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Résumé
Les problèmes d’optimisation apparaissent naturellement pendant l’entraine-

ment de modèles d’apprentissage supervisés. Un exemple typique est le problème de
minimisation du risque empirique (ERM), qui vise à trouver un estimateur en mini-
misant le risque sur un ensemble de données. Le principal défi consiste à concevoir
des algorithmes d’optimisation efficaces permettant de traiter un grand nombre de
données dans des espaces de grande dimension. Dans ce cadre, les méthodes clas-
siques d’optimisation, telles que l’algorithme de descente de gradient et sa variante
accélérée, sont coûteux en termes de calcul car elles nécessitent de passer à travers
toutes les données à chaque évaluation du gradient. Ce défaut motive le dévelop-
pement de la classe des algorithmes incrémentaux qui effectuent des mises à jour
avec des gradients incrémentaux. Ces algorithmes réduisent le coût de calcul par
itération, entraînant une amélioration significative du temps de calcul par rapport
aux méthodes classiques. Une question naturelle se pose : serait-il possible d’accé-
lérer davantage ces méthodes incrémentales ? Nous donnons une réponse positive
en introduisant plusieurs schémas d’accélération génériques, qui s’appliquent aux
méthodes d’optimisation de premier ordre.

Dans le chapitre 2, nous développons une variante proximale de l’algorithme
Finito/MISO, qui est une méthode incrémentale initialement conçue pour des pro-
blèmes lisses et fortement convexes. Nous introduisons une étape proximale dans
la mise à jour de l’algorithme pour prendre en compte la pénalité de régularisation
qui est potentiellement non lisse. Lorsque le problème est fortement convexe, l’algo-
rithme admet un taux de convergence linéaire similaire à l’algorithme Finito/MISO
original. L’avantage de cette méthode est qu’elle donne systématiquement un certi-
ficat d’optimalité à chaque itération, basé sur des bornes inférieures quadratiques.
Contrairement aux algorithmes duals comme SDCA, la construction de notre al-
gorithme est purement primale. Ni la preuve de convergence ni l’algorithme ne
nécessitent la dualité de Fenchel, ce qui le rend facile à évaluer en pratique.

Dans le chapitre 3, nous introduisons un schéma d’accélération générique pour
les problèmes convexes, appelé Catalyst, lequel accélère les méthodes d’optimisation
de premier ordre dans le sens de Nesterov. Il s’applique à une grande classe d’algo-
rithmes, y compris la descente de gradient, la descente de gradient par coordonnées,
des algorithmes incrémentaux tels que SAG, SAGA, SDCA, SVRG, Finito/MISO
et leurs variantes proximales. Pour toutes ces méthodes, nous montrons qu’une ac-
célération est obtenue en appliquant Catalyst sur les problèmes convexes. Il est
important de remarquer que notre approche est capable de traiter des objectifs non
fortement convexes même si certaines méthodes incrémentales ne sont définies que
sur des problèmes fortement convexes. En outre, Catalyst peut être vu comme une
variante approchée de l’algorithme de point proximal accéléré. À chaque itération,
il utilise la méthode que l’on souhaite accélérer pour résoudre un sous problème,
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qui revient à approcher un opérateur proximal. La clé de l’accélération est de choi-
sir attentivement un critère d’arrêt et de contrôler l’effort de calcul requis. Nous
montrons ensuite que l’accélération est bien effectuée en pratique.

Dans le chapitre 4, nous présentons une seconde approche générique qui applique
les principes Quasi-Newton pour accélérer les méthodes de premier ordre, appelée
QuickeNing. Le schéma s’applique à la même classe de méthodes que Catalyst. À
notre connaissance, QuickeNing est le premier algorithme de type Quasi-Newton
compatible avec les objectifs composites et la structure de somme finie. L’algorithme
admet une simple interprétation comme une combinaison de l’algorithme L-BFGS
et de la régularisation Moreau-Yosida. Nous proposons une nouvelle stratégie pour
déterminer le pas à chaque itération afin d’éviter des recherches linéaires coûteuses,
ce qui rend l’algorithme pratique à l’utilisation. Nous montrons expérimentalement
que QuickeNing apporte une amélioration significative par rapport aux méthodes
concurrentes dans les problèmes d’apprentissage à grande échelle.

Nous concluons cette thèse en proposant une extension de l’algorithme Cata-
lyst au cas non convexe. Il s’agit d’un travail en collaboration avec Dr. Courtney
Paquette et Pr. Dmitriy Drusvyatskiy, de l’Université de Washington, et mes enca-
drants de thèse. Le point fort de cette approche réside dans sa capacité à s’adapter
automatiquement à la convexité. En effet, aucune information sur la convexité de
la fonction n’est nécessaire avant de lancer l’algorithme. Ceci est réalisé par une
étape spécifique, appelée auto-adaptation, qui exploite l’information de convexité lo-
cale. Lorsque l’objectif est convexe, l’approche proposée présente les mêmes taux de
convergence que l’algorithme Catalyst convexe, entraînant une accélération. Lorsque
l’objectif est non-convexe, l’algorithme converge vers les points stationnaires avec
le meilleur taux de convergence pour les méthodes de premier ordre. Des résultats
expérimentaux prometteurs sont observés en appliquant notre méthode à des pro-
blèmes de factorisation de matrice parcimonieuse et à l’entrainement de models de
réseaux de neurones.



Abstract
Optimization problems arise naturally in machine learning for supervised prob-

lems. A typical example is the empirical risk minimization (ERM) formulation,
which aims to find the best a posteriori estimator minimizing the regularized risk
on a given dataset. The current challenge is to design efficient optimization algo-
rithms that are able to handle large amounts of data in high-dimensional feature
spaces. Classical optimization methods such as the gradient descent algorithm and
its accelerated variants are computationally expensive under this setting, because
they require to pass through the entire dataset at each evaluation of the gradient.
This was the motivation for the recent development of incremental algorithms. By
loading a single data point (or a minibatch) for each update, incremental algorithms
reduce the computational cost per-iteration, yielding a significant improvement com-
pared to classical methods, both in theory and in practice. A natural question arises:
is it possible to further accelerate these incremental methods? We provide a positive
answer by introducing several generic acceleration schemes for first-order optimiza-
tion methods, which is the main contribution of this manuscript.

In chapter 2, we develop a proximal variant of the Finito/MISO algorithm, which
is an incremental method originally designed for smooth strongly convex problems.
In order to deal with the non-smooth regularization penalty, we modify the update
by introducing an additional proximal step. The resulting algorithm enjoys a similar
linear convergence rate as the original algorithm, when the problem is strongly
convex. More interestingly, a practical optimality certificate based on quadratic
lower bounds is systematically given. In contrast to other dual-type algorithms like
proximal SDCA, the construction of our algorithm is purely primal. Neither the
proof of convergence nor the algorithm requires the Fenchel conjugate, which makes
it more practical.

In chapter 3, we introduce a generic acceleration scheme, called Catalyst, for
accelerating gradient-based optimization methods in the sense of Nesterov. Our
approach applies to a large class of algorithms, including gradient descent, block
coordinate descent, incremental algorithms such as SAG, SAGA, SDCA, SVRG,
Finito/MISO, and their proximal variants. For all of these methods, we provide
acceleration and explicit support for non-strongly convex objectives. The Catalyst
algorithm can be viewed as an inexact accelerated proximal point algorithm, apply-
ing a given optimization method to approximately compute the proximal operator
at each iteration. The key for achieving acceleration is to appropriately choose an
inexactness criteria and control the required computational effort. We provide a
global complexity analysis and show that acceleration is useful in practice.

In chapter 4, we present another generic approach called QuickeNing, which ap-
plies Quasi-Newton principles to accelerate gradient-based optimization methods.
The scheme is applicable to the same class of functions as Catalyst, including most
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of the well-known first-order algorithms. To the best of our knowledge, QuickeNing
is the first Quasi-Newton type algorithm compatible with both composite objectives
and the finite sum setting. The algorithm can be interpreted as a combination of in-
exact L-BFGS algorithm and the Moreau-Yosida regularization. A particular warm
start strategy is proposed in order to avoid any line search in the determination
of the stepsize. This makes the algorithm practical and we provide extensive ex-
periments showing that QuickeNing gives significant improvement over competing
methods in large-scale machine learning problems.

We conclude the thesis by extending the Catalyst algorithm into the nonconvex
setting. This is a joint work with Courtney Paquette and Dmitriy Drusvyatskiy,
from University of Washington, and my PhD advisors. The strength of the ap-
proach lies in the ability of the automatic adaptation to convexity, meaning that no
information about the convexity of the objective function is required before running
the algorithm. A particular step called Auto-adapt is designed in the algorithm to
exploit the local convexity information. When the objective is convex, the proposed
approach enjoys the same convergence result as the convex Catalyst algorithm, lead-
ing to acceleration. When the objective is nonconvex, it achieves the best known
convergence rate to stationary points for first-order methods. Promising experi-
mental results have been observed when applying to sparse matrix factorization
problems and neural network models.
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Chapter 1

Introduction

Mathematical optimization lies at the heart of machine learning. The first learning algorithm,
Rosenblatt’s Perceptron [Duda et al., 2000], was performing incremental optimization on the
empirical risk objective with a linear hinge loss for supervised binary classification [Bottou,
2012]. The Adaline algorithm similarly performed incremental minimization on the empirical
risk with a least-squares loss function. Incremental and stochastic optimization algorithms
were the prevailing approaches to train learning methods in the early days of the computing
era [Tsypkin and Nikolic, 1971, Tsypkin, 1973] where datasets were small by today’s standards
but the computational resources were very limited.

The need to train machine learning models on huge datasets commonly arises in modern
applications of machine learning such as visual object recognition and natural language pro-
cessing, and has recently led to revisit these incremental optimization algorithms with a new
point of view. Indeed recent fundamental advances in mathematical optimization allow to prov-
ably automatically accelerate first-order or gradient-based optimization methods under broad
smoothness assumptions of the objective. The fast gradient method [Nesterov, 1983] and its
popular variant FISTA [Beck and Teboulle, 2009] are prominent examples of accelerated first-
order methods. These methods were successfully applied to an array of machine learning, signal
and image processing, statistics problems; see e.g. [Mallat, 2008, Bach et al., 2012, Mairal et al.,
2014, Hastie et al., 2015.].

We present in this thesis several acceleration schemes allowing to improve the convergence of
first-order optimization algorithms applied to large-scale machine learning problems. We first
consider the minimization of convex composite objectives, decomposable into a smooth part
and a non-smooth part, using first-order methods. In Chapter 2, we present an incremental
optimization algorithm, called Prox-MISO, based on the principle of surrogate minimization and
establish its convergence guarantee. In Chapter 3, we describe an acceleration scheme called
Catalyst consisting of an outer-loop performing an extrapolation step on iterates produced
by first-order methods applied to auxiliary objectives. We quantify the acceleration in terms
of worst-case non-asymptotic convergence guarantees when applying Catalyst to various first-
order methods. In Chapter 4, we describe a different acceleration scheme called QuickeNing also
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CHAPTER 1. INTRODUCTION

based on an inner-outer loop construction but performing quasi-Newton-type updates on the
iterates produced by first-order methods applied to auxiliary objectives. We demonstrate the
effectiveness of the acceleration through extensive numerical benchmarks on several machine
learning datasets. Finally, in Chapter 5, we consider the minimization of possibly non-convex
composite objectives. We present an extension of the Catalyst scheme that is automatically
adaptive to the hidden convexity of the problem.

In this introductory chapter, we shall review the main concepts at work in the acceleration
schemes we propose. We first formulate the optimization problem and review two important
classes of smooth convex optimization methods: first-order methods and Quasi-Newton meth-
ods. Then we review the notion of proximal operator in Section 1.4, which is an important tool
for extending smooth optimization methods to non-smooth settings. In Section 1.5, we present
a survey of incremental optimization algorithms, which are particularly attractive when dealing
with datasets with large number of data-points. A natural question to ask is can we do better?
To address this question, we introduce the Moreau-Yosida regularization in Section 1.6, which
gives a natural interpretation of the generic acceleration scheme that we develop in this thesis.
Finally, we outline the technical contributions in Section 1.7.

1.1 Formulation of the optimization problem
The goal of machine learning is to have a machine learn from data by itself without human
interventions. Often a specific task is given, such as visual object recognition or speech recog-
nition, and we would like to ask machines to solve the corresponding task based on the data
we provided. For example, in the context of visual object recognition, we would like to learn a
function that maps images to an object label, indicating what object category appears in the
image, such as a cat, a dog; or a plane, etc. However, the set of functions from images to labels
are so rich that given any finite many images, there will always be a perfect match by simply
memorizing the correct label of each image. This perfect matching is contrary to our intention
of learning high-level representations of the image, because it may behaves arbitrarily bad for
any unseen image. Thus it is necessary and important to impose some hypothesis on the nature
of the function that we want to learn in order to get a good generalization ability [Vapnik, 2013].
Different models encode different assumption about the function space: in linear model, the
function class is simply all linear functions; in more complex model like neural networks, the
function space is a collection of connected artificial neurons mimicking human brain’s structure
[Friedman et al., 2001]. Thus the learning model presumes the underlying structure of the
problem and provides a much smaller searching space of functions. Once we determine which
model to be applied, we can formulate the problem as an optimization problem among the
providing searching space.

More formally speaking, we are given two spaces of objects A and B and we assume that
there is a joint probability distribution P (a, b) over A × B. The goal is to learn a function
h : A → B predicting the label in B given an object a ∈ A under a certain predefined searching

2



1.2. FIRST-ORDER METHODS FOR SMOOTH OPTIMIZATION

space h ∈ H. The quality of the prediction function h is measured by the risk,

R(h) = EP (a,b)[ℓ(h(a), b)],

where ℓ is a distance function measuring the difference between the predicted label h(a) and
the true label b. Ideally, we would like to find the best prediction function minimizing the risk
which gives the optimization problem

min
h∈H

R(h). (1.1)

However, the latent distribution P is unknown and therefore the risk function R is directly
uncomputable. Instead, we assume that n i.i.d samples (ai, bi)i∈[1,n] from P are provided, and
we define the empirical risk with respect to this training set as

Remp(h) = 1
n

n∑
i=1

ℓ(h(ai), bi).

