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Abstract

In hard real-time embedded systems, design and specification methods and their associ-

ated tools must allow development of temporally deterministic systems to ensure their

safety. To achieve this goal, we are specifically interested in methodologies based on

the Time-Triggered (TT) paradigm. This paradigm allows to preserve by construction

number of properties, in particular end-to-end real-time constraints. However, ensuring

correctness and safety of such systems remains a challenging task. Existing develop-

ment tools do not guarantee by construction specification respect. Thus, a-posteriori

verification of the application is generally a must. With the increasing complexity of

embedded applications, their a-posteriori validation becomes, at best, a major factor in

the development costs and, at worst, simply impossible. It is necessary, therefore, to

define a method that allows the development of correct-by-construction systems while

simplifying the specification process.

High-level component-based design frameworks that allow design and verification of hard

real-time systems are very good candidates for structuring the specification process as

well as verifying the high-level model.

The goal of this thesis is to couple a high-level component-based design approach

based on the BIP (Behaviour-Interaction-Priority) framework with a safety-oriented

real-time execution platform implementing the TT approach (the PharOS Real-Time

Operating System). To this end, we propose an automatic transformation process from

BIP models into applications for the target platform (i.e. PharOS). The process consists

in a two-step semantics-preserving transformation. The first step transforms a generic

BIP model coupled to a user-defined task mapping into a restricted one, which lends it-

self well to an implementation based on TT communication primitives. The second step

transforms the resulting model into the TT implementation provided by the PharOS

RTOS.

We provide a tool-flow that automates most of the steps of the proposed approach

and illustrate its use on an industrial case study for a flight Simulator application and a

medium voltage protection relay application. In both applications, we compare function-

alities of both original, intermediate and final model in order to confirm the correctness

of the transformation. For the first application, we study the impact of the task mapping

on the proposed transformation. And for the second application, we study the impact

of the transformation on some performance aspects compared to a manually written

version.





Résumé

Dans le domaine des systèmes temps-réel embarqués critiques, les méthodes de concep-

tion et de spécification et leurs outils associés doivent permettre le développement de

systèmes au comportement temporel déterministe afin de garantir leur sûreté de fonc-

tionnement. Pour atteindre cet objectif, on s’intéresse aux méthodologies basées sur le

paradigme Time-Triggered(TT). Dans ce contexte, nombre de propriétés et, en partic-

ulier, les contraintes temps-réel de-bout-en-bout, se voient satisfaites par construction.

Toutefois, garantir la sûreté de fonctionnement de tels systèmes reste un défi. En général,

les outils existants n’assurent pas par construction le respect de l’intégralité des spéci-

fications, celles-ci doivent, en général, être vérifiées à posteriori. Avec la complexité

croissante des applications embarquées, celle de leur validation devient, au mieux, un

facteur majeur dans les coûts de développement et, au pire, tout simplement impossible.

Il faut, donc, définir une méthode qui, tout en permettant le développement des systèmes

corrects par constructions, structure et simplifie le processus de spécification. Pour cela,

on s’intéresse aux plateformes de conception haut niveau basée sur composants et qui

permettent aussi la vérification des modèles haut-niveau des systèmes temps-réels.

L’objectif de cette thèse est de coupler une approche de conception haut niveau

basée sur composants consistant en la plateforme BIP (Behaviour-Interaction-Priority)

et une plateforme d’exécution orientée sureté et basée sur le paradigme TT (le système

d’exploitation PharOS). Afin d’atteindre cet objectif, on propose un flot de conception

basé sur une approche transformationnelle permettant de générer automatiquement une

application PharOS à partir d’un modèle BIP. Cette transformation préserve la séman-

tique d’origine et consiste en deux étapes majeures. La première étape transforme un

modèle BIP et un mapping de tâches défini par l’utilisateur en un modèle BIP plus re-

streint qui s’approche de l’implémentation en respectant les critères de communication

TT. La deuxième étape transforme ce modèle résultant en une implémentation PharOS.

L’approche proposée a été implémentée et intégrée dans la châıne d’outil BIP. Deux

études de cas industriels ont permis de la valider: un simulateur de vol et un relais de

protection moyenne tension. Pour les deux applications, on compare les fonctionnal-

ités du modèles d’origine avec le modéle intermédiaire et le modéle final. Et ce afin de

confirmer la correction de la transformation. Pour la première application, on étudie

l’impact du mapping des tâches sur la transformation proposée. Pour la deuxième ap-

plication, on étudie l’impact de la transformation sur quelques aspects de performances

en comparaison avec une version de la même application écrite manuellement.





Introduction

Challenges in building correct hard real-time systems

Modern societies are being more and more involved with embedded systems. These latter

have become a major actor in the daily human life by serving a vast variety of application

domains such that home appliances, office automation, aerospace, banking and finance,

automotive, medical instruments, avionics, etc. Embedded systems are becoming more

and more complex, and their pervasiveness in our everyday lives calls their efficiency and

reliability into question.

Real-time systems [56] are systems that undergo a set of ”real-time constraints” (e.g.

start instants, deadlines, etc. ). They are classified into two categories; soft and hard

real-time systems. In the former category, respect of timing constraints is important, but

the system can still function even if these constraints are occasionally violated. Whereas,

a failure of hard real-time systems endangers their original intended mission or the life

of the human being. Indeed, the correctness of a result of such systems depends on

both the time and the value domains. That is a hard real-time system is correct if it

produces the correct result while respecting the specified timing constraints. Despite

the existence of different techniques in software engineering for ensuring correctness

and reliability such as formal verification, simulation and testing, ensuring value and

temporal correctness of hard real-time systems is still a challenging and time-consuming

task. With the increasing complexity of such embedded applications, their a posteriori

verification becomes, at best, a major factor in the cost of development and, at worst,

simply impossible. Sometimes, an error in the specifications is not detectable.

In brief, the main challenges that hard real time systems are facing are their exponen-

tially increasing complexity —and therefore the complexity of their design—and the hard

and costly a posteriori verification process intended to prove application correctness. In

this context number of approaches and paradigms have been proposed.

Component-based approach

In general, the most basic and intuitive way to tackle complex and large problems is

to decompose them into smaller ones. Similarly, the principle of the component-based

approach is to build complex systems by assembling a set of building blocks called com-

ponents. In order to fit into an architecture of the system (i.e. the structure of the

system), components require coordination mechanisms allowing to describe how they
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are connected and interacting. A component is mainly characterized by its interface,

an abstraction that is adequate for composition and reuse. The composition of compo-

nents is achieved with respect to a notion of ”glue” operator. The ”Gluing” operation

takes, as input, components and their constraints and provides, as output, a complex

system. Therefore, the global behavior of the system can be inferred from the behavior

of its composing components and its related architecture. Component-based systems

provide logical clear descriptions of their behaviors which makes them adequate for a

correct-by-construction process. In addition, they allow reuse of components and incre-

mental modification without inferring global changes, which may significantly simplify

the verification process.

A variety of component-based frameworks have been proposed in order to allow

modelling, simulation and verification of critical embedded applications. Nonetheless,

such design frameworks usually provide a capability for automatic generation of C++ or

Java code, which has to be compiled for the selected target platform. Thus, guaranteeing

hard real-time constraints in the implementation within these frameworks is, at best,

difficult.

Implementations based on Real-Time Operating Systems (RTOS) and Time-

Triggered (TT) execution model

The Time-Triggered (TT) paradigm was introduced by Kopetz [52]. TT systems are

based on a periodic clock synchronization in order to enable TT communications and

computations. Each subsystem of a TT architecture is isolated by a so-called temporal

firewall which consists of a shared memory element for a unidirectional exchange of

information between sender and receiver task components. It is the responsibility of

the TT communication system to transport —by relying on the common global time—

the information from the sender firewall to the receiver firewall. In a TT system all

communication and computation activities are initiated periodically at predetermined

points in time. These statically defined activation instants enforce regularity and make

TT systems predictable which makes them well-suited for hard real-time systems.

Developing embedded real-time systems based on the TT paradigm is a challenging

task due to the necessity to manage, already in the programming model, the fine-grained

temporal constraints and the low-level communication primitives imposed by the tem-

poral firewall abstraction. In this context, a variety of Real-Time Operating System

(RTOS) that are based on the TT paradigm, have been provided to guarantee the tem-

poral and behavioural determinism of the executed software. They provide a set of

primitive mechanisms for handling communication and timing constraints specifications.

Nonetheless, such TT-based RTOS implementations do not provide high-level pro-

gramming models that would allow the developers to think on a higher level of abstrac-

tion and to tackle the complexity of large safety-critical real-time systems.
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Challenge: from component-based model to a TT-based RTOS implementa-

tions

The goal of our work is to couple the high-level component-based design approach

with a safety-oriented RTOS implementing the TT paradigm. We propose a theory

and tools that automatically derive correct TT implementation from the original high-

level component-based model of the application. This is achieved, by using correct-by-

construction source-to-source transformations techniques. The proposed methodology

allows, thus, to combine complementary advantages of both approaches; i.e. tackling the

complexity and verifying the model using high-level component-based framework, and

guaranteeing determinism of the implementation constraints due to the safety-oriented

RTOS implementing. Moreover, the correct-by-construction technique allows avoiding

the a posteriori verification of properties that are already verified in the original high-

level model.

Our contributions

We present, in this thesis, a methodology to provide automatically correct-by-

construction TT implementation starting from a high-level component-based model

of the software application.

In order to comply with the correct-by-construction approach, we need to rely on a

component-based framework which provides rigorous semantics. BIP (Behavior, Inter-

action, Priority) is such a formalism for modelling heterogeneous component-based sys-

tems [2], developed at Verimag. BIP relies on multi-party interactions for synchronizing

components and dynamic priorities for scheduling between interactions. Regarding the

target implementation, we consider PharOS [9] framework. It is an extension of the OA-

SIS framework [31, 36, 67, 68] implemented for the automotive applications. Oasis and

PharOS implementations comprise a programming language ΨC (Parallel synchronous

C), which is an extension of C. This extension allows one to specify TT tasks and their

temporal constraints as well as their interfaces.

The proposed transformational approach of this thesis relies on two main semantics-

preserving transformations; a model-to-model and a model-to-code transformations. In

order to be able to prove formal correctness of the second transformation, we provide the

semantics of the PharOS formal model which is at the same level as its ΨC programming

language. The transformation has been implemented in two main tools and is proved to

be semantics preserving. An overview of the contribution of the thesis is displayed in

Figure 1.

Input BIP model

In the proposed transformational approach, we consider input models that are described

in BIP. The behavior of a BIP component is modelled using timed automata [5] which

is extended with data and C update functions. The component model encompasses only
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BIP2TT-BIP tool

TT-BIP2ΨC tool

Observational equivalence

observational equivalence

BIP

BIP

TCA

Model-to-model transformation

From BIP to TT-BIP model

Model-to-code transformation

From TT-BIP to TCA model

C

TCA is the formal model of the �C language 

Figure 1: An overview of the methodology presented in this thesis

platform-independent timing constraints consisting in user requirements. Transitions are

labelled by ports and are assumed to be timeless. Components are composed using two

operators, namely Interaction and Priority. The Interaction operator is parametrized by

a set of interactions which synchronize transitions of components. The Priority operator

is a partial order on the interactions. In our work, we do not consider the priority

operator in BIP input models. The global state semantics of such models is defined by

a labelled transition systems LTS where the system can either wait (i.e. when time may

progress) or execute the interactions.

From BIP to TT-BIP model: model-to-model transformation

This transformation takes as input a BIP model and produces a more restricted model

called TT-BIP model. This transformation is parametrized by a user-defined task map-

ping. Such transformation allows to obtain a model which is closer to any TT imple-

mentation. That is, a model where all intertask interactions are executed by dedicated

components and all interactions between its different components correspond to send/re-

ceive interactions. These latter provide, on top of synchronization, a unidirectional data



Introduction 9

transfer. Another essential criterion for building the transformation rules is the respect

of the equivalence to the original model where interactions’ conflicts are resolved by the

BIP engine. In order to satisfy this criterion, the obtained model contains a compo-

nent dedicated to conflict resolution and implementing the fully centralized committee

coordination algorithm presented in [10].

Formal semantics of the target implementation

In order to be able to formally present the second transformation and provide its related

formal correctness proofs, we provide a formal model of the target implementation and

define its operational semantics. This model is called the Time Constrained Automata

(TCA) model, which is at the same abstraction level as the ΨC language. In this model,

a task is an automaton. Its transitions are labelled by triplet-labels specifying release,

deadline and synchronization dates. We also define the operational semantics of the

provided TCA model by using the notion of labelled transition systems (LTSs).

From TT-BIP to implementation source code: model-to-code transformation

This transformation takes as input the TT-BIP model and produces as output the TCA

model. The rules of this transformation aim at transforming each transition of a the

original automaton, into a set of successive transitions in TCA model. Different original

timing constraints are mapped using deadlines and/or release dates in TCA model.

While original communications are mapped using synchronization constraints of the

target model. Even if the provided rules are provided as model-to-model transformation

rules, this transformation is considered as model-to-code one since the provided TCA

model is considered to be at the same level of abstraction as the ΨC language.

Organization of the thesis

This document is composed of two main parts. In the first part, we present the prerequi-

sites of this thesis (Chapter 1 and Chapter 2). In the second part, we present the existing

related work and the contribution of the thesis (Chapter 3, Chapter 4, Chapter 5 and

Chapter 6). The last chapter (Chapter 6.4) draws the conclusion and future work. The

details of all chapters are as follows:

• Chapter 1 introduces the BIP component-based framework. It describes its ab-

stract and concrete models as well its operational semantics.

• Chapter 2 provides necessary background information related to the TT paradigm.

It lists some of existing TT implementations. And presents in details PharOS

implementation which is the target implementation of the proposed methodology.

• Chapter 3 presents a non exhaustive list of existing transformational approaches

that are attempting to establish a link between high-level design frameworks and

implementations. This allows to situate and compare our methodology with other

related existing approaches.
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• Chapter 4 presents a transformational method which starts from a BIP model

and a user-defined task mapping. The obtained model—called TT-BIP model—

is a structural restriction of BIP model respecting the TT paradigm. First, in

this chapter, we present the main challenges of the transformation. Second, we

present in details the proposed solution consisting in structuring TT-BIP model

under a well-defined architecture which allows the respect of the original model

behavior as well as the TT principles. Then, we provide the formal transformation

rules. We also provide in this chapter formal correctness proofs of the proposed

transformation.

• Chapter 5 presents a method for transforming TT-BIP models into PharOS imple-

mentation. Since in the implementation level, the notion of composite process/task

does not exist, we present first, in this chapter, the transformation that is applied

to the TT-BIP models that are containing composite task components. Second,

we propose the Time Constrained Automata (TCA) model as a formal model of

TT tasks of a PharOS application and we define its operational semantics by using

LTS. Then, we detail different challenges and present the formal transformation

rules. Moreover, we prove that the defined transformation preserves the observa-

tional equivalence.

• In Chapter 6, we start by presenting an overview of the existing tools that are

involved in the BIP framework. Second, we describe the tools developed in this

thesis and implementing the methods presented in the previous chapters. More-

over, we describe the used two case study examples and some related experimental

results.

• We conclude the thesis in the last chapter, with an overview of the work and its

future perspectives.
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Context
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High-Level Component-Based Models: BIP

Framework

In this chapter, we present the BIP (Behavior Interaction Priorities) framework [12, 14, 83]. BIP
is a framework for rigorous design, analysis and implementation of complex real-time systems.

These latter are described in BIP as a set of atomic components, composed by a layered
application of glue operators. Two glue operators are provided in BIP, namely Interaction and
Priority. Interaction describes multi-party interactions between atomic components. Priority is
a partial order between interactions.

BIP is thus a model-based framework that describes all software and systems according to a
single semantic model. It is also a component-based framework that provides a family of operators
for building composite components from basic blocks. These provided operators allow overcoming
the poor expressiveness of theoretical frameworks based on a single operator, such as the prod-
uct of automata. BIP framework guarantees correctness by construction which allows avoiding
monolithic a posteriori verification as much as possible.

B e h a v i o r

Interaction

Priority

Figure 1.1: Structure of a BIP model

This chapter is structured as follows. Section 1.1 details different kinds of variables of timed
systems and their related notions. It also introduces the terminology and notation used in this
report. Based only on the clock variables, the abstract models of the three layers of a BIP model
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are described in Section 1.2. Section 1.3 represents the concrete model of BIP, based on both
data variables and clocks. Section 1.4 represents briefly how a BIP model is executed.
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1.1 Preliminary Notations

The state of any timed system depends on two kinds of variables —data variables and

clock variables [7]. In such systems, a value of a data variable is modified explicitly in

the system transitions. Values of clock variables —clocks—, are increasing implicitly as

time progresses.

Timed automata introduced in [3, 4, 5, 6] are commonly considered as a standard

model for real-time systems. They are providing a simple and powerful way to model

the behavior of real-time systems by annotating states and/or transitions with guards

over different variables of the system.

In our work, the behavior of real-time systems is modeled through timed automata

where states are annotated by time progress conditions, and transitions are annotated

by guards over data variables and timing constraints over clocks. In the following, we

provide preliminary definitions of data variables and clocks. We provide for each variable

some related notions (e.g. valuation function, guards, etc. ).

1.1.1 Data Variables

Given a variable x, we denote D(x) its domain, i.e. the set of all values possibly taken

by x. If x is an integer variable then D(x) = Z+.

Valuation function

A valuation on a set of variables X is a function vx : X →
⋃

x∈X D(x), such that

vx(x) ∈ D(x), for all x ∈ X. We denote by V(X) the set of all possible valuations on X.

Guards

Guards are Boolean expressions used to specify when actions of a system are enabled.

Given a set of variables X, we denote by GX = BV(X) the set of Boolean guards on X.

Update function

An update function f : V(X)→ V(X) for variables X is used to assign new values f(vx)

to variables in X from their current values vx.

1.1.2 Clocks

Time progress is measured by clocks which are integer or real-valued variables increasing

synchronously. Each clock can be reset (i.e., set to 0) independently of other clocks. We

denote by R+ the set of non-negative reals, and by Z+ the set of non-negative integers.

Valuation function

A valuation on a set of clocks C is a function vc : C → R+ such that vc(c) ∈ R+, for

all c ∈ C. We denote by V(C) the set of all possible valuations on the set C, such that

V(C) ⊆ R+.
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Given a subset of clocks C ′ ⊆ C and a clock value a ∈ V(C), we denote by vc [C
′ ← a]

the valuation defined as follows:

vc[C
′ ← a](c) =

{

a if c ∈ C ′

vc(c) otherwise.
(1.1)

Timing constraints

Timing constraints are guards over the set of clocks. They are used to specify when

actions of a system are enabled regarding system clocks and are defined as follows. Let

C be a set of clocks. The associated set GC of timing constraints tc is defined by the

following grammar:

tc := True | False | c ∼ a | tc ∧ tc | tc ∨ tc,

with c ∈ C , ∼∈ {≤,=,≥} and a ∈ Z+.

Thus, any guard tc can be written as:

tc :=
∧

c∈C

lc ≤ c ≤ uc, where ∀c ∈ C, lc ∈ Z+, uc ∈ Z+ ∪ {+∞} . (1.2)

The Boolean value tc(vc) is the evaluation of the timing constraint tc for the valuation

vc, where each clock c is replaced by its value vc(c). The notation vc + δ where δ ∈ R+

represents a new valuation v′c defined as v′c(c) = vc(c) + δ.

Time progress conditions

Time progress conditions are predicates on clocks used to specify how time can progress

at a given state of the system. They are considered as a special case of timing constraint

where ∼ is restricted to {≤} and operator ∨ is disallowed. Formally, time progress

conditions are defined by the following grammar:

tpc := True | False | c ∼ a | tc ∧ tc, where c ∈ C and a ∈ Z+

Note that any time progress condition tpc can be written as:

tpc =
∧

c∈C

c ≤ uc, where ∀c ∈ C, uc ∈ Z+ ∪ {+∞} (1.3)

We denote by TPC(C) the set of time progress conditions defined over a set of clocks

C. The evaluation of a time progress condition tpc for a valuation vc is the Boolean value

tpc(vc) obtained by replacing each clock c by its value vc(c).

1.2 BIP: the Model-based Framework

We provide a formalization of BIP framework through formalization of each layer of

BIP models. Respective abstract models of behavior, interaction and priority layers are

detailed in this section, by considering only the clock variables.
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1.2.1 Modeling Behavior

The basic building block of a BIP abstract model is the behavior unit. A behavior is

formally defined as below:

Definition 1.1 (Abstract Behavior). A behavior B is a timed automaton represented

by a tuple (L,P,C, T, tpc) where:

• L is a finite set of control locations;

• P is a finite set of ports;

• C is a finite set of clocks;

• T ⊆ L×(P×GC×2
C)×L is a finite set of transitions. A transition τ = (l, p, tc, r, l′)

is labelled with a port p, a Boolean guard on clocks tc and a set r of clocks to be

reset;

• The function tpc : L → GC assigns a time progress condition to each location,

such that, for any l ∈ L, the constraint tpc(l) is a conjunction of constraints of the

form c ≤ uc.

The semantics of a behavior B is a Timed Transition System (TTS) consisting of

two types of transitions: action transitions and delay transitions. Action transitions

correspond to labelled transitions of B. Delay transitions correspond to allowing time

to progress in a given state.

A state is described in two parts: the control state (i.e. control location) and the state

of the clock variables. Based on this state notion, the definition of a behavior semantics

is as follows:

Definition 1.2 (Semantics of a behavior B). The semantics of a behavior B =

(L,P,C, T, tpc) is defined as a Labelled Transition System (LTS) (Q,Σ,−→), where:

• Q = L× V(C) denotes the set of states of B,

• Σ = P ∪ R+ denotes is the set of labels (ports or time values),

• −→⊂ Q × (P ∪ R+) ×Q is the set of transitions defined as follows. Let (l, vc) and

(l′, v′c) be two states, p ∈ P and δ ∈ R+.

• Action transitions: We have (l, vc)
p
−→ (l′, v′c) iff there exists a transition

τ = (l, p, tc, r, l′) ∈ T , such that tc(vc) = True and v′c = vc[r ← 0] for all

c ∈ r. The execution of an action transition is timeless.

• Delay transitions: We have (l, vc)
δ
−→ (l, vc + δ) iff ∀δ′ ∈ [0, δ], tpc(l)(vc +

δ′) = True, where (vc + δ)(c)
def
= vc(c) + δ, for all c ∈ C.
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A transition τ = (l, p, tc, r, l′) can be executed from a state (l, vc) if its timing con-

straint is met by the valuation vc. The execution of τ corresponds to moving from control

location l to l′ while resetting clocks of r. In that case, we say that the port p is enabled

from the state (l, vc), and we write (l, vc)
p
−→. If p is not enabled (i.e. no transition labeled

by p is possible) from that state, we say that p is disabled and we write (l, vc) 6
p
−→.

Alternatively, time can progress for a duration δ > 0, if the time progress condition

tpc(l) stays True. This increases all the clock values by δ. Notice that execution of an

action transitions is instantaneous; control location cannot change while time elapses.

An execution sequence of B is a sequence of transitions from different states of the

system. It is alternating between action and delay transitions and it is defined as follows:

Definition 1.3. A finite (resp. infinite) execution sequence of B = (L,P,C, T, tpc) from

an initial state (l0, vc0) is a sequence that alternates actions and delay transitions:

(li, vci)
σi−→ (li+1, vci+1)

, where σi ∈ Σ such that Σ = P ∪ R+ and i ∈ [1, n] such that n ∈ Z+.

Example 1.1. Figure 1.2 depicts a simple behavior sender= (L,P,C, T, tpc), where

L = {l0, l1}, P = {s, i}, C = c, T = {τ1 = (l0, s,True , {c}, l1), τ2 = (l1, i, (c ≥ l), ∅, l0)}
and tpc is such that tpc(l0) = True and tpc(l1) = (c ≤ u). By default, when a time

progress condition (resp. timing constraint) is not graphically shown on a location (resp.

transition), we consider True as default value.

Let the initial state of this behavior be (l0, 0), tpc(l0) = True means that sender can

wait infinitely at the location l0. Thus, any delay transition δ1 ∈ R+ is possible from

(l0, 0), i.e. (l0, 0)
δ1−→ (l0, δ1). From l0, only one action transition is possible which is τ1.

The transition τ1 is labeled by s and having as timing constraint True. It resets the clock

c, which means that the reached state of this transition is (l1, 0).

We have tpc(l1) = (c ≤ u), so sender cannot wait more than u units of time.

Therefore, any delay transition labeled by δ2 such that δ2 ≤ u is possible from (l1, 0),

i.e. (l1, 0)
δ2−→ (l1, δ2). The unique possible action transition from the state (l1, δ2), is the

transition τ2 labelled by port i and having as timing constraint (c ≥ l). This transition

is possible only if δ2 satisfies l ≤ δ2.

The following is a summary of an execution sequence of the behavior example:

(l0, 0)
δ1−→ (l0, δ1)

s
−→ (l1, 0)

δ2−→ (l1, δ2)
i
−→ (l0, δ2)

1.2.2 Modeling Interaction Glue

Interaction is a glue operator composing behaviors. Throughout this subsection, we

consider n behaviors {Bi}
n
i=1, where Bi = (Li, Pi, Ci, Ti, tpci). Their sets of ports and

clocks are assumed to be disjoint, i.e. for all i 6= j, we have Pi ∩Pj = ∅ and Ci ∩Cj = ∅.
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Figure 1.2: An example of Abstract Behavior

Let P = {Pi}
n
i=1 be the set of all ports in the composition. Interactions are defined as

subsets of ports.

Definition 1.4 (Interaction Glue). An interaction between components {Bi}
n
i=1 is a

non-empty subset α ⊆ P of ports, such that ∀i ∈ [1, n], | α ∩ Pi |≤ 1. We denote

α = {pi}i∈I , where I ⊆ {1, .., n} embodies different indexes of components participating

in α, and pi is the unique port in α ∩ Pi.

An interaction glue operator is denoted by a set of interactions γ ⊆ 2P . An inter-

action α ∈ γ can be enabled or disabled. The interaction α is enabled only if, for each

i ∈ [1, n], the port α ∩ Pi is enabled in Bi. That is, α is enabled if each port that is

participating in this interaction is enabled. The states of components that do not par-

ticipate in the interaction remain unchanged. Alternatively, α is disabled if there exists

i ∈ [1, n] such that the port α ∩ Pi is disabled in Bi.

We denote by comp(α) the set of components that have ports participating in α.

comp(α) is formally defined as:

comp(α) = {Bi|i ∈ [1, n], Pi ∩ α 6= ∅} (1.4)

Two interactions are conflicting at a given state of the system if both are enabled,

but it is not possible to execute both from that state (i.e., the execution of one of them

disables the other). In fact, the enabledness of interactions only indirectly depends on

the current state, through the enabledness of the participating ports. In systems having

only the glue of interactions, two interactions α and α′ may conflict only if they involve

a shared component. In Figure 1.3a, the conflict comes from the fact that α and α′

involve two ports p and q of the same component and that these two ports are labelling

two transitions enabled from the same location. When reaching the location l0, the

component can execute either transition labelled by p or the one labelled by q but not

both. This implies that when α and α′ are enabled, only one of them should execute.

Figure 1.3b shows a special case of conflict where interactions α and α′ are sharing not

only a common component but also a common port p.

Below, we define formally conflicting interactions.

Definition 1.5 (Conflicting interactions). Let γ be a set of interactions and {Bi}
n
i=1 be

a set of BIP behaviors. We say that two interactions α and α′ of γ are conflicting, iff,
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Figure 1.3: Conflicting interactions

there exists an atomic component Bi ∈ comp(α) ∩ comp(α
′) that has two transitions τα

and τα′ having the same source location and labeled respectively by ports p and q such

that p ∈ α and q ∈ α′. We denote the conflict between α and α′ by α#α′. If α and α′

are not conflicting we say that they are independent. The system is conflict-free if all

interactions are pairwise-independent.

1.2.3 Modeling Priority Glue

Several different interactions can be enabled at the same time, thus leading to a certain

degree of non-determinism in the product behaviour. This can be avoided by controlling

the scheduling of interactions. Priority rules allow choosing one interaction among inter-

actions enabled at a given state. They are expressed as a partial order on the interactions

and are formally defined as follows:

Definition 1.6 (Priority Glue). Given a set γ of interactions defined over a set of

components {Bi}
n
i=1, we define a priority as a relation π ⊆ γ × γ. We write απα′ for

(α,α′) ∈ π to state that α has less priority than α′.

Remark 1.1. Notice that Definition 1.6 defines static priorities. It could be extended

to dynamic priority rules depending on the state of the composition of components (cf.

[14] and [77]). In this thesis, we focus only on static priorities.

1.2.4 Composition of Abstract Models

Given a set of behaviors {Bi}
n
i=1 and a glue GL, the corresponding composite component

is denoted by GL({Bi}
n
i=1). The glue GL is either limited to interactions (i.e. GL = γ)

or it corresponds to interactions subject to priorities (i.e. GL = πγ). In the following,

we define the semantics for both cases.

Definition 1.7 (Semantics of composition with interaction model γ). Let γ be a set

of interactions. We denote by B
def
= γ(B1, ..., Bn) the composite component obtained by

applying γ to the set of behaviors {Bi}ni=1 where Bi = (Li, Pi, Ci, Ti, tpci) with semantics

SBi
= (Qi,Σi,−→i). The semantics of B is the transition system Sγ = (Q,Σ,−→γ) where:
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• Q = L×V(C), where L = L1× ...×Ln is the set of global locations and C = ∪ni=1Ci

is the global set of clocks. A global state is of the form q = (l, vc). l = (l1, ..., ln)

is a global location such that li ∈ Li for all i ∈ [1, n]. And vc = (vc1 , ..., vcn) is a

global clocks valuation, where vci is the valuation of clock Ci for all i ∈ [1, n].

• Σ = γ ∪R+,

• −→γ is the set of labelled transitions satisfying the following rules:

• Action transitions:

Interaction
α = {pi}i∈I ∈ γ ∀i ∈ I, qi = (li, vci)

pi−→i q
′
i = (l′i, v

′
ci) ∀j /∈ Iq′j = qj

(l, vc)
α
−→γ (l′, v′c)

• Delay transitions:

Delays
δ ∈ R+ l = (l1, ...ln) ∀i ∈ [1, n], tpc(li)(cci + δ)

(l, vc)
δ
−→γ (l, vc + δ)

In Definition 1.7, action transitions correspond to the execution of interactions. An

interaction α = {pi}i∈I ∈ γ is executed from a global state (l, vc), where l = (l1, ..., ln)

and vc = (vc1 , ..., vcn), if for each i ∈ I the port pi is enabled from the local state (li, vci)

of the component Bi.

From a global state (l, vc), a delay transition is executed letting time progress by

δ, if it is allowed by respective time progress conditions tpci of each location li for all

i ∈ [1, n].

Definition 1.8 (Semantics of composition with Interactions γ subject to Priority π).

Let π be a set of priority rules and γ be a set of interactions. We denote by B
def
=

πγ(B1, ..., Bn) the composite component obtained by applying the glues π and γ to the

set of behaviors {Bi}
n
i=1. We define the semantics of B as the transition system Sπ =

(Q,Σ,−→π) where −→π is a restriction of −→γ defined as follows:

Priority
(l, vc)

α
−→γ (l, v′c) ∀α′ ∈ γ, απα′ ⇒ (l, vc) 6

α′

−→γ

(l, vc)
α
−→π (l′, v′c)

In Definition 1.8, an interaction α ∈ γ is executed from a global state (l, vc) if it

is enabled at that state, i.e. (l, vc)
α
−→γ (l′, v′c) and each interaction α′ having a higher

priority than α (i.e. απα′) is not enabled at state (l, vc), i.e. (l, vc) 6
α′

−→γ .

Example 1.2. Figure 1.4 depicts an example of an abstract model composing four be-

haviours and denoted πγ(sender1 , receiver1 , receiver2 , sender2 ). Behavior sender1 (resp.

sender2 ) is an instance of the behavior of Figure 1.2 with u = 20 and l = 5 (resp. l = 6).
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The interaction α (resp. α′) is a ternary interaction synchronizing ports r1 and r2 with

port s1 (resp. port s2). By the Definition 1.5, these two interactions are conflicting

since they are involving the same ports (r1 and r2) (same case as in Figure 1.3a). Non-

determinism introduced by this conflict, is avoided by the priority π, which states that at

each state of the system, the interaction α has less priority than the interaction α′

c≥5
i

{c}

s1i

Clock c

l0

l1

r1

c⩽20

c⩽15

i
{c}

i

Clock c

l0

l1

r2

5⩽c⩽18

c⩽10

i
{c}

Clock c

l0

l1

s2

c⩽20

i

Clock c

l0

l1

Sender1 Receiver1 Receiver2 Sender2

{c}c≥6

c⩽20

s1

s2r2r1
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 π α'

s1

s1

s1

s1

r1

r1

r1

r1 ir2

r2

r2

r2

is2

s2

s2

s2

Figure 1.4: Example of abstract composition of two sender behaviors and two receiver

behaviors

The execution of interactions in BIP framework is guaranteed by a sequential engine.

This latter computes from the states of single components, the set of enabled interactions,

applies priority rules and choose an interaction to execute.

Note that BIP framework does not compute the automaton resulting from the com-

position before execution. But for a better understanding of the composition glue notion,

we provide in Figure 1.5, the resulting automaton after composing the components of the

example of Figure 1.4 with the interactions α and α′. Note that both transitions α and

α′ in the obtained automation are having the same timing constraint (i.e. 5 ≤ c ≤ 18).

Thus, when applying the priority rule απα′, α′ can never be executed since whenever it is

enabled there is a higher priority interaction that is enabled in the same time. Therefore

we can chose, in this specific example, not to present it in the resulting global automaton

(cf. Figure 1.6). Note that in both Figure 1.5 and Figure 1.6, we choose to graphically

duplicate the initial location (ls10 lr10 lr20 ls20 ) in order to simplify the representation of the

automata.

We recall that examples provided in Figure 1.5 and Figure 1.6, are provided only

to clarify the notion of glues. BIP framework does not compute these automata before

execution.
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Figure 1.5: The resulting automaton of the composition with interactions of the example

of Figure 1.4
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Figure 1.6: The resulting automaton of the composition with priority of the example of

Figure 1.4

1.3 BIP: The Component-Based Framework

For each abstract model of the BIP layer (cf. Section 1.2), we provide its concrete model.

An abstract model focuses on control while concrete model handles data variables added

on top of the abstract model. Handling data variables provides a detailed representation
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of complex behavior, for example, by using guards over variables in order to prevent/al-

low execution of transitions and interactions.

In concrete model, the behavior layer is modeled with atomic components, the in-

teraction layer is modeled with connectors, and finally, Priorities is a mechanism for

scheduling interactions.

1.3.1 Ports and Interfaces

Ports are particular names defining communication interfaces for components. They

are used to establish interactions between components by using connectors. In BIP,

we assume that every port has an associated distinct set of data variables. This set of

variables is used to exchange data with other components when interactions take place.

A set of ports is called an interface.

Definition 1.9 (Port). A port p is defined by:

• p : The port identifier;

• Xp : The set of data variables associated with p.

Remark 1.2. A port can be made invisible to other components, and thus label only

internal computational transitions. In that case, it is called internal port. Symmetrically,

ports visible to other components and composing the communication interface of the

component are exported ports. We may denote exported ports in the remainder of this

work simply by ”ports”.

1.3.2 Atomic Components

An Atomic component is a concrete unit of behavior consisting in the combination of

an interface (i.e. a set of ports) and a behavior encapsulated as a timed automaton

extended with data and clock variables. Each transition of the automaton is guarded

by a predicate on variables and a predicate on clocks, it triggers an update function,

resets a subset of clocks and is labelled by a port belonging to the interface. An atomic

component is formally defined as follows:

Definition 1.10 (Atomic component). An atomic component B is defined by B =

(L,P,X,C, T, tpc) where:

• L is a finite set of locations;

• P is a finite set of ports;

• X is a finite set of local variables;

• C is a finite set of clocks;
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• T ⊆ L× (P ×GX ×GC × 2C × V(X)V(X)) × L is a finite set of transitions, each

labelled with a port, two Boolean guards (on variables and on clocks), a set of

clocks to be reset and a function updating a subset of variables of X; the function

tpc : L→ GC assigns a time progress condition to each location, such that, for any

l ∈ L, the constraint tpc(l) is a conjunction of constraints of the form c ≤ uc.

Example 1.3. Figure 1.7 shows a concrete atomic component of the behavior of Fig-

ure 1.2. This latter has been extended with the variable x associated with the exported

port s. Before being sent, this variable is modified locally by the transition labeled by the

internal port i, which executes the update function f .

s

c≥l

c⩽u

i
{c}

si

Clock c

l0

l1
Sender

x=f(x)

Figure 1.7: An example of an Atomic Component

Defining the operational semantics of an atomic component requires a notion of

state. The state of an atomic component is described in three parts: the control state

(i.e. control location), the state of the clock variables and the state of the data variables.

Definition 1.11 (Semantics of an atomic component). The semantics of an atomic

component B = (L,P,X,C, T, tpc) is defined as a Labelled Transition System (LTS)

(Q,Σ,−→), where:

• Q = L× V(C)× V(X) denotes the set of states of B,

• Σ = P ∪ R+ denotes is the set of labels (ports or time values),

• −→⊂ Q × (P ∪ R+) × Q is the set of transitions defined as follows. Let (l, vc, vx)

and (l′, v′c, v
′
x) be two states, p ∈ P and δ ∈ R+.

• Action transitions: We have (l, vc, vx)
p
−→ (l′, v′c, v

′
x) iff there exists a tran-

sition τ = (l, p, gX , tc, r, f, l
′) ∈ T , such that tc(vc) = gX(vx) = True,

v′x = f(vx) and v
′
c = vc[r ← 0] for all c ∈ r (i.e. v′c(c) = 0, for all c ∈ r).

• Delay transitions: We have (l, vc, vx)
δ
−→ (l, vc + δ, vx) iff ∀δ′ ∈ [0, δ],

tpc(l)(vc + δ′) = True, where (vc + δ)(c)
def
= vc(c) + δ, for all c ∈ C.

A component B can execute a transition τ = (l, p, gX , tc, r, f, l
′) from a state (l, vc, vx)

if its timing constraint is met by the valuation vc. The execution of τ corresponds

to moving from control location l to l′, updating variables and resetting clocks of r.
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Alternatively, it can wait for a duration δ > 0, if the time progress condition tpc(l) stays

True. This increases all the clock values by δ. Notice that execution of jump transitions

is instantaneous; control location cannot change while time elapses.

1.3.3 Interactions and Connectors

The definition of interactions is extended in the concrete model in order to handle vari-

ables. An interaction is mainly a set of ports exporting each a set of variables. An

interaction can access all variables exported by its ports. Particularly, it is guarded by

a predicate defined on these variables. This predicate, if evaluated to True, enables the

interaction. This latter also defines a data transfer function which modifies the variables

values upon the execution of the interaction.

