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Mais & chaque coucher de soleil je me léve et jette un coup d’ceil & I’horizon
oriental ot la premiére étoile scintille et je me demande: Comment se fait-il
?7 ... Qu’est-ce qui m’a amené sur cette planéte étrange et dérangeante qu’ils

appellent (la Terre) ?!

Dr. Ahmed Khaled Tawfik
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Abstract

This thesis is an application of computer vision findings to river velocime-
try research. Hydraulic research scientists already use various image process-
ing techniques to process image sequences of rivers. The ultimate goal is to
estimate free surface velocity of rivers remotely. As such, many risks related
to intrusive river gauging techniques could be avoided. Towards this goal,
there are two major issues need be addressed. Firstly, the motion of the river
in image space need to be estimated. The second issue is related to how to
transform this image velocity to real world velocity. Until recently, image-
based velocimetry methods impose many requirements on images and still
need considerable amount of field work to be able to estimate rivers velocity
with good accuracy. We extend the perimeter of this field by including ama-
teur videos of rivers and we provide better solutions for the aforementioned
issues.

We propose a motion estimation model that is based on the so-called op-
tical flow, which is a well-developed method for rigid motion estimation in
image sequences. Contrary to conventional techniques used before, optical
flow formulation is flexible enough to incorporate physics equations that gov-
ern rivers motion. Our optical flow is based on the scalar transport equation
and is augmented with a weighted diffusion term to compensate for small
scale (non-captured) contributions. Additionally, since there is no ground
truth data for such type of image sequences, we present a new evaluation
method to assess the results. It is based on trajectory reconstruction of
few Lagrangian particles of interest and a direct comparison against their
manually-reconstructed trajectories. The new motion estimation technique
outperformed traditional methods in image space.

Finally, we propose a specialized geometric modelling of river sites that
allows complete and accurate passage from 2D velocity to world velocity,
under mild assumptions. This modelling considerably reduces the field work
needed before to deploy Ground Reference Points (GRPs). We proceed to
show the results of two case studies in which world velocity is estimated from

raw videos.
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Résumé

Introduction

Dans cette thése, on s’intéresse a I'application du domaine de la vision par
ordinateur a la vélocimétrie de surface des riviéres. Les hydrauliciens utilisent
déja plusieurs routines de traitement d’images pour traiter des vidéos de riv-
ieres. Le but ultime est d’estimer la vitesse surfacique d'un cours d’eau par
une méthode sans contact. Cela permet aux chercheurs d’éviter les risques
liés au jaugeage intrusif des riviéres, notamment en période de crue. Dans
ce but, deux enjeux sont a prendre en compte. Tout d’abord, le mouvement
apparent de la riviére dans ’espace image doit étre estimé. Ensuite, ce mou-
vement, estimé en pixels par unité de temps, doit étre transformé en une
vitesse réelle exprimée en métres par seconde par exemple. Jusqu’a présent,
les méthodes de vélocimétrie par images imposent quelques contraintes sur
les séquences pour qu’elles soient exploitables (notamment une caméra fixe et
le besoin de la présence physique des équipes hydrauliques au site de jaugeage
avant ou aprés 1’événement). Dans cette thése, on vise a élargir ce périmétre
en incluant les vidéos prises par des amateurs (c’est a dire de paramétres
inconnus, et avec un mouvement potentiel de la caméra) tout en présentant

de meilleures solutions pour les enjeux précédemment mentionnés.

Estimation du mouvement

L’estimation du mouvement en traitement d’images est une question de
recherche fondamentale dans le domaine de la vision par ordinateur. Beau-
coup d’ambiguités concernant une scéne dynamique sont enlevées si le mou-
vement des objets formant cette scéne est connu. En général, il y a deux
approches différentes. La premiére, dite locale, impose une contrainte de
similitude de la vitesse sur tous les points dans une petite fenétre sur 'image.
La deuxiéme, dite globale, impose les mémes contraintes sur tous les points
de I'image. Les méthodes de vélocimétrie de riviéres par images utilisent
une approche locale, dite PIV (Particle Image Velocimetry) (Adrian, 1991).

L’idée principale c’est de faire une correspondance entre plusieurs fenétres

1X



définies sur deux images en maximisant un facteur de corrélation entre elles.
Cette méthode exige une bonne distribution des traceurs sur la surface de
I’eau pour une meilleure corrélation. La taille des fenétre de corrélation est
de plus un parameétre délicat, étant un compromis entre la petite taille néces-
saire & un mouvement quasi-identique des pixels, et la grande taille requise
pour observer des motifs suffisamment texturés a 'intérieur de cette fenétre.
Les approches globales telles que les méthodes de flot optique ont fait 'objet
de recherche active depuis leur apparition en 1981 (Horn and Schunck, 1981).
Le flot optique a montré de bonnes performances pour 1’estimation de vitesse
pour les écoulements. En effet, on peut faire des liens entre la formulation
du flot optique qui a été con¢u au départ pour le mouvement rigide, avec les
équations de la physique des écoulements. Un modéle récent a introduit un
terme de diffusion qui compense la perte des informations a petite échelle
causée par 1’échantillonnage dans la grille des pixels lors de 'acquisition de
I'image. Ces informations ne sont pas négligeables dans le cas des écoule-
ments car elles participent au transfert global d’énergie. Ce terme de dif-
fusion était supposé lié a la viscosité turbulente. On propose ici un modele
simple basé sur la hypothéses de mélange de Prandtl (Prandtl, 1925) pour
I’estimer, en profitant des valeurs de vitesses hiérarchiques estimées avec un
schéma de flot optique multi-résolutions. Le modéle de flot optique final
est donc constitué d’un terme d’attache aux données physiques venant de
I’équation de transport, augmenté par un terme de diffusion turbulente basé
sur un modeéle de turbulence et un terme de régularisation conventionnel qui
permet d’avoir des couches de mélange naturelles sans introduire des conti-
nuités artificielles non réalistes. En ’absence de vérité terrain pour le champ
de vitesse dans I'espace image (a la différence des applications de flot optique
pour le mouvement rigide et pour le mouvement des écoulements généraux),
il est difficile d’évaluer les résultats sur les séquences de riviéres. Une solution
de substitution est de suivre des particules passives (traceurs) a la surface de
I’écoulement de la riviére & partir des champs de vitesses estimés. Pour cela,
on utilise une méthode d’intégration Runge-Kutta du 4éme ordre et on com-
pare la trajectoire obtenue avec une trajectoire reconstruite manuellement

pour la méme particule. Plusieurs séquences avec des différentes caractéris-



tiques ont été utilisées pour la comparaison. De fagon générale, le modéle
proposé a obtenu de meilleurs résultats que le modéle classique de flot optique
et que les méthodes PIV.

Modélisation géométrique

Aprés avoir estimé le mouvement dans ’espace image, une transforma-
tion de cette vitesse en vitesse métrique est requise. Pour cela, certaines
connaissances sur les parametres de la caméra qui a pris la vidéo sont néces-
saires. C’est 1’étape de calibration de la caméra. Si on posséde la caméra
(physiquement), il est possible d’estimer ces paramétres en prenant plusieurs
vues d’objets de géométrie connue (en général une géométrie plane). En
faisant le lien entre ces objets et leurs projections dans les images, on peut
facilement arriver a déterminer les parameétres de la caméra. C’est une procé-
dure standard et mature, de nombreuses applications de vision par ordinateur
commencent par cette étape. Les méthodes conventionnelles de vélocimétrie
riviére par image utilisent des caméras connues ce qui facilite la transforma-
tion géométrique et qui permet par la suite & faire ce passage 2D vers 3D. La
LSPIV par exemple utilise une caméra fixe et quelques points de controle sur
la scéne pour arriver a enlever les effets de perspective et avoir une nouvelle
séquence d’images orthorectifiées pour laquelle le rapport pixel/monde est
connu. On peut ainsi estimer une vitesse métrique directement sur les im-
ages. Les deux inconvénients de cette approche sont que le déploiement des
points de controle nécessite un travail terrain important avec plusieurs opéra-
teurs. Deuxiémement, cette étape d’ortho-rectification interpole et change
la fonction d’intensité de 'image ce qui peut en dégrader le signal. La fonc-
tion de I'intensité de I'image est la seule source d’information pour estimer la
vitesse sur les images et il est donc préférable de ne pas la changer. Les vidéos
amateurs sont plus complexes a exploiter avec la difficulté liée & une caméra
inconnue mais aussi au mouvement de la caméra pendant I'acquisition, qu’il
s’agisse d'un mouvement volontaire de l'individu qui prend la vidéo ou in-
volontaire du simple fait que la caméra est tenue a la main. Ces deux prob-

lématiques sont bien connues dans le domaine de vision par ordinateur. La
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réponse a la premiére est ’auto-calibration, c’est-a-dire une calibration de
la caméra faite seulement avec l'information contenue dans les images. La
réponse a la seconde est la stabilisation de la vidéo en estimant le mouvement
de la caméra et en I'enlevant de la vidéo. Avec l'utilisation de ces deux tech-
niques, la différence avec les séquences controlées est minimisée. La surface
libre d'une riviére est en perpétuelle évolution, mais ses mouvements verti-
caux sont trés limités par rapport a sa taille transversale et longitudinale.
Ainsi, il est possible de formuler I’hypothése que la surface d’un écoulement
en riviére est plane. Sous cette hypothése, on peut faire la correspondance
plan a plan entre la région de la riviére dans le plan de I'image et le plan de
la riviere dans le monde 3D. Les déplacements 2D peuvent ainsi étre projetés
en 3D, seule I’échelle par rapport au monde 3D réel demeure inconnue. Cette
échelle peut étre estimée théoriquement a partir des objets reconstruits en
3D dont la taille (ou longueur) est connue dans le monde réel. Toute cette
manipulation géométrique fait appel & quelques méthodes de vision par ordi-
nateur, notamment la détection de point d’intérét et la géométrie épipolaire.
Basée sur ces deux méthodes, la stabilisation des vidéos et 1’auto-calibration
sont réalisées. Pour détecter les points d’intérét, la seule condition nécessaire
est de disposer de suffisamment de régions fixes dans les images. L’auto-
calibration quant a elle a besoin du mouvement de la caméra pour pouvoir
faire une triangulation 3D. Il y a une forte analogie entre les sites des riviéres
et les scénes d’intérieur explorées par le domaine de la robotique. En effet,
dans les deux cas sont présents des plans dans lesquels la détection de points
d’intérét est ardue. On réduit le probléme de reconstruction 3D des rivieres
a une reconstruction 3D basé sur des plans orthogonaux. Cela permet de
simplifier le probléme initial et tous les points de I'image qui font partie de la
riviére pourront étre construits en 3D avec fidélité. On compte ensuite sur le
plan vertical pour trouver des objets de taille connue pour estimer le facteur

d’échelle dont on a besoin pour passer a la taille réelle du site.
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Estimation de la vitesse métrique

La premiére tache a faire est de déterminer si une calibration de la caméra
est possible. Par exemple si la caméra est inconnue, il faut nécessairement
observer un mouvement de la caméra durant la séquence d’images pour que
I’autocalibration soit possible. Ensuite, on extrait une séquence d’images
consécutives pour faciliter I'estimation par flot optique, mais également et
surtout parce que si la camera bouge, la stabilisation des images consécutives
est aussi plus aisée. Une reconstruction 3D est donc faite avec une image et le
facteur d’échelle est extrait a partir des objets trouvés sur les plans verticaux
de la riviére (panneaux, murs, parties de ponts, etc.). Une section en travers
est déterminée et les vecteurs du déplacement 3D sur le plan de la riviére
sont obtenus en projetant les vecteurs 2D. Le facteur d’échelle est finalement
utilisé pour mettre a 1’échelle ce déplacement. La vitesse est donc obtenue

en fonction de l'intervalle temporel choisi pour la séquence extraite.

Conclusion

Dans cette thése, nous avons proposé une nouvelle méthode d’estimation
de vitesse basée sur I’équation de transport scalaire, avec ’ajout d’un terme
de diffusion pour compenser la perte d’information dans le processus d’acquisition
d’images. Elle donne sur les séquences testées de meilleurs résultats que le
flot optique classique et que la méthode PIV. Le passage des vitesses estimées
dans I'espace image aux vitesses métriques du monde réel est assuré par une
méthode de reconstruction 3D monoculaire de la surface de 1’écoulement, in-
spirée des techniques de robotique en environnement intérieur. Le développe-
ment d'une méthode d’auto-calibration et de stabilisation d’images permet de
généraliser 'application des méthodologies proposées a toutes les séquences
d’images, notamment celles acquises par une caméra aux parameétres incon-
nus et en présence de mouvement lors de 'acquisition. Le processus complet
depuis la vidéo jusqu’aux vitesses métriques est illustré par différents exem-

ples de séquences d’images.
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Chapter 1
Introduction

We are living in the era where computer vision is steadily moving from
a theory-only discipline to a wide-range of applications in several scientific
domains. Visual data is all over the place and it is being captured by a variety
of different devices like smartphones, drones, surveillance cameras or medical
imaging equipment. One can now rely on computer vision to inspect goods
in industrial machine vision applications, provide vision for autonomous cars

or even unlock smartphones using facial recognition.

In this dissertation, we apply computer vision to river velocimetry re-
search. River velocity estimation is an essential part in river gauging process.
Why do we gauge rivers anyway 7 well, rivers are important for the planet
as they participate in the global water cycle. They carry nutrients and are
the natural habitat for wild life, providing them food and drink. Some rivers
also provide energy and act as a transport medium. As a matter of fact,
rivers affect many human activities. We are particularly interested in rivers
in motion with noticeable discharge. This also includes seasonal urban floods.
Scientists study these natural phenomena to get a deeper understanding of
their dynamics and life cycle. The gauging data is important to allow histor-
ical data comparisons with current data points. As such, one obtain a tool
by which any aberrant behavior could be quickly identified and reported.
Urban floods in particular receive a special attention because of their direct

(and potentially catastrophic) impact on local communities. These kind of
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Figure 1.1: Catastrophic impacts of inundations in France.

hazards are of a repetitive nature and they affect millions of people in areas
at risk. Figure (1.1) shows few photos of floods aftermath in France. We
need to be able to study these hazards and also predict them. This is not an
easy task if we consider the large number of variables involved. Therefore, it
is beneficial to be able to collect more data to better fit statistical models. In
river gauging, we collect volumetric velocity data (the discharge) and water
level (the stage) on a specific location. Some other measurements regarding
water quality or sediments properties might also be collected. The gauging
is either performed on hydraulic stations built on the site or using mobile
stations instead.

There are several limitations towards the ultimate goal of frequent gaug-
ing and more data collection. Scientists can not have hydraulic stations
everywhere they would like to and can not be to many sites at the same
time at their will, specially on sudden or short period events. In addition to

that, some events like floods are very dangerous for the instruments and the
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personnel. It requires more preparations and additional safety measures.

In recent years, and in order to overcome the difficulties related to danger-
ous events, non-intrusive techniques (radar and image-based) gained popular-
ity. These techniques enable us to estimate river free surface velocity without
direct interaction with the river itself. The free surface velocity is a valuable
piece of information that can be used to estimate the discharge, provided
that other information like rating curves, bathymetry, etc., are available.

Radar devices only provide very sparse data (one point per location/device),
many devices might be used at the same time for reliable estimations. The
concept of radar-based velocity estimation is based on interpreting the im-
pulse response of an electromagnetic signal emitted on the river free surface
at a certain angle. The impulse response is reflected by the rugosity of the
free surface with a different frequency that is proportionate to the velocity
(the Doppler Effect). An assessment of their performance could be found in
(Welber et al., 2016).

Another approach is to use image-based techniques. Remarkable work
has been done using image-based techniques in the last two decades (Jodeau
et al., 2008, Muste et al., 2014, 2008, Le Coz et al., 2014). Most of them are
based on the seminal work of Fujita et al. (1998). The idea behind it is as
follows: a camera is mounted somewhere at a certain orientation to capture
videos of the river of interest. Some Ground Reference Points (GRPs) with
known 3D coordinates have to be deployed manually, either just before the
event or in a constant manner. These GRPs help the researcher to geomet-
rically modify the obtained images in order to remove the perspective effect
(a process called ortho-rectification). A new set of images is thus obtained
with a predefined spatial resolution. The river surface has to be seeded with
tracers before the event so that clear motion patterns could be observed. Dis-
placements could then be estimated on these images using correlation-based
techniques. The velocity is obtained directly since the time between images
is known. Figure (1.2) shows photos of some of these techniques in action.

While both approaches greatly helped avoiding risks, the spatio-temporal
limitations are still present. Image-based techniques use cameras mounted in

some predefined locations and provide rather sparse measurements in space.
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Figure 1.2: Velocity estimation techniques: Intrusive (top), radar-based (bot-
tom left) and image-based (bottom right).
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Recently, Dramais et al. (2011) showed the interest of using mobile LSPIV
station. While this might elevate the spatial sparsity of measurements, it is
still bounded to temporal constraints especially for sudden or far away events.
Also, promising results were obtained by exploiting amateur videos of such
events in a post-event gauging framework (Pénard et al., 2015, Le Boursicaud
et al., 2016).

