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…. And the soul is linked to the LIVER and one’s 

rootedness in the local, circumscribed realities in which we 

live our daily lives…. Thus the liver was considered to 

contain the secret of fate and was used for fortune-telling…. 

The SELF associated to the memory function of the brain 

that enables us to MAINTAIN a sense of awareness of 

ourselves as being the self-same person over a lifetime, 

despite changes in physical appearance due to AGING...  

 
Donald Capps drawing on the work of James Hillman 1 

  



 

 

Et depuis longtemps……. 

« Quant au rusé Prométhée il envoya contre lui un aigle aux ailes étendues qui rongeait 

son foie immortel ; il en renaissait durant la nuit autant ce que l'oiseau aux larges 

ailes en avait dévoré pendant le jour…… »  

 

 

 

 

 
Figure 1: Prometheus’s Greek myth oil on canvas painting by Peter 

Paul Rubens, 1611-1612  
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CHAPTER 1 
Thesis report structure 

 
The liver regenerative potential was hallowed millennia ago in the Greek mythology of Titan when Prometheus, 

who stole fire from Zeus and the gods and gave it to mortals, was punished by Zeus for his crime by having 

Prometheus bound to a rock, while an eagle ate his immortal liver on day after day  (Fig. 1). This evokes invariably 

the hypothesis of the liver’s capacity for self-repair and regeneration. Since this myth and nowadays, researches 

were in progress and gave an irrevocable hope for a partial to advanced liver regeneration.  

The liver may undergo permanent organ failure after severe injuries, chronic infection, cancer and aging. Hepatic 

failure leads to 1-2 million deaths per year and is classified as the 5th leading cause of death around the globe. 

Orthotopic liver transplantation is currently the effective therapy for end-stage liver diseases. However, the 

shortage of donors creates serious limitation related to this treatment. Thus, the patient’s waiting list to find donors 

has increased to more than 30% both in Europe and United States.  

 

The availability of primary hepatocytes is a gold standard for the liver cell-base therapy. Human primary 

hepatocytes are not easy to be isolated from liver biopsies and have also a limited life span in culture with a 

progressive loss of cell function over the time. Therefore, one of the most curbs associated to primary hepatocytes’ 

liver therapy is the availability of a sufficient number of high quality and functional hepatocytes 2. Moreover, the 

isolation and culture of hepatocytes may cause major alterations in genes’ expression due to cell dedifferentiation 

under epithelial to mesenchymal transition (EMT) or due to cell apoptosis after only few days in culture3-6. In 

addition, in vitro culture models of the human liver cells are crucial for drug development and pathways 

mechanistic inquiries 7. To avoid human hepatocytes variability, an alternative would be to alter their in vitro short-

life by inducing healthy hepatocytes for : (1) the establishment of high-throughput strategies allowing a better 

systems for susceptibility to drugs, (2) the modeling of liver development and diseases (3) a safe source for cell-

based therapies and (4) the development of bio-artificial liver devices and (5) for a liver bio-printing approach 8, 9. 

Cell and tissue bioengineering of the liver earned high interests during the last decades and gained momentum 

through considerable progress in understanding the involvement and application of stem cells in liver 

regeneration.  

 

Several studies show the existence of resident stem cells in the adult liver 10. Liver human progenitors have been 

observed during acute and chronic liver diseases but were found insufficient in number and were unable to 

perform complete liver regeneration. Stem cell- based strategies are consequently being explored as an attractive 

alternative approach to liver repair. Thus, various types of stem cells have been used in the recent era to produce a 

large number of functional hepatocytes in vitro. Several studies described the differentiation of the embryonic 

stem cells (ESC) into hepatocyte-like cells (HLCs) 11, 12. Despite the ESCs gold standard differentiation potential, their 

clinical application remains restrained considering the risk of teratoma formation and ethical limitations13. Later on, 

induced pluripotent stem cells (iPS) were introduced as an innovative approach in the field of liver cell therapy 14. 

However, iPSCs derived-HLCs have shown an incomplete differentiation status compared to primary hepatocytes15 

since they maintain exogenous transgene expression which can interfere with differentiation protocols16. 

https://en.wikiquote.org/wiki/Fire
https://en.wikipedia.org/wiki/Zeus
https://en.wikiquote.org/wiki/Gods
https://en.wikiquote.org/wiki/Crime
https://en.wikiquote.org/wiki/Eagle
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Furthermore, the generation of induced Hepatocytes (iHep) from pluripotent stem cells presents high safety but 

ethical worries restricting their clinical uses for cell-base replacement regenerative medicine.  

Thus, fundamental clinical studies attempt to open new challenges for hepatocytes generation from adult stem 

cells such as mesenchymal stem cells (MSCs). More recently, liver bipotent stem cells expressing the Wnt target 

gene called Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5) and deriving from hepatocytes 

dedifferentiation have emerged as a new platform for stem cell-based liver regenerative medicine; in fact, 

Lgr5+ stem cells/progenitors actively contributed to liver regeneration via de novo generation of hepatocytes 17, 

involving a robust activation of Wnt signaling. Indeed, the contribution of the canonical and non-canonical Wnt 

signaling pathways governs a myriad of biological processes underlying the development and maintenance of 

adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, and instructing their 

differentiation fate into hepatocytes. Regulation of Wnts’ pathways can trigger multiple signaling cascades, some 

of them result in activation of small GTPase Rho, Rac, and Cdc42 18. Interestingly, mice lacking the RhoGTPase 

Cdc42 in their hepatocytes exhibited severe liver morphological defects indicating that Cdc42 acts in hepatocytes 

and might be required for liver function19. Recently, it has been reported in normal adult stem cells that LGR5 

interacts with the IQGAP1-GTPase pathway which is an effector of Cdc42 to strengthen cell-cell adhesion. This 

interaction leads to activate the Cdc42/Rac complex and to crosslink the actin organization20 .Several reports 

discussed the role of Cdc42 in human MSC proliferation, migration and differentiation, and discussed in mice 

hematopeitic stem cells (HSCs) its involvement of aging21.  

Currently, there is no published data showing the significance of the role of LGR5 in iPSCs derived-HLCs, neither the 

impact of the Cdc42 on the rejuvenation of human adult MSCs-derived HLCs; our strategy was based on 

identifying first the reprogramming process that may induce Hepatocytes differentiation (Hep-Dif) of mice LGR5+ 

iPSCs, and second the superlative Cdc42 inhibitor able to reverse the age effect on human MSCs and stimulate 

their Hep-Dif potential of adipose tissue derived stem cells. 

In the following sections, the first part describes a new tool for liver bipotent stem cell generation via primary 

hepatocyte reprogramming process and intended to be differentiated into hepatocytes and cholangiocytes after 

long-term expansion in vitro, and the second part constitute a new strategy to reverse senescence of aged-derived 

MSCs before inducing their differentiation toward functional hepatocytes.  

 

Part I: Lgr5+ Stem Cell Generation from Primary Murine Hepatocytes * 

*Completed in France  

Scientific Background # Part I 
The liver presents two mechanisms for regeneration depending on the type of injury. Partial hepatechtomy (PH) 

involves the remained hepatocytes to restore the liver size. However, toxic injuries involve adult liver stem cells, 

called Oval cells in rodent, located in the biliary duct22 and Hering canal in humans 188, 189 .Those stem cells are able 

to give rise to both hepatocytes and ductal cells (cholangiocytes)23. Several pathways were shown to regulate the 

liver regeneration and hepatocytes proliferations such as canonical Wnt/β-catenin pathway, E-cadherin/ β-catenin 

membrane complex24, HGF/ β-catenin25, IL6/STAT-3 phosphorylation26, 27, and TGFβ 28. All these pathways are far 

to be efficient in human hepatocytes after PH and failed to complete liver regeneration due to the accumulations 

of reactive oxygen species (ROS) , the DNA damage in the remained hepatocytes and also to the non-sufficient 



 

3 | P a g e  
 

activation of liver stem cells 29. On the other side, these oval cells, are activated upon toxic injury when hepatocytes 

are prevented to proliferate and can give rise to hepatocytes and biliary duct cells (Cholangiocytes) 30, 31 . Although 

oval cells are activated upon injury, when liver insult is aggressive, involvement of this occasional population in liver 

regeneration is insufficient 32. Thus, the liver regenerative-based research was interested in two cover up to mimic 

the human in vivo mechanisms of liver regeneration. The first, primary human hepatocytes long term proliferation 

and the second, bipotent human stem cell isolation, expansion and activation. However, these two closes present 

strong limitations and are far to be maintained ex-vivo. In fact, primary hepatocytes isolation constituted a very 

complicated procedure as they do not proliferate easily on plastic dishes and enter quickly in senescence 33.  

On the other side, the Isolation of bipotent liver stem cells requires a molecular characterization of the surface 

markers. Unfortunately , these progenitors are not a distinct population of the liver since they express common 

markers with hepatoblasts markers (AFP and CK19) 34, 35 , hepatocytes markers (HNF4-β and Alblow) , adult 

multipotent stem cell markers (c-kit, Sca-1, Thy1 (CD90), and CD34) 36-38 and liver epithelial marker (EpCAM) 39. 

Furthermore, the better proliferative fraction of human Liver Progenitors (LP) in vitro was reported to constitute 

only 0.1% of total Epcam+ stem cell population40. Thereby, for long decades, regarding the multiple types of liver 

cells isolated from liver biopsies, the lack of oval cell- specific markers was limiting their lineage tracing.  

The in vivo tracking of the bipotent liver stem cells was performed by using inducible-Cre promoters systems in 

transgenic mice such as promoters of Foxl1 , Sox9 and OPN which are reported to be expressed in only activated 

ductal stem cells 41, 42,43 . These progenitors were able to repopulate injured liver and to give rise to hepatocytes and 

cholangiocytes in vitro. These efforts have led to show that activated bipotent stem cells contribute to 2.5% of 

hepatocytes regeneration during recovery 43.  

Thereby, the development of strategies to isolate and expand these progenitors in vitro appeared to be essential 

for the liver stem cell-based medicine.  

The lookout moved backward to several years ago where hepatocyte showed a high plasticity upon injury and to 

give rise to both hepatocytes and biliary duct cells 44. Therefore, human hepatocyte lineage tracing in FAH-/- mice 

model showed a high capacity of hepatocytes to dedifferentiate into bipotent ductal stem cell expressing 

CK19+/EPCAM+/OPN+/SOX9+ upon injury and to give rise to both hepatocytes and biliary duct cells in suitable cell 

culture conditions45. Moreover, these hepatocytes derived from bipotent stem cells were shown to express 

leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5), a Wnt target gene which was reported to be 

highly expressed in dividing stem cells in several epithelial tissues such as small intestine and colon46, stomach47, 

hair follicles48. Simultaneously, LGR5 when fixed to its ligand Rspondin1 (Rspo1) promotes the activity of Wnt-

Frizzled 49 mediated signaling via activation of IL6/STAT3 pathway50,51. 

More interestingly, in a 3D system culture favorable for Wnt driving pathway, isolated single Lgr5+ stem cells 

formed organoids retaining the gene expression of the liver over several passages52.  

In addition, these self-renewed Lgr5+ organoids were able to differentiate into functional hepatocytes when 

transplanted into FAH−/− mice.  

Based on all these evidences , Huch et al, 2015 53 isolated EpCAM + stem cells directly from human liver biopsies . In 

3D structure and in presence of Rspo1 and some small molecules inhibiting Notch, FGF4 and BMP pathways, 

EpCAM+ cells were able to form organoids expressing LGR5+. Hepatocytes derived from EpCAM+LGR5+ cells give 

rise to functional hepatocytes and regenerate damaged CCL4-Mouse Liver. And more recently, Katsuda et al, 2017 
54, found a combination of small molecules able to convert primary hepatocytes into LGR5+ bipotent LPs so-called 

chemically induced LPs (CLiPs) with high hepatocytic and cholangiocytic potentialities. This strategy skipped the 

complexity of EpCAM+ cells isolation and organoids formation in 3D structures. However, Rspo1 and other 
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canonical Wnt/β -catenin activators such as Wnt3a were essential to stably expand LGR5+ Stem cells before their 

differentiation. In contrast, organoids LGR5+ required inhibition of BMP, TGF-β and non-canonical Wnt in vitro.  

 

Specific Aim(s) # Part I  
Based on these outcomes, we centered in this first part on a new research tool for reprogramming mice primary 

hepatocytes into endodermic progenitors, so-called EndoPCs. Our general objective is to evaluate this novel 

technology of liver bipotent stem cells generation in vitro and to suggest it as a promising tool for stem cell-based 

liver therapy.  

Our first aim is to assess the specific molecular identity of EndoPCs compared to pluripotent stem cells, Lgr5 oval 

stem cells and primary liver hepatocytes  

Giving the authentical Lgr5 expression in EndoPCs, we intend to find the best Wnt activation conditions to derive 

specific EndoPCs-organoids and maintain their self-renewal upon withdrawal of Leukemia inhibitor factor (LIF) . In a 

next step we aim to evaluate the hepatic potential of EndoPCs within mice model of liver injury and their graft 

security. Furthermore we intend to study the crosstalk between Lgr5/Wnt and IL6/LIFR/STAT3 pathways within 

the EndoPCs under Wnt/Lgr5 activation cell culture conditions. Besides, we will study the hepatogenic 

functionnality of EndoPCS in two and three matrix dimentional structures. 

 

Strategy # Part I  
Our strategy was based on generating liver bipotent progenitors through primary hepatocytes reprograming 

towards endodermic lineage before reaching the pluripotency state of iPSCs.  

 For this end, C57BL/6 mice primary hepatocytes underwent partial reprogramming using non-replicative 

adenoviral vectors encoding for the four genes involved in pluripotency maintenance Oct4, Sox2, cMyc, 

and Klf4 as described with Crouzet J et al 55. Since these hepatocytes-derived progenitors expressed 

endodermic lineage genes such as Sox17, AFP and CK19, they are so-called endodermic progenitor’s cells 

(EndoPCs). EndoPCs are clonogenically stable in culture and show a specific molecular signature sharing 

with LGR+ progenitors liver stem cells. However, these endodermic progenitors were distinct from the 

above-mentioned progenitors by being non-dependent on Wnt/Rspo signaling and by the inhibition of 

Notch/BMP signaling. These EndoPCs expressing LGR5 were LIF dependent and showed stable long term 

self-renewal and expansion in vitro. They were able to differentiate into hepatocytes, cholangiocytes on 

collagen coated plates. Furthermore, they repopulate mice liver after partial hepatectomy. However, 

EndoPCs derived hepatocytes were partially functional in monolayer cell culture system. Thus, the 

optimization of the cell culture system was crucial to increase the hepatogenic potential of EndoPCs. 

Consecutively, the EndoPCs were differentiated into hepatocytes and cholangiocytes in 2D and 3D 

structures.  

 At a second step, we were interested to activate the Wnt/Rspo in the LGR5+ EndoPCs structures in 

presence of the same small molecules used by Sato et al, 2009 56 and involving Rspo-1, Noggin, EGF, HGF 

and Wnt3a. Canonical Wnt driven genes Lgr5, TCF4, beta-catenin and Axin2 are evaluated before and 

after Wnt activation. The target of this set of experiments was to assess if the WNT/LGR5 activation loop 

mechanism is maintained during the maintenance of multipotency of EndoPCs in culture.  



 

5 | P a g e  
 

 Moreover, knowing that Wnt/LGR5 is upregulated by the STAT3 phosphorylation, activation of the JAK-

STAT3 cascade via IL6 was performed in order to screen the effect of JAK2 inhibitor on EndoPCs 

proliferation and Wnt/ LGR5 downstream proteins and genes.  

 

Results # Part I  
Our results show that EndoPCs represent a potent source for hepatocytes and bile duct generation. 3D-system 

culture is crucial to boost their hepatogenic potential. Wnt activation is crucial to upregulate the LGR5 transcription 

and then to generate liver organoids from EndoPCs. Furthermore, it has been noted that the activation of STAT3 is 

able to upregulate LGR5 expression even in absence of Wnt components in the culture media which is a novel 

input in the research field of LGR5 bipotent stem cells. This strategy will be described and discussed while 

introducing our first scientific paper.  

 

Structure # Part I  
In the related chapters, further explanations will be elaborating the liver organogenesis, the mechanisms of liver 

regeneration and the advances in programming of adult hepatocytes in order to support the overall study 

performed in this project. This will be reviewed in 4 chapters:  

Chapter 2. Liver organogenesis, functions and diseases. The liver anatomy is introduced in this chapter. 

Also, the Mesenchymal epithelial transition associated to the hepatocytes specification is overviewed. 

Following, the liver functions and the related diseases were highlighted briefly.  

Chapter 3. Mechanisms of liver regeneration; Contribution of bipotent Liver Progenitors (LPs). Two 

mechanisms of regeneration are described. The cellular and molecular signaling pathways involved in the 

hepatocyte regeneration are largely detailed. In addition, limitations blocking the regenerative ability of 

the liver will be mentioned thoroughly. Since the liver regeneration is the main debate in this study, 

numerous topics have been highlighted such as Cdc42, Lgr5, aging, primary hepatocytes, Wnt/β-catenin 

and IL6/STAT3. Furthermore, liver stem cells are introduced as a potential source for cell-based liver 

regeneration science focusing on their isolation complexity and expansion methods for optimization. Lgr5 

will be hosted as a novel bipotent liver stem cells marker crucial to activate Wnt pathway and to maintain 

long-term self-renewal of LGR5+ in 3D- in vitro atmosphere.  

Chapter 4. Advances in Reprogramming of mature Hepatocytes towards Bipotent Liver Progrnitors 

(LPs) via the Activation of the WNT-LGR5 Pathway. The Lineage tractability of bipotent stem cells 

strategies was stated in details. The human primary hepatocytes tractability will be described showing that 

hepatocytes plasticity can give rise to LGR5+ bipotent liver stem cells population in the biliary duct zone. 

Accordingly, new strategies were developed to induce the generation of LGR5+ population from liver 

hepatocytes which are expanded in vitro maintaining a stable system. Three strategies are reported: (i) 

Hepatocytes dedifferentiated towards bipotent progenies via pluripotency gene expression; (ii) Direct 

isolation of EpCAM cells from liver biopsies followed by LGR5+ induction via Wnt pathway activation. (iii) 

Chemically converting hepatocytes to bipotent liver stem cells.  

Chapter 5. Introduction to the scientific paper 1.Our data presented in the first scientific paper entitled:   

”Direct reprogramming of LGR5+ Liver Progenitors cells responding to both gp130/JAK/STAT3 and 

Wnt/β-catenin the signaling pathways”  
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Part 2: Impact of Cdc42 inhibition on aged-derived ADSCs behaviors** 

**Completed in Lebanon  

Scientific Background # Part 2 
Many approaches highlighted a link between MSCs and the hepatic fate. Human MSCs (hMSCs), resident in 

various tissues and organs such as bone marrow , adipose tissue , muscle, liver, brain, periodontal tissue and 

pancreas, became recently a new hope of autologous cell therapy with low ethical problems and wide range of 

applications in chronic and acute liver diseases 57. Human Adipose Tissue-derived MSCs (ADSCs) showed greater 

proliferative potential, required less invasive procedure to be isolated and exhibited more potent 

immunomodulatory effects than bone marrow-derived MSCs (BMSCs) and others MSCs biological sources58-60. 

ADSCs were described as an ideal source in medical therapy for their safety and in vivo efficacy for degenerative 

repair 61. Recently, ADSCs have been described as a promising source of MSCs to be used as a regenerative 

medicine treatment for hepatic failure 62. Human ADSCs-derived hepatocytes are considered a potential tool to 

study drug toxicity by expressing hepatic genes involved in regulation of exogenous drug metabolism 63, 64. In 

addition, to date, several human clinical studies are conducted to explore the effects of ADSCs in patients with liver 

disease (NCT02705742/ NCT00913289/ NCT01062750). Furthermore, in recent studies, ADSCs derived exosomes 

are considered a new challenge in exosome-based therapies such as neurological disorders and interestingly for 

liver disease underlining the strong molecular mechanisms shared between ADSCs and liver environment 65 . “Why 

old cells are more vulnerable to pathology and disease than of young cells?" a question asked by Hayflik L. in 1998 

just after the discovery of cell immortality after insertion of telomerase catalytic unit. At this century, observations 

stand at the fact that age changes occur intracellularly without any added explanations66. Today, aging science 

implicates knowledge of the molecular and cellular mechanisms of diseases, called age-related biomarkers in 

parallel to cancer research which preoccupied the researchers in the previous decades 67, 68 and is always 

expanding new hallmarks 68. Thus, researches on aging showed extraordinary advance over the last 15 years and 

defined new age molecular hallmarks. Nowadays, the aging is defined as the functional decline that affects living 

organisms and cell functionality associated to one or several of the following mechanisms: genomic instability, 

telomere attrition, epigenetic alterations, deregulated nutrient-sensing, mitochondrial dysfunction, cellular 

senescence, stem cell exhaustion, and altered intercellular communication. Also, each hallmark is considered when 

its inhibition shows a delay in the aging process and an increase of the cell lifespan and decrease of other 

upregulated age related biomarkers69.  

Few months ago, Florian et al. , 2017 70, estimated that by 2050 the number of people over the age of 80 will triple 

globally, proposing that special approaches will be established to accompany the aging diseases. In liver diseases 

and aging contexts , it was also discussed that the decline in hepatic progenitor cell population might be one of the 

reasons for impaired liver regeneration in aged donors for liver transplantation 71. Moreover, recent reports 

considered the donor age (DA) as a risk factor for transplant failure 72. Besides, BMSCs constitute the hallmark 

example of MSCs dysfunction in aged microenvironment 73, 74 where osteogenic potential is directed to adipocytes 

differentiation causing the osteoporosis phenomena 73, 75. Over the past few years, many studies reported the 

negative impact of adipose tissue DA on ADSCs regenerative ability in mice 76 and human disease 77, 78 

demonstrated by a decrease in their differentiation potential into osteogenic, adipogenic and chondrogenic 

lineages 78-80. Other age-related biomarkers, such as the tumor suppressor genes p53, p16ink4a and p21, the 

telomerase activity and the proliferation rate were shown to be downregulated in aged donor’s derived-ADSCs81-
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83. Thus, the identification of age-related valid biomarkers will be a must to support stem cell - based therapies in 

elderly population.  

Interestingly, hematopoietic stem cells aging was correlated with the high expression of a RhoGTPase protein 

called cell division cycle 42 (Cdc42) 84, 85 . Cdc42 was shown to strictly regulate cell migration and adhesion 

molecular mechanisms 86. As all the RhoGTPase proteins family, Cdc42 acts as a binary switch complex between 

the active form GTP-bound and the inactive form GDP- bound86-89. The Knockout of GTPase Activating Protein 

(GAP) , a negative regulator of the Cdc42 GTP complex, results in reducing significantly the expansion time, 

enhances the repair of DNA damaging and suppresses the p53, p16Ink4a, p21, and senescence-associated beta-

galactosidase (SA-β-gal) expressions in several aged tissues in mice, such as heart, brain, lung, liver, spleen, kidney, 

and bone marrow . Consecutively, Cdc42 GTP-bound complex was suggested to regulate aging in mice stem cells 
90. Later on, with Carrillo-Garcia et al. (2012), the inhibition of Cdc42 activity was considered as the fountain of 

Youth for stem cells 91. Based on this hypothesis, Cdc42 activity was inhibited pharmacologically with a Cdc42 

activity inhibitor (CASIN). CASIN worked as a histone deacetylase (HDAC) inhibitor, in another way, repaired the 

epigenetic DNA damage occurring during HSC aging and ROS intracellular accumulation 92 . Thereby, upon 

transplantation, CASIN-treated HSCs were shown to be potentially identical to HSCs isolated from young donors 21. 

To validate that Cdc42 activation can be a biomarker in human aging, the same group , Florian et al. (2017), 

reported on a cohort study of 196 aged human donors of HSCs a high correlation between the Cdc42-GTP 

expression and aging of hematopoietic cells 93.  

 

Specific Aim(s) # Part II  
Based on all these findings, our study will focus, in the second part of the project, on investigating the implication of 

the Cdc42 activity in human ADSCs aging and their hepatogenic potential. Since in vitro hMSCs senescence 

demonstrates phenotypes similar to biological aged MSCs, it was evident to support our ends by recent advances 

on in vitro aging of hMSCs. All the previous famous studies on Cdc42 and aging were done in hematopoietic stem 

cells (HSCs).  

 We hypothetized first that a certain imbalance may occur in the Cdc42 activity between MSCs derived 

from young and eldery subjects. Since the presence and function of the adipose tissue are extremely 

dependent of age, it was important to investigate the existing mechanisms of action in undifferentiated 

hADSCs, correlating Cdc42 activity particularly to MAPK and Wnt(s) signaling.  

 Next, we hypothetized whether any variations in the activity of Cdc42 occuring in undifferentatied hMSCs 

may affect the hepatocytes’ differentiation, thus higher activity could be a key determinant to inhibit 

hepatogenesis in vitro. 

 We aimed to correlate the reversibility of the Cdc42 activity by specific pharmacological inhibition to 

several stem cells related- age biomarkers and pathways and to evaluate if the down-regulation of Cdc42 

in aged-hADSCs is essential to induce their hepatogenesis.  

 

Strategy # Part II  
Nowadays, there is no reported data showing the impact of the Cdc42 inhibition on reversing the age of elderly 

hADSCs and reducing their senescence aberrations. Thus, our strategy consisted of: 

 Recruitement of healthy subjects (n=61) with different ages (21 to 64 years old) for the collection of the 

stromal vascular fraction enriched with MSCs, followed by in vitro culture and differentiation of ADSCs into 

hepatocyte-like cells. 



 

8 | P a g e  
 

 Different signaling pathways were studied such as key factors involved in hepatogenesis (endodermic, 

fetal liver, hepatic master and functional genes, Wnts canonical/non-canonical), aging (growth factors, 

transcription factors, inflammatory cytokines, kinases, others), cell’s properties (proliferation, adhesion, 

apopotosis) and cell’s functions (albumin and urea production, LDL uptake, exosomes release).  

 Identifying an efficient Cdc42 specific inhibitor (CASIN, TSA or ML141) in term of the higher ability to 

rejuvenate aged derived-hADSCs in vitro and by their assessment to compete to differentiate into 

hepatocyte-like cells when Cdc42-GTP activity returns to baseline levels.  

 

Results # Part II  
The data of this section describe that the aging-impact’s reversibility of human MSCs is possible by the use of 

pharmacological inhibitor of the small RhoGTPase Cdc42, ML141. Treatments of hADSCs-derived from AD with 

ML141 promote greater hepatogenic potential than young differentiated ADSCs counterparts. The inhibition of 

Cdc42-GTP activity might represent a novel target to rejuvenate ADSCs by modifying their immunomodulatory 

effects, decreasing apoptosis and improving the cell activity potential (adherence, proliferation, Hep-Dif and 

functionality). These mechanisms involved RAS/ERK/JNK MAPK pathways, CREB/NFkB/C/EBPα/PPARγ 

transcription factors, IGF/VEGF grow factors and Wnts signaling and exosomes release.  

 

Structure # Part II 
The supportive scientific data for the part II is elaborated in three different chapters as following:  

Chapter 6. Impact of Donor age (DA) on Mesenchymal stem cells functionalities. In this section, I will 

discuss the age-related biomarkers of human and animal MSCs subtypes. In addition, the mechanisms 

involved in the impairment of cell cycle and refracted differentiation potential of aged MSCs are stated. 

Next, the contribution of aged niches to the negative impact of donor age on MSCs functionality and their 

regenerative potential are detailed. 

Chapter 7. Hepatogenic potential of Adipose Tissue MSCs (ADSCs). An overview on the hepatogenic 

potential of hMSCs is first defined followed by a description on how aging impact negatively the hADSCs 

hepatic fate in vitro. In this context, it was evident to discuss some cell culture cues to be considered during 

in vitro MET transition of ADSCs towards Hepatocytes. At the end of this chapter, Cdc42 is introduced as a 

new marker for multipotent stem cells such as Hematopoeitic stem cells.  

Chapter 8. Cdc42: A novel biomarker of cell aging. This chapter is crucial to support our aims; therefore I 

will debate the mechanism of activation of Cdc42 over age and the signaling pathways regulating the 

Cdc42 cycles in stem cell aging. Focusing on Wnt signaling and Cdc42 activation is crucial since Wnt is 

implicated in MSCs cell cycle senescence and aging. To validate the role of Cdc42 in ADSCs aging, inhibition 

of Cdc42 remain our tactical step. Thus, the recent strategies targeting pharmacologically the inhibition of 

Cdc42 aged Stem cells are projected. Several Cdc42 inhibition mechanisms using small molecules in vitro 

are described. Indirect inhibition by Trichostatin A (TSA), CASIN and PI3K, JNK and MAPK pathways 

inhibitors or via a novel specific inhibitors called ML141 are particularly cited.  

Chapter 9. Introduction to the scientific paper 2. Our data presented in the second scientific paper 

entitled: “ML141 reverses the negative impact of the RhoGTPase Cdc42-dependent donor’s age on 

hepatogenic differentiation of hADSCs”.  
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Discussion and Perspectives  
Chapter 10. The overall results completed as mentioned above will be described in details. Thereby, both 
strategies will be evaluated compared to recent advances in liver stem cell-based regenerative medicine, 
liver derived cells in toxicology assays and novel strategies in liver bioprinting and bioengineering 
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CHAPTER 2 
Liver organogenesis, functions and diseases  

 

The fascinating regenerative potential of the Liver was hallowed millennia ago in the Greek myth of Prometheus 

whom Zeus punished by having his liver eaten every morning by an eagle. At nightfall Prometheus liver would 

grow back as to be ready for the eagle’s breakfast at the next sunrise 94 (Fig.1). However the liver may undergo 

permanent organ failure after severe injuries. To understand liver failure, a number of strategies to generate 

hepatocytes in vitro and mimicking the liver’s structure and composition have been proposed but unfortunately 

the success has so far been limited. In the next sections, the structure of the liver, its functions and its diseases will 

be presented. Strategies for treatment of liver failure will be discussed, followed by an overview of strategies 

mirroring the liver organization, its weaknesses and limitations.  

2.1. Liver cellular composition  

The liver is located in the upper right quadrant of the abdomen and is considered the largest organ in the human 

body and being crucial for life. The liver is divided into two main lobes with a right lobe being six times the size of 

the left one. The liver receives blood from the gastro-intestinal tract via the hepatic portal vein while the hepatic 

artery supplies oxygenated blood from the heart. Both of arterial and portal vein drain into the inferior vena cava 

and join the right heart atrium. The bile duct canals are combined with the branches formed by the portal vein and 

the hepatic artery. The bile produced in the liver is channeled to the bile ducts that join the gallbladder then exits 

the liver via the common bile duct (Fig.2).  

2.1.1. Liver Endothelial sinusoidal cells  
Understanding the liver micro-anatomic structure is the key to create liver model in vitro and to discuss liver 
bioengineering and liver signaling pathways .The basic functional unit of the liver is the lobule including canals, 
veins and different cell types95. The cells form a group around the central vein and are separated by sinusoids 
conducting the blood flow from the artery and the portal vein to the central vein. The sinusoidal barriers are lined 
by fenestrae of endothelial cells (ECs) which are essential to exchange metabolites between the liver cells, 
particularly the hepatocytes and the blood plasma. Liver ECs play also a role in the regulation of inflammation and 
immune responses and coordinate hepatocyte proliferation during liver regeneration96-98 
 

2.1.2. Kupffer cells  
The Kupffer cells (KCs) represent the liver macrophages which were described upon liver damage to secrete pro-
inflammatory cytokines, activate liver ECs and attract immune cells to exacerbate the initial damage. KCs were 
shown to release TNF and IL6 for the priming of hepatocyte proliferation in mice liver regeneration model99-101. KCs 
represent about 35% of the non-parenchymal liver cells in normal liver and 80–90% of the tissue macrophages 
present in the body102. The KCs reside within the lumen of the liver sinusoids, adherent to the ECs. Together and 
with soluble compounds such as ECM proteins, KCs and ECs represent the principal liver non-parenchymal lobule 
structure.  
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Figure 2: Anatomy of the Liver, adapted from http://www.stanfordchildrens.org 

 

2.1.3. The hepatic stellate cells 
The hepatic stellate cells are located outside the sinusoid in the space of Disse. Different nominations were attributed 
such as vitamin A storing cells, lipocytes, interstitial cells, fat-storing cells and Ito cells103. They are liver-specific 
mesenchymal cells that play critical roles in fibrogenesis. Recent studies in liver regeneration have increasingly 
focused on hepatic stellate cells and showed that this type of liver cells might play a critical role in liver regeneration 
104.  
 

2.1.4. Pit cells  
The Pit cells are located in the sinusoids and represent liver natural killer (NK) cells. They mediate cytotoxicity and 
produce cytokines to defend against liver cancer 105. Otherwise Pit cells were described to be part of liver adaptive 
immunity being implicated in acute and chronic liver diseases 106.  
 

2.1.5. Hepatocytes  
Hepatocytes constitute 60% of liver parenchymal cells (Fig.3), characterized by a polyhedral shape. The space 
between hepatocytes lines constitutes the bile canaliculi. The hepatocyte’s mitochondria provides energy and 
contributes along with ribosomes and endoplasmatic reticulum to the metabolic mechanisms of the liver covering 
glycogenesis, glycolysis, lipogenesis, ketogenesis, cholesterol synthesis, blood coagulation proteins synthesis, 
ureagenesis and xenobiotics metabolism 107. Hepatocytes contribute actively in liver regeneration regardless the type 
of injury to compensate liver mass 108. The maturation of hepatocytes begins from the peri-portal region and is 
achieved in centri-lobular and peri-venular locations 109.  
 

2.1.6. Cholangiocytes  
The biliary tree is upholstered by epithelial cells called cholangiocytes. These cells are implicated in the transport of 
bile and production of factors preserving bile consistency. However the phenotype and the functionality are 

http://www.stanfordchildrens.org/
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increasingly variable within the cholangiocytes depending on their proximity from peri-biliary glands 110. The 
cholangiocytes represent 3% of the cellular liver composition (Fig.3).  
 

2.1.7. Fibroblasts  
Fibroblasts are associated with large vessels and biliary epithelium. Otherwise, liver fibroblasts contribute to biliary 
fibrosis, cirrhosis and particularly contribute to the chronic biliary disease where bile ducts become enveloped by 
thick layers of fibrosis111. Nerveless, liver fibroblasts participate to the maintenance of cholangiocytes notably via TGF-
β signaling pathway 109, 112.  
 

2.1.8. Liver local extracellular Matrix (ECM)  
Comparing to other organs, the liver is not particularly rich in ECM components. Nevertheless this ECM plays a crucial 
role in maintaining the liver stem cells proliferation or maintaining their stemness. The liver ECM is constituted of 
basement membrane proteins consisting of laminin, collagen type I, III, IV and VI, perlecan, elastin which gradient 
composition differs with hepatocytes distribution. Hepatocytes are connected to other cells and lateral membrane 
by tight junctions 113. The laminin is required for appropriate expansion and differentiation of stem cells in response 
to injury. While the collagen type I have been shown to increase the proliferation of hepatic stem cells and to induce 
rapid differentiation of hepatoblasts (HBLs). Collagen III and IV have been shown to maintain the phenotype of 
hepatic stem cells and to slow their proliferation. Liver ECM is also supposed to play key roles in remodeling and 
chemokine/cytokine production, thus promoting differentiation into hepatocyte or cholangiocyte lineages or liver 
fibrosis depending on type of injury 112, 114, 115.  
 

2.1.9. Liver Stem cells  
Hepatic stem cells have been described to be present in the Canal oh Hering localized in the distal portion of the 
biliary tree 116 . Within the cholangiocytes carpet, the biliary tract contains a high proportion of cells expressing 
primitive endodermal stem cells markers (EndoSC). These progenitors have been shown to be multipotent in vitro 
giving rise to hepatocytic, biliary and pancreatic lineages117-119. To date, recent research highlights that all cells of the 
biliary tree seem to have a mark of stem/progenitor potential and plasticity explained by a multipotent fate potential 
116, 120. Liver Stem cells will be discussed in detail in Chapter 3.  

 

2.2. Ontogenesis of the liver  

 
2.2.1. Specification of definitive endoderm 

Liver maturation is a cascade involving several complex regulatory mechanisms. In addition it concerns different 

cell type’s harmony. Thus, the understanding of these connections has critically enriched the researcher’s 

knowledge of stem cell maturation and improved our ability to culture, maintain and differentiate hepatocytes in 

vitro121, 122. The Nodal signaling is necessary for the specification of the mesendoderm from the septum 

transversum. Later on, low expression of WNT and FGF4 specifies the ventral foregut definitive endoderm which 

forms the pancreas, liver, lung and thymus. Signals of FGF1/2 and BMPs assist in the development of hepatic 

competence and the raise of endothelial precursors between the hepatic buds and cells of the septum 

transversum 123. At this level, the key transcription factors HHEX and SOX17 become enriched in the hepatic 

diverticulum and activate hepatic genes such as Albumin (Alb) , AFP, HNF4, Gata4 and Gata6 124.  
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Figure 3: The Complexity of liver cell types and their interactions. From Khetani and al, 2015 125 

 

2.2.2. Bipotent hepatoblasts and Biliary epithelium lineage (BEL) segregation 
The endothelial progenitors play a key role in the patterning of the endodermal cells, where 
mesenchymal cells are engaged to form fibroblasts, stellate cells and connective tissue of the liver. 
Thereby these interactions and signaling between cell types are crucial to the designing of the adult 
lobules. In a followed step, the hepatic bud is occupied by primitive hematopoietic stem cells (HSC) 
originating from the umbilical cord (UC) veins and the vitelline. Sinusoidal cells arise from the earliest 
hepatic plates. The parenchyma is populated at this stage with a homogeneous population of 
bipotent HBLs giving rise to cholangiocytes in periportal liver and to hepatocytes in the centrilobular 
regions orchestrated by signals from ECs and mesenchyme of the portal regions. Consequently, the 
biliary epithelium tree patterning results from the HBLs adjacent to the portal vein where remaining 
HBLs commit to immature hepatocytes 123, 126, 127 . 
 

2.2.3. Signals promoting hepatoblast migration  
The Onecut-1 (OC-1, also known as Hnf6) and Onecut-2 (OC-2) regulate HBL delamination 128, 129 and 
the expression of extra cellular matrix (ECM) proteins and ECM remodeling enzymes such as matrix 
metalloproteinases (MMPs) 130, 131 . In absence of the cell-ECM interaction, the HBLs are unable to 
colonize the liver bud. Otherwise, the Small GTPases, well known for regulating cell migration, are 
shown to be closely involved in HBLs migration and maturation 132. Endothelial signals are essential 
also to delaminate HBLs and promote migration via the vascular endothelial growth factor receptor 
gene Vegfr-2 expression 133 . Thus, recent strategies generating hepatocytes in vitro rely on the 
combination of endothelial signals and the ECM composition to improve the functionality and 
stability of hepatocytes134-136 .  
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Figure 4: Segregation of Hepatoblasts into hepatocytes and 
cholangiocytes. From Stem cell book.org Aaron M. Zorn -2008  

 

2.2.4. Hepatocytes maturation: Signaling pathways and gene expression  
The bipotent HBLs express fetal liver genes (Afp) as well as markers of both hepatocytes (Albumin) and 
cholangiocytes (KRT19 or CK19). Opposite offence between signals of TGF-β and Wnt reinforce this lineage 
segregation. In the periportal mesenchyme the up regulation of these signals enhances the expression of 
cholangiocytes transcription factors (OC1, OC2, HNF1-β) in the adjacent HBLs, while in the parenchyma the 
repression of these signals up regulates the expression of hepatogenic factors (HNF4 and C/EBP) 137. The biliary 
ductal plate is modulated by a continuous signaling of Notch, EGF and HGF from the periportal mesenchyme 138 
while other factors such as Oncostatin M (OSM), Dexamethasone (Dex), HGF and Wnt promote hepatocyte 
maturation. The HSCs cells in the liver secrete the OSM, which in combination with glucocorticoid hormones 
(Dex), HGF and Wnt promotes Hep-Dif139-143. OSM is crucial for hepatocytes metabolic maturation by activating 
the gp130 receptor and a JAK/STAT3 signaling pathway 144 and in the same time induces morphological 
maturation into polarized epithelium via K-ras and E-cadherin 145, 146 . On the other hand, hepatocyte growth 
factor (HGF), secreted by liver MSCs or ECs, supports the differentiation of fetal hepatocytes 139. These secreted 
factors upregulate the complex network of transcription factors C/EBPα, HNF1α, Foxa1–3, nuclear hormone 
receptors and HNF4α147, 148 (Fig. 4). In mice models, HNF4α is first expressed in HBLs and the KO of this gene 
results in a failure of expression of mature hepatic enzymes 149, 150. Furthermore HNF4α controls the 
mesenchymal to epithelial transition (MET) by regulating genes encoding the epithelial structure, cell adhesion 
and junctional proteins 151, 152 . Also, the functional hepatic maturation is achieved after birth under the 
continuous release of HGF by sinusoidal, stellate and ECs 143. To highlight the importance of OSM and HGF 
crucial roles in hepatocytes maturation and proliferation, several transgenic mice models defective for OSM 
receptor gp130 or C/EBPα and HNF1α showed respectively an impairement in hepatocytes maturity and a 
neonatal death resulting from hypoglycemia caused by impaired glycogen storage 153, 154 . Other strategies 
mediating HGF induced also hepatic gene expression140, 155, 156 . 



 

16 | P a g e  
 

 

Figure 5: The cell lineage steps during hepatic development (red) 
from uncommitted endoderm to functional adult hepatocytes and 
biliary epithelium. From Stem cell book.org Aaron M. Zorn -2008  

 

2.3. The mesenchymal to Epithelial transition during liver development  

The epithelial to mesenchymal transition (EMT) is a physiological phenotypic shift in which epithelial cells normally 

interacting with basement membrane via their basal surface undergo biochemical changes that enable them to 

acquire a mesenchymal cell phenotype which includes enhanced migratory potential, invasiveness, elevated 

resistance to apoptosis and greatly increased production of ECM components 157. Initially reported as the 

“epithelial to mesenchymal transformation” by Dr. Hay 158, the term “transformation” was replaced with the term 

“transition” as a transformation classically describes the oncogenic conversion of epithelia. Moreover, 

mesenchymal cells can be converted to polarized epithelial cells by a reverse process defined as the mesenchymal 

to epithelial transition (MET) 159. Therefore, these two processes are central mechanisms for diversifying 

morphologically and functionally the cells found in complex tissues. It was admitted for a long time that it is 

necessary for a cell to be terminally differentiated in order to carry a specific function. However, several 

observations noted that terminally differentiated epithelium can change its phenotype when an EMT/MET 

program is activated and a transdifferentiation is carried out both at the development stages and adulthood. Such 

phenotypic switches are observed during tissue morphogenesis, wound healing and tissue repair as well as 

pathological stress including several types of inflammation and cancer progression. Hence, Lee et al, 2012 classified 

the MET into three different subtypes based on their biological context. First, type 1 EMT, which is associated with 

implantation, embryo formation and organogenesis, can generate motile mesenchymal cells (primary 

mesenchyme) from primordial epithelial cells. Then, these mesenchymal cells subsequently undergo a MET to 

form secondary epithelium noting that this type of EMT does not cause fibrosis nor induces an invasive phenotype. 

Second, the type 2 EMT, which is associated with wound healing, tissue regeneration and organ fibrosis, can 

generate resident tissue fibroblasts from secondary epithelial cells causing tissues’ reconstruction after 

inflammatory injuries and traumas. Therefore, once the inflammation is attenuated, EMT stops; however, if the 
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inflammation persists, EMT can lead to organ destruction and tissue fibrosis. In addition, the third type of EMT 

which is associated with oncogenesis and high grade cancer, occurs in neoplastic cells that were genetically and 

epigenetically modified, resulting in increased invasiveness and migration. These three EMT types may be 

regulated by a common set of stimuli, the expression of specific cell surface markers, the activation of certain 

transcription factors and the reorganization of the cytoskeleton; however, specific signals delineating these 

subtypes are still undefined 160.  

 During the liver specification, EMT/MET type 1 occurred. Cells undergo several rounds of EMT and MET in order to 

form organs during embryogenesis. Initially, a primary EMT process is described when the three germ layers 

(ectoderm, endoderm, mesoderm) are formed (Fig.5) during gastrulation. The endoderm emerges from the 

anterior primitive streak of the gastrulating embryo when embryonic cells migrate towards the anterior of the 

embryo and form a monolayer of cuboidal cells surrounded by the mesoderm at day 7.5 in murine development 

and at 3 weeks of human gestation. During the first round of EMT, hepatic progenitors called hepatoblasts are 

specified within the pseudostratified ventral epithelium. Hepatoblastes (HBLs) are bipotent progenitors as they can 

give rise to hepatocytes in the liver parenchyma and to cholangiocytes next to the portal veins 161. Murine HBL 

were identified as cells expressing E-cadherin 162, 163, Liv2 164,  CD24a,  and  EpCAM 165.  Also, they had been found in 

human fetal liver as they express factors including ALB, AFP, CK14, KRT18, KRT19, DLK1, E-cadherin, EpCAM, CD133 

and the hepatocytes specific antigen HepPar1 166, 167.  

Furthermore, the second EMT type 1 process is associated with the Liver bud formation, initiated by proper cell 

signaling (Wnt signaling) around the fifth week of human gestation 168, 169. HBLs, initially of an epithelial morphology 

and surrounded by a basement membrane, delaminate, migrate through the basement membrane and invade 

the surrounding septum transversum170. This is achieved by coordinated interkinetic nuclear migration171, the 

transient loss of epithelial morphology to a more columnar shape, the degradation of the surrounding basal 

surface by the action of matrix metalloproteinases (MMPs) and the reduction of E – Cadherin expression172 . 

Moreover, it has been demonstrated by Juan Su et al. 173 that cells deriving from the human liver bud undergo an 

EMT process in early human development. These cells expressed simultaneously epithelial (KRT8, KRT18 but no E-

cadherin), mesenchymal (CD44 and CD29, Vimentin, Twist1, Snai2, SDF-1) and stemness (OCT4 and Nanog) 

markers. After the hepatic induction (week 5 of human gestation), an upregulation of EMT related genes was 

observed, however no information on the expression of E-Cadherin was noted.  

Recently, Goldman et al. 174 validates the dual mesenchymal and epithelial features of HBLs. As a matter of fact, 

they demonstrated that either hepatic cells generated from human embryonic stem cells and resembling HBLs (at 

5 day of differentiation) or HBLs extracted from mouse and human fetal livers (at day 9.5 or at 7-22 weeks of 

gestation respectively), expressed Hepatocytes (AFP and ALB) and both epithelial (EpCAM and E-cadherin) and 

mesenchymal (vimentin and SNAI1) markers. Moreover, it was revealed that SNAI-1 acts as a transcriptional 

activator for the promoters of AFP and ALB genes in hepatic specification, in contrary to its conventional role in 

promoting mesenchymal characteristics during EMT. Once migrating HBLs have acquired a mesenchymal 

phenotype, they continue to proliferate under the influence of paracrine signals from hepatic mesenchyme, such 

as FGF, epidermal growth factor (EGF), Hepatocyte growth factor (HGF), transforming growth factor (TGF)-β, 

tumor necrosis factor (TNF)-α, and interleukin-6 (IL-6)175-177. In mid-gestation, these signals promote morphological 

maturation of HBLs into polarized epithelium via K-ras and E-cadherin178, 179; HBLs aggregate around the portal vein 

and mature into epithelial structures: the Hepatocytes and the cholangiocytes.  
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Consequently, this maturation implicates a MET171, 174. The signaling pathways regulating this MET are the Jagged-

Notch pathway controlling the differentiation of HBLs towards a biliary epithelial phenotype180, 181, and HGF 

triggering pathway in conjunction with oncostatin M (OSM) promoting Hep-Dif 182. On the other hand, 

Hepatocytes form a special epithelial structure which has no basement membrane, but its basal side faces the 

sinusoid ECs and its apical side faces the canalicular lumen183. Finally, hepatic stellate cells are suggested to be 

derived during liver development from sub-mesothelial cells that arises from EMT of adjacent primitive coelomic 

epithelium184. However, the embryonic origin of hepatic stellate cells is unresolved because they express marker 

genes of all three germ layers185.  

2.4. Liver functions  
 

The liver is a multifunctional organ by performing over 5000 functions. While these functions are various and 

crucial, it’s good to know that at microstructural lobular level, Human can sustain life even when only 10-20% of 

liver tissue is functioning. To simplify liver role, its functions will be summarized by the following main tasks 

categories. 

  
2.4.1. Storing blood and filtration  

Indeed, the blood volume in the liver circulating in hepatic veins and hepatic sinusoids is about to 450 ml, which 

represent 10 % of the total blood volume. KCs can clean blood from various bacteria, endotoxins and foreign 

antigens. In addition the liver supplies 50% of the lymphatic fluid produced in the body 186.  

 

2.4.2. Carbohydrate and lipid metabolism  

The liver is well known to participate in an active gluconeogenesis and to convert the galactose and fructose to 

glucose. Consequentially, the liver collaborates to maintain a normal concentration of glucose in the blood187-189. 

The crucial enzyme catalyzing the gluconeogenesis is the Glucose 6 phosphatase (G6Pc) enzyme. Furthermore , 

the liver converts the carbohydrates and proteins to fat, products energy by fatty acids oxidation, syntheses 

lipoproteins, cholesterol and phospholipids 190.  

 

2.4.3. Protein Metabolism 

The deamination of amino acids metabolism starts with Tyrosine aminotransferase (TAT) enzyme activity and 

leads to the increase of ammonia level in the liver. These residues are eliminated by UREA formation. 90% of 

plasma proteins are produced in the liver notably the AFP and Alb as fetal and adult human liver marker, Alpha-1 

and gamma-2 globulins, binding and transport proteins189, 191-193.  

 

2.4.4. Storage functions 

Besides the functions described above, the liver stores glycogen via the Glycogen synthase (GS). The liver also 

constitutes a reservoir for vitamins especially Vitamin A, D and B12 and stores iron in form of ferritin. 194-196. 

 

2.4.5. Secretory and Excretory Functions 

The hepatocytes secrete bile acids, cholesterol, water, bilirubin and other organic substances in 600 to 1200 ml of 

bile per day in the intestinal tract. Simultaneously, waste products from blood are excreted by the bile such as 

cholesterol and bilirubin resulting from Hemoglobin destruction in the liver189, 193 
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Figure 6: Contribution to the human Cytochrome P450 enzymes (CYP) isoforms to drug 
metabolism. The percentage of each enzyme correlates with the estimated relative size of the 
corresponding pie chart.  

 

 

 

2.4.6. Detoxification functions and drug metabolism  

The main function of the liver is metabolizing and processing drugs. The toxicity of the resulting metabolites can 

present different biological and toxicological properties 197. Two principles categories of enzymatic metabolism 

reactions take place in the liver. Phase I, which is mediated by the cytochrome P450 (CYP450) families and 

subfamilies 198 (Fig.6) (i). Phase II, the conjugative metabolism of drugs, which is mediated through UDP- 

glucuronosyltransferases (UGTs) (ii). Both of Phase I and Phase II enzymes are mostly restricted to the endoplasmic 

reticulum (ER) of hepatocytes. Phase I CYP450 catalyzes the oxidation, reduction and hydrolysis of xenobiotics. On 

the other hand, Phase II enzymes work on the metabolites from Phase I through various enzymes such as 

glutathione S-transferases and UGTs. The results of these two enzymatic reactions are the addition of polar groups 

to the xenobiotics and the facilitation of their eliminations through biliary and urinary tracts 199. Most of the drug 

metabolic enzymes are from CYP 1, 2 and 3 families. The activities of CYP450 are different within species 200. 

CYP3A4/7 , their orthologue Cyp3A11 in mice models, are the most important human CYP450 enzymes involved in 

at least 422 drug metabolism 201, 202 (Fig.6) . HNF4α is considered to be the furthermost abundant transcription 

factor in the liver that regulates the basal expression of Cyp450 subfamilies 203. Pharmaceutical research used the 

Cyp450 enzymes to evaluate functionality of hepatocyte cell lines or stem cells derived hepatocytes as cited in 

more than 100000 articles 202.  

Consequently, screening of Cyp450 family activity in vivo and in vitro after prototype induction using CYP substrates 

and inducers, such as rifampicin and omeprazole, represents a crucial readout element in based 

pharmacogenomics, toxicological and fundamental research studies71, 204.  
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2.5. Liver diseases: The global health burden 

 
A multiplicity of diseases is linked to the liver being a multifunctional organ. Liver disease is per definition any 

irregular process that affects the liver. Chronic liver diseases result from severe irreversible loss of at least 75% of 

the liver's functions and can lead to mortality. Unfortunately, unlike other chronic illnesses, liver disease rates are 

progressively growing over the years 205. Chronic liver disease arises independatly of age, sex, region or race. In the 

last 10 years, Liver diseases have been ranked as the fifth most common cause of death. Deeply, deaths from 

cirrhosis have been estimated to increase and would make it as the 12th leading cause of death 206. In this section 

we summarize the liver diseases classification and some statistics provided by the World Health Organization 

(WHO) and the European association for the study of the liver (EASL) in their last online available reports (2017). 

Approximately, 20 million people in the European (EU) region suffered from chronic liver conditions and more than 

30 million Americans had liver diseases. Particularly, the mortality rate from liver diseases in France is estimated to 

7767 deaths per year (www. apps.who.int/healthinfo/statistics/mortality/whodpms).  

 

2.5.1. Liver Cirrhosis  

The Age-standardized death rates from liver cirrhosis are estimated in 2012 to 21.7 and 11.8 deaths over 100 000 

patients from French and Lebanese populations respectively. Liver cirrhosis is responsible for around 170 000 

deaths in Europe each year 207. Worldwide, liver cirrhosis was estimated to be responsible of 2% of all deaths 

causes. Cirrhosis is also the principal cause of adult liver transplants in Europe 208. It is an end stage consequence of 

many liver lesions and insults characterized by fibrosis and varied clinical indicators and complications 209. Hepatitis 

B and C , chronic bile ducts destruction, liver cancer and chronic drug-induced liver diseases lead to end stage liver 

cirrhosis210.  

 

2.5.2. Liver Cancer  

The common type is hepatocellular carcinoma (HCC) 211 and constitutes a serious cause of cirrhosis 207. Liver cancer 

is classified as the sixth common cancer. The last WHO reports estimated 63 500 new cases of liver cancer 

diagnosed in Europe. Other references indicate that HCC prevalence in patients with Hepatitis C are estimated 

between 3 and 5% per year, where HCC represent a dominant cause of death in patients chronically infected with 

HCV in the Western world 212.  

 

2.5.3. Hepatitis  

Hepatitis is called also liver inflammation. Several causes can lead to hepatitis either autoimmune or exogenous 

insults to the liver.  

2.5.3.1. Hepatitis A 

Hepatitis A virus (HAV) is spread by eating food contaminated by the stools of an infected person. 1.5 million HAV 

infections are estimated per year worldwide. HAV infection does not lead to chronic liver disease but in some case 

to acute liver failure and high mortality (WHO, 2016). 

2.5.3.2. Hepatitis B  

Hepatitis B virus (HBV) is diffused through blood and bodily fluids and can cause either acute or chronic liver 

diseases. In the EU region, 13.3 million people have chronic HBV where one million American have suffered from 

HBV hepatitis (WHO, 2016). HBV results in 36,000 deaths every year in Europe (WHO, 2016). 
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2.5.3.3. Hepatitis C 

Hepatitis C virus (HCV) is also transmitted through blood and bodily fluids. Egypt has the highest prevalence of HCV 

in the world where 40 000 people a year pass away. In the EU region, the WHO estimates 15 million people have 

HCV causing 86 000 deaths every year (WHO, 2016). HCV infections are associated to HCC in the Western 

countries 212 

2.5.3.4. Hepatitis D and E 

Hepatitis D is caused by the hepatitis delta virus. 15 to 20 million people have been exposed to the hepatitis delta 

virus yearly; Severe Hepatitis D occurs among indigenous people. Also some Asiatic countries present Hepatitis D 

like Taiwan, China and India. The majority of infected patients has hepatitis evolving into cirrhosis 210. Hepatitis E is 

mainly transmitted through contaminated water and it is found worldwide, but the prevalence is highest in East 

and South Asia. Like HAV, it’s a self-limiting virus and it may develop into acute liver failure. The prevalence is of 20 

million infections per year worldwide versus only three million acute hepatitis.  

 

2.5.4. Alcohol-related liver disease (ALD) 

ALD are responsible of 47 deaths per 100,000 individuals in some EU countries. The consumption of alcohol is 

estimated to 13 liters/person/year instead of 1.7 liters/person/year in Lebanon. The alcohol abuse is a crucial cause 

of liver damage. Thus in Europe, ALD is the dominant cause of end stage liver disease. Indeed, ALD is the major 

cause of cirrhosis in the Western world and classified as one from the first 10 causes of death worldwide (WHO, 

2016) 

 

2.5.5. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis (NASH) 

The Non-alcoholic fatty liver disease (NAFLD) is an infiltration of fat in the liver and concerns up to 44% of the 

European population, particularly the diabetes type 2 categories. A serious evolution of the disease can lead to an 

inflamed liver due to accumulation of fat called NASH 213. Basing on the guidelines of World gastroenterology 

Organization (WGO), the NAFLD has doubled the last 20 years and participates consecutively to be a primary cause 

of liver disease in the Western countries. Going to the Middle East, 10 to 30% of patients with NAFLD suffer from 

NASH and then cirrhosis. However in Europe, prevalence of NASH is approximately 5% 214. 

 

2.5.6. Autoimmune and genetic cholestatic liver disease 

Liver diseases that affect bile secretion are termed ‘cholestatic’ and they can result from autoimmune damage of 

the bile ducts, drugs abuse, genetic defects and congenital disorders. Although they cause less serious liver damage 

relatively compared to viral hepatitis and fatty liver disease, cholestatic diseases constitute a burden in terms of 

shortness of effective treatment. Thus, they had constituted 10% of the liver transplants causes in Europe during 

the past 20 years. Cholestatic and autoimmune liver diseases involve primary biliary cholangitis, primary sclerosing 

cholangitis, and autoimmune hepatitis. The genetic liver diseases concern cystic fibrosis, familial amyloidotic 

polyneuropathy, alpha 1-antitrypsin deficiency (A1AD), Wilson’s disease, familial hypercholesterolemia, glycogen 

storage disease type 1a and Alpers Huttenlocher Syndrome.  
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CHAPTER 3 
Mechanisms of liver regeneration  
Contribution of bipotent Liver Progenitors  

 

3.1. Overview  
Several hypotheses have been established to explain liver regeneration process and its failure during serious 

injuries. The very old suggestion was a migration of young hepatocytes from the portal to the central zone thanks 

to mitochondria. This migration was shown to be regulated by lobular zonation gene expression profile 215, 216. 

Other suggestion implicates a direct cell division of hepatocytes and cholangiocytes upon occurrence of injury 217. 

Actually, thymidine labeling studies showed that remaining hepatocytes in the liver divided once or twice to 

restore the liver size 218, 219.  

Interestingly , it was observed that 75 % of surgical liver mammals resection can be restored within 1 week 220, 221. 

The departments of pathology and surgery in University of Washington, described in a very snapshot paper the 

mechanisms involved in liver regeneration after partial hepatectomy (PH) in mammalian cells 222. They explain that 

the self-renewal of hepatocytes believed from decades to be the key element of liver regeneration after PH, 

represents now a controversy when acute or chronic liver injury occurred. They highlighted on recent reports 

hypothesizing that new hepatocytes in the regenerating liver can derive from hepatic stem cells or circulating stem 

cells41, 223, 224. On the other hand, they underlined the role of the ECM, the non-parenchymal cells (NPC) such as the 

ECs and the macrophages providing critical signals to hepatocytes and progenitors during regeneration 134. Also, 

they showed that the type of injury and many immune modulator parameters can shorten the self-renewal 

capacity of liver cells. The most crucial signals are HGF, IL6, TNF α, TGF α and EGF; some hormones are shown also 

to mediate liver regeneration 225. 

 During liver regeneration, different types of liver cells divide but not together. Indeed, hepatocytes are the first 

cells to divide followed by the bilary ductal cells then by the NPC. In human, evidences suggested that 2 weeks after 

hepatectomy, regeneration had started and the liver regained 75% of its original volume 6 to 12 months later28. 

The recovery of the liver loss depends on the proliferation rate of hepatocytes, the age, the severity of the injuries, 

NPC signals and paracrine stimuli. In addition to these parameters, the implication of liver stem cells and the 

signaling pathways that maintain the progenitor fate within the liver regeneration are still confusing. 

Briefly, the liver has two mechanisms for regeneration depending on the type of injury. PH involves remained 

hepatocytes to restore the liver size. However, toxic injuries involve liver stem cells that get up in the portal areas 

and migrate into the lobules giving rise to hepatocytes22. Both of regeneration pathways present a limited 

regenerative potential when aggressive insult occurs. All these clues will be discussed in the further sections. 

 

 

3.2. Molecular mechanisms implicated in proliferation of mature hepatocytes during 

liver regeneration process : Wnt, STAT-3 and Cdc42 regulation pathways  
Mature hepatocytes proliferation leads to liver regeneration in response to PH, chemical or viral injuries. This 

regenerative process was summarize by Mangnall et al. 28, in three defined areas: (1) Changes in the ECM (2) 

changes in cytokines and growth factors (3) changes in gene expression associated to the activation and passage 

through the cell cycle. These processes involved a series of different phases (Fig 7): 
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During the starting phase, the release of cytokines from the remained liver and other organs via the portal blood 

boost the hepatocytes and progeny cells to enter the cell cycle.  

 

Later during the priming phase the hepatocytes enter the G1 cell cycle level following HGF release by the ECM. The 

matrix degradation upon injuries initiates the division of hepatocytes.  

 

The proliferation step requires a cocktail of cytokines and growth factors. The proto-oncogenes such as c-myc and 

c-fos, c-jun and cyclin-D1 are the first genes associated with hepatocytes proliferation 10 (fig.7). Furthermore, STAT-

326 27, NF-kβ 226 and C/EBP 227 transcriptional program were shown to be activated during hepatic regeneration. 

The transcription of β-catenin was reported to form an adhesion complex with E-cadherin down flowing the Wnt 

signaling pathway during the regeneration process 24. Indeed, post PH, an increase of the degradation of the Wnt 

downstream gene β-catenin leads to a high accumulation of β-catenin levels in the hepatocytes and thereby their 

translocation to the nucleus. Later on, the degradation of β-catenin turns on for several days leading to 

proliferation of hepatocytes. An Orchestra between HGF and β-catenin has been shown during proliferation of 

primary hepatocytes in vitro 25. In fact, HGF redistribute the intra-nucleus translocated β-catenin independently of 

Wnt signaling cascade. Briefly, HGF regulates the phosphorylation of the β-catenin than promotes its translocation 

to the nucleus. β-catenin binding to E-cadherin isn’t regulated by HGF 228 (Fig.8).  

 

 

 

 

Figure 7: Hepatocyte cell cycle phases; Effect of cytokines and growth factors on transcriptional 
programs regulating cell mitosis in injured liver. TNF-α: Tumor necrosis factor-α; IL-6: 
Interleukin-6; HGF: Hepatocyte growth factor; EGF: Epidermal growth factor; TGF-α: 
Transforming growth factor-α; Cdc42: cell division cycle42; TGF β -: Transforming growth factor 
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Always during the proliferation phase, the STAT-3 is captivatingly activated in hepatocytes post injury with a 

significant increase of 30 folds in animal model 26, 27. The IL6 family cytokine binds to his receptor gp-130 in order to 

activate JAK tyrosine kinases and consecutively the STAT3 phosphorylation (Fig.8); once activated, p-STAT-3 

translocate to nucleus to regulate proliferation transcription genes. In injured adult liver, C/EBP β, IGF-BP1 (Insulin 

growth factor binding protein1) and HNF-1 (Hepatocyte nuclear factor-1) are crucial transcription factors regulated 

during hepatocytes regeneration 229-231 via IL6/STAT3 signaling cascade. After liver injury, necrosis or hepatectomy, 

TNFα and IL6 levels increased in liver and plasma. These inflammatory cytokines trigger the NF-kβ and STAT3 

pathways in addition to increasing the DNA synthesis232-234. IL6- Knockout mice are unable to respond to liver injury 

before IL6 injection 235. The suggesting signaling pathway is that TNFα activate NF-kβ and increase IL6 production in 

liver macrophages KC. The release of IL6 activates STAT3 phosphorylation in liver hepatocytes 236 (fig.7-8). 

Interestingly, TNFα regulates apoptosis in normal liver but stimulates hepatocyte proliferation in liver injury 

concept. Other pathways were shown to be implicated in liver regeneration such as PI3K and MAP Kinase 

pathways 29 (Fig.8).  

 

During the progression phase, the growth factors involved in hepatocyte cell cycling comprise HGF, epidermal 

growth factor (EGF), transforming growth factor (TGF α) and heparin-binding EGF-like growth factor 237. The liver 

cells continue the passage from G1 to S phase then to G2/M restriction points for division then they return back to 

G1 and a new cell cycle until restoring the liver mass (Fig.7); during this phase the p21CIP1, a tumor suppressior gene 

inhibitor, is downregulated to allow hepatocytes proliferation234 and JNK pathway is activated 238. The stop point 

after liver recovery was reported to be regulated by TGFβ pathway 28. Recently, the Cell division cycle 42 Cdc42, a 

member of Rho GTPase family small protein, was reported to play a critical role in liver regeneration after PH. 

Cdc42 is shown to be required in the progression phase by triggering the expression of Cyclin D1 (fig.7). Cdc42 

activity regulates the cell polarity and proliferation via several downstream signaling events, such as the p21-ac-

tivated kinase (PAK) and JNK cascades. Mouse model with liver-specific knockout of Cdc42 exhibited a decrease in 

liver weight and a delay in liver regeneration post PH. Indeed, Cdc42 deletion downregulated the activation of ERK, 

JNK and proliferation transcription factors in the remained hepatocytes post hepatectomy239 . In addition, a 

proteomic analysis post PH proved that Cdc42 is mandatory to the termination of liver regeneration240.  

 

Unfortunately, this flow of cell regulation discussed previously is far to be shared by human hepatocytes after 

severe injuries or some toxic or viral infections after which the regeneration is shown to be incomplete. Liver 

cirrhosis is associated with senescence biomarkers in all liver cells and branded by a significant short hepatocyte 

telomeres241. In addition, the accumulations of ROS , the DNA damage, the senescent status of remained 

hepatocytes, the level of necrosis and atrophy, the non-activation of liver stem cells 29 , all together impact 

negatively the regenerative process of hepatocytes. Moreover, in severe liver injury, adult liver stem cells, called 

“oval cells,” are activated when the ability of remained hepatocytes is reduced following a huge insult of the liver. 

These stem cells were shown to express Cdc42 in liver-injured rat model, suggesting also that Cdc42 play a role in 

liver stem cell proliferation and differentiation into hepatocytes 31. Whether these stem cells can achieve a 

complete liver regeneration or not? This cue will be discussed in the section (3.4).  
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Figure 8: A schematic for Signaling pathways modulating hepatocyte proliferation in injured liver. 
The involving of IL6/STAT3, HGF/ β-catenin, Wnt/ β-catenin, Insulin and TGFβ, in liver proliferation 
process. HGF, hepatocyte growth factor; IL-6, interleukin-6; TGFα, transforming growth factor alpha; 
TGFβ, transforming growth factor beta; TNFα, tumor necrosis factor alpha. 

 

3.3. Age-associated mechanisms in the failure of liver stem cell regeneration  
Ono Y et al, 71 suggest that the declining hepatic progenitor cell population might be one of the reasons for 

impaired liver regeneration in aged donors. Indeed, they have correlated the number of these progenitors with 

liver age and accordingly with the liver regeneration potential in both aged and young human donors ’groups 

obtained after liver lobe resection. In addition, recent reports have showed that old mice’s liver fails to activate the 

S-phase specific genes that are normally up-regulated by TNFα and IL6 resulting in a late DNA synthesis and in 

down-regulation of STAT-3 ( Signal Transduction and Activators of Transcription) signaling pathway (Fig.9a, b). The 

down-regulation of PI3K-AKT signaling pathways also play a crucial role in affecting the regenerative potential of 

liver hepatocytes and stem cells 242. Furthermore, the DNA polymerase-α is shown to be dramatically inhibited in 

association of some cell-cycle proteins such as FoxM1B, c-Myc, c-Fos and cdc2 (Cyclin D cycle-2) in old mice liver 

post injury or PH. Contrary to the mice liver cells, senescent human liver cells revealed telomere shortening which 

can alter the proliferation potential of the hepatocytes 243. In addition to this, the alteration of the chromatin 

structure , the increase of protein levels of histone deacetylase 1 (HDAC1), and the epigenetic silencing of cell-cycle 

genes lead to a failure of regeneration in elderly liver 244, 245. Furthermore, the accumulation of fat in old liver 

participates in reducing the hepatocytes regenerative capacity 246. Also hepatocytes derived from old donors were 

shown to be unresponsive for repopulating PH 247, 248. All these evidence support the decrease of regeneration 

ability with aging.  

