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Abstract

It is indicated that the expansion of the wireless data traffic requirements
exceeds the capacity growth rate of new wireless access technologies. Therefore,
next-generation mobile wireless networks are moving toward heterogeneous archi-
tectures usually referred to as heterogeneous wireless networks (HWNs). HWNs
are usually characterized by the integration of cellular networks and wireless local
area networks (WLANs) to meet user requirements and enhance system capacity.
In fact, integrating different types of wireless access technologies in HWNs pro-
vides flexible choices for users to be associated with the network that best satisfies
their needs. In this context, this thesis discusses the user association and downlink
resource allocation problem in a heterogeneous wireless system that is based on
integrated Wi-Fi access points (APs) and long-term evolution (LTE) base stations
(BSs).

The contributions of this thesis could be divided into three main parts. In the
first part, a novel user association and resource allocation optimization problem is
formulated to maximize the overall user satisfaction in the system. The user satis-
faction is based on a weighted profit function that aims at enhancing the relative
received signal strength and decreasing the power consumption of mobile terminals
(MTs). Since a MT is only allowed to be associated with a single network at a time,
the formulated optimization problem is binary with an NP-complete complexity.
Then, multiple centralized solutions with polynomial-time complexities are propo-
sed to solve the formulated problem. The proposed centralized solutions are based
on heuristic approaches and on the continuous relaxation of the formulated binary
optimization problem.

The second part of the thesis aims at providing a distributed solution for the
formulated problem. The proposed distributed solution deploys the Lagrangian-
relaxation technique in order to convert the global formulated problem into mul-
tiple distributed Knapsack problems, each network processes its corresponding
Knapsack problem. The sub-gradient method is used in order to find the optimal,
or near optimal, Lagrangian multipliers.

Finally, the third part of the thesis studies new perspectives of the formula-
ted optimization problem and its corresponding centralized and distributed solu-
tions. Mainly, a generalized priority-aware user association and resource allocation
problem is formulated. The priority-aware problem is then reduced into multiple
problems that are solved using the proposed centralized and distributed solutions.
Moreover, a novel power efficiency maximization solution is proposed by altering
the objectives of the main formulated optimization problem.
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Introduction générale

L’expansion des exigences de trafic de données sans fil dépasse le taux de crois-
sance de la capacité des nouvelles technologies d’accès sans fil [HQ14]. Par consé-
quent, les réseaux sans fil mobiles de la prochaine génération tendent à adopter
des architectures hétérogènes généralement appelées réseaux sans fil hétérogènes
(HWN) [HQ14]. Dans ces réseaux HWN, les utilisateurs ont le droit de se connecter
à différents types de technologies d’accès radio telles que les stations de base LTE
(BS) ou les points d’accès Wi-Fi (AP). Une telle architecture augmente la capacité
du système en réduisant le nombre d’utilisateurs souhaitant de se connecter aux
BS. En outre, les réseaux HWN différent des choix dynamiques pour que l’utilisa-
teur final transfère sa session de données en cours à un réseau plus favorable qui
peut satisfaire ses besoins. Par conséquent, les réseaux HWN sont généralement
accompagnés du concept de « Always Best Connected » ou ABC [GJ03], qui est
le processus d’être connecté au meilleur réseau disponible à tout moment. Cepen-
dant, le concept ABC est généralement considéré du point de vue de l’utilisateur
pour classer les réseaux candidats et se connecter au meilleur réseau. Habituelle-
ment, les algorithmes de sélection de réseau basés sur le concept ABC ne prennent
pas en compte les ressources limitées des réseaux et l’effet du handover sur le sys-
tème. Par conséquent, il est essentiel dans les réseaux HWN d’ouvrir la voie à un
système ABC optimisé dans un contexte qui tient compte des besoins du réseau
des utilisateurs.

De nos jours, les travaux de recherche se concentrent sur la façon dont les
terminaux mobiles (MT) répondent à la variété des technologies d’accès sans fil
disponibles en même temps. Dans ce contexte, des études conjointes sur l’associa-
tion des utilisateurs et l’allocation des ressources ont été introduites ces dernière
années. Le problème de l’association des utilisateurs traite le choix du réseau auquel
le MT doit être associé parmi plusieurs technologies d’accès disponibles, tandis que
l’allocation des ressources traite la quantité de ressources qui doit être attribuée
par les réseaux pour chaque MT.

Pour résumer, l’objectif principal de la thèse est de proposer des solutions avec
une complexité réduite pour l’association d’utilisateurs et le problème d’allocation
de ressources dans des réseaux hétérogènes. Les solutions visent à fournir une vi-
sion ABC optimisée qui considère le système dans son ensemble tout en prenant
des décisions. Par conséquent, la satisfaction, les besoins et les préférences des
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utilisateurs sont pris en considération. En outre, cette thèse explore le problème
de la maximisation de l’efficacité énergétique (débit de données par unité de puis-
sance), en plus du problème d’allocation de ressources dans un système avec des
utilisateurs de différentes priorités.
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Chapitre 1

Dans cette thèse, nous traitons les réseaux HWN intégrant des réseaux Wi-Fi et
des réseaux cellulaires. La technologie Wi-Fi évolue pour fournir une connexion au
réseau local sans fil, tandis que les réseaux cellulaires sont en cours d’élaboration
afin de fournir une connexion sans fil étendue. Les réseaux cellulaires soutiennent
fortement la mobilité des utilisateurs tout en fournissant des débits de données
plus faibles que les réseaux Wi-Fi et à un coût plus élevé.

Algorithmes de sélection de réseau

Le problème de la sélection du réseau a été largement étudié dans la littéra-
ture. Habituellement, les principaux paramètres considérés pour les algorithmes
de sélection de réseau sont: la puissance du signal reçu (RSS), le coût, la charge
du réseau, la consommation d’énergie, les préférences des utilisateurs et le dé-
bit. Plusieurs études classent les réseaux en fonction de paramètres uniques ou
multiples. L’idée principale derrière les schémas de sélection de réseau est de sé-
lectionner pour chaque MT le meilleur réseau qui le satisfait de manière égoïste.
Par conséquent, les algorithmes de sélection de réseau ne tiennent pas en compte
de l’allocation globale des ressources ni des solutions d’association d’utilisateurs à
l’échelle du système. Au lieu de cela, ils sont conçus pour satisfaire les besoins de
chaque utilisateur individuellement.

Association d’utilisateurs et allocation de ressources à l’échelle
du système

Plusieurs études envisagent une association d’utilisateurs et des algorithmes
d’allocation de ressources à l’échelle du système. Habituellement, ces études visent
à:

– augmenter le nombre d’utilisateurs connectés,
– réduire la consommation totale d’énergie,
– réduire le nombre de réseaux actifs,
– équilibrer la charge entre plusieurs réseaux,
– et maximiser la satisfaction des utilisateurs.

Cependant, un grand nombre de ces études ne tiennent pas compte conjointement
des exigences relatives aux débits demandés par les utilisateurs, des préférences
des utilisateurs, et des contraintes du réseau.

Conclusion

Les travaux proposés devrait prendre en compte la coordination entre les ré-
seaux Wi-Fi et les réseaux cellulaires pour faire face à la croissance exponentielle
du trafic de données demandé. Un aspect important est de suivre les objectifs du
concept ABC ; la satisfaction, les demandes et les préférences des utilisateurs de-
vrait être prises en compte afin de maintenir la meilleure connexion en tout temps.
Sur la base des paramètres généralement considérés dans le système ABC, nous
considérerons principalement la consommation d’énergie du MT et la qualité du
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signal. La solution proposée devra être facilement adaptée pour ajouter des para-
mètres supplémentaires. De plus, la solution proposée devra prendre en compte la
quantité de débit demandé par chaque MT, la condition du canal entre les MTs et
les réseaux, en plus de la capacité maximale de chaque réseau.

En outre, la solution proposée devra être facilement configurée pour répondre
aux objectifs basés sur les réseaux, tels que la maximisation de l’efficacité énergé-
tique.
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Chapitre 2

Norme IEEE 802.21.1

L’IEEE a récemment défini une nouvelle norme qui est la norme 802.21.1 pour
permettre un handover (HO) entre des réseaux de même type ou de différents
types. La norme 802.21.1 définit plusieurs services indépendants des médias (MIS)
qui fournissent des informations utiles dans la décision du HO et facilitent l’inté-
gration des HO. L’un des sujets intéressants que la norme IEEE 802.21.1 MIS traite
est le transfert indépendant des médias pour les réseaux d’accès radio (SDRAN)
définis par logiciel [Jin15]. Le cadre SDRAN associe les capacités des MIS à la mise
en réseau définie par logiciel (SDN) afin de fournir les fonctionnalités HO, l’allo-
cation des ressources et la gestion centralisée dans les réseaux HWN et établir une
infrastructure fiable pour l’échange de messages entre différentes entités (serveurs,
réseaux, MT). En conséquence, nous proposons l’utilisation du paradigme SDRAN
pour recueillir des informations liées au problème d’allocation de ressources et d’af-
fectation de réseau et établir un serveur (qui pourrait être un contrôleur SDN) qui
maintient une vue globale sur le système, traite l’association d’utilisateurs et de
ressources, alloue des ressources aux utilisateurs et déclenche les HO.

Problème d’optimisation

Nous proposons une fonction de profit normalisée fmn qui énumère le bénéfice
axé sur l’utilisateur contribué en associant MT m au réseau n. La fonction de profit
considère la consommation d’énergie le MT et la puissance du signal reçu. Étant
donné que les deux paramètres sont d’unités différentes, leurs valeurs normalisées
sont considérées. Les préférences de l’utilisateur m sont reflétées par les poids
liés à la consommation d’énergie (wpc

m) et à la qualité du signal (ws
m) tel que

wpc
m + ws

m = 1. Les valeurs
⌈
QmTn

rtotmn

⌉
et

⌈
QmTn

BRB
n log2(1+γmn)

⌉
indiquent le montant des

ressources demandées par le MT m de AP et BS n respectivement en fonction de
la quantité de débit demandé par le MT m, les conditions de canal entre le réseau
n et le MT m, et le type du réseau n. Le nombre total de ressources dans AP ou
BS n est désigné par Tn ou Un respectivement. L’ensemble de tous les réseaux est
désigné par N , et il est divisé en deux ensembles NAP et NBS pour les APs et
les BSs respectivement. L’ensemble de tous les MTs est désigné par M. Chaque
MT est autorisé à être associé à un seul réseau à la fois. Par conséquent, nous
définissons une variable d’association d’utilisateurs booléens xmn qui indique si le
MT m est associé au réseau n ou non. Par conséquent, le problème d’optimisation
suivant est proposé pour maximiser le bénéfice global défini par l’utilisateur dans
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le système:

P1: max
∑

m∈M

∑

n∈N

fmnxmn (1a)

s. t.
∑

m∈M

⌈
QmTn
rtotmn

⌉
xmn 6 Tn ∀n ∈ NAP (1b)

∑

m∈M

⌈
QmTn

BRB
n log2(1 + γmn)

⌉
xmn 6 Un ∀n ∈ NBS (1c)

∑

n∈N

xmn 6 1 ∀m ∈ M (1d)

xmn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (1e)

Les contraintes (1b) et (1c) garantissent que la capacité de chaque réseau n’est
pas violée, et les contraintes (1d) et (1e) garantissent que chaque MT n’est associé
qu’à un seul réseau à la fois. Le problème P1 est un problème de programmation
linéaire binaire connu pour avoir une complexité NP-hard. Pour estimer la solution
optimale du problème P1, nous utilisons l’algorithme branch-and-bound. Cepen-
dant, comme le nombre de réseaux et de MTs augmente largement, le temps requis
pour trouver la solution optimale augmente de façon dramatique. Par conséquent,
dans les chapitres 3 et 4, nous proposons respectivement des solutions centralisées
et distribuées pour le problème avec des complexités acceptables.

Résultats de simulations

Nous comparons l’effet de la variation de poids sur la performance de la so-
lution triviale profit-fonction (PF) et la solution optimale basée sur la méthode
branch-and-bound. Pour chaque solution, trois cas de variation de poids (scéna-
rios) sont simulés. Plus précisément, nous étudions, pour chaque algorithme, l’effet
de l’augmentation de nombre de MTs actifs sur les valeurs moyennes de relatif RSS
(RRSS) et la consommation d’énergie (Figures 1 et 2). Les résultats de simula-
tions montrent que la fonction de profit s’adapte efficacement aux variations de
poids et que la solution optimale est bien meilleure que la solution triviale PF.
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Figure 1 – Puissance moyenne du signal.
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Chapitre 3

Dans ce chapitre, nous proposons quatre nouvelles solutions centralisées pour
le problème P1 présente dans le chapitre 2.

Dépassement continu du problème d’optimisation binaire

La relaxation continue du problème binaire P1 repose sur le relâchement de
la contrainte d’affectation binaire (1e) en une contrainte continue bornée. C’est-
à-dire que la contrainte xmn ∈ {0, 1} devient xmn ∈ [0, 1]. En conséquence, le
problème continu peut être résolu en utilisant des méthodes destinées à résoudre
des programmes linéaires continus tels que la méthode simplex et les méthodes de
points intérieurs. Résoudre le problème continu produit trois séries de MTs classées
en fonction de leurs résultats d’association:

– Set1: ensemble de MTs non connectés (
∑

n∈N xmn = 0).
– Set2: ensemble de MTs connectés à un seul réseau n tel que xmn = 1.
– Set3: ensemble de MTs connectés à plusieurs réseaux simultanément ou à

un seul réseau n tel que xmn < 1, c’est-à-dire que le MT reçoit un débit de
données inférieur au taux de données demandé.

Puisque dans notre contexte, un MT doit être connecté à un seul réseau et reçoit
toutes les ressources requises, une approche de relaxation continue est utilisée pour
associer le MT à des réseaux appropriés et vider Set3. Par conséquent, nous pro-
posons deux algorithmes d’association d’utilisateurs et d’allocation de ressources
basés sur la relaxation continue du problème P1. La première solution a une com-
plexité indéterminée tandis que la seconde possède une complexité déterminée en
termes de temps polynomial. La solution avec une complexité indéterminée peut
être considérée comme la solution optimale basée sur l’approche de relaxation
continue, et elle est utilisée pour faire du benchmarking uniquement parce qu’elle
vise à proposer des solutions d’affectation de ressources et de réseaux avec une
complexité déterminée de la durée polynomiale.

Solution optimale de relaxation continue (avec complexité
indéterminée)

Principalement, la solution optimale de relaxation continue vise à résoudre le
problème d’optimisation linéaire continue pour tous les MT dans Set1∪Set3 jusqu’à
|Set3| = 0, i.e. tous les résultats d’association du problème continu sont booléens.
Chaque fois que le problème d’optimisation continue est résolu, les valeurs d’asso-
ciation des MTs dans Set2 sont enregistrées, le nombre de ressources gratuites dans
chaque réseau est mis à jour en déduisant le nombre de ressources allouées aux
MTs dans Set2 et ces MTs ne sont pas déjà considérés dans la fonction d’optimisa-
tion continue. Cependant, il est impossible de déterminer de manière analytique le
nombre de fois que le programme linéaire continu sera résolu dans cette solution,
et donc la complexité n’a pas pu être déterminée.
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Solution basée sur la relaxation continue sous-optimale (avec
complexité du temps polynomial)

Maintenant, une solution avec une complexité de temps polynomial est pro-
posée pour déterminer les valeurs d’association pour les MTs dans Set1∪Set3. Le
problème continu est résolu une seule fois et chaque MT m en Set2 est associé au
réseau n où xmn = 1.

Tout d’abord, nous commençons à déterminer les valeurs d’association pour
tous les MTs dans Set3 uniquement, i.e. les MTs avec des valeurs d’association
fractionnaires. La solution itère tous les MTs dans Set3. Dans chaque itération,
la solution tente de déterminer la décision d’association pour le MT avec la plus
grande valeur d’association parmi tous les MTs dans Set3.

Par la suite, tous les MTs dont la décision d’association n’est toujours pas
déterminée sont soumis à des procédures similaires à celles proposées dans le pa-
ragraphe précédent. Cependant, l’objectif ici est d’associer le MT au profit le plus
élevé à chaque itération au lieu de la valeur d’association fractionnaire la plus
élevée.

Approximation-based solution

Après avoir examiné de plus près le problème P1, on peut noter qu’il est
similaire au problème d’affectation généralisée (GAP) [MT81]. En fait, Martello
et Toth, qui ont des contributions importantes dans le domaine des problèmes
de GAP, knapsack et bin-packing, ont proposé un algorithme heuristique pour se
rapprocher de GAP, basé sur une demande du MT [MT81]. Là, la "désirabilité"
d’affecter le MT m au réseau n est mesurée selon le facteur de désirabilité Ωmn. Les
facteurs possibles qui pourraient être considérés comme la mesure de désirabilité
sont abordés dans la section suivante.

Pour chaque MT, la différence entre la plus haute et la deuxième valeur de
Ωmn est calculée, et les MTs sont ensuite attribués dans l’ordre décroissant de
cette différence. La solution considère itérativement tous les MTs non associés et
détermine le MT m∗ ayant la différence maximale entre le plus élevé et le deuxième
Ωmn. Le MT m∗ est ensuite affecté au réseau pour lequel Ωm∗n est maximum, i.e.
réseau n∗. De plus, après avoir pris la décision de chaque association, l’algorithme
réévalue, pour chaque MT, la différence maximale entre le plus élevé et le deuxième
Ωmn, et associe les MTs en fonction de ces nouveaux résultats. Ainsi, une vision
semi-globale sur les réseaux disponibles et leurs bénéfices est maintenue tout en
prenant des décisions d’association. De plus, l’algorithme préfère associer les MTs
à un seul réseau disponible. Cet aspect de l’algorithme joue un rôle essentiel dans
la diminution de la probabilité de blocage.

Nouveau facteur d’efficacité

Le problème P1 vise à maximiser les bénéfices dans le système. Par conséquent,
Martello et Toth ont proposé dans [MT81] d’utiliser le profit (fmn) ou le profit

poids

comme facteur de désirabilité pour la solution basée sur l’approximation.
Puisque le problème P1 traite des MTs ayant différents débits de données,

c’est-à-dire des poids différents, le rapport profit
poids

est approprié comme facteur de
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désirabilité pour ce problème. Cependant, compte tenu du poids des MTs, qui peut
être considéré comme le nombre de ressources demandées, n’est pas simple parce
que les technologies d’accès ont différents types et quantités de ressources. En fait,
la quantité de bande passante qui devrait être fournie par un réseau à un MT est
liée aux conditions de canal entre le MT et le réseau, et à la quantité de débit
demandé par le MT. En outre, la bande passante (en Hz) est une ressource limitée
dans tous les systèmes de communication. Par conséquent, la quantité de bande
passante demandée par un MT à partir d’un réseau pourrait être considérée comme
un poids. Par conséquent, l’efficacité emn est introduite pour désigner le bénéfice
par poids (bande passante demandée) qui a contribué au système en associant le
MT m au réseau n.

Solution greedy simple

La solution greedy est également basée sur la demande du MT selon le facteur
de désirabilité, mais elle ne se concentre que sur le facteur de désirabilité le plus
élevé au lieu de la plus haute et la deuxième plus élevée. Par conséquent, la com-
plexité est plus simple que la solution basée sur l’approximation parce que les MTs
sont ici itérés uniquement selon le facteur de désirabilité le plus élevé.

Résultats de simulations

Comme illustré dans les Figures 3 et 4, la solution basée sur l’approximation
maintient la performance la plus proche de la solution binaire optimale. Cela in-
dique que la solution basée sur l’approximation se rapproche efficacement de la
solution optimale, et le facteur d’efficacité joue également un rôle essentiel pour
stimuler les performances de cette solution. D’autre part, l’écart de performance
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entre la solution binaire optimale et la solution optimale de relaxation continue
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Figure 4 – Pourcentage de taux de données bloquées.

indique que la conversion de la contrainte binaire en continu menace l’optimalité
de la solution, où la solution greedy pourrait fonctionner de manière similaire à la
solution optimale en continu.
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Chapitre 4

Dans ce chapitre, la méthode de relaxation lagrangienne est utilisée pour re-
lâcher la contrainte d’affectation du problème P1, c’est-à-dire la contrainte (1d).
Par la suite, le problème est réparti en plusieurs problèmes de Knapsack, chacun
étant résolu de manière indépendante par son réseau correspondant, c’est-à-dire
une solution distribuée. Le problème de Knapsack est résolu à l’aide de procédures
de programmation dynamique avec une complexité acceptable. Ensuite, en fonc-
tion des résultats des problèmes de Knapsack, une solution réalisable est produite
en s’assurant que chaque MT est associée à au plus un réseau. Pour trouver les
multiplicateurs Lagrangiens optimaux, ou presque optimaux, on utilise la méthode
subgradient. Par conséquent, deux solutions distribuées sont proposées en fonction
de l’analyse discutée:

– Solution distribuée avec la méthode subgradient: cette solution repose sur la
résolution itérative du problème de Knapsack et la recherche de la solution
possible jusqu’à ce que des multiplicateurs lagrangiens quasi-optimaux soient
détectés.

– Solution distribuée sans la méthode subgradient: cette solution ne vise pas
à trouver les multiplicateurs de Lagrange, donc les problèmes de Knapsack
sont résolus une fois, et une solution réalisable est basée sur les résultats du
problème de Knapsack. Par conséquent, la complexité de cette solution est
plus simple que celle de la précédente car la phase de subgradient n’est pas
prise en compte.

Résultats de simulations

Les Figures 5 et 6 montrent que la solution distribuée avec la méthode sub-
gradient maintient la performance la plus proche de la solution binaire optimale.
Ceci est dû à la méthode de subgradient qui s’approche efficacement de la solution
optimale. D’autre part, la solution distribuée sans la méthode subgradient se per-
forme plus pire que la solution basée sur l’approximation, et similaires aux autres
solutions.
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Chapitre 5

Dans ce chapitre, nous présentons de nouvelles applications directes pour le
problème P1 proposé dans le chapitre 2 et ses solutions correspondantes propo-
sées dans les chapitres 3 et 4. Tout d’abord, nous proposons une nouvelle solution
pour l’association d’utilisateurs prioritaires et l’allocation de ressources dans un
système où les utilisateurs ont des priorités différentes. Nous formulons un nou-
veau problème d’optimisation basé sur les priorités, puis nous le simplifions en
un nouveau problème ayant une forme similaire au problème P1. En outre, nous
discutons de nouvelles perspectives pour l’association d’utilisateurs et l’allocation
de ressources pour améliorer l’efficacité énergétique globale (débit par unité de
puissance) dans le système.

Gestion axée sur les priorités

Nous considérons que les utilisateurs ont des priorités différentes, de sorte que
les utilisateurs ayant la plus haute priorité devraient avoir le meilleur service et
le pourcentage de blocage le plus bas. En conséquence, les utilisateurs ayant la
plus haute priorité sont autorisés à allouer des ressources utilisées par des utilisa-
teurs ayant des priorités inférieures. Par conséquent, nous formulons un problème
d’optimisation pour maximiser le bénéfice pour chaque niveau de priorité, tout en
veillant à ce que les MTs avec des niveaux de priorité faibles n’utilisent pas les
ressources qui pourraient être utilisées par les MTs avec des priorités plus élevées.
En outre, le problème est simplifié en fixant le nombre de ressources qui devraient
être allouées aux MTs avec des niveaux de priorité plus élevés. Cela pourrait se
faire en répartissant le problème en K problèmes, où K représente le nombre de
niveaux de priorité, et résoudre chaque problème séquentiellement dans l’ordre dé-
croissant des niveaux de priorité, c’est-à-dire K, K-1, ... 1. Le nombre de ressources
affectées aux MTs avec des niveaux de priorité plus élevés est calculé en fonction
des résultats d’association des MTs avec un niveau de priorité supérieur à k, où
k est un niveau de priorité spécifique. Par conséquent, le problème simplifié pour
chaque niveau de priorité est similaire au problème P1 et peut donc être résolu en
utilisant les solutions proposées dans les chapitres 2, 3 et 4.

Maximisation de l’efficacité énergétique

Nous formulons un problème qui vise à maximiser l’efficacité énergétique, c’est-
à-dire le débit de données par unité de puissance. Le problème est similaire au
problème P1, mais la fonction objective est l’efficacité énergétique plutôt que le
profit centré sur l’utilisateur. Ainsi, la fonction de profit centrée sur l’utilisateur
(fmn) dans le problème P1 est remplacée par le terme Qm

PTx
mn+pcmn

qui est l’efficacité
en puissance qui considère le débit de données demandé par le MT (Qm) divisé
par la quantité de puissance qui devrait être transmise par le réseau n pour servir
le MT m (P Tx

mn) plus puissance consommée par le MT m tout en étant connecté et
desservi par le réseau n (pcmn). De même, ce problème peut être résolu en utilisant
les solutions proposées dans les chapitres 2, 3 et 4.
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Résultats de simulations

La Figure 7 montre que les utilisateurs ayant une priorité plus élevée (SL3) ont
une plus grande satisfaction. En outre, la performance de chaque algorithme est
semblable à la performance remarquée dans les chapitres précédents. L’allocation
optimale des ressources pour les MTs de haute priorité en trouve une utilisation
efficace des ressources dans les réseaux. Par conséquent, la possibilité que les MTs
avec une faible priorité soient associés à leur réseau préféré diminue. En consé-
quence, en adoptant la solution optimale, les MTs avec niveau de service (SL) 1,
c’est-à-dire le niveau de priorité 1, bénéficient d’un service d’expérience proche de
la solution basée sur les bénéfices.
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Figure 7 – Satisfaction moyenne pour différents niveaux de priorité.

La Figure 8 montre que la solution distribuée proposée avec la méthode sub-
gradient maintient la performance la plus proche de la solution binaire optimale,
suivie de la solution optimale de relaxation continue et de la solution basée sur
l’approximation qui fonctionne approximativement de la même manière. Ensuite,
toujours dans un ordre decroissant de performances, viennent la solution sous-
optimale de relaxation continue, la solution greedy et la solution distribuée sans
la méthode subgradient. Bien sûr, la solution basée sur les bénéfices est la moins
performante.
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Conclusion

Dans cette thèse, nous avons proposé plusieurs solutions avec une complexité
tolérable pour l’association d’utilisateurs et le problème d’allocation de ressources
dans des réseaux hétérogènes. Les solutions proposées visent à fournir une vision
ABC optimisée qui considère le système dans son ensemble tout en prenant en
considération la satisfaction, les besoins et les préférences des utilisateurs.

Dans le chapitre 2, nous avons formulé un problème d’optimisation global pour
maximiser le bénéfice global du système. Le problème formulé tient compte des
besoins de l’utilisateur et des contraintes du réseau. Les résultats de simulations
montrent que la solution proposée reflète effectivement les préférences des utilisa-
teurs. En outre, le problème formulé améliore les performances globales du système.
Cependant, la solution optimale du problème formulé est obtenue à l’aide de l’al-
gorithme branch-and-bound, qui ne s’améliore pas avec l’augmentation du nombre
de MTs dans le système. Par conséquent, les chapitres 3 et 4 proposent respecti-
vement des solutions centralisées et distribuées du problème avec une complexité
acceptable. Dans le chapitre 3, nous avons proposé quatre solutions centralisées
pour le problème formulé dans le chapitre 2. Les deux premières solutions sont ba-
sées sur la relaxation continue du problème binaire formulé dans le chapitre 2. La
première solution est la solution optimale de relaxation continue, qui a une com-
plexité indéterminée, alors que la deuxième solution est la solution sous-optimale
de relaxation continue qui a une complexité du temps polynomial. La troisième
solution est basée sur l’approximation qui a une complexité inférieure aux solu-
tions précédentes, alors que la dernière solution est la solution greedy simple qui
a la plus faible complexité. Les résultats de simulations montrent que la solution
basée sur l’approximation permet d’obtenir les performances les plus proches de
celles de la solution binaire optimale. En outre, il a été démontré que l’approche
de relaxation continue menace l’optimalité de la solution.

Dans le chapitre 4, nous avons proposé deux solutions distribuées pour le pro-
blème formulé dans le chapitre 2. En conséquence, la méthode de relaxation lagran-
gienne permet de relâcher le problème binaire et de le diviser en plusieurs problèmes
de Knapsack, chaque problème de Knapsack est résolu par son réseau correspon-
dant. La première solution distribuée dépend de la méthode de sous-gradient pour
trouver des multiplicateurs lagrangiens presque optimisés. La deuxième solution
distribuée résout simplement le problème sans essayer de trouver les multiplica-
teurs lagrangiens. Les résultats de simulations montrent que la solution distribuée
avec la méthode de sous-gradient réalise les meilleures performances parmi toutes
les solutions précédentes, alors que la deuxième solution distribuée atteint des
performances acceptables avec une complexité inférieure.

Dans le chapitre 5, nous avons utilisé le problème formulé dans le chapitre 2 et
ses solutions correspondantes présentées dans les chapitres 3 et 4, avec de nouvelles
perspectives. La première perspective est le problème de l’allocation ressources
à des utilisateurs ayant des priorités différentes. La deuxième perspective est le
problème de maximisation de l’efficacité énergétique.
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Introduction

This introduction provides the thesis overview, presenting a brief history about
wireless access technologies evolution during the last two decades, and the thesis
motivation and objectives. Moreover, the novelty of this thesis is highlighted. Fi-
nally, the thesis organization is provided.

Brief History

In the last two decades, wireless and cellular networks have experienced magni-
ficent evolution. Network providers and operators have served billions of subscri-
bers by supplying them with different communication services. The development of
the telecommunication industry has direct impact on the people’s daily life. Users
depend on their mobile terminals (MTs) to communicate with their relatives, col-
leagues, friends, emergency services, companies, etc. Therefore, MTs are seen as
the "digital interface" of the people, enabling communication between people at
an acceptable monetary cost any time and any place.

The new telecommunication story began in the 1980s upon the introduction
of the first analogue cellular system, being very limited in mobility, monetary
cost, and coverage. The main telecommunication revolution started with the de-
ployment of the second generation (2G) global system for mobile communication
(GSM) which was introduced by the European telecommunications standard ins-
titute (ETSI). The main aspect for the global GSM success is that it allows users
across countries to communicate with each other. Later, upon the deployment of
the general packet radio service (GPRS), data services were integrated with GSM.
The enhanced data for GSM evolution (EDGE) is considered as a transitional step
from 2G to third generation (3G) systems, by introducing optimized experience
for data services.

In the last decade, universal mobile telecommunication system (UMTS) was
introduced as a major next-level communication system, overcoming the 2G world
wide success. The major improvement is the higher data rates that allows better
Internet access experience, video calls, file transfers, real-time applications, etc.
During the same time period, MTs started to be equipped with cameras (photo
and video), audio players, and large memories. Therefore, data hungry applications
became a necessary requirement for each user. To face this excessive growth in data
traffic requirement, 3G systems kept evolving towards the fourth generation (4G)
long-term evolution (LTE) communication system. The major enhancements are
providing high throughput, low latency, and higher mobility support.