With the popularity of smartphones equipped with a camera, it turns out
that people have the tendency to capture footage of such events and share
them on social networks. Searching YouTube for example gives thousands
of videos of floods. It is not uncommon to collect data from willing citizens
for hydrology research. Lowry and Fienen (2013) for example showcased a
system (called CrowdHydrology) that collects the stage measurement from
citizens via text messages. A dedicated server then takes into account all
the data and display it publicly on the web. It is a very ambitious idea to
try to exploit amateur videos for river velocimetry research. This has the
potential to provide scientists with a huge new source of data that bypass
the aforementioned spatio-temporal constraints. It can even go beyond that
to enable gauging events that occurred in the past. This generalization how-
ever comes with a cost. The camera used is no longer known and image
sequences are generally not stable. Image quality could be degraded too due
to compression algorithms used by social media sites.

To the best of our knowledge, there is no scientific research on how to
exploit amateur videos for the purpose of river velocimetry, without ever
going to the site. A complete and general framework is therefore proposed
in this thesis to address this issue while enhancing the existing routines that
are commonly applied to this field.

As per any specialized application, the general theory of computer vision
might not be applicable out of the box. To this end, we stratify the problem
into sub-problems. We briefly review the literature of image-based river
velocimetry on the sub-problems. Then, we see what the general theory
of computer vision has to offer and eventually we provide enhanced and
specialized solutions for river flow image sequences. The thesis is organized

as follows: in the next chapter we tackle the problem of motion estimation
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Figure 1.3: An image extracted from an amateur video of a flood showing
another amateur capturing the same event with a smartphone.

in image sequences. The third chapter will focus on geometry problems, it
addresses the question of how to go from 2D image velocity to world metric
velocity. In the fourth chapter, we combine concepts from the second and
the third chapters to finally estimate a real world velocity starting from raw
videos. Two case studies with different conditions are shown. We conclude

in chapter five.



Chapter 2
Image Motion Estimation

Motion estimation is one of the fundamental questions in computer vi-
sion. A lot of ambiguities involved in understanding a random scene are
resolved if the motion of objects in that scene is known. An obvious example
could be found in the growing domain of autonomous vehicles. The vehicle
needs to be aware of the motion of pedestrians and other vehicles to calcu-
late its next move. We are interested in the motion of rivers free surface. In
general, motion estimation of fluids is considered a special case scenario. In-
deed, fluids change their shape all the time and they have more complicated
motion patterns than rigid objects. We review in this chapter the literature
of motion estimation in image sequences. We then proceed to review motion
estimation for fluids. Eventually, we derive a method that is specialized to
rivers free surface motion and we compare it to conventional motion estima-
tion techniques and other specialized ones. We give more space to the parts
that we judged relevant and eventually led to the final mathematical model

we propose for rivers.
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2.1 Introduction

The motion estimation problem in images is almost always tackled as
a correspondence problem. One looks for a feature or a pattern that is
invariant under motion and could be uniquely identified throughout an image
sequence. Based on this, the correspondence could be successfully established
and the displacement is then calculated by taking the location difference of
these corresponding features. This is sufficient for applications that do not
require real world motion measurements. For example, in intelligent video
surveillance applications or even in some video compression algorithms, some
tasks are launched only when a motion in image space is detected. The exact
velocity (or displacement) here is irrelevant and only the existence of motion
is what really matters. In image space, the terms velocity and displacement
are used interchangeably implying implicitly that a time unit of 1 is indeed
used. However, if a real world motion measurement like the velocity of specific
object is needed, then the real time unit is obtained from video frame-rate
and is used instead. Some applications might only need the velocity in terms
of pixels. In this case, the velocity is readily obtainable if the displacement
is known. Other applications might need a real world velocity. In this case,
a conversion from motion in image space to motion in metric world units is
required. This is exactly the case that we are going to study in this thesis.
The sought real world measurement is the velocity of the free surface of rivers

or urban floods.

The majority of works found in computer vision literature rely on pho-
tometric features correspondence. They are extracted from the intensity (or
brightness) function of the image. In general, motion estimation methods are
divided into two main classes: global or local. Global methods constitute an
energy (or cost) functional based on constraints imposed on the entire image.
The minimizer of this functional gives a global solution to all points involved.
Local methods, on the other hand, work on image windows of some size (say
15 x 15 pixels) and try to minimize an error expression based on constraints
imposed on these windows individually. Local approaches tend to be more

robust to noise in the sense that there is no error propagation between two
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different grid points while global approaches are in general more sensitive
to it, (Barron et al., 1994). The advantage however provided by global ap-
proaches over local ones is that they supply a dense vector field i.e. a vector
for every pixel. This is in general a beneficial feature for image sequences of
fluids because one can directly observe or extract other relevant fluids pat-
terns like streamlines or vorticity fields. Also, using prior knowledge about
the expected vector field, global methods give more plausible results in areas

with no motion clues.

2.1.1 Local approach

It is in the early 80s when a very important paper in computer vision
was published by Lucas and Kanade (1981) (LK). Even if the title of the
paper was about image registration and it didn’t mention any thing about
“motion estimation”, the algorithm proved later to be very effective for that
purpose. This is however a logical outcome since image registration and
motion estimation are both correspondence problems. LK algorithm idea is
to minimize a quadratic error between a template image 7'(S) and an input
image 1(S). Some parameterized function F(S;w) tries to transform (or to
warp) the input image to resemble the template image where w is a vector

of parameters and S is an image location S = [z, y].

Y [I(F(S;w)) = T(S)?
s
In the case of motion estimation, the vector w is just the 2D displacement
vector [u,v]. The original and the template images are small windows on the
two image frames. Since the relationship between pixel coordinates S and
image intensity value at that position is not linear, the above expression is

solved in a non-linear fashion.

2.1.2 Global approach

It was about the same year when Horn and Schunck (1981) (HS) published

their influential paper on motion estimation. It is one of the most cited pa-
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pers in computer vision (12900 citations at the time of this thesis writing).
While the term optical flow might be equally applicable to any motion esti-
mation algorithm in image sequences, it is widely used to refer to HS-style
global algorithm. Horn and Schunck (1981) firstly coined this term in the
title of their original paper. Optical flow is defined as the pattern of apparent
motion of objects, surfaces and edges in a visual scene caused by the relative
motion between an observer and that scene. Most of motion estimation re-
search throughout the years were focused on HS global optical flow. Optical
flow belongs to a larger global methods family called the variational meth-
ods. They are used in many computer vision tasks. Optical flow and image
restoration /denoising are the most popular examples. Variational methods
are based on a classical optimization technique for cost functions. Their
formulation permits a clear and unambiguous modelling without hidden as-
sumptions or variables. In addition, even if images are in discrete space,
variational methods formulation is intrinsically continuous, leaving the nu-
merical solution to be determined by the discretization scheme chosen. This
gives the advantage of a clearer derivation but leaves the door open for more
accurate solutions if better discretization schemes are used. A variational
functional typically contains two terms. One term is related to the data,
called the data term or the observation term. The second term is called the
regularization term. The regularization part plays an important role in the
estimation. On the one hand, it helps reducing the solution search space by
adding apriori information about the expected solution. On the other hand,
it has this fill-in effect that occurs whenever the data term carries no infor-
mation or is too noisy. The regularization propagates information to fill-in
the gaps. The problem is finally formulated as the minimization of an energy

function of the type:
/ data term + « regularization dS
Q

where () is the 2D image domain and « is a strictly positive factor that
controls the importance of one term against the other. A simple example to

grasp variational formulation is #mage denoising application. One looks for

10
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the original denoised image starting from an observation (the noisy image).

/Q I = I+ a |V f]2dS (2.1)

The data term in the above expression encourages the sought denoised image
f to be close to the observed noisy one I. The second term imposes that the
denoised image should be smooth by penalizing the gradient of its intensity
function. For optical flow, Horn and Schunck (1981) suggested brightness
constancy (BC) assumption as a feature to establish the correspondence.
This is to be the data term for optical flow. It is supposed that points keep
their intensity values after moving in a small time interval. This could be

written in an equation as:
I(z,y,t) = I(x + dx,y + 0y, t + 6t)

The right hand side describes the motion of a point in space and time, the
equality affirms that the intensity value is unchanged. This is of course non-
linear as these increments could take any value. In an attempt to linearize

this model, a Taylor expansion about the point (z,y,t) is developed:
I(z,y,t) =I(z,y,t) + L,dx + 1,0y + [;6t + o (2.2)

where the subscripts denote partial derivatives and o represents second and

higher order terms. After simplification and neglecting o we end up with:
Iz + 1,0y + 1,0t = 0

dividing both sides by dt gives:

ox oy
I—+1,—+1,=0
T T
Let w = [u, v] represents the velocity vector field, the above equation can be

re-written as:

Lu+ T+ 1,=0 (2.3)

11
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Equation (2.3) has two unknowns which means it can not be solved without
additional information. Only the motion component in the direction of the
gradient VI = [, I,] can be recovered. The motion in the direction parallel
to the gradient remains undetermined. This causes a visual phenomenon
known as the aperture problem, implying that a bigger aperture around a
given point is needed to add more constraints. Aperture problem is the
reason behind many optic illusions since part of the motion is not determined,
Figure(2.1). The worst case scenario occurs in uniform intensity regions
where the gradient in both directions vanishes. This means that any value

(wrong values included) for v and v would satisfy Equation (2.3).

Figure 2.1: An illustration of the aperture problem, any vector inside the
aperture could describe the motion of the red line viewed through the aper-
ture. However only the vector parallel to the black vectors outside the aper-
ture is the correct one.

The additional information comes from the regularization part. It helps
reducing the ambiguity of the above model by restricting the search space.
This is done by adding apriori information about the expected vector field
and by propagating information to fill-in where needed. The regularization
proposed by Horn and Schunck consists of assuming a smooth vector field

everywhere in the image. This is based on the observation that neighboring

12
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points are likely to belong to the same surface. Points on rigid surfaces move
together when the surface moves. It is a plausible assumption in the case of

rigid or quasi-rigid objects. The energy then reads:
E(u,v) = //Q (I + Lou+ L)* + o (u2 + ul + v2 +v2) dedy (2.4)

The data term, encapsulates the main hypothesis about the data which is in
this case the brightness constancy (BC). The regularization part tries to min-
imize the norm of the gradient of the flow field. In other words, neighboring
points should have similar velocities. This last idea resembles the implicit
assumption made in local methods which assumes that all points in the same
window have the same velocity. The regularization here is however more re-
laxed, points on the same window could have different velocities, if that some
how minimizes the energy function. The regularization then tries to propa-
gate information to regions with weak gradient from estimations performed
on neighboring regions that might have good gradient signal. The optimal-
ity condition of this energy function could be attained using Euler-Lagrange
equations (a classical result of calculus of variations). Euler-Lagrange equa-

tions for the above model are:

L (Lyu+ Iy + 1) — aAu =0,
I, (Lu+ Ly + 1) — aAv =0, (2.5)

where A is the Laplacian operator. These are Partial Differential Equations
(PDESs). For simple models like in Equation (2.4), these equations generally
result in a linear system of equations that could be solved using standard

linear algebra routines.

2.2 Improved optical flow

Over the years, the model described by Equation(2.4) witnessed many
improvements and modifications. We are going to detail only major im-

provements and describe the derivation of an improved HS model.

13
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One major shortcoming of this model is the linearization of the BC as-
sumption in the form of Taylor expansion, Equation (2.2). This makes the
model only valid for small motion magnitudes. This is of course not the
case in general and especially in rivers or floods. To cope with large displace-
ments, a coarse-to-fine multi-resolution strategy is introduced by Bergen et al.
(1992). The velocity field is divided into an approximated field that is known
and a correction field to be estimated. The correction field is supposed to
be small and thereby fulfills the small motion assumption. To achieve this,
the original image is down-sampled successively to form an image pyramid ,
Figure (2.2). This has direct impact on optical flow since the image is get-
ting smaller at each level and the optical flow “shrinks” accordingly. Starting
from the smallest pyramid level, a small optical flow field is estimated. It is
then propagated to the next finer level after applying the necessary scaling
via interpolation. This vector field represents the approximated known field
for the finer level. The second image of the finer level is then brought closer
to (or warped towards) the first image using the approximated known field.
The estimation on the current pyramid level is performed to recover the small
correction field. The final flow field at this level is the addition of these two
vector fields. After obtaining a full vector field for the pyramid level at hand,
it is then again propagated to the next finer level and the the same process

is repeated until the finest level (original image) is reached.

The regularization term imposes a first order smoothness constraint on
the entire vector field. While this might be true for points sharing the same
surface, it is a strong assumption on objects boundaries (also called discon-
tinuities) inside the image. Scenes are normally composed of many objects
that vary in shape, color or depth. The boundaries between these objects
and/or with the background represent challenging regions for the model de-
scribed by equation (2.4). Indeed, these regions would likely to have different
motions. Imagine a region in a scene located between two objects boundaries.
If the two objects move differently, that part of the image would contain two
different motions. The smoothness assumption is then violated. A quadratic
penalization (as in the above) tends to average between these competing mo-

tions. This will result in a smoothing over regions that basically should not

14



Chapter 2 IMAGE MOTION ESTIMATION 2.2 Improved optical flow

Figure 2.2: The original image is down-sampled to form a multi-resolution
image pyramid. The estimation is performed between two image pyramids
going downward until the original image.
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T T
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Figure 2.3: Different penalization functions superimposed

be smooth. Consequently, the model will fail to provide accurate estimations
in these regions as it will consider one motion and see the other competing
motion as an outlier. In that sense, Black and Anandan (1996) suggested
to use robust functions instead of the usual quadratic function to reduce the
effect of outliers. This can also be beneficial to the data term as shown by
Mémin and Pérez (1998a). Indeed, the BC assumption is also prone to er-
rors due to reflections, transparency, occlusions and many other factors. We
have considered two robust functions throughout the thesis. The Lorentzian
U(x,0) = log (1 +3 (§)2> and the Charbonnier ¢)(z) = v/22 + ¢ where o is
a parameter to control the shape of the function and € is a constant intro-
duced to ensure the function differentiability, typically chosen to be 0.001.

Figure (2.3) shows the shapes of these functions against the quadratic.

One of the key practices that significantly improved the accuracy of op-
tical flow is use of median filtering to reject outliers in the intermediate
flow (the flow between image pyramids) during warping steps (when the sec-
ond image is warped back closer to the first). It has been introduced into
pyramidal optical flow computation heuristically at first. It has significantly
improved the estimation accuracy. (Sun et al., 2014) showed later on that

by using it, the energy functional being minimized is a different energy. This
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different energy just tries to regularize over a larger spatial area.

Mémin and Pérez (1998b) and Brox et al. (2004) used the original non-
linear model I(S) = I(S+05). This non-linear optical flow modelling allows
the integration of large displacements within the framework, unlike the lin-
earized model which only expects small motions. The model using non linear

BC and robust functions is:

E(u,v) = // Y ((I(x +u,y+ov,t+1)— ](x,y,t))2)+¢ (ui + uz + 02 + U;) dxdy
N (2.6)

where ¢ is a robust function. This model is highly non-linear and prob-

ably non-convex (if the robust non convex Lorentzian is used). It is ei-

ther solved iteratively using a multi-grid optimization technique (Mémin and

Pérez, 1998b) or a Graduated-Non-Convexity (GNC) technique (Blake and

Zisserman, 1987), with two fixed points iterations.

