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Abstract

Extracellular recording of electrical activity is a widespread technique in neurosciences,
but only recently has it been applied to pancreatic islets and beta cells. The ease of use of
Microelectrode Arrays (MEAs) has opened new perspectives for the electrophysiology of pan-
creatic cells, including screening methods for clinics and biosensor approaches for the artificial
pancreas. This thesis is a contribution to the design and characterization of a hybrid biosensor
composed of pancreatic cells cultured on an MEA and dedicated processing electronics. This
device is the product of multi-disciplinary projects conducted at IMS (Bioelectronics group),
partnered with CBMN (Cell biology and Biosensors team), both at the University of Bor-
deaux. Projects also involved the endocrinology service of university hospitals in Bordeaux,
Montpellier, Grenoble, and Geneva.

The covered projects include:
— ISLET-CHIP (French ANR 2013-PRTS-0017), investigating a method of evaluating the

quality of a preparation prior to its transplantation in type-I diabetic patients.
— BIODIA (EU FEDER), characterizing islet electrical response to glucose, hormone, and

drug stimuli for screening, cell differentiation, and closed-loop approaches.
— DIAGLYC (French regional grant 2017 1R30 226), investigating the use of the hybrid

biosensor as an artificial pancreas front-end sensor.
The thesis tackles the biosensor in both its electronic and biological aspects, its integration

in applicative experimental setups, and experimental results. It also addresses the modeling
of a closed regulation loop for type-I diabetic patients.

First, the electronic processing platform is described. It is a custom board performing
multichannel acquisition and digital signal processing. It is built around an FPGA (Field
Programmable Gate Array) that makes its processing architecture versatile and evolutive. It
is capable of measuring, displaying and storing multichannel data. Computation was optimized
for low-processing latencies compatible with closed-loop configurations. Both its processing
algorithms and architecture are detailed.

Then, experimental results using this system and its algorithms are shown to illustrate islet
response to glucose, drug, and hormone stimuli. Islet activity is quantified by analyzing Action
Potentials (APs), and more importantly Slow Potentials (SPs), a novel electrical signature
exclusively measured on pancreatic islets. These measurements in both steady state and
dynamic regime help characterize the biosensor response, but also shed light on the endogenous
algorithms of islets of Langerhans.

Finally, approaches for integrating the biosensor in an artificial pancreas are investigated.
The measured glucose and hormone responses are modeled and simulated in a full-body
glucose-insulin system. This concept is novel in that the sensor in charge of measuring in-
sulin demand in the body is not only sensitive to glucose, but also to blood hormones.

Key words
Biological signals, FPGA, Diabetes, Bioelectronics,
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Résumé

L’enregistrement extracellulaire d’activité électrique est une technique très répandue en
neurosciences, mais son application aux îlots pancréatiques et cellules bêta n’est que très ré-
cente. La facilité d’utilisation des MEAs (Microelectrode Arrays, Matrices de Microélectrodes)
a ouvert de nouvelles perspectives à l’électrophysiologie des cellules bêta, dont des méthodes
de criblage en clinique ou des approches biocapteur pour le pancréas artificiel. Cette thèse
contribue à la conception et la caractérisation d’un biocapteur hybride composé de cellules
pancréatiques cultivées sur un MEA et d’un système électronique de traitement du signal. Le
système ainsi réalisé est le fruit de collaborations et projets pluridisciplinaires menés à l’IMS
(groupe bioélectronique), en partenariat avec le CBMN (biologie cellulaire et biocapteurs),
tous deux au sein de l’Université de Bordeaux. Les projets faisaient également appel au service
d’endocrinologie des Hôpitaux Universitaires de Bordeaux, Montpellier, Grenoble et Genève.

Les projets en question incluent :
— ISLET-CHIP (ANR 2013-PRTS-0017), qui explore une méthode pour évaluer la qualité

d’un greffon pancréatique destiné à des patients diabétiques de type I.
— BIODIA (EU FEDER), qui caractérise la réponse électrique d’îlots à des stimuli de

glucose, hormones et médicaments pour des applications de criblage, différentiation cel-
lulaire, et en boucle-fermée.

— DIAGLYC (Bourse régionale 2017 1R30 226), qui étudie l’utilisation du biocapteur hy-
bride comme un capteur pour le pancréas artificiel.

La thèse aborde le biocapteur dans ses aspects à la fois électronique et biologique, son
intégration dans des expériences appliquées, et ses résultats expérimentaux. Elle s’intéresse
également à la modélisation d’une boucle de régulation chez le patient diabétique de type I.

D’abord, le système d’analyse électronique est décrit. Issue de l’équipe Elibio, il réalise
acquisition multicanaux et traitement du signal numérique. Il est construit autour d’un FPGA
(Field Programmable Gate Array) qui rend son architecture de calcul polyvalente et évolutive.
Il est capable de mesurer, afficher, et enregistrer des données multicanaux. Le calcul embarqué
est optimisé pour de faibles latences de calcul, compatibles avec des applications en boucle
fermée. La thèse décrit ses algorithmes de traitement et son architecture.

Des résultats expérimentaux utilisant le système et ses algorithmes sont ensuite montrés
pour illustrer la réponse des îlots à des stimuli de glucose, médicaments et hormones. L’activité
des îlots est quantifiée en analysant leurs APs (Action Potentials, Potentiels d’Action), et plus
notoirement leurs SPs (Slow Potentials, Potentiels Lents), une nouvelle signature électrique
exclusivement mesurée sur les îlots pancréatiques. Ces mesures, en régimes statique et dyna-
mique, contribuent non seulement à caractériser la réponse du biocapteur, mais aussi à mettre
en évidence les algorithmes internes des îlots de Langerhans.

Enfin, des approches pour l’intégration du biocapteur dans un pancréas artificiel sont étu-
diées. Les réponses au glucose et aux hormones sont modélisées et simulées dans un modèle
des interactions glucose-insuline dans le corps entier. Ce concept est novateur dans le sens où
le capteur en charge de mesurer le besoin d’insuline n’est pas seulement sensible au glucose,
mais aussi aux hormones présentes dans le sang.

Mots-clés
Signaux biologiques, FPGA, Diabète, Bioélectronique
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Introduction

“I think the popular view of Sci-
ence is a solid body of truth, shared
by a whole lot of learned men in
a room, all agreeing on the an-
swers to the questions of how the
Universe works. Whereas nothing
could be further from the truth. The
one truth that I see emerging from
the History of Science is that ex-
periment has always surprised theo-
rists.”

- Brian May

Bioelectronics is a field of research in which biological materials interact with electronic
systems, generally with the final goal of supplanting an impaired body function.

To achieve that, bioelectronics takes advantage of cells having measurable electrical activ-
ity. With the joint efforts of many areas of expertise including biology, electronics, medicine,
chemistry, cognitics, etc. it aims at, on one end, acquiring information regarding body state,
performing decision-making, and on the other end executing an action (a stimulus) in return.
Studies in bioelectronics include developing techniques to record electrical biological signal,
understanding the electrophysiological mechanisms behind it, model cell and cell network be-
haviour, design embedded systems for prosthetics, conceive bio-compliant ways of electrically
stimulating tissues, or design physiologically-accurate controllers that transparently restore
body functions.

The best-known applications of bioelectronic techniques are those of neurosciences, where
action potentials fired by neurons are recorded and studied to explain mechanisms of the brain
and the nerve system. Prior to neurosciences, the pioneering application of bioelectronics was
the electrical stimulation of nerves and muscles, which gave birth to the pacemaker. Driven
by an aging population and a general fascination for these science-fiction-like disciplines, more
and more advances are being made. Well mastered techniques can now supplant failing organs:
pacemakers assist a million failing hearts every year, deep brain stimulation negates Parkinson’s
disease tremors, cochlear implants restore hearing in the deaf, mind-controlled prosthetics start
to appear, and retinal implants progressively give sight to the blind.

Despite the main body of bioelectronic research being focused on the brain and the nerve
system, other cells have measurable electrical activity: this thesis explores the extracellular
measurement of pancreatic islets, and more specifically that of its insulin secreting β cells.
Just like neurons signal communication with action potentials, pancreatic β cells signal insulin
release with action potentials as well as a unique group signature called slow potentials. These
activities are modulated by the different nutrients and hormones present in the body and can
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26 INTRODUCTION

be utilized to acquire information regarding body state and, for example, supplant a failing
pancreas.

Type 1 Diabetes Mellitus (T1D) in an autoimmune disease in which β cells are attacked
and destroyed by the organism. In the absence of these cells, the body cannot secrete in-
sulin and regulate its glucose levels. The patient must therefore manually and accurately dose
and inject him/herself with insulin, to avoid life-threatening hyper- and hypoglycaemia. Bio-
electronics has brought solutions to this disease by automating part of the self-management
process (measuring glucose, and dosing and injecting insulin). A device capable of assisting
a T1D patient in these tasks is referred to as an artificial pancreas, even though it does not
currently possess all the sensitivities of the actual organ. Indeed, artificial pancreas sensors
only measure glucose levels, and other factors influencing glycaemia and insulin secretion must
be compensated manually.

The novel method investigated in the following study proposes to utilize pancreatic islets
as a sensing material, and transducing their electrical activity into an image of insulin de-
mand. An embedded electronic system is proposed to measure multi-site islet activity and
integrate multiple parameters regarding their activity patterns. The biosensor thus formed
has of course applications in hormone- and nutrient- sensitive sensing of insulin demand for
the artificial pancreas, drug screening for pharmacological applications, and islet screening for
clinical applications.

This thesis studies the utilisation of such a biosensor, focusing on the design and utilization
of the electronic transducer. The first chapter introduces the scientific context. It explains
the pathophysiology of T1D, the electrophysiology of the impaired cells, and techniques for
measuring their electrical activity. It finally presents the concept of a biosensor for insulin
demand using pancreatic cells and its possible applications. The second chapter gives a detailed
description of the processing electronics developed to transduce multichannel cell activity.
The FPGA-based hardware platform is described, as well as the processing architecture and
algorithms implemented to satisfy the specificities of electrical cell activity. The third chapter
gives experimental results obtained on murine and human cells. Modulation of electrical cell
activity by glucose and hormones is studied and analyses of the observed phenomena are
provided. The fourth chapter utilizes the established experimental results to produce a model
of the biosensor. This model is simulated within a whole-body glucose-insulin system to
demonstrate its ability to be used as a sensor for the artificial pancreas. Finally, an alternate
measurement is proposed to account for the biosensor’s multiple sensitivities while maintaining
compatibility with glucose-dependent insulin dosage tables.



Chapter 1

Scientific context

The fact that we live at the bot-
tom of a deep gravity well, on the
surface of a gas covered planet go-
ing around a nuclear fireball 90 mil-
lion miles away and think this to be
normal is obviously some indication
of how skewed our perspective tends
to be.

- Douglas Adams, The Salmon of Doubt:
Hitchhiking the Galaxy One Last Time

1.1 Type 1 Diabetes Mellitus
Type 1 Diabetes Mellitus (T1D) is an autoimmune disease targeting pancreatic β cells and

leading to absolute insulin deficiency. Its prevalence is constantly rising as it concerns 5-10%
of the current 371 million patients suffering from all forms of diabetes, expected to rise to 592
million by 2035 worldwide. T1D is without question one of the most common chronic diseases
of childhood [1, 2]: it is most often diagnosed in children/young adults, generally presenting
with a trio of symptoms (polydypsia 1, polyphagia 2, polyuria 3) alongside overt hyperglycaemia
[3]. Because of its early development, it was also classified in the past as "juvenile diabetes".
It is a currently incurable disease and requires lifelong exogenous insulin replacement. While
modern medicine has treatment options, good practice of the techniques, and provides near-
normal life conditions to patients, it remains a disease with fatal consequences if neglected or
treated incorrectly (Fig. 1.1).

T1D is not to be confused with Type 2 Diabetes (T2D), which is characterized by the body
developing insulin resistance and losing the ability to respond to insulin. Generally the body
compensates by producing more insulin, which over time strains β cells and destroys them.
Both diseases can be differentiated by opposing characteristics: T1D is (a) often diagnosed in
childhood, (b) not associated with excess body weight, (c) associated with high ketone levels
at diagnosis, (d) treated with insulin injection, and (e) cannot be controlled without insulin
therapy, while T2D is (a) usually diagnosed in over 30 year-olds, (b) is often associated with
excess body weight, (c) is often associated with high blood pressure and/or cholesterol levels,
(d) is usually treated initially without medication, and (e) sometimes can be controlled with
interrupted medication.

1. excessive thirst
2. excessive hunger
3. excessive urination
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28 CHAPTER 1. SCIENTIFIC CONTEXT

Figure 1.1 – Personalities known to have developed T1D. From left to right: Singer, guitarist
and composer David Crosby performing on stage at age 74; Actress Mary Tyler Moore
at age 31 on the Dick Van Dyke Show, deceased in 2017 at age 80 from pneumonia; Drummer
Brad Wilk performing on stage at age 44; Drummer John Rutsey (middle) in the original
line-up of the Canadian band Rush, deceased at age 55 from a heart attack precipitated by
diabetes.

1.1.1 Epidemiology and prevalence

T1D is widely accepted as a complex disease, and while it is common grounds that its
development has both genetic and environmental causes, its detailed origins are an on-going
debate. It most often presents at two peaks during childhood and adolescence [3]: one between
5 and 7 years of age, and the other at or near puberty [4]. It seems to affect men and women
equally (though debate exists with a slightly increased prevalence towards male gender [5, 6]).

Environmental causes It is often said that the prevalence of T1D is increased in certain
ethnic groups. Because of the lack of global studies however, geographic and ethnic incidence
has been unclear in the past. Only recently have studies unveiled precise observations: in
the United States, the highest rates were observed for non-Hispanic white youth (24.8 per
100,000 per year among those <10 years of age) [7], and at a global level, the incidence of T1D
positively correlates to the distance north of the equator, with more that 350-fold variations
[1, 8, 9]. The disorder is most common in Finland (60 cases per 100,000), Sardinia (40 cases
per 100,000), and Canada, Great Britain, New Zealand, Norway, Portugal, Sweden (>20 cases
per 100,000), and the least common in China, India, and Venezuela (0.1 cases per 100,000)
[8–10].

Genetic causes Genetic factors also contribute to the incidence of the disease, as shown by
an increased risk of developing the disease if a first-degree relative has it: people with a T1D
first-degree relative have a 1 in 20 risk of developing it, whereas the risk in the United States
is on 1 in 300 [11]. In addition, monozygotic twins have a 30 to 50% disease concordance,
while dizygotic twins only have a 6 to 10% disease concordance. [3]. However, new T1D cases
are diagnosed in people with no known family history for the disease in 85% of the cases [3].
While genes have been associated with the likeliness of the disease [12], not a single one has
been identified as either necessary or sufficient to predict the disease [3].

1.1.2 Pathophysiology

As previously mentioned, T1D is an autoimmune disease that targets pancreatic β cells,
which are responsible for insulin secretion. Insulin is the hormone necessary to get glucose
(sugars broken down by the body) from the bloodstream and into the cells, to metabolize it into
energy. In the absence of insulin, glucose accumulates in the bloodstream and increases risks of
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cardiovascular diseases, nerve damage, kidney damage, retina blood vessel damage, cataract,
feet problems caused by poor blood flow, bone and joint problems, and teeth infections.

It is still unclear why β cells are specifically targeted by the autoimmunity, as well as
what the mechanisms inducing it are [13, 14]: whether it is molecular mimicry 4, breakdown in
central tolerance 5, sensitivity of β cells to free-radical damage, local viral infection, or other
causes [15] has been and is still under debate.

With the lack of access to the pancreas, T1D is generally identified with the presence of
specific autoantibodies, but post-mortem examinations or biopsies 6 are the only means of
witnessing actual β cell damage and studying it. The inflammatory lesion is characterized
by a decrease or absence of β cells (pseudo-atrophic islets, devoid of insulin-producing cells),
and an infiltrate composed of T-lymphocytes, B-lymphocytes, and macrophages. T1D usually
presents once 80 to 90% of the β cells have been destroyed [16].

1.1.3 Existing treatments

While many forms of treatment exist for T1D, strategies can be summed up into two
main categories: insulin therapy and transplantation. The wide majority of T1D patients are
treated with insulin therapy, which involves performing regular glucose measurements (referred
to as Self-monitoring of blood glucose (SMBG)) using needles to sample a drop of blood and
performing the measurement with enzymatic glucose sensors. The resulting indication of blood
glucose helps determine the dose of insulin to be administered subcutaneously. This method of
administration is usually called Multiple Daily Injections (MDI), and is the most widespread
method of self-management. In addition to SMBG, patients need to account for and anticipate
meals, physical activity, stress, and their sleep schedule to modulate insulin dosage accordingly.
The goal of insulin therapy is to provide insulin in as physiologic a manner as possible, which
is why different types of insulin exist and help patients regulate their glucose levels more
efficiently: slow-acting insulins are administered as boluses, maintaining insulin at basal levels
while fast-acting insulins are injected shortly before meals (pre-prandial) to compensate for
sugar intake.

Treatment aims at keeping glucose within target levels and limit hyperglycaemia and more
importantly hypoglycaemia and its dire consequences; while hyperglycaemia is dangerous in the
long term (increased risks of cardiovascular disease, diabetic foot infections, diabetic retinopa-
thy, etc.), hypoglycaemia can rapidly cause confusion, loss of consciousness, and ultimately
death. For that reason, insulin injections must result from careful assessment of current and
future situations, which is a known source of errors for children and adolescents with lower
experience and education of the disease [17, 18].

Many commercial products (Roche Accu-Check, Insulet OmniPod, Medtronic 530G, Ani-
mas Vibe) aim at facilitating self-management with automatic Continuous Glucose Monitors
(CGMs) and dosage directions adapted to the context. In the same direction, the Continuous
Subcutaneous Insulin Injection (CSII) regimen is being developed, proposing insulin pumps
(Fig. 1.2) that perform equally to MDI once metabolic control is achieved [19]. This ten-
dency of automating insulin therapy introduces the concept of artificial pancreas, which will
be discussed further in the next section.

Patients with severe cases of T1D can also be treated with a pancreas transplant. While it
is possible to transplant a whole pancreas, the method of interest in this manuscript is islet cell
transplant, where islets of Langerhans are isolated and injected into the portal vein (Edmon-
ton Protocol), where the main body of insulin secretion should normally originate. Although
this procedure had problems in the past, it has benefited from new techniques and better
immunosuppressive drugs to prevent islet rejection. In a study from one of our partners, in
which 44 patients received a total islet mass of roughly 10,000 IEQ (islet equivalent) per kilo-
gram of body mass (requiring 2 to 4 donors) [20], 33 (75%) of the patients experienced insulin

4. sharing of antigenic properties
5. a failure to establish immunity to self-antigens
6. which are mostly not considered ethically feasible for safety reasons
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Figure 1.2 – A Deltec Cozmo insulin pump with its infusion set

independence during the five-year follow-up period (median duration of insulin independence:
19.25 months).

Still, only the most severe cases of T1D benefit from pancreas transplants because of
the lack of accessibility to donors. Current research is therefore mostly oriented towards
automation of insulin therapy, to facilitate treatment for adults, but also for children and
adolescents who usually require closer medical surveillance [17, 18].

1.2 Continuous Glucose Monitors

1.2.1 Principle

In diabetes treatment, CGM coupled with insulin delivery (sensor-augmented pump) has
provided powerful means in improving therapeutic outcomes and quality of patient’s life [21].
CGM in diabetes relies on subcutaneous glucose measuring via electrochemical electrodes and
the use of algorithms to predict insulin dosage [22, 23]. It has made a considerable way since
its initial introduction in a clinical setting in the 1970s [21, 24, 25], brought down size and
provided autonomy and comfort to the patients and carers. Moreover, a number of studies
have clearly shown that CGM reduces hyperglycaemia as compared to other therapies and is
thus expected to reduce the dire long-term complications of T1D [25, 26].

CGMs measure interstitial glucose levels every 1-5 minutes and provide efficient directions,
alarms, and tendency graphs to the patient to help with avoiding hyper- or hypoglycaemic
events. It however has some drawbacks. First, there is a time lag between glucose levels in
capillary blood and interstitial space, causing readings to differ from classic (capillary) meth-
ods. Secondly, both due to the hyper-availability of data and interstitial measurement delay,
patients may overtreat hyperglycaemia (stacking insulin doses) [19]. This is why, paradoxi-
cally, these devices designed to simplify everyday life for T1D patients are only recommended
by the Endocrine Society [27] in adult patients who have demonstrated proficiency in self-
management. Intermittent use of CGM is only suggested for patients with suspected nocturnal
hypoglycaemia, postprandial hyperglycaemia, hypoglycaemic unawareness, and patients with
important changes to their diabetes regimen.

1.2.2 Artificial pancreas

With the development of automation in both glucose monitoring and insulin injection,
closed-loop systems appeared including a CGM in constant communication with an infusion
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pump. In addition to these, a blood glucose meter is utilized for calibration. Regulation
algorithms (controllers) are run on external processors, reading information from the CGM
and producing dosing instructions for the infusion pump [27]. The closed-loop system formed
is referred to as an Artificial Pancreas Device (APD).

APDs are in constant development and were classified by the Juvenile Diabetes Research
Foundation (JDRF) into 6 categories based on their level of automation (Fig. 1.3). The first
generation (stages 1-3) of APDs are non-closed-loop in that they only have automatic insulin
delivery interruption when a risk of hypoglycaemia arises. Second generation APDs (stages 4-
5) have automated insulin delivery. Stage 4 (current state of practice) are hybrid systems that
have automated glucose regulation at all times but require manual intervention to announce
meals or exercise. Stage 5 are fully automated insulin delivery systems. Third generation
APDs (stage 6) are fully automated dual hormone closed-loops: in addition to insulin, they
have a glucagon pump that helps treat severe risks of hypoglycaemia.

1 2 3 4 5 6
First generation Second generation Third generation

Very Low Glucose 
Insulin Off Pump

Hypoglycemia 
Minimizer

Hypoglycemia/
Hyperglycemia 

Minimizer

Automated
Basal/Hybrid 
Closed-Loop

Fully Automated 
Insulin Closed-

Loop

Fully Automated 
Multi-Hormone 

Closed-LoopPump shuts off 
when user not 
responding to 
low-glucose alarm

Predictive 
hypoglycemia 
causes alarms 
followed by 
reduction or 
cessation of 
insulin delivery 
below low 
threshold

Same as Product 
#2 but added 
feature allowing 
insulin dosing 
above high 
threshold (e.g. 
200mg/dl)

Closed-loop at all 
times with meal-
time manual 
assist bolusing

Manual meal-time 
bolus eliminated

Figure 1.3 – The six stages of artificial pancreas development as classified by the JDRF.

1.2.3 Limitations

CGM and linked drug delivery is a modern approach to measure blood glucose and achieve
body homeostasis in chronic diseases. In the healthy body, most of the relevant physiological
parameters are controlled within a tight range and only minor excursions are tolerated. Potent
hormones play a major role in achieving homeostatic control and deviation results in long-term
damage of the organism, marked acute impairment, or even death [28].

In diabetes therapy, currently used CGMs rely on electrochemical enzyme-linked electrodes
to measure glucose levels. Several important signals are therefore not integrated in the mea-
surement: first, lipids represent a varying part of nutrition, and certain triglycerides arrive
early in the general circulation and also stimulate insulin secretion to attain lipid homeosta-
sis [29–31]; Second, hormonal signals translate the general body state (exercise, stress) and
strongly influence insulin secretion. Specifically, secretion during the circadian cycle is modu-
lated through incretins [32], and physical or emotional stress signal a lesser demand in insulin
through adrenaline [33].

The main sources to take into account in the glucose regulation process are meals, physical
activity, sleep, and stress. Yet, sensors are still only sensitive to glucose, limiting automation
to meal compensation, and ignoring exercise, sleep, and stress. While biometric variables, such
as heart rate, can be monitored to collect information regarding patient physiological state,
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the most reliable sources of information remain hormone levels.
The main issue in continuous therapy design concerns the body status sensor: ideal sensors

should be multiparametric and provide direct integration of all insulin-modulating variables.
Clearly, the best indicator of insulin demand in the body, healthy or diseased, is the organ itself,
and more specifically the β cell, responsible for insulin secretion and multivariable integration
of body state.

1.3 Electrophysiology of the pancreatic β cell
Pancreatic β cells are found in pancreatic islets (or islets of Langerhans, Fig. 1.4). These

islets are 20 to 40 µm in diameter, 3 million in number [34], and contain α cells (20%) pro-
ducing glucagon, β cells (65-80%) producing insulin, δ cells (<10%) producing somatostatin,
γ cells (<5%) producing pancreatic polypeptide, and ε cells (<1%) producing ghrelin.

