . , n} the set of n jobs
Xk−1

robust = (xk−1
ij )i,j the robust solution for Ωk−1

Xk
robust = (xkij)i,j the robust solution for Ωk

Result:
CRk(Xrobust): number of changed ratio in the robust solution Xrobust at iteration k.
// Initialisation
CRk(Xrobust)← 0;
foreach i ∈M do

foreach j ∈ N do
if (xkij 6= xk−1

ij ) then
CRk(Xrobust)← CRk(Xrobust) + 1;

end
end

end
return CRk(Xrobust)

CRk(Xrobust) measures the number of ratios that have increased or decreased when we consider a new
potential scenario. This stability measure gives a macroscopic idea about the structural similarities between
the robust solution Xk

robust that considers a new potential scenario and the robust solution Xk−1
robust that does

not:

CRk
ij(Xrobust) =

1 if j is assigned to i with a different ratio in Xk
robust compared to Xk−1

robust

0 otherwise

CRk(Xrobust) =
∑
i∈M

∑
j∈N

CRk
ij(Xrobust)
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Algorithm 7: The number of perturbed jobs computation at iteration k
Data: M = {1, . . . ,m} the set of m machines, N = {1, . . . , n} the set of n jobs
Xk−1

robust = (xk−1
ij )i,j the robust solution for Ωk−1

Xk
robust = (xkij)i,j the robust solution for Ωk

Result:
PJk(Xrobust): number of perturbed jobs in the robust solution Xrobust at iteration k.
// Initialisation
PJk(Xrobust)← 0;
foreach j ∈ N do

PJk
j (Xrobust)← 0;

i← 1 ;
while (i < m and PJk

j (Xrobust) = 0) do
if (xkij 6= xk−1

ij ) then
PJk

j (Xrobust)← 1;
PJk(Xrobust)← PJk(Xrobust)+1;

end
i← i+1 ;

end
end
return PJk(Xrobust)

Algorithm 8: The number of perturbed machines computation at iteration k
Data: M = {1, . . . ,m} the set of m machines, N = {1, . . . , n} the set of n jobs
Xk−1

robust = (xk−1
ij )i,j the robust solution for Ωk−1

Xk
robust = (xkij)i,j the robust solution for Ωk

Result:
PMk(Xrobust): number of perturbed machines in the robust solution Xrobust at iteration k.
// Initialisation
PMk(Xrobust)← 0;
foreach i ∈M do

PMk
i (Xrobust)← 0;

j ← 1 ;
while (j < n and PMk

i (Xrobust) = 0) do
if (xkij 6= xk−1

ij ) then
PMk

i (Xrobust)← 1;
PMk(Xrobust)← PMk(Xrobust)+1;

end
j ← j+1 ;

end
end
return PMk(Xrobust)
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Nevertheless, CRk(Xrobust) does not quantify how many jobs and how many machines are involved in
this ratio change. Therefore, we measure the number of disrupted jobs PJk and the number of disrupted
machines PMk. PJk=

∑
j∈N PJk

j where

PJk
j (Xrobust) =

1 if job j is disrupted when we take into account a new potential scenario at iteration k

0 otherwise

and PMk=
∑

i∈M PMk
i where

PMk
i (Xrobust) =

1 if machine i is disrupted when we take into account a new potential scenario at iteration k

0 otherwise

Algorithm 9: The number of new assignments assignments computation at iteration k
Data: M = {1, . . . ,m} the set of m machines, N = {1, . . . , n} the set of n jobs
Xk−1

robust = (xk−1
ij )i,j the robust solution for Ωk−1

Xk
robust = (xkij)i,j the robust solution for Ωk

Result:
NAk(Xrobust): number of new assignments in the robust solution Xrobust at iteration k.
// Initialisation
NAk(Xrobust)← 0;
foreach i ∈M do

foreach j ∈ N do
NAk

ij(Xrobust)← 0;
if (xkij>0 and xk−1

ij = 0) then
NAk

ij(Xrobust)← 1;
NAk(Xrobust)← NAk(Xrobust) + 1;

end
end

end
return NAk(Xrobust)

To measure extreme ratio changes, we introduce NAk(Xrobust) and CAk(Xrobust). NAk(Xrobust)

measures the number of ratios that were null in Xk−1
robust and takes a positive value in Xk

robust when we
consider a new potential scenario. It reflects the number of additional setups or changeovers in machines
when we take into account a new potential scenario. Similarly, CAk(Xrobust) measures the number of ratios
that were positive inXk−1

robust and then become null inXk
robust. It may report a machine setup that is no longer

necessary when we consider a new potential scenario, and may be behind this cancellation, another machine
has to take the job in order to make up the difference. NAk(Xrobust) and CAk(Xrobust) are computed such
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Algorithm 10: The number of cancelled assignments computation at iteration k
Data: M = {1, . . . ,m} the set of m machines, N = {1, . . . , n} the set of n jobs
Xk−1

robust = (xk−1
ij )i,j the robust solution for Ωk−1

Xk
robust = (xkij)i,j the robust solution for Ωk

Result:
CAk(Xrobust): number of cancelled assignments in the robust solution Xrobust at iteration k.
// Initialisation
CAk(Xrobust)← 0;
foreach i ∈M do

foreach j ∈ N do
CAk

ij(Xrobust)← 0;
if (xkij=0 and xk−1

ij > 0) then
CAk

ij(Xrobust)← 1;
CAk(Xrobust)← CAk(Xrobust) + 1;

end
end

end
return CAk(Xrobust)

as:

NAk
ij(Xrobust) =

1 if xk−1
ij = 0 and xkij > 0

0 otherwise

and

CAk
ij(Xrobust) =

1 if xk−1
ij > 0 and xkij = 0

0 otherwise

Then:

NAk(Xrobust) =
∑
i∈M

∑
j∈N

NAk
ij(Xrobust) and CAk(Xrobust) =

∑
i∈M

∑
j∈N

CAk
ij(Xrobust)

They are critical if a machine setup or tooling are prepared in advance, and jobs wait in a sequence queue
based on the previous solution. They indicate a sequence deviation that will incur costs in handling and
reallocating the jobs, and re-planning the tools changeover.

In relation with the CRk(Xrobust), MCk(Xrobust) measures the magnitude of ratio changes.

MCk(Xrobust) =
∑
i∈M

∑
j∈N

sup(0, xkij − xk−1
ij ) (6.1)
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Algorithm 11: The magnitude of ratio changes computation at iteration k
Data: M = {1, . . . ,m} the set of m machines, N = {1, . . . , n} the set of n jobs
Xk−1

robust = (xk−1
ij )i,j the robust solution for Ωk−1

Xk
robust = (xkij)i,j the robust solution for Ωk

Result:
MCk(Xrobust): magnitude of ratio changes in the robust solution Xrobust at iteration k.
// Initialisation
MCk(Xrobust)← 0;
foreach i ∈M do

foreach j ∈ N do
if (xkij − x

k−1
ij > 0) then

MCk(Xrobust)←MCk(Xrobust) + xkij − x
k−1
ij ;

end
end

end
return MCk(Xrobust)

This measure gives an idea about the handling operations necessary to make the adjustment. We choose the
sup operator to count the change only once.

