
HAL Id: tel-01865810
https://theses.hal.science/tel-01865810

Submitted on 2 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-driven co-simulation of Cyber-Physical Systems
Sahar Guermazi

To cite this version:
Sahar Guermazi. Model-driven co-simulation of Cyber-Physical Systems. Modeling and Simulation.
Université Paris Saclay (COmUE), 2017. English. �NNT : 2017SACLS333�. �tel-01865810�

https://theses.hal.science/tel-01865810
https://hal.archives-ouvertes.fr

Model-driven co-simulation
of Cyber-Physical Systems

Thèse de doctorat de l'Université Paris-Saclay
préparée à l’Université Paris-Sud

École doctorale n°580 Sciences et Technologies
de l'Information et de la Communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue au CEA Nano-Innov, le 28 Septembre 2017, par

Mme Sahar Guermazi

Composition du Jury :

M. Hans Vangheluwe
Professeur, Université d'Anvers – MSDL Rapporteur
M. Jean-Philippe Babau
Professeur, Université de Brest – Lab-STICC Rapporteur
M. Frédéric Boulanger
Professeur, CentraleSupélec – LRI Examinateur
Mme Laurence Pierre
Professeur, Université Grenoble Alpes – TIMA Examinatrice
Mme Lena Buffoni
Maître de Conférences, Université de Linköping – PELAB Examinatrice
M. Sébastien Gérard
Directeur de recherche, Université Paris-Saclay – CEA/LIST/LISE Directeur de thèse
M. Arnaud Cuccuru
Ingénieur de recherche, CEA/LIST – LISE Co-encadrant
Mme Saadia Dhouib
Ingénieure de recherche, CEA/LIST – LISE Co-encadrante

N
N

T
 :

 2
0

17
S

A
C

LS
3

33

Je dédie cette thèse

A mes très chers parents Hela et Abderraouf

Je vous dédie ce travail en témoignage de mon profond amour et toute ma

gratitude pour les sacrifices que vous avez consenti pour mon instruction, et pour

l’amour et l’attention que vous m’avez donnés. C’est grâce à vous que je suis

arrivée là.

Malgré la distance qui nous sépare, mes pensées sont avec vous tous les jours. Je

serai toujours là pour vous comme vous l’êtes pour moi.

Une pensée particulière à toi, papa. Que dieu te donne la force et le courage.

Que Dieu vous garde pour moi maman, papa, et vous donne santé, bonheur et

longue vie afin que je puisse vous combler à mon tour.

A mon très cher époux Bilel

Je te remercie d’être toujours à mes côtés avec ton soutien, ton attention et ton

amour. Je te remercie aussi pour ta patience tout au long de mon parcours.

En témoignage de mon amour, de mon admiration et de ma grande affection, je

te dédie ce travail en expression de mon estime et mon sincère attachement.

Je prie Dieu pour qu’il te donne bonheur, santé et prospérité et te garde pour moi.

Je t’aime…

A ma très chère sœur Fatma, son mari Mourad
et ma nièce Baya,

A mon très cher frère Hsan et son épouse
Sirine

Fatma et Hsan, vous êtes mes anges gardiens. Malgré la distance, vous êtes

toujours présents pour me soutenir, m’aider et m’encourager. Je ne vous

remercierai jamais assez pour tout ce que vous faites pour moi. Je vous aime fort.

Sirine et Mourad : Vous étiez toujours présents pour me soutenir et m’aider.

Merci encore.

Baya : Tu es mon rayon de soleil et ma joie de vivre. Je t’aime et t’aimerai

toujours…

En témoignage de mon affection et de ma profonde reconnaissance, je vous

souhaite tous une vie pleine de bonheur et de succès.

Que Dieu vous protège et vous garde.

A mes grands-parents Hamida et Mohsen

Je vous remercie pour tout ce que vous avez fait pour moi depuis mon enfance.

Mon amour pour vous est très profond.

Que Dieu vous préserve santé et longue vie.

A ma belle-mère Sonia et mon beau père Ridha

Je vous remercie pour votre soutien, votre amour. Je vous remercie aussi de

m’avoir considérée comme votre fille. Je suis heureuse que vous fassiez partie de

ma famille.

Vos prières et vos conseils m’ont toujours accompagné.

Puisse Dieu vous accorder meilleure santé et longue vie.

A mon beau-frère Rami et ma belle-sœur
Mariem

Puisse Dieu vous garder, éclairer votre route et vous aider à réaliser à votre tour

vos vœux les plus chers.

A ma belle grand-mère Chefia

Je prie Dieu qu’il te prodigue santé et longue vie.

A toute ma famille et tous mes chers amis…

Je vous souhaite tout le succès et le bonheur du monde.

A la mémoire de mon grand-père paternel Hsan,
ma grand-mère paternelle Aicha, de ma tante
Najoua, du mari de ma tante Fakher, de mon
oncle Mohamed et de ma belle grand-mère
Mahsouna

Que Dieu, le miséricordieux, vous accueille dans son éternel paradis.

REMERCIEMENT

Je souhaite remercier mon directeur de thèse, Sébastien Gérard, ainsi que mes

deux encadrants, Arnaud Cuccuru et Saadia Dhouib, pour leur encadrement,

leurs conseils et le temps qu’ils ont consacré pour mener à terme ces travaux de

thèse.

Je tiens à remercier Mme Laurence Pierre, Mme Lena Buffoni et M. Frédéric

Boulanger d’avoir accepté de faire partie du Jury de ma thèse. Ils m’ont fait

l’honneur d’évaluer mes travaux.

Mes remerciement von également à M. Hans Vangheluwe et à M. Jean Philippe

Babau pour le temps qu’ils ont consacré pour rapporter mes travaux. Leurs

remarques m’ont permis d’envisager des améliorations pour mes travaux. Aussi,

ils m’ont fait honneur de faire partie du Jury de ma thèse.

Je remercie tous les membre du LISE qui ont contribué à mener à bien ces

travaux.

J'exprime ma gratitude à tous mes amis pour leur écoute, leurs encouragements

et leur disponibilité. Je les remercie aussi pour tous les beaux moments qu’on a

partagé ensemble.

Je remercie enfin tous ceux qui ont contribué de près ou de loin à l’élaboration

de ce travail.

Table of contents

Synthèse en français ... 9

Introduction .. 29

PART I: RELATED WORK

1. Chapter 1: Foundations and Techniques of Cyber-Physical Systems Modeling and

Simulation

1.1. Foundations of modeling and simulation ... 35

 Modeling languages and modeling formalisms ... 35

 Model of Computation (MoC) ... 35

 Simulation tools .. 38

1.2. Technique of CPS modeling and simulation .. 38

 Translation of models ... 39

 Composition of modeling languages .. 39

 Unification of semantics ... 40

 Composition of models .. 40

 Co-simulation ... 41

1.3. Discussion and conclusion ... 42

Chapter 2: Toward FMI-based Co-Simulation of CPS

2.1. About FMI for co-simulation ... 44

 Functional Mock-up Unit (FMU) ... 45

 Master algorithm .. 48

2.2. Limitations of FMI regarding CPS domain .. 50

 Untimed semantics are not supported (I1) ... 50

 Time events are not handled (I2) .. 51

 Conclusion on FMI issues related to CPS domain ... 51

2.3. How to address those FMI limitations? .. 51

 Adaptation of semantics at the FMU level ... 52

 Extension of the FMI API .. 52

 Adaptation of semantics at master level ... 53

2.4. Discussion and positioning ... 54

Chapter 3: UML models execution - Overview and Key aspects

3.1. Tools for UML models simulation ... 57

 Tools evaluation ... 57

 Discussion and positioning ... 59

3.2. Computational components modeling and simulation with fUML* 59

 Systems of interest ... 59

 Executable models within fUML* ... 63

 Non-executable models within fUML* .. 65

 Addressing fUML* limitations .. 68

3.3. Outline of the proposed approach ... 70

3.4. Conclusion .. 71

PART II: ABOUT THE CONTRIBUTION

Chapter 4: UML-based Master Simulation Tool for modeling and simulation of CPSs

4.1. Architecture of the framework ... 74

 Graphical User Interface features ... 75

 MST-engine features .. 79

4.2. Validation of the framework implementation .. 84

 Use case: The TankPISystem ... 84

 Import of the FMUs and the definition of the co-simulation scenario 84

 Simulation results ... 85

4.3. Conclusion .. 87

5. Chapter 5: Integration of untimed UML models in FMI-based co-simulation

5.1. Untimed Models of Transformational Systems .. 89

 Modeling rules for integration in FMI co-simulation .. 89

 Adapting fUML* execution semantics to FMI API ... 92

 Pseudocode of the master algorithm .. 94

 Experience on a representative example .. 95

5.2. Untimed models of reactive systems .. 97

 Modeling rules for integration in FMI co-simulation .. 98

 Extension of fUML semantics .. 100

 Adapting fUML execution semantics to FMI API ... 101

 Pseudocode of the master algorithm .. 104

 Experience on a representative example .. 104

5.3. Conclusion .. 107

6. Chapter 6: Integration of timed UML models in FMI-based co-simulation

6.1. Timed models of transformational systems .. 109

 Modeling rules for interation in FMI co-simulation .. 109

 Adapting fUML semantics to FMI API ... 112

 Pseudocode of the master algorithm .. 114

 Experience on a representative example .. 115

6.2. Timed models of reactive systems ... 116

 Modeling rules for integration in FMI-based co-simulation 116

 Extension of fUML semantics .. 120

 124

 Adapting fUML execution semantics to FMI API ... 124

 Pseudocode of the master algorithm .. 128

 Experience on a representative example .. 128

6.3. Conclusion ... 130

PART III: EXPERIMENTS

7. Chapter 7: The Case Study: Energy auto-consumption management in smart

energy building

7.1. Context ... 132

7.2. Specification of the case study .. 133

 The ‘ElectricLoad’ ... 134

 The ‘ESS’ ... 134

 The ‘ElectricityGrid’ .. 134

 The ‘PV’ ... 135

 The ‘ControlSelfConsumption’ .. 135

7.3. Modeling of the case study in Papyrus ... 139

 Modeling of FMUs in Papyrus ... 139

 Modeling of ‘SelfConsumptionControl’ component in Papyrus 140

7.4. Simulation of the case study in Papyrus/Moka .. 144

 The basic control scenario .. 144

 The advanced control scenario ... 145

 Interpretation of the simulation results ... 147

7.5. Summary of the proposition validation .. 147

PART IV: CONCLUSION AND PERSPECTIVES

8. Conclusion and perspectives ... 150

PART IV: ANNEXES

A. ANNEX A: foundational UML (fUML) and PSCS for UML models execution:

Syntax and Semantics

A.1. The syntax .. 154

A.2. The semantics .. 155

A.2.1. Behavioral semantics ... 156

A.2.2. Instantiation semantics .. 159

B. ANNEX B: FMI for co-simulation Standard

B.1. FMU content .. 161

B.1.1. Structure (XML file) .. 161

B.1.2. Dynamics (DLL/C-functions) .. 167

B.2. The master Algorithm .. 169

B.2.1. Procedures calls order .. 169

B.2.2. Pseudocode of a basic master algorithm .. 169

C. ANNEX C: Papyrus/Moka support for FMI for co-simulation standard

C.1. Moka Overview ... 172

C.1.1. Execution of models based on standards ... 172

C.1.2. Interactive execution .. 172

C.1.3. Extension for new execution semantics ... 173

C.2. Moka extended for the FMI standard ... 174

C.2.1. Moka as a master for co-simulation ... 174

C.2.2. Moka as a slave for co-simulation ... 181

D. ANNEX D: Topological sort on directed graphs

D.1. Introduction to topological sort on directed graphs ... 182

D.2. Application to a co-simulation graph .. 183

References ... 184

List of Figures

Figure I-5-1. CPS modeling and simulation ... 29

Figure 1-1. The Data Flow MoC ... 36

Figure 1-2. The Reactive Synchronous MoC .. 36

Figure 1-3. The Discrete Event MoC .. 37

Figure 1-4. The Continuous Time MoC .. 37

Figure 2-1-a. FMI for model exchange ... 45

Figure 2-1-b. FMI for Co-simulation .. 45

Figure 2-2. Principle of an FMU simulation ... 48

Figure 2-3.Basic master algorithm for FMI co-simulation ... 49

Figure 3-1. A transformational system .. 60

Figure 3-2. Interaction of a reactive system with its environment .. 61

Figure 3-3. Transformation is a passive class ... 63

Figure 3-4. The specification of the operation ‘transform’ with an activity 63

Figure 3-5. The specification of the operation 'multiply' with an activity 64

Figure 3-6.The Game system represented with a UML composite structure 64

Figure 3-7. The players are active classes ... 64

Figure 3-8.The behaviors of the players represented with activities 65

Figure 3-9. A timed behavior .. 65

Figure 3-10. A behavior reactive to a change on a value .. 67

Figure 3-11. Extract semantic elements of PSCS as extension to the fUML semantic model.
 .. 69

Figure 3-12. Composition of FMI based co-simulation cases ... 70

Figure 3-13. The proposed approach for the integration of fUML* and FMI 71

Figure 4-1. The co-simulation Framework .. 75

Figure 4-2.The Co-simulation Profile ... 76

Figure 4-3. FMU to UML model transformation .. 78

Figure 4-4. An example of a CPS composed of four FMUs in a UML composite structure
diagram ... 79

Figure 4-5. FMI-based Co-simulation from UML model to native code 79

Figure 4-6. The FMI standard implementation ... 80

Figure 4-7. The Variable-order algorithm ... 80

Figure 4-8. The master step algorithm .. 81

Figure 4-9. The basic master algorithm for FMUs orchestration enriched with rollback feature
and co-simulation graph analysis ... 82

Figure 4-10. The Master algorithm expressed with UML ... 82

Figure 4-11. Extensions of the PSCS semantic model for FMI based co-simulation 83

Figure 4-12. The tankPI system and its decomposition .. 84

Figure 4-13. The import of the TankPI_TankPI_FMU in the framework 85

Figure 4-14. The definition of the co-simulation scenario of the TankPI system 85

Figure 4-15. Execution results in the proposed Dymola .. 86

Figure 4-16.Execution results in the proposed framework ... 86

Figure 5-1. An untimed model of a transformational system: structure and behavior 91

Figure 5-2. Pseudocode of a master algorithm for a Co-simulation graph connecting FMUs
with untimed UML model of a transformational system. .. 95

Figure 5-3. Co-simulation graph connecting an imported FMU to an untimed model of a
transformational system ... 96

Figure 5-4. Co-simulation results of an untimed model of a transformational system-Basic
master ... 97

Figure 5-5. Co-simulation results of an untimed model of a transformational system-Advanced
master ... 97

Figure 5-6. An untimed UML model of a reactive system: structure and behavior 100

Figure 5-7. Semantic elements which capture semantics of change events 101

Figure 5-8.Co-simulation graph connecting an imported FMU to an untimed model of a
reactive system ... 104

Figure 5-9. Co-simulation results of an untimed model .. 106

Figure 5-10. Co-simulation results of an untimed model .. 106

Figure 6-1. Two-path behavior .. 110

Figure 6-2. A timed model of a transformation system... 111

Figure 6-3. Pseudocode of a master algorithm for a Co-simulation graph connecting FMUs
with timed models of a transformational system. .. 114

Figure 6-4.Co-simulation graph connecting an imported FMU to an timed model of a
transformational system ... 115

Figure 6-5. Co-simulation results of a timed model .. 116

Figure 6-6. Co-simulation results of a timed model .. 116

Figure 6-7. A simple example of a timed model of a reactive system 119

Figure 6-8. Algorithm of discrete event simulation .. 121

Figure 6-9. Events order in the FEL .. 121

Figure 6-10. The DE scheduler model .. 122

Figure 6-11. Interaction description of the DE scheduler with a semantic element capturing the
execution semantics of a timed activity action ... 122

Figure 6-12. Extension of behavioral semantics for timed execution: Object and
ObjectActivation .. 123

Figure 6-13. Extension of behavioral semantics: the activity nodes activations 124

Figure 6-14. Extension of instantiation semantics: Locus and ExecutionFactory 124

Figure 6-15.Pseudocode of a master algorithm for a Co-simulation graph connecting FMUs
with a timed model of a reactive system. ... 127

Figure 6-16. Co-simulation graph connecting an imported FMU to a timed model of a reactive
system ... 128

Figure 6-17. Co-simulation results of a timed model .. 129

Figure 6-18.Co-simulation results of a timed model ... 129

Figure 7-1. The ‘Energy Auto-consumption’ system .. 133

Figure 7-2. The 'ElectricLoad' component structure ... 134

Figure 7-3. The 'ESS' component structure ... 134

Figure 7-4. The 'ElectricityGrid' component structure .. 134

Figure 7-5. The ‘PV’ component structure ... 135

Figure 7-6. The basic ‘ControlSelfConsumption’ component structure 135

Figure 7-7. The basic ‘ControlSelfConsumption’ component behavior 136

Figure 7-8. The ‘ControlSelfConsumption’ component structure in Simulink 136

Figure 7-9. PeakHourIndicator component Structure ... 137

Figure 7-10. ControlSelfConsumption component structure in Papyrus 137

Figure 7-11. The ‘PeakHoursIndicator’ component behavior ... 138

Figure 7-12. The advanced ‘ControlSelfConsumption’ component behavior 139

Figure 7-13. The ‘Grid_3inputsPac’ FMU imported in Papyrus ... 140

Figure 7-14. The ‘Load’ FMU imported in Papyrus ... 140

Figure 7-15. The ‘ESS’ FMU imported in Papyrus .. 140

Figure 7-16. The 'PV' FMU imported in Papyrus ... 140

Figure 7-17.UML Model of the basic ‘SelfConsumptionControl’ - Structure and Behavior 141

Figure 7-18. Modeling the Peak-up indicator component with UML 142

Figure 7-19.UML model of the advanced self-consumption control – Structure and Behavior
 .. 143

Figure 7-20. Co-simulation scenario connecting FMUs to the basic 'SelfConsumptionControl'
 .. 144

Figure 7-21. Simulation results of the basic control scenario in Simulink 145

Figure 7-22. Simulation results of the basic control scenario in Papyrus 145

Figure 7-23. Co-simulation scenario connecting FMUs to the advanced
'SelfConsumptionControl' .. 146

Figure 7-24. Simulation results of the advanced control scenario in Simulink 146

Figure 7-25. Simulation results of the advanced control scenario in Papyrus 147

Figure A-1.Syntax and semantics of fUML .. 155

Figure A-2. Extract of semantic visitors considered by fUML ... 156

Figure A-3. Behavioral semantic elements related to the Object visitor 157

Figure A-4. The ActivityExecution(sem) and ActivityNodeActivation(sem) visitor 158

Figure A-5. Semantic visitor of activity nodes .. 159

Figure A-6. The Locus, the executor, and the Execution Factory in fUML 160

Figure B-1. XML schema of the FMI standard (version 2.0) ... 162

Figure B-2. The attributes associated with the 'CoSimulation' element in the XML schema163

Figure B-3. Attributes of the ‘DefaultExperiment’ element in the XML schema 164

Figure B-4. Attributes of 'ScalarVariable' element in the XML schema 165

Figure B-5. Example of a model description xml file of an FMU for co-simulation 166

Figure B-6.’Unknown’ element attributes in the XML schema .. 166

Figure B-7. 'fmi2Iinstantiate’ function .. 167

Figure B-8. 'fmi2SetupExperiments' function ... 167

Figure B-9. 'fmi2EnterInitializationMode' and ‘fmi2ExitInitializationMode’ 168

Figure B-10. 'fmi2GetXXX' function .. 168

Figure B-11.'fmi2SetXXX' function ... 168

Figure B-12. 'fmi2DoStep' function .. 168

Figure B-13. 'fmi2Terminate’ function ... 169

Figure B-14. Calling sequence of Co-Simulation C functions .. 169

Figure B-15. Co-simulation scenarion composed of two FMUs ... 170

Figure B-16. Pseudocode of the master algorithm .. 171

Figure C-1.Interactive execution in Papyrus/Moka .. 173

Figure C-2. The support of several execution engines in Moka ... 173

Figure C-3. Papyrus/Moka support for FMI for co-simulation ... 174

Figure C-4. The QVTo transformation ... 178

Figure C-5. The import of FMUs in Papyrus/Moka ... 179

Figure C-6.The definition of co-simulation scenario in papyrus .. 180

Figure C-7. The definition of a run configuration in papyrus/Moka 181

Figure D-1. Kahn's algorithm for topological sort on directed graph 182

Figure D-3-a. Directed Acyclic graph ... 183

Figure D-3-b. Directed cyclic graph ... 183

List of Tables

Table 1-1. Evaluation of verification techniques according to the chosen criteria 43

Table 2-1. Mapping between the FMI API functions and the formalization functions 48

Table 2-2. Semantic gap between FMI and non-CT MoCs: model of time and control 50

Table 2-3. Summary of the FMI-based techniques evaluation .. 54

Table 3-1. UML tools evaluation .. 57

Table 4-1. Stereotypes of UML profile for FMI. .. 77

Table 4-2.Mapping between formalization functions and wrapper functions 83

Table 5-1. Mapping of transformational systems properties to UML modeling concepts 89

Table 5-2. Stereotypes to apply for an untimed model of transformational systems 91

Table 5-3. fUML routine for instantiation and initialization of an untimed model of a
transformational system ... 92

Table 5-4. fUML routines for stepwise simulation and data propagation of an untimed model
of a transformational system .. 94

Table 5-5. fUML routines for termination of an untimed model of a transformational system
 .. 94

Table 5-6.Mapping of reactive systems properties to UML modeling concepts 98

Table 5-7. Stereotypes to apply for an untimed model of reactive systems 99

Table 5-8. fUML routines for instantiation and initialization of an untimed model of a reactive
system ... 102

Table 5-9. fUML routines for stepwise simulation and data propagation of an untimed model
of a reactive system .. 103

Table 5-10. fUML routines for termination of an untimed model of a reactive system........ 104

Table 6-1. Time modeling in UML models of transformational systems 109

Table 6-2. Stereotypes to apply for a timed model of transformational systems 111

Table 6-3. fUML routines for instantiation and initialization of a timed model of a
transformational system ... 112

Table 6-4.fUML routines for stepwise simulation and data propagation of a timed model of a
transformational system ... 113

Table 6-5. fUML routines for termination of an untimed model of a transformational system
 .. 114

Table 6-6.Time modeling with UML for transformational systems 117

Table 6-7.Stereotypes to apply for a timed model of reactive systems 119

Table 6-8.fUML routines for instantiation and initialization of a timed model of a reactive
system ... 125

Table 6-9. fUML routines for stepwise simulation and data propagation of a timed model of a
reactive system ... 126

Table 6-10. fUML routine for termination of a timed model of a reactive system 127

9

Synthèse en français

I. Introduction

I.1. Contexte et motivations

De nos jours, on utilise de plus en plus des systèmes cyber-physiques (CPS). Nous les trouvons
dans plusieurs domaines tel que le domaine de l’automotive, le domaine avionique, le domaine des
bâtiments intelligents et de la manufacture. Les CPS intègrent de manière fortement couplée des
composants physiques et des composants logiciels [25]. Par exemple, nous trouvons du logiciel
embarqué sur des unités de contrôle dans les véhicule, dans un système de gestion de vol sur un
avion, ou aussi sur des unités de contrôle pour la gestion d’énergie des réseaux intelligents.

L'utilisation étendue de la modélisation et de la simulation tout au long du cycle de vie du dévelop-
pement des systèmes est l'une des façons les plus utilisées pour concevoir efficacement des systèmes
sûrs, sécurisés, performants et fiables. Les CPS sont des systèmes particulièrement difficiles à mo-
déliser et à simuler. En effet, de par la nature hétérogène de leurs composants, leur conception
nécessite l’utilisation de différents formalismes de modélisation. En pratique, les composants phy-
siques sont représentés par des modèles physiques qui s’appuient sur le modèle de calcul « Conti-
nuos Time » (CT) tandis que les parties cybers sont représenté par des modèles qui s’appuient sur
des modèles de calcul tels que le « Discrete Event » (DE) et le « Dataflow » (DF). Ces modèles sont
hétérogènes, modélisés avec des langages différents et simulés avec des outils différents. L’une des
techniques pour la validation du comportement global du système est la co-simulation. En particu-
lier, la norme « Functional Mock-up Interface » (FMI) offre une interface normative pour coupler
plusieurs simulateurs dans un environnement de co-simulation, nommé « Master ». Celui-ci est
chargé de fournir un algorithme pour une orchestration et une synchronisation efficace des diffé-
rents composants du système, nommés « Functional Mock-up Unit » (FMU). Cette norme s’impose
de plus en plus dans l'industrie, et est supportée par de nombreux environnements de modélisation
et de simulation. Cependant, FMI est initialement conçu pour la co-simulation des processus phy-
siques, avec un support limité des formalismes à événements discrets qui est modèle de calcul et de
communication largement utilisé dans les environnements de modélisation spécifiques au logiciel.
En particulier, bien qu’UML soit un des langages de référence pour la modélisation de logiciels et
soit très couramment utilisé dans l'industrie, aucune des solutions actuelles de co-simulation basées
sur FMI ne permet de le prendre en considération.

Notre thèse est que les concepteurs logiciels bénéficieront de l’intégration de leur modèles UML
dans une approche de co-simulation basée sur FMI. Cela leur permettra en effet d’évaluer le com-
portement de leurs composants logiciels dans un environnement simulé, et donc de les aider à faire
les meilleurs choix de conception le plus tôt possible dans leur processus de développement. Cette
intégration pourrait également ouvrir de nouvelles perspectives intéressantes pour les concepteurs
des CPS en leur permettant d'envisager l’utilisation d’un langage largement utilisé pour la modéli-
sation des composants logiciels de leurs systèmes. Et donc de renforcer les interactions entre com-
munautés. Néanmoins, nous n’avons pas trouvé dans la littérature de travaux qui intègrent les mo-
dèles UML dans une démarche de co-simulation basée sur FMI.

10

I.2. Problématiques

Une première analyse de l’état de l’art sur l’intégration des modèle UML dans une approche de co-
simulation basée sur FMI montre qu’il y’a des problématiques à trois niveaux :

� Une problématique liée à l’utilisabilité du standard FMI pour les composants logiciels.

En effet, FMI était historiquement destiné pour la co-simulation de processus physiques (ce qui
explique que son API s’appuie sur le modèle de temps CT). L’utilisation de FMI pour la co-simu-
lation de composants logiciels n’est donc pas immédiate.

� Une problématique liée à l’exécutabilité des modèles UML.

En effet, l’intégration des modèles UML dans une approche de co-simulation nécessite qu’ils soient
exécutables. Pour cela, nous avons choisi de s’appuyer sur les standards de l’OMG autour de l’exé-
cution des modèles UML, fUML (« Semantics of a foundational subset for executable UML models
») et PSCS (« Precise Semantics of UML Composite Structures ») que nous noterons fUML* dans
la suite. fUML* définit une sémantique précise pour l’exécution d’un sous ensemble de UML. Ces
deux normes constituent notre socle de définition qui donne une base intéressante et formelle pour
l'intégration des modèles UML dans les approches de co-simulation de systèmes cyber-physiques.
Néanmoins le sous-ensemble couvert est limité pour représenter tous les comportements qu’on peut
avoir pour des composants logiciels.

� Une problématique liée à la synchronisation entre les des modèles hétérogènes.

En effet, les modèles diffèrent dans la façon avec laquelle ils interagissent avec l’environnement,
dans la façon avec laquelle ils traitent leurs comportements et gèrent le temps. Cette problématique
est une problématique classique de la co-simulation de modèles hétérogènes qui a été le centre
d’intérêt de plusieurs travaux de recherche. Nous devons traiter, en particulier, l’hétérogénéité entre
la sémantique des modèles UML et celle de l’API FMI.

Ces problématiques seront détaillées par la suite pour différents types de systèmes représentatifs
des composants logiciels dans les CPS. Pour une bonne compréhension de ces problématiques, nous
allons commencer par introduire brièvement les standard FMI pour co-simulation et fUML* pour
l’exécution des modèles UML.

I.3. Introduction à FMI

FMI est un standard qui fournit une interface standard pour la co-simultation et pour l’échange de
modèles dynamiques originairement conçus avec des outils de simulations différents. Il a été initia-
lement lancé dans le cadre du projet MODELISAR et se poursuit maintenant grâce à la participation
de 16 entreprises et instituts de recherche sous le toit de l'Association Modelica. Aujourd'hui, FMI
est soutenu par plus de 89 outils [17].
Une entité qui implémente le standard FMI est appelée FMU. Elle est obtenue par l’export d’un
modèle à partir d’un outil de simulation conformément au standard FMI : ce qui veut dire que la
description du modèle et le solveur contenu dans la FMU sont conformes respectivement à un mé-
tamodèle et une API fournis par le standard. L’API définit en particulier des procédures pour l’ini-
tialisation et l’instanciation de la FMU, la simulation pas à pas et la terminaison de la simulation.
La FMU peut être utilisée :

� Pour un échange de modèles, où la FMU contient un modèle qui sera exécutée par le solveur
fournit par l’environnement de simulation qui l’importe (Figure 2) ;

� Pour une co-simulation, où l’objectif est de fournir une interface standard pour coupler deux
FMUs ou plus dans un environnement de co-simulation. L’échange de données entre ces

11

FMU est limité à un ensemble discret de points de communication où chaque FMU est
exécutée indépendamment avec son propre solveur (Figure 1).

L'échange de modèles n'est pas adapté à ce travail vu qu’il n'est pas courant pour les outils UML de
fournir des solveurs pour l'exécution de modèles physiques. Nous nous intéressons à la co-simula-
tion où un système est vu comme une interconnexion de FMUs (les ‘slaves’), importées dans un
environnement de co-simulation (le ‘Master’). Le Master est chargé de fournir un algorithme pour
orchestrer et synchroniser les FMUs.

La spécification FMI ne standardise pas l'algorithme du ‘Master’. L’environnement de co-simula-
tion est donc responsable de fournir son propre algorithme. L’algorithme le plus simple (Figure3)
va instancier et initialiser un ensemble de FMUs puis les simuler du début (tc0=tstart) à la fin (tcn=tstop)
de la simulation par pas de simulation fixe hFMU. Les FMUs sont d’abord instanciées et initialisées
(à tc0=tstart) puis exécutées indépendamment entre deux points de communication discrets "tci" et
"tci+1". Le temps avance localement sur les FMU de hFMU = tci+1-tci> 0. A ces points de communi-
cation, le Master récupère les sorties et met à jour les entrées de toutes les FMUs, puis avance le
temps de hFMU.

I.4. Introduction à fUML*

fUML définit une sémantique d’exécution précise pour un sous-ensemble de UML (à savoir res-
pectivement, un sous ensemble de la modélisation structurelle à base de classes et un sous ensemble
de la modélisation comportementale à base d’activité et d’actions, et la partie modélisation à base
de classes composites structurées de UML). Le standard PSCS est une extension de fUML notam-
ment pour les structures composites (Figure 4).
A chaque élément syntaxique de ce sous-ensemble est associé un visiteur sémantique qui capture
sa sémantique d’exécution. L’ensemble de ces visiteurs forme le modèle sémantique de fUML*.

L’instanciation des visiteurs sémantiques est gérée par deux éléments spécifiques :
- Le « Locus » : représente la mémoire dans laquelle sont stockés tous les visiteurs séman-

tiques des éléments du modèles.

Environnement de simulation

Algorithme Master

 Modèle FMU Modèle

Solveur

FMU

Figure 1. FMI pour échange de modèles

Environnement de co-simulation

Algorithme Master

 Modèle

Solveur
FMU

 Modèle

Solveur
FMU

Figure 2. FMI pour co-simulation

tc
0
=t

start
 tc

n
=t

stop
 tc

1
 tci tc

2
 tc

i+1

Initialisation &
Instanciation

- Exécuter un pas de simulation
(doStep(t

ci
 , h

FMU
))

- Avancer le temps de h
FMU

Terminaison
Pas de simulation

h
FMU

Points de communication

- Récupérer les nouvelles sorties
- Mettre à jour les entrées

Figure 3. Master de co-simulation basique

12

- La « ExecutionFactory » : responsable pour l’instanciation des visiteurs sémantiques qui
capturent une sémantique comportementale.

Les types de composants logiciels nous voulons modéliser en UML et intégrer dans une approche
de co-simulation sont identifiés à partir d’un cas d’étude du domaine des réseaux intelligents. Pour
chaque type de composant identifié, nous présentons une projection des problématiques identifiées
auparavant.

II. Projection des problématiques sur un cas d’étude

Le cas d’étude en question est un système de gestion de l’autoconsommation d’énergie électrique
sur un réseau intelligent. Le système intègre des parties physiques et autres cybers. Les modèles de
la consommation d’énergie électrique (« Load »), de la production de l’énergie électrique par des
panneaux photovoltaïques (« PV »), du réseau électrique (« Electricity grid ») ainsi que celui de la
batterie (« ESS ») dans laquelle l’énergie produite est stockée sont spécifiés par des modèles phy-
siques et donc sont représentés avec des FMUs. L’ensemble de ces composants physiques est con-
trôlé par un composant logiciel qui définit une stratégie de contrôle (« SelfConsumptionController
»), et est représenté par un modèle UML. Celui-ci calcule une consigne de charge ou de décharge
pour la batterie dans le but de favoriser l’autoconsommation en énergie du système.

Deux variantes de stratégie de contrôle sont à modéliser et à simuler :

� Une première stratégie implémente un contrôle basique qui consiste simplement à donner
une consigne de charge ou de décharge à la batterie qui alimente de réseau en comparant la

Figure 4. Syntaxe et sémantique de fUML*

FMU

FMU

FMU

FMU

UML

Figure 5. Système de gestion de l’autoconsommation avec stratégie de contrôle basique

13

consommation d’énergie sur le réseau à la production photovoltaïque (Figure 5). En littérature,
ce type de composant logiciel est dit transformationnel [55] : système passif dont ses sorties ne
dépendent que de ses entrées, et s’appuie sur le temps logique (modèle de calcul DF).
� Une deuxième stratégie plus intelligente qui va calculer une nouvelle consigne en prenant
en compte l’état du système (ici l’état de charge de la batterie) ainsi que la période de la journée,
i.e. heures creuses ou heures pleine (Figure 6). C’est un composant réactif aux changements de
valeurs à l’entrée [21].
Un autre composant (« Peak Hour Indicator ») est nécessaire. Il indique le passage d’une pé-
riode d’heures creuses à une période d’heures pleines (et inversement). Ce dernier est réactif
aux évènements temporels [21].

Dans la suite nous détaillerons les problématiques énoncées dans la section I.2. Pour chaque type
de système représentatif de composants logiciels, i.e, système transformationnel, système réactif
aux changements de valeurs, et systèmes réactifs aux évènements temporels.

II.1. Problématiques dans le cas des systèmes transformationnels

� Utilisabilité du standard FMI pour les composants logiciels.
Les systèmes transformationnels s’appuient sur le modèle de temps logique. Ce type de comporte-
ment non temporisé n’est pas pris en compte par le standard FMI. En effet, d’après la spécification
FMI, on doit pourvoir affecter une valeur à une variable à tout instant t. De plus, le pas de simulation
nul n’est pas autorisé.

� Exécutabilité des modèles UML.

Le sous-ensemble fUML* couvre l’ensemble des éléments nécessaires à la modélisation de la struc-
ture et du comportement de ce type de système et à son exécution.

� Synchronisation entre les des modèles hétérogènes.

Le comportement souhaité pour les systèmes transformationnels est de produire la sortie une fois
calculée. Etant donné que le composant s’appuie sur du temps logique, le temps de calcul est sup-
posé nul. Par conséquent, la sortie d’une entrée reçue à t=tin doit être propagée au même moment
que la réception de l’entrée (tout=tin).

FMU

FMU

FMU

FMU

UML

UML

Figure 6. Système de gestion de l’autoconsommation avec stratégie de contrôle avancée

14

Si on exporte ce composant en une FMU conforme au standard FMI, et on le simule avec l’algo-
rithme de master décrit dans la section I.3, la sortie d’une entrée reçue à t=tin sera propagée à
tout=tin+h (h>0, étant le pas de simulation choisi par le master).
Cela engendre donc un retard de propagation des données comme le montre la Figure 7.

II.2. Problématiques dans le cas des systèmes réactifs aux changements de valeurs

� Utilisabilité du standard FMI pour les composants logiciels.

FMI ne supporte pas les réactions instantanées aux évènements, en particulier aux changements de
valeurs à l’entrée.

� Exécutabilité des modèles UML.
Le sous-ensemble fUML* ne couvre pas l’ensemble des éléments nécessaires à la modélisation de
la structure et du comportement de ce type de système et à son exécution. En effet, ce sous-ensemble
ne fournit pas d’éléments pour la modélisation de comportements réactifs aux changements de va-
leurs à l’entrée.

� Synchronisation entre les des modèles hétérogènes.

Le comportement souhaité pour les systèmes transformationnels est de réagir instantanément à un
changement de valeur à l’entrée. Par conséquent, la réaction d’une entrée reçue à t=tin doit être
propagée au même moment to que la réception de l’entrée (tout=tin).

Si on exporte ce composant en une FMU conforme au standard FMI, et on le simule avec l’algo-
rithme de master décrit dans la section I.3, la réaction à une entrée reçue à t=tin sera propagée à
tout=tin+h (h>0, étant le pas de simulation choisi par le master). Cela engendre donc un retard de
propagation des données comme le montre la Figure8.

II.3. Problématiques dans le cas des systèmes réactifs aux évènements temporels

� Utilisabilité du standard FMI pour les composants logiciels.

FMI ne supporte pas les réactions instantanées aux évènements, en particulier aux évènements tem-
porels.

� Exécutabilité des modèles UML.

t
start

 t
stop

t

in

t
out

Résultat souhaité

décalage

t
start

 t
stop

 t
in

 t
out

h

Simulation d’une

FMU fUML

Figure 7. Problème de synchronisation entre FMI et modèle de temps ‘Data-Flow’

t
start

 t
stop

t

in

t
out

Résultat souhaité

décalage

t
start

 t
stop

 t
in

 t
out

h

Simulation d’une

FMU fUML

Figure 8. Problème de synchronisation entre FMI et modèle de temps ‘Synchronous Reactive’

15

Le sous-ensemblede fUML* ne couvre pas l’ensemble des éléments nécessaires à la modélisation
de la structure et du comportement de ce type de système et à son exécution. En effet, ce sous-
ensemble ne fournit pas d’éléments pour la modélisation de comportements réactifs aux évènements
temporels.

� Synchronisation entre les des modèles hétérogènes.

Le comportement souhaité pour les systèmes réactifs aux évènements temporels est de produire une
sortie à des moments discrets définis par des évènements temporels. Par conséquent, si deux évè-
nements e1 et e2 sont prévus aux instants te1 et te2 respectivement, une première sortie doit être
produite à tout=te1 puis une deuxième sortie à tout=te2.

Si on exporte ce composant en une FMU conforme au standard FMI, et on le simule avec l’algo-
rithme de master décrit dans la section I.3, la réaction à e2 sera produite à tout=tin+h> te2 alors que
l’évènement e1 ne sera pas pris en compte vu qu’une nouvelle sortie a été calculée à un instant
postérieur. Cela engendre donc un retard de propagation des données ainsi qu’une perte d’évène-
ments comme le montre la Figure9.

II.4. Récapitulatif sur les problématiques

Pour récapituler (Tableau1), nous avons remonté quatre problèmes spécifiques à l’intégration de
fUML* et FMI.

Tableau 1. Récapitulatif des problématiques d'intégration des modèles UML dans une approche de
co-simulation basée sur FMI

� P1 : Pas de support pour comportement non temporisé.

Une première problématique qui ressort de la spécification du standard FMI. Elle concerne le fait
que les composants conformes à FMI ne supportent pas les comportements non temporisés.

� P2 : Pas de support pour les comportements réactifs aux évènements temporels.

Une deuxième problématique qui ressort des standard FMI et fUML*, elle concerne le fait que les
évènements temporels ne sont pas supportés par les ces standards syntaxiquement et sémantique-
ment.

� P3 : Pas de support pour les comportements réactifs aux changements.

Système transfor-
mationnel

Système réactif aux
évènements temporels

Système réactif aux
changements de valeurs

FMI P1 P2 P3

fUML* - P2 P3

Synchonisation FMI et fUML* P4 P4 P4

t
e2

 t
e1

 t
start

t

stop
 t

in
 t

out
>t

e1
,t

e2

h

Simulation d’une FMU

fUML

t
st

t
stop

 t
in

 t
out

=t
e1

Résultat souhaité

t
out

=t
e2

décalage

Perte d’évènement

Figure 9. Problème de synchronisation entre FMI et modèle de temps 'Discrete Event'

16

Une troisième problématique ressort des deux standards aussi, elle concerne le fait que les réactions
instantanées aux changements de valeurs ne sont pas supportées par les standards FMI et fUML*.

� P4 : Décalage de propagation des valeurs et/ou perte d’évènements.

Une dernière problématique qui ressort du gap sémantique entre l’API FMI et la sémantique d’exé-
cution des modèles UML qui entraine un décalage de propagation des données et la perte des évè-
nements temporels.

Après avoir déterminé les différents problèmes spécifiques à l’intégration des modèles UML dans
démarche de co-simulation basée sur FMI, nous avons exploré l’état de l’art pour analyser des so-
lutions qui ont été déjà proposées pour des problématiques semblables si elles existent. Cet état de
l’art nous a permis de se positionner et de construire une solution globale à ces problèmes.

III. Positionnement et solution proposée

III.1. Etat de l’at autour de fUML*

Pour résoudre les problématiques P2 et P3 liées fUML*, il est nécessaire de permettre l’exécution
des comportements réactifs aux changements de valeurs et aux évènements dans fUML*. Trois
approches peuvent être utilisées :

� La première approche consiste à utiliser le langage CCSL introduit par le standard MARTE
[29] pour appliquer des contraintes de temps aux modèle UML. Ce langage fournit plusieurs
modèles de temps. Une possibilité est d’utiliser des outils qui implémentent cette approche.
Le problème rencontré était que les approches proposées faisaient des hypothèses fortes sur
la manière dont la syntaxe et la sémantique du langage sont définie. Leur intégration avec
fUML* n’était pas directe puisque cela nécessitait l’adaptation du modèle sémantique
fUML* à l’architecture proposée.

� Une deuxième approche consiste à mettre en place une entité qui contrôle les exécutions
temporisées. Cette approche est utilisée dans des outils de simulation tel que SystemC1 et
Ptolemy2. Cette approche fournit un seul modèle de temps, le Discrete Event. L’avantage
est que son implémentation est indépendante de l’architecture de fUML*. Cette entité sau-
vegarde une liste d’évènements temporel et les exécute dans un ordre chronologique. Le
temps est avancé par pas discret correspondant à la date relative d’un évènement.

� Une troisième approche consiste à étendre le modèle sémantique de fUML* avec la syntaxe
et la sémantique nécessaire. Cette approche a été déjà utilisée pour étendre le modèle d’exé-
cution de fUML pour le support des structures composites. Une première étape consiste à
déterminer un ensemble minimal d’éléments UML nécessaires à la modélisation de com-
portements réactifs aux changements et aux évènements temporels, et/ou utiliser les profils
UML si nécessaire pour expliciter des informations importantes propriétés du système, puis
la définition de nouveaux sémantiques visiteurs qui capturent la sémantique d’exécution de
cet ensemble.