Pancreatic β cells are responsible for producing, storing, and releasing insulin. Similarly
to neurons, they are excitable cells, meaning they have measurable electrical activity and can
be electrically stimulated to produce Action Potentials.

1.3.1 General electrophysiology
Electrophysiology is a branch of physiology that studies the electrical properties of biolog-

ical cells. Indeed, biological cells and tissues exhibit electrical activity which principles differ
from silicon-based electronics: while electronic components deal with electrical currents gen-
erated by flows of freely moving electrons, currents in electrophysiology are generated by ions.
Ions, like electrons, are carriers of electric charge that can freely transit and accumulate, in
turn generating currents and potentials.

Cell membranes are dotted with ion channels, complex pore-forming proteins that allow
specific ions to pass through the membrane (Fig. 1.4C). Some of these channels are opened or
closed by cell events (see next section) while others are constantly open and act as ion pumps.
For instance, the sodium/potassium (Na/K) pump pushes two potassium ions (K+) into the
cell for every three sodium (Na+) it pumps out. This unbalanced double gradient results in a
net loss of positive charges within the cell. This in turn generates what is called the resting
membrane potential, a baseline difference in electric potential across the plasma membrane
ranging between -60 and -80 mV.

1.3.2 Transient ion mechanisms in the β cell
In β cells, glucose is transported through the membrane by the GLUT2 transporter and

metabolized through a process called glycolysis. This process results in a net increase of high-
energy adenosine triphosphate (ATP) molecules. This rise in ATP causes ATP-dependent
potassium (K+) channels to close, causing the membrane to become less permeable to K+

ions that consequently build up inside the cell. The resulting depolarization causes Voltage-
dependent calcium (Ca2+) channels to open an the positive ion influx causes the membrane
to further depolarize. Calcium ions in turn precipitate exocytosis, a process in which vesicles
containing Insulin Secretory Granules (ISGs) fuse with the membrane and release insulin
outside the cell. [35]. Membrane repolarization is achieved thanks to the combined activation
of calcium- and voltage- dependent potassium channels [36], as well as the time-dependent
inactivation of sodium and calcium channels [36]. The excess of calcium ions is also transported
out of the cell by pumps and removal of Ca2+ sequestrated in insulin granules by exocytosis
[37].

This process not only liberates insulin, but also causes a typical electrical variation of
cell membrane called the Action Potential (AP). The described exocytosis and AP generation
mechanisms are summarized in Fig. 1.4C-D. This process is extremely fast and happens in a
few tens of milliseconds, and up to 12 times per second in secretory conditions [38].

Cell activity is moreover modulated by a myriad of other mechanisms and molecules (hor-
mones, neurotransmitters, nutrients). Certain molecules can further modulate ion channels
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and contribute to polarizing states: inhibitors of secretion adrenaline (epinephrine) and so-
matostatin cause KATP channels to open and hyperpolarize the cell [39]. Potentiators of secre-
tion also exist, including Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic
peptide (GIP), cholesystokinin (CCK), peptide YY (PYY), and oxyntomodulin, which are
released from the gut in response to food transit [40]. They are responsible for the increase of
insulin release in response to food intake versus an identical change in glycaemia imposed by
intravenous injection of sugar [41]. Other potentiators of secretion include vasoactive intestinal
peptide (VIP), fatty acids, and acetyl choline.

Another mechanism consists in groups of β cells communicating through gap junctions (or
Connexin 36, Cx36 in Fig. 1.4C). These channels let Ca2+ ions transit from one cell to another
and synchronize insulin secretion as well as electrical activity. The complex summation of
ionic fluxes in the extracellular space causes slower (<1 Hz) variations in the potential in the
vicinity of cells, represented in Fig. 1.4E, and called a slow potential. This phenomenon was
first reported in [42] and characterised in [43]. Its shape and properties are reportedly unique
to pancreatic islets.

The charges in transit across the membrane cause variations in potential that can be mea-
sured with conductive electrodes. If this potential is measured inside the cell, the measurement
is described as intracellular, and exhibits traces resembling that of Fig. 1.4D. If, on the con-
trary, the potential is measured outside the cell (in its vicinity), the measurement is described
as extracellular and reflects the group behaviour of all nearby cells, exhibiting activity resem-
bling that of Fig. 1.4E. The next section describes the techniques that can be used to obtain
such measurements.

1.3.3 Measurement techniques

Cell activity can be measured with various techniques. Some focus on measuring membrane
potential, while others measure ion fluxes, membrane capacitance variations, or even optical
cues reflecting internal behaviour. Due to the nature of this study (see section 1.5), the
description of measurement techniques is restricted to those reflecting transmembrane ionic
currents. The section first gives a historical background on the patch-clamp technique, and
draws its limits to introduce multielectrode extracellular techniques.

Patch-clamp techniques

The study of cell mechanisms and ion fluxes has been catalysed by the development in the
late 1970s of the patch-clamp technique. It is an electrophysiology technique that allows high-
resolution current recordings of whole cells or excised cellular patches. Its resolution is even
sufficient to capture single-channel opening events. Voltage-clamp was most notably utilized
by Alan Lloyd Hodgkin and Andrew Huxley in 1952 to reveal the ion channel events of APs
[44], which awarded them the Nobel Prize in Physiology and Medicine in 1963. Since then,
immense improvements to the technique have been made in resolution [45], seal quality and
signal-to-noise ratio [46].

The principle of patch-clamping (Fig. 1.5A) is sealing a glass or quartz micropipette onto
cell membrane by applying suction, hence isolating (with a seal measured in MΩ, or giga-
seal in GΩ [46]) all local ion fluxes into the pipette. A chlorided silver electrode records
the resulting potential variations. The technique has several variations, depending on what
needs to be studied: (a) the cell-attached patch, where the pipette is sealed to the membrane
while keeping it intact; (b) the inside-out patch, identical to the cell-attached patch, except
the patch is excised from the main body of the cell; (c) the whole-cell patch, where sufficient
suction is applied to rupture the membrane and gain access to the intracellular space; (d) the
outside-out patch, identical to whole-cell patch except the patch is excised and sampled from
the main body of the cell; (e) the perforated patch, similar to whole-cell patch, except the
membrane is not perforated, but chemically made porous to gain access to the intracellular
space.
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Figure 1.4 – Context and mechanisms of pancreatic β cells. A: the pancreas. B: An islet of
Langerhans. C: Mechanisms of the β cell (non-exhaustive). (+) and (-) symbols respectively
indicate hyperpolarizing and depolarizing ion fluxes. Plain arrows represent ion fluxes, dotted
arrows represent activation relations, dotted flat arrows represent inactivation relations. D:
An action potential and its constituent stages. (1) The membrane is at its resting potential
maintained by the Na/K pump and open KATP channels. (2) Glucose is metabolized, raising
ATP and causing ATP-dependent K+ channels to close. The membrane depolarizes. (3)
Voltage-dependent Ca2+ channels open and cause an influx of positive ions that further polarize
the membrane and cause exocytosis. (4) Cell membrane is repolarized by the activation of
Ca2+-dependent K+ channels. E: Extracellular potential reflects ion fluxes and exhibits bursts
of action potentials as well as slow potentials, slow-oscillating signals resulting from complex
summations of ion currents.
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These techniques require highly controlled experimental conditions and precision, which
make them unsuited for multisite recording. In addition to that, they tend to damage cells
and prevent chronic or repeated experiments on a single preparation.

Recent topics in cell electrophysiology have widened to include cell network analysis and
implantable devices, both incompatible with patch-clamp techniques: the number and density
of recording channels required makes it entirely impractical. For that reason, an alternate tech-
nique was developed, trading signal-to-noise ratio for simplicity of installation per recording
channel: using extracellular microelectrodes in the vicinity of a cell, electrical activity can be
measured. To assure electrode coverage and permit multisite recording, electrodes are placed
as an array, forming a device called the Microelectrode Array (MEA).

Drain Source

A B

C D

Figure 1.5 – Different techniques for recording cell activity, intra- and extra-cellular. A:
Sharp-glass intracellular microelectrode. B: Substrate-integrated planar microelectrode. C:
Mushroom-shaped protruding microelectrode. D: Field-effect (floating gate) transistor micro-
electrode.

Extracellular recording: introducing Microelectrode Arrays

An MEA is an arrangement of tens to hundreds (and at present up to thousands [47, 48])
of electrodes designed for multisite recording and stimulation of extracellular activity. A
wide variety of terms has been used to describe the different MEA technologies (Fig. 1.5B-D)
emphasizing either:

— The type of transducer used (e.g. multi-transistor array, microelectrode array, multielec-
trode array, micro-nail array, capacitive-coupled array, 3D MEA)

— The shape of the device (needle-type probe, polytrode, neuro dish)
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— Electrode density (HD-MEA)
— The application (in vivo MEA, in vitro MEA)

They can be used for either signal acquisition, stimulation, or both, which essentially changes
electrode shape and arrangement.

This study mostly focuses on in vitro planar microeletrode arrays utilized for acquisition,
therefore it is assumed that any reference to MEAs without further description refers to such
devices.

In the case of in vitro MEAs, cell preparations are typically cultivated directly on the MEA,
which is why materials constituting the insulator, conductor, microeletrode and substrate are
carefully chosen with respect to biocompatibility [49, 50]; the materials typically used are
transparent glass for the substrate (to allow microscope observation), silicon nitride (SiN) for
the insulator and titanium (Ti) or indium tin oxide (ITO) for the conductor. Electrodes use
very diverse conductive materials depending on the application, including gold (Au), titanium
nitride (TiN), platinum (Pt), stainless steel, aluminium (Al), and iridium oxide (IrOx) [50].

With the small size of electrodes (typically 5 to 50 µm diameter [50]), achieving low impedance
with plain conductors only is a challenging feat. The most widespread technique is increasing
the effective surface area of the electrode while maintaining its dimensions and apparent area.
To achieve this, porous materials are used as coating, such as platinum-black (Pt-black), gold
nanostructures, CNTs (carbon nanotubess), and conductive polymers and compounds such as
PEDOT (poly(3 4-ethylenedioxythiophene)), PEDOT:PSS (PEDOT-polystyrene sulfonate), or
PEDOT-CNT (PEDOT-carbon nanotubes) [50–57].

MEAs detect the changes in the extracellular field caused by the current flows from all
ionic processes and transmembrane currents occurring in nearby cells: changes in electric field
potential can be detected by conductive electrodes. The magnitude of the resulting signal is
influenced by the distance between the current source and the recording site [57, 58].
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Figure 1.6 – Principle of MEA measurements. A: Cut view of a planar MEA. The glass
substrate is cut to reveal the conductive tracks (golden) and electrodes (black). B: Electri-
cal model of extracellular recording derived from [59]. Membrane-electrolyte interfaces are
modelled with a capacitance (membrane capacitance) in parallel with non-linear conductances
representing transmembrane ionic fluxes. VM represents the membrane potential of the cell.

Signals recorded on MEAs generally have a much smaller amplitude than intracellular traces
(a few tens to hundreds of microvolts) and are subject to supplementary sources of noise: in
addition to device noise and electrode-electrolyte interface noise, a biological noise (also called
background noise) resulting from other cells adds a significant amount of unwanted signal
that deteriorates acquisition [57]. For these reasons, MEA recordings require careful signal
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conditioning, with high-gain, low-noise preamplification applied as closely as possible to the
electrodes.

1.4 Biosensors

A biosensor is, by definition, an analytical device that converts a biological response into
an electrical signal [60]. Ideally, a biosensor should return a value that reflects the variable
of interest, independently from environmental physical parameters (e.g. pH, temperature).
Its usual construction includes a sensitive biological element (biological material responsive
to the analyte) and a transducer that transforms the resulting signal into a usable electrical
signal. The definition is extremely vast and by essence includes enzymatic glucose sensors
used daily by diabetic patients. This research however proposes its own biosensor, composed
of pancreatic islets as the biological element, and a signal acquisition chain (MEA, signal
conditioning and signal processing) as a transducer. The variable measured by this biosensor
is complex, as it integrates all signals affecting islet activity. In reality, it reflects exocytose-
inducing mechanisms of the cell which, in other terms, is an image of true physiological insulin
demand from the body. Even though cell-based biosensors have existed for years [61–63], this
one is the first of its kind as β cells have never been utilized to sense insulin demand in the
past.

1.4.1 Designing the transducer

In this particular biosensor, it is the electrical activity of cells that needs analysis and
conversion. The transducer itself needs several fundamental components:

1. An electrode of some sort, to record variations of cell potential

2. Signal conditioning, to amplify the recorded signal with minimal loss

3. Signal processing, to decode information from the complex biosignals

Among these items, electrodes and signal conditioning equipment are readily available for
bench experiments. The electrodes of choice for the biosensor are planar MEAs, that maximize
cell coverage, permit multisite recording, provide reasonable cell adhesion, good reusability,
and easily controllable culture conditions. A microfluidic topology that ameliorates cell cov-
erage and ease of use in continuously changing media is presented in paragraph 3.1.1. Signal
conditioning can also be provided by commercial equipment (see section 2.2.2) with low-noise,
high-gain amplification and band-pass filtering. Signal processing, however, requires specific
treatment to extract the distinctive features of pancreatic cells.

To complete the biosensor, this last item of the transducer must be designed to extract
separate features (action potentials, slow potentials, bursts) of the cell signals, and to integrate
relevant information in a time-efficient fashion (real-time), to reduce measurement delays. The
consideration of the specificities of β cells and the design of the processing algorithms used in
such a system is an integral part of this thesis project and is extensively described in chapter 2.

1.4.2 Applications

The particular design of the described biosensor confers it different measurement paradigms.
Indeed, with a replaceable biological element (β cells), it can either measure its intended pa-
rameter (i.e. insulin demand), or parameters regarding the biological element itself.

Sensor approach

The first approach is the most obvious, as it is framed within the intended use of the
biosensor: a physiological medium is applied to the cell culture, and the biosensor returns an
image of the corresponding insulin demand. This approach introduces the concept of using a
physiological biosensor as a front-end sensor for glucose regulation in artificial pancreas.
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Screening approach

The biosensor can also be utilized in controlled environments, where one wants to char-
acterize the effects of pharmaceutical products such as antidiabetic drugs (sulphonylureas).
This process, known as screening, can benefit from this hybrid approach for its scalability and
the electrophysiological information it conveys: in controlled environments, it is possible to
monitor the separate effects of drugs at a physiological level by observing the modulation of
different components of the cell signal (disturbed cell coupling, increased sensitivity to glucose,
alteration of activation dynamics, etc.).

Quality control approach

The last approach is less obvious as the biosensor characterizes its own biological element
(i.e. β cells). Indeed, in a precisely dosed medium, cells are expected to produce a well-
characterized response. Cell lines can be utilized to ensure repeatable results and minimal
deviation from target. However, due to pancreatic islets deteriorating with either age or
dietetic habits, or even due to interindividual discrepancies [64], response from primary cells
can vary dramatically from a preparation to another. For that reason, the biosensor can return
valuable information concerning a population of cells if an aliquot is utilized as the biological
element of the biosensor. It can assess responsivity to physiological stimuli and help diagnose
possible altered cell mechanisms.

1.5 Research context

This thesis was conducted in the Elibio (Electronics Interfacing Biology) team of the bio-
electronics group in the IMS (Integration: from Material to Systems) laboratory in Talence
(France). This research team specializes in designing electronic systems that interface with
biological material, including acquisition and signal processing devices, as well as electrical
stimulators. Because of the multidisciplinary nature of its research field, the Elibio team
takes part in partnered projects including clinical, biology, microdevice, and neuromorphic
engineering partners.

The presented work was conducted in close collaboration with Elibio’s historical partner,
the CBMN (Institute of Chemistry & Biology of Membranes & Nano-objects) laboratory.
CBMN researchers Cell Biology and Biosensors team took care of cell culture and biological
experiments.

Research subjects

Projects conducted by Elibio all involve some form of interface with biology. It can either
be unidirectional, like is the case with acquisition and stimulation, or bidirectional. In the
latter case, the whole range of expertise of the team is implicated, from signal acquisition, to
electrical stimulation, and through real-time signal processing. The resulting system is referred
to as a closed-loop system.

Bioelectronic closed-loop systems generally aim at replacing or treating impaired body
functions. For instance, a lesion in the hippocampus can be bypassed using neuroprosthetics
[65]: neuron AP trains can be recorded on one side of the lesion and stimuli applied accord-
ingly on the other to reinstate communication. Similar approaches can be considered with
non-electrical stimulation (like it would be the case with insulin infusion), or non-electrical ac-
quisition (one could regulate respiratory air flow with electrical stimulation of the diaphragm
[66]). In any case, Some form of processing electronics is required to act as a controller between
the measuring end and the stimulating end of the closed-loop.

Faced with projects that share many paradigms, Elibio opted for designing a pluripotent
processing system calledMultimed. This system takes advantage of a reconfigurable component
(Field Programmable Gate Array (FPGA)) to adapt to diverse projects and is extensively
described in chapter 2.
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The projects that use Multimed are described below.

The BRAINBOW 7 project proposes a new approach on cortical prosthesis in which
bidirectional communication between a neuron culture recorded on an MEA and a SNN (Silicon
Neural Network) is established [67, 68]. It is a collaboration between (1) the IIT (Istituto
Italiano di Tecnologia) (Genova, Italy), in charge of biological experiments, (2) the AS2N
team of the IMS laboratory, in charge of implementing SNN models, (3) biologists of the
university of Tel-Aviv (Israel), and (4) Elibio, in charge of multichannel signal processing of
biological neural network activity.

The HYRENE 8 project aims at recovering communication in the spinal cord following
injury. Similarly to Brainbow, its goal is to record electrical activity on an MEA placed over
the lesion, and bridge it to another MEA placed underneath the lesion to provide restored
descending commands. The partners involved in the projects are (1) CLINATEC (Grenoble,
France), in charge of murine electrophysiology, (2) the AS2N team of the IMS laboratory, in
charge of implementing SNN models, (3) ESIEE (Noisy-le-Grand, France), in charge of MEA
manufacturing, and (4) Elibio, in charge of multichannel signal processing of ex vivo signals.

The CENAVEX 9 project investigates stimulation for a closed-loop ventilatory control
system. Using a biomimetic special SNN structure called a Central Pattern Generator (CPG),
it proposes to improve ventilatory control for patients with cervical cord injury by stimulating
the multiple respiratory muscles with biomimetic electrical stimuli. The partners in the project
are (1) the Florida International University (FIU), in charge of biomechanical engineering and
in vivo experiments on rats, and (2) Elibio, in charge of producing a biomimetic CPG and a
multisite stimulation device.

1.5.1 Research projects for diabetes

Aside from punctual interventions in Brainbow as a Multimed developer, my personal im-
plication in the team was limited to projects concerning the study of pancreatic cells. These
projects cover the different aspects of the biosensor and aim at designing the processing elec-
tronics and characterizing the complete biosensor.

Projects related to T1D constitute one of the longest running project lineage of Elibio.
Projects Delivrer (2007-2010), HY-BIOPACS (2011-2013), and BIODIA (2012-2014) were
all attempts at developing an MEA-based biosensor capable of measuring insulin demand
and providing adequate dosage for an insulin pump. These projects lead to the first ever
demonstration of extracellular measurements of β cell activity on MEAs, which acquired a
patent in 2010 [69]. They characterized electrical signatures of β cells similarly to neurons,
especially focusing on the offline analysis of APs as well as the development of effective methods
of detecting them [70]. The discovery of Slow Potentials (SPs) [43], reportedly more robust
than APs, gave new prospects for this series of projects by providing a novel marker suited for
real-time analyses and biosensor approaches.

The ISLET-CHIP 10 project: a new approach for pre-transplant diagnoses

Islet cell transplant is a promising technique to restore insulin-independence for severe
cases of T1D [20]. The procedure is however extremely complex and its long-term viability
needs improvement. The causes for the progressive loss in islet function probably have multiple
origins. One of the causes may originate from the preparation itself. Each pancreas preparation
needs to undergo a series of tests which outcomes determines whether the islets are suitable
for transplantation. These tests include:

7. European project FP7-ICT-2011-C
8. French ANR 2010-Blan-031601
9. French ANR and USA NIH AN13-NEIC-0001-01

10. ANR 2013-PRTS-0017
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1. Visual examination of the pancreas. If the pancreas has no anomalies, the test is passed
and the pancreas is dissected for islet isolation.

2. Estimation with imagery analyses of an aliquot coloured with dithizone the number of
islets that have been isolated. This test actually yields an Islet Equivalent (IEQ), a
measurement method proposed by Ricordi in 1990 [71]. It standardized islet volume
measurements by extrapolating an equivalent number of islet based on the calculation
that one IEQ corresponds to the tissue volume of a perfectly spherical islet with a
diameter of 150 µm. It has been the subject of many refinements [72–74] but remains
an approximate method. The test is passed if the measurement is greater or equal than
200,000 IEQ or 3,500 IEQ/kg (relative to the receiver). The preparation can then be
purified.

3. Purity of the preparation is evaluated with dithizone colouring of a aliquot and computer-
assisted evaluation of endocrine tissue (coloured in red) versus exocrine tissue (un-
coloured). Purity must be superior to 30%.

4. Viability of the preparation is estimated with a similar method, with fluorescein diacetate
(FDA)/propidium iodide (PI)/trypane blue (TB) colour of an aliquot. Dead cells are
coloured in red (FDA/PI) or blue (TB) and their proportion is assessed with computer-
assisted imagery. The percentage of dead cells must be inferior to 30% (FDA/PI) or 80%
(TB). Only then can the pancreas be labelled as suited for transplantation.

These tests all rely on visual methods that are prone to deviation and do not reflect
secretory capabilities of the preparation. A functional test is conducted but does not influence
the final decision as results are obtained after the transplant.

ISLET-CHIP proposes to utilize the biosensor as an early indicator of preparation quality,
with excitatory tests reflecting secretion. The device (ISLETCHIP) would be able to examine,
in vitro, a small aliquot (<0.1%) of the islet preparation, to conduct a multi-parametric on-line
analysis, and to display a diagnostic read-out prior to transplantation.

The project involves two teams from the Bordeaux University (Elibio and the Cell Biology
and Biosensors team at CBMN) two clinical groups in France (Grenoble University Hospital
and Laboratory of Cell therapy for Diabetes (LCTD, Montpellier University Hospital)) and
a third one in neighboring Switzerland (Cell Isolation and Transplantation Centre (Geneva
University Hospital)). As a translational research project between research institutes and
hospitals, the project is supported both by the ANR (Agence Nationale de Recherche) and by
the DGOS (Direction Générale de l’Offre de Soins).

Diaβeta Technologies: Biosensor approaches using β cells

Diaβeta Technologies is a line of products developed by Elibio and its partners in the frame
of projects related to T1D. It covers all three biosensor approaches covered by two products:

— the Diaβchip device, the biosensor itself, designed for automated islet screening within
the granting period for pre-transplantation quality tests, screening for drug and toxicol-
ogy tests, and real-time analysis of cell differentiation of stem cells into β cells.

— the Diaβsensor product, a hybrid biosensor capable of sensing insulin demand. Of course,
it follows the long-term plan of developing a physiological closed-loop regulation system
for T1D patients.

Diaβeta Technologies are currently in a process of technology transfer. They seek industrial
partners and clients to mature and industrialize the technology, benefiting from the patent we
filed in 2010 on the β cell recording technology [69].



Chapter 2

Multimed, the measuring device

“Each generation wants new
symbols, new people, new names.
They want to divorce themselves
from their predecessors.”

- Jim Morrison

2.1 Introduction
Extracellular signals are complex electrical signatures that reflect the internal mechanisms

of cells. Contrarily to membrane potential, that ranges from tens to hundreds of millivolts and
discernibly reflects endogenous events, signals recorded on Microelectrode Arrays (MEAs) only
attain tens to hundreds of microvolts, integrate multiple sources, and have low Signal-to-Noise
Ratios (SNRs). Translating them into useable information requires specific signal conditioning
and analysis, operated by three principal hardware elements:

— A headstage preamplifier, placed as close to the cells as possible to boost cell signal with
a minimal addition of electrical noise.

— Analogue to Digital (A/D) converters, generally an external card performing Data Ac-
quisition (DAQ).

— Processing algorithms, generally implemented as a computer software or dedicated elec-
tronics.

Because of their noise sensitivity, headstage preamplifiers are usually built as one separate
device, positioned in a noise-free environment. On the contrary, DAQ and signal processing
are less noise-sensitive and their build varies depending on the application. Most systems,
motivated by and designed for laboratories, promote flexibility and feature separate DAQ and
software processing. These notably include commercial products proposed by Multi Channel
Systems (MCS), or open-source alternatives like Neurorighter or Open Ephys (see Table 2.1).
They propose bench-ready, high-performance material and processing software capable of real-
time processing, feedback, and include regular update support.