In the cases where permutation decisions are also important, we can consider also the permutation devi-
ation. But we do not consider this issue in this work.

Example 6.2.1 Let us consider the same example used in the previous chapters. We add a new scenario s7

to the set of six scenarios: We take the example of Xr.

TABLE 6.1: Job processing requirements scenarios

p1 p2 p3 p4

s1 30 50 30 100
s2 50 30 80 50
s3 40 50 100 80
s4 35 40 50 70
s5 40 60 100 50
s6 60 50 80 70
s7 100 50 90 40

The new robust optimal solution X7
r under the set ω7 computed according to (LPr−Split) is given as:

When we applyX6
r to the scenario s7, we obtain a makespan that is equal to 30.14 units. The worst-case

makespan of X6
r has increased and it is equal to 30.14 units instead of 29.34 units. Thus, the WCMD7 of

Xr at iteration 7 is equal to 0.8 units.
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TABLE 6.2: The optimal robust solution minimizing the maximal regret Xr in the splitting
case under 7 scenarios

J1 J2 J3 J4

M1 0.29 0.15 0.60 0.08
M2 0.5 0 0.17 0.41
M3 0.21 0.85 0.22 0.51

TABLE 6.3: The optimal robust solution minimizing the maximal regret Xr in the splitting
case under 6 scenarios

J1 J2 J3 J4

M1 0.57 0.25 0.47 0
M2 0.43 0 0.21 0.40
M3 0 0.75 0.32 0.6

Concerning the structure stability, we observe by comparing Table 6.2 and Table 6.3 that the solution

structures are different. According to the structure stability metrics, we have the following results:

- a new assignment (NA7 = 1).

- a cancelled assignments (CA7 = 1).

- 11 changed ratios (CR7 = 11).

- 4 perturbed jobs (PJ7 = 4),

- 3 perturbed machines(PM7 = 3),

- 60% is the total magnitude of assignment ratio change (MC7 = 0.6).

In the next section, we represent the computational results concerning the stability analysis of the robust
solutions.

6.3 Computational results in the case of splitting: Statistical analysis

We consider the same data generator used along this thesis.
We fixed the number of iterations at K=100. At each iteration we compute the robust approximate

solutions (Xmax,Xmin,Xaverage andXmedian) and the robust optimal solutions (Xw andXr) in the splitting
case. Then we evalute the stability of each solution according to all the stability indicators over the 100
iterations.

For each indicator, we represent the computational results through box-plots to represent the mean values
and the distribution of the values around the mean value.
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6.3.1 Performance stability evaluation

In this section, we evaluate the performance stability of the robust solutions. For this purpose, we report the
computational results concerning the worst-case makespan deviation (WCMD) under new scenarios.

FIGURE 6.1: The worst-case makespan deviation under low uncertainty degree in the splitting
case
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Under low uncertainty degree, the robust solution worst-case makespan deviations are insignificant
(<< 1%).

In small size workshops under small job variety (Figure 6.1 graphic a.), the robust solution’s WCMD are
very low for all the solutions. The WCMD mean values of Xmax, Xmin, Xw, Xaverage and Xmedian are
around 0.01% with standard deviations that are around 0.03%. For Xr, the WCMD mean value is equal to
0.06% with a standard deviation that is equal to 0.08%.

When we increase the number of jobs, we remark that the WCMD does not increase except for Xw

and Xr (e.g. Figure 6.1 graphic b.). Xw’s WCMD mean value is equal to 0.07% with a standard deviation
that is equal to 0.13%. And the WCMD mean value of Xr is equal to 0.23% with a standard deviation that
is equal to 0.23%.

When we increase the numbers of machines, we notice a small decrease in the WCMD especially for
Xr and Xw. For instance, in medium size workshops under small jobs variety (Figure 6.1 graphic c.). Xw
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and Xr’s WCMD mean values are respectively equal to 0.02% and 0.05% with standard deviations that are
respectively equal to 0.05% and 0.08%.

When we increase the degree of uncertainty, we observe that the WCMD of the solutions increase
but their values are small.

Under medium uncertainty degree, in small size workshops under low job variety (Figure 6.2 graphic
a.), the increase is more important for Xw and Xr than for the other solutions. But the WCMD is still very
low for all the solutions. For Xmax, Xmin, Xaverage and Xmedian, The WCMD mean values are around
0.07% with standard deviations that are around 0.2%. And the WCMD of Xw and Xr mean values are
respectively equal to 0.35% and 0.38% with a standard deviation that is equal to 0.4%.

Under high degree of uncertainty, we observe that the WCMD mean value of Xmin, Xw and Xr

become more significant relatively to the previous cases. For instance, in the case of small size workshops
under medium job variety (Figure 6.2 graphic a.), for Xmin, the WCMD mean value is equal to 1.2% with
a standard deviation that is equal to 2.3%. Xwand Xr WCMD mean values are respectively equal to 1.9%

and 2.6% with standard deviations that are respectively equal to 2.3% and 2.5%.

FIGURE 6.2: Increase of the worst-case makespan under medium and high uncertainty in
different size workshops in the splitting case
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In the next sections, we report the results concerning the structure stability of the solutions.
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6.3.2 Structure stability evaluation

In this section, we evaluate the structure stability of the solutions according to different structure stability
indicators.

a- The number of perturbed jobs:

FIGURE 6.3: Number of perturbed jobs under low uncertainty degree in the splitting case
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c. (m=7,n=10,d=1)

According to the PJs, under low uncertainty degree, Xmax and Xmin are the most stable.
In small size workshops under small job variety (Figure 6.3 graphic a.), the PJs are low for all the

solutions except for Xaverage and Xmedian. Xmax and Xmin are the most stable, followed by Xw, Xr. PJ
mean values of for Xmax and Xmin are respectively equal to 1.65% and 1.60% with standard deviations
that are respectively equal to 3.63% and 3.98%. For Xw, PJ mean value is equal to 5.22% with a standard
deviation that is equal to 7.06% and for Xr, the mean value of PJ is equal to 6.66% with a standard
deviation that is equal to 8.75%. PJ become significant under Xmedian, PJ mean value is equal to 9.97%

with a standard deviation that is equal to 4.64%. For Xaverage, PJ mean value increases highly, it is equal
to 18.08% with a small standard deviation that is equal to 0.4%.

When we increase the number of jobs, we remark that the PJs decrease. Xmax andXmin are the most
stable, followed by Xaverage and Xmedian instead of Xw and Xr. Under medium job variety (Figure 6.3
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graphic b.), PJ mean values of Xmax and Xmin are respectively equal to 1.12% and 1.01% with a standard
deviation that are respectively equal to 1.75% and 1.83%. For Xaverage and Xmedian, PJ mean values are
around 4.2% with standard deviations that are respectively equal to 0.46% and 1.05%. Xw’s PJ mean value
is equal to 5.4% with a standard deviation that is equal to 4.41%. And PJ mean value under Xr is more
significant, it is equal to 8.8% with a standard deviation that is equal to 6.10%.