By the law of large numbers, the empirical risk converges to the expected risk when the number
of samples n goes to infinity. Thus, we minimize the empirical risk among the class of functions
defined by the model, which forms the empirical risk minimization problem (ERM) [Shalev-
Shwartz and Ben-David, 2014]. When the model is parametric, this naturally transforms to an
optimization problem

min
x∈Rp

{
1
n

n∑
i=1

ℓ(h(ai, x), bi)
}
, (1.2)

where x represents the model parameters. In linear regression, x corresponds to the coefficient
of the linear representation aTi x; in neural networks, x contains all the layers’ weights. Typical
examples of loss functions are the square loss for least squares regression, i.e., ℓ(h, b) = (b−h)2

with b ∈ R and the logistic loss ℓ(h, b) = log(1 + exp(−bh)) for logistic regression with b ∈
{−1,+1}. As a consequence, the learning problem in the setting of supervised learning turns out
to be an optimization problem, which motivates our work towards fast and efficient algorithms
to solve the ERM problems.

1.2 First-order methods for smooth optimization
For the sake of clarity, we write the empirical risk minimization problem in the general form

min
x∈Rp

f(x) . (1.3)

Convexity and smoothness. We shall first focus on the case where f is smooth and
convex, which includes classical models such as linear regression and logistic regression. We
assume the smoothness assumption at this first stage only for the sake of clarity, it allow us to
define the gradient which is a natural descent direction. The extension to composite function
settings will be discussed later in Section 1.4.

3



CHAPTER 1. INTRODUCTION

Definition 1. A continuously differentiable function f is called convex if for any x, y in Rp,
we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, (1.4)

where ⟨·, ·⟩ denotes the canonical Euclidean inner product of Rp.
If, in addition, inequality (1.4) can be improved with an additional quadratic term, namely

there exists µ > 0 such that for any x, y in Rp,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2, (1.5)

then we say that the function f is µ-strongly convex, where µ is the strong convexity param-
eter.

Convexity guarantees that all stationary points of f are in fact global minima. The strong
convexity further guarantees that a global minimum exists and is unique. When f is two
times continuously differentiable, the strong convexity assumption is equivalent to saying that
the eigenvalues of the Hessian ∇2f(x) are uniformly lower bounded by µ > 0 for all x in Rp.
Intuitively, a strongly convex function enjoys better local curvature and steeper slope, which
allows optimization algorithms to converge faster.

As we can see, Equation (1.4) and (1.5) provide simple lower bounds on f . In the same spirit,
we also assume that an upper bound is available, leading to the definition of L-smoothness. We
say that f is L-smooth if f is differentiable and its gradient is L-Lipschitz, i.e. for any x, y in Rp

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥. (1.6)

Elementary calculation shows that this condition implies that for any x, y in Rp,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2, (1.7)

which provides a quadratic upper bound; see details in Theorem 2.1.5 of [Nesterov, 2004].
Moreover, when f is two times continuously differentiable, L-smoothness is equivalent to having
the eigenvalues of the Hessian ∇2f(x) uniformly upper bounded by L, for any x in Rp. To
summarize, L and µ represent upper and lower bounds on the eigenvalues of the Hessian
respectively, which provide simple quadratic upper and lower bounds on f . This brings us to
the condition number of the function f , defined as

Qf = L

µ
, (1.8)

which plays an important role in the characterization of the convergence rate of first-order
algorithms applied to f .
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b (x, f(x))

f(y)

f(x) + ⟨∇f(x), y − x⟩

f(x) + ⟨∇f(x), y − x⟩+ L
2 ∥y − x∥

2

f(x) + ⟨∇f(x), y − x⟩+ µ
2∥y − x∥

2

Figure 1.1 – Graphical illustration of L-smoothness and µ-strong convexity.

1.2.1 Gradient descent algorithm
We come back to our optimization problem (1.3). The goal is to design algorithms which move
towards the minimum iteratively. Given that we are at point x, a natural idea is to follow
the direction giving the steepest decrease in terms of the function value. Since the objective
function f is differentiable, given any unit direction u, the local variation of function f around
x following the direction u is given by

dfx(u) = ∇f(x)⊤u.

Thus, the direction in which the function decreases the most is the direction of anti gradient
−∇f(x). This yields the classical gradient descent algorithm:

Gradient Descent algorithm

Initialization: x0 ∈ Rd.

For k ≥ 0,
xk+1 = xk − ηk∇f(xk),

where ηk > 0 is the stepsize.

5
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There are several strategies to set the sequence of stepsizes (ηk)k≥0. A simple strategy is
to choose a constant stepsize ηk = η for all k ≥ 0, which enjoys the following convergence
guarantee.

Theorem 1 (Convergence of gradient descent method). If f is convex and L-smooth,
then by letting ηk = 1

L
, the sequence (xk)k≥0 generated by the gradient descent algorithm satisfies

f(xk)− f ∗ ≤ L∥x0 − x∗∥2

2k
, ∀k ≥ 1, (1.9)

where f ∗ is the minimum of f and x∗ is an optimal point with f(x∗) = f ∗. Moreover, if f is
µ-strongly convex, then

f(xk)− f ∗ ≤
(

1− µ

L

)k
(f(x0)− f ∗) . (1.10)

The proof is recalled in Appendix A.1. It is worth mentioning that the convergence rate
shown in (1.9) is not tight, an exact worst case convergence rate for gradient methods has been
recently derived by Taylor et al. [2017], De Klerk et al. [2017]. More precisely, they show that

∥xk − x∗∥2 ≤
(

1− µ

L

)2k
∥x0 − x∗∥2, (1.11)

f(xk)− f ∗ ≤
(

1− µ

L

)2k
(f(x0)− f ∗) , (1.12)

and ∥∇f(xk)∥2 ≤
(

1− µ

L

)2k
∥∇f(x0)∥2, (1.13)

when applying gradient descent method with stepsize 1
L

on a µ-strongly convex function. The
proof is elementary and we refer readers who are interested to the original papers.

The convergence rate in Theorem 1 is stated respect to the function value gap, one can
directly derive from it that the norm of the gradient ∥∇f(xk)∥ vanishes by using Theorem 2.1.5
of Nesterov [2004]:

1
2L
∥∇f(xk)∥2 ≤ f(xk)− f ∗.

The quantity ∥∇f(xk)∥ may be naturally checked in practice and it provides information about
convergence to a stationary point. So far, we have been considering convex objective functions,
for which all stationary points are also global minima. Therefore, for convex objective func-
tions, we are able to state stronger convergence guarantees in terms of function evaluations
f(xk) − f ∗. However, when the function becomes non-convex, we cannot hope to converge to
a global minimum, and as a substitute, we study the convergence to a stationary point which
is characterized by the gradient norm.

As shown by the theorem, the asymptotic convergence rate of the gradient descent algorithm
is linear when the problem is strongly convex, which is much faster compared to the rate for
non-strongly convex problems:
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1.2. FIRST-ORDER METHODS FOR SMOOTH OPTIMIZATION

Definition 2. We say that an algorithm M is linearly convergent on a problem f if there
exists τM in (0, 1], CM > 0 such that for any initial point x0 in Rp, M generates a sequence of
iterates (xk)k≥0 satisfying

f(xk)− f ∗ ≤ CM(1− τM)k∆(x0), (1.14)

where ∆(x0) is a quantity depending on x0 measuring how good the initial point x0 is. We will
call τM the linear convergence parameter of the algorithm M.

Note that the asymptotic behavior of the algorithm does not change as long as ∆(x0) is finite,
which is why we leave it unspecified on purpose. Typical examples are f(x0)−f ∗, ∥x0−x∗∥2 or
some kind of duality gap, depending on the considered algorithm. Unlike ∆(x0), τM and CM
are quantities that do not depend on the initial point but on the algorithmM and the problem
f itself. As we can see, for gradient descent, CM = 1 and τM = µ/L, which is the inverse of
the condition number of f . Consequently, the asymptotic behavior of gradient descent depends
only on the condition number. The larger it is, the slower the algorithm converges, in which
case the problem is called ill-conditioned.

To give an example of this phenomenon, let us consider a quadratic objective function
f(x) = 1

2x
TDx, where D is a diagonal matrix with coefficients σ1 ≥ σ2 ≥ · · · ≥ σd > 0. The

Hessian of f is then constant: ∇2f(x) = D for any x ∈ Rp. Consequently, we have L = σ1,
µ = σd, and the condition number Q = σ1/σd. Now let us see how the gradient descent
algorithm solves this problem. Given an initial point x0, one step of gradient descent gives

x1 = x0 −
1
σ1
∇f(x0) =

(
I − 1

σ1
D
)
x0.

Consequently, by induction, we have

xk =
(
I − 1

σ1
D
)k
x0 −→ x∗ = 0.

The rate of convergence of ∥xk − x∗∥ is asymptotically controlled by the last coordinate of the
vector, which is

x
(d)
k =

(
1− σd

σ1

)k
x

(d)
0 =

(
1− µ

L

)k
x

(d)
0 .

This matches the convergence rate in terms of distance to the optimum shown in (1.11) and one
can easily derive similar result in terms of function value gap. In the best case when L = µ, the
quadratic function is isotropic and one step of gradient descent at any arbitrary point attains
the minimum. Intuitively, the smaller the condition number is, the more isotropic the objective
function is, which makes it more favorable to the gradient descent algorithm.

For later comparison of the computational complexity, we translate our convergence result
in terms of numbers of gradient evaluations, which equals to the number of iterations in the
gradient descent algorithm:

7



CHAPTER 1. INTRODUCTION

Corollary 1. Let ε > 0, the number of iterations N required to achieve an ε-solution f(x)−f ∗ ≤
ε by the gradient descent method is O

(
L
ε

)
if f is convex,

O(Qf log
(

1
ε
)
)

if f is µ-strongly convex.
(1.15)

There are other, sometimes more effective, strategies to set the sequence of stepsizes (ηk)k≥0
[Nocedal and Wright, 2006, Bonnans et al., 2006]. A standard technique is to perform a line
search. The exact line search strategy is described as follows: at each iteration k, we choose ηk
which gives the steepest decrease, namely

ηk = arg min
η>0

f(xk − η∇f(xk)).

Such a strategy is aggressive since we always take the best step-size possible given the direction
of gradient. However, the exact stepsize is often not computable. A more practical way is to
apply a backtracking line search strategy, that looks for a stepsize ηk such that the following
descent condition is satisfied,

f(xk − ηk∇f(xk)) ≤ f(xk)−
ηk
2
∥∇f(xk)∥2.

When the inequality is violated, we decrease the stepsize ηk by a constant factor and recheck it
again. Note that the descent condition is satisfied for any stepsize ηk < 1

L
, thus the line search

procedure is guaranteed to terminate. In terms of convergence result, the backtracking line
search enjoys a similar asymptotic convergence rate as the constant step-size, see section 9.2 of
[Boyd and Vandenberghe, 2009]. Thus for later discussion, by gradient descent algorithm, we
refer to the one with constant step-size [Bertsekas, 2015].

1.2.2 Accelerated gradient method
A natural question is whether or not the gradient descent method is optimal. The answer is pro-
vided in part by the concept of minimax lower bound analysis, which indicates the best possible
rate of convergence expected for a given class of algorithms. We constrain ourselves on first-
order methods because problems from machine learning potentially contain high-dimensional
features, where the evaluation of higher-order differentials is infeasible in practice due to mem-
ory issues and prohibitive computational effort. Let us now introduce the notion of the iterative
first-order method [Nesterov, 2004]:

Assumption 1. We call an algorithm M an iterative first-order method if it generates a
sequence of iterates (xk)k≥0 such that

xk ∈ x0 + Span {∇f(x0), · · · ,∇f(xk−1)} , for k ≥ 1.

8
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This assumption may seem a bit restrictive because we constrain the trajectory to be a linear
combination of past gradients, but we remark that most interesting first-order algorithms satisfy
this definition including the gradient descent algorithm, its accelerated variants, conjugate gra-
dient methods and quasi-Newton algorithms such as BFGS and L-BFGS algorithms.1 We shall
therefore recall the minimax lower bounds for first-order methods as defined by Assumption 1.

Theorem 2 (Lower bounds for convex functions [Nemirovskii et al., 1983, Nesterov,
2004]). Given the dimension d, for any k with 1 ≤ k ≤ 1

2(d−1), and any x0 in Rp, there exists
a convex L-smooth function f such that for any first-order method M satisfying Assumption 1,

f(xk)− f ∗ ≥ 3L∥x0 − x∗∥2

32(k + 1)2 ,

∥xk − x∗∥2 ≥ 1
8
∥x0 − x∗∥2.

Note that the above result is valid only when the number of iterations is bounded by half
of the dimension, which does not provide any information about the asymptotic convergence.
A dimension free lower bound in a similar rate was recently developed by Arjevani and Shamir
[2016] relying on a stronger assumption, which excludes quasi-Newton methods.

Theorem 3 (Lower bounds for strongly convex functions [Nemirovskii et al., 1983,
Nesterov, 2004]). Consider the space of square-summable sequences ℓ2(R). For any x0
in ℓ2(R), any constant µ > 0, Q > 1, there exists a µ-strongly convex function f with con-
dition number Q such that for any first-order method M satisfying Assumption 1, we have,

∥xk − x∗∥2 ≥
(

1− 2√
Q+ 1

)2k

∥x0 − x∗∥2,

and f(xk)− f ∗ ≥ µ

2

(
1− 2√

Q+ 1

)2k

∥x0 − x∗∥2, for any k ≥ 1.