Moreover, the availability of generic DAQ systems, especially from National Instruments,
MCS, or Intan also gave birth to open-source analysis software including MEABench, ArtE,
Nspike, and RTXI. These also provide real-time processing tools and promote always-expanding
analysis capabilities with limited hardware investment.

Applied research, and particularly closed-loop research cannot however always rely on soft-
ware processing solutions. Indeed, computation speed is bound by general-purpose Operating
System (OS) performance and processing latencies slower than biological delays limit decision-
making within physiological windows (e.g. Spike-Timing-Dependent Plasticity (STDP)). Only

41

https://sites.google.com/site/neurorighter/
http://www.open-ephys.org/
http://www.danielwagenaar.net/meabench.html
https://github.com/ImAlsoGreg/arte-ephys
http://nspike.sourceforge.net/
http://rtxi.org/
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RTXI claims to achieve consistent sub-millisecond processing, relying on a real-time Linux
kernel. Furthermore, most processing software is too complex for on-chip integration or minia-
turization towards implantable devices. Some products answer these issues with a hybrid
approach, and take advantage of both software and fast, embeddable, hardware processing:
Intan proposes DAQ devices with analogue and digital I/Os (Input/Outputs) and a mounted
Field Programmable Gate Array (FPGA) board that can host low-latency material computing,
alongside its standard processing software. Müller, Bakkum, and Hierlemann [75] also pro-
posed a hybrid solution using an FPGA to host a reconfigurable low-latency event engine. It is
capable of recognizing spatio-temporal spike patterns and delivering sub-millisecond feedback.
Further processing is performed in real-time on computer software, with higher processing
latencies.

Although these hybrid designs are a step towards complete miniaturization, no fully-
hardware biosignal analysis system has been released to date. Specializing in interfaces between
biology and microelectronics, the Elibio team required an embeddable solution for biosignal
processing. With the wide range of applications covered by the team, such a system should be
modular (to avoid duplicate development), be compatible with mainstream acquisition front-
ends, be able to recognize various electrical signatures, and have minimal processing latency
for closed-loop applications. With a specialty in microelectronics and chip design, the Elibio
team has undertaken the design of a fully-hardware DAQ and processing station, Multimed.

Multimed is a generic hardware platform with acquisition and processing capabilities cen-
tred on an FPGA. Taking advantage of the reconfigurable logic of FPGAs, it can be repro-
grammed, upgrade, and shared between projects with different cellular material (ISLET-CHIP:
in vitro pancreatic cells, Brain Bow: in vitro neurons, Hyrene: ex-vivo spinal cord), all the
while proposing dedicated hardware processing architectures with very low (sub-millisecond)
latency. While the global VHDL (VHSIC Hardware Description Language) architecture (han-
dling both processing and interfacing) is identical between projects, the processing functions
and their arrangement are application-specific.

This chapter describes Multimed, its interfaces, processing functions, features, and control
environment. Some modules in the system are purely engineering work (drivers, CPU (Cen-
tral Processing Unit), GPU (Graphical Processing Unit)) and will not be presented in this
manuscript, as they provide neither novelty nor understanding of the system.

2.2 Hardware

2.2.1 Architecture

Multimed is a custom electronic system designed specifically to perform acquisition and
signal processing on multichannel data. It is composed of three custom boards (all shown in
Fig. 2.1):

— An acquisition board (“Tethys”), with a secondary stage of amplification and multichan-
nel signal conversion to digital.

— A processing board (“Titan”) that processes multichannel signal with an FPGA.
— An interface board ("“Dock ”") that provides user interfaces (switches, buttons, USB

(Universal Serial Bus) port, Video Graphics Array (VGA) port, digital I/Os, SD (Secure
Digital) card slots, JTAG (Joint Test Action Group) connector) and distributes power
to other boards.

Tethys: The first board is an acquisition board ("Acquisition Board" in Fig. 2.1), sampling
data on 64 parallel channels, at 10 kHz, with 16 b precision. Optimal use of the Analogue-
to-Digital Converters (ADCs)’ input range is ensured using Programmable Gain Amplifiers
(PGAs) with gains ranging from 1 to 100. The board has two SCSI68 connectors, compatible
with MCS 60-electrode equipment. All signal pins from the connectors are connected in
parallel, which means that Multimed can transparently be inserted in an existing acquisition
chain: one connector serves as a signal input and the other as a parallel output. An internal

http://rtxi.org/
http://intantech.com/
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±8 V power supply can be used to power external headstage preamplifiers. Note that the 64
channels are provided for design symmetry reasons; therefore, the four unused inputs with
the MCS 60-channel system are accessible via either four SMA (SubMiniature version A)
connectors or four standard 2.54 mm pitch square connectors.

Titan: The second board is both a processing board and a control board ("Digital Board"
in Fig. 2.1). It has numerous digital I/Os connected throughout the system and to its main
component, a Xilinx Spartan-6 FPGA. It can access all digital components and interfaces in
the system, meaning it can send configuration instructions to any subsystem in Multimed. It
also means that it can read the sampled multichannel data from the first board, process it,
and send feedback instructions accordingly, all using reconfigurable architectures. To facilitate
communication with high-level interfaces, the FPGA embeds a softcore PIC16F-instruction-
compatible processor.

Dock: The third and last board is an interface board ("Dock Board" in Fig. 2.1), that
includes multiple Light-Emitting Diodes (LEDs), buttons, and switches, but also generic digital
I/Os, a 3.5 mm TRS (Tip Ring Sleeve) jack output, a VGA output, a micro-B USB port, a
JTAG connector, and four SD card slots. It also distributes all power supplies throughout the
system: both the processing and acquisition board are plugged into and powered by it.

Engineers and graduate students from our group contributed to the design of Multimed:
Jean-Baptiste Floderer and Ashwin Mangalore for the hardware, myself for the software, Adam
Quotb and myself for VHDL; they were supervised by Gilles N’Kaoua and Yannick Bornat.

2.2.2 Interfaces

MultiChannel Systems equipment

Multimed is merely a part of complete electrophysiology setups. Viable installations in-
clude low-noise headstage pre-amplification, temperature control, and multichannel acquisi-
tion. With Multimed being primarily a real-time acquisition and signal processing platform, it
needs an existing and functional electrophysiology environment to handle specific parts of the
acquisition chain. MCS provides such solutions, specifically with its USB-MEA60-Inv-System
product line, which is routinely used with Multimed (see chapters 2 and 3). The components of
this system are shown in 2.2 and include a headstage pre-amplifier, a data acquisition board,
a thermal controller, and a power supply, all described below (note: an actual set-up with
detailed connectivity is presented at the end of this chapter, in Fig. 2.12).

The low-noise, high-gain headstage pre-amplifier (Fig. 2.2(a)) is the MEA1060-Inv model.
AcpMEA dock in it and electrical contact between the electrodes and the amplifier circuits is
ensured by gold spring contacts. Its default version features a 1 Hz – 3 kHz bandwidth, a gain
of 1200 on 60 channels, and a built-in heat-plate. Yet MCS also provides customized versions,
like the one we specifically use to measure electrical activity of pancreatic islets. This one
features a 0.1 Hz – 3 kHz bandwidth.

The temperature of the heat plate is controlled by the STC01 thermal controller, shown in
figure 2.2(c). It regulates the preparation temperature at 37 ◦C.

The commercial acquisition board is the USB-ME64 model(Fig. 2.2(b)), offering acquisition
on 60 channels at a sampling rate of 10 kHz and data resolution of 16 bits. Although Multimed
performs identical raw data acquisition, this piece of equipment was kept in the acquisition
chain to record data in both Multimed and proprietary MCS (*.mcs files) format. The double
acquisition path was used to validate Multimed acquisition and processing features. It also
helped partner physiologists – accustomed to MCS instruments – migrate to the Multimed
environment.

Control

Multimed is controled via serial port with the following settings:
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Figure 2.1 – The Multimed hardware and its key components.

Figure 2.2 – MCS hardware used in conjunction with Multimed. (a): MCS MEA1060-Inv
preamplifier. (b): MCS USB-ME64 acquisition device. (c): MCS TC01 thermal controller.
(d): MCS PS40W power supply.
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— Baudrate: 115200/921600 bauds 1

— Data bits: 8
— Parity: None
— Stop bits: 1
— Flow control: None

Control includes the possibility to configure processing settings, as well as data display and
storage.

Storage

Data are stored on two 32 GB SD cards. One of them stores raw data while the other
stores processed data (more detail in section 2.8.1 p. 60). The Multimed specific VHDL SD
card driver (not described in this manuscript) has been characterized with SD/SDHC 2 cards
only (not SDXC 3) which is why maximum recording times will be given considering a 32 GB
storage capacity.

Display

Display is handled internally, i.e. data are not transferred in real-time to an external
display: Multimed has its own VHDL display manager (not described in this manuscript
either), including a graphic RAM (Random Access Memory) and VGA protocols. Any screen
with a VGA input may therefore be used to visualize data using one of the display modes
(temporal waveform display, temporal event display, or spatial event display).

2.3 The FPGA as a core processing unit

The Multimed board is used in multiple projects (ISLET-CHIP: [76], Brain Bow: [77], :
[66, 78], Hyrene [79]) that involve different signal signatures and, therefore, different processing
requirements. Hosting the processing architecture in an FPGA makes it adaptable, while keep-
ing the exact same hardware. While the same modularity can be achieved with microprocessors
or Digital Signal Processor (DSP)s, the FPGA offers better control over processing flows. Data
width and number of electrodes can be freely scaled, transfer and processing protocols can be
chosen for specific optimizations, and resource uptake can be adjusted. Moreover, such control
over the low-level processing architecture eliminates uncertainty on processing latency. While
instructions are prioritized and latency is subject to variations in a microprocessor [80], pro-
cessing time in a VHDL module can be expressed in (or bounded by) a precise number of
clock cycles. This is a major advantage in real-time systems with very short processing time
windows [75] because it makes any upscale in the number of processing channels more reliable,
given the exact limitations (bounded by processing latency and available resources). Finally,
it is not uncommon, in multidisciplinary collaborations, to receive requests from partners for
improvements or additions to equipment. Once again, the extreme flexibility of the FPGA
makes it convenient to update firmware with no modification to hardware.

Due to all these considerations, and taking into account Multimed needs as expressed in
section 2.1, an FPGA-based solution is optimal for the Mutimed digital board.

2.4 VHDL architecture

2.4.1 The philosophy behind the architecture

Not all operations have the same level of timing constraint in a real-time system. Signal
processing should be fast and consistent, while user interactions do not require precise timing.

1. Depending on board configuration
2. SD High-Capacity
3. SD eXtended-Capacity
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These differences in constraint have been exploited in Multimed to facilitate development
while ensuring performance: critical real-time operations have dedicated VHDL modules with
latency-efficient architectures (parallel computation, pipelines) while other operations (detailed
in 2.4.1) are assisted by softcore processors. The VHDL architecture of Multimed is presented
in Fig. 2.3

Main CPU
(configuration/
coordination)

Display
(contains
a CPU)

Input
manager

Input
computation

Parameter
computation

Electrode
sorting

Storage

Configuration

Buttons

UART

DAC

External
memory

VGA out

Experimental data

SD cards

Figure 2.3 – The Multimed VHDL architecture: red lines show configuration signals, black
lines indicate data processing flow.

Control through a microcontroller

A microcontroller has obvious benefits in terms of development ease. As opposed to pure
VHDL architectures that require synthesis for every modification, programs can be loaded
in the processor while in operation. Plus, this facilitates the design flow with C program-
ming, that make communication schemes, user interactions, and high-level instructions more
straightforward. As shown in Fig. 2.3, we implemented a softcore processor that acts as an
intermediate between the user and the processing modules. It interprets UART and button
instructions and writes configuration values in the corresponding module inputs.

A secondary (slave) processor is used to control display on an external screen. Again, it
is a machine-user interface that does not necessitate a steady latency. Ultimately, it is only
constrained by the screen’s refresh rate (60 Hz). Following the scheme described in Fig. D.2,
data are retrieved from low-level buffers, shaped, and written accordingly in a graphic RAM.
The choice of what and where to display is entirely determined by the program loaded in this
slave CPU. Several such programs coexist in memory and may be scrolled through as different
display modes.

Note that neither the control, nor the display CPU are ever involved in data processing,
as they would bring unwanted latency.

Critical real-time processing

Indeed, real-time processing modules are designed to have a short, well-characterized la-
tency. Therefore, they are fully described in VHDL, which permits a total control over compu-
tation procedures. Our strategy is to build a library of processing modules that can interop-
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erate while keeping the processing flow fluent, predictable, and latency-efficient. The modules
and the associated algorithms are described in 2.5.

Processing chain

To ensure consistent processing, modules have minimal dependencies: ideally, the only
condition required to start processing a data frame is to have received it. No handshakes or
acknowledgements are required and each module runs independently when it is required to.
The main assumption to have such a processing chain working is that the processing latency
of each module remains below the sampling period 4. If it were not, the incriminated modules
would still be processing data when new samples arrive, resulting in unwanted skipping and
stuttering. While the system would still be running, part of the data would be lost.

2.5 The processing algorithms

Processing algorithms were previously implemented for other projects. They were written
and added to the module library by Yannick Bornat and Adam Quotb, and are presented in
sections 2.5.1 through 2.5.4. Algorithms developed in this work are described in sections 2.5.5
through 2.5.9.

2.5.1 Wavelet filters

Consistent spike detection relies on good discrimination of Action Potential (AP) waveforms
from baseline noise. Though APs may be discerned using only high-pass filtering, a low signal-
to-noise ratio will impede detection. To overcome this issue, wavelet filtering is used: this
family of filters decomposes signals on an irregular, finite basis rather than the periodic,
infinitely long sinusoid basis. They are therefore better at isolating anomalies and other
punctual events within the signal, in this case AP waveforms that may otherwise be drowned
in noise.

The Discrete Wavelet Transform (DWT) algorithm we use was developed in [70]. It com-
putes djn and ajn, the detail and approximation coefficients for detail level j at the nth sample,
respectively:

djn =

L∑
k=0

g[k]× aj−1
n−2jk (2.1a)

ajn =

L∑
k=0

h[k]× aj−1
n−2jk (2.1b)

Where g[k] and h[k] are the kth coefficient of the high- and low-pass filters, respectively, out
of L wavelet coefficients. djn is the useful signal component and ajn, the noise component, at
detail level j. Its main advantage is to provide an output with an improved signal-to-noise
ratio, alongside an other output with low AP contribution quantify noise level on each channel.

2.5.2 IIR filters

To shape the signal and isolate waveforms before more generic processing, classic filters are
also used. They are Butterworth Infinite Impulse Response (IIR) filters (first described in [81])
with orders configurable from 1 to 8, configurable as either low-pass, high-pass, or band-pass
filters. Typically, Slow Potential (SP) waveforms are isolated using a 3rd order 0.2− 2 Hz filter.
To anticipate memory optimization and improve configurability, the filter module consists of

4. This is dictated by the ADCs’ sampling frequency, but not exclusively: downsampled processing regions
from 10 kHz down to 1 Hz exist in the system.
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eight first-order, low-pass filters in series, with separately configurable cut-off frequencies, Fc.
Each first-order filtering operation is defined by:

Yn = Yn−1 ×
(

1− 1

2k

)
+
Xn

2k
(2.2a)

1

Fc
= 2k(1− 1

2k
)2πTs, k ∈ 0, 17 (2.2b)

Where Yn is the nth output sample and Xn is the nth input sample. The resulting -3dB cutoff
frequencies were experimentally measured and summarized in Fig. 2.4. High-pass filtering is
also possible by taking the difference between the input signal and the output of one or more
low-pass filters. This forms a fully configurable filter unit, up to eight orders. Band-pass
filtering is achieved by configuring both high- and low-pass filters within the same filter unit.

2.5.3 Adaptive threshold: standard deviation estimator

APs are detected when the spiking signal exceeds a threshold, chosen to establish a clear
distinction between samples that constitute noise and those that belong to an AP. However,
in multichannel processing, noise levels may vary between channels and over time [82], thus
making it impossible to use a unique, constant detection threshold.

A commonly used solution in electrophysiology consists of setting the detection threshold
to a multiple of the standard deviation of individual channel signals [83]. Elegant designs of
analogue standard deviation estimators have been proposed [84, 85]. Their design is that of a
closed-loop regulator based on noise distribution hypotheses. It estimates a standard deviation
value so that a precise proportion of all samples exceeds it 5 (15.9% in the case of a Gaussian
noise). Such a design is real-time compatible and was implemented in our group as a digital
adaptive threshold module [70]. To accommodate noise-distribution non-idealities, all model
parameters have been made accessible for dynamic configuration.

2.5.4 ISI processing: spike cleaning and burst detection

APs detected using simple comparison between the previously described wavelet filters
and adaptive threshold require further processing: indeed, simple comparison implies multiple
detections of a single event. A minimal duration between two APs , the refractory period, can
be defined [66, 86]. It represents the time during which an excitable cell is incapable of firing
again to prevent hyperactivity.

2.5.5 Detection of Slow-Potentials

SPs are a low-frequency oscillatory phenomenon. Contrarily to Local Field Potentials
(LFPs), their shape is not consistently similar to a low-frequency spike, making the adaptation
of AP detection to SP detection impractical and unreliable. Rather than using a threshold
detection, SPs are detected on the basis of local maxima and minima in the low-frequency
component of input signals: the SP detection module detects local extrema and flags them.

Detection sensitivity may be adjusted with parameter ∆, which defines the minimum am-
plitude for a cusp point to be considered a local extremum. An illustration of the algorithm
is given in Fig. 2.5. Maxima and minima are detected separately and alternately. When the

5. Although such a unit is referenced as a standard-deviation estimator in the literature, it is only used to
provide an image of signal amplitude which is immune to cell activity in the measured signal. Deviations from
noise distribution hypotheses are therefore acceptable.
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module expects a maximum, the detection occurs according to the following criteria:

M0 = X0 (2.3a)

Mn =


Xn if Xn > Mn−1

Xn if Xn ≥ mn−1 + ∆

Mn−1 otherwise
(2.3b)

YMn =

{
1 if Xn ≤Mn−1 −∆

0 otherwise
(2.3c)

Where YMn is the nth output sample of the maximum detection and Xn is the nth input sample.
The maximum value of X up to sample n is stored in Mn, and is considered a maximum only
when the signal drops below this value by at least ∆, at which point Mn is reset and the
module enters a minimum detection mode, which operates similarly:

m0 = X0 (2.4a)

mn =


Xn if Xn < mn−1

Xn if Xn ≤Mn−1 −∆

mn−1 otherwise
(2.4b)

Y mn =

{
1 if Xn ≥ mn−1 + ∆

0 otherwise
(2.4c)

Where Y mn and mn are the counterparts for YMn and Mn, respectively, whenever the module
expects a minimum.

Experiments showed that non physiological punctual slow oscillations (<0.1 Hz) were not
getting filtered and were therefore mistakenly detected by the module. A time parameter was
therefore added, to blank the first SP detection after a period of inactivity, in case it indeed
is an isolated detection. Otherwise, detection resumes as usual.

Validation data on SP signals from in vitro pancreatic islets can be seen in appendix A

2.5.6 Amplitude measurements
To measure oscillation (like SP ) amplitude, the peak-peak envelope of the signal is

recorded. For that matter, a peak detector is used on the positive half of the signal and
another on the negative half. The peak detection operations are conducted using a positive
(and negative, respectively) value function and a second order IIR low-pass filter. The source
signal may be chosen (either raw or filtered signal), and the time constant and order of the
peak detector filters may be configured.

2.5.7 Frequency and FOPP measurements
Measuring frequency or Fraction Of Plateau Phase (FOPP) 6 of event data may simply

be done by computing windowed averages of event trains (represented by 1s and 0s) or burst
envelopes (represented by 1s when in a burst, 0s otherwise). In the case of event frequency,
this would yield a reduced frequency, which can be normalized back, knowing the sampling
frequency. In the case of FOPP, averaging burst envelopes would immediately yield the plateau
fraction, between 0 and 1.

The low-resource solution chosen to achieve such measurements is the use of IIR low-
pass filters 7 as windowed-averaging filters, which cutoff frequency may be adjusted to tune

6. FOPP is a figure representing the ratio of active phase (plateau) in a biological recording. Typically, a
plateau is defined where a cell or islet is bursting. A cell with no bursts will have a FOPP of 0 (0%), a cell
with constant bursting activity will have a FOPP of 1 (100%), and a cell that is bursting half the time will
have a FOPP of 0.5 (50%).

7. identical to those described in 2.5.2
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Figure 2.4 – IIR filters cutoff frequencies with respect to k, as defined in eq. 2.2a.
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Figure 2.5 – SP detection scheme. Two signals (sm and sM ) keep track of the current local
maximum or minimum value (depending on whether the module is targeting a maximum or a
minimum). Whenever sm + ∆ = s or sM −∆ = s, an SP maximum or minimum event is fired
and the module toggles target.
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the window size. Two first-order filters are used in series to reduce oscillations caused by
distant events (the module’s configuration permits both first- and second-order averaging, but
second-order is generally preferred because it offers good measure stability and good response
time). Input events are multiplied by 214 = 16 348 prior to entering filters, which is equivalent
to converting boolean events to a signed 16-bit fixed point representation with 1 sign bit,
1 integer bit, and 14 fractional bits.

Fig. 2.6 illustrates the response time performance of the frequency measurement, depending
on parameter k in the IIR low-pass filter (eq. 2.2a).
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Figure 2.6 – SP frequency measurement performance on a 0.5 Hz sine wave with a second
order IIR filter, with different k values. k is as defined in eq. 2.2a. The time required to enter
a ±5% interval of confidence from target is indicated when relevant.

2.5.8 Electrode sorting

MEAs are versatile tools, with various uses and applications in electrophysiology. They
provide multisite, real- time readouts of cell activity with the potential for network analy-
sis with high time resolution, but generally lack spatial resolution. The chances of having
a cell within measuring distance remain slim, considering the small active surface and elec-
trode sparsity (typically, electrode diameter is 10% of electrode spacing). Increasing electrode
coverage necessitates an upscale in the number and density of electrodes, cell- guiding tech-
niques [87], or dedicated topologies [88]. Even then, the proportion of covered and exploitable
electrodes never reaches 100%. In chronic recordings, the apparition of fibroblasts and scar
tissue systematically results in additional electrode loss [89]. Moreover, multiple sources for
hardware failure exist in the acquisition chain, from the MEA itself to the multichannel am-
plifier and the mechanical spring-loaded contacts between them. These issues usually result
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in unnecessary processing of uncovered electrodes. To address this important issue, we devel-
oped a digital module, inspired from experiments, to sort and automatically constitute a set
of normally-behaving electrodes.

The general methodology adopted by electrophysiologists to define a set of valid electrodes
is to exclude electrodes that are responsive in inhibitory conditions, and include those that
display a physiological response in excitatory conditions. The physiological characteristic of
the response is determined by the experimenter and is usually related to both the frequency
and amplitude of the measured events (in the context of pancreatic islets, APs and SPs ).
Finally, electrodes that present an electronic malfunction, such as coupling or saturation are
excluded as well.

The electrode sorting module recreates this method and sorts electrodes based on both raw
signals and events. The sorting algorithms discriminate electrodes based on any or all of (a)
their event frequencies, (b) synchronous activity, and (c) signal amplitude. Event frequency is
obtained by counting events over a limited period of time T . An electrode is flagged active if
this count exceeds a threshold as described in equation (2.5a) below:

ain = min(ain−1 + xin,∆) (2.5a)

Ai =

{
1 if aiN = ∆

0 if aiN < ∆
(2.5b)

Where n = 1...N is the current sample number, ain is the nth value of the event counter
of electrode i, xin is the nth input of the event counter of electrode i (either 1 if an event is
present or 0 otherwise), ∆ is the event threshold, N is the total number of samples over T and
Ai is the activity flag for channel i. Detection of synchronization between channels is based on
a leaky event counter. For each electrode, incoming events increase a counter s by a step εU .
Otherwise, the counter decreases by a step εD at every T/N . This gives each event a weight
that decreases with time. If the sum of all counters exceeds a threshold Q, meaning that a
sufficient amount of events were fired in a short time window, a synchronization event S is
fired, related to all involved electrodes. This process is summarized in equation (2.6a) below:

sin =

0 if
∑
i′∈I

si
′

n−1 + xi
′

n × εU ≥ Q

max(si
′

n−1 + xi
′

n × εU − εD, 0) otherwise
(2.6a)

Ai =

{
1 if aiN = ∆

0 if aiN < ∆
(2.6b)

Where n is the current sample number, sin is the nth value of the event counter of electrode
i, xin is the nth input of the event counter of electrode i (either 1 if an event is present or 0
otherwise), Sin is the nth synchronization event of electrode i, and I is the set of all electrodes.
In order to detect repeated synchronization only and avoid false positives, the synchronization
events Sin are then processed by the algorithm described in (Eqs. 2.5a, 2.5b). Finally, sorting
electrodes according to amplitude criteria is simply done by comparing the signal value to a
threshold. If the input sample exceeds it, the corresponding electrode is flagged. For more
flexibility, the event-based algorithms are duplicated to be used separately for APs and SPs
, and the ensemble of all algorithms, forming one sorting cell, is duplicated four times to
permit different configurations and intermediary results (see Fig. 2.7). The final sorting result
is a definable logic combination of all four intermediary results (intermediary and final results
are accessible for readout), representing experimenter-defined inclusion/exclusion rules in a
dynamically configurable Lookup Table (LUT).