When we increase the number of machines, we remark that the PJs highly increase (both the mean
values and the standard deviations). For instance, under medium workshop size with low job variety (Fig-
ure 6.3 graphic a.). For Xmin and Xmax which are the most stable, PJ mean value of Xmin is equal to
4.33% with a standard deviation that is equal to 9.88% and PJ mean value of Xmax is equal to 5.12% with
a standard deviation that is equal to 11.05%. For Xw, PJ mean value is equal to 20.79% with a standard
deviation that is equal to 18.86%. For Xr, PJ mean value is equal to 29.1% with a standard deviation that
is equal to 21.32%. For Xmedian, PJ mean value is equal to 31.08% with a standard deviation that is equal
to 13.22%. And for Xaverage which is the less stable, PJ mean value is very high, it is equal to 50.62%

with a standard deviation that is equal to 2.38%.

FIGURE 6.4: Number of perturbed jobs under medium and high uncertainty degrees in the
splitting case
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c. (m=7,n=10,d=2)
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d. (m=3,n=10,d=3)

When we increase the degree of uncertainty, the PJs increase also. The increase in the PJs is more
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important when the number of machines increase. For instance, under medium uncertainty degree, in
medium workshop size and low job variety (Figure 6.4 graphic c.), only Xmax and Xmin are relatively
stable as their PJ mean values are less than 11% while all the other solutions are unstable as their mean
values of perturbed jobs are superior to 50%. The PJ mean value of Xmax is equal to 11.08% with a
standard deviation that is equal to 14.71%. ForXmin, the PJ mean value is equal to 10.22% with a standard
deviation that is equal to 15.06%. For Xw, thePJ mean value is equal to 44.90% with a standard deviation
that is equal to 25.39%. For Xr, the PJ mean value is equal to 61% with a standard deviation that is equal
to 26.60%. For Xmedian, the mean value of perturbed jobs is equal to 53.5% with a standard deviation that
is equal to 20.60%. And For Xaverage, the PJ mean value is equal to 54.66% with a standard deviation that
is equal to 2.95%.

Under high uncertainty degree, we observe that the PJs have the same properties and the same magni-
tude as in the case of medium uncertainty (see for instance Figure 6.4).

b- The number of perturbed machines:
In which concerns the number of perturbed machines (PM ), the computational results show the follow-

ing properties: Under low uncertainty degree, Xmin and Xmax are the most stable regarding the PMs,

FIGURE 6.5: Number of perturbed machines under low uncertainty degree in the splitting
case
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c. (m=7,n=10,d=1)
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followed byXw andXr. The other solutions are not stable. In small size workshops under small job variety
(Figure 6.5 graphic a.), The PM mean values under Xmin and Xmax do not exceed 10% but their standard
deviations are important. Xw and Xr’s PM mean values are around 13% with relatively important standard
deviation. And Xmedian and Xaverage are not stable. The PM mean value of Xmax is equal to 9.47% with a
standard deviation that is equal to 20.69%. For Xmin, the PM mean value is equal to 8.81% with a standard
deviation that is equal to 19%. Xw and Xr lead to similar results. For Xw, the PM mean value is equal to
13.5% with a standard deviation that is equal to 19.67%. For Xr, the PM mean value is equal to 15.76%

with a standard deviation that is equal to 17.96%. For Xmedian, the PM mean value is equal to 55% with a
standard deviation that is equal to 26%. Xaverage is not stable, the PM mean value under Xaverage is equal
to 100%.

FIGURE 6.6: Number of perturbed machines under medium and high uncertainty degrees in
the splitting case
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c. (m=7,n=10,d=2)
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d. (m=3,n=10,d=3)

According to the distributions, the PM upper values can reach 100% for all the solutions except for Xw

and Xr for which they are respectively equal to 80% and 90% while the lower value is equal to 0%.
When we increase the number of jobs, we remark that the PMs increase. For instance, under medium

job variety (Figure 6.5 graphic b.), the ranking of the solutions regarding the PMs is the same but both
the mean values, the standard deviations and the upper values are more important. The PM mean value of
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Xmax is equal to 23.15% with a standard deviation that is equal to 33.58%. For Xmin, the PM mean value
is equal to 21.25% with a standard deviation that is equal to 31.40%. For Xw, the PM mean value is equal
to 28.33% with a standard deviation that is equal to 17.9%. The PM mean value is more important under
Xr and it is equal to 41.42% with a standard deviation that is equal to 26.6%. Xaverage, Xmedian are not
stable, the PM are around 100%. All the PM upper values are reaching the 100%.

When we increase the number of machines, we remark that the PMs slightly increase for the solutions
Xw, Xr. But they slightly decrease for Xmin and Xmax. For instance, under medium workshop size and
low job variety (Figure 6.5 graphic c.). The PM mean value of Xmax is equal to 9.68% with a standard
deviation that is equal to 20.49%. Similar values are obtained under Xmin. For Xw and Xr, the mean values
of perturbed machines are respectively equal to 29% and 39% with a standard deviation that is around 25%.
For Xmedian, the PM mean value is equal to 58.2% with a standard deviation that is equal to 22%. And the
PM upper values are all superior to 90%.

When we increase the degree of uncertainty, the PMs highly increase for all the solutions. Under
medium uncertainty degree, in small size workshops under low job variety (Figure 6.6 graphic a.), Xmin,
Xmax, Xw and Xr are quite stable while Xmedian and Xaverage are unstable according to the PMs. The
PM mean value of Xmin is equal to 16% with a standard deviation that is equal to 22%. Xmax, Xw and Xr

lead to similar results. Their PM mean values are around 21% with standard deviation that are around 20%.
For Xmedian and Xaverage, the PM mean value are more than 92%. When we increase the number of jobs
or machines, almost all the solutions are unstable regarding the PMs (e.g. Figure 6.6 graphics b. and c.).

Under high degree of uncertainty, the results are similar to the case of medium uncertainty. The
increase is relatively small (Figure 6.6).

c- The changing ratios

FIGURE 6.7: Number of changing ratios under low uncertainty degree in the splitting case
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b. (m=3,n=50,d=1)

In which concerns the number of changed ratios CRs, under low uncertainty degree, the CRs are very
low. Furthermore, Xmax and Xmin are the most stable. For example, in small size workshops under small
job variety (Figure 6.7 graphic a.), the CRs are low for all the solutions except for Xaverage. Xmax and
Xmin are the most stable, followed by Xw, Xr and Xmedian. The CR mean values of Xmax and Xmin
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a. (m=7,n=10,d=1)

FIGURE 6.8: Number of changing ratios under medium and high uncertainty degrees in the
splitting case
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b. (m=3,n=50,d=2)
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c. (m=7,n=10,d=2)
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d. (m=3,n=10,d=3)

are respectively equal to 1.14% and 1.17% with standard deviations that are respectively equal to 2.54% and
2.78%. For Xw, the CR mean value is equal to 3.61% with a standard deviation that is equal to 4.85%. For
Xr, the CR mean value is equal to 4.54% with a standard deviation that is equal to 5.96%. The CR mean
value increases under Xaverage and it is equal to 12.72% but, it standard deviation is equal to only 0.26%.
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When we increase the number of jobs, we remark that the CRs decrease. Xmax and Xmin are the
most stable, followed by Xaverage, Xmedian instead of Xw and Xr. And when we increase the number of
machines, the increase of the CRs is not significant (see Figure 6.7 graphic c.).