Remark 1.3. The definition of conflicting interactions in the concrete model is the same

as in the abstract model (cf. Definition 1.5 and Figure 1.3). Note that, when considering

data variables, this definition can be an over approximation in some cases. For example

when guards of interactions satisfying the Definition 1.5 are always mutually exclusive,

these interactions are not really conflicting (i.e. they are never enabled simultaneously).

Throughout this subsection, we consider n atomic components {Bi}
n
i=1, where

Bi = (Li, Pi,Xi, Ci, Ti, tpci). Their sets of locations, ports, clocks and data variables

are assumed to be disjoint, i.e. for all i 6= j, we have Li∩Lj = ∅, Pi∩Pj = ∅, Ci∩Cj = ∅
and Xi∩Xj = ∅. Let P = {Pi}

n
i=1 be the set of all ports in the composition. Interactions

are defined as subsets of ports.

Definition 1.12 (Interaction). An interaction α between components {Bi}
n
i=1 is a triplet

(Pα, Gα, Fα), where:

• Pα is a set of ports such that | Pα ∩ Pi |6 1, for all i ∈ [1, n],

• Gα is the set of boolean guards associated to α and defined over a subset of

∪p∈PαXp.

• Fα is the set of the update functions associated to α and defined over ∪p∈PαXp.

In the remainder of this report, when no confusion is possible from the context, we

may simply denote the port set of the interaction by the interaction name. Thus we may

use p ∈ α instead of p ∈ Pα and p ∈ {α1, α2, αn} instead of p ∈ Pαi
, αi ∈ {α1, α2, αn}.

As in the abstract model, interactions are representing the first layer of glue. In

order to avoid an explicit enumeration of all possible interactions between a given set of

components, the notion of connector has been introduced. It allows to present sets of

related interactions in a compact way. Each connector Γ is defined over a set of ports PΓ

and defines a set of interactions γΓ, i.e. a subset of 2PΓ . A connector can be atomic or

hierarchical. An atomic connector (or simply called connector) can export a port that is
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used for the construction of hierarchical connectors. A hierarchical connector is obtained

by combining atomic connectors to form a structure acting as a single connector. The

ports of the top level connector include the exported port of the low level connector.

An algebraic formalisation of BIP connectors is provided in [19] and [20]. In this

thesis, we settle for the following generic definition of a connector. For hierarchical

connectors, we only provide some intuitive but representative examples.

Definition 1.13 (Connector). A connector Γ is defined by the triplet (PΓ, γΓ, pΓ), where:

• PΓ is the set of ports of Γ, i.e. the set of ports of components synchronized by Γ,

• γΓ is the set of interactions,

• pΓ is the exported port by the connector Γ.

For a connector Γ, the set of feasible interactions γΓ depends on types of ports of

PΓ. Two types of these latter are available: trigger and synchron ports. A trigger —

represented graphically by a triangle—is an active port that can initiate an interaction

without synchronizing with other ports. A synchron —represented graphically by a

circle—is a passive port that needs synchronization with other ports.

A feasible interaction of a connector is a subset of its ports such that either it contains

some trigger, or it is maximal, i.e., consisting of all the synchron ports. Thus, by

construction, if more than one interaction is possible, then the maximal interaction (i.e.

the interaction having the maximal number of ports) is prioritized. Figure 1.8 shows

an example of three connectors and their feasible sets of interactions denoted by γ. In

Figure 1.8a, the connector consists of three synchron ports p, q and r. The only feasible

interaction in this connector is pqr. In Figure 1.8b, the port p is a trigger and can occur

alone, even if q and r are not possible. Nevertheless, the occurrence of q and r requires

the occurrence of p. Thus, the feasible interactions are p, pq, pr and pqr. In Figure 1.8c,

both ports p and q ere trigger ports. Thus, the interactions p and q can occur alone or

synchronize with each other through the interaction pq.

p q r

γ={pqr} 

(a)

p q r

γ={p, pq, pr, pqr} 

(b)

p q

γ={p, q, pq} 

(c)

Figure 1.8: Connectors and their feasible interactions

As explained before, types of ports are defined , in order to specify the feasible

interactions of a connector. In addition to ports types, connectors sometimes need to

be structured, i.e. specifying types associated to groups of ports instead of just one

port. This is needed to represent some interactions. Different coordination schemes are

depicted in examples of Figure 1.9.
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Example 1.4. Figure 1.9 shows four connectors defined on the same set of ports s, r1, r2
and r3. Each connector shows a different coordination scheme; Figure 1.9a and Fig-

ure 1.9b for atomic connectors and Figure 1.9c and Figure 1.9d for hierarchical connec-

tors. Let the port s be the port of a sender component and ports ri, i ∈ {1, 2, 3} be ports

of receiver components, the different synchronization models are the followings:

• Rendezvous (cf. Figure 1.9a): Since all ports are synchrons, this synchronization

is specified by a single interaction involving all ports. That is, this interaction

occurs only if all ports are enabled in their respective components. It means strong

synchronization between port s and ports ri.

• Broadcast (cf. Figure 1.9b): It includes one trigger port s and three synchron ports

ri. A trigger port initiates the interaction, independently of the enabledness of other

ports. For this reason, this scheme is also called weak synchronization, that is a

synchronization involving one trigger port and a (possibly empty) set of synchron

ports. This is specified by the set of all interactions containing s, i.e. interactions

s, sr1, sr2, sr3, sr1r2, sr1r1, sr2r3 and sr1r2r3.

• Atomic broadcast (cf. Figure 1.9c): The bottom connector based on ports ri is a

Rendezvous exporting a synchron port t1. This connector allows only the maximal

interaction r1r2r3. The top connector, is a broadcast defined on ports s and t1,

allowing thus interactions s and st1. Therefore, this hierarchical connector allows

interactions s and sr1r2r3, which means that either a message is received by all ri,

or by none.

• Causal chain (cf. Figure 1.9d): The bottom, intermediate and top connectors are

Broadcast connectors. Therefore, this hierarchical connector allows interactions s,

sr1, sr1r2 and sr1r2r3. That is, for a message to be received by ri, it has to be

received at the same time by all rj such that j < i.

s r1 r2

γ={sr1r2r3} 

r3

Rendezvous

(a)

s r1 r2

γ={s,sr1,sr2,sr3 1r2 1r3 2r3 1r2r3} 

r3

Broadcast

(b)

s r1 r2

γ={s,sr1r2r3} 

r3

Atomic broadcast

1

(c)

s r1 r2

γ={s,sr1,sr1r2,sr1r2r3} 

r3

Causal chain

1

2

(d)

Figure 1.9: Connectors and different coordination schemes
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In Definition 1.12, an interaction consists of one or more ports of the connector, a

guard on variables associated with these ports and a data transfer function. Connectors

provide a mechanism for handling this transfer function. Actually, instead of considering

a single data transfer function, this mechanism implies two phases; an upward U and a

downward D actions. The upward action —after deciding whether the guard is True—

updates the connector local variables based on values of variables of ports. The downward

action computes the values to return in variables of components ports from the values

of connector local variables. This mechanism also allows data transfer in hierarchical

connectors.

Example 1.5. Figure 1.10 shows an atomic (a) and a hierarchical (b) connectors defined

on the same set of ports p, q and r exporting respectively variables x, y and z. Both

ports allow to compute the maximal value of these variables and return it to the rest of

ports. For each connector, a guard G, upward U and downward D transfer functions are

displayed. The connector of Figure 1.10a needs all ports variables to be positive before

executing interactions. It defines a local variable t. The function U computes the max

of variables x, y and z and stores it in variable t. The function D stores back value of t

in variables x, y and z.

In Figure 1.10b, the bottom (resp. top) connector defines a guard G1 (resp. G2) stating

that the interaction will not be executed until variables y and z (resp. t1) be positive. It

defines a local variable t1 (resp. t2), which stores after executing function U1 (resp. U2)

the maximal value between those of variables y and z (resp. x and t1). Function D1

(resp. D2) stores back value of variable t1 (resp. t2) in variables y and z (resp. x and

t1).

p q r
x y z

t

G: x>0 ∧ y>0 ∧ z>0

U: t = max(x,y,z)

D: x:=t ; y:=t ; z:=t

(a)

p q r
x y z

t1

G2: x>0 ∧ t1>0
U2: t2 = max(x,t1)
D2: x:=t2 ; t1:=t2

t2

G1: y>0 ∧ z>0
U1: t1 = max(y,z)
D1: y:=t1 ; z:=t1

(b)

Figure 1.10: An atomic (a) and a hierarchical (b) connectors computing the maximum

of exported values

Remark 1.4. In [27] and [47], authors show that a hierarchical connector can be replaced

by an equivalent set of atomic connectors defining interactions as in Definition 1.12. This

is established by composing guards of bottom, intermediate and top connectors, in order

to obtain a guard for the interaction. The update function is obtained by composing

different upward and downward actions. This transformation has been implemented and

allows easily to transform a BIP model with hierarchical connectors into a model with

only atomic flat connectors. Therefore, in this thesis, we do not consider hierarchical
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connectors. And we assume that all our input models have had their potential hierarchical

connectors flattened using this transformation.

Remark 1.5. Notice also that, intuitively, a connector with trigger ports can be replaced

by an equivalent set of connectors defined only on synchron ports. For example, consider

the connector of Figure 1.8b defining interactions p, pq, pr and pqr. The set of connectors

of Figure 1.11, i.e. the unary connector on p, the binary connectors on p and q and on p

and r and the ternary connector on p, q and r are defining the same set of interactions

as the connector of Figure 1.8b.

p q rp rq pp

γ={pqr} γ={qr} γ={pq} γ={p} 

Figure 1.11: Set of connectors based only on synchron ports and equivalent to connector

of Figure 1.8b

Taking into account this remark, we consider in this thesis only synchron ports.

Remark 1.6. The BIP semantics presented in this section assume atomic execution of

interactions which provides sequential execution of the system.

1.3.4 Priority

Priorities assign a partial order between interactions, in order to reduce non-determinism

in the system. As mentioned in Section 1.2, we consider static priorities in this thesis.

These priorities do not depend on the state of the system including data variables values.

Therefore, Definition 1.6 remains available for concrete BIP models.

1.3.5 Composition of Concrete Models

Similarly to the abstract model composition, we denote the composition of atomic com-

ponents {Bi}
n
i=1 by using the glue GL by GL({Bi}

n
i=1). The glue GL is either limited

to interactions (i.e. GL = γ) or it corresponds to interactions subject to priorities (i.e.

GL = πγ). Below, we define the semantics of the two models.

Definition 1.14 (Semantics of composition with interaction model γ). Let γ be a set of

interactions and let {Bi}
n
i=1 where Bi = (Li, Pi,Xi, Ci, Ti, tpci) be a set of atomic com-

ponents. The semantics of the composite component B = γ(B1, ..., Bn) is the transition

system Sγ = (Q,Σ,−→γ) where:

• Q = L × V(C) × V(X), where L = L1 × ... × Ln is the set of global locations,

C = ∪ni=1Ci is the global set of clocks and X = ∪ni=1Xi is the global set of variables.

A state q ∈ Q is of the form (l, vc, vx) such that l = (l1, ..., ln) is the global location,

vc = (vc1 , ..., vcn) is a global clocks valuation and vx = (vxi
, ..., vxn) is a global data

variables valuation.
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• Σ = γ ∪R+ corresponds to the set of labels,

• −→γ is the set of labelled transitions satisfying the following rules:

• Action transitions:

Inter

α = ({pi}i∈I , Gα, Fα) ∈ γ Gα({vxi
}i∈I)

∀i ∈ I, (li, vci , vxi
)

pi−→i ({v∗xi
}i∈I) = Fα({vxi

}i∈I)

∀i ∈ I, (li, vci , v
∗
xi
)

pi−→i (l
′
i, v

′
ci , v

′
xi
) ∀i /∈ I, (li, vci , vxi

) = (l′i, v
′
ci , v

′
xi
)

(l, vc, vx)
α
−→γ (l′, v′c, v

′
x) ,

• Delays transitions:

Delays
δ ∈ R+ l = (l1, ...ln) ∀i[1, n], tpc(li)(t+ δ)

(l, vc, vx)
δ
−→γ (l, vc + δ, vx)

The first inference rule of Definition 1.14 specifies that a composite component B =

γ(B1, ..., Bn) can execute an interaction α = ({pi}i∈I , Gα, Fα) from a global state q =

(l, vc, vx) only if (1) each port pi is enabled in its corresponding component Bi, i.e.

qi = (li, vci , vxi
)

pi−→, where qi is the projection of the state q on the component Bi,

and (2) the guard Gα defined over variables exported by ports {pi}i∈I is evaluated to

True. The function F is triggered by the execution of α. It modifies the variables

{vxi
}i∈I exported by ports {pi}i∈I . Obtained new values {v∗xi

}i∈I are then processed

by their respective components’ transitions, which in turn can apply transformations to

obtain values {v′xi
}i∈I . The clock valuation v′c takes into account clocks that have been

reseted by their respective components’ transitions. States of components which are not

participating in the interaction α remain unchanged.

The second inference rule of Definition 1.14 states that B can execute a delay tran-

sition δ from a state q = (l, vc, vx), only if respective time progress conditions {tpci}i∈I
of each participating component Bi are evaluated to True.

Definition 1.15 (Semantics of composition with Interactions γ subject to Priority π).

Let π be a set of priority rules and γ be a set of interactions. We denote by B
def
=

πγ(B1, ..., Bn) the composite component obtained by applying the glues π and γ to the

set of atomic components {Bi}
n
i=1. We define the semantics of B as the transition system

Sπ = (Q,Σ,−→π) where −→π is a restriction of −→γ defined as follows:

Priority
(l, vc, vx)

α
−→γ (l, v′c, v

′
x) ∀α′ ∈ γ, απα′ ⇒ (l, vc, vx) 6

α′

−→γ

(l, vc, vx)
α
−→π (l′, v′c, v

′
x)

The application of priority π filters out the interactions which are not maximal with

respect to the priority order. The inference rule of Definition 1.15 specifies that an

interaction α = ({pi}i∈I , Gα, Fα) is executed from a state q = (l, vc, vx) only if any other

interaction α′ having a higher priority is disabled from that state.
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Figure 1.12: Example of concrete composition of two sender components and two receiver

components

Example 1.6. Figure 1.12 depicts a composition of four atomic components sender1 ,

receiver1 , receiver2 and sender2 . It extends model of Figure 1.4 with data variables.

components senderi , i ∈ {1, 2} which have variables xi associated to ports si. These

variables are updated locally by function f executed by the occurrence of transitions labeled

by the internal ports. Components receiveri define variables yi associated to ports ri and

updated by function g.

Interaction α (resp. α′), transmits the value of variable x1 of component sender1 (

resp. variable x2 of component sender2 ) to components receiveri that stores it in variables

yi.

Priority rule π states that the interaction α has less priority than the interaction α′,

when both are possible. A component receiveri can receive a new value through its port

ri either from component sender1 or component sender2 .

1.4 BIP Execution Platform

The operational semantics is implemented directly by the BIP execution engine. It

plays the role of the co-ordinator in selecting and sequentially executing interactions

between components with respect to the glue specified in the input component model.

It computes the enabled interactions by enumerating over the complete list of interactions

in the model.

During the execution, on each iteration of the engine, the enabled interactions are

selected from the complete list of interactions, based on the current state of the atomic

components. Then, between the enabled interactions, priority rules are applied to elim-

inate the ones with low priority.
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1.5 Conclusion

In this chapter, we have presented the BIP framework, a component-based framework

for modeling heterogeneous systems. A BIP model is built by the superposition of three

layers. The lower layer describes the behavior of a component as a timed automaton.

The intermediate layer is composed of a set of multi-party interactions synchronizing

transitions of the Behavior layer. The upper layer describes the priorities characterizing

a set of scheduling policies for interactions to reduce non-determinism. Such technique

of layering offers a clear separation between components behaviors and the structure of

the system (interactions and priorities).

The component-based approach aims at dealing with the complexity of systems. It

allows building a complex system by assembling basic blocks (atomic components) in

an incremental way. It thus provides important characteristics for system construction

such as reuse, incrementality, compositionality, etc. Besides the reuse of components,

BIP allows the reuse of known properties of constituent components.

BIP affords for its models, a clean and very well-defined operational semantics based

on Labelled Transition Systems (LTS). It is thus a good candidate for model transfor-

mations, aiming at preserving observational equivalence.

In the following chapters, we present a method for generating time-triggered imple-

mentations from BIP models. We will also show results after applying the proposed

method to case studies.





2
Time-Triggered Approach

One of the characterizing features of hard real-time computer systems is the fact that they must
provide a particular result at intended points in real-time. That is the functional specifications of
such systems must be met within the specified deadlines. It follows that any real-time computer
architecture or design methodology of such systems must be concerned with both issues of value
and temporal correctness.

Two main design paradigms for implementing real-time systems are identified [56]; the Event-
Triggered (ET) and the Time-Triggered (TT) approaches. These approaches differ in the type of
the triggering mechanism of communication and processing actions.

• In the event-triggered approach, actions are initiated whenever a significant event—other
than clock interrupts—occurs. Such systems derive temporal control from the environment
in an unpredictable manner. The event-triggered approach is not suitable for guaranteeing
the respect of requirements of hard real-time systems such as predictability, determinism
and guaranteed latencies.

• In time-triggered systems, temporal control is derived from the global progression of time,
i.e. all actions are initiated at predetermined points in time. There is only one interrupt
signal: the ticks generated by the global local periodic clock. These statically defined acti-
vation instants enforce regularity and make the TT approach well-suited for hard real-time
systems —since it supports predictability and determinism.

Since our work targets hard real-time systems, we focus, in this chapter, on the TT paradigm.
We provide all necessary background information related to this approach and we cite some of
existing TT implementations as well as the chosen RTOS-based implementation that we target
in our work.

This chapter is structured as follows. Section 2.1 presents key features of the TT paradigm.
Section 2.2 provides examples of existing tools implementing the TT paradigm. Section 2.3 focuses
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on PharOS, the RTOS-based implementation based on the TT execution model.
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2.1 The Time-Triggered Paradigm

In [52], [53] and [55], Kopetz presents an approach for real-time system design based on

the TT paradigm [39]. This latter advocates a set of design principles that support the

design of highly dependable hard real-time systems:

The global notion of time:

One of the major features and requirements of TT systems is the global synchronized

time. It is established by a periodic synchronized clock in order to enable a TT commu-

nication and computation.

In the case of a distributed TT system, each node of the system defines its local

periodic clock. Different local clocks synchronization consists in bringing the time of

clocks in a distributed network into close relation with respect to each other. The quality

of clock synchronization is measured by the precision and accuracy [61]. Precision is

defined as the maximum offset between any two clocks in the network. Accuracy is

defined as the maximum offset between any clock and the absolute reference time. This

synchronization is compulsory to establish the global time of a cluster.

TT communication system and temporal firewall

The temporal firewall [62] is a special interface for unidirectional data transfer between

sender/receiver nodes over a TT communication system [39, 52]. It consists in a shared

memory element. The sender memory forms the output firewall of the sender and the

receiver memory forms the input firewall of the receiver. It is the responsibility of the TT

communication system to transport, with access to the global time, the data from the

sender’s firewall to the receiver’s firewall. The instants at which information is delivered

or received are a priori defined in a common periodic communication schedule. This

latter is known to all nodes. A sender does not send any control or data signal directly

to a receiver. Furthermore, avoidance of interference between concurrent read and write

operations on the memory elements is guaranteed by the protocol implemented by the

TT communication system.

Figure 2.1 reproduced from [39], depicts a basic data and control transfer —from one

sender to one receiver—using a temporal firewall interface.

sender
data
flow

receivermemory memory
data
flow

control
flow

control
flow

Time-Triggered 
communication System

Global time

Figure 2.1: Temporal firewall (reproduced from [39])
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Composability and dependability

The composability principle covers several aspects in a distributed real-time system de-

sign. First, it requires that nodes can be designed independently of each other assuming

that the architecture and service have been specified precisely. Secondly, independently

developed components can be integrated with minimal integration effort. And finally, if

fault tolerance is implemented by the replication of nodes, then the architecture and the

nodes must support replica determinism.

The dependability is an overall term that includes availability, safety, maintainabil-

ity and security [63]. This principle is met only if faults are taken into account. In

order to tolerate faults in a time-triggered distributed system two design approaches are

supported. The first one is redundancy approach, consisting in introducing redundant

components in a system. This redundancy allows to provide the intended service even

is presence of faults. The second approach is recovery approach. It consists in designing

the system’s software which is able to detect and then recover from faults. Compared

to the first approach, the recovery approach avoids instantiating extra components but

needs to allow time for recovery.

2.2 Time-Triggered Implementations

The principles developed from the MARS (MAintainable Real-Time System) project [59]

—ancestor of Time-Triggered Architecture (TTA) [58]—served as the basis for codifica-

tion of time-triggered principles. A key concept embraced by the MARS project is called

”fail-silent”, which means that a node either sends the correct message or no message at

all. Access to the communications bus is through a simple TDMA scheme with a static

schedule.

The Time-Triggered Architecture (TTA) provides a computing infrastructure for

the design and implementation of dependable distributed systems. The basic building

block of the TTA is a node which consists of a processor with memory, an input-output

subsystem, a TT communication controller, an operating system and the application

software. Data is exchanged between different nodes using a TT protocol.

2.2.1 Time-Triggered Protocols

In a TT communication system, the sender and receiver(s) agree a priori on a cyclic

time-controlled conflict-free communication schedule for the sending of time-triggered

messages. This cyclic communication schedule can be expressed in the cyclic model of

time, where the send and receive instants of a message, are represented by a period and

phase. In every period a message is sent at exactly the same phase.

The literature embraces several protocols that integrate the TT communication. This

subsection attempts to briefly outline some of these protocols. Detailed and deep com-

parisons between these protocols can be found in [38, 54, 84, 82].
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TTP

The Time-Triggered Protocol (TTP) [60] —initially named TTP/C—is a high-speed,

masterless, multicast and a dual channel 25 Mbit/s [38] field bus communication protocol

for safety-critical embedded applications. It is a development from the European Brite-

Euram ’X-by-wire’ project integrating time-triggered communication.

The TTP communication system autonomously establishes a fault-tolerant global

time reference and coordinates all communication activities based on the globally known

message schedules specified at the design time. It requires that all communication partic-

ipants to comply with an exactly specified and rigidly enforced temporal communication

schedule that serves as a strict communication interface definition.

A TTP network is composed by a set of nodes consisting in electronic control units

(ECUs), connected by two replicated physical communication channels (buses). As a

result of redundant buses, TTP tolerates a single bus failure. TTP implements a time

division multiple access (TDMA ) scheme derived from a global notion of time that

avoids collision on the bus. Every active ECU owns a TDMA slot, during which it has

the full transmission capacity of the bus for this short period of time. The sequence of

TDMA slots in which each ECU sends its frames forms a TDMA round.

Each TTP node consists mainly of a host subsystem and a communications subsys-

tem (see Figure 2.2). The host runs the application software and the communications

subsystem is formed by the TTP controller, which executes the TTP protocol and reg-

ulates access to the physical bus. The communications interface between the host com-

puter and the TTP/C controller, called the communication network interface (CNI), is

a dual-port memory. It acts as a temporal firewall, isolating the host from the network

and not allowing any control errors to propagate. It is within the TTP controller that

the MEssage Descriptor List (MEDL) resides. The MEDL contains the global static

message transmission schedule. that determines when a particular message has to be

sent or received. The communication subsystem contains also bus guardians, in order to

guarantee that the node would not transmit data during wrong time-slots and eliminates

”babbling idiot” problem.

TTE

The Time-Triggered Ethernet (TTE) [57] is an adaptation of the TTP to ethernet-based

networks. It expands the protocol to support the standard event-triggered Ethernet

traffic and the time-triggered safety-critical traffic. The handling of the event triggered

traffic in TT Ethernet is managed with conformance to the existing Ethernet standards

of the IEEE. A global synchronized time is established in order to execute a distributed

time-triggered communication scheme.

TT Ethernet is intended to handle all kinds of applications; e.g. data acquisition,

multimedia systems and also safety-critical real-time control systems etc. .

A TTE network consists of a set of nodes and TTE-switches, which are interconnected

using bidirectional communication links (see Figure 2.3 —adapted from [57] Figure 4).

TTE-Switches relay the messages and take care that time-triggered messages are not



40 2. Time-Triggered Approach

Node

Host

CNI

TTP Controller

MEDL

Bus

Guardian

Bus

Guardian

Host 

subsystem

Communication 

subsystem

Figure 2.2: TTP Node Architecture

delayed by other messages, i.e. they prioritize all time-triggered traffic over non-time-

triggered messages. In order to prevent error propagation from failed components the

fault-tolerant TTEthernet network configuration deploys two independent channels for

each connection.

Mainly, we distinguish between two types of TTEthernet configurations [57]: (1)

standard configuration with standard Ethernet controllers, TT Ethernet controllers, and

a single switch; (2) fault-tolerant configuration with a safety-critical TT Ethernet con-

troller containing two ports to two independent switches.

Figure 2.3 —adapted from [57] Figure 4—illustrates examples of a standard and a

typical safety-critical TTE network configurations.
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tion
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Flexray

Flexray [1, 35] is a communication protocol for automotive applications such as X-by-

wire. Flexray has been developed and is supported by a consortium of automotive manu-

facturers and suppliers. The FlexRay protocol consists of two parts; a time-triggered part

where messages are scheduled according to an a priori defined TDMA schedule which is

similar to TTP and an event-triggered part supporting sporadic traffic. FlexRay imple-

ments a global synchronized timebase that supports synchronized actions. Flexray can

support a communication speed of up to 10 MBit/s.

The building block of a FlexRay network is a node. Each communication node has —

similarly to a TTP node—a host with a subordinate communication controller connected

through CNI interface. Depending on the network topology (active star or passive bus

topologies), one or two bus drivers and bus guardians can connect different nodes of the

network. The bus guardian is controlled by the communication controller, while the bus

driver controls the power supply.

TTCAN

Time-Triggered Controller Area Network (TTCAN) [64] is the time-triggered extension

built on top of the event-triggered CAN protocol [24]. TTCAN is introduced to guarantee

a deterministic communication pattern on the communication bus

It establishes a global synchronized time derived from periodically broadcasted syn-

chronization messages sent by a special node, called the time master node. This latter

assigns the remaining nodes on the network —slave nodes —with time windows which

are the only times available for nodes to transmit.

The TTCAN protocol is implemented in hardware using a dedicated TTCAN con-

troller. The event-triggered part uses the standard CAN arbitration to avoid collisions.

2.2.2 Modelling of Time-Triggered Systems

PBO

The port-based object (PBO) [85] provides a software framework to program reconfig-

urable robots. A PBO system consists of a set of tasks that communicate with each

other and the environment. Tasks—called PBOs—are activated by time periodically

and communicate through ports via state variables that are stored in a global table. A

PBO receives data from other PBOs via its input ports. It makes its results available

to other PBOs through its output ports. And it interacts with the environment via its

resource ports.

Each PBO stores in its own local table the needed subset of the data of the global

table. Before executing a PBO, the state of the local variables corresponding to input

ports are updated from the global table. Upon execution completion, the state variables

corresponding to output ports are copied from its local table to the global one. Note

that read and write operations are atomic.
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For synchronizing access to the global state variable table and ensuring the mutual

exclusivity of accesses to the same state variable, the PBO framework provides mech-

anisms using spin-locks [70]. This is managed outside of the objects, at the operating

system level, instead of by the objects themselves.

In the PBO model, the communication between PBOs is not deterministic. In fact,

for the same PBO, the execution time may be variable in two different activations of the

task. Thus, the time when the outputs are produced and get updated in the global table

may vary from one activation to another. Therefore when reading a variable from the

global table, a consulting PBO may or may not get the results of the current cycle. Recall

that the value of a variable is preserved as long as it is not overwritten, and a new value

overwrites the old value even if this latter has not been used by other tasks. Figure 2.4
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Figure 2.4: Example of two PBOs execution traces

depicts an example of execution traces of two task—denoted PBO1 and PBO2. Task

PBO1 is activated every 2 ms. Its output variables are consumed by the task PBO2,

which is activated every 1.5 ms. Notice that PBO2, in the first period, reads a fresh

output from PBO2 (produced before 1.5 ms). But in the second period of PBO2, output

of PBO1 is not yet produced. Therefore, PBO2 will read PBO1 output from the last

cycle again (i.e. the value produced before 1.5 ms).

Giotto: TT language

The Giotto [44, 43] language and its associated tools are based on time-triggered ex-

ecution. It extends the semantics of the TT paradigm to include the time-triggered

invocation of tasks, mode switching and message passing.

The Giotto model defines a software architecture of the implementation which spec-

ifies its functionality and timing requirements and abstracts away issues related to the

target specific platform such as hardware performance and scheduling mechanism.

Giotto introduced the concept of Logical Execution Time (LET) [51], which abstracts

from the actual execution time of a real-time program, thereby, from both the execution

platform and the communication topology. LET is motivated by the observation that

the relevant behavior of real-time programs is not determined by time when programs

just execute their computations, but when input is read and output is written. The
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inputs of a task are read at the release instant and the newly calculated outputs are

written at the termination instant. Between these, the outputs have taken the value

of the previous execution. Figure 2.5 —reproduced from the literature—illustrates the

LET abstraction compared to the physical execution.
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Figure 2.5: Logical Execution Time Abstraction

A programmer’s Giotto model consists of:

• Tasks: Which are the basic functional entities, implemented by external (Java or

C++) code. Tasks are expected to run periodically, with a fixed period per mode.

Each task has a start time and an end time. The start time corresponds to the

starting time instant when the execution period starts. The end time corresponds

to the end time instance when the execution period ends. A task reads all its

inputs at the start time and makes its outputs available to other tasks at its end

time.

• Ports: Which are memory locations (typed variables) facilitating inter-task com-

munication and carrying system state. There are three types of ports in a Giotto

program: sensor ports, actuator ports, and task ports. Note that ports stand for

the notion of temporal firewall of the TT paradigm.

• Drivers: They perform data copying between ports and implement device access

(for sensors and actuators). Tasks uses drivers for communication either with other

tasks or with sensors and actuators. These latter can have an associated guard

condition, which can be evaluated in zero logical time as well. Note that drivers

stand for the communication system of the TT paradigm.

• Modes: include periodic task invocations and actuator updates with their related

driver calls. The transition between modes is possible if the guard condition of

a mode switch driver evaluates to True. Tasks can be added or removed when

switching between modes.

All actions in such applications are triggered by real time, namely the periodic in-

vocation of tasks, the consulting of sensor data, the writing of actuator values, and the
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switching between modes. And the communication between tasks is well defined and

deterministic. It is computed from the worst case communication time, which represents

an upper bound on the time required for broadcasting the value of task port over the

network.
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Figure 2.6: Example of a Giotto periodic task invocation

Figure 2.6, depicts an example of execution of a task t, invoked every 3 ms. The task

reads inputs upon each invocation (i.e. at instants 0, 3, 6 etc. ) and write its output

values upon each completion.

TDL

The Timing Definition Language (TDL) [76] is a high-level description language for spec-

ifying the explicit timing requirements of an application. TDL is an extension of Giotto.

It contains a few additional notions and complies with the time-triggered semantics.

It differs from Giotto in using modules which are comparable to components as they

support local definition of variables, constants, tasks, modes, and inputs and outputs.

Similarly to Giotto, TDL is based on the Logical Execution Time abstraction.

2.2.3 Conclusion

Implementations of the TT paradigm can be classified under two main categories. The

first category focuses entirely on the communication networks, e.g. TTP, TTE, Flexray

and TTCAN protocols. The second kind of implementations makes assumptions that

the network will provide TT behavior, and instead focuses almost entirely on the system

modelling and task execution, e.g. Giotto, TDL and PBO frameworks

In our work, we rely on an RTOS implementation based on the TT approach which is

part of the second category of the TT paradigm implementations. This implementation

is the PharOS platform [9]. Detailed representation of this platform is subject of the

next section.

2.3 The PharOS Implementation

2.3.1 Overview of the PharOS Platform

PharOS [9] is an extension of the OASIS framework [31, 36, 67, 68] implemented for the

automotive applications. It consists in a framework for safety-critical real-time systems,
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based on the time-triggered paradigm. This framework provides methodologies and tools

allowing the development of embedded critical software with completely deterministic

temporal behavior. Oasis and PharOS implementations comprise a programming lan-

guage ΨC (Parallel synchronous C), which is an extension of C. This extension allows

one to specify tasks and their temporal constraints as well as their interfaces.

An Oasis application is composed of a finite set of communicating and interacting

real-time tasks, called agents. An agent is an autonomous execution entity in which

external communications are totally defined. An agent is composed of a number of jobs

—called also Elementary Actions (EA). These latter are executed sequentially following

logical conditions that are expressing their precedence relationships. Each elementary

action of each agent has a temporal execution window —i.e. a specific earliest starting

date and a deadline—deduced automatically from temporal information of the agent

code. This temporal window is specified by the application developers, through specific

primitives.

Agents perform computation (through their elementary actions) in parallel on private

data. Each data item has exactly one producer (the owner agent) but can have several

consumers. Reading of the value of a data item is handled in such a way that the com-

munications are deterministic and in particular independent of the implementation. In

fact, a very specific primitive of the ΨC language—for instance the advance primitive—

allows the developer to specify, on top of deadline and earliest start instances of jobs, the

Temporal Synchronization Points (TSP) which defines instants when tasks can exchange

data. At each defined TSP, output variables of elementary action executing before this

instant are published to their statically defined consumer tasks, and elementary action

starting execution after this TSP read input variables from their respective producer

tasks.
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Figure 2.7: Example of elementary actions and their associated time windows and TSP

instants.

The example of Figure 2.7, display a set of elementary actions (i.e. EA1, EA2 and

EA3) of an agents and their temporal windows and synchronization points. Note that

gray boxes represent the effective execution of the elementary action, as it can be pre-

empted by other PharOS agents. The instant t0 is the earliest start instant of the

elementary action EA1. The instant t1 defines at the same time the deadline instant of
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EA1, the earliest start instant of EA2 and a TSP, i.e. at t1, EA1 publishes its output

variables to their consumer tasks and EA2 reads its input variables from their owner

tasks. The instant t2 defines the deadline of EA2, while the instant t3 defines the

deadline of EA3 and a TSP.

Notice that in PharOS, communication between agents follows a strict observability

principle [48]; i.e. an EA can use only temporally visible data, and data that are already

visible can not be modified. The visibility date can only be in the future compared to

the current date of an agent, i.e. its earliest start date of its current EA.

PharOS and OASIS provide two modes of communication between agents. The first

mode uses the exported variables, also called temporal variables and the second mode

is based on the sending of messages from a sender task to one or more receiver tasks.

The new values of a temporal variable are made visible at every synchronization point of

its unique producer/owner agent, while messages require explicit definition of visibility

dates.

timet1 t2t?
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Figure 2.8: Example of two PharOS agents communicating through temporal variable

mechanism.

In the first mechanism, each temporal variable defines a real-time data flow which is

associated with an internal variable of its owner agent. A real-time clock is associated

with each temporal variable. This clock defines the rhythm of adding new values to the

flow. If the instant of the clock corresponds to a TSP, the current value of the variable

will be at the top of the flow, else the top of the flow will be duplicated. Each temporal

variable can be accessed by one or more consumer agents which are statically defined.

To access a temporal variable, a consumer agent has to specify the number —i.e. the

depth—of the value it needs to consult from the flow.

Consider two agents Ag1 and Ag2 of Figure 2.8. And consider a temporal variable

x of the agent Ag1, that is consulted by Ag2. Regardless of the values between instants

t1 and t2 of the clock of Ag1 (i.e. however the value of x is modified by EA2), the value

of the variable x ”observed” by the agent Ag2 at instant t is its past value x(t) = x(t1).

Note that in this example the depth of the observation is 1, i.e. only the last value is

consulted.
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In the sending message mechanism, the sender agent associates with each message

a visibility date, i.e. the date beyond which a message can be accessed by the recipient

agent. The latter has queues for receiving messages that are sorted by their visibility

dates. For example, consider Figure 2.9 where an agent Ags sends a message M with

timet1 t2tI

EA1 EA2

timet tJ

KLr

KLs

Figure 2.9: Example of two PharOS agents communicating through sending message

mechanism.

visibility date t1 to the agent Agr. The messageM cannot be observed before the instant

t1 of the clock of Agr, since t
′ > t1.

PharOS platform provides an off-line tool chain responsible for extracting the appli-

cation’s temporal behavior in order to generate a runtime. More specifically, all possible

temporal behaviors are computed in order to size communication buffers and to analyse

the timing constraints on the execution times. At runtime phase, PharOS applies an

Early Deadline First (EDF) algorithm [66], in order to dynamically schedule elementary

actions of agents based on their temporal synchronization points.

In our work, we focus only on the temporal variable mechanism. In the next sub-

section, we provide more details about the ΨC programming language and its syntax,

considering only this communication mechanism.

2.3.2 The ΨC Programming Language

ΨC is a programming language designed for specifying different tasks of a PharOS appli-

cation and their temporal synchronization points. It preserves the operational semantics

of C, but adds time constraints to these semantics with the Ψ extension (this exten-

sion could be applied to any imperative programming language). C control flow graphs

are automata, so C’s instructions for control flow can be used to express sequencing of

blocks, loops, and choices. The basic Ψ addition to C is the addition of the following

instructions: before, after, and advance instructions that respectively add before and

after constraints, and temporal synchronization points.

• After instruction (after(d)): defines d as the relative release date of the following

EA;
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• Before node (before(d)): defines d as the relative deadline of the preceding EA;

• Advance node (advance(d))— also called temporal synchronization point: combines

after(d) and advance(d) instructions. It defines the absolute visibility date of the

data produced by the job;

A PharOS application consists of a set of clock definitions followed by a set of task—

also called agent—definitions. Recall that, in our work, we consider that the set of

parallel agents communicates only through temporal variables. PharOS applications are

characterised by the following abstract syntax:

Application ::= Clock+.Agent+ ,

Clock ::= c = (φc, Pc) ,

Agent ::= {local variable}∗.{input tv}∗.{output tv}∗.Body+ ,

Body ::= {C code .[after(n)|before(n)|advance(n)] with Clock}∗.next Body ,

where c is a clock, with φc and Pc being respectively the phase shift and period of c (see

the detailed definition below); tv is a temporal variable and n ∈ Z+ is a time step w.r.t.

to an associated clock.

Clocks

Clocks are variables used to describe the temporal behavior of the application. A clock

defines a sequence of periodic instants called activation instants. These latter are used

by the agents for describing timing constraints and synchronizations. Each clock c has

an associated phase shift φc and a period Pc. Formally, the clock c defines a sequence of

instants (ti)i≥0 = (i · PBASE + φBASE )i≥0.

The global clock cBASE = (φBASE , PBASE ) is defined by its phase shift (always default

to zero) and period expressed in real time units, such as 1 second, 100 milliseconds etc.