The complete implementation of the module is given in Fig. 2.7.
The sorting module was tested and used (validation data can be found in appendix B) on

three pancreatic islets preparations (Fig. 2.8). The inclusion rule of the module stated that
electrodes with more than 10 SPs in 60 s in excitatory conditions were retained. The exclusion
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200µm

Correct inclusion
 
Correct exclusion
 
False positive
 
False negative

A B

Figure 2.8 – Sorting results on three different experiments. A: detection results overlaid with
a photography of the preparation. B: Repartition of electrode sorting results. On average, the
module detected 4% false positives, 14% false negatives, and 82% correct detections.

rule rejected electrodes with either more than 5 SPs in 60 s or a peak amplitude of more
than 300 µV in inhibitory conditions. One experimenter manually sorted electrodes, following
the routine methodology, while another ran the sorting module, blinded from experimental
observations. In Fig. 2.8, we compared both methods, taking manual sorting as a reference.
In three experiments, the sorting module detected from 73% to 95% of valid electrodes. False
detections leaned towards false negatives rather than false positives. This means that the
detected subset of electrodes, though incomplete, is suitable for valid measurements and few
(4%) electrodes are disruptive.

2.5.9 Spatial averaging

It is possible to integrate the measurements from several channels by computing their
instantaneous mean: the spatial average calculator module averages any combination of N
streams into one. The operation is optimized for speed as it is bound to be repeatedly per-
formed at the sampling frequency: the inverse ofN is computed once using a Euclidian division,
then multiplied to each sample prior to summing. To anticipate more complex modules and
free multipliers in the FPGA, a low-resource, pipelined multiplier was written.

Computation consequently occurs as follows: let W be the data width and J be the set of
N -channel data to be averaged. The spatial average Y is computed by equations 2.7a and 2.7b
below, where ai is the ith digit of the binary representation of A:

A =
2W

N
(2.7a)

Yn =

W−1∑
i=0

ai ×
∑
j∈J

Xj
n

2(i+ 1)
(2.7b)

Where Yn is the nth output sample and Xj
n is the nth input sample for channel j within

a set J of N channels.

2.6 Complete processing architecture
The complete processing architecture is represented in Fig. 2.9. Its organization may be

read horizontally, with separate AP and SP processing chains, or vertically, with an identical
structure in both AP and SP chains, composed of an input processing stage (filtering, event
detection) and a parameter measurement stage (frequency and FOPP measurement, electrode
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sorting). For configuration convenience, all module outputs are available for display, as well
as major processing results (raw data, AP detection, SP detection, frequency measurements,
FOPP measurements, amplitude measurements, and electrode sorting results).

Input processing Parameter measurement

1 2

3

4a 4b
8

5

13b

13a 13c

16a 16b

6

9

14

11

7

10

15

17
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Wavelet 
filters

Adaptive 
threshold

ISI 
processing

AP 
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IIR
filters

SP 
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Electrode 
sorting

Amplitude 
measurement

Averaging

Averaging

Averaging

Downsampling by 10

18

X

X

Display output

Recording outputConfiguration input

Figure 2.9 – Complete processing architecture. Recording, display, and configuration points
are indicated. Signal names and sampling frequencies are as follows: 1: Raw signals (10 kHz).
2: Wavelet-filtered signals (AP waveforms) (10 kHz). 3: Adaptive threshold (10 kHz). 4a:
Raw AP events (10 kHz). 4b: Raw AP events (1 kHz). 5: Bursts (1 kHz). 6: FOPP mea-
surement (100 Hz). 7: Average FOPP (1 kHz). 8: Clean AP events (1 kHz). 9: AP frequency
(100 Hz). 10: Average AP frequency(1 kHz). 11: List of sorted channels (100 Hz). 12: Fil-
tered signals (SP waveforms) (10 kHz). 13a: SP events (1 kHz). 13b: SP events (100 Hz).
13c: SP events (10 Hz). 14: SP frequency (1 kHz). 15: Averaged SP frequency (1 kHz).
16a: Envelope base signal (10 kHz). 16b: Envelope base signal (1 kHz). 17: Upper envelope
(1 kHz). 18: Lower envelope (1 kHz).

2.7 Hardware implementation

To satisfy the needs expressed for Multimed at the end of section 2.1 (being easily applicable
to diverse projects, being easily reconfigurable, recognizing various electrical signatures), design
rules were put in place to maximize compatibility between modules as well as performance.
This section focuses on some of these design rules, exclusively concerning processing modules
(detailed description of their environment and functional modules is given in Appendix D.

2.7.1 Integration and communication

Communication between processing modules is entirely standardized. Multichannel streams 8

are transferred sequentially, with a start bit indicating transmission start (Fig. 2.10A). Mod-
ules with pipelined architectures can immediately process these data, while the others buffer
them in a local FIFO (First In First Out). Event data, for their part, are transferred in parallel

8. Signals such as raw data, filtered data, frequency and FOPP measurements
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alongside an enable bit (Fig. 2.10B). They too are buffered in processing modules. Although
these communication scheme sometimes induce duplicated storage in the system, they improve
processing latency.

Real-time processing being of the essence, data are transmitted without a handshake sig-
nal. Indeed, it is preferable to favour fast and consistent data transmission to data traceability.
Plus, in such a controlled environment, where sampling frequency is four orders of magnitude
below clock speed 9, it is safe to assume that all transmitted data is processed by the down-
stream module before the next sample is sent: the longest processing latency in the system is
caused by wavelet filtering, with a worst-case processing time of 4160 clock cycles for all 64
channels (or 41.6% of the available processing time between two samples. See table 2.3 for
a complete quantification of processing latency). This should however be one of the main
cautionary points when considering an upscale in the number of source channels.

2.7.2 Parallelization and serialization of computation
To improve performance, data is transferred between modules in a flow. At the module

level, N samples corresponding to N electrodes are serially input and output. Simple modules
(and modules that allow it) are fully pipelined 10 and implemented at very little resource and
time cost. Other modules need to have data buffered in a local FIFO before processing them
at the cost of several clock cycles per electrode. Although this communication scheme induces
duplicated storage in the system, it improves processing latency.

2.7.3 Implementation costs and performance
Cost of implementation and processing latencies of all modules are summarized in tables 2.2

and 2.3. Synthesis was run for a Xilinx Spartan-6 FPGA with ISE 14.7 and default synthesis
parameters. Since modules are written for a generic number of channels N , table 2.3 gives
the processing latency of each module both as a function of N and in the current 64-channel
implementation.

9. Clock frequency is 100 MHz, sampling frequency is 10 kHz
10. Pipeline refers to the unbuffered series computing scheme: data are processed as fast as they arrive, at a

pace of one electrode per clock cycle. This means that processing latency is constant, equal to the number of
processing steps in the pipeline regardless of the number of electrodes to process.
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Figure 2.10 – Inter-module communication schemes. A: Series data transmission protocol
used for stream transfer. B: Parallel data transmission protocol used for event transfer.

Table 2.3 – Processing latency of modules and their sub-modules for N channels (generic
case) and 64 channels (present case).

Processing module (and submodules) Latency

in clock cycles (N channels) in µs (64 channels)

AP and burst detection 17N + 8 to 75N + 8 10.96 to 48.08
Wavelet filter 7N to 65N 4.48 to 41.60
Adaptive threshold 9N + 4 5.80
ISI processing N + 4 0.68

SP detection 23N + 4 14.76
IIR filters (8 filters) 16N + 2 10.26
Extrema detection 6N + 1 3.85
SP filtering N + 1 0.65

Frequency/FOPP measurement 9 0.09

Amplitude measurement 9 0.09

Electrode sorting 9N + 3 5.79

Averaging N + 17 0.81
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2.8 Functional blocks

2.8.1 Recording

Raw and processed data are stored on two separate SD cards: with respect to the notations
in Fig. 2.1, raw data are stored in slot #1 and processed data in slot #2. This produces one
file containing raw data for verification and archiving purposes, and another one containing
detection and measurement results, ready for fast transfer and post-analysis. Processed data
include detected events, measurement streams, and configuration information as listed below:

— Events

— APs
— Burst starts
— Burst ends
— SP maxima
— SP minima

— Streams

— AP frequencies
— SP frequencies
— FOPPs
— Signal envelope
— Averaged AP frequency
— Averaged SP frequency
— Averaged FOPP

— Configuration

— PGA gain

The SD storage driver currently has not file system support, meaning that data must be
stored in an unformatted binary format. While this does require dedicated extraction software,
the resulting format is very compact and sequential, making it easy to read, convert, or process.

Appendix C provides detailed information regarding raw and processed data formats (C.1
and C.2 resp.), as well as all recorded processed data and their properties (C).

2.9 Graphical User Interface

A Graphical User Interface (GUI) was designed to make system configuration accessible
to the uninitiated. It was written in Python 2.7 to permit cross-platform development and
convenient releases to partners, taking advantage of it being a free, multi-platform, open-source
language. The GUI notably uses the TkInter package to create its graphical handles and the
pySerial package to handle serial communication.

2.9.1 Communication layer

A communication and control API (Application Programming Interface) constitutes the
bottommost layer of the interface. It is a communication layer that translates user inputs
to Multimed command strings (e.g. PGA gain ×10 is translated to command string i89, see
Appendix E for translation rules). A communication overlay handles serial communication
and user interaction. Each configuration input from the user results in a serial instruction
to Multimed and a console output. Each configuration instruction indeed has an associated
description that is displayed when sent. For traceability, each action on the interface is also
logged in a text file created on startup. This log contains all instructions sent to the system,
alongside their corresponding descriptions and timestamp. The latter are written to be inter-
preted by Multimed as comments, meaning that the log file may be sent to Multimed as a
command string without modification and restore a previous state for debugging.

https://www.python.org/downloads/release/python-2713/
https://wiki.python.org/moin/TkInter
https://pypi.python.org/pypi/pyserial
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2.9.2 Graphical interface layer
The graphical interface layer was designed in collaboration with CBMN (Institute of Chem-

istry & Biology of Membranes & Nano-objects) to meet their needs during experimental ses-
sions. Exchanges were made between releases to improve accessibility, ease of use, and com-
patibility (screen size, OS, communication ports). This sections summarizes the decisions that
were made to reach the final design.

General structure

The topmost layer of the interface is a TkInter application providing graphical controls
over Multimed. It is composed of four main panels (see Fig. 2.11): (1) A panel on the left,
providing connection options, hardware information, GUI options (save/recall, log file export),
and recording options; (2) A display control panel on the right, to select display modes; (3)
A processing configuration panel in the centre, with multiple tabs to configure each module
in Multimed; (4) A console at the bottom, to have a readout of all operations and manually
enter command strings or comments.

The interface layout is designed to have every essential control immediately available on
startup, and still accessible when browsing configuration menus. Only the centre panel can
switch tabs, to unravel more in-depth configuration options for every module. They include:

— An input tab, to configure PGAs.
— A SP filter tab, to configure a complete IIR filter block.
— A SP detection tab, to configure both SP detection parameters and SP frequency mea-

surement parameters.
— A SP amplitude measurement tab
— An AP detection tab, to configure the AP detection threshold and AP frequency mea-

surement parameters.
— An AP burst detection tab, to configure burst detection and FOPP computation.
— An AP filter tab, to configure wavelet filters.
— A sorting tab, to configure electrode sorting and read its results.
— A monitoring tab, to read measurement values on any channel in real-time.

User constraints

The system is used in several locations, with different experimenters, on different cells, and
for different purposes. The GUI must therefore accommodate various users and situations.

With that in mind, the number of parameters available in the system would make it a
particularly dull experience to configure every setting by hand for every experimental sce-
nario. Firstly, it is a very time-consuming and repetitive task; secondly and most importantly,
this process is prone to human error. Although it was already possible to send pre-written
ASCII (American Standard Code for Information Interchange) configuration strings (see sec-
tion 2.9.1), a more user-friendly approach of saving and recalling configurations was added. It
was integrated in the GUI, meaning that Multimed does not save or recall a given state, the
interface does, setting both its own and Multimed’s states. This gives more complex possibil-
ities in terms of instruction parsing and generates configuration files that are both legible and
editable. The configuration file format adopted is structured with opening and closing tags 11

that define a configuration region for each module, permitting partial configuration files (e.g.
a configuration file may only configure SP filters).

This feature also facilitates system utilization for users with little training, as it provides
presets, making navigating advanced configuration tabs virtually unnecessary.

11. inspired by Extensible Markup Language (XML)

https://wiki.python.org/moin/TkInter
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2.10 Hardware support

2.10.1 Complete setup

A complete electrophysiology setup including Multimed has many interacting parts, and
connections must be thoroughly respected to avoid malfunctions and hardware damage. Fig-
ure 2.12 shows the connection diagram of a setup for pancreatic cell measurements (ISLET-
CHIP project). It is composed of (1) a Multimed board, (2) a MCS preamplifier and (3) its
thermal controller, (4) a computer for controlling Multimed, (5) a VGA monitor for displaying
real-time data, (6) a MCS acquisition board (optional), (7) a MCS filter module (optional),
all on (8) a single power strip (recommended). For detailed material setup instructions and
safety precautions, see appendix F.

1

2

3

4

5

6

7

8

1: Multimed Board
2: MCS MEA1060-Inv preamplifier
3: MCS TC01 thermal controller
4: Computer
5: VGA monitor
6: MCS USB-ME64 acquisition board (optional)
7: Optional filters

power cord VGA connector USB connector

RS232 connector SCSI68 connector

Figure 2.12 – Complete measurement setup scheme

2.11 Modularity and Evolutivity

2.11.1 Macro-module aspect

Processing modules in Multimed are written to facilitate rearrangement and share hardware
between projects. Even though the presented architecture is optimized for pancreatic cells, it
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is easy to reorganize modules and adapt to other projects’ specifications. While the interface
part of the architecture remains the same (Main CPU, display management etc.), the whole
processing chain may be redesigned, making each version of Multimed an application-specific
arrangement of the same macro-modules. Data manipulation protocols between processing
units are standardized to ensure compatibility.

The motivation behind such a design is twofold: it facilitates both new collaborations with
a pre-built adaptable system, and prototyping for processing ASICs (Application-Specific Inte-
grated Circuits). Architectural choices can indeed be explored prior to using digital synthesis
tools to generate chip designs.

New needs in terms of processing capabilities are constantly being expressed, leading to
regular updates of the digital library of modules. In parallel, hardware developments are on-
going, in an effort to improve the interfaces with a custom high-voltage stimulation ASIC
[90] and facilitate the prototyping of fully-customized, autonomous System-In-Package (SIP)
solutions.

2.11.2 Technology transfer
Multimed setups have been installed in multiple sites and are being used by partner labo-

ratories in collaborative projects, always aiming for closed-loop experiments (Brain Bow, Ce-
navex, ISLET-CHIP). In the case of ISLET-CHIP, that involved clinical associates, partnership
agreements included the installation of measurement setups in different sites. A first setup was
installed at CBMN (Fig. 2.13A), the geographically closest partner, to test it in lab conditions,
verify that uninitiated personnel could be trained to use it independently, and conduct quality
control measurements on human islets sent by the isolation centres in Geneva, Switzerland
and Montpellier, France. The underwhelming success rate of these experiments motivated a
second installation directly in the Geneva Cell Isolation and Transplantation Centre (Geneva
University Hospital, Switzerland, Fig. 2.13B) to bypass long-distance cell transportation. In
both sites, resident personnel was trained to handle not only Multimed, but the complete
measurement chain of Fig. 2.12, multiplying independent islet quality control sites.

At the same time, the biosensor technology developed is being promoted by Aquitaine
Science Transfert (AST), a technology transfer firm, to find entrepreneurs and possible col-
laborators and clients to continue research and development of the technology in a start-up
company.
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1: Multimed Board
2: MCS MEA1060-Inv preamplifier
3: MCS TC01 thermal controller
4: Computer
5: VGA monitor
6: MCS USB-ME64 acquisition board (optional)
7: Microfluidic pump

1

2

3

1

2

4

4

5

6

7

3

5

A

B

Figure 2.13 – Pictures of two different measurement setups. A: System set up at CBMN ,
Pessac, France. B: System set up in Geneva, Switzerland.
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Chapter 3

Experiments and results: a peek
inside extracellular
electrophysiology

If you try and take a cat apart
to see how it works, the first thing
you have on your hands is a non-
working cat.

- Douglas Adams, The Salmon of Doubt:
Hitchhiking the Galaxy One Last Time

The development of Multimed’s processing architecture for the study of signals as specific
as pancreatic islets’ has been an opportunity to explore many experiments: from writing
algorithms to testing the processing electronics, involvement in experiments with our biology
partners was key. The constant exchange to better the system led to fruitful collaborations not
only towards ISLET-CHIP’s goal of measuring islet quality, but also towards characterizing
and understanding the underlying mechanisms of pancreatic islets.

This chapter describes the experiments that were conducted using Multimed (online analy-
sis) or its prototype algorithms (offline analysis), as well as post-analyses and their interpreta-
tions. The primary objective of these measurements was to characterize the response of various
cell preparations with the developed electronics (forming the complete biosensor setup). The
extracted data serve as a reference for islet quality measurements in ISLET-CHIP, but also
help extract models to simulate the biosensor in a closed-loop configuration.

3.1 Materials and methods

This section describes the materials used for the experiments (electrophysiology material
and biological material), as well as the general experimental protocols adopted and analysis
methods. With one exception, all the presented experiments took place at CBMN (Institute of
Chemistry & Biology of Membranes & Nano-objects) (Pessac, France). Biological protocols 1

were applied by either Fanny Lebreton, Eleonore Bertin, Manon Jaffredo, Julien Gaitan, Ro-
main Perrier, or Matthieu Raoux. The experiment presented in 3.5.2 took place in the Geneva
University Hospital (Geneva, Switzerland). In this case, biological protocols were applied by
Fanny Lebreton.

1. Including preparation and experimentation

67
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3.1.1 Electrophysiology material
Gold standard MEAs

The reference Microelectrode Array (MEA) used was the MEA200/30-Ti-gr (see Fig. 3.1A-
B) from MCS [Multi Channel Systems, Reutlingen, Germany]. It featured 59 30 µm-diameter
Titanium Nitride (TiN) recording electrodes with 200 µm spacing and an announced impedance
of <100 kΩ at 1 kHz. A 60th electrode, bigger in surface than the others, is grounded and
used as an electrical reference (electrode #15). Note that it is not included in the 8× 8 layout
of Fig. 3.1B. It can be seen on the left side of the well (Fig. 3.1A), a 6 mm-high glass cylinder,
used as a culture chamber. These MEAs are widely used in extracellular electrophysiology and
were the first choice to measure pancreatic cells prior to ISLET-CHIP. In our studies, they
defined the gold standard in terms of electrode distribution, impedance, noise, and bandwidth.

HD MEAs

HD-MEAs (High-Definition MEAs), also provided by MCS (60HexaMEA40/10iR-ITO-gr),
have a higher electrode density and have dimensions that permit multisite recording on single
islets. Their culture chamber contain 59 circular Titanium Nitride (TiN) recording electrodes,
each 10 µm across and with 40 µm spacing. Their announced impedance is 250− 400 kΩ at
1 kHz. The 60th electrode is a reference electrode, again significantly bigger than recording
electrodes.

Microfluidic MEAs

To study continuous variations in cell activity, MEAs with microfluidic channels were used.
The motivations for replacing the well culture chamber with a microfluidic-compatible one
were multiple: having fluidic inlets and outlets permits to automatically change the medium
with pumps 2, instead of manually pipetting it, thus reducing the risk of detaching cells.
More importantly, it permits continuous recording with no perturbation of the cells by the
experimenter during changes. It is also more physiologically accurate, as it continuously and
progressively changes the culture medium and washes away the secreted insulin and glucagon.
Finally, it is a necessity for the long-term plans for the biosensor that require a contained
solution for interstitial fluid perfusion (see 1.5.1).

These µ-MEAs (see Fig. 3.1C-D) were custom-made and supplied by Qwane Biosciences
company [Qwane Biosciences SA, Lausanne, Switzerland]. They feature two symmetrical mi-
crofluidic chambers (6.2 mm × 1 mm × 0.4 mm) formed by a single cast SU-8 epoxy structure.
Each chamber has a perforated comb (50 µm) to maintain cells on the recording electrodes. On
the input side of the comb are 26 30 µm diameter electrodes (seen in Fig. 3.1D) with 150 µm
spacing. On the output side of the comb, 3 control 3 electrodes and 1 bigger reference electrode
(1 mm × 0.5 mm) amount to a total of 30 Platinum-black electrodes per chamber. Recording
electrodes have an announced impedance of 20− 30 kΩ at 1 kHz. The two chambers are closed
by a cast PDMS block [91] in which two holes (diameter 800 µm) give access to each chamber
and connection to a microfluidic pump.

PEDOT-CNT MEAs

PEDOT (Poly(3 4-ethylenedioxythiophene)) is a conducting polymer widely used as a coat-
ing material on recording electrodes for its electrical properties and its good biocompatibility.
It has been reported to improve electric properties of electrodes (reduced impedance) and
favor charge transfer properties of the electrolyte-electrolyte interface. This is partly due to
its porous structure, that increases the surface area of contact with electrolyte solution and
enhances the transport of ions [92, 93]. Its low mechanical stability can be compensated by
CNTs (carbon nanotubess), which also showed favourable biocompatibility properties [94, 95]

2. This is also feasable in well culture chambers, but the topography of these microfluidic-specific chambers
favors medium replacement and facilitates fluidic connections.

3. as in they should not be covered by cells and provide flat readings
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Figure 3.1 – Two planar MEAs used in ISLET-CHIP . A: A MCS 60MEA200/30iR-Ti-gr
MEA . B: Microscope photograph of the 60MEA200/30iR-Ti-gr MEA . C: A custom 60-
electrode MEA by Qwane with a PDMS microfluidic mask. D: Microscope photograph of the
Qwane µ-MEA
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and better electrochemical sensing [96, 97]. This composite PEDOT-CNT (PEDOT-carbon
nanotubes) coating is used by MCS on MEAs identical to the gold standard MEAs , except
their electrodes are PEDOT-CNT-plated Gold (Au) instead of Titanium Nitride (TiN), with a
subsequent announced impedance of <20 kΩ at 1 kHz. These MEAs (60PedotMEA200/30iR-
Au-gr) were used to improve Action Potential (AP) visibility: early experiments showed that
PEDOT-CNT-coated electrodes improved AP visibility and generally achieved higher Signal-
to-Noise Ratios (SNRs) in their frequency range, to the detriment of Slow Potentials (SPs)
(unpublished data, corroborated by [98]). This trade-off was however acceptable, due to the
robustness of SPs, contrasting with that of APs .

Acquisition material and electronics

When the Delivrer project first started in 2007, planar MEAs had never been used to
measure activity on pancreatic islets and β cells . Although it has been known for decades
that these cells had measurable electrical activities, only patch-clamp measurements had been
conducted. The techniques and tools used at the time were that of neuroscience, that had
been well established. Using these materials and methods for pancreatic cells helped set a
reference as to which activity patterns should be detected, especially on planar MEAs, where
features such as APs are harder to detect.

Early experiments exclusively used equipment from MCS, as described in 2.2.2:

— MEA1060-Inv preamplifier with a 0.1 Hz – 3 kHz bandwidth and a gain of 1200.
— USB-ME64 60-channel, 10 kHz, 16-bit
— STC01 thermal controller acquisition board
— PS40W power supply

These permitted 60-channel recording at 10 kHz directly on a computer and post-processing
with its dedicated software MC_Rack. The setup could detect APs as intended, but also SPs
by adapting AP detection parameters to lower frequencies.

However, using neuron-specific techniques and equipment on pancreatic cells has its limits.
Signal processing provides limited flexibility to adapt to the specificities of the cells, and closed-
loop capabilities are limited to punctual electrical stimuli, unusable on β cells. As described in
the previous chapter, Multimed was the solution to these issues by design. It was inserted in
the acquisition chain (Fig. 2.12), between the preamaplifers and the MCS acquisition board.
The two Data Acquisition (DAQ) devices were used in parallel to store validation data, and
did not deteriorate signal quality and had no noticeable effect on one another.