When we increase the degree of uncertainty, the CRs increase. However, under medium uncertainty
degree, the increase is very small. In small size workshops under small job variety (Figure 6.8 graphic a.),
the CR mean values are low for Xmax and Xmin (less than 3%). But, the CRs become significant under
Xw, Xr, Xmedian and Xaverage. For Xw and Xr, the CR mean values are equal to 10% with a standard
deviation that is equal to 8%. And for Xmedian and Xaverage, the CR mean values are around to 13% with
standard deviations that are around 1.5%. Under high uncertainty degree, the results are very similar to the
case of medium uncertainty degree (see Figure 6.8).

d- The number of new assignments and cancelled assignments

FIGURE 6.9: Number of new assignments under low uncertainty degree in the splitting case
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a. (m=3,n=10,d=1)
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b. (m=3,n=50,d=1)
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c. (m=7,n=10,d=1)

Under low uncertainty degree, the number of new assignments (NA) is very small under all the so-
lutions (less than 1%). For instance, in small size workshops under small job variety (Figure 6.9 graphic
a.), for Xmax, Xmin, Xmedian and Xaverage, the NA mean values are less than 0.05% and their standard
deviations are less than 0.5%. For Xw and Xr, the NA mean values are around 0.5% and their standard
deviations are around 0.5%.
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When we increase the number of jobs, the NAs slightly increase. Under medium job variety (Figure 6.9
graphic b.), forXmax,Xmin,Xmedian andXaverage, theNAmean values are less than 1% and their standard
deviations are less than 0.5%. For Xw and Xr, the NA mean values are around 0.6% and their standard
deviations are around 1%. And when we increase the number of machines, the NAs are of the same order
of magnitude, the changes are not notifiable. Under medium workshop size (?? graphic a.), Xmax, Xmin,
Xmedian and Xaverage, the mean value of new assignment are less than 0.1% and their standard deviations
are less than 0.5%. For Xw and Xr, the mean values of new assignment are around 0.4% and their standard
deviations are around 1%.

When we increase the degree of uncertainty, we observe a small increase of the NAs but the values
are very small, the mean values are less than 2% (see e.g. Figure 6.10 ).

FIGURE 6.10: Number of new assignments under medium and high uncertainty degrees in
the splitting case
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a. (m=3,n=10,d=2)
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b. (m=3,n=50,d=2)
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c. (m=7,n=10,d=2)

N
ew

 a
ss

ig
nm

en
t (

%
)

0

5

10

15

20

25

X−max X−averageX−median X−min X−w X−r X−l
Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

d. (m=3,n=10,d=3)
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f- The magnitude of ratio changes

FIGURE 6.11: Magnitude of ratio change under low uncertainty degree in the splitting case
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c. (m=7,n=10,d=1)

Under low uncertainty degree, all the solutions are stable according to the MCs. In small size work-
shops under small job variety (Figure 6.11 graphic a.), for Xmax, Xmin, Xaverage and Xmedian, the MC

mean values are almost null. For Xw and Xr, the MC mean values are around 1% with a standard deviation
that is equal to 1.5%.

When we increase the number of jobs, we remark that the MC increase is insignificant (e.g. Fig-
ure 6.11 graphic b.). But, when we increase the number of machines, we observe that the MCs increase
for Xaverage, Xmedian, Xw and Xr is relatively significant but the values are small. For example, in
medium size workshops under small job variety (Figure 6.11 graphic c.). For Xmax and Xmin, the MC

mean values and standard deviations are respectively equal to 0.5% and 0.3%. For Xw and Xr, the MC

mean value is equal to 1.5% with standard deviations that are equal to 2%. And for Xaverage and Xmedian,
the average value of ratio magnitude change is equal to 3% with standard deviations that are equal to 2%.

When we increase the degree of uncertainty, the results are very similar to the case of low uncertainty
degree (e.g. Figure 6.12).
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FIGURE 6.12: Magnitude of ratio change under medium and high uncertainty degrees in the
splitting case
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d. (m=3,n=10,d=3)

6.3.3 Results synthesis and analysis

The results show that according to the performance stability indicator, we can conclude that under low
uncertainty degree, all the solutions can be considered as stable: the worst-case makespan deviations are
insignificant. Indeed, the scenarios have similar structure and consequently the worst case scenario is very
similar to the considered scenarios.

Under medium uncertainty degree, Xmax, Xmin, Xaverage and Xmedian are the most stable. Xw can
be considered as moderately stable while Xr can become unstable especially when we increase the number
of jobs. And under high uncertainty degree, Xmax, Xaverage and Xmedian are the most stable. Xmin is
quite stable. Xw and Xr are the less stable. These observations can be explained by the fact that the worst-
case makespans under Xw and Xr are optimized considering the constraints of the scenario set, they take
smaller values compared to the other solution makespans. In contrary, the worst-case makespans of the other
solutions are already high and consequently, the deviations are less important.

According to the structure stability, we can conclude that:
- Under small uncertainty,Xmax,Xmin can be considered as the most stable as their number of perturbed

jobs, of perturbed machines, of changed ratios and their magnitude of ratio changes are very small. Xr and
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Xw can be considered as quite stable: even when the number of changed ratios is important, the magnitude
of ratio changes are very small. Xaverage and Xmedian are the less stable because under these solutions the
numbers of perturbed jobs and perturbed machines are important, besides the number of changed ratios and
the magnitude of changed ratios are significant.

The results also show that the structure stability of the solutions is highly affected by the degree of
uncertainty increase and the number of machines. The solution structures become less stable. In the former
case, this property is due to the fact that the new scenario under high uncertainty can be very different
from the scenarios considered to compute the solution in the previous iteration, which lead to two solution
structures that are very different. When we increase the number of machines, the number of alternative
solutions increases and consequently the structures can be very different. The ranking of the solutions is not
affected. Contrarily to the previous cases, the solution structure becomes more stable as the number of jobs
increases due to the fact that the number of alternative solutions become small.