As we can see, there is a gap between the lower bounds and the rate of convergence obtained
from the gradient descent algorithm, which gives hope for algorithms with faster rate. In 1983,
Nesterov proposed an accelerated version of gradient method, which is optimal with respect to
the minimax lower bound.

1See Proposition 18 in the Appendix.
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Accelerated Gradient method

input x0 ∈ Rd and α0 ∈ (0, 1).
1: Set y0 = x0 and q = µ

L
.

2: At k-th iteration, (k ≥ 0)

(a) Compute xk+1 = yk −
1
L
∇f(yk).

(b) Compute αk+1 ∈ (0, 1) from equation

α2
k+1 = (1− αk+1)α2

k + qαk+1.

(c) Compute yk with

yk+1 = xk+1 + βk(xk+1 − xk) with βk = αk(1− αk)
α2
k + αk+1

.

The key ingredient for acceleration is to take the gradient at the extrapolated point yk
instead of xk, where yk is a linear combination (but not necessarily an average) of the previous
iterates. Nesterov’s acceleration falls into the general class of schemes called extrapolation
schemes in numerical analysis. Intuitively, yk moves one step further from xk following the
“descent direction” xk − xk−1, yielding faster convergence. A lot of work has been devoted
to provide an intuitive explanation of the magic behind Nesterov’s acceleration scheme. For
instance, yk can be viewed as a linear combination of a gradient descent step and a mirror
descent step [Allen-Zhu and Orecchia, 2014]; or geometrically, the algorithm can be interpreted
as sequentially performing the intersection of balls [Bubeck et al., 2015] or sequentially averaging
some quadratic functions [Drusvyatskiy et al., 2016]; or from a continuous point of view, it can
be seen as applying a multi-step integration schemes on the gradient flow equation [Scieur et al.,
2017]. The important message is that by simply taking the gradient step at a different point,
we can achieve the optimal rate of convergence:

Theorem 4 (Convergence of accelerated gradient method [Nesterov, 2004]). If f is
convex, the accelerated gradient algorithm generates a sequence (xk)k≥0 such that

f(xk)− f ∗ ≤ 4L
(k + 2)2∥x0 − x∗∥2.

Moreover, when f is µ-strongly convex, we have

f(xk)− f ∗ ≤ L
(

1−
√
µ

L

)k
∥x0 − x∗∥2.
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Corollary 2. Let ε > 0, the number of iterations N required to achieve an ε-solution f(x)−f ∗ ≤
ε by the accelerated gradient descent is O

(√
L
ε

)
if f is convex,

O(
√
Q log

(
1
ε
)
)

if f is µ-strongly convex.
(1.16)

Due to the extrapolation step, the accelerated gradient method is not guaranteed to be a
descent algorithm, meaning that it is possible to have f(xk+1) > f(xk). One way to ensure
the descent property is to introduce a restart scheme, which restarts the algorithm once some
descent conditions are violated [O’donoghue and Candes, 2015, Fercoq and Qu, 2016]. This
forces the algorithm to make progress at each iteration and achieves significant improvement in
practice. To summarize, the accelerated gradient descent algorithm improves the convergence
rate compared to standard gradient methods and achieves the optimal minimax rate. However,
as mentioned before, such a minimax rate only holds when the number of iteration is small,
there may be hope to achieve even faster algorithms as the number of iterations increases. As we
will see later, under slightly stronger assumption, quasi-Newton algorithms can asymptotically
achieve superlinear convergence.2

1.3 Quasi-Newton methods
We have focused so far on first-order optimization algorithms. If the objective function is smooth
enough, using higher order information may result in faster algorithms. Newton’s method is
one of the most successful optimization method combining first and second derivatives. Instead
of performing the first-order approximation of the function, Newton’s method goes one step
further. It uses the second order Taylor expansion to approximate the objective function,

f(xk + h) ≈ f(xk) +∇f(xk)Th+ 1
2
hT∇2f(xk)h. (1.17)

Minimizing this quadratic function leads to the update

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk). (1.18)

When the objective is quadratic, one step of Newton’s method gives the exact minimum. In
general, when (xk)k≥0 converges and the minimum has a nondegenerate Hessian, the sequence
converges with a quadratic rate. However, for a general nonlinear function, the iterate (1.18)
is not guaranteed to converge for any arbitrary initial point x0. This is because the step
(∇2f(xk))−1∇f(xk) may be large and in which case the Taylor expansion (1.17) may no longer

2Meaning ∥xk+1−x∗∥
∥xk−x∗∥ → 0.
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be a good approximation of f . A quick solution to guarantee the convergence is to introduce a
stepsize parameter ηk > 0 in the update,

xk+1 = xk − ηk
(
∇2f(xk)

)−1
∇f(xk), (1.19)

and ensure that the function value is decreasing, e.g. f(xk+1) < f(xk). Such stepsize exists as
long as the Hessian at xk is positive definite.

While Newton’s method enjoys a fast convergence rate, it is computationally expensive.
At each iteration, the Hessian matrix needs to be evaluated and to be inverted, requiring at
least an O(d3) computational effort. Thus, the per-iteration cost of Newton’s method is d2

times higher than the gradient methods, which is often too expensive for solving large-scale
machine learning problems. This is why Hessian-free and inverse-free modifications of Newton’s
method have been developed, giving birth to the class of Quasi-Newton methods, defined as
the generalization of (1.18):

xk+1 = xk −B−1
k ∇f(xk), (1.20)

The matrix Bk represents an approximation of the Hessian matrix, varying from iteration to
iteration, giving the alternative name: variable metric methods. The update in (1.20) can be
viewed as performing a gradient descent step according to the metric induced by Bk. The
metrics Bk are generated iteratively without evaluating the Hessian, and its inverse Hk =
B−1
k is given in a closed-form update, without any operation of matrix inversion. This makes

Quasi-Newton algorithm computationally efficient. For historical reasons, we use B to denote
approximations of the Hessian matrix and H to denote the inverse of the Hessian matrix.

The challenging point of Quasi-Newton algorithms lies in the construction of the Hessian
approximations. In a few words, Quasi-Newton methods use the finite difference of the gradient
to approximate the Hessian matrix (see Appendix C), which gives a fundamental equation
called the secant equation: at (k + 1)-th iteration, the Hessian approximation Bk+1 is required
to satisfy the relationship

Bk+1sk = yk, with sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk). (1.21)

Intuitively, the function f is locally approximated by the quadratic function

Qk+1(x) = f(xk+1) +∇f(xk+1)T (x− xk+1) + 1
2

(x− xk+1)TBk+1(x− xk+1).

The secant equation (1.21) is requiring the gradient ∇f to match the gradient of the quadratic
approximation ∇Qk+1 at the past iterate xk. Moreover, since the Hessian matrix is always
symmetric, and positive definite if the function is strongly convex, it is natural to ask Bk+1 to
have the same properties. Thus, the goal is to construct a symmetric and positive definite matrix
Bk+1 satisfying the secant equation. However, this is an underdetermined problem based on the
local estimation. In order to capture the past information, we would expect Bk+1 to be ”close”
to Bk, yielding the two most popular Quasi-Newton algorithms called Davidon-Fletcher-Powell
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(DFP) update [Davidon, 1991, Fletcher and Powell, 1963] and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970].

In the DFP update, the matrix Bk+1 is defined by

BDFP
k+1 =

(
I − yks

T
k

⟨yk, sk⟩

)
Bk

(
I − sky

T
k

⟨yk, sk⟩

)
+ yky

T
k

⟨yk, sk⟩
, (1.22)

and the corresponding inverse matrix is obtained by applying the Sherman-Morrison for-
mula [Sherman and Morrison, 1950], giving

HDFP
k+1 = Hk + sks

T
k

⟨sk, yk⟩
− Hkyky

T
kHk

yTkHkyk
. (1.23)

In the BFGS update, the inverse Hessian approximation Hk+1 is directly updated by

HBFGS
k+1 =

(
I − sky

T
k

⟨yk, sk⟩

)
Hk

(
I − yks

T
k

⟨yk, sk⟩

)
+ sks

T
k

⟨yk, sk⟩
. (1.24)

A perfect symmetry can be observed from (1.22) and (1.24) by interchanging sk ↔ yk and
Bk ↔ Hk. In fact, the underlying mechanism of the two algorithms are identical, where DFP
approximates the Hessian matrix and BFGS approximates the inverse Hessian matrix. This is
why BFGS is sometimes named the complementary DFP algorithm.

Quasi-Newton Method: DFP/ BFGS

input x0 ∈ Rp and H0 ∈ Rd×d.
1: At (k + 1)-th iteration, (k ≥ 0)

(a) Compute the iterate

xk+1 = xk − ηkHk∇f(xk),

where the stepsize ηk is determined by a line-search strategy
or constant.

(b) Update Hk+1 with sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk):

HDFP
k+1 = Hk + sks

T
k

⟨sk, yk⟩
− Hkyky

T
kHk

yTkHkyk
;

HBFGS
k+1 =

(
I − sky

T
k

⟨yk, sk⟩

)
Hk

(
I − yks

T
k

⟨yk, sk⟩

)
+ sks

T
k

⟨yk, sk⟩
.
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Both DFP and BFGS algorithms inherit a nice property of Newton’s method, which is the
affine invariance. More precisely, when considering a new problem g(z) = f(Az), where A in
Rd×d is a non singular matrix. Applying DFP and BFGS algorithm to the problem minz g(z)
provide identical updates as the problem minx f(x), if the initialization metric satisfies the
affine invariance relation Hf

0 = AHg
0A

T . This suggests that the convergence of Quasi-Newton
methods are independent of the condition number if we initialize them with an exact Hessian
matrix. However, in practice, H0 is usually set to be proportional to the identity matrix, which
breaks the affine invariance property.

In order to guarantee convergence, the step size of Quasi-Newton updates need to be care-
fully chosen. A typical example is to perform a line-search:

(a) Exact line-search: Given a direction d, the step-size η is chosen to minimize the function
in this direction:

ηexact = arg min
η

f(x+ ηd).

(b) Wolfe’s conditions: Given a direction d, two scalars 0 < α < β < 1, the setpsize η is
chosen to satisfy

f(x+ ηd) ≤ f(x) + αη∇f(x)Td, (Armijo condition)
∇f(x+ ηd)Td ≥ β∇f(x)Td. (curvature condition)

Note that the exact line-search is computationally expensive in practice, but it provides inter-
esting theoretical insight. The convergence of the DFP or BFGS algorithms depends on the
selected line-search strategy.

Theorem 5. Assume that the objective function f is twice differentiable, L-smooth and µ-
strongly convex.

1. If f is quadratic and the exact line search is used, both DFP and BFGS find the exact
minimum in at most d iterations [Broyden, 1967].

2. For a general function f , if the exact line search is used, then both DFP and BFGS
algorithms converge linearly [Powell, 1971]. Furthermore, if the Hessian is Lipschitz,
then both algorithms converge superlinearly, meaning that

∥xk+1 − x∗∥
∥xk − x∗∥

→ 0.

3. If the stepsize is always equal to 1, and the initialization is close enough to the solution,
then both DFP and BFGS algorithms converge linearly. Furthermore, if the Hessian is
Lipschitz, then both algorithms converge superlinearly. [Dennis and Moré, 1974]
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4. If the stepsize is determined by Wolfe’s conditions, then the BFGS algorithm converges lin-
early. Furthermore, if the Hessian is Lipschitz, then the algorithm converges superlinearly.
[Byrd et al., 1987, Byrd and Nocedal, 1989]

We remark that when equipped with the exact line-search, both DFP and BFGS algorithms
are closely related to the conjugate gradient method, which exhibits a finite termination when
the objective function is quadratic. Moreover, a global convergence result is proved for both
methods using the exact line-search. However the scenario becomes quite different when a
practical strategy is used, like a constant step-size or Wolfe’s conditions. The DFP algorithm
only enjoys local linear convergence while the BFGS algorithm achieves global convergence. An
example is given in [Powell, 1986] illustrating such a different behavior while using the constant
step-size ηk = 1. The objective function is a quadratic function, but the initialization B0 is
far from the true Hessian with an extremely large eigenvalue λ. The BFGS algorithm manages
to correct it in a linear rate, namely λk+1 ≈ λk/2; but the DFP algorithm reduces it at a
much slower rate, giving an update λk+1 ≈ λk − 1, see details in [Powell, 1986]. Therefore,
it may take a large amount of iterations for the DFP algorithm to get into the region with
linear convergence. This might explain why the DFP algorithm does not perform as well as
the BFGS algorithm in practice. Thus, we will focus on the BFGS algorithm in the following
discussion. In terms of convergence rate, the theoretical rate of BFGS algorithm with Wolfe’s
conditions is not better than the gradient descent algorithm, requiring O

(
L
µ

log(1
ε
)
)

iterations
to achieve an ε-solution. On contrary, in practice, it is often observed that the BFGS algorithm
significantly outperforms the gradient descent algorithm and its accelerated variant. Moreover,
all the Quasi-Newton methods we mention are first-order algorithms satisfying Assumption 1
if the initialization B0 or H0 is proportional to the identity matrix. To verify this, it suffices
to decompose the matrix-vector product Hk∇f(xk) into a weighted sum of previous gradients;
see Proposition 18 in the Appendix for more details.