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ono%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=21719061
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Figure 9: Weakness of liver regeneration in elderly people. Transcriptional program of liver 

regeneration is regulated by the IL6/STAT3 and TNFα /NF-kβ signaling pathways 249 

 

 

3.4. Primary hepatocytes senescence in vitro  
The isolation of primary hepatocytes from liver biopsy constitutes a very complicated procedure in term of quality 

and number of isolated cells. Digestion enzymes, such as collagenase, are required for this end and are a critical 

step. Freshly isolated hepatocytes express highly c-jun and c-fos driving the hepatocyte in a priming phase G0/G1 

(Fig.7) of the cell cycle 250. In addition, these hepatocytes express NF-kβ and TNFα as well as the protein kinase of 

MAPK pathways3. Once these hepatocytes are plated, p53, K-ras and c-myc are upregulated indicating that they 

underwent a G1 phase of the cell cycle 251 . Going up to this step, the microenvironment can or not support 

hepatocytes proliferation. Progression phase in vitro, is completely different from its counterpart in vivo, and is 

regulated by tumor suppressor retinoblastoma protein (pRB) 252 . After culture in plastic dishes, surviving primary 

hepatocytes remain at G1 restriction point, do not proliferate and lead to growth arrest 253 . Indeed, primary 

hepatocytes enter a senescent pathway by expressing ROS, DNA damaging and expressing the tumor suppression 

inhibitors genes via the p53/p21 pathways 33 . Like any somatic cell, human telomeres DNA undergo an erosion 

after several proliferation rounds and hepatocyte growth is stopped irreversibly, when the telomeres reach the 

minimal length which was first described by Hayflick 50 years ago254. Despite avoiding the telomere-dependent 

senescence and the weakness in DNA synthesis of primary hepatocytes in vitro, some strategies tried adenovirus 

infection of exogenous hTERT 33 and interestingly Cdc42 activation pathway255.  

Another alternative of long time span live hepatocytes in vitro are hepatic cell lines derived from liver tumor 

biopsies. The majority of these hepatocytes lines have unlimited growth potential but do not exhibit sufficient 

functionality when used in pharmaco-toxicological applications neither can be used in therapeutically 

applications256.  

In contrast to humans, rodents display high regeneration capacity due to the durable telomerase activity257. 

Nevertheless, in vitro, both human and rodent primary hepatocytes showed a limited proliferation activity even 

under good culture conditions. In this way, the MAPK pathway is implicated in primary hepatocytes senescence by 
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p21 induction. Thus the pharmacological inhibition of MAPK in vitro succeeded to allow better hepatocytes 

proliferation rate and survival33, 258 .  

When orthotopic liver transplantation is not agreed in the playing field of liver therapy, human primary 

hepatocytes exemplify the ‘gold standard’ for the founding of the bioartificial liver systems 259, also serve research 

development strategies and in vitro pharmaco-toxicology assays 260. Beside the increase in the need of the human 

primary hepatocytes, the throughput of production are limited by the complexity of isolation, the inadequate 

human supply, the high cost, the excessive variability and the low “in vitro” proliferation potential.  

 

3.5. Resident Liver bipotent Stem cells : Origin and limitation in liver regenerative 

potential 
The ability of liver cells to proliferate in response to transitory injuries is efficient. However, when defect concerns 

mature liver cells such in cirrhosis and massive insults, the involvement of hepatic progenitors was reported, but 

unfortunately was also not sufficient. Although, the liver contains facultative stem cells that can be activated in 

answer to different stimuli 32 and the majority of liver regeneration are shown to be progenitor independent , 

however these stem cells play an interesting role in some chronic liver failure 261-263. This population was shown to 

interfere in liver regeneration when hepatocytes are prevented to proliferate via chemical toxic molecules 30.  

Liver stem cells were observed first in rat liver, upon chemical injuries, a small group of cells with high nuclear 

cytoplasmic ratio with ovoid nucleus called “oval cells” migrating from portal zone into lobule, proliferating broadly 

and differentiating into hepatocytes34, 264. The most likely origin of the precursors of oval cells in adult tissue was 

reported to be the biliary ductals of the Canal of Hering23, 265 and so-called “intermediate hepatocytes” (Fig.10). 

Thus, based on their liver arising place, they were considered as bipotential progenitor cells, capable of generating 

mature hepatocytes and cholangiocytes 31. Interestingly, oval cells were also differentiated into different 

endoderm derived tissues such as intestinal epithelium 266 and pancreatic acinar cells 267 under optimized 

conditions.  

 

 

Figure 10: Schematic view of the bipotent progenitor’s location in the liver 
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Stimulatingly, in human liver pathology, liver stem cells have been shown as bipotent intermediate epithelial 

hepatobiliary cells yielding to both hepatocytes and bile ducts cells 266, 268. These progenitors present a robust 

similarity to oval cells in rodent. Thus the general use of “oval cell” indicates in some reports the LPs for all species. 

Human LPs/stem cells differentiation has been observed during acute and chronic liver diseases but was 

insufficient to perform complete liver regeneration. Unfortunately, little is known about the homogeneously 

aspect and the molecular mechanisms regulating the oval cell response to injuries. The complexity of the cell liver 

composition, hepatocytes, bile ducts, hematopoietic cells, ECs, macrophages, stellate cells, and others avoids to 

reach information regarding the activation of liver stem cells 269.  

On the other hand, Petersen and coworkers were the first to describe in human that resident liver stem cells 

termed “ductal reactions”, express markers previously believed to be hematopoietic stem cells (HSCs) and might 

be derived from Bone Marrow270 . Four years later, they report same information in mice oval stem cells271. Basing 

on these evidences several reports isolated hepatic population expressing hematopoietic markers such as c-kit (the 

receptor for stem cell factor), Sca-1 (stem cell antigen 1), Thy1 (CD90), and CD34 and processed for further surface 

markers investigation 36-38. Oval stem cells isolated from rat were the typical model, where the discovery of OV-1 

surface marker was very useful in the study of LPs 272, 273 . In addition rat and human oval stem cells co-express 

KRT19 and Alb the markers of bile duct epithelium and hepatocytes respectively with high expression of fetal 

hepatoblasts marker AFP 34, 35. In a next step, activation of oval cells after hepatectomy was investigated in mice 

induced- chronic liver injury models which are considered more genetically controllable than the rat262, 274, 275. 

Conversely, mice oval cells differ from their rat and human equivalents by not expressing AFP220. Consecutively, 

based on immunostaining data and surface markers, oval cells don’t represent a distinct cell type that is not 

present in the normal liver.On the other side, human liver biopsies harbored in vitro colonies expressing EpCAM+ 

and CD133+ progenitors with high capacity of proliferation. Unfortunately these progeny cells were shown to 

constitute only 0.1% of total Epcam+ stem cell population involving hepatocytes and hepatoblastes 40. Although 

hepatic stem cells are activated during liver injury, they are not able to complete regeneration in chronic diseases.  

 

Figure 11: Stem cells lineage relatives in adult liver and pancreas. (A) Classic model depicting one single 
hepatic oval cell type, for both lineage (B) Oval cell heterogeneity model. Different stages of oval cell 
maturation. The most mature oval cell is bipotential and gives rise to hepatic and duct cell. (C) Unilineage 
model for each biliary and hepatic tissue 
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Hence, different hypothesis were established to design the lineage relationships during oval stem cells activation 

and liver regeneration. It’s possible to have one type of oval bipotent hepatic stem cells (A), or multiple classes of 

oval progenitors (B) or distinct precursors for hepatocytes and bile ducts (C) (Fig.11). Based on this suggestion 

regarding the identification markers of bipotent LPs, the liver was classified as a non-classic stem cell system. One 

of the difficulties in doing lineage experiments with oval cells has been the lack of oval cell-specific markers for long 

decades.  

 

 

3.5.1. In vivo strategies for bipotent stem cells lineage tracing 

Wang et al 23, in 2003 showed that liver bipotent progenitors have a great hepatocyte reconstitution capacity 

when transplanted to fumarylacetoacetate hydrolase mutant (FAH-/-) mice without addressing whether 

cholangiocytes arisen from transplanted oval stem cells .  

Several trials were conducted to track the oval cells in vivo and were based on labeling the embryonic bilary tractus 

genes in LPs cells by inducible-Cre promoters systems in mice transgenic model such as Foxl1, Sox9 and 

Osteopontin (OPN). Foxl1-Cre labeling using the β–GAL as a reporter didn’t distinguish a single labeling of bipotent 

oval cells ; Indeed, the activation of the gene promoter upon injury, leaded to the expression of β-GAL 

simultaneously in the hepatocytes and biliary cells276. More recent report, used Sox9-CreER and always failed to 

track the oval bipotent at single-cell levels41, 42 but confirmed their implication in the hepatocytes recovery. 

Recently, the labeling of OPN showed that oval bipotent stem cells contribute only to 2.5 % of hepatocytes during 

recovery of liver injury43. 

 

Despite all these limitations for liver regeneration success, several points seem to be an attention-grape for stem 

cell- liver regenerative medicine such as (i) the impact of aging on stem cell hepatic potential (ii) the modeling of the 

bipotent liver stem/progenitors (iii) the Cdc42 as a novel gene involved in oval cell regeneration .  

Thus, the establishment of a reproducible method to generate bipotent liver stem cell lines in vitro will provide a 

new tool for (1) Discriminating the hepatocytic and cholongiocytic markers within this heterogeneous population, 

(2) Optimizing stem cell differentiation for liver cell-base replacement strategies and (3) Microengineering of liver 

models for drug screening toxicity.  

Recently the Wnt target gene LGR5 (Leucine-rich repeat-containing G-protein coupled receptor5) was reported to 

mark mitotic stem cells in self-renewing tissues such as small intestine, stomach, colon and liver and hair46-48. 

Interestingly, in a 3D system culture favorable for Wnt driving pathway, isolated single Lgr5+ stem cells co-

expressed sox 9 and formed organoids retaining the structure of the original epithelial tissue47, 56, 277 .  

In the next chapter, I will discuss the recent strategies of modeling bipotent liver oval stem cells in vitro and their 

differentiation into hepatocytes. Also, I will focus on the LGR5 signaling pathway implicated in the hepatogenic 

potential of stem cells.  
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CHAPTER 4  
Advances in Reprogramming of mature Hepatocytes towards 
Bipotent Liver Progenitors (LPs) via the Activation of the WNT-
LGR5 Pathway  

As far as the increasing effort to develop in vitro hepatic stem cells and cell lines recapitulating in vivo metabolic 

features with a cost reduction, Soldatow et al 278, reported during 2013 criteria of the faithful hepatotoxicity cell 

models in vitro. Although these liver cell models mainly presented reduced function compared to in vivo liver, they 

are allowing the screening of several molecules in a shorter time and are contributing to the liver microengineering 

strategies and the lineage tracking of liver development. The liver is well known for its strong damage-repair 

response. However the mechanisms responsible for its regenerative potentials follow different schools of concept. 

Different types of strategies were used for lineage tracing of bipotent liver stem cells to mimic the human in vivo 

mechanisms of liver regeneration. In human, LPs are detected close to hepatocytes expressing epithelial ductal 

markers279. Thus, because of the lack in tracking human cells in vivo, it’s very difficult to know if the ductal 

progenitors derive from hepatocytes or inversely. Recently, hepatocyte plasticity (dedifferentiation than 

differentiation) emerged with Huch et al,280 as “an old player in the new viewpoint of looking at liver repair” 280. 

Indeed, hepatocyte lineage tracing showed a high capacity of hepatocytes to dedifferentiate into stem cell state 

upon injury and to give rise to both hepatocytes and biliary duct cells44. The new viewpoint was that hepatocytes- 

derived bipotent stem cells showed expression of LGR5, known to be Wnt-driven receptor and downstream 

effector. In addition, these bipotent liver stem cells are reflected to be an alternative source for liver autologous 

stem cells based liver therapy.  

That’s why, in this chapter, I will discuss the latest advances in liver stem cell generation from primary hepatocytes 

besides the limitations of use of primary hepatocytes, liver cancer cell lines and pluripotent stem cells. Then, I will 

report the recent evidences of both hepatocyte’s reprogramming and plasticity in vitro and in vivo exposing the 

different strategies recently conducted in this field (labeling, lineage tracing, chlonogenicity, and transplantation). In 

addition, the LGR5-Wnt axis, implicated largely in embryonic liver development and liver regeneration, will be 

described in order to clearly understand the role of this pathway in self-renewal, maintenance and differentiation 

of these liver bipotent stem cells LGR5+ liver bipotent stem cells derived from adult liver hepatocytes.  

 

4.1. Latest cues for Hepatocytes development in vitro  
4.1.1. Limitations of Primary Human Hepatocytes (PHH) 

As mentioned in the previous chapter, PHH present a lot of limitations even though they are the best source of 

hepatocyte in vitro. In most cases, the greatest liver resections quality is reserved exclusively for transplantation, 

however PHH isolated from other biopsies are minor in quality. The single donor derivation limits their genetic 

homogeneity for a whole population. Additionally, their lifespan varies from several hours to several days only 

restricting their long usage. Furthermore their isolation procedure defines their quality in vitro. Indeed, the 

digestion of biopsies disturbs the cell-cell interactions and leads to ECM membrane transporters destruction281. 

Even by trying to create 3D organoids models for PHHs, the Cyp450 activity is dramatically lower than the in vivo 

activity. Immortalized HPP cell lines by the Simian vacuolating virus 40 (SV40) Large T or telomerase reverse 

transcriptase (TERT) present limited functionality , genomic instability and lack in androstane receptor (CAR)282. 

Additionally, their activity must be verified frequently before any expressive information can be measured278.  
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On the other hand, liver cancer cell lines such as Hep3B, Huh7, HBG, and HepG2 lines282, present an instability of 

Karyotype and a decrease in functionality even though they are CYP450 inducible 283. Therefore, they do not 

present a stable alternative for in vitro models to study hepatocyte functionalities282. Some cancer line include stem 

cell characteristics and plasticity potentials: HepaRG cells , derived from a female patient presenting an hepatoma 

reserve liver glycolysis and the majority of xenobiotic- induced CYP450 enzymes similar to the in vivo activity of 

PHHs284 . Interestingly, HepaRG cells are a bipotential cell line capable of trans-differentiation to both hepatocytes 

and cholangiocytes depending on culture media conditioning and media composition197. However, they are 

limited by the fact that they are derived from a single donor and having a single genetic background and thereby, 

they can’t be used in hepatobiliary development strategies for liver disease treatments.  

Due to all these unsecured limitations, the appearance of alternative sources for hepatocytes is a must. Human 

pluripotent stem cells appear to be an interesting tool for both pharmaceutical industry and stem cell-base science.  

 

4.1.2. Human Mesenchymal stem cells ( hMSCs)  

MSCs are multipotent progenitor cells found in several body tissues 285. Although bone marrow was the first source 

described to contain MSCs, it has been reported that MSCs can be isolated from Adipose tissue, human UC tissue 

and blood, synovium, dental pulp, amniotic fluid, skeletal muscle lung, liver64, 286-289. Interestingly, MSCs offer another 

advantages in comparison to adult multipotent hematopoietic stem cells (HSCs): they have immunomodulatory or 

immunosuppressive properties 289. Moreover, MSCs can be clinically translated into the ability to induce tolerance 

after liver transplantation. On the other side, MSCs emerge as an attractive stem cell source for cell liver therapy 

presenting low ethical risks, easy availability , safe plasticity and great use for allogeneic organ and tissue repair 290. 

Many approaches illuminate a link between MSCs and hepatic fate, and explain why MSCs represent a feasible 

alternative to human adult hepatocytes, which is giving a new hope for autologous cell therapy. The hepatogenic 

potential of hMSCs and recent findings for MSCs-based liver therapy will be discussed largely in the chapter 6 and 

7.  

 

Figure 12: Regulation of ESCs pluripotency by LIFR and Wnt pathways 291 
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4.1.3. Generation of hepatocytes from human Pluripotent Stem cells ( PSC)  

 

4.1.3.1. human Embryonic Stem Cells ( hESCs) 

hESCs are pluripotent stem cells derived from the inner cell mass of blastocysts292. hESCs have the ability to 

proliferate indeterminately in vitro . Contrarily to mouse ESCs, the hESCs‘ pluripotency is not LIF/gp130/STAT3 

pathway dependent 293. Leukemia inhibitor factor activates the JAK-STAT3 pathway through the class I cytokine 

receptor gp130 and others downstream signaling pathways such as PI3K/Akt and Erk/Mapk294 . It was shown that 

STAT3 play a crucial role in the mouse ES self-renewal via induction of c-myc expression 295 . Interestingly, hESCs are 

shown to be more similar to mouse epiblast stem cells (mEpiSCs) rather than to mouse ESC presenting a primed 

pluripotency state. Thus, hESCs require in their medium bFGF instead of LIF to maintain self-renewal and 

pluripotency, growing either alone or on mouse embryonic fibroblast (MEF). Although hESCs are shown to express 

LIFR and the signaling subunit gp130 which are able to activate the STAT3 phosphorylation and its nuclear 

translocation, human LIF is unable to maintain the pluripotent state of hESCs.293. On the other side, canonical Wnt 

signaling involving β-catenin has also been suggested to control mESCs and hESCs stemness via activation of the 

adhesion pathway through E-cadherin/β-catenin associated PI3K/AKT signaling294 296 297 (Fig.12) . hESCs present the 

capacity to differentiate into the three embryonic germ layers: mesoderm such as cardiomyocytes 298, ectoderm 

such as neurons  and endoderm such as hepatocytes 299, 300. Particularly, the hESC derived hepatocytes are able to 

repopulate injured liver and restore its functionalities 301. The use of hESCs is mainly limited by the ethical concerns 

of the embryos destruction and the immune incompatibility between donors and recipients of ESC transplants 302, 

303. Several studies have described the differentiation of the embryonic stem cells (ESC) into hepatocytes- like cells 

(HLCs). Different contributions have been made for optimizing the combinations and sequences of inducers used 

for the process of ESCs Hep-Dif 11, 12, 149. Indeed, when injected into mice, ESCs can generate teratocarcinoma and 

differentiate towards heterogeneous cell populations when undergoing differentiation strategies in vitro 13. To 

overcome the hESCs limitations and solve the problem of allogeneic rejection, Shinya Yamanaka , 2007304 and 

colleagues converted mice fibroblasts using just four transcription factors into so-called induced pluripotent stem 

cells (iPSCs).  

 

 

4.1.3.2. Human Induced Pluripotent Stem Cells  

The iPSCs were generated initially by transmission via retroviral mediated gene transfer of a large number of 

transcription factors highly upregulated in ESC. However, four of the initial factors were essential for the generation 

of iPSCs: namely POU Domain, Class 5, Transcription Factor 1 (POU5F1, also known as OCT4), SRY (sex determining 

region Y box 2 (SOX2), Kruppel-like Factor 4 (KLF4), and the c-myc avian myelocytomatosis viral oncogene homolog 

(c-MYC). The resulting iPSCs, like ESCs, were able to tri-lineage potential in vivo through teratoma formation and in 

vitro via embryoid body (EB) formation305. This work conferred to Yamanaka and John Gurdon the Nobel Prize in 

Physiology or Medicine in 2012. Later on, this reprogramming process was reproducible by many groups on 

human somatic cells 306. The major advantage of working with hiPSCs is that the ethical issues related to human 

blastocysts using are avoided. Outstandingly, hiPSCs can be derived from somatic cells of diseased patients and 

thus can be used to model human disease in vitro 307 (Fig. 13).  

 



 

33 | P a g e  
 

 

Figure 13: Generation of hepatocytes from iPSCs. Modeling of human liver 

disease in vitro308 

 

The permanent presence of viral mediated gene transfer make them unsuitable for cellular therapy approaches309. 

Additionally, hiPSCs harbor sometimes spontaneous mutations refractory to complete reprogramming 310 or 

conserve mutations from parental fibroblasts 311. That’s why the reprogrammed cell source of iPSCs plays a crucial 

role in their differentiation potential. Although fibroblasts are the common source of human iPSCs (hiPSCs), these 

cells have also been reprogrammed successfully to primary hepatocytes 312
.  

Furthermore evidences of successful generation of hepatocytes from different sources of iPSCs have been largely 

reported313
. Although, over the past three years, the strategies of iPSCs generation implied non-integrated vectors 

314or small molecules compounds315, they don’t have the ability to differentiate into fully mature hepatocytes. 

Indeed, the iPSCs derived hepatocytes were always termed hepatocyte-like cells (HLCs) showed to have lower 

levels of albumin production, CYP 450 activity, urea production and a persistent AFP expression316.  

Several protocols were conducted to differentiate iPSCs towards hepatocytes and were optimized in term of 

culture time, differentiation steps and specific hepatocytes functionality. After a lot of trials yielding to non-

functional hepatocytes15, recent strategies showed better efficiency with a 3 three-steps differentiation protocol 317 

and an average of 12 days in culture. Thereby, the hiPSC-derived hepatocytes generated by Asgari et al318 

expressed albumin, glycogen storage capacity and CYP450 activity and were able to repopulate CCl4-injured 

mouse liver. Advances in this field used 3D culture suspensions for iPSCs to increase their expansion’s yields and the 

maturation of the derived hepatocytes 319 320, 321.  

Latest strategies tried to directly reprogram fibroblasts into hiHep (human induced hepatocytes) or to completely 

avoid pluripotency and teratoma formation through the induction of multipotent progenitor cells (iMPCs) before 

their differentiation towards the hepatocyte lineage322-324.  

Despite that, teratoma formation and immune response to pluripotency antigens in the non-differentiated iPSCs 

constitute always a cutoff of their translation into the clinical325-327. However, Hep-Dif from iPSCs is of high interest 
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in stem cell research field due to their importance as a tool in hepatotoxicity as well as modeling liver development 

and diseases 328, 329.  

 

 

4.1.3.3. Limitation of Endoderm specification from hPSCs  

 

To differentiate hPSCs into hepatocytes, it is crucial to recapitulate the in vivo developmental process in vitro and to 

take into consideration the main signaling pathways driving the Hep-Dif.  

During the definitive endoderm (DE) specification, Activin/Nodal signaling is implicated in model organisms such as 

mouse as well as humans 330. At this step of differentiation, Activin A, a member of the TGF β superfamily of 

proteins, coordinates with Fibroblast Growth Factor FGF and WNT/β-catenin signaling pathways 331. Indeed , first 

the activation of ERK, the downstream of FGF, leads to SOX2 expression to maintain pluripotency of PSCs 332.  

Next, this triggered axe promotes the induction of the DE 333. That’s why, Activin and FGF were used universally to 

induce DE from PSCs. The endodermal differentiation could be completed by the activation of the downstream 

Mothers Against Decapentapligic Homolog 2/3 (SMAD2/3) complex 334.  

WNT is reported to be required only to initiate endodermal differentiation 335. Indeed, canonical WNT /β-catenin 

induces and maintains the endodermal regulator SRY (Sex Determining Region Y) Box 17 (SOX17) expression in 

coordination with Smad2/3 and 

upregulates the specific endodermic genes such as FOXA2, Sox17 and HHEX 336. Therefore, the inhibition of GSK3β, 

a component of β-catenin destruction complex, enhanced the endodermal differentiation of PSCs337.  

 

During the hepatic specification hepatoblasts can differentiate into either hepatocytes or cholangiocytes. This 

progression involves the specific transcription factors FOXA2 and GATA Binding Protein 4 (GATA4) 338 which are 

capable of binding to DNA and activating the key hepatocyte markers transcription such as ALB .  

Conversely, Notch activation pathway mediates the cholangiocytes development from hepatoblasts. The Notch 

pathway represents at present a great tool to differentiate cholangiocytes from endodermal progenitors derived 

from iPSCs339. The table 1 below shows the variability of recombinant growth factors used to direct the initial stage 

of differentiation from the pluripotent state towards the endoderm. In addition, to date, a lot of small molecules 

were used to optimize the endodermal step differentiation from hPSCs337, however they block the further 

differentiation steps to endodermal tissues such as hepatocytes or cholangiocytes. Unfortunately, the exit from 

pluripotency to DE regulatory pathways are not yet clear and constitute a strong limitation for in vivo and in vitro 

success of hPSCs differentiation towards hepatocytes.  

 

Besides all the limitations to obtain functional hepatocytes in vitro from PHH or transformed liver cell lines and 

overcoming the ED or hPSCs differentiation step, developing new models especially in hepatoxicity areas is a must. 

Interestingly, the HepaRG hepatoma cell line was showed to present bipotent progenitors in a manner of DE 

derived progenitors after plating. These bipotent progeny coexpress cKit, KRT18, KRT19, CD34, OV6, LIF receptor 

and Integrin β1340, 341. In addition, at subconfluence, they are able to lose progeny potential and to differentiate into 

normal adult hepatocytes and cholangiocytes with higher potential of longevity in vitro than PHH in culture. On the 

other side, researchers suggested that the iPSCs have a greater differentiation potential to their cell type of origin 

due to their lineage-specific epigenetic memory342. Basing on all evidence, reprogramming primary hepatocytes 

backwards to their endodermic lineage emerged as a new challenge to expand bipotent LPs in vitro.  
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Table 1: Variability in available growth factor and endoderm lineage differentiation steps time reported for hPSC-derived 

hepatocyte generating in vitro. ActvA: Activin A; Na: sodium; DEX= Dexamethasone; HGF= Hepatocyte Growth Factor; 

KGF=Keratinocyte Growth Factor; RA=Retinoic Acid  

 

 Days in culture  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21+  

hE
SC

s 

DMSO HGF HGF+OSM  
343 

Actv A FGF4+BMP4 HGF OSM+ Dex  
122 

Actv A+ Na butyrate DMSO HGF+ OSM  
344 

Actv A HGF+ FGF4 HGF+ FGF4+ OSM+ Dex  
11 

Actv A+Wnt3a DMSO HGF+ 

OSM 

 

 
345 

 

hi
PS

Cs
 

Actv A FGF4+BMP4 HGF+KGF OSM+ Dex 
346 

Actv A+Wnt3a Actv A DMSO OSM+ HGF  
347 

Actv A FGF2 HGF OSM  
37 

Actv A ActvA 

+FGF2+BMP4 

FGF1/2/4+BMP4 HGF+ EGF+ 

OSM+ Dex 

348 

Actv 

+FGF2 

Actv +FGF2+ PI3k 

inhibitor 

FGF10+RA+ 

TGFβ receptor 

FGF4+HGF+EGF 

 

 
121 

Actv A FGF4+HGF FGF4+HGF+OSM+Dex 

 

 
312 

 

 

 

4.1.4. Hepatocytes plasticity a new era in hepatology : Hepatocytes can give rise to 

bipotent Liver Stem cells  
Largely discussed and described in the previous chapter, bipotent liver stem cells (oval cells) are also reported to be 

able to differentiate into hepatocytes 349 as well as their potential to repopulate the liver in mice liver failure 

models350 351. Liver bipotent progenitors (oval cells) were isolated by immunoselection of the epithelial cell 

adhesion molecule positive (EpCAM+) cells. These cells present high self-renewal ability and a phenotypic stability 

after expansion for 150 population doublings. Freshly isolated or after their expansion in culture, transplanted 
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EpCAM+ cells repopulate livers of NOD/SCID and are able to express human specific proteins352. Furthermore, 

another report showed that the bipotent progenitors involved also Sox9+EpCAM-population and gave rise to 

cholangiocytes. A subpopulation of Sox9+ cells were shown to express interestingly HNF4α and potentially to 

supply with new hepatocytes in order to repair damaged tissues353. However, the reticent number of LPs 

representing 0.1% of the liver cell mass makes their isolation and expansion difficult and restricts their application 

to small-scale use 40, 354. Thus the availability of a large number of bipotent LPs cells was suggested as a key factor to 

overcome all the limitations associated with ethical and efficiency of hepatocytes generation in vitro from hPSCs. 

As discussed in the previous chapter, the liver is described as special among other regenerative organs in a manner 

that the type of injury supposed to order the cellular recovery355. For many years, the question mark concerned 

the identity of the atypical bipotent ductal cells accumulated after toxin mediated injury, and if these cells have 

been derived from expansion of resident liver stem cells within the ductal zone/canals de Hering or upon 

spontaneous reprogramming of mature biliary duct cells and hepatocytes. 

 

 

Figure 14: Schematic for hepatocytes dedifferentiation into bipotent progenitors able to give rise to new 
hepatocytes. Fah+/+ functional hepatocytes are transplanted in chimeric liver mice knockout for FAH 45.  

 

 

Nowadays, good indications stand up that hepatocytes can “transdifferentiate” into ductal biliary epithelial cells in 

certain injury models353, 356, 357 and/or by required modulation of Notch 358and Hippo pathways359. Also, several 

reports have shown that hepatocytes can be converted into a cholangiocarcinoma originating exclusively from 

genetic alterations of cholangiocytes360. It was suggested by lineage tracing that these biliary bipotent epithelial 

cells are derived from reprogrammed hepatocytes through a cascade similar to the flow reprogramming described 

for inducing iPSCs from fibroblasts. In additions, these progenitors gave rise to new cholangiocytes and 

hepatocytes to recover liver cell loss in animal model361 (Fig.14). This phenomena was explained clearly with Tarlow 

et al45, in 2014, since they conducted an interesting in vivo lineage tracing for liver bipotent progenitors. 

Fascinatedly, they showed that fluorescent protein mTomato- labeled hepatocytes Fah+/+ transplanted in Fah-/- 

mice repopulated chimeric livers and gave rise to KRT19+EPCAM+OPN+SOX9 biliary duct progenitors.They also 

showed that hepatocyte-derived progenitors from donor hepatocytes were distinct from the host mice biliary-

derived counterparts; Indeed, the conversion of hepatocytes into bile duct progenitors was associated to an 

increase in KRT19 and Epcam expression compared to the parental hepatocytes but always lower than the host 
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biliary ducts progenitors . Furthermore, these hepatocytes derived progenitors reserved a memory of the donor 

hepatocytes of origin and were able to differentiate back into hepatocytes after the complete regeneration 

process through Notch and Wnt regulation pathways. Hepatocyte and Bile Duct-Derived oval Cells were shown to 

be functionally distinct in vitro. After progenitor’s isolation and incubation with Rspo-1 expansion medium for 

organoid assay, hepatocytes derived progenitors were not able to form organoids compared to the host mice 

biliary ducts progenitors. However, human hepatocytes derived progenitors, once exposed to Hep-Dif medium 

containing Dex and OSM, were able to differentiate into Albhigh hepatocytes distinctly to the host mice LPs45.  

 

 

Figure 15: Generation of liver bipotent progenitors mediated by chemical small molecules. YAC 

cocktail mediating primary adult hepatocytes reprogramming into bipotent progenitors able to 

repopulate injured livers and to differentiate into hepatocytes and cholangiocytes in vitro 54 

 

Based on that evidence and on the failure of maintaining the bipotentiality of LPs within stable culture, the 

development of an in vitro experimental model to improve the understanding of adult hepatocytes 

reprogramming was a crucial additional tool. In this context, Katsuda and his crew recently found that a 

combination of small molecules, Y-27632 (non -canonical Wnt pathway inhibitor), A83-01 (β-FGF signaling 

inhibitor), and CHIR99021 (GSK-3 inhibitor/canonical Wnt activator), so-called (YAC) permitted a stable culturing of 

adult mammary progenitor cells and multipotent mammary tumor cells. They were based on this discovery and 

showed that YAC- treated rat and mouse primary hepatocytes can be reprogrammed into bipotent LPs which they 

refer to as chemically induced LPs (CLiPs) (Fig.15). These CLiPs were able to differentiate in presence of OSM, Dex 

on matrigel into functional hepatocytes expressing Alb and HNF4α. Furthermore, CLiPs on MEF feeder layer then 

in iPSc feeder-free medium supplemented with YAC molecules give rise to biliary duct cells expressing KRT1954 .  

Interestingly, in vitro induced CLiPs regenerate with high efficiency chronically injured liver tissue in urokinase-type 

plasminogen activator (uPA) transgenic mice crossed with severe combined immunodeficiency disease (SCID) 
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mice. These findings confirmed the hypothesis that human hepatocytes reprogramming could today serve as a 

novel source of LPs and overcome the limitations of cell source lack for use in liver regenerative medicine 362.  

To spot, hepatocytes derived progenitors were shown to express higher levels of the putative progenitor marker 

leucine-rich-repeat-containing G protein-coupled receptor 5 (Lgr5) 45. LGR5 is a Wnt target gene highly expressed in 

dividing stem cells in Wnt-driven, self-renewing tissues such as small intestine and colon46, stomach47, hair follicles48 

and recently in liver. This issue will be discussed in the following section.  

 

4.2. LGR5-Wnt axis a new marker of liver stem cells in association with STAT3 pathway  
LGR5 is a G-protein-coupled receptor with a 7-transmembrane domain termed Frizzled (FZ/Fzd)363 crucial for 

maintaining proliferating progenitors in epithelial tissues such as mammary epithelium, the developing kidney and 

the ovarian epithelium49 . The low-density lipoprotein (LDL) receptor-related protein 5/6 (LRP5/6) is a co-receptor 

and involved in the activation of the canonical Wnt pathway364. R- spondins were reported to be the ligands of 

LGR549 . Following bonding to the LGR5, R-SPO strongly promotes the activity of Wnt-Frizzled mediated signaling 

(Fig. 16).  

 

 

Figure 16: WNT pathway activation by LGR 5. (A) In the absence of Wnt, β-catenin is phosphorylated by 

the destruction complex formed of APC, AXIN, GSK3, and CK1. RNF43 removes the Frizzled/LRP receptors 

from the cell surface, resulting in their degradation (B) Wnt, binds to Frizzled and RSPO to LRP5/6, LRP5/6, 

Disheveled (DVL) is recruited to the plasma membrane to interact with Frizzled then with AXIN preventing 

the destruction of the triple complex . Β-catenin is stabilized, and translocated into the nucleus mediating 

the transcription of Wnt responsive genes. LGR5-RSPO inhibits the action of RNF43 to degrade frizzled 
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When the Wnt ligand is present, the destruction complex that includes Adenomatous Polyposis Coli (APC) and 

AXIN down regulates β-catenin levels. In this case AXIN mediates the phosphorylation of β-catenin via casein 

kinase 1 (CK1) and glycogen synthase kinase 3 (GSK-3) 365. Conversely, when R-SPO ligand binds to Fzd and the 

LRP5/6 co-receptor, AXIN cooperates with the plasma membrane and promotes the phosphorylation of LRP5/6 by 

GSK-3 and CK1. Thereby, AXIN is despoiled, and GSK-3 prevented phosphorylating of β-catenin. The translocation 

of β-catenin to the nucleus facilitates its interaction with T-cell factor (TCF) and lymphoid enhancer binding protein 

(LEF) transcription factors to induce the downstream transcriptional factor 366. Indeed, LGR5-Rspo binding causes 

two E3 ubiquitin ligases removal from RNF43/ ZNRF3 protease-associated domain and thereby prevents the 

degradation of Frizzled and leads to a prolonged and a loop of Wnt signal activation367 . Under a loop mechanism, 

RNF43 and LGR5 are re-encoded by the target genes of β-catenin / TCF Wnt downregulating transcriptional 

process. LGR5+ stem cells were reported to express Wnt receptors (Frizzled), FGF receptor 4, Insulin receptor and 

NOTCH receptor 1, Sox9 and a lot of genes regulating apoptosis, genome integrity, and the cell cycle and 

transcriptional regulation367. Thus Wnt downstream genes were considered associated stem cell markers such as 

Axin2 and β-catenin. Unfortunately, LGR5 is expressed in a small number of cells in many tissues 46 47 , therefore the 

isolation and expansion of these progenitors is crucial to study the molecular mechanism regulating their 

regenerative potential.  

 

To maintain pluripotency in stem cells, LGR5+ cells require absolutely a healthy STAT3 pathway function. Indeed 

the knockout of STAT3368 in intestinal and hair369 LGR5+ stem cells leads to their apoptosis or to an asymmetric 

division. More interestingly, upon induction of injury in vitro, STAT3 phosphorylation is upregulated in LGR5+ stem 

cells and its activation was essential to generate LGR5+ organoids 50. For several years, the crosstalk between these 

two pathways was unclear. Recent findings with Tian et al, 201751 reported that under injury, p-STAT3 is crucial to 

upregulate the canonical LGR5/Wnt signaling and to repress BMP/TGFβ signaling pathways in intestinal LGR5+ 

stem cells in a manner to standup pluripotency and self-renewal (Fig.17) . This hypothesis supports the use of BMP, 

TGFβ and non-canonical Wnt pathways inhibitors during the induction of organoids from LGR5+ stem cells in 

presence in canonical Wnt activators such as Rspo1 and Wnt3a.  

 Several years ago, the crosstalk between LIFR /gp130/ STAT3 and LGR5/Wnt was not discussed notably in liver 

stem cells. Interestingly, few months ago, Shih et al370 studied this crosstalk within isolated bipotent liver stem cells. 

First, their aims were based on the evidence that IL-6 / STAT3 pathway activation was shown to upregulate the 

Wnt/ β-catenin pathway in pancreatic cancer cells 371 . Second, they report that pigment epithelium-derived factor 

(PEDF) was also able to induce the LIFR/gp130/AK/STAT3 phosphorylation cascade in Lgr5+ stem cells 372. On the 

other side, they showed in their experiments that PEDF is in parallel a crucial parameter for triggering the 

LGR5/Wnt axis in liver Lgr5+ stem cells. Moreover, they showed that the inhibition of STAT3 in liver stem cells 

leaded to the attenuation of the self-renewal and the blocking of the PEDF-Wnt-Lgr5+ activation axis. These new 

discoveries allowed the liver stem cells to be added on the list of Lgr5+ progenitors regulated by STAT3/Wnt axis as 

well as the Lgr5+stem cells derived from intestinal , pancreas and hair. Thereby, they expose the implication of 

some miR-31 regulators in LIFR/gp130/STAT3/Wnt/LGR5 stand axis . Thus these regulators can be considered new 

targets for the liver stem cell - based researches.  
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Figure 17: Crosstalk between Stat3/ LIFR and LGR5/Wnt in 

LGR5+ stem cells. Modified from Van Andel et al, PNAS, 2017373 

 

4.3. Recent progresses resulting from the Lineage tracing of LGR5 stem cells  
Interestingly, intestinal Lgr5+ stem cells in presence of a cocktail of growth factors containing epidermal growth 

factor, the BMP inhibitor NOGGIN, and Rspo-1 ( called Rspo cocktail) on 3D-matrigel scaffold grew into organoid 

respecting the structure of the in vivo epithelial architecture374. The addition of Wnt3a to the above- mentioned 

cocktail was essential to give rise to mice colon organoids with long term maintenance in culture277. Furthermore, 

The Rspo cocktail endorsed the induction of organoids from liver and pancreas52, 375. Distinctly, these two organs do 

not contain Lgr5+ stem/progenitor cells in normal homeostasis. Upon tissue damage, ductal cells express LGR5 and 

participate in regeneration. On 3D matrix, LGR5 liver stem cells formed cystic organoids retaining the gene 

expression of the liver over several passages. Furthermore liver Lgr5+ organoids can differentiate into functional 

hepatocytes. Transplanting these progenitors in vitro generated hepatocytes into Fah-/- liver damage models 

resulted in liver regeneration. However, organoids derived from human colon Lgr5 374, 376required modifications in 

vitro and the addition of inhibitors of some pathways involved in the self-renewal and apoptosis such as 

transforming growth factor β, Notch 377, 378and p38-MAPK. These findings proposed the tissue-specific organoids as 

a novel tool for regenerative medicine purposes. 

Based on this evidence, Clevers with Huch et al, 52 2013 conducted a lineage labeling strategy using a novel Lgr5-

ires-CreERT2 knock-in allele. Upon damage, Lgr5+ cells generate both hepatocytes and cholangiocytes in vivo. 

Isolated single Lgr5+ cells from damaged liver expand in vitro as clonal organoids in presence of Wnt activator in the 

culture over several months. Moreover, the self-renewed Lgr5+ organoids were able to differentiate into functional 

hepatocytes when transplanted into FAH−/− mice. Conversely to other dynamically self-renewing tissues 
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exhibiting a continuous Lgr5 stem cells division, the liver is considered a tissue with low rate of proliferation and 

cells rise in the ductal track only upon liver damage. Thus Lgr5 is expressed  early after damage than it acts as a 

switch between on and off states depending on the levels of Wnt in the environment in a manner to order the cells 

whether to proliferate or not. Thereby, perturbation in Lgr5-Wnt driven regenerative response was shown to be 

responsible of hyper-proliferation in liver cancer and excessive degeneration in cirrhosis379. Overall, these findings 

support the fact that the Lgr5/Wnt pathway is a novel liver stem cell axis, crucial to induce LPs during the 

establishment of liver engineering and liver cell-based therapy strategies. I will discuss in the next sections the role 

of Lgr5 in liver stem cells regenerative potential within the latest findings in this filed.  

 

 

4.4. LGR5 a novel marker for long term culture and expansion of stem cells in 3D field 
In adult liver Wnt pathway is active only in perivenous hepatocyte380. However in bile duct Wnt is activated upon 

injury381. Distinctly, in liver, Lgr5 progenitors are not expressed in healthy adult liver, however they appear near the 

biliary duct upon injuries in association of Wnt signaling activation 382. This evidence was confirmed by mouse 

lineage tracing knock outing for Lgr5, where LPs Lgr5+
 
generate hepatocytes and bile ducts in vivo. Fascinatedly, 

single Lgr5+ cells isolated from damaged mouse liver showed stable organoids structures in Rspo1-based culture 

medium for numerous months. Rspo-1 is the Wnt agonist discovered as a ligand of Lgr5383. Furthermore Lgr5 

progenitors expressed Wnt target genes and some markers of other Lgr5 Wnt-driven tissues. In a next step, these 

Lgr5-derived organoids give rise to hepatocytes in vitro and repopulate livers of Fah -/- mice 52. Accordingly, the axis 

Lgr5-Rspo1 was reported to be crucial to indefinitely expand LPs in vitro and to maintain the long-term growth of 

derived organoids without the need for genetic modifications or introduction of reprogramming factors384. Besides 

mice liver stem cells, long-term expansion of Lgr5+
 
adults stem cells were also been confirmed in intestine374 , 

stomach47, and pancreas 375. Interestingly, in these cultures, the derived– organoids remained committed 

genetically to their tissue of origin. In addition, new advances in human regeneration tissues, reported that 

culturing patient intestinal stem cells give rise to organoids mimicking the intestinal diseases385-387. On the other 

hand, clonogenic assays showed that EpCAM-positive human liver cells showed bipotent stem cells characteristics 

in vivo and in vitro117, 352.  

 

All these findings lead Huch et al in 2015 53 to establish a new organoid culture system for human liver stem cells. In 

fact, they isolate Epcam+ (ductal) cells from human biopsies derived from failure livers. These Epcam+ progenitors 

were able to originate organoids whereas hepatocytes (Epcam-) couldn’t (Fig.18). Furthermore, these organoids 

were cultured in Rspo-1 medium for 3 months and maintained normal chromosome numbers without genomic 

aberrations. They co-expressed Lgr5, Sox9 and KRT19. However, to induce Hep-Dif from these Lgr5
+ 
organoids, it 

was crucial to remove the Rspo1 and to add Notch inhibitor. Hepatocytes derived from Epcam+ Lgr5
+ 
organoids 

presented a high capacity to store glycogen, to uptake LDL, to secrete Alb and to metabolize drugs via both phase I 

and II detoxifying reactions. In addition, the transplantation of these human liver organoids into damaged CCL4-

Mouse Liver induced mice liver regeneration and high expression of Alb similar to human primary hepatocytes.  
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Figure 18: In vitro Human Lgr5+ organoids generation 
without Hepatocytes reprogramming process. 
Modified from the graphical abstract of Huch et al 
201553 

4.5. Footprints from this chapter 
These discoveries extend our understanding of the implication of liver stem cells in homeostasis and after liver 

injury induction. Although hepatocytes have been thought only able to generate hepatocytes and duct cells only 

duct cell, current evidence suggest that liver cells are capable of interconverting between cellular types of distinct 

phenotypic behaviors. In addition these discoveries showed that Stemness is not limited to stem cells but rather to 

a cellular state in which hepatocytes exhibit a high degree of plasticity and can move back to bipotent state of liver 

stem cell, similar to the hepatoblasts arising during the embryonic development able to differentiate into both 

hepatocytes and cholangiocytes.  

Here also we investigate two type of dedifferentiation of hepatocytes towards bipotent Lgr5+ stem cells either by 

reprogramming to a primitive state or by direct plasticity in 3D microenvironment after isolation, which is 

considered as a stressful situation to hepatocytes similar to the destruction of biological ECM in vivo upon injury.  

 

These findings elucidate also different cellular markers that are used to isolate bipotent liver stem cells such as 

EpCAM 352, Lgr5 52, Foxl1388, OPN42, Sox9 389or to enrich for cells in culture and transplantation. Inopportunely, the 

aforesaid markers are expressed also in biliary duct progenitors which complicate somehow their isolation. 

Thereby, standardizing the isolation strategy and getting the same progenitors population is shown to be difficult 

and impossible. Interestingly, Lgr5 only appears after liver injury in vivo and also after the reprogramming or the 

study plasticity of hepatocytes in vitro but never during homeostasis. 

Basing on all these observations, even in absence of tracing lineage in human, Lgr5 can be considered to be a novel 

marker for plasticity in vivo and in vitro. Lgr5+ derived organoids can constitute an alternative source instead the 

above mentioned PHH and PSCs limitations and thus contribute to a new human tool to study the human liver 

regeneration, liver disease mechanism, cell therapy transplantation and toxicology studies. Furthermore, the 

regulation of the Wnt/Lgr5 axis in bipotent stem cell-derived hepatocytes instructs their long-term proliferation or 

their differentiation fate. 
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Chapter 5 -: Introduction to the scientific paper 1  

Nowadays, there is no system culture maintaining hepatocytes proliferation and functions in vitro. Recently, a 

novel approach has derived liver bipotent stem cells from human liver hepatocytes. These cells were shown to 

express Lgr5 which is the Wnt activator controlling many important biological processes. In adulthood, Wnt 

signaling is essential for the maintenance of somatic stem cells and committed progenitor cell compartments. 

Wnt/β-catenin is involved in liver tissue regeneration processes following liver damages. Thus, Clonal long-term 

expansion of Lgr5+ liver progenitors allows new possibilities for disease modeling, toxicology studies and stem cell 

based regenerative medicine.  

 

TITLE:  

“Direct reprogramming of LGR5+ liver progenitors cells responding to both gp130/JAK/STAT3 and Wnt/β-catenin 

the signaling pathways” 

 

OBJECTIVES OF THE STUDY 

 Reprograming murine liver hepatocytes into Lgr5+ endodermic lineage progenitors (EndoPCs) via non 

integrative viral vectors in absence of Wnt small molecules activators.  

 Providing a distinctive molecular and cellular characterization of the Lgr5+ EndoPCs.  

 Assessing the hepatogenic potential of the Lgr5+ EndoPCs in 2D and 3D biocompatible scaffolds.  

 Evaluating the impact of Wnt /STAT3 pathway activation on the EndoPCs proliferation rate and Lgr5- 

organoid’s Wnt downstream effectors expression5 

 

STRATEGY and RESULTS 

Endodermal Progenitor Cells (EndoPCs) were produced by infecting mouse hepatocytes with recombinant 

adenovirus containing human Oct3/4, Sox2, Klf4, and c-Myc and STAT3 activators (LIF and IL6).  

In order to analyze the influence of liver stem cell compartment in EndoPCs samples, we performed SAM 

supervised analysis between EndoPCs and primary hepatocytes by using Lgr5+ cell gene expression profile 

previously identified. We have also identified a list of genes that are up-regulated in EndoPCs as compared to 

primary hepatocytes. Crossing the information of Lgr5 related genes up-regulated in the EndoPCs allowed to see 

that the majority of genes are common with Lgr5+ liver stem cells. Functional enrichment on Wikipathway 

database was performed showing that several pathways regulating stem cells proliferation were significantly 

enriched in EndoPCs including the WNT pathway, the genes belonging to the PluriNetWork and the TNF-β and NF-

Kβ signaling pathway. 

 

EndoPCs are responded to the gp130/JAK2/STAT3 signaling pathway:  

To determine whether LIF/JAK2/STAT3 pathway maintains self-renewal of EndoPCs, we selected clones expressing 

all endoderm progenitors’ markers and cultured them in low serum-containing LIF with and without JAK kinase 

inhibitor. Our results showed that after IL6 exposure, phosphorylation of STAT3 increased within 30 min and then 

gradually decreased after 1 to 4h showing that gp130/JAK2/STAT3 pathway contributes actively to EndoPCs self-

renewal. EndoPCs are shown to be LIF dependent in vitro and to not express mESCs and MSCs markers such as 

Oct-4, SSEA1, CD90, CD105, CD34, CD45 and CD117. The clonal EndoPCs are very stable at the chromosome level. 
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EndoPCs clones readily expressed definitive endodermic markers such as Sox17 CXCR4, GATA4 and the FOXA 

subfamily.  

 

EndoPCs are responded to Lgr5/Rspondin and WNT/β-catenin pathways: 

EndoPCs were further characterized for the expression of Lgr5 and their capacity to respond to Lgr5/Rspondin and 

WNT/β-catenin pathways using small molecules activating Wnt and inhibiting Notch and BMP pathways.  

To optimize the best conditions to activate Wnt/Lgr5 axis in EndoPCs, we found that the addition of 5 small 

molecules including Wnt3a, Rspo1, Noggin, EGF, and HGF was associated with a high expression of Lgr5, compared 

to other culture conditions. The addition of 5 factors was associated with the up-regulation of Lgr5, Axin2 and Tcf4 

and has permitted to form organoid-like structures in low attachment plate after 7 days of culture where the 

absence of these molecules lead to cell growth arrest and failed to generate organoid-like structures expression 

LGR5 and Wnt downstream effectors .  

 

In vivo intra muscular and intra splenic injection of EndoPCs give rise to hepatocytes and bile duct structure:  

To prove that EndoPCs are restricted to endoderm differentiation, EndoPCs were directly injected intramuscularly 

into NOD/SCID mice and tissues were analyzed. The tissue derived-EndoPCs produced the emergence of tissues 

showing two types of tissues, liver parenchyma-like structures and substantial areas bile duct-like expressing CK19+ 

(KRT19) and CK7 (KRT7)+ structures after histological analysis. On the other side, in order to document EndoPCs 

potential to colonize liver, EndoPCs-Luc expressing the luciferase gene were intrasplenically injected into adult 

C57BL/6 mice which had undergone a 30% partial hepatectomy.  

 

EndoPCs are bipotent cells that are able to differentiate into both hepatocyte and cholangiocytes in vitro: 

Finally, to evaluate the differentiation of EndoPCs into both hepatocytes and cholangiocytes in vitro, we have 

optimized two different differentiation media (DM) permitting to commit EndoPCs into hepatocytes (hDM) or 

cholangiocytes lineages (cDM) respectively. For hepatocytes differentiation, 2D and 3D culture systems were 

applied. We developed a 10-days protocol aiming to commit EndoPCs into hepatocytes like cells. Either 2D or 3D –

derived hepatocytes derived-EndoPCs expressed high levels of ALB without any detection of AFP transcripts in 

comparison to other culture conditions. Cholangiocytes derived hepatocytes expressed CK7. Also, derived 

hepatocytes were able to uptake easily the LDL. Although the 3D scaffold culture system gives rise to higher levels 

of hepatocytes markers, their amounts were lower compared to isolated mouse hepatocytes producing. Also Ttr, 

Tat, Cytochrome P450 and Cyp3A11 mRNA were expressed after differentiation and were able to metabolize 

midazolam to its main metabolite, 1-hydroxymidazolam by glucuronidation.  
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SUMMARY 

Leucine-rich repeat (LRR)-containing G-protein-coupled receptor 5 (LGR5) is a recently discovered marker of mouse 

liver stem cell population that appears near bile ducts exclusively upon liver damage. Damage-induced LGR5
+
 could 

be clonally expanded as organoids in a three-dimensional long term culture system with LGR5 and Wnt/ β-catenin 

ligands, able to produce functional hepatocytes in vitro. Here we succeeded in converting adult mouse hepatocytes into 

expandable and stable LGR5
+
 endodermal progenitor cells (EndoPCs) in vitro after exposure of 4 transcriptional 

factors (Oct-4, Sox2, Klf4 and c-Myc) and STAT3 activators. EndoPCs are dependent on three interrelated signaling 

pathways including gp130/JAK/STAT3, LGR5/Rspondin and WNT/ β-catenin controlling their proliferation and self-

renewing capacities. EndoPC have clonogenic potential and can differentiate into liver restricted lineages in vitro in 

two- and three-dimensional long term culture systems. EndoPCs are bipotent cells with the ability to generate 

hepatocytes-like cells and bill duct structures in vitro and to repopulate injured liver tissue in vivo. After intra-muscular 

injection EndoPCs have readily generated two kinds of tissues including Albumin and Cytochrome (Cyp3A11) 

positive areas similar to parenchyma-like structures and substantial bile duct-like structures positive for KRT19 and 

KRT7. Clonal long-term expansion of LGR5
+
 adult liver stem cells opens up experimental avenues for disease 

modeling, toxicology studies and regenerative medicine. 

 

 

INTRODUCTION 

The liver has an important latent regenerative capacity. After extreme stress or chronic injury a population of atypical 

ductal bipotent progenitor cells (BPCs) emerges from the bile ducts (1-2) and is able to differentiate into both 

hepatocytes and biliary cells as evidenced by lineage tracing after liver injury (3-4). However, the identification of 

liver BPCs and the signaling pathways that maintain the progenitor fate within the liver are still confusing. 

Surprisingly in contrast to the conventional BPCs theory, several groups have demonstrated that hepatocytes can be 

efficiently reprogrammed into proliferative BPCs in response to chronic liver injury (5-8). Recently the use of three 

small chemical molecules (Y-27632, A-83-01, CHIR99021) was shown to convert rat and mouse mature 

hepatocytes into proliferative liver progenitors cells that differentiate into both matures hepatocytes and biliary 

epithelial cells and are able to repopulate chronically injured liver tissue in urokinase- type plasminogen activator 

(uPA) transgenic mice (9). However these reports have not clearly identified the signaling pathways that maintain 

these chemically induced liver progenitors in culture in vitro, which were shown to give rise preferentially to 

hepatocytes and more rarely bile duct structures in vivo. In addition these biliary epithelial cells were shown to 

express only KRT19, which is also a hallmark of non-differentiated ductal bipotent progenitor cells and liver cancer 

cells (10)  

The leucine-rich repeat (LRR)-containing G-protein-coupled receptor 5 (LGR5) were recently shown to mark 

murine liver adult stem cells (4) , which were isolated in vitro through the development of organoids using a three-

dimensional long term culture system with high doses of Wnt/ β-catenin and LGR5 ligands. Human LGR5
+
 liver 

stem cells expressing both ductal (KRT19, SOX9, OC2) and hepatocyte markers (HNF4a) were also recently 

isolated and expanded into 3-D organoids that were efficiently converted into functional hepatocytes in vitro and 

upon transplantation in vivo (11).  

Here we have shown for the first time that after transient exposure in vitro of several embryonic transcriptional factors, 

mature hepatocytes can be directly converted into LGR5
+
 proliferative liver adult stem cells, called endodermal 

Progenitors Cells (EndoPCs).. We have evidenced that EndoPCs are dependent on STAT3 activators regulating 

gp130/JAK/STAT3, LGR5/Rspondin and Wnt/ β-catenin signaling pathways enabling their proliferation and their 

self-renewing capacities in 2-D long-term culture conditions. We have shown that EndoPCs can be readily converted 

into both functional hepatocytes and biliary cells in vitro and upon transplantation in vivo.  

 

 

MATERIALS AND METHODS  

 

Establishment of EndoPCs from hepatocytes 
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Approximately one million hepatocytes, generated from adult mice, were infected with 20 MOI of each adenovirus 

encoding Oct4, Sox2, cMyc and Klf4. After 5 days of infection, cells were manually pooled and plated on mitomycin 

C-arrested MEFs in ES cell culture medium changed daily; DMEM medium was supplemented with 1000 U/ml of 

LIF. As control, 10
6
 hepatocytes were transduced with an adenovirus expressing the GFP gene and 10

6
 non-infected 

cells were plated on MEFs in the presence of LIF. Murine somatic cells were supplemented with 15% SVF, 1% Non-

Essential Amino Acids, 1x Penicillin-Streptomycin, 100 µM β-mercaptoethanol. After 10 to 20 days, colonies were 

selected and cultured in MEF-free condition on collagen I-treated plates in ES cell culture medium. After 10 passages 

the cells were qualified as EndoPCs and further characterized.  

 

EndoPCs FACS analysis and cell immunostaining  

EndoPCs were observed by Transmission electron microscopy, as previously described (12). Flow cytometry was 

performed for the detection of SSAEA1, MSC and oval cell markers using direct conjugate antibody: anti-SSEA1 

(catalogue no. 560142; BD Pharmingen), anti-CD117 (catalogue no. 553356; BD Pharmingen), anti-Sca1 (catalogue 

no. 553335; BD Pharmingen), anti-CD29 (catalogue no. MCA 2298PET, AbD serotec), anti-CD105 (catalogue no. 

120411, Biolegend), anti-CD90 (catalogue no. 105308, Biolegend), anti-CD51 (catalogue no. 551187; BD 

Pharmingen), anti-CD166 (catalogue no. 560903; BD Pharmingen), anti-CD73 (catalogue no. 127205, Biolegend), 

anti-CD200 (catalogue no. 123807, Biolegend). Standard immunostaining was performed as reported previously (13). 

Primary antibodies were anti- K9218, Abcam), anti-Foxa2 (catalogue no. AB4125, Millipore), 

anti-Sox17 (catalogue no. AF1924, R&D Systems).  

 

Public transcriptome dataset  

Transcriptome matrix dataset GSE32210 (Whole Mouse Genome Microarray 4x44K G4122F), normalized by 

background subtraction and LOWESS algorithm (4) was downloaded at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32210, web link and annotated with platform file 

GPL4134 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL4134). Supervised analysis in order to find 

differential expressed genes between sorted LGR5+ cells and unsorted Hepatocytes was realized with Significance 

Analysis for Microarray (SAM) algorithm with a threshold of False Discovery Rate (FDR) less than 0.05 (14). 

 

Microarray 

The transcriptome of EndoPCs was analyzed with Affymetrix microarray technology (GeneChip ® Mouse Gene 2.0 

ST Array) in parallel with the transcriptome of control hepatocytes (triplicate in each group). The microarray raw data 

were normalized by the RMA method (15). Supervised analysis with SAM algorithm was performed between each 

ITS and Hepatocyte control. The graphical representation of the gene expression profile and the unsupervised 

classification was performed with gplots R-package by using heatmap2 function. Functional enrichment was 

performed with standalone application Go-Elite version 1.5 on Wikipathway database (16). Interactions between 

enriched functions and genes obtained with GO elite were drawn as network in Cytoscape version 3.0.1 (17). 

Microarray data were publicly submitted on Gene Expression Omnibus (GEO) as dataset GSE51782. 

 

Proliferation Assay (MTT Assay) and Cell viability  

Cells were placed in 24-wells tissue culture plates (10
4
 cells per well) and treated with mouse LIF (1000 units/ml, 

ESG1107, Millipore) and pan JAK inhibitor (5µM, CAS 457081-03-7, Millipore) throughout the assay. Respectively 

at 72, 120, 144 and 168 hrs end-points incubation, 20µl of the stock Thiazolyl Blue Tetrazolium Bromide (MTT, 

5mg/ml, M2128, Sigma- Aldrich) dye solution was added to each well. After 4 hrs, 100 μL of DMSO (D2650, 

Sigma- Aldrich) was added to solubilize the MTT. The Modulus TM II Microplate reader (Promega) were used to 

read the absorbance. Each experiment was repeated at least five times to obtain the mean values. The viability of the 

cells was evaluated by 7AAD staining assay by flow cytometry. The cell events were captured on MACSQuant 

analyser (Miltenyi Biotech) and the percentage of the 7AAD negative fraction was calculated using the 

MACSQuantify software. EndoPCs were plated in 6-well plates. LIF was replaced by 100 ng/ml of murine IL6 

(Peprotech, France). Proteins and mRNA were isolated at 0.5, 1 and 4h respectively. The gp/JAK/STAT3 pathway 

was inhibited with 5 µM of pan JAK inhibitor (CAS 457081-03-7, Millipore) in the presence or the absence of IL6. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32210
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL4134
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LGR5 activation and cell culture medium  

A total of 5x10
4
 cells were plated in 6-well plates. When cells have reached 80 % of confluence, DMEM/F12 

containing 1% BSA (Sigma), and murine cytokines (all from Peprotech) including Wnt3a (30 ng/ml), RSPO1 (500 

ng/ml), EGF (20 ng/ml), HGF (50 ng/ml) and Noggin (50 ng/ml) that were added separately or together to each well 

for 5 days. For protein extraction, attached cells were incubated in trypsin /EDTA (Sigma) at 37°C for 5 min. The 

released pellet was washed in PBS containing 0.5% BSA. The pellet was suspended in RIPA buffer containing anti-

protease and anti-phosphatase, and vigorously shaken at 4⁰C for 30 minutes and centrifuged at 12000xg for 20 

minutes. For Real time PCR, the released pellet was suspended in TRIZOL (Thermo fisher scientific) and processed 

for RNA isolation. Organoid like-structures were performed on low attachment plate for 7 days of culture in the 

presence or the absence of 5 cytokines including Wnt3a, Rspo1, Noggin, EGF and HGF. 

 

Western Blot  

Protein samples were exposed to reduce SDS-PAGE and transferred to nitrocellulose membranes (LC2009 

thermoFisher scientific). Membranes were blocked in 5% BSA in TBS-T (0.25% Tween-20 in Tris-buffered saline 

(TBS) for 1 hr and probed overnight at 4 C with primary antibodies (anti-STAT3, anti-STAT3-p; Cell signaling and 

anti-LGR5 Abgent) in 3% BSA/TBS-T following the manufacturer’s dilution instructions. After washing, membranes 

were incubated for 1 hr with HRP-conjugated secondary antibody diluted 1:5000 in 3% BSA /TBS-T. 

Immunoreactive bands were pictured by automated image acquisition for chemiluminescence signals (G: BOX 

Chemi XT4; SYNGENE). Each blot was repeated in duplicate. Comparative calculation of protein expression 

between the blotted bands was based on the normalization to the β actin band for each sample.  

 

LDL uptake assay 

Cells were changed to serum-free media in 96 tissue culture microplate. Differentiated and control cells were incubated 

with 70 μg of fluorescent labeled-LDL (ab204716) for 4 hr at 37 °C in the dark. After incubation, the cells were 

washed following the supplier instructions. Finally, the cells were examined with fluorescence microplate reader at 

Ex/Em = 540/575 nm 

 

PAS staining  

Glycogen storage was detectable using Sigma-Aldrich™ Periodic Acid Schiff Kit staining (SD395B). Fixed cells 

were incubated with periodic acid solution for 5 min at room temperature. After rinsing, cells were immersed in 

Schiff’s reagent for 15 min at room temperature. Cells were counterstained in hematoxyline solution.  

 

Intramuscular injection of EndoPCs 

EndoPCs were harvested by trypsinization and injected intramuscularly into the flanks of  NOD/SCID mice, using ~ 5 

million cells per injection. As a control, 100 million primary hepatocytes were similarly injected. Mice were sacrificed 

3 months later and tissue were isolated and processed for histological analysis. The tissue were dissected, fixed in 4% 

paraformaldehyde, embedded in paraffin and stained with hematoxylin and eosin in association with 

immunohistochemistry. KRT19 and KRT7 were detected by immunohistochemistry using anti-KRT19 rabbit 

antibody (ab52625) and anti-KRT7 rabbit antibody (ab181598) as recommended by the manufacturer. In addition, 

immunoreactive albumin was detected using prediluted anti-Albumin Mouse FITC antibody and counterstaining 

using 1% Evans blue. Glycogen and acid muco-substances were revealed after Periodic Acid Schiff (PAS) and Alcian 

blue staining respectively. 

 

Hepatectomy and transplantation in mice 

C57BL6 mice were obtained commercially (Janvier-Europe, France) and used as experimental model and hepatocyte 

donors. Animal studies were approved by the French Ministry of Agriculture. Mice (age range: 4-8 weeks, weight: 20-

30 g) were anesthetized by an intraperitoneal injection of ketamine/xylasine. The skin in the upper abdomen and flanks 

was sterilely prepared and a median incision of 2.5 cm was made. A partial hepatectomy of the left and median lobes 

was performed without any post-operative complications or morbidity. After exposure of the spleen, 3x10
6
 EndoPCs-
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luc cells expressing luciferase were suspended in 100 μl of physiological serum and were injected using a 29 G needle 

into the spleen of C57BL6 mice. Firefly bioluminescence imaging was used to detect graft cells over a period of 7 

days. In a second experiment, 3x10
6
 EndoPCs-luc were directly injected in the parenchyma liver of three mice and the 

Firefly bioluminescence imaging was used to detect graft cells over a period of 9 days to 35 days (Xenogen Ivis 50).  

 

Hepatic differentiation of EndoPCs into hepatocytes and cholangiocytes-like cells  

To drive endoPCs to differentiate directly into hepatic cells without embryonic body formation, 4x10
5
 endoPCs were 

seeded onto collagen-coated 6-well plates and maintained in mES culture media containing LIF. When the cells 

reached approximately 80% of confluence, the media was replaced with DMEM medium supplemented with 15% 

SVF (ThermoScientific), 1% Non-Essential Amino Acids, 1x Penicillin-Streptomycin, 100 µM β-mercaptoethanol 

with 1% B27, 25 ng/ml of HGF and 1 µM of Dexamethazone during 5 days following by 5 days of culture using 1% 

B27, 1µM of Dexamethazone, 20 ng/ml of VEGF and 20 ng/ml of Oncostatin M (OSM). EndoPCs were 

differentiated into cholangiocytes-like cells using a 5 steps protocol: step 1; 3 days with 25 ng/ml of HGF and 50 ng/ml 

of EGF. Step 2: 5 days with 10 ng/ml of IL6. Step 3; 2 days with 10 µM of Na+taurocholate. Step 4; 2 days with 1.8 

µM Na+ butyrate. Step 5; 2 days with 20 ng/ml of VEGF. After completion of the protocol, the supernatants were 

immediately frozen and RNA was extracted for further characterization. Albumin was quantified in supernatant by a 

commercial ELISA kit (Abnova). The methodology we used to quantify Cyp3A11 activity was derived from that 

described previously (18).  

 

Three-Dimensional (3D) hepatocytes differentiation system  

In order to differentiate the endoPCs into hepatocyte like lineages in 3D culture system, we used 200 µm thick 

polystyrene scaffold Alvetex® (Reinnervate, Durham, UK) in 6 well (AVP005-3, 15 mm diameter, Reinnervate) in-

well inserts. Inserts were plunged in 70 % ethanol for 10 min then washed twice with sterile water and incubated with 

MaxGel™ ECM (E0282 SIGMA) for 24h at RT. The excess of coating was removed with PBS washes. EndoPCs 

cells were plated at a density of 5×10
6
 cells and seeded by applying the cell suspension to the top of the membrane. 

Cells underwent proliferation for 48 hr in LIF medium. At day 3 cells underwent hepatic differentiation protocol 

following two steps: (1) induction step using the LIF –free medium supplemented with 0.1% BSA, 100 ng/ml of IL6 , 

20 ng/ml of HGF, FGF-4 and 10 -8 M of Dexamethasone (Dex) for 7 days and (2) maturation step using LIF-free 

medium supplemented with 100 ng/ml of IL6 50 ng/ml of OSM, 20ng/ml of HGF, and 1µM of Dex for another 7 

days. Media was exchanged every 2 days. All murine growth factors and supplements were purchased from 

(PEPROTECH). Cells were isolated from Scaffold for LDL uptake assay and RNA extraction following the 

manufacturer instructions.  