The ΨC language provides a set of primitives allowing to define these clocks depending

on the unit of their period (i.e. time separating two ticks of the clock). Let PBASE be

the period of cBASE which is measured in nanoseconds, the different primitives are as

follows:

• clock cBASE = gtc0(valSec), where PBASE = ((valSec ∗ 1000) ∗ 1000) ∗ 1000ns;

• clock BASEc = gtc1(valSec, V alMilliSec), where PBASE = ((valSec ∗ 1000 +

V alMilliSec) ∗ 1000) ∗ 1000ns;

• clock cBASE = gtc2(valSec, V alMilliSec, V alMicroSec), where PBASE =

((valSec ∗ 1000 + V alMilliSec) ∗ 1000 + V alMicroSec) ∗ 1000ns;

• clock cBASE = gtc3(valSec, V alMilliSec, V alMicroSec, valNanoSec), where

PBASE = ((valSec ∗ 1000 + V alMilliSec) ∗ 1000 + V alMicroSec) ∗ 1000 +

valNanoSecns.
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Other clocks c = (φc, Pc), are defined w.r.t. cBASE , by putting c = Pc ∗ cBASE + φc.

Activation instants (ri)i≥0 of c are computed from those of cBASE as follows:

ri = (i · Pc + φc)PBASE + φBASE . (2.1)

The ΨC language also provides—for the designers’ convenience—a possibility of

defining new clocks in terms of clocks other than cBASE . Figure 2.10b depicts activation

instants of the clock cBASE with period of one millisecond, a clock c1 = (1, 3) derived

from cBASE and a clock c2 derived from c1. Activation instants of c1 are 1ms, 4ms, 7ms

etc.. The ΨC code declaring the clocks of this example is shown in Figure 2.10a, where

gtc1 is the ΨC primitive declaring a global clock with a period of one millisecond.

clock cBASE = gtc1(0,1)

clock c1 = 3 * cBASE + 1

clock c2 = 2 * c1 + 1 

(a)
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Figure 2.10: Example of clocks and activation instants

An instant ti of cBASE (resp. rj of c) can be referenced by its index i (resp. j). For

example, in Figure 2.10, “instant 4 of cBASE” refers to the physical activation instant

t4 = 4ms. Similarly, “instant 1 of c1” refers to the instant r1 = 4ms.

An instant ri of clock c = (φc, Pc) can be mapped into an instant tj of clock cBASE

by the function conv c
cBASE

: c→ cBASE , defined by letting

conv ccBASE
(ri) = tj , with j = i · Pc + φc . (2.2)

Inversely, a global instant ti of clock cBASE can be mapped into an instant rj of a derived

clock c by using the function conv cBASE
c , defined by letting

conv cBASE
c (ti) = rj , with j =

⌊

i− φc
Pc

⌋

. (2.3)

For example, in Figure 2.10, the instant r = 1 of clock c1 is mapped to the instant

conv c1cBASE
(1) = 4 of clock cBASE . The instant t = 5 of clock cBASE is mapped into

instant conv cBASE
c1 (5) = 1 of clock c1.

Agent

An agent consists of an interface including declarations of local variables, input and

output data flows (temporal variables) followed by a body.
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The block allowing to define the set of local variables necessary for different compu-

tations is named global (since these variables local to the agents are global to different

bodies of the agent). It consists of C declarations of variables.

The block allowing to define a temporal variable is named temporal. It consists of

declarations of temporal variables of the agent (i.e. the output variables). Each decla-

ration starts by the C type of the variable (int, float etc. ). It is followed by an integer

expression defining the depth of the temporal variable i.e. the maximum number of past

values to which the agent wants to be able to access. When equal to zero, this means

that only the current value of the variable is manipulated by different bodies of the agent.

This integer expression is separated by the symbol ”$” from the unique identifier of the

temporal variable. For example the declaration int 0$x, defines a temporal variable

containing an integer x and allowing access only to its current value.

After defining the output temporal variable, the agent defines the list of agents that

access this output temporal variable. This is done through the display block. One

declaration of this block is of the form x : agent2. Which consists in allowing agentId

to access to the temporal variable x.

An input temporal variable is specified by the consult block. A declaration of this

block consists in indicating the identifier of the owner agent followed by an integer

expression defining the number of the consulted past values. This integer is separated

from the identifier of the temporal variable by the symbol ”$”. For example agent1 :

1$x allows the consult the last value of the temporal variable x of the agent agent1.

Figure 2.11, displays the definition of agent1 with its four blocks global, temporal, display

and consult. Agent1, defines a local integer variable z necessary for its computations, a

temporal variable x which is consulted by agent2. The agent Agent1 consults the last

value of the temporal variable y of agent3.

The body block within an agent describes the behavior of the agent through a block of

timeless C code extended with after, before and advance statements. An after(d) (resp.

before(d), advance(d)) with a clock c = (φc, Pc), defines the release (resp. deadline,

synchronization) instant corresponding to d units of time after a reference instant. This

reference instant corresponds to the absolute instant recording the visit of the last after

or advance node.

Code of Figure 2.12 describes the behavior of a task with four jobs (labelled A to D).

In this example, all temporal constraints are defined over the same clock c. The release

date of job B is one unit of time after the initial instant or previous advance constraint,

i.e. advance(3), depending on the execution history. Two units of time later, job B must

have ended. After the execution of the job C, communication take place since advance

statement is reached. The visibility date of data produced by C is three units of time

after the previous visit to the statement after(1).

A formal model of ΨC was provided in [65], where the behaviour of a task is specified

using a directed graph, where arcs represent the successive jobs and nodes bear the

temporal constraints. Nodes of the graph are of four types: After, before, advance and
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agent agent1() with clock {

  global{

    int z;

  }

  temporal{

    int 0$x;

  }

  display{

    x : agent2;

  }

  consult{

    agent3 : 1$y;

  }

  body start

  {

    ...

  }

  ...

}

Figure 2.11: Example of input and output temporal variables declarations in ΨC

body start

{

  // Job A

  ComputationA();

  // Job B

  after(1) with c;

  ComputationB();

  before(2) with c;

  // Job C

  ComputationC();

  advance(3) with c;

  // Job D

  ComputationD();

} 

Figure 2.12: Example of body ΨC code

no-constraint nodes. We believe that this model is not at the same abstraction level as

the ΨC language since it does not hold clocks and thus does not provide the possibility

of specifying constraints over different clocks. Also operational semantics of this model

are not provided.
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2.4 Conclusion

This chapter presents a conceptual overview of the time-triggered paradigm and its key

features (namely in Section 2.1). Implementations of the TT paradigm are ranging from

TT protocols that are focusing entirely on the communication networks, e.g. TTP, TTE,

FlexRay and TTCAN protocols (see Section 2.2.1) to system modelling frameworks

which are focusing almost only on TT tasks execution, e.g. Giotto, TDL, PBO (cf.

Section 2.2.2) and PharOS (cf. Section 2.3) frameworks.

This thesis work targets the RTOS-based implementation which is the PharOS plat-

form, presented in details in Section 2.3. We focus only on the temporal variable commu-

nication mechanism of this framework as our PharOS platform version uses exclusively

this mode of communication.

Design principles of a TT model (presented in Section 2.1) are guiding elements

for the definition of the first part of our transformational approach (as presented in

Chapter 4). A formal model of the ΨC language —the programming language of PharOS

platform—with explicit operational semantics is extremely necessary to the second part

of our transformational approach. For this aim, we elaborated a formal model that is

presented in Chapter 5.
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3
Related Work and Background: Existing

Transformational Approaches

The transformation approach presented in this thesis combines advantages of three major features;
(1) the source model is a component-based model, (2) the target implementation is an RTOS-
based implementation which relies on the time-triggered model, and (3) the transformation is
correct-by-construction, due to the well defined operational semantics of its source models.

Based on these three criteria, we tried to situate and compare our approach with other existing
transformational approaches. Nevertheless, to the best of our knowledge, no related work has been
found with respect to these three criteria at once. There exist, however, several approaches which
satisfy one or two of these features. This chapter presents a non-exhaustive list of existing
transformational approaches attempting to establish a link between high-level design frameworks
and implementations.

In Section 3.1, we list these approaches and evaluate them according to our approach. And in
Section 3.2, we present some background concepts (namely conflict resolution protocols) of one
of these approaches, that are reused later in the first step of our transformation method.
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3.1 Related Work

Approaches relying on component-based source models

Methods relying on model transformations in order to automatically refine AADL mod-

els are presented in [23, 29]. In order to reduce the gap between models used for timing

analysis and for code generation, abstract models of computation are first transformed

in more precise models, which include the timing characteristics of the execution plat-

form. These refined models are then used for a more precise timing analysis. It is

clear that these proposed frameworks have been proposed in order to ease the timing

analysis of embedded systems. However, these approaches do not specifically target TT

implementations nor rely on well-defined formal semantics allowing to formally prove

the correctness of the transformation process.

Another transformational approach, having as source models the AADL models, is

presented in [46]. The goal of this work is to propose a rapid prototyping methodology

based to develop distributed real-time and embedded systems around the AADL. The

proposed design-by-refinement approach is implemented around the Ocarina tool suite

The obtained system is assumed to be very close to the final product, where some user

functional components have to be completed. Although this approach is claimed to

significantly reduce the time needed to specify, prototype, and produce a distributed

real-time embedded system, it is not providing formal correctness proofs nor guarantees

of determinism for hard real time systems.

Approaches Targeting TT implementations

A design framework based on UML diagrams and targeting the TT Architecture

(TTA) [58] is presented in [72]. This approach relies on a decomposition of a sys-

tem into clusters and nodes to instantiate the communication mechanisms. It assumes

the underlying TT protocol to implement the FlexRay standard [74]. Essential features

of the underlying architecture and protocol are expressed using the different diagram

types and notations of UML. Even if it targets a TT implementation, this framework

—unlike our approach—does not support the earlier architectural design phase, nor the

verification at model level. It requires a backward association mechanism to link faulty

runs obtained at the SystemC level to the UML model.

A code generation tool-chain from SCADE/Lustre [42] to the TT Architecture (TTA)

is presented in [30]. In this approach, Lustre has been extended with additional primi-

tives to specify code distribution, timing requirements and deadlines. Another relevant

work proposes an automatic transformation from SCADE synchronous language models

into OASIS applications. In particular, the paper presents a transformation method pre-

serving the functional semantics of the applications through an optimised arrangement

of OASIS logical clocks. These two approaches are both limited to relatively simple tem-

poral behaviors. Their source models define periodic functional behaviour of the system,

with the key real-time constraint being the duration of the period. In contrast, in our

approach, RT-BIP source models define real-time constraints of arbitrary complexity.
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In [75] and [76], authors propose the integration of the TDL methodology with

Simulink framework. This approach provides a powerful modelling and simulation en-

vironment where TDL components can be modelled and simulated without knowing on

which platform they will be executed. The basic idea of this integration is to use standard

Simulink blocks to model the LET behavior of TDL tasks. The mapping to a specific

platform —distributed or not—is a straight-forward assignment of TDL components to

the platform nodes (ECUs).

An extension of Simulink to express designs of the time-triggered Giotto language is

also presented in [50, 45]. The proposed tool-chain in this work —demonstrated on a

helicopter autopilot system—proposes an automatic generation of Giotto code meant

for monitoring the interaction of the functionality code with the physical environment.

These extension approaches of Simulink and Ptolemy (with TDL and Giotto) are not

presented as formal rule-based transformations. And no formal correctness of the inte-

gration is proven.

Similarly, approaches presented in [79] and [41] propose to extend the Ptolemy II

framework respectively with TDL and Giotto models of computations. In [41], the code

generation framework within Ptolemy II is extended to generate C code for the Giotto

programming model (running on the FreeRTOS embedded operating system). While

authors of [79] present the TDL domain in Ptolemy II, that is, the add-on Ptolemy soft-

ware components which allow the specification and simulation of discrete event models

with TDL semantics.

Although these two integration approaches are different from the viewpoint of the

purpose and the implementation, they are both not presented as a rule-based transfor-

mation approaches that are proven to be correct.

Approaches presenting correct-by-construction transformations

Two model transformation approaches for generating distributed implementations from

non-real-time BIP models and real-time BIP models, are presented respectively in [21]

and [86]. In these approaches, the initial model is transformed into a 3-layer model re-

lying exclusively on simple message-passing interactions, which are implementable using

basic message-passing primitives.

Another method for generating a mixed hardware/software system model for many-

core platforms from a high-level non-real-time application model and a mapping between

software and hardware components are presented in [25].

The above approaches take advantage of the BIP framework to build correct-by-

construction implementations based on a single semantic framework. Nevertheless, they

do not target the platforms based on TT execution model, thereby falling short of ex-

ploiting the strong temporal guarantees provided by the latter.

In [11], authors present a correct-by-construction approach to transformations across

design environments. In order to ensure correctness by construction, authors suggest us-

ing a common formal model, namely the synchronous reactive model of computation.

This formal model is used as the common ground to interpret system specifications
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given with different underlying models. Authors chose two tools (ASCET and Simulink)

—widely used in the automotive domain—to demonstrate the presented approach. Al-

though this approach is based on a common formal model which allowed authors to

present a rule-based transformation, no formal correctness proofs are provided.

In [37], authors present a framework for graph transformation. Semantical correct-

ness is ensured by using the rules for the model transformation also for the transformation

of the operational semantics, which is given by graph rules. This allows to compare the

behaviour of the source model with the one of the target model. However, even if this

paper is presenting formal transformation rules and correctness theorems, it does not

consider the time-triggered paradigm as a basis for the target implementation. It is not

an approach for designing and implementing a critical real-time application based on the

time-triggered model.

In another line of work, authors of [49] propose two methods of certifying model

transformations. In the first method, they propose to establish links between the ele-

ments in the target model and the elements in the source model. These links will then

be checked using a bisimilarity checker tool to prove that the target model is a bisim-

ulation of the source model. The second method requires the translation of the source

and target models to an equivalent formal model that is written in the same formal

language. The obtained formal models will then be checked for bisimulation. It is clear

that the main difference between this work and our approach relies in the purpose. In

fact, our main goal is to propose a correct-by-construction transformation in order to

obtain a TT implementation. In the contrary, this work target the general purpose of

certifying model transformation approaches without any special focus on hard real-time

implementation.

3.2 Background

As stated in the previous section, the transformational approaches of [21] and [86] aim

at transforming a BIP model into a distributed implementation. During these trans-

formations, authors face the conflict resolution problem and propose a set of solutions.

Even though, in our work, we do not aim at targeting especially the distributed imple-

mentation, we face the same conflict resolution problem while transforming a BIP model

(more details in Chapter 4). For this reason, this work is considered as a background

to our work since we reuse their proposed solution for resolving conflicts. In order to

present in details this solution, we need to provide a quick overview of their approach.

This is the main subject of this section.

3.2.1 Transformation of BIP models into distributed implementations

Transformational approaches of [21] and [86] propose a methodology to provide auto-

matically efficient and correct-by-construction distributed implementations starting from
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a high-level model of the software application in non real-time BIP and real-time BIP.

A key idea of this methodology is to use a set of correct transformations which preserve

functional properties. Furthermore, they take into account extra-functional constraints.

In distributed implementations, primitives available for communication are less pow-

erful than BIP coordination. This latter is achieved through multiparty interactions and

scheduling by using dynamic priorities. And its associated semantics is defined on a

global state model.

In order to be able to derive distributed application from BIP models, authors propose

to transform arbitrary BIP models into Send/Receive BIP models which are directly

implementable on distributed execution platforms.

Send/Receive BIP models consist of components coordinated by using asynchronous

message passing (Send/Receive primitives). They comply with a three-layer architecture

where the bottom layer includes the components of the application software, the second

layer includes a set of distributed engines handling each a subset of interactions of the

original model and the third layer implements a conflict resolution protocol used to

resolve conflicts between engines of the second layer.

The obtained Send/Receive BIP models are proven observationally equivalent to the

initial models. They are then used to generate stand-alone C++ implementations using

either TCP sockets for conventional communication, or MPI implementation, for the

deployment on multi-core platforms.

In the case when engines of the intermediate layer, handle interactions that are

conflicting with other engine interactions, the third layer interferes —dynamically—in

order to resolve this conflict.

The Conflict Resolution Protocol is implemented using algorithms that solve the

committee coordination problem [33]. Authors adapt a variation of the idea of the

message-count technique from [10]. This technique is based on counting the number of

times that a component executes a communication or a computation step. Each com-

ponent keeps a counter nb which indicates the current number of participations of the

component in interactions or internal computations. The Conflict Resolution Protocol

ensures that each participation number is used only once. That is, each component

takes part in only one interaction per transition. To this end, in the Conflict Resolution

Protocol, for each component Bi, we keep a variable NBi which stores the latest number

of participations of Bi. Whenever the Conflict Resolution Protocol is solicited by the

second layer to execute an interaction α where Pα = {pi}i∈I , it receives a set of partic-

ipation numbers {nbi}i∈I for all components involved in α. If for each component Bi,

the participation number nbi is greater than NBi, then the Conflict Resolution Protocol

acknowledges successful reservation through port okα and the participation numbers in

the Conflict Resolution Protocol are set to values sent by the the second layer. On the

contrary, if there exists a component whose participation number is less than or equal to

what Conflict Resolution Protocol has recorded, then the corresponding component has

already participated for this number and the Conflict Resolution Protocol replies failure
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via port failα.

Authors of [21] and [86], in particular, consider three committee coordination al-

gorithms —all inspired from [10]: (1) a fully centralized algorithm, (2) a token-based

distributed algorithm and (3) an algorithm based on reduction to distributed dining

philosophers [32].

Regardless the employed algorithm, A CRP handling a set of conflicting interactions

follows these restrictions:

• For each component Bi ∈ comp(α), such that α is handled by the Conflict Resolu-

tion Protocol, this latter maintains a variable NBi indicating the last participation

number reserved for Bi.

• For each interaction α where Pα = {pi}i∈I handled by the Conflict Resolution

Protocol, are included three ports: rsvα , okα and failα. The port rsvα receives

reservation requests containing fresh values of variables ni. The ports okα and

failα accept or reject the latest reservation request. In case of positive response

(through port okα), variables NBi are updated.

• Each rsvα message should be acknowledged by exactly one okα or failα message.

• Each component of the Conflict Resolution Protocol should respect the message-

count properties described above.

In the rest of this section, we explain the behavior —through a representative

example—of the CRP component implementing the fully centralized algorithm. Details

about the two remaining algorithms as well as formal definitions are provided in [47].

Centralized CRP component behavior

In this paragraph, we present the behavior of the CRP component implementing the

fully centralized algorithm through the example of fragment in Figure 3.1 which displays

the principle of the CRP behavior that handles an interaction α1. We assume that

α1 is connecting two components: B1 and B2. As depicted in Figure 3.1, the CRP

component has variables NB1 and NB2 which correspond to reference variables storing

the latest number of participations of components B1 and B2. The CRP component

contains a waiting location wα1, a reservation location rα1 and three ports rsvα1 , okα1

and failα1 . Time progress condition of the location wα1 is always set to True, while the

time progress condition of a location rα1 is set to False . To the port rsvα1 , are associated

variables nbi such that Bi ∈ comp(α1) (in our example nb1 and nb2).

The location of the initial state is wα1. Whenever a reservation for executing the

interaction α1 arrives, the location rα1 is reached. From this location, if the guard of

the transition labeled by okα1 is True—according to freshly received nbi and the current

values of NBi—the transition okα1 can execute to reach back the location wα1. When

executing, the transition okα1 updates reference variables NBi by copying values of the
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Figure 3.1: Conflict resolution principle

variables nbi. Therefore after the execution of this transition, its guard becomes False .

The transition labeled by failα1 is always possible.

As explained before, the fragment displayed in Figure 3.1 represents a seperate au-

tomaton handling only one interaction. A CRP component usually handles two or more

interactions. Its behavior is, thus, obtained by composing seperate automata of its

handled interactions. For example, we consider a CRP component that handles two

conflicting interactions α1 and α2. These interactions are connecting, each, two compo-

nents: B1 and B2 for interaction α1 and B2 and B3 for interaction α2. For simplicity

of the representation, this CRP component may be displayed as in Figure 3.2. The
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`af def

1 2

1 2
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Figure 3.2: An example for the centralized Conflict Resolution Protocol for handling two

conflicting interactions α1 and α2

composed automaton of this CRP component is as displayed in Figure 3.3. Note that,

in the case when the CRP component receives two reservation requests for executing

conflicting interactions, one of the two transitions labeled by port okαk
will be selected

and executed. The other ok transition will become disabled, since one of its guards

becomes False , leaving the fail transition be the only possible transition. This latter is

then executed allowing to reach back the waiting state.
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Figure 3.3: Automaton of CRP component of Figure 3.2

3.3 Conclusion

In this chapter, we present some of existing approaches that establish a link between high-

level design frameworks and implementations. Among these, we focus on one approach

that transforms BIP models to distributed implementation. This work is considered as

a background to our work, since we reuse the proposed solution in conflict resolution. In

Chapter 4, we detail the first step of our transformation process, and we show how this

conflict resolution method is integrated into the target model of our transformation.



4
From High-Level BIP Model to Time-Triggered

BIP Model

After presenting the BIP framework (Chapter 1), the time-triggered paradigm (Chapter 2) and
after giving an overview of the existing approaches transforming a high-level model to implemen-
tations (Chapter 3), we can start to present our approach to transform a BIP model into a TT
implementation. Direct transformation is challenging since we need, in a first step, to introduce
mode implementation details earlier in the BIP model.

Therefore, in this chapter, we focus on transforming BIP models in such a way that the TT
communication system can be explicitly instantiated in the resulting model.

We present a transformational method which starts from a BIP model and a user-defined
task mapping (see Figure 4.1) and consists in adapting the initial model to comply with the TT-
communication pattern, i.e. tasks communicate only through a communication medium by using
unidirectional message passing. The obtained model—called TT-BIP model—is then a structural
restriction of BIP model respecting the TT paradigm. This model is needed to be—in a second
step—directly transformed into the programming language of the target platform based on the TT
execution model.

User-de ned

 task MappingBIP model

TT-BIP model

Figure 4.1: Transformation approach

This chapter is structured as follows. Section 4.1 discusses different challenges of the trans-
formation. In Section 4.2, we explain approach allowing to address these challenges, and explain
choices leading to the definition of the structure of the target model. In Section 4.3, we detail
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restrictions on the input BIP model. In Section 4.4, we formally define the transformation of
a high-level BIP model into a TT-BIP model. Section 4.5 deals with correctness proof of the
proposed transformation.
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4.1 Problem Statement

Transforming a user-defined task mapping and a high-level model based on multi-party

interaction model into an equivalent model where interactions comply with the TT com-

munication pattern, is a challenging task. From one hand, introducing TT settings con-

sists in (1) instantiating tasks in the derived model according to the user-defined task

mapping, (2) modelling the TT communication system by introducing dedicated atomic

components and (3) restricting the synchronous multiparty inter-task interactions to

simple unidirectional communications with the introduced communication components.

From the other hand, the derived model is required to be observationally equivalent to

the original BIP model.

In order to understand different challenges of such a transformation, consider the

BIP model in Figure 4.2.

p1 p� p3 p� p�

�� �� �� ��

a1 a�

p�

��

p6

a3

Figure 4.2: High-level BIP model

In Figure 4.2, the model consists of five atomic components B1,..., B5 which are

synchronizing through rendezvous interactions a1, ..., a3. In BIP framework, interactions

are executed sequentially and atomically by the BIP engine. Thus, combining the need

for respecting the TT settings with the need for providing the transformation correctness,

requires the target model to deal with more complex issues:

Decomposition into Tasks

Tasks (processes, threads, etc.) are building blocks of TT applications. In the design

phase, designers have the choice to model a TT task using one or more BIP components.

This task mapping is needed not only for defining task components but also for defining

inter-task interactions that are concerned by the transformation.

For example, if we consider the task mapping displayed in Figure 4.3a for the model

of Figure 4.2, then inter-task interactions are interactions a2 and a3. Only these two

interactions have to be handled by dedicated communication components. Moreover,

in the final model, components of a single task are grouped into the same composite

component. Figure 4.3b shows a skeleton of the obtained model from the BIP model

of Figure 4.2 and task mapping of Figure 4.3a. Dashed and dotted lines in Figure 4.3b

display communication between tasks’ components and their corresponding communi-

cation components. Details about connectors of these communications are provided by

answering to the next challenge.
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Figure 4.3: Skeleton of the obtained model according to task mapping

Strong synchronization in BIP interactions Vs. asynchronous message-

passing

In order to respect TT communication settings, the derived model should handle each

inter-task communication through a dedicated BIP component which stands for the TT

communication system. This latter can communicate with tasks only through message-

passing. The challenge here is to switch from the high-level BIP model, where multi-party

interactions provide component synchronization on top of data transfer, to asynchronous

message-passing communications while preserving the models equivalence.

Suppose that the interaction a2 of the example of Figure 4.2 allows to transfer data

from component B2 to components B3 and B4. Note that this interaction is atomic

and allows to synchronize components B2, B3 and B4. Suppose also that the dashed

lines in Figure 4.3b present three binary connectors allowing B2 to send data to the

communication component and B3 and B4 to receive data from that component. Clearly,

this option doesn’t preserve the synchronisation between these three components ensured

by the interaction a2 in the original model since the atomicity of the original interaction

is no more respected. In such a case, the communication component must be designed

so that execution of interactions does not introduce behaviors that were not allowed in

the initial model.

This issue is addressed by breaking the atomicity of execution of interactions. A task

can execute unobservable actions to notify the communication component about their

states. If all participating components are ready, the communication component can

execute the corresponding interaction.

Resolving conflicts

Suppose interaction a2 is conflicting with interaction a1 and/or with interaction a3.

Interaction a2 shares with interaction a1(resp. a3) component B2 (resp. B4). Thus,

a2 can not execute concurrently with a1 and/or with a3. In high-level BIP model, such

conflicts are resolved by the single engine. TT communication components in the derived

model must ensure that execution of conflicting interactions is mutually exclusive.
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4.2 Proposed Solution

We propose a generic framework for transforming a high-level BIP model into an equiv-

alent model satisfying the TT settings and addressing the previously cited challenges.

The obtained model (1) operates in partial-state semantics, (2) expresses multiparty

interactions in terms of asynchronous message passing and (3) is observationally equiv-

alent to the initial model. The target model is structured following a three-layer archi-

tecture called TT-BIP architecture:

1. The Task Components Layer consists of a transformation of atomic components

corresponding to the behavior layer of the initial model. This layer also depends

on a user-defined task mapping. A task component can interfere even in an inter-

nal computation, intra-task interaction (i.e. communication between components

of the same task) or inter-task interaction (i.e. communication with other tasks).

Components within a task that are concerned by the inter-task interaction or

participating in an intra-task interaction that is conflicting with an inter-task in-

teraction, operate in partial-state semantics.

2. The communication Layer aims at modelling the TT communication system by

hosting inter-task interactions and allowing to resolve their potential conflicts by so-

liciting the third layer. This layer contains TT communication component (TTCC)

hosting each an inter-task interaction of the original model.

We have essentially two conflict cases involving inter-task interactions; conflict

between only inter-task interactions and conflict between inter-task interactions

and intra-task interactions or internal computations. By dedicating a third layer

for resolving conflicts, the first case of conflicts, if existing, can be directly resolved.

Resolving the second conflict case, can not be resolved locally since a task has a

partial observability of the system. This needs however, to host the conflicting

intra-task interaction or internal computation in the communication layer in order

to be resolved by requesting the third layer. Notice also that two conflicting intra-

task interactions a1 and a2, such that a2 is conflicting with an inter-task interaction

b, need both to be handled in the communication layer. We say that a2 is directly

conflicting with b, while a1 is indirectly conflicting with the same interaction.

Thus, this layer consists of components hosting each either an inter-task interaction

or an interaction that is either directly or indirectly conflicting with another inter-

task interaction. For simplifying the notation, all constituent components of the

communication layer are denoted by TTCC components.

3. The Conflict Resolution Protocol (CRP) Layer resolves the conflicts requested by

the communication layer. In the original model, these conflicts are resolved by

the BIP engine. In order to guarantee conflicts resolution in the derived model,

we reuse the same solution proposed in [47, 77, 86] which consists in dedicating
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a third layer to implement the fully centralized committee coordination algorithm

presented in [10].

Cross-layer interactions are send/receive interactions, i.e. providing a unidirectional

data transfer from one sender component to one or more receiver(s).

Note that tasks are building blocks of the first layer, which addresses the first chal-

lenge. Components within a task that are concerned by the inter-task interaction or a

related conflicting one operate in partial-state semantics. This allows tasks to break the

atomicity of the original interactions and communicate with the second layer in two steps

through the send/receive interactions, which addresses the second challenge. The intro-

duction of the third layer and hosting all interactions that are conflicting with inter-task

interactions in the communication layer allows to resolve the third challenge.

4.2.1 TT-BIP: Architecture of the Target Model

In this subsection, we present in details the TT-BIP architecture. As explained before,

it imposes a structure for the target model of the transformation in order to guarantee

both its compliance with the TT settings and its observational equivalence with respect

to the original BIP model.

A BIP model complies with the TT-BIP architecture if it consists of three layers:

Tasks layer, TTCC layer and CRP layer, organized by the following abstract grammar:

TT -BIP -Model ::= Task+ . TTCC+ . CRP . S/R-connector+

Task ::= atomic-component+ . atomic-talking-component+ . connectors+

TTCC ::= TTCCNC | TTCCC

The TT-BIP model consists of a set of Tasks, TTCC and CRP components. A task

component is a composite component consisting of one or more atomic components.

Atomic components within a task which interfere in inter-task interactions (via the task

interface) are called atomic-talking-components (ATC). These latter can only communi-

cate with a TTCC component or a component within the same task. The behavior of

a TTCC component depends on whether the interaction it is hosting is conflicting or

not. If the interaction is conflicting, the TTCC component is denoted by TTCCC and

needs to communicate with the CRP component. Otherwise, it is denoted by TTCCNC.

Conflicts between different TTCCC components are resolved through CRP component.

Task components (resp. TTCC components) and TTCCs (resp. CRP components)

communicate with each other through message-passing, i.e. send/receive interactions.

Such interaction is a set of one send port and one or more receive ports. Communications

between components inside a task are classic multi-party BIP interactions. Figure 4.4

shows an overview of the TT-BIP model derived from BIP model of Figure 4.2 and

the task mapping displayed in Figure 4.3a. Notice that in Figure 4.4a, we assume that

the interaction a2 is conflicting only with the interaction a3, while in Figure 4.4b a2 is

conflicting with both a1 and a3.
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Figure 4.4: Overview of the TT-BIP model of the model of Figure 4.2

Formally, we define a TT-BIP model as follows:

Definition 4.1. We say that BTT = γTT (BTT
1 , ..., BTT

n ) is a TT-BIP model iff we can

partition the set of its ports into three sets Pu, Ps and Pr that are respectively the set of

unary ports, send ports and receive ports, such that:

• Each interaction α ∈ γTT is either a send/receive interaction with Pα = s, r1, ..., rk,

s ∈ Ps, r1, ..., rk ∈ Pr, Gα = True and Fα copies variables exported by port s to

variables associated with ports r1, ..., rk, or a unary interaction—called also exter-

nal interaction—where Pα = pα with pα ∈ Pu, Gα = True and Fα is the identity

function.

• Interactions that are relating components of the same task are classic multiparty

interactions—called internal interaction—.

• If s is a port in Ps, then there exists one and only one send/receive interaction

α ∈ γTT with Pα = (s, r1, ..., rk) and all ports r1, ..., rk are receive ports. We say

that r1, ..., rk are receive ports of s,



70 4. From High-Level BIP Model to Time-Triggered BIP Model

• In the TT-BIP model, from the same state, an internal port can be simultaneously

enabled only with another internal port. A receive port can be conflicting either

with receive or send ports or both. A send port can be conflicting either with send

or receive ports.

• If defined, update functions of transitions labelled by send ports do not involve data

associated to the labelling port (send port).

• All transitions that are triggered by receive-ports are associated with timing con-

straint and guards that are always default to True.

• If α ∈ γTT is a send/receive interaction such that Pα = (s, r1, ..., rk) and s is

enabled at some global state of BTT , then all its receive ports r1, ..., rk are also

enabled at that state.

4.2.2 Discussion

The proposed solution leads out to a 3-layer architecture structuring the target model of

the transformation. Although our work does not have the same goal as transformational

approaches proposed in [47, 77, 86], but there is some intersection between both target

models’ architectures. Aiming at deriving distributed implementations from high-level

BIP model, these cited approaches propose an intermediate model called send/receive

model. This latter is a 3-layer model consisting of atomic components layer, schedulers

layer and CRP layer.

As already mentioned in the opening of this chapter and in Chapter 3 Section 3.2, we

reuse the third layer of the send/receive model (i.e. the CRP layer) since it is, so far, the

unique solution to guarantee the conflicts resolution without requesting the BIP engine.

The difference between the send/receive and the TT-BIP architectures lies in the task

notion introduced in the TT-BIP architecture. Thus, we build the task layer depending

on a user-defined task mapping, and we construct communication components in order

to handle inter-task interactions and other conflicting interactions. In the second layer of

send/receive models, are introduced schedulers allowing to handle interactions between

all atomic components. Also, we introduce one component per external interaction,

while a scheduler of send/receive model can handle more than one interaction.

4.3 Input Model Restrictions

In our work we impose the following restrictions on the input model in order to simplify

the presentation of the transformation towards TT model:

• We assume that the input model is flat, i.e. it consists only of atomic components

and flat connectors. Since all connectors are assumed to be flat, they do not hold

an exported port. This restriction is obtained by using the flattening tool from
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previous research work [47, 27]. This tool replaces all hierarchical connectors and

composite components of a BIP model by an equivalent set of flat connectors and

atomic components.

• We also assume that all connectors’ ports are synchron ports. This restriction can

be met by replacing a connector with a trigger port by an equivalent set of connec-

tors implementing the same set of interactions. For more details see Remark 1.5

of Section 1.2.

• Each port is assumed to labels at most one transition of the component automaton.

• We also assume that the input model contains no priority rules. In previous work

[77], it has been shown that any BIP model with priority rules can be transformed

into an equivalent model where priority rules are transformed into predicates on

interactions. We are convinced that our transformation can be easily adapted to

these predicates.

4.4 Transformation of a BIP Model into a TT-BIP Model

In this section, we describe in details our technique for transforming a BIP model

B
def
= γ(B1, ..., Bn) into a TT-BIP model BTT such that

BTT = γTT (BTT
1 , ..., BTT

n , TTCC1, ..., TTCCm, CRP ).

One parameter to this transformation is the user-defined task mapping which consists

in associating to each task Tk a group of atomic components of the model B. We denote

by B the set of atomic components of model B. The task mapping is formally defined

as follows:

Definition 4.2 (Task mapping). We assume, we have K ≤ n tasks and we denote by

T = {Tk}k∈K the task set, such that T is a partition of B: where for all j, k ∈ K and

j 6= k, Tj ∩ Tk = ∅. For all k ∈ K we have Tk = {Bi}i∈Ik , Ik ⊆ K such that ∪
k∈K

Ik = K.

The transformation process is performed in two steps as shown in Figure 4.5. First,

depending on the given task mapping, the original model is analysed in order to define

the set of components and connectors to be transformed. Then, the BIP model is

transformed into a TT-BIP model where only inter-task interactions and other related

conflicting interactions are replaced by TTCC components. Non conflicting intra-task

interactions remain intact. Components mapped to the same task are gathered in a

composite task component.

We first present details about the analysis phase in Section 4.4.1. Then, we explain

how concerned atomic components are transformed and how task components are in-

stantiated in Section 4.4.2. Then we show how TTCC components are built in order to

coordinate task components in Section 4.4.3. The behavior of the CRP component is

detailed in Section 4.4.4. Finally, we define the cross-layer connections in Section 4.4.5.
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Figure 4.5: A two-step transformation

4.4.1 Analysis phase

We have first to identify internal and external interactions as well as ATC components

denoted respectively AI , AE and BATC . These obtained sets are inputs for the transfor-

mation of components and connectors of B into BTT .

External interactions

In order to be able to define the set AE, we need first to define the set of inter-task

interactions denoted AIT . An interaction a ∈ γ is an inter-task interaction iff at least

two of its participating components belong to two different tasks.

Formally,

AIT = {α ∈ γ | ∃B1, B2 ∈ comp(α), T1, T2 ∈ T : B1 ∈ T1, B2 ∈ T2, T1 6= T2}.

We denote intra-task interactions that are either directly or indirectly conflicting with

inter-task ones by A#
IT defined as follows:

A#
IT = {a ∈ γ | a 6∈ AIT ,∃α ∈ AIT : a#α}

∪ {a ∈ γ | a 6∈ AIT ,∃b 6∈ AIT ,∃α ∈ AIT : a 6= b, a#b, b#α}.

And we denote by Ap
IT the set of transitions labelled by internal ports and conflicting

with interactions of A#
IT ∪AIT . It is defined as follows:

Ap
IT = {p | ∀a ∈ γ, p 6∈ Pa,∃α ∈ AIT ∪A

#
IT , q ∈ Pα,∃i ∈ [1, n],∃l ∈ Li : l

p
−→, l

q
−→}.

As explained in Definition 4.1, AE consists of inter-task interactions AIT , intra-task inter-

actions A#
IT and internal transitions Ap

IT that are either directly or indirectly conflicting

with inter-task ones. Thus, we have:

AE = AIT ∪A
#
IT ∪A

p
IT (4.1)
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Internal interactions

The set AI is defined as the set of intra-task interactions (i.e. participating components

are belonging to the same task) which are neither directly nor indirectly conflicting with

inter-task components:

AI = γ \AE . (4.2)

Atomic talking components (ATC)

BATC set is the set of atomic components in B that are concerned by external interactions

AE . We define:

BATC = {B ∈ B|AE ∩ PB 6= ∅}, (4.3)

where PB is the set of ports of the component B.

4.4.2 Transformation of Task Components

We transform each ATC atomic component Bi ∈ B
ATC of a BIP model into a TT ATC

component BTT
i that is capable of communicating with TTCC component(s). This

transformation consists mainly in decomposing each ”atomic” inter-task synchronization

into send and receive actions. The synchronization between the ATC component (via

the task interface) and the TTCC layer is implemented as a two-phase protocol.

First, BTT
i sends communication offers through dedicated send ports. Then, in

the second step, it waits for a notification coming from the TTCC component via a

receive port. The communication offer contains information about the enabledness of

the interaction. Each offer is associated to one of the enabled ports of Bi through which

the component is ready to interact. An offer consists of a set of variables related to the

corresponding enabled port. Let p be such port enabled from a location l (i.e. l
p
−→).

The set of variables of the corresponding offer includes variables initially exported by p

since they may be read and written by the interaction. It also includes variables tcp and

tpcl storing respectively timing constraint of transition labelled by p and enabled from

l and the time progress condition of the location l. Another variable gp is dedicated to

store the evaluation of the Boolean guard of the transition labelled by p and enabled

from l. The offer contains also a variable fi storing the update function of the transition

labelled by the port p. In order to be able to resolve conflicts, each offer contains the

participation count variable nb of the component BTT
i . This variable counts the number

of interactions BTT
i has participated in.

