N
N

N

HAL

open science

From timed component-based systems to time-triggered
implementations: a correct-by-design approach

Hela Guesmi

» To cite this version:

Hela Guesmi. From timed component-based systems to time-triggered implementations: a correct-
Université Grenoble Alpes, 2017. FEnglish. NNT:

by-design approach. Embedded Systems.
2017GREAMO061 . tel-01865074

HAL Id: tel-01865074
https://theses.hal.science/tel-01865074
Submitted on 30 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01865074
https://hal.archives-ouvertes.fr

Communauté
 UNIVERSITE Grenoble Alpes

THESE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Informatique

Arrété ministériel : 25 mai 2016

Présentée par

Hela GUESMI

Thése dirigée par Saddek BENSALEM, Professeur, UGA

préparée au sein du Laboratoire VERIMAG et du CEA LIST
dans I'Ecole Doctorale Mathématiques, Sciences et technologies
de l'information, Informatique

Des systémes a base de composants aux
implémentations cadencées par le temps : Une
approche correcte par conception

From Timed Component-Based Systems to Time-
Triggered Implementations : A Correct-by-Design
Approach

Thése soutenue publiquement le « 27 Octobre 2017 »,
devant le jury composé de :

Madame, Marie-Laure, POTET

PROFESSEUR, GRENOBLE INP, Présidente

Monsieur, Kamel, BARKAOUI

PROFESSEUR, CNAM - PARIS, Rapporteur

Madame, Claire, PAGETTI

MAITRE DE RECHERCHE, ONERA CENTRE MIDI-PYRENEES, Rapporteur
Monsieur, Eugene, ASARIN

PROFESSEUR, UNIVERSITE PARIS 7, Examinateur

Monsieur, Yamin, AIT-AMEUR

PROFESSEUR, INP TOULOUSE - ENSEEIHT, Examinateur
Monsieur, Saddek, BENSALEM

PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Directeur de thése
Monsieur, Belgacem, BEN HEDIA

INGENIEUR-CHERCHEUR, CEA LIST, Co-Encadrant

Monsieur, Simon, BLIUDZE

CHARGE DE RECHERCHE, EPFL LAUSANNE SUISSE, Co-Encadrant

ot
o=

e
—o
e

Remerciements

Je dédie ce travail a toutes les personnes ayant rendu cette theése possible par leur aide,
leurs contributions et leurs encouragements.

Je tiens a remercier dans un premier temps Mme Claire Pagetti et Prof. Kamel
Barkaoui pour avoir aimablement accepté la lourde tache de rapporter cette these. Je
remercie également Prof. Marie-Laure Potet, Prof. Eugene Asarin et Prof. Yamine
Ait-Ameur pour avoir accepté d’examiner et de juger mon travail.

Je tiens a témoigner toute ma reconnaissance a mon directeur de these Prof. Saddek
Bensalem pour la patience et la confiance qu’il m’a accordées au cours de ces quelques
années, ainsi que pour ses conseils et ses encouragements.

Je remercie mes encadrants de these Belgacem Ben Hedia et Simon Bliudze pour leurs
conseils, leurs critiques toujours pertinentes, leur patience et pour l'intérét constant
qu’ils m’ont manifesté tout au long de ma these.

Je tiens également & exprimer ma reconnaissance & Jacques Combaz, pour sa disponi-
bilité et ses discussions toujours intéressantes.

Je voudrais également remercier tous mes collegues et amis, notamment les membres
du L3S du DACLE et I'équipe DCS de Verimag. Je garderai un bon souvenir des
discussions animées au cours des repas et dans nos bureaux de doctorants.

Je n’oublie pas mes amis proches dont les encouragements m’ont permis de finaliser
cette recherche. Point n’est besoin de les nommer car je suis stire qu’ils se reconnaitront.

Mes plus profonds remerciements vont a mes parents Hedi et Selma. Tout au long
de mon cursus, ils m’ont toujours soutenue, encouragée et aidée. Ils ont su me don-
ner toutes les chances pour réussir. Qu’ils trouvent, dans la réalisation de ce travail,
I’aboutissement de leurs efforts ainsi que I’expression de ma plus affectueuse gratitude.
Je remercie également mes soeurs Nedia et Manel et mon frere Mohamed pour m’avoir
fait partager leur joie de vivre et m’avoir ainsi soutenu dans mes efforts.

Un spécial merci a mon mari Wael de m’avoir tenu la main jusqu’aux dernieres lignes
de ce manuscrit. Je tiens a le remercier surtout pour sa grande patience et son soutien
moral ininterrompu.

Je n’oublie pas ma tante Fatma, mes beaux fréres Samir et Bassem, mes cousins et
cousines et tous les membres de ma famille que je n’ai pas pu citer. Je vous remercie
tous, je vous dois tout ce que je suis.

Je remercie enfin toutes les personnes intéressées par mon travail, en espérant qu’elles
puissent trouver dans mon rapport des explications utiles pour leurs propres travaux.

Contents

Remerciements

Contents
Abstract
Résumé

Introduction

I Context

1 High-Level Component-Based Models: BIP Framework

1.1 Preliminary Notations
1.2 BIP: the Model-based Framework
1.3 BIP: The Component-Based Framework
1.4 BIP Execution Platform
1.5 Conclusion

2 Time-Triggered Approach

2.1 The Time-Triggered Paradigm
2.2 Time-Triggered Implementations
2.3 The PharOS Implementation
24 Conclusion

II Approach

3 Related Work and Background: Existing Transformational Ap-

proaches
3.1 Related Work
3.2 Background
3.3 Conclusion e

vi CONTENTS

4 From High-Level BIP Model to Time-Triggered BIP Model @
4.1 Problem Statement @
4.2 Proposed Solution @
4.3 Input Model Restrictions, @
4.4 Transformation of a BIP Model into a TT-BIP Model |E|
4.5 Transformation Correctness @
4.6 Conclusion e @

5 From Time-Triggered BIP Model to Time-Triggered Implementatior@
5.1 Component Composition
5.2 Formal Model of the WC' Language
5.3 Transformation Challenges.
5.4 Transformation of a TT-BIP Model into TCA Models
5.5 Transformation Correctness
5.6 Compatibility with the Composition Correctness

5.7 Conclusion

6 Tools Implementation and Experimental Results
6.1 The BIP Tool-chain
6.2 Tools Developed in This Thesis
6.3 Case Study Examples and Experimetal Results

6.4 Discussion and Conclusion e

Conclusion and Perspectives

&l &l EIEIEIEE] EIEIEIEIEIEIE]

Bibliography

List of Figures

1.1
1.2
1.3
14

1.5
1.6
1.7
1.8
1.9
1.10
1.11

1.12

2.1
2.2
2.3

24
2.5
2.6
2.7
2.8

2.9

An overview of the methodology presented in this thesis

Structure of a BIP model
An example of Abstract Behavior
Conflicting interactions L oo
Example of abstract composition of two sender behaviors and two receiver
behaviors
The resulting automaton of the composition with interactions of the ex-
ample of Figure [L4l.
The resulting automaton of the composition with priority of the example
of Figure 4]
An example of an Atomic Component
Connectors and their feasible interactions
Connectors and different coordination schemes
An atomic (a) and a hierarchical (b) connectors computing the maximum
of exported values
Set of connectors based only on synchron ports and equivalent to connec-
tor of Figure[.8Dl
Example of concrete composition of two sender components and two re-
celver COMPONENtS o o v v v it e e

Temporal firewall (reproduced from [39])
TTP Node Architecture
Examples of Standard TTE (left) and safety-critical TTE (right) config-
uration oL oL
Example of two PBOs execution traces
Logical Execution Time Abstraction
Example of a Giotto periodic task invocation
Example of elementary actions and their associated time windows and
TSP instants. L
Example of two PharOS agents communicating through temporal variable
mechanism. L L
Example of two PharOS agents communicating through sending message
mechanism. L

viii

LIST OF FIGURES

2.10
2.11
2.12

3.1
3.2

3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

5.11

5.12

5.13

5.14
5.15

Example of clocks and activation instants @
Example of input and output temporal variables declarations in ¥C' . . . H
Example of body WC'code Lo H
Conflict resolution principle @
An example for the centralized Conflict Resolution Protocol for handling

two conflicting interactions oy and as L. L.

Automaton of CRP component of Figure B2 @
Transformation approach @
High-level BIP model @
Skeleton of the obtained model according to task mapping @
Overview of the TT-BIP model of the model of Figurel[d2 @
A two-step transformation L. E
Atomic component transformation into an ATC component @
Example of transformation of an ATC component @
Skeleton of a TTCC automaton @
Mechanisms for execution of interaction o = (Py, Gy, Fo) o o o o o . .. @
Intermediate waiting locations @

Example of transformation of a conflicting external interaction into a
TTCC component ittt

Example of transformation of a non-conflicting external interaction into

a TTCC component
Transformation approach M
Component composition @
Graphical explanation of the shift function (&1) 107
Alternative representation of the task behavior of Figure 2121 @
An example of a TCA task with two clocks and its ¥C code
Mapping of constraints: option 1 E

Defining sub-intervals and their corresponding enabled transitions: option 2@
Mapping of constraints of Figure 5.7at option2

Example of advance nodes defined over cpq m
Example of transformation of two conflicting transitions triggered by in-
ternal ports L @

Example of transformation of two conflicting transitions triggered by send

POTES . . o e e e @

Example of transformation of two conflicting transitions triggered by re-
ceive POrtS L e @
Example of transformation of two conflicting transitions triggered respec-
tively by a send and a receive port @

TCA model obtained after transforming task components of Figure 7. . @
Transformation of the CRP component

LIST OF FIGURES

ix

5.16

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

Translation functions

Overview of the existing BIP tool-chain
BIP code of the sender atomic component type
BIP code of the 1S2R connector type
BIP code of the compound component type of the model of Figure L4 . .
Transformation of untimed BIP model into Send/Receive model
Transformation of Timed BIP model into Send/Receive model
Overview of developed tools
Tools developed within the existing BIP tool-chain
Model to Text transformation using Acceleo templates
Clock instantiation in the generated WC code
Example of temporal variables instantiation
Generated variables and temporal variables of the CRP component of Fig-

ureBI5al
Generated code of the behavior of the CRP component of Figure 5.15al . .
Software Architecture of the Modelica Model of the Flightsim Application
Initial Flightsim BIP model
Components of the Flight Sim BIP Model
FS TT-BIP Model for the Task mapping TM1

Components of the FlightSim TT-BIP Models for all task mapping strategiesl@

Components TT-sim o
Components TT-sensor
Trajectories of left and right wingtips of the BIP and the TT-BIP models
Software Architecture of the Protection Relay Application
BIP Model of the protection relay application
TT-BIP Model of the protection relay application
Execution trace

[z

List of Tables

6.1 Different Task Mapping Strategies

6.2 Number of generated agents and temporal variable in each task mapping
strategyo e e

6.3 Comparison between the generated and the manually-written source codes
ofthecasestudy L

Abstract

In hard real-time embedded systems, design and specification methods and their associ-
ated tools must allow development of temporally deterministic systems to ensure their
safety. To achieve this goal, we are specifically interested in methodologies based on
the Time-Triggered (TT) paradigm. This paradigm allows to preserve by construction
number of properties, in particular end-to-end real-time constraints. However, ensuring
correctness and safety of such systems remains a challenging task. Existing develop-
ment tools do not guarantee by construction specification respect. Thus, a-posteriori
verification of the application is generally a must. With the increasing complexity of
embedded applications, their a-posteriori validation becomes, at best, a major factor in
the development costs and, at worst, simply impossible. It is necessary, therefore, to
define a method that allows the development of correct-by-construction systems while
simplifying the specification process.

High-level component-based design frameworks that allow design and verification of hard
real-time systems are very good candidates for structuring the specification process as
well as verifying the high-level model.

The goal of this thesis is to couple a high-level component-based design approach
based on the BIP (Behaviour-Interaction-Priority) framework with a safety-oriented
real-time execution platform implementing the TT approach (the PharOS Real-Time
Operating System). To this end, we propose an automatic transformation process from
BIP models into applications for the target platform (i.e. PharOS). The process consists
in a two-step semantics-preserving transformation. The first step transforms a generic
BIP model coupled to a user-defined task mapping into a restricted one, which lends it-
self well to an implementation based on T'T communication primitives. The second step
transforms the resulting model into the TT implementation provided by the PharOS
RTOS.

We provide a tool-flow that automates most of the steps of the proposed approach
and illustrate its use on an industrial case study for a flight Simulator application and a
medium voltage protection relay application. In both applications, we compare function-
alities of both original, intermediate and final model in order to confirm the correctness
of the transformation. For the first application, we study the impact of the task mapping
on the proposed transformation. And for the second application, we study the impact
of the transformation on some performance aspects compared to a manually written
version.

Résumé

Dans le domaine des systemes temps-réel embarqués critiques, les méthodes de concep-
tion et de spécification et leurs outils associés doivent permettre le développement de
systemes au comportement temporel déterministe afin de garantir leur streté de fonc-
tionnement. Pour atteindre cet objectif, on s’intéresse aux méthodologies basées sur le
paradigme Time-Triggered(TT). Dans ce contexte, nombre de propriétés et, en partic-
ulier, les contraintes temps-réel de-bout-en-bout, se voient satisfaites par construction.
Toutefois, garantir la streté de fonctionnement de tels systémes reste un défi. En général,
les outils existants n’assurent pas par construction le respect de 'intégralité des spéci-
fications, celles-ci doivent, en général, étre vérifiées & posteriori. Avec la complexité
croissante des applications embarquées, celle de leur validation devient, au mieux, un
facteur majeur dans les couts de développement et, au pire, tout simplement impossible.
Il faut, donc, définir une méthode qui, tout en permettant le développement des systémes
corrects par constructions, structure et simplifie le processus de spécification. Pour cela,
on s’intéresse aux plateformes de conception haut niveau basée sur composants et qui
permettent aussi la vérification des modeles haut-niveau des systemes temps-réels.

L’objectif de cette these est de coupler une approche de conception haut niveau
basée sur composants consistant en la plateforme BIP (Behaviour-Interaction-Priority)
et une plateforme d’exécution orientée sureté et basée sur le paradigme TT (le systeme
d’exploitation PharOS). Afin d’atteindre cet objectif, on propose un flot de conception
basé sur une approche transformationnelle permettant de générer automatiquement une
application PharOS a partir d’'un modele BIP. Cette transformation préserve la séman-
tique d’origine et consiste en deux étapes majeures. La premiere étape transforme un
modele BIP et un mapping de taches défini par 'utilisateur en un modele BIP plus re-
streint qui s’approche de I'implémentation en respectant les critéres de communication
TT. La deuxieme étape transforme ce modele résultant en une implémentation PharOS.

L’approche proposée a été implémentée et intégrée dans la chaine d’outil BIP. Deux
études de cas industriels ont permis de la valider: un simulateur de vol et un relais de
protection moyenne tension. Pour les deux applications, on compare les fonctionnal-
ités du modeles d’origine avec le modéle intermédiaire et le modéle final. Et ce afin de
confirmer la correction de la transformation. Pour la premiere application, on étudie
I'impact du mapping des taches sur la transformation proposée. Pour la deuxieme ap-
plication, on étudie 'impact de la transformation sur quelques aspects de performances
en comparaison avec une version de la méme application écrite manuellement.

Introduction

Challenges in building correct hard real-time systems

Modern societies are being more and more involved with embedded systems. These latter
have become a major actor in the daily human life by serving a vast variety of application
domains such that home appliances, office automation, aerospace, banking and finance,
automotive, medical instruments, avionics, etc. Embedded systems are becoming more
and more complex, and their pervasiveness in our everyday lives calls their efficiency and
reliability into question.

Real-time systems [56] are systems that undergo a set of "real-time constraints” (e.g.
start instants, deadlines, etc.). They are classified into two categories; soft and hard
real-time systems. In the former category, respect of timing constraints is important, but
the system can still function even if these constraints are occasionally violated. Whereas,
a failure of hard real-time systems endangers their original intended mission or the life
of the human being. Indeed, the correctness of a result of such systems depends on
both the time and the value domains. That is a hard real-time system is correct if it
produces the correct result while respecting the specified timing constraints. Despite
the existence of different techniques in software engineering for ensuring correctness
and reliability such as formal verification, simulation and testing, ensuring value and
temporal correctness of hard real-time systems is still a challenging and time-consuming
task. With the increasing complexity of such embedded applications, their a posteriori
verification becomes, at best, a major factor in the cost of development and, at worst,
simply impossible. Sometimes, an error in the specifications is not detectable.

In brief, the main challenges that hard real time systems are facing are their exponen-
tially increasing complexity —and therefore the complexity of their design—and the hard
and costly a posteriori verification process intended to prove application correctness. In
this context number of approaches and paradigms have been proposed.

Component-based approach

In general, the most basic and intuitive way to tackle complex and large problems is
to decompose them into smaller ones. Similarly, the principle of the component-based
approach is to build complex systems by assembling a set of building blocks called com-
ponents. In order to fit into an architecture of the system (i.e. the structure of the
system), components require coordination mechanisms allowing to describe how they

are connected and interacting. A component is mainly characterized by its interface,
an abstraction that is adequate for composition and reuse. The composition of compo-
nents is achieved with respect to a notion of ”glue” operator. The ”Gluing” operation
takes, as input, components and their constraints and provides, as output, a complex
system. Therefore, the global behavior of the system can be inferred from the behavior
of its composing components and its related architecture. Component-based systems
provide logical clear descriptions of their behaviors which makes them adequate for a
correct-by-construction process. In addition, they allow reuse of components and incre-
mental modification without inferring global changes, which may significantly simplify
the verification process.

A variety of component-based frameworks have been proposed in order to allow
modelling, simulation and verification of critical embedded applications. Nonetheless,
such design frameworks usually provide a capability for automatic generation of C+-+ or
Java code, which has to be compiled for the selected target platform. Thus, guaranteeing
hard real-time constraints in the implementation within these frameworks is, at best,

difficult.

Implementations based on Real-Time Operating Systems (RTOS) and Time-
Triggered (TT) execution model

The Time-Triggered (TT) paradigm was introduced by Kopetz [52]. TT systems are
based on a periodic clock synchronization in order to enable TT communications and
computations. Each subsystem of a T'T architecture is isolated by a so-called temporal
firewall which consists of a shared memory element for a unidirectional exchange of
information between sender and receiver task components. It is the responsibility of
the TT communication system to transport —by relying on the common global time—
the information from the sender firewall to the receiver firewall. In a TT system all
communication and computation activities are initiated periodically at predetermined
points in time. These statically defined activation instants enforce regularity and make
TT systems predictable which makes them well-suited for hard real-time systems.

Developing embedded real-time systems based on the T'T paradigm is a challenging
task due to the necessity to manage, already in the programming model, the fine-grained
temporal constraints and the low-level communication primitives imposed by the tem-
poral firewall abstraction. In this context, a variety of Real-Time Operating System
(RTOS) that are based on the TT paradigm, have been provided to guarantee the tem-
poral and behavioural determinism of the executed software. They provide a set of
primitive mechanisms for handling communication and timing constraints specifications.

Nonetheless, such TT-based RTOS implementations do not provide high-level pro-
gramming models that would allow the developers to think on a higher level of abstrac-
tion and to tackle the complexity of large safety-critical real-time systems.

Introduction 7

Challenge: from component-based model to a TT-based RTOS implementa-
tions

The goal of our work is to couple the high-level component-based design approach
with a safety-oriented RTOS implementing the TT paradigm. We propose a theory
and tools that automatically derive correct TT implementation from the original high-
level component-based model of the application. This is achieved, by using correct-by-
construction source-to-source transformations techniques. The proposed methodology
allows, thus, to combine complementary advantages of both approaches; i.e. tackling the
complexity and verifying the model using high-level component-based framework, and
guaranteeing determinism of the implementation constraints due to the safety-oriented
RTOS implementing. Moreover, the correct-by-construction technique allows avoiding
the a posteriori verification of properties that are already verified in the original high-
level model.

Our contributions

We present, in this thesis, a methodology to provide automatically correct-by-
construction TT implementation starting from a high-level component-based model
of the software application.

In order to comply with the correct-by-construction approach, we need to rely on a
component-based framework which provides rigorous semantics. BIP (Behavior, Inter-
action, Priority) is such a formalism for modelling heterogeneous component-based sys-
tems [2], developed at Verimag. BIP relies on multi-party interactions for synchronizing
components and dynamic priorities for scheduling between interactions. Regarding the
target implementation, we consider PharOS [9] framework. It is an extension of the OA-
SIS framework [31], 36, 67, [68] implemented for the automotive applications. Oasis and
PharOS implementations comprise a programming language WC (Parallel synchronous
C), which is an extension of C. This extension allows one to specify TT tasks and their
temporal constraints as well as their interfaces.

The proposed transformational approach of this thesis relies on two main semantics-
preserving transformations; a model-to-model and a model-to-code transformations. In
order to be able to prove formal correctness of the second transformation, we provide the
semantics of the PharOS formal model which is at the same level as its WC programming
language. The transformation has been implemented in two main tools and is proved to
be semantics preserving. An overview of the contribution of the thesis is displayed in
Figure [

Input BIP model

In the proposed transformational approach, we consider input models that are described
in BIP. The behavior of a BIP component is modelled using timed automata [5] which
is extended with data and C update functions. The component model encompasses only

Model-to-model transformation

Observational equivalence
From BIP to TT-BIP model

\. {

Model-to-code transformation

From TT-BIP to TCA model

Y \

TCA is the formal model of the WC language]
TCA]

Figure 1: An overview of the methodology presented in this thesis

observational equivalence

platform-independent timing constraints consisting in user requirements. Transitions are
labelled by ports and are assumed to be timeless. Components are composed using two
operators, namely Interaction and Priority. The Interaction operator is parametrized by
a set of interactions which synchronize transitions of components. The Priority operator
is a partial order on the interactions. In our work, we do not consider the priority
operator in BIP input models. The global state semantics of such models is defined by
a labelled transition systems LTS where the system can either wait (i.e. when time may
progress) or execute the interactions.

From BIP to TT-BIP model: model-to-model transformation

This transformation takes as input a BIP model and produces a more restricted model
called TT-BIP model. This transformation is parametrized by a user-defined task map-
ping. Such transformation allows to obtain a model which is closer to any TT imple-
mentation. That is, a model where all intertask interactions are executed by dedicated
components and all interactions between its different components correspond to send/re-
ceive interactions. These latter provide, on top of synchronization, a unidirectional data

Introduction 9

transfer. Another essential criterion for building the transformation rules is the respect
of the equivalence to the original model where interactions’ conflicts are resolved by the
BIP engine. In order to satisfy this criterion, the obtained model contains a compo-
nent dedicated to conflict resolution and implementing the fully centralized committee
coordination algorithm presented in [10].

Formal semantics of the target implementation

In order to be able to formally present the second transformation and provide its related
formal correctness proofs, we provide a formal model of the target implementation and
define its operational semantics. This model is called the Time Constrained Automata
(TCA) model, which is at the same abstraction level as the ¥C' language. In this model,
a task is an automaton. Its transitions are labelled by triplet-labels specifying release,
deadline and synchronization dates. We also define the operational semantics of the
provided TCA model by using the notion of labelled transition systems (LTSs).

From TT-BIP to implementation source code: model-to-code transformation

This transformation takes as input the TT-BIP model and produces as output the TCA
model. The rules of this transformation aim at transforming each transition of a the
original automaton, into a set of successive transitions in TCA model. Different original
timing constraints are mapped using deadlines and/or release dates in TCA model.
While original communications are mapped using synchronization constraints of the
target model. Even if the provided rules are provided as model-to-model transformation
rules, this transformation is considered as model-to-code one since the provided TCA
model is considered to be at the same level of abstraction as the ¥C' language.

Organization of the thesis

This document is composed of two main parts. In the first part, we present the prerequi-
sites of this thesis (Chapter [[land Chapter 2)). In the second part, we present the existing
related work and the contribution of the thesis (Chapter Bl Chapter [Chapter Bl and
Chapter [@]). The last chapter (Chapter [6.4]) draws the conclusion and future work. The
details of all chapters are as follows:

e Chapter [l introduces the BIP component-based framework. It describes its ab-
stract and concrete models as well its operational semantics.

e Chapter 2 provides necessary background information related to the TT paradigm.
It lists some of existing TT implementations. And presents in details PharOS
implementation which is the target implementation of the proposed methodology.

e Chapter [presents a non exhaustive list of existing transformational approaches
that are attempting to establish a link between high-level design frameworks and
implementations. This allows to situate and compare our methodology with other
related existing approaches.

10

e Chapter [presents a transformational method which starts from a BIP model

and a user-defined task mapping. The obtained model—called TT-BIP model—
is a structural restriction of BIP model respecting the TT paradigm. First, in
this chapter, we present the main challenges of the transformation. Second, we
present in details the proposed solution consisting in structuring TT-BIP model
under a well-defined architecture which allows the respect of the original model
behavior as well as the T'T principles. Then, we provide the formal transformation
rules. We also provide in this chapter formal correctness proofs of the proposed
transformation.

Chapter [0l presents a method for transforming TT-BIP models into PharOS imple-
mentation. Since in the implementation level, the notion of composite process/task
does not exist, we present first, in this chapter, the transformation that is applied
to the TT-BIP models that are containing composite task components. Second,
we propose the Time Constrained Automata (TCA) model as a formal model of
TT tasks of a PharOS application and we define its operational semantics by using
LTS. Then, we detail different challenges and present the formal transformation
rules. Moreover, we prove that the defined transformation preserves the observa-
tional equivalence.

In Chapter [6] we start by presenting an overview of the existing tools that are
involved in the BIP framework. Second, we describe the tools developed in this
thesis and implementing the methods presented in the previous chapters. More-
over, we describe the used two case study examples and some related experimental
results.

We conclude the thesis in the last chapter, with an overview of the work and its
future perspectives.

Part 1

Context

High-Level Component-Based Models: BIP
Framework

In this chapter, we present the BIP (Behavior Interaction Priorities) framework [12,[14),[83]. BIP
is a framework for rigorous design, analysis and implementation of complex real-time systems.

These latter are described in BIP as a set of atomic components, composed by a layered
application of glue operators. Two glue operators are provided in BIP, namely Interaction and
Priority. Interaction describes multi-party interactions between atomic components. Priority is
a partial order between interactions.

BIP is thus a model-based framework that describes all software and systems according to a
single semantic model. It is also a component-based framework that provides a family of operators
for building composite components from basic blocks. These provided operators allow overcoming
the poor expressiveness of theoretical frameworks based on a single operator, such as the prod-
uct of automata. BIP framework guarantees correctness by construction which allows avoiding
monolithic a posteriori verification as much as possible.

| Priority |
| Interaction |

Bjle][h]lallv][i][o][r]

Figure 1.1: Structure of a BIP model

This chapter is structured as follows. Section[I1] details different kinds of variables of timed
systems and their related notions. It also introduces the terminology and notation used in this
report. Based only on the clock variables, the abstract models of the three layers of a BIP model

14 1. High-Level Component-Based Models: BIP Framework

are described in Section [[L2 Section represents the concrete model of BIP, based on both
data variables and clocks. Section[1.7) represents briefly how a BIP model is executed.

Chapter outline

1.1 Preliminary Notations oo v 15
1.1.1 Data Variables |E
1.1.2 Clocks |E
1.2 BIP: the Model-based Framework [1d
1.2.1 Modeling Behavioro |ﬂ
1.2.2 Modeling Interaction Glue E
1.2.3 Modeling Priority Glue kd
1.2.4 Composition of Abstract Models kd
1.3 BIP: The Component-Based Framework E
1.3.1 Ports and Interfaces @
1.3.2 Atomic Components Y
1.3.3 Interactions and Connectors %
1.3.4 Priority m
1.3.5 Composition of Concrete Models B3d
1.4 BIP Execution Platform 32

1.5 Conclusion @

1.1

1.1.1

1.1.2

1.1. Preliminary Notations 15

Preliminary Notations

The state of any timed system depends on two kinds of variables —data variables and
clock variables [7]. In such systems, a value of a data variable is modified explicitly in
the system transitions. Values of clock variables —clocks—, are increasing implicitly as
time progresses.

Timed automata introduced in [3, 4, 5l [6] are commonly considered as a standard
model for real-time systems. They are providing a simple and powerful way to model
the behavior of real-time systems by annotating states and/or transitions with guards
over different variables of the system.

In our work, the behavior of real-time systems is modeled through timed automata
where states are annotated by time progress conditions, and transitions are annotated
by guards over data variables and timing constraints over clocks. In the following, we
provide preliminary definitions of data variables and clocks. We provide for each variable
some related notions (e.g. valuation function, guards, etc.).

Data Variables

Given a variable z, we denote D(z) its domain, i.e. the set of all values possibly taken
by z. If = is an integer variable then D(x) = Z.

Valuation function

A valuation on a set of variables X is a function v, : X — [J,cx D(), such that
vz(z) € D(z), for all x € X. We denote by V(X) the set of all possible valuations on X.

Guards

Guards are Boolean expressions used to specify when actions of a system are enabled.
Given a set of variables X, we denote by Gx = BY(X) the set of Boolean guards on X.

Update function

An update function f: V(X) — V(X) for variables X is used to assign new values f(vy)
to variables in X from their current values v,.

Clocks

Time progress is measured by clocks which are integer or real-valued variables increasing
synchronously. Each clock can be reset (i.e., set to 0) independently of other clocks. We
denote by R the set of non-negative reals, and by Z the set of non-negative integers.

Valuation function

A valuation on a set of clocks C is a function v, : C' — Ry such that v.(c) € Ry, for
all ¢ € C'. We denote by V(C) the set of all possible valuations on the set C, such that
V(C) CRy.

1.2

16 1. High-Level Component-Based Models: BIP Framework

Given a subset of clocks C’ C C and a clock value a € V(C'), we denote by v, [C" + a]
the valuation defined as follows:

ve[C" <+ a](c) =

i ,
{a ifeeC (1.1)

ve(c) otherwise.

Timing constraints

Timing constraints are guards over the set of clocks. They are used to specify when
actions of a system are enabled regarding system clocks and are defined as follows. Let
C be a set of clocks. The associated set G¢ of timing constraints tc is defined by the
following grammar:

tc:= True | False | ¢ ~a | tc Ntc|teV te,

with ce C' |, ~e {<,=,>} and a € Z.

Thus, any guard tc can be written as:

tc = /\ le <ec<wu, whereVee C, I, € Zy,u. € Zy U {+00}. (1.2)
ceC

The Boolean value tc(v.) is the evaluation of the timing constraint ¢c for the valuation
v, where each clock ¢ is replaced by its value v.(c). The notation v, + § where 6 € R
represents a new valuation v/, defined as v..(¢) = v.(c) + 9.

Time progress conditions

Time progress conditions are predicates on clocks used to specify how time can progress
at a given state of the system. They are considered as a special case of timing constraint
where ~ is restricted to {<} and operator V is disallowed. Formally, time progress
conditions are defined by the following grammar:

tpc := True | False | ¢ ~ a | tc Ate, where c€ C and a € Z
Note that any time progress condition tpc can be written as:

tpe = /\ ¢ < u., where Ve € C, u, € Zy U {+o0} (1.3)
ceC

We denote by TPC(C) the set of time progress conditions defined over a set of clocks
C. The evaluation of a time progress condition tpc for a valuation v, is the Boolean value
tpc(ve) obtained by replacing each clock ¢ by its value v.(c).

BIP: the Model-based Framework

We provide a formalization of BIP framework through formalization of each layer of
BIP models. Respective abstract models of behavior, interaction and priority layers are
detailed in this section, by considering only the clock variables.

1.2.1

1.2. BIP: the Model-based Framework 17

Modeling Behavior

The basic building block of a BIP abstract model is the behavior unit. A behavior is
formally defined as below:

Definition 1.1 (Abstract Behavior). A behavior B is a timed automaton represented
by a tuple (L, P,C,T,tpc) where:

e L is a finite set of control locations;

e P is a finite set of ports;

o (' is a finite set of clocks;

T C Lx(PxGcx29) %L is a finite set of transitions. A transition T = (I,p, tc,r,1')
s labelled with a port p, a Boolean guard on clocks tc and a set r of clocks to be
reset;

The function tpc : L — Go assigns a time progress condition to each location,
such that, for anyl € L, the constraint tpc(l) is a conjunction of constraints of the
form ¢ < u.

The semantics of a behavior B is a Timed Transition System (TTS) consisting of
two types of transitions: action transitions and delay transitions. Action transitions
correspond to labelled transitions of B. Delay transitions correspond to allowing time
to progress in a given state.

A state is described in two parts: the control state (i.e. control location) and the state
of the clock variables. Based on this state notion, the definition of a behavior semantics
is as follows:

Definition 1.2 (Semantics of a behavior B). The semantics of a behavior B =
(L, P,C,T,tpc) is defined as a Labelled Transition System (LTS) (Q,%,—), where:

e Q=L xV(C) denotes the set of states of B,
e > = PUR, denotes is the set of labels (ports or time values),

e »C Q x (PURL) xQ is the set of transitions defined as follows. Let (I,v.) and
(I',v]) be two states, p € P and § € Ry.

C

e Action transitions: We have (I,v.) 2 (I',v.) iff there exists a transition
7 = (I,p,te,r, ') € T, such that te(v.) = True and vl = v.[r < 0] for all
c € r. The execution of an action transition is timeless.

e Delay transitions: We have (l,v.) LN (l,v. 4+ 0) iff V&' € 10,6], tpe(l)(ve +

def

8') = True, where (ve + 6)(c) = v(c) + 9, for all c € C.

1.2.2

18 1. High-Level Component-Based Models: BIP Framework

A transition T = (I,p,te,r,l') can be executed from a state (I,v.) if its timing con-
straint is met by the valuation v.. The execution of 7 corresponds to moving from control
location [to I’ while resetting clocks of r. In that case, we say that the port p is enabled
from the state (I, v.), and we write (I, v.) =. If p is not enabled (i.e. no transition labeled
by p is possible) from that state, we say that p is disabled and we write (,v,) 7%

Alternatively, time can progress for a duration § > 0, if the time progress condition
tpe(l) stays True. This increases all the clock values by §. Notice that execution of an
action transitions is instantaneous; control location cannot change while time elapses.

An execution sequence of B is a sequence of transitions from different states of the
system. It is alternating between action and delay transitions and it is defined as follows:

Definition 1.3. A finite (resp. infinite) execution sequence of B = (L, P,C, T, tpc) from
an initial state (lp,ve,) is a sequence that alternates actions and delay transitions:

(li7 Uci) % (li-i-l, U6i+1)
, where o; € ¥ such that ¥, = PURy and i € [1,n] such that n € Z.

Example 1.1. Figure [[.2 depicts a simple behavior sender= (L, P,C,T,tpc), where
L= {lo,ll}, P = {S,i}, C = C, T = {T1 = (lo,s, True, {C},ll),TQ = (ll,i, (C > l),@,lo)}
and tpc is such that tpc(lp) = True and tpe(ly) = (¢ < w). By default, when a time
progress condition (resp. timing constraint) is not graphically shown on a location (resp.
transition), we consider True as default value.

Let the initial state of this behavior be (ly,0), tpc(ly) = True means that sender can
wait infinitely at the location ly. Thus, any delay transition §1 € Ry is possible from
(1o, 0), i.e. (I, 0) LIN (lp,61). From ly, only one action transition is possible which is 1.
The transition 7 s labeled by s and having as timing constraint True. It resets the clock
¢, which means that the reached state of this transition is (11,0).

We have tpe(ly) = (¢ < u), so sender cannot wait more than u units of time.
Therefore, any delay transition labeled by do such that 6o < w is possible from (l1,0),

i.e. (11,0) LEN (I1,02). The unique possible action transition from the state (I1,02), is the
transition o labelled by port i and having as timing constraint (¢ > 1). This transition
is possible only if 0o satisfies | < do.

The following is a summary of an execution sequence of the behavior example:

(I0,0) 25 (I, 81) = (11,0) 2 (11, 82) 5 (lo, 6a)

Modeling Interaction Glue

Interaction is a glue operator composing behaviors. Throughout this subsection, we
consider n behaviors {B;},, where B; = (L;, P;, C;, T;, tpc;). Their sets of ports and
clocks are assumed to be disjoint, i.e. for all ¢ # j, we have P,NP; = () and C;NC; = 0.

1.2. BIP: the Model-based Framework 19

i S
c=l1 {c}
c<u
Clock ¢ Sender]

Figure 1.2: An example of Abstract Behavior

Let P = {P;}}", be the set of all ports in the composition. Interactions are defined as
subsets of ports.

Definition 1.4 (Interaction Glue). An interaction between components {B;}? | is a
non-empty subset a« C P of ports, such that ¥i € [1,n], | a N P; |< 1. We denote
a = {pitier, where I C {1,..,n} embodies different indexes of components participating
m o, and p; is the unique port in a N P;.

An interaction glue operator is denoted by a set of interactions v C 2. An inter-
action « € v can be enabled or disabled. The interaction « is enabled only if, for each
€ [1,n], the port a N P; is enabled in B;. That is, « is enabled if each port that is
participating in this interaction is enabled. The states of components that do not par-
ticipate in the interaction remain unchanged. Alternatively, « is disabled if there exists
i € [1,7n] such that the port a N F; is disabled in B;.
We denote by comp(a) the set of components that have ports participating in a.
comp(a) is formally defined as:

comp(a) = {Bjli € [1,n],,Na # 0} (1.4)

Two interactions are conflicting at a given state of the system if both are enabled,
but it is not possible to execute both from that state (i.e., the execution of one of them
disables the other). In fact, the enabledness of interactions only indirectly depends on
the current state, through the enabledness of the participating ports. In systems having
only the glue of interactions, two interactions o and o’ may conflict only if they involve
a shared component. In Figure [[3al the conflict comes from the fact that o and o’
involve two ports p and g of the same component and that these two ports are labelling
two transitions enabled from the same location. When reaching the location Iy, the
component can execute either transition labelled by p or the one labelled by ¢ but not
both. This implies that when o and o' are enabled, only one of them should execute.
Figure [L.3b] shows a special case of conflict where interactions o and o’ are sharing not
only a common component but also a common port p.

Below, we define formally conflicting interactions.

Definition 1.5 (Conflicting interactions). Let be a set of interactions and {B;}!_, be
a set of BIP behaviors. We say that two interactions o and o' of v are conflicting, iff,

1.2.3

1.24

20 1. High-Level Component-Based Models: BIP Framework

OB

(b)

Figure 1.3: Conflicting interactions

there exists an atomic component B; € comp(c) N comp(c’) that has two transitions 7,
and T, having the same source location and labeled respectively by ports p and q such
that p € a and q € o/. We denote the conflict between o and o' by a#d’. If a and o
are not conflicting we say that they are independent. The system is conflict-free if all
interactions are pairwise-independent.

Modeling Priority Glue

Several different interactions can be enabled at the same time, thus leading to a certain
degree of non-determinism in the product behaviour. This can be avoided by controlling
the scheduling of interactions. Priority rules allow choosing one interaction among inter-
actions enabled at a given state. They are expressed as a partial order on the interactions
and are formally defined as follows:

Definition 1.6 (Priority Glue). Given a set v of interactions defined over a set of
components {B;}_,, we define a priority as a relation m C v x . We write ard’ for
(o,) € 7 to state that « has less priority than o'.

Remark 1.1. Notice that Definition [1.0 defines static priorities. It could be extended
to dynamic priority rules depending on the state of the composition of components (cf.
[14] and [T7]). In this thesis, we focus only on static priorities.

Composition of Abstract Models

Given a set of behaviors { B; }I" ; and a glue GL, the corresponding composite component
is denoted by GL({B;};). The glue GL is either limited to interactions (i.e. GL =)
or it corresponds to interactions subject to priorities (i.e. GL = 7). In the following,
we define the semantics for both cases.

Definition 1.7 (Semantics of composition with interaction model 7). Let v be a set
of interactions. We denote by B = v(Bi, ..., By) the composite component obtained by
applying v to the set of behaviors {B;}_ | where B; = (L;, P;, C;, T;, tpe;) with semantics
SB; = (Qi, i, —i). The semantics of B is the transition system S, = (Q, %, =) where:

1.2. BIP: the Model-based Framework 21

o () =LxV(C), where L = L X ...x Ly, is the set of global locations and C = U} ;C;
is the global set of clocks. A global state is of the form q = (l,v.). 1 = (I1,..., 1)
is a global location such that l; € L; for all i € [1,n]. And ve = (Veyy .y Ve,) 5 @
global clocks valuation, where v., is the valuation of clock C; for all i € [1,n].

o Y =yURy,
e —, is the set of labelled transitions satisfying the following rules:

e Action transitions:

a={pticr€y Viel,q=ive,) id =) Vi¢ld=q
(lyve) =y (U's0))

C

INTERACTION

e Delay transitions:
b e Ry I=(l1,..ln) Vi € [1,n], tpe(l;)(ce, +)

DELAYS 3
(lyve) = (Lve +)

In Definition [I.7] action transitions correspond to the execution of interactions. An
interaction o = {p; }ier € v is executed from a global state (I,v.), where [= (I1,...,15)
and ve = (V¢y, .-y Ve,), if for each i € I the port p; is enabled from the local state (1;, ve,)
of the component B;.

From a global state (I,v.), a delay transition is executed letting time progress by
0, if it is allowed by respective time progress conditions tpc; of each location [; for all
i €[1,n].

Definition 1.8 (Semantics of composition with Interactions 7 subject to Priority).

Let w be a set of priority rules and ~ be a set of interactions. We denote by B =

7y(B1, ..., By) the composite component obtained by applying the glues m and v to the
set of behaviors {B;}" . We define the semantics of B as the transition system Sp =
(@Q,%, —=x) where —r is a restriction of —~ defined as follows:

/

(Lve) =y (Lvy) Vo' €y ama’ = (Lve) 744

PRIORITY = T
(l,ve) == (U vg)

In Definition [[.8] an interaction o € v is executed from a global state (I,v.) if it

is enabled at that state, i.e. (I,v.) —, (I',v.) and each interaction o/ having a higher

priority than a (i.e. ama’) is not enabled at state (1,v.), i.e. (I,v.) 2.

Example 1.2. Figure depicts an example of an abstract model composing four be-
haviours and denoted 77y (sender; , receivery , receivers, senders). Behavior sender; (resp.
senders) is an instance of the behavior of Figure[L.d with u =20 andl =5 (resp. l =6).

22 1. High-Level Component-Based Models: BIP Framework

The interaction a (resp. ') is a ternary interaction synchronizing ports r1 and ro with
port s1 (resp. port s3). By the Definition [IJ, these two interactions are conflicting
since they are involving the same ports (r1 and r9) (same case as in Figure[1.3d). Non-
determinism introduced by this conflict, is avoided by the priority w, which states that at
each state of the system, the interaction o has less priority than the interaction o

X II

vy={a = {s1,r1, 2}, « = {sp, r1, r2}

@)
isl S1 ir1 ry j'rZ Iy isz S
c=5 {c} {c} c<20 {c} c<18| |c=6 {c}
(Y20 (&) () 2 <20
Clock ¢ Sender; Clock ¢ Receiver; Clock ¢ Receiver, Clock ¢ Sender,

Figure 1.4: Example of abstract composition of two sender behaviors and two receiver
behaviors

The execution of interactions in BIP framework is guaranteed by a sequential engine.
This latter computes from the states of single components, the set of enabled interactions,
applies priority rules and choose an interaction to execute.

Note that BIP framework does not compute the automaton resulting from the com-
position before execution. But for a better understanding of the composition glue notion,
we provide in Figure[LLH] the resulting automaton after composing the components of the
example of Figure [[L4] with the interactions o and . Note that both transitions v and
o' in the obtained automation are having the same timing constraint (i.e. 5 < ¢ < 18).
Thus, when applying the priority rule ama’, o’ can never be executed since whenever it is
enabled there is a higher priority interaction that is enabled in the same time. Therefore
we can chose, in this specific example, not to present it in the resulting global automaton
(cf. Figure [[L6]). Note that in both Figure and Figure [[L6l we choose to graphically
duplicate the initial location (15! I5! 152 152) in order to simplify the representation of the
automata.

We recall that examples provided in Figure and Figure [[LG, are provided only

to clarify the notion of glues. BIP framework does not compute these automata before
execution.

