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Abstract

In radio astronomy, the design of observation instruments has evolved signi�cantly through
the years. Instead of considering a single large disk to probe the sky, the development of inter-
ferometric systems has enabled to provide higher resolution images. Indeed, the signals captured
by each separate radio telescope are combined through synthesis imaging: the resulting angular
resolution is the same as for a single large-aperture telescope. Nowadays, such phased arrays are
widely used: the beam is electronically steered in di�erent directions without physically moving
the antennas, leading to more �exibility. The new generation of radio telescopes is based on
very large arrays as the Low Frequency Array (LOFAR) in Europe with about 50 000 antennas
and the future Square Kilometre Array (SKA) in Australia and South Africa which will count
2000 high and mid-frequency dishes and aperture arrays and a million low-frequency antennas.
These are the most sensitive radio instruments and they will provide fundamental new studies
about our galaxy. However, the huge number of antennas in the array, the large collecting area
and dynamic range impose new challenges to overcome. To meet the theoretical optimal perfor-
mances of such ambitious international projects, signal processing issues in terms of calibration,
data reduction and imaging need to be addressed.

Accurate calibration is of critical importance in order to recover high resolution images with
no distortions. This process consists in correcting for all environmental and instrumental ef-
fects which corrupt the observations and it reveals to be a daunting parameter estimation task
as direction dependent perturbations are prevailing. Thus, developing estimation algorithms
with reasonable computational cost is essential. Most state-of-the-art calibration approaches
are least-squares based, using known reference sources as calibration sources thanks to tables
describing accurately their position and �ux. They are theoretically asymptotically e�cient un-
der a Gaussian noise model and operate mostly in an iterative manner for a mono-frequency
scenario. However, in practice, the Gaussian classical noise assumption is not valid as radio
frequency interference a�ects the measurements, multiple unknown weak sources appear within
the wide �eld-of-view and transient phenomena can randomly create outliers. Furthermore, con-
sidering one frequency bin at a time with a single centralized agent processing all data leads to
suboptimality and computational limitations. The goal of this thesis is to explore robustness of
calibration algorithms w.r.t. the presence of outliers in a multi-frequency scenario.

To this end, we propose the use of an appropriate noise model, namely the so-called coumpound-
Gaussian which encompasses a broad range of di�erent heavy-tailed distributions, including the
Student's t, K-distribution, Laplace, etc. To combine limited computational complexity and
quality of calibration, we designed an iterative calibration algorithm based on the maximum
likelihood estimator and the compound-Gaussian modeling. Using the Expectation Maximiza-
tion (EM) and the Block Coordinate Descent (BCD) algorithms results in closed-form expressions
for the estimates. In addition, a computationally e�cient way to handle multiple sub-frequency
bands is to apply distributed and decentralized strategies. Thus, the global operational load is
distributed over a network of computational agents and calibration amounts to solve a global
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constrained problem thanks to available variation models or by assuming smoothness across
frequency. A particularly well-suited method for such large-scale problems is the Alternating
Direction Method of Multipliers (ADMM) which we applied in our work.

Keywords: Parametric estimation, calibration, robustness, distributed optimization, radio
astronomy, array processing.
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Résumé

Une réelle mutation technologique s'opère dans la conception des instruments d'observation
pour la radioastronomie. En e�et, les nouveaux réseaux phasés à balayage électronique vien-
nent supplanter les traditionnelles antennes paraboliques à balayage mécanique et s'appuyent
sur l'interférométrie pour obtenir des images de meilleure résolution. Les signaux radio mesurés
par chaque antenne sont alors corrélés entre eux. Grâce à la synthèse d'ouverture, la résolu-
tion angulaire résultante est équivalente à celle obtenue avec un unique large télescope dont le
diamètre équivaudrait à la taille du réseau. Ces nouveaux réseaux d'antennes sont particulière-
ment �exibles puisqu'ils sont orientés électroniquement selon di�érentes directions possibles, sans
aucun mouvement mécanique des antennes. Parmi la nouvelle génération d'instruments très sen-
sibles, nous pouvons mentionner le LOFAR (Low Frequency Array) qui regroupe près de 50 000
antennes à travers l'Europe mais aussi le futur radiotélescope géant SKA (Square Kilometre Ar-
ray) dont les stations seront réparties à terme en Australie et en Afrique du Sud et fourniront
de nouvelles études essentielles sur notre galaxie. Néanmoins, la grande surface collectrice du
réseau, le très large champ de vision des antennes et la forte dynamique des images nécessitent de
relever un certain nombre de dé�s scienti�ques en termes de calibration, réduction des données
et reconstruction d'images.

En radioastronomie, les signaux d'intérêt sont perturbés par de nombreux e�ets environ-
nementaux et instrumentaux, nécessitant la mise en oeuvre de techniques algorithmiques pour
les traiter et pouvoir ainsi reconstruire in �ne des images parfaitement nettes de l'espace. Cette
étape de correction des perturbations se nomme la calibration et repose généralement sur une
méthode des moindres carrés, en s'appuyant sur des sources de référence dont la position et
l'intensité sont connues. Cette méthode classique se révèle être théoriquement asymptotique-
ment e�cace dans le cas d'un bruit Gaussien et fonctionne généralement de manière itérative
pour une seule fréquence considérée. Cependant, en pratique, l'hypothèse du bruit Gaussien
n'est pas toujours valide car de multiples sources inconnues de faible intensité sont visibles dans
le champ de vision et des interférences radioélectriques perturbent les données pour �nalement
modi�er la nature typiquement gaussienne du bruit. En outre, réaliser une calibration fréquence
par fréquence, de façon complètement indépendante, n'est pas la manière la plus optimale de
procéder. Le but de ce travail est donc de développer des algorithmes de correction dans le
traitement des signaux radio qui soient robustes à la présence d'éventuelles valeurs aberrantes
ou sources d'interférences, et qui soient adaptés au contexte multi-fréquentiel.

Par conséquent, nous nous appuyons sur une modélisation plus générale que la loi gaussienne,
appelée processus Gaussien composé, qui inclut un grand nombre de distributions di�érentes
telles que la loi de Student ou la loi de Laplace. L'algorithme robuste que nous proposons est
itératif et basé sur l'estimation au sens du maximum de vraisemblance. Pour réduire les temps
de calcul, nous avons recours aux algorithmes EM (Expectation Maximization) et BCD (Block
Coordinate Descent) qui, pour un choix judicieux de paramétrisation, fournissent des expressions
analytiques pour les paramètres d'intérêt. En accord avec le scénario multi-fréquentiel sous étude,
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nous exploitons la variation spectrale des perturbations en utilisant des méthodologies telles que
l'optimisation distribuée sous contraintes et le traitement parallèle des données, notamment avec
l'algorithme ADMM (Alternating Direction Method of Multipliers).

Mots clés : Estimation paramétrique, calibration, robustesse, optimisation distribuée, ra-
dioastronomie, traitement d'antennes.
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Résumé étendu

Introduction

Le travail présenté dans ce document porte sur l'étude des nouveaux radio-interféromètres
tels que le LOFAR (Low Frequency Array) [7] en Europe ou le futur SKA (Square Kilometre

Array) [8] dont les stations seront déployées en Australie et en Afrique du Sud. En tant que
réel instrument d'envergure, le SKA sera constitué de millions d'antennes formant l'équivalent
d'une surface de réception d'un kilomètre carré et capables de capter des ondes radio sur un large
spectre de fréquences. En sondant très rapidement le ciel avec une précision sans précédent, ce
système permettra d'obtenir une qualité d'image supérieure aux installations actuelles et com-
plètera nos connaissances sur les lois physiques régissant l'univers. Néanmoins, un tel potentiel
nécessite de relever un certain nombre de dé�s scienti�ques et technologiques [9�11]. L'imagerie
du ciel requiert notamment une estimation précise des di�érentes perturbations introduites le
long du trajet du signal, qu'elles soient d'origine environnementale ou instrumentale, et ce, a�n
de reconstruire des images haute résolution, sans déformations.

Dans ce document, nous nous intéressons plus particulièrement à l'étape de calibration qui
consiste à corriger les perturbations subies par le signal radio depuis son émission par une source
jusqu'à sa réception par le réseau d'antennes.

Parmi les e�ets perturbateurs, nous pouvons citer

• la présence des gains électroniques complexes des antennes.

• l'anisotropie dans la réponse des antennes (réponse non uniforme, d'où une dépendance
selon la direction d'arrivée).

• le retard de propagation dû au passage du signal par la troposphère et l'ionosphère. Ces
couches spéci�ques de l'atmosphère se caractérisent par des phénomènes de di�raction et
de réfraction, variables dans le temps et l'espace, et a�ectent notamment la polarisation
du signal.

En calibration, la plupart des algorithmes s'appuient sur une méthode de type moindres
carrés, en minimisant une fonction coût par rapport à chaque paramètre inconnu, de façon
alternée [12,13]. A�n de réduire le coût calculatoire, des algorithmes tels que l'EM (Expectation
Maximization) ou le SAGE (Space Alternating Generalized Expectation Maximization) ont déjà
été proposés [14]. Malheureusement, l'hypothèse de bruit Gaussien est souvent considéré et n'est
généralement pas véri�é en pratique. Cette non-gaussianité du bruit s'explique par la présence
de sources inconnues de très faible intensité ou des interférences causées par des évènements
ponctuels ou encore des brouillages arti�ciels, créant ainsi aléatoirement des valeurs aberrantes
dans les données mesurées [15]. À ce jour et à notre connaissance, la seule tentative de calibration
robuste repose sur une modélisation bien spéci�que du bruit : la loi de Student, avec des variables
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indépendantes et identiquement distribuées [2]. Nous proposons ici d'avoir recours à une plus
large gamme de distributions, qui inclut entre autres la loi de Student et le cas classique Gaussien.
Plus particulièrement, nous nous intéressons au processus dit Gaussien composé, qui s'écrit
comme le produit d'une variable aléatoire positive, appelée texture, et d'un processus aléatoire
Gaussien, le speckle [16,17]. À partir de ce modèle, nous développons la méthode du maximum
de vraisemblance pour estimer à la fois les paramètres de nuisance (texture et speckle) ainsi que
les paramètres d'intérêt (matrices de Jones, introduites ci-après). Dans un premier temps, nous
nous focalisons sur le cas mono-fréquence.

Considérons D sources de calibration et M antennes dans le réseau de capteurs. Chaque
signal incident se décompose selon deux axes de polarisation orthogonales (x, y). Le signal émis
par la i -ème source ei et la tension mesurée par la p-ème antenne vi,p(θ) sont liés selon la relation
suivante [18,19]

vi,p(θ) = Ji,p(θ)ei (1)

où Ji,p(θ) est une matrice de Jones de taille 2 × 2, paramétrée par le vecteur inconnu θ. Elle
tient compte de toutes les perturbations introduites le long du trajet depuis la source i jusqu'à
l'antenne p. Puisqu'il existe une matrice de Jones di�érente pour chaque chemin i-p, le nombre
total de matrices à estimer est donc DM .

Le principe d'un interféromètre est de mesurer les corrélations des signaux récoltés par chaque
paire d'antennes (p, q). Dans le cas non bruité, cette corrélation s'écrit comme suit

Vpq(θ) = E
{ D∑
i=1

vi,p(θ)vHi,q(θ)
}

=

D∑
i=1

Ji,p(θ)CiJ
H
i,q(θ) avec p < q, p, q ∈ {1, . . . ,M}2, (2)

où Ci = E{eieHi } décrit l'état de polarisation de la i-ème source, supposé connu, si il s'agit d'une
source de calibration. De manière équivalente, nous pouvons considérer

ṽpq(θ) = vec
(
Vpq(θ)

)
=

D∑
i=1

si,pq(θ) (3)

où si,pq(θ) =
(
J∗i,q(θ)⊗ Ji,p(θ)

)
ci et ci = vec(Ci).

En pratique, les données sont perturbées par un vecteur bruit npq qui prend en compte le
bruit ambiant Gaussien mais aussi la présence d'éventuelles valeurs aberrantes. Ces dernières
peuvent être dues à des phénomènes d'interférences ou encore à la présence de sources de très
faible intensité qui nous sont inconnues et inaccessibles dans un premier temps.

Finalement, le vecteur de corrélation bruité de taille 4× 1 s'écrit

vpq = ṽpq(θ) + npq. (4)

En notant B = M(M−1)
2 le nombre total de paires d'antennes (p, q), le vecteur global de données

y ∈ C4B×1, regroupant toutes les corrélations mesurées par l'interféromètre, est donné par

y = [vT12,v
T
13, . . . ,v

T
(M−1)M ]T =

D∑
i=1

si(θ) + n (5)

tel que si(θ) =
[
sTi,12(θ), sTi,13(θ), . . . , sTi,(M−1)M (θ)

]T
et n =

[
nT12,n

T
13, . . . ,n

T
(M−1)M

]T
.
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Méthode de calibration robuste

En radioastronomie, le bruit ne peut tout simplement pas être considéré comme Gaussien du
fait de la présence d'interférences et de sources d'intérêt de très faible intensité, autres que les D
sources de calibration supposées connues dans le modèle du ciel. Nous traitons ici la notion de
robustesse à l'aide d'un modèle Gaussien composé pour le bruit, dé�ni comme suit pour chaque
paire d'antennes

npq =
√
τpq gpq, (6)

où le facteur de puissance réel τpq est positif et aléatoire alors que le vecteur gpq suit une loi
gaussienne de moyenne nulle, i.e., gpq ∼ CN (0,Ω). Pour éviter tout problème d'ambiguïté, une
contrainte, purement arbitraire, est requise sur la matrice de covariance Ω. Dans ce travail, nous
supposerons que tr {Ω} = 1.

En supposant des mesures indépendantes entre elles, la vraisemblance admet l'expression
suivante

p(y|θ, τ ,Ω) =
∏
pq

1

|πτpqΩ|
exp

{
− 1

τpq
uHpq(θ)Ω−1upq(θ)

}
, (7)

où le vecteur τ = [τ12, τ13, . . . , τ (M−1)M ]T regroupe les réalisations de la texture et upq(θ) =
vpq − ṽpq(θ). Ainsi, la log-vraisemblance s'écrit

ln p(y|θ, τ ,Ω) = −4B lnπ − 4
∑
pq

ln τpq −B ln |Ω| −
∑
pq

1

τpq
uHpq(θ)Ω−1upq(θ). (8)

Le principe de la méthode proposée consiste à estimer séquentiellement les paramètres θ,
τ et Ω. Ces estimations sont obtenues en maximisant la log-vraisemblance (8) par rapport à
chaque paramètre inconnu, les autres paramètres étant supposés �xés [20]. Nous remarquons
qu'il est nécessaire de spéci�er la densité de probabilité du paramètre texture τpq dans (6). Pour
cela, nous pouvons considérer di�érentes distributions a priori telles que les lois Gamma, inverse-
Gamma, exponentielle et inverse-gaussienne, qui fournissent des formes spéci�ques pour le modèle
Gaussien composé et permettent de dériver di�érents estimateurs basés sur le MAP (Maximum

A Posteriori) [21]. Cependant, supposer des paramètres τpq inconnus et déterministes permet
d'assurer plus de �exibilité et de robustesse [22, 23]. Avec cette hypothèse et la méthodologie
itérative adoptée, nous obtenons les estimations des paramètres inconnus décrites ci-dessous

1) Estimation de τpq : Annuler la dérivée de (8) par rapport à τpq conduit à

τ̂pq =
1

4
uHpq(θ)Ω−1upq(θ). (9)

2) Estimation de Ω : Par une méthodologie similaire, nous obtenons l'expression suivante
pour la partie speckle

Ω̂
t+1

=
4

B

∑
pq

upq(θ)uHpq(θ)

uHpq(θ)
(
Ω̂
t
)−1

upq(θ)
(10)

où t fait référence à la t-ème itération. Finalement, la contrainte spéci�ée préalablement sur la
matrice de speckle conduit à la normalisation suivante

Ω̂
t+1

=
Ω̂
t+1

tr
{

Ω̂
t+1
} . (11)
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3) Estimation de θ : Conditionnellement à τ̂ et Ω̂, l'estimation de θ revient à e�ectuer
l'opération suivante

θ̂ = argmin
θ

{∑
pq

1

τpq
uHpq(θ)Ω−1upq(θ)

}
. (12)

Nous distinguons alors deux cas de �gures : dans le premier, les matrices de Jones sont dites
non structurées et nous cherchons alors à estimer les quatre éléments complexes de chaque matrice
Ji,p(θ) pour i ∈ {1, . . . , D} et p ∈ {1, . . . ,M}. Dans l'autre cas dit structuré, chaque matrice
de Jones admet une décomposition spéci�que selon les perturbations physiques considérées et θ
fait référence aux éléments introduits dans le modèle paramétrique [24�26].

Matrices de Jones non structurées

Pour réaliser la minimisation en (12), des méthodes avec un coût de calcul réduit sont requises.
En e�et, le vecteur d'intérêt θ contient un très grand nombre d'éléments. Notons que ce dernier
peut se décomposer comme suit

θ = [θT1 , . . . ,θ
T
D]T = [θT1,1, . . . ,θ

T
1,M , . . . ,θ

T
D,1, . . . ,θ

T
D,M ]T , (13)

où θi,p ∈ R8×1 décrit le trajet i-p. Ainsi, il est judicieux d'écrire Ji,p(θ)⇒ Ji,p(θi,p).
Pour réduire les temps de calcul, nous avons recours à l'algorithme EM qui calcule les esti-

mations des paramètres d'intérêt à l'aide de deux étapes successives : les étapes E et M, et tend
asymptotiquement vers l'estimation au sens du maximum de vraisemblance [27,28]. Dans notre
cas, l'étape E se résume à calculer l'espérance conditionnelle de données dites complètes, sachant
les données observées et les paramètres estimés. Ensuite, l'étape M maximise la vraisemblance
conditionnelle, soit de manière numérique avec l'algorithme LM (Levenberg-Marquardt) par ex-
emple [29], soit de manière analytique si possible. Ainsi, (12) peut se décomposer en plusieurs
sous-problèmes de plus faible complexité : l'optimisation se fait par rapport à θi ∈ C4M×1 au
lieu de θ ∈ C4DM×1. Les deux étapes successives de l'EM s'écrivent comme suit

1) Étape E : Soit le vecteur de données complètes w = [wT
1 , . . . ,w

T
D]T , où

wi = si(θi) + ni (14)

tel que y =
∑D

i=1 wi et n =
∑D

i=1 ni. Les vecteurs bruit ni sont supposés statistiquement
indépendants et générés selon ni ∼ CN (0, βiΨ) avec

∑D
i=1 βi = 1 et

Ψ = bdiag
{
τ12Ω, . . . , τ (M−1)MΩ

}
. (15)

L'espérance conditionnelle caractéristique de l'étape E de l'EM est alors donnée par

ŵi = E
{

wi|y;θ, τ ,Ω
}

= si(θi) + βi

(
y −

D∑
l=1

sl(θl)

)
. (16)

2) Étape M : Une fois les wi obtenus avec (16) pour i ∈ {1, . . . , D}, les θi sont estimés en
maximisant la vraisemblance suivante

p(ŵ|θ, τ ,Ω) =
D∏
i=1

1

|πβiΨ|
exp

{
−
(
ŵi − si(θi)

)H
(βiΨ)−1

(
ŵi − si(θi)

)}
. (17)
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Il faut donc considérer la fonction de coût φi(θi) =
(
ŵi − si(θi)

)H
(βiΨ)−1

(
ŵi − si(θi)

)
pour

la i-ème source. Auparavant, nous avons chercher à réaliser la minimisation en (12) pour chaque
θi. De manière similaire, nous allons par la suite maximiser la vraisemblance en (17) pour
chaque θi,p, de manière alternée, grâce à l'algorithme BCD (Block Coordinate Descent) [30] et
ce, toujours dans un souci de réduction de complexité.

Nous cherchons à minimiser la fonction φi(·) par rapport à θi,p ∈ C4×1, tout en �xant les
autres θi,q pour q 6= p. La procédure est répétée séquentiellement pour p ∈ {1, . . . ,M} et fournit
les résultats suivants

θ̂i,p =

 (ΣH
i Ai,pΣi + ΥH

i Ãi,pΥi)
−1(ΣH

i Ai,pwi,p + ΥH
i Ãi,pw̃i,p) pour 1 < p < M

(ΣH
i Ai,pΣi)

−1ΣH
i Ai,pwi,p pour p = 1

(ΥH
i Ãi,pΥi)

−1ΥH
i Ãi,pw̃i,p pour p = M

(18)

où
• wi,p = [wT

i,p(p+1), . . . ,w
T
i,pM ]T et w̃i,p = [w∗

T

i,1p, . . . ,w
∗T
i,(p−1)p]

T ,

• Σi = [ΣT
i,p+1, · · · ,ΣT

i,M ]T et Υi = [Υ∗
T

i,1 , · · · ,Υ∗
T

i,p−1]
T ,

• Ai,p = bdiag{βiτp(p+1)Ω, . . . , βiτpMΩ}−1 et Ãi,p = bdiag{βiτ1pΩ∗, . . . , βiτ (p−1)pΩ∗}−1.
Nous avons également utilisé les notations suivantes :

Σi,q =


αi,q βi,q 0 0

0 0 αi,q βi,q
γi,q ρi,q 0 0

0 0 γi,q ρi,q

 , Υi,q =


λi,q µi,q 0 0

νi,q ξi,q 0 0

0 0 λi,q µi,q
0 0 νi,q ξi,q


avec
• αi,q = q∗i1ci1 + q∗i2ci3 , βi,q = q∗i1ci2 + q∗i2ci4 , γi,q = q∗i3ci1 + q∗i4ci3 , ρi,q = q∗i3ci2 + q∗i4ci4 ,
• λi,q = qi1ci1 + qi2ci2 , µi,q = qi1ci3 + qi2ci4 , νi,q = qi3ci1 + qi4ci2 , ξi,q = qi3ci3 + qi4ci4 ,

• ci = [ci1 , ci2 , ci3 , ci4 ]T , Ji,p(θi,p) =

[
pi1 pi2
pi3 pi4

]
, Ji,q(θi,q) =

[
qi1 qi2
qi3 qi4

]
,

• θi,p = [pi1 , pi2 , pi3 , pi4 ]T et θi,q = [qi1 , qi2 , qi3 , qi4 ]T .

L'algorithme de calibration robuste que nous proposons est résumé ci-dessous.

Algorithme: Calibration robuste basée sur un modèle Gaussien composé
entrée : D, M , B, Ci, βi, y
sortie : θ̂
initialisation: Ω̂ ← Ωinit, τ̂ ← τ init, θ̂ ← θinit
while critère d'arrêt non atteint do

while critère d'arrêt non atteint do
1 Étape E : ŵi donné par (16), i = 1, . . . , D

2 Étape M : θ̂i, i = 1, . . . , D
while critère d'arrêt non atteint do

3 θ̂i,p donné par (18), p = 1, . . . ,M

4 Ω̂ obtenu par (10) puis (11)
5 τ̂ obtenu par (9)

A�n d'évaluer les performances de notre algorithme, nous souhaitons le comparer à d'autres
approches de l'état de l'art : le cas classique Gaussien [14] et la calibration robuste basée sur une
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Figure 1: EQM de la partie réelle des 64 paramètres inconnus pour un RSB �xé, avec D = 2,
M = 8 et D′ = 8.

loi de Student [2], fournie par la littérature. Pour cela, nous nous plaçons dans un contexte réaliste
avec la présence de D′ sources de très faible intensité par rapport aux D sources de calibration
connues. Sur la Figure 1, nous traçons l'Erreur Quadratique Moyenne (EQM) de la partie réelle
de tous les paramètres inconnus θ, à Rapport Signal sur Bruit (RSB) �xé pour i) l'algorithme
de calibration robuste proposé basé sur modèle Gaussien composé, ii) l'algorithme de calibration
robuste traditionnel basé sur une loi de Student et iii) le cas Gaussien basé sur la résolution d'un
moindres carrés ordinaire. Nous remarquons de meilleurs performances d'estimation dans notre
cas pour l'ensemble des paramètres. En e�et, contrairement à la littérature, aucune distribution
spéci�que n'a eu besoin d'être décrite et les entrées du vecteur bruit ne sont pas supposées
indépendantes.

Matrices de Jones structurées

Une matrice de Jones peut se décomposer comme le produit de plusieurs matrices, chacune
représentant un e�et physique bien particulier. Dans le cas d'un régime de calibration appelé
régime 3 [3], exposé en Figure 2, les antennes du réseau sont relativement proches les unes des
autres et admettent chacune un très large champ de vision, comme c'est le cas à l'échelle d'une
station du LOFAR ou du SKA [4]. Dans un tel contexte, nous considérons la décomposition
suivante pour les matrices de Jones [25, 26,31]

Ji,p(θi,p) = Gp(gp)Hi,pZi(ϕi)Fi(ϑi) (19)

où i ∈ {1, . . . , D}, p ∈ {1, . . . ,M} et θi,p = [ϑi, ϕi,g
T
p ]T .