 

Immunofluorescence on 3D Alvetex 3D scaffolds 

To detect Alb expression and cell distributions in Alvetex, cells were fixed using 4 % paraformaldehyde (PFA; 30 min 

at room temperature, Sigma) blocked in 1 % normal goat serum and permeabilized in 0.2% TRITON-X (Sigma), for 

1 h at room temperature.Afterwards , cells were incubated with a mouse polyclonal Alb primary antibody (1/200; 

ab106582, Abcam) overnight at 4 °C. Cells were further incubated with a secondary Rabbit antibody conjugated to 

Alexafluor 488 (1:200; Invitrogen; Life Technologies), for 90 min at room temperature. After cells were washed, 

incubated with DAPI (4 µg/ml) for 5 min and mounted on microscope slides using Vectashield (Vector Laboratories, 

UK). Image were captured on inverted spinning disc confocal Leica TCS SP8 40× Plan- objectives were used and 

images were collected using a color camera and processed using LAS X software. 

 

Statistical Analysis 

Each experiment was performed at least twice. Statistical significance was evaluated using the Student’s t test 

(unilateral and unpaired). 
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RESULTS 

 

Establishment of Endodermal Progenitor Cells  

Endodermal Progenitor Cells (EndoPCs) were produced by infecting 10
6
 mouse hepatocytes with 20 MOI of 

recombinant adenovirus containing human Oct3/4, Sox2, Klf4, and c-Myc transgenes (Fig. S1A), a dose enabling the 

infection of more than 90% of hepatocytes with an adenovirus expressing GFP (Ad-GFP) (Fig. S1B) with a 

satisfactory expression of the 4 factors by Western Blot analysis (Fig. S1C). AdGFP-transduced hepatocytes and non-

infected hepatocytes were used as control. Five days after the infections, cells were manually pooled and plated on 

mitomycin C-arrested MEFs in ES cell culture medium supplemented with Leukemia Inhibitory Factor (LIF). After 

10 to 20 days, several clones appeared (Fig. S1D) and were transferred in MEF-free condition culture on collagen I-

treated plates. Clones appeared only when cells were transduced with the four viral vectors whereas no colonies 

emerged in both control conditions. All clones possessed the typical morphological phenotypes of epithelial cells (Fig. 

S1E), a decrease in cell size after 10 passages, with a high nuclear-to-cytoplasmic ratio as shown after May-Grünwald-

Giemsa (MGG) staining (Fig. S1F) and a normal karyotype (Fig. S2). Transmission electron microscopy (TEM) 

analysis of the EndoPCs showed the presence of fusiform cells with abundant euchromatin and heterochromatin was 

observed in the nucleus (Fig. S1G) as well as abundant lipid droplets in the cytoplasm (Fig. S1H).  

 

Endodermal Progenitor Cells possess the characteristics of endodermic progenitors and have a LGR5 

signature 

Three clones were selected for further characterization. All have shown to be constantly negative for murine 

Embryonic Stem Cells (ESCs) markers such as stage-specific embryonic antigen (SSEA)-1 at more than 10 passages 

(Fig. S3) and were found constantly negative for CD90, CD105, CD236, CD133, and CD117 by flow cytometry and 

were found CD29
high

, CD73
high

, CD51
high

, CD166
high

 and Sca-1
low

 (Fig S3, Table S1).  

We then selected 15 different clones to verify whether they expressed definitive endodermic markers. All EndoPCs 

clones were quite similar and more than 70% of EndoPCs clones readily expressed Sox17 CXCR4, GATA4 and the 

Foxa subfamily by RT-PCR analysis (Fig. S4A) and sox17 and Foxa2 by immuno fluorescence staining, which are all 

important transcriptional factors, known to regulate the transcription of endodermal and hepatic genes (Fig. S4B).  

To further characterize the EndoPCs, we performed an overall gene expression profile using affymetrix microarray 

technology on EndoPCs in triplicate and on primary murine hepatocytes. In order to analyze a LGR5 liver stem cell 

progenitor signature, we have first analyzed LGR5
+
 sorted expression profile as compared to primary hepatocytes in a 

published dataset GSE32210 (4). Supervised analysis performed between the 2 classes of samples with Significance 

Analysis for Microarray (SAM) algorithm allowed to identify 337 gene probes differentially expressed with an up 

regulation in LGR5
+
 sorted cells as compared to hepatocytes (Table S2). These probes identified 268 genes with a fold 

change superior to 2 and a false discovery rate less than 0.05. Expression of these up-regulated genes in LGR5
+
 sorted 

cells allowed to discriminate transcriptome sample groups by unsupervised classification (heatmap with Euclidean 

distances, Fig. 1A). Expression of these genes represented as cord plot, highlighted their important positive regulation 

in these LGR5 positive cells (Fig. 1B).  

In order to analyze the influence of liver stem cell compartment in our EndoPCs samples, we performed SAM 

supervised analysis between EndoPCs and primary hepatocytes by using LGR5
+
 cell gene expression profile 

previously identified (Fig. 1A and Table S2). We identified 88 genes that are up-regulated as compared to primary 

hepatocytes and their expression allowed to well discriminate sample groups by unsupervised classification (heatmap 

with Euclidean distances, Fig. 1C, Fig. 1D, and Table S3).  

Functional enrichment on Wikipathway database was performed with the set of the 88 LGR5 related genes, showing 

that several pathways regulating stem cells proliferation were significantly enriched in EndoPCs including the WNT 

pathway, the genes belonging to the PluriNetWork and the TNFa /NF-KB signaling pathway (Fig. 1E).  

EndoPCs were further characterized for the expression of LGR5. All tested EndoPCs clones were found positive for 

stem cell marker LGR5 by flow cytometry (Fig. 1G, Table S1), Immuno fluorescence staining (Fig. 1H) and by RT-

PCR (Fig. 1I). 
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EndoPCs expansion and self-renewal depends on gp130/JAK/STAT3, LGR5/Rspondin and WNT/ β-catenin 

signaling pathways 

All EndoPCs clones were continuously cultured with STAT3 activators (mLIF or mIL6) able to activate the 

gp130/JAK/STAT3 pathway. LIF at the concentration of 10
3
 U/ml or IL6 at a concentration of 100 ng/ml have 

enabled EndoPCs to expand for over 50 passages. To verify the contribution of gp130/JAK/STAT3 pathway for their 

proliferation and their self-renewal capacities EndoPCs were cultured in low serum-containing medium with and 

without LIF. LIF withdrawal was followed by a significant (p<0.00001) inhibition of their proliferation capacity (Fig. 

2A) without apparent mortality (Fig. S5). The addition of a pan JAK inhibitor into the culture medium in the presence 

of LIF was followed by a significant inhibition of EndoPCs proliferation (p<0.00001) similarly to the culture condition 

without LIF (Fig 2A) confirming that the gp130/JAK/STAT3 pathway is involved in EndoPCs proliferation and self-

renewal. We further examined the gp130/JAK/STAT3 pathway in EndoPCs by evaluating the STAT3 Tyr705 

phosphorylation after the addition of 100 ng/ml of IL-6 at different time intervals. After IL6 exposure, phosphorylation 

at Tyr705 of STAT3 rapidly increased within 30 min and then gradually decreased after 1 to 4 hr showing that STAT3 

transcriptional factor play a vital role in EndoPCs proliferation and self-renewal (Fig. 2B).  

We also showed that EndoPCs responds to both LGR5/Rspondin and WNT/ β-catenin signaling pathways. We 

found that unlike other culture conditions, the addition of 4 or 5 molecules in serum-free medium including Wnt3a, 

Noggin, EGF, HGF or Wnt3a, Rspo1, Noggin, EGF, HGF enabled to maintain EndoPCs in culture cells that highly 

expressed LGR5 by western blot analysis (Fig. 2C) allowing the generation of organoid-like structures in low 

attachment plate after 7 days of culture (Fig. 2E). The cells without the 5 molecules stopped to grow efficiently and 

failed to generate organoid-like structures (Fig. 2E). Addition of 5 factors (Wnt3a, Rspo1, Noggin, EGF, HGF) was 

associated with the up regulation of LGR5, Axin2 and Tcf4 mRNA (Fig. 2D). In addition, we found that LIF/STAT3 

signaling can efficiently activate WNT/ β-catenin signaling pathway by controlling the expression of Lgr5, Axin2, 

Tcf4 and β- catenin (Fig. 2F). Indeed, the addition of IL6 acting on the gp130/JAK/STAT3 pathway, into the culture 

medium was followed by a drastic increase of LGR5, Axin2, Tcf4 transcripts. This effect was abolished by the 

addition of a pan JAK inhibitor in the culture medium (Fig. 2F). 

 

Differentiation of EndoPCs into both hepatocytes and bile duct structure in vivo 

To prove that EndoPCs are restricted to endoderm differentiation, 5x10
6
 EndoPCs and 10

8 
hepatocytes used to 

produce the EndoPCs were directly injected intramuscularly into NOD/SCID mice. Whereas the injection of large 

numbers of mouse hepatocytes did not generate any tissue, EndoPCs produced after 49 to 101 days two types of 

tissues, represented by areas of liver parenchyma-like structures and substantial areas bile duct-like structures after 

histological analysis (Fig. 3A). An investigation of serial sections revealed that EndoPCs-derived cells expressed a 

series of hepatocytes and bile duct markers, including albumin (ALB) and cytokeratin makers KRT19 and KRT7 and 

exhibited glycogen storage and accumulated acid muco-substances (Fig. 3A). Bile duct like-structures derived from 

EndoPCs appeared very similar to bile ducts of the liver with the same levels of KRT7 and KRT19 markers (Fig. 3A). 

We confirmed by RT-PCR the commitment of EndoPCs into both ductal (KRT7/19) and hepatic structures (KRT8/18, 

Alb, G6P, Cyp2E1, Cyp3A11, Cyp2D22 and Cyp2C55) (Fig. 3B). The pharmacokinetics of midazolam and of its 

main metabolite, 1-hydroxymidazolam by glucuronidation, were investigated by mass spectrometry on tissues extracts 

from two mice in comparison to murine D3-derived teratoma obtained from murin Embryonic Stem Cells. Our results 

showed a 5-fold increase of 1-hydroxymidazolam in extract from EndoPCs-derived tissue compared to the control 

confirming functional Cyp3A11 presence within both organs (Fig. 3C).  

In order to document EndoPCs’ potential to colonize liver, PBS or 3 million EndoPCs-Luc expressing the luciferase 

gene were intrasplenically injected into 5 adult C57BL/6 mice, which had undergone a 30% partial hepatectomy. 

Firefly bioluminescence imaging (Xenogen Ivis 50) was used to detect graft cells over a period of 7 days after injecting 

EndoPCs. Luciferase activity was detected exclusively in the liver and in the spleen of all animals (Fig. 4A). Up to 8 

and 5 different sites of the luciferase gene could be detected after assessing the dissected liver (Fig. 4B) and the spleen 

(Fig. 4C) respectively. These cells have the capacity to efficiently migrate from the spleen to the liver as documented in 

Fig. 4B showing two nodules present in the bloodstream.  

We identified in all mice several areas in the liver parenchyma and in the spleen corresponding to the engraft cells. 

Morphologically, the nodules showed the two types of structures confirming the previous results with the identification 
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of larges areas of bile duct-like structures in both organs (Fig. 4B and Fig. 4C), expressing cytokeratin makers KRT19 

and KRT7 and liver parenchyma-like structures expressing albumin that were easily observed in the spleen of all 

animals (Fig. 4C). 

In addition, after intra-hepatic injection of the EndoPCs-luc the luciferase activity could be detected up to 21 days, 

followed by a rapid decrease of the signal with a probable rejection of these cells (Fig. S6).  

 

Differentiation of EndoPCs into both hepatocytes and cholangiocytes in vitro  

We have optimized two different differentiation medium (DM) permitting to commit EndoPCs into hepatocytes 

(hDM) or cholangiocytes lineages (cDM) respectively. We hypothesize that all EndoPCs clones tested are bipotent 

liver progenitors since ductal (KRT19, Hnf6, ,) and hepatocytes (  , AFP, ALB) 

transcripts were readily expressed showing that all EndoPCs clones have some of the specific functional features of 

both hepatocytes and bile duct cells (Fig. S7A). Quantitative RT-PCR performed on 6 different EndoPCs clones 

confirmed their bipotency (Fig. S7B). In addition EndoPCs highly expressed KRT19 and KRT18/KRT8 by flow 

cytometry analysis (Table S1). 

or of liver 

development and of their proper function compared to cell line hepa 1-6 mouse hepatoma cells (Fig. S7C). We 

developed a 10 days protocol aiming to commit EndoPCs into hepatocytes like cells (HLC). HLC expressed higher 

levels of Alb mRNA without any detection of AFP transcripts in comparison to other culture conditions (Fig. S7D). 

Quantification of albumin by RT-PCR (Fig. 5A), ELISA in supernatant (Fig. 5B) and immunofluorescence (Fig. 5C) 

showed a significant increase of Alb after differentiation. 

Differentiated cells possessed the typical morphological phenotypes of epithelial cells and several cells were found to 

be bi-nucleated (Fig. 5D). Immunohistochemical analysis indicated that the cells accumulated glycogen and lipids that 

were highly expressed compared to the control (+LIF) (Fig. 5E) and showed greater LDL uptake activity (Fig. 5F). 

Ttr, Tat, Cytochrome P450 oxidoreductase (Por) and Cyp3A11 mRNA were expressed after differentiation (Fig. 5G) 

showing that they are able to metabolize midazolam to its main metabolite, 1-hydroxymidazolam by glucuronidation 

which was doubled when a cytochrome P450 inducer such as 20µM of pregnenolone-16a-carbonitrile (PCN) was 

added (Fig. 5H).  

EndoPCs were seeded directly onto coated Alvetex and maintained for three days in their conditioned LIF medium 

to proliferate. Next, they were driven to hepatic lineage following two-steps differentiation protocol comprising 

altogether OSM and dexamethasone so-called hDM medium. Non-differentiated EndoPCs were used as negative 

control in absence of the differentiated medium. At day 15, cells were fixed or lysed for appropriate experiments. 

First 3D-HLCs were characterized using immunofluorescence assay for the detection of Alb (Fig. 5I). Differentiated 

cells showed greater Alb expression and LDL uptake activity (Fig. 5J) compared to cells cultivated in both LIF and 

basal culture media (-LIF) on 3D-scaffolds. Interestingly, when cultured in 3D-Alvetex scaffold, the morphology 

changed for both endoPCs and their HLC counterparts adopting a more protoplasmic phenotype, larger in size 

throughout the scaffold (data not shown). Cells showed also much spreading compared to 2D culture (Fig. 5C) due 

to the increased inner capacity of the Alvetex scaffolds. Next we analyzed mRNA levels to compare the hepatogenic 

potential on 3D-Alvetex scaffold comparing to 2D cultures from HLC derived–EndoPCs. HLC in 3D cultures 

exhibited marked levels of Alb (Fig. 5K) compared to 2D cultures system (Fig. 5A). On the other side LIFR 

transcript showed a dropped mRNA level in the HLCs in favor of a hepatogenic commitment of the LIF-dependent 

EndoPCs. Finally KRT19 was dramatically downregulated after differentiation within the 3D-HLC ruling out the 

risk of cholangiocytes or biliary duct progenitors growing from these bipotent EndoPCs when cultivated on 3D-

Alvetex scaffolds (Fig. 5K). 

We then used a cDM to differentiate EndoPCs into duct-like phenotype using a 2-D and a 3-D culture system and 

collagen I as a matrix and a 14 days protocol. Histologically differentiated cells displayed a duct-like phenotype 

presenting a single-layered non-polarized epithelium and bile duct polarized outgrowths expressing KRT7 in the 2-D 

and 3-D culture systems respectively (Fig. 5L) confirming the potential of Endo-PCs to efficiently differentiate to bile 

duct like- structures that have occurred spontaneously after several weeks after intra-muscular injections (Fig. 3A).  
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DISCUSSION 

In the present study, we have succeeded in converting adult mouse hepatocytes into expandable and stable endodermal 

progenitors (EndoPCs) after having transduced the hepatocytes with low doses of non-integrative vectors harboring 

Oct-4, Sox2, klf4 and c-Myc transgenes in the presence of STAT3 activator. As adenoviruses allow only a transient 

expression of the 4 factors, EndoPCs were not able to reach a pluripotent state. Thus they have never been found 

positive for SSEA1, nor for Oct-4 (data not shown) and are thus unlikely to represent a novel source of induced 

Pluripotent Stem cells (iPSCs). Furthermore, they are also unlikely to characterize a novel source of oval cells since all 

clones were always found to be CD34
neg

, CD117
neg

, Sca1
low

. We rather believe for several reasons that EndoPCs 

derived-hepatocytes result from an epithelial–mesenchymal transition (EMT). Although they do not express usual 

Mesenchymal Stem Cells (MSCs) markers such as CD90 and CD105, they highly express other MSCs-associated 

markers such as CD29, CD51, CD73 and CD166. Like MSCs they have clonogenic and in vivo migration capacities. 

They have a high proliferation capacity and can be maintained in 2-dimensional long term culture system for more 

than 50 passages by being passed twice a week at a 1:5 ratio. Various pathways are known to activate and maintain the 

EMT program including the Wnt/ β-catenin (19) and TNFa pathways (20). Our gene set analysis ascertained that both 

the Wnt/ β-catenin and the TNFa signaling were associated with hepatocytes-to-EndoPCs conversion, which 

strengthens the hypothesis that the direct conversion of mature hepatocytes to EndoPCs is consistent with an EMT-like 

process. We thus concluded that hepatocyte-derived EndoPCs have acquired mesenchymal features and could result 

from an epithelial–mesenchymal transition (EMT).  

In our experimental protocol LIF or IL6 sharing the same gp/JAK/STAT3 signaling pathways were introduced to the 

culture medium. LIF and IL-6 are closely related cytokines that bind to the common LIF-receptor–gp130 heterodimer 

(gp130 is also known as IL6ST), leading to the phosphorylation of STAT3 by JAK (21). LIF receptors are found in a 

number of different organs including the liver (22). LIF was identified as the differentiation inhibiting activity for 

mouse Embryonic Stem Cells (ESCs) that stimulated mESCs self-renewal (23). As for ESCs we hypothesize that 

EndoPCs are dependent on LIF to stimulate their self-renewal capacity. Indeed, EndoPCs are able to proliferate 

exclusively under LIF, leading to the phosphorylation of STAT3 by JAK.  

Gene expression profile analysis by microarray-based technology have shown that EndoPCS shared a set of 88 

transcripts with LGR5
+
 liver stem cells progenitors, which were previously isolated in mice under CCL4 treatment (4). 

Indeed, LGR5
+
 liver stem cells were recently isolated in vivo near bile ducts, exclusively under conditions of injury and 

were shown to give rise to hepatic organoids in vitro (4), which were shown to display extensive self-renewal capacity 

and to express hepatocyte-like properties after in vitro differentiation. R-spondin (RSPO1) was shown to be the ligand 

of LGR5 (4, 24). The association of RSPO1 on LGR5
+
 was shown to amplify Wnt/ β-catenin pathway by promoting 

the activity of Wnt-Frizzled mediated signaling receptors (24) and by promoting the Wnt receptor turnover, from the 

plasma membrane by clearing the cell-surface transmembrane E3 ubiquitin ligases, zinc and ring finger 3 (ZNRF3) 

and its homologue ring finger 43 (RNF43) (25,26). In a previous report, murine LGR5
+
 liver progenitor cells were 

exclusively generated in a 3-D culture system using a matrigel containing a cocktail of factors including EGF, RSPO1, 

FGF10, HGF and nicotinamide (4).  

In our experimental setting, LGR5
+
 liver progenitor cells can be generated without using Wnt and LGR5 ligands as 

previously described (4). We showed that LGR5
+
 EndoPCs were able to be maintained in culture and to form 

organoide-like structures in 3-D culture system after 7 days after LIF withdrawal and the addition of 5 molecules 

including Wnt3a, Rspo1, Noggin, EGF, HGF showing the important roles of both signaling pathways to promote cell-

cycle progression and cell proliferation of EndoPCs. In addition we found that there is a cross talk between both 

gp130/JAK/STAT3 and WNT/ β-catenin signaling pathways. Indeed, we have demonstrated that the activation of the 

gp130/JAK/STAT3 pathway by IL6 can efficiently trigger an increase of LGR5, Axin2, Tcf4 and β- catenin transcripts 

which were not found when a pan JAK inhibitor was added in the culture medium. These results suggest a possible 

cross talk between both gp130/JAK/STAT3 and WNT/ β-catenin signaling pathways. Indeed, LIFR/STAT3 

phosphorylation was shown to be activated in intestinal (27), hair (28) and liver (29) LGR5+ stem cells and to be 

crucial for tissue-specific organoids formation (30). Furthermore, recently LIFR/p-STAT3 axis was shown to 

upregulate the Wnt/β-catenin in liver LGR5+ stem cells via an upregulation of specific regulator mi-RNA (29). These 

observations support the above-mentioned STAT3/WNT linked- axis within the EndoPCs. Nevertheless, further 
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mechanistic studies in well-defined conditions is needed to understand more precisely the molecular mechanisms 

underlying this cross talk 

In overall our data suggested that as for mESCs (31,32), both gp130/JAK/STAT3 and WNT/β-catenin pathway 

signaling promote EndoPCs self-renewal thanks to the presence of high doses of STAT3 activator. Our results also 

show that hepatocytes possess a phenotypic plasticity in vitro and change their phenotype by inducing an EMT 

program. Our data confirm that mature hepatocytes possess significant phenotypic plasticity and reinforce previous 

studies (33-36). 

EndoPCs comply with most of the phenotypic criteria of LGR5
+
 bipotent liver progenitor cells that may differentiate 

into both hepatocytes and bile duct cells with a capacity to form duct structures in vitro and in vivo and to repopulate 

injured liver tissue. Currently, the differentiation of iPSCs and ESCs into hepatocytes and cholangiocytes requires 

stepwise protocols comprising the sequential application of growth factors and the introduction of transcription factors 

to mimic hepatocyte (37) and cholangiocytes (38) differentiation during liver development. EndoPCs technology 

represents an attractive alternative and an easy way to produce both liver cell lines. Only limited steps of differentiation 

were sufficient to produce in vitro hepatocytes producing albumin and adult liver-specific cytochrome P450 

(Cyp3A11) and KRT7-expressing cholangiocytes. In addition, the engraftment of EndoPCs in vivo in a liver 

environment has shown an exclusive commitment of EndoPCs into KRTK19 and KRT7 positive structures 

resembling to biliary duct and into liver parenchyma-like structures positive for albumin.  

As such, the EndoPCs may represent a promising source for the production of endodermic lineages and opens a vast 

field of applications in many areas. Furthermore, EndoPCs represent an alternative for the study of physiological liver 

stem cells and a new source to produce at high scale of hepatocytes and cholangiocytes for drug screening and toxicity 

assays. 
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FIGURE LEGENDS 

 

Figure 1: LGR5+ dependent expression profile of the EndoPCs cells by microarray: (A) unsupervised 

classification on expression profile of LGR5+ sorted cells as compared to hepatocytes GSE32210, (B) cordplot of 

gene expression with genes up regulated in LGR5+ sorted cells as compared to hepatocytes, (C) Venn diagram of 

overlapping genes up regulated LGR5+ sorted cells but also in EndoPCs cells, (D) Expression heatmap of genes up 

regulated in EndoPCs cells and also found up regulated in LGR5+ sorted cells, (E) Barplot of Z-scores obtained during 

functional enrichment on wikipathway database with LGR5 dependent genes found over expressed in EndoPCs cells, 

(F) Functional enrichment network of LGR5 dependent genes up regulated in EndoPCs and enriched on wikipathway 

database, (G) Expression LGR5 by flow cytometry analysis for Hela cells and EndoPCs, (H) Immunocytochemistry 

showing the expression for LGR5 in EndoPCs. DNA was stained with DAPI, (I) Quantitative RT PCR for the 

detection of LGR5 mRNA in 5 individual EndoPCs clones, in Hepa 1-6 and in murine fibroblastes. 

 

Figure 2: EndoPCs are depended to both gp130/JAK/STAT3 and Wnt/βcatenin the signaling pathways. (A) 

Proliferation Assay (MTT Assay) performed on EndoPCs up to 168 hr of culture in culture medium containing or not 

LIF in comparison to the condition with LIF and 5µM of pan JAK inhibitor, (B) Western blot analysis for STAT3, 

pSTAT3 (Y705) and β actine on EndoPCs expanded with or without 100 ng/ml of IL6 performed after 0.5, 1 and 4 hr, 

all bands were quantified relative to the intensity to the β-actine, (C) Western blot analysis for LGR5 

EndoPCs expanded with or without 5 different cytokines. All bands were quantified relative to the intensity to the β-

actine, (D) Results of quantitative RT-PCR used to detect LGR5, Axin2 and Tcf4 in EndoPCs expanded with or 

without 5 different cytokines, (F) Results of quantitative RT-PCR used to detect Stat3, Lgr5, β-catenin, Axin2 and 

Tcf4 in EndoPCs expanded 8 hr with or without 100 ng/ml of IL6 in comparison to EndoPCs expanded with IL6 and 

5µM of pan JAK inhibitor.  

 

Figure 3: Intra muscular injection of EndoPCs generates liver like structure: (A) Histological analysis of the 

tissues 101 days after an intra-muscular injection of 3x10
6
 cells showing parenchyma-like structures after Hematoxylin 

and Eosin (HES) staining; Albumin (Alb) is revealed by immuno-fluorescence and immuno-histochemistry. 

Branching-like structures are shown immunoreactive for KRT7 and KRT19 and containing acid mucosubstances and 

polysaccharides/glycogen after Alcian Blue (AB) and Periodic acid–Schiff (PAS) staining respectively. Normal liver 

was used as control showing biliary ducts positive for KRT19 and KRT7, (B) RT-PCR analyses of hepatic markers in 

two different liver buds (LB1 and LB2) in comparison to EndoPCs and murine hepatocytes (Hep), (C) The 

pharmacokinetics of midazolam and of its main metabolite, 1-hydroxymidazolam by mass spectrometry on extracts 

from EndoPCs-derived liver buds (LB1 and LB2) compared to ESCs (D3)-derived teratoma.  

 

Figure 4: Incorporation of EndoPCs into mouse hepatic parenchyma 
(A) Bioluminescence imaging for the detection of the EndoPCs expressing the luciferase gene 7 days after injection of 

3x10
6
 cells in the spleen in 5 adult C57BL/6 that had undergone a partial hepatectomy. PBS was injected into five 

other mice that were used as controls. Firefly bioluminescence imaging (Xenogen Ivis 50) was used to detect graft 

cells. (B) Localization of the luciferase gene in the dissected liver (LUC). Two nodules present in the bloodstream 

were identified after Hematoxylin and Eosin (HES) showing that EndoPCs have the capacity to efficiently migrate 

from the spleen to the liver. The engrafted tissue shows similarity with liver sinusoid structures after HES staining, 

immunoreactive for KRT19 and KRT7 resembling to biliary ducts structures. (C) Localization of the luciferase gene in 

the dissected spleen showing liver sinusoid structures after Hematoxylin and Eosin staining (HES) immunoreactive for 

KRT19 and KRT7 resembling to biliary ducts structures and immuno-reactive for Alb.  
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Figure 5: Differentiation of EndoPCs into hepatocytes and cholangiocytes-like cells 

(A) Bar graphs showing albumin mRNAs levels determined by real-time qRT-PCR for EndoPCs before (-hDM) and 

after differentiation using a hepatocyte differentiation medium (+hDM), (B) Albumin secretion by murine hepatocytes 

and by EndoPCs-derived hepatocytes after 8 days of culture in medium by ELISA before (-hDM) and after 

differentiation (+hDM). (C) Immunofluorescence analysis of EndoPCs for albumin before (-hDM) and after 

differentiation (+hDM), (D) Morphology of an EndoPCs after differentiation (+hDM) showing binuclear cells (arrow) 

after May-Grünwald-Giemsa (MGG) staining and store glycogen and lipids revealed by Periodic acid–Schiff (PAS) 

and Oil Red O staining. (E) Quantification of lipids content in EndoPCs before (-hDM) and after differentiation 

(+hDM), (F) Quantification of LDL uptake in EndoPCs before (-hDM) and after differentiation (+hDM), (G) Results 

of RT-PCR used to detect mature hepatocyte-specific transcripts (Cyp3A11, POR, TAT, TTR) in EndoPCs cultured 

with LIF and before (-hDM) and after differentiation (+hDM), (H) The pharmacokinetics of midazolam and of its 

main metabolite, 1-hydroxymidazolam by mass spectrometry on extracts from non-differentiated EndoPCs (+ LIF 

and without hDM) and from differentiated EndoPCs. (I) Representative images of EndoPCs that were seeded onto 

coated Alvetex 3-D culture system at 15 days, without (-hDM) and after differentiation (+hDM), (J) Quantification of 

LDL uptake of EndoPCs before (-hDM) and after differentiation (+hDM), (K) Results of RT-PCR used to detect 

LIFR, Albumin and KRT19 in Alvetex 3D-derived hepatocytes after 15 days of differentiation in comparison to 

Alvetex 3D seeded with non-differentiated EndoPCs (-hDM), (L) Immunofluorescence analysis for cholangiocytes 

marker KRT7 on EndoPCs at 14 days of differentiation using a cholangiocyte differentiation medium (cDM). DNA 

was stained with DAPI. 

 

Supplemental Figure 1: Induction of EndoPCs from adult hepatocytes 

(A) Time schedule of EndoPCs cell generation and diagram of the experimental procedures. (B) GFP expression by 

flow cytometry after transduction of mouse hepatocyte cells with 20 MOI of adenovirus expressing GFP (AdGFP). 

(C) Expression of Oct-4, Sox2, Klf4 and c-Myc by Western Blot analysis 5 days after infection of mouse hepatocytes 

with recombinant adenoviruses. Adenovirus expressing GFP was used as a control (AdGFP). (D) Morphology of 

EndoPCs at passage number 2 after amplification, (E) Morphology of EndoPCs clones on a collagen-coated 6-well 

plate and at passage number 5, (F) EndoPCs after after May-Grünwald-Giemsa (MGG) staining with a high 

nucleus/cytoplasm ratio, (G) Transmission electron microscopy analysis (TEM) analysis of EndoPCs showing cells 

with high area of eurochromatin, (H) Transmission electron microscopy analysis (TEM) analysis of EndoPCs 

showing the cytoplasm with abundant lipid droplets (LD).  

 

Supplemental Figure 2: Karyogram of EndoPCs showing 40 normal chromosomes. Twenty metaphases were 

analyzed for each sub-clones and were captured using METAFER SOFTWAR (Metasystem version 3.8.6). The 

Karyotype was obtained after G-bandes staining and the chromosome classification was performed using IKAROS 

Software.  

 

Supplemental Figure 3: Flow cytometry analysis on EndoPCs. Quantification of EndoPCs positive for SSEA1, 

CD90, CD105, CD236, CD133, CD51, CD29, CD73, CD117, CD166 and Sca1. 10
5
 cells were stained with PE 

conjugated anti-mouse antibodies analyzed with a MACS Quant flow cytometer (Miltenyi Biotech) using the MACS 

Quantify software. 

 

Supplemental Figure 4: (A) RT-PCR analysis for the detection of definitive endodermic markers in the 16 individual 

EndoPCs clones, (B) Immunocytochemistry showing the expression for Sox17 and Foxa2 in hepa 1-6 control cells 

and in EndoPCs. DNA was stained with DAPI.  

 

Supplemental Figure 5: Flow cytometry analysis for the quantification of 7AAD on EndoPCs expanded up to 168 h 

with and without LIF. 

 

Supplemental Figure 6: Quantification (A) and detection (B) of luciferase activity over a period of 35 days after the 

injection of 3x10
6
 EndoPCs in the liver of C57BL/6 mice. 
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Supplemental Figure 7: RT-PCR analysis for the detection of markers involved in the liver development in the 8 

different EndoPCs clones, (B) Real-Time Reverse Transcription-PCR for the detection of KRT8/18, KRT7/19, Afp 

and Alb in hepatocytes (hep), and in 8 different EndoPCs clones. Target gene expression was normalized relative to 

the S18 ribosomal endogenous mRNA, (C) Immunocytochemistry showi -positive cells 

in hepa1-6 control cells and in EndoPCs. DNA was stained with DAPI, (D) Results of RT-PCR used to detect 

Albumin and Alpha-fetoprotein (Afp) transcripts in adult hepatocyte, fetal liver cells and in EndoPCs before (+LIF) 

and after differentiation in the absence of LIF and the addition hepatocyte differentiate medium (hDM).  

 

Supplemental Table 1: Flow cytometry analysis on 3 different EndoPCs clones showing the percentages of positive 

cells for each markers analyzed  

 

Supplemental Table 2: Genes overexpressed in liver LGR5+ sorted cells as compared to primary hepatocytes: 

Supervised analysis performed by SAM algorithm in GSE32210 dataset identified over expression of 337 microarray 

probes in LGR5+ sorted cells (columns describe identification of these genes through different databases and their fold 

change determination). 

 

Supplemental Table 3: LGR5 related genes overexpressed in EndoPCs as compared to primary hepatocyte: 

Supervised analysis performed by SAM algorithm on EndoPCs transcriptome identified 88 LGR5 related genes 

overexpressed in EndoPCs as compared to primary hepatocytes (columns describe identification of these genes 

through different databases and their fold change determination) 
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Supplementary table 2 

Gene title 
Gene symbol Gene ID 

GenBank 

Accession 

Fold 

change(Unlogged) Hepatocytes1 Hepatocytes2 

Lgr5-sorted 

cells1 

Lgr5-sorted 

cells2 

   

AK082407 14.156652 -3.6660938 -4.0 0.0 0.0 

myosin, light polypeptide kinase Mylk 107589 AK044527 11.12279 -3.1490996 -3.8978798 0.0 0.0 

RIKEN cDNA 4921530L21 

gene 4921530L21Rik 66732 NM_025733 10.456048 -3.3047035 -4.0 -0.49072713 0.0 

ring finger and WD repeat 

domain 2 Rfwd2 26374 NM_011931 10.39401 -3.1606684 -3.633216 0.0 0.0 

    

10.277037 -3.066347 -3.5457487 0.0 0.14653386 

ribosomal protein S27-like Rps27l 67941 NM_026467 10.143431 -2.930928 -3.597091 0.0 0.22443509 

    

9.960008 -3.1975584 -3.4453633 0.0 0.0 

glutamic pyruvate transaminase 

(alanine aminotransferase) 2 Gpt2 108682 NM_173866 9.78981 -3.2533882 -3.1637988 0.0 0.16220845 

    

9.311508 -2.9050038 -3.620953 0.0 0.0 

    

8.878274 -3.3463788 -3.50908 -0.615464 0.0 

eukaryotic translation elongation 

factor 1 gamma Eef1g 67160 AK011951 8.826178 -2.8034997 -3.5845137 0.0 0.0 

zinc finger and BTB domain 

containing 14 Zbtb14 22666 NM_009547 8.781705 -3.333042 -3.543284 -0.6787876 0.0 

solute carrier organic anion 

transporter family, member 6d1 Slco6d1 70866 AK014872 8.75045 -2.9595554 -3.3218439 0.0 0.0 

    

8.730652 -3.306524 -4.0 -0.9409468 -0.14048843 

autophagy related 4D, cysteine 

peptidase Atg4d 235040 AK044798 8.405915 -3.0424535 -3.100949 0.0 0.0 

    

8.402659 -3.4642463 -3.2995255 -0.0759489 -0.58633924 

zinc finger protein 36 Zfp36 22695 NM_011756 8.039652 -2.8153334 -3.228399 0.0 0.0 

Rho guanine nucleotide 

exchange factor (GEF) 4 Arhgef4 226970 NM_183019 8.011314 -2.363419 -2.514918 0.483972 0.64144915 

   

AK050382 7.8880696 -3.0778193 -2.887779 0.0 0.0 

HECT domain containing 3 Hectd3 76608 NM_175244 7.7225957 -2.8225427 -3.087805 0.0 0.0 

   

AK043926 7.6814103 -2.7763643 -2.976417 -0.015393069 0.14767812 
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cyclin-dependent kinase 12 Cdk12 69131 AK137262 7.600463 -2.8311863 -3.0276732 0.0 0.0 

spermatogenesis associated 

multipass transmembrane protein 

3 Samt3 73495 NM_028554 7.5035214 -2.7988894 -2.7969382 0.08240439 0.13639909 

general transcription factor II A, 

1 Gtf2a1 83602 NM_175335 7.2962193 -2.701409 -3.0544312 0.0 0.0 

olfactory receptor 976 Olfr976 258364 NM_146367 7.2840195 -2.744539 -2.995862 0.0 0.0 

    

7.2768173 -2.7198815 -3.0225825 0.0 0.0 

vesicle-associated membrane 

protein 1 Vamp1 22317 NM_009496 7.219609 -2.059887 -2.093587 0.549316 0.9706017 

ST3 beta-galactoside alpha-2,3-

sialyltransferase 6 St3gal6 54613 NM_018784 7.192924 -2.07744 -2.1320128 0.5210719 0.93373835 

   

AK078248 7.152966 -2.8099458 -2.6089966 -0.14423425 0.36471173 

RIKEN cDNA 9430076C15 

gene 9430076C15Rik 320189 AK035031 7.13408 -2.785677 -2.460516 0.23747104 0.20387809 

transmembrane protein 242 Tmem242 70544 NM_027457 7.109999 -1.928504 -2.0776844 0.63679314 0.9980195 

strawberry notch homolog 2 

(Drosophila) Sbno2 216161 NM_183426 7.1074624 -2.577634 -3.134427 0.0 0.0 

    

7.1028843 -3.0475416 -3.6028295 -0.7784227 -0.21642207 

olfactory receptor 341 Olfr341 258952 NM_146950 7.081101 -3.2796402 -2.994552 -0.5094355 -0.12790029 

C-type lectin domain family 11, 

member a Clec11a 20256 NM_009131 7.063682 -3.1068509 -2.7189975 0.0 -0.16365674 

    

7.0275016 -2.602861 -3.0590808 0.0 0.0 

    

7.0222597 -3.067838 -2.7546065 -0.18770641 0.0 

RIKEN cDNA 4930555G01 

gene 4930555G01Rik 108978 NM_175393 7.000219 -2.5329673 -3.0446196 0.0 0.081199445 

syntabulin (syntaxin-interacting) Sybu 319613 AK051222 6.926813 -1.9837266 -2.0825 0.58548105 0.9155306 

insulin-like growth factor 2 

mRNA binding protein 3 Igf2bp3 140488 NM_023670 6.905001 -2.5804152 -2.9645007 0.0 0.05532534 

adenosine deaminase, RNA-

specific, B2 Adarb2 94191 BC059822 6.884169 -2.6370769 -2.9459934 0.0 0.0 

olfactory receptor 575 Olfr575 259118 NM_147114 6.8309608 -2.6115024 -2.9528146 0.0 0.0 

transformation related protein 53 Trp53 22059 NM_011640 6.796575 -2.8099394 -2.872057 0.0 -0.15592285 



 

74 | P a g e  
 

coiled-coil domain containing 

167 Ccdc167 68597 AK003900 6.781127 -2.1858938 -2.3827543 0.4679393 0.49306378 

vomeronasal 1 receptor 22 Vmn1r22 171196 NM_134178 6.7021904 -2.590232 -2.9021134 0.13158979 -0.1296576 

DNA segment, Chr 3, ERATO 

Doi 751, expressed D3Ertd751e 73852 NM_028667 6.6864624 -2.8263214 -2.660904 0.0 0.0 

glyceraldehyde-3-phosphate 

dehydrogenase, spermatogenic Gapdhs 14447 NM_008085 6.6563315 -2.206223 -2.480244 0.29215395 0.49658948 

mitochondrial ribosomal protein 

L3 Mrpl3 94062 NM_053159 6.622602 -1.7907743 -1.9104869 0.7542537 0.9919818 

ATPase, class VI, type 11B Atp11b 76295 NM_029570 6.558009 -1.9352307 -2.1151512 0.5025069 0.8574556 

caspase recruitment domain 

family, member 11 Card11 108723 NM_175362 6.40839 -2.7168174 -2.6440246 0.0 0.0 

   

AK046413 6.3310065 -2.5814674 -2.3604655 0.0 0.36798975 

   

AK038761 6.266537 -2.648112 -2.444476 0.0 0.20280725 

mitochondrial ribosomal protein 

S10 Mrps10 64657 NM_183086 6.25892 -2.1780689 -1.9155192 0.46083105 0.73621553 

deafness, autosomal dominant 5 

(human) Dfna5 54722 NM_018769 6.2239785 -2.0116725 -2.4141629 0.46232924 0.41510472 

ribosomal protein L35A Rpl35a 57808 AK160963 6.209253 -2.0151248 -2.0918307 0.36058944 0.77294797 

RAS p21 protein activator 2 Rasa2 114713 NM_053268 6.194932 -1.8702133 -2.0643268 0.4516536 0.8544797 

crumbs homolog 3 (Drosophila) Crb3 224912 NM_177638 6.1859603 -2.7375731 -3.315199 -0.86514443 0.0 

histocompatibility 2, O region 

alpha locus H2-Oa 15001 NM_008206 6.1620564 -2.3326898 -2.6781673 -0.26576072 0.43749416 

    

6.157489 -1.9750276 -2.0938933 0.42056653 0.73999876 

zinc finger protein 37 Zfp37 22696 NM_009554 6.1498914 -2.8389733 -2.7935429 -0.05212117 -0.35475764 

eukaryotic translation initiation 

factor 4, gamma 1 Eif4g1 208643 NM_145941 6.1322117 -1.9543796 -2.111391 0.41427314 0.7388263 

    

6.0903573 -2.7988768 -2.394917 0.0 0.047061928 

   

AK089644 6.074029 -2.4719205 -2.6159184 0.0 0.11862271 

    

6.0469446 -2.5371788 -2.3827503 0.0 0.2645073 

    

6.0425673 -2.763884 -2.4091387 0.0 0.038792122 

proline/serine-rich coiled-coil 1 Psrc1 56742 NM_019976 6.0071325 -2.5878584 -2.2837644 0.0 0.30195403 

insulin-like growth factor 1 Igf1 16000 NM_010512 5.9456697 -2.8212602 -3.1467328 -0.5805784 -0.24490012 
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predicted gene 10700 Gm10700 100038748 AK136892 5.927533 -2.5390522 -3.1555674 -0.545681 0.0 

ubiquitin protein ligase E3C Ube3c 100763 NM_133907 5.904339 -2.2034001 -2.7635915 0.0 0.20343544 

mannoside 

acetylglucosaminyltransferase 1 Mgat1 17308 NM_010794 5.9007883 -2.5354054 -2.586869 0.0 0.0 

phosphatidylinositol glycan 

anchor biosynthesis, class N Pign 27392 AK082387 5.8987184 -2.6738062 -2.356626 0.0 0.10582871 

adenomatosis polyposis coli Apc 11789 AK137301 5.8764305 -1.836942 -1.9922297 0.60956347 0.6745891 

transmembrane emp24 domain 

containing 3 Tmed3 66111 NM_025360 5.8564634 -2.4878526 -2.9288068 -0.2984431 0.0 

protein kinase, cGMP-

dependent, type I Prkg1 19091 AK051624 5.826863 -2.0678098 -2.3156981 0.36840695 0.34405625 

    

5.8218737 -2.4035716 -2.3440971 0.0 0.31838134 

   

AK044879 5.8176193 -2.4521027 -2.40695 0.16515045 0.05490222 

X-linked lymphocyte-regulated 

4B Xlr4b 27083 NM_021365 5.816419 -2.451852 -3.0114424 -0.3503201 0.0 

forkhead box B1 Foxb1 64290 NM_022378 5.7879267 -1.8064843 -2.2102644 0.27505803 0.76161635 

    

5.762577 -2.4128995 -2.7702048 -0.16913535 0.052984934 

nerve growth factor receptor 

(TNFRSF16) associated protein 

1 Ngfrap1 12070 NM_009750 5.7487187 -1.9252189 -2.3344483 0.26539794 0.5375256 

caspase 8 Casp8 12370 NM_009812 5.72024 -2.4860282 -2.7447743 0.0 -0.1935521 

prolactin family 6, subfamily a, 

member 1 Prl6a1 19111 NM_011166 5.668376 -2.776721 -3.215197 -0.63598573 -0.33277473 

lysocardiolipin acyltransferase 1 Lclat1 225010 NM_001081071 5.606109 -2.8320954 -3.0635135 -0.5016379 -0.41209045 

calcium/calmodulin-dependent 

protein kinase II, delta Camk2d 108058 NM_023813 5.533771 -2.6331475 -2.2541673 0.0 0.07310238 

TATA box binding protein 

(Tbp)-associated factor, RNA 

polymerase I, A Taf1a 21339 NM_021466 5.5145407 -1.9892751 -2.4205477 0.20559402 0.34004468 

   

AK037619 5.5094385 -2.357831 -2.4469655 0.0 0.117979266 

vomeronasal 1 receptor 9 Vmn1r9 171203 NM_134185 5.494063 -2.1622415 -2.6031375 -0.19404991 0.3305447 

polymerase (DNA directed), 

epsilon 2 (p59 subunit) Pole2 18974 AK042113 5.4620275 -3.2558765 -3.3324685 -0.83778906 -0.8506952 
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N(alpha)-acetyltransferase 20, 

NatB catalytic subunit Naa20 67877 NM_026425 5.454114 -1.9508704 -2.1734486 0.2515646 0.5153421 

zinc finger and BTB domain 

containing 8a Zbtb8a 73680 NM_028603 5.4539447 -1.9937238 -2.5206795 0.052701037 0.35911056 

poly (A) polymerase alpha Papola 18789 NM_011112 5.3740783 -2.3133156 -2.548275 0.0 0.0 

fatty acid binding protein 4, 

adipocyte Fabp4 11770 NM_024406 5.354635 -2.1472976 -2.1283276 0.15550049 0.40015337 

uncharacterized LOC102632160 LOC102632160 102632160 AK033297 5.353326 -2.5058823 -2.2691731 -0.11144275 0.17296305 

   

AV323315 5.3389716 -2.3381884 -2.3260975 0.0 0.16419384 

feminization 1 homolog b (C. 

elegans) Fem1b 14155 NM_010193 5.323753 -1.9722719 -2.3935223 -0.22222616 0.5971505 

tubulin, gamma complex 

associated protein 6 Tubgcp6 328580 AK052441 5.31417 -2.017028 -2.4885168 0.068483606 0.27651885 

ankyrin repeat domain 27 (VPS9 

domain) Ankrd27 245886 NM_145633 5.31067 -1.2868905 -1.3207009 0.9008984 1.2841216 

TNNI3 interacting kinase Tnni3k 435766 AK084817 5.29715 -2.1628792 -2.6294556 0.0 0.055131532 

poly(A) binding protein, 

cytoplasmic 4 Pabpc4 230721 NM_148917 5.255092 -2.619612 -2.356441 0.0 -0.1823971 

solute carrier family 6 

(neurotransmitter transporter), 

member 20B Slc6a20b 22599 NM_011731 5.2550316 -2.6749136 -2.8888524 -0.41826046 -0.3509672 

tolloid-like 2 Tll2 24087 NM_011904 5.227288 -2.4964888 -2.4007788 0.0 -0.12631957 

    

5.2015634 -2.1923287 -2.532356 0.052713253 0.0 

dystrophin, muscular dystrophy Dmd 13405 NM_007868 5.179143 -1.7670088 -1.7374225 0.5602077 0.67851466 

uncharacterized LOC102632051 LOC102632051 102632051 AK076935 5.167849 -1.784164 -1.8273059 0.4096954 0.7033662 

antisense Igf2r RNA Airn 104103 AK048015 5.1641064 -3.1271038 -3.5082672 -1.2246686 -0.69661397 

aldehyde dehydrogenase 16 

family, member A1 Aldh16a1 69748 NM_145954 5.1512604 -2.2065682 -2.9334881 -0.33952063 0.0 

sex hormone binding globulin Shbg 20415 NM_011367 5.128382 -2.7880433 -2.6709602 -0.2254772 -0.53020537 

RIKEN cDNA 2810427C15 

gene 2810427C15Rik 69979 AK013171 5.1272664 -2.2692096 -2.7470803 -0.27345672 0.0 

    

5.1271524 -2.3540394 -2.1819682 0.27008945 -0.109558284 

MAX-like protein X Mlx 21428 NM_011550 5.0975246 -1.5266212 -1.7081442 0.5349114 0.9111612 
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paired box 6 Pax6 18508 BC036957 5.0825667 -1.7253469 -1.9299071 0.33662143 0.68544954 

    

5.0570292 -2.6412 -3.114609 -0.95295846 -0.18787421 

nucleoporin 50 Nup50 18141 NM_016714 5.0281053 -2.0128703 -2.493452 0.0 0.18746036 

anterior gradient 3 Agr3 403205 NM_207531 5.0113797 -2.1179392 -2.5673318 0.0 0.0 

Smg-6 homolog, nonsense 

mediated mRNA decay factor 

(C. elegans) Smg6 103677 NM_001002764 4.9909496 -2.0603952 -2.079867 0.14983773 0.34218794 

PARK2 co-regulated-like Pacrgl 66768 NM_025755 4.9886513 -2.345268 -2.1876793 0.0 0.10668189 

protein phosphatase, EF hand 

calcium-binding domain 2 Ppef2 19023 NM_011148 4.98448 -2.0020418 -2.2803001 0.0 0.3453251 

   

AK052970 4.981796 -2.0039902 -2.0997398 0.103286736 0.41147578 

ACN9 homolog (S. cerevisiae) Acn9 71238 AK046436 4.961547 -1.8298796 -2.1186945 0.19230542 0.48073843 

insulin receptor substrate 1 Irs1 16367 AY169784 4.9577665 -2.403705 -2.4950218 0.0 -0.29272428 

sirtuin 2 Sirt2 64383 NM_022432 4.9030337 -2.190267 -2.385398 0.0 0.018219866 

cytokine-dependent 

hematopoietic cell linker Clnk 27278 NM_013748 4.8728204 -2.1405942 -2.4433608 -0.14536944 0.13334404 

forkhead box C2 Foxc2 14234 NM_013519 4.870955 -2.1062813 -2.3575501 0.042586662 0.07276026 

huntingtin interacting protein 1 

related Hip1r 29816 NM_145070 4.8693295 -2.201144 -2.7867537 -0.3873506 0.0 

coiled-coil domain containing 

115 Ccdc115 69668 NM_027159 4.859238 -2.1449645 -2.4291942 -0.1492556 0.13641547 

yippee-like 1 (Drosophila) Ypel1 106369 NM_023249 4.8050175 -3.117756 -3.0269003 -0.9612411 -0.66779745 

MAS-related GPR, member B3 Mrgprb3 404238 NM_207537 4.7801266 -1.6783082 -1.6598347 0.7642386 0.38721257 

    

4.762627 -2.2143455 -2.0389507 0.09349246 0.16125849 

oxidative stress induced growth 

inhibitor 1 Osgin1 71839 NM_027950 4.758358 -1.6993957 -1.7096418 0.36077815 0.71004313 

cadherin 11 pseudogene 2610005L07Rik 381598 BC086760 4.748304 -2.2859595 -2.2098682 0.0 0.0 

    

4.7429295 -1.7399614 -2.3244665 0.0 0.4508504 

SPT2, Suppressor of Ty, domain 

containing 1 (S. cerevisiae) Spty2d1 101685 NM_175318 4.7101974 -2.157983 -2.1422236 0.0 0.16660412 

   

AK050325 4.7098303 -2.3143265 -2.1610906 0.0 0.0 

olfactory receptor 390 Olfr390 258344 NM_146347 4.6966043 -2.251961 -2.058783 0.0 0.15480317 
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RIKEN cDNA 4930519H02 

gene 4930519H02Rik 75058 AK076692 4.6909575 -2.3538072 -2.909203 -0.8832438 0.0 

trafficking protein, kinesin 

binding 1 Trak1 67095 BC058971 4.682474 -2.170772 -2.2055142 0.0 0.07742637 

neugrin, neurite outgrowth 

associated Ngrn 83485 NM_031375 4.679105 -3.1275163 -3.8553472 -1.7094308 -0.85486794 

crystallin, gamma D Crygd 12967 NM_007776 4.667646 -2.0358818 -2.499899 -0.053739913 0.0 

ST8 alpha-N-acetyl-neuraminide 

alpha-2,8-sialyltransferase 6 St8sia6 241230 NM_145838 4.6553526 -2.156812 -2.2837608 0.0 0.0 

   

AK089374 4.649651 -2.3948224 -1.912581 0.16238718 0.0 

RIKEN cDNA 4930403O15 

gene 4930403O15Rik 73814 AK015069 4.6363525 -2.0814595 -1.8177896 0.20264436 0.33316645 

G patch domain containing 2 Gpatch2 67769 NM_026367 4.6349173 -2.2751029 -2.1525846 0.0 0.0 

BMP2 inducible kinase Bmp2k 140780 NM_080708 4.6333885 -2.3122942 -2.1183538 0.0 0.0 

F-box protein 28 Fbxo28 67948 NM_175127 4.625149 -1.6324089 -1.8701864 0.4967446 0.42864227 

solute carrier family 5 (sodium-

dependent vitamin transporter), 

member 6 Slc5a6 330064 NM_177870 4.6222134 -2.0100412 -2.1720548 0.0 0.23042677 

neuropeptide Y receptor Y2 Npy2r 18167 NM_008731 4.6220875 -1.5008425 -2.0467744 0.21857479 0.6674617 

    

4.614935 -1.9413325 -2.319111 0.0 0.17173028 

RIKEN cDNA 1700003E16 

gene 1700003E16Rik 71837 AK005628 4.589794 -2.1975539 -2.038522 0.0 0.16069123 

metal response element binding 

transcription factor 1 Mtf1 17764 NM_008636 4.5759306 -2.3874352 -2.0235765 0.0 0.0 

lymphocyte transmembrane 

adaptor 1 Lax1 240754 NM_172842 4.572322 -2.179358 -2.2066247 0.0 0.0 

RIKEN cDNA A230072C01 

gene A230072C01Rik 320742 AK029359 4.5579877 -2.6313624 -3.1131475 -1.0587927 -0.35409734 

pleckstrin homology domain-

containing, family A 

(phosphoinositide binding 

specific) member 2 Plekha2 83436 NM_031257 4.553572 -1.2121836 -1.5868095 0.8032808 0.79596627 

coiled-coil domain containing 

176 Ccdc176 72873 AK032247 4.5284176 -1.4744847 -1.5211842 0.4809282 0.857315 
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myeloblastosis oncogene Myb 17863 NM_010848 4.5209937 -2.1618345 -2.3424852 -0.11801534 -0.028753558 

   

AK046946 4.516101 -1.8075911 -2.141631 0.0 0.39347956 

vascular endothelial growth 

factor A Vegfa 22339 NM_009505 4.5132346 -2.1716185 -2.764229 -0.6867235 0.06324499 

Rab geranylgeranyl transferase, b 

subunit Rabggtb 19352 BC057661 4.5109606 -1.4610386 -1.6335343 0.5531554 0.700532 

alcohol dehydrogenase, iron 

containing, 1 Adhfe1 76187 NM_175236 4.493729 -1.8966362 -2.0957644 0.047493283 0.29241577 

B cell CLL/lymphoma 7A Bcl7a 77045 NM_029850 4.492284 -2.1464088 -2.5304716 -0.5809074 0.16823338 

beta-1,3-glucuronyltransferase 1 

(glucuronosyltransferase P) B3gat1 76898 NM_029792 4.483408 -1.877117 -2.2268598 0.0 0.23666446 

BMP2 inducible kinase Bmp2k 140780 CO802710 4.468369 -2.2888253 -2.0412774 0.0 0.0 

activator of basal transcription 1 Abt1 30946 NM_013924 4.4661746 -2.116566 -2.0824342 0.0 0.11691303 

translocase of outer 

mitochondrial membrane 70 

homolog A (yeast) Tomm70a 28185 NM_138599 4.4623437 -1.840354 -2.2103288 0.011782176 0.2656404 

mitogen-activated protein kinase 

3 Mapk3 26417 NM_011952 4.4603176 -2.1802058 -1.9968991 0.22986247 -0.10640641 

    

4.4377294 -1.6793505 -1.9606124 0.18269868 0.47580668 

UDP-N-acetyl-alpha-D-

galactosamine:polypeptide N-

acetylgalactosaminyltransferase 

3 Galnt3 14425 NM_015736 4.4125323 -1.994279 -2.2895854 -0.14276098 0.14306197 

structural maintenance of 

chromosomes 2 Smc2 14211 NM_008017 4.410322 -2.1372614 -2.1445158 0.0 0.0 

   

AK089607 4.393663 -1.9104649 -2.0230834 0.27121085 0.060607474 

oligodendrocyte myelin 

glycoprotein Omg 18377 NM_019409 4.3348017 -0.956986 -1.2725358 0.99543816 1.0240505 

trans-golgi network vesicle 

protein 23B Tvp23b 67510 NM_026210 4.328774 -1.4299413 -1.4015824 0.5613848 0.82327867 

   

AF177345 4.31866 -1.4267446 -1.3782228 0.5524501 0.84895056 

transformation related protein 53 Trp53 22059 NM_011640 4.3178544 -1.0033402 -1.1497626 0.9239012 1.139306 

shisa homolog 5 (Xenopus 

laevis) Shisa5 66940 NM_025858 4.3045015 -3.3790429 -4.0 -2.0111804 -1.2018971 



 

80 | P a g e  
 

UBX domain protein 7 Ubxn7 224111 BC062904 4.2939243 -1.9366149 -2.2895048 0.0 0.0 

    

4.268756 -2.4874299 -2.6448758 -0.64622754 -0.31331608 

RIKEN cDNA 2900006A17 

gene 2900006A17Rik 72913 AK013487 4.2530084 -1.4117671 -1.5849626 0.66316366 0.5186515 

junctional sarcoplasmic 

reticulum protein 1 Jsrp1 71912 NM_028001 4.2146263 -2.178951 -2.6959136 -0.7829336 0.0 

RAN binding protein 3-like Ranbp3l 223332 NM_198024 4.209243 -1.2526375 -1.4207072 0.6421939 0.8303449 

    

4.205492 -1.2716005 -1.5170763 0.38286364 0.93157554 

   

AK047796 4.204894 -1.999895 -2.505561 -0.61348355 0.18669198 

protocadherin beta 17 Pcdhb17 93888 NM_053142 4.2037396 -2.0831325 -2.3271875 -0.1401972 -0.11656382 

   

AK045955 4.200755 -1.9154646 -2.1588128 -0.03534541 0.109005764 

solute carrier family 27 (fatty 

acid transporter), member 4 Slc27a4 26569 NM_011989 4.18794 -1.9515213 -1.8414 0.32355785 0.0 

   

AK141074 4.155496 -1.1608245 -1.2436969 0.79086834 0.91324717 

somatostatin Sst 20604 NM_009215 4.151683 -1.418011 -1.5928848 0.43178025 0.66092336 

G protein-coupled receptor 98 Gpr98 110789 AK081823 4.1513643 -2.1466386 -2.8246377 -0.687957 -0.1475307 

family with sequence similarity 

204, member A Fam204a 76539 AK044853 4.1500626 -1.3548404 -1.6371105 0.2818286 0.7999929 

    

4.148568 -1.9617354 -2.8735743 -0.66409826 0.0 

RIKEN cDNA F630048H11 

gene F630048H11Rik 100038492 AK170335 4.1484456 -1.3051901 -1.3898362 0.61297566 0.79278255 

phosphofurin acidic cluster 

sorting protein 2 Pacs2 217893 AK122326 4.1358986 -2.0959144 -1.9465487 0.0 0.057235368 

WW domain containing E3 

ubiquitin protein ligase 2 Wwp2 66894 NM_025830 4.1145067 -2.0690887 -2.0128973 0.0 0.0 

kinetochore associated 1 Kntc1 208628 NM_001042421 4.1025925 -1.8357054 -2.0874717 -0.15093525 0.27977246 

ATP synthase, H+ transporting 

mitochondrial F1 complex, beta 

subunit Atp5b 11947 NM_016774 4.0952024 -1.2592545 -1.3432913 0.7143381 0.7519639 

WAP four-disulfide core domain 

2 Wfdc2 67701 NM_026323 4.0915227 -2.110705 -1.9585793 0.0 0.0 

RIKEN cDNA 4930540M05 

gene 4930540M05Rik 112414 AK016012 4.0831776 -2.044747 -2.014793 0.0 0.0 
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sex comb on midleg homolog 1 Scmh1 29871 AK083889 4.080706 -2.1826787 -2.094586 -0.12774798 -0.09077134 

paired box 2 Pax2 18504 NM_011037 4.0772996 -1.888592 -2.1691568 0.0 0.011076824 

    

4.0756497 -1.7250577 -2.0005221 0.06514918 0.26924795 

chondroitin sulfate synthase 3 Chsy3 78923 NM_001081328 4.052078 -1.4678885 -1.3482739 0.80650026 0.38670966 

solute carrier family 25 

(mitochondrial oxodicarboxylate 

carrier), member 21 Slc25a21 217593 AK044945 4.049129 -1.1628642 -1.3068889 0.657171 0.9015551 

ephrin A4 Efna4 13639 NM_007910 4.019653 -1.7296734 -2.079507 0.0 0.21789718 

raftlin family member 2 Rftn2 74013 BC038341 4.0142965 -2.3210483 -2.027138 -0.09078292 -0.23580869 

methionine-tRNA synthetase 2 

(mitochondrial) mars-02 212679 NM_175439 4.012314 -2.0768962 -1.8807952 0.05726784 0.0 

CLIP associating protein 2 Clasp2 76499 AJ276961 4.0069156 -1.0902455 -0.9979367 0.90400344 1.012245 

small nuclear ribonucleoprotein 

70 (U1) Snrnp70 20637 BC049128 3.9896255 -1.7726123 -1.9480747 0.0 0.26499942 

vasodilator-stimulated 

phosphoprotein Vasp 22323 NM_009499 3.98485 -1.9582609 -1.9716271 0.0 0.058598723 

    

3.9819221 -2.5122297 -2.848982 -0.8203876 -0.54720086 

RIKEN cDNA 1110001J03 

gene 1110001J03Rik 66117 NM_025363 3.9818718 -1.4440786 -1.6761668 0.34372264 0.5264666 

polymerase (RNA) III (DNA 

directed) polypeptide G Polr3g 67486 AK037264 3.9771025 -1.9908463 -1.9925898 0.0 0.0 

    

3.969031 -0.83308095 -0.9946799 0.94743764 1.1961888 

transmembrane protein 260 Tmem260 218989 NM_172600 3.9574082 -2.0629113 -2.1679251 -0.24484752 -0.023451975 

kelch-like 2, Mayven Klhl2 77113 NM_178633 3.9494336 -1.849945 -1.7053405 0.20068449 0.2109253 

SYS1 Golgi-localized integral 

membrane protein homolog (S. 

cerevisiae) Sys1 66460 NM_025575 3.9428585 -1.9051063 -2.0573945 0.0 0.0 

phosphorylase kinase gamma 1 Phkg1 18682 NM_011079 3.9312572 -2.6477935 -3.0297813 -1.0876143 -0.6481114 

RELT-like 2 Rell2 225392 NM_153793 3.9282918 -1.796814 -1.8880246 0.0 0.25330287 

predicted gene 3877 Gm3877 100042510 AK080592 3.92112 -1.817084 -1.7775604 0.2891798 0.048992693 

potassium inwardly-rectifying 

channel, subfamily J, member 6 Kcnj6 16522 NM_010606 3.92036 -0.8449949 -1.0689981 0.9572126 1.0769687 

tetratricopeptide repeat domain Ttc30b 72421 AK011097 3.9186523 -0.97257155 -1.2069138 0.827319 0.9411709 
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30B 

methionine-tRNA synthetase Mars 216443 NM_001003913 3.9140494 -1.5065548 -2.0312295 0.0 0.41695952 

    

3.9125464 -1.2375522 -1.351621 0.5816865 0.76198095 

mindbomb homolog 1 

(Drosophila) Mib1 225164 NM_144860 3.9037557 -1.5393102 -1.9740746 0.046481702 0.38292032 

CD80 antigen Cd80 12519 NM_009855 3.8976727 -1.912723 -2.01429 0.0 0.0 

Ras-related associated with 

diabetes Rrad 56437 NM_019662 3.89504 -1.1885272 -1.4199506 0.39473835 0.88746357 

    

3.8896706 -2.024474 -1.8844295 0.06945278 -0.05849898 

phospholipase C, beta 2 Plcb2 18796 NM_177568 3.8838763 -2.0519624 -1.749351 0.3191086 -0.2442359 

    

3.883583 -1.1098685 -1.2897853 0.7643977 0.7563195 

NIPA-like domain containing 2 Nipal2 223473 NM_145469 3.8806407 -2.0403004 -2.4127681 -0.573037 0.0 

synaptotagmin XIII Syt13 80976 NM_030725 3.8800952 -1.1652819 -1.2137136 0.85855675 0.6688034 

DEAH (Asp-Glu-Ala-His) box 

polypeptide 15 Dhx15 13204 NM_007839 3.866127 -1.9932117 -1.9050101 0.0 0.0048999526 

    

3.8559208 -1.8791806 -2.018324 0.0 0.0 

ubiquitin C Ubc 22190 NM_019639 3.8383827 -1.9944079 -2.6183803 -0.6785182 -0.053496573 

fibronectin type 3 and SPRY 

domain-containing protein Fsd1 240121 NM_183178 3.8297477 -1.9404005 -1.9341052 0.0 0.0 

nucleoporin 88 Nup88 19069 NM_172394 3.8290303 -1.1737679 -1.3092117 0.6192026 0.7709644 

Holliday junction recognition 

protein Hjurp 381280 NM_198652 3.8262255 -1.0229428 -1.4621638 0.54905623 0.85481244 

olfactory receptor 620 Olfr620 258808 NM_146812 3.8073316 -1.362677 -1.2694911 0.5377252 0.6853946 

G protein-coupled receptor 137C Gpr137c 70713 NM_027518 3.8041728 -1.028331 -1.2307898 0.7007591 0.89579594 

solute carrier family 38, member 

4 Slc38a4 69354 NM_027052 3.798648 -1.1986443 -1.3704413 0.45750943 0.8082262 

solute carrier family 25, member 

42 Slc25a42 73095 AK049593 3.7941992 -0.79010123 -0.91705155 1.0060533 1.1343263 

intersectin 2 Itsn2 20403 NM_011365 3.7904477 -1.9922566 -1.8557097 0.0 0.0 

platelet/endothelial cell adhesion 

molecule 1 Pecam1 18613 NM_008816 3.7888916 -1.01953 -1.3604257 0.4379221 0.9927473 

insulin-like growth factor 2 Igf2 16002 NM_010514 3.7795153 -1.8040226 -1.7867361 0.08875636 0.15615214 
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interleukin 1 receptor accessory 

protein Il1rap 16180 NM_008364 3.776532 -2.099893 -1.9217522 0.0 -0.18815623 

RIKEN cDNA 1700112J05 

gene 1700112J05Rik 68246 AK018912 3.7653525 -1.6508776 -1.6614962 0.25383195 0.25937834 

predicted gene 12185 Gm12185 620913 BC022776 3.7652488 -1.9715263 -2.7751844 -0.97115725 0.0 

capicua homolog (Drosophila) Cic 71722 NM_027882 3.744131 -2.324362 -2.4010098 -0.44086912 -0.474418 

    

3.7429771 -1.9419277 -1.867407 0.0 0.0 

RalBP1 associated Eps domain 

containing protein Reps1 19707 AK042993 3.7382588 -2.1063883 -2.5668354 -0.5457137 -0.29690722 

myelin basic protein Mbp 17196 NM_010777 3.7083793 -0.8242046 -0.8450212 0.9329015 1.1698104 

chromodomain helicase DNA 

binding protein 3 Chd3 216848 NM_146019 3.708205 -0.85316706 -0.94890547 0.9564265 1.0237458 

protein phosphatase 1, regulatory 

(inhibitor) subunit 2, pseudogene 

7 Ppp1r2-ps7 76705 AK133428 3.6903412 -1.6109649 -1.8212762 0.08106651 0.2565271 

polymerase (RNA) III (DNA 

directed) polypeptide F Polr3f 70408 AK171146 3.685033 -0.7384662 -0.90391815 1.0181485 1.1062194 

guanylate binding protein 7 Gbp7 229900 NM_145545 3.682043 -2.1729283 -1.826026 0.0 -0.22597772 

transformation related protein 53 

binding protein 1 Trp53bp1 27223 NM_013735 3.6814513 -1.9171826 -2.2469568 -0.28715706 -0.103471614 