Several other wireless access technologies have been also evolving simulta-
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neously with cellular networks to provide users with different services. For example,
wireless wide area network (WWAN) is another vastly growing technology provi-
ding high-capacity wide area coverage. The IEEE 802.11 wireless local area net-
works (WLANs) have been evolving rapidly to provide local-area high-speed wire-
less access. Since 1999, the 802.11 standard has been developing from the original
802.11 protocol to provide high data rate support (up to 866 Mbit/s). Moreo-
ver, other 802.11 amendments have been proposed to enhance the interoperability
between different WLAN access points (APs) and supply better service for users.

Thesis Motivation and Objectives

Nowadays, in communication research fields, studies are mainly considered at
the core network level to provide and deploy an all Internet protocol (IP) packet-
based network architecture. New research fields have been focusing on how MTs
will respond to the variety of wireless access technologies available at the same time.
In this context, joint user association and resource allocation studies have been
introduced into research fields. The user association problem deals with the aspect
of choosing the network the MT should be associated to upon having multiple
available access technologies, while resource allocation deals with the amount of
resources that should be allocated by networks for each MT. Therefore, the effect
of the user association and resource allocation algorithms should be studied and
analyzed on a system-wide scale.

This dissertation is precisely encouraged by the new all IP network view of the
next generation wireless communication networks, where the same core network is
used by various wireless access technologies, leading to remarkable enhancements
in the user experience and the overall performance of the system.

With the recent widespread deployment of the fourth generation (4G) wireless
communication systems, the fifth generation (5G) mobile and wireless communica-
tion technologies are emerging into research fields. It is indicated that the expan-
sion of the wireless data traffic requirements exceeds the capacity growth rate of
new wireless access technologies [HQ14]. That is, modern modulation and coding
schemes and access technologies can not provide the huge amount of requested
data rates.

Cellular networks and WLANs are being evolved simultaneously to provide
users with different services. WLANs are evolving rapidly to provide local-area
high-speed wireless access. Cellular networks are another vastly growing techno-
logy that provides higher-capacity wide area coverage. Both technologies co-exist,
with coverage areas overlapping with each other forming some sort of hybrid wi-
reless access media. The efficiency of wireless links is approaching its theoretical
limits, and the amount of requested data rate is severely increasing. Therefore,
next-generation mobile wireless networks are moving towards heterogeneous archi-
tectures usually referred to as heterogeneous wireless networks (HWNs) [HQ14].
In HWNs, users have the right to connect to different types of radio access techno-
logies like LTE base stations (BSs) or Wi-Fi APs. Such architecture increases the
capacity of the system by reducing the number of users competing for resources
at BSs. Moreover, HWNs provide flexible choices for the end user to transfer his
ongoing data session to a more preferable network that satisfies his needs.
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To access the Internet through HWNs, current MTs are equipped with multiple
wireless access network interfaces. One type of terminals widely used nowadays is
that with multiple data interfaces but can benefit from a single interface at a time,
usually referred to as a multi-mode terminal [AM16]. By contrast, multi-homed
terminals use multiple interfaces to share the load requested by a single MT.
However, a realistic implementation for the multi-homing scenario is still far from
deployment and imposes extra complexity on the system. Therefore, the multi-
mode terminals are considered. Upon using multi-mode terminals, transferring an
ongoing active connection to a new network is probably desired. The transfer in
connection could be due to the user mobility, network congestion, user equipment
status, etc. The process of transferring an active connection between networks
is called handover (HO). If the networks that are participating in the HO are
of different access technologies, e.g. handoff from an LTE BS to Wi-Fi AP, the
connection transfer is usually referred to as vertical HO (VHO) [WK13].

In fact, combining and integrating different types of access technologies in
HWNs provides flexible choices for the user to associate with his most prefer-
red available network. In general, users prefer to be associated with the network
that provides lower power consumption, better signal quality, better quality of
service (QoS), security, etc. Consequently, HWNs are usually accompanied with
the concept of always best connected (ABC) [GJ03], which is the process of being
connected to the best available network at any time. However, the ABC concept
is usually taken from the user perspective to rank candidate networks and connect
to the best one. Usually, ABC-based network selection algorithms do not consi-
der the limited resources of the networks and the effect of the HO algorithm on
the system. Therefore, it is essential in HWNs to pave the way for an optimized
context-aware ABC scheme that considers both user and network requirements.

Transferring the connection between different networks develops three main
issues. The first one is to decide to which network the connection should be trans-
ferred, taking into consideration the user preferences and needs. Collecting infor-
mation needed for the HO decision leads us to the second issue which is establishing
a reliable infrastructure that provides a centralized global supervision on different
network entities while maintaining cooperation and information exchange between
them. While the last issue is to determine the amount of resources that should
be allocated for each user based on the access technology of the networks, the
channel condition between MTs and networks, the amount of resources requested
by all MTs, in addition to the maximum capacity of each network. In this thesis,
we discuss solutions for these issues.

To sum it up, the main objective of the thesis is to propose solutions with
tolerable complexity for the user association and resource allocation problem in
heterogeneous networks. The solutions aim to provide an optimized ABC vision
that considers the system as a whole while making decisions. Therefore, users’
satisfaction, needs, and preferences are considered.

Novelty

According to the research environment, this thesis claims novelty upon intro-
ducing new ideas, solutions, and algorithms. First, we discuss a new standard that
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intends to provide a platform for information exchange, resource allocation, and
handover management in HWNs. Then, we introduce new architecture that de-
pends on a centralized entity to make decisions. LTE BSs and Wi-Fi APs are
considered as candidate access technologies in HWNs.

In order to optimize user experience, it is necessary to provide a mechanism
to enumerate user satisfaction, and specify the parameters involved within the
satisfaction metric. Based on the literature review, the received signal strength
(RSS) and the MT power consumption are considered as the most popular aspects
for network selection decision making. Therefore, a profit function is introduced
to combine these two parameters. Extra parameters could be easily added to the
profit function (such as monetary cost). Other essential parameters such as signal
to interference noise ratio (SINR) and the requested data rate by MTs, are also
considered while formulating the optimization problem.

To optimize the overall user satisfaction in the system, a novel user association
and resource allocation optimization problem is formulated. The formulated pro-
blem considers the channel conditions between MTs and networks, the amount of
data rate requested by MTs, network capacity constraints, and network resource
allocation constraints. However the formulated problem is of high complexity (NP-
hard).

In order to provide a solution with acceptable complexity, three new centra-
lized approximation algorithms are proposed. The complexity of each algorithm
is studied, and the performance of these algorithms is compared to the optimal
NP-hard solution.

Additionally, this dissertation claims another innovative aspect that aims at
providing a distributed solution for the formulated optimization problem. The
main idea is to process several optimization problems with low complexity instead
of processing the main formulated optimization problem.

Another novel requirement is that future networks should be able to deal with
users having different priorities. Therefore, a new optimization problem is formu-
lated and solved in order to ensure better service for users with high priorities.

Finally, this thesis also addresses the power efficiency maximization problem
in HWNs. Mainly, the optimization problem objective is shifted towards power
efficiency. This objective is extremely important for communication system opera-
tional cost, having also significant impacts on the environment.

Thesis Organization

This thesis is organized in 5 chapters, excluding this introduction and the
conclusion.

In Chapter 1, the main wireless access technologies involved in the studied he-
terogeneous wireless systems are briefly described, including their evolution, cha-
racteristics and architecture. Then the Wi-Fi offloading and the ABC concepts are
discussed. A state of the art about existing network selection algorithms, in addi-
tion to user association and resource allocation algorithms in HWNs is presented.
Finally, we come up with a conclusion regarding the main aspects that should be
considered in this thesis.
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In Chapter 2, we discuss an existing standardized framework and architecture
that defines the communication mechanism between different network entities (ser-
vers, MTs, networks). Based on this framework, we will formulate a user association
and resource allocation optimization problem. The algorithm runs on a server that
maintains global view on the system. Our decision algorithm is based on two attri-
butes: the power consumption at the MT and the signal quality at the MT. We use
a reliable power consumption model to estimate the consumed power at the MTs
in different wireless networks. The formulated optimization problem considers user
preferences, requirements, and network limitations and constraints.

In Chapter 3, we discuss and propose multiple centralized solutions for the
user association and resource allocation optimization problem proposed in Chap-
ter 2. First, we propose two new solutions based on the linear-programming-
relaxation of the formulated problem. The first proposed solution is with un-
determined complexity, and is considered as the optimal solution based on the
linear-programming-relaxation methodology. The second solution is with determi-
ned polynomial-time complexity, and is considered as a sub-optimal solution ba-
sed on the linear-programming-relaxation approach. Then, a novel approximation-
based solution is proposed to approximate the original optimization problem pro-
posed in Chapter 2. In addition, a new simple greedy heuristic algorithm is also
proposed. The performance of the approximation-based solution and greedy solu-
tion is boosted through a new proposed efficiency factor that estimates the gain
contributed upon associating users to networks. The efficiency factor considers the
data rate requirement of users, and the channel conditions between the MT and
the BS or AP.

In Chapter 4, we propose two novel distributed user association and resource
allocation solutions for HWNs. Mainly, the optimization problem formulated in
Chapter 2 is distributed into several easier-to-solve problems, where each problem
is independently solved by its corresponding network in an acceptable amount of
time. The first distributed solution is based on the Lagrangian-relaxation of the
optimization problem, and on the sub-gradient method that finds near-optimal
Lagrangian multipliers. On the other hand, the second distributed solution is si-
milar to the first one but without the sub-gradient method. The advantage of the
second solution is that it eliminates the iterative sub-gradient phase, which leads
to a lower complexity, and permits studying the effect of the sub-gradient method
efficiently.

In Chapter 5, we discuss new direct applications for the optimization problem
proposed in Chapter 2, and its corresponding solutions proposed in Chapters 3
and 4. First, we propose a new application for the priority-based user association
and resource allocation problem in a system where users have different priorities.
We formulate a new priority-based optimization problem. Then we simplify it into
a new problem with form similar to the problem simplified in Chapter 2, and
therefore could be solved with the solutions proposed in this thesis. Moreover, we
discuss new perspective for the user association and resource allocation problem
to enhance the overall power efficiency (data rate per unit power) in the system.

Finally, the main contributions of the thesis are summarized and future pers-
pectives are proposed.
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Chapter 1

Heterogeneous Wireless

Networks

1.1 Introduction

In this chapter, the main wireless access technologies involved in the studied
HWN are briefly described, including their evolution, characteristics and architec-
ture. Then the Wi-Fi offloading and the ABC concepts are discussed. A state of
the art about existing network selection algorithms, in addition to user association
and resource allocation algorithms in HWNs is presented. Finally, we come up with
a conclusion regarding the main aspects that should be considered in this thesis.

1.2 Wireless local area networks

1.2.1 Architecture

A WLAN is a network that connects several equipments using the wireless
media within a bounded region such as a company, university, house, hospital,
etc. WLANs give users the ability to move around inside the local coverage region
while being associated to the local network or even the Internet.

Initially, WLANs were proposed to provide a wireless substitute for the wired
computer networks that are usually referred to as local area networks (LANs).
Therefore, the WLAN main properties are similar to the LAN ones, mainly in
terms of protocol layers and supported services. A basic architecture of a WLAN
system is shown in Figure 1.1. Each wireless communication device communicates
with its corresponding wireless AP. In order to communicate with remote devices
on other APs, a network that connects all APs should be established. Normally,
routers are needed to forward the packets.

Current WLANs are based on IEEE 802.11 standards and are advertised under
the wireless fidelity (Wi-Fi) trademark. The IEEE 802.11 standard defines a set of
media access control (MAC) and physical layer (PHY) specifications for a Wi-Fi
network. The core specifications of the 802.11 standard was released in 1997, and
has been evolving since then.

The IEEE 802.11 standard provides two basic operating modes: the infra-
structured and ad hoc.
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10 Heterogeneous Wirelss Networks

five main standards in the family: 802.11a [IEE99a], 802.11b [IEE99b], 802.11g
[IEE03], 802.11n [IEE09], and 802.11ac [IEE13].

Wi-Fi usually uses the 2.4 GHz ultra high frequency (UHF) and 5 GHz su-
per high frequency (SHF) bands. Mainly, Wi-Fi uses the unlicensed industrial,
scientific and medical (ISM) radio bands. Due to this choice of frequency bands,
Wi-Fi devices usually suffer interference from devices operating on these frequen-
cies such that microwave ovens and Bluetooth devices. To mitigate the effect of
this interference, Wi-Fi devices oftenly use orthogonal frequency-division multi-
plexing (OFDM) signaling methodology. The 5 GHz band offers more than 23
non-overlapping channels while the 2.4 GHz band offers only three non-overlapping
channels.

In order to connect to a Wi-Fi APs, the computing device should be equip-
ped with a wireless network interface controller (NIC). A station is defined as a
combination of the computing device and NIC. All stations share the same radio
frequency communication channel. To transmit data, all the NICs use a carrier
wave, thus, all transmissions are received by all the stations within the coverage
range communicating on this channel. Data are organized in packets similar to
the communication protocol used on an Ethernet link. All Wi-Fi standards use
the carrier sense multiple access with collision avoidance (CSMA/CA) protocol
for media sharing.

Initially, the modulation method that was used in 802.11 is phase-shift keying
(PSK). The 802.11 b products that have been advertised in the market in 1999 de-
pends on a direct extension of the direct-sequence spread spectrum (DSSS) modu-
lation technique defined in the original standard.Technically, the 802.11b standard
uses the complementary code keying (CCK) as its modulation technique because
it allows higher data speeds, and is less susceptible to multi-path propagation in-
terference. The more recent Wi-Fi standards use OFDM and multiple-input and
multiple-output (MIMO) techniques which allow much higher data rates. Table
1.1 presents the main parameters and specifications of the physical layer in the
main 802.11 standards.

Table 1.1 – 802.11 networks physical layer specifications

802.11 Release Frequency Bandwidth Data rate Modulation
protocol date (GHz) (MHz) (Mbit/s)

a 1999 5 20 54 OFDM
b 1999 2.4 22 11 DSSS
g 2003 2.4 20 54 OFDM

n 2009 2.4/5
20 72 MIMO
40 150 OFDM

ac 2013 5

20 96
40 200 MIMO
80 433 OFDM
160 866

The IEEE 802.11 family also includes amendments that extend the scope of
existing standards. Although the 802.11 community defines a lot of amendments,
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the main amendments and those that are related to the context of this dissertation
are presented in Table 1.2.

Table 1.2 – 802.11 main amendments

802.11
Short description

Amendment
e QoS definition, also supports packet bursting (2005)

f
Inter-Access Point Protocol (2003), interoperability between
APs (withdrawn in 2006)

i Security enhancement (2004)
r Fast handover between APs (2008)
s Mesh networking, extended service set (ESS) (2011)

u
Improvements related to HotSpots and authorizing non-IEEE
users, e.g., offloading from cellular networks (2011)

1.3 Cellular networks

1.3.1 Architecture

The generalized architecture of cellular networks, shown in Figure 1.4, is cha-
racterized mainly by the BS, the controller of the BSs (BC), and the switching
center (SC) which is considered as the most important element because it is res-
ponsible for processing all the communications and it is equipped with a data base
system. This architecture enables the communication between remote MTS, and
between MTs and other networks as public switched telephone network (PSTN)
and integrated services digital network (ISDN). The operator uses the operation
and maintenance (O&M) center to manage the network. This generalized system
architecture could be divided in two main ones ; the hierarchical architecture where
the BC controls multiple BSs (used in 2G and 3G communication systems), and
the architecture where BSs integrate mobility and control functionalities while
being directly connected to the SC (4G communication systems).

Currently, the GSM is the most widely-spread cellular system that supports
both circuit-switched and packet-switched services. An overview of the connections
in GSM and GPRS (2G), UMTS (3G), and LTE (4G) is shown in Figure 1.5
[3GP10b][3GP10a] where it is possible to observe the various interfaces between
the data base system, network controllers, and switching systems.

The mobile switching center (MSC), which is connected to the main data bases
in the system, is responsible for maintaining the circuit-switched services. The MSC
is referred to as gateway mobile switching center (GMSC) when it plays the role of
gateway between the current serving system and other fixed or mobile networks.

The most basic service provided by cellular networks is voice calls. However,
cellular networks are currently supporting reliable data and multimedia services
ranging from a small machine to machine (M2M) synchronization messages to
a real-time video conference or virtual reality applications. The main network
elements responsible for data services in the 2G/3G core network are the serving
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Figure 1.5 – Overview of the architecture of 2G, 3G, and 4G communication
systems.

"good" service for users experiencing high mobility. The importance of cellular
networks is mainly characterized by the large geographical coverage region and
the huge number of users served by these networks.

In terms of capacity, cellular networks can be easily adapted according to the
required capacity. Cellular networks support multiple hierarchical structures. For
example, a single cell could be adjusted to operate in a hot spot area, rural, urban,
and suburban areas, by using what so called pico, micro, and macro cells. As the
requested capacity increases largely, the amount of radio resources that is offered
to users should be increased also. Usually, additional cells are installed to offer
new radio resources for users. However, installing new cells increases the inter
cell interference. To reduce the interference, the coverage region of each operating
cell should be decreased, i.e. cell reduction strategy. Upon congestion in cellular
networks, the data rate supplied to each user could be extremely low. Therefore,
cellular networks could cooperate with Wi-Fi networks to supply better services
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for users.

1.3.2 Radio interfaces

In cellular networks, the radio interface is the main component that has been
enhancing throughout the years. A cellular generation increment is announced
when the radio interface undergoes a noticeable major improvement.

Concerning the 2G systems, GSM has been upgraded to GPRS and then to
EDGE. GPRS has introduced data communication to 2G systems, while EDGE
increased the throughput that could be supplied to users. EDGE could supply
data rates up to 384 kbps due to the usage of the new 8-phase shift keying (8PSK)
modulation technique rather than the gaussian minimum shift keying (GMSK)
modulation technique. This enhancement requires deploying new transceivers and
software updates.

The telecommunications industries association / electronic industries associa-
tion interim standard – 95 (TIA/EIA IS-95) family [OP98] have defined a second
version of 2G communications systems. This version is called CDMAOne and it is
based on code division multiple access (CDMA). CDMAOne operates on the 800
and 1900 MHz frequency bands, and each carrier has a bandwidth of 1.25 MHz.
CDMAOne provides voice services and data services that could reach a speed of
14.4 kbps.

The 2.5G equivalent of CDMAOne is the IS-95B system which provides data
services with data rate up to 64 kbps. CDMA2000 is considered as the 3G equiva-
lent, and it enhances the data rate of its predecessor by increasing it to 307 kbps.
CDMA2000 is fully compatible with its predecessor the IS-95B system.

One of the most important characteristics of the CDMA radio management is
that the power is considered as a common resource shared between users ; power
is allocated to each user while ensuring that the maximum interference threshold
is not exceeded. To optimize the capacity of the cell and boost the performance
of the network, fast power control in the downlink is considered mainly for indoor
and low-speed outdoor environments. The network entity that holds the responsi-
bility of managing resources should track the instantaneous quality of the channel
between the BS and the user.

One of the main issues in cellular networks is to enhance the capacity in terms
of number of users per cell per bandwidth unit (in Hz). In general, the capacity
depends on the following factors:

– total transmission power,
– available bandwidth,
– channel quality,
– user behavior (mainly related to the requested data rate and QoS).
In order to enhance the capacity and the data rates, 3GPP has proposed the

high speed downlink packet access (HSDPA) as an upgrade of the UMTS. HSDPA
could provide data rates up to 14 Mbps, while its newest version HSDPA+ in-
creases the data rate to 42 Mbps. HSDPA benefits from several communication
advancements such as MIMO techniques, adaptive modulation and coding tech-
niques, and optimized resource management schemes.

The LTE is considered as the fourth generation of mobile networks proposed
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by 3GPP. LTE uses OFDM technology as the air interface, and its throughput
depends on the channel bandwidth, among other things. The main reasons for the
increased data rates in the newest 3GPP releases are the usage MIMO technology
and new modulation and coding schemes.

The next step of the LTE technology is already defined as LTE-Advanced which
is described in the Release 10 standard. LTE-Advanced is mainly characterized
by faster protocol stacks, advanced MIMO technology, bandwidth aggregation up
to 100 MHz, cooperation between several kinds of BSs (micro, pico, and femto),
among other promising features. LTE-Advanced is expected to enhance the offered
data rate, reduce inter-cell interference, supply better QoS and lower delays. LTE
releases and their main specifications are summarized in Table 1.3.

Table 1.3 – LTE releases and specifications

Release year Main specification

8 2008
All-IP network, new OFDMA and MIMO radio interface.
Not backwards compatible with previous CDMA interfaces.

9 2009
All-IP network enhancements, WiMAX and LTE/UMTS
interoperability.

10 2011
LTE Advanced fulfilling based on 4G specifications. Backward
compatibility with release 8.

11 2012 Heterogeneous networks improvements.
12 2015 Enhanced small cells and carrier aggregation.

13 2016
LTE in the unlicensed band. Machine-to-machine
communications. LTE Advanced pro.

1.4 General comparison between systems

In this section, a general comparison is presented between Wi-Fi networks
and cellular networks according to the main characteristics of each wireless access
technology. A summary of these differences is presented in Table 1.4.

By studying the evolution of the wireless access technologies, it becomes ob-
vious that next generation core network is moving towards a completely IP-based
architecture, where different types of access technologies coordinate with each
other. Therefore, in order to boost the performance of this integrated heteroge-
neous system, a resource management entity should coordinate the distribution of
resources in these networks.

The main goal of the resource management entity is to serve users in the best
way according to the users needs. Those needs could be based on the require-
ments of the services used by users (QoS, data rate, etc.) or according to the user
preference (monetary cost, power consumption, etc.). Thus, the entity that will
coordinate the user association and resource allocation should be aware about the
needs of the users and the types of the networks and their characteristics.

Observing Table 1.4, the resource management awareness concept is present,
where the higher performance levels dealing with mobility, throughput, cost, co-
verage or service type are found in different kind of systems.
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Table 1.4 – Wi-Fi and cellular networks comparison

Characteristic Wi-Fi Cellular networks
System architecture Simple Complex

Service Data Voice-Data
Mobility Low High

Throughput High Low-Medium
Deployment environment Indoor Indoor-Outdoor

Spectrum Licensed Unlicensed
Capacity High High
Coverage Low High

Transmission power Low High
Deployment cost Low High
Operational cost Low High

Billing policy Free-Volume Time-Volume

1.5 Wi-Fi offloading

Nowadays, the information and communication technology research field is fa-
cing an explosion of data traffic, which is characterized by the unprecedented
increase in the mobile data traffic due to the proliferation of smart communication
devices. Current mobile networks could transmit data traffic at high rates due to
the development of the radio access technologies. Recently, Cisco has announced
that the overall world-wide mobile data traffic in 2016 has grown 74% [Cis16].
Moreover, it is predicted that the monthly mobile data traffic demand will reach
30.6 exabytes by 2020 where two-thirds of this traffic is due to video and audio
services. This terrifying increase in demand is not only due to the growing number
of smart communication devices, but also due to the emerging M2M technology.

To supply this wireless data traffic demand, one solution is to replace the cur-
rently installed mobile radio access technologies with the next generation mobile
wireless networks. The second solution is to increase the number of BSs while redu-
cing the cell size to increase the capacity of the overall wireless system. However,
both solutions suffer from the large value of capital expenditure (CAPEX) and
operation expense (OPEX). Hence, it is predicted that deploying heterogeneous
networks is a must in any future wireless communication system [O. 09].

Therefore, it is essential to take advantage of the current installed wireless tech-
nologies to provide the requested data traffic in a heterogeneous network environ-
ment. Figure 1.6 provides an example of wireless access technologies cooperating
with each other in heterogeneous networks ; a user equipment could access different
types of wireless technologies. Research fields are exploring the opportunity of of-
floading data traffic from cellular networks to Wi-Fi APs, or to femtocells which is
usually referred to as mobile data offloading. Knowing that Wi-Fi APs are widely
deployed by users, Wi-Fi offloading is considered as a remarkable solution to fully
utilize the capabilities of both cellular and Wi-Fi networks. Interestingly, seve-
ral operators, including the famous ones (e.g., AT%T, VodafoneVerizon, AT&T,
Verizon, etc.), have been deploying Wi-Fi offloading recently [Jun13].

Currently, facing the exponential data traffic increase is considered as the main
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Figure 1.6 – Available wireless access technologies that could be used to mitigate
the data explosion.

challenge of mobile operators. Wi-Fi offloading stands out as the main low-cost
solution to reduce the traffic load on the cellular networks. Wi-Fi offloading is
considered as the hybrid paradigm that takes advantage of the existing alternative
communication channels.

Data traffic demands are increasing in an exponential way thanks to the in-
creasing popularity of smart mobile devices and the introduction of affordable
data plans by mobile network operators. Data hungry services including audio and
video streaming, or cloud-based services, are becoming more and more popular
among users. The predicted growth in mobile data traffic between 2011 and 2018,
is expected to be three times faster than that of the fixed IP networks during the
same period [Cis14]. Hence, the traditional cellular networks are trying to cope
with this unprecedented traffic explosion. From the economical perspective, up-
grading all installed cellular networks is expensive because it requires additional
investments to install the latest infrastructure equipment.

One of the aspects that hinders the enhancement of cellular networks is the
scarce licensed spectrum. Mobile operators are allowed to use a small portion of
the radio spectrum due to frequency regulations. Hence, wireless networks could
operate only in limited wireless frequency resources.

The indicated circumstances fostered the interest in alternative methods to
alleviate the pressure facing cellular networks. An intuitive approach is to leverage
the unused bandwidth across different wireless technologies. Mobile data offloading
is characterized by the usage of a complementary wireless technology to transfer
data that originally target cellular networks, in order to enhance several main
performance indicators.

In addition to the mentioned advantages of Wi-Fi offloading, several additio-
nal benefits could be contributed due to the cooperation between complementary
wireless access technologies. These benefits include:

– enhancing energy efficiency,
– delay reduction,
– increasing the overall throughput,
– coverage extension.

Wi-Fi offloading is usually described as a win-win strategy because these improve-
ments affect both users and network operators [DHHL11]. Unfortunately, it is not
easy to deploy such architectures, since several challenges need to be addressed.
The main challenges are:
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– user mobility,
– enable seamless handover,
– infrastructure coordination.
Figure 1.7 shows two main approaches to serve users in wireless networks. In

Figure 1.7a, wireless users are only allowed to be served by one network (cellular
BS), while Figure 1.7b shows the situation where Wi-Fi networks offloads some
users from the cellular networks to reduce the congestion on the BS. Passing data
traffic through Wi-Fi APs is considered as the main solution to reduce the load on
cellular networks. MTs located within the coverage area of Wi-Fi APs could use
these networks as an alternative to the cellular networks when they have active
services. In case the cellular networks are congested, users could experience better
service upon offloading to uncongested Wi-Fi networks. However, since the cove-
rage of Wi-Fi networks is limited, the mobility of users is constrained within these
cells. Famous cellular providers such as Orange, Verizon, T-Mobile, and AT&T
have begun to install more Wi-Fi APs in their cellular networks to support Wi-Fi
offloading due to the low monetary cost of installing Wi-Fi APs [Dat13]. Recently,
an increased number of applications that support and enhance the Wi-Fi offloa-
ding procedures are developed for Android and IOS-based mobile devices, such
as BabelTen [Bab] and iPass [iPa]. However, these applications do not solve the
mentioned challenges because they prioritize Wi-Fi connections and networks with
high RSS without considering the network conditions and user preferences.

Cellular BS

(a)

Cellular BS

Wi-Fi AP

(b)

Figure 1.7 – (a) Without Wi-Fi offloading. (b) Wi-Fi offloading.

1.6 Always best connected

The widespread deployment of the 2G cellular networks in the 1990s contri-
buted the paradigm of being always connected. The main concern was to supply
users with wireless connection for voice services in outdoor, indoor, and mobile
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environments. The incredible development of wireless networks in the past two de-
cades provided several types of wireless access technologies that complement each
other in different domains as presented in Section 1.5. The heterogeneous wireless
environment contributed by the development of these technologies was followed by
the development of the ancient concept of being always connected towards being
always best connected. That is, not only being always connected, but also being
connected to the best available network at any time.

The ABC concept is very broad because identifying the "best" network is
actually based on several factors that might be related to the user preference,
service preference, or provider preference, etc. With the ABC capabilities, MTs
could select the access networks that might reduce the monetary cost for the users ;
MTs could select the network that reduces the battery consumption ; connecting to
network with high traffic overload could be avoided, and thus avoiding congestion
and low data rates ; MTs could be associated with network providing the best
signal quality, etc. Moreover, ABC could benefit the operators. When selecting
the best network based on the providers’ benefits, the strategy could be based on
balancing the load in networks, and thus the congestion could be avoided, and
the utilization of the networks is enhanced, hence, the overall data rate increases
leading to increase in the revenue of the operators as well. Moreover, the network
selection strategy deployed by operators could determine the number of Wi-Fi APs
and cellular BSs that should be deployed to supply the data traffic requested by
users. Therefore, the ABC concept is seen as a win-win strategy because it could
be deployed in a way that enhances the user experience and increases the network
operator revenues.

The context-awareness is an essential aspect in ABC. To take the user as-
signment decisions, contextual user-centric, service-centric, and network-centric
informations are needed. The user-centric information is based on:

– the geographical location of users,
– user preferences.

The network-centric services is based on:
– the geographical location of the networks,
– the type of the network,
– amount of available resources,
– transmission power.

Furthermore, the service-centric contextual information is based on the data rate
requested by the users.

In the following, a series of scenarios are designed to highlight the importance
of the ABC concept in the user’s daily life routines. Those scenarios are shown
in Figure 1.8 and further illustrated in Table 1.5. In these daily life scenarios, a
user with a multi-modal MT works in a company. On a typical working day, the
user, who is currently located inside the company, is searching for some informa-
tion using his MT (scenario (1)). Within this stage, the MT is located inside the
transmission range of multiple LTE BSs and Wi-Fi APs. Then, during the morning
break, the user moves to the near coffee shop, where the Wi-Fi there is only free
for customers buying stuff there (scenario (2)). In the coffee shop, the user calls his
friends to organize a trip in the weekend. After finishing his coffee break, the user
takes a taxi to another company where he have a meeting (scenario (3)). However,
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Figure 1.9 – Functional blocks of the ABC concept.

of each MT. An important issue here is when to initiate network discovery. This
procedure could be initiated periodically or by some trigger events. Those triggers
could be related to the MT’s conditions, or to external conditions. For example,
when the received signal strength drops below a certain threshold, the network dis-
covery procedure is triggered. Or due to congestion in the current serving network,
where the MT should find a new network to maintain its required service.