We show in the following a series of Euler-Lagrange equations for the non-

linear model above:

' (1) (LL) — aV - (¢ (|Vul* + Vo)) Vu)
W (12) . (I, L) — oV - (¢ (|Vul* + [Vu]?) Vo)

Y

0
0

’

(2.7)

where ¢’ is the derivative of the robust function with respect to its pa-
rameters and V- is the divergence operator. Note that we need to rewrite
these equations while considering the coarse-to-fine and warping-based strat-
egy. As mentioned earlier, it is supposed that there is a known vector field
w = (u,v) and a correction field dw = (du, dv) at every pyramid level. The
final propagated field (or the final field if we are on original image level) is
the addition of these two vector fields. But first let’s again study the equa-
tions above. They are highly non-linear due to the non-linear terms that
come from the non-linear BC or from the derivative of the robust function.
Variational methods are typically solved using algorithms like Gauss-Seidel or
SOR (Successive Over Relaxation). To that end, a linear system of equations

must be obtained. Taking advantage of the coarse-to-fine warping strategy,
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a fixed point iteration around w is defined. For more clarity we introduce
an iteration variable k so that the sought vector field at each level verifies

W = wk 4 dwktL

" (([tkﬂ>2) . ([xIthrl) —av. (w/ (}Vukﬂf n ‘Vkarl’?) vukJrl) _0,
() () = v - (v (Va4 [0 ) wuktt) = o2.8)
The following Taylor expansion linearization could be applied:
I = If + Idu® + I do®,
DY = I+ Iydu + IF do”,
I s I+ I du + I do”, (2.9)

where a double subscript means a second derivative quantity. Let:
(W)p =4 ((If + [hdu® + dev'ff)
()% = (|V (u* + duP) | + |V (" + do*) \2> (2.10)

The Euler-Lagrange equations to reflect the introduction of the correction
field are:

(W (I (1F + Idu® 4 Ifav®)*) = aV - (@)} ¥ (u* + du*) ) =0,

W0 (I (16 + Idu® + Ifav®)*) = aV - (@)} V (0" + do) ) = 0,(2.11)

It is still however non-linear in the derivative of the robust functions. Another

inner fixed point is employed to estimate ()% and (¢’ )]; This second

iteration variable is assigned [. The final linear Euler-Lagrange equations

are:

(W0 (15 (2 + it 4 L)) = av - (@)Y (uf + duh 1) ) =0,
(W5 (1 (I + hdu™ 4 1)) — oV - ()5 V (8 + do) ) =0,
(2.12)
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These are linear equations in du and dv. It is worth noting that the non-
linear model, combined with warping and multi-resolution scheme, results
in successive linearization steps using Taylor expansion that might better
approximate the motion. In contrary to the original HS model where only

one global linearization is used.

Algorithm 2.1 Computation of optical flow on a pyramid level
1: for [ =1 to the max number of warping steps do
2 Warp the second image towards the first using current v and v.
3 Compute the weights 1)’
4 Initialize du , dv to zero.
5: for £ =1 to max number of linearization steps do
6
7
8

Linearize the data term using equation (2.9)
Solve for du and dv using equation (2.12)

end for
9: update u and v using du and dv
10: end for

One last detail is the use of GNC (Graduated-Non-Convexity) continua-
tion method (Blake and Zisserman, 1987). If a non-convex robust function
is used, the energy would contain multiple minima and global unique solu-
tion is not guaranteed. The idea behind continuation methods is to simply
provide a good initialization so that a good minimum is attained. Otherwise
a random initialization might get us stuck in a local (usually bad) minimum.
Accordingly, the original energy is smoothed to remove small structures that
are responsible for local minima. We construct a series of objective functions
(depending on the GNC iterations desired) starting with a quadratic (Eg)
(and convex) objective function and moves gradually (and linearly) towards

the original robust (Eg) and non-convex problem using:

cEq(u,v) + (1 — ¢)Er(u,v)

It is not guaranteed that the favorite scenario as in Figure (2.4) to occur
every time but nevertheless it is a good practice that should at least help the

optimization to avoid the first (usually very bad) local minima.
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Figure 2.4: continuation methods: points in blue are initialization points, red
are the minima using the continuation method and the green is the minimum
without the continuation method.

2.3 Preliminary results

We run these motion estimation approaches on a couple of images of a
river running from right to left. Figure (2.5) shows the result of original HS
plotted on the first image of the sequence. One vector is plotted every 20 pix-
els in both directions for better visibility. The color code (Baker et al., 2011)
is another way to visualize the whole vector field, the color itself represents
the direction of the vector and color intensity represents the magnitude. In
comparison to the result of the improved HS in Figure (2.6), the improved
algorithm recovered more homogeneous and smooth vector field. But most
importantly, the algorithm recovered bigger magnitude for almost the entire
river area, even those with less information (small intensity gradient). This
shows the important role of the multi-resolution coarse-to-fine strategy in
helping the algorithm to recover bigger magnitudes. For now however, we
only assess these results visually. By observing the original sequence, we
notice a turbulent but still translatory motion from right to left. In the im-

proved HS result, we observe continuous motion from right to left with a
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magnitude that seems similar to what is observed in the original sequence
by the naked eye. The original HS failed to give full continuous motion, one
could observe spurious vectors in its color code result, for example points
in white means there is no motion observed. Points in magenta appears in
many regions on the entire image. This color means there is actually motion
from left to right, exactly opposite to the motion observed visually. This is
of course an utter outlier. The amount of points with this color gives some
indication about the outliers in the vector field. Figure (2.7) shows the result
of LK algorithm, there is no color-coded results since we only have a sparse

vector field.
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Figure 2.5: Top: HS result super-imposed on the first image, only one vector
is plotted for every 20 x 20 region of pixels for visualization purposes. Bottom:
HS result for all pixels in color code format, the color itself represent the
direction and color intensity represents the magnitude of the vector.
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Figure 2.6: Top: Improved HS result super-imposed on the first image, only
one vector is plotted for every 20 x 20 region of pixels for visualization pur-
poses. Bottom: Improved HS result for all pixels in color code format,color
itself represent the direction and color intensity represents the magnitude of
the vector.
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Figure 2.7: LK result with window size of 20 x 20 pixels.

2.4 Motion estimation for fluids

In the 90s, local methods became very popular in experimental fluid
mechanics community with the introduction of Particle Image Velocimetry
(PIV) technique (Adrian, 1991). The original technique consists of recording
particles moving within a fluid that is being illuminated by a laser sheet.
While LK and PIV are both local approaches as the computations are per-
formed over a set of predefined windows, they differ in how they establish
the correspondence. In PIV, a window of a certain size (called the Interro-
gation Area TA) is chosen. The goal is to find a window in the second image
which maximizes the correlation score computed using the formula in equa-
tion (2.13) while assuming translational motion between images. To this end,
a bigger size window (called the Search Area SA) is determined according to
the direction of the fluid. The search is thus conducted in this larger window
to fit another window within it with the same size of IA. The normalized

correlation is expressed as:
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>scia (As — As) (Bs — Bs)
\/[Zsem (AS - Z5)2 ZSEIA (BS - ES) 2]

where A and B are image intensity distributions of two windows in two dif-

R= (2.13)

ferent images. To compute significant correlation scores, the flow has to
be well-seeded with particles. As a consequence, PIV faces difficulties on
scalar images in which many areas have low intensity gradients. In many
cases, there is a necessary post-processing step to correct or remove spuri-
ous vectors, inevitably generated in regions with low intensity gradient. The
post-processing step may also consists in interpolating the sparse vector field
to generate a denser one. Choosing a suitable window size is a tricky task,
one needs bigger window to accumulate more information for better correla-
tion score computation, but then the bigger the window, the more likely it
contains complex motions far from the window translational motion assump-
tion. Despite its wide-spread usage specially in controlled lab environments,
PIV lacks sound physics foundation, it treats all image sequences equally, re-
gardless of the nature of the object in motion. Furthermore, it only computes
sparse estimations, many of them might be discarded in the post-processing
phase. In recent years, this PIV trend has found a promising contender to
take over image-based velocity estimations in fluids, that is: optical flow. A
comprehensive review on the application of optical flow to fluids flows could
be found in Heitz et al. (2010). Most of optical flow adaptations to fluids
focused on the general case described by Navier-Stokes equations. The appli-
cations vary from satellite imagery, transmittance imagery or PIV laboratory
experiments using laser sheets. This type of fluids exhibits an important de-
gree of vorticity, Figure (2.8). In river image sequences, this is not necessary

the case, rivers exhibit more of a translatory motion than rotational one.

Liu and Shen (2008) formally established the relationship between opti-
cal flow and fluid flow based on the perspective projection of the transport
equation on the 2D plane. Authors found that optical flow is proportional
to the path-averaged velocity field weighted with a relevant field quantity.
This gave the physical foundation needed since BC assumption is not based

on any physical principle but in fluid images it is rather an image transport
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constraint.

A lot of regularization techniques try to deal in some way or another with
the vorticity (or curl) and the divergence of the vector field, depending on
the fluid observed. Corpetti et al. (2005) showed that from an optimization
point of view, the first order gradient regularization tends to penalize equally
the vorticity and the divergence norms of the vector field. The regularization

part in equation (2.4) could be rewritten as:

—QlUgy — QUyy = 0,

— Wy — Oy = 0, (2.14)

If we compare above expressions to those of a second order div-curl expression

a||lug + vy || + B |ve — uy|®, Euler-Lagrange will give:

— Uy — Py — (a0 — ) vy =0,
— By — avyy — (v — B) vy = 0,

(2.15)

which is the same as equation (2.14) if a = f.

Depending on the fluid observed, more suitable and physics-based regular-
ization for fluids have been suggested. Higher order regularization has been
proposed before by Suter (1994) based on the gradient of both divergence
and curl of the vector field. These two operators are of particular importance
because they are fundamental features of fluids. This model tries to conserve

these quantities by penalizing the norm of their respected gradients.
L9 -lP + 1V (7 <P as

This however, leads to a system of four coupled PDEs of order 4 that is
difficult to solve numerically. Corpetti et al. (2002) approximated this quan-

tity by introducing auxiliary variables into the regularization term in a way
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similar to variational image denoising shown before in equation (2.1).

/Qa ((IV-w—=€P + MIVENP) + 1 (IV x w = CI1*+ MIVCIP))

Where p is a weighting parameter, £ and ( are estimates for the curl and the
divergence, respectively. The nice thing about this formulation beside the
simplicity in approximating the complicated fourth degree PDEs, is that it
allows the injection of any prior knowledge of these two quantities. One can
see that when the exact divergence and curl are found, the corresponding
terms evaluate to zero and the optimization would only rely on the second
term (i.e. \||V&|?) that is responsible of smoothing these quantities. Heitz
et al. (2008) suggested to refrain from multi-resolution strategy for PIV ap-
plications because the smoothing and down-sampling of images will suppress
the particles in the coarsest levels. Instead, authors suggested combining the
robustness of local methods with the dense estimation of global approaches,
thus replacing the estimations of the multi-resolution scheme with a dense
estimation derived from the local correlation method used. Let us remark
that local methods are not limited by small-motions-only condition, thus
multi-resolution scheme could safely be ignored. Additionally, another term
is added to constrain the estimated vector field to be conforming to a physi-
cally sound prior based on the equations of Navier-Stokes, it is an adaptation

of an earlier work by Heas et al. (2007), the energy has the following form:

E= Edata term 1 ERegularization + Ec (w, wR) + Ep (w7 wp)

where the previously described simplified div-curl regularization is used. The
term F, encourages the sought vector field to be consistent with wg, the field
that is derived from the correlation method. The same applies to £, where

wp is a vector that is derived from physics based constraints.
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Figure 2.8: Left: Image of scalar incompressible turbulent fluid sequence
dataset (Carlier and Wieneke, 2005). Right: PIV image from the same se-
quence

2.5 Motion estimation for rivers

The first attempts in image-based motion estimation for rivers flows are
due to Fujita et al. (1998). Authors suggested to take PIV outside the lab to
estimate velocity on rivers image sequences. Their method is called LSPIV
(Large-Scale Particle Image Velocimetry) and it relies on a geometric trans-
formation called ortho-rectification that gives direct relationship between pix-
els and world units. PIV is then performed on these ortho-rectified images to
give direct real world velocity. LSPIV became the benchmark for image-based
river velocimetry and many case-studies on different conditions or rivers were
conducted (Creutin et al., 2003, Jodeau et al., 2008, Dramais et al., 2011,
Muste et al., 2008). Let’s however highlight that LSPIV by definition in-
herited all the shortcomings of PIV discussed earlier. Very recently, Tauro
et al. (2017) suggested to replace LSPIV with Particle Tracking Velocimetry
(PTV) in field applications. The main idea is to directly track particles to
provide more accurate results. The PTV result could be improved further
by applying trajectory-based filtering in the post-processing phase. However,

PTV still produces even more sparse results and it is highly dependent on
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Figure 2.9: A space-time image: the particle in blue changes its position in
the line with time which results in a pattern that cross the image at a certain
angle.

continuously visible tracers. Fujita et al. (2007) suggested a method based on
the so-called space-time images. An image of this type is created by stacking
temporal intensity profiles (literally, under each other) of a searching line
defined in the original image sequence parallel to the main flow. In the ideal
case, a clear pattern will emerge crossing the space-time image at an angle
Figure (2.9). The velocity is computed based on the angle, time and the
metric length of the searching line. Despite being simple and elegant, it uses
a strong assumption that the flow field is laminar and hence the tracers stay
in a straight line. It is also not clear how the metric length of the search-
ing line is obtained from perspective images. In the following, we propose
a physically sound data term and a regularization one to customize optical

flow for rivers.

2.5.1 Data term

We derive a method based on optical flow scheme that is customized to
rivers flows. We make the assumption that the image intensity function [
is related to some passive scalar field concentration C'. They are related
by a perspective transformation that projects a real world quantity into the
observed image plane forming the intensity function I. Let us examine the
scalar transport equation:

oC 1

EjLV.(Cw)_ Re Sc

AC =0 (2.16)
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where Re and Sc are the Reynolds and Schmidt numbers, respectively. The
transport equation above links the scalar quantity C to the sought velocity
vector field w. However, in order to be able to extract the velocity, the
function C' has to contain information till Kolmogorov scale (Kolmogorov,
1941). Since C is captured by a camera, the pictured image corresponds
indeed to a smooth filtered version of the scalar quantity. It is hence a large-
scale representation of the scalar in which the small-scale contributions are
omitted. In the case of fluid flows the small-scale effects can not be neglected
(Cui et al., 2007). Their action on the large-scale drift component must be
modelled. Following Cassisa et al. (2011) and Chen et al. (2015), we propose
a LES (Large Eddy Simulation) decomposition of the transport equation
to model the small scales contributions in river sequences. The expression
V- (Cw) can be divided into an observed V - ({w) and non-observed (V - (7))

parts:

ol 1
E+V~(Iw)+V~(T)—RGSC

The molecular diffusion term %SCAI is usually neglected. We assume that

Al =0 (2.17)

the incompressibility condition for water still holds on the 2D plane (that the
divergence of the 2D velocity field is zero). When applying the incompress-
ibility condition and ignoring the molecular diffusion term, equation 2.17

becomes:

%—l—V!-w—l—V-(T):O (2.18)
We see that the BC assumption appears again (in dimensionless form) in
addition to the new subgrid term V - (7), which means conventional optical
flow is consistent with this physics-based derivation for fluids. As suggested
by Cassisa et al. (2011) the non-observed term is considered related to tur-
bulent viscosity 7 = —D;VI where D, is a turbulent diffusion coefficient. We
opted for a simpler model to estimate it using previous velocity estimations
within the sequence and/or the pyramid levels of image pair at hand. We
feed these estimations to Prandtl mixing-length model (Prandtl, 1925). This

model uses the stream-wise velocity v and the mixing length [ to estimate
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du
dy
tation of D; = S% where sc¢; is the turbulent Schmidt number which has an

the turbulent viscosity v = [ . This quantity is relevant for the compu-

empirical value normally determined experimentally. It has been reported
that sc; has widespread values between 0.2 and 3 in general (Tominaga and
Stathopoulos, 2007) while others very recently suggested values around 1 to
be optimal for water flows (Gualtieri et al., 2017). If we take it to be 1 then
Dy is equal to v;. The Mixing Length [ is defined as the distance traversed by
a fluid parcel before it becomes blended in with neighbouring masses. To the
best of our knowledge, there is no clear way to predict this value from im-
ages. It is taken here to be 1 because the differential optical flow formulation
assumes infinitesimal displacements that don’t exceed one pixel.

Due to sources or sinks in the fluid, the imaged surface is prone to in-
termittent changes because of out of plane (depth) motions. Some regions
may rise up or sink down during the temporal evolution of the fluid caus-
ing changes in the intensity function (Sutton et al., 2008). As a result, the
brightness consistency assumption might not hold in many locations. Thus,
a robust function is chosen for the data term to reduce the effects of outliers.
In practice we mainly use the Lorentzian function (Black and Anandan, 1996)

but many others could be used.

2.5.2 Regularization

Regarding the regularization, two main choices were made. Firstly, it can
be noticed that usually the river flows of interest do not exhibit strong large-
scale eddies motion. Rivers with such eddies have indeed less interest in river
velocimetry applications. There might be however many small scale vortices
but due to river velocity and/or image acquisition speed, most of them are
transported by the large-scale quasi-translational motion. As a result, we
opted for a first order gradient penalization like in equation (2.3). As stated
earlier, this regularization penalizes the divergence and the curl of the flow
field equally. This is a desirable behavior in our case. On the one hand,
penalizing the divergence is beneficial to enforce the 2D incompressibility

assumed. On the other hand, penalizing a non existent or a weak property
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like vorticity will reject solutions with strong vorticity field. For the case
of floods image sequences, their strong translatory nature does not promote
chaotic motions. In other words, the turbulence does not occur at individual
pixels. There is always this notion of groups of pixels that move together and
in which case this regularization is optimal. In addition, in uniform intensity
areas, the image intensity gradient diminishes and it is the regularization that
takes the lead over the data term since the latter depends on image gradient.
These uniform areas should then be moving together for this regularization
to be relevant. We argue that in uniform intensity image areas, it is unlikely
to have very different motions, otherwise, because of water and flow prop-
erties including velocity, there would be a mixing phenomenon that would
eventually disrupt the uniformity of the intensity function in that specific
area. The reverse logic should apply, if the area is uniform in intensity, it is
more likely that it contains similar velocity vectors i.e. points move together,
in which case this regularization is definitely optimal.