When comparing to classical gradient methods, the sole additional ingredient used by Quasi-
Newton methods is to maintain a Hessian approximation at each iteration. However, in the
large-scale setting, the required d2 space may still be too large to fit into memory. This point
motivated the study of limited memory Quasi-Newtons methods, giving birth to the limited
memory BFGS algorithm (L-BFGS) [Liu and Nocedal, 1989]. The main idea is to use the
decomposition of matrix-vector product mentioned before, where the update xk+1 − xk can be
expressed as a weighted sum of the previous gradients. Thus, instead of keeping in memory
the approximate Hessian matrix, one can replace it by a list of past gradients. The trick
to limit the memory is to fix the maximum length ℓ for such a list and only keep the most
recent gradients. As a consequence, the required memory is reduced from d2 to ℓd where ℓ is
selected by the user. In order to compute the matrix-vector product Hk∇f(xk), a two-loop
recursion strategy has been developed, yielding a complexity O(ld) instead of O(d2) [Nocedal
and Wright, 2006]. Thus the L-BFGS algorithm improves the BFGS algorithm both in terms
of memory space and computational effort per iteration, which makes it practical. However,
the superlinear convergence result is no longer valid since the limited memory may be too small
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to well approximate the Hessian matrix. It is shown that L-BFGS enjoys a linear convergence
rate when the function is strongly convex; but the rate is again not better than the gradient
methods.

As a summary, Quasi-Newton algorithms maintain a Hessian approximation to exploit the
curvature of the objective function, a detailed overview with additional algorithms apart from
DFP or BFGS is provided in Section C. In practice, the step-size needs to be selected carefully.
The line-search using Wolfe’s conditions usually provides promising performance [Nocedal and
Wright, 2006]. However, in contrast to the significant speed up, the theoretical analysis does not
give better convergence results compared to the gradient method, leaving a huge gap between
theory and practice.

1.4 Proximal algorithms
Overfitting is a common issue when applying the empirical risk minimization framework. This
phenomenon usually occurs when the number of samples is too small or the dimension of
the features is too large, reminding that the training set is just a finite sample of the latent
distribution. If the training set is too small, it may not reflect the underlying structure of the
true distribution and, fitting a model on this dataset will most likely capture some irrelevant
artifacts. If the dimension of the features is too large, the model may successfully predict any
training data including noise and outliers, which will not generalize well to unseen data.

One solution for preventing overfitting is to add a regularization penalty in the ERM problem
(1.2), e.g.

min
x∈Rp

{
1
n

n∑
i=1

ℓ(h(ai, x), bi) + ψ(x)
}
. (1.25)

The purpose of the regularizer ψ is to impose some constraints and prior knowledge about the
model parameters. For example, by adding the squared ℓ2-norm, known as Ridge regulariza-
tion [Engl et al., 1996], we penalize large entries in the parameter x. If we want to limit the
number of selected features, we can apply sparsity-inducing regularizers. A natural candidate
is the ℓ0-penalty defined by

∥x∥0 = #{i = 1, · · · , d | xi ̸= 0}.

However, the ℓ0-penalty is non convex which leads to an NP-hard problem [Natarajan, 1995].
Therefore, to make the problem computationally tractable, we substitute the ℓ0-penalty by its
convex relaxation – the ℓ1-norm. Regularizing the linear regression with the ℓ1-norm yields
the well known Lasso problem [Tibshirani, 1996]. By forcing the sum of the absolute values of
the model parameter to be small, Lasso is able to encourage certain coefficients to be zero and
induces sparsity. A number of Lasso variants have been developed later to improve the per-
formance under different scenarios including Elastic-net regularization [Zou and Hastie, 2005],
Group-Lasso with or without overlap [Yuan and Lin, 2006, Jacob et al., 2009, Jenatton et al.,
2011] and other sparsity-inducing regularizers [Bach et al., 2012].
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Another benefit of considering composite minimization is that it covers convex constrained
minimization problems. This is achieved by defining ψ as the extended-valued indicator function
1C of a convex domain C, which takes the value 0 inside the convex set C and +∞ outside (see
[Hiriart-Urruty and Lemaréchal, 1996]). Thus, we consider the following composite optimization
problem

min
x∈Rp

{
f(x) ≜ 1

n

n∑
i=1

fi(x) + ψ(x)
}

(1.26)

where each fi is convex, L-smooth and ψ is convex, but not necessarily differentiable. In the
following, we will denote f0 to be the smooth part of the objective, namely f0 = 1

n

∑n
i=1 fi.

A side effect of the regularization is that the objective function may be no longer differen-
tiable, which is problematic to apply smooth optimization algorithms. In order to handle this
issue, we introduce the notion of proximal operator:

Definition 3. Given a convex function ψ : Rp → R, the proximal operator of ψ is the function
proxψ : Rp → R defined by

proxψ(x) = arg min
z∈Rp

{
ψ(z) + 1

2
∥z − x∥2

}
(1.27)

When the regularization ψ is relatively simple, the associated proximal operator has a closed
form solution, which is the case for ℓ1 regularizer, the Elastic-net regularizer or Group-Lasso
without overlap [Combettes and Pesquet, 2011]. Moreover, when ψ is the indicator function 1C,
the proximal operator is simply the orthogonal projection onto the convex domain C. Thus, by
using the proximal operator, gradient descent and accelerated gradient descent algorithms can
be extended to solve composite problems such as

min
x∈Rp
{f(x) = f0(x) + ψ(x)} ,

where f0 is differentiable and L-smooth, representing the smooth part of the function. Proximal
gradient methods perform alternatively the gradient descent step and the proximal step, yielding
the class of iterative shrinkage-thresholding algorithms (ISTA) [Daubechies et al., 2004], also
called forward-backward splitting method [Gabay, 1983, Combettes and Pesquet, 2011, Raguet
et al., 2013, Stella et al., 2017]. The accelerated variant is later proposed in [Beck and Teboulle,
2009, Tseng, 2008, Nesterov, 2013], yielding an acceleration in the sense of Nesterov.

ISTA with constant stepsize

Initialization: x0 ∈ Rd and η = 1
L

. For k ≥ 0,

xk+1 = proxηψ (xk − η∇f0(xk)) .
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Compared to their smooth counterpart, proximal algorithms perform an additional proximal
step after each gradient descent step. This can be interpreted as a maximization-minimization
scheme, where the smooth part f0 is approximated by a quadratic upper bound, namely

xk+1 = arg min
x∈Rp

{
f0(z) + ⟨∇f0(z), x− z⟩+ L

2
∥x− z∥2 + ψ(x)

}
, (1.28)

where z is the center of the quadratic approximation. When ψ is the indicator of a convex
set, the proximal operator projects the gradient step back to the constrained set, yielding
a generalization of the projected gradient method. In terms of convergence, these proximal
variants enjoy the exact same rate as the corresponding smooth variants. In practice, a more
aggressive strategy to determine the stepsize is proposed by Beck and Teboulle [2009]. It
consists in applying the backtracking line search and check whether a sufficient decrease is
achieved. This strategy removes the dependency of the Lipschitz parameter L, which makes
the method more practical.

FISTA with constant stepsize

input x0 ∈ Rd and α0 ∈ (0, 1).
1: Set y0 = x0, η = 1

L
and q = µ

L
.

2: At k-th iteration, (k ≥ 0)

(a) Compute xk+1 = proxηψ(yk − η∇f0(yk)).

(b) Compute αk+1 ∈ (0, 1) from equation

α2
k+1 = (1− αk+1)α2

k + qαk+1.

(c) Compute yk with

yk+1 = xk+1 + βk(xk+1 − xk) with βk = αk(1− αk)
α2
k + αk+1

.

While proximal gradient methods have gained a lot of success, efficiently extending Quasi-
Newton methods to the composite setting is still not completely well understood. There are
several attempts to develop a proximal Quasi-Newton method [Byrd et al., 2015, Lee et al.,
2012, Scheinberg and Tang, 2016, Yu et al., 2008], providing the recurrence

xk+1 = arg min
x∈Rp

{
f0(xk) + ⟨∇f0(xk), x− xk⟩+ 1

2
(x− xk)TBk(x− xk) + ψ(x)

}
. (1.29)
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This is a direct extension of (1.28) by incorporating the Hessian approximation Bk. However,
the subproblem (1.29) does not have a closed form solution in general since Bk is varying from
iteration to iteration and it is usually non isotropic. Thus, an additional effort is required to
solve the subproblem by applying an optimization algorithm, giving an inexact solution for the
proximal operator. If the errors of the subproblem are small enough [Byrd et al., 2015], then
the inexact proximal Newton method enjoys the same rate as in the smooth case in terms of the
number of iterations. But the per-iteration cost is much higher. Moreover, the computational
effort to solve the subproblem is hard to characterize since the condition number of Bk may
be poor. In practice, the heuristic of applying several passes of the randomized coordinate
descent is commonly used. Another drawback is that the storage of the entire matrix Bk seems
inevitable, ruling out the limited memory variant.

Besides the proximal operator, another way to handle non differentiability is to introduce
the notion of subgradients [Hiriart-Urruty and Lemaréchal, 1996]:

Definition 4. Given a convex function f : Rp → R, for any point x ∈ Rp, we define

∂f(x) = {g ∈ Rp | ∀y ∈ Rp, f(y) ≥ f(x) + ⟨g, y − x⟩}. (1.30)

When f is differentiable at x, the set of the subgradients ∂f(x) reduces to the singleton
{∇f(x)}. Then, a natural generalization of the gradient method is to replace the gradient
∇f(xk) by an element gk in the subdifferential set ∂f(xk). However, the stepsize of the sub-
gradient method needs to be decreasing in order to ensure convergence, giving a much slower
convergence rate compared to the smooth case. The number of iterations required to reach
an ε-solution is O( 1

ε2 ) when the problem is convex and is O(1
ε
) when the problem is strongly

convex [Bertsekas, 1999, Shor, 2012]. Moreover, when we are looking for a sparse solution, the
subgradient method usually will not lead to coordinates equal to zero. In contrast, the proximal
gradient methods do provide sparse solutions by taking into account the composite structure.

1.5 A survey of incremental algorithms
For modern machine learning problems, both the amount of data n and the dimension of
features d can be very large, which excludes higher-order optimization methods. Under this
setting, the gradient methods that we have presented so far are also computationally expensive,
because evaluating the full gradient requires to pass through all the n training points. This
motivates the development of incremental gradient methods which have a cost per-iteration
independent of n.

Let us start with the case where the objective function is smooth, i.e.,

min
x∈Rp

{
f(x) ≜ 1

n

n∑
i=1

fi(x)
}
, (1.31)

and n is large. Due to the decomposable structure of the objective, incremental gradient
methods can operate on a single component fi at each iteration instead of the entire sum in
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the objective. This reduces the computational complexity per iteration by a factor n. If each
iteration of the incremental method yields reasonable progress in the objective, the resulting
incremental method will outperform its non-incremental counterpart. This point explains the
success of incremental methods in a wide variety of applications.

One of the best known incremental method is the stochastic gradient descent method (SGD),
which generates a sequence

xk+1 = xk − ηk∇fik(xk), (1.32)

where ηk is the stepsize and ik is an index uniformly generated among 1 to n. Intuitively, we are
performing an inexact gradient method at each iteration, where the full gradient ∇f(xk) is ap-
proximated by the incremental gradient ∇fik(xk). The difference ∇fik(xk)−∇f(xk) represents
the noise of the approximation and its magnitude is controlled by the variance

Eik [∥∇fik(xk)−∇f(xk)∥2] = 1
n

n∑
i=1
∥∇fi(xk)−∇f(xk)∥2.

In general, this variance is non zero even at the minimum x∗, where the full gradient ∇f(x∗)
vanishes but ∇fi(x∗) may not. Thus assuming that at some iteration we attain the exact
minimum xk = x∗, we can move away from it at the next iteration, meaning that x∗ is not a
fixed point with respect to such dynamics. As a consequence, in order to ensure the convergence
to the minimum, we need to decrease the stepsize ηk, which reduces the magnitude of error. It
is shown that with the choice ηk = O(1/k), the algorithm achieves a sublinear convergence rate.
A proximal version of it is given in [Bertsekas, 2011] enjoying a similar rate. However, unlike
full gradient methods for which linear convergence can be obtained, the stochastic gradient
descent does not converge faster than O(1/k) even for strongly convex functions. In practice,
we also observe that it converges quickly in the first iterations but then slows down and attain
some saturation due to the decreasing stepsize [Bottou, 2010].

A lot of recent work has been devoted to the study of faster incremental methods, including
SAG [Schmidt et al., 2017], SAGA [Defazio et al., 2014a], Finito/MISO [Defazio et al., 2014b,
Mairal, 2015], SDCA [Shalev-Shwartz and Zhang, 2012] and SVRG [Xiao and Zhang, 2014].
All of them converge linearly for strongly convex objectives, which significantly improves the
performance of the stochastic gradient descent method. The main idea is to reduce the variance
of the stochastic update such that the magnitude of the noise goes to zero while the iterates
(xk)k≥0 converge to x∗. This will allow constant stepsizes, leading to a faster convergence.

Primal variance-reduction methods. The key to reduce the variance is to incorporate
information regarding past iterates. For primal methods such as SAG, SAGA and SVRG, the
update is given by:

xk+1 = xk − η
[
∇fik(xk)− gik

σ
+ 1
n

n∑
i=1

gi

]
. (1.33)
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where η is the stepsize, σ is a scaling parameter and gi represents a past incremental gradient
of the component fi, for i ∈ [1, n]. The natural choice of σ is 1, in which case,

Eik

[
∇fik(xk)− gik + 1

n

n∑
i=1

gi

]
= ∇f(xk),

leading to an unbiased gradient update. This is the case for SVRG and SAGA. Although they
enjoy a similar update expression, a fundamental difference arises in the way of updating gi.

1. In SVRG, all the gi’s are updated simultaneously every m iterations, where m is a pre-
defined parameter. More precisely, at initialization, all gi’s are initialized by ∇fi(x0), for
all i ∈ [1, n]; then they are kept unchanged during m iterations; at the m-th iteration,
they are simultaneously updated by the gradients at xm namely ∇fi(xm). Then again
unchanged in the next m iterations, and the next update will be performed at 2m-th
iteration, and so on.