The notification —received after sending offers—allows the ATC component to exe-

cute the transition triggered by the enabled receive port marking the end of the inter-

action.

Notice that each offer —sent by a component—contains information about only one

enabled interaction among the enabled interaction set. Therefore, if in the original

model B, more than one interaction involving Bi are enabled, then B
TT
i has to send first

successive offers before waiting for notification from the TTCC component executing the

interaction selected after conflict resolution.
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Let a location l, in Bi, from which p1, ..., pn are enabled such that at least one of the

n ports interferes in an inter-task interaction. In BTT
i , we split such a location l into

n+1 locations, namely l itself and locations {⊥l
pi}i∈[1,n] from which corresponding offers

are sent (see Figure 4.6).
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Figure 4.6: Atomic component transformation into an ATC component

Consider the case when, in the original model Bi, time is allowed to progress from

location l, i.e. before executing the interaction. In order to enforce the correctness of the

target model, time should be able to progress until the interaction is actually executed.

Thus we associate to locations ⊥l
pi the time progress condition of location l originally

defined in the atomic component Bi.

4.4.2.1 Expressing Timing Constraints and Time Progress Conditions over a Com-

mon Global Clock

In BIP framework, each atomic component can define its own local set of clocks. These

clocks can be reset at any time and are used in definitions of timing constraints and

time progress conditions.

In order to execute an external interaction a = pi, i ∈ I, a TTCC component needs to

evaluate the timing constraint of the interaction, i.e. the conjunction of timing constraints

of transitions labelled by ports pi involved in the interaction in the original model. These

respective timing constraints are sent by respective ATC components to the TTCC

layer within offers. In order to allow the TTCC to compute interactions between tasks

components and schedule them correctly, we need to reduce the effort of keeping track of

different clocks of participating components. This can be resolved by expressing timing
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constraints in terms of a single time scale, that is, a single global clock. Moreover, the

global time scale is a key feature of the TT paradigm targeted by the transformation.

For these two reasons, we need to translate all timing constraints and express them

over the global clock.

We denote by cg, the global clock which is initialized to 0 and measures the absolute

time elapsed since the system started executing, i.e. cg is never reset.

We follow a similar approach as in [2] in order to translate selected timing constraints.

Here are the different translation steps:

1. for each component Bi ∈ B and for each clock c ∈ C, we introduce a variable wc

that stores the absolute time of the last reset of c. The variable wc is initialized

to zero and updated to the absolute time (i.e. the valuation of the global clock cg)

whenever the component executes a transition resetting clock c.

2. Each atomic expressions lb 6 c 6 ub involved in a timing constraint tc, is rewritten

by using the global clock cg and the variable wc. Mainly, we have to add to the

initial lower and upper bounds the last reset value wc of the local clock c as follows:

lb 6 c 6 ub ≡ lb+ wc 6 cg 6 ub+wc (4.4)

3. Similarly, we rewrite each atomic expressions c 6 ub of time progress conditions tpc

—defined on all locations from which an external interaction can be enabled—as

follows:

c 6 ub ≡ cg 6 ub+ wc (4.5)

Notice that the value of each local clock c can be computed from the current value

of the global clock cg and the variable wc by using the equality c = cg −wc. This allows

to entirely remove clocks of components Bi, keeping only the clock cg and variables wc;

c ∈ C.

4.4.2.2 Formal transformation rule

Rule 4.1 (Transforming ATC components). Each ATC BIP component

Bi = (Li, Pi,Xi, Ci, Ti, tpci) ∈ B
ATC is transformed into a TT ATC component BTT

i =

(LTT
i , P TT

i ,XTT
i , CTT

i , T TT
i , tpcTT

i ) as detailed by the following rules:

• Each location l ∈ Li, enabling ports {pj}j∈[1,n] ⊆ Pi ∩ AE, is split into n + 1

locations. Obtained locations are l itself and partial-state locations {⊥l
pj}j∈[1,n].

The time progress conditions of locations ⊥l
pj and l are equal to tpc(l),

• Each port pj ∈ Pi ∩ AE such that l
pj
−→ is split into two ports; receive port pj and

send port opj . A port pj ∈ P
TT
i exports variables Xpj ⊆ Xi originally exported by

port pj ∈ Pi. A port opj exports, on top of variables Xpj ⊆ Xi, variables tpc, tcp,
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gp, fp and nb which are respectively the timing constraint variable, the time progress

constraint variable, the Boolean guard variable, the update function variable and

the participation count variable. These variables store respectively tpc of location l

(i.e. tpc(l)) expressed on clock cg, the timing constraint, the update function and the

guard of transition enabled from l and labelled by pj and the number of interactions

the component has participated in.

• For each clock c ∈ Ci, we add a corresponding variable wc,

• For each transition τpj = (l, pj , gτpj , tcτpj , rτpj , fτpj , l
′), such that ∀j ∈ [1, n], l

pj
−→

and pj ∈ Pi ∩ AE, we include, in T TT
i , the corresponding offer transition τopj and

notification transition τ ′pj . The offer transition τopj is enabled from location ⊥l
pj .

Both its guard and timing constraint are True. Its update function is the identity

function and it resets no clock. It reaches location ⊥opk
if j 6= k and the offer

opk is not yet sent, otherwise it reaches location l. Notification transition τ ′pj is

enabled from location l and reaches location l′. As in the offer transition, guard and

timing constraint of the notification transition are always True. It resets the same

clock set as rτpj . The update function fτ ′pj
(1) updates the clock reset variables:

∀c ∈ rτpj , wc = vc(c
g), where vc is the clock valuation function, (2) increments the

participation count variable nb and (3) updates variables of offers sent from next

reached state.

• For each transition τp = (l, p, gτp , tcτp , rτp , fτp , l
′), such that p ∈ Pi \ AE, we in-

stantiate the transition τ ′p, where only the update function is changed compared to

the initial transition τp. The update function fτ ′p (1) applies the original update

function fτp , (2) updates the clock reset variables: ∀c ∈ rτpj , wc = vc(c
g), where vc

is the clock valuation function, (3) increments the participation count variable nb

and (4) updates variables of offers sent from next reached state.

• In order to update variables of offers that will be sent from its reached location l′,

a transition needs to execute the following functions:

• tpc := tpc(l′)c
g
, where tpc(l′)c

g
corresponds to expressing the tpc of l′ over the

global clock cg following (4.5),

• ∀p ∈ Pi∩AE, such that ∃τp = (l′, p, gτp , tcτp , rτp , fτp , l”) ∈ Ti, tcp := tcc
g

τp , gp =

gτp and fp := fτp, where tc
cg
τp corresponds to expressing the timing constraint

of τp over the global clock cg following (4.4) and gτp is the guard evaluation.

After applying Rule 4.1, we can formally define the obtained component in function

of the original one.

Definition 4.3. Formally, BTT
i is obtained from Bi as follows:

• LTT
i = Li∪L⊥, where L⊥ = {⊥l

p |∃l ∈ Li,∃τ = (l, p, g, tc, r, f, l′) ∈ Ti, p ∈ Pi∩AE},
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• P TT
i = Pi ∪ Po, where Po = {op|p ∈ Pi ∩ AE}. Each port op exports the set

of variables XTT
op = Xp ∪ {tpc, tcp, gp, fp, nb}. For all ports in p ∈ Pi, we have

XTT
p = Xp,

• XTT
i = Xi ∪ {tpc} ∪ {tcp, gp, fp}p∈Pi∩AE

∪ {wc}c∈Ci
∪ {nb},

• CTT
i = {cg} ,

• T TT
i = {τop}p∈Pi∩AE

∪{τ ′p}p∈Pi
. Such that for each τp = (l, p, gτp , tcτp , rτp , fτp , l

′) ∈
Ti we have:

τop = (⊥l
op , op,True,True, ∅, Id,⊥

′l
op ) if p ∈ Pi ∩AE

τ ′p = (l, p,True ,True, rτp , fτ ′p , l
′),

where ⊥′l
op is l or ⊥l

oq such that l
q
−→ and fτ ′p is as described in Rule 4.1.

• For places of L⊥, the time progress condition tpcTT (⊥l
op) = tpc(l).

Example 4.1. Figure 4.7 illustrates transformation of an ATC component into its cor-

responding ATC TT component. In this example we consider that ports p and q are

participating in external interactions.

Once all ATC components are transformed, we instantiate the composite component

of each task, which corresponds to gathering all components mapped to that task and

exporting send and receive ports of ATC components (see Rule 4.2).

Rule 4.2. For each Tj ∈ T we instantiate a composite component BTT
Tj

including:

• Component Bi ∈ Tj if Bi /∈ B
ATC and BTT

i if Bi ∈ B
ATC,

• Interactions {α ∈ γ ∩AI | ∀p ∈ α,∃Bi ∈ Tj : p ∈ Pi}, where Pi is the set of ports of

Bi.

• The set of exported ports {(p, op) | ∃Bi ∈ B
ATC ∩ Tj : p ∈ Pi ∩AE}.

4.4.3 Building TTCC Components

As explained before, a TTCC component layer is introduced initially in order to handle

intertask interactions and thus model the TT communication system. By considering

the need for operational equivalence (i.e. keeping the same original behavior), and in

order to be able to resolve all conflicts of the target model interactions, the TTCC layer

handles, on top of intertask interactions, other interactions that are conflicting directly

or indirectly with these latter. Recall that all interactions of the original model, that

are handled in the TTCC layer are called external interactions.

Initially, all components are doing their initial computations and the TTCC layer

does not know their state or their enabled communication ports until they send offers.
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Figure 4.7: Example of transformation of an ATC component

Handling only one external interaction, a TTCC can execute this latter only when all

participating tasks’ components have sent their offers and are ready to execute the

interaction.

Since in the input model we assume that no priority rules can be established be-

tween external interactions, a TTCC component does not need to connect with tasks

participating in interactions other the one it is handling. Since the enabledness of its in-

teraction only depends on offers received from its participating tasks components. When

the interaction is conflicting with another external interaction, the TTCC has to com-

municate, after checking the enabledness of the interaction, with the CRP in order to get

the permission or not to execute. We call this communication a reservation mechanism.

To summarize, the behavior of a TTCC component handling an interaction a =

(a,Ga, Fa) ∈ γ is made of three steps: (1) it waits for offers from its participating

task components, (2) once all offers are received —regardless their order, the TTCC

component takes a decision by either executing the interaction upon synchronization

(i.e., conjunction of received guards and Ga evaluates to True) if a is a non-conflicting

interaction or soliciting the CRP component to find out if the conflicting interaction a

can be executed and (3) finally it writes on appropriate task components by sending a
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notification.

Figure 4.8 shows a representative part of a TTCC automaton, where we can dis-

tinguish the three steps. From location wait, the TTCC is waiting for respective offers

from its participating components. Since these offers can be received in a random order,

the TTCC is designed in such a way to allow all possible combination from location

wait. Once all offers are received, the location read is reached. From this location, the

TTCC starts the second step in order to execute the interaction depending on whether

it is conflicting or not. Once the TTCC executes the interaction, the automaton reaches

location send from which it executes a transition allowing to notify participating com-

ponents and reaches back the location wait. All transitions of the first step are triggered

Ö×ØÙ

loi loÚ

ÛÜ×Ý ÞÜßÝ

Receive respective offers
 from participating

 components

Execute interaction

Send notification

Figure 4.8: Skeleton of a TTCC automaton

by receive ports corresponding to respective offers. The transition of the third step is

triggered by a send port. Behaviour and ports triggering transitions of the second step

are detailed later.

Let a TTCC component handling an external interaction α = (Pα, Gα, Fα) ∈ γ ∩

AE . We denote by n the number of components related to TTCC, i.e. the number of

participating components of α, i.e. n = |comp(α)|.

In the case when α is a non-conflicting interaction, the execution of this latter is

performed without requesting the CRP component. As shown in Figure 4.9a, the TTCC

executes a transition from location read to send labelled by a unary port denoted pα.

Its update function executes the update function Fα of the interaction α and then re-

spective update functions that are received in offers. The transition pα is guarded by the

conjunction of the guard Gα and respective guards and timing constraints received in

offers. If the conjunction of these guards evaluates to True, the interaction is executed

and the TTCC sends a notification to participating components.

In the case when α is conflicting with another interaction, the TTCC goes through

a reservation mechanism (cf. Figure 4.9b). If the interaction is enabled, i.e. the con-

junction of the guard Gα and respective guards and timing constraints received in offers

evaluates to True, the TTCC executes transition rsvα from location read. This transi-

tion reaches location try. By the execution of rsvα, a reservation request is sent to the

CRP component. This reservation contains different values of participation count vari-

ables of α participating components. Based on these participation counters, the CRP
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decides whether to allow or disallow the interaction execution. It notifies the TTCC

component either through port okα in the case when the reservation succeeds or through

port failα if the reservation can not be made. While waiting for CRP notification, the

TTCC occupies the location try. If the port okα is enabled, then it executes the transi-

tion reaching location send from which notification to components are ready to be sent.

Note that update function Fα composed with those of received offers is associated with

the transition labelled by the okα port. If the port failα is enabled, the TTCC reaches

back the location read in order to proceed again for the reservation.
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Figure 4.9: Mechanisms for execution of interaction α = (Pα, Gα, Fα)

When an ATC component is participating in two conflicting interactions α1 and α2,

it sends successively offers to each of the corresponding TTCC components TTCCα1 and

TTCCα2 and waits from a notification from one of them. After resolving the conflict

by requesting the CRP, suppose TTCCα1 will notify the component after successfully

executing the interaction α1, while TTCCα2 reaches back its location read in order to

proceed to a new reservation attempt. The component is able to continue execution of

its next transitions. And it may reach again the location allowing to send again offers

to TTCCα1 and TTCCα2 . Both TTCC components should be ready to receive the

offers. For that, we add loop transitions in TTCC automata labelled by offers receive

ports over locations read and try. Furthermore, such an ATC component may need to

resend an offer to a TTCC even before this latter receives other offers from the rest

of its participating components. This is resolved by adding loop transitions labelled

by offer receive ports over locations that are placed between location wait and read (cf.

Figure 4.9b). These added loop transitions allow to respect the last point of Definition 4.1

stating that whenever a send port is activated, all its receive ports are enabled as well.
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4.4.3.1 Formal Transformation rule

In the following, we explicit the transformation rule allowing to instantiate a TTCC

component for each external interaction.

Rule 4.3. Each external interaction α = (Pα, Gα, Fα) ∈ γ ∩ AE, such that Pα =

{pi}i∈[1,n], and comp(α) = {Bi}i∈[1,n], is transformed into a TTCC component TTCC =

(LTTCC , P TTCC ,XTTCC , CTTCC , T TTCC , tpcTTCC):

• Ports and variables:

• For each port pi ∈ Pα, we include in P TTCC a receive port opi. For each port

opi we associate a local copy of the set of variables Xpi initially exported by

port pi of component Bi. We associate also to opi the time progress condition

variable tpci, the timing constraint variable tcpi , the Boolean guard variable

gpi , the update function variable fpi and the participation count variable nbi.

• We include also one send port pαs in P TTCC. To the port pαs , we associate

sets of local variables Xpi, pi ∈ Pα.

• If α is not conflicting, then we include a unary port denoted pα, which allows

to label the transition executing the interaction. Otherwise, we include in

P TTCC one send port rsvα and two receive ports okα and failα. Only port

rsvα has associated variables, which are participation count variables nbi for

all i ∈ [1, n], i.e. all participation count variables of participating components

{Bi}i∈[1,n]

• Clock: As explained before, the TTCC component defines only one clock which is

the global clock denoted cg.

• Locations:

• We include in LTTCC location wait marking thee beginning of offer recep-

tion, location read marking the reception of all offers and the location send

marking the end of interaction execution. If n ≥ 2, we include —between

location wait and read—the set of intermediate waiting locations L⊥ allow-

ing reception of offers in any order. Let O == {opi | pi ∈ Pα, i ∈ [1, n]} be

the set of all offers received by TTCC. The set L⊥ is constructed as follows;

L⊥ = {lkOk
| k ∈ [1, n − 1], Ok ∈ Pk(O)}, where Pk(O) is the k-permutation of

O, allowing to indicate the ordered subset of offers sent before reaching the

location lkOk
. Note that the cardinality of L⊥ is |L⊥| =

n−1
∑

k=1

n!
(n−k)! . Figure 4.10

shows how intermediate waiting locations (displayed in gray) are constructed

for n = 2 and n = 3. Its shows also the case when n = 1, where no interme-

diate waiting location is needed.

• If α is conflicting, we introduce in LTTCC the location try allowing the reser-

vation mechanism.
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Figure 4.10: Intermediate waiting locations

• The time progress condition of location wait is set to True. The time progress

condition of location send is False. In the case of a conflicting TTCC, the

time progress condition of its try is True. For location read, the time progress

condition is set to the conjunction of time progress conditions received in

the offers. That is, after receiving offers from participating components, we

require that the TTCC component executes its interaction before different time

progress conditions of participating components become False.

• Transitions:

• In order to receive offers from task components Bi, we include receiving tran-
sition, we have three classes of receiving transitions; the n transitions starting
from location wait and labelled each by an offer port, transitions between lo-
cations L⊥ and transitions reaching the location read. They are respectively
as follows:

τopi =(wait, opi ,True,True, ∅, Id, l
1
O1

), ∀O1 ∈ P1(O) : opi ∈ O1,

τopi =(lkOk
, opi ,True,True, ∅, Id, l

k+1
Ok+1

), ∀k ∈ [1, n− 2] : Ok ( Ok+1, opi ∈ Ok+1 \Ok,

τopi =(ln−1
On−1

, opi ,True,True, ∅, Id, read), ∀On−1 ∈ Pn−1(O) : opi /∈ On−1.

These transitions’ guards and timing constraints are default to True, their

update functions are the identity function and they does not reset clocks.

• If α is conflicting, the set of transitions includes loop waiting transitions as

already explained, for each lkOk
∈ L⊥, we include k loop transitions labelled

each by an offer port opi ∈ Ok. That is, for each lkOk
∈ L⊥, and for each

opi ( Ok, we include the transition τ
lk
Ok
opi

= (lkOk
, opi ,True,True, ∅, Id, l

k
Ok

).

we add also loop transitions on locations read and try, i.e. for each

opi ∈ O, we add τ readopi
= (read, opi ,True,True , ∅, Id, read) and τ tryopi

=

(try, opi ,True,True, ∅, Id, try). These transitions allow components partici-

pating in conflicting interactions that have already sent their offer to be able

to send it again.
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• To notify task components after executing the interaction α, we include the

transition τsend = (send, pαs ,True,True , Identity, ∅, wait).

• If α is not conflicting, we include the transition τα = (read, pα, G
∗,

TC∗, ∅, F ∗, write), where the port pα is a unary port, G∗ = Gα
∧

(
n
∧

i=1
gpi),

TC∗ =
n
∧

i=1
tcpi, F

∗ = fp1 ◦ ... ◦ fpn ◦ Fα such that Gα and Fα are respectively

the guard and the update function of the initial interaction α, gpi , tcpi and

fpi are respectively the guard, the timing constraint and the update function

of offer opi.

• If α is conflicting, we include transitions allowing the reservation mechanism:

τrsv = (read, rsv,G∗, TC∗, ∅, Id, try),
τok = (try, ok,True ,True, ∅, F ∗, send),

τfail = (try, fail,True,True, ∅, Id, read), where G∗, TC∗ and F ∗ are as de-

tailed in the previous item.

Example 4.2. In Figure 4.11 (resp. Figure 4.12), we illustrate transformation of a

conflicting (resp. non conflicting) external interactions α into its corresponding TTCC

component. In these examples we consider that ports p and q of the interaction α are

exporting respectively variables xp and xq.
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Figure 4.11: Example of transformation of a conflicting external interaction into a TTCC

component

4.4.4 Conflict Resolution Protocol Component

The conflict resolution protocol (CRP) that we use in our work is the same CRP used

in [47, 77, 86]. It is, so far, the unique solution to guarantee the resolution of conflicts

without requesting the BIP execution engine. It accommodates the algorithm proposed

in [10]. It uses message counts to ensure synchronization and reduces the conflict res-

olution problem to dining or drinking philosophers [32]. Its main role is to check the
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Figure 4.12: Example of transformation of a non-conflicting external interaction into a

TTCC component

freshness of requests received for an interaction, that is, to check that no conflicting

interactions have been already executed using the same request. In each request, an in-

teraction sends the participation numbers of its components, i.e. number of interactions

each ATC component has participated in. This ensures that two conflicting interactions

cannot execute with the same request. Mutual exclusion is ensured using participa-

tion numbers. To this end, the conflict resolution protocol keeps the last participation

number NBi of each component Bi and compares it with the participation number nbi
provided along with the reservation request from TTCC components. If each participa-

tion number from the request is greater than the one recorded by the conflict resolution

protocol (nbi > NBi), the interaction is then granted to execute and NBi is updated to

nbi. Otherwise, the interaction execution is disallowed.

4.4.4.1 Formal Transformation rule

As explained in Chapter 3 Section 3.2, the CRP behaviour is expressed by a set of

parallÃĺle automata handling each an interaction (cf. Figure 3.2).

In the following, we explicit the rule allowing to instantiate a CRP component based

on this same formalism.

Rule 4.4. Given the model B
def
= γ(B1, ..., Bn), we instantiate the component CRP =

(LCRP , PCRP ,XCRP , CCRP , TCRP , tpcCRP ) where:

• XCRP contains the last used offer variable Ni for each Bi ∈ comp(α) where α ∈
AE,

• CCRP = cg,

• For each externally conflicting α ∈ AE,

• LCRP contains the waiting place wα where tpc(wα) = True and the reservation

place rα where tpc(rα) = False,
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• PCRP contains the ports rsvα, okα and failα,

• XCRP contains the participation numbers {nbαi |Bi ∈ comp(α)}. These vari-

ables are associated to the port rsvα. Ports okα and failα do not have asso-

ciated variables.

• TCRP contains the following three transitions; τrsvα = (wα, rsvα, rα), τokα =

(rα, okα, wα) and τfailα = (rα, failα, wα). The transitions τrsvα and τfailα has

no guard, no timing constraint and no update function. The transition τokα
has no timing constraint but is guarded by Gτokα

= ∧Bi∈comp(α)nb
α
i > NBi.

Its update function sets the variables NBi of components Bi ∈ comp(α) to

the values of corresponding participation numbers nbαi : i.e. for each Bi ∈
comp(α), it performs NBi := nbαi .

4.4.5 Cross-layer interactions

In this section, we define the interactions between the task components and the TTCC

layer and between this latter and the CRP component. Tasks and TTCC components

exchange offers and notifications. Communication between TTCC components and the

CRP component involves the transmission of messages corresponding to rsv, ok and fail

(cf. Rule 4.5). In the following rule, and for clarity of presentation, we use the notation

B.p to denote the port p of the component B.

Rule 4.5. Let B
def
= γ(B1, ..., Bn) be a BIP model, T be a task mapping. We define the

obtained model after transformation as

BTT = γTT (BTT
1 , ..., BTT

n , TTCC1, ..., TTCCm, CRP ). The send/receive interactions of

γTT are defined as follows:

• For each task component BTT
Tj

such that Tj ∈ T , for each port BTT
Tj
.op and each

TTCCα such that p ∈ α, we include in γTT the offer interaction based on ports

(BTT
Tj
.op, TTCCα.op). Its guard is set to True. And its update function copies

variables associated with BTT
Tj
.op to those of the receive port TTCCα.op.

• For each TTCCα, and all {BTT
Tj
}j∈J , such that for all j ∈ J , Tj ∩ comp(α) 6= ∅,

we include the notification interaction based on ports (TTCCα.p
α
s , {B

TT
Tj
.pj}j∈J),

where for all j ∈ J , pj ∈ α. Its guard is set to True. And its update function

copies variables associated with TTCCα.p
α
s to those of the receive ports BTT

Tj
.pj.

• For each interaction α ∈ γ that is not conflicting, we include the unary interac-

tion having as unique port (TTCCα.pα), where TTCCα is the TTCC component

handling the interaction α. Its guard is set to True. And its update function is the

identity function.

• For each interaction α ∈ γ that is conflicting, we include a triplet of interac-

tions having respectively the following sets of ports: (TTCCα.rsvα, CRP.rsvα),
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(CRP.okα, TTCCα.okα) and (CRP.failα, TTCCα.failα). All their guards are

set to True. The update function of the former interaction copies variables of

ports TTCCα.rsvα to port CRP.rsvα. Since ports CRP.okα and CRP.failα do

not have any associated variables, the update function of the last two interactions

is the identity function.

4.5 Transformation Correctness

In this section, we show that the described transformation is correct, that is the obtained

TT-BIP model is observationally equivalent to the original BIP model. Before proving

the observational equivalence, we show that the final model is a valid TT-BIP model.

4.5.1 Validity of the Obtained Model

Proposition 4.1. Given a BIP model B = γ(B1, ..., Bn) and a task mapping T =

{T1, ..., Tk}, the model BTT = γTT (BTT
1 , ..., BTT

n , TTCC1, ..., TTCCm, CRP ) obtained

by transformation of Section 4.4 meets the properties of Definition 4.1.

Proof. Points 1-3 of Definition 4.1

The first three criteria of Definition 4.1 are syntactic, namely only allowed interactions

are either classic multiparty interactions or send/receive interactions or unary interac-

tions and each send port participates in exactly one Send/Receive interaction. These

criteria are met by the previous definition.

Point 4 of Definition 4.1

The fourth point of Definition 4.1, enumerates all conflict cases of a TT-BIP model. The

first case states that an internal port can only be conflicting with a similar port. By con-

struction of the transformation, internal ports are instantiated only in task components

(cf. Rule 4.1). If an internal transition is originally conflicting with a similar transition

then this conflict is preserved, since these transitions remain intact after transformation.

If in the original model, an internal transition is conflicting with an external transition

then this port will be replaced by a send and receive ports. Therefore, the original

conflict is no more existing in TT-BIP.

The second case involves receive ports. In task components, by construction of the

transformation (cf. Rule 4.1), a receive port can be only conflicting with receive port.

In TTCC component, receive transitions are offer transitions or ok/fail transitions. Ok

transitions and fail transitions have the same source location. Similarly, offer transitions

can be also enabled from the same location (in the case of conflicting TTCC compo-

nent). They also can be conflicting with a send transition labelled by an rsvα port (cf.

Rule 4.3). In CRP component, receive transitions are rsv transitions which are enabled

from the initial location only simultaneously with other rsv transitions. Therefore, in
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all components, a receive transition can be enabled simultaneously either with a receive

port or with a send port or both.

The third case involves send ports. In task components send ports are offer ports and

by construction of the transformation (cf. Rule 4.1) only one send port is enabled from

one location. In TTCC components, send ports are either pαs ports (sending notifications

to task components) or rsvα ports. The former has no conflicting port (i.e. no other port

is enabled from its source location) while the latter is enabled from the same location as

receive ports (offer ports) (cf. Rule 4.3). In CRP component, send ports are ok or fail

ports. Note that these ports are enabled from the same location. Therefore we deduce

that a send port can have the same source location as a receive or other send ports.

Point 5 of Definition 4.1

The fifth point of Definition 4.1 states that the update function of a transition labelled

by a send port does not involve variables exported by this port. In task components,

send ports are offer ports and they trigger transitions whose update functions are the

identity function (cf. Rule 4.1). In TTCC components, the send port is either a pαs or

a rsvα port. In both cases, it labels a transition with an identity update function (cf.

Rule 4.3). In the CRP component, send port can be either an ok or fail port. In the

first case, the port labels a transition whose update function applies on NBi variables

which are not exported. In the second case, the port labels a transition with an identity

update function.

Point 6 of Definition 4.1

The second-last point in Definition 4.1 states that a transition labelled by a receive port

always has a timing constraint and guards that are default to True. In the layer of task

components, receive ports label only notification transitions which, by construction, are

associated with a timing constraint and guard equal to True (cf. Rule 4.1). In the TTCC

layer, receive ports label either offer transitions or ok/fail transitions. These latter are

also associated with a timing constraint and guard always default to True(cf. Rule 4.3).

In the third layer (i.e. the CRP component), receive ports label rsv transitions, which

are also associated with timing constraint and guard always equal to True.

Point 7 of Definition 4.1

The last criterion of Definition 4.1 states that whenever a send port is enabled, the asso-

ciated receive ports will unconditionally become enabled within a finite number of tran-

sitions in the receiver component. Intuitively, this holds since communications between

tasks and TTCC components, and between TTCC components and CRP component

follow a request/acknowledgement pattern. Whenever a component sends a request (via

a send port) it enables the receive port to receive acknowledgement.

In the following, we detail different configuration cases:

• Communications between a task component BTT
i and a TTCCj component, for all

interactions α involving a component Bi. We denote by lBTT
i

the enabled location

of BTT
i and by lTTCCj

the active place of TTCCj. We distinguish the following

cases:
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Case 1: lBTT
i

=⊥l
p where p is exported by Bi and lTTCCj

∈ {wait} ∪ L⊥.

In this configuration, the only enabled send-port involved in a send/receive interac-

tion is the offer port op of BTT
i . Note that the initial state allowing a send/receive

interaction between tasks and TTCC components falls in that case. By defini-

tion of the configuration, all associated receive ports are also enabled (the TTCCj

component can only execute transitions labelled by receive ports).

Case 2: lBTT
i

= l where l is a place of Bi and lTTCCj
= {read}.

This configuration is reached from the first one by executing offer transitions. From

this configuration, no send/receive interaction with the task components can be

enabled (i.e. no send port is enabled). To send offers, the task component should

be in a ⊥l
p location which is not the case.

Case 3: lBTT
i

= l where l is a place of Bi and lTTCCj
= {send}.

In this case, the component BTT
i is still in a place l that is not a busy location, and

the TTCCj component is in the send place. From that configuration, the enabled

send-port that is involved in a send/receive interaction with BTT
i is the port pαs

of the TTCC component. By definition of the configuration, the receive port

associated to this send-port is the one activated from place l of component BTT
i .

Thus, the property holds in that configuration as well. Note that after executing

the send/receive interaction with the component BTT
i , the first configuration is

reached back.

• Communications between a conflicting TTCCC
j component with the CRP com-

ponent, for all conflicting interaction α involving a component Bi. We denote by

lTTCCC
j

the enabled location of TTCCC
j and by lCRP the active set of marked

places of CRP . We distinguish the following cases:

Case 1: lTTCCC
j
= read and lCRP ∋ {wα}.

In this case, the unique enabled send-port is the port rsvα of the component

TTCCC
j . And by definition of the configuration, the associated receive port of this

send-port is enabled, i.e. the port rsvα of component CRP is enabled from place

wα. Thus, the property holds in that configuration as well.

Case 2: lTTCCC
j
= try and lCRP ∋ {rα}.

This case is reached by executing the reservation interaction from the previous

configuration. In this case, two send-ports are active, okα and failα of the compo-

nent CRP . From the enabled location of TTCCC
j component, the corresponding

receive ports associated to these two send-ports are enabled as well. Thus, the

property holds by-construction in that configuration as well.
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This proof ensures that any component ready to perform a transition labelled by a

send-port will not be blocked by waiting for the corresponding receive-ports.

4.5.2 Observational Equivalence Between B and BTT

We denote by B = γ(B1, ..., Bn) the initial model and by BTT = γTT

(BTT
1 , ..., BTT

n , TTCC1, ..., TTCCm, CRP ) the resulting model of the first step of the

transformation.

In order to prove the correctness of the transformation from B to BTT , we have to

show that their corresponding semantic LTSs are observationally equivalent. We denote

by G(B) and G(BTT ) successively the LTSs of B and BTT (see Definition 1.14).

We define observational equivalence between transition systems based on the classical

notion of weak bisimilarity [69], where some transitions are considered unobservable.

We will use the following notation. Consider a binary relation R ⊆ X × Y . For

x ∈ X, we denote R(x)
def
= {y ∈ Y | (x, y) ∈ R}.

Definition 4.4. (LTS relations) Let A = (QA, PA,−→
A
) and B = (QB , PB ,−→

B
) be two

LTS. Given a relation β ⊆ PA × PB, we write q
β
−→
A

q′, for q ∈ QA, iff there exists

a ∈ PA, such that q
a
−→
A

q′ and a is not related by β to any label in PB, i.e. β(a) = ∅.

The notation q
β
−→
B
q′, for q ∈ QB, is defined symmetrically.

A weak simulation over A and B, is a pair of relations R ⊆ QA × QB and β ⊆
PA × PB, such that:

∀(q, r) ∈ R, ∀a ∈ PA,

(

β(a) 6= ∅ ∧ q
a
−→
A
q′ =⇒ ∃(a, b) ∈ β : ∃(q′, r′) ∈ R : r

β∗bβ∗

−−−−→
B

r′
)

and

∀(q, r) ∈ R,

(

q
β
−→
A
q′ =⇒ ∃(q′, r′) ∈ R : r

β∗

−→
B

r′
)

,

where β∗ denotes zero or more successive β transitions (i.e. transitions whose label is

not related by the relation β).

A weak bisimulation over A and B is a pair of relations R ⊆ QA × QB and β ⊆
PA ×PB, such that both (R, β) and (R−1, β−1) are weak simulations. Recall that R−1 ⊆
QB ×QA and β−1 ⊆ PB × PA are the symmetric relations of R and β.

We say that A and B are weakly bisimilar w.r.t. β ⊆ PA × PB, denoted A ∼β B,

if there exists R ⊆ QA × QB total on both QA and QB, such that (R, β) is a weak

bisimulation.

First, we need to establish correspondence between labels of G(B) (ranging over the

set γ ∪R+) and those of G(BTT ) (ranging over the set γTT ∪R+). Therefore, we define

the relation β as follows:

β =
{(

α,α
)

|α ∈ γ ∩AI

}

∪
{(

α, pαs
)

|α ∈ γ ∩AE

}

, (4.6)
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where pαs is the send port of the TTCC component allowing to send notifications to its

related components.

Note that by this relation, we can say that each transition α ∈ γ, is represented in

γTT either by the transition α itself if it is internal, or by pαs if it is external. Transitions

of B that are not related by the relation β are only delay transitions. And transitions of

BTT that are not related by the relation β are offer , reserve, fail, ok and pα transitions.

These transitions are denoted by β transitions.

We may use later in this proof the following notations failα and okα (resp. rsvα) to

denote the fail and ok (resp. reservation) interactions between the CRP and the TTCC

component handling interaction α in BTT model.

Theorem 4.1. The LTSs G(B) and G(BTT ) are weakly bisimilar w.r.t. β, i.e. G(B) ∼β

G(BTT ).

Proof. Let G(B) = (QB , P,−→
B
) and G(BTT ) = (QBTT

, PBTT
,−−−→
BTT

). Recall (Defini-

tion 1.11) that state spaces QB and QBTT
have each three components: control location,

clock and variable valuations. For a given state q, we will denote vc(q) (resp. vx(q)) its

clock (resp. variable) valuation component. Similarly, we denote l(q) the location of a

state q.

Below, we will use variables qB, rB , ranging over QB, and qBTT
, rBTT

, ranging over

QBTT
and denote their respective components as follows:

qB =
(

l, vx(qB), vc(qB)
)

, rB =
(

l′, vx(rB), vc(rB)
)

,

qBTT
=

(

lTT , vx(qBTT
), vc(qBTT

)
)

, rBTT
=

(

l′TT , vx(rBTT
), vc(rBTT

)
)

.

For clarity reasons, for each state qBTT
, we detail the control location lTT by using

the triplet (lBTT , l
TTCC
TT , lCRP

TT ) where lBTT denotes the tuple of active locations of the tasks

layer components, lTTCC
TT contains the tuple of active locations of all TTCC components

of the TTCC layer, and lCRP
TT contains enabled locations of the CRP. We recall also that

a place l of a model B = γ(B1, ..., Bn) is written l = (l1, .., ln). The place l
B
TT of the tasks

components layer of the model BTT is written lBTT = (lTT
1 , .., lTT

n ). The place lTTCC
TT of

the TTCC components layer is written as follows lTTCC
TT = (lTTCC

1 , ..., lTTCC
m ) while the

place lCRP
TT of the CRP component is written as lTTCC

TT ∈ {wα, rα}.

We define the relation R ⊆ QB ×QBTT
as follows:

R =























(qB , qBTT
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

lBTT ∈ {li,⊥
li
pi}

n, where li
pi−→
Bi

,

vc(qB) = vc(qBTT
) ,

vx(qB) = v∗x(qBTT
)























(4.7)

where v∗x is the restriction of vx to the variables X of the original model B. That

is the valuation function v∗x is defined only over variables which are common between B
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and BTT . We recall that the notation li
pi−→
Bi

means that port pi is enabled from place li

of the component Bi.

Note that in the definition (4.7) of the relation R, there is no restriction to the location

of TTCC and CRP components. This means that we consider all states of these compo-

nents in the defined equivalence class. That is qB is equivalent with qBTT
whose location

is a combination of any location of TTCC and CRP components with the locations li
or ⊥li

pi of components B. That is ∀j ∈ [1,m] , lTTCC
j ∈ {wait, lop , .., read, try, send} and

lCRP
TT ∈ {wα, rα}.

Thus,the following four assertions prove that (R, β) is a weak bisimulation:

(i) ∀(qB, qBTT
) ∈ R ,

qB
β
−→
B
rB =⇒ ∃(rB , rBTT

) ∈ R : qBTT

β∗

−−−→
BTT

rBTT
,

(ii) ∀(qB, qBTT
) ∈ R ,

qBTT

β
−−−→
BTT

rBTT
=⇒ ∃(rB , rBTT

) ∈ R : qB
β∗

−→
B

rB ,

(iii) ∀(qB, qBTT
) ∈ R ,∀α ∈ γ ,

β(α) 6= ∅ ∧ qB
α
−→
B
rB =⇒ ∃(α,α′) ∈ β : ∃(rB , rBTT

) ∈ R : qBTT

β∗α′β∗

−−−−→
BTT

rBTT
,

(iv) ∀(qB, qBTT
) ∈ R ,∀k ∈ K ,

β−1(k) 6= ∅ ∧ qBTT

k
−−−→
BTT

rBTT
=⇒ ∃(p, k) ∈ β : ∃(rB , rBTT

) ∈ R : qB
p
−→
B
rB .

Hereafter, we detail proofs of each of these four points:

(i) In definition (4.6) of the relation β, only interactions of γ are related to interac-

tions of γTT . That is for each α ∈ γ, β(α) 6= ∅. Therefore if qB
β
−→
B

rB , then

this transition corresponds to a transition that is not related by the relation β.

Therefore, by definition (4.6) of the relation β, the corresponding transition is not

an interaction of γ. It is then a transition labelled by a real number representing

a delay transition.

By Definition 1.14, there is a tpc constraint on location l in B, tpc(l) = (cg ≤ v).

