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Synthèse en français 

I. Introduction 

I.1. Contexte et motivations 

De nos jours, on utilise de plus en plus des systèmes cyber-physiques (CPS). Nous les trouvons 
dans plusieurs domaines tel que le domaine de l’automotive, le domaine avionique, le domaine des 
bâtiments intelligents et de la manufacture. Les CPS intègrent de manière fortement couplée des 
composants physiques et des composants logiciels [25]. Par exemple, nous trouvons du logiciel 
embarqué sur des unités de contrôle dans les véhicule, dans un système de gestion de vol sur un 
avion, ou aussi sur des unités de contrôle pour la gestion d’énergie des réseaux intelligents. 

L'utilisation étendue de la modélisation et de la simulation tout au long du cycle de vie du dévelop-
pement des systèmes est l'une des façons les plus utilisées pour concevoir efficacement des systèmes 
sûrs, sécurisés, performants et fiables. Les CPS sont des systèmes particulièrement difficiles à mo-
déliser et à simuler. En effet, de par la nature hétérogène de leurs composants, leur conception 
nécessite l’utilisation de différents formalismes de modélisation.  En pratique, les composants phy-
siques sont représentés par des modèles physiques qui s’appuient sur le modèle de calcul « Conti-
nuos Time » (CT) tandis que les parties cybers sont représenté par des modèles qui s’appuient sur 
des modèles de calcul tels que le « Discrete Event » (DE) et le « Dataflow » (DF). Ces modèles sont 
hétérogènes, modélisés avec des langages différents et simulés avec des outils différents. L’une des 
techniques pour la validation du comportement global du système est la co-simulation. En particu-
lier, la norme « Functional Mock-up Interface » (FMI) offre une interface normative pour coupler 
plusieurs simulateurs dans un environnement de co-simulation, nommé « Master ». Celui-ci est 
chargé de fournir un algorithme pour une orchestration et une synchronisation efficace des diffé-
rents composants du système, nommés « Functional Mock-up Unit » (FMU). Cette norme s’impose 
de plus en plus dans l'industrie, et est supportée par de nombreux environnements de modélisation 
et de simulation. Cependant, FMI est initialement conçu pour la co-simulation des processus phy-
siques, avec un support limité des formalismes à événements discrets qui est modèle de calcul et de 
communication largement utilisé dans les environnements de modélisation spécifiques au logiciel. 
En particulier, bien qu’UML soit un des langages de référence pour la modélisation de logiciels et 
soit très couramment utilisé dans l'industrie, aucune des solutions actuelles de co-simulation basées 
sur FMI ne permet de le prendre en considération. 

Notre thèse est que les concepteurs logiciels bénéficieront de l’intégration de leur modèles UML 
dans une approche de co-simulation basée sur FMI. Cela leur permettra en effet d’évaluer le com-
portement de leurs composants logiciels dans un environnement simulé, et donc de les aider à faire 
les meilleurs choix de conception le plus tôt possible dans leur processus de développement. Cette 
intégration pourrait également ouvrir de nouvelles perspectives intéressantes pour les concepteurs 
des CPS en leur permettant d'envisager l’utilisation d’un langage largement utilisé pour la modéli-
sation des composants logiciels de leurs systèmes. Et donc de renforcer les interactions entre com-
munautés. Néanmoins, nous n’avons pas trouvé dans la littérature de travaux qui intègrent les mo-
dèles UML dans une démarche de co-simulation basée sur FMI. 
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I.2. Problématiques 

Une première analyse de l’état de l’art sur l’intégration des modèle UML dans une approche de co-
simulation basée sur FMI montre qu’il y’a des problématiques à trois niveaux : 

� Une problématique liée à l’utilisabilité du standard FMI pour les composants logiciels. 

En effet, FMI était historiquement destiné pour la co-simulation de processus physiques (ce qui 
explique que son API s’appuie sur le modèle de temps CT). L’utilisation de FMI pour la co-simu-
lation de composants logiciels n’est donc pas immédiate. 

�  Une problématique liée à l’exécutabilité des modèles UML. 

En effet, l’intégration des modèles UML dans une approche de co-simulation nécessite qu’ils soient 
exécutables. Pour cela, nous avons choisi de s’appuyer sur les standards de l’OMG autour de l’exé-
cution des modèles UML, fUML (« Semantics of a foundational subset for executable UML models 
») et PSCS (« Precise Semantics of UML Composite Structures ») que nous noterons fUML* dans 
la suite. fUML* définit une sémantique précise pour l’exécution d’un sous ensemble de UML. Ces 
deux normes constituent notre socle de définition qui donne une base intéressante et formelle pour 
l'intégration des modèles UML dans les approches de co-simulation de systèmes cyber-physiques. 
Néanmoins le sous-ensemble couvert est limité pour représenter tous les comportements qu’on peut 
avoir pour des composants logiciels.  

� Une problématique liée à la synchronisation entre les des modèles hétérogènes. 

En effet, les modèles diffèrent dans la façon avec laquelle ils interagissent avec l’environnement, 
dans la façon avec laquelle ils traitent leurs comportements et gèrent le temps. Cette problématique 
est une problématique classique de la co-simulation de modèles hétérogènes qui a été le centre 
d’intérêt de plusieurs travaux de recherche. Nous devons traiter, en particulier, l’hétérogénéité entre 
la sémantique des modèles UML et celle de l’API FMI. 

Ces problématiques seront détaillées par la suite pour différents types de systèmes représentatifs 
des composants logiciels dans les CPS. Pour une bonne compréhension de ces problématiques, nous 
allons commencer par introduire brièvement les standard FMI pour co-simulation et fUML* pour 
l’exécution des modèles UML. 

I.3. Introduction à FMI 

FMI est un standard qui fournit une interface standard pour la co-simultation et pour l’échange de 
modèles dynamiques originairement conçus avec des outils de simulations différents. Il a été initia-
lement lancé dans le cadre du projet MODELISAR et se poursuit maintenant grâce à la participation 
de 16 entreprises et instituts de recherche sous le toit de l'Association Modelica. Aujourd'hui, FMI 
est soutenu par plus de 89 outils [17].  
Une entité qui implémente le standard FMI est appelée FMU. Elle est obtenue par l’export d’un 
modèle à partir d’un outil de simulation conformément au standard FMI : ce qui veut dire que la 
description du modèle et le solveur contenu dans la FMU sont conformes respectivement à un mé-
tamodèle et une API fournis par le standard. L’API définit en particulier des procédures pour l’ini-
tialisation et l’instanciation de la FMU, la simulation pas à pas et la terminaison de la simulation. 
La FMU peut être utilisée :  

� Pour un échange de modèles, où la FMU contient un modèle qui sera exécutée par le solveur 
fournit par l’environnement de simulation qui l’importe (Figure 2) ; 

� Pour une co-simulation, où l’objectif est de fournir une interface standard pour coupler deux 
FMUs ou plus dans un environnement de co-simulation. L’échange de données entre ces 
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FMU est limité à un ensemble discret de points de communication où chaque FMU est 
exécutée indépendamment avec son propre solveur (Figure 1). 

L'échange de modèles n'est pas adapté à ce travail vu qu’il n'est pas courant pour les outils UML de 
fournir des solveurs pour l'exécution de modèles physiques. Nous nous intéressons à la co-simula-
tion où un système est vu comme une interconnexion de FMUs (les ‘slaves’), importées dans un 
environnement de co-simulation (le ‘Master’). Le Master est chargé de fournir un algorithme pour 
orchestrer et synchroniser les FMUs.  

La spécification FMI ne standardise pas l'algorithme du ‘Master’. L’environnement de co-simula-
tion est donc responsable de fournir son propre algorithme. L’algorithme le plus simple (Figure3) 
va instancier et initialiser un ensemble de FMUs puis les simuler du début (tc0=tstart) à la fin (tcn=tstop) 
de la simulation par pas de simulation fixe hFMU. Les FMUs sont d’abord instanciées et initialisées 
(à tc0=tstart) puis exécutées indépendamment entre deux points de communication discrets "tci" et 
"tci+1". Le temps avance localement sur les FMU de hFMU = tci+1-tci> 0. A ces points de communi-
cation, le Master récupère les sorties et met à jour les entrées de toutes les FMUs, puis avance le 
temps de hFMU. 

I.4. Introduction à fUML* 

fUML définit une sémantique d’exécution précise pour un sous-ensemble de UML (à savoir res-
pectivement, un sous ensemble de la modélisation structurelle à base de classes et un sous ensemble 
de la modélisation comportementale à base d’activité et d’actions, et la partie modélisation à base 
de classes composites structurées de UML). Le standard PSCS est une extension de fUML notam-
ment pour les structures composites (Figure 4). 
A chaque élément syntaxique de ce sous-ensemble est associé un visiteur sémantique qui capture 
sa sémantique d’exécution. L’ensemble de ces visiteurs forme le modèle sémantique de fUML*. 

L’instanciation des visiteurs sémantiques est gérée par deux éléments spécifiques : 
- Le « Locus » : représente la mémoire dans laquelle sont stockés tous les visiteurs séman-

tiques des éléments du modèles. 

Environnement de simulation 

Algorithme Master 

  Modèle FMU   Modèle 

Solveur 

FMU 

Figure 1. FMI pour échange de modèles 

Environnement de co-simulation 
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Figure 2. FMI pour co-simulation 

tc
0 
=t

start
 tc

n 
=t

stop
 tc

1
 tci tc

2
 tc

i+1
 

Initialisation & 
Instanciation 

- Exécuter un pas de simulation 
(doStep(t

ci
 , h

FMU
)) 

- Avancer le temps de h
FMU

 

Terminaison 
Pas de simulation 

h
FMU

 

Points de communication 

- Récupérer les nouvelles sorties 
- Mettre à jour les entrées 

Figure 3. Master de co-simulation basique 



12 
 

- La « ExecutionFactory » : responsable pour l’instanciation des visiteurs sémantiques qui 
capturent une sémantique comportementale. 

Les types de composants logiciels nous voulons modéliser en UML et intégrer dans une approche 
de co-simulation sont identifiés à partir d’un cas d’étude du domaine des réseaux intelligents. Pour 
chaque type de composant identifié, nous présentons une projection des problématiques identifiées 
auparavant.   

II. Projection des problématiques sur un cas d’étude 

Le cas d’étude en question est un système de gestion de l’autoconsommation d’énergie électrique 
sur un réseau intelligent. Le système intègre des parties physiques et autres cybers. Les modèles de 
la consommation d’énergie électrique (« Load »), de la production de l’énergie électrique par des 
panneaux photovoltaïques (« PV »), du réseau électrique (« Electricity grid ») ainsi que celui de la 
batterie (« ESS ») dans laquelle l’énergie produite est stockée sont spécifiés par des modèles phy-
siques et donc sont représentés avec des FMUs. L’ensemble de ces composants physiques est con-
trôlé par un composant logiciel qui définit une stratégie de contrôle (« SelfConsumptionController 
»), et est représenté par un modèle UML. Celui-ci calcule une consigne de charge ou de décharge 
pour la batterie dans le but de favoriser l’autoconsommation en énergie du système. 

Deux variantes de stratégie de contrôle sont à modéliser et à simuler :  

� Une première stratégie implémente un contrôle basique qui consiste simplement à donner 
une consigne de charge ou de décharge à la batterie qui alimente de réseau en comparant la 

Figure 4. Syntaxe et sémantique de fUML* 

FMU 

FMU 

FMU 

FMU 

UML 

Figure 5. Système de gestion de l’autoconsommation avec stratégie de contrôle basique 
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consommation d’énergie sur le réseau à la production photovoltaïque (Figure 5). En littérature, 
ce type de composant logiciel est dit transformationnel [55] : système passif dont ses sorties ne 
dépendent que de ses entrées, et s’appuie sur le temps logique (modèle de calcul DF). 
� Une deuxième stratégie plus intelligente qui va calculer une nouvelle consigne en prenant 
en compte l’état du système (ici l’état de charge de la batterie) ainsi que la période de la journée, 
i.e. heures creuses ou heures pleine (Figure 6). C’est un composant réactif aux changements de 
valeurs à l’entrée [21]. 
Un autre composant (« Peak Hour Indicator ») est nécessaire. Il indique le passage d’une pé-
riode d’heures creuses à une période d’heures pleines (et inversement). Ce dernier est réactif 
aux évènements temporels [21]. 

Dans la suite nous détaillerons les problématiques énoncées dans la section I.2. Pour chaque type 
de système représentatif de composants logiciels, i.e, système transformationnel, système réactif 
aux changements de valeurs, et systèmes réactifs aux évènements temporels.  

II.1. Problématiques dans le cas des systèmes transformationnels 

� Utilisabilité du standard FMI pour les composants logiciels. 
Les systèmes transformationnels s’appuient sur le modèle de temps logique. Ce type de comporte-
ment non temporisé n’est pas pris en compte par le standard FMI. En effet, d’après la spécification 
FMI, on doit pourvoir affecter une valeur à une variable à tout instant t. De plus, le pas de simulation 
nul n’est pas autorisé. 

� Exécutabilité des modèles UML. 

Le sous-ensemble fUML* couvre l’ensemble des éléments nécessaires à la modélisation de la struc-
ture et du comportement de ce type de système et à son exécution.  

� Synchronisation entre les des modèles hétérogènes. 

Le comportement souhaité pour les systèmes transformationnels est de produire la sortie une fois 
calculée. Etant donné que le composant s’appuie sur du temps logique, le temps de calcul est sup-
posé nul. Par conséquent, la sortie d’une entrée reçue à t=tin doit être propagée au même moment  
que la réception de l’entrée (tout=tin). 

FMU 

FMU 

FMU 

FMU 

UML 

UML 

Figure 6. Système de gestion de l’autoconsommation avec stratégie de contrôle avancée 
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Si on exporte ce composant en une FMU conforme au standard FMI, et on le simule avec l’algo-
rithme de master décrit dans la section I.3, la sortie d’une entrée reçue à t=tin sera propagée à 
tout=tin+h (h>0, étant le pas de simulation choisi par le master). 
Cela engendre donc un retard de propagation des données comme le montre la Figure 7. 

 

 

 

 

 

II.2. Problématiques dans le cas des systèmes réactifs aux changements de valeurs 

� Utilisabilité du standard FMI pour les composants logiciels. 

FMI ne supporte pas les réactions instantanées aux évènements, en particulier aux changements de 
valeurs à l’entrée. 

� Exécutabilité des modèles UML. 
Le sous-ensemble fUML* ne couvre pas l’ensemble des éléments nécessaires à la modélisation de 
la structure et du comportement de ce type de système et à son exécution. En effet, ce sous-ensemble 
ne fournit pas d’éléments pour la modélisation de comportements réactifs aux changements de va-
leurs à l’entrée. 

� Synchronisation entre les des modèles hétérogènes. 

Le comportement souhaité pour les systèmes transformationnels est de réagir instantanément à un 
changement de valeur à l’entrée. Par conséquent, la réaction d’une entrée reçue à t=tin doit être 
propagée au même moment to que la réception de l’entrée (tout=tin). 

Si on exporte ce composant en une FMU conforme au standard FMI, et on le simule avec l’algo-
rithme de master décrit dans la section I.3, la réaction à une entrée reçue à t=tin sera propagée à 
tout=tin+h (h>0, étant le pas de simulation choisi par le master). Cela engendre donc un retard de 
propagation des données comme le montre la Figure8. 

II.3. Problématiques dans le cas des systèmes réactifs aux évènements temporels 

� Utilisabilité du standard FMI pour les composants logiciels. 

FMI ne supporte pas les réactions instantanées aux évènements, en particulier aux évènements tem-
porels. 

� Exécutabilité des modèles UML. 
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Le sous-ensemblede fUML* ne couvre pas l’ensemble des éléments nécessaires à la modélisation 
de la structure et du comportement de ce type de système et à son exécution. En effet, ce sous-
ensemble ne fournit pas d’éléments pour la modélisation de comportements réactifs aux évènements 
temporels. 

� Synchronisation entre les des modèles hétérogènes. 

Le comportement souhaité pour les systèmes réactifs aux évènements temporels est de produire une 
sortie à des moments discrets définis par des évènements temporels. Par conséquent, si deux évè-
nements e1 et e2 sont prévus aux instants te1 et te2 respectivement, une première sortie doit être 
produite à tout=te1 puis une deuxième sortie à tout=te2. 

Si on exporte ce composant en une FMU conforme au standard FMI, et on le simule avec l’algo-
rithme de master décrit dans la section I.3, la réaction à e2 sera produite à tout=tin+h> te2 alors que 
l’évènement e1 ne sera pas pris en compte vu qu’une nouvelle sortie a été calculée à un instant 
postérieur. Cela engendre donc un retard de propagation des données ainsi qu’une perte d’évène-
ments comme le montre la Figure9. 

II.4. Récapitulatif sur les problématiques 

Pour récapituler (Tableau1), nous avons remonté quatre problèmes spécifiques à l’intégration de 
fUML* et FMI.  

Tableau 1. Récapitulatif des problématiques d'intégration des modèles UML dans une approche de 
co-simulation basée sur FMI 

� P1 : Pas de support pour comportement non temporisé. 

Une première problématique qui ressort de la spécification du standard FMI. Elle concerne le fait 
que les composants conformes à FMI ne supportent pas les comportements non temporisés.   

� P2 : Pas de support pour les comportements réactifs aux évènements temporels. 

Une deuxième problématique qui ressort des standard FMI et fUML*, elle concerne le fait que les 
évènements temporels ne sont pas supportés par les ces standards syntaxiquement et sémantique-
ment.  

� P3 : Pas de support pour les comportements réactifs aux changements. 
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Une troisième problématique ressort des deux standards aussi, elle concerne le fait que les réactions 
instantanées aux changements de valeurs ne sont pas supportées par les standards FMI et fUML*. 

� P4 : Décalage de propagation des valeurs et/ou perte d’évènements. 

Une dernière problématique qui ressort du gap sémantique entre l’API FMI et la sémantique d’exé-
cution des modèles UML qui entraine un décalage de propagation des données et la perte des évè-
nements temporels. 

Après avoir déterminé les différents problèmes spécifiques à l’intégration des modèles UML dans 
démarche de co-simulation basée sur FMI, nous avons exploré l’état de l’art pour analyser des so-
lutions qui ont été déjà proposées pour des problématiques semblables si elles existent. Cet état de 
l’art nous a permis de se positionner et de construire une solution globale à ces problèmes. 

III. Positionnement et solution proposée 

III.1. Etat de l’at autour de fUML* 

Pour résoudre les problématiques P2 et P3 liées fUML*, il est nécessaire de permettre l’exécution 
des comportements réactifs aux changements de valeurs et aux évènements dans fUML*. Trois 
approches peuvent être utilisées : 

� La première approche consiste à utiliser le langage CCSL introduit par le standard MARTE 
[29] pour appliquer des contraintes de temps aux modèle UML. Ce langage fournit plusieurs 
modèles de temps. Une possibilité est d’utiliser des outils qui implémentent cette approche. 
Le problème rencontré était que les approches proposées faisaient des hypothèses fortes sur 
la manière dont la syntaxe et la sémantique du langage sont définie. Leur intégration avec 
fUML* n’était pas directe puisque cela nécessitait l’adaptation du modèle sémantique 
fUML* à l’architecture proposée.  

� Une deuxième approche consiste à mettre en place une entité qui contrôle les exécutions 
temporisées. Cette approche est utilisée dans des outils de simulation tel que SystemC1 et 
Ptolemy2. Cette approche fournit un seul modèle de temps, le Discrete Event. L’avantage 
est que son implémentation est indépendante de l’architecture de fUML*. Cette entité sau-
vegarde une liste d’évènements temporel et les exécute dans un ordre chronologique. Le 
temps est avancé par pas discret correspondant à la date relative d’un évènement. 

� Une troisième approche consiste à étendre le modèle sémantique de fUML* avec la syntaxe 
et la sémantique nécessaire. Cette approche a été déjà utilisée pour étendre le modèle d’exé-
cution de fUML pour le support des structures composites. Une première étape consiste à 
déterminer un ensemble minimal d’éléments UML nécessaires à la modélisation de com-
portements réactifs aux changements et aux évènements temporels, et/ou utiliser les profils 
UML si nécessaire pour expliciter des informations importantes propriétés du système, puis 
la définition de nouveaux sémantiques visiteurs qui capturent la sémantique d’exécution de 
cet ensemble. 

Nous avons opté pour une combinaison des deux dernières approches comme une solution partielle 
de P2 et P3. 

III.2. Etat de l’art autour de FMI 

En se basant sur la spécification FMI, nous avons constaté l’existence de trois méthodes pour la  

                                                 
1 http://hdl.telecom-paristech.fr/sc_intro.html  
2 http://ptolemy.eecs.berkeley.edu/ptolemyii/ 
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prise en compte des nouveaux modèles de calcul dans une approche de co-simulation basée sur 
FMI : 

� L’adaptation de sémantique au niveau de la FMU. 
Cette méthode consiste à exporter un modèle en une FMU. La FMU obtenue est conforme au stan-
dard FMI. Cette méthode est donc bien acceptée en industrie. Néanmoins, elle ne résout pas les 
problèmes P1, P2, P3 et P4 liés à l’intégration des modèles UML dans une approche de co-simula-
tion basée sur FMI. 

� L’extension de l’API de FMI. 
Cette approche consiste à étendre FMI pour permettre d’exposer plus d’informations sur les mo-
dèles, et d’offrir plus de capacités quant à leur exécution. Cette approche permet de proposer des 
solutions à P1, P2, P3, et P4 complètement conformes au standard et donc acceptées en industrie. 
Par conte cela nécessite la validation du consortium. 

� L’adaptation de sémantiques au niveau du master. 
La meilleure solution serait de combiner les deux premières méthodes : une extension du standard 
FMI avec de nouvelles capacités, et l’export de modèles en FMUs. Néanmoins, cette approche est 
à présent non applicable vu que les extensions nécessaires aux standard FMI ne sont pas prises en 
compte. 

La troisième méthode est une approche intermédiaire. Elle permet la réutilisation de FMUs pour les 
parties physiques, et la résolution de P1, P2, P3 et P4 tout en gardant les modèles logiciels en boites 
blanches. Le seul souci de cette approche est qu’elle impose une restriction quant à l’environnement 
de co-simulation utilisé, i.e, il doit être un outil UML. 

III.3. Positionnement et solution proposée 

En conclusion, trois solutions partielles ont été retenues pour la résolution de P1, P2, P3 et P4 : 
� S1 : étendre la syntaxe et sémantique fUML*. Il faut : 

- Identifier les éléments UML nécessaires. 
- Implémenter leur sémantique d’exécution (définition de visiteur sémantiques et leur instan-

ciation). 

� S2 : déléguer le contrôle des exécution temporelles à une entité externe. Il faut : 
- Implémenter un ordonnanceur pour l’exécution des comportements temporisés  

�  S3 : implémenter un master de co-simulation avancé responsable pour : 
- L’orchestration des composants impliqués où il faut identifier les routines équivalentes de 

fUML* (et ses extensions). 
- La synchronisation où il faut adapter le pas de simulation au type du composant. Pour cela 

le master a besoin d’avoir les informations nécessaires sur modèle de temps du modèle 
UML ; cela peut être fait en ajoutant des annotations (stéréotypes) sur les modèles UML.  

Comme le résume le Tableau2, la résolution de P1 et P4 nécessite l’utilisation de S3. La résolution 
de P2 nécessite l’utilisation de S1, S2 puis S3. La résolution de P3 nécessite l’utilisation de S1 puis 
S3.  
Tableau 2. Récapitulatif des solutions aux problématiques identifiées 
 

S1 S2 S3 

P1: Pas de support pour comportement non temporisé  
(FMI) 

  
X 
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P2: Pas de support pour les comportements réactifs aux évènements temporels 
(FMI et fUML*) 

X X X 

P3: Pas de support pour les comportements réactifs aux changements  
(FMI et fUML*) 

X 
 

X 

P4: Décalage de propagation des valeurs et perte d’évènements  
(Synchronisation FMI et fUML*) 

  
X 

La solution proposée pour l’intégration des modèles UML dans une approche de co-simulation ba-
sée su FMI est illustrée dans la Figure10. 

IV. Contributions 

IV.1. Environnement de co-simulation dans Papyrus 

Cette approche est outillée dans Papyrus, modeleur UML/SysML intégré à Eclipse. Il fournit une 
implémentation des standard OMG relatifs à l’exécution des modèles UML via son moteur d’exé-
cution Moka. Nous avons implémenté un environnement de co-simulation basé sur le standard FMI.  
Dans un premier temps, cet environnement permet de définir des scenarios de co-simulation qui 
assemble des FMUs importées, simuler ces scenarios par un algorithme de co-simulation intégré 
dans Moka et enfin stocker et visualiser les résultats de simulation. Les détails de l’implémentation 
sont présentés dans le chapitre 4 du manuscrit. 
Le but est d’étendre cet environnement pour permettre en plus la définition de scénarios de co-
simulation qui assemblent des FMUs à des modèles UML et leur simulation (Figure11). 

Figure 10. Approche proposée pour l'intégration des modèles UML dans une approche 
de co-simulation basée sur FMI 
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IV.2. Application de l’approche aux systèmes transformationnels 

IV.2.1. Règles de modélisation UML 

La Figure12 illustre les différents éléments UML nécessaires à la modélisation de composant logi-
ciels transformationnel. Un système transformationnel est représenté par une classe passive auquel 
est appliqué le stéréotype « CS_Untimed ». Ces deux éléments reflètent le modèle de calcul Data 
Flow (DF) du composant. Cette classe doit avoir des ports d’entrée, des ports de sortie, et une opé-
ration qui implémente le calcul à faire quand le composant est invoqué. Pour la distinguer, le sté-
réotype « CS_Operation » lui est appliqué. Cette opération est définie par une activité qui va lire 
les valeurs sur les ports d’entrée, faire le calcul nécessaire, et mettre à jour les valeurs des ports de 
sortie.  

Figure 12. Règles de modélisation UML de système transformationnel 

Co-simulation de FMUs 
Extensions pour la l’intégration de modèles 

Figure 11. Environnement de co-simulation dans Papyrus 
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IV.2.2. Identification de routines fUML* 

Le Tableau3 représente le mapping entre les routines définies dans le modèle sémantique de fUML* 
et les procédures indispensables de l’API du standard FMI. 

Tableau 3. Routines fUML* pour l’exécution de modèle UML de système transformationnel 

API FMI Modèle sémantique de fUML* 

Instanciation c.locus.instantiate(); 

Initialisation  Les valeurs des propriétés (ports) sont automatiquement initialisées 
à l’instanciation par les valeurs par défaut dans le modèle. 

Simulation pas à pas 
doStepc(h) 

c.dispatch(operationToExecute).execute(); 

Mise à jour des entrées 
setc(inPort,value) 

c.setFeatureValue(inPort,value) 

Récupération des sorties 
getc(outPort) 

c.getFeatureValue(inPort); 

Terminaison Ne rien faire 

IV.2.3. Matser de co-simulation 

L’algorithme de master proposé pour la co-simulation de composants logiciels transformationnels 
avec des FMUs (Figure13) prend en compte la nature de chaque composant. Il adapte son pas de 
simulation, i.e, il utilise un pas de simulation hUML=0 pour les composants UML représentatif de 
systèmes transformationnels, et un pas de simulation proposé par les FMUs hFMU>0. Pour assurer 
une propagation instantanée des données, il exécute les composants UML en même temps que la 
propagation. 

Figure 13. Master de co-simulation de FMUs et de modèles UML représentant des 
systèmes transformationnels 
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V.3. Application de l’approche aux systèmes réactifs aux changements de valeurs 

IV.3.1. Règles de modélisation UML 

Un système réactif aux changements de valeurs est représenté par une classe active auquel est ap-
pliqué le stéréotype « CS_Untimed ». Ces deux éléments reflètent le modèle de calcul Synchronous 
Reactive (SR) du composant. Cette classe doit avoir des ports d’entrée, des ports de sortie, et un 
comportement qui lui est associé. Ce comportement est défini par une activité qui va lire détecter 
les changements de valeurs sur les ports d’entrée. Si un changement est détecté, elle va lire les 
valeurs sur les ports d’entrée, réagir à ce changement, et mettre à jour les valeurs des ports de sortie.  

IV.3.2. Extension de fUML* 

Les réactions aux changements de valeurs n’est pas pris en compte dans fUML*. Comme mentionné 
dans la section I.4, une extension du modèle sémantique de fUML* par l’ajout de nouveaux visiteurs 
sémantiques est nécessaire (solution S1). La Figure15 illustre l’extension apportée à fUML*. 

IV.3.3. Identification de routines fUML* 

Le Tableau4 représente le mapping entre les routines définies dans le modèle sémantique de fUML* 
et les procédures indispensables de l’API du standard FMI. 

Figure 15. Extension de fUML* pour les comportements réactifs aux changements de valeurs 

Figure 14. Règles de modélisation UML de système réactif aux changements 
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Tableau 4. Routines fUML* pour l’exécution de modèle UML de système réactif eux changements 

API FMI Modèle sémantique de fUML* 

Instanciation c.locus.instantiate(); 

Initialisation  Les valeurs des propriétés (ports) sont automatiquement initialisées à 
l’instanciation par les valeurs par défaut dans le modèle. 

Simulation pas à pas 
doStepc(h) 

if (firstSimulationStep) then 
         c.actionActivation.startBehavior(); 
if (c.objectActivation.eventPool.size() > 0) then 
          c.actionActivation.dispatchNextEvent(); 
Else           do nothing; 

Mise à jour des entrées 
setc(inPort,value) 

if (c.inPort.oldValue != value) then 
      c.setFeatureValue(inPort,value); 
      if (inPort.observed) then  
            evt=new changeEventOccurrence(inPort,c.inPort.oldValue, 
value); 
            c.objectActivation.eventPool.add(evt); 
      endif; 
else          doNothing; 

Récupération des sorties  
getc(outPort) 

c.getFeatureValue(inPort); 

Terminaison c.objectActivation.stop(); 

IV.3.4. Master de co-simulation 

L’algorithme de master proposé adapte son pas de simulation, i.e, il utilise un pas de simulation 
hUML=0 pour les composants UML représentatif de systèmes transformationnels, et un pas de simu-
lation proposé par les FMUs hFMU>0. Pour assurer une propagation instantanée des données, il exé-
cute les composants UML en même temps que la propagation. 

Figure 16. Master de co-simulation de FMUs et de modèles UML représentant des 
systèmes réactifs aux changements de valeurs 
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V.4. Application de l’approche aux systèmes réactifs aux évènements temporels 

IV.4.1. Règles de modélisation fUML* 

Un système réactif aux évènements temporels est représenté par une classe active auquel est appli-
qué le stéréotype « CS_Timed ». Ces deux éléments reflètent le modèle de calcul Discrete Event 
(DE) du composant. Cette classe doit avoir des ports de sortie et un comportement qui lui est asso-
cié. Ce comportement est défini par une activité qui va produire une réaction à des instants discret 
définis par les évènements temporels (évènements temporels relatifs ‘After(2)’ et ‘after(22)’, ou 
évènements temporels absolus ‘at(19)’) en mettant à jour les ports de sortie. 

IV.4.2. Extension de fUML* 

Les évènements temporels n’est pas pris en compte dans fUML*. Comme mentionné dans la section 
I.4, une extension du modèle sémantique de fUML* par l’ajout de nouveaux visiteurs sémantiques 

Figure 18. Extensions de fUML* pour les comportements réactifs aux évènements temporels 

Figure 17. Extension de fUML* pour les comportements réactifs aux évènements temporels 
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ainsi qu’une entité responsable de l’exécution des évènements temporels sont nécessaires. La Fi-
gure18 illustre l’extension apportée à fUML* ainsi qu’un diagramme de classe spécifiant le ‘Sche-
duler’ implémenté pour l’exécution des comportements associés aux systèmes réactifs aux évène-
ments temporels.  

IV.4.3. Identification de routines fUML* 

Le Tableau5 représente le mapping entre les routines définies dans le modèle sémantique de fUML* 
et les procédures indispensables de l’API du standard FMI. 
Tableau 5. Routines fUML* pour l’exécution de modèle UML de système réactif aux évènements 
temporels 

API FMI Modèle sémantique de fUML* 

Instanciation c.locus.instantiate(); 

Initialisation  Les valeurs des propriétés (ports) sont automatiquement initialisées à 
l’instanciation par les valeurs par défaut dans le modèle. 
DEScheduler.init(startTime, stopTime); 

Simulation pas à pas 
doStepc(h) 

if (firstSimulationStep)   then   c.actionActivation.startBehavior(); 
end if; 
if (DEScheduler.FEL.size() > 0)    then    DEScheduler.step(h); 
else    do nothing; 
end if; 

Mise à jour des entrées 
setc(inPort,value) 

c.setFeatureValue(inPort,value); 

Récupération des sor-
ties  
getc(outPort) 

c.getFeatureValue(inPort); 

Terminaison c.objectActivation.stop(); 

Figure 19. Master de co-simulation de FMUs et de modèles UML représentant des systèmes ré-
actifs aux évènements temporels 
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IV.4.4. Master de co-simulation 

Le master de co-simulaion proposé (Figure19) adapte le pas de simulation au type de composant. Il 
calcule le minimum entre le pas de simulation proposé par les FMUs et le prochain évènement 
temporels dans la file d’attente. Il prend aussi en compte les réactions instantanées (pas de simula-
tion nul). 

V. Validation de l’approche 

Pour la validation de notre approche, nous avons simulé le modèle du cas d’étude dans Simulink en 
se plaçant dans les mêmes conditions que dans notre environnement de co-simulation dans Papyrus. 
Cela veut dire que nous avons utilisé les mêmes FMUs et gardé le composant de contrôle en boite 
blanche. 

Nous avons effectué la simulation sur une période de 24 heures avec un pas de simulation de 1heure. 
Puis nous avons en particulier observé les instants auxquels une nouvelle consigne est produite par 
le composant de contrôle et les instants auxquels cette consigne est prise en compte 

V.1. Simulation du cas d’étude avec stratégie de contrôle basique 

Les Figure20 et Figure21 illustrent les résultats de simulation respectivement dans Simulink et dans 
Papyrus. 

Figure 21. Résultats de simulation du cas d'étude avec contrôle basique dans Simulink 

Figure 20. Résultats de simulation du cas d'étude avec contrôle basique dans Papyrus 
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V.2. Simulation du cas d’étude avec stratégie de contrôle avancée 

Les Figure23 et Figure22 illustrent les résultats de simulation respectivement dans Simulink et dans 
Papyrus. 

 

V.3. Interprétation des résultats de simulation 

Les résultats de la simulation dans Papyrus démontrent que, en appliquant la démarche que nous 
avons proposée, nous sommes capables de : 
 

- Obtenir des informations sur la puissance énergétique qui doit être fournie par l'unité de 
stockage au réseau électrique ainsi que sur l'état de charge de l'unité de stockage plus tôt. En 
effet, comme illustré sur la Figure20 et la Figure21 (respectivement Figure22 et Figure23) la 
nouvelle consigne (la sortie 'Ess_Pac') ainsi que l'état de charge et la quantité d'énergie à injec-
ter dans le réseau (la sortie 'Pac' du composant 'ESS') sont calculées et propagées avant une 
heure (qui correspond au pas de simulation) par rapport aux résultats de Simulink. Cela assure 
un meilleur fonctionnement du réseau intelligent. En effet, nous pouvons éviter les pannes en 
anticipant les demandes d'énergie (délivrer la puissance énergétique nécessaire dans le temps) 
et en maintenant un état de charge acceptable en chargeant l'unité de stockage le plus rapide-
ment possible lorsque le niveau est inférieur au seuil requis. 

 

- Minimiser et maintenir un taux de distribution d'énergie plus homogène dans le réseau 
électrique. Comme illustré sur la Figure20 la Figure21 (respectivement Figure22 et Figure23), 
en utilisant les algorithmes de master que nous proposons dans Papyrus, le taux d'énergie sur 

Figure 22. Résultats de simulation du cas d'étude avec contrôle avancée dans Simulink 

Figure 23. Résultats de simulation du cas d'étude avec contrôle basique dans Papyrus 
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le réseau est plus petit que lors de la simulation dans Simulink. Cela permet de mieux dimen-
sionner et calibrer le système, et donc de minimiser le coût de conception du système, facteur 
très important pour les fournisseurs d'énergie. 

VI. Conclusion et perspectives 

VI.1. Conclusion 

Dans ces travaux de thèses, nous nous sommes intéressés à la co-simulation des systèmes cyber 
physiques où les composants cyber sont spécifiés avec des modèles UML. Nous avons traité diffé-
rents types de systèmes représentatifs des composants logiciels : transformationnels, réactifs aux 
changements de valeurs et réactifs aux évènements temporels. 
Le contexte technologique que nous avons choisi s’appuie sur les standards : le standard FMI pour 
la co-simulation, et fUML* pour l’exécution des modèles UML. Nous avons rencontré des problé-
matiques pour l’intégration des modèles UML dans une approche de co-simulation basée sur FMI 
à trois niveaux :  

- Problématique liée au standard FMI : le standard ne supporte pas les comportements non tempo-
risés et les réactions instantanées aux évènements. 

- Problématique liée au standard fUML* : Celui-ci définit une sémantique précise pour l’exécution 
des modèles UML pour un sous-ensemble de modèles UML. Néanmoins, ce sous-ensemble ne 
couvre pas tous les éléments nécessaires à la modélisation des systèmes que nous souhaitons inté-
grer. 

- Problématique liée à la synchronisation entre FMI (Modèle de calcul CT) et fUML* (Modèles de 
calcul : DataFlow, DE et SR) : le gap sémantique entre les modèles à intégrer peut engendrer des 
retards de propagation des données et la perte d’évènements.  

Notre contribution était de faire cohabiter les modèles UML avec des FMUs tout en assurant la 
bonne synchronisation entre les différents composants impliqués. Cette contribution intervient à 
deux niveaux : localement sur les modèles UML où on a défini des règles de modélisation pour 
représenter chaque type de système en UML, et proposé des extensions au standard fUML* pour la 
prise en compte des comportement réactifs aux changements de valeurs et aux événements tempo-
rels. Puis globalement, où nous avons proposé des algorithmes de Masters pour différents scénarios 
de co-simulation qui intègrent des modèles UML avec des FMUs. 
L’approche est spécifique aux modèles UML au niveau de la modélisation mais générale au niveau 
des algorithmes de co-simulation proposés. Les algorithmes de master proposés peuvent être réuti-
lisées pour d’autres formalismes qui représentent les modèles de calcul DE, DataFlow et SR. 

Enfin l’approche a été validée par comparaison des résultats de simulation obtenus dans l’environ-
nement de co-simulation dans Papyrus par rapport aux résultats de simulation obtenus dans Simu-
link. 