2. In SAGA, the strategy is different. SAGA updates one gi at each iteration. At k-th
iteration, one index ik ∈ [1, n] is selected and xk+1 is obtained following (1.33). After
that, gik is updated by the latest gradient, namely gik = ∇fik(xk). Then we move to the
next iteration.

Intuitively, SVRG updates the past gradients with delay while SAGA updates them in an online
fashion, which makes SAGA more aggressive but less stable. SAG updates the past gradient
in an identical way as SAGA does, the only difference is that SAG chooses σ = n instead of
σ = 1. The biased gradient update provides further reduction of the variance, see [Defazio
et al., 2014a] for more details.

The difference in terms of the update strategy leads to different requirements in terms of
memory. For SVRG, the required memory is two vectors of dimension d, one for the iterate
xkm and the other one for the full gradient ∇f(xkm);3 for SAGA, the required memory is n
vectors of dimension d, one for each gi. This makes a huge difference, since when n× d is large,
the amount of memory required by SAGA becomes prohibitive. For the incremental methods
we presented here, including the upcoming dual methods SDCA, Finito or MISO, SVRG is
the only one enjoying such “memory-free” property. Fortunately, for problems involving linear
models, it is possible to reduce the memory requirement of these methods from n vectors to n
scalars.

Dual variance reduction methods. Now we consider the dual-based incremental algo-
rithms, such as SDCA and Finito/MISO. In contrast to the primal algorithm which controls
the primal gap f(xk)− f ∗, dual-based algorithms construct some lower bounds dk of the objec-
tive function and ensure the convergence of the duality gap f ∗−dk(xk). In SDCA, the stochastic

3As a recompense, we need to additionally evaluate gik
at each iteration.
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coordinate ascent algorithm is applied on the dual problem, which is obtained thanks to the
Fenchel conjugate. Amazingly, while SDCA uses the concept of duality in behind, the update
of the algorithm can be performed without evaluating the dual function, named as dual-free
SDCA [Shalev-Shwartz, 2016]. The advantage of such an approach comes from the fact that
the gradient of the Fenchel conjugate is not always easy to evaluate, a purely primal update
makes the algorithm more practical. Closely related to SDCA, MISO substitutes the Fenchel
conjugate by the quadratic lower bounds given by the strong convexity. Since the quadratic
functions are more computationally friendly compared to the convex conjugate function, MISO
provides systematically a quantity dk(xk) lower bounding f ∗.

Despite the difference in the choice of the lower bound function, SDCA and MISO enjoy
a very similar update rule. Both of them keep in memory n auxiliary vectors z1, . . . , zn, one
for each component fi. At each iteration, an index ik ∈ [1, n] is randomly selected and the
corresponding auxiliary vector is updated by:

(SDCA & MISO) zik = (1− δ)zik + δ

(
xk −

1
µ
∇fik(xk)

)
.

Then, the next iterate is obtained by averaging over all of the auxiliary vectors:

xk+1 = 1
n

n∑
i=1

zi.

Each zi carries the information of the i-th component and contributes equally to the iterate xk,
which reflects the averaging structure of f . The only difference between SDCA and MISO comes
from the choice of the parameter δ: in SDCA δ = µn

L+µn and in MISO, δ = min{1, µn
2(L−µ)}. It is

interesting to see that different approaches converging to a similar algorithm even though the
proof cannot be adapted from one to another. The benefit of dual-based methods, is that an
upper bound on the function value gap f(xk)−f ∗ is provided by the duality gap f(xk)−dk(xk),
which is easily computable and thus can be used to stop the algorithm. In general, the function
value gap f(xk)−f ∗ is not available for primal algorithms simply because f ∗ is unknown. When
the function is smooth, the norm of the gradient can be used as a substitution, but it will be
more challenging for non smooth functions.

Another related direction is to develop incremental algorithms for the dual-averaging method
[Nesterov, 2009]. The main idea is to move along the accumulated gradient, namely

xt+1 = xt −
η

t

t∑
k=1
∇f(xk). (1.34)

An incremental version of this has been provided by Xiao [2010] by replacing the full gradient
∇f(xk) by the incremental gradient∇fik(xk) in (1.34). The resulting algorithm enjoys a similar
convergence rate as SGD, which is sublinear even for strongly convex objectives. Variance-
reduced variants have been later studied by Murata and Suzuki [2016], mimicking the approach
of SVRG.
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So far, we have only considered smooth problems. In order to adapt to the composite setting,
proximal variants are typically developed based on the original smooth incremental method
[Xiao, 2010, Shalev-Shwartz and Zhang, 2012, Xiao and Zhang, 2014, Defazio et al., 2014a].
The first contribution of this manuscript is to introduce a proximal variant of Finito/MISO
algorithm and provide the convergence analysis, which is the main focus of Chapter 2.

The comments about convergence and memory for the smooth versions still hold for the prox-
imal versions: proximal SVRG is the only algorithm that requires an amount of O(d) space
in memory instead of O(nd). In summary, the mentioned variance reduction incremental algo-
rithms all enjoy linear convergence rates when the objective function is strongly convex. This
outperforms classical SGD algorithms in terms of optimization error. The downside is that a
non negligible amount of information needs to be stored in memory, except for SVRG. Never-
theless, the performance of SVRG is often slower in practice than the other memory-consuming
methods. Thus, we have to make a choice regarding the trade-off between memory and speed.

Compared to full gradient methods, the per-iteration cost of incremental methods is n times
smaller. In order to make a fair comparison, we count the computational complexity in the
numbers of evaluations for a single gradient ∇fi. Thus evaluating the full gradient requires
to sum up the gradient of each component, yielding a complexity O(n). The computational
complexity for reaching an ε-solution is provided in the following table:

In the strongly convex setting, the complexity of full gradient methods (FG) depends mul-
tiplicatively on the number of components n and the condition number Lf/µ. In comparison,
incremental methods like SAG/SAGA, Finito/MISO, SDCA and SVRG all enjoy a better com-
plexity, where the dependence on the number of components and the condition number is
additive. This improvement becomes significant when the condition number is large. In typical
machine learning problems like ridge regression, the regularization parameter is in the order of
1/n giving a condition number in the order of n, in which case the full gradient methods lose
a large factor n compared to incremental methods.

In contrast, when the problem is not strongly convex, there is no theoretical improvement
in terms of complexity; SAG/SAGA enjoys the same complexity as full gradient methods.
Moreover, several algorithms like Finito/MISO, SDCA and SVRG are not defined in the non
strongly convex setting. Thus two natural questions arise: are these algorithms optimal and
can we adapt them in the convex but non-strongly convex settings?

The first accelerated incremental method was developed by Shalev-Shwartz and Zhang
[2016], where an accelerated version of SDCA has been proposed. The complexity of the
resulting algorithm is given in Table 1.1, where the dependence on the condition number is
improved by its squared root, yielding an acceleration in the sense of Nesterov. Compared to
SDCA, the acceleration occurs when the condition number L/µ is larger than n, e.g., for poorly

4The L we are using here is in fact the maximum of Li, where Li is the Lipschitz constant with respect to
the i-th component fi. An improvement of this dependency to the average Lipschitz constant can be achieved
by applying a non uniform sampling strategy; we omit the discussion here for simplicity.
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Strongly convex: µ > 0 Convex: µ = 0

FG O
(

n
Lf

µ log
( 1

ε

))
O
(

n
Lf

ε

)
SAG

O
((

n + L
µ

)
log
( 1

ε

)) 4

O
(
n L

ε

)
SAGA

Finito/MISO

not avail.SDCA

SVRG

Acc-FG O
(

n
√

Lf

µ log
( 1

ε

))
O

(
n
√

Lf

ε

)
Acc-SDCA Õ

((
n +

√
nL
µ

)
log
( 1

ε

))
not avail.

Lower bounds O
((

n +
√

nL
µ

)
log
( 1

ε

))
O
(√

nL
ε

)
Table 1.1 – Comparison of rates of convergence, respectively in the strongly-convex and non
strongly-convex cases. The notation Õ for acc-SDCA hides logarithmic terms in the condition
number and n. We remark that there is a difference between the Lipschitz constant Lf used for
full gradient method and the one L used in incremental methods. In full gradient method, the
Lipschitz constant is with respect to the entire function f , whereas each component fi needs
to be L-smooth for incremental methods. Thus, we always have Lf ≤ L, but Lf may be much
smaller than L. Incremental methods are thus outperforming full gradient methods for the
finite-sum problem we consider here unless there is a big mismatch between L and Lf .

conditioned problems. However, the provided analysis is restricted to strongly convex problems
like the original SDCA. A more general scheme has been developed later by Frostig et al. [2015]
for smooth strongly convex problems.

Whether or not incremental algorithms other than SDCA can be accelerated in the composite
setting remained an open question at the beginning of this thesis. Moreover, it was also not
clear whether an acceleration may be obtained for convex but not strongly convex problems.
This brings us to one of the main contribution of this thesis. We present in Chapter 3 the
first generic acceleration scheme called Catalyst [Lin et al., 2015], which provides a positive
answer for both open questions. It can be applied to a large class of gradient-based algorithms,
yielding the acceleration in the sense of Nesterov for both strongly convex and non-strongly
convex objectives.

The lower bound for the class of incremental methods have been investigated later by Agarwal
and Bottou [2015], Woodworth and Srebro [2016], Arjevani and Shamir [2016]. It is shown that
accelerated SDCA [Shalev-Shwartz and Zhang, 2016] and Catalyst [Lin et al., 2015] are optimal
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up to a logarithmic factor. A lot of other works have recently been developed towards obtaining
optimal incremental methods, such as APCG [Lin et al., 2014], SDPC [Zhang and Xiao, 2015a],
RPDG [Lan and Zhou, 2015], Point-SAGA [Defazio, 2016] and Katyusha [Allen-Zhu, 2016]. We
remark that their techniques are algorithm-specific and cannot be directly generalized into a
unified scheme. These methods enjoy the tight optimal convergence rate while our method
loses a logarithmic factor. This may be the price to pay for providing a generic framework.

While first-order incremental algorithms have caught a lot of attention, incorporating curva-
ture information in the large finite sum setting remains a challenging problem. The direct appli-
cation of substituting the full gradient ∇f by an incremental gradient ∇fi in the Quasi-Newton
update is unfortunately not convergent. The reason is that such a substitution does not pro-
vide unbiased estimation of the Quasi-Newton update B−1

k ∇f since there is a matrix inversion.
Thus, it seems hopeless to incrementally update both the gradient and the Hessian estimate
at the same time. An alternative for getting rid of this issue is to use a sub-sampled Hessian
for estimating Bk. This gives the so called stochastic Quasi-Newton method (SQN) [Mokhtari
and Ribeiro, 2015, Byrd et al., 2016, Gower et al., 2016, Moritz et al., 2016]. However, the con-
struction of SQN highly depends on the smoothness of the objective function, which makes it
difficult to generalize to the composite setting. Moreover, as mentioned in section 1.4, proximal
Quasi-Newton methods suffer the drawback of requiring a non isotropic proximal operator at
each iteration, where an exact solution is infeasible in practice.

Thus, a theoretically grounded variable metric algorithm in the composite setting is still miss-
ing in the literature. In Chapter 4, we introduce the first generic variable metric framework,
QuickeNing, applicable to the composite finite sum structure. The algorithm can be inter-
preted as applying an inexact L-BFGS algorithm to the classical smoothing technique called
infimum convolution or the Moreau-Yosida regularization, that we will present in Section 1.6.
Global convergence analysis is provided followed by promising experimental results.

We should mention that the idea of combining second-order or quasi-Newton methods with
Moreau-Yosida regularization is in fact relatively old. It may be traced back to variable metric
bundle methods [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996], which
use BFGS updates on the Moreau-Yosida smoothing of the objective and bundle methods
to approximately solve the corresponding sub-problems. However, no global complexity was
known, especially no complexity guarantee was given regarding the complexity of solving the
subproblems. Therefore, the first contribution of QuickeNing lies in the global convergence
analysis. Moreover, QuickeNing can be applied to incremental algorithms. The resulting al-
gorithm successfully incorporate the curvature information with the incremental algorithms as
expected.

Up to now, we have only focused on the minimization of convex problems. However, many
interesting machine learning applications involves non-convex problems in extremely large-scale

25



CHAPTER 1. INTRODUCTION

settings, such as neural networks. Thus, efficiently extending incremental algorithms to non-
convex problems has high interest.

A variant of SVRG for non-convex problems has been recently introduced and ana-
lyzed [Reddi et al., 2016b]. One challenge we tackle in Chapter 5 is to extend all the previous
incremental methods designed for convex objectives to work in a non-convex context. As we
will see, we propose a variant of Catalyst that does not require any knowledge about the
convexity of the function to operate.

1.6 The Moreau-Yosida regularization
In this section, we introduce a fundamental tool from convex analysis called the Moreau-Yosida
envelope [Moreau, 1962, Yosida, 1980], which plays a key role for understanding generic algo-
rithms such as Catalyst and QuickeNing. This tool can be seen as a smoothing technique, that
can turn any convex lower semicontinuous function f into a smooth function with Lipschitz
gradients. More precisely, it consists of the infimal convolution of f with a quadratic penalty:

F (x) ≜ min
z∈Rp

{
f(z) + κ

2
∥z − x∥2

}
, (1.35)

where κ is a positive regularization parameter. Recalling that the proximal operator is then
defined as the unique minimizer of the problem—that is,

p(x) ≜ proxf/κ(x) = arg min
z∈Rp

{
f(z) + κ

2
∥z − x∥2

}
. (1.36)

Unlike the proximal operator of the simple regularizer ψ defined in (1.27), p(x) does not admit
a closed-form solution in general. Therefore, computing it requires to solve a sub-problem with
high accuracy thanks to some iterative algorithm.