   

AV229918 3.6771219 -1.9160967 -1.8420084 0.0 0.0 

fatty acid binding protein 9, testis Fabp9 21884 U96149 3.669733 -1.6938022 -1.8583666 0.0 0.19714208 

   

AV209602 3.6443639 -1.23996 -1.4724238 0.4004349 0.6195573 

transmembrane 9 superfamily 

member 1 Tm9sf1 74140 AK149247 3.6439538 -1.6364256 -1.6356679 0.32193682 0.13064258 

lectin, galactoside binding-like Lgalsl 216551 NM_173752 3.6318376 -1.1821125 -1.2723526 0.5011307 0.7559749 

RIKEN cDNA D030028A08 

gene D030028A08Rik 319371 AK050871 3.6294997 -1.7641265 -1.8683501 0.08761655 0.0 

porcupine homolog (Drosophila) Porcn 53627 NM_023638 3.6273923 -1.6616862 -1.7926524 0.0 0.25522503 

    

3.6261675 -2.3017812 -2.1664894 -0.24497159 -0.515942 

zinc finger protein 664 Zfp664 269704 NM_001081750 3.6203725 -1.9259161 -2.077534 -0.14983658 -0.1373823 

protein tyrosine phosphatase 4a2 Ptp4a2 19244 NM_008974 3.6202872 -1.3462822 -1.6328796 0.23581897 0.49941388 

RAD51 homolog D Rad51d 19364 NM_011235 3.6109262 -1.4658617 -1.5860581 0.3461633 0.30891705 
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cytohesin 4 Cyth4 72318 NM_028195 3.595358 -2.5843964 -2.8024898 -1.0601697 -0.6546185 

UDP-glucose glycoprotein 

glucosyltransferase 2 Uggt2 66435 NM_001081252 3.5919564 -1.5728593 -1.5450218 0.23568347 0.3344203 

vomeronasal 1 receptor 229 Vmn1r229 171224 NM_134190 3.5714705 -1.8980181 -1.777533 0.0 0.0 

heparan sulfate (glucosamine) 3-

O-sulfotransferase 1 Hs3st1 15476 NM_010474 3.551712 -1.7792522 -2.074624 -0.18012425 

-

0.0068314597 

additional sex combs like 3 

(Drosophila) Asxl3 211961 NM_001167777 3.5221162 -1.5493448 -2.2125163 -0.28826192 0.19461673 

SEC13 homolog (S. cerevisiae) Sec13 110379 NM_024206 3.5181472 -0.6306934 -0.83088225 0.9613105 1.2035297 

   

AK031438 3.516916 -1.8007321 -1.7204368 0.16393249 -0.06438654 

ATPase, aminophospholipid 

transporter (APLT), class I, type 

8A, member 1 Atp8a1 11980 NM_001038999 3.5150223 -1.4470346 -1.2857405 0.46191606 0.43677282 

spindle and kinetochore 

associated complex subunit 1 Ska1 66468 NM_025581 3.5143807 -1.850165 -1.7324221 0.1699807 -0.14027342 

    

3.5005255 -1.3078524 -1.8204052 -0.055588856 0.5289517 

ubiquitin specific peptidase 30 Usp30 100756 NM_001033202 3.4945323 -1.2652608 -1.4116942 0.42634606 0.5094162 

expressed sequence AI413582 AI413582 106672 NM_001002895 3.4828522 -2.433534 -3.1474633 -1.4518368 -0.5730034 

lipolysis stimulated lipoprotein 

receptor Lsr 54135 NM_017405 3.4733129 -0.93677735 -1.1340483 0.6959812 0.82946956 

ATPase type 13A1 Atp13a1 170759 NM_133224 3.4660652 -1.728575 -1.800281 0.0 0.05804863 

glial fibrillary acidic protein Gfap 14580 K01347 3.464584 -2.2615197 -1.960433 -0.19699696 -0.4336008 

SRY (sex determining region 

Y)-box 7 Sox7 20680 NM_011446 3.4568613 -1.7854643 -1.7934722 0.0 0.0 

small nuclear RNA activating 

complex, polypeptide 3 Snapc3 77634 NM_029949 3.4538512 -2.1794217 -2.4167404 -0.5801434 -0.43357906 

    

3.43753 -1.7238799 -1.8412513 0.0 0.0 

ring finger protein 19A Rnf19a 30945 NM_013923 3.4227085 -1.715331 -1.81977 -0.020329587 0.03682913 

WD repeat domain 90 Wdr90 106618 BC043315 3.4164555 -1.6067481 -1.3924139 0.35779166 0.19119355 

DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 1 Ddx1 104721 NM_134040 3.4074156 -1.4896678 -1.9457297 -0.096918754 0.21765631 

Notch-regulated ankyrin repeat 

protein Nrarp 67122 NM_025980 3.399508 -1.6650763 -1.4783106 0.22295813 0.16985868 
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cDNA sequence BC1179090 BC117090 100038854 NM_001001332 3.3860202 -1.783462 -1.7361076 0.0 0.0 

potassium intermediate/small 

conductance calcium-activated 

channel, subfamily N, member 1 Kcnn1 84036 NM_032397 3.3845835 -1.6273736 -1.8264611 0.0 0.07013258 

spectrin beta, non-erythrocytic 1 Sptbn1 20742 NM_009260 3.3652217 -1.8057846 -1.6807873 0.0131677175 0.0043566064 

interleukin-1 receptor-associated 

kinase 4 Irak4 266632 NM_029926 3.361651 -0.76789445 -1.0398074 0.7531965 0.943935 

transmembrane protein 69 Tmem69 230657 NM_177670 3.3511887 -1.6592692 -1.8320749 -0.091720365 0.08922388 

    

3.3473003 -1.8824319 -2.19569 -0.51860774 -0.088487215 

zinc finger protein 868 Zfp868 234362 AK079745 3.3424897 -1.7448205 -1.7370363 0.0 0.0 

telomeric repeat binding factor 2 Terf2 21750 NM_009353 3.3309846 -1.2869987 -1.1548356 0.5565053 0.47544506 

multiple endocrine neoplasia 1 Men1 17283 NM_008583 3.3303554 -0.87981606 -0.91127723 0.7841716 0.8941631 

TSR1 20S rRNA accumulation Tsr1 104662 NM_177325 3.3231409 -2.0679715 -1.9654006 -0.19826747 -0.37350494 

Rho GTPase activating protein 

24 Arhgap24 231532 AK002660 3.3132532 -1.7230731 -1.6531113 0.0 0.08005023 

calmodulin 2 Calm2 12314 NM_007589 3.2965856 -1.7906251 -1.6545284 0.0 0.0 

    

3.2949724 -1.159982 -1.3596145 0.32176545 0.5933125 

ATPase family, AAA domain 

containing 1 Atad1 67979 NM_026487 3.2946699 -1.4551157 -1.4704313 0.19380859 0.31826943 

RIKEN cDNA 0610042G04 

gene 0610042G04Rik 68380 AK002909 3.27517 -1.6000806 -1.7778739 0.0 0.05022235 

   

AV080718 3.2720559 -1.7279354 -1.6926748 0.0 0.0 

angiomotin-like 1 Amotl1 75723 AK016526 3.261146 -0.872723 -0.7946528 0.8780833 0.86633104 

ATPase family, AAA domain 

containing 2 Atad2 70472 AK037651 3.2597084 -1.5750016 -1.753518 0.0 0.08522655 

    

3.2314727 -1.6517588 -1.7337909 0.0 0.0 

angiotensin II receptor, type 1b Agtr1b 11608 NM_175086 3.2300644 -1.5285312 -1.9537979 -0.2307304 0.13911498 

aristaless related homeobox Arx 11878 NM_007492 3.2285624 -1.069108 -1.2913437 0.4462313 0.58052653 

zinc finger protein 592 Zfp592 233410 NM_178707 3.2259815 -0.49487254 -0.59545976 1.0954843 1.19374 

biliverdin reductase A Blvra 109778 NM_026678 3.2122946 -2.2912524 -2.8431752 -1.1319728 -0.6267806 

RIKEN cDNA 4930589P08 

gene 4930589P08Rik 67748 AK017048 3.2069905 -1.460527 -1.6449372 0.0 0.2518847 
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high mobility group AT-hook 2, 

pseudogene 1 Hmga2-ps1 15365 AK033703 3.2030365 -1.4026278 -1.5764494 0.06669046 0.30824608 

unc-45 homolog B (C. elegans) Unc45b 217012 NM_178680 3.1903477 -1.6388756 -2.434879 -0.7026057 0.0 

desmin Des 13346 NM_010043 3.178275 -1.4970404 -1.4351367 0.22808361 0.17642899 

sphingosine kinase 1 Sphk1 20698 NM_025367 3.1775534 -1.5566369 -1.4314106 0.28618994 0.055065043 

transportin 2 (importin 3, 

karyopherin beta 2b) Tnpo2 212999 NM_145390 3.1541429 -1.6912712 -2.1466765 -0.5147488 -0.015833253 

serine protease inhibitor, Kunitz 

type 1 Spint1 20732 NM_016907 3.1481166 -1.9068993 -2.6165965 -0.91831577 -0.27985674 

RIKEN cDNA 2210016L21 

gene 2210016L21Rik 72357 NM_028211 3.1382368 -1.6094453 -2.0327077 -0.41984215 0.06755956 

coiled coil domain containing 

178 Ccdc178 70950 NM_027616 3.133577 -1.4097131 -1.6119285 0.07090273 0.2069506 

mitogen-activated protein kinase 

associated protein 1 Mapkap1 227743 NM_177345 3.1080291 -1.4020783 -1.425442 0.25435323 0.18949229 

interleukin 12b Il12b 16160 NM_008352 3.1012793 -1.5872145 -1.6183504 0.0 0.059712194 

apoptosis-inducing, TAF9-like 

domain 1 Apitd1 69928 NM_027263 3.0936913 -0.7237882 -0.95002854 0.7178975 0.8717073 

protein phosphatase 1, regulatory 

subunit 9B Ppp1r9b 217124 NM_172261 3.0802414 -1.6230232 -1.5387673 0.077846214 0.0068057934 

nebulin Neb 17996 AK086142 3.0257704 -1.5013807 -1.7500092 -0.1738398 0.11347276 

interleukin 12b Il12b 16160 NM_008352 3.0172136 -0.6140344 -0.6668401 0.91796976 0.987241 

regulator of calcineurin 1 Rcan1 54720 NM_019466 3.0007324 -1.5368806 -1.5489309 0.0 0.08363127 

ubiquitin family domain 

containing 1 Ubfd1 28018 NM_138589 2.9940362 -1.473197 -1.5578538 0.0 0.13138397 

CAS1 domain containing 1 Casd1 213819 BC010201 2.9746714 -1.986063 -2.4307573 -0.82610995 -0.43724182 

protease, serine 52 Prss52 73382 NM_028525 2.9647543 -1.5717577 -1.5640776 0.0 0.0 

RIKEN cDNA C130013H08 

gene C130013H08Rik 100327264 AK081392 2.9401562 -1.9024111 -1.5048468 0.039860193 -0.3319147 

solute carrier family 35, member 

F5 Slc35f5 74150 NM_028787 2.9343903 -1.2247223 -0.8627656 0.6694871 0.354647 

apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide 3 Apobec3 80287 NM_030255 2.9285905 -1.0103849 -0.9012393 0.6538483 0.53453827 

    

2.9285858 -1.51805 -1.5424625 0.0071996516 0.03268682 
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2.9237368 -0.7882115 -0.942179 0.58989155 0.7736062 

ubiquitin C Ubc 22190 NM_019639 2.9202397 -0.55624646 -0.7175187 0.80913866 1.0069959 

phosphatidylethanolamine 

binding protein 1 Pebp1 23980 NM_018858 2.9046772 -2.066221 -2.6320224 -1.0844096 -0.53411573 

sodium channel, nonvoltage-

gated 1 alpha Scnn1a 20276 NM_011324 2.8742418 -0.7309387 -0.9360032 0.5777956 0.8003331 

MX dynamin-like GTPase 2 Mx2 17858 NM_013606 2.857441 -1.3480943 -1.0361612 0.47498453 0.17105849 
 

 

Supplementary table 2 

gene ID 

mean 

Hepa 

mean 

EndoPCs 

unlog 

Hepa EndoPcs 

fold change 

EndoPCs/hepa Hepa1 Hepa2 Hepa3 

EndoPCs 

1 

EndoPCs 

2 Endo PCs 3 

Ngfrap1 6,40 11,21 84,54 2378,33 28,13 7,60 6,34 5,26 11,33 11,18 11,14 

Galnt3 4,97 9,27 31,39 620,04 19,75 5,31 5,07 4,54 9,17 9,25 9,41 

Pcdhb17 3,46 6,58 11,03 96,15 8,72 3,35 3,49 3,55 6,45 6,52 6,79 

Pax2 4,27 7,37 19,29 166,21 8,61 4,48 4,06 4,27 7,36 7,46 7,31 

Atad2 5,39 8,44 42,02 347,53 8,27 5,55 5,20 5,43 7,85 8,72 8,75 

Smc2 5,54 8,57 46,45 380,34 8,19 6,17 5,37 5,08 8,17 8,77 8,78 

Kntc1 4,46 7,45 21,97 175,25 7,98 4,39 4,32 4,66 7,02 7,58 7,76 

Pole2 3,63 6,62 12,41 98,56 7,94 3,54 3,58 3,78 6,29 6,71 6,86 

Plekha2 4,33 6,95 20,15 123,54 6,13 4,69 4,56 3,74 7,10 6,93 6,82 

Fem1b 6,31 8,73 79,46 423,18 5,33 6,31 6,49 6,14 8,87 8,61 8,70 

Trp53 6,57 8,87 95,10 466,67 4,91 6,85 6,41 6,45 8,68 8,79 9,13 

Ska1 4,82 7,02 28,26 129,38 4,58 5,17 4,30 5,00 6,72 7,18 7,15 

Psrc1 5,20 7,30 36,84 157,37 4,27 5,60 4,46 5,55 7,45 7,02 7,42 

Eef1g 8,40 10,29 338,90 1249,27 3,69 8,59 8,29 8,33 10,19 10,23 10,44 

Rasa2 5,42 7,26 42,90 153,51 3,58 5,62 5,62 5,02 7,22 7,36 7,21 

Igf2 5,71 7,44 52,42 173,64 3,31 5,71 5,50 5,92 7,08 7,34 7,90 

Zfp37 4,00 5,73 16,04 53,05 3,31 4,03 3,68 4,30 5,22 5,92 6,05 
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Ppp1r9b 4,86 6,55 29,06 93,86 3,23 4,76 4,89 4,93 6,40 6,94 6,32 

Hs3st1 4,20 5,88 18,39 58,76 3,20 3,80 4,65 4,16 5,88 5,98 5,77 

Uggt2 4,32 5,95 19,92 61,91 3,11 4,47 3,96 4,52 5,86 5,93 6,06 

Camk2d 5,43 7,02 43,22 129,35 2,99 5,74 5,39 5,17 7,18 6,95 6,92 

Mapk3 8,07 9,65 269,12 803,35 2,99 7,90 7,91 8,41 9,89 9,39 9,67 

Pign 6,20 7,77 73,44 217,79 2,97 6,40 6,00 6,20 7,58 7,70 8,01 

Efna4 4,62 6,08 24,61 67,46 2,74 4,39 4,60 4,87 6,40 5,72 6,11 

Rabggtb 5,25 6,68 37,96 102,88 2,71 5,47 5,64 4,63 6,37 6,70 6,99 

Hmga2-

ps1 4,54 5,94 23,29 61,37 2,64 4,49 4,24 4,89 5,23 6,40 6,19 

Fbxo28 6,28 7,68 77,83 205,05 2,63 6,41 6,17 6,27 7,53 7,59 7,92 

Zfp664 5,63 7,00 49,56 127,94 2,58 5,66 5,60 5,63 6,94 6,95 7,11 

Pacs2 6,53 7,84 92,53 229,03 2,48 6,60 6,74 6,26 8,03 7,57 7,92 

Snrnp70 8,70 9,94 415,21 979,63 2,36 8,70 8,71 8,69 9,85 10,01 9,95 

Naa20 6,83 8,07 113,66 267,98 2,36 6,68 7,08 6,72 8,02 7,88 8,30 

Zfp868 4,86 6,04 29,10 65,99 2,27 5,11 4,43 5,04 6,19 6,07 5,87 

Amotl1 5,51 6,68 45,50 102,71 2,26 5,46 5,58 5,49 6,70 6,48 6,87 

Cic 6,66 7,81 101,26 225,17 2,22 6,71 6,69 6,58 7,91 7,73 7,80 

Tubgcp6 5,41 6,55 42,55 93,42 2,20 5,22 5,38 5,63 6,26 6,66 6,72 

Clasp2 6,03 7,14 65,32 140,70 2,15 5,88 6,09 6,11 7,03 7,07 7,31 

Snapc3 6,27 7,37 77,04 165,51 2,15 6,21 6,43 6,16 7,12 7,49 7,49 

Apc 6,42 7,52 85,81 183,10 2,13 6,53 6,52 6,22 7,48 7,52 7,55 

Men1 7,07 8,16 134,48 285,48 2,12 7,27 6,89 7,05 8,32 7,90 8,26 

Cdk12 6,97 8,04 125,51 264,01 2,10 7,25 6,92 6,75 7,94 7,89 8,30 

Dhx15 8,99 10,05 508,31 1063,00 2,09 9,05 8,98 8,93 9,86 10,17 10,14 

Pebp1 5,86 6,89 57,93 119,00 2,05 5,85 5,94 5,78 7,03 6,84 6,81 

Chd3 10,70 11,73 1657,89 3385,38 2,04 10,80 10,83 10,46 11,82 11,78 11,57 

Terf2 5,92 6,95 60,72 123,32 2,03 5,85 5,86 6,06 7,07 6,63 7,14 

Calm2 11,03 12,04 2095,87 4215,92 2,01 11,12 11,15 10,83 12,05 12,10 11,98 
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Trp53bp1 5,85 6,84 57,85 114,84 1,99 5,87 5,62 6,07 7,00 6,78 6,74 

Mbp 4,36 5,35 20,54 40,66 1,98 4,43 4,20 4,45 5,41 5,23 5,39 

Tnpo2 7,48 8,44 178,01 348,35 1,96 7,47 7,65 7,31 8,18 8,45 8,70 

Sbno2 6,12 7,07 69,47 134,07 1,93 6,35 6,08 5,92 7,20 6,95 7,04 

Porcn 6,09 7,01 68,09 128,70 1,89 5,84 6,03 6,40 7,54 6,62 6,87 

Bmp2k 6,45 7,36 87,15 163,96 1,88 6,81 6,50 6,03 7,19 7,52 7,36 

Wdr90 4,92 5,80 30,23 55,84 1,85 4,81 4,95 5,00 5,68 5,76 5,97 

Atp13a1 6,61 7,49 97,63 179,23 1,84 6,59 6,62 6,61 7,87 7,03 7,55 

Hjurp 8,11 8,97 276,76 500,16 1,81 8,29 8,14 7,91 8,58 9,05 9,27 

Omg 4,45 5,29 21,79 39,01 1,79 4,34 5,20 3,80 5,05 5,06 5,75 

Nup88 7,40 8,23 168,47 299,32 1,78 7,59 7,19 7,41 8,10 8,29 8,28 

Atad1 9,06 9,88 533,26 942,08 1,77 8,96 9,05 9,17 9,78 9,85 10,01 

Rfwd2 8,90 9,71 476,79 835,21 1,75 9,05 8,91 8,73 9,55 9,74 9,82 

Tsr1 7,39 8,20 168,13 293,52 1,75 7,48 7,54 7,16 7,91 8,27 8,42 

Airn 4,38 5,17 20,84 36,12 1,73 4,68 4,08 4,39 5,29 4,88 5,35 

Casp8 7,51 8,29 181,77 313,60 1,73 7,85 7,56 7,12 8,04 8,56 8,28 

Bcl7a 6,24 7,02 75,69 130,11 1,72 6,38 6,35 5,99 6,76 7,11 7,21 

AI413582 5,95 6,73 61,85 106,07 1,71 5,60 6,08 6,17 6,78 6,60 6,81 

Ddx1 9,29 10,07 627,62 1072,16 1,71 9,28 9,37 9,23 10,02 10,07 10,10 

Polr3f 5,54 6,31 46,57 79,20 1,70 5,70 5,67 5,25 6,22 6,15 6,55 

Nup50 7,01 7,77 128,51 218,51 1,70 6,85 7,20 6,97 7,65 7,77 7,90 

St3gal6 4,52 5,28 22,97 38,76 1,69 4,58 4,46 4,52 5,07 5,40 5,36 

Shisa5 5,33 6,08 40,35 67,49 1,67 5,30 5,11 5,60 6,32 5,76 6,15 

Ypel1 5,31 6,03 39,76 65,50 1,65 5,40 5,31 5,23 6,23 5,88 6,00 

Arhgap24 5,22 5,93 37,23 61,15 1,64 5,06 5,59 5,01 6,01 5,95 5,84 

Vasp 5,76 6,46 54,29 87,99 1,62 5,27 6,10 5,92 6,48 6,47 6,43 

Rrad 4,98 5,68 31,61 51,15 1,62 5,15 4,63 5,17 6,16 5,50 5,38 

Irs1 6,38 7,04 83,07 131,61 1,58 6,42 6,18 6,53 7,39 6,58 7,15 
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Wwp2 6,56 7,21 94,28 148,32 1,57 6,34 6,78 6,56 7,04 7,17 7,42 

Apitd1 5,06 5,67 33,28 51,05 1,53 4,92 5,34 4,91 5,43 5,64 5,95 

Ubxn7 7,35 7,97 163,54 250,43 1,53 7,19 7,46 7,41 8,12 7,62 8,16 

Pacrgl 6,75 7,34 107,34 162,30 1,51 7,00 6,70 6,54 7,49 7,21 7,32 

Mib1 8,10 8,68 274,07 410,92 1,50 8,11 8,21 7,98 8,61 8,69 8,75 

Sphk1 4,76 5,34 27,18 40,45 1,49 5,07 4,49 4,74 5,63 5,13 5,26 

Papola 8,24 8,76 301,94 432,31 1,43 8,30 8,33 8,09 8,69 8,82 8,76 

Usp30 6,77 7,29 109,24 156,25 1,43 7,20 6,86 6,26 7,46 7,01 7,40 

Gtf2a1 8,31 8,80 316,48 446,44 1,41 8,32 8,40 8,20 8,90 8,65 8,86 

Taf1a 5,67 6,16 50,99 71,27 1,40 5,64 5,49 5,89 6,02 6,17 6,28 

Eif4g1 9,46 9,94 705,20 980,84 1,39 9,51 9,44 9,43 9,83 9,98 10,00 

Itsn2 7,25 7,72 152,28 211,09 1,39 7,67 7,19 6,89 7,71 7,71 7,75 

Smg6 6,26 6,73 76,87 106,06 1,38 6,09 6,05 6,64 6,77 6,70 6,72 

Des 4,34 4,77 20,21 27,35 1,35 4,43 4,34 4,25 4,73 4,61 4,98 

Ube3c 7,66 8,08 202,88 270,39 1,33 7,63 7,71 7,65 8,05 7,99 8,20 
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Chapter 6 
Impact of Donor age (DA) on Mesenchymal Stem Cells functionalities 

 

6.1. Impact of DA on liver transplantation 
Twenty years ago, due to shortage in liver donor , an increase of transplanting livers from aged donors in United 

States and European countries was observed 390 (Fig.19) . Moreover, based on the latest European Liver Transplant 

Registry (ELTR) the growing of the waiting list has successfully contributed to attain a plateau of liver 

transplantation (LT) achieved all over Europe mainly between 2007 and 2013 (Fig.20).  

 

 
Figure 19: Change in distribution of donor age in recent years. Source: United Network for Organ 
Sharing reports, 2015 

 

 

In addition, ELTR data associates the increasing of liver percentage coming from donors older than 60 years to a 

decrease of transplant survival 391. Furthermore, following LT, several factors may affect liver regeneration related 

to donor and receiver age 390, 391. Hence, liver graft survival was shown to be significantly increased when the organ 

was collected from a young donor. These results involved the implementation of donor age risk index concept for 

donors with specific LT criteria72. On the other hand, the impact of aging on human liver regeneration has been 

shown to be significantly poorer in elderly patients compared to younger patients 392. Liver Stem cells were shown 

to play certain significant role in liver regeneration; Age-related senescence of liver stem cells was already discussed 

in the Chapters 3 and 4.  
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 Figure 20 : Evolution of liver transplants frequency in Europe between 1968 and 2013; From ELTR 
registry, 2016 

 

I will debate in this chapter also the impact of DA on the senescence of human MSCs. These stem cells represent a 

promising tool in cell-base liver diseases and they can reach senescence biomarkers in vitro similar to those of 

individual chronologic aging in vivo. Thus we will be highlighting on the senescence biomarkers of aged MSCs and 

their age-related niche status. .  

 

6.2. Age- related biomarkers of MSC  
In this context, the main research activities were based on the fact that regenerative potential of MSCs is 

downregulated with age leading to a limitation in their regenerative and hepatocytes’ differentiation potentials. In 

the past few years, several studies suggested that DA influences various MSC properties78, 393, 394. Unfortunately, at 

present, there is no specific molecular marker specifying the grade of cellular aging in MSCs. Therefore, MSCs from 

human, mice, rat, monkey and pig were isolated from different sources such as BM, AT, UCB, DP, urine and nasal 

tissues to study the impact of DA on molecular and functional levels of MSCs. In this context, we will be reviewing 

the principal age-related biomarkers in MSCs discussed recently.  

 
6.2.1. Cellular activity: Proliferation and Apoptosis  

While the MSCs undertake senescence in vitro after 20 - 40 rounds of division called the ”Hayflick’’ phenomenon 
395, also cultured primary MSCs derived from aged people displayed a long time for expansion followed by an early 
stop of growth after 18 passages in vitro. This process is called MSCs senescence396-398. The proliferation activity was 
screened over different studies comparing both young and aged hMSCs’ groups showing higher potential of the 
young hMSCs79 399 . Other study on human nasal tissue-derived MSCs showed no significant variation in 
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proliferation rate over different age groups 
400. In 2014, this evidence was confirmed on human ADSCs where DA 

was shown to negatively impact expansion of MSCs derived from aged donors of fat tissue78. MSCs derived from 
aged donors of UCB have revealed a low growth with a less proliferation rate compared to the young group. The 
colony formation assay showed non-significant difference between both groups, however the young group had 
the ability to form better distinct colonies 401 . More recently, young human dental pulp MSCs showed an average 
of DP time significantly higher than aged population 402. The decrease in proliferation rate give rise to an increase in 
cell size of elderly MSCs in vitro 398. Choudhery et al 403 , 2012 showed that mice aged BM derived MSCs reached 
saturation density at a later stage than young MSCs with a lower number of cells. In fact, several factors control 
these processes: the cell cycle regression is related to a transcriptional up-regulation of genes regulating for 
example the tumor suppressor p53 signaling pathway. This pathway which promotes a decrease in proliferation 
rate and apoptosis in aged MSCs 403, 404. Furthermore, Caspase-3 activity was upregulated in aged MSCs and then 
leaded to apoptosis405. Oct- 4 and telomerase activity were shown to be a key regulation parameter for cell activity 
, self-renewal and differentiation of MSCs 406, 407.  
 

6.2.2. Surface Antigen expression  
The modulation of the surface Ag expression of MSCs play important role which can be associated to DA. In both 
adult and young BM derived MSCs CD29 (unit of Fibronectin receptor), CD44 (receptor III of ECM), CD73, CD90 
(membrane glycoprotein), CD105 (endoglin), CD106, CD166 (cell adhesion molecules) were positive while the 
hematopoietic surface markers CD45, CD34 and CD14/HLA-DR were shown to be negative 79, 402 similarly to the 
profile of human nasal MSCs 400 and human periodontal MSCs 408. However, Age-related decrease of CD90 and 
CD105 expression was described in some references 409. Otherwise, aged Monkey BM-derived MSCs showed a 
loss in CD44 expression similarly to aged human umbilical cord blood (UCB) and aminiotic fluid derived MSCs 401, 410, 

411. Furthermore, senescent human periodontal MSCs displayed a decrease in CD146 expression 402, 412 and positive 
CD271 (receptor of nerve growth factor) expression within the low proliferative CD90+/CD271low MSCs 
subpopulation 408 . Thus, there is a lack of reliable surface markers for evaluating senescence status within MSCs79, 

399, 405. Recently, aged MSCs have been shown to express leptin receptor (LR) promoting osteoporosis and 
adipogenesis in bone niche 413.  
 

6.2.3.  Telomere length and Telomerase activity 
Telomeres are structures localized on the end of eukaryotic chromosomes. It was well observed that for the 
majority of cell types, cellular senescence is a result of telomere-dependent senescence, regarded as progressive 
telomere shortening and the loss of TTAGGG repeats, due to repetitive cell divisions 414-416. Indeed, in senescent 
cells, telomeres reach a low threshold length 417. However, stem cells and progenitors like tumor cells are known to 
express the human telomerase catalytic subunit (hTERT) which is a transcriptase responsible of the replication of 
telomere ends and maintaining the proliferative life span via the use of RNA to synthesize the G-rich repeats 418, 419. 
In this way, human infant MSCs displayed long telomere length compared to older MSCs80. Moreover, Baxter et al. 
420 correlated the loss of telomere during aging of hMSCs to the decrease of replicative rate , the stemness and the 
regenerative potential of MSCs. Furthermore, a negative correlation was widely cited between the long term span 
of adult hMSCs in vitro and the shortness of the telomere when compared to young hMSCs 398, 421. On the other 
side, the ectopic expression of telomerase in MSCs enhanced their differentiation and regenerative potential 
compared to the same non-transduced MSCs 422. In fact, the shortness of telomere avoids the binding of telomeric 
proteins on the chromosomes’ ends and enhances DNA damage response and cell senescence. These aberrations 
originate p53 activation pathway and subsequently stem cell ageing in vivo. Conversely, the extinction of p53 in 
aged stem cells with telomere shortening is directly implicated in genome instability and oncogenic 
transformation by fusion of two chromosomes ends, broken chromosomes, translocations, and aneuploidy407, 423-

425.  
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6.2.4.  Reactive Oxygen Species production (ROS) 
The amount of oxidative damage increases with cell aging leading to senescence426. Production of mitochondrial 
and cytosolic ROS is well recognized to be key factors in MSC aging and the loss of stem cell properties. ROS 
accumulation results from DNA damage and down-regulation of a major group of genes related to mitochondria 
activating the p53 signaling pathway 79, 427. Upregulation of ROS production in human MSCs impaired ATP 
production and telomere length and then promoted low proliferation and cell aging 428. The estimation of the level 
of ROS particles was considered a crucial outcome to evaluate the use of hMSCs for cell-based therapies 429. 
Furthermore, ROS has been shown to reduce the differentiation potential of MSCs and not their proliferation rate. 
Oxidants species result from endogenous or exogenous superoxide anion (O2 −) and hydroxyl radical (OH− radicals) 
and damaged tissue MSCs by (i) increasing intracellular toxicity (ii) causing mutagenic damage and (iii) promoting 
cell ageing and senescence behaviors 430. Phosphorylation of p38 a member of the MAPKs family, is described to 
be the regulator of ROS intracellular accumulation and thus activation of p53 431, 432 . On the other side, 
phosphorylation of p53 is considered to be related also in ROS signal transduction. ROS promote the decrease of 
DNA binding activity of p53 by blocking the cysteine residues of p53 and lead to cell cycle arrest433.  

 

6.2.5. The loss of multipotency and stemness 
In human ESCs and iPSCs, the intracellular stress (ROS) was associated with loss of proliferation and pluripotency 
434. Oct 4 and Nanog are essential to the self-renewal of MSCs and their differentiation and have been shown to be 
less expressed in senescent MSCs 406. Loss of Nanog and Oct-4 are associated with organismal aging. Thus, their 
knockdown diminishes MSC proliferation rate and ROS production 406 while ectopic overexpression was shown to 
increase cell cycle division in addition to their osteogenic differentiation potential 435, 436 . Also in human ESCs and 
iPSCs, alterations in mitochondrial proliferation and development were associated with loss of pluripotency gene 
expression. Furthermore, the MSCs display ageing in vitro after a long span culture time when ESCs can be 
maintained in culture for a long period. In fact, in microarray analysis, the target genes regulated by Oct4 in ESCs 
and MSCs are different, explaining their variable culture conditions and the tentative of MSCs for senescence with 
aging or after long passages in vitro 406.  

 

6.2.6.  Age-related DNA damage and tumor suppression gene profile p53/p16 INK4A/p21 
Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups of lysine rests in 
the histone tail regulating the balance between the chromatin status as euchromatin, the relaxed and 
transcriptionally active form, or the heterochromatin, the condensed packed form 395. The inhibition of ESCs by 
high dose of trichostatin A (TSA) induces morphological and gene expression changes promoting differentiation 
resulting from repressive H3K27 trimethylation of H3K4 437 . On the other hand, the p16 INK4A controls the G1-S 
phase and down regulates retinoblastoma protein (Rb) phosphorylation. Conversely, Rb phosphorylation leads to 
increased p16INK4A expression which is associated with aging in most mammalian tissues 438. In aged MSCs, the 
HDAC inhibition is spontaneous epigenetic alteration and leads to activation of the p53 tumor suppressor and the 
(Rb) pathways, which trigger the cyclin-dependent kinase inhibitors p16INK4A and p21 respectively and accumulate 
damage DDR proteins such as H2AX and 53-BP1430, 439-443. In fact, the knock down of the expression of p16INK4A in 
aged MSCs, via DNA methylation, leads to recover their proliferation rate and spindle shape444. Also, the 
stimulation of senescence in human MSCs in vitro by irradiation, exhibits a senescence-associated SA- β gal with 
low p53, p21, and p16 gene profile expression 408, 445, 446 ( Fig.21).  
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In this way, several studies were conducted to compare aged and young donors derived MSCs and showed an up 

regulation of cell cycle inhibition genes p53, p16INK4a, p21 with the increasing of the donor aging 403. Particularly in 

human, periodontal MSCs p16INK4a expression was shown to impair the high proliferation in non-senescent MSCs 

and thus p53 was only expressed in senescent MSCs 408. Recently, amniotic fluid derived MSCs showed, after 

induced senescence in vitro, an increase in SA- β gal activity and an enlargement of cell size 411. These data 

demonstrated that the HDAC activity and the derived methylation of DNA are involved in the in vivo aging of MSCs. 

Moreover, at genomic level, 31 over 5000 genes are shown to be miRNA expressed exclusively in senescent MSCs 

and regulating the inhibition of cell growth and proliferation, cell cycle, cell death and cellular movement 447.  

Parallel to the epigenetic alterations, a lot of reports showed that age-related senescence in hMSCs is highly 

influenced by their secretion of ROS triggering the activation of p53, p21 and p16 pathways promoting apoptotic 

response. The activation of DNA damage response (DDR) maintained the senescence in Aged MSCs when 

simultaneously the shortness of telomeres sustained this damage448-450. The understanding of these mechanisms is 

crucial to evaluate the functional consequences of these stem cells when used for tissue regeneration and for 

pharmacological assays 451. Indeed, even aged MSCs remain alive in vitro or in vivo; they lose their function, self-

renewal and proliferation capacity and show apoptosis state.  

Functionally wise, several studies were conducted to prove the impact of age-related paracrine effects on 

immunomodulatory cytokines secretion, the tumor progression and the differential potential of the aged hMSCs. 

Thus, the impact of DA on MSCs functionalities will be discussed thoroughly within the next sections.  

 

6.3. DA impact on MSCs functionalities  
 

6.3.1. Paracrine activity and niche aging: Role of MSCs derived exosomes  
Tissue renewing ability drops with age in muscle, blood, liver and brain. These cues are attributed to a limited 
response of tissue-specific stem and progenitor cells. To restore the in situ aged tissue and successfully perform the 
cell-replacement therapy in aged niches, it will be crucial to understand and discuss the age-related factors leading 
to organ environment deterioration. The organogenesis approach is to differentiate MSCs in vitro into the cell type 
of interest such as neuronal, endodermic, endothelial, hepatic, and pancreatic and others. These MSCs derived 
differentiated cells are intended to replace the dysfunctional counterparts in vivo. Recent data have shown that 
tissue replacement therapy failed in repairing organs and functions in elderly people. The extracellular niche seems 
to be less hostile for stem cells in vivo. From a long time, the age of the host niche interfere in the success of 
regenerative potential of precursor cells in old animals452. Since the regenerative potential of liver was well shown 
to be impaired with aging in human and animals, studying the biological niche was crucial to identify molecular 
mechanisms involved in stem cell properties, cell cycle and differentiation potential of stem cells. Indeed, aged 
niche displayed strong negative impact in hESCs and human adult stem cell muscle regenerative potential 452. 
Aging inducs hormonal deregulation and especially Estrogen (Est) in human. The decrease in Est promotes mainly 
osteoporosis, neurodegenerative and age related diseases 453. It was shown that this hormonal disturbance 
induces spontaneous differentiation of MSCs to adipocytes into osteoporosis Bone Marrow niche454. On the other 
hand, this systematic humoral deregulation is associated to inflammatory changes with increasing of DA. Human 
serum levels of inflammatory cytokines IL6 and TNFα are elevated in aged people and associated with disorders of 
MSCs differentiation 455. Thus, Pawelec et al 456, called this mechanism “inflammaging”. 
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Figure 21: Morphological and molecular mechanisms involved in MSCs senescence 

 

The observation that the decline of MSCs regenerative potential in periodontal tissues in elderly was associated 

with loss of teeth 457, 458 tapped the question mark about the signals affected in situ 73 . Aged MSCs in bone niche 

exhibited a misdirected differentiation into adipocytes leading to osteoporosis 75. Moreover, recent observations 

showed that transplanting young mice BMSCs in old bone niche displayed adipogenic differentiation instead of 

osteogenesis 459. However, ADSCs and dental pulp MSCs didn’t show osteogenic defect in another 

microenvironmental niche460. The cytokines involved in the impairments of MSCs differentiation are TNFα and IFN-

γ461. The Knock in of TNFs in MSCs mice model showed a decrease in osteogenic markers462 .Conversely, the 

exhaustion of TNFα or IFN-γ lead to the reappearance of the osteogenic potential of MSCs454. Thus, the 

composition of each niche defines the fate of MSCs regenerative potential in aged population.  
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The biochemical composition of Young MSCs was shown to be more concentrated in saturated lipids, proteins, 

glycogen, and nucleic acids than aged MSCs 463. The Collagen expression increased in fetal monkey MSCS relatively 

to the adult MSCs counterpart 410.  

 

The secreted vesicles, called senescence-associated secretory phenotype (SASP), contain pro-inflammatory 

cytokines causing chronic inflammation and apoptosis via production of strong oxidants (Fig.22). The worst cases is 

when oxidative damages lead to suppression of immunity and promote cancer and malignant phenotypes 464, 465. 

The SASP secreted by aged MSCs were shown to contain LEPTIN, INFγ, TNFα and a number of factors exacerbating 

inflammatory response 79, 466, 467. Young MSCs were shown to produce expressively higher levels of 

neovascularization cytokines such as VEGF 403 , bFGF and IGF and HGF 405 compared to aged MSCs. Recently, 

senescence of MSCs showed to influence their therapeutical potential and their immunoregulatory activity in vitro 

and in vivo. Data demonstrated that graft of senescent MSCs secretes pro-inflammatory signals, INFγ and TNFα 

that can promote systemic lupus erythematosus , coronary artery disease, inflammatory bowel disease and 

several inflammatory diseases 468 . In addition, Pan et al. 469 showed that lower expression of TNF receptor 

superfamily in human liver cell line, in the presence of functional young MSCs , decreases the hepatocytes 

apoptosis in perfusion liver injury model. These observations indicate the impairing of paracrine activity with DA of 

MSCs. Recently, it was proposed that the regulation of the paracrine biology of aged MSCs , their exosomes and 

mitochondrial transfer for tissue repair, constitute a main issue for the future perspective of MSC-based therapy65, 

470. The exosome composition is enriched in cholesterol, sphingomyelin, ceramide, lipid proteins and RNAs and 

varies within population and age. However, they conserved, no matter the MSCs source, a set of proteins including 

the tetraspanins (CD81, CD63 and CD9), heat-shock proteins (HSP60, HSP70 and HSP90), ALIX and tumor 

susceptibility gene 101 (TSG101) 471. The inflammation atmosphere and ROS production raising in aged MSCs 

change the surface and intracellular content of exosomes and therefore decrease their regenerative potential472
.  

 

 

Figure 22: Age-Senescent Biomarkers in human MSCs. SA-βgal: senescence-associated- 
galactosidase, SASP: senescence-associated secretory phenotype, γH2AX-53BP1: Proteins resulting 
from epigenetic damage pf DNA 473 
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Several data suggested that SASP secretions including exosomes deregulated cell-cell interaction in their niche and 

promote the neo-formation of malignant epithelium, then can enhance invasion and promote EMT transition and 

the growth of tumors in vivo474-477. More deeply, IL6 and IL8 are shown to be mediators for tumor activity of aged 

hMSCs promoting breast cancer in vivo within a co-transplant xenograft mouse model 478. Moreover, aged MSCs 

exhibited a declined immunosuppressive function when CD3/28 and IL-2 were treated to induce the activation 

and proliferation of T cells 479. Indeed, in aged MSCs, pro-inflammatory cytokines (IFN𝛾) and (TNF𝛼) triggered the 

phosphorylation of the p38 MAPK and declined the immunomodulatory ability of MSCs gradually480. However, 

some mechanisms remained unclear in aged MSCs and the maintenance of their senescence in vitro was well 

exposed by Sui et al 453, recently as follow “Why do MSCs from an aged or inflammatory environment in vivo 

continue to demonstrate impairments ex vivo despite normal culture media? Does cellular memory exist? Is it 

attributed to the epigenetic changes provoked by pro-inflammatory cytokines or hyperglycemia in vivo?” They 

concluded that the establishment of 3D microenvironment for MSCs with the good immune atmosphere is other 

crucial key parameters for cell replacement liver therapy.  

6.3.2. The deficiency of differentiation and regenerative potential  
Ageing of MSCs was shown to negatively impact their osteogenic lineage. The Osteocalcin and RUNKX 2 
expression were significantly affected with DA 402, 481 . Aged UCB derived MSCs showed a red retaining of Alizarin 
Red staining and less calcium deposits typical to bone compared to the young group 401. In fact, data showed that 
the differentiation potential is affected with age due to a decrease in expression of genes involved in Wnt and 
TGF/BMP482. On the other hand, cystosolic ROS accumulation in aged hMSCs has been proposed as a cause for 
decrease in osteogenic potential 483. However, human nasal MSCs didn’t show the same osteogenic potential 
irrespectively to DA400 . Furthermore, young MSCs were shown to have a significant ability to tube-forming and 
thus to have better proangiogenic ability than aged MSCs 403. In vivo osteogenic assay using periodontal human 
MSCs confirmed that aged MSCs lose their osteogenic potential412. In rabbits, the chondrogenesis potential of 
MSCs was shown to decline with age 484. Similarly, Bari et al. 485, observed that spontaneous chondrogenesis in vitro 
was only initiated in young MSCs patients. Moreover, even hMSCs from older patients retain their chondrogenic 
differentiation capacity and lose part of their synthetic capacity and early apoptosis 485. Concerning the adipogenic 
potential of MSCs, several data showed no correlation with DA 401while human periodontal MSCs showed an 
impairing in adipogenic potential with ageing of the donor 402, 412 . Accordingly, Al Raeis et al408, showed that high 
proliferated (non- senescent) periodontal CD31-/CD90+/ CD271LOW MSCs exhibited a higher multipotency to the 
adipo, chondro and osteogenic lineages wheras CD34+/ CD271high showed neurogenic lineage commitment. On 
the other hand, the neutrotrophic ability of aged MSCs was closely correlated with the age niche of the donor 486 . 
 

6.3.3.  Migration and adhesion ability: Implication of Cdc42 in stem cell aging  
The signaling pathways regulating the ECM homeostasis are deregulated with aging of Stem cells. To assess the 
impact of DA on MSCs migration in vivo, different studies showed that the long-term cultivation of MSCs (inducing 
senescence in vitro) promotes high decrease in migration ability and homing compared to their primary cultures79, 

466. After 72h, young rat MSCs displayed higher migration and injury healing than old MSCs in culture 403. Also, 
human periodontal derived MSCs from young donors showed a significant increase of migratory potential over 
elderly derived MSCs 412. A lot of reports studied the negative impact of DA on MSCs migration capacities76, 243, 487-489 
but rare are the papers describing the molecular mechanisms involved in migration pathway. Moreover, other 
citations showed that loss of migration potential in aged MSCs can be related to a down-regulation of some 
cytokines receptors preventing the recruitment of MSCs to the lesion site 490. Aged stem cell were reported to 
reduce adhesion to stroma cells in their niche and the ability to homing upon transplantation84, 491, 492. Data 
described the adhesion receptors such as N-cadherin, integrin, VCAM and CD44 are altered with aging of adult 
stem cells 493 . Moreover, deficiency in Ca leads to a failure in Collagen 1 adhesion of stem cells in the niche 494. 
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Recently, the loss of migration ability was correlated to a defect in cytoskeleton organization and actin formation, 
which is mainly regulated by the Rho GTPase and which was described to be strongly affected with MSC age 79, 85, 

495. In fact, the RhoGTPase proteins promote the fillopodia and focal complex formation for cellular migration79. 
These outside-inside interactions between the receptors and the family of small Rho GTPases are deregulated over 
the stem cell aging and affect the intracellular environment. A family member from RhoGTPase family, the Cell 
division cycle 42 (Cdc42) protein was shown to be activated in aged HSCs and never in young HSCs and to promote 
less adhesion 85. Furthermore, the knock-out mice model presenting an elevated activity of Cdc42 in HSCs, 
demonstrate a remarkable decrease of adhesion of these stem cells 84. Thus, we speculate that the reduced 
stromal adhesion of HPCs from aged animals might be a consequence of elevated activity of Cdc42 in HPCs in aged 
mice.   
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CHAPTER 7 
Hepatogenic potential of Adipose Tissue Mesenchymal Stem cells (ADSCs) 

 

7.1. General debate about Hepatogenic potential of MSCs and their molecular 

characteristics 
Many approaches have highlighted a link between MSCs and hepatic fate by explaining and elaborating the 
importance of MSCs as a viable alternative to human adult hepatocytes. Therefore, this characteristic of MSCs has 
offered a new hope for autologous cell therapy with low ethical problems and a wide range of applications in 
chronic and acute liver diseases. Indeed, undifferentiated hMSCs express LPs markers involved in liver 
development and endodermic specification 57. Cellular interaction with the mesenchyme is required for 
endodermal cells to differentiate into hepatocyte raising the question about the link between mesenchymal cells 
and the hepatocytes’ formation496 . Thus, this approach was raised again few months ago with Asai et al, 2017 497, 
by inducing hepatic organoid from iPSs and showing that mesodermal paracrine signals promote hepatocytes 
maturation of endodermic progenitors. Petersen and coworkers 270 were the first to describe that resident liver 
stem cells termed “oval cells” in rodents and “ductal reactions” in human express markers previously believed to 
be hematopoietic stem cells (HSCs) and might be derived from the bone Marrow .  

Although these intrahepatic progenitors proliferate in response to liver injury, they are not sufficient to repair liver 

failure. Furthermore, Herrera and coworkers, described a population of human pluripotent resident liver stem cells 

(HPLSCs) able to contribute to injured liver regeneration when injected to mice with acute liver failure induced by 

acetaminophen 498. These cells, contrary to primary hepatocytes, are able to grow in culture for up to 30 passages. 

HPLSCs express CD29, CD90, CD73; CD44 MSCs (MSCs) markers associated to liver specific markers such as KRT8/ 

KRT18 and are negative for hematopoietic markers CD34 and CD45. Moreover, these MSCs like cells are capable 

to differentiate in vitro to mature hepatocytes when cultured in the presence of FGF4 and HGF (hepatocyte 

growth factor) and to repair liver injury in CCL4 induced liver fibrosis 499.  

On the other hand, MSC exosomes were described to activate several signaling pathways important in liver 

regeneration (Akt, ERK, and STAT3) and to induce the expression of a number of growth factors such as HGF and 

insulin-like growth factor-1 (IGF1)500. Fascinatedly, exosomes isolated from hiPSCs -derived MSCs were shown 

recently to protect liver against liver injury and participate to hepatocytes regeneration501. These evidences support 

a strong link between MSCs and their implication in the hepatogenic and liver regeneration potential. The table 2 

below reports the recent application of MSC-derived exosomes in liver diseases and thus supports a strong link 

between MSCs and their implication in the hepatogenic and liver regeneration potential. Interestingly, as stated 

previously, MSCs are considered to be a promising therapeutic tool for liver disease based on (i) their ability to 

differentiate or to fuse with hepatocytes (ii) their immunomodulatory and immunosuppressive effect providing a 

safe source and (iii) their paracrine potential via the secreted growth factors and cytokines which promote an 

endogenous regeneration potential and inhibit hepatocellular apoptosis and stimulate liver regeneration 60  

 In the following sections, the evidences considering hMSCs as a promising tool for liver regeneration and drug 

screen testing will be discussed thoroughly 

https://www-ncbi-nlm-nih-gov.gate2.inist.fr/pubmed/?term=Bezerra%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=28275009
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Table 2: Implication of MSCS derived exosomes in liver regeneration and nanovesicles therapy 

Source of MSCs Animal strain Disease model Functions of MSC’s derived exosomes Ref 

human Umbilical 

cord  

Kunming 

mouse 

CCl4-induced liver fibrosis Inhibit hepatocytes EMT and collagen production 

through inactivating TGF-β1/Smad pathway 

502
 

Chorionic plate MSCs  Sprague–

Dawley rat 

CCl4-induced liver fibrosis Impede Hh signaling activation in hepatic stem 

cells s by inhibiting Smo expression 

503
 

hESC-derived 

HuES9.E1 MSCs  

C57BL/6 

mouse 

CCl4, APAP or H2O2- 

induced liver injury 

Increase hepatocyte proliferation by upregulating 

proliferation proteins and anti-apoptosis gene 

504
 

Adipose tissue  Fischer-344 rat Rat N1S1 cell-bearing 

orthotopic HCC model 

Suppress HCC by promoting NKT cell anti-tumor 

responses 

505
 

miR-122/CCNG1, 

ADAM10, etc. 

BALB/c nu/nu 

mouse 

HepG2 cell xenograft 

nude mice 

Sensitize HCC to chemo therapy 506
 

 

7.2. Mesenchymal stem cells: safe alternative for liver resident stem cells and induced 

hepatocytes from pluripotent stem cells  

Evidence from several studies indicates the presence of resident stem cells in the adult liver 10, 507. The human LPs 

cell activation has been observed during acute and chronic liver diseases but was insufficient to perform complete 

liver regeneration. Various alternatives of stem cells sources have been used in the recent era to produce a large 

number of functional hepatocytes in vitro intended to be used in drug toxicity screening or for therapeutic 

applications. Several studies have described the differentiation of the embryonic stem cells (ESC) into hepatocytes- 

like cells (HLCs)11, 12. Different contributions have been made for optimizing the combinations and sequences of 

inducers used for the process of ESCs differentiation into hepatocytes 12. Despite the ESCs gold standard potential 

for cell lineages differentiation, their clinical application is associated with practical and ethical concerns. These cells 

when injected into mice generate teratoma and majority of strategies lead to uncontrolled processes of 

differentiation resulting in heterogeneous differentiated cell populations 13.  

While Samira Asgari et al14, described the induced pluripotent stem cells (iPS) as a new era of hepatology, Si 

Tayeb et al., explored for the first time the possibility of generating murine and human hepatocytes from iPSCs 

reprogrammed from foreskin fibroblasts by lentiviruses transduction for the expression of OCT3/4, SOX2, NANOG 

and Lin28. These hepatocytes – like derived from iPSCs showed an incomplete cyp450 repertoire compared to 

primary hepatocytes. IPSCs-like ESCs can proliferate indefinitely without loss of potency and give rise to cell line 

diseases model. However, for drug toxicity evaluation, the advantage of using iPSCs relies on their ability to provide 

a source of autologous hepatocytes14, 15, 508. In addition, a new approach generated vascularized and functional 

human liver buds (LB) containing immature specific hepatic cells organized in 3D structure between endothelial 

and MSCs319. These IPSC-LBs were capable to connect to animal host vessels within 48 hours and differentiate into 

functional tissue resembling the adult liver. The main aim of this trial was to highlight on the huge therapeutic 

potential of using generated liver buds for liver failure transplantation without using iPSCs as hepatocytes cell 

source. 
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 Indeed, even iPSCs have, as previously mentioned, a high differentiation potential noting that (i) iPSCs cell lines are 

incompletely reprogrammed and maintain exogenous transgene expression which can interfere with 

differentiation protocols 16 and (ii) iPSCs-hepatocytes show fetal-like properties in the majority of the generated 

population. These facts would absolutely limit iPSCs therapeutic translation and therefore would demand new 3D 

approaches to generate efficient iPSCs-hepatocytes which remain excessively complex strategies and are restricted 

to highly specialized labs 321 Moreover, Sekiya and coworkers showed that the activation of hepatic gene keys, 

notably HNF4α and Foxa2 , in murine fibroblasts leads to the generation of Induced hepatocytes-like (iHep) , 

although the expression level of liver enzymes differed from those in adult mouse hepatocytes, the generated 

hepatocytes-like were capable to secrete Alb, synthetize triglycerides, produce urea, also possess Cyp450 activity 

upon drugs induction and were able to repopulate mice liver after transplantation 509. In addition, several hepatic 

gene transfer strategies were described recently converting ESCs, Fetal hepatic progenitors, adult stem cells and 

somatic cells into hepatocyte-like cells12 . However, all these hepatocytes-like are always limited by the 

conservation of some gene expression in the initial ESCs intended to be converted , by the association of genetic 

disorders due to viral infection used to overexpress the hepatic genes and by the fact that it’s impossible to 

maintain all functions and gene expression levels similar to that of mature hepatocytes in vivo 189.  

In summary, all these previously elaborated strategies introduce specific hepatic factors and genes by viral, 

chemical and DNA-mediated transfer, which have restricted clinical use due to safety and ethical issues. . Based on 

all these previous limitations, finding other hepatocytes alternatives with low ethical risks, ease of availability and 

safe plasticity or trans-differentiation was mandatory. hMSCs have been emerged as a promising tool and an 

attractive stem cell source for cell therapy 507. MSCs were reported largely for their multipotency and their ability to 

differentiate into hepatocytes and liver failure repair 290. The hepatic differentiation potential of MSCs may deliver 

an infinite source of cells for hepatocyte replacement therapies 510, 511. Human Wharton Jelly derived MSCs were 

reported as an interesting stem cell population to develop human hepatocyte-like cells expressing before 

differentiation transcriptional factors involved in liver development such as GATA4, GATA6, SOX9 and SOX17 and 

LPs markers such as K19 were 57. Moreover, although the proliferation rate is shown to be different within different 

types of MSCs, isolated MSCs from human BM , adipose tissue and amniotic fluid ( fetal MSCs) were able to be 

differentiated in vivo and in vitro into functional committed hepatocytes 6, 507, 512. Many studies were conducted to 

evaluate the best source of MSCs for stem cell therapy taking into consideration the invasive procedures and the 

frequency of stem cell content especially in aged patients 59. Therefore, the following paragraph will focus on the 

importance of hADSCs as an appeal source for liver cell-based therapy and the effect of DA on their molecular 

behaviors.  

 

7.3. ADSCs as a potent source of human hepatocytes generation : Contribution of 

exosomes and Wnt pathway  
Under specific culture conditions, MSCs possess differentiation potential ranging from mesenchymal related 

multipotency to endodermal (hepatic fate) competency. Therefore, ADSCs, is derived from embryonic mesoderm 

and contains an attractive stem cell population within the stromal vascular fraction (SVF) 513. Even though human 

ADSCs have similar phenotype and behaviors to BMSCs in vitro and in vivo 514-517, ADSCs represents a rich source of 

MSCs and is accessible with minimal patients’ discomfort following a liposuction procedure 513. More interestingly, 



 

104 | P a g e  
 

compared to ESC and iPSCs, ADSCs is showed to be more advantageous in regard to ethical and safety issues for 

hepatic regeneration and Hep-Dif 62.  

Briefly, ADSCs were shown to be a better therapeutic implement for liver disorders, as well as an alternative 

hepatocytes source in vitro with potential use in preclinical drug testing based on several evidences as follow: 

First, hepatocytes derived from ADSCs resisted to Hepatitis B infection during differentiation more than their BM 

derived counterparts. Thus, compared to BMSCs, ADSCs may be alternative source of stem cells’ for hepatitis B 

treatment518.  

Furthermore, ADSCs derived exosomes are considered as a new challenge in exosome-based therapies for liver 

disease underlining the strong molecular mechanisms shared between ADSCs and liver environment 65. human 

ADSCs exosomes were shown very recently to promote fibroblast migration and tissue healing 519 as well as 

yielding a benefit tool for liver fibrosis and ischemic liver injury in animal model520 . Indeed, ADSCs derived 

exosomes were described to act by cell-cell micro-communication via containing paracrine factors improving 

angiogenesis and regenerative potential in liver diseases 65 521 (Table2).  

 Taléns-Visconti and coworkers showed that ADSCs derived hepatocytes have a higher proliferation capacity and a 

longer culture period compared to BMSCs differentiated in the same culture conditions 64. Besides, several reports 

showed that hADSCs were rapidly induced into hepatocytes (iHep) in vitro; iHep showed a polygonal shape, co-

expressed albumin and AFP, uptake LDL and stored glycogen; and also showed maturity and functionality with 

ability to repopulate and regenerate liver function of acute liver-injured in a mice model 522-526. Moreover, a 

comparison between MSC-derived hepatocyte-like from adipose tissue, UCB and BM showed that ADSCs give rise 

to hepatocytes with more consistent gene expression and hepatogenic profile524. Interestingly, microarrays 

analysis showed a high similarity of gene clusters between ADSCs derived hepatocytes and whole liver. In addition, 

signaling pathways regulated by the common genes were relevant to liver functions such as cyp450 drug 

metabolism and a typical MET cascade 508, 527. In vivo engraftment of ADSCs modulates kupffer cell (liver 

macrophages) activity to inhibit the TNFα secretion. This immunosuppression potential of ADSCs improve their 

therapeutic potential in liver injuries 528. The transplantation of GFP-hADSCs derived hepatocytes in the periportal 

region of the lobule of mouse host liver showed Alb expression and similar landscapes of human hepatocytes and 

long term integration in vivo compared to non-differentiated grafted hMSCs 529. In the same way, hADSCs derived-

hepatocytes were able after 10 weeks of engraftment, to replace 10 % of the host hepatocytes where hBMSCs 

didn’t repopulate more than 1%. 530. Additionally, the hADSC-derived hepatocytes were discussed as a potential 

tool study drug toxicity expressing hepatogenic functional gene profile for drug metabolism and hepatic protein 

secretion 63.  Interestingly, Wnt signaling was reported to regulate the BMSCs and ADSCs differentiation into 

hepatocytes. More specifically in BMSCs, Wnt-1, Wnt-5a, Frizzled1, DSH (disheveled), GSK3β beta (glycogen 

synthase kinase 3 beta) and β-catenin where shown to be elevated up to day 11 of differentiation then they 

decreased at the end of differentiation. In a next step , the activation of Wnt pathway impaired the Hep-Dif of 

BMSCs while Wnt inhibition showed earlier albumin expression in the BMSCs derived hepatocytes531. These 

findings means that downregulating of Wnt pathway promote BMSCs differentiation into hepatocytes within the 

endodermal lineage. In order to explore the role of Wnt signaling in the differentiation of ADSCs into hepatocytes, 

Huang etal532 showed recently that the inhibition of the GSK3 alone was sufficient to increase the β-catenin in a 

manner with activation of Wnt/β-catenin signaling. This mechanism triggers the expression of definitive endoderm 



 

105 | P a g e  
 

specific genes GATA4, FOXA2, and SOX17 significantly. These ADSCs derived- endodermic progenitors were 

directed to differentiate into hepatocyte-like cells after further combinations of soluble factors and were able to 

express important drug-metabolizing cytochrome P450 (CYP450) enzymes with great albumin secretion and LDL 

uptake activity. Similarly to BMSCs and UCMSCs 533, these findings propose that activation of Wnt/β-catenin 

signaling during the endoderm specification represent a crucial mechanism intermediating hADSCs differentiation 

process. However the Wnt/β-catenin OFF mode is crucial for hepatocytes specification from hADSCs.  

 

7.4. Impact of DA on regeneration potential of ADSCs 
In this section, some reports focusing on the effect of DA on human and animal ADSCs will be discussed in order to 

elucidate the impact of DA on their regenerative potential. Pulmonary inflammatory lesions treated in aged mice 

with young ADSCs showed a decrease in fibrosis, lower TNFα secretions’ level and increase in collagen synthesis 76. 

Other reports compared hADMCSs derived from young and eldered donors and observed that ROS and NO levels 

increase with aging in human ADSCs. Aged ADSCs demonstrated SA-β-gal activity, enlarged morphology, and 

p53/Rb protein upregulation 77, 78. Moving to another immunomodulator characteristic of hADSCs in 

neurodegenerative disease and particularly in the multiple sclerosis associated with Encephalomyelitis (EAE), it was 

shown that ADSCs derived from aged donors failed to ameliorate the neuro-rejuvenation status. However, young 

ADSCs provided HGF secretion and neuroprotection and remyelination in EAE mice 487. Similarly to human BM 

derived-MSCs, aged hADSCs revealed a progressive decrease in the angiogenic capacities in a mouse ischemic 

model. In a first step, the elderly hADSCs failed to differentiate in endothelial-like cells and to secrete angiogenic 

cytokine such as VEGF. In a second step, the increase of DA reduced the angiogenic abilities of hADSC in ischemic 

model; however hypoxic preconditioning overturned the negative effect of aging by modulating the ROS paracrine 

activity in aged ADSCs. The transplantation of hypoxia-ADSCs enhanced neovascularization after induced ischemic 

injury 534. Vilaboa et al.535, demonstrated that women donor age impacts dramatically the cell yield isolated from 

lipoaspirates and thereby further studies were suggested to be conducted for specific age-related factors to explain 

these results. Furthermore, the transplantation of Young ADSCs in lung fibrosis-induced old mice decreased fibrosis 

level, collagen deposition, ROS accumulation and apoptosis markers where old ADSCs didn’t reduce fibrosis 

neither senescence markers 76. Furthermore, hADSCs in vitro -induced exhibited mitochondrial dysfunction, 

endoplasmic reticulum stress and altered lipid profile with a higher ratio of mono unsaturated over 

polyunsaturated fatty acids82.  

 

7.5. Impact of DA on differentiation potential of ADSCs 
Within basic differentiation potential investigations, several reports demonstrated that aged ADSCs have a great 

loss in osteogenic, adipogenic and chondrogenic potentials78-80. Although adipogenic differentiation of ADSCs was 

demonstrated in few reports to be independent from DA 78, 536, conversely some studies reported that adipogenic 

potential of ADSCs increased in incidence with age. Thus, the DA showed a negative impact in osteogenic and 

chondrogenic potential bone and joint diseases 394. Several questions were raised about the utility of aged ADSCs 

intended to be differentiated in vitro since numerous studies considered strongly the negative impact of DA of 

ADSCs on their therapeutic potential in several diseases. Moreover, the Chondrogenic differentiation of ADSCs in a 

clinical and epidemiologic experience showed that young DA of ADSCs might be the key index to complete 
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cartilage regeneration in osteoarthritis patients 394. In fact , The CFU-F, the proliferation rate, the population 

doubling time (PDT) and differentiation abilities decrease in aged ADSCs 81 . Also, the genes related to senescence 

such as cyclin-dependent kinase inhibitor p16ink4a increased with age of ADSCs. The microarray of aged ADSCs 

showed abnormal expression of mir-RNA. Also, a correlation was observed between the age increasing and the 

low quantity of ADSCs resident stem cells, with low capacity of self-renewal and differentiation 82. In a Monkey 

model, ADSCs showed a decrease in stemness with the age, increase in p21 expression and apoptosis with IL6 

expression. In addition, Young ADSCs population resisted to senescence in vitro83.  

 
 

 

Figure 23: Morphological and molecular considerations within MSC differentiation towards 
hepatocytes 

 

Nowadays, there is no report discussing the impact of DA on hepatogenic potential of hADSCs. However, few 

reports discussed the impact of DNA damage on hepatogenic potential of MSCs. Where UCMSCs expressing ROS 

and high oxidative damage ratio gave rise to hepatocytes like morphologically and biologically normal 537 , hADSCs 

with high methylation rate showed a weak hepatogenic potential compared to their counterparts treated with a 

methyltransferase inhibitor 538. Indeed, demethylated generated hepatocytes showed high activity of the CYP450, 

AFP and Alb with urea metabolism comparable to freshly isolated human hepatocytes suggesting that hADSCs 

may be suitable for liver cell-based therapy after DNA damage repairing.  
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7.6. Human MSCs to hepatocytes: the in vitro differentiation cues  
The shift from fibroblast-like to the polygonal is a key parameter for the transdifferentiation of MSCs into 

hepatocytes like cells. This phenomena was described in human BMSCs 539 and ADSCs540 showing a remarkable 

transition from a bipolar fibroblast-like morphology to a round epithelial during the initiation step of hepatic 

differentiation (Fig.23) . However, the maturation step is associated with cytoplasm contraction. Clearly, double 

nuclei appear in the late differentiation stage. This morphology shift is associated in the initiation step to the 

differentiation towards hepatocyte with alpha-fetoprotein (AFP) and Sox17 , followed by the expression of mid 

and late markers such as HNF4a, Alb and CK 18 541, 542 . Furthermore, HNF4a plays a crucial role in the development 

of the liver-specific phenotype 147, 543. Indeed, overexpression of HNF4a in MSCs induces better hepatocyte 

functionality 544. In the late stage of maturation, MSCs express hepatocyte markers such as tryptophan 2,3-

dioxygenase (TO), anti-trypsin (AAT), tyrosine amino transferase (TAT), CCAAT enhancer-binding protein (C/EBP) 

and cytochrome P450 (CYP450) (Fig.23). Conversely, MSCs embryonic markers are downregulated 542.  

Besides to these markers, other functionality parameters are evaluated within the MSCs and their derived 

hepatocytes such as glycogen storage, detoxification ,lipid metabolism, the synthesis of urea, the uptake of low-

density lipoprotein and the inducing of the cytochrome P450 activity 542.  

Recently, several hepatic differentiation protocols of MSCs have been conducted and developed four types of 

strategies to derive hepatocytes from MSCs: The addition of growth medium and cytokines, the genetic 

modification by overexpressing of hepatic key genes, adjustment of the microenvironment by ameliorating and 

mimick a 3D liver ECM or by alteration of the physical parameters used for culturing MSCs such as inhibiting 

senescence process in vitro (Fig.24).  

 

 

 
Figure 24: Main molecular mechanisms involved in MSCs trans-differentiation into hepatocytes 

 

Some reports revealed that culture of MSCs in fetal liver-conditioned medium induced differentiation 545, 546. Since 

no cell-cell interaction takes place in monolayer MSCs culture, cytokines are mandatory to induce MSCs 
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differentiation towards hepatocytes. A lot of strategies and reports showed that many cytokines are involved in 

liver cell proliferation and differentiation such as hepatocyte growth factor (HGF), oncostatin M (OSM), epidermal 

growth factor (EGF), transforming growth factor beta (βFGF), basic fibroblast growth factor (bFGF), insulin-like 

growth factor (IGF), dexamethasone (DEX) and nicotinamide 58, 547, 548. Indeed, βFGF plays an essential role in the 

liver regeneration and the MET transition cascade, βFGF is required to induce a hepatic fate from the foregut 

endoderm (Sox17+), and OSM increases hepatocyte size and hepatocyte maturation 59, 546. Insulin growth factor 

with transferrin and DEX can promote the proliferation of hepatocytes 549, 550. Successful MSCs differentiation in 

vitro was showed to be ameliorated with multistep process and sequential cytokine release in vitro and the ability 

of systems to reconstitute the in vivo-cell matrix 60, 64, 551, 552. In sharp contrast to the critical role of serum in MSC 

expansion differentiation steps, serum free conditions have been successfully applied 60, 64, 498. 