La seule matrice supposée connue ici est Hi,p, qui tient compte du diagramme de rayonnement
des antennes ainsi que du retard de propagation géométrique. Elle peut être supposée connue
grâce à des simulations électromagnétiques e�ectuées au préalable et à l'information disponible
fournie par la position de l'antenne et la direction de visée [5, 24, 32]. Du fait de la structure
compacte du réseau d'antennes considéré, la même partie de l'ionosphère est observée et les e�ets
environnementaux sont supposés identiques pour l'ensemble des antennes. Plus précisement, le
passage dans l'ionosphère entraîne un déphasage qui s'écrit

Zi(ϕi) = exp
(
jϕi

)
I2 (20)
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Figure 2: Régime de calibration 3, où F � P et P � A.

ainsi qu'une rotation du plan de polarisation, appelée rotation de Faraday et donnée par

Fi(ϑi) =

[
cos(ϑi) − sin(ϑi)
sin(ϑi) cos(ϑi)

]
. (21)

En�n, chaque antenne est décrite par un gain instrumental caractéristique de la chaîne de récep-
tion, tel que

Gp(gp) = diag{gp}. (22)

Sur la Figure 2, nous exposons le principe du régime 3 : la même portion de l'ionosphère est
considérée mais une multitude de sources peuvent être visibles dans le champ de vision. Notons
que dans le cas où les antennes sont relativement éloignées les unes des autres et admettent
toujours chacune un très large champ de vision, comme c'est le cas à l'échelle des plusieurs
stations, il s'agit alors du régime 4 où nous pouvons introduire un déphasage ionosphérique ϕi,p
et un angle de rotation ϑi,p pour chaque source i ∈ {1, . . . , D} et chaque antenne p ∈ {1, . . . ,M}.

Après avoir estimé les entrées des matrices de Jones à l'aide de l'algorithme décrit dans le cas
non structuré, il est possible de déduire les paramètres physiques qui interviennent dans (19).
Pour cela, nous considérons une fonction coût de type moindres carrés et optimisons par rapport
à chacun des paramètres inconnus de manière alternée. Ainsi, nous obtenons les estimations
suivantes

1) Estimation de gp : Après calculs, chaque gain est donné par

[ĝp]k =
( D∑
i=1

[W∗
i,p]k,k

)−1 D∑
i=1

[X∗i,p]k,k (23)
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où Xi,p = Ri,pĴ
H
i,p, Wi,p = Ri,pR

H
i,p et Ri,p = Hi,pZiFi.

2) Estimation de ϕi : Après dérivation et égalisation à zéro, nous obtenons le résultat
suivant

exp
{

2jϕ̂i

}
=

Tr
{

Mi,p

}
Tr
{

MH
i,p

} (24)

où Mi,p =
∑M

p=1 Ĵi,pF
H
i HH

i,pG
H
p et ϕ̂i peut directement en être déduit.

3) Estimation de ϑi : Une procédure numérique pour une dimension est nécessaire pour
l'estimation des angles de Faraday. Cette dernière peut facilement être réalisée en un temps
limité à l'aide d'algorithmes classiques de type Newton ou descente de gradient.

Pour le moment, nous nous sommes restreints au cas mono-fréquence. Or, en pratique, les
systèmes d'observation actuels exploitent une large gamme de fréquences. Il nous semble donc
essentiel de prendre en compte l'aspect multi-fréquentiel.

Méthode de calibration robuste multi-fréquentielle

Pour illustrer l'utilisation de notre algorithme dans un contexte multi-fréquentiel, nous choi-
sissons ici de considérer le régime 4, où les stations d'antennes sont éloignées les unes des autres,
et la décomposition en (19) peut s'écrire

J
[f ]
i,p(θ

[f ]) = G[f ]
p (g[f ]

p )H
[f ]
i,pZ

[f ]
i,p(ϕ

[f ]
i,p)F

[f ]
i,p(ϑ

[f ]
i,p) (25)

où ϕ[f ]
i,p ∝

1
f et ϑ[f ]i,p ∝

1
f2 [25, 33]. Notons que l'adaptation de l'algorithme multi-fréquentiel au

régime 3 peut directement être déduite à partir de l'étude proposée. Pour les gains électroniques
g[f ], nous pouvons supposer une certaine régularité dans la variation fréquentielle à l'aide d'un
modèle polynomial. Ainsi, nous introduisons

g[f ]
p = B̃[f ]z̃p (26)

où B̃[f ] = b̃[f ]T ⊗ I2 et

[b̃[f ]]k =

(
f − f0
f0

)k−1
(27)

avec k ∈ {1, . . . , Ñ} et une fréquence de référence f0. L'ordre Ñ est choisi de manière arbitraire
et les variables latentes z̃p nécessitent d'être estimées.

En supposant des mesures indépendantes entre paires d'antennes mais aussi entre fréquences
f ∈ F = {f1, . . . , fF }, la log-vraisemblance s'écrit de manière similaire à (8) en introduisant une
somme supplémentaire sur toutes les fréquences. Aucune structure a priori n'est imposée sur la
variation de τ [f ]pq et Ω[f ] en fonction de f . Pour résoudre un tel problème sous contraintes, nous
considérons le Lagrangien suivant

L
(
{θ[f ]}f∈F , z, {x[f ]}f∈F

)
=
∑
f∈F

L[f ]
(
θ[f ], z,x[f ]

)
(28)

tel que L[f ]
(
θ[f ], z,x[f ]

)
= l[f ]

(
θ[f ]
)

+ h[f ]
(
θ[f ], z,x[f ]

)
, où le terme d'attache aux données

s'écrit
l[f ](θ[f ]) =

∑
pq

1

τ
[f ]
pq

u[f ]H

pq (θ[f ])Ω[f ]−1
u[f ]
pq (θ[f ]) (29)
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Figure 3: EQM d'un paramètre inconnu dans θ en fonction du RSB.

et le terme de pénalisation comme suit

h[f ]
(
θ[f ], z,x[f ]

)
= 2<

{
x[f ]H

(
θ[f ] −B[f ]z

)}
+ ρ||θ[f ] −B[f ]z||22. (30)

Le vecteur x[f ] fait référence aux variables duales du problème pour une fréquence f , z inclut
l'ensemble des variables cachées/latentes tandis que la matrice de couplage B[f ] tient compte
des variations supposées connues des paramètres d'intérêt selon la fréquence. Pour résoudre
un tel problème séparable en fréquence, nous utilisons une méthode dite distribuée qui permet
de répartir la charge de calcul massive sur plusieurs agents [34, 35]. Ainsi, la calibration est
réalisée localement au-niveau de chaque agent pour chaque fréquence tandis qu'un centre de
fusion de l'information permet d'assurer la communication entre les di�érents agents, d'où une
meilleure calibration possible puisque l'ensemble des fréquences est pris en compte et non pas une
fréquence après l'autre de manière indépendante. Pour illustrer cela, nous montrons sur la Figure
3 l'évolution de l'EQM en fonction du RSB pour un paramètre représentatif des matrices de Jones
dans deux cas spéci�ques : i) calibration multi-fréquentielle avec une procédure distribuée et ii)
calibration mono-fréquentielle où chaque fréquence est traitée de manière indépendante.

Une méthode appropriée pour résoudre un problème d'optimisation sous contraintes de
manière distribuée est l'algorithme ADMM (Alternating Direction Method of Multipliers) [36]
qui se compose de trois étapes successives, répétées itérativement,

•
(
θ̂
[f ]
)t+1

= argmin
θ[f ]

L[f ]

(
θ[f ], (ẑ)t ,

(
x̂[f ]
)t)

réalisée localement par chaque agent (31)

• (ẑ)t+1 = argmin
z

∑
f∈F

h[f ]
((
θ̂
[f ]
)t+1

, z,
(
x̂[f ]
)t)

réalisée globalement au centre de regroupement

(32)

•
(
x̂[f ]
)t+1

=
(
x̂[f ]
)t

+ρ

((
θ̂
[f ]
)t+1

−B[f ] (ẑ)t+1

)
réalisée localement par chaque agent (33)

Notons que l'étape (32) donne directement une expression analytique tandis que l'étape (31)
nécessite une approche itérative en minimisant de manière alternée le Lagrangien L[f ] par rapport
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(a) (b) (c)

Figure 4: Images résiduelles obtenues avec (a) la réalité terrain (b) l'algorithme de calibration
robuste proposé et (c) la calibration sous MeqTrees (mono-fréquence).

à chaque ϑ[f ]i,p, ϕ
[f ]
i,p et g

[f ]
p . Après calculs, des expressions analytiques peuvent être obtenues pour

les gains électroniques ainsi que les déphasages ionosphériques. En ce qui concerne les angles de
Faraday, une optimisation numérique est requise. Par souci de clarté, les expressions analytiques
ainsi que le détail de l'optimisation alternée pour résoudre (31) sont donnés en section 4.3.2.

Simulations réalistes sous MeqTrees

Ce travail a aussi été l'occasion d'utiliser l'outil de simulation MeqTrees qui permet de
générer des données interférométriques telles que celles mesurées par de réels instruments as-
tronomiques [37]. Il permet notamment d'introduire un grand nombre de perturbations dif-
férentes dans le choix des matrices de Jones et propose également une méthode de calibration
qui consiste à ajuster le modèle aux données. Généralement, nous nous intéressons aux im-
ages résiduelles : une fois la calibration réalisée en estimant les perturbations qui a�ectent les
sources de calibration, ces dernières sont retirées des données pour �nalement révéler la présence
des sources de plus faible intensité, di�cilement accessibles autrement. Sur la Figure 4, nous
présentons un exemple d'images résiduelles obtenues avec D′ = 16 sources de non-calibration
ponctuelles et une calibration réalisée avec i) l'algorithme de calibration robuste que nous pro-
posons et ii) le solutionneur disponible sous MeqTrees. Dans un premier temps, nous nous
plaçons dans un contexte mono-fréquence.

En multi-fréquentiel, nous fournissons des résultats quantitatifs sur la Figure 5 en traçant
l'évolution de l'amplitude restituée pour l'une des sources faibles de non-calibration en fonction
de la fréquence.

Conclusion et perspectives

Ces travaux s'inscrivent dans le cadre de la calibration robuste pour les très grands radio-
interféromètres. Les méthodes que nous avons proposées sont itératives, basées sur l'estimation
au sens du maximum de vraisemblance et un modèle Gaussien composé pour le bruit, a�n de tenir
compte de la présence de sources inconnues de faible intensité et des di�érentes interférences. A�n
d'accélérer les calculs, nous avons introduit di�érents algorithmes a�n d'obtenir des expressions
analytiques pour les paramètres d'intérêt. Une extension au cas multi-fréquentiel qui s'appuie
sur l'ADMM a également été décrite. Des comparaisons avec des techniques de calibration
classiques ont permis de révéler des résultats encourageants pour nos méthodes. Au cours d'un
séjour à Nice, j'ai pu pro�ter de l'expérience de nos partenaires de l'ANR MAGELLAN, et plus
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Figure 5: Restitution de l'amplitude en fonction de la fréquence.

particulièrement du Laboratoire J.L. Lagrange à Nice, pour travailler sur le logiciel de simulation
MeqTrees et ainsi tester nos travaux d'estimation en calibration sur le processus d'imagerie de
MeqTrees, le but étant de pouvoir révéler les sources faibles qui sont di�cilement visibles.

Par la suite, il serait opportun d'adapter nos algorithmes à une échelle encore plus grande
en ayant recours à des calculs très haute performance et à des architectures parallèles et ce, a�n
que l'implémentation sur données réelles puisse être pleinement accomplie. En�n, des travaux
méthodologiques sont également prévus, notamment sur des algorithmes d'estimation parci-
monieux qui soient robustes ou encore des bornes de performances pour étudier la con�guration
optimale des antennes dans un réseau de capteurs.
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Chapter 1

Introduction

1.1 Preamble

This thesis has been conducted as part of the research project ANR MAGELLAN whose aim
is to develop algorithms for solving inverse problems of very large size. Such project gathers three
di�erent institutes: Observatoire de la Côte d'Azur (Lab. J.-L. Lagrange), Télécom ParisTech
(LTCI) and ENS Cachan (SATIE). The global objective is to propose methodological tools for
data processing in the context of advanced radio interferometers.

For sake of clarity and coherence, the work presented in this document does not account for
the study made for separated arrays and structured noise covariance matrix [C1] as well as the
derivation of Bayesian lower bounds in the Random Matrix Theory (RMT) framework [C3].

1.2 Motivation of this work

Radio astronomy aims to study celestial objects at radio frequencies and this recent branch
of astronomy has developed widely over the past century. Starting from the �rst detection of
radio waves by Karl Jansky in 1928, it enabled to unveil new phenomena in space such as pulsars,
quasars and radio galaxies, but also to supplement our knowledge by analyzing physical processes
which are not detectable in optical astronomy. However, these discoveries require technological
developments in the antenna receiving system which are referred to as radio antennas. They
can be used individually or combined in a global array by exploiting interferometric techniques
and aperture synthesis, thus, achieving high angular resolution. Modern radio interferometers
include the existing Low Frequency Array (LOFAR) and the future Square Kilometre Array
(SKA) which o�er large collecting area, high level of sensitivity and unprecedented detailed and
fast survey.

In order to reach the theoretical optimal performances of this new generation of radio in-
terferometers, signal processing challenges must be overcome in terms of data correction and
image synthesis. Indeed, estimation of all perturbation e�ects along the radio signal propagation
path, namely the calibration process, is of critical importance in order to reconstruct images with
no distortions. In this manuscript, we focus on the develoment of signal processing calibration
algorithms, as it is a cornerstone of the imaging step in radio astronomy.

Array calibration strategies have already been proposed by the array processing community,
based on the presence, or not, of cooperative sources, named calibration sources [38�40]. In radio
astronomy, prior information is usually exploited thanks to tables describing accurately position
and �ux of the brightest sources. Still, antenna imperfections and disruptive environmental e�ects
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2 CHAPTER 1. INTRODUCTION

hinder the observation of weak unknown background sources and thus, need to be corrected for.
Most state-of-the-art calibration algorithms are iterative, based on a Gaussian noise assumption
and operate in a mono-frequency scenario which reveal to be suboptimal and not always realistic
in practice. Therefore, the aims are the following

• Investigate robustness aspects w.r.t. the presence of outliers or man-made radio frequency
interferences, as the Gaussian noise model is usually considered in existing calibration
algorithms. To the best of our knowledge, the only alternative robust algorithm using a
non-Gaussian noise assumption is presented in [2, 41] and based on the Student's t noise
modeling. Nevertheless, this modeling may not be the optimal way to incorporate the
contribution of outliers in radio data as the distribution of such data is not known in
practical scenario.

• Propose estimation algorithms with low computational complexity and e�cient implemen-
tation.

• Study two major scenarios: calibration of interferometric systems with wide �eld-of-view
and closely located (one station) or largely separated (multiple stations) radio antennas.
These two di�erent scales of observation refer, respectively, to calibration regimes 3 and
4, exposed in section 2.2.3 and are the most adapted for recent and next generation radio
interferometers [3].

• Exploit the multi-frequency case where a wide frequency range is considered and e�cient
processing of data among all di�erent frequencies is required.

• Characterize the estimation performances thanks to statistical studies and realistic recon-
structed images in which weak unknown background sources can be revealed.

1.3 Achieved results

In this document, we propose robust calibration algorithms which are iterative, based on the
Maximum Likelihood (ML) estimator and the Compound-Gaussian (CG) noise modeling. The
CG distribution encompasses a wide range of distributions including the typical Gaussian, the
Student's t, the Laplace and the Cauchy cases. Therefore, we choose to consider such �exible
noise modeling to achieve robustness. In order to reduce the computational cost, e�orts are being
made to obtain closed-form expressions for all estimates when possible, by combining the use of
the Expectation Maximization (EM) and Block Coordinate Descent (BCD) algorithms.

In radio astronomy, calibration amounts to estimate speci�c 2 × 2 matrices, called Jones
matrices as described in section 2.3, which stand for all the introduced environmental and in-
strumental perturbation e�ects [5,18,26]. The �rst proposed robust algorithm in this document,
namely the Relaxed Concentrated ML Estimator (RCMLE), operates in a mono-frequency sce-
nario and is adapted for both non-structured and structured cases. This refers, respectively, to
estimation of all entries of all Jones matrices and estimation of speci�c parameters in physical
models (regime 3 as a �rst step). Statistical analysis with the Mean Square Error (MSE) and the
Cramer-Rao Bound (CRB) highlight that the proposed scheme leads to more accurate estima-
tion, thus, more robustness w.r.t the presence of weak unknown sources in the background and
interferences. Let us note that the designed RCMLE is based on a relaxed version of the ML,
i.e., a deterministic assumption but its alternative, namely the Bayesian approach, is proposed
as well in this document.
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To extend our study to the multi-frequency case, we adopt a distributed approach with
multiple local agents and one fusion center, unlike the classical strategy which uses a single
centralized processor. We exploit the speci�c varition of parameters across frequency and conduct
the study for the structured case. This leads to the proposed Multi-frequency Robust Calibration
Algorithm (MRCA) designed for regime 4 with a possible straightforward adaptation to regime
3. Numerical simulations compare the estimation performances w.r.t. state-of-the art non-robust
and/or mono-frequency cases (per-channel calibration).

Finally, to complete the analysis, we make use of the software MeqTrees for simulation of
realistic radio data and visual indication of our improved performances in terms of calibration
and image reconstruction [37].

1.4 Manuscript structure

The presented document relies mainly on the four following chapters

• Chapter 2 is dedicated to state-of-the-art calibration algorithms. We �rst present the
context under consideration with a brief operating principle of interferometry and the new
challenges at stake accompanying the development of advanced radio interferometers. The
data model supported by Jones matrices is also introduced and most well-known calibration
strategies are highlighted. A short description of the imaging procedure completes the
chapter.

• Chapter 3 develops the proposed robust calibration algorithm based on th CG noise mod-
eling. As a �rst step, the frequency dependence is not considered in this chapter.

• Chapter 4 adapts our methodological tools to the multi-frequency case. A distributed
strategy is employed and robustness is still ensured.

• Lastly, chapter 5 introduces realistic data simulation with the software MeqTrees which
helps us to visualize reconstructed residual images and reveal the presence of weak non-
calibration sources, hidden in the noisy background.
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[J2] V. Ollier, M. N. El Korso, A. Ferrari, R. Boyer and P. Larzabal, "Robust distributed cali-
bration of radio interferometers with direction dependent distortions.", accepted for publication
by Elsevier Signal Processing, 2018.

Book chapter

[B1] Allen et al., "French SKA White Book - The French Community towards the Square
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LOFAR, Chapter 4 Technological developments, 2017.
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Chapter 2

Problem setup and state-of-the-art

2.1 Context of study

The goal in radio astronomy is to measure radio emissions from the Milky Way galaxy with
an antenna array, giving us more information about the formation of galaxies, stars, planets and
the detection of pulsars and quasars. The �rst system to observe such wavelengths (9 kHz -
300 GHz) dates back to 1928 when Karl Jansky from Bell Telephone Laboratories mounted an
antenna on a turntable. In the beginning, radio astronomy exploited single-antenna instruments
with large dishes as the Arecibo observatory in Puerto Rico, completed in 1963 with 305 m in
diameter and the E�elsberg 100 m radio telescope in Germany, unveiled in 1972 which is one of
the largest fully steerable radio telescope.

With a single telescope to probe the sky, the corresponding angular resolution is given by

θ =
λ

D
(2.1)

where λ is the incident wavelength and D is the diameter of the instrument. Thus, a better
resolution requires a larger diameter, which can involve cost and construction complexity issues.

To overcome these problems, the concept of interferometry was applied by considering an
array with multiple antennas instead of one. The collected signals are combined so as to simulate
a single large dish whose diameter would be equivalent to the largest distance between two
antennas of the array, called the aperture. More speci�cally, the measured signals are correlated
for each pair of antennas, spaced apart at a speci�c relative distance named baseline. The �rst
radio observations based on interferometry occured in 1946 when Ryle and Vonberg used two
dipoles. Nowadays, the most popular aperture synthesis arrays cover the Westerbork Synthesis
Radio Telescope (WSRT), built in 1970 in the Netherlands and composed of 14 dishes of 25 m
diameter each, or the Very Large Array (VLA) in the United States inaugurated in 1980 which
consists of 27 radio telescopes with 25 m diameter as well. For such arrays, the angular resolution
reads

θ =
λ

A
(2.2)

where A is the aperture. Therefore, �ner resolution is attainable if the distance between antennas
is increased. However, dishes, i.e., parabolic antennas here, lack �exibility. In order to target a
speci�c area in the sky, they need to be moved mechanically which may slow down the response
time and bother observation of transient phenomena.

The new generation of radio interferometers is based on multiple �exible small antennas,
omnidirectional, of low cost and with wide �eld-of-view. Contrary to mechanically based systems,

7
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an observation area is selected thanks to phase shifts introduced electronically, i.e., weighting
by complex exponential terms. These antennas are called software telescopes: a beam is steered
towards the direction of interest once signals captured by each individual antenna are correlated.
Due to the huge number of available antennas in the array, a large collecting area is achieved and
various di�erent baselines are obtained, leading to better sensitivity, resolution, and a high quality
image. An example of phased array telescope systems is the LOFAR [7,42,43] whose construction
started in 2006 and was completed by the Netherlands Institute for Radio Astronomy (ASTRON).
Regular observations have been conducted since 2012 and approximately 50 000 antennas are
spread out in stations all over Europe, particularly in the Netherlands: more than 40 stations
are built in the Netherlands, 5 in Germany, 1 in France, 1 in Sweden and 1 in Great-Britain.
A station is composed of multiple individual antennas: 96 low band antennas (30-80 MHz) and
48 high band tiles (120-240 MHz) which are then combined by beamforming. For now, the
LOFAR is the largest radio telescope ever built (based on interferometry) and the most sensitive
in the radio frequencies (30-240 MHz). Furthermore, multiple observations can be conducted in
parallel, up to 488 beams simultaneously.

The SKA [6, 8, 44] is the upcoming new generation of radio antennas, which will operate
in a large observation bandwidth (up to tens of GHz) with a total collecting area of roughly
one square kilometre. Expected to be the most sensitive and fastest astronomical instrument to
probe the radio sky, its stations will be distributed in South Africa and Australia, composed of
both traditional dishes and small dipoles. The construction is set to begin in 2018 and will be
extended to its full size until 2030, in two consecutive phases. Precursor facilities of the SKA
are already currently running: the Australian Square Kilometre Array Path�nder (ASKAP), the
Murchison Wide�eld Array (MWA) in Australia and the Karoo Array Telescope (MeerKAT) in
South Africa.

2.1.1 Principles of interferometry

As mentioned before, interferometry consists in measuring correlations, called visibilities
in radio astronomy, for two speci�c antennas, speci�cally distributed over an area at a given
wavelength [26]. Due to Earth's rotation, baseline distances and orientations w.r.t. the sky �eld
vary over time leading to more data points and high-resolution synthesis imaging. To give an
idea, the longest baselines of the SKA will reach 3000 km at least, while the LOFAR attains 1000
km and the VLA, 36 km. By de�nition, a correlation V is given by the following expectation [19]

V (r1, r2) = E
{
e(r1)e

∗(r2)
}

(2.3)

where, for sake of clarity, the electrif �eld e is assumed scalar and unpolarized, measured for two
points in space, r1 and r2. For two locations, separated by a given propagation delay τ , one
obtains [26]

V (r1, r2, τ) = lim
T→∞

1

2T

∫ T

−T
e(r1, t)e

∗(r2, t− τ)dt. (2.4)

In a suitable coordinate system, it is possible to link this spatial correlation with the source
intensity. The relative distance r1−r2 is usually expressed in units of wavelength, given by three
coordinates (u, v, w), in which w is omitted if the coplanar approximation holds or the �eld-of-
view is narrow. In the two-dimensional case, the visibility is given by the Fourier Transform of
the source intensity, i.e., [45]

V (u, v) =

∫ ∫
I(l,m)e−2πj(ul+vm)dldm (2.5)
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where (l,m) refers to the angular coordinates of the source (right ascension (RA) and declination
(DEC) for exemple), I(l,m) is the intensity distribution at a given point and V (u, v) is the
measured correlation for a given baseline. In the ideal case, when the entire (u, v) plane is sampled
by visibility measurements, the source intensity is given by the following Fourier inversion

I(l,m) =

∫ ∫
V (u, v)e2πj(ul+vm)dudv. (2.6)

The mathematical relationship in (2.5) is a particular expression of the fundamental Van Cittert-
Zernike theorem [26, chp. 14], obtained by Van Cittert and Zernike [46], which is based on
coherence theory and radiation emission by an incoherent electric �eld in the far-�eld. This
theorem stems from the optical domain [47] and requires speci�c conditions: the emitting source
is spatially incoherent, i.e., the radiation emitted by one point of the source is statistically
independent from any other point of the source (which is the case for most of the astronomical
sources expect for pulsars and masers). In addition, the angular dimensions of the source must
be typically inferior to one degree, the spectral width is quasi monochromatic and the source
is in the far-�eld zone. It is worth mentioning that this relationship was initially obtained in
the case of free-space between source and antennas, implying a uniform refractive index and an
undistorted wavefront. Still, the generalization is achievable for an heterogeneous propagation
medium and is referred to as Hopkins' formula.

Figure 2.1: Data acquisition model with interferometry (after [1]).

The principle of data reconstruction with an interferometric system is exposed in Figure 2.1.
The goal is to recover a faithful rendering of the original image, i.e., I(l,m). To this end, antennas
are distributed over a speci�c layout in the array. Correlations are computed along each baseline
vector between two antennas. Since the number of antennas is not in�nite, only a limited set of
baselines are achieved and correlations are not measured for any point of the space (u, v), leading
to an inaccurate and distorted recovered image with missing information. Let us note S(u, v) the
sampling function representing actual positions for which correlations are computed, i.e., a mask
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which equals 0 when no measure has been conducted at this particular position of the plane or
1 elsewhere. If we multiply the two-dimensional Fourier Transform F

(
I(l,m)

)
with S(u, v), the

resulting data are the measured correlations. By Inverse Fourier Transform, we obtain an image,
named the dirty image ID, given by

ID(l,m) =

∫ ∫
V (u, v)S(u, v)e2πj(ul+vm)dudv. (2.7)

As previously mentioned, synthesis mapping takes advantage of the Earth's rotation to generate a
synthetic aperture. As the Earth rotates, the measured points in the (u, v) space follow elliptical
tracks. The more data points we obtain, the more regular and dense is the sampling and the
more accurate is the reconstructed image [48, p.24]. In Figure 2.2, we expose the uv-coverage,
i.e., the set of visibility points in the (u, v) domain, for di�erent simulated instruments: the
KAT-7 radio telescope composed of 7 dishes on the left hand side for a total measurement time
of 12 hours, and the MeerKAT consisting of 64 dishes on the right hand side during 4 hours of
observation. In both cases, the integration time per visibility point is 60 seconds and simulations
were performed with the Common Astronomy Software Applications (CASA) package [49�51].