3.1.2 Biological materials

Cell cultures

Murine pancreatic islets were obtained by enzymatic digestion and handpicking, and were
cultured by CBMN directly on MEAs as described in [43, 99]: 100-200 islets per mouse were
cultured for 2-7 days on MEAs as whole islets or partially dissociated islet cell clusters (>10
cells per cluster).

Human islets were provided by the GRAGIL 4. They were isolated from cadaveric non-
diabetic donors at the Cell Isolation and Transplantation Centre (Geneva University Hos-
pital) [100] or the Laboratory of Cell therapy for Diabetes (LCTD, Montpellier University
Hospital, France). After transport, the human islets were maintained in suspension for recov-
ery (25 ◦C, 95% O2, >90% relative humidity) in CMRL-1066 medium (Invitrogen, Carlsbad,
CA, USA) containing 5.6 mmol/l glucose, supplemented with FBS (10% vol./vol.; Eurobio,
Courtaboeuf, France), penicillin-streptomycin (1% vol./vol.; Invitrogen, Saint Aubin, France)
and L-glutamine (1% vol./vol.; Invitrogen). The islets were subsequently cultured on MEAs
in this medium for 5–13 days using the same procedure as for mouse islets. Culture media

4. The GRAGIL (Geneva-Rhine-Rhone-Alps Group for the transplantion of Islets of Langerhans) consor-
tium is a network of several transplantation centres from France (Grenoble, Lyon) and Switzerland (Geneva
University Hospital) that act as a central islet production structure.
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were renewed every 2–3 days. The use of human islets was approved by the ethics committee
of Geneva University Hospital (Geneva, Switzerland).

Within the context of the STABILOT study, a sample of around 1000 Islet Equivalents
(IEQs) were retrieved from islet preparations accepted for transplantation (Fig. 3.2). Their
quality was then evaluated using Multimed. The STABILOT study proposes to prospectively
assess the economic impact of islet transplantation by analysing the evolution of the patients’
insulin-independence and comparing it to the current best medical treatment (SAP, or sensor-
augmented pump) [101].

Available donor

Islet isolation

Transplantation

Sample for ISLET-CHIP
quality control

Figure 3.2 – Human islets are sampled from preparations destined for transplantation. After
isolation, an average of 1000 IEQ are reserved for quality control with ISLET-CHIP. For scale,
up to 11000 IEQ/kg are required for a transplantation.

Biological markers

All chemicals were obtained by CBMN from Sigma-Aldrich (St. Louis, MO, USA) except
for GLP-1 (BachemBioscience, King of Prussia, PA, USA). Nifedipine and glibenclamide were
solubilised in dimethyl sulfoxide, and adrenaline was solubilised in ascorbic acid. Solvents
(final concentrations ≤0.1%, vol./vol.) were without effect on SPs and APs .

3.1.3 Routine setups and protocols

Static experiments on classic MEAs Static experiments refer to the study of cell be-
haviour in a stationary state. Between two conditions, the preparation medium is changed
entirely using pipettes and cell activity is only measured after 5 or 10 minutes of waiting for
the culture to settle. It is simple to set up as it requires no equipment other than the record-
ing equipment and the usual glassware but has the disadvantage of losing 5 to 10 minutes of
activity after each medium change.

Perfused experiments on classic MEAs Perfused experiments were put in place to re-
duce disturbance to the cells when changing medium. Instead of pipetting the liquid, a two-
channel peristaltic pump drained it with one channel while the other refilled it with the new
medium.

In both cases, the main drawback of the technique is the risk of detaching cells from
the electrodes. The risk is obvious when pipetting the liquid, and still exists with perfused
experiments, where pipe placement is manual and risks scrubbing cells away. Plus, these
techniques are not applicable in a context other than bench experiments: a different way to
condition cells is therefore proposed to permit an embedded device approach.
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Perfused µ-MEAs: The complete biosensor setup µ-MEAs were designed by CBMN
and manufactured by Qwane Biosciences to improve conditions of perfused experiments and
investigate embeddable solutions. They supply easier pump connections and a more robust
culture chamber in which cell adhesion is improved even with fluid displacement. Only one
pump channel 5 is needed to use this device: different solutions are pumped inside the microflu-
idic channel that simply spills out the excess liquid. The measuring device including this MEA
constitutes a prototype of an entire biosensor capable of measuring glucose concentrations in
a flowing medium. With fluidic switches, this permits continuous variations in the medium
and analyses of the activity that ensues.

3.1.4 Analysis methods
Online measurements

Data analysed and recorded using Multimed will be referred to as "online measurements"
or "real-time measurements" 6. These data were generated without post-processing, and only
with the processing electronics described in the previous chapter (2).

Offline measurements

Post-processing will be referred to as "offline measurements" 7. These were performed in
MATLAB using custom functions, that are either parts of Multimed’s algorithms 8, optimized
for vector computation, or external tools, not included in Multimed’s function library.

Event correlation

Correlation between events detected on couples of electrodes was computed following a
method inspired from [102], originally used to compute synchronization between trains of neu-
ron spikes. This method, yielding time-dependent correlation, consists in convoluting each
train of events with a Gaussian function and computing the cross-correlation between the
resulting waveforms. The Gaussian functions spread and weight each event in time into a con-
tinuous waveform, permitting the computation of continuous correlation from discrete events.
The standard deviation of the Gaussians (expressed in seconds) may be adjusted to control the
spreading of each event, hence the timescale of the measurement. In this instance, the standard
deviation was set at 1 s (to match the order of magnitude of SP frequency). Cross-correlation
measurements were performed in a 60 s moving window, by steps of 2 s. See appendix G for
an illustration of this method.

Statistics

Statistics results are presented as means and SEM (Standard Error of the Mean) of n
electrodes. One-way ANOVA (Analysis Of Variance) with Bonferoni post hoc correction is
used to compare different conditions in a single group. Two-way ANOVA with Bonferoni post
hoc correction was used for comparisons between more than two groups. P values < 0.05 are
considered statistically significant.

3.2 Glucose dose-response
To characterize the biosensor, its response to glucose was first measured. These experiments

helped determine whether it could indeed be substituted for a classic glucose sensor. The
studied outputs include AP frequency, SP frequency, SP frequency reversibility, all measured
in static experiments. Dynamic responses are characterized in section 3.4.2.

5. as opposed to perfused experiments in a culture well that require an inlet and outlet pump
6. and more generally recordings, processing, etc. will be referred to as "online" or "real-time".
7. and "offline" recordings, processing, etc.
8. see sections 2.5.1 through 2.5.9 for algorithmic description



3.3. HORMONE DOSE-RESPONSE 73

3.2.1 Action Potential frequency dependence

Detection of APs in β cells with intracellular techniques has extensively been done in the
past [38, 103, 104]. Activated by glucose, they appear in a typical burst pattern [38, 105, 106]
which, like those of neurons, can be measured with extracellular techniques. Figure 3.3 shows
the difference in AP activity between low (G3) and post-prandial (G8.2) glucose concentrations.
As expected, APs fire at G8.2, in burst-like patterns (Fig. 3.3A). In the zoomed portion of
Fig. 3.3A, they appear to be condensed in the falling phase of SPs, which is confirmed in
section 3.4.1.

The low SNR of AP signal makes it very difficult to detect APs with 100% accuracy,
and in many cases even makes it difficult to visually assert their presence in the recorded
waveforms. The wavelet transform method used in the system [70] was a first tentative to
achieve reliable AP detection in extracellular recordings of β cells. Additional efforts were
made on electrode design to favour it: PEDOT-CNT- and PEDOT-PSS-coated electrodes
were investigated and tended to improve AP visibility and detection rate (unpublished data,
corroborated by [98]). APs were nonetheless mostly disregarded (and consequently Fraction
Of Plateau Phase (FOPP)) to favour SPs, which are easier to detect, more robust, and show
similar tendencies.

3.2.2 Slow-Potential frequency dependence

While APs are signatures that had been characterized before in intra-cellular recordings,
electrical measurement of SPs is unique to extra-cellular recording and has only been charac-
terized by the Cell Biology and Biosensors team at CBMN . Early experiments showed that
these oscillatory signatures are modulated by glucose (Fig. 3.4a, 3.5), marked by the near-
absence of activity in low glucose concentrations (<5 mmol/l) and an increase in frequency
with raising glucose levels (Fig. 3.5b).

3.2.3 Asymmetry in glucose dose-responses

Glucose dose-responses were characterized both in increasing and decreasing glucose con-
centrations, and it was noted that islet response was not symmetrical: for an equal glucose
concentration, islet activity was higher with increasing steps of glucose than decreasing steps.
Figures 3.6A-B show this tendency, illustrated by SP frequency. The measured hysteresis
suggests that an endogenous algorithm is naturally present in islets to protect against hypo-
glycaemia: a drop in sugar levels would cause a quick extinction of islet activity, stopping
insulin secretion and preventing from further lowering blood glucose.

3.3 Hormone dose-response

Within a biosensor approach, in most cases, the biological part of the device is sensitive
to multiple substances which may be considered – and relevant – depending on the biosen-
sor application. While the primary interest in using pancreatic islets as a biosensor was
glucose evaluation, their sensitivity extends to various hormones and substances present in
the human body. characterization of islet response to these markers not only strengthens
the pre-transplant quality control proposed by ISLET-CHIP, but also brings us closer to a
hormone-sensitive artificial pancreas: hormonal signals translate the general body status and
strongly influence insulin secretion depending on activity. Secretion is also naturally modu-
lated through hormones (like incretins) during the circadian cycle [32].

3.3.1 Adrenaline

Adrenaline (epinephrine) is a hormone produced by the adrenal glands in situations of
stress or physical activity, and playing an important role in acute stress response. Aside from
its most-known effects of increasing heart output and blood flow, it also increases blood sugar
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Figure 3.3 – APs activate at post-prandial glucose levels in mouse islets. A: Difference in
electrical activity between G3 and G8.2. Cell activity at G8.2 exhibits SPs as well as APs,
as shown in the zoomed portion. B: AP frequency measurements, averaged from real-time
measurements on n = 5 electrodes. ***p<0.001. C: Raster plot of real-time AP detections on
five active electrodes during G3 and G8.2 conditions.
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Figure 3.4 – Electrical activity recorded on mouse islets and real-time SP frequency mea-
surement, showing SPs modulated by glucose concentration. No SP can be seen at G3 (a),
while some appear at G7 (b) and increase frequency at G9 (c). Signals were recorded on
µ-MEAs and processing (filtering, SP detection, and frequency measurement) was performed
online with Multimed.

Figure 3.5 – Human islets show glucose-
dependent SPs. (a) Representative elec-
trical response of human islet cells to
increasing glucose concentrations (upper
trace).Higher temporal resolution shows
the presence of both APs and SPs at
8.2 mmol/l glucose (G8.2, lower trace).
Scale bars: horizontal 10 min (upper
trace), 0.5 s (lower trace); vertical 50 µV
(upper trace), 25 µV (lower trace). (b)
Glucose concentration-dependent frequen-
cies of SPs in human islet cells (offline
analysis with MC_Rack). Statistics on
data pooled from three donors: n=65;
***p<0.001 compared with the value ob-
tained in the presence of 3 mmol/l glu-
cose (G3) or †††p<0.001 compared with
the value obtained in the presence of
5.5 mmol/l glucose (G5.5), ‡p<0.05 com-
pared with the value obtained in the pres-
ence of G8.2 (Bonferroni post hoc test).
(c) A 24 h long recording shows the sta-
bility of SP frequency evoked by 7 mmol/l
glucose (G7). Solid line: mean SP fre-
quency, dotted lines: SEM (n=12).
Source: Lebreton, Pirog, Belouah, Bosco,
Berney, Meda, Bornat, Catargi, Renaud,
Raoux, and Lang [43]
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A B

Figure 3.6 – Asymmetrical response of SP frequency to small glucose steps in the physiolog-
ical range (3-11 mmol/l). Upward triangles (s) indicate an increase in glucose concentration
and downward triangles (t) indicate a decrease. A: Time-dependent variations in SP fre-
quency superimposed with the glucose steps protocol. B: Glucose-dependent representation
of the same experiment, showing a hysteretic response with a quicker fall response. Data were
sampled from 21 electrodes from two different experiments.

by inhibiting insulin release [107]. Physical or emotional stress increases adrenaline, signals
a lesser demand in insulin and decreases insulin secretion from islets [33]. More specifically,
adrenaline is an inhibitor of β cells and an activator of α cells [108]. Islet measurements on
MEAs showed that SPs induced by glucose were reversibly inhibited by adrenaline (Fig. 3.7a).
However, adrenaline did not affect the APs , presumably due to α cells being recorded together
with β cells on MEA electrodes (Fig. 3.7b).

3.3.2 GLP-1

Glucagon-like peptide-1 (GLP-1) is an intestinal hormone, or incretin, secreted in response
to food intake. It increases insulin secretion, increases glucose sensitivity of β cells and de-
creases glucagon secretion. We recorded islet activity exhibiting GLP-1 dependency (Fig. 3.8):
SPs were potentiated by GLP-1, and a 0.5 pmol/l concentration increased their frequency, with
a maximal effect at 50 pmol/l (high physiological range).

Of course, other hormones (as well as nutrients and neurotransmitters) would be of interest:
as described in section 1.3.2, many molecules (naturally produced by the body) modulate of
β cell activity. These can be summed up into three categories: nutrients, hormones, and
neurotransmitters.

Many hormone sources in the body influence islet activity and insulin secretion. Because
experiments require investment and many iterations to produce relevant data, hormones of
interest have been prioritized. Those released by pancreatic islet (glucagon, somatostatine) for
instance have not been characterized because they are considered endogenous to the biosensor
and are de facto transparently taken into account. Other hormones, such as ghreline or leptine
have lesser effects and have been ignored to prioritize those with more potency. Incretins
for instance are the principal hormone regulation path. Among them, GLP-1 is the most
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Figure 3.7 – SPs of mouse islet cells
are inhibited by Adrenaline. (a) Glucose-
induced SPs were abolished by 25 µmol/L
of nifedipine (Nif) or 5 µmol/L adrenaline
(Adr). Representative traces and statis-
tics are shown (n=53–140). ***p<0.001
(Bonferroni post hoc test). (b) α cells
and β cells in islets can be recorded by
the same electrode. APs are activated by
low glucose (G3: 3 mmol/l) or adrenaline
(G10+Adr: 10 mmol/l glucose with
5 µmol/l adrenaline) and are attributed to
alpha cells. SPs activated by high glu-
cose (G10: 10 mmol/l) and inhibited by
adrenaline represent an electrical signature
of beta cell activity. Scale bars: horizon-
tal (a) 3 min, (b) 0.5 s; vertical 100 µV
Source: Lebreton, Pirog, Belouah, Bosco,
Berney, Meda, Bornat, Catargi, Renaud,
Raoux, and Lang [43]

G15

G8.2

0

Figure 3.8 – SPs of mouse islets are ex-
cited by GLP-1. Tenfold steps of GLP-1
concentration were applied in the physio-
logical range at G8.2 and G15. Measure-
ments are normalized to conditions of G8.2
and G15 respectively.

potent, but GIP also attracts interest and will be characterized in future works. Adrenaline
is the principal inhibitor of β cell activity with powerful and fast effects, which is why it was
characterized early on. One last hormone of interest is melatonine, which regulate insulin
secretion during the circadian cycle. Its effects have been investigated in the past but no
change in electrical activity was detected (unpublished data).

Regarding nutrients other than glucose, characterizing effects of lipids and amino-acids
would provide valuable information. Again, they need to be prioritized for future characteri-
zation.

Neurotransmitters such as acetylcholine and noradrenaline have significant effects on β
cell activity. They have however not been characterized because the biosensor in closed-loop
configurations will not be innerved and will not be subject to neurotransmitter effects.

3.4 A general analysis of pancreatic signals

Tendencies beyond static dependency were observed during experiments, and were fur-
ther investigated to either provide supplementary criteria for islet quality, gather information
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regarding endogenous islet algorithms, or further refine biosensor models. The observed be-
haviours notably included synchronization between SPs and APs from the same electrode,
synchronization between SPs between neighbouring electrodes, and time-dependent variations
of activity during experimental changes. The current section describes the dedicated experi-
ments and processing functions that were developed to study these behaviours.

3.4.1 Correlation between Action Potentials and Slow Potentials

As mentioned in section 3.2.1, it appeared that APs were generally fired during the falling
phase of SPs, as supported by Fig. 3.9A that shows clearly discernable APs and SPs on an
unprocessed signal recorded on a human islet. Data from four different experiments, selected
for the presence of both signatures, were used to investigate this phenomenon. APs and
SPs were isolated offline using Stationary Wavelet Transform (SWT) filtering and zero-phase
filtering respectively, ensuring no time displacement of the events. Each AP was attributed
an angular position on its associated SP , ranging from 0◦at SP minimum, through 180◦at SP
maximum and to 360◦back to SP minimum. The results are shown in Fig. 3.9B, indicating
that APs are indeed mainly present on the falling phase of SPs: 70.47% of all detected APs
were concentrated in the falling phase (180− 360◦) and 48.27% in the third quadrant alone
(180− 270◦).

One hypothesis would explain this phenomenon by drawing a parallel with Local Field
Potentials (LFPs), that are generated in neuron cultures by a complex summation of many
synchronized ionic fluxes. Indeed, SPs and APs are observed simultaneously at elevated glucose
levels only if the measured β cells are coupled via connexins [43]. By contrast, only APs are
recorded at excitatory glucose concentrations when coupling is disrupted, suggesting that SPs
reflect the electrical activity and coupling of β cells. SPs could therefore result from the
summation of synchronized ionic fluxes of coupled groups of spiking β cells.

A B

Figure 3.9 – Tendency of APs recorded on mouse islets to fire during the falling phase of SPs.
A: Signal recorded on human islets, showing a tendency of APs to fire during the falling phase
of SPs . B: Temporal correlation between APs and SPs showing that APs are mainly present
during the falling phase of SPs (four independent experiments). The black curve represents
the position on an SP at a given angular position.
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3.4.2 Biphasic activity

Continuous recordings were conducted to establish the transient response of cells subjected
to a physiological step of glucose. Murine islets were cultured on MEAs with PEDOT:PSS-
coated electrodes, and maintained at 3 mmol/l of glucose, then an excitatory solution was
perfused in the culture chamber. The used solutions were three glucose solutions at 5.5 mmol/l
(G5.5, at the activation threshold), 6 mmol/l (G6, immediately above the activation threshold),
and 8.2 mmol/l (G8.2, close to post-prandial sugar levels). Figure 3.10 shows a two-phase
response in SP frequency, SP amplitude, (Fig. 3.10A,C-D) and AP frequency (Fig. 3.10B),
much like biphasic insulin secretion patterns [109–112]. During 1st phase, which lasted on
average 8.40 ± 1.18 min (n=7), SPs had high frequency and low amplitude, and APs had
high frequency. After a drop of global activity (Nadir, (N)), electrical activity entered a 2nd

phase, SP and AP frequencies were reduced, and SP amplitude was increased. After a moment
of sustained activity, APs and SPs in the 2nd phase become pulsatile, with regular cycles in
frequency and amplitude (period 3.28± 0.41 min).

A second set of experiments was conducted to investigate the effects of the glucose step size.
Instead of a unique G3→G8.2 step, electrical activity was measured with G3→G5.5, G3→G6,
and G3→G8.2 steps. Biphasic responses were observed in all three cases, with a scaling effect
causing signal amplitude and event frequency to decrease with glucose (Fig. 3.10B-D).

These experiments show that and electric two-phase activation pattern exists at physiolog-
ical glucose level, similar to documented biphasic insulin secretion profiles [109–112], and that
it can be recorded in real-time using our processing electronics.

3.4.3 Correlation between Slow Potentials

Changes in dynamics between 1st and 2nd phase raise questions as to what mechanisms
are involved. The slow increase in amplitude and the first spike in frequency suggest that
activity between islets may be desynchronized in the first place, and progressively synchro-
nize. To verify this hypothesis, correlation between islets was investigated using SP detection,
representative of islet activity (as opposed to single cell activity). Time-dependent correlation
was quantified using an event-correlation method used in [102], for neuron APs and applied to
SP events (see section 3.1.4 and appendix G). Correlation ranges between +1 (synchronized
events) and −1 (out-of-phase events). A null correlation (0) indicates uncorrelated events.
Electrical signals were recorded using HD-MEAs, to visualize multisite activity from single
islets. Correlation between couples of electrodes from the same islet (intra-islet) and from sep-
arate islets (inter-islets) (see Fig. 3.11A) was computed offline over 60 s every 2 s and between
all electrode couples for the total duration of the experiment. As can be seen in Fig. 3.11A,
activity recorded on separate electrodes from the same islet (islet 1) is similar, whereas ac-
tivity recorded on a different islet is different. A quantification of this observation is given in
Fig. 3.11B. It represents correlation matrices taken at different instants in time and shows that
inter-islet correlation is quasi-null at G8.2 for all couples (Fig. 3.11B) and oscillates erratically
around 0 (Fig. 3.11C). More importantly, Figs. 3.11B-D show the evolution of event correla-
tion between the 1st and 2nd phase. It is moderate in 1st phase (0.25± 0.07) and significantly
higher in 2nd phase (0.64± 0.06) (Fig. 3.11D).

This suggests that internal behaviour of pancreatic islets evolve during stimuli: a functional
model of islet activity is given in Fig. 3.11E, proposing that small groups of cells (functional
units) first activate independently causing the faster 1st phase, then all units synchronize and
cause the slower, bigger, syncytial behaviour of the 2nd phase.

3.5 Functional experiments
With the biosensor extensively characterized, experiments have been conducted to verify its

function as both a front-end sensor for insulin demand and a tool for determining islet quality.
A blind experiment proves that islet activity is sufficiently changing to discern different glucose
concentrations (3.5.1), and a full islet quality control protocol is described (3.5.2).
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Figure 3.10 – Signals recorded on murine islets show a two-phase activity when stimulated
by a glucose step. A: SPs have a biphasic response in both frequency and amplitude when
stimulated by a glucose step. The first phase (¶) consists of a low-amplitude, fast oscillating
burst of SPs , and the second phase consists of high-amplitude, slower, and pulsating SPs .
The two phases are separated by a moment of very low activity, the Nadir (N), and the second
phase starts by a sustained activity followed by pulsating SPs (P). B-D: Differences in AP
frequency (B), SP amplitude (C), and SP frequency (D) biphasic response when applying
different glucose level steps (G3 to G5.5, G3 to G6, and G3 to G8.2). All signal processing
was performed in real-time using Multimed.
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parison of intra-islet correlation indexes
between first and second phase (indicated
by ¶ and · in A,B, and C) on six
different islets (36-78 couples of electrodes
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sent the average correlation for all islets.
**p<0.01. E: Functional model of islet ac-
tivation and biphasic electrical response.
Colours indicate groups of activity.
With courtesy of Eleonore Bertin, CBMN

3.5.1 Blind experiments

With the observation of noticeable changes in cell activity between conditions, and with
the objective of producing a biosensor, we must investigate the ability of the prototype to
distinguish between and detect changes in media. Double-blind experiments were therefore
conducted to determine whether Multimed could correctly discern and match different glu-
cose concentrations. Four solutions were prepared at 3 mmol/l, 5 mmol/l, 7 mmol/l, and
9 mmol/l. The 3 mmol/l reference 9 solution was labeled "G3" and the three others were shuf-
fled and labelled "S1" ("solution 1"), "S2" ("solution 2"), and "S3" ("solution 3"), with no
other indication and only a person exterior to the experiment knowing the correspondence.
The experiment started with 300 s of G3, followed by the application of 5 solutions, picked
randomly.

The matching of the solutions was based on real-time SP frequency measurements, shown
in Fig. 3.12. Each condition has a clearly discernible frequency step, leading to the conclusion
that, concentration-wise: Condition 3 < Condition 1 < Condition 2 = Condition 4, i.e.
[S3] < [S1] < [S2] (results are summarized in table 3.1). This drew the correct conclusion
that [S1] = 7 mmol/l, [S2] = 9 mmol/l, and [S3] = 5 mmol/l.

9. It was necessary to confirm that cells responded to inhibitory conditions.
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Figure 3.12 – Blind experiment. SP frequency was measured online on a µ-MEA, in response
to 3 different unknown glucose concentrations (solutions S1, S2, and S3); only G3 is known by
the experimenter. Statistical analysis of slow potentials frequency from the last five minutes
of each condition is overlaid. *** p<0.001, one-way ANOVA (Bonferoni post-hoc test).