The second choice made is to take a quadratic function instead of robust
one for the regularization. The reasoning behind this is: previously robust
functions are utilized in the regularization of rigid motion sequences to im-
prove the results on discontinuities. These discontinuities are due to different
objects motions and/or depth differences etc. However, there is only one ob-
ject of interest here which is the river water surface. Though complex, its
underlying motion is not discontinuous and there is no reason to introduce
penalty terms enforcing the apparition of discontinuities between two ad-
jacent points. The quadratic functions behavior is exactly suitable in this
prospect as it tends to average the two different motions in the neighbour-
hood of interest. Figures (2.10, 2.11 and 2.12) demonstrate this effect. The

regularization reads:
/ a||[Vw|? ds.
Q

The proposed model after combining the two terms is:

/¢ (HgW”W-(—DtVD

2
) +a||Vw| ds. (2.19)
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The final energy after simplifying the above reads:

2
E(w) = /Q?ﬁ (H% +VI-w— DAI ) + HVQ_}HZ ds, (2.20)

which we named SGSD (SubGrid Scale Diffusion).
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Figure 2.10: Vertical pattern: every black stripe has its width increased to
the right in the second image to generate horizontal motion. While white
strips has zero motion.
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Figure 2.11: Robust estimation, clear motion boundaries obtained.
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Figure 2.12: Quadratic estimation, the motion on the boundaries is averaged
between two different motions.
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2.6 Minimization

In practice, the original non-linear displacement model 1(S) = I(S+ 05S)
is utilized in coarse-to-fine fashion with warping as in (Mémin and Pérez,
1998b, Brox et al., 2004). Not only to allow the estimations of big displace-
ments, but also because the diffusion coefficient D; depends on the velocity
computed on previous coarser pyramid level. The linear BC used earlier is
only a Taylor approximation to this model while assuming small motions.
The velocity vector field is initialized using conventional optical flow estima-
tion at the coarsest level (this estimator being itself initialized by a zero-
valued vector field). The vector field is used to warp the second image of the
finer level towards the first image of the same level. Only a small increment
is thus sought at this level w**! = w*+dw* !, implying that we already know

k+1

w* and we look only for the increment dw***. This is in agreement with the

linearization of the non linear displacement model above since dw**! is of
small magnitude. The estimated vector field is propagated to the next finer

level after applying the necessary scaling.

Equation (2.20) could be minimized using Euler-Lagrange equations as
described in section 2.2. However, an Iterative Reweighted Least Squares
IRLS approach, previously used by Mémin and Pérez (1998b), is shown to
be equivalent to the variational Fuler-Lagrange equations (Liu, 2009), yet

simpler to derive while working on the discrete equivalent of Equation (2.20):
E(du,dv) =) " (6§ (T + Todu + Ldv — D, (AT))?) +
S
Al (6L F, (u+ du)) + (6T F, (u+ du))” +

(6 F, (v + dv))’ + (65 F, (v + dv))’] (2.21)

where ¢% is a column vector with all zeros except on the position S. Fi;.e {z,y}
is a derivative filter matrix in the direction of the subscript. u, v, du and
dv are all vectorized and I,; .e{z,y,t} are all diagonalized, for instance

I, = diag[l,]. The goal is to find du and dv that minimizes the gradient
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[%; %} = (. Using matrix calculus we have:
8E / T T
X

(Fl6s65Fy + F 0506 F,) (du+u)  (2.22)

Since dgd% corresponds to the identity, some arrangement of the terms will

yield:

% —9 (@’Ii + aL) du+ ¢ LLdv + ¢ (LL — L(D, AI) + aLu)
(2.23)
where L is a Laplacian filter defined as F] IDF, + FIDF,, ID being the
identity matrix. The identity here comes from the quadratic function chosen
for the regularization. If we use a robust function, we would have a diagonal
matrix of the robust weights instead (like in the case of the data term). An

equation for dv could be obtained in the same way:

E / ! I
oF _, (¢ Lydu+ (¢ +al) do+ ¢ (LL — L(Dy,AT) + alv)

odv
(2.24)
The only unknowns beside dv and du are the two turbulent diffusion coeffi-

cients, these could now be simply estimated using previous velocity estimates:

0
D u = |~ )
t, ‘ayu
0
D,y = |20l 2.95
t, va ( )

IRLS considers the derivative of the robust function as a weight to an ordi-
nary least squares problem. The convergence is achieved when no significant
changes are observed in the weights or when a maximum number of itera-
tions is reached. Two fixed point iterations are finally performed. In the
inner loop, we solve for du and dv while continuously linearizing the non-
linear model and updating the weight 1 as shown in Algorithm (2.2). We
use GNC as described in Section (2.2). The system of linear equations in

Equation (2.23) and Equation(2.24) could be organized as:
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Y12 +al  PLI,
VLI, YL 4al

dv

/

W (LI, — 1,(D, ,AL)) + aLv
(2.26)

[ du ] - [ V' (LI — L(Dy, AL)) + aLu

Algorithm 2.2 Computation of SGSD optical flow on a pyramid level
1: for i =1 to the max number of warping steps do
Compute D, , and D, , as in equation (2.27) using current u and v.
Warp the second image towards the first using current v and v.
Initialize du , dv to zero.
for j = 1 to max number of linearization steps do
Linearize the data term using equation (2.9).
Compute the weight 9.
Solve for du and dv using equation (2.26).
end for
10: update u and v using du and dv.
11: end for

2.7 Evaluation

One of the key factors for the maturity of optical flow approaches ensues
from the availability of ground truth data. Authors compete in benchmarks
such as Middlebury (Baker et al., 2011) and MP Sintel (Butler et al., 2012) to
evaluate their models. When optical flow was borrowed by experimental fluid
dynamics community, similar datasets were required while considering the
governing physics equations. A reference simulation based on Navier-Stokes
equations is used to generate such images using the simulated (and hence,
known) velocity fields (Carlier and Wieneke, 2005). For rivers sequences
however, a 3D simulation that respects the physics equations of rivers and
then generate 2D image sequences from it is a tedious job and a research
question in its own. Rivers 3D simulation is not part of the presented thesis.
Unfortunately, 2D simulations are not realistic enough to mimic exactly the
changes that happen to the free surface over time. As a result, any such

simulation will result in a non-realistic images. In Figure (2.13), we move
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Figure 2.13: Simulated 2D river movements based on a weak-divergence vec-
tor field, Top: first image. Bottom: synthesized second image.

pixels between two frames based on a weak divergence vector field. The

second frame (bottom) shows some non-realistic zigzag effects.

We show next how we can assess the estimated vector fields and then

show results on real world image sequences and on ortho-rectified ones.

2.7.1 Trajectory reconstruction

One way to assess displacement vector fields qualitatively is to check
how good it could reconstruct the trajectory of a particle throughout the
sequence (Corpetti et al., 2002, Simpson and Gobat, 1994). Suppose we have
a sequence of displacement fields w(S, to +nAt) where ne[0, N — 2] for N —1
vector fields computed on N images and we wish to observe the trajectory of
a particle p at position S(to) in the first image. Assuming that di# = %

we have:
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N gt =
o+ni\t dt

t0+(n+1)At dS t t0+(n+1)At S t t
[ 0 | W(S(0).1) ,
t to+nit At
These ordinary differential equations ODEs are solved using the classical

fourth order Runge-Kutta integration method which gives:

Sn+1 = Sn + 1/6((,U1 + 2&)2 + 2&)3 + w4)

where

w1 = w (Sp, nAt)

At
Wy — W (Sn—i-%,to—l-nﬂt—i-?)

At
W3 = w (Sn—i-%,to—i‘nﬂt‘i‘?)

wy = w (S, + ws, tg + nAt + At)
(2.27)

Spatial and temporal interpolations are used to compute terms between pix-
els and time steps. The obtained trajectory gives a Lagrangian insight about
the estimated vector field. To fully asses the vector field, we manually recon-
struct another trajectory of the same point and then we compare the two.
In practice we use the tracking software (CellTracker) to manually track par-
ticles, Figure(2.14). To improve the accuracy, a zooming function is added
to the interface that permits us to select the same point up to few pixels.
We use normalized RMSE to measure the difference between trajectories,
Equation (2.28).

((W(@)rer = y(0)* + (@(@)res — 2(0))°)

Error(i) = = =
\/((y<1)ref —y(end)res)” + (2(1)res — w(end)res)”)

(2.28)
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Figure 2.14: CellTracker software interface. We modify it to include a zoom-
ing function as indicated by the red arrow.

2.7.2 Results on conventional images

We test the approach in three real world image sequences. The sequences
differ in their velocities, image quality, density of tracers (if any) and surface
perturbations. The reference trajectories used as ground truth were recon-
structed up to few pixels uncertainty. This is because particles change their
orientations while moving and their form changes when they are partially
(or sometimes fully) occluded by water. This makes it difficult to select the
exact same point throughout the sequence. We compare our method SGSD
(SubGrid Scale Diffusion) to a modified Horn and Schunck (1981) variation
(HS). In fact, (HS) method used for the comparison is exactly the same as
SGSD but without the turbulent diffusion term. A PIV-based method Ray
(2011) is also compared to the two previous methods.

We use the same parameters for SGSD and the conventional optical flow
(HS) to highlight the difference when using the diffusion term. Some of these
parameters are general and related to optical flow itself. For instance only two
GNC iterations are performed in general. Additional GNC iterations slightly

improved the results for sequences with good seeding. Median filtering is an-
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other parameter to be considered. In general, it is well-suited for sequences
with less turbulence and good seeding. Otherwise if applied to turbulent
sequences it might reject turbulent (but maybe correct) vectors and consid-
ers them as outliers. However, we found that using it only between GNC
iterations (and not between image pyramids) to be beneficial. The weighting
factor between the data term and the regularization term is chosen as 0.6
for all sequences. Following Sun (2013), three warping iterations and three
linearizations steps per pyramid are used. We found that the Lorentzian
robust function works best for the “good sequences”. Sequences that suffer
in terms of image quality or those which the 2D divergence assumption does
not hold, The “Charbonnier” robust function is better than the Lorentzian.
One additional parameter is the empirical turbulent Schmidt number S¢;.
We compare the results using different values for this parameter around the
value 1 that we chose as default among the reported values (Gualtieri et al.,
2017). Considerable changes on the trajectories of some sequences were ob-
served when using an over-weighted or under-weighted diffusion term in noisy
sequences.

The color code used is based on Baker et al. (2011) work. As we have seen
in Section (2.3), the color itself represents the direction while its intensity

represents the magnitude.

The Arc river first sequence

The Arc river, located in the french Alps, is known for its dark color
water which enhances the contrast (the gradient) of image intensity when
coupled with white tracers. In addition, the image quality itself is good with
no changes in scene lighting. The sequence has 41 images with 720 x 576 res-
olution. The average displacement in streamwise direction is approximately
11 pixels between two images. In Figure (2.15, top), we plot the mean SGSD
dense vector field (with an offset of few pixels for visualization purposes).
This gives a quick spatio-temporal idea on the nature of the river at hand.
In the bottom of the same figure we show the direction and the magnitude

for every pixel in the form of the color code. The spatial coherency of the
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estimated vector field is easily observed. Next, we plot the trajectories of
different methods along the reference trajectory. In Figure (2.16), it is easy
to observe that all methods were generally in agreement with the reference
trajectory. This is mainly because of the good gradient signal in this sequence
as mentioned earlier, but also because of the good quality of the images. Two
zoomed areas around the middle and the end of the trajectory are shown in
Figure (2.17). SGSD is almost identical to the reference trajectory, followed
by (HS) and then PIV which appears to underestimate the motion magni-
tude. The zoomed window at the end of the trajectory confirms the results
on the zoomed window in the middle (any false positive match in the middle
will eventually result in a visible underestimation or overestimation in the
window at the end). The normalized distance error in Figure (2.18, top) con-
firms the results. In Figure (2.18, bottom) we plot the normalized distance
error of SGSD using different values for S¢;. This did not change the results
much, there is a maximum error of 0.015 for the case with no diffusion and
around 0.05 for other cases with different diffusion coefficients. Still SGSD
with S¢; = 1 gives the best results. The dense nature of the vector field
enables us to derive other relevant quantities in a straightforward manner.
In Figure (2.19,top) the divergence field is shown followed by cross-section

trajectories (2.19,bottom).
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Figure 2.15: Top: SGSD mean field for Arc sequence super-imposed on the
first image, only one vector is plotted for every 20 x 20 region of pixels for
visualization purposes. Bottom: SGSD result for all pixels in color code
format. 43
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Reference trajectory
+ SGSD
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Figure 2.16: The trajectories of different methods superimposed on the first
image of Arc river first sequence.
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Figure 2.17: Parts of the trajectory seen in Figure (2.16), zoom on window
1 (top). Zoom on window 2 (bottom).
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Figure 2.18: Normalized distance error of different methods (top). Nor-
malized distance error of SGSD with different turbulent Schmidt numbers
(bottom).
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Figure 2.19: Other relevant quantities derived from SGSD for the Arc river
first sequence: divergence of the mean vector field (top). Trajectories on a
cross-section (bottom).
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The Arc river second sequence

In contrast to the first Arc sequence above, the images quality of this
sequence is degraded. The size of the tracked particle is very small which
made even the manual tracking difficult. The sequence is composed of 55
images with 720 x 576 resolution. The average displacement between two
images is approximately 9 pixels. In Figure (2.20, top), the mean SGSD
vector field is superimposed on one of the images. In the bottom of the same
figure we show the direction and the magnitude for every pixel in the form of
the color code. The spatial coherency of the estimated vector field is easily
observed. The color is lighter than the first arc sequence because it is affected
by the large outliers in the white triangle at the bottom. One could notice
non-zero vectors in the non-fluid area in the bottom left part of the image.
These are due to the wind moving the grass and not due to estimation errors.
In Figure (2.21, top) we can see that SGSD was able to recover a better
vector field in terms of magnitude and direction than PIV. With (HS), both
vector fields seem to have the same magnitude, SGSD however was able to
recover much better direction. In the same figure, we show the normalized
distance error of different methods (middle) and for SGSD using different
values for S¢; (bottom). A larger diffusion coefficient gives better results.
However, after 40 images it starts to diverge completely to a poor result
with approximately 0.13 normalized error. The default SGSD is more stable
throughout the whole sequence and most of the time better than the other
two cases with no diffusion or with a small diffusion coefficient. Divergence

field and trajectories on an image cross-section are shown in Figure (2.22).
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/

Figure 2.20: Top: SGSD mean field for second Arc sequence super-imposed
on the first image, only one vector is plotted for every 20 x 20 region of pixels
for visualization purposes. Bottom: SGSD result for all pixels in color code
format.
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Figure 2.21: The trajectories of different methods superimposed on the first
image of the Arc river second sequence (top). Normalized distance error of
different methods (middle). Normalized distance error of SGSD with different
turbulent Schmidt numbers (bottom)
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Figure 2.22: Other relevant quantities derived from SGSD for the Arc river
second sequence: divergence of the mean vector field (top). Trajectories on
a cross-section (bottom).
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The Gave De Pau river sequence

The Gave de Pau river, located in the french Pyrenees, is more challeng-
ing than the previous cases. The sequence is composed of 49 images with
471 x 314 resolution. The average displacement in the streamwise direction
of approximately 6 pixels. The sequence has many uniform regions with
weak gradient signal. Furthermore, the tracked particle is big in size which
increases the uncertainty of trajectory reconstruction. This is because many
points in the vicinity of the original point resemble each other. In addition,
the chosen particle area (and a great deal of other parts) suffered from severe
3D deformations which make the particle moves up and down. This clearly
violates the 2D incompressibility condition used to derive the optical flow
model. The effect could be seen in the highlighted rectangle of trajectories
in Figure (2.25, bottom). In Figure (2.23), we get to have a general idea of
the sequence motion patterns by plotting the mean SGSD vector field. The
3D deformations mentioned earlier are readily noticeable when visualizing
the dense vector field. SGSD was able to recover a better trajectory com-
pared to other methods, Figure (2.24, top and middle). Testing different Sc,
values other than the default value 1 showed similar performance for all vari-
ations until around the 20th image where the default SGSD showed better
performance while SGSD with a larger diffusion coefficient gives a trajectory
that diverges drastically to a bad local minimum with approximately 0.5

normalized error, Figure (2.24, bottom).