6.4 Conclusion

In this chapter, we proposed an approach to evaluate the stability of the structure and the performance of
the robust solutions when adding a new scenario. In this approach, we used a 2 step-algorithm. In the first
step, a set of robust solutions is computed according to the algorithms and formulations given in the previous
chapters, and in the second step, additional calculations are performed in order to investigate how these
solution structures and performances depend on changes in the set of potential scenarios. We evaluate the
performance stability by computing the deviation of the worst-case makespan from the previous one when
considering an additional scenario. And we evaluate the stability of the structure by computing different
stability measures namely, the number of perturbed jobs and machines, the number of changed ratios, the
number of new assignments and cancellations and the magnitude of ratio changes..

The computational results in the case of splitting show that under a new scenario, all the robust solutions
are performance stable and globally they are structure stable. The worst-case makespan deviations and the
magnitude of ratio changes are not significant. Xmax, Xmin and Xw are the most stable. Xaverage and
Xmedian and Xr are less stable than the former ones. The structure stability of the solutions decreases as
the degree of uncertainty increase. In fact, when the scenarios become very different, the solution structures
also become significantly different. Besides, as the number of machines increases, the structure stability
decreases. This could be explained by the fact that the number of potential solutions is more important when
the number of machines is important. Contrarily to the degree of uncertainty and the number of machine
effects, the solution structures became more stable as the number of jobs increases. We would extend the
computational experiments to the preemptive case.
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Conclusion and Prospects

The classical scheduling algorithms compute solutions assuming a full knowledge about data before the pro-
cess of scheduling starts. However, the uncertainties and disruptions are prevalent in scheduling applications.
The study of robustness in scheduling allows to take into account these uncertainties and disruptions when
they affect the scheduling problem. Throughout this thesis, we have been interested in scheduling on parallel
machines under uncertain processing times. In the first case study, the splitting is tolerated, i.e., we consider
that each job can be split into continuous sub-jobs processed independently on the machines so as to finish
the processing of all demands as soon as possible. In the second case study, we consider the non-overlapping
splitting that is termed in literature as preemption. When the objective is to minimize the makespan, the
deterministic linear formulations that assume certain processing times allow solving these problems in poly-
nomial times. But, they suffer from limitations to hedge against the uncertain processing times: they lead to
infeasible or suboptimal schedules.

The methodology and the contributions proposed in this thesis can be represented according to the gen-
eral framework of optimization under uncertainty (see Chapter 1) given in Figure 6.13.

Accordingly, we considered that the uncertainty of processing times is due to uncertain demands. In fact,
the decision-maker deals with different potential futures without attached probabilities. Thus, the demand
uncertainty can be typified as ambiguity and consequently, the processing time uncertainty is also an ambi-
guity. Based on the matrix of uncertainty type representations, the discrete scenario are suitable to represent
the uncertain processing times. Thus, we modelled the uncertain processing times by a finite set of potential
scenarios. Furthermore, we showed through an example that there is a need for a proactive schedule that
takes into account different potential scenarios instead of a schedule that is updated each time that the real
scenario is revealed. For these reasons, we opted for the robust scheduling approach in order to compute,
in a proactive way, solutions that withstand the uncertain processing times. The literature in Chapter 2 also
showed that the robust scheduling approach under discrete scenarios is effective to compute robust schedules
under uncertain parameters.

Over this thesis, we used different algorithms and models to compute robust schedules under the discrete
scenario of processing times. Firstly, we showed that under the slack based approach, when we aim to
enforce the feasibility of the schedule under different potential scenarios by tolerating the violations of some
processing requirements, the overproduction or the underproduction are very significant (both in splitting
and preemption). To avoid these consequences, we proposed a second approach called "the artificial scenario
based approach" that is summed up in a general algorithm composed of 4 steps. Under this approach, we built
a set of feasible solutions based on a set of artificial scenario solutions that represent special policies such
as the maximal scenario, the average scenario, the median scenario, etc.. We applied these solutions to the
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FIGURE 6.13: Application of the general framework to the parallel machines scheduling
problems under uncertain processing times
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potential scenarios and then computed their local and global performances. We ranked the solutions based
on the classical robustness measures presented and reviewed in Chapter 2, i.e., the worst-case makespan and
the maximal regret.

We showed that the artificial scenario solutions insured the feasibility of all the constraints without over-
production or underproductions, and besides they can provide good performances especially the artificial
scenario solution Xmax. However, the computational results showed that the robustness costs of these solu-
tions are not satisfying. Therefore, in Chapters 4 and 5, we proposed to compute optimal robust solutions
under splitting and respectively preemption. We applied the robust discrete optimization framework devel-
oped by Kouvelis and Yu (1997) to compute the optimal robust solutions for the makespan minimization
on unrelated parallel machines with job splitting (resp. preemption) under uncertain processing times. To
insure the feasibility, we used assignment ratios as decision variables instead of the temporal variables in
order to insure the feasibility of the constraints under the set of scenarios. This variable change allowed us
to deal with the uncertain processing times in the objective instead of the equality constraints and to provide
linear formulations to compute robust optimal solutions in polynomial times: we respectively minimized the
worst-case makespan (min-max objective) and the maximal regret (min-max regret objective).

TABLE 6.4: Complexity of min max parallel scheduling problems under discrete scenario
uncertainty

D(I)mM(R)(α|β|γ; θ) Complexities References

DmM(Pm|Split|Cmax; pj) Polynomial Chapter 4
DmMR(Pm|Split|Cmax; pj) Polynomial Chapter 4
DmM(Qm|Split|Cmax; pj) Polynomial Chapter 4
DmMR(Qm|Split|Cmax; pj) Polynomial Chapter 4
DmM(Rm|Split|Cmax; pj) Polynomial Chapter 4
DmMR(Rm|Split|Cmax; pj) Polynomial Chapter 4
DmM(Rm|pmtn|Cmax; pj) Polynomial Chapter 5
DmMR(Rm|pmtn|Cmax; pj) Polynomial Chapter 5

To analyse the results provided by these approaches, we made extensive computational tests under which
we distinguished different instance sizes and different uncertainty degrees. As first analysis, we focused in
the robustness cost of the robust solutions. To evaluate the robustness cost of each solution, we define an
indicator that measures the relative deviation between the worst-case makespan and the nominal makespan
(i.e. the optimal makespan under the nominal scenario). The computational results showed that, in both
splitting and preemptive cases, the robustness costs of the robust solutions increase as the number of scenarios
increases or the degree of uncertainty increases. Indeed, when we need to cover more potential scenarios,
we need to pay additional cost to be protected against the uncertain. But, most of the robust solutions
follow logarithmic trend lines which means that the robustness cost increases quickly when we cover the
first potential scenario besides the nominal one (the initial robustness cost) then for each additional scenario,
we pay a marginal cost.
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Under small uncertainty degree, for Xmax, Xmin, Xaverage, Xmedian, Xw and Xr, the trend lines as
increasing logarithms i.e., each percent change in the number of scenarios is associated with a change of
0.01b in the robustness cost where b is the rate of increase of the logarithmic function.