Other cues were discussed to ameliorate the efficacy of Hep-Dif from MSCs such as the spatial distribution 

between cells as it is an important factor where differentiation is initiated upon 60%-80% confluence. Highest cell 

density is in favor of differentiation 143. Also, the presence of various ECM components (Collagen type I, II, IV, 

elastin, gelatin) is employed as coating material for better ECM conditioning. Several components were tested on 

ADSCs , however the decellularized liver matrix was shown to better coat plastic dishes for Hep-Dif 553, 554. Thus, the 

choice of collagen and aminoglycanes turns out to be most effective 555 since culturing human ADSCs on top of 

HGF/Collagen on a glass of protein spots arrays induced greater differentiation into Hepatocytes 554. Furthermore, 

some strategies used inhibitors of the main cellular signaling pathways such as p38, ERK1/2, JNK and improved 

better hepatic functionalities in presence of HGF, bFGF and OSM. Others used small molecules to repair DNA 

damage and histone acetylation 507, 523, 556-561. Further epigenetic regulation in ADSCs such as the inhibition of some 

miRNA resulted in the increased expression of specific hepatocyte markers 562, 563. Moreover, notably in ADSCs the 

supplementation of endodermal transcription factor such as Foxa1, Foxa2, and Gata4 induced and enhanced their 

differentiation into hepatocytes 564.  

The hallmark of this trans-differentiation is considered to be a mesenchymal to epithelial transition (MET). In fact, 

by comparing the gene expression of undifferentiated ADSCS, hepatocyte like derived ADSCs and human primary 

hepatocytes, the expression of the mesenchymal markers Twist and Snail were reported to be remarkably 

downregulated, as well as the expression of N-Cadherin and the cytoskeletal marker vimentin. Furthermore, 

microarray-based integrated analysis of methylation by isoschizomers (MIAMI) showed that the promoter region 

of the Twist gene was hypermethylated in differentiated ADSCs, causing the decrease in the expression of this 

gene. Concurrently, the expression of the epithelial marker E cadherin was progressively increasing540, 565. These 

findings support the notion that MET plays an important regulator key in determining stem cell trans-

differentiation565 (Fig.24).Frequently used molecular markers for MET involve downregulated expression of N-

cadherin and vimentin with reduced transcription of SNAIL1 and TWIST that regulate expression of E-cadherin. 

BMP, WNT and TGFβ pathways have been widely designated for their contribution in EMT/MET process 566. 

Altogether, these data suggest that plasticity perceived in ADSCs is dependent on MET.  
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CHAPTER 8 

Cdc42: A novel biomarker of stem cell aging  

 

8.1. Regulation of cdc42 GTPase protein  
The Rho-GTPases family involves a large number of proteins. The well-known members of this family are RhoA, 
Rac1, and Cdc42 which were reported in 1990 to be specific for actin assembly and reorganization by regulating 
formation of ruffles, filopodia, and stress fibers, endocytosis, phagocytosis and intracellular traffic 567. Cdc42 is a 
member of the Rac subfamily. Cdc42 was first identified in Saccharomyces cerevisiae as a mediator of cell division 
568. The downstream proteins of Cdc42 called the Wiskott - Aldrich syndrome proteins were shown to strictly 
regulate cell migration and molecular adhesion mechanisms 86. Furthermore, Cdc42 was reported to regulate 
different targets and to impact several cellular responses fundamental to cell growth, differentiation, apoptosis and 
PAK cellular stress pathways 86, 569. Par3/6 regulating actin and tubulin cytoskeleton reorganization and cell polarity 
were reported as Cdc42 downstreams92. On the other side Cdc42 is implied in regulation of cell growth signaling 
and was found to crosstalk with the JAK-STAT pathway and to be central for triggering of Erk, JNK, p38 MAP 
kinases, and NF-κB . Several limitations avoided the determination of Cdc42 roles in vitro such the early lethality 
phenotype upon cdc42 gene deletion in mouse embryos570, and the lack of specificity when using dominant 
negative or constitutively active mutant over-expression 571, 572 . Thus the role of Cdc42 was revealed within 
Cre/loxP mouse conditional knockout methodology very important in heart, liver, pancreas, nervous system, 
blood, bone, eye, immune system and the skin. However, the regulation of Cdc42 was shown to be tissue and cell 
type specific 8. Thus, it was suggested that Cdc42 data cannot just be inferred on all cell type and the general 
principles of Cdc42 function well-defined by in vitro may not apply to another cell type in in vivo.  
Fascinatedly, Genome-wide association studies of longevity in humans related elevated expression of Cdc42 in 

blood stem cells to increased morbidity and aging 573. This interesting issue will be largely discussed in this chapter. 

Being a GTP-binding protein, the Cdc42, act over a binary switching mechanism directed by the binding of GTP. 

Three classes of proteins regulate the Cdc42 status. (1) the guanine nucleotide exchange factors (GEFs) enhancing 

the swapping of GDP to GTP, (2) the GTPase-activating proteins (GAPs) promoting the hydrolysis of GTP to GDP 

noting that the Cdc42 is inactive when bound to GDP and (3) the Guanine nucleotide dissociation inhibitors (GDIs) 

sequestering Cdc42 in the inactive GDP-bound state 86-89 (Fig. 25).  

 

8.2. Cdc42 activation and stem cell aging (2001-2017) 
Initially in Cdc42 molecular mechanisms, Cdc42 was shown to be implicated in endocytosis and CARGO transport 
inquiring its involvement in cycle arrest and differentiation 86. Therefore, the primary challenge was to understand 
if the guanine nucleotide exchange factor, the GTP binding, triggers the cellular growth regulation. The first 
approach suggested that the level of activation of Cdc42 ( Cdc42-GTP) can probably influence cell adhesion, 
migration, division and polarity 574 .  
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Figure 25: Schematic of Cdc42 activity mode. Cyclic activity between active (GTP-bound) Cdc42 and 
inactive (GDP-bound) Cdc42. Guanine exchange factors (GEFs), GTPase activating proteins (GAPs) and 
guanine dissociation inhibitor (GDI) regulate Cdc42 cycle. Cdc42-GTP bound can transiently interact 
with multiple effector proteins to transduce signals that impact on cell cytoskeleton organization, 
exosomic trafficking, cell cycle progression, survival, translation, and transcription 575. 

 

Afterward, Cdc42 was qualified to have the central role of polarity by regulating the membrane traffic and the 

formation of intercellular junctions for cells ranging from yeast to mammals. It was so vague for researchers to 

define mechanisms of this positive-feedback loops regulating pathways into upstream activation and downstream 

effectors of Cdc42 576 (fig.26). Next, some targets of activated Cdc42-GTP complexes such as calveolin1- and Pak4 

were shown to trigger cell senescence when overexpressed and to reverse age when Knocked out 577, 578. Evidently, 

the Cdc42-GDP binding complex and not the activated compound Cdc42-GTP was shown to be essential for 

regulating the actin fibers synthesis and cell proliferation 579.  

Based on all these findings, the advanced approach appeared with Xing et al (2006) 84 showing that the high 

mobilization of HSCs in aged mice correlated with a high expression of GTP-bound Cdc42 binding complex 

compared to young mice derived progenitors cells. During the same year, Fortier et al 580 showed that 

chondrocytes derived from aged horses presented also a high activity of GTP-Cdc42 leading to loss of proliferation 

and regeneration potential. In 2007, Yang et al 85 extended their research in HSC aging applications as they 

observed in knockout aged mice Cdc42 -/- model that HSCs exhibited a shift from quiescence to an active cell cycle 

activity and high retention level in their BM niche . The same group reported later that elevated level of Cdc42 

activity causes aging in HSCs via deregulating several cross matched molecular pathways; the evaluation of these 

pathways can lead to therapeutic strategies for hematopoiesis in aged individuals 491. Wang et al90, reproduced the 

same work but in another transgenic mice model by knockout a selective negative regulator of Cdc42-activity, the 
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GTPase Activating Protein (GAD). The clampdown of Cdc42-GTP expression resulted in significantly reducing the 

expansion time, enhancing the DNA damaging repair, and suppressing p53, p16Ink4a, p21, and SA- β gal expressions 

in several aged tissues in mice, such as heart, brain, lung, liver, spleen, kidney, and BM. These results suggested a 

role of Cdc42 activity in regulating genomic stability and aging in stem cells. Interestingly, Human Genome-wide 

association studies identified Cdc42 as the gene the most positively associated with aging in human 

lymphoblastoid cell lines where levels of expression correlated positively with aging and mortality 573. Furthermore, 

at this period, researchers have found that the deregulation in activated form of Cdc42 resulted in other cellular 

aberrant polarity transformations by promoting tumorigenesis and tumor invasion as well as initiation of 

cardiovascular diseases, diabetes, and neuronal diseases and wound healing with aging. Thus, Cdc42 activity has 

clearly been correlated with age and degenerative human diseases581-584. Although the knockout mice Cdc42-GAD -

/- have previously been shown to exhibit early aging phenotypes in several different tissues, the HSCs Cdc42-GAD -/- 

aged phenotype had not been observed 90. Therefore, Florian et al21, knocked out the Cdc42 GAP in Young HSCs 

and screened the effect on their aging and polarity. Indeed, they observed that young Cdc42GAP−/− HSCs 

presented functions similar to aged HSCs in competitive transplantation assays in male mice. In a second step, they 

were the first to inhibit pharmacologically Cdc42-GTP in vitro in aged mice derived-HSCs with a selective Cdc42 

activity inhibitor (CASIN). Interestingly in this report, the term “rejuvenation “of stem cells by inhibiting the Cdc42-

GTP compound in aged HSCs was adopted. Moreover, CASIN could reverse age-related biomarkers by increasing 

the cell polarity in aged HSC population and restoring the level of histone acetylation distribution like the level 

found in young HSCs. Thus, Cdc42 activity is considered a pharmacological target for encountering stem cell aging 
21, 585. Furthermore, Cdc42 is showed to be activated in aged HSCs via a stroma derived- Wnt pathway in aged niche 
586. The Wnt-Cdc42 axis cascades will be discussed in the next sections.  

 
 

Figure 26: Multiple signaling pathways controlling the cellular polarity via Cdc42 activation. Cell polarization 
implies different cellular functions (black box). These signals are transduced by different Cdc42 direct (solid 
line) or indirect (dotted line) effectors (blue) and involve several intermediate proteins (blue) 576 
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Based on Geiger’s team reports, Carrillo-Garcia et al 91, considered in their review that inhibiting Cdc42-GTP in HSCs 

is their fountain of Youth . Although Cdc42-GTP was linked to tissue aging and rejuvenation in mice models, the 

Cdc42 activity and expression as biomarker for aging in humans was still missing. Thus, recently, Florian et al, 

201793 developed an approach to validate Cdc42 activity in human aging. For this end, they established a cohort of 

196 aged human donors of peripheral blood. The trial involved 40.0% of donors with hypertension, 21.9% of 

donors with cardiovascular diseases, 17.4% with cancer, 10.2% with diabetes, and 9.2% of osteoporosis patients. 

They showed a high correlation between the Cdc42-GTP expression in both biological and chronologically aged 

hematopoietic cells .The novel association between Cdc42 activities and the cardiovascular disease and myocardial 

infarction defined the Cdc42 activity as a novel biomarker of aging-associated heart diseases. In our study, the aim 

was to investigate the Cdc42 activity implication in human MSCs aging and regenerative potential.  

 

8.3. Cdc42 and Wnt pathways in stem cell aging context  
Under normal hematopoiesis conditions, canonical Wnt pathway is implicated in HSCs regulations (Fig.27a). This 

pathway implicates a translocation of β-catenin towards the nucleus and activation of transcription factors 

implicated in cell proliferation, self-renewing and cytoskeleton organization. 

 

Figure 27: Wnt signaling pathways; (a) the canonical Wnt/β-catenin pathway implicating the β-
Catenin translocation in the nucleus. (b) The noncanonical Wnt signaling pathway involving the 
Cdc42 activation pathway. Modified from Liu et al, 2005587 

To study the aging process, Florian et al 586 , focused on the Wnt signaling pathway in HSCs, which plays a initial 
role in cell-cell communication, tissue regeneration, and is also involved in the pathology of various diseases. 
Actually, they were based on a work where Wnt5a-driven signaling pathway was described to regulate 
quiescence in HSCs via regulating the activity of the small Rho GTPase Cdc42. The onset of HSC aging was shown 
to be mediated by a shift from canonical to a distinct Wnt signal transduction pathways called “noncanonical” in 
result to epigenetic aberration588 (Fig.27b). Indeed, they observed that aged HSCs presented a high expression of 
non-canonical Wnt component such as Wnt5a whereas young HSCs expressed canonical Wnt counterparts. In 
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the next step they showed that the treatment of young HSCs with non-canonical Wnt5a induced ageing and 
reduced the rejuvenation potential via Cdc42 activation manner. Briefly, in their strategy they overexpressed the 
Wnt5a in young HSCs and showed that these stem cells gain immediately signs of aging and polarity disruptions. 
Interestingly, Cdc42 was one of the Wnt5a target which impact cell polarity and actin polymerization. Hence, 
they showed that Cdc42–GTP bound is activated in the Wnt5a inducing-aging young HSCs. Inhibiting the Cdc42 
with CASIN was able to reverse the aging process in HSCs. The Knockdown of Wnt5 in aged mice showed a 
rejuvenation of their HSCs. More interestingly, Knockdown Wnt5a in aged HSCs reverted to a high expression 
level and nuclear localization of β-catenin, and therefore to active canonical Wnt signaling 586. Recently, the 
same group, reported the Wnt-Cdc42 axis implicated in the apolarity related to stem cell aging otherwise to the 
decrease of migration and adhesion cell abilities 92 (Fig.28). Based on these findings, this cross-talk between Wnt 
and Cdc42 brings additional challenge in stem cell aging.  

 

Figure 28: Impact of CASIN on the polarity and epigenetic behaviors of aged HSCs related 
to Cdc42 GTP activity. Young stem cells are polar with low protein like tubulin (green) and 
nuclear proteins like the acetylated form of histone 4 on lysine 16 (AcH4K16, red) 
expression. Aged HSCs are apolar for both tubulin and AcH4K16. Inhibition of Cdc42 activity 
via CASIN rejuvenates aged HSCs and reverses apolarity in chronologically aged HSCs into 
polarity. Modified from Geiger et al, 2014 92 
 
 
 

8.4. Cdc42 and Wnt pathways in the liver regeneration context  
Mouse Cdc42 targeting studies showed that Cdc42 downstream pathways are tissue and cell-type specific 571. The 

unified function of all cell type is the actin-based morphogenesis and the polarity. Thus we will focus on the role of 

Cdc42 in hepatocytes regeneration and development. Mice in which Cdc42 was ablated in hepatocytes and bile 

duct cells were generated by Cre-loxP technology and showed chronic jaundice. They developed hepatomegaly 

quickly after birth associated with liver nodules and tumors. Furthermore, Hepatocellular carcinoma was observed 

eight months after birth. Interestingly, tumors grew gradually and didn’t express of nuclear β-catenin the 

downstream of wnt pathway. In addition, enlarged biliary canaliculis were observed with a dramatically decreased 

expression of E-cadherin. Analysis of serum samples indicated cholestasis observed in hepatocarcinogenesis. This 

mouse model knock outing Cdc42 impairs the normal liver development and exhibits a delay in liver regeneration 

post partial hepatechtomy (PH)19 . Eight years later, the same group, reported that phosphorylated cytoplasmic β-

catenin (p120 catenin) was shown to regulate E/N cadherins expression via Cdc42 activity in hepatocytes and 

cholangiocytes. The Cre-loxP p120 KO mice model showed normal Hep-Dif ability however the hepatobiliary 

structures were reduced and associated to inflammation and fibrosis. These results suggested that the Wnt/β-
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catenin , β-catenin/E-cadherin complexes and Cdc42 activation are implied in hepatocytes and cholangiocytes 

development and differentiation589. In rat liver failure model, after aggressive induced chemical liver injury, 

activated resident stem cells were shown to express Cdc42 suggesting that Cdc42 is playing a role in LPs 

differentiation into hepatocytes31. Moreover, a proteomic analysis post partial hepatectomy of rat liver proved that 

Cdc42 regulation is mandatory to the termination of liver regeneration240. More interestingly, Cdc42/JNK/PI3K 

activation pathway was essential to delay primary rat hepatocytes life span in vitro 255. These evidences might 

support a crucial role of Cdc42 in stem cell ageing, stem cell differentiation into hepatocytes.  

 

 

8.5. Main signaling pathways regulating Cdc42-GTPase activity  
A use of dominant-negative mutant of Cdc42 by sequestering the upstream GEFs has been largely reviewed and 

elucidated multiple signaling pathways in cell regulation 571, 590. However this approach is limited by the fact that 

more than 70 GEFs exist in the mammalian genome 591 . Cdc42 has been implicated as a key regulator of adhesion, 

wound healing, polarity and migration via PAK (p21-activated kinase) and GSK-3 (glycogen synthase kinase-3) 

pathways532 (Fig.26). Another cell function implicates the Par6 atypical PKC (aPKC) complex important for the 

establishment of epithelial polarity 592 . We will focus below on the signaling pathways screened during my project 

and hypothesized to be regulated or to regulate Cdc42.  
 

8.5.1. RAS pathway 
Ras proteins regulate apoptosis, differentiation, senescence and cell aging via Cdc42 activation. Indeed, Ras 

effectors are suppressed in overexpressed dominant negative Cdc42 cell model593. This phenomena explains that 

Ras proteins act via Cdc42 activity to regulate cell activity 594. Otherwise, it has been shown that activated Ras 

recruits GEF and thus activates Cdc42-GTP bounds leading to senescence of human primitive cell line. 

Furthermore, Ras GTPase transduces different signaling pathways. First, Ras transduces the tyrosine kinase-linked 

receptors, triggering the mitogen-activated protein kinase (MAPK) signalling pathway. Like other G proteins, Ras 

functions as a binary switch with Cdc42 that is activated by binding GTP. Second , Ras can activate the PI3-kinase 

signalling pathway.  

 
8.5.2. Mitogen-activated protein kinase (MAPK) signalling pathway 

MAPK controls several cellular processes such as migration, proliferation, apoptosis and differentiation and was 

seen to be implicated in cell aging and senescence aberrations 595, 596. Three main pathways are involved in MAPK 

activation leading to three downstream effectors: Extracellular-signal-regulated kinase (ERK), c-Jun N-terminal 

kinase (JNK) and p38 pathways (Fig.29).  

 

ERK pathway is activated post binding Ras and Raf protein kinases to activate the phosphorylation cascade and the 

cell proliferation. Interestingly, Cdc42 deletion downregulated the activation of ERK, JNK and proliferation gene 

transcription in the remained hepatocytes post resection239 

Moreover ERK is shown to be implicated indirectly in cell aging. In fact, Pak4 gene expression is one of the 

downstream effectors of Cdc42-GTP activated bounds. However, Pak4 avoids cell proliferation and promotes cell 

aging in vitro via activation of the ERK 578. Moreover, one of the major functions of the ERK pathway is to activate a 
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range of different transcription factors such as cyclic AMP response element-binding protein (CREB) and p53 

phosphorylation 597-601 .  

 

 Figure 

29: Regulation of Cdc42 by the MAPK signaling pathways. Implication of ERK, JNK and p38 cascades. 

 

C-Jun N-terminal kinase (JNK) pathway controlled a number of cellular processes including, self-renewal, 

proliferation and apoptosis 602. The inhibition of Cdc42-GTP was able to downregulate the JNK pathway. Besides, 

the inhibition of JNK pathway was able to accumulate ROS and toxicity in human cells596, 602, 603. No data about the 

regulation processes of JNK pathway in ADSCs.  

The p38 regulates apoptosis and cytokine secretions. p38 is described to be the regulator of ROS intracellular 

accumulation and thus activation of p53 and cell aging 431, 432. Particularly, in hMSCs, phosphorylation of p38 

decreases with age and the osteogenic potential is impaired with p38 activation 479, 604 .  

8.5.3. Nuclear factor κB (NFκB) signalling pathway  

The transcription nuclear factor κB (NFκB) is triggered by external stimuli such as the tumor necrosis factors (TNFs), 

interleukins, controlling processes of inflammatory modulation, cell proliferation and apoptosis. It is translocated 

into the nucleus upon activation and enhanced TF expression 605. In BMSCs, TNFα and IFN-γ activate NFκB pathway 
461. The TNFα /NF-κB pathway activates oxidative damage in BMSCs. Simultaneously, ROS activates NFκB pathway, 

forming a loop inhibiting their osteogenic potential 454, 606 . NFκB is shown to be implicated in stem cell aging607. 

Wang et al 272, showed that NFκB activation suppresses β-catenin expression, a downstream gene of canonical 

Wnt signaling and thus interacts together to decrease differentiation potential in inflammatory senescent 

microenvironment 608, 609.  

 

8.5.4. The Phosphoinositol 3 kinase (PI3k) and Insuline receptor substrate pathways 

The PI3k signaling pathway controls the glycogen metabolism, lipid synthesis, protein synthesis, gene transcription 

and cell growth, inflammation, cytoskeletal rearrangement and apoptosis. JNK pathway can be activated by PI3K 

and activates Cdc42- GTP binding 610. On the other hand, RAS activation triggers the direct activation of pI3K 

pathways and the phosphorylation of ERK 611. In addition, HGF-induced cell spreading involves pI3K and activates 
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Cdc42. Moreover, Pi3K can be activated by the phosphorylation of the intramembrane Insulin receptor (pIR) and 

directly from Cdc42-GTP activated bound signaling cascade 611. Binding of IGF ( Insulin growth factor) to its receptor 

activates the PI3K pathway 612. Furthermore, IGF binding to the tyrosine kinase receptor leads to Cdc42 activation 
613. IGF binding to the IRS-1 was shown to induce ERK signaling 614. Insulin receptors pathways play a crucial role in 

inhibiting cell death. The actin organization is regulated by Cdc42 acting on profilin through insulin receptor 

substrate (IRS or pIR) 87, 493, 576, 615. The transduction of these signals leads to intracellular phosphorylation and the 

activation of several signaling pathways616. These two pathways are very implicated in Cdc42 activation process 

and MSCs aging617, 618  

 

8.5.5. Cyclic Camp protein kinase A (PKA)  

PKA involves two regulatory (R) subunits and two catalytic (C) subunits and controls the phosphorylation of 

particular sites on downstream effectors. Deregulation of this pathway can cause apoptotic cell death and is 

implicated in a range of aged human disease. PKA activates the transcription factor c-CAMP response element-

binding protein (CREB) leading to altered histone acetylation and methylation pattern similar to age-related 

biomarkers observed in aged stem cells 619, 620. Besides, direct acetylation of p53 by CREB pathway mediates 

apoptosis and cell aging621. PKA phosphorylation leads to cell degeneration with age 622. The Cdc42 GDP/GTP-

bound state isn’t regulated directly by PKA phosphorylation. The targets of PKA phosphorylation stimulate GTP 

binding on Cdc42 and thus cell senescence623. 

 

 

8.6. Pharmacological inhibition of activated Cdc42  

 
8.6.1. CASIN : Unspecific Cdc42 inhibitor  

Geiger et al, were the first, for two consecutive years 2012 and 2013, to inhibit pharmacologically in vitro Cdc42-

GTP in aged mice derived-HSCs with a selective Cdc42 activity inhibitor (CASIN) referred to Peterson et al, 624. CASIN 

was able to reverse age-related biomarkers by increasing the cell polarity (tubulin circulation) in aged HSC 

population and restoring the level of histone acetylation distribution to a status similar to that seen in young HSCs. 

Thus, they consider Cdc42 activity as a pharmacological target for ameliorating stem cell aging 21, 585 (Fig. 30). CASIN 

was able by repairing epigenetic alteration in aged HSCs to imply a non-reversible inhibition of Cdc42 activation and 

to reverse definitely the a-polar aged HSC to polar state identical to young HCS 92. In addition, CASIN was used as a 

preparative regimen for HSCs transplantation in mice without myeloablation able to enhance mobilization of 

human xenograft HSC progenitors after serial transplantations of CASIN- mobilized peripheral blood cells (PBSCs) 

and UCB stem cells 625. Conversely, CASIN promoted apoptosis in cancer cell line and suppressed tumorigenic 

migration of several colorectal stem cell lines 625 and Leukemic stem cells line 626. These findings showed that 

inhibition of Cdc42-GTP with CASIN is crucial for self-renewal and rejuvenation of aged HSCs and homing in their 

niche as well as it represents a rational therapeutic principle to target cancer stem cells survival. CASIN was never 

been used as cdc42 inhibitor in MSCs. Thus, this protein use was crucial to be applied within our project on ADSCs 

as one of the selected Cdc42 inhibitors. 
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8.6.2. ML141 A novel spatial selective non-competitive specific Cdc42 inhibitors 

To identify the molecular effectors and stimulators regulating Cdc42 with aging, it was evident to classify the small 

molecules targeting Cdc42 activity. Secramine was the first inhibitor for Cdc42 to be recognized. This compound 

blocks the GTP bound exchanging via the GTP dissociating inhibitor (GDI) 627 and blocks guanine nucleotide exchange 

on Cdc42 and any subsequent interaction with downstream effectors .  

 

 

Figure 30: Mechanisms of small molecule inhibition of Cdc42 signaling. Guanine exchange factors (GEFs) such as 
intersectin, promote the exchange of GDP for GTP and activate Cdc42. Secramine inhibits the activation of 
Cdc42/GDI complexes, blocking guanine nucleotide exchange on Cdc42 and any following interface with 
downstream effectors. ML141 is a selective reversible non-competitive allosteric inhibitor of Cdc42, preventing GTP 
binding to the active site of Cdc42 without targeting any Cdc42-regulating molecules. ZCL278 acts by selectively 
blocking intersectin preventing WASP and PAKs signaling.  

 

However, this inhibitor, in addition to its toxicity, affects the activation status of other GTPases proteins subfamilies 

such as RhoA and Rac, and thus it didn’t serve the understanding of the specific roles of Cdc42 in cellular pathway. 

Recently, ZCL278 is identified to target chemically the interaction of Cdc42 with the Intersectin – GEFs specifically and 

thereby disrupts the GTP binding ability and prevents any further Cdc42 activation. This inhibitor suppresses actin 
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formation and migration ability but unfortunately can interact unselectively with all intersectin-GEFs regulating other 

G protein activation. A second Cdc42 small-molecule inhibitor, CID2950007, termed ML141, the first potent 

reversible non-competitive inhibitor selectively binds the guanine nucleotide associated Cdc42 and induces ligand 

dissociation. This compound blocks the nucleotide binding site and thus it does not impact the GEF binding regions 

against other members of the Rho family of GTPases89, 628, 629 (Fig.30) . ML141 was recently used to inhibit Cdc42 

activity in different cancer types and to downregulate some signaling pathways like EGFR , JNK and p21-activated 

kinases pathways (PAK) regulating cell migration, adhesion, and invasion596 630, 631. In addition, it regulates MET in 

melanoma cell line 632. 

Furthermore, ML141 inhibited Cdc42 activity in chondrocytes by modulating the TGFβ1 signaling pathway and 

regulating the cartilage proteins accumulation 633. Besides, ML141 was able to positively regulate the G-CSF HSC 

mobilization from BM by decreasing the GTP binding sites on Cdc42-GDP complex 634. In vascular smooth muscle 

cells, ML141 was able to decrease, by Cdc42-GTP inhibition, arteriosclerotic calcification in absence of LDL receptor 

in mice models635. In a 3D angiogenesis cell culture model in vitro, ML141 reduces migration of ECs by inhibiting the 

Cdc42 and promotes vascular branching 636. Several months ago, some studies described that ML141 inhibits 

Cdc42 activity in hBM derived MSC and is able to prevent their migration ability637 and to decrease actin 

distribution in the cortex associated failure of polar body extrusion from porcine oocyte 638. By searching deeply for 

ML141 applications in fundamental applications, we never found a report using this Cdc42 selective inhibitor to 

reverse the age-related aberrations in aged stem cells.  

8.6.3. Trichostatin A (TSA) : Non-specific Cdc42 inhibitiors  

Long span culture time increases the histone deacetylase aberrations in MSCs DNA which promotes GTP binding 

on Cdc42. Consecutively, the proliferation rate of MSCs decreases and thereby restricts their sufficient number for 

therapy and tissue engineering. TSA is a histone deacetylase (HDAC) inhibitor described to repress Cdc42 activity in 

aged hMSCs by reducing the acetylation ability. TSA was able to prevent appearance of aging signs in UC and 

placenta derived- MSCs by increasing their proliferation rate, their pluripotency genes expression (Oct4 and 

Nanog) and by suppressing spontaneous osteogenic differentiation 639, 640. Furthermore, The TSA was described in 

several reports to enhance cardiogenic and neurogenic potential in chronological aging of BMSCs (induced 

senescence in vitro) 641-643 . Attentively, TSA increased the telomere elongation which is a crucial biomarker for stem 

cell self-renewal 644, 645. TSA- treated hMSCs showed a better osteogenic, chondrogenic and neurogenic 

differentiation compared to the non-treated group 646, 647 . 

Conversely, in cancer glioblastoma cell line, TSA inhibits proliferation and survival of the tumor and promotes the 

differentiation of glioblastoma cells into neuronal like cells 648, 649. Otherwise, TSA constituted a regenerative 

potential being able to reverse stem cell aging and by having therapeutical potential in some cancer cell lines. 

On the other side, TSA was shown to rescue Ciliogenesis in Kidney cell line by inhibiting the HDAC resulted from the 

Cdc42 complexes 502. In aging context, TSA enhanced the binding of dystrophic kinase to the Cdc42 and thus 

caused a decreasing of the GTP binding competitively 650. Furthermore TSA-HDAC inhibition was essential to repair 

epigenetic aberrations of hBMSCs acquired during aging or long term expansion in vitro. In addition, TSA promoted 

a better MET within the Hep-Dif 651. TSA treatment during both the induction and the maturation differentiation 

steps, enhanced in hADSCs a potent hepatogenic profile exhibiting a low AFP expression , a high synthesis levels of 
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Alb, Urea and great HNF4α expression compared to non-treated aged group of ADSCs 558. Another report, showed 

that hADSCs TSA-treatment during the maturation step of Hep-Dif protocol (From day 14 to day 28) gives rise to 

functional Hepatocytes like cells with high capacity of LDL uptake, Alb secretion and liver repopulation of 

CCl4-injured nude mice 523. On the same way, the TSA treatment of UCMSCs during the maturation differentiation 

step, induces K18, TAT, AFP, ALB, HNF4A ,KRT8 expression in UCMSCs-derived endodermic progenitors oriented 

their fate to hepatocyte like cells 557, 559.  

8.6.4. Other pharmacological indirect Cdc42 inhibitors  

Several strategies are using signaling modulators molecules to rescue differentiation and genetic aberrations of 

aged and senescent stem cells in vitro such as anti-inflammatory agents, antioxidants, and low oxygen tension. 

Some competitors for signaling growth factors were used to reduce the Cdc42 GTP binding in aged HSCs and 

increased mobilization rate652
 . In addition, these molecules contribute indirectly to regulate the cell activity, MET, 

polarity and G protein activation in aged stem cells. I will review only in this section the inhibitors used through my 

work.  

 

8.6.4.1. PI3K phosphorylation inhibitor : Wortmanin  

Cdc42 activation has been shown to be a downstream of PI3-kinase pathway 653. Wortmanin, a PI3K inhibitor was 

able to reverse the Cdc42 activation in cholangiocytes 654. Furthermore, inhibition of PI3K leads to a decrease in the 

MSCs functionality such as survival, proliferation, migration, angiogenesis, cytokine production, and differentiation 
655. However, Wortmanin inhibits in the same time JNK pathway 656 

8.6.4.2. MAPK specific inhibitor : PD98059  

EGFR inhibitor such as Erlotinib was used to reduce the Cdc42 activity in aged HSCs and increased mobilization 

rate652. Indeed, the inhibition of EGF signaling pathway blocks the MAPK family cassette phosphorylation. On the 

other side, several studies have shown that PD98059, a MAPK cascade antagonist inhibits cell migration, apoptosis 

proliferation and osteogenic potential of MSCs and other stem cells by inhibiting the main three downstream 

effector pathways, Erk/JNK and p38657-659. 

8.6.4.3. c-Jun NH2-terminal kinase (JNK) inhibitor: SP600125  

Activation of c-JNKs cassette called also stress-activated protein kinases is an early response of cells upon exposure 

to DNA-damaging agents 656. The inhibition of this pathway leads to block the proliferation rate in stem cells 660. 

SP600125 causes a decrease in BM MSCs- osteogenesis differentiation potential with a concurrent increase in 

adipogenesis demonstrating the importance of JNK cascades in osteogenic differentiation 661, 662. Moreover, 

SP600125 promotes apoptosis of ADSCs and was shown to play a key role in the PDGF-induced proliferation 

pathway and migration of ADSCs 560, 663. JNK activation correlates with Cdc42-GTP bound since in Cdc42GAP-/- 

mice Progenitors cells SP600125 -JNK inhibition reverses stem cell apoptosis 664. 

8.6.4.4. PKA inhibitor : H-89  

H-89 reversed the activation of Cdc42 in epithelial 623 and ECs 665. Furthermore the inhibition of the PKA pathway 

by H-89 was shown to reversing the age-related hormone level of adrenal cortex 666 . Moreover, H89 blocked the 

TNFα/PKA age-associated in human aged adipocytes667 . The inhibition of PKA phosphorylation is supposed to 

inhibit indirectly the histone acetylation and methylation via c-CAMP /CREB complex 283, 284 which are implicated in 

age related p53 activation 621. Altogether, these evidence support our choice to study the impact of PKA inhibition 

on the Cdc42 age-related activation.  
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Chapter 9 -: Introduction to the scientific paper 2 

 

Human adipose tissue has emerged as a promising tool for liver stem cell-based therapy and drug screening in 

vitro. However, the donor age constitutes a serious limitation for long term expansion and high throughput of 

hMSCs for preclinical therapeutical application and liver microengineering strategies. Cdc42 a RhoGTPase G-

protein was shown to be activated in aged Hematopoietic stem cells. The inhibition of Cdc42 was able to reverse 

senescence hallmarks in aged -derived HSCs aged donors towards a young HSCs profile. Based on these evidence, 

our aim was to assess the Cdc42 activity in hADSCs isolated from different age breaks. Also, we were interested to 

evaluate the impact of its pharmacology selective inhibition on age-related biomarkers attenuation and the 

hepatogenic potential within the aged-derived hADSCs population 

 

TITLE: 

“ML141 reverses the negative impact of the RhoGTPase Cdc42-dependent donor’s age on hepatogenic 

differentiation of hADSCs” 

 

OBJECTIVES 

 Screening the Cdc42 activity within different breaks of age in human ADSCs 

 Correlating the activity of Cdc42, otherwise the donor age, with the activation of the main signaling 

pathways involving transcription factors, cytokines, growth factors, membrane receptors, tumor 

suppressive markers, all together implicated in cell cycle, senescence and differentiation of hMSCs 

 Evaluating the impact of Cdc42 inhibition on the reversibility of age-related biomarkers and the 

hepatogenic potential of hADSCs 

 

STRATEGY  

Our strategy involved two main parts. First, Cdc42 activity (GTP versus GAP) was studied in 61 ADSCs samples 

derived from healthy women donors with different intervals of age (Young, Middle-aged and Aged). In parallel, the 

expression of MAP kinases (RAS, ERK, JNK and p38) and other kinases (PI3K, PKA), transcription factors (CREB, 

SREBP, NFkB, PPARgamma), growth factors (PEDF, VEGF, HGF and IGF), components of the Wnt pathways 

canonical and non-canonical (beta-catenin, different isoforms of Wnt(s)), regulating the main cell activity functions 

were assessed within the different ADSCs age breaks. Furthermore, the immunomodulatory paracrine activity was 

evaluated within the different groups of ADSCs donors charting the inflammatory cytokines. Next, results were 

correlated to the Cdc42-GTP. To identify the superlative Cdc42 inhibitor able to reverse the age of ADSCs derived 

from aged donors and enhance their proliferation and differentiation abilities, it was essential to inhibit 

pharmacologically the Cdc42 activity. Consequently, we treated different ADSCs groups with CASIN, TSA and 

ML141 and with indirect inhibitors targeting respectively PI3K, p-JNK, p-ERK and PKA regulatory pathways 

(Wortmanin, SP600125, PD98059 and H-89, respectively). The exosomes release was also assessed.  

In the second part of the study, we validated whether exists any significant correlation between the high Cdc42 

activity and the decrease of the hepatogenic potential in aged ADSCs. Two approaches of pharmacological 

treatment by ML141 were used by treating cells: (1) hADSCs for a period of ~16 days (Early phase: incubation 

approach from D-2 to D14 of the hepatic differentiation, reaching the hepatoblast stage) and (2) hepatoblast-like 
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cells for a period of ~14 days (Late phase: incubation approach from D14 to D28 of the hepatocyte differentiation, 

reaching the hepatocyte stage) (see below Shema1). Thus, an efficient in vitro culture method was crucial to 

provide key insights into the understanding of the molecular mechanisms controlling the Cdc42 inhibition within 

the aged differentiated ADSCs. Our considerations involved a human extracellular matrix (ECM) coating step and a 

sequentially multistep differentiation protocol over 28 days of culture. The expression of a panel of genes involved 

in the hepatogenic process was evaluated. To test whether hepatocyte-like cells derived from ADSCs were 

functional, periodic acid-Schiff (PAS) staining and specific hepatic markers expression were analyzed. Detoxification 

of ammonia through the synthesis of urea, secretion of Albumin (Alb), uptake of low-density lipoprotein (LDL) and 

Rifampicin inducible cytochrome P450 activity were also evaluated in young, aged and ML141-treated age groups 

at days 0, 14 and 28 of differentiation. The EMT was also considered and screened within our novel strategy by 

evaluating E/N cadherin ratio, SNAIL1, Twist and vimentin expression. Finally, the MSCs surface markers with a 

panel of 12 paracrine cytokines were assessed by flow cytometry overall the differentiation steps and different 

treatments of ML141 in aged ADSCs group. Similarly, Young ADSCs were differentiated following the same 

protocol and served as a control of rejuvenation.  

 

RESULTS 

Aged hADSCs showed high levels of Cdc42-GTP concomitant with decreases in the levels of Cdc42-GAP, low 

expression of IGF-1, VEGF, a decrease of anti-inflammatory cytokines and an increase in NF-κB upregulating the 

p53/p16INKα. Furthermore, Cdc42-GTP binding in aged hASCs group correlate positively with β-catenin and Wnt-3a 

expression and negatively with Wnt-5. The high expression of Cdc42-GTP bounds in aged hADSCs is associated to 

an activation of RAS, PKA catalytic unit, p-JNK, p-ERK and p-PI3K. The mechanism of action seems to be dependent 

of MAPK and Wnts signaling, evolving exosomes release.  

 

The inhibition of the above mentioned pathways via specific small molecules inhibitors showed that Cdc42 

activation in aged hADSCs involved p-ERK, p-JNK and PKA signaling pathways but not PI3K. The inhibition of Cdc42 

in hADSCs didn’t succeed with CASIN, the classical inhibitor of Cdc42 reported to have significant effects in 

hematopoietic stem cells. However, ML141 and TSA were able to reverse age-related behavior of hADSCs by 

decreasing the Cdc42-GTP binding complexes, the level of pro-inflammatory cytokines (TNFα and INFγ) and 

increasing their proliferation rate to the levels seen in younger donors. Although both of ML141 and TSA showed 

better improvement on yield, growth and adherence characteristics of hADSCs, ML141 proved less toxicity than 

TSA. The treatment of hADSCs with ML141 over their differentiation into hepatocytes showed an increasing of 

hepatic specific markers expression such as CK18 (KRT18), Alb, HNF4α and high CYP450 activity compared to non-

treated aged group. Furthermore, a mesenchymal to epithelial transition occurred intensively in the ML141-aged 

treated group undergoing hepatocytes differentiation. Indeed, the ratio of E/N-cadherins increased markedly over 

the differentiation time compared to the aged group non-exposed to ML141. The ML141-aged group derived 

hepatocytes were able to produce urea, Alb and to uptake easily the LDL (highest expression level even surpassing 

that of HLCs from the young control group). Finally, ML141 was able to reduce markedly the MSCs markers in the 

treated aged group and to reverse their paracrine secretion panel to a profile of young ADSCs.  

 

 



 

123 | P a g e  
 

 

 Schema 1: Hepatic differentiation protocols. All cells were pre-cultured in expansion medium until 80 % 
confluence was achieved (A) ADSCs were exposed to EGF and FGF-4 for 2 days followed by hepatic 
inducing agents at day 0. ML141 was added up to day 14 (B) ADSCs were treated with ML141 from day 14 to 
day 28. The media was changed every two days; hepatic differentiation was then assessed at different time-
points. F/E/HGF, fibroblast/epidermal/hepatocyte growth factor; D, day; OSM, oncostatin M; Dex, 
dexamethasone 
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Abstract  
Human adipose derived-mesenchymal stem cells (hADSCs) are promising cells that may promote hepatocyte differentiation 

and improve liver function, but the underlying mechanisms are still not well defined particularly the involvement of age. In 

mouse models, hematopoietic stem cell (HSC) aging was shown to be regulated by the small RhoGTPase Cdc42. We 

hypothesized that the inhibition of Cdc42 may rejuvenate hADSCs derived from aged donors (AD) and thus stimulate their 

hepatogenic potential. In hADSCs isolated from 61 women belonging to different age intervals, we showed that Cdc42 

activity was positively correlated with growth factors, cytokines, transcriptional factors, Wnt signaling, exosomes releases, 

MAPK and PKA but not PI3K pathways in AD-hADSCs. The cells were less functional and showed decreased potential of 

hepatocyte differentiation as compared to cells derived from the younger group. Pharmacological inhibition of Cdc42 activity 

by ML141 and TSA but not CASIN, rejuvenated AD-hADSCs into functionally younger-like cells; cell proliferation, 

doubling, adherence and apoptotic index were significantly reversed. In parallel to a mesenchymal-epithelial transition, 

ML141 gave rise to mature and functional hepatocytes-like cells as assessed by hepatic genes’ expression, cytochrome 

activity, urea and albumin production, LDL uptake, glycogen storage and anti-inflammatory cytokines release. Thus, 

selective inhibition of Cdc42 could be a potential target of drug therapy for aging and may give new insights on the 

improvement of hepatocyte differentiation. Keywords  

Aging, Cdc42, ML141, Adipose tissue, Mesenchymal stem cells, Hepatocytes, Hepatogenic differentiation, Liver failure  

  

 Introduction  
Aging is a process that results from an increased failure in a system normally designed for growth and reproduction

1
. Stem cell 

aging could drive to the collapse in tissue function and regeneration in older humans
2
. Although specialized niches usually protect 

stem cells from age-dependent stress mechanisms, data showed that these cells can also grow old 
3
. Moreover, the senescence in 

stem cells may be passed to their differentiated progeny leading to the exacerbation of this process. Current research is focusing 

on deviating any feature that could possibly slow down the progression of aging 
4
. Mesenchymal stem cells (MSCs) have 

emerged as a promising tool and an attractive stem cell source for this purpose. While the differentiation potential of MSCs is 

comparatively limited to that of embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), they are a much safer 

source regarding the risk of inducing tetratoma and raise less ethical debates when it comes to clinical applications 
5, 6

. Recent 

strategies in tissue engineering and cell therapy have shown that human Adipose-derived MSCs (hADSCs) hold numerous 

benefits over Bone Marrow-derived MSCs with higher potentials of proliferation and differentiation capacities in vitro 
4, 7

. Indeed, 

once induced into functional hepatocyte-like cells, hADSCs provided a promising non-transgenic tool for autologous, 

hepatocyte-based therapies by displaying in vitro functions of mature hepatocytes and showing efficient repopulation properties 

in mice models of liver injury. 
7-10

. nevertheless, hADSCs donor’s age presents a negative impact on the properties of ADSCs 

differentiation, doubling population, homing, and immune modulation
11-16

. Agedependent MSCs senescence has been linked to a 

decrease in mitochondrial activity, high expression of p16INK4a, p53 and p21 and an increase of -galactosidase and ROS 

accumulation 
4, 12, 17-19

. Recent findings showed that the functional decline in the elderly HSCs was associated with an 

upregulation of the activity of the Cell division cycle 42 (Cdc42) protein. Cdc42 is a small G-protein that belongs to the 

RhoGTPase family of the Ras superfamily and depends on the GTPases-Activating Proteins (GAPs) in order to undergo switch 

cycles between the active and inactive form 
20, 21

. Cdc42 regulates actin cytoskeleton, cell polarization and adhesion, migration of 

stem cells and tissue regeneration 
22, 23

. Cdc42 was described to crosstalk with the JAKSTAT pathway, and is crucial for the 

activation of ERK, JNK and p38 MAP kinases 
24, 25

. Mice HSCs showed elevated Cdc42-GTP expression after genetic deletion 

of a negative regulator of Cdc42 and exhibited a severe early aging pattern 
26, 27

.  

 Several reports discussed the role of Cdc42 in human MSC proliferation, migration and differentiation potential 
28, 29

. The histone 

deacetylase inhibitor Trichostatin A (TSA) was shown to be a non-specific inhibitor of Cdc42 activity as well as being a key 

factor for hepatocytes differentiation of MSCs 
30, 31

. Other studies indicated that the pharmacological and irreversible inhibition of 

the Cdc42 activity by CASIN (Cdc42 activityspecific inhibitor) was able to overturn aging and restore the spatial distribution of 

histone H4 lysine 16 acetylation of aged HSCs to a status similar to that seen in young HSCs 
32, 33

. Thereby, upon transplantation, 

CASIN-treated HSCs were shown to be potentially identical to HSCs isolated from young donors 
26
. More recently, ML141 

(CID-2950007) was referred to as a novel selective and non-competitive allosteric inhibitor of Cdc42; it promotes migration and 

regulation of mice HSCs polarity with a notably low potency of inhibition against other members of the Rho family of GTPases 
34, 35

. TSA was able to enhance hepatic differentiation from human Bone Marrow and adipose tissue MSCs
36, 37

. Since for this 

moment there is no published data showing the impact of the Cdc42 inhibition on reversing the age of elderly hADSCs and 

reducing their senescence aberrations, our strategy was based on identifying the superlative Cdc42 inhibitor able to rejuvenate 

hADSCs from aging donors and then stimulate their healthy hepatocytes differentiation potential. Here we described that ML141 

succeeded in decreasing the Cdc42-GTP levels in hADSCs and promoted hepatocytes-like cells generation from older donors in 

a manner that is functionally equivalent to hADSCsderived from younger patients.  
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Results  
  

Ccd42 activity increases with age: correlations with growth factors, cytokines, transcription factors, kinases, Wnt 

signaling and exosomes  
First, the screening of Cdc42 activity in hADSCs showed an age-dependent significant increase of Cdc42GTP (and a 

decrease in Cdc42 GAP) (Fig.1A-B). We also noted that the expression of a number of growth factors and cytokines was 

altered in hADSCs from the aged group as compared to the other two groups. The Insulin growth factor (IGF-1) regulating 

survival, self-renewal, and differentiation of hADSCs decreased significantly in the aged population while the age had no or 

little effect on the anti-inflammatory, anti-fibrotic and anti-apoptotic hepatocyte growth factor (HGF) (Fig.1C). Our result 

showed that VEGF decreased considerably in hADSCs isolated from aged donors compared to young and Middle-aged 

counterparts (Fig.1D). The positive ratio of VEGF over PEDF (Pigment epithelial-derived factor) has been used in bone 

marrow MSCs (BMSCs) as an indicator of the angiogenic potential and here, we showed that the PEDF increases with age 

thus potentially exerting anti- angiogenic effects. Since hADSCs have immunomodulatory properties in vitro, we were 

interested in evaluating the inflammatory paracrine potential of hADSCs from different age groups. In terms of anti-

inflammatory cytokines, IL-10 but not IL-4 decreased significantly in the aged group (Fig.1E). On the other side, these same 

cells secreted significantly more pro-inflammatory cytokines such TNF-α and IFN-γ (Fig.1F).  

Furthermore, we evaluated the expression of certain transcription factors Sterol regulating element binding protein1 SREBP-

1 expression which is an aging-associated biomarker in in vivo aging MSCs. The SREBP-1 subtype increased significantly 

with age and adequately to Cdc42-GTP expression. However the subtype 2 didn’t show significant change (Fig.1G). 

Although the phosphorylation of the c-AMP regulatory element binding CREB was discussed in BMMSCs, this pathway 

had never been reported in human ADSCs. Indeed, our results showed for the first time, that CREB phosphorylation is 

increased in aged-ADSCs (Fig.1H).  

Simultaneously, the phosphorylated NF-κB subunits were shown to be significantly increased in the aged ADSCs group 

(Fig.1H).  

The mechanisms of regulating Cdc42 activation are very complex. To better understand which signaling pathways may be 

involved in the observed increased Cdc42-GTP expression, we investigated the main mitogen-activated protein kinases 

(MAPKs) signaling pathways. JNK pathway can be activated by PI3K and activates Cdc42-GTP binding. On the other hand 

RAS activation triggers the direct activation of PI3K pathways and the phosphorylation of ERK and our results showed an 

up-regulation of RAS, p-JNK, p-ERK and p-PI3K in the aged group but not of the p-p38 (Fig.1I-K). The binding of the PKA 

enzyme to a catalytic subunit is suggested to activate the Cdc42; correspondently, our results exhibited an up regulation of the 

PKA catalytic subunits with the increase of the donor’s age (Fig.1K). On the other hand, no significant changes were 

observed in the levels of Insulin receptor (IR) and its substrate IRS (Fig.1L), neither PKB or glucose transporters GLUT-1/-4 

(data not shown) indicating no involvement of the insulin pathway.  

The release of exosomes from MSCs may play an important role in several physiological pathways. Impaired exosomes 

release may affect aging and have crucial impacts in cell differentiation. Several markers of the tetraspanin family including 

CD9, CD63 and CD81 are highly enriched in exosomal membranes. hADSCs showed significantly impaired release of 

exosomes in hADSCs-derived from the aged group as observed by a significant reduction in the expression of 

CD9/CD63/CD81 (Fig.1M) recovered in the exosomes fraction. Finally, to whether or not the Wnt-signaling pathway may be 

affected, we investigated whether any correlation occurred between Cdc42-GTP and β-catenin/Wnts. Significant positive 

correlations were found with β-catenin and Wnt-3a contrary to Wnt-5a (Fig.1N), whereas no correlations were found with 

Wnt-4/7a/11. In addition, this study shows for the first time correlations between Cdc42-GTP and several screened factors in 

hADSCs derived from donors of different ages. In summary, Cdc42-GTP was significantly correlated and positively to PEDF, 

TNF-α, IFN-γ, p-CREB, p-NFkB, Ras, p-JNK, p-ERK, PKA and p-PI3K, and negatively to Cdc42GAP, IGF, VEGF and IL-

10. No significant correlations were observed with p-p38, p-IR, p-IRS, IL4, HGF, SREBP-1 and -2 (Figure 1).  

  

Reversibility by inhibitors of PKA, JNK, ERK and Cdc42 activity but not PI3K  
To investigate the signaling mechanisms that may be involved in the increase of Cdc42-GTP observed in the older donors 

group, we inhibited the main signaling pathways screened previously and evaluated the activity of Cdc42-GTP: Wortmanin 

(PI3K inhibitor) didn’t show any impact on the CdC42-GTP expression (Fig.2A) whereas SP600125, PD98059 and H-89, 

the inhibitors of JNK, ERK and PKA pathways respectively, significantly reduced the level of Cdc42-GTP in the aged group 

to levels similar to that observed with the middle-aged or young ones. Next, we proceeded to inhibit pharmacologically the 

Cdc42 activity. Since for the moment there is no data showing the impact of Cdc42 GTPase inhibition in hADSCs, we chose 

inhibitors known to inhibit Cdc42 activity in HSC, cell progenitors and some other cell lines: CASIN, ML141 and TSA. 

CASIN, shown to reverse cell aging in HSCs, had no impact in our cells on Cdc42 GTPases inhibition. However, both the 

direct selective Cdc42 GTPases inhibitor ML141 and the indirect inhibitor TSA (HDAC inhibitor) were able to reverse 
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significantly the age-related behavior of hADSCs by decreasing the Cdc42GTP binding complexes to the levels seen in 

younger donors (Fig.2B). To evaluate the impact of TSA and ML141 on the immunomodulatory behavior of hADSCs from 

aged donors, we showed, using ELISA assays, that ML141 and TSA stimulated the anti-inflammatory cytokine IL-10 (but 

not IL4) while they decreased significantly the levels of the pro-inflammatory cytokines TNFα and INFγ (Fig.2C-D). CASIN 

did not have significant effects on regulating the secretion of the inflammatory studied cytokines in hADSCs-derived from 

the three studied groups (data not shown); more prolonged time of incubation of CASIN and higher doses were toxic. These 

results showed that Cdc42 inhibition reversed the effect of age observed in hADSCs isolated from older donors.  

  

Pharmacological targeting of Cdc42 activity by ML141 and TSA on the yield, growth and adherence characteristics of 

hADSCs  
Based on our previous findings, the study was pursued using the ML141 and the TSA in the young and aged groups to 

screen for the cell cycle behavior of hADSCs. First, cells derived from the aged group showedsignificant decreases in cell 

proliferation, doubling, adherence, and viability with concomitant increase in the apoptotic index (Fig.3). Compared to the 

non-treated control aged hADSCs group, both of the TSA and ML141 treated cells showed significant increases of cell 

numbers and doubling time in aged-group treated hADSCs (Fig.3A-B). Distinctly, ML141 more than TSA, promoted higher 

cell proliferation rate (Fig.3A) and improved cell doubling time (Fig.3B). The adhesion assay highlighted a very marked 

effect of the ML141 which was more pronounced after 48 h (Fig.3C-D). Toxicity studies proved ML141 to be less toxic then 

TSA in terms of apoptotic index and cell viability (Fig.3E-F). Moreover, ML141 was able to repress the expression of the 

apoptotic and senescence genes p16, p53 and p21 more than TSA within the aged-group treated hADSCs; the non-treated 

control aged group showed high senescence gene profile expression (Table 2) compared to the young one. These results 

prompted us to continue using solely ML141 in the rest of the work.  

  

Pharmacological Cdc42 inhibition rescued the hepatogenic potential of Aged ADSCs and induced an MET transition  
We explored multiple protocols to induce hepatic differentiation within the hADSCs isolated from the young and aged 

groups. Six hADSCs groups were subjected to hepatocyte differentiation divided into: young, aged, and ML141-treated aged 

groups [ML141 kept in contact with the cells for: 48 h (D-2 to D0), 16 days (D-2 to D14), 14 days (D14 to D28) or 30 days 

(D-2 to D28)]. Progressively, we ruled out two groups where cells were treated with ML141 during the pre-differentiation 

phase (D-2/0) or treated continuously over the whole period (D-2/28): the group -2/0 didn’t show significant improvements, 

however an aggressive cell apoptosis was observed during the maturation step of the group -2/28 starting from D19/D20 

where it was impossible to maintain the cells adherence and to achieve the differentiation (data not shown). Thus, we 

proceeded to treat the cells with ML141 during the early differentiation (D-2/14) and maturation (D14/28) phases. Adherence 

and viability (7AAD staining vs Annexin V/PI) were significant and above 85% in these two groups. The multipotency of 

hADSCs was confirmed in parallel the hepatocyte differentiation by inducing an adipocyte and neural differentiation (data 

not shown).  

First, we examined the cell immunophenotyping at days 0, 14 and 28: all hADSCs were negative for the hematopoietic stem 

cell markers CD14, CD34, CD45 and for HLA-DRs but positive for the specific mesenchymal stem cell markers CD90, 

CD105 and CD73 (Fig.S1). Interestingly, a decline in the mesenchymal phenotype was observed in the young group 

indicating a transition of the undifferentiated phenotype to a differentiated one. In addition, at day 28, cells from the non-

treated aged group always showed a higher expression of MSCs markers compared to the young group. Conversely, ML141 

reduced markedly the MSCs markers (Fig.S1H).  

Second, the expression of several genes that play key role in the hepatocyte differentiation was evaluated (Fig.4). Compared 

to the young group, our results showed that at day 14 post-induction, differentiating cells have already lost their Ki67 

expression indicating a full commitment into hepatogenic differentiation; Sox17, the specific marker of the endodermic 

lineage, was shown to be highly expressed in aged-hADSCs and ML141 significantly reduced its expression. HNF4α, the 

master gene of the hepatogenic lineage, increased significantly in the young group contrary to the aged group and ML141 

reversed its expression; however, HNF6 expression didn’t show any remarkable variation. AFP, the hepatoblast fetal gene, 

showed a drop in expression independently of Cdc42 inhibition contrary to the albumin expression which was significantly 

increased by ML141. Cyp3A4 (premature form) and Cyp3A7 (natal hepatocyte form) increased during differentiation with 

marked increases in the young group and ML141 restored their expressions. The obtained gene’s profile indicate a 

differentiation of hepatocyte-like cells (HLCs) which led us to check the expression of genes responsible of the metabolic 

activity: TAT and G6P expressions were significantly reduced in the aged compared to the young group, and reversibility 

was obtained by ML141 treatment. In addition, ML141 significantly induced the expression of hepatic functional genes, the 

epithelial cytokeratin CK8 and CK18, but not CK7. The mesenchymal-epithelial transition (MET) genes levels reflected a 

variable and age-dependent pattern in the different groups: SNAIL, Vimentin, and N-cadherin decreased during the 
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differentiation with higher levels in the aged-untreated group, contrary to E-cadherin which increased; ML141 reversed the 

situation. SLUG and TWIST didn’t show a significant variation in all differentiated groups.  

Next, we assessed the expression of Vimentin, Ki67, and AFP proteins by immunohistochemistry (Fig.5): the results 

confirmed the high expression of Vimentin in the aged-untreated cells compared to young group, and ML141 treatment was 

in favor of an epithelial transition and rejuvenation of aged-treated hADSCs. Ki67 protein expression disappeared during 

differentiation and ML141 maintained its absence in HLCs. Concomitantly, the expression of AFP protein persisted in non-

treated aged-hADSCs and disappeared after ML141 treatment. These results are in favor of hepatogenic commitment of 

treated ADSCs and a maturation index by loss of the AFP expression.  

  

ML141 restores hADSCs function during hepatocyte differentiation  
First, to assess the responsiveness of the differentiated HLCs, cells at day 27 were treated with Rifampicin for 24 h, and the 

mRNAs expression of Cyp450 enzymes, albumin, TAT and G6P were determined (Fig.6A-C). HLCs, post-rifampicin 

induction, displayed significant increases in the expression of Cyp3A4 and Cyp3A7 as well as albumin in ML141-treated 

groups. However, no significant inductions were seen for TAT and G6P (data not shown).  

To test the functionality of the obtained HLCs, we quantified the levels of secreted albumin, urea production and LDL uptake 

(Fig.6D-F). During differentiation, we observed progressive increases in the levels of production of albumin and urea, as well 

as the LDL uptake. However, aged-untreated cells exhibited low levels in comparison to young group and a significant 

reversibility was observed after ML141 treatments. Interestingly, the storage of glycogen as evaluated by PAS staining 

(Fig.6G) confirmed the HLCs functionality and that young-derived HLCs stored high levels of glycogen contrary to the 

aged-untreated cells; the morphology of the cells changed from being long-spindled shaped at D0 to short-spindled shaped at 

D14 in all groups, and to large-sized, polygonal shaped HLCs at D28. ML141-treated aged cells retained high levels of 

purple stain similar to the intensity seen in cells derived from young donors and in HepG2 cell line.  

  

ML141 reverts the profile of secreted cytokines  
The analyses of cytokines profile determined by flow cytometry on the collected supernatants of undifferentiated-ADSCs (D0), 

differentiated-hepatoblast-like cells (D14) and differentiated-hepatocyte-like cells (D28) (Fig.7) showed that the main pro-

inflammatory cytokines TNF-α/IFN-γ/IL-17A/IL-12p70/IL6/IL-2 significantly decreased during the differentiation of the 

young-derived cells and were significantly elevated in the aged untreated group. Besides and during differentiation, anti-

inflammatory cytokines, IL10/IL-5/IL-4 significantly increased in the young group contrary to the aged group. On the other 

hand, no significant changes were observed in the levels of INF/GM-CSF/IL-9. Treatment of aged-group derived cells with 

ML141 significantly reversed the situation especially when ML141 was incubated during D-2/14 and less importantly in case 

of D14/28. ML141 (D-2/0) didn’t show significant variations (data not shown). These results demonstrate the evident impact 

of ML141 on diminishing the inflammatory levels of cytokines produced during differentiation of cells derived from aged 

subjects, thus making the cell phenotype closer to the young one.  

    

Discussion  
In this study, we investigated the potential of pharmacological inhibition of Cdc42 to reverse the aged phenotype of adipose-

derived mesenchymal stem cells (ADSCs) into a younger phenotype, which may remove the blockade or inhibition of the 

hepatocyte differentiation. ADSCs have recently emerged as a great tool for clinical application in regenerative medicine 
7
. At 

this moment, 71 studies using human ADSCs for cell based therapies are registered on Clinical Trials webpage. A high yield 

of these cells can be isolated with slight patient discomfort
38-40

. However, several studies suggested that the donor’s age may 

strongly impact various hADSCs properties
12, 13, 41

. In fact, although the cells isolated from elderly subjects didn’t completely 

lose their proliferative potential they, nonetheless showed lower rates of expansion in vitro, which makes them a weak tool for 

clinical autologous use. Even though ADSCs yield was shown to decline in aged collected adipose tissues 
40, 42

, within our 

population this yield didn’t show a significant variability within the different age groups.  

Cdc42 was shown to be closely involved in human BMSCs cell proliferation, polarity, migration and differentiation 
28

, and 

Cdc42 activity exhibited an increase of the GTP binding complex in HSCs derived from aged subjects 
33, 43, 44

. Several 

strategies aim to reverse the ageing in human adult stem cells by inhibiting the Cdc42 activity. Furthermore, the inhibition of 

the Cdc42 signaling pathway was used to prevent pro-oncogenic mutations and cell senescence 
43

. Based on these evidences, 

our strategy was to screen for the first time the activity of Cd42 in hADSCs isolated from healthy donors than to investigate 

the effects of selectively inhibiting its activity. A positive correlation was found to exist between the donor age and the ratio of 

Cdc42GTP/total Cdc42 in HSCs and progenitors blood cells
26, 45

. Similarly, our results showed that in ADSCs, the activity of 

Cdc42-GTP increased with age. On the other hand, many reports indicate a proinflammatory cytokines’ profile increased 

with aged MSCs; TNF-α and IFN-γ secretion is increased in bone marrow and umbilical cord aged patients derived MSCs 
46-

51
. Equally, our findings showed that the paracrine cytokine panel within aged derived ADSCs is typically pro-inflammatory 
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since TNF-α and IFN-γ are markedly increased with aged and correlate closely to the Cdc42-GTP bindings. Previous 

observations explained how TNF-α / IFN-γ upregulated the p38-MAPK kinase phosphorylation pathway and negatively 

altered the immunomodulatory potential of hMSCs. We also noted that the levels of growth factors were affected in ADSCs 

from aging donors.  

While the positive ratio of VEGF over PEDF was used in BMMSCs as an indicator of the angiogenic potential 
52
 and the 

Cdc42 was shown to regulate VEGF-mediated angiogenesis in human and mice endothelial progenitors cells 
53, 54

, there is no 

data reporting a loop of regulation between VEGF expression and Cdc42 activation during MSCs aging. Our results revealed 

that the increased activity of Cdc42 in ADSCs correlated with a negative transcription of VEGF potentially reducing their 

angiogenic and regeneration abilities. The MAPK pathways was shown to be implicated in MSCs aging; indeed p38, JNK 

and ERK pathways trigger the tumor suppressor gene p53 transcriptional program, ROS accumulation and apoptosis in 

fibroblasts 
55, 56

, HSC 
45, 57

 and human umbilical cord MSCs (UCMSCs) 
51
. Also, PI3K can be triggered by IRS ligand binding 

to IGF 
58

, thus activating JNK pathway and subsequently Cdc42-GTP binding 
59
. In parallel, it was described that the targets 

of PKA phosphorylation stimulate GTP binding on Cdc42 and thus cell aging in human mast cells [46]. Similarly, in our 

study, Cdc42-GTP binding levels in aged ADSCs correlated with p-ERK, p-JNK and PKA activation but not with PI3K 

pathway. Since it was reported that IGF binding to the tyrosine kinase receptor can directly lead to Cdc42 activating without 

passing by the upstream PI3K 
60
, this result indicates that activation of Cdc42 in aged ADSCs is regulated by different 

cassettes of signals independently of PI3K. Interestingly, the use of Cdc42 inhibitors on hADSCs had never been studied 

before. First, CASIN-treated aged HSCs exhibited a level of Cdc42-GTP similar to that found in HSCs from young donors 
33
. Contrariwise, CASIN impact was revealed to be loudly different in cancer stem cells by promoting their growth arrest and 

migration 
61, 62

. Moreover in our study, CASIN didn’t inhibit Cdc42 activation in aged ADSCs. These controvert mechanisms 

remain unclear since CASIN has never been used before as Cdc42 inhibitor in other subtypes of MSCs. Therefore, the 

CASIN inhibition appeared to be cell-type dependent and doesn’t inhibit the GEF activity in aged ADSC. Thereby, CASIN 

impact on other age-related proteins within the aged ADSCs could be a remarkable field of study in the future. Second, TSA, 

an HDAC inhibitor, which showed significant inhibitory effects of Cdc42 activity in hADSCs; In other studies, it was able to 

maintain the pluripotency expression in placenta derived hMSCs, delay the appearance of aging signs 
63

, and promoted the 

proliferation and self-renewal of hUCMSCs 
64
. Third, ML141 was recently used as a potent Cdc42 inhibitor in cancer stem 

cells to downregulate EGFR and JNK signaling pathways
65-67

. We are the first to inhibit the Cdc42 activity in aged hADSCs 

by both ML141 and TSA, and correlate its activity with the expression of biomarkers in aged hADSCs. In our study, 

ML141, more than TSA, promoted better population doubling and less toxicity, better proliferation rate and adhesion 

potential in a way that was similar and sometimes better than the non-treated young ADSCs. Furthermore, ML141 was able 

to repress the expression of the apoptotic and senescence genes p16, p53 and p21 within the treated ADSCs. In addition, we 

showed that both TSA and ML141 promoted antiinflammatory potential in the treated ADSC subpopulation by decreasing 

the TNF-α/IFN-γ/IL-17A/IL12p70/IL-6/IL-2 secretion levels.  

 These results correlate closely with recent findings where ML141 was shown to inhibit Cdc42 activity in hBMSCs, 

endothelial cells and cancer stem cells by downregulating EGFR/JNK/PAK pathways implicated in aging and polarity of 

stem cell processes
66-70

. Other studies reported that TSA may reverse the age impact within other human MSCs subtypes such 

as UCMSCs and BMMSCs
63, 64, 71-73

.  

Our second goal was to study the impact of Cdc42 inhibition on the rejuvenation of ADSCs and their hepatogenic 

differentiation potential. TSA was described to enhance cardiogenic and neurogenic potential in aged BMMSCs and to 

induce albumin and CK8 expression in UCMSCs derived hepatic progenitors
71, 72, 74-76

. Since human ADSCs were shown to 

be a promising tool for hepatocytes generation in vitro 
77, 78

, we conducted hepatocyte differentiation protocols adapted by Yin 

et al, 2015. In this report, TSA was shown to be essential to promote in vitro differentiation of human ADSC towards 

functional hepatocyte-like cells between days 14 and 28 
79
. However, the derived HLCs secreted albumin and were able to 

uptake LDL, they continued to express AFP which is a fetal hepatocytes marker. Distinctly, our novel strategy consisted on 

replacing the TSA treatment by a specific and direct Cdc42 GTPase inhibitor, the ML141. Remarkably, our strategy was a 

new and innovated step in terms of (i) following a two-step protocol of ML141 treatment within the hepatogenic 

differentiation protocol and (ii) evaluating an extensive range of cytokines, growth factors, hepatocytes maturation markers 

and the MET process within young, aged and ML141-treated aged ADSCs. Indeed, our results showed that young and 

ML141-treated aged ADSCs groups showed a decrease in endodermic genes (Sox17) , fetal liver genes (AFP, HNF6) and 

an increase in hepatic master gene HNF4α and hepatic functional genes (Alb, Cyp3A7, TAT,G6P, CK8 and CK18). 

Conversely, at day 28, HLC derived from non-treated aged ADSCs showed an incomplete fetal hepatic profile similar to the 

profile seen in TSA treatedHLC generated by Yin and coworkers 
79

. Our HLCs were functional and expressed high levels of 

albumin and Cyp450 upon Rifampicin induction. They were also able to stock glycogen, to uptake LDL and produce urea 

better than to the HLCs derived from young donors, and efficiently reversed the levels of secreted cytokines. These results 
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lead us to consider the ML141-treated ADSCs derived from aged donors as a promising tool for new therapeutic strategies 

that use MSCs exosomes in liver diseases 
80

.  