Information gathering: It is one of the main blocks of ABC. In order to
maintain the association with the best network at all time, ABC should gather the
contextual information discussed earlier. Gathering static, or semi-static informa-
tion is not a problem. For example, the amount of total resources available at each
network, network type, geographical location of networks, user preference, reques-
ted data rate ; these information could be supplied upon initiating a connection,
and are assumed to be static during the connection interval. However, instanta-
neous information, such as MTs geographical location, received signal strength,
number of free resources at each network, etc. Some information could be gathe-
red based on direct feedback from MTs and networks, or could be estimated by
networks. The geographical location of MTs could be estimated by networks, as
well as the received signal strength.

Network selection: This block uses the gathered information in order to se-
lect the best network for each user. In the literature, there is a lot of parameters
proposed to be used within the network selection block, in addition to the mecha-
nism or the algorithm used to get a network selection decision based on several
parameters. A state of the art about network selection algorithms will be presented
later in this chapter (In Section 1.7).

Mobility management: This block handles the transition of an active connec-
tion between networks, i.e. HO. When the HO is between two networks of the same
access technology, usually that technology itself is responsible for the HO. Howe-
ver, if the connection is transferred between networks of different types, i.e. from
LTE BS to Wi-Fi AP, an external protocol is required to manage the HO. The
mobility management block also provides a seamless HO where the continuity of
the service is not threatened during the HO.
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1.7 Network selection

In this section, we talk about the main parameters used to evaluate available
networks. Then we talk about the criteria used in the literature to rank available
networks. Finally, a conclusion about the network selection scheme is presented.

Network selection is devoted to decide to what network the MT should connect.
It is an essential functionality that improves user experience in heterogeneous
networks. If the network selection decision is taken by a MT, those terminals will
take autonomous decisions to select the most appropriate networks among available
ones. MTs will selfishly aim to maximize their own utility. However, if MTs do not
consider the network states, their decisions may lead to a bad experience.

When multiple networks cover the same geographical area, deciding to which
network the MT should connect is known as the network selection decision. The
network selection procedures could be initiated upon session initialization, weak
connection due to user mobility, or upon detecting new available networks.

1.7.1 Network selection parameters

For making network selection decisions, these are the main parameters used in
literature.

Recieved signal strength (RSS): RSS, could be also referred to as received
signal strength indicator (RSSI), is a classical and inevitable metric used to make
handover decisions. RSS is directly related to the power received by the antenna
of the MT from the available BSs and APs. The power level decreases as the MT
moves away from the BS or AP. Low RSS from the currently serving networks
notifies the MT to the importance of searching for another network to handover
to. Therefore, RSS plays a vital role in initiating the network selection procedures
before the connection is terminated. RSS is currently the main factor used for
making horizontal handover decisions. However, its implication in vertical handover
is also inevitable. The relative received signal strength (RRSS) is another metric
that is less frequently used instead of the RSS for making handover decisions.

Network load: several applications, mainly file transfer protocol (FTP) ap-
plications (i.e. file transfer), and data hungry services, perform better when the
bandwidth supplied by the network is higher. Therefore, networks with low load,
i.e. having more free bandwidth, are usually preferred.

Monetary cost: users usually prefer to connect to the network that demands
lower monetary cost. The monetary cost could differ between operators of the
same access technology, or even between different types of access technologies. For
example, Wi-Fi APs based on predefined monthly cost, or free, which could be
beneficial for the user when compared to other access technology that could use
per MB data costs.

Power consumption: This factor is directly related to the type of the access
technology, and the distance and interference between the user and the AP or BS.
Usually, terminals connected to Wi-Fi APs consume less power than those being
connected to LTE systems. Moreover, as the distance and the interference between
the BS and the MT increases, the power required to maintain the connection also
increases.
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User preferences: It is also considered as one of the main criteria used for
making network selection decisions. User preferences reflect the importance of the
criteria used to make decisions. Those preferences could be defined based on the
application requirement, MT status, or the user’s specific preferences. For example,
it is the user’s preference that indicates what is more important, the quality of the
current connection or the monetary cost.

Throughput: It is directly related to the SINR and the network load. It refers
to the data rate that could e provided to the MTs.

1.7.2 Single-parameter-based network selection

Extensive research has explored the network selection issue in HWNs. Some
studies focus only on one parameter to take HO decisions.

1.7.2.1 Received signal strength-based schemes

Several studies consider the RSS as the only factor to determine network se-
lection decisions. Due to the availability of the hardware equipment required for
RSS calculations, a large number of studies has participated in this domain of re-
search within the past few years [MZ04], [CC08], [CCHL09], [PKH+00], [YMS08],
[YMP05],[ELS08]. Basically, the RSS of the serving network is compared to that
of the other available networks, and the MT connects to the network with highest
RSS. A generalized scheme for RSS-based network selection decision starts by
scanning and checking the availability of wireless networks. Then, the RSS of each
network is calculated and compared to a predefined RSS threshold. The handover
is initiated if the collected measurements give a satisfactory result for RSS. Other-
wise, the MT switches back to the network discovery state. RSS-based network
selection schemes also discuss further aspects.

In [PKH+00] and [YMP05], authors proposed an architecture that depends on
location and cross-layer information to perform network selection. They compared
the performance of two handover algorithms while considering the terminal velocity
and its effect on the user experience. Their work is based on a dynamic dwell timer
to estimate the time users will maintain connection to networks, and the quality
of these connections. Their proposed work is compared to power-based algorithms.
The handover is performed when the RSS level of the serving network is always
below the threshold and less than the RSS of other available networks. Their
proposed solution is shown to be less sensitive to the increase of the handover
delay. Moreover, their solution is shown to affect the performance of real time
applications, which is considered as a major drawback.

In [ELS08], authors presented a new design using dynamic dwell timer for seam-
less handover mechanism for MT with high mobility requirements. This scheme
is proposed for Wi-Fi networks, and aims at reducing the handover delay. Their
proposed scheme consists of also cellular networks that operate on the same fre-
quencies. In order to reduce the overall handover latency, The proposed solution
considers all of the basic handover phases. This is done by using a centralized radio
control unit (RCU) that estimates the dwell timer based on the coverage area of
the networks, the MT speed, and additional handover-related information.
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In [MA06], authors proposed a new network selection algorithm that compares
the current RSS level to a dynamic RSS threshold value to determine the best
available access technology among 3G and Wi-Fi networks. The dynamic RSS
threshold plays a vital role in decreasing the number of unnecessary handovers
as well as the number of failed handovers. Authors noticed that using a fixed
RSS threshold leads to increase the handover failure probability due to the high
mobility of the MT or handover signaling delay. Authors took the advantage of
the fact that the availability of 3G networks is ubiquitous, so the handover failure
probability from Wi-Fi to 3G network is zero. This is why their proposed solution
tends to encourage the handover towards Wi-Fi networks whenever Wi-Fi coverage
is available. However, this is not always the case, the handover to a Wi-Fi network
could be avoided in case this network is congested, or in case the traveling time of
the MT in a Wi-Fi coverage area is less than the handover latency.

Similarly, in [ZLS06], the handover is performed when the following two condi-
tions are met: 1) current RSS is less than, or equal to, the new RSS, and 2) the
estimated session lifetime is less than, or equal to, the handover latency. The MT
keeps measuring the average RSS using the "moving average" method as proposed
in equations 3,4 and 5 of [ZLS06].

1.7.2.2 Signal-to-interference noise ratio-based schemes

Another important parameter usually considered for making network selection
decisions is the SINR. It is beneficial to highlight here that the RSS is more in-
clined towards providing connectivity to the MTs, while SINR reflects, or helps
in estimating, the throughput that could be achieved in a network. In [AK10],
authors used SINR to assess the system performance in terms of throughput by
using the equation that relates the maximum achievable data rate and the SINR
in Wi-Fi and WCDMA networks. Their proposed algorithm estimates the mini-
mum required SINR in Wi-Fi networks to achieve the same throughput that could
be achieved in WCDMA networks. If the SINR of the available Wi-Fi network is
higher than the estimated minimum SINR, handover is triggered. Therefore, the
proposed scheme provides a network selection decision that is based on the maxi-
mum achievable downlink throughput. It is shown that the SINR-based scheme
enhances the system throughput when compared to the traditional RSS-based
schemes.

1.7.2.3 Quality of service-based schemes

In [CDM04], authors proposed a network selection solution that is based on the
user preferences to satisfy users based on their needs in terms of QoS and monetary
cost. To select the best network among GPRS and Wi-Fi, Two network selection
strategies are presented: (1) the MT will never leave its connection with GPRS
network until the connection is forcely terminated, and (2) MTs are always handed
over to Wi-Fi APs whenever those APs are available. The first strategy targets
those users who are willing to pay money to maintain continuous connection. The
second strategy will save the users from paying extra money, (assuming that Wi-
Fi is cheaper), but the QoS is threatened due to the high congestion in Wi-Fi
networks.
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Authors in [LSK+09] propose a network selection solution that is based on
the available bandwidth at each network. In the proposed solution, the handover
from Wi-Fi to cellular networks is triggered when there is no other available data
network. Wi-Fi networks are preferred due to the fact that cellular networks are
incapable of handling heavy loads. In case multiple Wi-Fi APs exist, the AP with
highest available bandwidth is preferred. This solution plays a vital role in balan-
cing the load among several networks. Also in [EKR15], the HO algorithm selects
the network with the highest available bandwidth.

1.7.2.4 Power consumption-based schemes

Many studies focus on the power consumption at the MT level. In [FZZ12],
[XPMV14], and [KYII10], each MT decreases its own power consumption and
maximizes its battery lifetime through associating to the network that requests
the lowest power consumption among available networks. For example, in these
studies, the network selection algorithm tends to select Wi-Fi networks because
MTs require less power consumption to maintain the connection than the cellular
networks.

1.7.3 Multiple parameters-based network selection

In this section, we will discuss studies that consider multiple parameters to rank
available networks and select the best one. Usually, each parameter is associated
to a weight that indicates its importance among other parameters. The weight of
each parameter could be set based on the user preferences.

The first policy-enabled network selection algorithm was proposed by Wang et
al. in 1999 [WKG99] where the best network is selected based on multiple para-
meters combined within a single cost function. Since then, policy-enabled network
selection algorithms have been widely used for selecting networks based on multiple
criteria. After taking user preferences and applications needs into consideration,
network parameters are summed up in order to select the best network. In the
following, we present several studies that combines multiple parameters to select
the best networks.

In [MZ04], [ZM04], [ZM06], Zhu and McNair proposed multiple cost-function-
based network selection algorithms, where the cost function is used to calculate the
cost of all available networks. The used cost function considers the services running
on all MTs, and the cost for each candidate network is calculated based on the
preferences of each service. The total cost of a candidate network is calculated
using the sum of the cost of available QoS parameters like bandwidth, battery
consumption and network delay. The network selection algorithm will select the
network that supplies the best service for the lowest cost. The proposed network
selection algorithm is processed at the MT. The main advantage of this scheme is
that the MT could select the best network after aquiring the required information
without synchronizing with another entity. Thus, the handover for each MT can
be initiated independently. However, authors did not specify in these studies the
mechanism that is used to assign weights for each parameter. Moreover, knowing
that each attribute has its own measuring unit, authors did not discuss also the
methodology used to normalize these parameters.
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In [HNH05], [HNH06], and [NHH06], the cost function is also used to select the
best network in a heterogeneous wireless system. Here, the cost function is based
on multiple parameters related to the monetary cost, power consumption at MTs,
security, and velocity. However, those parameters have different measuring units.
Therefore, the authors specified the mechanism that normalizes these parameters
in order to sum them in the cost function. Each parameter is associated to a weight
that reflects its importance among other parameters.

Moreover, a policy-enabled network selection solution has been proposed in
[SZ06] and [WLSS08] to select the best network based only on the RSS and the
available bandwidth parameters.

In [AMC16], authors proposed a network selection strategy based on the mo-
netary cost, power consumption, and QoS parameters. The proposed optimization
problem aims mainly at minimizing the power consumption of the MT while consi-
dering the QoS requirement of the MT and the monetary cost. The QoS is seen
in terms of required data rate. The authors here assume that the MT could be
connected to multiple networks at the same time to share the load and receive the
requested data rate.

In fact, authors in [TL11b], [TL11a] proposed dynamic context aware network
selection solutions that consider both user and service requirements. The context-
awareness is based on the information collected about the requirements of the
applications running on each MT, the characteristics of the networks, the geogra-
phical location of both users and networks.

Weighted cost function is used in [TOM13] to study the trade-off between
energy, monetary cost, and QoS of multimedia services in heterogeneous wireless
environment. The proposed weighted cost function is used to rank candidate net-
works.

1.7.4 Main drawback of the network selection scheme

The main idea behind the network selection schemes is to select for each MT
the best network that selfishly satisfies the MT. Therefore, all previous studies
do not consider a system wide resource allocation and user association solution.
Instead, they are designed to satisfy the needs of each user individually. In order to
optimize the performance of heterogeneous networks, a system-wide resource allo-
cation and user association scheme should be considered. The system-wide scheme
first considers the conditions of all MTs and networks in the system, then the user
association algorithm selects the network that each MT should be connected to.

1.8 System-wide resource and network assignment

From a system perspective, several studies with different objectives focus on
user association and resource allocation in HWNs.

In [ZDRB13] an optimization problem is formulated to increase the number
of connected users, while maintaining a minimum utility for each one. The algo-
rithm was evaluated based on user throughput and number of handovers without
studying other specific user-related attributes.
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In [GBGF+11], in order to enhance the energy efficiency in heterogeneous net-
works, authors discussed the problem of BS location and optimal power alloca-
tion. Mainly, the formulated problem aims at optimizing the number of BSs and
their location to reduce the consumed energy. The problem of reducing the energy
consumption has been also studied in [PCS12]. The formulated problem aims at
minimizing the number of active networks while considering the data rate require-
ments. The problem is formulated as an integer programming problem to minimize
the overall energy consumption. However, the energy consumption at user level,
or other user-related parameters, is not considered in both studies.

In [HC17], authors investigated the profitability of the network operators ba-
sed on the spectrum-energy efficiency. The authors use techniques such as user
association, cell size zooming, and ON/OFF scheme for different BS types in he-
terogeneous networks to optimize the spectrum-energy efficiency. However, the
user-centric benefits is not considered. Instead, the focus is only on the network
benefits.

In [LSK+09] authors use joint optimization to maintain load balancing among
heterogeneous networks and optimize the MT battery lifetime. However, power
consumption rate in each network is assumed to be exponentially distributed and
the system model is not realistic but an abstract system model is used. In [rCC14],
the objective function of the formulated problem aims at balancing the load as
equally as possible among multiple networks. However, user-related attributes and
benefits have been not discussed.

In [TRRL15], authors proposed a user association, resource allocation, schedu-
ling, and power allocation algorithm to increase the overall network utility. The
formulated problem in [YH15] aims at increasing the total throughput of the sys-
tem. The idea is to lower the number of active pico-base stations in order to reduce
the inter-cell interference with bigger macro-base stations. However, the studies
[TRRL15] and [YH15] do not consider the user preferences or the user-centric
profit.

In [JSS14], the formulated problem maximizes the total user utility. The user
utility is based on the amount of data rate received by the user. However, the
amount of data rate requested by each MT is not considered. The optimization
problem proposed in [LWH14] considers the data rate requirements of users. The
formulated problem aims at minimizing the total resources required to supply
the given user traffic demands. However, the formulated problem is based on a
system model that do not follow the specific-access-technology resource allocation
constraints, instead, time slots or frequency slices are assumed to be infinitely
divisible. In practice, taking LTE as an example, resources are discrete, and a
single resource unit could not be shared between multiple MTs at the same time.

In [CL16], authors proposed a solution to maximize the user-centric satisfaction
while considering the data rate requirements of users. However, their proposed
optimization function is also based on an abstract system model that do not follow
the constraints of the RATs. In [EWI+16], authors proposed a data rate allocation
and MT association solution to maximize the total user utility which depends on
the amount of data rate received by each MT. However, the amount of data rate
requested by MTs is also not considered.

In [BHW13] and [MAAV14] authors proposed user association and resource
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allocation algorithms to minimize the total amount of time required to satisfy
user traffic demands. However, both studies do not consider the user preferences.
Furthermore, the system model and the formulated problems in [BHW13], and
[MAAV14] also do not follow the specific-access-network constraints. Instead, an
abstract system model is used.

In [JSS14], the proposed solution increases the overall user-centric utility that
is based on the per-user throughput. Increasing the per-user throughput has been
also used in [YRC+12] and [ZHY15] as a mean to increase the overall system
throughput. However, the studies [JSS14], [YRC+12], and [ZHY15] do not consider
the amount of data rate requested by each user. In fact, increasing the per-user
throughput does not always contribute to better satisfaction for users. For example,
voice over Internet protocol (VoIP) applications usually request a fixed amount of
data rate ; increasing the data rate above this amount does not necessarily enhance
the performance of the application.

The study [DWY+15] explored the problem of optimizing the user-centric sa-
tisfaction while considering user-demand diversity. However, their proposed opti-
mization function and system model do not follow the specific-access-technology
constraints. Instead, a generalized problem formulation is adopted.

1.9 Management frameworks

Due to the large number of studies with different objectives that have been
introduced to heterogeneous networks, it is essential to differentiate these studies
based on their management time. Therefore, in this section, a management frame-
work that classifies these studies based on the time frame is introduced.

Mainly, the studies contributed in heterogeneous networks could be classified
into four main time-based categories.

Ultra-slow decisions: In this category, the studies focus on long-term ma-
nagement decisions. Network planning and deployment related research fields in
heterogeneous networks are the main field that belongs to this category due to the
manual operation required to perform these tasks, and the time required to install
BSs and APs. Figure 1.10 summarizes the decision objectives that are classified in
each category.

Slow decisions: In this category, the decision is based on the underlying fast
decision category to estimate the number of networks, and which networks, that
should be functioning in order to serve the active users. Network activation/deac-
tivation decisions should be made after acquiring information about the load and
utilization of networks. These informations are gathered based on the underlying
fast decision category.

Fast decisions: This category contains the decisions that could be taken based
on information gathered from neighboring networks and users. For example, user
association and resource allocation decisions could be taken in a specific scheduling
interval (for example one second). Moreover, association decisions could be based
also on the estimated time that the user will stay within the coverage area of a
network.

Ultra-fast decisions: This category contains the decisions that could be ta-
ken independently without coordinating or exchanging information with other net-
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works. Usually, these decisions are taken within milliseconds time interval. Pro-
cedures that could change every transmission time interval (TTI) such as power
allocation and modulation and coding schemes for each cell belongs to this cate-
gory. Moreover, network discovery procedures are also classified in this category
because these decisions depend on the instantaneous RSS.
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Figure 1.10 – Management framework.

1.10 Conclusion

Based on the information provided in this chapter, we can identify the main
specifications that should be considered in order to propose new contributions in
the HWNs research field.

First, Wi-Fi networks should be seen as an important complementary access
technology to the cellular networks due to its wide-spread and the low cost instal-
lation and management procedures. Therefore, the proposed work should consider
the coordination between Wi-Fi networks and cellular networks to face the expo-
nential growth of the requested data traffic.

The second important aspect is to follow the goals of the ABC scheme ; user
satisfaction, demands, and preferences should be considered in order to maintain
the best connection at all times. While designing the solution goals, important
parameters should be considered based on the proposed work in the literature. For
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example, the battery power consumption of MTs should be considered because it
is introduced as an essential metric for user satisfaction. Also, the RSS parameter
should be considered because it plays a vital role in maintaining the connection to
any network. The amount of requested data rate of each MT should be taken into
consideration while allocating resources. Therefore, the SINR parameter should be
also considered because it is directly related to the amount of data rate received
by each MT.

Another important aspect that should be considered is to design the propo-
sed work in a way that any additional user-centric parameter, such as monetary
cost, could be added easily to the objective function. Moreover, the proposed work
should be able to be configured in a way to address network-utility based objec-
tives, such as power efficiency maximization.

The majority of work that discusses and targets the ABC scheme is based on
the network selection paradigm, where we have stated before that the work aims
at enhancing the user satisfaction selfishly and without considering the effect of
the algorithms on the system as a whole. Therefore, it is essential to introduce and
pave the way for an optimized ABC scheme that aims at enhancing the overall user
experience and consider the network and MTs conditions. Such solution requires
gathering information from the whole system, and coordination between all the
networks, therefore it falls in the fast decision category.

In the remaining of this dissertation, those points are taken into consideration.



Chapter 2

A New Resource and Network

Assignment Problem

Formulation and System

Architecture

In this chapter, we discuss the media-independent service (MIS) framework
architecture for software-defined radio access networking (SDRAN) and the com-
munication mechanism between different entities. Based on this framework, we will
formulate a user association and resource allocation optimization problem. The al-
gorithm runs on the SDN controller that maintains global view on the system.
Our decision algorithm is based on two attributes: the power consumption at the
MT and the RRSS. We use a reliable power consumption model to estimate the
consumed power at MTs in different wireless networks.

2.1 Introduction

To maximize the satisfaction of MTs in HWNs, transferring the connection
between different networks is definitely desired, however it develops several issues.
The first issue is to decide to which network the connection should be transferred,
taking into consideration the limited capacity of networks and the requirements of
all MTs. Collecting information needed for the HO decision leads us to the second
issue which is establishing a reliable infrastructure that provides a centralized glo-
bal supervision on different network entities while maintaining cooperation and
information exchange between them. The last issue is to provide a common plat-
form that supports mobility management and resource allocation in HWNs. IEEE
802.21 media-independent HO services and software defined networking (SDN) can
complement each other to provide a solution for these issues.

The SDN scheme is mainly featured by the separation of data and control
planes. Such separation allows the network control to become programmable by a
software that might be running on a centralized network entity while the infrastruc-
ture is completely abstracted from the software [FRZ14]. This approach enables
the management procedures to be implemented in a centralized mode through a
SDN controller which maintains global view on network entities. The SDN control-
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ler is able to control data packets and manage how such packets are treated by
network devices. Usually the SDN functionality is demonstrated using OpenFlow
[MAB+08] which is an open standard that enables a separate network entity, the
OpenFlow controller, to access the forwarding plane of switches, usually Open-
Flow switches, over the network. The forwarding operation still resides within the
switch, however it is controlled by software. The OpenFlow communication pro-
tocol is already available in several network products and it can be considered as
an enabler for SDN.

IEEE has contributed a new standard in 2008 which is the 802.21 media-
independent HO (MIH) [47609] to enable seamless HO between networks of same
or different types. The 802.21 MIH standard defines several MISs that provide
helpful information in the HO decision and facilitate seamless HO. However, the
MIS has been recently splitted from the IEEE 802.21-2008 standard into a new
stand alone standard called 802.21.1 that mainly deals with MIS. It is necessary
to illustrate that at the time of writing this thesis, the IEEE 802.21.1 is still un-
der revision and not published yet. However drafts about some sections that this
standard will discuss are already published [Jin15]. Information about the IEEE
802.21.1 project can be found in [IEE].

One of the interesting topics that the IEEE 802.21.1 MIS standard will discuss
is the media-independent handover services for SDRANs [Jin15]. The SDRAN
framework combines the capabilities of IEEE 802.21 MIH with SDN to provide
seamless HO, resource allocation and centralized management in HWNs. The fra-
mework maintains independent evolution of both technologies, SDN and MIS,
through a clear separation between the SDN control plane and MIS control func-
tions. In the SDRAN paradigm, a controller, different from the SDN-controller,
can maintain service continuity during the HO. Depending on the underlying SDN
infrastructure, the SDRAN framework also provides a communication protocol
between different network entities.

2.2 Background

Nowadays, SDN has been introduced to wireless environment. [YSK+10] and
[YKS+10] introduce an open SDN-based wireless architecture that can be shared
by different providers, while maintaining a backward-compatibility. In [LMR12]
Li et al. discuss various challenges that might face the deployment of SDN in
mobile networks. SDN-based mobility management and load balancing in WLANs
is introduced in [SSZM+12]. In [DKB11], Dely et al. introduce a new architecture
that combines OpenFlow with wireless mesh networks enabling mesh clients to
seamlessly roam between different mesh APs.

Concerning the application of SDN in HWNs, in [GCA+13] the authors pro-
pose an architecture that combines the 802.21 MIH with SDN. However, the SDN
controller and MIH functionality are not separated as the SDRAN MIS frame-
work suggests. In [KLD], the authors propose a centralized, semi-centralized, and
hierarchical approaches to manage handover in SDN-based wireless networks. An
application of SDN controller as load balancer among different HWNs was in-
troduced in [TL14] where the load balancing algorithm takes into consideration
the requirements of users and the capacity of networks. In [DWA14] the authors



Software-defined radio access networking 33

propose a centralized algorithm for Wi-Fi data offloading in HWNs depending on
a centralized SDN controller that has global view on the networks and enables
centralized coordination and control. However, in [TL14] and [DWA14] the inter-
working framework is not discussed.

When an active connection is handed off from a network to another one that
uses the same wireless access technology, the HO can usually be executed within
that access technology itself. For example, a VoIP call over Wi-Fi can be handed
over between APs using Wi-Fi standards such as 802.11f and 802.11r. However, if
it is required to perform HO between two networks of different access technology,
e.g. from Wi-Fi AP to LTE BS, then an external protocol is required to manage
the HO. In 2008, IEEE has published a new standard which is the 802.21 MIH
[47609] to enable seamless HO between networks of same or different types. MIH
can communicate with several network protocols to facilitate the HO procedures.
Those protocols include the session initiation protocol (SIP) for signaling and
mobile IP protocol for mobility management. The standard is intended for HWNs
including both 802 and non 802 access technologies.

2.3 Software-defined radio access networking

In this section we discuss the basic entities of the 802.21.1 SDRAN standard,
and we propose a novel handover scenario based on the discussed framework.

2.3.1 Media-independent services (MIS)

The IEEE 802.21 standard has been a reliable platform that facilitates mobility
management between heterogeneous networks. The entity that supports MIS fra-
mework is called MIS entity, e.g. networks, MTs, servers, etc. The MIS framework
defines the following three services that optimize the HO process:

– Media-independent event service (MIES): provides different dynamic physi-
cal and link layer events filtering and reporting. For example, the MIES can
be used to register for events related to signal quality and specify a certain
threshold such that when the signal quality degrades below that threshold
the corresponding MIS entity is notified.

– Media-independent command service (MICS): enables some MIS entities to
manage and control link layer resources.

– Media-independent information service (MIIS): allows the exchange of static
and dynamic information between MIS entities. Informations can be related
to cost, QoS, data rate, the geographic location, link layer address, etc.

2.3.2 MIS framework (MISF)

To enable HO, all network entities that support MIS standard has a set of
MISF functions within their mobility-management protocol stack. The network
entity that supports MIS could be also called MISF entity. MISF can be also
seen as layer in the protocol stack of the entity. To facilitate handover, the MIS
provides a framework and mechanisms by which the MISF entity can discover and
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is equipped with MISF interface to allow exchange of MIS messages between remote
MISF entities that are not directly connected.

In heterogeneous networks, PoAs have different wireless access technologies,
e.g. Wi-fi, LTE, 3G, etc., where each access technology has its own mechanism
to allocate resources. In SDRAN, each PoA is equipped with MISF to support
HO management and resource allocation. The PoA controller can manage PoAs’
resources and coordinate HO between PoAs using MIS functions that are sent
through the MIS control path. The information server at the core network receives
information about PoAs and MTs through their corresponding PoA controller. The
PoA controller can use MIS functions to get information about PoAs resources,
these information can be helpful for the HO decision. The PoA controller is essen-
tial to preserve session continuity during the HO.

The SDN controller is not equipped with MISF in SDRAN framework to se-
parate between the MIS and SDN control planes allowing both technologies to
develop independently. We will depend on the SDN controller to make HO deci-
sions since it has global view on the system and can communicate with all PoA
controllers through SDN switches. However, it is necessary to illustrate that since
the SDN controller cannot communicate with entities using MIS protocol. So, in
order to collect information needed for the HO decision and force user associa-
tion and resource allocation, it will communicate with all PoA controllers. The
communication between the SDN controller and PoA controllers can be establi-
shed through the SDN switches or through a direct interface, called East/West
interface, that needs to be standardized in the future.

2.3.3 MISF service access points

Service Access Points (SAPs) is a group of service primitives used by MISF to
exchange messages with other entities in the framework and with other layers in
the mobility management protocol stack of the entity. Figure 2.2 shows the mo-
bility management protocol stack of MT and PoA entities in SDRAN framework.
Moreover, the MISF interface of PoA controller, information server and the SDN
switch is shown in the figure, in addition to the OpenFlow interface in both SDN
controller and switch.

Mainly we have two types of SAPs: the media-dependent SAP and the media-
independent SAPs. MIS_SAP is a media-independent SAP that acts as an inter-
face between the MISF layer and the upper layer in the mobility management pro-
tocol stack. The upper layer in the protocol stack of MT and POA, the MIS_User,
need to subscribe to MISF in order to receive MISF and link-layer events. This sub-
scription is done using MIES messages sent from the MIS_User to its local MISF
using MIS_SAP. The MIS_User can also specify thresholds for these events in the
same way. For example, if the MIS_User is interested in knowing when the recei-
ved signal strength is below a certain threshold, the MIS_User should subscribe
to the MISF for this event and specify a certain threshold using the discussed
mechanism. Once the lower layer notifies the MISF about this event, the MISF in
turns reports it to the MIS_USER using the same mechanism.

The MISF can use services from lower layers in the protocol stack using media-
dependent SAPs. Media-dependent SAPs use media-specific SAPs such as the
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events to its local MISF as we have discussed before. Whenever a new PoA is
available or the RSS is below the specified threshold, the local MISF is notified by
the lower layer through MIS_LINK_SAP interface. Then, the MISF notify the
SDN controller about this event. Since the MT do not have an active connection
with the SDN controller, the MISF at MT contact the MISF of the SDN switch
through the serving PoA’s MISF using MIS_NET_SAP as shown in Figure 2.2.
The SDN switch then notifies the SDN controller through the OpenFlow protocol.
To query the information needed for the HO algorithm, the SDN controller requests
these information from a PoA controller that can query MTs’ information from the
information server through MIIS message sent using MIS_Protocol. The commu-
nication between the SDN controller and PoA controllers can be done through the
SDN switch or through the East/West interface that needs to be standardized in
the future. Once the SDN controller receives the information, the HO algorithm is
initiated. After the HO decision is made, the SDN controller notifies PoA control-
lers about the decision, which in turns command PoAs to allocate resources for
MTs (using MICS command) and the MTs are then notified. The communication
between PoA controllers, MTs, and PoAs is done through MIS_Protocol. The
PoA controller is responsible for maintaining the service continuity during the HO
execution phase.