The cost of robustness under small uncertainty degree can be considered as moderate. In the splitting
case, Xw followed by Xr highly reduced the cost of robustness. Xmax, Xmin, Xaverage, Xmedian lead to
very similar results, their robustness cost are quite superior to the optimal one. In the preemptive case, Xw

and Xr also highly reduced the cost of robustness and besides Xmax is more robust compared to the other
artificial scenario solutions. However, compared to the case of splitting, the robustness cost of the robust
solutions is more important in the preemptive case.

Under medium uncertainty, the robustness costs of all the solutions increase under both splitting and
preemption but, the properties and the solution ranking are the same. Under high uncertainty degree, the cost
of robustness highly increases for all the solutions. For Xmin exceptionally, the cost of robustness becomes
extremely huge and its trend line is no longer logarithmic but polynomial. This property is observed under
both splitting and preemption. Once again, in the preemptive case, The artificial scenario solution Xmax is
more robust than the other artificial scenario solutions. It is followed by Xaverage and Xmedian. And Xmin

solution is the less robust. Xw and Xr a lead to the lowest robustness cost.
As second analysis, we considered a new issue in robust scheduling which is the stability of the robust

solution performances under a new scenario. Indeed, the discrete scenario representation that permits to
compute the robust solutions is used primarily to limit the set of possible futures but, in reality the workshop
will often face new scenarios. Thus, focusing on the robustness of the performance under a specific set of
scenarios as a unique objective can be restrictive. In fact, the solution robustness is guaranteed only for
processing time realizations that belong to the represented scenario set. Consequently, from one hand, the
robust solution might have no robustness guarantee if the real scenario is a new one. On the other hand, the
robust approach is not useful to help the decision-maker understand how much the objective could deviate,
nor how much adjustment should be taken to cover it. Indeed, depending on whether a plausible scenario
is taken into account or not, the structure of the robust solution could be very different. This aspect of
robustness dependency to the chosen scenarios was already pointed out by Roy (2010) who claims that
"adding or removing a scenario from the set of scenarios may lead to defining very different solutions as
robust". From practitioners viewpoint, the quantification of these deviations under new scenarios both in
terms of structure and performance is a very important question. Moreover, schedulers confronted with data
uncertainty agree that it is difficult to list all the potential scenarios. Therefore, it is crucial to identify robust
solutions whose structure and performance do not deviate significantly under new scenarios or to be able to
choose the desired trade-off. In other words, it is important to choose among the robust solutions those with
the most stable structure and the most stable performance.

The stability of the performance under a new scenario is measured through the worst-case makespan
deviation, and the structure stability is measured according to different measures: the number of perturbed
jobs, the number of perturbed machines, the number of changing ratios, the number of new assignments, the
number of cancelled assignments and the magnitude of ratio changes.

Overall, the computational results show that Xmax is quite robust, performance stable and structure



CONCLUSION AND PROSPECTS 149

stable under all uncertainty degrees. Under small and medium uncertainty degrees, Xmin is quite robust,
performance stable and structure stable but under high uncertainty degree, it is performance stable and struc-
ture stable but it is not robust. The most robust solution Xw is moderately stable as its performance stability
and its structure stability decrease as the degree of uncertainty increase. Xr is also robust but less stable than
Xw. In which concerns Xaverage and Xmedian, these solutions are quite robust and quite stable under all the
uncertainty degrees.

The results also show that the structure stability of the solutions is highly affected by the degree of
uncertainty and the number of machines. The solution structures become less stable but, the ranking of the
solutions is not affected. Contrarily to the previous cases, the solution structures become more stable when
the number of jobs increases.

Research prospects

Following the results described in this thesis, the future works can be oriented towards the following devel-
opments.

As short term developments, we aim to address the robust preemptive problem with unique sequence.
Indeed, in some decision environments, the decision-maker does not admit having different sequences (one
by scenario) but, in some sectors it might be necessary to compute a robust schedule with a unique assignment
and a unique sequence. The main questions that arise from this are related to the complexity of the robust
integrated problem resolution. Besides, it would be also interesting to extend the approaches developed in
this thesis to the non-preemptive case which is known to be NP-hard even under certainty. The evaluation
of the robustness cost in this case and if it also follows logarithmic trend line would be a good research
question.

As mid and long-term developments, we can consider different future works. Indeed, in a real scheduling
environment, there are possible scenarios in which activities may be added or removed (new jobs or cancelled
jobs), or temporal constraints may be revised. Due to the practical importance, it is therefore desirable to
extend our methodologies to modelling and solving these scheduling problems under job disruptions or
resource disruptions.

Furthermore, it would be interesting to integrate reactive procedures with the robust scheduling ap-
proaches. In fact, in this thesis, we solved the scheduling problems from the perspective of proactive
scheduling and obtained robust execution strategy off-line. One of our research efforts aims to integrate
robust models with reactive scheduling algorithms, implement the obtained execution strategy and evaluate
it.

And lastly, many additional opportunities for future research can be identified when adapting our ap-
proaches to an industrial context.
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Appendix A

Uncertainty sources

Uncertainty

sources

Empirical
QuantityModel form

AmbiguitySimplification

sources

Approximation
Expert

uncertaintyRandomnessVariability
Linguistic

imprecisionError

Uncertainty source Meaning
Simplifications Assumptions made to convert a complex model into a simpler model.
Ambiguity Alternatives assumptions or techniques may be available for developing

the model which may lead to alternative models.
Error Error due to measurements or to subjective judgement

Linguistic imprecision Quantities are not well specified.

Variability Quantities that are variable over time.

Randomness Probabilistic uncertainty.

Expert uncertainty Divergent beliefs about the real value of the quantity.

Approximation Deviation between the assumed value and the real value.

FIGURE A.1: Uncertainty classification by Morgan and Henrion (1990) according to the
location of uncertainty
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Appendix B

Uncertainty typologies

Uncertainty

VaguenessAmbiguityProbability

Uncertainty type Meaning

Probability Likelihood of future event

Ambiguity Multiplicity of possible states for a single concept or event

Vagueness Lack of fine-graded distinctions or boundaries, imprecision

FIGURE B.1: Uncertainty typology according to Smithson (1989, 1990, 2012)

Uncertainty

Epistemic

DisonnanceNon specificityVagueness

Aleatory

IUncertainty type Meaning

Vagueness Information are imprecisely defined, unclear, or indistinct

Non-specificity Having multiple alternatives that are all possible but not specified

Dissonance Existence of totally or partially conflicting evidence

FIGURE B.2: Uncertainty types by Oberkampf et al. (2004)

——————————————————————————————————————
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Uncertainty

Ambiguity

UnspecificityNonspecificity

LikelihoodApproximation

SimplificationsVagueness

Uncertainty type Meaning

Ambiguity Having multioutcomes for processes or systems

Unspecificity Outcomes are incompletely defined

Non-specificity Outcomes are incorrectly defined

Approximations Using vague semantics in language, approximate reasoning

Vagueness Non crispness of belonging and non belonging of elements to a set

Simplifications Assumptions needed to make problems tractable

Likelihood Randomness and sampling

FIGURE B.3: Uncertainty types by Ayyub and Klir (2006)