52



Chapter 2 IMAGE MOTION ESTIMATION 2.7 FEvaluation

Figure 2.23: Top: SGSD mean field for Gave de Pau sequence super-imposed
on the first image, only one vector is plotted for every 20 x 20 region of pixels
for visualization purposes. Bottom: SGSD result for all pixels in color code
format.
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Figure 2.24: The trajectories of different methods superimposed on the first
image of Gave de Pau river sequence (top), normalized distance error of
different methods (middle) and the normalized distance error of SGSD with
different turbulent Schmidt number (bottom).
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Figure 2.25: Other relevant quantities derived from SGSD for the Gave de
Pau sequence: divergence of the mean vector field (top). Trajectories on a
cross-section (bottom).
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Effects of initialization

We further investigated the results on areas with uniform intensity val-
ues and weak gradients. Both PIV and optical flow data term would suffer
in this case because they rely on these intensity variations. However, using
optical flow, one could still get reasonable estimates since the problem is
more constrained by the regularization term. In addition to that, by initial-
izing the vector field using previous estimates in the sequence, optical flow
could propagate any prior information about these areas that might have
been obtained earlier in the sequence. This can not be demonstrated in a
straightforward way since it is not possible to reconstruct a reference trajec-
tory from a uniform intensity location with no particle to track. However, a
simple workaround is possible under some assumptions. Consider an image
sequence [ in which a member image might be described as I,,,1 < n < N
where n is image index and N is the total number of images. Let I; con-
tains a particle at some location S, when n increases, the particle moves to
a different location in other images every time. It follows that we can man-
ually reconstruct the reference trajectory for this particle on location S only
starting from I;. We could now run SGSD method on two different set of
images. The first one is the original sequence I and the second is on a partial
sequence [P that starts with, say I5 and finish with Iy. We then proceed to
reconstruct two trajectories on image location S starting from I5 (or I7 for
the second sequence) based on these estimations. Note that I; and I} are
the same image in which the location S contains no particle. The difference
between the two trajectories is in the estimated vector fields. The first vector
field computed on I has some information on the expected solution at the
chosen location S since it contained the particle in earlier frames (specifically
the first frame). The second one is computed on I? and is initialized with-
out any prior information. Assuming the river trajectory on S will not vary
much in a short amount of time (less than a second), we could compare the
estimated trajectories to the reference trajectory. In Figure (2.26), we plot
the reference trajectory (in green) on image I5. We can see that it starts from

a uniform location and the particle of interest has already moved to the 5th
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Figure 2.26: Trajectories based on a uniform area.

point of the reference trajectory. The trajectory in red is the one with prior
information while the blue is without it (relies only on the regularization). In
both cases we see that they are not completely different, the red trajectory
being better than the blue with the help of the information propagation pro-
cess realized via the initialization. We draw the attention to the fact that the
process of trajectory reconstruction is very sensitive to outliers. One outlier
is enough to make the trajectory to go to a different direction. At the same
time, when having a uniform intensity, gradient-based velocity estimation in
images is very prone to outliers. Still, we were able to reconstruct similar
trajectories to a certain degree, thanks to the regularization term and the

prior information propagation.

2.7.3 Results on ortho-rectified images

In river velocimetry, LSPIV method is the benchmark method to esti-
mate free surface velocity. It applies PIV to a grid of points defined in ortho-
rectified images. Image ortho-rectification is a way to transform the images
to remove the perspective effect so that a direct relationship between image
space and the real world could be established. The resulting transformed
sequence is used to compute river velocity using image-based techniques like

PIV. Unfortunately, the philosophy of LSPIV in comparison to optical flow is
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different which makes the comparison difficult. LSPIV relies on estimations
obtained on many images and use statistics (the mean mostly) to average
the final field in a first step. In a second post-processing step, outliers might
be deleted on constraining the magnitude and/or correlation score. The in-
stantaneous velocity field without post-processing is generally noisy because
the estimation is carried out locally and if these points happen to be in a
uniform area, they would generate outliers. This makes trajectory recon-
struction difficult because it uses successive individual estimations and only
one outlier is enough to make the whole trajectory divert. In addition, one
needs to interpolate between points on the vector field to reconstruct the
trajectory. This interpolation is different between the two methods since it
is going to be only between adjacent image pixels for optical flow or between
grid points (a distance of many pixels) for LSPIV. Optical flow integrates
outlier rejection in the process via median filtering and /or regularization. To
compare the two methods, we run SGSD on the ortho-rectified sequence and
we compute a real world velocity. We then superimpose the same LSPIV
grid on SGSD dense field and compare velocity values for grid points in both
methods. In Figure (2.27, top), we reconstruct trajectories using SGSD of
points happened to be at the grid or very close. The one in the middle fol-
lows closely the ground truth. The one in top seems to underestimate the
magnitude a bit while the one in the bottom seems to overestimate it. The
three trajectories showed perfect direction estimation. In Figure (2.27, bot-
tom), the absolute difference of SGSD and LSPIV estimations on the grid is
shown. The difference is close to zero on many points. However, a noticeable
difference is observed on the bottom side of the grid. This is not surprising
since estimations on image boundaries are always prone to errors, especially
that here the flow next to image boundaries is not seeded with particles. This
might explains the systematic difference in the PDFs of the two estimations

shown in Figure (2.28), even if the overall shape of both functions is similar.
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* Refarence rajeciony

Figure 2.27: SGSD trajectory on the 3 different particles (top). Absolute
difference in u component between SGSD and LSPIV (bottom).
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flocity mis

Figure 2.28: A PDF for both LSPIV and SGSD estimations on streamwise
direction.

2.8 Conclusion

We presented a novel method for the application of image-based river
velocimetry, based on optical flow scheme. We showed that optical flow in
its own right is optimal and physically compatible with rivers free surface
motions. In the ideal settings as in the first Arc sequence, section (2.7.2),
original optical flow provided very good results without any additional terms.
Our enhanced model is based on the decomposition of the scalar transport
equation which is equivalent to the original optical flow in addition to a new
term. This term, considered to be related to turbulent viscosity, models
the small scales contributions that are dropped out in the image acquisition
phase. We suggest a turbulent diffusion coefficient based on Prandtl Mixing
Length model. We presented results on different possible cases of rivers with
or without tracers, good or bad imaging conditions, high or low surface ve-
locity and high or low surface perturbations. Our method outperformed all
other approaches in all image sequences in the recovered magnitude and/or
direction. Both assessed visually or statistically via trajectory reconstruction
of particles of interest. We draw the attention to the fact that any wrong
value at any instance of the estimated vector fields sequence will ruin the

part of the trajectory that follows it. It is also sensitive to systematic errors
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that accumulate in time. Nevertheless, we have been able to reconstruct tra-
jectories that are similar to the reference trajectory. It is shown that optical
flow can still give plausible results in sequences with weak gradient signal
via regularization and/or information propagation. It is also shown how the
dense estimation of optical flow facilitates the computation of other relevant
fine-detail quantities like the divergence for instance. Since the application
treated here mainly focuses on river velocimetry, our model is designed to
penalize the vorticity in the vector field. Only cross-section trajectories and
divergence of the flow field were then derived and shown. However, the vari-
ational formulation is flexible and could open the door to more specialized
optical flow models for rivers. Indeed, if the vorticity field is of an impor-
tance, the model could be easily changed to avoid the penalization of this
quantity during the estimation process (Chen et al., 2015). A high resolution
vorticity field could then be obtained from the estimated victor field very eas-
ily. Using trajectory reconstruction evaluation method feedback, new data
terms/regularizers and models for the diffusion coefficients could be tested

and assessed.
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Chapter 3
(Geometric modelling

When capturing a video of a dynamic scene, the 3D motion is projected
to a 2D space of successive images. In addition, if the camera was moving
during that time, the obtained images contain a mix of different motions.
In computer vision, many applications are actually interested in the reverse
process i.e. how to go from 2D images back to 3D. We show in this chapter
that this is indeed our case.

An image sequence depicting the flow of a river is also a special case
scenario. Its particularity comes from the river part of the image which is
a blind spot for traditional geometric modelling methods. Not only because
it is extremely difficult to detect corresponding points on the river surface
but also because this part of the image is constantly moving in a non-rigid
fashion. We first investigate what computer vision has to offer and we proceed
by showing what suits best the particularities of the application at hand. We
investigate many important concepts in computer vision that are related to
how cameras do capture the world into images, but also how to exploit these

images to infer a 3D world.
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3.1 Introduction

In this chapter we talk about the geometric modelling of river sites. This
includes the 3D structure of the site in addition to the camera and its move-
ment. These are needed to transform river surface velocity, obtained only in
image space as described in the previous chapter, into a meaningful 3D world
metric velocity. This 3D world velocity must not be confused with river 3D
velocity. The apparatus considered here is an ordinary camera that only sees
the water free surface and nothing in the depth direction of the river. Hence,
we make the basic assumption that the river free surface is a plane, in which
we try to estimate the velocity, Figure (3.1). Let’s imagine the ideal situ-
ation where an orthographic camera might be taking a video of a perfectly
plane river surface orthogonally, i.e. river free surface points vary only in
X and Y directions, in camera coordinate system. The 2D image points of
river surface obtained in this configuration form a 2D to 2D mapping with
their counterparts in the real river surface. Only a scale factor is needed to
pass directly from image velocity computed in image space to world velocity.
This is the simplest case since the 2D mapping is easy to estimate, provided
that the 3D coordinates of some river points along with their 2D projections
are known. LSPIV method thus forces an ideal situation by ortho-rectifying
image sequences. This process produces images with predefined pixel /meter
ratio and no perspective effects. One could compute directly world velocities
from these images. However, the ortho-rectification process interpolates and
possibly changes the image intensity values. It does not seem a good idea
to alter the only source of information available for velocity estimation. In
addition, the ortho-rectification process needs considerable field work to in-
stall Ground Reference Points (GRPs). This severely constrains the number

of sites on which such measurements could be performed.

In reality, most river amateur videos do not fall in this ideal case and
the camera is generally perspective (not orthographic) and is oriented at
an oblique angle to the river. Consequently, in the same camera-centered
coordinate system, the 3D points on the plane will have different depth values.

This case is more difficult since the mapping is now 3D to 2D, represented
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by the perspective projection which is not invertible. There is a loss of

information that will hinder the reverse process, i.e. going from 2D back to
3D.

Figure 3.1: Systems of coordinates

The basic relationship between a 3D point with its projected 2D image
is illustrated in Figure (3.2). The ratio #/s equals X/z.

X Y

1
7= (3.1)

T

where f is camera focal length.

Let’s suppose we have a point P(X,Y, Z) moving in front of a camera, this
will create a path relative to the camera in the form P(t) = (X (¢),Y(t), Z(t)).
The derivative of this path is equal to the instantaneous velocity in the 3D

world wsp = (%, %, %) = (U,V,W). The analogous process to the 2D
projected path p(t) = (z(t),y(t)) will yield the instantaneous 2D velocity in
dr dy

o dt) = (u,v). Similar to the set of equations in (3.1) we

the image w = (
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can derive:

Z Z
x=2y_-2Y
f /

differentiating both sides of X equation w.r.t time we get:

% (2 )-%20)

which will evaluate to
_ Zu+Z — X

v 7
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\
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|
/

Figure 3.2: Perspective projection

A similar equation for V' could be obtained. From the above, it is obvious
that the 3D position information of points and focal length of the camera are
indispensable to compute world velocity from 2D velocity.

In amateur videos of rivers, we have an individual with an imaging device
(smartphone or a camera) capturing the river in motion. We are interested
in the general case where the individual happened to witness the event and
then felt it is a good idea to capture it on video since it is not an everyday en-
counter. This rules out individuals with special lenses (fish eye etc.). In this
case we expect the camera to not be stable. The motion might come from
the natural movement of the individual hand or from an explicit movement
of the individual himself while wandering the scene. The resulting images

will have motion almost on every pixel due to these motions. Nevertheless,
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we can distinguish two regions in the resulting images: fixed image regions
where the fixed parts of the scene (buildings, bridges, etc.) are projected to,
and a river region. There is a third category we often see in these sequences
that is related to vegetation areas. It is easy to decide if it may be considered
a fixed region or not by just observing the video. The fixed regions will help
us infer the motion of the camera since these objects are fixed in the 3D
scene, their 2D image motion is due solely to camera motion. Any estima-
tion of river velocity in image space will be erroneous if the camera motion
is not accounted for. Stabilization of these image sequences is needed and
the estimation could only now be performed. Obviously, different sequences
will have different proportions of the two aforementioned regions. Too many
fixed regions is a problem because the object of interest here is the river
itself. This happens when the river is too narrow or when the camera is far
away. The second case is when no or only small fixed regions are captured.
This is even worse than the first case because the camera motion estimation
depends on these regions. One advantage of amateur videos however is their
good frame-rate (at least 24 frames per second). Consequently, one should
expect subtle camera motion between consecutive frames which makes the
stabilization easier. Despite camera motion being an issue as far as veloc-
ity estimation is concerned, we emphasize that having a moving camera is
actually and quite surprisingly an indispensable requirement for sequences
taken by unknown amateur cameras. Techniques of stereo or multiple view
geometry are only applicable in scenes with camera motions (or equivalently,
fixed camera and scene rigid motion). These techniques are vital for camera
parameters estimation. Next section will give some notions about camera
calibration and other important concepts related to stereo and multiple view
geometry. Then, details on auto-calibration techniques and the framework
chosen are given. The last section will give details about general 3D recon-

struction and a custom 3D reconstruction approach that suits rivers sites.
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3.2 Preliminaries

The purpose of this section is to introduce readers from outside computer
vision to concepts and terminology that are frequently used in the field.
These concepts will be used in later sections of this chapter. If the reader is

familiar with computer vision, he/she could safely skip this section.

3.2.1 Feature-based correspondence

Correspondence between images is a common task in a lot of applications
in computer vision. In chapter two, we established a global correspondence
between two images in the form of optical flow. In this chapter, we rather
seek discrete points pairs correspondences to be used in stereo and multiple
view geometry context. Whether for triangulation of 3D points, or for the
estimation of camera calibration and/or epipolar geometry entities, high ac-
curacy correspondence is a must. As the name suggests, the correspondence
is based on a sparse set of features that could be identified in images. It is a
somewhat mature area of computer vision and many very reliable methods
were developed.

Individual pixels do not have much information, a pixel is therefore de-
scribed within a group of pixels taken around it. The first step is to detect
interest point candidates in images. Then, a feature descriptor is created. It
is a vector on which we stack information induced from the ensemble of pixels
in an image window. This information could simply be the intensity values
of pixels but in most cases these are not discriminative enough. The research
in this area focuses on what type of information is robust against photo-
metric and geometric changes (rotation, scaling, etc.) that could be used
in the feature descriptor vector. The criteria on which the correspondence
will be based upon is the distance between these vectors. The smallest the
distance, the more likely the two points correspond to each other. Beside the
Euclidean distance, there are different types of distances that might be used
(Mahalanobis, 1936, Bhattacharyya, 1943). Some distances are more suited
than others to some specific cases. One commonly used algorithm is Harris

corners (Harris and Stephens, 1988). Corners represent a good feature point

67



3.2 Preliminaries Chapter 3 GEOMETRIC MODELLING

candidates. Imagine a window centered on a corner in an image. Any move-
ment for this window will induce significant change in the intensity profile
of that window. This is a desirable property because it facilitates detecting
the same point again in other images. This is not the case for example for
windows centered on an edge because there will not be significant change
in the intensity profile if the window moves along the edge. Consequently,
windows located on edges are less distinguishable. The worst case scenario
happens when a window is based on a homogeneous area of intensity with
no edges nor corners. This is actually a quite frequent situation specially
in man-made world. Many objects are of uniform color (walls , cars, etc.).
A window located on the center of such objects will hardly has its intensity
profile changed if moved. Harris corners algorithm defines a mathematical
way to model corner response inside a window in an image. It is invari-
ant to rotation but not to scale. Years after Harris corners algorithm, SIFT
(Scale-Invariant Feature Transform) became the benchmark for feature based
algorithms (Lowe, 2004). The idea behind it revolves about the scale. For
example, if the corner detected in the first image is scaled (zoomed in) in the
second image. We need a bigger window to detect the same corner response.
The original windows size would most likely only catches one edge of that
corner or a different size corner in other images (even if it is the same corner
in 3D). To this end, a scale-space approach is used in which the Difference
of Gaussians (DoG) is obtained from the image with different standard de-
viations. The Gaussian is just a blurring algorithm performed by convolving
the image with a Gaussian kernel. The DoG detects features at different
scales due to the change in the image with different blurring degrees. In
other words, we can now find the same corner across the scale and space.
The second step in the algorithm is to refine the candidates found based on
various criteria. To achieve rotation invariance, the third step consists of
creating an orientation histogram with 36 bins covering 360 degrees. This
histogram is created based on the magnitude and direction of the gradient
computed in a neighbourhood, the size of which depends on the scale chosen
for the key-point. The highest peak is then taken as the orientation. This
step contributes to the stability of matching. Finally, the feature descriptor
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is created based on 16x16 neighbourhood around the point. This is further
divided into 16 sub-blocks. For each, 8 bins orientation histogram is created.
The feature vector for every point will then contain 128 values. In prac-
tice, we used a free and speeded up version of the algorithm called SURF
(Speeded-Up Robust Features) (Bay et al., 2008).