Note : les systèmes transformationnels temporisés ont été aussi traités dans le cadre de la thèse 

VI.2. Perspectives 

� Perspective liée aux capacités des modèles UML à intégrer 

Les capacités en simulation d’un algorithme de co-simulation est lié entre autres aux capacités des 
composants. En particulier, pour pouvoir aller jusqu’au bout d’une simulation, un master peut avoir 
besoin de demander à une FMU de refaire un pas de simulation si elle ne parvient pas à aller 
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jusqu’au du pas de simulation proposé auparavant.  Cette capacité de ‘refaire un pas de simulation’ 
appelée ‘Rollback’. Son implémentation nécessite la sauvegarde de l’état de l’objet (notamment 
ensemble des valeurs dans le locus, son pool d’évènement et l’endroit où l’activité a été suspendue). 
Pour l’instant, cet aspect n’est pas traité dans le modèle d’exécution fUML*. Même si cette capacité 
reste pour le moment optionnel dans le standard FMI, son implémentation pour les modèles UML 
peut avoir un impact très important pour l’amélioration des algorithmes proposés.  

A noter que pour les modèles transformationnels un rollback est possible vu que le système ne 
possède pas de variable d’état et donc ne garde pas l’historique des valeurs précédentes (une sortie 
ne dépend que d’une nouvelle entrée).  

� Perspective liée aux modèles UML supportés 

La deuxième perspective consiste à prendre en compte un ensemble plus large de modèles UML et 
aussi de formalismes. En effet, Le standard Precise Semantics of UML State Machines (PSSM) 
définit la sémantique d’exécution des machines à états UML et est une extension de fUML*. La 
même approche peut être appliquée pour des modèles UML qui implémente des machines à états. 
Ces travaux sont en cours dans le projet ITEA OpenCPS. 

� Perspective liée au standard FMI 

Une troisième perspective concerne l’extension du standard FMI. Ces travaux de thèse nous ont 
permis d’avoir le retour et la réflexion suffisante pour savoir les capacités qui manque à la spécifi-
cation FMI pour permettre une intégration facile et directe de modèles de calcul autres que le CT 
(e.g. Dataflow, Synchronous Reactive et Discrete Event) sur lesquels s’appuient les composants 
logiciels dans une approche conforme à FMI. 
Les informations et capacités à ajouter concerne spécifiquement le modèle de temps du composant 
: en particulier le besoin de permettre un pas de simulation nul nécessaire à la prise en compte des 
comportements non temporisés et des réactions instantanées aux évènements, et le besoin d’exposer 
la date du prochain évènement. Cette dernière proposition s ’aligne avec une proposition en cours3. 

 

 

                                                 
3 JP.Tavella & al.,Toward an Hybrid Co-simulation with the FMI-CS Standard, 2016. 
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Introduction 

A. Context 

As shown in Figure I-1-24, Cyber Physical Systems (CPS) are integrations of physical and 
computational components interacting in a tight coordination [25]. Examples include 
applications that enable the monitoring and controlling of the physical environments such as 
smart cities, automotives controllers, medical devices and robotics. CPS are systems that are 
particularly difficult to model and verify because the heterogeneous nature of their components 
requires many different modeling formalisms, and therefore rely on different Models of Com-
putation (MoCs). Models of physical components usually rely on Continuous-Time (CT) MoC, 
whereas those of computational components rely on MoCs such as Discrete-Event (DE) or 
Data-Flow (DF). The verification of the overall system requires the composition of these com-
ponents, which is not trivial. The models involved differ, in the way they interact with their 
environment, execute their behaviors, and manage time/events. Therefore, the most challenging 
issue is the coordination and synchronization between the involved models. Such global verifi-
cation can be achieved by co-simulation of the different components composing the system.  
 

The Functional Mock-up Interface standard (FMI) in particular, offers a standard interface to 
couple two or more simulators in a co-simulation environment, known as master. This latter is 
responsible for providing an algorithm with efficient orchestration and synchronization of the 
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Figure I-1-24. CPS modeling and simulation 
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involved components, known as Function Mock-up Units (FMUs). FMI standard is gaining 
popularity in the industry, and it is being supported by many modeling and simulation environ-
ments. FMI was originally intended for co-simulation of physical processes, with limited sup-
port for other MoCs such as DE and Data Flow, even if they are commonly used to model the 
logic of software parts of a system. In particular, while UML is the reference standard for soft-
ware modeling and is very commonly used in the industry, none of the present-day FMI-based 
co-simulation solutions consider UML models. This lack is a real issue while the importance 
of software concern of CPS is ever growing. 

B. Contributions 

Our thesis is that system engineering in general would greatly benefit from the consideration of 
UML in the FMI-based co-simulation approach. It would enable a significant number of soft-
ware designers to evaluate the behavior of their software components in their simulated envi-
ronment, as soon as possible in their development processes, therefore allowing them to make 
early and better design decisions. It would also open new interesting perspectives for CPS sys-
tem engineers, by allowing them to consider a widely-used modeling language for the software 
parts of their systems. In this context, the objective of this work is to define and formalize an 
FMI-based co-simulation environment for CPS with integration of UML models for the soft-
ware part of the system. It tackles the issue of bridging the execution semantics of UML models, 
and FMI and their synchronization. It also proposes an environment to specify and execute co-
simulation scenarios composed of UML model elements, connected to FMUs imported from 
continuous time simulation tools.  

We set up an incremental approach where we address different kinds of systems characterizing 
the computational components, reactive systems and transformational systems, and different 
kinds of models characterizing their behaviors, timed models and untimed models. Transfor-
mational systems are systems that simply transform a set of inputs into a set of outputs [55] 
whereas reactive systems are systems that maintain interaction with their environment [21]. 
Given a co-simulation model composed of FMUs and an UML component, four scenarios are 
therefore possible: 

� Co-simulation of an untimed UML model of transformational systems with FMUs  
� Co-simulation of an untimed UML model of reactive systems with FMUs 
� Co-simulation of a timed UML model of transformational systems with FMUs 
� Co-simulation of a timed UML model of reactive systems with FMUs 

We base our proposals on OMG standards related to the execution semantics of UML models, 
fUML (known as “Semantics of a Foundational subset for  
executable UML models”) and PSCS (the fUML extension for UML composite structure, also 
known as “Precise Semantics of composite Structure). They define precise execution semantics 
for a subset of UML (namely classes for structural modeling, and activities and actions for 
behavioral modeling in fUML extended with composite structures in PSCS). Both OMG stand-
ards provide a formal basis for the integration of UML models in CPSs co-simulation ap-
proaches, and in particular, FMI-based co-simulation approaches.  
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Our contribution is twofold: locally at the level of UML models, and globally at the master 
level:  

� At the local level, for each aforementioned kind of system (i.e, transformational and 
reactive), we first identify a set of rules to model it with UML (i.e, the UML syntactic 
elements and their properties) and potential extensions to fUML and PSCS in cases 
where execution semantics of the required UML elements are not defined by fUML and 
PSCS, 

� Then at the global level, we propose a master algorithm for each scenario. The proposed 
masters take into account not only external and internal dependencies between compo-
nents and their capabilities, but also and especially their MoCs. They rely on, in partic-
ular, the adaptation of the untimed semantics of fUML and PSCS to timed semantics of 
FMI, and the adaptation of both Data Flow and DE MoCs (on which rely the execution 
semantics of untimed and timed UML models) to CT MoC (on which rely the FMUs). 
Based on these adaptations, the master algorithms are able both to propagate data be-
tween components and to trigger them at the correct points of time. 

No extensions to the FMI standard are required for the realization of our approach, which means 
that imported FMUs are totally FMI-compliant. The approach is experienced and validated with 
use cases from the energy domain where the purpose is to verify energy management strategies 
defined as software components at different levels of the control module of an energy system. 

C. Outline of the manuscript 

The first part of this manuscript is a review of the related literature and studies. It is organized 
into three chapters. 
  

� Chapter 1: This chapter reviews the foundations and techniques of CPS modeling and 
simulation. It gives an overview of the most used MoCs for modeling and simulation of 
computational and physical components. It also introduces the challenges of CPS, enu-
merates the proposed techniques in the literature for their modeling and simulation, as 
well as provides an evaluation of each of them. We opt for co-simulation technique 
using the FMI standard. 

� Chapter 2: This chapter focuses on the FMI for co-simulation standard. Firstly, it gives 
an overview of the standard principles, the standard API and the standard misses  
regarding the co-simulation of CPS. Secondly, evaluates works in the literature which 
propose FMI-based co-simulation approaches for CPS and deal with the identified is-
sues. Three techniques are identified: the extension of the FMI standard, the adaptation 
of semantics at FMU level and the adaptation of semantics at the master level. We opt 
for the third alternative, where the idea is to benefit from the use of the FMI standard 
and to enable the use of UML in co-simulation contexts. 

� Chapter 3: This chapter is dedicated to the execution of UML models. Fistly, it evalu-
ates UML tools for their support for the execution of UML models and the integration 
of FMI standard. Based on this evaluation, we decided to base our approach on the OMG 
standard fUM. Secondly, it identifies a set of UML models (representing computational 
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components) we need to consider in our approach, and evaluates fUML for its ability to 
model and simulate this set of models. At the end of this chapter, we present our ap-
proach for the integration of UML models in FMI-based co-simulation. 

The second part of this manuscript concerns our contributions and is organized into four chap-
ters. 

� Chapter 4: This chapter introduces an UML-compliant master simulation tool, which is 
the environment we propose for modeling and simulation of CPSs based on the FMI 
standard. It describes the architecture of the implementation and the features it proposes. 

� Chapter 5: This chapter deals with the integration of untimed UML models for both 
kinds of systems. It follows the two steps identified previously, which is, identifying the 
modeling rules for untimed models in the context of FMI and proposing a master algo-
rithm for each kind of system. 

� Chapter 6: This chapter deals with the integration of timed UML models for both kinds 
of systems. It follows the two steps identified previously, by first identifying modeling 
rules for timed models in the context of FMI, then proposing a master algorithm for 
each kind of system. This chapter also proposes an implementation of a control entity 
responsible for the simulation of timed UML models. 

The third of this manuscript concerns the validation of the contributions. It compares the results 
of the co-simulation when applying our approach against original co-simulation results. 

The fourth and last part of the manuscript gives the conclusion and the perspectives on this 
work and draws some perspectives for the extension of the proposed approach.



 

 
 

 

 

 

PART I: RELATED WORK 

 

 

This first part of the manuscript is a review of the literature and studies related to the modeling 
and simulation of CPS. It aims at highlighting the challenges of CPS with regard to the solutions 
proposed in the literature. It is organized into three chapters.  

� Chapter 1: Foundations and techniques of CPSs 
This chapter reviews the foundations and techniques of CPS modeling and simulation. 
It gives an overview of languages and formalisms as well as the most used Models of 
Computation for modeling and simulation of computational and physical components. 
This chapter also introduces the challenges of CPS. It enumerates the proposed tech-
niques in the literature for their modeling and simulation, while providing an evaluation 
for each of them. We chose the co-simulation technique using the FMI standard. 

� Chapter 2: Towards FMI-based co-simulation of CPSs 

This chapter concentrates on the FMI for co-simulation standard. It gives an overview 
of the standard principles, the standard API and the standard shortcomings regarding 
the co-simulation of CPS. Then, it evaluates works in the literature which propose FMI-
based co-simulation of CPS. Finally, it presents our positioning. 

� Chapter 3: Overview and key aspects of UML models’ execution 
This chapter aims at the identification of entry points for the integration of UML models 
in the frame of a FMI based co-simulation. We identify a set of systems we would like 
to model with UML and propose to rely on OMG standards fUML and PSCS for their 
execution. At the end of the chapter we represent our approach. 
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1.2.4.2. ModHel'X 

1.2.5. Co-simulation 
1.2.5.1. HLA Standard 
1.2.5.2. FMI for co-simulation standard 

1.3. Discussion and conclusion 

 

Cyber-physical systems (CPS) are the synergy between the physical world and the cyber world. 
They are the integration of computation and physical processes interacting in a tight 
coordination, involve several domains, and are inherently heterogeneous [25]. Examples 
include applications monitoring and controlling physical environments such as smart cities, 
automotive controllers, medical devices and robotics systems.  
The heterogeneous nature of CPS implies the heterogeneity of its related model. In fact, a model 
of a CPS comprises models of physical components as well as models of computational com-
ponents. In practice, these models are provided by different teams, each of them possibly using 
specific modeling language - and therefore model of computation (MoC) and simulation tool -
well suited to the underlying domain. The heterogeneity we consider is that of the modeling 
languages, the MoCs and the simulation tools. The latter are the foundations of modeling and 
simulation and will be explained in the section 1.1 of this chapter. The heterogeneity is the most 
challenging issue of CPSs models. The main point in this context is to determine the global 
behavior of the model. How integrated and simulated are these heterogeneous models? This 
research question is the focus of section 1.2 of this chapter.



Chapter 1: Foundations and Techniques of Modeling and Simulation 
 

35 
 

1.1.  Foundations of modeling and simulation 

A model is a abstracted representation of a real system under study. It keeps only the features 
which are important for a given goal. This model should consider aspects of the system that 
affect the problem under investigation [26]. In particular, models intended for simulation should 
specify the structure and the behavior of the real system. Various formalisms may be used to 
describe the behavior of the system. The model may be a representation of the activity flow of 
the system, the possible states of the system or a mathematical representation of the system. 
Each of these representations requires specific modeling formalism. This work focuses on the 
modeling and simulation of Cyber Physical Systems (CPS), which are typically made up of 
components of different natures, such as physical components and computational components. 
This section gives an overview about foundations and techniques for the modeling and simula-
tion of each part of CPS. Section 1.2 then concentrates on techniques and challenges for mod-
eling and simulating CPSs.  

 Modeling languages and modeling formalisms 

A model is described using a modeling language, which is a particular implementation of a 
modeling formalism. A modeling language consists of: (a) An abstract syntax which specifies 
the concepts supported by the language, potential relationships between them and the way they 
can be combined. In the context of model driven engineering, it is often described by a meta-
model, (b) A concrete syntax which defines the notation –textual, graphical, tabular, etc.– of 
each element in the abstract syntax, and (c) A semantics which defines how abstract concepts 
should be interpreted. The language semantics is a key feature for the definition of the model 
of computation on which the model relies. 

 Model of Computation (MoC)  

A model of computation (MoC) is a formal set of semantics that provides the rules for inter-
preting the structure and behavior of a model. It corresponds to a class of modeling languages 
for which the computation and the communication characteristics are similar. A MoC is distin-
guished from another based on three semantic components [10]:  

� The data: it specifies the data structures exchanged between the components of the sys-
tem (e.g, signals, messages and events) 

� The control: it characterizes the system kind (e.g, instantaneous, reactive and concur-
rent) and specifies the order in which the components execute their behavior and the 
instant at which the system should be observed 

� The time/event management: it specifies the model of time that defines how time pro-
gresses if the notion of time exists in the model (e.g, continuous time, discrete events, 
or also iterations) 

In the following material, we represent a variety of MoCs including Data Flow (DF), Synchro-
nous Reactive (SR), Discrete Event (DE), and Continuous Time (CT) as defined in [34]. These 
MoCs are the most representative of the modeling languages currently used in the industry. 
Later in sections 5.1.2, 5.2.3, 6.1.2, 6.2.3, we will position our models in relation to these MoCs.  
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Data Flow (DF) 

In the Data Flow MoC (Figure 1-1), the behavior is considered as a graph where nodes represent 
computations to execute and edges represent dependencies between these nodes. The execution 
(firing) of a node starts when all required data are available at the input pins. Data tokens are 
consumed when the node fires. The DF MoC has no notion of time. The execution is purely 
causal. The control consists in determining the activation order of the nodes and the propagation 
of the execution flow as much as possible in the model. Communication between components 
relying on the DF MoC is via sequences of data tokens. Each token is an arbitrary data structure 
that is treated monolithically by the MoC.  

This MoC can be used to model software components and digital signal processing systems.  
fUML [32]  provides precise semantics for UML activities execution which relies on the DF 
MoC. 

 Synchronous Reactive (SR)  

In the Synchronous Reactive (SR) MoC (Figure 1-2), a component reacts to the events it re-
ceives from the environment in which it is placed. The components which rely on SR MoC are 
supposed to provide outputs and communicate instantaneously. The execution of the behavior 
is triggered when a new input is received. If the component has more than one input, then partial 
input arrival is sufficient to trigger its behavior.  
The SR MoC can be described as logically timed systems. Time is divided into discrete instants 
called reactions or ticks in which the system is observed. Although steps are ordered, there is 
no notion of time delay between steps. Thus, we refer to time in this domain as logical time 
rather than discrete time. 

This MoC is usually used for describing reactive systems and the real-time controller’s behav-
iors in which pieces of the program react simultaneously and instantaneously at each tick of a 

Output and input pins data tokens 

A 

B 
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E F 

logical time 
input output 

Figure 1-1. The Data Flow MoC 
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event
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Nothing happens between two events 

Figure 1-2. The Reactive Synchronous MoC 
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global clock. Primary among languages which rely on this MoC are Esterel [9], Lustre [19] and 
Statecharts [22]. 

 Discrete-Event (DE) 

Components which are governed by Discrete-Event MoC (Figure 1-3) react to events that occur 
at a given time instant and produce other events (either at the same or at a future time instant). 
Time is an integral part of the model. Each event has a specific time instant that is global on the 
level of the model, called a time stamp. A DE simulator maintains a global events’ queue sorted 
by their time stamp and has an internal notion of simulated time. The Discrete-Event MoC 
therefore relies on timed execution semantics. During a simulation step, the control consists in 
resuming all processes that have sent events with the same time stamp. The execution is chron-
ological and serves as a basis for expressing concurrency in the model, that is, the first event to 
execute is the first one in the queue of events. This MoC is usually used to model systems in 
network and communication systems, manufacture or also management systems.  

 Continuous-Time (CT)  

Continuous-Time (CT) models consist of components that have continuous time signals as their 
inputs and outputs, and may have a state that changes over time advancement (Figure 1-4). 
These systems are usually represented with differential equations. During a simulation step, the 
simulation tool consists in solving the equations by fixed or variable integration steps by means 
of numerical solvers (continuous-time solving algorithm). Time is advanced in increments of 
exactly the integration step size noted “h”. After each update of the clock, the state variables 
are updated for the time interval [t, t+h].  

The CT MoC is commonly used for modeling and simulation of physical systems such as me-
chanical and hydraulic systems. 

time 

output 

Figure 1-4. The Continuous Time MoC 

time 

output 

The events time stamps 

2 0 5 10 

Figure 1-3. The Discrete Event MoC 
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 Simulation tools 

The simulation aims at the verification of system behavior early in the design process. It is 
performed with the help of a simulator, also called a simulation software/tool or  an execution 
engine. The simulation tool is usually a modeling tool for a specific language and provides an 
execution engine responsible for controlling a model according to computation rules defined 
by the MoC of the modeling language.  
Here are examples of language/simulation tool. Papyrus/Moka4 is an execution engine for UML 
models where the execution comply to the DF MoC. SCADE5 (Safety-Critical Application De-
velopment Environment) is an environment provided by Esterel Technologies. It builds on Lus-
tre [19] and Esterel [9] to provide execution of models relying on the SR MoC. SystemC6 is a 
framework that provides facilities to describe software and hardware components and a simu-
lator that coordinates the execution of components relying on DE MoC. Open Modelica7 and 
Dymola8 are simulation tools for models expressed with the Modelica language where the 
execution relies on the CT MoC.  

In the next section, we will see that a model of a CPS involve several components made using 
various modeling languages, and therefore several simulations tools and MoCs. The verification 
of a CPS is therefore not possible using a unique simulation tool. A new technique allowing to 
bring together all these components is then required. 

1.2. Technique of CPS modeling and simulation 

CPSs are complex. They involve several components operating in different domains (electric, 
mechanic, hydraulic, network, control, etc.) which must interact with each other. Their related 
models cannot be built in a monolithic manner. They comprise models of physical components 
as well as models of computational components which are of different natures. A modular ap-
proach should be used where models of individual (physical or computational) components are 
first built, then integrated in the same environment to obtain the model of the overall system. 

In practice, the modeling and simulation of individual components is performed by specialized 
suppliers (domain specialists) using modeling languages and simulation tools they are familiar 
with. The resulting models are made of different languages and most likely rely on different 
MoCs. In addition to that, due to the complexity of CPSs, the reuse of IP components is becom-
ing essential for coping with tight time-to-market. Suppliers from different domains provide 
their models to industrials while protecting their IPs by restricting the access to the component 
model [28]. 

In summary, CPSs are not easy to verify due to the following reasons: 

- they embed components operating in different domains, 
- their modeling brings together different languages/simulation tools and MoCs, 
- their modeling may need the use of legacy code and IP-protected models 

                                                 
4 Refer to eclipse.org/papyrus 
5 Refer to www.esterel-technologies.com 
6 Refer to http://hdl.telecom-paristech.fr/sc_intro.html  
7 Refer to www.modelica.org 
8 Refer to www.3ds.com/dymola 



Chapter 1: Foundations and Techniques of Modeling and Simulation 
 

39 
 

The simulation of the whole system requires the integration of heterogeneous models where the 
main issue is to determine the global behavior of the model. Several works, such as [38, 44, 
35], state that the integration of heterogeneous models is not trivial since their semantics are 
pretty different in terms of data, control and model of time. These models, in fact, differ in the 
way the components interact with their environment, execute their behavior and manage 
time/events (refer to section Model of Computation (MoC) 1.1.2). The coordination and syn-
chronization between the coupled models is a challenging issue for CPS modeling and simula-
tion. The IP protection issue aggravates this task since the models’ suppliers do not expose 
sufficient information about their models.  

New design methodologies and frameworks for CPSs modeling and simulating of CPSs are 
required to close the gap between heterogeneous models and to integrate legacy code and IP 
models in order to be accepted in the industry [28]. 
Authors in [20] have identified five academic and industrial initiatives which address this kind 
of heterogeneity issue. In the next section, each technique will be evaluated independently 
based on the three following criteria: 

- (criteria 1) the capabilities to cope with the heterogeneity of CPS,  
- (criteria 2) the possibility to apply the approach to CPSs, 
- (criteria 3) the acceptance level of the approach in the industry. 

 Translation of models  

This technique aims at supporting the transformation between modeling formalisms. ATOM39 
for example, is a tool for multi-formalism modeling which provides support for several model-
ing formalisms (such as Data Flow Diagrams, State Machines and Petri Nets) and utilities for 
their simulation. Models are described as graphs. Their translation from one formalism to an-
other consists in graph rewriting.  

Evaluation in the context of CPSs modeling and simulation:  
This technique allows the support of heterogeneous modeling formalisms and is scalable (cri-

teria 1 probably satisfied). Providing support for a new modeling formalism, in fact, consists 
in integrating of its meta-model in the framework and the implementation of the transformation 
rules independent of the previously made transformations. The feasibility of the approach in 
the context of CPS (criteria 2 possibly not satisfied) depends on the number and size of the 
involved languages meta-models, and on their accessibility. One need to put a lot of effort to 
translate a large meta-model (e.g, for Modelica into another meta-model. In addition, switching 
between two different approaches for modeling components is not possible when details about 
the models are not sufficiently accessible (i.e, black boxes based on legacy library) (criteria 3 

probably not satisfied). 

 Composition of modeling languages  

The composition of modeling languages is a traditional technique and consists in defining a 
common language for the specification of systems by composition of existing languages. The 
resulting language should be rich enough to support the heterogeneity of the system and may 

                                                 
9 Refer to: http://atom3.cs.mcgill.ca/indesystem  
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be obtained by the extension of an existing one.  In [14], authors enumerate several methods 
for the composition of modeling languages.  

Evaluation in the context of CPSs modeling and simulation: This approach is not feasible in the 
context of CPSs (criteria 2 not satisfied) because their modeling and simulation are handled by 
different domain experts. Using this approach, all domain experts are asked to model their com-
ponents using a new language. This is not practical (criteria 3 not satisfied) since they use 
languages and tools they are familiar with. In addition, this approach is costly due to the number 
of involved languages and its lack of scalability (criteria 1 not satisfied). That is, each time a 
new modeling language is considered, the target hybrid language must be rebuilt to account for 
new concepts.  

 Unification of semantics 

This technique proposes a unique semantic support for describing heterogeneous models. The 
difference of this technique compared to the composition of the modeling languages is that it 
aims at fitting the models in an already defined semantics instead of enlarging the modeling 
language with new concepts. For example, in Metropolis [6] the process networks were chosen 
as the semantics basis for the definition of unified heterogeneous semantics.  

Evaluation in the context of CPSs modeling and simulation: This approach is not applicable in 
the context of CPSs (criteria 2 not satisfied) due to the diversity of the involved models. As 
stated previously, CPSs integrate models from different domains (electric, mechanic, control, 
etc.) which are provided by different teams, and which rely on different MoCs. The unification 
of the semantics requires the domain experts to work together in order to share their knowledge 
(criteria 3 not satisfied), to think about the unification of the domains concepts (criteria 1 not 

satisfied), and to bridge the semantic gap between the MoCs. 

 Composition of models 

In this technique, heterogeneous models are assembled together at model description level. That 
is, instead of defining a common modeling language for the specification of the system (as 
proposed in section 1.2.2), the system components are specified using different modeling lan-
guages then assembled and adapted. The most popular approach is Ptolemy10 and we can also 
notice Modhel’x11. This kind of approach is based on the concept of MoC and consist in adap-
tating the involved MoCs while defining relations between the semantics of these MoCs. 

Ptolemy 

Ptolemy proposes an environment for the modeling and the simulation of heterogeneous sys-
tems. It uses an actor-oriented design approach to model structure of components. The rules of 
interaction and communication between actors are defined by the MoC, and implemented by a 
director. Heterogeneous models combine directors realizing distinct MoCs. Ptolemy addresses 
the problem of mixing heterogeneous models by providing adaptation of semantics (at data, 
control and model of time levels) between the involved MoCs.  

                                                 
10 Refer to: http://ptolemy.eecs.berkeley.edu/ptolemyii/  
11 Refer to: http://wwwdi.supelec.fr/software/modhelx/  



Chapter 1: Foundations and Techniques of Modeling and Simulation 
 

41 
 

ModHel’X 

ModHel'X is a framework for simulating multi-formalism models. Models are made of blocks 
(a generalization of actor in Ptolemy). ModHel'X in particular relies on the notion of interface 
blocks. An interface block includes an adaptation layer which allows the modeler to specify 
explicitly how the semantics of the MoCs are adapted at the boundary between two heteroge-
neous models. Modhel’x was proposed as an extension to Ptolemy. It allows flexible heteroge-
neous modeling without modifying the original assembled models.  

Evaluation of the approach in the context of CPSs: This approach provides a way to address 
the heterogeneity issue while preserving the modularity of models (criteria 1 probably satis-

fied). The advantage of Ptolemy and ModHel’x is that they support the most widespread MoCs 
(e.g, CT, DE and several types of dataflow) and proposes their adaptation. They are good can-
didates for experimenting the adaptation and the synchronization of heterogeneous MoCs (cri-

teria 2 possibly satisfied). However, the use of this solution for the CPS is not well accepted 
industrially especially when the CPS model is built using legacy models (criteria 3 possibly not 

satisfied). 

 Co-simulation  

Co-simulation is the joint simulation of models developed with different languages and tools. 
It enables tools interoperability to facilitate the simulation of the intrinsically heterogeneous 
CPSs.    
Co-simulation has been extensively investigated in literature. Some approaches such as [24] 
and [23] propose the coupling of a fixed and restricted set of simulators. An adaptation is re-
quired to connect a tool to the others for their synchronization during simulation. The main 
drawback of these point to point solutions is that the synchronization is specific to each simu-
lation tool. Therefore, synchronization modules built for one tool may not be easily reused for 
other tools. This approach also lacks scalability, that is, the integration of a new tool in the co-
simulation approach requires synchronization with all integrated tools or the designation of a 
central component responsible for their synchronization and orchestration. Other co-simulation 
approaches aim at supporting the connection of any type of simulator. The most popular initia-
tives are the High Level Architecture (HLA) [1] and the Functional Mock-up Interface for co-
simulation standard (FMI) [17]. Subsections 1.2.5.1 and 1.2.5.2 give further details about both 
initiatives. 

HLA Standard 

HLA is a standard initially developed by the US Department of Defense (DoD) in an effort to 
facilitate the interconnection of distributed simulators. A distributed simulation, so-called “fed-
eration”, interconnects several simulators known as “federates”. These federates are processes 
which exchange data relying on publish/subscribe patterns. Synchronization of federates, data 
exchange and event passing between all federates is managed by the Real-Time Infrastructure 
(RTI).  HLA provides a standard architecture which eases the interconnection of simulators but 
is not an implementation by itself. CERTI12 , for example, provides open source implementation 
of an HLA RTI. 

                                                 
12 Refer to: www.openrobots.org/certiHLA 
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FMI for co-simulation standard 

FMI for co-simulation specification aims at co-simulation of separately developed components. 
FMI is a result of the MODELISAR research project. It emerges from industrial needs, where 
the goal is to facilitate the cooperation between different companies while preserving the intel-
lectual properties (IPs). A model of a given system is a set of interconnected black-box slaves, 
the so-called FMUs (Functional Mockup Units). The FMUs are passive entities whose simula-
tion is triggered and orchestrated by a master algorithm (MA). FMI restricts the communication 
and exchange between FMUs to discrete communication points where, in between, each com-
ponent is solved independently with its specific tool.   

Evaluation in the context of CPS modeling and simulation: HLA and FMI have close goals but 
have different architectures and provide different features. In HLA, the synchronization and 
coordination of the heterogeneous simulators during the simulation is handled through the RTI 
services (data exchange, time advance and events handling mechanisms) whereas, in FMI, these 
services are not provided in the standard and should be handled by a MA. In [5], authors attempt 
the combination of these two standards by proposing the RTI as a MA orchestrating a set of 
FMUs encapsulated in federates. 
Both HLA and FMI have limitations, but they present attractive characteristics in terms of mod-
ularity of the solution and the interoperability between the model’s simulators (criteria 1 and 

criteria 2 probably satisfied). They are standards which are already supported in several tools. 
Most of HLA-compliant tools are network simulators such as NS313 and OMNeT++14 since 
HLA is mainly used for distributed simulations. At the same time, FMI standard is becoming 
well-accepted industrially (criteria 3 satisfied). It is supported by more than 90 simulation tools 
and is considered an important driver in enabling tool interoperability in the area of cyber-
physical systems. 
 

1.3. Discussion and conclusion 

In this first chapter, we introduced foundations and techniques for CPS modeling and simula-
tion. We first defined the notions of modeling languages, MoCs, and simulators in order to 
become familiar with terms later used in our discussion. The second part of this chapter focused 
on techniques for simulating heterogeneous systems. We stated that CPS are not easily verified 
due to the heterogeneity of the involved components regarding the domains, the modeling lan-
guages and tools, and MoCs. Methodologies for CPS modeling and simulation not only have 
to cope with this heterogeneity, but they also have to become accepted within the industry. 
Five techniques for verification of heterogeneous systems were presented and evaluated based 
on these criteria. A synthesis of this evaluation is given in Table 1-1. We concluded that the 
co-simulation is the most suitable technique for the modeling and simulation of CPS.  
 

                                                 
13 Refer to: www.networkSimulator-ns3.org 
14 Refer to: omnetpp.org 
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Table 1-1. Evaluation of verification techniques according to the chosen criteria 

Techniques Criteria 1: The capa-
bility to cope with the 
heterogeneity of CPS  

Criteria 2: The possi-
bility to apply the ap-
proach to CPSs 

Criteria 3: The ac-
ceptance in the in-
dustry 

Technique1: Transla-
tion of models 

Probably satisfied Possibly not satisfied Probably not satis-
fied 

Technique2: Compo-
sition of modeling 
languages 

Not satisfied Not satisfied Not satisfied 

Techniques3: Unifi-
cation of semantics 

Not satisfied Not satisfied Not satisfied 

Technique4: Compo-
sition of models 

Probably satisfied Possibly satisfied Possibly not satisfied 

Technique5: Co-sim-
ulation 

Probably satisfied Probably satisfied Satisfied 

 
Two co-simulation standards, HLA and FMI, were presented in section 1.2.5. We stated that 
both represent attractive characteristics with some limitations. We choose FMI standard as a 
basis for our contribution. FMI is considered as an important driver in enabling tool interoper-
ability in the area of cyber-physical systems. The state of the art, as well as the number of 
simulation tools which support FMI, give an indication on the popularity of the FMI standard 
for the co-simulation of CPS. However as stated previously, FMI has some limitations. These 
later are addressed in the next chapter.
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Outline 

2.1. About FMI for co-simulation  
2.1.1. The Functional Mock-up Unit (FMU)  

2.1.1.1. The co-simulation description schema 
2.1.1.2. The co-simulation interface (FMI API) 

2.1.2. The master algorithm 

2.2. Limitations of FMI regarding CPS 

2.2.1. Untimed semantics are not supported (I1)  

2.2.2. Time events are not handled (I2)  

2.3. Adressing FMI limitations 

2.3.1. Adaptation of semantics at the FMU level 
2.3.2. Extension of the FMI API 

2.3.3. Adaptation of semantics at master level 
2.4. Discussion and positioning 

 

In the previous chapter, we stated that co-simulation is the most suitable technique for dealing 
with related heterogeneity of CPS simulation. We also explained why we chose FMI for co-
simulation as a basis for our work. Although FMI provides a standard interface for co-simula-
tion of models from different languages/tools, it also has lacks to cope completely with the 
heterogeneity of the involved MoCs. To better understand the limitations of the FMI standard, 
we will represent the architecture of the standard section 2.1, with the notions of Master Algo-
rithm and FMU respectively, in subsections 2.1.1 and 2.1.2. Further, we will represent the life 
cycle of the FMU in order to identify the problems related to the integration of different MoCs 
in section 2.2. Then we will outline the solution we propose to solve these problems in section 
2.3. The chapter ends with a discussion about the proposed solution and our positioning in 
regards to the integration of UML models in the FMI-based co-simulation. 

2.1. About FMI for co-simulation  

FMI [17] is a standard that supports both model exchange and co-simulation of dynamic models 
originally designed with different simulation tools. Its development was initially launched as 
part of the MODELISAR project and continues now through the participation of 16 companies 
and research institutes under the roof of the Modelica Association. Today, FMI is supported by 
over 89 tools [17]. A component that implements FMI standard is called FMU. This can later 
be used for either: 

� A model exchange, where the goal is to allow a generated FMU to be imported and 
executed in a different simulation tool. The FMU is executed using the solver provided 
by the host simulator (Figure 2-1-a); 
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� A co-simulation, where the intention is to provide a standard interface to couple two or 
more FMUs in a co-simulation environment. The data exchange between these FMUs 
is restricted to a discrete set of communication points where each FMU is executed 
independently with its own solver (2-1-b). 

It is not common for UML tools to support execution of physical models. The model exchange 
is therefore not possible to adopt in this work. We are interested in FMI for co-simulation, 
which is based on master/slave architecture. A system is seen as an interconnection of slaves, 
the so-called FMUs, imported in a co-simulation environment, the so-called master. This latter 
is in charge of providing an algorithm to orchestrate and synchronize the slaves.  The FMI 
specification provides a standard interface for the representation of the models as FMUs, but it 
does not standardize the master algorithm. 

The following material provides further detail about the FMUs and the master algorithm while 
pointing out important information that concerns our work. It specifically illustrates the FMUs’ 
composition and the master algorithm as defined in the FMI specification. Then, it identifies 
the shortfalls of the FMI standard regarding simulation of CPS.  

 Functional Mock-up Unit (FMU) 

The FMI specification creates a distinction between the description of data and functionality. It 
consists of two parts: the co-simulation description schema defined as an xml schema, and the 
co-simulation interface defined as an API written in C. An FMU is an implementation of the 
FMI interface. It contains a zipped-file, which therein contains a “modelDescription.xml” file 
providing static information about the model, and code files or binaries implementing the dy-
namics of the model. The FMU may contain additional data and functionalities.  

Subsections 2.1.1.1 and 0 outline details about the important elements of the co-simulation de-
scription schema and the co-simulation interface. 

 Co-simulation description schema  

The co-simulation description schema defines the structure and the content of the XML file 
contained in the FMU. Figure B-1. XML schema of the FMI standard (version 2.0) in Annex B 
depicts an extract of the schema taken from the FMI specification. Each FMU has a specific 
XML file (called “modelDesciption.xml”) that complies with that schema. It contains static 
information relevant for the communication in the co-simulation environment specified in tags 
(expressed between ‘< >’), in particular: 

Simulation environment 

Master algorithm 

 Model FMU 

Solver 

 Model FMU 

Co-simulation environment 

Master algorithm 

 Model 

Solver 
FMU 

 Model 

Solver 
FMU 

Figure 2-1-a. FMI for model exchange Figure 2-1-b. FMI for Co-simulation 
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� The model variables and parameters (expressed in the element <ScalarVariable>), 
� The model structure which represents the inputs and outputs and identifies the initial 
inputs and derivatives of the model (expressed in the element <ModelStructure>), 
� The solver/simulator capabilities which characterize the ability of the slave to support 
advanced master algorithms e.g, the usage of variable communication step sizes, higher or-
der signal extrapolation, or others (expressed in the element <CoSimulation>),  
� The information about the default simulation configuration of the simulator e.g, the sim-
ulation start time, the simulation stop time and the preferred step size (expressed in the ele-
ment <DefaultExperiment>). 

Figure B-5. Example of a model description xml file of an FMU for co-simulationof Annex B 
depicts an example of a model description file of an FMU for co-simulation together with an 
explanation of the different elements of the XML file. 

FMI 2.0 introduces new optional features compared to the early version 1.0 as follows: 
� The ability to save and then restore the complete state of an FMU during simulation 
represented by the flag “canGetAndSetFMUState” in the XML file. This feature enables an 
FMU to go back in the simulation time in order to perform a simulation step again if this 
later fails. This feature is interesting especially for continuous time simulation where the 
solver may fail to solve differential equations because the step size is too large. 
� The input/output (I/O) dependency feature provides information about potential depend-
ency relation between the outputs and the inputs of a given FMU. It is specified as an output 
dependency in the “modelStructure” element of the XML file. Together with the external 
dependency between FMUs (as a result of their connections), this information can be used 
by the master algorithm in order to detect cycles when connecting FMUs, and therefore avoid 
algebraic loops when connecting FMUs together. In addition, it can be used to establish the 
order in which the data should be propagated. 

These features, when supported by the involved FMUs, can be used to empower the master 
algorithm. 