Uncertainty

FuzzinessAmbiguity

uncertainty type Meaning

Ambiguity Multiplicity without preference to an alternative,

Fuzziness lack of definite or sharp distinction

FIGURE B.4: Uncertainty types by Wierman (2010)
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Appendix C

Scheduling example in the splitting case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

(s1) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s2) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s3) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s4) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s5) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s6) : M1 J1 J3

M2 J1 J4

M3 J2 J4

FIGURE C.1: The potential scenarios scheduled according to smax in the splitting case

.
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Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(s1) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s2) :M1 J1 J3

M2 J1 J4

M3 J2 J4

(s3) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s4) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s5) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s6) : M1 J1 J3

M2 J1 J4

M3 J2 J4

FIGURE C.2: The potential scenarios scheduled according to saverage in the splitting case
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Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(s1) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s2) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s3) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s4) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s5) : M1 J1 J3

M2 J1 J4

M3 J2 J4

(s6) : M1 J1 J3

M2 J1 J4

M3 J2 J4

FIGURE C.3: The potential scenarios scheduled according to smedian in the splitting case
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Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

(s1) : M1 J1 J2

M2 J3 J4

M3 J2 J4

(s2) : M1 J1 J2

M2 J3 J4

M3 J2 J4

(s3) : M1 J1 J2

M2 J3 J4

M3 J2 J4

(s4) : M1 J1 J2

M2 J3 J4

M3 J2 J4

(s5) : M1 J1 J2

M2 J3 J4

M3 J2 J4

(s6) : M1 J1 J2

M2 J3 J4

M3 J2 J4

FIGURE C.4: The potential scenarios scheduled according to smin in the splitting case
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Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(s1 :) M1 J1 J3

M2 J1 J4

M3 J2 J4

(s2 :) M1 J1 J3

M2 J1 J4

M3 J2 J4

(s3 :) M1 J1 J3

M2 J1 J4

M3 J2 J4

(s4 :) M1 J1 J3

M2 J1 J4

M3 J2 J4

(s5 :) M1 J1 J3

M2 J1 J4

M3 J2 J4

(s6 :) M1 J1 J3

M2 J1 J4

M3 J2 J4

FIGURE C.5: The potential scenarios scheduled according to srandom in the splitting case
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FIGURE C.6: Potential scenarios scheduled according to the nominal scenario solution in the
preemptive case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

s1: M1 J1 J2 J3

M2 J4

M3 J2 J4

s2: M1 J1 J2 J3

M2 J4

M3 J2 J4

s3: M1 J1 J2 J3

M2 J4

M3 J2 J4

s4: M1 J1 J2 J3

M2 J4

M3 J2 J4

s5: M1 J1 J2 J3

M2 J4

M3 J2 J4

s6: M1 J1 J2 J3

M2 J4

M3 J2 J4
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Appendix D

Scheduling example in the preemptive case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

(s1) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s2) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s3) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s4) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s5) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s6) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

FIGURE D.1: The potential scenarios scheduled according to smax in the preemptive case

.
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Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

(s1) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s2) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s3) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s4) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s5) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

(s6) : M1 J1 J3 J2

M2 J4 J1

M3 J2 J4

FIGURE D.2: The potential scenarios scheduled according to saverage in the preemptive case

——————————————————————————————————————
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Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

(s1) : M1 J1 J2 J3

M2 J1 J4

M3 J4 J2

(s2) : M1 J1 J2 J3

M2 J1 J4

M3 J4 J2

(s3) : M1 J1 J2 J3

M2 J1 J4

M3 J4 J2

(s4) : M1 J1 J2 J3

M2 J1 J4

M3 J4 J2

(s5) : M1 J1 J2 J3

M2 J1 J4

M3 J4 J2

(s6) : M1 J1 J2 J3

M2 J1 J4

M3 J4 J2

FIGURE D.3: The potential scenarios scheduled according to smedian in the preemptive case
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Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

(s1) : M1 J3 J2

M2 J3 J1 J4

M3 J2 J4

(s2) : M1 J3 J2

M2 J3 J1 J4

M3 J2 J4

(s3) : M1 J3 J2

M2 J3 J1 J4

M3 J2 J4

(s4) : M1 J3 J2

M2 J3 J1 J4

M3 J2 J4

(s5) : M1 J3 J2

M2 J3 J1 J4

M3 J2 J4

(s6) : M1 J3 J2

M2 J3 J1 J4

M3 J2 J4

FIGURE D.4: The potential scenarios scheduled according to smin in the preemptive case
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Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

(s1) : M1 J3

M2 J1 J4

M3 J4 J2

(s2) : M1 J3

M2 J1 J4

M3 J4 J2

(s3) : M1 J3

M2 J1 J4

M3 J4 J2

(s4) : M1 J3

M2 J1 J4

M3 J4 J2

(s5) : M1 J3

M2 J1 J4

M3 J4 J2

(s6) : M1 J3

M2 J1 J4

M3 J4 J2

FIGURE D.5: The potential scenarios scheduled according to srandom in the preemptive case
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FIGURE D.6: Potential scenarios scheduled according to the nominal scenario solution in the
preemptive case

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

s1: M1 J2

M2 J1 J3

M3 J4

s2: M1 J2

M2 J1 J3

M3 J4

s3: M1 J2

M2 J1 J3

M3 J4

s4: M1 J2

M2 J1 J3

M3 J4

s5: M1 J2

M2 J1 J3

M3 J4

s6: M1 J2

M2 J1 J3

M3 J4
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FIGURE E.1: Artificial scenario solution worst-case makespans in the preemptive case:
medium size workshops under medium uncertainty
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c. (m=7,n=200,d=2)

m=7 n y R2

Xmax

10 4.68ln(x) + 32.15 0.965

50 4.36ln(x) + 17 0.979

200 2.12ln(x) + 11.02 0.975

Xaverage

10 4.73ln(x) + 36.17 0.967

50 4.38ln(x) + 19.2 0.963

200 2.14ln(x) + 12.71 0.959

Xmedian

10 4.78n(x) + 48.12 0.967

50 4.73ln(x) + 22.16 0.980

200 2.51ln(x) + 13.18 0.976

Xmin

10 4.96ln(x) + 45.05 0.959

50 4.78ln(x) + 26.14 0.974

200 2.74ln(x) + 14.12 0.954
d. logarithmic trends
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FIGURE E.2: Artificial scenario solution worst-case makespans in the preemptive case: small
size workshops under medium uncertainty
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c. (m=3,n=200,d=2)

m=3 n y R2

Xmax

15 15.21ln(x) + 21.18 0.980

50 3.26ln(x) + 9.12 0.953

200 1.61ln(x) + 5.45 0.978

Xaverage

15 15.6ln(x) + 23 0.951

50 3.24ln(x) + 10.53 0.962

200 1.63ln(x) + 5.61 0.970

Xmedian

15 17.25ln(x) + 27.18 0.968

50 3.79ln(x) + 11.30 0.957

200 1.69ln(x) + 5.74 0.960

Xmin
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d. logarithmic trends
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FIGURE E.3: Artificial scenario solution worst-case makespans in the preemptive case:
medium size workshops under high uncertainty
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a. (m=7,n=200,d=3)