In our algorithm, the required information needed for the HO decision are:
– for networks: capacity, location, coverage range, and access technology.
– for MTs: location, requested data rate, and user preference.

It is necessary to illustrate that the location of MTs can be based on feedback from
MTs or can be estimated by networks through modern mechanisms that are based
on the angle of arrival, time of arrival, time difference of arrival, and RSS [GG05].

2.5 System model

We focus on the downlink resource allocation in a heterogeneous wireless sys-
tem. The system consists of several mobile BSs and Wi-Fi APs with overlapping
coverage areas. The network sets corresponding to mobile BSs and Wi-Fi APs are
denoted by NBS = {1, 2, ..., G} and NAP = {G + 1, ..., N} respectively. The total
network set is denoted by N = NBS ∪NAP = {1, 2, ..., N}, where NBS ∩NAP = ∅.
The available mobile BSs and Wi-Fi APs selected by a given MT are those for
which this MT is located in their coverage area. Therefore, it is assumed that
each network n has a circular coverage area with radius Rn. Hence, we define
a set Λm which contains a list of all networks reachable by MT m such that
{n ∈ Λm | dmn ≤ Rn} where dmn denotes the distance between AP or BS n and
MT m. The set of MTs located within the system is denoted by M = {1, 2, ...,M}.
The data rate (kbps) requested by MT m is denoted by Qm.

2.5.1 Resource allocation in LTE

The downlink of an LTE BS is considered, where the total bandwidth is di-
vided into Cn sub-channels. Each sub-channel is made up of twelve sub-carriers
that are grouped into a resource block (RB) whose total bandwidth is BRB

n kHz.
Following similar approach as in [BB15], the positive channel power gain between
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MT m and BS n is denoted by Hmn, where Hmn = GmnFmn encompasses the
effects of path loss, log-normal shadowing, and antenna gains as large scale fading
component (denoted by Gmn), and multi-path Rayleigh fading as small scale fa-
ding component (denoted by Fmn). In [R+96], Fmn is modeled as an independent
exponentially distributed random variable with a unit variance because the enve-
lope of the signal in Rayleigh fading environment is assumed to follow a Rayleigh
distribution. Therefore, it can be assumed that Fmn fluctuates fast enough so that
a mobile user can average it out in its channel measurements [BB15] [HYM+17].
Thus, the long-term SINR that is measured by MT m from BS n on a RB is
[BB15]:

SINRmn =
PRB
n Gmn∑

i∈NBS\n
PRB
i Gmi +BRB

n N0

(2.1)

where PRB
n and PRB

i are the transmission power on a RB by BSs n and i respecti-
vely, N0 denotes the thermal noise spectral power, and NBS \n is the set of all BSs
except BS n. It is assumed that the allocated power for each sub-channel is pre-
defined. For example, equal power allocation (EPA) could be considered [BB15].
Therefore, MT m can measure Gmn for all the BSs n. Hence, the long-term spectral
efficiency in kbps/Hz between MT m and BS n on a RB is [BB15]:

γmn = log2(1 + SINRmn) (2.2)

where the achievable data rate in kbps on a RB could be calculated by multiplying
γmn by the bandwidth of a RB (BRB

n ) and the time duration then divided by the
scheduling interval. While allocating resources, it is more convenient to consider
the long-term achievable data rate instead of the instantaneous one, otherwise, the
resource allocation algorithm might run upon any degradation in the instantaneous
SINR.

In this thesis, the resource allocation algorithm considers the data rate reques-
ted by each MT. The data rate requested by MTs could vary dramatically. For
example, a MT running a file download application requests data rate much larger
than another MT running a VoIP call. Therefore, it is not convenient to allocate
a whole RB to MTs requesting low data rate. In [KK16] the transmission time in
LTE is divided into several fractions, where a MT could allocate a specific com-
bination of a time fraction and a RB. Thus, it is assumed that the transmission
time, or scheduling interval, is divided into Tn discrete time fractions, where each
RB spanning the interval of one time fraction is denoted by scheduling block (SB).
Hence, the total number of SBs at a BS n is Un = CnTn, and umn denotes the
number of SBs allocated to MT m by BS n. Thus, the long-term achievable data
rate (kbps) of MT m in BS n is:

rmn =
umnB

RB
n γmn

Tn
(2.3)

2.5.2 Resource allocation in Wi-Fi

In Wi-Fi APs, as in [XGP+12], an enhanced version of distributed coordination
function (DCF) [CYCK05] with a reservation-based MAC protocol is considered.
MTs can completely avoid collisions by acknowledging their back-off timer value
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within the MAC header. Thus, it can be simply seen as if MTs access the AP in a
time division multiple access (TDMA) manner. The resource allocation in Wi-Fi
APs is also seen as TDMA in [KCL13]. Each MT can occupy the whole bandwidth
of AP n, denoted by Bn, in its allocated time slot. The total number of time slots
during scheduling time is Tn, and tmn denotes the number of time slots allocated
to MT m. Therefore, the achieved data rate (kbps) of MT m in AP n is:

rmn =
rtotmntmn

Tn
(2.4)

where rtotmn = Bnγmn is the total achievable data rate (kbps) in AP n, γmn is the
spectral efficiency (kbps/Hz) between MT m and AP n. The channel model used
in [KCL13] for Wi-Fi APs is adopted. The spectral efficiency formula is:

γmn = log2(1 +
PAP
n gmn(dmn)

σ2
) (2.5)

where PAP
n is the transmission power of AP n, gmn(dmn) is the channel gain of

MT m at distance dmn from the nth AP encompassing the effects of path loss and
antenna gains, and σ2 is the noise power. It is assumed that each AP works on
non-overlapping channels so that no interference exists among APs. In addition,
since WLANs operate in an unlicensed band, APs do not interfere with the BSs.
Full power transmission in each time slot is assumed. Note that the fast fading
component follows a Rayleigh distribution and it is averaged out due to the same
reason discussed in Section 2.5.1.

2.5.3 User-centric attributes

In this section, we talk about two user-centric attributes that are chosen to
calculate the context-aware profit contributed by associating MTs to networks.

2.5.3.1 Signal quality

The signal quality is usually considered as an important attribute for making
HO decisions in HWNs. However, it is difficult to compare the quality of the signal
among different wireless access technologies because they have various maximum
transmission power and receiver power threshold. To overcome this issue, Shen et
al. have proposed a signal quality formula in [SZ08] that is applicable in different
types of wireless technologies. The proposed formula is:

smn =
Pmn − P th

n

Pmax
n − P th

n

(2.6)

where P th
n the receiver power threshold in network n, Pmax

n the maximum trans-
mitted signal power in network n, and Pmn the actual signal power received by MT
m from network n. Shen et al. have managed to reduce their proposed formula to:

smn = 1−
log(dmn)

log(Rn)
(2.7)

Note that network n is unreachable by MT m if dmn > Rn.
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2.5.3.2 Instantaneous power consumption

MT power consumption is usually considered as an important user-centric at-
tribute. Therefore, it is considered within the profit function. To estimate the
instantaneous power consumed by MT m while receiving data from network n, an
empirically derived power model proposed by [HQG+12] is used:

pcmn = αnrmn + βn (2.8)

where pcmn is the power consumed by MT m while receiving data from network
n, rmn the downlink data rate in Kbps, αn(mW/kbps) and βn(mW ) are constants
related to the wireless access technology of network n. The highly-cited power
model presented in this section has been widely used in research fields and it is
shown to achieve a very low estimation error [HQG+12].

2.6 Local (MT-based) network selection solution

In this section, a new MT-based network selection solution that considers net-
work’s capacity and resource allocation constraints, user preferences, and user’s
requested data rate is proposed.

2.6.1 Novel local profit function derivation

In the proposed solution, users prefer to be served by a network with low
instantaneous power consumption and high received signal quality. Consequently,
a user-centric weighted profit function is defined to combine these two attributes.
The weight of each attribute reflects its importance among other attributes in
the profit function according to the user preference. The weight of signal quality
and instantaneous power consumption for MT m is symbolized by ws

m and wpc
m

respectively. Both weights are subject to the following constraint:

ws
m + wpc

m = 1 (2.9)

Note that, both attributes (smn and pcmn) have different measurement units.
Thus, in order to combine them in the weighted profit function, a normalization
step is required. While normalizing, it is essential to differentiate between up-
ward and downward attributes ; attributes of which their higher value is preferable
are called upward attributes ; conversely, downward attributes are those we aim
at decreasing their value. It is obvious that the signal quality is considered as
an upward attribute while the instantaneous power consumption as a downward
one. Therefore, based on [HNH06], the normalized forms of the signal quality and
instantaneous power consumption, denoted by smn and pcmn respectively, are:

smn =
smn

max
n∈N

(smn)
(2.10)

pcmn =
1/pcmn

max
n∈N

(1/pcmn)
(2.11)
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Note that increasing the value of smn depends on increasing the value of smn

while pcmn can be increased by decreasing pcmn. Note that each attribute is norma-
lized to the local maximum, i.e. max

n∈N
, because the profit function will be deployed

in a local optimization problem that aims at enhancing the experience of a single
MT. Moreover, the profit of an unreachable network should be zero. Therefore,
the profit function should be also multiplied by a unit step function that indicates
whether MT m is within the coverage area of network n. The unit-step function
is defined as follows:

U(Rn − dmn) =

{
1, if Rn ≥ dmn,
0, if Rn < dmn.

(2.12)

Hence, the local profit function that we aim to maximize at MT m is:

fmn = (ws
msmn + wpc

mpcmn) .U(Rn − dmn) (2.13)

The weight of each parameter is set based on the user preference. For example,
if the battery status of MT m is very low, then w pc

m could be set to 1, and w s
m to

0 to select a network with low power consumption property. If the user is equally
concerned about mobility and power consumption, both weights are set to 0.5.

Note that the derived profit function could be extended easily to account for
other attributes simply by including the normalized value of the new attribute
multiplied by its corresponding weight. However, the sum of all weights should be
one, i.e. ws

m + wpc
m + wnew attribute

m = 1.

2.6.2 Local (MT-based) network selection problem formu-
lation

The MT-based network selection algorithm should consider multiple aspects.
First, the data rate requirement of the MT should be met. Therefore, after selecting
the target network, the algorithm should guarantee that the data rate supplied to
the MT is at least equal to the requested data rate. Moreover, the algorithm
should associate the MT to the network that best fits its needs based on the user
preferences (weights). In addition, the resource allocation constraints of each access
technology should be considered.

MTs are permitted to be associated with one network at a time. The network
selection algorithm aims at finding the best network for MT m amongst available
networks. Therefore, to formulate the optimization problem, we define the boolean
association variable xmn such that:

xmn =

{
1, if MT m is associated with network n,
0, otherwise.

(2.14)

The optimization problem finds the optimal values of xmn that maximize the total
profit by associating MT m to only one network without exceeding its capacity.
Therefore, the following local optimization problem (PL) is formulated to be pro-
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cessed at MT m in order to select the best available network:

PL: max
∑

n∈N

fmnxmn (2.15a)

s. t.
∑

n∈N

rmnxmn > Qmxmn (2.15b)

∑

n∈N

xmn 6 1 (2.15c)

xmn ∈ {0, 1} ∀n ∈ N (2.15d)
∑

m∈M

tmnxmn 6 Tn ∀ n ∈ NAP (2.15e)

∑

m∈M

umnxmn 6 Un ∀ n ∈ NBS (2.15f)

tmn ∈ N ∀n ∈ NAP (2.15g)

umn ∈ N ∀n ∈ NBS (2.15h)

Constraint (2.15b) guarantees that MT m receives data rate at least equal to
the requested one. However, we are obliged to multiply both sides of the inequa-
lity (2.15b) by xmn because upon congestion, some MTs will not be served. For
example, when the number of requested resources exceeds the total number of avai-
lable resources in the system, some MTs will not be served. Constraints (2.15c) and
(2.15d) ensure that a MT is connected to only one network, or not connected at all
(upon congestion). Constraints (2.15e) and (2.15f) guarantee that the capacity of
APs and BSs respectively is not exceeded. Constraints (2.15g) and (2.15h) assure
that a single resource unit is not shared by multiple MTs simultaneously. Hence,
the formulated problem considers the resource allocation constraints.

2.6.3 MT-based network selection algorithm

To simplify the problem without violating its goals, the resource allocation va-
riables (tmn and umn) are fixed while taking into consideration constraints (2.15b),
(2.15g), and (2.15h). Therefore, based on (2.3) for LTE BSs and (2.4) for Wi-
Fi APs, the variables umn and tmn are fixed and set to the minimal number of
resources requested by MT m from network n ∈ N such that:

umn =

⌈
QmTn

BRB
n log2(1 + γmn)

⌉
(2.16)

tmn =

⌈
QmTn
rtotmn

⌉
(2.17)

where (⌈.⌉) is the ceiling of a decimal number, and it is used to preserve the
integral constraints (2.15g) and (2.15h). Eqs. (2.16) and (2.17) guarantee that
rmn ≥ Qm (constraint (2.15b)) for MT m. The solution of problem PL is proposed
in Algorithm 1.

The algorithm is based on two main phases. In the initialization phase, asso-
ciation variables are initialized to zero (line 1.3), the profit values of all networks
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Algorithm 1: Network selection algorithm.
Output: Association and resource allocation decision for MT m

1.1: // Initialization phase:

1.2: foreach n ∈ N do
1.3: xmn = 0;
1.4: calculate fmn;
1.5: // ψn denotes the total number of free resources in network

n ∈ N, and wmn the number of resources requested by MT m from

network n ∈ N

1.6: if n ∈ NBS then
1.7: ψn := Un −

∑
m∈M umnxmn;

1.8: wmn := cmn =
⌈

QmTn

BRB
n log2(1+γmn)

⌉
; // based on Eq.(2.16)

1.9: else // i.e. n ∈ NAP

1.10: ψn := Tn −
∑

m∈M tmnxmn;

1.11: wmn := tmn =
⌈
QmTn

rtotmn

⌉
; // based to Eq.(2.17)

1.12: end

1.13: end
1.14: // Network selection phase:

1.15: K := J ;
1.16: while K 6= φ do

1.17: n′ = argmaxn(fmn ∈ K);
1.18: if fmn′ > 0 and wmn′ ≤ ψn′ then
1.19: xmn′ = 1;
1.20: Break;
1.21: end
1.22: K = K − {n′};
1.23: end

are calculated (line 1.4), as well as the amount of resources requested by the MT
(lines 1.8 and 1.11) and the amount of free resources at each network (lines 1.7
and 1.10). In the network selection phase, in each iteration in the while loop, the
algorithm tries to associate MT m to the network n′ having the highest profit, after
selecting the network with highest profit (line 1.17). If the network is reachable
and the amount of free resources are enough to supply MT m with the requested
data rate (line 1.18), MT m is associated to network n′ (line 1.19). Otherwise, the
next highest-profit network is selected for trial. Since the algorithm aims to asso-
ciate the MT to a single network, constraints (2.15c) and (2.15d) are preserved.
Therefore, the proposed algorithm allocate resources and associates the MT to the
top-ranked network while considering all the constraints of problem PL.

In the literature, solutions with the same perspectives as Algorithm 1 exists.
However, the resource allocation constraints of access technologies are not always
considered, or an abstract system model is used without considering the detailed
resource allocation constraint. The novelty in Algorithm 1 is the proposition of
a new network selection solution that aims at enhancing the power consumption
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and RRSS while considering the data rate requirement of each MT and the net-
work capacity constraints. Therefore, Algorithm 1 could be considered as a trivial
profit-function-based load-aware network selection solution that will be used to
benchmark other algorithms proposed in this thesis.

2.7 Global user association and resource allocation

In this section, the MT-based network selection solution proposed in the pre-
vious section is developed into a system-wide global user association and resource
allocation solution. The global optimization function is processed at the SDN
controller that maintains global view on the system.

2.7.1 Global profit function derivation

Since in this section we aim at optimizing the overall system-wide profit, it
is necessary to modify the profit function derived in Section 2.6.1 (Eq. (2.13)) in
order to consider system-wide values. Therefore, the global normalized forms of
the signal quality and instantaneous power consumption, denoted by ŝmn and p̂cmn

respectively, should be used,

ŝmn =
smn

max
m∈M,n∈N

(smn)
(2.18)

p̂cmn =
1/pcmn

max
m∈M,n∈N

(1/pcmn)
(2.19)

Note that each attribute is normalized to the global maximum, i.e. max
m∈M,n∈N

,

instead of the local one (max
m∈M

) because the profit function will be deployed in a

global optimization problem.
The normalized profit function does not differentiate between MTs with une-

qual data rate requirement. Therefore, the profit function is multiplied by the
amount of data rate requested by the MT. Previously, the normalized profit func-
tion is not multiplied by the MT’s required data rate because it is taken from
the user’s perspective to rank candidate networks. However, in the global solution,
we consider MTs with unequal data rate requirements. Thus, it is important to
multiply by the MT’s data rate to reflect the real profit of each MT. Hence, the
overall profit of MT m in network n is:

fmn = (ws
mŝmn + wpc

m p̂cmn) .Qm.U(Rn − dmn) (2.20)

Note that fmn

Qm
can be seen as the normalized profit of a MT, or the profit per kbps,

which is the real profit without multiplying by the requested data rate.

2.7.2 Novel global optimization problem formulation

It is intended to design an optimization problem that maximizes the total user-
centric profit in the system while supplying MTs with their requested data rates
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and considering the specific-resource-allocation constraints of access technologies.
Hence, the formulated global optimization problem (PG) is:

PG: max
∑

m∈M

∑

n∈N

fmnxmn (2.21a)

s. t.
∑

n∈N

rmnxmn >
∑

n∈N

Qmxmn ∀m ∈ M (2.21b)

∑

n∈N

xmn 6 1 ∀m ∈ M (2.21c)

xmn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (2.21d)
∑

m∈M

tmnxmn 6 Tn ∀ n ∈ NAP (2.21e)

tmn ∈ N ∀m ∈ M, ∀n ∈ NAP (2.21f)
∑

m∈M

umnxmn 6 Un ∀ n ∈ NBS (2.21g)

umn ∈ N ∀m ∈ M, ∀n ∈ NBS (2.21h)

Constraint (2.21b) guarantees that connected MTs receive data rate greater than
or equal to their requested one. Constraints (2.21c) and (2.21d) ensure that a
MT is connected to only one network, or not connected at all (upon congestion).
Constraints (2.21e) and (2.21g) guarantee that the capacity of Wi-Fi APs and LTE
eNodeBs is not exceeded, while constraints (2.21f) and (2.21h) assure that a single
discrete resource object, i.e. time slot or RB, is not shared by multiple MTs at the
same time.

2.7.3 Global optimization problem simplification

The formulated problem PG contains two types of variables: the association
variables xmn and the resource allocation variables umn and tmn. To simplify the
problem without violating its goals, we follow the same approach used in Section
2.6.3. So, the resource allocation variables are fixed while taking into consideration
constraints (2.21b), (2.21f) and (2.21h). Therefore, based on Eq. (2.3) for LTE
eNodeBs and Eq. (2.4) for Wi-Fi APs, the variables umn and tmn are fixed and set
to the minimal number of resources requested by MT m from network n as seen in
Eqs. (2.16) and (2.17), where the ceiling (⌈.⌉) in both equations is used to preserve
the integral constraints (2.21f) and (2.21h). Eqs. (2.16) and (2.17) guarantee that
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rmn ≥ Qm at all active MTs. Therefore, problem PG simplifies to:

P1: max
∑

m∈M

∑

n∈N

fmnxmn (2.22a)

s. t.
∑

m∈M

⌈
QmTn
rtotmn

⌉
xmn 6 Tn ∀n ∈ NAP (2.22b)

∑

m∈M

⌈
QmTn

BRB
n log2(1 + γmn)

⌉
xmn 6 Un ∀n ∈ NBS (2.22c)

∑

n∈N

xmn 6 1 ∀m ∈ M (2.22d)

xmn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (2.22e)

The simplified problem P1 is a combinatorial optimization problem where the
variables are restricted to have discrete binary values. Problem P1 consists of
finding an optimal set of association variables among a finite set of objects. In
such problems, exhaustive search is not feasible for even a small-sized system.
Therefore, solving the problem is not straightforward. In fact, the problem can
be viewed as searching for the best set of association values among a finite, and
usually very large, set of objects. Thus, its complexity is O(|N ||M|).

P1 operates on the domain of optimization problems where the set of feasible
solutions is discrete, and in which the target is to find the best solution. Therefore,
standard methods used to solve continuous optimization functions could not be
applied for this problem. Since the variables in P1 are restricted to have binary
values and the objective function and constraints are linear, then P1 is considered
as binary linear programming problem (BLP), which could be also referred to
as 0-1 integer linear programming problem. In fact, BLP is one of the Karp’s
21 NP-complete problems [Kar72]. One class of algorithms used to solve BLPs
are variants of the branch and bound method. Moreover, problem P1 can be
also seen as a generalized assignment problem (GAP) [MT90]. It is also indicated
that the optimal solution of GAP could be found using the branch and bound
algorithm [MT90]. Hence, the GNU linear programming kit (GLPK) is used to
estimate the optimal solution based on the branch and bound algorithm. GLPK is
intended to solve integer and linear programming optimization problems. However,
as the number of variables grows largely, the optimal solution becomes intractable.
Therefore, in this thesis, solutions with polynomial-time complexity should be
proposed to approximate or solve problem P1.

2.8 Performance evaluation

In this section, we compare the effect of weight variation on the performance of
the trivial profit-function-based solution (Algorithm 1) and the optimal solution of
the global optimization problem PG based on the branch and bound method. For
each solution, three weight variation cases (scenarios) shown in Table 2.1 are simu-
lated. Specifically, we study, for each algorithm, the effect of increasing the number
of active MTs on the average values of RRSS, and power consumption. In order to
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Table 2.2
Multiple data rates (kbps) for different applications

Voice call
Codec G.729 G.726 G.711

Data rate 32 56 87

Video call
Quality Normal Good HD

Data rate 300 500 1200

File download
Speed Slow Medium Fast

Data rate 150 700 1000

Table 2.3
Simulation parameters

Parameter Wi-Fi AP LTE BS
Path loss 38.2 + 30 log10(dmn) 34 + 40 log10(dmn)
βn (W) 0.113286 1.28804

αn (W/kbps) 0.13701× 10−3 0.05197× 10−3

Noise (dBm) −90 −111.45
Rn (m) 100 500

kHz and the noise power at all the receivers in LTE is set to −111.45 dBm, which
corresponds to the thermal noise at room temperature and bandwidth of 180 kHz
[BB15]. The path loss between the LTE BS and a MT is modeled as L(dmn) =
34 + 40 log10(dmn) [BB15].

Concerning Wi-Fi APs, a total bandwidth Bn = 2000 kHz is considered for
each AP, with a total transmission power of 23 dBm. The path loss model is
38.2 + 30 log10(dmn) and the noise power at the MT is −90 dBm [XGP+12].

A scheduling interval of 1 second is considered in the simulations [BB15]. In
LTE BSs, Tn = 1000 so that the duration of one time slot is 1 millisecond which
is the duration of one TTI in the LTE standard. For Wi-Fi APs, the scheduling
interval is also 1 second and it is divided into 10000 time slots.

MTs are randomly distributed within the SA. The simulation is repeated for
10000 iterations in a Monte Carlo manner. In each iteration, the number of MTs
increases from 50 to 100, the location of Wi-Fi APs and MTs changes randomly
within the SA, and the initial seed of the random number generator also changes.

2.8.2 Evaluation metrics

The following metrics are used to evaluate the proposed solutions: average
signal quality (RRSS) and average instantaneous power consumption. In fact,
studying the average value of an attribute is not straightforward in a scenario
where MTs request different amounts of data rate. For example, the average po-
wer consumption per user, i.e.

∑
m∈M

∑
n∈N pcmnxmn

|M|
, could be decreased through

decreasing the power consumption of MTs with low data rate requirements on
the expense of other MTs. Moreover, the average values per served data rate are
considered because there is no mean to calculate these values for the blocked data
rates. For example, setting a value of zero for the power consumption of unserved
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MT will decrease the average consumed power and contribute misleading results.
Therefore, the average value per served data rate unit, i.e. kbps, is used. Hence,
the average MT power consumption per served data rate is studied according to
the following formula: ∑

m∈M

∑
n∈N pcmnxmn∑

m∈M

∑
n∈N Qmxmn

(2.23)

Since the value of the signal quality (smn) represents a normalized value that
is not related to the requested data rate, it is multiplied by Qm to reflect the
actual signal quality per served data rate. Thus, the average relative received
signal quality per served data rate is:

∑
m∈M

∑
n∈N smnQmxmn∑

m∈M

∑
n∈N Qmxmn

(2.24)

Note that as we have mentioned before, the simulation parameters considered
in this chapter guarantee that MTs will not experience any blockage. Therefore,
there is no difference between using the average value per served data rate and
the average value per total requested data rate. In other words, in this chapter,∑

m∈M

∑
n∈N Qmxmn =

∑
m∈MQm because simulation parameters guarantee that

all MTs will be served. However, the formulas in Eqs. (2.23) and (2.24) will be
used in the following chapters, where it is necessary to study the blocked data rate
percentage, so both formulas consider the case when some MTs are not served.

2.8.3 Simulation results

We simulate all the solution scenarios listed in Table 2.1. First, we would like
to discuss some network characteristics. Algorithms that are mainly concerned
about power consumption, i.e. Optimal-PC and PF-PC, tend to associate MTs
with Wi-Fi APs due to their low power consumption property when compared to
LTE networks. This could be immediately remarked upon noticing that βn ⋍ 1.28
W for LTE networks, while for Wi-Fi networks βn ⋍ 0.11 W. On the other hand,
algorithms concerned about signal quality (RRSS), i.e. Optimal-RRSS and PF-
RRSS, tend to prioritize LTE BS due to their long transmission range property
(Rn = 500 m). Moreover, as the number of MTs increases in the system, networks
become more congested. Therefore, the probability that each MT is associated to
its corresponding preferred network decreases, which in turns reflects an increase
in the average MT power consumption and decrease in the average RRSS as shown
in Figures 2.4 and 2.5 respectively.

It is shown in Figure 2.4 that Optimal-PC maintains the lowest average MT
power consumption all the time, followed by the PF-PC solution. Optimal-PC
and PF-PC are mainly concerned about the MT power consumption because the
corresponding weight (wpc

m) is set to one. On the other hand, RRSS-concerned so-
lutions (Optimal-RRSS and PF-RRSS) scores the highest average power consump-
tion due to setting its corresponding weight (wpc

m) to zero. Concerning the effect
of the global optimization problem PG, it is noted in Figure 2.4 that the so-
lutions where wpc

m 6= 0 and that are based on the branch and bound algorithm
(Optimal-Balanced and Optimal-PC) decreases the average power consumption
significantly when compared to PF-Balanced and PF-PC solutions respectively. In
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Figure 2.4 – Average MT instantaneous power consumption (based on Eq.
(2.23)).

fact, increasing the number of MTs also increases the selectivity of the global opti-
mization problem. Thus, the enhancement in performance between the optimized
HO algorithms and the profit-function-based ones increases as well. For example,
comparing PF-PC to Optimal-PC, the later decreases the power consumption by
7% when the number of MTs reaches 100. A major remark that should be noted
is that the Optimal-PC solution, when compared to the Optimal-RRSS solution,
reduces the average power consumption by 28% when the number of MTs equal
to 100.

Following similar analysis methodology, it is normal to notice in Figure 2.5 that
the Optimal-RRSS solution maintains the highest average RRSS value, followed
directly by the PF-RRSS solution because ws

m is set to one in both solutions. Since
Optimal-PC, when compared to PF-PC, utilizes Wi-Fi APs more efficiently, then
the average RRSS of Optimal-PC is lower than PF-PC due to the low RRSS pro-
perty of Wi-Fi APs. As the number of MTs increases in the system, the selectivity
of the global optimization function increases, which leads to an increase in the
performance gap between the optimal solution and the profit-function-based solu-
tion. For example, when the number of MTs is between 50 and 60, the difference
in the average RRSS between the optimal solution and the profit-function based
solution is small. This difference increases remarkably when the number of MTs
reaches 100.

It is remarkable that the solutions aiming at jointly enhancing the power
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Figure 2.5 – Average relative received signal strength (based on Eq. (2.24)).

consumption and signal quality, i.e. Optimal-Balanced and PF-Balanced, could ef-
fectively decrease the average power consumption and increase the average RRSS
simultaneously. Therefore, the profit function responds explicitly to the weight
variations which is directly related to the user preferences. Moreover, a major en-
hancement of the global optimization problem PG is that the Optimal-Balanced
solution, when compared to the PF-Balanced solution, jointly increases the average
RRSS by 6.5% and decreases the average power consumption by approximately
7% when the number of MTs reaches 100. Note that in the following chapters,
other important enhancements contributed by the global optimization problem
are discussed.

2.9 Conclusion

In this chapter, we have discussed the 802.21.1 MIS SDRAN framework that
provides seamless HO, resource allocation, and centralized management in HWNs.
Based on this framework we have proposed a novel centralized HO scenario and for-
mulated a new global optimization problem for the user association and downlink
resource allocation problem in HWN. The novel formulated optimization problem
considers the network’s capacity and resource allocation constraints, and aims at
maximizing the overall user-centric profit in the system. The user-centric profit
is based on a weighted profit function that aims at jointly increasing the RRSS
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and decreasing the MT power consumption. The weights of the profit function are
set according to the user preferences. Simulation results have demonstrated that
the formulated global optimization problem algorithm outperforms significantly
the classical profit-function-based solution. Moreover, it is shown that the propo-
sed profit function responds efficiently to the weight variations. Therefore, it can
be effectively tuned to meet user preferences. However, in this chapter, the glo-
bal optimization problem is solved using the branch and bound algorithm where
the processing time could increase tragically upon increasing the number of MTs
and networks in the system. Therefore, the following two chapters will respecti-
vely propose centralized and distributed solutions to the problem with acceptable
complexity.



Chapter 3

New Methodologies for

Centralized Resource and

Network Assignment

In this chapter, we discuss and propose multiple centralized solutions for the
user association and resource allocation problem in heterogeneous wireless sys-
tems. First, we propose two new solutions based on the continuous-relaxation of
problem P1. The first proposed solution is with undetermined complexity, and is
considered as the optimal solution based on the continuous-relaxation methodo-
logy. The second solution is with determined polynomial-time complexity, and is
considered as a sub-optimal solution based on the continuous-relaxation approach.
Then, a novel approximation-based solution is proposed to approximate the binary
problem P1. In addition, a new simple greedy heuristic algorithm is also proposed.
The performance of the approximation-based solution and greedy solution is boos-
ted through a new proposed efficiency factor that estimates the gain contributed
upon associating users to networks. The efficiency factor considers the data rate
requirement of users, and the channel conditions between the MT and the BS or
AP.