 Co-simulation interface (FMI API) 

FMI for Co-Simulation defines interface routines for the communication between the master 
and all FMUs in a co-simulation environment. The co-simulation interface is a set of C functions 
(an API) which an FMU should implement. FMUs by themselves are passive objects, in the 
sense that they do not execute. For that reason, they are called slaves. We need a so-called 
master algorithm for controlling the FMUs and for data exchange of input and output values as 
well as status information.  
An FMU is therefore seen as a black-box which implements the methods defined in the FMI 
co-simulation interface and, the simulation of one FMU consists of a sequence of API functions 
called by a master. The most important functions concern the instantiation and initialization of 
an FMU, the propagation of variables from one FMU to another, the stepwise simulation of the 
FMU and the termination of the simulation. 
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a. Instantiation and initialization 
The instantiation is handled by a call to the fmi2Instantiate function that returns a new instance 
of an FMU. The instantiation is mandatory to run the simulation of an FMU.  
Once instantiated, the FMU can be initialized. The initialization is handled by a call to the 
functions fmi2EnterInitializationMode and fmi2ExitIntializationMode where in between some 
variables could be set or get before the beginning of the simulation. 
The variables that can be initialized are input variables and variables that must have an exact 
value at time zero. The variables that can be retrieved at initialization phase are output variables. 
At the initialization phase, the simulation parameters should be set by a call to fmi2SetupExper-

iments. The simulation parameters indicate the simulation start time and the simulation stop 
time. 

b. Stepwise simulation and data propagation 
At this stage, the FMU is instantiated and initialized. The co-simulation computation can there-
fore start. The fmi2DoStep function advances the co-simulation by the simulation step size h>0 
from time tci to time tci+1 (tci<> tci+1) and returns a status which indicates whether the FMU suc-
ceeded the simulation step or not.  It returns fmi2OK to indicate that the slave has performed 
the simulation up to the requested point in time. In turn, fmi2Discard is returned to indicate that 
only a part of the time interval could be computed successfully, while fmi2Error is to indicate 
that the computation could not be performed at all. 
At the end of a simulation step, the fmi2SetXXX and fmi2GetXXX commands are used to set the 
input variables values and retrieve the output variables values of an FMU. The XXX is replaced 
with the data type, for example, fmi2GetReal for real variables. In a network of connected 
FMUs, these functions allow the master algorithm to propagate data from one FMU to another. 

c. Termination 
The termination of an FMU is allowed only if the FMU successfully performed the last simu-
lation step. The termination of an FMU is handled with function fmi2Terminate.  

A formalization of the FMI API - more specifically, the procedures we introduced - and the 
connections of FMUs in a model was proposed by Broman and al. in [12] as follows15: 

Given a co-simulation model M: 
C = F: is the set of FMU instances 

c ∈ C: an FMU  
Sc: the set of states of c  
Uc: the set of input port variables for c  
Yc: the set of output port variables for c  
V: the set of values that a variable may take  

I ⊆ V: the set of default variables values. 

Dc ⊆ Uc × Yc: I/O dependency for instance c,  
Dc1 = (uc1,yc1) means that the output yc1 of the FMU instance c1 depends on the input uc1 of the 

FMU instance c1 (internal dependency) 

                                                 
15 This formalization will be used later to specify the master algorithms proposed in the literature as well as those 
proposed in this work 
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U = Sc∈C Uc: the set of all input variables in M 

Y = Sc∈C Yc: the set of all output variables in M  
P: U → Y: Port mapping constructed from connectors of M 
P(uc2) = yc1 means that the output yc1 of the FMU instance c1 is connected to the input uc2 of the 

FMU instance c2 in M (external dependency) 

instc: C → Sc instantiates the FMU c and returns its state. 
initc: R ≥ 0, R ≥ 0 → Sc initializes c with a given start time tstart and stop time tstop. Input ports 
variables can be set during initialization phase with values from I. It returns the state of c. 

setc:  Uc × V → Sc sets a given input u ∈Uc with a value v∈ V and returns the new state of c. 

getc: Yc → V returns the value v∈V of a given output y∈Yc. 

doStepc: R > 0 → Sc × R ≥ 0 takes as input a step size h ∈ R>0. It performs a simulation step 

and returns the new state and the last successful simulation time h’∈ R>0 of c. 
terminatec: → Sc: terminate the simulation of c. 

Table 2-1 gives the mapping between the FMI API and the functions in the formalization. 

Table 2-1. Mapping between the FMI API functions and the formalization functions 

Formalization FMI API 

instc() fmi2Instantiate(); 

initc(tstart, tstop) fmi2EnterInitializationMode (); 
         fmi2SetupExperiments(tStart, tStop); 
         fmi2Setxxx(v); 
fmi2ExitInitializationMode(); 

getc(y) fmi2Getxxx(y); 
where xxx is one of Real, Integer, Boolean and String 

setc(u,v) fmi2Setxxx(u,v); 
where xxx is one of Real, Integer, Boolean and String 

doStepc(h) fmi2DoStep(h); 

terminatec() fmi2Terminate(); 

 Master algorithm 

A master algorithm triggers and orchestrates a collection of FMUs to co-simulate the different 
parts of a system. Figure 2-2 depicts the principle of the master algorithm for an FMU simula-
tion.  

Figure 2-2. Principle of an FMU simulation 
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The master algorithm performs stepwise co-simulation from time “tstart” to time “tstop”. Time 
advances locally on FMUs by the step chosen by the master algorithm. When the co-simulation 
is started, the FMUs are simulated independently between two discrete communication points 
“tci” and “tci+1” with a step size “h=tci+1-tci>0”. At these communication points, the master 
algorithm collects the outputs “y(tci)” and sets the inputs “u(tci)” of all FMUs. 
In this way, the master algorithm synchronizes the FMUs in the manner that it waits for all 
FMUs to simulate up to the communication point at each simulation step before it advances the 
time.  
A simple co-simulation master algorithm uses the sequence of FMI commands depicted in Fig-
ure 2-3. 

The FMI specification does not standardize a master algorithm for co-simulation. It only pro-
vides a pseudocode of a basic master algorithm (depicted in Figure B-16 of Annex B) and out-
lines the supported calling sequences from master to slave. Tool vendors are responsible for 
providing their own master algorithms according to their specific needs.  
Simple master algorithms can be found in FMI for co-simulation standard specification [17] 
and in [7] where they propose a fixed-step platform-independent MA. Authors in [37] investi-
gate adaptive communication size control in the FMI to improve the accuracy of simulations. 
Acker and al. in [43] propose a method to automatically generate an optimal master algorithm 
compliant to FMI standard starting from an explicitly modeled co-simulation model. Authors 
in [12] propose a class of advanced master algorithms where they demonstrate the importance 
of the rollback and the I/O dependency information regarding the efficiency of the simulation. 
 
 

/*Co-simulation parameters*/  
tc: Current simulation time  
tstart: Start simulation time  
tstop: Stop simulation time  
h: simulation step size>0 
/*Instantiate and initialize components c ∈ C */  
For each component c ∈ C:  

Instc(); 

Initc(tstart, tstop);  
/*Step wise simulation*/  
While (tc<tstop)  
      For each connection between an input u and an output y: 
          v = getc(y);  
             setc(u,v);   
  doStepc(h);   
      End for 
      tc=tc+ h;  
end while.  
/* Termination of the simulation*/  
For each component c ∈ C:  

terminatec() ;  
end simulation 

Figure 2-3.Basic master algorithm for FMI co-simulation 
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2.2. Limitations of FMI regarding CPS domain 

FMI was originally intended for continuous time models (which rely on CT MoC) with limited 
support of models with non-CT MoCs. The procedures defined in the FMI API are, in fact, very 
representative of continuous time systems simulations. A model relying on the CT MoCs can 
be directly wrapped into an FMU. However, MoCs such as Data-Flow (DF), Synchronous-
Reactive (SR) and Discrete-Event (DE) are not easily wrapped to the FMI API due to the se-
mantics gap between their execution semantics and that of the FMI API [12]. 
For CPSs, we need to bridge the semantics gap between the aforementioned MoCs and FMI, 
particularly at time and control levels. Table 2-2 is a reminder of the model of time as well as 
the instants at which a system should be observed with respect to the MoC on which it relies.  

Table 2-2. Semantic gap between FMI and non-CT MoCs: model of time and control 

MoC Model of time Control 

FMI Continuous  The system is observed through-
out the simulation 

DF Logical (no notion of time) The system is observed at the end of 
the execution (Causal) 

SR Logical (instantaneous reactions) The system should be observed at sys-
tem reactions  

DE Discrete time instants (differed reactions) The system is observed at time events 
occurrences  

Some issues regarding the integration of non-CT MoC are observed in the call sequence of the 
master algorithm given in Figure 2-3: 

� CPS & FMI Issue 1 (I1): The first issue is related to the inability of the master algorithm 
to account for untimed behaviors (behaviors relying on the DF MoC) and instantaneous re-
actions (behaviors relying on the SR MoC). The master, in fact, does not consider simulation 
step of size zero.  
� CPS & FMI Issue 2 (I2): The second issue is related to the choice of the simulation step 
size. This latter is chosen by the master without any assumption regarding the instants at 
which the component should be observed.  

These issues flow directly from limitations in the FMI API which are identified and explained 
in sections 2.2.1 and 2.2.2. 

 Untimed semantics are not supported (I1) 

Context: Untimed (and instantaneous reactive) behaviors do not take into account time to exe-
cute. There is indeed no notion of time. Outputs are supposed to be produced and propagated 
from one component to another at the same instant inputs. If the fmi2DoStep is called on an 
untimed component at time ‘tc’, then data should be produced and propagated from this com-
ponent to the other components at ‘tc’. The master should use a zero-step size for such compo-
nents. 
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FMI specification: The use of zero step size is not allowed [17]. The standard does not account 
for untimed behaviors and does not provide a mechanism allowing the component to output an 
instantaneous reaction to a changed value during simulation. As stated in section 2.1.2, the 
master algorithm performs stepwise simulation on the connected components where each com-
ponent is supposed to execute and advance for an amount of time ‘h>0’ chosen by the master. 
If the fmi2DoStep is called on an FMU at time ‘tc’ with a simulation step size ‘h>0’, then data 
will be propagated from one component to another at the next communication point ‘tc+1=tc+h’.  

Issue: When wrapped to FMI API, untimed and instantaneous reactive behaviors will not 

behave correctly. In fact, the data propagation will be delayed with an amount of time 

∆t=h>0. This delay may considerably affect the simulation results since the component 

will not produce outputs to its environment at the desired time. 

 Time events are not handled (I2)   

Context: Semantics of DE components is timed but not continuous. The component produces 
new outputs at a discrete set of time instants te (time event occurrences). For an efficient simu-
lation, the component should be observed at each te. A doStep should therefore account for these 
specific time instants. 

FMI specification: The FMI specification does not provide a way for the component to express 
the instants at which it will produce new values. The FMI specification provides a way for an 
FMU to express a desired static step size (optionally expressed in the xml file). However, the 
API does not provide routines that allow the FMU to express a change according to the desired 
simulation step size during the simulation. 

Issue: When wrapped to FMI API, DE components may not behave correctly. For exam-

ple, suppose that the master performs a doStep with a step size h>0 at tc, and the compo-

nent has a time event at time te<tc+h. The event will be missed and the data propagation 

will be delayed with an amount of time ∆t=tc+h-te>0. This delay may considerably affect 

the simulation results since the component will not produce outputs to its environment at 

the desired time. 

 Conclusion on FMI issues related to CPS domain 

The FMI standard provides an interesting basis for the modeling and simulation of CPSs with 
some limitation. We identified in this section 2.2.1 and section 2.2.2 two important the limita-
tions of FMI for CPS domain: untimed semantics is missing and time events are not supported. 
It should be noted that we are not interested in limitations identified in the literature regarding 
the CT components and we will not provide solutions to them because they do not belong to 
our area of expertise. The next section focuses on solutions proposed in the literature for the 
simulation of CPS using FMI for co-simulation standard. The proposed solutions will be eval-
uated for their ability to handle untimed execution semantics and time events during simulation 
as well as for their applicability in the context of our work.  

2.3. How to address those FMI limitations? 

Existing works related to FMI aim at the consolidation of simulation of CPS that particularly 
combine CT and non-CT dynamics. Based on the investigation of FMI standard specification 
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and on works in the literature, we conclude that solving that aforementioned limitations of FMI 
for CPS domain could be performed by adopting one of the following techniques. 

 Adaptation of semantics at the FMU level 

Principle: FMI aims at enabling the reuse of models in different co-simulation environments. 
One natural way to integrate a new modeling formalism in FMI-based co-simulation approaches 
is to export models as FMUs for co-simulation. An exported FMU must comply with the FMI 
standard, and it should contain the structure of the model and implement at least the mandatory 
functions of the FMI API mentioned in Section 2.1.1.2 of this chapter. The challenge would be 
to wrap semantics of various modeling formalisms (untimed semantics, discrete events seman-
tics, etc.) into the FMI API. The export should be done by wrapping semantics of the original 
modeling formalism to that of FMI API, and model to model transformation for the structure 
of the model. 
Related works: In [42], Tripakis and al. address principles of encoding different MoCs, includ-
ing finite state machines (FSM), discrete-event (DE), and synchronous dataflow (SDF) as 
FMUs. Feldman and al. [16] developed an approach to generate FMI code from Rhapsody 
SysML models that wraps state charts as FMUs. The authors acknowledge problems with FMI 
co-simulation of state charts due to the standard’s lack of support for instantaneous reaction to 
events. Pohlmann et al [33] generate FMUs from a UML model described as real-time state 
charts.  
Evaluation: This technique certainly enables simulation of heterogeneous systems by integra-
tion of new formalisms. But it doesn’t provide a solution for events handling since the models 
are wrapped into FMUs that comply with the FMI API which does not provide a way to get 
information about time events and instantaneous reactions. It is particularly interesting in in-
dustrial contexts where the goal is to facilitate the cooperation between different companies 
while preserving the IPs without any insurance about the efficiency of the simulation.  

 Extension of the FMI API 

Principle: Extension of the FMI API essentially concerns the capabilities of FMUs to expose, 
or not, some information. This technique was already used in the second version of FMI, where 
the first version of the standard was extended to introduce new features (refer to section 2.1.1.1 
for further details related to the added features).  
Related works: Using these features, Broman and al. in [12] have formally proven the im-
portance of these new features to ensure efficiency of the master algorithm in terms of determi-
nacy (i.e, given a set of inputs, different runs of the simulation produce the same output) and 
successful termination of an integration step. They propose a preprocessing algorithm called 
“order-variables” that statically analyzes the dependencies in a co-simulation model based on 
the connectors that link the FMUs and the I/O dependency information exposed by the FMUs. 
The latter is used to detect potential loops in the co-simulation model and, if no cycle exists, 
the order in which the input and output variables should be accessed. Then, they propose the 
master algorithm called “Master-step” that requires all FMUs to support rollback.  
The drawback of this algorithm is that the implementation of the rollback mechanism is still 
optional and may be difficult to achieve in practice. For this reason, they propose in addition, 
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an extension enabling a master algorithm to query an FMU for the time of events that are ex-
pected in the future. They propose to add a procedure to FMI API called “fmiGetMaxStepSize” 
that returns an upper bound on the step size that the FMU can accept. The last MA they propose 
uses the proposed extension to the FMI standard. They argue that the latter relaxes constraint 
imposed by the previous MA and correctly handles models containing a mix of FMUs that 
support rollback, FMUs that do not support rollback but implement the proposed extension to 
FMI for predictable step sizes, and at most, one FMU that supports neither. 
Authors in [41] propose an equivalent extension which aims at improving the “fmi2DoStep” 
primitive by adding a new status “fmi2Event” returned by the FMU when an event occurs (ei-
ther a time event or a state event) before the completion of the current simulation step. If the 
status “fmi2Event” is returned, that means that the FMU succeeds to perform simulation up to 
the time instant of the event. The MA should consider that the simulation was successfully 
performed until the time instant of the event and continue the simulation from this point of time 
without the need of the rollback mechanism.  
Evaluation: These extensions certainly enable events handling, but the solution requires the 
agreement of FMI standard consortium to accept or reject such propositions. In fact, providers 
of models try to expose the most minimum amount of information in order to protect their IPs 
as stated in [28]. In addition, the efficiency of simulation not only depends on the capabilities 
of the FMU (i.e, the exposed information and the performance of the solver), but also on the 
ability of the master algorithm to account for all important information, which is why works 
that propose extensions have also to propose an advanced master algorithm as a part of their 
contribution. 

 Adaptation of semantics at master level 

Principle: This technique consists in coupling FMU and non-FMU models in a specific co-
simulation environment. The idea emerges from the need to integrate new modeling formalisms 
without the need to export the original models as FMUs for co-simulation either because there 
is no intention to reuse the models or because the export of models as FMUs is not trivial. The 
co-simulation environment is responsible for providing master algorithm for the orchestration 
of the connected models (since there are FMUs involved in the global model), which should 
cope with their heterogeneity. It should make a difference between an FMU and a non-FMU in 
order to simulate each component relying on their specific execution semantics. 
Related works: Savicks et al. [36] propose an approach which enables co-simulation of FMUs 
with Event-B models without wrapping them as FMUs for co-simulation. The approach is 
tooled within the Event-B platform Rodin [2].  It is based on the master/slave architecture of 
the FMI standard. It proposes a simple MA for their orchestration but does not provide a way 
to handle time events. 
Denil and al. in [13] define an adaptation of semantics between pure event models and contin-
uous models. This adaptation is required in imported FMUs and in the master algorithm in order 
to set up an efficient co-simulation between heterogeneous formalisms. They define two extra 
FMUs that manage adaptation of semantics between the involved heterogeneous formalisms. 
Evaluation: The main drawback of this approach is that it imposes the co-simulation environ-
ment to be compliant with a specific modeling formalism. The main strength of this approach 
is that models which are not exported as FMUs are accessible, that is, all information about the 
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model are exposed. Therefore, it ensures the reuse of models and their IP protection (the FMUs), 
while providing flexibility to cope with the heterogeneity of the involved models and easily 
handling events produced by the non-FMUs models.  

2.4. Discussion and positioning 

We presented in this second chapter the FMI for co-simulation standard. We focused particu-
larly on its shortcomings for the modeling and simulation of CPS and identified two challenges:  

� Issue 1: Untimed semantics are missing. 
� Issue 2: Time events are not supported. 

Three techniques proposed in the literature were evaluated on their ability to meet or not meet 
these challenges as shown in Table 2-3. 

Table 2-3. Summary of the FMI-based techniques evaluation 

Technique Evaluation 

Adaptation of semantics at 
FMU level 

Advantage: The approach is completely compliant with 
FMI co-simulation and therefore well accepted in industry. 
Drawback: Issue 1 and Issue 2 cannot be solved with the 
current version of FMI. 

Extension of the FMI API Advantage: The approach is completely compliant with 
FMI co-simulation and therefore well accepted in industry. 
Drawback: Issue 1 and Issue 2 can be solved but necessi-
tates the agreement of FMI standard consortium. 

Adaptation of semantics at 
master level 

Advantage: Issue 1 and Issue 2 can be solved. 
Drawback: The co-simulation environment must be compli-
ant with a specific modeling formalism. 

 
The best solution will be the combination of the two first techniques: the extension of the stand-
ard for the support of new formalisms, along with the export of models as FMUs for co-simu-
lation and a MA which accounts for the new extensions. This technique definitely ensures the 
integration of new modeling formalisms (necessary for CPS), as well as handling events. 
 

However, it is not trivial to do that in practice because, for instance, the proposed extension of 
the standard (in particular related to the time of the next event) is not approved by FMI consor-
tium; by extending the standard, the providers of models are constrained to expose information 
which is not necessarily compliant with their policy [28].  
 

The third technique is an intermediate solution. It enables the reuse of models while protecting 
their IPs in a standardized way thanks to FMI standard, as well as the integration of new mod-
eling formalisms in FMI-based co-simulation. It provides a solution to cope with the heteroge-
neity of systems by integrating FMUs and non-FMUs models. It also enables events handling 
and untimed semantics in non-FMUs components, since all important information about these 
models are exposed and known by the environment. We will demonstrate how, using adaptation 
of semantics at master level, we are able to integrate the UML models in FMI-based co-simu-
lation while accounting for their event-driven and instantaneous behaviors.  
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UML models are required to be executable for their integration in FMI-based co-simulation. 
The next chapter, focus on UML models execution as well as on challenges of their integration 
using the third technique. 
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Chapter 3: UML models execution - Over-
view and Key aspects 

Outline 

3.1. Tools for UML models execution 

3.1.1. Tools evaluation 
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3.2.2.1. Passive behaviors  
3.2.2.2. Active behaviors 

3.2.3. Non-executable models within fUML* 
3.2.3.1. Timed Behaviors 
3.2.3.2. Behaviors reacting to change events 

3.2.4. Addressing fUML* limitations 
3.2.4.1. Extending fUML* (F1) 
3.2.4.2. Introducing the control of timed execution (F2) 

     3.3. Methodology for the integration of fUML* and FMI 
3.4. Conclusion 

 

 

UML is the reference standard for software modeling and is very commonly used in the industry 
[4]. Our thesis is that system engineering in general would greatly benefit from the considera-
tion of UML in the FMI-based co-simulation approach. It would indeed enable a significant 
number of software designers to evaluate the behavior of their software components in their 
simulated environment as soon as possible in their development processes, and therefore ena-
bling them to make better design decisions earlier. It would also open new, interesting perspec-
tives for CPS system engineers, as it allows them to consider a widely-used modeling language 
for the software parts of their systems. 
In the previous chapter, we explained why we chose the adaptation of semantics at master level 
as a technique for the integration of new modeling formalisms in FMI-based co-simulation, and 
stated that we are particularly interested in UML as a language for computational components 
modeling. The main purpose of this chapter is to identify the key entry points for the application 
of this technique on UML models.  
Simulation capacity of UML models is available in several tools. These tools will be enumer-
ated and evaluated in section 3.1 of this chapter. The goal of this evaluation is to find a tool or 
a framework on which we could rely on for the co-simulation of UML models 
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in the FMI context. We are particularly interested in tools which support FMI for co-simulation 
or at least can provide capabilities for the support of FMI features and the integration of UML 
models. 

In section 3.2, we will take a closer look at the modeling and simulation of computational com-
ponents with UML. We will establish a list of UML models we want to model and simulate, 
based on a classification of discrete systems, as well as on a systems design methodology (sub-
section 3.2.1).  After that, we will evaluate the ability of fUML* to simulate these models (sub-
sections 3.2.2 and 3.2.3) and point out the key elements regarding the integration of UML mod-
els in FMI-based co-simulation (subsection 3.2.4). 

3.1. Tools for UML models simulation  

The integration of UML models in co-simulation approaches requires the UML models to be 
executable. Simulation capacity of UML models is available in several tools. They will be enu-
merated and evaluated in subsection 3.1.1. They will be evaluated on their support of FMI fea-
tures and their integration of UML models in FMI-based co-simulation. At the end of this sec-
tion, we will give our positioning and choose our start point for the integration of UML models 
in FMI-based co-simulation.  

 Tools evaluation 

Table 3-1 checks the support for FMI standard in UML tools (the first column of the table) as 
well as the integration of UML models in FMI-based co-simulation, either by exporting UML 
models to FMUs, or by providing a master which adapts semantics of UML models’ execution 
to that of the FMI standard (second column of the table). 

 Table 3-1. UML tools evaluation 

UML Tools FMI for co-simulation 
features 

UML to FMI for co-
simulation adaptation 
and integration 

Magic Draw - Cameo 
Simulation Toolkit 

Yes 
Master, version 1.0 

No 

Rodin  Yes 
Master, version 1.0 

No 

Cosimate Yes  
Master, version 2.0 

Yes 

IBM Rational Rhapsody Planned No  

Gemoc Studio Planned - 

Mentor Graphics Bridgepoint No - 

Entreprise Architect - 
AMUSE 

No  - 

Moliz No - 
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• Magic Draw - Cameo Simulation Toolkit provides an execution engine for the UML 
state charts and fUML*. This toolkit also provides an implementation of FMI compliant 
with the version 1.0 of the standard. FMUs for co-simulation can be imported, represented, 
connected and co-simulated in SysML models. 
Although the tool provides both execution of UML models and an implementation of FMI, 
the integration of both features does not exist. In the context of co-simulation, SysML is 
only used for the representation of the imported FMUs and the definition of co-simulation 
scenarios.  

• Rodin is a tool developed within the European project FP7. It allows the verification and 
simulation of formal models specified using Event-B (a variant of B language). Rodin em-
beds a module for a formal specification of systems using UML classes and state machines. 
This module then transforms the UML specifications into Event-B models for the animate 
of the UML model using the model checker Pro-B. 
The Rodin framework also provides a master algorithm for the co-simulation of Event-B 
models with FMUs exported from Ptolemy. The approach is based on the version 1.0 of 
FMI standard. Although, the Rodin framework provides a way for UML models simulation 
as well as support of the FMI standard, no work links these capabilities as far as we know. 

• Cosimate is an open architecture enabling engineers to connect various simulation envi-
ronments together. This framework supports various language interfaces, in particular FMI 
for co-simulation, and simulators, more specifically, IBM rational rhapsody for UML mod-
els’ simulation. Cosimate provides an implementation of the FMI standard version 2.0 and 
allows for the co-simulation between FMI and non-FMI models. It supports heterogeneous 
co-simulation between solvers (e.g., Simulink) and event-driven (HDL, UML) or sequen-
tial (C) simulators. Using the Cosimate framework, […] proposed a co-simulation between 
UML models designed in rhapsody with models designed in numerical simulation tools, 
such as Simulink and AMESim.  
However, no details concerning the co-simulation approach are available, particularly in 
terms of whether the co-simulation of UML models with numerical simulators is ad’hoc or 
based on the FMI interface. 

• IBM Rational Rhapsody is an UML modeling and simulation tool. It allows for the exe-
cution of UML models build using classes, activities and state machines.  
This tool provides the export of UML models as FMU for model exchange, but not for co-
simulation. The support of FMI for co-simulation is planned16. 

• Gemoc Studio is an eclipse package which contains components that offer a framework 
for building and composing MOF-based executable Domain Specific Modeling Languages 
(xDSML). It addresses the execution of fUML activities using the xMOF Execution engine 
[11]. The support of a master algorithm for FMI co-simulation in the gemoc studio is under 
investigation. Gemoc studio deals with both UML models execution and the support of 
FMI for co-simulation. However, no explicit integration between the two features is done. 

                                                 
16 Refer to: http://fmi-standard.org/tools/  



Chapter 3: UML models execution-Overview and key aspects 

59 
 

  Discussion and positioning  

In the previous section, we evaluated UML tools (which provide the simulation of UML mod-
els) for their support to the FMI standard. This evaluation underlines the lack of the integration 
of UML models in FMI-based co-simulation, and emphasizes that there is no concrete, useable 
solution on which we can base our work. As a result, we have to propose a UML compliant 
environment with support for FMI (Chapter 4) together with an approach which properly inte-
grates UML models in FMI-based co-simulation (Chapter 5 and Chapter 6). By properly, we 
mean the synchronization and the coordination of the models’ executions while preventing 
events missing and respecting the execution semantics of each component (i.e, providing solu-
tions to Issue 1 and Issue 2 of FMI for CPS domain introduced in Section 502.2). 

As stated in section 1.2.4, the adaptation of semantics between heterogeneous models requires 
thorough knowledge of each of them. In particular, the integration of UML models with FMI 
requires the knowledge of the FMI standard API (refer to Chapter 2) and the UML models’ 
execution semantics.  In this context, Works around execution of UML models are carried out.  
PragmaDev17 tool, for example, proposes a combinaison between UML and SDL18 (Specifica-
tion and Description language) for the description of real time systems. SDL is interesting lan-
guage for the modeling of systems [3] and provides precise semantics for the execution of in-
teraction diagrams and state machines. For this work, we propose the use of the OMG standards 
related to the execution of UML models: foundational UML (fUML) and Precise Semantics for 
Composite Structures (PSCS). In the rest of the text we will refer to fUML and PSCS as fUML*.  
This choice is motivated by two reasons: (a) fUML* propose a standard basis for UML models’ 
execution in which it is essential to capitalize, and (b) fUML* is already supported in several 
tools (MagicDraw - Cameo Simulation Toolkit, Enterprise Architect - AMUSE, Papyrus – 
Moka, and Moliz), which allow the proposed contributions to be adapted to other fUML* com-
pliant tools.  

fUML* define precise semantics for the execution of a subset of UML models (refer to Annex 
A for an overview of fUML* syntax and semantics). We will see in section 3.2 that this subset 
does not cover all the UML models we would like to model and simulate, but the fUM* seman-
tic model does provide features (mechanisms) to tackle this limitation.  

Section 3.2 focuses on the modeling and simulation of UML components with fUML*. It out-
lines the systems we can simulate as well as those we are not yet able to simulate with fUML*. 
Section 683.2.4 proposes a set of fUML* features as key points for enabling the simulation of 
a larger scope of UML models. This chapter concludes with our positioning and an introduction 
to the contributions part of the manuscript. 

3.2. Computational components modeling and simulation with fUML* 

 Systems of interest 

UML is sufficiently expressive to model software specifications. The set of systems we would 
like to model with UML and integrate in co-simulation approaches can be classified according 
to two dimensions found in literature. The first one concerns the fact that the systems can be 

                                                 
17 http://www.pragmadev.com/  
18 https://www.irit.fr/Chap5SDL.pdf  
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transformational or reactive (section 3.2.1.1). The second one concerns the fact that the systems 
can be untimed or timed (section 3.2.1.2). 

Transformational and Reactive systems 

By referring to computational components classifications in the literature [31, 55] we identified 
two kinds of systems we want to model with UML: systems which simply perform a computa-
tion, the so-called transformational systems, and systems which are reactive to events occur-
rences, the so-called reactive systems. For each class of systems, three semantic properties are 
outlined. They concern:  

� (P1) Activation: It indicates the way the system is activated. For the corresponding UML 
model elements, it indicates the instants of its instantiation and initialization.  
� (P2) Behavior: It indicates the way the system behaves. For the corresponding UML 
model element, it indicates the way it should be executed during simulation and the instant 
it should be terminated.  
� (P3) Output/input relationship: It indicates whether the output of the system depends on 
its input.  

P1 and P2 allows us to later identify the equivalent routines of fUML* for the functions defined 
in the FMI API (inst(), init(), doStep() and terminate()). Refer to sections 5.1.2, 5.2.3, 6.1.2 and 
6.2.3 for further details on the mapping we propose between the fUML* routines and the FMI 
API. P3 is the equivalent of the I/O dependency expressed on FMUs and is used by the master 
algorithm to compute the order of data propagation between ports as explained previously in 
this chapter. 
The following subsections describe the transformational and reactive systems according to 
these properties. 

a. Transformational systems 

Transformational systems are systems that simply transform a set of inputs into a set of outputs 
[55]. When switched on, a transformational system accepts inputs, performs some computations 
and produces outputs, then terminates (Figure 3-1). Examples of transformational systems, also 
called passive components, include process applications which are used in embedded systems 
to encapsulate a piece of behavior that execute synchronously in a short cycle time. 
A transformational system has the following properties [45]:  

� (P1) Activation: A transformational system runs computations only when asked to do 
so by another component. That is, it should be handled by or contained in another com-
ponent. 

Figure 3-1. A transformational system 
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� (P2) Behavior: A transformational system transforms a set of inputs into a set of outputs 
and terminates.  

� (P3) Output/input relationship: The output values of a transformational system depend 
on its input values. 

 

b.  Reactive systems 

Reactive systems are systems that maintain interaction with their environment [21], which 
means that, when switched on, they are able to create the desired effect on their environment as 
a response to a received event (Figure 3-2). The response to an event generally depends on both 
the type of event and on the internal state of the system. 

Reactive systems continuously wait for the occurrence of some external or internal events. 
� External events refer to some change on the environment conditions such as an On/Off 

button press or a liquid which exceeds the allowed level in a tank. Usually, the instant 
at which the change event occurs is not known at the system specification phase.  

� Internal events refer to events which occur among the component. Time events (such as 
a timer tick or a calendar event) are an example of internal events and represent signif-
icant moments in time. Unlike change events, the instants at which time events occur 
are known and may be specified in the system behavior (which may be absolute or rel-
ative to a reference). 

After recognizing the event, such systems react by performing the appropriate computations. 
Once the event handling is complete, the system goes back to waiting for the next event. 
The properties of a reactive system are as follows [45]: 

� (P1) Activation: A reactive system constantly interacts with its environment. 
� (P2) Behavior: The system shall react to a received event and produce the correct reac-

tion to the environment.  
� (P3) Input/output relationship:  The outputs of a reactive system depend on the stimuli 

it receives as well as on the current state of the system.  

Both kinds of aforementioned systems, transformational and reactive, can be seen through a 
system design methodology where details (i.e, temporal information and reaction to changes) 
are progressively introduced at different design levels. 

 

Time 

Environment 

Wait for event 

Read Inputs 
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Write outputs 

Figure 3-2. Interaction of a reactive system with its environment 
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Untimed and timed systems 

Models intended for simulation should be organized in a way that enables reasoning about 
the structure and the behavior of the real system. The structural viewpoint concentrates on the 
static information about the structure of the system (the inputs, the outputs and the components 
composing the system). UML class and UML composite structure diagrams are the most pop-
ular diagram kinds for structural modeling. UML also allows for the expression of relations 
between two or more UML elements (dependency relation, for example).  
The behavioral viewpoint captures the dynamics of the system and describes its evolution over 
time. In UML, this perspective is usually handled by activity or state machine diagrams. Models 
intended for simulation purposes should, in particular, account for the time. As a result, we 
distinguish two kinds of UML behaviors: untimed behaviors and timed behaviors.  

a. Untimed behaviors 

An untimed model describes the system behavior in a way where only the logic of how the 
system accepts inputs, executes computations and produces outputs is important. This kind of 
representation is used for a functional simulation where the goal is to verify the partial correct-
ness of the system behavior (i.e, check whether the system produces the correct result/reaction 
to a given input/stimuli or not), or for the representation of the instantaneous computations/re-
actions of the system. The integration of untimed behaviors in FMI-based co-simulation is the 
focus of the Chapter 5. 

b. Timed behaviors 

A timed model describes the system behavior in a way where both the logical and the timing 
information are considered. The model provides additional details about the behavior of the 
system, that is, it represents the instants at which the system receives inputs and produces out-
puts. It also expresses how long it takes to run computations or to react to events. The system 
is evaluated at a discrete set of time instants. This kind of representation is used in timed simu-
lations where the correctness of the system behavior is not only defined based on producing the 
correct output, but also on producing it at the right time, such as in real-time and control systems 
design. This representation is in particular very relevant for co-simulation purpose since the 
model will be placed in its environment where it evolves and depends on time.  
The UML standard [30] proposes a model of time which enables the representation of time in 
the applicative models. This latter comprises meta-classes to represent time and durations, as 
well as actions to observe the passing of time. The UML profile MARTE [29] also allows to 
annotate UML models with temporal parameters such as durations, periods, and deadlines. It 
introduces a model of Time and Timing Constraints, dealing with both physical and logical 
time. The integration of untimed behaviors in FMI-based co-simulation is the focus of Chapter 
6. 

Summary about systems of interest 

In short, the models we would like to describe and integrate in a co-simulation approach are: 
- An untimed UML model for a transformational system, 
- A timed UML model for a transformational system, 
- An untimed UML model for a reactive system; and 
- A timed UML model for a reactive system. 
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For instance, we specified the need of modeling a set of systems with UML. In the rest of the 
chapter, we will focus on how to simulate these models using fUML*. The purpose of fUML* 
is not to give execution semantics to the whole UML set, but to a minimum essential subset 
which assumes the most general type of systems. This subset includes elements to model both 
the structure and the behavior of a given specification and is restricted to classes, activities and 
composite structures (refer to Annex A for more details about the syntax and semantics consid-
ered by fUML*). Next section enumerates the systems we can and cannot execute with fUML*. 

Two mentions will be used in the rest of the chapter: 

- (syn) mention indicates that the element is a syntactic element. 

- (sem) mention indicates that the element is a semantic element. 

 Executable models within fUML* 

 Passive behaviors 

A simple executable model we can handle with fUML* is a model of a system performing some 
computations. An example of such systems are transformational systems.  
Figure 3-3 illustrates a simple example of a transformational system: a passive UML Class(syn) 
called ‘Transformation’. This class owns two Property(syn) (‘in’ and ‘out’). The behavior of the 
class consists of applying a transformation on the property ‘in’ and storing the result in the 
property ‘out’. This behavior can be defined using an Operation(syn). We defined two operations: 
‘multiply(in x: integer):integer)’ and ‘transform()’. The latter represents the main behavior of 
the class.  

An Operation(syn) behavior can be specified with an Activity(syn). In this example, the activity 
associated with the operation (‘multiply(in x: integer):integer)’ simply returns the result of the 
multiplication of the parameter ‘x’ by a constant (Figure 3-4). 

Figure 3-3. Transformation is a passive class 

Figure 3-4. The specification of the operation ‘transform’ with an activity 
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We can then define the transformation on the properties (‘in’ and ‘out’) of the class ‘Transfor-
mation’. Figure 3-5 illustrates the specification of the ‘transform()’ operation. It models the 
logic of the transformation: it reads the value of the property ‘in’ using a ReadStructuralFea-
tureValue(syn), calls the ‘multiply’ operation using a CallOperationAction(syn)and sets the value 
of the property ‘out’ with the returned result using an AddStructuralFeatureValueAction(syn). 
When the simulation starts, no behavior is executed automatically. The ‘Transformation’ class 
waits for some other object to invoke it. 

 
 Active behaviors 

fUML* provide syntax and semantics to model UML components whose behavior is triggered 
by a signal event. A common example is the Ping-Pong game. The game consists of two players 
that synchronize with each other by exchanging signals.  
The game is represented with the structured Class(syn) ‘Game’ as shown in Figure 3-6. The play-
ers are represented with the parts ‘player1’ and ‘player2’ of type ‘Player’. Each of them owns 
a Port(syn) (respectively ‘portA’ and ‘portB’) through which the Signal(syn) is propagated from 
one player to another.  

The class ‘Player’ should be active since its behavior is triggered by signals receptions (‘Ping’ 
and ‘Pong’ in Figure 3-7). An active Class(syn) must own a classifier behavior that defines its 
main behavior (‘Player Classifier Behavior’ in Figure 3-7). 

The classifier behavior is expressed with an Activity(syn), which describes the synchronization 
logic from each individual player’s standpoint in terms of signal emissions and receptions. The 
classifier behavior of the class ‘Player’ is defined with the activity depicted in Figure 3-8. The 

Figure 3-5. The specification of the operation 'multiply' with an activity 

Figure 3-6.The Game system represented with a UML composite structure

Figure 3-7. The players are active classes 
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shape  represents  a SendSignalAction(syn) and the shape  represents an 
AcceptEventAction(syn) triggered by a SignalEvent(syn). 
When the simulation starts, the classifier behavior is automatically started. Player “player1” 
begins playing by sending a “Ping” signal then waits for a “Pong” signal from player “player2”. 

As soon as Player “player2” receives a “Ping” signal from player “player1”, it sends a “Pong” 
signal, then waits again for a “Ping” signal from Player “player1”. As soon as the player 
’player1’ receives a “Pong” signal from player “player2”, it  sends again a “Ping” signal and so 
on. 
In the rest of the manuscript, we will not be interested in such reactive behaviors. Signal events, 
in fact, assume that components communicate and synchronize directly with each other. This 
is in contradiction with the requirements of the FMI standard where no direct communication 
between components is allowed and the master is responsible for their synchronization. 
Instead, we are interested in the modeling of behaviors reactive to the change and time events. 
They are not in the scope of fUML* as we will also explain in the next section. Nevertheless, 
we will rely on the same syntactic and semantic mechanisms for the execution of behaviors 
reactive to change events and time events. 

 Non-executable models within fUML* 

Timed behaviors 

UML provides elements for time modeling. Figure 3-9 gives an example of timed behavior 
where the object is supposed to wait for five units of time (‘after(5)’) before sending a signal 

‘Ok’. The shape  is an AcceptEventAction(syn) triggered by a TimeEvent(syn). 