Basic Properties of the Moreau-Yosida Envelope. The smoothing effect of the Moreau-
Yosida regularization can be characterized by the next proposition [see Lemaréchal and Sagas-
tizábal, 1997a, for elementary proofs].

Proposition 1 (Regularization properties of the Moreau-Yosida Envelope). Given a
convex continuous function f and a regularization parameter κ > 0, we consider the Moreau-
Yosida envelope F defined in (1.35). Then,

1. F is convex and minimizing f and F are equivalent in the sense that

min
x∈Rp

F (x) = min
x∈Rp

f(x),

and the solution set of the two above problems coincide with each other.

26



1.6. THE MOREAU-YOSIDA REGULARIZATION

2. F is continuously differentiable even when f is not and

∇F (x) = κ(x− p(x)). (1.37)

Moreover the gradient ∇F is Lipschitz continuous with LF = κ.

3. If f is µ-strongly convex, then F is µF -strongly convex with µF = µκ
µ+κ .

Interestingly, F inherits from the convexity of f and more importantly it is always L-smooth.
Moreover, when f is µ-strongly convex, the condition number of F is given by

QF = LF
µF

= µ+ κ

µ
,

which can be arbitrarily well conditioned by choosing a small value of κ. Naturally, since both
functions admit the same solutions, a naive approach for minimizing a non-smooth function f is
to apply a smooth optimization algorithm on F . Different variants of proximal point algorithm
are obtained by respectively applying the gradient descent method, the Nesterov’s accelerated
gradient method and Quasi-Newton methods on the Moreau-Yosida envelope F .

The proximal point algorithm. Let us consider gradient descent steps on F :

xk+1 = xk −
1
LF
∇F (xk).

Noticing from (1.37), we have ∇F (xk) = κ(xk − p(xk)) and LF = κ. Thus,

xk+1 = p(xk) = arg min
z∈Rp

{
f(z) + κ

2
∥z − xk∥2

}
,

which is exactly the proximal point algorithm [Martinet, 1970, Rockafellar, 1976].

Accelerated proximal point algorithm. We now consider applying Nesterov’s accelerated
gradient method on F :

xk+1 = yk −
1
LF
∇F (yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

where βk+1 is Nesterov’s extrapolation parameter [Nesterov, 2004]. Again from (1.37), the
update can be rewritten as

xk+1 = p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

which is known as the accelerated proximal point algorithm of Güler [1992].
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Variable metric proximal point algorithm. Let us now apply Quasi-Newton methods
on F :

xk+1 = xk −Hk∇F (xk) = xk − κHk(xk − p(xk)),

where the inverse Hessian matrix Hk is constructed using previous gradients of F . This is
known as the variable metric proximal point algorithm [Burke and Qian, 1999].

As a consequence, the generated iterates (xk)k≥0 converge to the minimum of F , which is
also the minimum of f . Furthermore, the convergence rate of the above algorithms can be
directly derived from the convergence of the underlying smooth optimization methods. Since
the condition number of F can be arbitrarily good, the convergence of them can be arbitrarily
fast with a small enough regularization parameter κ.

While these algorithms are conceptually elegant, they suffer from a major drawback in
practice, which is the exact evaluation of the proximal operator p(x) at each iteration. Unless
a closed form is available, which is almost never the case, an iterative algorithm is required
to approximate the proximal operator. This raises two essential issues: first, the approximate
proximal operator encounters inexactness in the gradient evaluation, the magnitude of the
inexactness should be carefully addressed in order to ensure the convergence of the algorithm;
second, an additional computational effort is required by applying an iterative algorithm to
approximate the proximal operator, the resulting computational cost needs to be controlled
and included in the convergence analysis.

The inexactness criteria have been intensively investigated. Different criteria have been
developed in the context of the proximal point algorithm, starting from the pioneer work of
Rockafellar [1976], followed by Auslender [1987], Correa and Lemaréchal [1993], Solodov and
Svaiter [2001], Fuentes et al. [2012]. While the proximal point algorithm has caught a lot of
attention, very few works have focused on its accelerated variant. The first accelerated proximal
point algorithm with inexact gradients was proposed by Güler [1992]. Then, Salzo and Villa
[2012] developed a more rigorous convergence analysis, generalized later by Devolder et al. [2014].
However, the considered inexactness criteria for the accelerated variants are unpractical, leaving
some space for improvement. As a direct extension, the strategy of combining Quasi-Newton
methods and the Moreau-Yosida regularization has been applied to develop variable metric
bundle methods [Fukushima and Qi, 1996, Mifflin, 1996, Lemaréchal and Sagastizábal, 1997b,
Chen and Fukushima, 1999].

In the meantime, the computational complexity for approximating the proximal operator
is not investigated. This is the reason why the global complexity of proximal point algorithms
is not well understood. To the best of our knowledge, the first attempt in this direction is
provided in the accelerated SDCA algorithm [Shalev-Shwartz and Zhang, 2016], which is an
instance of inexact accelerated proximal point algorithm, even though this was not explicitly
stated in the original paper. Their analysis only holds in the strongly convex setting and it
was originally designed for the stochastic dual coordinate ascent method. Inspired by this, we
extend their idea into generic acceleration schemes, providing global convergence analysis for
different variants of the proximal point algorithms.
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1.7 Contributions of this thesis
We outline here the main contributions of this thesis following the organization of the
manuscript.

• In Chapter 2, we present Prox-MISO, the proximal version of the incremental algorithm
Finito/MISO [Defazio et al., 2014b, Mairal, 2015]. The resulting algorithm extends
Finito/MISO to the composite problems (1.26). Moreover, it removes the big data condi-
tion n ≥ 2L

µ
originally required in Finito/MISO. We show that the algorithm is linearly

convergent when the problem is strongly convex and that the number of iterations required
to achieve an ε-solution is given by

O

((
n+ L

µ

)
log

(1
ε

))
. (1.38)

Since Prox-MISO builds a simple lower bound of the objective function, a practical optimality
certificate is systematically obtained, which is a benefit compared to primal algorithms.

• In Chapter 3, we introduce a generic acceleration scheme that applies to a large class of
algorithms. We call our approach a “catalyst” by analogy with substances that increase
chemical reaction rates. Catalyst takes an optimization method M as input and applies
it to solve a series of subproblems in order to achieve acceleration. A method M may be
accelerated if it enjoys linear convergence rate for strongly convex problems. This is the case
for full gradient methods [Beck and Teboulle, 2009, Nesterov, 2013] and block coordinate
descent methods [Nesterov, 2012b, Richtárik and Takáč, 2014], which already have well-
known accelerated variants. More importantly, it also applies to incremental algorithms such
as SAG [Schmidt et al., 2017], SAGA [Defazio et al., 2014a], Finito/MISO [Defazio et al.,
2014b, Mairal, 2015], SVRG [Xiao and Zhang, 2014] and SDCA [Shalev-Shwartz and Zhang,
2012]. Whether or not these methods could be accelerated was an important open question.
It was only known to be the case for dual coordinate ascent approaches such as SDCA for
strongly convex objectives [Shalev-Shwartz and Zhang, 2016].
Our work provides a universal positive answer regardless of the strong convexity of the
objective. Let us illustrate the phenomena of acceleration with the example of the Prox-
MISO algorithm.

1. When the problem is strongly convex, Catalyst applying to Prox-MISO yields the com-
plexity

Õ

((
n+

√
n
L

µ

)
log

(1
ε

))
, (1.39)

where Õ hides logarithmic constant in terms of n and the condition number. The
obtained complexity outperforms the one of (1.38) when the problem is ill-conditioned.
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2. When the problem is convex, Catalyst applying to Prox-MISO yields the complexity

Õ

√nL
ε

 , (1.40)

where Õ hides logarithmic constant in terms of n, the condition number and 1
ε
. We

should mention that the Prox-MISO algorithm is not defined for non-strongly convex
objectives, but it is theoretically grounded to apply it inside Catalyst. Thus, our work
automatically provides support for non-strongly convex objectives even though the in-
put method is not defined under such setting. This is a side achievement besides the
acceleration.

The resulting complexity in (1.39) and (1.40) match the minimax lower bounds later de-
veloped by Woodworth and Srebro [2016], Arjevani and Shamir [2016] up to a logarithmic
factor. More generally, for all the incremental algorithms mentioned before, applying Cata-
lyst provides both acceleration and support for non-strongly convex objectives with a similar
convergence rate. Experiments are conducted to show that the acceleration is useful in
practice, especially for ill-conditioned problems where we observe significant improvement.

• Chapter 4 is dedicated to another generic acceleration approach called QuickeNing, which
uses the Quasi-Newton principles to accelerate gradient-based optimization methods. To the
best of our knowledge, QuickeNing is the first Quasi-Newton type algorithm compatible with
both the composite objectives and the finite sum setting.
The algorithm admits a simple interpretation: it may be seen as applying the L-BFGS algo-
rithm with inexact gradients to the Moreau-Yosida regularization of the objective. Given an
optimization methodM, we applyM to solve subproblems which correspond to approximat-
ing gradients of the Moreau-Yosida regularization. As a result, our approach is generic, and
can be applied to the same class of functions as Catalyst. A particular warm start strategy
is proposed in order to avoid the line search step in the determination of the stepsize, which
makes the algorithm practical.
The global complexity of the algorithm is given, showing that a linear convergence rate can
be obtained when the problem is strongly convex. This is the first global complexity result
of the variable metric proximal point algorithm involving the complexity for solving the
subproblems. More importantly, the convergence analysis provides us an explicit way to set
up parameters, which are keys to obtain fast convergence in practice.
We remark that QuickeNing algorithm does not provide any theoretical acceleration in the
worst case complexity analysis. This comes from the fact that the theoretical guarantee
of L-BFGS algorithm is not better than the gradient descent method. However, we provide
extensive experiments showing that QuickeNing gives significant improvement over competing
methods in large-scale machine learning problems.
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• In Chapter 5, we extend Catalyst algorithm to the nonconvex setting. This is a joint work
with Courtney Paquette and Dmitriy Drusvyatskiy from University of Washington. The
strength of the approach lies in the ability of automatically adapting the convexity, meaning
that we can run the algorithm without specifying that the objective is convex or not. A
particular step called Auto-adapt is designed in the algorithm to exploit the local convexity.
When the objective is convex, the proposed approach enjoys the same convergence rate as
the original Catalyst algorithm, leading to an acceleration. When the objective is nonconvex,
it achieves the best known convergence rate to stationary points for first-order methods. As
a consequence, it automatically transforms a convex optimization method to adapt to the
nonconvex setting. We present promising experimental results when applied it to problems
of sparse matrix factorization and neural networks.
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Chapter 2

Proximal minimization by incremental
surrogate optimization (MISO)

Chapter abstract:
The approach MISO, proposed by Mairal [2015], is an incremental technique for minimizing
unconstrained finite sum problems. The original algorithm is limited to smooth strongly
convex problems and requires a big data condition such that the number of components
n is larger than the condition number L/µ. In this chapter, we allow the MISO approach
to deal with composite problems. Moreover, we remove the big data assumption with a
new proof technique. The resulting algorithm provides systematically a lower bound of
the optimum which is simple to compute, leading to a practical optimality certificate.

The material of this chapter is part of the following publication:
H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In
Advances in Neural Information Processing Systems (NIPS), 2015

2.1 Introduction
Incremental algorithms have recently caught a lot of attention due to their ability of solving
large-scale machine learning problems. Just like gradient descent methods, incremental algo-
rithms are first studied in the smooth convex setting and extended later to composite problems.
For instance, Proximal-SDCA [Shalev-Shwartz and Zhang, 2012] and Proximal-SVRG [Xiao
and Zhang, 2014] are direct proximal extensions of SDCA [Shalev-Shwartz and Zhang, 2013]
and SVRG [Johnson and Zhang, 2013]; SAGA [Defazio et al., 2014a] is an implicit proximal
variant of SAG [Schmidt et al., 2017]. The smooth variants usually enjoy simpler expressions
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and easier convergence analysis compared to the proximal variants. For this reason, the smooth
setting is often considered in the first place.

Finito/MISO is another incremental approach, proposed simultaneously by Defazio et al.
[2014b] and Mairal [2015] for solving smooth unconstrained µ-strongly convex problems. We
will call it MISO in the following discussion, which refers to Minimization by Incremental
Surrogate Optimization. The concept of surrogate is about to replace the original objective f
by a simpler approximation h and minimize the approximation h instead of f . A typical
example is the Lipschitz gradient surrogate. Given a point y, we define a majorant surrogate
of f near the point y by

hy : x→ f(y) + ⟨∇f(y), x− y⟩+ L

2
∥y − x∥2.

Minimizing hy gives the classical gradient descent update y − 1
L
∇f(y). Thus, the gradient

descent method can be viewed as sequentially minimizing the Lipchitz gradient surrogate near
the previous iterate. In the same way, proximal gradient methods can be obtained from the
proximal gradient surrogate which is the sum of the non-smooth regularization and the Lipschitz
gradient surrogate. Other well known optimization methods including accelerated gradient
methods, block coordinate descent method, Franck-Wolfe method can also be interpreted as
the minimization of surrogate functions [Mairal, 2013].