1.3. BIP: The Component-Based Framework 23

12 2\ €=10
lo'lo lo To
03 o

Irl ir2
c} £<10
s1 .l r2 s2\\(s1rl r2 51112 52\ (51 r1 12 52\ (1,1 r2 52\l 11 12 82 s1rl r2 s2\(s1rl r2 2 1m0 r2 s2Y(s1 1 12 2\ (51,11 2 5261 11 2 s2N
e=1H 1) 1ol) U o 13 16)3 1o 1o s) Ug 13 1o 1o N1 lo To io o 15 1o)0 1o 151) U5 1o 1o 12 Mo Iy fo |o |0 N (S
=10 c=10 z
ir2 °=10 1C 10 S ir2 c=15 js2 =1¢1 =

6<c AcC} b=C

{c}

C

51 rl r2 52
i |D |0 |U c=10

Figure 1.5: The resulting automaton of the composition with interactions of the example

of Figure [[L4]

c=1f =<
‘ =10
£1 1 2 @)1t 2 2 (1 2 g\ |r2 G) e e |52
lololo I)Uolo 1 To) Uo'lolo Iy No Il ololilo Nolilo
c<10

51 2 s2°
{5 |o |0 i cs10

Figure 1.6: The resulting automaton of the composition with priority of the example of

Figure [L4

1.3 BIP: The Component-Based Framework

For each abstract model of the BIP layer (cf. Section [[.2]), we provide its concrete model.
An abstract model focuses on control while concrete model handles data variables added
on top of the abstract model. Handling data variables provides a detailed representation

1.3.1

1.3.2

24 1. High-Level Component-Based Models: BIP Framework

of complex behavior, for example, by using guards over variables in order to prevent/al-
low execution of transitions and interactions.

In concrete model, the behavior layer is modeled with atomic components, the in-
teraction layer is modeled with connectors, and finally, Priorities is a mechanism for
scheduling interactions.

Ports and Interfaces

Ports are particular names defining communication interfaces for components. They
are used to establish interactions between components by using connectors. In BIP,
we assume that every port has an associated distinct set of data variables. This set of
variables is used to exchange data with other components when interactions take place.
A set of ports is called an interface.

Definition 1.9 (Port). A port p is defined by:
e p : The port identifier;
e X, : The set of data variables associated with p.

Remark 1.2. A port can be made invisible to other components, and thus label only
internal computational transitions. In that case, it is called internal port. Symmetrically,
ports wvisible to other components and composing the communication interface of the
component are exported ports. We may denote exported ports in the remainder of this
work simply by "ports”.

Atomic Components

An Atomic component is a concrete unit of behavior consisting in the combination of
an interface (i.e. a set of ports) and a behavior encapsulated as a timed automaton
extended with data and clock variables. Each transition of the automaton is guarded
by a predicate on variables and a predicate on clocks, it triggers an update function,
resets a subset of clocks and is labelled by a port belonging to the interface. An atomic
component is formally defined as follows:

Definition 1.10 (Atomic component). An atomic component B is defined by B =
(L, P, X,C,T,tpc) where:

e [is a finite set of locations;
e P is a finite set of ports;
e X is a finite set of local variables;

o C is a finite set of clocks;

1.3. BIP: The Component-Based Framework 25

e TCLx(PxGyxxGcx2°xVX)WX)) x L is a finite set of transitions, each
labelled with a port, two Boolean guards (on wvariables and on clocks), a set of
clocks to be reset and a function updating a subset of variables of X ; the function
tpc: L — G¢ assigns a time progress condition to each location, such that, for any
l € L, the constraint tpc(l) is a conjunction of constraints of the form ¢ < u.

Example 1.3. Figure[1.7] shows a concrete atomic component of the behavior of Fig-
ure [L2. This latter has been extended with the variable x associated with the exported
port s. Before being sent, this variable is modified locally by the transition labeled by the
internal port i, which executes the update function f.

Xl
i S
c=l1 {c}
x=f(x)
c<u
Clock ¢ Sender

Figure 1.7: An example of an Atomic Component

Defining the operational semantics of an atomic component requires a notion of
state. The state of an atomic component is described in three parts: the control state
(i.e. control location), the state of the clock variables and the state of the data variables.

Definition 1.11 (Semantics of an atomic component). The semantics of an atomic
component B = (L, P, X,C,T,tpc) is defined as a Labelled Transition System (LTS)
(Q,%, =), where:

o Q=L xV(C)xV(X) denotes the set of states of B,

e ¥ = PUR, denotes is the set of labels (ports or time values),

e »C Q x (PURY) x Q is the set of transitions defined as follows. Let (1,v¢,vy)
and (I', v}, v}) be two states, p € P and § € R;.

sy Yer Yo

o Action transitions: We have (I,ve,v.) 2 (I',0.,0)) iff there exists a tran-

sition T = (I,p,gx,te,r, f,I') € T, such that tc(v.) = gx(vy) = True,
vl = f(vg) and v, = ve[r < 0] for all c € r (i.e. v.(c) =0, for all c € r).

e Delay transitions: We have (l,v¢,v;) LN (l,ve + 6,v;) iff V&' € [0,4],
tpe(l)(ve + ') = True, where (ve + 0)(c) =2 ve(c) + 6, for all ¢ € C.

A component B can execute a transition 7 = (I, p, gx, te, r, f,1') from a state (I, v, v;)
if its timing constraint is met by the valuation v.. The execution of 7 corresponds
to moving from control location [to [, updating variables and resetting clocks of r.

1.3.3

26 1. High-Level Component-Based Models: BIP Framework

Alternatively, it can wait for a duration 6 > 0, if the time progress condition tpc(l) stays
True. This increases all the clock values by d. Notice that execution of jump transitions
is instantaneous; control location cannot change while time elapses.

Interactions and Connectors

The definition of interactions is extended in the concrete model in order to handle vari-
ables. An interaction is mainly a set of ports exporting each a set of variables. An
interaction can access all variables exported by its ports. Particularly, it is guarded by
a predicate defined on these variables. This predicate, if evaluated to True, enables the
interaction. This latter also defines a data transfer function which modifies the variables
values upon the execution of the interaction.

Remark 1.3. The definition of conflicting interactions in the concrete model is the same
as in the abstract model (cf. Definition I3 and Figure[1.3). Note that, when considering
data variables, this definition can be an over approximation in some cases. For example
when gquards of interactions satisfying the Definition [are always mutually exclusive,
these interactions are not really conflicting (i.e. they are never enabled simultaneously).

Throughout this subsection, we consider n atomic components {B;}!' ;, where
B; = (L;, P;, X;, C;, T}, tpc;). Their sets of locations, ports, clocks and data variables
are assumed to be disjoint, i.e. for all i # j, we have L;NL; =0, R,NP; =0, C;NC; =0
and X;NX; = (. Let P = {P;}?_; be the set of all ports in the composition. Interactions
are defined as subsets of ports.

Definition 1.12 (Interaction). An interaction o between components {B;}!' ; is a triplet
(Pu,Ga, Fy,), where:

e P, is a set of ports such that | P, N P; |< 1, for all i € [1,n],

e (G, is the set of boolean guards associated to o and defined over a subset of
UpGPaXp'

o [, is the set of the update functions associated to o and defined over Upep, Xp.

In the remainder of this report, when no confusion is possible from the context, we
may simply denote the port set of the interaction by the interaction name. Thus we may
use p € « instead of p € P, and p € {aq, a2, ay} instead of p € Py, a; € {1, a2, an}.

As in the abstract model, interactions are representing the first layer of glue. In
order to avoid an explicit enumeration of all possible interactions between a given set of
components, the notion of connector has been introduced. It allows to present sets of
related interactions in a compact way. Each connector I' is defined over a set of ports Pr
and defines a set of interactions 7r, i.e. a subset of 2. A connector can be atomic or
hierarchical. An atomic connector (or simply called connector) can export a port that is

1.3. BIP: The Component-Based Framework 27

used for the construction of hierarchical connectors. A hierarchical connector is obtained
by combining atomic connectors to form a structure acting as a single connector. The
ports of the top level connector include the exported port of the low level connector.

An algebraic formalisation of BIP connectors is provided in [19] and [20]. In this
thesis, we settle for the following generic definition of a connector. For hierarchical
connectors, we only provide some intuitive but representative examples.

Definition 1.13 (Connector). A connector T is defined by the triplet (Pp,~r,pr), where:

e Pr is the set of ports of I, i.e. the set of ports of components synchronized by I,
® ~r is the set of interactions,

® pr is the exported port by the connector I'.

For a connector I', the set of feasible interactions < depends on types of ports of
Pr. Two types of these latter are available: trigger and synchron ports. A trigger —
represented graphically by a triangle—is an active port that can initiate an interaction
without synchronizing with other ports. A synchron —represented graphically by a
circle—is a passive port that needs synchronization with other ports.

A feasible interaction of a connector is a subset of its ports such that either it contains
some trigger, or it is maximal, i.e., consisting of all the synchron ports. Thus, by
construction, if more than one interaction is possible, then the maximal interaction (i.e.
the interaction having the maximal number of ports) is prioritized. Figure [.8 shows
an example of three connectors and their feasible sets of interactions denoted by ~. In
Figure [[L8al the connector consists of three synchron ports p, ¢ and r. The only feasible
interaction in this connector is pgr. In Figure [L.8D] the port p is a trigger and can occur
alone, even if ¢ and r are not possible. Nevertheless, the occurrence of ¢ and r requires
the occurrence of p. Thus, the feasible interactions are p, pq, pr and pgr. In Figure [[.8c]
both ports p and ¢ ere trigger ports. Thus, the interactions p and ¢ can occur alone or
synchronize with each other through the interaction pq.

¢l Lo]

p q r p q r p q
v={par} v={p, pq, pr, par} vy={p, q, pq}
(a) (b) (c)

Figure 1.8: Connectors and their feasible interactions

As explained before, types of ports are defined , in order to specify the feasible
interactions of a connector. In addition to ports types, connectors sometimes need to
be structured, i.e. specifying types associated to groups of ports instead of just one
port. This is needed to represent some interactions. Different coordination schemes are
depicted in examples of Figure

28 1. High-Level Component-Based Models: BIP Framework

Example 1.4. Figure[1.9 shows four connectors defined on the same set of ports s,r1,rs
and r3. Fach connector shows a different coordination scheme; Figure and Fig-
ure [L.98 for atomic connectors and Figure [1.9d and Figure[1.9d for hierarchical connec-
tors. Let the port s be the port of a sender component and ports r;, i € {1,2,3} be ports
of receiver components, the different synchronization models are the followings:

e Rendezvous (cf. Figure[L9d): Since all ports are synchrons, this synchronization
is specified by a single interaction involving all ports. That is, this interaction
occurs only if all ports are enabled in their respective components. It means strong
synchronization between port s and ports r;.

e Broadcast (cf. Figure[1.90): It includes one trigger port s and three synchron ports
r;. A trigger port initiates the interaction, independently of the enabledness of other
ports. For this reason, this scheme is also called weak synchronization, that is a
synchronization involving one trigger port and a (possibly empty) set of synchron
ports. This is specified by the set of all interactions containing s, i.e. interactions
S, ST1, ST, ST3, Sr1Te, ST1r1, ST2,3 and Srirors.

o Atomic broadcast (cf. Figure [1.9d): The bottom connector based on ports r; is a
Rendezvous exporting a synchron port t1. This connector allows only the mazximal
interaction rirors. The top connector, is a broadcast defined on ports s and tq,
allowing thus interactions s and sty. Therefore, this hierarchical connector allows
interactions s and srirers, which means that either a message is received by all r;,
or by none.

e Causal chain (cf. Figure[L9d): The bottom, intermediate and top connectors are
Broadcast connectors. Therefore, this hierarchical connector allows interactions s,
sr1, srire and srirers. That is, for a message to be received by r;, it has to be
received at the same time by all r; such that j < i.

(11| [T 1]

r I r3 T I3
y={srirrs} y=1{8,8I'1,S1,,8T3,ST'| I, ST I'3,ST,I'3,SI ol }
Rendezvous Broadcast

(a) (b)
Lo
ttl t1
s r Iy T3 S Ty ry I3
y={s,srryr3} y={s,sr;,Sr Iy,Sr T3}
Atomic broadcast Causal chain

() (d)

Figure 1.9: Connectors and different coordination schemes

1.3. BIP: The Component-Based Framework 29

In Definition [[LTI2] an interaction consists of one or more ports of the connector, a
guard on variables associated with these ports and a data transfer function. Connectors
provide a mechanism for handling this transfer function. Actually, instead of considering
a single data transfer function, this mechanism implies two phases; an upward U and a
downward D actions. The upward action —after deciding whether the guard is True—
updates the connector local variables based on values of variables of ports. The downward
action computes the values to return in variables of components ports from the values
of connector local variables. This mechanism also allows data transfer in hierarchical
connectors.

Example 1.5. Figure[I.10 shows an atomic (a) and a hierarchical (b) connectors defined
on the same set of ports p, q and v exporting respectively variables x, y and z. Both
ports allow to compute the mazximal value of these variables and return it to the rest of
ports. For each connector, a guard G, upward U and downward D transfer functions are
displayed. The connector of Figure needs all ports variables to be positive before
executing interactions. It defines a local variable t. The function U computes the max
of variables x, y and z and stores it in variable t. The function D stores back value of t
in variables x, y and z.

In Figure[LI0U, the bottom (resp. top) connector defines a guard Gy (resp. Ga) stating
that the interaction will not be executed until variables y and z (resp. t1) be positive. It
defines a local variable t; (resp. ta), which stores after executing function Uy (resp. Us)
the mazimal value between those of variables y and z (resp. x and ty). Function D,
(resp. D) stores back value of variable t1 (resp. t2) in variables y and z (resp. x and

t).

G: x>0 Ay>0 A z>0
G2: x>0 At >0

U: t = max(x,y,2) U2: tp = max(x,t1)
D: x:=t ; yt::t 7 zZ:=t D2: x:=tp ; ty:=tp o " H a1 y50 A 250
Ui: t1 = max(y,z)
I I, l' i Di: y:=t1 ; z:=tq
p q r p q r
X y iz X Y ‘iz

(a) (b)

Figure 1.10: An atomic (a) and a hierarchical (b) connectors computing the maximum
of exported values

Remark 1.4. In [27] and [{7)], authors show that a hierarchical connector can be replaced
by an equivalent set of atomic connectors defining interactions as in Definition[L12. This
1s established by composing guards of bottom, intermediate and top connectors, in order
to obtain a guard for the interaction. The update function is obtained by composing
different upward and downward actions. This transformation has been implemented and
allows easily to transform a BIP model with hierarchical connectors into a model with
only atomic flat connectors. Therefore, in this thesis, we do not consider hierarchical

1.3.4

1.3.5

30 1. High-Level Component-Based Models: BIP Framework

connectors. And we assume that all our input models have had their potential hierarchical
connectors flattened using this transformation.

Remark 1.5. Notice also that, intuitively, a connector with trigger ports can be replaced
by an equivalent set of connectors defined only on synchron ports. For example, consider
the connector of Figure[1.88 defining interactions p, pq, pr and pqr. The set of connectors
of Figure[I. 11, i.e. the unary connector on p, the binary connectors on p and q and on p
and v and the ternary connector on p, q and r are defining the same set of interactions
as the connector of Figure [L.SH.

TR

P p r

v={p} v={paq} {ar} y={pqr}

Figure 1.11: Set of connectors based only on synchron ports and equivalent to connector
of Figure [L8N

Taking into account this remark, we consider in this thesis only synchron ports.

Remark 1.6. The BIP semantics presented in this section assume atomic execution of
interactions which provides sequential execution of the system.

Priority

Priorities assign a partial order between interactions, in order to reduce non-determinism
in the system. As mentioned in Section [L.2] we consider static priorities in this thesis.
These priorities do not depend on the state of the system including data variables values.
Therefore, Definition remains available for concrete BIP models.

Composition of Concrete Models

Similarly to the abstract model composition, we denote the composition of atomic com-
ponents {B;}!' | by using the glue GL by GL({B;}! ;). The glue GL is either limited
to interactions (i.e. GL =) or it corresponds to interactions subject to priorities (i.e.
GL = 7). Below, we define the semantics of the two models.

Definition 1.14 (Semantics of composition with interaction model). Let v be a set of
interactions and let {B;}! | where B; = (L;, P, X;, C;, T;, tpc;) be a set of atomic com-
ponents. The semantics of the composite component B = ~(By, ..., By) is the transition
system Sy = (Q, X, —~) where:

e Q=L xV) xV(X), where L = L1 X ... X Ly, is the set of global locations,
C = U}, C; is the global set of clocks and X = U}*_ | X; is the global set of variables.
A state q € Q is of the form (I, ve,vy) such thatl = (11, ...,1,) is the global location,
Ve = (Veys s Ve,) 08 @ global clocks valuation and vy = (vg,, ..., Vs,) is a global data
variables valuation.

1.3. BIP: The Component-Based Framework 31

® > =~y URy corresponds to the set of labels,
e —, is the set of labelled transitions satisfying the following rules:

o Action transitions:

a = ({pi}ier, an Fo) €y Gao({vz, }ier)
\V/Z S Ia (lly Ve, s U:BZ') BZ%Z ({/U;z }ie[) - Fa({vmi }ie[)
Vie I, (l;,ve;,vy,) LNy (vl vl) Vi ¢ 1, (Liyve;,vq,) = (1, 0L, 00)

1) 7Cq) T4 i Yeyr Yy

INTER o PRI,
(1, Ve, vz) —ry (', v,))

e Delays transitions:

SeRy 1=, .ln) Vi[l,n],tpe(l)(t + 0)

DELAYS 3
(l7 Ve, UJ:) —7 (la Ve + 0, Ua:)

The first inference rule of Definition [[.T4] specifies that a composite component B =
~v(Bi, ..., By) can execute an interaction o = ({p;}icr, Ga, Fu) from a global state ¢ =
(I,v¢,v5) only if (1) each port p; is enabled in its corresponding component Bj, i.e.
g = (li,ve;, Vs;) ﬁ), where ¢; is the projection of the state ¢ on the component B;,
and (2) the guard G, defined over variables exported by ports {p;}icr is evaluated to
True. The function F' is triggered by the execution of a. It modifies the variables
{vz, }ier exported by ports {p;}ic;. Obtained new values {v}, }icr are then processed
by their respective components’ transitions, which in turn can apply transformations to
obtain values {v}, }icr. The clock valuation v, takes into account clocks that have been
reseted by their respective components’ transitions. States of components which are not
participating in the interaction a remain unchanged.

The second inference rule of Definition [[LT4] states that B can execute a delay tran-
sition ¢ from a state ¢ = (I, v¢,v,), only if respective time progress conditions {tpc; }ier
of each participating component B; are evaluated to True.

Definition 1.15 (Semantics of composition with Interactions 7 subject to Priority 7).

d
Let m be a set of priority rules and ~ be a set of interactions. We denote by B </

7y(B1, ..., By) the composite component obtained by applying the glues m and v to the
set of atomic components {B;}I'_ ;. We define the semantics of B as the transition system
Sr = (Q, X, =) where =1 is a restriction of —~, defined as follows:

!
PRIORITY (1, Ve, va) =2y (Lvg,vh) Yol € y,ama” = (v, va) 724

(l, Ve, Um) i>7r (l/, Uéa ’U,m)

The application of priority 7 filters out the interactions which are not maximal with
respect to the priority order. The inference rule of Definition [L.I5] specifies that an
interaction « = ({p; }ier, Ga, Fu) is executed from a state ¢ = (I, v, v;) only if any other
interaction o/ having a higher priority is disabled from that state.

1.4

32 1. High-Level Component-Based Models: BIP Framework

al
Y2 1= X2; Y1 1= X2

x
Y2 1= X1, ¥y1 = Xl/

1 i
o <15 c<10.—|| /2 G
@ Xai @ c<15; @ 7! @ X3
i S1 i ry i, 3] ig S2
c=5 {c} {c} c<20(| {c} £c<18||c=6 {c}
= =g(y-)
X1 =F(x1) b =a(ys) Y2=9ly2 X =F(x5)
®c<20 @ @ @c<20
Clock ¢ Sender; | |Clock c Receiver,| [Clock ¢ Receiver,| [Clock ¢ Sender,

Figure 1.12: Example of concrete composition of two sender components and two receiver
components

Example 1.6. Figure [[.12 depicts a composition of four atomic components sendery,
receivery, receivers and senders. It extends model of Figure with data variables.
components sender;, i € {1,2} which have variables x; associated to ports s;. These
variables are updated locally by function f executed by the occurrence of transitions labeled
by the internal ports. Components receiver; define variables y; associated to ports r; and
updated by function g.

Interaction o (resp.), transmits the value of variable x1 of component sender; (
resp. variable xo of component senders) to components receiver; that stores it in variables
Y-

Priority rule 7 states that the interaction o has less priority than the interaction o,
when both are possible. A component receiver; can receive a new value through its port
r; either from component sender; or component senders.

BIP Execution Platform

The operational semantics is implemented directly by the BIP execution engine. It
plays the role of the co-ordinator in selecting and sequentially executing interactions
between components with respect to the glue specified in the input component model.
It computes the enabled interactions by enumerating over the complete list of interactions
in the model.

During the execution, on each iteration of the engine, the enabled interactions are
selected from the complete list of interactions, based on the current state of the atomic
components. Then, between the enabled interactions, priority rules are applied to elim-
inate the ones with low priority.

1.5

1.5. Conclusion 33

Conclusion

In this chapter, we have presented the BIP framework, a component-based framework
for modeling heterogeneous systems. A BIP model is built by the superposition of three
layers. The lower layer describes the behavior of a component as a timed automaton.
The intermediate layer is composed of a set of multi-party interactions synchronizing
transitions of the Behavior layer. The upper layer describes the priorities characterizing
a set of scheduling policies for interactions to reduce non-determinism. Such technique
of layering offers a clear separation between components behaviors and the structure of
the system (interactions and priorities).

The component-based approach aims at dealing with the complexity of systems. It
allows building a complex system by assembling basic blocks (atomic components) in
an incremental way. It thus provides important characteristics for system construction
such as reuse, incrementality, compositionality, etc. Besides the reuse of components,
BIP allows the reuse of known properties of constituent components.

BIP affords for its models, a clean and very well-defined operational semantics based
on Labelled Transition Systems (LTS). It is thus a good candidate for model transfor-
mations, aiming at preserving observational equivalence.

In the following chapters, we present a method for generating time-triggered imple-
mentations from BIP models. We will also show results after applying the proposed
method to case studies.

Time-Triggered Approach

One of the characterizing features of hard real-time computer systems is the fact that they must
provide a particular result at intended points in real-time. That is the functional specifications of
such systems must be met within the specified deadlines. It follows that any real-time computer
architecture or design methodology of such systems must be concerned with both issues of value
and temporal correctness.

Two main design paradigms for implementing real-time systems are identified [50]]; the Event-
Triggered (ET) and the Time-Triggered (TT) approaches. These approaches differ in the type of
the triggering mechanism of communication and processing actions.

® [n the event-triggered approach, actions are initiated whenever a significant event—other
than clock interrupts—occurs. Such systems derive temporal control from the environment
in an unpredictable manner. The event-triggered approach is not suitable for guaranteeing
the respect of requirements of hard real-time systems such as predictability, determinism
and guaranteed latencies.

® [n time-triggered systems, temporal control is derived from the global progression of time,
i.e. all actions are initiated at predetermined points in time. There is only one interrupt
signal: the ticks generated by the global local periodic clock. These statically defined acti-
vation instants enforce reqularity and make the TT approach well-suited for hard real-time
systems —since it supports predictability and determinism.

Since our work targets hard real-time systems, we focus, in this chapter, on the TT paradigm.
We provide all necessary background information related to this approach and we cite some of
existing TT implementations as well as the chosen RTOS-based implementation that we target
in our work.

This chapter is structured as follows. Section [21] presents key features of the TT paradigm.
Section[2.2 provides examples of existing tools implementing the TT paradigm. Section[2.3 focuses

36 2. Time-Triggered Approach

on PharOS, the RTOS-based implementation based on the TT execution model.

Chapter outline

2.1 The Time-Triggered Paradigm 37
2.2 Time-Triggered Implementations 34
2.2.1 Time-Triggered Protocols 34
2.2.2 Modelling of Time-Triggered Systems [41
2.2.3 Conclusion o 44
2.3 The PharOS Implementation a4
2.3.1 Overview of the PharOS Platform 44
2.3.2 The ¥C Programming Language 47

2.4 Conclusion lﬁ

2.1

2.1. The Time-Triggered Paradigm 37

The Time-Triggered Paradigm

In [52], [53] and [55], Kopetz presents an approach for real-time system design based on
the TT paradigm [39]. This latter advocates a set of design principles that support the
design of highly dependable hard real-time systems:

The global notion of time:

One of the major features and requirements of TT systems is the global synchronized
time. It is established by a periodic synchronized clock in order to enable a T'T commu-
nication and computation.

In the case of a distributed TT system, each node of the system defines its local
periodic clock. Different local clocks synchronization consists in bringing the time of
clocks in a distributed network into close relation with respect to each other. The quality
of clock synchronization is measured by the precision and accuracy [61]. Precision is
defined as the maximum offset between any two clocks in the network. Accuracy is
defined as the maximum offset between any clock and the absolute reference time. This
synchronization is compulsory to establish the global time of a cluster.

TT communication system and temporal firewall

The temporal firewall [62] is a special interface for unidirectional data transfer between
sender /receiver nodes over a TT communication system [39, [52]. It consists in a shared
memory element. The sender memory forms the output firewall of the sender and the
receiver memory forms the input firewall of the receiver. It is the responsibility of the TT
communication system to transport, with access to the global time, the data from the
sender’s firewall to the receiver’s firewall. The instants at which information is delivered
or received are a priori defined in a common periodic communication schedule. This
latter is known to all nodes. A sender does not send any control or data signal directly
to a receiver. Furthermore, avoidance of interference between concurrent read and write
operations on the memory elements is guaranteed by the protocol implemented by the
TT communication system.

Figure 2Tl reproduced from [39], depicts a basic data and control transfer —from one
sender to one receiver—using a temporal firewall interface.

Global time
- P S
control control
flow .
sender| " |memory| — X |memory receiver

data data
flow flow

— —

Time-Triggered

communication System

Figure 2.1: Temporal firewall (reproduced from [39])

2.2

2.2.1

38 2. Time-Triggered Approach

Composability and dependability

The composability principle covers several aspects in a distributed real-time system de-
sign. First, it requires that nodes can be designed independently of each other assuming
that the architecture and service have been specified precisely. Secondly, independently
developed components can be integrated with minimal integration effort. And finally, if
fault tolerance is implemented by the replication of nodes, then the architecture and the
nodes must support replica determinism.

The dependability is an overall term that includes availability, safety, maintainabil-
ity and security [63]. This principle is met only if faults are taken into account. In
order to tolerate faults in a time-triggered distributed system two design approaches are
supported. The first one is redundancy approach, consisting in introducing redundant
components in a system. This redundancy allows to provide the intended service even
is presence of faults. The second approach is recovery approach. It consists in designing
the system’s software which is able to detect and then recover from faults. Compared
to the first approach, the recovery approach avoids instantiating extra components but
needs to allow time for recovery.

Time-Triggered Implementations

The principles developed from the MARS (MAintainable Real-Time System) project [59]
—ancestor of Time-Triggered Architecture (TTA) [68]—served as the basis for codifica-
tion of time-triggered principles. A key concept embraced by the MARS project is called
“fail-silent”, which means that a node either sends the correct message or no message at
all. Access to the communications bus is through a simple TDMA scheme with a static
schedule.

The Time-Triggered Architecture (TTA) provides a computing infrastructure for
the design and implementation of dependable distributed systems. The basic building
block of the TTA is a node which consists of a processor with memory, an input-output
subsystem, a TT communication controller, an operating system and the application
software. Data is exchanged between different nodes using a TT protocol.

Time-Triggered Protocols

In a TT communication system, the sender and receiver(s) agree a priori on a cyclic
time-controlled conflict-free communication schedule for the sending of time-triggered
messages. This cyclic communication schedule can be expressed in the cyclic model of
time, where the send and receive instants of a message, are represented by a period and
phase. In every period a message is sent at exactly the same phase.

The literature embraces several protocols that integrate the TT communication. This
subsection attempts to briefly outline some of these protocols. Detailed and deep com-
parisons between these protocols can be found in [38] [54] 84 82].

2.2. Time-Triggered Implementations 39

TTP

The Time-Triggered Protocol (TTP) [60] —initially named TTP/C—is a high-speed,
masterless, multicast and a dual channel 25 Mbit /s [38] field bus communication protocol
for safety-critical embedded applications. It is a development from the European Brite-
FEuram ’X-by-wire’ project integrating time-triggered communication.

The TTP communication system autonomously establishes a fault-tolerant global
time reference and coordinates all communication activities based on the globally known
message schedules specified at the design time. It requires that all communication partic-
ipants to comply with an exactly specified and rigidly enforced temporal communication
schedule that serves as a strict communication interface definition.

A TTP network is composed by a set of nodes consisting in electronic control units
(ECUs), connected by two replicated physical communication channels (buses). As a
result of redundant buses, TTP tolerates a single bus failure. TTP implements a time
division multiple access (TDMA) scheme derived from a global notion of time that
avoids collision on the bus. Every active ECU owns a TDMA slot, during which it has
the full transmission capacity of the bus for this short period of time. The sequence of
TDMA slots in which each ECU sends its frames forms a TDMA round.

Each TTP node consists mainly of a host subsystem and a communications subsys-
tem (see Figure [Z2]). The host runs the application software and the communications
subsystem is formed by the TTP controller, which executes the TTP protocol and reg-
ulates access to the physical bus. The communications interface between the host com-
puter and the TTP/C controller, called the communication network interface (CNI), is
a dual-port memory. It acts as a temporal firewall, isolating the host from the network
and not allowing any control errors to propagate. It is within the TTP controller that
the MEssage Descriptor List (MEDL) resides. The MEDL contains the global static
message transmission schedule. that determines when a particular message has to be
sent or received. The communication subsystem contains also bus guardians, in order to
guarantee that the node would not transmit data during wrong time-slots and eliminates
”babbling idiot” problem.

TTE

The Time-Triggered Ethernet (TTE) [57] is an adaptation of the TTP to ethernet-based
networks. It expands the protocol to support the standard event-triggered Ethernet
traffic and the time-triggered safety-critical traffic. The handling of the event triggered
traffic in TT Ethernet is managed with conformance to the existing Ethernet standards
of the IEEE. A global synchronized time is established in order to execute a distributed
time-triggered communication scheme.

TT Ethernet is intended to handle all kinds of applications; e.g. data acquisition,
multimedia systems and also safety-critical real-time control systems etc. .

A TTE network consists of a set of nodes and TTE-switches, which are interconnected
using bidirectional communication links (see Figure 23] —adapted from [57] Figure 4).
TTE-Switches relay the messages and take care that time-triggered messages are not

40 2. Time-Triggered Approach

Node

Host
subsystem

- Communication
subsystem

TTP Controller

3 > 5

Figure 2.2: TTP Node Architecture

delayed by other messages, i.e. they prioritize all time-triggered traffic over non-time-
triggered messages. In order to prevent error propagation from failed components the
fault-tolerant TTEthernet network configuration deploys two independent channels for
each connection.

Mainly, we distinguish between two types of TTEthernet configurations [57]: (1)
standard configuration with standard Ethernet controllers, TT Ethernet controllers, and
a single switch; (2) fault-tolerant configuration with a safety-critical TT Ethernet con-
troller containing two ports to two independent switches.

Figure —adapted from [57] Figure 4—illustrates examples of a standard and a

typical safety-critical TTE network configurations.
Sa fety-critical Sa fety-critical
TTE Controller ITE Controller TTE Controller| TTE Controller|
Sa fety-critical Sa fety-critical

Standard Ethernet| Standard Ethernet]
Controller Controller
[ITE Controller TTE Controlle:

(a) (b)

Figure 2.3: Examples of Standard TTE (left) and safety-critical TTE (right) configura-
tion

2.2.2

2.2. Time-Triggered Implementations 41

Flexray

Flexray [I, B5] is a communication protocol for automotive applications such as X-by-
wire. Flexray has been developed and is supported by a consortium of automotive manu-
facturers and suppliers. The FlexRay protocol consists of two parts; a time-triggered part
where messages are scheduled according to an a priori defined TDMA schedule which is
similar to TTP and an event-triggered part supporting sporadic traffic. FlexRay imple-
ments a global synchronized timebase that supports synchronized actions. Flexray can
support a communication speed of up to 10 MBit/s.

The building block of a FlexRay network is a node. Each communication node has —
similarly to a TTP node—a host with a subordinate communication controller connected
through CNI interface. Depending on the network topology (active star or passive bus
topologies), one or two bus drivers and bus guardians can connect different nodes of the
network. The bus guardian is controlled by the communication controller, while the bus
driver controls the power supply.

TTCAN

Time-Triggered Controller Area Network (TTCAN) [64] is the time-triggered extension
built on top of the event-triggered CAN protocol [24]. TTCAN is introduced to guarantee
a deterministic communication pattern on the communication bus

It establishes a global synchronized time derived from periodically broadcasted syn-
chronization messages sent by a special node, called the time master node. This latter
assigns the remaining nodes on the network —slave nodes —with time windows which
are the only times available for nodes to transmit.

The TTCAN protocol is implemented in hardware using a dedicated TTCAN con-
troller. The event-triggered part uses the standard CAN arbitration to avoid collisions.

Modelling of Time-Triggered Systems

PBO

The port-based object (PBO) [85] provides a software framework to program reconfig-
urable robots. A PBO system consists of a set of tasks that communicate with each
other and the environment. Tasks—called PBOs—are activated by time periodically
and communicate through ports via state variables that are stored in a global table. A
PBO receives data from other PBOs via its input ports. It makes its results available
to other PBOs through its output ports. And it interacts with the environment via its
resource ports.

Each PBO stores in its own local table the needed subset of the data of the global
table. Before executing a PBO, the state of the local variables corresponding to input
ports are updated from the global table. Upon execution completion, the state variables
corresponding to output ports are copied from its local table to the global one. Note
that read and write operations are atomic.

42 2. Time-Triggered Approach

For synchronizing access to the global state variable table and ensuring the mutual
exclusivity of accesses to the same state variable, the PBO framework provides mech-
anisms using spin-locks [70]. This is managed outside of the objects, at the operating
system level, instead of by the objects themselves.

In the PBO model, the communication between PBOs is not deterministic. In fact,
for the same PBO, the execution time may be variable in two different activations of the
task. Thus, the time when the outputs are produced and get updated in the global table
may vary from one activation to another. Therefore when reading a variable from the
global table, a consulting PBO may or may not get the results of the current cycle. Recall
that the value of a variable is preserved as long as it is not overwritten, and a new value
overwrites the old value even if this latter has not been used by other tasks. Figure 2.4

execution

Read input

Write output

6 time(ms)

Figure 2.4: Example of two PBOs execution traces

depicts an example of execution traces of two task—denoted PBO1 and PBO2. Task
PBOL1 is activated every 2 ms. Its output variables are consumed by the task PBO2,
which is activated every 1.5 ms. Notice that PBO2, in the first period, reads a fresh
output from PBO2 (produced before 1.5 ms). But in the second period of PBO2, output
of PBOL1 is not yet produced. Therefore, PBO2 will read PBO1 output from the last
cycle again (i.e. the value produced before 1.5 ms).

Giotto: TT language

The Giotto [44], 43] language and its associated tools are based on time-triggered ex-
ecution. It extends the semantics of the TT paradigm to include the time-triggered
invocation of tasks, mode switching and message passing.

The Giotto model defines a software architecture of the implementation which spec-
ifies its functionality and timing requirements and abstracts away issues related to the
target specific platform such as hardware performance and scheduling mechanism.

Giotto introduced the concept of Logical Execution Time (LET) [51], which abstracts
from the actual execution time of a real-time program, thereby, from both the execution
platform and the communication topology. LET is motivated by the observation that
the relevant behavior of real-time programs is not determined by time when programs
just execute their computations, but when input is read and output is written. The

2.2. Time-Triggered Implementations 43

inputs of a task are read at the release instant and the newly calculated outputs are
written at the termination instant. Between these, the outputs have taken the value
of the previous execution. Figure 2.5 —reproduced from the literature—illustrates the
LET abstraction compared to the physical execution.

termination instant
Write output

Read input Logical E tion Ti (LET)
0gical execution lime
(PR >,/

Release instant

logical view task invocation
_ time
physical view execution execution:
pre-emption

Figure 2.5: Logical Execution Time Abstraction

A programmer’s Giotto model consists of:

e Tasks: Which are the basic functional entities, implemented by external (Java or
C++) code. Tasks are expected to run periodically, with a fixed period per mode.
Each task has a start time and an end time. The start time corresponds to the
starting time instant when the execution period starts. The end time corresponds
to the end time instance when the execution period ends. A task reads all its
inputs at the start time and makes its outputs available to other tasks at its end
time.

e Ports: Which are memory locations (typed variables) facilitating inter-task com-
munication and carrying system state. There are three types of ports in a Giotto
program: sensor ports, actuator ports, and task ports. Note that ports stand for
the notion of temporal firewall of the T'T paradigm.

e Drivers: They perform data copying between ports and implement device access
(for sensors and actuators). Tasks uses drivers for communication either with other
tasks or with sensors and actuators. These latter can have an associated guard
condition, which can be evaluated in zero logical time as well. Note that drivers
stand for the communication system of the TT paradigm.

e Modes: include periodic task invocations and actuator updates with their related
driver calls. The transition between modes is possible if the guard condition of
a mode switch driver evaluates to True. Tasks can be added or removed when
switching between modes.

All actions in such applications are triggered by real time, namely the periodic in-
vocation of tasks, the consulting of sensor data, the writing of actuator values, and the

2.2.3

2.3

2.3.1

44 2. Time-Triggered Approach

switching between modes. And the communication between tasks is well defined and
deterministic. It is computed from the worst case communication time, which represents
an upper bound on the time required for broadcasting the value of task port over the
network.

Read input Write output execution

task t

>

3 6 time(ms)

Figure 2.6: Example of a Giotto periodic task invocation

Figure 2.6] depicts an example of execution of a task ¢, invoked every 3 ms. The task
reads inputs upon each invocation (i.e. at instants 0, 3, 6 etc.) and write its output
values upon each completion.

TDL

The Timing Definition Language (TDL) [76] is a high-level description language for spec-
ifying the explicit timing requirements of an application. TDL is an extension of Giotto.
It contains a few additional notions and complies with the time-triggered semantics.
It differs from Giotto in using modules which are comparable to components as they
support local definition of variables, constants, tasks, modes, and inputs and outputs.
Similarly to Giotto, TDL is based on the Logical Execution Time abstraction.

Conclusion

Implementations of the T'T paradigm can be classified under two main categories. The
first category focuses entirely on the communication networks, e.g. TTP, TTE, Flexray
and TTCAN protocols. The second kind of implementations makes assumptions that
the network will provide TT behavior, and instead focuses almost entirely on the system
modelling and task execution, e.g. Giotto, TDL and PBO frameworks

In our work, we rely on an RT'OS implementation based on the TT approach which is
part of the second category of the T'T paradigm implementations. This implementation
is the PharOS platform [9]. Detailed representation of this platform is subject of the
next section.

The PharOS Implementation

Overview of the PharOS Platform

PharOS [9] is an extension of the OASIS framework [31], [36, [67, [68] implemented for the
automotive applications. It consists in a framework for safety-critical real-time systems,

2.3. The PharOS Implementation 45

based on the time-triggered paradigm. This framework provides methodologies and tools
allowing the development of embedded critical software with completely deterministic
temporal behavior. Oasis and PharOS implementations comprise a programming lan-
guage WC' (Parallel synchronous C), which is an extension of C. This extension allows
one to specify tasks and their temporal constraints as well as their interfaces.

An Oasis application is composed of a finite set of communicating and interacting
real-time tasks, called agents. An agent is an autonomous execution entity in which
external communications are totally defined. An agent is composed of a number of jobs
—called also Elementary Actions (EA). These latter are executed sequentially following
logical conditions that are expressing their precedence relationships. Each elementary
action of each agent has a temporal execution window —i.e. a specific earliest starting
date and a deadline—deduced automatically from temporal information of the agent
code. This temporal window is specified by the application developers, through specific
primitives.

Agents perform computation (through their elementary actions) in parallel on private
data. Each data item has exactly one producer (the owner agent) but can have several
consumers. Reading of the value of a data item is handled in such a way that the com-
munications are deterministic and in particular independent of the implementation. In
fact, a very specific primitive of the WC' language—for instance the advance primitive—
allows the developer to specify, on top of deadline and earliest start instances of jobs, the
Temporal Synchronization Points (TSP) which defines instants when tasks can exchange
data. At each defined TSP, output variables of elementary action executing before this
instant are published to their statically defined consumer tasks, and elementary action
starting execution after this TSP read input variables from their respective producer
tasks.

Write output of EA,
Read input of EA, Write output of EA, and EA,

Earliest start instant of EA, e
Deadline instant of EA, ‘ Deadline instant of EA

i Deadline instant of EA
Read input /) 2 \
Earliest start instant of EA, execution

‘ EA, | FEAS

| | | | >

T T T
to t, t, ty time

Figure 2.7: Example of elementary actions and their associated time windows and TSP
instants.

The example of Figure [Z7] display a set of elementary actions (i.e. EA;, EAy and
EA3) of an agents and their temporal windows and synchronization points. Note that
gray boxes represent the effective execution of the elementary action, as it can be pre-
empted by other PharOS agents. The instant ty is the earliest start instant of the
elementary action EA;. The instant ¢; defines at the same time the deadline instant of

46 2. Time-Triggered Approach

EA;, the earliest start instant of EAy and a TSP, i.e. at ¢t;, EA; publishes its output
variables to their consumer tasks and EAs reads its input variables from their owner
tasks. The instant to defines the deadline of EA,, while the instant t3 defines the
deadline of EA3 and a TSP.

Notice that in PharOS, communication between agents follows a strict observability
principle [48]; i.e. an EA can use only temporally visible data, and data that are already
visible can not be modified. The visibility date can only be in the future compared to
the current date of an agent, i.e. its earliest start date of its current EA.

PharOS and OASIS provide two modes of communication between agents. The first
mode uses the exported variables, also called temporal variables and the second mode
is based on the sending of messages from a sender task to one or more receiver tasks.
The new values of a temporal variable are made visible at every synchronization point of
its unique producer/owner agent, while messages require explicit definition of visibility
dates.

T .
t, time

EA' I

Ag,

v i >
a:(t)=a:(t1) t' time

-~

Figure 2.8: Example of two PharOS agents communicating through temporal variable
mechanism.

In the first mechanism, each temporal variable defines a real-time data flow which is
associated with an internal variable of its owner agent. A real-time clock is associated
with each temporal variable. This clock defines the rhythm of adding new values to the
flow. If the instant of the clock corresponds to a TSP, the current value of the variable
will be at the top of the flow, else the top of the flow will be duplicated. Each temporal
variable can be accessed by one or more consumer agents which are statically defined.
To access a temporal variable, a consumer agent has to specify the number —i.e. the
depth—of the value it needs to consult from the flow.

Consider two agents Ag; and Ags of Figure 2.8 And consider a temporal variable
x of the agent Agy, that is consulted by Ags. Regardless of the values between instants
t1 and ty of the clock of Ag; (i.e. however the value of = is modified by EAjg), the value
of the variable = "observed” by the agent Agy at instant ¢ is its past value z(t) = z(¢;).
Note that in this example the depth of the observation is 1, i.e. only the last value is
consulted.

2.3.2

2.3. The PharOS Implementation 47

In the sending message mechanism, the sender agent associates with each message
a visibility date, i.e. the date beyond which a message can be accessed by the recipient
agent. The latter has queues for receiving messages that are sorted by their visibility
dates. For example, consider Figure 2.9 where an agent Ag, sends a message M with

! .
to 4 t, time

—— |
Ag, i

t t' time

Figure 2.9: Example of two PharOS agents communicating through sending message
mechanism.

visibility date t; to the agent Ag,.. The message M cannot be observed before the instant
t1 of the clock of Ag,., since t’ > t;.

PharOS platform provides an off-line tool chain responsible for extracting the appli-
cation’s temporal behavior in order to generate a runtime. More specifically, all possible
temporal behaviors are computed in order to size communication buffers and to analyse
the timing constraints on the execution times. At runtime phase, PharOS applies an
Early Deadline First (EDF) algorithm [66], in order to dynamically schedule elementary
actions of agents based on their temporal synchronization points.

In our work, we focus only on the temporal variable mechanism. In the next sub-
section, we provide more details about the VC programming language and its syntax,
considering only this communication mechanism.