The MET was shown to be a crucial process when we transdifferentiate MSCs into hepatocytes 
81
. An epithelial transition 

was reported in cancer cell line treated with ML141 
82
. Based on these evidences, it was interesting to study the MET process 

in our differentiation protocol. Our results showed that ML141 treatment of aged ADSCs gave rise to HLCs presenting a 

typical epithelial phenotype and high Ecad/Ncad expression ratio especially in the D14/28 treated group. Previous data 

showed that HLCs derived from ADSCs presented a downregulation of Twist and Snail expression 
83
. This MET correlates 

closely with the appearance of functional hepatic markers hardly expressed in non-treated aged ADSCs such as albumin, 

TAT, G6P and CYP450. Moreover, the positive co-expression of CK18 and E-Cadherin was reported to be a crucial 

parameter for MET in murine hepatic and embryonic stem cells 
84

 and human iPSCs 
85

 differentiation into hepatocytes. This 

evidence support our findings, where HLCs generated from treated ML141 showed high expression of CK18. Our novelty in 

this study resides in the fact that currently there is no previous report using ML141 to reverse the age-related aberrations in 

aged stem cells and promote greater hepatogenic potential than young differentiated ADSCs counterparts.  

These data suggest that the inhibition of Cdc42-GTP activity might represent a novel target to rejuvenate not only HSCs but 

also aged ADSCs by altering their immunomodulatory effects, decreasing apoptosis and improving the cell activity potential. 

Cdc42 activity can be pharmacologically targeted to rejuvenate aged ADSCs for MSC based therapies and tissue 

engineering. Clinical liver diseases applications in the future will need new approaches for ex vivo safe manipulations 

including ADSCs cultivation and direct hepatic fate within a short time. Thus, Cdc42 inhibition may also be important in 

converting the weak hepatogenic potential of aged ADSCs into functional and mature derived-ADSCs hepatocytes.  

    

  

Methods  

Population design  
61 healthy subjects were enrolled in this study and classified into three age groups: Young (23.8 years ± 0.4), middle-aged (40.8 

years ± 0.6) and old/aged (57.6 years ± 0.9 years). Adipose tissue harvests (<600 mg) collected from the abdominal area were 

processed manually for the SVF isolation. The cell yield (total nucleated cells and MSCs numbers) showed no significant 

differences between the different age groups (Table 1). Subjects were included in the study only if they had no notable 

pathological history, in particular liver diseases and were excluded based on a list of criteria as shown in table 1. Investigations on 

human samples have been conducted according to the principles expressed in the Declaration of Helsinki, as revised in 2008 

(http://www.wma.net/e/policy/b3.htm). All donors gave written informed consent and samples were procured by the Nancy 

University Hospital Clinical Investigation Center (ethical approval number, CPP3.07.01, France).  

  

Isolation and expansion of hADSCs  
Human adipose tissue (200 ml) was obtained by lipoaspiration of 61 healthy female donors (belonging to different age groups) 

who underwent abdominal subcutaneous fat liposuction. Stromal vascular fraction (SVF) cells were manually isolated by 

enzymatic digestion in standard grade collagenase. Total fat was dispensed into 50 ml tubes to be washed twice with phosphate-

buffered saline (PBS) and 5% penicillin-streptomycin-amphotericin B (PSA), and then centrifuged at 300xg for 3 min with 

elimination of the pellet containing red blood cells. Washing and centrifugation were repeated 3 times. Collagenase type I was 

added to the fat (1v/1v) and the mixture was incubated 30 min at 37
o
C with gentle agitation. A volume of 5 ml fetal bovine serum 

(FBS) was added to stop the activity of collagenase. After incubation, sample is centrifuged at 600x g for 10 min. The cell pellet 

was resuspended in DMEM/F12 medium supplemented with 10% fetal bovine serum (FBS) in a humidified atmosphere of 5% 

CO2 at 37°C. ADSCs were selected by plastic adherence. Cell concentration was adjusted to a density of 10
5
 cells/cm

2
. At 80% 

confluence cells were harvested, and serial subcultures were performed at a density of 10
4
 cells/cm

2
. Medium was changed every 

3 days. The hepatic differentiation was induced at the 3
rd
 ADSCs passage.  

ADSCs were treated in some experiments for 24 hours with the following pharmacological inhibitors 0.8 μM of TSA, 10 μM of 

CASIN and 5 μM of ML141. All reagents were purchased from Sigma-Aldrich.  

  

Hepatogenic induction of hADSCs hADSCs were seeded into MaxGel
™

 ECM-coated plates and divided into four groups: 

young, aged, aged treated with ML141 (5 μM) from day -2 to 14 (–2/14) or 14 to 28 (14/28). All groups underwent the same 

hepatic differentiation protocol : (1) pre-induction at 80% of confluence (day -2) where hADSCs were cultured in serumfree 

medium for 48 h with 20 ng/ml b-FGF and 20 ng/ml EGF (2) induction from day 0 to 14 of the differentiation using media free 

of serum and supplemented with 30 ng/ml HGF, 1x iTS and 10
-8 

M dexamethasone and (3) maturation from day 14 to 28 of the 

differentiation using media free of serum supplemented with 50 ng/ml OSM, 20 ng/ml HGF, 1x iTS and 1µM dexamethasone. 

Media were changed every 3 days. All growth factors and supplements were purchased from Sigma Aldrich. Cell morphology 

and cytotoxicity were controlled daily.  
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RT-qPCR  
RNA was extracted from the cell pellets using RNAspin Mini kit (GE Healthcare), according to the manufacturer’s 

instructions. The mRNA was reverse transcribed to complementary DNA. Complementary DNA was amplified using 

VeriQuest Fast SYBR Green qPCR Master Mix (75690 500 RXN, Affymetrix). Thermal cycling was performed on 

LightCycler 2.0 (Roche) with the following protocol: 1 cycle (50°C/2 min), 1 cycle (95°C/5 min), 45 cycles (95 C/3s and 

60 C/30s). The analysis of the melting curve was performed to exclude non-specific amplification products. Relative changes 

in expression were calculated after normalization to GAPDH. Primers used are listed in Table S1.  

  

Protein Pull-down and Western blot analysis  
Proteins lysates were prepared using a lysis buffer provided by the Active Cdc42 Pull-Down and Detection Kit (#16119-

Thermo Scientific). 700 µl of each lysate were used for every assay. Cdc42-GTP was precipitated by fusion to p21-PBD-Pak1 

with glutathione agarose resin. The reaction mixture was incubated at 4°C for 1 hour in spin cups. The resin was removed and 

the protein separated on 12% of acrylamide gel following the manufacturer’s instructions. GTPγS and GDP were used to 

generate positive and negative control lysates, respectively. Protein concentrations were determined using the Bradford 

Reagent (Sigma Aldrich). 20µg of proteins were loaded in all experiments. SDS-PAGE analysis was performed as previously 

described by Makdissy et al.
86

 on a 10 % resolving gels. The proteins were transferred onto a PVDF membrane using a Bio-

Rad Mini Trans-Blot apparatus and detected using a Protein Detector LumiGLO Western Blot Kit (54-12-50, KPL  

Laboratories, Gaithersburg, MD, USA) according to the manufacturer’s instructions. The membranes were probed with 

diluted primary human antibodies, Anti Cdc42-GTP, Cdc42-GAP, HGF, IGF-1, VEGF, PEDF, IL4, IL10, TNF4α, INFγ, 

p68-SREBP-1, p68-SREBP-2, p-CREB, p-NKFβ, RAS, P-JNK , p-ERK, p-p38, PKA, pPI3K, p-IR and p-IRS1 overnight at 

4°C (all phosphorylated proteins were controlled relatively to total targeted protein). Bound antibodies were detected by 

incubation with a with horseradish peroxidase-conjugated goat antimouse IgG antibody at Room temperature. The detection 

was performed with SuperSignal West Pico Chemiluminescent Substrate (#34080-Thermo scientific) and followed by 

exposure to X-ray film. The exposure time was 2 seconds. The images were captured and quantified using a Gel Doc 2000 

imaging system and Quantity One software (Bio-Rad). B-actin was used as an internal control.  

 

Cell Proliferation assay  
To estimate the proliferation rate of the cells under different cell culture conditions, doubling time assays were performed. A 

total of 10
3
 cells/cm

2
 were plated in 12-well tissue culture plates (in triplicate) with 0.5 ml/well of culture medium and incubated 

at 37°C, 5% CO2, for 0-96 hours. At each endpoint, cells were washed once with 1 ml PBS 1X, detached with 0.2 ml 

trypsin/EDTA, resuspended in 0.5 ml in complete culture medium and counted on a hemocytometer. Results are validated by 

MTT colorimetric assay (Sigma-Aldrich). Cell doubling (n) was determined as following: Cf/C0 = 2
n
 [n = (logCf-

logC0)/log2], where C0 and Cf are the number of cells at time T0 and Tfinal, respectively.  

  

Adhesion assay  
24-well tissue culture plates coated with Fibronectin (Millipore PIFB24P05) were used for adhesion assays. 10

5
 cells were 

plated in each well, and allowed to adhere between10 min and 96h at 37 °C. Subsequently, the nonadherent cells were 

carefully removed at each time point and counted. The percentage of adhesion was calculated as a ratio of the number of 

adherent cells of each sample to the total number of cells added in the coated wells.  

  

Immunohistochemistry (IHC) staining  
10

4 
cells were adhered to a slide by Cytospin® centrifugation and probed with primary antibodies (anti-vimentin, anti -Ki67 

and anti-AFP (1/250; Abcam)). IHC was performed on NexEs (benchmark, ROCHES) automate.  

Images were captured using Zeiss microscope.  

 

Dosage of Albumin by ELISA  
The level of Albumin was measured in cell supernatants using ELISA quantification kit (#ab108788, Abcam) in accordance to 

manufacturer’s instructions. Briefly, supernatants were first incubated with biotinylated albumin antibody, then the conjugate 

and later with the chromogen substratein. The optical absorbance was measured on the Varioskan™ Multimode Microplate 

Reader (Thermofisher scientific) at 450 nm.   

  

Low-density lipoprotein (LDL) uptake assay  

http://www.biocompare.com/12354-Fluorescence-Microplate-Reader-Multi-Detection-Microplate-Reader/7024629-Varioskan-LUX-Multimode-Microplate-Reader/
http://www.biocompare.com/12354-Fluorescence-Microplate-Reader-Multi-Detection-Microplate-Reader/7024629-Varioskan-LUX-Multimode-Microplate-Reader/
http://www.biocompare.com/12354-Fluorescence-Microplate-Reader-Multi-Detection-Microplate-Reader/7024629-Varioskan-LUX-Multimode-Microplate-Reader/
http://www.biocompare.com/12354-Fluorescence-Microplate-Reader-Multi-Detection-Microplate-Reader/7024629-Varioskan-LUX-Multimode-Microplate-Reader/
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Fluorometric LDL Uptake Assay Kit (#ab204716, Abcam) was used to assess the LDL uptake capacity. 3x10
4 
of hADSCs 

and hepatocyte-like cells were incubated with fluorescent labeled-LDL overnight at 37°C; after incubation cells were washed 

and fluorescence measured on the Varioskan™ LUX Multimode Microplate Reader. Cell culture media alone and HepG2 cell 

line were used as negative and positive controls, respectively.  

RFU values were calculated from a standard curve following the manufacturer’s instructions.  

Urea production assay  
The amount of urea present in the cell lysate was assessed using the colorimetric urea assay kit (#MAK006, Sigma-Aldrich) 

according to the manufacturer’s instructions. The optical absorbance was measured on  

Varioskan™ LUX Multimode Microplate Reader (Thermofisher scientific) at 570 nm. Human urine served as the positive 

control.  

  

Periodic Acid-Shiff (PAS) staining  
Glycogen storage was evaluated using the PAS staining kit (#395B, Sigma-Aldrich). Cells were fixed with 4% formaldehyde 

following the manufacturer’s instructions and HepG2 cell line was used as positive control; Samples were assessed under a 

light microscope (Nikon).  

  

Exosomes purification  
Exosomes releases were collected from the culture media of 10

6 
cells and isolated by ultracentrifugation according to the 

method previously described by Thery et al.
87

. Purified exosomes were fixed and incubated with the specific tetraspanins 

exosome biomarkers: human anti-CD9 (PE), CD63 (APC), CD81 (PerCP) and isotype control antibodies from MACS 

(Miltenyi-Biotec). Released exosomes were quantitated by measuring the activity of their specific enzyme: the 

acetylcholinesterase (AChE). Exosomes fractions were suspended to PBS (1v:4v) and incubated with 5,5′-dithiobis(2-

nitrobenzoic acid) (100 M) and acetylthiocholine (125 M) in a final volume of 1 ml at 37 °C, and the change in absorbance 

at 412 nm was determined continuously up to 240 min. The data represents the enzymatic activity at 30 min of incubation at 

maximum saturation.  

  

Flow cytometry analysis  
For surface markers immunophenotyping, cells were stained with the following conjugated antibodies; antiCD45-FITC, anti-

CD34-PE, anti-CD14-PE, anti-CD73-APC, anti-CD90-FITC, anti-CD105-Vioblue and relevant isotypes (Miltenyi-Biotec). 

7AAD and Annexin V/PI were used to assess cell viability and apoptosis. At least 20,000 events for test samples were 

acquired. The MACSplex Cytokin12 kit was used for the cytokines analysis. Supernatants were mixed to capture specific 

beads for each cytokines: GM-CSF, IFN-α, IFN-γ, lL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-17A, and TNF-α. PE-

conjugated antibodies were added and incubated for 2 h at room temperature, away from light. After centrifugation, the pellets 

containing beads were resuspended; flow cytometric acquisition and data analysis were performed by the MACSQuant® 

Express Mode Background signals were determined by analyzing beads incubated with the cell culture media alone. The 

background signals were subtracted from the signals obtained for beads incubated with supernatants.  

  

Statistical analysis  
All experiments were performed in triplicates. Results are presented as the means ± SEM and have been analyzed for statistical 

significance (on absolute values) using Student's t-test. For all statistical tests, P values were twotailed and the level of 

significance was set at 0.05.  

  

    

  

http://www.biocompare.com/12354-Fluorescence-Microplate-Reader-Multi-Detection-Microplate-Reader/7024629-Varioskan-LUX-Multimode-Microplate-Reader/
http://www.biocompare.com/12354-Fluorescence-Microplate-Reader-Multi-Detection-Microplate-Reader/7024629-Varioskan-LUX-Multimode-Microplate-Reader/
http://www.biocompare.com/12354-Fluorescence-Microplate-Reader-Multi-Detection-Microplate-Reader/7024629-Varioskan-LUX-Multimode-Microplate-Reader/
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Figure legends 

Figure 1. Ccd42 activity increases with age: correlations with growth factors, cytokines, transcription factors, and 

kinases. hADSCs were isolated from lipoaspirates derived from young, middle and aged subjects. Cell lysates were used for the 

assessment of the activity of Cdc42 as determined by Pull-down of Cdc42-GTP (500g) and Cdc42GAP (100g) proteins 

(A,B), or were separated by SDS-PAGE (1000g of proteins) and immunoblotted with antibodies raised against: growth factors 

(HGF and IGF-1) (C), pro- and anti-angiogenic factors (VEGF and PEDF) (D), anti- and pro-inflammatory cytokines (IL-4 and 

IL-10, TNFα and INFγ) (E,F), transcription factors (p68 SREBP-1 and SREBP-2, p-CREB and p-NFkB) (G,H), G proteins and 

MAPK (RAS and p-JNK, p-ERK and p-p38) (I,J), kinases (PKA catalytic and p-PI3K), p-IR and p-IRS-1 (K,L). Exosomes 

release (M) and Wnts signaling (N) were analyzed by flow cytometry and mRNAs expression by RT-qPCR. Results are 

expressed as mean±SEM of two independent experiments realized on 19 (young), 22 (middle) and 20 (aged) subjects after 

normalization to GAPDH. *P<0.05, **P<0.01, ***P<0.001; Aged/Middle versus Young. 

 

Figure 2. Reversibility by inhibitors of PKA, JNK, ERK and Cdc42 activity. hADSCs derived from young, middle and 

aged subjects were cultured for 96 h and then treated 24 h with inhibitors of PI3K (Wortmannin, 10M), PKA (H-89, 5M), 

JNK (SP600125, 10M), ERK (PD98059, 50M), Cdc42-GTPase (Casin, 10M), Cdc42/Rac1 GTPase (ML141, 10M), and 

HDAC (TSA, 0.8M). 500 g of cell lysates were used for the assessment of the activity of Cdc42 as determined by Pull-down 

of Cdc42GTP proteins (A,B). The impact of pharmacological targeting of Cdc42 activity by ML141 and TSA was assessed on 

the production of pro- (TNF-α (C), INF-γ (D)) and anti- (IL-4 (E), IL-10 (F)) inflammatory cytokines as secreted in the culture 

supernatants. Results are expressed as mean±SEM of two independent experiments realized on 19 (young), 22 (middle) and 20 

(aged, aged+ML141, aged+TSA) subjects. 
§
P<0.05, 

§§
P<0.01; Aged/Middle versus Young. *P<0.05, **P<0.01, ***P<0.001; 

Aged treated with ML141/TSA versus untreated. 

 

Figure 3. Pharmacological targeting of Cdc42 activity by ML141 and TSA on the yield, growth and adherence 

characteristics of hADSCs. Cells derived from young and aged subjects were cultured for 96 h. Proliferative potential as 

indicated by cells number (A) and time for population doublings (B). Kinetics of hADSCs adherence as evaluated by the number 

of adhered cells and expressed as the percentage of applied cells (C,D). Apoptotic index (E) and cell viability (F) as assessed by 

labeled cells with Annexin V / 7AAD / propidium iodide (PI): the apoptotic index was expressed as the percentage of Annexin 

V-positive cells divided by total cells; the cell viability was expressed as the percentage of Annexin V
(-)
/PI

(-)
/7AAD

(-)
 divided by 

total cells. Early from late-apoptotic cells were identified as Annexin V
(+)

/PI
(-)
/7AAD

(-)
 versus Annexin V

(+)
/PI

(+)
/7AAD

(+)
, 

respectively. Results are expressed as mean±SEM of two independent experiments realized on 19 (young) and 20 (aged, 

aged+ML141, aged+TSA) subjects. 
§
P<0.05, 

§§
P<0.01; Aged versus Young. *P<0.05, **P<0.01, ***P<0.001; Aged treated 

with ML141/TSA versus untreated. 

 

Figure 4. : Impact of pharmacological targeting of Cdc42 activity by ML141 on the gene expression profile during 

hepatocyte differentiation. hADSCs were isolated from young and aged subjects and were induced to hepatocyte 

differentiation for 28 days with or without ML141 (5 M) for the indicated time of incubation. RNAs were collected at the 

D0/14/28 and mRNAs levels of the studied genes were determined by RT-qPCR. The results are expressed as fold variation 

relative to Young at D0 after normalization to GAPDH, are the mean±SEM of two independent experiments performed in 
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duplicate. D0 = day of induction of the differentiation. d-2/0, d-2/14, d14/28: cells were treated with ML141 from day(-2) to 

day(0), day(-2) to day(14), or day(14) to day(28), respectively. 
§
P<0.05, 

§§
P<0.01; Aged versus Young. *P<0.05, **P<0.01, 

***P<0.001; Aged treated with ML141 versus untreated.  

 

Figure 5. Extinction of AFP, Vimentin and Ki67 from hepatocyte-like cells derived from aged-ADSCs treated with 

ML141. Cells derived from young and aged groups were differentiated and treated with or without ML141 as indicated in figure 

4 and cells were evaluated for AFP (fetal hepatoblasts marker), Vimentin (EMT marker) and Ki67 (proliferation marker) by 

immunohistochemistry (IHC) as described in Methods. Cells were examined microscopically and phase-contrast images were 

captured. Cultures of primary human fetal and adult hepatocytes were assessed as positive controls and negative controls, 

respectively.  

 

Figure 6. Pharmacological targeting of Cdc42 activity by ML141 induces rifampicin responsiveness and restores cell 

function. hADSCs derived from young and aged subjects were differentiated and treated with or without ML141 as indicated in 

figure 4. A,B,C, rifampicin responsiveness: RNAs were collected at day 28 of the differentiation after cells’ treatment with 

rifampicin (20M, 24h) and mRNAs expression were determined by RT-qPCR and normalized to GAPDH as described in 

methods. Expression levels of CYP3A4, CYP3A7 and Albumin genes are shown. The results are expressed as fold variation 

relative to controls (without rifampicin) after normalization to GAPDH, are the mean±SEM and the experiments were performed 

twice each in duplicate. D,E,F, Albumin, urea production and LDL uptake: supernatants of cultured cells and the lysates were 

collected at D0/D14/D28 of the differentiation for the quantification of albumin, urea and LDL-uptake as indicated in methods. 

Results are expressed per ng/ml (for the production of albumin and urea) and RFU (fluorescent LDL-uptake) and are presented 

as fold of variation relative to Young at day D0, are the mean±SEM of several measures (5, 6 and 10, respectively). D, 

hepatocyte-like cells derived from aged-ADSCs treated with ML141 exhibit hepatic-specific function of glycogen storage. Cells 

were evaluated for glycogen storage capacity (pink color) using periodic acid-schiff (PAS) staining as described in Methods. 

Cells were examined microscopically and phase-contrast images were captured. Cultures of HepG2 cells were assessed as 

positive controls. 
§
P<0.05, 

§§
P<0.01; Rifampicin versus controls or Aged versus Young. *P<0.05, **P<0.01; Aged treated with 

ML141 versus untreated.  

 

Figure 7. Pharmacological targeting of Cdc42 activity by ML141 reverts the profile of cytokines secreted during the 

differentiation of hADSCs derived from aged subjects. Cells derived from young and aged groups were differentiated and 

treated with or without ML141 as indicated in figure 4 and cell culture supernatants were collected and undiluted samples were 

analyzed for the detection of cytokines as indicated in methods. The concentrations of 12 cytokines were determined using 

MACSQuant analyzer at days D0/D14/D28 of the differentiation. 3-5 measures were realized by group and results are the 

mean±SEM presented in fold of variation relative to day D0. The cytokines limit of detection (pg/ml) were: TNF-α (2.17), IFN-γ 

6.26, IFN-α (10.4), GM-CSF (0.20), IL-2 (1.52), IL-4 (34.2), IL-5 (0.27), IL-6 (0.077), IL-9 (32.7), IL-10 (2.76), IL-12 (3.44), 

and IL-17A (0.7). 
§
P<0.05, 

§§
P<0.01; Aged versus Young. *P<0.05, **P<0.01; Aged treated with ML141 versus untreated.  
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Table 1: Characteristics of the studied population (results are expressed as the mean ± SEM) 

Healthy Group (N = 61) YOUNG MIDDLE AGED 

Number of subjects 19 22 20 

Sex Female 100% Female 100% Female 100% 

Mean Age (years) 23.8 ± 0.4 40.8 ± 0.6 57.6 ± 0.9 

Adipose tissue (mg) 342.1 ± 78.4 299.4 ± 63.6 390.0 ± 87.4 

Number of isolated SVF cells  254.3 ± 23.7 x 10
6
 210.2 ± 18.5 x 10

6
 288.6 ± 21.4 x 10

6
 

Number of MSCs / mg tissue 743.5 ± 102.7 x 10
3
 702.1 ± 91.4 x 10

3
 738.3 ± 45.3 x 10

3
 

    

Never smoking 12.1 ± 0.9 % 41.9 ± 3.3 % 18.2 ± 4.5 % 

Ex-smoking 68.4 ± 3.7 % 47.2 ± 6.5 % 61.6 ± 7.1 % 

Current smoker 19.5 ± 4.5 % 10.9 ± 4.2 % 20.3 ± 3.0 % 

Physically active 
(1) 

42.0 ± 6.6 % 49.8 ± 5.7 % 40.5 ± 8.6 % 

CAD or Stroke 0 0 0 

Diabetic 0 0 0 

Hypertension 0 0 0 

Hypercholesterolemia 0 0 0 

Liver, GIT, metabolic, neurological, 

cardiac, renal disorders 
0 0 0 

Healthy subjects 19 out 19 22 out of 22 20 out of 20 

    

Exclusion criteria  

Total Cholesterol (mg/dL)  > 250 

Triglycerides (mg/dL) > 200 

LDL
(2)

 cholesterol (mg/dL) > 150 

HDL cholesterol (mg/dL) < 35 

Fasting glucose (mg/dL) > 120 

Fasting plasma insulin (U/mL) > 10 

Systolic blood pressure > 140 mm Hg 

Diastolic blood pressure > 90 mm Hg 

Diabetic Previously- or currently- treated or untreated 

Stroke Previously- or currently- treated or untreated 

Body mass index (kg/m
2
) > 30 

(1) Physically active: walking or doing other kinds of exercise at least once per week or self-report of moderate/intense level of activity in daily life.  
(2) Abbreviations: LDL: low density lipoprotein; HDL: high density lipoprotein; CAD: coronary artery disease; SVF: Stromal Vascular Fraction  
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Table 2. Real-time quantitative RT-PCR determination of p16
INK4a

, p53 and p21 mRNA levels in ADSCs derived from young 

versus aged groups. 

 p16
INK4a

 p53 p21 

 R P value R P value R  P value 

Young 1
a
   1  1  

Aged 4.72 ± 0.99 0.002
b 

10.15 ± 2.07 <0.0001
b 

7.32 ± 1.74  0.002
b 

Aged+ML141 2.17 ± 0.66 0.042
c 

 3.98 ± 0.95 0.001
c 

2.78 ± 0.77  0.024
c 

Aged+TSA 2.08 ± 0.31 0.026
c 

 6.12 ± 1.23 0.040
b 

5.44 ± 0.98  0.051
b 

ADSCs were isolated from young and aged groups and cultured for 96 h as described in methods. Cells from the indicated group were treated 

or not with 10µM (24h) ML141 or 0.8µM (24h) TSA. The mRNA levels of the studied genes were determined. The results are expressed as -

fold variations ± SEM over young group (R) after normalization to β-actin. The results represented individual expression per subject: young (n 

= 19), aged (n=20), aged+ML141 (n=20) and aged+TSA (n=20) are the means of 2 independent experiments performed in triplicate.  

a 
The young group was expressed as 1.  

b
 Compared to young group. 

c
 Compared to aged group. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Supplementary data – Figure S1 and Table S1 

Table S1. Primer sequences used for quantitative RT–PCR 

Gene Forward Primer 5’- 3’ Reverse Primer 5’- 3’ 

hAFP CTGCTGCAGCCAAAGTGAAG CCAGCACATCTCCTCTGCAA 

hALB AAGCAGATGTTCCCAAAGCG GCAAAGCAGGCCTCCTTATC 

hCK18 ATCTTGGTGATGCCTTGGAC CCTGCTTCTGCTGGCTTAAT 

hCK7 ATAAAAGGCGCGGAGTGTCC TCCAGAAACCGCACCTTGTC 

hCK8 TGTTCCCAGTGCTACCCTG GCCGTGGTTGTGAAGAAGAT 

hCXCR4 CTGGCCTTCATCAGTCTGGA TCATCTGCCTCACTGACGTT 

hcyp3A4 GAGCTGAGATTGCACCACTG GGGTGTTGAGGATGGAATGC 

hcyp3A7 GGCTATCACAGATCCCGACA TTTCCGCTGGTGAATGTTGG 

hFoxa1 AAGACTCCAGCCTCCTCAAC CGTATGCCTTGAAGTCCAGC 

hFoxa2 ATTGCTGGTCGTTTGTTGTGG GTACATGGGGCTCATGGAGTT 

hFoxa3 AGTGGAGCTACTACCCGGAG ACCTTGACGAAGCAGTCGTT 

hG6Pc ATTGACACCACACCCTTTGC GACGTAGAAGACCAGCTCGA 

hGATA 4 CGACACCCCAATCTCGATATGT TTTGGATCCCCTCTTTCCGC 

hHNF1 α CAGAGTGTGCCGGTCATCAA GAGGTGAAGACCTGCTTGGT 

hHNF1 β CATACTCTCACCAACGGCCA ACTGTCTGGTTGAATTGTCGG 

hHNF4 α GGTGTTGACGATGGGCAATG CTCATTCTGGACGGCTTCCTA 

hHNF6 GCTTAGCAGCATGCAAAAGGAA ACACCTTCGTGGCATGGTAG 

hSox17 TTCATGGTGTGGGCTAAGGA CCGGTACTTGTAGTTGGGGT 

hTAT GAGTCAGCGCATTTTGGGAC TCGGGTACTCAAAGCACGTT 

hp16INKa TGACTCCCTCCCCATTTTCC TTTTGGAGAGTCGGACTGCT 

hp53 TGGCCATCTACAAGCAGTCA GGTACAGTCAGAGCCAACCT 

hp21 CCCAAGCTCTACCTTCCCAC CTGAGAGTCTCCAGGTCCAC 

Wnt-3a CCACACCGTCAGGTACTCCT TGTAGCTGGATGGAGTGCAG 

Wnt-4 ACAGCTGGAAGGCTGACAGT TGCATGTCCTTCTCACAAGC 

Wnt-5a ATACTGGCTGACCACCTTGG GACAAAGGCCTCAGAAGCAC 

Wnt-7a CCCTGAAGCTTACTGCTTGG GCTACGATGTATGGGGCACT 

Wnt-11 CACCCCCAGATAGTTGTGCT GAGGAGGAAAGCGACACAAG 

-catenin GAAACGGCTTTCAGTTGAGC CTGGCCATATCCACCAGAGT 

hGADPH AGCTCATTTCCTGGTATGACAAC GTGGTCCAGGGGTCTTACTC 
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Figure S1. 
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Figure S1. Immunophenotype of ADSCs derived from young and aged subjects, and differentiated into hepatocyte-like cells. 

Cells without (A-G) or with ML141 (H) were labeled with fluorescence-coupled antibodies against HLA-DR, CD14, CD34, CD45, 

CD73, CD90 and CD105, and analyzed using a MACSQuant flow analyzer as indicated in materials and methods. The results are 

expressed as the mean±SEM and presented as percentage of CD marker per total number of cells. Cells were collected at day 0 at the 

moment of induction of the differentiation, day 14 and 28 of the differentiation (hepatoblast-like cells and hepatocyte-like cells, 

respectively). 
*
P<0.05, 

**
P<0.01 and 

***
P<0.005; Aged versus Young. Effect of ML141 was evaluated at day 28 (F). 

§
P<0.05, 

§§
P<0.01; Aged treated with ML141 versus untreated.  
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CHAPTER 10  

GENERAL DISCUSSION  

 

Our study includes two important outcomes. First, taking in account of the difficulty to keep primary hepatocyte in 

culture and to overcome the high need of functional hepatocyte we proposed a new tool to reprogram mouse mature 

hepatocytes into endodermic progenitors (EndoPCs) satisfying most of the phenotypic criterias of bipotent liver stem 

cells that are activated after liver injury. Second, in front of the limited proliferation and differentiation in vitro of aged 

stem cell senescence, we reinforce the knowledge about the impact of Cdc42 activation on stem cell aging which has 

never reported on hADSCs. The results of both studies are developed and analyzed in order to show the implication of 

our findings as a novel support for liver regeneration and bioengineering development strategies.  

 

 

Debate 1 

The new technology of EndoPCs allowing the activation of Wnt/Lgr5 axis pathway in primary 

hepatocytes in absence of Wnt activators  

 

Like specific LPs341, the EndoPCs were shown in our study to have unlimited self-renewal capacity in vitro, to respond to 

LIFR ligands and to present bipotency with the capacity to differentiate into both mature hepatocytes and 

cholangiocytes. In vivo recent lineage tracing strategies have been conducted by several groups who have interestingly 

found that mature hepatocytes can be reprogrammed in vivo into active divided bipotent epithelial LPs through a 

cascade similar to that followed to induce iPSCs from fibroblasts361 or by requiring modulation of Notch/Hippo 

pathway359. Indeed, these strategies relied on isolation of EpCAM+ cells352 or EpCAM-/Sox9+ cells 353 from liver biopsies 

followed by their transplantation to evaluate their bipotentiality and regenerative potential in vivo45. Consecutively, 

these hypothesis of in vivo adult liver hepatocytes reprogramming was requiring in vitro good evidence. Our study and 

strategy filled this need perfectly. Like Lgr5 induced injury liver stem cells, EndoPCs expressed Sox 9 and were able to 

give rise to new cholangiocytes and hepatocytes in vitro and to recover liver cell loss in hepatectomized liver animal 

model with high efficiency. However, oppositely to isolated induced injury Lgr5+, EndoPCs generation skipped any pre-

step isolation and cell contamination relying on nonspecific markers such as EpCAM, Sox9 and OPN common with 

different epithelial liver cell type. In addition, our experimental strategy provides a new indication for in vitro primary 
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hepatocyte reprogramming. Our study induced liver specific progenitors following non-replicative reprogramming of 

adult hepatocytes without reversion to a pluripotent stem cell state. A transient expression of embryonic makers Oct-

4, Sox2, klf4 and c-Myc was sufficient to expand infinitely these liver specific progenitors in a LIF dependent manner. As 

a proof-of-concept, this in vitro strategy identified that the Wnt target gene Lgr5 is readily expressed by the EndoPCs 

and is regulated by the gp130/JAK/STAT3 pathway under Rspo/Wnt activated pathway in ex-vivo culture. Recently, 

the strong crosstalk of IL6/STAT3 phosphorylation and Wnt /Lgr5 was studied on freshly isolated liver stem cells370. 

These findings suggest that our reprograming protocol could be also conducted by adult hepatocytes in vivo upon 

injury even though more examinations are mandatory to test this purpose.  

Distinctly from similar strategy trying to generate endodermal lineage from ESCs343,344 and iPSCs37,348,121, EndoPCs being 

readily endodermic progenitors didn’t require Activin A , BMP4 and Wnt3a to express markedly the endodermal 

lineage markers such as GATA, SOX17, and FOXA2. Also, EndoPCs are more interesting than PSC- derived endoderm 

lineage cells since they are clonally multipotent and already express hepatocytes-lineage markers (KRT18, Hnf4α 

Hnf1α, AFP, and ALB) and bile duct lineages markers (KRT19, Hnf6, Hnf1α,) before any differentiation process. 

Furthermore, EndoPCs possess a special molecular signature discriminating their stemness hallmarks from mouse oval, 

embryonic, mesenchymal and hematopoietic stem cells. Indeed, they are negative for CD117, Oct-4/SSEA1, and 

CD90/105 and CD34/CD45 respectively. 

On the other hand, EndoPCs are different from iPSCs and ESCs since they didn’t require multistep protocols with 

sequential release of growth factors to induce hepatocyte or cholangiocytes differentiation in vitro668. Although 

EndoPCs give rise spontaneously to biliary duct structures in vivo, the in vitro cholangiocytes differentiation seemed 

more complicated by requiring 5-Step differentiation protocol. Moreover, hepatocytes derived from EndoPCs showed 

more functionality than hepatocytes derived from PSCs 316. They were able to produce Alb and to be negative for AFP 

expression. However Alb expression was found to be less important in the EndoPCs derived hepatocytes compared to 

adult hepatocytes. Thus we proceeded to optimize the differentiation protocol by modifying the matrix dimensional 

structure. Thereby, we aimed to compare the EndoPCs hepatogenic potential between 2D and 3D scaffold structures. 

Our findings showed that 3D scaffolds were crucial to increase functionality of EndoPCs- derived hepatocytes in 

OSM/Dex medium. Remarkably, where 3D- culture suspensions for iPSCs didn’t reach to generate functional 

hepatocytes319, 3D-EndoPCs derived hepatocytes showed dropped downregulation of LIFR, high level of Alb 

expression and uptaked more easily the LDL than their 2D-counterparts. In this context, it’s important to note that 

Hep-Dif on 3D- scaffold was performed within an OFF state of Rspo/Wnt axis where no Wnt activators were added to 

the cell culture differentiation media.  
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Conversely to specific-liver induced Lgr5+, long term expansion of EndoPCs and their organoids formation were shown 

to be independent from the matrix 3D-structure. EndoPCs were able to express Lgr5 even in monolayer cell culture 

condition. Furthermore, EndoPCs generation in vitro didn’t require the non-canonical Wnt, Notch and BMP chemical 

inhibition steps such as YAC cocktail used recently by Katsuda et al 54 to reprogram mice primary hepatocytes. 

Although both of YAC–induced liver stem cells and EndoPCs permitted a stable and long-term culturing in 3D structure 

and gave rise to functional hepatocytes, however our reprogramming strategy is chemical-free and could today serve 

as a novel source of LPs and overcome the limitations of cell source lack for use in liver regenerative medicine.  

The Wnt target gene Lgr5 is highly expressed in mitotic stem cells of high rate auto-renewing tissues such as intestine 

and colon46, stomach 47 and hair follicles 48. Distinctly in liver, Lgr5+ progenitors range to damage-induced stem cells 

and dependent mainly on Wnt pathway activation within the bile duct. This evidence was observed after in vivo 

lineage tracing by creating liver injury in FAH-/- mice 320, 323 and more recently by inducing injury in specific liver Lgr5 

knockout mice 52. These Lgr5 stem cells act as a switch between on and off states depending on the levels of Wnt in the 

environment in a manner to order the cells whether to proliferate or not. Thus, isolated induced Lgr5 + progenitors 

upon injury were able to proliferate in a Wnt activating cell culture media. Here, we proposed EndoPCs as LPs deriving 

from hepatocytes programming authentically expressing Lgr5 independently from Wnt pathway activators in a 

monolayer cell culture system. 

Moreover 3D culture system was shown to be required for long-term clonal expansion of Lgr5+ progenitors. Also, 

small molecules of Wnt activators proteins were essential for tissue-specific organoids generation47, 669. Nevertheless, 

given the readily expression of Wnt-dependent Lgr5, EndoPCs were not able to generate organoids in absence of Wnt 

activator such as Rspo-1 and Wnt3a. Thus our results revealed that the clonal EndoPCs - derived organoids expressed 

Wnt downstream effectors such as Axin2, Lgr5 and TCF4. These findings suggest that in absence of LIF the Lgr5 /Wnt 

loop is switched to OFF and EndoPCs require Wnt activators to Switch ON the LGR5 expression which is crucial for self-

renewal and organoids formation.  

Suitably, the gp130/JAK/STAT3 pathway is shown to activate LGR5 expression in EndoPCs via Wnt/β-catenin driven 

pathway. Indeed, our GSEA analysis shows enrichment of JAK/STAT3 signaling pathway within EndoPCs. We can 

understand that EndoPCs expressing LIFR used LIF/gp130/STAT3 or IL6/gp130/STAT3 to activate the transcriptional 

program of JAK/STAT3 to insure self-renewal via continuous reactivation of the Wnt/β-catenin loop. By these means 

our results confirmed the latest study showing that STAT3 phosphorylation inhibition leaded to attenuation of the self-

renewal of liver stem cell and blocked the Wnt-Lgr5+ activation axis 370 . Besides, our findings support also the LIF/IL6-

induced WNT signaling loop observed previously in ESCs self-renewal and pluripotency pathways670. Thus the 

regulators of this crosstalk constitute new targets in our further investigations.  
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Interestingly, Huch et al 17 performed a microarray analysis for mice liver Lgr5- derived organoids and revealed that 

these progenitors shared same profile of adult liver Lgr5 progenitors and some genes with hepatocyte-lineage markers 

as well as bile duct markers. Identically, to evaluate the lineage link of Lgr5 cells, we performed gene expression 

profiling of EndoPCs compared to adult hepatocytes. Up-regulated genes in EndoPCs as compared to primary 

hepatocytes where crossed by the upregulated genes LGR5+ liver stem compared to primary hepatocytes( Huch et al) 

; the results show that the majority of these genes are common and belong to Wnt pathway , to TNFα/NF-KB pathway 

and other pathway of cellular PluriNetWork. These interesting findings reflect that EndoPCss are so much closed 

genetically to injury induced-LGR5 liver stem cells upon injury and are hepatocyte lineage specific progenitors. Thus 

EndoPCs might be a promising tool for liver stem cell based regenerative medicine although further investigations are 

required to test this safety and efficacy of EndoPCs derived organoids transplantation in chronic injury animal liver 

model.  

Considering the bile duct formation in mice spleen after intra splenic transplantation of EndoPCs, possible risks must be 

carefully assessed. In probable upcoming transplantation applications of EndoPCs technology, it might be better to pick 

out Ck19 positive clones. Nevertheless, the fact that we didn’t observe any oncogenic symptoms and chromosome 

aberrations, our transplantation assay is promising.  

The Wnt/ STAT3 axis implies several molecular mechanisms instructing the EndoPCs either to proliferate indefinitely or 

to differentiate. Recently PEDF gene was shown to regulate Wnt/ STAT3 axis in LGR5 stem cells370. In addition the mi-

RNAs regulating these mechanisms constitute a primordial end for our further investigations.  

Although this technology must be also proven in humans, the EndoPCs technology provide a promising tool for 

producing Lgr5 organoid system obtained directly from adult hepatocyte without the need for genetic modifications . 

In addition human origin of EndoPCs can be usefull in the future for the production of patient-specific cholangiocytes 

and hepatocytes in a spontaneous manner and thus serving as a cell source for the liver regenerative medicine.  

Debate 2 

Novel strategy to convert the age of hADSCs and their derived hepatocytes through ML141-

Cdc42 inhibition 

 

We have shown here how to limit age-related hallmarks in aged derived hADSCs by inhibiting the Cdc42 activity by 

ML141 treatment and not by epigenetic modifiers such as TSA and CASIN. ADSCs have recently emerged as a great 

tool for clinical application in regenerative medicine 671 offering a biological reservoir of MSCs and being isolated with 

less donor discomfort535, 672, 673. The negative impact of donor age on hADSCs molecular mechanisms have been 

previously reported77, 78, 394. In fact, aged ADSCs showed lower rates of expansion in vitro, which makes them a weak 
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tool for clinical autologous use in elderly’s diseases. Interestigly, even though ADSCs yield was shown to decline when 

isolated from aged adipose tissues biopsies535, 674, our results showed no significant variability within the different age 

groups which probably due to the healthy recruited subjects.  

Recently, Cdc42 was shown to be closely involved in human MSCs cell proliferation, polarity, migration and 

differentiation 637 . Based on Geiger93 and Florian21 observations on HSCs derived from mice and human subjects, 

Cdc42 activity exhibited an increase of the GTP binding complex correlated with age92, 491, 675. Several strategies aimed 

to reverse aging in human adult stem cells by inhibiting the Cdc42 activity675. Our strategy aimed to screen for the first 

time the activity of Cd42 in hADSCs isolated from healthy donors then to investigate the effects of selective ihnibition 

on their molecular mechanisms. 

Similarly to HSC21, 93, we have shown that the Cdc42-GTP bounds level increased with aging of hADSCs. Furthermore, 

like aged-bone marrow676 and UC- MSCs79, 461, 466, 467, 479, 480, aged hADSCs revealed high levels of TNFα and IFN-γ , low 

levels of VEGF correlating closely with high levels of Cdc42-GTP bindings potentially reducing their angiogenic, 

regeneration and immunomodulatory abilities.  

Interestingly, we observed a significant positive correlation between Cdc42-GTP and β-catenin and Wnt-3a expression 

in aged ADSCs. Indeed, age related-Cdc42 was reported to be triggered by Wnt pathway in aged niche 586. In addition, 

the inhibition of Wnt pathway, was able to reverse the age of adult multipotent stem cells via Cdc42 activity 

modulation and inversing the Cdc42-related apolarity92 . Our results are in favor of this cross-talk between Wnt and 

Cdc42 in stem cell aging.  

The activation of Cdc42 in stem cells is associated with a deregulation of the main signaling pathways implicated in the 

cell division and apoptosis such as MAPK, PI3K, IGF, PKA pathways 91, 93, 578, 601 479 . Similarly, in our study, Cdc42-GTP 

binding levels in aged hADSCs correlated with p-ERK, p-JNK and PKA activation but not with PI3K pathway. Our result 

support the fact that IGF binding to the tyrosine kinase receptor can directly lead to Cdc42 activating without passing 

by the upstream PI3K 613. No correlations between Cdc42 and insulin pathway were found, indicating the non-

involvment of the PI3K pathway: the results were supported by the obsevations of non-signficant variations on the 

levels of insulin receptor and its substrate, insulin sensitive transcription factors. In fact, the mechanism involved RAS / 

ERK / JNK MAPK pathway, CREB / NFkB / C/EBPα /PPARγ transcription factors, IGF/VEGF grow factors and Wnts 

signaling. 

Interestingly, CASIN-treated aged HSCs exhibited a level of Cdc42-GTP similar to that found in HSCs from young donors 
92. In our study, CASIN didn’t inhibit Cdc42 activation in aged ADSCs. These controvert mechanisms remain unclear 

since CASIN has never been used before as Cdc42 inhibitor in MSCs. Therefore, the CASIN inhibition appears to be cell-
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type dependent and doesn’t inhibit the GEF activity in aged ADSC. However, CASIN could have regulatory impact on 

other age-related hallmark other than Cdc42 in hADSCs which can be considered in future steps.  

Interestingly, TSA was able to maintain the pluripotency expression in placenta 640, UC 639 and BM60,62 derived hMSCs 

and to delay the appearance of cellaging signs. On the other hand, the ML141 was recently used as a potent Cdc42 

inhibitor596, 630, 652. Thus we are the first to inhibit the Cdc42 activity in aged hADSCs via ML141 and TSA. Both of them 

reversed the aging state of ADSCs. Indeed, ML141, more than TSA, promoted better the population doubling and less 

toxicity to a level similar to young ADSCs. Furthermore, ML141 was able to repress the expression of the apoptotic and 

senescence genes and to upregulate the pro-inflammatory potential of aged-treated ADSC. These results correlate 

closely with recent findings where ML141 was shown to inhibit Cdc42 activity in hBMSCs, ECs and cancer stem cells by 

downregulating some signaling pathways like EGFR, JNK and p21-activated kinases pathways (PAK) which are closely 

implicated in aging and polarity stem cell processes596, 630, 631, 636, 638.  

Recently, ADSCs have been reported as a promising source of MSCs used in regenerative medicine treatment for 

hepatic failure 62. Thus our aim was to study the impact of Cdc42 inhibition on the hepatogenic potential of aged 

hADSCs. We conducted Hep-Difprotocol adapted from Yin et al, 2015 523 where TSA was shown to differentiate 

partially the hADSCs towards hepatocytes. They observed that although the derived hepatocytes secrete albumin and 

uptake LDL, they continue to express the hepatoblast fetal marker AFP. Thus, our novel strategy consists on replacing 

the TSA treatment by ML141, a specific and direct Cdc42 GTPase inhibitor during the hepatic differentiation of hADSCs. 

ML141-treatment efficiently reversed markedly the age-related hallmarks in the hepatocytes derived from ML141-

treated aged hADSCs compared to their counterparts derived from non-treated ADSCs. Indeed, the ML141 treated 

groups showed expression of pro-inflammatory cytokines, produced urea, secreted Alb, uptaked LDL and dropped 

down the AFP expression to levels found to be similar to hepatocytes derived from Young hADSCs.  

Recently, new therapeutic strategies used MSCs exosomes in liver diseases 65. Our results showed impairement in the 

release of exosomes in hADSCs-derived from the aged group. These results lead us to consider that ML141 can be a 

promising tool to isolate younger functional exosomes from aged derived hADSCs for liver nanomolecules- based 

therapy.  

Considering the MET , this transition was shown to be a crucial process when transdifferentiating MSCs into 

hepatocytes527. Previous data showed that hepatocytes derived from ADSCs presented a downregulation of Twist and 

Snail expression 677. However, in our work, Twist didn’t show any significant change in expression with or without 

ML141 treatment. ML141 treatment enhanced the MET in hADSCs which was highly correlated with the upregulation 

of specific hepatic markers such as albumin, TAT, G6P and CYP450. Moreover, the positive co-expression of CK18 

(KRT18) and E-Cadherin was reported to be a crucial parameter for MET within hepatic differentiation of hiPSCs 317. 
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Similarly, we observed that hepatocytes generated by ML141 treatment showed higher expression of CK18 (KRT18) 

and E-cadherin. Overall, our novelty exist in the fact that ML141 was able to reverse the age-related aberrations in 

aged hADSCs and to promote greater hepatogenic potential similar to young differentiated ADSCs counterparts.  

 

 

Debate 3: Reverse-aged hADSCs and EndoPCs technologies in the liver’s engineering and 

regenerative context  

 

Crosstalk between Wnt/LGR5 and Cdc42 in Lgr5+ stem cells 

Interestingly, the Knock Out of Lgr5 in hepatic cancer cell line (FLAG-tagged LGR5) lead in absence of Rspo-1/Wnt 

activation to serious changes in actin cytoskeleton and cell-cell adhesion independently of Rspo/LGR5 Wnt activation678 

. More interestingly, Rho-GTPase was shown, for the first time, in 2013 to be a downstream target of LGR5 even in 

absence of RSPO679. Recently, LGR5 was shown to interact with GAPs (GTPase activated protein) which are the positive 

regulator for GTP binding to Cdc42. LGR5/GAP cross talking leads to Cdc42-GTP binding and thereby to cell-cell 

adhesion, actin crosslinking and increases the bonding of β-catenin to the cell membrane’s E-Cadherins. Conversely, 

the ablation of LGR5 from stem cells impaired severely the actin organization which is the crucial function of Cdc42 

GTPase pathway. This process was proposed to be crucial in maintaining intestinal Lgr5 stem cells retained in their 

niche 20.  

Although this novel discoveries should be validated in liver Lgr5+ stem cells, this novelty explain to us 12 years later the 

mechanisms underlying the expression of Cdc42 by induced-injury oval cells during their Hep-Dif which was reported 

clearly by Cimica et al in 2005 31 .  

 

Crosstalk between Wnt/LGR5 and Cdc42 in Hep-Dif  

It was previously clearly reported that Wnt signaling pathways meet Rho-GTPases680. Also, Cdc42 was shown to 

regulate hepatocyte development in vivo by regulating the Wnt/β-catenin pathway. The accumulated phosphorylated 

β-catenin was shown to form a complex with E-cadherin and to trigger oval cells differentiation during liver 

regeneration 19. Moreover, Cdc42 was shown to be crucial in the terminal phase of hepatocyte proliferation during 

liver injury 240. To explain this mechanism, it was observed that after chemical rat liver injury, the activated liver stem 

cells, discovered to express Lgr5+ few years later, express clearly Cdc42. These results suggested in 2005 that Cdc42 is 

playing a role in LP’s differentiation into hepatocytes. Following this report, Cdc42 was considered to be ”a novel 

identified gene expressed in oval cells only during regeneration which could be important in regulating and triggering 
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the hepatic proliferation” 31. Although this study didn’t define if the GTP or GDP component of Cdc42 was assessed, 

this evidence suggests that Wnt/Lgr5 axis and Cdc42 are cross-talking somewhere in LGR5-bipotent stem cells 

undergoing Hep-Dif.  

While, the mechanisms underlying this link between Lgr5 and Cdc42 were never been studied in the context of Hep-

Dif, we can suggest some relatives based on the following indications.  

 Before Hep-Dif, to maintain self-renewal and the LGR5 expression in liver stem cell, it was crucial to inhibit the non-

canonical and BMP/SMAD pathways and activate the canonical WNT /β-catenin via GSK-3 inhibition 54. In a next step, 

BMP/Smad pathway was essential for inducing and maintaining the endodermal differentiation with nonstop Wnt 

activation conditions336. In vivo and in vitro LP’s hepatic differentiation was requiring down-regulation of the Wnt 

signaling pathway via β-catenin/ E-cadherin bounding complex 24. In this context, interestingly, LGR5 was shown to be 

implicated in the Cdc42 activation process regulating the β-catenin bound to the membrane20. These suggestions 

might reflect a possible coordination between Lgr5 and Cdc42 for the Hep-Dif from EndoPCs.  

In order to explore the role of Wnt signaling in the differentiation of ADSCs into hepatocytes, Huang et al (2017) 532 

showed that the inhibition of the GSK3 alone was sufficient to increase the β-catenin in a manner to activate the 

Wnt/β-catenin signaling. This mechanism triggers significantly the expression of definitive endoderm specific genes 

GATA4, FOXA2, and SOX17 significantly. These ADSCs derived-endodermic progenitors were directed to differentiate 

into hepatocyte-like cells after further combinations of soluble factors, and able to express important CYP450 enzymes 

with great albumin secretion and LDL uptake activity.These findings propose that activation of Wnt/β-cateninsignaling 

during the endoderm specification represent a crucial mechanism intermediating hADSCs Hep-Dif.  

This fact was also reported previously on other human MSCs subtypes undergoing hepatocytes differentiation533. On 

the other side, our results showed that Cdc42 inhibition by ML141 was able to boost the hepatocytes functionality in 

hADSCs. Thereby, the ON/OFF switch of the Wnt signaling pathway might regulate in the same way the Hep-Dif either 

from EndoPCs and hADSCs. Noticeably, although Cdc42 is shown to be crucial for liver stem cell differentiation into 

hepatocytes, its inhibition is required for ADSCs hepatic differentiation process. 

 

Future Request-for-information to reinforce the suggestion that LGR5/Wnt pathway meets Cdc42 in EndoPCs 

Basing on above-mentioned evidence, coordination between Lgr5 and Cdc42 could exist in liver stem cells such as for 

the EndoPCs during their differentiation into hepatocytes in vivo and in vitro.  

Thus, further investigation might be essential to validate the cross talk of LGR5 and Cdc42 in stem cell regulation 

mechanisms. Notably, the Cdc42 activation state should be studied in EndoPCs Lgr5+ before and after Hep-Dif.  
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In addition, it will be important to inquire if hADSCs express Lgr5 before or within differentiation. If not, searching to 

activate this receptor by Rspo-1 would be an interest. Also, Lgr5 variation within the age could be a new concept that 

has never been debated before.  

Furthermore, while hMSCs were reprogrammed into iPCS then differentiated into hepatocytes, it will be exciting to 

test if the Cdc42 inhibitor ML141 could impact the LGR5 expression in EndoPCs and their hepatogenic and 

cholangiogenic differentiation. Moreover it has never been discussed whether OSKM factors can confer young 

features for aged hADSCs after inducing their pluripotency.  

More interestingly, despite the fact that Cdc42 activation in primary hepatocyte was able to increase their DNA 

synthesis and their life span in vitro255, Cdc42 inhibition by ML141 constitute an attentive inquiry for reprogramming or 

not the process of primary hepatocytes.  

 

What is the best cell model to use for liver organoid reconstruction? 

Recently, decellularized liver matrix has been emerged as a novel tool for tissue-engineered liver graft by preserving 

the structural and functional features of the natural microvascular system of the liver. The recellularization of the liver 

matrix by primary rat hepatocytes upregulates the liver-specific functions such as albumin secretion, urea synthesis 

and cytochrome P450 expression at analogous amounts to normal liver. These hepatocytes grafts were able to 

regenerate injured liver of rat model 681. Recently, a complete decellularization of the whole human liver and lobes was 

performed and served to prepare cubic scaffolds mimicking the liver architecture. These scaffolds were repopulated 

for up to 21 days using different healthy and cancer liver cell line 682. Although this technology by far the most suitable 

for liver transplantation, it constitutes an attractive basis for hepatic regenerative medicine. The optimization of the 

recellularization protocol and the accuracy of the cell types used within perfusion bio-reactors are crucial hints to 

progress towards possible clinical applications.  

In this novel context, we propose both EndoPCs and ADSCs singularly or together as good candidates for Hep-Dif on 

decellularized liver matrix. Distinctly, EndoPCs present higher proliferation capacity than hADSCs and then can 

constitute a better platform for high cells throughput production which is an important element to get good 

repopulation on a 3D structure. The resulting 3D-structures can be central for liver disease modelling as well as for drug 

toxicity.  

On the other hand, the in situ-recellularization approach such as repopulating the hepatic sinusoids by ECs could 

represent a new challenge with hADSCs which showed a better hepatogenic potential when co-cultured with human 

umbilical cord blood endothelial cells (HUVECs) during my Master 2 work (data not shown) 
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CONCLUSION 

In summary, a reprogramming approach that can convert human hepatocytes to patient-specific liver stem cells may 

be an ideal option for evading immunological rejection during liver cell based transplantation. The abundant expansion 

of these Lgr5+ EndoPCs derived from small liver biopsy would make it relatively an easy start of EndoPCs-derived cell 

library from patient presenting liver diseases. Moreover, human EndoPCs could be differentiated towards functional 

hepatocytes in 3D-setups from biocompatible matrix.  

By 2050 the number of aged people is estimated to triple globally 70. Thus, our findings propose ML141 as a new 

pharmacological tool targeting the aging of hADSCs and able to rejuvenate their paracrine and molecular age-related 

mechanisms before their use in MSC‐based therapies and tissue engineering associated to aging diseases. The 

inhibition of Cdc42 by ML141 proposes a new ex vivo approach which is safe and efficacy, and directs the hepatic 

differentiation of hADSCs to be used in clinical stem cell liver therapy.  



 

163 | P a g e  
 
 

REFERENCES 

1. Cobb, M., Puchalski, C.M. & Rumbold, B. Oxford textbook of spirituality in healthcare. (Oxford University Press, 2012). 
2. Liu, T., Zhang, S., Chen, X., Li, G. & Wang, Y. Hepatic differentiation of mouse embryonic stem cells in three-dimensional 

polymer scaffolds. Tissue engineering Part A 16, 1115-1122 (2009). 
3. Paine, A.J. & Andreakos, E. Activation of signalling pathways during hepatocyte isolation: relevance to toxicology in vitro. 

Toxicology in Vitro 18, 187-193 (2004). 
4. Elaut, G. et al. Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. 

Current drug metabolism 7, 629-660 (2006). 
5. Cheng, J. et al. The impact of miR‐34a on protein output in hepatocellular carcinoma HepG2 cells. Proteomics 10, 1557-

1572 (2010). 
6. Li, Q. et al. In vivo tracking and comparison of the therapeutic effects of MSCs and HSCs for liver injury. PloS one 8, e62363 

(2013). 
7. Berger, D.R., Ware, B.R., Davidson, M.D., Allsup, S.R. & Khetani, S.R. Enhancing the functional maturity of induced 

pluripotent stem cell–derived human hepatocytes by controlled presentation of cell–cell interactions in vitro. Hepatology 
61, 1370-1381 (2015). 

8. Muraca, M. Evolving concepts in cell therapy of liver disease and current clinical perspectives. Digestive and Liver Disease 
43, 180-187 (2011). 

9. Puppi, J. et al. Improving the techniques for human hepatocyte transplantation: report from a consensus meeting in 
London. Cell transplantation 21, 1-10 (2012). 

10. Fausto, N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39, 1477-1487 (2004). 
11. Agarwal, S., Holton, K.L. & Lanza, R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. 

Stem cells 26, 1117-1127 (2008). 
12. Liu, T., Zhang, S., Xiang, D. & Wang, Y. Induction of hepatocyte‐like cells from mouse embryonic stem cells by lentivirus‐

mediated constitutive expression of Foxa2/Hnf4a. Journal of cellular biochemistry 114, 2531-2541 (2013). 
13. Przyborski, S.A. Differentiation of human embryonic stem cells after transplantation in immune‐deficient mice. Stem Cells 

23, 1242-1250 (2005). 
14. Asgari, S. et al. Induced pluripotent stem cells: a new era for hepatology. Journal of hepatology 53, 738-751 (2010). 
15. Si‐Tayeb, K. et al. Highly efficient generation of human hepatocyte–like cells from induced pluripotent stem cells. 

Hepatology 51, 297-305 (2010). 
16. Mikkelsen, T.S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49 (2008). 
17. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247-250 

(2013). 
18. Lien, W.-H. & Fuchs, E. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes & 

development 28, 1517-1532 (2014). 
19. Van Hengel, J. et al. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver. 

Gastroenterology 134, 781-792 (2008). 
20. Carmon, K.S. et al. LGR5 receptor promotes cell–cell adhesion in stem cells and colon cancer cells via the IQGAP1–Rac1 

pathway. Journal of Biological Chemistry 292, 14989-15001 (2017). 
21. Florian, M.C. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell stem cell 10, 520-530 

(2012). 
22. Karp, S. Clinical implications of advances in the basic science of liver repair and regeneration. American Journal of 

Transplantation 9, 1973-1980 (2009). 
23. Wang, X. et al. The origin and liver repopulating capacity of murine oval cells. Proceedings of the National Academy of 

Sciences 100, 11881-11888 (2003). 
24. Monga, S.P., Pediaditakis, P., Mule, K., Stolz, D.B. & Michalopoulos, G.K. Changes in WNT/β‐catenin pathway during 

regulated growth in rat liver regeneration. Hepatology 33, 1098-1109 (2001). 



 

164 | P a g e  
 
 

25. Monga, S.P. et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-
catenin dissociation in hepatocytes. Cancer research 62, 2064-2071 (2002). 

26. Terui, K. & Ozaki, M. The role of STAT3 in liver regeneration. Drugs of Today 41, 461-470 (2005). 
27. Cressman, D.E., Diamond, R.H. & Taub, R. Rapid activation of the Stat3 transcription complex in liver regeneration. 

Hepatology 21, 1443-1449 (1995). 
28. Mangnall, D., Bird, N.C. & Majeed, A.W. The molecular physiology of liver regeneration following partial hepatectomy. 

Liver international 23, 124-138 (2003). 
29. Kim, R.D., Kim, J.S., Watanabe, G., Mohuczy, D. & Behrns, K.E. in Seminars in interventional radiology, Vol. 25 092-103 (© 

Thieme Medical Publishers, 2008). 
30. J. Vessey, P.d.l.M.H., Carina Hepatic stem cells: a review. Pathology 33, 130-141 (2001). 
31. Cimica, V. et al. Transcriptome analysis of rat liver regeneration in a model of oval hepatic stem cells. Genomics 86, 352-

364 (2005). 
32. Dorrell, C. et al. Surface markers for the murine oval cell response. Hepatology 48, 1282-1291 (2008). 
33. Ramboer, E. et al. Strategies for immortalization of primary hepatocytes. Journal of hepatology 61, 925-943 (2014). 
34. Shinozuka, H., Lombardi, B., Sell, S. & Iammarino, R.M. Early histological and functional alterations of ethionine liver 

carcinogenesis in rats fed a choline-deficient diet. Cancer research 38, 1092-1098 (1978). 
35. Baumann, U., Crosby, H.A., Ramani, P., Kelly, D.A. & Strain, A.J. Expression of the stem cell factor receptor c‐kit in normal 

and diseased pediatric liver: Identification of a human hepatic progenitor cell? Hepatology 30, 112-117 (1999). 
36. Jin, C. et al. Blocking SCF/c‐Kit signal did not inhibit the proliferation of cultured liver progenitor cells. IUBMB life 59, 458-

464 (2007). 
37. Tsuchiya, A. et al. Sca-1+ endothelial cells (SPECs) reside in the portal area of the liver and contribute to rapid recovery 

from acute liver disease. Biochemical and biophysical research communications 365, 595-601 (2008). 
38. Fujio, K., Evarts, R.P., Hu, Z., Marsden, E.R. & Thorgeirsson, S.S. Expression of stem cell factor and its receptor, c-kit, during 

liver regeneration from putative stem cells in adult rat. Laboratory investigation; a journal of technical methods and 
pathology 70, 511-516 (1994). 

39. Zhang, L., Theise, N., Chua, M. & Reid, L.M. The stem cell niche of human livers: symmetry between development and 
regeneration. Hepatology 48, 1598-1607 (2008). 

40. Schmelzer, E., Wauthier, E. & Reid, L.M. The phenotypes of pluripotent human hepatic progenitors. Stem cells 24, 1852-
1858 (2006). 

41. Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and 
intestine. Nature genetics 43, 34-41 (2011). 

42. Carpentier, R. et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver 
progenitor cells. Gastroenterology 141, 1432-1438. e1434 (2011). 

43. Español–Suñer, R. et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. 
Gastroenterology 143, 1564-1575. e1567 (2012). 

44. Sell, S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 33, 738-750 (2001). 
45. Tarlow, B.D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell stem cell 

15, 605-618 (2014). 
46. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007 

(2007). 
47. Barker, N. et al. Lgr5+ ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell stem cell 

6, 25-36 (2010). 
48. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature genetics 40, 1291-1299 (2008). 
49. Xu, A.T., Tong, J.L. & Ran, Z.H. Organoids derived from digestive tract, liver, and pancreas. Journal of digestive diseases 17, 

3-10 (2016). 
50. Lindemans, C.A. et al. Interleukin-22 promotes intestinal stem cell-mediated epithelial regeneration. Nature 528, 560 

(2015). 



 

165 | P a g e  
 
 

51. Tian, Y. et al. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and 
tumorigenesis. eLife 6 (2017). 

52. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247 
(2013). 

53. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299-312 (2015). 
54. Katsuda, T. et al. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with 

regenerative capacity. Cell stem cell 20, 41-55 (2017). 
55. Crouzet, J. et al. Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proceedings of the 

National Academy of Sciences 94, 1414-1419 (1997). 
56. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262 

(2009). 
57. Buyl, K. et al. Characterization of hepatic markers in human Wharton’s Jelly-derived mesenchymal stem cells. Toxicology in 

vitro 28, 113-119 (2014). 
58. Li, C.-y. et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-

free conditions for cell therapy. Stem cell research & therapy 6, 55 (2015). 
59. Lee, H.-J. et al. Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells 

and other adult stem cells as an alternative source of functional hepatocytes. Differentiation 84, 223-231 (2012). 
60. Liu, W.h. et al. The multiple functional roles of mesenchymal stem cells in participating in treating liver diseases. Journal of 

cellular and molecular medicine 19, 511-520 (2015). 
61. Parker, A.M. & Katz, A.J. Adipose-derived stem cells for the regeneration of damaged tissues. Expert opinion on biological 

therapy 6, 567-578 (2006). 
62. Ishikawa, T., Banas, A., Hagiwara, K., Iwaguro, H. & Ochiya, T. Stem cells for hepatic regeneration: the role of adipose tissue 

derived mesenchymal stem cells. Current stem cell research & therapy 5, 182-189 (2010). 
63. Al Battah, F., De Kock, J., Vanhaecke, T. & Rogiers, V. Current status of human adipose–derived stem cells: differentiation 

into hepatocyte-like cells. The Scientific World Journal 11, 1568-1581 (2011). 
64. Taléns-Visconti, R. et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison 

with bone marrow mesenchymal stem cells. World journal of gastroenterology: WJG 12, 5834 (2006). 
65. Lou, G., Chen, Z., Zheng, M. & Liu, Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver 

diseases. Experimental & molecular medicine 49, e346 (2017). 
66. Hayflick, L. How and why we age. Experimental gerontology 33, 639-653 (1998). 
67. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. cell 100, 57-70 (2000). 
68. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. cell 144, 646-674 (2011). 
69. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194-1217 (2013). 
70. Florian, M. et al. Expression and activity of the small RhoGTPase Cdc42 in blood cells of older adults are associated with 

age and cardiovascular disease. The Journals of Gerontology: Series A (2017). 
71. Ono, Y. et al. The influence of donor age on liver regeneration and hepatic progenitor cell populations. Surgery 150, 154-

161 (2011). 
72. Feng, S. et al. Characteristics associated with liver graft failure: the concept of a donor risk index. American Journal of 

Transplantation 6, 783-790 (2006). 
73. Kfoury, Y. & Scadden, D.T. Mesenchymal cell contributions to the stem cell niche. Cell stem cell 16, 239-253 (2015). 
74. Oh, J., Lee, Y.D. & Wagers, A.J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nature medicine 

20, 870-880 (2014). 
75. Li, C.-J. et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. The Journal of 

clinical investigation 125, 1509 (2015). 
76. Tashiro, J. et al. Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse 

model of bleomycin-induced pulmonary fibrosis. Translational Research 166, 554-567 (2015). 



 

166 | P a g e  
 
 

77. Kornicka, K., Marycz, K., Tomaszewski, K.A., Marędziak, M. & Śmieszek, A. The effect of age on osteogenic and adipogenic 
differentiation potential of human adipose derived stromal stem cells (hASCs) and the impact of stress factors in the 
course of the differentiation process. Oxidative medicine and cellular longevity 2015 (2015). 

78. Choudhery, M.S., Badowski, M., Muise, A., Pierce, J. & Harris, D.T. Donor age negatively impacts adipose tissue-derived 
mesenchymal stem cell expansion and differentiation. Journal of translational medicine 12, 8 (2014). 