Nous avons opté pour une combinaison des deux dernières approches comme une solution partielle
de P2 et P3.

III.2. Etat de l’art autour de FMI

En se basant sur la spécification FMI, nous avons constaté l’existence de trois méthodes pour la

1 http://hdl.telecom-paristech.fr/sc_intro.html
2 http://ptolemy.eecs.berkeley.edu/ptolemyii/

17

prise en compte des nouveaux modèles de calcul dans une approche de co-simulation basée sur
FMI :

� L’adaptation de sémantique au niveau de la FMU.
Cette méthode consiste à exporter un modèle en une FMU. La FMU obtenue est conforme au stan-
dard FMI. Cette méthode est donc bien acceptée en industrie. Néanmoins, elle ne résout pas les
problèmes P1, P2, P3 et P4 liés à l’intégration des modèles UML dans une approche de co-simula-
tion basée sur FMI.

� L’extension de l’API de FMI.
Cette approche consiste à étendre FMI pour permettre d’exposer plus d’informations sur les mo-
dèles, et d’offrir plus de capacités quant à leur exécution. Cette approche permet de proposer des
solutions à P1, P2, P3, et P4 complètement conformes au standard et donc acceptées en industrie.
Par conte cela nécessite la validation du consortium.

� L’adaptation de sémantiques au niveau du master.
La meilleure solution serait de combiner les deux premières méthodes : une extension du standard
FMI avec de nouvelles capacités, et l’export de modèles en FMUs. Néanmoins, cette approche est
à présent non applicable vu que les extensions nécessaires aux standard FMI ne sont pas prises en
compte.

La troisième méthode est une approche intermédiaire. Elle permet la réutilisation de FMUs pour les
parties physiques, et la résolution de P1, P2, P3 et P4 tout en gardant les modèles logiciels en boites
blanches. Le seul souci de cette approche est qu’elle impose une restriction quant à l’environnement
de co-simulation utilisé, i.e, il doit être un outil UML.

III.3. Positionnement et solution proposée

En conclusion, trois solutions partielles ont été retenues pour la résolution de P1, P2, P3 et P4 :
� S1 : étendre la syntaxe et sémantique fUML*. Il faut :

- Identifier les éléments UML nécessaires.
- Implémenter leur sémantique d’exécution (définition de visiteur sémantiques et leur instan-

ciation).

� S2 : déléguer le contrôle des exécution temporelles à une entité externe. Il faut :
- Implémenter un ordonnanceur pour l’exécution des comportements temporisés

� S3 : implémenter un master de co-simulation avancé responsable pour :
- L’orchestration des composants impliqués où il faut identifier les routines équivalentes de

fUML* (et ses extensions).
- La synchronisation où il faut adapter le pas de simulation au type du composant. Pour cela

le master a besoin d’avoir les informations nécessaires sur modèle de temps du modèle
UML ; cela peut être fait en ajoutant des annotations (stéréotypes) sur les modèles UML.

Comme le résume le Tableau2, la résolution de P1 et P4 nécessite l’utilisation de S3. La résolution
de P2 nécessite l’utilisation de S1, S2 puis S3. La résolution de P3 nécessite l’utilisation de S1 puis
S3.
Tableau 2. Récapitulatif des solutions aux problématiques identifiées

S1 S2 S3

P1: Pas de support pour comportement non temporisé
(FMI)

X

18

P2: Pas de support pour les comportements réactifs aux évènements temporels
(FMI et fUML*)

X X X

P3: Pas de support pour les comportements réactifs aux changements
(FMI et fUML*)

X

X

P4: Décalage de propagation des valeurs et perte d’évènements
(Synchronisation FMI et fUML*)

X

La solution proposée pour l’intégration des modèles UML dans une approche de co-simulation ba-
sée su FMI est illustrée dans la Figure10.

IV. Contributions

IV.1. Environnement de co-simulation dans Papyrus

Cette approche est outillée dans Papyrus, modeleur UML/SysML intégré à Eclipse. Il fournit une
implémentation des standard OMG relatifs à l’exécution des modèles UML via son moteur d’exé-
cution Moka. Nous avons implémenté un environnement de co-simulation basé sur le standard FMI.
Dans un premier temps, cet environnement permet de définir des scenarios de co-simulation qui
assemble des FMUs importées, simuler ces scenarios par un algorithme de co-simulation intégré
dans Moka et enfin stocker et visualiser les résultats de simulation. Les détails de l’implémentation
sont présentés dans le chapitre 4 du manuscrit.
Le but est d’étendre cet environnement pour permettre en plus la définition de scénarios de co-
simulation qui assemblent des FMUs à des modèles UML et leur simulation (Figure11).

Figure 10. Approche proposée pour l'intégration des modèles UML dans une approche
de co-simulation basée sur FMI

19

IV.2. Application de l’approche aux systèmes transformationnels

IV.2.1. Règles de modélisation UML

La Figure12 illustre les différents éléments UML nécessaires à la modélisation de composant logi-
ciels transformationnel. Un système transformationnel est représenté par une classe passive auquel
est appliqué le stéréotype « CS_Untimed ». Ces deux éléments reflètent le modèle de calcul Data
Flow (DF) du composant. Cette classe doit avoir des ports d’entrée, des ports de sortie, et une opé-
ration qui implémente le calcul à faire quand le composant est invoqué. Pour la distinguer, le sté-
réotype « CS_Operation » lui est appliqué. Cette opération est définie par une activité qui va lire
les valeurs sur les ports d’entrée, faire le calcul nécessaire, et mettre à jour les valeurs des ports de
sortie.

Figure 12. Règles de modélisation UML de système transformationnel

Co-simulation de FMUs
Extensions pour la l’intégration de modèles

Figure 11. Environnement de co-simulation dans Papyrus

20

IV.2.2. Identification de routines fUML*

Le Tableau3 représente le mapping entre les routines définies dans le modèle sémantique de fUML*
et les procédures indispensables de l’API du standard FMI.

Tableau 3. Routines fUML* pour l’exécution de modèle UML de système transformationnel

API FMI Modèle sémantique de fUML*

Instanciation c.locus.instantiate();

Initialisation Les valeurs des propriétés (ports) sont automatiquement initialisées
à l’instanciation par les valeurs par défaut dans le modèle.

Simulation pas à pas
doStepc(h)

c.dispatch(operationToExecute).execute();

Mise à jour des entrées
setc(inPort,value)

c.setFeatureValue(inPort,value)

Récupération des sorties
getc(outPort)

c.getFeatureValue(inPort);

Terminaison Ne rien faire

IV.2.3. Matser de co-simulation

L’algorithme de master proposé pour la co-simulation de composants logiciels transformationnels
avec des FMUs (Figure13) prend en compte la nature de chaque composant. Il adapte son pas de
simulation, i.e, il utilise un pas de simulation hUML=0 pour les composants UML représentatif de
systèmes transformationnels, et un pas de simulation proposé par les FMUs hFMU>0. Pour assurer
une propagation instantanée des données, il exécute les composants UML en même temps que la
propagation.

Figure 13. Master de co-simulation de FMUs et de modèles UML représentant des
systèmes transformationnels

21

V.3. Application de l’approche aux systèmes réactifs aux changements de valeurs

IV.3.1. Règles de modélisation UML

Un système réactif aux changements de valeurs est représenté par une classe active auquel est ap-
pliqué le stéréotype « CS_Untimed ». Ces deux éléments reflètent le modèle de calcul Synchronous
Reactive (SR) du composant. Cette classe doit avoir des ports d’entrée, des ports de sortie, et un
comportement qui lui est associé. Ce comportement est défini par une activité qui va lire détecter
les changements de valeurs sur les ports d’entrée. Si un changement est détecté, elle va lire les
valeurs sur les ports d’entrée, réagir à ce changement, et mettre à jour les valeurs des ports de sortie.

IV.3.2. Extension de fUML*

Les réactions aux changements de valeurs n’est pas pris en compte dans fUML*. Comme mentionné
dans la section I.4, une extension du modèle sémantique de fUML* par l’ajout de nouveaux visiteurs
sémantiques est nécessaire (solution S1). La Figure15 illustre l’extension apportée à fUML*.

IV.3.3. Identification de routines fUML*

Le Tableau4 représente le mapping entre les routines définies dans le modèle sémantique de fUML*
et les procédures indispensables de l’API du standard FMI.

Figure 15. Extension de fUML* pour les comportements réactifs aux changements de valeurs

Figure 14. Règles de modélisation UML de système réactif aux changements

22

Tableau 4. Routines fUML* pour l’exécution de modèle UML de système réactif eux changements

API FMI Modèle sémantique de fUML*

Instanciation c.locus.instantiate();

Initialisation Les valeurs des propriétés (ports) sont automatiquement initialisées à
l’instanciation par les valeurs par défaut dans le modèle.

Simulation pas à pas
doStepc(h)

if (firstSimulationStep) then
 c.actionActivation.startBehavior();
if (c.objectActivation.eventPool.size() > 0) then
 c.actionActivation.dispatchNextEvent();
Else do nothing;

Mise à jour des entrées
setc(inPort,value)

if (c.inPort.oldValue != value) then
 c.setFeatureValue(inPort,value);
 if (inPort.observed) then
 evt=new changeEventOccurrence(inPort,c.inPort.oldValue,
value);
 c.objectActivation.eventPool.add(evt);
 endif;
else doNothing;

Récupération des sorties
getc(outPort)

c.getFeatureValue(inPort);

Terminaison c.objectActivation.stop();

IV.3.4. Master de co-simulation

L’algorithme de master proposé adapte son pas de simulation, i.e, il utilise un pas de simulation
hUML=0 pour les composants UML représentatif de systèmes transformationnels, et un pas de simu-
lation proposé par les FMUs hFMU>0. Pour assurer une propagation instantanée des données, il exé-
cute les composants UML en même temps que la propagation.

Figure 16. Master de co-simulation de FMUs et de modèles UML représentant des
systèmes réactifs aux changements de valeurs

23

V.4. Application de l’approche aux systèmes réactifs aux évènements temporels

IV.4.1. Règles de modélisation fUML*

Un système réactif aux évènements temporels est représenté par une classe active auquel est appli-
qué le stéréotype « CS_Timed ». Ces deux éléments reflètent le modèle de calcul Discrete Event
(DE) du composant. Cette classe doit avoir des ports de sortie et un comportement qui lui est asso-
cié. Ce comportement est défini par une activité qui va produire une réaction à des instants discret
définis par les évènements temporels (évènements temporels relatifs ‘After(2)’ et ‘after(22)’, ou
évènements temporels absolus ‘at(19)’) en mettant à jour les ports de sortie.

IV.4.2. Extension de fUML*

Les évènements temporels n’est pas pris en compte dans fUML*. Comme mentionné dans la section
I.4, une extension du modèle sémantique de fUML* par l’ajout de nouveaux visiteurs sémantiques

Figure 18. Extensions de fUML* pour les comportements réactifs aux évènements temporels

Figure 17. Extension de fUML* pour les comportements réactifs aux évènements temporels

24

ainsi qu’une entité responsable de l’exécution des évènements temporels sont nécessaires. La Fi-
gure18 illustre l’extension apportée à fUML* ainsi qu’un diagramme de classe spécifiant le ‘Sche-
duler’ implémenté pour l’exécution des comportements associés aux systèmes réactifs aux évène-
ments temporels.

IV.4.3. Identification de routines fUML*

Le Tableau5 représente le mapping entre les routines définies dans le modèle sémantique de fUML*
et les procédures indispensables de l’API du standard FMI.
Tableau 5. Routines fUML* pour l’exécution de modèle UML de système réactif aux évènements
temporels

API FMI Modèle sémantique de fUML*

Instanciation c.locus.instantiate();

Initialisation Les valeurs des propriétés (ports) sont automatiquement initialisées à
l’instanciation par les valeurs par défaut dans le modèle.
DEScheduler.init(startTime, stopTime);

Simulation pas à pas
doStepc(h)

if (firstSimulationStep) then c.actionActivation.startBehavior();
end if;
if (DEScheduler.FEL.size() > 0) then DEScheduler.step(h);
else do nothing;
end if;

Mise à jour des entrées
setc(inPort,value)

c.setFeatureValue(inPort,value);

Récupération des sor-
ties
getc(outPort)

c.getFeatureValue(inPort);

Terminaison c.objectActivation.stop();

Figure 19. Master de co-simulation de FMUs et de modèles UML représentant des systèmes ré-
actifs aux évènements temporels

25

IV.4.4. Master de co-simulation

Le master de co-simulaion proposé (Figure19) adapte le pas de simulation au type de composant. Il
calcule le minimum entre le pas de simulation proposé par les FMUs et le prochain évènement
temporels dans la file d’attente. Il prend aussi en compte les réactions instantanées (pas de simula-
tion nul).

V. Validation de l’approche

Pour la validation de notre approche, nous avons simulé le modèle du cas d’étude dans Simulink en
se plaçant dans les mêmes conditions que dans notre environnement de co-simulation dans Papyrus.
Cela veut dire que nous avons utilisé les mêmes FMUs et gardé le composant de contrôle en boite
blanche.

Nous avons effectué la simulation sur une période de 24 heures avec un pas de simulation de 1heure.
Puis nous avons en particulier observé les instants auxquels une nouvelle consigne est produite par
le composant de contrôle et les instants auxquels cette consigne est prise en compte

V.1. Simulation du cas d’étude avec stratégie de contrôle basique

Les Figure20 et Figure21 illustrent les résultats de simulation respectivement dans Simulink et dans
Papyrus.

Figure 21. Résultats de simulation du cas d'étude avec contrôle basique dans Simulink

Figure 20. Résultats de simulation du cas d'étude avec contrôle basique dans Papyrus

26

V.2. Simulation du cas d’étude avec stratégie de contrôle avancée

Les Figure23 et Figure22 illustrent les résultats de simulation respectivement dans Simulink et dans
Papyrus.

V.3. Interprétation des résultats de simulation

Les résultats de la simulation dans Papyrus démontrent que, en appliquant la démarche que nous
avons proposée, nous sommes capables de :

- Obtenir des informations sur la puissance énergétique qui doit être fournie par l'unité de
stockage au réseau électrique ainsi que sur l'état de charge de l'unité de stockage plus tôt. En
effet, comme illustré sur la Figure20 et la Figure21 (respectivement Figure22 et Figure23) la
nouvelle consigne (la sortie 'Ess_Pac') ainsi que l'état de charge et la quantité d'énergie à injec-
ter dans le réseau (la sortie 'Pac' du composant 'ESS') sont calculées et propagées avant une
heure (qui correspond au pas de simulation) par rapport aux résultats de Simulink. Cela assure
un meilleur fonctionnement du réseau intelligent. En effet, nous pouvons éviter les pannes en
anticipant les demandes d'énergie (délivrer la puissance énergétique nécessaire dans le temps)
et en maintenant un état de charge acceptable en chargeant l'unité de stockage le plus rapide-
ment possible lorsque le niveau est inférieur au seuil requis.

- Minimiser et maintenir un taux de distribution d'énergie plus homogène dans le réseau
électrique. Comme illustré sur la Figure20 la Figure21 (respectivement Figure22 et Figure23),
en utilisant les algorithmes de master que nous proposons dans Papyrus, le taux d'énergie sur

Figure 22. Résultats de simulation du cas d'étude avec contrôle avancée dans Simulink

Figure 23. Résultats de simulation du cas d'étude avec contrôle basique dans Papyrus

27

le réseau est plus petit que lors de la simulation dans Simulink. Cela permet de mieux dimen-
sionner et calibrer le système, et donc de minimiser le coût de conception du système, facteur
très important pour les fournisseurs d'énergie.

VI. Conclusion et perspectives

VI.1. Conclusion

Dans ces travaux de thèses, nous nous sommes intéressés à la co-simulation des systèmes cyber
physiques où les composants cyber sont spécifiés avec des modèles UML. Nous avons traité diffé-
rents types de systèmes représentatifs des composants logiciels : transformationnels, réactifs aux
changements de valeurs et réactifs aux évènements temporels.
Le contexte technologique que nous avons choisi s’appuie sur les standards : le standard FMI pour
la co-simulation, et fUML* pour l’exécution des modèles UML. Nous avons rencontré des problé-
matiques pour l’intégration des modèles UML dans une approche de co-simulation basée sur FMI
à trois niveaux :

- Problématique liée au standard FMI : le standard ne supporte pas les comportements non tempo-
risés et les réactions instantanées aux évènements.

- Problématique liée au standard fUML* : Celui-ci définit une sémantique précise pour l’exécution
des modèles UML pour un sous-ensemble de modèles UML. Néanmoins, ce sous-ensemble ne
couvre pas tous les éléments nécessaires à la modélisation des systèmes que nous souhaitons inté-
grer.

- Problématique liée à la synchronisation entre FMI (Modèle de calcul CT) et fUML* (Modèles de
calcul : DataFlow, DE et SR) : le gap sémantique entre les modèles à intégrer peut engendrer des
retards de propagation des données et la perte d’évènements.

Notre contribution était de faire cohabiter les modèles UML avec des FMUs tout en assurant la
bonne synchronisation entre les différents composants impliqués. Cette contribution intervient à
deux niveaux : localement sur les modèles UML où on a défini des règles de modélisation pour
représenter chaque type de système en UML, et proposé des extensions au standard fUML* pour la
prise en compte des comportement réactifs aux changements de valeurs et aux événements tempo-
rels. Puis globalement, où nous avons proposé des algorithmes de Masters pour différents scénarios
de co-simulation qui intègrent des modèles UML avec des FMUs.
L’approche est spécifique aux modèles UML au niveau de la modélisation mais générale au niveau
des algorithmes de co-simulation proposés. Les algorithmes de master proposés peuvent être réuti-
lisées pour d’autres formalismes qui représentent les modèles de calcul DE, DataFlow et SR.

Enfin l’approche a été validée par comparaison des résultats de simulation obtenus dans l’environ-
nement de co-simulation dans Papyrus par rapport aux résultats de simulation obtenus dans Simu-
link.

Note : les systèmes transformationnels temporisés ont été aussi traités dans le cadre de la thèse

VI.2. Perspectives

� Perspective liée aux capacités des modèles UML à intégrer

Les capacités en simulation d’un algorithme de co-simulation est lié entre autres aux capacités des
composants. En particulier, pour pouvoir aller jusqu’au bout d’une simulation, un master peut avoir
besoin de demander à une FMU de refaire un pas de simulation si elle ne parvient pas à aller

28

jusqu’au du pas de simulation proposé auparavant. Cette capacité de ‘refaire un pas de simulation’
appelée ‘Rollback’. Son implémentation nécessite la sauvegarde de l’état de l’objet (notamment
ensemble des valeurs dans le locus, son pool d’évènement et l’endroit où l’activité a été suspendue).
Pour l’instant, cet aspect n’est pas traité dans le modèle d’exécution fUML*. Même si cette capacité
reste pour le moment optionnel dans le standard FMI, son implémentation pour les modèles UML
peut avoir un impact très important pour l’amélioration des algorithmes proposés.

A noter que pour les modèles transformationnels un rollback est possible vu que le système ne
possède pas de variable d’état et donc ne garde pas l’historique des valeurs précédentes (une sortie
ne dépend que d’une nouvelle entrée).

� Perspective liée aux modèles UML supportés

La deuxième perspective consiste à prendre en compte un ensemble plus large de modèles UML et
aussi de formalismes. En effet, Le standard Precise Semantics of UML State Machines (PSSM)
définit la sémantique d’exécution des machines à états UML et est une extension de fUML*. La
même approche peut être appliquée pour des modèles UML qui implémente des machines à états.
Ces travaux sont en cours dans le projet ITEA OpenCPS.

� Perspective liée au standard FMI

Une troisième perspective concerne l’extension du standard FMI. Ces travaux de thèse nous ont
permis d’avoir le retour et la réflexion suffisante pour savoir les capacités qui manque à la spécifi-
cation FMI pour permettre une intégration facile et directe de modèles de calcul autres que le CT
(e.g. Dataflow, Synchronous Reactive et Discrete Event) sur lesquels s’appuient les composants
logiciels dans une approche conforme à FMI.
Les informations et capacités à ajouter concerne spécifiquement le modèle de temps du composant
: en particulier le besoin de permettre un pas de simulation nul nécessaire à la prise en compte des
comportements non temporisés et des réactions instantanées aux évènements, et le besoin d’exposer
la date du prochain évènement. Cette dernière proposition s ’aligne avec une proposition en cours3.

3 JP.Tavella & al.,Toward an Hybrid Co-simulation with the FMI-CS Standard, 2016.

29

Introduction

A. Context

As shown in Figure I-1-24, Cyber Physical Systems (CPS) are integrations of physical and
computational components interacting in a tight coordination [25]. Examples include
applications that enable the monitoring and controlling of the physical environments such as
smart cities, automotives controllers, medical devices and robotics. CPS are systems that are
particularly difficult to model and verify because the heterogeneous nature of their components
requires many different modeling formalisms, and therefore rely on different Models of Com-
putation (MoCs). Models of physical components usually rely on Continuous-Time (CT) MoC,
whereas those of computational components rely on MoCs such as Discrete-Event (DE) or
Data-Flow (DF). The verification of the overall system requires the composition of these com-
ponents, which is not trivial. The models involved differ, in the way they interact with their
environment, execute their behaviors, and manage time/events. Therefore, the most challenging
issue is the coordination and synchronization between the involved models. Such global verifi-
cation can be achieved by co-simulation of the different components composing the system.

The Functional Mock-up Interface standard (FMI) in particular, offers a standard interface to
couple two or more simulators in a co-simulation environment, known as master. This latter is
responsible for providing an algorithm with efficient orchestration and synchronization of the

 Physical

Components
 Computational

Components
interact with

Cyber-Physical System

Composed of System under
design

Co-simulation

Verification

Orchestrates and Synchro-
nizes

Specification

Physical models

Rely on

CT MoC

Computational models

Rely on

FSM, DE, DataFlow
MoCs

specifies specifies

Figure I-1-24. CPS modeling and simulation

Introduction

30

involved components, known as Function Mock-up Units (FMUs). FMI standard is gaining
popularity in the industry, and it is being supported by many modeling and simulation environ-
ments. FMI was originally intended for co-simulation of physical processes, with limited sup-
port for other MoCs such as DE and Data Flow, even if they are commonly used to model the
logic of software parts of a system. In particular, while UML is the reference standard for soft-
ware modeling and is very commonly used in the industry, none of the present-day FMI-based
co-simulation solutions consider UML models. This lack is a real issue while the importance
of software concern of CPS is ever growing.

B. Contributions

Our thesis is that system engineering in general would greatly benefit from the consideration of
UML in the FMI-based co-simulation approach. It would enable a significant number of soft-
ware designers to evaluate the behavior of their software components in their simulated envi-
ronment, as soon as possible in their development processes, therefore allowing them to make
early and better design decisions. It would also open new interesting perspectives for CPS sys-
tem engineers, by allowing them to consider a widely-used modeling language for the software
parts of their systems. In this context, the objective of this work is to define and formalize an
FMI-based co-simulation environment for CPS with integration of UML models for the soft-
ware part of the system. It tackles the issue of bridging the execution semantics of UML models,
and FMI and their synchronization. It also proposes an environment to specify and execute co-
simulation scenarios composed of UML model elements, connected to FMUs imported from
continuous time simulation tools.

We set up an incremental approach where we address different kinds of systems characterizing
the computational components, reactive systems and transformational systems, and different
kinds of models characterizing their behaviors, timed models and untimed models. Transfor-
mational systems are systems that simply transform a set of inputs into a set of outputs [55]
whereas reactive systems are systems that maintain interaction with their environment [21].
Given a co-simulation model composed of FMUs and an UML component, four scenarios are
therefore possible:

� Co-simulation of an untimed UML model of transformational systems with FMUs
� Co-simulation of an untimed UML model of reactive systems with FMUs
� Co-simulation of a timed UML model of transformational systems with FMUs
� Co-simulation of a timed UML model of reactive systems with FMUs

We base our proposals on OMG standards related to the execution semantics of UML models,
fUML (known as “Semantics of a Foundational subset for
executable UML models”) and PSCS (the fUML extension for UML composite structure, also
known as “Precise Semantics of composite Structure). They define precise execution semantics
for a subset of UML (namely classes for structural modeling, and activities and actions for
behavioral modeling in fUML extended with composite structures in PSCS). Both OMG stand-
ards provide a formal basis for the integration of UML models in CPSs co-simulation ap-
proaches, and in particular, FMI-based co-simulation approaches.

Introduction

31

Our contribution is twofold: locally at the level of UML models, and globally at the master
level:

� At the local level, for each aforementioned kind of system (i.e, transformational and
reactive), we first identify a set of rules to model it with UML (i.e, the UML syntactic
elements and their properties) and potential extensions to fUML and PSCS in cases
where execution semantics of the required UML elements are not defined by fUML and
PSCS,

� Then at the global level, we propose a master algorithm for each scenario. The proposed
masters take into account not only external and internal dependencies between compo-
nents and their capabilities, but also and especially their MoCs. They rely on, in partic-
ular, the adaptation of the untimed semantics of fUML and PSCS to timed semantics of
FMI, and the adaptation of both Data Flow and DE MoCs (on which rely the execution
semantics of untimed and timed UML models) to CT MoC (on which rely the FMUs).
Based on these adaptations, the master algorithms are able both to propagate data be-
tween components and to trigger them at the correct points of time.

No extensions to the FMI standard are required for the realization of our approach, which means
that imported FMUs are totally FMI-compliant. The approach is experienced and validated with
use cases from the energy domain where the purpose is to verify energy management strategies
defined as software components at different levels of the control module of an energy system.

C. Outline of the manuscript

The first part of this manuscript is a review of the related literature and studies. It is organized
into three chapters.

� Chapter 1: This chapter reviews the foundations and techniques of CPS modeling and
simulation. It gives an overview of the most used MoCs for modeling and simulation of
computational and physical components. It also introduces the challenges of CPS, enu-
merates the proposed techniques in the literature for their modeling and simulation, as
well as provides an evaluation of each of them. We opt for co-simulation technique
using the FMI standard.

� Chapter 2: This chapter focuses on the FMI for co-simulation standard. Firstly, it gives
an overview of the standard principles, the standard API and the standard misses
regarding the co-simulation of CPS. Secondly, evaluates works in the literature which
propose FMI-based co-simulation approaches for CPS and deal with the identified is-
sues. Three techniques are identified: the extension of the FMI standard, the adaptation
of semantics at FMU level and the adaptation of semantics at the master level. We opt
for the third alternative, where the idea is to benefit from the use of the FMI standard
and to enable the use of UML in co-simulation contexts.

� Chapter 3: This chapter is dedicated to the execution of UML models. Fistly, it evalu-
ates UML tools for their support for the execution of UML models and the integration
of FMI standard. Based on this evaluation, we decided to base our approach on the OMG
standard fUM. Secondly, it identifies a set of UML models (representing computational

Introduction

32

components) we need to consider in our approach, and evaluates fUML for its ability to
model and simulate this set of models. At the end of this chapter, we present our ap-
proach for the integration of UML models in FMI-based co-simulation.

The second part of this manuscript concerns our contributions and is organized into four chap-
ters.

� Chapter 4: This chapter introduces an UML-compliant master simulation tool, which is
the environment we propose for modeling and simulation of CPSs based on the FMI
standard. It describes the architecture of the implementation and the features it proposes.

� Chapter 5: This chapter deals with the integration of untimed UML models for both
kinds of systems. It follows the two steps identified previously, which is, identifying the
modeling rules for untimed models in the context of FMI and proposing a master algo-
rithm for each kind of system.

� Chapter 6: This chapter deals with the integration of timed UML models for both kinds
of systems. It follows the two steps identified previously, by first identifying modeling
rules for timed models in the context of FMI, then proposing a master algorithm for
each kind of system. This chapter also proposes an implementation of a control entity
responsible for the simulation of timed UML models.

The third of this manuscript concerns the validation of the contributions. It compares the results
of the co-simulation when applying our approach against original co-simulation results.

The fourth and last part of the manuscript gives the conclusion and the perspectives on this
work and draws some perspectives for the extension of the proposed approach.

PART I: RELATED WORK

This first part of the manuscript is a review of the literature and studies related to the modeling
and simulation of CPS. It aims at highlighting the challenges of CPS with regard to the solutions
proposed in the literature. It is organized into three chapters.

� Chapter 1: Foundations and techniques of CPSs
This chapter reviews the foundations and techniques of CPS modeling and simulation.
It gives an overview of languages and formalisms as well as the most used Models of
Computation for modeling and simulation of computational and physical components.
This chapter also introduces the challenges of CPS. It enumerates the proposed tech-
niques in the literature for their modeling and simulation, while providing an evaluation
for each of them. We chose the co-simulation technique using the FMI standard.

� Chapter 2: Towards FMI-based co-simulation of CPSs

This chapter concentrates on the FMI for co-simulation standard. It gives an overview
of the standard principles, the standard API and the standard shortcomings regarding
the co-simulation of CPS. Then, it evaluates works in the literature which propose FMI-
based co-simulation of CPS. Finally, it presents our positioning.

� Chapter 3: Overview and key aspects of UML models’ execution
This chapter aims at the identification of entry points for the integration of UML models
in the frame of a FMI based co-simulation. We identify a set of systems we would like
to model with UML and propose to rely on OMG standards fUML and PSCS for their
execution. At the end of the chapter we represent our approach.

34

1. Chapter 1: Foundations and Techniques
of Cyber-Physical Systems Modeling and
Simulation

Outline

1.1. Foundations of modeling and simulation

1.1.1. Modeling languages and modeling formalisms

1.1.2. Model of Computation (MoC)

1.1.1.2. Data Flow (DF)
1.1.2.2. Synchronous Reactive (SR)
1.1.2.3. Discrete-Event (DE)
1.1.2.4. Continuous-Time (CT)

1.1.3. Simulation tools

1.2. Technique of CPS modeling and simulation

1.2.1. The translation of models

1.2.2. The composition of modeling languages

1.2.3. The unification of semantics

1.2.4. Composition of models
1.2.4.1. Ptolemy
1.2.4.2. ModHel'X

1.2.5. Co-simulation
1.2.5.1. HLA Standard
1.2.5.2. FMI for co-simulation standard

1.3. Discussion and conclusion

Cyber-physical systems (CPS) are the synergy between the physical world and the cyber world.
They are the integration of computation and physical processes interacting in a tight
coordination, involve several domains, and are inherently heterogeneous [25]. Examples
include applications monitoring and controlling physical environments such as smart cities,
automotive controllers, medical devices and robotics systems.
The heterogeneous nature of CPS implies the heterogeneity of its related model. In fact, a model
of a CPS comprises models of physical components as well as models of computational com-
ponents. In practice, these models are provided by different teams, each of them possibly using
specific modeling language - and therefore model of computation (MoC) and simulation tool -
well suited to the underlying domain. The heterogeneity we consider is that of the modeling
languages, the MoCs and the simulation tools. The latter are the foundations of modeling and
simulation and will be explained in the section 1.1 of this chapter. The heterogeneity is the most
challenging issue of CPSs models. The main point in this context is to determine the global
behavior of the model. How integrated and simulated are these heterogeneous models? This
research question is the focus of section 1.2 of this chapter.

Chapter 1: Foundations and Techniques of Modeling and Simulation

35

1.1. Foundations of modeling and simulation

A model is a abstracted representation of a real system under study. It keeps only the features
which are important for a given goal. This model should consider aspects of the system that
affect the problem under investigation [26]. In particular, models intended for simulation should
specify the structure and the behavior of the real system. Various formalisms may be used to
describe the behavior of the system. The model may be a representation of the activity flow of
the system, the possible states of the system or a mathematical representation of the system.
Each of these representations requires specific modeling formalism. This work focuses on the
modeling and simulation of Cyber Physical Systems (CPS), which are typically made up of
components of different natures, such as physical components and computational components.
This section gives an overview about foundations and techniques for the modeling and simula-
tion of each part of CPS. Section 1.2 then concentrates on techniques and challenges for mod-
eling and simulating CPSs.

 Modeling languages and modeling formalisms

A model is described using a modeling language, which is a particular implementation of a
modeling formalism. A modeling language consists of: (a) An abstract syntax which specifies
the concepts supported by the language, potential relationships between them and the way they
can be combined. In the context of model driven engineering, it is often described by a meta-
model, (b) A concrete syntax which defines the notation –textual, graphical, tabular, etc.– of
each element in the abstract syntax, and (c) A semantics which defines how abstract concepts
should be interpreted. The language semantics is a key feature for the definition of the model
of computation on which the model relies.

 Model of Computation (MoC)

A model of computation (MoC) is a formal set of semantics that provides the rules for inter-
preting the structure and behavior of a model. It corresponds to a class of modeling languages
for which the computation and the communication characteristics are similar. A MoC is distin-
guished from another based on three semantic components [10]:

� The data: it specifies the data structures exchanged between the components of the sys-
tem (e.g, signals, messages and events)

� The control: it characterizes the system kind (e.g, instantaneous, reactive and concur-
rent) and specifies the order in which the components execute their behavior and the
instant at which the system should be observed

� The time/event management: it specifies the model of time that defines how time pro-
gresses if the notion of time exists in the model (e.g, continuous time, discrete events,
or also iterations)

In the following material, we represent a variety of MoCs including Data Flow (DF), Synchro-
nous Reactive (SR), Discrete Event (DE), and Continuous Time (CT) as defined in [34]. These
MoCs are the most representative of the modeling languages currently used in the industry.
Later in sections 5.1.2, 5.2.3, 6.1.2, 6.2.3, we will position our models in relation to these MoCs.

Chapter 1: Foundations and Techniques of Modeling and Simulation

36

Data Flow (DF)

In the Data Flow MoC (Figure 1-1), the behavior is considered as a graph where nodes represent
computations to execute and edges represent dependencies between these nodes. The execution
(firing) of a node starts when all required data are available at the input pins. Data tokens are
consumed when the node fires. The DF MoC has no notion of time. The execution is purely
causal. The control consists in determining the activation order of the nodes and the propagation
of the execution flow as much as possible in the model. Communication between components
relying on the DF MoC is via sequences of data tokens. Each token is an arbitrary data structure
that is treated monolithically by the MoC.

This MoC can be used to model software components and digital signal processing systems.
fUML [32] provides precise semantics for UML activities execution which relies on the DF
MoC.

 Synchronous Reactive (SR)

In the Synchronous Reactive (SR) MoC (Figure 1-2), a component reacts to the events it re-
ceives from the environment in which it is placed. The components which rely on SR MoC are
supposed to provide outputs and communicate instantaneously. The execution of the behavior
is triggered when a new input is received. If the component has more than one input, then partial
input arrival is sufficient to trigger its behavior.
The SR MoC can be described as logically timed systems. Time is divided into discrete instants
called reactions or ticks in which the system is observed. Although steps are ordered, there is
no notion of time delay between steps. Thus, we refer to time in this domain as logical time
rather than discrete time.

This MoC is usually used for describing reactive systems and the real-time controller’s behav-
iors in which pieces of the program react simultaneously and instantaneously at each tick of a

Output and input pins data tokens

A

B

D

C

E F

logical time
input output

Figure 1-1. The Data Flow MoC

Logical time

event

reactions

Nothing happens between two events

Figure 1-2. The Reactive Synchronous MoC

Chapter 1: Foundations and Techniques of Modeling and Simulation

37

global clock. Primary among languages which rely on this MoC are Esterel [9], Lustre [19] and
Statecharts [22].

 Discrete-Event (DE)

Components which are governed by Discrete-Event MoC (Figure 1-3) react to events that occur
at a given time instant and produce other events (either at the same or at a future time instant).
Time is an integral part of the model. Each event has a specific time instant that is global on the
level of the model, called a time stamp. A DE simulator maintains a global events’ queue sorted
by their time stamp and has an internal notion of simulated time. The Discrete-Event MoC
therefore relies on timed execution semantics. During a simulation step, the control consists in
resuming all processes that have sent events with the same time stamp. The execution is chron-
ological and serves as a basis for expressing concurrency in the model, that is, the first event to
execute is the first one in the queue of events. This MoC is usually used to model systems in
network and communication systems, manufacture or also management systems.

 Continuous-Time (CT)

Continuous-Time (CT) models consist of components that have continuous time signals as their
inputs and outputs, and may have a state that changes over time advancement (Figure 1-4).
These systems are usually represented with differential equations. During a simulation step, the
simulation tool consists in solving the equations by fixed or variable integration steps by means
of numerical solvers (continuous-time solving algorithm). Time is advanced in increments of
exactly the integration step size noted “h”. After each update of the clock, the state variables
are updated for the time interval [t, t+h].

The CT MoC is commonly used for modeling and simulation of physical systems such as me-
chanical and hydraulic systems.

time

output

Figure 1-4. The Continuous Time MoC

time

output

The events time stamps

2 0 5 10

Figure 1-3. The Discrete Event MoC

Chapter 1: Foundations and Techniques of Modeling and Simulation

38

 Simulation tools

The simulation aims at the verification of system behavior early in the design process. It is
performed with the help of a simulator, also called a simulation software/tool or an execution
engine. The simulation tool is usually a modeling tool for a specific language and provides an
execution engine responsible for controlling a model according to computation rules defined
by the MoC of the modeling language.
Here are examples of language/simulation tool. Papyrus/Moka4 is an execution engine for UML
models where the execution comply to the DF MoC. SCADE5 (Safety-Critical Application De-
velopment Environment) is an environment provided by Esterel Technologies. It builds on Lus-
tre [19] and Esterel [9] to provide execution of models relying on the SR MoC. SystemC6 is a
framework that provides facilities to describe software and hardware components and a simu-
lator that coordinates the execution of components relying on DE MoC. Open Modelica7 and
Dymola8 are simulation tools for models expressed with the Modelica language where the
execution relies on the CT MoC.

In the next section, we will see that a model of a CPS involve several components made using
various modeling languages, and therefore several simulations tools and MoCs. The verification
of a CPS is therefore not possible using a unique simulation tool. A new technique allowing to
bring together all these components is then required.

1.2. Technique of CPS modeling and simulation

CPSs are complex. They involve several components operating in different domains (electric,
mechanic, hydraulic, network, control, etc.) which must interact with each other. Their related
models cannot be built in a monolithic manner. They comprise models of physical components
as well as models of computational components which are of different natures. A modular ap-
proach should be used where models of individual (physical or computational) components are
first built, then integrated in the same environment to obtain the model of the overall system.

In practice, the modeling and simulation of individual components is performed by specialized
suppliers (domain specialists) using modeling languages and simulation tools they are familiar
with. The resulting models are made of different languages and most likely rely on different
MoCs. In addition to that, due to the complexity of CPSs, the reuse of IP components is becom-
ing essential for coping with tight time-to-market. Suppliers from different domains provide
their models to industrials while protecting their IPs by restricting the access to the component
model [28].

In summary, CPSs are not easy to verify due to the following reasons:

- they embed components operating in different domains,
- their modeling brings together different languages/simulation tools and MoCs,
- their modeling may need the use of legacy code and IP-protected models

4 Refer to eclipse.org/papyrus
5 Refer to www.esterel-technologies.com
6 Refer to http://hdl.telecom-paristech.fr/sc_intro.html
7 Refer to www.modelica.org
8 Refer to www.3ds.com/dymola

Chapter 1: Foundations and Techniques of Modeling and Simulation

39

The simulation of the whole system requires the integration of heterogeneous models where the
main issue is to determine the global behavior of the model. Several works, such as [38, 44,
35], state that the integration of heterogeneous models is not trivial since their semantics are
pretty different in terms of data, control and model of time. These models, in fact, differ in the
way the components interact with their environment, execute their behavior and manage
time/events (refer to section Model of Computation (MoC) 1.1.2). The coordination and syn-
chronization between the coupled models is a challenging issue for CPS modeling and simula-
tion. The IP protection issue aggravates this task since the models’ suppliers do not expose
sufficient information about their models.

New design methodologies and frameworks for CPSs modeling and simulating of CPSs are
required to close the gap between heterogeneous models and to integrate legacy code and IP
models in order to be accepted in the industry [28].
Authors in [20] have identified five academic and industrial initiatives which address this kind
of heterogeneity issue. In the next section, each technique will be evaluated independently
based on the three following criteria:

- (criteria 1) the capabilities to cope with the heterogeneity of CPS,
- (criteria 2) the possibility to apply the approach to CPSs,
- (criteria 3) the acceptance level of the approach in the industry.

 Translation of models

This technique aims at supporting the transformation between modeling formalisms. ATOM39
for example, is a tool for multi-formalism modeling which provides support for several model-
ing formalisms (such as Data Flow Diagrams, State Machines and Petri Nets) and utilities for
their simulation. Models are described as graphs. Their translation from one formalism to an-
other consists in graph rewriting.

Evaluation in the context of CPSs modeling and simulation:
This technique allows the support of heterogeneous modeling formalisms and is scalable (cri-

teria 1 probably satisfied). Providing support for a new modeling formalism, in fact, consists
in integrating of its meta-model in the framework and the implementation of the transformation
rules independent of the previously made transformations. The feasibility of the approach in
the context of CPS (criteria 2 possibly not satisfied) depends on the number and size of the
involved languages meta-models, and on their accessibility. One need to put a lot of effort to
translate a large meta-model (e.g, for Modelica into another meta-model. In addition, switching
between two different approaches for modeling components is not possible when details about
the models are not sufficiently accessible (i.e, black boxes based on legacy library) (criteria 3

probably not satisfied).

 Composition of modeling languages

The composition of modeling languages is a traditional technique and consists in defining a
common language for the specification of systems by composition of existing languages. The
resulting language should be rich enough to support the heterogeneity of the system and may

9 Refer to: http://atom3.cs.mcgill.ca/indesystem

Chapter 1: Foundations and Techniques of Modeling and Simulation

40

be obtained by the extension of an existing one. In [14], authors enumerate several methods
for the composition of modeling languages.

Evaluation in the context of CPSs modeling and simulation: This approach is not feasible in the
context of CPSs (criteria 2 not satisfied) because their modeling and simulation are handled by
different domain experts. Using this approach, all domain experts are asked to model their com-
ponents using a new language. This is not practical (criteria 3 not satisfied) since they use
languages and tools they are familiar with. In addition, this approach is costly due to the number
of involved languages and its lack of scalability (criteria 1 not satisfied). That is, each time a
new modeling language is considered, the target hybrid language must be rebuilt to account for
new concepts.

 Unification of semantics

This technique proposes a unique semantic support for describing heterogeneous models. The
difference of this technique compared to the composition of the modeling languages is that it
aims at fitting the models in an already defined semantics instead of enlarging the modeling
language with new concepts. For example, in Metropolis [6] the process networks were chosen
as the semantics basis for the definition of unified heterogeneous semantics.

Evaluation in the context of CPSs modeling and simulation: This approach is not applicable in
the context of CPSs (criteria 2 not satisfied) due to the diversity of the involved models. As
stated previously, CPSs integrate models from different domains (electric, mechanic, control,
etc.) which are provided by different teams, and which rely on different MoCs. The unification
of the semantics requires the domain experts to work together in order to share their knowledge
(criteria 3 not satisfied), to think about the unification of the domains concepts (criteria 1 not

satisfied), and to bridge the semantic gap between the MoCs.