m=7 n y R2

Xmax

10 11.58ln(x) + 58.51 0.97

50 10.43ln(x) + 34.16 0.98

200 5.53ln(x) + 16.02 0.96

Xaverage

10 13.15ln(x) + 88.24 0.96

50 12.1ln(x) + 32.04 0.95

200 5.75ln(x) +18.34 0.95

Xmedian

10 13.46ln(x) + 97.17 0.96

50 12.26ln(x) + 39.2 0.957

200 5.92ln(x) + 22.15 0.96

Xmin

10 -0.17x2 +22x + 259.42 0.99

50 -0.1272x2 + 22x + 127.01 0.95

200 -0.10x2 + 22.6x + 92 0.95

d. line trend functions



Appendix E. Logarithmic trend line functions 185

FIGURE E.4: Optimal robust solution worst-case makespans in the splitting case: small size
workshops under high uncertainty
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c. (m=3,n=200,d=3)

m=3 n y R2

Xmax

10 9.86ln(x) + 40.27 0.97

50 5.59ln(x) + 18.89 0.97

200 2.46ln(x) + 9.15 0.97

Xaverage
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200 1.93ln(x) + 1.08 0.95

Xr

10 11.12ln(x) + 13.28 0.974

50 7.26ln(x) + 4.03 0.96

200 3.42ln(x) + 1.82 0.95
d. logarithmic line

trend functions
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FIGURE E.5: Optimal robust solution worst-case makespans in the splitting case: medium
size workshops under high uncertainty
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FIGURE E.6: Optimal robust solution worst-case makespans in the splitting case: medium
size workshops under medium uncertainty
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FIGURE E.7: Artificial scenario solution worst-case makespans in the splitting case: high
size workshops under low uncertainty

  

R
el

at
iv

e 
de

vi
at

io
n 

(%
)

4

6

8

10

12

  

0 20 40 60 80 100

X-max

X-average

X-median

X-min

a. (m=15,n=15,d=1)

  

R
el

at
iv

e 
de

vi
at

io
n 

(%
)

3

4

5

6

7

8

9

  

0 20 40 60 80 100

Max

Average

Median

Min

b. (m=15,n=50,d=1)

  

R
el

at
iv

e 
de

vi
at

io
n 

(%
)

1

2

3

4

  

0 20 40 60 80 100

Max

Average

Median

Min

c. (m=15,n=200,d=1)

m=15 n y R2

Xmax

15 0.31ln(x) + 8.35 0.96

50 0.92ln(x) + 4.64 0.96

200 0.57ln(x) + 0.84 0.97

Xaverage

15 0.31ln(x) + 8.35 0.97
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Xmedian
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10 0.29ln(x) + 9.56 0.98

50 0.77ln(x) + 5.89 0.98
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d. logarithmic line trend functions
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FIGURE E.8: Artificial scenario solution worst-case makespans under splitting: high size
workshops under medium uncertainty
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c. (m=15,n=200,d=2)

m=15 n y R2

Xmax

15 4.29ln(x) + 28.01 0.97

50 3.35ln(x) + 17.85 0.97

200 2.39ln(x) + 13.72 0.96

Xaverage
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d. logarithmic line trend functions
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FIGURE E.9: Artificial scenario solution worst-case makespans under splitting: high size
workshops under high uncertainty
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Xaverage
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Xmedian
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d. line trend functions
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FIGURE E.10: Artificial scenario solution worst-case makespans in the preemptive case: high
size workshops under low uncertainty
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c. (m=15,n=200,d=1)

m=15 n y R2

Xmax

15 0.52ln(x) + 10.2 0.965

50 1.27ln(x) + 5.34 0.954

200 0.61ln(x) + 1.2 0.957

Xaverage
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d. logarithmic line trend functions
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FIGURE E.11: Artificial scenario solution worst-case makespans in the preemptive case: high
size workshops under medium uncertainty
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d. logarithmic line trend functions
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FIGURE E.12: Artificial scenario solution worst-case makespans in the preemptive case: high
size workshops under high uncertainty
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FIGURE E.13: Optimal robust solution worst-case makespans in the splitting case: high size
workshops under high uncertainty
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FIGURE E.14: Optimal robust solution worst-case makespans in the splitting case: high size
workshops under low uncertainty
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FIGURE E.15: Optimal robust solution worst-case makespans in the splitting case: high size
workshops under medium uncertainty
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FIGURE E.16: Optimal robust solution worst-case makespans in the splitting case: high size
workshops under high uncertainty
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Abstract: Scheduling on unrelated parallel machines is a common problem in many systems (as semi-
conductors manufacturing, multiprocessor computer applications, textile industry, etc.). In this thesis, we
consider two variants of this problem under uncertain processing times. In the first case, each job can be
split into continuous sub-jobs and processed independently on the machines with allowed overlapping. In
the second case which is termed preemption, we prohibit the overlapping. From a mathematical viewpoint,
the splitting problem is a relaxed version of the preemptive problem. The objective is to minimize the
makespan. The deterministic linear formulations provided by the literature allow solving these problems
in polynomial times under the hypothesis of certainty. But when we consider uncertain processing times,
these algorithms suffer from some limitations. Indeed, the solutions computed based on a nominal instance,
supposed to be certain, turn usually to be suboptimal when applied to the actual realization of processing
times.

Our approach consists in incorporating the uncertain processing times in these problems without making
any assumption on their distribution. Hence, we use discrete scenarios to represent the uncertain processing
times, and we adopt a proactive approach to provide robust solutions. We use special case policies that are
commonly used in the industry to compute robust solutions. We show that the solutions based on some of
those policies are potentially good in terms of robustness according to the worst-case makespan, especially
the scenario smax solution under which all the processing times are set to their maximal values. However,
the robustness costs of these solutions are not satisfying. Thus, we propose to compute optimal robust
solutions. For this purpose, we use a variable change that allows us to formulate and solve, in polynomial
times, the robust versions of the considered scheduling problems. Moreover, the computational results assert
that the robustness cost of the robust optimal solutions is not usually very high. Moreover, we assess the
stability of the robust solutions under a new scenario induced by variations. In fact, the decision-maker is
only responsible for the consequences of the decisions when the processing time realizations are within the
represented uncertainty set. Thus, we define stability of a robust solution as its ability to cover a new scenario
with minor deviations regarding its structure and its performance.

Our main contributions in this thesis are to provide a guide to understand uncertainty issues and their
handling, in particular in scheduling on parallel machines. In this context, we have proposed a solving
approach to help decision-makers compute robust solutions and choose among these solutions those with the
most stable structure and the most stable performance.

Keywords: robustness, min-max, min-max-regret, discrete processing time scenarios, parallel machines,

stability analysis
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