Figure 3-9. A timed behavior 

Figure 3-8.The behaviors of the players represented with activities 
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As stated in section 3.2.1, we are interested in timed behaviors execution. We identified some 
shortcomings in fUML* for the modeling of such behaviors. The TimeEvent(syn) does not be-
long to the fUML*. fUML*, in fact, does not account for time modeling and simulation. The 
behaviors are supposed to happen instantaneously.  

Neverthesless, as explained in the fUML specification [32], “The execution model is agnostic 
about the semantics of time. This allows for a wide variety of time models to be supported, 

including discrete time (such as synchronous time models) and continuous (dense) time.” 

Initiatives including tools and languages related to the execution of timed UML models are 
given below. We are particularly interested in the possibility of their application in the context 
of fUML*.  

• Moliz: It proposes a framework (i.e., a library) [39] for performance analysis that enables 
the integration of time representation in execution traces. The approach supports a discrete 
event model of time but relies on implementation of opaque behaviors to deal with simu-
lation time advance.  

• MARTE/CCSL: The UML profile MARTE [29] proposes a Time Model which extends 
the simplistic Simple Time models defined in UML specification. It offers a broad range 
of time models including discrete/dense time and chronometric/logical time. MARTE also 
introduces a time structure and proposes a Clock Constraint Specification Language 
(CCSL) to specify time constraints within the context of UML. A way to capture time 
semantics in fUML* is to rely on the formal semantics of CCSL clock constraints. 
 

Gemoc enables time support in simulation thanks to clocks defined in CCSL [TTC’15]. 
The approach is interesting in the sense that it can combine various time models. However, 
using it in the context of fUML* is not straightforward, since the approach makes strong 
assumptions about the way both syntax and semantics of a language are defined.  
 

Coupling fUML with existing approaches such as TimeSquare19 could also be considered 
as a solution for enabling the execution of timed UML models using CCSL. TimeSquare 
provides an environment for modeling and analyzing timed systems. It supports an imple-
mentation of the time model introduced in the UML MARTE profile and the CCSL lan-
guage (Clock Constraint Specification Language). TimeSquare takes an UML model as 
input, to which a CCSL model is applied. The CCSL model is used to specify time con-
straints and apply a specific behavioral semantics on a model. The result produced by 
TimeSquare is a sequence of steps (a Scheduling Map) that can be used by external tools 
for analysis/simulation purposes. Concretely, coupling the fUML semantic model would 
mean that a CCSL model must be generated for a given application model, and that the 
generated model reflects the time semantics of the application domain for which a profile 
is defined. Scheduling maps generated by TimeSquare could then be “played” by the exe-
cution model. Modifications in the architecture of the semantic model would be required, 
and would mainly consist in adding an explicit entity responsible for triggering executions 
of active objects and actions, with respect to the scheduling map generated by TimeSquare.  

                                                 
19 Refer to: http://timesquare.inria.fr/  
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None of these proposals provide a framework or a way to directly execute timed behavior with 
fUML*. We will demonstrate in chapter 6 that the Simple Time model of UML proposes suf-
ficient syntactic elements to describe timed behaviors for in both kinds of systems of interest, 
(i.e, transformational and reactive). The execution of timed behaviors simply requires the ex-
tension of fUML* by giving execution semantics of this Simple Time model (or a subset of it) 
and the control of the timed execution. 
In widespread simulation tools and frameworks such as Ptolemy II20 and SystemC21, time is 
usually managed by an explicit control entity (scheduler-like), which appropriately schedules 
the execution of the various model elements in order to reflect the timing aspects. The fUML 
execution model does not include this type of control entity. Implementations are thereby re-
sponsible for providing timing mechanisms if needed. In regards to the execution model, the 
fUML* stated: “Furthermore, it does not make any assumptions about the sources of time in-

formation and the related mechanisms, allowing both centralized and distributed time models”.  

The extension of fUML* with the execution of timed UML models will be handled in Chapter 
6 using features F1 and F2, which we will explain in section 3.2.4. 

 Behaviors reacting to change events 

In CPS, computational components usually interact with their environment. Change events are 
interesting in this context in the sense that the cyber part of the CPS (typically a control com-
ponent) could instantaneously detect and react to a change occurring in the physical part (typi-
cally the environment with/on which the control components interacts).  

The modeling of behaviors reactive to changes of some values is possible using an AcceptE-
ventAction(syn) triggered by a ChangeEvent(syn). The example represented in Figure 3-10 con-
sists in comparing an input value with a constant and to produce a verdict. The comparison 
should be executed only if a change on the value of ‘in’ is detected. 

fUML* enables the modeling of behavior reactive to signal events (as stated in subsection 
3.2.2.2) but not to ChangeEvent(syn). The ChangeEvent(syn), in fact, does not belong to the 

                                                 
20 Refer to: http://ptolemy.eecs.berkeley.edu/ptolemyii/ 
21 Refer to: http://hdl.telecom-paristech.fr/sc_intro.html  

Figure 3-10. A behavior reactive to a change on a value 
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fUML* subset. An extension to the fUML* semantic model with new semantics is then re-
quired. Refer to section 5.2 for details about the extensions of fUML* with the Chang-
eEvent(syn).  
The fUML* subset restrict the scope of the systems we can model and simulate, but at the same 
time, they are endowed with features allowing us to expand this scope. The next section ex-
plains how we can address limitations of fUML* regarding the execution of timed and reactive 
behaviors. 

 Addressing fUML* limitations 

 Extending fUML* (F1) 

Principle: As stated in the Annex A, the fUML semantic model is built around the visitor pat-
tern. According to this architecture, a natural way of building an extension to the semantic 
model is to introduce additional semantic visitors. Two scenarios are possible depending on the 
syntactic element SynElt to which the visitor is defined: 

• The SynElt is considered by the fUML syntactic subset 
In this case, the semantic visitor associated to SynElt in fUML semantic model can be 
extended using object oriented mechanisms such as inheritance and polymorphism.   

• The SynElt  is not considered in the fUML syntactic subset. 
In this case, the first common meta-class C between SysElt and a syntactic element al-
ready considered in the fUML subset should be identified. A new visitor is then de-
fined as a specialization to the visitor defined for the meta-class C in the fUML se-
mantic model. 

The introduction of new semantic visitors has, as consequence, the definition of an extension 
for the definition of new instantiation rules. This implies the extension of the classes: 

• Locus(sem): the extension of this element, and therefore its operation instantiate(), is used 
when the new visitor is defined as a specialization to Object(sem). A common example is 
the definition of an extension to the meta-class Classifier(syn) or one of its specializations.  

• ExecutionFactory(sem) 
The extension of this element, and therefore its operation instantiateVisitor(), should be 
performed when the new semantic visitor cannot be created by the Locus(sem) class. A 
common example is the extension of the semantic model with new syntactic elements 
for the specification of a Behavior(syn). 

Use case example: This extension strategy has been proposed in [40] and was successfully 
applied to propose a systematic approach for specifying the execution semantics of UML pro-
files as an increment to preliminary proposals developed in [8]. The most interesting case using 
this strategy is the OMG standard PSCS (Precise Semantics of UML Composite Structures), a 
normative extension of fUML dealing with the semantics of UML composite structures includ-
ing informative annexes on the semantics of a subset of the MARTE and SysML profiles. 

PSCS introduces new syntactic elements and their respective semantics such as Connector(syn) 

and Port(syn) in order to allow the communication of composite classes through ports.  The se-
mantic model of fUML is, therefore, extended with new semantic elements. PSCS first defines 
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CS_Object(sem) as a specialization of Object(sem) in the fUML semantic model. This extension is 
required in order to allow the representation of composite classes in the locus. Semantics of the 
operation calls and the signal reception for communication through ports are defined in the 
methods of the CS_Object(sem) class. The definition of new semantic visitors also requires the 
definition of the two factories CS_Locus(sem) and CS_ExecutionFactory(sem) as extensions to Lo-
cus and ExecutionFactory classes in the semantic model of fUML respectively. Other than the 
semantic visitors and the factories, PSCS defines the class CS_DefaultConstructStrategy(sem) as 
a specialization of the SemanticStrategy(sem) of the fUML semantic model. It defines the instan-
tiation strategy of models using composite structures. Figure 3-11 depicts an extract of the se-
mantic model of PSCS. 

 Controlling executions (F2) 

Principle: The causality resulting from the execution semantics of activities must be respected 
by any fUML-compliant execution engine (i.e, a particular implementation of fUML). There-
fore, a fUML-compliant execution engine that intends to provide facilities which are out of the 
scope of fUML needs to reroute the usual token propagation flow through external control en-
tities while preserving the original causality. The flexibility of fUML resides in the fact that the 
specification does not provide any strict recommendations on how this should be implemented.  

Use case example:  This generic principle has been used to establish a connection between the 
fUML execution engine of Moka and the Eclipse Debug framework. For example, the seman-
tics of activity nodes (captured by the visitor ActivityNodeActivation(sem)) has been overloaded 
so that, when they receive offered tokens (operation receiveOffer()), the control is rerouted to-
wards an external control entity. This control entity is responsible for the management of de-
bugging events, as well as the animation of nodes on diagrams. In another experiments, the 
same delegation mechanism has been used to produce execution traces, by rerouting through a 
tracing entity [18].  

Figure 3-11. Extract semantic elements of PSCS as extension to the 
fUML semantic model. 
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Based on these elements, we believe that the limitations of fUML* regarding the execution of 
the timed and the reactive behaviors (refer to section 3.2.3) can be handled. The integration of 
UML models in FMI-based co-simulation (using the adaptation at master level technique) con-
sists therefore in adapting the fUML* execution semantics to that of the FMI API. Next section 
identifies the steps to follow for the integration of fUML* and FMI. 

3.3. Outline of the proposed approach 

Figure 3-12 depicts a class diagram summarizing the different co-simulation cases we want to 
define and simulate. As stated in section 2.4, the adaptation at master level is the most suitable 
technique for the integration of fUML* and FMI, where the FMUs are black boxes connected 
to the white box UML models. The definition of these cases requires the co-simulation envi-
ronment to be UML tool which provides an implementation of fUML* as well as an implemen-
tation of FMI standard. As stated in the section 3.1.2, no useable solution was found for the 
purpose of this work, but UML tools providing support to fUML* do exist. We will then use 
one of them and extend it with an implementation of the FMI for co-simulation standard as a 
first step of our contribution.  

The components execute independently of each other. FMUs are executed with respect to the 
FMI API, and UML components execute with respect to the fUML* semantics. As stated in 
Chapter 0, the master is then responsible for the orchestration of the components and the syn-
chronization of their simulations as follows: 

� The orchestration of the involved components: For this task, the master propagates data 
from the outputs to the inputs of the connected components while accounting for their 
I/O dependencies, and performs stepwise simulation where it requires equivalent 
fUML* routines for the functions defined in the formalization given in section 462.1.1.2 
(inst(), init(),doStep(), terminate()), 

� The synchronization of the involved components’ simulations: For this task, the mas-
ter bridges the semantic gap between UML models execution semantics and the FMI 
API. It provides adaptation of semantics of untimed UML models to timed FMUs se-
mantics, and discrete UML models to continuous time FMUs semantics. For this pur-
pose, the master computes the suitable simulation step size in order to propagate data 

Figure 3-12. Composition of FMI based co-simulation cases 
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and trigger the components at the correct instants. The UML components reflect the 
MoC on which it relies, in particular, information about the model of time.   

We note that the efficiency of the adaptation between fUML* and FMI depends on the infor-
mation available on the components.  That is, for an efficient simulation, it is also necessary to: 

� Explicitly express in the UML models information written in bold above in this section, 
� Identify for each kind of computational component a minimal set of UML structural and 

behavioral syntactic elements to model it. It is also necessary to check whether fUML* 
covers the whole set. If not, we need to extend the fUML* with the new syntax and 
semantics using the feature F1 and F2 as explained in section 3.2.4. 

Figure 3-13 illustrates the steps of the methodology we propose for the integration of the UML 
models in FMI-based co-simulation. 

3.4. Conclusion 

Define modeling rules for computational components modeling 

with UML 

- Identify UML syntactic element for the modeling of structure and 

behavior 
- Explicit important information 

Provide a basic co-simulation environment 

- Choose an UML tool which provides support to fUML* 
- Implement the FMI standard (FMU import and master) 

Do fUML* 
cover all el-

ements 
? 

Adapting fUML* semantics to that of FMI standard  

- identify equivalent fUML* routines to the procedures of 
the FMI API 

Extend fUML* using 

features F1 and F2 

 

Implement an efficient master algorithm 

- compute the suitable simulation step size 
- propagate data and trigger components at the correct instants 
 

No 

yes 

Figure 3-13. The proposed approach for the integration of fUML* and FMI 

For each kind of UML model we would like to co-simulate 
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The main goal of this chapter was to identify the key elements for the application of the adap-
tation of semantics at master level technique for the integration of UML models in the FMI-
based co-simulation approach.  
We proposed to base our approach on fUML* standards which define precise semantics for 
UML models’ execution. fUML* is an interesting basis for the purpose of this work but have 
some limitations. We identified the kind of systems we would like to describe, transformational 
and reactive systems, in order to determine our specific needs regarding their modeling with 
UML and their simulation with fUML*. 

Our contribution, which is to properly integrate UML models in FMI-based co-simulation using 
the adaptation at master level technique, shall operate at two levels: locally at the level of UML 
models (modeling), and globally at the master level (simulation). Locally, for each kind of 
computational components models, we shall first identify a set of rules to model it with UML, 
and potential extensions to fUML* in cases where execution semantics of the required UML 
elements are not defined by fUML*. Globally, we shall propose a master algorithm for the 
orchestration and synchronization of each kind of computational components models with a set 
of FMI based on the adaptation of the execution semantics of the fUML* to that of FMI API. 

In the contribution part, we will begin with a technical contribution which consists of the de-
velopment of a co-simulation environment in a UML-compliant tool in chapter 4. Then, we will 
continue with the description of scientific contribution concerning the integration of untimed 
and timed UML models in FMI based co-simulation in chapter 5 and chapter 6 respectively.



 

 
 

 

 

 

PART II: ABOUT THE 

CONTRIBUTION 

 

We propose an incremental approach where we address various co-simulation scenarios. The 
contribution part is organized into three chapters, each of them dealing with a particular co-
simulation scenario as follows:   

� Chapter 4: UML-based Master Simulation Tool for modeling and simulation of CPSs 
This chapter introduces the framework we set up for the modeling and simulation of 
CPS. The framework is based on an implementation of the FMI for co-simulation stand-
ard in a UML-based tool. This framework allows the definition of co-simulation sce-
narios composed of a set of FMUs. It provides capabilities for the import and the con-
nection of FMUs as well as basic and sophisticated master algorithms for their orches-
tration.  

� Chapter 5: Integration of untimed UML models in FMI-based co-simulation 

This chapter concentrates on the integration of untimed UML models in FMI-based co-
simulation. It aims at enabling the definition of co-simulation scenarios composed of 
FMUs and untimed UML components. For each kind of systems, transformational and 
reactive, we in turn identify a set of modeling rules for their modeling with UML in the 
context of FMI and potential extensions of the fUML* semantic model. The contribu-
tion consists then in adapting the semantics of fUML* with that of the FMI API, as well 
as, in proposing an efficient master algorithm for the orchestration and synchronization 
of the co-simulation scenarios. The efficiency of the master algorithm relies in particular 
on its ability to trigger the execution of each component at the correct instants while 
avoiding events missing. 

� Chapter 6: Integration of timed UML models in FMI-based co-simulation  
This chapter is dedicated to the integration of timed UML models in FMI-based co-
simulation. It aims at enabling the definition of co-simulation scenarios composed of 
FMUs and timed UML components. This chapter is organized in the same way as Chap-
ter 5. 
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Chapter 4: UML-based Master Simulation 
Tool for modeling and simulation of CPSs 

Outline 

     4.1.Architecture of the framework 

4.1.1. The Graphical User Interface features  
4.1.1.1. UML Profile for FMI co-simulation scenarios 
4.1.1.2. The import of FMUs for co-simulation 
4.1.1.3. The definition of co-simulation scenarios 

4.1.2. The MST-engine features  
4.1.2.1. Overview 
4.1.2.2. A wrapper for FMI 
4.1.2.3. The master algorithm 

4.2. Validation of the framework implementation  
4.2.1. The use case: The TankPISystem 

4.2.2. The import of the FMUs and the definition of the co-simulation scenario 

4.2.3. The simulation results 

4.4. Conclusion  
 

The integration of UML models in FMI-based co-simulation requires a framework compliant 
with UML and FMI. This framework shall also provide either the possibility to export UML 
models as FMUs for co-simulation, or a master algorithm that is able to orchestrate heteroge-
neous co-simulation scenarios composed of FMUs and UML models. Unfortunately, as stated 
in Chapter 0, there is no usable FMI based co-simulation solution that considers UML models.  
For this reason, we decided to set up our own co-simulation framework and propose an UML 
compliant framework for FMI-based co-simulation. We present the architecture of the frame-
work as well as the main features it offers in section 4.1. Then we validate the framework with 
a common CPS example in section 4.2. As a first step, this framework only provides the co-
simulation of a set of imported FMUs. This first step is not part of the scientific contribution 
but it is necessary to provide the basis for the experimentation and the validation of the scientific 
contributions.  
The second step consists in extending this framework for the integration of UML models. As 
stated in Chapter 0, we decided not to export our UML models as FMUs for co-simulation. 
Instead, we chose to provide a master algorithm responsible for the orchestration of heteroge-
neous co-simulation scenarios composed of FMUs and UML components. This step is per-
formed in Chapters 5 and 6.  

4.1. Architecture of the framework 

An FMI compliant co-simulation environment shall provide facilities for the import of FMUs 
and their connection, and a master algorithm that controls the data exchange between the FMU 
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and the synchronization of their simulations based on the FMI API. We propose a master sim-
ulation tool (MST) composed of a graphical user interface (GUI) and a master simulation tool 
engine (MST-engine) as depicted in the class diagram of Figure 4-1. The GUI is essentially 
responsible for the modeling of CPS composed of imported FMUs. It shall at least provide 
facilities for import, configuration and connection of the FMUs.  
The configuration of the co-simulation graph (important information about FMUs and the sim-
ulation parameters) are stored in the “MST-configuration” and used later by the MA. The MST-
engine proposes one or many algorithms that are mainly responsible for the orchestration of the 
connected FMUs (i.e. data propagation between FMUs and the synchronization of their simu-
lations). 

Section 4.1.1 and section 4.1.2 outline essential information, respectively, about the GUI and 
the MST-engine features. 

 Graphical User Interface features 

Some of the facilities offered by the GUI are mandatory. They are those required by any FMI-
based co-simulation environment such as the import and the connection of FMUs. Some others, 
such as displaying results in graphics at the end of the simulation, are optional. 

In this section, we outline how we implement the mandatory features in a UML-based frame-
work. This section is organized into three subsections that concern the co-simulation profile we 
propose for annotation of both the imported FMUs and the co-simulation graph, the import of 
FMUs for co-simulation, and the definition of co-simulation scenarios.   

 UML Profile for FMI co-simulation scenarios 

UML is a generic modeling language whose expressivity gives modelers the ability and free-
dom to use it in many fields of engineering. UML can also be customized for a given domain 
thanks to the profile mechanism. Profiles define extensions to enrich the syntax and semantics 
of the UML language. Extensions are usually expressed with stereotypes. Each stereotype de-
fines an extension to an element of the UML syntax and owns a set of attributes through which 
semantic information can be added.  

Figure 4-1. The co-simulation Framework 
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A profile is particularly interesting in our work. It allows for the customization of our models 
to the co-simulation domain. The MST-engine requires information about the components it 
simulates and information about the simulation parameters. The “modelDescription.xml” file 
on the FMU contains all these data (refer to Chapter 2 of the state of the art for further details 
about the information contained in the xml file of the FMUs). We only need to preserve them 
when importing the FMUs in the UML-based framework. We propose an UML profile, the so-
called CoSimML profile, that resumes all these data by mapping them to a set of stereotypes. 
These stereotypes are applied both to the co-simulation model and to the imported FMUs and 
are illustrated in Table 4-1. 

A snapshot of the CoSimML profile is given in Figure 4-2. ‘CS_Graph’ stereotype is used for 
the class representing the co-simulation graph, ‘CS_FMU’ stereotype is used for an instance 
that represents an imported FMU, while ‘CS_Port’ stereotype designates ports through which 
data are propagated from one FMU to another. We also will apply the ‘CS_Dependency’ stere-
otype to the I/O dependency information. This latter is important to expose to the MA in order 
to analyze cycles in the co-simulation graph and determine the order in which data should be 
get from /set to ports. 

Figure 4-2.The Co-simulation Profile 
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Table 4-1. Stereotypes of UML profile for FMI. 

Stereotype UML 
Metaclass 

Important 
Attributes 

Specification 

« CS_Graph »  Class(syn) 

  
- startTime  
- stopTime 
- stepSize 

Used both to identify the class that rep-
resents the CPS and, to define a prede-
fined configuration for the simulation. 

« CS_FMU»  
 

Class(syn) - canHandleVariableCom-
municationStepSize 

- canGetAndSetFmuState 

Applied to identify an UML class that 
represents an imported FMU.  
When set to true, canHandleVariable-

CommunicationStepSize and 
canGetAndSetFmuState respectively 
mean that the FMU can accept different 
step sizes and, that the FMU supports 
rollback. 

«CS_Port »  
 

Port(syn) - causality 
 

Used first to identify the ports through 
which the data will be propagated dur-
ing simulation and then, to narrow 
down/precise the direction of data 
propagation by setting the causality at-
tributes to “in” or “out” value. 
The modeler and the MST-engine 
should be aware of the flow direction of 
each port. This minimizes errors when 
connecting the components and ensures 
a correct analysis of the dependencies 
between components. 
Other attributes can be added to avoid 
modeling errors such that the unit and a 
brief description of the data passing 
through the port. 

«Parameter», 
«Local», «cal-
culatedParam-
eter»,  
and «independ-
ent»  

Prop-

erty(syn) 
 Are applied to scalar variables respec-

tively of kind parameter, calculated pa-
rameter and independent as defined in 
the “modelDescription.xsd” of the FMI 
specification. 

«Output_De-
pendency»  
 

Depend-

ency(syn) 
  Used to identify UML elements that 

specify I/O dependencies between out-
puts and inputs of a component. 

 Import of FMUs for co-simulation 

A co-simulation environment which imports an FMU should preserve information contained in 
the model description file and ensure access to the procedures of the dll. The first task requires 
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transforming the “modelDescription.xml” file to a model compliant with the modeling formal-
ism supported in the co-simulation environment. The second task requires a wrapper, which 
enables access to native code using the programming language supported in the co-simulation 
environment. This subsection focuses on the first task. The second task will be explained in 
section 4.1.2.2 of this chapter. 
 Since the framework we propose is UML-compliant, then all features it proposes rely on UML 
concepts. When imported, the FMUs shall be transformed into a set of UML elements. We 
propose a model to model transformation using QVTo [31] language as depicted in Figure 4-3. 

The QVT transformation maps the model structure of an FMU, described in the “model de-
scription.xml” file, to a UML class and a set of UML dependencies. The class exposes input 
and output variables via UML ports and contains a set of UML properties that represent scalar 
variables of the imported FMU. The UML dependencies represent the I/O dependency infor-
mation between the output and the input of the model. The co-simulation profile we proposed 
previously is applied to the resulting UML model. 
Details about the specification of the QVTo transformation are given in annex B. 

 Definition of co-simulation scenarios 

A co-simulation scenario defines the components making up the CPS and their connections. 
The model that specifies a co-simulation scenario is called “Co-simulation Graph”. This model 
can be handled using UML composite structure diagram. As stated in the UML specification, 
the composite structure diagram could be used to show internal structure of a classifier namely 
ports, parts and their relationships [30]. 
In this chapter, we focus on co-simulation scenarios that are composed of imported FMUs as 
depicted in Figure 4-4. The ‘CosimulationGraph’ is the composite class that represents the CPS 
and is composed of four parts (the ‘fmuA’, ‘fmuB’, ‘fmuC’ and, ‘fmuD’), which represent im-
ported FMUs (respectively ‘FmuA’, ‘FmuB’, ‘FmuC’ and, ‘FmuD’). Each part has ports that 
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Figure 4-3. FMU to UML model transformation 
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represent the interfaces for data exchange. Connectors represent a relationship between two 
connected FMUs. 
The start time and the stop time, as well as the default step size of the co-simulation, should be 
set in the “CS_Graph” stereotype. 

 MST-engine features 

 Overview 

The MST engine is responsible for the synchronization of the imported FMUs. The MST-engine 
communicates with the GUI for getting configuration parameters, the properties of the FMUs 
composing the CPS and the connected ports at the beginning of the simulation. It then launches 
the master algorithm, which takes all this information as input and performs step wise simula-
tion. At the end of the simulation, the MST-engine is responsible for communicating results to 
the GUI to display results.  
 

The MA performs calls to dlls contained in the FMUs. A java wrapper for FMI API was imple-
mented to enable calls to native code (i.e. the dll contained in the FMU) from the co-simulation 

The GUI 

Fmu2
.dll 

Fmu3
.dll 

Java for FMI Wrapper (java library) 

Figure 4-5. FMI-based Co-simulation from UML model to native code 
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FMU import 
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Assembly 
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Engine 
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« CS_Graph» 
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Figure 4-4. An example of a CPS composed of four FMUs in a 
UML composite structure diagram 
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framework. The developed library is part of the proposed framework and uses the Java Native 
Access (JNA)22, which is a community-developed library that provides Java programs easy ac-
cess to native shared libraries. Figure 4-5 illustrates the co-simulation framework from the 
UML model connecting the imported FMUs to native calls to the dlls performed by the MA.   

 A wrapper for FMI 

The framework implements the communication interface defined by the FMI standard, so called 
Fmi2Library. This interface provides a representation of all types and functions contained in 
the FMI standard API. The Fmu2Proxy implements the Fmi2Library interface as depicted in 
Figure 4-6. It performs calls to native code using the JNA library and represents the bridge 
between the framework and the dlls. Each class representing an imported FMU should be a 
specialization of the FmiProxy. 

 Master algorithm 

The framework supports both basic and sophisticated MAs. We implemented the two prepro-
cessing algorithms proposed in [12]. The first one is called “variable-order algorithm” depicted 
in Figure 4-7.  

                                                 
22 Refer to: https://github.com/java-native-access/jna  

Figure 4-6. The FMI standard implementation 

/* The algorithm parameters */  
Inputs:  

P: the port mapping of the co-simulation graph 
D: the global dependency relation of the co-simulation graph 
U, Y: the set of ports in the co-simulation graph 

Output:  
X (an ordered list of ports variables) or error 

/*Algorithm*/ 
� Construct a directed graph G where the vertices are represented by the ports 

U,Y and the edges are constructed using P and D 
� Perform a topological sort on G 

        If a cycle is found return error 
        Else return X 

Figure 4-7. The Variable-order algorithm 
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This algorithm is executed before the start of the simulation in order to detect cycles in the co-
simulation model, in which case it doesn’t perform simulation and alert the user.  It builds a 
global inputs/outputs dependency graph based both on I/O dependency information contained 
in the XML files of the FMUs and on connections between FMUs in the co-simulation graph. 
This algorithm applies topological sort on this graph (the algorithm is given in Annex D). If no 
cycle is detected in the graph, then an ordered list of variables is generated. This list determines 
the order in which the information should be propagated from one FMU to another, that is, the 
order in which the MA should call fmi2GetXXX and fmi2SetXXX on ports at communication 
points.   
The second is called the “master step” algorithm depicted in Figure 4-8. It determines the pro-
gress of the simulation in terms of time and state at each simulation step. If the FMUs support 
rollback, the MST-engine is able to go back in the time to remake a simulation step in case an 
FMU does not succeed to perform a simulation step. 
 

The resulting algorithm is depicted in Figure 4-10. It is well suited for co-simulation scenarios 
composed of FMUs which rely on CT MoC and support the rollback feature and expose their 
I/O dependencies. However, this algorithm is not suited for heterogeneous scenarios composed 

Figure 4-8. The master step algorithm 

/*Master step algorithm parameters*/  
F: the set of FMUs in the co-simulation graph 
P: the ports mapping 
X: the ordered list of ports variables 

hmaster: simulation step size 
hmax: a default simulation step size 
/*algorithm*/  
� Set the simulation step size to the default one  

  hmaster=hmax 
� Propagate data 
          For each input u in X  

y = P(u); 
v = getc(y);  
setc(u,v);   

  End for 
� Save the states of all FMUs to enable rollback 
� Find a simulation step size h acceptable by all FMUs 

For each c ∈ F:  
doStepc(hmaster);   
If c is not able to perform the stepthen 
 h= the last successful time of c; 

  hmaster=min(hmaster,h); 
        End if; 
       End for; 
� If (hmaster<hmax) then restore the last state of the FMUs 
� Remake the simulation step  

   For each c ∈ F:  
      doStepc(hmaster);   

       End for; 
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of FMUs and UML components, since it does not account for the MoCs on which UML com-
ponents rely. In particular, it does not allow zero-time step size and the detection of time events. 
Further advanced master algorithms will therefore be proposed in Chapters 5 and 6.  

The master itself is expressed in UML: an active Class(syn), so called Master, whose classifier 
behavior is represented with a simplified Activity(syn) specifying the algorithm of the co-simu-
lation, the so-called MasterBehavior depicted in Figure 4-9. An instance of this Master class is 
integrated in the CoSimulationGraph and is executed by relying on fUML and PSCS semantic 
model.  

Figure 4-10. The Master algorithm expressed with UML 

/*Co-simulation parameters*/  
F: the set of FMUs in the co-simulation graph 
P: the ports mapping 
X: the ordered list of ports variables 

tc: Current simulation time  
tstart: Start simulation time  
tstop: Stop simulation time  
hmaster: simulation step size 
/*Instantiate and initialize components c ∈ C */  
For each component c ∈ C:  

Instc(); 

Initc(tstart, tstop);  
/*Step wise simulation*/  
Call the ‘variable-order’ algorithm; 
While (tc<tstop)  
      Call the ‘master-step’ algorithm; 
      tc=tc+ hmaster;  
end while.  
/* Termination of the simulation*/  
For each component c ∈ C:  

terminatec() ;  
end simulation 

Figure 4-9. The basic master algorithm for FMUs orchestration enriched 
with rollback feature and co-simulation graph analysis 
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The MasterBehavior orchestrates the set of UML instances contained in the Cosimula-

tionGraph which represent instances of the imported FMUs. All parts contained in the Cosim-

ulationGraph are composite Class(syn). Therefore, in the locus, they are represented with a 
CS_Object(sem) or a specialization of it. As explained previously, the behavioral semantics of 
the imported FMUs are captured by the dlls they contain. The instantiateVisitor() shall be over-
ridden in order to represent an FMU with an FmuProxy instance instead of an fUML Ob-

ject(sem) at runtime.   
The master is then able to perform the calls to external dlls using the feature  F3. Thus, the 
activity nodes instantiateComponents, initializeComponents, doStepAndPropagateData, and 
terminateSimulation are OpaqueBehavior(syn) whose execution is dispatched to the execution of 
the corresponding method in the FMU instance. The extension of the fUML semantic model 
with this new visitor implies the definition of a new locus, so called Cosim_Locus(sem), as spe-
cialization of the CS_Locus(sem) as well as a new execution factory, so called Cosim_Fac-

tory(sem), as a specialization of the CS_Factory(sem) (Figure 4-11). 

The master is in charge of data propagation by calling fmi2GetXXX and fmi2SetXXX on 
FMUs. Calls to these routines update the values of the ports in the virtual memory of the FMUs 
but not in the UML CosimulationGraph itself. The update of the values in the CoSimula-
tionGraph during the simulation procures the co-simulation environment with further capabili-
ties such as simulation tracing. The setting and getting of features values in the fUML semantic 
model is performed by calling setFeatureValue() and getFeatureValue() respectively on the 
Object(sem) class. The setFeatureValue() operation takes as parameters the instance of the 
Port(syn), a Value(syn), and the position in which the value will be inserted. The getFeatureValue() 
operation takes as parameter the instance of the Port(syn) and the position from which the value 
will be get. 
Table 4-2.Mapping between formalization functions and wrapper functions 

Formalization functions Wrapper functions 

getc(y) fmi2Getxxx(y) 
c.getFeatureValue(y,0) 
Where xxx is one of Real, Integer, Boolean and 
String 

setc(u,v) fmi2Setxxx(u,v) 
c.setFeatureValue(u,v,0) 
Where xxx is one of Real, Integer,e Boolean and 
String 

Figure 4-11. Extensions of the PSCS semantic model for FMI based co-simulation
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4.2. Validation of the framework implementation 

 Use case: The TankPISystem 

Control systems are an example of CPS. A traditional control problem is the control of the 
liquid level in a tank. The ‘TankPI’ is a common example conceived for that purpose. This 
example is a cyber physical system composed of a physical part (called Plant) and a cyber part 
(called controller) as illustrated in Figure 4-12. 
The tank receives a liquid flow produced by a liquid source. These two model elements repre-
sent the physical part of the system. The controller (piContinuous) receives the indication of 
the level of the liquid in the tank from the level sensor and returns a control signal to an actuator. 
The control signal is computed based on that indication, the amount of liquid received at this 
moment, and the capacity of the tank. Based on that signal, the actuator will either activate a 
valve to let the water flow out of the tank or deactivate it.   

Two FMUs for co-simulation are exported using the simulation Dymola (the 
‘TankPI_TanPIController.fmu’ and ‘TankPI_TankPIPlant.fmu’). Both FMUs rely on CT 
MoCs. This example is used for the validation of the FMI standard implementation in the frame-
work we propose. 

 Import of the FMUs and the definition of the co-simulation scenario 

When imported, each FMU is transformed into an UML package. The package contains an 
UML Class(syn) representing the structure of the FMU (i.e, parameters, inputs and outputs) and 
a set of UML Dependency(syn) representing the potential dependencies of the outputs to the in-
puts of the FMU. 
Each class is annotated with « CS_FMU» stereotype. The ports used for data propagation from 
one FMU to another are annotated with « CS_Port» stereotype to indicate to the MA the ports 
it should use for data propagation (i.e, ports which are not annotated with that stereotype should 
not be considered by the MA).  
The ‘TankPIController’ FMU has an input port ‘cIn’ which indicates the level of the liquid in 
the tank and an output port ‘cOut,’ which represents the instruction of the controller to activate 
the actuator or not. The ‘TankPIPlant’ FMU receives the instruction of the controller on its 
input port ‘tActuator’ and outputs the level of the liquid in the tank on its output port ‘tSensor’. 
It has another output port ‘qOut’ which indicates the amount of liquid flowing out of the tank. 

Figure 4-12. The tankPI system and its decomposition 

Plant 

Controller 

« Decomposition and ex-
port of FMUs for co-simu-

lation from simulation tool» 
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TankPIController 
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Figure 4-13 illustrates the import of the FMU ‘TankPI_TankController’ in the proposed frame-
work. It depicts the generated package as well as an extract of the properties of the stereotypes 
« CS_Port» and « CS_FMU».   

The imported FMUs are connected in the UML composite structure ‘CosimulationGraph’ 
(Figure 4-14). The simulation starts at t=0 and terminates at t=200 with a step size h=0.01. 
These parameters are indicated in the « CS_Graph» stereotype.  

 Simulation results 

The co-simulation scenario is simulated in simulation tool Dymola23 (a simulation tool which 
provide an implementation of the FMI for co-simulation standard) as well as in the proposed 
framework. The simulation results in the proposed framework are the same that obtained in 
Dymola. This comparison confirms the validity of the implementation presented in this chapter. 

Results of the co-simulation in Dymola as well as in the proposed framework are depicted re-
spectively in Figure 4-15 and Figure 4-16. A demo is also available online.24 

                                                 
23 Refer to: https://www.3ds.com/dymola/  
24 Refer to: https://www.youtube.com/demoFMICoSimulation 

Figure 4-14. The definition of the co-simulation scenario of the TankPI system 

«Composition of FMUs 
in the framework» 

Figure 4-13. The import of the TankPI_TankPI_FMU in the framework 
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Figure 4-15.  Execution results in the proposed Dymola 

Figure 4-16.Execution results in the proposed framework 
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For instance, the framework offers FMI-based co-simulation of a set of imported FMUs (phys-
ical components). This is the basis for the integration of UML models (computational compo-
nents) in FMI-based co-simulation. The extension of this framework for the support of UML 
models is the discussed in Chapters 5 and 6.  

4.3. Conclusion 

In this chapter, we introduced the framework we propose for FMI-based co-simulation of CPS.  
We listed features of each part of the framework, in particular the GUI and the MST-engine. 
The GUI is responsible for the definition of co-simulation scenarios using imported FMUs. The 
MST-engine is responsible for providing the MAs for FMUs’ orchestration and the required 
libraries which enable it to perform calls to FMI API procedures.   
For instance, we only provide an implementation of the FMI specification in an UML compliant 
tool. A CPS model connects a set of FMUs and their simulation is totally based on FMI.   
In next chapters, this framework will be extended for integration of UML models in which case 
a CPS model connects FMUs representing the physical components with UML models, which 
represent the cyber part of the system. 
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5.3. Conclusion  
 

This chapter deals with the integration of untimed UML models in FMI-based co-simulation 
approaches. It is organized into two main parts: the first one focuses on untimed UML models 
of transformational systems, and the second focuses on untimed UML models of systems reac-
tive to environmental changes. For each kind of systems, we define a set of modeling rules and 
potential extensions to fUML, in the case where fUML does not cover all UML syntactic ele-
ments. Then we map untimed semantics of fUML to timed semantics of FMI. This mapping 
enables the MST-engine to coordinate the imported FMUs and the untimed UML models by 
adapting its behavior to the kind of the model it simulates. Section 5.1 and section 5.2 deal with 
untimed UML models’ integration, respectively of transformational systems and reactive sys-
tems.
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5.1. Untimed Models of Transformational Systems 

 Modeling rules for integration in FMI co-simulation  

Model structure and behavior 

A transformational system model must specify the logical structure of the input and output data, 
and the algorithm that computes the transformation. We refer to transformational systems prop-
erties to define a set of requirements that the UML model should satisfy. Then, we refer to UML 
specification to identify the appropriate set of UML syntactic elements for transformational 
systems modeling. We try to remain as close as possible to fUML* (i.e, the subset of UML 
elements for which an execution semantics is defined) in order to minimize the efforts related 
to the extension of fUML* with new semantics. 
Table 5-1 depicts a mapping between the model requirements and syntactic UML elements 
based on the system properties. 

Table 5-1. Mapping of transformational systems properties to UML modeling concepts  

System property Model requirement UML concept 

P1: Activation 
A transformational system 
runs computations only when 
asked by another component. 

R1: The behavior of the class 
representing the system shall 
be called to execute some 
computations. 
 

C1: Passive Class(syn) with at 
least one Operation(syn) and no 
Property(syn) 

P2: Behavior 
A transformational system’s 
computations are not inter-
rupt-driven, and are usually 
sequential and terminating.  

R2: The behavior of the class 
representing the system shall 
specify a sequence of actions 
(i.e, corresponding to compu-
tations), and shall not wait for 
any event to occur and should 
terminate. 