The ¥C Programming Language

V(' is a programming language designed for specifying different tasks of a PharOS appli-
cation and their temporal synchronization points. It preserves the operational semantics
of C, but adds time constraints to these semantics with the U extension (this exten-
sion could be applied to any imperative programming language). C control flow graphs
are automata, so C’s instructions for control flow can be used to express sequencing of
blocks, loops, and choices. The basic ¥ addition to C is the addition of the following
instructions: before, after, and advance instructions that respectively add before and
after constraints, and temporal synchronization points.

e After instruction (after(d)): defines d as the relative release date of the following
EA;

)

48 2. Time-Triggered Approach

e Before node (before(d)): defines d as the relative deadline of the preceding EA;

e Advance node (advance(d))— also called temporal synchronization point: combines
after(d) and advance(d) instructions. It defines the absolute visibility date of the
data produced by the job;

A PharOS application consists of a set of clock definitions followed by a set of task—
also called agent—definitions. Recall that, in our work, we consider that the set of
parallel agents communicates only through temporal variables. PharOS applications are
characterised by the following abstract syntax:

Application ::= Clock™.Agent™ ,
Clock ::= ¢ = (¢, P.) ,
Agent ::= {local variable}*.{input tv}*.{output tv}*.Body™,
Body ::= {C code.[after(n)|before(n)|advance(n)| with Clock}*.next Body,

where c is a clock, with ¢. and P, being respectively the phase shift and period of ¢ (see
the detailed definition below); tv is a temporal variable and n € Z is a time step w.r.t.
to an associated clock.

Clocks

Clocks are variables used to describe the temporal behavior of the application. A clock
defines a sequence of periodic instants called activation instants. These latter are used
by the agents for describing timing constraints and synchronizations. Each clock ¢ has
an associated phase shift ¢. and a period P.. Formally, the clock ¢ defines a sequence of
instants (¢;)i>0 = (i - Ppase + ¢BASE)i>0-

The global clock cpase = (¢pasE, Pease) is defined by its phase shift (always default
to zero) and period expressed in real time units, such as 1 second, 100 milliseconds etc.
The ¥C language provides a set of primitives allowing to define these clocks depending
on the unit of their period (i.e. time separating two ticks of the clock). Let Ppssg be
the period of cgasr which is measured in nanoseconds, the different primitives are as
follows:

e clock cpasg = gtcO(valSec), where Ppase = ((valSec * 1000) % 1000) * 1000ns;

e clock paspc = gtcl(valSec,ValMilliSec), where Ppasp = ((valSec x 1000 +
ValMilliSec) = 1000) = 1000ns;

e clock cpasg = gtc2(valSec,ValMilliSec,ValMicroSec), where Ppasp =
((valSec x 1000 + ValMilliSec) x 1000 + ValMicroSec) = 1000ns;

e clock cpasg = gte3(valSec,ValMilliSec,ValMicroSec,valNanoSec), where
Ppase = ((valSec % 1000 + ValMilliSec) * 1000 + ValMicroSec) = 1000 +
valNanoSecns.

2.3. The PharOS Implementation 49

Other clocks ¢ = (¢, P.), are defined w.r.t. cgasg, by putting ¢ = P, * cgasg + ¢.
Activation instants (7;);>¢ of ¢ are computed from those of cpasp as follows:

ri = (i Pe+ ¢c)Ppase + ¢BASE - (2.1)

The ¥C language also provides—for the designers’ convenience—a possibility of
defining new clocks in terms of clocks other than cpagg. Figure 210D depicts activation
instants of the clock cpasp with period of one millisecond, a clock ¢; = (1,3) derived
from cpage and a clock ¢y derived from c¢q. Activation instants of ¢; are 1ms, 4ms, Tms
etc.. The WC code declaring the clocks of this example is shown in Figure 2.10al where
gtcl is the WC primitive declaring a global clock with a period of one millisecond.

Time (ms)

Activation
instants of Cgase

. Activation

instants of c

clock cpage = gtcl(0,1) ' !
clock c; = 3 * cppgg + 1 Activation
clock ¢, = 2 * ¢c; + 1 ! ! instants of ¢,

(a) (b)

Figure 2.10: Example of clocks and activation instants

An instant ¢; of cpase (resp. 7; of ¢) can be referenced by its index 4 (resp. j). For

9

example, in Figure 210, “instant 4 of cpasg” refers to the physical activation instant

ty = 4ms. Similarly, “instant 1 of ¢;” refers to the instant r; = 4ms.

An instant r; of clock ¢ = (¢, P:) can be mapped into an instant ¢; of clock cpask

C

epasy - €~ CBASE, defined by letting

by the function conv

convg . (r;) =t;, with j=1i-P.+ ¢.. (2.2)

CBASE

Inversely, a global instant ¢; of clock cpasr can be mapped into an instant r; of a derived
clock ¢ by using the function conviB4sE, defined by letting

convPASE (t;) =r;, with j = V ;%J . (2.3)
(&

For example, in Figure 210, the instant r = 1 of clock ¢; is mapped to the instant
conv%ASE(l) = 4 of clock cgasg. The instant ¢ = 5 of clock cpasg is mapped into
instant convgBAsE(5) = 1 of clock ¢;.

Agent
An agent consists of an interface including declarations of local variables, input and
output data flows (temporal variables) followed by a body.

50 2. Time-Triggered Approach

The block allowing to define the set of local variables necessary for different compu-
tations is named global (since these variables local to the agents are global to different
bodies of the agent). It consists of C declarations of variables.

The block allowing to define a temporal variable is named temporal. It consists of
declarations of temporal variables of the agent (i.e. the output variables). Each decla-
ration starts by the C type of the variable (int, float etc.). It is followed by an integer
expression defining the depth of the temporal variable i.e. the maximum number of past
values to which the agent wants to be able to access. When equal to zero, this means
that only the current value of the variable is manipulated by different bodies of the agent.
This integer expression is separated by the symbol ”$” from the unique identifier of the
temporal variable. For example the declaration int 03z, defines a temporal variable
containing an integer x and allowing access only to its current value.

After defining the output temporal variable, the agent defines the list of agents that
access this output temporal variable. This is done through the display block. One
declaration of this block is of the form x : agent2. Which consists in allowing agentld
to access to the temporal variable x.

An input temporal variable is specified by the consult block. A declaration of this
block consists in indicating the identifier of the owner agent followed by an integer
expression defining the number of the consulted past values. This integer is separated
from the identifier of the temporal variable by the symbol ”$”. For example agentl :
18z allows the consult the last value of the temporal variable x of the agent agentl.
Figure 2I1] displays the definition of agentl with its four blocks global, temporal, display
and consult. Agentl, defines a local integer variable z necessary for its computations, a
temporal variable x which is consulted by agent2. The agent Agent! consults the last
value of the temporal variable y of agent3.

The body block within an agent describes the behavior of the agent through a block of
timeless C code extended with after, before and advance statements. An after(d) (resp.
before(d), advance(d)) with a clock ¢ = (¢, P.), defines the release (resp. deadline,
synchronization) instant corresponding to d units of time after a reference instant. This
reference instant corresponds to the absolute instant recording the visit of the last after
or advance node.

Code of Figure describes the behavior of a task with four jobs (labelled A to D).
In this example, all temporal constraints are defined over the same clock c. The release
date of job B is one unit of time after the initial instant or previous advance constraint,
i.e. advance(3), depending on the execution history. Two units of time later, job B must
have ended. After the execution of the job C, communication take place since advance
statement is reached. The visibility date of data produced by C' is three units of time
after the previous visit to the statement after(1).

A formal model of WC was provided in [65], where the behaviour of a task is specified
using a directed graph, where arcs represent the successive jobs and nodes bear the
temporal constraints. Nodes of the graph are of four types: After, before, advance and

2.3. The PharOS Implementation 51

agent agentl() with clock {
global{
int z;
}
temporal {
int 0$x;
}
display{
X : agent2;
}
consult{
agent3 : 18y;

}
body start

{
}
}

Figure 2.11: Example of input and output temporal variables declarations in VC

body start

{
// Job A
ComputationA();

// Job B

after(l) with c;
ComputationB();
before(2) with c;

// Job C
ComputationC();
advance(3) with c;

// Job D
ComputationD();
}

Figure 2.12: Example of body ¥C' code

no-constraint nodes. We believe that this model is not at the same abstraction level as
the WC' language since it does not hold clocks and thus does not provide the possibility
of specifying constraints over different clocks. Also operational semantics of this model
are not provided.

2.4

52 2. Time-Triggered Approach

Conclusion

This chapter presents a conceptual overview of the time-triggered paradigm and its key
features (namely in Section 2.1]). Implementations of the TT paradigm are ranging from
TT protocols that are focusing entirely on the communication networks, e.g. TTP, TTE,
FlexRay and TTCAN protocols (see Section [ZZT]) to system modelling frameworks
which are focusing almost only on TT tasks execution, e.g. Giotto, TDL, PBO (cf.
Section 2.2.2]) and PharOS (cf. Section 2.3]) frameworks.

This thesis work targets the RT'OS-based implementation which is the PharOS plat-
form, presented in details in Section 2.3l We focus only on the temporal variable commu-
nication mechanism of this framework as our PharOS platform version uses exclusively
this mode of communication.

Design principles of a TT model (presented in Section [Z1]) are guiding elements
for the definition of the first part of our transformational approach (as presented in
Chapter[). A formal model of the ¥C' language —the programming language of PharOS
platform—with explicit operational semantics is extremely necessary to the second part
of our transformational approach. For this aim, we elaborated a formal model that is
presented in Chapter

Part 11

Approach

Related Work and Background: Existing
Transformational Approaches

The transformation approach presented in this thesis combines advantages of three major features;
(1) the source model is a component-based model, (2) the target implementation is an RTOS-
based implementation which relies on the time-triggered model, and (3) the transformation is
correct-by-construction, due to the well defined operational semantics of its source models.

Based on these three criteria, we tried to situate and compare our approach with other existing
transformational approaches. Nevertheless, to the best of our knowledge, no related work has been
found with respect to these three criteria at once. There exist, however, several approaches which
satisfy one or two of these features. This chapter presents a non-erhaustive list of existing
transformational approaches attempting to establish a link between high-level design frameworks
and implementations.

In Section[31], we list these approaches and evaluate them according to our approach. And in
Section [3.2, we present some background concepts (namely conflict resolution protocols) of one
of these approaches, that are reused later in the first step of our transformation method.

Chapter outline

3.1 Related Work @

3.2 Background @
3.2.1 Transformation of BIP models into distributed implementations @

3.3 Conclusion @

3.1

563. Related Work and Background: Existing Transformational Approaches

Related Work

Approaches relying on component-based source models

Methods relying on model transformations in order to automatically refine AADL mod-
els are presented in [23] 29]. In order to reduce the gap between models used for timing
analysis and for code generation, abstract models of computation are first transformed
in more precise models, which include the timing characteristics of the execution plat-
form. These refined models are then used for a more precise timing analysis. It is
clear that these proposed frameworks have been proposed in order to ease the timing
analysis of embedded systems. However, these approaches do not specifically target TT
implementations nor rely on well-defined formal semantics allowing to formally prove
the correctness of the transformation process.

Another transformational approach, having as source models the AADL models, is
presented in [46]. The goal of this work is to propose a rapid prototyping methodology
based to develop distributed real-time and embedded systems around the AADL. The
proposed design-by-refinement approach is implemented around the Ocarina tool suite
The obtained system is assumed to be very close to the final product, where some user
functional components have to be completed. Although this approach is claimed to
significantly reduce the time needed to specify, prototype, and produce a distributed
real-time embedded system, it is not providing formal correctness proofs nor guarantees
of determinism for hard real time systems.

Approaches Targeting T'T implementations

A design framework based on UML diagrams and targeting the TT Architecture
(TTA) [58] is presented in [72]. This approach relies on a decomposition of a sys-
tem into clusters and nodes to instantiate the communication mechanisms. It assumes
the underlying TT protocol to implement the FlexRay standard [74]. Essential features
of the underlying architecture and protocol are expressed using the different diagram
types and notations of UML. Even if it targets a TT implementation, this framework
—unlike our approach—does not support the earlier architectural design phase, nor the
verification at model level. It requires a backward association mechanism to link faulty
runs obtained at the SystemC level to the UML model.

A code generation tool-chain from SCADE /Lustre [42] to the T'T Architecture (T'TA)
is presented in [30]. In this approach, Lustre has been extended with additional primi-
tives to specify code distribution, timing requirements and deadlines. Another relevant
work proposes an automatic transformation from SCADE synchronous language models
into OASIS applications. In particular, the paper presents a transformation method pre-
serving the functional semantics of the applications through an optimised arrangement
of OASIS logical clocks. These two approaches are both limited to relatively simple tem-
poral behaviors. Their source models define periodic functional behaviour of the system,
with the key real-time constraint being the duration of the period. In contrast, in our
approach, RT-BIP source models define real-time constraints of arbitrary complexity.

3.1. Related Work 57

In [75] and [76], authors propose the integration of the TDL methodology with
Simulink framework. This approach provides a powerful modelling and simulation en-
vironment where TDL components can be modelled and simulated without knowing on
which platform they will be executed. The basic idea of this integration is to use standard
Simulink blocks to model the LET behavior of TDL tasks. The mapping to a specific
platform —distributed or not—is a straight-forward assignment of TDL components to
the platform nodes (ECUs).

An extension of Simulink to express designs of the time-triggered Giotto language is
also presented in [50], [45]. The proposed tool-chain in this work —demonstrated on a
helicopter autopilot system—proposes an automatic generation of Giotto code meant
for monitoring the interaction of the functionality code with the physical environment.
These extension approaches of Simulink and Ptolemy (with TDL and Giotto) are not
presented as formal rule-based transformations. And no formal correctness of the inte-
gration is proven.

Similarly, approaches presented in [79] and [41] propose to extend the Ptolemy II
framework respectively with TDL and Giotto models of computations. In [41], the code
generation framework within Ptolemy II is extended to generate C code for the Giotto
programming model (running on the FreeRTOS embedded operating system). While
authors of [79] present the TDL domain in Ptolemy II, that is, the add-on Ptolemy soft-
ware components which allow the specification and simulation of discrete event models
with TDL semantics.

Although these two integration approaches are different from the viewpoint of the
purpose and the implementation, they are both not presented as a rule-based transfor-
mation approaches that are proven to be correct.

Approaches presenting correct-by-construction transformations

Two model transformation approaches for generating distributed implementations from
non-real-time BIP models and real-time BIP models, are presented respectively in [21]
and [86]. In these approaches, the initial model is transformed into a 3-layer model re-
lying exclusively on simple message-passing interactions, which are implementable using
basic message-passing primitives.

Another method for generating a mixed hardware/software system model for many-
core platforms from a high-level non-real-time application model and a mapping between
software and hardware components are presented in [25].

The above approaches take advantage of the BIP framework to build correct-by-
construction implementations based on a single semantic framework. Nevertheless, they
do not target the platforms based on TT execution model, thereby falling short of ex-
ploiting the strong temporal guarantees provided by the latter.

In [11], authors present a correct-by-construction approach to transformations across
design environments. In order to ensure correctness by construction, authors suggest us-
ing a common formal model, namely the synchronous reactive model of computation.
This formal model is used as the common ground to interpret system specifications

3.2

3.2.1

583. Related Work and Background: Existing Transformational Approaches

given with different underlying models. Authors chose two tools (ASCET and Simulink)
—widely used in the automotive domain—to demonstrate the presented approach. Al-
though this approach is based on a common formal model which allowed authors to
present a rule-based transformation, no formal correctness proofs are provided.

In [37], authors present a framework for graph transformation. Semantical correct-
ness is ensured by using the rules for the model transformation also for the transformation
of the operational semantics, which is given by graph rules. This allows to compare the
behaviour of the source model with the one of the target model. However, even if this
paper is presenting formal transformation rules and correctness theorems, it does not
consider the time-triggered paradigm as a basis for the target implementation. It is not
an approach for designing and implementing a critical real-time application based on the
time-triggered model.

In another line of work, authors of [49] propose two methods of certifying model
transformations. In the first method, they propose to establish links between the ele-
ments in the target model and the elements in the source model. These links will then
be checked using a bisimilarity checker tool to prove that the target model is a bisim-
ulation of the source model. The second method requires the translation of the source
and target models to an equivalent formal model that is written in the same formal
language. The obtained formal models will then be checked for bisimulation. It is clear
that the main difference between this work and our approach relies in the purpose. In
fact, our main goal is to propose a correct-by-construction transformation in order to
obtain a TT implementation. In the contrary, this work target the general purpose of
certifying model transformation approaches without any special focus on hard real-time
implementation.

Background

As stated in the previous section, the transformational approaches of [21] and [86] aim
at transforming a BIP model into a distributed implementation. During these trans-
formations, authors face the conflict resolution problem and propose a set of solutions.
Even though, in our work, we do not aim at targeting especially the distributed imple-
mentation, we face the same conflict resolution problem while transforming a BIP model
(more details in Chapter @]). For this reason, this work is considered as a background
to our work since we reuse their proposed solution for resolving conflicts. In order to
present in details this solution, we need to provide a quick overview of their approach.
This is the main subject of this section.

Transformation of BIP models into distributed implementations

Transformational approaches of [2I] and [86] propose a methodology to provide auto-
matically efficient and correct-by-construction distributed implementations starting from

3.2. Background 59

a high-level model of the software application in non real-time BIP and real-time BIP.
A key idea of this methodology is to use a set of correct transformations which preserve
functional properties. Furthermore, they take into account extra-functional constraints.

In distributed implementations, primitives available for communication are less pow-
erful than BIP coordination. This latter is achieved through multiparty interactions and
scheduling by using dynamic priorities. And its associated semantics is defined on a
global state model.

In order to be able to derive distributed application from BIP models, authors propose
to transform arbitrary BIP models into Send/Receive BIP models which are directly
implementable on distributed execution platforms.

Send /Receive BIP models consist of components coordinated by using asynchronous
message passing (Send/Receive primitives). They comply with a three-layer architecture
where the bottom layer includes the components of the application software, the second
layer includes a set of distributed engines handling each a subset of interactions of the
original model and the third layer implements a conflict resolution protocol used to
resolve conflicts between engines of the second layer.

The obtained Send/Receive BIP models are proven observationally equivalent to the
initial models. They are then used to generate stand-alone C++ implementations using
either TCP sockets for conventional communication, or MPI implementation, for the
deployment on multi-core platforms.

In the case when engines of the intermediate layer, handle interactions that are
conflicting with other engine interactions, the third layer interferes —dynamically—in
order to resolve this conflict.

The Conflict Resolution Protocol is implemented using algorithms that solve the
committee coordination problem [33]. Authors adapt a variation of the idea of the
message-count technique from [I0]. This technique is based on counting the number of
times that a component executes a communication or a computation step. Each com-
ponent keeps a counter nb which indicates the current number of participations of the
component in interactions or internal computations. The Conflict Resolution Protocol
ensures that each participation number is used only once. That is, each component
takes part in only one interaction per transition. To this end, in the Conflict Resolution
Protocol, for each component B;, we keep a variable N B; which stores the latest number
of participations of B;. Whenever the Conflict Resolution Protocol is solicited by the
second layer to execute an interaction o where P, = {p;}ier, it receives a set of partic-
ipation numbers {nb;};cr for all components involved in a. If for each component B;,
the participation number nb; is greater than N B;, then the Conflict Resolution Protocol
acknowledges successful reservation through port ok, and the participation numbers in
the Conflict Resolution Protocol are set to values sent by the the second layer. On the
contrary, if there exists a component whose participation number is less than or equal to
what Conflict Resolution Protocol has recorded, then the corresponding component has
already participated for this number and the Conflict Resolution Protocol replies failure

603. Related Work and Background: Existing Transformational Approaches

via port fail,.

Authors of [21I] and [86], in particular, consider three committee coordination al-
gorithms —all inspired from [I0]: (1) a fully centralized algorithm, (2) a token-based
distributed algorithm and (3) an algorithm based on reduction to distributed dining
philosophers [32].

Regardless the employed algorithm, A CRP handling a set of conflicting interactions
follows these restrictions:

e For each component B; € comp(a), such that « is handled by the Conflict Resolu-
tion Protocol, this latter maintains a variable N B; indicating the last participation
number reserved for B;.

e For each interaction o where P, = {p;}ic; handled by the Conflict Resolution
Protocol, are included three ports: rsv, , ok, and fail,. The port rsv, receives
reservation requests containing fresh values of variables n;. The ports ok, and
fail, accept or reject the latest reservation request. In case of positive response
(through port ok,), variables N B; are updated.

e Each rsv, message should be acknowledged by exactly one ok, or fail, message.

e Each component of the Conflict Resolution Protocol should respect the message-
count properties described above.

In the rest of this section, we explain the behavior —through a representative
example—of the CRP component implementing the fully centralized algorithm. Details
about the two remaining algorithms as well as formal definitions are provided in [47].

Centralized CRP component behavior

In this paragraph, we present the behavior of the CRP component implementing the
fully centralized algorithm through the example of fragment in Figure B.I] which displays
the principle of the CRP behavior that handles an interaction «;. We assume that
oy is connecting two components: By and By. As depicted in Figure B.1], the CRP
component has variables N By and N By which correspond to reference variables storing
the latest number of participations of components By and Bs. The CRP component
contains a waiting location wa;, a reservation location r,, and three ports rsvq,, okq,
and fail,,. Time progress condition of the location way is always set to True, while the
time progress condition of a location r,, is set to False. To the port rsv,,, are associated
variables nb; such that B; € comp(aq) (in our example nb; and nby).

The location of the initial state is wa;. Whenever a reservation for executing the
interaction «y arrives, the location r,, is reached. From this location, if the guard of
the transition labeled by ok, is True—according to freshly received nb; and the current
values of N B;—the transition ok,, can execute to reach back the location wa;. When
executing, the transition ok,, updates reference variables N B; by copying values of the

3.2. Background 61

0Kq,
NB,<nb, A NB,<
NB,:=nb,
NB,:=nb,

faily,

' gljler)
1NB; SV, J[0K, | fail,,

Figure 3.1: Conflict resolution principle

variables nb;. Therefore after the execution of this transition, its guard becomes Fulse.
The transition labeled by fail,, is always possible.

As explained before, the fragment displayed in Figure B.1] represents a seperate au-
tomaton handling only one interaction. A CRP component usually handles two or more
interactions. Its behavior is, thus, obtained by composing seperate automata of its
handled interactions. For example, we consider a CRP component that handles two
conflicting interactions a; and «g. These interactions are connecting, each, two compo-
nents: B; and Bs for interaction a; and By and Bj for interaction as. For simplicity
of the representation, this CRP component may be displayed as in Figure The

ok . ok .
! fail, 2 fail,
NB,<nb, A NB,< 1 NB,<nb, ANB,< 2
NB,:=nb, NB,:=nb,
NB,:=nb, NB,:=nb,

[nby/nbj [nbgl1nbs
1INBJNB; y—\rsvulrk—\o o fail,] ’—‘rsvazrk—‘o o, |faily]

Figure 3.2: An example for the centralized Conflict Resolution Protocol for handling two

conflicting interactions 1 and as

composed automaton of this CRP component is as displayed in Figure 3.3l Note that,
in the case when the CRP component receives two reservation requests for executing
conflicting interactions, one of the two transitions labeled by port ok,, will be selected
and executed. The other ok transition will become disabled, since one of its guards
becomes Fulse, leaving the fail transition be the only possible transition. This latter is
then executed allowing to reach back the waiting state.

623. Related Work and Background: Existing Transformational Approaches

NB,:=nb,
NB,:=nb,

B,<nb, NNB,<nb,
NB,:=nb,
NB,:=nb,

oKg,

ok,
NB,<nb, ANB, Bﬁg”; A]XBz<”bz
NB1:=TLb1 NB I.I:nbl
NB,:=nb, S=nb,

' 1 2 ' 20103
JINEINES [rsv, oK, faily] FSVy,][0k, | fail,]

Figure 3.3: Automaton of CRP component of Figure

3.3 Conclusion

In this chapter, we present some of existing approaches that establish a link between high-
level design frameworks and implementations. Among these, we focus on one approach
that transforms BIP models to distributed implementation. This work is considered as
a background to our work, since we reuse the proposed solution in conflict resolution. In
Chapter E], we detail the first step of our transformation process, and we show how this
conflict resolution method is integrated into the target model of our transformation.

From High-Level BIP Model to Time-Triggered
BIP Model

After presenting the BIP framework (Chapter[), the time-triggered paradigm (Chapter[3) and
after giving an overview of the existing approaches transforming a high-level model to implemen-
tations (Chapter[3), we can start to present our approach to transform a BIP model into a TT
implementation. Direct transformation is challenging since we need, in a first step, to introduce
mode implementation details earlier in the BIP model.

Therefore, in this chapter, we focus on transforming BIP models in such a way that the TT
communication system can be explicitly instantiated in the resulting model.

We present a transformational method which starts from a BIP model and a user-defined
task mapping (see Figure[{.1]) and consists in adapting the initial model to comply with the TT-
communication pattern, i.e. tasks communicate only through a communication medium by using
unidirectional message passing. The obtained model—called TT-BIP model—is then a structural
restriction of BIP model respecting the TT paradigm. This model is needed to be—in a second
step—directly transformed into the programming language of the target platform based on the TT
ezecution model.

User-defined
‘ BIP model ‘ task Mlapping

\
| TT-BIP model |

Figure 4.1: Transformation approach

This chapter is structured as follows. Section[{.1] discusses different challenges of the trans-
formation. In Section[{.2, we explain approach allowing to address these challenges, and explain
choices leading to the definition of the structure of the target model. In Section [{-3 we detail

64 4. From High-Level BIP Model to Time-Triggered BIP Model

restrictions on the input BIP model. In Section we formally define the transformation of
a high-level BIP model into a TT-BIP model. Section [[.3 deals with correctness proof of the
proposed transformation.

Chapter outline

4.1 Problem Statement o l65
4.2 Proposed Solution Lo le7
4.2.1 TT-BIP: Architecture of the Target Model l6d
422 DISCUSSION . . o oo [zd
4.3 Input Model Restrictions L. @
4.4 Transformation of a BIP Model into a TT-BIP Model |1_1|
4.4.1 Analysisphase 4
4.4.2 Transformation of Task Components E
4.4.3 Building TTCC Components [d
4.4.4 Conflict Resolution Protocol Component kd
4.4.5 Cross-layer interactions @
4.5 Transformation Correctness. 86
4.5.1 Validity of the Obtained Model lRd

BTT [kd

4.6 Conclusion m

4.5.2 Observational Equivalence Between B and

4.1

4.1. Problem Statement 65

Problem Statement

Transforming a user-defined task mapping and a high-level model based on multi-party
interaction model into an equivalent model where interactions comply with the TT com-
munication pattern, is a challenging task. From one hand, introducing TT settings con-
sists in (1) instantiating tasks in the derived model according to the user-defined task
mapping, (2) modelling the TT communication system by introducing dedicated atomic
components and (3) restricting the synchronous multiparty inter-task interactions to
simple unidirectional communications with the introduced communication components.
From the other hand, the derived model is required to be observationally equivalent to
the original BIP model.

In order to understand different challenges of such a transformation, consider the
BIP model in Figure

a a as
b L. b 5 b boe Lo
B, B, B, B, B,
Figure 4.2: High-level BIP model
In Figure B2, the model consists of five atomic components Bj,..., By which are
synchronizing through rendezvous interactions a, ..., ag. In BIP framework, interactions

are executed sequentially and atomically by the BIP engine. Thus, combining the need
for respecting the TT settings with the need for providing the transformation correctness,
requires the target model to deal with more complex issues:

Decomposition into Tasks

Tasks (processes, threads, etc.) are building blocks of TT applications. In the design
phase, designers have the choice to model a TT task using one or more BIP components.
This task mapping is needed not only for defining task components but also for defining
inter-task interactions that are concerned by the transformation.

For example, if we consider the task mapping displayed in Figure [£3al for the model
of Figure 4.2 then inter-task interactions are interactions ao and az. Only these two
interactions have to be handled by dedicated communication components. Moreover,
in the final model, components of a single task are grouped into the same composite
component. Figure [4.3h] shows a skeleton of the obtained model from the BIP model
of Figure and task mapping of Figure [£.3al Dashed and dotted lines in Figure [4.3h]
display communication between tasks’ components and their corresponding communi-
cation components. Details about connectors of these communications are provided by
answering to the next challenge.

66 4. From High-Level BIP Model to Time-Triggered BIP Model

Communication component] | Communication component

for executing a, for executing as
a
Taski = {B,,B,} oy Lo,
Taskz2 = {B,,B,}
rties B, B, B, B, B,
Task3 = {B.}
Taskl Task?2 ask3

(a) (b)

Figure 4.3: Skeleton of the obtained model according to task mapping

Strong synchronization in BIP interactions Vs. asynchronous message-
passing

In order to respect TT communication settings, the derived model should handle each
inter-task communication through a dedicated BIP component which stands for the T'T
communication system. This latter can communicate with tasks only through message-
passing. The challenge here is to switch from the high-level BIP model, where multi-party
interactions provide component synchronization on top of data transfer, to asynchronous
message-passing communications while preserving the models equivalence.

Suppose that the interaction as of the example of Figure allows to transfer data
from component Bs to components B3 and B4. Note that this interaction is atomic
and allows to synchronize components By, By and By. Suppose also that the dashed
lines in Figure .30 present three binary connectors allowing Bs to send data to the
communication component and Bs and By to receive data from that component. Clearly,
this option doesn’t preserve the synchronisation between these three components ensured
by the interaction a9 in the original model since the atomicity of the original interaction
is no more respected. In such a case, the communication component must be designed
so that execution of interactions does not introduce behaviors that were not allowed in
the initial model.

This issue is addressed by breaking the atomicity of execution of interactions. A task
can execute unobservable actions to notify the communication component about their
states. If all participating components are ready, the communication component can
execute the corresponding interaction.

Resolving conflicts

Suppose interaction ag is conflicting with interaction a; and/or with interaction as.
Interaction ag shares with interaction aj(resp. as) component By (resp. By). Thus,
ay can not execute concurrently with a; and/or with as. In high-level BIP model, such
conflicts are resolved by the single engine. T'T communication components in the derived
model must ensure that execution of conflicting interactions is mutually exclusive.

4.2

4.2. Proposed Solution 67

Proposed Solution

We propose a generic framework for transforming a high-level BIP model into an equiv-
alent model satisfying the TT settings and addressing the previously cited challenges.

The obtained model (1) operates in partial-state semantics, (2) expresses multiparty
interactions in terms of asynchronous message passing and (3) is observationally equiv-
alent to the initial model. The target model is structured following a three-layer archi-
tecture called TT-BIP architecture:

1. The Task Components Layer consists of a transformation of atomic components
corresponding to the behavior layer of the initial model. This layer also depends
on a user-defined task mapping. A task component can interfere even in an inter-
nal computation, intra-task interaction (i.e. communication between components
of the same task) or inter-task interaction (i.e. communication with other tasks).
Components within a task that are concerned by the inter-task interaction or
participating in an intra-task interaction that is conflicting with an inter-task in-
teraction, operate in partial-state semantics.

2. The communication Layer aims at modelling the T'T communication system by
hosting inter-task interactions and allowing to resolve their potential conflicts by so-
liciting the third layer. This layer contains TT communication component (TTCC)
hosting each an inter-task interaction of the original model.

We have essentially two conflict cases involving inter-task interactions; conflict
between only inter-task interactions and conflict between inter-task interactions
and intra-task interactions or internal computations. By dedicating a third layer
for resolving conflicts, the first case of conflicts, if existing, can be directly resolved.
Resolving the second conflict case, can not be resolved locally since a task has a
partial observability of the system. This needs however, to host the conflicting
intra-task interaction or internal computation in the communication layer in order
to be resolved by requesting the third layer. Notice also that two conflicting intra-
task interactions a; and as, such that as is conflicting with an inter-task interaction
b, need both to be handled in the communication layer. We say that as is directly
conflicting with b, while ay is indirectly conflicting with the same interaction.

Thus, this layer consists of components hosting each either an inter-task interaction
or an interaction that is either directly or indirectly conflicting with another inter-
task interaction. For simplifying the notation, all constituent components of the
communication layer are denoted by TTCC components.

3. The Conflict Resolution Protocol (CRP) Layer resolves the conflicts requested by
the communication layer. In the original model, these conflicts are resolved by
the BIP engine. In order to guarantee conflicts resolution in the derived model,
we reuse the same solution proposed in [47) [77), [86] which consists in dedicating

4.2.1

68 4. From High-Level BIP Model to Time-Triggered BIP Model

a third layer to implement the fully centralized committee coordination algorithm
presented in [10].

Cross-layer interactions are send/receive interactions, i.e. providing a unidirectional
data transfer from one sender component to one or more receiver(s).

Note that tasks are building blocks of the first layer, which addresses the first chal-
lenge. Components within a task that are concerned by the inter-task interaction or a
related conflicting one operate in partial-state semantics. This allows tasks to break the
atomicity of the original interactions and communicate with the second layer in two steps
through the send/receive interactions, which addresses the second challenge. The intro-
duction of the third layer and hosting all interactions that are conflicting with inter-task
interactions in the communication layer allows to resolve the third challenge.

TT-BIP: Architecture of the Target Model

In this subsection, we present in details the TT-BIP architecture. As explained before,
it imposes a structure for the target model of the transformation in order to guarantee
both its compliance with the TT settings and its observational equivalence with respect
to the original BIP model.

A BIP model complies with the TT-BIP architecture if it consists of three layers:
Tasks layer, TTCC layer and CRP layer, organized by the following abstract grammar:

TT-BIP-Model ::= Task™ . TTCCY . CRP . S/R-connector™
Task ::= atomic-component™ . atomic-talking-component™ . connectors™
TTCC n=TTCCNC | TTCCC

The TT-BIP model consists of a set of Tasks, TTCC and CRP components. A task
component is a composite component consisting of one or more atomic components.
Atomic components within a task which interfere in inter-task interactions (via the task
interface) are called atomic-talking-components (ATC). These latter can only communi-
cate with a TTCC component or a component within the same task. The behavior of
a TTCC component depends on whether the interaction it is hosting is conflicting or
not. If the interaction is conflicting, the TTCC component is denoted by TTCCC and
needs to communicate with the CRP component. Otherwise, it is denoted by TTCCNC.
Conflicts between different TTCC® components are resolved through CRP component.

Task components (resp. TTCC components) and TTCCs (resp. CRP components)
communicate with each other through message-passing, i.e. send/receive interactions.
Such interaction is a set of one send port and one or more receive ports. Communications
between components inside a task are classic multi-party BIP interactions. Figure [4.4]
shows an overview of the TT-BIP model derived from BIP model of Figure and
the task mapping displayed in Figure 4.3al Notice that in Figure [4.4al we assume that
the interaction as is conflicting only with the interaction ag, while in Figure [4.4Dl a5 is
conflicting with both a; and as.

4.2. Proposed Solution 69

CRP
Ll
TTCCE (a,) TTCC® (as)
0] 1] 1]]
A —
a
[pl lpz
[I |- | - [[-
B, B, B, B, B,
Taskl Task2 Task3
(a) a2 conflicting with as
CRP
il M
TTCC® (a,) TTCC® (a,) TTCC® (a3)
-] -] 0] 1] 1] 11
SRS A A
| - () |- - - [[- -
B, B, B, B, B,
Taskl Task2 Task3

(b) a2 conflicting with a1 and as

Figure 4.4: Overview of the TT-BIP model of the model of Figure

Formally, we define a TT-BIP model as follows:

Definition 4.1. We say that BTT = ~TT(BIT ... BIT) is a TT-BIP model iff we can
partition the set of its ports into three sets P,, Ps and P, that are respectively the set of
unary ports, send ports and receive ports, such that:

e Each interaction o € ¥I'7 is either a send/receive interaction with Py = 8,71, ..., T},
s € P, r,..,1. € P., G, = True and F, copies variables exported by port s to
variables associated with ports ri,...,r,, or a unary interaction—called also exter-
nal interaction—where P, = po, with po € Py, G4 = True and F,, is the identity
function.

e Interactions that are relating components of the same task are classic multiparty
interactions—called internal interaction—.

e If s is a port in Py, then there exists one and only one send/receive interaction
a € YT with P, = (s,r1,...,7) and all ports r1,...,r}, are receive ports. We say
that r1,...,7 are receive ports of s,

4.2.2

4.3

70 4. From High-Level BIP Model to Time-Triggered BIP Model

e [n the TT-BIP model, from the same state, an internal port can be simultaneously
enabled only with another internal port. A receive port can be conflicting either
with receive or send ports or both. A send port can be conflicting either with send
or receive ports.

e [f defined, update functions of transitions labelled by send ports do not involve data
associated to the labelling port (send port).

e All transitions that are triggered by receive-ports are associated with timing con-
straint and guards that are always default to True.

o If a € yIT is a send/receive interaction such that P, = (s,r1,...,7) and s is
enabled at some global state of BT, then all its receive ports ri,...,r, are also
enabled at that state.

Discussion

The proposed solution leads out to a 3-layer architecture structuring the target model of
the transformation. Although our work does not have the same goal as transformational
approaches proposed in [47, [77, [86], but there is some intersection between both target
models’ architectures. Aiming at deriving distributed implementations from high-level
BIP model, these cited approaches propose an intermediate model called send/receive
model. This latter is a 3-layer model consisting of atomic components layer, schedulers
layer and CRP layer.

As already mentioned in the opening of this chapter and in Chapter Bl Section 3.2 we
reuse the third layer of the send/receive model (i.e. the CRP layer) since it is, so far, the
unique solution to guarantee the conflicts resolution without requesting the BIP engine.
The difference between the send/receive and the TT-BIP architectures lies in the task
notion introduced in the TT-BIP architecture. Thus, we build the task layer depending
on a user-defined task mapping, and we construct communication components in order
to handle inter-task interactions and other conflicting interactions. In the second layer of
send /receive models, are introduced schedulers allowing to handle interactions between
all atomic components. Also, we introduce one component per external interaction,
while a scheduler of send/receive model can handle more than one interaction.

Input Model Restrictions

In our work we impose the following restrictions on the input model in order to simplify
the presentation of the transformation towards TT model:

e We assume that the input model is flat, i.e. it consists only of atomic components
and flat connectors. Since all connectors are assumed to be flat, they do not hold
an exported port. This restriction is obtained by using the flattening tool from

4.4. Transformation of a BIP Model into a TT-BIP Model 71

previous research work [47, [27]. This tool replaces all hierarchical connectors and
composite components of a BIP model by an equivalent set of flat connectors and
atomic components.

o We also assume that all connectors’ ports are synchron ports. This restriction can
be met by replacing a connector with a trigger port by an equivalent set of connec-
tors implementing the same set of interactions. For more details see Remark
of Section

e Fach port is assumed to labels at most one transition of the component automaton.

e We also assume that the input model contains no priority rules. In previous work
[77], it has been shown that any BIP model with priority rules can be transformed
into an equivalent model where priority rules are transformed into predicates on
interactions. We are convinced that our transformation can be easily adapted to
these predicates.

4.4 Transformation of a BIP Model into a TT-BIP Model

In this section, we describe in details our technique for transforming a BIP model

B v¥(By, ..., By) into a TT-BIP model B”7 such that

BTT = TT(BTT .. BI'T TTCCY,..., TTCC,,, CRP).

One parameter to this transformation is the user-defined task mapping which consists
in associating to each task T} a group of atomic components of the model B. We denote
by B the set of atomic components of model B. The task mapping is formally defined
as follows:

Definition 4.2 (Task mapping). We assume, we have K < n tasks and we denote by

T = {Tx}kek the task set, such that T is a partition of B: where for all j,k € K and

J#k,T;NT, =0. For all k € K we have T, = {B;}ier,, I C K such that kUKIk =K.
€

The transformation process is performed in two steps as shown in Figure First,
depending on the given task mapping, the original model is analysed in order to define
the set of components and connectors to be transformed. Then, the BIP model is
transformed into a TT-BIP model where only inter-task interactions and other related
conflicting interactions are replaced by TTCC components. Non conflicting intra-task
interactions remain intact. Components mapped to the same task are gathered in a
composite task component.

We first present details about the analysis phase in Section [£.4.Jl Then, we explain
how concerned atomic components are transformed and how task components are in-
stantiated in Section Then we show how TTCC components are built in order to
coordinate task components in Section 143l The behavior of the CRP component is
detailed in Section [£.4.4] Finally, we define the cross-layer connections in Section

4.4.1

72 4. From High-Level BIP Model to Time-Triggered BIP Model

User-defined
] BIP model | task Mapping

< Step 1>

Analysis phase

omponent Transformation
TTCC and CRP constructio

| TT-BIP model |

Figure 4.5: A two-step transformation

Analysis phase

We have first to identify internal and external interactions as well as ATC components

denoted respectively A;, Ap and BATC. These obtained sets are inputs for the transfor-

mation of components and connectors of B into BTT.

External interactions

In order to be able to define the set Ag, we need first to define the set of inter-task
interactions denoted Aj;p. An interaction a € + is an inter-task interaction iff at least
two of its participating components belong to two different tasks.

Formally,

A ={a €v|3By, By € comp(a), Th, To € T : By € T1, By € T, T} # Tn}.

We denote intra-task interactions that are either directly or indirectly conflicting with
inter-task ones by A?&T defined as follows:

A?ET ={acvy|ag Arr,3a € Arr : afta}
U {CL € 7|a g App,3b & App,da € Apr 2 a # b, a#b, b#a}
And we denote by A7, the set of transitions labelled by internal ports and conflicting
with interactions of A}#T U App. It is defined as follows:
AP —{p|Vaen,pePs,3ae Aip UAT qe Py, Jieln), Al el : 1515}

As explained in Definition[4.1] A g consists of inter-task interactions A7, intra-task inter-
actions A?&T and internal transitions A} that are either directly or indirectly conflicting
with inter-task ones. Thus, we have:

Ap = Aip UAT uAb, (4.1)

4.4.2

4.4. Transformation of a BIP Model into a TT-BIP Model 73

Internal interactions

The set Aj is defined as the set of intra-task interactions (i.e. participating components
are belonging to the same task) which are neither directly nor indirectly conflicting with
inter-task components:

Ar =7\ 4g. (4.2)

Atomic talking components (ATC)

BATC set is the set of atomic components in B that are concerned by external interactions

Ap. We define:
BATC = {B € B|Ag N P # 0}, (4.3)

where Pp is the set of ports of the component B.

Transformation of Task Components

We transform each ATC atomic component B; € BATC of a BIP model into a TT ATC
component BT that is capable of communicating with 7TCC component(s). This
transformation consists mainly in decomposing each ”atomic” inter-task synchronization
into send and receive actions. The synchronization between the ATC component (via
the task interface) and the TTCC layer is implemented as a two-phase protocol.

First, BiTT sends communication offers through dedicated send ports. Then, in
the second step, it waits for a notification coming from the TTCC component via a
receive port. The communication offer contains information about the enabledness of
the interaction. Each offer is associated to one of the enabled ports of B; through which
the component is ready to interact. An offer consists of a set of variables related to the
corresponding enabled port. Let p be such port enabled from a location [(i.e. I i)
The set of variables of the corresponding offer includes variables initially exported by p
since they may be read and written by the interaction. It also includes variables tc, and
tpc; storing respectively timing constraint of transition labelled by p and enabled from
[and the time progress condition of the location [. Another variable g, is dedicated to
store the evaluation of the Boolean guard of the transition labelled by p and enabled
from [. The offer contains also a variable f; storing the update function of the transition
labelled by the port p. In order to be able to resolve conflicts, each offer contains the
participation count variable nb of the component BZ-T T This variable counts the number
of interactions BiT T has participated in.

The notification —received after sending offers—allows the ATC component to exe-
cute the transition triggered by the enabled receive port marking the end of the inter-
action.

Notice that each offer —sent by a component—contains information about only one
enabled interaction among the enabled interaction set. Therefore, if in the original
model B, more than one interaction involving B; are enabled, then BiT T has to send first
successive offers before waiting for notification from the TTCC component executing the
interaction selected after conflict resolution.

4.4.2.1

74 4. From High-Level BIP Model to Time-Triggered BIP Model

Let a location [, in B;, from which p1, ..., p, are enabled such that at least one of the
n ports interferes in an inter-task interaction. In BiT T we split such a location [into
n+ 1 locations, namely [itself and locations {J—fm}z‘e[l,n] from which corresponding offers
are sent (see Figure [4.6]).

tpc

D,

Figure 4.6: Atomic component transformation into an ATC component

Consider the case when, in the original model B;, time is allowed to progress from
location [, i.e. before executing the interaction. In order to enforce the correctness of the
target model, time should be able to progress until the interaction is actually executed.
Thus we associate to locations J_éi the time progress condition of location [originally
defined in the atomic component B;.

Expressing Timing Constraints and Time Progress Conditions over a Com-
mon Global Clock

In BIP framework, each atomic component can define its own local set of clocks. These
clocks can be reset at any time and are used in definitions of timing constraints and
time progress conditions.