2.2 The original MISO algorithm
Consider the following smooth unconstrained convex minimization problem

min
x∈Rp

{
f(x) ≜ 1

n

n∑
i=1

fi(x)
}
, (2.1)

where each fi is differentiable with L-Lipschitz continuous derivatives and are µ-strongly convex.
The idea of MISO1 is to construct a list of quadratic surrogate functions (di)i∈[1,n], where di

represents the “dual” of the component fi. At each iteration, one of the surrogates is updated,
using information of the latest iterate. More precisely, at k-th iteration, an index ik is randomly
picked up among [1, n] and we perform the following update given the last iterate xk−1:

dki (x) =
{
fi(xk−1) + ⟨∇fi(xk−1), x− xk−1⟩+ µ

2∥x− xk−1∥2 if i = ik
dk−1
i (x) otherwise ,

where dki denotes the i-th surrogate at the k-th iteration. Then, the iterate is updated as the
minimum of the entire surrogate,

xk = arg min
x∈Rp

{
d̄k(x) = 1

n

n∑
i=1

dki (x)
}
. (2.2)

1Note that even though we call this algorithm MISO (or Finito), it was called MISOµ in [Mairal, 2015],
whereas “MISO” was originally referring to an incremental majorization-minimization procedure that uses upper
bounds of the functions fi instead of lower bounds.
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The subproblem (2.2) is nothing but a minimization of a quadratic function which can be easily
solved. Let us denote zki as the minimum point of dki , namely the expression

dki (x) = cki + µ

2
∥x− zki ∥2,

holds for some constant cki . Then the update rule of zki is given by

zki =
{
xk−1 − 1

µ
∇fi(xk−1) if i = ik

zk−1
i otherwise ,

Consequently, the iterate xk is simply the average of the centers zki :

xk = 1
n

n∑
i=1

zki = xk−1 + 1
n

(
zkik − z

k−1
ik

)
.

Interestingly, since d̄k is a lower-bound of f we have d̄k(xk) ≤ f ∗. Thus, the quantity f(xk)−
d̄k(xk) can be used as an optimality certificate that upper-bounds f(xk) − f ∗. Furthermore,
this certificate was shown to converge to zero with a rate similar to SAG/SDCA/SVRG/SAGA
under the condition n ≥ 2L/µ [Mairal, 2015]:

E[f(xk)− d̄k(xk)] ≤ C(1− τMISO)k(f(x0)− d̄0(x0)).

with τMISO = 1/(3n) (also refined in 1/(2n) in [Defazio et al., 2014b]).
However, we need to keep in memory the list of n centers zki in order to iteratively update

the xk. This may be expensive if the dimension of the feature is large. It is worth remarking
that in many machine learning problems, each function fi(x) has the specific form fi(x) =
li(⟨x,wi⟩) + µ

2∥x∥
2. In such cases, the vectors zki can be obtained by storing only O(n) scalars,

this remark is still valid for other incremental methods like SAG/SAGA/SDCA.
In the next section, we extend MISO to the composite optimization problem and remove

the big data condition n ≥ 2L/µ.

2.3 The proximal MISO algorithm
We now consider the composite optimization problem below,

min
x∈Rp

{
f(x) = 1

n

n∑
i=1

fi(x) + ψ(x)
}
,

where the functions fi are differentiable with L-Lipschitz derivatives and µ-strongly convex. As
in typical composite optimization problems, ψ is convex but not necessarily differentiable. We
assume that the proximal operator of ψ can be computed easily.
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Taking the similar approach as the original MISO algorithm, we construct lower bounds
of f , by adding the regularization penalty ψ,

xk = arg min
x∈Rp

{
Dk(x) = 1

n

n∑
i=1

dki (x) + ψ(x)
}
. (2.3)

In order to remove the big data condition n ≥ 2L/µ, we introduce a “shrinking” parameter δ
in (0, 1). Let us denote lki as the latest lower bound with respect to the component fi,

lki (x) = fi(xk−1)+⟨∇fi(xk−1), x− xk−1⟩+
µ

2
∥x− xk−1∥2.

Then we perform the update of the surrogates dki by following

dki (x) =
{

(1− δ)dk−1
i (x)+ δlki (x) if i = ik,

dk−1
i (x) otherwise. (2.4)

This immediately implies the following algorithm.

Algorithm 1 Prox-MISO: MISO algorithm with proximal support.
input (z0

i )i=1,...,n such that (A1) holds; N (number of iterations);
1: initialize z̄0 = 1

n

∑n
i=1 z

0
i and x0 = proxψ/µ[z̄0];

2: define δ = min(1, µn
2(L−µ));

3: for k = 1, . . . , N do
4: randomly pick up an index ik in [1, n] and update

zki =
{

(1− δ)zk−1
i + δ

(
xk−1 − 1

µ
∇fi(xk−1)

)
if i = ik

zk−1
i otherwise

z̄k = z̄k−1 + 1
n

(
zkik − z

k−1
ik

)
= 1
n

n∑
i=1

zki

xk = proxψ/µ[z̄k].

(2.5)

5: end for
output xN (final estimate).

To illustrate the difference from the algorithm presented in the last section, we consider a
pathological case when the sample size n = 1. If we apply the original MISO algorithm, it gives
the gradient descent method with a large stepsize 1/µ, which has no guarantee of convergence.
If we apply the new update, we take a less aggressive step with the stepsize shrunk by δ, which
reduces the variance of the update. This is the key for removing the big data condition. Then,
we remark that under the large sample size condition n ≥ 2L/µ and ψ = 0, we have δ = 1
and the update of the quantities zki in (2.5) is identical as the original MISO algorithm. More
generally, the choice of the parameter δ is driven from the convergence analysis that we will
discuss later.
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Relationship with the variance reduction approch. When the problem is smooth, i.e.
ψ = 0, the Prox-MISO algorithm boils down to the following update:

xk = xk−1 + δ

n

(
xk−1 −

1
µ
∇fik(xk−1)− zk−1

ik

)
,

where ik is the index randomly selected at k-th iteration. Remarking that

Eik

[
xk−1 −

1
µ
∇fik(xk−1)− zk−1

ik

]
= − 1

µ
∇f(xk−1),

the update of MISO is thus an unbiased gradient update. It enjoys a similar variance reduction
interpretation as the primal incremental methods discussed in Section 1.5.

Relationship with Proximal SDCA [Shalev-Shwartz and Zhang, 2012]. The algo-
rithm Prox-MISO is almost identical to variant 5 of proximal SDCA [Shalev-Shwartz and Zhang,
2012], which performs the same updates with δ = µn/(L + µn) instead of δ = min(1, µn

2(L−µ)).
It is however not clear that Prox-MISO actually performs dual ascent steps in the sense of
SDCA since the proof of convergence of SDCA cannot be directly modified to use the stepsize
of proximal MISO and furthermore, the convergence proof of Prox-MISO does not use the con-
cept of duality. Another difference lies in the optimality certificate of the algorithms. Whereas
Proximal-SDCA provides a certificate in terms of linear convergence of a duality gap based on
Fenchel conjugate, Proximal-MISO ensures linear convergence of a gap that relies on strong
convexity but not on the Fenchel conjugate (at least explicitly).

Relationship with Dual Averaging methods. The Prox-MISO algorithm is closely related
to the dual averaging methods when the function fi enjoys a particular form fi(x) = f̃i(x) +
µ
2∥x∥

2. In this case, the update of zki is given by,

zki = (1− δ)zk−1
i − δ

µ
∇f̃i(xk−1).

Thus, the quantities zki are simply non uniform average of the past gradients which plays a
similar rule as the dual averaging term in the update of RDA algorithm [Xiao, 2010].

Initialization of surrogates. We now take a particular focus on the initialization of the
surrogates that we have omitted to discuss so far. The algorithm needs to be initialized with
some quadratic lower bounds for the functions fi:

fi(x) ⩾ d0
i (x) ≜ µ

2
∥x− z0

i ∥2 + c0
i , (A1)

which are guaranteed to exist due to the µ-strong convexity of fi. For typical machine learning
applications, such initialization is easy. For example, logistic regression with ℓ2-regularization
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satisfies (A1) with z0
i = 0 and c0

i = 0. Then, the Prox-MISO scheme is given in Algorithm 1.
Note that if no simple initialization is available, we may consider any initial estimate z̄0 in Rp

and define z0
i = z̄0 − (1/µ)∇fi(z̄0), which requires performing one pass over the data.

Optimality certificate and stopping criterion. Similar to the original MISO algorithm,
Proximal MISO maintains a list (dki ) of lower bounds of the functions fi. As a consequence,
the following function is a lower bound of the objective f :

Dk(x) = 1
n

n∑
i=1

dki (x) + ψ(x), (2.6)

and the update (2.5) can be shown to exactly minimize Dk. As a lower bound of f , we have
that Dk(xk) ≤ f ∗ and thus

f(xk)− f ∗ ≤ f(xk)−Dk(xk).

The quantity f(xk) − Dk(xk) can then be interpreted as an optimality gap, and the analysis
below will show that it converges linearly to zero.

Convergence analysis. We show that the certificate f(xk)−Dk(xk) enjoys a linear conver-
gence rate:

Theorem 6 (Convergence of Prox-MISO). Let (xk)k≥0 be obtained by Prox-MISO, then

E[f(xk)−Dk(xk)] ⩽
1
τ

(1− τ)k (f ∗ −D0(x0)) with τ ⩾ min
{
µ

4L
,

1
2n

}
.

Furthermore, the convergence of f(xk)− f ∗ can be directly derived from it,

E[f(xk)]− f ∗ ⩽ 1
τ

(1− τ)k+1 (f(x0)−D0(x0)) . (2.7)

Before we prove this theorem, we note that this rate is slightly better than the one proven
in MISO [Mairal, 2015], which converges as (1 − 1

3n)k. The main idea of the proof is to show
that the lower bound Dk(xk) converges to f ∗ in a linear rate, acting as a dual method. In
order to build connections between Dk(xk) and Dk−1(xk−1), we introduce an intermediate term
Dk(xk−1) and control respectively the difference Dk(xk−1)−Dk(xk) and Dk(xk−1)−Dk−1(xk−1).
We start by recalling a classical lemma that provides useful inequalities. Its proof may be found
in [Nesterov, 2004].

Lemma 1 (Classical Quadratic Upper and Lower Bounds). For any function h : Rp → R
which is µ-strongly convex and differentiable with L-Lipschitz derivatives, we have for all x, y
in Rp,

µ

2
∥x− y∥2 ≤ h(x)− h(y) + ⟨∇h(y), x− y⟩ ≤ L

2
∥x− y∥2.
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Then, we proceed with a sequence of technical lemmas

Lemma 2 (Lower Bound on Dk −Dk−1). For all k ≥ 1 and x in Rp,

Dk(x) ⩾ Dk−1(x)− δ(L− µ)
2n

∥x− xk−1∥2, ∀x ∈ Rp. (2.8)

Proof. For all i ∈ [1, n], fi satisfies the assumptions of Lemma 1. Therefore, for all k ≥ 0 and
i = ik, the following inequality holds for all x in Rp,

dki (x) = (1− δ)dk−1
i (x) + δ[fi(xk−1) + ⟨∇fi(xk−1), x− xk−1⟩+ µ

2
∥x− xk−1∥2]

⩾ (1− δ)dk−1
i (x) + δfi(x)− δ(L− µ)

2
∥x− xk−1∥2

⩾ dk−1
i (x)− δ(L− µ)

2
∥x− xk−1∥2,

where the first inequality uses Lemma 1, and the last one uses the inequality fi ≥ dk−1
i . From

this inequality, we can obtain (2.8) by simply usingDk(x) = Dk−1(x)+ 1
n

(
dkik(x)− dk−1

ik
(x)
)
.

Lemma 3 (Relation between Dk and Dk−1). For all k ≥ 0, for all x and y in Rp,

Dk(x)−Dk(y) = Dk−1(x)−Dk−1(y)− µ⟨z̄k − z̄k−1, x− y⟩. (2.9)

Proof. This is straightforward from the fact that Dk is the sum of ψ and a quadratic function
centered at z̄k, namely

Dk(x) = Ck + µ

2
∥x− z̄k∥2 + ψ(x).

with some constant Ck ∈ R.

Lemma 4 (Lower Bound on Dk(xk−1)). For all k ≥ 1, we have

Dk(xk−1) ≥ Dk−1(xk−1) + nµ2

2δ(L− µ)
∥z̄k − z̄k−1∥2. (2.10)

Proof. Take x = xk−1 and y = xk−1 + nµ
δ(L−µ)(z̄k − z̄k−1) in (2.9) gives,

Dk(xk−1)−Dk−1(xk−1) =Dk(y)−Dk−1(y) + µ⟨z̄k − z̄k−1, y − xk−1⟩

by (2.8) ⩾− δ(L− µ)
2n

∥y − xk−1∥2 + µ⟨z̄k − z̄k−1, y − xk−1⟩

= nµ2

2δ(L− µ)
∥z̄k − z̄k−1∥2.
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Lemma 5 (Upper Bound on Dk(xk−1)). For any k ⩾ 1,

Dk(xk−1) ≤ Dk(xk) + µ

2
∥z̄k − z̄k−1∥2. (2.11)

Proof. Apply Lemma 3 with x = xk−1 and y = xk yields

Dk(xk−1)−Dk(xk) = Dk−1(xk−1)−Dk−1(xk)− µ⟨z̄k − z̄k−1, xk−1 − xk⟩.

Since xk−1 is the minimum of Dk−1 which is µ-strongly convex. Thus,

Dk−1(xk−1) + µ

2
∥xk − xk−1∥2 ⩽ Dk−1(xk).

As a consequence,

Dk(xk−1)−Dk(xk) ⩽ −
µ

2
∥xk − xk−1∥2 − µ⟨z̄k − z̄k−1, xk−1 − xk⟩ ⩽

µ

2
∥z̄k − z̄k−1∥2.

We are now in shape to prove the main convergence result.

Proof of Theorem 6. From Lemma 4 and Lemma 5, we have

Dk(xk−1)−Dk−1(xk−1) ≥
nµ2

2δ(L− µ)
∥z̄k − z̄k−1∥2

≥ nµ

δ(L− µ)
[Dk(xk−1)−Dk(xk)] .

(2.12)

Recall that by construction,

Dk(xk−1) = Dk−1(xk−1) + δ

n
(fik(xk−1)− dk−1

ik
(xk−1)).