Figure 2.2: Di�erent uv-coverage for di�erent instruments: the KAT-7 radio telescope (left) and
the MeerKAT instrument (right).

2.1.2 Challenges of the new generation of radio interferometers

Advanced phased arrays as the LOFAR and the SKA provide considerable bene�ts such as
huge collecting area and large spatial coverage, �ne sensitivity and �exibility, the possibility to
observe in multiple directions simultaneously, a quick response time, ... However, great bene�ts
necessarily produce some di�culties. Indeed, new challenges are at stake: a huge number of
antennas with wide �eld-of-view, looking through an heterogeneous propagation medium, leads
to signi�cant direction dependent perturbation e�ects. Besides, the phased-array observational
system has multi-frequency and multi-beam forming capabilities, polarization of waves needs
to be considered and the theoretically achievable angular, temporal and spectral resolution is
high. Antennas being ominidirectional and particularly sensitive, they can detect an important
number of sources in their �eld-of-view. And in some cases, the source of interest reveals to be
more complex than a simple point source, with constant intensity. Indeed, its structured di�use
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emission and its polarization state may change according to the frequency channel and along the
signal propagation path.

With wide �eld-of-view and well-separated stations, the next generation array cannot be
considered coplanar and spherical geometry is required. Indeed, all antennas are not located
in a given plane at the same altitude. In this particular case, spatial coherency and brightness
distribution are no longer linked thanks to the two-dimensional Fourier Transform in (2.5), since
the coordinate w is essential and curvature of the Earth cannot be neglected. To solve these
issues, faceting-based methods have been introduced as well as projection methods [49,50,52].

Last but not least, the new radio instruments are particularly sensitive and the amount of
data to process is tremendous. We need to deal with large volume of data depending on the RA,
the DEC and the frequency1.

Therefore, to meet the theoretical optimal performances, many signal processing challenges
need to be overcome, among which calibration, imaging and data processing [4, 9, 53]. In the
following, we focus on the calibration step. Indeed, visibilities have assumed to be ideal so far,
i.e., uncorrupted. However, in practice, observed visibilities di�er from the true visibilities as
instrumentation is not perfect and physical disturbing phenomena are occuring. Thus, correcting
these e�ects is essential in order to produce high dynamic range images with advanced observation
systems.

2.2 Importance of calibration

2.2.1 Perturbation e�ects

When an incoming electromagnetic �eld reaches an array, it has been a�ected by various
perturbation e�ects and physical distortions which involve propagation delay and magnitude
loss. Here, we draw a distinction between, on the one hand, instrumental and electronic e�ects
linked to the receiver chain and on the other hand, environmental e�ects due to propagation
within the atmosphere.

• Instrumental e�ects: each antenna is de�ned by an unknown electronic gain and anisotropic
beam pattern due to direction dependency and selectivity leakage. Composed of a main beam and
sidelobes, the beam pattern accounts for sensitivity of antennas to radiation from any viewing
direction. Electromagnetic simulations and modeling provide some a priori knowledge about it.
However, because of sidelobes, an antenna is also sensitive in directions di�erent from the one of
interest. Thus, bright sources can hinder the observation of faint sources, which is particularly
troublesome in the case of the LOFAR owing to its relatively large sidelobes. In addition, let
us note that the beam pattern di�ers per station, w.r.t. time and frequency due to Earth's
rotation. In the receiver chain, temperature may vary as well and other properties along the
signal propagation path are changing through time until reaching the data processing center,
thus a�ecting calibration parameters as gains.

• Environmental e�ects: the troposphere and the ionosphere are speci�c layers of the Earth's
atmosphere. They entail time delays due to temporally and spatially varying di�raction and
refraction phenomena, but also e�ects on the polarization of the signal as Faraday rotation
[54] which is a rotation of the polarization plane of the wave while it goes through a charged
medium as the atmosphere. This rotation is due to di�erent propagation speeds between the two
polarized components of the incoming wave. One prevailing e�ect is thus propagation within the

1Let us note that astronomical objects are identi�ed by equatorial coordinates: the RA and the DEC, equivalent
to celestial coordinates: latitude and longitude.
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ionosphere, the ionized upper part, which leads to signi�cant rapidly changing phase delays. We
specify this point in the following remark.

Remark: The ionosphere is a speci�c layer of the atmosphere, which introduces time and
phase delays, resulting in a shifted position of the source. Thus, the apparent position di�ers
from the exact location. These visible consequences are due to non-uniform refractive index in the
propagation medium and spatial, temporal �uctuations in the electron density. More speci�cally,
the sun emits radiations which induce partial ionization in the atmosphere through injection of
charged particles. This is called the solar wind. Therefore, free electrons emerge and slow the
progression of electromagnetic waves. The movement of these free electrons is determined by the
magnetic �eld, ionization, dissociation and ion recombination processes.
We can view the ionosphere as a dynamic, disruptive and heterogeneous environment which
introduces phase shifts proportional to the wavelength, thus, inversely proportional to the fre-
quency [21, 54]. This means that ionospheric perturbations are even more prevailing at low
frequencies, especially for the LOFAR and the SKA which operate at low radio frequencies.
Ionospheric disturbances are also temporally varying since at night, the number of electrons
drops while it is higher during the day. Typically, at night and at the zenith, the number of
electrons is given by 1016 electrons per square metre, which is equivalent to one unit of Total
Electron Content (TEC). The TEC refers to the integral of electron density along the viewing
direction and is directly related to the propagation time di�erences. Let us mention that cor-
recting for artefacts due to the ionosphere remains a critical step in many scienti�c �elds and
not just in radio astronomy [55].

2.2.2 Aim of calibration

In radio astronomy, calibration is of the utmost importance before synthesis imaging and it
directly deals with visibility measurements which may be a�ected by the perturbations, listed
in section 2.2.1. In Figure 2.3, we show a simulated sky with undisturbed sources of varying
intensity on the left hand side [2]. When the brightest sources su�er from perturbations, the
resulting image is given on the right hand side. Thus, severe distortions and artefacts appear,
making it di�cult to reveal faint sources. These distortions are due to the simulated errors along
the brightest sources but also to the incomplete Fourier sampling, leading to strong sidelobe
patterns which overwhelm the image.

To have a chance of recovering the initial image, unknown perturbation e�ects need to be
estimated and corrected. Afterwards, we can remove the contribution of the bright sources
from the data, thanks to tables providing their position and intensity accurately [56,57]. In the
residual image, only the faintest sources remain visible which is of interest for the astronomers
since these sources are the most di�cult to access. Let us remark that most sources have an
intensity lower than the noise level (except for particularly strong ones like the sun, Cygnus A
(CygA) and Cassiopeia A (CasA) radio stars). Getting more knowledge about the sky model,
the instrumentation and propagation conditions constitutes the ultimate goal of the calibration
process.

2.2.3 Calibration regimes

Calibration of the ionosphere is addressed in di�erent ways depending on the type of sensor
array. Four di�erent scenarios have been de�ned [3] and they are presented in Figure 2.4. They
are distinguished by the aperture A, the size of the �eld-of-view F which is projected on the
ionospheric layer and the scale P on which ionospheric perturbations are varying:
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Figure 2.3: Comparison between an undistorted simulated sky (left) and a corrupted one (right)
(after [2]).

Figure 2.4: Ionospheric calibration regimes (after [3, 4]).
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• In regime 1, the �eld-of-view F and the aperture A are very small in comparison with
the ionospheric irregularity scale P . Consequently, each antenna sees the same part of the
ionosphere so the same phase delay is introduced for each antenna in the array. The �eld-of-view
being narrow, there is no direction dependency: the propagation conditions are the same for all
paths within the �eld-of-view.

• In regime 2, the antennas are relatively separated from each other but their �eld-of-view
remains narrow. When we target a speci�c direction, propagation conditions di�er per antenna.
Nevertheless, the same time delay is introduced for each source within the same �eld-of-view.

• Regime 3 refers to compact stations, with relatively closely spaced antennas, as in regime 1.
By contrast, the �eld-of-view F is wide in comparison with the scale of variation P . Therefore,
propagation conditions are direction dependent due to the wide �eld-of-view but antennas observe
through the same part of the ionosphere, leading to similar perturbations. For instance, this
amounts to consider a single station of the LOFAR or a subarray of the MWA.
• The most di�cult case is regime 4 where stations are well separated from one another

and their �eld-of-view are wide. Thus, the ionosphere induces per-antenna direction dependent
perturbations.

In brief, ionospheric calibration requires to take into account variable properties, depending
on the environment and the telescopes. The most adapted scenarios for the next-generation of
radio interferometers are regimes 3 and 4 and di�erent advanced approaches using array and
signal processing techiques can be considered [58�60]. The conventional data model that is
studied in radio astronomy is based on the so-called Jones matrices [19,24]. In the next section,
we present this formalism for radio interferometer measurement equation [5, 18].

2.3 Data model

Let us consider a signal source with two components, each being associated to one speci�c
polarization direction [61, 62]. Unlike an unpolarized source which is de�ned by a single scalar,
i.e., its intensity, a polarized source is described by the distribution of the electric �eld. Thus, the
wave nature of light needs to be considered. A priori information can be given about it thanks
to survey observations. To describe the polarization state, we usually introduce the following 4
Stokes parameters [26]: (I,Q, U, V ) with, respectively, an unpolarized, two linearly polarized and
one circularly polarized components. This polarizarion of incident waves depends on position,
frequency and can be severely a�ected by perturbations such as the Faraday rotation [54].

As mentioned before, the signal source is de�ned along two orthogonal polarization directions
(horizontal and vertical or circularly right and left depending on the coordinate system), the third
direction being the wave propagation direction. To retrieve both information, each antenna of
the array is made up of two receptors (or dipoles), each being sensitive to one speci�c polarization
direction, as shown in Figure 2.5. Thus, all the study is conducted in the plane orthogonal to
the wave propagation direction. The incoming radio signal is decomposed as a 2 × 1 vector for
the i-th source direction:

ei = [eix , eiy ]
T . (2.8)

The incident electric �eld ei and the measured voltage vi,p(θ) are related in the following way

vi,p(θ) = Ji,p(θ)ei (2.9)

where the 2 × 2 Jones matrix, noted Ji,p(θ), stands for all physical perturbations along the
signal propagation path i-p, i.e., from the i-th emitting source to the p-th receiving antenna,
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Figure 2.5: Interferometric system (after [5]).

and is parametrized by unknown vector θ. The relationship is given by a multiplication as
propagation of the wave, and thus all undergone transformations, are assumed linear. We note
vi,p(θ) = [vi,px(θ), vi,py(θ)]T the generated voltage at the p-th dual polarized antenna and we
can associate one particular Jones matrix Ji,p with each signal propagation path i-p.

The principle of an interferometer is to measure correlations between two speci�c antennas
p and q. The resulting 2× 2 ideal correlation matrix is given by

Vi,pq(θ) = E
{

vi,p(θ)vHi,q(θ)
}

= Ji,p(θ)CiJ
H
i,q(θ) (2.10)

where Ci = E
{

eie
H
i

}
=

[
Ii +Qi Ui + jVi
Ui − jVi Ii −Qi

]
stands for the intrinsic coherency or brightness

of the i-th source, describing its polarization state. It is a function of previously introduced
Stokes parameters, themselves functions of complex amplitudes of the electric �eld in a speci�c
basis [18]. To take Jones matrices out of the expectation value in (2.10), they are assumed
constant during the integration time interval.

Let us note that an alternative formulation of (2.10) exists, which makes use of the 4 × 4
Mueller matrices [50, p. 417], [63]. Instead of considering the matrix product between two
voltage vectors, the outer product is used, leading to the following correlation vector

vi,pq(θ) =
(
Ji,p(θ)⊗ JHi,q(θ)

)(
ei ⊗ eHi

)
=
(
Ji,p(θ)⊗ JHi,q(θ)

)
Ii +Qi
Ui + jVi
Ui − jVi
Ii −Qi

 (2.11)

in which Ji,p(θ) ⊗ JHi,q(θ) describes the combine perturbation e�ects along the i-th signal path
to antennas p and q. Such matrices are notably considered in [64] where the A-Projection de-
convolution algorithm [65] is able to reconstruct an image, taking into account directional e�ects
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as the frequency, time and polarization dependent beam pattern of antennas [10], and correcting
for adverse e�ects. This particular 4× 4 form is mathematically equivalent to the 2× 2 one but
is more adapted to depict imaging problems as it emphasizes the linear operations performed by
the interferometer on the sky distribution [18]. In our study, we focus on the calibration proce-
dure and the 2× 2 formalism is thus favoured as it provides a more transparent, more intuitive
and less complicated description of the underlying physics behind the signal propagation and it
is also more suitable due to computational issues.

When the sky is composed of D multiple sources, assumed uncorrelated and far away, the
emitted waves are considered planar when reaching the Earth. Thus, contributions of all sources
are linearly added as follows

Vpq =
D∑
i=1

Ji,p(θ)CiJ
H
i,q(θ). (2.12)

In a more realistic scenario, the contribution of calibration sources in the sky is not written as a
discrete sum but rather like a di�use radiation varying in direction. However, in this calibration
study, we assume point sources as a �rst step. Besides, in practical scenario, we usually add an
uncorrelated Gaussian noise Npq in (2.12).

A given Jones matrix Ji,p, for one speci�c propagation path i−p, can be decomposed into the
multiplication of many individual terms, each being associated with one particular e�ect [24]:

Ji,p = Ji,p,1Ji,p,2 · · ·Ji,p,T . (2.13)

This is what we call a Jones chain [18], with T assumed di�erent e�ects here. The arrangement
is particularly important since it corresponds to the physical order in which e�ects appear along
the path. Thus, the leftmost matrix Ji,p,1 stands for the perturbation introduced belatedly, i.e.,
close to the receiver, as the electronic gains, while the matrices on the right describe the �rst
introduced perturbations close to the source emission, as the Faraday rotation for instance.

Various physical and geometrical e�ects can be described by Jones matrices as ionospheric
phase shifts due to refraction phenomena but also rotation of the so-called parallactic angle
between the reception system and the incident �eld or even change of coordinate system which
requires transformation matrices (conversion into circular coordinates for instance can reveal to
be more adapted in some cases and this choice depends on the speci�c design of telescopes). Let
us also mention the possible interferences between antennas (since components of the polarized
electromagnetic signal are not always well separated and one receptor may collect part of the
radiation intended for the other receptor), the complex electronic gains of antennas, the �lter
bandwidth in the electronic chain and the errors due to the correlator [18,24].

In the literature, Jones matrices have their own speci�c structures [24,66]. Let us start with
a general decomposition [19]

Ji,p = GpBpDpEi,pPi,pKi,pTi,pZi,pFi,p (2.14)

in which Gp refers to the per-antenna diagonal electronic complex gain matrix and Bp is the
electronic frequency bandpass. The direction independent matrix Dp stands for cross-leakage
and interferences between receptors while direction dependent perturbations include the primary
beam Ei,p, a projection matrix Pi,p which takes into account the orientation of receptors w.r.t.
the sky, the typical geometric pathlength di�erence Ki,p, the tropospheric phase delay Ti,p,
the ionospheric phase delay Zi,p and the ionospheric Faraday rotation Fi,p. Particular e�ects
represented by Gp and Ei,p are studied in [67], where geometry of dipoles is taken into account
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within the LOFAR and a possible model of the beam pattern is needed. Besides, Ei,p, Zi,p and
Fi,p are considered in [68]. In section 3.2.2, we will introduce the matrix Hi,p to account for all
assumed known e�ects, including matrices Ei,p and Ki,p. In the following, a detailed description
of some of the above matrices with simple representations is given

• The matrix Ki,p expresses the propagation delay, i.e., a phase shift due to geometrical path
di�erence. Such phase shifts can be compensated by introducing additional electronic delays
in the corresponding directions. This matrix which is proportional to identity, namely a scalar
matrix, a�ects each component of the signal in the same way so there is independency w.r.t.

polarization. Its expression is given by

Ki,p = exp
(
− 2πj(upli + vpmi + wp(ni − 1))

)
I2 (2.15)

where the position of the p-th antenna is expressed in units of wavelength (up, vp, wp) and the
direction of the i-th observed source is de�ned by three coordinates (li,mi, ni). Scalar matrices
have the same representation in any coordinate system and can be switched to any place of the
Jones chain.

• Another typical scalar Jones matrix expresses the phase shift ϕi,p induced by the ionosphere.
It is written as

Zi,p = exp
(
jϕi,p

)
I2. (2.16)

• When no electronic cross-talk is assumed between sensors, the electronic gain matrix G is
typically diagonal, i.e.,

Gp = diag{gp}, (2.17)

meaning that each component is a�ected independently.

• A rotation matrix, as the Faraday rotation Fi,p, is characterized by a given angle θi,p and
written as

Fi,p =

[
cos(θi,p) − sin(θi,p)
sin(θi,p) cos(θi,p)

]
. (2.18)

Let us note that the choice of coordinate system is important here since a rotation matrix becomes
diagonal in a circular coordinate system [18].

Jones matrices have their own speci�c variations w.r.t. time, frequency and direction. Usu-
ally, e�ects on the left hand side of the Jones chain in (2.13) are the same for all sources within
the �eld-of-view. Therefore, a matrix Ji,p, for the speci�c propagation path i − p, can be de-
composed into direction independent matrices Qp and direction dependent e�ects Mi,p, leading
to

Ji,p = QpMi,pKi,p (2.19)

where the scalar propagation delay Ki,p clearly appears since it is the one fundamental e�ect
to remain in an interferometer even when observations are completely uncorrupted. Thus, we
clearly distinguish direction independent e�ects linked to the antennas and the design of the
instrumentation system, from direction dependent perturbations as the beam pattern, Faraday
rotation, parallactic angle, propagation through the tropospheric and ionospheric layers [37,63],
which are the most signi�cant perturbations to calibrate in advanced telescopes nowadays [69,70].

As regards time and frequency, scale variations di�er as well according to the Jones matrix.
To give an example, the Bp bandwidth matrix mainly depends on frequency while the electronic
gain Gp matrix is varying temporally essentially [37]. Let us mention that the ionospheric phase
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delay is inversely proportional to frequency while Faraday rotation angle is inversely proportional
to the square of frequency. These variations will be exploited in Chapter 4.

As it can be noticed from above, Jones matrices are a suitable representation to describe
interferometric systems with di�erent antennas and various propagation paths. Therefore, cali-
bration amounts to estimate these speci�c matrices. Two options are possible in the estimation
process: consider the combined e�ects in the global matrix Ji,p and directly estimate its entries
(this is the non-structured case [14]) or estimate unknowns in a parametric model and introduce
structured matrices as in the Jones chain (2.14) (the so-called structured case [70]). Considering
a parametric model in the structured scenario can lead to misspeci�cations if the model does
not correspond exactly to reality and estimation performance can easily deteriorate. However,
such models introduce a few parameters to estimate and a smaller variance can be attained in
the absence of misspeci�cations. On the other hand, the non-structured case can be more ro-
bust as no particular speci�cation is made about the model but far more unknowns need to be
estimated, leading to possibly worse statistical behavior. In this work, we deal with both cases
and depending on the operating environment, the user can consider either scenario.

In the next section, we expose state-of-the-art calibration methods to correct all amplitude
and phase errors due to the environment and the instrumentation, described by the previously
introduced Jones matrices.

2.4 Calibration methods

General strategies have been developed in radio astronomy to reach accurate calibration and
thus, high dynamic-range images. Two classical approaches are presented hereafter.

2.4.1 Calibration strategies: external and self-calibration

• External calibration: Conventional calibration consists in estimating unknown gains while
observing an isolated and bright calibration source whose structure, i.e., position and intensity,
is given by tables. Source 3C286 is an example of external calibrator, used in the case of the
VLA [71]. In practice, calibration w.r.t. a reference source needs to be repeated frequently in
order to know the evolution of distortions through time. Besides, the calibration source must be
close enough to the unknown target (the source of interest) s.t. incurred disturbances are similar,
otherwise, interpolation is necessary [72]. Still, they must also be separated enough s.t. their
contributions are clearly distinct in the data sets. Such method has some disadvantages: accurate
a priori knowledge is required about properties of the calibration source and for antennas with
wide �eld-of-view, information is only provided in the direction of the calibration source.

• Self-calibration: Also called self-cal, this approach is an enhancement of external calibration.
Iteratively and alternatively, both the sky (parameters of interest) and di�erent perturbations
(nuisance parameters) are estimated, the two being mutually dependent. The self-cal procedure
used to apply traditionally in regimes 1 and 2: there are no direction dependent e�ects but they
may di�er per antenna due to the instrumentation. This means that the �eld-of-view is narrow
and the same part of the ionosphere is observed. However, extension to the direction dependent
calibration problem has also been addressed [73].

The actual calibration and imaging strategy based on the self-cal and the LOFAR operation
[6, 74] is represented in Figure 2.6: the sky model is upgraded in major and minor cycles while
calibration parameters are optimized by a designed algorithm in the calibration cycle, which is
the subject of this document. More speci�cally, thanks to a given sky model, we start from an
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Figure 2.6: Science data processing in the LOFAR system (after [6]).

initial image which describes the intensity distribution, but some distortions and errors persist,
as the reference model is not perfect. A Fourier Transform operator generates the corresponding
correlations. Through the calibration cycle, perturbation parameters are estimated. Generally,
they are calculated for the speci�c calibration source direction by minimizing the di�erence
between measured correlations and those predicted by the model. But this point will be further
speci�ed. Once calibration is performed, a new reconstructed image leads to a new reference
model. Therefore, progressively, as multiple back and forth are made between the correlations
and the image data, the sky model is re�ned and estimation of calibration parameters gets more
accurate.

To sum it up, the aim of self-cal was originally to estimate direction independent complex
gains of antennas and noise parameters [75, 76]. But the problem has also been extended to
multiple sources in the �eld-of-view [77,78], where the assumed known source covariance matrix
is equivalent to the source coherency matrix introduced in (2.10). Generalization to direction
dependent perturbations, due to beam pattern or ionospheric e�ects, is also practicable [73,79].
In this speci�c case, some assumptions are needed about the structure of the ionospheric layer
or geometry of the array.

Finally, improved variants of the self-cal procedure are numerous: (demixed) Peeling [9,73,80]
is adapted for direction dependent gains and calibration is performed w.r.t. the brightest source
in the sky which is then subtracted from the data and the procedure is repeated for the next
brightest source. Such technique has notably been deployed for the VLA and the MWA [21,
81]. We can also mention Pointing self-cal [82], which corrects for errors in pointing directions,
leading otherwise to distortions in the recovered image. In addition, the Field-Based Calibration
(FBC) is suitable for ionospheric calibration in regime 3 and estimates phase gradients [10, 83�
85] using interpolation and Zernike polynomials. Indeed, in regime 3, antennas are relatively
close to each other so the ionospheric variation within the �eld-of-view can be modeled as a
linear gradient, using smooth polynomial model with low order. To generate such polynomials,
Zernike or Karhunen-Loève transformations can be exploited. Another variant of Peeling is
the Source Peeling and Atmospheric Modeling (SPAM) [86] which estimates ionospheric phase
delays in regime 4. In this regime, antennas are well separated from one another and high order
polynomials are more suitable to model the ionosphere.



20 CHAPTER 2. PROBLEM SETUP AND STATE-OF-THE-ART

In the next section, we give more details about array signal processing methods, which can
be directly incorporated into the calibration cycle of Figure 2.6.

2.4.2 LS calibration

One of the most popular and statistically e�cient method in signal processing is the ML
estimator. However, it may su�er from heavy computational cost and it is not solvable in closed-
form. An alternative option is to consider Least Squares (LS) based algorithms [12, 60] which
are asymptotically e�cient for large number of samples under Gaussian noise [87]. Besides,
they bene�t from reduced complexity w.r.t. the original ML and consist in minimizing the
sum of squares of errors between data points and the predicted model. A possible nonlinear
optimization technique to solve such problems is the gradient-based Levenberg-Marquardt (LM)
algorithm [88], exposed brie�y in the following.

2.4.2.1 LM algorithm

Using noisy observations from (2.12), its vectorization leads to

vec(Vpq) = vpq =
D∑
i=1

J∗i,q(θ)⊗ Ji,p(θ)vec(Ci) + npq (2.20)

with npq = vec(Npq). Jones matrices are variable with time and frequency but as a �rst step, we
are considering a su�ciently �ne interval so that variations are neglected. Time t and frequency
f dependence are thus not speci�ed for now.

Considering only cross-correlations for all antenna pairs [14, 89], one obtains the following
4B × 1 vector, with B = M(M − 1)/2 the total number of baselines,

y = [v12,v13, . . . ,v(M−1)M ]T =
D∑
i=1

si(θ) + n (2.21)

where si incorporates the contribution of known coherency of the i-th source and the Jones

matrices for all baselines, i.e., si(θ) =
[
sTi,12(θ), sTi,13(θ), . . . , sTi,(M−1)M (θ)

]T
and si,pq(θ) =

J∗i,q(θ)⊗ Ji,p(θ)vec(Ci).
The corresponding expression of the LS cost function is given by

θ̂ = argmin
θ
||y − s(θ)||22 (2.22)

in which s(θ) =
∑D

i=1 si(θ). If we note ζ(θ) = ||y −
∑D

i=1 si(θ)||22 the considered cost function,
the (t+1)-th iteration of the LM algorithm reads

θt+1 = θt −
(
∇θ∇Tθ ζ(θ) + λdiag{∇θ∇Tθ ζ(θ)}

)−1
∇θζ(θ)|θt . (2.23)

in which ∇θ is the gradient with respect to θ and ∇θ∇Tθ is the Hessian matrix. Numeri-
cal implementation of the LM is exposed in [88, 90]. Let us note that a possible adaptation
of the LM considers an identity matrix instead of the diagonal of the Hessian matrix, noted
diag{∇θ∇Tθ ζ(θ)} here. Any adapted positive-de�nite diagonal matrix can be used.