In order to execute an external interaction a = p;,7 € I, a TTCC component needs to
evaluate the timing constraint of the interaction, i.e. the conjunction of timing constraints
of transitions labelled by ports p; involved in the interaction in the original model. These
respective timing constraints are sent by respective ATC components to the TTCC
layer within offers. In order to allow the TTCC to compute interactions between tasks
components and schedule them correctly, we need to reduce the effort of keeping track of
different clocks of participating components. This can be resolved by expressing timing

4.4.2.2

4.4. Transformation of a BIP Model into a TT-BIP Model 75

constraints in terms of a single time scale, that is, a single global clock. Moreover, the
global time scale is a key feature of the T'T paradigm targeted by the transformation.
For these two reasons, we need to translate all timing constraints and express them
over the global clock.
We denote by ¢9, the global clock which is initialized to 0 and measures the absolute
time elapsed since the system started executing, i.e. ¢ is never reset.
We follow a similar approach as in [2] in order to translate selected timing constraints.
Here are the different translation steps:

1. for each component B; € B and for each clock ¢ € C, we introduce a variable w,
that stores the absolute time of the last reset of ¢. The variable w, is initialized
to zero and updated to the absolute time (i.e. the valuation of the global clock ¢)
whenever the component executes a transition resetting clock c.

2. Each atomic expressions (b < ¢ < ub involved in a timing constraint tc, is rewritten
by using the global clock ¢ and the variable w.. Mainly, we have to add to the
initial lower and upper bounds the last reset value w, of the local clock c as follows:

b<e<ub=b+w,. < <ub+w, (4.4)

3. Similarly, we rewrite each atomic expressions ¢ < ub of time progress conditions tpc
—defined on all locations from which an external interaction can be enabled—as
follows:

c<ub=cd <ub+w, (4.5)

Notice that the value of each local clock ¢ can be computed from the current value
of the global clock ¢ and the variable w. by using the equality ¢ = ¢ — w.. This allows
to entirely remove clocks of components B;, keeping only the clock ¢ and variables w;

ceC.

Formal transformation rule

Rule 4.1 (Transforming ATC components). Each ATC BIP component
B; = (L;, P, X4, Cy, Ty, tpe;) € BATC s transformed into a TT ATC component BIT =
(LIT pIT XTT CIT TIT tpcl™) as detailed by the following rules:

® Each location | € L;, enabling ports {p;}jcnn S PN Ag, is split into n + 1
locations. Obtained locations are | itself and partial-state locations {J_é,j }ie[im]-

The time progress conditions of locations Lé,j and | are equal to tpc(l),

e Fach port p; € P; N Ag such that | ECNFP split into two ports; receive port p; and
send port op,. A port p; € PZ-TT exports variables X, C X; originally exported by
port pj € Pi. A port oy, exports, on top of variables X}, C X;, variables tpe, tcy,

76 4. From High-Level BIP Model to Time-Triggered BIP Model

9p, [p and nb which are respectively the timing constraint variable, the time progress
constraint variable, the Boolean guard variable, the update function variable and
the participation count variable. These variables store respectively tpc of location |
(i.e. tpe(l)) expressed on clock ¢9, the timing constraint, the update function and the
guard of transition enabled from | and labelled by p; and the number of interactions
the component has participated in.

e For each clock ¢ € C;, we add a corresponding variable w,,

e For each transition T, = (l,pj,ngj,tchj,erj,prj,l'), such that Vj € [1,n], 1 EEN
and p; € P; N Ag, we include, in TZ-TT, the corresponding offer transition Top, and

notification transition TZ’,],. The offer transition Top, 1s enabled from location J_éj.
Both its guard and timing constraint are True. Its update function is the identity
function and it resets no clock. It reaches location Loy, if 7 # k and the offer
. 15 not yet sent, otherwise it reaches location l. Notification transition TI,)J_ 18
enabled from location | and reaches location . As in the offer transition, guard and
timing constraint of the notification transition are always True. It resets the same

clock set as Ty, The update function fT[?_ (1) updates the clock reset variables:
J

Op

Ve € ry, , we = ve(c?), where v, is the clock valuation function, (2) increments the
participation count variable nb and (3) updates variables of offers sent from next
reached state.

o For each transition 7, = (I,p, gr,,t¢r,, 7, fr,,1'), such that p € P;\ Ag, we in-
stantiate the transition TI,), where only the update function is changed compared to
the initial transition 7,. The update function fTZ” (1) applies the original update
function fr,, (2) updates the clock reset variables: Ve € Ty, s We = ve(c9), where v,
is the clock valuation function, (3) increments the participation count variable nb

and (4) updates variables of offers sent from next reached state.

e In order to update variables of offers that will be sent from its reached location I,
a transition needs to execute the following functions:

o tpc = tpc(l'), where tpc(I')*’ corresponds to expressing the tpc of I' over the
global clock 9 following (4.5),
e Vp € PNAg, such that 31, = (I',p, gr,, tcr, 77, fr,,17) € Tj, te, = tccz, gp =

¢
gr, and fy = f. , where tcﬁz corresponds to expressing the timing constraint
of 7p over the global clock ¢9 following ({{.4) and g, is the guard evaluation.

After applying Rule 1l we can formally define the obtained component in function
of the original one.

Definition 4.3. Formally, BiTT is obtained from B; as follows:

o LIT = L,UL,, where L = {L;, |3l e L;,3r = (I,p,g,te,r, f,I') € T;,p € PNAg},

4.4.3

4.4. Transformation of a BIP Model into a TT-BIP Model 77

e PIT = P, U P,, where P, = {o,lp € P, N Ag}. Each port o, exports the set
of variables Xg;T = X, U {tpc,tcy, gp, fp.mb}. For all ports in p € P;, we have
XIT =X

p b’

b XZTT =X;U {tpc} U {tcp’gp’ fp}pGPiﬂAE U {wc}CEC¢ U {nb};

o CIT={c},
g TZ‘TT = {Top }perPinag U {Tz/,}pepi. Such that for each 7, = (,p, GrprtCrys Ty frns) e
T; we have:
Top = (J_f)p,op, True, True, (), Id, J_'Olp) ifpe PN Ag

7'1/) = (I, p, True, True,er,fTé,l/),
where J_Zp isl or J_qu such that I % and fr; is as described in Rule[{.1],

e For places of L, the time progress condition tchT(J_f)p) = tpc(l).

Example 4.1. Figure[{.7] illustrates transformation of an ATC component into its cor-
responding ATC TT component. In this example we consider that ports p and q are
participating in external interactions.

Once all ATC components are transformed, we instantiate the composite component
of each task, which corresponds to gathering all components mapped to that task and
exporting send and receive ports of ATC components (see Rule [£.2]).

Rule 4.2. For each Tj € T we instantiate a composite component B%T including:
e Component B; € Tj if B; ¢ BATC and BI'T if B; € BATC,

o Interactions {ac € yN A |Vp € o, 3B; € Tj : p € P;}, where P; is the set of ports of
B;.

o The set of exported ports {(p,o0p)|3B; € BATC Tj:pe PNAEg}.

Building TTCC Components

As explained before, a TTCC component layer is introduced initially in order to handle
intertask interactions and thus model the TT communication system. By considering
the need for operational equivalence (i.e. keeping the same original behavior), and in
order to be able to resolve all conflicts of the target model interactions, the TTCC layer
handles, on top of intertask interactions, other interactions that are conflicting directly
or indirectly with these latter. Recall that all interactions of the original model, that
are handled in the TTCC layer are called external interactions.

Initially, all components are doing their initial computations and the TTCC layer
does not know their state or their enabled communication ports until they send offers.

78 4. From High-Level BIP Model to Time-Triggered BIP Model

tpc:=c9=3+w,
tepi=l+w =c'=3+w,
fo | tcg=-w=cI=+w
gp:=True

tpc:=c9=3+w,
tepi=1+w =c9=3+w,
teqi=-0o=cI=+w
gp:=True

[clock c9] i][0y || s fis
nb++
tpc:=c9=3+w,
tepi=1+w =c9=3+w,
3 teg=-o=CIs+w
gp:=True
gq:=True
for=f,
foi=f,

Figure 4.7: Example of transformation of an ATC component

Handling only one external interaction, a TTCC can execute this latter only when all
participating tasks’ components have sent their offers and are ready to execute the
interaction.

Since in the input model we assume that no priority rules can be established be-
tween external interactions, a TTCC component does not need to connect with tasks
participating in interactions other the one it is handling. Since the enabledness of its in-
teraction only depends on offers received from its participating tasks components. When
the interaction is conflicting with another external interaction, the TTCC has to com-
municate, after checking the enabledness of the interaction, with the CRP in order to get
the permission or not to execute. We call this communication a reservation mechanism.

To summarize, the behavior of a TTCC component handling an interaction a =
(a,Gq,F,) € v is made of three steps: (1) it waits for offers from its participating
task components, (2) once all offers are received —regardless their order, the TTCC
component takes a decision by either executing the interaction upon synchronization
(i.e., conjunction of received guards and G, evaluates to True) if a is a non-conflicting
interaction or soliciting the CRP component to find out if the conflicting interaction a
can be executed and (3) finally it writes on appropriate task components by sending a

4.4. Transformation of a BIP Model into a TT-BIP Model 79

notification.

Figure 4.8 shows a representative part of a TTCC automaton, where we can dis-
tinguish the three steps. From location wait, the TTCC is waiting for respective offers
from its participating components. Since these offers can be received in a random order,
the TTCC is designed in such a way to allow all possible combination from location
wait. Once all offers are received, the location read is reached. From this location, the
TTCC starts the second step in order to execute the interaction depending on whether
it is conflicting or not. Once the TTCC executes the interaction, the automaton reaches
location send from which it executes a transition allowing to notify participating com-
ponents and reaches back the location wait. All transitions of the first step are triggered

Send notification

>

X
@ @
@ @ Execute interaction
Receive respective offers

from participating
components

Figure 4.8: Skeleton of a TTCC automaton

by receive ports corresponding to respective offers. The transition of the third step is
triggered by a send port. Behaviour and ports triggering transitions of the second step
are detailed later.

Let a TTCC component handling an external interaction a = (Py,Gq, Fy) € ¥ N
Ag. We denote by n the number of components related to TTCC, i.e. the number of
participating components of «a, i.e. n = [comp(«)|.

In the case when « is a non-conflicting interaction, the execution of this latter is
performed without requesting the CRP component. As shown in Figure [4.9al the TTCC
executes a transition from location read to send labelled by a unary port denoted p.
Its update function executes the update function F,, of the interaction o and then re-
spective update functions that are received in offers. The transition p, is guarded by the
conjunction of the guard G, and respective guards and timing constraints received in
offers. If the conjunction of these guards evaluates to True, the interaction is executed
and the TTCC sends a notification to participating components.

In the case when « is conflicting with another interaction, the TTCC goes through
a reservation mechanism (cf. Figure [L.9D]). If the interaction is enabled, i.e. the con-
junction of the guard G, and respective guards and timing constraints received in offers
evaluates to True, the TTCC executes transition rsv, from location read. This transi-
tion reaches location try. By the execution of rsv,, a reservation request is sent to the
CRP component. This reservation contains different values of participation count vari-
ables of «a participating components. Based on these participation counters, the CRP

80 4. From High-Level BIP Model to Time-Triggered BIP Model

decides whether to allow or disallow the interaction execution. It notifies the TTCC
component either through port ok, in the case when the reservation succeeds or through
port fail, if the reservation can not be made. While waiting for CRP notification, the
TTCC occupies the location try. If the port ok, is enabled, then it executes the transi-
tion reaching location send from which notification to components are ready to be sent.
Note that update function F,, composed with those of received offers is associated with
the transition labelled by the ok, port. If the port fail, is enabled, the TTCC reaches
back the location read in order to proceed again for the reservation.

~fead)—Pe J"
/\\ gi A Gu
Nt
fro...0fyoF,
(a) a is not conflicting

fail,

(b) a is conflicting

Figure 4.9: Mechanisms for execution of interaction o = (P, Gy, Fy)

When an ATC component is participating in two conflicting interactions «y and ax,
it sends successively offers to each of the corresponding TTCC components T7'CC,, and
TTCC,, and waits from a notification from one of them. After resolving the conflict
by requesting the CRP, suppose TT'C'C,, will notify the component after successfully
executing the interaction «y, while TT'CC,, reaches back its location read in order to
proceed to a new reservation attempt. The component is able to continue execution of
its next transitions. And it may reach again the location allowing to send again offers
to TTCC,, and TTCC,,. Both TTCC components should be ready to receive the
offers. For that, we add loop transitions in TTCC automata labelled by offers receive
ports over locations read and try. Furthermore, such an ATC component may need to
resend an offer to a TTCC even before this latter receives other offers from the rest
of its participating components. This is resolved by adding loop transitions labelled
by offer receive ports over locations that are placed between location wait and read (cf.
Figure[£.9D]). These added loop transitions allow to respect the last point of Definition [4.1]
stating that whenever a send port is activated, all its receive ports are enabled as well.

4.4. Transformation of a BIP Model into a TT-BIP Model 81

4.4.3.1 Formal Transformation rule

In the following, we explicit the transformation rule allowing to instantiate a TTCC
component for each external interaction.

Rule 4.3. Each external interaction o = (P,,Gq, Fy) € v N Ap, such that P, =
{pitieiin), and comp(a) = {Bi}ic)1 n), is transformed into a TTCC component TTCC =
(LTTC£C PTTC'C XTTCC CTTCC TTTCC tpCTTCC)

e Ports and variables:

e For each port p; € Py, we include in PTTCC g receive port op,. For each port
op;, we associate a local copy of the set of variables X, initially exported by
port p; of component B;. We associate also to op, the time progress condition
variable tpc;, the timing constraint variable tcy,, the Boolean guard variable
9p;» the update function variable fp, and the participation count variable nb;.

o We include also one send port p% in PTTCC. To the port p2, we associate
sets of local variables X,,, p; € Py.

e If a is not conflicting, then we include a unary port denoted p.,, which allows
to label the transition executing the interaction. Otherwise, we include in
PTTCC one send port rsv, and two receive ports oke and faily. Only port
rSsvq has associated variables, which are participation count variables nb; for
all i € [1,n], i.e. all participation count variables of participating components

{Bi}iepn

o (Clock: As explained before, the TTCC component defines only one clock which is
the global clock denoted 9.

® Locations:

e We include in LTTCC location wait marking thee beginning of offer recep-
tion, location read marking the reception of all offers and the location send
marking the end of interaction execution. If n > 2, we include —between
location wait and read —the set of intermediate waiting locations L allow-
ing reception of offers in any order. Let O == {op, |pi € Py,1 € [1,n]} be
the set of all offers received by TTCC. The set L is constructed as follows;
L, = {l’g)k |k € [l,n—1],0k € Pyoy}, where Py(O) is the k-permutation of
O, allowing to indicate the ordered subset of offers sent before reaching the

n—1
location lgk. Note that the cardinality of L) is |L,| = kgl(n%'k)' Figure[.10
shows how intermediate waiting locations (displayed in gray) are constructed
forn =2 and n = 3. Its shows also the case when n =1, where no interme-

diate waiting location is needed.

e If v is conflicting, we introduce in LTTCC the location try allowing the reser-
vation mechanism.

4. From High-Level BIP Model to Time-Triggered BIP Model

(a) n=1 (b) n=2

Figure 4.10: Intermediate waiting locations

o The time progress condition of location wait is set to True. The time progress
condition of location send is False. In the case of a conflicting TTCC, the
time progress condition of its try is True. For location read, the time progress
condition is set to the conjunction of time progress conditions received in
the offers. That is, after receiving offers from participating components, we
require that the TTCC component executes its interaction before different time
progress conditions of participating components become False.

o Transitions:

e In order to receive offers from task components B;, we include receiving tran-
sition, we have three classes of receiving transitions; the n transitions starting
from location wait and labelled each by an offer port, transitions between lo-
cations L) and transitions reaching the location read. They are respectively

as follows:
Top, =(wait, op,, True, True, 0, Id, lbl)7 VO1 € P1(O) : op, € O1,
Top, =(1&,, 0p;» True, True, 0, Id, z’g*kil), Vk € [1,n—2]: Ok C Ogs1,0p; € Ops1 \ Ok,
Top, :(lg;il,om, True, True, D, Id, read), VOn—1 € Pn-1(0) : op;, & On_1.

These transitions’ guards and timing constraints are default to True, their
update functions are the identity function and they does not reset clocks.

o If « is conflicting, the set of transitions includes loop waiting transitions as
already explained, for each lgk € L, we include k loop transitions labelled

each by an offer port o,, € O. That is, for each lgk € Ly, and for each
k

op, © Oy, we include the transition Té;jik = (l’g)k,opi, True, True, (), Id, lgk)
we add also loop transitions on locations read and try, i.e. for each
op, € O, we add TOTE?d = (read,op,, True, True, (), Id,read) and Té;i/ =
(try, op,, True, True, 0, Id, try). These transitions allow components partici-
pating in conflicting interactions that have already sent their offer to be able

to send it again.

4.4.4

4.4. Transformation of a BIP Model into a TT-BIP Model 83

o To notify task components after executing the interaction o, we include the
transition Tseng = (send, p%, True, True, Identity, (), wait).

o If a is not conflicting, we include the transition 7, = (read,pq,G*,

n
TC*,0, F*,write), where the port py is a unary port, G* = Gao N 9p,),
i=1

n
TC* = Ntep,, F* = fp, 0...0 fp, 0 Fy such that G and F, are respectively
=1

the gua;’d and the update function of the initial interaction o, gp,, tc,, and
fp; are respectively the guard, the timing constraint and the update function
of offer op,.

e If a is conflicting, we include transitions allowing the reservation mechanism:
Trso = (read,rsv, G*, TC* 0, 1d,try),
Tok = (try, ok, True, True,), F*, send),
Trait = (try, fail, True, True,,Id, read), where G*, TC* and F* are as de-
tailed in the previous item.

Example 4.2. In Figure [{.11] (resp. Figure [{.13), we illustrate transformation of a
conflicting (resp. non conflicting) external interactions « into its corresponding TTCC
component. In these examples we consider that ports p and q of the interaction « are
exporting respectively variables x, and x,.

[NDyf ND
D o

a=({p,q},Ga,Fq)

[cockc | o]

Figure 4.11: Example of transformation of a conflicting external interaction into a TTCC

component

Conflict Resolution Protocol Component

The conflict resolution protocol (CRP) that we use in our work is the same CRP used
in [47), [77, [86]. It is, so far, the unique solution to guarantee the resolution of conflicts
without requesting the BIP execution engine. It accommodates the algorithm proposed
in [10]. It uses message counts to ensure synchronization and reduces the conflict res-
olution problem to dining or drinking philosophers [32]. Its main role is to check the

4.4.4.1

84 4. From High-Level BIP Model to Time-Triggered BIP Model

(X:({prq}erFa)

Figure 4.12: Example of transformation of a non-conflicting external interaction into a
TTCC component

freshness of requests received for an interaction, that is, to check that no conflicting
interactions have been already executed using the same request. In each request, an in-
teraction sends the participation numbers of its components, i.e. number of interactions
each ATC component has participated in. This ensures that two conflicting interactions
cannot execute with the same request. Mutual exclusion is ensured using participa-
tion numbers. To this end, the conflict resolution protocol keeps the last participation
number N B; of each component B; and compares it with the participation number nb;
provided along with the reservation request from TTCC components. If each participa-
tion number from the request is greater than the one recorded by the conflict resolution
protocol (nb; > N B;), the interaction is then granted to execute and N B; is updated to
nb;. Otherwise, the interaction execution is disallowed.

Formal Transformation rule

As explained in Chapter Bl Section B.2] the CRP behaviour is expressed by a set of
parallAlle automata handling each an interaction (cf. Figure B.2)).

In the following, we explicit the rule allowing to instantiate a CRP component based
on this same formalism.

Rule 4.4. Given the model B ~v(B1, ..., By), we instantiate the component CRP =

(LCRP, PC’RP, XC’RP, CC’RP’ TC’RP’ 7fchRP) where:

° XCRP
AE';

contains the last used offer variable N; for each B; € comp(a) where o €

° CCRP — 097

e For each externally conflicting o € Ag,

o LERE contains the waiting place wo, where tpc(wy) = True and the reservation

place ro where tpe(r,) = False,

4.4. Transformation of a BIP Model into a TT-BIP Model 85

o PCRP contains the ports rsvy, oke and faily,

o XORP contains the participation numbers {nb¢ | B; € comp()}. These vari-

ables are associated to the port rsv,. Ports ok, and fail, do not have asso-
ciated variables.

TCEP contains the following three transitions; Trsy, = (Wa,TSVa,Ta)s Toky =

(ra, Oka, wa) and Ttqir, = (Ta, faila,ws). The transitions sy, and Tfq, has
no guard, no timing constraint and no update function. The transition T,
has no timing constraint but is guarded by Gr,, = Apecomp(a)i > NB;.
Its update function sets the variables NB; of components B; € comp(a) to
the values of corresponding participation numbers nbf': i.e. for each B; €
comp(a), it performs N B; := nb}.

4.4.5 Cross-layer interactions

In this section, we define the interactions between the task components and the TTCC
layer and between this latter and the CRP component. Tasks and TTCC components
exchange offers and notifications. Communication between TTCC components and the
CRP component involves the transmission of messages corresponding to rsv, ok and fail
(cf. Rule [4H]). In the following rule, and for clarity of presentation, we use the notation
B.p to denote the port p of the component B.

Rule 4.5. Let B ~v(B1, ..., By) be a BIP model, T be a task mapping. We define the
obtained model after transformation as

BTT = ATT(BIT .. BI'T TTCCY,..., TTCC,,, CRP). The send/receive interactions of

AT are defined as follows:

e For each task component B%:JT such that T; € T, for each port B;‘CJ_T.op and each

TTCC, such that p € o, we include in vIT the offer interaction based on ports
(B%T.op, TTCCy.0p). Its guard is set to True. And its update function copies

variables associated with B%,T.op to those of the receive port TTCCy.op.

e For each TTCCy, and all {B%T}jEJ, such that for all j € J, T; N comp(cr) # 0,

we include the notification interaction based on ports (TTCCy,.pS, {B%T.pj}jej),
where for all j € J, pj € a. Its guard is set to True. And its update function
copies variables associated with TTCC,.pS to those of the receive ports B%,T.pj.

e For each interaction o € ~y that is not conflicting, we include the unary interac-
tion having as unique port (TTCCy.ps), where TTCC,, is the TTCC component
handling the interaction «. Its guard is set to True. And its update function is the
identity function.

e For each interaction o € vy that is conflicting, we include a triplet of interac-
tions having respectively the following sets of ports: (TTCCy.rsv,, CRP.Tsv,),

4.5

4.5.1

86 4. From High-Level BIP Model to Time-Triggered BIP Model

(CRP.oky, TTCCy.0k,) and (CRP.fail,, TTCCy.fail,). All their guards are
set to True. The update function of the former interaction copies variables of
ports TTCCy.rsv, to port CRP.rsv,. Since ports CRP.ok, and CRP.fail, do
not have any associated variables, the update function of the last two interactions
is the identity function.

Transformation Correctness

In this section, we show that the described transformation is correct, that is the obtained
TT-BIP model is observationally equivalent to the original BIP model. Before proving
the observational equivalence, we show that the final model is a valid TT-BIP model.

Validity of the Obtained Model

Proposition 4.1. Given a BIP model B = ~(Bj,...,By) and a task mapping T =
{1y, ..., Ty}, the model BTT = AT0(BIT .. BIT TTCCY,..,TTCC,,,CRP) obtained
by transformation of Section [{.4] meets the properties of Definition [{.1].

Proof. Points 1-3 of Definition [4.1]

The first three criteria of Definition [4.1] are syntactic, namely only allowed interactions
are either classic multiparty interactions or send/receive interactions or unary interac-
tions and each send port participates in exactly one Send/Receive interaction. These
criteria are met by the previous definition.

Point 4 of Definition [4.1]

The fourth point of Definition 4.1} enumerates all conflict cases of a TT-BIP model. The
first case states that an internal port can only be conflicting with a similar port. By con-
struction of the transformation, internal ports are instantiated only in task components
(cf. Rule 4J]). If an internal transition is originally conflicting with a similar transition
then this conflict is preserved, since these transitions remain intact after transformation.
If in the original model, an internal transition is conflicting with an external transition
then this port will be replaced by a send and receive ports. Therefore, the original
conflict is no more existing in TT-BIP.

The second case involves receive ports. In task components, by construction of the
transformation (cf. Rule [4.1]), a receive port can be only conflicting with receive port.
In TTCC component, receive transitions are offer transitions or ok/fail transitions. Ok
transitions and fail transitions have the same source location. Similarly, offer transitions
can be also enabled from the same location (in the case of conflicting TTCC compo-
nent). They also can be conflicting with a send transition labelled by an rsv, port (cf.
Rule £3)). In CRP component, receive transitions are rsv transitions which are enabled
from the initial location only simultaneously with other rsv transitions. Therefore, in

4.5. Transformation Correctness 87

all components, a receive transition can be enabled simultaneously either with a receive
port or with a send port or both.

The third case involves send ports. In task components send ports are offer ports and
by construction of the transformation (cf. Rule 1)) only one send port is enabled from
one location. In TTCC components, send ports are either p¢ ports (sending notifications
to task components) or rsv,, ports. The former has no conflicting port (i.e. no other port
is enabled from its source location) while the latter is enabled from the same location as
receive ports (offer ports) (cf. Rule [£3]). In CRP component, send ports are ok or fail
ports. Note that these ports are enabled from the same location. Therefore we deduce
that a send port can have the same source location as a receive or other send ports.

Point 5 of Definition [4.1]

The fifth point of Definition [4.1] states that the update function of a transition labelled
by a send port does not involve variables exported by this port. In task components,
send ports are offer ports and they trigger transitions whose update functions are the
identity function (cf. Rule 41]). In TTCC components, the send port is either a p$ or
a rsv, port. In both cases, it labels a transition with an identity update function (cf.
Rule @3]). In the CRP component, send port can be either an ok or fail port. In the
first case, the port labels a transition whose update function applies on N B; variables
which are not exported. In the second case, the port labels a transition with an identity
update function.

Point 6 of Definition [4.1]
The second-last point in Definition 4] states that a transition labelled by a receive port
always has a timing constraint and guards that are default to True. In the layer of task
components, receive ports label only notification transitions which, by construction, are
associated with a timing constraint and guard equal to True (cf. Rule[dJ]). In the TTCC
layer, receive ports label either offer transitions or ok/fail transitions. These latter are
also associated with a timing constraint and guard always default to True(cf. Rule [£.3).
In the third layer (i.e. the CRP component), receive ports label rsv transitions, which
are also associated with timing constraint and guard always equal to True.

Point 7 of Definition [4.1]
The last criterion of Definition 1] states that whenever a send port is enabled, the asso-
ciated receive ports will unconditionally become enabled within a finite number of tran-
sitions in the receiver component. Intuitively, this holds since communications between
tasks and TTCC components, and between TTCC components and CRP component
follow a request/acknowledgement pattern. Whenever a component sends a request (via
a send port) it enables the receive port to receive acknowledgement.

In the following, we detail different configuration cases:

e Communications between a task component BZT T and a TTC C; component, for all
interactions « involving a component B;. We denote by [gzrr the enabled location
of BT and by lrTee; the active place of TTCC;. We distinguish the following
cases:

88

4. From High-Level BIP Model to Time-Triggered BIP Model

Case 1: lgrr :Lé where p is exported by B; and lrrcc; € {wait} UL .

In this configuration, the only enabled send-port involved in a send /receive interac-
tion is the offer port o, of BiT T Note that the initial state allowing a send /receive
interaction between tasks and TTCC components falls in that case. By defini-
tion of the configuration, all associated receive ports are also enabled (the TTCC}
component can only execute transitions labelled by receive ports).

Case 2: Igrr =1 where [is a place of B; and lrrcc; = {read}.

This configuration is reached from the first one by executing offer transitions. From
this configuration, no send/receive interaction with the task components can be
enabled (i.e. no send port is enabled). To send offers, the task component should
be in a Lfv location which is not the case.

Case 3: Igrr =1 where [is a place of B; and lrrcc,; = {send}.

In this case, the component BZ-T T is still in a place [that is not a busy location, and
the TT'C'C; component is in the send place. From that configuration, the enabled
send-port that is involved in a send/receive interaction with BiTT is the port p¢
of the TTCC component. By definition of the configuration, the receive port
associated to this send-port is the one activated from place [of component BZ-T T
Thus, the property holds in that configuration as well. Note that after executing
the send/receive interaction with the component BI7, the first configuration is
reached back.

Communications between a conflicting TTC'C'jC component with the CRP com-

ponent, for all conflicting interaction « involving a component B;. We denote by

lprcce the enabled location of TTCCJ-C and by lorp the active set of marked
J

places of CRP. We distinguish the following cases:

Case 1: lppecc =read and lorp 3 {wa}-
J

In this case, the unique enabled send-port is the port rswv, of the component
IKe C]C. And by definition of the configuration, the associated receive port of this
send-port is enabled, i.e. the port rsv, of component CRP is enabled from place
Wq. Thus, the property holds in that configuration as well.

Case 2: lppece = try and lorp 3 {ra}-
J

This case is reached by executing the reservation interaction from the previous
configuration. In this case, two send-ports are active, ok, and fail, of the compo-
nent CRP. From the enabled location of TTC'C']C component, the corresponding
receive ports associated to these two send-ports are enabled as well. Thus, the
property holds by-construction in that configuration as well.

O

4.5.2

4.5. Transformation Correctness 89

This proof ensures that any component ready to perform a transition labelled by a
send-port will not be blocked by waiting for the corresponding receive-ports.

Observational Equivalence Between B and B'7"

We denote by B = y(Bq, ..., B,,) the initial model and by BTT = 4TT
(B{T,...,BI'T TTCCY,...,TTCC,,, CRP) the resulting model of the first step of the
transformation.

In order to prove the correctness of the transformation from B to BT, we have to
show that their corresponding semantic LTSs are observationally equivalent. We denote

by G(B) and G(BTT) successively the LTSs of B and BT (see Definition [L.14]).

We define observational equivalence between transition systems based on the classical
notion of weak bisimilarity [69], where some transitions are considered unobservable.

We will use the following notation. Consider a binary relation R C X x Y. For
def

x € X, we denote R(z) = {y € Y |(z,y) € R}.
Definition 4.4. (LTS relations) Let A = (Qa, Pa, 7) and B = (Qp, Pz, E)) be two

LTS. Given a relation 8 C Py x Pg, we write q % q, for q € Qa, iff there exists

a € Py, such that q % ¢ and a is not related by B to any label in Pg, i.e. 5(a) = (.

The notation g % q, for q € Qp, is defined symmetrically.

A weak simulation over A and B, is a pair of relations R C Qa X Qp and § C
P4 x Pg, such that:

V(g,7) € R, VYa € Py, <5(a) %@/\q%}q':> J(a,b) € B:3(¢,7") € R:r%r’)

and
V(g,7) € R, <q % ¢ =3, ")eR:r ? 7“’) ,

where B* denotes zero or more successive [3 transitions (i.e. transitions whose label is
not related by the relation [3).

A weak bisimulation over A and B is a pair of relations R C Q4 X Qp and
P4 x Pg, such that both (R,) and (R™',871) are weak simulations. Recall that R™1
QB x Q4 and B~ C Pg x P4 are the symmetric relations of R and (3.

We say that A and B are weakly bisimilar w.r.t. 3 C Py x Pp, denoted A ~g B,
if there exists R C Qa x Qp total on both Q4 and Qp, such that (R, () is a weak
bisimulation.

-
-

First, we need to establish correspondence between labels of G(B) (ranging over the
set v UR,) and those of G(B*T) (ranging over the set v77 UR,). Therefore, we define
the relation 8 as follows:

ﬁ:{(a,a)|a670A1}U{(a,p?)|a€7ﬂAE}, (4.6)

90 4. From High-Level BIP Model to Time-Triggered BIP Model

where p¢ is the send port of the TTCC component allowing to send notifications to its
related components.

Note that by this relation, we can say that each transition « € v, is represented in
ATT either by the transition « itself if it is internal, or by p? if it is external. Transitions
of B that are not related by the relation § are only delay transitions. And transitions of
Brr that are not related by the relation S are offer , reserve, fail, ok and p,, transitions.
These transitions are denoted by [transitions.

We may use later in this proof the following notations fail, and ok, (resp. rsv,) to
denote the fail and ok (resp. reservation) interactions between the CRP and the TTCC

component handling interaction a in BT model.

Theorem 4.1. The LTSs G(B) and G(BT) are weakly bisimilar w.r.t. B, i.e. G(B) ~g
G(BTT).

Proof. Let G(B) = (@B, P, ?) and G(B™TT) = (QBTT7PBTT7?>)' Recall (Defini-
B

tion [LTT)) that state spaces @p and @B, have each three components: control location,
clock and variable valuations. For a given state g, we will denote v.(q) (resp. v;(q)) its
clock (resp. variable) valuation component. Similarly, we denote I(gq) the location of a
state q.

Below, we will use variables ¢p,rp, ranging over @g, and ¢B,,, "By, ranging over
@B, and denote their respective components as follows:

aB = (l’vx(qB)’vC(qB)) > B = (l,’vm(rB)’vc(rB)))

4B = (ZTT7UZ'(qBTT)7UC(qBTT))) T"Brr = (Z%T7vx(TBTT)7UC(TBTT)) .

For clarity reasons, for each state g¢p,,, we detail the control location l77 by using

the triplet (12, 177CC 1SRP) where 12, denotes the tuple of active locations of the tasks

layer components, l%’%“cc contains the tuple of active locations of all TTCC components

of the TTCC layer, and Z%@P contains enabled locations of the CRP. We recall also that

a place [of a model B = ~(By, ..., By,) is written [= (I, ..,1,). The place lgT of the tasks
components layer of the model B™7 is written ZC?T = (T, ..,ITT). The place l::,C%:CC of
the TTCC components layer is written as follows [Z1C¢ = (1IFT¢C [ITTCCY while the
iof

place of the CRP component is written as [726C € {wq, 74}

We define the relation R C Qp x @B, as follows:

15, e {Z“Lfgi}”, where ; Z—'),
R= (un qBTT) Uc(qB) == Uc(qBTT)) (47)

Vg (QB) = U;(QBTT)

where v} is the restriction of v, to the variables X of the original model B. That
is the valuation function v} is defined only over variables which are common between B

4.5. Transformation Correctness 91

and Bpr. We recall that the notation [; % means that port p; is enabled from place I;

of the component B;.

Note that in the definition (A7) of the relation R, there is no restriction to the location
of TTCC and CRP components. This means that we consider all states of these compo-
nents in the defined equivalence class. That is ¢p is equivalent with ¢p,.,, whose location
is a combination of any location of TTCC and CRP components with the locations [;
or Lé;’i of components B. That is Vj € [1,m)] ,lfTCC € {wait,l,,, ..,read, try, send} and
ISBP € {wg,ral.

Thus,the following four assertions prove that (R,) is a weak bisimulation:
(i) v(qBv qBTT) €ER,

B B*
g —rp = Irp,rBypy) € R:aqBry — TByyp s
B Brr

(11) v(QBa qBTT) € R?

B B*
4Bpr B > TBrr ” 3(7GB7TBTT) € R:qpB —>B B,
T

(ii) Y(¢B,aqBsy) € R,V € 7,

ﬁ*a,ﬁ*

Bla) DN gp %) rg = J(a,d’) € B:3(rp, By) € R: gy B—> TByp
TT

(iv) Y(¢B,qB.;) € R,VE € K,
Bil(k) 7 (Z)/\qBTT BL> TBrr = 3(p,k) € B:3(rp,Brr) € R: B %) rg.
TT

Hereafter, we detail proofs of each of these four points:

(i) In definition (£6]) of the relation /3, only interactions of « are related to interac-
tions of 47T, That is for each a € 7, B(a) # 0. Therefore if gp % rg, then
this transition corresponds to a transition that is not related by the relation (.
Therefore, by definition (46 of the relation 3, the corresponding transition is not

an interaction of . It is then a transition labelled by a real number representing
a delay transition.

By Definition [[LT4] there is a tpc constraint on location ! in B, tpc(l) = (¢9 < v).
That is the tpc constraint of each partial location I; of each component B; of the
model B (such that [= (I, ..,1,,)) must satisfy this same condition. Therefore, we
have:

q = (L,vz(gn),ve(qB)), 7B = (l,v2(rB),vc(rB)),

ve(rB) = v2(qB), and w.(rg) =v.(q) +0,v:(qp) +d < w. (48)

92

4. From High-Level BIP Model to Time-Triggered BIP Model

(i)

Note that, depending on the nature of interactions enabled from rp, two cases
should be considered. In the first case, only an internal interaction ay € A can
be enabled from state rp once [executed. In the second case, only external
interactions ap € Ag are enabled from rp.
By construction of the definition (A7) of R, we have qp = (l, v (qB), vc(qB)), such
that

UC(QB) = UC(qBTT) and Uﬂ?(QB) = U;(qBTT) : (4'9)
By construction of the transformation (Rule [£3] and Rule 1)) the same tpc con-
straint is mapped in the first case to the place lpp where Iy = [. In the second
case, the same tpc constraint is mapped to the places [; and Léji where p; € ag
as well as to the place read of the corresponding TTCC (handling the interaction
ag). Thus, after executing the [transition corresponding to the mapped tpc in the
Brp model, components do not change their places. And there exists a transition

4By —E—f——> By in Bpp where rp,.,. = ('rr,v.(rB),v.(rB)) such that:
TT

l'r?T =1, ve(qp)=v.(rp)+0 and v.(qp)=v.(rp). (4.10)

Combining (48), (#9) and (4£I0), we obtain that v.(rp,,) = wv.(rp) and
Vi(repy) = vg(rp). And we deduce that by definition (£7) of the relation R,
we have (rg,rB,.) € R.

If (¢B,4Brr) € R, 4By _E‘i—} TRy, then this transition is not related to any
TT

transition in vy by the relation 3. Therefore and by definition (4.6)) of the relation 3,
the transition § is either labelled by a real number representing a delay transition
or by a send/receive interaction other than the notification transition or a p,
transition. That is, 8 corresponds either to a rsv,, fail,, offer, oky, po interaction
or to a delay step.

Case 1: 8 € {rsv,, faily}.

Be{rsva,faila}
L

By Definition [.T4], there is a transition lpp Z}T in Bpp, such that:

4B = (ZTT(QBTT)7Ux(QBTT 7UC(QBTT)) ’
(rBrr)) (4.11)

)
TBpr = (Z’ITT(TBTT% Vg (TBTT)a Ve\"Brr)) >
Uz (TBTT) = Uz (qBTT)’ and UC(TBTT) = UC(qBTT) :

Note that both rsv, and fail, define no update function nor a guard or timing
constraints (see Rule [L.H]).

By definition of the transformation rules (Rule 43l and Rule [£4), in the case
of a rsv, (resp. fail,) interaction, the corresponding TTCC component is in a
read (resp. try) place and the CRP component is in w, (resp. r,) place. After
executing this rsv, (resp. faily) transition, the TTCC component reaches place

4.5. Transformation Correctness 93

try (resp. read) and the place r, (resp. wy) is activated in the CRP. Note that, in
both cases, places of other components remain intact. That is, the reached place
I8, = 1B =1. Thus, we have :

Upp =1= (1, ln) (4.12)
By construction ([@7) of R, we have g5 = (I,v,(gB),vc(¢n)), such that

vC(QB) = vC(QBTT) and UJB(QB) = v;(qBTT) : (413)

Combining (AI1)) and (#I3]) we obtain that v.(rp,,) = vc(¢p) and vi(rp,,) =
vz(¢p). Combining this to (£.12]), we deduce that by definition (L7 of the relation
R, we have (¢B,7B,,) € R.

Case 2: [is an offer interaction.

By Definition [[LT4] there is a transition lpr ﬂ) Urp in Bpp, where 8 allows sending
an offer from port p; of component B; to the corresponding TTCC component,
such that:

4Brr = (lTTa UZB(qBTT)? UC(QBTT)) >

T"Brr = (l&’Tﬂ}x(rBTT)?UC(TBTT))) (4'14)

UZ‘(TBTT) = Uw(qBTT)a and UC(TBTT) = UC(qBTT) :

Note that the offer transition defines no update function nor a guard or timing
constraint (see Rule [L3]).

By definition of the transformation rules (Rule [£3] and Rule [4]), after executing
this B transition, the TTCC component reaches a place [l,, and the component
B; reaches a place 1k o if another offer is likely to be sent, otherwise it reaches

the place [;. Note that this B transition does not change the location of the CRP
component. Thus, we have :

o€ {li, Lhm. (4.15)
By construction (A7) of R, we have qp = (l,vgc(qB),vc(qB)), such that

UC(QB) = UC(qBTT) and Ux(QB) = v;(qBTT) : (4'16)

Combining (A1) and (£I6) we obtain that v.(rp,,) = v.(¢p) and vi(rp,,) =
vz(¢p). Combining this to (£IH]), we deduce that by definition (L7 of the relation
R, we have (¢B,7B,,) € R.

94

4. From High-Level BIP Model to Time-Triggered BIP Model

Case 3: 8 € {0kq,pa}

By Definition [[LT4] there is a transition lpp £> Z’TT in Bpp, where 3 is labelled
either by the port ok, or p,. The transition p, changes only location of the TTCC
component (from read to send location). Whereas the transition ok, changes
the location of the TTCC component (from try to send) and the location of the
CRP (from r, to wy). In both cases, locations of other components are intact.
We denote G*, T'C* and F* respectively the guard, timing constraint and update
function of the transition 8. Therefore, we have:

lTTCC (qBTT) lgIEP (qBTT))7 Vg (qBTT)7 UC(qBTT)))

TTCC CRP
ll () ll (TBTT))7 U; (TBTT)7 UC(TBTT)))

4By = ((ZTT7
R (=
G*(vz(gBpy)) = True,
TC*(ve(qByy)) = True,
Ve(TBrr) = Ve(qBrr)
) =

(vx(QBTT)) ’)

TBrpr

Vg (TBTT

(4.17)

In the before last equality of ([AI7)), we have v.(rB,,) = vc(qB,,) since transition

is instantaneous. For the last equality of (417, notice that, F* operates only on

variables that are local to the TTCC component. Therefore this function does

not update variables of the components BZ-T T that are common with the model B.

Therefore the execution of this update function does not change the valuation vj.
Thus, we have:

v;(TBTT) = v;(qBTT) : (418)

By definition of the transformation rules (Rule 3] and Rule [4]), after executing
this 8 transition, the TTCC component reaches the place send and the CRP
component reaches back the place wait. The component BiT T does not change its
location. Thus, we have :

B
Urr = Uy (4.19)

By construction (7)) of R, we have g5 = (I,v,(gB),vc(¢gp)), such that

ZIBT € {li7 L%Z}n > UC(qB) - UC(qBTT) and Uﬂ&(qB) - U;(qBTT) : (4'20)

Combining (£17), (AI8), (AI9) and (420) we obtain that v.(rp,,) = v.(¢B),
vi(repy) = vz(gp) and V8. = B, e {l, L;}i}”. Thus, we deduce that by definition
(A7) of the relation R, we have (¢p,7B,;) € R.

Case 4: (is a delay step labelled by § € R,..