C2: Activity(syn) as implemen-
tation of an operation  

P3: Output/input relationship 
A transformational system’s 
output is defined in terms of 
its input. 

R3: The structure of the class 
representing the system shall 
provide interfaces through 
which it accepts and outputs 
data, 

C3: Port(syn) 
C4: ReadStructuredFeature-

Action(syn) and AddStructured-

FeatureAction(syn) 

R4: The output depends on 
the input. 

C5: UML directed Depend-

ency(syn) 

The rest of this section gives a review about the aforementioned UML concepts as defined in 
UML specification [30] and argues the choice of this set of syntactic elements for transforma-
tional systems modeling. 



Chapter 5: Integration of untimed UML models in FMI-based co-simulation  

90 
 

An instance of a passive class executes within the context of some other object, that is, it waits 
for another object to call it. A passive class has a behavior defined by its operations (C1). There-
fore, the behavior of a passive class only starts when one of its operations is invoked and ter-
minates when this operation returns. fUML* restrict the behaviors modeling to activities, which 
may describe procedural computation (C2).  
The structure and the behavior of the environment are not particularly important for transfor-
mational systems. However, an interface is required to acquire sufficient information to produce 
the output.  Port(syn) (C3) provides a way to model interfaces of an object through which it 
receives input data and produces output data. 

Note that a transformational system is stateless. As a result, a UML model of a transformational 
system must not have properties (Property(syn)) other than ports. 
ReadStructuralFeatureAction(syn) and AddStructuralFeatureAction(syn) (C4) are actions which 
enable it to respectively retrieve and add values from/to a structural feature. Therefore, an ac-
tivity that specifies the behavior of a transformational system calls ReadStructuralFeatureAc-

tion(syn) on the input port to retrieve the input value which will be passed as a parameter to a 
sequential flow of actions (i.e, the computations) and finally calls addStructuralFeatureAc-

tion(syn) to write the result of the transformation on the output port. Information related to the 
dependency between the output and the input is particularly important to model. It is used by 
the MST-engine to analyze the co-simulation model, and then to determine the order and the 
instants at which it should propagate data from one component to another. That means that the 
output port requires the input port for its specification. This kind of relationship is expressed in 
UML with Dependency(syn) (C5), which proposes a way to express a supplier - client relation-
ship between model elements. The supplier provides something to the client, and thus the client 
(i.e, the output port) is in some sense incomplete while being dependent on the supplier (i.e, the 
input port).  

fUML defines precise execution semantics to concepts C1, C2, and C4. Port(syn) (C3) does not 
belong to the fUML* subset but a little extension to the fUML* semantic model was imple-
mented. fUML* are especially appropriate for the execution of untimed sequential behavior 
which fits the data flow MoC. The concept C5 is used only to provide extra static information 
related to the structure of the model, that is, no semantics are required to be defined for this 
element. Therefore, the fUML semantic model can be used as it is for simulation of untimed 
models of transformational systems. 

UML models are annotated with new stereotypes in order to enable the MST-engine to recog-
nize, in particular, the MoC on which the component it relies and then to adapt its behavior. 
The following section identifies important information that an untimed model of a transforma-
tional system need to expose and, extends the co-simulation profile (presented in section 
4.1.1.1) by adding new stereotypes to the co-simulation profile.  

 Applied stereotypes 

This section enumerates the stereotypes we will apply to an untimed UML model of a transfor-
mational system in order to expose important information to the MST-engine. Table 5-2 illus-
trates these stereotypes and their semantics. Important information of an untimed model of 
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transformational system concerns, the MoC on which it relies, the computations to execute and 
the direction of ports and their dependencies. The new stereotypes extend the co-simulation 
profile we presented in Chapter 4 where ‘CS’ stands for co-simulation. 

Table 5-2. Stereotypes to apply for an untimed model of transformational systems 

Stereotype UML meta-class Semantics 

« CS_Untimed » Class(syn) Used to indicate that the class has no 
semantics of time. 

« CS_Port »  

 

Port(syn) Identifies ports which should be 
considered by the MST-engine for 
data propagation. 

« CS_Operation »  

 

Operation(syn) Applied to one, and only one, opera-
tion of the model. It enables the 
MST-engine to identify the opera-
tion to invoke during a simulation 
step (the operation specifying the 
behavior of the system). 

« CS_Dependency » Dependency(syn) Used to identify UML elements that 
specify I/O dependencies between 
an outputs and inputs of a compo-
nent. 

Figure 5-1 depicts an example of an untimed model of a transformational system.  

The ‘Transformation’ class is a passive Class(syn) that represents the transformational system 
structure. The class owns an input port ‘in’, an output port ‘out’ and an operation ‘transform()’. 
This operation is the one that represents the computations performed by the system and that 
should be called by the MST-engine during a simulation step. The activity ‘TransformOpera-

tionImpl’ is the specification of the operation ‘transform()’. It is composed of three action 

Figure 5-1. An untimed model of a transformational system: structure and behavior 
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nodes: ‘read in’, ‘transform’, and ‘set out’. The ‘read in’ and ‘set out’ nodes are, respectively, 
a ReadStructuredFeatureAction(syn) on the input port and an AddStructuredFeatureAction(syn) 
on the output port of the ‘Transformation’ class which enable to get/set the values from/to ports. 
The ‘transform’ node is a CallBehaviorAction(syn), which is a specific action that invokes an-
other behavior. The invoked behavior is specified by the activity ‘ASimpleTransformation’. It 
takes an integer as input, computes a multiplication by two and returns the result. The choice to 
encapsulate the computations of the system in a CallBehaviorAction(syn) ensures that there is 
only one computation node in the activity that implements the operation and thus, simplifies 
the activity and makes it usable as a sample for future examples. This model will be used later 
in this chapter in a representative example (in section 5.1.4) for the co-simulation of an untimed 
UML model of a transformational system with an imported FMU. 

 Adapting fUML* execution semantics to FMI API 

The execution of untimed UML models for transformational systems relies on the Data Flow 
MoC. Their execution is purely causal and do not consider any notion of simulated time as state 
in section 1.1.2.1. These semantics are covered by fUML*. The execution of the FMUs, on the 
contrary, continuously depends on time. This difference raises an untimed vs timed semantics 
issue.   
This section focuses on that issue and proposes adaptation of semantics between execution se-
mantics of UML models defined by fUML* and semantics of FMI. It is organized into three 
subsections following the formalization of co-simulation given in section 2.1.1.2. It refers to 
the semantic model of UML models introduced in Annex A and gives equivalent routines in 
the fUML execution semantics for each function defined in the formalization.  

 Instantiation and initialization 

According to fUML specification, when a simulation is launched, the instances of the elements 
in the UML model are automatically created, initialized and then placed in the locus. The in-
stantiation result is the instance of the class ‘Transformation’ and the instances of all its features 
(i.e, the input port, the output ports, and the operation ‘transform ()’) in the locus.  
No time semantics² are supported in the UML model. Thus, the initialization only sets the fea-
tures values with default values in the model. 
Below in Table 5-3 are given the equivalent routines in the fUML semantic model which cor-
respond to the instantiation and initialization functions in the FMI API:    

Table 5-3. fUML routine for instantiation and initialization of an untimed model of a transfor-
mational system 

Formalization functions fUML or PSCS semantic model 

instc() c.locus.instantiate()  

initc() Features values are automatically initialized with 
values in the model during their instantiation. 

 Stepwise simulation and data propagation 

The behavior of a passive class is not automatically started after its instantiation. At each sim-
ulation step, the MST-engine launches the activity implementing the operation which defines 
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the computations of the transformational system. It first calls the dispatch() operation of the 
Object(sem) class, which dispatches the given operation to a method execution. Then by calling 
the execute() operation of the ActivityExecution() class, the dispatch operation takes as param-
eter the operation annotated with the « CS_Operation » stereotype. The activity of a passive 
object does not wait for any event to occur to propagate control from one activity node to an-
other. Therefore, once launched, the whole activity is executed. The doStepc() function corre-
sponds to the execution of the whole activity associated with the operation.  
At the end of a simulation step, the MST-engine propagates data from one port to another in 
the co-simulation model and synchronize the different components. The MST-engine considers 
the I/O dependency that exists between the output port and the input port of a transformational 
system. This dependency means that the input must be set before the computation of the output. 
The preprocessing algorithm “variable-order algorithm”, presented in section 4.1.2.3, is exe-
cuted before the beginning of the simulation. It takes into consideration the I/O dependencies 
of the UML component and generates the order in which the outputs/inputs of the co-simulation 
model should be get/set. The question is: at which instant must the data be propagated to the 
environment of such untimed models? The response is directly related to the step size used for 
the execution of these models.  
Consider a simulation scenario connecting a set of FMUs with one or more untimed UML mod-
els of transformational systems. Let hFMU be the step size of the FMUs, hUML be the step size of 
the UML components, and hMATSER be the step size chosen by the master to perform the co-
simulation.  
The absence of time makes the situation ambiguous. Two possibilities are identified: 

� The computations are assumed to take time to execute. Since the model does not provide 
exact information, one can assume that the computations run for a time equal to the step 
size used for the FMUs. In this case, the simulation step size for the UML component 
is the same as for the FMUs hUML=hFMU. For a simulation step starting at tc, all compo-
nents are simulated with the same step size hMaster=hFMU and data are propagated at tC+ 
hMaster= tC+hFMU. It corresponds to the traditional behavior of a master algorithm. This 
alternative is unsatisfactory when the computations run for a longer or a shorter duration 
than hFMU. 
Let d>=0 be the duration taken by the computations in reality. For a simulation step of 
size hFMU starting at tc, three situations are possible: 

o d=hFMU: this is the ideal situation, the outputs are computed and propagated at 
tC+d = tC+hFMU. 

o d>hFMU: the outputs are actually produced at tC+d, and therefore at tc+hFMU<tc+d 

the outputs are supposed to be absent, which is not respected when using a step 
size hFMU <d and may considerably affect the reliability of the simulation results. 

o d<hFMU: the outputs are produced at tc+d and propagated at  tc+hFMU>tc+d, there-
fore data are propagated with a delay of hFMU-d, which also affect the accuracy 
of the simulation results. 

� The computations are assumed to take zero time to execute. The output of the UML 
component should be, therefore, available and propagated in the co-simulation model at 
tC. As a result, each time an UML component is met, the master sets the value of its 
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input port, executes a doStepc() of size hUML=0 on the component, and gets the value of 
its output before executing and advancing time in the FMUs.  
The master adapts the simulation step size to the kind of the component being simulated, 
that is, hMASTER=hFMU for the FMUs and hMASTER=hUML=0 for UML components. In ad-
dition, UML models are simulated at the beginning of a simulation step before the 
FMUs. This alternative is not satisfactory because the duration of the computations is 
not considered. However, this choice covers the case where the duration of the compu-
tations is almost equal to zero. 

In both cases, the impact of the choice on the simulation results and on the decisions to make 
depends on the properties of the system under design. For the rest of this section, we will con-
sider the second alternative. First because it covers a particular use case (i.e. the instantaneous 
transformational systems), and second because of the direct dependency which exists between 
the outputs and the inputs of the component. 

Below in Table 5-4 are given the equivalent routines in the fUML* semantic model which 
correspond to the stepwise simulation and data propagation functions in the FMI API. 

Table 5-4. fUML routines for stepwise simulation and data propagation of an untimed model 
of a transformational system 

Formalization functions fUML or PSCS semantic model routines 

doStepc(0) c.dispatch(operationToExecute).execute(); 

setc(inPort,value) c.setFeatureValue(inPort,value) 

getc(outPort) c.getFeatureValue(inPort) 

Termination  

The termination of an Object(sem) corresponds to the termination of its behavior. The execution 
of an activity representing an Operation(sem) is automatically terminated when the result is re-
turned.    

Below in Table 5-5 is given the equivalent routine in the fUML semantic model which corre-
sponds to the termibation function in the FMI API:    

Table 5-5. fUML routines for termination of an untimed model of a transformational system 

Formalization functions fUML or PSCS semantic model 

terminatec() do nothing 

 Pseudocode of the master algorithm 

In order to account for these adaptations, we need to enrich the MST-engine with a new master 
algorithm that orchestrates a set of imported FMUs with one or more untimed UML models for 
transformational systems. The pseudocode of this latter is given in Figure 5-2. This algorithm 
can be enriched with the rollback functionality as done in the master algorithm orchestrating a 
set of FMUs. In fact, the transformational systems are memoryless. The produced outputs only 
depend on the current inputs. Therefore, in case where the master needs to remake a simulation 
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step, this only requires that all FMUs support rollback capabilities. The master can therefore 
save and then restore the previous states of the FMUs when needed. For the UML components, 
there is no particular computations to perform since no notion of system state exists. 

 Experience on a representative example 

Definition of the simulation scenario 

The representative example consists of the definition and the simulation of a co-simulation sce-
nario composed of an FMU, so-called ‘Inc’ provided by the FMU SDK25, and an untimed UML  

                                                 
25 www.qtronic.de/fmusdk  

/*Co-simulation parameters*/ 
tc: Current simulation time  
tstart: Start simulation time  
tstop: Stop simulation time  
hFMU: simulation step size of the FMU 
hUML=0 : simulation step size of an untimed UML component 
X: U∪Y : set of ordered ports variables computed by “Variables-order” algorithm  
C= F ∪	UU where UU: the set of untimed UML classes  
/*Assumptions*/ 
On the co-simulation graph: no cycles exist in the co-simulation model, the co-simulation graph 
is composed of a set of FMUs and one or more untimed UML models 
On UML components: zero step size is allowed 
On the FMUs: no particular assumptions 
/*Instantiate and initialize components c ∈ C */  
for each component c ∈ C:  

instc(); 
if c ∈ F  
           initc(tstart, tstop);  
end if; 

/*Step wise simulation*/  
while (tc<tstop)  
      for each input u in X  
          y = P(u);      //returns the output ‘y’ linked to the input ‘u’ in the co-simulation graph 
             v = getc(y);  
             setc(u,v);   
  if c ∈	UU      //c is the one which has u as input 
   doStepc(hUML);   
  end if; 
      end for 
           for each c in F 

doStepc(hFMU); 	
            end for; 
      tc=tc+ hFMU; 
end while.  
/* Termination of the simulation*/  
for each component c ∈ C:  

terminatec() ;  
end simulation 

Figure 5-2. Pseudocode of a master algorithm for a Co-simulation graph connecting FMUs 
with untimed UML model of a transformational system. 
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model of a transformational system, the so-called ‘Transformation’ represented in section 
5.1.1.2 (Figure 5-3).  
The part ‘inc’ in the figure below represents the FMU ‘Inc.’ It has no inputs, and only one 

integer output ‘counter.’ It increments the counter at each instant ‘t+n’ where n∈N and uses a 
step of size ‘h=0.5’. The counter is therefore incremented after two calls to ‘doStep()’ on the 
‘Inc’ FMU. The value of the ‘counter’ is propagated to the input ‘in’ of the ‘untimedTransfor-
mation’ component. 

The ‘untimedTransformation’ component in Figure 5-3. Co-simulation graph connecting an 
imported FMU to an untimed model of a transformational system represents the class ‘Trans-
formation’ defined in section 5.1.1.2. The red arrow indicates the direct dependency of the out-
put port ‘out’ to the input port ‘in’ of ‘Transformation’ class. The expected behavior of the 
‘untimedTransformation’ component is that it will output a result at the same time it receives 
values on its input port, that is, the result must be computed and output before the time advances 
in the ‘inc’ component.  

The co-simulation scenario will be simulated from ‘tstart=0’ to ‘tstop=10’ with a default simula-
tion step size ‘hmaster=0,5’ as indicated in the ‘CS_Graph’ stereotype. The simulation results are 
given in the next subsection. 

Simulation of the co-simulation scenario 

Figure 5-4 and Figure 5-5 depict simulation results of the co-simulation scenario defined in the 
previous subsection using, respectively, the basic master (defined in the FMI standard in section 
2.1.2) and the advanced master algorithm proposed in section 5.1.3. 

Using the basic master algorithm given in section 2.1.2 (where the simulation step size hmas-

ter=hFMU>0 for all components), we notice a delay between the instant at which the inputs arrive 
to the ‘untimedTransformation’ component (tin=2) and the instant at which this latter produces 
the corresponding output (tout=2,5) (Figure 5-4). This delay is introduced at all simulation steps 
from the beginning to the end of the simulation. 

Figure 5-5 demonstrates that this delay does not exist when using the master algorithm we 
proposed in section 5.1.3. The outputs are in fact produced at the same time as the inputs’ arrival 
(tin=tout) from the beginning to the end of the simulation which corresponds to the expected 
behavior. 

Figure 5-3. Co-simulation graph connecting an imported FMU to an untimed model of a 
transformational system 
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5.2. Untimed models of reactive systems 

d=0.5 

tin : instant of the arrival of the input, 
tout: instant of the propagation of the output, 
d=tout-tin: the delay between the reception of the input 
and the production of the corresponding output. 

tin   tout  

Figure 5-5. Co-simulation results of an untimed model of a transformational system-
Advanced master 

d=0 

tin   

  tout  

tin : instant of the arrival of the input, 
tout: instant of the propagation of the output, 
d=tout-tin: the delay between the reception of the input 
and the production of the corresponding output. 

Figure 5-4. Co-simulation results of an untimed model of a transformational system-
Basic master 
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 Modeling rules for integration in FMI co-simulation 

Model structure and behaviors 

A model of a reactive system must contain, in addition to the logical behavior of the system, 
the elements that ensure interaction with the environment. By contrast to transformational sys-
tems, reactive systems are in continuous interaction with the environment. Therefore, they al-
ways wait for some inputs to which they output a reaction.  

Similar to what we do for transformational systems modeling with UML, we refer to reactive 
systems properties to define a set of requirements that the UML model should satisfy. Then, we 
refer to UML specification to identify the appropriate set of UML syntactic elements for mod-
eling of reactive systems. 

Table 5-6 depicts a mapping between the model requirements and syntactic UML elements 
based on reactive systems properties. 

Table 5-6.Mapping of reactive systems properties to UML modeling concepts 

System property Model requirement UML concept 

P1: Activation 
A reactive system constantly 
interacts with its environ-
ment. 

R1: The behavior of class 
representing the system shall 
be active from the beginning 
of the simulation and should 
wait for some stimuli on its 
input port to continue pro-
cessing. 

C6: Active Class(syn) with a 
classifier behavior. 

P2: Behavior 
Reactive system computa-
tions are interrupt driven and 
are usually non-terminating. 
The system should react to 
external stimuli and produce 
the correct actions to the en-
vironment. 

R2: The behavior of the class 
shall specify a stimuli/re-
sponse behavior. 

C2: Activity(syn) representing 
the classifier behavior 
C7: AcceptEventAction(syn) 
triggered by a Chang-

eEvent(syn). 

P3: Input/output relationship 
Reactive system outputs de-
pend on the external stimuli 
it receives as well as on the 
current state of the system.  

R3: The structure of the ob-
ject shall provide interfaces 
through which it accepts and 
outputs data. 

C3: Port(syn) 
C4: ReadStructuredFeature-

Action(syn) and AddStructured-

FeatureAction(syn). 

The rest of this section serves as a reminder about the UML concepts C6 and C7 as defined in 
UML specification [30] and argues the choice of these syntactic UML elements for reactive 
systems modeling. 
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An instance of an active Class(syn) is an object that begins to execute its behavior as soon as it 
is created and does not cease until either the complete behavior is executed or the object is 
terminated by some external object. The points at which an active object responds to commu-
nications received on its ports is determined by its behavior and not by the invoking object. An 
active object has a behavior defined as its classifier behavior.   
The designer needs techniques for specifying stimulus-reaction behavior. Reactive behaviors 
modeling is handled by a specific UML action, the AcceptEventAction(syn). This action is intro-
duced in UML to handle the processing of events during the execution of a behavior.  It waits 
for the occurrence of an event meeting a specified condition to continue execution. In particular, 
the occurrence of a ChangeEvent(syn) is based on some condition becoming true, which meets 
the semantics of stimuli. An AcceptEventAction(syn) triggered by a ChangeEvent(syn) is then well 
suited for the modeling of stimuli-response behavior of a reactive system.  
fUML defines the execution semantics of behaviors designed with activities and associated to 
active classes as a classifier behavior (C6), but not for the change events. An extension to fUML 
is then required and will be detailed in section 5.2.2.  

Similar to imported FMUs and untimed models of transformational systems, an untimed model 
of a reactive system must expose information about its MoC. Section 5.2.1.2 outlines the set of 
stereotypes we will apply to an untimed model of a reactive system. 

Applied stereotypes 

Table 5-7 illustrates the stereotypes used for an untimed UML model of a reactive system and 
gives the semantics of each of them. These stereotypes have been already introduced in section 
4.1.1.1. 

Table 5-7. Stereotypes to apply for an untimed model of reactive systems 

Stereotype UML meta-class Semantics 

« CS_Untimed » Class(syn) Indicates that the class has no seman-
tics of time. 

« CS_Port »  

 

Port(syn) Identifies ports which must be consid-
ered by the MST-engine for data 
propagation. 

A simple example of an untimed reactive system is depicted in Figure 5-6.‘Controller’ is an 
active Class(syn) that represents the reactive system structure. The class owns an input port ‘in’, 
an output port ‘out’ and a classifier behavior ‘ControllerClassifierBehavior’. The classifier be-
havior describes the dynamics of a system. It controls the value of the input to produce some 
effect on its environment. It is specified with the activity ‘ControllerClassifierBehaviorImpl’. 
This activity is composed of four action nodes: ‘change on in’, ‘read in’, ‘control’ and ‘set out’.  
The activity first waits for a change in the input port value represented by the 'change on in’ 

node which is an AcceptEventAction(syn) triggered by a ChangeEvent(syn) related to the port ‘in’. 
Once a change is detected, the control is propagated in the activity. The ‘read in’ and ‘set out’ 



Chapter 5: Integration of untimed UML models in FMI-based co-simulation  

100 
 

nodes respectively, are a ReadStructuredFeatureAction(syn) on the input port and an AddStruc-

turedFeatureAction(syn) on the output port of the ‘Transformation’ class which enable to get/set 
the values from/to ports. The ‘control’ action node is a CallBehaviorAction(syn). This specific 
action is used to simplify the activity and make it usable as a basis for future examples. The 
behavior called by this action is specified by the activity ‘ASimpleControl’. This takes an inte-
ger as input, compares it to a threshold value and returns a boolean result. This model will be 
used later in this chapter in a representative example in section 5.2.5 for the co-simulation of 
an untimed UML model of a reactive system with an imported FMU. 

 Extension of fUML semantics  

fUML considers the AcceptEventAction(syn) triggered by a SignalEvent(syn) but not one triggered 
by a ChangeEvent(syn). The fUML should be extended in both syntax and semantics. The syntax 
subset should be enriched by the syntactic element ChangeEvent(syn). The semantic model 
should then provide semantic elements to capture the semantics brought by this new syntactic 
element. Following the visitor pattern explained in Chapter 3, this implies: 
� The introduction of a new visitor ChangeEventOccurence(sem) as a specialization of the 

EventOccurence(sem) class in the fUML semantic model. It represents a single occurrence 
of a ChangeEvent(syn). The change event occurrences are placed in the event pool of the 
ObjectActivation(sem). 
The occurrence of a change event is based on some expression becoming true. The expres-
sion is checked continuously or at specific instants so that each time the value of the ex-
pression changes from false to true, a change event is generated. As stated in the UML 
specification: “It is a semantic variation when the change expression is evaluated. For 

example, the change expression may be continuously evaluated until it becomes true. It is 

further a semantic variation whether a change event remains until it is consumed, even if 

the change expression changes to false after a change event.” [30] 

Figure 5-6. An untimed UML model of a reactive system: structure and behavior 
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In the context of FMI, we are interested in detecting a change on the value of a specific 
input port. We, therefore, propose to evaluate the condition when values of input ports are 
set by the MSt-engine. The ChangeEventOccurence(sem) concerns a specific feature repre-
sented by changedProperty attribute. A change event is generated when the new value 
(newValue) of the feature changes compared to the former one (formerValue).   

� The definition of a new visitor AcceptChangeEventActionEventAccepter(sem) as a 
specialization of AcceptEventActionEventAccepter(sem). This event Accepter handles events 
reception on behalf of a specific accept event action activation waiting for a change event 
occurrence.  

� The definition of a new visitor AcceptChangeEventActionActivation(sem) as a specialization 
of CS_AcceptEventActionActivation(sem) together with a new execution factory U4Co-

simExecutionFactory(sem) as a specialization of CosimExecutionFactory(sem). The instanti-

ateVisitor() operation is overridden to take into account the AcceptChangeEventActionAc-

tivation(sem) visitor.  The latter is associated with the AcceptChangeEventActionEventAc-

cepter(sem). The operations match() and accept() for change event instances should behave 
as it does for signal event instances, except that the event should correspond to a Chang-

eEventOccurrence(syn) instead of a SignalEventOccurrence(syn).  

Figure 5-7 depicts a class diagram of the new semantic elements required to capture the seman-
tics of an accept event action triggered by a change event. 

 Adapting fUML execution semantics to FMI API 

The execution semantics of untimed UML models for reactive systems corresponds to the exe-
cution cycle of reactive synchronous MoC introduced in Chapter 1. The behavior is activated 
at a discrete set of instants which corresponds to events arrival instants. No notion of simulated 
time exists. Thanks to the extension introduced in the previous section, this MoC is now sup-

Figure 5-7. Semantic elements which capture semantics of change events 
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ported. The execution of the FMUs, on the contrary, continuously depends on time. This dif-
ference raises an untimed vs timed semantics issue, as well as a discrete event vs continuous 
time issue.  
This section focuses on these issues and proposes adaptation of semantics between execution 
semantics of UML models and semantics of FMI. It is organized into three subsections follow-
ing the formalization of co-simulation. It refers to the extended semantic model introduced in 
the previous section and gives equivalent routines for each function defined in the formaliza-
tion.  

Instantiation and initialization 

When the simulation is launched, the instances of the elements in the UML model are automat-
ically created, initialized and then placed in the locus. The instantiation result in the locus of 
the model depicted in Figure 5-6 is an instance of the class ‘Controller’ represented with an 
Object(sem), a representation of all its features and its classifier behavior.  
The classifier behavior is started as soon as it is created. However, in FMI context, the behavior 
should start when the simulation effectively starts (i.e. at the first call of the doStep() function). 
The ObjectActivation(sem) should be created but not started at this stage. Therefore, the startBe-

havior() operation of the Object(sem) class must be overridden to support these new semantics.  
Table 5-8 illustrates the equivalent routines in the fUML semantic model which correspond to 
the instantiation and initialization functions in the FMI API. 

Table 5-8. fUML routines for instantiation and initialization of an untimed model of a reactive 
system 

Formalization functions fUML or PSCS semantic model 

instc() c.locus.instantiate(); 

initc() Features values are automatically initialized with 
values in the model during instantiation  

Stepwise simulation and data propagation 

As stated in chapter 3, the execution of active classes relies on Run-To-Completion semantics. 
When an event is dispatched from the event pool by calling the dispatchNextEvent() operation, 

the match() operation checks whether or not an AcceptChangeEventActionEventAccepter(sem) 
waiting for that event exists.  If so, the accept() operation propagates the control as far as pos-
sible until encountering a new blocking node. In the example given in Figure 5-6, the classifier 
behavior is supposed to wait for a change on the input port value. Once a change is detected, 
the control is propagated in the activity and, then, the object returns to wait for a future change 
on the input port value. 
The absence of time information leads to an ambiguous situation regarding the instant at which 
the data must be propagated in the co-simulation model. Similar to an untimed model of a 
transformational system, two possibilities are identified:  

� The reaction to a received stimulus is instantaneous. This means that the component takes 
zero time to execute and that the output must be immediately available and propagated in 
the co-simulation model. As a result, each time an UML component is met, the master 
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sets the value of its input ports, executes a doStepc() of size zero on the component, and 
gets the value of its outputs before executing and advancing time in the FMUs.  

� The reaction to a received stimulus is differed. This means that the component takes time 
to compute or, that the reaction is intentionally delayed because the environment is not 
waiting for an imminent response. However, the model does not provide exact infor-
mation about the instant of this reaction. A default simulation step size (which is that used 
for the FMUs) is used in this case and data are propagated at the same time for all com-
ponents. The master algorithm calls doStepc() of size hFMU on all components in the co-
simulation model, then propagates data which corresponds to the traditional behavior of 
the master algorithm. 

The instant at which the data is propagated is therefore a semantic variation point. We propose 
to consider the first alternative since it is closer to the properties of reactive systems.  
The value of an observed port is set only if the new value is different from the old value. If so, 
a new ChangeEventOccurrence(sem) is created and added to the event pool of the ObjectActiva-

tion(sem).  

Table 5-9. fUML routines for stepwise simulation and data propagation of an untimed model 
of a reactive system 

Formalization func-
tions 

fUML or PSCS semantic model 

doStepc(h) if (firstSimulationStep) then 
         c.actionActivation.startBehavior(); 
end if; 
if (c.objectActivation.eventPool.size() > 0) then 
          c.actionActivation.dispatchNextEvent(); 
else 
          do nothing; 
end if; 

setc(inPort,value) if (c.inPort.oldValue != value) then 
          c.setFeatureValue(inPort,value); 
         if (inPort.observed) then  
                  evt=new changeEventOccurrence(inPort,c.inPort.oldValue, value); 
                  c.objectActivation.eventPool.add(evt); 
         endif; 
else 
          doNothing; 
endif; 

getc(outPort) c.getFeatureValue(inPort); 

 Termination 

The behavior of reactive systems does not terminate only if a problem occurs or the termination 
is enforced. Therefore, the behavior of an active class is supposed to run infinitely. The execu-
tion of its behavior (the classifier behavior) is handled by the ObjectActivation(sem) class. The 
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termination of the latter may be forced by calling the operation stop(), which will terminate all 
classifier behavior executions. At the end of the co-simulation, all instances in the locus are 
automatically destroyed. 

Table 5-10. fUML routines for termination of an untimed model of a reactive system 

Formalization functions fUML or PSCS semantic model 

terminatec() c.objectActivation.stop(); 

 Pseudocode of the master algorithm  

The pseudocode of the MA we propose for the co-simulation of untimed UML models of reac-
tive systems in FMI context is the same as given in Figure 5-2 and with the same assumptions. 
However, the rollback functionality cannot have been provided for this scenario. In fact, the 
outputs produced by reactive systems depends on the current inputs and may also depend on a 
previous state of the system. Unfortunately, the semantics of saving and restoring the state of 
an UML model execution (all the locus and the current position in the activity) are not yet 
supported in the current implementation. This capacity is very important in co-simulation. How-
ever, since it requires some effort and time to implement it, it is planned as an extension for this 
work. 

 Experience on a representative example  

Definition of the simulation scenario 

The representative example consists of the definition and the simulation of a co-simulation sce-
nario composed of an FMU, the so-called ‘Inc’ (the same used in the section 5.1.4), and an 
untimed UML model of a reactive system, so-called ‘Controller’ presented in section 5.2.1.2.  
The ‘inc’ component in the Figure 5-8 is an instance of the imported FMU ‘Inc’. For this sce-
nario, we will use a default step size ‘h=1’ instead of ‘h=0,5’ since we are interested, for reac-
tive components, by the instants at which the value of the counter changes. The counter, in fact, 
is incremented each one unit of time.  

The value of the ‘counter’ is propagated to the input ‘in’ of the ‘untimedController’, an instance 
of the ‘Controller’ class defined in 5.2.1.2. The expected behavior of the ‘untimedController’ 
component is an instantaneous reaction when the value of the counter reaches the ‘treshold=4’. 
The reaction consists in swithching the value of the output ‘out’ from ‘false’ to ‘true’. That is, 

Figure 5-8.Co-simulation graph connecting an imported FMU to an untimed model of a 
reactive system 
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if the threshold is reached at time‘tin=4’ then the ‘untimedController’ should react at 
‘tout=tin=4’.  
The co-simulation scenario will be simulated from ‘tstart=0’ to ‘tstop=10’ with a default simula-
tion step size ‘hmaster=1’ as indicated in the ‘CS_Graph’ stereotype. The simulation result are 
given in the next subsection. 
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Simulation of the co-simulation scenario 

Figure 5-9 and Figure 5-10 depict simulation results of the co-simulation scenario defined in 
the previous subsection using respectively the basic master (as defined in the FMI standard in 
section 2.1.2) and the advanced master algorithm we proposed in section 5.2.4. 

Figure 5-10. Co-simulation results of an untimed model  
of a reactive system - advanced master 

d=1 

tin : instant at which the threshold is reached, 
tout: instant at which the new setpoint is propagated, 
d=tout-tin: the delay between the two instants 

tin : instant at which the threshold is reached, 
tout: instant at which the new setpoint is propagated, 
d=tout-tin: the delay between the two instants 

d=0 

tin          tout  

tin    

  tout  

Figure 5-9. Co-simulation results of an untimed model  
of a reactive system - basic master 
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Using the basic master algorithm given in section 2.1.2 (where the simulation step size hmas-

ter=hFMU>0 for all components), we notice a delay between the instant at which the inputs arrive 
at the ‘untimedController’ component (tin=4) and the instant at which this latter react to the 
change of the input value (tout=5) (Figure 5-9). 

Figure 5-10 demonstrates that this delay does not exist when using the master algorithm we 
proposed in section 5.2.4. The reaction of the ‘untimedController’ is in fact produced at the 
same time as the input value changes (tin=tout=4) which corresponds to the expected behavior. 

5.3. Conclusion 

In this chapter, we focused on the integration of untimed UML models in FMI-based co-simu-
lation. For each kind of systems identified in the classification of section 3.2.1 (transformational 
and reactive systems), we provided rules for their modeling with UML in the context of the 
FMI standard, an adaptation between the execution semantics of UML models and the FMI 
API, and a master algorithm for the orchestration and synchronization of FMUs and UML com-
ponents. The adaptation we proposed tackles, in particular, the semantic gap between untimed 
semantics of fUML* and timed semantics of FMI.  
In the next chapter, we will deal with timed UML models where the behaviors described in this 
chapter are refined for the introduction of time information. As done for this chapter, we will 
provide rules for modeling this information in UML models, an adaptation between timed exe-
cution of UML models and FMI API, and master algorithms for synchronization of FMUs and 
UML components.  
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6.3. Conclusion 
 

Time is a major concern when executing models for simulation purpose. The absence of time 
information in the system model considerably affects the simulations correctness when the goal 
is to verify the workflow duration of a system, or the correctness of its behavior when placed 
in a time-driven environment. Specifically, in the context of CPSs co-simulation, the computa-
tions are part of the system and are connected to physical components that continuously evolve 
in time. Their co-simulation should account for time properties of these components in order to 
produce correct results.
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In the previous chapter, we identified a set of rules for the modeling of the structure and the 
behavior of transformational and reactive systems. However, the models we specified were 
untimed. This chapter focuses on timed UML models. We first identify important time infor-
mation to model for each kind of systems by referring to their properties. Then we refer to UML 
syntax to identify a minimal subset to specify timed behaviors. 

6.1. Timed models of transformational systems 

 Modeling rules for interation in FMI co-simulation 

Model structure and behavior 

A transformational system always executes the same behavior. This behavior, as stated in the 
previous chapter, is invoked, executed and then terminated at each simulation step. The pro-
duced outputs, in fact, only depend on the received inputs and do not consider the previous 
states of the system. These properties lead to the following conclusions: 

A timed model of a transformational system does neither maintain information about the 

elapsed simulation time nor maintain information regarding the instants at which the simula-

tion starts and finishes. 

The outputs are produced once at the end of the activity execution. Therefore, in timed simula-
tion, we essentially need to specify the duration of the entire activity. 

As a result, the only important information we need to specify in a timed model for a transfor-
mational system is how much time computations take to run.  

Table 6-1 exposes two alternatives to model this information in a timed UML model of the 
transformational system. 

Table 6-1. Time modeling in UML models of transformational systems 

Time information to 
model 

Model requirement UML concept  

How much time computa-
tions take to execute? 

The behavior must specify du-
rations of computation nodes 
in the activity. 
Or 

The model must expose infor-
mation about the execution 
duration of the whole behavior  
 

C8: DurationConstraint(syn) on 
Action(syn) for computation ac-
tions. 
Or 

A Property(syn) ‘stepSize’ in 
the « CS_Timed» stereotype.  

The first solution to model time on UML models consists in specifying the duration of the 
computations on the actions composing the activity. UML standard proposes a model of time 
which allows to represent time and durations, as well as actions to observe the passing of time. 
This alternative requires an extension of fUML* syntax and semantics as well as a control entity 
which is responsible for the execution of timed actions (i.e, pausing and resuming the execution 
at the right time) and for the time advancement locally in the component. In timed simulations, 
the control entity maintains information about the simulation start time and stop time as well as 
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the current simulation time. However, as stated previously, a model of a transformational sys-
tem is not constrained to consider any notion of local and global time. It does not maintain 
information about the elapsed simulation time and the instants at which the simulation starts 
and finishes. This solution is therefore not well suited for the simulation of timed UML model 
of transformational systems. It will be explained further in the section 6.2.1 for time represen-
tation in reactive systems models. 

The second solution consists in specifying the duration of the computations by adding an at-
tribute ‘stepSize’ in the stereotype « CS_Timed». This stereotype will be applied to the class 
representing the transformational system (refer to section 6.1.1.2 of this chapter). The attribute 
‘stepSize’ represents the duration of the whole behavior. Since the behavior is executed at each 
simulation step, this information corresponds to the step size of the model in the context of 
FMI. This solution does not require further extensions to the fUML* syntactic subset. The mas-
ter can directly access the information before invoking the behavior of the component and com-
pute the suitable step size to use. However, this solution does not ensure exact simulation results 
when there is more than one execution path (e.g. existence of alternatives or loops which depend 
on the inputs). Consider for example the behavior in the Figure 6-1. According to the value of 
the input ‘in’ (true or false), two execution paths are possible (‘compute1’ or ‘compute2’). Sup-
pose that ‘compute1’ takes 4 units of time and that ‘compute2’ takes 5 units of time. In such 
cases, the ‘step size’ cannot always indicate the exact execution duration of the behavior. A 
choice strategy can be defined for the specification of the ‘step size’. One can choose the best 
or the worst execution duration of the behavior, or also an average of the different execution 
durations.  

For the rest of the work, we choose the second solution. We suppose that the ‘step size’ of a 
UML model of a transformational system is the longer duration the component could take to 
compute. 

Applied stereotypes 

The FMI profile is extended with a new stereotype: the « CS_timed » stereotype. This stereo-
type is applied to all active classes whose behaviors are timed to the master in order to account 
for the delay between the invocation of the active class behavior and the production of the 
outputs. Table 6-2 recapitulates the stereotypes we must apply in a timed model of the 
transformational system.  

Figure 6-1. Two-path behavior 
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Table 6-2. Stereotypes to apply for a timed model of transformational systems 

Stereotype Property UML meta-
class 

Semantics 

« CS_Timed » 
 

StepSize Class(syn) Used to indicate that the class supports 
time semantics. 
The ‘stepSize’ property indicates to the 
master the amount of time taken by the 
component to produce a new output. It 
represents the step size of the component 
in the context of FMI. 