The LM algorithm [91,92] is based on a damped Gauss-Newton method, i.e., a combination
between two minimization techniques: the gradient descent and the Gauss-Newton, depending
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on how far the estimated parameters are from the optimal values. Choice of the damping
parameter λ and initializations impact convergence and reaching the global optimum is not
always possible. Due to computation of a Jacobian and inversion of large-dimensional matrices
in (2.23), convergence can be extremely slow. The computational cost gets even more signi�cant
if the number of parameters to estimate is huge, as it is the case for very large radio telescopes.
Speeding up the procedure is possible using Graphics Processing Unit (GPU) [93] or simplifying
the problem with variants of the LS as EM or the Space-Alternating Generalized Expectation-
Maximization (SAGE) algorithms, presented in section 2.4.3.

In the following section, we aim to present the (Weighted) Alternating Least-Squares ((W)ALS)
algorithm which is asymptotically unbiased and e�cient. It leads to closed-form expressions for
some of the estimates and ful�lls the convergence properties.

2.4.2.2 (W)ALS algorithm

In this subsection, we present array signal processing methods, based on the so-called covari-
ance model. Such model is slightly di�erent from the Jones model in (2.10) and was initially
used to design the ALS and its variants. Nevertheless, the same approach can be applied to the
Jones-based model.

Let us consider M antennas in an array with impinging D signal sources. Each antenna p
with p ∈ {1, . . . ,M} is described by its position lp = [xp, yp, zp]

T which is known. Likewise,
each source i with i ∈ {1, . . . , D} is de�ned by its speci�c spatial location di = [li,mi, ni]

T s.t.

ni =
√

1− l2i −m2
i [60]. The M ×D steering matrix is thus given by

A = exp
(
− j 2π

λ
LD
)

(2.24)

in which λ is the wavelength, L = [l1, . . . , lM ]T and D = [d1, . . . ,dD]. If the narrowband
assumption holds true, geometric time delays account for phase shifts [94]. At each time instant,
the signals measured by all antennas are collected in

r(t) = As(t) + n(t) (2.25)

where s and n refer to the source and noise contribution, respectively. The noise is usually
assumed to follow a zero-mean white Gaussian distribution. From a signal processing perspective,
signal sources can be modeled in two di�erent ways: either they are assumed deterministic or
stochastic, i.e., random and following a given a priori distribution.

In our speci�c application, interferometers compute correlations so we consider covariance
matching estimation techniques. In the ideal case, when no perturbation occurs, except for the
noise, the resulting covariance matrix reads [53]

R = E
{

r(t)rH(t)
}

= ASAH + N (2.26)

where S is the source covariance matrix (known as the coherency/brightness matrix in the Jones-
based model) with source powers along the diagonal and N is the noise covariance matrix which
is diagonal in classical cases, with variable or not noise powers along the diagonal. Thus, the set
of observations consists in covariance matrices which are functions of the source structure, the
environmental and instrumental errors, and the receiver noise. The ALS approach is a suitable
technique for solving LS covariance model �tting as follows

θ̂ = argmin
θ
||R̂−R(θ)||2F (2.27)
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where R̂ is the sample covariance matrix, i.e., an estimate of the data covariance matrix, given by
T−1YYH with Y = [r(t1), . . . , r(tT )], T the number of samples and θ refers to all the unknown
parameters in the model. The ALS consists in minimizing alternatingly the given cost function
w.r.t. each unknown parameter, while �xing the others at their previous estimates, starting
from a re�ned enough initialization. The choice of initializations is important in the ALS as
convergence to the global optimum is not ensured. However, decrease of the cost function at each
iteration step can be guaranteed. As for the WALS, it consists in using an appropriate weighting
term Ω s.t. the cost function becomes: ||ΩH

(
R̂ −R(θ)

)
Ω||2F . Better statistical performance

can be achieved with the WALS, at the expense of slight increase in the computational cost.

Depending on the calibration regime under study, the data model in (2.26) is di�erent as well
as the unknown parameters to estimate. Therefore, in what follows, we adapt the data model in
(2.26) to the calibration regimes introduced in section 2.2.3

• Regime 1: In the general case, calibration requires to estimate direction independent elec-
tronic gains G = diag{g} s.t.

R = GASAHGH + N. (2.28)

These gains are the same for all sources in the �eld-of-view which is narrow. Consequently, in
regime 1, we only need to observe a calibration source whose intensity and position are given.
If we are pointing towards this speci�c source, the matrix A reduces to a vector a and S to the
scalar source power σ2s which are both known from tables, leading to the simpli�ed problem

R = g̃g̃H + N (2.29)

where g̃ = Gm with m = aσs, known as a rank-1 factor analysis model from which g and N
can be solved [13].

• Regime 2: The ionospheric perturbations are still the same for the entire �eld-of-view due
to its narrowness but each individual antenna is assigned a unique perturbation term, leading to
a similar calibration procedure as in Regime 1.

• Regime 3: Direction dependent e�ects and beam patterns of antennas need to be taken
into account. To this end, we introduce direction dependent gains γ s.t.

R = GAΓSΓHAHGH + N (2.30)

where Γ = diag{γ}. For the calibration sources, S is known and we usually consider Σ = ΓSΓH

as a global unknown diagonal matrix [78].

• Regime 4: A gain needs to be estimated for each source and each antenna, since many
unknown sources are visible in the �eld-of-view. The data measurements are given by [73]

R = (G�A)S(G�A)H + N (2.31)

where G is no longer diagonal, but full and considers all possible perturbation e�ects whether
they are direction dependent or not. Such calibration problem requires further assumptions in
order to be identi�able.

Advanced interferometric arrays are described by regimes 3 and 4 in which directional e�ects
are prevailing. Therefore, we will focus much of our attention on these two regimes:
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• In regime 3, we need to estimate direction independent instrumental gains G, the source
powers Σ = diag{σ} and the noise powers N = diag{σn} as follows [12,95]

ĝ = argmin
g
||R̂−GAΣAHGH −N||2F (2.32)

σ̂ = argmin
σ
||R̂−GAΣAHGH −N||2F (2.33)

σ̂n = argmin
σn

||R̂−GAΣAHGH −N||2F . (2.34)

Equation (2.32) requires a rank-1 approximation in order to get an estimate while (2.33) and
(2.34) lead to closed-form expressions. In fact, the gain estimation step can be addressed in
various ways: iteratively with a Gauss-Newton method (GNLS) [96], logarithmically with the
Logarithmic Least Squares (LOGLS) [13] or even using Column Ratios (COLR) [12,95].

Powers and positions of the calibration sources, as well as antenna locations are typically
assumed known. Due to the possible large number of unknowns to estimate, constraints can
be imposed on a reference source with �xed power, phase and position in order to avoid any
identi�ability issues. However, due to ionospheric phase shifts, exact positions of calibration
sources may still be known inaccurately. To address this problem, a Direction Of Arrival (DOA)
estimation step can be added in the iterative procedure. These inaccurate location parameters
appear in A whose parametric model is available, and are estimated with MUSIC or Weighted
Subspace Fitting (WSF) algorithms [97], which are asymptotically statistically e�cient and
make use of signal and noise subspaces [98]. Incorporating the DOA estimation in the iterative
procedure leads to an extension of ALS, named xALS [12,95].

• In regime 4, the number of unknowns is tremendous. To be able to solve the problem
and remove identi�ability issues, physical constraints must be added. These constraints can
be related to the structured array into multiple compact subarrays (regime 3) or the speci�c
variation of perturbations w.r.t. time and frequency, with a di�erence between instrumental
gains and ionospheric e�ects. Imposing constraints enables to reduce the number of unknown
parameters to estimate so that the Fisher Information Matrix (FIM), whose inverse leads to the
CRB, is invertable with no singularities.

If we exploit time t and frequency f , the model (2.31) can be written as [73]

R
[f ]
t = (G

[f ]
t �A

[f ]
t )S

[f ]
t (G

[f ]
t �A

[f ]
t )H + N

[f ]
t (2.35)

and the calibration problem is considered for each time interval and frequency band, as follows

θ̂
[f ]

t = argmin
θ

[f ]
t

||R̂[f ]
t −R

[f ]
t (θ

[f ]
t )||2F s.t. C

(
{θ[f ]t }t,f

)
= 0 (2.36)

where C stands for the considered constraints w.r.t. time and frequency.

In the following, we describe the Statistically EF�cient and Fast Calibration (StEFCal)
method, adapted for antenna-based gains calibration [61,62], which provides computational ad-
vantage over the previously introduced algorithms derived from (weighted) LS cost function.
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2.4.2.3 StEFCal algorithm

Introduced in [61], this Alternating Direction Implicit (ADI) approach proposes to reduce
the numerical complexity of typical LM solver which is restraining for implementation in modern
radio interferometers. Its convergence to optimal solution is guaranteed and it reveals to be more
e�cient than traditional antenna-based gain methods.

In this method, the gain of each receive path is estimated, assuming that gains of all other
antennas are already calibrated. The iterative procedure is then repeated successively for each
antenna. Such methods have already been considered in [62, 81, 99]. To improve convergence,
robustness and reduce the in�uence of noise on the estimates, numerical simulations have shown
that averaging even and odd iterations accelerates the convergence. Powers and positions of
sources being known, unknown parameters to estimate reduce to the complex gains describing
the elements of the array and receiver path noise powers, leading to the following calibration
problem

{ĝ, σ̂n} = argmin
g,σn

||ΩH(R̂−GASAHGH −N)Ω||2F (2.37)

where Ω is a possible weighting term.
Autocorrelations being essentially dominated by noise, estimation of gains is performed using

cross-correlations only. Thus, to simplify the problem during the gain calibration step, the noise
N is ignored and the diagonals of R̂ and M are set to 0. We note M the available model of
the observed �eld, which is approximately equal to ASAH and only includes the undistorted
brightest calibration sources. The estimation problem is then described by

ĝ = argmin
g
||R̂−GMGH ||2F . (2.38)

The underlying approach consists in estimating gH for �xed g, and vice versa. Considering
decoupled complex gains, the objective function in (2.38) can be written as

||R̂−GMGH ||2F =

M∑
p=1

||[R̂]:,p − [GMGH ]:,p||2F . (2.39)

Therefore, the problem is divided into independent linear LS problems and each sensor gain is
updated successively for p ∈ {1, . . . ,M} during one given iteration.

Statistical estimation performance is similar whether we use directly the LM as an optimiza-
tion technique or the StEFCal procedure. Still, this last method results in lower complexity since
O(M2) is required instead of O(M3). Variants of StEFCal are exposed in [61]. For instance, to
reduce the e�ects of outliers, a ponderation term can be incorporated leading to the Iterative
Reweighted Least Squares (IRLS).

The StEFCal method can also be directly used as the gain estimation step of the ALS
procedure in (2.32) so as to improve the implementation, the computational cost and the speed
of convergence. Indeed, gain calibration reveals to be almost 19 times faster with StEFCal
than with the WALS method described in [12]. Still, StEFCal was developed for estimation of
direction independent gains, which is limited.

Considering all the speci�c introduced perturbations and their corresponding statistics en-
ables to exploit all available information. In the following section, the Maximum A Posteriori
(MAP) estimator is notably based on a priori knowledge.



2.4. CALIBRATION METHODS 25

2.4.2.4 Bayesian algorithm

Bayesian approaches are alternatives to ML-based techniques and one example is the MAP
estimator [21, 33], in which prior information is taken into account. As an example, the a priori
model for the ionosphere should be accurate enough to re�ect the �uctuations on a very small
scale but not too complex so that the estimation algorithm can be deducted at low cost. In
this sense, a statistical model can be introduced to describe the phase �uctuations within the
ionosphere [21], notably high-order statistics in order to study local di�erences. Kolmogorov
theory on turbulent environment is particularly well-adapted. Let us note that introducing
many parameters to describe the model makes it more accurate and realistic, leading to small
bias. On the other hand, with less parameters to estimate, we can hope to achieve a better
variance, i.e., a lower estimation error.

One of the most popular estimators in estimation theory is the Minimum Mean Squared
Error (MMSE), given by

θ̂ = argmin
θ

E
{
||θ̂ − θ||22

}
, (2.40)

i.e., the minimization of the Mean Square Error (MSE). The corresponding solution is θ̂ =

E
{
θ|y
}
, so posterior mean of the parameters needs to be computed. According to Bayes's law,

this distribution can be written as

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

. (2.41)

The MMSE is the optimal estimator in the LS sense but remains di�cult to implement due to
multidimensional integral and expected value from (2.41) and (2.40).

A good alternative is the MAP estimator which consists in maximizing the a posteriori
distribution, i.e.,

θ̂ = argmax
θ

p(θ|y) = arg max
θ

p(y|θ)p(θ). (2.42)

When the noise follows a Gaussian distribution, this amounts to solve a non-linear LS problem.
In our interferometric calibration problem, the MAP estimator leads to [4, 21]

θ̂ = argmax
θ

||Ψ−
1
2 (y − s(θ)) ||22 + ||C−

1
2

θ θ||22 (2.43)

where Ψ is the covariance of the noise vector n and we note Cθ the covariance for θ. In the
case of a pure Kolmogorov turbulent process, Cθ can be modeled by a power law with unknown
parameters, thus, a priori knowledge is exploited and the additional term in (2.43) acts as a
penalty function. Let us note that from a Bayesian perspective, the introduced hyperparameters
in the model for Cθ must be estimated as they describe its statistical structure. However, the
main issue is to obtain accurate models for the unknown perturbations, which are not always
available in practice.

2.4.3 Variants to LS calibration

LS calibration represents the traditional estimator in case of additive white Gaussian noise.
Still, there are some well-known disadvantages: speed of convergence is slow, convergence to
global optimum is not guaranteed and the computational cost is signi�cant. To improve both
complexity and accuracy, alternative methods have been introduced.
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2.4.3.1 EM algorithm

The EM algorithm [28, 100] is an iterative method which provides ML estimates asymptot-
ically when observations are viewed as incomplete data, i.e., some data points are unknown
because they are missing or hidden. Compared to classical optimization algorithms used to solve
non-linear LS problems, as the LM, the EM enables to reduce the computational cost and speed
up the convergence.

It consists of two consecutive steps: an expectation (E) and a maximization (M) steps,
and requires to de�ne the so-called complete data w, extracted from the output data y. In
order to specify the complete data, in our context, we assume well separated sources with unique
propagation paths, from one source to one antenna, so that we can assign one unknown parameter
vector θi to each source for i ∈ {1, . . . , D}. Thus, a partitioning per source can be conducted.
The case of sources sharing some parameters, due for instance to small angular deviation, is
addressed in [89].

Instead of considering the complete data model with contributions from all directions, we
reduce the problem to multiple sub-problems, leading to the following complete data vector for
the i-th source [14,89]

wi = si(θi) + ni (2.44)

where the unknown parameter vector is decomposed as θ = [θT1 , · · · ,θTD]T . The noise is also
assumed to be decomposable into source contributions, i.e., n =

∑D
i=1 ni and y =

∑D
i=1 wi. To

re�ne the description of the model, it is possible to associate more or less noise to each source,
depending on its brightness, thanks to a weighting term.

The two steps of the EM algorithm are summarized as follows

• E step: in our case, it amounts to compute the expectation value of complete data condi-
tionally to the observed data and the unknown parameter vector, i.e.,

ŵ = E
{

w|y;θ
}
. (2.45)

In the Gaussian case, a closed-form expression can be attained [101].

• M step: it consists in minimizing a cost function, for one given source i and repeat the
estimation for i ∈ {1, . . . , D} so the procedure is parallelisable. The cost function under study
is thus given by ζi(θi) = ||wi− si(θi)||2F , instead of ζ(θ) = ||y−

∑D
i=1 si(θ)||2F , which enables to

reduce the complexity of the problem. To perform numerical minimization, the LM algorithm
can still be used and computation is performed with respect to θi instead of θ.

2.4.3.2 SAGE algorithm

The SAGE algorithm [102] is an alternative method to the EM. It can be applied for direction-
dependent calibration of radio interferometers, leading to the SAGECal algorithm, whose im-
plementation time and convergence speed are better than the EM. Compared to the latter,
a di�erent de�nition of the complete data is considered and the noise is assigned di�erently.
Speci�cally, the hidden data are selected as [14]

wi = si(θi) + n (2.46)

s.t. y = wi +
D∑
k=1
k 6=i

sk. The two steps of the SAGE are quite similar to those of the EM: they

consist in computing a conditional mean followed by a minimization process.



2.4. CALIBRATION METHODS 27

The SAGE algorithm is faster and leads to better calibration accuracy than the EM, but they
are both superior in numerical complexity compared to direct application of the LM on the LS
problem. To resolve issues on a more timely basis, it is therefore relevant to reduce the dimension
of the unknown vector so as to invert matrices with lower dimensions. To ensure convergence
towards a global optimum, probabilistic techniques as the Simulated Annealing (SA) [103] are
possible but on the other hand, they unfortunately reduce the convergence speed.

The SAGE algorithm is particularly appropriate in some pathological cases when sources are
not easily di�erentiable from the background noise or when they are close to each other [104]
or even when positions of sensors are misspeci�ed. Generally, classical calibration sources are
viewed as bright and compact point sources with no broad or di�use structure. But they may not
be bright enough. To remedy this, we can introduce clustered sources [68] where each clustering
acts as a single bright source. More information is available as more sources are considered
all together and not individually. To this end, sources of the same cluster must be physically
close to one another with a weighting to take into account their respective intensity and the
perturbations must be similar due to small angular deviation. Such technique simpli�es the
problem since we reduce the number of directions to calibrate and we consider the information
associated to several sources all together.

All the previously mentioned methods are applied assuming a Gaussian noise model for npq
in (2.20) in the context of radio interferometry. Still, this is not always realistic and robustness
needs to be addressed.

2.4.3.3 ECME algorithm

Due to the presence of outliers which corrupt the observations, the noise cannot simply be
considered Gaussian [41]. These are due to radio frequency interferences which are not always
perfectly �ltered [15, 105, 106], to errors in the sky model due to weak unknown sources in
the background [2], to the temporary appearance of particularly bright sources in the sidelobes
generating punctual interferences [107].

To investigate robustness [108], the noise can be modeled as a Student's t distribution [109].
Such distribution is a suitable heavy-tailed statistical model for data sets a�ected by the presence
of outliers. To provide relevant ML estimates with a Student's t noise model, the Expectation-
Conditional Maximization Either (ECME) algorithm [110], an extension of the EM, is considered
in [2, 41] due to its adequate rate of convergence.

Using (2.21), we distinguish the contribution of D known bright sources from the contribution
of noise and D′ unknown weak sources. The latter act as outliers and can be incorporated in a
total non-Gaussian noise n, s.t.,

y =

D∑
s=1

si(θ) + n (2.47)

in which n =
∑D′

i′=1 si′(θ
′)+n′. Generally, D′ � D and only Jones matrices related to calibration

sources, i.e., θ, are estimated. Parameters θ′ can be deduced through interpolation for instance.
By removing the contribution of D strong sources, the D′ weakest contributions are then revealed
if calibration has been performed accurately. One of the goals in calibration is to preserve the
�ux of the weakest sources in the resulting residual image [111].

Let us consider a Gaussian distribution N (µ, σ2n/γ) where µ is the mean and the variance
is given by a ratio. The denominator is a random variable following a Gamma distribution,
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s.t., γ ∼ Gamma(ν/2, ν/2) with ν the number of degrees of freedom. The resulting marginal
distribution is a Student's t de�ned by the following probability density function

ST (t;µ, σ2n, γ) =
Γ(ν+1

2 )
√
πνΓ(ν2 )σn

(
1 +

1

ν

(
t− µ
σn

)2 )− ν+1
2
. (2.48)

As the degree of freedom approaches in�nity, the Student's t becomes a Gaussian distribution
while it is heavy-tailed for low values of ν [112]. If n is assumed to follow the �xed distribution
in (2.48) with σn = 1, µ = s(θ) and independent and identically distributed (i.i.d.) entries, the
corresponding likelihood expression is a product between N components where N is the number
of real data points in y. In this speci�c case, maximizing the resulting likelihood does not provide
the ML estimate as the noise is not Gaussian and ν needs to be estimated as well.

In the ECME, auxiliary variables are introduced, such as weights w and a scalar λ. Two
steps are then considered:

• The E step consists in computing the following conditional expression

ŵ = E
{

w|y;θ, ν
}

(2.49)

for each entry of the hidden vector w. The scalar λ is also updated as function of the weights
w.

• The goal of the maximization step is to provide an estimate of ν by maximizing the log-
likelihood expression w.r.t. ν and equate the result to zero. But the most important part is to
obtain an estimate for θ. To this end, the following minimization process is considered

θ̂ = argmin
θ

N∑
k=1

[w]k

(
[y]k − [s(θ)]k

)2
(2.50)

with a weighted LS cost function. To solve (2.50), a robust version of the LM can be considered
[41].

The robustness issue has been tackled but all the previously introduced algorithms consider
one frequency bin at a time during calibration, which is not an optimal way to process the
data. Therefore, in the following, we focus on a multi-frequency scenario considering the full
observation bandwidth as a whole.

2.4.3.4 ADMM-based algorithm

To exploit frequency dependence of Jones matrices, it is possible to introduce polynomials,
with a given order, assuming smooth variation across frequency. In a multi-frequency scenario,
the computing load is particularly heavy due to large volume of data. To relieve this burden,
data parallelism can be brought to bear by using a network of multiple agents among which
data is distributed across frequency [35]. Therefore, data are not centralized but relocated in
space and each agent has access to some speci�c data, at a given frequency. Calibration can then
be reformulated as a consensus distributed optimization problem [36]. As a �rst step, we only
consider frequency dependence here, in a given time interval.

For each frequency f , Jones matrices are modeled as follows to enforce smoothness

J[f ] = P[f ]Z (2.51)
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where P[f ] collects all the frequency-dependent polynomial terms and Z refers to the hidden
variables which need to be estimated.

Instead of estimating directly Z from all data available, distributed calibration consists in
performing calibration locally by each agent, for a given subband. Thus, calibration amounts to
solve the following constrained problem

{Ĵ[f1], Ĵ[f2], · · · , Ẑ} = argmin
J[f1],J[f2],··· ,Z

∑
f

ψ[f ](J[f ]) s.t. J[f ] = P[f ]Z (2.52)

in which ψ[f ](·) is the following LS cost function

ψ[f ](θ[f ]) =
∑
pq

||V[f ]
pq −

D∑
i=1

J
[f ]
i,p(θ

[f ])C
[f ]
i J

[f ]H

i,q (θ[f ])||2F . (2.53)

To solve (2.52), we introduce unknown Lagrange multipliers Y[f ] and a �xed regularization
term ρ leading to the following Lagrangian

L(J[f1],J[f2], · · · ,Z,Y[f1],Y[f2], · · · ) =
∑
f

L[f ](J[f ],Z,Y[f ]) (2.54)

in which

L[f ](J[f ],Z,Y[f ]) = ψ[f ](J[f ]) + ||Y[f ]H
(
J[f ] −P[f ]Z

)
||F +

ρ

2
||J[f ] −P[f ]Z||2F . (2.55)

A possible method to solve this problem is the Alternating Direction Method of Multipliers
(ADMM) [36, 113, 114]. Instead of solving a global problem as argmin

∑
f ψ

[f ](·) at the fusion
center which collects data from all agents, calibration is performed at each agent locally, for
one given frequency. Therefore, frequencies are processed independently but simultaneously and
communication between computational agents is ensured thanks to the global fusion center. The
study was originally introduced for one single source but it can easily be extended to the case of
D calibration sources by using parameter partitioning with SAGE algorithm [89].

The three iterative steps of the ADMM are the following

(
Ĵ[f ]
)t+1

= argmin
J[f ]

L[f ]

(
θ[f ],

(
Ẑ
)t
,
(
Ŷ[f ]

)t)
(2.56)

performed locally by each agent

(
Ẑ
)t+1

= argmin
Z

∑
f

L[f ]

((
Ĵ[f ]
)t+1

,Z,
(
Ŷ[f ]

)t)
(2.57)

performed at the fusion center

(
Ŷ[f ]

)t+1
=
(
Ŷ[f ]

)t
+ ρ

((
Ĵ[f ]
)t+1

−P[f ]
(
Ẑ
)t+1

)
(2.58)

performed locally by each agent

where t is the iteration counter. Estimation in (2.56) can be done iteratively with the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [29] or the Riemannian Trust-Region (RTR) [115] algorithms.
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Each Jones estimate Ĵ[f ] obtained by each agent is transfered to the processing center which then
estimates Z globally. Indeed, estimation of Z requires information across all frequencies and
enforces consensus among all agents. Solving (2.57) leads to a closed-form expression. Finally,
update of Y[f ] is performed in the last step by each corresponding agent. Let us note that similar
techniques have been studied for image synthesis [116,117].

The advantages of distributed optimization in the network include the reduced computational
cost as calculus are distributed among several agents. To go even further, it would be meaningful
to take into account temporal variation of Jones matrices or treat extreme cases, such as when
the number of frequencies is very high compared to the number of available agents. But all these
studies are still under investigation.

In the last section of this chapter, we address some notions as regards the imaging process,
without going into details as this is not the central core of the manuscript.