That is the tpc constraint of each partial location li of each component Bi of the

model B (such that l = (l1, .., ln)) must satisfy this same condition. Therefore, we

have:

qB =
(

l, vx(qB), vc(qB)
)

, rB =
(

l, vx(rB), vc(rB)
)

,

vx(rB) = vx(qB), and vc(rB) = vc(qB) + δ , vc(qB) + δ ≤ v .
(4.8)
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Note that, depending on the nature of interactions enabled from rB , two cases

should be considered. In the first case, only an internal interaction αI ∈ AI can

be enabled from state rB once β executed. In the second case, only external

interactions αE ∈ AE are enabled from rB .

By construction of the definition (4.7) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such

that

vc(qB) = vc(qBTT
) and vx(qB) = v∗x(qBTT

) . (4.9)

By construction of the transformation (Rule 4.3 and Rule 4.1) the same tpc con-

straint is mapped in the first case to the place lTT where lTT = l. In the second

case, the same tpc constraint is mapped to the places li and ⊥
li
pi where pi ∈ αE

as well as to the place read of the corresponding TTCC (handling the interaction

αE). Thus, after executing the β transition corresponding to the mapped tpc in the

BTT model, components do not change their places. And there exists a transition

qBTT

δ
−−−→
BTT

rBTT
in BTT where rBTT

= (l′TT , vx(rB), vc(rB)) such that:

l′
B
TT = l , vc(qB) = vc(rB) + δ and vx(qB) = vx(rB) . (4.10)

Combining (4.8), (4.9) and (4.10), we obtain that vc(rBTT
) = vc(rB) and

v∗x(rBTT
) = vx(rB). And we deduce that by definition (4.7) of the relation R,

we have (rB , rBTT
) ∈ R.

(ii) If (qB, qBTT
) ∈ R, qBTT

β
−−−→
BTT

rBTT
, then this transition is not related to any

transition in γ by the relation β. Therefore and by definition (4.6) of the relation β,

the transition β is either labelled by a real number representing a delay transition

or by a send/receive interaction other than the notification transition or a pα
transition. That is, β corresponds either to a rsvα, failα, offer, okα, pα interaction

or to a delay step.

Case 1: β ∈ {rsvα, failα}.

By Definition 1.14, there is a transition lTT
β∈{rsvα,failα}
−−−−−−−−−−→ l′TT in BTT , such that:

qBTT
=

(

lTT (qBTT
), vx(qBTT

), vc(qBTT
)
)

,

rBTT
=

(

l′TT (rBTT
), vx(rBTT

), vc(rBTT
)
)

,

vx(rBTT
) = vx(qBTT

), and vc(rBTT
) = vc(qBTT

) .

(4.11)

Note that both rsvα and failα define no update function nor a guard or timing

constraints (see Rule 4.5).

By definition of the transformation rules (Rule 4.3 and Rule 4.4), in the case

of a rsvα (resp. failα) interaction, the corresponding TTCC component is in a

read (resp. try) place and the CRP component is in wα (resp. rα) place. After

executing this rsvα (resp. failα) transition, the TTCC component reaches place
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try (resp. read) and the place rα (resp. wα) is activated in the CRP. Note that, in

both cases, places of other components remain intact. That is, the reached place

l′BTT = lBTT = l. Thus, we have :

l′
B
TT = l = (l1, .., ln) , (4.12)

By construction (4.7) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such that

vc(qB) = vc(qBTT
) and vx(qB) = v∗x(qBTT

) . (4.13)

Combining (4.11) and (4.13) we obtain that vc(rBTT
) = vc(qB) and v∗x(rBTT

) =

vx(qB). Combining this to (4.12), we deduce that by definition (4.7) of the relation

R, we have (qB , rBTT
) ∈ R.

Case 2: β is an offer interaction.

By Definition 1.14, there is a transition lTT
β
−→ l′TT in BTT , where β allows sending

an offer from port pi of component Bi to the corresponding TTCC component,

such that:
qBTT

=
(

lTT , vx(qBTT
), vc(qBTT

)
)

,

rBTT
=

(

l′TT , vx(rBTT
), vc(rBTT

)
)

,

vx(rBTT
) = vx(qBTT

), and vc(rBTT
) = vc(qBTT

) .

(4.14)

Note that the offer transition defines no update function nor a guard or timing

constraint (see Rule 4.5).

By definition of the transformation rules (Rule 4.3 and Rule 4.4), after executing

this β transition, the TTCC component reaches a place loi and the component

Bi reaches a place ⊥li
p′i

if another offer is likely to be sent, otherwise it reaches

the place li. Note that this β transition does not change the location of the CRP

component. Thus, we have :

l′
B
TT ∈ {li,⊥

li
pi}

n . (4.15)

By construction (4.7) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such that

vc(qB) = vc(qBTT
) and vx(qB) = v∗x(qBTT

) . (4.16)

Combining (4.14) and (4.16) we obtain that vc(rBTT
) = vc(qB) and v∗x(rBTT

) =

vx(qB). Combining this to (4.15), we deduce that by definition (4.7) of the relation

R, we have (qB , rBTT
) ∈ R.
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Case 3: β ∈ {okα, pα}

By Definition 1.14, there is a transition lTT
β
−→ l′TT in BTT , where β is labelled

either by the port okα or pα. The transition pα changes only location of the TTCC

component (from read to send location). Whereas the transition okα changes

the location of the TTCC component (from try to send) and the location of the

CRP (from rα to wα). In both cases, locations of other components are intact.

We denote G∗, TC∗ and F ∗ respectively the guard, timing constraint and update

function of the transition β. Therefore, we have:

qBTT
=

(

(lBTT , l
TTCC
TT (qBTT

), lCRP
TT (qBTT

)), vx(qBTT
), vc(qBTT

)
)

,

rBTT
=

(

(l′
B
TT , l

′TTCC
TT (rBTT

), l′
CRP
TT (rBTT

)), v′x(rBTT
), vc(rBTT

)
)

,

G∗(vx(qBTT
)) = True ,

TC∗(vc(qBTT
)) = True ,

vc(rBTT
) = vc(qBTT

)

vx(rBTT
) = F ∗(vx(qBTT

)) , ,
(4.17)

In the before last equality of (4.17), we have vc(rBTT
) = vc(qBTT

) since transition

is instantaneous. For the last equality of (4.17), notice that, F ∗ operates only on

variables that are local to the TTCC component. Therefore this function does

not update variables of the components BTT
i that are common with the model B.

Therefore the execution of this update function does not change the valuation v∗x.

Thus, we have:

v∗x(rBTT
) = v∗x(qBTT

) . (4.18)

By definition of the transformation rules (Rule 4.3 and Rule 4.4), after executing

this β transition, the TTCC component reaches the place send and the CRP

component reaches back the place wait. The component BTT
i does not change its

location. Thus, we have :

l′
B
TT = lBTT . (4.19)

By construction (4.7) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such that

lBTT ∈ {li,⊥
li
pi}

n , vc(qB) = vc(qBTT
) and vx(qB) = v∗x(qBTT

) . (4.20)

Combining (4.17), (4.18), (4.19) and (4.20) we obtain that vc(rBTT
) = vc(qB),

v∗x(rBTT
) = vx(qB) and l

′B
TT = lBTT ∈ {li,⊥

li
pi}

n. Thus, we deduce that by definition

(4.7) of the relation R, we have (qB, rBTT
) ∈ R.

Case 4: β is a delay step labelled by δ ∈ R+.

By Definition 1.14, there is a tpc constraint on location lTT in BTT , tpc(lTT ) =

(cg ≤ v). That is the tpc condition of each partial location of each component of
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the BTT model that is composing the global location lTT must satisfy this same

condition. Therefore, we have:

qBTT
=

(

lTT , vx(qBTT
), vc(qBTT

)
)

, rBTT
=

(

lTT , vx(rBTT
), vc(rBTT

)
)

,

vx(rBTT
) = vx(qBTT

), and vc(rBTT
) = vc(qBTT

) + δ , vc(qBTT
) + δ ≤ v .

(4.21)

Note that, by construction of the transformation (Rule 4.3), this delay transition

is only possible if at least one conflicting TTCC component is not occupying the

send place, i.e. lTTCCC

TT 6= {send}k. After executing this β transition, the TTCC

component does not change the global place nor the variables valuation, only the

clock valuation is augmented by δ. Thus, we have :

l′
B
TT = l . (4.22)

By construction of the definition (4.7) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such

that

vc(qB) = vc(qBTT
) and vx(qB) = v∗x(qBTT

) . (4.23)

By definition of the transformation (see Rule 4.3), the tpc constraints of the TTCC

component is the conjunction of time progress conditions received in the offers

from participating components. Thus there exist a transition qB
δ
−→
B
rB in B where

rB = (l, vx(rB), vc(rB)) such that:

vc(qB) = vc(rB) + δ and vx(qB) = vx(rB) . (4.24)

Combining (4.21), (4.23) and (4.24), we obtain that vc(rBTT
) = vc(rB) and

v∗x(rBTT
) = vx(rB). Combining this to (4.22), we deduce that by definition (4.7)

of the relation R, we have (rB , rBTT
) ∈ R.

(iii) Let (qB , qBTT
) ∈ R such that qB

α
−→
B
rB . If β(α) 6= ∅∧ qB

α
−→
B
rB , then by definition

(4.6) of the relation β, α ∈ γ and can be either an internal (α ∈ AI) or an external

interaction (α ∈ AE).

Case 1: α ∈ γ ∩AI .

By Definition 1.14, there is a transition l
α
−→ l′ in B, where α is guarded by G∗,

the timing constraint TC∗ and having as transfer function F ∗, such that:

qB =
(

l, vx(qB), vc(qB)
)

, rB =
(

l′, vx(rB), vc(rB)
)

,

TC∗(vc(qB)) = True, G∗(vx(qB)) = True,

vx(rB) = F ∗(vx(qB)), and vc(rB) = vc(qB) ,

(4.25)

where the update function F∗ = fi◦...◦fj ◦Fα, where fi corresponds to the update

function of the transition labelled by port pi ∈ Pα in the component Bi ∈ comp(α).
By construction (4.7) of R, we have qBTT

=
(

lTT , vx(qBTT
), vc(qBTT

)
)

, such that

vc(qB) = v∗c (qBTT
) and vx(qB) = v∗x(qBTT

) . (4.26)
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By definition of the transformation (Rule 4.3 and Rule 4.1), this interaction remains

intact in the obtained BTT model. Therefore, by Definition 1.14, we also have

qBTT

α
−−−→
BTT

rBTT
, where rBTT

=
(

l′TT , vx(rBTT
), vc(rBTT

)
)

such that:

l′
B
TT = l′ ,

vc(rBTT
) = vc(qBTT

) ,

v∗x(rBTT
) = F ∗

(

v∗x(qBTT
)
)

.

(4.27)

In the second equality of (4.27), we have vc(rBTT
) = vc(qBTT

) since transition α

is instantaneous. For the last equality of (4.27), notice that, v∗x operates only on

common variables between models B and BTT .

Combining (4.25), (4.26) and (4.27) we obtain that lTT satisfies l′BTT = l′,

v∗c (rBTT
) = vc(rB) and v∗x(rBTT

) = vx(rB). Thus, we have qBTT

α
−−−→
BTT

rBTT

such that (α,α) ∈ β since α ∈ γ ∩ AI . By definition (4.7) of the relation R, we

obtain (rB , rBTT
) ∈ R.

Case 2: α ∈ γ ∩AE.

By Definition 1.14, there is a transition l
α
−→ l′ in B, where α is guarded by G∗,

the timing constraint TC and having as transfer function F ∗, such that:

qB =
(

l, vx(qB), vc(qB)
)

, rB =
(

l′, vx(rB), vc(rB)
)

,

TC∗(vc(qB)) = True, G∗(vx(qB)) = True,

vx(rB) = F ∗(vx(qB)), and vc(rB) = vc(qB) ,

(4.28)

where the update function F∗ = fi◦...◦fj ◦Fα, where fi corresponds to the update

function of the transition labelled by port pi ∈ Pα in the component Bi ∈ comp(α).
By construction (4.7) of R, we have qBTT

=
(

lTT , vx(qBTT
), vc(qBTT

)
)

, such that

vc(qB) = v∗c (qBTT
) and vx(qB) = v∗x(qBTT

) . (4.29)

By definition of the transformation (Rule 4.3 and Rule 4.1), the interaction α of

the original model B is held by a dedicated TTCC component that we denote here

TTCCα in the obtained BTT model. It may be mapped to the following successive

transitions in the BTT model:

• If the component lBTT of the global place lTT contains a partial place lTT
i =⊥li

pi,

where Bi ∈ comp(α) and pi ∈ Pα, then a sending offer interaction may be

enabled, note that by definition of β, this interaction is a β transition. If the

component lBTT of the global place lTT is equal to l (i.e. lBTT = (l1, .., ln)), no

offer transition is enabled.
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• Once all offers of components Bi ∈ comp(α) are send to TTCCα, then this

latter reaches the place read. If initially, α is not conflicting, then from

the reached global location, after sending offers, the transition labelled by

the unary interaction pα is enabled. This transition has the guard G∗, the

timing constraint TC∗ and executes the function F ∗. Note that by definition

of β, β(pα) = ∅. If α is initially a conflicting interaction, then from the

reached global location, after sending offers, the enabled transition is the rsvα

interaction. This interactions has the guard G∗ and the timing constraint

TC∗. By definition of β, β(rsvα) = ∅, it is then a β transition. From the

reached location by the rsvα interaction, two interactions are possible, failα
or okα. β(failα) = ∅ and β(okα) = ∅. If the failα interaction is enabled then

the TTCCα component is reaching back the state enabling again the rsvα

interaction until the okα is enabled. From this reached global location a loop

of rsvα and failα may be enabled before the okα interaction is enabled. This

latter reaches a state where the TTCCα is in place send. The okα as well as

the pα transition applies the update function F ∗ to the local variables that

are local to the TTCC. Note that these variables are not concerned by the

valuation v∗x.

• Note that after the previously executed interaction the components Bi ∈
comp(α) do not change their locations. The TTCCα component reaches the

send location. From this new reached global state, the notification interaction

is enabled. It relates the port pαs of the TTCCα to ports pi of components

Bi, such that pi ∈ Pα. Note that β(pαs ) 6= ∅. This notification interaction

updates variables of components Bi according to their copies in the compo-

nent TTCCα. Note that these copies have been transformed by F ∗ in the

previous β transition. The reached location of the notification interaction in

a component Bi is l
′
i or ⊥

l′i
p′i
, where l′i

p′i−→.

Notice that in the previously cited cases of possible interactions, we consider only

β interactions in which the TTCCα participates. For clarity reasons, we do not

detail different other possible β transitions involving other TTCC components and

potential offer sending requests. Not considering them, does not invalidate this

proof since they always satisfy the property lBTT ∈ {li,⊥
li
pi}

n, are instantaneous and

do not hold any update function (i.e. they do not impact the location property,

nor the clock and variables valuations).

Therefore, by Definition 1.14, we have:

qBTT

β∗

−−−→
BTT

q′BTT

pαs−−−→
BTT

rBTT
,
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where

q′BTT
=

(

(lBTT , l
TTCC
TT (q′BTT

), l′
CRP
TT (q′BTT

)), vx(q
′
BTT

), vc(q
′
BTT

)
)

,

rBTT
=

(

(l′
B
TT , l

TTCC
TT (rBTT

), lCRP
TT (rBTT

)), vx(rBTT
), vc(q

′
BTT

)
)

,

with
l′
B
TT ∈ {l

′
i,⊥

l′i
p′i
}n ,

vc(rBTT
) = vc(q

′
BTT

) = vc(qBTT
) ,

v∗x(q
′
BTT

) = v∗x(qBTT
) ,

v∗x(rBTT
) = F ∗

(

v∗x(q
′
BTT

)
)

,

(4.30)

For the last equality of (4.30), notice that, v∗x operates only on common variables

between models B and BTT . And F
∗ has been first applied to local variables of the

TTCC component in the β transition preceding the pαs transition. These variables

are not concerned by the v∗x valuation, thus, the equality v∗x(q
′
BTT

) = v∗x(qBTT
).

The transition pαs copies values of TTCC variables to those of Bi components.

Thus the function F ∗ is indirectly applied to variables of Bi. Which explains the

equality v∗x(rBTT
) = F ∗

(

v∗x(q
′
BTT

)
)

.

Combining (4.28), (4.29) and (4.30), we obtain that l′TT satisfies l′BTT ∈ {l
′
i,⊥

l′i
p′i
}n,

v∗c (rBTT
) = vc(rB) and v∗x(rBTT

) = vx(rB). Thus, we have qBTT

β∗pαs−−−→
BTT

rBTT
such

that (α, pαs ) ∈ β. By definition (4.7) of the relation R, we obtain (rB , rBTT
) ∈ R.

(iv) Let (qB , qBTT
) ∈ R such that qBTT

αTT−−−→
BTT

rBTT
. If β−1(αTT ) 6= ∅∧ qBTT

αTT−−−→
BTT

rBTT
,

then by definition (4.6) of the relation β,

αTT ∈ (γ ∩AI) ∪ {p
α
s ∈ γTT |α ∈ γ ∩AE}

Case 1: αTT = α ∈ γ ∩AI .

By Definition 1.14, there is a transition lTT
αTT−−−→ l′TT in BTT , where the transition

αTT has a guard G∗, a timing constraint TC∗ and an update function F ∗, such

that:

qBTT
=

((

l, lTTCC
TT (qBTT

), lCRP
TT (qBTT

)
)

, vx(qBTT
), vc(qBTT

)
)

,

rBTT
=

(

l′, l′
TTCC
TT (rBTT

), l′
CRP
TT (rBTT

)
)

vx(rBTT
), vc(rBTT

)
)

,

G∗(vx(qBTT
)) = True ,

TC∗(vc(qBTT
)) = True ,

vx(rBTT
) = F ∗(vx(qBTT

) ,

vc(rBTT
) = vc(qBTT

) .

(4.31)
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By definition of the transformation (Rule 4.3 and Rule 4.1), the transition αTT = α

is exactly the same as in the model B which corresponds to the following transition

l
α
−→ l′ in B, which is guarded by G∗, TC∗ and has the update function F ∗.

By construction (4.7) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such that

vc(qB) = vc(qBTT
) and vx(qB) = v∗x(qBTT

) . (4.32)

Therefore, By Definition 1.14, we also have qB
α
−→
B
rB ,, where

rB =
(

l′, vx(rB), vc(rB)
)

,

with
G∗(vx(qB)) = True ,

TC∗(vc(qB)) = True ,

vc(rB) = vc(qB) ,

vx(rB) = F ∗(vx(qB)) .

(4.33)

Combining (4.31), (4.32) and (4.33), we obtain that l′TT satisfies l′BTT = l′ ∈ {li,⊥
li
pi

}n, vc(rBTT
) = vc(rB) and v∗x(rBTT

) = vx(rB). Thus, we have qB
α
−→
B

rB and, by

definition (4.7) of the relation R, (rB , rBTT
) ∈ R.

Case 2: αTT = pαs , α ∈ γ ∩AE.

By Definition 1.14, there is a transition lTT
αTT−−−→ l′TT in BTT . The transition αTT

has no guard.

By construction of the transformation (Rule 4.3 and Rule 4.1), this αTT transition

is always preceded by a β transition consisting in pα if α is not conflicting and in

okα if α is conflicting. These latter execute an update function F ∗ that updates

variables local to the TTCC component. These variables are local copies of vari-

ables of Bi. When receiving offers, values of variables of the TTCC component are

the same as their remote copies in Bi components. And then, they are updated by

using the function F ∗ of transition okα or pα.

The notification transition is not guarded and have an update function which

copies values of local variables of the TTCC to their corresponding copies in the

participating Bi components. Therefore the function F ∗ is indirectly applied to

variables of Bi components. These variables are concerned by the v∗x valuation.

Note that this αTT transition, changes the location of the TTCC component to

its initial wait location and allows to reach location l′i or ⊥
l′i
p′i
, where l′i

p′i−→ and

p′i ∈ AE .
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Therefore, we have lTT
αTT−−−→ l′TT , such that:

qBTT
=

(

(lBTT (qBTT
), lTTCC

TT (qBTT
), lCRP

TT (qBTT
), vx(qBTT

), vc(qBTT
)
)

,

rBTT
=

(

l′
B
TT (qBTT

), l′
TTCC
TT (rBTT

), l′
CRP
TT (rBTT

)vx(rBTT
), vc(rBTT

)
)

,

v∗x(rBTT
) = F ∗(v∗x(qBTT

)) ,

vc(rBTT
) = vc(qBTT

) ,

(4.34)

such that

l′
B
TT ∈ {l

′
i,⊥

l′i
p′i
}n . (4.35)

By definition of the transformation (Rule 4.3 and Rule 4.1), there exist a corre-

sponding transition l
α
−→ l′ in B, which is having as transfer function F ∗.

By construction (4.7) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such that

lBTT (qBTT
) ∈ {li,⊥

li
pi}

n , vc(qB) = vc(qBTT
) and vx(qB) = v∗x(qBTT

) .

(4.36)

Therefore, By Definition 1.14, we also have qB
α
−→
B
rB ,, where

rB =
(

l′, vx(rB), vc(rB)
)

,

with
vc(rB) = vc(qB) ,

vx(rB) = F ∗(vx(qB)) .
(4.37)

Combining (4.34), (4.35), (4.36) and (4.37), we obtain that l′TT satisfies l′BTT ∈

l′i,⊥
l′i
p′i

n
, vc(rBTT

) = vc(rB) and v
∗
x(rBTT

) = vx(rB). Thus, we have qB
α
−→
B
rB and,

by definition (4.7) of the relation R, (rB , rBTT
) ∈ R.

4.6 Conclusion

In this chapter, we have presented a model to model transformational method allowing

to explicit TT communication settings in the obtained model. The obtained model is

structured following the TT-BIP architecture. It consists of tasks layer, communication

layer and the conflict resolution layer. The first layer is obtained after transforming com-

ponents participating in external interactions depending on a user-defined task mapping.

Each TTCC component of the second layer is dedicated to handle one external interac-

tion and communicate with tasks of the layer underneath in two steps; it receives offers
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and sends notification after executing the interaction. The third layer is responsible for

resolving conflicts between different interactions handled by the second layer.

The obtained model is based on one global clock, implements multiparty interactions

through dedicated communication media (i.e. TTCC components) and ensures communi-

cation between different layers by using message passing interactions (i.e. Send/receive

interactions). Even though the obtained model satisfies the TT settings described in

the opening of Section 4.1, it is yet still far from being intuitively translatable to the

programming language of a target platform which is based on the TT execution model.

In the next chapter, we present a method for generating TT implementation from

the obtained TT-BIP model.





5
From Time-Triggered BIP Model to

Time-Triggered Implementation

In the previous chapter, we presented how a BIP model is transformed in order to comply with
the TT communication pattern. In the obtained model, multiparty communication/interactions
are handled by using dedicated communication components and different layers communicate only
via send/receive interactions. Also, components mapped to the same task are gathered under a
composite component presenting the corresponding task.

In this chapter, we present how to transform the obtained TT-BIP model into ΨC code. On
the implementation level, the notion of composite process/task does not exist. Even though keeping
atomic components under the composite task can facilitate component reuse, it is necessary—in
this step of our transformation—to transform each composite task component into an atomic
one. The obtained model after composition —denoted TT-BIP* model—is the input model of the
translation into the ΨC language process (cf. Figure 5.1).

Also, to be able to prove correctness of the transformation from TT-BIP to ΨC, we must
first provide a target formal model for the implementation and define its operational semantics.

This chapter is organized as follows. In Section 5.1, we define the transformation that is
applied to the TT-BIP model with composite task components in order to obtain the TT-BIP*
model which encompasses only atomic components. Section 5.2 proposes the Time Constrained
Automata (TCA) model as a formal model of TT tasks of a PharOS application. Section 5.3
deals with challenges of the transformation. The formal rules that define the transformation from
TT-BIP* to TCA are presented in Section 5.4. Correctness of this transformation is proved in
Section 5.5 and Section 5.6.
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5.1 Component Composition

We define in this section the transformation allowing to obtain atomic task components

from composite ones. This composition is needed to prepare for the code generation.

In [47], a BIP model transformation is presented, which transforms untimed BIP

models containing composite components into models with only atomic components.

We present here the definition of composition for timed BIP models.

Intuitively, as shown in Figure 5.2, the composition operation consists in replacing

transitions from atomic components that are synchronized through an internal interac-

tion by a single transition, labelled by an internal port. Guards of synchronized tran-

sitions are obtained by conjuncting the guard of the interaction and individual guards.

Similarly, the timing constraint of the obtained transition is obtained by conjuncting the

timing constraints of the composing transitions. The update function of the transition,

is defined as the sequential composition of the update function of the interaction followed

by the individual update functions of composing transitions in an arbitrary order since

they operate on independent data variables.
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lF c uG
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clock c
l L

l c utpc

lp c up
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clock c
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x
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lLl'1
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l'  

Figure 5.2: Component composition

In the following, we provide the formal rules:

Rule 5.1 (Component Composition). Let {Bi}i∈[1,n], where Bi = (Li, Pi,Xi, Ci, Ti, tpci),

be the set of atomic components constituting the composite component. And let γ be the

set of interactions α = (Pα, Gα, Fα) composing these atomic components. The atomic

component B = (L,P,X,C, T, tpc) corresponding to the composition γ{Bi}i∈[1,n] is built

as follows:

• the set of locations L = L1 × L2 × ...× Ln,

• the set of ports P = (
n
⋃

i=1
(Pi) \

⋃

α∈γ
Pα) ∪{pα |α ∈ γ},

• the set of variables X = (
n
⋃

i=1
Xi),
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• The set of transitions T is built as follows:

• for each interaction α ∈ γ such that there exists a set of interacting transitions

{τ1, τ2, ..., τm} ⊆
n
⋃

i=1
Ti, such that ∀k ∈ [1,m], τk = (lτk , pτk , gτk , tcτk , rτk , fτk ,

l′τk) and {pτk}
k
i=1 = Pα. We include in T the transition composing all these

interacting transitions defined by τα = (lα, pα, gα, tcα, rα, fα, l
′
α) ∈ T where:

• lα = (lτ1 × lτ2 × ...× lτm),

• l′α = (l′τ1 × l
′
τ2 × ...× l

′
τm),

• the guard gα = Gα
∧

(
m
∧

k=1

gτk),

• the timing constraint tcα =
m
∧

k=1

tcτk ,

• the update function fα executes first the function Fα then executes func-

tions fτk for all k ∈ [1,m].

• For each transition τi = (lτi , pτi , gτi , tcτi , rτi , fτi , l
′
τi) ∈ Ti of one of the

constituent components Bi, such that ∀α ∈ γ, pτi /∈ Pα, and for each

l = (l1, l2, ...li, ..., ln) ∈ L such that li = lτi we introduce the transition

τ li = (l, pτi , gτi , tcτi , rτi , fτi , l
′) ∈ T where l′ = (l1, l2, ..., l

′
τi , ..., ln),

• ∀l = (l1, ..., ln) ∈ L, tpc(l) =
n
∧

i=1
tpc(li).

5.2 Formal Model of the ΨC Language

To define a formal translation from TT-BIP* to PharOS application and to prove its

correctness, we need to provide a formal definition of operational semantics of the target

formalism. Moreover, we need the latter to be at the same abstraction level as the

ΨC code, i.e. to specify constraints (release, deadline and synchronization shifts) over

different clocks.

In this subsection, we present the Time-Constrained Automata (TCA) model as

the formal model of PharOS applications (Definition 5.1). The presented model is an

extension of the TCA model presented in [65]. The extension consists mainly in the

presentation of timing constraints on edges instead of nodes and in handling the multi-

clock timing constraints. Then we provide its operational semantics (Definition 5.2).

A TCA automaton describes the behavior of a task, where nodes represent only the

control locations and arcs are labelled by the triplets of constraints defining respectively

the release, deadline and synchronization instants. Each component of such a triplet is

either (−1,⊥), or a pair of a shift constraint and a clock over which this shift is defined.

We denote by M
def
= (Z+ × C) ∪ {(−1,⊥)} the set of all such labels. When a label is

(−1,⊥), the corresponding constraint is not defined.
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Let x ∈ Z+ be a shift over a clock c, and λ be a reference instant over the global

clock cBASE . To shift the instant λ of the clock cBASE by x along the clock c, we

take the instant of the c, corresponding to λ, add x, then convert back to cBASE . We

denote by shiftccBASE
: cBASE × Z+ → cBASE the function computing the global instant

corresponding to the desired shift as follows:

shiftccBASE
(λ, x) = conv ccBASE

(

conv cBASE
c (λ) + x

)

, (5.1)

where conv ccBASE
and conv cBASE

c are defined in (2.2) and (2.3), respectively. In Figure 5.3,

we explain graphically how this shift function is computed.

0

 cBASE

c

1

2
x

convc      ( )
cBASE   convc      (

cBASE   

convc      (convc      ( = shiftc   ( ,x)
cBASE   

cBASE   cBASE   

Figure 5.3: Graphical explanation of the shift function (5.1)

Definition 5.1 (TCA). A TCA is a tuple (N,K,X,C, T ) where N is a finite set of

nodes, K is a finite set of jobs, X is a set of local variables, C is a set of clocks,

comprising a real-time global clock cBASE and other clocks derived from cBASE , and

T = N ×GX ×M
3 ×K ×V(X)V(X) ×N is a set of transitions. Thus, a transition is a

tuple τ = (n, gX ,m, k, f, n
′) ∈ T where:

• gX ∈ GX is a Boolean guard on X;

• m =
(

(r, cr), (d, cd), (s, cs)
)

∈ M3, is a triplet defining respectively, the release shift

over clock cr, the deadline shift over clock cd and the synchronization shift over clock

cs:

• If (s, cs) 6= (−1,⊥), then (d, cd) = (s, cs),

• If (r, cr) 6= (−1,⊥), then the release instant over the clock cBASE is defined

by shiftcrcBASE
(λ, r) where λ ∈ cBASE is a reference instant referring to the last

absolute release or synchronization instant.

• If (d, cd) 6= (−1,⊥) (resp. (s, cs) 6= (−1,⊥)) and (r, cr) 6= (−1,⊥) then

the deadline (resp. synchronization) instant over the clock cBASE is defined

by shiftcrcBASE
(λ, r) + conv cdcBASE

(d) (resp. shiftcrcBASE
(λ, r) + conv cs

cBASE
(s)) where

λ ∈ cBASE is a the reference instant referring to the last absolute release or

synchronization instant.



108 5. From Time-Triggered BIP Model to Time-Triggered Implementation

• If (d, cd) 6= (−1,⊥) and (r, cr) = (−1,⊥), then the deadline instant over the

clock cBASE is defined by shiftcdcBASE
(λ, d).

• k ∈ K is a job;

• f ∈ V(X)V(X) is an update function on variables in X.

• let S = {τi}
n∪+∞
i=1 ⊆ T be a sequence of transitions τi = (ni, gXi,mi, ki, fi, n

′
i). Let

τj = (nj, gXj ,mj , kj , fj, n
′
j) and τl = (nl, gXl,ml, kl, fl, n

′
l) be two transitions in S

such that j < l, mj =
(

(rj , cr
j), (dj , cd

j), (−1,⊥)
)

, ml =
(

(−1,⊥), (−1,⊥), (sl , cs
l)
)

and ∀k ∈]j, l[ ,mk =
(

(rk, cr
k), (−1,⊥), (−1,⊥)

)

.

The deadline dj should satisfy the following property:

conv cd
j

cBASE

(

dj
)

≤ conv csl

cBASE

(

sl
)

+Σk∈]j,l[conv
crk

cBASE

(

rk
)

,

• Similarly, let τj = (nj, gXj,mj , kj , fj , n
′
j) and τl = (nl, gXl,ml, kl, fl, n

′
l) be two

transitions in S such that j < l, mj =
(

(−1,⊥), (dj , cd
j), (−1,⊥)

)

, ml =
(

(−1,⊥
), (dl, cd

l), (−1,⊥)
)

and ∀k ∈]j, l[, mk =
(

(rk, cr
k), (−1,⊥), (−1,⊥)

)

. The deadlines

dj and dl should satisfy the following property:

conv cd
j

cBASE

(

dj
)

≤ conv cd
l

cBASE

(

dl
)

+Σk∈]j,l[conv
crk

cBASE

(

rk
)

.

start

A
(-1,-1,-1)

B
(1,2,-1)

C
(-1,3,3)

D

(-1,-1,-1)

Figure 5.4: Alternative representation of the task behavior of Figure 2.12

Note that ΨC is essentially a syntactic representation of the TCA formal model.

The transformations from a ΨC code of a task behavior to a TCA automaton or vice

versa are straightforward. In the following we explain how we obtain ΨC code of a

TCA automaton. Each job of a TCA automaton corresponds to either a seperate body

or a part of a body in the ΨC code level. Its translation starts by an ”after(r) with

cr” statement if the first component (r, cr) of the triplet-label of the job is different

from (−1,⊥). The body executes, then, the update function of the job. It ends by

an ”advance(s)with cs” statement if the component (s, cs) is different from (−1,⊥).
Otherwise it ends by a ”before(d) with cd” statement if the component (d, cd) of the

triplet-label is different from (−1,⊥).

Example 5.1. For example, Figure 5.4 shows the automaton representing the task be-

havior of the task of Figure 2.12. Since in the model of Figure 2.12 all constraints are
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defined over the same clock, we only show the first component, i.e. the shift, of each pair

of the triplet-label. This triplet-label depends on timing instructions encompassing the job

in the original body code. The label of the job A is
(

(−1,⊥), (−1,⊥), (−1,⊥)
)

since in the

original code, it is not preceded by an after instruction, nor succeeded by a before or

advance instruction. Notice that, in the labels of job C, the deadline shift coincides with

the corresponding synchronization shift, reflecting the fact that in the original behavior

code, this job is succeeded by an advance instruction.

start

B

((−1,⊥), (1, c2), (1, c2))

A

((2, c1), (1, c2), (1, c2))

C
((−1,⊥), (−1,⊥), (−1,⊥))

(a) TCA automaton

body

{

  // Job A

  after(2) with c1;

  ComputationA();

  advance(1) with c2;

  // Job B

  ComputationB();

  advance(1) with c2;

  // Job C

  ComputationC();

} 

(b) Code ΨC

Figure 5.5: An example of a TCA task with two clocks and its ΨC code

Example 5.2. The example of Figure 5.5a shows a TCA automaton where constraints

are defined over two clocks; the clock c1 and the clock c2. Its corresponding ΨC code is

displayed in Figure 5.5b. In the triplet-label of the job A, the release instant is defined

over the clock c1 while the synchronization instant is defined over the clock c2. In the

corresponding ΨC code of Figure 5.5b, actions of job A are executed between an ”after(2)

with c1” instruction and an ”advance(1) with c2”. The job B defines in its triplet-label
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only a synchronization instant over the clock c2, which is represented in the ΨC code by

an instruction ”advance(1) with c2”. The job C does not define constraints in its triple-

label. Thus, in the ΨC code, its actions are executed after the previously instantiated

instruction.

Defining the operational semantics of TCA automaton requires a notion of state.

The state of a TCA automaton is described in four parts: the occupied node, the val-

uation of the data variables, the valuation of the clock variables and the valuation of a

reference variable that stores the valuation of the global clock in the last defined release

or synchronization instants. This reference variable is needed for absolute constraints

computation (cf. Section 5.3 for further details). Based on this notion of state, TCA

semantics can be defined as a labelled transition system as described by the following

definition:

Definition 5.2 (Semantics of TCA). The semantics of a time-constrained automa-

ton (N,K,X,C, T ) is defined as a labelled transition system (Q,K,−→), where Q =

N × V(X) × V(C) × R>0 and −→⊆ Q × K × Q is the set of transitions, defined as

follows. We denote by v the valuation function, and by v(X) (resp. v(C)) its restric-

tion to the set of variables X (resp. the set of clocks C). Let (n, v(X), v(C), v(λref ))

and (n′, v′(X), v′(C), v′(λref )) be two states, such that v(c) ≤ v′(c) for all c ∈ C. We

have (n, v(X), v(C), v(λref ))
k
−→ (n′, v′(X), v′(C), v′(λref )) iff there exists a transition

(

n, gX , ((r, cr), (d, cd), (s, cs)), k, f, n
′
)

∈ T such that :

• gX(v(X)) = True,

• v′(X) = f(v(X)) ,

• v(c) ≤ v′(c) for all c ∈ C,

• if (r, cr) 6= (−1,⊥), then ∀c ∈ C \ {cBASE},

shift crcBASE
(v(λref ), r) ≤ conv ccBASE

(

v′(c)
)

,

• if (d, cd) 6= (−1,⊥) and (r, cr) = (−1,⊥), then ∀c ∈ C \ {cBASE},

conv c
cBASE

(

v′(c)
)

≤ shiftcdcBASE
(v(λref ), d),

• if (d, cd) 6= (−1,⊥) and (r, cr) 6= (−1,⊥), then ∀c ∈ C \ {cBASE},
conv c

cBASE

(

v′(c)
)

≤ shiftcdcBASE
(v(λref ), d) + conv cr

cBASE

(

r
)

,

• v′(λref ) is updated to the value of the synchronization instant s, or the release

instant r, shifted to the clock cBASE . If none of these instants are defined, the

valuation v′(λref ) is unchanged:

v′(λref ) =























shiftcscBASE
(v(λref ), s) , if s 6= −1 and r = −1,

shiftcrcBASE
(v(λref ), r) + conv cscBASE

(s) , if s 6= −1 and r 6= −1,

shiftcrcBASE
(v(λref ), r) , if s = −1 and r 6= −1,

v(λref ) , if s = −1 and r = −1.
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An execution sequence of a TCA is defined as follows:

Definition 5.3 (Execution Sequence). An execution sequence of a time-constrained au-

tomaton (N,K,X,C, T ) from an initial state (n0, v0(X), v0(C), v0(λref )) is a sequence

of transitions:

{
(

ni, vi(X), vi(C), vi(λref )
) ki−→

(

ni+1, vi+1(X), vi + 1(C), vi+1(λref )
)

}ni=1 ,

where ki ∈ K, for all i ∈ [1, n], and n ∈ Z+ ∪ {∞}. An execution sequence is finite if

n ∈ Z+, it is infinite if n =∞.

5.3 Transformation Challenges

Transforming a TT-BIP* model into a PharOS application requires addressing several

challenges.

Moving from absolute to relative constraints.

In TT-BIP, all constraints are defined in terms of absolute clock values. On the contrary,

TCA and ΨC bear only relative constraints, i.e. as an increment to the last release instant

of a preceeding triplet-label (corresponding to the previous after statement in ΨC)

or the last preceeding synchronization instant (corresponding to the previous advance

statement in ΨC).

In order to address this issue, we make use of the variable λref . It is initiated to

zero and updated whenever a TCA transition is holding in its triplet-label a release or

synchronisation constraint (i.e. the second or the third components of the triplet-label is

different from (−1,⊥)). In terms of ΨC code, the variable λref is updated whenever an

after or an advance statement is instantiated. Thus, λref stores the valuation of the

global clock in the last defined release or synchronization instants (i.e. the last visited

after or advance statement is ΨC). Relative constraint drelative is computed from its

corresponding absolute constraint dabsolute following this formula:

drelative = dabsolute − λref . (5.2)

Mapping of timing constraints.