 Composition of models

In this technique, heterogeneous models are assembled together at model description level. That
is, instead of defining a common modeling language for the specification of the system (as
proposed in section 1.2.2), the system components are specified using different modeling lan-
guages then assembled and adapted. The most popular approach is Ptolemy10 and we can also
notice Modhel’x11. This kind of approach is based on the concept of MoC and consist in adap-
tating the involved MoCs while defining relations between the semantics of these MoCs.

Ptolemy

Ptolemy proposes an environment for the modeling and the simulation of heterogeneous sys-
tems. It uses an actor-oriented design approach to model structure of components. The rules of
interaction and communication between actors are defined by the MoC, and implemented by a
director. Heterogeneous models combine directors realizing distinct MoCs. Ptolemy addresses
the problem of mixing heterogeneous models by providing adaptation of semantics (at data,
control and model of time levels) between the involved MoCs.

10 Refer to: http://ptolemy.eecs.berkeley.edu/ptolemyii/
11 Refer to: http://wwwdi.supelec.fr/software/modhelx/

Chapter 1: Foundations and Techniques of Modeling and Simulation

41

ModHel’X

ModHel'X is a framework for simulating multi-formalism models. Models are made of blocks
(a generalization of actor in Ptolemy). ModHel'X in particular relies on the notion of interface
blocks. An interface block includes an adaptation layer which allows the modeler to specify
explicitly how the semantics of the MoCs are adapted at the boundary between two heteroge-
neous models. Modhel’x was proposed as an extension to Ptolemy. It allows flexible heteroge-
neous modeling without modifying the original assembled models.

Evaluation of the approach in the context of CPSs: This approach provides a way to address
the heterogeneity issue while preserving the modularity of models (criteria 1 probably satis-

fied). The advantage of Ptolemy and ModHel’x is that they support the most widespread MoCs
(e.g, CT, DE and several types of dataflow) and proposes their adaptation. They are good can-
didates for experimenting the adaptation and the synchronization of heterogeneous MoCs (cri-

teria 2 possibly satisfied). However, the use of this solution for the CPS is not well accepted
industrially especially when the CPS model is built using legacy models (criteria 3 possibly not

satisfied).

 Co-simulation

Co-simulation is the joint simulation of models developed with different languages and tools.
It enables tools interoperability to facilitate the simulation of the intrinsically heterogeneous
CPSs.
Co-simulation has been extensively investigated in literature. Some approaches such as [24]
and [23] propose the coupling of a fixed and restricted set of simulators. An adaptation is re-
quired to connect a tool to the others for their synchronization during simulation. The main
drawback of these point to point solutions is that the synchronization is specific to each simu-
lation tool. Therefore, synchronization modules built for one tool may not be easily reused for
other tools. This approach also lacks scalability, that is, the integration of a new tool in the co-
simulation approach requires synchronization with all integrated tools or the designation of a
central component responsible for their synchronization and orchestration. Other co-simulation
approaches aim at supporting the connection of any type of simulator. The most popular initia-
tives are the High Level Architecture (HLA) [1] and the Functional Mock-up Interface for co-
simulation standard (FMI) [17]. Subsections 1.2.5.1 and 1.2.5.2 give further details about both
initiatives.

HLA Standard

HLA is a standard initially developed by the US Department of Defense (DoD) in an effort to
facilitate the interconnection of distributed simulators. A distributed simulation, so-called “fed-
eration”, interconnects several simulators known as “federates”. These federates are processes
which exchange data relying on publish/subscribe patterns. Synchronization of federates, data
exchange and event passing between all federates is managed by the Real-Time Infrastructure
(RTI). HLA provides a standard architecture which eases the interconnection of simulators but
is not an implementation by itself. CERTI12 , for example, provides open source implementation
of an HLA RTI.

12 Refer to: www.openrobots.org/certiHLA

Chapter 1: Foundations and Techniques of Modeling and Simulation

42

FMI for co-simulation standard

FMI for co-simulation specification aims at co-simulation of separately developed components.
FMI is a result of the MODELISAR research project. It emerges from industrial needs, where
the goal is to facilitate the cooperation between different companies while preserving the intel-
lectual properties (IPs). A model of a given system is a set of interconnected black-box slaves,
the so-called FMUs (Functional Mockup Units). The FMUs are passive entities whose simula-
tion is triggered and orchestrated by a master algorithm (MA). FMI restricts the communication
and exchange between FMUs to discrete communication points where, in between, each com-
ponent is solved independently with its specific tool.

Evaluation in the context of CPS modeling and simulation: HLA and FMI have close goals but
have different architectures and provide different features. In HLA, the synchronization and
coordination of the heterogeneous simulators during the simulation is handled through the RTI
services (data exchange, time advance and events handling mechanisms) whereas, in FMI, these
services are not provided in the standard and should be handled by a MA. In [5], authors attempt
the combination of these two standards by proposing the RTI as a MA orchestrating a set of
FMUs encapsulated in federates.
Both HLA and FMI have limitations, but they present attractive characteristics in terms of mod-
ularity of the solution and the interoperability between the model’s simulators (criteria 1 and

criteria 2 probably satisfied). They are standards which are already supported in several tools.
Most of HLA-compliant tools are network simulators such as NS313 and OMNeT++14 since
HLA is mainly used for distributed simulations. At the same time, FMI standard is becoming
well-accepted industrially (criteria 3 satisfied). It is supported by more than 90 simulation tools
and is considered an important driver in enabling tool interoperability in the area of cyber-
physical systems.

1.3. Discussion and conclusion

In this first chapter, we introduced foundations and techniques for CPS modeling and simula-
tion. We first defined the notions of modeling languages, MoCs, and simulators in order to
become familiar with terms later used in our discussion. The second part of this chapter focused
on techniques for simulating heterogeneous systems. We stated that CPS are not easily verified
due to the heterogeneity of the involved components regarding the domains, the modeling lan-
guages and tools, and MoCs. Methodologies for CPS modeling and simulation not only have
to cope with this heterogeneity, but they also have to become accepted within the industry.
Five techniques for verification of heterogeneous systems were presented and evaluated based
on these criteria. A synthesis of this evaluation is given in Table 1-1. We concluded that the
co-simulation is the most suitable technique for the modeling and simulation of CPS.

13 Refer to: www.networkSimulator-ns3.org
14 Refer to: omnetpp.org

Chapter 1: Foundations and Techniques of Modeling and Simulation

43

Table 1-1. Evaluation of verification techniques according to the chosen criteria

Techniques Criteria 1: The capa-
bility to cope with the
heterogeneity of CPS

Criteria 2: The possi-
bility to apply the ap-
proach to CPSs

Criteria 3: The ac-
ceptance in the in-
dustry

Technique1: Transla-
tion of models

Probably satisfied Possibly not satisfied Probably not satis-
fied

Technique2: Compo-
sition of modeling
languages

Not satisfied Not satisfied Not satisfied

Techniques3: Unifi-
cation of semantics

Not satisfied Not satisfied Not satisfied

Technique4: Compo-
sition of models

Probably satisfied Possibly satisfied Possibly not satisfied

Technique5: Co-sim-
ulation

Probably satisfied Probably satisfied Satisfied

Two co-simulation standards, HLA and FMI, were presented in section 1.2.5. We stated that
both represent attractive characteristics with some limitations. We choose FMI standard as a
basis for our contribution. FMI is considered as an important driver in enabling tool interoper-
ability in the area of cyber-physical systems. The state of the art, as well as the number of
simulation tools which support FMI, give an indication on the popularity of the FMI standard
for the co-simulation of CPS. However as stated previously, FMI has some limitations. These
later are addressed in the next chapter.

44

Chapter 2: Toward FMI-based Co-Simula-
tion of CPS

Outline

2.1. About FMI for co-simulation
2.1.1. The Functional Mock-up Unit (FMU)

2.1.1.1. The co-simulation description schema
2.1.1.2. The co-simulation interface (FMI API)

2.1.2. The master algorithm

2.2. Limitations of FMI regarding CPS

2.2.1. Untimed semantics are not supported (I1)

2.2.2. Time events are not handled (I2)

2.3. Adressing FMI limitations

2.3.1. Adaptation of semantics at the FMU level
2.3.2. Extension of the FMI API

2.3.3. Adaptation of semantics at master level
2.4. Discussion and positioning

In the previous chapter, we stated that co-simulation is the most suitable technique for dealing
with related heterogeneity of CPS simulation. We also explained why we chose FMI for co-
simulation as a basis for our work. Although FMI provides a standard interface for co-simula-
tion of models from different languages/tools, it also has lacks to cope completely with the
heterogeneity of the involved MoCs. To better understand the limitations of the FMI standard,
we will represent the architecture of the standard section 2.1, with the notions of Master Algo-
rithm and FMU respectively, in subsections 2.1.1 and 2.1.2. Further, we will represent the life
cycle of the FMU in order to identify the problems related to the integration of different MoCs
in section 2.2. Then we will outline the solution we propose to solve these problems in section
2.3. The chapter ends with a discussion about the proposed solution and our positioning in
regards to the integration of UML models in the FMI-based co-simulation.

2.1. About FMI for co-simulation

FMI [17] is a standard that supports both model exchange and co-simulation of dynamic models
originally designed with different simulation tools. Its development was initially launched as
part of the MODELISAR project and continues now through the participation of 16 companies
and research institutes under the roof of the Modelica Association. Today, FMI is supported by
over 89 tools [17]. A component that implements FMI standard is called FMU. This can later
be used for either:

� A model exchange, where the goal is to allow a generated FMU to be imported and
executed in a different simulation tool. The FMU is executed using the solver provided
by the host simulator (Figure 2-1-a);

Chapter 2: Toward FMI-based Co-Simulation of CPS

45

� A co-simulation, where the intention is to provide a standard interface to couple two or
more FMUs in a co-simulation environment. The data exchange between these FMUs
is restricted to a discrete set of communication points where each FMU is executed
independently with its own solver (2-1-b).

It is not common for UML tools to support execution of physical models. The model exchange
is therefore not possible to adopt in this work. We are interested in FMI for co-simulation,
which is based on master/slave architecture. A system is seen as an interconnection of slaves,
the so-called FMUs, imported in a co-simulation environment, the so-called master. This latter
is in charge of providing an algorithm to orchestrate and synchronize the slaves. The FMI
specification provides a standard interface for the representation of the models as FMUs, but it
does not standardize the master algorithm.

The following material provides further detail about the FMUs and the master algorithm while
pointing out important information that concerns our work. It specifically illustrates the FMUs’
composition and the master algorithm as defined in the FMI specification. Then, it identifies
the shortfalls of the FMI standard regarding simulation of CPS.

 Functional Mock-up Unit (FMU)

The FMI specification creates a distinction between the description of data and functionality. It
consists of two parts: the co-simulation description schema defined as an xml schema, and the
co-simulation interface defined as an API written in C. An FMU is an implementation of the
FMI interface. It contains a zipped-file, which therein contains a “modelDescription.xml” file
providing static information about the model, and code files or binaries implementing the dy-
namics of the model. The FMU may contain additional data and functionalities.

Subsections 2.1.1.1 and 0 outline details about the important elements of the co-simulation de-
scription schema and the co-simulation interface.

 Co-simulation description schema

The co-simulation description schema defines the structure and the content of the XML file
contained in the FMU. Figure B-1. XML schema of the FMI standard (version 2.0) in Annex B
depicts an extract of the schema taken from the FMI specification. Each FMU has a specific
XML file (called “modelDesciption.xml”) that complies with that schema. It contains static
information relevant for the communication in the co-simulation environment specified in tags
(expressed between ‘< >’), in particular:

Simulation environment

Master algorithm

 Model FMU

Solver

 Model FMU

Co-simulation environment

Master algorithm

 Model

Solver
FMU

 Model

Solver
FMU

Figure 2-1-a. FMI for model exchange Figure 2-1-b. FMI for Co-simulation

Chapter 2: Toward FMI-based Co-Simulation of CPS

46

� The model variables and parameters (expressed in the element <ScalarVariable>),
� The model structure which represents the inputs and outputs and identifies the initial
inputs and derivatives of the model (expressed in the element <ModelStructure>),
� The solver/simulator capabilities which characterize the ability of the slave to support
advanced master algorithms e.g, the usage of variable communication step sizes, higher or-
der signal extrapolation, or others (expressed in the element <CoSimulation>),
� The information about the default simulation configuration of the simulator e.g, the sim-
ulation start time, the simulation stop time and the preferred step size (expressed in the ele-
ment <DefaultExperiment>).

Figure B-5. Example of a model description xml file of an FMU for co-simulationof Annex B
depicts an example of a model description file of an FMU for co-simulation together with an
explanation of the different elements of the XML file.

FMI 2.0 introduces new optional features compared to the early version 1.0 as follows:
� The ability to save and then restore the complete state of an FMU during simulation
represented by the flag “canGetAndSetFMUState” in the XML file. This feature enables an
FMU to go back in the simulation time in order to perform a simulation step again if this
later fails. This feature is interesting especially for continuous time simulation where the
solver may fail to solve differential equations because the step size is too large.
� The input/output (I/O) dependency feature provides information about potential depend-
ency relation between the outputs and the inputs of a given FMU. It is specified as an output
dependency in the “modelStructure” element of the XML file. Together with the external
dependency between FMUs (as a result of their connections), this information can be used
by the master algorithm in order to detect cycles when connecting FMUs, and therefore avoid
algebraic loops when connecting FMUs together. In addition, it can be used to establish the
order in which the data should be propagated.

These features, when supported by the involved FMUs, can be used to empower the master
algorithm.

 Co-simulation interface (FMI API)

FMI for Co-Simulation defines interface routines for the communication between the master
and all FMUs in a co-simulation environment. The co-simulation interface is a set of C functions
(an API) which an FMU should implement. FMUs by themselves are passive objects, in the
sense that they do not execute. For that reason, they are called slaves. We need a so-called
master algorithm for controlling the FMUs and for data exchange of input and output values as
well as status information.
An FMU is therefore seen as a black-box which implements the methods defined in the FMI
co-simulation interface and, the simulation of one FMU consists of a sequence of API functions
called by a master. The most important functions concern the instantiation and initialization of
an FMU, the propagation of variables from one FMU to another, the stepwise simulation of the
FMU and the termination of the simulation.

Chapter 2: Toward FMI-based Co-Simulation of CPS

47

a. Instantiation and initialization
The instantiation is handled by a call to the fmi2Instantiate function that returns a new instance
of an FMU. The instantiation is mandatory to run the simulation of an FMU.
Once instantiated, the FMU can be initialized. The initialization is handled by a call to the
functions fmi2EnterInitializationMode and fmi2ExitIntializationMode where in between some
variables could be set or get before the beginning of the simulation.
The variables that can be initialized are input variables and variables that must have an exact
value at time zero. The variables that can be retrieved at initialization phase are output variables.
At the initialization phase, the simulation parameters should be set by a call to fmi2SetupExper-

iments. The simulation parameters indicate the simulation start time and the simulation stop
time.

b. Stepwise simulation and data propagation
At this stage, the FMU is instantiated and initialized. The co-simulation computation can there-
fore start. The fmi2DoStep function advances the co-simulation by the simulation step size h>0
from time tci to time tci+1 (tci<> tci+1) and returns a status which indicates whether the FMU suc-
ceeded the simulation step or not. It returns fmi2OK to indicate that the slave has performed
the simulation up to the requested point in time. In turn, fmi2Discard is returned to indicate that
only a part of the time interval could be computed successfully, while fmi2Error is to indicate
that the computation could not be performed at all.
At the end of a simulation step, the fmi2SetXXX and fmi2GetXXX commands are used to set the
input variables values and retrieve the output variables values of an FMU. The XXX is replaced
with the data type, for example, fmi2GetReal for real variables. In a network of connected
FMUs, these functions allow the master algorithm to propagate data from one FMU to another.

c. Termination
The termination of an FMU is allowed only if the FMU successfully performed the last simu-
lation step. The termination of an FMU is handled with function fmi2Terminate.

A formalization of the FMI API - more specifically, the procedures we introduced - and the
connections of FMUs in a model was proposed by Broman and al. in [12] as follows15:

Given a co-simulation model M:
C = F: is the set of FMU instances

c ∈ C: an FMU
Sc: the set of states of c
Uc: the set of input port variables for c
Yc: the set of output port variables for c
V: the set of values that a variable may take

I ⊆ V: the set of default variables values.

Dc ⊆ Uc × Yc: I/O dependency for instance c,
Dc1 = (uc1,yc1) means that the output yc1 of the FMU instance c1 depends on the input uc1 of the

FMU instance c1 (internal dependency)

15 This formalization will be used later to specify the master algorithms proposed in the literature as well as those
proposed in this work

Chapter 2: Toward FMI-based Co-Simulation of CPS

48

U = Sc∈C Uc: the set of all input variables in M

Y = Sc∈C Yc: the set of all output variables in M
P: U → Y: Port mapping constructed from connectors of M
P(uc2) = yc1 means that the output yc1 of the FMU instance c1 is connected to the input uc2 of the

FMU instance c2 in M (external dependency)

instc: C → Sc instantiates the FMU c and returns its state.
initc: R ≥ 0, R ≥ 0 → Sc initializes c with a given start time tstart and stop time tstop. Input ports
variables can be set during initialization phase with values from I. It returns the state of c.

setc: Uc × V → Sc sets a given input u ∈Uc with a value v∈ V and returns the new state of c.

getc: Yc → V returns the value v∈V of a given output y∈Yc.

doStepc: R > 0 → Sc × R ≥ 0 takes as input a step size h ∈ R>0. It performs a simulation step

and returns the new state and the last successful simulation time h’∈ R>0 of c.
terminatec: → Sc: terminate the simulation of c.

Table 2-1 gives the mapping between the FMI API and the functions in the formalization.

Table 2-1. Mapping between the FMI API functions and the formalization functions

Formalization FMI API

instc() fmi2Instantiate();

initc(tstart, tstop) fmi2EnterInitializationMode ();
 fmi2SetupExperiments(tStart, tStop);
 fmi2Setxxx(v);
fmi2ExitInitializationMode();

getc(y) fmi2Getxxx(y);
where xxx is one of Real, Integer, Boolean and String

setc(u,v) fmi2Setxxx(u,v);
where xxx is one of Real, Integer, Boolean and String

doStepc(h) fmi2DoStep(h);

terminatec() fmi2Terminate();

 Master algorithm

A master algorithm triggers and orchestrates a collection of FMUs to co-simulate the different
parts of a system. Figure 2-2 depicts the principle of the master algorithm for an FMU simula-
tion.

Figure 2-2. Principle of an FMU simulation

Chapter 2: Toward FMI-based Co-Simulation of CPS

49

The master algorithm performs stepwise co-simulation from time “tstart” to time “tstop”. Time
advances locally on FMUs by the step chosen by the master algorithm. When the co-simulation
is started, the FMUs are simulated independently between two discrete communication points
“tci” and “tci+1” with a step size “h=tci+1-tci>0”. At these communication points, the master
algorithm collects the outputs “y(tci)” and sets the inputs “u(tci)” of all FMUs.
In this way, the master algorithm synchronizes the FMUs in the manner that it waits for all
FMUs to simulate up to the communication point at each simulation step before it advances the
time.
A simple co-simulation master algorithm uses the sequence of FMI commands depicted in Fig-
ure 2-3.

The FMI specification does not standardize a master algorithm for co-simulation. It only pro-
vides a pseudocode of a basic master algorithm (depicted in Figure B-16 of Annex B) and out-
lines the supported calling sequences from master to slave. Tool vendors are responsible for
providing their own master algorithms according to their specific needs.
Simple master algorithms can be found in FMI for co-simulation standard specification [17]
and in [7] where they propose a fixed-step platform-independent MA. Authors in [37] investi-
gate adaptive communication size control in the FMI to improve the accuracy of simulations.
Acker and al. in [43] propose a method to automatically generate an optimal master algorithm
compliant to FMI standard starting from an explicitly modeled co-simulation model. Authors
in [12] propose a class of advanced master algorithms where they demonstrate the importance
of the rollback and the I/O dependency information regarding the efficiency of the simulation.

/*Co-simulation parameters*/
tc: Current simulation time
tstart: Start simulation time
tstop: Stop simulation time
h: simulation step size>0
/*Instantiate and initialize components c ∈ C */
For each component c ∈ C:

Instc();

Initc(tstart, tstop);
/*Step wise simulation*/
While (tc<tstop)
 For each connection between an input u and an output y:
 v = getc(y);
 setc(u,v);
 doStepc(h);
 End for
 tc=tc+ h;
end while.
/* Termination of the simulation*/
For each component c ∈ C:

terminatec() ;
end simulation

Figure 2-3.Basic master algorithm for FMI co-simulation

Chapter 2: Toward FMI-based Co-Simulation of CPS

50

2.2. Limitations of FMI regarding CPS domain

FMI was originally intended for continuous time models (which rely on CT MoC) with limited
support of models with non-CT MoCs. The procedures defined in the FMI API are, in fact, very
representative of continuous time systems simulations. A model relying on the CT MoCs can
be directly wrapped into an FMU. However, MoCs such as Data-Flow (DF), Synchronous-
Reactive (SR) and Discrete-Event (DE) are not easily wrapped to the FMI API due to the se-
mantics gap between their execution semantics and that of the FMI API [12].
For CPSs, we need to bridge the semantics gap between the aforementioned MoCs and FMI,
particularly at time and control levels. Table 2-2 is a reminder of the model of time as well as
the instants at which a system should be observed with respect to the MoC on which it relies.

Table 2-2. Semantic gap between FMI and non-CT MoCs: model of time and control

MoC Model of time Control

FMI Continuous The system is observed through-
out the simulation

DF Logical (no notion of time) The system is observed at the end of
the execution (Causal)

SR Logical (instantaneous reactions) The system should be observed at sys-
tem reactions

DE Discrete time instants (differed reactions) The system is observed at time events
occurrences

Some issues regarding the integration of non-CT MoC are observed in the call sequence of the
master algorithm given in Figure 2-3:

� CPS & FMI Issue 1 (I1): The first issue is related to the inability of the master algorithm
to account for untimed behaviors (behaviors relying on the DF MoC) and instantaneous re-
actions (behaviors relying on the SR MoC). The master, in fact, does not consider simulation
step of size zero.
� CPS & FMI Issue 2 (I2): The second issue is related to the choice of the simulation step
size. This latter is chosen by the master without any assumption regarding the instants at
which the component should be observed.

These issues flow directly from limitations in the FMI API which are identified and explained
in sections 2.2.1 and 2.2.2.

 Untimed semantics are not supported (I1)

Context: Untimed (and instantaneous reactive) behaviors do not take into account time to exe-
cute. There is indeed no notion of time. Outputs are supposed to be produced and propagated
from one component to another at the same instant inputs. If the fmi2DoStep is called on an
untimed component at time ‘tc’, then data should be produced and propagated from this com-
ponent to the other components at ‘tc’. The master should use a zero-step size for such compo-
nents.

Chapter 2: Toward FMI-based Co-Simulation of CPS

51

FMI specification: The use of zero step size is not allowed [17]. The standard does not account
for untimed behaviors and does not provide a mechanism allowing the component to output an
instantaneous reaction to a changed value during simulation. As stated in section 2.1.2, the
master algorithm performs stepwise simulation on the connected components where each com-
ponent is supposed to execute and advance for an amount of time ‘h>0’ chosen by the master.
If the fmi2DoStep is called on an FMU at time ‘tc’ with a simulation step size ‘h>0’, then data
will be propagated from one component to another at the next communication point ‘tc+1=tc+h’.

Issue: When wrapped to FMI API, untimed and instantaneous reactive behaviors will not

behave correctly. In fact, the data propagation will be delayed with an amount of time

∆t=h>0. This delay may considerably affect the simulation results since the component

will not produce outputs to its environment at the desired time.

 Time events are not handled (I2)

Context: Semantics of DE components is timed but not continuous. The component produces
new outputs at a discrete set of time instants te (time event occurrences). For an efficient simu-
lation, the component should be observed at each te. A doStep should therefore account for these
specific time instants.

FMI specification: The FMI specification does not provide a way for the component to express
the instants at which it will produce new values. The FMI specification provides a way for an
FMU to express a desired static step size (optionally expressed in the xml file). However, the
API does not provide routines that allow the FMU to express a change according to the desired
simulation step size during the simulation.

Issue: When wrapped to FMI API, DE components may not behave correctly. For exam-

ple, suppose that the master performs a doStep with a step size h>0 at tc, and the compo-

nent has a time event at time te<tc+h. The event will be missed and the data propagation

will be delayed with an amount of time ∆t=tc+h-te>0. This delay may considerably affect

the simulation results since the component will not produce outputs to its environment at

the desired time.

 Conclusion on FMI issues related to CPS domain

The FMI standard provides an interesting basis for the modeling and simulation of CPSs with
some limitation. We identified in this section 2.2.1 and section 2.2.2 two important the limita-
tions of FMI for CPS domain: untimed semantics is missing and time events are not supported.
It should be noted that we are not interested in limitations identified in the literature regarding
the CT components and we will not provide solutions to them because they do not belong to
our area of expertise. The next section focuses on solutions proposed in the literature for the
simulation of CPS using FMI for co-simulation standard. The proposed solutions will be eval-
uated for their ability to handle untimed execution semantics and time events during simulation
as well as for their applicability in the context of our work.

2.3. How to address those FMI limitations?

Existing works related to FMI aim at the consolidation of simulation of CPS that particularly
combine CT and non-CT dynamics. Based on the investigation of FMI standard specification

Chapter 2: Toward FMI-based Co-Simulation of CPS

52

and on works in the literature, we conclude that solving that aforementioned limitations of FMI
for CPS domain could be performed by adopting one of the following techniques.

 Adaptation of semantics at the FMU level

Principle: FMI aims at enabling the reuse of models in different co-simulation environments.
One natural way to integrate a new modeling formalism in FMI-based co-simulation approaches
is to export models as FMUs for co-simulation. An exported FMU must comply with the FMI
standard, and it should contain the structure of the model and implement at least the mandatory
functions of the FMI API mentioned in Section 2.1.1.2 of this chapter. The challenge would be
to wrap semantics of various modeling formalisms (untimed semantics, discrete events seman-
tics, etc.) into the FMI API. The export should be done by wrapping semantics of the original
modeling formalism to that of FMI API, and model to model transformation for the structure
of the model.
Related works: In [42], Tripakis and al. address principles of encoding different MoCs, includ-
ing finite state machines (FSM), discrete-event (DE), and synchronous dataflow (SDF) as
FMUs. Feldman and al. [16] developed an approach to generate FMI code from Rhapsody
SysML models that wraps state charts as FMUs. The authors acknowledge problems with FMI
co-simulation of state charts due to the standard’s lack of support for instantaneous reaction to
events. Pohlmann et al [33] generate FMUs from a UML model described as real-time state
charts.
Evaluation: This technique certainly enables simulation of heterogeneous systems by integra-
tion of new formalisms. But it doesn’t provide a solution for events handling since the models
are wrapped into FMUs that comply with the FMI API which does not provide a way to get
information about time events and instantaneous reactions. It is particularly interesting in in-
dustrial contexts where the goal is to facilitate the cooperation between different companies
while preserving the IPs without any insurance about the efficiency of the simulation.

 Extension of the FMI API

Principle: Extension of the FMI API essentially concerns the capabilities of FMUs to expose,
or not, some information. This technique was already used in the second version of FMI, where
the first version of the standard was extended to introduce new features (refer to section 2.1.1.1
for further details related to the added features).
Related works: Using these features, Broman and al. in [12] have formally proven the im-
portance of these new features to ensure efficiency of the master algorithm in terms of determi-
nacy (i.e, given a set of inputs, different runs of the simulation produce the same output) and
successful termination of an integration step. They propose a preprocessing algorithm called
“order-variables” that statically analyzes the dependencies in a co-simulation model based on
the connectors that link the FMUs and the I/O dependency information exposed by the FMUs.
The latter is used to detect potential loops in the co-simulation model and, if no cycle exists,
the order in which the input and output variables should be accessed. Then, they propose the
master algorithm called “Master-step” that requires all FMUs to support rollback.
The drawback of this algorithm is that the implementation of the rollback mechanism is still
optional and may be difficult to achieve in practice. For this reason, they propose in addition,

Chapter 2: Toward FMI-based Co-Simulation of CPS

53

an extension enabling a master algorithm to query an FMU for the time of events that are ex-
pected in the future. They propose to add a procedure to FMI API called “fmiGetMaxStepSize”
that returns an upper bound on the step size that the FMU can accept. The last MA they propose
uses the proposed extension to the FMI standard. They argue that the latter relaxes constraint
imposed by the previous MA and correctly handles models containing a mix of FMUs that
support rollback, FMUs that do not support rollback but implement the proposed extension to
FMI for predictable step sizes, and at most, one FMU that supports neither.
Authors in [41] propose an equivalent extension which aims at improving the “fmi2DoStep”
primitive by adding a new status “fmi2Event” returned by the FMU when an event occurs (ei-
ther a time event or a state event) before the completion of the current simulation step. If the
status “fmi2Event” is returned, that means that the FMU succeeds to perform simulation up to
the time instant of the event. The MA should consider that the simulation was successfully
performed until the time instant of the event and continue the simulation from this point of time
without the need of the rollback mechanism.
Evaluation: These extensions certainly enable events handling, but the solution requires the
agreement of FMI standard consortium to accept or reject such propositions. In fact, providers
of models try to expose the most minimum amount of information in order to protect their IPs
as stated in [28]. In addition, the efficiency of simulation not only depends on the capabilities
of the FMU (i.e, the exposed information and the performance of the solver), but also on the
ability of the master algorithm to account for all important information, which is why works
that propose extensions have also to propose an advanced master algorithm as a part of their
contribution.

 Adaptation of semantics at master level

Principle: This technique consists in coupling FMU and non-FMU models in a specific co-
simulation environment. The idea emerges from the need to integrate new modeling formalisms
without the need to export the original models as FMUs for co-simulation either because there
is no intention to reuse the models or because the export of models as FMUs is not trivial. The
co-simulation environment is responsible for providing master algorithm for the orchestration
of the connected models (since there are FMUs involved in the global model), which should
cope with their heterogeneity. It should make a difference between an FMU and a non-FMU in
order to simulate each component relying on their specific execution semantics.
Related works: Savicks et al. [36] propose an approach which enables co-simulation of FMUs
with Event-B models without wrapping them as FMUs for co-simulation. The approach is
tooled within the Event-B platform Rodin [2]. It is based on the master/slave architecture of
the FMI standard. It proposes a simple MA for their orchestration but does not provide a way
to handle time events.
Denil and al. in [13] define an adaptation of semantics between pure event models and contin-
uous models. This adaptation is required in imported FMUs and in the master algorithm in order
to set up an efficient co-simulation between heterogeneous formalisms. They define two extra
FMUs that manage adaptation of semantics between the involved heterogeneous formalisms.
Evaluation: The main drawback of this approach is that it imposes the co-simulation environ-
ment to be compliant with a specific modeling formalism. The main strength of this approach
is that models which are not exported as FMUs are accessible, that is, all information about the

Chapter 2: Toward FMI-based Co-Simulation of CPS

54

model are exposed. Therefore, it ensures the reuse of models and their IP protection (the FMUs),
while providing flexibility to cope with the heterogeneity of the involved models and easily
handling events produced by the non-FMUs models.

2.4. Discussion and positioning

We presented in this second chapter the FMI for co-simulation standard. We focused particu-
larly on its shortcomings for the modeling and simulation of CPS and identified two challenges:

� Issue 1: Untimed semantics are missing.
� Issue 2: Time events are not supported.

Three techniques proposed in the literature were evaluated on their ability to meet or not meet
these challenges as shown in Table 2-3.

Table 2-3. Summary of the FMI-based techniques evaluation

Technique Evaluation

Adaptation of semantics at
FMU level

Advantage: The approach is completely compliant with
FMI co-simulation and therefore well accepted in industry.
Drawback: Issue 1 and Issue 2 cannot be solved with the
current version of FMI.

Extension of the FMI API Advantage: The approach is completely compliant with
FMI co-simulation and therefore well accepted in industry.
Drawback: Issue 1 and Issue 2 can be solved but necessi-
tates the agreement of FMI standard consortium.

Adaptation of semantics at
master level

Advantage: Issue 1 and Issue 2 can be solved.
Drawback: The co-simulation environment must be compli-
ant with a specific modeling formalism.

The best solution will be the combination of the two first techniques: the extension of the stand-
ard for the support of new formalisms, along with the export of models as FMUs for co-simu-
lation and a MA which accounts for the new extensions. This technique definitely ensures the
integration of new modeling formalisms (necessary for CPS), as well as handling events.

However, it is not trivial to do that in practice because, for instance, the proposed extension of
the standard (in particular related to the time of the next event) is not approved by FMI consor-
tium; by extending the standard, the providers of models are constrained to expose information
which is not necessarily compliant with their policy [28].

The third technique is an intermediate solution. It enables the reuse of models while protecting
their IPs in a standardized way thanks to FMI standard, as well as the integration of new mod-
eling formalisms in FMI-based co-simulation. It provides a solution to cope with the heteroge-
neity of systems by integrating FMUs and non-FMUs models. It also enables events handling
and untimed semantics in non-FMUs components, since all important information about these
models are exposed and known by the environment. We will demonstrate how, using adaptation
of semantics at master level, we are able to integrate the UML models in FMI-based co-simu-
lation while accounting for their event-driven and instantaneous behaviors.

Chapter 2: Toward FMI-based Co-Simulation of CPS

55

UML models are required to be executable for their integration in FMI-based co-simulation.
The next chapter, focus on UML models execution as well as on challenges of their integration
using the third technique.

56

Chapter 3: UML models execution - Over-
view and Key aspects

Outline

3.1. Tools for UML models execution

3.1.1. Tools evaluation

3.1.2. Discussion and positioning

3.2. Computational components modeling and simulation with fUML*

3.2.1. Systems of interest
3.2.1.1 Transformational vs Reactive systems
3.2.1.2. Untimed vs Timed systems

3.2.2. Executable models within fUML*
3.2.2.1. Passive behaviors
3.2.2.2. Active behaviors

3.2.3. Non-executable models within fUML*
3.2.3.1. Timed Behaviors
3.2.3.2. Behaviors reacting to change events

3.2.4. Addressing fUML* limitations
3.2.4.1. Extending fUML* (F1)
3.2.4.2. Introducing the control of timed execution (F2)

 3.3. Methodology for the integration of fUML* and FMI
3.4. Conclusion

UML is the reference standard for software modeling and is very commonly used in the industry
[4]. Our thesis is that system engineering in general would greatly benefit from the considera-
tion of UML in the FMI-based co-simulation approach. It would indeed enable a significant
number of software designers to evaluate the behavior of their software components in their
simulated environment as soon as possible in their development processes, and therefore ena-
bling them to make better design decisions earlier. It would also open new, interesting perspec-
tives for CPS system engineers, as it allows them to consider a widely-used modeling language
for the software parts of their systems.
In the previous chapter, we explained why we chose the adaptation of semantics at master level
as a technique for the integration of new modeling formalisms in FMI-based co-simulation, and
stated that we are particularly interested in UML as a language for computational components
modeling. The main purpose of this chapter is to identify the key entry points for the application
of this technique on UML models.
Simulation capacity of UML models is available in several tools. These tools will be enumer-
ated and evaluated in section 3.1 of this chapter. The goal of this evaluation is to find a tool or
a framework on which we could rely on for the co-simulation of UML models

Chapter 3: UML models execution-Overview and key aspects

57

in the FMI context. We are particularly interested in tools which support FMI for co-simulation
or at least can provide capabilities for the support of FMI features and the integration of UML
models.

In section 3.2, we will take a closer look at the modeling and simulation of computational com-
ponents with UML. We will establish a list of UML models we want to model and simulate,
based on a classification of discrete systems, as well as on a systems design methodology (sub-
section 3.2.1). After that, we will evaluate the ability of fUML* to simulate these models (sub-
sections 3.2.2 and 3.2.3) and point out the key elements regarding the integration of UML mod-
els in FMI-based co-simulation (subsection 3.2.4).

3.1. Tools for UML models simulation

The integration of UML models in co-simulation approaches requires the UML models to be
executable. Simulation capacity of UML models is available in several tools. They will be enu-
merated and evaluated in subsection 3.1.1. They will be evaluated on their support of FMI fea-
tures and their integration of UML models in FMI-based co-simulation. At the end of this sec-
tion, we will give our positioning and choose our start point for the integration of UML models
in FMI-based co-simulation.

 Tools evaluation

Table 3-1 checks the support for FMI standard in UML tools (the first column of the table) as
well as the integration of UML models in FMI-based co-simulation, either by exporting UML
models to FMUs, or by providing a master which adapts semantics of UML models’ execution
to that of the FMI standard (second column of the table).

 Table 3-1. UML tools evaluation

UML Tools FMI for co-simulation
features

UML to FMI for co-
simulation adaptation
and integration

Magic Draw - Cameo
Simulation Toolkit

Yes
Master, version 1.0

No

Rodin Yes
Master, version 1.0

No

Cosimate Yes
Master, version 2.0

Yes

IBM Rational Rhapsody Planned No

Gemoc Studio Planned -

Mentor Graphics Bridgepoint No -

Entreprise Architect -
AMUSE

No -

Moliz No -

Chapter 3: UML models execution-Overview and key aspects

58

• Magic Draw - Cameo Simulation Toolkit provides an execution engine for the UML
state charts and fUML*. This toolkit also provides an implementation of FMI compliant
with the version 1.0 of the standard. FMUs for co-simulation can be imported, represented,
connected and co-simulated in SysML models.
Although the tool provides both execution of UML models and an implementation of FMI,
the integration of both features does not exist. In the context of co-simulation, SysML is
only used for the representation of the imported FMUs and the definition of co-simulation
scenarios.

• Rodin is a tool developed within the European project FP7. It allows the verification and
simulation of formal models specified using Event-B (a variant of B language). Rodin em-
beds a module for a formal specification of systems using UML classes and state machines.
This module then transforms the UML specifications into Event-B models for the animate
of the UML model using the model checker Pro-B.
The Rodin framework also provides a master algorithm for the co-simulation of Event-B
models with FMUs exported from Ptolemy. The approach is based on the version 1.0 of
FMI standard. Although, the Rodin framework provides a way for UML models simulation
as well as support of the FMI standard, no work links these capabilities as far as we know.

• Cosimate is an open architecture enabling engineers to connect various simulation envi-
ronments together. This framework supports various language interfaces, in particular FMI
for co-simulation, and simulators, more specifically, IBM rational rhapsody for UML mod-
els’ simulation. Cosimate provides an implementation of the FMI standard version 2.0 and
allows for the co-simulation between FMI and non-FMI models. It supports heterogeneous
co-simulation between solvers (e.g., Simulink) and event-driven (HDL, UML) or sequen-
tial (C) simulators. Using the Cosimate framework, […] proposed a co-simulation between
UML models designed in rhapsody with models designed in numerical simulation tools,
such as Simulink and AMESim.
However, no details concerning the co-simulation approach are available, particularly in
terms of whether the co-simulation of UML models with numerical simulators is ad’hoc or
based on the FMI interface.

• IBM Rational Rhapsody is an UML modeling and simulation tool. It allows for the exe-
cution of UML models build using classes, activities and state machines.
This tool provides the export of UML models as FMU for model exchange, but not for co-
simulation. The support of FMI for co-simulation is planned16.

• Gemoc Studio is an eclipse package which contains components that offer a framework
for building and composing MOF-based executable Domain Specific Modeling Languages
(xDSML). It addresses the execution of fUML activities using the xMOF Execution engine
[11]. The support of a master algorithm for FMI co-simulation in the gemoc studio is under
investigation. Gemoc studio deals with both UML models execution and the support of
FMI for co-simulation. However, no explicit integration between the two features is done.

16 Refer to: http://fmi-standard.org/tools/

Chapter 3: UML models execution-Overview and key aspects

59

 Discussion and positioning

In the previous section, we evaluated UML tools (which provide the simulation of UML mod-
els) for their support to the FMI standard. This evaluation underlines the lack of the integration
of UML models in FMI-based co-simulation, and emphasizes that there is no concrete, useable
solution on which we can base our work. As a result, we have to propose a UML compliant
environment with support for FMI (Chapter 4) together with an approach which properly inte-
grates UML models in FMI-based co-simulation (Chapter 5 and Chapter 6). By properly, we
mean the synchronization and the coordination of the models’ executions while preventing
events missing and respecting the execution semantics of each component (i.e, providing solu-
tions to Issue 1 and Issue 2 of FMI for CPS domain introduced in Section 502.2).

As stated in section 1.2.4, the adaptation of semantics between heterogeneous models requires
thorough knowledge of each of them. In particular, the integration of UML models with FMI
requires the knowledge of the FMI standard API (refer to Chapter 2) and the UML models’
execution semantics. In this context, Works around execution of UML models are carried out.
PragmaDev17 tool, for example, proposes a combinaison between UML and SDL18 (Specifica-
tion and Description language) for the description of real time systems. SDL is interesting lan-
guage for the modeling of systems [3] and provides precise semantics for the execution of in-
teraction diagrams and state machines. For this work, we propose the use of the OMG standards
related to the execution of UML models: foundational UML (fUML) and Precise Semantics for
Composite Structures (PSCS). In the rest of the text we will refer to fUML and PSCS as fUML*.
This choice is motivated by two reasons: (a) fUML* propose a standard basis for UML models’
execution in which it is essential to capitalize, and (b) fUML* is already supported in several
tools (MagicDraw - Cameo Simulation Toolkit, Enterprise Architect - AMUSE, Papyrus –
Moka, and Moliz), which allow the proposed contributions to be adapted to other fUML* com-
pliant tools.

fUML* define precise semantics for the execution of a subset of UML models (refer to Annex
A for an overview of fUML* syntax and semantics). We will see in section 3.2 that this subset
does not cover all the UML models we would like to model and simulate, but the fUM* seman-
tic model does provide features (mechanisms) to tackle this limitation.

Section 3.2 focuses on the modeling and simulation of UML components with fUML*. It out-
lines the systems we can simulate as well as those we are not yet able to simulate with fUML*.
Section 683.2.4 proposes a set of fUML* features as key points for enabling the simulation of
a larger scope of UML models. This chapter concludes with our positioning and an introduction
to the contributions part of the manuscript.

3.2. Computational components modeling and simulation with fUML*

 Systems of interest

UML is sufficiently expressive to model software specifications. The set of systems we would
like to model with UML and integrate in co-simulation approaches can be classified according
to two dimensions found in literature. The first one concerns the fact that the systems can be

17 http://www.pragmadev.com/
18 https://www.irit.fr/Chap5SDL.pdf

Chapter 3: UML models execution-Overview and key aspects

60

transformational or reactive (section 3.2.1.1). The second one concerns the fact that the systems
can be untimed or timed (section 3.2.1.2).

Transformational and Reactive systems

By referring to computational components classifications in the literature [31, 55] we identified
two kinds of systems we want to model with UML: systems which simply perform a computa-
tion, the so-called transformational systems, and systems which are reactive to events occur-
rences, the so-called reactive systems. For each class of systems, three semantic properties are
outlined. They concern:

� (P1) Activation: It indicates the way the system is activated. For the corresponding UML
model elements, it indicates the instants of its instantiation and initialization.
� (P2) Behavior: It indicates the way the system behaves. For the corresponding UML
model element, it indicates the way it should be executed during simulation and the instant
it should be terminated.
� (P3) Output/input relationship: It indicates whether the output of the system depends on
its input.