79. Geißler, S. et al. Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and 
mitochondria in mesenchymal stromal cells. PLoS One 7, e52700 (2012). 

80. Wu, W., Niklason, L. & Steinbacher, D.M. The effect of age on human adipose-derived stem cells. Plastic and 
reconstructive surgery 131, 27-37 (2013). 

81. Zhang, Y. & Herman, B. Ageing and apoptosis. Mechanisms of ageing and development 123, 245-260 (2002). 
82. Alt, E.U. et al. Aging alters tissue resident mesenchymal stem cell properties. Stem cell research 8, 215-225 (2012). 
83. Ock, S.-A. et al. Evaluation of phenotypic, functional and molecular characteristics of porcine mesenchymal stromal/stem 

cells depending on donor age, gender and tissue source. Journal of Veterinary Medical Science 78, 987-995 (2016). 
84. Xing, Z. et al. Increased hematopoietic stem cell mobilization in aged mice. Blood 108, 2190-2197 (2006). 
85. Yang, L. et al. Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone 

marrow. Proceedings of the National Academy of Sciences 104, 5091-5096 (2007). 
86. Erickson, J.W. & Cerione, R.A. Multiple roles for Cdc42 in cell regulation. Current opinion in cell biology 13, 153-157 (2001). 
87. Johnson, D.I. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiology and Molecular Biology 

Reviews 63, 54-105 (1999). 
88. Rojas, R., Ruiz, W.G., Leung, S.-M., Jou, T.-S. & Apodaca, G. Cdc42-dependent modulation of tight junctions and 

membrane protein traffic in polarized Madin-Darby canine kidney cells. Molecular biology of the cell 12, 2257-2274 (2001). 
89. Hong, L. et al. Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. Journal of Biological Chemistry 

288, 8531-8543 (2013). 
90. Wang, L., Yang, L., Debidda, M., Witte, D. & Zheng, Y. Cdc42 GTPase-activating protein deficiency promotes genomic 

instability and premature aging-like phenotypes. Proceedings of the National Academy of Sciences 104, 1248-1253 (2007). 
91. Carrillo-García, C. & Janzen, V. Restoring cell polarity: an HSC fountain of youth. Cell stem cell 10, 481-482 (2012). 
92. Geiger, H. & Zheng, Y. Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42. Experimental cell 

research 329, 214-219 (2014). 
93. Florian, M.C. et al. Expression and activity of the small RhoGTPase Cdc42 in blood cells of older adults are associated with 

age and cardiovascular disease. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 72, 1196-1200 
(2017). 

94. Theise, N.D. & Krause, D.S. in Seminars in cell & developmental biology, Vol. 13 411-417 (Elsevier, 2002). 
95. Soto-Gutierrez, A., Gough, A., Vernetti, L.A., Taylor, D. & Monga, S.P. Pre-clinical and clinical investigations of metabolic 

zonation in liver diseases: The potential of microphysiology systems. Experimental Biology and Medicine, 
1535370217707731 (2017). 

96. Guo, X., Li, W., Ma, M., Lu, X. & Zhang, H. Endothelial cell‐derived matrix promotes the metabolic functional maturation of 
hepatocyte via integrin‐Src signalling. Journal of Cellular and Molecular Medicine (2017). 

97. Kmied, Z. Cooperation of Liver Cells in the Synthesis and Degradation of Eicosanoids, in Cooperation of Liver Cells in Health 
and Disease 51-59 (Springer, 2001). 

98. Li, R. et al. Role of liver sinusoidal endothelial cells and stabilins in elimination of oxidized low-density lipoproteins. 
American Journal of Physiology-Gastrointestinal and Liver Physiology 300, G71-G81 (2011). 

99. Roberts, R.A. et al. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicological Sciences 96, 2-15 
(2006). 

100. Michalopoulos, G.K. Liver regeneration. Journal of cellular physiology 213, 286-300 (2007). 
101. TAKEISHI, T. et al. The role of Kupffer cells in liver regeneration. Archives of histology and cytology 62, 413-422 (1999). 
102. Bilzer, M., Roggel, F. & Gerbes, A.L. Role of Kupffer cells in host defense and liver disease. Liver International 26, 1175-1186 

(2006). 
103. Senoo, H. Structure and function of hepatic stellate cells. Medical Electron Microscopy 37, 3-15 (2004). 



 

167 | P a g e  
 
 

104. Saito, Y., Morine, Y. & Shimada, M. Mechanism of impairment on liver regeneration in elderly patients: the role of hepatic 
stellate cell function. Hepatology Research (2017). 

105. Peng, H., Wisse, E. & Tian, Z. Liver natural killer cells: subsets and roles in liver immunity. Cellular & molecular immunology 
13, 328-336 (2016). 

106. Tian, Z., Chen, Y. & Gao, B. Natural killer cells in liver disease. Hepatology 57, 1654-1662 (2013). 
107. Sekiya, S. & Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390-

393 (2011). 
108. Fausto, N., Campbell, J. & Riehle, K. Liver regeneration Hepatology 43. S45-S53 (2006). 
109. Turner, R. et al. Human hepatic stem cell and maturational liver lineage biology. Hepatology 53, 1035-1045 (2011). 
110. DiPaola, F. et al. Identification of intramural epithelial networks linked to peribiliary glands that express progenitor cell 

markers and proliferate after injury in mice. Hepatology 58, 1486-1496 (2013). 
111. Kallis, Y.N. et al. Remodelling of extracellular matrix is a requirement for the hepatic progenitor cell response. Gut 60, 525-

533 (2011). 
112. Wang, Y. et al. Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human 

hepatic stem cells to adult liver fates. Hepatology 52, 1443-1454 (2010). 
113. McClelland, R., Wauthier, E., Uronis, J. & Reid, L. Gradients in the liver's extracellular matrix chemistry from periportal to 

pericentral zones: influence on human hepatic progenitors. Tissue Engineering Part A 14, 59-70 (2008). 
114. Arriazu, E. et al. Extracellular matrix and liver disease. Antioxidants & redox signaling 21, 1078-1097 (2014). 
115. Baiocchini, A. et al. Extracellular matrix molecular remodeling in human liver fibrosis evolution. PloS one 11, e0151736 

(2016). 
116. Roskams, T.A. et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in 

human livers. Hepatology 39, 1739-1745 (2004). 
117. Cardinale, V. et al. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and 

pancreatic islets. Hepatology 54, 2159-2172 (2011). 
118. Carpino, G. et al. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ 

study yielding evidence of maturational lineages. Journal of anatomy 220, 186-199 (2012). 
119. Wang, Y. et al. Biliary tree stem cells, precursors to pancreatic committed progenitors: Evidence for possible life‐long 

pancreatic organogenesis. Stem cells 31, 1966-1979 (2013). 
120. Maraldi, T. et al. Human biliary tree stem/progenitor cells immunomodulation: role of hepatocyte growth factor. 

Hepatology Research 47, 465-479 (2017). 
121. Touboul, T. et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined 

conditions that recapitulate liver development. Hepatology 51, 1754-1765 (2010). 
122. Cai, J. et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45, 1229-1239 

(2007). 
123. Asahina, K., Zhou, B., Pu, W.T. & Tsukamoto, H. Septum transversum‐derived mesothelium gives rise to hepatic stellate 

cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53, 983-995 (2011). 
124. Schwartz, R.E. et al. Defined conditions for development of functional hepatic cells from human embryonic stem cells. 

Stem cells and development 14, 643-655 (2005). 
125. Khetani, S.R. et al. Microengineered liver tissues for drug testing. Journal of laboratory automation 20, 216-250 (2015). 
126. Conigliaro, A. et al. Evidence for a common progenitor of epithelial and mesenchymal components of the liver. Cell Death 

& Differentiation 20, 1116-1123 (2013). 
127. Li, Y., Wang, J. & Asahina, K. Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial–

mesenchymal transition in liver injury. Proceedings of the National Academy of Sciences 110, 2324-2329 (2013). 
128. Burke, Z. & Oliver, G. Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut 

endoderm. Mechanisms of development 118, 147-155 (2002). 
129. Margagliotti, S. et al. Role of metalloproteinases at the onset of liver development. Development, growth & differentiation 

50, 331-338 (2008). 



 

168 | P a g e  
 
 

130. Medico, E. et al. Osteopontin is an autocrine mediator of hepatocyte growth factor-induced invasive growth. Cancer 
research 61, 5861-5868 (2001). 

131. Papoutsi, M. et al. Gene regulation by homeobox transcription factor Prox1 in murine hepatoblasts. Cell and tissue 
research 330, 209-220 (2007). 

132. Lin, X. et al. Prenylcysteine carboxylmethyltransferase is essential for the earliest stages of liver development in mice. 
Gastroenterology 123, 345-351 (2002). 

133. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K.S. Liver organogenesis promoted by endothelial cells prior to vascular 
function. Science 294, 559-563 (2001). 

134. Ding, B.-S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 
310 (2010). 

135. Nahmias, Y., Schwartz, R.E., Hu, W.-S., Verfaillie, C.M. & Odde, D.J. Endothelium-mediated hepatocyte recruitment in the 
establishment of liver-like tissue in vitro. Tissue engineering 12, 1627-1638 (2006). 

136. Hayward, C.J. et al. Harvesting the potential of the human umbilical cord: isolation and characterisation of four cell types 
for tissue engineering applications. Cells Tissues Organs 197, 37-54 (2013). 

137. Zaret, K.S. Regulatory phases of early liver development: paradigms of organogenesis. Nature reviews. Genetics 3, 499 
(2002). 

138. Zong, Y. et al. Notch signaling controls liver development by regulating biliary differentiation. Development 136, 1727-1739 
(2009). 

139. Kamiya, A., Kinoshita, T. & Miyajima, A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct 
signaling pathways. FEBS letters 492, 90-94 (2001). 

140. Suzuki, A., Iwama, A., Miyashita, H., Nakauchi, H. & Taniguchi, H. Role for growth factors and extracellular matrix in 
controlling differentiation of prospectively isolated hepatic stem cells. Development 130, 2513-2524 (2003). 

141. Michalopoulos, G.K., Bowen, W.C., Mulé, K. & Luo, J. HGF-, EGF-, and dexamethasone-induced gene expression patterns 
during formation of tissue in hepatic organoid cultures. Gene expression 11, 55-75 (2003). 

142. Matsui, T., Kinoshita, T., Hirano, T., Yokota, T. & Miyajima, A. STAT3 down-regulates the expression of cyclin D during liver 
development. Journal of Biological Chemistry 277, 36167-36173 (2002). 

143. Snykers, S., De Kock, J., Rogiers, V. & Vanhaecke, T. In vitro differentiation of embryonic and adult stem cells into 
hepatocytes: state of the art. Stem cells 27, 577-605 (2009). 

144. Ito, Y., Matsui, T., Kamiya, A., Kinoshita, T. & Miyajima, A. Retroviral gene transfer of signaling molecules into murine fetal 
hepatocytes defines distinct roles for the STAT3 and ras pathways during hepatic development. Hepatology 32, 1370-
1376 (2000). 

145. Imamura, M. et al. Oncostatin M induces upregulation of claudin-2 in rodent hepatocytes coinciding with changes in 
morphology and function of tight junctions. Experimental cell research 313, 1951-1962 (2007). 

146. Kamiya, A. et al. Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. 
The EMBO journal 18, 2127-2136 (1999). 

147. Odom, D.T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378-1381 
(2004). 

148. Cheng, W. et al. HNF factors form a network to regulate liver-enriched genes in zebrafish. Developmental biology 294, 
482-496 (2006). 

149. Li, J., Ning, G. & Duncan, S.A. Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes & 
Development 14, 464-474 (2000). 

150. Parviz, F. et al. Hepatocyte nuclear factor 4α controls the development of a hepatic epithelium and liver morphogenesis. 
Nature genetics 34, 292-296 (2003). 

151. Konopka, G., Tekiela, J., Iverson, M., Wells, C. & Duncan, S.A. Junctional adhesion molecule-A is critical for the formation of 
pseudocanaliculi and modulates E-cadherin expression in hepatic cells. Journal of Biological Chemistry 282, 28137-28148 
(2007). 

152. Battle, M.A. et al. Hepatocyte nuclear factor 4α orchestrates expression of cell adhesion proteins during the epithelial 
transformation of the developing liver. Proceedings of the National Academy of Sciences 103, 8419-8424 (2006). 



 

169 | P a g e  
 
 

153. Pontoglio, M. et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal 
Fanconi syndrome. Cell 84, 575-585 (1996). 

154. Wang, N.-d., Finegold, M.J., Bradley, A. & Ou, C.N. Impaired energy homeostasis in C/EBPalpha knockout mice. Science 
269, 1108 (1995). 

155. Yamasaki, H. et al. Suppression of C/EBPα expression in periportal hepatoblasts may stimulate biliary cell differentiation 
through increased Hnf6 and Hnf1b expression. Development 133, 4233-4243 (2006). 

156. Tomizawa, M., Garfield, S., Factor, V. & Xanthopoulos, K.G. Hepatocytes deficient in CCAAT/enhancer binding protein α 
(C/EBPα) exhibit both hepatocyte and biliary epithelial cell character. Biochemical and biophysical research 
communications 249, 1-5 (1998). 

157. Thiery, J.P. & Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature reviews. Molecular 
cell biology 7, 131-142 (2006). 

158. Hay, E.D. An overview of epithelio-mesenchymal transformation. Acta anatomica 154, 8-20 (1995). 
159. Kalluri, R. & Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of Clinical 

Investigation 112, 1776-1784 (2003). 
160. Lee, K. & Nelson, C.M. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. 

International review of cell and molecular biology 294, 171-221 (2012). 
161. Lemaigre, F.P. Development of the biliary tract. Mechanisms of development 120, 81-87 (2003). 
162. Nitou, M., Sugiyama, Y., Ishikawa, K. & Shiojiri, N. Purification of fetal mouse hepatoblasts by magnetic beads coated with 

monoclonal anti-e-cadherin antibodies and their in vitro culture. Experimental cell research 279, 330-343 (2002). 
163. Nierhoff, D., Ogawa, A., Oertel, M., Chen, Y.Q. & Shafritz, D.A. Purification and characterization of mouse fetal liver 

epithelial cells with high in vivo repopulation capacity. Hepatology 42, 130-139 (2005). 
164. Watanabe, T. et al. SEK1/MKK4-Mediated SAPK/JNK Signaling Participates in Embryonic Hepatoblast Proliferation via a 

Pathway Different from NF-κB-Induced Anti-Apoptosis. Developmental biology 250, 332-347 (2002). 
165. Tanaka, M. et al. Mouse hepatoblasts at distinct developmental stages are characterized by expression of EpCAM and 

DLK1: drastic change of EpCAM expression during liver development. Mechanisms of development 126, 665-676 (2009). 
166. Wauthier, E. et al. Hepatic Stem Cells and Hepatoblasts: Identification, Isolation, and Ex Vivo Maintenance. Methods in Cell 

Biology 86, 137-225 (2008). 
167. Terrace, J.D. et al. Progenitor cell characterization and location in the developing human liver. Stem cells and development 

16, 771-778 (2007). 
168. McLin, V.A., Rankin, S.A. & Zorn, A.M. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for 

liver and pancreas development. Development 134, 2207-2217 (2007). 
169. Ober, E.A., Verkade, H., Field, H.A. & Stainier, D.Y. Mesodermal Wnt2b signalling positively regulates liver specification. 

Nature 442, 688-691 (2006). 
170. Bort, R., Signore, M., Tremblay, K., Martinez Barbera, J.P. & Zaret, K.S. Hex homeobox gene controls the transition of the 

endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Developmental biology 290, 44-56 
(2006). 

171. Lemaigre, F.P. Mechanisms of liver development: concepts for understanding liver disorders and design of novel 
therapies. Gastroenterology 137, 62-79 (2009). 

172. Margagliotti, S. et al. Role of metalloproteinases at the onset of liver development. Development, growth & differentiation 
50, 331-338 (2008). 

173. Su, J. et al. The existence of multipotent stem cells with epithelial-mesenchymal transition features in the human liver bud. 
The international journal of biochemistry & cell biology 42, 2047-2055 (2010). 

174. Goldman, O., Valdes, V.J., Ezhkova, E. & Gouon-Evans, V. The mesenchymal transcription factor SNAI-1 instructs human 
liver specification. Stem cell research 17, 62-68 (2016). 

175. Tanimizu, N. & Miyajima, A. Molecular mechanism of liver development and regeneration. International review of 
cytology 259, 1-48 (2007). 

176. Weinstein, M. et al. Smad Proteins and Hepatocyte Growth Factor Control Parallel Regulatory Pathways That Converge on 
β1-Integrin To Promote Normal Liver Development. Molecular and Cellular Biology 21, 5122-5131 (2001). 



 

170 | P a g e  
 
 

177. Zhao, R. & Duncan, S.A. Embryonic development of the liver. Hepatology 41, 956-967 (2005). 
178. Imamura, M. et al. Oncostatin M induces upregulation of claudin-2 in rodent hepatocytes coinciding with changes in 

morphology and function of tight junctions. Experimental cell research 313, 1951-1962 (2007). 
179. Matsui, T. et al. K-Ras mediates cytokine-induced formation of E-cadherin-based adherens junctions during liver 

development. The EMBO journal 21, 1021-1030 (2002). 
180. McCright, B., Lozier, J. & Gridley, T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 

haploinsufficiency. Development 129, 1075-1082 (2002). 
181. Tanimizu, N. & Miyajima, A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-

enriched transcription factors. Journal of cell science 117, 3165-3174 (2004). 
182. Suzuki, A., Iwama, A., Miyashita, H., Nakauchi, H. & Taniguchi, H. Role for growth factors and extracellular matrix in 

controlling differentiation of prospectively isolated hepatic stem cells. Development 130, 2513-2524 (2003). 
183. Si-Tayeb, K., Lemaigre, F.P. & Duncan, S.A. Organogenesis and development of the liver. Developmental cell 18, 175-189 

(2010). 
184. Asahina, K., Zhou, B., Pu, W.T. & Tsukamoto, H. Septum transversum-derived mesothelium gives rise to hepatic stellate 

cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53, 983-995 (2011). 
185. Yin, C., Evason, K.J., Asahina, K. & Stainier, D.Y. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin 

Invest 123, 1902-1910 (2013). 
186. Guyton, A. Textbook of Medical Physiology, 8th Edition'(WB Saunders Company: Philadelphia, USA).  (1991). 
187. Zhao, L. et al. Berberine improves glucogenesis and lipid metabolism in nonalcoholic fatty liver disease. BMC endocrine 

disorders 17, 13 (2017). 
188. Klover, P.J. & Mooney, R.A. Hepatocytes: critical for glucose homeostasis. The international journal of biochemistry & cell 

biology 36, 753-758 (2004). 
189. Godoy, P. et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources 

and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. 
Archives of toxicology 87, 1315-1530 (2013). 

190. Yoshida, T. et al. Pigment Epithelium-Derived Factor (PEDF) Prevents Hepatic Fat Storage, Inflammation, and Fibrosis in 
Dietary Steatohepatitis of Mice. Digestive Diseases and Sciences, 1-10 (2017). 

191. Charlton, M.R. Protein metabolism and liver disease. Bailliere's clinical endocrinology and metabolism 10, 617-635 (1996). 
192. Mizejewski, G. Alpha-fetoprotein (AFP) and inflammation: is AFP an acute and/or chronic phase reactant? Journal of 

Hematology & Thromboembolic Diseases (2015). 
193. Nikolaou, N., Green, C.J., Gunn, P.J., Hodson, L. & Tomlinson, J.W. Optimizing human hepatocyte models for metabolic 

phenotype and function: effects of treatment with dimethyl sulfoxide (DMSO). Physiological reports 4, e12944 (2016). 
194. Bouwens, L., De Bleser, P., Vanderkerken, K., Geerts, B. & Wisse, E. Liver cell heterogeneity: functions of non-parenchymal 

cells. Enzyme 46, 155-168 (1992). 
195. Saito, H. Metabolism of iron stores. Nagoya journal of medical science 76, 235 (2014). 
196. Villar-Palasi, C. & Guinovart, J. The role of glucose 6-phosphate in the control of glycogen synthase. The FASEB journal 11, 

544-558 (1997). 
197. Iyanagi, T. Molecular mechanism of phase I and phase Ii drug‐metabolizing enzymes: implications for detoxification. 

International review of cytology 260, 35-112 (2007). 
198. Lu, C., Berg, C., Prakash, S.R., Lee, F.W. & Balani, S.K. Prediction of pharmacokinetic drug-drug interactions using human 

hepatocyte suspension in plasma and cytochrome P450 phenotypic data. III. In vitro-in vivo correlation with fluconazole. 
Drug metabolism and disposition 36, 1261-1266 (2008). 

199. Peters, W., Kock, L., Nagengast, F. & Kremers, P. Biotransformation enzymes in human intestine: critical low levels in the 
colon? Gut 32, 408-412 (1991). 

200. Martignoni, M., Groothuis, G.M. & de Kanter, R. Species differences between mouse, rat, dog, monkey and human CYP-
mediated drug metabolism, inhibition and induction. Expert opinion on drug metabolism & toxicology 2, 875-894 (2006). 

201. Guengerich, F.P. Update information on human P450s. Drug metabolism reviews 34, 7-15 (2002). 



 

171 | P a g e  
 
 

202. Preissner, S. et al. SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-
drug interactions. Nucleic acids research 38, D237-D243 (2009). 

203. Jover, R., Moya, M. & Gómez-Lechón, M.J. Transcriptional regulation of cytochrome p450 genes by the nuclear receptor 
hepatocyte nuclear factor 4-alpha. Current drug metabolism 10, 508-519 (2009). 

204. Han, X.M. et al. Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. British 
journal of clinical pharmacology 54, 540-543 (2002). 

205. Williams, R. Global challenges in liver disease. Hepatology 44, 521-526 (2006). 
206. Murray, C.J. & Lopez, A.D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of 

Disease Study. The Lancet 349, 1498-1504 (1997). 
207. Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D.-C. & Roudot-Thoraval, F. The burden of liver disease in Europe: a 

review of available epidemiological data. Journal of hepatology 58, 593-608 (2013). 
208. Bruzzone, P. et al. in Transplantation proceedings, Vol. 45 2613-2615 (Elsevier, 2013). 
209. Sarin, S. & Maiwall, R. Global burden of liver disease: a true burden on health sciences and economies. World 

Gastroenterol Organ 17 (2012). 
210. Niro, G.A., Fontana, R., Ippolito, A.M. & Andriulli, A. Epidemiology and diagnosis of hepatitis D virus. Future Virology 7, 709-

717 (2012). 
211. Trivedi, P.J. et al. Stratification of hepatocellular carcinoma risk in primary biliary cirrhosis: a multicentre international study. 

Gut 65, 321-329 (2016). 
212. Kanwal, F. et al. Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection. 

Gastroenterology 140, 1182-1188. e1181 (2011). 
213. Townsend, S. & Newsome, P.N. Non-alcoholic fatty liver disease in 2016. British medical bulletin 119, 143-156 (2016). 
214. Preiss, D. & Sattar, N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment 

considerations. Clinical science 115, 141-150 (2008). 
215. Zajicek, G., Oren, R. & Weinreb, M. The streaming liver. Liver International 5, 293-300 (1985). 
216. Fellous, T.G. et al. Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology 49, 1655-1663 

(2009). 
217. Ponder, K.P. Analysis of liver development, regeneration, and carcinogenesis by genetic marking studies. The FASEB 

journal 10, 673-682 (1996). 
218. Bucher, N.L. & Swaffield, M.N. The rate of incorporation of labeled thymidine into the deoxyribonucleic acid of 

regenerating rat liver in relation to the amount of liver excised. Cancer research 24, 1611-1625 (1964). 
219. Stöcker, E. & Pfeifer, U. On the manner of proliferation of the liver parenchyma after partial hepatectomy. 

Autoradiography studies using 3H-thymidine. Die Naturwissenschaften 52, 663-663 (1965). 
220. Duncan, A.W., Dorrell, C. & Grompe, M. Stem cells and liver regeneration. Gastroenterology 137, 466-481 (2009). 
221. Michalopoulos, G.K. & DeFrances, M.C. Liver regeneration. Science 276, 60-66 (1997). 
222. Fausto, N., Campbell, J.S. & Riehle, K.J. Liver regeneration. Journal of hepatology 57, 692-694 (2012). 
223. Wu, Y. et al. Triple labeling with three thymidine analogs reveals a well‐orchestrated regulation of hepatocyte proliferation 

during liver regeneration. Hepatology Research 41, 1230-1239 (2011). 
224. Greenbaum, L.E. & Wells, R.G. The role of stem cells in liver repair and fibrosis. The international journal of biochemistry & 

cell biology 43, 222-229 (2011). 
225. Lambotte, L. et al. Effect of sialoadenectomy and epidermal growth factor administration on liver regeneration after 

partial hepatectomy. Hepatology 25, 607-612 (1997). 
226. Cressman, D.E., Greenbaum, L.E., Haber, B.A. & Taub, R. Rapid activation of post-hepatectomy factor/nuclear factor kappa 

B in hepatocytes, a primary response in the regenerating liver. Journal of Biological Chemistry 269, 30429-30435 (1994). 
227. Soriano, H.E., Bilyeu, T.A., Juan, T.S.-C., Zhao, W. & Darlington, G.J. DNA binding by C/EBP proteins correlates with 

hepatocyte proliferation. In Vitro Cellular & Developmental Biology-Animal 31, 703-709 (1995). 
228. Stolz, D.B., Mars, W.M., Petersen, B.E., Kim, T.-H. & Michalopoulos, G.K. Growth factor signal transduction immediately 

after two-thirds partial hepatectomy in the rat. Cancer Research 59, 3954-3960 (1999). 



 

172 | P a g e  
 
 

229. Diehl, A.M. Roles of CCAAT/enhancer-binding proteins in regulation of liver regenerative growth. Journal of Biological 
Chemistry 273, 30843-30846 (1998). 

230. Bhanumathy, C. et al. Itih‐4, a serine protease inhibitor regulated in interleukin‐6–dependent liver formation: role in liver 
development and regeneration. Developmental dynamics 223, 59-69 (2002). 

231. Mohn, K., Melby, A., Tewari, D., Laz, T. & Taub, R. The gene encoding rat insulinlike growth factor-binding protein 1 is 
rapidly and highly induced in regenerating liver. Molecular and cellular biology 11, 1393-1401 (1991). 

232. Akerman, P. et al. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. American 
Journal of Physiology-Gastrointestinal and Liver Physiology 263, G579-G585 (1992). 

233. Matsunami, H. et al. in Transplantation proceedings, Vol. 24 1971-19721992). 
234. Albrecht, J.H. et al. Involvement of p21 and p27 in the regulation of CDK activity and cell cycle progression in the 

regenerating liver. Oncogene 16 (1998). 
235. Cressman, D.E. et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science, 1379-

1383 (1996). 
236. Sakuda, S. et al. Activation of signal transducer and activator transcription 3 and expression of suppressor of cytokine signal 

1 during liver regeneration in rats. Journal of hepatology 36, 378-384 (2002). 
237. Fausto, N., Campbell, J.S. & Riehle, K.J. Liver regeneration. Hepatology 43 (2006). 
238. Westwick, J., Weitzel, C., Leffert, H. & Brenner, D. Activation of Jun kinase is an early event in hepatic regeneration. Journal 

of Clinical Investigation 95, 803 (1995). 
239. Yuan, H. et al. Hepatocyte‐specific deletion of Cdc42 results in delayed liver regeneration after partial hepatectomy in 

mice. Hepatology 49, 240-249 (2009). 
240. Chen, X.-G. & Xu, C.-S. Proteomic analysis of the regenerating liver following 2/3 partial hepatectomy in rats. Biological 

research 47, 59 (2014). 
241. Wiemann, S.U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. The 

FASEB journal 16, 935-942 (2002). 
242. Wang, G.-L., Iakova, P., Wilde, M., Awad, S. & Timchenko, N.A. Liver tumors escape negative control of proliferation via 

PI3K/Akt-mediated block of C/EBPα growth inhibitory activity. Genes & development 18, 912-925 (2004). 
243. Aikata, H. et al. Telomere reduction in human liver tissues with age and chronic inflammation. Experimental cell research 

256, 578-582 (2000). 
244. Wang, G.-L. et al. HDAC1 cooperates with C/EBPα in the inhibition of liver proliferation in old mice. Journal of Biological 

Chemistry 283, 26169-26178 (2008). 
245. Sedivy, J.M., Banumathy, G. & Adams, P.D. Aging by epigenetics—a consequence of chromatin damage? Experimental 

cell research 314, 1909-1917 (2008). 
246. Sánchez, P. et al. Age-Related Lipid Metabolic Signature in Human LMNA-Lipodystrophic Stem Cell-Derived Adipocytes. 

The Journal of Clinical Endocrinology & Metabolism 100, E964-E973 (2015). 
247. Bucher, N.L. Regeneration of mammalian liver. International review of cytology 15, 245-300 (1963). 
248. Lewan, L., Yngner, T. & Engelbrecht, C. The biochemistry of the regenerating liver. International Journal of Biochemistry 8, 

477-487 (1977). 
249. Timchenko, N.A. Aging and liver regeneration. Trends in Endocrinology & Metabolism 20, 171-176 (2009). 
250. Etienne, P. et al. Transient expression of c-fos and constant expression of c-myc in freshly isolated and cultured normal 

adult rat hepatocytes. Oncogene Research 3, 255-262 (1988). 
251. Loyer, P. et al. Growth Factor Dependence of Progression through G and S Phases of Adult Rat Hepatocytes in Vitro 

EVIDENCE OF A MITOGEN RESTRICTION POINT IN MID-LATE G. Journal of Biological Chemistry 271, 11484-11492 (1996). 
252. Mayhew, C.N. et al. Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer research 65, 4568-

4577 (2005). 
253. Ilyin, G. et al. Growth control and cell cycle progression in cultured hepatocytes, in The Hepatocyte Review 263-280 

(Springer, 2000). 
254. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Experimental cell research 37, 614-636 (1965). 



 

173 | P a g e  
 
 

255. Auer, K.L. et al. The Ras/Rac1/Cdc42/SEK/JNK/c-Jun cascade is a key pathway by which agonists stimulate DNA synthesis 
in primary cultures of rat hepatocytes. Molecular Biology of the Cell 9, 561-573 (1998). 

256. Szabo, M., Veres, Z., Baranyai, Z., Jakab, F. & Jemnitz, K. Comparison of human hepatoma HepaRG cells with human and 
rat hepatocytes in uptake transport assays in order to predict a risk of drug induced hepatotoxicity. PloS one 8, e59432 
(2013). 

257. Yamaguchi, Y. et al. Change in telomerase activity of rat organs during growth and aging. Experimental cell research 242, 
120-127 (1998). 

258. Frémin, C. et al. Multiple division cycles and long‐term survival of hepatocytes are distinctly regulated by extracellular 
signal‐regulated kinases ERK1 and ERK2. Hepatology 49, 930-939 (2009). 

259. Pan, X.-P. & Li, L.-J. Advances in cell sources of hepatocytes for bioartificial liver. Hepatobiliary & pancreatic diseases 
international 11, 594-605 (2012). 

260. Hewitt, N.J. et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter 
proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, 
clearance, and hepatotoxicity studies. Drug metabolism reviews 39, 159-234 (2007). 

261. Crosby, H.A. et al. Immunolocalization of putative human liver progenitor cells in livers from patients with end-stage 
primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6. The American journal of pathology 
152, 771 (1998). 

262. Yang, S. et al. Oval cells compensate for damage and replicative senescence of mature hepatocytes in mice with fatty liver 
disease. Hepatology 39, 403-411 (2004). 

263. Alison, M.R. Liver stem cells. Stem cell reviews 1, 253-260 (2005). 
264. Farber, E. Similarities in the Sequence of Early Histological Changes Induced in the Liver of the Rat by Ethionine, 2-

Acetylamino-fluorene, and 3′-Methyl-4dimethylaminoazobenzene. Cancer research 16, 142 (1956). 
265. Fausto, N. & Campbell, J.S. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mechanisms of 

development 120, 117-130 (2003). 
266. Alison, M.R., Golding, M., Sarraf, C.E., Edwards, R.J. & Lalani, E.-N. Liver damage in the rat induces hepatocyte stem cells 

from biliary epithelial cells. Gastroenterology 110, 1182-1190 (1996). 
267. Yang, L. et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. 

Proceedings of the National Academy of Sciences 99, 8078-8083 (2002). 
268. Theise, N.D. et al. The canals of Hering and hepatic stem cells in humans. Hepatology 30, 1425-1433 (1999). 
269. Paku, S., Schnur, J., Nagy, P. & Thorgeirsson, S.S. Origin and structural evolution of the early proliferating oval cells in rat 

liver. The American journal of pathology 158, 1313-1323 (2001). 
270. Petersen, B. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168-1170 (1999). 
271. Petersen, B.E. et al. Mouse A6–positive hepatic oval cells also express several hematopoietic stem cell markers. 

Hepatology 37, 632-640 (2003). 
272. Dunsford, H., Karnasuta, C., Hunt, J. & Sell, S. Different lineages of chemically induced hepatocellular carcinoma in rats 

defined by monoclonal antibodies. Cancer research 49, 4894-4900 (1989). 
273. Dunsford, H.A. & Sell, S. Production of monoclonal antibodies to preneoplastic liver cell populations induced by chemical 

carcinogens in rats and to transplantable Morris hepatomas. Cancer research 49, 4887-4893 (1989). 
274. Preisegger, K.H. et al. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3, 5-

diethoxycarbonyl-1, 4-dihydrocollidine mouse model for chronic alcoholic liver disease. Laboratory investigation; a journal 
of technical methods and pathology 79, 103-109 (1999). 

275. Jung, Y. et al. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and 
humans. Gastroenterology 134, 1532-1543. e1533 (2008). 

276. Sackett, S.D. et al. Foxl1 promotes liver repair following cholestatic injury in mice. Laboratory investigation 89, 1387 (2009). 
277. Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nature 

medicine 18, 618-623 (2012). 
278. Soldatow, V.Y., LeCluyse, E.L., Griffith, L.G. & Rusyn, I. In vitro models for liver toxicity testing. Toxicology research 2, 23-39 

(2013). 



 

174 | P a g e  
 
 

279. Hattoum, A., Rubin, E., Orr, A. & Michalopoulos, G.K. Expression of hepatocyte epidermal growth factor receptor, FAS and 
glypican 3 in EpCAM-positive regenerative clusters of hepatocytes, cholangiocytes, and progenitor cells in human liver 
failure. Human pathology 44, 743-749 (2013). 

280. Huch, M. & Dollé, L. The plastic cellular states of liver cells: Are EpCAM and Lgr5 fit for purpose? Hepatology 64, 652-662 
(2016). 

281. Wang, H. et al. Post-isolation inducible nitric oxide synthase gene expression due to collagenase buffer perfusion and 
characterization of the gene regulation in primary cultured murine hepatocytes. The Journal of Biochemistry 124, 892-899 
(1998). 

282. Hariparsad, N., Carr, B.A., Evers, R. & Chu, X. Comparison of immortalized Fa2N-4 cells and human hepatocytes as in vitro 
models for cytochrome P450 induction. Drug Metabolism and Disposition 36, 1046-1055 (2008). 

283. Guguen-Guillouzo, C. & Guillouzo, A. General review on in vitro hepatocyte models and their applications. Hepatocytes: 
Methods and Protocols, 1-40 (2010). 

284. Božina, N., Bradamante, V. & Lovrid, M. Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor 
for drug response, toxicity, and cancer risk. Archives of Industrial Hygiene and Toxicology 60, 217-242 (2009). 

285. Bianco, P., Robey, P.G. & Simmons, P.J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell stem cell 2, 
313-319 (2008). 

286. Erices, A., Conget, P. & Minguell, J.J. Mesenchymal progenitor cells in human umbilical cord blood. British journal of 
haematology 109, 235-242 (2000). 

287. Igura, K. et al. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. 
Cytotherapy 6, 543-553 (2004). 

288. Cho, K.A. et al. Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared 
with other subpopulations of the bone marrow. Cell Biology International 33, 772-777 (2009). 

289. Shi, M., Liu, Z.W. & Wang, F.S. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. 
Clinical & Experimental Immunology 164, 1-8 (2011). 

290. Li, M. & Ikehara, S. Bone-marrow-derived mesenchymal stem cells for organ repair. Stem cells international 2013 (2013). 
291. Bhartiya, D., Nagvenkar, P., Sriraman, K. & Shaikh, A. An overview of pluripotent stem cells, in Pluripotent Stem Cells 

(InTech, 2013). 
292. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. science 282, 1145-1147 (1998). 
293. Dahéron, L. et al. LIF/STAT3 signaling fails to maintain self‐renewal of human embryonic stem cells. Stem Cells 22, 770-778 

(2004). 
294. Zhao, H. & Jin, Y. Signaling networks in the control of pluripotency. Current Opinion in Genetics & Development 46, 141-

148 (2017). 
295. Kristensen, D.M., Kalisz, M. & Nielsen, J.H. Cytokine signalling in embryonic stem cells. Apmis 113, 756-772 (2005). 
296. del Valle, I. et al. E-cadherin is required for the proper activation of the Lifr/Gp130 signaling pathway in mouse embryonic 

stem cells. Development 140, 1684-1692 (2013). 
297. Kim, H. et al. Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-

renewal. Nature communications 4, 2403 (2013). 
298. Burridge, P.W. et al. Chemically defined generation of human cardiomyocytes. Nature methods 11, 855-860 (2014). 
299. Vosough, M. et al. Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable 

suspension culture. Stem cells and development 22, 2693-2705 (2013). 
300. Paşca, A.M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature 

methods 12, 671-678 (2015). 
301. Zaret, K.S. & Grompe, M. Generation and regeneration of cells of the liver and pancreas. Science 322, 1490-1494 (2008). 
302. McLaren, A. Ethical and social considerations of stem cell research. Nature 414, 129 (2001). 
303. Swijnenburg, R.-J. et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell 

xenografts. Proceedings of the National Academy of Sciences 105, 12991-12996 (2008). 
304. Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nature 

protocols 2, 3081-3089 (2007). 



 

175 | P a g e  
 
 

305. Zhao, X.-y. et al. iPS cells produce viable mice through tetraploid complementation. Nature 461, 86 (2009). 
306. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. science 318, 1917-1920 (2007). 
307. Siller, R., Greenhough, S., Park, I.-H. & J Sullivan, G. Modelling human disease with pluripotent stem cells. Current gene 

therapy 13, 99-110 (2013). 
308. Nicolas, C., Wang, Y., Luebke-Wheeler, J. & Nyberg, S.L. Stem cell therapies for treatment of liver disease. Biomedicines 4, 2 

(2016). 
309. Toivonen, S. et al. Comparative analysis of targeted differentiation of human induced pluripotent stem cells (hiPSCs) and 

human embryonic stem cells reveals variability associated with incomplete transgene silencing in retrovirally derived hiPSC 
lines. Stem cells translational medicine 2, 83-93 (2013). 

310. Lund, R.J., Närvä, E. & Lahesmaa, R. Genetic and epigenetic stability of human pluripotent stem cells. Nature Reviews 
Genetics 13, 732-744 (2012). 

311. Hinson, J.A., Roberts, D.W. & James, L.P. Mechanisms of acetaminophen-induced liver necrosis, in Adverse Drug Reactions 
369-405 (Springer, 2010). 

312. Liu, H., Ye, Z., Kim, Y., Sharkis, S. & Jang, Y.Y. Generation of endoderm‐derived human induced pluripotent stem cells from 
primary hepatocytes. Hepatology 51, 1810-1819 (2010). 

313. Choi, S.M. et al. Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells. 
Cell Cycle 10, 2423-2427 (2011). 

314. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic 
modified mRNA. Cell stem cell 7, 618-630 (2010). 

315. Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651-
654 (2013). 

316. Yu, Y. et al. Hepatocyte-like cells differentiated from human induced pluripotent stem cells: relevance to cellular therapies. 
Stem cell research 9, 196-207 (2012). 

317. Chen, Y.F. et al. Rapid generation of mature hepatocyte‐like cells from human induced pluripotent stem cells by an 
efficient three‐step protocol. Hepatology 55, 1193-1203 (2012). 

318. Asgari, S. et al. Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. 
Stem Cell Reviews and Reports 9, 493-504 (2013). 

319. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481-484 
(2013). 

320. Lei, Y., Jeong, D., Xiao, J. & Schaffer, D.V. Developing defined and scalable 3D culture systems for culturing human 
pluripotent stem cells at high densities. Cellular and molecular bioengineering 7, 172-183 (2014). 

321. Gieseck III, R.L. et al. Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS One 9, e86372 
(2014). 

322. Huang, P. et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell stem cell 14, 
370-384 (2014). 

323. Du, Y. et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell 
stem cell 14, 394-403 (2014). 

324. Willenbring, H., Benet, L., Ding, S. & Mattis, A. Mouse liver repopulation with hepatocytes generated from human 
fibroblasts.  (2014). 

325. Liu, Z. et al. The tumourigenicity of iPS cells and their differentiated derivates. Journal of cellular and molecular medicine 
17, 782-791 (2013). 

326. Dhodapkar, K.M. et al. Natural immunity to pluripotency antigen OCT4 in humans. Proceedings of the National Academy 
of Sciences 107, 8718-8723 (2010). 

327. Tan, Y., Ooi, S. & Wang, L. Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and 
epigenetic perspectives. Current stem cell research & therapy 9, 63-72 (2014). 

328. Wilson, A.A. et al. Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 
antitrypsin-deficient iPS cells. Stem cell reports 4, 873-885 (2015). 



 

176 | P a g e  
 
 

329. Sampaziotis, F., Segeritz, C.P. & Vallier, L. Potential of human induced pluripotent stem cells in studies of liver disease. 
Hepatology 62, 303-311 (2015). 

330. Conlon, F.L. et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. 
Development 120, 1919-1928 (1994). 

331. Vallier, L., Alexander, M. & Pedersen, R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human 
embryonic stem cells. Journal of cell science 118, 4495-4509 (2005). 

332. Göke, J., Chan, Y.-S., Yan, J., Vingron, M. & Ng, H.-H. Genome-wide kinase-chromatin interactions reveal the regulatory 
network of ERK signaling in human embryonic stem cells. Molecular cell 50, 844-855 (2013). 

333. Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651-1662 
(2004). 

334. Brown, S. et al. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in 
endoderm progenitors. Stem cells 29, 1176-1185 (2011). 

335. Pauklin, S. & Vallier, L. Activin/Nodal signalling in stem cells. Development 142, 607-619 (2015). 
336. Engert, S. et al. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm 

formation in the mouse. Development 140, 3128-3138 (2013). 
337. Tahamtani, Y. et al. Stauprimide priming of human embryonic stem cells toward definitive endoderm. Cell Journal 

(Yakhteh) 16, 63 (2014). 
338. Kaestner, K.H. The making of the liver: competence in the foregut endoderm and induction of liver-specific genes. Cell 

Cycle 4, 1146-1148 (2005). 
339. Ogawa, M. et al. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nature biotechnology 33, 

853-861 (2015). 
340. Cerec, V. et al. Transdifferentiation of hepatocyte‐like cells from the human hepatoma HepaRG cell line through bipotent 

progenitor. Hepatology 45, 957-967 (2007). 
341. Guguen-Guillouzo, C., Corlu, A. & Guillouzo, A. Stem cell-derived hepatocytes and their use in toxicology. Toxicology 270, 

3-9 (2010). 
342. Bar-Nur, O., Russ, H.A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in 

induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell stem cell 9, 17-23 (2011). 
343. Hay, D.C. et al. Direct differentiation of human embryonic stem cells to hepatocyte-like cells exhibiting functional activities. 

Cloning and stem cells 9, 51-62 (2007). 
344. Hay, D.C. et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating 

liver development in vivo. Stem cells 26, 894-902 (2008). 
345. Hay, D.C. et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a 

signaling. Proceedings of the National Academy of Sciences 105, 12301-12306 (2008). 
346. Han, S. et al. Generation of functional hepatic cells from pluripotent stem cells. Journal of stem cell research & therapy, 1 

(2012). 
347. Sullivan, G.J. et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. 

Hepatology 51, 329-335 (2010). 
348. Brolén, G. et al. Hepatocyte-like cells derived from human embryonic stem cells specifically via definitive endoderm and a 

progenitor stage. Journal of biotechnology 145, 284-294 (2010). 
349. Kubota, H. & Reid, L.M. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking 

classical major histocompatibility complex class I antigen. Proceedings of the National Academy of Sciences 97, 12132-
12137 (2000). 

350. Haridass, D. et al. Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-
derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice. The American journal of 
pathology 175, 1483-1492 (2009). 

351. Mahieu-Caputo, D. et al. Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts. Human 
gene therapy 15, 1219-1228 (2004). 



 

177 | P a g e  
 
 

352. Schmelzer, E. et al. Human hepatic stem cells from fetal and postnatal donors. Journal of Experimental Medicine 204, 
1973-1987 (2007). 

353. Tanimizu, N., Nishikawa, Y., Ichinohe, N., Akiyama, H. & Mitaka, T. Sry HMG box protein 9-positive (Sox9+) epithelial cell 
adhesion molecule-negative (EpCAM−) biphenotypic cells derived from hepatocytes are involved in mouse liver 
regeneration. Journal of Biological Chemistry 289, 7589-7598 (2014). 

354. Hayner, N.T., Braun, L., Yaswen, P., Brooks, M. & Fausto, N. Isozyme profiles of oval cells, parenchymal cells, and biliary cells 
isolated by centrifugal elutriation from normal and preneoplastic livers. Cancer research 44, 332-338 (1984). 

355. Michalopoulos, G.K. The liver is a peculiar organ when it comes to stem cells. The American journal of pathology 184, 1263 
(2014). 

356. Michalopoulos, G.K., Barua, L. & Bowen, W.C. Transdifferentiation of rat hepatocytes into biliary cells after bile duct 
ligation and toxic biliary injury. Hepatology 41, 535-544 (2005). 

357. Sekiya, S. & Suzuki, A. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the 
chronically injured mouse liver. The American journal of pathology 184, 1468-1478 (2014). 

358. Jeliazkova, P. et al. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult 
hepatocytes independent of Hes1. Hepatology 57, 2469-2479 (2013). 

359. Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324-1338 (2014). 
360. Sekiya, S. & Suzuki, A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. The 

Journal of clinical investigation 122, 3914 (2012). 
361. Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes & development 27, 

719-724 (2013). 
362. Forbes, S.J., Gupta, S. & Dhawan, A. Cell therapy for liver disease: From liver transplantation to cell factory. Journal of 

hepatology 62, S157-S169 (2015). 
363. Vinson, C.R., Conover, S. & Adler, P.N. A Drosophila tissue polarity locus encodes a protein containing seven potential 

transmembrane domains. Nature 338, 263-264 (1989). 
364. Pinson, K.I., Brennan, J., Monkley, S., Avery, B.J. & Skarnes, W.C. An LDL-receptor-related protein mediates Wnt signalling 

in mice. Nature 407, 535 (2000). 
365. Peifer, M., Pai, L.-M. & Casey, M. Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for 

wingless signal and zeste-white 3 kinase. Developmental biology 166, 543-556 (1994). 
366. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β‐catenin is a target for the ubiquitin–proteasome pathway. The 

EMBO journal 16, 3797-3804 (1997). 
367. Koo, B.-K. & Clevers, H. Stem cells marked by the R-spondin receptor LGR5. Gastroenterology 147, 289-302 (2014). 
368. Matthews, J., Sansom, O. & Clarke, A. Absolute requirement for STAT3 function in small-intestine crypt stem cell survival. 

Cell death and differentiation 18, 1934 (2011). 
369. Chen, Q. et al. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea. Stem Cell 

Reports 9, 231-246 (2017). 
370. Shih, S.-C., Ho, T.-C., Chen, S.-L. & Tsao, Y.-P. Pigment epithelium-derived factor (PEDF) peptide promotes the expansion of 

hepatic stem/progenitor cells via ERK and STAT3-dependent signaling. American journal of translational research 9, 1114 
(2017). 

371. Pramanik, K.C. et al. Inhibition of β-catenin signaling suppresses pancreatic tumor growth by disrupting nuclear β-
catenin/TCF-1 complex: critical role of STAT-3. Oncotarget 6, 11561 (2015). 

372. Ho, T.C. et al. PEDF promotes self‐renewal of limbal stem cell and accelerates corneal epithelial wound healing. Stem Cells 
31, 1775-1784 (2013). 

373. Van Andel, H. et al. Aberrantly expressed LGR4 empowers Wnt signaling in multiple myeloma by hijacking osteoblast-
derived R-spondins. Proceedings of the National Academy of Sciences, 201618650 (2016). 

374. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's 
epithelium. Gastroenterology 141, 1762-1772 (2011). 

375. Huch, M. et al. Unlimited in vitro expansion of adult bi‐potent pancreas progenitors through the Lgr5/R‐spondin axis. The 
EMBO journal 32, 2708-2721 (2013). 



 

178 | P a g e  
 
 

376. Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nature medicine 17, 1225-1227 (2011). 
377. Tojo, M. et al. The ALK‐5 inhibitor A‐83‐01 inhibits Smad signaling and epithelial‐to‐mesenchymal transition by 

transforming growth factor‐β. Cancer science 96, 791-800 (2005). 
378. Young, P.R. et al. Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. Journal of 

Biological Chemistry 272, 12116-12121 (1997). 
379. Nikolaou, K.C. et al. Spontaneous development of hepatocellular carcinoma with cancer stem cell properties in PR‐SET7‐

deficient livers. The EMBO journal, e201489279 (2014). 
380. Benhamouche, S. et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Developmental cell 10, 759-

770 (2006). 
381. Hu, M. et al. Wnt/β-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology 133, 1579-

1591. e1571 (2007). 
382. Cao, W. et al. Dynamics of Proliferative and Quiescent Stem Cells in Liver Homeostasis and Injury. Gastroenterology 153, 

1133-1147 (2017). 
383. Carmon, K.S., Gong, X., Lin, Q., Thomas, A. & Liu, Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 

to regulate Wnt/β-catenin signaling. Proceedings of the National Academy of Sciences 108, 11452-11457 (2011). 
384. Huch, M., Boj, S.F. & Clevers, H. Lgr5+ liver stem cells, hepatic organoids and regenerative medicine. Regenerative 

medicine 8, 385-387 (2013). 
385. Bigorgne, A.E. et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. The Journal of clinical investigation 

124, 328 (2014). 
386. Dekkers, J.F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature medicine 19, 939-945 

(2013). 
387. Wiegerinck, C.L. et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 147, 65-68. e10 

(2014). 
388. Shin, S. et al. Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes & 

development 25, 1185-1192 (2011). 
389. Dorrell, C. et al. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes & development 

25, 1193-1203 (2011). 
390. Lué, A. et al. How important is donor age in liver transplantation? World journal of gastroenterology 22, 4966 (2016). 
391. Adam, R. et al. Evolution of indications and results of liver transplantation in Europe. A report from the European Liver 

Transplant Registry (ELTR). Journal of hepatology 57, 675-688 (2012). 
392. Zhu, C. et al. Senescence‐related genes possibly responsible for poor liver regeneration after hepatectomy in elderly 

patients. Journal of gastroenterology and hepatology 29, 1102-1108 (2014). 
393. Rodier, F. & Campisi, J. Four faces of cellular senescence. The Journal of cell biology, jcb. 201009094 (2011). 
394. Marędziak, M., Marycz, K., Tomaszewski, K.A., Kornicka, K. & Henry, B.M. The influence of aging on the regenerative 

potential of human adipose derived mesenchymal stem cells. Stem cells international 2016 (2016). 
395. Yu, K.-R. & Kang, K.-S. Aging-related genes in mesenchymal stem cells: a mini-review. Gerontology 59, 557-563 (2013). 
396. Sotiropoulou, P.A., Perez, S.A., Salagianni, M., Baxevanis, C.N. & Papamichail, M. Characterization of the optimal culture 

conditions for clinical scale production of human mesenchymal stem cells. Stem cells 24, 462-471 (2006). 
397. Duggal, S. & Brinchmann, J.E. Importance of serum source for the in vitro replicative senescence of human bone marrow 

derived mesenchymal stem cells. Journal of cellular physiology 226, 2908-2915 (2011). 
398. Mareschi, K. et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. Journal of 

cellular biochemistry 97, 744-754 (2006). 
399. Tokalov, S.V. et al. A number of bone marrow mesenchymal stem cells but neither phenotype nor differentiation 

capacities changes with age of rats. Molecules & Cells (Springer Science & Business Media BV) 24 (2007). 
400. Hwang, S.H. et al. Age-related characteristics of multipotent human nasal inferior turbinate-derived mesenchymal stem 

cells. PloS one 8, e74330 (2013). 
401. Huang, S. et al. Dissimilar characteristics of umbilical cord mesenchymal stem cells from donors of different ages. Cell and 

tissue banking 14, 707-713 (2013). 



 

179 | P a g e  
 
 

402. Yi, Q. et al. Analysis of Senescence-Related Differentiation Potentials and Gene Expression Profiles in Human Dental Pulp 
Stem Cells. Cells Tissues Organs 203, 1-11 (2017). 

403. Choudhery, M.S. et al. Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, 
angiogenesis, proliferation and anti‐apoptosis capabilities. Cell biology international 36, 747-753 (2012). 

404. Artandi, S.E. & Attardi, L.D. Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochemical 
and biophysical research communications 331, 881-890 (2005). 

405. Zhang, Z. et al. Inositol pyrophosphates mediate the effects of aging on bone marrow mesenchymal stem cells by 
inhibiting Akt signaling. Stem cell research & therapy 5, 33 (2014). 

406. Greco, S.J., Liu, K. & Rameshwar, P. Functional similarities among genes regulated by OCT4 in human mesenchymal and 
embryonic stem cells. Stem cells 25, 3143-3154 (2007). 

407. Lansdorp, P.M. Telomeres, stem cells, and hematology. Blood 111, 1759-1766 (2008). 
408. Alraies, A., Alaidaroos, N.Y., Waddington, R.J., Moseley, R. & Sloan, A.J. Variation in human dental pulp stem cell ageing 

profiles reflect contrasting proliferative and regenerative capabilities. BMC cell biology 18, 12 (2017). 
409. Tokalov, S.V. et al. Age-related changes in the frequency of mesenchymal stem cells in the bone marrow of rats. Stem cells 

and development 16, 439-446 (2007). 
410. Hacia, J.G. et al. Age‐related gene expression profiles of rhesus monkey bone marrow‐derived mesenchymal stem cells. 

Journal of cellular biochemistry 103, 1198-1210 (2008). 
411. Bajek, A. et al. High Quality Independent From a Donor: Human Amniotic Fluid Derived Stem Cells—A Practical Analysis 

Based on 165 Clinical Cases. Journal of cellular biochemistry 118, 116-126 (2017). 
412. Zhang, J. et al. The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament 

stem cells. Biomaterials 33, 6974-6986 (2012). 
413. Yue, R., Zhou, B.O., Shimada, I.S., Zhao, Z. & Morrison, S.J. Leptin receptor promotes adipogenesis and reduces 

osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18, 782-796 (2016). 
414. Campisi, J. & di Fagagna, F.d.A. Cellular senescence: when bad things happen to good cells. Nature reviews. Molecular cell 

biology 8, 729 (2007). 
415. Wright, W.E. & Shay, J.W. Historical claims and current interpretations of replicative aging. Nature biotechnology 20, 682-

688 (2002). 
416. Blackburn, E.H. Switching and signaling at the telomere. Cell 106, 661-673 (2001). 
417. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458 (1990). 
418. Serakinci, N., Graakjaer, J. & Kolvraa, S. Telomere stability and telomerase in mesenchymal stem cells. Biochimie 90, 33-40 

(2008). 
419. Huang, G. et al. Proteomic analysis of human bone marrow mesenchymal stem cells transduced with human telomerase 

reverse transcriptase gene during proliferation. Cell proliferation 41, 625-644 (2008). 
420. Baxter, M.A. et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro 

expansion. Stem cells 22, 675-682 (2004). 
421. Parsch, D., Fellenberg, J., Brümmendorf, T.H., Eschlbeck, A.-M. & Richter, W. Telomere length and telomerase activity 

during expansion and differentiation of human mesenchymal stem cells and chondrocytes. Journal of molecular medicine 
82, 49-55 (2004). 

422. Bentzon, J.F. et al. Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human 
telomerase reverse transcriptase gene. Biochemical and biophysical research communications 330, 633-640 (2005). 

423. Aubert, G. & Lansdorp, P.M. Telomeres and aging. Physiological reviews 88, 557-579 (2008). 
424. Blasco, M.A. Telomere length, stem cells and aging. Nature chemical biology 3, 640-649 (2007). 
425. Vinagre, J., Pestana, A. & Sobrinho, M. Telomeres in Cancer. Mechanisms Linking Aging, Diseases and Biological Age 

Estimation, 161 (2017). 
426. Sohal, R.S. & Weindruch, R. Oxidative stress, caloric restriction, and aging. Science (New York, NY) 273, 59 (1996). 
427. Estrada, J. et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by 

activating glycolysis. Cell death and differentiation 19, 743 (2012). 



 

180 | P a g e  
 
 

428. Passos, J.F. et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. 
PLoS biology 5, e110 (2007). 

429. Stolzing, A., Jones, E., McGonagle, D. & Scutt, A. Age-related changes in human bone marrow-derived mesenchymal stem 
cells: consequences for cell therapies. Mechanisms of ageing and development 129, 163-173 (2008). 

430. Yang, S.-R., Park, J.-R. & Kang, K.-S. Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases. 
Oxidative medicine and cellular longevity 2015 (2015). 

431. Cuadrado, A. & Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. Biochemical Journal 429, 403-417 
(2010). 

432. Tormos, A., Taléns-Visconti, R., Nebreda, A. & Sastre, J. p38 MAPK: a dual role in hepatocyte proliferation through reactive 
oxygen species. Free radical research 47, 905-916 (2013). 

433. Velu, C.S., Niture, S.K., Doneanu, C.E., Pattabiraman, N. & Srivenugopal, K.S. Human p53 is inhibited by glutathionylation of 
cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 46, 7765-7780 (2007). 

434. Prigione, A., Fauler, B., Lurz, R., Lehrach, H. & Adjaye, J. The senescence‐related mitochondrial/oxidative stress pathway is 
repressed in human induced pluripotent stem cells. Stem cells 28, 721-733 (2010). 

435. Han, J. et al. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic 
differentiation potential. Stem Cells 30, 2746-2759 (2012). 

436. Tsai, C.-C., Su, P.-F., Huang, Y.-F., Yew, T.-L. & Hung, S.-C. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal 
and undifferentiated state in mesenchymal stem cells. Molecular cell 47, 169-182 (2012). 

437. Karantzali, E. et al. Histone deacetylase inhibition accelerates the early events of stem cell differentiation: transcriptomic 
and epigenetic analysis. Genome biology 9, R65 (2008). 

438. Rayess, H., Wang, M.B. & Srivatsan, E.S. Cellular senescence and tumor suppressor gene p16. International journal of 
cancer 130, 1715-1725 (2012). 

439. Chau, B.N. & Wang, J.Y. Coordinated regulation of life and death by RB. Nature reviews. Cancer 3, 130 (2003). 
440. Bargonetti, J. & Manfredi, J.J. Multiple roles of the tumor suppressor p53. Current opinion in oncology 14, 86-91 (2002). 
441. Beauséjour, C.M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. The EMBO journal 22, 

4212-4222 (2003). 
442. Wang, D. & Jang, D.-J. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation–Induced 

Senescence of Human Mesenchymal Stem Cells. Cancer research 69, 8200-8207 (2009). 
443. So, A.-Y., Jung, J.-W., Lee, S., Kim, H.-S. & Kang, K.-S. DNA methyltransferase controls stem cell aging by regulating BMI1 

and EZH2 through microRNAs. PloS one 6, e19503 (2011). 
444. Shibata, K.R. et al. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem 

cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells 25, 2371-2382 (2007). 
445. Rodier, F. et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and 

inflammatory cytokine secretion. J Cell Sci 124, 68-81 (2011). 
446. Muthna, D. et al. Irradiation of adult human dental pulp stem cells provokes activation of p53, cell cycle arrest, and 

senescence but not apoptosis. Stem cells and development 19, 1855-1862 (2010). 
447. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130 (2007). 
448. di Fagagna, F.d.A., Reaper, P.M., Clay6-Farrace, L. & Flegler, H. A DNA damage checkpoint response in telomere-initiated 

senescence. Nature 426, 194 (2003). 
449. Herbig, U., Jobling, W.A., Chen, B.P., Chen, D.J. & Sedivy, J.M. Telomere shortening triggers senescence of human cells 

through a pathway involving ATM, p53, and p21 CIP1, but not p16 INK4a. Molecular cell 14, 501-513 (2004). 
450. Rodier, F. et al. Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion. Nature 

cell biology 11, 973 (2009). 
451. Wang, Y., Han, Z.-b., Song, Y.-p. & Han, Z.C. Safety of mesenchymal stem cells for clinical application. Stem cells 

international 2012 (2012). 
452. Carlson, M.E. & Conboy, I.M. Loss of stem cell regenerative capacity within aged niches. Aging cell 6, 371-382 (2007). 
453. Sui, B., Hu, C., Zheng, C. & Jin, Y. Microenvironmental views on mesenchymal stem cell differentiation in aging. Journal of 

dental research 95, 1333-1340 (2016). 



 

181 | P a g e  
 
 

454. Yang, N. et al. Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR‐21 in estrogen 
deficiency–induced osteoporosis. Journal of Bone and Mineral Research 28, 559-573 (2013). 

455. Abdelmagid, S.M., Barbe, M.F. & Safadi, F.F. Role of inflammation in the aging bones. Life sciences 123, 25-34 (2015). 
456. Pawelec, G., Goldeck, D. & Derhovanessian, E. Inflammation, ageing and chronic disease. Current opinion in immunology 

29, 23-28 (2014). 
457. Graves, D., Li, J. & Cochran, D. Inflammation and uncoupling as mechanisms of periodontal bone loss. Journal of dental 

research 90, 143-153 (2011). 
458. Gamaletsou, M.N. et al. Candida osteomyelitis: analysis of 207 pediatric and adult cases (1970–2011). Clinical infectious 

diseases 55, 1338-1351 (2012). 
459. Singh, L. et al. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic 

lineage. Bone 85, 29-36 (2016). 
460. Liu, W. et al. Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived 

from bone marrow and from periodontal ligament under inflammatory conditions. Biochimica et Biophysica Acta (BBA)-
General Subjects 1840, 1125-1134 (2014). 

461. Wang, L. et al. IFN‐γ and TNF‐α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB 
signaling. Stem cells 31, 1383-1395 (2013). 

462. Zhao, L. et al. Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 
ligase Wwp1. Stem Cells 29, 1601-1610 (2011). 

463. Aksoy, C., Kaya, F.A., Kuşkonmaz, B.B., Uçkan, D. & Severcan, F. Structural investigation of donor age effect on human 
bone marrow mesenchymal stem cells: FTIR spectroscopy and imaging. Age 36, 9691 (2014). 

464. Ovadya, Y. & Krizhanovsky, V. Senescent cells: SASPected drivers of age-related pathologies. Biogerontology 15, 627-642 
(2014). 

465. Velarde, M.C., Demaria, M. & Campisi, J. Senescent cells and their secretory phenotype as targets for cancer therapy, in 
Cancer and Aging, Vol. 38 17-27 (Karger Publishers, 2013). 

466. Wagner, W. et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PloS one 3, 
e2213 (2008). 

467. Kode, J.A., Mukherjee, S., Joglekar, M.V. & Hardikar, A.A. Mesenchymal stem cells: immunobiology and role in 
immunomodulation and tissue regeneration. Cytotherapy 11, 377-391 (2009). 

468. Carlos Sepúlveda, J. et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the 
lethal endotoxemia model. Stem Cells 32, 1865-1877 (2014). 

469. Pan, G.-z. et al. Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of 
the MEK/ERK signaling pathway in rats. journal of surgical research 178, 935-948 (2012). 

470. Liang, X., Ding, Y., Zhang, Y., Tse, H.-F. & Lian, Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current 
status and perspectives. Cell transplantation 23, 1045-1059 (2014). 

471. Schey, K.L., Luther, J.M. & Rose, K.L. Proteomics characterization of exosome cargo. Methods 87, 75-82 (2015). 
472. Patel, D.B. et al. Impact of Cell Culture Parameters on Production and Vascularization Bioactivity of Mesenchymal Stem 

Cell‐Derived Extracellular Vesicles. Bioengineering & Translational Medicine. 
473. Turinetto, V., Vitale, E. & Giachino, C. Senescence in human mesenchymal stem cells: functional changes and implications 

in stem cell-based therapy. International journal of molecular sciences 17, 1164 (2016). 
474. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.-Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and 

tumorigenesis: a link between cancer and aging. Proceedings of the National Academy of Sciences 98, 12072-12077 
(2001). 

475. Liu, D. & Hornsby, P.J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix 
metalloproteinase secretion. Cancer research 67, 3117-3126 (2007). 

476. Li, Y. et al. Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression. Cell & 
bioscience 5, 21 (2015). 

477. Zhu, W. et al. Mesenchymal stem cell-secreted soluble signaling molecules potentiate tumor growth. Cell Cycle 10, 3198-
3207 (2011). 



 

182 | P a g e  
 
 

478. Di, G.-h. et al. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast 
cancer cells. PLoS One 9, e113572 (2014). 

479. Yu, K.-R. et al. A p38 MAPK-mediated alteration of COX-2/PGE2 regulates immunomodulatory properties in human 
mesenchymal stem cell aging. PloS one 9, e102426 (2014). 

480. Kim, H.S. et al. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to 
COX2. Gastroenterology 145, 1392-1403. e1398 (2013). 

481. Puts, R., Albers, J., Kadow-Romacker, A., Geissler, S. & Raum, K. Influence of Donor Age and Stimulation Intensity on 
Osteogenic Differentiation of Rat Mesenchymal Stromal Cells in Response to Focused Low-Intensity Pulsed Ultrasound. 
Ultrasound in medicine & biology 42, 2965-2974 (2016). 

482. Gaur, T. et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. Journal of 
Biological Chemistry 280, 33132-33140 (2005). 

483. Gharibi, B., Farzadi, S., Ghuman, M. & Hughes, F.J. Inhibition of Akt/mTOR attenuates age‐related changes in 
mesenchymal stem cells. Stem cells 32, 2256-2266 (2014). 

484. O'Driscoll, S.W., Saris, D.B., Ito, Y. & Fitzimmons, J.S. The chondrogenic potential of periosteum decreases with age. Journal 
of Orthopaedic Research 19, 95-103 (2001). 

485. De Bari, C., Dell'Accio, F., Tylzanowski, P. & Luyten, F.P. Multipotent mesenchymal stem cells from adult human synovial 
membrane. Arthritis & Rheumatology 44, 1928-1942 (2001). 

486. Brohlin, M., Kingham, P.J., Novikova, L.N., Novikov, L.N. & Wiberg, M. Aging effect on neurotrophic activity of human 
mesenchymal stem cells. PLoS One 7, e45052 (2012). 

487. Scruggs, B.A. et al. Age of the Donor Reduces the Ability of Human Adipose‐Derived Stem Cells to Alleviate Symptoms in 
the Experimental Autoimmune Encephalomyelitis Mouse Model. Stem cells translational medicine 2, 797-807 (2013). 

488. Cei, S. et al. Bone marrow stromal cells of young and adult rats respond similarly to platelet-released supernatant and 
bone morphogenetic protein-6 in vitro. Journal of periodontology 77, 699-706 (2006). 

489. Sharp, A., Kukulansky, T. & Globerson, A. In vitro analysis of age‐related changes in the developmental potential of bone 
marrow thymocyte progenitors. European journal of immunology 20, 2541-2546 (1990). 

490. Kitaori, T. et al. Stromal cell–derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to 
the fracture site during skeletal repair in a mouse model. Arthritis & Rheumatology 60, 813-823 (2009). 

491. Geiger, H., Koehler, A. & Gunzer, M. Stem cells, aging, niche, adhesion and Cdc42: a model for changes in cell-cell 
interactions and hematopoietic stem cell aging. Cell Cycle 6, 884-887 (2007). 

492. Liang, Y., Van Zant, G. & Szilvassy, S.J. Effects of aging on the homing and engraftment of murine hematopoietic stem and 
progenitor cells. Blood 106, 1479-1487 (2005). 

493. Price, L.S., Leng, J., Schwartz, M.A. & Bokoch, G.M. Activation of Rac and Cdc42 by integrins mediates cell spreading. 
Molecular biology of the cell 9, 1863-1871 (1998). 