By Definition [[LT4] there is a tpc constraint on location l7r in Brp, tpe(lpr) =
(¢9 < w). That is the tpc condition of each partial location of each component of

4.5. Transformation Correctness 95

(i)

the Brr model that is composing the global location 77 must satisfy this same
condition. Therefore, we have:

4Brr = (l07,02(4Brr), ve(aBrr)) s TBrr = (07, v2(rByg), 0e(rByy)) s

v$(rBTT) - Ul'(qBTT)7 and UC(TBTT) - UC(qBTT) +4, UC(QBTT) +d<wv.
(4.21)
Note that, by construction of the transformation (Rule [43]), this delay transition
is only possible if at least one conflicting TTCC component is not occupying the
send place, i.e. l%“%CCC # {send}*. After executing this 3 transition, the TTCC
component does not change the global place nor the variables valuation, only the
clock valuation is augmented by §. Thus, we have :

15 =1. (4.22)

By construction of the definition (A7) of R, we have gp = (l, vz (gB), vc(qB)), such
that
UC(QB) - UC(qBTT) and Ux(QB) - v;(qBTT) : (4'23)

By definition of the transformation (see Rule[£3), the tpc constraints of the TTCC
component is the conjunction of time progress conditions received in the offers

from participating components. Thus there exist a transition ¢p % rp in B where

rg = (I, v (rB),ve(rp)) such that:
ve(qB) = ve(rp) +0 and wv.(q) = vi(rp). (4.24)

Combining (#£21)), (£23) and (@24]), we obtain that v.(rp,,) = v.(rp) and
Vi(repy) = vz(rp). Combining this to (A22), we deduce that by definition (7))
of the relation R, we have (rg,rp,,) € R.
Let (¢B,qByy) € R such that gp % rp. If B(a) #DAgp % rp, then by definition
(4.4)) of the relation 3, a € v and can be either an internal (ov € Ay) or an external
interaction (« € Ap).
Case 1: a € yN Aj.
By Definition [[LI4] there is a transition [< I’ in B, where « is guarded by G*,
the timing constraint T'C* and having as transfer function F*, such that:
q = (l,vz(qB),ve(qB)), B = (I';v:(rB),vc(rB)) ,
TC*(ve(gm)) = True, G*(va(gn)) = True, (4.25)
vy(rp) = F*(v:(qB)), and wv.(rp)=v.(¢B),

where the update function F'x = f;o...0 fjoF,,, where f; corresponds to the update
function of the transition labelled by port p; € P, in the component B; € comp(a).
By construction (A7) of R, we have ¢p,, = (lTT, V2 (4B), Uc(QBTT)), such that

UC(QB) = U:(QBTT) and Ux(QB) = v;(qBTT) : (4'26)

96

4. From High-Level BIP Model to Time-Triggered BIP Model

By definition of the transformation (Rule[3and Rule[T]), this interaction remains
intact in the obtained Bpr model. Therefore, by Definition [[LT4] we also have
4By —Bf——> TBpp, Where rp,.,. = (Z,TT,Um(TBTT),Uc(TBTT)) such that:

TT

l/?T = ll’
UC(TBTT) = UC(QBTT)) (4.27)

v;(TBTT) =" (v;(QBTT)) .

In the second equality of (4.27)), we have v.(rp,,) = vc(¢B,,) since transition «
is instantaneous. For the last equality of (£.27]), notice that, v} operates only on
common variables between models B and Bpr.

Combining @25), @Z6) and [@Z7) we obtain that lpp satisfies 5, = I,

* _ * _ (e}
vi(reyy) = ve(rp) and vi(rp,,) = vz(rp). Thus, we have ¢p,, = TBrr
TT

such that (a,a) € g since o € yN A;. By definition (A7) of the relation R, we
obtain (rg,rp,,) € R.

Case 2: a € yNAg.

By Definition [LI4] there is a transition [= I’ in B, where a is guarded by G*,
the timing constraint 7'C' and having as transfer function F*, such that:

= (Lvz(gB),ve(an)), 8= (I',v2(rB),ve(rB)),
TC*(ve(qp)) = True, G*(vy(¢B)) = True, (4.28)
v2(rp) = F*(vz(gp)), and we(rp) = ve(qs),

where the update function F'x = f;o...0 f;0F,, where f; corresponds to the update
function of the transition labelled by port p; € P, in the component B; € comp(«).
By construction (7)) of R, we have ¢p,, = (lTT, V2 (4Bpr)5 vc(qBTT)), such that

UC(qB) = v:(qBTT) and Ux(QB) = U;(QBTT) : (4'29)

By definition of the transformation (Rule 3] and Rule 1)), the interaction a of
the original model B is held by a dedicated TTCC component that we denote here
TTCC, in the obtained By model. It may be mapped to the following successive
transitions in the Bppr model:

e If the component ZIET of the global place I contains a partial place l;-rT :J_é;'i,
where B; € comp(a) and p; € P,, then a sending offer interaction may be
enabled, note that by definition of 5, this interaction is a £ transition. If the
component [2. of the global place 77 is equal to I (i.e. 1B, = (1, ..,1,)), no
offer transition is enabled.

4.5. Transformation Correctness 97

e Once all offers of components B; € comp(«) are send to TTCC,, then this
latter reaches the place read. If initially, « is not conflicting, then from
the reached global location, after sending offers, the transition labelled by
the unary interaction p, is enabled. This transition has the guard G*, the
timing constraint T'C* and executes the function F'*. Note that by definition
of B, B(pa) = 0. If « is initially a conflicting interaction, then from the
reached global location, after sending offers, the enabled transition is the rsva
interaction. This interactions has the guard G* and the timing constraint
TC*. By definition of 8, B(rsv,) = 0, it is then a 8 transition. From the
reached location by the rsv, interaction, two interactions are possible, fail,
or oky. B(faily) = 0 and B(ok,) = 0. If the fail, interaction is enabled then
the TTCC, component is reaching back the state enabling again the rsva
interaction until the ok« is enabled. From this reached global location a loop
of rsv, and fail, may be enabled before the ok, interaction is enabled. This
latter reaches a state where the TT'CC,, is in place send. The ok, as well as
the p, transition applies the update function F* to the local variables that
are local to the TTCC. Note that these variables are not concerned by the
valuation v}.

e Note that after the previously executed interaction the components B; €
comp(ca) do not change their locations. The TTCC,, component reaches the
send location. From this new reached global state, the notification interaction
is enabled. It relates the port p¢ of the TT'CC,, to ports p; of components
B, such that p; € P,. Note that 3(p%) # 0. This notification interaction
updates variables of components B; according to their copies in the compo-
nent TT'CC,. Note that these copies have been transformed by F* in the

previous 3 transition. The reached location of the notification interaction in

. U p;
a component B; is I} or L, where I —.
i

Notice that in the previously cited cases of possible interactions, we consider only
B interactions in which the TTCC« participates. For clarity reasons, we do not
detail different other possible 3 transitions involving other TTCC components and
potential offer sending requests. Not considering them, does not invalidate this
proof since they always satisfy the property l?T € {l;, J_i;'i}", are instantaneous and
do not hold any update function (i.e. they do not impact the location property,
nor the clock and variables valuations).

Therefore, by Definition [LT4] we have:

B* ! ps
4BrT > 4By > "Brr s
Brr Brr

98

4. From High-Level BIP Model to Time-Triggered BIP Model

where

CRP
lTTCC(BTT) l, (,BTT))7UZ'(q,BTT)7UC(q/BTT))7

EECC (g,), 198 (rp.)), 02 (FByy), ve(dByyr)) s

qlBTT - ((ZTT7
TBTT = ((l,TTa

with ;
,BT € {l;’ J-pz}n)

/UC(TBTT) = UC(qIBTT) = UC(qBTT) ’ (430)
v;(qIBTT) = U;Lk' (qBTT))
U (rppp) = F° (U;(quTT)))

For the last equality of (4£.30), notice that, v} operates only on common variables
between models B and Brr. And F* has been first applied to local variables of the
TTCC component in the 3 transition preceding the p§ transition. These variables
are not concerned by the v} valuation, thus, the equality v (qp,..) = v3(¢Brs)-
The transition p$ copies values of TTCC variables to those of B; components.
Thus the function £ is indirectly applied to variables of B;. Which explains the

equality U;; (TBTT) - F* (U;Lk' (q/BTT)) :

Combining (4.28), (£.29) and (£30), we obtain that I/.,. satisfies I’ B.e {lt, Ll;, JuR

Vi(repy) = ve(rp) and vi(rp,,) = vz(rp). Thus, we have ¢p,., B—) 7By Such

that (a,p$) € . By definition (A7) of the relation R, we obtain (’I“B,’I“BTT) € R.

Let (¢B, 9By) € R such that ¢p,.,. ————>ZTT "By If B arr) # DA By ————>2TT TByps
TT
then by definition (6] of the relation /3,

arr € (YNA)UA{pS € yrr|a € yNAg})

Case 1: apr =a €vyNAj.

By Definition [[LT4], there is a transition I arr, Urp in Bpr, where the transition
arr has a guard G*, a timing constraint T'C* and an update function F™, such
that:

0Brr = (LT (Brr) 5T (4Brr))s e (@Brr), ve(4Brr)) 5
rBre = (071 Bog) UTT (PBre)Ja(rBrg)y ve(PBrr)
G*(v2(gBrr)) = True, (4.31)
TC*(ve(qByy)) = True,
Ve (TBrr) = F* (v2(qBrr)
Ve(TBrr) = Ve(qBrr) -

4.5. Transformation Correctness 99

By definition of the transformation (Rule@3land Rule 1)), the transition arr = «
is exactly the same as in the model B which corresponds to the following transition
1 % 1/ in B, which is guarded by G*, TC* and has the update function F*.

By construction ([@7) of R, we have g5 = (I,v,(gB),vc(¢n)), such that
ve(qB) = UC(qBTT) and vz(gB) = v;(qBTT) . (4.32)

Therefore, By Definition [[LT4], we also have ¢p % rg,, where

with
G*(vz(gB)) = True,
TC*(ve(qB)) = True, (4.33)
ve(rB) = ve(gB)
v (rB) = F*(v:(qB))

Combining (@&3T)), {32) and @33), we obtain that I/, satisfies 'y = I € {1, 1
P ve(rBry) = ve(rg) and v (rp,,) = vz(rp). Thus, we have ¢p % rg and, by

definition (A7) of the relation R, (rp,rB,,) € R.
Case 2: arr =p§,a e yNAg.

By Definition [LI4] there is a transition lpp —%» UIrp in Bpp. The transition agrr
has no guard.

By construction of the transformation (Rule[f3]and Rule d.T]), this apr transition
is always preceded by a § transition consisting in p, if « is not conflicting and in
ok, if o is conflicting. These latter execute an update function F* that updates
variables local to the TTCC component. These variables are local copies of vari-
ables of B;. When receiving offers, values of variables of the TTCC component are
the same as their remote copies in B; components. And then, they are updated by
using the function F™ of transition ok, or p.

The notification transition is not guarded and have an update function which
copies values of local variables of the TTCC to their corresponding copies in the
participating B; components. Therefore the function F* is indirectly applied to
variables of B; components. These variables are concerned by the v} valuation.

Note that this apr transition, changes the location of the TTCC Component to

its initial wait location and allows to reach location I} or I 1,, where [Py and
p; € Ap.

100 4. From High-Level BIP Model to Time-Triggered BIP Model

Therefore, we have lpp arr, U, such that:

4Brr = ((ZIBT(QBTT)’ l%:%’CC (qBTT)’ lgIEP (qBTT)’ Vg (qBTT)? UC(QBTT)) s

B TTCC CRP
TBrp = (l/TT(qBTT), lITT ("Brr), l/TT (7B)02 (T Bry)s Ve(TBrp)) T (4.34)

U:‘(TBTT) = F*(U:‘(qBTT)) ’

UC(TBTT) = UC(QBTT) ’

such that)
I e {L, J_;"; 1 (4.35)

By definition of the transformation (Rule 3] and Rule [1]), there exist a corre-
sponding transition [= I’ in B, which is having as transfer function F*.
By construction (7)) of R, we have qp = (l,vgc(qB),vc(qB)), such that
ZYE“;T(QBTT) € {li7 Ljlr;,}n) UC(QB) - UC(qBTT) and Uﬂc(QB) = U;(qBTT) :
(4.36)

Therefore, By Definition [[L.T4] we also have ¢ % rg,, where

rg = (I',v:(r),ve(rg)) ,
with
ve(TB) = ve(qB) 5
vg(rp) = F*(vz(gB)) -

Combining ([@34), @35), [@36) and [@37), we obtain that I/, satisfies I'fy €
n

lg,Lli(, Ve(TBryp) = ve(rp) and v} (1B,) = vz(rp). Thus, we have ¢p % rp and,
by definition (L7) of the relation R, (rg,7B,,) € R.

(4.37)

p

4.6 Conclusion

In this chapter, we have presented a model to model transformational method allowing
to explicit TT communication settings in the obtained model. The obtained model is
structured following the TT-BIP architecture. It consists of tasks layer, communication
layer and the conflict resolution layer. The first layer is obtained after transforming com-
ponents participating in external interactions depending on a user-defined task mapping.
Each TTCC component of the second layer is dedicated to handle one external interac-
tion and communicate with tasks of the layer underneath in two steps; it receives offers

4.6. Conclusion 101

and sends notification after executing the interaction. The third layer is responsible for
resolving conflicts between different interactions handled by the second layer.

The obtained model is based on one global clock, implements multiparty interactions
through dedicated communication media (i.e. TTCC components) and ensures communi-
cation between different layers by using message passing interactions (i.e. Send/receive
interactions). Even though the obtained model satisfies the TT settings described in
the opening of Section [Tl it is yet still far from being intuitively translatable to the
programming language of a target platform which is based on the T'T execution model.

In the next chapter, we present a method for generating TT implementation from
the obtained TT-BIP model.

From Time-Triggered BIP Model to
Time-Triggered Implementation

In the previous chapter, we presented how a BIP model is transformed in order to comply with
the TT communication pattern. In the obtained model, multiparty communication/interactions
are handled by using dedicated communication components and different layers communicate only
via send/receive interactions. Also, components mapped to the same task are gathered under a
composite component presenting the corresponding task.

In this chapter, we present how to transform the obtained TT-BIP model into WVC code. On
the implementation level, the notion of composite process/task does not exist. Even though keeping
atomic components under the composite task can facilitate component reuse, it is necessary—in
this step of our transformation—to transform each composite task component into an atomic
one. The obtained model after composition —denoted TT-BIP* model—is the input model of the
translation into the WC language process (cf. Figure[5d]).

Also, to be able to prove correctness of the transformation from TT-BIP to WC, we must
first provide a target formal model for the implementation and define its operational semantics.

This chapter is organized as follows. In Section [51], we define the transformation that is
applied to the TT-BIP model with composite task components in order to obtain the TT-BIP*
model which encompasses only atomic components. Section [5.9 proposes the Time Constrained
Automata (TCA) model as a formal model of TT tasks of a PharOS application. Section [2.3
deals with challenges of the transformation. The formal rules that define the transformation from
TT-BIP* to TCA are presented in Section [54]. Correctness of this transformation is proved in
Section and Section [5.6.

Chapter outline

5.1 Component Composition 105
5.2 Formal Model of the ¥C' Language [10d

104 5. From Time-Triggered BIP Model to Time-Triggered Implementation

TT-BIP model

Components' composition

Model
To
Model

Y
TT-BIP* model

model translation

Y

TCA model

Figure 5.1: Transformation approach

Model
To
Code

5.3 Transformation Challenges
5.4 Transformation of a TT-BIP Model into TCA Models
5.5 Transformation Correctness. [126
5.6 Compatibility with the Composition Correctness [139
5.7 Conclusion [13d

5.1

5.1. Component Composition 105

Component Composition

We define in this section the transformation allowing to obtain atomic task components
from composite ones. This composition is needed to prepare for the code generation.

In [47], a BIP model transformation is presented, which transforms untimed BIP
models containing composite components into models with only atomic components.
We present here the definition of composition for timed BIP models.

Intuitively, as shown in Figure [5.2] the composition operation consists in replacing
transitions from atomic components that are synchronized through an internal interac-
tion by a single transition, labelled by an internal port. Guards of synchronized tran-
sitions are obtained by conjuncting the guard of the interaction and individual guards.
Similarly, the timing constraint of the obtained transition is obtained by conjuncting the
timing constraints of the composing transitions. The update function of the transition,
is defined as the sequential composition of the update function of the interaction followed
by the individual update functions of composing transitions in an arbitrary order since
they operate on independent data variables.

a=({p,a}, Gy Fo)

RLE 1a
L Xy (e=up) Me'su'y,)
CSutpc 0 CcC =u tpel
—_—> Pa

gp g Gahg,Ag,
r 4, (l,=c=u,) A (I,=c'su,)
lﬁessfatsg P l’lscts,u‘l reset c,pc' ! !

reset ¢ . . .

fol e Loo Ji T

[clock] clock clock ¢, ¢']

Figure 5.2: Component composition

In the following, we provide the formal rules:

Rule 5.1 (Component Composition). Let {Bi}ie[l,n]’ where B; = (L;, P;, X;, C;, T;, tpci),l
be the set of atomic components constituting the composite component. And let v be the

set of interactions o = (Py, Gq, F,) composing these atomic components. The atomic

component B = (L, P, X, C, T, tpc) corresponding to the composition Y{B;}icp) is built

as follows:

e the set of locations L = Ly X Lo X ... X Ly,

n

o the set of ports P = (J (P)\ U Pa) U{pa|a €},

=1 acy

n

e the set of variables X = (|J X;),

i=1

106 5. From Time-Triggered BIP Model to Time-Triggered Implementation

e The set of transitions T is built as follows:

o for each interaction o € 7y such that there exists a set of interacting transitions
n
{T17T27 ---7Tm} g U E7 SUCh that Vk e [17m]; Tk - (lTk7kaang7tch7TTk7 f’T’k7
i=1
Ir.) and {pr }r| = P,. We include in T the transition composing all these
interacting transitions defined by To, = (los Pas Gaus tCas T [, 1) € T where:
o lo =l Xl x...xly,),

o U=, xU, x..xIl),

e the guard g, = Go N(A\ ng)’
k=1

m
the timing constraint tc, = J\ ter,,
k=1

the update function f, executes first the function F, then executes func-
tions fr, for all k € [1,m].

e For each transition 7, = (lr;,Pr;s 9r;stCrs Ty frin o) € Ti of one of the

constituent components B;, such that Yo € 7, p,, ¢ P,, and for each
I = (I1,l,..l;,...,1,) € L such that l; = l;, we introduce the transition
7= (L, pry, gristery, oy fri V) € T where U = (Iy,lg, . Ui 1),

o V] = (11, ,ln) S L, tpc(l) = /\tpc(li)_
i=1

5.2 Formal Model of the V(' Language

To define a formal translation from TT-BIP* to PharOS application and to prove its
correctness, we need to provide a formal definition of operational semantics of the target
formalism. Moreover, we need the latter to be at the same abstraction level as the
UC code, i.e. to specify constraints (release, deadline and synchronization shifts) over
different clocks.

In this subsection, we present the Time-Constrained Automata (TCA) model as
the formal model of PharOS applications (Definition [51]). The presented model is an
extension of the TCA model presented in [65]. The extension consists mainly in the
presentation of timing constraints on edges instead of nodes and in handling the multi-
clock timing constraints. Then we provide its operational semantics (Definition [5.2)).

A TCA automaton describes the behavior of a task, where nodes represent only the
control locations and arcs are labelled by the triplets of constraints defining respectively
the release, deadline and synchronization instants. Each component of such a triplet is
either (—1, 1), or a pair of a shift constraint and a clock over which this shift is defined.

def

We denote by M = (Z4 x C)U{(—1,L)} the set of all such labels. When a label is
(=1, 1), the corresponding constraint is not defined.

5.2. Formal Model of the ¥(C' Language 107

Let z € Z4 be a shift over a clock ¢, and A be a reference instant over the global
clock cpasg. To shift the instant A of the clock cpasp by = along the clock ¢, we
take the instant of the ¢, corresponding to A, add z, then convert back to cpasp. We
denote by shift : cpASE X Z4 — cpasg the function computing the global instant

CBASE
corresponding to the desired shift as follows:

shifts .. (A, x) = convé, . (conviPA5E (N) + z), (5.1)

CBASE CBASE

where conv¢ and conviBASE are defined in ([2.2)) and (2.3]), respectively. In Figure[5.3]

CBASE
we explain graphically how this shift function is computed.

A conve (conveH(A) + x) = shiftt (Ax)

0 T N
1

Y
| | ! i ; ; ' > ¢

2 \ \

X 3
conv™* (M) conv®* () + x

Figure 5.3: Graphical explanation of the shift function (5.1))

Definition 5.1 (TCA). A TCA is a tuple (N,K,X,C,T) where N is a finite set of
nodes, K 1is a finite set of jobs, X is a set of local variables, C is a set of clocks,
comprising a real-time global clock cpasg and other clocks derived from cpasg, and
T =N xGx x M?>x K xV(X)YX) x N is a set of transitions. Thus, a transition is a
tuple T = (n,gx,m, k, f,n') € T where:

e gx € Gx is a Boolean guard on X;

o m = ((r, ¢, (dycq), (s,cs)) € M3, is a triplet defining respectively, the release shift
over clock ¢, the deadline shift over clock cq and the synchronization shift over clock
Cs:

o If (s,c5) # (—1,1), then (d,cq) = (s,¢s),

o If (rye;) # (—1,1), then the release instant over the clock cpasg is defined
by shifter (A7) where X € cpasi is a reference instant referring to the last
absolute release or synchronization instant.

o If (dycq) # (—1,L1) (resp. (s,cs) # (=1,1)) and (r,¢;) # (=1,1) then
the deadline (resp. synchronization) instant over the clock cpasp is defined
by shifter (A7) + convid, (d) (resp. shifter (A7) + conves, () where
A € cpase s a the reference instant referring to the last absolute release or

synchronization instant.

108 5. From Time-Triggered BIP Model to Time-Triggered Implementation

o If (dycq) # (—1,L) and (r,¢.) = (—=1,1), then the deadline instant over the
clock cpasg is defined by shifted (A, d).

CBASE

o ke K is a job;
o f e V(X)X is an update function on variables in X.

o let S = {r}I>° C T be a sequence of transitions 7; = (n;, gx;, mi, ki, fi,nk). Let
T = (nj,ng,mj,k:j,fj,n;) and 7, = (ng, gx;,my, ki, fi,n)) be two transitions in S
such that j < I, m; = ((Tj,crj),(dj,cdj),(—l,J_)), my = ((—1,J_),(—1,J_),(Sl,csl))
and Vk €]3,1[,my = ((’I“k, eF), (=1, 1), (—1, J_))

The deadline d; should satisfy the following property:

cq’ cs! ek
CO””C%JASE (dj) S Oy op (sl) T kel [COMV ey, (Tk))

o Similarly, let 7; = (nj,gx;my,kj, fj;n}) and 7 = (ng, gx;,mu, ki, fi,mp) be two
transitions in S such that j <1, m; = ((—1,J_),(dj,cdj),(—l,J_)), m; = ((—1,J_
), (di,cd), (=1, 1)) and Vk €]j,1[, my = ((ri,), (=1, L), (=1, 1)). The deadlines
d; and d; should satisfy the following property:

conviy, o, (d) < convi, o, (dh) + Sepyaconvfy g, (1) -

Figure 5.4: Alternative representation of the task behavior of Figure 2.12]

Note that WC' is essentially a syntactic representation of the TCA formal model.
The transformations from a WC' code of a task behavior to a TCA automaton or vice
versa are straightforward. In the following we explain how we obtain WC code of a
TCA automaton. Each job of a TCA automaton corresponds to either a seperate body
or a part of a body in the WC' code level. Its translation starts by an “after(r) with
¢,;” statement if the first component (r,¢,) of the triplet-label of the job is different
from (=1, 1). The body executes, then, the update function of the job. It ends by
an "advance(s)with cs”
Otherwise it ends by a "before(d) with c4” statement if the component (d,cq) of the
triplet-label is different from (—1,1).

statement if the component (s,c¢s) is different from (—1,1).

Example 5.1. For example, Figure shows the automaton representing the task be-
havior of the task of Figure[2.13. Since in the model of Figure[2.12 all constraints are

5.2. Formal Model of the ¥(C' Language 109

defined over the same clock, we only show the first component, i.e. the shift, of each pair
of the triplet-label. This triplet-label depends on timing instructions encompassing the job
in the original body code. The label of the job A is ((—1,L1),(—1,L1), (=1, 1)) since in the
original code, it is not preceded by an after instruction, nor succeeded by a before or
advance instruction. Notice that, in the labels of job C, the deadline shift coincides with
the corresponding synchronization shift, reflecting the fact that in the original behavior
code, this job is succeeded by an advance instruction.

A

(2,¢1), (1, ¢2), (1, ¢2)) start

}

B C
((_17 J—)v (1702)7 (1702) ((717 J—)a (713 J—)v (717 J—))

(a) TCA automaton

body

{
// Job A
after(2) with c;;
ComputationA();
advance(l) with c,;

// Job B
ComputationB();
advance(l) with c,;

// Job C
ComputationC();

(b) Code ¥C

Figure 5.5: An example of a TCA task with two clocks and its ¥C' code

Example 5.2. The example of Figure [5.5d shows a TCA automaton where constraints
are defined over two clocks; the clock ¢y and the clock co. Its corresponding WC' code is
displayed in Figure [5.50. In the triplet-label of the job A, the release instant is defined
over the clock c¢i while the synchronization instant is defined over the clock co. In the
corresponding WC' code of Figurel5.5l, actions of job A are executed between an "after(2)
with c¢1” instruction and an “advance(l) with co”. The job B defines in its triplet-label

110 5. From Time-Triggered BIP Model to Time-Triggered Implementation

only a synchronization instant over the clock co, which is represented in the VC' code by

an instruction “advance(1l) with co”.

The job C' does not define constraints in its triple-
label. Thus, in the WC' code, its actions are executed after the previously instantiated

nstruction.

Defining the operational semantics of TCA automaton requires a notion of state.
The state of a TCA automaton is described in four parts: the occupied node, the val-
uation of the data variables, the valuation of the clock variables and the valuation of a
reference variable that stores the valuation of the global clock in the last defined release
or synchronization instants. This reference variable is needed for absolute constraints
computation (cf. Section 5.3 for further details). Based on this notion of state, TCA
semantics can be defined as a labelled transition system as described by the following
definition:

Definition 5.2 (Semantics of TCA). The semantics of a time-constrained automa-
ton (N,K,X,C,T) is defined as a labelled transition system (Q,K,—), where Q =
N xV(X) xV(C) x Ryg and - C Q x K x Q is the set of transitions, defined as
follows. We denote by v the valuation function, and by v(X) (resp. v(C)) its restric-
tion to the set of variables X (resp. the set of clocks C). Let (n,v(X),v(C),v(Aref))
and (n/,v'(X),v'(C),v'(Aref)) be two states, such that v(c) < v'(c) for all c € C. We

have (n,v(X),v(C),v(Aref)) LA (0,0 (X),0'(C), v (Aef)) iff there exists a transition
(n,gx, ((ryer), (dycq), (s,¢5)), K, f n’) e T such that :

* gx(v(X
e v'(X) = f(v(X)) ,
e v(c) <(c) forallceC,

o if (rye;) # (—1,1), then Ve € C\ {cpase},
ShlftCBASE((Tef)) < ConvCBASE (v,(c))’

o if (d,cq) # (=1,1) and (r,c,) = (=1, 1), then Ve € C \ {cpase},
convt, . (V'(c)) < shifted | (V(Arer), d),

oy
o if (d,cq) # (—1,1) and (r,¢;) # (=1, L), then Ve € C\ {cpasr},
con’UCBASE (U ()) < ShzftCBASE((Tef)) + con’UCBASE (T)

® V' (Apes) is updated to the value of the synchronization instant s, or the release

) = True,

instant r, shifted to the clock cpasg. If none of these instants are defined, the
valuation v'(Apef) is unchanged:

shzftcBASE((Aref)s 8) s if s#—1 andr =—1,
o Op) = shzftcBASE((Aref),) + convgs o (s), if s# =1 and r# —1,
o shifter o (V(Aref),7) if s=—1andr # —1,

V(Aref) ifs=—-1andr=—1.

5.3

5.3. Transformation Challenges 111

An execution sequence of a TCA is defined as follows:

Definition 5.3 (Execution Sequence). An ezecution sequence of a time-constrained au-
tomaton (N, K,X,C,T) from an initial state (n°,v°(X),v°(C),v°(A\rer)) is a sequence
of transitions:
. . . . kl
{(n",v"(X),v"(C), 0" (Aref)) = (n”l,v”l(X),m + 1(C),vl+1()\mf))}?:1 ,
where k; € K, for all i € [1,n], and n € Z, U {oo}. An execution sequence is finite if
n € Z4, it is infinite if n = oo.

Transformation Challenges

Transforming a TT-BIP* model into a PharOS application requires addressing several
challenges.

Moving from absolute to relative constraints.

In TT-BIP, all constraints are defined in terms of absolute clock values. On the contrary,
TCA and ¥C bear only relative constraints, i.e. as an increment to the last release instant
of a preceeding triplet-label (corresponding to the previous after statement in ¥(C)
or the last preceeding synchronization instant (corresponding to the previous advance
statement in WC').

In order to address this issue, we make use of the variable A.;. It is initiated to
zero and updated whenever a TCA transition is holding in its triplet-label a release or
synchronisation constraint (i.e. the second or the third components of the triplet-label is
different from (—1,1)). In terms of WC code, the variable A, is updated whenever an
after or an advance statement is instantiated. Thus, A stores the valuation of the
global clock in the last defined release or synchronization instants (i.e. the last visited
after or advance statement is WC'). Relative constraint detive is computed from its
corresponding absolute constraint dgpsorute following this formula:

drelative = dabsolute -)\ref . (52)

Mapping of timing constraints.

Both BIP and TT-BIP models are based on an abstract notion of time. In particular,
actions that correspond to the computational steps (jump transition) of the system are
considered to be atomic and have zero execution times. Thus, only start instants of
these actions have associated timing constraints. However, in TCA models, actions do
not always have a zero execution time. They are considered to have both a release and
a deadline instants. These instants can be easily specified by using after and before
instructions of the ¥C' language, which correspond to a release and deadline components
of the triplet-labels in the TCA model presented in Section

112 5. From Time-Triggered BIP Model to Time-Triggered Implementation

This issue can be addressed by applying the timing constraint of the original TT-
BIP transition —applying originally to the start instant of the transition —to both the
release and the deadline instants of the job in the obtained TCA automaton. Note that
by doing so, the equivalence with the BIP model is preserved —since the transition is
guaranteed to finish before the original timing constraint becomes Fulse.

We figured out two options for transforming computational steps and delay steps into
TCA jobs. The first option is the intuitive mapping solution while the second option
presents a more elaborated solution. Both options are designed in such a way to allow
the TCA jobs to have a non zero execution time. In both options, release and deadline
instants of the obtained TCA jobs are mapped from the timing constraints of the original
TT-BIP* transitions:

e Option 1: Let [be a location in the original TT-BIP* model such that tpc(l) =
(¢ <w) and let 7 be the transition outgoing from [and having a timing constraint
of the form b < ¢ < ub in TT-BIP*. According to BIP semantics, 7 has only its
start instant constrained —since it is considered to have a zero execution time. It
is supposed to start at any instant between the specified lower bound /b and the
upper bound ub.

For the computational step 7 of the original model, we can include in the final TCA
a job having Ib and ub respectively as absolute release and deadline instants. This
job has the same update action as the original transition 7 and holds the following
triplet-label ((Ib — Apef, ¢), (ub —Ib,c),(—1,L)). This ensures that the instantiated
job will start and end at an instant respecting the constraint of 7. The actions of the
original transition 7 are executed either within this job or in a new job depending
on whether the original transition corresponds to an internal computation or a
communication. The example in Figure [(.6al illustrates the mapping rule of a
transition having a constraint of the form b < ¢ < ub.

In BIP semantics, delay steps can be constrained by timing progress conditions of
the form ¢ < v indicating whether time can progress at a given state of the system.
In TCA, this condition can be encoded by a loop job labelled by ((—1,L1), (v —
Aref,€), (=1, L)), since in the original model the start instant of the delay step is
not specified and only its deadline is defined (cf. Figure [5.6DI).

e Option 2: The first option considers only the transition 7 and omits other transi-
tions enabled from the same location [. In this option, all the states of the original
system are considered by taking into account all timing constraints of all outgoing
transitions from the place [. We order all the bounds of these timing constraints
and the tpc constraint. After ordering these bounds, we define computational steps
that are enabled from [in each sub-interval separating two successive bounds. This
is illustrated by the example of Figure B.7

In this example, we consider a location [in the original TT-BIP* model such as
tpc(l) = (¢ < v). The transitions 7 and 7/ are two transitions outgoing from [

5.3. Transformation Challenges 113

Vo N
o T .
((Ib = Apey, ©),(ub — Ib, ¢),(—1, 1)) (=1, 1)s(0 = Areys €),(=1, 1))
(a) Computational step constraint (b) Delay step constraint

Figure 5.6: Mapping of constraints: option 1

and having the respective timing constraints b < ¢ < ub and b’ < ¢ < ub’ (cf.
Figure B.7a)). We assume that (0’ < b < ub' < ub < v. We define for each
sub-interval the corresponding enabled transitions as displayed in Figure [5.70

"y c<w

W <c<ub b<c<ub
- T

OO

!) w b ow ub v

~ 4

(a) Original transitions enabled from [(b) Sub-intervals and their corre-
sponding enabled transitions

Figure 5.7: Defining sub-intervals and their corresponding enabled transitions: option 2

In Figure 5.8 we show how the original transitions of Figure [(.7al are transformed.
Each gray node and its outgoing jobs model one of the sub-intervals described
previously. For example, when the system occupies the upper gray node N, the
clock valuation is always inferior to Ib’. Once the clock valuation reaches the instant
I, the system moves the next gray node—which models the next sub-interval. The
loop job on the gray node allows to wait until 1o’ is reached. To do so, it defines the
triplet-label ((1,c¢), (Ib' — Aref —1,¢), (=1, L)), where the release instant is the next
instant over the clock ¢ and the absolute deadline is {b’. The second job outgoing
from the node N and leading to the next gray node marks the end of the current
sub-interval by defining the triplet-label ((1b" — A, ¢), (0,¢), (=1, L)) . Its absolute
release and deadline instants are both the instant (b’. That is, once the absolute
instant /b’ is reached, the system should immediately move to the next gray node
which models the next sub-interval.

From each gray node, we instantiate jobs corresponding to the original computa-
tional steps that are enabled in the current sub-interval —following Figure [5.70l

114 5. From Time-Triggered BIP Model to Time-Triggered Implementation

((1,(5),(”)' -)‘mf - 17(“)7(71#L))

((I" = Apef, ©),(0,¢),(—1, 1))

((1,¢),(Ib = Ay — 1,0),(—1, 1))

((1b = A, ©) (~1,1))

(=1, L), (ub = Arep,), (—1 L//Q 7' ((1,¢),(ub" = Mg — 1,¢),(—1, 1))
Q (b’ = Are»€),(0,),(~1, 1))
((1,¢),(ub = Apeg — 1,¢),(—=1,1))
((=1,L),(ub = Areg, €),(— /J:> ((ub = Areg, €),(0,¢),(=1, 1))

Q ((L,¢),(v = Aper — 1,0),(—1,1))

V/ ((U_)‘"?f7c)1(076)7(_17L))

O

Figure 5.8: Mapping of constraints of Figure [B.7al option2

Of course in this option, it should be ensured that each job starts and finishes in
the same timing constraint as in the original model. For this reason, after each
job corresponding to the computational step, a job defining a triplet-label that
holds the original deadline is instantiated. For example, in Figure [5.8] the job in-
stantiated after the job 7/, hold the triplet-label ((—1, L), ((ub" — Apef, ¢), (=1, L))
where ub’ is the deadline of the transition 7’ in the original TT-BIP* model of

Figure [5.7al

Note that the first option is the intuitive mapping solution which focuses on trans-
forming the model transition by transition. The second option focuses rather on the
state of the system and takes into account all potentially enabled transitions.

In order to avoid ad hoc solutions, we follow the mapping principles of the second
option in the proposed transformation.

Communication mapping.

In the previous paragraph, we focused only on the temporal aspect of the transition
omitting the fact that transitions are involved in communication. In this paragraph,
we consider this aspect, and we detail how the communication is mapped in the TCA
formalism.

In TT-BIP, all tasks are related to communication components via send /receive inter-
actions, which provide unidirectional data transfer and synchronization between sending
and receiving actions of, respectively, the sender and the receiver components. In TCA,
the communication is performed through the temporal variable model. New values of

5.3. Transformation Challenges 115

temporal variables are made visible at each of the synchronization points of the sender.
These new values are consulted when the current time of receivers is greater than or
equal to the visibility date of the new values. In our transformation two requirements
need to be satisfied:

1. the receiver must consult an updated temporal variable (i.e. the receive job of the
receive task must execute after the send job of the sender task) and

2. we need to respect communication semantics of the initial model, i.e. the synchro-
nisation between send and receive jobs.

We generate TCA synchronization points (advance instructions in WC' language)
that depend on whether the TT-BIP* transition is triggered by a send, receive or an
internal port. For each communicating transition in the original model, we instantiate
—after jobs guaranteeing respect of timing constraint (cf. Figure [5.6]) —a job containing,
in its triplet-label, the synchronization component (1,cy,), where cf4 is a fine-grained
clock. Consider —in the original model —a sender and a receiver components having
the same clock c¢. Suppose they are meant to communicate in the same instant ¢ in
TT-BIP* model. We can define a finer-grained clock cy,4, allowing the instantiation of
synchronisation points (send and receive at ¢ + ¢).

Example 5.3. For example, consider the time line in Figure [5.9, where clock cgq is n
times finer-grained than the clock ¢, with n > 2. The visibility instant of the sender
data is m xt + 1 of the clock cpy. The receiver will consult these data in the instant
n*t+2 of the clock cpq. In this example both requirements cited above are satisfied: (1)
the sender updates the variable before the receiver consults it and (2) when considering
the original clock ¢ over which the synchronization instant t was defined, these send and
receive instants can be approximated to t since the instant t+1 over c is still not reached.

nt
nt+2
b fine-grained clock: cyg4
nti1 (ctg =c¢/n,n>2)
t

Visibil'ity istant

Sender clock: ¢

consultat;

1t Receiver clock: ¢
ion instant

Figure 5.9: Example of advance nodes defined over ¢y,

In order to address this challenge for an arbitrary original TT-BIP* model without
resorting to ad hoc solutions, we proceed as follows:

e We define a fine-grained clock cyy = ¢9/4 where ¢9 is the unique global clock of the
TT-BIP* model (as well as the TT-BIP model, cf. Section [£4]). All synchronization
points (i.e. the third component of the triplet-label) are defined over this new clock.

5.4

116 5. From Time-Triggered BIP Model to Time-Triggered Implementation

e To each sending action, we associate a job labelled by ((—1,L1),(1,cfg), (1,¢rq))
(i.e. advance(1) instruction defined over the clock cy, in the WC' code). Note that
this job is instantiated after guaranteeing the respect of timing constraint of the
original model (i.e. after instantiating jobs as in Figure [5.6]). We add a Boolean flag
in each transferred message, which will allow testing the freshness of the message.
The sender automaton changes the state of this flag whenever a sending transition
is executed. The receiver automaton has a local flag used as reference. The value
of that flag is set to the value of the flag of the last received message.

e To each receiving transition, we associate a job labelled by ((—1,L),(2,cfg),
(2,cfg)) corresponding to successive reception attempts until the message is de-
tected to be fresh. That is until the value of the local flag is different from the
value of the flag of the message.

Note that since in the TT-BIP model, all the receive-ports of an interaction are
enabled if the send port is enabled (cf. the last property of Definition [] of the TT-
BIP model), we can be sure that the receiving job in the obtained TCA automaton
will occur at latest one instant after the sending one over the clock cpy,. The
synchronization requirement over the clock ¢ is thus satisfied.

Notice that in the obtained TCA automaton, we have only two clocks, the clock ¢9
of the original TT-BIP component and the clock c¢f4 over which synchronisation points
of the TCA automaton are exclusively defined.

Remark 5.1. Note that an alternative solution would consist in defining a fine-grained
clock cpq = ¢9/3 and a job labelled by ((—1, L), (1,¢s4), (1,¢1q)) corresponding to sending
actions and to each reception attempts. Nevertheless, in this solution a receiving task
should execute more reception attempts than in the chosen solution.

Transformation of a TT-BIP Model into TCA Models

In this section, we describe in details our technique for transforming a TT-BIP model.
As explained in the third challenge of Section 53], connectors relating different layers are
transformed into temporal variables, and different components are transformed into TCA
automata. Note that each temporal variable is updated by only one TCA automaton
(its owner).

Since in the TCA model, all communication constraints are taken into account, and
the communication consists only in copying variables of the consulted temporal variable,
we do not need to provide the formal composed model of TCA automata and all temporal
variables.

Thus, in this section, we focus only on the formal transformation of each TT-BIP*
component into a TCA automaton. Notice that the transformation of connectors into
temporal variables is trivial and straightforward; It simply consists in instantiating a

5.4. Transformation of a TT-BIP Model into TCA Models 117

temporal variable within the owner agent, and in defining its consulting agents. Its
integration is, however, described in the next chapter when describing the implemented
tool. Here, we present the rules of the transformation of a TT-BIP* component into a
TCA automaton, while addressing challenges presented in Section [5.31

The behavior of each TT-BIP* component B = (L,P, X,{c}, T, tpc) with P =
P;UP;UP, is transformed into a TCA automaton TCAp = (N, K, Xrca,Crca,Trca).

The respective sets Crca, X7ca and K are built from the original model following
Rule

Rule 5.2 (Instantiating sets of clocks, variables and job labels).
o Crca={c% cpg},

o Xqca = XU{flag’|p € PN P}U{\f}UY, whereY denotes the set of variables
allowing to make local copies of variables of X after communication,

e K = P x {send,receive,internal}.

Before detailing rules for instantiating the set of nodes N and the set of transitions
Trca, we need first to specify the rule allowing to order different bounds of timing
constraints of transitions outgoing from each original location (cf. Rule (.3)).

Rule 5.3 (Ordering bounds of timing constraints). For each | € L:

e we define the set Blb"“”ds that includes lower and upper bounds of constraints of
transitions T, triggered by port p such that p € Py and the upper bound of the time
progress condition tpc(l) = (¢ < v). Note that we consider only finite bounds. The
set Blb”“"ds is defined as follows

Blbounds — {?} ‘ tpC(l) = (C < Q))} U {lbp,ubp]p €ep 7lbp < U,pr < U}.

e we define SOTt(BlbOU”dS) as the unique non decreasing sequence By = {bj}?;ol where
duplicated elements are not preserved. Bj satisfies:
|Bl|:n ’ n§|BlboundS|,

Y0 <j <|By|—1,bj € BP"™ and V0<j<|B|—2,bj <bj1

After, defining the set |B;| for each [€ L, we include in N and Tpc4 nodes and
transitions allowing to model different intervals separating two successive bounds of | B
as explained in Section .31

Rule 5.4 (Introducing nodes and jobs corresponding to different sub-intervals). For
each location | € L:

118 5. From Time-Triggered BIP Model to Time-Triggered Implementation

e we include, in the set N, the nodes {Nlj}?zo, where n denotes the cardinality of
the set By,

e and for each j € [0,n[, we include in Trca the following transitions:

T(llozz_)) : It is a loop transition on the location Nlj. It has the temporal con-
)05

straints defined by the following triplet-label ((1,¢9), (b; —)\f,zf -1,¢9),(-1,1))
which allows waiting as long as the absolute instant b; is not reached. Its re-
lease shift (1,¢9) allows to increment)\ﬁzf by 1 at each execution of this tran-

sitton. The job T(llOZP) is not guarded and does not execute an update function.
)05
It is labelled by (p,internal) € K.

® T, It is introduced to mark the end of the current sub-interval as explained

before. It starts from location Nlj and reaches the location Nle. And it is
labelled by the triplet-label ((b; —)\f,zf,cg), (0,¢9),(—1,L)) which defines b; as
the absolute release and deadline instant. The transition 7,y is not guarded

and does not execute an update function. It is labelled by (p,internal) € K.

Once bounds are ordered (cf. Rule 5.3 and sets of nodes and transitions allowing
to define corresponding sub-intervals are defined (cf. Rule [5.4]), we need to map enabled
ports to each sub-interval. Rule presents in details how we associate to each node
Nl] its enabled set of ports.

Rule 5.5 (Computing enabled ports for each defined sub-interval). Let [€ L, we denote
by P, = {pe P|l 3} the set of ports enabled in I. For each | € L and j € [0,|Bi|[,
we define a mapping function py : [0,|B;|]] — 2. The function ; is a mapping that
associates the set of enabled ports for each node Nlj. Recall that 1b, and ub, denote
respectively the lower and the upper bounds of the timing constraint of the transition 7,
that is triggered by the port p, such that p € P;. The mapping py is defined as follows:

p, such that p € Py and lby, < bj < uby, if 7 €[0,|B;] — 1],
pi(j) = S p, such that p € P, and lb, < bj_1 <ub,, if j=|Bj| and bj # v.
@, l'fj:‘Bl‘ cmdbj:v.

After defining the set of enabled ports from each node N/ , we detail how to map
original computational steps. This transformation depends strongly on the type of port
(i.e. internal, send or receive port). For example internal ports can be mapped into only
one transition in the TCA, while a send port needs to be presented by more than one
transition. Detailed transformation of each of either ports is presented in Rule

Rule 5.6 (Mapping of computational steps). Let | € L, we denote respectively by P?,
P and Pl’ the sets of send, receive and internal ports enabled from [, i.e. respectively
the sets P, N Py, P,N P, and P, N P;, where P, is the set of ports enabled in 1.