Table 3.1 – Summary of the blind experiment. Each column refers to the conditions shown
in Fig. 3.12, with the corresponding solution between parentheses. Average frequency was
computed in post based on real-time measurements. Ranking gives the highest to the lowest
frequencies measured, hence the highest to the lowest concentrations. "Matched concentration"
gives the experimenter’s decision as to what solution was used in which condition.

Condition 1
(S1)

Condition 2
(S2)

Condition 3
(S3)

Condition 4
(S2)

Average frequency (mHz) 118± 41.2 245± 15.9 7.31± 3.77 240± 34.6
Ranking 2 1 3 1
Matched concentration 7 mmol/l 9 mmol/l 5 mmol/l 9 mmol/l
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This result is proof that the biosensor can discern different glucose concentrations, dis-
tributed in both inhibitory and excitatory conditions. It is therefore capable of recognizing
the absence or presence of glucose, and recognizing an increase or decrease in glucose levels.
Although this blind experiment was conducted for only three separate concentrations, stability
of SP frequency for the given conditions suggests that higher glucose level resolutions can be
achieved.

3.5.2 Quality control of pancreatic islets

One objective of the ISLET-CHIP project, in the context of islet transplantation, is to
provide a quantitative indication of islet response to physiological stimuli to reflect islet prepa-
ration quality. A protocol (Fig. 3.13) was defined with our biologist partners to assess various
responses and indicate, based on response consistency with inhibitory and excitatory stimuli,
levels of preparation quality.

The following paragraphs explain the decision-making and different outcomes of the pro-
tocol. For a better understanding, it is important to remember that, among the drugs and
molecules used:

— Glucose (G) is the main molecule of interest, usually excitatory above levels of 5.5 mmol/l.
— Adrenaline (Adre) is a β cell inhibitor and α cell activator.
— Nifedipine (Nife), as a calcium channel blocker, is a strong inhibitor for both β- and

α-cells.
— Glucagon-like peptide-1 (GLP-1) is a β cell activator, as it increases their glucose

sensitivity.
— Glibenclamide (Glib) is a strong β cell activator, indirectly increasing intracellular

calcium.

Following the decision tree of the protocol, a total of 10 scenarios may occur. A description
of each scenario is given, preceded by its unique identifier referring to the different +/- paths
taken in Fig. 3.13 and starting at G1 (e.g. (+++) refers to the leftmost path "G1, Adre
5 µM, Nife 25 µM"):

1. (+ + +) : Detection of activity at G1, despite the addition of Adrenaline and Nifedip-
ine, indicates that there is an electrical problem in the setup, because all physiolog-
ical, calcium-driven activity should be extinguished. Nothing can be deduced about
the culture, electrical problems must be fixed (generally by physically grounding faulty
electrodes) and the experiment must be re-run.

2. (+ + –) : Detection of activity at G1, maintained by Adrenaline but extinguished by
Nifedipine indicates that the observed activity results from α cells . Islets are of poor
quality, as activity mainly consists of α cell activity.

3. (+ –) : Detection of activity at G1 extinguished by Adrenaline suggests that activity
results from β cells , and not from α cells , which should be activated by Adrenaline.
Islets are of moderate activity, as it suggests β cell hypersensitivity to glucose.

4. (– + + +) : The preparation is inactive at low glucose (G1), activates at high glucose
(G15), shows physiological response to dose-responses and hormones (G1, G3, G5.5,
G8.2, G11, G11+GLP1, G11+GLP1+Adre), and has biphasic response to a G1-G7 step.
Islets are of excellent quality.

5. (– + + –) : The preparation is inactive at low glucose (G1), activates at high glucose
(G15), shows physiological response to dose-responses and hormones (G1, G3, G5.5,
G8.2, G11, G11+GLP1, G11+GLP1+Adre), but has no biphasic response. Islets are
nevertheless of very good quality.

6. (– + –) : The preparation is inactive at low glucose (G1), activates at high glucose
(G15), and shows poor or partial response to dose-responses and hormones (G1, G3,
G5.5, G8.2, G11, G11+GLP1, G11+GLP1+Adre). Islets have bad sensitivity but are
nevertheless responsive to stimuli: they are therefore of good quality.
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7. (– – + +) : The preparation is inactive at low glucose (G1), remains inactive at high
glucose (G15), but activates in presence of GLP-1 and remains active with Adrenaline.
Islets can neither reliably indicate elevated sugar levels (need for insulin) nor detect
Adrenaline (need for glucagon): they are of poor quality.

8. (– – + –) : The preparation is inactive at low glucose (G1), remains inactive at high
glucose (G15), but activates in presence of GLP-1 and inactivates with Adrenaline. Islets
have only a normal response with GLP-1 raising their sensitivity. They have poor glucose
sensitivity in a physiological medium and are therefore of moderate quality.

9. (– – – +) : The preparation can only be activated by Glibenclamide (inactive with G1,
G15, and G15+GLP-1). Islets are only sensitive to antidiabetic drugs (sulphonylureas)
and are of poor quality.

10. (– – – –) : The preparation can never be activated (inactive with G1, G15, G15+GLP-
1, and G15+GLP-1+Glib). No detectable activity occurs, the islets are of very poor
quality.

The quality control protocol was thoroughly applied to every human islet sample sent
by partner clinics. Initially experiments were conducted at CBMN, and most of them were
unfruitful, as the measured quality was far inferior to that announced by clinics. This led
to believe that transportation of islets between distant sites (from the harvesting centre in
Geneva or Montpellier to the analysis site in Bordeaux) might be a source for cell stress and
deterioration. To improve experimental conditions, a series of experiments was programmed
to measure, on-site, freshly harvested pancreatic islets (Days In Vitro (DIV) 4) intended for
transplant. Measurements were conducted at the Geneva University Hospital, where islets are
harvested from human donors. The protocol was also revised after the experimental session
reported in Fig. 3.14 and is described in Appendix H

The presented experiment (Fig. 3.14) was conducted on whole human islets. Activation
of the islets was verified with a G1-G15 step, revealing good glucose sensitivity and a low
electrode coverage (5% or 3/60 electrodes). After this successful experiment, a dose-response
was conducted with small steps of glucose between G1 and G11, ending with the administration
of 50 pM of GLP-1. The culture responded with step increments of SP frequency, coherent with
the protocol. Note the long extinction delay in condition G1. Finally, a dynamic recording of
a G1-G7 step was conducted, showing a pronounced two-phase activity in SP frequency. The
path followed by this protocol according to notations in Fig. 3.13is (– + + –), indicating islets
of very good quality.

The results of quality control protocols will be included in the STABILOT protocol to study
the correlation between (a) islet quality measured with Multimed, (b) islet secretion tests, (c)
visual assessment of islet preparation purity, and (d) long-term viability of the transplanted
pancreas. Islet quality measurements had no influence on the final decision to conduct the
transplant.

3.6 Discussion

3.6.1 Introducing Glucose-equivalents
Measurements showed (Sec. 3.3) that pancreatic islets were not only sensitive to glucose,

but also to hormones naturally present in the human body. These hormones have a significant
role in physiological glucose regulation, and yet self-monitoring devices used for insulin therapy
only measure glucose levels. Of course, charts exist, that indicate recommended insulin doses
not only depending on sugar intake, but also fat intake and exercise. Nevertheless no process
to date has entirely automated such decision-making and even smart insulin pumps rely on
user input.

A biosensor such as the one presented may permit such automation because of its multi-
hormone sensitivity. It could constitute a richer front-end self-monitoring device. However,
mainstream insulin delivery systems and charts provide glucose-insulin correspondence rules,
that are not immediately compatible with the multiparametric output of islet activity. To
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Activation Dose response

* *

**

Step response

***

Figure 3.14 – SP frequency measured in real-time during a quality control experiment on
whole human islets at the Geneva University Hospital. Activation of the islets was validated
with a G1-G15 step. Then, the dose-response was verified with small steps of glucose between
G1 and G11, ending with the administration of 50 pM of GLP-1. Finally, a dynamic recording
of a G1-G7 step validated the preparation’s biphasic response. Following the notations of the
decision tree in Fig. 3.13, this is the (– + + –) path, indicating islets of very good quality.
*p<0.1, **p<0.05, ***p<0.001.

ensure compatibility, a unique output measurement must be defined. The measurement pro-
posed expresses a glucose concentration at which islet activity, with all other markers at basal
concentrations, would be measured in identical proportions as in the actual medium: a solu-
tion with glucose and GLP-1 would yield a glucose equivalent higher than the actual glucose
concentration, while a solution with glucose and adrenaline would yield a glucose equivalent
lower than the actual glucose concentration.

This measurement and the process to produce it are further studied in the next chapter.

3.6.2 Towards a data-based biosensor model

Static and dynamic characterizations of the biosensor were given (sections 3.2.1 through 3.3.2
and 3.4.2) and its ability to discern between glucose concentrations was verified (section 3.5.1).
Separate actions of glucose, the potentiating effect of the GLP-1 hormone, the inhibiting effect
of adrenaline, as well as biphasic response profiles were measured with sufficient resolution and
repeatability to be exploited in a modelling approach.

With the investment required for experiments, especially in closed-loop configurations,
models of the biosensor must be established. These will permit in silico development of con-
textual use of the biosensor. First, they will provide a reference for the expected behaviour of
the biosensor. Deviation from this reference will yield information regarding islet quality (in the
ISLET-CHIP context), drug effects (in a drug screening context), or cell development (in a cell
screening or stem cell differentiation context). Second, it will help develop algorithms and con-
trollers for closed-loop glucose regulation. Indeed, sensitivity to hormones makes this biosensor
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unlike existing devices, and it ideally requires its own specific controller. Alongside further
experimental characterization, electronic development (conception and proof-of-concepts) will
henceforth be assisted by in silico tools.
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Chapter 4

Towards the artificial pancreas

“Evelyn, a dog, having under-
gone further modification pondered
the significance of short-person be-
havior in pedal-depressed panchro-
matic resonance and other highly
ambient domains... Arf she said.”

- Frank Zappa, Evelyn, a Modified Dog (One
Size Fits All)

Artificial Pancreas Devices (APDs) have been conceived to automate the process of insulin
therapy for persons with Type 1 Diabetes Mellitus (T1D), involving information collection,
decision-making, and insulin management. The main sources to take into account in this
process are meals (ingestion of sugar, but also all carbohydrates that are later transformed
into glucose), physical activity, sleep, and stress.

APDs have three main components: sensors, a controller, and insulin infusion mechanisms.
While significant progress towards full automation has been made in all three parts since
the first clinical experiments of APDs in 1974 [113], APD sensors are still only sensitive to
glucose, limiting automation to meal compensation, and ignoring exercise, sleep, and stress.
While biometric variables such as heart rate, can be monitored to collect information regarding
patient physiological state, the most reliable sources of information are hormones, secreted in
response to activity [114].

The APD component we propose to alter is the sensor, which we substitute for our hybrid
biosensor. Taking advantage of β cell response, it is by design sensitive to all variables that
affect glycaemia. Because of the endogenous islet algorithms it relies on, it also overlaps
with part of the controller with naturally occurring proportionate and derivative responses.
This however does not exempt the biosensor from having a dedicated controller, as regulation
dynamics in an APD needs to account for measurement and infusion delays and guarantee
robustness and minimized error within the closed-loop.

This chapter describes the data-based modelling of the complete biosensor (cells and pro-
cessing electronics) and its simulation within closed-loop regulation contexts. It does not
provide a complete or robust solution for APDs, but rather produces a contextualization and
proof of concept of the biosensor within a closed-loop environment. Controllers and regula-
tion algorithms are discussed, as they constitute an essential part of any robust and efficient
closed-loop system, but their in-depth study and application is only put into perspective for
future works.

89
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4.1 Simulation environment

To evaluate the biosensor’s potential for glycaemia regulation, a simulation environment
that mimics the body’s reaction to glucose intake, insulin injection, and hormonal response
has been implemented. Fortunately, the difficulty of animal experiments prior to clinical
tests has motivated the development of many simulation environments, facilitating research
for algorithms, sensors, and any piece of technology meant for in- or ex-vivo use on diabetic
patients.

4.1.1 Models for whole-body glucose-insulin dynamics

The mathematical modelling of glucose-insulin dynamics, diabetic condition, and thera-
peutic routes of treatment has been rapidly growing and has brought both insight into the
physiological mechanisms and improvements into automated insulin therapy. Over the five past
decades, many approaches to putting whole-body glucose-insulin interactions into equations
have been explored, including Artificial Neural Networks (ANNs), Delay Differential Equa-
tions (DDEs), Integrodifferential Equations (IDEs), Partial Differential Equations (PDEs),
Stochastic Differential Equations (SDEs), and Ordinary Differential Equations (ODEs) [115].

The models developed in the literature have different purposes and focus on different
mechanisms: some are dedicated to direct clinical tests for diagnostics [115–127] and con-
trol ([115, 127–134]), to better treatments and account for insulin delivery routes, while others
focus on precise mechanisms at different physiological scales from whole-body through to or-
gan, cellular and subcellular levels [134–141].

In our case, a whole-body model must be chosen to constitute a simulation environment and
investigate the practicality of the biosensor in a closed-loop. The candidate models take into
account any or all of: insulin injection routes, glucose ingestion routes, glucose measurement
routes glucose utilization, liver contribution, and pancreas contribution [133, 134, 142–147].

The model adopted for our study was developed by Dalla Man, Rizza, and Cobelli [133]
(the UVA/Padova simulator, or T1DMS) to describe scenarios on individual in silico patients.
It as chosen because of its readily available equations and parameters, and because it is now an
Food and Drug Administration (FDA)-approved substitute for pre-clinical animal trials [148]
for APDs: as opposed to "average" models 1, that do not provide enough insight regarding
algorithm safety, this simulator proposes a set of defined patients (adults, adolescents, and
children), that will help assess robustness in future controller design. It features insulin in-
jection routes, glucose measurement routes, insulin pump models, regulation algorithms, daily
scenarios, and patient models. T1DMS is a commercial product (T1DMS, The Epsilon Group)
now used by many researchers as an alternative to animal testing of T1D control strategies
[149–157].

4.1.2 Python integration of the T1DMS model

Before the Matlab/Simulink UVA/Padova simulator was bought by Elibio, development
was made using a Python implementation of the in silico model. This gave total control
over internal signals of the model and permitted the addition of mechanisms missing from the
original model. This section describes the port of this simulation environment to Python 2.7
. Model equations and parameters were retrieved from [133, 147, 158, 159].

Original model

The Python 2.7 port of the UVA/Padova simulator is a collection of several published
models: the Glucose-Insulin system equations and normal patient parameters are accessible
in [133, 147], oral glucose absorption and gastro-intestinal tract equations and parameters in
[158], and additional gastro-intestinal equations and parameters in [159]. A more complete set

1. Models that only recreate average behaviour, but not interindividual variability

https://tegvirginia.com/software/t1dms-2014/
https://www.python.org/downloads/release/python-2713/
https://www.python.org/downloads/release/python-2713/
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of equations describing Glucose-Insulin-Glucagon interactions was proposed in [160], but this
one was not included in the Python 2.7 port for a lack of published model parameters.

The original model simulated glucose-insulin [147] interactions in a healthy human (Fig. 4.1).
The "virtual patient" was then made diabetic in the T1DM simulator [147] by removing its β
cell system, mimicking the self-immune destruction of β cells. In the Python 2.7 port, the β
cell system was not removed, but instead was made insensitive to glucose 2, making pancreatic
ISR null. This facilitated patient model swapping (e.g. simulating a non-diabetic patient and
a T1D patient with the same set of equations) with no change in the outcomes of the scenarios.
Figure 4.2 presents the model simulation for a non-diabetic person over a 24 h cycle.

Additions to the model

The UVA/Padova original model only represent interactions in the glucose-insulin system,
but does not support realistic insulin injection routes. To accommodate that and anticipate
closed-loop regulation simulations, intravenous (IV) and subcutaneous (SC) delivery routes
were added.

SC injection model equations were retrieved from [147] and [159]: they represent the dis-
sociation of insulin from non-monomeric to monomeric in the subcutaneous space and its
appearance in plasma: 

dIsc1
dt

(t) = −(kd + ka1)× Isc1(t) + IIR(t)

dIsc2
dt

(t) = kd × Isc1(t)− ka2 × Isc2(t)

Ri(t) = ka1 × Isc1(t) + ka2 × Isc2(t)

(4.1a)

(4.1b)

(4.1c)

Where Ri is the rate of appearance of insulin in plasma, Isc1 the amount of non-monomeric
insulin in the subcutaneous space, Isc2 the amount of monomeric insulin in the subcutaneous
space, IIR(t) (pmol/kg/min) the exogenous insulin infusion rate, and kd, ka1, ka2 are rate
constants (min-1).

IV insulin was added as an insulin rate of appearance in the liver, parallel to portal insulin.

2. by setting pancreatic response to glucose, glucose rate of change, and basal Insulin Secretion Rate (ISR)
to 0

https://www.python.org/downloads/release/python-2713/
https://www.python.org/downloads/release/python-2713/


92 CHAPTER 4. TOWARDS THE ARTIFICIAL PANCREAS
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Figure 4.1 – Whole body model used as a simulation environment. Insulin injection routes
are represented in green, purple indicates the main signals of interest (inputs and outputs:
D is the sugar intake input signal, I is plasma insulin level, G is plasma glucose level). Red
highlights the model elements affected by T1D. Liver; Il: insulin in liver; EGP: Endogenous
Glucose Production. Portal vein; Spo: Insulin secretion in portal vein; Ipo: Quantity of
insulin in portal vein. Beta cells; Y: Insulin secretion rate. Muscle & adipose tissue; Uid:
Insulin-dependent glucose utilization; Uii Insulin-independent glucose utilization; U: Glucose
utilization. Stomach and Gastro-intestinal tract; Qgut: quantity of glucose in the gut;
Qsto: amount of glucose in the stomach (Qsto1: solid phase; Qsto2: liquid phase); Skin; Isc1:
quantity of non-monomeric insulin; Isc2: quantity of monomeric insulin. Others: Ip: plasma
insulin; X: remote insulin signal; I1: delayed plasma insulin; Id: delayed plasma insulin; Dtar:
target ingested glucose; Gp: Plasma glucose; Gt: Glucose in rapidly-equilibrating tissues; E:
renal excretion; Ra: Glucose rate of appearance in plasma; Riv: Intravenous insulin rate of
appearance; S: insulin secretion; HE: Hepatic extraction; m3: modulated model parameter.
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Figure 4.2 – Original Glucose-Insulin model ported to Python 2.7 for a non-diabetic person.
It is simulated over a 1440 min (24 h) cycle starting at midnight at basal conditions and shows
plasma glucose, plasma insulin, EGP, glucose rate of appearance, glucose utilization by the
brain and muscles, and insulin secretion; simulation recreated one of the results in [133] for a
non-diabetic person.

https://www.python.org/downloads/release/python-2713/
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4.2 Integrating the biosensor

In silico models were specifically written to validate the whole acquisition and processing
chain including Multimed. Therefore, the biosensor model is simulated as the whole acquisition
chain, including cell signal generation and signal processing rather than a single glucose-Slow
Potential (SP) frequency relation. Due to their higher robustness, SPs constitute the signal of
interest in this model, meaning that it in fact includes SP waveform generation, SP detection,
and SP frequency measurement.

This section describes the different steps involved in modelling the biosensor, and produces
a proof of concept for a closed-loop configuration. It firstly focuses on the glucose response
of the biosensor, then proposes a solution to account for hormone effects. The modelling of
processing electronics will not be discussed as it is a software integration of the algorithms
embedded on Multimed (all described in chapter 2), respective real-time constraint (causal
implementation) and data format (fixed point representation). One processing channel is
simulated, generating the signal recorded on one electrode. It is assumed that the data modeled
on this unique channel is representative of the average results of active recording channels of a
whole Microelectrode Array (MEA). All model equations and identified parameters are given
in appendix I

4.2.1 SP generation

To generate synthetic, frequency-modulable, SP waveforms, the average shape of SPs was
computed and made into a periodic function using Fourier series. After a 0.2− 2 Hz, 5th order
filtering, SPs from three different experiments were recorded. Their individual shapes were
linearly interpolated, normalized, and made periodic to compute their average. Finally, the
first ten Fourier coefficients of this average waveform were computed. The resulting average
waveform is represented in Fig. 4.3. In this approach, only SP frequency is taken into account.
SP shape generation is therefore normalized in amplitude.

f0 = 0 Hz f1 = 0.5 Hz
f = 1 HzA B

Figure 4.3 – Model of average and normalized SPs. A: One period of the modeled SP at
1 Hz. B: 0-0.5 Hz ramp of SPs.
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4.2.2 SP response static model
The fitting equation of the SP frequency response to glucose was inspired by Stamper and

Wang [161], where Insulin Secretory Granule (ISG) docking, priming, and fusion are modulated
by a glucose-dependent function. This function, further referred to as A , the activation
function, follows a Hill equation [162, 163] widely utilized to model biological processes. It is
bounded between 0 and 1 and defined by a half-activity constant G50 and the Hill coefficient,
n. The only modification from classical Hill equations is the addition of an activation threshold
G0 under which A is null (Fig. 4.4A). The resulting equation is defined as follows:

A (G) =


[G−G0]n

[G50 −G0]n + [G−G0]n
if G ≥ G0

0 otherwise
(4.2)

This equation was de-normalized using a scalar fM , the maximum SP frequency attainable
by the model. The resulting equation, fM ×A was fitted to SP frequency response to small
steps of glucose. The fitting result is shown in Fig. 4.4.

A B

Figure 4.4 – Static model of SP response to glucose. A: Hill-inspired activation function with
an activation threshold G0, a half-activity constant G50, and a Hill constant n for different
values of n. B: Fitted fM ×A (G) model on small steps of glucose.

4.2.3 Hysteresis model
As seen in section 3.2.3, changes in static SP frequency occur at different rates when glucose

concentration is either increasing or decreasing. This further demonstrates that β cells not
only respond to glucose levels, but also to glucose rate of change. To model this behaviour,
the resulting hysteresis was fitted to a Preisach model of hysteresis.

The Preisach model [164] is a widely accepted model that decomposes a hysteresis loop
into a summation of discrete hysteretic elements, the relay hysterons. Hysteretic experimental
data from Fig. 3.6 was first separated into increasing and decreasing glucose and each half was
fitted to an activation function. The region within the two intersections of the resulting curves
(approximately between G3 and G11, Fig. 4.5A) was utilized to generate the Preisach matrix.
Results are shown in Fig. 4.5.

4.2.4 Dynamic model
Biphasic insulin release is a well-known secretory mechanism that has been extensively

modeled [112, 139, 161, 165, 166]. The earliest mathematical model was that of Grodsky
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A

B

Figure 4.5 – Preisach hysteresis model fitted to SP frequency response to small steps of glu-
cose. Dots represent experimental data. Plain lines represent the continuous G3→G11→G3
path, yielding the exterior bounds of the hysteresis. Doted lines represent oscillations of
decreasing amplitude around G7, showing interior paths of the hysteresis. A: Hysteresis rep-
resentation of the fit. B: Time-dependent representation of the fit.

[139], pioneering an ODE-base multiple pool concept, later revisited by Pedersen, Corradin,
Toffolo, and Cobelli [166] and Stamper and Wang [161]. These models describe ISG trafficking
as a set of communicating pools with glucose-dependent transfer rates. A Readily Releasable
Pool (RRP) of granules is emptied rapidly, forming the first phase, followed by a lower, more
steady flow of ISGs.

Let aside ISGs, an empirical model for biphasic SP frequency can be drawn following a
similar set of equations. Biphasic responses from 17 recordings were decomposed into the sum
of two exponentials (one falling for first phase and one increasing for second phase). From this
decomposition, four parameters were identified and used in the model: the peak frequency of
1st phase f1, the plateau frequency of 2nd phase f2, and the falling and rising rates of 1st
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and 2nd phase, respectively τ1 and τ2. The model is defined by the following set of equations:



dY0

dt
(t) = −λ4 × Y0(t) + λ̂3(G)×R

dY1

dt
(t) = −λ̂5(G)× Y1(t) + λ4(t)× Y0(t)

dF

dt
(t) = −λ2 × F (t) + λ̂5(G)× Y1(t)

F (t) =
λ1

λ3
× λ3 × λ4

λ3 + λ4
× F (t)

N =
A

λ3

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

Y1 acts as a RRP, a pre-filled reservoir with a high transfer rate λ5 towards the fused signal
F permitting the high-rate frequency increase of 1st phase. F then decreases at a λ2 rate to
form the complete 1st phase. The 2nd phase is formed by Y0 that empties into Y1 at a λ4 = τ2
rate. The limit value of 2nd phase is determined by λ3. The transfer chain Y0 → Y1 → F is
limited by the lowest transfer rate λ4, ensuring the accuracy of 2nd phase. F is finally scaled
by a factor λ1

λ3
× λ3×λ4

λ3+λ4
to obtain the frequency signal F , necessarily setting the remaining

transfer rate λ2 = f1× (λ3

λ4
+ λ3

λ5
)−1. N is the normalized biphasic response. All λ. values are

constants, and λ̂.(G) = A (G)× λ..
More data is required to establish whether SPs satisfy the staircase experiment (i.e. a two-

phase profile is not generated between two excitatory conditions since Y1 is entirely depleted),
therefore this model implementation does not satisfy it. As a consequence, in regulation terms,
the derivative contribution of islet activation only occurs at glucose appearance in the body.
All further contributions until basal levels are restored are proportional.