« CS_Port »  

 

 Port(syn) Identifies the ports which should be con-
sidered by the MA for data propagation. 

« CS_Operation »  

 

 Operation(syn) Applied to one, and only one, operation of 
the model.  
It enables the MST-engine to identify the 
operation that specifies the behavior of the 
system, therefore the operation to invoke 
for a simulation step. 

The model given in the previous chapter for a simple transformational system is refined to 
introduce time. Figure 6-2 depicts a simple example of a timed model for a transformational 
system where both alternatives for time modeling are illustrated. For the rest of this section, we 
will consider the second alternative.  

Figure 6-2. A timed model of a transformation system 

Second alternative 

First alternative 
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 Adapting fUML semantics to FMI API 

The execution of timed UML models for transformational systems relies on the Data Flow 
MoC. In fact, when time is expressed using the second alternative, the execution of the behavior 
is still purely causal and do not consider any notion of simulated time. The time information, 
however, should be considered by the master to compute the suitable simulation step size.  
This section focuses on how the master manage the integration of timed UML models with 
FMUs. Adaptation of semantics between execution semantics of UML models defined by 
fUML* (data flow) and semantics of FMI was already proposed in section 5.1.2. In this section 
we will demonstrate how the master will, in addition, account for time information expressed 
in UML models. It is organized into three subsections following the formalization of co-simu-
lation given in section 2.1.1.2. It refers to the semantic model of UML models introduced in 
AnnexA and gives equivalent routines in the fUML* execution semantics for each function 
defined in the formalization.  

Instantiation and Initialization 

The instantiation and initialization routines are the same for the untimed models of transforma-
tional systems as illustrated in Table 6-3. 
Table 6-3. fUML routines for instantiation and initialization of a timed model of a transforma-
tional system 

Formalization functions fUML or PSCS semantic model 

instc() c.locus.instantiate()  

initc() Features values are automatically initialized with 
values in the model during their instantiation  

Stepwise simulation and data propagation 

The master algorithm must account for the fact that the UML components are timed. As stated 
before, the duration of the activity executed when this component is invoked corresponds to the 
step size of that component. Transformational systems operate at their own rhythm, that is, no 
outputs could be retrieved before the end of the activity execution (the outputs are absent before 
the end of the activity execution).  In FMI context, absent inputs (and therefore, absent outputs) 
are not allowed. An efficient master algorithm should not invoke functions related to data prop-
agation between components (i.e, getc() and setc() functions), except at times when the values 
are present, and thus, should not perform a doStep() call with a step size smaller than the dura-
tion  taken by the component to compute. Otherwise, a default value or an old value will be 
propagated which affect the correctness of the simulation results. 
Consider a co-simulation scenario connecting an FMU to a timed UML model of a transforma-
tional system. Let hUML>=0 be the step size of the UML component, hFMU the simulation step 
size of the FMUs, and hMASTER the step size chosen by the master for the co-simulation. For a 
simulation step starting at t=tc: 

� If hUML=0 then hMASTER=0 for the UML components and hMASTER=hFMU for the FMUs. 
The outputs of the UML components are immediately propagated to the FMU when 
new data are available on its input ports as done for untimed UML models in Chapter 
4. That is, they are produced and propagated at tC. The outputs of the FMU are produced 
and propagated at tC+hFMU. 
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� If hUML>0 then: 
o If hUML=hFMU then hMASTER=hFMU =hUML, 
o If hUML<hFMU then two alternatives are possible: 

- hMASTER=hUML: the outputs of the UML component are computed and propa-
gated at t=tc+hMASTER=tc+hUML.  

- hMASTER=hFMU: the outputs of the UML component are computed at t=tc+hUML 
and propagated at t=tc+hMASTER=tc+hFMU with a delay of hMASTER-hUML. 

o If hUML>hFMU then two alternatives are possible: 
- hMASTER=hUML: the outputs of the UML component are computed and propa-

gated at t=tc+hMASTER=tc+hUML.  
- hMASTER=hFMU: the outputs of the UML component are not yet computed at 

t=tc+hMASTER=tc+hFMU. Since the FMI standard does not allow absent values, 
then default values must be specified for all UML component outputs. 

We believe that the computational components execution is almost instantaneous but precision 
is important in case where the systems under design are time critical. We assume that 
0<=hUML<=hFMU. According to the analysis made above, hMASTER=hUML which ensures the 
propagation of new output values without any delay. 

Suppose now that the co-simulation model includes two timed UML components of transfor-
mational systems C1 and C2, and an FMU. Let hUML1>=0 and hUML2>=0 be the step sizes of C1 
and C2 respectively, and hFMU the step size of the FMU>0. Two situations are possible: 

� hUML1=hUML2: This scenario is equivalent to the previous one, 
� hUML1<>hUML2 then suppose that hUML1<hUML2 : 

o hMASTER=max(hUML1,hUML2)=hUML2: the outputs of C2 are computed and propagated 
at t=tc+hMATSER, wheareas the outputs of C1 are computed t=tc+hUML1 and propa-
gated with a delay of hMASTER-hUML1. 

o hMASTER=min(hUML1,hUML2)=hUML1: the outputs of C1 are computed and propagated 
at t=tc+hMATSER whereas the outputs of C2 are not yet computed. Since the FMI 
standard does not allow absent values, then default values must be specified for all 
UML component outputs. 

Both alternatives leads to non-precise simulation results. The presence of new values on 
outputs of the components with a little delay ensures at least that these values are really 
produced by the system, whereas default values are just predictions. Then, hMASTER= 
Max({hC, c ∈ UT}) where UT is the set of timed UML components of transformational 
systems. 

Table 6-4 illustrates the mapping between the formalization functions and fUML routines for 
stepwise simulation and data propagation of timed UML model of reactive systems. 

Table 6-4.fUML routines for stepwise simulation and data propagation of a timed model of a 
transformational system 

Formalization functions fUML or PSCS semantic model routines 

doStepc(hUML) c.dispatch(operationToExecute).execute(); 

setc(inPort,value) c.setFeatureValue(inPort,value) 

getc(outPort) c.getFeatureValue(inPort) 
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Termination 

The termination routines are the same as for the untimed models of transformational systems. 
They are illustrated in Table 6-5. 

Table 6-5. fUML routines for termination of an untimed model of a transformational system 

Formalization functions fUML or PSCS semantic model 

terminatec() do nothing. 

 Pseudocode of the master algorithm 

 

/*Assumptions*/ 
On the co-simulation graph: no cycles exist in the co-simulation model, the graph connects a set of 
FMUs with a timed UML model of a transformational system 
On UML components: zero step size allowed,  
On the FMUs: the step size proposed by the master algorithm is accepted by all FMUs, 
/*Co-simulation parameters*/ 
tc: Current simulation time , tstart: Start simulation time ,  tstop: Stop simulation time  
hC: the step size of the component being simulated 
hMASTER: the co-simulation step size 

X: U∪Y : set of ordered ports variables computed by “Variables-order” algorithm  
C= F ∪	TU where TU: the set of timed UML components of transformational systems 
/*Instantiate and initialize components c ∈ C */  
for each component c ∈ C:  

instc(); 
if c ∈ F  
           initc(tstart, tstop);  
enf if; 

/*Step wise simulation*/  
hMASTER=Max({hC, c ∈ TU}) 
while (tc<tstop)  
      for each input u ∈ X  
          y = P(u);       
             v = getc(y);  
             setc(u,v);   
  if (hC = 0)  
   doStepc(0);   
  end if; 
      end for 
           for each c ∈ C 

if (hC > 0)  
   doStepc(hMASTER);   
  end if; 
            end for; 
      tc=tc+ hMASTER; 
end while; 
/* Termination of the simulation*/  
for each component c ∈ C:  

terminatec() ;  
end simulation 

Figure 6-3. Pseudocode of a master algorithm for a Co-simulation graph connecting FMUs 
with timed models of a transformational system. 
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The MST-engine is enriched with a new master algorithm depicted in Figure 6-3 which orches-
trates a set of imported FMUs connected to one or more timed UML models of a transforma-
tional systems. In this algorithm, we suppose that the FMUs always accept the simulation step 
size proposed by the master and that UML models are allowed to have a zero simulation step 
size. The master waits for all UML components to finish their computations before propagating 
the new outputs 

 Experience on a representative example 

 Definition of the simulation scenario 

The representative example consists of the definition and the simulation of a co-simulation sce-
nario composed of an FMU, the so-called ‘Inc’ (the same used in the section 5.1.4), and an 
timed UML model of a transformational system, so-called ‘Transformaiton’ presented in sec-
tion 6.1.1.2. The ‘inc’ part in Figure 6-4 represents the imported FMU ‘Inc’. For this scenario, 
we will use the default step size ‘h=0,5’.  

The value of the ‘counter’ is propagated to the input ‘in’ of the ‘timedTransformationr’, which 
represents ‘Transformation’ class defined in section 6.1.1.2. The expected behavior of the 
‘timedController’ component is to output a result after ‘0,5’ unit of time it receives values on 
its input port.  

The co-simulation scenario will be simulated from ‘tstart=0’ to ‘tstop=10’ with a default simula-
tion step size ‘hmaster=0,5’ as indicated in the ‘CS_Graph’ stereotype. The simulation results are 
given in the next subsection. 

 Simulation of the co-simulation scenario 

Figure 6-5 and Figure 6-6 depict simulation results of the co-simulation scenario defined in the 
previous subsection using respectively, the basic master (defined in the FMI standard in section 
2.1.2), and the advanced master algorithm proposed in section 5.1.3. 

With a default step size ‘hmaster=hUML=hFMU=0,5’ we obtain the same simulation results using 
both master algorithms.  

Figure 6-4.Co-simulation graph connecting an imported FMU to an timed model of a 
transformational system 
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6.2. Timed models of reactive systems  

 Modeling rules for integration in FMI-based co-simulation 

 Model structure and behavior 

A reactive system outputs a reaction when some conditions become true. Controllers are typical 
examples of such systems. Here, we provide brief examples of reactive systems where modeling 
of time information becomes essential: 

Figure 6-5. Co-simulation results of a timed model  
of a transformational system-Basic master  

Figure 6-6. Co-simulation results of a timed model 
of a transformational system-Advanced master 
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- A system may produce a reaction immediately (instantaneous response) or waits for 
some time before producing a reaction to a received stimulus (differed response). We 
take as an example, a system that controls the level of a liquid in a tank (similar to that 
described in Chapter 4). The controller receives information about the level of the liquid 
in the tank and should provide control commands to the plant based on this information: 

o If the liquid approaches the maximum allowed level and the flow of liquid is 
high, then it must immediately order to open a valve to evacuate the tank. 

o If the liquid approaches the maximum allowed level and the liquid flow is low, 
then it should order to open the valve after some amount of time. 

- A system may need to output some commands at a precise instant. For example, in 
smart houses, it may need to configure the heater controller to activate the heater at six 

p.m. and deactivate it at four a.m. The heater controller could be further configured to 
stop the heater for fifteen minutes if the temperature reaches the maximum allowed 
value. 

- A system that periodically executes some task. For example, the mailing system that 
updates the inbox every 5 minutes.  

The syntactic UML elements related to the modeling of change events received on input ports 
of a reactive system was identified in the previous chapter in section 5.2.1.1. In this chapter, we 
focus on expressing time on the behaviors of reactive systems in order to model differing reac-
tions to change events received on input ports and also, to model reactions to time events. For 
this, we need to identify how UML activities represent expressions written in bold. We distin-
guish two kinds of actions for the modeling of timed reactive systems activities: 

- Computation actions which execute some operations. The execution can take time to 
execute (e.g, for fifteen minutes).  

- Synchronization actions which wait for a precise instant to propagate the control (e.g, 
at six p.m., after some amount of time and also immediately). A timed behavior 
should be able to express time instants at which these actions should fire. 

Table 6-6 recapitulates rules for timed behavior modeling of reactive systems. 

Table 6-6.Time modeling with UML for transformational systems 

Time information to model Model requirement UML concept  

i.How much time computa-
tions take to execute? 

The behavior must specify 
durations of computation 
nodes  

C8: DurationConstraint(syn) 
on Action(syn) for computation 
actions. 

ii.Time instants for synchro-
nization of executions 

The behavior must specify 
instants at which synchroni-
zation  nodes must fire 

C9: AcceptEventAction(syn) 
triggered by a TimeEvent(syn) 

for synchronization actions. 
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UML standard proposes a model of time which enables the representation of time in the applic-
ative models. The latter comprises meta-classes to represent time and durations, as well as ac-
tions to observe the passing of time. It introduces numerous concepts of time modeling, but we 
identified a minimal subset of UML syntactic elements sufficient to express required time in-
formation.  

i. When associated with an Action(syn), a DurationConstraint(syn) (C8) indicates that the 
execution duration of this action can take a duration between two boundaries defined as a Du-

rationInterval(syn). We note the duration interval ‘[dmin, dmax]’ where ‘dmin’ and ‘dmax’ are 
of type Duration(syn) and specify the minimum and maximum action execution duration, respec-
tively.  
On actions, a DurationConstraint(syn) can be specified as a localPreCondition or a localPost-

Condtion. Local pre-conditions and local post-conditions are constraints that should hold when 
the execution starts and completes, respectively. They hold only at the point in the flow that 
they are specified. A DurationConstraint(syn) expressed on an action means that the duration at 
the end of the action execution must be between the minimum and the maximum durations 
defined in the duration interval ‘[dmin, dmax]’. Therefore, this constraint should be specified 
as a localPostCondition of the action. The choice of the duration taken during the execution of 
the behavior is a semantic variation point. One can always choose the minimum duration or the 
maximum duration as a strategy. A random choice of the duration between the two boundaries 
can also be the defined strategy in which case we need an observation to know which duration 
is finally taken by the action. Another alternative is to specify the same duration for both bound-
aries (dmin=dmax), which allows for the constraint of the duration of the action execution to 
an exact amount of time.  
The CallBehaviorAction(syn) is a call action that invokes a behavior. The argument values are 
passed on the input parameters of the invoked behavior. In a synchronous call, a CallBehav-

iorAction(syn)  waits until the execution of the invoked behavior completes and the values of 
output parameters of the behavior are placed on the result output pins. The invoked behavior 
represents the computation of the system. The choice to encapsulate the computations of the 
system in a CallBehaviorAction(syn) ensures that there is only one computation node in the ac-
tivity that implements the operation for which a DurationConstraint(syn)  will be specified.  

ii. The AcceptEventAction(syn) is a particular kind of actions used to represent a synchroni-
zation point by waiting for the occurrence of a particular event. A TimeEvent(syn) (C9) specifies 
a point in time at which an event occurs. When associated to an AcceptEventAction(syn), a time 
event specifies the instant at which the action should be effectively executed. As constrained 
by the fUML specification, this kind of actions is only allowed in behaviors associated to an 
active Class(syn) (i.e. in classifier behaviors). Time events are specified by an Expression(syn). 
This may be absolute, in which case the actions occur at a date that is known from the beginning, 
or relative to some other point in time, when the action occurs sometime after the execution of 
a previously encountered node in the execution flow. An absolute time trigger is specified with 
the keyword ‘at’ followed by an expression that evaluates to a time value, such as ‘at 7a.m.’. A 
relative time trigger is specified with the keyword ‘after’ followed by an expression that eval-
uates to a time value, such as ‘after 5 seconds’.  
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 Applied stereotypes 

The « CS_timed » stereotype is applied to all computational components whose behaviors are 
timed. This stereotype was already introduced in section 6.1.1.2 but a new property, so-called 
‘NextEventTime’, is added. Table 6-7 recapitulates all stereotype that should be applied to a 
timed model of a reactive system as well as their important properties, while reviewing their 
semantics. 

Table 6-7.Stereotypes to apply for a timed model of reactive systems 

Stereotype  Properties UML meta-
class 

Semantics 

« CS_timed » 
 

NextEventTime Class(syn) Used to indicate that the class sup-
ports time semantics. 
The ‘nextEventTime’ property will 
be used to indicate to the master the 
next time at which the component 
will produce new outputs. 

« CS_port »  

 

 Port(syn) Identifies the ports which should be 
considered by the MA for data prop-
agation. 

Figure 6-7. A simple example of a timed model of a reactive system 

 

At initialization (t=0) 
(At t=the instant at which the 

treshold is reached) 
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Figure 6-7 illustrates the use of an AcceptEventAction(syn), the so-called ‘after(0,25)’, triggered 
by a time event. The TimeEvent(syn) has a relative time stamp of 0,25 units of time. The ‘af-
ter(0,25)’ is a synchronization action which is used to delay the setting of the output by 0,25 
units of time when the execution of the action ‘>’ returns ‘true’ (i.e, when the input ‘in’ exceeds 
the value of four). 

 Extension of fUML semantics 

Reactive systems receive events and produce reactions at discrete instants. The associated 
behaviors progress at events occurrences. Since the behavior is timed, each event occurrence 
may be given a time stamp corresponding to the instant at which it occurs.  Events may be 
internal events (i.e, time events representing the completion of some processing or the end of 
waiting time) or external events (i.e, arrival of a new value on the input port of the system).  A 
timed behavior of a reactive system is therefore the execution of a sequence of events. We 
recognize the DE MoC semantics.  
As stated in Chapter 3, the fUML execution model is agnostic about time semantics (M2). It 
does not provide a control entity which appropriately schedules the execution of the various 
model elements in order to reflect the timing aspects (M3) . The construction of the DE MoC 
on fUML consists in overcoming these two shortcomings using the mechanisms introduced in 
the Chapter 3, namely the extensibility of the fUML semantic model (A1) and the control 
delegation (A2),  as follows: 

� Extending fUML with the UML syntactic elements identified previously in section 
6.2.1.1., and with new semantics brought by these elements. New execution semantics 
shall provide the logic for interpreting time representation on activities. 

� Providing a control entity, so-called DE scheduler, responsible for the scheduling of 
the model elements execution in order to reflect time aspects using the control delega-
tion mechanism as explained in section 3.2.4.2.  

In order to understand how the DE MoC can be constructed on the fUML semantic model, we 
refer to the principles of DE simulation. Section 6.2.2.1 sgives an overview of the key concepts 
of DE simulation, then represents the implementation of the DE scheduler in our framework 
and its interaction with the fUML semantic model. Section 6.2.2.2 focuses on the extension of 
the fUML syntax and semantics. 

DE scheduler 

Adiscrete event simulation engine must rely on one of the three DE simulation approaches (also 
called world-views) commonly used in the literature [27]: event-scheduling approach, activity-
scanning approach, and process iteration approach. The event-scheduling world-view, so called 
Event-driven, focuses on events and is suited to the simulation of timed behaviors of reactive 
systems. The behavior is represented as a discrete chronological sequence of events. These 
events are arranged on a list called future event list (FEL) in a chronological time order as 
described in Figure 6-9. tc is the current simulation time and Etc is the event being executed. 
The execution of an event consists in updating the system state by pulling it from the event pool 
and executing actions that are associated with it if that exists. Once Etc is executed, the first 
event to execute in the FEL is Etci, referred to as the imminent event. The execution of an event 
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may generate new events which should be pushed in the FEL. For example, in Figure 6-9. 
Events order in the FEL the execution of Etci+1 generates an event Etk where tk is the time stamp 
of the event and ti+1< tk <tn which should be inserted at the right place in the FEL. 

The DE simulation relies on a variable time advance, that is, when an event is executed, the 
simulation clock is advanced to the time of the imminent event in the FEL. The DE simulator 
is responsible for advancing simulation time and guaranteeing that events are executed in the 
correct chronological order. Both tasks are based on the FEL. They are usually implemented in 
an event scheduling/time advance algorithm as illustrated in Figure 6-8. Algorithm of discrete 
event simulation. 

The implementation of the DE scheduler is independent of the fUML semantic model. It is 
implemented using the control delegation mechanism using the aspect (A2). Figure 6-10 depicts 
an UML class diagram of the implementation of this scheduler in our framework. The latter 
(represented with the DEScheduler class) maintains a list of events, the FEL, ordered according 
to their relative time. It behaves as described in the scheduling algorithm presented previously 
in Figure 6-8. Algorithm of discrete event simulation.  At the beginning of the simulation, the 
scheduler is initialized with the simulation parameters (i.e, start time and stop time of the sim-
ulation).  

Next imminent event 

Etc    =>   Eti   =>   Eti+1   =>   …   =>  Etn 

     Etk Current time event 

New event generated during 
execution of Eti+1 

Figure 6-9. Events order in the FEL 

1. Start of simulation  
a. Initialize clock to 0, 
b. Schedule initial events, 
c. Initialize state variables  

2. While FEL not empty  
a. Remove the imminent event (Eti) from the FEL (Eti � Eti+1) 
b. Advance the clock from tc to ti (tc � ti) 
c. Execute Eti  
d. Generate future events Etk, if exist, and place their event notices 

on FEL in the correct position on the FEL according to time tk 
3. End of simulation 

Note that more than one event may occur at the same time (i.e. more than one 
imminent event Eti) in which case the scheduler should pull all imminent events 
from FEL (step 2.a.) before advancing time then execute and generate future 
events of all of them. 

Figure 6-8. Algorithm of discrete event simulation 
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A simulation step consists of pulling and executing the imminent events from the FEL, and 
updating the currentTime. The scheduler gives deterministic semantics to the execution of sim-
ultaneous events, that is, if there are two or more imminent events with the same time stamp, 
then all are pulled from the event list and executed at the same time. Each event is associated 
to a set of SchedulerAction. This set indicates the action to execute by the scheduler before (the 
preRunAction) or after (the postRunAction) the execution of an event. 

The execution of timed activities is handled by the DE scheduler. It is independent from the 
fUML syntax and semantics, but it is in interaction with the timed activity nodes activations 
during the execution. The latter is responsible for the ordering of the events in the FEL and their 
execution by resuming the execution flow of the activity at the correct instants. Once a timed 
fUML Action(syn) is encountered, the execution should be suspended (the operation suspend() 
of the corresponding ActionActivation(sem)) before sending offers to the next node in the activity. 
A SchedulerEvent, whose time stamp corresponds to the instant at which the execution of this 
action node will be resumed, is pushed in the FEL. 

Figure 6-10. The DE scheduler model 

:DEScheduler :SchedularAction :Timed_ActionActivation :Event 

new SchedulerAction() 

new Event() 

a 

Ek 

Push(Ek,a) 

advanceTime() 
t = ti 

t = tk 
execute() 

pull(Ek) 

pull(Ei) 

advanceTime() 
t = tk+1 

insert(Ek) 

resume() 

suspend() 

X 

t = tc 

Figure 6-11. Interaction description of the DE scheduler with a semantic ele-
ment capturing the execution semantics of a timed activity action 
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 The SchedulerAction associated with this event consists in resuming the execution of this ac-
tion node  (the operation resume() of the corresponding ActionActivation(sem)) when the event is 
pulled from the FEL. Figure 6-11 illustrates the interaction between the DE scheduler and the 
semantic visitor Timed_ActionActivation(sem). This semantic visitor implements the semantics 
of a timed Action(sem).  

 fUML extension 

The extension of the fUML semantic model requires the definition of a new locus Timed_Lo-

cus(sem), new semantic visitors, as well as a new execution factory Timed_ExecutionFactory(sem) 
responsible of the instantiation of  these visitors as follows: 

� Timed_Locus(sem) 
This new locus extends the Locus(sem) of the fUML semantic model to account for objects 
representing the classes annotated with the “CS_Timed” stereotype and relying on DE MoC. 
These objects are represented in the locus by Timed_Object(sem) type.  

� New semantic visitors 
The new semantic visitors are in charge of transforming time information expressed on actions 
into time events in the FEL, as well as rerouting the control to the DE scheduler when a time 
event is scheduled. Listed here are the most important semantic visitors required for enabling 
the execution of timed behaviors: 

o Timed_Object(sem)  
This type represents an instance of an active Class(syn) to which CS_Timed stereotype is 
applied and for which new semantics are defined to account for time. It is a specialization 
of the Object(sem) semantic visitor. The behavior of a Timed_Object(sem) is controlled by a 
Timed_ObjectActivation(sem), a specialization of ObjectActivation(sem) as depicted in Figure 
6-12. Timed_ObjectActivation(sem)should ensure that the activity is not automatically 
started when a Timed_Object(sem) is instantiated. This task is performed by disabling the 
event dispatch loop and scheduling an event at t=0 in the FEL. The scheduler action asso-
ciated to this event corresponds is responsible for resuming the activity execution and thus, 
for its starting.  

o Timed_ActionActivation(sem) 
Time expressed on Action(syn) indicates relative or absolute instants at which events should 
be scheduled in the FEL. These instants correspond to the end of a processing or a wait 
action and therefore the instants at which the tokens should be propagated in the activity. 

Figure 6-12. Extension of behavioral semantics for timed execution: 
Object and ObjectActivation 
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The operation responsible for tokens propagation is sendOffers(). The latter should be re-
defined to capture new semantics of timed actions execution, that is, to suspend the execu-
tion of the action node and to push a new event in the FEL with a time stamp corresponding 
to the instant at which the action should be resumed. The scheduler action associated to 
this event is in charge of resuming the execution of the Action(syn) and propagate data with 
sendOffers(). 
The execution of Action(syn) nodes is handled by concrete actions activations which are 
specializations of Timed_ActionActivation(sem). Figure 6-13 depicts action activations we 
are interested in for the modeling of reactive systems behaviors, namely Timed_CallBe-

haviorActionActivation(sem) and Timed_AcceptEventActionActivation(sem).  

� Timed_ExecutionFactory(sem) 
Timed_ExecutionFactory in Figure 6-14 is a new factory defined as a specialization of the Ex-

ecutionFactoty(sem) defined in the fUML semantic model. It is responsible for the instantiation 
of the new visitors introduced in this section, which capture time execution semantics. 

 Adapting fUML execution semantics to FMI API 

The execution semantics of timed UML models for reactive systems corresponds to the seman-
tics of the DE MoC introduced in 1.1.2.3. The behavior is activated at a discrete set of instants 
which corresponds to time events occurrences. The execution of the FMUs, on the contrary, 
continuously depends on time. This difference raises a continuous time vs discrete event se-
mantics issue.  

This section focuses on this issue and proposes adaptation of semantics between execution se-
mantics of UML models and semantics of FMI. It is organized into three subsections following 
the formalization of co-simulation. It refers to the extended semantic model introduced in the 
previous section and gives equivalent routines for each function defined in the formalization. 

Figure 6-13. Extension of behavioral semantics: the activity 
nodes activations 

Figure 6-14. Extension of instantiation semantics: Locus and ExecutionFactory 
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 Instantiation and initialization 

The instantiation of timed models is handled by the new locus and execution factory: Timed_lo-

cus(sem) and Timed_ExecutionFactory(sem). 

The initialization consists in initializing the instantiated objects with default values in the model 
as well as in initializing the DE scheduler with start simulation time and stop simulation time 
as illustrated in Table 6-8. 

Table 6-8.fUML routines for instantiation and initialization of a timed model of a reactive sys-
tem 

Formalization functions fUML semantic model 

instc() c.locus.instantiate(); 

initc() Features values are automatically initialized with 
values in the model during instantiation  
DEScheduler.init(startTime, stopTime); 

 Stepwise simulation and data propagation 

FMUs rely on CT MoC where outputs continuously change and can be retrieved at any instant 
during simulation. FMUs are usually executed with a fixed simulation step size (i.e. if the FMU 
does not require to rollback, the master usually invoke it using the same step size from the 
beginning to the end of the simulation). Timed UML component execution relies on the DE 
MoC where outputs change at discrete set of instants during simulation. Between two instants, 
the outputs do not change. The execution is handled by the DE scheduler and relies on a variable 
time advance. Time is advanced only when an event is executed. This raises a continuous time 
vs discrete event semantics gap. In order to integrate timed UML model in FMI-based co-sim-
ulation, the MST-Engine should synchronize the DE scheduler with the FMUs executions using 
sone of the following wrappers. 

� Multiple Timestamps Wrapper  
A call to doStep() at time tc with a step size h corresponds to the execution of all the events 
scheduled between tc and tc+h in the FEL. At the end of the step, time advances to tc+h. Let ti 
be the time stamp of the imminent event in the FEL:  

a. If (h<ti) then no event is scheduled between tc and tc+h and no new outputs are computed 
during the simulation step,  

b. If (h>=ti) then, the DE scheduler executes events having relative time stamps between 
ti and h. Let tl be the relative time stamp of the last event scheduled between tc and tc+h 
in the FEL: 
b.1. If (h>tl) then new outputs are computed at t=tc+tl and propagated at t=tc+h.  
b.2. If (h=tl) then the outputs are computed at t=tc+tl and propagated t=tc+h=tc+tl.  

Note that in case b.1., the outputs are computed at a time tc+tl prior to that of the data propaga-
tion tc+h in the model which may affect the simulation results, and that, in both cases b.1. and 
b.2., no outputs are propagated to the environment for events scheduled between tc and tc+h 
except the one scheduled at t=tc+tl. The MST-Engine misses events which also considerably 
affect the correctness of the simulation results. As a solution to that we propose the single time 
stamp wrapper. 
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� Single Timestamp Wrapper  
Let ti be the time stamp of the imminent event in the FEL. A call to doStep() at time tc with a 
step size h corresponds to the execution of the events scheduled between tc and tc+h and having 
a timestamp equal to ti. At the end of the step, time advances to tc+h.  

a. If (h<ti) then no event is scheduled between tc and tc+h then no new outputs are com-
puted during the step,  

b. If (h>ti) then new outputs are computed at t=tc+ti and propagated in the model at t=tc+h,  
c. If (h=ti) then new outputs are computed at t=tc+ti and propagated in the model at 

t=tc+h=tc+ti  
Note that in the case b, the outputs are computed at a time tc+ti prior to that of the data propa-
gation in the model which may reduce the efficiency of the co-simulation by affecting the cor-
rectness of the results, and that, if other events are scheduled between tc+ti and tc+h these events 
will be lost.  
In order to avoid events missing, at each simulation step, the master proposes a simulation step 
size h<=ti. This can be done by making accessible to the master the information about the time 
stamp of the next event in the FEL. At each simulation step, the master retrieves the time stamp 
of the next event in the FEL and computes a simulation step size accepted by all components 
in the co-simulation graph. This information is indicated in the property ‘NextEventTime’ of 
the stereotype ‘CS-Timed’ introduced in the Table 6-9. 
Let hUML=ti is the adequate step size for a timed UML model and hFMU is the simulation step 
size used for the simulation of the FMUs, then hMASTER= min(hFMU,ti) is the simulation step size 
proposed by the master. 

Table 6-9. fUML routines for stepwise simulation and data propagation of a timed model of a 
reactive system 

Formalization func-
tions 

fUML semantic model 

doStepc(h) if (firstSimulationStep) then 
         c.actionActivation.startBehavior(); 
end if; 
if (DEScheduler.FEL.size() > 0) then 
          DEScheduler.step(h); 
else 
          do nothing; 
end if; 

setc(inPort,value) if (c.inPort.oldValue != value) then 
          c.setFeatureValue(inPort,value,0); 
          if (inPort.observed) then  
                evt =  new changeEventOccurrence(inPort, c.inPort.oldValue, value); 
                c.objectActivation.eventPool.add(evt); 
          endif; 
else 
          doNothing; 
endif; 

getc(outPort) c.getFeatureValue(inPort,0); 
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Termination 

The control of the activities execution is delegated to the DE scheduler. The latter is therefore 
responsible for their termination. At the initialization phase, the scheduler was initialized with 
the simulation parameters (start and stop time). A time event Estop with a time stamp equal to 
the tstop is pushed in the FEL. The scheduler action associated to Estop corresponds to the termi-
nation of the activity execution. The termination of the activity execution is performed by call-
ing the operation stop() which will terminate all classifier behavior executions.  
At the end of the co-simulation, all instances in the locus are automatically destroyed. 
Table 6-10. fUML routine for termination of a timed model of a reactive system 

Formalization functions fUML or PSCS semantic model 

terminatec() DEScheduler.stop(); 

/*Assumptions*/ 
On the co-simulation graph: no cycles exist in the co-simulation model, the graph connects a set of FMUs 
with timed UML models of reactive systems 
On UML components: zero step size allowed,  
On the FMUs: the step size proposed by the master algorithm is accepted by all FMUs, 
/*Co-simulation parameters*/ 
tc: Current simulation time  
tstart: Start simulation time  
tstop: Stop simulation time  
hC: the step size of the component being simulated 
hMASTER: the co-simulation step size 
ti: the next event time in the FEL of the component being simulated 
X: U∪Y : set of ordered ports variables computed by “Variables-order” algorithm  
C= F ∪	TU where TU: the set of timed UML components of reactive systems 
/*Instantiate and initialize components c ∈ C */  
for each component c ∈ C:  

instc(); 
initc(tstart, tstop);  

/*Step wise simulation*/  
while (tc<tstop)  
      for each input u ∈ X  
          y = P(u);       
             v = getc(y);  
             setc(u,v);   
  if (hC = 0)  
   doStepc(0);   
  end if; 
      end for; 
 hMASTER=min({hC, c ∈ F},{tic, c∈ TU});   
           for each c ∈ C 

if (hC > 0)  
   doStepc(hMASTER);   
  end if; 
            end for; 
      tc=tc+ hMASTER; 
end while; 
/* Termination of the simulation*/  
for each component c ∈ C:  

terminatec() ;  
end simulation; 

Figure 6-15.Pseudocode of a master algorithm for a Co-simulation graph connecting FMUs 
with a timed model of a reactive system. 
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 Pseudocode of the master algorithm 

Figure 6-15 depicts the master algorithm we propose for the integration of timed UML models 
of reactive systems. 

 Experience on a representative example 

Definition of the simulation scenario 

The representative example consists of the definition and the simulation of a co-simulation sce-
nario composed of FMU, the so-called ‘Inc’ (the same used in the section 5.1.4), and a timed 
UML model of a reactive system, so-called ‘Controller’ presented in section 6.2.1.2.  
The ‘inc’ component in the Figure 6-16 is an instance of the imported FMU ‘Inc’. For this sce-
nario, we will use a default step size ‘h=1’ since we are interested in, for reactive components, 
the instants at which the values of the inputs change. The counter (and therefore the input ‘in’), 
in fact, is incremented each one unit of time.  

The value of the ‘counter’ is propagated to the input ‘in’ of the ‘timedController’, which repre-
sents the ‘Controller’ class defined in 6.2.1.2. The default step size of the ‘timedController’ 
component is ‘hUML=1’ as indicated in the ‘CS_FMU’ stereotype in Figure 6-7. 
This master should also take into account the internal time event of the component ‘timedCon-
troller’. This latter has a time event with a time stamp equal to ‘te=0,25’ which is encountered 
when the value of the input ‘in=true’. In this case, the reaction must be produced after 0.25 units 
of time instead of one.  
The expected behavior of the ‘timedController’ component, therefore, is to react to the input 
changes after an amount of time equal to the default step size (h=1) if ‘in=false’, and after an 
amount of time equal to the event time stamps when ‘in=true’.  
The co-simulation scenario will be simulated from ‘tstart=0’ to ‘tstop=10’ with a default simula-
tion step size ‘hmaster=1’ as indicated in the ‘CS_Graph’ stereotype in Figure 6-16. 

Simulation of the co-simulation scenario 

Figure 6-18 and Figure 6-17 depict simulation results of this co-simulation scenario using the 
basic master as defined in the FMI standard (refer to section 2.1.2) and the advanced master 
algorithm we proposed in section 5.2.4 respectively. 

The value of the counter reaches the threshold at ‘t=4’. At this instant ‘t=4’, when executing a 
dostep on the ‘timedController’, the value returned by the control action is ‘true’. In this case, 
the ‘timedController is expected to produce a new setpoint at ‘t=4,25’. However, using the basic 
master algorithm given in section 2.1.2, all calls to doStep use the default step size ‘h=1’. As a 

Figure 6-16. Co-simulation graph connecting an imported FMU to a timed model of a 
reactive system 
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result, there is a delay ‘d=0,75’ between the instant at which the new setpoint should be pro-
duced and the instant at which the new setpoint is actually produced. This delay is due to the 
ignorance of the master to the time event occurrence. Figure 6-17 demonstrates that this delay 
does not exist when using the master algorithm we proposed in section 5.2.4. The reaction of 
the ‘timedController’ is in fact produced at ‘t=4,25’. 

 

Figure 6-18.Co-simulation results of a timed model 
of a reactive system-Basic master 

d=0,75 

tin : instant at which the new setpoint should be propagated, 
tout: instant at which the new setpoint is actually propagated, 
d=tout-tin: the delay between the two instants 

tin      tout  

d=0 

tin : instant at which the new setpoint should be propagated, 
tout: instant at which the new setpoint is actually propagated, 
d=tout-tin: the delay between the two instants 

tin        

tout  

Figure 6-17. Co-simulation results of a timed model  
of a reactive system-Advanced master 
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6.3. Conclusion 

In this chapter, we focused on the integration of timed UML models in FMI-based co-simula-
tion. For each kind of systems, transformational and reactive systems, we provided rules for 
their modeling with UML in the context of the FMI standard, an adaptation between the execu-
tion semantics of UML models and the FMI API, and a master algorithm for the orchestration 
and synchronization of FMUs and UML components. The adaptation we proposed tackles, in 
particular, the semantic gap between DE semantics of fUML* and CT semantics of FMI.  
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7. Chapter 7: The Case Study: Energy auto-
consumption management in smart en-
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  7.4.2.1. Definition of the co-simulation scenario 
  7.4.2.2. Simulation results 

 Interpretation of the simulation results 

 

In this chapter, we aim at the validation of our approach. The validation is done by comparing 
co-simulation results of the case study using our approach in Papyrus/Moka with co-simulation 
results of the case study in Simulink. We will demonstrate how the approach we propose 
achieves better results. The chapter is organized as follows: Sections 7.1 and 7.2 introduces the 
case study we will use for our experimentations. Section 7.3 tackles the modeling of the case 
study in Papyrus following the rules defined in Chapters 4, 5 and 6, and finally, section 7.4 
exposes the simulation results in Papyrus with an evaluation against the simulation results in 
Simulink. 

7.1. Context 

Smart grid is a concept involving an electricity grid that delivers electric energy using commu-
nications, control, and computer technology for lower cost and superior reliability [15]. 
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The overall load in smart grids is not stable, as electricity demand varies significantly over the 
course of a day. High energy consumption could generate grid disruption and black-out which 
are very costly for energy providers and very uncomfortable for users. As a consequence, smart 
grids need smart consumption management system. Smart buildings are connected with energy 
management devices over communication networks to better monitor energy consumption and 
production. 
Reducing peak demand and overall consumption are two of the most significant strategies of 
smart consumption management. Furthermore, real-time information transmitted over commu-
nication networks allows power outage anticipation, as well as service perturbation detection. 
By rapidly detecting and analyzing data coming from the distribution network, the smart grid 
can take corrective actions, so as to restore power stability when needed. Mathematical algo-
rithms have been designed to predict power consumption increases, so that corrective actions 
can be taken. 
In this context, the purpose of the system under study is the verification of the auto-consumption 
management strategy in a smart energy building. The case study is provided by the CEA/Liten 
whose goal is the definition of a UML-based language for the definition of new control strate-
gies26 for the system under design and their verification. As a first step, we need to validate the 
co-simulation approach we proposed in Papyrus since it will be used later as the simulation 
environment for the verification of new defined strategies. The purpose of the experimentations 
is to perform this preliminary validation.  
The system under study is called ‘Energy Auto-consumption’ and was originally designed as a 
Matlab/Simulink model. The validation of the approach consists in modeling and simulating 
already defined control strategies in Papyrus, and in comparing the obtained simulation results 
with the simulation results in Simulink. We begin with the specification of the case study in the 
following section. 