P1 and P2 allows us to later identify the equivalent routines of fUML* for the functions defined
in the FMI API (inst(), init(), doStep() and terminate()). Refer to sections 5.1.2, 5.2.3, 6.1.2 and
6.2.3 for further details on the mapping we propose between the fUML* routines and the FMI
API. P3 is the equivalent of the I/O dependency expressed on FMUs and is used by the master
algorithm to compute the order of data propagation between ports as explained previously in
this chapter.
The following subsections describe the transformational and reactive systems according to
these properties.

a. Transformational systems

Transformational systems are systems that simply transform a set of inputs into a set of outputs
[55]. When switched on, a transformational system accepts inputs, performs some computations
and produces outputs, then terminates (Figure 3-1). Examples of transformational systems, also
called passive components, include process applications which are used in embedded systems
to encapsulate a piece of behavior that execute synchronously in a short cycle time.
A transformational system has the following properties [45]:

� (P1) Activation: A transformational system runs computations only when asked to do
so by another component. That is, it should be handled by or contained in another com-
ponent.

Figure 3-1. A transformational system

end start

input output = f(input)

Behavior

Time

Read Inputs Compute Write outputs

tstart tend

Chapter 3: UML models execution-Overview and key aspects

61

� (P2) Behavior: A transformational system transforms a set of inputs into a set of outputs
and terminates.

� (P3) Output/input relationship: The output values of a transformational system depend
on its input values.

b. Reactive systems

Reactive systems are systems that maintain interaction with their environment [21], which
means that, when switched on, they are able to create the desired effect on their environment as
a response to a received event (Figure 3-2). The response to an event generally depends on both
the type of event and on the internal state of the system.

Reactive systems continuously wait for the occurrence of some external or internal events.
� External events refer to some change on the environment conditions such as an On/Off

button press or a liquid which exceeds the allowed level in a tank. Usually, the instant
at which the change event occurs is not known at the system specification phase.

� Internal events refer to events which occur among the component. Time events (such as
a timer tick or a calendar event) are an example of internal events and represent signif-
icant moments in time. Unlike change events, the instants at which time events occur
are known and may be specified in the system behavior (which may be absolute or rel-
ative to a reference).

After recognizing the event, such systems react by performing the appropriate computations.
Once the event handling is complete, the system goes back to waiting for the next event.
The properties of a reactive system are as follows [45]:

� (P1) Activation: A reactive system constantly interacts with its environment.
� (P2) Behavior: The system shall react to a received event and produce the correct reac-

tion to the environment.
� (P3) Input/output relationship: The outputs of a reactive system depend on the stimuli

it receives as well as on the current state of the system.

Both kinds of aforementioned systems, transformational and reactive, can be seen through a
system design methodology where details (i.e, temporal information and reaction to changes)
are progressively introduced at different design levels.

Time

Environment

Wait for event

Read Inputs

Compute

Write outputs

Figure 3-2. Interaction of a reactive system with its environment

Chapter 3: UML models execution-Overview and key aspects

62

Untimed and timed systems

Models intended for simulation should be organized in a way that enables reasoning about
the structure and the behavior of the real system. The structural viewpoint concentrates on the
static information about the structure of the system (the inputs, the outputs and the components
composing the system). UML class and UML composite structure diagrams are the most pop-
ular diagram kinds for structural modeling. UML also allows for the expression of relations
between two or more UML elements (dependency relation, for example).
The behavioral viewpoint captures the dynamics of the system and describes its evolution over
time. In UML, this perspective is usually handled by activity or state machine diagrams. Models
intended for simulation purposes should, in particular, account for the time. As a result, we
distinguish two kinds of UML behaviors: untimed behaviors and timed behaviors.

a. Untimed behaviors

An untimed model describes the system behavior in a way where only the logic of how the
system accepts inputs, executes computations and produces outputs is important. This kind of
representation is used for a functional simulation where the goal is to verify the partial correct-
ness of the system behavior (i.e, check whether the system produces the correct result/reaction
to a given input/stimuli or not), or for the representation of the instantaneous computations/re-
actions of the system. The integration of untimed behaviors in FMI-based co-simulation is the
focus of the Chapter 5.

b. Timed behaviors

A timed model describes the system behavior in a way where both the logical and the timing
information are considered. The model provides additional details about the behavior of the
system, that is, it represents the instants at which the system receives inputs and produces out-
puts. It also expresses how long it takes to run computations or to react to events. The system
is evaluated at a discrete set of time instants. This kind of representation is used in timed simu-
lations where the correctness of the system behavior is not only defined based on producing the
correct output, but also on producing it at the right time, such as in real-time and control systems
design. This representation is in particular very relevant for co-simulation purpose since the
model will be placed in its environment where it evolves and depends on time.
The UML standard [30] proposes a model of time which enables the representation of time in
the applicative models. This latter comprises meta-classes to represent time and durations, as
well as actions to observe the passing of time. The UML profile MARTE [29] also allows to
annotate UML models with temporal parameters such as durations, periods, and deadlines. It
introduces a model of Time and Timing Constraints, dealing with both physical and logical
time. The integration of untimed behaviors in FMI-based co-simulation is the focus of Chapter
6.

Summary about systems of interest

In short, the models we would like to describe and integrate in a co-simulation approach are:
- An untimed UML model for a transformational system,
- A timed UML model for a transformational system,
- An untimed UML model for a reactive system; and
- A timed UML model for a reactive system.

Chapter 3: UML models execution-Overview and key aspects

63

For instance, we specified the need of modeling a set of systems with UML. In the rest of the
chapter, we will focus on how to simulate these models using fUML*. The purpose of fUML*
is not to give execution semantics to the whole UML set, but to a minimum essential subset
which assumes the most general type of systems. This subset includes elements to model both
the structure and the behavior of a given specification and is restricted to classes, activities and
composite structures (refer to Annex A for more details about the syntax and semantics consid-
ered by fUML*). Next section enumerates the systems we can and cannot execute with fUML*.

Two mentions will be used in the rest of the chapter:

- (syn) mention indicates that the element is a syntactic element.

- (sem) mention indicates that the element is a semantic element.

 Executable models within fUML*

 Passive behaviors

A simple executable model we can handle with fUML* is a model of a system performing some
computations. An example of such systems are transformational systems.
Figure 3-3 illustrates a simple example of a transformational system: a passive UML Class(syn)
called ‘Transformation’. This class owns two Property(syn) (‘in’ and ‘out’). The behavior of the
class consists of applying a transformation on the property ‘in’ and storing the result in the
property ‘out’. This behavior can be defined using an Operation(syn). We defined two operations:
‘multiply(in x: integer):integer)’ and ‘transform()’. The latter represents the main behavior of
the class.

An Operation(syn) behavior can be specified with an Activity(syn). In this example, the activity
associated with the operation (‘multiply(in x: integer):integer)’ simply returns the result of the
multiplication of the parameter ‘x’ by a constant (Figure 3-4).

Figure 3-3. Transformation is a passive class

Figure 3-4. The specification of the operation ‘transform’ with an activity

Chapter 3: UML models execution-Overview and key aspects

64

We can then define the transformation on the properties (‘in’ and ‘out’) of the class ‘Transfor-
mation’. Figure 3-5 illustrates the specification of the ‘transform()’ operation. It models the
logic of the transformation: it reads the value of the property ‘in’ using a ReadStructuralFea-
tureValue(syn), calls the ‘multiply’ operation using a CallOperationAction(syn)and sets the value
of the property ‘out’ with the returned result using an AddStructuralFeatureValueAction(syn).
When the simulation starts, no behavior is executed automatically. The ‘Transformation’ class
waits for some other object to invoke it.

 Active behaviors

fUML* provide syntax and semantics to model UML components whose behavior is triggered
by a signal event. A common example is the Ping-Pong game. The game consists of two players
that synchronize with each other by exchanging signals.
The game is represented with the structured Class(syn) ‘Game’ as shown in Figure 3-6. The play-
ers are represented with the parts ‘player1’ and ‘player2’ of type ‘Player’. Each of them owns
a Port(syn) (respectively ‘portA’ and ‘portB’) through which the Signal(syn) is propagated from
one player to another.

The class ‘Player’ should be active since its behavior is triggered by signals receptions (‘Ping’
and ‘Pong’ in Figure 3-7). An active Class(syn) must own a classifier behavior that defines its
main behavior (‘Player Classifier Behavior’ in Figure 3-7).

The classifier behavior is expressed with an Activity(syn), which describes the synchronization
logic from each individual player’s standpoint in terms of signal emissions and receptions. The
classifier behavior of the class ‘Player’ is defined with the activity depicted in Figure 3-8. The

Figure 3-5. The specification of the operation 'multiply' with an activity

Figure 3-6.The Game system represented with a UML composite structure

Figure 3-7. The players are active classes

Chapter 3: UML models execution-Overview and key aspects

65

shape represents a SendSignalAction(syn) and the shape represents an
AcceptEventAction(syn) triggered by a SignalEvent(syn).
When the simulation starts, the classifier behavior is automatically started. Player “player1”
begins playing by sending a “Ping” signal then waits for a “Pong” signal from player “player2”.

As soon as Player “player2” receives a “Ping” signal from player “player1”, it sends a “Pong”
signal, then waits again for a “Ping” signal from Player “player1”. As soon as the player
’player1’ receives a “Pong” signal from player “player2”, it sends again a “Ping” signal and so
on.
In the rest of the manuscript, we will not be interested in such reactive behaviors. Signal events,
in fact, assume that components communicate and synchronize directly with each other. This
is in contradiction with the requirements of the FMI standard where no direct communication
between components is allowed and the master is responsible for their synchronization.
Instead, we are interested in the modeling of behaviors reactive to the change and time events.
They are not in the scope of fUML* as we will also explain in the next section. Nevertheless,
we will rely on the same syntactic and semantic mechanisms for the execution of behaviors
reactive to change events and time events.

 Non-executable models within fUML*

Timed behaviors

UML provides elements for time modeling. Figure 3-9 gives an example of timed behavior
where the object is supposed to wait for five units of time (‘after(5)’) before sending a signal

‘Ok’. The shape is an AcceptEventAction(syn) triggered by a TimeEvent(syn).

Figure 3-9. A timed behavior

Figure 3-8.The behaviors of the players represented with activities

Chapter 3: UML models execution-Overview and key aspects

66

As stated in section 3.2.1, we are interested in timed behaviors execution. We identified some
shortcomings in fUML* for the modeling of such behaviors. The TimeEvent(syn) does not be-
long to the fUML*. fUML*, in fact, does not account for time modeling and simulation. The
behaviors are supposed to happen instantaneously.

Neverthesless, as explained in the fUML specification [32], “The execution model is agnostic
about the semantics of time. This allows for a wide variety of time models to be supported,

including discrete time (such as synchronous time models) and continuous (dense) time.”

Initiatives including tools and languages related to the execution of timed UML models are
given below. We are particularly interested in the possibility of their application in the context
of fUML*.

• Moliz: It proposes a framework (i.e., a library) [39] for performance analysis that enables
the integration of time representation in execution traces. The approach supports a discrete
event model of time but relies on implementation of opaque behaviors to deal with simu-
lation time advance.

• MARTE/CCSL: The UML profile MARTE [29] proposes a Time Model which extends
the simplistic Simple Time models defined in UML specification. It offers a broad range
of time models including discrete/dense time and chronometric/logical time. MARTE also
introduces a time structure and proposes a Clock Constraint Specification Language
(CCSL) to specify time constraints within the context of UML. A way to capture time
semantics in fUML* is to rely on the formal semantics of CCSL clock constraints.

Gemoc enables time support in simulation thanks to clocks defined in CCSL [TTC’15].
The approach is interesting in the sense that it can combine various time models. However,
using it in the context of fUML* is not straightforward, since the approach makes strong
assumptions about the way both syntax and semantics of a language are defined.

Coupling fUML with existing approaches such as TimeSquare19 could also be considered
as a solution for enabling the execution of timed UML models using CCSL. TimeSquare
provides an environment for modeling and analyzing timed systems. It supports an imple-
mentation of the time model introduced in the UML MARTE profile and the CCSL lan-
guage (Clock Constraint Specification Language). TimeSquare takes an UML model as
input, to which a CCSL model is applied. The CCSL model is used to specify time con-
straints and apply a specific behavioral semantics on a model. The result produced by
TimeSquare is a sequence of steps (a Scheduling Map) that can be used by external tools
for analysis/simulation purposes. Concretely, coupling the fUML semantic model would
mean that a CCSL model must be generated for a given application model, and that the
generated model reflects the time semantics of the application domain for which a profile
is defined. Scheduling maps generated by TimeSquare could then be “played” by the exe-
cution model. Modifications in the architecture of the semantic model would be required,
and would mainly consist in adding an explicit entity responsible for triggering executions
of active objects and actions, with respect to the scheduling map generated by TimeSquare.

19 Refer to: http://timesquare.inria.fr/

Chapter 3: UML models execution-Overview and key aspects

67

None of these proposals provide a framework or a way to directly execute timed behavior with
fUML*. We will demonstrate in chapter 6 that the Simple Time model of UML proposes suf-
ficient syntactic elements to describe timed behaviors for in both kinds of systems of interest,
(i.e, transformational and reactive). The execution of timed behaviors simply requires the ex-
tension of fUML* by giving execution semantics of this Simple Time model (or a subset of it)
and the control of the timed execution.
In widespread simulation tools and frameworks such as Ptolemy II20 and SystemC21, time is
usually managed by an explicit control entity (scheduler-like), which appropriately schedules
the execution of the various model elements in order to reflect the timing aspects. The fUML
execution model does not include this type of control entity. Implementations are thereby re-
sponsible for providing timing mechanisms if needed. In regards to the execution model, the
fUML* stated: “Furthermore, it does not make any assumptions about the sources of time in-

formation and the related mechanisms, allowing both centralized and distributed time models”.

The extension of fUML* with the execution of timed UML models will be handled in Chapter
6 using features F1 and F2, which we will explain in section 3.2.4.

 Behaviors reacting to change events

In CPS, computational components usually interact with their environment. Change events are
interesting in this context in the sense that the cyber part of the CPS (typically a control com-
ponent) could instantaneously detect and react to a change occurring in the physical part (typi-
cally the environment with/on which the control components interacts).

The modeling of behaviors reactive to changes of some values is possible using an AcceptE-
ventAction(syn) triggered by a ChangeEvent(syn). The example represented in Figure 3-10 con-
sists in comparing an input value with a constant and to produce a verdict. The comparison
should be executed only if a change on the value of ‘in’ is detected.

fUML* enables the modeling of behavior reactive to signal events (as stated in subsection
3.2.2.2) but not to ChangeEvent(syn). The ChangeEvent(syn), in fact, does not belong to the

20 Refer to: http://ptolemy.eecs.berkeley.edu/ptolemyii/
21 Refer to: http://hdl.telecom-paristech.fr/sc_intro.html

Figure 3-10. A behavior reactive to a change on a value

Chapter 3: UML models execution-Overview and key aspects

68

fUML* subset. An extension to the fUML* semantic model with new semantics is then re-
quired. Refer to section 5.2 for details about the extensions of fUML* with the Chang-
eEvent(syn).
The fUML* subset restrict the scope of the systems we can model and simulate, but at the same
time, they are endowed with features allowing us to expand this scope. The next section ex-
plains how we can address limitations of fUML* regarding the execution of timed and reactive
behaviors.

 Addressing fUML* limitations

 Extending fUML* (F1)

Principle: As stated in the Annex A, the fUML semantic model is built around the visitor pat-
tern. According to this architecture, a natural way of building an extension to the semantic
model is to introduce additional semantic visitors. Two scenarios are possible depending on the
syntactic element SynElt to which the visitor is defined:

• The SynElt is considered by the fUML syntactic subset
In this case, the semantic visitor associated to SynElt in fUML semantic model can be
extended using object oriented mechanisms such as inheritance and polymorphism.

• The SynElt is not considered in the fUML syntactic subset.
In this case, the first common meta-class C between SysElt and a syntactic element al-
ready considered in the fUML subset should be identified. A new visitor is then de-
fined as a specialization to the visitor defined for the meta-class C in the fUML se-
mantic model.

The introduction of new semantic visitors has, as consequence, the definition of an extension
for the definition of new instantiation rules. This implies the extension of the classes:

• Locus(sem): the extension of this element, and therefore its operation instantiate(), is used
when the new visitor is defined as a specialization to Object(sem). A common example is
the definition of an extension to the meta-class Classifier(syn) or one of its specializations.

• ExecutionFactory(sem)
The extension of this element, and therefore its operation instantiateVisitor(), should be
performed when the new semantic visitor cannot be created by the Locus(sem) class. A
common example is the extension of the semantic model with new syntactic elements
for the specification of a Behavior(syn).

Use case example: This extension strategy has been proposed in [40] and was successfully
applied to propose a systematic approach for specifying the execution semantics of UML pro-
files as an increment to preliminary proposals developed in [8]. The most interesting case using
this strategy is the OMG standard PSCS (Precise Semantics of UML Composite Structures), a
normative extension of fUML dealing with the semantics of UML composite structures includ-
ing informative annexes on the semantics of a subset of the MARTE and SysML profiles.

PSCS introduces new syntactic elements and their respective semantics such as Connector(syn)

and Port(syn) in order to allow the communication of composite classes through ports. The se-
mantic model of fUML is, therefore, extended with new semantic elements. PSCS first defines

Chapter 3: UML models execution-Overview and key aspects

69

CS_Object(sem) as a specialization of Object(sem) in the fUML semantic model. This extension is
required in order to allow the representation of composite classes in the locus. Semantics of the
operation calls and the signal reception for communication through ports are defined in the
methods of the CS_Object(sem) class. The definition of new semantic visitors also requires the
definition of the two factories CS_Locus(sem) and CS_ExecutionFactory(sem) as extensions to Lo-
cus and ExecutionFactory classes in the semantic model of fUML respectively. Other than the
semantic visitors and the factories, PSCS defines the class CS_DefaultConstructStrategy(sem) as
a specialization of the SemanticStrategy(sem) of the fUML semantic model. It defines the instan-
tiation strategy of models using composite structures. Figure 3-11 depicts an extract of the se-
mantic model of PSCS.

 Controlling executions (F2)

Principle: The causality resulting from the execution semantics of activities must be respected
by any fUML-compliant execution engine (i.e, a particular implementation of fUML). There-
fore, a fUML-compliant execution engine that intends to provide facilities which are out of the
scope of fUML needs to reroute the usual token propagation flow through external control en-
tities while preserving the original causality. The flexibility of fUML resides in the fact that the
specification does not provide any strict recommendations on how this should be implemented.

Use case example: This generic principle has been used to establish a connection between the
fUML execution engine of Moka and the Eclipse Debug framework. For example, the seman-
tics of activity nodes (captured by the visitor ActivityNodeActivation(sem)) has been overloaded
so that, when they receive offered tokens (operation receiveOffer()), the control is rerouted to-
wards an external control entity. This control entity is responsible for the management of de-
bugging events, as well as the animation of nodes on diagrams. In another experiments, the
same delegation mechanism has been used to produce execution traces, by rerouting through a
tracing entity [18].

Figure 3-11. Extract semantic elements of PSCS as extension to the
fUML semantic model.

Chapter 3: UML models execution-Overview and key aspects

70

Based on these elements, we believe that the limitations of fUML* regarding the execution of
the timed and the reactive behaviors (refer to section 3.2.3) can be handled. The integration of
UML models in FMI-based co-simulation (using the adaptation at master level technique) con-
sists therefore in adapting the fUML* execution semantics to that of the FMI API. Next section
identifies the steps to follow for the integration of fUML* and FMI.

3.3. Outline of the proposed approach

Figure 3-12 depicts a class diagram summarizing the different co-simulation cases we want to
define and simulate. As stated in section 2.4, the adaptation at master level is the most suitable
technique for the integration of fUML* and FMI, where the FMUs are black boxes connected
to the white box UML models. The definition of these cases requires the co-simulation envi-
ronment to be UML tool which provides an implementation of fUML* as well as an implemen-
tation of FMI standard. As stated in the section 3.1.2, no useable solution was found for the
purpose of this work, but UML tools providing support to fUML* do exist. We will then use
one of them and extend it with an implementation of the FMI for co-simulation standard as a
first step of our contribution.

The components execute independently of each other. FMUs are executed with respect to the
FMI API, and UML components execute with respect to the fUML* semantics. As stated in
Chapter 0, the master is then responsible for the orchestration of the components and the syn-
chronization of their simulations as follows:

� The orchestration of the involved components: For this task, the master propagates data
from the outputs to the inputs of the connected components while accounting for their
I/O dependencies, and performs stepwise simulation where it requires equivalent
fUML* routines for the functions defined in the formalization given in section 462.1.1.2
(inst(), init(),doStep(), terminate()),

� The synchronization of the involved components’ simulations: For this task, the mas-
ter bridges the semantic gap between UML models execution semantics and the FMI
API. It provides adaptation of semantics of untimed UML models to timed FMUs se-
mantics, and discrete UML models to continuous time FMUs semantics. For this pur-
pose, the master computes the suitable simulation step size in order to propagate data

Figure 3-12. Composition of FMI based co-simulation cases

Chapter 3: UML models execution-Overview and key aspects

71

and trigger the components at the correct instants. The UML components reflect the
MoC on which it relies, in particular, information about the model of time.

We note that the efficiency of the adaptation between fUML* and FMI depends on the infor-
mation available on the components. That is, for an efficient simulation, it is also necessary to:

� Explicitly express in the UML models information written in bold above in this section,
� Identify for each kind of computational component a minimal set of UML structural and

behavioral syntactic elements to model it. It is also necessary to check whether fUML*
covers the whole set. If not, we need to extend the fUML* with the new syntax and
semantics using the feature F1 and F2 as explained in section 3.2.4.

Figure 3-13 illustrates the steps of the methodology we propose for the integration of the UML
models in FMI-based co-simulation.

3.4. Conclusion

Define modeling rules for computational components modeling

with UML

- Identify UML syntactic element for the modeling of structure and

behavior
- Explicit important information

Provide a basic co-simulation environment

- Choose an UML tool which provides support to fUML*
- Implement the FMI standard (FMU import and master)

Do fUML*
cover all el-

ements
?

Adapting fUML* semantics to that of FMI standard

- identify equivalent fUML* routines to the procedures of
the FMI API

Extend fUML* using

features F1 and F2

Implement an efficient master algorithm

- compute the suitable simulation step size
- propagate data and trigger components at the correct instants

No

yes

Figure 3-13. The proposed approach for the integration of fUML* and FMI

For each kind of UML model we would like to co-simulate

Chapter 3: UML models execution-Overview and key aspects

72

The main goal of this chapter was to identify the key elements for the application of the adap-
tation of semantics at master level technique for the integration of UML models in the FMI-
based co-simulation approach.
We proposed to base our approach on fUML* standards which define precise semantics for
UML models’ execution. fUML* is an interesting basis for the purpose of this work but have
some limitations. We identified the kind of systems we would like to describe, transformational
and reactive systems, in order to determine our specific needs regarding their modeling with
UML and their simulation with fUML*.

Our contribution, which is to properly integrate UML models in FMI-based co-simulation using
the adaptation at master level technique, shall operate at two levels: locally at the level of UML
models (modeling), and globally at the master level (simulation). Locally, for each kind of
computational components models, we shall first identify a set of rules to model it with UML,
and potential extensions to fUML* in cases where execution semantics of the required UML
elements are not defined by fUML*. Globally, we shall propose a master algorithm for the
orchestration and synchronization of each kind of computational components models with a set
of FMI based on the adaptation of the execution semantics of the fUML* to that of FMI API.

In the contribution part, we will begin with a technical contribution which consists of the de-
velopment of a co-simulation environment in a UML-compliant tool in chapter 4. Then, we will
continue with the description of scientific contribution concerning the integration of untimed
and timed UML models in FMI based co-simulation in chapter 5 and chapter 6 respectively.

PART II: ABOUT THE

CONTRIBUTION

We propose an incremental approach where we address various co-simulation scenarios. The
contribution part is organized into three chapters, each of them dealing with a particular co-
simulation scenario as follows:

� Chapter 4: UML-based Master Simulation Tool for modeling and simulation of CPSs
This chapter introduces the framework we set up for the modeling and simulation of
CPS. The framework is based on an implementation of the FMI for co-simulation stand-
ard in a UML-based tool. This framework allows the definition of co-simulation sce-
narios composed of a set of FMUs. It provides capabilities for the import and the con-
nection of FMUs as well as basic and sophisticated master algorithms for their orches-
tration.

� Chapter 5: Integration of untimed UML models in FMI-based co-simulation

This chapter concentrates on the integration of untimed UML models in FMI-based co-
simulation. It aims at enabling the definition of co-simulation scenarios composed of
FMUs and untimed UML components. For each kind of systems, transformational and
reactive, we in turn identify a set of modeling rules for their modeling with UML in the
context of FMI and potential extensions of the fUML* semantic model. The contribu-
tion consists then in adapting the semantics of fUML* with that of the FMI API, as well
as, in proposing an efficient master algorithm for the orchestration and synchronization
of the co-simulation scenarios. The efficiency of the master algorithm relies in particular
on its ability to trigger the execution of each component at the correct instants while
avoiding events missing.

� Chapter 6: Integration of timed UML models in FMI-based co-simulation
This chapter is dedicated to the integration of timed UML models in FMI-based co-
simulation. It aims at enabling the definition of co-simulation scenarios composed of
FMUs and timed UML components. This chapter is organized in the same way as Chap-
ter 5.

74

Chapter 4: UML-based Master Simulation
Tool for modeling and simulation of CPSs

Outline

 4.1.Architecture of the framework

4.1.1. The Graphical User Interface features
4.1.1.1. UML Profile for FMI co-simulation scenarios
4.1.1.2. The import of FMUs for co-simulation
4.1.1.3. The definition of co-simulation scenarios

4.1.2. The MST-engine features
4.1.2.1. Overview
4.1.2.2. A wrapper for FMI
4.1.2.3. The master algorithm

4.2. Validation of the framework implementation
4.2.1. The use case: The TankPISystem

4.2.2. The import of the FMUs and the definition of the co-simulation scenario

4.2.3. The simulation results

4.4. Conclusion

The integration of UML models in FMI-based co-simulation requires a framework compliant
with UML and FMI. This framework shall also provide either the possibility to export UML
models as FMUs for co-simulation, or a master algorithm that is able to orchestrate heteroge-
neous co-simulation scenarios composed of FMUs and UML models. Unfortunately, as stated
in Chapter 0, there is no usable FMI based co-simulation solution that considers UML models.
For this reason, we decided to set up our own co-simulation framework and propose an UML
compliant framework for FMI-based co-simulation. We present the architecture of the frame-
work as well as the main features it offers in section 4.1. Then we validate the framework with
a common CPS example in section 4.2. As a first step, this framework only provides the co-
simulation of a set of imported FMUs. This first step is not part of the scientific contribution
but it is necessary to provide the basis for the experimentation and the validation of the scientific
contributions.
The second step consists in extending this framework for the integration of UML models. As
stated in Chapter 0, we decided not to export our UML models as FMUs for co-simulation.
Instead, we chose to provide a master algorithm responsible for the orchestration of heteroge-
neous co-simulation scenarios composed of FMUs and UML components. This step is per-
formed in Chapters 5 and 6.

4.1. Architecture of the framework

An FMI compliant co-simulation environment shall provide facilities for the import of FMUs
and their connection, and a master algorithm that controls the data exchange between the FMU

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

75

and the synchronization of their simulations based on the FMI API. We propose a master sim-
ulation tool (MST) composed of a graphical user interface (GUI) and a master simulation tool
engine (MST-engine) as depicted in the class diagram of Figure 4-1. The GUI is essentially
responsible for the modeling of CPS composed of imported FMUs. It shall at least provide
facilities for import, configuration and connection of the FMUs.
The configuration of the co-simulation graph (important information about FMUs and the sim-
ulation parameters) are stored in the “MST-configuration” and used later by the MA. The MST-
engine proposes one or many algorithms that are mainly responsible for the orchestration of the
connected FMUs (i.e. data propagation between FMUs and the synchronization of their simu-
lations).

Section 4.1.1 and section 4.1.2 outline essential information, respectively, about the GUI and
the MST-engine features.

 Graphical User Interface features

Some of the facilities offered by the GUI are mandatory. They are those required by any FMI-
based co-simulation environment such as the import and the connection of FMUs. Some others,
such as displaying results in graphics at the end of the simulation, are optional.

In this section, we outline how we implement the mandatory features in a UML-based frame-
work. This section is organized into three subsections that concern the co-simulation profile we
propose for annotation of both the imported FMUs and the co-simulation graph, the import of
FMUs for co-simulation, and the definition of co-simulation scenarios.

 UML Profile for FMI co-simulation scenarios

UML is a generic modeling language whose expressivity gives modelers the ability and free-
dom to use it in many fields of engineering. UML can also be customized for a given domain
thanks to the profile mechanism. Profiles define extensions to enrich the syntax and semantics
of the UML language. Extensions are usually expressed with stereotypes. Each stereotype de-
fines an extension to an element of the UML syntax and owns a set of attributes through which
semantic information can be added.

Figure 4-1. The co-simulation Framework

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

76

A profile is particularly interesting in our work. It allows for the customization of our models
to the co-simulation domain. The MST-engine requires information about the components it
simulates and information about the simulation parameters. The “modelDescription.xml” file
on the FMU contains all these data (refer to Chapter 2 of the state of the art for further details
about the information contained in the xml file of the FMUs). We only need to preserve them
when importing the FMUs in the UML-based framework. We propose an UML profile, the so-
called CoSimML profile, that resumes all these data by mapping them to a set of stereotypes.
These stereotypes are applied both to the co-simulation model and to the imported FMUs and
are illustrated in Table 4-1.

A snapshot of the CoSimML profile is given in Figure 4-2. ‘CS_Graph’ stereotype is used for
the class representing the co-simulation graph, ‘CS_FMU’ stereotype is used for an instance
that represents an imported FMU, while ‘CS_Port’ stereotype designates ports through which
data are propagated from one FMU to another. We also will apply the ‘CS_Dependency’ stere-
otype to the I/O dependency information. This latter is important to expose to the MA in order
to analyze cycles in the co-simulation graph and determine the order in which data should be
get from /set to ports.

Figure 4-2.The Co-simulation Profile

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

77

Table 4-1. Stereotypes of UML profile for FMI.

Stereotype UML
Metaclass

Important
Attributes

Specification

« CS_Graph » Class(syn)

- startTime
- stopTime
- stepSize

Used both to identify the class that rep-
resents the CPS and, to define a prede-
fined configuration for the simulation.

« CS_FMU»

Class(syn) - canHandleVariableCom-
municationStepSize

- canGetAndSetFmuState

Applied to identify an UML class that
represents an imported FMU.
When set to true, canHandleVariable-

CommunicationStepSize and
canGetAndSetFmuState respectively
mean that the FMU can accept different
step sizes and, that the FMU supports
rollback.

«CS_Port »

Port(syn) - causality

Used first to identify the ports through
which the data will be propagated dur-
ing simulation and then, to narrow
down/precise the direction of data
propagation by setting the causality at-
tributes to “in” or “out” value.
The modeler and the MST-engine
should be aware of the flow direction of
each port. This minimizes errors when
connecting the components and ensures
a correct analysis of the dependencies
between components.
Other attributes can be added to avoid
modeling errors such that the unit and a
brief description of the data passing
through the port.

«Parameter»,
«Local», «cal-
culatedParam-
eter»,
and «independ-
ent»

Prop-

erty(syn)
 Are applied to scalar variables respec-

tively of kind parameter, calculated pa-
rameter and independent as defined in
the “modelDescription.xsd” of the FMI
specification.

«Output_De-
pendency»

Depend-

ency(syn)
 Used to identify UML elements that

specify I/O dependencies between out-
puts and inputs of a component.

 Import of FMUs for co-simulation

A co-simulation environment which imports an FMU should preserve information contained in
the model description file and ensure access to the procedures of the dll. The first task requires

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

78

transforming the “modelDescription.xml” file to a model compliant with the modeling formal-
ism supported in the co-simulation environment. The second task requires a wrapper, which
enables access to native code using the programming language supported in the co-simulation
environment. This subsection focuses on the first task. The second task will be explained in
section 4.1.2.2 of this chapter.
 Since the framework we propose is UML-compliant, then all features it proposes rely on UML
concepts. When imported, the FMUs shall be transformed into a set of UML elements. We
propose a model to model transformation using QVTo [31] language as depicted in Figure 4-3.

The QVT transformation maps the model structure of an FMU, described in the “model de-
scription.xml” file, to a UML class and a set of UML dependencies. The class exposes input
and output variables via UML ports and contains a set of UML properties that represent scalar
variables of the imported FMU. The UML dependencies represent the I/O dependency infor-
mation between the output and the input of the model. The co-simulation profile we proposed
previously is applied to the resulting UML model.
Details about the specification of the QVTo transformation are given in annex B.

 Definition of co-simulation scenarios

A co-simulation scenario defines the components making up the CPS and their connections.
The model that specifies a co-simulation scenario is called “Co-simulation Graph”. This model
can be handled using UML composite structure diagram. As stated in the UML specification,
the composite structure diagram could be used to show internal structure of a classifier namely
ports, parts and their relationships [30].
In this chapter, we focus on co-simulation scenarios that are composed of imported FMUs as
depicted in Figure 4-4. The ‘CosimulationGraph’ is the composite class that represents the CPS
and is composed of four parts (the ‘fmuA’, ‘fmuB’, ‘fmuC’ and, ‘fmuD’), which represent im-
ported FMUs (respectively ‘FmuA’, ‘FmuB’, ‘FmuC’ and, ‘FmuD’). Each part has ports that

Instance of

Metametamodel Level

Intermediate Model
“Fmu_name.xmi”

Output Model
Fmu_name.uml
+ Annotations

Model Level

Transformation
Engine

Target Source

Input Model
“Fmu_name.xml”

Transformed
to

Metamodel: Ecore
“Fmi2ModelDescrip-

tion.ecore”

Metamodel + FMIML pro-
file: Ecore
“uml.ecore”

Metamodel Level

Instance of

Meta-Object Facility (MOF)
Metametamodel

(Ecore)

Instance of Instance of

Executes Instance of

Transformation
Specification

Xml2Uml.qvto

Transformation
Language

(QVTo)

Instance of

Uses Uses

Generated
from

Metamodel: xml DTD
“fmi2ModelDescription.xsd”

Instance of

Figure 4-3. FMU to UML model transformation

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

79

represent the interfaces for data exchange. Connectors represent a relationship between two
connected FMUs.
The start time and the stop time, as well as the default step size of the co-simulation, should be
set in the “CS_Graph” stereotype.

 MST-engine features

 Overview

The MST engine is responsible for the synchronization of the imported FMUs. The MST-engine
communicates with the GUI for getting configuration parameters, the properties of the FMUs
composing the CPS and the connected ports at the beginning of the simulation. It then launches
the master algorithm, which takes all this information as input and performs step wise simula-
tion. At the end of the simulation, the MST-engine is responsible for communicating results to
the GUI to display results.

The MA performs calls to dlls contained in the FMUs. A java wrapper for FMI API was imple-
mented to enable calls to native code (i.e. the dll contained in the FMU) from the co-simulation

The GUI

Fmu2
.dll

Fmu3
.dll

Java for FMI Wrapper (java library)

Figure 4-5. FMI-based Co-simulation from UML model to native code

Master Algorithm (MA)

fmu1

« CS_FMU »

fmu2

« CS_FMU »

fmu3

« CS_FMU »

Fmu1
.dll

 JNA

FMU import
Profiling
Assembly

Results display

The MST-

Engine

Physical loca-

tion

Orchestration

« CS_Graph»
CoSimulationGraph

Figure 4-4. An example of a CPS composed of four FMUs in a
UML composite structure diagram

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

80

framework. The developed library is part of the proposed framework and uses the Java Native
Access (JNA)22, which is a community-developed library that provides Java programs easy ac-
cess to native shared libraries. Figure 4-5 illustrates the co-simulation framework from the
UML model connecting the imported FMUs to native calls to the dlls performed by the MA.

 A wrapper for FMI

The framework implements the communication interface defined by the FMI standard, so called
Fmi2Library. This interface provides a representation of all types and functions contained in
the FMI standard API. The Fmu2Proxy implements the Fmi2Library interface as depicted in
Figure 4-6. It performs calls to native code using the JNA library and represents the bridge
between the framework and the dlls. Each class representing an imported FMU should be a
specialization of the FmiProxy.

 Master algorithm

The framework supports both basic and sophisticated MAs. We implemented the two prepro-
cessing algorithms proposed in [12]. The first one is called “variable-order algorithm” depicted
in Figure 4-7.

22 Refer to: https://github.com/java-native-access/jna

Figure 4-6. The FMI standard implementation

/* The algorithm parameters */
Inputs:

P: the port mapping of the co-simulation graph
D: the global dependency relation of the co-simulation graph
U, Y: the set of ports in the co-simulation graph

Output:
X (an ordered list of ports variables) or error

/*Algorithm*/
� Construct a directed graph G where the vertices are represented by the ports

U,Y and the edges are constructed using P and D
� Perform a topological sort on G

 If a cycle is found return error
 Else return X

Figure 4-7. The Variable-order algorithm

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

81

This algorithm is executed before the start of the simulation in order to detect cycles in the co-
simulation model, in which case it doesn’t perform simulation and alert the user. It builds a
global inputs/outputs dependency graph based both on I/O dependency information contained
in the XML files of the FMUs and on connections between FMUs in the co-simulation graph.
This algorithm applies topological sort on this graph (the algorithm is given in Annex D). If no
cycle is detected in the graph, then an ordered list of variables is generated. This list determines
the order in which the information should be propagated from one FMU to another, that is, the
order in which the MA should call fmi2GetXXX and fmi2SetXXX on ports at communication
points.
The second is called the “master step” algorithm depicted in Figure 4-8. It determines the pro-
gress of the simulation in terms of time and state at each simulation step. If the FMUs support
rollback, the MST-engine is able to go back in the time to remake a simulation step in case an
FMU does not succeed to perform a simulation step.

The resulting algorithm is depicted in Figure 4-10. It is well suited for co-simulation scenarios
composed of FMUs which rely on CT MoC and support the rollback feature and expose their
I/O dependencies. However, this algorithm is not suited for heterogeneous scenarios composed

Figure 4-8. The master step algorithm

/*Master step algorithm parameters*/
F: the set of FMUs in the co-simulation graph
P: the ports mapping
X: the ordered list of ports variables

hmaster: simulation step size
hmax: a default simulation step size
/*algorithm*/
� Set the simulation step size to the default one

 hmaster=hmax
� Propagate data
 For each input u in X

y = P(u);
v = getc(y);
setc(u,v);

 End for
� Save the states of all FMUs to enable rollback
� Find a simulation step size h acceptable by all FMUs

For each c ∈ F:
doStepc(hmaster);
If c is not able to perform the stepthen
 h= the last successful time of c;

 hmaster=min(hmaster,h);
 End if;
 End for;
� If (hmaster<hmax) then restore the last state of the FMUs
� Remake the simulation step

 For each c ∈ F:
 doStepc(hmaster);

 End for;

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

82

of FMUs and UML components, since it does not account for the MoCs on which UML com-
ponents rely. In particular, it does not allow zero-time step size and the detection of time events.
Further advanced master algorithms will therefore be proposed in Chapters 5 and 6.

The master itself is expressed in UML: an active Class(syn), so called Master, whose classifier
behavior is represented with a simplified Activity(syn) specifying the algorithm of the co-simu-
lation, the so-called MasterBehavior depicted in Figure 4-9. An instance of this Master class is
integrated in the CoSimulationGraph and is executed by relying on fUML and PSCS semantic
model.

Figure 4-10. The Master algorithm expressed with UML

/*Co-simulation parameters*/
F: the set of FMUs in the co-simulation graph
P: the ports mapping
X: the ordered list of ports variables

tc: Current simulation time
tstart: Start simulation time
tstop: Stop simulation time
hmaster: simulation step size
/*Instantiate and initialize components c ∈ C */
For each component c ∈ C:

Instc();

Initc(tstart, tstop);
/*Step wise simulation*/
Call the ‘variable-order’ algorithm;
While (tc<tstop)
 Call the ‘master-step’ algorithm;
 tc=tc+ hmaster;
end while.
/* Termination of the simulation*/
For each component c ∈ C:

terminatec() ;
end simulation

Figure 4-9. The basic master algorithm for FMUs orchestration enriched
with rollback feature and co-simulation graph analysis

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

83

The MasterBehavior orchestrates the set of UML instances contained in the Cosimula-

tionGraph which represent instances of the imported FMUs. All parts contained in the Cosim-

ulationGraph are composite Class(syn). Therefore, in the locus, they are represented with a
CS_Object(sem) or a specialization of it. As explained previously, the behavioral semantics of
the imported FMUs are captured by the dlls they contain. The instantiateVisitor() shall be over-
ridden in order to represent an FMU with an FmuProxy instance instead of an fUML Ob-

ject(sem) at runtime.
The master is then able to perform the calls to external dlls using the feature F3. Thus, the
activity nodes instantiateComponents, initializeComponents, doStepAndPropagateData, and
terminateSimulation are OpaqueBehavior(syn) whose execution is dispatched to the execution of
the corresponding method in the FMU instance. The extension of the fUML semantic model
with this new visitor implies the definition of a new locus, so called Cosim_Locus(sem), as spe-
cialization of the CS_Locus(sem) as well as a new execution factory, so called Cosim_Fac-

tory(sem), as a specialization of the CS_Factory(sem) (Figure 4-11).

The master is in charge of data propagation by calling fmi2GetXXX and fmi2SetXXX on
FMUs. Calls to these routines update the values of the ports in the virtual memory of the FMUs
but not in the UML CosimulationGraph itself. The update of the values in the CoSimula-
tionGraph during the simulation procures the co-simulation environment with further capabili-
ties such as simulation tracing. The setting and getting of features values in the fUML semantic
model is performed by calling setFeatureValue() and getFeatureValue() respectively on the
Object(sem) class. The setFeatureValue() operation takes as parameters the instance of the
Port(syn), a Value(syn), and the position in which the value will be inserted. The getFeatureValue()
operation takes as parameter the instance of the Port(syn) and the position from which the value
will be get.
Table 4-2.Mapping between formalization functions and wrapper functions

Formalization functions Wrapper functions

getc(y) fmi2Getxxx(y)
c.getFeatureValue(y,0)
Where xxx is one of Real, Integer, Boolean and
String

setc(u,v) fmi2Setxxx(u,v)
c.setFeatureValue(u,v,0)
Where xxx is one of Real, Integer,e Boolean and
String

Figure 4-11. Extensions of the PSCS semantic model for FMI based co-simulation

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

84

4.2. Validation of the framework implementation

 Use case: The TankPISystem

Control systems are an example of CPS. A traditional control problem is the control of the
liquid level in a tank. The ‘TankPI’ is a common example conceived for that purpose. This
example is a cyber physical system composed of a physical part (called Plant) and a cyber part
(called controller) as illustrated in Figure 4-12.
The tank receives a liquid flow produced by a liquid source. These two model elements repre-
sent the physical part of the system. The controller (piContinuous) receives the indication of
the level of the liquid in the tank from the level sensor and returns a control signal to an actuator.
The control signal is computed based on that indication, the amount of liquid received at this
moment, and the capacity of the tank. Based on that signal, the actuator will either activate a
valve to let the water flow out of the tank or deactivate it.