3.1 Brief related works

Usually, for the multi-mode MTs, user association is formulated as a binary
matching problem. The user association variable is restricted to have a binary va-
lue that indicates if a MT is associated to a network. However, such problems are
known to have an NP-complete complexity which makes the solution intractable.
A popular approach used to overcome this issue is to relax the binary association
variable into a continuous bounded one. Then, the solution of the relaxed problem,
which usually has a polynomial-time complexity, is used to get the final association
decision. As an example, two of the studies discussed in Chapter 1 in are discussed.
In [YRC+12], a simple rounding approach is used to convert the fractional asso-
ciation variables into boolean. In [ZHY15], the MT connects to the network with
the highest fractional association value. However, both solutions are not suitable
for the case where MTs request a specific data rate ; both approaches could lead
to a congested network where the number of available resources is not sufficient

53
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to supply each MT with its requested data rate. Instead, they are designed to
increase the total throughput in a system where there is no restriction on each
user’s data rate. Moreover, relaxing the binary constraint threatens the optimality
of the solution. Therefore, it is necessary to provide for problem P1 (formulated
in the previous chapter) solutions that respect the amount of data rate requested
by each MT.

3.2 Relaxation of the binary constraint

3.2.1 Continuous-relaxation of the binary constraint

In this section, the discrete (binary) problem P1 is converted to a continuous
optimization problem by relaxing the binary constraint (xmn ∈ {0, 1}) into a conti-
nuous bounded constraint 0 ≤ xmn ≤ 1, i.e. xmn ∈ [0, 1]. Thus, each MT is now
allowed to access multiple networks simultaneously, i.e. multi-homing. Then, a
new methodology is proposed to preserve the single network association constraint
by considering only boolean association results. Converting the discrete problem
into a continuous permits the usage of typical mathematical methodologies that
are intended to solve continuous optimization problems within a polynomial-time
complexity. Therefore, the new relaxed problem is:

P2: max
∑

m∈M

∑

n∈N

fmnxmn (3.1a)

s. t.
∑

m∈M

⌈
QmTn
rtotmn

⌉
xmn 6 Tn ∀n ∈ NAP (3.1b)

∑

m∈M

⌈
QmTn

BRB
n log2(1 + γmn)

⌉
xmn 6 Un ∀n ∈ NBS (3.1c)

∑

n∈N

xmn 6 1 ∀m ∈ M (3.1d)

xmn ∈ [0, 1] ∀m ∈ M, ∀n ∈ N (3.1e)

where the inequalities (3.1b), (3.1c), and (3.1d) specify a convex polytope over
which the profit function is to be optimized. Note that P2 is similar to P1, except
for the last constraint (3.1e).

In fact, problem P2 is a linear optimization problem because the objective
function and the constraints are linear, and the problem can be expressed in the
canonical form of the standard linear programming problem as shown below:

max c
⊤
x

s. t. Ax ≤ b

x ≥ 0

(3.2)

where:
– c ∈ R

|M|.|N | is a vector that contains all the profit values fmn, and (·)⊤ is
the matrix transpose.

– x ∈ R
|M|.|N | is a vector that contains all the user association variables xmn.
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– A ∈ R
(|M|+|N |)×(|M|.|N |) and b ∈ R

|M|+|N | are respectively a matrix and
a vector of coefficients related to constraints (3.1b), (3.1c), and (3.1d) ; A
contains the coefficients at the left side of the inequalities in the constraints,
and b the constants on the right side.

It is appropriate to consider constraint (3.1e) as xmn ≥ 0 alone (without the upper
bound) because constraint (3.1d) guarantees that xmn ≤ 1. For simplicity throu-
ghout this thesis, assume that ωmn represents the number of resources requested
by MT m from network n ∈ N , and ζn the total number of resources in network
n ∈ N . Note that ωmn can be seen as the weight of MT m in network n ∈ N , and
ζn the capacity of network n ∈ N . Hence, ωmn and ζn are respectively defined as:

ωmn =

{
tmn, if n ∈ NAP ,
umn, if n ∈ NBS .

(3.3)

ζn =

{
Tn, if n ∈ NAP ,
Un, if n ∈ NBS .

(3.4)

Now, for illustrative purposes only, let us consider a heterogeneous system of two
networks and three MTs that are placed in the coverage area of both networks,
then:
c
⊤ =

[
f11 f12 f21 f22 f31 f32

]
,

x =
[
x11 x12 x21 x22 x31 x32

]⊤
,

A =




|M|.|N |︷ ︸︸ ︷
ω11 0 ω21 0 ω31 0
0 ω12 0 ω22 0 ω32

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1




|N |

+

|M|

}
(3.1b), (3.1c)



 (3.1d)

, b =




ζ1
ζ2
1
1
1




(3.5)

If a network n is not reachable by some MTm, i.e. fmn = 0, its corresponding entry
is removed from x and c vectors, as well as its corresponding column in matrix A.
For example, assume that network 2 is not reachable by MT 1, then, x12 and f12
are removed, in addition to the second column in A. Note that expressing problem
P2 in the standard form of a linear program, as shown in (3.2) and based on (3.5),
is the first step toward solving the linear program. Moreover, it can serve as a
proof of linearity for both problems P1 and P2.

The number of variables in the standard linear program P2 is |M|.|N |. In
practice, the simplex method performs very well when used to solve this linear
program even for a large number of variables. However, its worst-case computa-
tional complexity is exponential [PW]. Other methods with polynomial-time com-
plexity have been proposed to solve standard linear programs. The interior-point
methods are preferred among them ; the theoretical computational complexity is
O(|M|3|N |3L), where L is the length of the binary coding of the input data [PW].
The fact that the complexity depends on L implies that the time required to solve
the problem increases with the required accuracy of the computations.

Actually, solving the relaxed problem P2 produces three sets of MTs based on
their connection state:

– Λ0: set of unconnected MTs, i.e.
∑

n∈N xmn = 0.
– Λ1: set of MTs connected to a single network n such that xmn = 1.
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– Λ2: set of MTs connected to several networks simultaneously or to a single
network n such that xmn < 1, i.e. the MT receives data rate less than Qm.

Since in our context, a MT should be connected to only one network and receives
all requested resources, a continuous-relaxation approach is used to associate MTs
to appropriate networks and empty the set Λ2. In this chapter, we propose two user
association and resource allocation algorithms based on the continuous-relaxation
of problem P1. The first solution is with undetermined complexity while the second
is with determined polynomial-time complexity. The solution with undetermined
complexity can be seen as the optimal solution based on the continuous-relaxation
approach, and it is used for benchmarking purposes only because it is intended to
propose resource and network assignment solutions with determined polynomial-
time complexity.

3.2.2 Novel continuous-relaxation-based solution with un-
determined complexity

Algorithm 2 shows the continuous-relaxation-based solution with undetermined
complexity.

Algorithm 2: Optimal solution based on the continuous-relaxation ap-
proach

Output: Association variables for all MTs
2.1: foreach n ∈ N do
2.2: Γn := ζn; // Γn denotes the number of free resources in network

n

2.3: end

2.4: M := M;
2.5: while M 6= φ do
2.6: solve problem P2 ∀m ∈ M and according to Γn;
2.7: Λ0 := {m ∈ M :

∑
n∈N xmn = 0};

2.8: Λ1 := {m ∈ M :
∑

n∈N ⌊xmn⌋ = 1}; // ⌊·⌋ is the floor of a

decimal number

2.9: Λ2 := M− Λ0 − Λ1;
2.10: if |Λ2| = φ then
2.11: save the association values ∀m ∈ Λ1 ∪ Λ0;
2.12: M = M− Λ0 − Λ1 − Λ2; // i.e. M = φ

2.13: end
2.14: save the association values ∀m ∈ Λ1;
2.15: M = M− Λ1;
2.16: foreach n ∈ N do
2.17: Γn = Γn −

∑
m∈Λ1

ωmnxmn;
2.18: end

2.19: end

Mainly, Algorithm 2 keeps solving the linear optimization problem P2 for all
MTs in Λ0∪Λ2 until |Λ2| = 0, i.e. all association results of problem P2 are boolean.
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Every time the optimization problem is solved, the association values of MTs in Λ1

are saved, the number of free resources in each network is updated by deducting
the number of resources allocated to MTs in Λ1 (lines 2.16-2.18), and those MTs
are not considered within the optimization function anymore (line 2.15). However,
it is impossible to determine analytically the number of times the linear program
will be solved in Algorithm 2, therefore, the complexity of this algorithm could
not be determined.

3.2.3 Novel continuous-relaxation-based solution with poly-
nomial time complexity

In this section, a solution with polynomial-time complexity is proposed to de-
termine the association values for MTs in Λ0∪Λ2. Problem P2 is solved only once
and each MT m in Λ1 is associated to the network n where xmn = 1. Algorithm 3
determines the association values for all MTs in Λ2 only, i.e. MTs with fractional
association values.

Algorithm 3: Convert fractional association variables into boolean

3.1: foreach n ∈ N do
3.2: Γn := ζn −

∑
m∈Λ1

ωmnxmn;
3.3: end
3.4: X := {xmn : m ∈ Λ2 and xmn 6= 0};
3.5: while X 6= φ do
3.6: m∗ = argmaxm(X);
3.7: n∗ = argmaxn(X);
3.8: if

∑
n∈N ⌊xm∗n⌋ = 0 then

3.9: if ωm∗n∗ ≤ Γn∗ then
3.10: xm∗n∗ = 1;
3.11: Γn∗ = Γn∗ − ωm∗n∗ ;
3.12: else
3.13: xm∗n∗ = 0;
3.14: end

3.15: else
3.16: xm∗n∗ = 0;
3.17: end
3.18: X = X − {xm∗n∗};
3.19: end

Basically, in each iteration within the while loop, Algorithm 3 attempts to
determine the association decision for the MT with the highest association value
among all MTs in Λ2, i.e. xm∗n∗ . If the association decision for MT m∗ is not
determined yet (line 3.8), and the number of resources requested by MT m∗ from
the target network n∗ is less than or equal to the number of free resources in
network n∗ (line 3.9), then MT m∗ is associated to network n∗ (line 3.10), and
the number of free resources in network n∗ is updated by deducting the number of
resources allocated to MT m∗ (line 3.11).



58 Centralized Management

The procedures in Algorithm 3 could be implemented efficiently by sorting the
association values of X in the descending order, then the pointer to the maximum
association value becomes immediately available in each iteration within the while
loop. Assuming that all MTs are in the coverage areas of all networks, then the
total number of variables in X is |Λ2|.|N |. Thus, and based on the quicksort [Ski09]
algorithm, the complexity for sorting the items in X is O(|Λ2|.|N | log(|Λ2|.|N |))
and the total complexity of Algorithm 3 is O(|Λ2|.|N | log(|Λ2|.|N |) + |Λ2|.|N |)
because the complexity of the while loop is O(|Λ2|.|N |) and it is executed after
the sorting step. If the quicksort algorithm is well-implemented, it can perform 2-3
times faster than its main competitors mergesort and heapsort [Ski09].

Subsequently, all MTs whose association decision is still not determined, i.e.
each MTm such that

∑
n∈N xmn = 0, undergo procedures similar to those proposed

in Algorithm 3, however, the goal here, illustrated in Algorithm 4, is to associate
the MT with the highest normalized profit (fmn

Qm
) at each iteration instead of the

highest fractional association value. The normalized profit is used because it reflects
a normalized value that is unrelated to the amount of data rate requested by MTs.
Similarly, the complexity of Algorithm 4 is O(|X| log |X|+ |X|) where X is defined
in line 4.4.

Algorithm 4: Determine association decision for the remaining unasso-
ciated MTs

4.1: foreach n ∈ N do
4.2: Γn := ζn −

∑
m∈Λ1

ωmnxmn −
∑

m∈Λ2
ωmnxmn;

4.3: end

4.4: X := {fmn

Qm
: m ∈ M and

∑
n∈N xmn = 0};

4.5: Lines 3.5-3.17

4.6: X = X − {fm∗n∗

Qm∗
};

4.7: Line 3.19

3.3 Novel approximation-based solution

3.3.1 Generalized assignment problem approach

After taking a closer look at problem P1, one may notice that it is similar to
the GAP [MT81]. In-fact, Martello and Toth, who have significant contributions
in the domain of GAP, knapsack, and bin-packing problems, have proposed a
heuristic algorithm to approximate GAP based on an ordering of the MTs [MT81].
There, the "desirability" of assigning MT m to network n is measured according
to a desirability factor Ωmn. The possible factors that could be considered as a
desirability measure are discussed in the next section. For each MT, the difference
between the highest and the second highest value of Ωmn is computed, and MTs
are then assigned in the decreasing order of this difference. That is, each MT is
assigned to its best network according to the following criteria:

max
n

min
n 6=n′

(Ωmn′ − Ωmn) (3.6)
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or in other words:
min
n 6=n′

Ωmn′ − Ωmn

where

n′ = argmax
n

Ωmn

(3.7)

The computational experiments conducted by Martello and Toth have shown that
good results are obtained using this algorithm.

3.3.2 Generalized assignment problem adaptation

In fact, the algorithm proposed by Martello and Toth does not exactly suit
problem P1 for two reasons:

– The algorithm is designed to solve GAP while constraint (2.22d), which is∑
n∈N xmn ≤ 1, is replaced by

∑
n∈N xmn = 1. That is, all MTs should be

associated to networks. While upon congestion, some MTs would not be able
to associate to any network. Then, the algorithm would fail to approximate
problem P1.

– The algorithm assumes that all networks are reachable by all MTs. Therefore,
it does not differentiate between MTs reachable by a single network and
others reachable by multiple networks.

Thus, we modify their proposed algorithm to adapt problem P1 as shown in Al-
gorithm 5 and explained hereafter.

At first, all association variables for MTs in M are set to 0. Algorithm 5 ite-
ratively considers all the unassociated MTs, and determines the MT m∗ having
the maximum difference between the highest and the second highest Ωmn (n ∈ Fm

where Fm is defined in line 5.9). MT m∗ is then assigned to the network for which
Ωm∗n is maximum, i.e. network n∗. It is this property of the algorithm which leads
to significant results when tested ; the algorithm considers the second maximum
Ωmn instead of focusing only on the first maximum. Moreover, after taking each
association decision, the algorithm re-evaluates, for each MT, the maximum diffe-
rence between the highest and the second highest Ωmn, and associates MTs based
on these new results. Thus, a semi-global view on the available networks and their
profit is maintained while taking association decisions. In addition, the algorithm
prefers to first associate MTs with only one available network, i.e. |Fm| = 1. We
add the if block in lines 5.16-5.20 to associate the MT with highest Ωmn among
other MTs with a single available network. Initially, the original algorithm asso-
ciates any MT with a single available network without taking into consideration
the value of Ωmn. This aspect of the algorithm plays a vital role in decreasing the
blocking probability.

Algorithm 5 can be implemented efficiently by initially sorting in decreased
order, for each MT m, the values Ωmn (n ∈ N ). This requires O(|N | log |N |) for
a single MT. Thus for all MTs m ∈ M it requires O(|M||N | log |N |). The sorting
step makes immediately available, at each iteration in the inner loop, the poin-
ters to the maximum and the second maximum Ωmn. Hence, the main while loop
performs the O(|M|) associations within a total of O(|M|2) iterations ; whenever
a MT is assigned, the decrease in ζn∗ makes it necessary to update the pointers.
Since, however, the above maxima can only decrease during execution, a total of
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Algorithm 5: Approximation algorithm
Output: Association variables for all MTs in M

5.1: U := M;
5.2: foreach n ∈ N do

5.3: ζn := ζn;
5.4: end
5.5: while U 6= φ do
5.6: c∗ := −∞;
5.7: d∗ := −∞;
5.8: foreach m ∈ U do

5.9: Fm := {n ∈ N : fmn 6= 0 ∧ ωmn ≤ ζn};
5.10: if Fm = φ then
5.11: U = U − {m};
5.12: else
5.13: n′ = argmaxn{Ωmn : n ∈ Fm};
5.14: if |Fm|=1 then
5.15: d := +∞;
5.16: if c∗ < Ωmn′ then
5.17: c∗ = Ωmn′;
5.18: n∗ := n′;
5.19: m∗ := m;
5.20: end

5.21: else
5.22: d := Ωmn′ − max2{Ωmn : n ∈ Fm};
5.23: if d > d∗ then
5.24: d∗ = d;
5.25: n∗ := n′;
5.26: m∗ := m;
5.27: end

5.28: end

5.29: end

5.30: end
5.31: if d 6= −∞ then
5.32: xm∗n∗ = 1;
5.33: U = U − {m∗};
5.34: ζn∗ = ζn∗ − ωm∗n∗ ;
5.35: end

5.36: end

O(|M|2) operations is required for these checks and updates. Thus, we conclude
that the overall complexity of Algorithm 5 is O(|M|2 + |M||N | log |N |). It is
clear that the complexity of Algorithm 5 is less than the complexity of solving the
relaxed problem P2.
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3.3.3 New efficiency factor

Problem P1 aims at maximizing the profit in the system. Therefore, Martello
and Toth have proposed in [MT81] to use the profit (fmn) or profit

weight
as desirability

factor in Algorithm 5. Since problem P1 deals with MTs of different data rate
requirements, i.e. different weights, the profit

weight
ratio is suitable as desirability factor

for this problem. However, considering the weight of MTs, which can be seen as the
number of requested resources, is not straightforward because access technologies
have different types and amounts of resources. As a matter of fact, the amount
of bandwidth that should be supplied by a network to a MT is related to the
channel conditions between the MT and the network, and to the amount of data
rate requested by the MT. Moreover, the bandwidth (in Hz) is a limited resource
in all communication systems. Therefore, the amount of bandwidth requested by
a MT from a network could be considered as a weight. The amount of bandwidth
requested by MT m from BS n is BRB

n umn

Tn
, and from AP n is Bntmn

Tn
. Hence, the

efficiency emn is introduced to denote the profit per weight (requested bandwidth)
contributed to the system upon associating MT m to network n such that:

emn =





fmn

BRB
n (umn/Tn)

∀n ∈ NBS

fmn

Bn(tmn/Tn)
∀n ∈ NAP

(3.8)

The normalized profit (fmn

Qm
) could be also considered as desirability factor, but

it does not consider the number of requested resources. Although the normalized
profit reflects the actual profit contributed upon associating a MT, however, the
quality of the channel between the MT and the BS or AP is not considered.
Therefore, the efficiency is chosen as a main desirability factor. The difference
between using the efficiency (emn) and the normalized profit (fmn

Qm
) as desirability

factors is discussed in the performance evaluation section.

3.4 Novel greedy solution

Even if the algorithm proposed in the previous section allows to reduce the
complexity of the related problem, we may find one greedy approach to further
reduce the complexity. In this section, a simple greedy heuristic algorithm is pro-
posed to find a good feasible solution with polynomial-time complexity for problem
P1.

Ordinarily, the greedy heuristic does not produce an optimal solution, but even
so, it may yield to locally optimal solutions that approximate the global one in
an acceptable amount of time. To estimate the abstract gain, denoted by Ωmn,
contributed upon associating MT m to network n, an abstract criteria is used.
The criteria that could be used within the greedy algorithm and the mechanism
of calculating Ωmn will be discussed shortly. Algorithm 6 shows the phases of the
greedy heuristic.

The proposed greedy algorithm is made up of two phases. In the preparation
phase, the profit (fmn) and the gain (Ωmn) values for all MTs are calculated, the
number of free resources in each network (ζn) is initialized, the set of gain values
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Algorithm 6: Greedy heuristic algorithm
Output: Association variables (xmn) for all MTs

6.1: // Preparation phase:

6.2: E := φ; // E represents a set that will be filled with all

non-zero gain values (Ωmn)

6.3: foreach n ∈ N do

6.4: ζn := ζn;
6.5: foreach m ∈ M do
6.6: xmn = 0;
6.7: if fmn 6= 0 then
6.8: E = E + {Ωmn}; // Ωmn is the abstract gain based on the

criteria used

6.9: end

6.10: end

6.11: end
6.12: // Decision phase:

6.13: while E 6= φ do
6.14: m′ = argmaxm(Ωmn ∈ E);
6.15: n′ = argmaxn(Ωmn ∈ E);
6.16: if

∑
n∈N xm′n = 0 and ωm′n′ ≤ ζn′ then

6.17: xm′n′ = 1;
6.18: ζn′ = ζn′ − ωm′n′;
6.19: end
6.20: E = E − {Ωm′n′};
6.21: end

(E) is filled, and all association variables (xmn) are set to zero. In the decision
phase, the algorithm aims at associating the MT with the highest gain in each
iteration within the while loop (lines 6.13-6.21). After detecting the highest gain,
the algorithm, in line 6.16, tests if the corresponding MT, i.e. m′, is not associated
yet (

∑
n∈N xm′n = 0), and if the number of free resources in the target network n′

is sufficient to serve MT m′ (ωm′n′ ≤ ζn′). If both conditions are true, MT m′ is
associated to network n′ (line 6.17), and the number of free resources in network
n′ is updated by subtracting the number of resources allocated to MT m′ (line
6.18).

However, when misused, the greedy algorithm might produce misleading re-
sults. For example, considering the profit value as a criteria to estimate the gain
in the greedy algorithm, i.e. (Ωmn = fmn), is improper because usually MTs with
high data rate requirement will have higher profit value, which leads to unfair
satisfaction between MTs demanding different amounts of data rate. On the other
hand, considering the normalized profit value, i.e. Ωmn = fmn

Qm
, is somehow suitable

in such case because it reflects a normalized quantity that is not related to the
amount of requested data rate. Therefore, the efficiency factor (emn), introduced
in the previous section, is also considered in the greedy algorithm.

Concerning the complexity of the greedy algorithm, lines 6.2-6.11 could be exe-
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cuted within a single step that calculates the gain values, and sorts these values
in the descending order while inserting them into the set E . The sorting usually
requires an average of O(|M||N | log |M||N |) iterations. Sorting the gain values of
E in the descending order makes the pointer for the maximum gain value immedia-
tely available in each iteration in the while loop. Assuming that all the networks
are reachable by all the MTs, i.e. |E| = |M||N |, the average complexity of Algo-
rithm 6 is O(|M||N |+ |M||N | log |M||N |) because the while loop requires O(|E|)
iterations and it is executed after the sorting step.

3.5 Implementation feasibility

The user association and resource allocation solutions proposed in this chapter
are executed on a centralized SDN controller as shown in Figure 2.1. The centrali-
zed controller acquires instantaneous contextual information related to the number
of resources available at each network, the data rate requested by MTs, the user
preferences, the geographical locations of MTs and networks, and the characte-
ristics of networks (i.e. power consumption characteristics, coverage range, etc.).
After taking association and resource allocation decisions, the centralized control-
ler informs networks and MTs about the results. The solutions proposed in this
chapter are designed in a way such that the system-wide resource allocation and
user association decisions should be processed on the same entity, i.e. the SDN
controller. Therefore, these solutions are considered as centralized resource and
network assignment solutions.

3.6 Complexity comparison

Some of the discussed complexities are presented in Table 3.1. As we have men-
tioned before, the complexity of Algorithm 2 could not be determined because it is
impossible to estimate the number of times the relaxed problem P2 is solved. Ho-
wever, the complexity of solving the relaxed continuous problem is O(|M|3|N |3L).
Therefore, the complexity of Algorithm 2, which is seen as the optimal solution ba-
sed on the continuous-relaxation approach, is for sure higher than the complexity of
solving P2. Moreover, the solution with determined polynomial-time complexity,
proposed in Section 3.2.3, which is based on solving the problem P2 once, in ad-
dition to Algorithms 3 and 4, has a complexity also higher than that of solving
problem P2 once. The complexity of the approximation-based solution (Algorithm
5) is lower than the complexity of solving the continuous problem P2. Finally, the
complexity of the greedy solution (Algorithm 6) is lower than the approximation-
based solution and the continuous-relaxation-based solutions. Hence, it is impor-
tant in the performance evaluation section to discuss the complexity-performance
trade-off.

3.7 Performance evaluation

In this section, we compare the performance of the different solutions proposed
to solve, or approximate, the binary problem P1. Specifically, we study the effect
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Table 3.1

Solution complexity

Complexity
The binary problem P1 O(|N ||M|)

Solving the continuous problem P2 O(|M|3|N |3L)
Algorithm 5 (Approximation) O(|M|2 + |M||N | log |N |)

Algorithm 6 (Greedy) O(|M||N |+ |M||N | log |M||N |)

of increasing the number of active MTs on the average values of profit function,
user satisfaction, percentage of the blocked (unserved) data rate, number of HOs,
processing time, and the satisfaction fairness index for different data rate classes.

3.7.1 Simulation parameters

The simulation environment consists of two overlapping LTE BSs and two Wi-
Fi APs within the SA (dashed area in Figure 2.3).

Each MT is assumed to handle only one session, and randomly selects one of
the data rates presented in Table 2.2. Some of the simulation parameters are shown
in Table 3.2.

Table 3.2
Simulation parameters

Parameter Wi-Fi AP LTE BS
Path loss 38.2 + 30 log10(dmn) 34 + 40 log10(dmn)
βn (W) 0.113286 1.28804

αn (W/kbps) 0.13701× 10−3 0.05197× 10−3

Noise (dBm) −90 −111.45
Rn (m) 200 400

The number of available RBs at each BS is Cn = 10 and the transmission
power per RB is PRB

n = 26 dBm. The bandwidth of one RB is BRB
n = 180 KHz.

Concerning Wi-Fi APs, a total bandwidth Bn = 4000 kHz is considered for each
AP, with a total transmission power of 23 dBm. A scheduling interval of 1 second is
considered in the simulations [BB15]. In LTE BSs, Tn = 1000 so that the duration
of one time slot is 1 millisecond which is the duration of one transmission time
interval (TTI) in the LTE standard. For Wi-Fi APs, the scheduling interval is also
1 second and it is divided into 10000 time slots.

MTs are randomly distributed within the SA. The simulation is repeated for
1000 iterations in a Monte Carlo manner. In each iteration, the number of MTs
increases from 1 to 100, the location of Wi-Fi APs and MTs changes randomly
within the SA, and the initial seed of the random number generator also changes.

MTs are assumed to be stable and always active in order to focus on the effect
of the algorithms on the number of HOs.
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3.7.2 Evaluation metrics

The following metrics are used to evaluate the proposed solutions: average
profit values, average satisfaction, percentage of the blocked (unserved) data rate,
number of HOs, processing time, and the satisfaction fairness index for different
data rate classes. The satisfaction of MT m when associated with network n is:

ρmn =
fmn

fmn′

(3.9)

where n′ is the index of the network for which MT m achieves the highest profit.
In fact, it is not straightforward to study the average value of an attribute

in a scenario where MTs request different amounts of data rate. For example,
the average profit per user, i.e.

∑
m∈M

∑
n∈N fmnxmn

M
, could be increased through

increasing the profit of MTs with low data rate requirements on the expense of
other MTs. Thus, to avert deceptive results, the average profit per requested data
rate is studied according to the following formula:

∑
m∈M

∑
n∈Λm

fmnxmn∑
m∈MQm

(3.10)

Similarly, the average satisfaction per requested data rate is studied according to
the following formula: ∑

m∈M

∑
n∈Λm

ρmnQmxmn∑
m∈MQm

(3.11)

Since ρmn represents a normalized value, it is multiplied by Qm in the above
formula.

Moreover, we are interested in studying whether the compared algorithms tend
to intentionally satisfy UEs with specific data rate requirement at the expense of
other UEs. The average satisfaction fairness among different data rates classes is
studied based on the Jain’s fairness index [JCH84]. Basically, it is intended to study
whether MTs of a specific data rate class are satisfied more (or less) than others, or
in other words, have an average satisfaction that is far from the average satisfaction
values of other data rate classes. Accordingly, the average satisfaction for each data
rate class is calculated. Let Ψ denote the set containing all the requested data rates
at a certain moment and ql the set of all MTs whose requested data rate is l, i.e
ql = {m ∈ M : Qm = l} where l ∈ Ψ. Then, the average satisfaction for all MTs

with data rate requirement equal to l is µl =
∑

m∈ql

∑
n∈N ρmnxmn

|ql|
. Hence, the Jain’s

fairness index is:
(
∑

l∈Ψ µl)
2

|Ψ| ·
∑

l∈Ψ µ
2
l

(3.12)

The Jain’s index is closer to 1 when the values of µl are less dispersed.

3.7.3 Simulation results

As we have mentioned before, we will study the performance of the profit-
function-based solution (Algorithm 1), the optimal solution based on the branch
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Figure 3.1 – Average profit per requested data rate (according to Eq. (3.10)).

and bound algorithm (Section 2.7.3), the optimal continuous-relaxation-based so-
lution (Algorithm 2), the sub-optimal continuous-relaxation-based solution (Algo-
rithms 3 and 4-Section 3.2.3), the approximation-based solution (Algorithm 5),
and the greedy solution (Algorithm 6). It is indispensable to note that for the
greedy and approximation-based solutions, the efficiency is considered as a de-
sirability factor, i.e. Ωmn = emn, except for Section 3.7.3.4 where the difference
between using the efficiency and normalized profit is discussed.

3.7.3.1 General behavior of algorithms

In order to increase the overall profit, the optimization problem P1 finds the
best set of association values for all MTs. Thus, the main performance of the op-
timization problem and its different solutions could be studied through the profit,
and consequently through the satisfaction because it is directly related to the pro-
fit. Figure 3.1 shows that the average profit decreases fast as the number of MTs
in the system increases from 1 to 10. This decrease is due to the fact that the
profit function normalizes attributes by dividing them with the global maximum,
i.e. max

∀m,n
, which will only lead to a profit value of 1 when a single MT exists in

the system. However, this behavior does not impact the user satisfaction. In fact,
Figure 3.2 shows that the average satisfaction keeps maintaining an optimal value
of 1 until the number of MTs reaches 40. An average satisfaction of 1 indicates
that MTs are associated to their most preferred RATs. The main performance of
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Figure 3.2 – Average satisfaction per requested data rate (according to Eq.
(3.11)).

the algorithms could be studied when the number of MTs increases beyond 40
causing the networks to become more congested. The average satisfaction starts
declining and the difference in both profit and satisfaction between the studied
algorithms appears. Well, this aspect is a result of two factors: first, increasing the
number of MTs strengthens the competition between MTs to acquire the limited
resources of networks. Therefore, MTs have lower chances to be associated with
their preferred RATs. The second reason is related to the percentage of blocked
data rate. The increase in the percentage of blocked data rate (will be discussed
shortly) decreases the average profit and satisfaction values.

It is shown in Figure 3.1 and Figure 3.2 that the proposed approximation-based
solution maintains performance near the optimal solution. The greedy solution, op-
timal continuous-based-relaxation solution, and the sub-optimal continuous-based-
relaxation solution performs approximately similarly in terms of average profit and
satisfaction. A very close look at the results can show that the optimal continuous-
relaxation-based solution performs slightly better than the sub-optimal continuous-
relaxation-based solution. Therefore, the proposed approximation-based solution
efficiently approximates the optimal solution, and could overwhelm the continuous-
relaxation-based solutions (which have higher complexities).