7.2.  Specification of the case study  

                                                 
26 A control strategy is an algorithm that computes a control signal to be followed by the system for the regulation 
of a system functionality 

ControlSeflConsumption ESS 

ElectricityLoad 

PV 

ElectricityGrid 

Pac_Load 

Pac_sp 
Pac_PV 

Ess_Pac 

Load_Pac 

SOE 

PV_Pac 

Grid_Pac 

SOE_ESS 

Clock 

Figure 7-1. The ‘Energy Auto-consumption’ system 
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The ‘Energy Auto-consumption’ system is composed of five components as depicted in Figure 
7-1. They are specified in the following subsections. 

 The ‘ElectricLoad’ 

This component simulates the energy consumption of a building.  

� Output: 
o Load_PAC: is the amount of energy consumed by the building at a given instant. 

 The ‘ESS’ 

This component simulates the operation of a storage unit. It is responsible for injecting energy 
in the electrical network when the power in this later decreases. 

� Inputs 
o PAC_Sp: received from the ‘ControlSelfConsumption’ component and indi-

cates whether the storage unit should be charged or discharge. 

� Output: 
o ESS_PAC: the energy injected in the electrical network. 
o SOE: the state of charge of the storage unit. 

 The ‘ElectricityGrid’ 

This component simulates the electric network to which the storage unit and the building are 
connected. It is responsible for delivering electricity from producers to consumers. 

Outputs 

Load_Pac ElectricLoad 

Figure 7-2. The 'ElectricLoad' component structure 

Inputs 
Outputs 

Pac_Sp 
SOE 

ESS 
Ess_Pac 

Figure 7-3. The 'ESS' component structure 

Inputs 
Outputs 

Pac_in1 

Pac_in3 
Pac_in2 

Grid_Pac ElectricityGrid 

Figure 7-4. The 'ElectricityGrid' component structure 
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 The ‘PV’ 

This component simulates the photovoltaic unit. It produces energy and injects it into the elec-
trical network. 

� Output: 
o PV_PAC: is the amount of energy produced by the photovoltaic panels. 

 The ‘ControlSelfConsumption’ 

This component encapsulates an energy consumption control logic. It monitors the ESS com-
ponent based on information about the energy production and consumption of the whole sys-
tem. Two variants of control are proposed: a basic self-consumption control and an advanced 
self-consumption control. 

Basic Self-consumption Control 

a. Structure 
The basic self-consumption control receives as inputs information about the energy consump-
tion of the building (received from the ‘ElectricLoad’ component on the input ‘Pac_load’), and 
information about the energy production (received from the ‘PV’ component on the ‘Pac_PV’ 
input). Then, it simply computes the output ‘ESS_Pas_Sp’ which will be communicated to 
the‘ESS’ component.  

� Inputs 
o PAC_LOAD: received from the ‘ElectricalLoad’ component. It represents the 

instantaneous power consumed by the building. 
o PAC_PV: received from the ‘PV’ component. It represents the instantaneous 

power produced by the photovoltaic unit. 

� Output: 
o ESS_PAC_sp: the control signal to be delivered to the environment of this com-

ponent. It indicates instantaneous charged or discharged power. 

b. Behavior 
The basic self-consumption control behavior simply computes the difference of the energy con-
sumed by the building and the energy produced by the photovoltaic panels. This information 

Outputs 

PV_Pac PV 

Figure 7-5. The ‘PV’ component structure 

Inputs 
Outputs 

Pac_Load 

Pac_PV 
ESS_Pac_sp ControlSeflConsumption 

Figure 7-6. The basic ‘ControlSelfConsumption’ component structure 
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indicates whether the grid is a consumer or a producer, and is used by the ‘ESS’ component to 
determine whether the storage unit should deliver (discharge) or not deliver (charge) power to 

the electrical network. Figure 7-7 is the specification of the control logic of the basic ‘con-
trolSelfConsumption’ component.   

Advanced Self-Consumption Control 

a. Structure  
The advanced ‘ControlSelfConsumption’ component requires more inputs from the other com-
ponents compared to the basic control. It has four inputs, three parameters and one output as 
depicted in Figure 7-8. 

 

 

 

 

 

 

 

� Inputs 
o PAC_LOAD: received from the ‘ElectricalLoad’ component. It represents the 

instantaneous power consumed by the building. 
o PAC_PV: received from the ‘PV’ component. It represents the instantaneous 

power produced by the photovoltaic unit. 
o SOE_ESS: received from the ‘ESS’ component. It indicates the state of charge 

of the storage unit. 
o Clock: the current time of the day.  

� Parameters 
o SOC_THRESHOLD: the threshold from which the discharge is no longer au-

thorized. 
o PEAK_HOUR_START: the lower bound of the interval ‘peak hours’. 

/*Inputs*/ 

PAC_Load: instantaneous power consumed by the building, 
PAC_PV: instantaneous power produced by the photovoltaic unit, 
 
/*Outputs*/ 

ESS_PAC_sp: instantaneous charged or discharged power. 

/*The control strategy algorithm*/ 

ESS_PAC_sp = PAC_Load – PAC_PV; 
 
Figure 7-7. The basic ‘ControlSelfConsumption’ component behavior 

Inputs 
Outputs 
Parameters 

SOCthreshold 
PeakHourStart 

PeakHourEnd 

Pac_Load 

SOE_ESS 

Pac_PV 

Clock ESS_Pac_sp ControlSeflConsumption 

Figure 7-8. The ‘ControlSelfConsumption’ component structure in Simulink 
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o PEAK_HOUR_END: upper bound of the interval ‘peak hours’. 

� Output: 
o ESS_PAC_sp: the control signal to be delivered to the ESS component. It indi-

cates instantaneous charged or discharged power. 

The control signal computed by the advanced ‘ControlSelfConsumption’ component depends 
not only on the inputs received from its environment (the components connected to its inputs), 
but also on the period during which the system operates. The controller requires information 
about the current time to check whether the system operates, or does not operate, in peak hours 
represented by the Clock input in Figure 7-8. When it is information about simulation, the time 
is determined with reference to the simulation time. This information may be provided by a 
component responsible for indicating whether the system operates in the ‘peak hours’ period or 
in ‘off-peak hours’ based on the current simulation time.  

In Papyrus, we replace the Clock input (Figure 7-8) with PeackHours input (in Figure 7-10). 
The value of this latter is provided by the ‘PeakHoursIndicator’ component shown in Figure 
7-9. It indicates whether the current time is in the Peak Hours period or not based on the pa-
rameters ‘PeakHourStart’ and ‘PeakHourEnd’.  

The ‘PeakHoursIndicator’ component has two parameters and one output as follows: 
� Paramaters: 

o PeakHourStart: the start time of the peak hours period. 
o PeakHourEnd: the stop time of the peak hours period. 

� Output 
o PeakHours: delivered to the ControlSelfConsumption components to give infor-

mation about the period (peak hours or off-peak hours) of the system operation.  

 

 

 

 

 

The output of the ‘PeakHoursIndicator’ component is given as an input to the control ‘SelfCon-
sumptionControl’. Some changes in the structure of this latter are therefore required (compared 

Pac_Load 

Pac_PV 

SOE_ESS 
ControlSeflConsumption 

SOCthreshold 

PeakHours 

ESS_Pac_sp 

Inputs 
Outputs 
Parameters 

Figure 7-10. ControlSelfConsumption component structure in Papyrus 

PeakHours 
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Figure 7-9. PeakHourIndicator component Structure 
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to the structure represented in Figure 7-8). The new structure of the advanced ‘ControlSelfCon-
sumption’ is depicted in Figure 7-10. 

b. Behavior 
The control logic monitors the ESS component. It determines whether the storage unit should 
be charged or discharged while accounting for the state of the system as well as the current 
period of the day (i.e, peak hours or off-peak hours).  

Figure 7-11 specifies the logic of the ‘PeakHoursIndicator’ component with a simple algorithm. 

The conditions for the charge and the discharge of the storage unit are as follows: 

- The charge condition: the ESS should be charged when the current time does not corre-
spond to peak hours’ period and the power consumed by the building does not exceed 
the power produced by the photovoltaic unit. 

- The discharge conditions: 
o During peak period, the storage unit delivers the power available on the power 

grid. 
o During off-peak period, the storage unit delivers the available power only if the 

power consumed by the building (the ‘Pac_Load’ input) exceeds the power pro-
duced by the photovoltaic unit (the ‘Pac_pV’ input) and the charge rate of the 
storage unit remains greater than the limit imposed by the control. 

Figure 7-12 is the specification of the control logic of the ‘ControlSelfConsumption’ compo-
nent conforming to these conditions.   

 

/*Parameters*/ 

peakHourStart: the start hour of the peak hours period 
peakHourEnd: the stop time of the peak hours period  
/*Outputs*/ 

peakHours: the verdict 
/*Global Variables */ 

hour: the current simulation time 
/*Initializations*/ 

peakHours = false 

/*The logic algorithm*/ 

When (hour == peakHourStart) 
        peakHours = true; 
end when; 

When (hour == peakHourEnd) 
        peakHours =  false; 
end when;  

Figure 7-11. The ‘PeakHoursIndicator’ component behavior 
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In the following section, we focus on the modeling of the case study in Papyrus. As stated 
previously in section 7.1, we are interested in the modeling of control strategies with UML and 
their verification in the co-simulation environment we proposed in the contribution part. For 
this, we will particularly focus on the modeling of the ‘control self-consumption’ component 
with UML with respect to the modeling rules we defined in Chapter 5 and Chapter 6, and on its 
co-simulation with the other components using the master algorithms we proposed in Chapter 
5 and 6.  

7.3. Modeling of the case study in Papyrus 

In the co-simulation scenario we propose, all components, except the ‘self-ConsumptionCon-
trol’, are imported FMUs and rely on the CT MoC. In this section, we will focus on the model-
ing of the different components in Papyrus. 

 Modeling of FMUs in Papyrus 

The components ‘ElectricLoad’, ‘ESS’, ‘ElectricityGrid’ and ‘PV’ were originally designed 
with Matlab/Simulink and rely on CT MoC. They are exported as FMU for co-simulation (in 
Simulink), then imported into Papyrus. The FMUs are represented as UML classes annotated 
with stereotypes from the Co-Simulation profile as explained in Chapter 4. 
Figure 7-16, Figure 7-14, Figure 7-13 and Figure 7-15 represent the result of the import of the 
FMUs ‘ESS’, ‘Grid_3inputPac’, ‘Load’ and ‘PV’s respectively. 

/*Parameters*/ 

SOC_Threshold: the threshold from which the discharge is no longer authorized 

/*Inputs*/ 

PeakHours = indicates whether the system operates or not in peak hour period  
PAC_Load: instantaneous power consumed by the building, 
PAC_PV: instantaneous power produced by the photovoltaic unit, 
SOE_ESS: state of charge of the storage unit, 

/*Outputs*/ 

ESS_PAC_sp: instantaneous charged or discharged power. 

/*The control strategy algorithm*/ 

if (! PeakHours) then          // off-peak hours 
if (PAC_Load > PAC_PV) then           //discharge 

         if (SOE_ESS > SOC_Threshold) then    
                      SOE_PAC_sp = PAC_Load – PAC_PV;          //possible to discharge 
         else  //case charge 
           ESS_PAC_sp = 0;           //discharge forbidden 
           end if; 

else        // peak hours 
         ESS_PAC_sp = PAC_Load – PAC_PV; 
end if; 

Figure 7-12. The advanced ‘ControlSelfConsumption’ component behavior 
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 Modeling of ‘SelfConsumptionControl’ component in Papyrus 

Basic Self-Consumption Control 

The behavior of the basic ‘controlSelfConsumption’ is stateless and does not depend on time. 
It can be specified as an untimed model of a transformational system. We apply the modeling 
rules defined in section 5.1.1.  
 

Figure 7-15. The ‘ESS’ FMU imported in Papyrus 

Figure 7-13. The ‘Grid_3inputsPac’  FMU imported in Papyrus 

Figure 7-16. The 'PV' FMU imported in Papyrus 

Figure 7-14. The ‘Load’ FMU imported in Papyrus 
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The basic ‘Self-ConsumptionControl’ is represented with a passive class to which the 
“CS_untimed” stereotype is applied (Figure 7-17). The class owns two input ports ‘Pac_Load’ 
and ‘Pac_PV’, one output port ‘Pac_PV’, and an operation ‘controlConsumption’ annotated 
with the “CS_Operation”.  

The operation ‘controlConsumption’ implements the logic represented in Figure 7-7. It repre-
sents the computations to execute at each simulation step size (when the component is invoked 
by the master). It is specified and implemented with the activity ‘computeConsumption Impl’. 
This later reads the inputs ‘Pac_Load’ and ‘Pac_PV’ (‘read(Pac_Load)’ and ‘read(Pac_PV)’ 
actions in the activity). Then, it calculates the difference between the absolute values of these 
values (the ‘compute Impl’ activity). The output is finally set with the result (‘set(ESS_Pac)’ in 
the activity)  

Advanced Self-Consumption Control 
The advanced ‘SelfConsumptionControl’ component is composed of two components. The 
‘PeakHourIndicator’ produces an output at discrete instants and is reactive to time events. The 
corresponding UML model is therefore a timed UML model for a reactive system as depicted 
in Figure 7-18. The ‘PeakHourIndicator’ owns one output port ‘peakHour’ and a classifier be-
havior implementing the logic represented in Figure 7-11. 

The peak hours start at 7p.m and terminate at 9p.m. each day. For the first simulation day, these 
two instants are represented with AcceptEventActions(syn) triggered by time events ‘at(19)’ (trig-
gered by an absolute time event) and ‘after(2)’ (triggered by a relative time event).  

Figure 7-17.UML Model of the basic ‘SelfConsumptionControl’ - Structure and Behavior 
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‘after(22)’ is an AcceptEventActions(syn) triggered by an absolute time event. It represents the 
start time of the peak hours for the next day. 

The behavior of the advanced ‘SelfConsumptionControl’ component is time independent and 
reactive to changes. The behavior specifying the control strategy reacts only if one of the inputs 
values changes. The behavior is time independent. The corresponding UML model is therefore 
an untimed UML model of a reactive system. 

We apply the modeling rules defined in section 5.2.1. The advanced ‘ControlSelfConsump-
tionn’ component is an active class to which the stereotype “CS_untimed” is applied. The class 
owns four input ports ‘ESS_Pac’, ‘Pac_Load’, ‘Pac_PV’ and ‘peakHour’, an output port 
‘SOE_ESS’, and a classifier behavior which is executed once from the beginning to the end of 
he simulation. The classifier behavior is represented with the UML activities in Figure 7-19. It 
implements the control logic specified in Figure 7-12. 

The activity ‘Advanced self-consumption control behavior’ reacts to the change of at least one 
input. This behavior is represented with an AcceptEventAction(syn) triggered by change events 
(for each input is defined a change event). Once a change is detected, the activity reads the input 
ports values (‘read(Pac_Load)’, ‘read(Pac_PV)’, ‘read(SOE_ESS)’ and ‘read(PeakHour’)). 
Then, it performs some computations implemented with the activity ‘controlConsumptionImpl’ 
as specified in the control logic of Figure 7-12. At the end of the computations, it sets the value 
of output port ‘ESS_Pac’ with the new state of charge of the storage unit (‘write(Ess_Pac)’). 

Figure 7-18. Modeling the Peak-up indicator component with UML 
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Figure 7-19.UML model of the advanced self-consumption control – Structure and Behavior 
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7.4. Simulation of the case study in Papyrus/Moka 

The verification of smart grids models necessitates their simulation for long operation time 
(many days, or even weeks and months). A small simulation step size (for example h=10s) 
makes the simulation highly costly. For this reason, we propose to simulate the case study with 
a step size ‘h=1hour’.  
The goal of the simulation is to verify the operation of the storage unit (the output ‘ESS_Pac’ 
of the ‘ESS’ component) and the energy production/consumption in the electricity grid (the 
output Pac_Grid of the ‘ElectricityGrid’) for a given photovoltaic production and a given load 
consumption. 

We expose simulation results of one operation day for two co-simulation scenarios: a basic 
control scenario using the basic ‘SelfConsumptionControl’ component (section 7.4.1) and an 
advanced control scenario (section 7.4.2) using the advanced ‘SelfConsumptionControl’ com-
ponent.  

 The basic control scenario 

Definition of the co-simulation scenario 

The basic control scenario connects the imported FMUs ‘Load’, ‘ESS’, ‘PV’ and ‘electrici-
tyGrid’ to the basic ‘SelfConsumptionControl’ component specified in Figure 7-17. 

The co-simulation scenario of Figure 7-20 is simulated for one operation day from ‘tstart=0’ to 
‘tstop=24’ with a default simulation step size ‘hmaster=1’ (1hour). The simulation results are given 
in the next subsection. 

Figure 7-20. Co-simulation scenario connecting FMUs to the basic 
'SelfConsumptionControl' 
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Simulation results 

Figure 7-21 and Figure 7-22 depict simulation results of the case study in Simulink and in the 
co-simulation environment we proposed in Papyrus, respectively.  

 The advanced control scenario 

Definition of the co-simulation scenario 

The advanced control scenario is a co-simulation scenario which connects the imported FMUs 
‘Load’, ‘ESS’, ‘PV’ and ‘electricityGrid’ to the advanced ‘SelfConsumptionControl’ compo-
nent and the ‘PeakHourIndicator component specified in Figure 7-19 and Figure 7-18. 

The co-simulation scenario of Figure 7-23 is simulated for one operation day from ‘tstart=0’ to 
‘tstop=24’ with a default simulation step size ‘hmaster=1’ (1hour). The co-simulation results are 
given in the next subsection. 

 

 

Figure 7-21. Simulation results of the basic control scenario in Simulink 
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Figure 7-22. Simulation results of the basic control scenario in Papyrus 

tin : instant at which the new set point is computed, 
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Simulation results  

Figure 7-24 and Figure 7-25 depict simulation results of the case study in Simulink and in the 
co-simulation environment we proposed in Papyrus, respectively. 

-  

 

 

 

 

 

 

 
Figure 7-24. Simulation results of the advanced control scenario in Simulink 

tin : instant at which the new set point is computed, 
tout: instant at which the new set point is actually propagated, 
d=tout-tin: the delay between the two instants 
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Figure 7-23. Co-simulation scenario connecting FMUs to the advanced 
'SelfConsumptionControl' 
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 Interpretation of the simulation results 

The simulation results in Papyrus demonstrate that, using the master algorithm we proposed in 
the contribution part, we are able to: 

- Get information about the energy power that should be delivered by the storage unit to 
the electricity network as well as the state of charge of the storage unit earlier. As illus-
trated in Figure 7-22 and Figure 7-21 (respectively Figure 7-24 and Figure 7-25) the 
new set point value (the output ‘Ess_Pac’) as well as the state of charge and the amount 
of energy to be injected in the network (the output ‘Pac’ of the ‘ESS’ component) are 
computed and propagated before one hour compared to the results in Simulink. This 
action ensures a better operation of the smart grid. In fact, we are able to avoid outages 
by anticipating energy demands (delivering the required energy power on time), and 
maintaining an acceptable state of charge by charging the storage unit as fast as possible 
when the level is under the required threshold.  

- Minimize and maintain a more homogeneous rate of energy power distribution in the 
electricity grid. As illustrated in Figure 7-22 and Figure 7-21 (respectively Figure 7-24 
and Figure 7-25), using the master algorithm we propose in Papyrus, the energy power 
range is smaller than when simulating in Simulink. This enables a better dimensioning 
and calibration of the system, and therefore, minimization of the system conception cost, 
a very important factor for energy providers.  

7.5.  Summary of the proposition validation 

The objective of this chapter was to validate the approach we proposed: the integration of UML 
models in FMI-based co-simulation using the adaptation of semantics at master level. The ap-
proach was applied to two variants of a system managing the energy auto-consumption in smart 
grids, system including a simple control and system including an advanced control. Firstly, we 
modeled the case study in Papyrus. For this, we imported FMUs representing the physical part 
of the system and we modeled the cyber part with UML by referring to modeling rules defined 
in chapters 5 and 6. Secondly, we simulated the case study in Papyrus/Moka using the master 
algorithms we proposed in chapters 5 and 6. We demonstrated that the approach provides solu-
tions to the Issue 1 and Issue 2 related to limitations of FMI for CPS domain ( i.e, no support 

Figure 7-25. Simulation results of the advanced control scenario in Papyrus 
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to untimed semantics and time events). Finally, we compared the obtained results to the co-
simulation results of the case study in Simulink. The comparison demonstrated that the pro-
posed approach achieves better results. The master algorithm we propose enables to anticipate 
the demands of energy and to maintain a homogeneous rate of energy power distribution.
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8. Conclusion and perspectives 

In this chapter we summarize the motivation of this work including its context, we remind the 
main points of the proposition including its validation, and then we propose some follow-up 
possibilities. 

� Summary of the thesis work 

� Context and motivations 

The verification of Cyber Physical Systems (CPS) requires the integration of heterogeneous 
models. These models differ in the way the components interact with their environment, execute 
their behavior and manage time and events. The main issue is determining the global behavior 
of the composed model where the coordination and the synchronization between the involved 
sub-models are required. Techniques for the verification of heterogeneous systems were found 
in the literature and evaluated for their applicability to CPS. The co-simulation is best suited 
for the simulation of CPS. FMI standard, in particular, was proposed as a standard for co-sim-
ulation. This standard is gaining popularity in the industry and is supported by many modeling 
and simulation tools.  

Although FMI provides a standard interface for co-simulation of models from different lan-
guages/tools, it does not provide efficient solutions to cope with the heterogeneity of the in-
volved MoCs. FMI was originally intended for co-simulation of physical processes, with lim-
ited support for other MoCs such as DE and Data Flow. These MoCs are commonly used to 
model the logic of cyber part of a CPS. We are particularly interested in UML, which is the 
reference standard for software modeling. Unfortunately, none of the present-day FMI-based 
co-simulation solutions consider UML models.  

� Approach and contribution 

The objective of this work was to propose an FMI-based co-simulation environment for CPS 
with integration of UML models. Three techniques for the integration of UML models in FMI-
based co-simulation were evaluated for their feasibility and efficiency. We chose the adaptation 
of semantics at master level technique. This later consists of the simulation of co-simulation 
scenarios connecting black boxes FMUs with white boxes UML models, and requires adapta-
tion of semantics between the FMI API and the execution semantics of UML models. This 
technique enables us to benefit from the FMI standard for co-simulation purposes, and to val-
orize the use of the UML language for the modeling of the software components of CPSs. In 
addition, we are not constrained by the inadequacies of the FMI standard in terms of its support 
for non-CT models.  

UML models need to be executable for their integration in co-simulation approaches. We chose 
to base our work on fUML* standard which define precise execution semantics for a subset of 
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UML and provide an interesting and formal basis for the integration of UML models in FMI-
based co-simulation. We identified different kinds of systems we would like to model and sim-
ulate with UML then evaluated the feasibility of their modeling and simulation with  fUML*. 
These systems are classified according to two dimensions found in the literature: (a) systems 
can be transformational or reactive, (b) systems can be untimed or timed. As a result, we ob-
tained four kinds of models we would like to integrate in FMI-based co-simulation: 

- Untimed UML models for a transformational system, 
- Timed UML models for a transformational system, 
- Untimed UML models for a reactive system; and 
- Timed UML models for a reactive system. 

As a first step of the contribution, we set up a master simulation tool where we implemented 
the FMI standard in a UML tool. This latter proposes the definition of co-simulation scenarios 
connecting a set of imported FMUs and master algorithms for their simulation. Then, we pro-
posed an incremental extension to this framework with the support of new co-simulation sce-
narios connecting black boxes FMUs with each kind of UML models we identified.  

For each kind of UML models: 

� We identified a set of rules to model it, namely a set of UML syntactic elements and 
annotations to expose important information, and potential extensions to fUML* in 
cases where execution semantics of the required UML syntactic elements are not de-
fined, 

� We proposed a master algorithm for each co-simulation scenario. This latter is respon-
sible for the orchestration and synchronization of the simulations of the involved com-
ponents. It takes into account the dependencies between the involved components and 
the MoCs they rely on. The proposed algorithms are based on adaptation of untimed 
semantics of fUML* (and its potential extensions) to timed semantics of FMI, and ad-
aptation of the discrete semantics of fUML* (and its potential extensions) to continuous 
time semantics of FMI. Based on these adaptations, the master algorithms are both able 
to propagate data between components and trigger them at the correct points of time. 

� Validation of the approach 

The proposed approach was applied to representative examples of transformational and reactive 
systems in the contribution part, as well as, to an energy system of a smart grid in the experi-
mentation part. We used the modeling rules we defined in our approach for the specification of 
the structure and the logic of the software component with UML. Then we used suitable master 
algorithms for their co-simulation with the rest of the system components. The simulation re-
sults demonstrated that, using our approach, we are able to better synchronize the involved 
components while considering untimed behaviors, instantaneous reactions, and detecting time 
events. In particular, in the energy case study, we managed to improve the operation of the 
energy auto-consumption control by propagating new control set points earlier. 
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� Perspectives 

� Perspective related to UML models capabilities 

The support of rollback by the components involved in a co-simulation scenario improves the 
efficiency of the master algorithm. This latter may propose to the involved components to re-
make a simulation step with a different simulation step size in case one (or more) component 
does not manage to simulate the whole step. This provides another way, to the master, to choose 
the suitable simulation step size for a better synchronization of the components. 
The master algorithms we proposed do not consider the support of rollback by the involved 
components. For instance, these later can be enriched with the rollback functionality for co-
simulation scenario connecting FMUs supporting rollback to UML models of transformational 
systems since they are stateless.  

The definition of rollback capability semantics for UML models (in particular reactive behav-
iors) is therefore an interesting way to improve the integration of UML models in FMI-based 
co-simulation. 

� Perspective related to supported UML models 

The Precise Semantics of UML State Machines (PSSM) specification is an OMG standard that 
extends fUML. The PSSM specification extends the syntactic set of fUML with a subset of the 
abstract syntax of state machines as given in the UML specification, as well as the fUML se-
mantic model in order to specify the execution semantics of the state machine abstract syntax 
subset.  
We proposed an approach that enables the integration of UML models whose behaviors are 
specified with UML activities. This later can be extended for the support of UML models whose 
behaviors are specified with UML state machines. The extension would rely on similar model-
ing rules and adaptation of semantics between FMI API and PSSM semantic model.  
This extension would valorize the use of UML for the specification of computational compo-
nents and would enlarge the scope of UML models we can use in co-simulation scenarios. 
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A. ANNEX A: foundational UML (fUML) 
and PSCS for UML models execution: 
Syntax and Semantics 

Outline 

A.1. The syntax 

A.2. The semantics 

A.2.1. Behavioral semantics 
A.2.1.1. Object(sem) semantic visitor 
A.2.1.2. Execution(sem) and ActivityNodeActivation(sem) visitor 

A.2.2. Instantiation semantics 

 

The Object Management Group (OMG) proposes standards (fUML*: fUML, PSCS) that define 
precise semantics for a foundational subset of UML elements. This annex gives an overview of 
the key syntactic (section A.1) Figure A-1and semantic (section A.2) elements of fUML*. 

Two mentions will be used this chapter: 

- (syn) mention indicates that the element is a syntactic element 

- (sem) mention indicates that the element is a semantic element  

A.1. The syntax 

Foundational UML (fUML) is an OMG standard that formalizes precise execution semantics 
for a subset of UML abstract syntax. This subset is restricted to classes for structure modeling 
and, to activities and actions for behavior modeling. Abstract syntax elements considered by 
fUML for structure and behavior modeling are listed in Table A-1. 

Table A-1. UML syntactic subset considered by fUML 

Structure Activity Actions 

Class 
Association 
Property 
Operation 
Reception 
LiteralBoolean 
LiteralInteger 
LiteralUnlimitedNatural 

ControlFlow 
ObjectFlow 
MergeNode 
DecisionNode 
ForkNode 
JoinNode 
InitialNode 
FinalNode 

CallBehaviorAction 
CallOperationAction 
SendSignalAction 
AcceptEventAction 
ReadExtentAction 
ReadIsClassifiedObjectAction 
ReclassifyObjectAction 
ReduceAction 
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LiteralString 
InstanceValue 
DataType 
Signal 
Trigger 
EventOccurence 
InstanceSpecification 

FlowFinalNode 
StructuredActivityNode 
LoopNode 
ConditionalNode 
ExpansionRegion 
ExpansionNode 
ActivityParameterNode 
InputPin 
OutputPin 
Activity 
OpaqueBehavior 
FunctionBehavior 

StartClassifierBehaviorAction 
StartObjectBehaviorAction 
AddStructuralFeatureValueAction 
ClearAssociationAction 
ClearStructuralFeatureAction 
CreateLinkAction 
CreateObjectAction 
DestroyLinkAction 
DestroyObjectAction 
ReadLinkAction 
ReadSelfAction 
ReadStructuralFeatureValueAction 
RemoveStructuralFeatureValueAc-
tion 
TestIdentityAction 
ValueSpecificationAction 

fUML* defines execution semantics for elements listed in Table A-1. The next subsection 
concentrates on that. 

A.2. The semantics 

The fUML semantic model (right-hand side of Figure A-1) is designed following the visitor 
design pattern. Each executable element of the fUML abstract syntax (left-hand side of the 
figure) is associated with a semantic element which implements its execution semantics, so-
called semantic visitor. Once instantiated, the semantic visitors constitute an interpreter for a 
given model. 

fUML introduces three abstract semantic visitors which represent the basis of the fUML se-
mantic model: ActivityNodeActivation(sem), Value(sem), and Evaluation(sem) as depicted in Figure 
A-2. 

� The Value(sem) semantic visitor is used to represent values on the runtime of fUML where 
a value is an instance of one or more classifiers. A value is always representable using 
a ValueSpecification(syn). Value(sem) specializes the SemanticVisitor(sem) class to allow the 

UML abstract Syntax 

fUML abstract Syntax 

UseCases 

Components 

Interactions 

Action 

 Activities 

Class 

 Classes 

fUML semantic model 

 

 Actions 

ActionActivation 

 

Kernel 

Object 

<<Implements execution semantics of>> 

Figure A-1.Syntax and semantics of fUML 



Annex A: foundational UML and PSCS for UML models execution: Syntax and Semantics 
 

156 
 

representation of two primary elements: the Object(sem)  and the Execution(sem)  semantic 
visitors. 

� The ActivityNodeActivation(sem) represents an abstract basis for the definition of execu-
tion semantics of activities nodes. Each concrete activation visitor (defined as a special-
ization of the ActivityNodeActivation(sem) semantic visitor) is used to model the seman-
tics of a specific kind of activity node within the execution of an Activity(syn).  

� The Evaluation(sem) is used to evaluate a specific kind of ValueSpecification(syn). 

fUML defines three categories of semantic elements: those which capture structural semantics, 
those which capture behavioral semantics and, those which capture instantiation semantics.  All 
these elements are defined as extensions for one of the abstract semantic visitors enumerated 
previously.  
Structural semantics are captured by a set of semantic visitors which are extensions of the visitor 
Value(sem). In the context of this work, we are particularly interested in behavioral and instanti-
ation semantics. The rest of this section gives further details about the most important semantic 
elements that are related to our work and contributions. 

A.2.1. Behavioral semantics 

These subsection focus on the behavioral semantics of fUML semantic model. The key ele-
ments which define behavioral semantics in the fUML semantic model are Object(sem), and the 
concrete semantic visitors which are derived from Execution(sem) and the ActivityNodeActiva-

tion(sem).  

A.2.1.1. Object(sem) semantic visitor 

Object(sem) represents the boundary between the structural and behavioral semantics. It may 
represent the instance of a passive or an active Class(syn) and provides operations which imple-
ment execution semantics of behaviors specified in each kind of classes as activities.  

Figure A-2. Extract of semantic visitors considered by fUML 
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� Semantics for active classes 
The operation startBehavior() of the class Object(sem) captures the execution semantics of active 
classes. An active Class(syn) is necessarily associated with a Behavior(syn) which represents its 
classifier behavior. Once instantiated, an active class starts its classifier behavior. The execution 
of this latter is controlled by the class ObjectActivation(sem) in the semantic model. The object 
activation invokes the classifier behavior for the execution of its behavior by sending an Invo-

cationEventOccurence(syn). The classifier behavior accepts the invocation event occurrence and 
creates an Execution(sem) for the behavior associated to it. If the behavior is specified using an 
activity, then the created execution is an ActivityExecution(sem). 
The operation send() in the ObjectActivation(sem) class allows an instance of an active Class(syn) 
to receive events. When an EventOccurrence(syn) is received, it is placed in the event pool of the 
ObjectActivation(sem) associated with the Object(sem). The order in which the events occurrences 
are consumed is a semantic variation point. fUML proposes a FIFO strategy which consists in 
consuming the first event occurrence in the pool, verifying whether the classifier behavior of 
the object is waiting an instance of the received event. If so, the event occurrence is consumed 
and the control is propagated to the next node in the activity and, if not the instance of the event 
is lost. fUML relies on run to completion (RTC) semantics where the principle is to propagate 
the control as much as possible in the classifier behavior when an event occurrence is received. 
fUML defines an event dispatch loop that waits for the arrival of an EventOccurrence(syn), when 
this happens a single event occurrence is dispatched from the event pool and, once this is com-
pleted, the dispatch loop returns to waiting for another EventOccurrence(syn) to arrive. The se-
mantics of event dispatching are defined in the method dipatchNextEvent() of the ObjectActi-

vation(sem) class.  

� Semantics for passive classes 
The operation dispatch() of the class Object(sem) allows an instance of a passive Class(syn)  to 
receive operation calls. The operation call is run synchronously in the context of the object that 
made the call. The strategy which identifies the actual operation to execute, in case of polymor-
phic definition of the operation, is a semantic variation point in fUML and should be defined in 
a class which extends DispatchStrategy(sem) class in the semantic model. The result of a call to 
the dispatch() operation is an ActivityExecution(sem).  

Figure A-3. Behavioral semantic elements related to the Object visitor 
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A.2.1.2. Execution(sem) and ActivityNodeActivation(sem) visitor 

Execution(sem)  is a particular semantic visitors. It coordinates the execution of a set of elements 
specifying a Behavior(syn). There is an execution visitor class corresponding to each concrete 
subclass of Behavior(syn) included in the fUML subset. In particular, the semantic visitor Activ-

ityExecution(sem) captures execution semantics of a behavior specified with an Activity(syn). It is 
associated with a group, so-called ActivityNodeActivationGroup(sem), which encapsulates the 
semantics of all node of the activity as depicted in Figure A-4.  

The ActivityExecution(sem) class creates activity edge instances for all activity edges, activity 
node activations for all activity nodes and makes offers to all nodes with no incoming edges. 
The execution semantics of activities are captured by the semantic visitors which extend the 
abstract semantic visitor ActivitynodeActivation(sem). 
The activations are divided into three categories: the ActionActivation(sem), the ControlNodeAc-

tivation(sem) and, the ObjectNodeActivation(sem) as depicted in Figure A-5. The execution of an 
activity node consists in the execution of the sequence of operations receiv-

eOffer()�fire()�sendOffers() defined in its corresponding semantic visitor. This sequence of 
operations defines the semantics of tokens propagation in the activity. The operation sendOff-

ers() is responsible for the propagation of a set of tokens to the outgoing edgesof the activity 
node. The operations suspend() and resume() of the ActivityNodeActivation(sem) allow to respec-
tively suspend and resume the execution of an activity node.   
An execution terminates when either all node activations are complete, or an activity final node 
is executed. 
Figure A-5 focus particularly on semantic visitors which extend the ActionActivation(sem) visi-
tor. Each sub-class of the ActionActivation(sem) captures execution semantics of a particular ac-
tion node and implements computations related to the execution semantics of the corresponding 
Action(syn) in the method doAction().  For example the CallBehavioActionActivation(sem) cap-
tures the execution semantics of the syntactic element CallBehaviorAction(syn) which allows to 
specify a call to a behavior of a given object instance in a model.  

Figure A-4. The ActivityExecution(sem) and ActivityNodeActivation(sem) visitor 
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The AcceptEventActionActivation(sem) is an action activation for an AcceptEventAction(syn). The 
AcceptEventAction(syn) is a particular action that waits for the occurrence of an event meeting 
specified condition. fUML provides execution semantics for AcceptEventAction(syn) triggered 
by SignalEventOccurrence(syn). In the semantic model, each acceptEventActionActivation(sem) is 
associated to an AcceptEventActionEventAccepter(sem). This latter handles reception of signal 
event occurrences on the behalf of that specific accept event action activation. For this, it de-
fines two operations match() and accept(). The match() operation checks whether a given Sig-

nalEventOccurrence(syn) matches the trigger specified for a given AcceptEventAction(syn). If so, 
the accept() operation is responsible for forwarding the SignalEventOccurrence(syn) to the cor-
responding action activation which will enable control propagation to continue the execution 
of the following activity nodes. 

A.2.2. Instantiation semantics 

The instantiation of semantic visitors is handled by two specific classes in the semantic model 
which are: the Locus(sem) and the ExecutionFactory(sem) depicted in Figure A-6. 
The class Locus(sem) defines an operation instantiate() responsible for the representation of the 
executable syntactic elements specified in an applicative model. The operation takes a 
Class(syn)as parameter which can be a Type(syn) or a Behavior(syn). The result is respectively an 
Object(sem) or an Execution(sem) (which is a specialization of Object(sem)). The locus is the virtual 
memory of fUML in which are stored all created visitors. 
The instantiation of Visitors which capture execution semantics of behavioral elements is actu-
ally handled by the ExecutionFactory(sem) class. The instantiation logic is captured by the oper-
ation instantiateVisitor() of the sub-classes ExecutionFactoryL1(sem), ExecutionFactoryL2(sem) 

Figure A-5. Semantic visitor of activity nodes 
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and ExecutionFactoryL3(sem) (corresponding to  the three conformance levels L1, L2 and L3 
defined in UML specification [30]). 

In the previous subsections we presented the key elements of the semantic model of fUML. We 
have first identified the semantic visitors which capture the behavioral semantics of UML ac-
tivities execution. Then we determined the semantics of the visitors’ instantiation. Here is a 
recapitulation of semantic elements defined in the semantic model of fUML organized into 
three categories: 
C-1 Visitors which define semantics for structure: they are specializations of the Value abstract 
visitor and define how the structural elements of a model are represented during the execution. 
The most important one is the Object(sem) semantic visitor 
C-2 Visitors which define the semantics of behaviors: they are specializations of the Activi-

tyNodeActivation(sem) abstract visitor and implement the execution semantics of activity nodes 
considered by the syntax subset of fUML.  
C-3 The classes which define the rules of the instantiation and coordination between the se-
mantic visitors 

(a) Execution(sem) is a particular visitor used for the coordination for visitors defined for a 
set of activity nodes specifying an activity, 
(b) Locus(sem) defines the rules of instantiation for the Classifier(syn) and allows to keep a 
trace for values created  at the execution, 
(c) Executor(sem) defines the entry point of an execution in the semantic model, 
(d) ExecutionFactory(sem)  handles the creation of visitors defined as specialization to Exe-

cution(sem)  and ActivityNodeActivation(sem).