2.5 Imaging in radio astronomy

Measured correlations for baselines (u, v) and true brightness image I are related by the Van
Cittert-Zernike theorem in (2.5). Producing an image, namely map making, consists in inverting
such expression and leads to the dirty image as in (2.7) due to the �nite number of observations.
The dirty image can also be written as a convolution between the desired image I and the Point
Spread Function (PSF) B, also called the dirty beam, which is the inverse Fourier transform of
the sampling function S, i.e.,

ID = I ∗B (2.59)

and

B(l,m) =

∫ ∫
S(u, v)e2πj(ul+vm)dudv. (2.60)

In order to recover the �nal restored image I from ID, with high-resolution, a priori knowledge
aboutB and deconvolution techniques are required. Thus, the deconvolution process is essentially
a Fourier inversion problem and consists in removing the instrumental response. Let us note that
autocorrelations are usually not used in the image formation, in order to reduce the in�uence
of noise. Besides, forming an image with high dynamic range becomes all the more di�cult to
perform with the new generation of radio interferometers, the new challenges at stake and the
signi�cant perturbation e�ects which need to be calibrated and removed.

Many deconvolution algorithms are based on sequential source removal and the most popular
one is CLEAN [118]: from a mostly empty sky model, composed of discrete point sources, it
sequentially estimates the brightest source and subtracts its partial contribution from the dirty
image using a so-called loop gain, until reaching a noise-like image where only the weakest
possible sources remain. Iteratively, each source position and intensity are estimated and added
to a point source list which will �nally result in the global reconstructed image, convolved with
an ideal reconstruction beam. Other alternative methods are possible, such as the Maximum
Entropy Method (MEM) [119], Clark CLEAN and Cotton-Schwab (CS) which accelerate and
reduce the computational load of CLEAN [45], the parametric estimation based algorithm Least
Squares Minimum Variance Imaging (LS-MVI) [120] or even sparse reconstruction techniques
[116,121�123]. Besides, since the spectral dimension can no longer be omitted, three-dimensional
reconstruction approaches are increasingly becoming prevalent [124]. As mentioned before, the
traditional CLEAN is based on a point source model but extension with shapelets or wavelets is
a possibility.
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Lastly, let us note that two softwares have been implemented for calibration of the LOFAR
[25,74] with direction dependent e�ects [10]: the MeqTrees software [37] which is able to simulate
and calibrate radio astronomical measurements, and the Blackboard system [125, 126], named
Black-Board Self-cal (BBS). MeqTrees is particularly �exible to specify the di�erent perturbation
e�ects to introduce and will be presented in Chapter 5 for realistic data sets.

Furthermore, traditional calibration and imaging were originally implemented in the Astro-
nomical Image Processing System (AIPS) software package, which became AIPS++ [66] and is
now referred to as CASA [49,50]. Awimager is an example of imager, on CASA. Contrary to non
directional e�ects which are usually corrected separately from the imaging process, estimation of
errors due to direction dependency is usually combined with the deconvolution step [63, 65, 69].
Therefore, reconstructed images will also be provided in this work to emphasize the bene�t of
the designed direction dependent calibration techniques.

2.6 Conclusion

Most calibration algorithms are LS based, which operate iteratively for one given frequency
channel and reveal to be asymptotically e�cient under a Gaussian noise model. In section 2.4.3.3,
the Student's t distribution was speci�cally considered to include the contribution of interferences
and weak background sources in radio interferometric data for non-Gaussian environment. In
addition, the multi-frequency case was discussed in section 2.4.3.4 where the calibration task
was reformulated as a consensus optimization problem. In the following chapters, we propose
robust calibration algorithms based on a broader class of distributions so as to avoid model
misspeci�cations and achieve more robustness. An extension to the multi-frequency scenario is
also presented and realistic simulations are performed with the �exible software MeqTrees in
order to reconstruct residual images.



32 CHAPTER 2. PROBLEM SETUP AND STATE-OF-THE-ART



Chapter 3

Robust calibration method in

non-Gaussian environment

3.1 Motivations for robust calibration

Most calibration approaches are LS based [12, 13, 61, 95] and as mentioned in section 2.4.3,
alternative algorithms as the EM [27, 100, 127] or the SAGE [102] have been proposed to en-
hance the convergence rate. Still, the Gaussian noise assumption is usually considered in radio
astronomy [14,89], which is not always realistic and can lead to poor estimation performance. As
explained in section 2.4.3.3, the presence of disruptive outliers has multiple causes: man-made
radio signals generate frequency interferences which can be removed by �agging [128] but are
not always perfectly �ltered in practice. The solar activity or the punctual appearance of strong
sources in the sidelobes constitute other sources of interference which can randomly generate
outliers. Furthermore, radio interferometric data include the contribution of bright calibration
sources but also of multiple unknown weak sources in the background leading to incomplete sky
models with �ux loss and spurious sources [111, 129]. Thus, the data model for baseline (p, q)
can be written as

Vpq =

D∑
i=1

Ji,p(θ)CiJ
H
i,q(θ) + Npq (3.1)

where the noise component Npq includes the ambient noise N′pq, which is assumed Gaussian,
but also the presence of all previously mentioned sources of interferences leading to outliers.
Considering all available baselines leads to (2.47) with n′ and n, respectively, the total Gaussian
and non-Gaussian noise components. The aim of robust calibration is thus to estimate θ under
non-Gaussian noise environment n [130, 131]. Let us note that during the imaging process, the
D′ weak unknown sources, hidden in n, become the key elements of interest we wish to recover.

To robustify the calibration scheme, a distribution class, di�erent from the Gaussian one,
needs to be considered to model the noise contribution n. To the best of our knowledge, the
only robust calibration procedure was proposed in [2] and exposed in section 2.4.3.3. In this
case, the noise part is speci�cally modeled as a Student's t distribution with i.i.d. entries, which
is not optimal and leads to model misspeci�cations as the true distribution of n is not known
in practice. In this chapter, we aim to show the limitations of the classical Gaussian noise
assumption and propose an estimator based on a broader class of distributions.

33
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3.1.1 Limits of the Gaussian noise modeling

The noise vector npq in (2.20) is traditionally assumed to follow a Gaussian distribution.
However, in radio astronomy, this assumption may no longer be valid. In order to justify the use
of non-Gaussian modeling in our application, we propose in the following some numerical studies
about the statistical behavior of the noise in practical scenario.

To begin with, we generate radio interferometric data according to the model in (2.21). We
consider M = 8 antennas, D = 2 slighly polarized calibration sources and the associated Jones
matrices are randomly simulated as Gaussian complex numbers. We study the two following
cases: i) the noise n′ follows a typical Gaussian distribution and ii) D′ unknown weak sources
corrupt the observations as in (2.47). We assume that all sources, calibration and non-calibration
ones, are a�ected by similar slowly varying directional errors and we choose D′ = 100.

If we perform a test decision using the chi-square goodness-of-�t, numerical results indicate
that the data in n′ come indeed from a normal distribution while the realistic ones in n support
the alternative hypothesis, i.e., the data do not follow such distribution at the 1% signi�cance
level. This point is illustrated by Figures 3.1 and 3.2. We notice that the histograms for n are
substantially di�erent from those obtained with traditional Gaussian noise.
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Figure 3.1: Histograms for (a) <{n′} and (b) ={n′} (Gaussian case).

To con�rm the non-Gaussianity of the noise, we plot in Figure 3.3 the histograms of the two
di�erent kinds of noisy data, along with a normal density function. We also display in Figure 3.4
the quantiles of sampled data vs. the theoretical quantiles from a standard normal distribution.
We notice a linear straight line in the case of Gaussian noise n′, which is consistent and deviations
in the tails for n which illustrates its non-Gaussian nature. Therefore, the normal density is not
so well �tted when contribution of D′ weak unknown sources is taken into account. From the
previous statistical studies, it seems clear that considering a Gaussian model for the noise in
radio astronomy is not adapted.

3.1.2 Compound-Gaussian noise modeling

To propose a suitable alternative to the typical Gaussian noise assumption in a robust sce-
nario, we study a wide class of distributions, gathered under the so-called CG modeling [17,132].
Such distribution reveals to be suitable to achieve robustness w.r.t. outliers. Indeed, it en-
compasses a wide range of di�erent noise distributions, among which the Student's t modeling
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Figure 3.2: Histograms for (a) <{n} and (b) ={n} (realistic case).
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Figure 3.3: Histograms with �tted normal distribution for (a) <{n′} and (b) <{n}.
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Figure 3.4: Quantile-quantile plots for (a) <{n′} and (b) <{n}.
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Figure 3.5: Empirical cumulative distribution plots for di�erent distributions.

and the K-distribution. Its �exibility enables to adaptively consider non-Gaussian heavy-tailed
density functions or the traditional Gaussian case when there are no outliers.

In (2.21), the noise includes contribution from all baselines, i.e., n = [n12,n13, . . . ,n(M−1)M ]T .
For a particular antenna pair (p, q) ∈ {1, . . . ,M}2, the two-scale CG distribution is generated
as [133]

npq =
√
τpq gpq, (3.2)

where τpq is a positive random variable, referred to as the texture part in the radar context, and
gpq is the speckle component, given by

gpq ∼ CN (0,Ω) (3.3)

which is a zero-mean Gaussian distribution with unknown 4× 4 speckle covariance matrix Ω.

To consolidate our choice to consider such distribution to model the noise in visibility mea-
surements, we compare in Figure 3.5 the empirical cumulative distribution functions of the
generated data n with the typical Gaussian case, the Student's t distribution as chosen in [41]
with �xed ν = 2 here and the proposed two-scale CG modeling as introduced in (3.2). We notice
that the nearest curve to the realistic noise part n is obtained with the CG-based model.

3.2 Model setup

We recall that the array is made up of M antennas with known locations and the sky is
composed of D calibration sources. As exposed in section 2.3, each antenna provides sensitivity
to both polarization directions (x, y) and the relation between the i-th incident electromagnetic
wave and the generated voltage at the p-th antenna is given in (2.9).

3.2.1 Non-structured case

In the so-called non-structured case, each 2× 2 Jones matrix Ji,p(θ) is parametrized by the
unknown vector θ which corresponds to the entries of all Jones matrices [14, 134]. As we can
associate a di�erent Jones matrix with each signal propagation path i-p, the total number of
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Jones matrices is DM and thus, θ collects 8DM unknown real elements. We remind that Jones
matrices model the array response and all environmental and instrumental distorsions along each
propagation path.

In the radio interferometric systems under study, the measured observations consist of cross-
correlations computed for each baseline, or antenna pair (p, q) ∈ {1, . . . ,M}2, with p < q,
resulting in (2.12), if we assume uncorrelated emitted signals. The 2 × 2 source coherency
matrix Ci is assumed known from prior knowledge. Let us note that with the condition p < q,
autocorrelations Vpp are ignored which is typical in radio astronomy as they are automically
�agged [7].

Using the vectorization operator, in the noise-free case, leads to the following 4× 1 vector

ṽpq(θ) = vec
(
Ji,p(θ)CiJ

H
i,q(θ)

)
=

D∑
i=1

si,pq(θ) (3.4)

where si,pq(θ) =
(
J∗i,q(θ)⊗ Ji,p(θ)

)
ci and ci = vec(Ci). For noisy measurements, we introduce

a noise vector npq for each antenna pair, leading to

vpq = ṽpq(θ) + npq (3.5)

which amounts to (2.20). By stacking all possible cross-correlations in a global 4B × 1 complex

vector, we obtain the full data vector y in (2.21) where si(θ) =
[
sTi,12(θ), sTi,13(θ), . . . , sTi,(M−1)M (θ)

]T
and n =

[
nT12,n

T
13, . . . ,n

T
(M−1)M

]T
includes Gaussian background noise but also the eventual

presence of outliers.
The non-structured case is particularly �exible as there is no need the specify the full prop-

agation path, thus avoiding any model misspeci�cations, but the number of unknowns can be
relatively large.

3.2.2 Structured case

In this section, we introduce speci�c models to describe the physical mechanism behind each
perturbation e�ect: only physically meaningful parameters are estimated instead of all entries
of all Jones matrices. To this end, we consider a particular context which is regime 3 of section
2.2.3 [3]: sensors are clustered into a compact array and their �eld-of-view are wide, resulting in
direction dependent perturbations as propagation conditions di�er depending on which source
is targeted. But due to the small spatial extend, the same part of the ionosphere is probed and
ionospheric distorsions are assumed similar for all receiving elements. Such calibration scenario
is well-adapted for LOFAR or SKA stations [4, 95].

In regime 3, a particular decomposition of each Jones matrix is given by [24�26,31]

Ji,p(θi,p) = Gp(gp)Hi,pZi(ϕi)Fi(ϑi) (3.6)

for i ∈ {1, . . . , D}, p ∈ {1, . . . ,M} and θi,p = [ϑi, ϕi,g
T
p ]T .

• Ionospheric e�ects: As described in section 2.2.1, the ionosphere is a disturbed environment
with spatial variations. One of the prevailing e�ects is a propagation delay which results in
apparent shift of the source position [4, 73]. We adapt (2.16) to our speci�c scenario, leading to

Zi(ϕi) = exp
(
jϕi

)
I2. (3.7)
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Propagation through the ionosphere also results in rotation e�ects whose form is given in
(2.18). For the ionospheric Faraday rotation, we write it as

Fi(ϑi) =

[
cos(ϑi) − sin(ϑi)
sin(ϑi) cos(ϑi)

]
(3.8)

where ϑi is the unknown Faraday rotation angle.
As the array is compact with similar elements in regime 3, propagation delay (3.7) and

rotation (3.8) are assumed identical for all antennas here [24].

• Instrumental e�ects: Each antenna is described by two complex electronic gains, s.t.,

Gp(gp) = diag{gp} (3.9)

where gp is the 2× 1 unknown complex gain vector.

Finally, Hi,p is an assumed known matrix for which prior information is provided by the
available calibration source locations and antenna positions in (2.15) but also thanks to electro-
magnetic simulations as regards the antenna response and the beam pattern [18,24,31,32].

In this structured case, unknown parameters of interest are given by θi,p for i ∈ {1, . . . , D}
and p ∈ {1, . . . ,M}. We collect them all in ε = P[θT1,1,θ

T
1,2, . . . ,θ

T
D,M ]T where P is an appropri-

ate rearrangement matrix, avoiding redundancy and leading to

ε = [ϑ1, . . . , ϑD, ϕ1, . . . , ϕD,g
T
1 , . . . ,g

T
M ]T . (3.10)

Therefore, the global number of real unknowns is 2(D + M) and we assume M � D so that
observations outnumber unknown parameters.

3.3 Estimation of the texture and speckle parameters

Estimation of the noise parameters in (3.2) can be performed in two ways: either a priori
knowledge is available about the distribution of τpq and a Bayesian approach is conducted or the
distribution is unknown and it can be assumed deterministic during the estimation procedure. All
the algorithms we are proposing in this work are iterative and based on the ML estimator [20,135]

3.3.1 Bayesian approach

Iterative MAP estimator (IMAPE): From a Bayesian perspective, we investigate robust cal-
ibration considering assumed speci�c distributions for the texture realizations τpq, resulting in
MAP-based estimators [136]. Using Bayes' theorem, the expression of the joint log-likelihood
function, denoted as LJ , is given by

LJ = LC +
∑
pq

ln
(
p(τpq;ϕ)

)
(3.11)

where LC is the conditional likelihood function and ϕ refers to the unknown hyperparameters
describing the corresponding prior distribution. Thus, such parameters need to be estimated as
well. The principle of the MAP estimator is to maximize (3.11) w.r.t. each unknown individual
parameter through a step-wise approach, leading to alternative update of unknowns θ, ϕ, Ω and
τ . Assuming independence between npq, the expression of LC is given by

LC = ln p (y|τ ;θ,Ω) = −
∑
pq

(
1

τpq
uHpq(θ)Ω−1upq(θ) + ln |πτpqΩ|

)
(3.12)
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in which τ = [τ12, τ13, . . . , τ (M−1)M ]T and upq(θ) = vpq −
D∑
i=1

si,pq(θ).

As it can been seen from (3.2), the probability density function (pdf) of each texture pa-
rameter τpq needs to be speci�ed. Depending on the nature of τpq, di�erent algorithms can be
developed. We exploit prior distributions for the texture, available in closed-form, which gener-
ate various heavy-tailed noise models for npq. In the following, we de�ne speci�c texture priors
and derive the corresponding IMAPE for each prior distribution p(τpq;ϕ).

• Gamma distribution: The corresponding pdf is given by

p(τpq; a, b) =
1

Γ(a)ba
τa−1pq exp

(
−τpq

b

)
(3.13)

where a and b are the shape and scale parameters, respectively. Such prior leads to the K-
distribution for the noise vector npq [16].

If we insert (3.13) into (3.11), the resulting joint log-likelihood function reads

LJ = LC + (a− 1)
∑
pq

ln(τpq)−

∑
pq
τpq

b
−B ln

(
Γ(a)

)
−Ba ln(b).

Considering ∂LJ/τpq = 0 leads to the following estimate for the texture parameter

τ̂pq =
(a− 5)b+

(
(a− 5)2b2 + 4bu

H

pq(θ)Ω−1upq(θ)
)1/2

2
(3.14)

while ∂LJ/ϕ = 0 results in

b̂ =

∑
pq
τpq

Ba
(3.15)

for the scale, and the following equation to solve for the shape

−BΨ(â) +
∑
pq

ln(τpq)−B ln(b) = 0 (3.16)

which can be computed numerically.
In this speci�c case, steps of the corresponding IMAPE are described in Algorithm 1. Due

to the iterative approach, we notice that (3.15) was plugged into (3.16) as well as (3.14) into
(3.28), see section 3.3.2. Similar algorithms can be derived for each texture prior.

• Inverse Gamma distribution: When the texture parameter follows an inverse Gamma func-
tion, s.t.,

p(τpq; a, b) =
ba

Γ(a)
τ−a−1pq exp

(
− b

τpq

)
, (3.17)

the generated noise model is a Student's t distribution [109, 137]. Let us note that when the
shape parameter is �xed in (3.17), s.t., a = 1, the CG-based model for npq becomes a Cauchy
distribution [17].

Using (3.17), (3.11) and the derivative w.r.t. τpq, the corresponding estimate reads

τ̂pq =
b+ u

H

pq(θ)Ω−1upq(θ)

a+ 5
. (3.18)
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Algorithm 1: IMAPE Iterative MAP estimator / K-distributed noise
input : D, M , B, {Ci}i∈{1,...,D},y
output : θ̂
initialize: Ω̂← Ωinit, τ̂ ← τ init, θ̂ ← θinit
while stop criterion unreached do

1 Obtain θ̂, see section 3.4

2 Obtain â from solving −BΨ(a) +
∑

pq ln(τ̂pq)−B ln
(∑

pq τ̂pq
Ba

)
= 0

3 Obtain b̂ from (3.15)

4 Obtain Ω̂ from Ω̂ = 2
B

∑
pq

upq(θ̂)uHpq(θ̂)

(â−5)b̂+
(
(â−5)2b̂2+4b̂uHpq(θ̂)Ω̂

−1
upq(θ̂)

)1/2 and (3.30)

5 Obtain τ̂ from (3.14)

The scale is given by the following analytical expression

b̂ =
Ba∑
pq

1
τpq

(3.19)

and the shape requires to solve

−BΨ(a)−
∑
pq

ln(τpq) +B ln(b) = 0. (3.20)

We mentioned the particular case of Cauchy distribution for which (3.20) becomes â = 1.

• Exponential distribution: Such prior for the texture reads

p(τpq;λ) = λ exp (−λτpq) , (3.21)

where λ is the so-called rate parameter. The resulting model for the noise is a Laplace distribution
[17].

Based on (3.21) and (3.11), the calculations result in

τ̂pq =
−4 +

(
16 + 4λu

H

pq(θ)Ω
−1

upq(θ)
)1/2

2λ
(3.22)

and the single rate parameter is deducted from

λ̂ =
B∑

pq
τpq

. (3.23)

• Inverse Gaussian distribution: The inverse Gaussian distribution, also called Wald distri-
bution, with shape λ and assumed unit mean [16], is described by the following pdf:

p(τpq;λ) =
( λ

2π

)1/2
τ−3/2pq exp

(
−λ(τpq − 1)2

2τpq

)
. (3.24)

The resulting CG model is referred to as the IG-CG distribution.
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Estimates of noise parameters are given by

τ̂pq =
−11 +

(
121 + 4λ

(
λ+ 2u

H

pq(θ)Ω
−1

upq(θ)
))1/2

2λ
(3.25)

and
λ̂ =

B∑
pq

(τpq−1)2
τpq

. (3.26)

To sum up, we expose in Table 3.1 the di�erent kinds of CG-based noise models we are
considering in this study and their corresponding texture priors with estimates.

Table 3.1: Overview of the di�erent MAP-based estimators.
Texture distribution Expression of texture pdf Noise pdf τ̂pq ϕ̂

Gamma p(τpq ; a, b) =
1

Γ(a)ba
τa−1
pq exp

(
− τpq

b

)
K (3.14) (3.16) & (3.15)

Inverse Gamma p(τpq ; a, b) =
ba

Γ(a)
τ−a−1
pq exp

(
− b
τpq

)
, Student's t (3.18) (3.20) & (3.19)

Inverse Gamma p(τpq ; b) = bτ−2
pq exp

(
− b
τpq

)
, Cauchy (3.18) a = 1 & (3.19)

Exponential p(τpq ;λ) = λ exp (−λτpq) Laplace (3.22) (3.23)

Inverse Gaussian p(τpq ;λ) =
(
λ
2π

)1/2
τ
−3/2
pq exp

(
−λ(τpq−1)2

2τpq

)
IG-CG (3.25) (3.26)

3.3.2 (Relaxed) deterministic approach

The noise model is not exactly known in practice, so prior knowledge about the pdf is not
always available. Thus, the statistical distribution of the texture parameter being unknown, we
can consider it as an unknown deterministic parameter in the estimation process [22, 23]. This
avoids to choose a speci�c distribution which may lead to model misspeci�cations and enables
to propose a broad robust estimator w.r.t. the presence of outliers. We call it the relaxed
deterministic approach as it is not strictly based on the exact model in (3.2) [138,139].

Relaxed concentrated ML estimator (RCMLE): Optimization of (3.12) is performed w.r.t.

each unknown parameter sequentially, while the others are �xed. Closed-form expressions can
be obtained for the texture component τpq, for which no distribution has to be speci�ed, and
the speckle covariance matrix Ω. Estimation of θ is the step of interest and will be discussed
in section 3.4. If we take the derivative of (3.12) w.r.t. τpq and equate it to 0, we obtain the
following expression for the texture estimate

τ̂pq =
1

4
uHpq(θ)Ω−1upq(θ). (3.27)

Using classical di�erential properties [140, p. 2741] and the permutation property, estimation of
the speckle covariance matrix reads

Ω̂ =
1

B

∑
pq

1

τpq
upq(θ)uHpq(θ). (3.28)

We adopt an iterative procedure here with a concentrated ML scheme. Thus, by plugging (3.27)
into (3.28), we �nally obtain

Ω̂
t+1

=
4

B

∑
pq

upq(θ)uHpq(θ)

uHpq(θ)
(
Ω̂
t
)−1

upq(θ)
(3.29)
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with t the iteration counter. Let us note that a constraint is required to remove scaling ambi-
guities in model (3.2). Therefore, we impose tr {Ω} = 1 but this choice is arbitrary and does
not a�ect the estimates of interest [20]. The normalization requires the following step in the
procedure

Ω̂
t+1

=
Ω̂
t+1

tr
{

Ω̂
t+1
} . (3.30)

The global scheme of the proposed RCMLE is described in Algorithm 2.

Algorithm 2: RCMLE Relaxed concentrated ML estimator
input : D, M , B, {Ci}i∈{1,...,D}, y

output : θ̂
initialize: Ω̂ ← Ωinit, τ̂ ← τ init, θ̂ ← θinit
while stop criterion unreached do

1 Obtain θ̂, see section 3.4
2 Obtain Ω̂ from (3.29) and (3.30),
3 Obtain τ̂ from (3.27)

Remark : Let us note that it is possible to consider a di�erent covariance matrix Ωpq for each
baseline (p, q) in (3.3). In this speci�c case, the proposed robust calibration algorithm requires
a few modi�cations and corresponding expressions are presented in Appendix A.

3.4 Estimation of Jones matrices

The proposed robust calibration estimator is based on the CG model in (3.2). We assume
that noise parameters τpq and Ω are estimated with the Bayesian or deterministic approach.
For sake of clarity, we consider the relaxed concentrated ML method for which texture realiza-
tions are assumed deterministic. But the corresponding expressions for the Bayesian case are
straightforward to obtain, using section 3.3.1.

Speci�cally, each block of unknown parameters is updated sequentially in a global iterative
loop as shown in Algorithm 2. Estimates of noise parameters, i.e., the texture and the speckle
parts, are derived from (3.27) and (3.29), respectively, followed by the normalization constraint
in (3.30), for identi�ability issues.

3.4.1 Non-structured case

The goal is to estimate θ, considering (3.12). For a given Ω̂ and τ̂ , it consists in the following
minimization problem

θ̂ = argmin
θ

{∑
pq

1

τpq
uHpq(θ)Ω−1upq(θ)

}
. (3.31)

Thus, a multi-dimensional optimization approach needs to be carried out to solve (3.31), resulting
in signi�cant computation time due to the large size of θ. To reduce the computational cost, we
propose to use the EM algorithm [27, 100, 127] which requires a proper parameter partitioning
and the de�nition of complete data. In the non-structured case, it is natural to decompose the
parameter of interest θ as follows

θ = [θT1 , . . . ,θ
T
D]T = [θT1,1, . . . ,θ

T
1,M , . . . ,θ

T
D,1, . . . ,θ

T
D,M ]T . (3.32)
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This way, each propagation path i-p is parametrized by the vector θi,p ∈ R8×1, s.t., Ji,p(θ) =
Ji,p(θi,p).