Two FMUs for co-simulation are exported using the simulation Dymola (the
‘TankPI_TanPIController.fmu’ and ‘TankPI_TankPIPlant.fmu’). Both FMUs rely on CT
MoCs. This example is used for the validation of the FMI standard implementation in the frame-
work we propose.

 Import of the FMUs and the definition of the co-simulation scenario

When imported, each FMU is transformed into an UML package. The package contains an
UML Class(syn) representing the structure of the FMU (i.e, parameters, inputs and outputs) and
a set of UML Dependency(syn) representing the potential dependencies of the outputs to the in-
puts of the FMU.
Each class is annotated with « CS_FMU» stereotype. The ports used for data propagation from
one FMU to another are annotated with « CS_Port» stereotype to indicate to the MA the ports
it should use for data propagation (i.e, ports which are not annotated with that stereotype should
not be considered by the MA).
The ‘TankPIController’ FMU has an input port ‘cIn’ which indicates the level of the liquid in
the tank and an output port ‘cOut,’ which represents the instruction of the controller to activate
the actuator or not. The ‘TankPIPlant’ FMU receives the instruction of the controller on its
input port ‘tActuator’ and outputs the level of the liquid in the tank on its output port ‘tSensor’.
It has another output port ‘qOut’ which indicates the amount of liquid flowing out of the tank.

Figure 4-12. The tankPI system and its decomposition

Plant

Controller

« Decomposition and ex-
port of FMUs for co-simu-

lation from simulation tool»

TankPI_
TankPIController

.fmu

TankPI_
TankPIPlant

.fmu

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

85

Figure 4-13 illustrates the import of the FMU ‘TankPI_TankController’ in the proposed frame-
work. It depicts the generated package as well as an extract of the properties of the stereotypes
« CS_Port» and « CS_FMU».

The imported FMUs are connected in the UML composite structure ‘CosimulationGraph’
(Figure 4-14). The simulation starts at t=0 and terminates at t=200 with a step size h=0.01.
These parameters are indicated in the « CS_Graph» stereotype.

 Simulation results

The co-simulation scenario is simulated in simulation tool Dymola23 (a simulation tool which
provide an implementation of the FMI for co-simulation standard) as well as in the proposed
framework. The simulation results in the proposed framework are the same that obtained in
Dymola. This comparison confirms the validity of the implementation presented in this chapter.

Results of the co-simulation in Dymola as well as in the proposed framework are depicted re-
spectively in Figure 4-15 and Figure 4-16. A demo is also available online.24

23 Refer to: https://www.3ds.com/dymola/
24 Refer to: https://www.youtube.com/demoFMICoSimulation

Figure 4-14. The definition of the co-simulation scenario of the TankPI system

«Composition of FMUs
in the framework»

Figure 4-13. The import of the TankPI_TankPI_FMU in the framework

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

86

Figure 4-15. Execution results in the proposed Dymola

Figure 4-16.Execution results in the proposed framework

Chapter4: UML-based Master Simulation Tool for modeling and simulation of CPSs

87

For instance, the framework offers FMI-based co-simulation of a set of imported FMUs (phys-
ical components). This is the basis for the integration of UML models (computational compo-
nents) in FMI-based co-simulation. The extension of this framework for the support of UML
models is the discussed in Chapters 5 and 6.

4.3. Conclusion

In this chapter, we introduced the framework we propose for FMI-based co-simulation of CPS.
We listed features of each part of the framework, in particular the GUI and the MST-engine.
The GUI is responsible for the definition of co-simulation scenarios using imported FMUs. The
MST-engine is responsible for providing the MAs for FMUs’ orchestration and the required
libraries which enable it to perform calls to FMI API procedures.
For instance, we only provide an implementation of the FMI specification in an UML compliant
tool. A CPS model connects a set of FMUs and their simulation is totally based on FMI.
In next chapters, this framework will be extended for integration of UML models in which case
a CPS model connects FMUs representing the physical components with UML models, which
represent the cyber part of the system.

88

5. Chapter 5: Integration of untimed UML
models in FMI-based co-simulation

Outline

5.1. Untimed Models of Transformational Systems
5.1.1. Modeling rules for integration in FMI co-simulation

5.1.1.1. Model Structure and behavior
5.1.1.2. Applied stereotypes

5.1.2. Adapting fUML execution semantics to FMI API
5.1.2.1. Instantiation and initialization
5.1.2.2. Stepwise simulation and data propagation
5.1.2.3. Termination

5.1.3. Pseudocode of the master algorithm
5.1.4. Experience on a representative example

5.1.4.1. Definition of the simulation scenario
5.1.4.2. The simulation of the co-simulation scenario

5.2. Untimed models of reactive systems
5.2.1. Modeling rules for integration in FMI co-simulation

5.2.1.1. Model Structure and behavior
5.2.1.2. Applied stereotypes

5.2.2. Extension of fUML semantics
5.2.3. Adapting fUML execution semantics to FMI API

5.2.3.1. Instantiation and initialization
5.2.3.2. Stepwise simulation and data propagation
5.2.3.3. Termination

5.2.4. Pseudocode of the master algorithm
5.2.5. Experience on a representative example

5.2.5.1. Definition of the simulation scenario
5.2.5.2. The simulation of the co-simulation scenario

5.3. Conclusion

This chapter deals with the integration of untimed UML models in FMI-based co-simulation
approaches. It is organized into two main parts: the first one focuses on untimed UML models
of transformational systems, and the second focuses on untimed UML models of systems reac-
tive to environmental changes. For each kind of systems, we define a set of modeling rules and
potential extensions to fUML, in the case where fUML does not cover all UML syntactic ele-
ments. Then we map untimed semantics of fUML to timed semantics of FMI. This mapping
enables the MST-engine to coordinate the imported FMUs and the untimed UML models by
adapting its behavior to the kind of the model it simulates. Section 5.1 and section 5.2 deal with
untimed UML models’ integration, respectively of transformational systems and reactive sys-
tems.

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

89

5.1. Untimed Models of Transformational Systems

 Modeling rules for integration in FMI co-simulation

Model structure and behavior

A transformational system model must specify the logical structure of the input and output data,
and the algorithm that computes the transformation. We refer to transformational systems prop-
erties to define a set of requirements that the UML model should satisfy. Then, we refer to UML
specification to identify the appropriate set of UML syntactic elements for transformational
systems modeling. We try to remain as close as possible to fUML* (i.e, the subset of UML
elements for which an execution semantics is defined) in order to minimize the efforts related
to the extension of fUML* with new semantics.
Table 5-1 depicts a mapping between the model requirements and syntactic UML elements
based on the system properties.

Table 5-1. Mapping of transformational systems properties to UML modeling concepts

System property Model requirement UML concept

P1: Activation
A transformational system
runs computations only when
asked by another component.

R1: The behavior of the class
representing the system shall
be called to execute some
computations.

C1: Passive Class(syn) with at
least one Operation(syn) and no
Property(syn)

P2: Behavior
A transformational system’s
computations are not inter-
rupt-driven, and are usually
sequential and terminating.

R2: The behavior of the class
representing the system shall
specify a sequence of actions
(i.e, corresponding to compu-
tations), and shall not wait for
any event to occur and should
terminate.

C2: Activity(syn) as implemen-
tation of an operation

P3: Output/input relationship
A transformational system’s
output is defined in terms of
its input.

R3: The structure of the class
representing the system shall
provide interfaces through
which it accepts and outputs
data,

C3: Port(syn)
C4: ReadStructuredFeature-

Action(syn) and AddStructured-

FeatureAction(syn)

R4: The output depends on
the input.

C5: UML directed Depend-

ency(syn)

The rest of this section gives a review about the aforementioned UML concepts as defined in
UML specification [30] and argues the choice of this set of syntactic elements for transforma-
tional systems modeling.

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

90

An instance of a passive class executes within the context of some other object, that is, it waits
for another object to call it. A passive class has a behavior defined by its operations (C1). There-
fore, the behavior of a passive class only starts when one of its operations is invoked and ter-
minates when this operation returns. fUML* restrict the behaviors modeling to activities, which
may describe procedural computation (C2).
The structure and the behavior of the environment are not particularly important for transfor-
mational systems. However, an interface is required to acquire sufficient information to produce
the output. Port(syn) (C3) provides a way to model interfaces of an object through which it
receives input data and produces output data.

Note that a transformational system is stateless. As a result, a UML model of a transformational
system must not have properties (Property(syn)) other than ports.
ReadStructuralFeatureAction(syn) and AddStructuralFeatureAction(syn) (C4) are actions which
enable it to respectively retrieve and add values from/to a structural feature. Therefore, an ac-
tivity that specifies the behavior of a transformational system calls ReadStructuralFeatureAc-

tion(syn) on the input port to retrieve the input value which will be passed as a parameter to a
sequential flow of actions (i.e, the computations) and finally calls addStructuralFeatureAc-

tion(syn) to write the result of the transformation on the output port. Information related to the
dependency between the output and the input is particularly important to model. It is used by
the MST-engine to analyze the co-simulation model, and then to determine the order and the
instants at which it should propagate data from one component to another. That means that the
output port requires the input port for its specification. This kind of relationship is expressed in
UML with Dependency(syn) (C5), which proposes a way to express a supplier - client relation-
ship between model elements. The supplier provides something to the client, and thus the client
(i.e, the output port) is in some sense incomplete while being dependent on the supplier (i.e, the
input port).

fUML defines precise execution semantics to concepts C1, C2, and C4. Port(syn) (C3) does not
belong to the fUML* subset but a little extension to the fUML* semantic model was imple-
mented. fUML* are especially appropriate for the execution of untimed sequential behavior
which fits the data flow MoC. The concept C5 is used only to provide extra static information
related to the structure of the model, that is, no semantics are required to be defined for this
element. Therefore, the fUML semantic model can be used as it is for simulation of untimed
models of transformational systems.

UML models are annotated with new stereotypes in order to enable the MST-engine to recog-
nize, in particular, the MoC on which the component it relies and then to adapt its behavior.
The following section identifies important information that an untimed model of a transforma-
tional system need to expose and, extends the co-simulation profile (presented in section
4.1.1.1) by adding new stereotypes to the co-simulation profile.

 Applied stereotypes

This section enumerates the stereotypes we will apply to an untimed UML model of a transfor-
mational system in order to expose important information to the MST-engine. Table 5-2 illus-
trates these stereotypes and their semantics. Important information of an untimed model of

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

91

transformational system concerns, the MoC on which it relies, the computations to execute and
the direction of ports and their dependencies. The new stereotypes extend the co-simulation
profile we presented in Chapter 4 where ‘CS’ stands for co-simulation.

Table 5-2. Stereotypes to apply for an untimed model of transformational systems

Stereotype UML meta-class Semantics

« CS_Untimed » Class(syn) Used to indicate that the class has no
semantics of time.

« CS_Port »

Port(syn) Identifies ports which should be
considered by the MST-engine for
data propagation.

« CS_Operation »

Operation(syn) Applied to one, and only one, opera-
tion of the model. It enables the
MST-engine to identify the opera-
tion to invoke during a simulation
step (the operation specifying the
behavior of the system).

« CS_Dependency » Dependency(syn) Used to identify UML elements that
specify I/O dependencies between
an outputs and inputs of a compo-
nent.

Figure 5-1 depicts an example of an untimed model of a transformational system.

The ‘Transformation’ class is a passive Class(syn) that represents the transformational system
structure. The class owns an input port ‘in’, an output port ‘out’ and an operation ‘transform()’.
This operation is the one that represents the computations performed by the system and that
should be called by the MST-engine during a simulation step. The activity ‘TransformOpera-

tionImpl’ is the specification of the operation ‘transform()’. It is composed of three action

Figure 5-1. An untimed model of a transformational system: structure and behavior

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

92

nodes: ‘read in’, ‘transform’, and ‘set out’. The ‘read in’ and ‘set out’ nodes are, respectively,
a ReadStructuredFeatureAction(syn) on the input port and an AddStructuredFeatureAction(syn)
on the output port of the ‘Transformation’ class which enable to get/set the values from/to ports.
The ‘transform’ node is a CallBehaviorAction(syn), which is a specific action that invokes an-
other behavior. The invoked behavior is specified by the activity ‘ASimpleTransformation’. It
takes an integer as input, computes a multiplication by two and returns the result. The choice to
encapsulate the computations of the system in a CallBehaviorAction(syn) ensures that there is
only one computation node in the activity that implements the operation and thus, simplifies
the activity and makes it usable as a sample for future examples. This model will be used later
in this chapter in a representative example (in section 5.1.4) for the co-simulation of an untimed
UML model of a transformational system with an imported FMU.

 Adapting fUML* execution semantics to FMI API

The execution of untimed UML models for transformational systems relies on the Data Flow
MoC. Their execution is purely causal and do not consider any notion of simulated time as state
in section 1.1.2.1. These semantics are covered by fUML*. The execution of the FMUs, on the
contrary, continuously depends on time. This difference raises an untimed vs timed semantics
issue.
This section focuses on that issue and proposes adaptation of semantics between execution se-
mantics of UML models defined by fUML* and semantics of FMI. It is organized into three
subsections following the formalization of co-simulation given in section 2.1.1.2. It refers to
the semantic model of UML models introduced in Annex A and gives equivalent routines in
the fUML execution semantics for each function defined in the formalization.

 Instantiation and initialization

According to fUML specification, when a simulation is launched, the instances of the elements
in the UML model are automatically created, initialized and then placed in the locus. The in-
stantiation result is the instance of the class ‘Transformation’ and the instances of all its features
(i.e, the input port, the output ports, and the operation ‘transform ()’) in the locus.
No time semantics² are supported in the UML model. Thus, the initialization only sets the fea-
tures values with default values in the model.
Below in Table 5-3 are given the equivalent routines in the fUML semantic model which cor-
respond to the instantiation and initialization functions in the FMI API:

Table 5-3. fUML routine for instantiation and initialization of an untimed model of a transfor-
mational system

Formalization functions fUML or PSCS semantic model

instc() c.locus.instantiate()

initc() Features values are automatically initialized with
values in the model during their instantiation.

 Stepwise simulation and data propagation

The behavior of a passive class is not automatically started after its instantiation. At each sim-
ulation step, the MST-engine launches the activity implementing the operation which defines

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

93

the computations of the transformational system. It first calls the dispatch() operation of the
Object(sem) class, which dispatches the given operation to a method execution. Then by calling
the execute() operation of the ActivityExecution() class, the dispatch operation takes as param-
eter the operation annotated with the « CS_Operation » stereotype. The activity of a passive
object does not wait for any event to occur to propagate control from one activity node to an-
other. Therefore, once launched, the whole activity is executed. The doStepc() function corre-
sponds to the execution of the whole activity associated with the operation.
At the end of a simulation step, the MST-engine propagates data from one port to another in
the co-simulation model and synchronize the different components. The MST-engine considers
the I/O dependency that exists between the output port and the input port of a transformational
system. This dependency means that the input must be set before the computation of the output.
The preprocessing algorithm “variable-order algorithm”, presented in section 4.1.2.3, is exe-
cuted before the beginning of the simulation. It takes into consideration the I/O dependencies
of the UML component and generates the order in which the outputs/inputs of the co-simulation
model should be get/set. The question is: at which instant must the data be propagated to the
environment of such untimed models? The response is directly related to the step size used for
the execution of these models.
Consider a simulation scenario connecting a set of FMUs with one or more untimed UML mod-
els of transformational systems. Let hFMU be the step size of the FMUs, hUML be the step size of
the UML components, and hMATSER be the step size chosen by the master to perform the co-
simulation.
The absence of time makes the situation ambiguous. Two possibilities are identified:

� The computations are assumed to take time to execute. Since the model does not provide
exact information, one can assume that the computations run for a time equal to the step
size used for the FMUs. In this case, the simulation step size for the UML component
is the same as for the FMUs hUML=hFMU. For a simulation step starting at tc, all compo-
nents are simulated with the same step size hMaster=hFMU and data are propagated at tC+
hMaster= tC+hFMU. It corresponds to the traditional behavior of a master algorithm. This
alternative is unsatisfactory when the computations run for a longer or a shorter duration
than hFMU.
Let d>=0 be the duration taken by the computations in reality. For a simulation step of
size hFMU starting at tc, three situations are possible:

o d=hFMU: this is the ideal situation, the outputs are computed and propagated at
tC+d = tC+hFMU.

o d>hFMU: the outputs are actually produced at tC+d, and therefore at tc+hFMU<tc+d

the outputs are supposed to be absent, which is not respected when using a step
size hFMU <d and may considerably affect the reliability of the simulation results.

o d<hFMU: the outputs are produced at tc+d and propagated at tc+hFMU>tc+d, there-
fore data are propagated with a delay of hFMU-d, which also affect the accuracy
of the simulation results.

� The computations are assumed to take zero time to execute. The output of the UML
component should be, therefore, available and propagated in the co-simulation model at
tC. As a result, each time an UML component is met, the master sets the value of its

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

94

input port, executes a doStepc() of size hUML=0 on the component, and gets the value of
its output before executing and advancing time in the FMUs.
The master adapts the simulation step size to the kind of the component being simulated,
that is, hMASTER=hFMU for the FMUs and hMASTER=hUML=0 for UML components. In ad-
dition, UML models are simulated at the beginning of a simulation step before the
FMUs. This alternative is not satisfactory because the duration of the computations is
not considered. However, this choice covers the case where the duration of the compu-
tations is almost equal to zero.

In both cases, the impact of the choice on the simulation results and on the decisions to make
depends on the properties of the system under design. For the rest of this section, we will con-
sider the second alternative. First because it covers a particular use case (i.e. the instantaneous
transformational systems), and second because of the direct dependency which exists between
the outputs and the inputs of the component.

Below in Table 5-4 are given the equivalent routines in the fUML* semantic model which
correspond to the stepwise simulation and data propagation functions in the FMI API.

Table 5-4. fUML routines for stepwise simulation and data propagation of an untimed model
of a transformational system

Formalization functions fUML or PSCS semantic model routines

doStepc(0) c.dispatch(operationToExecute).execute();

setc(inPort,value) c.setFeatureValue(inPort,value)

getc(outPort) c.getFeatureValue(inPort)

Termination

The termination of an Object(sem) corresponds to the termination of its behavior. The execution
of an activity representing an Operation(sem) is automatically terminated when the result is re-
turned.

Below in Table 5-5 is given the equivalent routine in the fUML semantic model which corre-
sponds to the termibation function in the FMI API:

Table 5-5. fUML routines for termination of an untimed model of a transformational system

Formalization functions fUML or PSCS semantic model

terminatec() do nothing

 Pseudocode of the master algorithm

In order to account for these adaptations, we need to enrich the MST-engine with a new master
algorithm that orchestrates a set of imported FMUs with one or more untimed UML models for
transformational systems. The pseudocode of this latter is given in Figure 5-2. This algorithm
can be enriched with the rollback functionality as done in the master algorithm orchestrating a
set of FMUs. In fact, the transformational systems are memoryless. The produced outputs only
depend on the current inputs. Therefore, in case where the master needs to remake a simulation

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

95

step, this only requires that all FMUs support rollback capabilities. The master can therefore
save and then restore the previous states of the FMUs when needed. For the UML components,
there is no particular computations to perform since no notion of system state exists.

 Experience on a representative example

Definition of the simulation scenario

The representative example consists of the definition and the simulation of a co-simulation sce-
nario composed of an FMU, so-called ‘Inc’ provided by the FMU SDK25, and an untimed UML

25 www.qtronic.de/fmusdk

/*Co-simulation parameters*/
tc: Current simulation time
tstart: Start simulation time
tstop: Stop simulation time
hFMU: simulation step size of the FMU
hUML=0 : simulation step size of an untimed UML component
X: U∪Y : set of ordered ports variables computed by “Variables-order” algorithm
C= F ∪	UU where UU: the set of untimed UML classes
/*Assumptions*/
On the co-simulation graph: no cycles exist in the co-simulation model, the co-simulation graph
is composed of a set of FMUs and one or more untimed UML models
On UML components: zero step size is allowed
On the FMUs: no particular assumptions
/*Instantiate and initialize components c ∈ C */
for each component c ∈ C:

instc();
if c ∈ F
 initc(tstart, tstop);
end if;

/*Step wise simulation*/
while (tc<tstop)
 for each input u in X
 y = P(u); //returns the output ‘y’ linked to the input ‘u’ in the co-simulation graph
 v = getc(y);
 setc(u,v);
 if c ∈	UU //c is the one which has u as input
 doStepc(hUML);
 end if;
 end for
 for each c in F

doStepc(hFMU); 	
 end for;
 tc=tc+ hFMU;
end while.
/* Termination of the simulation*/
for each component c ∈ C:

terminatec() ;
end simulation

Figure 5-2. Pseudocode of a master algorithm for a Co-simulation graph connecting FMUs
with untimed UML model of a transformational system.

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

96

model of a transformational system, the so-called ‘Transformation’ represented in section
5.1.1.2 (Figure 5-3).
The part ‘inc’ in the figure below represents the FMU ‘Inc.’ It has no inputs, and only one

integer output ‘counter.’ It increments the counter at each instant ‘t+n’ where n∈N and uses a
step of size ‘h=0.5’. The counter is therefore incremented after two calls to ‘doStep()’ on the
‘Inc’ FMU. The value of the ‘counter’ is propagated to the input ‘in’ of the ‘untimedTransfor-
mation’ component.

The ‘untimedTransformation’ component in Figure 5-3. Co-simulation graph connecting an
imported FMU to an untimed model of a transformational system represents the class ‘Trans-
formation’ defined in section 5.1.1.2. The red arrow indicates the direct dependency of the out-
put port ‘out’ to the input port ‘in’ of ‘Transformation’ class. The expected behavior of the
‘untimedTransformation’ component is that it will output a result at the same time it receives
values on its input port, that is, the result must be computed and output before the time advances
in the ‘inc’ component.

The co-simulation scenario will be simulated from ‘tstart=0’ to ‘tstop=10’ with a default simula-
tion step size ‘hmaster=0,5’ as indicated in the ‘CS_Graph’ stereotype. The simulation results are
given in the next subsection.

Simulation of the co-simulation scenario

Figure 5-4 and Figure 5-5 depict simulation results of the co-simulation scenario defined in the
previous subsection using, respectively, the basic master (defined in the FMI standard in section
2.1.2) and the advanced master algorithm proposed in section 5.1.3.

Using the basic master algorithm given in section 2.1.2 (where the simulation step size hmas-

ter=hFMU>0 for all components), we notice a delay between the instant at which the inputs arrive
to the ‘untimedTransformation’ component (tin=2) and the instant at which this latter produces
the corresponding output (tout=2,5) (Figure 5-4). This delay is introduced at all simulation steps
from the beginning to the end of the simulation.

Figure 5-5 demonstrates that this delay does not exist when using the master algorithm we
proposed in section 5.1.3. The outputs are in fact produced at the same time as the inputs’ arrival
(tin=tout) from the beginning to the end of the simulation which corresponds to the expected
behavior.

Figure 5-3. Co-simulation graph connecting an imported FMU to an untimed model of a
transformational system

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

97

5.2. Untimed models of reactive systems

d=0.5

tin : instant of the arrival of the input,
tout: instant of the propagation of the output,
d=tout-tin: the delay between the reception of the input
and the production of the corresponding output.

tin tout

Figure 5-5. Co-simulation results of an untimed model of a transformational system-
Advanced master

d=0

tin

 tout

tin : instant of the arrival of the input,
tout: instant of the propagation of the output,
d=tout-tin: the delay between the reception of the input
and the production of the corresponding output.

Figure 5-4. Co-simulation results of an untimed model of a transformational system-
Basic master

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

98

 Modeling rules for integration in FMI co-simulation

Model structure and behaviors

A model of a reactive system must contain, in addition to the logical behavior of the system,
the elements that ensure interaction with the environment. By contrast to transformational sys-
tems, reactive systems are in continuous interaction with the environment. Therefore, they al-
ways wait for some inputs to which they output a reaction.

Similar to what we do for transformational systems modeling with UML, we refer to reactive
systems properties to define a set of requirements that the UML model should satisfy. Then, we
refer to UML specification to identify the appropriate set of UML syntactic elements for mod-
eling of reactive systems.

Table 5-6 depicts a mapping between the model requirements and syntactic UML elements
based on reactive systems properties.

Table 5-6.Mapping of reactive systems properties to UML modeling concepts

System property Model requirement UML concept

P1: Activation
A reactive system constantly
interacts with its environ-
ment.

R1: The behavior of class
representing the system shall
be active from the beginning
of the simulation and should
wait for some stimuli on its
input port to continue pro-
cessing.

C6: Active Class(syn) with a
classifier behavior.

P2: Behavior
Reactive system computa-
tions are interrupt driven and
are usually non-terminating.
The system should react to
external stimuli and produce
the correct actions to the en-
vironment.

R2: The behavior of the class
shall specify a stimuli/re-
sponse behavior.

C2: Activity(syn) representing
the classifier behavior
C7: AcceptEventAction(syn)
triggered by a Chang-

eEvent(syn).

P3: Input/output relationship
Reactive system outputs de-
pend on the external stimuli
it receives as well as on the
current state of the system.

R3: The structure of the ob-
ject shall provide interfaces
through which it accepts and
outputs data.

C3: Port(syn)
C4: ReadStructuredFeature-

Action(syn) and AddStructured-

FeatureAction(syn).

The rest of this section serves as a reminder about the UML concepts C6 and C7 as defined in
UML specification [30] and argues the choice of these syntactic UML elements for reactive
systems modeling.

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

99

An instance of an active Class(syn) is an object that begins to execute its behavior as soon as it
is created and does not cease until either the complete behavior is executed or the object is
terminated by some external object. The points at which an active object responds to commu-
nications received on its ports is determined by its behavior and not by the invoking object. An
active object has a behavior defined as its classifier behavior.
The designer needs techniques for specifying stimulus-reaction behavior. Reactive behaviors
modeling is handled by a specific UML action, the AcceptEventAction(syn). This action is intro-
duced in UML to handle the processing of events during the execution of a behavior. It waits
for the occurrence of an event meeting a specified condition to continue execution. In particular,
the occurrence of a ChangeEvent(syn) is based on some condition becoming true, which meets
the semantics of stimuli. An AcceptEventAction(syn) triggered by a ChangeEvent(syn) is then well
suited for the modeling of stimuli-response behavior of a reactive system.
fUML defines the execution semantics of behaviors designed with activities and associated to
active classes as a classifier behavior (C6), but not for the change events. An extension to fUML
is then required and will be detailed in section 5.2.2.

Similar to imported FMUs and untimed models of transformational systems, an untimed model
of a reactive system must expose information about its MoC. Section 5.2.1.2 outlines the set of
stereotypes we will apply to an untimed model of a reactive system.

Applied stereotypes

Table 5-7 illustrates the stereotypes used for an untimed UML model of a reactive system and
gives the semantics of each of them. These stereotypes have been already introduced in section
4.1.1.1.

Table 5-7. Stereotypes to apply for an untimed model of reactive systems

Stereotype UML meta-class Semantics

« CS_Untimed » Class(syn) Indicates that the class has no seman-
tics of time.

« CS_Port »

Port(syn) Identifies ports which must be consid-
ered by the MST-engine for data
propagation.

A simple example of an untimed reactive system is depicted in Figure 5-6.‘Controller’ is an
active Class(syn) that represents the reactive system structure. The class owns an input port ‘in’,
an output port ‘out’ and a classifier behavior ‘ControllerClassifierBehavior’. The classifier be-
havior describes the dynamics of a system. It controls the value of the input to produce some
effect on its environment. It is specified with the activity ‘ControllerClassifierBehaviorImpl’.
This activity is composed of four action nodes: ‘change on in’, ‘read in’, ‘control’ and ‘set out’.
The activity first waits for a change in the input port value represented by the 'change on in’

node which is an AcceptEventAction(syn) triggered by a ChangeEvent(syn) related to the port ‘in’.
Once a change is detected, the control is propagated in the activity. The ‘read in’ and ‘set out’

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

100

nodes respectively, are a ReadStructuredFeatureAction(syn) on the input port and an AddStruc-

turedFeatureAction(syn) on the output port of the ‘Transformation’ class which enable to get/set
the values from/to ports. The ‘control’ action node is a CallBehaviorAction(syn). This specific
action is used to simplify the activity and make it usable as a basis for future examples. The
behavior called by this action is specified by the activity ‘ASimpleControl’. This takes an inte-
ger as input, compares it to a threshold value and returns a boolean result. This model will be
used later in this chapter in a representative example in section 5.2.5 for the co-simulation of
an untimed UML model of a reactive system with an imported FMU.

 Extension of fUML semantics

fUML considers the AcceptEventAction(syn) triggered by a SignalEvent(syn) but not one triggered
by a ChangeEvent(syn). The fUML should be extended in both syntax and semantics. The syntax
subset should be enriched by the syntactic element ChangeEvent(syn). The semantic model
should then provide semantic elements to capture the semantics brought by this new syntactic
element. Following the visitor pattern explained in Chapter 3, this implies:
� The introduction of a new visitor ChangeEventOccurence(sem) as a specialization of the

EventOccurence(sem) class in the fUML semantic model. It represents a single occurrence
of a ChangeEvent(syn). The change event occurrences are placed in the event pool of the
ObjectActivation(sem).
The occurrence of a change event is based on some expression becoming true. The expres-
sion is checked continuously or at specific instants so that each time the value of the ex-
pression changes from false to true, a change event is generated. As stated in the UML
specification: “It is a semantic variation when the change expression is evaluated. For

example, the change expression may be continuously evaluated until it becomes true. It is

further a semantic variation whether a change event remains until it is consumed, even if

the change expression changes to false after a change event.” [30]

Figure 5-6. An untimed UML model of a reactive system: structure and behavior

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

101

In the context of FMI, we are interested in detecting a change on the value of a specific
input port. We, therefore, propose to evaluate the condition when values of input ports are
set by the MSt-engine. The ChangeEventOccurence(sem) concerns a specific feature repre-
sented by changedProperty attribute. A change event is generated when the new value
(newValue) of the feature changes compared to the former one (formerValue).

� The definition of a new visitor AcceptChangeEventActionEventAccepter(sem) as a
specialization of AcceptEventActionEventAccepter(sem). This event Accepter handles events
reception on behalf of a specific accept event action activation waiting for a change event
occurrence.

� The definition of a new visitor AcceptChangeEventActionActivation(sem) as a specialization
of CS_AcceptEventActionActivation(sem) together with a new execution factory U4Co-

simExecutionFactory(sem) as a specialization of CosimExecutionFactory(sem). The instanti-

ateVisitor() operation is overridden to take into account the AcceptChangeEventActionAc-

tivation(sem) visitor. The latter is associated with the AcceptChangeEventActionEventAc-

cepter(sem). The operations match() and accept() for change event instances should behave
as it does for signal event instances, except that the event should correspond to a Chang-

eEventOccurrence(syn) instead of a SignalEventOccurrence(syn).

Figure 5-7 depicts a class diagram of the new semantic elements required to capture the seman-
tics of an accept event action triggered by a change event.

 Adapting fUML execution semantics to FMI API

The execution semantics of untimed UML models for reactive systems corresponds to the exe-
cution cycle of reactive synchronous MoC introduced in Chapter 1. The behavior is activated
at a discrete set of instants which corresponds to events arrival instants. No notion of simulated
time exists. Thanks to the extension introduced in the previous section, this MoC is now sup-

Figure 5-7. Semantic elements which capture semantics of change events

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

102

ported. The execution of the FMUs, on the contrary, continuously depends on time. This dif-
ference raises an untimed vs timed semantics issue, as well as a discrete event vs continuous
time issue.
This section focuses on these issues and proposes adaptation of semantics between execution
semantics of UML models and semantics of FMI. It is organized into three subsections follow-
ing the formalization of co-simulation. It refers to the extended semantic model introduced in
the previous section and gives equivalent routines for each function defined in the formaliza-
tion.

Instantiation and initialization

When the simulation is launched, the instances of the elements in the UML model are automat-
ically created, initialized and then placed in the locus. The instantiation result in the locus of
the model depicted in Figure 5-6 is an instance of the class ‘Controller’ represented with an
Object(sem), a representation of all its features and its classifier behavior.
The classifier behavior is started as soon as it is created. However, in FMI context, the behavior
should start when the simulation effectively starts (i.e. at the first call of the doStep() function).
The ObjectActivation(sem) should be created but not started at this stage. Therefore, the startBe-

havior() operation of the Object(sem) class must be overridden to support these new semantics.
Table 5-8 illustrates the equivalent routines in the fUML semantic model which correspond to
the instantiation and initialization functions in the FMI API.

Table 5-8. fUML routines for instantiation and initialization of an untimed model of a reactive
system

Formalization functions fUML or PSCS semantic model

instc() c.locus.instantiate();

initc() Features values are automatically initialized with
values in the model during instantiation

Stepwise simulation and data propagation

As stated in chapter 3, the execution of active classes relies on Run-To-Completion semantics.
When an event is dispatched from the event pool by calling the dispatchNextEvent() operation,

the match() operation checks whether or not an AcceptChangeEventActionEventAccepter(sem)
waiting for that event exists. If so, the accept() operation propagates the control as far as pos-
sible until encountering a new blocking node. In the example given in Figure 5-6, the classifier
behavior is supposed to wait for a change on the input port value. Once a change is detected,
the control is propagated in the activity and, then, the object returns to wait for a future change
on the input port value.
The absence of time information leads to an ambiguous situation regarding the instant at which
the data must be propagated in the co-simulation model. Similar to an untimed model of a
transformational system, two possibilities are identified:

� The reaction to a received stimulus is instantaneous. This means that the component takes
zero time to execute and that the output must be immediately available and propagated in
the co-simulation model. As a result, each time an UML component is met, the master

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

103

sets the value of its input ports, executes a doStepc() of size zero on the component, and
gets the value of its outputs before executing and advancing time in the FMUs.

� The reaction to a received stimulus is differed. This means that the component takes time
to compute or, that the reaction is intentionally delayed because the environment is not
waiting for an imminent response. However, the model does not provide exact infor-
mation about the instant of this reaction. A default simulation step size (which is that used
for the FMUs) is used in this case and data are propagated at the same time for all com-
ponents. The master algorithm calls doStepc() of size hFMU on all components in the co-
simulation model, then propagates data which corresponds to the traditional behavior of
the master algorithm.

The instant at which the data is propagated is therefore a semantic variation point. We propose
to consider the first alternative since it is closer to the properties of reactive systems.
The value of an observed port is set only if the new value is different from the old value. If so,
a new ChangeEventOccurrence(sem) is created and added to the event pool of the ObjectActiva-

tion(sem).

Table 5-9. fUML routines for stepwise simulation and data propagation of an untimed model
of a reactive system

Formalization func-
tions

fUML or PSCS semantic model

doStepc(h) if (firstSimulationStep) then
 c.actionActivation.startBehavior();
end if;
if (c.objectActivation.eventPool.size() > 0) then
 c.actionActivation.dispatchNextEvent();
else
 do nothing;
end if;

setc(inPort,value) if (c.inPort.oldValue != value) then
 c.setFeatureValue(inPort,value);
 if (inPort.observed) then
 evt=new changeEventOccurrence(inPort,c.inPort.oldValue, value);
 c.objectActivation.eventPool.add(evt);
 endif;
else
 doNothing;
endif;

getc(outPort) c.getFeatureValue(inPort);

 Termination

The behavior of reactive systems does not terminate only if a problem occurs or the termination
is enforced. Therefore, the behavior of an active class is supposed to run infinitely. The execu-
tion of its behavior (the classifier behavior) is handled by the ObjectActivation(sem) class. The

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

104

termination of the latter may be forced by calling the operation stop(), which will terminate all
classifier behavior executions. At the end of the co-simulation, all instances in the locus are
automatically destroyed.

Table 5-10. fUML routines for termination of an untimed model of a reactive system

Formalization functions fUML or PSCS semantic model

terminatec() c.objectActivation.stop();

 Pseudocode of the master algorithm

The pseudocode of the MA we propose for the co-simulation of untimed UML models of reac-
tive systems in FMI context is the same as given in Figure 5-2 and with the same assumptions.
However, the rollback functionality cannot have been provided for this scenario. In fact, the
outputs produced by reactive systems depends on the current inputs and may also depend on a
previous state of the system. Unfortunately, the semantics of saving and restoring the state of
an UML model execution (all the locus and the current position in the activity) are not yet
supported in the current implementation. This capacity is very important in co-simulation. How-
ever, since it requires some effort and time to implement it, it is planned as an extension for this
work.

 Experience on a representative example

Definition of the simulation scenario

The representative example consists of the definition and the simulation of a co-simulation sce-
nario composed of an FMU, the so-called ‘Inc’ (the same used in the section 5.1.4), and an
untimed UML model of a reactive system, so-called ‘Controller’ presented in section 5.2.1.2.
The ‘inc’ component in the Figure 5-8 is an instance of the imported FMU ‘Inc’. For this sce-
nario, we will use a default step size ‘h=1’ instead of ‘h=0,5’ since we are interested, for reac-
tive components, by the instants at which the value of the counter changes. The counter, in fact,
is incremented each one unit of time.

The value of the ‘counter’ is propagated to the input ‘in’ of the ‘untimedController’, an instance
of the ‘Controller’ class defined in 5.2.1.2. The expected behavior of the ‘untimedController’
component is an instantaneous reaction when the value of the counter reaches the ‘treshold=4’.
The reaction consists in swithching the value of the output ‘out’ from ‘false’ to ‘true’. That is,

Figure 5-8.Co-simulation graph connecting an imported FMU to an untimed model of a
reactive system

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

105

if the threshold is reached at time‘tin=4’ then the ‘untimedController’ should react at
‘tout=tin=4’.
The co-simulation scenario will be simulated from ‘tstart=0’ to ‘tstop=10’ with a default simula-
tion step size ‘hmaster=1’ as indicated in the ‘CS_Graph’ stereotype. The simulation result are
given in the next subsection.

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

106

Simulation of the co-simulation scenario

Figure 5-9 and Figure 5-10 depict simulation results of the co-simulation scenario defined in
the previous subsection using respectively the basic master (as defined in the FMI standard in
section 2.1.2) and the advanced master algorithm we proposed in section 5.2.4.

Figure 5-10. Co-simulation results of an untimed model
of a reactive system - advanced master

d=1

tin : instant at which the threshold is reached,
tout: instant at which the new setpoint is propagated,
d=tout-tin: the delay between the two instants

tin : instant at which the threshold is reached,
tout: instant at which the new setpoint is propagated,
d=tout-tin: the delay between the two instants

d=0

tin tout

tin

 tout

Figure 5-9. Co-simulation results of an untimed model
of a reactive system - basic master

Chapter 5: Integration of untimed UML models in FMI-based co-simulation

107

Using the basic master algorithm given in section 2.1.2 (where the simulation step size hmas-

ter=hFMU>0 for all components), we notice a delay between the instant at which the inputs arrive
at the ‘untimedController’ component (tin=4) and the instant at which this latter react to the
change of the input value (tout=5) (Figure 5-9).

Figure 5-10 demonstrates that this delay does not exist when using the master algorithm we
proposed in section 5.2.4. The reaction of the ‘untimedController’ is in fact produced at the
same time as the input value changes (tin=tout=4) which corresponds to the expected behavior.

5.3. Conclusion

In this chapter, we focused on the integration of untimed UML models in FMI-based co-simu-
lation. For each kind of systems identified in the classification of section 3.2.1 (transformational
and reactive systems), we provided rules for their modeling with UML in the context of the
FMI standard, an adaptation between the execution semantics of UML models and the FMI
API, and a master algorithm for the orchestration and synchronization of FMUs and UML com-
ponents. The adaptation we proposed tackles, in particular, the semantic gap between untimed
semantics of fUML* and timed semantics of FMI.
In the next chapter, we will deal with timed UML models where the behaviors described in this
chapter are refined for the introduction of time information. As done for this chapter, we will
provide rules for modeling this information in UML models, an adaptation between timed exe-
cution of UML models and FMI API, and master algorithms for synchronization of FMUs and
UML components.

108

6. Chapter 6: Integration of timed UML
models in FMI-based co-simulation

Outline

6.1. Timed models of transformational systems

6.1.1. Modeling rules for integration in FMI co-simulation
6.1.1.1. Model Structure and behavior
6.1.1.2. Applied stereotypes

6.1.2. Adapting fUML semantics to FMI API
6.1.2.1. Instantiation and initialization
6.1.2.2. Stepwise simulation and data propagation
6.1.2.3. Termination

6.1.3. Pseudocode of the master algorithm

6.1.4. Experience on a representative example
6.1.4.1. Definition of the simulation scenario
6.1.4.2. The simulation of the co-simulation scenario

6.2. Timed models of reactive systems

6.2.1. Modeling rules for integration in FMI-based co-simulation
6.2.1.1. Model Structure and behavior
6.2.1.2. Applied stereotypes

6.2.2. Extension of fUML semantics
6.2.2.1. The DE scheduler
6.2.2.2. The fUML extension

6.2.3. Adapting fUML execution semantics to FMI API
6.2.3.1. Instantiation and initialization
6.2.3.2. Stepwise simulation and data propagation
6.2.3.3. Termination

6.2.4. Pseudocode of the master algorithm

6.2.5. Experience on a representative example
6.2.5.1. Definition of the simulation scenario
6.2.5.2. The simulation of the co-simulation scenario

6.3. Conclusion

Time is a major concern when executing models for simulation purpose. The absence of time
information in the system model considerably affects the simulations correctness when the goal
is to verify the workflow duration of a system, or the correctness of its behavior when placed
in a time-driven environment. Specifically, in the context of CPSs co-simulation, the computa-
tions are part of the system and are connected to physical components that continuously evolve
in time. Their co-simulation should account for time properties of these components in order to
produce correct results.

Chapter 6: Integration of timed UML models in FMI-based co-simulation

109

In the previous chapter, we identified a set of rules for the modeling of the structure and the
behavior of transformational and reactive systems. However, the models we specified were
untimed. This chapter focuses on timed UML models. We first identify important time infor-
mation to model for each kind of systems by referring to their properties. Then we refer to UML
syntax to identify a minimal subset to specify timed behaviors.

6.1. Timed models of transformational systems

 Modeling rules for interation in FMI co-simulation

Model structure and behavior

A transformational system always executes the same behavior. This behavior, as stated in the
previous chapter, is invoked, executed and then terminated at each simulation step. The pro-
duced outputs, in fact, only depend on the received inputs and do not consider the previous
states of the system. These properties lead to the following conclusions:

A timed model of a transformational system does neither maintain information about the

elapsed simulation time nor maintain information regarding the instants at which the simula-

tion starts and finishes.

The outputs are produced once at the end of the activity execution. Therefore, in timed simula-
tion, we essentially need to specify the duration of the entire activity.

As a result, the only important information we need to specify in a timed model for a transfor-
mational system is how much time computations take to run.

Table 6-1 exposes two alternatives to model this information in a timed UML model of the
transformational system.