Still many outliers may remain, a common practice is to use RANSAC
(Random Sample Consensus) which could be seen as an outliers detection
algorithm. The idea is simple, the algorithm takes the minimum number of
data points to fit a specific model. The remaining data points are evaluated to
see if they represent inliers or outliers to this model. This process is repeated
and the iteration with most inliers is then taken. In river image sequences, we
mainly use feature-based correspondences to model the relationship between
the world and/or the different cameras (or the same camera in different
locations and time). As a consequence, the correspondence is only established
in the fixed regions of the image. Any correspondence on the river surface is
not taken into account as it is polluted by the motion of the river which is

independent from camera.
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Figure 3.3: Top: SURF feature points detection. Bottom: Red-Cyan
anaglyph of two images with the correspondence of their respective feature
points.
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3.2.2 Camera calibration

A camera is said calibrated if certain parameters that regulate the imaging
process are known. Let’s consider an arbitrary object of interest. It has an
arbitrary set of coordinates belonging to world system of coordinates where it
can be described in. We denote this system of coordinates with the subscript
W. For this object to be projected to a 2D image, an imaging device has to
be introduced. The imaging device has its own set of coordinates in the world
coordinates system but also forms a new system of coordinates centered at
the camera projection center. We denote this one by the subscript C. Now
if the object is in the view field of the camera it will be projected into the
camera 2D retina. But this is only occurs after being expressed in camera
coordinate system. Finally the points in camera retina are transformed into
the image in forms of pixels. We talked earlier about projecting a 3D point
into the image retina, Equation (3.1), Figure (3.2). We realize now it is only
one part of a series of transformation from 3D world coordinates system to
3D camera coordinates system to 2D retina and finally to pixel coordinates.
The ideal scenario would be to combine these transformation into one trans-
formation. To that end, we need to express the relationships in Equation
(3.1) into matrices. Even if these are non-linear equations, we can still ex-
press them with matrices using homogeneous coordinates. In homogeneous
coordinates, a 3D point is expressed using a 4D vector. Similarly, a 2D point
is expressed using a 3D vector. One could get the original vector by divid-
ing all coordinates with the last component of the same vector. Accordingly

Equation (3.1) could be rewritten as:

I
S O =
O - O
_ o O
o O O
- N <

Then, an affine transformation from camera retina coordinates to image pix-
els has to be performed. In camera retina the origin is set at the center,

while in image pixels grid the origin is at the corner. The perspective equa-
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tion changes to :

x:%+0x,y:f7y+0y
where O, and O, are the offsets needed, both form the so-called principal
point pp = (O, Oy). In addition, there are scale factors in = and y directions
of the pixels grid. They determine the form of the pixel, different scale factors
will result in non-squared pixels. One last parameter is the skew factor, it

has a non-zero value if image axes are not exactly orthogonal.

f. OOX
P B
Yy | = y Yy A
1 00101

This transformation matrix is the camera intrinsic matrix K, where f, and f,
are the focal length values in x and y axes for non-squared pixels. However,
most recent digital cameras are more or less squared, one can safely assume
the same value f for both  and y axes. The skew factor s is often neglected
while modelling the camera matrix. There are also non-linear parameters to
model the distortions. None of these parameters is considered in the camera

model chosen throughout the thesis.

As mentioned above, in order for this transformation to be possible, the
object has to be expressed in camera coordinates system. This is achieved
by a change of coordinates transformation that collides the origins of camera
and world coordinates systems. It is a rigid transformation that consists of
a rotation R to align the two set of axes and a translation ¢ to align the two
origins, Figure (3.4). These are called the extrinsic parameters. In matrix

form and again using homogeneous coordinates it reads:

Xe ri1 rie iz 0 1 00 t Xw
Yo | ra1 a2 13 O 010 ¢ Yw
Zo | | s ors orss 00 01 2 Zw
1 0 0 0 1 000 1 1
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PCo PW

Pr=RPy +t

Figure 3.4: Extrinsic parameters, The two origins of the two systems of
coordinates are related by a rotation R and translation t.

The knowledge of both intrinsic and extrinsic parameters is what is called
camera calibration. Combining all these transformation lead to the well-

known equation:

p=KI[R|]P=QP (3.2)

Conventional camera calibration process consists of finding a unique ) by
tracking known-geometry object in 3D and its projection across images and
solve for @ in a non-linear way (Tsai, 1987). Zhang (2000) suggested a sim-
pler way by utilizing a simple planar pattern shown at different orientations.
One could simply print the pattern, attache it to a planar object, take few
photos and then calibrate with very good accuracy. There is a direct linear
estimation method in which there is a known correspondence between 3D
points and their 2D projections. A linear system of equation is built around
the coefficient of @ (only 11 parameters because ) is defined up to an ar-
bitrary scale). At least 6 point is needed to estimate Q. FUDAA-LSPIV
software (Le Coz et al., 2014) use this method to estimate @) exploiting the

GRPs. @ could be later decomposed into its intrinsic and extrinsic matrices
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using QR decomposition. Note that conventional calibration is not possible
when only the image sequence is available (no real physical camera). This
led to the rise of Auto-calibration techniques where the camera is calibrated
only by using the information contained within the sequence taken by that

camera.

3.2.3 Epipolar geometry

Now after we have seen how 3D points are projected in 2D image points,
let’s start to slowly examine the inverse problem which is going back to 3D.
It is a more difficult problem because when a 2D point is back-projected to
3D space, it traces a line in which any point would satisfy the original per-
spective projection equation. In order to determine the right location of the
3D point, a triangulation technique is used in which the correspondent point
in the second image traces a second line in 3D space, the 3D point location
is taken as the intersection point of the two lines. This is the core idea of
stereo vision. The accuracy of the triangulation depends on different factors.
First of all, camera parameters have to be accurate since the back-projected
rays depend on them. Secondly, a wide baseline is preferred. The baseline
is the line between the two cameras/views centers. A narrow baseline might
cause the back-projected rays to go parallel. Evidently, this is not the best
scenario to look for an intersection point. This degenerate case is particu-
larly seen in image sequences with small camera motion. Unfortunately, we
find this situation a lot in rivers image sequences. Lastly, the accuracy of
the correspondence itself, obviously back-projecting rays of different points
will result in bad 3D reconstruction. It is worthy note that, in the narrow
baseline case, the correspondence problem is easier than wider baselines as
the correspondent point will be in the vicinity of the original point. This
shows the difficulty associated with the baseline. One needs wider baseline
for better triangulation but then an accurate correspondence (which is the
basic building block for the triangulation) is more difficult.

Epipolar Geometry governs the intrinsic relationship between two views.

It depends only on camera’s internal parameters and relative pose and is to-
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Baseline

Figure 3.5: Epipolar constraint, p back-projected 3D ray will project to a
line in the second image.
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tally independent from scene structure. Let’s take two correspondent points
in two images taken by two cameras. These points are correspondent because
they are the 2D projections of the same 3D point. Now if we only have one
point and we wish to know the correspondent point in the second image,
we need to determine the exact 3D point that projects to these two image
points. The one 2D point we have at hand can not determine its true 3D
point uniquely, it draws a line in 3D space in which any 3D point will project
back to it, Figure (3.5). Note that a segment of this infinite line is visible to
the second camera and is projected to its image plane. The correspondent
2D point then has to lie on that line in the second image. The 3D point P,
camera centers O and O' and the points p and p’ all lie in a common 3D

plane, Figure (3.6). Let’s define some terminology:
e Epipolar plane: A plane that contains the baseline.
e Epipole: The point joining the baseline to image plane.

e Epipolar line: The intersection of an epipolar plane with an image
plane (equivalently, it is the image of the back-projected ray from the

correspondent point in the other image).

There is a family of epipolar planes all sharing the baseline (and the
epipoles) with the difference being in the choice of the 3D point which in its
turn changes the epipolar lines. The epipolar lines in every image pass by
the corresponding epipole.

In the case of calibrated setup, one could use the K matrices to normalize
the coordinates of points (remember every image point is expressed in the
coordinate system of its own camera) i.e. p = K 'p and p = K . Addi-
tionally we set one of the camera centers to be the origin of the normalized
coordinate system. It follows that there is a rigid transformation in form of
rotation and translation between systems of coordinates of the two views i.e.
t=0" -0 and p) = Rp+t & RTp = p+ Rt using the fact that R is an
orthogonal matrix having its inverse equal to its transpose. The coplanarity
mentioned above could now be expressed using R and t because all of the

vectors p, t and Rp + t are coplanar. It could be expressed as the inner
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Figure 3.6: The epipolar plane.

product of one vector with the result of the cross product of the two other

vectors.

(RT9)" (txp) =0
Now let’s introduce a new notation for the cross product.

ayb, —a.b,

_>
= x b = ab, —asb.
azby — ayb,

This could be reorganized into

0 —a., ay b,
= a, 0 —a, y
—ay Gy 0 »

lax]

Using this new notation for cross product the coplanarity constraint becomes

(R™9)" [t)p=9"ep=10
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0

Figure 3.7: The coplanarity between the vectors.

The 3x 3 quantity € = R [ty] is called the Essential Matriz (Longuet-Higgins,
1981). It defines the epipolar line for points in the first (resp., second) image
by p'Te(resp., ep).

To recover the pose from the essential matrix. A unique solution could be
obtained by employing the Chirality constraint (Hartley, 1998). Simply put,
there are four solutions for R and t corresponding to € and —e, two solutions
each. The Chirality constrains the 3D point to be physically in front of the
two cameras, only one of these four configuration verifies that, Figure (3.8).
One interesting property of the essential matrix is:

A non zero matrix e is an essential matrix if and only if its SVD (Singular
Value Decomposition) : € = UXV7satisfies ¥ = diag [0y, 09, 03] with o7 =
o9 # 0, and U,V € SO (3) (Hartley and Zisserman, 2004) result 9.17 (p257).

In the case of an uncalibrated setup, the epipolar constraint is interpreted
by another matrix. The epipolar constraint could be written in terms of
the unknown normalized coordinates by substituting in p’Tep = 0 as in

pTK TeK'"'p=0. The 3 x 3 quantity is called the Fundamental Matriz.
F
F=KTeK* (3.3)

Two properties (relevant to our application) for the fundamental matrix are:

e A non zero matrix F'is a fundamental matrix if and only if its SVD F' =
UXVT Y = [0y,09,03) with 01,09 # 0 and 03 = 0 and U,V € SO (3).
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3.2 Preliminaries

Figure 3.8: Chirality Constraint: four possible solutions, only solution (A)

is meaningful.
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e The epipolar line I = F'p contains the epipole ¢’ for every p since all
epipolar lines passe by their respective epipole. This means e (Fp) =
(eTF)p = 0. The quantity 7 F is always zero which means that ¢’ is
the left null space of F'. Similarly, the quantity Fe is always zero which

means e is the right null space of F.

To estimate the fundamental matrix, a set of corresponding image points is
needed to build a linear system of equations around the entries of F' and then

solve in linear least squares fashion.

Fy, Fiy Fis ' N

. 2

[ r oy 1 ] Fo1 Fyy Iy y | =0= min Z (o] Fp})
F31 Fy I3y 1 =1

This is a standard procedure in computer vision and many robust techniques
exist (Hartley, 1997a, Huang et al., 2007).

3.3 Auto-calibration

In many cases the physical camera device might not be available. Thus,
obtaining images for a particular 3D pattern like how it is done in con-
ventional camera calibration is not possible. This gave rise to the Auto-
calibration (or Self-calibration) methods, in which the calibration is achieved
only using information encoded within images. This is the case of interest
here since the aim is to exploit amateur videos collected from the web.

The literature contains many specialized methods that impose certain con-
ditions on the images or the camera movement for the auto-calibration to
work. A classical technique consists of exploiting the essential matrix prop-
erty mentioned earlier, that the two non-zero singular values of its SVD
should be equal. A cost function is thus built that minimizes the difference
between the two singular values by using the available fundamental matrices
between different views while optimizing over internal calibration matrices
using € = KT FK’ (Mendonca and Cipolla, 1999). These methods are shown
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to generally give only fair intrinsic parameters values at best. It has been
reported that sometimes the 3D reconstruction might completely be wrong
without an explanation, Fusiello (1999). Authors also showed that the error
increases with noise. As such, these methods are not generalized enough for
our application . Another family of approaches is homography-based auto-
calibration. Planar objects are used for this type of auto-calibration. The
planarity reduces the projection to a 3 x 3 homography matrix (instead of
3 x 4 projection matrix) between the planar objects and their image projec-
tions. This allows to add certain constraints to find K. One promising result
is shown in (Herrera et al., 2016) using planes. Their algorithm accuracy is
closely comparable to pattern-based calibration. However it requires a planar
object that is visible in all images, one that is not uniform in color so that
feature points detection is possible. It is difficult to comply to this require-
ment in the scenes we are dealing with. A big part of the image is not usable
for features detection algorithms as it is moving (the river itself). It is hard
to find such planar object in the remaining part of the image. However if this
is the case. The algorithm showed great results and stability and it is recom-
mended due to its accuracy. We describe next a general framework suggested
by (Hartley, 1997b, Sturm et al., 2005) that is based on Kruppa Equations.
It can be used to auto-calibrate the camera from image sequences of rivers
while imposing few reasonable assumptions on these image sequences. Note
that we address this problem independently from the particularities of rivers
image sequences. It is a general problem in computer vision and any method

could be used.

3.3.1 Kruppa Equations

In projective geometry, points at infinity are treated as equally to points
located at finite distances. Using homogeneous coordinates, points at infinity
have their fourth element equal to zero. Geometric elements at infinity make
a great deal to auto-calibration algorithms since Faugeras, Maybank, Luong
and Triggs early work (Luong and Faugeras, 1997, Maybank and Faugeras,
1992, Bill Triggs, 1997). New concepts like the Absolute Conic (AC) and
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the Absolute Quadric (AQ) have been thus introduced. They are interesting
because they exist (and consequently, their respective images also exist) for
every image sequence. They serve as virtual calibration patterns. It has
been shown that finding the image of the absolute conic (IAC) is equivalent
to camera calibration (specifically finding K'). The AC is a point conic that
resides at infinity. It is defined by a point at infinity P with [X,Y, Z, 0] co-
ordinates where X2 +Y? 4+ Z? = 0, that is PTP = 0. A point is in a conic if
PTCP = 0 where C is a matrix that defines conic parameters. IAC is there-
fore the perspective projection of points in AC to image plane. Since the last
element of P is zero, all translation components (¢;) will eventually evaluate
to zero, Equation (3.2). This indicates that this projection is invariant to
t. A point on AC would then project into image plane by p = K RP. This
could be rewritten as P = RT K~!p. Substituting for P in PTP = 0 we have
p’ K TRR'K='p = p"TK-TK~'p = 0. One can see that this projection
is actually invariant to the complete pose of the camera and not only the
translation ¢. This invariance to rotation and translation called the rigidity
constraint. Image point p is in the image of the absolute conic only if its
conic matrix C' is represented by KT K~! . The inverse (KK™) could be
factorized using Cholesky factorization such that K is an upper triangular
matrix with positive diagonal entries (just like the matrix of the internal
camera parameters). One can estimate the inverse K K7 directly using the
notion of dual conics. The dual conic of our earlier point conic is a line conic
and is defined according to [TC*l = 0 where [ is a line vector and C* is the
adjoint matrix of C' . Note that C* = C~! only for full-rank conic matrices.
If the matrix is not full rank, the conic is labeled degenerate and the dual
conic matrix is not the inverse. Kruppa equations derivation is known to
be complicated and somewhat counter-intuitive. The following derivation is
due to Hartley (1997b) and it is more intuitive than the original derivation.
Even if a different derivation/expression for Kruppa equation is used later
on, we start with this one for the sake of simplicity. Let’s consider any stereo
configuration (i.e. two views related by epipolar geometry), we can change
this configuration by multiplying K with a matrix A for the first image AK

and A’K’ for second image, respectively. Suppose the two transformations

82



Chapter 3 GEOMETRIC MODELLING 3.3 Auto-calibration

A and A’ are chosen in such way that the fundamental matrix between the

new projection matrices is:

sl

I
o — o
o o
o o o

This is a special fundamental matrix that sets the two epipoles to the one
origin of the stereo configuration so that the corresponding epipolar lines are
identical. Then imagine a plane passing through the camera center and is
tangent to the AC. It will project to two epipolar lines which are now tangent
to the image of the absolute conic IAC, Figure (3.9). Tangent lines to conics
are expressed via the dual conic that verifies 7 C*] = 0 where [ is any epipolar
line. There are two such planes so we end up with two pairs of epipolar lines.
A transforms C* into a new conic envelope in the first image and the same
goes for A’ and C”™ in the second image. These are now different conic
envelopes even if we assume the same K = K’ since transformation matrices
A and A" are probably different. Let’s denote the new conic envelopes D and
D’ for the first and the second image, respectively. Let | = (A, p,0), from
1" Dl = 0, it could be expanded into \2dy; +2\udia + p2des = 0 and similarly
for I"D'l = 0 we will obtain \d}, + 2\ud}, + pu?dyy = 0. Remember that
after applying the transformation A and A’ these tangent epipolar lines are
now identical in the two images which means the two equations are equal

(up to scale), leading to:

d d d

dy _ o da (3.4

dy, dyy  dy
A point p is on a line [ if [Tp = 0. This could be rewritten as [T A= Ap = 0,
which means that a point p is on [ only if the transformed point Ap is on the
transformed line (" A=, From [TC*] = 0, we could write (1T A™')(AC*AT)(A~T]) =

0. Let
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Figure 3.9: Planes tangent to the AC induces epipolar lines that are tangent
to the TAC

= a] C*a; where one

where a; is the i-th row of A. From (AC*AT), d;; =
subscript denotes a matrix row and two subscripts denote a matrix entry. A

similar expression for d;; is true. Substituting in Equation (3.4) yields:

ai C*ay  ajC*ay a3 C*ag
allTC/* a/l CL/QTC/* a/2 aéTCI* ag

These are the so-called Kruppa’s equations.