It is very clear that all the simulated solutions perform much better than the
trivial profit-function-based solution. For example, as the number of MTs reaches
100, the average satisfaction scored by the profit-function-based solution is 0.77,
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Figure 3.3 – Percentage of the blocked data rate.

while other solutions scores higher than 0.86, i.e. at least 12% enhancement.
It is important to illustrate that the slight difference in performance, shown in

Figure 3.1 and Figure 3.2, between the two continuous-relaxation-based solutions
indicates that the continuous-relaxation-based sub-optimal solution proposed in
Section 3.2.3, which have polynomial-time complexity, efficiently approximates the
optimal continuous-relaxation-based solution proposed in Algorithm 2.

3.7.3.2 Blocking percentage evaluation

In order to fully understand the behavior of the proposed solutions, the per-
centage of blocked data rate should be studied. It is shown in Figure 3.3 that the
proposed approximation-based solution maintains lower blocking percentage after
the optimal solution based on the branch and bound algorithm. Followed by the
greedy and the optimal continuous-relaxation based solutions which score similar
results. The sub-optimal continuous-relaxation based solution performs slightly
less than the optimal continuous-relaxation based solution. Of course, the tri-
vial profit-function-based solution scores the worst blocking percentage because
it is designed to satisfy individual user needs without considering a system-wide
user association and resource allocation scheme. For instance, the profit-function-
based solution suffers from 17% blockage when the number of MTs reaches 100.
The greedy solution and both continuous-relaxation based solutions lower down
this percentage approximately 11, followed by the approximation-based solution
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Figure 3.4 – Processing time of a system-wide resource and network assignment
decision.

which scores 9.5%, while the optimal solution based on the branch and bound
algorithm scores about 9%. Therefore, as can be seen in Figure 3.3, the proposed
approximation-based solution achieves and maintains the lowest blocking percen-
tage among the tested approaches, except for the optimal one of course.

Considering the efficiency emn as a desirability factor (abstract gain Ωmn) plays
a vital role in decreasing the data rate blocking percentage upon using the greedy
and the approximation-based solutions as will be discussed shortly. Moreover, the
proposed approximation-based solution achieves low blocking percentage for prio-
ritizing those MTs with a single available network, i.e. |Fm| = 1 in Algorithm 5,
among other MTs. In addition, considering the difference between the highest and
the second highest available desirability value (line 5.22 in Algorithm 5) in the
approximation-based solution, and maintaining a semi-global view on the system
would also contribute in decreasing the blocking percentage in the approximation-
based solution.

3.7.3.3 Complexity-performance trade-off

First, concerning the continuous-relaxation-based solutions, simulation results
show that relaxing the binary constraint causes degradation in the performance
when compared to the optimal solution. This is illustrated in Figures 3.1, 3.2,
and 3.3 where it is obvious that there is a huge gap in performance between the
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optimal binary solution (based on branch and bound) and the optimal continuous-
relaxation-based solution. The approximation-based solution, which has a com-
plexity lower than that of solving the relaxed problem P2, could perform bet-
ter than the continuous-relaxation-based solutions. Even the simple greedy heu-
ristic solution, which has the lowest complexity in this chapter, performs ap-
proximately the same as the continuous-relaxation-based solutions. Although the
approximation-based solution requires higher complexity than the greedy one, but
it has shown more robustness mainly in terms of the data rate blockage and average
profit and satisfaction.

To study the effect of the algorithm’s complexity on the processing time, the
processing time of a system-wide resource and network assignment decision is
shown in Figure 3.4. As we have stated in the previous chapter, the processing time
of the optimal binary solution based on the branch and bound algorithm increases
vastly as the number of MTs increases in the system. For example, when the num-
ber of MTs increases form 80 to 100, the decision processing time increases from
about 500 millisecond to 198 seconds. Therefore, the branch and bound algorithm
could not be used for sure in making resource and network assignment decisions
due to its scalability problem. On the other hand, the sub-optimal continuous-
relaxation-based solution requires a processing time of 200 milliseconds when the
number of MTs reaches 100. This processing time is remarkable reduced to 8 milli-
seconds and 0.28 milliseconds in case of approximation-based solution and greedy
solution respectively.

3.7.3.4 Efficiency factor verses normalized profit

The difference in satisfaction between using the normalized profit, i.e. fmn

Qm
, and

the efficiency in the approximation-based and greedy solutions is shown in Figure
3.5. In fact, associating a MT to the network with the highest efficiency does not
guarantee the highest profit. Instead, it guarantees the highest profit per single
allocated bandwidth unit, i.e. 1 Hz. Therefore, it is normal to notice in Figure 3.5
that using the normalized profit instead of the efficiency in the approximation-
based solution contributes to obtain higher average satisfaction when the number
of MTs increases from 40 to 70. However, as the number of MTs increases, adopting
the efficiency as desirability factor contributes higher profit as shown in Figure 3.5
when the number of MTs increases beyond 70 because it is essential to consider
for the requested bandwidth upon congestion. Actually, the effect of using the
efficiency in the approximation-based solution is enlarged because it is considered
twice in Algorithm 5 where the difference between the highest and the second
highest efficiency is used to take a decision, while it is considered only once in
the greedy algorithm (when the maximum gain value is chosen). Therefore, it is
normal to notice that using the efficiency factor as a gain criteria in the greedy
algorithm maintains better performance than the normalized profit at all times.

Using the efficiency value instead of the normalized profit also lowers the blo-
cking percentage for both the greedy and approximation-based solutions as shown
in Figure 3.6. In fact, the blocking percentage is remarkably enhanced upon using
the efficiency factor in case of the greedy algorithm. For example, as the num-
ber of MTs reaches 100, adopting the efficiency factor in the greedy algorithm
reduces the blocking percentage form 12 to 10. Hence, the efficiency is chosen as
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Figure 3.5 – Average satisfaction per MT. Comparing the difference between
using the efficiency and normalized profit as desirability factor.

the main desirability criteria (abstract gain Ωmn) for both the greedy solution and
the approximation-based solution.

3.7.3.5 Effect of the solution on the number of handovers

Concerning the effect of algorithms on the number of HOs, Figure 3.7 shows
that the optimal binary solution increases the number of HOs tragically to maintain
its optimality. Since it tries to find the global optimal set of binary association
values, the optimal solution re-associates a large number of MTs. Conversely, the
greedy algorithm, characterized by the search for local optima, requires a much
lower number of HOs. The number of HOs at a certain moment depends on the
previous and the current association results. Therefore, upon adding new MTs, the
number of requested HOs does not vary broadly. Normally, the number of HOs for
the profit-function-based solution is zero because MTs are assumed to be stable
and always active. So, upon entering the system, the new MT associates with the
best available network and does not consider handing over unless a network with
higher profit is available, i.e. has sufficient resources to serve the MT, which is
impossible to happen as the number of MTs is increasing and the networks are
becoming more congested.

As we have mentioned before, the optimal binary solution re-associates a large
number of MTs to cope with the hard binary association constraint (xmn ∈ {0, 1}).
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Figure 3.6 – Percentage of the blocked data rate. Comparing the difference bet-
ween using the efficiency and normalized profit as desirability factor.

On the other hand, the relaxed continuous constraint (xmn ∈ [0, 1]) in problem P2
adds some flexibility on the selected set of association values, which can inter-
pret the lower number of handover in the continuous-relaxation-based solutions.
Concerning the proposed sub-optimal continuous-relaxation-based solution, Al-
gorithms 3 and 4 finds the local maxima, i.e. the highest fractional association
value and the highest normalized profit, while Algorithm 2 searches for the glo-
bally optimal set of association values in each iteration. Therefore, the sub-optimal
continuous-relaxation-based solution requires slightly lower number of handovers
than the optimal continuous-relaxation-based solution.

Regarding the proposed approximation-based solution, since this approxima-
tion is based on the highest and second highest gain (Ωmn), and the algorithm
behind this approximation aims at maintaining a semi-global view on the system,
then the approximation-based solution requires higher number of HOs than the
greedy solution. On the other hand, the approximation-based solution requires a
slightly higher number of HOs than the continuous-relaxation-based solutions be-
cause the latter deals with relaxed continuous constraint, while the former deals
with binary hard constraint and aims at maintaining a semi-global view on the
system.
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Figure 3.7 – Number of handovers.

3.7.3.6 Fairness in satisfaction among different data rate classes

Figure 3.8 studies the fairness in satisfaction among different data rate classes.
The goal is to study whether the proposed algorithms tend to intentionally satisfy
MTs with specific data rate requirement at the expense of other MTs. Basically, it
is intended to study whether MTs of a specific data rate class are satisfied more
(or less) than others, or in other words, have an average satisfaction that is far
from the average satisfaction values of other data rate classes.

Figure 3.8 shows that using the profit function to evaluate the gain in the
greedy algorithm, i.e. Ωmn = fmn, leads to an unfair satisfaction between different
data rate classes because MTs with high data rate requirements are satisfied more
than other MTs as we have discussed earlier in Section 3.3.3.

For the rest of the algorithms, as the number of MTs increases beyond 50, and
the networks become more congested, the Jain’s fairness index starts deviating
slightly away from its ideal value, i.e. 1. For instance, the Jain’s index of the
trivial profit-function-based solution is 0.98 when the number of MTs reaches 100.
This deviation (2%) is so small and negligible to be studied for this normalized
index. It is normal to observe that the Jain’s index starts deviating upon congestion
because MTs with high data rate requirements will have lower probability to be
connected.

The main conclusion drawn out from Figure 3.8 is that all the proposed solu-
tions (including the efficiency-based and normalized-profit-based greedy and ap-
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Figure 3.8 – Jain’s fairness index among different data rate classes (according to
Eq. (3.12)).

proximation solutions) do not tend to intentionally satisfy MTs of a certain data
rate class to increase the overall satisfaction. Instead, these solutions effectively al-
locate resources and associate users to maximize the overall user satisfaction in the
system. Therefore, the viewed and discussed simulation results are not misleading.

3.8 Conclusion

In this chapter, we have discussed and proposed different centralized solutions
for the user association and resource allocation problem in heterogeneous wire-
less systems. First, we have proposed two new solutions based on the continuous-
relaxation of problem P1. The first proposed solution is with undetermined com-
plexity, and is considered as the optimal solution based on the continuous-relaxation
methodology. The second solution is with determined polynomial-time complexity,
and is considered as a sub-optimal solution based on the continuous-relaxation ap-
proach. Then, a novel approximation-based solution is proposed to approximate
the binary problem P1. In addition, a new simple greedy heuristic algorithm is
also proposed. The performance of the approximation-based solution and greedy
solution is optimized through proposing a new efficiency factor to estimate the gain
contributed upon associating users to networks. The efficiency factor considers the
data rate requirement of users, and the channel conditions between the MT and
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the BS or AP.
Simulation results show that the proposed sub-optimal solution based on the

continuous-relaxation of problem P1 efficiently approximates the optimal solution
based on the continuous-relaxation. However, it is shown also that the continuous-
relaxation approach threatens the optimality of the solutions. This was obvious
in the performance gap between the optimal binary solution and the optimal
continuous-relaxation-based solutions. On the other hand, the new approximation-
based solution efficiently approximates the optimal binary solution by maintaining
the closest performance to the optimal solution. The simpler greedy solution also
shows acceptable performance similar to the solutions based on the continuous-
relaxation approach, but with much lower complexity. The proposed efficiency
factor (emn) has also contributed to a significant boost in the performance of the
greedy and approximation-based solutions. Generally, the approximation-based
solution demonstrates a remarkable trade-off between the complexity and perfor-
mance.

All the solutions proposed in this chapter depends on a centralized entity, the
SDN controller, to process the algorithms, allocate resources, and associate users.
The following chapter will propose distributed solutions of the binary problem P1.
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Chapter 4

Novel Distributed Resource and

Network Assignment Solution

In this chapter, we propose two novel distributed user association and resource
allocation solutions for HWNs. Mainly, the problem P1 formulated in Chapter 2
will be distributed into |N | Knapsack problems, where |N | represents the number
of networks and each problem is independently solved by its corresponding net-
work. The Knapsack problem is solved using dynamic programming procedures
in an acceptable time. The first distributed solution is based on the Lagrangian-
relaxation of problem P1, and on the sub-gradient method that finds near-optimal
Lagrangian multipliers. On the other hand, the second distributed solution is si-
milar to the first one but without the sub-gradient method. The advantage of the
second solution is that it eliminates the iterative sub-gradient phase, which leads
to a lower complexity, and permits studying the effect of the sub-gradient method
efficiently.

4.1 Simplified problem

We will recall in this section the optimization problem formulated in Chapter
2, and discuss some of its properties. The formulated problem is:

P1: max
∑

m∈M

∑

n∈N

fmnxmn (4.1a)

s. t.
∑

m∈M

⌈
QmTn
rtotmn

⌉
xmn 6 Tn ∀n ∈ NAP (4.1b)

∑

m∈M

⌈
QmTn

BRB
n log2(1 + γmn)

⌉
xmn 6 Un ∀n ∈ NBS (4.1c)

∑

n∈N

xmn 6 1 ∀m ∈ M (4.1d)

xmn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (4.1e)

As we have mentioned before, problem P1 is a combinatorial optimization pro-
blem with an NP-complete complexity. In fact, some combinatorial optimization
problems are classified as easy problems that could be solved in a time bounded by
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polynomial dependent on the number of variables. On the other hand, the majority
of combinatorial optimization problems are classified as hard problems for which
their solution require exponential time. Even for the hard problems, there exist
easier hard problems, like the Knapsack problem, that have pseudo-polynomial
algorithms which solve the problem in polynomial time only if specific constraints
of the problem are bounded.

One of the most brilliant mathematical methodologies emerged in the 1970s
is the observation that several hard optimization problems could be transformed
into easier problems that are subject to a relatively small set of side constraints.
Dualizing these side constraints leads to a Lagrangian problem whose optimal
solution is considered as an upper bound (for maximization optimization problems)
to the optimal solution of the original non-relaxed problem. To solve the problem
efficiently, the Lagrangian problem should be easier than the original optimization
problem.

In the previous chapter, we have used the continuous-relaxation (i.e. linear-
programming-relaxation) method to relax the binary constraint of problem P1.
In this chapter, the Lagrangian-relaxation method is used to simplify problem
P1 and distribute it into multiple easier-to-solve problems. As we will notice in
this chapter, the Lagrangian-relaxation method offers major advantages over the
linear-programming-relaxation method.

4.2 Mathematical discussion

In this section, we will provide a pure mathematical discussion about the me-
thodology that will be used to simplify problem P1. In Section 3.2.1 of the previous
chapter, we have presented the canonical form of problem P1. In this section, we
extend the presented canonical problem by assuming that the constraints of the
canonical problem are divided into two sets Ax ≤ b and Dx ≤ e in order to make
it easy to solve the Lagrangian problem. Therefore, the canonical form of problem
P1 could be expressed as:

P1 : Z = max c
⊤
x (4.2a)

s. t. Ax ≤ b (4.2b)

Dx ≤ e (4.2c)

x ∈ {0, 1} (4.2d)

By applying the Lagrangian-relaxation method to the set of constraints Ax ≤ b

the optimization problem becomes:

LR : Zλ = max c
⊤
x− λ(Ax− b) (4.3a)

s. t. Dx ≤ e (4.3b)

x ∈ {0, 1} (4.3c)

where λ is a vector of positive Lagrangian multipliers. Of course, problem LR
should be easier to solve than problem P1. For convenience, we assume the follo-
wing assumptions:

– Assumption 1 : Problem P1 is feasible.
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– Assumption 2 : The set X = {x|Dx ≤ e, x ∈ {0, 1}} containing the solutions
for problem LR is finite.

Proof of Assumption 1: Notice that constraint (4.1d) considers that upon
congestion not all MTs could be connected. Therefore, there exist at least one
feasible solution such that xmn = 0 ∀m ∈ M, ∀n ∈ N .

Proof of Assumption 2: For any given λ, problem LR is a combinatorial op-
timization problem (because x is binary). Hence, there exist a finite number of
solutions for problem LR. The overall number of combinations that are conside-
red for all variables xmn is |N ||M|. Thus, the set X = {x|Dx ≤ e, x ∈ {0, 1}} is
finite.

Therefore, based on these two assumptions, Zλ is finite for all λ. It is well
known that Zλ ≥ Z. This is easy to show by assuming an optimal solution x

* to
problem P1 and observing that:

Zλ ≥ cx
* − λ(Ax

* − b) ≥ Z (4.4)

The inequality in Eq. (4.4) follows from the relations Z = cx
* and Ax − b ≤ 0.

Then, we require the Lagrangian multiplier λ ≥ 0 for Zλ ≥ Z to hold.
Since the Lagrangian-relaxation aims at finding an upper bound for problem

P1, then we should find the best values of λ that produces the tightest upper
bound to the problem. Hence, it is clear that the best choice for λ would be an
optimal solution to the dual problem:

DP : Zdual = min
λ

Zλ (4.5a)

s. t. λ ≥ 0 (4.5b)

The dual problem DP, i.e. minλ≥0 Zλ, is shown to be convex and piecewise linear
[Fis81]. Thus, problem DP could be solved using the sub-gradient method [Fis81].
The sub-gradient method iteratively solves the Lagrangian-relaxed problem and
updates the Lagrangian multipliers in an easy systematic way. As BLP is NP-
complete and suffers from strictly positive duality gap [JK07], the solutions of the
relaxed problem, which are considered as an upper bound to the original problem,
are rarely feasible, i.e. some MTs will be connected to multiple networks at the
same time, or the capacity constraints of some networks are violated. Therefore,
the sub-gradient optimization procedure is used as a basis for a heuristic method
that maintains the feasibility of the problem in every iteration. Hence, a feasible
near-optimal solution to problem P1 is produced at the end of the sub-gradient
iterations.

4.3 Distributed solution

In this section, we apply the procedures discussed in the previous section on the
optimization problem P1. In order to distribute problem P1 into |N | problems,
each processed by a network, we choose to relax the assignment constraint (4.1d).
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Hence, the relaxed problem is:

RELλ: max
∑

m∈M

∑

n∈N

fmnxmn −
∑

m∈M

λm(
∑

n∈N

xmn − 1) (4.6a)

s. t. xmn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (4.6b)
∑

m∈M

⌈
QmTn
rtotmn

⌉
xmn 6 Tn ∀n ∈ NAP (4.6c)

∑

m∈M

⌈
QmTn

BRB
n log2(1 + γmn)

⌉
xmn 6 Un ∀n ∈ NBS (4.6d)

After directly manipulating Eq. (4.6a), the problem becomes:

RELλ: max
∑

m∈M

∑

n∈N

(fmn − λm)xmn +
∑

m∈M

λm (4.7a)

s. t. xmn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (4.7b)
∑

m∈M

⌈
QmTn
rtotmn

⌉
xmn 6 Tn ∀n ∈ NAP (4.7c)

∑

m∈M

⌈
QmTn

BRB
n log2(1 + γmn)

⌉
xmn 6 Un ∀n ∈ NBS (4.7d)

Note that for a given set of λ, the expression
∑

m∈M λm is constant. Therefore,
removing

∑
m∈M λm does not affect the optimality of the solution. Hence, RELλ

separates into |N | Knapsack problems. For each n ∈ NAP , the Knapsack problem
is:

KNAPAP : max
∑

m∈M

(fmn − λm)xmn (4.8a)

s. t. xmn ∈ {0, 1} ∀m ∈ M (4.8b)
∑

m∈M

⌈
QmTn
rtotmn

⌉
xmn 6 Tn (4.8c)

For each n ∈ NBS , the Knapsack problem is:

KNAPBS: max
∑

m∈M

(fmn − λm)xmn (4.9a)

s. t. xmn ∈ {0, 1} ∀m ∈ M (4.9b)
∑

m∈M

⌈
QmTn

BRB
n log2(1 + γmn)

⌉
xmn 6 Un (4.9c)

Notice that problem RELλ aims at maximizing the profit of MTs in all net-
works, while each Knapsack problem KNAPAP and KNAPBS aims at maximi-
zing the profit in a single network (AP or BS respectively). Each Knapsack problem
(KNAPAP or KNAPBS) is processed independently by its corresponding network
n.
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4.3.1 Multiplier values

To get the best values of the Lagrangian multipliers, the following dual problem
is formulated:

min RELλ

s.t. λ ∈ R
|M|
+

(4.10)

The dual problem is solved using the sub-gradient method presented in Algorithm
7.

Algorithm 7: Sub-gradient Method
7.1: Given λ;
7.2: Set lb := −∞, ub := +∞;
7.3: while Not stopping_condition do
7.4: Solve relaxation (RELλ), which is distributed to |N | Knapsack

problems each solved using Algorithm 8, obtaining xλ and
v(RELλ) =

∑
m∈M

∑
n∈N (fmn − λm)x

λ
mn;

7.5: Obtain a feasible solution xf and vf =
∑

∀m∈M

∑
∀n∈N fmnx

f
mn by

applying Algorithm 9 using xλ;
7.6: lb = max[lb, vf ];
7.7: ub = min[ub, v(RELλ)];
7.8: Update the sub-gradient direction gλm, the step size θm, and the

multiplier λ;
7.9: Make stopping tests;

7.10: end
7.11: xmn = xfmn ∀m ∈ M, ∀n ∈ N ;

The sub-gradient method is an iterative process that aims at finding an optimal,
or near-optimal, Lagrangian multipliers. The Lagrangian multipliers are updated
in each iteration. The idea is to increase the lower bound (the feasible solution)
and decrease the upper bound of the problem while maintaining the feasibility of
the solution. In this way, we ensure that the feasible solution is close to the upper
bound, and in consequence, close to the optimal solution which is less than or
equal to the upper bound (Eq. (4.4)). In order to limit the number of iterations of
the sub-gradient method, stopping conditions are used.

First, we start by an initial value for each λ (line 7.1), and initialize the upper
and lower bounds (line 7.2). Then, while the stopping conditions are not met,
the sub-gradient algorithm iteratively solves (RELλ) finding its association values
xλ, and the overall profit of (RELλ) which is v(RELλ) =

∑
m∈M

∑
n∈N (fmn −

λm)x
λ
mn (line 7.4). The solution xλ of (RELλ) is based on solving the distributed

Knapsack problems. Each Knapsack problem is solved independently, and aims at
choosing the MTs that will maximize the profit of each network. The solution of the
Knapsack problem is detailed in Section 4.3.2. However, the solution of (RELλ) is
rarely assignment-feasible because some networks will choose the same MT, which
will produce MTs associated to multiple networks at the same time. Therefore,
based on the solution of (RELλ), an assignment-feasible solution xf is developed
using a heuristic algorithm described in Section 4.3.3. The feasible solution value
vf =

∑
∀m∈M

∑
∀n∈N fmnx

f
mn serves as a lower bound for the problem. In each
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iteration, the Lagrangian multipliers are updated based on a step size and the
sub-gradient direction which will be discussed shortly.

The initial λ used is λm = 1 ∀m ∈ M. Since we have relaxed constraint (4.1d),
the sub-gradient direction is:

gλm =
∑

n∈N

xmn − 1 (4.11)

The used step size is:

θm =





0, if gλm = 0,

β(ub− lb)/||gλ||2, otherwise,
(4.12)

where β is the Held and Karp control parameter [HK71] defined such that 0 ≤
β ≤ 2. In each iteration, λ is updated according to the following formula:

λm = λm + θmg
λ
m (4.13)

Notice that RELλ and the Knapsack problems aim at maximizing the value
(fmn−λm). Hence, increasing the value of λm makes the association of MT m less
appealing, and vice versa. Therefore, if MT m is associated to multiple networks at
the same time, the sub-gradient direction gλm takes a positive value, leading to an
increase in the value of λm which makes the association of MT m less appealing.
On the other hand, if MT m is not associated to any network, gλm takes a negative
value, and λm decreases making the association of MT m more appealing, which
is required. If MT m is associated to only one network, λm remains unchanged
because it is required to associate the MT to only one network.

The initial value of β is two. If after 20 iterations the upper bound ub does not
decrease, β is updated to β/2. In order to limit the number of iterations of the
sub-gradient method, the stopping tests used are:

– number of iterations greater than 600,
– β ≤ 0.005,
– ub− lb < 1.

The most effective stopping test is ub− lb < 1 because it indicates that the diffe-
rence between the upper and the lower bound is relatively small. In fact, it is the
only test that terminates the sub-gradient iterations in the conducted simulations.
Finally, the feasible solutions xf obtained in the last iteration of Algorithm 7 are
used for associating MTs, i.e. xmn = xfmn ∀m ∈ M, ∀n ∈ N .

4.3.2 Knapsack problem solution

The Knapsack problem aims at maximizing the total profit subject to the ca-
pacity constraint of the network and the boolean association constraint. In fact,
the simplified problem P1, the relaxed problem RELλ, and the Knapsack pro-
blems (KNAPAP and KNAPBS) hold an important property that the number of
requested resources and the capacity of the network are strictly positive integers.
Hence, we can define an integer weight i ≤ ζn. We wish to find the maximum pro-
fit that could be attained in a network while considering the capacity constraint.
Therefore, we also define a two-dimensional array K[m][i] to denote the maximum
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profit that can be attained with total number of requested resources less than or
equal to i using MTs up to m, i.e. MTs from 1 to m. In fact, we can define K[m][i]
recursively as follows:




K[0][i] = 0 and K[m][0] = 0, (4.14a)

K[m][i] = K[m− 1][i], if ωmn > i, (4.14b)

K[m][i] = max(K[m− 1][i],K[m− 1][i− ωmn] + fmn − λm), if ωmn ≤ i. .(4.14c)

To better understand the recursive function (4.14), K[m][i] could be seen as the
overall profit of up to m MTs, i.e. MTs 1 to m, while having i available resources.
Therefore, K[0][i] = 0 represents an initial condition where the contributed profit
is zero when no MT is selected. If MT m is not selected, then the profit of MT m
is not considered in the overall profit, i.e. K[m][i] = K[m− 1][i] as in Eq. (4.14b)
where MT m is not selected because the number of resources requested by MT
m is greater than i. On the other hand, if the number of resources requested by
MT m is less than or equal to i, the profit of MT m is not immediately added to
the overall profit. Instead, K[m − 1][i − ωmn] + fmn − λm is compared to K[m −
1][i], and the highest value is chosen. Note that fmn − λm is added to K[m −
1][i− ωmn] because MT m requests ωmn resources. Eq. (4.14c) is seen as the core
of the recursive function (4.14). The solution can then be found by calculating
K[m][i] ∀m ∈ M and ∀i ≤ ζn as presented in Algorithm 8 and discussed later
in this section. Algorithm 8 shows the dynamic programming procedures used to
solve the Knapsack problem for network n.

Algorithm 8 is made up of two main phases. In phase 1, the recursive function
(4.14) is implemented and used to fill array K. In lines 8.6 and 8.7, K[m][0] = 0
because the value i = 0 indicates that there are no resources which means the ove-
rall profit is zero because no MT could be selected. Phase 2 presents the association
solution based on the values stored in array K. In line 8.20, the association value
is initialized to zero. As we have mentioned before, we can determine whether MT
m is selected by comparing the values K[m][i] and K[m − 1][i]. Both combined
phases represent the dynamic programming procedures used to solve the Knapsack
problem.

4.3.3 Feasible solution based on the Knapsack problem re-
sults

As we have mentioned in Section 4.3.1, the solutions of the Knapsack problems
are rarely assignment-feasible because some MTs will be chosen by multiple net-
works simultaneously. Therefore, in this section, we propose a heuristic algorithm
to find assignment-feasible solution based on the results of the Knapsack problems.
The feasible solution is presented in Algorithm 9.

Algorithm 9 is mainly divided into two parts, each part is based on two phases
(preparation phase and decision phase). In part 1 (lines 9.1-9.21), the feasible
association results of MTs selected by the dynamic programming procedures, i.e.
Algorithm 8, are decided. While part 2 (lines 9.22-9.40) decides the feasible solu-
tions for the rest of MTs. Both parts have similar structures with minor differences.
In preparation phase 1, i.e. the preparation phase of part 1, the feasible association
values of all MTs are set to zero (line 9.7), the set E is filled with all the profit
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Algorithm 8: Dynamic programming procedures

8.1: // Phase 1: filling table K
8.2: double K[ ][ ] := double[|M|+ 1][ζn + 1];
8.3: int i;
8.4: for m = 0 to |M| do
8.5: for i = 0 to ζn do
8.6: if m = 0 or i = 0 then
8.7: K[m][i] = 0;
8.8: else
8.9: if ωmn ≤ i then

8.10: K[m][i] = max(fmn−λm+K[m−1][i−ωmn], K[m−1][i]);
8.11: else
8.12: K[m][i] = K[m− 1][i];
8.13: end

8.14: end

8.15: end

8.16: end
8.17: // Phase 2: association solution based on the values stored

in array K
8.18: i = ζn;
8.19: for m = |M| to 1 do
8.20: xλmn := 0;
8.21: if K[m][i] 6= K[m− 1][i] then
8.22: xλmn = 1;
8.23: i = i− ωmn;
8.24: end
8.25: m = m− 1;
8.26: end

values fmn whose corresponding xλmn = 1, and the number of free resources in each
network (ζn) is initialized. In decision phase 1, the algorithm aims at associating
the MT from set E having the highest profit in each iteration within the while loop
(lines 9.14-9.21). After detecting the highest profit in set E , the algorithm, in line
9.16, tests if the corresponding MT, i.e. m′, is not associated yet (

∑
n∈N xfm′n = 0),

and if the number of free resources in the target network n′ is sufficient to serve
MT m′ (ωm′n′ ≤ ζn′). If both conditions are true, MT m′ is associated to net-
work n′ (line 9.17), and the number of free resources in network n′ is updated by
subtracting the number of resources allocated to MT m′ (line 9.18).