494. Adams, G.B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 
599 (2006). 

495. Le Clainche, C. & Carlier, M.-F. Regulation of actin assembly associated with protrusion and adhesion in cell migration. 
Physiological reviews 88, 489-513 (2008). 

496. Cascio, S. & Zaret, K.S. Hepatocyte differentiation initiates during endodermal-mesenchymal interactions prior to liver 
formation. Development 113, 217-225 (1991). 

497. Asai, A. et al. Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. 
Development 144, 1056-1064 (2017). 

498. Herrera, M.B. et al. Isolation and characterization of a stem cell population from adult human liver. Stem cells 24, 2840-
2850 (2006). 

499. Ewida, S.F., Abdou, A.G., El-Rasol, E.A. & El-Ghane, M.S. Hepatocyte-like Versus Mesenchymal Stem Cells in CCl4-induced 
Liver Fibrosis. Applied immunohistochemistry & molecular morphology: AIMM (2016). 

500. Shabbir, A., Cox, A., Rodriguez-Menocal, L., Salgado, M. & Badiavas, E.V. Mesenchymal stem cell exosomes induce 
proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem cells and 
development 24, 1635-1647 (2015). 



 

183 | P a g e  
 
 

501. Du, Y. et al. Exosomes from Human-Induced Pluripotent Stem Cell–Derived Mesenchymal Stromal Cells (hiPSC-MSCs) 
Protect Liver against Hepatic Ischemia/Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate 
Signaling Pathway. Cellular Physiology and Biochemistry 43, 611-625 (2017). 

502. Li, T. et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem cells and 
development 22, 845-854 (2012). 

503. Hyun, J., Wang, S., Kim, J., Kim, G.J. & Jung, Y. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration 
by chorionic plate-derived mesenchymal stem cells. Scientific reports 5, 14135 (2015). 

504. Tan, C.Y. et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury 
models. Stem cell research & therapy 5, 76 (2014). 

505. Ko, S.-F. et al. Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat 
model: apparent diffusion coefficient, natural killer T-cell responses, and histopathological features. Stem cells 
international 2015 (2015). 

506. Lou, G. et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of 
hepatocellular carcinoma. Journal of hematology & oncology 8, 122 (2015). 

507. Hu, C. & Li, L. In vitro and in vivo hepatic differentiation of adult somatic stem cells and extraembryonic stem cells for 
treating end stage liver diseases. Stem cells international 2015 (2015). 

508. Ochiya, T., Yamamoto, Y. & Banas, A. Commitment of stem cells into functional hepatocytes. Differentiation 79, 65-73 
(2010). 

509. Sekiya, S. & Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. nature 475, 390 
(2011). 

510. Aurich, I. et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 
56, 405-415 (2007). 

511. Chamberlain, J. et al. Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human 
mesenchymal stem cells in fetal sheep. Hepatology 46, 1935-1945 (2007). 

512. Saulnier, N. et al. Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev 
Med Pharmacol Sci 13, 71-78 (2009). 

513. Nunes, S. et al. Generation of a functional liver tissue mimic using adipose stromal vascular fraction cell-derived 
vasculatures. Scientific reports 3 (2013). 

514. Zuk, P.A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering 7, 
211-228 (2001). 

515. Kern, S., Eichler, H., Stoeve, J., Klüter, H. & Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, 
umbilical cord blood, or adipose tissue. Stem cells 24, 1294-1301 (2006). 

516. Seo, M.J., Suh, S.Y., Bae, Y.C. & Jung, J.S. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in 
vivo. Biochemical and biophysical research communications 328, 258-264 (2005). 

517. Papanikolaou, I.G. et al. Mesenchymal Stem Cells Transplantation following Partial Hepatectomy: A New Concept to 
Promote Liver Regeneration—Systematic Review of the Literature Focused on Experimental Studies in Rodent Models. 
Stem cells international 2017 (2017). 

518. Wang, Y. et al. Human adipose-derived mesenchymal stem cells are resistant to HBV infection during differentiation into 
hepatocytes in vitro. International journal of molecular sciences 15, 6096-6110 (2014). 

519. Choi, E.W. et al. Exosomes from human adipose derived stem cells promote proliferation and migration of skin fibroblasts. 
Experimental Dermatology (2017). 

520. Lee, S.C., Kim, J.O. & Kim, S.-J. Secretome from human adipose-derived stem cells protects mouse liver from hepatic 
ischemia–reperfusion injury. Surgery 157, 934-943 (2015). 

521. Lin, K.-C. et al. Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for 
protecting kidney from acute ischemia–reperfusion injury. International journal of cardiology 216, 173-185 (2016). 

522. Fu, Y. et al. Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells. Stem Cell 
Research & Therapy 7, 105 (2016). 



 

184 | P a g e  
 
 

523. Yin, L. et al. Adipose tissue-derived mesenchymal stem cells differentiated into hepatocyte-like cells in vivo and in vitro. 
Molecular medicine reports 11, 1722-1732 (2015). 

524. Manzini, B.M. et al. Useful properties of undifferentiated mesenchymal stromal cells and adipose tissue as the source in 
liver-regenerative therapy studied in an animal model of severe acute fulminant hepatitis. Cytotherapy 17, 1052-1065 
(2015). 

525. Banas, A. et al. Adipose tissue‐derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46, 219-
228 (2007). 

526. Banas, A. Purification of adipose tissue mesenchymal stem cells and differentiation toward hepatic-like cells. Liver Stem 
Cells: Methods and Protocols, 61-72 (2012). 

527. Yamamoto, Y. et al. A comparative analysis of the transcriptome and signal pathways in hepatic differentiation of human 
adipose mesenchymal stem cells. The FEBS journal 275, 1260-1273 (2008). 

528. Hong, I.-H. et al. Inhibition of kupffer cell activity improves transplantation of human adipose-derived stem cells and liver 
functions. Cell transplantation 22, 447-459 (2013). 

529. Aurich, H. et al. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes 
hepatic integration in vivo. Gut 58, 570-581 (2009). 

530. Puglisi, M.A. et al. Adipose tissue-derived mesenchymal stem cells and hepatic differentiation: old concepts and future 
perspectives. Eur Rev Med Pharmacol Sci 15, 355-364 (2011). 

531. Ke, Z. et al. Down-regulation of Wnt signaling could promote bone marrow-derived mesenchymal stem cells to 
differentiate into hepatocytes. Biochemical and biophysical research communications 367, 342-348 (2008). 

532. Huang, J., Guo, X., Li, W. & Zhang, H. Activation of Wnt/β-catenin signalling via GSK3 inhibitors direct differentiation of 
human adipose stem cells into functional hepatocytes. Scientific reports 7 (2017). 

533. Yoshida, Y. et al. A role of Wnt/β-catenin signals in hepatic fate specification of human umbilical cord blood-derived 
mesenchymal stem cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 293, G1089-G1098 (2007). 

534. De Barros, S. et al. Aging-related decrease of human ASC angiogenic potential is reversed by hypoxia preconditioning 
through ROS production. Molecular Therapy 21, 399-408 (2013). 

535. Vilaboa, S.D.-A., Navarro-Palou, M. & Llull, R. Age influence on stromal vascular fraction cell yield obtained from human 
lipoaspirates. Cytotherapy 16, 1092-1097 (2014). 

536. Zhu, M. et al. The effect of age on osteogenic, adipogenic and proliferative potential of female adipose‐derived stem cells. 
Journal of tissue engineering and regenerative medicine 3, 290-301 (2009). 

537. Esmaeli, S., Allameh, A., Adelipour, M., Soleimani, M. & Allameh, M. The impact of oxidative DNA changes and ATM 
expression on morphological and functional activities on hepatocytes obtained from mesenchymal stem cells. Biologicals 
47, 52-58 (2017). 

538. Seeliger, C. et al. Decrease of global methylation improves significantly hepatic differentiation of Ad-MSCs: possible future 
application for urea detoxification. Cell transplantation 22, 119-131 (2013). 

539. Mohamadnejad, M., Bagheri, M. & Malekzadeh, R. In vitro differentiation of human bone marrow mesenchymal stem 
cells into hepatocyte-like cells. Archives of Iranian medicine 14, 244 (2011). 

540. Yamamoto, Y. et al. A comparative analysis of the transcriptome and signal pathways in hepatic differentiation of human 
adipose mesenchymal stem cells. The FEBS journal 275, 1260-1273 (2008). 

541. Paganelli, M. et al. Downregulation of Sox9 expression associates with hepatogenic differentiation of human liver 
mesenchymal stem/progenitor cells. Stem cells and development 23, 1377-1391 (2014). 

542. Wu, X.-B. & Tao, R. Hepatocyte differentiation of mesenchymal stem cells. Hepatobiliary & Pancreatic Diseases 
International 11, 360-371 (2012). 

543. Watt, A.J., Garrison, W.D. & Duncan, S.A. HNF4: a central regulator of hepatocyte differentiation and function. Hepatology 
37, 1249-1253 (2003). 

544. Hang, H. et al. Induction of highly functional hepatocytes from human umbilical cord mesenchymal stem cells by HNF4α 
transduction. PloS one 9, e104133 (2014). 



 

185 | P a g e  
 
 

545. Chen, Y., Dong, X.J., Zhang, G.R., Shao, J.Z. & Xiang, L.X. In vitro differentiation of mouse bone marrow stromal stem cells 
into hepatocytes induced by conditioned culture medium of hepatocytes. Journal of cellular biochemistry 102, 52-63 
(2007). 

546. Mohsin, S. et al. Enhanced hepatic differentiation of mesenchymal stem cells after pretreatment with injured liver tissue. 
Differentiation 81, 42-48 (2011). 

547.  (!!! INVALID CITATION !!!). 
548. Schwartz, R.E. et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like 

cells. The Journal of clinical investigation 109, 1291 (2002). 
549. Ayatollahi, M., Soleimani, M., Geramizadeh, B. & Imanieh, M.H. Insulin‐like growth factor 1 (IGF‐I) improves hepatic 

differentiation of human bone marrow‐derived mesenchymal stem cells. Cell biology international 35, 1169-1176 (2011). 
550. Chivu, M. et al. In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential 

exposure to liver-specific factors. Translational Research 154, 122-132 (2009). 
551. Lee, K.D. et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275-1284 (2004). 
552. Banas, A. et al. Rapid hepatic fate specification of adipose‐derived stem cells and their therapeutic potential for liver failure. 

Journal of gastroenterology and hepatology 24, 70-77 (2009). 
553. Debnath, T. et al. Proliferation and differentiation potential of human adipose-derived stem cells grown on chitosan 

hydrogel. PloS one 10, e0120803 (2015). 
554. Ghaedi, M., Tuleuova, N., Zern, M.A., Wu, J. & Revzin, A. Bottom-up signaling from HGF-containing surfaces promotes 

hepatic differentiation of mesenchymal stem cells. Biochemical and biophysical research communications 407, 295-300 
(2011). 

555. Snykers, S. et al. Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult 
bone marrow stem cells into functional hepatocyte-like cells. Toxicological Sciences 94, 330-341 (2006). 

556. Lu, T. et al. FGF4 and HGF promote differentiation of mouse bone marrow mesenchymal stem cells into hepatocytes via 
the MAPK pathway. Genet Mol Res 13, 415-424 (2014). 

557. Cipriano, M. et al. The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from 
human neonatal mesenchymal stem cells. Archives of toxicology 91, 2469-2489 (2017). 

558. Alizadeh, E. et al. Upregulation of MiR‐122 via Trichostatin A Treatments in Hepatocyte‐like Cells Derived from 
Mesenchymal Stem Cells. Chemical Biology & Drug Design 87, 296-305 (2016). 

559. Azandeh, S., Gharravi, A.M., Orazizadeh, M., Khodadi, A. & Tabar, M.H. Improvement of mesenchymal stem cell 
differentiation into the endoderm lineage by four step sequential method in biocompatible biomaterial. BioImpacts: BI 6, 
9 (2016). 

560. Kang, Y.J. et al. Role of c‐Jun N‐terminal kinase in the PDGF‐induced proliferation and migration of human adipose tissue‐
derived mesenchymal stem cells. Journal of cellular biochemistry 95, 1135-1145 (2005). 

561. Raut, A. & Khanna, A. Enhanced expression of hepatocyte-specific microRNAs in valproic acid mediated hepatic trans-
differentiation of human umbilical cord derived mesenchymal stem cells. Experimental cell research 343, 237-247 (2016). 

562. Alizadeh, E. et al. Up Regulation of Liver‐enriched Transcription Factors HNF4a and HNF6 and Liver‐Specific MicroRNA 
(miR‐122) by Inhibition of Let‐7b in Mesenchymal Stem Cells. Chemical biology & drug design 85, 268-279 (2015). 

563. Davoodian, N., Lotfi, A.S., Soleimani, M. & Mowla, S.J. MicroRNA‐122 Overexpression Promotes Hepatic Differentiation of 
Human Adipose Tissue‐Derived Stem Cells. Journal of cellular biochemistry 115, 1582-1593 (2014). 

564. Lue, J. et al. Transdifferentiation of adipose‐derived stem cells into hepatocytes: a new approach. Liver International 30, 
913-922 (2010). 

565. Saulnier, N. et al. Molecular mechanisms underlying human adipose tissue-derived stromal cells differentiation into a 
hepatocyte-like phenotype. Digestive and Liver Disease 42, 895-901 (2010). 

566. Lee, J.M., Dedhar, S., Kalluri, R. & Thompson, E.W. The epithelial–mesenchymal transition: new insights in signaling, 
development, and disease. J Cell biol 172, 973-981 (2006). 

567. Nobes, C.D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated 
with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62 (1995). 



 

186 | P a g e  
 
 

568. Bender, A. & Pringle, J.R. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified 
genes including the ras-related gene RSR1. Proceedings of the National Academy of Sciences 86, 9976-9980 (1989). 

569. Moon, S.Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends in cell biology 13, 13-22 (2003). 
570. Mulloy, J.C. et al. Rho GTPases in hematopoiesis and hemopathies. Blood 115, 936-947 (2010). 
571. Melendez, J., Grogg, M. & Zheng, Y. Signaling role of Cdc42 in regulating mammalian physiology. Journal of Biological 

Chemistry 286, 2375-2381 (2011). 
572. Wang, L. & Zheng, Y. Cell type-specific functions of Rho GTPases revealed by gene targeting in mice. Trends in cell biology 

17, 58-64 (2007). 
573. Kerber, R.A., O’Brien, E. & Cawthon, R.M. Gene expression profiles associated with aging and mortality in humans. Aging 

Cell 8, 239-250 (2009). 
574. Etienne-Manneville, S. & Hall, A. 2002Rho GTPases in cell biology. Nature 420629635 (2002). 
575. Muhoza, D. & Adams, P.D. Two Small Molecules, ZCL278 and AZA197 Show Promise in Influencing Protein Interactions 

Involving the Ras-Related Protein Cell division cycle 42 [Cdc42] to Modulate Its Oncogenic Potential. Open Journal of 
Biophysics 7, 71 (2017). 

576. Etienne-Manneville, S. Cdc42-the centre of polarity. Journal of cell science 117, 1291-1300 (2004). 
577. Cho, K.A. et al. Morphological adjustment of senescent cells by modulating caveolin-1 status. Journal of Biological 

Chemistry 279, 42270-42278 (2004). 
578. Cammarano, M.S., Nekrasova, T., Noel, B. & Minden, A. Pak4 induces premature senescence via a pathway requiring 

p16INK4/p19ARF and mitogen-activated protein kinase signaling. Molecular and cellular biology 25, 9532-9542 (2005). 
579. Lavelin, I. & Geiger, B. Characterization of a novel GTPase-activating protein associated with focal adhesions and the actin 

cytoskeleton. Journal of Biological Chemistry 280, 7178-7185 (2005). 
580. Fortier, L.A. & Miller, B.J. Signaling through the small G‐protein Cdc42 is involved in insulin‐like growth factor‐I resistance in 

aging articular chondrocytes. Journal of orthopaedic research 24, 1765-1772 (2006). 
581. Sinha, S. & Yang, W. Cellular signaling for activation of Rho GTPase Cdc42. Cellular signalling 20, 1927-1934 (2008). 
582. Carolina Florian, M. & Geiger, H. Concise review: polarity in stem cells, disease, and aging. Stem Cells 28, 1623-1629 (2010). 
583. Qian, L. et al. Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. The Journal 

of cell biology, jcb. 201006114 (2011). 
584. Anttonen, T. et al. Cdc42-dependent structural development of auditory supporting cells is required for wound healing at 

adulthood. Scientific reports 2, 978 (2012). 
585. Geiger, H. & Zheng, Y. Cdc42 and aging of hematopoietic stem cells. Current opinion in hematology 20, 295 (2013). 
586. Florian, M.C. et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503, 392 

(2013). 
587. Liu, S., Dontu, G. & Wicha, M.S. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast cancer research 

7, 86 (2005). 
588. Li, J. et al. WNT5A antagonizes WNT/β-catenin signaling and is frequently silenced by promoter CpG methylation in 

esophageal squamous cell carcinoma. Cancer biology & therapy 10, 617-624 (2010). 
589. van Hengel, J. et al. Inactivation of p120 catenin in mice disturbs intrahepatic bile duct development and aggravates liver 

carcinogenesis. European journal of cell biology 95, 574-584 (2016). 
590. Heasman, S.J. & Ridley, A.J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature 

reviews. Molecular cell biology 9, 690 (2008). 
591. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629 (2002). 
592. Melendez, J. et al. Cdc42 coordinates proliferation, polarity, migration, and differentiation of small intestinal epithelial cells 

in mice. Gastroenterology 145, 808-819 (2013). 
593. Cheng, C.-M. et al. Compartmentalized Ras proteins transform NIH 3T3 cells with different efficiencies. Molecular and 

cellular biology 31, 983-997 (2011). 
594. Qiu, R.-G., Abo, A., McCormick, F. & Symons, M. Cdc42 regulates anchorage-independent growth and is necessary for Ras 

transformation. Molecular and cellular biology 17, 3449-3458 (1997). 
595. Ferbeyre, G. Aberrant signaling and senescence associated protein degradation. Experimental Gerontology (2017). 



 

187 | P a g e  
 
 

596. Kumar, A., Al-Sammarraie, N., DiPette, D.J. & Singh, U.S. Metformin impairs Rho GTPase signaling to induce apoptosis in 
neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma. Oncotarget 5, 11709 
(2014). 

597. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252 (2000). 
598. Hattori, K., Naguro, I., Runchel, C. & Ichijo, H. The roles of ASK family proteins in stress responses and diseases. Cell 

Communication and Signaling 7, 9 (2009). 
599. Johnson, G.L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. 

Science 298, 1911-1912 (2002). 
600. Morrison, D.K. & Davis, R.J. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annual review 

of cell and developmental biology 19, 91-118 (2003). 
601. Pouysségur, J., Volmat, V. & Lenormand, P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. 

Biochemical pharmacology 64, 755-763 (2002). 
602. Coso, O.A. et al. The small GTP-binding proteins Rac1 and Cdc42regulate the activity of the JNK/SAPK signaling pathway. 

Cell 81, 1137-1146 (1995). 
603. Courtial, L. et al. The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and 

human cells. Scientific Reports 7 (2017). 
604. Cong, Q. et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an 

aging-dependent manner. Scientific Reports 7 (2017). 
605. Dolcet, X., Llobet, D., Pallares, J. & Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows 

archiv 446, 475-482 (2005). 
606. Liao, L. et al. TNF‐α Inhibits FoxO1 by Upregulating miR‐705 to Aggravate Oxidative Damage in Bone Marrow‐Derived 

Mesenchymal Stem Cells during Osteoporosis. Stem cells 34, 1054-1067 (2016). 
607. Boehm, A.M., Rosenstiel, P. & Bosch, T.C. Stem cells and aging from a quasi‐immortal point of view. BioEssays 35, 994-

1003 (2013). 
608. Wang, N. et al. TNF-α-induced NF-κB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal 

stem cells by targeting β-catenin. Open biology 6, 150258 (2016). 
609. Pandey, A.C. et al. MicroRNA profiling reveals age-dependent differential expression of nuclear factor κB and mitogen-

activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem cell research & 
therapy 2, 49 (2011). 

610. Golub, T. & Pico, C. in Biochemical Society Symposia, Vol. 72 119-127 (Portland Press Limited, 2005). 
611. Hawkins, P., Anderson, K., Davidson, K. & Stephens, L. Signalling through Class I PI3Ks in mammalian cells. Biochemical 

Society Transactions 34, 647-662 (2006). 
612. Zoncu, R., Efeyan, A. & Sabatini, D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature 

reviews Molecular cell biology 12, 21-35 (2010). 
613. Berfield, A.K., Andress, D.L. & Abrass, C.K. IGF-1–induced lipid accumulation impairs mesangial cell migration and 

contractile function. Kidney international 62, 1229-1237 (2002). 
614. Bueno, O.F. & Molkentin, J.D. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell 

death. Circulation Research 91, 776-781 (2002). 
615. Coso, O.A. et al. The small GTP-binding proteins Rac1 and Cdc42regulate the activity of the JNK/SAPK signaling pathway. 

Cell 81, 1137-1146 (1995). 
616. Vincent, A.M. & Feldman, E.L. Control of cell survival by IGF signaling pathways. Growth hormone & IGF research 12, 193-

197 (2002). 
617. Chen, H. et al. Leptin and Neutrophil‐Activating Peptide 2 Promote Mesenchymal Stem Cell Senescence Through 

Activation of the Phosphatidylinositol 3‐Kinase/Akt Pathway in Patients With Systemic Lupus Erythematosus. Arthritis & 
rheumatology 67, 2383-2393 (2015). 

618. Xian, L. et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nature medicine 18, 
1095-1101 (2012). 



 

188 | P a g e  
 
 

619. Lee, Y. et al. CREB-binding protein (CBP) regulates β-adrenoceptor (β-AR)− mediated apoptosis. Cell death and 
differentiation 20, 941 (2013). 

620. Xie, S. et al. O‐GlcNAcylation of protein kinase A catalytic subunits enhances its activity: a mechanism linked to learning and 
memory deficits in Alzheimer's disease. Aging cell 15, 455-464 (2016). 

621. Rahimi, A. et al. Role of p53 in cAMP/PKA pathway mediated apoptosis. Apoptosis 18, 1492-1499 (2013). 
622. Carlyle, B.C. et al. cAMP-PKA phosphorylation of tau confers risk for degeneration in aging association cortex. Proceedings 

of the National Academy of Sciences 111, 5036-5041 (2014). 
623. Feoktistov, I., Goldstein, A.E. & Biaggioni, I. Cyclic AMP and protein kinase A stimulate Cdc42: role of A2 adenosine 

receptors in human mast cells. Molecular pharmacology 58, 903-910 (2000). 
624. Peterson, J.R., Lebensohn, A.M., Pelish, H.E. & Kirschner, M.W. Biochemical suppression of small-molecule inhibitors: a 

strategy to identify inhibitor targets and signaling pathway components. Chemistry & biology 13, 443-452 (2006). 
625. Sakamori, R. et al. CDC42 inhibition suppresses progression of incipient intestinal tumors. Cancer research 74, 5480-5492 

(2014). 
626. O'Brien, E. et al.  (Am Soc Hematology, 2013). 
627. Pelish, H.E. et al. Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nature chemical 

biology 2, 39 (2006). 
628. Surviladze, Z., Young, S.M. & Sklar, L.A. High-throughput flow cytometry bead-based multiplex assay for identification of 

Rho GTPase inhibitors. Rho GTPases: Methods and Protocols, 253-270 (2012). 
629. Surviladze, Z. et al. A potent and selective inhibitor of Cdc42 GTPase.  (2010). 
630. Chen, H.Y., Yang, Y.M., Stevens, B.M. & Noble, M. Inhibition of redox/Fyn/c‐Cbl pathway function by Cdc42 controls 

tumour initiation capacity and tamoxifen sensitivity in basal‐like breast cancer cells. EMBO molecular medicine 5, 723-736 
(2013). 

631. Guo, Y. et al. R-ketorolac targets Cdc42 and Rac1 and alters ovarian cancer cell behaviors critical for invasion and 
metastasis. Molecular cancer therapeutics 14, 2215-2227 (2015). 

632. Lee, J.G. & Heur, M. Interleukin-1β-induced Wnt5a enhances human corneal endothelial cell migration through regulation 
of Cdc42 and RhoA. Molecular and cellular biology 34, 3535-3545 (2014). 

633. McNary, S.M., Athanasiou, K.A. & Reddi, A.H. Transforming growth factor β-induced superficial zone protein accumulation 
in the surface zone of articular cartilage is dependent on the cytoskeleton. Tissue Engineering Part A 20, 921-929 (2013). 

634. Chen, C. et al. Cdc42 inhibitor ML141 enhances G-CSF-induced hematopoietic stem and progenitor cell mobilization. 
International journal of hematology 101, 5-12 (2015). 

635. Cheng, S.-L. et al. Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR-/-mice by restraining 
noncanonical Wnt signals. Circulation research, CIRCRESAHA. 115.306712 (2015). 

636. Nguyen, D.H.T., Gao, L., Wong, A. & Chen, C.S. Cdc42 regulates branching in angiogenic sprouting in vitro. Microcirculation 
(2017). 

637. Xu, X.-p. et al. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 
pathways in vitro. Stem cell research & therapy 8, 164 (2017). 

638. ZHANG, Y. et al. The small GTPase CDC42 regulates actin dynamics during porcine oocyte maturation. Journal of 
Reproduction and Development, 2017-2034 (2017). 

639. Wang, Y. et al. Role of histone deacetylase inhibitors in the aging of human umbilical cord mesenchymal stem cells. Journal 
of cellular biochemistry 114, 2231-2239 (2013). 

640. Han, B. et al. Trichostatin A stabilizes the expression of pluripotent genes in human mesenchymal stem cells during ex vivo 
expansion. PloS one 8, e81781 (2013). 

641. Fila-Danilow, A., Borkowska, P., Paul-Samojedny, M., Kowalczyk, M. & Kowalski, J. The influence of TSA and VPA on the in 
vitro differentiation of bone marrow mesenchymal stem cells into neuronal lineage cells: Gene expression studies. 
Postepy higieny i medycyny doswiadczalnej (Online) 71, 236 (2017). 

642. Mezentseva, N.V. et al. The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow 
cells. Stem cells and development 22, 654-667 (2012). 



 

189 | P a g e  
 
 

643. Yang, J., Kaur, K., Edwards, J.G., Eisenberg, C.A. & Eisenberg, L.M. Inhibition of Histone Methyltransferase, Histone 
Deacetylase, and β-Catenin Synergistically Enhance the Cardiac Potential of Bone Marrow Cells. Stem cells international 
2017 (2017). 

644. Kong, Q. et al. Telomere elongation facilitated by trichostatin a in cloned embryos and pigs by somatic cell nuclear transfer. 
Stem Cell Reviews and Reports 10, 399-407 (2014). 

645. Abdallah, B. & Kassem, M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene therapy 15, 
109 (2008). 

646. Kim, H.J., Kwon, Y.-R., Bae, Y.-J. & Kim, Y.-J. Enhancement of human mesenchymal stem cell differentiation by 
combination treatment with 5-azacytidine and trichostatin A. Biotechnology letters 38, 167-174 (2016). 

647. Cho, H.H. et al. Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase 
inhibitors. Journal of cellular biochemistry 96, 533-542 (2005). 

648. de Almeida Sassi, F. et al. Inhibitory activities of trichostatin A in U87 glioblastoma cells and tumorsphere-derived cells. 
Journal of Molecular Neuroscience 54, 27-40 (2014). 

649. Alvarez, A.A., Field, M., Bushnev, S., Longo, M.S. & Sugaya, K. The effects of histone deacetylase inhibitors on glioblastoma-
derived stem cells. Journal of Molecular Neuroscience 55, 7-20 (2015). 

650. Ng, Y., Tan, I., Lim, L. & Leung, T. Expression of the human myotonic dystrophy kinase-related Cdc42-binding kinase γ is 
regulated by promoter DNA methylation and Sp1 binding. Journal of Biological Chemistry 279, 34156-34164 (2004). 

651. Snykers, S. et al. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human 
mesenchymal stem cells derived of adult bone marrow. BMC developmental biology 7, 24 (2007). 

652. Ryan, M.A. et al. Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell 
mobilization. Nature medicine 16, 1141-1146 (2010). 

653. Liliental, J. et al. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and 
Cdc42 GTPases. Current Biology 10, 401-404 (2000). 

654. Fukushima, K., Ueno, Y., Inoue, J., Kanno, N. & Shimosegawa, T. Filopodia formation via a specific Eph family member and 
PI3K in immortalized cholangiocytes. American Journal of Physiology-Gastrointestinal and Liver Physiology 291, G812-
G819 (2006). 

655. Chen, J., Crawford, R., Chen, C. & Xiao, Y. The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of 
mesenchymal stem cells and applications in tissue regeneration. Tissue Engineering Part B: Reviews 19, 516-528 (2013). 

656. Fritz, G. & Kaina, B. Activation of c-Jun N-terminal kinase 1 by UV irradiation is inhibited by wortmannin without affecting c-
jun expression. Molecular and cellular biology 19, 1768-1774 (1999). 

657. Kim, B.S., Kang, H.-J., Park, J.-Y. & Lee, J. Fucoidan promotes osteoblast differentiation via JNK-and ERK-dependent BMP2–
Smad 1/5/8 signaling in human mesenchymal stem cells. Experimental & molecular medicine 47, e128 (2015). 

658. Yin, Y. et al. Collagen nanofibers facilitated presynaptic maturation in differentiated neurons from spinal-cord-derived 
neural stem cells through MAPK/ERK1/2-Synapsin I signaling pathway. Biomacromolecules 15, 2449-2460 (2014). 

659. Wang, Y.-G. et al. Effect of intercellular adhesion molecule-1 on the migration in vitro of murine mesenchymal stem cells 
and its related mechanism. Zhongguo shi yan xue ye xue za zhi 22, 479-484 (2014). 

660. Du, L. et al. Inhibition of Cell Proliferation and Cell Cycle Progression by Specific Inhibition of Basal JNK Activity EVIDENCE 
THAT MITOTIC Bcl-2 PHOSPHORYLATION IS JNK-INDEPENDENT. Journal of Biological Chemistry 279, 11957-11966 (2004). 

661. Kilian, K.A., Bugarija, B., Lahn, B.T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem 
cells. Proceedings of the National Academy of Sciences 107, 4872-4877 (2010). 

662. Wu, Y., Xia, L., Zhou, Y., Xu, Y. & Jiang, X. Icariin induces osteogenic differentiation of bone mesenchymal stem cells in a 
MAPK‐dependent manner. Cell proliferation (2015). 

663. Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901-911 
(2007). 

664. Wang, L., Yang, L., Filippi, M.-D., Williams, D.A. & Zheng, Y. Genetic deletion of Cdc42GAP reveals a role of Cdc42 in 
erythropoiesis and hematopoietic stem/progenitor cell survival, adhesion, and engraftment. Blood 107, 98-105 (2006). 

665. Chahdi, A. & Sorokin, A. Endothelin 1 stimulates β1Pix-dependent activation of Cdc42 through the Gsα pathway. 
Experimental Biology and Medicine 231, 761-765 (2006). 



 

190 | P a g e  
 
 

666. Lo, M.J. & Wang, P.S. Involvement of cAMP but not PKA in the increase of corticosterone secretion in rat zona fasciculata‐
reticularis cells by aging. Journal of cellular biochemistry 85, 35-41 (2002). 

667. Zhang, H.H., Halbleib, M., Ahmad, F., Manganiello, V.C. & Greenberg, A.S. Tumor necrosis factor-α stimulates lipolysis in 
differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular 
cAMP. Diabetes 51, 2929-2935 (2002). 

668. Si-Tayeb, K., Lemaigre, F.P. & Duncan, S.A. Organogenesis and development of the liver. Developmental cell 18, 175-189 
(2010). 

669. Sato, T. et al. Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche. Nature 459, 262-265 
(2009). 

670. Katoh, M. & Katoh, M. STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic 
persistent inflammation, rheumatoid arthritis and cancer. International journal of molecular medicine 19, 273-278 (2007). 

671. Frese, L., Dijkman, P.E. & Hoerstrup, S.P. Adipose tissue-derived stem cells in regenerative medicine. Transfusion Medicine 
and Hemotherapy 43, 268-274 (2016). 

672. Kokai, L.E. et al. Adipose stem cell function maintained with age: an intra-subject study of long-term cryopreserved cells. 
Aesthetic Surgery Journal 37, 454-463 (2017). 

673. Hanke, A. et al. Semi-automated extraction and characterization of Stromal Vascular Fraction using a new medical device. 
Clinical hemorheology and microcirculation 64, 403-412 (2016). 

674. Liu, M. et al. Adipose-derived mesenchymal stem cells from the elderly exhibit decreased migration and differentiation 
abilities with senescent properties. Cell transplantation (2017). 

675. Aguilar, B., Zhou, H. & Lu, Q. Cdc42 Signaling Pathway Inhibition as a Therapeutic Target in Ras-Related Cancers. Current 
medicinal chemistry (2017). 

676. Yang, L. et al. Mesenchymal stem cells engineered to secrete pigment epithelium-derived factor inhibit tumor metastasis 
and the formation of malignant ascites in a murine colorectal peritoneal carcinomatosis model. Human gene therapy 27, 
267-277 (2016). 

677. Teng, N.-Y. et al. Promotion of mesenchymal-to-epithelial transition by Rac1 inhibition with small molecules accelerates 
hepatic differentiation of mesenchymal stromal cells. Tissue Engineering Part A 21, 1444-1454 (2015). 

678. Fukuma, M. et al. Leucine-rich repeat-containing G protein-coupled receptor 5 regulates epithelial cell phenotype and 
survival of hepatocellular carcinoma cells. Experimental cell research 319, 113-121 (2013). 

679. Kwon, M.S., Park, B.-o., Kim, H.M. & Kim, S. Leucine-rich repeat-containing G-protein coupled receptor 5/GPR49 activates 
G12/13-Rho GTPase pathway. Molecules and cells 36, 267-272 (2013). 

680. Schlessinger, K., Hall, A. & Tolwinski, N. Wnt signaling pathways meet Rho GTPases. Genes & development 23, 265-277 
(2009). 

681. Uygun, B.E. et al. Organ reengineering through development of a transplantable recellularized liver graft using 
decellularized liver matrix. Nature medicine 16, 814-820 (2010). 

682. Mazza, G. et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Scientific 
reports 5, 13079 (2015). 

 

 

  

 

 

 

 



 

191 | P a g e  
 
 

 

Keywords : Liver; Cell-based therapy; Hepatocyte; Hepatic differentiation; Stem Cells; Wnt; Lgr5; Cdc42 Abstract: Hepatocytes cell-based 

transplantation is a promising strategy for treating liver diseases. However, there are still several limitations for their use in clinical applications among them the 

high throughput generation of functional hepatocytes, their life span in culture, the age of the donor age and the source of hepatic stem cells (SCs). At present, the 

challenge lies to develop approaches aiming the identification of the new molecular markers signaling pathways involved in the differentiation of SCs toward 

functional hepatocytes. In fact, Wnt pathways governs multiple biological processes controlling the differentiation fate of SCs into hepatocytes, some of them 

result in the activation of small GTPase and the Lgr5 pathway regulators. Indeed, Lgr5 (a target gene of Wnt, the Leucine-rich-repeat-containing G protein-

coupled Receptor 5) was shown to be crucial for maintaining long-term expansion of hepatic SC in vitro. In addition, Lgr5 primarily functions as an effector of 

the Cdc42 GTPases (a RhoGTPase protein, the cell division cycle 42). Higher activity of Cdc42 was reported to be correlated to hematopoietic SCs aging. 

However, this correlation has never been studied before in adipose tissue Mesenchymal Stem Cells (ADSCs) which were proposed recently as a promising tool 

for liver regeneration. In this study, we were interested (i) to propose a novel method of reprogramming mouse mature hepatocytes into murine endodermic 

progenitors (mEndoPCs) that express Lgr5, generate liver-specific organoids and can differentiate into hepatocytes and cholangiocytes in vitro and give arise to 

bile duct structures and into functional hepatocytes in vivo, and (ii) to study the activity of Cdc42 in human aged-derived hADSCs and the impact of its selective 

inhibition by ML141 on their hepatic differentiation potential in vitro. In our study we succeeded to generate mEndoPCs and to improve the functionality of the 

aged-hADSCs derived-hepatocytes. We showed that both Lgr5 and Cdc42 are regulated distinctly by Wnt signaling pathways. In addition, our results revealed 

that LIFR/STAT3 and LGR5/WNT pathways are important to maintain the unlimited expansion of mEndoPCs in vitro when STAT3 pathway is activated.  

MAPK/PKA, WNT/ β-catenin pathways and the exosome’s production were shown to be deregulated with hADSCs aging. We showed also that a 

mesenchymal to epithelial transition was crucial to transdifferentiate hADSCs into functional hepatocytes. On the other side, ML141 is proposed as a new 

pharmacological tool to rejuvenate aged-hADSCs toward functionally younger-like cells thus by promoting cell proliferation, doubling and cell adherence. 

Finally, the transfer  of these methodologies to human could serve the regenerative medicine of the liver as a good tool for hepatocyte-based drug toxicity 

screening systems and for the liver engineering using a « bio printing »approach. 

Titre en français : Le Potentiel Hépatique des Cellules Souches Mésenchymateuses Reversées en Age et des Progéniteurs Endodermiques : Contribution des 

voies de signalisation de Cdc42 et LGR5 Mots clés : Foie ; Hépatocyte ; Différenciation hépatique ; Cellules Souches ; Wnt ; Lgr5 ; Cdc42 Résumé : La 

thérapie cellulaire utilisant une greffe d’hépatocytes est une stratégie prometteuse pour traiter les maladies du foie. Cependant, plusieurs limitations freinent leur 

transfert pour des applications cliniques, comprenant la production à haut débit d'hépatocytes fonctionnels, leur survie en culture, l’âge du donneur et la source 

des cellules souches hépatiques (CS). Les avancées scientifiques réalisées à ce jour ont permis d’identifier de nouveaux marqueurs moléculaires et les voies de 

signalisation impliquées dans la différenciation des CS en hépatocytes fonctionnels. En effet, la voie de signalisation Wnt a montré être importante pour réguler 

de nombreux processus biologiques des CS permettant de contrôler leur différenciation hépatique dont l’activation des GTPases et les gènes ciblant la voie de 

signalisation de Lgr5. Récemment, des études ont montré que le marqueur Lgr5 (récepteur 5 couplé à la protéine G contenant une répétition d’acides aminés 

riche en leucine) est décisif pour maintenir une expansion à long terme des CS hépatiques in vitro. En outre, Lgr5 fonctionne principalement comme un effecteur 

de la Cdc42 (cycle de division cellulaire 42) qui est un membre de la famille des Rho-GTPase. Une forte expression de la Cdc42 a montré être corrélée avec le 

vieillissement des CSs hématopoïétiques. Néanmoins, cette corrélation n'a jamais été étudiée à ce jour dans les cellules souches mésenchymateuses dérivées du 

tissu adipeux humain (hADSCs) qui ont été proposées récemment comme une source prometteuse pour la régénération du foie. Au cours de nos travaux de 

thèse, nous nous sommes intéressés (i) à proposer une nouvelle technologie de reprogrammation d’hépatocytes matures murins en progéniteurs endodermiques 

(mEndoPCs) exprimant Lgr5 capables de générer des organoïdes spécifiques du foie et de se différencier en hépatocytes et cholangiocytes in vitro et en des 

structures biliaires et hépatiques in vivo (ii) à étudier l’activité de Cdc42 dans les hADSCs âgées et l'impact de son inhibition sélective par le ML141 sur leur 

potentiel de différenciation hépatique in vitro.  Nous montrons qu’il a été possible de générer des mEndoPCs et à améliorer la différenciation hépatique des 

hADSCs âgés. Nous montrons également que Lgr5 et Cdc42 sont régulés de façon distincte par la voie de signalisation Wnt. De plus, nos résultats ont révélé que 

les voies LIFR/STAT3 et Lgr5/WNT sont essentielles pour l’auto renouvellement des mEndoPCs permettant leur expansion illimitée in vitro en présence 

d’activateur de STAT3. Les voies MAPK/PKA, WNT/ β-caténine et la production d'exosomes ont montré une dérégulation liée à l’âge des hADSCs. Nous 

montrons qu’une transition mésenchymato-épithéliale était nécessaire pour différencier les hADSCs en hépatocytes fonctionnels. D’autre part, ML141 est 

proposé comme un nouvel outil pharmacologique permettant de reverser l’âge des hADSC âgés et d’amplifier le taux de prolifération, d’adhésion et de 

fonctionnalité hépatique à un niveau équivalent aux hADSCs jeunes. Enfin, le transfert de ces méthodologies à l’homme pourrait servir pour la médecine 

régénératrice du foie, comme outil pour évaluer la toxicité hépatique des médicaments et pour l'ingénierie et la reconstitution d’un foie entier par des approches 

de « bio printing ».  
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Synthèse de la thèse en français 

  

Le potentiel de régénération du foie a été sanctifié il y a des millénaires dans la mythologie grecque de Titan lorsque 

Prométhée, qui a volé  le feu de Zeus et le  Dieu  l'a donné aux mortels.  Prométhée a été accroché à un rocher où un 

aigle mangeait son foie immortel jour après jour et son foie régénérait continuellement. Cela évoque l'hypothèse de 

la capacité du foie à s'auto-réparer et à se régénérer.  Le foie peut subir une défaillance biologique permanente après 

des blessures graves, une infection chronique, le cancer et le vieillissement. L'insuffisance hépatique entraîne 1-2 

millions de décès par an et est classée comme la 5e cause de décès dans le monde. La transplantation hépatique est 

actuellement la thérapie efficace pour les maladies hépatiques en phase terminale. Cependant, la pénurie de 

donneurs crée une limitation sérieuse liée à ce traitement. Ainsi, la liste d'attente du patient pour trouver des 

donneurs a augmenté à plus de 30% tant en Europe qu'aux États-Unis. 

 La disponibilité des hépatocytes primaires est un « gold standard » pour la thérapie à base de cellules hépatiques. Les 

hépatocytes primaires humains ne sont pas faciles à isoler à partir des biopsies de foie et ont également une durée 

de vie limitée en culture avec une perte progressive de la fonction cellulaire au cours du temps. Par conséquent, l'un 

des plus grands freins associés à la thérapie hépatique des hépatocytes primaires est la disponibilité d'un nombre 

suffisant d'hépatocytes fonctionnels de haute qualité. De plus, l'isolation et la culture des hépatocytes peuvent 

provoquer des altérations majeures de l'expression des gènes et ceci du à la dédifférenciation cellulaire via une 

transition épithéliale à mésenchymateuse (EMT) ou à l'apoptose cellulaire après seulement quelques jours en 

culture. De plus, les modèles de culture in vitro des cellules hépatiques humaines sont cruciaux pour le 

développement de médicaments. Pour éviter la variabilité dans les hépatocytes humains, une alternative serait de 

prolonger leur délai de vie in vitro en induisant des hépatocytes sains pour (1) Produire des hépatocytes humains à 

haut débit permettant de meilleurs systèmes de sensibilité aux médicaments, (2) la modélisation des maladies et du 

développement du foie (3) une source de cellules pour la thérapie cellulaire ,(4) le développement de dispositifs 

hépatiques bio-artificiels et (5) pour une approche de bio-impression du foie  .  

Plusieurs études montrent l'existence de cellules souches résidentes dans le foie adulte. Des progéniteurs hépatiques 

humains ont été observés au cours de maladies hépatiques aiguës et chroniques, mais leur nombre était insuffisant 

et ils étaient incapables d'effectuer une régénération complète du foie. Les stratégies basées sur les cellules souches 

sont par conséquent explorées comme une approche alternative attrayante pour la réparation du foie. Ainsi, divers 

types de cellules souches ont été utilisés dans la période récente pour produire un grand nombre d'hépatocytes 
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fonctionnels in vitro. Plusieurs études ont décrit la différenciation des cellules souches embryonnaires (ESC) vers des 

hépatocytes-like (HLCs). Malgré le potentiel de différenciation des CES, leur application clinique reste limitée compte 

tenu du risque de formation de tératomes et des limitations éthiques. Plus tard, les cellules souches pluripotentes 

induites (CSPi) ont été introduites comme une approche innovante dans le domaine de la thérapie cellulaire du 

foie. Cependant, les HLCs dérivées des CSPi ont montré un statut de différenciation incomplet par rapport aux 

hépatocytes primaires puisqu'elles maintiennent une expression des transgènes exogènes qui peuvent interférer 

avec les protocoles de différenciation. En outre, la génération d'hépatocytes induits (iHep) à partir de cellules souches 

pluripotentes présente une sécurité élevée mais des soucis éthiques limitant leurs utilisations cliniques pour la 

médecine régénérative à base de cellules. Ainsi, des études cliniques fondamentales tentent d'ouvrir de nouveaux 

défis pour la génération d'hépatocytes à partir de cellules souches adultes telles que 

les cellules souches mésenchymateuses (MSC).  

 

Plus récemment, la reprogrammation des hépatocytes primaires chez l’homme et les rongeurs a produit des cellules 

souches hépatiques  exprimant un gène cible  de la voie Wnt appelé Lgr5 (récepteur 5 couplé à la protéine G 

contenant la leucine -rich-repeat) . Cette technologie a  ont émergé comme une nouvelle plate-forme pour la 

médecine régénératrice du foie à base de cellules souches; en fait, les cellules souches ou progéniteurs Lgr5 +    ont 

activement contribué à la régénération du foie   en induisant de novo hépatocytes ceci via la signalisation Wnt. 

 En effet, les voies de signalisation Wnt canoniques et non-canoniques régit une myriade de processus biologiques 

sous-jacents cruciaux pour le développement et le maintien de l'homéostasie tissulaire adulte et la régulation de 

l'auto-renouvellement et la différentiation des cellules souches.  

La régulation des voies de Wnts peut déclencher de multiples cascades de signalisation, dont certaines entraînent 

l'activation de petites GTPase Rho, Rac et Cdc42. Des souris transgéniques où la protéine Rho-GTPase Cdc42 a été 

génétiquement modifiée et réprimée dans leurs hépatocytes,  présentent de graves anomalies du foie. Cela indique 

que Cdc42 joue un rôle dans le foie et pourrait être nécessaire pour la fonction hépatique. Plusieurs 

rapports ont discuté du rôle de la  Cdc42 dans la prolifération des MSCs humaines, leur migration, leur différenciation 

et notamment  son implication dans vieillissement cellulaire. 

De ce fait, notre stratégie était basée sur une nouvelle technologie de reprogrammation des hépatocytes primaires 

murines vers des cellules souches murines des souris exprimant la LGR5 + et capable de donner des hépatocytes in 

vitro.  D’une autre part, nous étions intéressés à étudier le rôle de  la  Cdc42 dans le vieillissement des MSCs humains 
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dérivées du tissu adipeux (ADSCs). La corrélation entre le rôle de la Cdc42, l’âge des ADSCs et leur potentiel de 

différentiation hépatique a été évalué en inhibant la Cdc42 avec un inhibiteur spécifique appelé ML141.  

Mon projet de thèse inclut deux grandes parties, la première partie décrit un nouvel outil de génération de cellules 

souches hépatiques bipotentes via un processus de reprogrammation hépatocytaire. Ces progéniteurs sont destinés 

à se redifférencier en hépatocytes et cholangiocytes après une expansion à long terme in vitro. Quant à la seconde 

partie elle présente le rôle de la Cdc42 dans l’âge la sénescence et le potentiel hépatocytaire in vitro pour une 

première fois dans les  ADSCs.  Ces deux parties seront introduites par la suite brièvement.  

  

Partie I 

1. Génération de cellules souches Lgr5 + à partir d'hépatocytes murins primaires  

Le foie montre deux mécanismes de régénération dépendamment du type de lésion. L’hépatectomie partielle (PH) 

implique un rôle important des hépatocytes échappant à la lésion qui s’engagent dans la  régénération du foie.  

Cependant, les lesions toxiques du foie impliquent des cellules souches du foie adultes, appelées cellules ovales 

chez les rongeurs. Ces cellules souches sont situées au niveau du  canal biliaire (chez l’animal) et le canal 

de Hering (chez l'homme) . Elles sont capables de donner naissance à la fois aux hépatocytes et aux 

cholangiocytes. Plusieurs voies ont été montrées pour réguler la régénération hépatique et la prolifération 

hépatocytaires telles que la voie canonique Wnt / β-caténine, le complexe membranaire E-cadhérine / β-caténine  , 

la voie IL6 / STAT- et la TGF β  . Malheureusement, dans la plupart des temps toutes ces voies sont loin d'être 

efficaces après PH et ne parviennent pas à régénérer le foie en raison des accumulations d'espèces réactives de 

l'oxygène (ROS), des lésions de l'ADN dans les hépatocytes et de l'activation insuffisante des cellules souches 

hépatiques. De l'autre côté, les  cellules souches du foie ovales ne sont activées qu’après une toxicité du foie. Elles 

prolifèrent et redonnent naissance à des hépatocytes et des cholangiocytes. Bien que les cellules ovales soient 

activées, leur implication occasionnelle dans la régénération du foie est insuffisante lorsque l'atteinte hépatique est 

massive.  

Ainsi, la recherche sur la régénération hépatique s'est intéressée à mimer  les mécanismes  de la régénération 

hépatique in vitro.  La mise en place de protocoles pour maintenir une prolifération à long terme des hépatocytes 

humains primaires et d’autre part  l'isolation, l'expansion et l'activation des cellules souches bipotentes humaines ont 

été les principaux objectifs de la recherche de la médecine régénérative du foie pour plusieurs années.  
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Cependant, ces deux sources cellulaires présentent de fortes limitations et sont loin d'être maintenues ex-vivo. En 

effet, l'isolation des hépatocytes primaires est soumise à une procédure très compliquée et ces hépatocytes 

pénètrent rapidement dans un cycle de sénescence. D'un autre côté, l'isolation des cellules souches 

hépatiques  nécessite une caractérisation moléculaire des marqueurs de surface. Malheureusement, ces 

progéniteurs ne sont pas une population distincte du foie puisqu'ils expriment des marqueurs communs avec 

les hépatoblastes (AFP et CK19) 3, les hépatocytes (HNF4-β et  Alb), les cellules souches stromales hépatiques (c-kit, 

Sca-1, Thy1 (CD90) et CD34) et des marqueurs épithéliaux hépatiques (EpCAM).  Le traçage du linéage cellulaire in 

vivo des cellules souches hépatiques bipotentes a été réalisé en utilisant des systèmes promoteurs inductibles-

 Cre chez des souris transgéniques tels que les promoteurs de Foxl1, Sox9 et. Ces progéniteurs ont été capables de 

repeupler le foie blessé et de procréer des hépatocytes et des cholangiocytes.  

Malheureusement, ces cellules souches bipotentes activées ne contribuent qu’à 2,5% de la régénération des lésions 

hépatiques.  De ce fait, le développement de stratégies pour isoler et proliférer ces progéniteurs in vitro semble être 

essentiels pour la médecine à base de cellules souches hépatiques. 

La plasticité des hépatocytes a été beaucoup discutée dans le concept de la régénération hépatique. Dans ce 

champs, le traçage des hépatocytes humains chez les souris  FAH-/- montre qu’après induction de  lésion chronique 

de foie, les hépatocytes présentent une capacité élevée à se dédifférencier vers des cellules souches exprimant CK19 

+/ EPCAM+/OPN+/SOX9+. 

D’une manière intéressante, ces cellules souches bipotentes dérivées des hépatocytes ont été montré à exprimer 

LGR5, un gène cible Wnt fortement exprimé dans les cellules souches en division dans les tissus épithéliaux comme 

l'intestin grêle, le côlon, l’estomac et les follicules des cheveux.  LGR5 exige la présence de son ligand Rspondin1 

(Rspo1) pour médier la signalisation  Wnt –Frizzled/B caténin.  Plus intéressant, dans une culture de système 3D 

favorable à la voie de conduite Wnt, des cellules souches Lgr5+ individuelles isolées formaient des  organoïdes 

retenant l'expression génique du foie sur plusieurs passages. Ces derniers étaient capables de s’auto-renouveler et se 

différencier en hépatocytes fonctionnels lors d'une transplantation dans un model FAH - / -  de souris.  

Se basant sur toutes ces preuves, Huch et al, en 2015  a isolé des cellules souches EpCAM +  à partir de biopsies de 

foie humain. Dans la structure 3D et en présence de Rspo1 et de certaines petites molécules inhibant les voies Notch, 

FGF4 et BMP, les cellules EpCAM + ont pu former des organoïdes exprimant LGR5 +. Les hépatocytes dérivés des 

cellules EpCAM+ LGR5 +  se différenciaient  vers des hépatocytes fonctionnels et régénéraient le foie de souris 

endommagé chimiquement par le CCL4. Plus récemment, Katsuda et al. , ont trouvé une combinaison de petites 

molécules capables de convertir les hépatocytes primaires en progéniteurs hépatiques bipotents et exprimant 
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LGR5+  ayant un potentiel de différenciation  hépatocytaire et cholangiocytaire élevé. Cette stratégie a dépassé la 

complexité de l’isolation des cellules EpCAM + et la formation d'organoïdes dans les structures 3D. Cependant, Rspo1 

et d'autres activateurs Wnt / β-caténine canoniques tels que Wnt3a étaient essentiels pour élargir de manière stable 

les cellules souches LGR5 + avant leur différenciation.  

2. Objectifs  de la Partie I 

Notre objectif général était d'évaluer une nouvelle technologie de génération de cellules souches bipotentes du 

foie in vitro  via une reprogrammation des hépatocytes murins primaire et de la suggérer comme un outil 

prometteur pour la thérapie hépatique à base de cellules souches. 

Il était évident dans une première étape d'évaluer l'identité moléculaire spécifique des EndoPC par rapport aux 

cellules souches pluripotentes, aux cellules souches ovales Lgr5+ et aux hépatocytes hépatiques primaires. 

Donnant l’expression Lgr5 authentique dans EndoPCs , nous avions l'intention de trouver les meilleures conditions 

d'activation Wnt pour dériver des  organoïdes spécifiques et maintenir leur auto-renouvellement lors du retrait du 

facteur inhibiteur de la leucémie (LIF ). Dans une prochaine étape, nous visions à évaluer le potentiel hépatique 

des EndoPC chez un modèle de souris à lésion hépatique et de confirmer leur sécurité de greffe. En outre, nous 

avions l'intention d'étudier la communication entre les axes de signalisation Lgr5 / Wnt et IL6 / LIFR / STAT3 au sein 

des EndoPC en présence de RSPO-1 en culture.  

En addition, nous voulions étudier le potentiel hépatogénique  des EndoPCS dans des matrices bi et tri-

dimensionnelles. 

 

3. Structure  de la Partie I 

La première partie implique quatre chapitres 

 

Chapitre 2. L’Organogenèse du foie, fonctions et maladies 

L'anatomie du foie est présentée dans ce chapitre. En outre, la transition épithéliale mésenchymateuse associée à la 

spécification du linéage hépatocytaire à partir de l’endoderme définitif est présentée. En dernière section de ce 

chapitre, les fonctions du foie et les maladies connexes ont été mises en évidence brièvement. 

 

Chapitre 3. Les Mécanismes de régénération hépatique et la contribution des progéniteurs de foie bipotent (LPs)  
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Deux mécanismes de régénération du foie sont décrits. Les voies de signalisation cellulaire et moléculaires impliquées 

dans la régénération des hépatocytes sont largement détaillées. En outre, les limitations bloquant la capacité 

régénératrice du foie sont discutées. Les mots clés sont définis tels que Cdc42, Lgr5, le vieillissement cellulaire, les 

hépatocytes, Wnt / β-caténine et IL6 / STAT3. En plus, les cellules souches du foie sont introduites comme une source 

potentielle pour la science de la régénération du foie à base de cellules souches. Lgr5 sera énoncé comme un 

nouveau marqueur de cellules souches hépatiques bipotent crucial pour activer la voie Wnt et pour maintenir l'auto-

renouvellement à long terme des progéniteurs LGR5+. 

 

Chapitre 4.  Les Avancées dans Reprogramming des hépatocytes matures vers les progéniteurs 

de foie bipotent (LPs) via l'activation de la voie WNT-LGR5 

 La traçabilité des lignées de cellules souches bipotentes a été décrite en détail.   Ce chapitre explique aussi que la 

plasticité des hépatocytes peut donner lieu à une population de cellules souches hépatiques LGR5 + bipotentes dans 

la zone du canal biliaire. En conséquence, de nouvelles stratégies sont décrites et montrent le mécanisme de 

génération des progéniteurs LGR5+ à partir d'hépatocytes primaires. Trois stratégies sont rapportées: (i) les 

hépatocytes dédifférenciés vers les descendances bipotentes via l'expression des gènes de pluripotence ; (ii) Isolation 

direct des cellules EpCAM à partir de biopsies du foie suivi d'une induction de LGR5 + via l’activation de la 

voie Wnt et  (iii) Conversion chimique d'hépatocytes en cellules souches hépatiques bipotentes . 

 

Chapitre 5. Introduction à la publication scientifique 1.  

Le premier article scientifique intitulé : ”Direct reprogramming of LGR5+ Liver Progenitors cells responding to both 

gp130/JAK/STAT3 and Wnt/β-catenin the signaling pathways” est introduit puis inséré.  

 

 

Partie II 

1. Impact de l'inhibition de la Cdc42 sur l’âge des cellules souches mésenchymateuses âgées.   

De nombreuses approches ont mis en évidence un lien entre les cellules souches mésenchymateuses (MSCs)  et leur 

haut potentiel  hépatique. Les MSCs humaines (hMSC)  résident dans divers tissus et organes tels 

que la moelle osseuse, le tissu adipeux, le muscle, le foie, le cerveau, les tissus parodontaux et le pancréas. Elles ont 
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été considérées récemment un nouvel espoir pour la thérapie cellulaire autologue. Les hMSC dérivées des tissus 

adipeux humains (ADSC) ont montré un potentiel de prolifération plus élevé et un effet immunomodulateur plus 

puissant comparées aux hMSCs dérivées de la moelle osseuse (BMSC). Les ADSCs ont été décrits comme une source 

idéale en thérapeutique médicale pour leur innocuité et leur efficacité in vivo.  Récemment, les ADSCs ont été 

décrites comme une source prometteuse de MSCs pour être utilisées dans la médecine régénérative du foie. Les 

hépatocytes dérivant des ADSCs humains sont considérés comme un outil potentiel pour étudier la toxicité des 

médicaments. En outre, à ce jour, plusieurs études cliniques chez l'homme sont menées pour explorer les effets des 

ADSCs chez les patients atteints d'une maladie du foie (NCT02705742 / NCT00913289 / NCT01062750). De plus, 

dans des études récentes, les exosomes dérivés d'ADSCs sont considérés comme un nouvel outil dans les thérapies 

basées sur les exosomes tels que les troubles neurologiques et de manière intéressante pour les maladies hépatiques 

soulignant les mécanismes moléculaires forts partagés entre les ADSC et le foie.  «Pourquoi les vieilles cellules sont-

elles plus vulnérables à la pathologie et aux maladies que les jeunes cellules?», Une question posée par Hayflik L. en 

1998, juste après la découverte de l'immortalité cellulaire. A cette époque,  on considérait que les changements 

moléculaires liés à l'âge cellulaire se produisent de manière intracellulaire sans aucune explication supplémentaire. 

Aujourd'hui, la science de l’âge cellulaire implique la connaissance des mécanismes moléculaires et cellulaires des 

maladies, appelés biomarqueurs liés à l'âge. Ainsi, les recherches sur le l'âge cellulaire ont montré une progression 

extraordinaire au cours des 15 dernières années et ont défini de nouveaux marqueurs moléculaires. De nos jours, le 

l'âge cellulaire est défini comme le déclin fonctionnel qui affecte les organismes vivants et la fonctionnalité cellulaire 

associée à un ou plusieurs des mécanismes suivants: instabilité génomique, altérations épigénétiques, dérégulation 

des nutriments, dysfonction mitochondriale, sénescence cellulaire et épuisement des cellules souches. En outre, 

chaque marqueur distinctif est considéré lorsque son inhibition montre un retard dans le processus de vieillissement 

et une augmentation de la durée de vie de la cellule et une diminution d'autres biomarqueurs liés à l'âge régulés 

positivement. 

Il y a quelques mois, Florian et al. , estima que d'ici 2050, le nombre de personnes de plus de 80 ans triplera au niveau 

mondial, proposant que des approches spéciales doivent être établies pour accompagner les maladies de l’âge 

cellulaire.  

Dans les maladies du foie et les contextes de l’âge, il a également été discuté du déclin de la population de cellules 

progénitrices hépatiques pourrait être une des raisons de la défaillance de la régénération hépatique. De plus, des 

rapports récents ont considéré l’âge du donneur (DA) comme un facteur de risque d'échec de transplantation. Par 

ailleurs, les BMSCs ont montré l'exemple caractéristique du dysfonctionnement des MSCs dans le 
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microenvironnement âgé où le potentiel ostéogénique est  remplacé vers une différenciation vers des adipocytes 

causant les phénomènes d'ostéoporose  dans les os. Au cours des dernières années, de nombreuses études 

ont rapporté l'impact négatif du DA du tissu adipeux sur la capacité de régénération des ADSC chez la souris et 

l’homme.   D'autres biomarqueurs liés à l'âge, tels que les gènes suppresseurs de tumeurs p53, p16ink4a et p21, 

l'activité de la télomérase et le taux de prolifération se sont révélés être régulés négativement dans les ADSCs dérivés 

de donneurs âgés.  Ainsi, l'identification des biomarqueurs valides liés à l'âge sera un must pour soutenir les thérapies 

basées sur les cellules souches chez les personnes âgées. D’une manière intéressante, l’âge des cellules souches 

hématopoïétiques a été corrélé avec la forte expression d'une protéine RhoGTPase appelée cell division cycle 

42 (Cdc42). Cdc42 régule strictement la migration cellulaire et les mécanismes moléculaires d’adhésion. Comme 

toute la famille des protéines RhoGTPase, Cdc42 agit comme un complexe de commutation binaire entre la forme 

active liée au GTP et la forme inactive liée au GDP. Le Knockout de GTPase Activating Protein (GAP) , un régulateur 

négatif du complexe Cdc42 GTP, est montré à  réduire significativement le temps d'expansion, améliorer la 

réparation des lésions de l'ADN et à supprimer les p53, p16 Ink4a , p21, et la bêta- galactosidase associée à 

la sénescence (SA- ß-gal) dans plusieurs tissus âgés chez la souris, tels que le coeur, le cerveau, le poumon, le foie, la 

rate, le rein et la moelle osseuse . Consécutivement, Cdc42 -GTP a été suggérée pour réguler le vieillissement des 

cellules souches de la souris. Plus tard, avec Carrillo-Garcia et al. En 2012, l'inhibition de l'activité de Cdc42 a montré 

un phenotype jeune des cellules souches âgées. Sur la base de cette hypothèse, l'activité de Cdc42 a été inhibée 

pharmacologiquement avec un inhibiteur de l'activité de Cdc42 (CASIN). CASIN a travaillé comme un inhibiteur de 

l'histone désacétylase (HDAC), d'une autre manière et a abouti à une réparation des dommages de l'ADN dans les 

cellules souches hématopoïétiques (HSC).  De ce fait, lors de la transplantation, les CSH traitées par CASIN se sont 

révélées potentiellement identiques aux CSH isolées des jeunes donneurs. Pour validé que l'activation de Cdc42 peut 

être un biomarqueur dans le vieillissement humain, le même groupe, Florian et al. (2017), ont rapporté une 

étude de cohorte sur 196 donneurs humains âgés de HSCs et ont montré une corrélation élevée entre l'expression 

de Cdc42-GTP et le vieillissement des cellules hématopoïétiques. 

 

 

2. Objectifs de la Partie II 

Nous avons d' abord émis l’hypothèse qu'un certain déséquilibre peut se produire dans l'activité du Cdc42 entre les 

MSCs issus de sujets jeunes et âgés. Puisque la présence et la fonction du tissu adipeux sont extrêmement 
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dépendantes de l'âge, il était important d'étudier les mécanismes d'action existants dans les hADSC indifférenciés, 

corrélant l'activité de Cdc42 en particulier à la signalisation MAPK et Wnt (s). 

 Ensuite, nous avons émis l'hypothèse que les variations dans l'activité de Cdc42 dans  les hADSCs peuvent affecter 

leur différenciation vers des hépatocytes. Dans ce domaine, nous avons inhibé pharmacologiquement l'activité de la 

Cdc42 et avons évalué si la régulation négative de Cdc42 pourrait influer leur hépatogenèse. 

 

3. Structure de la Partie II 

Les données scientifiques d'appui pour la partie II sont élaborées dans trois chapitres différents comme suit: 

 

Chapitre 6. Impact de l'âge du donneur (DA) sur la fonctionnalité des cellules souches mésenchymateuses 

Dans cette section, je discute des biomarqueurs liés à l’âge dans les différents sous-types de MSCs. En outre, les 

mécanismes impliqués dans l'altération du cycle cellulaire et le potentiel de différenciation dans les MSCs âgés sont 

cités. Ensuite, la contribution des niches âgées à l'impact négatif sur les MSCs est détaillée. 

 

Chapitre 7. Potentiel hépatogène des MSCs de tissu adipeux (ADSCs) 

Le potentiel hépatogénique des hMSC est d'abord discuté, suivie d'une description de l’impact négatif du 

vieillissement sur le devenir hépatique des hADSCs in vitro. Dans ce contexte, il était évident de discuter certaines 

indications de culture cellulaire à prendre en compte durant la transition mésenchymato-épithéliale (MET) in 

vitro régulant la différenciation des ADSCs vers des hépatocytes. À la fin de ce chapitre, Cdc42 est présentée comme 

un nouveau marqueur pour les cellules souches multipotentes telles que les cellules souches hématopoïétiques. 

 

Chapitre 8. Cdc42: Un nouveau biomarqueur du vieillissement cellulaire. Ce chapitre a été  crucial pour faire appui à 

nos objectifs; par conséquent, j’ai discuté de l’impact des mécanismes d'activation de la Cdc42 sur l'âge des cellules 

souches. Dans une deuxième étape j’ai discuté des voies de signalisation régulant la Cdc42 dans le vieillissement des 

cellules souches.  

La focalisation sur la signalisation Wnt et l'activation de Cdc42 était  importante puisque la voie Wnt est impliquée 

dans la sénescence et le vieillissement du cycle cellulaire des MSCs. Pour valider le rôle de la Cdc42 dans le 

vieillissement des ADSCs, j’ai décri dans ce chapitre des stratégies récentes visant l'inhibition de Cdc42 dans les 

cellules souches âgées par des molécules pharmacologiques.  
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 Chapitre 9. Introduction à la publication scientifique 2 

Nos données présentées dans le deuxième article scientifique intitulé: “ML141 reverses the negative impact of the 

RhoGTPase Cdc42-dependent donor’s age on hepatogenic differentiation of hADSCs”  ont été introduites suivi du 

papier scientifique.  

 

Discussion et perspectives 

Chapitre 10. Les résultats obtenus dans les deux parties ont été discutés dans ce chapitre. Ainsi, les deux stratégies 

étaient évaluées dans le contexte des nouvelles innovations et  progrès au sein de la médecine régénérative à base 

de cellules souches du foie, de la pharmacotoxicologie à bases d’hépatocytes et des nouvelles stratégies dans la bio -

imprimerie du foie.   

 

CONCLUSION  

En résumé, nous proposons une approche simple de reprogrammation des hépatocytes murins qui permette leur 

conversion vers des cellules souches hépatiques exprimant LGR5. Cette technologie pourra constituer une alternative 

idéale pour échapper au rejet immunologique lors d'une transplantation d’hépatocytes chez l’homme. En effet, 

l'expansion de ces progéniteurs Lgr5+ dérivées d'une  petite biopsie de foie ouvre les horizons vers une banque de 

cellules souches hépatiques autologues pour servir les patients présentant des maladies du foie.  

Dans une deuxième perspective nos résultats proposent le ML141 comme un nouvel outil pharmacologique ciblant 

le vieillissement des cellules souches mésenchymateuses humaines.L'inhibition de la Cdc42 par ML141 dans les 

 ADSCs propose une nouvelle approche efficace pour :  

(1) Rajeunir les mécanismes paracrines et moléculaires liés à l'âge avant l’utilisation des ADSCs humaines 

dérivées de donneurs âgés 

(2) Diriger la différenciation hépatique des hADSCs  qui pourra servir la thérapie cellulaire des maladies du foie à 

base de MSCs et les stratégies de bio-ingénierie du foie.  

 