5.4. Transformation of a TT-BIP Model into TCA Models 119

e Case 1: Internal port. For eachl € L, for each j € [0,|By|[and for each p € p(j)N
Pli such that p is the trigger-port of the transition 7, = (I,p,gx,tcy,7, f, "eT
and te, = (Ib, < 9 < uby,), we include the transition T(Jl ») in Trca. The transition

T(thp is introduced to execute the original actions within the original constraints.
Since the release instant is constrained by the bound b; which is guaranteed to
respect the original constraints, we only need to specify the original deadline of the
original transition in the triplet-label of T(jl,p). Thus, its triplet-label is as follows

((=1,L1), (ub, —)\Tef, 9),(=1,1)) . The transition T(l,p) starts from location Nj

and reaches the location Nl(,]. It is guarded by gx and executes the update function
[of the original transition T,. It is labelled by the label (p,internal) € K since
peF,

e Case 2: Send port. For each |l € L and for each p € jy(j) N B such that p is the
trigger-port of the transition 7, = (I,p, gx,tcp,r, f,I') € T and te, = (Iby, < 9 <
ubp):

e we include the node Ny in N,

e for each j € |0, |By|[, we include the transition T(l o) i Trca. This transition
18 introduced in order to allow communication via a synchronization point. As
defended in the third challenge of Section [5.3, sending actions are executed
through a synchronisation on the next instant over the clock cyq (corresponding
to an advance(l) instruction in the WC language). Therefore, the triplet-
label of the transition T(]Lp) is the following: ((—1,L),(1,¢crq), (1, ¢f4)). The
transition T{LP) starts from location Nlj and reaches the location Ny. It is
guarded by gx and is labelled by the label (p, send) € K. In order to prepare
for the communication, it executes the update function fffl ag which flips the
message flag. Recall that the update function f is guaranteed to operate on
variables that are not originally exported by the port p (cf. the fifth point of
Definition [{.1]). Therefore, we choose to execute the original update function

f within the transition T(Jl)’

o we include the transition T(/l,p) in Troa. This transition is introduced to allow
the time to progress until the original deadline is reached. It is, thus, labelled
by the triplet-label ((—1,L), (ub, —)\Tef, c9),(=1,L1) . It has as source and
target locations respectively Ny and NO. It is not guarded and defines no
update function. It is labelled by the label (p,internal) € K.

o (Case 3: Receive port. By construction of the TT-BIP model, all transitions that
are triggered by receive ports always carry timing constraints and guards that are
default to True (cf. sizth point of Definition[{.1)). It is also worth noticing, that by
construction of the transformation and in contrary to send ports, several transitions
labelled by receive ports can have the same source location (cf. the fourth point of
Definition [{.1). Therefore, putting a synchronization point for reception (i.e. an

120 5. From Time-Triggered BIP Model to Time-Triggered Implementation

advance(2) instruction in the ¥C' language) does not tell on which receive port,
the current automaton is communicating. We add a flag that is tested on each
received message in order to detect its freshness. For each | € L such that P] # 0,

for each j € [0, |B|[:

e we include the loop transition T(jl,r) n Troa. This transition is introduced
to allow the synchronization (communication) via a synchronization point. It
consists in a loop transition on location N J , in order to guarantee the reception
of at least one message. Its triplet-label is equal to ((—1,L),(2,cpq), (2,¢549))
(corresponding to an advance(2) instruction in the WC' language). Its guard

is the conjunction J\ ﬁgjlfmsh, where gjfresh 1s the guard allowing —when eval-
pEPLT

uated to True—to detect the freshness of the received message through the re-

cetve port p. More details about all communication encoding (fﬁag and gffresh)

are provided in the next paragraph. The transition T(]l ") does not define an

update function. It is labelled by (p,internal) € K.

e for each p € P[such that p is the trigger-port of the transition 1, =
(I, p,gx,tep,r, f,1) € T, we include the transition T(Jl) i Troa. This transi-
tion 1s introduced in order to execute actions of the original transition 7, € T'
after synchronization. It starts from location Nl] and reaches the location ng.
It has the triplet-label ((—1, 1), (=1, L1),(=1,1)), is guarded by gffresh and ex-
ecutes the update function 5pdate before executing the update function f of

the original transition 7, € T. Note that f¥

update s in charge of making local

copies of variables of the received message. The transition T(Jl ») 1s labelled by

(p,receive) € K.

The transformation rules —that are detailed in Rule[5.2] Rule5.3] Rule[5.4], Rule
and Rule[5.6—cover all conflict cases of TT-BIP and TT-BIP* models (cf. fourth point in
Definition [.T]). Figure 510, Figure 511l Figure and Figure [5.13]illustrate different
conflict scenarios and display the sets of transitions of the obtained TCA automata.

In the following paragraph, we provide more details about encoding of fﬁ ag and gffre sh

And we show how T(]l ") and 7)5, p € P/ allow the reception of the actual message.

Encoding of communication details.

Consider a receive port p of a TT-BIP* component B and the local Boolean variable
flag? in the corresponding TCA automaton TCAg. Denote the Boolean flag of the
message received through p by flag™*?. The guard g?r osp 18 defined by putting

def
Ghesn = (flagh # flag™?).

By construction, flag? and flag™?? are initialized to zero. Thus, initially, we have g]’,’mh =

False and the loop transition T(]l) is enabled (cf. Figure [£.12)). This transition will

,T

5.4. Transformation of a TT-BIP Model into TCA Models

121

/ A
lbg<c<ubg ' 1) ib, <c<uby
q ~_ - p

q
9x Ix
T i3
/ "\\ // \\
] 1” !] 1, !
\ / AN /

(a) Original TT-BIP transitions

U i II(l ©),(lbg — Al
l NO O (p, internal)

< -

- 1,0,(=11))

((Ibg = A%y, 0),(0,0),(—1, 1))
T(,iby) (p, internal)

-% < e (1, €),(Ibp = A, — 1,0),(—1, 1))
: Nl D (p, internal)

N -

(=1, L), (ubg = A7yp50),(=1, 1))
(q, internal)
93(qu

Tl.g)
“ ((Ibp = Apr€),(0,¢),(=1, 1))

T(1,b)) (P, internal)

€ (-1 L)ulubg — X0 0(~1, 1))

NO ! (q, mternal)]

g%, f. Aloop
\ =T (L, €), (uby — Ay — 1,0),(~1, 1))
T(1,9) N2

(p, internal)
(=1, L), by — X6, 0), (=1, L -
(p, internal)

9% fp

-

, ((uby — A%y €),(0,0),(~1, 1))
(L.p) T(,uby) (p, internal)
(=1, L) (ubp — X6,y (~1, 1))
K (p, internal) 7 ub,()(l o), (ubp = Xeyp —1,0),(~1, 1))
! ng | i fn ; l N3 :3 (p, mtcrnnl)

\ ’ T(1,p)

((ubp — X,y 0),(0,¢),(~1, 1))
T(l,ub)) (p, internal)

Zf’y” (10w = A%, — 1,6),(~1, 1))

l N4 3 (p, 1nternal)

N -

(v = AL, 0),(0,0),(=1, 1))

T(1w) (p, internal)

N
\\Nz)

(b) Port p,q € P; and lby < lby, < ubg < ubp, < v

Figure 5.10: Example of transformation of two conflicting transitions triggered by inter-

nal ports

perform a communication attempt (through the triplet label ((—1, L), (2,¢cs4), (2,¢44)))
with no actions on local variables. Each communication attempt leads to the implicit
update of the guard gffre <, depending on the flag of the received message. If the sender

has sent a new message—through its corresponding transition T(Jl//)’ labelled by its send

122 5. From Time-Triggered BIP Model to Time-Triggered Implementation

/"\ c<w

1 <C<? \{
/ \
I |
\ / AN /

~ - ~ -

(a) Original TT-BIP transitions

i \\u ::,1((1 c),(lbg — X, — 1,¢),(—=1, 1))

ref
A0 internal
N Nz /D e,)

((Ibg = Xy 0,(0,€),(=1, 1))
T,by (P, mterndl)

PR </ T (1, ¢),(Ibp — Ay~ 1Lo)(~1, 1))
:) (p, mtelnal)

((lbp = ATepr0),(0,0),(—1, 1))

T(1,6)) (p, internal)

(=1, 1),(L, c5g)s(L, c1g))

(q, send)

9% fa o f},

9.1
T(1.q)

(10 3ot 1) e (e ez

(q, internal) N ! '} | q _loop
) frfge UL, €), (ubg — Xy —1,6), (-1, 1))
T(l,a) "a internal
(1,a) Nz /D (p,)

\\ — C C
4 ((=1, 1),(L,crg)(1, cpg
LR (b, sendy” T2 ((ubg — X6,),(0,0),(~1, 1))
Sl 9% fpo i T(1,uby) (p, internal)
9% fp © Jiag
(=1, 1),(1L,¢5g),(1,¢1g))
oK v j(cpwosfegd) e *\U u»r,(u o), (ubp — X¢,; — 1,¢),(~1,1))
(=1, L),(ubp — Aresr) —1,1)) [Ny 9x2JP ° Jflag / N3 :D (p, mtcrnal)
(ps mterndl) oo TL:"/ ,
- (p -
Ty
() ((ubp = Xe,1,0),(0,¢),(~1, 1))

T(1,ub)) (p, internal)

N 7()())»

- BT (L0 (v = Ay = Le)(=1, 1))
{ Nl4 D (p, internal)

(v = Ay 0),(0,),(~1, 1))
(p, 1nternal)

‘ N
CNP

y
\\ -

(b) Port p,q € Ps and lb; < Ib, < ubg < ub, < v

Figure 5.11: Example of transformation of two conflicting transitions triggered by send
ports

port p’ € Pj—it should have performed the function f flag in order to change the value
of flag™ Wlth.

15 = (flag” == ~flag").
Recall that ﬂagp/ is a local variable of the sending component, whereof the value is incor-

porated into the message. Upon reception of the message by the receiving component,
we denote this value by flag™*?. Thus, upon reception of the message gffm o, evaluates to

5.4. Transformation of a TT-BIP Model into TCA Models 123

Do o
\

(a) Original TT-BIP transitions

T
(=1, 1),(2 cpg)s(2,cp9)) "

(p, internal) Q
_‘quesh/\ queshI (1) (L e),(v = Agy,
{ NO D (p internal)
(=1, L),(=1, 1),(=1, 1)) <

(q, receive)

—1,¢),(-1,1))

o) (0 = X%7,0),(0,0),(=1, 1))

q q
Yfresh fqo fupda 4 (p, internal)

0
’ N T(1,p)
CNR
N '
- 7((=1,1),(=1, LY
(p, receive)
p
qfresh‘ o
¢
’ N,)

(b) Port p,q € P-

Figure 5.12: Example of transformation of two conflicting transitions triggered by receive
ports

True, enabling the transition T(]l) in the receiver automaton. Otherwise, if the sender

did not send the new message yet, gfre o, €valuates to False and the transition 7'(r) (of
the receiver automaton) is again enabled.

Notice also that among the values contained in the message, only flag™® is tested
after execution of transition T(]l ") This value is only used to evaluate the freshness of
each received message.

Since the transition 77, L of the receiver automaton is executed when the received
message is fresh, it is in Charge of making local copies of message variables through the
functlon fupdate before executing the function f of the initial transition. The function

up Jate COPIiEs also the value of flag™* into flag?, thereby also changing the value of gjfr esh

from True to False.

Example 5.4. We take as an example a task component having as a unique component
the ATC component of Figure[{.]. In Figure[5.14, we show the TCA automaton obtained
after transforming this task component behavior. Note that, for the sake of simplicity of
the presentation of transitions T(1l27i2) and 7837i3) which loop back to the location NJ_l ,

duplicate this latter (displayed in light gray) at the bottom of the TCA automaton.

To summarise, the TCA automaton obtained from a given TT-BIP* component (by
rules Rule 5.2] Rule (.3 Rule 5.4l Rule (.5 and Rule (.6]) can be formally defined as

124 5. From Time-Triggered BIP Model to Time-Triggered Implementation

,"\\cgv
1/
ol by < e < uby
q ~__~ P
f Ix
a P
//(‘\\ //"\\
A Cro

\ ’ \ ’
~ - ~ -

(a) Original TT-BIP transitions

7(”1.;»)
(=1, 1),(2,¢£9):(2, ¢£g))
(p, internal) _loop
g 3 H =T (1,), (b — Mgy — 1,6),(—1, L))
{ 0 :D , internal
N Nl /] (p’)

T(INbp)

Iby — X, ¢),(0,¢),(—1, L
<<71,L>,271,L>1(7)1,L)> 8 (o, mlifm;u(e
q, receive

q q
Yfresh fqo fupdut‘

%
"(L,9) 1
T(1,r)

(=1, 1),(=1,1),(=1, L))
(q, receive) <«\ 4 ngu.ﬁi,m,c),(ubp —2; —1,0),(~1,1))
[Nll D (p, internal)

\((ubp = A%z, €),(0,¢),(~1, 1))
(p, internal)

(= =1,1)

(1,q) (g, receive)

q q
Ifresh? fqo fupdute

_loop
T

pe ‘\\(1.1') ((1,(2),(1,'—/\7161 —1,0),(-1,1))
2 i :
{ Nl /D (p, internal)

\
< -

((v -)l‘fgfvc)v(ov c),(=1,1))
{(,erg),(L,cpg)) (i) (p, internal)

N (p, send)
.

o fy 0 P e

a3

LN)

\\ ’

(b) Port p € Ps,q € P and lb, < ub, <v

Figure 5.13: Example of transformation of two conflicting transitions triggered respec-
tively by a send and a receive port

follows:

Definition 5.4. Let B = (L, P, X,{c9},T,tpc) be a TT-BIP* component with P =
P, U P, U P,. Recall that for | € L, we denote by P, = {p € P\lg} the set of ports
enabled in [. We denote respectively by P?, P/ and PlZ the sets of send, receive and
internal ports enabled from [, i.e. respectively the sets PN Ps, PN P, and P,N P;. Recall
also that By denotes the set of bounds of constraints of transitions enabled from 1 (cf.
Rule[53). We denote by 7, = (I,p, gx,tcp, 1p, fp,1,) € T an outgoing transition from a
location | € L, such that te, = (Ib, < ¢9 < ub,) and tpe(l) = (¢ < v).

The TCA corresponding to B is defined by putting TCAp = (N, K, X UX' UY U
e {7} U {cse}, T), with N = {Nlj |le L,jel0,|B]} U {N%]ll’, e Lip e PN

5.4. Transformation of a TT-BIP Model into TCA Models

125

((1, €9, (3+w,-Ap-1, ¢, (-1, 1))
T\oop X
(L'p.3) (0, internal)

((3+w.-Aep ¢, (0,9, (-1, 1)
(

o, internal)
(-1, 1), (1, ¢), (1, ¢p)
(0p, send) 0
(L'p, 0p)
op P
tpc:=c9=3+w, fflag
tep=1+w =c9=3+w,
N
fo | tegi=-0=cI=+e e
gp:=True
gq:=True
=1, ((-1, 1), (-1, 1), (-1, 1) | ¢
o=/, (0p, internal) (P op)
wei=cd loop
fp{1lw+
fa {1b++

[ﬁb}’(u,), (34w, - A1,), (1, 1))

(04, internal)
((-1, 1), (1, ¢p), (1, ¢g))
(04, send)
fiz Oy
e £ty
nb++
I tpc:=c9=3+w,
2/ tep=l+w =cI=3+w,
tegi=-o=cIs+w
gp:=True (-1, 1), (-1, 1), (-1, 1))
gq;:True (0q, internal) T(L‘u,oqv
for=/,
fo=1, loop
. (, 3) 9 A -1,) (1, L
r{g++ ((-1, 1), (.2' cp). (2, ¢p,)) @ (o @ (g + e Any-1, 0 (2, 1)
tpc:i=c9=3+w, (p, internal) TR,, ((3+w.-A.p ¢, (0,9, (-1, 1))
.] tep=l4wscOs3+w, G eh N st Ntemal)
Ty teqi=-w=co=+o R
gp:=True 0
gq:=True (Lp)
ot
for=1,
fo=/,

0
T(m»

((-1, 1), (-1, L), (-1, 1))
(q, receive)
gquh

F'a 0 Fupdate

((-1, 1), (-1, 1), (-1, L)
(p, receive)
gpfr'esh

f p 0 fupdate

(e (24w A1 @), (1, 1)) o

(i, internal) C

0
((2+w.-Ap ¢, (0,9, (-1, 1))

(13.i3)
(-1, 1), (-1, 1), (-1, 1))
(i3, internal)

(i, internal)

i3

Figure 5.14: TCA model obtained after transforming task components of Figure [4.7]

P}, K = P x{send, receive,internal} , X' = {flag’ |p € PsU P,} and Y are the sets of
flags and variables used for managing communication. The set of transitions T contains

5.5

126 5. From Time-Triggered BIP Model to Time-Triggered Implementation

the following transitions:

TP = (N}, True, (1,¢9), (b; — Xop — 1,¢9), (—1, 1)), (p, internal), id, N}) , vl e L,Vj € [0,|B],
l b) ref l

Ty = (N7, True, ((bi — Aoy, ¢9), (0,¢9), (—1, 1)), (p, internal), id, N} ™) , vie L,Vjelo,|B]—1][,

T(J'M = (N, A G (=1, 1), (2,¢54), (2,¢14)), (p, internal), id, NYY, vie L, Pl #0,Y5€[0,|B,

pEPLT

T(ll’p) = (Ny, True, ((—1, L), (ubp —)\ﬁgf,cg), (=1, 1)), (p, internal), id, NJ)) , Vi e L,Vp e P/,
J _

Tp) =

(Nl],g;;esh,((—l,i) (—1,1),(-1,1)), (p, receive), fp ofupdate’NlO’)’ Vi e L,Vj € [0,|B|[,Vp € P

(Nljngv((_le)?(lvcfg) (1 cfg)) (p7send),fp fflangl’)) vi e va] € [0,|B1H,Vp € Ml(j) mPl
(Nljngv ((717J-)7 (pr Af«eyfvcg) (le-))v (p7 internal)yfvalo/)) vl e L,V_] € [07 |BlH7Vp S :U'l(]) mPliv

where py : [1,|By]] — 28" is a mapping that associates the set of activated ports for each
state of the system (cf. Rule[53), id is the identity function, fj’;ag V(X)) = V(X)) is
the function that flips the value of the Boolean variable flag? before sending a message,
gjfresh is the guard verifying whether the value of flag? is different from that contained in
the received message, fupdate V(X UY) = V(X) is the function updating local variables
according to received values if p € P and cyq is the clock having one fourth of the period

of the TT-BIP model clock ¢? (cf. Section[5.3).

Notice that the domain and co-domain of the function f in the transition T above are

given by f: V(X) — V(X). Hence the composition f o fupdate is well-defined.

In Figure 515Dl we display the obtained TCA automaton after transformation of the
CRP automaton of Figure 5.I5al Originally, from the location wq, Wy, , two receive tran-
sitions are conflicting (i.e. the rsv,, and rsv,, transitions). These transitions are trans-
formed as shown in the pattern of Figure[5.12bl From the locations ra, we, (T€Sp. Wa, Tas,)
there is no conflict between receive transitions. Therefore, the enabled receive transi-
tion 7sv,, (resp. rsuv,,) is mapped to the loop transition T(()ralwa”) (resp. T (walrag,))

and the transition 7° ().
(raqway,msvay) (walra2,rsval)

and rq,Ta,, send transitions are conflicting. Transformation of these latter follows the
pattern of Figure G110l

resp. From locations 7o, Wa, , Wa, Tay

Transformation Correctness

In order to prove the correctness of the transformation from TT-BIP* to TCA, we
have to show that the corresponding semantic LTS are equivalent. This is illustrated in
Figure [5.16] where F' denotes the transformation from TT-BIP to TCA (Definition [5.4)),
G1 and G9 denote the corresponding LTS semantics.

We define observational equivalence between transition systems based on the classical
notion of weak bisimilarity [69], where some transitions are considered unobservable.

We will use the same notations as in Section [4.5.2]

5.5. Transformation Correctness

127

oKg, 0Kg,
NB,<nb, ANB,<ub B,<nb, N NB,<nb,
NB,:=nb, NB,:=nb,
NB,:=nb, NB,:=nb,
ok
okg, % A
NB,<nb, ANB, Bﬁg”}_ JZ B,<nb,
NB1:=’I’Lb1]\7Bl__nb1
NB,:=nb, 21 =0
[nby/[nb,| [nbg/[nb;|

NBINEJINES sV, oK, |fail,] [FSVq, 0K, | fail,]

(a) Original BIP automaton of CRPcomponent

((-1, 1), (2, ¢g), (2, ¢p)

(p, internal)
T TSVq, A T8Vq,
1 Gfresh Yfresh
(Wq1Wg2, Okg1)
(, 0kqg2)
(-1, 1), (-1, L)A1, 1)) T¢Wa Wo, failg T\oop Wa1Wo2: OKo2
L), (L) (Wa1Wa2 2. failg2)), (-1, 1), (-1, 1))
(p, internal) <1, 1), (-1, 1), (-1, 1)) 1,07 R, internal)
(p, internal) < tern
T °
(Wo1Wo2: Vo) (Wq1We2. 1SVe2)
(G1,1), (1, 1), (1, 1)) (¢, 1), (-1, 1), (-2, 1)
o (rsvq,, rece $b (rs\y,, receive) <0
T5Vq, (ro W, 1) T5Va (Wa1ro2: failg2)
(rq1Wq2, failg1) Giresh etz Yresh _
(1, INLL e, (L, e1)) rsuy, ((1..i). (2, ¢p), (2, ¢p) s, (-1, 1), (1, ¢y
, o & update (p, internal) Fupdote (fail
(fail,,, send 150y, 0 < 527" faily,
TO f Qlgy Gfresh 1\l/va1raz, r fflag (W 1ra2: OKg2)
(ra1Woo: ok flag (p, internal) ~
al%a2: Okal (1 1), (2, e, 2T (-1, LY (1, ep) (1, ¢p))
((-1, 1), ey (okg,, send)
T8Vq, o’
0 = Gfresty)/ 70 NB,<nb, ANNB,<nb,
(ro1Wo2: Vo) (Wa1rg2: rsVo1) ' NBII=TLI) * 3
(1, 1), (1), (1, 1) (1, L) (1, 1), (1, 1) NB,:=nb,
A (rsvq,, receive) (rsva1, receive) kg,
. TSVq, TSVq, T f flag
fflug (rq1Wq2, failg2) Yresh Gfresh (Wo1ra2, faily1)
[(-1, 1), (-1, 1)) Pt I'SUq, ((-1, 1), (-1, L)\(-1, 1)) Tt okan)
((Jj)r"l(W;Z'jS’z)(l)) ’ internal) fupdatf update (p' internal) oviaz et
-1, 1), (-1, 1), (-1,

(p, internal)

© (p, internal)
(rq17o2: failg2) 0
‘ (1, 1), (1, ey, (1,) a1faz: il ’ .
)3

(faily,, send)) ((-1, 1), (1, ¢p), (1, ¢
2 faily,)
« (fail,,, send
Y iy,
T° fﬂay
(ra1ro2>eka2)

T0
(L), (L, ep), (1, ¢) a1fa2 Oka1)

(-1, 1), (1, ¢y), (1,

9
OKg., send) (Oku o d)
NB,<nb, ANB,<nb, NB,<nb, A NB,<nb,
NB,.: =nb, NB,:=nb,
NB,:=nb, NB,:=nb,
Ok, ok,
flag Fiiag

(b) Obtained TCA automaton after transformation of the CRP

Figure 5.15: Transformation of the CRP component

((-1, 1), (-1, 1), (-1, L

)

128 5. From Time-Triggered BIP Model to Time-Triggered Implementation

TT-BIP |- TCA |

: 3

_Lrs | LTS

Figure 5.16: Translation functions

Let B = (L,P,X,C,T,tpc) be a TT-BIP* component. We need to prove equivalence
between G1(B) and Ga(F(B)). To this end, we define the following relation on labels of
the two LTSs:

8= {(p, (p, send)) |p € PS} U {(p, (p, receive)) |p € Pr}) (5.3)

Theorem 5.1. The LTSs Gi(B) and Ga2(F(B)) are weakly bisimilar w.r.t. B, i.e.
G1(B) ~p GalF(B)).

Proof. Let G1(B) = (@B, P, ?) and Go(F(B)) = (QTCA,K,W). Recall (Defini-

tion [[.TT]) that state space @ p has three components: control location, clock and variable
valuations while the state space Q 7ca (Definition [5.2]) has an extra fourth component—
besides the three components previously cited—consisting in the valuation of the refer-
ence instant \,.;. For a given state ¢, we will denote v.(q) (resp. v;(q)) its clock (resp.
variable) valuation component. For a given state ¢ € Qrca, we will denote vy . (q) the
corresponding valuation of A..

Below, we will use variables qg, rp, ranging over QQp, and qgrca, 7704, ranging over
Qrca and denote their respective components as follows:
gB = (Z7Ux(QB)7Uc(QB)))
rB = (ZI,UI(T'B),’UC(TB)))
qrea = (n,ve(qrea), ve(qrea), va,,; (qrea)) ,

rrca = (0, ve(rroa),ve(rroa), va,,,; (rrea)) -

We define the relation R C Qp X Qrca as follows:
i1 |B
ne (N} U{N},
R =14 (gB,971ca)| v.(q) = vi(qrca), (5.4)
vz(qB) = vi(qrca)

where v¥ (resp. v}) is the restriction of v. (resp. v;) to the unique clock ¢ of model
TT-BIP (resp. variables X). That is the valuation function v} (resp. v}) is defined only
over the clock (resp. variables) which are common between B and F(B), i.e. excluding
clock cyg (resp. variables X’ UY) of F(B).

In order to show that (R, 3) is a weak bisimulation, we have to prove the following
four assertions:

5.5. Transformation Correctness 129

(1) v(qBaqTCA) S R7

B B*
4 T = A(rp,r7ca) € R:qrca Toa TTeA

(11) v(qBa qTCA) S R7

B B
—r = d(rp,r eR: —r
qrea - TTCA (re,mTCA) 4B —> T8,

(iii) Y(¢B,qrca) € R,¥p€ P,
Bp) #0naqp > rp = 3(p,k) € B:3(rp,r1ca) € R qrea %%1 —_—
(iv) Y(gB,qrca) € R,Vk € K,
B7H(k) # 0 Aqrea # rrea = 3(p, k) € B:3(rp,rrca) € R:qp % .

Hereafter, we detail proofs of each of these four points:

(i) If gp % rp, then by definition (B.3]) of the relation (3, the underlying transition

is either labelled by an internal port or by a real number representing a delay
transition. Note that if 8 corresponds to an internal port p € P}, by definition

(E4) of the relation R we have n € {Nlj}peﬂ(j) (cf. Rule BH), v.(¢B) = vi(qrca)
and v;(¢B) = v;(qrca). And if B corresponds to a real number, we have n €

{Nlj}pEH(j) U{N}

Case 1: (8 corresponds to an internal port p € Pf and n = Nlj such that
p € pu(d)-

o). . o . 9. b 707 .
By Definition [[LTT], there is a transition [M " in B (recall that no clocks

are reset in TT-BIP models) where go = b, < ¢ < ub, with

q = (l,vz(gn),ve(qn)), 7B = (I',v:(rB),ve(rB)),

gX(Um(QB)) = gC(Uc(QB)) = True, UJB(TB) = f(vx(QB)), and UC(TB) = Uc((q5Bg)

By definition of F' (Definition [5.4]), there is a corresponding transition T(jl p)» such
that p € p(j):

N (True, ((=1,L),(ubp—XS,;,0),(~1,1)) (p.internal).f) Y

in F(B).
By construction (5.4]) of R, we have
qrea = (N}, vz(qrca),ve(qroa), va,,, (qrca)), such that

ve(gB) = vi(qrca) and wve(qB) = vp(qrca) - (5.6)

130 5. From Time-Triggered BIP Model to Time-Triggered Implementation

internal
Therefore, by definition of G (Definition [5.2]), we also have ¢rca % rTCA,

where rroq = (Nlo/,Ux(TTCA),Uc(TTCA)aUATef (TTCA)), with
ve(rrea) = ve(qrea), and vi(roca) = f(vi(grea)) - (5.7)

For the first equality of (7)), we have v.(rrca) = ve(qrca) since it satisfies the
constraint ve(rrca) < ubp+uy,,, (since we have go(ve(¢p)) = True) which respects
semantics of Definition For the last equality of (5.7]), notice that, for internal
ports p € P;, the function f in the transition T(jl,p) only operates on variables in X,

but not on those in X' UY.

Combining (BH), (5.6) and (B.7), we obtain that vi(rrca) = v.(rp) and
% B
vE(rrea) = ve(rp). Thus, we have groa o oA and, by (&.4), (rp,rrca) € R.

Case 2: (§ is a delay 0 € R.

By Definition [[LTI] there is a time progress constraint on location [in B, tpc(l) =
(¢9 <w). Therefore:

a = (Lva(gn),velqn)), 78 = (l,v(rB),ve(rp)) ,

ve(r) = v(qB), and wv.(rg) =v.(qp)+9J <wv. (58)

By definition of F' (Definition [5.4]), there is a set of corresponding successive tran-
ition. ’ loop loop loop .
Ss1tions T(l*,p*)’ T(l,bo)’ T(l,bo)7 T(l,b1)’ ceuy T(l,m)'

(True, ((—17l),(ubp* - cg),(—l,L)) ,(p*,internal),id)

ref? 0
Nl l
g . .
0 (True,((l,cg),(bof)\ﬁeffl,cg),(fl,J_)),(p,mternal),zd) A
l l
0 (True,((b1f)\ngfl,cg),(O,cg),(fl,J_)),(p,mternal),id) Nl
l l
Nl (True,((l,cg),(blf)\ﬁszl,cg),(fl,J_)),(p,mternal),id) Nl
l l
(True,((l,cg),(vf)\cg 71,0‘7),(71@_)),(p,mternal),id)
1 - n ref n
N; = Nj N,

in F(B), such that N; and T(/l*) exist only if p* € P such that [* % l.
By construction (5.4]) of R, we have:

qrea = (Ni,v2(qroa),ve(qroa), va,,, (qrea)) if N > N,

or

qrea = (N, ve(qrea); ve(qrea), va,,, (qrea)) if N # N;.

5.5. Transformation Correctness 131

In both case, we have

ve(qB) = ve(qroa) and vi(gp) = vy(qrca) - (5.9)
Therefore, by definition of Gy (Definition [5.2]), we also have

(p,internal) (p,internal) (p,internal)

ee vee T
arca TCA TCA TCA rea

where rrca = (N]", vz (rrea), ve(rrea), va,, (rrca)), with
vi(rrea) = vi(qrea) + 6 and vl (rrea) = vi(qrea) - (5.10)

Note that by (5.9), we obtain v}(grca) + 0 = v.(¢s) + 0 and by (B.8), we have
v¥(qrca) + 0 < v. Therefore, by (5.10), we have

vi(rrea) <w

Note that the latter inequality respects semantics of definition of Gy (Defini-

tion [0.2).

Combining (5.8), (59) and (G.I0), we obtain that v)(rpca) = v.(rp) and
/B*

vE(rrea) = ve(rp). Thus, we have groa o Trea and, by (&4), (rg,rrca) € R.

If (¢B,qrca) € R, qrca % rrca, then by definition (5.3) of the relation 3,

the transition [is neither labelled by (p, send) nor (p,receive). It can be labelled
only by (p,internal). Applying this to the definition (5.4]) of the relation R, we
deduce that this transition can be enabled only from nodes Nlj and NV; if it exists
(cf. Definition I}')EI) Thus this [transition corresponds in F'(B) to one of these

loo « P
transitions; ST,) T(1,b;)s (l . 1f Pr # () and (1 p*) Such that p* € Ps and ? l

Case 1: 3 corresponds to T(llOZP) in F(B), for some [€ L.

By definition of G (Definition [(.2]), there is a transition T(l bp)

(True, ((1,09),(17 —xe?

vef —1,c9),(—1,L)) ,(p,internal),id)

NY

Nj i

in F(B) with

qrca = (Nlj,vx(QTCA),Uc(QTC), Ua (qTCA)) S
rroa = (N7 v (rroa), ve(rrea), v Un,; (TTCA)) S
ve(rroa) = ve(qrea) +6 < by,
and v, (rrca) = vz(qToA) -

(5.11)

132 5. From Time-Triggered BIP Model to Time-Triggered Implementation

By definition of F' (Definition[5.4]), we have either tpc(l) = True or tpc(l) = (¢4 < v)
in B such that b; < v. By construction (5.4) of R, we have g = (I,v.(¢n), v.(qB)),
such that

ve(qB) = ve(qroa) and ve(qB) = vz(qroa)- (5.12)
Therefore, by definition of G; (Definition [LIT]), we have gp % rg, where rg =
(l,vgc(rB),vc(rB)), with

ve(rg) = ve(qp) + 6, and wv,(rp) = v:(qp) . (5.13)

Note that by (512), we obtain v.(¢p) + 9 = vi(¢rca) + 0 and by (BII]), we obtain
ve(gr) + 6 < bj. If tpe(l) = (¢ <), we have b; < v. Therefore, we have

ve(qB) +0 < v.

This satisfies the constraint v.(rp) < v of definition of G; (Definition [L.I]).

Combining (5I1)), (5I12) and (BI3]), we obtain that v}(rpca) = ve(rp) and
vi(rrea) = vy (rg). Thus, we have gp % rp and, by (&4), (rp,r7rc4) € R.

Case 2: j3 corresponds to 7, in F(B), for some [€ L.

By definition of Gy (Definition £.2), there is a transition 7))

c9d i i
lj (Tme,((bjf)\ref,cg)7(0,c9),(*1,J_))(p,mternal),zd) NljJrl

in F(B), such that

qrca = (Nlj7Ux(QTC’A)avc(QTCA)7UAmf (grca)) ,
TTCA = (Nlﬁl,Ux(TTCA),vc(TTCA),UATBf (rrea)) (5.14)

ve(rroa) = ve(qrea), and ve(rrea) = ve(qreoa) -
By construction (5.4]) of R, we have qp = (l,vgc(qB),vc(qB)), such that

ve(qB) = va(qroa) and ve(gB) = vi(qrca) - (5.15)

Combining (5.14]) and (5.15]), we obtain that v} (rrca) = ve(qg) and vi(rrea) =
vz (¢p). Thus, we have ¢p - 4B and, by (54), (¢B,rrca) € R.

Case 3: [corresponds to T(jl s i F(B) for some | € L such that P # (.

By definition of Gy (Definition [5.2]), there is a transition T(jlm):

(A e (10).2ic50),(2icrg)) (printernal) id)
pEPNPr

Ny Ny

5.5. Transformation Correctness 133

in F(B) for some j € [0, |B;|[, with

qrea = (N}, ve(qrca), ve(qrea), va,.; (arca)) ,

rrea = (N} va(rrea), ve(rrea) va,, (rrca)) (5.16)

vy (rrea) = vi(qrea),
vz(rrea) = ve(qrea) -

The second-last equality of (516 (i.e. , v} (rrca) = vi(grca)) is explained by the
following. By construction of the transformation F', the last property of Defini-
tion [£1]is held since it is a state property, i.e. all TCA receiver tasks are enabling
a receiving transition when a TCA sender task is enabling a sending transition.
Thus, by construction, and as explained in the third paragraph of Section [5.3] the
receiving transition of the receiving TCA automaton will occur at least one instant
after the sending one over the clock cy,.

Thus, after one execution of the loop transition T& in F(B), the guard
77,‘)

) Ié\ﬂP ﬂgjlfresh becomes False. That is, there exist p € P/, such that gffresh = True
p 1 T

Notice that one execution of the transition T(]'lﬂ,) increments the valuation of the
clock ¢y by 2 units. Since the clock cy, is having as granularity one fourth of the
period of clock ¢9, the valuation of this latter remains unchanged. Recall that the
clock cy4 is excluded by the valuation v}, which justifies the second-last equality

of (5.16)).

By construction (5.4) of R, we have g5 = (I,v,(gB),vc(¢n)), such that
ve(qp) = vz (qrca) and vi(gp) = vy(qrca) - (5.17)

Combining (5.16) and (5.I7), we obtain that v}(rrca) = ve(qp) and vi(rrea) =
vz(¢p). Thus, we have ¢gp 4B and, by (54), (¢8,77ca) € R.

Case 4: 3 corresponds to 7 ,+) in F(B) for some [,/* € L and p* € P;
such that [* % l.

By definition of G (Definition 5.2)), there is a transition 7)

(True, ((fl,J_),(ub)\‘;:f ,e9),(— I,J_)) ,(p,internal) ,id)

l l >

in F(B), such that
qrea = (Ni,ve(qrea), ve(qrea), va,., (arca)) ,

rroa = (N, va(rrea), ve(rroa), Ux (TTCA)) 5 (5.18)
ve(grea) + 6 < ubp-,

ve(rrca) = ve(qrea) -

ve(rrea) =

134 5. From Time-Triggered BIP Model to Time-Triggered Implementation

(iii)

By definition of F' (Definition[5.4]), we have either tpc(l) = True or tpc(l) = (¢4 < v)
in B such that ubyx < v (cf. Rule [.5). By construction (5.4]) of R, we have
qB = (l,vm(qB),vc(qB)), such that

ve(gB) = vi(qrca) and wve(qB) = vp(qrca) - (5.19)

Therefore, by definition of G (Definition [[LT1), we have ¢p %) rp, where rg =
(l’vr(TB)aUc(TB)), with

ve(rp) = ve(qp) + 0, and v, (rg) = vy(¢B)- (5.20)

Note that by (5.19), we obtain v.(¢p) + 9 = vi(¢rca) + 0 and by (B.I8]), we obtain
ve(gB) + 0 < ubp+. If tpe(l) = (¢ < v), we have uby~ < v by construction of the
model B. Therefore, we have

ve(qB) + 0 < w.

This satisfies the constraint v.(rg) < v of definition of G; (Definition [L.IT).

Combining (5I8), (BI9) and (5.20), we obtain that v¥(rrca) = v.(rp) and
vi(rrea) = vy (rg). Thus, we have gp % rp and, by (&4), (rB,r7c4) € R.

Let (¢B,qrca) € R such that gp %) rp. If B(p) #DANgp %) rg, then by definition
(3) of the relation 3, p € P/ U P?).

By Definition [L.11] there is a transition Therefore, we have lb, < v.(qrca) < ubp.
This implies that, if p € P?, the node n is a node Nlj such that p € p(j) (which
respects the previous inequatily). And if p € P/, the node n is a node Nlj , for all
j € 10,|B|[. Therefore, we deduce that n € {Nj}|Bl|

Case 1: pe€ P/.

o, . . o . b 7, 7®7 .
By Definition [L.TT], there is a transition [M " in B (recall that no clocks

are reset in TT-BIP models), where g = (Ib, < ¢9 < uby), such that

a = (l,vz(gB),ve(qB)), rB = (I',v:(rB),ve(rB)),
9x (vz(gB)) = True, b, < vc(gr) < uby (5.21)
ve(rB) = fp(vz(gn)) and ve(rp) = vc(q)

Note that we have v,(rg) = fp(vz(¢B)), since p € P?. The interaction, through
which the component is communicating, does not define an update function on
variables of the send port p (all interactions copy variable associated with the
send port to the ones of the receive ports, cf. Section of Chapter M.

definition (5.4]) of the relation R, we have v.(¢p) = v} (qrca). Therefore, we have

5.5. Transformation Correctness 135

b, < velgrea) < ub,. By definition of Rule 5.5] we deduce that the node n of
the state qrca is a node Nl] such that p € p(j) (which respects the inequality
by, < wvelgrea) < ubp).

By definition of F' (Definition [5.4]), there is a corresponding transition T(jl o)

- (ox (1,00, (Lepg) (Liegg)) o(prsend)., fpo)

Nl] Nl’
in F(B).
By construction (5.4) of R, we have qrca = (Nl,vx(qTCA),vc(qTCA),vAmf(qTCA)),
such that

ve(qB) = va(qroa) and vi(gp) = vi(qrca) - (5.22)

Therefore, by definition of G5 (Definition [1.2]), we also have

k
”
qTCA 7 TTCA
where k = (p, send) and

rrca = (Ni,ve(rrea), ve(rrea), o, (rrea)) ,

with
ve(rrea) = velgrea)
vy(rrea) = fp(vi(grea)) -
In the first equality of (5.23)), we have v} (rrca) = v:(qrca) since the transition
T(Jl ») increments by one unit only valuation of clock ¢y, which is excluded by the

valuation v}.

(5.23)

For the last equality of (£23), notice that, for send ports p € P, the function
f]{; ag in the transition T]lp operates on variables of X’ which are excluded by the

valuation v}. The function f, only operates on variables of X, but not on those of
X'UY.

Combining (m)7 (m and (m we obtain that U:(TTC’A) = UC(TB) and
vi(rrea) = vg(rg). Thus, we have

k
r
qrcA —__>TCA TCA »

where k = (p, send). By (.4), (rg,rrca) € R.

Case 2: pc P/

(p, True, True,d, fp)

By Definition [LTT], there is a transition [» I’ in B. Recall that no
clocks are reset in TT-BIP models and that all receive transitions carry timing

136 5. From Time-Triggered BIP Model to Time-Triggered Implementation

constraints and guards that are default to True (cf. sixth point of Definition [A.T]).

We have
QB = (Z7UJB(QB)7UC(QB))) TB = (ll,’l)m(TB),’UC(TB)) 9 (5 24)
ve(rB) = [y (v2(qB)), ve(rB) = ve(qB)
where f; = fo f,Zpdat . 18 the composition of the function f with a function f”; pdate

of the interaction through which the component is communicating via the port p
(cf. Definition [[L.T4]). By construction of the TT-BIP* models, we know that all
cross-layer interactions are send/receive interactions which have as update func-
tion, the function copying variables of the send port to those of the receive ports
(cf. Section of Chapter @). Thus, f* pdate COPIES values of variables of the
sender ports to those of the port p € P,.. By definition of F' (Definition (.4, there

is a corresponding transition T(]l)’

(g]lfresh7 ((fl,J_),(fl,J_),(fl,J_)) ,(p,receive),fpofﬁ?ag)

in F(B).
By construction (5.4]) of R, we have
qrca = (Nlj,Uz(QTCA)aUc(QTCA)aUATef(QTCA)),
such that
ve(qB) = ve(qroa) and vi(gp) = vy(qrca) - (5.25)
Therefore, by definition of Gy (Definition [5.2]), we also have
LN
qrCA ¥ TTCA,
where k = (p, receive), with
rrea = (N, ve(rrea), ve(rrea), va,, (rrea))
with
ve(rrea) = vi(qrea),
and , (5.26)

vy(rrca) = fp o fhgare (Va(aTca)) -
For the first equality of (5.26]), we have vX(rrca) = vi(qrca) since the instan-
taneous execution of the transition T(]l) is possible (since it respects seman-
tics of Definition £.2)). For the last equality of (5.26]), notice that, for receive

ports p € P,, in the transition T]l)’ the function operates on variables

7
, update
in X UY, but the valuation v} is defined only on variables X. Thus, we have

f ° fgpdate (U;(QTC’A)) - f ° f;pdate (U;(QTCA)) = f* (U;(QTC’A))-

5.5. Transformation Correctness 137

Combining (5:24), (525) and (5:26) we obtain that v¥(rrca) = ve(rp) and
vi(rpea) = vi(rp). Thus, we have

k
r
dTCA ——%TCA TCA »

where k = (p,receive) and, by (54), (rp,r7c4) € R.

If (qp,qrca) € R and k € K such that grea ﬁ rrea, then by definition
(E3) of the relation B, k = (p,send) or k = (p,receive). By definition of F
(Definition [5.4)), we deduce that this transition can be enabled only from nodes
Nj. Thus, if k = (p, send) it corresponds to T(]Lp) such that p € P’ N pu(j). If
k = (p, receive), it corresponds to T(jl’p) for all j € [0, |B;|[such that p € P/.

Case 1: k = (p,send) and n = Nlj, for some [€ L and j such that p € u(j).