Both BIP and TT-BIP models are based on an abstract notion of time. In particular,

actions that correspond to the computational steps (jump transition) of the system are

considered to be atomic and have zero execution times. Thus, only start instants of

these actions have associated timing constraints. However, in TCA models, actions do

not always have a zero execution time. They are considered to have both a release and

a deadline instants. These instants can be easily specified by using after and before

instructions of the ΨC language, which correspond to a release and deadline components

of the triplet-labels in the TCA model presented in Section 5.2.
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This issue can be addressed by applying the timing constraint of the original TT-

BIP transition —applying originally to the start instant of the transition —to both the

release and the deadline instants of the job in the obtained TCA automaton. Note that

by doing so, the equivalence with the BIP model is preserved —since the transition is

guaranteed to finish before the original timing constraint becomes False .

We figured out two options for transforming computational steps and delay steps into

TCA jobs. The first option is the intuitive mapping solution while the second option

presents a more elaborated solution. Both options are designed in such a way to allow

the TCA jobs to have a non zero execution time. In both options, release and deadline

instants of the obtained TCA jobs are mapped from the timing constraints of the original

TT-BIP* transitions:

• Option 1: Let l be a location in the original TT-BIP* model such that tpc(l) =

(c ≤ v) and let τ be the transition outgoing from l and having a timing constraint

of the form lb ≤ c ≤ ub in TT-BIP*. According to BIP semantics, τ has only its

start instant constrained —since it is considered to have a zero execution time. It

is supposed to start at any instant between the specified lower bound lb and the

upper bound ub.

For the computational step τ of the original model, we can include in the final TCA

a job having lb and ub respectively as absolute release and deadline instants. This

job has the same update action as the original transition τ and holds the following

triplet-label ((lb−λref , c), (ub − lb, c), (−1,⊥)) . This ensures that the instantiated
job will start and end at an instant respecting the constraint of τ . The actions of the

original transition τ are executed either within this job or in a new job depending

on whether the original transition corresponds to an internal computation or a

communication. The example in Figure 5.6a illustrates the mapping rule of a

transition having a constraint of the form lb ≤ c ≤ ub.

In BIP semantics, delay steps can be constrained by timing progress conditions of

the form c ≤ v indicating whether time can progress at a given state of the system.

In TCA, this condition can be encoded by a loop job labelled by ((−1,⊥), (v −
λref , c), (−1,⊥)), since in the original model the start instant of the delay step is

not specified and only its deadline is defined (cf. Figure 5.6b).

• Option 2: The first option considers only the transition τ and omits other transi-

tions enabled from the same location l. In this option, all the states of the original

system are considered by taking into account all timing constraints of all outgoing

transitions from the place l. We order all the bounds of these timing constraints

and the tpc constraint. After ordering these bounds, we define computational steps

that are enabled from l in each sub-interval separating two successive bounds. This

is illustrated by the example of Figure 5.7.

In this example, we consider a location l in the original TT-BIP* model such as

tpc(l) = (c ≤ v). The transitions τ and τ ′ are two transitions outgoing from l
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L1

L2

L2

lb ≤ c ≤ ub
τ

τ

((lb− λref , c),(ub − lb, c),(−1,⊥))

(a) Computational step constraint

L1

L2

c ≤ v

((−1,⊥),(v − λref , c),(−1,⊥))

(b) Delay step constraint

Figure 5.6: Mapping of constraints: option 1

and having the respective timing constraints lb ≤ c ≤ ub and lb ′ ≤ c ≤ ub ′ (cf.

Figure 5.7a). We assume that lb′ < lb < ub′ < ub < v. We define for each

sub-interval the corresponding enabled transitions as displayed in Figure 5.7b.

L1

L2L3

L2L2

c ≤ v

lb ≤ c ≤ ub

τ

lb′ ≤ c ≤ ub′

τ ′

(a) 0riginal transitions enabled from l

lb′ lb ub′ ub v

∅ τ ′ τ , τ ′ τ ∅ ∅

(b) Sub-intervals and their corre-

sponding enabled transitions

Figure 5.7: Defining sub-intervals and their corresponding enabled transitions: option 2

In Figure 5.8, we show how the original transitions of Figure 5.7a are transformed.

Each gray node and its outgoing jobs model one of the sub-intervals described

previously. For example, when the system occupies the upper gray node N , the

clock valuation is always inferior to lb ′. Once the clock valuation reaches the instant

lb ′, the system moves the next gray node—which models the next sub-interval. The

loop job on the gray node allows to wait until lb ′ is reached. To do so, it defines the

triplet-label ((1, c), (lb ′−λref −1, c), (−1,⊥)) , where the release instant is the next
instant over the clock c and the absolute deadline is lb ′. The second job outgoing

from the node N and leading to the next gray node marks the end of the current

sub-interval by defining the triplet-label ((lb ′−λref , c), (0, c), (−1,⊥)) . Its absolute

release and deadline instants are both the instant lb ′. That is, once the absolute

instant lb ′ is reached, the system should immediately move to the next gray node

which models the next sub-interval.

From each gray node, we instantiate jobs corresponding to the original computa-

tional steps that are enabled in the current sub-interval —following Figure 5.7b.
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N

N’

((1, c),(lb′ − λref − 1, c),(−1,⊥))

((1, c),(lb − λref − 1, c),(−1,⊥))

((1, c),(ub′ − λref − 1, c),(−1,⊥))

((1, c),(ub − λref − 1, c),(−1,⊥))

((1, c),(v − λref − 1, c),(−1,⊥))

((lb′ − λref , c),(0, c),(−1,⊥))

((lb− λref , c),(0, c),(−1,⊥))

((ub′ − λref , c),(0, c),(−1,⊥))

((ub− λref , c),(0, c),(−1,⊥))

((v − λref , c),(0, c),(−1,⊥))

τ ′

τ ′
((−1,⊥),(ub′ − λref , c),(−1,⊥))

τ

τ
((−1,⊥),(ub − λref , c),(−1,⊥))

Figure 5.8: Mapping of constraints of Figure 5.7a: option2

Of course in this option, it should be ensured that each job starts and finishes in

the same timing constraint as in the original model. For this reason, after each

job corresponding to the computational step, a job defining a triplet-label that

holds the original deadline is instantiated. For example, in Figure 5.8, the job in-

stantiated after the job τ ′, hold the triplet-label ((−1,⊥), ((ub ′ − λref , c), (−1,⊥))
where ub ′ is the deadline of the transition τ ′ in the original TT-BIP* model of

Figure 5.7a.

Note that the first option is the intuitive mapping solution which focuses on trans-

forming the model transition by transition. The second option focuses rather on the

state of the system and takes into account all potentially enabled transitions.

In order to avoid ad hoc solutions, we follow the mapping principles of the second

option in the proposed transformation.

Communication mapping.

In the previous paragraph, we focused only on the temporal aspect of the transition

omitting the fact that transitions are involved in communication. In this paragraph,

we consider this aspect, and we detail how the communication is mapped in the TCA

formalism.

In TT-BIP, all tasks are related to communication components via send/receive inter-

actions, which provide unidirectional data transfer and synchronization between sending

and receiving actions of, respectively, the sender and the receiver components. In TCA,

the communication is performed through the temporal variable model. New values of
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temporal variables are made visible at each of the synchronization points of the sender.

These new values are consulted when the current time of receivers is greater than or

equal to the visibility date of the new values. In our transformation two requirements

need to be satisfied:

1. the receiver must consult an updated temporal variable (i.e. the receive job of the

receive task must execute after the send job of the sender task) and

2. we need to respect communication semantics of the initial model, i.e. the synchro-

nisation between send and receive jobs.

We generate TCA synchronization points (advance instructions in ΨC language)

that depend on whether the TT-BIP* transition is triggered by a send, receive or an

internal port. For each communicating transition in the original model, we instantiate

—after jobs guaranteeing respect of timing constraint (cf. Figure 5.6) —a job containing,

in its triplet-label, the synchronization component (1, cfg), where cfg is a fine-grained

clock. Consider —in the original model —a sender and a receiver components having

the same clock c. Suppose they are meant to communicate in the same instant t in

TT-BIP* model. We can define a finer-grained clock cfg, allowing the instantiation of

synchronisation points (send and receive at t+ ǫ).

Example 5.3. For example, consider the time line in Figure 5.9, where clock cfg is n

times finer-grained than the clock c, with n > 2. The visibility instant of the sender

data is n ∗ t + 1 of the clock cfg. The receiver will consult these data in the instant

n ∗ t+2 of the clock cfg. In this example both requirements cited above are satisfied: (1)

the sender updates the variable before the receiver consults it and (2) when considering

the original clock c over which the synchronization instant t was defined, these send and

receive instants can be approximated to t since the instant t+1 over c is still not reached.

fine-grained clock: cfg
(cfg = c/n , n > 2)

...
nt

... ...

Sender clock: c
t

Receiver clock: c
t

visibility instant

nt+1

consultation instant

nt+2

Figure 5.9: Example of advance nodes defined over cfg

In order to address this challenge for an arbitrary original TT-BIP* model without

resorting to ad hoc solutions, we proceed as follows:

• We define a fine-grained clock cfg = cg/4 where cg is the unique global clock of the

TT-BIP* model (as well as the TT-BIP model, cf. Section 4.4). All synchronization

points (i.e. the third component of the triplet-label) are defined over this new clock.
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• To each sending action, we associate a job labelled by
(

(−1,⊥), (1, cfg), (1, cfg)
)

(i.e. advance(1) instruction defined over the clock cfg in the ΨC code). Note that

this job is instantiated after guaranteeing the respect of timing constraint of the

original model (i.e. after instantiating jobs as in Figure 5.6). We add a Boolean flag

in each transferred message, which will allow testing the freshness of the message.

The sender automaton changes the state of this flag whenever a sending transition

is executed. The receiver automaton has a local flag used as reference. The value

of that flag is set to the value of the flag of the last received message.

• To each receiving transition, we associate a job labelled by
(

(−1,⊥), (2, cfg),
(2, cfg)

)

corresponding to successive reception attempts until the message is de-

tected to be fresh. That is until the value of the local flag is different from the

value of the flag of the message.

Note that since in the TT-BIP model, all the receive-ports of an interaction are

enabled if the send port is enabled (cf. the last property of Definition 4.1 of the TT-

BIP model), we can be sure that the receiving job in the obtained TCA automaton

will occur at latest one instant after the sending one over the clock cfg. The

synchronization requirement over the clock cg is thus satisfied.

Notice that in the obtained TCA automaton, we have only two clocks, the clock cg

of the original TT-BIP component and the clock cfg over which synchronisation points

of the TCA automaton are exclusively defined.

Remark 5.1. Note that an alternative solution would consist in defining a fine-grained

clock cfg = cg/3 and a job labelled by
(

(−1,⊥), (1, cfg), (1, cfg)
)

corresponding to sending

actions and to each reception attempts. Nevertheless, in this solution a receiving task

should execute more reception attempts than in the chosen solution.

5.4 Transformation of a TT-BIP Model into TCA Models

In this section, we describe in details our technique for transforming a TT-BIP model.

As explained in the third challenge of Section 5.3, connectors relating different layers are

transformed into temporal variables, and different components are transformed into TCA

automata. Note that each temporal variable is updated by only one TCA automaton

(its owner).

Since in the TCA model, all communication constraints are taken into account, and

the communication consists only in copying variables of the consulted temporal variable,

we do not need to provide the formal composed model of TCA automata and all temporal

variables.

Thus, in this section, we focus only on the formal transformation of each TT-BIP*

component into a TCA automaton. Notice that the transformation of connectors into

temporal variables is trivial and straightforward; It simply consists in instantiating a
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temporal variable within the owner agent, and in defining its consulting agents. Its

integration is, however, described in the next chapter when describing the implemented

tool. Here, we present the rules of the transformation of a TT-BIP* component into a

TCA automaton, while addressing challenges presented in Section 5.3.

The behavior of each TT-BIP* component B = (L,P,X, {cg}, T, tpc) with P =

Pi∪Ps∪Pr is transformed into a TCA automaton TCAB = (N,K,XTCA, CTCA, TTCA).

The respective sets CTCA, XTCA and K are built from the original model following

Rule 5.2:

Rule 5.2 (Instantiating sets of clocks, variables and job labels).

• CTCA = {cg, cfg},

• XTCA = X∪{flagp | p ∈ Ps ∩ Pr}∪{λref }∪Y , where Y denotes the set of variables

allowing to make local copies of variables of X after communication,

• K = P × {send, receive, internal}.

Before detailing rules for instantiating the set of nodes N and the set of transitions

TTCA, we need first to specify the rule allowing to order different bounds of timing

constraints of transitions outgoing from each original location (cf. Rule 5.3).

Rule 5.3 (Ordering bounds of timing constraints). For each l ∈ L:

• we define the set Bbounds
l that includes lower and upper bounds of constraints of

transitions τp triggered by port p such that p ∈ Pl and the upper bound of the time

progress condition tpc(l) = (c ≤ v). Note that we consider only finite bounds. The

set Bbounds
l is defined as follows

Bbounds
l = {v | tpc(l) = (c ≤ v)} ∪ {lbp, ubp | p ∈ Pl , lbp ≤ v , ubp ≤ v}.

• we define sort(Bbounds
l ) as the unique non decreasing sequence Bl = {bj}

n−1
j=0 where

duplicated elements are not preserved. Bl satisfies:

|Bl| = n , n ≤ |Bbounds
l | ,

∀0 ≤ j ≤ |Bl| − 1 , bj ∈ B
bounds
l and ∀0 ≤ j ≤ |Bl| − 2 , bj < bj+1

After, defining the set |Bl| for each l ∈ L, we include in N and TTCA nodes and

transitions allowing to model different intervals separating two successive bounds of |Bl|
as explained in Section 5.3.

Rule 5.4 (Introducing nodes and jobs corresponding to different sub-intervals). For

each location l ∈ L:
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• we include, in the set N , the nodes {N j
l }

n
j=0, where n denotes the cardinality of

the set Bl,

• and for each j ∈ [0, n[, we include in TTCA the following transitions:

• τ loop(l,bj)
: It is a loop transition on the location N j

l . It has the temporal con-

straints defined by the following triplet-label ((1, cg), (bj−λ
cg

ref −1, c
g), (−1,⊥))

which allows waiting as long as the absolute instant bj is not reached. Its re-

lease shift (1, cg) allows to increment λc
g

ref by 1 at each execution of this tran-

sition. The job τ loop(l,bj)
is not guarded and does not execute an update function.

It is labelled by (p, internal) ∈ K.

• τ(l,bj): It is introduced to mark the end of the current sub-interval as explained

before. It starts from location N j
l and reaches the location N j+1

l . And it is

labelled by the triplet-label ((bj − λ
cg

ref , c
g), (0, cg), (−1,⊥)) which defines bj as

the absolute release and deadline instant. The transition τ(l,bj) is not guarded

and does not execute an update function. It is labelled by (p, internal) ∈ K.

Once bounds are ordered (cf. Rule 5.3) and sets of nodes and transitions allowing

to define corresponding sub-intervals are defined (cf. Rule 5.4), we need to map enabled

ports to each sub-interval. Rule 5.5 presents in details how we associate to each node

N j
l its enabled set of ports.

Rule 5.5 (Computing enabled ports for each defined sub-interval). Let l ∈ L, we denote

by Pl = {p ∈ P | l
p
−→} the set of ports enabled in l. For each l ∈ L and j ∈ [0, |Bl|[,

we define a mapping function µl : [0, |Bl|] → 2Pl . The function µl is a mapping that

associates the set of enabled ports for each node N j
l . Recall that lbp and ubp denote

respectively the lower and the upper bounds of the timing constraint of the transition τp
that is triggered by the port p, such that p ∈ Pl. The mapping µl is defined as follows:

µl(j) =











p , such that p ∈ Pl and lbp < bj ≤ ubp , if j ∈ [0, |Bl| − 1],

p , such that p ∈ Pl and lbp < bj−1 < ubp , if j = |Bl| and bj 6= v.

∅ , if j = |Bl| and bj = v.

After defining the set of enabled ports from each node N j
l , we detail how to map

original computational steps. This transformation depends strongly on the type of port

(i.e. internal, send or receive port). For example internal ports can be mapped into only

one transition in the TCA, while a send port needs to be presented by more than one

transition. Detailed transformation of each of either ports is presented in Rule 5.6.

Rule 5.6 (Mapping of computational steps). Let l ∈ L, we denote respectively by P s
l ,

P r
l and P i

l the sets of send, receive and internal ports enabled from l, i.e. respectively

the sets Pl ∩ Ps, Pl ∩ Pr and Pl ∩ Pi, where Pl is the set of ports enabled in l.
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• Case 1: Internal port. For each l ∈ L, for each j ∈ [0, |Bl|[ and for each p ∈ µl(j)∩

P i
l such that p is the trigger-port of the transition τp = (l, p, gX , tcp, r, f, l

′) ∈ T

and tcp = (lbp ≤ c
g ≤ ubp), we include the transition τ j(l,p) in TTCA. The transition

τ j(l,p) is introduced to execute the original actions within the original constraints.

Since the release instant is constrained by the bound bj which is guaranteed to

respect the original constraints, we only need to specify the original deadline of the

original transition in the triplet-label of τ j(l,p). Thus, its triplet-label is as follows

((−1,⊥), (ubp − λ
cg

ref , c
g), (−1,⊥)) . The transition τ j(l,p) starts from location N j

l

and reaches the location N0
l′ . It is guarded by gX and executes the update function

f of the original transition τp. It is labelled by the label (p, internal) ∈ K since

p ∈ P i
l ,

• Case 2: Send port. For each l ∈ L and for each p ∈ µl(j) ∩ P
s
l such that p is the

trigger-port of the transition τp = (l, p, gX , tcp, r, f, l
′) ∈ T and tcp = (lbp ≤ cg ≤

ubp):

• we include the node Nl′ in N ,

• for each j ∈ [0, |Bl|[, we include the transition τ j(l,p) in TTCA. This transition

is introduced in order to allow communication via a synchronization point. As

defended in the third challenge of Section 5.3, sending actions are executed

through a synchronisation on the next instant over the clock cfg (corresponding

to an advance(1) instruction in the ΨC language). Therefore, the triplet-

label of the transition τ j(l,p) is the following: ((−1,⊥), (1, cfg), (1, cfg)). The

transition τ j(l,p) starts from location N j
l and reaches the location Nl′. It is

guarded by gX and is labelled by the label (p, send) ∈ K. In order to prepare

for the communication, it executes the update function fpflag which flips the

message flag. Recall that the update function f is guaranteed to operate on

variables that are not originally exported by the port p (cf. the fifth point of

Definition 4.1). Therefore, we choose to execute the original update function

f within the transition τ j(l,p),

• we include the transition τ ′(l,p) in TTCA. This transition is introduced to allow

the time to progress until the original deadline is reached. It is, thus, labelled

by the triplet-label ((−1,⊥), (ubp − λc
g

ref , c
g), (−1,⊥) . It has as source and

target locations respectively Nl′ and N0
l′ . It is not guarded and defines no

update function. It is labelled by the label (p, internal) ∈ K.

• Case 3: Receive port. By construction of the TT-BIP model, all transitions that

are triggered by receive ports always carry timing constraints and guards that are

default to True (cf. sixth point of Definition 4.1). It is also worth noticing, that by

construction of the transformation and in contrary to send ports, several transitions

labelled by receive ports can have the same source location (cf. the fourth point of

Definition 4.1). Therefore, putting a synchronization point for reception (i.e. an
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advance(2) instruction in the ΨC language) does not tell on which receive port,

the current automaton is communicating. We add a flag that is tested on each

received message in order to detect its freshness. For each l ∈ L such that P r
l 6= ∅,

for each j ∈ [0, |Bl|[:

• we include the loop transition τ j(l,r) in TTCA. This transition is introduced

to allow the synchronization (communication) via a synchronization point. It

consists in a loop transition on location N j
l , in order to guarantee the reception

of at least one message. Its triplet-label is equal to ((−1,⊥), (2, cfg), (2, cfg))
(corresponding to an advance(2) instruction in the ΨC language). Its guard

is the conjunction
∧

p∈P r
l

¬gpfresh , where g
p
fresh is the guard allowing —when eval-

uated to True—to detect the freshness of the received message through the re-

ceive port p. More details about all communication encoding (fpflag and gpfresh)

are provided in the next paragraph. The transition τ j(l,r) does not define an

update function. It is labelled by (p, internal) ∈ K.

• for each p ∈ P r
l such that p is the trigger-port of the transition τp =

(l, p, gX , tcp, r, f, l
′) ∈ T , we include the transition τ j(l,p) in TTCA. This transi-

tion is introduced in order to execute actions of the original transition τp ∈ T

after synchronization. It starts from location N j
l and reaches the location N0

l′ .

It has the triplet-label ((−1,⊥), (−1,⊥), (−1,⊥)), is guarded by gpfresh and ex-

ecutes the update function fpupdate before executing the update function f of

the original transition τp ∈ T . Note that fpupdate is in charge of making local

copies of variables of the received message. The transition τ j(l,p) is labelled by

(p, receive) ∈ K.

The transformation rules —that are detailed in Rule 5.2, Rule 5.3, Rule 5.4, Rule 5.5

and Rule 5.6—cover all conflict cases of TT-BIP and TT-BIP* models (cf. fourth point in

Definition 4.1). Figure 5.10, Figure 5.11, Figure 5.12 and Figure 5.13 illustrate different

conflict scenarios and display the sets of transitions of the obtained TCA automata.

In the following paragraph, we provide more details about encoding of fpflag and gpfresh .

And we show how τ j
(l,r)

and τ(l,p)j , p ∈ P
r
l allow the reception of the actual message.

Encoding of communication details.

Consider a receive port p of a TT-BIP* component B and the local Boolean variable

flagp in the corresponding TCA automaton TCAB. Denote the Boolean flag of the

message received through p by flagmsg . The guard gpfresh is defined by putting

gpfresh
def
= (flagp 6= flagmsg ).

By construction, flagp and flagmsg are initialized to zero. Thus, initially, we have gpfresh =

False and the loop transition τ j(l,r) is enabled (cf. Figure 5.12). This transition will
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(b) Port p , q ∈ Pi and lbq ≤ lbp ≤ ubq ≤ ubp ≤ v

Figure 5.10: Example of transformation of two conflicting transitions triggered by inter-

nal ports

perform a communication attempt (through the triplet label ((−1,⊥), (2, cfg), (2, cfg)))
with no actions on local variables. Each communication attempt leads to the implicit

update of the guard gpfresh depending on the flag of the received message. If the sender

has sent a new message—through its corresponding transition τ j
′

(l′,p′), labelled by its send
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(b) Port p , q ∈ Ps and lbq ≤ lbp ≤ ubq ≤ ubp ≤ v

Figure 5.11: Example of transformation of two conflicting transitions triggered by send

ports

port p′ ∈ P s
l′—it should have performed the function fp

′

flag in order to change the value

of flagmsg with:

fp
′

flag = (flagp
′

:= ¬flagp
′

) .

Recall that flagp
′

is a local variable of the sending component, whereof the value is incor-

porated into the message. Upon reception of the message by the receiving component,

we denote this value by flagmsg . Thus, upon reception of the message gpfresh evaluates to
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(b) Port p , q ∈ Pr

Figure 5.12: Example of transformation of two conflicting transitions triggered by receive

ports

True, enabling the transition τ j(l,p) in the receiver automaton. Otherwise, if the sender

did not send the new message yet, gpfresh evaluates to False and the transition τ j(l,r) (of

the receiver automaton) is again enabled.

Notice also that among the values contained in the message, only flagmsg is tested

after execution of transition τ j(l,r). This value is only used to evaluate the freshness of

each received message.

Since the transition τ j(l,p) of the receiver automaton is executed when the received

message is fresh, it is in charge of making local copies of message variables through the

function fpupdate before executing the function f of the initial transition. The function

fpupdate copies also the value of flagmsg into flagp, thereby also changing the value of gpfresh
from True to False .

Example 5.4. We take as an example a task component having as a unique component

the ATC component of Figure 4.7. In Figure 5.14, we show the TCA automaton obtained

after transforming this task component behavior. Note that, for the sake of simplicity of

the presentation of transitions τ1(l2,i2) and τ
0
(l3,i3)

which loop back to the location N0
⊥l

p
, we

duplicate this latter (displayed in light gray) at the bottom of the TCA automaton.

To summarise, the TCA automaton obtained from a given TT-BIP* component (by

rules Rule 5.2, Rule 5.3, Rule 5.4, Rule 5.5 and Rule 5.6) can be formally defined as
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Figure 5.13: Example of transformation of two conflicting transitions triggered respec-

tively by a send and a receive port

follows:

Definition 5.4. Let B = (L,P,X, {cg}, T, tpc) be a TT-BIP* component with P =

Pi ∪ Ps ∪ Pr. Recall that for l ∈ L, we denote by Pl = {p ∈ P | l
p
−→} the set of ports

enabled in l. We denote respectively by P s
l , P

r
l and P i

l the sets of send, receive and

internal ports enabled from l, i.e. respectively the sets Pl∩Ps, Pl∩Pr and Pl∩Pi. Recall

also that Bl denotes the set of bounds of constraints of transitions enabled from l (cf.

Rule 5.3). We denote by τp = (l, p, gX , tcp, rp, fp, l
′
p) ∈ T an outgoing transition from a

location l ∈ L, such that tcp = (lbp ≤ c
g ≤ ubp) and tpc(l) = (cg ≤ v).

The TCA corresponding to B is defined by putting TCAB = (N,K,X ∪ X ′ ∪ Y ∪

{λref}, {c
g} ∪ {cfg}, T

′), with N = {N j
l | l ∈ L, j ∈ [0, |Bl|]} ∪ {Nl′p |l

′
p ∈ L, p ∈ Pl ∩
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Figure 5.14: TCA model obtained after transforming task components of Figure 4.7

Ps} ,K = P ×{send, receive, internal} ,X ′ = {flagp | p ∈ Ps ∪ Pr} and Y are the sets of
flags and variables used for managing communication. The set of transitions T ′ contains
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the following transitions:

τ loop
(l,bi)

=
(

Nj
l
,True, ((1, cg), (bi − λcg

ref − 1, cg), (−1,⊥)), (p, internal), id, Nj
l

)

, ∀l ∈ L,∀j ∈ [0, |Bl|[,

τ(l,bi) =
(

Nj
l
,True, ((bi − λcg

ref , c
g), (0, cg), (−1,⊥)), (p, internal), id, Nj+1

l

)

, ∀l ∈ L,∀j ∈ [0, |Bl| − 1[ ,

τ j
(l,r)

=
(

Nj
l
,

∧

p∈Pr
l

¬gp
fresh

, ((−1,⊥), (2, cfg), (2, cfg)), (p, internal), id, N
j
l

)

, ∀l ∈ L, P r
l 6= ∅, ∀j ∈ [0, |Bl|[ ,

τ ′(l,p) =
(

Nl′ ,True, ((−1,⊥), (ubp − λcg

ref , c
g), (−1,⊥)), (p, internal), id,N0

l′

)

, ∀l ∈ L,∀p ∈ P s
l ,

τ j
(l,p)

=















(

Nj

l
, gp

fresh
, ((−1,⊥), (−1,⊥), (−1,⊥)), (p, receive), fp ◦ fp

update
, N0

l′

)

, ∀l ∈ L,∀j ∈ [0, |Bl|[,∀p ∈ P r
l
,

(

Nj
l
, gX , ((−1,⊥), (1, cfg), (1, cfg)), (p, send), fp ◦ fp

flag
, Nl′

)

, ∀l ∈ L,∀j ∈ [0, |Bl|[,∀p ∈ µl(j) ∩ P s
l
,

(

Nj

l
, gX , ((−1,⊥), (ubp − λcg

ref
, cg), (−1,⊥)), (p, internal), fp, N0

l′

)

, ∀l ∈ L,∀j ∈ [0, |Bl|[,∀p ∈ µl(j) ∩ P i
l
,

where µl : [1, |Bl|]→ 2Pl
s

is a mapping that associates the set of activated ports for each

state of the system (cf. Rule 5.5), id is the identity function, fpflag : V(X ′) → V(X ′) is

the function that flips the value of the Boolean variable flagp before sending a message,

gpfresh is the guard verifying whether the value of flagp is different from that contained in

the received message, fpupdate : V(X ∪ Y )→ V(X) is the function updating local variables

according to received values if p ∈ Pr and cfg is the clock having one fourth of the period

of the TT-BIP model clock cg (cf. Section 5.3).

Notice that the domain and co-domain of the function f in the transition τ above are

given by f : V(X)→ V(X). Hence the composition f ◦ fpupdate is well-defined.

In Figure 5.15b, we display the obtained TCA automaton after transformation of the

CRP automaton of Figure 5.15a. Originally, from the location wα1wα2 , two receive tran-

sitions are conflicting (i.e. the rsvα1 and rsvα2 transitions). These transitions are trans-

formed as shown in the pattern of Figure 5.12b. From the locations rα1wα2 (resp. wα1rα2)

there is no conflict between receive transitions. Therefore, the enabled receive transi-

tion rsvα2 (resp. rsvα1) is mapped to the loop transition τ0(rα1wα2 ,r)
(resp. τ0(wα1rα2 ,r)

)

and the transition τ0(rα1wα2 ,rsvα2 )
(resp. τ0(wα1rα2 ,rsvα1 )

). From locations rα1wα2 , wα1rα2

and rα1rα2 , send transitions are conflicting. Transformation of these latter follows the

pattern of Figure 5.11b.

5.5 Transformation Correctness

In order to prove the correctness of the transformation from TT-BIP* to TCA, we

have to show that the corresponding semantic LTS are equivalent. This is illustrated in

Figure 5.16, where F denotes the transformation from TT-BIP to TCA (Definition 5.4),

G1 and G2 denote the corresponding LTS semantics.

We define observational equivalence between transition systems based on the classical

notion of weak bisimilarity [69], where some transitions are considered unobservable.

We will use the same notations as in Section 4.5.2.
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Figure 5.15: Transformation of the CRP component
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TT-BIP
G1

LTS

TCA
G2

LTS∼β

F

Figure 5.16: Translation functions

Let B = (L,P,X,C, T, tpc) be a TT-BIP* component. We need to prove equivalence

between G1(B) and G2(F (B)). To this end, we define the following relation on labels of

the two LTSs:

β =
{(

p, (p, send)
)

| p ∈ Ps

}

∪
{(

p, (p, receive)
)

| p ∈ Pr

}

. (5.3)

Theorem 5.1. The LTSs G1(B) and G2(F (B)) are weakly bisimilar w.r.t. β, i.e.

G1(B) ∼β G2(F (B)).

Proof. Let G1(B) = (QB , P,−→
B
) and G2(F (B)) = (QTCA,K,−−−→

TCA
). Recall (Defini-

tion 1.11) that state space QB has three components: control location, clock and variable

valuations while the state space QTCA (Definition 5.2) has an extra fourth component—

besides the three components previously cited—consisting in the valuation of the refer-

ence instant λref . For a given state q, we will denote vc(q) (resp. vx(q)) its clock (resp.

variable) valuation component. For a given state q ∈ QTCA, we will denote vλref
(q) the

corresponding valuation of λref .

Below, we will use variables qB, rB , ranging over QB , and qTCA, rTCA, ranging over

QTCA and denote their respective components as follows:

qB =
(

l, vx(qB), vc(qB)
)

,

rB =
(

l′, vx(rB), vc(rB)
)

,

qTCA =
(

n, vx(qTCA), vc(qTCA), vλref
(qTCA)

)

,

rTCA =
(

n′, vx(rTCA), vc(rTCA), vλref
(rTCA)

)

.

We define the relation R ⊆ QB ×QTCA as follows:

R =



















(qB, qTCA)

∣

∣

∣

∣

∣

∣

∣

∣

∣

n ∈ {N j
l }

|Bl|
j=0 ∪ {Nl} ,

vc(qB) = v∗c (qTCA),

vx(qB) = v∗x(qTCA)



















(5.4)

where v∗c (resp. v∗x) is the restriction of vc (resp. vx) to the unique clock c of model

TT-BIP (resp. variables X). That is the valuation function v∗c (resp. v∗x) is defined only

over the clock (resp. variables) which are common between B and F (B), i.e. excluding

clock cfg (resp. variables X ′ ∪ Y ) of F (B).

In order to show that (R, β) is a weak bisimulation, we have to prove the following

four assertions:
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(i) ∀(qB, qTCA) ∈ R ,

qB
β
−→
B
rB =⇒ ∃(rB, rTCA) ∈ R : qTCA

β∗

−−−→
TCA

rTCA ,

(ii) ∀(qB, qTCA) ∈ R ,

qTCA
β
−−−→
TCA

rTCA =⇒ ∃(rB, rTCA) ∈ R : qB
β∗

−→
B

rB ,

(iii) ∀(qB, qTCA) ∈ R ,∀p ∈ P ,

β(p) 6= ∅ ∧ qB
p
−→
B
rB =⇒ ∃(p, k) ∈ β : ∃(rB, rTCA) ∈ R : qTCA

β∗kβ∗

−−−−→
TCA

rTCA ,

(iv) ∀(qB, qTCA) ∈ R ,∀k ∈ K ,

β−1(k) 6= ∅ ∧ qTCA
k
−−−→
TCA

rTCA =⇒ ∃(p, k) ∈ β : ∃(rB , rTCA) ∈ R : qB
β∗pβ∗

−−−−→
B

rB .

Hereafter, we detail proofs of each of these four points:

(i) If qB
β
−→
B

rB , then by definition (5.3) of the relation β, the underlying transition

is either labelled by an internal port or by a real number representing a delay

transition. Note that if β corresponds to an internal port p ∈ P i
l , by definition

(5.4) of the relation R we have n ∈ {N j
l }p∈µ(j) (cf. Rule 5.5), vc(qB) = v∗c (qTCA)

and vx(qB) = v∗x(qTCA). And if β corresponds to a real number, we have n ∈

{N j
l }p∈µ(j) ∪ {Nl}

Case 1: β corresponds to an internal port p ∈ P i
l and n = N j

l such that

p ∈ µl(j).

By Definition 1.11, there is a transition l
(p,gX ,gC ,∅,f)
−−−−−−−−→ l′ in B (recall that no clocks

are reset in TT-BIP models) where gC = lbp ≤ c
g ≤ ubp with

qB =
(

l, vx(qB), vc(qB)
)

, rB =
(

l′, vx(rB), vc(rB)
)

,

gX(vx(qB)) = gC(vc(qB)) = True, vx(rB) = f(vx(qB)), and vc(rB) = vc(qB) .
(5.5)

By definition of F (Definition 5.4), there is a corresponding transition τ j(l,p), such

that p ∈ µ(j):

N j
l

(True,
(

(−1,⊥),(ubp−λc
ref

,c),(−1,⊥)
)

,(p,internal),f)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N0

l′

in F (B).

By construction (5.4) of R, we have

qTCA =
(

N j
l , vx(qTCA), vc(qTCA), vλref

(qTCA)
)

, such that

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.6)
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Therefore, by definition of G2 (Definition 5.2), we also have qTCA
(p,internal)
−−−−−−−→

TCA
rTCA,

where rTCA =
(

N0
l′ , vx(rTCA), vc(rTCA), vλref

(rTCA)
)

, with

vc(rTCA) = vc(qTCA), and v
∗
x(rTCA) = f

(

v∗x(qTCA)
)

. (5.7)

For the first equality of (5.7), we have vc(rTCA) = vc(qTCA) since it satisfies the

constraint vc(rTCA) ≤ ubp+vλref
(since we have gC(vc(qB)) = True) which respects

semantics of Definition 5.2. For the last equality of (5.7), notice that, for internal

ports p ∈ Pi, the function f in the transition τ j(l,p) only operates on variables in X,

but not on those in X ′ ∪ Y .

Combining (5.5), (5.6) and (5.7), we obtain that v∗c (rTCA) = vc(rB) and

v∗x(rTCA) = vx(rB). Thus, we have qTCA
β
−−−→
TCA

rTCA and, by (5.4), (rB , rTCA) ∈ R.

Case 2: β is a delay δ ∈ R.

By Definition 1.11, there is a time progress constraint on location l in B, tpc(l) =

(cg ≤ v). Therefore:

qB =
(

l, vx(qB), vc(qB)
)

, rB =
(

l, vx(rB), vc(rB)
)

,

vx(rB) = vx(qB), and vc(rB) = vc(qB) + δ ≤ v .
(5.8)

By definition of F (Definition 5.4), there is a set of corresponding successive tran-

sitions τ ′(l∗,p∗), τ
loop
(l,b0)

, τ(l,b0), τ
loop
(l,b1)

, ..., τ loop(l,m):

Nl

(True,
(

(−1,⊥),(ubp∗−λcg

ref
,cg),(−1,⊥)

)

,(p∗,internal),id)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N0

l

N0
l

(True,
(

(1,cg),(b0−λcg

ref
−1,cg),(−1,⊥)

)

,(p,internal),id)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N0

l

N0
l

(True,
(

(b1−λcg

ref
−1,cg),(0,cg),(−1,⊥)

)

,(p,internal),id)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N1

l

N1
l

(True,
(

(1,cg),(b1−λcg

ref
−1,cg),(−1,⊥)

)

,(p,internal),id)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N1

l

N1
l

...
−→ Nn

l

(True,
(

(1,cg),(v−λcg

ref
−1,cg),(−1,⊥)

)

,(p,internal),id)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Nn

l

in F (B), such that Nl and τ
′
(l∗,p∗) exist only if p∗ ∈ Ps such that l∗

p∗
−→
B

l.

By construction (5.4) of R, we have:

qTCA =
(

Nl, vx(qTCA), vc(qTCA), vλref
(qTCA)

)

if N ∋ Nl

or

qTCA =
(

N0
l , vx(qTCA), vc(qTCA), vλref

(qTCA)
)

if N 6∋ Nl .
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In both case, we have

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.9)

Therefore, by definition of G2 (Definition 5.2), we also have

qTCA
(p,internal)
−−−−−−−→

TCA
...

(p,internal)
−−−−−−−→

TCA
...

(p,internal)
−−−−−−−→

TCA
rTCA,

where rTCA =
(

Nm
l , vx(rTCA), vc(rTCA), vλref

(rTCA)
)

, with

v∗c (rTCA) = v∗c (qTCA) + δ and v∗x(rTCA) = v∗x(qTCA) . (5.10)

Note that by (5.9), we obtain v∗c (qTCA) + δ = vc(qB) + δ and by (5.8), we have

v∗c (qTCA) + δ ≤ v. Therefore, by (5.10), we have

v∗c (rTCA) ≤ v.

Note that the latter inequality respects semantics of definition of G2 (Defini-

tion 5.2).

Combining (5.8), (5.9) and (5.10), we obtain that v∗c (rTCA) = vc(rB) and

v∗x(rTCA) = vx(rB). Thus, we have qTCA
β∗

−−−→
TCA

rTCA and, by (5.4), (rB , rTCA) ∈ R.