Figure A-6. The Locus, the executor, and the Execution 
Factory in fUML 
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B. ANNEX B: FMI for co-simulation Standard 

Outline 

B.1. The FMU content 
 B.1.1. Structure (XMl file) 

B.1.1.1. ‘CoSimulation’ element  
B.1.1.2. ‘DefaultExperiment’ element 
B.1.1.3. ‘ModelVariables/ScalarVariable’ element 
B.1.1.4. ‘ModelStructure/Outputs’ element 

 B.1.2. Dynamics (DLLs/C-functions) 
  B.1.2.1. Instantiation and initialization 
  B.1.2.2. Stepwise simulation and data propagation 
  B.1.2.2. Termination 

B.2. The Master Algorithm 
 B.2.1. Procedures calls order 
 B.2.2. Pseudocode of the master algorithm 

 

The content of this appendix supplements information given in chapter 2 about the FMI for co-
simulation standard, in particular about the content of an FMU (section B.1) as well as the 
master algorithm (section B.2). We focus on details we believe required for a better compre-
hension of this work. For a deep understanding of the standard, refer to the standard specifica-
tion [17].  

B.1. FMU content 

A component which implements the FMI is called Functional Mockup Unit (FMU). It consists 
of one zip-file with extension “*.fmu” containing: 

� An XML-file describing the variables of the FMU that are exposed to the environment 
in which the FMU shall be used (the structure), as well as other model information, 

� A set of C-functions to setup and run the FMUs in a co-simulation environment (the 
dynamics). These C-functions can either be provided in source and/or binary form. An 
FMU for co-simulation embeds the solver responsible for the resolution of the equations 
described  

� Further data can be included in the FMU zip-file (a model icon, documentation files, 
maps and tables needed by the model). 

B.1.1. Structure (XML file)  

The XML-file is defined by an XML-schema file called “fmiModelDescription.xsd”. In Figure 
B-1, the complete XML schema definition is shown.  
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Each element in the XML schema has attributes in which information is introduced. The ele-
ments ‘CoSimulation’, ‘DefaultExperiments’, ‘ModelVariables/ScalarVariable’ and 
‘ModelStructure/Outputs/Unknown’ are the most important ones.  

B.1.1.1. ‘CoSimulation’ element  

The XML file of an FMU intended for co-simulation must contain this element.  If so, the FMU 
includes the model and the simulation engine, or a communication to a tool that provides the 
model and the simulation engine, and the environment provides the master algorithm to run 
coupled FMU co-simulation slaves together. The element enables to introduce information 
about the capabilities of the FMU. For example, its capability to rollback a simulation step is 
expressed in the attribute ‘canGetAndSetFMUState’. Figure B-2 taken from [17] illustrates all 
attributes of this element together with a description of each one.  

Figure B-1. XML schema of the FMI standard (version 2.0) 
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B.1.1.2. ‘DefaultExperiment’ element 

Figure B-2. The attributes associated with the 'CoSimulation' element in the XML schema 
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An FMU can provide the default settings used by the solver in the original simulation tool (the 
tool in which the FMU was designed and simulated), such as stop time and stop time of the 
simulation, and relative tolerance. The FMU can also provide a default simulation step size. 
This later can be considered as the preferred (most suited) step size of the FMU for its simula-
tion. Figure B-3 illustrates the attributes of the ‘DefaultExperiment’ attribute. 

B.1.1.3. ‘ModelVariables/ScalarVariable’ element 

‘ModelVariables’ element consists of an ordered set of ‘ScalarVariable’ elements (see Figure 
B-4 above). A ‘ScalarVariable’ represents a variable of primitive type, like a real or integer 
variable. The attributes of the ‘ScalarVariable’ element are illustrated in Figure B-4 together 
which a brief description of each attribute. This element allows to define the component inputs, 
outputs, parameters, local variables and time dependent variables. The causality of the variable 
is defined by the attribute ‘causality’.  

Figure B-3. Attributes of the ‘DefaultExperiment’ 
element in the XML schema 
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B.1.1.4. ‘ModelStructure/Outputs’ element 

The ‘ModelStructure’ defines the structure of the model. Especially, the ordered lists of out-
puts, continuous-time states and initial unknowns (the unknowns during Initialization Mode) 
are defined here (see Figure B-6). It allows also to optionally define the dependency of the un-
kowns from the knowns. For example, the I/O dependency information is expressed in the 
‘Outputs’ element.  Figure B-6 illustrates the attributes related to the ‘Outputs’ element to-
gether with a description of each of them. 
 
 

Figure B-4. Attributes of 'ScalarVariable' element in the XML schema 
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The XML file contained in the FMU should comply with this XML schema. Figure B-5 de-
picts an example of a “modelDescription.xml” file of the FMU ‘TankPI.TankPIPlant’. 

Figure B-5. Example of a model description xml file of an FMU for co-simulation 

Figure B-6.’Unknown’ element attributes in the XML schema 
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This FMU can handle variable communication step size, can interpolate inputs, can provide 
directional derivatives, and supports rollback as indicated in <coSimulation> element. It is pref-
erable to simulate this FMU from time ‘t=0’ to time ‘t=250’ with a step size ‘h=0,0001’ as 
indicated in <defaultExperiment> element. For simplification, not all variables of the model are 
shown in the figure. The model has an output ‘outValue’ which depends on the parameter 
‘tank.h’ as indicated in outputs of the <modelStructure> element. 

B.1.2. Dynamics (DLL/C-functions) 

This section is organized in a way to conform the section 2.1.1.2. It introduces the functions 
responsible for the instantiation and initialization on an FMU, the stepwise simulation on an 
FMU, and the termination of an FMU as defined in the FMI API. 

B.1.2.1. Instantiation and initialization 

The function ‘fmi2Instantiate’ (Figure B-7) returns a new instance of an FMU. If a null pointer 
is returned, then instantiation failed. This function must be called successful before a simulation 
run starts.  

After the instantiation, the FMU should be informed about the simulation parameters chosen 
by the master for the co-simulation using the function ‘fmi2Instantiate’ (Figure B-8) The master 
can choose to use the parameters defined in the FMU (if information are available), or to pro-
pose other parameters. This function can be called after the ‘fmi2Instantiate’ ad before ‘fmi2En-
terInitializationMode’ 

The FMU can now enter the initialization mode where the actual value of the FMU variables 
can be get and some variables values can be set (refer to Figure B-14 below for the list of 
variables we can set at initialization mode). The FMU is informed to enter the initialization 
mode with the function ‘fmi2EnterInitializationMode’, and to exit the initialization mode with 
the function ‘fmi2ExitInitializationMode’ (Figure B-9). 

Figure B-7. 'fmi2Iinstantiate’ function  

Figure B-8. 'fmi2SetupExperiments' function 
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B.1.2.2. Stepwise simulation and data propagation 

After the instantiation and initialization of the FMU, the master is allowed to perform stepwise 
simulation and to propagate data from one FMU to another.  

The values of the FMU variables defined in the XML file are get using the following functions: 

It is also possible to set the values of certain variables at particular instants in time using the 
following functions:  

The simulation is performed from the start simulation time to the stop simulation time defined 
in the ‘fmi2SetupExperiments’ function by calling the ‘fmi2DoStep’ funtion on the FMU. The 
master should precise the current simulation tme ‘currentCommunication pointn’ as well as the 
current step size ‘communicationStepSize’. 

Figure B-9. 'fmi2EnterInitializationMode' and ‘fmi2ExitInitializationMode’ 

Figure B-10. 'fmi2GetXXX' function 

Figure B-11.'fmi2SetXXX' function 

Figure B-12. 'fmi2DoStep' function 
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B.1.2.3. Termination 

At the end of the simulation, the master should inform the FMU that the simulation run is ter-
minated by calling the function ‘fmi2Terminate’ on the FMU. After calling this function, the 
final values of all variables can be inquired with the ‘fmi2GetXXX’ functions.  

B.2. The master Algorithm 

B.2.1. Procedures calls order 

The FMI standard defines the FMU life cycle. It identifies four modes in which the FMU can 
be: Instantiated, Initialization mode, Slave Initialized, Terminated. 
For each mode, the standard defines the functions which can be called on an FMU. Figure 
B-14 illustrates the life cycle of the FMU as well as the supported calling sequence  
 

 

B.2.2. Pseudocode of a basic master algorithm 

The FMI standard provide a pseudocode of a master algorithm in order to sketch the typical 
calling sequence of the functions in a co-simulation environment. 

Figure B-14. Calling sequence of Co-Simulation C functions 

Figure B-13. 'fmi2Terminate’ function 
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The master orchestrates a co-simulation scenario composed of two FMUs ‘S1’ and ‘S2’ as de-
picted in Figure B-15. 

 
The FMUs support the minimum capabilities (no rollback, no variable step size). The pseudocode of 

the master algorithm is depicted in Figure B-16. 

 
 

Figure B-15. Co-simulation scenarion 
composed of two FMUs 
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Figure B-16. Pseudocode of the master algorithm 
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C. ANNEX C: Papyrus/Moka support for 
FMI for co-simulation standard 

Outline 

C.1. Moka Overview 

C.1.1. Execution of models based on standards 

C.1.2. Interactive execution 

C.1.3. Extension for new execution semantics 

C.2. Moka extended for the FMI standard 

C.2.1. Moka as a master for co-simulation 
C.2.1.1. The import of an FMU for co-simulation in Papyrus/Moka 
C.2.1.2. The definition of a co-simulation scenario in Papyrus/Moka 
C.2.1.3. The simulation of co-simulation scenarios in Papyrus/Moka 

C.2.2. Moka as a slave for co-simulation 
 

The work is tooled in the context of Papyrus which is an open source UML/SysML modeler 
based on the Eclipse platform27. It enables designers to describe very detailed models of their 
systems, and aims at providing an integrated environment for UML models and related profiles.  
Papyrus provides UML models execution by means of its additional component Moka. In this 
chapter, we aim at representing the functionalities of Moka in section C.1, as well as, the im-
plementation of the framework of co-simulation we propose in chapter 0 related to the support 
of FMI-based co-simulation.  

C.1. Moka Overview 

Moka provides three important features: execution of models based on OMG standards, inter-
active execution, and extensibility of the framework for new execution semantics. This subsec-
tion introduces these functionalities. 

C.1.1. Execution of models based on standards 

Moka natively includes execution engines complying with the OMG standards fUML* (i.e. 
fUML and PSCS), by implementing the interpreter described in their specifications. This im-
plementation supports the execution of UML subset defined in fUML* specifications. Each 
model constructed using the syntactic elements listed in annex A is executable. 

C.1.2. Interactive execution 

Moka is integrated with the Eclipse debug framework to provide control, observation and ani-
mation facilities over executions (Figure C-1). It is thereby possible to control execution of 
models(e.g., suspending/resuming executions after breakpoints have been encountered) as well 
as to observe states of executed models at runtime (e.g., emphasizing graphical views of model 

                                                 
27 Refer to: eclipse.org/papyrus/  
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elements on which execution has suspended, retrieving and displaying any state information 
about the runtime manifestation of these model elements). 

C.1.3. Extension for new execution semantics 

Thanks to its architecture, Moka is a front-end for the integration of simulation tools and tech-
niques. In fact, Moka can be easily extended to address new execution semantics. This can be 
done through extension points enabling registration of executable model libraries (e.g., new 
MoCs, trace libraries, etc.) or simply tool-level extensions of the execution engine. Domain or 
user specific customization of the modeling tool can be associated with a dedicated simulation 
engine in Moka. Moka is for example extended for simulation of business process models 
(Moka for BPMN) and for co-simulation of cyber-physical systems (Moka for FMI imple-
mented in the context of this work).  

Figure C-1.Interactive execution in Papyrus/Moka 

Figure C-2. The support of several execution engines in Moka 
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Figure C-2 illustrates the fact that Moka can integrate several execution engines.  

C.2. Moka extended for the FMI standard 

Moka is extended for the support of the FMI for co-simulation standard (Figure C-3). Moka 
can be used as: (a) a master for co-simulation where FMU for co-simulation can be imported, 
connected and simulated (b) a slave where the UML models are exported as FMUs for co-
simulation compliant with the FMI specification. 

C.2.1. Moka as a master for co-simulation 

Moka provides a FMI-based co-simulation environment for the modeling and simulation of 
CPS as described in chapter 4. It allows in particular: the import of FMUs for co-simulation, 
the definition of co-simulation scenarios and their simulation using basic and advanced master 
algorithms. The implementation of these features is part of this work. They were already ex-
plained in the chapter 4. This subsection represents the implementation steps of these features. 
It illustrates the result of this implementation and the steps for testing it with snapshots taken 
from Papyrus/Moka.  

C.2.1.1. Import of an FMU for co-simulation in Papyrus/Moka 

Moka allows the import of FMUs for co-simulation compliant with the version 2.0 of the FMI 
standard. The import is done by model transformation from FMU to an annotated UML model. 
(i.e. annotated with stereotypes from the co-simulation profile represented in chapte 4). Anno-
tations add to UML models FMI specific concepts, and includes a direct link to the in-memory 
original FMU model.  

The transformation of FMU to an annotated UML model is done with a QVTo transformation 
(Figure C-4). This transformation takes as an input the FMI meta-model, the UML meta-model 
and the co-simulation profile we presented in chapter 4 and produces an annotated UML model. 

Figure C-3. Papyrus/Moka support for FMI for co-simulation 
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  modeltype UMLTypes uses "http://www.eclipse.org/uml2/5.0.0/Types"; 
modeltype UML uses 'http://www.eclipse.org/uml2/5.0.0/UML'; 
modeltype FMI uses 'platform:/plugin/org.eclipse.papyrus.moka.fmi2/fmi2ModelDescription.xsd'; 
modeltype ecore uses ecore('http://www.eclipse.org/emf/2002/Ecore'); 
//modeltype fmiML uses FmiMLProfile('http:///schemas/FmiMLProfile/_1LNqQBwfEeWeGufsnalS6A/44'); 
 
transformation NewTransformation(in fmu : FMI, in umlTypes : UML, in fmiMLProfile : UML , in fmuProx-
yLibrary : UML, out output_model :UML); 
 
/* 
* fmi profile and its stereotypes 
*/ 
property fmiProfile : UML::Profile = fmiMLProfile.rootObjects()![UML::Profile]; 
 
//fmu type (coSimulation or modelExchange) 
property cs_stereotype : UML::Stereotype =  
 fmiProfile.ownedStereotype![name = "CS_FMU"]; 
  
//fmu Port/locals/parameters/calculated parameters/independent 
property port_stereotype : UML::Stereotype =  
 fmiProfile.ownedStereotype![name = "Port"]; 
property parameter_stereotype : UML::Stereotype =  
 fmiProfile.ownedStereotype![name = "Parameter"]; 
property calculatedParameter_stereotype : UML::Stereotype =  
 fmiProfile.ownedStereotype![name = "CalculatedParameter"];  
property local_stereotype : UML::Stereotype =  
 fmiProfile.ownedStereotype![name = "Local"]; 
property independent_stereotype : UML::Stereotype =  
 fmiProfile.ownedStereotype![name = "Independent"]; 
 
//fmu dependencies 
property outputDependency_stereotype : UML::Stereotype =  
 fmiProfile.ownedStereotype![name = "OutputDependency"]; 
property derivativeDependency_stereotype : UML::Stereotype =  
 fmiProfile.ownedStereotype![name = "DerivativeDependency"]; 
property initialUnknownDependency_stereotype : UML::Stereotype =  
 fmiProfile.ownedStereotype![name = "InitialUnknownDependency"]; 
  
//create a generalization for the generated class 
property fmu2ProxyGeneralization : UML::Generalization = object Generalization{general := fmuProx-
yLibrary.rootObjects()[Package]->any(true).getOwnedMembers()->selectOne(name="Fmu2Proxy").oclAs-
Type(Class)}; 
   
configuration property dllPath : String; 
configuration property fmuLocation : String; 
 
//variables for the FMU structure (class, ports and attrinbutes) 
property globalPropertiesList : Sequence(UML::Property); 
 
//queries 
query getUmlClassifier(name : String) : Classifier{ 
 var classifiers : Collection(Classifier) := umlTypes.rootObjects()[Model].packagedElement->se-
lectByKind(Classifier); 
 return classifiers->any(classifier : Classifier | classifier.name = name); 
} 
query InitialType::findLiteral() : EnumerationLiteral { 
 var enumeration := findEnumeration("InitialType");  
 return enumeration.ownedLiteral![name = self.toString()]; 
} 
 
query VariabilityType::findLiteral() : EnumerationLiteral { 
 var enumeration := findEnumeration("VariabilityType");  
 return enumeration.ownedLiteral![name = self.toString()]; 
} 
 
query DependenciesKindTypeItem::findLiteral() : EnumerationLiteral { 
 var enumeration := findEnumeration("DependenciesKindType");  
 return enumeration.ownedLiteral![name = self.toString()]; 
} 
 
query findEnumeration(enumName : String) : Enumeration { 
 return fmiMLProfile.objectsOfType(Enumeration)![name=enumName]; 
}  
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query findStereotype(fmiVariable : FMI::Fmi2ScalarVariable) : Stereotype { 
 var stereotypeToApply : UML::Stereotype := local_stereotype; 
 switch { 
  case(fmiVariable.causality = CausalityType::local){ 
   stereotypeToApply := local_stereotype;   
  }; 
  case(fmiVariable.causality = CausalityType::parameter){ 
   stereotypeToApply := parameter_stereotype; 
  }; 
  case(fmiVariable.causality = CausalityType::calculatedParameter){ 
   stereotypeToApply := calculatedParameter_stereotype; 
  }; 
  case(fmiVariable.causality = CausalityType::independent){ 
   stereotypeToApply := independent_stereotype; 
  }; 

case(fmiVariable.causality = CausalityType::input or fmiVariable.causality = Causali-
tyType::output){ 

   stereotypeToApply := port_stereotype; 
  }; 
 }; 
 return stereotypeToApply; 
} 
//helpers 
helper setPropertyType (inout myProperty : UML::Property ,in fmiVariable : FMI::Fmi2ScalarVariable ){ 
 switch{ 
  case (fmiVariable.real <> null) { 
   myProperty.type := getUmlClassifier("Real"); 
   myProperty.defaultValue := object UML::LiteralReal{value := fmiVaria-
ble.real.start->any(true)};  
  } 
  case(fmiVariable.integer <> null) { 
   myProperty.type := getUmlClassifier("Integer"); 
   myProperty.defaultValue := object UML::LiteralInteger{value := fmiVariable.in-
teger.start->any(true)}; 
  } 
  case(fmiVariable.boolean <> null) { 
   myProperty.type := getUmlClassifier("Boolean"); 
   myProperty.defaultValue := object UML::LiteralBoolean{value := fmiVaria-
ble.boolean.start->any(true)}; 
  } 
  case(fmiVariable.string <> null) { 
   myProperty.type := getUmlClassifier("String"); 
   myProperty.defaultValue := object UML::LiteralString{value := fmiVaria-
ble.string.start->any(true)}; 
  } 
  case(fmiVariable.enumeration <> null) { 
   myProperty.type := getUmlClassifier("String"); 
   myProperty.defaultValue := object UML::LiteralString{value := fmiVariable.enu-
meration.start.toString()->any(true)}; 
  };    
 }; 
} 
helper setPropertyStereotypeValues (inout myProperty : UML::Property, in appliedStereotype : 
UML::Stereotype, in fmiVariable :FMI::Fmi2ScalarVariable){ 
 if (fmiVariable.valueReference <> null){ 
   myProperty.setValue(appliedStereotype,"valueReference",fmiVariable.valueRefer-
ence); 
 }endif; 
 if (fmiVariable.initial <> null){ 
  myProperty.setValue(appliedStereotype,"initial",fmiVariable.initial.findLiteral()); 
 }endif; 
 if (fmiVariable.description <> null){ 
  myProperty.setValue(appliedStereotype,"description",fmiVariable.description); 
 }endif; 
 if (fmiVariable.variability <> null){ 
  myProperty.setValue(appliedStereotype,"variability",fmiVariable.variability.findLit-
eral()); 
 }endif; 
 if (fmiVariable.causality <> null){ 
  myProperty.setValue(appliedStereotype,"causality",fmiVariable.causality.toString()); 
 }endif; 
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 switch{ 
  case (fmiVariable.causality = CausalityType::input){ 
   myProperty.setValue(appliedStereotype,"causality","in"); 
  }; 
  case (fmiVariable.causality = CausalityType::output){ 
   myProperty.setValue(appliedStereotype,"causality","out"); 
  }; 
 }; 
} 
 
//main function 
main() { 
   //map xml file to UML Package containing a class (the FMU) and list of dependencies      
 var targetPackage : UML::Package := fmu.rootObjects()![FMI::FmiModelDescriptionType].map 
map2UMLPackage(); 
} 
 
mapping inout Package::addPackageImport(targetPackage : Package) : PackageImport{ 
 self.packageImport += result; 
 result.importedPackage := targetPackage; 
} 
//mappings 
mapping FMI::FmiModelDescriptionType :: map2UMLPackage() : UML::Package { 
 result.applyProfile(fmiProfile); 
 result.name := self.coSimulation.modelIdentifier->any(true); 
 var classes := fmu.rootObjects()[FMI::FmiModelDescriptionType].map map2UMLClass(result); 
 var dependencies := fmu.objectsOfType(FMI::ModelStructureType).map map2Dependencies(result); 
} 
mapping FMI::FmiModelDescriptionType :: map2UMLClass(inout mypackage : UML::Package) : UML::Class{ 
 mypackage.packagedElement += result; 
 result.name := self.coSimulation.modelIdentifier->any(true); 
 result.applyStereotype(cs_stereotype); 
 result.ownedAttribute := self.modelVariables.scalarVariable.map map2UMLAttributes(result)  
      -> union (self.modelVariables.scalarVariable. map 
map2UMLPorts(result)); 
 setClassStereotypeValues(result, self); 
 generalization := fmu2ProxyGeneralization; 
} 
 
mapping FMI::Fmi2ScalarVariable :: map2UMLAttributes(inout myClass : UML::Class) : UML::Property 
when{ 
 self -> exists(s|s.causality <> CausalityType::input and s.causality <> CausalityType::output) 
} 
{ 
 myClass.ownedAttribute +=result; 
 result.name := self.name;  
 var stereotypeToApply := findStereotype(self); 
 result.applyStereotype(stereotypeToApply); 
 setPropertyStereotypeValues(result,stereotypeToApply,self);  
 setPropertyType(result,self); 
 globalPropertiesList += result; 
} 
when{ 
 self -> exists(s|s.causality = CausalityType::input or s.causality = CausalityType::output) 
} 
{ 
 myClass.ownedAttribute += result; 
 result.name := self.name;  
 result.applyStereotype(port_stereotype); 
 setPropertyStereotypeValues(result,port_stereotype,self);  
 setPropertyType(result,self); 
 globalPropertiesList += result; 
} 
 
mapping FMI::ModelStructureType :: map2Dependencies(inout myPackage : UML::Package) : Se-

quence(UML::Dependency){ 
 init{ 
  result := self.outputs.map map2Dependencies(myPackage,outputDependency_stereotype)-
>asSequence() 
    -> union (self.derivatives.map map2Dependencies(myPackage,derivative-
Dependency_stereotype)->asSequence()) 
    -> union (self.initialUnknowns.map map2Dependencies(myPackage,ini-
tialUnknownDependency_stereotype)->asSequence()); 
 } 
} 
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mapping FMI::Fmi2ScalarVariable :: map2UMLPorts(inout myClass : UML::Class) : UML::Port 
 
mapping FMI::InitialUnknownsType :: map2Dependencies(inout myPackage : UML::Package, in sterestotype-
ToApply : UML::Stereotype) :  Sequence(UML::Dependency){ 
 init{ 
  result := self.unknown.map map2Dependencies(myPackage, sterestotypeToApply); 
 } 
} 
mapping FMI::UnknownType1 :: map2Dependencies(inout myPackage : UML::Package, in sterestotypeToApply : 
UML::Stereotype) : Sequence(UML::Dependency) { 
 init{ 
  self.dependencies->forEach(dependency) { 
   result += self.map map2Dependency(myPackage, sterestotypeToApply, depend-
ency.toString().toInteger()); 
  }; 
 } 
} 
mapping FMI::UnknownType1 :: map2Dependency(inout myPackage : UML::Package, in sterestotypeToApply : 
UML::Stereotype, in supplier_index : Integer) : UML::Dependency { 
 myPackage.packagedElement += result; 
 var client_index := self.index.toString().toInteger(); 
 result.client := globalPropertiesList->at(client_index); 
 result.supplier += globalPropertiesList -> at(supplier_index); 
 result.applyStereotype(sterestotypeToApply); 
} 
mapping FMI::UnknownType :: map2Dependencies(inout myPackage : UML::Package, in sterestotypeToApply : 
UML::Stereotype) : Sequence(UML::Dependency) { 
 init{ 
  self.dependencies->forEach(dependency) { 
   result += self.map map2Dependency(myPackage, sterestotypeToApply, depend-
ency.toString().toInteger()); 
  }; 
 } 
} 
mapping FMI::UnknownType :: map2Dependency(inout myPackage : UML::Package, in sterestotypeToApply : 
UML::Stereotype, in supplier_index : Integer) : UML::Dependency { 
 myPackage.packagedElement += result; 
 var client_index := self.index.toString().toInteger(); 
 result.client := globalPropertiesList->at(client_index); 
 result.supplier += globalPropertiesList -> at(supplier_index); 
 result.applyStereotype(sterestotypeToApply); 
} 

mapping FMI::UnknownType1 :: map2Dependency(inout myPackage : UML::Package, in sterestotypeToApply : 

UML::Stereotype, in supplier_index : Integer) : UML::Dependency { 

 myPackage.packagedElement += result; 
 var client_index := self.index.toString().toInteger(); 
 result.client := globalPropertiesList->at(client_index); 
 result.supplier += globalPropertiesList -> at(supplier_index); 
 result.applyStereotype(sterestotypeToApply); 
} 
 
mapping FMI::UnknownType :: map2Dependencies(inout myPackage : UML::Package, in sterestotypeToApply : 
UML::Stereotype) : Sequence(UML::Dependency) { 
 init{ 
  self.dependencies->forEach(dependency) { 
   result += self.map map2Dependency(myPackage, sterestotypeToApply, depend-
ency.toString().toInteger()); 
  }; 
 } 
} 
 
mapping FMI::UnknownType :: map2Dependency(inout myPackage : UML::Package, in sterestotypeToApply : 
UML::Stereotype, in supplier_index : Integer) : UML::Dependency { 
 myPackage.packagedElement += result; 
 var client_index := self.index.toString().toInteger(); 
 result.client := globalPropertiesList->at(client_index); 
 result.supplier += globalPropertiesList -> at(supplier_index); 
 result.applyStereotype(sterestotypeToApply); 
} 

Figure C-4. The QVTo transformation 
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Figure C-5 depicts the steps to follow in Papyrus for the import of an FMU for co-simulation 
in a Papyrus project.  

Figure C-5. The import of FMUs in Papyrus/Moka 

2. Select the FMUs to import 

3. The FMU is 
represented with 
an annotated UML 
class and a set of 
dependencies 

1. Menu for the import of an FMU for 
co-simulation 
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C.2.1.2. Definition of a co-simulation scenario in Papyrus/Moka 

The definition of a co-simulation scenarios consists in the assembly of imported FMUs in a 
composite class, and the configuration of the simulation parameters (start simulation time, stop 
simulation time and the step size). The connection of the imported FMUs in the simulator is 
done by a simple drag and drop of the classes representing the imported FMUs and their con-
nection using connectors. The configuration of the simulation is done via the stereotype 
‘CS_Graph’ applied to the Simulator as depicted in Figure C-6. No additional implementation 
is required for this task.  

C.2.1.3. Simulation of co-simulation scenarios in Papyrus/Moka 

Moka provides a master algorithm specified by an executable UML model (Figure 4-9 of chap-
ter 4), along with a dedicated model library. The current version of Papyrus/Moka supports the 
co-simulation of imported FMUs using the master algorithm represented in Figure 4-10 of chap-
ter 4.  
The simulation can be launched after the definition of a configuration run as illustrated in Figure 
C-7. An execution engine for co-simulation, the so-called ‘org.eclipse.papyrus.moka.fuml.co-
simulation’, is defined as an extension to the fUML* execution engine (i.e. the interpreter im-
plementing the semantics defined in fUML* specifications). 

Figure C-6.The definition of co-simulation scenario in papyrus 
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The simulation results are saved in a CSV file and visualized with XY charts integrated with 
papyrus as depicted in Figure 4-15 at the end of chapter 4. 

C.2.2. Moka as a slave for co-simulation 

In this case, Moka is a provider of FMUs for co-simulation. It enables to export FMUs from 
UML models by model transformation from FMU to UML models and by wrapping the UML 
execution semantics into the FMI API.  For instance, there is some restrictions on the kind of 
supported model elements (i.e. only a subset of fUML* is supported) and on the capabilities of 
the exported FMUs (e.g. no support for rollback). Current works aims at enlarging the scope of 
the models we can export as FMUs for co-simulation to enable the use of UML models on other 
simulation tools.  

This scenario is out of the scope of this work. Further information about the Papyrus tool sup-
port of FMI for both scenarios (i.e. master and slave) can be found in 28 ,29 and 30.

                                                 
28 Refer to: modprod2017-tutorial-Papyrus-MOKA-FMI-Cosimulation  
29 Refer to: Papyrus-UserGuide for ModelExecution  
30 Refer to: youtube-Papyrus-chain  

Figure C-7. The definition of a run configuration in papyrus/Moka 
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D. ANNEX D: Topological sort on directed 
graphs 

Outline 

D.1. Introduction to topological sort on directed graphs 

D.2. Application to a co-simulation graph 
 

In the section D.1. of this annex, we give general definition of topological sort, and the algo-
rithm proposed by kahn for topological sort on directed graph. In the second section D.2, we 
illustrate the application of this algorithm for analysis of co-simulation scenarios. 

D.1. Introduction to topological sort on directed graphs 

A directed graph is a graph that is a set of vertices connected by edges, where the edges have a 
direction associated with them. A topological sort or topological ordering of a directed graph is 
a linear ordering of its vertices such that for every directed edge uv from vertex u to ver-
tex v, u comes before v in the ordering.  

The vertices of the graph may represent tasks to be performed, and the edges may represent 
constraints that one task must be performed before another. A topological ordering is possible 
if and only if the graph has no directed cycles. This latter is called directed acyclic 
graph (DAG). Any DAG has at least one topological ordering. 

The Kahn’s algorithm given in Figure D-1 is one of the algorithms used for topological sorting 
of directed graph.  

L ← Empty list that will contain the sorted elements 
S ← Set of all nodes with no incoming edges 
while S is non-empty do 
    remove a node n from S 
    add n to tail of L 
    for each node m with an edge e from n to m do 
        remove edge e from the graph 
        if m has no other incoming edges then 
            insert m into S 
if graph has edges then 
    return error (graph has at least one cycle) 
else  
    return L (a topologically sorted order) 

Figure D-1. Kahn's algorithm for topological sort on directed graph
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First, it finds a list of "start nodes" which have no incoming edges and insert them into a set S; 
at least one such node must exist in a non-empty acyclic graph.  

Then:  

- If the graph is a DAG, a solution will be contained in the list L (the solution is not 
necessarily unique).  

- Otherwise, the graph must have at least one cycle and therefore a topological sorting is 
impossible 

 

Figure D-3-a and Figure D-3-b depict two directed graphs composed of six vertices. The first 
one is acyclic. A topological order is then possible to make. The algorithm returns the list given 
below the dependency graph (L=A�B�C�D�E�F). The second one is a cyclic (cy-
cle=B�C�D�B). A topological sorting is not possible to make. 

D.2. Application to a co-simulation graph 

A co-simulation graph includes a set of components. Each of them has ports through which data 
are propagated to the components connected to its outputs. We identify two kinds of depend-
encies between inputs and outputs ports: (a) external dependencies and (b) internal dependen-
cies. 

(a) An external dependency is expressed with a connector. A connection between an output 
‘O’ to an input ‘I’ means that ‘I’ depends on ‘O’ and that the value of ‘I’ cannot be  set 
before getting the value of ‘O’, 

(b) An internal dependency is expressed with an UML dependency. If an I/O dependency 
exists between an output ‘O’ and an input ‘I’, that means the value of ‘O’ depends on 
the value of ‘I’. 

In order to ensure the correctness of the propagated data, one should account for these depend-
encies. That is, we need to find a valid order in which the data are get/set from/to the FMUs 
ports. For this reason, a dependency graph is built such that: Vertices are ports whose value is 
get (if it is an output port) or set (if it is an input port), and edges are dependencies between two 
ports. 

 

 

Figure D-3-a. Directed Acyclic graph Figure D-3-b. Directed cyclic graph 
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Titre : Co-simulation dirigée par les modèles des Systèmes Cyber-Physiques  

Mots clés : CPS, Co-simulation, FMI, UML, fUML  

Résumé : La conception des systèmes cyber-

physiques (CPS) est réalisée à partir de plusieurs 

disciplines impliquant de multiples composants, 

physiques et autres cyber, interconnectés. La 

simulation d'un tel système nécessite une co-

simulation des modèles associés à ces 

composants tout en assurant leur 

synchronisation. En particulier, FMI (Functional 

Mock-up Interface) est un standard de co-

simulation très utilisé en industrie. Il offre une 

interface standard pour coupler plusieurs 

simulateurs dans un environnement de co-

simulation, nommé « Master ». Celui-ci est 

chargé de fournir un algorithme pour une 

orchestration et une synchronisation efficaces 

des différents composants du système, nommés 

FMU (« Functional Mock-up Unit »). Cette 

norme s’impose de plus en plus dans l'industrie, 

et est supportée par de nombreux 

environnements de modélisation et de 

simulation. Cependant, FMI est initialement 

conçu pour la co-simulation des processus 

physiques, avec un support limité des 

formalismes à événements discrets qui est 

modèle de calcul et de communication largement 

utilisé dans les environnements de modélisation 

spécifiques au logiciel. En particulier, bien 

qu’UML soit un des langages de référence pour 

la modélisation de logiciels et soit très 

couramment utilisé dans l'industrie, aucune des 

solutions actuelles de co-simulation basées sur 

FMI ne permet de le prendre en considération.  

La thèse défendue dans ce document est que 

l'ingénierie système en général bénéficierait 

énormément de l’intégration des modèles UML 

dans une approche de co-simulation basée sur la 

norme FMI. Cela permettra à un grand nombre 

de concepteurs logiciels d’évaluer le 

comportement de leurs composants logiciels 

dans un environnement simulé, et donc de les  

 

aider à faire les meilleurs choix de conception le 

plus tôt possible dans leur processus de 

développement. Cela pourrait également ouvrir 

de nouvelles perspectives intéressantes pour les 

ingénieurs système des CPS, en leur permettant 

d'envisager l’utilisation d’un langage largement 

utilisé pour la modélisation des composants 

logiciels de leurs systèmes. Dans ce contexte, 

l'objectif de cette thèse est de fournir un 

environnement de co-simulation pour les CPSs 

basé sur le standard FMI et qui prend en compte 

les modèles UML pour la partie logicielle. Nous 

mettons en place une approche de co-simulation 

où nous abordons différents types de composants 

caractérisant les composants logiciels d’un CPS.  

Notre contribution intervient à deux niveaux : 

localement au niveau des modèles UML, et 

globalement au niveau du « Master ». 

Localement, nous basons nos propositions sur les 

standards OMG, fUML (Semantics of a 

foundational subset for executable UML models) 

et PSCS (Precise Semantics of UML Composite 

Structures), qui définissent une sémantique 

d’exécution précise pour un sous-ensemble de 

UML. Pour chaque type de système, nous 

identifions un ensemble de règles pour le 

modéliser avec UML et les éventuelles 

extensions à fUML. Ensuite, au niveau global, 

nous proposons des algorithmes de « Master ». 

Ils assurent la synchronisation des composants 

du système en se basant sur une adaptation entre 

l’API FMI et la sémantique définie dans fUML, 

et sur un choix de pas de simulation adaptée à la 

nature de chaque composant. L'approche est 

illustrée par un cas d'utilisation du domaine des 

bâtiments intelligents, où l’objectif est d’évaluer 

différentes stratégies de contrôle (composants 

logiciels) pour l’optimisation de son 

autoconsommation en électricité. 
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Title: Model-driven co-simulation of Cyber-Physical Systems  

Keywords: CPS, Co-simulation, FMI, UML, fUML  

Abstract: The design of cyber-physical systems 

(CPS) is realized from several disciplines 

involving multiple components, physical and 

other cyber, which are interconnected. The 

simulation of such a system requires a co-

simulation of the models of these components 

and their synchronization. In particular, FMI 

(Functional Mock-up Interface) is a co-

simulation standard widely used in industry. 

This latter is responsible for providing an 

algorithm with efficient orchestration and 

synchronization of the involved components, 

known as FMUs («Functional Mock-up Unit»). 

FMI standard is gaining popularity in the 

industry, and it is being supported by many 

modeling and simulation environments. 

However, FMI was originally intended for co-

simulation of physical processes, with limited 

support for discrete event formalisms, even if 

this kind of formalism is commonly used to 

model the logic of software parts of a system. In 

particular, while UML is the reference standard 

for software modeling and is very commonly 

used in industry, none of the present-day FMI-

based co-simulation solutions consider UML 

models.  

Our thesis is that system engineering in general 

would greatly benefit from the consideration of 

UML in FMI-based co-simulation approach. It 

would indeed enable a significant number of 

software designers to evaluate the behavior of 

their software components in their simulated 

environment, as soon as possible in their 

development processes,  

 

and therefore make early and better design 

decisions. It would also open new interesting 

perspectives for CPS system engineers, by 

allowing them to consider a widely used 

modeling language for the software parts of their 

systems. In this context, the objective of this 

work is to define an FMI-based co-simulation 

environment for CPS with integration of UML 

models for the software part of the system. We 

set up a co-simulation approach where we 

address different kinds of systems 

characterizing the software part of CPS.  

Our contribution is twofold: locally at the level 

of UML models, and globally at the master 

level. At the local level, we base our proposals 

on OMG standards fUML («Semantics of a 

foundational subset for executable UML 

Models») and PSCS («Precise Semantics of 

UML Composite Structures») which define 

precise execution semantics for a subset of 

UML. For each kind of system, we first identify 

a set of rules to model it with UML and potential 

extensions to fUML. Then, at the global level, 

we propose « Master » algorithms. They ensure 

the synchronization of the involved components 

based on an adaptation between the FMI API 

and the execution semantics defined in fUML, 

and on a choice of simulation step size adapted 

to the kind of each component. The approach is 

illustrated by a use case from the smart grids 

domain, where the objective is to evaluate 

different control strategies (software 

components) for the optimization of its 

electricity self-consumption. 

 

 
 