In part 2, the same procedures of part 1 are repeated. However, this time,
the set E ′ is filled with profit values of MTs whose profit is not equal to zero.
Moreover, the feasible association decision for MTs in E ′ should not taken yet
(
∑

n∈N xfmn = 0), and their number of requested resources should be less than the
number of free resources in the network (ωmn ≤ ζn).
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Algorithm 9: Feasible solution

9.1: // Part 1:

9.2: // Preparation phase 1:

9.3: E := φ; // E represents a set that will be filled with all gain

values (fmn) whose corresponding xλmn 6= 0

9.4: foreach n ∈ N do

9.5: ζn := ζn;
9.6: foreach m ∈ M do
9.7: xfmn = 0;
9.8: if xλmn 6= 0 then
9.9: E = E + {fmn};

9.10: end

9.11: end

9.12: end
9.13: // Decision phase 1:

9.14: while E 6= φ do
9.15: m′ = argmaxm(fmn ∈ E) ; n′ = argmaxn(fmn ∈ E);
9.16: if

∑
n∈N xfm′n = 0 and ωm′n′ ≤ ζn′ then

9.17: xfm′n′ = 1;
9.18: ζn′ = ζn′ − ωm′n′;
9.19: end
9.20: E = E − {fm′n′};
9.21: end
9.22: // Part 2:

9.23: // Preparation phase 2:

9.24: E ′ := φ; // E represents a set that will be filled with all

non-zero gain values (fmn)

9.25: foreach n ∈ N do
9.26: foreach m ∈ M do

9.27: if fmn 6= 0 and
∑

n∈N xfmn = 0 and ωmn ≤ ζn then
9.28: E ′ = E ′+ {fmn};
9.29: end

9.30: end

9.31: end
9.32: // Decision phase 2:

9.33: while E ′ 6= φ do
9.34: m′ = argmaxm(fmn ∈ E ′) ; n′ = argmaxn(fmn ∈ E ′);
9.35: if

∑
n∈N xfm′n = 0 and ωm′n′ ≤ ζn′ then

9.36: xfm′n′ = 1;
9.37: ζn′ = ζn′ − ωm′n′;
9.38: end
9.39: E ′ = E ′ − {fm′n′};
9.40: end
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4.3.4 Novel distributed solution without the sub-gradient
method

In this section, we propose a novel distributed resource and network assignment
solution that is not based on the sub-gradient method. The objective is to provide a
distributed solution with lower complexity than the solution provided in Algorithm
7, and to effectively study the performance of the sub-gradient method.

Since the solution provided in Algorithm 7 aims at iteratively solving the
Knapsack problems to find near-optimal Lagrangian multipliers, in this section
we try to directly provide a distributed solution without having to find the La-
grangian multipliers. Therefore, all the Lagrangian multipliers are set to zero, i.e.
λm = 0 ∀m ∈ M, where in this case λ is denoted by λ0. Accordingly, the solution
provided in this section is presented in Algorithm 10. As you can see, Algorithm

Algorithm 10: Distributed solution without the sub-gradient method

10.1: Solve relaxation (RELλ0
), which is distributed to |N | Knapsack

problems each solved using Algorithm 8 while setting λm = 0 ∀m ∈ M,
obtaining xλ0 ;

10.2: Obtain a feasible solution xf by applying Algorithm 9 using xλ0 instead
of xλ;

10.3: xmn = xfmn ∀m ∈ M, ∀n ∈ N ;

10 is also based on Algorithm 8 and Algorithm 9 which allows us to effectively
study the impact of the sub-gradient method.

4.4 Complexity analysis

Concerning the complexity of Algorithm 8, it is based on two phases. The com-
plexity of phase 1 is O(|M|.ζn). The complexity of phase 2 is O(|M|). Therefore,
the complexity of Algorithm 8 is O(|M|.ζn+ |M|) because the two phases are pro-
cessed sequentially. Since the dynamic programming procedures are processed by
each network n independently and at the same time, then the total complexity of
the dynamic programming procedures on all networks is O(|M|.ζn∗ + |M|), where
n∗ represents the network with the highest number of resources.

The complexity of Algorithm 9 is based on two parts, each having two phases.
The complexity of the preparation phase 1 is O(|M||N |). Concerning the com-
plexity of the decision phase 1, let µ represent the number of variables xfmn that are
not in set E , then the complexity of decision phase 1 is O(|M||N |−µ). Moreover,
the complexity of preparation phase 2 is O(|M||N |). Concerning the complexity
of decision phase 2, the maximum number of items in E ′ is µ. Therefore the maxi-
mum complexity of decision phase 2 is O(µ). Since the phases of Algorithm 9 runs
sequentially, the total complexity of Algorithm 9 is O(|M||N | + |M||N | − µ +
|M||N |+ µ) which is O(3|M||N |).

Now, for Algorithm 7, let υ denote the number of sub-gradient iterations, where
in each iteration Algorithms 8 and 9 are iterated, then the total complexity of
Algorithm 7 is: O(υ(|M|.ζn∗ + |M| + 3|M||N |)). Since Algorithm 10 is basically
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the same as Algorithm 7 without the sub-gradient procedures, the complexity of
Algorithm 10 is O(|M|.ζn∗ + |M|+ 3|M||N |).

The complexities of all solutions proposed in this thesis are presented in Table
4.1 where L is the length of the binary coding of the input data, υ the number of
sub-gradient iterations, and ζn∗ the number of resources in network n∗ having the
largest number of resources. Since the complexity of algorithms jointly depends on
the values of |M|, |N |, L, and ζn∗ , it is hard to exactly compare the complexity of
algorithms. However, we can notice that solving the continuous problem P2 does
not scale well upon increasing the number of MTs and networks because its com-
plexity is based on the cube of those values. Although the complexity of Algorithm
5 is based on the square of the number of MTs, we can say that its complexity is
lower than that of Algorithm 7 which is basically determined according to the va-
lue υ.|M|.ζn∗ . Mainly, ζn∗ is based on the number of sub-channels and the number
of time slots in one scheduling interval. The scheduling interval is usually taken on
one second basis, while the duration of time slot is set according to the TTI (one
millisecond in the LTE standard), which produces 1000 time slot in one scheduling
duration, so the number of resources is the number of sub-channels multiplied by
1000. Moreover, the number of sub-gradient iterations increases upon increasing
the number of MTs (as we will see in the simulation results). Thus, we can say
that usually the value υ.ζn∗ > |M|, and υ.|M|.ζn∗ > |M|2. Hence, the complexity
of Algorithm 7 is higher than that of Algorithm 5. Similarly, we can directly notice
that the complexity of Algorithm 10 is usually higher than Algorithm 5. Hence, the
complexities could be sorted in the following order O(solving continuous problem
P2)>O(Algorithm 7)>O(Algorithm 10)>O(Algorithm 5)>O(Algorithm 6).

Table 4.1

Solution complexity for all algorithms

Complexity

The binary problem P1 O(|N ||M|)

Solving the continuous problem P2 O(|M|3|N |3L)

Algorithm 5 (Approximation) O(|M|2 + |M||N | log |N |)

Algorithm 6 (Greedy) O(|M||N |+ |M||N | log |M||N |)

Algorithm 7 (Distributed with sub-gradient) O(υ(|M|.ζn∗ + |M|+ 3|M||N |))

Algorithm 10 (Distributed without sub-gradient) O(|M|.ζn∗ + |M|+ 3|M||N |)

4.5 Simulation results

In this chapter, we use the same simulation parameters used in the previous
chapter in Section 3.7.1, and we study the same evaluation metrics presented in
Section 3.7.2 in addition to the number of sub-gradient iterations. We compare
the performance of Algorithms 7 and 10 to the solutions proposed in the previous
chapters.

First, we start by studying the Jain’s fairness index among different data rate
classes. It is shown in Figure 4.1 that as the number of MTs increases to 100,
the Jain’s fairness index of Algorithms 7 and 10 only declines by 0.7% and 1%
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Figure 4.1 – Jain’s fairness index among different data rate classes (according to
Eq. (3.12)).
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Figure 4.3 – Average profit per requested data rate (according to Eq. (3.10)).

respectively. Therefore, Algorithms 7 and 10 do not tend to intentionally satisfy
MTs of a certain data rate class to increase the overall satisfaction. Instead, these
solutions effectively allocate resources and associate users to maximize the overall
user satisfaction in the system. Hence, the viewed and discussed simulation results
are not misleading.

Concerning the distributed solution with the sub-gradient method, i.e. Al-
gorithm 7, we have proposed in Section 4.3.1 different stopping criteria for the
sub-gradient iterations. However, in the conducted simulations, the only test that
terminates the sub-gradient iterations is ub − lb < 1, i.e. the difference between
the upper bound (unfeasible solution) and the lower bound (feasible solution) is
one, which is relatively small. It is shown in Figure 4.2, that as the number of
MTs in the system increases from 1 to 101, the required number of sub-gradient
iterations also increases from 2 to 31. The increase in the number of sub-gradient
iterations indicates that it becomes harder for Algorithm 7 to approximate the
optimal solution when the number of variables increases.

Concerning the behavior of the proposed solutions, we start by studying the
average profit per requested data rate. As you can see in Figure 4.3, the propo-
sed distributed solution with the sub-gradient method (Algorithm 7) effectively
approximates the optimal binary solution, and performs better than the other
solutions proposed in previous chapters. The remarkable performance of Algo-
rithm 7 is due to the Lagrangian-relaxation and the sub-gradient method that
reduces the gap between the lower bound (feasible solution) and the upper bound
(unfeasible) to approach the optimal solution. We can analyze the effect of the
Lagrangian-relaxation and the sub-gradient method by comparing the performance
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Figure 4.4 – Average satisfaction per requested data rate (according to Eq.
(3.11)).

of Algorithm 7 and Algorithm 10, i.e. distributed solution with and without the
sub-gradient method. It is obvious from Figure 4.3 that the average profit achie-
ved by Algorithm 7 is always better than that achieved by Algorithm 10. On the
other hand, the distributed solution without the sub-gradient method achieves
approximately the same average profit as the centralized efficiency-based greedy
solution. Therefore, as an advantage, Algorithm 10 could be used as a distributed
solution with low complexity that achieves average profit similar to the centralized
efficiency-based greedy solution.

As we have mentioned before in the previous chapter, the average satisfaction
is directly related to the average profit. Therefore, the same conclusions drawn out
from Figure 4.3 could be seen in Figure 4.4 which shows the average satisfaction
results.

Concerning the percentage of blocked (unserved) data rates, it is shown in Fi-
gure 4.5 that the optimal solution with sub-gradient iterations achieves slightly
higher blocking percentage than the optimal binary solution (based on the branch
and bound algorithm) and better than the rest of proposed solutions. This confirms
that Algorithm 7 efficiently approximates the optimal solution. Moreover, the dis-
tributed solution without the sub-gradient method, achieves blocking percentage
approximately similar to the centralized greedy, continuous-relaxation-based, and
the sub-optimal continuous-relaxation-based solutions.

On the other hand, the distributed solution is based on decisions taken inde-
pendently by networks, i.e. dynamic programming results of Algorithm 8. Thus,
the association results depend highly on the status of MTs in each network, ins-
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Figure 4.6 – Number of handovers.

tead of the status of MTs in the global system. Therefore, we can notice in Figure
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4.6 that the distributed solutions require slightly higher number of HOs, than the
proposed centralized solution (except for the optimal binary solution based on the
branch and bound algorithm). The solution based on Algorithm 7 requires higher
number of HOs than the solution in Algorithm 10 because the former iteratively
solves the distributed dynamic programming procedures, while the later solves
them only once.

4.6 Conclusion

In this chapter, we have proposed two novel distributed user association and
resource allocation solutions for HWNs. Mainly, the problem P1 formulated in
Chapter 2 is distributed into N Knapsack problems, where each problem is inde-
pendently solved by its corresponding network. The Knapsack problem is solved
using dynamic programming procedures in an acceptable time. The first distri-
buted solution is based on the Lagrangian-relaxation of problem P1, and on the
sub-gradient method that finds near-optimal Lagrangian multipliers. On the other
hand, the second distributed solution is similar to the first one but without the
sub-gradient method. The advantage of the second solution is that it eliminates
the iterative sub-gradient phase, which leads to a lower complexity. The com-
plexity of the distributed solution with sub-gradient method is higher than that
of the greedy and approximation-based solution, while lower than the continuous-
relaxation-based solutions. However, the second proposed distributed solution wi-
thout the sub-gradient method has a very competitive complexity. Simulation re-
sults show that the proposed distributed solution with the sub-gradient method
achieves the best performance results in terms of blocking percentage and average
profit and satisfaction among all other proposed solutions while requiring a slightly
higher number of handovers. The remarkable advantage of the distributed solution
without the sub-gradient method is that it achieves performance similar to the
centralized efficiency-based greedy algorithm.



Chapter 5

New Applications For

Priority-Based Management

And Power Efficiency

Maximization

In this chapter, we discuss new direct applications for the problem P1 proposed
in Chapter 2, and its corresponding solutions proposed in Chapters 3 and 4. First,
we propose a new application for the priority-based user association and resource
allocation problem in a system where users have different priorities. We formulate a
new priority-based optimization problem, then we simplify it into a new problem
with form similar to the problem P1, and therefore could be solved with the
solutions proposed in this thesis. Moreover, we discuss new perspective for the
user association and resource allocation problem to enhance the overall power
efficiency (data rate per unit power) in the system. Therefore, the profit function
used in problem P1 is replaced by the power efficiency factor, and the problem is
solved using the solutions proposed in this thesis.

5.1 A new priority-based resource and network as-

signment

It is common that users in communication systems have different priorities.
For example, in mobile networks, users experiencing low long-term transmission
rate, or users demanding high QoS, are given higher priority [CLL+16]. Moreover,
future mobile networks should prioritize the service of emergency applications over
the ordinary ones. Note that all previous papers cited in this thesis do not take
into consideration different user priorities when making decisions.

In fact, the authors of [TK14] have proposed that upon congestion in public
safety networks (PSNs) users handoff to LTE system. To ensure reliable service
for those users, they are given higher priority among ordinary commercial users.
In [YBC05], authors have introduced the concept of degraded utility to deal with
different user priorities ; additional bandwidth is released to high priority users by
degrading the low priority traffic. The authors of [CLL+16] have formulated an
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optimization problem to associate users with different priorities in heterogeneous
networks. However, the studies [CLL+16] and [YBC05] do not consider specific
user-related parameters, and the adopted system model is not realistic. Moreover,
both studies do not propose a firm mechanism to prevent low-priority users from
allocating resources that could be utilized by users with high priority.

In this section, we discuss the user association and downlink resource allocation
problem in HWNs. MTs in our context have different service priorities, or service
levels (SLs), such that MTs with highest priority should experience the best ser-
vice. In order to be served, each MT should be supplied with its requested data
rate, otherwise, the MT terminates its ongoing session. Typically, users with high
priority should encounter the minimal attainable blockage.

In that perspective, we first formulate a novel binary linear programming
(BLP) problem that ensures lower blockage and better service for high-priority
users. The formulated problem exploits different context information that could be
user-centric (power consumption, signal quality, and preferences), service-centric
(the amount of requested data rate), and network-centric (number of available re-
sources, geographical location, transmission range, etc.). The formulated problem
throws firm restrictions to prevent low-priority users from allocating resources that
could be utilized by other users with higher priorities. Specifically, the algorithm
aims at maximizing, for each SL, the user-centric gain which is based on the re-
ceived signal quality and instantaneous power consumption at the MT.

In addition, a novel solution management strategy is proposed to minimize
the number of times the optimization function is processed without affecting the
optimality of the solution.

5.1.1 System model

The system model used for the priority-based assignment is the same as the
system model presented in Section 2.5 but with minor changes to adapt users with
different priorities. The set of all available SLs is denoted by K = {1, 2, ..., K}.
Since the priority of a MT at a given moment is determined according to the SL,
a MT is assigned a single SL k at a given moment. The SL of MT m is denoted by
lm. For simplicity, higher SL indicates higher priority. We define a set θk containing
all MTs with SL k such that θk = {m ∈ M : lm = k}.

5.1.2 Optimization problem

We aim at formulating an optimization problem to maximize the total profit
for each SL. The problem should throw firm restrictions to prevent low-priority
users from allocating resources that could be utilized by other users with higher
priorities. A single network association should be ensured, as well as supplying
the connected MT with data rate that is at least equal to its requested data rate
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threshold. Thus, the formulated problem is:

PSL: max
∑

k∈K

∑

m∈θk

∑

n∈N

fmnxmn (5.1a)

s. t.
∑

m∈θk

umnxmn 6 Un −
∑

j>k

∑

i∈θj

uinxin ∀ k ∈ K, n ∈ NBS (5.1b)

∑

m∈θk

tmnxmn 6 Tn −
∑

j>k

∑

i∈θj

tinxin ∀ k ∈ K, n ∈ NAP (5.1c)

∑

n∈N

rmnxmn >
∑

n∈N

Qmxmn ∀m ∈ M (5.1d)

∑

n∈N

xmn 6 1 ∀m ∈ M (5.1e)

xmn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (5.1f)

umn ∈ N
+ ∀m ∈ M, ∀n ∈ NBS (5.1g)

tmn ∈ N
+ ∀m ∈ M, ∀n ∈ NAP (5.1h)

Constraint (5.1b) ensures that the capacity of LTE BSs is not exceeded and the
resources allocated to high-priority MTs are not violated. Similarly, constraint
(5.1c) guarantees the same aspects in Wi-Fi APs. Constraints (5.1e) and (5.1f)
assure that a MT will be associated with a single network, or not connected at all
(upon congestion). Constraint (5.1d) guarantees that the data rate received by a
MT is at least equal to its requested data rate threshold. However, we are obliged
to multiply both sides of the inequality by xmn because upon congestion, some
MTs will not be served. Constraint (5.1g) ensures that a single SB (LTE) is not
assigned to multiple MTs simultaneously. Similarly, constraint (5.1h) guarantees
that a single time slot in an AP is not allocated for multiple MTs at the same time.
Note that MTs are distributed in different SL sets θk, and constraints (5.1b) and
(5.1c) ensure that the resources allocated for MTs with SLs higher than k, i.e. MTs
∈ θj such that j > k, are not given to MTs with SL k, i.e. MTs ∈ θk. Therefore, it
is preferable to show the maximization form in terms of all SLs and all MTs in SL
sets instead of directly maximizing for all MTs, i.e. "max

∑
k∈K

∑
m∈θk

∑
n∈N"

instead of "max
∑

m∈M

∑
n∈N". This plays a role in clarifying the characteristics

of the formulated problem.

5.1.3 Problem simplification and solution

The formulated problem (PSL) aims at finding three sets of variables:
– The boolean association variables (xmn).
– The number of SBs allocated for each MT m connected to BS n (umn).
– The number of time slots allocated for each MT m connected to AP n (tmn).

In the following, the number of resources that should be allocated by each network
in order to supply the MT with its requested data rate (if the MT is associated to
the network) is calculated. Hence, umn or tmn can be seen as the weight of MT m in
network n. Thus, the optimization problem now aims at finding only the boolean
association variables xmn. Therefore, based on constraint (5.1d), we calculate the
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number of resources that should be allocated by each network to supply MTs with
their minimum requested data rate, i.e. rmn = Qm ∀m ∈ M. Hence, based on Eq.
(2.3), and according to the approach adopted by [BB15] and [SA14], the minimum
number of resources that should be allocated to MT m if it is connected to BS n
is:

umn =
QmTn
BRB

n γmn

∀n ∈ NBS (5.2)

Similarly, and based on Eq. (2.4) for Wi-Fi APs:

tmn =
QmTn
rtotmn

∀n ∈ NAP (5.3)

In fact, both (5.2) and (5.3) can be seen as the weights of MTs in networks. Thus,
ωmn ∈ N

+ is introduced to indicate the weight of MT m in network n ∈ N such
that:

ωmn =





⌈
QmTn

BRB
n γmn

⌉
∀n ∈ NBS

⌈
QmTn

rtotmn

⌉
∀n ∈ NAP

(5.4)

The ceiling (⌈.⌉) of values in (5.2) and (5.3) is taken to preserve the integral
constraints (5.1g) and (5.1h). Similarly, ζn denotes the capacity of network n ∈ N
such that:

ζn =

{
Un ∀n ∈ NBS

Tn ∀n ∈ NAP
(5.5)

Therefore, based on (5.4) and (5.5), PSL could be reformulated as:

PSL2: max
∑

k∈K

∑

m∈θk

∑

n∈N

fmnxmn (5.6a)

s. t.
∑

m∈θk

ωmnxmn 6 ζn −
∑

j>k

∑

i∈θj

ωinxin ∀ k ∈ K, n ∈ N (5.6b)

∑

n∈N

xmn 6 1 ∀m ∈ M (5.6c)

xmn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (5.6d)

Actually PSL2 could be further simplified by fixing the value
∑

j>k

∑
i∈θj

ωinxin

in constraint (5.6b). To do so, a new variable ̟k+

n is introduced to express the
number of resources that are allocated to MTs with SL > k in network n, i.e. the
total weight of MTs with SL > k. Thus:

̟k+

n =

{
0 if k = K∑

j>k

∑
i∈θj

ωinxin if k < K
(5.7)

Note that ̟k+

n depends on the association results of MTs with SL > k. Hence, if
the association decision for MTs with SL > k is found, ̟k+

n can be considered as a
constant value for MTs with SL k. Therefore, PSL2 is distributed to K problems
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which will be solved sequentially according to the decreased order of priority, i.e.
K, K − 1, . . . , 1. Thus, the user association and resource allocation problem for
MTs with SL k is:

PSL3: max
∑

m∈θk

∑

n∈N

fmnxmn (5.8a)

s. t.
∑

m∈θk

ωmnxmn 6 ζn −̟k+

n ∀n ∈ N (5.8b)

∑

n∈N

xmn 6 1 ∀m ∈ θk (5.8c)

xmn ∈ {0, 1} ∀m ∈ θk, ∀n ∈ N (5.8d)

You can notice that problem PSL3 has the same structure as problem P1.
The difference between problem PSL3 and Problem P1 is that the former aims
at maximizing the profit of all MTs in θk instead of M. Moreover, the capacity
constraint in Problem P1 is "ζn" while in problem PSL3 "ζn−̟k+

n " is considered.
Therefore, the same solutions proposed in Chapters 2, 3, and 4 could be used to
solve Problem PSL3. Hence, to solve Problem PSL3, we propose Algorithms 2′,
3′, 4′, 5′, 6′, 8′, and 9′, which have the same structure as Algorithms 2, 3, 4, 5, 6,
8, and 9 respectively except for M replaced by θk, and ζn replaced by ζn −̟k+

n .
Moreover, Algorithms 7′ and 10′ have the same structure as Algorithms 7 and 10
respectively except for M replaced by θk, and Algorithms 8 and 9 replaced by
Algorithms 8′ and 9′ respectively.

5.1.4 Solution strategy

In this section, we discuss the proposed solution management strategy where a
MT with low priority is not allowed to utilize resources allocated for MTs with hi-
gher priorities. The solution management strategy tries to minimize the number of
times the optimization function is processed without affecting the optimality of the
algorithm. Moreover, the aspects that trigger the resource allocation and user as-
sociation algorithm are discussed. Mainly, the solution management strategy tries
to decrease the number of MTs that are involved within the optimization problem
(PSL3). The resource allocation and user association algorithm is triggered when
one of the following scenarios occurs:

– The current serving network is not able to supply a certain MT with its
requested data rate.

– A new connection is initiated.
– A MT with an active connection is about to leave the boundaries of its

serving network.
However, it is not always required to run the optimization function. For instance,
if a new connection is initiated, the MT could evaluate its candidate networks, and
try to connect to the best one. If the target network has sufficient resources to serve
the newly admitted connection, the MT will connect without having to run the
optimization function. On the other hand, the target network might not be able
to serve the MT unless it dissociates some MTs with lower SL. In this case, lets
assume that the newly admitted MT has a SL of 3, it might be enough to dissociate
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Figure 5.1 – The proposed algorithm that determines the association values of
MT m when it experience one of the scenarios that trigger the resource allocation
and MT association algorithm.

some MTs of SL 1, i.e. run the optimization function for MTs with SL 1, without
having to encompass MTs with other SLs within the optimization problem. The
fact that we have distributed problem PSL2 into K problems PSL3, each for a
specific SL, enables applying such strategy without violating the optimality of the
solution.

MT m undergoes the procedures shown in Figure 5.1 upon experiencing any of
the scenarios that trigger the resource allocation and user association algorithm.
The flow chart outputs the association variables xmn for MT m, and an integer
value g where all MTs with SLs < g undergo the same procedures (shown in
Figure 5.1), as well as some or all MTs with SL g. The optimized version of the
solution (Figure 5.1-step 8 ) indicates using one of the methods proposed to solve
or approximate problem PSL3. When the optimized version of the solution is
deployed, the algorithm in Figure 5.1 finds the minimal number of SLs that will
undergo the optimization problem PSL3. On the contrary, if the optimized version
is not deployed, the algorithm describes the profit-function-based solution for the
problem.
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The algorithm in Figure 5.1 is detailed as follows: Step 1 is an initialization step
where integer g and association variables xmn (n ∈ N ) are set to zero. Λ∗

m denotes
the set of all networks for which MT m is within their coverage range. In step
2, the algorithm chooses the network n having the highest profit. The algorithm
tests in step 3 if the unallocated bandwidth resources of the selected network are
sufficient to serve MT m. If that is the case, xmn is immediately set to 1 (step 7 ),
which indicates the association of MT m to network n. Conversely, if the number
of requested resources is more than the unallocated ones, the algorithm proceeds
to the next step. The association value xmn could be immediately determined in
step 4. If the number of resources that are not allocated to MTs with SLs ≥ lm
is sufficient to serve MT m, then this MT will be surely associated to network
n. However, the algorithm enters an iterative process in step 5 and step 6 to
determine the SL(s) of MTs that might be detached from the selected network. Of
course, it is preferable to detach MTs of the lowest SL first. Hence, g increases by
each iteration. On the other hand, in step 4, if the number of resources that are
not allocated to MTs with SLs ≥ lm is less than the number of resources requested
by MT m, and if the optimized version of the solution is not deployed (step 8 ),
then the algorithm tries to associate MT m to the next top-ranked network (i.e.
the network with second highest profit in Λ∗

m). To do so, the selected network
is removed from the list of available networks in step 11. Step 12 tests if the
cardinality of the available networks set is equal to 0, which indicates that the
algorithm has already tried to associate MT m to all its reachable networks. If so,
MT m will not be served as indicated in step 13. Otherwise, the algorithm tries to
associate MT m to its next top-ranked network.

On the other hand, upon congestion, the optimized version of the solution
allows MT m to use resources allocated for MTs with SLs ≤ lm. In the profit-
function-based solution, MT m is not allowed to allocate resources utilized by
MTs with SL = lm. The idea here is to maximize the profit of MTs with SLs ≤ lm
by efficiently utilizing the resources. Step 9 mainly tests if the number of resources
that are not allocated to MTs with SLs > lm is sufficient to serve MT m. In this
case, the optimization problem PSL3 is sequentially processed, in the decreasing
order of SL, for each SL ≤ lm (step 10 ).

5.1.5 User priority assignment

Till now, we have discussed the user association and resource allocation problem
in HWNs with users having different priorities. However, the aspects that should be
considered upon assigning user priorities are not discussed. Therefore, two general
scenarios are presented.

The first scenario is based on a service level agreement (SLA) that could be
signed between the user and the system operator. The system operator provides
several SLs, each having a different pricing plan. Of course, it is expected that
the best SL will have the most expensive pricing plan. Users are assigned to SLs
according to their selected pricing scheme and the amount of money they are
willing to pay in order to experience better service. The lowest SL is assigned for
users who are not willing to pay extra money in order to experience better service.

The second scenario is related to the communication strategy in emergency
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situations. Usually, in emergency or disastrous situations, a small number of BSs
or APs remain active, and the PSNs suffer from extreme congestion. Therefore, the
heterogeneous wireless system that is based on the remaining active BSs and APs
becomes an essential alternative to PSNs. Hence, in order to prioritize the data
traffic of medical, security, and emergency users, those users should be assigned to
different SLs according to their priority. Normally, ordinary commercial users are
assigned to the lowest SL in this case.

Several other dynamic scenarios could be also considered in order to assign
user priorities. For example, users could be categorized according to their MT’s
battery status. In order to ensure that MTs in the most critical battery status
category are associated to the access technology that requests the lowest power
consumption, those MTs are assigned the highest priority, and their corresponding
power consumption weight (wpc

m) is set to one.
Note that it is beyond the scope of this thesis to discuss the advantages/disad-

vantages or the performance of each scenario. Instead, the problem formulated and
solved could be applied in any scenario having different user priorities. Moreover,
the formulated problem could be flexibly reconfigured to meet operator’s objec-
tives. For example, if it is requested to ensure that MTs with lowest SL are not
always blocked upon extreme congestion, a specific number of resources in each
network could be reserved for MTs with lowest SL. This can be configured in pro-
blem PSL3, by deducting in constraint (5.8b) the number of resources that should
be reserved for MTs with lowest priority in network n. In other words, assuming
that the number of resources that should be reserved in network n for MTs with
lowest priority is denoted by Dn, then, "ζn −̟k+

n " in constraint (5.8b) is replaced
by "ζn −̟k+

n −Dn" if k 6= 1 (k = 1 indicates the lowest SL).

5.2 A new power efficiency maximization solution

Due to the exponential growth in traffic demands, the power consumption of
wireless networks has been subject to extreme expansion. In fact, the information
and communication technology industry is estimated to account for 6% of the
global CO2 emission in 2020 [LF16]. Thus, the power efficiency, i.e. data rate per
power unit, has been imposed as an essential metric in the wireless communication
research fields. Interestingly, the variety of access technologies in heterogeneous
networks reveals different power consumption characteristics. Therefore, hetero-
geneous networks could efficiently participate in decreasing the amount of power
consumed at both networks and MTs.

The power minimization problem has been extensively studied in heteroge-
neous networks. Many studies focus on the power consumption at the MT level.
In [FZZ12] and [KYII10], each MT decreases its own power consumption through
associating to the network that requests the lowest power consumption among
available networks. These studies are categorized as user-centric network selection
strategies ; each MT is satisfied individually without considering a system-wide
user association and resource allocation scheme.

On the other hand, several studies propose a system-wide power minimization
solution. In [VAN+15], authors have formulated an optimization problem to lower
the transmission power of BSs in the downlink of heterogeneous cellular networks.
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The optimization problem formulated in [CFC14] aims at minimizing the number
of active BSs in the system. In [ZHY15], the formulated optimization problem aims
at maximizing the system throughput and minimizing the transmission power of
networks. However, the studies [VAN+15, ZHY15, CFC14] do not consider the
amount of data rate requested by each MT.

The studies [AF16] and [AEK16] propose solutions to maximize the down-
link throughput and energy efficiency. The formulated optimization problems set
constraints on the minimum amount of data rate that should be received by each
MT. However, the main objective is to enhance the system throughput. Such me-
thodology could lead to an inefficient power utilization. For example, a VoIP ap-
plication requests a specific amount of data rate, increasing the data rate beyond
this amount does not contribute any benefit to the system. Instead, power is
wasted on the additional supplied data rate. Hence, in both studies, the ove-
rall power consumption in the system is not evaluated. Moreover, all the studies
[VAN+15, ZHY15, CFC14, AF16, AEK16] do not consider the power consump-
tion at MTs. Instead, they only consider the power consumption at BSs and APs,
i.e. network-centric. So, there is a need to complement the network-centric power
efficiency maximization scheme by the user-centric approach.