As explained in section 2.4.3.1, the EM algorithm iterates between two steps and provides
the ML estimates with limited complexity. These two steps are explained in the following

• E-step: The so-called complete data vector is given by (2.44) with a decomposition into
source contributions s.t. y =

∑D
i=1 wi and n =

∑D
i=1 ni. Each noise part is generated as

ni ∼ CN (0, βiΨ) (3.33)

with
∑D

i=1 βi = 1 and we note Ψ the 4B × 4B covariance matrix of n. With (3.2) and (3.3), we
can write

npq ∼ CN (0, τpqΩ). (3.34)

Since measurements are assumed independent between antenna pairs, as seen in (3.12), the
covariance Ψ has the following block-diagonal expression

Ψ = bdiag{τ12Ω, . . . , τ (M−1)MΩ}. (3.35)

The complete data vector w = [wT
1 , . . . ,w

T
D]T is de�ned by the following 4DB×4DB covariance

matrix
Ξ = bdiag{β1Ψ, . . . , βDΨ}. (3.36)

Considering (2.45) for each source i ∈ {1, . . . , D} and [101, p. 36], the conditional expectation
reads

ŵi = E
{

wi|y;θ, τ ,Ω
}

= si(θi) + βi

(
y −

D∑
l=1

sl(θl)

)
. (3.37)

• M-step: Instead of directly estimating θ ∈ C4DM×1 from (3.31), which can be computa-
tionally prohibitive, the global multiple source estimation problem is reduced to multiple single
source sub-problems. Indeed, once ŵ is evaluated by the previous E-step, we need to maximize
the following likelihood function

p(ŵ|θ, τ ,Ω) =
1

|πΞ|
exp

{
−
(
ŵ − s(θ)

)H
Ξ−1

(
ŵ − s(θ)

)}
=

D∏
i=1

1

|πβiΨ|
exp

{
−
(
ŵi − si(θi)

)H
(βiΨ)−1

(
ŵi − si(θi)

)}
(3.38)

with assumed independent wi. Therefore, estimation of θi ∈ C4M×1 is obtained through mini-
mization of the following objective function

φi(θi) =
(
ŵi − si(θi)

)H
(βiΨ)−1

(
ŵi − si(θi)

)
. (3.39)

This can be performed numerically with the LM algorithm [29, 88, 90], as exposed in section
2.4.2.1. However, obtaining closed-form expressions enables to reduce even more the complexity
of the problem. To this end, we apply the BCD algorithm [30, 141] for each single source sub-
problems in (3.39).
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As shown in (3.32), the parameter vector is partitioned according to each source but also
to each antenna. Thus, in the following, instead of optimizing (3.39) w.r.t. θi, we propose to
carry out the optimization w.r.t. θi,p, for �xed θi,q with q 6= p. We will see that an analytical
solution is obtained for θ̂i,p as function of all other θi,q with q 6= p. The procedure is repeated
alternatively for each component vector θi,p with p ∈ {1, . . . ,M} until convergence.

In (3.39), only si is function of θi but actually, only a subset depends on the block-coordinate
vector θi,p, i.e., {si,pq} for q > p, q ∈ {1, . . . ,M} and {si,qp} for q < p, q ∈ {1, . . . ,M}. Thus,
it is more convenient to rewrite (3.39) as follows

φi(θi,p) =

M∑
q=1
q>p

(
wi,pq − si,pq(θi,p)

)H
(βiτpqΩ)−1

(
wi,pq − si,pq(θi,p)

)
+

M∑
q=1
q<p

(
wi,qp − si,qp(θi,p)

)H
(βiτ qpΩ)−1

(
wi,qp − si,qp(θi,p)

)
+ Constant. (3.40)

In the Constant part, we incorporate all subsets of φi(θi,p) which do not depend on θi,p. Notation,
calculus and details are given in Appendix B in which we show that it is possible to write

si,pq(θi,p) = Σi,qθi,p (3.41)

and, likewise
si,qp(θi,p) = Υi,qθ

∗
i,p. (3.42)

In the end, the expression of θi,p for p ∈ {1, . . . ,M} and the given i -th source direction is written
as

θ̂i,p =

 (ΣH
i Ai,pΣi + ΥH

i Ãi,pΥi)
−1(ΣH

i Ai,pwi,p + ΥH
i Ãi,pw̃i,p) for 1 < p < M

(ΣH
i Ai,pΣi)

−1ΣH
i Ai,pwi,p for p = 1

(ΥH
i Ãi,pΥi)

−1ΥH
i Ãi,pw̃i,p for p = M

(3.43)

Finally, from the above discussion, the detailed scheme of the proposed RCMLE is summa-
rized in Algorithm 3.

Algorithm 3: RCMLE Relaxed concentrated ML estimator
input : D, M , B, {Ci, βi}i∈{1,...,D}, y

output : θ̂
initialize: Ω̂ ← Ωinit, τ̂ ← τ init, θ̂ ← θinit
while stop criterion unreached (referred to as the �rst loop) do

while stop criterion unreached (referred to as the second loop) do
1 E-step: ŵi obtained from (3.37), i ∈ {1, . . . , D}
2 M-step: θ̂i obtained as follows, i ∈ {1, . . . , D}

while stop criterion unreached (referred to as the third loop) do
3 θ̂i,p obtained from (3.43), p ∈ {1, . . . ,M}

4 Obtain Ω̂ from (3.29) and (3.30) ,
5 Obtain τ̂ from (3.27)

Regarding the convergence properties of the proposed algorithm, we notice that: the max-
imization step of the EM algorithm is computed thanks to the BCD algorithm by considering
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the cost function in (3.39). Minimization leads to a unique solution for each individual block
of variables, given in (3.43). Thus, convergence to a stationary point and local convergence are
ensured [142]. When the M-step is solved exactly, i.e., when the BCD algorithm provides the
exact minimizer of (3.39), and for a theoretical in�nite number of iterations, convergence to a
stationary point by the EM algorithm is ensured. Still, let us note that depending on the ini-
tialization, the stationary point can be either a global, a local minimizer or, in some unusual
cases, a saddle point [127]. Proper initialization is thus required based on possible prior informa-
tion or one can use some metaheuristic approaches such as random-restart hill climbing or SA
methods. If the EM provides exact solutions, monotone local convergence of the ML estimator
is ensured since the value of the cost function at each step can either improve or maintain but
cannot worsen [143]. Therefore, convergence to a local stationary point is ensured for the overall
algorithm if convergence is attained in each loop (three loops as shown in Algorithm 3), which
requires an adequate initialization and a theoretical in�nite number of iterations. However, in
practice, numerical simulations in section 3.5 show that a few iterations are enough to reach
convergence to, at least, a local minimizer and achieve relatively good numerical stability.

3.4.2 Structured case

In the structured case, we consider the speci�c model in (3.6), adapted to regime 3. The
RCMLE in Algorithm 3 provides an estimate for all Ĵi,p with i ∈ {1, . . . , D} and p ∈ {1, . . . ,M}.
The idea is to estimate the unknown parameter vector of interest ε in a sequential manner, once
RCMLE has been performed and all Jones entries have been estimated. To this end, we adopt
an iterative procedure and optimize a given cost function w.r.t. one of the physical parameters
in ε while �xing the others, leading to a global alternative method.

• Estimation of gp: Electronic gains are obtained by solving

ĝp = argmin
gp

κ(gp) (3.44)

in which

κ(gp) =
D∑
i=1

||Ĵi,p −Gp(gp)Hi,pZiFi||2F

=
D∑
i=1

Tr
{(

Ĵi,p −Gp(gp)Ri,p

)(
Ĵi,p −Gp(gp)Ri,p

)H}
(3.45)

where Ri,p = Hi,pZiFi. Taking the derivative w.r.t. [gp]k for k ∈ {1, 2} leads to

∂κ(gp)

∂[gp]k
=

D∑
i=1

Tr
{
− eke

T
kRi,pĴ

H
i,p + eke

T
kRi,pR

H
i,pG

H
p

}
. (3.46)

Equating (3.46) to 0 results in

D∑
i=1

[Xi,p]k,k =

D∑
i=1

[Wi,pĜ
H
p ]k,k =

D∑
i=1

[Wi,p]k,k[Ĝ
∗
p]k,k (3.47)

where Xi,p = Ri,pĴ
H
i,p and Wi,p = Ri,pR

H
i,p. Each sensor gain element is thus estimated by

[ĝp]k =
( D∑
i=1

[W∗
i,p]k,k

)−1 D∑
i=1

[X∗i,p]k,k. (3.48)
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• Estimation of ϕi: To do so, we consider the following minimization problem

ϕ̂i = argmin
ϕi

κ̃(ϕi) (3.49)

where κ̃(ϕi) =
∑M

p=1 ||Ĵi,p −GpHi,pZi(ϕi)Fi||2F . Considering ∂κ̃(ϕi)/∂ϕi and setting the result
to zero leads to

M∑
p=1

Tr
{
j exp−jϕ̂i Ĵi,pF

H
i HH

i,pG
H
p − j expjϕ̂i GpHi,pFiĴ

H
i,p

}
= 0 (3.50)

and �nally

exp
{

2jϕ̂i

}
=

Tr
{

Mi,p

}
Tr
{

MH
i,p

} (3.51)

with Mi,p =
∑M

p=1 Ĵi,pF
H
i HH

i,pG
H
p and from which we can directly deduce ϕ̂i.

• Estimation of ϑi: We address the following one-dimensional minimization problem

ϑ̂i = argmin
ϑi

M∑
p=1

||Ĵi,p −GpHi,pZiFi(ϑi)||2F (3.52)

for each source. Estimates can be obtained in a reasonable computational time through classical
data grid search followed by Newton type algorithm.

The global procedure of the RCMLE in the structured case is exposed in Algorithm 4.

Algorithm 4: RCMLE Structured case

input : D, M , B, Ci, βi, y, Ĵi,p as output of Algorithm 3, i ∈ {1, . . . , D} and
p ∈ {1, . . . ,M}

output : ε̂
initialize: ε̂← εinit
while stop criterion unreached do

1 Obtain ϑ̂i from (3.52), i ∈ {1, . . . , D}
2 Obtain ĝp from (3.48), p ∈ {1, . . . ,M}
3 Obtain ϕ̂i from (3.51), i ∈ {1, . . . , D}

3.5 Simulation results

In this section, we aim to evaluate the performance of the designed algorithm: we start
with a CG-based scenario where the noise model matches our noise assumption and we plot the
corresponding CRB. Afterwards, we intend to compare, in a more realistic scenario, the proposed
algorithm with the recently introduced approach based on the Student's t [2] and the traditional
Gaussian cases [14]. We study both non-structured and structured situations and also compare
the relaxed deterministic technique with Bayesian alternatives. Finally, visual performance is
provided on academic examples by creating residual images where weak background sources are
revealed.
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3.5.1 Under CG-based noise

Firstly, we aim to assess the estimation performance of the proposed CG-based RCMLE and
its numerical stability. We consider the non-structured case where θ in (3.32) corresponds to the
real and imaginary parts of the entries of all Jones matrices. We assume that the additive noise
in (3.5) follows a CG distribution as in (3.2), i.e., the generated noise matches the noise model
assumption. We choose to generate each random texture component from an inverse Gamma
distribution [144], as follows

τpq ∼ IG(ν/2, ν/2), (3.53)

with ν degrees of freedom [16] and [Ω]k,l = σ20.9|k−l| expj
π
2
(k−l). With (3.53), the resulting noise

distribution for npq is a Student's t.
To assess the statistical performance, we make use of the CRB [145]. Under quite gen-

eral/weak conditions, the variance satis�es

MSE([θ̂]k) = E
{(

[θ̂]k − [θ]k

)2}
> [CRB(θ)]k,k (3.54)

where the CRB is the inverse of the FIM, noted F. In our speci�c case, we adapt the Slepian-
bangs type formula to our context [146,147] and obtain

[F]k,l = 2
ν + 4

ν + 5

∑
pq

<

{
∂ṽHpq(θ)

∂[θ]k
Ω−1

∂ṽpq(θ)

∂[θ]l

}
. (3.55)

Noise parameters being decoupled from parameters of interest θ, we only keep the part of the
FIM corresponding to the latter.

We consider D = 2 calibration sources and M = 8 sensors in the array, so the total number
of real unknowns is given by 8DM = 128 and the number of measurements is 8B = 224. Prior
information about the source Ci is generated thanks to random Stokes parameters [5, 18]. In
Figure 3.6(a), we plot the MSE of the real part of unknown entries corresponding to the �rst
source, leading to 32 estimated points. The Signal-to-Noise Ratio (SNR) is �xed at 15 dB and
the behavior remains the same for the imaginary part or the other source. For the real part of
the unknown parameter vector θ, the MSE is de�ned as follows

MSE =
1

MC

MC∑
k=1

<
{

(θ̂k − θ)2
}

(3.56)

where MC is the number of Monte-Carlo runs, which we usually �x to 100 in our work. In
Figure 3.6(b), we plot the MSE of a given unknown parameter as a function of the SNR, with
the corresponding CRB deduced from (3.55). Let us note that the MSE gets close to the CRB but
a slight gap remains. This could be explained by our relaxed version of the exact ML estimator.
Indeed, the RCMLE derives estimates for unknown and deterministic texture parameters while
they were in fact generated as inverse Gamma distributed random parameters (3.53) in the data
model and the CRB relies on this speci�c prior distribution.

In Figure 3.7, we investigate numerical convergence rates of the RCMLE, for each of its three
loops as exposed in Algorithm 3, and see how estimation of θ is a�ected through time. To do
so, we introduce the following quantity

εt<{θ} = ||<
{
θt − θt−1

}
||22. (3.57)
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Figure 3.6: (a) MSE of the real part of the �rst 32 unknown parameters for a given SNR, (b)
MSE vs. SNR for the real part of a given unknown parameter and the corresponding CRB, for
D = 2 bright signal sources and M = 8 antennas.
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Figure 3.7: Numerical stability for the second loop (a), and the �rst loop (b) in Algorithm 3.

We plot εt<{θ} as function of the t-th iteration for the second and �rst loops, in Figures 3.7(a)
and 3.7(b), respectively. Let us notice that the third loop is not reported here as it has the
same behavior as the convergence in the second loop. From Figure 3.7(a), we deduce that a few
iterations are enough to reach stability while from Figure 3.7(b), approximately 20 iterations are
required to attain convergence. In practical, only 3 to 4 iterations were needed to approach the
CRB.

3.5.2 Under realistic scenario

We aim to study the designed algorithm in a realistic scenario with D calibration sources
and D′ weak background sources which act as outliers and contribute to the noise component,
as shown in (2.47) and (3.1). The SNR is de�ned as the ratio of the normalized power of D
calibration sources over the sum of normalized power of D′ background sources and a power
noise factor. Jones matrices stand for the perturbation e�ects along the signal propogation path
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Figure 3.8: MSE for a given ionospheric phase delay as function of the SNR for di�erent kinds
of CG distributions.

and include in particular the electronic gains in (2.17), the ionospheric phase shifts in (2.16) and
the Faraday rotation in (2.18), which are all randomly generated here.

3.5.2.1 Bayesian vs. deterministic

We introduced di�erent kinds of CG-based noise models obtained with di�erent texture
priors in section 3.3.1. To compare their estimation performances with the RCMLE and see how
estimation of parameters of interest θ is a�ected, let us consider a realistic scenario with D = 2
bright calibration sources, M = 8 antennas in the sensor array and D′ = 4 weak background
sources, resulting in non-Gaussian environment.

In Figure 3.8, we plot the MSE of the previously introduced estimators for one representative
ionospheric phase delay, i.e., ϕ1,3 here (�rst source, third antenna), as a function of the SNR. To
assess the robustness of the proposed methods, we also plot the MSE for traditional calibration
based on a Gaussian noise assumption and the minimization of a LS cost function. As expected,
this restricted hypothesis leads to poor performance while estimation results di�er depending on
which p(τpq;ϕ) is considered. Still, we notice that the lowest MSE is achieved with the RCMLE
which enables to reach robustness due to its �exibility and lack of misspeci�cations, resulting
in more accuracy. Therefore, the relaxed version of the ML estimator, with texture components
considered as deterministic in the estimation process, will be favoured in the rest of the study.

3.5.2.2 State-of-the-art vs. deterministic

To evaluate and compare the performances, we consider the RCMLE from Algorithm 3, the
robust approach based on the speci�c Student's t distribution [2] and the traditional Gaussian
noise assumption [14] which both compose state-of-the-art. As a �rst step, we still study the
non-structured case in which θ includes real and imaginary parts of all Jones matrices along the
calibration source paths. The approach in [2] speci�cally considers a Student's t noise modeling
with i.i.d. entries and uses the ECME algorithm as described in section 2.4.3.3 [110, 148]. Tra-
ditional calibration is based on the zero-mean white Gaussian noise assumption and solves a LS
problem as in section 2.4.2 [14]. Results are plotted in Figure 3.9 for similar computation times.
Better accuracy is obtained with the RCMLE as no speci�c noise distribution has been chosen
and CG-based models include a wide range of di�erent distributions, leading to more �exibility
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Figure 3.9: (a) MSE of the real part of the 64 unknown parameters for a given SNR, (b) MSE
vs. SNR for the real part of a given unknown parameter, for D = 2, M = 8 and D′ = 8, leading
to 128 real parameters of interest to estimate and 224 measurements.
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Figure 3.10: (a) MSE of the real part of the 16 complex gains for a given SNR, (b) MSE of ζ1
vs. SNR, for D = 2, M = 8, and D′ = 4, leading to 38 real parameters of interest to estimate
and 224 measurements.

and robustness. Besides, no assumption has been made about independent entries within the
noise vector npq, unlike [2]. Let us remark that in Figure 3.9(a), the MSE is plotted for both
D = 2 calibration sources, leading to 4DM = 64 plotted points for the real part of θ.

3.5.3 Under structured case

Once all Jones entries in θ have been estimated, we aim to apply the algorithm for structured
Jones matrices, exposed in Algorithm 4. Both algorithms based on the Student's t [2] and the
Gaussian distribution [14] have been introduced in the non-structured case so we apply the
structured case on the output of these two approaches. Jones matrices are randomly generated
according to (3.6) and we introduce g = [gT1 , . . . ,g

T
M ]T . For the ionospheric phase delay in (3.7),

it is generated as follows [25]
ϕi,p = ηiup + ζivp. (3.58)
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Equivalently, we can write
ϕTi = αTi Λ (3.59)

where ϕi = [ϕi,1, . . . , ϕi,M ]T , Λ =

[
u1, . . . , uM
v1, . . . , vM

]
, αi = [ηi, ζi]

T refers to the two-dimensional

o�sets by which the i-th source is shifted and known position rp = [up, vp]
T of the p-th antenna

is expressed in wavelength units. Once ϕi,p has been estimated with (3.51) for p ∈ {1, . . . ,M},
we can deduce directional shifts α̂i with the following aditional step

α̂Ti =

ϕ̂Ti ΛH

[ ∑M
p=1 v

2
p −

∑M
p=1 upvp

−
∑M

p=1 vpup
∑M

p=1 u
2
p

]
∑M

p=1 u
2
p

∑M
p=1 v

2
p − (

∑M
p=1 upvp)

2
. (3.60)

The MSE results are shown in Figure 3.10, with similar computation times, for speci�c
physical parameters: the complex gains for �xed SNR and the source o�set ζ1 as function of
the SNR, the behavior being the same for other parameters. Better performances are obtained
with the proposed RCMLE in the structured case. This was already expected from Figure 3.9 as
better estimation of Jones entries naturally leads to better estimation of parameters describing
them.

3.5.4 Recovered images

In this section, we investigate the formation of residual images on academic examples, ob-
tained with Matlab, but more realistic data simulation and image recovering will be presented in
Chapter 5.

Let us consider D = 2 calibration sources in the sky model. In the ideal case, visibilities
are only a�ected by the K-Jones term in (2.15). But due to perturbation e�ects, especially
the ionospheric phase delays in (3.58), source positions are subject to shifts and the apparent
location may di�er from the exact one. We wish to recover D′ = 4 background sources whose
exact intensities and positions are unknown to us and randomly generated from a discrete uniform
distribution. Only ionospheric phase delays are incorporated within the Jones chain (2.13).

Calibration is performed with three di�erent methods: the proposed RCMLE, the Student's
t [2] and the Gaussian cases [14]. From the phase estimates, we deduce the o�sets with (3.60) by
which the D = 2 calibration sources are shifted. Then, the corresponding o�sets for weak sources
are deduced by linear interpolation. More speci�cally, we are interested in residual visibilities.

Indeed, from (2.47), for each antenna pair, we know that

vpq =
D∑
i=1

si,pq(θ) +
D′∑
i′=1

si′,pq + npq (3.61)

with the calibration, the non-calibration and the noise components, respectively. By residual
visibilities, we mean the following quantity

vRESpq = vpq −
D∑
i=1

si,pq(θ̂) (3.62)

in which θ is estimated using one of the three aformentionned estimators. The true situation
corresponds to the case when θ is exactly known. Intensities of weak sources are then recovered
by performing a two-dimensional Inverse Fourier Transform (2.6) on the residual visibilities.
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Figure 3.11: Recovered residual images when Jones matrices are (a) perfectly estimated (b)
estimated with the RCMLE, (c) estimated with the Student's t noise model and (d) the Gaussian
noise assumption (point-like sources in sky image).

Table 3.2: Mean di�erence between
true and estimated positions for the
D′ background sources.

x y
RCMLE 0.0030 0.0709
Student's t case 0.0057 0.0717
Gaussian case 0.0066 0.0721

Recovered intensities at the calibration and non-calibration positions are represented thanks to
colorbars in Figure 3.11 for a mostly empty sky with point-like sources. Thus, if calibration is
performed exactly, there should be no �ux left at the calibration positions. Position shifts being
hardly visible, to make it more clear, we compute in Table 3.2 the mean over all D′ sources of
the di�erence between the exact source location and the estimated one, in both directions (x, y).
The lower is this di�erence, the more accurate is the calibration method. We recover similar
residual images in Figure 3.12 but intensity is shown for each position of the plane.
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Figure 3.12: Recovered residual images when Jones matrices are (a) perfectly estimated (b)
estimated with the RCMLE, (c) estimated with the Student's t noise model and (d) the Gaussian
noise assumption.

3.6 Conclusion

In radio astronomy, Jones matrices model all the perturbation e�ects which corrupt the
observations and they can be considered as structured or not depending on the scenario under
study. However, visibility measurements are also a�ected by the presence of outliers wich change
the typical Gaussian nature of noise. To achieve robustness, we propose the RCMLE based
on the CG model and a relaxed assumption. This algorithm reveals to be more robust for
both non-structured and structured cases, it is less subject to errors than MAP approaches
and bene�ts from reasonable computational complexity. Indeed, using the EM and the BCD
algorithms enables to reduce the global computational cost thanks to a per source and per antenna
parameter partition, leading to multiple sub-problems instead of a global multi-dimensional one.
Texture, speckle components and Jones matrices are estimated iteratively thanks to closed-form
expressions. However, their speci�c structure of variation, notably w.r.t. frequency, is not taken
into account and could be exploited to enhance the calibration process. Thus, the extension to
the multi-frequency scenario is studied in the following chapter.
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Chapter 4

Robust distributed calibration in

multi-frequency scenario

4.1 Motivation for multi-frequency calibration

The new generation of radio interferometers requires computationally e�cient algorithms
wich perform calibration accurately while being robust. Robustness was addressed in Chapter 3
by proposing the CG model for the noise contribution. Unknown parameters of interest were es-
timated for one given frequency but in practice, radio interferometers operate on a broad spectral
range, resulting in large multi-frequency data from which information is retrieved. Perturbation
e�ects, modeled by Jones matrices, as well as the noise contribution do not remain constant
across frequency and their variation can be exploited during calibration in a multi-frequency
scenario [149]. In this chapter, we focus on the frequency dependence (in addition, one might
take into account the temporal variation using the same approach by considering independent
solutions between time intervals). We extend the structured case, whose model was exposed in
section 3.2.2 and the corresponding estimator in section 3.4.2, to regime 4 which is more adapted
to large interferometric arrays. Thus, propagation conditions are variable per station and per
source due to large �eld-of-view and long baselines, leading to more unknowns to estimate than
in regime 3 where the same part of the ionosphere is seen by all antennas in the station. Let us
note that adaptation to regime 3 is straightforwardly obtained and multi-frequency calibration
for the non-structured case is discussed in [35].

Considering multiple frequency channels can signi�cantly increase the generated data vol-
umes so the �ow of information needs to be handled in the most optimal way. To this end,
distributed calibration can be exploited with a network of computational agents. Each of them
achieves calibration locally for a given subband and a fusion center collects data from all dif-
ferent frequencies. This method bene�ts from data parallelism and distributed computing load,
contrary to standard arrangement where a single computational agent directly operates on the
full observing bandwidth and considers one frequency bin at a time [4,12]. Furthermore, making
use of distributed procedures is consistent with the new radio synthesis arrays since the global
bandwidth is divided into multiple frequency channels. Exploiting frequency diversity is not new
and has already been tackled with bandpass solutions [150] or smooth polynomials [35] in the
non-structured scenario. But the purpose of this chapter is to combine robustness with estima-
tion of physical parameters taking into account their structured variation across frequency in
regime 4.