(ii) If (qB , qTCA) ∈ R, qTCA
β
−−−→
TCA

rTCA, then by definition (5.3) of the relation β,

the transition β is neither labelled by (p, send) nor (p, receive). It can be labelled

only by (p, internal). Applying this to the definition (5.4) of the relation R, we

deduce that this transition can be enabled only from nodes N j
l and Nl if it exists

(cf. Definition 5.4). Thus this β transition corresponds in F (B) to one of these

transitions; τ loop(l,bj)
, τ(l,bj), τ

j
(l,r) if P

r
l 6= ∅ and τ(l∗,p∗) such that p∗ ∈ Ps and l∗

p∗
−→
B

l

Case 1: β corresponds to τ loop(l,bj)
in F (B), for some l ∈ L.

By definition of G2 (Definition 5.2), there is a transition τ loop(l,bj)
:

N j
l

(True,
(

(1,cg),(bj−λcg

ref
−1,cg),(−1,⊥)

)

,(p,internal),id)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N j

l

in F (B) with

qTCA =
(

N j
l , vx(qTCA), vc(qTCA), vλref

(qTCA)
)

,

rTCA =
(

N j
l , vx(rTCA), vc(rTCA), vλref

(rTCA)
)

,

vc(rTCA) = vc(qTCA) + δ ≤ bj ,

and vx(rTCA) = vx(qTCA) .

(5.11)
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By definition of F (Definition 5.4), we have either tpc(l) = True or tpc(l) = (cg ≤ v)

in B such that bj ≤ v. By construction (5.4) of R, we have qB =
(

l, vx(qB), vc(qB)
)

,

such that

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.12)

Therefore, by definition of G1 (Definition 1.11), we have qB
δ
−→
B

rB, where rB =
(

l, vx(rB), vc(rB)
)

, with

vc(rB) = vc(qB) + δ, and vx(rB) = vx(qB) . (5.13)

Note that by (5.12), we obtain vc(qB)+ δ = v∗c (qTCA)+ δ and by (5.11), we obtain

vc(qB) + δ ≤ bj . If tpc(l) = (cg ≤ v), we have bj ≤ v. Therefore, we have

vc(qB) + δ ≤ v.

This satisfies the constraint vc(rB) ≤ v of definition of G1 (Definition 1.11).

Combining (5.11), (5.12) and (5.13), we obtain that v∗c (rTCA) = vc(rB) and

v∗x(rTCA) = vx(rB). Thus, we have qB
β
−→
B
rB and, by (5.4), (rB , rTCA) ∈ R.

Case 2: β corresponds to τ(l,bj) in F (B), for some l ∈ L.

By definition of G2 (Definition 5.2), there is a transition τ(l,bj)

N j
l

(True,
(

(bj−λcg

ref
,cg),(0,cg),(−1,⊥)

)

,(p,internal),id)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N j+1

l

in F (B), such that

qTCA =
(

N j
l , vx(qTCA), vc(qTCA), vλref

(qTCA)
)

,

rTCA =
(

N j+1
l , vx(rTCA), vc(rTCA), vλref

(rTCA)
)

,

vc(rTCA) = vc(qTCA), and vx(rTCA) = vx(qTCA) .

(5.14)

By construction (5.4) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such that

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.15)

Combining (5.14) and (5.15), we obtain that v∗c (rTCA) = vc(qB) and v∗x(rTCA) =

vx(qB). Thus, we have qB −→
B
qB and, by (5.4), (qB , rTCA) ∈ R.

Case 3: β corresponds to τ j(l,r) in F (B) for some l ∈ L such that P r
l 6= ∅.

By definition of G2 (Definition 5.2), there is a transition τ j(l,r):

N j
l

(

∧

p∈Pl∩Pr

¬gp
fresh

,
(

(−1,⊥),(2,cfg),(2,cfg)
)

,(p,internal),id
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N j
l
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in F (B) for some j ∈ [0, |Bl|[, with

qTCA =
(

N j
l , vx(qTCA), vc(qTCA), vλref

(qTCA)
)

,

rTCA =
(

N j
l , vx(rTCA), vc(rTCA), vλref

(rTCA)
)

,

v∗c (rTCA) = v∗c (qTCA),

vx(rTCA) = vx(qTCA) .

(5.16)

The second-last equality of (5.16) (i.e. , v∗c (rTCA) = v∗c (qTCA)) is explained by the

following. By construction of the transformation F , the last property of Defini-

tion 4.1 is held since it is a state property, i.e. all TCA receiver tasks are enabling

a receiving transition when a TCA sender task is enabling a sending transition.

Thus, by construction, and as explained in the third paragraph of Section 5.3, the

receiving transition of the receiving TCA automaton will occur at least one instant

after the sending one over the clock cfg.

Thus, after one execution of the loop transition τ j(l,r) in F (B), the guard
∧

p∈Pl∩Pr

¬gpfresh becomes False . That is, there exist p ∈ P r
l , such that gpfresh = True

Notice that one execution of the transition τ j(l,r) increments the valuation of the

clock cfg by 2 units. Since the clock cfg is having as granularity one fourth of the

period of clock cg, the valuation of this latter remains unchanged. Recall that the

clock cfg is excluded by the valuation v∗c , which justifies the second-last equality

of (5.16).

By construction (5.4) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such that

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.17)

Combining (5.16) and (5.17), we obtain that v∗c (rTCA) = vc(qB) and v∗x(rTCA) =

vx(qB). Thus, we have qB −→
B
qB and, by (5.4), (qB , rTCA) ∈ R.

Case 4: β corresponds to τ(l∗,p∗) in F (B) for some l, l∗ ∈ L and p∗ ∈ Ps

such that l∗
p∗
−→
B

l.

By definition of G2 (Definition 5.2), there is a transition τ(l∗,p∗)

Nl

(

True,
(

(−1,⊥),(ubp∗−λcg

ref
,cg),(−1,⊥)

)

,(p,internal),id
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N0
l ,

in F (B), such that

qTCA =
(

Nl, vx(qTCA), vc(qTCA), vλref
(qTCA)

)

,

rTCA =
(

N0
l , vx(rTCA), vc(rTCA), vλref

(rTCA)
)

,

vc(rTCA) = vc(qTCA) + δ ≤ ubp∗ ,

vx(rTCA) = vx(qTCA) .

(5.18)



134 5. From Time-Triggered BIP Model to Time-Triggered Implementation

By definition of F (Definition 5.4), we have either tpc(l) = True or tpc(l) = (cg ≤ v)

in B such that ubp∗ ≤ v (cf. Rule 5.5). By construction (5.4) of R, we have

qB =
(

l, vx(qB), vc(qB)
)

, such that

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.19)

Therefore, by definition of G1 (Definition 1.11), we have qB
δ
−→
B

rB, where rB =
(

l, vx(rB), vc(rB)
)

, with

vc(rB) = vc(qB) + δ, and vx(rB) = vx(qB) . (5.20)

Note that by (5.19), we obtain vc(qB)+ δ = v∗c (qTCA)+ δ and by (5.18), we obtain

vc(qB) + δ ≤ ubp∗ . If tpc(l) = (cg ≤ v), we have ubp∗ ≤ v by construction of the

model B. Therefore, we have

vc(qB) + δ ≤ v.

This satisfies the constraint vc(rB) ≤ v of definition of G1 (Definition 1.11).

Combining (5.18), (5.19) and (5.20), we obtain that v∗c (rTCA) = vc(rB) and

v∗x(rTCA) = vx(rB). Thus, we have qB
β
−→
B
rB and, by (5.4), (rB , rTCA) ∈ R.

(iii) Let (qB, qTCA) ∈ R such that qB
p
−→
B
rB . If β(p) 6= ∅∧ qB

p
−→
B
rB , then by definition

(5.3) of the relation β, p ∈ P r
l ∪ P

s
l ).

By Definition 1.11, there is a transition Therefore, we have lbp ≤ vc(qTCA) ≤ ubp.

This implies that, if p ∈ P s
l , the node n is a node N j

l such that p ∈ µ(j) (which

respects the previous inequatily). And if p ∈ P r
l , the node n is a node N j

l , for all

j ∈ [0, |Bl|[. Therefore, we deduce that n ∈ {N j
l }

|Bl|
j=0.

Case 1: p ∈ P s
l .

By Definition 1.11, there is a transition l
p,gX ,gC ,∅,fp
−−−−−−−−→ l′ in B (recall that no clocks

are reset in TT-BIP models), where gC = (lbp ≤ c
g ≤ ubp), such that

qB =
(

l, vx(qB), vc(qB)
)

, rB =
(

l′, vx(rB), vc(rB)
)

,

gX(vx(qB)) = True, lbp ≤ vc(qB) ≤ ubp,

vx(rB) = fp(vx(qB)) and vc(rB) = vc(qB) .

(5.21)

Note that we have vx(rB) = fp(vx(qB)), since p ∈ P
s
l . The interaction, through

which the component is communicating, does not define an update function on

variables of the send port p (all interactions copy variable associated with the

send port to the ones of the receive ports, cf. Section 4.4.5 of Chapter 4). By

definition (5.4) of the relation R, we have vc(qB) = v∗c (qTCA). Therefore, we have
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lbp ≤ vc(qTCA) ≤ ubp. By definition of Rule 5.5, we deduce that the node n of

the state qTCA is a node N j
l such that p ∈ µ(j) (which respects the inequality

lbp ≤ vc(qTCA) ≤ ubp).

By definition of F (Definition 5.4), there is a corresponding transition τ j(l,p),

N j
l

(

gX ,
(

(−1,⊥),(1,cfg),(1,cfg)
)

,(p,send),fp◦f
p
flag

)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Nl′

in F (B).

By construction (5.4) of R, we have qTCA =
(

Nl, vx(qTCA), vc(qTCA), vλref
(qTCA)

)

,

such that

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.22)

Therefore, by definition of G2 (Definition 5.2), we also have

qTCA
k
−−−→
TCA

rTCA ,

where k = (p, send) and

rTCA =
(

Nl′ , vx(rTCA), vc(rTCA), vλref
(rTCA)

)

,

with
v∗c (rTCA) = v∗c (qTCA) ,

v∗x(rTCA) = fp
(

v∗x(qTCA)
)

.
(5.23)

In the first equality of (5.23), we have v∗c (rTCA) = v∗c (qTCA) since the transition

τ j
(l,p)

increments by one unit only valuation of clock cfg which is excluded by the

valuation v∗c .

For the last equality of (5.23), notice that, for send ports p ∈ P s
l , the function

fpflag in the transition τ j(l,p) operates on variables of X ′ which are excluded by the

valuation v∗x. The function fp only operates on variables of X, but not on those of

X ′ ∪ Y .

Combining (5.21), (5.22) and (5.23) we obtain that v∗c (rTCA) = vc(rB) and

v∗x(rTCA) = vx(rB). Thus, we have

qTCA
k
−−−→
TCA

rTCA ,

where k = (p, send). By (5.4), (rB , rTCA) ∈ R.

Case 2: p ∈ P r
l

By Definition 1.11, there is a transition l
(p,True,True,∅,fp)
−−−−−−−−−−−→ l′ in B. Recall that no

clocks are reset in TT-BIP models and that all receive transitions carry timing
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constraints and guards that are default to True (cf. sixth point of Definition 4.1).

We have

qB =
(

l, vx(qB), vc(qB)
)

, rB =
(

l′, vx(rB), vc(rB)
)

,

vx(rB) = f∗p (vx(qB)), vc(rB) = vc(qB) ,
(5.24)

where f∗p = f ◦f ′pupdate is the composition of the function f with a function f ′pupdate
of the interaction through which the component is communicating via the port p

( cf. Definition 1.14). By construction of the TT-BIP* models, we know that all

cross-layer interactions are send/receive interactions which have as update func-

tion, the function copying variables of the send port to those of the receive ports

(cf. Section 4.4.5 of Chapter 4). Thus, f ′pupdate copies values of variables of the

sender ports to those of the port p ∈ Pr. By definition of F (Definition 5.4), there

is a corresponding transition τ j(l,p):

N j
l

(

gp
fresh

,
(

(−1,⊥),(−1,⊥),(−1,⊥)
)

,(p,receive),fp◦f
p
flag

)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N0
l′

in F (B).

By construction (5.4) of R, we have

qTCA =
(

N j
l , vx(qTCA), vc(qTCA), vλref

(qTCA)
)

,

such that

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.25)

Therefore, by definition of G2 (Definition 5.2), we also have

qTCA
k
−−−→
TCA

rTCA,

where k = (p, receive), with

rTCA =
(

N0
l′ , vx(rTCA), vc(rTCA), vλref

(rTCA)
)

,

with
v∗c (rTCA) = v∗c (qTCA) ,

and ,

v∗x(rTCA) = fp ◦ f
p
update

(

v∗x(qTCA)
)

.

(5.26)

For the first equality of (5.26), we have v∗c (rTCA) = v∗c (qTCA) since the instan-

taneous execution of the transition τ j(l,p) is possible (since it respects seman-

tics of Definition 5.2). For the last equality of (5.26), notice that, for receive

ports p ∈ Pr, in the transition τ j(l,p), the function fpupdate operates on variables

in X ∪ Y , but the valuation v∗x is defined only on variables X. Thus, we have

f ◦ fpupdate
(

v∗x(qTCA)
)

= f ◦ f ′update
(

v∗x(qTCA)
)

= f∗
(

v∗x(qTCA)
)

.
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Combining (5.24), (5.25) and (5.26) we obtain that v∗c (rTCA) = vc(rB) and

v∗x(rTCA) = vx(rB). Thus, we have

qTCA
k
−−−→
TCA

rTCA ,

where k = (p, receive) and, by (5.4), (rB , rTCA) ∈ R.

(iv) If (qB , qTCA) ∈ R and k ∈ K such that qTCA
k
−−−→
TCA

rTCA, then by definition

(5.3) of the relation β, k = (p, send) or k = (p, receive). By definition of F

(Definition 5.4), we deduce that this transition can be enabled only from nodes

N j
l . Thus, if k = (p, send) it corresponds to τ j(l,p) such that p ∈ P s

l ∩ µ(j). If

k = (p, receive), it corresponds to τ j(l,p) for all j ∈ [0, |Bl|[ such that p ∈ P r
l .

Case 1: k = (p, send) and n = N j
l , for some l ∈ L and j such that p ∈ µ(j).

By definition of G2 (Definition 5.2), there is a transition τ j(l,p):

N j
l

(

gX ,
(

(−1,⊥),(1,cfg),(1,cfg)
)

,(p,send),fp◦f
p
flag

)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Nl′

in F (B), with

qTCA =
(

N j
l , vx(qTCA), vc(qTCA), vλref

(qTCA)
)

,

rTCA =
(

Nl′ , vx(rTCA), vc(rTCA), vλref
(rTCA)

)

,

vc(rTCA) = vc(qTCA) ,

v∗x(rTCA) = fp(v
∗
x(qTCA)) .

(5.27)

For the last equality of (5.27), notice that, for send ports p ∈ P s
l , the function

fpflag in the transition τ j(l,p) operates on variables of X ′ which are excluded by the

valuation v∗x. The function fp only operates on variables of X, but not on those of

X ′ ∪ Y .

By definition of F (Definition 5.4), there is a corresponding transition

l
(gX ,gC ,p,∅,fp)
−−−−−−−−−→ l′ ,

in B.

By construction (5.4) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such that

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.28)

Therefore, by definition of G1 (Definition 1.11), we also have qB
p
−→
B
rB ,, where

rB =
(

l′, vx(rB), vc(rB)
)

,
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with
gX(vx(qB)) = gC(vc(qB)) = True ,

vc(rB) = vc(qB) ,

vx(rB) = fp(vx(qB)) .

(5.29)

Combining (5.27), (5.28) and (5.29), we obtain that v∗c (rTCA) = vc(rB) and

v∗x(rTCA) = vx(rB). Thus, we have qB
p
−→
B
rB and, by (5.4), (rB , rTCA) ∈ R.

Case 2: k = (p, receive) and n = N j
l , for some l ∈ L and j ∈ [0, |Bl|[.

By definition of G2 (Definition 5.2), there is a transition τ j(l,p):

N j
l

(

gp
fresh

,
(

(−1,⊥),(−1,⊥),(−1,⊥)
)

,(p,receive),fp◦f
p

update

)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ N0
l′

in F (B), with

qTCA =
(

N j
l , vx(qTCA), vc(qTCA), vλref

(qTCA)
)

,

rTCA =
(

N0
l′ , vx(rTCA), vc(rTCA), vλref

(rTCA)
)

,

vc(rTCA) = vc(qTCA) ,

v∗x(rTCA) = fp ◦ f
p
update(v

∗
x(qTCA)) .

(5.30)

Notice that even if the actual reception was performed in the β transition τ(l,r)
preceding this k transition, the update of local variables according the received

message is only performed via the execution of the k transition (via fpupdate). The

function fpupdate applies to variables of X ∪ Y .

By definition of F (Definition 5.4), there is a corresponding transition

l
True,True,p,∅,fp
−−−−−−−−−−→ l′

, in B. By construction (5.4) of R, we have qB =
(

l, vx(qB), vc(qB)
)

, such that

vc(qB) = v∗c (qTCA) and vx(qB) = v∗x(qTCA) . (5.31)

Therefore, by definition of G1 (Definition 1.11), we also have qB
p
−→
B
rB , where

rB =
(

l′, vx(rB), vc(rB)
)

,

with
vx(rB) = f∗(vx(qB)) ,

vc(rB) = vc(qB) ,
(5.32)

where f∗ = fp ◦ f
′p
update is the composition of the function fp with a function

f ′pupdate of the interaction through which the component is communicating via the
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port p ( cf. Definition 1.14). By construction of the TT-BIP* models, we know

that all cross-layer interactions are send/receive interactions which have as update

function, the function copying variables of the send port to those of the receive

ports (cf. Section 4.4.5 of Chapter 4). Thus, f ′pupdate copies variables of the send

port to those of the receive port p. Knowing that, f ′pupdate is defined over X while

fpupdate is defined over X ∪ Y , we have

f ′
p
update = fpupdate |X

v∗x(rTCA) = fp ◦ f
′p
update (v

∗
x(qTCA)) = f∗(qTCA)

(5.33)

Combining (5.30), (5.31), (5.32) and (5.33), we obtain that v∗c (rTCA) = vc(rB) and

v∗x(rTCA) = vx(rB). Thus, we have qB
p
−→
B
rB and, by (5.4), (rB , rTCA) ∈ R.

5.6 Compatibility with the Composition Correctness

In Section 5.5, we prove that the transformation of individual TT-BIP* components into

TCA automata is semantics-preserving. In this section, we explain why the composition

of all obtained TCA automata is equivalent to the initial TT-BIP* model.

Both glues of TCA automata and TT-BIP* components provide the same unidirectional

transfer of data. The unique difference is that in TT-BIP*, interactions provide syn-

chronisation on top of data transfer while in TCA the communication is asynchronous.

Constraints, necessary to make synchronizations possible, are reflected in the time con-

straints of individual components of the TT-BIP* model. The transformation from

TT-BIP* to TCA —described in Section 5.2—ensures that these synchronization con-

straints are respected in the obtained automaton. Asynchronous (sending and receiving)

actions between interacting TCA automata are ensured to happen at instants over a

finer-grained clock as described in third paragraph of Section 5.3. With respect to the

clock over which the original synchronization date is defined, these actions are happening

at the same instant.

Hence, the correctness of the TCA composition (after step 2 transformation) follows

from the correctness of the transformation of individual components of the TT-BIP*

model.

5.7 Conclusion

In the thesis, we show that it is possible to propose an automatic and cost effective

method for developing TT implementations by combining advantages of component-

based rigorous design and time-triggered RTOS-based implementations. For this pur-

pose, the applied method is based on the use of:
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1. A high-level component-based modelling platform; timed BIP. This platform is

based on well-defined operational semantics and is prone for expressing structured

coordination between components. Behavior of each of the atomic components

of a BIP model is described by using timed automata. Composite components

are descriped as the composition of atomic components by using connectors and

priorities. Verification and analysis of component-based BIP models are possible

by using tools such as RTD-Finder [8] for compositional verification.

2. A safety-oriented Real-Time Operating Systems (RTOS); PharOS [9] implementing

the TT approach. This framework provides a language to describe a TT applica-

tion consisting of communicating TT tasks (called agents). It provides low-level

primitives allowing to specify timing constraints of different computations and

communication actions of TT tasks. PharOS ensures, by principle, some impor-

tant safety properties as the coherence of the data and determinism of real-time

behavior [36].

3. Semantics-preserving transformation process. It allows to generate automatically

correct-by-construction PharOS implementation from a BIP model. Thus, all prop-

erties that are satisfied by the original model, are satisfied by-construcion by the

obtained implementation. A posteriori verification of these properties is thus un-

necessary. And the determinism of the application is guaranteed by the PharOS

platform. This process is defined in two steps:

• Step 1: A model-to-model transformation. It transforms an original BIP

model into a restricted one (TT-BIP model) with respect to a user-defined

task mapping. We assume that the source model of the transformation con-

sists only of flat connectors and atomic components. This assumption can

not be considered as a restriction, since an arbitrary BIP model with hierar-

chical connectors and composite components can be transformed into a flat

model where all connectors are flat and components are atomic as shown

in [47]. Although BIP provides a rich set of interactions, we only considered

rendezvous interactions, as it is possible to transform trigger interactions into

rendezvous. The aim of the step1 transformation is to obtain a model wich

is closer to any TT implementation. That is, to obtain a model where all

inter-task interactions are executed by dedicated components and all inter-

actions between these communication components and task components are

send/receive interactions. These latter provide, on top of the synchroniza-

tion, a unidirectional data transfer. Another essential criterion for building

the transformation rules is the respect of the equivalence to the original model

where interactions’ conflicts are resolved by the BIP engine. In order to satisfy

this criterion, the obtained model contains a component dedicated to conflict

resolution and implementing the fully centralized committee coordination al-

gorithm presented in [10].
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• Step 2: A model-to-code transformation. It generates automatically TT im-

plementation from the intermediate model specified in step 1. The generated

code is a ΨC code (the programming language of PharOS applications). The

input model of this transformation is first adapted into a model where all

task components are flattened, i.e. all atomic components of the same task

are composed. the adapted model is called TT-BIP* model.

In order to be able to provide formal correctness proofs of the transformation

from TT-BIP* to ΨC, we provided a formal model of the target implemen-

tation and defined its operational semantics. This model is called the TCA

model, which is in the same abstraction level as the ΨC language. In this

model, a task is an automaton, where nodes present states and transitions

allow to model actions. These latter are labelled by triplet-labels specifying

release, deadline and/or synchronization dates. The transformation rules aim

at transforming each transition of the original component automaton, into

a set of successive transitions in TCA model. Time progress conditions and

timing constraints are mapped using deadlines and/or release dates in TCA

model, while communicating transition (i.e. transitions labelled by send or re-

ceive ports), are transformed into a set of transitions, among labels of which

we find a synchronization constraint.

Since the semantics of the proposed TCA model are defined as LTSs, the cor-

rectness proof of the transformation is based on the notion of the bi-simulation

between single LTSs of TT-BIP* components and their corresponding TCA

tasks. The equivalence between the obtained application and the initial TT-

BIP* model follows from the equivalence between single components and

tasks, since communication (i.e. data transfer) in both models is guaranteed

by construction to happen in the same instant over the original clock.





6
Tools Implementation and Experimental Results

This chapter aims at presenting the implemented tools and experimental results obtained from
case study examples.

We discuss the followed method for implementing transformations allowing to derive TT
implementation from high-level BIP model and a user-defined task mapping. This implementa-
tion was performed using the BIP tool-chain. Thus, this chapter starts first by presenting in
Section 6.1 the existing BIP tools. Section 6.2 focuses on the tools implementing the methods
presented in the previous chapters. And Section 6.3 describes the case study examples and some
experimental results.
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6.1 The BIP Tool-chain

In this section, we present the BIP tool-chain available with the BIP framework.

The BIP tool-chain is conceived to use BIP as a common semantic model along

the design flow. It consists of a set of tools for modelling, executing, verifying and

transforming BIP models.
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Figure 6.1: Overview of the existing BIP tool-chain

Figure 6.1 shows an overview of the BIP tool-chain. This latter includes five main

tools; the Real-time BIP language, the Language factory, the compiler, verification and

execution/simulation. We now detail each of these tools.

6.1.1 Real-Time BIP Language

The Real-Time BIP language offers primitives and different syntactic constructs for

modelling and composing complex behavior from atomic components by using interac-

tions and priorities. It thus allows to represent component-based models presented in

Section 1.3. Note first that for practical reasons, expressions, types of data variables,

update and data transfer functions are written in C language. The basic constructs of

the BIP language are the following:
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• Atomic components: consisting in communicating timed automata. Transitions

are labelled with sets of ports, guards, timing constraints and update functions. A

port is either exported or internal.

• Connectors: coordinating between components ports, and having an associated

guard and data transfer action.

• Priority: imposing a restriction on the possible interactions

• Composite components: obtained from sub-components by specifying connectors

and priorities.

• Model: specifying the entire system and encapsulating the definition of compo-

nents. It defines, thus, the top level instance of the system.

A model code written in the Real-Time BIP language starts by defining types for com-

ponents, ports and connectors. These types are instantiated later in order to describe

the model architecture.

To introduce briefly how to define and instantiate BIP types, we rely on the model

example displayed in Figure 1.4.

Atomic Component Type

Components Sender1 and Sender2 are instances of the same atomic component type

Sender. This atomic component type is parametrized by lower and upper bounds of

timing constraint labelled by port i and by the time progress condition of the location

l0. Similarly, atomic components Receiver1 and Receiver2 are instances of the same

atomic component type Receiver. Figure 6.2 displays the Sender atomic component

type and its real-time BIP code. Based on that example, we detail main constructs

allowing to define an atomic component type in real-time BIP language. The description

of Figure 6.2b starts with the declaration of two types of ports; IntPort and Internal

types. the IntPort type defines ports to which we associate an integer variable a. The

type Internal is an event port type and it is not associated with any variable. The

Sender atomic type description starts with the declaration of variables, ports, clocks and

locations. Declared ports and their potential associated variables should have types that

match those in the port type definition. Instantiated ports can be either exported (e.g.

the port s) or internal (e.g. the port i). To each declared clock, we can define a unit

(e.g. 1 second, 1 millisecond etc. ). A location may define a time progress condition,

by declaring the expression after the keyword while (e.g. the place l1 of figcode). The

construct initial to is used to define the initial transition and potential initialization

update functions. Each transition of the described behavior is declared by (1) a port

(after the construct on), (2) an initial (after the construct from) and a final (after the

construct to) locations, (3) a Boolean guard (after the construct provided), (4) the set of

clocks to be reset (after the construct reset), (5) a timing constraint (after the construct

when) and (6) an update function (after the construct do). Variables of bounds of timing
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(a) The sender atomic

component type

port type IntPort (int a)

port type Internal()

atomic type Sender(int l,int u,int utpc)

   data int x

   export port IntPort s(x)

   port Internal i()

   clock c unit 1 second

   place l0

   place l1 while (c≤utpc)

   initial to l0 do {x = 0;}

   on s from l0 to l1

      provided True

      reset {c}

      do {}

   on i from l1 to l0

      provided True

      when (c≥l && c≤u)

      do{x=f(x);}

end

(b) Real-time BIP code

Figure 6.2: BIP code of the sender atomic component type

constraints and time progress conditions are defined in the component type parameters.

Guards, expressions of timing constraints, time progress conditions and update functions

are written using a subset of the C syntax.

Connector Type

Based on the example of Figure 1.4, we now present the connector types description.

Both connectors of that model are instances of the same connector type 1S2R. This

connector type defines only one interaction (since all ports are synchrons) and defines

transfer functions allowing to copy the sender variable value into receivers ones.

Figure 6.3a shows this connector type graphically, and Figure 6.3b displays its related

real-time BIP code.

A connector type is parametrized with a list of port types that defines its port

set. The construct define specifies the type of ports, trigger of synchron and indirectly

the set of interactions allowed by the connector (cf. Section 1.3.3). In the example of

Figure 6.3b, we have only three synchrons. A trigger would be specified by appending

a quote to the port name. For each interaction, a guard and an update function can be

provided. The update function of a given interaction is defined with the down construct.

The dotted notation, i.e. port.var is used to access the variable var associated to the

port port, as defined in the port type declaration. Here all ports are synchrons, thus
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1S2R

s r1 r2
IntPort IntPort IntPort

(a) The 1S2R connector type

connector type 1S2R(IntPort s,IntPort r1,IntPort r2) 

   define s r1 r2

   on s r1 r2

   provided True

   down {r1.a=s.a; r2.a=s.a;}

end

(b) Real-time BIP code

Figure 6.3: BIP code of the 1S2R connector type

only one interaction is defined. Its guard is set to True. And its transfer function copies

the variable s.a into r1.a and r2.a.

The connector described in Figure 6.3b does not allow hierarchical composition as

presented in Section 1.3.3. Recall that hierarchical composition requires the connector to

export a port. This can be done through an export construct in the connector definition.

Compound Component Type

A compound component is nothing more than a set of instances of existing components

and connectors types joined with priority rules. A compound offers the same interface as

an atomic component, hence externally there is no difference between a compound and

an atomic component. We display, in Figure 6.4, the compound type that corresponds

to Figure 1.4, assuming that the atomic component type Receiver has been already

defined.

compound type Application

   component Sender sender1

   component Sender sender2

   component Receiver receiver1

   component Receiver receiver2

   connector 1S2R alpha(sender1.s, receiver1.r, receiver2.r)

   connector 1S2R alpha'(sender2.s, receiver1.r, receiver2.r)

   priority π alpha < alpha'

end

Figure 6.4: BIP code of the compound component type of the model of Figure 1.4
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A compound type starts by creating instances of each atomic component type. It,

then, relates instantiated components by using new instances of connectors types and

defines priority between connectors. When creating connectors, the port set of each

connector is specified using the dotted notation comp.port. This notation denotes the

port port of the instantiated component comp. Furthermore, each priority rule must be

given a different name. In order to be able to execute a BIP model, one must add a top

level instance of the main compound type.

The compound type of the above example creates first two instances of each atomic

component type, i.e. instances sender1 and sender2 of type Sender and instances

receiver1 and receiver2 of Receiver type. Then, it defines two connectors α and α′

by instantiating the connector type 1S2R. The defined connectors have the respective

port set (sender1.s, receiver1.r, receiver2.r) and (sender2.s, receiver1.r, receiver2.r).

Since they are sharing ports receiver1.r and receiver2.r, a priority rule π is defined to

state that the interaction of connector alpha is less prior than the one of alpha′.

6.1.2 Language Factory

Language factory tools translate various existing languages into BIP models. The input

language can model the application software, the hardware architecture, or both of

them. Among existing tools in the language factory, we can cite the tool implementing

transformations from synchronous languages, i.e. transformations from Lustre [28] and

Simulink [81]. These transformations target synchronous BIP [80], that is an extension

of BIP dealing efficiently with synchronous models.

Other existing tools focus on languages mixing both the application software and the

hardware architecture. These models can be transformed either into two separate models:

one dedicated to the software and the other to the architecture or into a single model

including both of them, called system model. Regarding transformations to hardware

model, they often rely on a library of hardware components (e.g. such as memories,

buses, processors,etc. ) that are modeled in BIP. BIP models can be generated from the

Architecture Analysis and Design Language (AADL) [34], from nesC/TinyOS [15] and

from the Distributed Operation Layer (DOL) [26].

6.1.3 Verification

On top of the language and the Factory tools, the BIP tool-chain provides tools for veri-

fication and validation of BIP models. These tools are very interesting to our approach.

They can be used to verify properties on high-level BIP models. And when applying our

transformational approach to these models, the already verified properties do not need

to be reverified on the obtained implementation due to the correctness by construction

of our approach. Therefore, no a posteriori verification is needed.
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D-Finder

D-Finder [17, 18] is a verification tool targeting safety properties, e.g. deadlock freedom

or mutual exclusion of untimed BIP models. Untimed BIP models are models that have

no timing features (clocks, timing constraints, time progress conditions). D-Finder relies

on invariants used to approximate the set of reachable states of the target system, hence

the method is sound but not complete: it may not be able to prove a property even if

it is satisfied by the system. Invariants are computed following the architecture of the

system, that is, it generates invariants for components and interactions. The approach is

compositional and can be applied incrementally, allowing to better scale to large systems

than traditional verification techniques.

RTD-Finder

RTD-Finder [8] extends the D-Finder tool to allow verification of BIP models with timed

features. RTD-Finder is based on the approach of D-Finder with the use of auxiliary

clocks that help to capture the constraints induced by the time synchronizations between

components.

Statistical Model-Checker

In addition to the verification tools, the BIP tool-chain includes the statistical model-

checker SMC-BIP [73]. This latter checks stochastic properties described with Proba-

bilistic Bounded Linear Temporal Logic (PBLTL) formulas. These properties refer to

the traces of the model. The model has to be expressed using Stochastic BIP (SBIP).

Given an SBIP model, a PBLTL formula and confidence parameters, SMC-BIP tool

computes execution sequences until the formula can be proven with the target degree

of confidence. This tool is well-suited for evaluating quantitative properties including

system performance related metrics.

6.1.4 BIP Compiler

The BIP compiler is developed with eclipse, and it uses some eclipse technologies (in

particular, EMF). The compiler relies on a modular approach and is composed of three

main parts; the front-ends, the middle-ends and the back-ends. These parts can be

combined to form a chain, corresponding to a path in the design flow.

The front-end defines the BIP meta-model, the grammar and the rules to build a

BIP-EMF model from a BIP source (i.e. the parser). It allows as well to interact with the

user and instantiate all parts of the compiler and bind them together to form a coherent

compiler. The middle-end is designed to ensure maximal reuse. It contains the needed

mechanics allowing to build filters applying BIP-EMF to BIP-EMF transformations.

The back-end contains transformations from BIP-EMF to some source codes in a given

language. Code generation from BIP-EMF is based on acceleo templates. In the back-

end part of the BIP tool-chain compiler, two code generators are provided for generating

respectively BIP and C++ code.
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In the remainder of this section, we focus of existing transformations in the middle-

end part of the compiler. These transformations can be partitioned into optimization

transformations and transformations into distributed systems. Optimization transfor-

mations are developed for untimed BIP models while transformations for distributed

systems are developed for both timed and untimed BIP models.

Source to source optimizations

These transformations are presented in [27, 47]. Their related tools were developed for

improving the efficiency of the generated code. They consist mainly of two types of tools;

the flattening and merging tools. Flattening tools allow to (1) flatten a component by

replacing the hierarchy of components by a set of hierarchically structured connectors

which relates atomic components and (2) replace a set of hierarchical connectors by an

equivalent set of flat connectors (cf. Remark 1.4). Flattening a connector is performed

by composing data transfer functions (e.g. the flat and the hierarchical connectors of

Figure 1.10 are equivalent).

Merging tool allows to transform a set of interaction untimed BIP components into

a single component with the same behaviour and interface as the composition of the

original components.

As explained in Section 4.3, in this thesis all input BIP models are considered to be

flat models. The flattening tools are therefore strongly required in the tool-chain since

it allows to execute a pre-transformation to any model and obtain flat connectors.

Although needed, the merging tool is not directly usable in our work since it applies

only to untimed BIP models. As explained in Section 5.1, the merge transformation is

easily adapted to Timed BIP models.

Source to source transformation for untimed distributed model

Aiming at deriving distributed implementations from high-level untimed BIP model,

several tools have been integrated into the BIP tool-chain [47, 21, 77]. A global overview

of the different options to generate an untimed distributed (i.e. a 3-layer Send/Receive

model) model from an untimed BIP model —with or without priorities—is shown in

Figure 6.5. Recall that untimed BIP model and untimed Send/Receive models do not

contain timing features (clocks, timing constraints and time progress conditions). These

tools are parametrized by an interactions partition and a conflict resolution protocol and

they consist of the followings:

• UBip2SrBip: This tool generates a 3-layer Send/Receive untimed BIP model from

a high-level untimed BIP model. Priority glue is not supported by this tool.

• UBip2Bic: In order to be able to consider the priority glue, this tool was introduced

to transform an untimed BIP model into a untimed BIC model. Untimed BIC is

an untimed BIP model where priorities are rewritten as Condition predicates [22].

That is each priority is transformed into a predicate on interactions. This predicate
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Figure 6.5: Transformation of untimed BIP model into Send/Receive model

helps in characterizing the system state where an interaction could execute, i.e.

where no interaction with a higher priority is enabled.

• UBic2SrBip: This tool is an extension of the UBip2srBip tool. It is implemented to

support the condition predicate. Its input is a BIC model, i.e. the model resulting

from the application of Bip2Bic tool transformation to a BIP model.

Source to source transformation for timed distributed model

These transformation tools, presented in [86], extend the previously mentioned tools in

order adapt them to the BIP models and take into account all time features. Figure 6.6

shows an overview of tools targeting timed Send/Receive models. This tool does not

support priority glue, and it is parametrized by an interactions partition and a conflict

resolution protocol. Although not explicitly displayed in the figure, two versions of the

tool were implemented:

• Bip2SrBip: This tool generates a timed Send/Receive model from a high-level

BIP model. The implemented approach assumes that communications between

components are instantaneous i.e. no communication delays are considered.

• Optimized Bip2SrBip: This tool aims at extending the Bip2SrBip in order to

consider communication delays i.e. cross-layer interactions are not instantaneous.
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Figure 6.6: Transformation of Timed BIP model into Send/Receive model

6.1.5 Execution/Simulation

The Compiler code generator provides C++ code for either simulation or execution.

This code corresponds to both atomic components and glue. One possible scenario

to execute the generated code is to use the centralized BIP execution Engine, which

directly implements the BIP operational semantics. It plays the role of the coordinator

in selecting and executing interactions between different components while respecting

the priority rules. Executing an untimed BIP model with the use of a centralized Engine

can be performed in two different modes: the single-thread and the multi-thread modes.

While for BIP models with timing features, only the single-thread mode is provided by

the BIP tool-chain.

For single-thread mode, the Engine and all atomic components execute in a single

thread. This execution mode ensures sequential execution of BIP models. During one

execution iteration of the Engine, the enabled ports and interactions are selected from

the complete list of interactions, based on the current state of the atomic components.

Then, priority rules are applied to eliminate interactions with low priority among the

enabled ones. An execution iteration starts and finished by the global state of the system.

It consists of the following steps:

1. The engine computes Enabled ports after receiving current states of different

atomic components (i.e. their current locations and valuations of clocks and vari-

ables),
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2. The Engine enumerates on the list of interactions in the model and selects the

enabled ones based on the current states of the atomic components,

3. The Engine eliminates interactions having low priority,

4. Among the filtered enabled interactions, the Engine selects randomly one interac-

tion, executes its data transfer function and notifies the involved atomic component

the transition to execute.