Inspired by the user-centric power minimization methodologies, and encouraged
by the network-centric power efficiency maximization solutions, this section pro-
poses a user association and downlink resource allocation algorithm to maximize
the power efficiency of the system. The load-aware proposed solution considers
the data rate requested by MTs that are permitted to be associated with a single
network at a time. Moreover, the power efficiency considers the transmission po-
wer of networks and the power consumption of MTs. The formulated optimization
problem is similar in form to problem P1. Thus, the solutions proposed in this
thesis are used to solve the problem.

5.2.1 Problem formulation and solution

In this section, we aim at formulating an optimization problem to maximize
the overall power efficiency that considers the power consumption at MTs and
networks. Moreover, the constraints of the formulated problem should guarantee
supplying each MT with its requested data rate. The transmission power, in W,
allocated by network n to MT m is calculated according to the following formula:

P Tx
mn =





PRB
n umn

Tn
∀n ∈ NBS

PAP
n tmn

Tn
∀n ∈ NAP

(5.9)
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Thus, the formulated optimization problem for power efficiency which is similar in
form to problem P1 is:

PE: max
∑

m∈M

∑

n∈N

U(Rn − dmn) ·
Qm

P Tx
mn + pcmn

· xmn (5.10a)

s. t.
∑

m∈M

⌈
QmTn

BRB
n log2(1 + γmn)

⌉
xmn 6 Un ∀n ∈ NBS (5.10b)

∑

m∈M

⌈
QmTn
rtotmn

⌉
xmn 6 Tn ∀n ∈ NAP (5.10c)

∑

n∈N

xmn ≤ 1 ∀m ∈ M (5.10d)

xmn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (5.10e)

To avoid supplying MTs with excessive data rate, the power efficiency in (5.10a)
is based on the requested data rate, i.e. Qm, not on the received data rate as in
[ZHY15, CFC14, AF16, AEK16]. Moreover, the power efficiency considers both
the allocated power at networks and the power consumed at MTs.

Similar to what we did in Section 5.1.3, we propose Algorithm 1∗ having the
same structure as Algorithm 1 except for fmn replaced by Qm

PTx
mn+pcmn

. Algorithms
2∗, 3∗, 4∗, 5∗, 6∗, 8∗, and 9∗, which have the same structure as Algorithms 2, 3, 4, 5,
6, 8, and 9 respectively except for fmn replaced by Qm

PTx
mn+pcmn

. Hence, the efficiency
factor emn in Algorithms 5 and 6 is replaced by e∗mn as follows:

e∗mn =





Qm

PTx
mn+pcmn

BRB
n (umn/Tn)

∀n ∈ NBS

Qm

PTx
mn+pcmn

Bn(tmn/Tn)
∀n ∈ NAP

(5.11)

Moreover, Algorithms 7∗ and 10∗ have the same structure as Algorithms 7 and 10
respectively except for fmn replaced by Qm

PTx
mn+pcmn

, and Algorithms 8 and 9 replaced
by Algorithms 8∗ and 9∗ respectively.

5.3 Performance evaluation (priority-based case)

5.3.1 Simulation parameters

In the simulation parameters, since we have different SLs now, we have increa-
sed the maximum number of MTs to 138 in order to better study the characteristics
of each SL alone. The number of users in each SL is the same. Therefore, the simu-
lation parameters are the same as those presented in Section 3.7.1, except that we
have increased the number of APs in the SA to three, and the number of available
RBs in each LTE BS to fifty.

5.3.2 Evaluation metrics

Similar to the metrics used in Section 3.7.2, the following metrics are used to
evaluate the proposed solutions: average profit, average satisfaction, average signal
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quality, average instantaneous power consumption, and blocking percentage. The
satisfaction of MT m when associated with network n is:

ρmn =
fmn

fmn′

(5.12)

where n′ is the index of the network for which MT m achieves the highest profit.
In fact, studying the average value of an attribute is not straightforward in

a scenario where MTs request different amounts of data rate. For example, the

average profit per user, i.e.
∑

m∈θk

∑
n∈N fmnxmn

|θk|
, could be increased through increa-

sing the profit of MTs with low data rate requirements on the expense of other
MTs. Thus, to avert deceptive results, the average profit per requested data rate
is studied according to the following formula:

∑
m∈θk

∑
n∈N fmnxmn∑

m∈θk
Qm

(5.13)

Similarly, the average satisfaction per requested data rate is studied according to
the following formula: ∑

m∈θk

∑
n∈N ρmnQmxmn∑
m∈θk

Qm

(5.14)

Since ρmn represents a normalized value, it is multiplied by Qm in the above
formula.

For the signal quality and power consumption, the average values per served
data rate are considered because there is no mean to calculate these values for the
blocked data rates. For example, setting 0 for the power consumption of blocked
data rate will decrease the average consumed power and contribute misleading
results. Therefore, for power consumption, the average value per served kbps, in
mW/kbps, is: ∑

m∈θk

∑
n∈N pcmnxmn∑

m∈θk

∑
n∈N Qmxmn

(5.15)

Since the value of the signal quality is not related to the requested data rate, it
is multiplied by Qm to reflect the actual signal quality per served data rate. Thus
the average relative received signal quality per served data rate is:

∑
m∈θk

∑
n∈N smnQmxmn∑

m∈θk

∑
n∈N Qmxmn

(5.16)

5.3.3 Simulation results

As we have mentioned before, we will study the performance of the algorithms
discussed in Section 5.1.3.

5.3.3.1 Multiple service levels

First, concerning the effect of providing different SLs, it is obvious from Figure
5.2 and Figure 5.3 that the proposed scheme maintains better profit and satisfac-
tion for high-priority users. It is important to note that the average profit is 0.52
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when the number of MTs is 35 because the profit function normalizes attributes
through dividing them by the global maximum, i.e. max

∀m,n
, which will only lead to

a profit value of 1 when a single MT exists in the system. However, this behavior
does not impact the user satisfaction. As the number of MTs reaches 138, the ave-
rage satisfaction is approximately 0.99, 0.6, and 0.22 for MTs with SLs 3, 2, and 1
respectively (Figure 5.3). Therefore, a remarkable increase in satisfaction is main-
tained upon subscribing to higher SL. The same aspect is observed for the signal
quality (Figure 5.4) and instantaneous power consumption (Figure 5.5). Moreover,
MTs with SLs 3 and 2 do not experience any blockage. Therefore, Figure 5.6 shows
the percentage of blocked data rate for MTs with SL 1 only.

5.3.3.2 General behavior of algorithms

In general, increasing the number of MTs in the system strengthens the compe-
tition to acquire the limited resources of networks. Therefore, the opportunity that
MTs connect to their preferred network decreases. Consequently, MTs experience
degraded service illustrated by the decrease in profit and satisfaction as shown in
Figure 5.2 and Figure 5.3 respectively. In order to increase the overall profit, the
optimization problem PSL3 finds the best set of association values for all MTs in
θk. Thus, the main performance of the optimization problem and its different solu-
tions could be studied through the profit, and consequently through the satisfaction
because it is directly related to the profit. It is shown in Figure 5.2 and Figure
5.3 that the proposed distributed solution with sub-gradient algorithm maintains
the nearest performance to the optimal binary solution based on the branch and
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Figure 5.3 – Average satisfaction (according to Eq. (5.14)).

bound algorithm for MTs with SL 3. The performance of the proposed distributed
solution with sub-gradient algorithm for MTs with SL 3 is respectively followed
by the approximation-based solution, the relaxation-based solutions, and the dis-
tributed solution without the sub-gradient method. The greedy solution, although
it tends to approach the optimal solution, performs near the profit-function-based
solution which has the worst performance. Therefore, the proposed distributed so-
lution with the sub-gradient method efficiently approximates the optimal solution,
and overwhelms the rest of solutions.

Concerning MTs with SL 2, as the number of MTs increases, the distribu-
ted, relaxation-based, approximation-based, and greedy solutions perform near
the optimal solution, and far away from the profit-function-based solution. It is
remarkable that the proposed distributed solution with the sub-gradient method
maintains the nearest performance to the optimal one (Figure 5.2 and Figure 5.3).

Optimal resource allocation for high-priority MTs causes efficient resource uti-
lization in networks. Hence, the chance that MTs with low priority associate to
their preferred network decreases. For example, Wi-Fi APs are usually preferred
for their low power consumption feature ; efficient resource utilization in these APs
lowers the number of unallocated resources, which in turns lowers the chance that
MTs with low priority associate to these APs. Consequently, upon adopting the
optimal solution, MTs with SL 1 experience service near the profit-function-based
solution. This is recognized in Figure 5.2 and Figure 5.3 where the optimal solu-
tion starts approaching the profit-function-based solution as the number of MTs
increases beyond 80.

As a matter of fact, the profit function depends on the location of the MT,
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Figure 5.4 – Average RRSS (according to Eq. (5.16)).
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the requested data rate, the normalized values of the signal quality and power
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consumption, and the weights ws
m and wpc

m which are different between MTs. The-
refore, it is normal not to notice the same behavior of the satisfaction curve (Figure
5.3) reflected in the curves of the signal quality and power consumption (Figure
5.4 and Figure 5.5 respectively). However, the satisfaction could reflect a general
behavior of the compared solutions in terms of signal quality and power consump-
tion. For example, Figure 5.4 and Figure 5.5 show that the proposed distributed
solution with sub-gradient method maintains near-optimal performance for MTs
with SL 3. This is illustrated through high signal quality and low instantaneous po-
wer consumption. Moreover, the degraded service of the optimal solution for MTs
with SL 1 in Figure 5.4 and Figure 5.5 is a result for the same reason discussed
before for the profit and satisfaction of those MTs.

5.3.3.3 Blocking percentage evaluation

In order to fully understand the behavior of the proposed solutions, the per-
centage of blocked data rate should be studied. According to the proposed solu-
tion, the HOE has the privilege to reassign resources used by low-priority MTs to
MTs with higher priorities. Therefore, MTs with SLs 3 and 2 do not suffer from
any blockage throughout the simulation. Concerning MTs with SL 1, Figure 5.6
illustrates that the optimal solution achieves the lowest data rate blockage. The
distributed solutions maintains the nearest blocking percentage to the optimal bi-
nary solution, followed by the approximation-based, relaxation-based, greedy, and
profit-function-based solutions respectively. For instance, the profit-function-based
solution suffers from 19.7% blockage when the number of MTs reaches 138. The
greedy solution and the sub-optimal continuous-relaxation-based solution lower
down this percentage to 11, followed by the optimal continuous-relaxation-based
and approximation-based solutions that score 10% and 9.8% respectively. The dis-
tributed solution without the sub-gradient method achieves 9.4% blocking percen-
tage, while the distributed solution with the sub-gradient method and the optimal
solution scores about 8.9%. You can notice that the distributed solution with the
sub-gradient method achieves slightly higher blocking percentage than the optimal
binary solution. Therefore, as can be seen in Figure 5.6, the proposed distributed
solution with the sub-gradient method achieves and maintains the lowest blocking
percentage among the tested approaches, except for the optimal one of course.
Such result is considered as a major improvement since users subscribing to the
lowest SL would be mainly concerned about having a service, without paying much
attention to the performance.

5.4 Performance evaluation (power efficiency case)

5.4.1 Simulation parameters

Same as those mentioned in Section 3.7.1, except that we want to focus on
the power characteristics when we have zero blockage, so we have increased the
number of RBs in an LTE BS to forty and the transmission power of an AP to
one W.



108 Priority-Based Management And Power Efficiency Maximization

20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

Number of MTs

P
e
rc

e
n

ta
g
e
 o

f 
b
lo

c
k
e
d
 (
u

n
s
e
rv

e
d
) 
d
a
ta

 r
a
te

 (%
)

138

SL=1

(Alg. 7) Distributed (with sub-gradient)
(Alg. 10) Distributed (without sub-gradient)
(Alg. 3&4) Continuous-relaxation (sub-optimal)
Branch and bound (binary optimal)
(Alg. 2) Continuous-relaxation
(Alg. 5) Approximation (

mn
=e

mn
)

(Alg. 6) Greedy (
mn

=e
mn

)

(Flow Chart Fig. 5.1) Profit function

110 120 130
0

1

2

3

4

5

6

7

8

9

10

11

135 136 137 138
7.5

8

8.5

9

9.5

10

Figure 5.6 – Percentage of blocked (unserved) data rate.

5.4.2 Evaluation metrics

The power efficiency is studied according to the following formula:
∑

m∈M

∑

n∈N

Qm

P Tx
mn + pcmn

.xmn (5.17)

The overall network (BSs and APs) allocated transmission power is studied accor-
ding to the following formula:

∑

∀m∈M

∑

∀n∈N

P Tx
mnxmn (5.18)

Since the context of this paper deals with MTs requesting different amounts of
data rate, it is not convenient to study the average power consumption per MT.
Therefore, the average MT power consumption per requested data rate unit (i.e.
kbps) is studied according to the following formula:

∑
∀m∈M

∑
∀n∈N pcmnxmn∑

∀m∈M

∑
∀n∈N Qmxmn

(5.19)

Note that the average power consumption per data rate (in terms of W/bps) has
been also studied in [AEK16].

5.4.3 Simulation results

In this section, we compare the performance of the algorithms discussed in
Section 5.2.1.
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The objective function of the optimization problem PE aims at increasing the
power efficiency. Therefore, the main behavior of the optimization problem and
the solutions could be studied based on the power efficiency. As the number of
MTs increases in the system, networks become more congested. Hence, the chance
that each MT is assigned to its most power-efficient network decreases, which in
turns causes degradation in the power efficiency as shown in Figure 5.7. Moreover,
Figure 5.7 shows that the proposed distributed solution with the sub-gradient me-
thod maintains the nearest performance to the optimal binary solution, where the
optimal binary solution enhances the increases efficiency by 42%, and the distri-
buted solution by 40% when compared to the basic profit-function-based solution
and when the number of MTs reaches 101. Followed by the optimal continuous-
relaxation-based solution and the approximation-based solution which performs
approximately the same and enhances the power efficiency by 37.7% when the
number of MTs reaches 101. Then, the performance is followed by the sub-optimal
continuous-relaxation-based solution, the greedy solution, and the distributed so-
lution without the sub-gradient method which enhances the power efficiency by 36,
35.5, and 23 % respectively. Of course, the profit-function-based solution performs
the worst.

Concerning the transmission power of wireless networks, as the amount of re-
quested data rate increases, networks allocate more downlink resources. There-
fore, the total network transmission power increases upon increasing the number
of MTs in the system as shown in Figure 5.8. It is shown that when the num-
ber of MTs increases beyond 70, the distributed solution with the sub-gradient
method achieves the lowest network transmission power, followed by the optimal
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Figure 5.8 – Overall network transmission power (according to Eq. (5.18)).

binary solution, the sub-optimal continuous-relaxation-based solution, the distri-
buted solution without the sub-gradient method, the approximation-based and the
optimal continuous-relaxation-based solutions, the greedy solution, and finally the
profit-function-based solution.

The total amount of power consumed in the system highly depends on the
MT power consumption. Since ωn ≃ 1.2 W for LTE BSs and ≃ 0.1 W for Wi-
Fi APs, then, approximately 1.1 W could be reduced just by associating a MT
to an AP instead of BS. Interestingly, it is shown in Figure 5.9 that the ave-
rage MT power consumption per data rate unit, i.e. kbps, could be enhanced
up to 30% upon adopting the optimal binary solution, and when compared to
the profit-function-based solution when the number of MTs is 101. Then, the op-
timal continuous-relaxation-based solution and the approximation-based solution
enhances this percentage by 29.3, followed by the greedy solution (28.5 % enhance-
ment), the distributed solution with the sub-gradient method (28 % enhancement),
the sub-optimal continuous-relaxation-based solution, and the distributed solution
without the sub-gradient method which achieves 28.2% and 15% enhancement res-
pectively.

5.5 Conclusion

In this chapter, we have shown how the solutions proposed in this thesis could
be used to inspect new perspectives. Mainly, we have discussed new direct appli-
cations for the problem P1 proposed in Chapter 2, and its corresponding solu-
tions proposed in Chapters 3 and 4. First, we proposed a new application for the
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priority-based user association and resource allocation problem in a system where
users have different priorities. We formulated a new priority-based optimization
problem. Then we simplified it into a new problem with form similar to the pro-
blem P1, and therefore could be solved with the solutions proposed in this thesis.
Moreover, we discussed new perspective for the user association and resource allo-
cation problem to enhance the overall power efficiency (data rate per unit power)
in the system. Simulation results confirm that the proposed distributed solution
with the sub-gradient method maintains the nearest performance to the optimal
solution. Moreover, the proposed centralized approximation-based solution also
shows remarkable results. The rest of solutions proposed in this thesis have shown
also performance much better than the trivial profit-function-based solution. In
particular, the simulation results related to the priority-based management case
encourage users to subscribe to the highest priority where they experience lower
blockage and better service. In addition, the simulation results of the power effi-
ciency application shows that the proposed solutions plays a vital role in decreasing
the overall network transmission power, and the MT power consumption.
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Conclusion and Perspectives

Conclusion

In this thesis, we have proposed several solutions with tolerable complexity for
the user association and resource allocation problem in heterogeneous networks.
The proposed solutions aim at providing an optimized ABC vision that considers
the system as a whole while making decisions. Therefore, users’ satisfaction, needs,
and preferences are considered.

First, in Chapter 2, we have discussed the 802.21.1 MIS SDRAN framework
that provides seamless HO, resource allocation, and centralized management in
HWNs. Based on this framework we have proposed a novel centralized HO scena-
rio and formulated a new global optimization problem for the user association and
downlink resource allocation problem in HWN. The novel formulated optimization
problem considers the network’s capacity and resource allocation constraints, and
aims at maximizing the overall user-centric profit in the system. The user-centric
profit is based on a weighted profit function that aims at jointly increasing the
RRSS and decreasing the MT power consumption. The weights of the profit func-
tion are set according to the user preferences. It is shown through simulations that
the formulated global optimization problem algorithm outperforms significantly
the classical profit-function-based solution. Moreover, it is shown that the propo-
sed profit function responds efficiently to the weight variations. Therefore, it can
be effectively tuned to meet user preferences.

In fact, the global optimization problem proposed in Chapter 2 is solved using
the branch and bound algorithm where the processing time could increase tra-
gically upon increasing the number of MTs and networks in the system. There-
fore, in Chapter 3, we have proposed different centralized solutions with lower
complexities for the formulated user association and resource allocation problem.
The first two proposed solutions are based on the continuous-relaxation of pro-
blem, i.e. relaxing the binary association constraint into a bounded continuous.
The first continuous-relaxation-based solution is with undetermined complexity,
and is considered as the optimal solution based on the continuous-relaxation me-
thodology. The second continuous-relaxation-based solution is with determined
polynomial-time complexity, and is considered as a sub-optimal solution based
on the continuous-relaxation approach. Although the proposed solutions based on
the continuous-relaxation approach have lower complexity than the branch and
bound algorithm, their complexity is still based on the cube of the number of
networks multiplied by the cube of the number of MTs in the system. Therefore,
both solutions do not scale well upon increasing the number of MTs and networks
in the system. Moreover, relaxing the binary constraint into continuous changes

113



114 Conclusion and Perspectives

the characteristics of the problem, which in turns threatens the optimality of the
solution. Therefore, a novel approximation-based solution with lower complexity
have been proposed to approximate the formulated optimization problem without
relaxing the binary constraint. In addition, a new simple greedy heuristic algo-
rithm have been also proposed. The approximation-based solution and the greedy
solution have been further optimized through proposing a new efficiency factor to
estimate the gain contributed upon associating users to networks. The efficiency
factor considers the data rate requirement of users, and the channel conditions
between the MT and the BS or AP.

Simulation results in Chapter 3 show that the proposed sub-optimal continuous-
relaxation-based solution effectively approximates the optimal solution based on
the continuous-relaxation approach. Moreover, simulation results confirm that the
continuous-relaxation approach threatens the optimality of the solution. On the
other hand, the proposed approximation-based solution has shown better perfor-
mance than the continuous-relaxation-based solutions. The simpler greedy solu-
tion have also shown acceptable performance similar to the solutions based on the
continuous-relaxation approach, but with much lower complexity. The proposed
efficiency factor (emn) has also contributed a significant boost in the performance
of the greedy and approximation-based solutions. Generally, the approximation-
based solution demonstrated a remarkable trade-off between the complexity and
performance.

All the solutions proposed in Chapter 3 rely on a centralized entity that is
responsible for processing the proposed algorithms. Therefore, in Chapter 4, we
have proposed two novel distributed algorithms where the processing now is sha-
red between all the networks, i.e each network is responsible for processing a
part of the algorithm, instead of one centralized entity carrying all the proces-
sing. Mainly, in Chapter 4, the optimization problem formulated in Chapter 2
has been distributed into several Knapsack problems, where each problem is inde-
pendently solved by its corresponding network. The Knapsack problem is solved
using dynamic programming procedures in an acceptable time. The first distribu-
ted solution is based on the Lagrangian-relaxation of the optimization problem,
and on the sub-gradient method that finds near-optimal Lagrangian multipliers.
On the other hand, the second distributed solution is similar to the first one but
without the sub-gradient method. The advantage of the second solution is that
it eliminates the iterative sub-gradient phase, which leads to a lower complexity.
The complexity of the distributed solution with sub-gradient method is higher
than that of the greedy and approximation-based solution, but lower than the
continuous-relaxation-based solutions. The second proposed distributed solution
without the sub-gradient method has a very competitive complexity. Simulation
results have shown that the proposed distributed solution with the sub-gradient
method achieves the best performance results among all other proposed solutions
while requiring a slightly higher number of handovers. The remarkable advantage
of the distributed solution without the sub-gradient method is that it achieves
performance similar to the centralized efficiency-based greedy algorithm.

The optimization problem formulated in Chapter 2, and solved in Chapters 3
and 4, aims at maximizing the overall profit of the users in the system. Therefore,
in Chapter 5, we have shown how the solutions proposed in the previous chap-
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ters could be used to inspect new perspectives. Mainly, we have discussed new
direct applications for the formulated problem and its corresponding solutions.
First, we have proposed a new application for the priority-based user association
and resource allocation problem in a system where users have different priorities.
Moreover, we have discussed new perspective for the user association and resource
allocation problem to enhance the overall power efficiency (data rate per unit
power) in the system. Simulation results confirms that the proposed distributed
solution with the sub-gradient method maintains the nearest performance to the
optimal solution. Moreover, the proposed centralized approximation-based solu-
tion also shows remarkable results. The rest of solutions proposed in this thesis
have shown also performance much better than the trivial profit-function-based
solution. In particular, the simulation results related to the priority-based ma-
nagement case encourage users to subscribe to the highest priority where they
experience lower blockage and better service. In addition, the simulation results
of the power efficiency application shows that the proposed solutions plays a vi-
tal role in decreasing the overall network transmission power, and the MT power
consumption.

Perspectives

Many interesting areas and prospects can be further investigated for future
works based on this thesis:

First, we can directly study new perspectives for the formulated problem and
its corresponding solutions, similar to what we did in Chapter 5. For example, we
can study the case where the objective is to maximize the overall data rate in the
system, and compare the effect of this objective on the user experience, i.e. MT
power consumption and RRSS. Accordingly, we can propose a new solution that
jointly aims at enhancing the network profit (overall data rate) and the user-centric
profit.

Second, the optimization problem formulated in Chapter 2 could be easily ex-
tended to account for the uplink resource management, instead of just focusing on
the downlink resources. This could be achieved by adding two linear constraints to
problem P1, similar to constraints (2.22b) and (2.22c) but for the uplink resources.
Accordingly, the continuous-relaxation approach proposed in Chapter 3 could be
also used to solve the problem, but the heuristic algorithms proposed in Chapter
3 should also count for the uplink resources in the same methodology provided for
the downlink resources. Moreover, the Lagrangian-relaxation proposed in Chapter
4 could be also used to the newly formulated problem. However, the Knapsack
problem now should account for the uplink and downlink resources. The Knap-
sack problem formulated in Chapter 4 is one-dimensional, i.e. account only for the
downlink resources. To extend the Knapsack solution to uplink and downlink re-
sources, a multi-dimensional Knapsack problem, in fact two-dimensional, should be
formulated. The multi-dimensional Knapsack problem could be also solved using
dynamic programming procedures.

Third, in this thesis, we studied the case where users request a specific data
rate for different applications (voice, video, and FTP) listed in Table 2.2. In fact,
the formulated problem could be altered easily to maximize the overall quality
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of experience (QoE). For example, in Table 2.2, we have chosen three different
codecs for the voice application. Each codec reflects a specific QoE value, usually
the mean opinion score (MOS) is used to quantify the QoE. Therefore, a voice
user could now be given one of multiple defined data rates, each for a given codec.
Accordingly, a new linear constraint could be added to problem P1 in order to
limit the user for having a single requested data rate that could be chosen by the
algorithm in order to maximize the overall QoE. Video application has also its
specific QoE criteria similar to voice. For FTP users, a linear equation could be
proposed to relate the provided data rate to the QoE. Similar to what we have
discussed in the previous paragraph, the solutions proposed in this thesis could
be altered to enhance the QoE. Moreover, a multi-dimensional Knapsack problem
could be used, where each codec could be seen as a new dimension.

Finally, the optimization problem formulated in this thesis could be extended
to account for users with elastic data rate requirements, i.e. variable data rate
requirement instead of fixed one. However, the solution here is not straight forward
as the three previously provided perspectives. The number of resources requested
by users with elastic traffic could not be fixed, which leads to non-linear problem
for these users. Accordingly, the optimization problem is divided into two major
problems, one linear problem for users with inelastic data rate requirements, and a
second non-linear problem for users with elastic data rate requirements. The former
problem could be solved by the solutions proposed in this thesis, while the later
problem is solved by methods specified for non-linear optimization problems. Note
that non-linear problems for users with elastic traffic have been widely discussed
in HWNs.
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Résumé 

Aujourd’hui, l'extension des exigences du trafic de données 
sans fil dépasse le taux de croissance de la capacité des 
nouvelles technologies d'accès sans fil. Par conséquent, les 
réseaux sans fil mobiles de la future génération proposent des 
architectures hétérogènes, généralement appelées réseaux 
sans fil hétérogènes (HWN). HWN se caractérisent par 
l'intégration des réseaux cellulaires et des réseaux locaux sans 
fil (WLAN) pour répondre aux besoins des utilisateurs et 
améliorer la capacité du système. En fait, l'intégration de 
différents types de technologies d'accès sans fil dans HWN 
offre des choix flexibles pour que les utilisateurs soient associés 
au réseau qui répond le mieux à leurs besoins. Dans ce 
contexte, cette thèse traite le problème d'association 
d'utilisateurs et le problème d'allocation de ressources dans un 
système sans fil hétérogène basé sur des points d'accès Wi-Fi 
intégrés et des stations de base LTE.  

Les contributions de cette thèse pourraient être divisées en trois 
parties principales. Dans la première partie, un nouveau 
problème d’association d'utilisateurs et d'optimisation de 
l'allocation des ressources est formulé pour maximiser la 
satisfaction globale des utilisateurs dans le système. La 
satisfaction de l'utilisateur est basée sur une fonction de profit 
pondérée qui vise à améliorer la puissance relative du signal 
reçu et la diminution de la consommation d’énergie  des 
terminaux mobiles (MT). Étant donné qu'un MT n'est autorisé à 
être associé qu'à un seul réseau à la fois, le problème 
d'optimisation formulé est binaire avec une complexité NP 
complète. Ensuite, plusieurs solutions centralisées avec une 
complexité à temps polynomial sont proposées pour résoudre le 
problème formulé. Les solutions proposées sont basées sur des 
approches heuristiques et sur la relaxation continue du 
problème d'optimisation binaire formulé. 

La deuxième partie de la thèse vise à fournir une solution 
distribuée pour le problème formulé. La solution distribuée 
proposée déploie la technique de détente lagrangienne pour 
convertir le problème global formulé en plusieurs problèmes de 
Knapsack distribués, chaque réseau traite son problème 
Knapsack correspondant. La méthode de sous gradient est 
utilisée pour trouver les multiplicateurs lagrangiens optimaux ou 
sous optimaux. 

Enfin, la troisième partie de la thèse étudie de nouvelles 
perspectives de la formulation du problème d'optimisation et 
ses solutions centralisées et distribuées correspondantes. Un 
problème d’association d'utilisateurs et d’allocation de 
ressources basé sur la priorité est formulé. Le problème est 
ensuite réduit en plusieurs problèmes résolus à l'aide des 
solutions proposées réparties et centralisées. En outre, une 
nouvelle solution de maximisation de l'efficacité énergétique est 
proposée en modifiant les objectifs du problème d'optimisation 
originalement formulé. 
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Institut National des Sciences Appliquées de Rennes 
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Abstract 

It is indicated that the expansion of the wireless data traffic 
requirements exceeds the capacity growth rate of new wireless 
access technologies. Therefore, next-generation mobile 
wireless networks are moving toward heterogeneous 
architectures usually referred to as heterogeneous wireless 
networks (HWNs). HWNs are usually characterized by the 
integration of cellular networks and wireless local area networks 
(WLANs) to meet user requirements and enhance system 
capacity. In fact, integrating different types of wireless access 
technologies in HWNs provides flexible choices for users to be 
associated with the network that best satisfies their needs. In 
this context, this thesis discusses the user association and 
downlink resource allocation problem in a heterogeneous 
wireless system that is based on integrated Wi-Fi access points 
(APs) and long-term evolution (LTE) base stations (BSs).  

The contributions of this thesis could be divided into three main 
parts. In the first part, a novel user association and resource 
allocation optimization problem is formulated to maximize the 
overall user satisfaction in the system. The user satisfaction is 
based on a weighted profit function that aims at enhancing the 
relative received signal strength and decreasing the power 
consumption of mobile terminals (MTs). Since a MT is only 
allowed to be associated with a single network at a time, the 
formulated optimization problem is binary with an NP-complete 
complexity. Then, multiple centralized solutions with polynomial-
time complexities are proposed to solve the formulated 
problem. The proposed centralized solutions are based on 
heuristic approaches and on the continuous relaxation of the 
formulated binary optimization problem.  

The second part of the thesis aims at providing a distributed 
solution for the formulated problem. The proposed distributed 
solution deploys the Lagrangian relaxation technique in order to 
convert the global formulated problem into multiple distributed 
Knapsack problems, each network processes its corresponding 
Knapsack problem. The sub-gradient method is used in order to 
find the optimal, or near optimal, Lagrangian multipliers.  

Finally, the third part of the thesis studies new perspectives of 
the formulated optimization problem and its corresponding 
centralized and distributed solutions. Mainly, a generalized 
priority-aware user association and resource allocation problem 
is formulated. The priority-aware problem is then reduced into 
multiple problems that are solved using the proposed 
centralized and distributed solutions. Moreover, a novel power 
efficiency maximization solution is proposed by altering the 
objectives of the main formulated optimization problem. 
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