Table 6-1. Time modeling in UML models of transformational systems

Time information to
model

Model requirement UML concept

How much time computa-
tions take to execute?

The behavior must specify du-
rations of computation nodes
in the activity.
Or

The model must expose infor-
mation about the execution
duration of the whole behavior

C8: DurationConstraint(syn) on
Action(syn) for computation ac-
tions.
Or

A Property(syn) ‘stepSize’ in
the « CS_Timed» stereotype.

The first solution to model time on UML models consists in specifying the duration of the
computations on the actions composing the activity. UML standard proposes a model of time
which allows to represent time and durations, as well as actions to observe the passing of time.
This alternative requires an extension of fUML* syntax and semantics as well as a control entity
which is responsible for the execution of timed actions (i.e, pausing and resuming the execution
at the right time) and for the time advancement locally in the component. In timed simulations,
the control entity maintains information about the simulation start time and stop time as well as

Chapter 6: Integration of timed UML models in FMI-based co-simulation

110

the current simulation time. However, as stated previously, a model of a transformational sys-
tem is not constrained to consider any notion of local and global time. It does not maintain
information about the elapsed simulation time and the instants at which the simulation starts
and finishes. This solution is therefore not well suited for the simulation of timed UML model
of transformational systems. It will be explained further in the section 6.2.1 for time represen-
tation in reactive systems models.

The second solution consists in specifying the duration of the computations by adding an at-
tribute ‘stepSize’ in the stereotype « CS_Timed». This stereotype will be applied to the class
representing the transformational system (refer to section 6.1.1.2 of this chapter). The attribute
‘stepSize’ represents the duration of the whole behavior. Since the behavior is executed at each
simulation step, this information corresponds to the step size of the model in the context of
FMI. This solution does not require further extensions to the fUML* syntactic subset. The mas-
ter can directly access the information before invoking the behavior of the component and com-
pute the suitable step size to use. However, this solution does not ensure exact simulation results
when there is more than one execution path (e.g. existence of alternatives or loops which depend
on the inputs). Consider for example the behavior in the Figure 6-1. According to the value of
the input ‘in’ (true or false), two execution paths are possible (‘compute1’ or ‘compute2’). Sup-
pose that ‘compute1’ takes 4 units of time and that ‘compute2’ takes 5 units of time. In such
cases, the ‘step size’ cannot always indicate the exact execution duration of the behavior. A
choice strategy can be defined for the specification of the ‘step size’. One can choose the best
or the worst execution duration of the behavior, or also an average of the different execution
durations.

For the rest of the work, we choose the second solution. We suppose that the ‘step size’ of a
UML model of a transformational system is the longer duration the component could take to
compute.

Applied stereotypes

The FMI profile is extended with a new stereotype: the « CS_timed » stereotype. This stereo-
type is applied to all active classes whose behaviors are timed to the master in order to account
for the delay between the invocation of the active class behavior and the production of the
outputs. Table 6-2 recapitulates the stereotypes we must apply in a timed model of the
transformational system.

Figure 6-1. Two-path behavior

Merge
Node

Decision

Node

Chapter 6: Integration of timed UML models in FMI-based co-simulation

111

Table 6-2. Stereotypes to apply for a timed model of transformational systems

Stereotype Property UML meta-
class

Semantics

« CS_Timed »

StepSize Class(syn) Used to indicate that the class supports
time semantics.
The ‘stepSize’ property indicates to the
master the amount of time taken by the
component to produce a new output. It
represents the step size of the component
in the context of FMI.

« CS_Port »

 Port(syn) Identifies the ports which should be con-
sidered by the MA for data propagation.

« CS_Operation »

 Operation(syn) Applied to one, and only one, operation of
the model.
It enables the MST-engine to identify the
operation that specifies the behavior of the
system, therefore the operation to invoke
for a simulation step.

The model given in the previous chapter for a simple transformational system is refined to
introduce time. Figure 6-2 depicts a simple example of a timed model for a transformational
system where both alternatives for time modeling are illustrated. For the rest of this section, we
will consider the second alternative.

Figure 6-2. A timed model of a transformation system

Second alternative

First alternative

Chapter 6: Integration of timed UML models in FMI-based co-simulation

112

 Adapting fUML semantics to FMI API

The execution of timed UML models for transformational systems relies on the Data Flow
MoC. In fact, when time is expressed using the second alternative, the execution of the behavior
is still purely causal and do not consider any notion of simulated time. The time information,
however, should be considered by the master to compute the suitable simulation step size.
This section focuses on how the master manage the integration of timed UML models with
FMUs. Adaptation of semantics between execution semantics of UML models defined by
fUML* (data flow) and semantics of FMI was already proposed in section 5.1.2. In this section
we will demonstrate how the master will, in addition, account for time information expressed
in UML models. It is organized into three subsections following the formalization of co-simu-
lation given in section 2.1.1.2. It refers to the semantic model of UML models introduced in
AnnexA and gives equivalent routines in the fUML* execution semantics for each function
defined in the formalization.

Instantiation and Initialization

The instantiation and initialization routines are the same for the untimed models of transforma-
tional systems as illustrated in Table 6-3.
Table 6-3. fUML routines for instantiation and initialization of a timed model of a transforma-
tional system

Formalization functions fUML or PSCS semantic model

instc() c.locus.instantiate()

initc() Features values are automatically initialized with
values in the model during their instantiation

Stepwise simulation and data propagation

The master algorithm must account for the fact that the UML components are timed. As stated
before, the duration of the activity executed when this component is invoked corresponds to the
step size of that component. Transformational systems operate at their own rhythm, that is, no
outputs could be retrieved before the end of the activity execution (the outputs are absent before
the end of the activity execution). In FMI context, absent inputs (and therefore, absent outputs)
are not allowed. An efficient master algorithm should not invoke functions related to data prop-
agation between components (i.e, getc() and setc() functions), except at times when the values
are present, and thus, should not perform a doStep() call with a step size smaller than the dura-
tion taken by the component to compute. Otherwise, a default value or an old value will be
propagated which affect the correctness of the simulation results.
Consider a co-simulation scenario connecting an FMU to a timed UML model of a transforma-
tional system. Let hUML>=0 be the step size of the UML component, hFMU the simulation step
size of the FMUs, and hMASTER the step size chosen by the master for the co-simulation. For a
simulation step starting at t=tc:

� If hUML=0 then hMASTER=0 for the UML components and hMASTER=hFMU for the FMUs.
The outputs of the UML components are immediately propagated to the FMU when
new data are available on its input ports as done for untimed UML models in Chapter
4. That is, they are produced and propagated at tC. The outputs of the FMU are produced
and propagated at tC+hFMU.

Chapter 6: Integration of timed UML models in FMI-based co-simulation

113

� If hUML>0 then:
o If hUML=hFMU then hMASTER=hFMU =hUML,
o If hUML<hFMU then two alternatives are possible:

- hMASTER=hUML: the outputs of the UML component are computed and propa-
gated at t=tc+hMASTER=tc+hUML.

- hMASTER=hFMU: the outputs of the UML component are computed at t=tc+hUML
and propagated at t=tc+hMASTER=tc+hFMU with a delay of hMASTER-hUML.

o If hUML>hFMU then two alternatives are possible:
- hMASTER=hUML: the outputs of the UML component are computed and propa-

gated at t=tc+hMASTER=tc+hUML.
- hMASTER=hFMU: the outputs of the UML component are not yet computed at

t=tc+hMASTER=tc+hFMU. Since the FMI standard does not allow absent values,
then default values must be specified for all UML component outputs.

We believe that the computational components execution is almost instantaneous but precision
is important in case where the systems under design are time critical. We assume that
0<=hUML<=hFMU. According to the analysis made above, hMASTER=hUML which ensures the
propagation of new output values without any delay.

Suppose now that the co-simulation model includes two timed UML components of transfor-
mational systems C1 and C2, and an FMU. Let hUML1>=0 and hUML2>=0 be the step sizes of C1
and C2 respectively, and hFMU the step size of the FMU>0. Two situations are possible:

� hUML1=hUML2: This scenario is equivalent to the previous one,
� hUML1<>hUML2 then suppose that hUML1<hUML2 :

o hMASTER=max(hUML1,hUML2)=hUML2: the outputs of C2 are computed and propagated
at t=tc+hMATSER, wheareas the outputs of C1 are computed t=tc+hUML1 and propa-
gated with a delay of hMASTER-hUML1.

o hMASTER=min(hUML1,hUML2)=hUML1: the outputs of C1 are computed and propagated
at t=tc+hMATSER whereas the outputs of C2 are not yet computed. Since the FMI
standard does not allow absent values, then default values must be specified for all
UML component outputs.

Both alternatives leads to non-precise simulation results. The presence of new values on
outputs of the components with a little delay ensures at least that these values are really
produced by the system, whereas default values are just predictions. Then, hMASTER=
Max({hC, c ∈ UT}) where UT is the set of timed UML components of transformational
systems.

Table 6-4 illustrates the mapping between the formalization functions and fUML routines for
stepwise simulation and data propagation of timed UML model of reactive systems.

Table 6-4.fUML routines for stepwise simulation and data propagation of a timed model of a
transformational system

Formalization functions fUML or PSCS semantic model routines

doStepc(hUML) c.dispatch(operationToExecute).execute();

setc(inPort,value) c.setFeatureValue(inPort,value)

getc(outPort) c.getFeatureValue(inPort)

Chapter 6: Integration of timed UML models in FMI-based co-simulation

114

Termination

The termination routines are the same as for the untimed models of transformational systems.
They are illustrated in Table 6-5.

Table 6-5. fUML routines for termination of an untimed model of a transformational system

Formalization functions fUML or PSCS semantic model

terminatec() do nothing.

 Pseudocode of the master algorithm

/*Assumptions*/
On the co-simulation graph: no cycles exist in the co-simulation model, the graph connects a set of
FMUs with a timed UML model of a transformational system
On UML components: zero step size allowed,
On the FMUs: the step size proposed by the master algorithm is accepted by all FMUs,
/*Co-simulation parameters*/
tc: Current simulation time , tstart: Start simulation time , tstop: Stop simulation time
hC: the step size of the component being simulated
hMASTER: the co-simulation step size

X: U∪Y : set of ordered ports variables computed by “Variables-order” algorithm
C= F ∪	TU where TU: the set of timed UML components of transformational systems
/*Instantiate and initialize components c ∈ C */
for each component c ∈ C:

instc();
if c ∈ F
 initc(tstart, tstop);
enf if;

/*Step wise simulation*/
hMASTER=Max({hC, c ∈ TU})
while (tc<tstop)
 for each input u ∈ X
 y = P(u);
 v = getc(y);
 setc(u,v);
 if (hC = 0)
 doStepc(0);
 end if;
 end for
 for each c ∈ C

if (hC > 0)
 doStepc(hMASTER);
 end if;
 end for;
 tc=tc+ hMASTER;
end while;
/* Termination of the simulation*/
for each component c ∈ C:

terminatec() ;
end simulation

Figure 6-3. Pseudocode of a master algorithm for a Co-simulation graph connecting FMUs
with timed models of a transformational system.

Chapter 6: Integration of timed UML models in FMI-based co-simulation

115

The MST-engine is enriched with a new master algorithm depicted in Figure 6-3 which orches-
trates a set of imported FMUs connected to one or more timed UML models of a transforma-
tional systems. In this algorithm, we suppose that the FMUs always accept the simulation step
size proposed by the master and that UML models are allowed to have a zero simulation step
size. The master waits for all UML components to finish their computations before propagating
the new outputs

 Experience on a representative example

 Definition of the simulation scenario

The representative example consists of the definition and the simulation of a co-simulation sce-
nario composed of an FMU, the so-called ‘Inc’ (the same used in the section 5.1.4), and an
timed UML model of a transformational system, so-called ‘Transformaiton’ presented in sec-
tion 6.1.1.2. The ‘inc’ part in Figure 6-4 represents the imported FMU ‘Inc’. For this scenario,
we will use the default step size ‘h=0,5’.

The value of the ‘counter’ is propagated to the input ‘in’ of the ‘timedTransformationr’, which
represents ‘Transformation’ class defined in section 6.1.1.2. The expected behavior of the
‘timedController’ component is to output a result after ‘0,5’ unit of time it receives values on
its input port.

The co-simulation scenario will be simulated from ‘tstart=0’ to ‘tstop=10’ with a default simula-
tion step size ‘hmaster=0,5’ as indicated in the ‘CS_Graph’ stereotype. The simulation results are
given in the next subsection.

 Simulation of the co-simulation scenario

Figure 6-5 and Figure 6-6 depict simulation results of the co-simulation scenario defined in the
previous subsection using respectively, the basic master (defined in the FMI standard in section
2.1.2), and the advanced master algorithm proposed in section 5.1.3.

With a default step size ‘hmaster=hUML=hFMU=0,5’ we obtain the same simulation results using
both master algorithms.

Figure 6-4.Co-simulation graph connecting an imported FMU to an timed model of a
transformational system

Chapter 6: Integration of timed UML models in FMI-based co-simulation

116

6.2. Timed models of reactive systems

 Modeling rules for integration in FMI-based co-simulation

 Model structure and behavior

A reactive system outputs a reaction when some conditions become true. Controllers are typical
examples of such systems. Here, we provide brief examples of reactive systems where modeling
of time information becomes essential:

Figure 6-5. Co-simulation results of a timed model
of a transformational system-Basic master

Figure 6-6. Co-simulation results of a timed model
of a transformational system-Advanced master

Chapter 6: Integration of timed UML models in FMI-based co-simulation

117

- A system may produce a reaction immediately (instantaneous response) or waits for
some time before producing a reaction to a received stimulus (differed response). We
take as an example, a system that controls the level of a liquid in a tank (similar to that
described in Chapter 4). The controller receives information about the level of the liquid
in the tank and should provide control commands to the plant based on this information:

o If the liquid approaches the maximum allowed level and the flow of liquid is
high, then it must immediately order to open a valve to evacuate the tank.

o If the liquid approaches the maximum allowed level and the liquid flow is low,
then it should order to open the valve after some amount of time.

- A system may need to output some commands at a precise instant. For example, in
smart houses, it may need to configure the heater controller to activate the heater at six

p.m. and deactivate it at four a.m. The heater controller could be further configured to
stop the heater for fifteen minutes if the temperature reaches the maximum allowed
value.

- A system that periodically executes some task. For example, the mailing system that
updates the inbox every 5 minutes.

The syntactic UML elements related to the modeling of change events received on input ports
of a reactive system was identified in the previous chapter in section 5.2.1.1. In this chapter, we
focus on expressing time on the behaviors of reactive systems in order to model differing reac-
tions to change events received on input ports and also, to model reactions to time events. For
this, we need to identify how UML activities represent expressions written in bold. We distin-
guish two kinds of actions for the modeling of timed reactive systems activities:

- Computation actions which execute some operations. The execution can take time to
execute (e.g, for fifteen minutes).

- Synchronization actions which wait for a precise instant to propagate the control (e.g,
at six p.m., after some amount of time and also immediately). A timed behavior
should be able to express time instants at which these actions should fire.

Table 6-6 recapitulates rules for timed behavior modeling of reactive systems.

Table 6-6.Time modeling with UML for transformational systems

Time information to model Model requirement UML concept

i.How much time computa-
tions take to execute?

The behavior must specify
durations of computation
nodes

C8: DurationConstraint(syn)
on Action(syn) for computation
actions.

ii.Time instants for synchro-
nization of executions

The behavior must specify
instants at which synchroni-
zation nodes must fire

C9: AcceptEventAction(syn)
triggered by a TimeEvent(syn)

for synchronization actions.

Chapter 6: Integration of timed UML models in FMI-based co-simulation

118

UML standard proposes a model of time which enables the representation of time in the applic-
ative models. The latter comprises meta-classes to represent time and durations, as well as ac-
tions to observe the passing of time. It introduces numerous concepts of time modeling, but we
identified a minimal subset of UML syntactic elements sufficient to express required time in-
formation.

i. When associated with an Action(syn), a DurationConstraint(syn) (C8) indicates that the
execution duration of this action can take a duration between two boundaries defined as a Du-

rationInterval(syn). We note the duration interval ‘[dmin, dmax]’ where ‘dmin’ and ‘dmax’ are
of type Duration(syn) and specify the minimum and maximum action execution duration, respec-
tively.
On actions, a DurationConstraint(syn) can be specified as a localPreCondition or a localPost-

Condtion. Local pre-conditions and local post-conditions are constraints that should hold when
the execution starts and completes, respectively. They hold only at the point in the flow that
they are specified. A DurationConstraint(syn) expressed on an action means that the duration at
the end of the action execution must be between the minimum and the maximum durations
defined in the duration interval ‘[dmin, dmax]’. Therefore, this constraint should be specified
as a localPostCondition of the action. The choice of the duration taken during the execution of
the behavior is a semantic variation point. One can always choose the minimum duration or the
maximum duration as a strategy. A random choice of the duration between the two boundaries
can also be the defined strategy in which case we need an observation to know which duration
is finally taken by the action. Another alternative is to specify the same duration for both bound-
aries (dmin=dmax), which allows for the constraint of the duration of the action execution to
an exact amount of time.
The CallBehaviorAction(syn) is a call action that invokes a behavior. The argument values are
passed on the input parameters of the invoked behavior. In a synchronous call, a CallBehav-

iorAction(syn) waits until the execution of the invoked behavior completes and the values of
output parameters of the behavior are placed on the result output pins. The invoked behavior
represents the computation of the system. The choice to encapsulate the computations of the
system in a CallBehaviorAction(syn) ensures that there is only one computation node in the ac-
tivity that implements the operation for which a DurationConstraint(syn) will be specified.

ii. The AcceptEventAction(syn) is a particular kind of actions used to represent a synchroni-
zation point by waiting for the occurrence of a particular event. A TimeEvent(syn) (C9) specifies
a point in time at which an event occurs. When associated to an AcceptEventAction(syn), a time
event specifies the instant at which the action should be effectively executed. As constrained
by the fUML specification, this kind of actions is only allowed in behaviors associated to an
active Class(syn) (i.e. in classifier behaviors). Time events are specified by an Expression(syn).
This may be absolute, in which case the actions occur at a date that is known from the beginning,
or relative to some other point in time, when the action occurs sometime after the execution of
a previously encountered node in the execution flow. An absolute time trigger is specified with
the keyword ‘at’ followed by an expression that evaluates to a time value, such as ‘at 7a.m.’. A
relative time trigger is specified with the keyword ‘after’ followed by an expression that eval-
uates to a time value, such as ‘after 5 seconds’.

Chapter 6: Integration of timed UML models in FMI-based co-simulation

119

 Applied stereotypes

The « CS_timed » stereotype is applied to all computational components whose behaviors are
timed. This stereotype was already introduced in section 6.1.1.2 but a new property, so-called
‘NextEventTime’, is added. Table 6-7 recapitulates all stereotype that should be applied to a
timed model of a reactive system as well as their important properties, while reviewing their
semantics.

Table 6-7.Stereotypes to apply for a timed model of reactive systems

Stereotype Properties UML meta-
class

Semantics

« CS_timed »

NextEventTime Class(syn) Used to indicate that the class sup-
ports time semantics.
The ‘nextEventTime’ property will
be used to indicate to the master the
next time at which the component
will produce new outputs.

« CS_port »

 Port(syn) Identifies the ports which should be
considered by the MA for data prop-
agation.

Figure 6-7. A simple example of a timed model of a reactive system

At initialization (t=0)
(At t=the instant at which the

treshold is reached)

Chapter 6: Integration of timed UML models in FMI-based co-simulation

120

Figure 6-7 illustrates the use of an AcceptEventAction(syn), the so-called ‘after(0,25)’, triggered
by a time event. The TimeEvent(syn) has a relative time stamp of 0,25 units of time. The ‘af-
ter(0,25)’ is a synchronization action which is used to delay the setting of the output by 0,25
units of time when the execution of the action ‘>’ returns ‘true’ (i.e, when the input ‘in’ exceeds
the value of four).

 Extension of fUML semantics

Reactive systems receive events and produce reactions at discrete instants. The associated
behaviors progress at events occurrences. Since the behavior is timed, each event occurrence
may be given a time stamp corresponding to the instant at which it occurs. Events may be
internal events (i.e, time events representing the completion of some processing or the end of
waiting time) or external events (i.e, arrival of a new value on the input port of the system). A
timed behavior of a reactive system is therefore the execution of a sequence of events. We
recognize the DE MoC semantics.
As stated in Chapter 3, the fUML execution model is agnostic about time semantics (M2). It
does not provide a control entity which appropriately schedules the execution of the various
model elements in order to reflect the timing aspects (M3) . The construction of the DE MoC
on fUML consists in overcoming these two shortcomings using the mechanisms introduced in
the Chapter 3, namely the extensibility of the fUML semantic model (A1) and the control
delegation (A2), as follows:

� Extending fUML with the UML syntactic elements identified previously in section
6.2.1.1., and with new semantics brought by these elements. New execution semantics
shall provide the logic for interpreting time representation on activities.

� Providing a control entity, so-called DE scheduler, responsible for the scheduling of
the model elements execution in order to reflect time aspects using the control delega-
tion mechanism as explained in section 3.2.4.2.

In order to understand how the DE MoC can be constructed on the fUML semantic model, we
refer to the principles of DE simulation. Section 6.2.2.1 sgives an overview of the key concepts
of DE simulation, then represents the implementation of the DE scheduler in our framework
and its interaction with the fUML semantic model. Section 6.2.2.2 focuses on the extension of
the fUML syntax and semantics.

DE scheduler

Adiscrete event simulation engine must rely on one of the three DE simulation approaches (also
called world-views) commonly used in the literature [27]: event-scheduling approach, activity-
scanning approach, and process iteration approach. The event-scheduling world-view, so called
Event-driven, focuses on events and is suited to the simulation of timed behaviors of reactive
systems. The behavior is represented as a discrete chronological sequence of events. These
events are arranged on a list called future event list (FEL) in a chronological time order as
described in Figure 6-9. tc is the current simulation time and Etc is the event being executed.
The execution of an event consists in updating the system state by pulling it from the event pool
and executing actions that are associated with it if that exists. Once Etc is executed, the first
event to execute in the FEL is Etci, referred to as the imminent event. The execution of an event

Chapter 6: Integration of timed UML models in FMI-based co-simulation

121

may generate new events which should be pushed in the FEL. For example, in Figure 6-9.
Events order in the FEL the execution of Etci+1 generates an event Etk where tk is the time stamp
of the event and ti+1< tk <tn which should be inserted at the right place in the FEL.

The DE simulation relies on a variable time advance, that is, when an event is executed, the
simulation clock is advanced to the time of the imminent event in the FEL. The DE simulator
is responsible for advancing simulation time and guaranteeing that events are executed in the
correct chronological order. Both tasks are based on the FEL. They are usually implemented in
an event scheduling/time advance algorithm as illustrated in Figure 6-8. Algorithm of discrete
event simulation.

The implementation of the DE scheduler is independent of the fUML semantic model. It is
implemented using the control delegation mechanism using the aspect (A2). Figure 6-10 depicts
an UML class diagram of the implementation of this scheduler in our framework. The latter
(represented with the DEScheduler class) maintains a list of events, the FEL, ordered according
to their relative time. It behaves as described in the scheduling algorithm presented previously
in Figure 6-8. Algorithm of discrete event simulation. At the beginning of the simulation, the
scheduler is initialized with the simulation parameters (i.e, start time and stop time of the sim-
ulation).

Next imminent event

Etc => Eti => Eti+1 => … => Etn

 Etk Current time event

New event generated during
execution of Eti+1

Figure 6-9. Events order in the FEL

1. Start of simulation
a. Initialize clock to 0,
b. Schedule initial events,
c. Initialize state variables

2. While FEL not empty
a. Remove the imminent event (Eti) from the FEL (Eti � Eti+1)
b. Advance the clock from tc to ti (tc � ti)
c. Execute Eti
d. Generate future events Etk, if exist, and place their event notices

on FEL in the correct position on the FEL according to time tk
3. End of simulation

Note that more than one event may occur at the same time (i.e. more than one
imminent event Eti) in which case the scheduler should pull all imminent events
from FEL (step 2.a.) before advancing time then execute and generate future
events of all of them.

Figure 6-8. Algorithm of discrete event simulation

Chapter 6: Integration of timed UML models in FMI-based co-simulation

122

A simulation step consists of pulling and executing the imminent events from the FEL, and
updating the currentTime. The scheduler gives deterministic semantics to the execution of sim-
ultaneous events, that is, if there are two or more imminent events with the same time stamp,
then all are pulled from the event list and executed at the same time. Each event is associated
to a set of SchedulerAction. This set indicates the action to execute by the scheduler before (the
preRunAction) or after (the postRunAction) the execution of an event.

The execution of timed activities is handled by the DE scheduler. It is independent from the
fUML syntax and semantics, but it is in interaction with the timed activity nodes activations
during the execution. The latter is responsible for the ordering of the events in the FEL and their
execution by resuming the execution flow of the activity at the correct instants. Once a timed
fUML Action(syn) is encountered, the execution should be suspended (the operation suspend()
of the corresponding ActionActivation(sem)) before sending offers to the next node in the activity.
A SchedulerEvent, whose time stamp corresponds to the instant at which the execution of this
action node will be resumed, is pushed in the FEL.

Figure 6-10. The DE scheduler model

:DEScheduler :SchedularAction :Timed_ActionActivation :Event

new SchedulerAction()

new Event()

a

Ek

Push(Ek,a)

advanceTime()
t = ti

t = tk
execute()

pull(Ek)

pull(Ei)

advanceTime()
t = tk+1

insert(Ek)

resume()

suspend()

X

t = tc

Figure 6-11. Interaction description of the DE scheduler with a semantic ele-
ment capturing the execution semantics of a timed activity action

Chapter 6: Integration of timed UML models in FMI-based co-simulation

123

 The SchedulerAction associated with this event consists in resuming the execution of this ac-
tion node (the operation resume() of the corresponding ActionActivation(sem)) when the event is
pulled from the FEL. Figure 6-11 illustrates the interaction between the DE scheduler and the
semantic visitor Timed_ActionActivation(sem). This semantic visitor implements the semantics
of a timed Action(sem).

 fUML extension

The extension of the fUML semantic model requires the definition of a new locus Timed_Lo-

cus(sem), new semantic visitors, as well as a new execution factory Timed_ExecutionFactory(sem)
responsible of the instantiation of these visitors as follows:

� Timed_Locus(sem)
This new locus extends the Locus(sem) of the fUML semantic model to account for objects
representing the classes annotated with the “CS_Timed” stereotype and relying on DE MoC.
These objects are represented in the locus by Timed_Object(sem) type.

� New semantic visitors
The new semantic visitors are in charge of transforming time information expressed on actions
into time events in the FEL, as well as rerouting the control to the DE scheduler when a time
event is scheduled. Listed here are the most important semantic visitors required for enabling
the execution of timed behaviors:

o Timed_Object(sem)
This type represents an instance of an active Class(syn) to which CS_Timed stereotype is
applied and for which new semantics are defined to account for time. It is a specialization
of the Object(sem) semantic visitor. The behavior of a Timed_Object(sem) is controlled by a
Timed_ObjectActivation(sem), a specialization of ObjectActivation(sem) as depicted in Figure
6-12. Timed_ObjectActivation(sem)should ensure that the activity is not automatically
started when a Timed_Object(sem) is instantiated. This task is performed by disabling the
event dispatch loop and scheduling an event at t=0 in the FEL. The scheduler action asso-
ciated to this event corresponds is responsible for resuming the activity execution and thus,
for its starting.

o Timed_ActionActivation(sem)
Time expressed on Action(syn) indicates relative or absolute instants at which events should
be scheduled in the FEL. These instants correspond to the end of a processing or a wait
action and therefore the instants at which the tokens should be propagated in the activity.

Figure 6-12. Extension of behavioral semantics for timed execution:
Object and ObjectActivation

Chapter 6: Integration of timed UML models in FMI-based co-simulation

124

The operation responsible for tokens propagation is sendOffers(). The latter should be re-
defined to capture new semantics of timed actions execution, that is, to suspend the execu-
tion of the action node and to push a new event in the FEL with a time stamp corresponding
to the instant at which the action should be resumed. The scheduler action associated to
this event is in charge of resuming the execution of the Action(syn) and propagate data with
sendOffers().
The execution of Action(syn) nodes is handled by concrete actions activations which are
specializations of Timed_ActionActivation(sem). Figure 6-13 depicts action activations we
are interested in for the modeling of reactive systems behaviors, namely Timed_CallBe-

haviorActionActivation(sem) and Timed_AcceptEventActionActivation(sem).

� Timed_ExecutionFactory(sem)
Timed_ExecutionFactory in Figure 6-14 is a new factory defined as a specialization of the Ex-

ecutionFactoty(sem) defined in the fUML semantic model. It is responsible for the instantiation
of the new visitors introduced in this section, which capture time execution semantics.

 Adapting fUML execution semantics to FMI API

The execution semantics of timed UML models for reactive systems corresponds to the seman-
tics of the DE MoC introduced in 1.1.2.3. The behavior is activated at a discrete set of instants
which corresponds to time events occurrences. The execution of the FMUs, on the contrary,
continuously depends on time. This difference raises a continuous time vs discrete event se-
mantics issue.

This section focuses on this issue and proposes adaptation of semantics between execution se-
mantics of UML models and semantics of FMI. It is organized into three subsections following
the formalization of co-simulation. It refers to the extended semantic model introduced in the
previous section and gives equivalent routines for each function defined in the formalization.

Figure 6-13. Extension of behavioral semantics: the activity
nodes activations

Figure 6-14. Extension of instantiation semantics: Locus and ExecutionFactory

Chapter 6: Integration of timed UML models in FMI-based co-simulation

125

 Instantiation and initialization

The instantiation of timed models is handled by the new locus and execution factory: Timed_lo-

cus(sem) and Timed_ExecutionFactory(sem).

The initialization consists in initializing the instantiated objects with default values in the model
as well as in initializing the DE scheduler with start simulation time and stop simulation time
as illustrated in Table 6-8.

Table 6-8.fUML routines for instantiation and initialization of a timed model of a reactive sys-
tem

Formalization functions fUML semantic model

instc() c.locus.instantiate();

initc() Features values are automatically initialized with
values in the model during instantiation
DEScheduler.init(startTime, stopTime);

 Stepwise simulation and data propagation

FMUs rely on CT MoC where outputs continuously change and can be retrieved at any instant
during simulation. FMUs are usually executed with a fixed simulation step size (i.e. if the FMU
does not require to rollback, the master usually invoke it using the same step size from the
beginning to the end of the simulation). Timed UML component execution relies on the DE
MoC where outputs change at discrete set of instants during simulation. Between two instants,
the outputs do not change. The execution is handled by the DE scheduler and relies on a variable
time advance. Time is advanced only when an event is executed. This raises a continuous time
vs discrete event semantics gap. In order to integrate timed UML model in FMI-based co-sim-
ulation, the MST-Engine should synchronize the DE scheduler with the FMUs executions using
sone of the following wrappers.

� Multiple Timestamps Wrapper
A call to doStep() at time tc with a step size h corresponds to the execution of all the events
scheduled between tc and tc+h in the FEL. At the end of the step, time advances to tc+h. Let ti
be the time stamp of the imminent event in the FEL:

a. If (h<ti) then no event is scheduled between tc and tc+h and no new outputs are computed
during the simulation step,

b. If (h>=ti) then, the DE scheduler executes events having relative time stamps between
ti and h. Let tl be the relative time stamp of the last event scheduled between tc and tc+h
in the FEL:
b.1. If (h>tl) then new outputs are computed at t=tc+tl and propagated at t=tc+h.
b.2. If (h=tl) then the outputs are computed at t=tc+tl and propagated t=tc+h=tc+tl.

Note that in case b.1., the outputs are computed at a time tc+tl prior to that of the data propaga-
tion tc+h in the model which may affect the simulation results, and that, in both cases b.1. and
b.2., no outputs are propagated to the environment for events scheduled between tc and tc+h
except the one scheduled at t=tc+tl. The MST-Engine misses events which also considerably
affect the correctness of the simulation results. As a solution to that we propose the single time
stamp wrapper.

Chapter 6: Integration of timed UML models in FMI-based co-simulation

126

� Single Timestamp Wrapper
Let ti be the time stamp of the imminent event in the FEL. A call to doStep() at time tc with a
step size h corresponds to the execution of the events scheduled between tc and tc+h and having
a timestamp equal to ti. At the end of the step, time advances to tc+h.

a. If (h<ti) then no event is scheduled between tc and tc+h then no new outputs are com-
puted during the step,

b. If (h>ti) then new outputs are computed at t=tc+ti and propagated in the model at t=tc+h,
c. If (h=ti) then new outputs are computed at t=tc+ti and propagated in the model at

t=tc+h=tc+ti
Note that in the case b, the outputs are computed at a time tc+ti prior to that of the data propa-
gation in the model which may reduce the efficiency of the co-simulation by affecting the cor-
rectness of the results, and that, if other events are scheduled between tc+ti and tc+h these events
will be lost.
In order to avoid events missing, at each simulation step, the master proposes a simulation step
size h<=ti. This can be done by making accessible to the master the information about the time
stamp of the next event in the FEL. At each simulation step, the master retrieves the time stamp
of the next event in the FEL and computes a simulation step size accepted by all components
in the co-simulation graph. This information is indicated in the property ‘NextEventTime’ of
the stereotype ‘CS-Timed’ introduced in the Table 6-9.
Let hUML=ti is the adequate step size for a timed UML model and hFMU is the simulation step
size used for the simulation of the FMUs, then hMASTER= min(hFMU,ti) is the simulation step size
proposed by the master.

Table 6-9. fUML routines for stepwise simulation and data propagation of a timed model of a
reactive system

Formalization func-
tions

fUML semantic model

doStepc(h) if (firstSimulationStep) then
 c.actionActivation.startBehavior();
end if;
if (DEScheduler.FEL.size() > 0) then
 DEScheduler.step(h);
else
 do nothing;
end if;

setc(inPort,value) if (c.inPort.oldValue != value) then
 c.setFeatureValue(inPort,value,0);
 if (inPort.observed) then
 evt = new changeEventOccurrence(inPort, c.inPort.oldValue, value);
 c.objectActivation.eventPool.add(evt);
 endif;
else
 doNothing;
endif;

getc(outPort) c.getFeatureValue(inPort,0);

Chapter 6: Integration of timed UML models in FMI-based co-simulation

127

Termination

The control of the activities execution is delegated to the DE scheduler. The latter is therefore
responsible for their termination. At the initialization phase, the scheduler was initialized with
the simulation parameters (start and stop time). A time event Estop with a time stamp equal to
the tstop is pushed in the FEL. The scheduler action associated to Estop corresponds to the termi-
nation of the activity execution. The termination of the activity execution is performed by call-
ing the operation stop() which will terminate all classifier behavior executions.
At the end of the co-simulation, all instances in the locus are automatically destroyed.
Table 6-10. fUML routine for termination of a timed model of a reactive system

Formalization functions fUML or PSCS semantic model

terminatec() DEScheduler.stop();

/*Assumptions*/
On the co-simulation graph: no cycles exist in the co-simulation model, the graph connects a set of FMUs
with timed UML models of reactive systems
On UML components: zero step size allowed,
On the FMUs: the step size proposed by the master algorithm is accepted by all FMUs,
/*Co-simulation parameters*/
tc: Current simulation time
tstart: Start simulation time
tstop: Stop simulation time
hC: the step size of the component being simulated
hMASTER: the co-simulation step size
ti: the next event time in the FEL of the component being simulated
X: U∪Y : set of ordered ports variables computed by “Variables-order” algorithm
C= F ∪	TU where TU: the set of timed UML components of reactive systems
/*Instantiate and initialize components c ∈ C */
for each component c ∈ C:

instc();
initc(tstart, tstop);

/*Step wise simulation*/
while (tc<tstop)
 for each input u ∈ X
 y = P(u);
 v = getc(y);
 setc(u,v);
 if (hC = 0)
 doStepc(0);
 end if;
 end for;
 hMASTER=min({hC, c ∈ F},{tic, c∈ TU});
 for each c ∈ C

if (hC > 0)
 doStepc(hMASTER);
 end if;
 end for;
 tc=tc+ hMASTER;
end while;
/* Termination of the simulation*/
for each component c ∈ C:

terminatec() ;
end simulation;

Figure 6-15.Pseudocode of a master algorithm for a Co-simulation graph connecting FMUs
with a timed model of a reactive system.

Chapter 6: Integration of timed UML models in FMI-based co-simulation

128

 Pseudocode of the master algorithm

Figure 6-15 depicts the master algorithm we propose for the integration of timed UML models
of reactive systems.

 Experience on a representative example

Definition of the simulation scenario

The representative example consists of the definition and the simulation of a co-simulation sce-
nario composed of FMU, the so-called ‘Inc’ (the same used in the section 5.1.4), and a timed
UML model of a reactive system, so-called ‘Controller’ presented in section 6.2.1.2.
The ‘inc’ component in the Figure 6-16 is an instance of the imported FMU ‘Inc’. For this sce-
nario, we will use a default step size ‘h=1’ since we are interested in, for reactive components,
the instants at which the values of the inputs change. The counter (and therefore the input ‘in’),
in fact, is incremented each one unit of time.

The value of the ‘counter’ is propagated to the input ‘in’ of the ‘timedController’, which repre-
sents the ‘Controller’ class defined in 6.2.1.2. The default step size of the ‘timedController’
component is ‘hUML=1’ as indicated in the ‘CS_FMU’ stereotype in Figure 6-7.
This master should also take into account the internal time event of the component ‘timedCon-
troller’. This latter has a time event with a time stamp equal to ‘te=0,25’ which is encountered
when the value of the input ‘in=true’. In this case, the reaction must be produced after 0.25 units
of time instead of one.
The expected behavior of the ‘timedController’ component, therefore, is to react to the input
changes after an amount of time equal to the default step size (h=1) if ‘in=false’, and after an
amount of time equal to the event time stamps when ‘in=true’.
The co-simulation scenario will be simulated from ‘tstart=0’ to ‘tstop=10’ with a default simula-
tion step size ‘hmaster=1’ as indicated in the ‘CS_Graph’ stereotype in Figure 6-16.

Simulation of the co-simulation scenario

Figure 6-18 and Figure 6-17 depict simulation results of this co-simulation scenario using the
basic master as defined in the FMI standard (refer to section 2.1.2) and the advanced master
algorithm we proposed in section 5.2.4 respectively.

The value of the counter reaches the threshold at ‘t=4’. At this instant ‘t=4’, when executing a
dostep on the ‘timedController’, the value returned by the control action is ‘true’. In this case,
the ‘timedController is expected to produce a new setpoint at ‘t=4,25’. However, using the basic
master algorithm given in section 2.1.2, all calls to doStep use the default step size ‘h=1’. As a

Figure 6-16. Co-simulation graph connecting an imported FMU to a timed model of a
reactive system

Chapter 6: Integration of timed UML models in FMI-based co-simulation

129

result, there is a delay ‘d=0,75’ between the instant at which the new setpoint should be pro-
duced and the instant at which the new setpoint is actually produced. This delay is due to the
ignorance of the master to the time event occurrence. Figure 6-17 demonstrates that this delay
does not exist when using the master algorithm we proposed in section 5.2.4. The reaction of
the ‘timedController’ is in fact produced at ‘t=4,25’.

Figure 6-18.Co-simulation results of a timed model
of a reactive system-Basic master

d=0,75

tin : instant at which the new setpoint should be propagated,
tout: instant at which the new setpoint is actually propagated,
d=tout-tin: the delay between the two instants

tin tout

d=0

tin : instant at which the new setpoint should be propagated,
tout: instant at which the new setpoint is actually propagated,
d=tout-tin: the delay between the two instants

tin

tout

Figure 6-17. Co-simulation results of a timed model
of a reactive system-Advanced master

Chapter 6: Integration of timed UML models in FMI-based co-simulation

130

6.3. Conclusion

In this chapter, we focused on the integration of timed UML models in FMI-based co-simula-
tion. For each kind of systems, transformational and reactive systems, we provided rules for
their modeling with UML in the context of the FMI standard, an adaptation between the execu-
tion semantics of UML models and the FMI API, and a master algorithm for the orchestration
and synchronization of FMUs and UML components. The adaptation we proposed tackles, in
particular, the semantic gap between DE semantics of fUML* and CT semantics of FMI.

PART III: EXPERIMENTS

132

7. Chapter 7: The Case Study: Energy auto-
consumption management in smart en-
ergy building

Outline

7.1. Context
7.2. Specification of the case study

 The ‘ElectricLoad’

 The ‘ESS’

 The ‘ElectricityGrid’

 The ‘PV’

 The ‘ControlSelfConsumption’
7.3. Modeling of the case study in Papyrus

 Modeling of FMUs in Papyrus

 Modeling of ‘SelfConsumptionControl’ component in Papyrus
7.3.2.1. Basic Self-Consumption Control
7.3.2.2. Advanced Self-Consumption Control

7.4. Simulation of the case study in Papyrus/Moka

 The basic control scenario
 7.4.1.1. Definition of the co-simulation scenario
 7.4.1.2. Simulation results

 The advanced control scenario
 7.4.2.1. Definition of the co-simulation scenario
 7.4.2.2. Simulation results

 Interpretation of the simulation results

In this chapter, we aim at the validation of our approach. The validation is done by comparing
co-simulation results of the case study using our approach in Papyrus/Moka with co-simulation
results of the case study in Simulink. We will demonstrate how the approach we propose
achieves better results. The chapter is organized as follows: Sections 7.1 and 7.2 introduces the
case study we will use for our experimentations. Section 7.3 tackles the modeling of the case
study in Papyrus following the rules defined in Chapters 4, 5 and 6, and finally, section 7.4
exposes the simulation results in Papyrus with an evaluation against the simulation results in
Simulink.

7.1. Context

Smart grid is a concept involving an electricity grid that delivers electric energy using commu-
nications, control, and computer technology for lower cost and superior reliability [15].

The Case Study: Energy auto-consumption management in smart energy building

133

The overall load in smart grids is not stable, as electricity demand varies significantly over the
course of a day. High energy consumption could generate grid disruption and black-out which
are very costly for energy providers and very uncomfortable for users. As a consequence, smart
grids need smart consumption management system. Smart buildings are connected with energy
management devices over communication networks to better monitor energy consumption and
production.
Reducing peak demand and overall consumption are two of the most significant strategies of
smart consumption management. Furthermore, real-time information transmitted over commu-
nication networks allows power outage anticipation, as well as service perturbation detection.
By rapidly detecting and analyzing data coming from the distribution network, the smart grid
can take corrective actions, so as to restore power stability when needed. Mathematical algo-
rithms have been designed to predict power consumption increases, so that corrective actions
can be taken.
In this context, the purpose of the system under study is the verification of the auto-consumption
management strategy in a smart energy building. The case study is provided by the CEA/Liten
whose goal is the definition of a UML-based language for the definition of new control strate-
gies26 for the system under design and their verification. As a first step, we need to validate the
co-simulation approach we proposed in Papyrus since it will be used later as the simulation
environment for the verification of new defined strategies. The purpose of the experimentations
is to perform this preliminary validation.
The system under study is called ‘Energy Auto-consumption’ and was originally designed as a
Matlab/Simulink model. The validation of the approach consists in modeling and simulating
already defined control strategies in Papyrus, and in comparing the obtained simulation results
with the simulation results in Simulink. We begin with the specification of the case study in the
following section.