By definition of Gy (Definition [5.2]), there is a transition T(jl It

Nj (gX7((717J-)7(17Cfg)7(17cfg)) ,(p,send),fpofﬁag)
l

\ Nl/
in F(B), with

qrea = (N{,va(qrea), ve(qrea), v, (qrca)) ,
rrca = (Ni,ve(rrea), ve(rrea), va,, (rrca)) , (5.27)
ve(rroa) = ve(qreoa) ,
vz (rrea) = fp(vz(grea)) .-
For the last equality of (5.27), notice that, for send ports p € P, the function
f]{; ag in the transition T]lp operates on variables of X’ which are excluded by the
valuation v;. The function f, only operates on variables of X, but not on those of

X'uy.
By definition of F' (Definition [5.4]), there is a corresponding transition

(9x,90,0,9,fp)
Rttt £

l U,

in B.
By construction (5.4)) of R, we have g5 = (I,v;(gB),vc(¢n)), such that

ve(gB) = vi(qrca) and wve(qB) = vy(qrca) - (5.28)

Therefore, by definition of G (Definition [[LT1]), we also have gp %) rp,, where

rg = (l',vx(TB),vc(rB)))

138 5. From Time-Triggered BIP Model to Time-Triggered Implementation

with
9x (vz(aB)) = gc(ve(gn)) = True,

ve(rB) = velgn) ,
vz(rB) = fp(vm(QB)) .

Combining (527), (E28) and (E29), we obtain that v}(rrca) = ve(rp) and
vi(rrea) = ve(rg). Thus, we have gp % rp and, by (&4), (rp,rrca) € R.

(5.29)

Case 2: k = (p,receive) and n = Nlj, for some [€ L and j € [0, |By]].
By definition of Gy (Definition [5.2]), there is a transition T&)

(g}aresh7 ((71,J_),(71,J_),(71,J_)) ,(p,recetve), fpo 5pdate)

j . NO
N; Ny

in F(B), with

qrca = (Nlj7Uz(QTCA)aUc(QTCA)7U)\Tef (arca))
rrea = (N, ve(rrea), ve(rroa), v, (rrea)) (5.30)
ve(rrea) = ve(qrea)

vy (rrea) = fpo fopgare (Vs (arca)) -

Notice that even if the actual reception was performed in the § transition 7,
preceding this k transition, the update of local variables according the received
). The

message is only performed via the execution of the k transition (via

P
update

P
update

function applies to variables of X UY.

By definition of F' (Definition [5.4]), there is a corresponding transition

I True, True,p,0, fp !
%

, in B. By construction (5.4 of R, we have qp = (l,vx(qB),vc(qB)), such that

ve(qB) = va(qroa) and ve(gB) = vi(qrca) - (5.31)

Therefore, by definition of G (Definition [LT1]), we also have gp % rp, where

rg = (l’,vx(rg),vc(rg)))

with
ve(rB) = f*(v2(qB))

(5.32)
ve(rB) = ve(qB) »
where f* = f, 0 f’ﬁpdat . is the composition of the function f, with a function

/P

update of the interaction through which the component is communicating via the

5.6

5.7

5.6. Compatibility with the Composition Correctness 139

port p (cf. Definition [[L14). By construction of the TT-BIP* models, we know
that all cross-layer interactions are send/receive interactions which have as update

function, the function copying variables of the send port to those of the receive
ports (cf. Section EAH of Chapter H). Thus, f? copies variables of the send

update
port to those of the receive port p. Knowing that, ’Zp Jate 15 defined over X while
fondate 18 defined over X UY’, we have
flp __ fp
update — update| X

(5.33)
v;(TTCA) = fp ° f,Zpdate (/U::(QTCA)) = f*(QTCA)

Combining (5.30), (5.31)), (5.32) and (5.33)), we obtain that v} (rrca) = ve(rp) and

vi(rrea) = ve(rg). Thus, we have qp % rp and, by (84), (rp,rrca) € R.

O

Compatibility with the Composition Correctness

In Section 5.5l we prove that the transformation of individual TT-BIP* components into
TCA automata is semantics-preserving. In this section, we explain why the composition
of all obtained TCA automata is equivalent to the initial TT-BIP* model.

Both glues of TCA automata and TT-BIP* components provide the same unidirectional
transfer of data. The unique difference is that in TT-BIP*, interactions provide syn-
chronisation on top of data transfer while in TCA the communication is asynchronous.
Constraints, necessary to make synchronizations possible, are reflected in the time con-
straints of individual components of the TT-BIP* model. The transformation from
TT-BIP* to TCA —described in Section B.2—ensures that these synchronization con-
straints are respected in the obtained automaton. Asynchronous (sending and receiving)
actions between interacting TCA automata are ensured to happen at instants over a
finer-grained clock as described in third paragraph of Section (.3l With respect to the
clock over which the original synchronization date is defined, these actions are happening
at the same instant.

Hence, the correctness of the TCA composition (after step 2 transformation) follows
from the correctness of the transformation of individual components of the TT-BIP*
model.

Conclusion

In the thesis, we show that it is possible to propose an automatic and cost effective
method for developing TT implementations by combining advantages of component-
based rigorous design and time-triggered RTOS-based implementations. For this pur-
pose, the applied method is based on the use of:

140 5. From Time-Triggered BIP Model to Time-Triggered Implementation

1. A high-level component-based modelling platform; timed BIP. This platform is
based on well-defined operational semantics and is prone for expressing structured
coordination between components. Behavior of each of the atomic components
of a BIP model is described by using timed automata. Composite components
are descriped as the composition of atomic components by using connectors and
priorities. Verification and analysis of component-based BIP models are possible
by using tools such as RTD-Finder [§] for compositional verification.

2. A safety-oriented Real-Time Operating Systems (RTOS); PharOS [9] implementing
the T'T approach. This framework provides a language to describe a T'T applica-
tion consisting of communicating TT tasks (called agents). It provides low-level
primitives allowing to specify timing constraints of different computations and
communication actions of TT tasks. PharOS ensures, by principle, some impor-
tant safety properties as the coherence of the data and determinism of real-time
behavior [36].

3. Semantics-preserving transformation process. It allows to generate automatically
correct-by-construction PharOS implementation from a BIP model. Thus, all prop-
erties that are satisfied by the original model, are satisfied by-construcion by the
obtained implementation. A posteriori verification of these properties is thus un-
necessary. And the determinism of the application is guaranteed by the PharOS
platform. This process is defined in two steps:

e Step 1: A model-to-model transformation. It transforms an original BIP
model into a restricted one (TT-BIP model) with respect to a user-defined
task mapping. We assume that the source model of the transformation con-
sists only of flat connectors and atomic components. This assumption can
not be considered as a restriction, since an arbitrary BIP model with hierar-
chical connectors and composite components can be transformed into a flat
model where all connectors are flat and components are atomic as shown
n [47]. Although BIP provides a rich set of interactions, we only considered
rendezvous interactions, as it is possible to transform trigger interactions into
rendezvous. The aim of the stepl transformation is to obtain a model wich
is closer to any TT implementation. That is, to obtain a model where all
inter-task interactions are executed by dedicated components and all inter-
actions between these communication components and task components are
send/receive interactions. These latter provide, on top of the synchroniza-
tion, a unidirectional data transfer. Another essential criterion for building
the transformation rules is the respect of the equivalence to the original model
where interactions’ conflicts are resolved by the BIP engine. In order to satisfy
this criterion, the obtained model contains a component dedicated to conflict
resolution and implementing the fully centralized committee coordination al-
gorithm presented in [10].

5.7. Conclusion 141

e Step 2: A model-to-code transformation. It generates automatically TT im-
plementation from the intermediate model specified in step 1. The generated
code is a WC' code (the programming language of PharOS applications). The
input model of this transformation is first adapted into a model where all
task components are flattened, i.e. all atomic components of the same task
are composed. the adapted model is called TT-BIP* model.

In order to be able to provide formal correctness proofs of the transformation
from TT-BIP* to WC, we provided a formal model of the target implemen-
tation and defined its operational semantics. This model is called the TCA
model, which is in the same abstraction level as the WC language. In this
model, a task is an automaton, where nodes present states and transitions
allow to model actions. These latter are labelled by triplet-labels specifying
release, deadline and/or synchronization dates. The transformation rules aim
at transforming each transition of the original component automaton, into
a set of successive transitions in TCA model. Time progress conditions and
timing constraints are mapped using deadlines and/or release dates in TCA
model, while communicating transition (i.e. transitions labelled by send or re-
ceive ports), are transformed into a set of transitions, among labels of which
we find a synchronization constraint.

Since the semantics of the proposed TCA model are defined as LTSs, the cor-
rectness proof of the transformation is based on the notion of the bi-simulation
between single LTSs of TT-BIP* components and their corresponding TCA
tasks. The equivalence between the obtained application and the initial TT-
BIP* model follows from the equivalence between single components and
tasks, since communication (i.e. data transfer) in both models is guaranteed
by construction to happen in the same instant over the original clock.

Tools Implementation and Experimental Results

This chapter aims at presenting the implemented tools and experimental results obtained from
case study examples.

We discuss the followed method for implementing transformations allowing to derive TT
implementation from high-level BIP model and a user-defined task mapping. This implementa-
tion was performed using the BIP tool-chain. Thus, this chapter starts first by presenting in
Section the existing BIP tools. Section [6.2 focuses on the tools implementing the methods
presented in the previous chapters. And Section[6.3 describes the case study examples and some
experimental results.

Chapter outline

6.1 The BIP Tool-chain [145
6.1.1 Real-Time BIP Language [144
6.1.2 Language Factory [14d
6.1.3 Verification [14d
6.1.4 BIP Compiler [i5d
6.1.5 Execution/Simulation [15d
6.2 Tools Developed in This Thesis @
6.2.1 BIP2TT-BIP Tool, 154
6.2.2 Merge Tool @
6.23 TT-BIP2UC Tool.o [157
6.3 Case Study Examples and Experimetal Results 163
6.3.1 Flight Simulator [164

6.3.2 The Medium Voltage Protection Relay Application (MVPR) [16d

144 6. Tools Implementation and Experimental Results

6.3.3 Evaluation. o [ﬂ
6.4 Discussion and Conclusion lﬂ

6.1

6.1.1

6.1. The BIP Tool-chain 145

The BIP Tool-chain

In this section, we present the BIP tool-chain available with the BIP framework.

The BIP tool-chain is conceived to use BIP as a common semantic model along
the design flow. It consists of a set of tools for modelling, executing, verifying and
transforming BIP models.

Language Factory

(c| [poL| [NesC | [Lustre | [AADL] BIP Language |
Translation into BIP

BIP Compiler

Safety \F
Verification/ Property BIP Parser
Validation l

end/Receive) /Send/Receiv
untimed BIP. timed BIP

: IP Meta-Model
OK < DFinder/ "\ /ﬁ (EMF) BIP Model

NOT OK-<«—I— RT-DFinder /<

Timed and untimed

Statistical SIR BIP MOdel Source to source
OK | Model < Transformations
NOT OK<~—+1— ;
Checkin
) Centrallzed Dlstrlbuted
Stochastic | code generation/ \Code generation
Property
Simulation Y
Execution

BIP Engin !
_ (Send/Receive)
i Distributed Platform

Figure 6.1: Overview of the existing BIP tool-chain

ﬂ Communication Primitives

Figure shows an overview of the BIP tool-chain. This latter includes five main
tools; the Real-time BIP language, the Language factory, the compiler, verification and
execution/simulation. We now detail each of these tools.

Real-Time BIP Language

The Real-Time BIP language offers primitives and different syntactic constructs for
modelling and composing complex behavior from atomic components by using interac-
tions and priorities. It thus allows to represent component-based models presented in
Section [L3l Note first that for practical reasons, expressions, types of data variables,
update and data transfer functions are written in C language. The basic constructs of
the BIP language are the following:

146 6. Tools Implementation and Experimental Results

e Atomic components: consisting in communicating timed automata. Transitions
are labelled with sets of ports, guards, timing constraints and update functions. A
port is either exported or internal.

e Connectors: coordinating between components ports, and having an associated
guard and data transfer action.

e Priority: imposing a restriction on the possible interactions

e Composite components: obtained from sub-components by specifying connectors
and priorities.

e Model: specifying the entire system and encapsulating the definition of compo-
nents. It defines, thus, the top level instance of the system.

A model code written in the Real-Time BIP language starts by defining types for com-
ponents, ports and connectors. These types are instantiated later in order to describe
the model architecture.

To introduce briefly how to define and instantiate BIP types, we rely on the model
example displayed in Figure [[.4.

Atomic Component Type

Components Sender; and Senders are instances of the same atomic component type
Sender. This atomic component type is parametrized by lower and upper bounds of
timing constraint labelled by port ¢ and by the time progress condition of the location
lp. Similarly, atomic components Receiver; and Receivers are instances of the same
atomic component type Receiver. Figure displays the Sender atomic component
type and its real-time BIP code. Based on that example, we detail main constructs
allowing to define an atomic component type in real-time BIP language. The description
of Figure [6.2D] starts with the declaration of two types of ports; IntPort and Internal
types. the IntPort type defines ports to which we associate an integer variable a. The
type Internal is an event port type and it is not associated with any variable. The
Sender atomic type description starts with the declaration of variables, ports, clocks and
locations. Declared ports and their potential associated variables should have types that
match those in the port type definition. Instantiated ports can be either exported (e.g.
the port s) or internal (e.g. the port 7). To each declared clock, we can define a unit
(e.g. 1 second, 1 millisecond etc.). A location may define a time progress condition,
by declaring the expression after the keyword while (e.g. the place l; of figcode). The
construct initial to is used to define the initial transition and potential initialization
update functions. Each transition of the described behavior is declared by (1) a port
(after the construct on), (2) an initial (after the construct from) and a final (after the
construct to) locations, (3) a Boolean guard (after the construct provided), (4) the set of
clocks to be reset (after the construct reset), (5) a timing constraint (after the construct
when) and (6) an update function (after the construct do). Variables of bounds of timing

6.1. The BIP Tool-chain 147

port type IntPort (int a)
port type Internal ()
atomic type Sender (int 1,int u,int utpc)
data int x
export port IntPort s(x)
port Internal i ()
clock ¢ unit 1 second
place 1,
place 1, while (csutpc)
initial to 1, do {x = 0;}
on s from 1, to 1,
provided True

reset {c}

@ do {}
i s on i from 1; to 1,

I<c<u {c} provided True

x=f(x) when (czl && c<u)
c<utpC do{x=£f (x) ;}

Clock ¢ Sender el

(a) The sender atomic (b) Real-time BIP code

component type

Figure 6.2: BIP code of the sender atomic component type

constraints and time progress conditions are defined in the component type parameters.
Guards, expressions of timing constraints, time progress conditions and update functions
are written using a subset of the C syntax.

Connector Type

Based on the example of Figure [[L4, we now present the connector types description.
Both connectors of that model are instances of the same connector type 1.52R. This
connector type defines only one interaction (since all ports are synchrons) and defines
transfer functions allowing to copy the sender variable value into receivers ones.

Figure[6.3alshows this connector type graphically, and Figure[6.3D] displays its related
real-time BIP code.

A connector type is parametrized with a list of port types that defines its port
set. The construct define specifies the type of ports, trigger of synchron and indirectly
the set of interactions allowed by the connector (cf. Section [[3.3]). In the example of
Figure [6.3b] we have only three synchrons. A trigger would be specified by appending
a quote to the port name. For each interaction, a guard and an update function can be
provided. The update function of a given interaction is defined with the down construct.
The dotted notation, i.e. port.var is used to access the variable var associated to the
port port, as defined in the port type declaration. Here all ports are synchrons, thus

148 6. Tools Implementation and Experimental Results

1S2R

IntPort IntPort IntPort
(a) The 1S2R connector type

connector type 1S2R(IntPort s, IntPort r,, IntPort r,)
define s r; r,
on s r; r,
provided True
down {r,.a=s.a; r,.a=s.a;}
end

(b) Real-time BIP code

Figure 6.3: BIP code of the 152R connector type

only one interaction is defined. Its guard is set to True. And its transfer function copies
the variable s.a into r1.a and r5.a.

The connector described in Figure [6.3D] does not allow hierarchical composition as
presented in Section [[.3.3]l Recall that hierarchical composition requires the connector to
export a port. This can be done through an export construct in the connector definition.

Compound Component Type

A compound component is nothing more than a set of instances of existing components
and connectors types joined with priority rules. A compound offers the same interface as
an atomic component, hence externally there is no difference between a compound and
an atomic component. We display, in Figure [6.4] the compound type that corresponds
to Figure [[L4] assuming that the atomic component type Receiver has been already
defined.

compound type Application
component Sender senderl
component Sender sender?
component Receiver receiverl
component Receiver receiver?2

connector 1S2R alpha(senderl.s, receiverl.r, receiver2.r)
connector 1S2R alpha' (sender2.s, receiverl.r, receiver2.r)

priority m alpha < alpha'
end

Figure 6.4: BIP code of the compound component type of the model of Figure [[.4]

6.1.2

6.1.3

6.1. The BIP Tool-chain 149

A compound type starts by creating instances of each atomic component type. It,
then, relates instantiated components by using new instances of connectors types and
defines priority between connectors. When creating connectors, the port set of each
connector is specified using the dotted notation comp.port. This notation denotes the
port port of the instantiated component comp. Furthermore, each priority rule must be
given a different name. In order to be able to execute a BIP model, one must add a top
level instance of the main compound type.

The compound type of the above example creates first two instances of each atomic
component type, i.e. instances senderl and sender2 of type Sender and instances
receiverl and receiver2 of Receiver type. Then, it defines two connectors o and o’
by instantiating the connector type 152R. The defined connectors have the respective
port set (senderl.s,receiverl.r,receiver2.r) and (sender2.s,receiverl.r,receiver2.r).
Since they are sharing ports receiverl.r and receiver2.r, a priority rule 7 is defined to
state that the interaction of connector alpha is less prior than the one of alpha’.

Language Factory

Language factory tools translate various existing languages into BIP models. The input
language can model the application software, the hardware architecture, or both of
them. Among existing tools in the language factory, we can cite the tool implementing
transformations from synchronous languages, i.e. transformations from Lustre [28] and
Simulink [81]. These transformations target synchronous BIP [8(], that is an extension
of BIP dealing efficiently with synchronous models.

Other existing tools focus on languages mixing both the application software and the
hardware architecture. These models can be transformed either into two separate models:
one dedicated to the software and the other to the architecture or into a single model
including both of them, called system model. Regarding transformations to hardware
model, they often rely on a library of hardware components (e.g. such as memories,
buses, processors,etc.) that are modeled in BIP. BIP models can be generated from the
Architecture Analysis and Design Language (AADL) [34], from nesC/TinyOS [15] and
from the Distributed Operation Layer (DOL) [26].

Verification

On top of the language and the Factory tools, the BIP tool-chain provides tools for veri-
fication and validation of BIP models. These tools are very interesting to our approach.
They can be used to verify properties on high-level BIP models. And when applying our
transformational approach to these models, the already verified properties do not need
to be reverified on the obtained implementation due to the correctness by construction
of our approach. Therefore, no a posteriori verification is needed.

6.1.4

150 6. Tools Implementation and Experimental Results

D-Finder

D-Finder [I7, [1§] is a verification tool targeting safety properties, e.g. deadlock freedom
or mutual exclusion of untimed BIP models. Untimed BIP models are models that have
no timing features (clocks, timing constraints, time progress conditions). D-Finder relies
on invariants used to approximate the set of reachable states of the target system, hence
the method is sound but not complete: it may not be able to prove a property even if
it is satisfied by the system. Invariants are computed following the architecture of the
system, that is, it generates invariants for components and interactions. The approach is
compositional and can be applied incrementally, allowing to better scale to large systems
than traditional verification techniques.

RTD-Finder

RTD-Finder [8] extends the D-Finder tool to allow verification of BIP models with timed
features. RTD-Finder is based on the approach of D-Finder with the use of auxiliary
clocks that help to capture the constraints induced by the time synchronizations between
components.

Statistical Model-Checker

In addition to the verification tools, the BIP tool-chain includes the statistical model-
checker SMC-BIP [73]. This latter checks stochastic properties described with Proba-
bilistic Bounded Linear Temporal Logic (PBLTL) formulas. These properties refer to
the traces of the model. The model has to be expressed using Stochastic BIP (SBIP).
Given an SBIP model, a PBLTL formula and confidence parameters, SMC-BIP tool
computes execution sequences until the formula can be proven with the target degree
of confidence. This tool is well-suited for evaluating quantitative properties including
system performance related metrics.

BIP Compiler

The BIP compiler is developed with eclipse, and it uses some eclipse technologies (in
particular, EMF). The compiler relies on a modular approach and is composed of three
main parts; the front-ends, the middle-ends and the back-ends. These parts can be
combined to form a chain, corresponding to a path in the design flow.

The front-end defines the BIP meta-model, the grammar and the rules to build a
BIP-EMF model from a BIP source (i.e. the parser). It allows as well to interact with the
user and instantiate all parts of the compiler and bind them together to form a coherent
compiler. The middle-end is designed to ensure maximal reuse. It contains the needed
mechanics allowing to build filters applying BIP-EMF to BIP-EMF transformations.
The back-end contains transformations from BIP-EMF to some source codes in a given
language. Code generation from BIP-EMF is based on acceleo templates. In the back-
end part of the BIP tool-chain compiler, two code generators are provided for generating
respectively BIP and C++ code.

6.1. The BIP Tool-chain 151

In the remainder of this section, we focus of existing transformations in the middle-
end part of the compiler. These transformations can be partitioned into optimization
transformations and transformations into distributed systems. Optimization transfor-
mations are developed for untimed BIP models while transformations for distributed
systems are developed for both timed and untimed BIP models.

Source to source optimizations

These transformations are presented in [27] [47]. Their related tools were developed for
improving the efficiency of the generated code. They consist mainly of two types of tools;
the flattening and merging tools. Flattening tools allow to (1) flatten a component by
replacing the hierarchy of components by a set of hierarchically structured connectors
which relates atomic components and (2) replace a set of hierarchical connectors by an
equivalent set of flat connectors (cf. Remark [[4]). Flattening a connector is performed
by composing data transfer functions (e.g. the flat and the hierarchical connectors of
Figure [[LT0 are equivalent).

Merging tool allows to transform a set of interaction untimed BIP components into
a single component with the same behaviour and interface as the composition of the
original components.

As explained in Section [£3] in this thesis all input BIP models are considered to be
flat models. The flattening tools are therefore strongly required in the tool-chain since
it allows to execute a pre-transformation to any model and obtain flat connectors.

Although needed, the merging tool is not directly usable in our work since it applies
only to untimed BIP models. As explained in Section [5.1], the merge transformation is
easily adapted to Timed BIP models.

Source to source transformation for untimed distributed model

Aiming at deriving distributed implementations from high-level untimed BIP model,
several tools have been integrated into the BIP tool-chain [47, 21], [77]. A global overview
of the different options to generate an untimed distributed (i.e. a 3-layer Send/Receive
model) model from an untimed BIP model —with or without priorities—is shown in
Figure Recall that untimed BIP model and untimed Send/Receive models do not
contain timing features (clocks, timing constraints and time progress conditions). These
tools are parametrized by an interactions partition and a conflict resolution protocol and
they consist of the followings:

e UBip2SrBip: This tool generates a 3-layer Send/Receive untimed BIP model from
a high-level untimed BIP model. Priority glue is not supported by this tool.

e UBip2Bic: In order to be able to consider the priority glue, this tool was introduced
to transform an untimed BIP model into a untimed BIC model. Untimed BIC is
an untimed BIP model where priorities are rewritten as Condition predicates [22].
That is each priority is transformed into a predicate on interactions. This predicate

152 6. Tools Implementation and Experimental Results

Untimed Untimed |
BIP Model BIP Model
with priority no priority
UBip2Bic | Conflict Resolution |
Protocol
Y
Untimed
BIC Model Tlnteraction Partition
\
UBic2SrBip UBip2SrBip

Send/Receive
untimed BIP Model

Figure 6.5: Transformation of untimed BIP model into Send/Receive model

helps in characterizing the system state where an interaction could execute, i.e.
where no interaction with a higher priority is enabled.

e UBic2SrBip: This tool is an extension of the UBip2srBip tool. It is implemented to
support the condition predicate. Its input is a BIC model, i.e. the model resulting
from the application of Bip2Bic tool transformation to a BIP model.

Source to source transformation for timed distributed model

These transformation tools, presented in [86], extend the previously mentioned tools in
order adapt them to the BIP models and take into account all time features. Figure
shows an overview of tools targeting timed Send/Receive models. This tool does not
support priority glue, and it is parametrized by an interactions partition and a conflict
resolution protocol. Although not explicitly displayed in the figure, two versions of the
tool were implemented:

e Bip2SrBip: This tool generates a timed Send/Receive model from a high-level
BIP model. The implemented approach assumes that communications between
components are instantaneous i.e. no communication delays are considered.

e Optimized Bip2SrBip: This tool aims at extending the Bip2SrBip in order to
consider communication delays i.e. cross-layer interactions are not instantaneous.

6.1. The BIP Tool-chain 153

BIP Model
no priority

Conflict Resolution [
Protocol

Interaction Partition

<Bip2g@

Y

Send/Receive
BIP Model

Figure 6.6: Transformation of Timed BIP model into Send/Receive model

6.1.5 Execution/Simulation

The Compiler code generator provides C++ code for either simulation or execution.
This code corresponds to both atomic components and glue. One possible scenario
to execute the generated code is to use the centralized BIP execution Engine, which
directly implements the BIP operational semantics. It plays the role of the coordinator
in selecting and executing interactions between different components while respecting
the priority rules. Executing an untimed BIP model with the use of a centralized Engine
can be performed in two different modes: the single-thread and the multi-thread modes.
While for BIP models with timing features, only the single-thread mode is provided by
the BIP tool-chain.

For single-thread mode, the Engine and all atomic components execute in a single
thread. This execution mode ensures sequential execution of BIP models. During one
execution iteration of the Engine, the enabled ports and interactions are selected from
the complete list of interactions, based on the current state of the atomic components.
Then, priority rules are applied to eliminate interactions with low priority among the
enabled ones. An execution iteration starts and finished by the global state of the system.
It consists of the following steps:

1. The engine computes Enabled ports after receiving current states of different
atomic components (i.e. their current locations and valuations of clocks and vari-
ables),

6.2

154 6. Tools Implementation and Experimental Results

2. The Engine enumerates on the list of interactions in the model and selects the
enabled ones based on the current states of the atomic components,

3. The Engine eliminates interactions having low priority,

4. Among the filtered enabled interactions, the Engine selects randomly one interac-
tion, executes its data transfer function and notifies the involved atomic component
the transition to execute.

In multi-thread mode, we assign a different thread to each atomic component. The
Engine is executed in another thread. Contrarily to the single-thread mode, the global
state is unknown to the Engine as an atomic component performing an internal compu-
tation has an undefined state. Therefore the Engine executes according to a partial state
semantics [I3], that takes into account the fact that the state of some components may
be unknown. An execution iteration of the multi-thread Engine is very similar to the
execution of the single-thread one. Nevertheless, it starts by a partial state. Checking
enabledness of an interaction is, thus, not enough to ensure that it can execute, since a
higher priority interaction may be enabled. To avoid that, the multi-thread Engine relies
on an oracle that must be True for the interaction to execute. This means that atomic
components can not be ready to execute a higher priority interaction. An execution
iteration of the multi-thread Engine consists of the following steps:

1. Components that are ready to interact inform the Engine about their enabled
ports,

2. Based on the received information, the Engine filters interactions having an oracle
evaluated to True,

3. Among the filtered interactions, the Engine randomly selects an interaction to exe-
cute, executes its data transfer function and notifies the involved atomic component
the transition to execute.

For distributed implementations of untimed and timed BIP models, the BIP tool-
chain provides code generators in order to generate C++ code for each Send/Receive
component of the corresponding 3-layer Send/Receive models. Send/Receive interac-
tions between components of distinct layers are replaced by using the message-passing
primitives available on the target platform.

Tools Developed in This Thesis

In this section, we present how the methods presented in this thesis have been imple-
mented through a set of tools. In Chapter Ml and Chapter [B] we presented a two-step
method to derive a TT implementation from a high-level BIP model. We have developed
tools for generating such implementation from a given high-level BIP model. Figure[6.7]

6.2. Tools Developed in This Thesis 155

shows an overview of the developed tools as well as the input and outputs of each one
of them. Different developed tools are integrated within the existing BIP tool-chain.

BIP Model
no priority

Task Mapping
/
Bip2TT-Bip)
Y

TT-BIP Model
N

Y

Task Merge

Y
TT-BIP* Model
D

Y
TT-BIP2PsyC)

Y
WC implemntation

Figure 6.7: Overview of developed tools

Figure shows the BIP tool-chain including the new-developed tools.

6.2.1 BIP2TT-BIP Tool

Parametrized by a user-defined task mapping, this tool implements the transformation
described in Chapter Ml It allows to transform parsed BIP models into TT-BIP models.
The BIP2TT-BIP tool is written in Java and is currently integrated as a filter in the
middle-end part of the BIP tool-chain compiler. Algorithm [I] displays the pseudo code
of the part of the developed tool allowing to transform components of the original BIP
model.

156 6. Tools Implementation and Experimental Results

Algorithm 1 Transformation of a components of BIP model

Input: Original component B

Output: Obtained component
BTT

BTT

= newComponent()
if B # ATC-component then
33 BT =B
else
// Ports
6: portsOf(BTT).add(portsOf(B))
for p € portsOf(B) and p € Ag do
portsOf(BTT).add(offer-port)
9: end for
// Locations
locationsOf(BTT").add(locationsOf(B))
12: for ¢ € transitionsOf(B) do
if portOf(t) € Ag then
locationsOf(BTT").add(offer-location)
15: end if
end for
// Transitions
18: for [€ locationsOf(BTT) do
if 1 = offer-location then
transitionsOf(BT7).add(offer-transition)
21: else if P, C A; then
transitionsOf(BT7).add(internal-transition)
else
24: transitionsOf(BT7).add(notification-transition)
end if
end for
27: end if

6.2.2

6.2.3

6.2. Tools

Developed in This Thesis

157

Language Factory
[DOL]| [NesC | [Lustre] [AADL |

(Translation into BIP)

BIP Language |

BIP Compiler
Safety o P'
arser
Verification/ Property C’:
Validation .~
- IP Meta-Model Source to source
BIP Model
OEK DFlnder/ (EMF)
NOT O < RT-DFinder = : : Transformation
Timed and untimed
— S/R BIP Model BIP to TT-BIP
oK Statistical\ _ Transfé)rmatlon:
< < TT-BIP Model Bip2TT-Bip
NOT Ok~ 1| _Model K)
Checkin k
Tasks Composition
Stochastic V Merge
P t . " .
roperty Centralized Distributed Time-Triggered Code
Code generation/ \Code generation Generation:
TT-Bip2WC
Simulation Y
Execution
C++ C++| [C++| |C++
BIP Engi Communication Primitives .
jgmﬂ (Send/Receive) Tempcii\ianable
__ € N
PharOS Platform
Figure 6.8: Tools developed within the existing BIP tool-chain
Merge Tool

Since tasks in the obtained TT-BIP model from the previous tool may be a composite
component, this tool allows to compose components within a task. It implements the
formal transformation presented in Section [5.1] of Chapter [§l and consisting in transform-
ing a set of atomic components and a set of flat connectors into an equivalent atomic
component. The obtained model after this transformation is denoted TT-BIP* model.
This tool is still under construction.

TT-BIP2V(C Tool

This tools consists in a code generator which implements the translation of a TT-BIP*
model into WC' code as presented in Chapter Bl This tool is implemented as a back-end
part of the BIP compiler using the Model To Text (M2T) tools of eclipse, e.g. Acceleo [71]
(cf. Figure [6.9)).

An Acceleo project consists of different module files (i.e. .mtl files) which include
only one main module. These files implement transformation rules that are described

158 6. Tools Implementation and Experimental Results

Acceleo Modules

main.mEL
*.mtl

BIP Model PharOS application

BIP
Meta-Model

*.psy

Figure 6.9: Model to Text transformation using Acceleo templates

in Chapter Bl A module file is made up of several templates describing the necessary
parameters to generate source code from the meta-model and/or queries used to extract
information from manipulated models. A module can depend on other modules for its
execution. Templates and queries use the Object Constraint Language (OCL) [87].

As described in Chapter Bl this tool generates an agent for each component and a
temporal variable for each send/receive connector of the TT-BIP* model. In Chapter [
we presented the TCA formalism as the formal model of agents in PharOS application.
In this subsection, we detail the transformation of the TT-BIP* model by focusing on
the generated code of the behavior (syntactic presentation of the TCA automata), as
well as clocks and temporal variables instantiations.

Clocks’ generation

By construction, we know that in TT-BIP* models, there is only one global clock ¢9. By
construction of the transformation described in Chapter Bl the obtained ¥C' implemen-
tation contains the clock ¢/ and a finer-grained clock cf,. From the WC point of view,
the global clock of the application is the clock ¢y since it is finer-grained than the clock
9 (the global clock of models TT-BIP and TT-BIP*). Thus, in the generated code, the
clock ¢y, is specified by using primitives (gtc0, gtcl, gtc2, etc.). And the clock ¢ is
specified based on the clock ¢y, as displayed in Figure

Agents’ data and temporal variables generation
For each component in the TT-BIP* model, we instantiate an agent which defines a
block of its internal /local variables, a block of its output temporal variables followed by
the display block and a block of its input variables (cf. Section [2.3.2]).

All variables of the original TT-BIP* component that are not associated with send
ports, are declared in the global block.

For each send port of the TT-BIP* component, the corresponding agent generates a
declaration in the temporal block. The corresponding temporal variable is a structure
encompassing all variables associated with the port in the original TT-BIP* component

6.2. Tools Developed in This Thesis 159

clock cfg = gtcl(0,1)
clock cg = 3* cfg

Application Example;
agent Agl{

}
agent Ag2{

}

Figure 6.10: Clock instantiation in the generated WC code

and variable flag™*? that is added by the transformation (cf. Section [5.4] of Chapter [).
Note that if originally the send port is not associated with any variable (which is the
case of ports fail and ok of the CRP component), its corresponding temporal variable
corresponds to the Boolean variable flag™®. Once temporal blocks are defined, we
instantiate in each agent the corresponding display blocks. For each temporal variable
(originally corresponding to a send port), the block display defines a declaration of
consulting agents which originally correspond to TT-BIP* components that contain a
receive port which is related to the send port corresponding to the temporal variable.

For each receive port of the TT-BIP* component, the corresponding agent generates
a declaration in the consult block. This declaration contains the name of the remote
agent corresponding to the TT-BIP component to the send port of which this receive
port is related in the TT-BIP* model.

In our work, all depth values are default to zero (resp. to one) in the temporal (resp.
consult) block —since the original TT-BIP* model do not manipulate past values.

Figure [6.11] displays an example of instantiation of global, temporal, display and con-
sult blocks corresponding to a task component communicating with a TTCC component
through an offer sending and notification interactions. The structure X, is the temporal
variable of the agent Task, and it is displayed to/consulted by the TTCC. The structure
Yp
agent Task.

We display in Algorithm [, the algorithm that allows to instantiate the blocks of
local and temporal variables of an agent starting from the original model. In Algo-
rithm 2 functions AddVarDeclaration(), AddTvDeclaration(), AddDisplayDeclaration ()
and AddConsultDeclaration() are functions that take in parameter corresponding vari-
ables or owner/consultant agents of the temporal variable and have as output the dec-
laration code following the syntax of each block. And functions Start(block) (resp.

. is the temporal variable of the agent TTCC, and it is displayed to/consulted by the

End(block)), allow to write the appropriate code to declare the start and the end of each
block.

160 6. Tools Implementation and Experimental Results

Algorithm 2 Instantiation of global, temporal, display and consult blocks

Input: Original model TT' — BIPx = Components + Connectors
Output: Obtained ¥C' application
for B € Components do
Start(agent Ag)
3. Start(global-block)
for x € internalVariablesOf(B) do
AddVarDeclaration(x)
6: end for
End(global-block)
Start(agent Ag)
9: Start(temporal-block)
for pSend € sendPortsOf(B) do
AddTvDeclaration(variablesOf(pSend))
12: end for
End(temporal-block)
Start(display-block)
15: for pSend € sendPortsOf(B) do
for C € Connectors do
if portsOf(C) include pSend then

18: for pReceive € receivePortsOf(C) do
AddDisplayDeclaration(agentOf(pReceive), variablesOf(pSend)
end for
21: end if
end for
end for

24: End(display-block)
Start(consult-block)
for pReceive € receivePortsOf(B) do
27: for C € Connectors do
if portsOf(C) include pReceive then
for pSend € sendPartsOf(C) do

30: AddConsultDeclaration(agentOf(pSend), variablesOf(pSend)
end for
end if
33: end for
end for

End(consult-block)
36: end for

6.2. Tools Developed in This Thesis

161

int y;
struct ng

int X, X,
struct X,
struct X,

Task

Application Example;

agent Task{

global {
int x;, x,;
}
temporal {
struct 0$Xy;
}
display{
Xe & TICCE
}
consult {
TICC : 18Yp ;
}
body start{

}

}

agent TTCC{

global {
int y;;
}
temporal {
struct O$ng
}
consult {
Task : 1$X.;
}
body start{

}

}

Figure 6.11: Example of temporal variables instantiation

Agents’ behaviors generation

In the WC language, the behavior of an agent can be described using successive body
items. We choose in our generation tool, to instantiate one body per original transition.
That is each body executes the set of transitions of the TCA automaton corresponding
to the image of the original transition of the TT-BIP* component.

Note that in the WC code level, no indeterminism is allowed. Thus, at the end of
each body we need to specify its corresponding next body through the instruction next

162 6. Tools Implementation and Experimental Results

body. Therefore, each body tests respective guards of next jobs (of the corresponding
TCA automaton) and only the body of the job with the guard evaluated to True is
enabled. When two transitions are enabled, we may in the generated code choose one of
them to execute. While transforming the CRP component of Figure [5.15al we obtain the

#ifndef TYPES H_
#define TYPES_H_

//Reservation structure

global { typedef struct {
int NB1 = 0; int nbl;
int NB2 = 0; int nb2;
int NB3 = 0; bool flag;
int nbl, nb2, nb3; } TTCC_Rsv_alpha_1;
bool flagRef Rsv_alpha 1 = 0; typedef struct {

bool flagRef ok alpha 1 =
bool flagRef fail alpha 1
bool flagRef Rsv_alpha 2 = 0
bool flagRef ok alpha 2 = 0;
bool flagRef fail alpha 2 =
}

0; int nbl;
= 0; int nb3;
H bool flag;
} TTCC_Rsv_alpha_2;
0;

//OK structures

temporal {
//0kFail structures
CRP_ok_alpha_1 0$vt_CRP_ok_alpha 1;
CRP_fail alpha_1 0$vt_CRP_fail alpha_ 1;
CRP_ok_alpha_2 0$vt_CRP_ok_alpha_ 2;

typedef struct {
bool flag;
} CRP_ok_alpha_1;

typedef struct {

CRP_fail alpha_ 2 0$vt_CRP_fail alpha_2; bool flag;
} } CRP_ok_alpha_2;
display {
vt_CRP_ok_alpha 1 : TTCC_alpha 1; //FAIL structures
vt _CRP_fail alpha_ 1 : TTCC_ alpha_1; typedef struct {
vt_CRP_ok_alpha 2 : TTCC_alpha_2; bool flag;
vt _CRP_fail alpha_2 : TTCC_ alpha_2; } CRP_fail alpha_1;
}
typedef struct {
consult{ bool flag;
TTCC_alpha_1: 1$vt TTCC_Rsv_alpha_1; } CRP_fail alpha_2;
TTCC_alpha_2: 1$vt TTCC_Rsv_alpha_2;
} #endif
(a) Obtained global, temporal consult (b) Definitins of structures
and display blocks after transformation of of temporal variables
the CRP

Figure 6.12: Generated variables and temporal variables of the CRP component of Fig-
ure 5.15a

blocks of variables and temporal variables displayed in Figure In Figure [6.120] we
display the type file that contains the definitions of structures corresponding to different
temporal variables. In Figure[6.13] we display the ¥C' code corresponding to the behavior
of the CRP components of Figure [[.I5al This source code maps the transitions of the
TCA automaton of Figure[5.15bl Different comments display the name of the transition
mapped to the succeeding lines of code. As you can notice in this example, the non-
determinism is resolved by imposing an order for execution of conflicting jobs. That
is when the CRP has received already a reservation, originally it can either receive the
second reservation or send an OK or a fail notification. This conflict can not be allowed
in the W' code level. Therefore, we choose to prioritize the ok notification if its guard is
True, otherwise the fail notification can be sent. In this choice, the CRP can not receive

6.3. Case Study Examples and Experimetal Results 163

two successive reservations. This behaviour is included in the original behavior, since
in the original BIP model. This resolution of non-determinism does not jeopardise the
correctness property of the transformation.

body start{

//Tau_(w_alphal w_alpha2,r)”loop

advance(2) with cg;

while(flagRef Rsv_alpha_1 == TTCC_alpha_1~1$vt_TTCC_Rsv_alpha l.flag

&& flagRef Rsv_alpha_ 1 == TTCC_alpha_l1"1$vt_TTCC_Rsv_alpha_l.flag)

{
advance(2) with Cegi

}

//Tau_(w_alphal w_alpha2,rsv_alphal)”0

if (flagRef_Rsv_alpha_1 != TTCC_alpha_l‘ 1$vt_TTCC_Rsv_alpha_1 .flag){
flagRef_Rsv_alpha_ 1 = TTCC_alpha_ 1" 1$vt_TTCC_Rsv_alpha_l.flag;
nbl TTCC_alpha_1"1$vt_TTCC_Rsv_alpha_l.nbl;
nb2 TTCC_alpha_1"1$vt_TTCC_Rsv_alpha_l.nb2;
next Ok _Fail alpha_1;

}

//Tau_(w_alphal w_alpha2,rsv_alpha2)”"0

if (flagRef_Rsv_alpha_2 != TTCC_alpha_2"1$vt_TTCC_Rsv_alpha_2.flag){
flagRef_Rsv_alpha_2 = TTCC_alpha_ 2" 1$vt_TTCC_Rsv_alpha_ 2.flag;
nbl TTCC_alpha_2"1$vt_TTCC_Rsv_alpha_2.nbl;
nb3 TTCC_alpha_2"1$vt_TTCC_Rsv_alpha_2.nb3;
next Ok _Fail alpha_2;

}

}

body Ok_Fail_alpha_1{
//Tau_(r_alphal w_alpha2,ok_alphal)”0
if (nbl > NB1 && nb2> NB2){
vt_CRP_ok _alpha_l.flag = !vt_CRP_ok_alpha_l.flag;
NBl = nbl;
NB2 = nb2;
advance(l) with cgg;
}
else{
//Tau_(r_alphal w_alpha2,fail_alphal)”0
vt_CRP_fail alpha_l.flag = !vt_CRP_fail_alpha_l.flag;
advance(l) with cgg;
}
next start;

}

body Ok_Fail_alpha_2{
//Tau_(w_alphal r_alpha2,ok_alpha2)”0
if (nbl > NB1 && nb3> NB3){
vt_CRP_ok _alpha_2.flag = !vt_CRP_ok_alpha_2.flag;
NBl = nbl;
NB3 = nb3;
advance(1l) with Cegi
}
//Tau_(w_alphal r_alpha2,fail_alpha2)”0
else{
vt_CRP_fail alpha_2.flag = !vt_CRP_fail_alpha_2.flag;
advance(l) with cgg;
}
next start;

}

Figure 6.13: Generated code of the behavior of the CRP component of Figure [5.15al

6.3 Case Study Examples and Experimetal Results

In this section, we describe industrial case study examples and present experimental
results obtained after testing of different developed transformation tools.

6.3.1

6.3.1.1

164 6. Tools Implementation and Experimental Results

Flight Simulator

The first case study is the Flight Simulator (FS) application [16] dedicated to the naviga-
tion of DIY radio controlled planes. The original application is written in Modelica [40].
This application provides a simulation of the physics of a plane and an automatic pilot
who tries to reach given way-points on a map. The simulation of the Modelica model
gives a display of the road followed by the plane (specifically the trajectories of left and
right wingtips).

The Modelica model consists of a set of six communicating sub-models (cf. Fig-
ure [0.15)): autopilot, fly-by-wire, route planner, servo (i.e. the actuator), simulator and
sensor. The autopilot models the pilot commands in function of the flight state. It has
three main functionalities: flight state reception from sensor component, execution of
the route planner and execution of fly-by-wire. The route sub-model receives the flight
state from the autopilot and sends information to fly-by-wire after computing distance
to current waypoint and changing route towards next waypoint if necessary. It operates
in low frequency: every 15 seconds. The fly-by-wire sub-model allows course correction
by setting roll attitude and ailerons and elevator. These modifications form the com-
mand to be sent to the servo sub-model. The fly-by-wire sub-model operates in high
frequency: every 5 seconds. The servo refers to the actuation on plane’s flight control
surfaces. Servo component receives command from the fly-by-wire sub-model and trans-
fers it to simulator component. Some filtering (e.g. low-pass, delay) could be added to
mimic realistic actuators. The flight simulator simulates flight dynamics computation
of plane and wing tips position based on received commands from the servo (i.e. new
values of roll, pitch and throttle). The sensor refers to the autopilot’s perception of real
world data. Sensor sub-model receives data about flight state from simulator component
and resends them to the autopilot. The sensor can add some noise (e.g. delay, etc.) to
mimic realistic data acquisitions. But in our example, it stands for copying the state
computed by the simulator.