4.2.5 Glucose-equivalents

Exploiting β cell electrical response as a biosensor not only makes it sensitive to glucose, but
also to hormones present in the bloodstream, as was demonstrated in sections 3.3.1 and 3.3.2.
Therefore, when exposed to a physiological medium, the biosensor does not return a direct
image of glucose concentration, unlike classic glucose sensors. Instead, it returns a composite
image resulting from multiple sensitivities. As a direct image of cell activity, it reflects glucose-
and hormone-dependent insulin secretion.

To ensure compatibility with current glucose regulation techniques and algorithms, the
unique measurement returned by the biosensor must be converted to a classic glucose mea-
surement. The returned value is a glucose concentration at which, in a glucose-only medium,
cell activity is equivalent to that of the actual measured cells, hence the term glucose equiva-
lent ; for example, at equal glucose levels, adrenaline will lower glucose equivalents (resulting in
a lower insulin demand), while GLP-1 will raise them (resulting in a higher insulin demand).

The proposed method to calibrate glucose equivalents consists in identifying separate
hormone effects and model them as SP frequency modulation parameters (Fig. 4.6A). Let
f(G) be the glucose-dependent SP frequency, α([Adr]) the normalized (fold of [Adr]=0)
Adrenaline effect on SP frequency, and γ([GLP1]) the normalized (fold of [GLP1]=0) GLP-
1 effect on SP frequency. Modulated SP frequency is therefore fm(G, [Adr], [GLP1]) =
f(G) × α([Adr]) × γ([GLP1]). Therefore, computing f−1 ◦ fm(G, [Adr], [GLP1]) yields the
glucose equivalent concentration.

Like glucose-induced activation, normalized hormone effects were modeled using the Hill-
inspired activation function A of eq. 4.2. Fitting results are shown in figure Fig. 4.6B-D.
Because of apparent glucose-dependency in GLP-1 effect (Fig. 4.6C), fitting coefficients were
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extrapolated assuming linear dependency to glucose (see non-linear effect on Fig. 4.7B).

f(G) =

fM ×
[G−G0]n

[G50 −G0]n + [G−G0]n
if G ≥ G0

0 otherwise
(4.4a)

γ(XΓ) =

1 +
[XΓ −XΓ

0 ]n
Γ

[XΓ
50 −XΓ

0 ]nΓ + [XΓ −XΓ
0 ]nΓ if XΓ ≥ XΓ

0

1 otherwise
(4.4b)

α(XA) =

1− [XA −XA
0 ]n

A

[XA
50 −XA

0 ]nA + [XA −XA
0 ]nA if XA ≥ XA

0

1 otherwise
(4.4c)

XΓ = log10([GLP1]) (4.4d)

XA = log10([Adr]) (4.4e)

Model simulations are shown in Fig. 4.7. Note the behaviour of glucose equivalent values
below G5.5: since A is not a bijective function (it returns 0 for all glucose levels below G0),
f−1 is not defined for sub-threshold glucose levels. An exception is made for these values,
defined by Geq = G if G < G0. This is acceptable within the biosensor model since all signal
generation is null in these conditions and all sub-threshold glucose levels are treated identically.

This approach of glucose equivalents unfortunately suffers from two major limitations:

— the model itself assumes that hormone effects can be separated (i.e. the effect of one
hormone is independent from other hormones).

— the whole-body model does not take into account hormone effects.

Even though effects of glucose on GLP-1 modulation of SPs have been taken into account,
combined effects of hormones have not been experimentally characterised: the currently avail-
able data only permits a derived glucose equivalent of the form Geq = f−1(f([G])×α([Adr])×
γ([GLP1], [G])) when the safest assumption would beGeq = f−1(f([G])×H([G], [Adr], [GLP1]))
where H is a multivariate function taking into account combined hormone and glucose effects.
Section 4.3.1 puts into perspective more robust identification methods suited for such an in-
tricate behaviour.

On top of that, hormone action is not limited to the pancreas, and the absence of hormone-
dependent activity of other organs in the whole-body model is a source for severe inaccuracies.
However, no model to date recreates the complex interactions of the glucose-insulin system
with both glucose and hormone dependencies. Future identification and characterization of
these properties is vital for further development of the biosensor in a closed-loop environment.

4.2.6 Simulation results

Successive versions of the biosensor model were simulated in a closed-loop environment
(Fig. 4.8A). Simulations aimed at verifying that SP frequency could indeed control insulin
infusion and mimic insulin secretion using the most direct measurement and injection routes
(IV glucose, IV insulin). While impractical, these methods of measurement and infusion seem
fair in the absence of a dedicated regulation controller (calibrating the regulation is achieved
by adjusting a scalar K normalizing SP frequency (Fig. 4.8A), equivalent to a proportionate
controller). The Glucose-to-Insulin conversion rule (synthetic islets inFig. 4.8A) was defined
by in silico islet models described in [161]. This model yields insulin secretion for a single
islet, which was then scaled up to 80,000 active islets.

Simulation results are shown in Fig. 4.8. Like in the original 24 h cycle simulation of
Dalla Man, Rizza, and Cobelli [133], meals were planned at Tbreakfast=480 min (45 g of
glucose), Tmeal=720 min (70 g of glucose), and Tdinner=1200 min (70 g of glucose). For
comparison, glucose variations are represented for a T1D patient manually injecting insulin
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Figure 4.6 – Glucose equivalent principle and identification. A: Glucose equivalent data
flow. f converts glucose concentration into SP frequency. α converts adrenaline concentration
into a scalar between 0 and 1 (inhibitory effect) and γ converts GLP-1 concentration into a
scalar superior to 1 (excitatory function). SP frequency is modulated by these two scalars
and the result is converted back into a glucose concentration by f−1, the reciprocal of f . B:
Identification of f on experimental data from Fig. 3.6. C: Identification of γ on experimental
data from Fig. 3.8 at two different glucose concentrations (G8.2 and G15). D: Identification
of α on experimental data from one experiment (n = 24 electrodes) at G15.
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Figure 4.7 – Derived glucose equivalent models. A and B: GLP-1-dependent glucose equiv-
alents. C and D: Adrenaline-dependent glucose equivalents.
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(subcutaneous). Manual injections of insulin were made 15 min before meals, at 1 U of insulin
per 10 g of glucose ingested (1 U = 6945 pmol).

Each iteration of the simulation highlights the role of endogenous islet algorithms: with the
static model as a reference, adding a biphasic response makes insulin delivery slightly faster
and achieves similar glucose regulation with lower insulin delivery. The hysteresis model, on
another note, makes insulin delivery extremely brief and, as expected, blocks insulin delivery
rapidly after glucose levels drop. The subsequent glucose levels after noon are the highest of
the three tested models, although the glucose concentration drops obtained remain a high hy-
poglycaemia risk. Among the three models, the biphasic one (red) seems to make the best use
of insulin, with the lowest peak levels and comparable performance in glucose regulation. The
model including both biphasic and hysteretic actions (green), however, has the highest insulin
release peaks, which compensate for its early stop in insulin release; of course few conclusions
can be drawn in the absence of a dedicated controller, but such an early interruption in islet
activity must be anticipated in controller design, as it drastically affects performance. Indeed,
this endogenous mechanism of preventing hypoglycaemia is tuned for in corpore dynamics and
its extra corpore behaviour must be interpreted differently.

While the simulated closed-loops successfully limit hyperglycaemia, they tend to overshoot
and cause hypoglycaemic events between noon and dinner. This can be explained with cell
activity ceasing completely at the glycaemic target and below (the regulation target is a null SP
frequency). No information is therefore returned by the biosensor in hypoglycaemic conditions.
This absence of information currently originates from the lack of Action Potential (AP) data,
as α cells signal low glucose levels with AP firing. The resulting electrical signal, with α
cell-only APs and inhibited β cell SPs and APs could be interpreted as the body’s glucagon
demand. The current state of the processing electronics and the low Signal-to-Noise Ratio
(SNR) of APs (and especially α-generated APs) unfortunately prevents this approach.

On that note, one of the limitations of the simulated regulation loop is that of single-
hormone artificial pancreas: with insulin-only injections, the command can decrease glucose
levels but has no automated way of increasing blood sugar. A sane pancreas would auto-
matically counteract hypoglycaemia with glucagon secretion, consequently raising EGP. Dual-
hormone APDs have both insulin and glucagon pumps to decrease and increase blood glucose.
In the proposed simulations, raising blood glucose would require glucose intake or manual
glucose injections.

The main limiting factors of APDs, not addressed in the closed-loop model we investigated,
are the measurement and feedback delays introduced by subcutaneous interfaces. Indeed, sub-
cutaneous Continuous Glucose Monitors (CGMs) do not measure glucose in blood vessels, but
rather in the interstitium. While interstitial glucose and venous plasma glucose are almost
identical in steady-state [167, 168], they take from 10 to 20 minutes to equalize [169] and can
be considerably different during rapidly changing conditions [148, 170–172] (e.g. in the post-
prandial state or during a hypoglycaemic event). Moreover, subcutaneous insulin delivery (in
contrast to physiological portal release) can partially abnegate oscillatory delivery but recent
progress in ultra-fast insulin may allow obtaining some variations in blood levels [173]. Like-
wise, Continuous Subcutaneous Insulin Injection (CSII) introduces a problematic delay causing
insulin peaks up to 2 h after injection [174]. On the measuring side, sensors have an integration
time that further delays loop response. Even in the favourable conditions of the presented sim-
ulations, measurement delay effects can be seen: insulin delivery starts approximately 5 min
after glucose variations (caused by integration time in SP frequency measurement). Of course,
we do not claim with these simulation to seek optimal regulation, but rather to produce proof
that from extracellular measurement’s perspective, a hybrid biosensor approach is feasible.
These issues will be addressed in further projects, where dedicated controller design is a main
topic: It is indeed control algorithms that undertake delay compensation and state prediction.
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Figure 4.8 – Simulations of in silico T1D patients. A: simulation scheme, including a whole-
body model (section 4.1.2) and the biosensor model. B: Simulation results for different versions
of the biosensor model showing plasma glucose and plasma insulin. For reference, evolution of
glucose and insulin levels are shown for manual, subcutaneous injections. Meals are indicated
by vertical red lines.
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4.3 Perspectives

4.3.1 Robust controllers and model identification

Diffusion delays and the different kinetics required to compensate for either hypo- or
hyperglycaemia are historically widespread issues in the development of artificial pancreas
[148, 175, 176]. Classic control theory solutions, such as Proportionate Derivative (PD), Pro-
portionate Integrative (PI), or Proportionate Integrative Derivative (PID) do not have efficient
solutions to these problems. For that reason, more advanced controllers have been investigated
in the literature with promising results. Model Predictive Control (MPC) for instance has
been tested in 17 clinical studies out of 37 between 2010 and 2013 only [177]. It has produces
promising results in reducing hyper- and hypoglycaemic events [175, 178–180] by constantly
reassessing the effects of its control with model-based predictions. Less popular but nonethe-
less notable methods based on optimal H∞ controllers [181] and Fuzzy Logic [182] have also
been investigated.

With a data-based proof of concept of a working closed-loop using the biosensor, future
projects welcoming a new partner in control theory have been proposed. This new partnership
should improve model identification and permit the design of a robust H∞ controller, more
performing than the classical controllers mentioned earlier.

While previous work focused on identifying the dynamics of the human insulin/glucose
system based on SISO (Single Input Single Output) approaches (insulin injection and blood
glucose respectively), the new approach proposes a more advantageous MIMO (Multiple In-
puts Multiple Outputs) class of parametric identification techniques. Its major advantages
compared to previous approaches are:

— identification will proceed by the identification of a dynamical model transducing a num-
ber of important hormonal and nutritional signals (Multiple Inputs) and the different
electrical activities of the islets (Multiple Outputs), taking into account the coupling
between the different islet signals.

— it is robust with respect to some signal non-stationarities [183–185].
— it performs prediction into the unseen future using an optimal predictor.

To implement the biosensor in the T1DM simulator the body model will be firstly im-
proved to be sensitive to insulin secretion during mainly non-glucose nutritional stimuli and
(non-insulin) hormonal regulation based on the works published in [186–190]. Next, a MISO
(Multiple Inputs Single Output) controller will be designed in the non-smooth H∞ setting by
considering the action and SP signals of islet-based biosensor as controller inputs. Compared
to the SISO solutions [191–193], the non-smooth H∞ controller design is advantageous since:

— it can deal with time delays (physiological and measurements delay),
— it can achieve robust performance against modelling errors such as the CGM errors,
— it can achieve robust performance against a large variability of patient conditions,
— it deals with MIMO systems and objectives, leading the possibility to address e.g. bihor-

monal (insulin and glucagon) control, and more generally multi-physiological control.
— it is possible to derive a low order controller to make the closed loop implementation

feasible in a device.

The new control loop Fig. 4.9 will be finally assessed in a test population and compare to the
state-of-the art based on the classical glucose sensor. This in silico model, when used with
constant and basal (non-insulin) hormone concentrations, will validate the described closed-
loop paradigm with standard, glucose-only approaches, but will also, when these are applied,
demonstrate its sensitivity to (non-insulin) hormonal stimuli.

4.3.2 Supervised closed-loop on mice

To test the function of the controller in a realistic scenario including diffusion delays and
biological noise, we have planned to test the applicability of our sensor in a controllable open-
loop in-vivo setting. Experiments will be run in anesthetized mice bearing a subcutaneous
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Figure 4.9 – Integration of a Glucose- and Hormone-sensitive regulation scheme including
the biosensor model and a H∞ controller in the T1DM simulator. This will constitute an in
silico validation of closed-loop experiments on standardized patients and scenarios. The Gmeal
input represents the quantity of glucose ingested during a meal, and the “Hormones” input is
a multiple input (non-insulin hormones such as adrenalin, GLP-1), representing the hormonal
adaptation to non-nutritional clues, such as physical activity.

microdialysis device without sample dilution linked to our sensor containing also a CGM elec-
trode. Glucose will be given in IV or intraperitoneal (IP), healthy animals will be used for
algorithms calibration purposes, then rendered diabetic (streptozotocin) (Fig. 4.10). Regular
interstitial fluid samples will be utilized to stimulate the islets. The measured glucose equiv-
alent for this activity will be help manually determine the insulin dose necessary to maintain
blood glucose homeostasis. We will assess the performances of the biosensor by comparing its
glucose equivalent output with actual measured glycaemia. We will then test our algorithms
and device extra corpore in man via subcutaneous microdialysis in healthy volunteers.
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Figure 4.10 – Controllable open-loop (supervised closed-loop) experiment scheme. This
will validate the system’s ability to perform glucose regulation using the glucose equivalent
approach. The MEA containing either human of murine cells and the processing electronics
constitute the biosensor. It computes a glucose equivalent measurement in real-time on regular
blood samples. A glucose sensor assesses the real glucose concentration for comparison. Using
glucose equivalent measurements, and with critical assessment of the difference with actual
glucose levels, the experimenter will refer to insulin dosage tables to inject insulin to the
subject.
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Conclusion

“If the doors of perception were
cleansed every thing would appear
to man as it is, Infinite. For man
has closed himself up, till he sees
all things thro’ narrow chinks of his
cavern”

- William Blake, The Marriage of Heaven and
Hell

This thesis summarizes three years of research in exploiting extracellular recordings of
pancreatic islets in a biosensor, following three main approaches: drug screening for pharma-
cological applications, islet screening for clinical applications, and hormone-sensitive sensing
of insulin demand for the artificial pancreas. After assessing the specificities of the biologi-
cal activity patterns of islets, an FPGA-based signal processing system was developed. It is
capable of real-time multichannel processing and can measure parameters related to action
potentials and slow potentials. Measurements were conducted on pancreatic islets and cells,
and experimental results were used to produce a model of the biosensor. To open prospects
into true physiological sensing of insulin demand, this model was simulated to regulate an
in silico patient’s glycaemia, and glucose-equivalent measurement taking into account glucose
and hormone (GLP-1 and Adrenaline) levels was proposed.

Synthesis

Chapter 1: The first chapter reviewed the necessary knowledge regarding T1D pathophys-
iology, β cell electrophysiology, and methods of recording extracellular activity with MEAs.
In particular, it revealed that extracellular measurements of electrical potential on pancreatic
cells could be exploited to sense changes in nutrient or hormone levels. The recorded signals
exhibited action APs and SPs that could be analysed not only to extract information on cell
electrophysiology, but also to integrate physiological, hormone-sensitive insulin demand. The
need for a real-time processing system that transduces biosignals recorded on MEAs into us-
able information was therefore introduced. Applications for a biosensor thus formed include
pharmacological drug screening, clinical islet screening, and sensing for the artificial pancreas.

Chapter 2: The second chapter gave a detailed description of the electronics developed
to process pancreatic islet signals. It is capable of processing 64 channels in real-time (sub-
millisecond latency) with dedicated algorithms. Functions include signal filtering (Infinite
Impulse Response (IIR) and wavelet), event detection (APs, SPs and bursts), electrode sort-
ing, and parameter measurements (AP frequency, SP frequency, SP amplitude, burst Fraction
Of Plateau Phase (FOPP)). The processing architecture was embedded in an FPGA, mounted
on a custom acquisition board, Multimed. The latter was designed for either research appli-
cations or chip-ready processing architecture prototyping. It has VGA live display, SD card
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storage, UART control, and MCS-compatible analogue input interfaces. Implementation of the
architecture was made to promote evolutivity and transferability. The system was designed to
be utilized by clinicians and biologists and is therefore supplied with a user-friendly software
tools.

Chapter 3: The third chapter presented a series of experimental results making use of Mul-
timed or its processing algorithms (online and offline). It established that SPs and APs ex-
hibit glucose-dependent frequencies. In particular, one experiment showed that SP frequency
variations were sufficient to distinguish between three physiological glucose concentrations.
Hormone effects were also shown, focusing on the inhibiting effect of adrenaline and the po-
tentiating effect of GLP-1. Then, endogenous islet algorithms were investigated: asymmetrical
response to glucose and secretion-like biphasic activation were identified. Insight in islet elec-
trophysiology was given by measurements of time correlation between SPs within a single islet,
as well as correlation between SPs and APs. Finally, a protocol for islet quality control was
proposed.

Chapter 4: The fourth chapter proposed a data-based model of the biosensor. Separate
static effects of glucose, adrenaline, and GLP-1 were modelled, as well as dynamic (two-phase
and hysteretic) response to glucose. The produced model was then integrated in a closed-
loop scenario to demonstrate its ability to regulate the glycaemia of an in silico T1D patient.
Finally glucose equivalent measurement was proposed: it modulates glucose concentration with
adrenaline and GLP-1 levels to help achieve automatic hormone-dependent insulin dosage.

Perspectives

Multimed

Multimed was successfully utilized to host a new branch of dedicated processing: algorithms
were specifically written for the analysis of pancreatic signals, implemented, and utilized during
experiments. This further demonstrates the versatility of the system and its ability to adapt
to various contexts. As advertised, it has proven to be an efficient prototyping platform, and
despite its versatility has achieved submillisecond processing. However, it is apparent that in
several aspects of its hardware, Multimed falls short of its fellow analysis platforms: while some
attain up to a thousand acquisition channels and 50 kHz sampling rate, Multimed proposes a
fixed, modest amount of 64 channels at 10 kHz.

This design choice is inherited from the previous version of Multimed and remained un-
changed because more acquisition channels were not needed for our applications. Should future
projects demand it, and in the line of recent trends towards higher electrode densities, future
hardware upgrades should revisit the data acquisition card. To Multimed’s credit however,
attention is particularly attached to designing scalable VHDL architectures, which is currently
difficult to demonstrate without significant hardware development.

Embedded processing

Algorithms have successfully been implemented for pancreatic biosignal processing: SPs are
detected by the analysis of local extrema, APs are detected with wavelet filtering and adaptive
thresholding, and parameter measurements are conducted in real-time using low-resource IIR
filters on detected SPs and APs.

With the very few experiments exhibiting APs however, one could argue that the algorith-
mic cost per detected AP is ludicrously oversized when compared to that of SPs. Plus, correla-
tion between the two types of events suggests that one could supplant the other: whether AP
detection should be kept in the system is therefore debatable. Indeed, focusing measurements
on SPs only would dramatically reduce implementation costs as well as the required sampling
frequency and data rate, without seemingly sacrificing information. In bench experiments,
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this question does not stand, as neither resources, nor power consumption, nor storage space
are an issue. In a perspective of integration however, the relevance of APs can be disputed.
Yet, one important argument in favour of APs is that they are the only detectable cell activity
in low-glucose situations: in these conditions, they are fired by α cells and reflect glucagon
demand, which makes them a marker for hypoglycaemia risks. Since MIMO modelling of islet
response will be done in bench conditions, AP contribution can be evaluated. When the time
comes to design a closed-loop controller, the measured contribution of APs will decide their
fate in the final biosensor.

The biosensor

Online measurements of cell activity using Multimed have shown that a biosensor using
pancreatic islets is feasible: glucose- and hormone-dependence variations can be measured in
real-time with sufficient resolution. Variability between preparations strongly suggests that
periodic calibration will be required in closed-loop scenarios, not unlike classic CGMs. In
bench experiments, the biosensor is ready to be utilized: whether it is islet screening or drug
screening, measurements can be conducted with moderate training.

In any case, progressing to either an implantable device or a lab-on-chip approach still
requires miniaturization work. Integration of the processing electronics is ensured by digital
synthesis tools. By design, Multimed is a prototyping system for digital architectures, taking
advantage of synthesis possibilities offered by VHDL. The processing chain can be transformed
into a physical circuit with very few modifications (essentially, the CPU needs reprogramming
to accommodate modified interfaces). The portion of the transducer that actually requires
re-designing for miniaturization is the acquisition chain: the front-end preamplifier (currently
a commercial product) and A/D conversion (discrete electronics).

In the long term, integrating the biosensor and making it wearable will also require tackling
important issues beyond electronics. First, the type of cells must be determined, and more
specifically their origin and their species: because of the already-existing difficulties to acquire
human primary cells and the authorizations required to utilize differentiated stem cells, the
only possibility to use human cells is with clonal cells. As for animal, primary cells have better
coupling than clonal and constitute a strong alternative. One can argue that human and
animal cells could exhibit different behaviour, and supplementary data needs to be gathered.

Of course, because cultured cells have a limited lifespan and need periodic replacement, the
biosensor would not be fully implanted. It would instead be a wearable receiving interstitial
fluid and taking advantage of osmotic pressure in the interstitium. Because it permits con-
tinuous flow of medium, development of microfluidic MEAs is a step towards this approach,
but cell adhesion must still be improved to prevent electrode loss and provide the best pos-
sible signal quality. Finally, the biosensor requires proper encapsulation that ensures both
biocompatibility and viability of the cells.

Closed-loop regulation

The biosensor has sufficiently matured to, for the first time, project animal experiments
aiming at closing the loop on glucose regulation. New projects are being planned to identify,
using state of the art control theory methods, an accurate model of islet response to physio-
logical media. This so-called MIMO identification will take into account various nutrients and
hormones (multiple inputs) and integrate the different activity patterns of pancreatic islets
(multiple outputs). It will also characterise activity dynamics, noise, and coupling.

This identification process will in turn permit the development of an optimal H∞ controller
that efficiently compensates for sensor dynamics and body dynamics. It is robust to noise and
errors, compatible with MIMO approaches, and can be reduced to a low order, easily integrated
controller.

This controller approach however does not negate the need for the glucose equivalent mea-
surement. It is a valid approach to investigate regulation with classic controllers, and provides
an important measurement with true physiological meaning to patients and carers.
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Islet quality control
A complete bundle was developed to facilitate quality control experiments: the processing

electronics was made accessible to personnel with modest training thanks to a simple user
interface and data import/conversion tools. An experimental protocol and measurement charts
were also produced to generate and interpret data.

Data was produced at the measuring site in Bordeaux and transportation from the isolation
centre (Geneva) deteriorated cell activity, except for one experimental session conducted in
situ: this was on opportunity to install a measuring setup there and train clinical personnel
to use the system. Even with a readily usable system however, quality measurement results
cannot be obtained immediately: success of the transplant is indicated by long-term viability
and durable insulin-independence. Quality measurements therefore require months to years of
follow-up to produce correlation data.