55
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4.2 Variation of parameters across frequency

We are now dealing with interferometer calibration where direction independent and direction
dependent e�ects need to be corrected. The Jones chain given in (3.6) for regime 3 is adapted
to regime 4 in a multi-frequency scenario as follows

J
[f ]
i,p(θ

[f ]) = G[f ]
p (g[f ]

p )H
[f ]
i,pZ

[f ]
i,p(ϕ

[f ]
i,p)F

[f ]
i,p(ϑ

[f ]
i,p) (4.1)

in which the frequency dependence of ionospheric distortions can be accurately described. Indeed,
the ionospheric phase delay in (3.7) is speci�ed now as [33]

ϕ
[f ]
i,p ∝

TECi,p
f

(4.2)

where TEC was de�ned in section 2.2.1. As regards the Faraday rotation in (3.8), it is given
by [25]

ϑ
[f ]
i,p ∝

RMi,p

f2
(4.3)

in which RM refers to the rotation measure, depending on the magnetic �eld and the density of
electrons along the propagation path i-p.

There is no available model for the frequency variation of the gains g
[f ]
p . However, we can

enforce smoothness across frequency by introducing polynomial variation across frequency, as
discussed in section 4.3.2.

Therefore, for one given frequency f ∈ F = {f1, . . . , fF }, the number of unknown parameters

of interest is gathered into the (2MD + 2M) × 1 vector θ[f ] = [ε[f ]
T
,g

[f ]T

1 , . . . ,g
[f ]T

M ]T where
ε[f ] = [ϑ

[f ]
1,1, . . . , ϑ

[f ]
D,M , exp(jϕ

[f ]
1,1), . . . , exp(jϕ

[f ]
D,M )]T collects frequency dependent per-receiver

and per-source ionospheric e�ects. Furthermore, we still consider the noise model in (3.2) so
we also need to estimate the B × 1 texture realizations τ [f ] = [τ

[f ]
12 , τ

[f ]
13 , . . . , τ

[f ]
(M−1)M ]T and the

4 × 4 speckle covariance matrix Ω[f ]. We notice that frequency dependence has been added
for the noise parameters as well but we do not assume any speci�c prior structure w.r.t. f .
Nevertheless, if a priori knowledge about noise variation w.r.t. frequency is available, it can be
straightforwardly incorporated into the proposed algorithm.

4.3 Estimation of Jones matrices in structured case

4.3.1 Robust estimation in multi-frequency scenario

Assuming independence between n
[f ]
pq , the corresponding expression of the log-likelihood in

(3.12) reads

ln p
(
{y[f ]}f∈F | {θ[f ], τ [f ],Ω[f ]}f∈F

)
= −

∑
f∈F

l[f ](θ[f ])−
∑
f∈F

∑
pq

ln |πτ [f ]pqΩ[f ]| (4.4)

with
l[f ](θ[f ]) =

∑
pq

1

τ
[f ]
pq

u[f ]H

pq (θ[f ])Ω[f ]−1
u[f ]
pq (θ[f ]). (4.5)

Then, we adopt the same procedure as for the RCMLE and obtain similar texture and speckle
covariance estimates than in (3.27) and (3.29). More speci�cally, we can write

τ̂ [f ]pq =
1

4
u[f ]H

pq (θ[f ])Ω[f ]−1
u[f ]
pq (θ[f ]) (4.6)
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for the texture, and

Ω̂
[f ]

=
4

B

∑
pq

u
[f ]
pq (θ[f ])u

[f ]H

pq (θ[f ])

u
[f ]H
pq (θ[f ])(Ω̂

[f ]
)−1u

[f ]
pq (θ[f ])

(4.7)

for the speckle, followed by the normalization step Ω̂
[f ] ← Ω̂

[f ]

tr
{

Ω̂
[f ]
} to avoid any ambiguity.

The principle of the proposed multi-frequency robust approach is similar to the one exposed in

Algorithm 2: we estimate alternatively {θ̂[f ]}f∈F , {Ω̂
[f ]}f∈F and {τ̂ [f ]}f∈F in a global iterative

loop. In what follows, we focus on estimation of {θ[f ]}f∈F , for a �xed {τ̂ [f ]}f∈F given by (4.6)

and {Ω̂[f ]}f∈F given by (4.7), by considering consensus-based distributed optimization [34,36].

4.3.2 Distributed estimation in multi-frequency scenario

Multi-frequency calibration considers a whole frequency range with multiple sub-frequency
bands. A computationally e�cient way to handle this situation is to apply decentralized strate-
gies with distributed and consensus algorithms as the ADMM which was introduced in section
2.4.3.4. This technique is well-suited for large-scale problems and has already been applied for
image reconstruction [117]. We will be considering this procedure in the following with a group
of computational agents. We assume that each of them has access to data for a speci�c fre-
quency f ∈ F = {f1, . . . , fF } and solves a local problem. Estimates are then transmitted to the
fusion center which enforces consensus among agents and �nally transfers the updates to each
local agent. Compared to independent (per-channel) calibration performed for one frequency
after another, distributed calibration can lead to better accuracy since information across all
frequencies is taken into account.

The idea is to be able to get closed-form expressions for the parameters of interest. To this
end, for i ∈ {1, . . . , D} and p ∈ {1, . . . ,M}, we rewrite the ionospheric phase delay as

exp
(
jϕ

[f ]
i,p

)
= b[f ]T zi,p (4.8)

and the Faraday rotation angle as

ϑ
[f ]
i,p =

1

f2
zi,p (4.9)

s.t. the (M + NM) × 1 unknown frequency independent vector of hidden variables zi =
[zi,1, . . . , zi,M , z

T
i,1, . . . , z

T
i,M ]T is introduced for the i-th source direction. The frequency depen-

dent vector b[f ] is de�ned s.t.

[b[f ]]k =

(
1

f

)k−1
(4.10)

for k ∈ {1, . . . , N} and (N − 1) is the order of the truncated approximation power series of

exp
(
jϕ

[f ]
i,p

)
, chosen arbitrarily. More speci�cally, we can write

exp
(
jϕ

[f ]
i,p

)
'

N∑
k=1

(
1

f

)k−1 (jϕ
[f0]
i,p )k−1

(k − 1)!
(4.11)

s.t. ϕ
[f ]
i,p =

ϕ
[f0]
i,p

f and ϕ[f0]
i,p ∝ TECi,p. Let us note that zi,p ∝ RMi,p.

As mentioned before, we impose smoothness over frequency for the gains, s.t.,

g[f ]
p = B̃[f ]z̃p (4.12)
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where the 2× 2Ñ frequency modeling matrix reads

B̃[f ] = b̃[f ]T ⊗ I2 (4.13)

and the Ñ × 1 vector b̃[f ] is described by

[b̃[f ]]k =

(
f − f0
f0

)k−1
(4.14)

with k ∈ {1, . . . , Ñ}, an arbitrarily chosen Ñ and a given reference frequency f0 [35]. Frequency
independent variables are introduced as well for the p-th receiving element through the 2Ñ × 1
vector z̃p.

With (4.4), (4.8), (4.9) and (4.12), the calibration problem can be formulated as

{θ̂[f ]}f∈F , ẑ = argmin
{θ[f ]}f∈F ,z

∑
f∈F

l[f ](θ[f ]) s.t. θ[f ] = B[f ]z (4.15)

with z = [z1,1, . . . , zD,M , z
T
1,1 . . . , z

T
D,M , z̃

T
1 , . . . , z̃

T
M ]T the (DM +DNM + 2ÑM)× 1 augmented

vector of hidden variables and the frequency coupling matrix is given by

B[f ] = bdiag
{ 1

f2
IDM , IDM ⊗ b[f ]T , IM ⊗ B̃[f ]

}
=


1
f2 IDM 0DM×DNM 0DM×2ÑM

0DM×DM IDM ⊗ b[f ]T 0DM×2ÑM
02M×DM 02M×DNM IM ⊗ B̃[f ]

 .
(4.16)

Therefore, multi-frequency calibration amounts to solve a global constrained optimization prob-
lem. To achieve this goal, we introduce the following Lagrangian

L
(
{θ[f ]}f∈F , z, {x[f ]}f∈F

)
=
∑
f∈F

L[f ]
(
θ[f ], z,x[f ]

)
(4.17)

with L[f ]
(
θ[f ], z,x[f ]

)
= l[f ]

(
θ[f ]
)

+ h[f ]
(
θ[f ], z,x[f ]

)
where the penalty term reads

h[f ]
(
θ[f ], z,x[f ]

)
= 2<

{
x[f ]H

(
θ[f ] −B[f ]z

)}
+ ρ||θ[f ] −B[f ]z||22 (4.18)

The associated Lagrange parameters (or dual variables) for a given frequency f are denoted as

the (2DM + 2M) × 1 vector x[f ] = [x
[f ]
1,1, . . . , x

[f ]
D,M , x

[f ]
1,1, . . . , x

[f ]
D,M , x̃

[f ]T

1 , . . . , x̃
[f ]T

M ]T and ρ is a
regularization factor.

To sum it up, the ADMM algorithm consists in updating the three following quantities

•
(
θ̂
[f ]
)t+1

= argmin
θ[f ]

L[f ]

(
θ[f ], (ẑ)t ,

(
x̂[f ]
)t)

performed locally by each agent (4.19)

• (ẑ)t+1 = argmin
z

∑
f∈F

h[f ]
((
θ̂
[f ]
)t+1

, z,
(
x̂[f ]
)t)

performed globally at the fusion center

(4.20)

•
(
x̂[f ]
)t+1

=
(
x̂[f ]
)t

+ ρ

((
θ̂
[f ]
)t+1

−B[f ] (ẑ)t+1

)
performed locally by each agent (4.21)
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where t is the iteration counter. Minimization in (4.20) requires access to local solutions from
all agents at every frequency and admits the following closed-form expression

ẑ =

ρ∑
f∈F

(
B[f ]HB[f ]

)−1∑
f∈F

B[f ]T
(
x[f ] + ρθ[f ]

) (4.22)

which is then broadcasted to each agent as a common global variable in order to perform the
update in (4.21) locally.

The step of interest is (4.19) and we will be using an iterative approach to estimate θ[f ].
On the one hand, we consider ε[f ] and minimize successively w.r.t. each ϑ

[f ]
i,p and ϕ

[f ]
i,p for i ∈

{1, . . . , D} and p ∈ {1, . . . ,M}. On the other hand, we will be considering g[f ]. Speci�cally,

• Faraday rotation: Estimation of ϑ[f ]i,p amounts to solve

ϑ̂
[f ]

i,p = argmin
ϑ

[f ]
i,p

L[f ]
(
θ[f ], z,x[f ]

)
(4.23)

which can be computed with a one-dimensional Newton or gradient descent-type algorithm [29].
Parallelization is also possible for all i ∈ {1, . . . , D} and p ∈ {1, . . . ,M}.

• Ionospheric phase delay: For a given ϑ̂[f ]i,p for i ∈ {1, . . . , D} and p ∈ {1, . . . ,M}, minimiza-

tion of (4.19) w.r.t. ϕ[f ]
i,p results, after some calculus, in

ϕ̂
[f ]
i,p =

1

2
arg

{
−
α
[f ]
i,p

β
[f ]
i,p

}
. (4.24)

Notations and detailed calculations are provided in Appendix C.

• Electronic gains: In what follows, we omit dependence w.r.t. parameters of interest for

sake of clarity. Let us recall that g
[f ]
p =

[
[g

[f ]
p ]1, [g

[f ]
p ]2

]T
, s.t.,

G[f ]
p (g[f ]

p ) = diag{g[f ]
p } =

[
[g

[f ]
p ]1 0

0 [g
[f ]
p ]2

]
. (4.25)

We consider the following derivative

∂l[f ](g[f ])

∂[g
[f ]
p ]1

=

M∑
q=1
q>p

1

τ
[f ]
pq

λ[f ]pq +

M∑
q=1
q<p

1

τ
[f ]
qp

λ̃
[f ]
qp (4.26)

where g[f ] = [g
[f ]T

1 , . . . ,g
[f ]T

M ]T . Calculus and notations are speci�ed in Appendix D, leading to

[ĝ[f ]
p ]1 =

a
[f ]
p

b
[f ]
p

(4.27)

in which

a[f ]p = −t[f ]∗

p − [g[f ]
p ]2

(
2S∑
k=1

[w[f ]
p ]2k[ω

[f ]∗

p ]2k +

2V∑
k=1

[ς [f ]p ]2k[%
[f ]∗
p ]2k

)
− [x̃[f ]

p ]1 + ρz̃Tp [B̃[f ]T ]:,1 (4.28)
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and

b[f ]p =
2S−1∑
k=0

[w[f ]
p ]2k+1[ω

[f ]∗
p ]2k+1 +

2V−1∑
k=0

[ς [f ]p ]2k+1[%
[f ]∗
p ]2k+1 + ρ, (4.29)

in which we used the Matlab notation [·]:,k to refer to the k -th column.
Similarly, estimation of [g

[f ]
p ]2 is given by

[g[f ]
p ]2 =

ã
[f ]
p

b̃
[f ]
p

(4.30)

where

ã[f ]p = −t[f ]∗p −[g[f ]
p ]1

(
2S−1∑
k=0

[w[f ]
p ]2k+1[ω

[f ]∗
p ]2k+1 +

2V−1∑
k=0

[ς [f ]p ]2k+1[%
[f ]∗
p ]2k+1

)
−[x̃[f ]

p ]2+ρz̃
T
p [B̃[f ]T ]:,2

(4.31)
and

b̃[f ]p =
2S∑
k=1

[w[f ]
p ]2k[ω

[f ]∗
p ]2k +

2V∑
k=1

[ς [f ]p ]2k[%
[f ]∗
p ]2k + ρ. (4.32)

The proposed algorithm is based on the CG model in (3.2) and the ADMM procedure for a
multi-frequency scenario. We refer to it as the Multi-frequency Robust Calibration Algorithm
(MRCA) [151] and the global scheme is exposed in Algorithm 5.

Algorithm 5: MRCA Multi-frequency Robust Calibration Algorithm

initialize: {θ̂[f ] ← θ
[f ]
init}f∈F , ẑ ← zinit, {x̂[f ] ← x

[f ]
init}f∈F ,

{Ω̂[f ] ← Ω
[f ]
init}f∈F ,{τ̂

[f ] ← τ
[f ]
init}f∈F

while stop criterion unreached do
while stop criterion unreached do

while stop criterion unreached do

1 Obtain {ϑ̂[f ]i,p}i=1,...,D, p=1,...,M locally from (4.23)

2 Obtain {ϕ̂[f ]
i,p}i=1,...,D, p=1,...,M locally from (4.24)

3 Obtain ĝ[f ] locally from (4.27) and (4.30)

4 Obtain ẑ globally from (4.22)
5 Obtain x̂[f ] locally from (4.21)

6 Obtain {Ω̂[f ]}f∈F from (4.7)
7 Obtain {τ̂ [f ]}f∈F from (4.6)

Remark : Let us note that after step 4 of MRCA in Algorithm 5, it is possible to re�ne
the estimation: from ẑ, we deduce an estimation of the N × 1 vector zi,p, associated to the
ionospheric phase delay along the path i-p. With (4.8) and (4.11), we derive N estimates for
ϕ
[f0]
i,p and perform an average. Finally, a new estimate for z can be deduced and this additional

step can be directly incorporated into the estimation procedure.

In Figure 4.1, we represent the operation �ow and signaling exchange between the fusion
center and each local agent in our estimation procedure.
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y[f ], θ̂

[f ]
, Ω̂

[f ]
, τ̂ [f ]

}
f∈F

k -th local
processor for
frequency fk

fusion center

{
θ̂
[f ]
}
f=fk

{
θ̂
[f ]
}
f=fk

using (4.23) to (4.32)

ẑ using (4.22){
x̂[f ]
}
f=fk

using (4.21)
repeat

Figure 4.1: Communication between the k -th local processor and the fusion center. The three
arrows in the center are performed sequentially and iteratively, which corresponds to the second
loop in Algorithm 5.

Let us note that the RCMLE for the structured case exposed in Algorithm 4 was suitable for
regime 3 and can be extended to a multi-frequency scenario using the ADMM algorithm as well.
Let us call it the Multi-frequency Robust Calibration Algorithm for Regime 3 (MRCAR3). Prior
information on Ĵ

[f ]
i,p for i ∈ {1, . . . , D}, p ∈ {1, . . . ,M} and f ∈ F is provided by the output of

Algorithm 3 and contrary to the original objective function in (4.5), the considered data �delity
term is the following

l[f ](θ[f ]) =

D∑
i=1

M∑
p=1

||Ĵ[f ]
i,p −G[f ]

p (g[f ]
p )H

[f ]
i,pZ

[f ]
i (ϕ

[f ]
i )F

[f ]
i (ϑ

[f ]
i )||2F . (4.33)

Estimations in (4.20) and (4.21) are similar but minimization in (4.19) is handled with a root-
�nding algorithm or thanks to standard numerical optimization tools considering ∂L[f ](θ[f ], z,x[f ])
[29], as no closed-form expression is available. More details can be found in our paper [152].

4.4 Simulation results

To highlight the robustness of the proposed MRCA and the bene�t of multi-frequency con-
sensus optimization, we compare it with the traditional Gaussian noise assumption which is
addressed with the ALS method. We also compare our multi-frequency distributed scheme with
the so-called mono-frequency case where (per-channel) calibration is performed for each fre-
quency separately, without considering a speci�c model of variation. Each electronic gain entry
[g

[f ]
p ]k is generated as a complex circular Gaussian random variable with mean one and variance

1
4 . Ionospheric phase delay and Faraday rotation are randomly generated as function of the
TEC, drawn from a uniform distribution U(1×1017, 5×1017) and expressed in m−2. We choose
N = Ñ = 6 and the Lagrangian penalty factor is �xed empirically as ρ = 10. Let us note that
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Figure 4.2: MSE of the real part of a given complex gain vs. SNR.

tuning of such parameter is addressed in [34,153]. Finally, we considerM = 8 receiving elements,
D = 2 bright calibration sources and D′ = 4 weak background sources.

We plot in Figure 4.2 the MSE of the real part of one given gain vector g[f1] as a function of
the SNR, for di�erent number of frequencies F which are selected in the range 75 − 125 MHz,
the behavior being the same for other parameters of interest in {θ[f ]}f∈F . To attain stability in
convergence, less than 5 iterations are su�cient in each loop. The behavior is the same for the
so-called primal and dual residuals, whose convergence mostly depends on parameters ρ, N , Ñ
and initializations [35, 36].

The estimation results show better statistical performance when calibration is performed
with the proposed MRCA in comparison with state-of-the-art methods, i.e., the conventional
non-robust algorithm and/or the mono-frequency case.

As mentioned previously, multi-frequency robust calibration was also studied in the case
of interferometric station (regime 3) with an ADMM-based distributed algorithm [152]. As in
section 3.5.3, directional ionospheric phase delays are generated as linear functions of directional
shifts α[f ]

i , which we aim to estimate. We still compare the MRCAR3 with the non-robust
Gaussian case which amounts to solve a non-linear LS problem [14] and the mono-frequency
case, described in Algorithm 4. The MSE for η[f1]

1 is shown as a function of the SNR in Figure
4.3 and illustrates that the multi-frequency robust calibration algorithm still provides the best
statistical performance.

4.5 Conclusion

In radio astronomy, especially in regime 4, telescope design features and data processing
impose major challenges in terms of calibration and the number of unknowns to estimate can
be tremendously large. Thus, proposing computationally e�cient algorithms is of the utmost
importance and adopting distributed strategies is essential to reduce the global operational cost
since the data is collected and stored among a set of computational agents. Due to separabil-
ity over frequency, calibration is carried out independently for each agent and information is
brought together by a fusion center which enforces consensus thanks to available constraints.
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Figure 4.3: MSE of η[f1]
1 vs. SNR, for D = 2 bright signal sources, M = 8 antennas and D′ = 4

weak background sources.

The proposed algorithm is robust and exploits frequency variation of parameters of interest in
regime 4 where propagation conditions di�er for each element in the array and towards each
source. Such scenario is adapted for calibration of large interferometric arrays but adaptation
of the multi-frequency algorithm to regime 3 is also possible. In order to go even further in
the simulations and obtain reconstructed images, we will use the software MeqTrees in the next
chapter to simulate realistic radio telescopes and visibility measurements [37].



64 CHAPTER 4. ROBUST DISTRIBUTED CALIBRATION IN MULTI-FREQUENCY SCENARIO



Chapter 5

On realistic data simulation

5.1 Presentation of MeqTrees

In this section, we give an overview of the software MeqTrees [37], which is constituted
of packages well-suited for simulation and calibration of radio astronomical data for the next
generation of radio telescopes. It implements measurement equations as in (2.10) with speci�c
Jones terms and it simulates particular radio instruments. Thus, this software system is able to
build numerical models by generating realistic visibility measurements but also to solve for the
unknown parameters by providing benchmark calibration algorithms. Finally, it is also possible
to create images after calibration thanks to the imaging package lwimager. To illustrate how
the software proceeds, we show a screen capture in Figure 5.1. First of all, we need to consider
a Measurement Set (MS) in which all the observation setup is de�ned (the antenna positions,
the (u, v, w) points as described in section 2.1.1, the time slots, the frequency and the pointing
center). As shown in Figure 5.1, we will be considering the KAT-7 instrument, spanning 12 hours
with 60 seconds of integration time per data sample, leading to 15 120 visibility points in total.
We also need to de�ne the sky model with positions and intensities of all sources. As a �rst
step, we will be studying a set of sources taken from the Sydney University Molonglo Sky Survey
(SUMSS), at 1445 MHz, using a spectral index of 0.7. A distinction is made between image-plane
and uv-plane components. The �rst refer to the direction independent e�ects which occur at
the antennas while the latter stand for direction dependent e�ects, which the third-generation
calibration aims to correct as well. We notice that many types of instrumental or atmospheric
disturbances can be included, including the contribution of noise.

After compilation, we de�ne the size of data chunks being processed, which impacts the
simulation speed. And we choose in which ouput column of the MS the simulated data are �lled
in (the MS can be viewed as a large array with many columns). This is shown in Figure 5.2.
Once simulations have runned and visibilities have been generated, several parameters can be set
in the imaging options: column of visibilities to consider, name of output image �le, image size,
... It can be seen from (2.59) that the dirty image is a convolution between the true sky image
and the dirty beam. To remove sidelobes due to imperfect uv-coverage, a deconvolution process
is thus required. We notice in Figure 5.2 that the CLEAN algorithm can be speci�ed, candidates
being Clark, Hogbom and CS Clean algorithms, along with parameters describing them.

The software MeqTrees also proposes a solver in the LS sense, which minimizes the di�erence
between observed and predicted visibilities, i.e., by �tting the model to the data. To this end,
the MS and the sky model, i.e., the speci�c sources to calibrate, are required and calibration
settings need to be �xed, among which the solvable parameters to consider and the type of
output visibilities, as exposed in Figure 5.3. Indeed, output visibilities can be selected among
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Figure 5.1: Compile-time options of the MeqTrees software for con�guration of the simulated
data.

Figure 5.2: Runtime options of the MeqTrees software for running the simulation and performing
imaging.

the corrected data, the (un)corrected residuals and the predict. Let us consider calibration along
the i-th source and for the antenna pair (p, q). If we note Xpq the available data, i.e., the
observed visibilities, and consider the following corrupted model (also called the predict)

Vi,pq(θ) = Gp(gp)Ki,pCiK
H
i,qG

H
q (gq) (5.1)

with only the typical propagation delay Ki,p Jones matrix and the direction inpendent electronic
gain Gp term, then calibration amounts to minimize Xpq −Vi,pq(θ) w.r.t. θ which includes the
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per-antenna electronic gains gp and gq. The corrected and uncorrected residuals are, respectively,
given by

Ĝ−1p (Xpq −Vi,pq(θ̂))ĜH−1

q (5.2)

and
Xi,pq −Vi,pq(θ̂). (5.3)

Finally, the corrected data are written as

Ĝ−1p XpqĜ
H−1

q . (5.4)

Considering the residuals enables to remove the contribution of known reference sources and un-
veil the weak unknown signals buried in noise and bright foregrounds. Thus, accurate calibration
leads to better substraction of bright sources from the observed data and enables imaging of faint
background sources which are hardly visible otherwise. We will pay particular attention to this
kind of output visibilities.

Figure 5.3: Compile-time options of the MeqTrees software for calibration solver.

5.2 Handling of MeqTrees: academic examples

To begin with, we start with a selected set of sources from the SUMSS, assumed to be
unpolarized. Thus, only the intensity I is non-zero in the source brightness introduced in (2.10).
They are exposed in Table 5.1 and we will refer to them thanks to the two �rst numbers in the
name.

Table 5.1: Selection of point-like sources from the SUMMS.
Name RA (hours h, minutes m, seconds s) DEC (degrees ◦, minutes ', seconds �) Intensity (Jansky Jy)
38_J1845M76 19 12 16.78 − 75 34 28.10 0.1097
43_J1930M76 19 15 54.44 − 74 39 36.90 1.142

In Figure 5.4, we expose the bene�t of deconvolution by showing the dirty (left) and the
clean (right) images, with the single bright source number 43 in the middle which is free of any
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Figure 5.4: Dirty (left) and clean (right) images in a corruption-free environment and a single
source in the sky model.

disturbances here. Likewise, let us consider a di�use radio source, named M31, where Crab-
like supernova remnants are located. To recover such complex structure, �ne measurements are
required, thus, in this speci�c case, we consider the MeerKAT radio telescope whose dense uv
coverage was shown in Figure 2.2. Indeed, by considering 64 antennas during 4 hours and 60
seconds integration time per data sample, the full number of visibility points is 483 840 instead
of 15 120. In Figure 5.5, we expose the true ideal image along with the clean and dirty images.
In the rest of the chapter, we stick to the KAT-7 instrument for computational issues.