These sub-models are communicating through Modelica connectors. The software
architecture of the original Modelica model is shown in Figure [6.14]

We have first modelled the FS application in BIP language. This latter —coupled
with different task mapping strategies— is the input of transformation tools displayed
in Figure We also simulate the initial BIP model, the TT-BIP model (the output of
the TT2TT-BIP tool) and the WC' code (the output of the TT-BIP2WC tool) in order
to compare their respective performances.

BIP modelling

Each sub-model of the Modelica model is modelled as a BIP component, communication
between different components is modeled using BIP connectors. Figure displays the
overall architecture of the BIP model. Automata of different components are displayed
in Figure [6.16]

6.3.1.2

6.3. Case Study Examples and Experimetal Results 165

Comman Simulator State
Servo Sensor
Command State
. State .
Fly-by-wire Pilot
Set course route State

Figure 6.14: Software Architecture of the Modelica Model of the Flightsim Application

AsensorPilot

Ariyservo Uservosim Asimsensor
o-cEd

i-sfate \:’ i-cnd o-dmd i-cmnd o-state i-stgte o-state
fly fly FLY |:| LI L]
Oy ﬁ cmpt
PILOT I-course SERVO SIMULATOR SENSOR
acourse
o-course
[Aroute
route r @ ROUTE

Figure 6.15: Initial Flightsim BIP model

BIP to TT-BIP Transformation

We apply the transformation of the BIP2TT-BIP tool in order to derive the TT-BIP
model following different task mapping strategies (cf. Table [6.1]).

Figure[6.17 shows the obtained model for the task mapping T'M 1. For clarity reason,
behaviours of TTCC and CRP components are not displayed. Nonetheless, since all
TTCC components are connecting exactly two tasks, their automata are strictly similar
to those of Figure [L.11] and Figure

For this specific example, the obtained TT-BIP models for mappings T'M2 and T M3
have each as many TTCC components as in the model of Figure This unchanged
number of TTCC components is due to the fact that interactions agy, droute and course
are conflicting either directly or indirectly with the intertask interactions agepnsorpilor and
QplyServo- In the TT-BIP model related to the mapping T'M4, the interaction a.simsSensor
is not handled through a dedicated TTCC component. The original connector is kept
intact since it executes an internal interaction with respect to task T3.

Figure [6.18 displays components TT-fly, TT-route, TT-pilot and TT-servo which
are common for all task mapping strategies. In Figure 619 we display the TT-sim

166 6. Tools Implementation and Experimental Results

i-state

‘ i-roll]-pitch [fi-altitude]i-grdCourse Hi—airspeed |
=
[Hlongitude fi-Tatitude][-grdSpeed | [i-climbRate

e
o-cmd o-course fly)
. T i-state 9
Hi-ro\l |i-pitch |fi-altitude] f-grdCourse | o
q [o-throttld route route
y o-cours c=15s
b o || (1 e
Y rcesetss r%eset(c) route
course
i cours fry)
FLY i-course ROUTE PILOT
(a) Fly (b) Route (c) Pilot
i-cmd o-cmd i-cmd o-state i-state o-state
L]] L] cmpt] L] (]
[lo-roll[o-pitch [o-attitude]fo-grdCoursefo-airspeed] altitude][grdCourse] [airspeed
[fhrottle | e Uo-longitude\\o—latitudej\o-grdSpeed\\o-climbRate\ Jongitude][latitude][grdSpeed|climbRate]
i-throttle
a i-cmd @
o-cmd i-cmd o-state i-state
SERVO SIMULATOR SENSOR
(d) Servo (e) Simulator (f) Sensor

Figure 6.16: Components of the Flight Sim BIP Model

CRP

rsv[ok | fail rsv oklfall
I I

-I_rccasensm?\lol TTCC,, -I-rCCaServaSAm -I-rccqswmsensnr
L 1] 1 L1 L1 R 1

md Qo eteO-S:EEte i»siteo.[me o—ltate Og state
I

T]

L]

[

]
&7»
K

TT-PILOT TT-SERVO TT-SIMULATOR TT-SENSOR
cmpt
TT-ROUTE d
Eimuze '[route Ts T, Ts Ts
Y

Oo-course Toute oute 15

e {

Figure 6.17: FS TT-BIP Model for the Task mapping TM1

6.3.1.3

6.3.1.4

6.3. Case Study Examples and Experimetal Results 167

Task Mapping Strategy List of Tasks
T, ={FLY}, To = {ROUTE},T5 = {PILOT},
TM1 Ty ={SERVO},Ts = {SIMULATOR},Ts = {SENSOR}.
Ty ={FLY ,ROUTE}, T, = {PILOT},T5 = {SERVO},

TM2 Ty = {SIMULATOR},T5s = {SENSOR}.

T, ={FLY ,ROUTE,PILOT},T> = {SERVO},
TM3 T3 = {SIMULATOR},Ty = {SENSOR}.

Ty ={FLY ,ROUTE,PILOT},T> = {SERVO},
T™M4 T3 = {SIMULATOR,SENSOR}.

Table 6.1: Different Task Mapping Strategies

component common for mappings TM1, TM2 and TM3 (Figure [6.19al) and the TT-sim
component for mapping TM4 (Figure [6.19D]). Similarly, different versions of TT-sensor
component are shown in Figure [6.20)]

TT-BIP* to PharOS Implementation

After composing different composite task components of the obtained TT-BIP models,
we apply the code generation of the TT-BIP2WC tool.

Evaluation

Functional Evaluation

In order to be able to compare the functionality of the original BIP model and the
obtained TT-BIP* model with the generated 1)C code—for all task mapping strategies,
we use BIP simulator that generates C+4 code from the original and the TT-BIP
models. Simulation of both generated C++ codes allowed us to visualize and compare
the output signals. A band shows the trajectories of left and right wingtips and illustrates
the roll movement that precedes the change in course at each waypoint, while the plane
progressively reaches its desired altitude. Figure presents the simulation results of
the BIP and the derived TT-BIP model, for the waypoints (300,0,300), (300,300,300),
(0,300,300) and (0,0,300). Visual inspection reveals that the output of the transformed
model is strictly similar to that of the original model. Simulations of the derived WC'code
for each of the task mapping strategies are still under construction.

Comparison between different task mappings

The overhead of communication can be estimated using the number of generated tem-
poral variables. Intuitively, one temporal variable is generated for each send/receive
cross-layer interaction in the TT-BIP model. Note that in Table [6.2] the number of
generated temporal variable is the same for the first three task mapping strategies. This
is explained by the fact that in the original model, the interactions acourses iy, Croute
and apjyservo are conflicting. In all task mapping strategies, the interaction apiygervo is

168 6. Tools Implementation and Experimental Results

fly. Ony Oo-cmd

0-course

T] TT-ROUTE

»
o-cmd

’
oo—ccurse

Ow—course

. . B

clock c9 [clock c?
i-course route
(a) TT-fly (b) TT-Route
Ojgtate i-state
1 ‘

Mi-rou |[Fpitch |[-altitude][-grdCourse |[-airspeed |
=
[-longitude |[i-latitude]fi-grdSpeed |[i-climbRate

fly
CJ LT]

2
51

i-state [throttle]

Oi-cmd
o-cmyd
TT-PILOT
TT-SERVO
(C) TT-Pilot (d) TT-Servo

Figure 6.18: Components of the FlightSim TT-BIP Models for all task mapping strate-
gies

an inter-task interaction. Therefore all other interactions are replaced by TTCC com-
ponents and considered as external interactions. Which explains why the number of
generated temporal variables remains intact for these three task mapping strategies. For
the task mapping T'M4, the number of temporal variables is slightly lower since the in-
teraction agimsSensor 1S an intra-task interaction, and no TTCC component is generated
for this interaction in the corresponding TT-BIP component.

6.3.2

6.3. Case Study Examples and Experimetal Results 169

i-cmd Oicmd Oo-state o-state
D m Ej cmpt

]

- ‘ [o-pitch[o-altitude]fo-grdCourse]jo-airspeed] ‘ [o-pitch[o-altitude][o-grdCourse]jo-airspeed]
|[o-Tongitude] o-Tatitude] o-grdSpeed) [o-climbRate] i-pitch] [lo-Tongitude fo-fatitude] o-grdSpeed [o-climbRatd
[i-throttle] (i-throttle]

Oo.-state
Oi.cmd

o-state o-state

clock 9 TT-SIMULATOR clock c9 TT-SIMULATOR
(a) Task Mappings TM1-TM3 (b) Task Mapping TM4

Figure 6.19: Components TT-sim

i-state Oistate Oo.state O-State i-state Oo.state O-State
CT CT O] []

longitude]|latitude||grdSpeed||climbRate| longitude||latitude] [grdSpeed][climbRate]

TT-SENSOR TT-SENSOR
(a) Task Mappings TMI1- (b) Task Mapping TM4
TM3

Figure 6.20: Components TT-sensor

The Medium Voltage Protection Relay Application (MVPR)

The second case study is the medium voltage protection relay application of [48].

A protection relay is a device designed to detect and isolate faults in an electrical
network. A sensor measures the current that flows on the network and transmits this
information to the relay. The relay receives this information, applies signal processing

170 6. Tools Implementation and Experimental Results

Figure 6.21: Trajectories of left and right wingtips of the BIP and the TT-BIP models

Number of temporal
Task Mapping Strategy Number of Agents variables
T™M1 13 36
TM2 12 36
TM3 11 36
TMA4 9 33

Table 6.2:
strategy

Number of generated agents and temporal variable in each task mapping

algorithms and protection algorithms and takes control decisions. The original version
of this case study —presented in [48] —is written manually in WC code. The protection
relay software consists of three stages: acquisition, measurement and protection stages.
Tasks within each stage are periodic tasks. The software architecture of the protection
relay application is shown in Figure which is taken from [48§].

Activate
protections

1 sampling 1800 samplings

VS TRS Cumul

12 samplings

1 1
1 1
1 |
1 1
l ! AgCumulRMS "’AgRMS : \
9]
! VS_TRS_Cumnul? g g 18 Agst
ASIC 1 1
1 VS_Mod2) 1
1 1
: 3 samplings 12 samplings : 12 samplings
! DataB :
AgARGA @2 Ag50
H ' a2 1%
555Us6eC 1 1
(1 sampling) ' 1
1 1
1 1
1 1 sampling 1
! 1$.
1 1
: } AgCrete]-] o :
— . .
Acquisition | Measurements i Protections

Figure 6.22: Software Architecture of the Protection Relay Application

The acquisition stage. Contains only the task AgARGA. This latter collects data and

6.3.2.1

6.3. Case Study Examples and Experimetal Results 171

makes them available to the other components of the system. Data are periodically
collected every 555 us (the sampling rate).

The measurement stage. It computes —using different algorithms—different values
that will be used in the protection stage in order to detect potential faults and de-
cide whether safety-function of the protection relay should be activated. In this case,
the measurement stage consists of a computation of an average, a computation of the
magnitude of the fundamental (50 Hz) and some harmonics (100 Hz, 150 Hz, etc.), a
computation of a crest value and a computation of a root mean square. More details
about these signal processing algorithms are provided in [78]. The average value is com-
puted by the AgMoy task and consists in the computation of the average of the last three
values acquired by the Acquisition stage. This task produces value every time the
Acquisition stage acquires three new data items, (i.e. every 1.665 ms). The crest value
is computed by the AgCrest task and consists in the computation of the crest value of
every value acquired by the Acquisition stage. This value is computed for every data
acquired by the Acquisition (i.e. every 555 us). The computation of the magnitude of
the fundamental and some harmonics is made by the TRS task. This latter uses the last
12 values computed by the AgMoy task and the last value of the Crest task. New values
are computed every 12 new data items of AgMoy task (i.e. every 6.660 ms). The RMS
value is computed by tasks AgCumulRMS and AgRMS.

The protection stage. It detects failure by using different algorithms. In this model,
two protection algorithms are considered: an instantaneous over-current protection
called Protection 50 (performed by the task Ag50) and an inverse time over-current
protection called Protection 51 (performed by the task Ag51). These two tasks check if
the safety function of the protection relay must be activated whenever they receive data
from the TRS task (i.e. every 6.660 ms).

In order to be able to apply our work to this application, we start by modelling it
using the BIP framework. Then we apply the transformation of Chapter @l (using the
BIP2TT-BIP tool) in order to obtain its corresponding TT-BIP model. And finally we
apply the transformation described in Chapter [{ (using the TT-BIP2PsyC tool) in order
to generate its corresponding WC' code.

The fact that the original version of the case study is written manually in ¥C code will
serve as a point of comparison with the automatically generated code. This comparison
concerns traces and some other features like communication and memory overheads.

BIP Modelling

Notice that tasks of the The protection stage have as input values from the AgTRS task
and they are not related to the AgRMS task. Therefore, we chose not to present tasks
AgComulRMS and AgRMS in the BIP model. A model of the application written in BIP—
where the The measurement stage is composed only of three components—is shown by
Figure

172 6. Tools Implementation and Experimental Results

Average 51

[(XArg:aAvgeI [aAvgeTRS j [aTR;SSl j

TRS

Qargacrest [AcrestTRS Q1RSS50 j
Arga : ;

Crest 50

Figure 6.23: BIP Model of the protection relay application

6.3.2.2 BIP to TT-BIP Transformation

We have applied the automatic transformation of Chapter 4 in order to obtain the TT-
BIP model from the BIP model of the case study. We chose to gather the two protection
components in the same task. The rest of components are considered as independent
tasks. The resulting TT-BIP model is shown in Figure We have also observed
identical values of the output flows generated by simulations —in BIP environment —of
both BIP and TT-BIP models.

TTC UprgaAvge -I_rCCaAvgeTRS -I_I—CCO‘TRSH
= = = Ll [=
B bs
TT-Average
[
=[] | K | K T
TT-Arga TT-TRS
TT-Crest
|
Ll D TT-50
]]]
TTCC TTCC

XArgaCrest AcrestTrs Orrss50

Figure 6.24: TT-BIP Model of the protection relay application

6.3.2.3

6.3.3

6.3. Case Study Examples and Experimetal Results 173

TT-BIP* to PharOS Implementation

After composing compsite task components of obtained TT-BIP model, we have applied
the implemented transformation described in Chapter [to the TT-BIP* model of the
case-study described above. For each component in the TT-BIP model, we generate
an agent in PharOS. Communication between different components is performed using
advance statements.

Preservation of the functional behaviour of each generated agent (compared to its
corresponding component in the TT-BIP model), has been tested as well. We have also

observed identical values of the output flows generated by simulations in both environ-
ments.

Evaluation

Functional Evaluation

A comparison of the temporal evolution of computed variables in both versions is also
of interest. In Figure [6.25] we display the evolution of the variables arga and crest in
both versions. Values of variable arga are transmitted by the sensor to the acquisition
component, standing for the measures of the input current. crest values are computed
by the crest component. In Figure [6.25] solid lines are reserved for the automatically
generated application while dotted lines are reserved for the manually written one.
Visual inspection of different values of both variables in both versions, reveals that

the output of the automatically generated model is strictly similar to that of the manual
model.

B N W . — =" v
£ 50 zﬁ LT G, S S
g G 8 T s R L / S S
E 70 (0f OO 0 O £ I RO 1 _ti1 |
8 oyl T AeaAm H
5 F £ Foiaok | l';l [V] i | crestAuo
s 5014 . t e ‘\' r.‘ it 3= ll'l e 'rll Crest - H
3] ' e & R ! A i
100 \./] k\} R Y . V AR ¥ urga: v

0 20000 40000 60000 80000 100000 120000 140000 160000

Time (ms)

Figure 6.25: Execution trace

Evaluation of the Performances of the generated PharOS application

In this subsection, we compare the automatically generated code with a manually written
one [48] for the same case study (cf. Table [6.3)).Notice that with the implemented code
generation tool we gain in terms of development time, even if in the present state, we
need to adapt the generated code manually since some features are still not included in
the implemented tool (e.g. optimisations). In the generated code we introduce almost

6.4

174 6. Tools Implementation and Experimental Results

Manually written code Generated code
1 week (RT-BIP model writing and
validation) + 2 days (code
Development time 2-3 months adaptation)
Text section size 41.7 kB 71.2 kB
Application text section size
(w/o kernel) 13.9 kB 37.1 kB
Data section size 22.1 kB 31.1 kB
Number of Temporal variables 7 18

Table 6.3: Comparison between the generated and the manually-written source codes of
the case study

two and a half times more temporal variables compared to the initial model, this is due
to the communication atomicity breaking brought by the transformation from RT-BIP
model into a TT-BIP model. These added temporal variables lead to a larger memory
footprint. When comparing tert and data segments sizes with the manually written
version, we find out that segments of the automatically generated code have almost two
times bigger size. This ratio is rather reasonable and very encouraging as we are not
(yet) interested in optimizing the output model in terms of the number of agents and
communications.

The evaluation of the generated code in terms of CPU overhead compared to the
manually written code, is subject of ongoing work.

Discussion and Conclusion

In this chapter, we have presented the existing BIP tool-chain. We also provided an
overview of the tool-flow implementing different transformations presented in Chapter [
and Chapter B and allowing progressively to derive a T'T implementation from high-level
BIP model. The tool-flow is mainly composed of two transformation tools: BIP2TT-BIP
tool and merge tool and a generation tool: the TT-BIP2 W(' tool. The composition tool
was not implemented during the thesis, which entailed some manual transformations
(components composition) in the testing process of the developed tools.

We illustrate the applicability of the proposed tool-flow on two case study examples;
the flight Simulator (F'S) application and the medium voltage protection relay appli-
cation. In both applications, we aim at comparing functionalities of original (BIP),
intermediate(TT-BIP) and final (?C') models in order to confirm the correctness of the
transformation. Simulations of the generated code in the F'S application are still under
construction. For the first application (i.e. the FS application), we study the impact
of the task mapping on the generated code. And for the second application, we study
the impact of the transformation on some performance aspects compared to a manually
written version. All presented results were measured on simulated models.

6.4. Discussion and Conclusion 175

Unfortunately, execution of the generated WC code on real PharOS machine was not
possible due to the non-availability of an adapted platform in CEA. Even if accurate
performance measures were not possible, we believe that the provided results are more
than interesting. Since they prove that from a high-level model,a code with the same
behaviour and satisfying the same properties can be automatically generated.

Conclusion and Perspectives

Achievements

In this thesis, we show that it is possible to propose an automatic and cost effective
method for developing TT implementations by combining advantages of component-
based rigorous design and time-triggered RTOS-based implementations. For this pur-
pose, the applied method is based on the use of:

A high-level component-based modelling platform; timed BIP

This platform is based on well-defined operational semantics and is prone for expressing
structured coordination between components. The behavior of each of the atomic com-
ponents of a BIP model is described by using timed automata. Composite components
are described as the composition of atomic components by using connectors and prior-
ities. Verification and analysis of component-based BIP models are possible by using
tools such as RTD-Finder [8] for compositional verification.

A safety-oriented Real-Time Operating System (RTOS); PharOS [9] imple-
mentation

This framework provides a language to describe a T'T application as a set of commu-
nicating TT tasks (called agents). It provides low-level primitives allowing to specify
timing constraints of different computations and communication actions of TT tasks.
PharOS ensures, by principle, some important safety properties as the coherence of the
data and determinism of real-time behavior [36].

Semantics-preserving transformation process

It allows to generate automatically correct-by-construction PharOS implementation from
a high-level BIP model. Thus, all properties that are satisfied by the original model,
are satisfied by-construction by the obtained implementation. A posteriori verification
of these properties is thus unnecessary. And the determinism of the application is guar-
anteed by the PharOS platform. This process is defined in two steps:

o Step 1: A model-to-model transformation. It transforms an original BIP model into
a restricted one (TT-BIP model) with respect to a user-defined task mapping. We
assume that the source model of the transformation consists only of flat connectors
and atomic components. This assumption can not be considered as a restriction, since
an arbitrary BIP model with hierarchical connectors and composite components can

178 6. Tools Implementation and Experimental Results

be transformed into a flat model where all connectors are flat and components are
atomic as shown in [47]. Although BIP provides a rich set of interactions, we only
considered rendezvous interactions, as it is possible to transform trigger interactions
into rendezvous. The aim of the stepl transformation is to obtain a model which
is closer to any TT implementation. That is, to obtain a model where all intertask
interactions are executed by a dedicated components and all interactions between these
communication components and task components are send/receive interactions. These
latter provide, on top of the synchronization, a unidirectional data transfer. Another
essential criterion for building the transformation rules is the respect of the equivalence
to the original model where interactions’ conflicts are resolved by the BIP engine. In
order to satisfy this criterion, the obtained model contains a component dedicated
to conflict resolution and implementing the fully centralized committee coordination
algorithm presented in [10].

Step 2: A model-to-code transformation. It generates automatically T'T implementation
from the intermediate model specified in the Step 1. The generated code is a WC
code (the programming language of PharOS applications). The input model of this
transformation is first adapted into a model where all task components are flattened,
i.e. all atomic components of the same task are composed. the adapted model is called
TT-BIP* model.

In order to be able to provide formal correctness proofs of the transformation from
TT-BIP* to WC, we provided a formal model of the target implementation and de-
fined its operational semantics. This model is called the TCA model, which is in the
same abstraction level as the WC' language. In this model, a task is an automaton,
where nodes present states and transitions allow to model actions. These latter are la-
belled by triplet-labels specifying release, deadline and/or synchronization dates. The
transformation rules aim at transforming each transition of a the original component
automaton, into a set of successive transitions in TCA model. Time progress conditions
and timing constraints are mapped using deadlines and /or release dates in TCA model,
while communicating transition (i.e. transitions labelled by send or receive ports), are
transformed into a set of transitions, among labels of which we find a synchronization
constraint.

Since the semantics of the proposed TCA model are defined as LTSs, the correct-
ness proof of the transformation is based on the notion of the bi-simulation between
single LTSs of TT-BIP* components and their corresponding TCA tasks. The equiv-
alence between the obtained application and the initial TT-BIP* model, follows from
the equivalence between single components and tasks, since communication (i.e. data
transfer) in both models is guaranteed by construction to happen in the same instant
over the original clock.

6.4. Discussion and Conclusion 179

Implementation of transformation tools

For the step 1 of the transformation, we have developed an automatic transformation tool
that generates a 3-layer model called TT-BIP model depending on a user-defined task
mapping. The step 2 of the transformation consists in merging atomic components of a
composite task and then generating WC' code. The code generator has been developed
while the merge tool is still under construction. Note that a similar merging tool has
been developed for untimed BIP models (cf. [47]). We believe that the adaptation of this
tool for the timed models is straightforward. Regarding experiments, we considered two
applications: the flight Simulator (F'S) application and the medium voltage protection
relay application. For the first application, we studied the impact of the task mapping
on the generated code. And for the second application, we studied the impact of the
transformation on some performance aspects compared to a manually written version.

Contribution of the thesis from the point of view of hard
real-time software engineering

One of the major contributions of our transformational method, from software engineer-
ing point of view, is the cost reduction in the development of safety-critical applications.
That is, it spares re-writing effort of the implementation code in case of re-designing,
adding a newly defined component or modifying an existing component or connector in
the original model. Being automatically implemented, the generation of the TT imple-
mentation code corresponding to the newly modified model does not incur additional
development costs.

Another major asset of this approach, is the offered correspondence between the orig-
inal model components and tasks of the generated source code. This allows the engineer
to trace back faulty runs of the implementation code to the ill-behaving component of
the BIP model. Note also that the choice of merging composite components only in the
second step of the transformation enhances this backward association mechanism.

Future Work

For future work, we are considering several research directions:

About generalising the proposed approach

Here, we present some extensions to explore. The first two points are related to the
extension of the input model of the transformational approach. While, the other points
focus on different extension options of the target implementation, paradigm or execution
model.

e To a random input BIP model. An important future direction is to consider
BIP models with priorities. We agree that priorities complicate the problem. Unlike

180 6. Tools Implementation and Experimental Results

conflict-resolution, priorities must be applied globally which requires approaches al-
lowing to compute the global state of the system or at least to approximate the next
reachable state. For T'T implementation, this leads to an extremely considerable com-
munication overhead. Since task agents need to communicate their states to TTCC
agents in order to compute priorities and decide whether an interaction with a higher
priority is enabled at that date.

e To other high-level modelling languages. We believe that one of the main contri-
butions of our work is the correct-by-construction transformational approach, which is
based on the well defined semantics of BIP models. This makes this latter essential to
this approach. Nevertheless, BIP has been shown to be very expressive. In particular,
there exist transformations of various existing languages (Lustre, Simulink, AADL,...)
into untimed BIP models. Adapting these transformations for timed models would
clearly extend the applicability of our transformation to any of these high-level mod-
elling language.

e To other RTOS implementations based on the TT paradigm. We believe
that, our generation approach can be adapted for any RTOS that is based on the T'T
paradigm, since it only relies on a primitive mechanism for communicating data and
on timing constraints for implementing BIP synchronisation. The first step of the
transformation is to be reused as it is. While the second step is to be adapted for the
new programming language and its associated primitives.

e To other paradigms: Event-Triggered (ET) paradigm for example. In our
approach, the transformation from BIP models to TT-BIP models (i.e. the first step) is
motivated by the communication model of the TT-paradigm which is based essentially
on the temporal variables. When the target paradigm is the event-triggered one, the
same logic can be followed for the new communication model. Similarly, the code
generation step for the new paradigm can follow the same principles while respecting
the new primitive mechanisms.

The most difficult part in considering the ET paradigm in this approach is to handle
the external events. We believe that this can be resolved in BIP model level. Two
options would be possible. The first one would consist in dedicating a component for
handling the external events in the original BIP model. The idea of the second option
is to extend the BIP language by introducing a mechanism that models the external
events (e.g. a new port type, clock etc.).

e To other execution models. In all execution models tasks are modelled using
automata. Therefore, to be able to extend the proposed approach, we need to present
the semantics of the target task model in terms of LTS (as presented for the TCA
model in this thesis). Therefore the transformation from BIP automata to the new
task model and its formal correctness can follow the same principles as the proposed
approach.

6.4. Discussion and Conclusion 181

About the optimization of the generation phase

Another important line of research is to optimize the generation tool in order to generate
an optimized code. In the proposed approach, we introduce in the original BIP models
all the application components (sensors, actuators, simulators, controllers, etc.) and
then we generate their corresponding source code for simulation. We believe that there
is room for optimization of the generation process, especially when aiming at embedding
the generated code. For example, some components (e.g. sensors, actuators etc.) can
be mapped to their corresponding drivers. Therefore only source code for components
of the control application can be generated by the generation tool.

In another hand, in TT-BIP models, TTCC components handle interactions that are
originally modelled by BIP connectors and relating two tasks of the original application.
Therefore These TTCC components —as well as the CRP component—are only instan-
tiated for communication purpose. We strongly believe that in these components (i.e.
TTCC and CRP components), we can identify exactly the same behavioural pattern of
one or more of the RTOS services. Code generation could take this into account and
only transform into TCA automata the part of the component which can not be mapped
into an OS service. The identified pattern (corresponding to the RTOS service) could
be, then, just mapped to a system call.

1]

[10]

Bibliography

Flexray communications system - electrical physical layer specification, v3.0.1,
flexray consortium, october 2010. EI]

Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based implementa-
tion of real-time applications. pages 229-238, May 2010. [T,

Rajeev Alur. Timed automata. In Computer Aided Verification, pages 8-22.
Springer, 1999.

Rajeev Alur and David Dill. Automata for modeling real-time systems. In Au-
tomata, languages and programming, pages 322-335. Springer, 1990.

Rajeev Alur and David Dill. The theory of timed automata. In Real-Time: Theory
in Practice, pages 45-73. Springer, 1991. [7

Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer
science, 126(2):183-235, 1994.

Rajeev Alur and A Thomas. Real-time system= discrete system+ clock variables.
International Journal on Software Tools for Technology Transfer, 1(1-2):86-109,
1997.

Lacramioara Astefanoaei, Souha Ben Rayana, Saddek Bensalem, Marius Bozga, and
Jacques Combaz. Compositional invariant generation for timed systems. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 263-278. Springer, 2014. [[40] 150} I'77]

Christophe Aussagues, Damien Chabrol, Vincent David, Didier Roux, Natalia Wil-
ley, Arnaud Tournadre, and Marc Graniou. Pharos, a multicore os ready for safety-
related automotive systems: results and future prospects. Proc. of The Embedded

Real-Time Software and Systems (ERTS2), 2010. [0, [44], 140 077

Rajive Bagrodia. Process synchronization: Design and performance evaluation of
distributed algorithms. Software Engineering, IEEE Transactions on, 15(9):1053—

1065, 1989. [l B9, [60] 68 [§3] 140l 178

184 BIBLIOGRAPHY

[11] Massimo Baleani, Alberto Ferrari, Leonardo Mangeruca, Alberto L Sangiovanni-
Vincentelli, Ulrich Freund, Erhard Schlenker, and H-J Wolff. Correct-by-
construction transformations across design environments for model-based embedded
software development. In Design, Automation and Test in Furope, 2005. Proceed-
ings, pages 1044-1049. IEEE, 2005.

[12] Ananda Basu. Component-based modeling of heterogeneous real-time systems in
BIP. PhD thesis, Université Joseph-Fourier-Grenoble I, 2008. [I3]

[13] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed
semantics and implementation for systems with interaction and priority. In Formal
Techniques for Networked and Distributed Systems—FORTE 2008, pages 116-133.
Springer, 2008. 154

[14] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time
components in bip. In Software Engineering and Formal Methods, 2006. SEFM
2006. Fourth IEEE International Conference on, pages 3-12. Ieee, 2006. [13],

[15] Ananda Basu, Laurent Mounier, Marc Poulhies, Jacques Pulou, and Joseph Sifakis.
Using bip for modeling and verification of networked systems—a case study on tinyos-
based networks. In Sizth IEEE International Symposium on Network Computing
and Applications (NCA 2007), pages 257-260. IEEE, 2007. 1491

[16] Belgacem Ben Hedia and Etienne Hamelin. Projet openprod rapport r4.28 : Model
to embedded real-time transformation. Technical report, 2012. [164]

[17] Saddek Bensalem, Marius Bozga, T-H Nguyen, and Joseph Sifakis. Compositional
verification for component-based systems and application. IET software, 4(3):181—
193, 2010.

[18] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. D-
finder: A tool for compositional deadlock detection and verification. In International
Conference on Computer Aided Verification, pages 614-619. Springer, 2009.

[19] Simon Bliudze and Joseph Sifakis. The algebra of connectorséATstructuring inter-
action in bip. IEEE Transactions on Computers, 57(10):1315-1330, 2008.

[20] Simon Bliudze and Joseph Sifakis. Causal semantics for the algebra of connectors.
Formal methods in system design, 36(2):167-194, 2010.

[21] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph
Sifakis. From high-level component-based models to distributed implementations.
In Proceedings of the tenth ACM international conference on Embedded software,

pages 209-218. ACM, 2010. (7, B8], 60, 0511

BIBLIOGRAPHY 185

[22]

[23]

Borzoo Bonakdarpour, Marius Bozga, and Jean Quilbeuf. Model-based implemen-
tation of distributed systems with priorities. Design Automation for Embedded
Systems, 17(2):251-276, 2013. [51]

Etienne Borde, Smail Rahmoun, Fabien Cadoret, Laurent Pautet, Frank Singhoff,
and Pierre Dissaux. Architecture models refinement for fine grain timing analy-
sis of embedded systems. In Rapid System Prototyping (RSP), 2014 25th IEEE
International Symposium on, pages 44-50. IEEE, 2014.

Robert Bosch. CAN specification version 2.0. Rober Bousch GmbH, Postfach,
300240, 1991. @1

Paraskevas Bourgos. Rigorous Design Flow for Programming Manycore Platforms.

PhD thesis, Grenoble, 2013. 1]

Paraskevas Bourgos, Ananda Basu, Marius Bozga, Saddek Bensalem, Joseph Sifakis,
and Kai Huang. Rigorous system level modeling and analysis of mixed hw/sw
systems. In Formal Methods and Models for Codesign (MEMOCODE), 2011 9th
IEEE/ACM International Conference on, pages 11-20. IEEE, 2011. [I49]

Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture
transformation for performance optimization in bip. Industrial Informatics, IEEE

Transactions on, 6(4):708-718, 2010. 29| [7T] I51]

Marius Bozga, Vassiliki Sfyrla, and Joseph Sifakis. Modeling synchronous systems
in BIP. In Proceedings of the seventh ACM international conference on Embedded
software, pages 77-86. ACM, 2009. 149

Fabien Cadoret, Etienne Borde, Sebastien Gardoll, and Laurent Pautet. Design pat-
terns for rule-based refinement of safety critical embedded systems models. In En-
gineering of Complex Computer Systems (ICECCS), 2012 17th International Con-
ference on, pages 67-76. IEEE, 2012.

Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, Stavros Tripakis, and
Peter Niebert. From Simulink to SCADE/Lustre to TTA: a layered approach for
distributed embedded applications. In ACM Sigplan Notices, volume 38, pages
153-162. ACM, 2003.

Damien Chabrol, Vincent David, Christophe Aussagues, Stéphane Louise, and
Frédéric Daumas. Deterministic distributed safety-critical real-time systems within
the oasis approach. In JASTED PDCS, pages 260-268, 2005. [7 [44]

K. Mani Chandy and Jayadev Misra. The drinking philosophers problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 6(4):632-646,
1984. B0, B3]

186 BIBLIOGRAPHY

[33] K Mani Chandy and Jayadev Misra. Parallel program design: A foundation addison-
wesley. Reading, MA, 1988.

[34] M Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph Sifakis. Translating aadl
into bip-application to the verification of real-time systems. In International Con-
ference on Model Driven Engineering Languages and Systems, pages 5—19. Springer,

2008. 149

[35] Flexray Consortium et al. Flexray communications system protocol specification
version 2.1, 2005. Awailable at hitp{ www. flexray. com}. Al

[36] Vincent David, Jean Delcoigne, Evelyne Leret, Alain Ourghanlian, Philippe
Hilsenkopf, and Philippe Paris. Safety properties ensured by the oasis model for
safety critical real-time systems. In International Conference on Computer Safety,
Reliability, and Security, pages 45-59. Springer, 1998. [1 [44] 140l I77

[37] Hartmut Ehrig and Claudia Ermel. Semantical correctness and completeness of
model transformations using graph and rule transformation. In International Con-
ference on Graph Transformation, pages 194-210. Springer, 2008.

[38] Wilfried Elmenreich. Time-triggered fieldbus networks state of the art and future ap-
plications. In 2008 11th IEEFE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC), pages 436-442. IEEE, 2008.
38

[39] Wilfried Elmenreich, Gunther Bauer, and Hermann Kopetz. The time-triggered
paradigm. In Proceedings of the Workshop on Time-Triggered and Real-Time Com-
munication, Manno, Switzerland, 2003. il B7]

[40] Hilding Elmqvist and Sven Erik Mattsson. An introduction to the physical modeling
language modelica. In Proceedings of the 9th European Simulation Symposium, ESS,
volume 97, pages 19-23. Citeseer, 1997. [164]

[41] Shanna-Shaye Forbes. Real-time C code generation in Ptolemy ii for the giotto
model of Computation. Technical report, DTIC Document, 2009. 7]

[42] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data flow programming language lustre. Proceedings of the IEEE,
79(9):1305-1320, 1991.

[43] Thomas A Henzinger, Benjamin Horowitz, and Christoph M Kirsch. Giotto: A time-
triggered language for embedded programming. Proceedings of the IEEE, 91(1):84—
99, 2003.

[44] Thomas A Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto: A
time-triggered language for embedded programming. In Embedded Software, pages
166-184. Springer, 2001.

BIBLIOGRAPHY 187

[45]

[46]

[47]

(48]

Thomas A Henzinger, Christoph M Kirsch, Marco AA Sanvido, and Wolfgang Pree.
From control models to real-time code using giotto. IEEE control systems, 23(1):50—
64, 2003.

Jerome Hugues, Bechir Zalila, Laurent Pautet, and Fabrice Kordon. From the
prototype to the final embedded system using the ocarina aadl tool suite. ACM
Transactions on Embedded Computing Systems (TECS), 7(4):42, 2008.

Mohamad Jaber. Centralized and Distributed Implementations of Correct-by-
construction Component-based Systems by using Source-to-source Transformations
in BIP. Theses, Université Joseph-Fourier - Grenoble I, October 2010. 29, [60] [67]

(701 [T}, 83}, 105}, (140, [I5T1, (78] 1791

Mathieu Jan, Vincent David, Jimmy Lalande, and Maurice Pitel. Usage of the
safety-oriented real-time OASIS approach to build deterministic protection relays.
In 5! Intl. Symp. on Industrial Embedded Systems (SIES 2010), pages 128135,
Univ. of Trento, 2010. (46l 169, 170, 173l

Gabor Karsai and Anantha Narayanan. On the correctness of model transformations
in the development of embedded systems. In Monterey Workshop, pages 1-18.
Springer, 2006.

Christoph M Kirsch, Marco AA Sanvido, Thomas A Henzinger, and Wolfgang Pree.
A giotto-based helicopter control system. In International Workshop on Embedded
Software, pages 46-60. Springer, 2002. (7

Christoph M Kirsch and Ana Sokolova. The logical execution time paradigm. In
Advances in Real-Time Systems, pages 103-120. Springer, 2012.

Hermann Kopetz. The time-triggered approach to real-time system design. Pre-
dictably Dependable Computing Systems. Springer, 1995. [B7]

Hermann Kopetz. The time-triggered model of computation. In Real-Time Systems
Symposium, 1998. Proceedings., The 19th IEEE, pages 168-177. IEEE, 1998. 37

Hermann Kopetz. A comparison of ttp/c and flexray. Inst. for Computer Eng.,
Vienna, 2001.

Hermann Kopetz. Time-triggered real-time computing. Annual Reviews in Control,

27(1):3-13, 2003. B2

Hermann Kopetz. Real-time systems: design principles for distributed embedded
applications. Springer, 2011. [B]

Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer. The
time-triggered ethernet (tte) design. In Eighth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’05), pages 22-33. IEEE,
2005. [39] [40]

188 BIBLIOGRAPHY

[58] Hermann Kopetz and Gunther Bauer. The time-triggered architecture. Proceedings
of the IEEFE, 91(1):112-126, 2003. B8]

[59] Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani, Wolfgang
Schwabl, Christoph Senft, and Ralph Zainlinger. Distributed fault-tolerant real-
time systems: The mars approach. IEEE Micro, 9(1):25-40, 1989.

[60] Hermann Kopetz and Giinter Grunsteidl. Ttp-a time-triggered protocol for fault-
tolerant real-time systems. In Foult-Tolerant Computing, 1993. FTCS-23. Digest
of Papers., The Twenty-Third International Symposium on, pages 524-533. IEEE,
1993.

[61] Hermann Kopetz and KH kim. Temporal uncertainties in interactions among real-
timebjects. In Reliable Distributed Systems, 1990. Proceedings., Ninth Symposium
on, pages 165-174. IEEE, 1990. B7]

[62] Hermann Kopetz and Roman Nossal. Temporal firewalls in large distributed real-
time systems. In Distributed Computing Systems, 1997., Proceedings of the Sizth
IEEE Computer Society Workshop on Future Trends of, pages 310-315. IEEE, 1997.
37

[63] Jean-Claude Laprie. Dependability: Basic concepts and terminology. In Depend-
ability: Basic Concepts and Terminology, pages 3—245. Springer, 1992.

[64] Gabriel Leen and Donal Heffernan. Ttcan: a new time-triggered controller area
network. Microprocessors and Microsystems, 26(2):77-94, 2002. A1l

[65] Matthieu Lemerre, Vincent David, Christophe Aussagues, and Guy Vidal-Naquet.
An introduction to time-constrained automata. arXiv preprint arXiv:1010.5571,

2010. 0L

[66] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46-61,
1973. 1

[67] Stéphane Louise, Vincent David, Jean Delcoigne, and Christophe Aussagues. Oasis
project: deterministic real-time for safety critical embedded systems. In Proceedings
of the 10th workshop on ACM SIGOPS European workshop, pages 223-226. ACM,
2002. [7 44

[68] Stéphane Louise, Matthieu Lemerre, Christophe Aussagues, and Vincent David.
The oasis kernel: A framework for high dependability real-time systems. In High-
Assurance Systems Engineering (HASE), 2011 IEEFE 13th International Symposium
on, pages 95-103. IEEE, 2011. [7 [44]

[69] Robin Milner. Communication and Concurrency. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK, 1995. 89

BIBLIOGRAPHY 189

[70]

[71]

[75]

[76]

[77]

78]

Lory D Molesky, Chia Shen, and Goran Zlokapa. Predictable synchronization mech-
anisms for multiprocessor real-time systems. Real-Time Systems, 2(3):163-180,
1990.

Jonathan Musset, Etienne Juliot, Stéphane Lacrampe, William Piers, Cédric Brun,
Laurent Goubet, Yvan Lussaud, and Freddy Allilaire. Acceleo user guide. See also
http://acceleo. org/doc/obeo/en/acceleo-2.6-user-guide. pdf, 2, 2006.

Kathy Dang Nguyen, PS Thiagarajan, and Weng-Fai Wong. A uml-based design
framework for time-triggered applications. In Real- Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International, pages 39—48. IEEE, 2007.

Ayoub Nouri, Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille Jegourel,
and Axel Legay. Statistical model checking qos properties of systems with sbip.
International Journal on Software Tools for Technology Transfer, 17(2):171-185,
2015.

Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexandru Andrei. Timing
analysis of the flexray communication protocol. Real-time systems, 39(1-3):205—
235, 2008.

Wolfgang Pree, Gerald Stieglbauer, and Josef Templ. Simulink integration of giot-
to/tdl. In Automotive Software Workshop, pages 137-154. Springer, 2004. [57]

Wolfgang Pree and Josef Templ. Modeling with the timing definition language (tdl).
In Automotive Software Workshop, pages 133-144. Springer, 2006. [44], 57

Jean Quilbeuf. Distributed Implementations of Component-based Systems with Pri-
oritized Multiparty Interactions. Application to the BIP Framework. PhD thesis,
Université de Grenoble, 2013. 20, [67, [70, [7T] R3] 1511

Khaled Rahmouni, Patrice Gerin, Sebastien Chabanet, Paul Pianu, and Frédéric
Pétrot. Modelling and architecture exploration of a medium voltage protection
device. In 2009 IEEE International Symposium on Industrial Embedded Systems,
pages 46-49. IEEE, 2009. [I71]

PD Stefan Resmerita and W Pree. Timing definition language (tdl) modeling in
ptolemy ii. Department of Computer Science, University of Salzburg, Tech. Rep,
2008.

Vassiliki Sfyrla. Modeling Synchronous Systems in BIP. PhD thesis, PhD thesis,
Université de Grenoble, 2011. [149]

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, and Joseph Sifakis.
Compositional translation of simulink models into synchronous bip. In International
Symposium on Industrial Embedded System (SIES), pages 217-220. IEEE, 2010. 149

190 BIBLIOGRAPHY

[82] Shehryar Shaheen, Donal Heffernan, and Gabriel Leen. A comparison of emerging
time-triggered protocols for automotive x-by-wire control networks. Proceedings of
the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineer-
ing, 217(1):13-22, 2003.

[83] Joseph Sifakis. Component-based construction of real-time systems in bip. In CAV,
pages 33-34, 2009. [13]

[84] Till Steinbach, Franz Korf, and Thomas C Schmidt. Comparing time-triggered
ethernet with flexray: An evaluation of competing approaches to real-time for in-
vehicle networks. In Factory Communication Systems (WFCS), 2010 8th IEEE
International Workshop on, pages 199-202. IEEE, 2010.

[85] David B. Stewart, Richard A. Volpe, and Pradeep K. Khosla. Design of dynamically
reconfigurable real-time software using port-based objects. IFEE Transactions on
software engineering, 23(12):759-776, 1997. [

[86] Ahlem Triki. Distributed Implementations of Timed Component-based Systems. PhD
thesis, Grenoble Alpes, 2015. 57, B8], [60] [67] [70] 83]

[87] Jos B Warmer and Anneke G Kleppe. The object constraint language: getting your
models ready for MDA. Addison-Wesley Professional, 2003.