Afterword
Bioelectronics is a place of interaction between many domains of expertise, and hopefully

this thesis reflects that extensively. While studying the interface between two disciplines may
only require a two-sided partnership, every possible aspect of the research must include precise
insight from expert partners.

In the process of reaching our implantable device for insulin demand sensing, abiding reg-
ulations and customer needs will require many domains of research and engineering expertise:
from cell culture to device encapsulation through electrode coating, microdevice manufactur-
ing, signal acquisition and processing, and patient compliance, perspectives of the presented
work will only come to life with a sufficiently broad circle of partners.

In hindsight, it seems evident that collaborations such as these do not automatically equal
the sum of their parts; in domains that share very little common ground, dialog can be a
delicate art to master for information to be shared accurately. It is – in my opinion – vital
to extend this area of mutual understanding and not limit one’s expertise to his/her domain
exclusively. This is especially true for project managers, but also for the «small hands »that do
the practical work. They need to know and understand the needs of their collaborators to not
only minimize frustrating misunderstandings, but also help generate joint ideas: collaborations
with deep mutual understanding can invent entirely new lines of research.
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“While I remained ambitious,
punctual, and hedonistic at home,
I had learned to better appreciate
the timeless beauties and blessings
of nature, to value sincerity as a
cardinal virtue and reject the West-
ern reverence for affectation and
hypocrisy, and to make my frantic
life pause for sunrises, sunsets, and
full moons.”

- Neil Peart, Traveling Music: The Soundtrack
to My Life and Times
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Appendix B

Electrode sorting validation data

The sorting module was tested using synthetic signals to validate its function. Input signals
were calibrated to ensure 100% event detection rates prior to sorting. They were generated
to feature the typical signatures represented in Fig. B.1 and evoke similar event detection.
This included low-frequency (0.3-0.8 Hz) sine waves and fast (5-10 Hz) biphasic pulses. The
signals were chosen to demonstrate and validate each sorting criterion, i.e. two synchronized
signals, a fast pulsing signal, a saturating signal, and two valid. As represented in Fig. B.1B-
C, the sorting paradigm included all four sorting cells. Cell #0 detected electrodes with
either Action Potential (AP) or SP activity, cell #1 detected synchronized SPs , cell #2
detected rapid pulsing, and cell #3 detected saturation. The inclusion/exclusion rule stated
that electrodes with SP or AP activity were included and electrodes with synchronization,
excessive AP firing, or saturation were excluded. The sorting module successfully detected
the two "normally-behaving" electrodes (Fig. B.1C), and all sorting cells accurately detected
electrodes meeting their criteria (Fig. B.1B).
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Figure B.1 – Validation of sorting algorithms on test signals, applied on six electrodes
marked on the MEA matrix with black corners. A: Test signals used. E71 and E22 were
0.8 Hz, 0.9 Vpp sine waves in phase opposition. E76 was a 10 Hz continuous burst of 0.9 Vpp
biphasic pulses. E15 was a 0.5 Hz, 200 mVpp sine wave. E37 was a 0.3 Hz, 4 Vpp sine wave,
clipped at ±1 V by the input converters. E58 was a 0.5 Hz, 0.8 Vpp sine wave with bursts of
5 Hz pulses on the descending phase of the sine wave. B: Intermediary sorting results returned
by the module on four sorting cells. Cell 0 flagged electrodes that had more than 30 APs or
3 SPs in 30 s. Cell 1 flagged electrodes that had 7 synchronized SPs within a 20 ms window
in 10 s. Cell 2 flagged electrodes that had 100 APs or more in 10 s. Note that electrode
86 was flagged due to crosstalk with electrode 76 and electrode 37 was flagged because its
saturation caused multiple AP detections. Cell 3 flagged electrodes which signal saturated.
C: Final sorting result returned by the module. The LUT was configured to flag electrodes
that had APs or SPs , did not have synchronized SPs , did not have unphysiological AP firing,
and which signals did not saturate, hence the logical equation: c0 · ¯(c1 + c2 + c3). The two
remaining electrodes (E15 and E58) are indeed the only two normally-behaving electrodes.
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Storage formats

C.1 Raw data

Raw data have a simple format of 64 16 b samples (16 bit signed, big-endian), stored as
described in Fig. C.1A. The subsequent bitrate is 1280000 B/s or 1.22 MB/s, adding up to a
maximum recording time of 07:27:23 on 32 GB SD cards.

C.2 Processed data

Processed data, unlike raw data, have multiple sources and multiple sampling frequencies,
and require a more complex format. The system must be able to differentiate between sources
and permit single stream reconstruction during readback.

Each data frame is 64 bytes long, starting with a 4 B header. The two first bytes contain
a 16 b packet number (PN) and the last two a 16 b identifier number (ID). The remaining 60
bytes are reserved for data. Multiple sources, either events or samples, may be written in this
reserved space. Figure C.1B shows a summary of the chosen data formats for event data and
multi- or single- channel measurement data.

Event data are recorded as a series of 64 b groups (1 b per channel), sampled at 1 kHz. Sin-
gle channel measurement data (average AP frequency, average SP frequency, average FOPP)
offer high-resolution average measurement of multiple channels, recorded on 16 b at 1 kHz
(except average SP frequency, which is only 10 Hz). Note that these data are not recorded if
the electrode sorting result is blank. Finally, multichannel measurement data (AP frequency,
SP frequency, and FOPP on all electrodes) are downsampled at 1 Hz. For a more efficient
use of space, the dummy channels (electrodes 11, 18, 81, 88) are not recorded, leaving only 60
16-bit channels to record. For a more homogeneous recording format, MSBs and LSBs of these
data are recorded separately (with different IDs), meaning that each measurement is stored as
two 64 B frames, one of which contains all 60 MSBs and the other all 60 LSBs.

The complete description of processed data formats and list of IDs can be found in section C.
Note that despite all data formats being represented with a single data type (e.g. events), they
are extremely flexible; indeed, neither the recording architecture nor the data conversion tools
prevent from mixing types (e.g. events and streams) within a data frame.

To handle all incoming sources and avoid data collision, a writing buffer was implemented.
It buffers all connected inputs separately, and cycles through the buffers, checking for pending
data to write. Its state machine is represented in Fig. C.2. Contrarily to the upstream data
formatters, this buffer does not wait for specific data: it blindly writes whatever is sent,
meaning that it is possible to shut down some of its sources. This permits choosing which
processed data are and are not recorded. In practice, only high-resolution processed data
(averaged measurements) are considered non-essential and may be discarded by the user. The
subsequent possible bitrates are 129280 B/s (including high-resolution data) or 64640 B/s
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Ch. 0 Ch. 1 Ch. 62 Ch. 63

64x1b

480b = 60B
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#30

void
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Data

Recorded processed data

16b 16b 16b

Channel 0

16b
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Channel 1 Channel 2 Channel 63

Recorded raw dataA

B

Figure C.1 – A: Raw data format. 16-bit data is big-endian. B: Processed data format.
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(excluding high-resolution data). These respectively amount to around 70 hours or 140 hours
of recording time on 32 GB SD cards.

C.3 Processed data IDs and properties

Table C.1 – Processed data storage format

ID Data structure Fs (Hz)

size (B) Name Type Channels

00001 2 Packet number System N/A
2 ID System
1 PGA gain Configuration
59 void

10010 2 Packet number System 10
2 ID System
2 SP frequency (averaged) Samples 1
58 void

11000 2 Packet number System 1000
2 ID System
8 APs Events 64
8 Burst starts Events 64
8 Burst ends Events 64
8 SP maxima Events 64
8 SP minima Events 64
20 void

21000 2 Packet number System 1000
2 ID System
2 AP frequency (averaged) Samples 1
2 FOPP (averaged) Samples 1
56 void

10101 2 Packet number System 1
2 ID System
60 AP frequency MSB Samples 60

10201 2 Packet number System 1
2 ID System
60 AP frequency LSB Samples 60

20101 2 Packet number System 1
2 ID System
60 SP frequency MSB Samples 60

20201 2 Packet number System 1
2 ID System
60 SP frequency LSB Samples 60

30101 2 Packet number System 1
2 ID System
60 FOPP MSB Samples 60

30201 2 Packet number System 1
2 ID System

Continued
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ID size (B) Name Type Channels Fs (Hz)

60 FOPP LSB Samples 60

40101 2 Packet number System 1
2 ID System
60 Positive peak amplitude MSB Samples 60

40201 2 Packet number System 1
2 ID System
60 Positive peak amplitude LSB Samples 60

40301 2 Packet number System 1
2 ID System
60 Negative peak amplitude MSB Samples 60

40401 2 Packet number System 1
2 ID System
60 Negative peak Amplitude LSB Samples 60



C.3. PROCESSED DATA IDS AND PROPERTIES 121

Figure C.2 – State machine of the recording buffer used to handle multiple sources. "r" states
(r1-rF) are reading states, where buffers are checked for pending data. "w" states (w1-wF)
are writing states, where pending data is pushed out of the buffer.
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Appendix D

Functional Blocks

D.0.1 Spatial display of detected events

The ISLET-CHIP project has brought up the need to use multiple types of MEAs that do
not all have the same layout. Traditionally, the 60-electrode 8×8 grid was used, but alternative
designs, with two groups of 30 electrodes and a completely different layout, were also tested
to fit specific constraints on microfluidics 3.1.1. To accommodate for this and help visualize
the true location of detected events, a layout manager was added to the system. It consists of
a 8× 16 8-bit memory that stores a channel number at its x/y coordinates. Channel numbers
0 through 254 are valid. Storing 255 in a memory slot marks the absence of a channel at the
associated x/y coordinates. The memory is accessible for writing, meaning that layouts may
be changed while in operation. As an illustration, Fig. D.1 shows two memory configurations
that accommodate for the layouts used in ISLET-CHIP .

255 8 16 24 32 40 48 255 255
1 9 17 25 33 41 49 57 255
2 10 18 26 34 42 50 58 255
3 11 19 27 35 43 51 59 255
4 12 20 28 36 44 52 60 255
5 13 21 29 37 45 53 61 255
6 14 22 30 38 46 54 62 255
255 15 23 31 39 47 55 255 255
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Figure D.1 –Memory configurations for two different MEA layouts. A: Standard 60-electrode
layout. B: Custom microfluidic MEA layout.
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D.1 High-level communication interfaces
The softcore microcontroller is the main communication organ. It offers high-level solutions

to translate user instructions to modulate configuration and vice-versa. Rather than having
dedicated hardware communication interfaces, accessing a module’s properties is as easy as
setting or reading microcontroller register values. This section describes in more detail the
mechanisms of this protocol.

D.1.1 Microcontroller-VHDL blocks communication
Configuration is performed through a system bus mastered by the main softcore processor

(CPU (Central Processing Unit)), which systematically associates data exchanges with a desti-
nation (address). Each module is connected to the CPU’s address and data busses (Fig. D.2),
and has a unique address. Therefore all modules simultaneously receive the data, but one,
and only one reacts in consequence when the CPU’s address bus matches his. Generally, to
each address corresponds either an instruction to modify a processing parameter or a request
for data readback. Since only one module is able to send readback data at a time, all read
outputs are connected to a logical OR, that returns a single value to the CPU(see Fig. D.2).

In reality, because they have multiple parameters, modules have a series of consecutive 1

addresses, all unique, that serve different purposes. Following this design, each module has
one address per modifiable parameter (the address gives the parameter name and the data
gives the parameter value) and one readout address per output (the address gives the output
name and the data gives the channel number).

@

wdata

CPU

rdata@ Module
#0

command bus

@

wdata

rdata@ Module
#N

Figure D.2 – Instruction addressing scheme

D.1.2 Microcontroller-User communication
The CPU uses its UART (Universal Asynchronous Receiver/Transmitter) to communicate

with the user. The port’s settings are detailed in 2.2.2 p. 44.
Instructions are sent to Multimed as ASCII (American Standard Code for Information

Interchange) strings composed of either a single-character (for example, to change display
options) or a character followed by a number of parameters (to change a module’s settings, or
to request a data readout on a specific channel). In the latter case, parameters are a series of
hexadecimal characters (e.g. y049B changes SP detection threshold to 049B16 = 117910 ). See
appendix E for a list of commands.

1. by convention



Appendix E

Configuring Multimed

E.1 Summary
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Table E.1 – Configuration commands of Multimed: Glycaemia V1.3.1

Command Description Arguments

R Return to bootloader N/A
i Change signal input settings See E.2.1
z Launch/stop recording See E.2.2
% Start comment line (ends with \n) N/A
$ Toggle human mode off N/A
@ Toggle human mode on N/A
E Echo command N/A
V Returns system version N/A
v Enter VGA configuration N/A
e Enter electrode sorting configuration N/A

A
P
s

c Configure wavelet coefficients See E.2.3
o Configure wavelet transform levels See E.2.4
I Configure interspike intervals See E.2.5
T Configure adaptive threshold See E.2.6
a Configure AP frequency measurement See E.2.7
p Configure FOPP measurement See E.2.8

SP
s x Configure SP timeout See E.2.9

y Configure SP amplitude threshold See E.2.10
F Configure SP filter See E.2.11

s Configure SP frequency measurement See E.2.12

w
hi
le

in
V
G
A

co
nfi

gu
ra
ti
on

1 Select channel to display See E.2.13
s Decrease timescale (slower) N/A
f Increase timescale (faster) N/A
m Change display mode N/A
n Change display bank N/A
S Toggle pause N/A
q Quit VGA configuration N/A

W
hi
le

in
el
ec
tr
od

e
so
rt
in
g

co
nfi

gu
ra
ti
on

s Manually select all electrodes on current cell N/A
c Manually clear all electrodes on current cell N/A
a Configure automatic sorting on current cell See Table E.2
m Manually select electrodes on current cell See Table E.2
r Read results on current cell N/A
0 Select sorter cell 0 N/A
1 Select sorter cell 1 N/A
2 Select sorter cell 2 N/A
3 Select sorter cell 3 N/A
* Select final result N/A
o Configure LUT output law See E.2.14
R Return to bootloader N/A
q Quit electrode sorting mode N/A
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E.2 Detail

Nomenclature:

— bit 7: msb
— bit 0: lsb

E.2.1 Acquisition configuration

Two hexadecimal characters (8 bits):

— bit 7: enable (1)/disable (0) acquisition
— bit 6-5: N/A
— bit 4: invert signal (1)
— bits 3-1: Gain (0-1-2-5-10-20-50-100)
— bit 0: Use PGAs (1) or in-built signals (0)

E.2.2 Recording setup

Two hexadecimal characters:

— "81": Record
— "80": Stop
— "00": Eject

A more complex (timed) recording management is also possible.

E.2.3 Wavelet coefficient configuration

Five hexadecimal characters (20 bits):

— bit 19: Mother wavelet (0)/ Father wavelet (1)
— bits 18-16: Point number
— bits 15-0: Value

E.2.4 Wavelet levels configuration

Two hexadecimal characters (8 bits):

— bits 7-4: Noise transform level
— bits 3-0: Signal transform level

E.2.5 Interspike interval configuration

Twelve hexadecimal characters (3 groups of 4 characters):

— first group: refractory period
— second group: interspike interval
— third group: interburst interval

E.2.6 Adaptive threshold configuration

Six hexadecimal characters (8+16 bits):

— bits 23-16: Select element to configure (0: configure integrator and filter, 1: configure
target, 2: configure loop gain, 3: configure output gain)

— bits 15-0 (modes 1 to 3): value
— bits 7-0 (mode 0): enable integrator (bit 7), filter cutoff frequency (bits 6-0)
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E.2.7 AP frequency measurement configuration
Two hexadecimal characters (8 bits):
— bits 7-6: N/A
— bit 5: first order (0) or second order (1)
— bits 4-0: cutoff frequency

E.2.8 FOPP measurement configuration
Two hexadecimal characters (8 bits):
— bits 7-6: N/A
— bit 5: first order (0) or second order (1)
— bits 4-0: cutoff frequency

E.2.9 SP timeout configuration
Two hexadecimal characters (time [s]× 1000/128 on 8 bits)

E.2.10 SP detection threshold configuration
Four hexadecimal characters (value on 16 bits)

E.2.11 SP filter configuration
Four hexadecimal characters (16 bits):
— bits 15-8: Filter number
— bits 7-0 (filter number below 8): Cutoff frequency
— bits 7-0 (filter number equal to 16): First high-pass filter number

E.2.12 SP frequency measurement configuration
Two hexadecimal characters (8 bits):
— bits 7-6: N/A
— bit 5: first order (0) or second order (1)
— bits 4-0: cutoff frequency

E.2.13 Displayed channel selection
Two hexadecimal characters (8 bits):
— bit 7: display MSB (0) or LSB (1)
— bit 6: N/A
— bits 5-0: Channel number

E.2.14 Sortin LUT configuration
Four hexadecimal characters (mask on 16 bits)

E.2.15 Electrode sorting
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Table E.2 – Format of the electrode sorting configuration two-byte argument

MSB usage
bit 7 Enable sorting
bit 6 Clear results
bits 5-4 Type select (00: None/01: Synchronization/10: Analog/11: Activity)
bit 3 Module select (Activity 0/1, Synchronization 0/1, Analog 0/1)
bits 2-1 Argument select (See below)
bit 0 Keep (0) or overwrite (1) measurement

LSB usage
MSB state bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Type select
(bits 5-4)

Argument select
(bits 2-1)

00 00 Wa - Used modules selectb

01 00 - Synchronization occurences threshold
01 01 Accumulator threshold
01 10 Accumulator increment Accumulator decrement

10 00 Analog threshold MSB
10 01 Analog threshold LSB

11 – - Accumulator threshold
a When ’1’, enables the writing of "used modules"
b bit 5 is Activity #0, bit 4 is Activity #1, bit 3 is Synchronization #0, bit 2 is Synchronization

#1, bit 1 is Analog #0, bit 0 is Analog#1
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Appendix F

Setting up Multimed

F.1 Instructions
See Fig. 2.12 for a complete connection diagram 1. The recommended installation scheme

is as follows, with all equipment initially turned off:
— Plug the Multi Channel Systems (MCS) preamplifier (2) to Multimed (1), while being

careful to connect, on the Multimed-side, the SCSI68 connector which indicator Light-
Emitting Diodes (LEDs) are ON 2 (see paragraph F.2 for more information).

— If an external acquisition device (5) is used, plug it to Multimed’s other SCSI68 connector
while making sure its indicator LEDs are OFF.

— Plug the thermal controller (3) to the preamplifiers (2)
— Plug the USB (Universal Serial Bus) cables of both Multimed (1) and the external

recording equipment (6) to the computer.
— Finally, plug the Video Graphics Array (VGA) monitor (5) to Multimed (1).

If an external filter module (7) needs to be used, be sure to plug it between Multimed (1) and
the preamplifiers (2), to have both recording devices (1 and 6) receiving identical signals. It is
good practice to keep the described working setup connected at all times, with all power cords
(Multimed power supply, monitor power supply, thermal controller power supply, secondary
acquisition device power supply and computer power supply) on a single power strip with an
ON/OFF switch, acting as the main power switch. This prevents connection errors and early
deterioration of regularly plugged/unplugged cables.

F.2 Safety precautions
Attention is particularly brought to the power supplies of the headstage preamplifier. Tradi-

tionally, on MCS equipment, three pins on the SCSI68 connectors are reserved for symmetrical
power supply. These three same pins are powered by Multimed as indicated by LEDs (lit LEDs
indicate power is on, see Fig. F.1) to provide working setups without external power supplies.
If MCS equipment is indeed used with Multimed, and that equipment provides power through
its connector, it is mandatory that the connection between them is made on the non-energized
(indicated by off LEDs) SCSI68 port. Doing otherwise may damage either one of the power
supplies.

1. Note that fluidic material (such as pumps and glassware) are not represented, as they do not interact
with the electronics.

2. Multimed may be momentarily turned on to verify which connector must be used.

131



132 APPENDIX F. SETTING UP MULTIMED

1

2

3

4

5

6

7

8

1: Multimed Board
2: MCS MEA1060-Inv preamplifier
3: MCS TC01 thermal controller
4: Computer
5: VGA monitor
6: MCS USB-ME64 acquisition board (optional)
7: Optional filters

power cord VGA connector USB connector

RS232 connector SCSI68 connector

Figure F.1 – Complete setup scheme (identical to Fig. 2.12)
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❶ ❷

❶

❷

E1
E2
E3

E4
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E1 E2 E3 E4 E5

E1
E2
E3

E4
E5

E1 E2 E3 E4 E5

1

0

-1

A

B

C

Figure G.1 – Illustration of the method used to compute temporal event correlation, and its
matrix representation. A: Temporal detection of events (thick lines) and continuous signals
constructed by correlating events with a Gaussian (thin, lighter lines). The time axis is shared
with B. E1 and E2 are identical trains of regular events. E3 is a regular train of events, 95%
the speed of E1. E4 is a regular train of events, 90% the speed of E1. E4 is a random train
of events. B: Time-dependent correlation measurements between E1 and E2-E4. Colours
indicate with which signal E1 is correlated, following the colour scheme of A. Note that due to
frequencies of E1, E3 and E4 being extremely close, synchronization beat occurs. C: Matrix
representations of correlation at instants ¶ and ·, as indicated in B. each square represents
the correlation, between -1 and 1, of the couple of electrodes given by its coordinates (hence
the unitary diagonal).



Appendix H

Revised quality control protocol

After several applications, the quality control protocol was revised. Some changes are
purely typographic, but others do alter the experiments (see Fig. H.1). Decision tree paths
are given relative to the revised protocol:

— The starting condition was changed from G1 to G1 + Diazoxide. Diazoxide is a molecule
used to inhibit insulin secretion by opening ATP-sensitive K+ channels [194, 195]. The
experiment is therefore started with a forced – and reversible – inactive state of pancreatic
islets instead of plain low glucose.

— The strongly inhibiting Nifedipine condition was removed because it was rendered un-
necessary by the Diazoxide condition.

— The absence of activity after G1 + Adrenaline (– +) is no longer a final condition, as
it does not test cell response to physiological glucose levels. Instead, it resumes to the
remainder of the protocol.

— AP activity is now distinct from SP activity. The distinction is now used in the condition
G1 + Adrenaline (– +) where the presence of APs is an indicator of mainly α cell activity.

— A criteria for failure or success of the dose-response was added (at least two conditions
significantly different from G1 are needed for success).

— The notation system was changed from *–****** to 0–5, to prevent very poor cultures
from having a non-zero grade.

— Outcome labels were slightly changed, with no significant change in meaning.
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Appendix I

Model equations and parameters

A (G) =


[G−G0]n

[G50 −G0]n + [G−G0]n
if G ≥ G0

0 otherwise
(I.1)

f(G) = fM ×A (G) (I.2a)

γ(XΓ, G) =

1 +
[XΓ −XΓ

0 (G)]n
Γ(G)

[XΓ
50(G)−XΓ

0 (G)]nΓ(G) + [XΓ −XΓ
0 (G)]nΓ(G)

if XΓ ≥ XΓ
0

1 otherwise
(I.2b)

α(XA) =

1− [XA −XA
0 ]n

A

[XA
50 −XA

0 ]nA + [XA −XA
0 ]nA if XA ≥ XA

0

1 otherwise
(I.2c)

XΓ
0 (G) = aΓ

0 ×G+ bΓ0 (I.3a)

XΓ
50(G) = aΓ

50 ×G+ bΓ50 (I.3b)

nΓ(G) = aΓ
n ×G+ bΓn (I.3c)

XΓ = log10([GLP1]) (I.3d)

XA = log10([Adr]) (I.3e)



dY0

dt
(t) = −λ4 × Y0(t) + λ̂3(G)×R

dY1

dt
(t) = −λ̂5(G)× Y1(t) + λ4(t)× Y0(t)

dF

dt
(t) = −λ2 × F (t) + λ̂5(G)× Y1(t)

F (t) =
λ1

λ3
× λ3 × λ4

λ3 + λ4
× F (t)

(I.4a)

(I.4b)

(I.4c)

(I.4d)

N =
F

λ3
(I.5)

λ̂.(G) = A (G)× λ. (I.6)
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Table I.1 – Model parameters

Parameter Value Unit

G0 5.5 mM
G50 12.63725052 mM
n 1.58236019 .
fM 0.82027264 Hz
aΓ

0 5.19461662 .
bΓ0 -104.38095093 .
aΓ

50 -0.43138251 .
bΓ50 -1.93716611 .
aΓ
n -1.2006536 .
bΓn 26.00980396 .
XA

0 -11.0017291 .
XA

50 -8.21733483 .
nA 10. .
λ1 0.36223665221897783 Hz.min
λ2 0.038841569302492725 min-1

λ3 0.2888958602068274 min-1

λ4 0.03107371062811306 min-1

λ5 10.0 min-1

R 1 .
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