3.3.2 Solving Kruppa equations

Under the assumptions of known aspect ratio (normally 1 for modern

cameras) and known principal point (a good approximation would be im-
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age center). Sturm et al. (2005) derived a method to estimate the focal
length. These assumptions allow the process to move to an intermediate
phase between the fundamental matrix (uncalibrated) and the essential ma-
trix (calibrated). From equation (3.3), this new epipolar matrix could be

computed by:

1 0 0 10 O,
G~ |K'FK=| 0 1 0|F|0 1 O,
0, O, 1 00 1

where G is a semi-calibrated fundamental matriz. The benefit gained here is
that with simple change of coordinates to account for the assumed principal
point and while assuming fixed and identical focal length and no image skew,

the internal calibration matrix K is reduced to diag(f, f,1) which means:

f2
C*=KK" = 12

Kruppa equations could also be reinterpreted in terms of the fundamental

matrix and the epipole. Appendix (A).

GC*GT ~ [¢], C* [¢], (3.5)

The SVD of G might be written as G = ULV where U and V are orthogonal
matrices and ¥ = [0y, 09, 03] is the diagonal matrix of singular values. One
might recall from Section (3.2.3) that the second epipole is the left null space
of the fundamental matrix. i.e. ¢I'G = 0. By substituting in Equation (3.5)

we get:

UsSVIC vsUT ~ [ug], C* [ug],

since ugz is the vector of U corresponding to the zero singular value in .
Multiplying both sides by UT from the left and U from the right gives:

85



3.3 Auto-calibration Chapter 3 GEOMETRIC MODELLING

uy
EVTC*UTEV ~ Ug [Ug]x C* [Ug]X |: U U U3 :|
ug
an evaluation leads to:
o1vf f? ud f?
02U2T f? [ oy ovz 0 } ~ —uip f? uy —u; 0 }
0 1 0 1

Even more simplification while taking advantage of unit norm U and V

columns and ignoring the third all zero rows:

of (fP+Vi (1=1?)  owoaVaiVaa (1—f%) | | f2+UH (- %) —UsiUs2 (1-f?)
0102V31V32(1*f2) a%(ferngg(l*fQ)) *U31U32(1*f2) f2+U§1(1*f2)

This system of symmetric matrices gives rise to 3 quadratic equations in f2.
Two of them however will have the trivial solution f? = 1. By factoring this

out we end up with two linear equations and a quadratic one:

12 (01U31U32 (1 — V321> + 02V31 V3o (1 - Ugg))+U32V31 (01U31 Va1 + 02UsyVag) = 0
(3.6)

f? (01‘/31‘/32 (1 - U§1) + 02U31Usy (1 - ‘/;«»,22))+U31V32 (01U31Vag + 09Uz Vaz) = 0
(3.7)

frlot(=U5) (1-V3) -0 (1-Us) (1-V3)) +
f? (‘7% (U?i + Vi - 2U§1V321) — 03 (U§2 + Vg — 2U322V322)) +
(olUs Vi — 03UBV) =0 (3.8)

Each type (whether quadratic or linear) has its own degeneracies, that is,

a configuration where auto-calibration is impossible. Using all equations, a
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plethora of solutions is obtained. In practice we take the peak of a PDF of

all solutions as the focal length.

3.3.3 Bundle adjustment

At this point, estimates for camera intrinsic parameters are found. Sturm
method is generally stable so a reasonably good value for the focal length is
obtained. The principal point is approximated at the image center. To refine
the estimation, a standard technique called bundle adjustment is used. It
is an optimization procedure that simultaneously refines 3D points, camera
poses and camera intrinsic parameters, all to minimize a re-projection error

in image space.

n m 2
K[TI%ZH ;jzl Vi1 (P ( [R| ]3 Dij

where function p in the above is the predicted re-projection of a point P;
in the image of a camera characterized by K [R[t];, function 7 measures the
distance between this re-projection and the actual point p;; in image space
and v;; is a binary variable represents the visibility of a point F; by camera j .
Bundle adjustment is usually cumbersome and difficult problem to solve due
to the large number of free parameters involved, Figure (3.11). Agarwal et al.
(2010) developed a non-linear least square framework (Google Ceres) with
extensive support for bundle adjustment problems. Significant re-projection
error reductions obtained using this framework.

Bundle adjustment is the last step in the so-called Structure From Motion.
As the name suggests, it is a framework to estimate a 3D structure of a scene
from the motion of a camera. It comes to the picture because with Sturm
method, we only estimate a focal length and internal camera calibration
is completed by adding the principal point. We still need the 3D points
and the camera poses. To this end, the first view of the sequence is taken
as the reference view which we assign an identity rotation matrix and zero
translation vector. Between every two consecutive images we could compute

an essential matrix with which we can obtain a relative pose between the two.
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Figure 3.10: Feature point tracked throughout an image sequence

We could then transform it back to the coordinate system of the reference
view. To estimate the 3D points, we firstly track the 2D features obtained
throughout the whole sequence so that we know the position of each point in
every image (this is how the visibility variable v;; is assigned), Figure (3.10).
The triangulation is then performed in multiple view context (contrary to
the triangulation performed only between two images in stereo context).
Bundle adjustment is then performed to refine all parameters except for
the pose of the first view. It is also found to be beneficial to add lower and
upper constraints for the principal point. These steps could be summarized

as follows:
e Obtain an initial focal length estimation using Sturm method above.
e Give an initial estimation for the principal point by taking image center.
e Fix the pose of the first camera as the reference coordinate system.

e Add lower and upper constraints to the principal point (usually +-
100).

Results

Bundle adjustment is applied to the auto-calibration of two image se-
quences. The first sequence Irstea is taken at Irstea Institute building in a
configuration that is similar to urban floods sequences. The similarity is in
the two different regions in the image. The first is a road that is not per-
fectly plane (made like this to collect rain water) in which no feature points

are detected. The other region is a building on the facing side. The second
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Figure 3.11: Bundle adjustment.

’ Sequence ‘ Error before BA ‘ Error after BA ‘ Refined f ‘ Refined pp H Image size ‘

Irstea 254.01 12.29 1525.23 (850,656.549) || 1920*1080
Aulnay 114.005 3.4694 846.598 | (334,245.518) 768%432

Table 3.1: Back-projection error before and after BA in addition to refined
intrinsic parameters.

sequence is a real amateur sequence of an urban flood in the Aulnay-Sur-
Mauldre city in France. Figure (3.12) shows example images for the two
sequences. We measure the re-projection error for the two sequences before
and after bundle adjustment. This is shown in Table (3.1).
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—
ot A = 1A e 0 TV e

Figure 3.12: Example images for the sequences used for auto-calibration.

3.4 Image stabilization

The river motion captured by the camera is perturbed by the motion of
the camera itself. It is hence necessary to separate these two motions and
cancel the latter out. This is called camera stabilization. To this end, the
fixed regions in the images are of primordial importance because any motion
observed on them is only due to the camera. We take consecutive frames to
stabilize. Consecutive frames are easier to establish points correspondence
on them but also easier to estimate the velocity by the mean of optical flow

as well. The procedure is as follows:
e Take the first two images.
e Establish the correspondence using high accuracy feature points.
e Compute an affine transformation.

e Warp the second image using the estimated transform.

90



Chapter 3 GEOMETRIC MODELLING 3.5 3D reconstruction

e Take the newly warped image with the third image and repeat the

previous steps.

We end up with a stabilized sequence. The stabilization means that the
motion of rigid points (or equivalently, the camera motion) has been canceled.
The quality of this stabilization could be visualized by observing optical flow
(conventional optical flow (HS)) color code result on the stabilized and non-

stabilized images, Figure (3.13).

Figure 3.13: Top: Color code of optical flow on a stabilized sequence. Bot-
tom: color code of optical flow on the original non-stabilized sequence.

3.5 3D reconstruction

As it has been indicated earlier, we want to refrain from image ortho-
rectification since it interpolates the intensity function of images. This pro-
cess is not guaranteed to conserve fluids motion patterns. The image intensity
function is the only source of information available for velocity computation
and we thus want to rely on the original non-degraded data as much as possi-
ble. A second and probably more important reason is that ortho-rectification

needs installed GRPs in situ, necessary for the ortho-rectification to take the
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Figure 3.14: GRPs Deployment.

scale factor into account. They are also used to estimate the full projection
matrix () of the camera using the direct linear calibration method. This is
particularly a task that could be much enhanced. Indeed, camera calibration
is a mature computer vision procedure and the intrinsic parameters could
be estimated offline to a high degree of accuracy using planar objects. The
extrinsics could then be measured directly in situ. In addition, GRPs de-
ployment requires many operators to install and deploy the physical points,
Figure (3.14).

Ideally, we would like to be able to back-project displacement vectors
computed on the 2D image and compute the final velocity in 3D space. To
this end, a 3D reconstruction would solve two problems at once. On the one
hand, a 3D reconstructed river plane means that the relationship with its 2D
image plane is already known. On the other hand, a dense 3D reconstruction
for fixed regions permits in theory to identify objects that could be useful
to compute the 3D similarity factor (windows, road signs, dam parts, etc.).
The similarity factor is analogous to the scale factor in ortho-rectification.

Two 3D scenes are equal up to a similarity transformation via this similarity
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factor.

We first attempted a Structure From Motion approach since it is already
used in the bundle adjustment phase of auto-calibration. But to be able to
recognize objects in 3D space, a dense or quasi dense reconstruction is needed.
Previously, 3D reconstruction step was introduced only for the purpose of
Auto-calibration bundle adjustment step. This rather uses highly accurate
but sparse points correspondence. Consequently, only a sparse reconstruction
is obtained. One could use another feature detector that gives more (but less
accurate) features in order to estimate denser structure and run the bundle
adjustment again using previously estimated values as initialization. This
second bundle adjustment is meant to correct the 3D structure rather than
camera parameters. The result is a 3D point cloud of the fixed regions
that we try to recognize objects in them. Unfortunately, amateur sequences
tend to have very small baseline. Such condition makes the reconstruction
very difficult since the back-projected rays of many points will be quasi-
parallel in which case the initial triangulation of many 3D points is doomed
to fail. In addition, the more denser set of features, the more it contains
outliers that negatively impact the bundle adjustment which is based on
least squares estimation framework. It is extremely difficult to reconstruct
dense 3D regions to get recognizable 3D objects within them in order to
extract a reliable similarity factor. For river plane and 2D to 2D mapping
estimation problem, one needs at least 4 non-collinear 3D points to estimate
a homography (the 2D mapping matrix). The main assumption of Structure
From Motion is a fixed structure with a moving camera. As such, the moving
river surface can not be reconstructed especially that it is not exactly a rigid
motion. Possible workaround is to detect points on the river-bank joints as
they also belong to river surface plane. This is also a challenging task and
is not guaranteed to be reliable using automatically detected feature points.
Manually selecting corresponding points on banks/river intersections might
be the way to proceed. Good homography estimation however needs well-
distributed points on the plane and most of these river sequences actually
only capture one bank (the amateur is usually standing on the other side).

Even if we were able to detect these points, they will only be on one bank
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Figure 3.15: Rectified image pair using epipolar geometry, the camera motion
causes points to only move on their corresponding epipolar lines which are
parallel to x axis in the rectified images.

and probably collinear .

There are some other variational algorithms that produce dense disparity
maps, (Alvarez et al., 2002, Slesareva et al., 2007). A disparity map is the
image of the difference between corresponding points in two images. It is
known that the disparity is proportional to the depth if the two images
are rectified (using epipolar geometry). This rectification has the effect of
constraining the displacement of points induced by camera motion to only
be along the z axis, Figure (3.15). From similar triangles introduced by this

rectified setup the depth could be easily computed from:

fta
~ disparity

Ha et al. (2016) also proposed a method specially tailored for narrow
baseline images that produces dense 3D maps. We tested many of these
methods and we obtained various results. In all cases the river surface has
been always badly estimated. This was to be expected because of the motion
of river pixels. But also because they exhibit the same range of intensity
values, which makes the correspondence even more ambiguous.

From all the above, we conclude that traditional 3D reconstruction meth-
ods for this type of sequences is extremely difficult. A new way of thinking is
required to solve the problem while trying to generalize as much as possible.
By evaluating the information at hand and the desired output, a new idea

has emerged. Let’s start by describing the available information we have in
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an amateur video of a river. First of all we have the river surface which we
considered plane. This plane is however not suitable for the 3D reconstruc-
tion as it moves and features detection on it is not reliable. A second piece
of information is that this plane doesn’t occupy the whole image and some
other fixed regions are visible. They have a neighbourhood relationship with
river plane in someway or another. The desired output is a 3D reconstruc-
tion of river plane with a direct relationship with its 2D image counterpart.
In addition to that, a 3D similarity factor is also mandatory to pass from
our 3D model measurement to the real world metric measurements. This
led us to investigate robotics research literature as the problem is similar to
indoor robots navigation. Indeed, the robot is surrounded by planes (floor
and walls) which it needs to recognize in 3D in order to be able to navigate
in its environment. These planes are similar to river surface plane since it
is not easy to detect feature points on them (many indoor walls are uniform
in color). Recent work in the context of SLAM (Simultaneous Localization
And Mapping) showed good results in indoor environments (Yang et al.,
2016b,a). Authors proposed a framework that was capable of continuously
estimating the 3D environment throughout a sequence of images obtained
while the robot is moving. It only uses single image 3D reconstruction algo-
rithm combined with machine learning to refine the 3D structure over time.
Authors impose a 3D scene structure composed of a floor with orthogonal
walls. In the following, we made the analogy with image sequences of rivers.
We particularly talk about amateur videos. The ones taken by scientists for
the purpose of river gauging are readily exploitable using this framework.
We argue that rivers has to be delimited with banks anyway. It is often pos-
sible to find some object perpendicular to the river (dams, walls, etc.). The
3D reconstruction problem is then reduced to a reconstruction of the river
surface with a perpendicular object on its boundary. This object is used to
compute the similarity factor of the reconstructed model to the real world.

Of course, we still need to know the size of the object in real world.

The reconstruction algorithm is derived as follows: A plane could be
represented in homogeneous coordinates using a vector m = [y, mq, 73, 7r4]T

where the first 3 parameters represent the normal of the plane and the 4th
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is the distance to the origin. The camera pose is represented by a transfor-
mation matrix [R|t] and verifies Py = [R|t] P, that is, the transformation
of points between world and camera systems of coordinates. To deal with
planes directly, remember that a point lie on a plane if 77 P = 0. Multiplying
points in by [R|t] moves them to a new plane in the other coordinate system:
75 [R|t] P = 7k, P = 0. This means n}, [R|t] = 7}, . Multiplying both sides
by [R[t]" from the right and transpose gives:

mw = [RIt] " me (3.9)

The river plane could now be reconstructed when expressed in camera coor-
dinates system as it is the plane where the ensemble of the back-projected

river pixel points in the image intersect at:

—d,

Po—= ¢
“ 7 nL(K-p)

K 'p (3.10)

where n is the plane normal and d is the distance to the origin. The image
is segmented into floor/walls regions, the machine learning in the original
SLAM problem is utilized to adjust the segmentation throughout the se-
quence. In our case however, we build the 3D model based only on one
image with manual segmentation. The segmentation defines the segment of
the river plane shared with the vertical object(s).