7.2. Specification of the case study

26 A control strategy is an algorithm that computes a control signal to be followed by the system for the regulation
of a system functionality

ControlSeflConsumption ESS

ElectricityLoad

PV

ElectricityGrid

Pac_Load

Pac_sp
Pac_PV

Ess_Pac

Load_Pac

SOE

PV_Pac

Grid_Pac

SOE_ESS

Clock

Figure 7-1. The ‘Energy Auto-consumption’ system

The Case Study: Energy auto-consumption management in smart energy building

134

The ‘Energy Auto-consumption’ system is composed of five components as depicted in Figure
7-1. They are specified in the following subsections.

 The ‘ElectricLoad’

This component simulates the energy consumption of a building.

� Output:
o Load_PAC: is the amount of energy consumed by the building at a given instant.

 The ‘ESS’

This component simulates the operation of a storage unit. It is responsible for injecting energy
in the electrical network when the power in this later decreases.

� Inputs
o PAC_Sp: received from the ‘ControlSelfConsumption’ component and indi-

cates whether the storage unit should be charged or discharge.

� Output:
o ESS_PAC: the energy injected in the electrical network.
o SOE: the state of charge of the storage unit.

 The ‘ElectricityGrid’

This component simulates the electric network to which the storage unit and the building are
connected. It is responsible for delivering electricity from producers to consumers.

Outputs

Load_Pac ElectricLoad

Figure 7-2. The 'ElectricLoad' component structure

Inputs
Outputs

Pac_Sp
SOE

ESS
Ess_Pac

Figure 7-3. The 'ESS' component structure

Inputs
Outputs

Pac_in1

Pac_in3
Pac_in2

Grid_Pac ElectricityGrid

Figure 7-4. The 'ElectricityGrid' component structure

The Case Study: Energy auto-consumption management in smart energy building

135

 The ‘PV’

This component simulates the photovoltaic unit. It produces energy and injects it into the elec-
trical network.

� Output:
o PV_PAC: is the amount of energy produced by the photovoltaic panels.

 The ‘ControlSelfConsumption’

This component encapsulates an energy consumption control logic. It monitors the ESS com-
ponent based on information about the energy production and consumption of the whole sys-
tem. Two variants of control are proposed: a basic self-consumption control and an advanced
self-consumption control.

Basic Self-consumption Control

a. Structure
The basic self-consumption control receives as inputs information about the energy consump-
tion of the building (received from the ‘ElectricLoad’ component on the input ‘Pac_load’), and
information about the energy production (received from the ‘PV’ component on the ‘Pac_PV’
input). Then, it simply computes the output ‘ESS_Pas_Sp’ which will be communicated to
the‘ESS’ component.

� Inputs
o PAC_LOAD: received from the ‘ElectricalLoad’ component. It represents the

instantaneous power consumed by the building.
o PAC_PV: received from the ‘PV’ component. It represents the instantaneous

power produced by the photovoltaic unit.

� Output:
o ESS_PAC_sp: the control signal to be delivered to the environment of this com-

ponent. It indicates instantaneous charged or discharged power.

b. Behavior
The basic self-consumption control behavior simply computes the difference of the energy con-
sumed by the building and the energy produced by the photovoltaic panels. This information

Outputs

PV_Pac PV

Figure 7-5. The ‘PV’ component structure

Inputs
Outputs

Pac_Load

Pac_PV
ESS_Pac_sp ControlSeflConsumption

Figure 7-6. The basic ‘ControlSelfConsumption’ component structure

The Case Study: Energy auto-consumption management in smart energy building

136

indicates whether the grid is a consumer or a producer, and is used by the ‘ESS’ component to
determine whether the storage unit should deliver (discharge) or not deliver (charge) power to

the electrical network. Figure 7-7 is the specification of the control logic of the basic ‘con-
trolSelfConsumption’ component.

Advanced Self-Consumption Control

a. Structure
The advanced ‘ControlSelfConsumption’ component requires more inputs from the other com-
ponents compared to the basic control. It has four inputs, three parameters and one output as
depicted in Figure 7-8.

� Inputs
o PAC_LOAD: received from the ‘ElectricalLoad’ component. It represents the

instantaneous power consumed by the building.
o PAC_PV: received from the ‘PV’ component. It represents the instantaneous

power produced by the photovoltaic unit.
o SOE_ESS: received from the ‘ESS’ component. It indicates the state of charge

of the storage unit.
o Clock: the current time of the day.

� Parameters
o SOC_THRESHOLD: the threshold from which the discharge is no longer au-

thorized.
o PEAK_HOUR_START: the lower bound of the interval ‘peak hours’.

/*Inputs*/

PAC_Load: instantaneous power consumed by the building,
PAC_PV: instantaneous power produced by the photovoltaic unit,

/*Outputs*/

ESS_PAC_sp: instantaneous charged or discharged power.

/*The control strategy algorithm*/

ESS_PAC_sp = PAC_Load – PAC_PV;

Figure 7-7. The basic ‘ControlSelfConsumption’ component behavior

Inputs
Outputs
Parameters

SOCthreshold
PeakHourStart

PeakHourEnd

Pac_Load

SOE_ESS

Pac_PV

Clock ESS_Pac_sp ControlSeflConsumption

Figure 7-8. The ‘ControlSelfConsumption’ component structure in Simulink

The Case Study: Energy auto-consumption management in smart energy building

137

o PEAK_HOUR_END: upper bound of the interval ‘peak hours’.

� Output:
o ESS_PAC_sp: the control signal to be delivered to the ESS component. It indi-

cates instantaneous charged or discharged power.

The control signal computed by the advanced ‘ControlSelfConsumption’ component depends
not only on the inputs received from its environment (the components connected to its inputs),
but also on the period during which the system operates. The controller requires information
about the current time to check whether the system operates, or does not operate, in peak hours
represented by the Clock input in Figure 7-8. When it is information about simulation, the time
is determined with reference to the simulation time. This information may be provided by a
component responsible for indicating whether the system operates in the ‘peak hours’ period or
in ‘off-peak hours’ based on the current simulation time.

In Papyrus, we replace the Clock input (Figure 7-8) with PeackHours input (in Figure 7-10).
The value of this latter is provided by the ‘PeakHoursIndicator’ component shown in Figure
7-9. It indicates whether the current time is in the Peak Hours period or not based on the pa-
rameters ‘PeakHourStart’ and ‘PeakHourEnd’.

The ‘PeakHoursIndicator’ component has two parameters and one output as follows:
� Paramaters:

o PeakHourStart: the start time of the peak hours period.
o PeakHourEnd: the stop time of the peak hours period.

� Output
o PeakHours: delivered to the ControlSelfConsumption components to give infor-

mation about the period (peak hours or off-peak hours) of the system operation.

The output of the ‘PeakHoursIndicator’ component is given as an input to the control ‘SelfCon-
sumptionControl’. Some changes in the structure of this latter are therefore required (compared

Pac_Load

Pac_PV

SOE_ESS
ControlSeflConsumption

SOCthreshold

PeakHours

ESS_Pac_sp

Inputs
Outputs
Parameters

Figure 7-10. ControlSelfConsumption component structure in Papyrus

PeakHours
PeakHourStart

PeakHourIndicator
PeakHourEnd

Outputs
Parameters

Figure 7-9. PeakHourIndicator component Structure

The Case Study: Energy auto-consumption management in smart energy building

138

to the structure represented in Figure 7-8). The new structure of the advanced ‘ControlSelfCon-
sumption’ is depicted in Figure 7-10.

b. Behavior
The control logic monitors the ESS component. It determines whether the storage unit should
be charged or discharged while accounting for the state of the system as well as the current
period of the day (i.e, peak hours or off-peak hours).

Figure 7-11 specifies the logic of the ‘PeakHoursIndicator’ component with a simple algorithm.

The conditions for the charge and the discharge of the storage unit are as follows:

- The charge condition: the ESS should be charged when the current time does not corre-
spond to peak hours’ period and the power consumed by the building does not exceed
the power produced by the photovoltaic unit.

- The discharge conditions:
o During peak period, the storage unit delivers the power available on the power

grid.
o During off-peak period, the storage unit delivers the available power only if the

power consumed by the building (the ‘Pac_Load’ input) exceeds the power pro-
duced by the photovoltaic unit (the ‘Pac_pV’ input) and the charge rate of the
storage unit remains greater than the limit imposed by the control.

Figure 7-12 is the specification of the control logic of the ‘ControlSelfConsumption’ compo-
nent conforming to these conditions.

/*Parameters*/

peakHourStart: the start hour of the peak hours period
peakHourEnd: the stop time of the peak hours period
/*Outputs*/

peakHours: the verdict
/*Global Variables */

hour: the current simulation time
/*Initializations*/

peakHours = false

/*The logic algorithm*/

When (hour == peakHourStart)
 peakHours = true;
end when;

When (hour == peakHourEnd)
 peakHours = false;
end when;

Figure 7-11. The ‘PeakHoursIndicator’ component behavior

The Case Study: Energy auto-consumption management in smart energy building

139

In the following section, we focus on the modeling of the case study in Papyrus. As stated
previously in section 7.1, we are interested in the modeling of control strategies with UML and
their verification in the co-simulation environment we proposed in the contribution part. For
this, we will particularly focus on the modeling of the ‘control self-consumption’ component
with UML with respect to the modeling rules we defined in Chapter 5 and Chapter 6, and on its
co-simulation with the other components using the master algorithms we proposed in Chapter
5 and 6.

7.3. Modeling of the case study in Papyrus

In the co-simulation scenario we propose, all components, except the ‘self-ConsumptionCon-
trol’, are imported FMUs and rely on the CT MoC. In this section, we will focus on the model-
ing of the different components in Papyrus.

 Modeling of FMUs in Papyrus

The components ‘ElectricLoad’, ‘ESS’, ‘ElectricityGrid’ and ‘PV’ were originally designed
with Matlab/Simulink and rely on CT MoC. They are exported as FMU for co-simulation (in
Simulink), then imported into Papyrus. The FMUs are represented as UML classes annotated
with stereotypes from the Co-Simulation profile as explained in Chapter 4.
Figure 7-16, Figure 7-14, Figure 7-13 and Figure 7-15 represent the result of the import of the
FMUs ‘ESS’, ‘Grid_3inputPac’, ‘Load’ and ‘PV’s respectively.

/*Parameters*/

SOC_Threshold: the threshold from which the discharge is no longer authorized

/*Inputs*/

PeakHours = indicates whether the system operates or not in peak hour period
PAC_Load: instantaneous power consumed by the building,
PAC_PV: instantaneous power produced by the photovoltaic unit,
SOE_ESS: state of charge of the storage unit,

/*Outputs*/

ESS_PAC_sp: instantaneous charged or discharged power.

/*The control strategy algorithm*/

if (! PeakHours) then // off-peak hours
if (PAC_Load > PAC_PV) then //discharge

 if (SOE_ESS > SOC_Threshold) then
 SOE_PAC_sp = PAC_Load – PAC_PV; //possible to discharge
 else //case charge
 ESS_PAC_sp = 0; //discharge forbidden
 end if;

else // peak hours
 ESS_PAC_sp = PAC_Load – PAC_PV;
end if;

Figure 7-12. The advanced ‘ControlSelfConsumption’ component behavior

The Case Study: Energy auto-consumption management in smart energy building

140

 Modeling of ‘SelfConsumptionControl’ component in Papyrus

Basic Self-Consumption Control

The behavior of the basic ‘controlSelfConsumption’ is stateless and does not depend on time.
It can be specified as an untimed model of a transformational system. We apply the modeling
rules defined in section 5.1.1.

Figure 7-15. The ‘ESS’ FMU imported in Papyrus

Figure 7-13. The ‘Grid_3inputsPac’ FMU imported in Papyrus

Figure 7-16. The 'PV' FMU imported in Papyrus

Figure 7-14. The ‘Load’ FMU imported in Papyrus

The Case Study: Energy auto-consumption management in smart energy building

141

The basic ‘Self-ConsumptionControl’ is represented with a passive class to which the
“CS_untimed” stereotype is applied (Figure 7-17). The class owns two input ports ‘Pac_Load’
and ‘Pac_PV’, one output port ‘Pac_PV’, and an operation ‘controlConsumption’ annotated
with the “CS_Operation”.

The operation ‘controlConsumption’ implements the logic represented in Figure 7-7. It repre-
sents the computations to execute at each simulation step size (when the component is invoked
by the master). It is specified and implemented with the activity ‘computeConsumption Impl’.
This later reads the inputs ‘Pac_Load’ and ‘Pac_PV’ (‘read(Pac_Load)’ and ‘read(Pac_PV)’
actions in the activity). Then, it calculates the difference between the absolute values of these
values (the ‘compute Impl’ activity). The output is finally set with the result (‘set(ESS_Pac)’ in
the activity)

Advanced Self-Consumption Control
The advanced ‘SelfConsumptionControl’ component is composed of two components. The
‘PeakHourIndicator’ produces an output at discrete instants and is reactive to time events. The
corresponding UML model is therefore a timed UML model for a reactive system as depicted
in Figure 7-18. The ‘PeakHourIndicator’ owns one output port ‘peakHour’ and a classifier be-
havior implementing the logic represented in Figure 7-11.

The peak hours start at 7p.m and terminate at 9p.m. each day. For the first simulation day, these
two instants are represented with AcceptEventActions(syn) triggered by time events ‘at(19)’ (trig-
gered by an absolute time event) and ‘after(2)’ (triggered by a relative time event).

Figure 7-17.UML Model of the basic ‘SelfConsumptionControl’ - Structure and Behavior

The Case Study: Energy auto-consumption management in smart energy building

142

‘after(22)’ is an AcceptEventActions(syn) triggered by an absolute time event. It represents the
start time of the peak hours for the next day.

The behavior of the advanced ‘SelfConsumptionControl’ component is time independent and
reactive to changes. The behavior specifying the control strategy reacts only if one of the inputs
values changes. The behavior is time independent. The corresponding UML model is therefore
an untimed UML model of a reactive system.

We apply the modeling rules defined in section 5.2.1. The advanced ‘ControlSelfConsump-
tionn’ component is an active class to which the stereotype “CS_untimed” is applied. The class
owns four input ports ‘ESS_Pac’, ‘Pac_Load’, ‘Pac_PV’ and ‘peakHour’, an output port
‘SOE_ESS’, and a classifier behavior which is executed once from the beginning to the end of
he simulation. The classifier behavior is represented with the UML activities in Figure 7-19. It
implements the control logic specified in Figure 7-12.

The activity ‘Advanced self-consumption control behavior’ reacts to the change of at least one
input. This behavior is represented with an AcceptEventAction(syn) triggered by change events
(for each input is defined a change event). Once a change is detected, the activity reads the input
ports values (‘read(Pac_Load)’, ‘read(Pac_PV)’, ‘read(SOE_ESS)’ and ‘read(PeakHour’)).
Then, it performs some computations implemented with the activity ‘controlConsumptionImpl’
as specified in the control logic of Figure 7-12. At the end of the computations, it sets the value
of output port ‘ESS_Pac’ with the new state of charge of the storage unit (‘write(Ess_Pac)’).

Figure 7-18. Modeling the Peak-up indicator component with UML

The Case Study: Energy auto-consumption management in smart energy building

143

Figure 7-19.UML model of the advanced self-consumption control – Structure and Behavior

The Case Study: Energy auto-consumption management in smart energy building

144

7.4. Simulation of the case study in Papyrus/Moka

The verification of smart grids models necessitates their simulation for long operation time
(many days, or even weeks and months). A small simulation step size (for example h=10s)
makes the simulation highly costly. For this reason, we propose to simulate the case study with
a step size ‘h=1hour’.
The goal of the simulation is to verify the operation of the storage unit (the output ‘ESS_Pac’
of the ‘ESS’ component) and the energy production/consumption in the electricity grid (the
output Pac_Grid of the ‘ElectricityGrid’) for a given photovoltaic production and a given load
consumption.

We expose simulation results of one operation day for two co-simulation scenarios: a basic
control scenario using the basic ‘SelfConsumptionControl’ component (section 7.4.1) and an
advanced control scenario (section 7.4.2) using the advanced ‘SelfConsumptionControl’ com-
ponent.

 The basic control scenario

Definition of the co-simulation scenario

The basic control scenario connects the imported FMUs ‘Load’, ‘ESS’, ‘PV’ and ‘electrici-
tyGrid’ to the basic ‘SelfConsumptionControl’ component specified in Figure 7-17.

The co-simulation scenario of Figure 7-20 is simulated for one operation day from ‘tstart=0’ to
‘tstop=24’ with a default simulation step size ‘hmaster=1’ (1hour). The simulation results are given
in the next subsection.

Figure 7-20. Co-simulation scenario connecting FMUs to the basic
'SelfConsumptionControl'

The Case Study: Energy auto-consumption management in smart energy building

145

Simulation results

Figure 7-21 and Figure 7-22 depict simulation results of the case study in Simulink and in the
co-simulation environment we proposed in Papyrus, respectively.

 The advanced control scenario

Definition of the co-simulation scenario

The advanced control scenario is a co-simulation scenario which connects the imported FMUs
‘Load’, ‘ESS’, ‘PV’ and ‘electricityGrid’ to the advanced ‘SelfConsumptionControl’ compo-
nent and the ‘PeakHourIndicator component specified in Figure 7-19 and Figure 7-18.

The co-simulation scenario of Figure 7-23 is simulated for one operation day from ‘tstart=0’ to
‘tstop=24’ with a default simulation step size ‘hmaster=1’ (1hour). The co-simulation results are
given in the next subsection.

Figure 7-21. Simulation results of the basic control scenario in Simulink

tin : instant at which the new set point is computed,
tout: instant at which the new set point is actually propagated,
d=tout-tin: the delay between the two instants

d=1hour

tin tout

Energy power

range

Figure 7-22. Simulation results of the basic control scenario in Papyrus

tin : instant at which the new set point is computed,
tout: instant at which the new set point is actually propagated,
d=tout-tin: the delay between the two instants

d=0

tin

tout

Energy power

range

The Case Study: Energy auto-consumption management in smart energy building

146

Simulation results

Figure 7-24 and Figure 7-25 depict simulation results of the case study in Simulink and in the
co-simulation environment we proposed in Papyrus, respectively.

-

Figure 7-24. Simulation results of the advanced control scenario in Simulink

tin : instant at which the new set point is computed,
tout: instant at which the new set point is actually propagated,
d=tout-tin: the delay between the two instants

d=1hour

tin tout

Energy power

range

Figure 7-23. Co-simulation scenario connecting FMUs to the advanced
'SelfConsumptionControl'

The Case Study: Energy auto-consumption management in smart energy building

147

 Interpretation of the simulation results

The simulation results in Papyrus demonstrate that, using the master algorithm we proposed in
the contribution part, we are able to:

- Get information about the energy power that should be delivered by the storage unit to
the electricity network as well as the state of charge of the storage unit earlier. As illus-
trated in Figure 7-22 and Figure 7-21 (respectively Figure 7-24 and Figure 7-25) the
new set point value (the output ‘Ess_Pac’) as well as the state of charge and the amount
of energy to be injected in the network (the output ‘Pac’ of the ‘ESS’ component) are
computed and propagated before one hour compared to the results in Simulink. This
action ensures a better operation of the smart grid. In fact, we are able to avoid outages
by anticipating energy demands (delivering the required energy power on time), and
maintaining an acceptable state of charge by charging the storage unit as fast as possible
when the level is under the required threshold.

- Minimize and maintain a more homogeneous rate of energy power distribution in the
electricity grid. As illustrated in Figure 7-22 and Figure 7-21 (respectively Figure 7-24
and Figure 7-25), using the master algorithm we propose in Papyrus, the energy power
range is smaller than when simulating in Simulink. This enables a better dimensioning
and calibration of the system, and therefore, minimization of the system conception cost,
a very important factor for energy providers.

7.5. Summary of the proposition validation

The objective of this chapter was to validate the approach we proposed: the integration of UML
models in FMI-based co-simulation using the adaptation of semantics at master level. The ap-
proach was applied to two variants of a system managing the energy auto-consumption in smart
grids, system including a simple control and system including an advanced control. Firstly, we
modeled the case study in Papyrus. For this, we imported FMUs representing the physical part
of the system and we modeled the cyber part with UML by referring to modeling rules defined
in chapters 5 and 6. Secondly, we simulated the case study in Papyrus/Moka using the master
algorithms we proposed in chapters 5 and 6. We demonstrated that the approach provides solu-
tions to the Issue 1 and Issue 2 related to limitations of FMI for CPS domain (i.e, no support

Figure 7-25. Simulation results of the advanced control scenario in Papyrus

tin : instant at which the new set point is computed,
tout: instant at which the new set point is actually propagated,
d=tout-tin: the delay between the two instants

d=0

tin

tout

Energy power

range

The Case Study: Energy auto-consumption management in smart energy building

148

to untimed semantics and time events). Finally, we compared the obtained results to the co-
simulation results of the case study in Simulink. The comparison demonstrated that the pro-
posed approach achieves better results. The master algorithm we propose enables to anticipate
the demands of energy and to maintain a homogeneous rate of energy power distribution.

PART IV: CONCLUSION AND
PERSPECTIVES

150

8. Conclusion and perspectives

In this chapter we summarize the motivation of this work including its context, we remind the
main points of the proposition including its validation, and then we propose some follow-up
possibilities.

� Summary of the thesis work

� Context and motivations

The verification of Cyber Physical Systems (CPS) requires the integration of heterogeneous
models. These models differ in the way the components interact with their environment, execute
their behavior and manage time and events. The main issue is determining the global behavior
of the composed model where the coordination and the synchronization between the involved
sub-models are required. Techniques for the verification of heterogeneous systems were found
in the literature and evaluated for their applicability to CPS. The co-simulation is best suited
for the simulation of CPS. FMI standard, in particular, was proposed as a standard for co-sim-
ulation. This standard is gaining popularity in the industry and is supported by many modeling
and simulation tools.

Although FMI provides a standard interface for co-simulation of models from different lan-
guages/tools, it does not provide efficient solutions to cope with the heterogeneity of the in-
volved MoCs. FMI was originally intended for co-simulation of physical processes, with lim-
ited support for other MoCs such as DE and Data Flow. These MoCs are commonly used to
model the logic of cyber part of a CPS. We are particularly interested in UML, which is the
reference standard for software modeling. Unfortunately, none of the present-day FMI-based
co-simulation solutions consider UML models.

� Approach and contribution

The objective of this work was to propose an FMI-based co-simulation environment for CPS
with integration of UML models. Three techniques for the integration of UML models in FMI-
based co-simulation were evaluated for their feasibility and efficiency. We chose the adaptation
of semantics at master level technique. This later consists of the simulation of co-simulation
scenarios connecting black boxes FMUs with white boxes UML models, and requires adapta-
tion of semantics between the FMI API and the execution semantics of UML models. This
technique enables us to benefit from the FMI standard for co-simulation purposes, and to val-
orize the use of the UML language for the modeling of the software components of CPSs. In
addition, we are not constrained by the inadequacies of the FMI standard in terms of its support
for non-CT models.

UML models need to be executable for their integration in co-simulation approaches. We chose
to base our work on fUML* standard which define precise execution semantics for a subset of

Chapter 8 : Conclusion & Perspectives

151

UML and provide an interesting and formal basis for the integration of UML models in FMI-
based co-simulation. We identified different kinds of systems we would like to model and sim-
ulate with UML then evaluated the feasibility of their modeling and simulation with fUML*.
These systems are classified according to two dimensions found in the literature: (a) systems
can be transformational or reactive, (b) systems can be untimed or timed. As a result, we ob-
tained four kinds of models we would like to integrate in FMI-based co-simulation:

- Untimed UML models for a transformational system,
- Timed UML models for a transformational system,
- Untimed UML models for a reactive system; and
- Timed UML models for a reactive system.

As a first step of the contribution, we set up a master simulation tool where we implemented
the FMI standard in a UML tool. This latter proposes the definition of co-simulation scenarios
connecting a set of imported FMUs and master algorithms for their simulation. Then, we pro-
posed an incremental extension to this framework with the support of new co-simulation sce-
narios connecting black boxes FMUs with each kind of UML models we identified.

For each kind of UML models:

� We identified a set of rules to model it, namely a set of UML syntactic elements and
annotations to expose important information, and potential extensions to fUML* in
cases where execution semantics of the required UML syntactic elements are not de-
fined,

� We proposed a master algorithm for each co-simulation scenario. This latter is respon-
sible for the orchestration and synchronization of the simulations of the involved com-
ponents. It takes into account the dependencies between the involved components and
the MoCs they rely on. The proposed algorithms are based on adaptation of untimed
semantics of fUML* (and its potential extensions) to timed semantics of FMI, and ad-
aptation of the discrete semantics of fUML* (and its potential extensions) to continuous
time semantics of FMI. Based on these adaptations, the master algorithms are both able
to propagate data between components and trigger them at the correct points of time.

� Validation of the approach

The proposed approach was applied to representative examples of transformational and reactive
systems in the contribution part, as well as, to an energy system of a smart grid in the experi-
mentation part. We used the modeling rules we defined in our approach for the specification of
the structure and the logic of the software component with UML. Then we used suitable master
algorithms for their co-simulation with the rest of the system components. The simulation re-
sults demonstrated that, using our approach, we are able to better synchronize the involved
components while considering untimed behaviors, instantaneous reactions, and detecting time
events. In particular, in the energy case study, we managed to improve the operation of the
energy auto-consumption control by propagating new control set points earlier.

Chapter 8 : Conclusion & Perspectives

152

� Perspectives

� Perspective related to UML models capabilities

The support of rollback by the components involved in a co-simulation scenario improves the
efficiency of the master algorithm. This latter may propose to the involved components to re-
make a simulation step with a different simulation step size in case one (or more) component
does not manage to simulate the whole step. This provides another way, to the master, to choose
the suitable simulation step size for a better synchronization of the components.
The master algorithms we proposed do not consider the support of rollback by the involved
components. For instance, these later can be enriched with the rollback functionality for co-
simulation scenario connecting FMUs supporting rollback to UML models of transformational
systems since they are stateless.

The definition of rollback capability semantics for UML models (in particular reactive behav-
iors) is therefore an interesting way to improve the integration of UML models in FMI-based
co-simulation.

� Perspective related to supported UML models

The Precise Semantics of UML State Machines (PSSM) specification is an OMG standard that
extends fUML. The PSSM specification extends the syntactic set of fUML with a subset of the
abstract syntax of state machines as given in the UML specification, as well as the fUML se-
mantic model in order to specify the execution semantics of the state machine abstract syntax
subset.
We proposed an approach that enables the integration of UML models whose behaviors are
specified with UML activities. This later can be extended for the support of UML models whose
behaviors are specified with UML state machines. The extension would rely on similar model-
ing rules and adaptation of semantics between FMI API and PSSM semantic model.
This extension would valorize the use of UML for the specification of computational compo-
nents and would enlarge the scope of UML models we can use in co-simulation scenarios.

PART IV: ANNEXES

154

A. ANNEX A: foundational UML (fUML)
and PSCS for UML models execution:
Syntax and Semantics

Outline

A.1. The syntax

A.2. The semantics

A.2.1. Behavioral semantics
A.2.1.1. Object(sem) semantic visitor
A.2.1.2. Execution(sem) and ActivityNodeActivation(sem) visitor

A.2.2. Instantiation semantics

The Object Management Group (OMG) proposes standards (fUML*: fUML, PSCS) that define
precise semantics for a foundational subset of UML elements. This annex gives an overview of
the key syntactic (section A.1) Figure A-1and semantic (section A.2) elements of fUML*.

Two mentions will be used this chapter:

- (syn) mention indicates that the element is a syntactic element

- (sem) mention indicates that the element is a semantic element

A.1. The syntax

Foundational UML (fUML) is an OMG standard that formalizes precise execution semantics
for a subset of UML abstract syntax. This subset is restricted to classes for structure modeling
and, to activities and actions for behavior modeling. Abstract syntax elements considered by
fUML for structure and behavior modeling are listed in Table A-1.

Table A-1. UML syntactic subset considered by fUML

Structure Activity Actions

Class
Association
Property
Operation
Reception
LiteralBoolean
LiteralInteger
LiteralUnlimitedNatural

ControlFlow
ObjectFlow
MergeNode
DecisionNode
ForkNode
JoinNode
InitialNode
FinalNode

CallBehaviorAction
CallOperationAction
SendSignalAction
AcceptEventAction
ReadExtentAction
ReadIsClassifiedObjectAction
ReclassifyObjectAction
ReduceAction

Annex A: foundational UML and PSCS for UML models execution: Syntax and Semantics

155

LiteralString
InstanceValue
DataType
Signal
Trigger
EventOccurence
InstanceSpecification

FlowFinalNode
StructuredActivityNode
LoopNode
ConditionalNode
ExpansionRegion
ExpansionNode
ActivityParameterNode
InputPin
OutputPin
Activity
OpaqueBehavior
FunctionBehavior

StartClassifierBehaviorAction
StartObjectBehaviorAction
AddStructuralFeatureValueAction
ClearAssociationAction
ClearStructuralFeatureAction
CreateLinkAction
CreateObjectAction
DestroyLinkAction
DestroyObjectAction
ReadLinkAction
ReadSelfAction
ReadStructuralFeatureValueAction
RemoveStructuralFeatureValueAc-
tion
TestIdentityAction
ValueSpecificationAction

fUML* defines execution semantics for elements listed in Table A-1. The next subsection
concentrates on that.

A.2. The semantics

The fUML semantic model (right-hand side of Figure A-1) is designed following the visitor
design pattern. Each executable element of the fUML abstract syntax (left-hand side of the
figure) is associated with a semantic element which implements its execution semantics, so-
called semantic visitor. Once instantiated, the semantic visitors constitute an interpreter for a
given model.

fUML introduces three abstract semantic visitors which represent the basis of the fUML se-
mantic model: ActivityNodeActivation(sem), Value(sem), and Evaluation(sem) as depicted in Figure
A-2.

� The Value(sem) semantic visitor is used to represent values on the runtime of fUML where
a value is an instance of one or more classifiers. A value is always representable using
a ValueSpecification(syn). Value(sem) specializes the SemanticVisitor(sem) class to allow the

UML abstract Syntax

fUML abstract Syntax

UseCases

Components

Interactions

Action

 Activities

Class

 Classes

fUML semantic model

 Actions

ActionActivation

Kernel

Object

<<Implements execution semantics of>>

Figure A-1.Syntax and semantics of fUML

Annex A: foundational UML and PSCS for UML models execution: Syntax and Semantics

156

representation of two primary elements: the Object(sem) and the Execution(sem) semantic
visitors.

� The ActivityNodeActivation(sem) represents an abstract basis for the definition of execu-
tion semantics of activities nodes. Each concrete activation visitor (defined as a special-
ization of the ActivityNodeActivation(sem) semantic visitor) is used to model the seman-
tics of a specific kind of activity node within the execution of an Activity(syn).

� The Evaluation(sem) is used to evaluate a specific kind of ValueSpecification(syn).

fUML defines three categories of semantic elements: those which capture structural semantics,
those which capture behavioral semantics and, those which capture instantiation semantics. All
these elements are defined as extensions for one of the abstract semantic visitors enumerated
previously.
Structural semantics are captured by a set of semantic visitors which are extensions of the visitor
Value(sem). In the context of this work, we are particularly interested in behavioral and instanti-
ation semantics. The rest of this section gives further details about the most important semantic
elements that are related to our work and contributions.

A.2.1. Behavioral semantics

These subsection focus on the behavioral semantics of fUML semantic model. The key ele-
ments which define behavioral semantics in the fUML semantic model are Object(sem), and the
concrete semantic visitors which are derived from Execution(sem) and the ActivityNodeActiva-

tion(sem).

A.2.1.1. Object(sem) semantic visitor

Object(sem) represents the boundary between the structural and behavioral semantics. It may
represent the instance of a passive or an active Class(syn) and provides operations which imple-
ment execution semantics of behaviors specified in each kind of classes as activities.

Figure A-2. Extract of semantic visitors considered by fUML

Annex A: foundational UML and PSCS for UML models execution: Syntax and Semantics

157

� Semantics for active classes
The operation startBehavior() of the class Object(sem) captures the execution semantics of active
classes. An active Class(syn) is necessarily associated with a Behavior(syn) which represents its
classifier behavior. Once instantiated, an active class starts its classifier behavior. The execution
of this latter is controlled by the class ObjectActivation(sem) in the semantic model. The object
activation invokes the classifier behavior for the execution of its behavior by sending an Invo-

cationEventOccurence(syn). The classifier behavior accepts the invocation event occurrence and
creates an Execution(sem) for the behavior associated to it. If the behavior is specified using an
activity, then the created execution is an ActivityExecution(sem).
The operation send() in the ObjectActivation(sem) class allows an instance of an active Class(syn)
to receive events. When an EventOccurrence(syn) is received, it is placed in the event pool of the
ObjectActivation(sem) associated with the Object(sem). The order in which the events occurrences
are consumed is a semantic variation point. fUML proposes a FIFO strategy which consists in
consuming the first event occurrence in the pool, verifying whether the classifier behavior of
the object is waiting an instance of the received event. If so, the event occurrence is consumed
and the control is propagated to the next node in the activity and, if not the instance of the event
is lost. fUML relies on run to completion (RTC) semantics where the principle is to propagate
the control as much as possible in the classifier behavior when an event occurrence is received.
fUML defines an event dispatch loop that waits for the arrival of an EventOccurrence(syn), when
this happens a single event occurrence is dispatched from the event pool and, once this is com-
pleted, the dispatch loop returns to waiting for another EventOccurrence(syn) to arrive. The se-
mantics of event dispatching are defined in the method dipatchNextEvent() of the ObjectActi-

vation(sem) class.

� Semantics for passive classes
The operation dispatch() of the class Object(sem) allows an instance of a passive Class(syn) to
receive operation calls. The operation call is run synchronously in the context of the object that
made the call. The strategy which identifies the actual operation to execute, in case of polymor-
phic definition of the operation, is a semantic variation point in fUML and should be defined in
a class which extends DispatchStrategy(sem) class in the semantic model. The result of a call to
the dispatch() operation is an ActivityExecution(sem).

Figure A-3. Behavioral semantic elements related to the Object visitor

Annex A: foundational UML and PSCS for UML models execution: Syntax and Semantics

158

A.2.1.2. Execution(sem) and ActivityNodeActivation(sem) visitor

Execution(sem) is a particular semantic visitors. It coordinates the execution of a set of elements
specifying a Behavior(syn). There is an execution visitor class corresponding to each concrete
subclass of Behavior(syn) included in the fUML subset. In particular, the semantic visitor Activ-

ityExecution(sem) captures execution semantics of a behavior specified with an Activity(syn). It is
associated with a group, so-called ActivityNodeActivationGroup(sem), which encapsulates the
semantics of all node of the activity as depicted in Figure A-4.

The ActivityExecution(sem) class creates activity edge instances for all activity edges, activity
node activations for all activity nodes and makes offers to all nodes with no incoming edges.
The execution semantics of activities are captured by the semantic visitors which extend the
abstract semantic visitor ActivitynodeActivation(sem).
The activations are divided into three categories: the ActionActivation(sem), the ControlNodeAc-

tivation(sem) and, the ObjectNodeActivation(sem) as depicted in Figure A-5. The execution of an
activity node consists in the execution of the sequence of operations receiv-

eOffer()�fire()�sendOffers() defined in its corresponding semantic visitor. This sequence of
operations defines the semantics of tokens propagation in the activity. The operation sendOff-

ers() is responsible for the propagation of a set of tokens to the outgoing edgesof the activity
node. The operations suspend() and resume() of the ActivityNodeActivation(sem) allow to respec-
tively suspend and resume the execution of an activity node.
An execution terminates when either all node activations are complete, or an activity final node
is executed.
Figure A-5 focus particularly on semantic visitors which extend the ActionActivation(sem) visi-
tor. Each sub-class of the ActionActivation(sem) captures execution semantics of a particular ac-
tion node and implements computations related to the execution semantics of the corresponding
Action(syn) in the method doAction(). For example the CallBehavioActionActivation(sem) cap-
tures the execution semantics of the syntactic element CallBehaviorAction(syn) which allows to
specify a call to a behavior of a given object instance in a model.

Figure A-4. The ActivityExecution(sem) and ActivityNodeActivation(sem) visitor

Annex A: foundational UML and PSCS for UML models execution: Syntax and Semantics

159

The AcceptEventActionActivation(sem) is an action activation for an AcceptEventAction(syn). The
AcceptEventAction(syn) is a particular action that waits for the occurrence of an event meeting
specified condition. fUML provides execution semantics for AcceptEventAction(syn) triggered
by SignalEventOccurrence(syn). In the semantic model, each acceptEventActionActivation(sem) is
associated to an AcceptEventActionEventAccepter(sem). This latter handles reception of signal
event occurrences on the behalf of that specific accept event action activation. For this, it de-
fines two operations match() and accept(). The match() operation checks whether a given Sig-

nalEventOccurrence(syn) matches the trigger specified for a given AcceptEventAction(syn). If so,
the accept() operation is responsible for forwarding the SignalEventOccurrence(syn) to the cor-
responding action activation which will enable control propagation to continue the execution
of the following activity nodes.

A.2.2. Instantiation semantics

The instantiation of semantic visitors is handled by two specific classes in the semantic model
which are: the Locus(sem) and the ExecutionFactory(sem) depicted in Figure A-6.
The class Locus(sem) defines an operation instantiate() responsible for the representation of the
executable syntactic elements specified in an applicative model. The operation takes a
Class(syn)as parameter which can be a Type(syn) or a Behavior(syn). The result is respectively an
Object(sem) or an Execution(sem) (which is a specialization of Object(sem)). The locus is the virtual
memory of fUML in which are stored all created visitors.
The instantiation of Visitors which capture execution semantics of behavioral elements is actu-
ally handled by the ExecutionFactory(sem) class. The instantiation logic is captured by the oper-
ation instantiateVisitor() of the sub-classes ExecutionFactoryL1(sem), ExecutionFactoryL2(sem)

Figure A-5. Semantic visitor of activity nodes

Annex A: foundational UML and PSCS for UML models execution: Syntax and Semantics

160

and ExecutionFactoryL3(sem) (corresponding to the three conformance levels L1, L2 and L3
defined in UML specification [30]).

In the previous subsections we presented the key elements of the semantic model of fUML. We
have first identified the semantic visitors which capture the behavioral semantics of UML ac-
tivities execution. Then we determined the semantics of the visitors’ instantiation. Here is a
recapitulation of semantic elements defined in the semantic model of fUML organized into
three categories:
C-1 Visitors which define semantics for structure: they are specializations of the Value abstract
visitor and define how the structural elements of a model are represented during the execution.
The most important one is the Object(sem) semantic visitor
C-2 Visitors which define the semantics of behaviors: they are specializations of the Activi-

tyNodeActivation(sem) abstract visitor and implement the execution semantics of activity nodes
considered by the syntax subset of fUML.
C-3 The classes which define the rules of the instantiation and coordination between the se-
mantic visitors

(a) Execution(sem) is a particular visitor used for the coordination for visitors defined for a
set of activity nodes specifying an activity,
(b) Locus(sem) defines the rules of instantiation for the Classifier(syn) and allows to keep a
trace for values created at the execution,
(c) Executor(sem) defines the entry point of an execution in the semantic model,
(d) ExecutionFactory(sem) handles the creation of visitors defined as specialization to Exe-

cution(sem) and ActivityNodeActivation(sem).

Figure A-6. The Locus, the executor, and the Execution
Factory in fUML

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

161

B. ANNEX B: FMI for co-simulation Standard

Outline

B.1. The FMU content
 B.1.1. Structure (XMl file)

B.1.1.1. ‘CoSimulation’ element
B.1.1.2. ‘DefaultExperiment’ element
B.1.1.3. ‘ModelVariables/ScalarVariable’ element
B.1.1.4. ‘ModelStructure/Outputs’ element

 B.1.2. Dynamics (DLLs/C-functions)
 B.1.2.1. Instantiation and initialization
 B.1.2.2. Stepwise simulation and data propagation
 B.1.2.2. Termination

B.2. The Master Algorithm
 B.2.1. Procedures calls order
 B.2.2. Pseudocode of the master algorithm

The content of this appendix supplements information given in chapter 2 about the FMI for co-
simulation standard, in particular about the content of an FMU (section B.1) as well as the
master algorithm (section B.2). We focus on details we believe required for a better compre-
hension of this work. For a deep understanding of the standard, refer to the standard specifica-
tion [17].

B.1. FMU content

A component which implements the FMI is called Functional Mockup Unit (FMU). It consists
of one zip-file with extension “*.fmu” containing:

� An XML-file describing the variables of the FMU that are exposed to the environment
in which the FMU shall be used (the structure), as well as other model information,

� A set of C-functions to setup and run the FMUs in a co-simulation environment (the
dynamics). These C-functions can either be provided in source and/or binary form. An
FMU for co-simulation embeds the solver responsible for the resolution of the equations
described

� Further data can be included in the FMU zip-file (a model icon, documentation files,
maps and tables needed by the model).

B.1.1. Structure (XML file)

The XML-file is defined by an XML-schema file called “fmiModelDescription.xsd”. In Figure
B-1, the complete XML schema definition is shown.

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

162

Each element in the XML schema has attributes in which information is introduced. The ele-
ments ‘CoSimulation’, ‘DefaultExperiments’, ‘ModelVariables/ScalarVariable’ and
‘ModelStructure/Outputs/Unknown’ are the most important ones.

B.1.1.1. ‘CoSimulation’ element

The XML file of an FMU intended for co-simulation must contain this element. If so, the FMU
includes the model and the simulation engine, or a communication to a tool that provides the
model and the simulation engine, and the environment provides the master algorithm to run
coupled FMU co-simulation slaves together. The element enables to introduce information
about the capabilities of the FMU. For example, its capability to rollback a simulation step is
expressed in the attribute ‘canGetAndSetFMUState’. Figure B-2 taken from [17] illustrates all
attributes of this element together with a description of each one.

Figure B-1. XML schema of the FMI standard (version 2.0)

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

163

B.1.1.2. ‘DefaultExperiment’ element

Figure B-2. The attributes associated with the 'CoSimulation' element in the XML schema

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

164

An FMU can provide the default settings used by the solver in the original simulation tool (the
tool in which the FMU was designed and simulated), such as stop time and stop time of the
simulation, and relative tolerance. The FMU can also provide a default simulation step size.
This later can be considered as the preferred (most suited) step size of the FMU for its simula-
tion. Figure B-3 illustrates the attributes of the ‘DefaultExperiment’ attribute.

B.1.1.3. ‘ModelVariables/ScalarVariable’ element

‘ModelVariables’ element consists of an ordered set of ‘ScalarVariable’ elements (see Figure
B-4 above). A ‘ScalarVariable’ represents a variable of primitive type, like a real or integer
variable. The attributes of the ‘ScalarVariable’ element are illustrated in Figure B-4 together
which a brief description of each attribute. This element allows to define the component inputs,
outputs, parameters, local variables and time dependent variables. The causality of the variable
is defined by the attribute ‘causality’.