In multi-thread mode, we assign a different thread to each atomic component. The

Engine is executed in another thread. Contrarily to the single-thread mode, the global

state is unknown to the Engine as an atomic component performing an internal compu-

tation has an undefined state. Therefore the Engine executes according to a partial state

semantics [13], that takes into account the fact that the state of some components may

be unknown. An execution iteration of the multi-thread Engine is very similar to the

execution of the single-thread one. Nevertheless, it starts by a partial state. Checking

enabledness of an interaction is, thus, not enough to ensure that it can execute, since a

higher priority interaction may be enabled. To avoid that, the multi-thread Engine relies

on an oracle that must be True for the interaction to execute. This means that atomic

components can not be ready to execute a higher priority interaction. An execution

iteration of the multi-thread Engine consists of the following steps:

1. Components that are ready to interact inform the Engine about their enabled

ports,

2. Based on the received information, the Engine filters interactions having an oracle

evaluated to True,

3. Among the filtered interactions, the Engine randomly selects an interaction to exe-

cute, executes its data transfer function and notifies the involved atomic component

the transition to execute.

For distributed implementations of untimed and timed BIP models, the BIP tool-

chain provides code generators in order to generate C++ code for each Send/Receive

component of the corresponding 3-layer Send/Receive models. Send/Receive interac-

tions between components of distinct layers are replaced by using the message-passing

primitives available on the target platform.

6.2 Tools Developed in This Thesis

In this section, we present how the methods presented in this thesis have been imple-

mented through a set of tools. In Chapter 4 and Chapter 5, we presented a two-step

method to derive a TT implementation from a high-level BIP model. We have developed

tools for generating such implementation from a given high-level BIP model. Figure 6.7,
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shows an overview of the developed tools as well as the input and outputs of each one

of them. Different developed tools are integrated within the existing BIP tool-chain.
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Figure 6.7: Overview of developed tools

Figure 6.8 shows the BIP tool-chain including the new-developed tools.

6.2.1 BIP2TT-BIP Tool

Parametrized by a user-defined task mapping, this tool implements the transformation

described in Chapter 4. It allows to transform parsed BIP models into TT-BIP models.

The BIP2TT-BIP tool is written in Java and is currently integrated as a filter in the

middle-end part of the BIP tool-chain compiler. Algorithm 1 displays the pseudo code

of the part of the developed tool allowing to transform components of the original BIP

model.



156 6. Tools Implementation and Experimental Results

Algorithm 1 Transformation of a components of BIP model

Input: Original component B

Output: Obtained component BTT

BTT = newComponent()

if B 6= ATC-component then

3: BTT = B

else

// Ports

6: portsOf(BTT ).add( portsOf(B) )

for p ∈ portsOf(B) and p ∈ AE do

portsOf(BTT ).add( offer-port )

9: end for

// Locations

locationsOf(BTT ).add( locationsOf(B) )

12: for t ∈ transitionsOf(B) do

if portOf(t) ∈ AE then

locationsOf(BTT ).add( offer-location )

15: end if

end for

// Transitions

18: for l ∈ locationsOf(BTT ) do

if l = offer-location then

transitionsOf(BTT ).add( offer-transition )

21: else if Pl ⊂ AI then

transitionsOf(BTT ).add( internal-transition )

else

24: transitionsOf(BTT ).add( notification-transition )

end if

end for

27: end if
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Figure 6.8: Tools developed within the existing BIP tool-chain

6.2.2 Merge Tool

Since tasks in the obtained TT-BIP model from the previous tool may be a composite

component, this tool allows to compose components within a task. It implements the

formal transformation presented in Section 5.1 of Chapter 5 and consisting in transform-

ing a set of atomic components and a set of flat connectors into an equivalent atomic

component. The obtained model after this transformation is denoted TT-BIP* model.

This tool is still under construction.

6.2.3 TT-BIP2ΨC Tool

This tools consists in a code generator which implements the translation of a TT-BIP*

model into ΨC code as presented in Chapter 5. This tool is implemented as a back-end

part of the BIP compiler using the Model To Text (M2T) tools of eclipse, e.g. Acceleo [71]

(cf. Figure 6.9).

An Acceleo project consists of different module files (i.e. .mtl files) which include

only one main module. These files implement transformation rules that are described
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Figure 6.9: Model to Text transformation using Acceleo templates

in Chapter 5. A module file is made up of several templates describing the necessary

parameters to generate source code from the meta-model and/or queries used to extract

information from manipulated models. A module can depend on other modules for its

execution. Templates and queries use the Object Constraint Language (OCL) [87].

As described in Chapter 5, this tool generates an agent for each component and a

temporal variable for each send/receive connector of the TT-BIP* model. In Chapter 5,

we presented the TCA formalism as the formal model of agents in PharOS application.

In this subsection, we detail the transformation of the TT-BIP* model by focusing on

the generated code of the behavior (syntactic presentation of the TCA automata), as

well as clocks and temporal variables instantiations.

Clocks’ generation

By construction, we know that in TT-BIP* models, there is only one global clock cg. By

construction of the transformation described in Chapter 5, the obtained ΨC implemen-

tation contains the clock cg and a finer-grained clock cfg. From the ΨC point of view,

the global clock of the application is the clock cfg since it is finer-grained than the clock

cg (the global clock of models TT-BIP and TT-BIP*). Thus, in the generated code, the

clock cfg is specified by using primitives (gtc0, gtc1, gtc2, etc. ). And the clock cg is

specified based on the clock cfg as displayed in Figure 6.10.

Agents’ data and temporal variables generation

For each component in the TT-BIP* model, we instantiate an agent which defines a

block of its internal/local variables, a block of its output temporal variables followed by

the display block and a block of its input variables (cf. Section 2.3.2).

All variables of the original TT-BIP* component that are not associated with send

ports, are declared in the global block.

For each send port of the TT-BIP* component, the corresponding agent generates a

declaration in the temporal block. The corresponding temporal variable is a structure

encompassing all variables associated with the port in the original TT-BIP* component
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clock cfg = gtc1(0,1)

clock cg = 3* cfg 

Application Example;

  agent Ag1{

   ...

  }

  agent Ag2{

   ...

  }

Figure 6.10: Clock instantiation in the generated ΨC code

and variable flagmsg that is added by the transformation (cf. Section 5.4 of Chapter 5).

Note that if originally the send port is not associated with any variable (which is the

case of ports fail and ok of the CRP component), its corresponding temporal variable

corresponds to the Boolean variable flagmsg . Once temporal blocks are defined, we

instantiate in each agent the corresponding display blocks. For each temporal variable

(originally corresponding to a send port), the block display defines a declaration of

consulting agents which originally correspond to TT-BIP* components that contain a

receive port which is related to the send port corresponding to the temporal variable.

For each receive port of the TT-BIP* component, the corresponding agent generates

a declaration in the consult block. This declaration contains the name of the remote

agent corresponding to the TT-BIP component to the send port of which this receive

port is related in the TT-BIP* model.

In our work, all depth values are default to zero (resp. to one) in the temporal (resp.

consult) block —since the original TT-BIP* model do not manipulate past values.

Figure 6.11, displays an example of instantiation of global, temporal, display and con-

sult blocks corresponding to a task component communicating with a TTCC component

through an offer sending and notification interactions. The structure Xo is the temporal

variable of the agent Task, and it is displayed to/consulted by the TTCC. The structure

Yps is the temporal variable of the agent TTCC, and it is displayed to/consulted by the

agent Task.

We display in Algorithm 2, the algorithm that allows to instantiate the blocks of

local and temporal variables of an agent starting from the original model. In Algo-

rithm 2, functions AddVarDeclaration(), AddTvDeclaration(), AddDisplayDeclaration()

and AddConsultDeclaration() are functions that take in parameter corresponding vari-

ables or owner/consultant agents of the temporal variable and have as output the dec-

laration code following the syntax of each block. And functions Start(block) (resp.

End(block)), allow to write the appropriate code to declare the start and the end of each

block.
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Algorithm 2 Instantiation of global, temporal, display and consult blocks

Input: Original model TT −BIP∗ = Components+ Connectors

Output: Obtained ΨC application

for B ∈ Components do

Start(agent Ag)

3: Start(global-block)

for x ∈ internalVariablesOf(B) do

AddVarDeclaration(x)

6: end for

End(global-block)

Start(agent Ag)

9: Start(temporal-block)

for pSend ∈ sendPortsOf(B) do

AddTvDeclaration(variablesOf(pSend))

12: end for

End(temporal-block)

Start(display-block)

15: for pSend ∈ sendPortsOf(B) do

for C ∈ Connectors do

if portsOf(C) include pSend then

18: for pReceive ∈ receivePortsOf(C) do

AddDisplayDeclaration(agentOf(pReceive), variablesOf(pSend)

end for

21: end if

end for

end for

24: End(display-block)

Start(consult-block)

for pReceive ∈ receivePortsOf(B) do

27: for C ∈ Connectors do

if portsOf(C) include pReceive then

for pSend ∈ sendPartsOf(C) do

30: AddConsultDeclaration(agentOf(pSend), variablesOf(pSend)

end for

end if

33: end for

end for

End(consult-block)

36: end for
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Application Example;

  agent Task{

    global{

      int x1, x2;

    }

    temporal{

      struct 0$Xo;

    }

    display{

      Xo : TTCC;

    }

    consult{

      TTCC : 1$Yps;

    }

    body start{

      ...

    }

   ...

  }

  agent TTCC{

    global{

      int y1;

    }

    temporal{

      struct 0$Yps;

    }

    consult{

      Task : 1$Xo;

    }

    body start{

      ...

    }

   ...

  }

op

pop

T

xp

xo Yp

Figure 6.11: Example of temporal variables instantiation

Agents’ behaviors generation

In the ΨC language, the behavior of an agent can be described using successive body

items. We choose in our generation tool, to instantiate one body per original transition.

That is each body executes the set of transitions of the TCA automaton corresponding

to the image of the original transition of the TT-BIP* component.

Note that in the ΨC code level, no indeterminism is allowed. Thus, at the end of

each body we need to specify its corresponding next body through the instruction next
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body. Therefore, each body tests respective guards of next jobs (of the corresponding

TCA automaton) and only the body of the job with the guard evaluated to True is

enabled. When two transitions are enabled, we may in the generated code choose one of

them to execute. While transforming the CRP component of Figure 5.15a, we obtain the

global {

  int NB1 = 0;

  int NB2 = 0;

  int NB3 = 0;

  int nb1, nb2, nb3;

  bool flagRef_Rsv_alpha_1 = 0;

  bool flagRef_ok_alpha_1 = 0;

  bool flagRef_fail_alpha_1 = 0;

  bool flagRef_Rsv_alpha_2 = 0;

  bool flagRef_ok_alpha_2 = 0;

  bool flagRef_fail_alpha_2 = 0; 

 }

 temporal {

  //OkFail structures

  CRP_ok_alpha_1 0$vt_CRP_ok_alpha_1;

  CRP_fail_alpha_1 0$vt_CRP_fail_alpha_1;

  CRP_ok_alpha_2 0$vt_CRP_ok_alpha_2;

  CRP_fail_alpha_2 0$vt_CRP_fail_alpha_2;

}

 display {

  vt_CRP_ok_alpha_1 : TTCC_alpha_1;

  vt_CRP_fail_alpha_1 : TTCC_alpha_1;

  vt_CRP_ok_alpha_2 : TTCC_alpha_2;

  vt_CRP_fail_alpha_2 : TTCC_alpha_2; 

 }

 consult{

  TTCC_alpha_1: 1$vt_TTCC_Rsv_alpha_1;

  TTCC_alpha_2: 1$vt_TTCC_Rsv_alpha_2;

 }

(a) Obtained global, temporal consult

and display blocks after transformation of

the CRP

#ifndef TYPES_H_

#define TYPES_H_

//Reservation structure

typedef struct {

 int nb1;

 int nb2;

 bool flag;

} TTCC_Rsv_alpha_1;

typedef struct {

 int nb1;

 int nb3;

 bool flag;

} TTCC_Rsv_alpha_2;

//OK structures

typedef struct {

 bool flag;

} CRP_ok_alpha_1; 

typedef struct {

 bool flag;

} CRP_ok_alpha_2;

//FAIL structures

typedef struct {

 bool flag;

} CRP_fail_alpha_1; 

typedef struct {

 bool flag;

} CRP_fail_alpha_2;

#endif

(b) Definitins of structures

of temporal variables

Figure 6.12: Generated variables and temporal variables of the CRP component of Fig-

ure 5.15a

blocks of variables and temporal variables displayed in Figure 6.12a. In Figure 6.12b, we

display the type file that contains the definitions of structures corresponding to different

temporal variables. In Figure 6.13, we display the ΨC code corresponding to the behavior

of the CRP components of Figure 5.15a. This source code maps the transitions of the

TCA automaton of Figure 5.15b. Different comments display the name of the transition

mapped to the succeeding lines of code. As you can notice in this example, the non-

determinism is resolved by imposing an order for execution of conflicting jobs. That

is when the CRP has received already a reservation, originally it can either receive the

second reservation or send an OK or a fail notification. This conflict can not be allowed

in the ΨC code level. Therefore, we choose to prioritize the ok notification if its guard is

True, otherwise the fail notification can be sent. In this choice, the CRP can not receive
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two successive reservations. This behaviour is included in the original behavior, since

in the original BIP model. This resolution of non-determinism does not jeopardise the

correctness property of the transformation.

body start{

  //Tau_(w_alpha1 w_alpha2,r)^loop

  advance(2) with cfg;

  while(flagRef_Rsv_alpha_1 == TTCC_alpha_1`1$vt_TTCC_Rsv_alpha_1.flag  

  &&  flagRef_Rsv_alpha_1 == TTCC_alpha_1`1$vt_TTCC_Rsv_alpha_1.flag) 

  {

   advance(2) with cfg;

  }

  //Tau_(w_alpha1 w_alpha2,rsv_alpha1)^0

  if (flagRef_Rsv_alpha_1 != TTCC_alpha_1`1$vt_TTCC_Rsv_alpha_1.flag){

   flagRef_Rsv_alpha_1 = TTCC_alpha_1`1$vt_TTCC_Rsv_alpha_1.flag;

   nb1 =  TTCC_alpha_1`1$vt_TTCC_Rsv_alpha_1.nb1;

   nb2 =  TTCC_alpha_1`1$vt_TTCC_Rsv_alpha_1.nb2;

   next Ok_Fail_alpha_1;

  }

 //Tau_(w_alpha1 w_alpha2,rsv_alpha2)^0

  if (flagRef_Rsv_alpha_2 != TTCC_alpha_2`1$vt_TTCC_Rsv_alpha_2.flag){

   flagRef_Rsv_alpha_2 = TTCC_alpha_2`1$vt_TTCC_Rsv_alpha_2.flag;

   nb1 =  TTCC_alpha_2`1$vt_TTCC_Rsv_alpha_2.nb1;

   nb3 =  TTCC_alpha_2`1$vt_TTCC_Rsv_alpha_2.nb3;

   next Ok_Fail_alpha_2;

  } 

}

body Ok_Fail_alpha_1{

 //Tau_(r_alpha1 w_alpha2,ok_alpha1)^0

  if (nb1 > NB1 && nb2> NB2){

   vt_CRP_ok_alpha_1.flag = !vt_CRP_ok_alpha_1.flag;

   NB1 = nb1;

   NB2 = nb2;

   advance(1) with cfg;

  }

  else{

 //Tau_(r_alpha1 w_alpha2,fail_alpha1)^0

   vt_CRP_fail_alpha_1.flag = !vt_CRP_fail_alpha_1.flag;

   advance(1) with cfg;

  }

  next start;

}

body Ok_Fail_alpha_2{

 //Tau_(w_alpha1 r_alpha2,ok_alpha2)^0

  if (nb1 > NB1 && nb3> NB3){

   vt_CRP_ok_alpha_2.flag = !vt_CRP_ok_alpha_2.flag;

   NB1 = nb1;

   NB3 = nb3;

   advance(1) with cfg;

  }

 //Tau_(w_alpha1 r_alpha2,fail_alpha2)^0

  else{

   vt_CRP_fail_alpha_2.flag = !vt_CRP_fail_alpha_2.flag;

   advance(1) with cfg;

  }

  next start;

} 

Figure 6.13: Generated code of the behavior of the CRP component of Figure 5.15a

6.3 Case Study Examples and Experimetal Results

In this section, we describe industrial case study examples and present experimental

results obtained after testing of different developed transformation tools.
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6.3.1 Flight Simulator

The first case study is the Flight Simulator (FS) application [16] dedicated to the naviga-

tion of DIY radio controlled planes. The original application is written in Modelica [40].

This application provides a simulation of the physics of a plane and an automatic pilot

who tries to reach given way-points on a map. The simulation of the Modelica model

gives a display of the road followed by the plane (specifically the trajectories of left and

right wingtips).

The Modelica model consists of a set of six communicating sub-models (cf. Fig-

ure 6.15): autopilot, fly-by-wire, route planner, servo (i.e. the actuator), simulator and

sensor. The autopilot models the pilot commands in function of the flight state. It has

three main functionalities: flight state reception from sensor component, execution of

the route planner and execution of fly-by-wire. The route sub-model receives the flight

state from the autopilot and sends information to fly-by-wire after computing distance

to current waypoint and changing route towards next waypoint if necessary. It operates

in low frequency: every 15 seconds. The fly-by-wire sub-model allows course correction

by setting roll attitude and ailerons and elevator. These modifications form the com-

mand to be sent to the servo sub-model. The fly-by-wire sub-model operates in high

frequency: every 5 seconds. The servo refers to the actuation on plane’s flight control

surfaces. Servo component receives command from the fly-by-wire sub-model and trans-

fers it to simulator component. Some filtering (e.g. low-pass, delay) could be added to

mimic realistic actuators. The flight simulator simulates flight dynamics computation

of plane and wing tips position based on received commands from the servo (i.e. new

values of roll, pitch and throttle). The sensor refers to the autopilot’s perception of real

world data. Sensor sub-model receives data about flight state from simulator component

and resends them to the autopilot. The sensor can add some noise (e.g. delay, etc. ) to

mimic realistic data acquisitions. But in our example, it stands for copying the state

computed by the simulator.

These sub-models are communicating through Modelica connectors. The software

architecture of the original Modelica model is shown in Figure 6.14.

We have first modelled the FS application in BIP language. This latter —coupled

with different task mapping strategies— is the input of transformation tools displayed

in Figure 6.7. We also simulate the initial BIP model, the TT-BIP model (the output of

the TT2TT-BIP tool) and the ΨC code (the output of the TT-BIP2ΨC tool) in order

to compare their respective performances.

6.3.1.1 BIP modelling

Each sub-model of the Modelica model is modelled as a BIP component, communication

between different components is modeled using BIP connectors. Figure 6.15 displays the

overall architecture of the BIP model. Automata of different components are displayed

in Figure 6.16.
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Figure 6.14: Software Architecture of the Modelica Model of the Flightsim Application
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Figure 6.15: Initial Flightsim BIP model

6.3.1.2 BIP to TT-BIP Transformation

We apply the transformation of the BIP2TT-BIP tool in order to derive the TT-BIP

model following different task mapping strategies (cf. Table 6.1).

Figure 6.17, shows the obtained model for the task mapping TM1. For clarity reason,

behaviours of TTCC and CRP components are not displayed. Nonetheless, since all

TTCC components are connecting exactly two tasks, their automata are strictly similar

to those of Figure 4.11 and Figure 4.12.

For this specific example, the obtained TT-BIP models for mappings TM2 and TM3

have each as many TTCC components as in the model of Figure 6.17. This unchanged

number of TTCC components is due to the fact that interactions αfly , αroute and αcourse

are conflicting either directly or indirectly with the intertask interactions αSensorPilot and

αFlyServo . In the TT-BIP model related to the mapping TM4, the interaction αSimSensor

is not handled through a dedicated TTCC component. The original connector is kept

intact since it executes an internal interaction with respect to task T3.

Figure 6.18 displays components TT-fly, TT-route, TT-pilot and TT-servo which

are common for all task mapping strategies. In Figure 6.19, we display the TT-sim
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Task Mapping Strategy List of Tasks

TM1
T1 = {FLY } , T2 = {ROUTE} , T3 = {PILOT} ,

T4 = {SERV O} , T5 = {SIMULATOR} , T6 = {SENSOR} .

TM2
T1 = {FLY ,ROUTE} , T2 = {PILOT} , T3 = {SERV O} ,

T4 = {SIMULATOR} , T5 = {SENSOR} .

TM3
T1 = {FLY ,ROUTE ,PILOT} , T2 = {SERV O} ,

T3 = {SIMULATOR} , T4 = {SENSOR} .

TM4
T1 = {FLY ,ROUTE ,PILOT} , T2 = {SERV O} ,

T3 = {SIMULATOR ,SENSOR} .

Table 6.1: Different Task Mapping Strategies

component common for mappings TM1, TM2 and TM3 (Figure 6.19a) and the TT-sim

component for mapping TM4 (Figure 6.19b). Similarly, different versions of TT-sensor

component are shown in Figure 6.20.

6.3.1.3 TT-BIP∗ to PharOS Implementation

After composing different composite task components of the obtained TT-BIP models,

we apply the code generation of the TT-BIP2ΨC tool.

6.3.1.4 Evaluation

Functional Evaluation

In order to be able to compare the functionality of the original BIP model and the

obtained TT-BIP* model with the generated ψC code—for all task mapping strategies,

we use BIP simulator that generates C++ code from the original and the TT-BIP

models. Simulation of both generated C++ codes allowed us to visualize and compare

the output signals. A band shows the trajectories of left and right wingtips and illustrates

the roll movement that precedes the change in course at each waypoint, while the plane

progressively reaches its desired altitude. Figure 6.21 presents the simulation results of

the BIP and the derived TT-BIP model, for the waypoints (300,0,300), (300,300,300),

(0,300,300) and (0,0,300). Visual inspection reveals that the output of the transformed

model is strictly similar to that of the original model. Simulations of the derived ΨCcode

for each of the task mapping strategies are still under construction.

Comparison between different task mappings

The overhead of communication can be estimated using the number of generated tem-

poral variables. Intuitively, one temporal variable is generated for each send/receive

cross-layer interaction in the TT-BIP model. Note that in Table 6.2, the number of

generated temporal variable is the same for the first three task mapping strategies. This

is explained by the fact that in the original model, the interactions αcourse, αfly, αroute

and αF lyServo are conflicting. In all task mapping strategies, the interaction αF lyServo is
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Figure 6.18: Components of the FlightSim TT-BIP Models for all task mapping strate-

gies

an inter-task interaction. Therefore all other interactions are replaced by TTCC com-

ponents and considered as external interactions. Which explains why the number of

generated temporal variables remains intact for these three task mapping strategies. For

the task mapping TM4, the number of temporal variables is slightly lower since the in-

teraction αSimSensor is an intra-task interaction, and no TTCC component is generated

for this interaction in the corresponding TT-BIP component.
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Figure 6.20: Components TT-sensor

6.3.2 The Medium Voltage Protection Relay Application (MVPR)

The second case study is the medium voltage protection relay application of [48].

A protection relay is a device designed to detect and isolate faults in an electrical

network. A sensor measures the current that flows on the network and transmits this

information to the relay. The relay receives this information, applies signal processing
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Figure 6.21: Trajectories of left and right wingtips of the BIP and the TT-BIP models

Task Mapping Strategy Number of Agents
Number of temporal

variables

TM1 13 36

TM2 12 36

TM3 11 36

TM4 9 33

Table 6.2: Number of generated agents and temporal variable in each task mapping

strategy

algorithms and protection algorithms and takes control decisions. The original version

of this case study —presented in [48] —is written manually in ΨC code. The protection

relay software consists of three stages: acquisition, measurement and protection stages.

Tasks within each stage are periodic tasks. The software architecture of the protection

relay application is shown in Figure 6.22 which is taken from [48].

Figure 6.22: Software Architecture of the Protection Relay Application

The acquisition stage. Contains only the task AgARGA. This latter collects data and



6.3. Case Study Examples and Experimetal Results 171

makes them available to the other components of the system. Data are periodically

collected every 555 µs (the sampling rate).

The measurement stage. It computes —using different algorithms—different values

that will be used in the protection stage in order to detect potential faults and de-

cide whether safety-function of the protection relay should be activated. In this case,

the measurement stage consists of a computation of an average, a computation of the

magnitude of the fundamental (50 Hz) and some harmonics (100 Hz, 150 Hz, etc.), a

computation of a crest value and a computation of a root mean square. More details

about these signal processing algorithms are provided in [78]. The average value is com-

puted by the AgMoy task and consists in the computation of the average of the last three

values acquired by the Acquisition stage. This task produces value every time the

Acquisition stage acquires three new data items, (i.e. every 1.665 ms). The crest value

is computed by the AgCrest task and consists in the computation of the crest value of

every value acquired by the Acquisition stage. This value is computed for every data

acquired by the Acquisition (i.e. every 555 µs). The computation of the magnitude of

the fundamental and some harmonics is made by the TRS task. This latter uses the last

12 values computed by the AgMoy task and the last value of the Crest task. New values

are computed every 12 new data items of AgMoy task (i.e. every 6.660 ms). The RMS

value is computed by tasks AgCumulRMS and AgRMS.

The protection stage. It detects failure by using different algorithms. In this model,

two protection algorithms are considered: an instantaneous over-current protection

called Protection 50 (performed by the task Ag50) and an inverse time over-current

protection called Protection 51 (performed by the task Ag51). These two tasks check if

the safety function of the protection relay must be activated whenever they receive data

from the TRS task (i.e. every 6.660 ms).

In order to be able to apply our work to this application, we start by modelling it

using the BIP framework. Then we apply the transformation of Chapter 4 (using the

BIP2TT-BIP tool) in order to obtain its corresponding TT-BIP model. And finally we

apply the transformation described in Chapter 5 (using the TT-BIP2PsyC tool) in order

to generate its corresponding ΨC code.

The fact that the original version of the case study is written manually in ΨC code will

serve as a point of comparison with the automatically generated code. This comparison

concerns traces and some other features like communication and memory overheads.

6.3.2.1 BIP Modelling

Notice that tasks of the The protection stage have as input values from the AgTRS task

and they are not related to the AgRMS task. Therefore, we chose not to present tasks

AgComulRMS and AgRMS in the BIP model. A model of the application written in BIP—

where the The measurement stage is composed only of three components—is shown by

Figure 6.23.
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Figure 6.23: BIP Model of the protection relay application

6.3.2.2 BIP to TT-BIP Transformation

We have applied the automatic transformation of Chapter 4 in order to obtain the TT-

BIP model from the BIP model of the case study. We chose to gather the two protection

components in the same task. The rest of components are considered as independent

tasks. The resulting TT-BIP model is shown in Figure 6.24. We have also observed

identical values of the output flows generated by simulations —in BIP environment —of

both BIP and TT-BIP models.
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Figure 6.24: TT-BIP Model of the protection relay application
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6.3.2.3 TT-BIP∗ to PharOS Implementation

After composing compsite task components of obtained TT-BIP model, we have applied

the implemented transformation described in Chapter 5 to the TT-BIP∗ model of the

case-study described above. For each component in the TT-BIP model, we generate

an agent in PharOS. Communication between different components is performed using

advance statements.

Preservation of the functional behaviour of each generated agent (compared to its

corresponding component in the TT-BIP model), has been tested as well. We have also

observed identical values of the output flows generated by simulations in both environ-

ments.

6.3.3 Evaluation

Functional Evaluation

A comparison of the temporal evolution of computed variables in both versions is also

of interest. In Figure 6.25, we display the evolution of the variables arga and crest in

both versions. Values of variable arga are transmitted by the sensor to the acquisition

component, standing for the measures of the input current. crest values are computed

by the crest component. In Figure 6.25, solid lines are reserved for the automatically

generated application while dotted lines are reserved for the manually written one.

Visual inspection of different values of both variables in both versions, reveals that

the output of the automatically generated model is strictly similar to that of the manual

model.

Figure 6.25: Execution trace

Evaluation of the Performances of the generated PharOS application

In this subsection, we compare the automatically generated code with a manually written

one [48] for the same case study (cf. Table 6.3).Notice that with the implemented code

generation tool we gain in terms of development time, even if in the present state, we

need to adapt the generated code manually since some features are still not included in

the implemented tool (e.g. optimisations). In the generated code we introduce almost
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Manually written code Generated code

Development time 2-3 months

1 week (RT-BIP model writing and
validation) + 2 days (code

adaptation)

Text section size 41.7 kB 71.2 kB

Application text section size
(w/o kernel) 13.9 kB 37.1 kB

Data section size 22.1 kB 31.1 kB

Number of Temporal variables 7 18

Table 6.3: Comparison between the generated and the manually-written source codes of

the case study

two and a half times more temporal variables compared to the initial model, this is due

to the communication atomicity breaking brought by the transformation from RT-BIP

model into a TT-BIP model. These added temporal variables lead to a larger memory

footprint. When comparing text and data segments sizes with the manually written

version, we find out that segments of the automatically generated code have almost two

times bigger size. This ratio is rather reasonable and very encouraging as we are not

(yet) interested in optimizing the output model in terms of the number of agents and

communications.

The evaluation of the generated code in terms of CPU overhead compared to the

manually written code, is subject of ongoing work.

6.4 Discussion and Conclusion

In this chapter, we have presented the existing BIP tool-chain. We also provided an

overview of the tool-flow implementing different transformations presented in Chapter 4

and Chapter 5 and allowing progressively to derive a TT implementation from high-level

BIP model. The tool-flow is mainly composed of two transformation tools: BIP2TT-BIP

tool and merge tool and a generation tool: the TT-BIP2 ΨC tool. The composition tool

was not implemented during the thesis, which entailed some manual transformations

(components composition) in the testing process of the developed tools.

We illustrate the applicability of the proposed tool-flow on two case study examples;

the flight Simulator (FS) application and the medium voltage protection relay appli-

cation. In both applications, we aim at comparing functionalities of original (BIP),

intermediate(TT-BIP) and final (ΨC) models in order to confirm the correctness of the

transformation. Simulations of the generated code in the FS application are still under

construction. For the first application (i.e. the FS application), we study the impact

of the task mapping on the generated code. And for the second application, we study

the impact of the transformation on some performance aspects compared to a manually

written version. All presented results were measured on simulated models.
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Unfortunately, execution of the generated ΨC code on real PharOS machine was not

possible due to the non-availability of an adapted platform in CEA. Even if accurate

performance measures were not possible, we believe that the provided results are more

than interesting. Since they prove that from a high-level model,a code with the same

behaviour and satisfying the same properties can be automatically generated.





Conclusion and Perspectives

Achievements

In this thesis, we show that it is possible to propose an automatic and cost effective

method for developing TT implementations by combining advantages of component-

based rigorous design and time-triggered RTOS-based implementations. For this pur-

pose, the applied method is based on the use of:

A high-level component-based modelling platform; timed BIP

This platform is based on well-defined operational semantics and is prone for expressing

structured coordination between components. The behavior of each of the atomic com-

ponents of a BIP model is described by using timed automata. Composite components

are described as the composition of atomic components by using connectors and prior-

ities. Verification and analysis of component-based BIP models are possible by using

tools such as RTD-Finder [8] for compositional verification.

A safety-oriented Real-Time Operating System (RTOS); PharOS [9] imple-

mentation

This framework provides a language to describe a TT application as a set of commu-

nicating TT tasks (called agents). It provides low-level primitives allowing to specify

timing constraints of different computations and communication actions of TT tasks.

PharOS ensures, by principle, some important safety properties as the coherence of the

data and determinism of real-time behavior [36].

Semantics-preserving transformation process

It allows to generate automatically correct-by-construction PharOS implementation from

a high-level BIP model. Thus, all properties that are satisfied by the original model,

are satisfied by-construction by the obtained implementation. A posteriori verification

of these properties is thus unnecessary. And the determinism of the application is guar-

anteed by the PharOS platform. This process is defined in two steps:

• Step 1: A model-to-model transformation. It transforms an original BIP model into

a restricted one (TT-BIP model) with respect to a user-defined task mapping. We

assume that the source model of the transformation consists only of flat connectors

and atomic components. This assumption can not be considered as a restriction, since

an arbitrary BIP model with hierarchical connectors and composite components can
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be transformed into a flat model where all connectors are flat and components are

atomic as shown in [47]. Although BIP provides a rich set of interactions, we only

considered rendezvous interactions, as it is possible to transform trigger interactions

into rendezvous. The aim of the step1 transformation is to obtain a model which

is closer to any TT implementation. That is, to obtain a model where all intertask

interactions are executed by a dedicated components and all interactions between these

communication components and task components are send/receive interactions. These

latter provide, on top of the synchronization, a unidirectional data transfer. Another

essential criterion for building the transformation rules is the respect of the equivalence

to the original model where interactions’ conflicts are resolved by the BIP engine. In

order to satisfy this criterion, the obtained model contains a component dedicated

to conflict resolution and implementing the fully centralized committee coordination

algorithm presented in [10].

• Step 2: A model-to-code transformation. It generates automatically TT implementation

from the intermediate model specified in the Step 1. The generated code is a ΨC

code (the programming language of PharOS applications). The input model of this

transformation is first adapted into a model where all task components are flattened,

i.e. all atomic components of the same task are composed. the adapted model is called

TT-BIP* model.

In order to be able to provide formal correctness proofs of the transformation from

TT-BIP* to ΨC, we provided a formal model of the target implementation and de-

fined its operational semantics. This model is called the TCA model, which is in the

same abstraction level as the ΨC language. In this model, a task is an automaton,

where nodes present states and transitions allow to model actions. These latter are la-

belled by triplet-labels specifying release, deadline and/or synchronization dates. The

transformation rules aim at transforming each transition of a the original component

automaton, into a set of successive transitions in TCA model. Time progress conditions

and timing constraints are mapped using deadlines and/or release dates in TCA model,

while communicating transition (i.e. transitions labelled by send or receive ports), are

transformed into a set of transitions, among labels of which we find a synchronization

constraint.

Since the semantics of the proposed TCA model are defined as LTSs, the correct-

ness proof of the transformation is based on the notion of the bi-simulation between

single LTSs of TT-BIP* components and their corresponding TCA tasks. The equiv-

alence between the obtained application and the initial TT-BIP* model, follows from

the equivalence between single components and tasks, since communication (i.e. data

transfer) in both models is guaranteed by construction to happen in the same instant

over the original clock.
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Implementation of transformation tools

For the step 1 of the transformation, we have developed an automatic transformation tool

that generates a 3-layer model called TT-BIP model depending on a user-defined task

mapping. The step 2 of the transformation consists in merging atomic components of a

composite task and then generating ΨC code. The code generator has been developed

while the merge tool is still under construction. Note that a similar merging tool has

been developed for untimed BIP models (cf. [47]). We believe that the adaptation of this

tool for the timed models is straightforward. Regarding experiments, we considered two

applications: the flight Simulator (FS) application and the medium voltage protection

relay application. For the first application, we studied the impact of the task mapping

on the generated code. And for the second application, we studied the impact of the

transformation on some performance aspects compared to a manually written version.

Contribution of the thesis from the point of view of hard

real-time software engineering

One of the major contributions of our transformational method, from software engineer-

ing point of view, is the cost reduction in the development of safety-critical applications.

That is, it spares re-writing effort of the implementation code in case of re-designing,

adding a newly defined component or modifying an existing component or connector in

the original model. Being automatically implemented, the generation of the TT imple-

mentation code corresponding to the newly modified model does not incur additional

development costs.

Another major asset of this approach, is the offered correspondence between the orig-

inal model components and tasks of the generated source code. This allows the engineer

to trace back faulty runs of the implementation code to the ill-behaving component of

the BIP model. Note also that the choice of merging composite components only in the

second step of the transformation enhances this backward association mechanism.

Future Work

For future work, we are considering several research directions:

About generalising the proposed approach

Here, we present some extensions to explore. The first two points are related to the

extension of the input model of the transformational approach. While, the other points

focus on different extension options of the target implementation, paradigm or execution

model.

• To a random input BIP model. An important future direction is to consider

BIP models with priorities. We agree that priorities complicate the problem. Unlike
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conflict-resolution, priorities must be applied globally which requires approaches al-

lowing to compute the global state of the system or at least to approximate the next

reachable state. For TT implementation, this leads to an extremely considerable com-

munication overhead. Since task agents need to communicate their states to TTCC

agents in order to compute priorities and decide whether an interaction with a higher

priority is enabled at that date.

• To other high-level modelling languages. We believe that one of the main contri-

butions of our work is the correct-by-construction transformational approach, which is

based on the well defined semantics of BIP models. This makes this latter essential to

this approach. Nevertheless, BIP has been shown to be very expressive. In particular,

there exist transformations of various existing languages (Lustre, Simulink, AADL,...)

into untimed BIP models. Adapting these transformations for timed models would

clearly extend the applicability of our transformation to any of these high-level mod-

elling language.

• To other RTOS implementations based on the TT paradigm. We believe

that, our generation approach can be adapted for any RTOS that is based on the TT

paradigm, since it only relies on a primitive mechanism for communicating data and

on timing constraints for implementing BIP synchronisation. The first step of the

transformation is to be reused as it is. While the second step is to be adapted for the

new programming language and its associated primitives.

• To other paradigms: Event-Triggered (ET) paradigm for example. In our

approach, the transformation from BIP models to TT-BIP models (i.e. the first step) is

motivated by the communication model of the TT-paradigm which is based essentially

on the temporal variables. When the target paradigm is the event-triggered one, the

same logic can be followed for the new communication model. Similarly, the code

generation step for the new paradigm can follow the same principles while respecting

the new primitive mechanisms.

The most difficult part in considering the ET paradigm in this approach is to handle

the external events. We believe that this can be resolved in BIP model level. Two

options would be possible. The first one would consist in dedicating a component for

handling the external events in the original BIP model. The idea of the second option

is to extend the BIP language by introducing a mechanism that models the external

events (e.g. a new port type, clock etc. ).

• To other execution models. In all execution models tasks are modelled using

automata. Therefore, to be able to extend the proposed approach, we need to present

the semantics of the target task model in terms of LTS (as presented for the TCA

model in this thesis). Therefore the transformation from BIP automata to the new

task model and its formal correctness can follow the same principles as the proposed

approach.
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About the optimization of the generation phase

Another important line of research is to optimize the generation tool in order to generate

an optimized code. In the proposed approach, we introduce in the original BIP models

all the application components (sensors, actuators, simulators, controllers, etc. ) and

then we generate their corresponding source code for simulation. We believe that there

is room for optimization of the generation process, especially when aiming at embedding

the generated code. For example, some components (e.g. sensors, actuators etc. ) can

be mapped to their corresponding drivers. Therefore only source code for components

of the control application can be generated by the generation tool.

In another hand, in TT-BIP models, TTCC components handle interactions that are

originally modelled by BIP connectors and relating two tasks of the original application.

Therefore These TTCC components —as well as the CRP component—are only instan-

tiated for communication purpose. We strongly believe that in these components (i.e.

TTCC and CRP components), we can identify exactly the same behavioural pattern of

one or more of the RTOS services. Code generation could take this into account and

only transform into TCA automata the part of the component which can not be mapped

into an OS service. The identified pattern (corresponding to the RTOS service) could

be, then, just mapped to a system call.
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