The two starting image points of a river/bank segment could be recon-
structed in 3D (Pg1, Poe) using previous equations, but these points are also

on the perpendicular plane, the normal of which verifies:

Nwali—c = N X (Pea — Pet)

The distance to the origin d, could be obtained using:

dwallfC = Nyall—C * PCl

The river plane in the world coordinates is set to my = [0,0, —1, O]T. Using
this with previous equations we can reconstruct a 3D river/walls model. We

still however need to determine the transformation matrix R|¢. The amateur
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is naturally standing above river plane surface and the camera is looking down
at an angle. This boils down to one parameter estimation of this angle. The
translation vector in homogeneous coordinates is obtained as ¢ = [0,0, h, 1]
where h is the height of the camera from the river plane. Note the the height
of the camera only affects the scale of the reconstructed scene which is to be

calculated later anyway. A one-axis rotation matrix is defined as follows:

0 0
cos®  sin®
—sin® cosO

0 0

o O O

Note that the world system of coordinates is defined as: X right, Y forward
and Z upward. The camera system is defines as: X right Y downward, Z

forward. We vary © in radian until a good reconstruction is obtained.

There is an Euclidean similarity relationship between the reconstructed scene
and the real world. Angles and ratios are conserved. It follows that there
is one similarity coefficient that relates the two 3D worlds. Of course to
go from the reconstructed scene to the exact real world scene, it should be
scaled using the similarity coefficient in addition to one or more of rotations,
translation and reflection. But for the purpose of this application, only the
similarity coefficient is needed. It is easily computed from the ratio of the

size/length of the perpendicular object in the 3D model and in the real world.

3.5.1 Results

We show the reconstruction results on both amateur videos and velocime-
try videos. As mentioned before, the difference between the two is that the
amateur videos contain camera motions and the camera itself is not cali-
brated. However, for the purpose of 3D reconstruction described above, the
camera motion is not an issue since the 3D model is obtained from a single

image. The camera motion is only necessary for the Auto-calibration.
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Figure 3.16: Claix canal.

Velocimetry videos

We took Claix canal LSPIV example shown in the results section of Chap-
ter (2) where an ortho-rectified images were used. The calibration is obtained
through the QR decomposition of the projection matrix computed for LSPIV
ortho-rectification process. Figure (3.16) shows the 2D image of the site. Fig-
ure (3.17) shows the 3D reconstruction of the site from different angles. One
can see that every image point of the river is represented in 3D. The chosen
perpendicular object is wall/bank of the canal and © gave best results when

equals -0.56.
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Figure 3.17: Claix canal site from different views, top: side view from water
level height, middle: view from above, bottom: view from the front higher
than water level.
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Amateur videos

We took Aulnay sequence shown before in the Auto-calibration section
of this chapter. Conveniently, camera calibration is obtained through the
framework described earlier, with bundle adjustment. Figure (3.18) shows

the 2D image of the site. Figure (3.19) shows the 3D reconstruction from

different angles. The perpendicular object chosen is the small gate of the
house and © taken to be -0.3.

Figure 3.18: Aulnay-Sur-Mauldre.
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Figure 3.19: Aulnay river site from different views, top: side view from water
level height, middle: view from above, bottom: view from the front higher
than water level.
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3.6 Conclusion

In this chapter we showed that 3D information and focal length are
mandatory to go from velocity measurements in image space to useful 3D
metric velocity. We have also introduced basic computer vision concepts to
readers from outside the domain. These concepts have been used next to
treat amateur videos (auto-calibration, stabilization) in order to make them
exploitable.

Inspired by indoor robotics research, a 3D reconstruction with high fi-
delity for river surface points is performed using camera calibration and one
image. The reconstruction is facilitated by imposing a river/bank perpen-
dicular planes constraint. This allows a direct passage from 2D to 3D mea-
surements. A 3D similarity coefficient is finally obtained from the vertical
planes to scale the estimated 3D measurements. In comparison to traditional
methods, our framework allows the integration of amateur videos in addition
to videos that were purposefully taken for image-based velocimetry . For
the latter, it considerably minimizes the field work needed to deploy GRPs.
Indeed, we can now deploy only one point perpendicular to the river surface
to be reconstructed later in 3D. Most importantly, we avoid image intensity
function deformations as there is no ortho-rectification needed and we work

directly on the original non-degraded images.
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Chapter 4
Velocity estimation

The problem of image-based metric velocity estimation of rivers has been
stratified into two parts in previous chapters. In this chapter, we combine
their results to directly go from raw videos of both amateurs and scientists

to metric velocity.

4.1 Framework

The starting data is a video of a river with visible fixed regions/banks.
Next, we need to determine if camera calibration is possible. If the video
is an amateur video, it has to contain camera motion for the application of
auto-calibration. Otherwise, an accurate 3D reconstruction is not guaran-
teed. Figure (4.1) draws a decision tree for the 3D reconstruction of amateur
videos. If the video is taken for the purpose of image-based velocimetry,
the camera should be calibrated beforehand and the reconstruction is thus
straightforward.

One should check for enough fixed regions in the video so that a projective
reconstruction (or equivalently, estimating fundamental matrices) is possible.
The fixed regions are also used to stabilize consecutive frames later on to be
used for image velocity estimation. In the other case where the camera
is fixed, stereo and multiple view geometry can not be used. The camera

calibration should be obtained by other means. For example, if the physical
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Mo Yes

. ‘hs -

Figure 4.1: Decision tree for 3D reconstruction of amateur videos.

camera is available and under the assumption that the internal calibration
is still the same to when the video was taken, then a conventional camera
calibration might be performed. In the worst case scenario where non of
the above is possible, a 3D reconstruction might be attempted by taking the
principal point to be the image center and then empirically assign a unified

value for the two focal length components.

Once the data is determined to be exploitable. Two different image se-
quences are extracted from it. One sequence is used for auto-calibration
while the second is used for velocity estimation. Of course, in case of a fixed
camera, there will not be a need for the first sequence. A video of one second
length of today’s cameras has at least 24 frames which facilitate the choices
made on image selections. As we have seen in Chapter (3), best scenario for
multi view geometry and structure from motion algorithms occurs when we
have a wide baseline. However, in most cases the individual is mostly stand-
ing on the same point while the camera only moves a bit. Sometimes the
video might contain different scenes so that at one instance the images might

contain more fixed areas than river areas and vice versa. One should benefit
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from the whole video, if we want to extract an image sequence for the pur-
pose of auto-calibration, we should opt for images with more fixed regions,
the auto-calibration might then be applied. The second type sequence to
extract is the one we wish to compute the velocity on. One should take con-
secutive images (with the same time step) as they are a lot easier to stabilize.
If the sequence contains passive particles, it is a good practice to reconstruct
manual trajectories and verify the estimated vector fields. SGSD parame-
ters could be then modified as described in Chapter (2) until satisfying 2D
results are obtained. The goal here is to get as much accurate 2D results be-
fore back-projecting these vectors to 3D. An image with a clear object that
is perpendicular to the river is chosen. This object might be a part of dam
or a wall etc., or even a GRP. Constructing a minimal 3D river site is then
straightforward as described in Chapter (3). After a good reconstruction is
obtained, the perpendicular pattern is used to compute the similarity coeffi-
cient. Using the plane equation from the reconstruction, a 2D displacement
vector is projected to a 3D path of the form P(t) = (X (¢),Y(t), Z(t)). The
derivative of which is the sought 3D velocity wsp = (d—X ax d—Z) = (U,V,0).

dt > dt * dt
This is repeated for points along an entire cross-section.

4.2 Case studies

In the following we show the results on two different sequences. For every
sequence, we plot the scaled 3D displacement vectors along a cross-section

and we show the final metric velocity plot of the same cross-section.

4.2.1 Claix canal

We are now familiar with Claix sequence. It has been used by LSPIV
in Chapter (2) and in Chapter (3) the canal is reconstructed in 3D. This
time, and without any modifications for the intensity function, we directly
use the raw video to get real world velocity. Since the camera is fixed,
no stabilization was needed. The similarity coefficient is obtained from the

height of the banks. The real metric height is obtained from the positions of
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Figure 4.3: Trajectory reconstruction of particles, green: reference trajectory,
red: trajectory from the estimated vector field.

GRPs used by LSPIV to ortho-rectify the sequence, Figure (4.2).

We reconstruct trajectories of few particles using the estimated vector

field to make sure the 2D estimation is accurate, Figure (4.3).

Now we reconstruct the 3D river site. We choose a cross-section on the
canal and we show the scaled displacement vectors, Figure (4.4). We see
clearly that the magnitude of the displacement is stronger in the middle of the
canal and bottoms out towards the two boundaries. This is a typical behavior
in rivers. Figure (4.5) shows the velocity magnitude on the cross section. We
compared this magnitude to a measurement provided by an ADCP (Acoustic

Doppler Current Provider) instrument at a point in the middle of the canal.
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Figure 4.4: 3D displacements on the cross-section.

ADCPs provide velocity values along a vertical profile. In Figure (4.6), 10
ADCP cells measure velocity with the first cell located at 0.4m height from
the bed. The last cell is located at 4m height with 0.2m distance from the
free surface (represented by the red bar). The free surface velocity is subject
to an extrapolation of the this height /velocity graph. We can see that ADCP

estimations in agreement with our image-based estimation.
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Figure 4.5: Velocity magnitude for points on the cross-section.
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Figure 4.6: Plot of the mean velocity as measured by 10 ADCP cells at
different depths, the horizontal bars represent the coefficient variation for
every cell accumulated over 97 samples, the horizontal line represents the
true height of the free surface.
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4.2.2 Aulnay sequence

This is a video of an urban flood shot by a pedestrian in Aulnay-Sur-
Mauldre in France. We have also build a 3D model for this site in Chapter (3).
The video has both voluntary and involuntary camera motions and needed
to be stabilized. We stabilized 6 consecutive frames to be used for motion
estimation. We used the perpendicular vertical bar at the bank that supports
the small gate to compute the similarity coefficient. We assumed 1.5m for its
length. Figure (4.7) shows the 2D displacement vector field. Unfortunately,
there was no visible tracers to track. Also, only one bank appears in the
video, there is no clear cross-section spanning from one boundary to the
other. Single boundary cross-section is taken and the scaled displacements
in 3D are shown in Figure (4.8). The distribution of the final metric velocity
is shown in Figure (4.9). Note that the assumption of 1.5m for the bar does
not affect the reconstruction itself but only its size. Choosing a greater value
(2.0m for example) only changes the observed displacement and of course
the final velocity, Figure (4.10). Unfortunately there is no other velocity
estimates to compare with. Visual comparison against the previous example
suggests greater magnitude for this sequence which is what we obtained. The

results seem highly plausible and physically consistent.
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Figure 4.7: Displacement vector field of Aulnay sequence as computed in
image space.

Figure 4.8: 3D displacements on the cross-section.
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4.2 Case studies
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Figure 4.9: Velocity magnitude for the points on the cross-section.
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Figure 4.10: Velocity magnitude for the points on the cross-section assuming

2.0m for the vertical bar.
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Chapter 5
Summary and future work

In this thesis, we made a first step towards the exploitation of videos
taken by amateurs to estimate rivers or urban floods surface velocity. Under
mild assumptions, we showed that indeed this data could greatly benefit
rivers scientists in their gauging routines. They can even fill the holes in
past events data if such videos are found to the location and the time of
interest. In addition, better solutions for velocimetry videos (those taken

during gauging campaigns) were demonstrated.

In chapter (2), we proposed an optical flow model that is physically consis-
tent with river flows. This model gave by far more interesting results in terms
of accuracy, falsefiability, interpretability and flexibility than other methods
like the LSPIV. Indeed, the dense nature of the results provided by the model
permits further derivation of fine-detail quantities like divergence fields, vor-
ticity fields or streamlines. In addition, it provides instantaneous velocities
that are out-of-the-box usable for trajectory reconstruction of particles for
the purpose of results verification. This is not the case for LSPIV which
rather aim for the time-averaged vector field since the instantaneous fields

are generally noisy.

In Chapter (3), we laid the foundations of computer vision that are neces-
sary for the geometrical modelling of videos taken by amateurs. This includes
features correspondence, camera model and its calibration, Epipolar Geom-

etry, Auto-calibration and Structure From Motion for Bundle Adjustment.
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] Parameter \ Description \

The image velocity could be verified

2D i locit : . :
1mage velocity using trajectory reconstruction.

Camera internal This could be done offline with high
calibration accuracy.
The angle © This could be exefxicetlily measured in the

This is reduced to a single GRP deployed
perpendicularly to the river surface
It is exactly known since it is extracted
from the single GRP point.

GRP deployment

Similarity factor

Table 5.1: Description of the proposed framework parameters when applied
to videos taken specifically for river velocimetry.

The purpose of the geometrical modelling is to allow the passage from the
2D velocity estimated in images to a meaningful velocity in physical dimen-
sions. We took the time to show that an appealing and somewhat intuitive
direction that scientists might take is doomed to fail, namely Structure From

Motion for dense reconstruction.

For 2D image vectors to go 3D, two steps are necessary. First, a back-
projection transformation that inverse the perspective projection performed
by the camera when capturing the motion of the 3D vectors. Second, a uni-
versal scale factor to correct the back-projected vectors to their true 3D scale.
The latter could be obtained as a similarity coefficient obtained from the ra-
tio of the length of a detected object in the 3D reconstruction with its real
length. To this end, we adapted a recent 3D reconstruction method, devised
in indoor robotics community after making the analogy with river image se-
quences. A geometrical constraint of two perpendicular planes is imposed
which results in a complete characterization of the river free surface in 3D,
in addition to the similarity coefficient obtained from the vertical plane. We
draw the attention that the uncertainty of the proposed framework is highly
reduced in the case of videos made specifically for velocimetry applications,
in comparison to traditional methods. Table (5.1) details these parameters

and their descriptions.
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Results shown in Chapter (4) are physically plausible and in agreement
with those taken by an ADCP device.

Future work

In Chapter (2) we derived a motion estimation model that has a physical
meaning and interprets the motion of a river surface as a transport equation
with a diffusion term. The diffusion term weight is modelled using a widely-
known turbulence model. The parameter a that regulates the smoothness
of the vector field has no clear physical meaning and its value is chosen
empirically. A study on this parameter might gives a hint on its physical
meaning and consequently derive a way to better estimate it. Another track
of research could be to investigate optical flow technique in which the turbu-
lence models could be estimated (instead of choosing pre-defined models) as
demonstrated by Cai et al. (2017). In the same chapter we talked about the
importance of a ground-truth data and how it helped advancing conventional
optical flow algorithms. Even if the results based on trajectory reconstruc-
tion helped verify the results, a realistic physics-based 3D simulation of rivers
to generate ground truth free surface velocity would be interesting for highly
accurate motion estimation models for rivers.

In chapter (3), the question of auto-calibration is treated in a general
fashion without consideration of river image sequences particularities. It
might be interesting to see that if these particularities could be useful to add
more constraints to improve the calibration.

For the 3D reconstruction step, we assume the scene has a perpendicular
plane to river plane. While this is often the case in urban areas, it is a
strong assumption on rivers in the wild. It might be interesting to relax the

perpendicularity assumption and allow more angle variations.
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Appendix A

Alternative Kruppa equations derivation

Suppose C' (resp. C') is the image of a conic in a world plane in the
first (resp. second) image, and that C* and C"* are their respective dual line
conics. In the epipolar geometry context, C* and C"* are defined using only
two epipolar lines each. A point conic formed by two distinct lines g and h
could be written as C' = gh” + hg”. Points in ¢ satisfy ¢g’p = 0 and are on
the conic since they satisfy p”’Cp = (pTg)(h"p) + (pTh)(g"p) = 0. Points
on the second line h satisfying h'p = 0 also satisfy p! Cp = 0. Thus matrix
C' is symmetric with rank =2. This is a degenerate point conic matrix since
it is not full rank. The two tangent epipolar lines then give a degenerate
point conic of the form p” [e], C*[e], p and similarly in the second view
prle Cr el v

There is procedure called transfer via a plane (Hartley and Zisserman,
2004) (p242) in which two correspondent points transfer via the plane-induced
homography p’ = Hp. Point conics transfer between views according to
C) = H "C,H™". This could be easily verified by substituting in p"Cp = 0.
Taking the second degenerate point conic and transform it towards the first

by using:

€], €[], = H T [e], C"[e], H™

It is also shown that FF = H~ T [e], (Hartley and Zisserman, 2004) (Result
9.1, p243). On substitution in above equation



€], C* ), = FC'FT

In the special case of the DIAC the plane H is the plane at infinity. Fixed

camera parameters means C’* = C* which finally leads to Kruppa equations

], C*[¢], = FC*FT
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