To highlight the e�ects due to the presence of unknown electronic receiver gains, we make
the dirty images with and without simulating periodically varying errors for gains G. Visual
results are exposed in Figure 5.6, where the bright source number 43 and the weaker source
number 38 are considered. The position of the latter is denoted thanks to a red square around
it, in the uncorrupted case. We notice that source number 38 is hardly visible but becomes fully
hidden when electronic gains are included in the generated data. However, as mentioned before,
it is possible to reveal the faint background by performing accurate estimation of perturbations
and computing residuals. For that purpose, we still consider the previously introduced G Jones
terms and perform calibration along source number 43 with the solver in MeqTrees. Dirty
images associated to uncorrected and corrected residuals are shown in Figure 5.7. As expected,
recovering of weak source number 38 is possible.

Figure 5.5: Ideal (left), clean (middle) and dirty (right) images of the di�use M31 source without
any perturbations.
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Figure 5.6: Dirty images with (right) and without (left) considering disruptive G Jones gains.

Figure 5.7: Dirty images associated to the uncorrected residuals (left) and corrected residuals
(right), solving for G Jones terms.

In the following, we aim to compare the proposed algorithms, presented in the previous
chapters, with the MeqTrees solver.

5.3 Comparison with the proposed algorithms

We wish to test the designed robust calibration techniques on realistic data sets simulated
with MeqTrees and evaluate the results directly on the reconstructed residual images. To achieve
this, the following steps are required

• Simulation of realistic corrupted data under MeqTrees

• Retrieve the generated data and perform calibration with the proposed algorihms

• Insert the output calibrated visibilities, e.g., the corrected residuals, into the MS

• Make the corresponding dirty or clean images with lwimager
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Table 5.2: Study of D′ = 16 weak sources from the
SUMMS.
Name RA (h,m,s) DEC (◦, ', �) Intensity (Jy)
16_J1845M76 19 01 34.74 − 74 44 01.40 0.0602
17_J1930M76 19 01 39.30 − 74 47 24.00 0.0998
18_J1930M76 19 02 18.01 − 74 04 24.10 0.0632
23_J1930M72 19 05 48.63 − 73 49 48.20 0.1206
25_J1845M76 19 06 32.35 − 74 22 08.70 0.0816
26_J1845M76 19 06 56.66 − 75 11 00.30 0.0826
31_J1845M76 19 10 22.68 − 74 17 36.60 0.1167
33_J1845M76 19 10 46.30 − 74 55 32.80 0.1059
34_J1930M76 19 10 50.15 − 74 23 49.80 0.0699
38_J1845M76 19 12 16.78 − 75 34 28.10 0.1097
41_J1845M76 19 14 10.38 − 75 15 41.90 0.066
47_J1930M76 19 17 33.14 − 74 32 59.20 0.0746
49_J1930M76 19 18 33.39 − 74 45 17.40 0.0774
50_J1930M72 19 19 02.38 − 74 02 50.30 0.0737
54_J1930M76 19 21 14.53 − 74 25 59.60 0.0583
59_J1930M76 19 26 48.44 − 73 58 19.20 0.0575

Let us consider calibration source number 43 and D′ = 16 weak sources taken from the
SUMSS, described in Table 5.2. They are also illustrated in Figure 5.8, without any noise or
perturbation e�ects.

We assume that all sources, calibration and non-calibration ones, are corrupted by Faraday
rotation matrices, noise is also added and we compare the calibration solver in MeqTrees with
the previously introduced MRCAR3. In Figure 5.9, we show the corrected residual images at 895
MHz in a small area surrounding the calibration source number 43, whose position is indicated by
a red cross. We notice better removal of the calibration source for the proposed multi-frequency
robust calibration algorithm while weak sources number 47 and 49 are also visible on the left
hand side of the zoomed image. To illustrate how well a weak background source is recovered, we
plot in Figure 5.10 the peak �ux of weak source number 41 (non-calibration background source)
as a function of frequency. Better �ux recovering is attained with the MRCAR3.

Figure 5.8: Uncorrupted dirty image with the D′ = 16 weak sources we wish to recover after
calibration.
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Figure 5.9: Corrected residual images for the ideal case (left), the proposed MRCAR3 (middle)
and the calibration solver in MeqTrees (right).
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Figure 5.10: Recovered �ux of one weak background source after calibration for F = 9 frequen-
cies.

Furthermore, we wish to show the performance of the MRCA, described in Algorithm 5,
which is adapted for calibration of large interferometric arrays in regime 4. In Figures 5.11
and 5.12, we still represent the corrected residual images in restricted areas surrounding speci�c
background sources, once calibration and subtraction of the bright source have been performed.
In Figure 5.11, the peak �ux intensity of the recovered source (number 59) is respectively given
by (a) true 0.11856 Jy, (b) 0.115736 Jy, (c) 0.105937 Jy and (d) 0.08049 Jy. The corresponding
recovered peak �ux of the three sources in Figure 5.12 is given in Table 5.3.

Table 5.3: Recovered peak �ux (in Jy) for sources in Figure
5.12.
Name Source number 31 Source number 34 Source number 25
(a) True 0.167113 0.108398 0.122119
(b) 0.165512 0.107406 0.122114
(c) 0.121019 0.078651 0.0897499
(d) 0.116302 0.0781593 0.0815132
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(a) (b) (c) (d)

Figure 5.11: Corrected residual for (a) ideal case, (b) MRCA, (c) multi-frequency non-robust cal-
ibration and (d) mono-frequency non-robust calibration, around the weakest background source,
i.e., source number 59.

(a) (b) (c) (d)

Figure 5.12: Corrected residual for (a) ideal case, (b) MRCA (c) multi-frequency non-robust
calibration and (d) mono-frequency non-robust calibration, around three background source,
i.e., sources number 25, 31 and 34.

Let us note that ionospheric perturbation e�ects corrupt the data here. By multi-frequency
non-robust calibration, we mean that a distributed strategy is adopted to handle multiple frequen-
cies, e.g., with the ADMM procedure, but the algorithm is based on a Gaussian noise assumption.
As regards the calibration solver in MeqTrees, we also name it mono-frequency non-robust cal-
ibration as we do not exploit information across frequency (calibration is performed for each
frequency separately) and the Gaussian noise model is typically assumed.

5.4 Conclusion

The MeqTrees software system is uniquely suited for generation of realistic radio astronomical
data and also proposes benchmark calibration algorithms, adapted to new radio telescopes.
Various direction dependent and independent e�ects can be incorporated such as the receiver
complex gains, the frequency bandpass and the primary beam of antennas. Each individual
e�ect is viewed as a separable term in the software and can be corrected independently during
calibration. Dirty and clean images can also be created in order to reveal the bene�t of calibration
and the presence of weak sources of interest.

During my stay at Lab. J.-L. Lagrange in Nice (with Prof. A. Ferrari), work was conducted
to master the essential features of the MeqTrees system (data simulation, calibration and imag-
ing) and secure the linkage between the designed robust calbiration algorithms from the Matlab

environment and this software widely used by the community of researchers in radio astronomy.
This was not straightforward and has taken time to develop Python scripts which handle the
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MS data sets, to study the robustness aspects by uncluding the CG-based approaches and ex-
tend to the multi-frequency scenario. The �exibility of the software also makes it possible to
include our own simulated perturbation e�ects on the basic uncorrupted data, generated by the
interferometer under study. In brief, the software MeqTrees enables to understand better what
an interferometer would measure in practice but also to consider the practical feasibility of the
proposed techniques in this document.
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Chapter 6

Conclusion and prospects

The work described in this document deals with calibration of radio interferometers in non-
Gaussian environment and multi-frequency scenario. Speci�cally, a statistical study revealed
that the classical Gaussian noise assumption was not suitable to model the contribution of
outliers in visibility measurements, which are due to weak unknown background sources or radio
frequency interferences. To address this problem, we considered the CG distribution, composed
of texture and speckle parts. Deterministic and Bayesian approaches have been proposed but
numerical simulations emphasized that the relaxed version (deterministic approach) was more
�exible and avoided model misspeci�cations. Speci�cally, this latter approach is based on the
ML scheme. It enables to estimate iteratively the noise parameters, and more importantly, the
Jones matrices which account for all perturbation e�ects along the signal propagation path.
Such matrices can be viewed as non-structured or structured during the estimation process. To
reduce the computational burden, the EM and the BCD algorithms were used, leading to closed-
form expressions. For comparative purposes, traditional calibration algorithms as the classical
Gaussian noise assumption and the robust Student's t-based method were considered.

To deal with multiple frequencies, we made use of a distributed and consensus strategy by
exploiting the speci�c variation of parameters of interest w.r.t. frequency. Some variation models
are available in the literature as it is the case for ionospheric disruptions, otherwise smoothness
across frequency can be assumed using polynomials. To perform consensus optimization, the
ADMM procedure was employed and the global computational load was distributed across a
network of agents while the fusion center enforced consensus. All along the study, we focused
on two particular regimes, i.e., regimes 3 and 4 as direction dependent distortions are taken into
account and such scenarios are more representative of the new generation of radio interferometers.
The designed multi-frequency robust calibration algorithm was assessed against state-of-the art
mono-frequency and/or non robust cases.

Finally, the use of the sotftware MeqTrees enabled to simulate realistic radio data sets with
speci�ed perturbation e�ects and to provide a benchmark calibration algorithm that has been
compared to our work. During the calibration process, weak unknown sources contribute to
the noise, a�ecting and changing its classical Gaussian nature but during imaging, they become
the elements of interest we wish to reveal as they are not readily accessible. Thus, a better
removal of calibration sources and recovering of background sources in residual images indicates
a more accurate estimation of perturbation e�ects during calibration and enables to evaluate the
performances of the designed algorithms.

Among the possible future prospects which naturally follow this work, we can mention the
following points
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• The temporal variation of parameters of interest could be included into the calibration pro-
cess [73]. Proposing independent solutions between blocks of time intervals is a straight-
forward extension and only requires to add a sum over time in the likelihood expression.
However, solving for fast- or slow-varying e�ects w.r.t. time, thus considering di�erent time
scales remains to be done. A similar approach to the one proposed in the multi-frequency
scenario can be adopted.

• Compressive sensing approaches are used increasingly in radio astronomy imaging as they
promote sparsity (mostly empty sky) and lead to good reconstruction results, providing
competitive results with respect to traditional methods as CLEAN [99,123,154,155]. How-
ever, the Gaussian noise assumption is usually still considered. Thus, combining both
aspects (sparsity and robustness) remains to be developed in future work.

• Optimization on matrix manifolds has developed signi�cantly recently and yields better
performing algorithms when the geometric structure is exploited [156]. Calibration is essen-
tially an optimization problem and reformulation of the problem on a Riemannian manifold
has already been proposed for radio interferometric calibration and leads to faster conver-
gence with reduced computational cost compared to traditional calibration on Euclidean
space [157]. Therefore, the designed robust algorithms in this work could bene�t from
adaptation to Riemannian manifold, using the RTR method for instance [115].

• The CRB is of crucial importance in estimation theory and statistics as it provides the
minimal variance of unbiased estimators [145,158]. But it can also be considered for design
con�guration issues in antennas of next stations [159�161]. Indeed, the patterning can a�ect
the performances of deconvolution and calibration processes and studying performance
bounds can give an idea about the optimal design of stations as regards the number of
antennas to consider, their positions (randomized or following a speci�c geometry) and the
array aperture. Furthermore, studying the CRB is of particular interest, notably in order
to investigate the impact of misspeci�ed models (noise distribution, frequency variation of
parameters, antenna positions) [162].

• Testing the designed algorithms on real data is worth exploring and requires adaptation
to very large scales [6, 53]. Indeed, with a tremendous number of radio antennas and
visible radio sources in their �eld-of-view, the computational cost can become a restricting
factor. E�orts have been made in this work to propose algorithms with low computational
complexity but deeper cost-e�ciency analysis would facilitate this future test phase.



Appendix A

Per-baseline speckle component in the

CG distribution

We describe here the corresponding expressions of (3.27) and (3.29) when a di�erent speckle
matrix Ωpq is assumed for each baseline p < q, p, q ∈ {1, . . . ,M}2. In this case, the log-likelihood
function is written as

ln p(y|θ, τ ,Ω12,Ω13, . . . ,Ω(M−1)M ) =− 4B lnπ − 4
∑
pq

ln τpq −
∑
pq

ln |Ωpq| (A.1)

−
∑
pq

1

τpq
uHpq(θ)Ω−1pq upq(θ).

For each antenna pair, the texture estimate reads

τ̂pq =
1

4
uHpq(θ)Ω−1pq upq(θ) (A.2)

while the per-baseline speckle component is given by

Ω̂
t+1
pq = 4

upq(θ)uHpq(θ)

uHpq(θ)
(
Ω̂
t
pq

)−1
upq(θ)

. (A.3)

The remainder of the algorithm is straightforwardly obtained using (A.3).

77



78 APPENDIX A. PER-BASELINE SPECKLE COMPONENT IN THE CG DISTRIBUTION



Appendix B

Use of the BCD algorithm for

estimation of non-structured Jones

matrices

We present here the main steps leading to (3.43). Firstly, for sake of clarity, let us denote
ci = [ci1 , ci2 , ci3 , ci4 ]T to refer to the four entries of the vectorization of source coherency matrix
Ci. Likewise, for the i-th source, p-th antenna and q-th antenna, respectively, we write

Ji,p(θi,p) =

[
pi1 pi2
pi3 pi4

]
and Ji,q(θi,q) =

[
qi1 qi2
qi3 qi4

]
(B.1)

, i.e., θi,p = [pi1 , pi2 , pi3 , pi4 ]T and θi,q = [qi1 , qi2 , qi3 , qi4 ]T .
Using these latter notation, we obtain (3.41) where

Σi,q =


αi,q βi,q 0 0

0 0 αi,q βi,q
γi,q ρi,q 0 0

0 0 γi,q ρi,q

 (B.2)

in which αi,q = q∗i1ci1 + q∗i2ci3 , βi,q = q∗i1ci2 + q∗i2ci4 , γi,q = q∗i3ci1 + q∗i4ci3 and ρi,q = q∗i3ci2 + q∗i4ci4 .
We also obtain (3.42) where

Υi,q =


λi,q µi,q 0 0

νi,q ξi,q 0 0

0 0 λi,q µi,q
0 0 νi,q ξi,q

 (B.3)

in which λi,q = qi1ci1 + qi2ci2 , µi,q = qi1ci3 + qi2ci4 , νi,q = qi3ci1 + qi4ci2 and ξi,q = qi3ci3 + qi4ci4 .

Finally, the cost function in (3.40) can be written as

φi(θi,p) =
(
wi,p − si,p(θi,p)

)H
Ai,p

(
wi,p − si,p(θi,p)

)
+(

w̃i,p − s̃i,p(θi,p)
)H

Ãi,p

(
w̃i,p − s̃i,p(θi,p)

)
+ Constant (B.4)

where

• wi,p = [wT
i,p(p+1), . . . ,w

T
i,pM ]T
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• si,p(θi,p) = [sTi,p(p+1)(θi,p), . . . , s
T
i,pM (θi,p)]

T

• Ai,p = bdiag{βiτp(p+1)Ω, . . . , βiτpMΩ}−1.

Furthermore, we have

• w̃i,p = [w∗
T

i,1p, . . . ,w
∗T
i,(p−1)p]

T

• s̃i,p(θi,p) = [s∗
T

i,1p(θi,p), . . . , s
∗T
i,(p−1)p(θi,p)]

T

• Ãi,p = bdiag{βiτ1pΩ∗, . . . , βiτ (p−1)pΩ∗}−1.

We make use of (3.41) in what follows

si,p(θi,p) =

si,p(p+1)(θi,p)
...

si,pM (θi,p)

 =

Σi,p+1θi,p
...

Σi,Mθi,p

 = Σiθi,p (B.5)

where Σi = [ΣT
i,p+1, · · · ,ΣT

i,M ]T . Likewise, we use (3.42) in

s̃i,p(θi,p) =

 s∗i,1p(θi,p)
...

s∗i,(p−1)p(θi,p)

 =

 Υ∗i,1θi,p
...

Υ∗i,p−1θi,p

 = Υiθi,p (B.6)

in which Υi = [Υ∗
T

i,1 , · · · ,Υ∗
T

i,p−1]
T .

Inserting (B.5) and (B.6) into (B.4) and taking the derivative w.r.t. θi,p leads to the expres-
sions in (3.43), using the fact that Ai,p and Ãi,p are Hermitian.



Appendix C

Estimation of the ionospheric phase

delays in multi-frequency scenario

We specify here the notations which lead to (4.24). To this end, we need to consider ∂l[f ](θ[f ])

∂ϕ
[f ]
i,p

and ∂h[f ](θ[f ])

∂ϕ
[f ]
i,p

. Thus, minimization (4.19) w.r.t. phase delay ϕ[f ]
i,p leads to

β
[f ]
i,p exp

(
jϕ

[f ]
i,p

)
+ α

[f ]
i,p exp

(
− jϕ[f ]

i,p

)
= 0 (C.1)

in which

• β[f ]i,p =
∑M

q=1
q>p

j

τ
[f ]
pq

exp
(
− jϕ[f ]

i,q

)
δ
[f ]
i,pq +

∑M
q=1
q<p

j

τ
[f ]
qp

exp
(
− jϕ[f ]

i,q

)
δ
[f ]H

i,qp + jx
[f ]∗

i,p − jρzHi,pb[f ]∗

• α[f ]
i,p =

∑M
q=1
q>p

−j
τ

[f ]
pq

exp
(
jϕ

[f ]
i,q

)
δ
[f ]H

i,pq −
∑M

q=1
q<p

j

τ
[f ]
qp

exp
(
jϕ

[f ]
i,q

)
δ
[f ]
i,qp − jx

[f ]
i,p + jρb[f ]T zi,p.

We also introduce

• δ[f ]i,pq =

−v
[f ]H

pq +
D∑
k=1
k 6=i

s
[f ]H

k,pq

Ω[f ]−1
d
[f ]
i,pq

• d
[f ]
i,pq =

(
G

[f ]∗
q (g

[f ]
q )H

[f ]∗

i,q F
[f ]
i,q(ϑ

[f ]
i,q)
)
⊗
(
G

[f ]
p (g

[f ]
p )⊗H

[f ]
i,pF

[f ]
i,p(ϑ

[f ]
i,p)
)

c
[f ]
i .

Finally, we directly deduce (4.24) from (C.1).
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Appendix D

Estimation of the complex electronic

gains in multi-frequency scenario

We describe here the notations introduced in the estimation of frequency dependent electronic
gains. The expressions in (4.26) are given by

λ[f ]pq = t[f ]pq + w[f ]H

pq

(
I2 ⊗G[f ]∗

p

)
$[f ]
pq (D.1)

in which

• t[f ]pq = −v
[f ]H

pq m
[f ]
pq

• m
[f ]
pq = Ω[f ]−1

(
G

[f ]∗
q ⊗E1

)
w

[f ]
pq

• E1 =

[
1 0
0 0

]
.

Besides, w
[f ]
pq =

D∑
i=1

(
H

[f ]∗

i,q Z
[f ]∗

i,q (ϕi,q)F
[f ]
i,q(ϑ

[f ]
i,q)
)
⊗
(
H

[f ]
i,pZ

[f ]
i,p(ϕi,p)F

[f ]
i,p(ϑ

[f ]
i,p)
)

c
[f ]
i and

$
[f ]
pq =

(
G

[f ]
q ⊗ I2

)
m

[f ]
pq .

Similarly, we have
λ̃
[f ]
qp = t̃[f ]qp + w̃[f ]H

qp

(
G[f ]∗
p ⊗ I2

)
$̃[f ]
qp (D.2)

in which

• t̃[f ]qp = −w̃
[f ]H

qp v
[f ]
qp

• w̃
[f ]
qp = Ω[f ]−1

(
E1 ⊗G

[f ]
q

)
w

[f ]
qp ,

• $̃[f ]
qp =

(
I2 ⊗G

[f ]
q

)
w

[f ]
qp .

The derivative in (4.26) can be written more compactly

∂l[f ](g[f ])

∂[g
[f ]
p ]1

= t[f ]p + w[f ]H

p

(
IS ⊗ I2 ⊗G[f ]∗

p

)
ω[f ]
p + w̃[f ]H

p

(
IV ⊗G[f ]∗

p ⊗ I2

)
ω̃[f ]
p (D.3)

in which
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• t[f ]p =
M∑
q=1
q>p

1

τ
[f ]
pq

t
[f ]
pq +

M∑
q=1
q<p

1

τ
[f ]
qp

t̃
[f ]
qp ,

• w
[f ]
p = [ 1

τ
[f ]
p(p+1)

w
[f ]T

p(p+1), . . . ,
1

τ
[f ]
pM

w
[f ]T

pM ]T

• w̃
[f ]
p = [ 1

τ
[f ]
1p

w̃
[f ]T

1p , . . . , 1

τ
[f ]
(p−1)p

w̃
[f ]T

(p−1)p]
T .

Similarly, we introduce ω[f ]
p = [$

[f ]T

p(p+1), . . . ,$
[f ]T

pM ]T and ω̃[f ]
p = [$̃

[f ]T

1p , . . . , $̃
[f ]T

(p−1)p]
T .

If we are considering the p-th array element, we note S = (M − p) and V = (p− 1). Let us
de�ne the permutation matrix P = [e1, e3, e2, e4] where the 4× 1 vector ek has zeros except at
the k -th position which is equal to unity. With ς [f ]p =

(
IV ⊗PT

)
w̃

[f ]
p and %[f ]p = (IV ⊗P) ω̃

[f ]
p ,

we obtain the following one-dimensional linear equation

∂l[f ](g[f ])

∂[g
[f ]
p ]1

=t[f ]p + [g[f ]∗
p ]1

2S−1∑
k=0

[w[f ]∗
p ]2k+1[ω

[f ]
p ]2k+1 + [g[f ]∗

p ]1

2V−1∑
k=0

[ς [f ]
∗

p ]2k+1[%
[f ]
p ]2k+1

+ [g[f ]∗
p ]2

2S∑
k=1

[w[f ]∗
p ]2k[ω

[f ]
p ]2k + [g[f ]∗

p ]2

2V∑
k=1

[ς [f ]
∗

p ]2k[%
[f ]
p ]2k. (D.4)

Considering (D.4) and ∂h[f ](g[f ])

∂[g
[f ]
p ]1

leads to (4.27). Estimation of [g
[f ]
p ]2 is similar, except that we

need to consider the following quantities

• m
[f ]
pq = Ω[f ]−1

(
G

[f ]∗
q ⊗E2

)
w

[f ]
pq

• w̃
[f ]
qp = Ω[f ]−1

(
E2 ⊗G

[f ]
q

)
w

[f ]
qp

• E2 =

[
0 0
0 1

]
.
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Titre : Contributions aux méthodes de calibration robuste en radioastronomie 

Mots clés : Estimation, calibration robuste, optimisation distribuée, radioastronomie 

Résumé : En radioastronomie, les signaux d’in- 

térêt mesurés par les interféromètres sont per-

turbés par de nombreux effets environnemen-

taux et instrumentaux, nécessitant la mise en 

oeuvre de techniques algorithmiques pour les 

traiter et pouvoir ainsi reconstruire in fine des 

images parfaitement nettes de l'espace. Cette 

étape de correction des perturbations se nomme 

la calibration et repose généralement sur une 

modélisation gaussienne du bruit, pour une 

seule fréquence considérée. Cependant, en 

pratique, cette l'hypothèse n'est pas toujours 

valide car de multiples sources inconnues de 

faible intensité sont visibles dans le champ de 

vision et des interférences radioélectriques per-

turbent les données. En outre, réaliser une cali-

bration indépendante, fréquence par fréquence, 

n'est pas la manière la plus optimale de procé-

der. 

Le but de ce travail est donc de développer des 

algorithmes de correction dans le traitement des 

signaux radio qui soient robustes à la présence 

d’éventuelles valeurs aberrantes ou sources 

d'interférences, et qui soient adaptés au contexte 

multi-fréquentiel.  

Par conséquent, nous nous appuyons sur une 

modélisation plus générale que la loi 

gaussienne, appelée processus Gaussien 

composé, et proposons un algorithme itératif 

basé sur l'estimation au sens du maximum de 

vraisemblance. En accord avec le scénario 

multi-fréquentiel sous étude, nous exploitons la 

variation spectrale des perturbations en utilisant 

des méthodologies telles que l'optimisation 

distribuée sous contraintes et le traitement 

parallèle des données. 

 

 

Title: Contributions to robust calibration methods in radio astronomy 

Keywords: Estimation, robust calibration, distributed optimization, radio astronomy 

Abstract: Accurate calibration is of critical 

importance for new advanced interferometric 

systems in radio astronomy in order to recover 

high resolution images with no distortions. This 

process consists in correcting for all 

environmental and instrumental effects which 

corrupt the observations. Most state-of-the-art 

calibration approaches assume a Gaussian 

noise model and operate mostly in an iterative 

manner for a mono-frequency scenario. 

However, in practice, the Gaussian classical 

noise assumption is not valid as radio 

frequency interference affects the 

measurements and multiple unknown weak 

sources appear within the wide field-of-view. 

Furthermore, considering one frequency bin at 

a time with a single centralized agent 

processing all data leads to suboptimality and 

computational limitations.   

The goal of this thesis is to explore robustness 

of calibration algorithms w.r.t. the presence of 

outliers in a multi-frequency scenario. To this 

end, we propose the use of an appropriate noise 

model, namely, the so-called compound-

Gaussian which encompasses a broad range of 

different heavy-tailed distributions. To com-

bine limited computational complexity and 

quality of calibration, we designed an iterative 

calibration algorithm based on the maximum 

likelihood estimator under the compound-

Gaussian modeling.  In addition, a computa-

tionally efficient way to handle multiple sub-

frequency bands is to apply distributed and 

decentralized strategies. Thus, the global opera-

tional load is distributed over a network of 

computational agents and calibration amounts 

to solve a global constrained problem thanks to 

available variation models or by assuming 

smoothness across frequency. 
 

 

 

 