Figure B-3. Attributes of the ‘DefaultExperiment’
element in the XML schema

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

165

B.1.1.4. ‘ModelStructure/Outputs’ element

The ‘ModelStructure’ defines the structure of the model. Especially, the ordered lists of out-
puts, continuous-time states and initial unknowns (the unknowns during Initialization Mode)
are defined here (see Figure B-6). It allows also to optionally define the dependency of the un-
kowns from the knowns. For example, the I/O dependency information is expressed in the
‘Outputs’ element. Figure B-6 illustrates the attributes related to the ‘Outputs’ element to-
gether with a description of each of them.

Figure B-4. Attributes of 'ScalarVariable' element in the XML schema

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

166

The XML file contained in the FMU should comply with this XML schema. Figure B-5 de-
picts an example of a “modelDescription.xml” file of the FMU ‘TankPI.TankPIPlant’.

Figure B-5. Example of a model description xml file of an FMU for co-simulation

Figure B-6.’Unknown’ element attributes in the XML schema

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

167

This FMU can handle variable communication step size, can interpolate inputs, can provide
directional derivatives, and supports rollback as indicated in <coSimulation> element. It is pref-
erable to simulate this FMU from time ‘t=0’ to time ‘t=250’ with a step size ‘h=0,0001’ as
indicated in <defaultExperiment> element. For simplification, not all variables of the model are
shown in the figure. The model has an output ‘outValue’ which depends on the parameter
‘tank.h’ as indicated in outputs of the <modelStructure> element.

B.1.2. Dynamics (DLL/C-functions)

This section is organized in a way to conform the section 2.1.1.2. It introduces the functions
responsible for the instantiation and initialization on an FMU, the stepwise simulation on an
FMU, and the termination of an FMU as defined in the FMI API.

B.1.2.1. Instantiation and initialization

The function ‘fmi2Instantiate’ (Figure B-7) returns a new instance of an FMU. If a null pointer
is returned, then instantiation failed. This function must be called successful before a simulation
run starts.

After the instantiation, the FMU should be informed about the simulation parameters chosen
by the master for the co-simulation using the function ‘fmi2Instantiate’ (Figure B-8) The master
can choose to use the parameters defined in the FMU (if information are available), or to pro-
pose other parameters. This function can be called after the ‘fmi2Instantiate’ ad before ‘fmi2En-
terInitializationMode’

The FMU can now enter the initialization mode where the actual value of the FMU variables
can be get and some variables values can be set (refer to Figure B-14 below for the list of
variables we can set at initialization mode). The FMU is informed to enter the initialization
mode with the function ‘fmi2EnterInitializationMode’, and to exit the initialization mode with
the function ‘fmi2ExitInitializationMode’ (Figure B-9).

Figure B-7. 'fmi2Iinstantiate’ function

Figure B-8. 'fmi2SetupExperiments' function

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

168

B.1.2.2. Stepwise simulation and data propagation

After the instantiation and initialization of the FMU, the master is allowed to perform stepwise
simulation and to propagate data from one FMU to another.

The values of the FMU variables defined in the XML file are get using the following functions:

It is also possible to set the values of certain variables at particular instants in time using the
following functions:

The simulation is performed from the start simulation time to the stop simulation time defined
in the ‘fmi2SetupExperiments’ function by calling the ‘fmi2DoStep’ funtion on the FMU. The
master should precise the current simulation tme ‘currentCommunication pointn’ as well as the
current step size ‘communicationStepSize’.

Figure B-9. 'fmi2EnterInitializationMode' and ‘fmi2ExitInitializationMode’

Figure B-10. 'fmi2GetXXX' function

Figure B-11.'fmi2SetXXX' function

Figure B-12. 'fmi2DoStep' function

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

169

B.1.2.3. Termination

At the end of the simulation, the master should inform the FMU that the simulation run is ter-
minated by calling the function ‘fmi2Terminate’ on the FMU. After calling this function, the
final values of all variables can be inquired with the ‘fmi2GetXXX’ functions.

B.2. The master Algorithm

B.2.1. Procedures calls order

The FMI standard defines the FMU life cycle. It identifies four modes in which the FMU can
be: Instantiated, Initialization mode, Slave Initialized, Terminated.
For each mode, the standard defines the functions which can be called on an FMU. Figure
B-14 illustrates the life cycle of the FMU as well as the supported calling sequence

B.2.2. Pseudocode of a basic master algorithm

The FMI standard provide a pseudocode of a master algorithm in order to sketch the typical
calling sequence of the functions in a co-simulation environment.

Figure B-14. Calling sequence of Co-Simulation C functions

Figure B-13. 'fmi2Terminate’ function

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

170

The master orchestrates a co-simulation scenario composed of two FMUs ‘S1’ and ‘S2’ as de-
picted in Figure B-15.

The FMUs support the minimum capabilities (no rollback, no variable step size). The pseudocode of

the master algorithm is depicted in Figure B-16.

Figure B-15. Co-simulation scenarion
composed of two FMUs

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

171

Figure B-16. Pseudocode of the master algorithm

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

172

C. ANNEX C: Papyrus/Moka support for
FMI for co-simulation standard

Outline

C.1. Moka Overview

C.1.1. Execution of models based on standards

C.1.2. Interactive execution

C.1.3. Extension for new execution semantics

C.2. Moka extended for the FMI standard

C.2.1. Moka as a master for co-simulation
C.2.1.1. The import of an FMU for co-simulation in Papyrus/Moka
C.2.1.2. The definition of a co-simulation scenario in Papyrus/Moka
C.2.1.3. The simulation of co-simulation scenarios in Papyrus/Moka

C.2.2. Moka as a slave for co-simulation

The work is tooled in the context of Papyrus which is an open source UML/SysML modeler
based on the Eclipse platform27. It enables designers to describe very detailed models of their
systems, and aims at providing an integrated environment for UML models and related profiles.
Papyrus provides UML models execution by means of its additional component Moka. In this
chapter, we aim at representing the functionalities of Moka in section C.1, as well as, the im-
plementation of the framework of co-simulation we propose in chapter 0 related to the support
of FMI-based co-simulation.

C.1. Moka Overview

Moka provides three important features: execution of models based on OMG standards, inter-
active execution, and extensibility of the framework for new execution semantics. This subsec-
tion introduces these functionalities.

C.1.1. Execution of models based on standards

Moka natively includes execution engines complying with the OMG standards fUML* (i.e.
fUML and PSCS), by implementing the interpreter described in their specifications. This im-
plementation supports the execution of UML subset defined in fUML* specifications. Each
model constructed using the syntactic elements listed in annex A is executable.

C.1.2. Interactive execution

Moka is integrated with the Eclipse debug framework to provide control, observation and ani-
mation facilities over executions (Figure C-1). It is thereby possible to control execution of
models(e.g., suspending/resuming executions after breakpoints have been encountered) as well
as to observe states of executed models at runtime (e.g., emphasizing graphical views of model

27 Refer to: eclipse.org/papyrus/

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

173

elements on which execution has suspended, retrieving and displaying any state information
about the runtime manifestation of these model elements).

C.1.3. Extension for new execution semantics

Thanks to its architecture, Moka is a front-end for the integration of simulation tools and tech-
niques. In fact, Moka can be easily extended to address new execution semantics. This can be
done through extension points enabling registration of executable model libraries (e.g., new
MoCs, trace libraries, etc.) or simply tool-level extensions of the execution engine. Domain or
user specific customization of the modeling tool can be associated with a dedicated simulation
engine in Moka. Moka is for example extended for simulation of business process models
(Moka for BPMN) and for co-simulation of cyber-physical systems (Moka for FMI imple-
mented in the context of this work).

Figure C-1.Interactive execution in Papyrus/Moka

Figure C-2. The support of several execution engines in Moka

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

174

Figure C-2 illustrates the fact that Moka can integrate several execution engines.

C.2. Moka extended for the FMI standard

Moka is extended for the support of the FMI for co-simulation standard (Figure C-3). Moka
can be used as: (a) a master for co-simulation where FMU for co-simulation can be imported,
connected and simulated (b) a slave where the UML models are exported as FMUs for co-
simulation compliant with the FMI specification.

C.2.1. Moka as a master for co-simulation

Moka provides a FMI-based co-simulation environment for the modeling and simulation of
CPS as described in chapter 4. It allows in particular: the import of FMUs for co-simulation,
the definition of co-simulation scenarios and their simulation using basic and advanced master
algorithms. The implementation of these features is part of this work. They were already ex-
plained in the chapter 4. This subsection represents the implementation steps of these features.
It illustrates the result of this implementation and the steps for testing it with snapshots taken
from Papyrus/Moka.

C.2.1.1. Import of an FMU for co-simulation in Papyrus/Moka

Moka allows the import of FMUs for co-simulation compliant with the version 2.0 of the FMI
standard. The import is done by model transformation from FMU to an annotated UML model.
(i.e. annotated with stereotypes from the co-simulation profile represented in chapte 4). Anno-
tations add to UML models FMI specific concepts, and includes a direct link to the in-memory
original FMU model.

The transformation of FMU to an annotated UML model is done with a QVTo transformation
(Figure C-4). This transformation takes as an input the FMI meta-model, the UML meta-model
and the co-simulation profile we presented in chapter 4 and produces an annotated UML model.

Figure C-3. Papyrus/Moka support for FMI for co-simulation

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

175

 modeltype UMLTypes uses "http://www.eclipse.org/uml2/5.0.0/Types";
modeltype UML uses 'http://www.eclipse.org/uml2/5.0.0/UML';
modeltype FMI uses 'platform:/plugin/org.eclipse.papyrus.moka.fmi2/fmi2ModelDescription.xsd';
modeltype ecore uses ecore('http://www.eclipse.org/emf/2002/Ecore');
//modeltype fmiML uses FmiMLProfile('http:///schemas/FmiMLProfile/_1LNqQBwfEeWeGufsnalS6A/44');

transformation NewTransformation(in fmu : FMI, in umlTypes : UML, in fmiMLProfile : UML , in fmuProx-
yLibrary : UML, out output_model :UML);

/*
* fmi profile and its stereotypes
*/
property fmiProfile : UML::Profile = fmiMLProfile.rootObjects()![UML::Profile];

//fmu type (coSimulation or modelExchange)
property cs_stereotype : UML::Stereotype =
 fmiProfile.ownedStereotype![name = "CS_FMU"];

//fmu Port/locals/parameters/calculated parameters/independent
property port_stereotype : UML::Stereotype =
 fmiProfile.ownedStereotype![name = "Port"];
property parameter_stereotype : UML::Stereotype =
 fmiProfile.ownedStereotype![name = "Parameter"];
property calculatedParameter_stereotype : UML::Stereotype =
 fmiProfile.ownedStereotype![name = "CalculatedParameter"];
property local_stereotype : UML::Stereotype =
 fmiProfile.ownedStereotype![name = "Local"];
property independent_stereotype : UML::Stereotype =
 fmiProfile.ownedStereotype![name = "Independent"];

//fmu dependencies
property outputDependency_stereotype : UML::Stereotype =
 fmiProfile.ownedStereotype![name = "OutputDependency"];
property derivativeDependency_stereotype : UML::Stereotype =
 fmiProfile.ownedStereotype![name = "DerivativeDependency"];
property initialUnknownDependency_stereotype : UML::Stereotype =
 fmiProfile.ownedStereotype![name = "InitialUnknownDependency"];

//create a generalization for the generated class
property fmu2ProxyGeneralization : UML::Generalization = object Generalization{general := fmuProx-
yLibrary.rootObjects()[Package]->any(true).getOwnedMembers()->selectOne(name="Fmu2Proxy").oclAs-
Type(Class)};

configuration property dllPath : String;
configuration property fmuLocation : String;

//variables for the FMU structure (class, ports and attrinbutes)
property globalPropertiesList : Sequence(UML::Property);

//queries
query getUmlClassifier(name : String) : Classifier{
 var classifiers : Collection(Classifier) := umlTypes.rootObjects()[Model].packagedElement->se-
lectByKind(Classifier);
 return classifiers->any(classifier : Classifier | classifier.name = name);
}
query InitialType::findLiteral() : EnumerationLiteral {
 var enumeration := findEnumeration("InitialType");
 return enumeration.ownedLiteral![name = self.toString()];
}

query VariabilityType::findLiteral() : EnumerationLiteral {
 var enumeration := findEnumeration("VariabilityType");
 return enumeration.ownedLiteral![name = self.toString()];
}

query DependenciesKindTypeItem::findLiteral() : EnumerationLiteral {
 var enumeration := findEnumeration("DependenciesKindType");
 return enumeration.ownedLiteral![name = self.toString()];
}

query findEnumeration(enumName : String) : Enumeration {
 return fmiMLProfile.objectsOfType(Enumeration)![name=enumName];
}

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

176

query findStereotype(fmiVariable : FMI::Fmi2ScalarVariable) : Stereotype {
 var stereotypeToApply : UML::Stereotype := local_stereotype;
 switch {
 case(fmiVariable.causality = CausalityType::local){
 stereotypeToApply := local_stereotype;
 };
 case(fmiVariable.causality = CausalityType::parameter){
 stereotypeToApply := parameter_stereotype;
 };
 case(fmiVariable.causality = CausalityType::calculatedParameter){
 stereotypeToApply := calculatedParameter_stereotype;
 };
 case(fmiVariable.causality = CausalityType::independent){
 stereotypeToApply := independent_stereotype;
 };

case(fmiVariable.causality = CausalityType::input or fmiVariable.causality = Causali-
tyType::output){

 stereotypeToApply := port_stereotype;
 };
 };
 return stereotypeToApply;
}
//helpers
helper setPropertyType (inout myProperty : UML::Property ,in fmiVariable : FMI::Fmi2ScalarVariable){
 switch{
 case (fmiVariable.real <> null) {
 myProperty.type := getUmlClassifier("Real");
 myProperty.defaultValue := object UML::LiteralReal{value := fmiVaria-
ble.real.start->any(true)};
 }
 case(fmiVariable.integer <> null) {
 myProperty.type := getUmlClassifier("Integer");
 myProperty.defaultValue := object UML::LiteralInteger{value := fmiVariable.in-
teger.start->any(true)};
 }
 case(fmiVariable.boolean <> null) {
 myProperty.type := getUmlClassifier("Boolean");
 myProperty.defaultValue := object UML::LiteralBoolean{value := fmiVaria-
ble.boolean.start->any(true)};
 }
 case(fmiVariable.string <> null) {
 myProperty.type := getUmlClassifier("String");
 myProperty.defaultValue := object UML::LiteralString{value := fmiVaria-
ble.string.start->any(true)};
 }
 case(fmiVariable.enumeration <> null) {
 myProperty.type := getUmlClassifier("String");
 myProperty.defaultValue := object UML::LiteralString{value := fmiVariable.enu-
meration.start.toString()->any(true)};
 };
 };
}
helper setPropertyStereotypeValues (inout myProperty : UML::Property, in appliedStereotype :
UML::Stereotype, in fmiVariable :FMI::Fmi2ScalarVariable){
 if (fmiVariable.valueReference <> null){
 myProperty.setValue(appliedStereotype,"valueReference",fmiVariable.valueRefer-
ence);
 }endif;
 if (fmiVariable.initial <> null){
 myProperty.setValue(appliedStereotype,"initial",fmiVariable.initial.findLiteral());
 }endif;
 if (fmiVariable.description <> null){
 myProperty.setValue(appliedStereotype,"description",fmiVariable.description);
 }endif;
 if (fmiVariable.variability <> null){
 myProperty.setValue(appliedStereotype,"variability",fmiVariable.variability.findLit-
eral());
 }endif;
 if (fmiVariable.causality <> null){
 myProperty.setValue(appliedStereotype,"causality",fmiVariable.causality.toString());
 }endif;

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

177

 switch{
 case (fmiVariable.causality = CausalityType::input){
 myProperty.setValue(appliedStereotype,"causality","in");
 };
 case (fmiVariable.causality = CausalityType::output){
 myProperty.setValue(appliedStereotype,"causality","out");
 };
 };
}

//main function
main() {
 //map xml file to UML Package containing a class (the FMU) and list of dependencies
 var targetPackage : UML::Package := fmu.rootObjects()![FMI::FmiModelDescriptionType].map
map2UMLPackage();
}

mapping inout Package::addPackageImport(targetPackage : Package) : PackageImport{
 self.packageImport += result;
 result.importedPackage := targetPackage;
}
//mappings
mapping FMI::FmiModelDescriptionType :: map2UMLPackage() : UML::Package {
 result.applyProfile(fmiProfile);
 result.name := self.coSimulation.modelIdentifier->any(true);
 var classes := fmu.rootObjects()[FMI::FmiModelDescriptionType].map map2UMLClass(result);
 var dependencies := fmu.objectsOfType(FMI::ModelStructureType).map map2Dependencies(result);
}
mapping FMI::FmiModelDescriptionType :: map2UMLClass(inout mypackage : UML::Package) : UML::Class{
 mypackage.packagedElement += result;
 result.name := self.coSimulation.modelIdentifier->any(true);
 result.applyStereotype(cs_stereotype);
 result.ownedAttribute := self.modelVariables.scalarVariable.map map2UMLAttributes(result)
 -> union (self.modelVariables.scalarVariable. map
map2UMLPorts(result));
 setClassStereotypeValues(result, self);
 generalization := fmu2ProxyGeneralization;
}

mapping FMI::Fmi2ScalarVariable :: map2UMLAttributes(inout myClass : UML::Class) : UML::Property
when{
 self -> exists(s|s.causality <> CausalityType::input and s.causality <> CausalityType::output)
}
{
 myClass.ownedAttribute +=result;
 result.name := self.name;
 var stereotypeToApply := findStereotype(self);
 result.applyStereotype(stereotypeToApply);
 setPropertyStereotypeValues(result,stereotypeToApply,self);
 setPropertyType(result,self);
 globalPropertiesList += result;
}
when{
 self -> exists(s|s.causality = CausalityType::input or s.causality = CausalityType::output)
}
{
 myClass.ownedAttribute += result;
 result.name := self.name;
 result.applyStereotype(port_stereotype);
 setPropertyStereotypeValues(result,port_stereotype,self);
 setPropertyType(result,self);
 globalPropertiesList += result;
}

mapping FMI::ModelStructureType :: map2Dependencies(inout myPackage : UML::Package) : Se-

quence(UML::Dependency){
 init{
 result := self.outputs.map map2Dependencies(myPackage,outputDependency_stereotype)-
>asSequence()
 -> union (self.derivatives.map map2Dependencies(myPackage,derivative-
Dependency_stereotype)->asSequence())
 -> union (self.initialUnknowns.map map2Dependencies(myPackage,ini-
tialUnknownDependency_stereotype)->asSequence());
 }
}

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

178

mapping FMI::Fmi2ScalarVariable :: map2UMLPorts(inout myClass : UML::Class) : UML::Port

mapping FMI::InitialUnknownsType :: map2Dependencies(inout myPackage : UML::Package, in sterestotype-
ToApply : UML::Stereotype) : Sequence(UML::Dependency){
 init{
 result := self.unknown.map map2Dependencies(myPackage, sterestotypeToApply);
 }
}
mapping FMI::UnknownType1 :: map2Dependencies(inout myPackage : UML::Package, in sterestotypeToApply :
UML::Stereotype) : Sequence(UML::Dependency) {
 init{
 self.dependencies->forEach(dependency) {
 result += self.map map2Dependency(myPackage, sterestotypeToApply, depend-
ency.toString().toInteger());
 };
 }
}
mapping FMI::UnknownType1 :: map2Dependency(inout myPackage : UML::Package, in sterestotypeToApply :
UML::Stereotype, in supplier_index : Integer) : UML::Dependency {
 myPackage.packagedElement += result;
 var client_index := self.index.toString().toInteger();
 result.client := globalPropertiesList->at(client_index);
 result.supplier += globalPropertiesList -> at(supplier_index);
 result.applyStereotype(sterestotypeToApply);
}
mapping FMI::UnknownType :: map2Dependencies(inout myPackage : UML::Package, in sterestotypeToApply :
UML::Stereotype) : Sequence(UML::Dependency) {
 init{
 self.dependencies->forEach(dependency) {
 result += self.map map2Dependency(myPackage, sterestotypeToApply, depend-
ency.toString().toInteger());
 };
 }
}
mapping FMI::UnknownType :: map2Dependency(inout myPackage : UML::Package, in sterestotypeToApply :
UML::Stereotype, in supplier_index : Integer) : UML::Dependency {
 myPackage.packagedElement += result;
 var client_index := self.index.toString().toInteger();
 result.client := globalPropertiesList->at(client_index);
 result.supplier += globalPropertiesList -> at(supplier_index);
 result.applyStereotype(sterestotypeToApply);
}

mapping FMI::UnknownType1 :: map2Dependency(inout myPackage : UML::Package, in sterestotypeToApply :

UML::Stereotype, in supplier_index : Integer) : UML::Dependency {

 myPackage.packagedElement += result;
 var client_index := self.index.toString().toInteger();
 result.client := globalPropertiesList->at(client_index);
 result.supplier += globalPropertiesList -> at(supplier_index);
 result.applyStereotype(sterestotypeToApply);
}

mapping FMI::UnknownType :: map2Dependencies(inout myPackage : UML::Package, in sterestotypeToApply :
UML::Stereotype) : Sequence(UML::Dependency) {
 init{
 self.dependencies->forEach(dependency) {
 result += self.map map2Dependency(myPackage, sterestotypeToApply, depend-
ency.toString().toInteger());
 };
 }
}

mapping FMI::UnknownType :: map2Dependency(inout myPackage : UML::Package, in sterestotypeToApply :
UML::Stereotype, in supplier_index : Integer) : UML::Dependency {
 myPackage.packagedElement += result;
 var client_index := self.index.toString().toInteger();
 result.client := globalPropertiesList->at(client_index);
 result.supplier += globalPropertiesList -> at(supplier_index);
 result.applyStereotype(sterestotypeToApply);
}

Figure C-4. The QVTo transformation

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

179

Figure C-5 depicts the steps to follow in Papyrus for the import of an FMU for co-simulation
in a Papyrus project.

Figure C-5. The import of FMUs in Papyrus/Moka

2. Select the FMUs to import

3. The FMU is
represented with
an annotated UML
class and a set of
dependencies

1. Menu for the import of an FMU for
co-simulation

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

180

C.2.1.2. Definition of a co-simulation scenario in Papyrus/Moka

The definition of a co-simulation scenarios consists in the assembly of imported FMUs in a
composite class, and the configuration of the simulation parameters (start simulation time, stop
simulation time and the step size). The connection of the imported FMUs in the simulator is
done by a simple drag and drop of the classes representing the imported FMUs and their con-
nection using connectors. The configuration of the simulation is done via the stereotype
‘CS_Graph’ applied to the Simulator as depicted in Figure C-6. No additional implementation
is required for this task.

C.2.1.3. Simulation of co-simulation scenarios in Papyrus/Moka

Moka provides a master algorithm specified by an executable UML model (Figure 4-9 of chap-
ter 4), along with a dedicated model library. The current version of Papyrus/Moka supports the
co-simulation of imported FMUs using the master algorithm represented in Figure 4-10 of chap-
ter 4.
The simulation can be launched after the definition of a configuration run as illustrated in Figure
C-7. An execution engine for co-simulation, the so-called ‘org.eclipse.papyrus.moka.fuml.co-
simulation’, is defined as an extension to the fUML* execution engine (i.e. the interpreter im-
plementing the semantics defined in fUML* specifications).

Figure C-6.The definition of co-simulation scenario in papyrus

Annex C: Papyrus/Moka tool support for FMI for co-simulation standard

181

The simulation results are saved in a CSV file and visualized with XY charts integrated with
papyrus as depicted in Figure 4-15 at the end of chapter 4.

C.2.2. Moka as a slave for co-simulation

In this case, Moka is a provider of FMUs for co-simulation. It enables to export FMUs from
UML models by model transformation from FMU to UML models and by wrapping the UML
execution semantics into the FMI API. For instance, there is some restrictions on the kind of
supported model elements (i.e. only a subset of fUML* is supported) and on the capabilities of
the exported FMUs (e.g. no support for rollback). Current works aims at enlarging the scope of
the models we can export as FMUs for co-simulation to enable the use of UML models on other
simulation tools.

This scenario is out of the scope of this work. Further information about the Papyrus tool sup-
port of FMI for both scenarios (i.e. master and slave) can be found in 28 ,29 and 30.

28 Refer to: modprod2017-tutorial-Papyrus-MOKA-FMI-Cosimulation
29 Refer to: Papyrus-UserGuide for ModelExecution
30 Refer to: youtube-Papyrus-chain

Figure C-7. The definition of a run configuration in papyrus/Moka

182

D. ANNEX D: Topological sort on directed
graphs

Outline

D.1. Introduction to topological sort on directed graphs

D.2. Application to a co-simulation graph

In the section D.1. of this annex, we give general definition of topological sort, and the algo-
rithm proposed by kahn for topological sort on directed graph. In the second section D.2, we
illustrate the application of this algorithm for analysis of co-simulation scenarios.

D.1. Introduction to topological sort on directed graphs

A directed graph is a graph that is a set of vertices connected by edges, where the edges have a
direction associated with them. A topological sort or topological ordering of a directed graph is
a linear ordering of its vertices such that for every directed edge uv from vertex u to ver-
tex v, u comes before v in the ordering.

The vertices of the graph may represent tasks to be performed, and the edges may represent
constraints that one task must be performed before another. A topological ordering is possible
if and only if the graph has no directed cycles. This latter is called directed acyclic
graph (DAG). Any DAG has at least one topological ordering.

The Kahn’s algorithm given in Figure D-1 is one of the algorithms used for topological sorting
of directed graph.

L ← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty do
 remove a node n from S
 add n to tail of L
 for each node m with an edge e from n to m do
 remove edge e from the graph
 if m has no other incoming edges then
 insert m into S
if graph has edges then
 return error (graph has at least one cycle)
else
 return L (a topologically sorted order)

Figure D-1. Kahn's algorithm for topological sort on directed graph

Annex D: Topological Sort on directed graphs

183

First, it finds a list of "start nodes" which have no incoming edges and insert them into a set S;
at least one such node must exist in a non-empty acyclic graph.

Then:

- If the graph is a DAG, a solution will be contained in the list L (the solution is not
necessarily unique).

- Otherwise, the graph must have at least one cycle and therefore a topological sorting is
impossible

Figure D-3-a and Figure D-3-b depict two directed graphs composed of six vertices. The first
one is acyclic. A topological order is then possible to make. The algorithm returns the list given
below the dependency graph (L=A�B�C�D�E�F). The second one is a cyclic (cy-
cle=B�C�D�B). A topological sorting is not possible to make.

D.2. Application to a co-simulation graph

A co-simulation graph includes a set of components. Each of them has ports through which data
are propagated to the components connected to its outputs. We identify two kinds of depend-
encies between inputs and outputs ports: (a) external dependencies and (b) internal dependen-
cies.

(a) An external dependency is expressed with a connector. A connection between an output
‘O’ to an input ‘I’ means that ‘I’ depends on ‘O’ and that the value of ‘I’ cannot be set
before getting the value of ‘O’,

(b) An internal dependency is expressed with an UML dependency. If an I/O dependency
exists between an output ‘O’ and an input ‘I’, that means the value of ‘O’ depends on
the value of ‘I’.

In order to ensure the correctness of the propagated data, one should account for these depend-
encies. That is, we need to find a valid order in which the data are get/set from/to the FMUs
ports. For this reason, a dependency graph is built such that: Vertices are ports whose value is
get (if it is an output port) or set (if it is an input port), and edges are dependencies between two
ports.

Figure D-3-a. Directed Acyclic graph Figure D-3-b. Directed cyclic graph

References

184

References

[1] IEEE standard for modeling and simulation (M&S) high level architecture (HLA)–
framework and rules. IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000), pages 1–38, Aug
2010.
[2] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in event-b.
International Journal on Software Tools for Technology Transfer, 12(6):447–466, 2010.
[3] Ahmad Alkhodre, Jean-Philippe Babau, and J.-J Schwarz. Modelling of real-time con-
straints using sdl for embedded systems design. 13:189 – 196, 09 2002.
[4] Henric Andersson, Erik Herzog, Gert Johansson, and Olof Johansson. Experience from
introducing unified modeling language-systems modeling language at saab aerosystems. Syst.

Eng., 13(4):369–380, November 2010.
[5] M. U. Awais, P. Palensky, A. Elsheikh, E. Widl, and S. Matthias. The High Level Ar-
chitecture rti as a master to the functional mock-up interface components. In 2013 International

Conference on Computing, Networking and Communications (ICNC), pages 315–320, Jan
2013.
[6] Felice Balarin, Luciano Lavagno, Claudio Passerone, Alberto L. Sangiovanni-Vincen-
telli, Marco Sgroi, and Yosinori Watanabe. Modeling and designing heterogeneous systems. In
Concurrency and Hardware Design, Advances in Petri Nets, pages 228–273, London, UK, UK,
2002. Springer-Verlag.
[7] Jens Bastian, Christoph ClauÃŸ, Susann Wolf, and Peter Schneider. P.: Master for co-
simulation using fmi. In 8th International Modelica Conference, 2011.
[8] Abderraouf Benyahia, Arnaud Cuccuru, Safouan Taha, François Terrier, Frédéric Bou-
langer, and Sébastien Gérard. Extending the standard execution model of UML for real-time
systems. In Distributed, Parallel and Biologically Inspired Systems - 7th IFIP TC 10 Working

Conference, DIPES 2010 and 3rd IFIP TC 10 International Conference, BICC 2010, Held as

Part of WCC 2010, Brisbane, Australia, September 20-23, 2010. Proceedings, pages 43–54,
2010.
[9] Gérard Berry. The foundations of esterel, 1998.
[10] Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet, and Dominique Marcadet.
Semantic adaptation for models of computations. In Benoit Caillaud, Josep Carmona, and Ku-
nihiko Hiraishi, editors, Proceedings of the 11th International Conference on Application of

Concurrency to System Design, pages 153–162. IEEE Computer Society, 2011.
[11] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Deantoni,
and Benoit Combemale. Execution Framework of the GEMOC Studio (Tool Demo). In Pro-

ceedings of the 2016 ACM SIGPLAN International Conference on Software Language Engi-

neering, SLE 2016, page 8, Amsterdam, Netherlands, October 2016.
[12] David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee, Michael Masin,
Stavros Tripakis, and Michael Wetter. Determinate composition of fmus for co-simulation. In

References

185

Proceedings of the Eleventh ACM International Conference on Embedded Software, EMSOFT
’13, pages 2:1–2:12, Piscataway, NJ, USA, 2013. IEEE Press.
[13] Joachim Denil, Bart Meyers, Paul De Meulenaere, and Hans Vangheluwe. Explicit se-
mantic adaptation of hybrid formalisms for FMI co-simulation. In Proceedings of the Sympo-

sium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, part of the

2015 Spring Simulation Multiconference, SpringSim ’15, Alexandria, VA, USA, April 12-15,

2015, pages 99–106, 2015.
[14] Matthew Emerson and Janos Sztipanovits. Techniques for metamodel composition. In
OOPSLA 6th Workshop on Domain Specific Modeling, pages 123–139, October 2006.
[15] J. Eyer, G. Corey, and Sandia National Laboratories. Energy Storage for the Electricity

Grid: Benefits and Market Potential Assessment Guide: a Study for the DOE Energy Storage

Systems Program. SAND (Series) (Albuquerque, N.M.). Sandia National Laboratories, 2010.
[16] Yishai A. Feldman, Lev Greenberg, and Eldad Palachi. Simulating rhapsody sysml
blocks in hybrid models with fmi. In Proceedings of the 10th International Modelica Confer-

ence; March 10-12; 2014; Lund; Sweden, number 96, pages 43–52. Linköpings University
Electronic Press; Linköpings universitet, 2014.
[17] FMI. Functional mock-up interface for model exchange and co-simulation, October
2013.
[18] Sahar Guermazi, Jérémie Tatibouet, Arnaud Cuccuru, Ed Seidewitz, Saadia Dhouib,
and Sébastien Gérard. Executable modeling with fuml and alf in papyrus: Tooling and experi-
ments. In EXE@MoDELS, 2015.
[19] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow pro-
gramming language lustre. Proceedings of the IEEE, 79(9):1305–1320, September 1991.
[20] Cécile Hardebolle and Frédéric Boulanger. Exploring multi-paradigm modeling tech-
niques. SIMULATION: Transactions of The Society for Modeling and Simulation International,
85(11/12):688–708, November/December 2009.
[21] D. Harel and A. Pnueli. Logics and models of concurrent systems. chapter On the De-
velopment of Reactive Systems, pages 477–498. Springer-Verlag New York, Inc., New York,
NY, USA, 1985.
[22] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-

gram., 8(3):231–274, June 1987.
[23] Walid Hassairi, Moncef Bousselmi, Mohamed Abid, and Carlos Valderrama.
Matlab/systemc for the new co-simulation environment by jpeg algorithm. In Vasilios N. Katsi-
kis, editor, MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applica-

tions - Volume 2, chapter 06. InTech, Rijeka, 2012.
[24] Jozef Hooman, Nataliya Mulyar, and Ladislau Posta. Coupling simulink and UML mod-
els. 2004.
[25] Edward A. Lee. Cyber physical systems: Design challenges. In Proceedings of the 2008

11th IEEE Symposium on Object Oriented Real-Time Distributed Computing, ISORC ’08,
pages 363–369, Washington, DC, USA, 2008. IEEE Computer Society.
[26] Anu Maria. Introduction to modeling and simulation. In Proceedings of the 29th Con-

ference on Winter Simulation, WSC ’97, pages 7–13, Washington, DC, USA, 1997. IEEE Com-
puter Society.

References

186

[27] Richard E. Nance. History of programming languages—ii. chapter A History of Dis-
crete Event Simulation Programming Languages, pages 369–427. ACM, New York, NY, USA,
1996.
[28] Seyed Hosein Attarzadeh Niaki and Ingo Sander. Co-simulation of embedded systems
in a heterogeneous moc-based modeling framework. In Industrial Embedded Systems, pages
238–247, 2011.
[29] OMG. Uml profile for marte: Modeling and analysis of real-time embedded systems,
http://www.omg.org/spec/marte/, 2011, 2011.
[30] OMG. Unified modeling language (uml), http://www.omg.org/spec/uml/2.5/, 2015,
2015.
[31] OMG. Query/view/transformation (qvt), http://www.omg.org/spec/qvt/, 2016, 2016.
[32] OMG. Semantics of a foundational subset for executable uml models(fuml),
http://www.omg.org/spec/fuml/1.2.1./, 2016, 2016.
[33] Uwe Pohlmann, Wilhelm SchÃ¤fer, Hendrik Reddehase, Jens Röckemann, and Robert
Wagner. Generating functional mockup units from software specifications. In Proceedings of

the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany, num-
ber 76, pages 765–774. Linköpings University Electronic Press; Linköpings universitet, 2012.
[34] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy

II. Ptolemy.org, 2014.
[35] Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-physical
systems: The next computing revolution. In Proceedings of the 47th Design Automation Con-

ference, DAC ’10, pages 731–736, New York, NY, USA, 2010. ACM.
[36] Vitaly Savicks, Michael Butler, and John Colley. Co-simulating event-b and continuous
models via fmi. In Proceedings of the 2014 Summer Simulation Multiconference, SummerSim
’14, pages 37:1–37:8, San Diego, CA, USA, 2014. Society for Computer Simulation Interna-
tional.
[37] Tom Schierz, Martin Arnold, and Christoph Claud. Co-simulation with communication
step size control in an fmi compatible master algorithm. In Proceedings of the 9th International

MODELICA Conference; September 3-5; 2012; Munich; Germany, number 76, pages 205–
214. Linköpings University Electronic Press; Linköpings universitet, 2012.
[38] J. Sztipanovits. Composition of cyber-physical systems. In 14th Annual IEEE Interna-

tional Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’07),
pages 3–6, March 2007.
[39] Philip Langer Tanja Mayerhofer. Moliz: a model execution framework for uml models.
In Proceedings of the 2nd International Master Class on Model-Driven Engineering: Modeling

Wizards, 2012.
[40] Jérémie Tatibouet, Arnaud Cuccuru, Sébastien Gérard, and François Terrier. Formaliz-
ing execution semantics of UML profiles with fuml models. In Model-Driven Engineering Lan-

guages and Systems - 17th International Conference, MODELS 2014, Valencia, Spain, Septem-

ber 28 - October 3, 2014. Proceedings, pages 133–148, 2014.
[41] Jean-Philippe Tavella, Mathieu Caujolle, Charles Tan, Gilles Plessis, Mathieu Schu-
mann, Stéphane Vialle, Cherifa Dad, Arnaud Cuccuru, and Sébastien Revol. Toward an Hybrid
Co-simulation with the FMI-CS Standard, April 2016. Research Report.

References

187

[42] Stavros Tripakis and David Broman. Bridging the semantic gap between heterogeneous
modeling formalisms and fmi. Technical Report UCB/EECS-2014-30, EECS Department, Uni-
versity of California, Berkeley, Apr 2014.
[43] Bert Van Acker, Joachim Denil, Hans Vangheluwe, and Paul De Meulenaere. Genera-
tion of an optimised master algorithm for fmi co-simulation. In Proceedings of the Symposium

on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, DEVS ’15,
pages 205–212, San Diego, CA, USA, 2015. Society for Computer Simulation International.
[44] K. Wan, D. Hughes, K. L. Man, and T. Krilavioius. Composition challenges and ap-
proaches for cyber physical systems. In Networked Embedded Systems for Enterprise Applica-

tions (NESEA), 2010 IEEE International Conference on, pages 1–7, Nov 2010.
[45] Roel Wieringa. Design Methods for Reactive Systems: Yourdan, Statemate, and the

UML. Morgan Kaufmann Publishers, Boston, 2003.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Co-simulation dirigée par les modèles des Systèmes Cyber-Physiques

Mots clés : CPS, Co-simulation, FMI, UML, fUML

Résumé : La conception des systèmes cyber-

physiques (CPS) est réalisée à partir de plusieurs

disciplines impliquant de multiples composants,

physiques et autres cyber, interconnectés. La

simulation d'un tel système nécessite une co-

simulation des modèles associés à ces

composants tout en assurant leur

synchronisation. En particulier, FMI (Functional

Mock-up Interface) est un standard de co-

simulation très utilisé en industrie. Il offre une

interface standard pour coupler plusieurs

simulateurs dans un environnement de co-

simulation, nommé « Master ». Celui-ci est

chargé de fournir un algorithme pour une

orchestration et une synchronisation efficaces

des différents composants du système, nommés

FMU (« Functional Mock-up Unit »). Cette

norme s’impose de plus en plus dans l'industrie,

et est supportée par de nombreux

environnements de modélisation et de

simulation. Cependant, FMI est initialement

conçu pour la co-simulation des processus

physiques, avec un support limité des

formalismes à événements discrets qui est

modèle de calcul et de communication largement

utilisé dans les environnements de modélisation

spécifiques au logiciel. En particulier, bien

qu’UML soit un des langages de référence pour

la modélisation de logiciels et soit très

couramment utilisé dans l'industrie, aucune des

solutions actuelles de co-simulation basées sur

FMI ne permet de le prendre en considération.

La thèse défendue dans ce document est que

l'ingénierie système en général bénéficierait

énormément de l’intégration des modèles UML

dans une approche de co-simulation basée sur la

norme FMI. Cela permettra à un grand nombre

de concepteurs logiciels d’évaluer le

comportement de leurs composants logiciels

dans un environnement simulé, et donc de les

aider à faire les meilleurs choix de conception le

plus tôt possible dans leur processus de

développement. Cela pourrait également ouvrir

de nouvelles perspectives intéressantes pour les

ingénieurs système des CPS, en leur permettant

d'envisager l’utilisation d’un langage largement

utilisé pour la modélisation des composants

logiciels de leurs systèmes. Dans ce contexte,

l'objectif de cette thèse est de fournir un

environnement de co-simulation pour les CPSs

basé sur le standard FMI et qui prend en compte

les modèles UML pour la partie logicielle. Nous

mettons en place une approche de co-simulation

où nous abordons différents types de composants

caractérisant les composants logiciels d’un CPS.

Notre contribution intervient à deux niveaux :

localement au niveau des modèles UML, et

globalement au niveau du « Master ».

Localement, nous basons nos propositions sur les

standards OMG, fUML (Semantics of a

foundational subset for executable UML models)

et PSCS (Precise Semantics of UML Composite

Structures), qui définissent une sémantique

d’exécution précise pour un sous-ensemble de

UML. Pour chaque type de système, nous

identifions un ensemble de règles pour le

modéliser avec UML et les éventuelles

extensions à fUML. Ensuite, au niveau global,

nous proposons des algorithmes de « Master ».

Ils assurent la synchronisation des composants

du système en se basant sur une adaptation entre

l’API FMI et la sémantique définie dans fUML,

et sur un choix de pas de simulation adaptée à la

nature de chaque composant. L'approche est

illustrée par un cas d'utilisation du domaine des

bâtiments intelligents, où l’objectif est d’évaluer

différentes stratégies de contrôle (composants

logiciels) pour l’optimisation de son

autoconsommation en électricité.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title: Model-driven co-simulation of Cyber-Physical Systems

Keywords: CPS, Co-simulation, FMI, UML, fUML

Abstract: The design of cyber-physical systems

(CPS) is realized from several disciplines

involving multiple components, physical and

other cyber, which are interconnected. The

simulation of such a system requires a co-

simulation of the models of these components

and their synchronization. In particular, FMI

(Functional Mock-up Interface) is a co-

simulation standard widely used in industry.

This latter is responsible for providing an

algorithm with efficient orchestration and

synchronization of the involved components,

known as FMUs («Functional Mock-up Unit»).

FMI standard is gaining popularity in the

industry, and it is being supported by many

modeling and simulation environments.

However, FMI was originally intended for co-

simulation of physical processes, with limited

support for discrete event formalisms, even if

this kind of formalism is commonly used to

model the logic of software parts of a system. In

particular, while UML is the reference standard

for software modeling and is very commonly

used in industry, none of the present-day FMI-

based co-simulation solutions consider UML

models.

Our thesis is that system engineering in general

would greatly benefit from the consideration of

UML in FMI-based co-simulation approach. It

would indeed enable a significant number of

software designers to evaluate the behavior of

their software components in their simulated

environment, as soon as possible in their

development processes,

and therefore make early and better design

decisions. It would also open new interesting

perspectives for CPS system engineers, by

allowing them to consider a widely used

modeling language for the software parts of their

systems. In this context, the objective of this

work is to define an FMI-based co-simulation

environment for CPS with integration of UML

models for the software part of the system. We

set up a co-simulation approach where we

address different kinds of systems

characterizing the software part of CPS.

Our contribution is twofold: locally at the level

of UML models, and globally at the master

level. At the local level, we base our proposals

on OMG standards fUML («Semantics of a

foundational subset for executable UML

Models») and PSCS («Precise Semantics of

UML Composite Structures») which define

precise execution semantics for a subset of

UML. For each kind of system, we first identify

a set of rules to model it with UML and potential

extensions to fUML. Then, at the global level,

we propose « Master » algorithms. They ensure

the synchronization of the involved components

based on an adaptation between the FMI API

and the execution semantics defined in fUML,

and on a choice of simulation step size adapted

to the kind of each component. The approach is

illustrated by a use case from the smart grids

domain, where the objective is to evaluate

different control strategies (software

components) for the optimization of its

electricity self-consumption.