Take expectation on ik gives,

E[Dk(xk−1)] =
(

1− δ

n

)
E[Dk−1(xk−1)] + δ

n
E[f(xk−1)]. (2.13)

Apply (2.13) to (2.12) and rearrange the expression gives

τE[f(xk−1)]− E[Dk(xk)] ≤ −(1− τ)E[Dk−1(xk−1)].

where
τ =

(
1− δ(L− µ)

nµ

)
δ

n
, (2.14)
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Interpolating with f ∗ yields

τ (E[f(xk−1)]− f ∗) + (f ∗ − E[Dk(xk)]) ⩽ (1− τ) (f ∗ − E[Dk−1(xk−1)]) . (2.15)

On one hand, since f(xk−1) ⩾ f ∗, we have

f ∗ − E[Dk(xk)] ≤ (1− τ) (f ∗ − E[Dk−1(xk−1)])
≤ · · · ≤ (1− τ)k (f ∗ −D0(x0)) .

(2.16)

On the other hand, since f ∗ ⩾ Dk(xk), then

τ (E[f(xk−1)]− f ∗) ⩽ (1− τ) (f ∗ − E[Dk−1(xk−1)]) ⩽ (1− τ)k (f ∗ −D0(x0)) . (2.17)

This gives (2.7). Moreover,

E[f(xk)−Dk(xk)]
=E[f(xk)− f ∗] + E[f ∗ −Dk(xk)]

≤ 1
τ

(1− τ)k+1(f ∗ −D0(x0)) + (1− τ)k(f ∗ −D0(x0)) (From 2.17 and 2.16)

= 1
τ

(1− τ)k(f ∗ −D0(x0)).

This gives (6). We conclude the proof by appropriately choosing the parameter δ which deter-
mines τ . Given the expression of the linear convergence parameter τ in (2.14), we choose δ to
maximize τ , yielding

δ = min
{

1, nµ

2(L− µ)

}
.

By distinguishing the two cases, we have

1. when nµ
2(L−µ) ⩽ 1, we have δ = nµ

2(L−µ) and τ = µ
4(L−µ) .

2. when 1 ⩽ nµ
2(L−µ) , we have δ = 1 and τ = 1

n
− L−µ

n2µ
⩾ 1

2n .

Therefore, τ ≥ min
(

1
2n ,

µ
4(L−µ)

)
, which concludes the theorem.

2.4 Implementation details and conclusions
In practice, the Prox-MISO algorithm provides a convenient stopping criterion, using the duality
gap f(xk) − Dk(xk). In order to keep track of the value Dk(xk) efficiently, we introduce an
additional list of scalars (Ci)i∈[1,n] to be kept in memory. Intuitively, each Ci represents the
contribution of dki to the value Dk(xk) and only one of them is updated at each iteration. More
precisely, we define Ci by rewriting the quadratic surrogate dki as

dki (x) = cki + µ

2
∥x− zki ∥2 = Ck

i − µ⟨x, zki ⟩+ µ

2
∥x∥2, (2.18)
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where Ck
i = cki + µ

2
∥zki ∥2. When the incremental surrogate di is updated, the corresponding Ck

i

is also updated following the rule

Ck
i = (1− δ)Ck−1

i + δ
(
fi(xk−1)− ⟨∇fi(xk−1), xk−1⟩+ µ

2
∥xk−1∥2

)
.

This yields the practical implementation Algorithm 2.

Algorithm 2 Prox-MISO with stopping criterion.
input (z0

i , c
0
i )i=1,...,n such that (A1) holds; ε (target accuracy);

1: initialize z̄0 = 1
n

∑n
i=1 z

0
i and x0 = proxψ/µ[z̄0], set C0

i = c0
i + µ

2∥z̄0∥2 for all i in [1, n] ;
2: Define δ = min

(
1, µn

2(L−µ)

)
and k = 0;

3: while 1
n

∑n
i=1(fi(xk)− Ck

i ) + µ⟨xk, z̄k⟩ − µ
2∥xk∥

2 > ε do
4: for l = 1, . . . , n do
5: k ← k + 1;
6: randomly pick up an index ik in [1, n] and perform the update (2.5);
7: in the same time, update

Ck
i =

{
(1− δ)Ck−1

i + δ
(
fi(xk−1)− ⟨∇fi(xk−1), xk−1⟩+ µ

2∥xk−1∥2
)

if i = ik
Ck−1
i otherwise

.

(2.19)
8: end for
9: end while

output xN (final estimate such that f(xN)− f ∗ ≤ ε).

To explain the stopping criterion in Algorithm 2, we remark that the entire surrogate Dk is
the sum of dki and ψ, leading to the expression

Dk(x) =
(

1
n

n∑
i=1

Ck
i

)
− µ⟨x, z̄k⟩+ µ

2
∥x∥2 + ψ(x),

Thus,

f(xk)−Dk(xk) =
(

1
n

n∑
i=1

fi(xk)− Ck
i

)
+ µ⟨xk, z̄k⟩ −

µ

2
∥xk∥2,

which justifies the stopping criterion. Since computing F (xk) requires scanning all the data
points, the criterion is only computed every n iterations.

Conclusions. We have proposed a proximal variant of the MISO algorithm which is able
to deal with non-smooth regularization. Moreover, we remove the big data condition n ≥ 2L

µ

required in the original MISO algorithm. We show that Prox-MISO is linearly convergent
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when the problem is strongly convex and the resulting linear rate is similar to other variance
reduction based incremental algorithms. Extensions to non-uniform sampling strategy and to
stochastic setting are developed later by Bietti and Mairal [2016]. However, we remark that
our algorithm is restricted to strongly convex problems and the obtained convergence rate is
not optimal. The generic acceleration scheme Catalyst that we are presenting in the next
chapter will solve both of these issues: a) Catalyst provides a way to apply Prox-MISO or
other incremental algorithms to non strongly convex problems; b) The obtained convergence
rate of applying Catalyst is optimal up to a logarithmic constant, in both strongly convex and
non-strongly convex settings. The practical performance of Prox-MISO algorithm is similar to
other incremental methods. Thus, we leave the experimental evaluation to the next chapter, at
the same time as the evaluation of the acceleration scheme.
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Chapter 3

Catalyst acceleration

Chapter abstract:
We introduce a generic scheme for accelerating gradient-based optimization methods in
the sense of Nesterov. Our approach, called Catalyst, builds upon the inexact accelerated
proximal point algorithm for minimizing a convex objective function, and consists of
approximately solving a sequence of well-chosen auxiliary problems, leading to faster
convergence. One of the key to achieve acceleration in theory and in practice is to solve
these sub-problems with appropriate accuracy by using the right stopping criterion and
warm start strategy. In this chapter, we discuss these practical issues and also provide
a global complexity analysis. We show that our approach applies to a large class of
algorithms, including gradient descent, block coordinate descent, incremental algorithms
such as SAG, SAGA, SDCA, SVRG, Finito/MISO, and their proximal variants. For all
of these methods, we provide acceleration and explicit support for non-strongly convex
objectives. We conclude with extensive experiments showing that acceleration is useful in
practice, especially for ill-conditioned problems.

The material of this chapter is based on the following paper in preparation:
H. Lin, J. Mairal, and Z. Harchaoui. Catalyst Acceleration for Gradient-Based Optimiza-
tion: from Theory to Practice. 2017.
This paper extends the original conference publication:
H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In
Advances in Neural Information Processing Systems (NIPS), 2015

The code for reproducing the figures in this chapter is publicly available at:
https://github.com/hongzhoulin89/Catalyst-QNing
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CHAPTER 3. CATALYST ACCELERATION

3.1 Introduction
A large number of machine learning and signal processing problems are formulated as the
minimization of a convex composite objective function f : Rp → R:

min
x∈Rp

{
f(x) ≜ f0(x) + ψ(x)

}
, (3.1)

where f0 is convex and L-smooth1, and ψ is convex but may not be differentiable. In statistics
or machine learning, the variable x may represent model parameters, and the role of f0 is to
ensure that the estimated parameters fit some observed data. Specifically, f0 is often a large
sum of functions and (3.1) is a regularized empirical risk

min
x∈Rp

{
f(x) ≜ 1

n

n∑
i=1

fi(x) + ψ(x)
}
. (3.2)

Each term fi(x) measures the fit between x and a data point indexed by i, whereas the func-
tion ψ acts as a regularizer; it is typically chosen to be the squared ℓ2-norm, which is smooth, or
to be a non-differentiable penalty such as the ℓ1-norm or another sparsity-inducing norm [Bach
et al., 2012]. Composite minimization also encompasses constrained minimization when consid-
ering extended-valued indicator functions ψ that may take the value +∞ outside of a convex
set and 0 inside [see Hiriart-Urruty and Lemaréchal, 1996].

In this chapter, we provide a generic framework that is able to accelerate gradient-based
or first-order methods, with a particular focus on large sums of functions. By “accelerating”,
we mean generalizing a mechanism invented by Nesterov [2004] that improves the convergence
rate of the gradient descent algorithm. More precisely, when ψ = 0, gradient descent steps
produce iterates (xk)k≥0 such that f(xk) − f ∗ ≤ ε in O(1/ε) iterations, where f ∗ denotes
the minimum value of f . Furthermore, when the objective f is µ-strongly convex, the previous
iteration-complexity becomes O((L/µ) log(1/ε)), which is proportional to the condition number
L/µ. However, these rates were shown to be suboptimal for the class of first-order methods,
and a simple strategy of taking the gradient step at a well-chosen point different from xk
yields the optimal complexity—O(1/

√
ε) for the convex case and O(

√
L/µ log(1/ε)) for the

µ-strongly convex one [Nesterov, 1983]. Later, this acceleration technique was extended to deal
with non-differentiable penalties ψ for which the proximal operator defined below is easy to
compute [Beck and Teboulle, 2009, Nesterov, 2013].

proxψ(x) ≜ arg min
z∈Rp

{
ψ(z) + 1

2
∥x− z∥2

}
, (3.3)

where ∥.∥ denotes the Euclidean norm.
For machine learning problems involving a large sum of n functions, a recent effort has been

devoted to developing fast incremental algorithms such as SAG [Schmidt et al., 2017], SAGA
1We call a function L-smooth when it is differentiable and its gradient is L-Lipschitz continuous.
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[Defazio et al., 2014a], SDCA [Shalev-Shwartz and Zhang, 2012], SVRG [Johnson and Zhang,
2013, Xiao and Zhang, 2014], or Finito/MISO [Defazio et al., 2014b, Mairal, 2015], which can
exploit the particular structure (3.2). Unlike full gradient approaches, which require computing
and averaging n gradients (1/n)∑n

i=1∇fi(x) at every iteration, incremental techniques have a
cost per-iteration that is independent of n. The price to pay is the need to store a moderate
amount of information regarding past iterates, but the benefits may be significant in terms
of computational complexity. More precisely, in order to achieve an ε-accurate solution for
a µ-strongly convex objective, the number of gradient evaluations required by these methods
is given by O

((
n+ L̄

µ

)
log(1

ε
)
)
, where L̄ is either the maximum Lipschitz constant across the

gradients ∇fi, or the average value, depending on the algorithm variant considered. Unless
there is a big mismatch between L̄ and L (global Lipschitz constant for the sum of gradients),
incremental approaches significantly outperform the full gradient method whose complexity in
terms of gradient evaluations is given by O

(
nL
µ

log(1
ε
)
)
. Yet, these incremental approaches do

not use Nesterov’s extrapolation steps and whether or not they could be accelerated was an
important open question when these methods were introduced. It was indeed only known to
be the case for SDCA [Shalev-Shwartz and Zhang, 2016] for strongly convex objectives.

In this chapter, we propose a generic acceleration scheme that provides a universal posi-
tive answer to the previous open question. By analogy with substances that increase chemical
reaction rates, we call our approach “Catalyst”. Given an optimization method M as input,
Catalyst outputs an accelerated version of it, possibly the same algorithm if the method M
is already optimal. The sole requirement on the method in order to achieve acceleration is
that it should have linear convergence rate for strongly convex problems. This is the case
for full gradient methods [Beck and Teboulle, 2009, Nesterov, 2013] and block coordinate de-
scent methods [Nesterov, 2012b, Richtárik and Takáč, 2014], which already have well-known
accelerated variants. More importantly, it also applies to the previously-mentioned incremen-
tal methods, whose complexity become Õ

((
n+

√
nL̄/µ

)
log(1

ε
)
)

after Catalyst acceleration,

where Õ hides some logarithmic dependencies on the condition number L̄/µ. This improves
upon the non-accelerated variants, when n is smaller than the condition number. Besides, accel-
eration occurs regardless of the strong convexity of the objective—that is, with µ = 0— which
brings us to our second achievement.

Some approaches such as Finito/MISO, SDCA, or SVRG are only defined for strongly
convex objectives. A classical trick to apply them to general convex functions is to add a
small regularization ε∥x∥2 to the objective [Shalev-Shwartz and Zhang, 2012]. The drawback
of this strategy is that it requires choosing in advance the parameter ε, which is related to the
target accuracy. A consequence of our work is to automatically provide a direct support for
non-strongly convex objectives, thus removing the need of selecting ε beforehand. Moreover, an
accelerated rate is directly obtained from the resulting algorithm.

A short version of this chapter has been published at the NIPS conference in 2015 [Lin et al.,
2015]; in addition to simpler convergence proofs and more extensive numerical evaluation, we
extend the conference paper with two important new contributions:
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Moreau-Yosida smoothing interpretation. We provide a new interpretation of Catalyst
as an accelerated gradient descent method with inexact gradients, applied to the Moreau-Yosida
envelope of the objective function. While the link between the proximal point algorithm and
the Moreau-Yosida smoothing is well known [see Themelis et al., 2016], the fact that smoothing
may be useful to accelerate existing algorithms, as in Catalyst, is less intuitive and opens new
perspectives. In particular, it was a key observation to our subsequent work to Catalyst, called
QuickeNing [Lin et al., 2017], which relies on limited memory Quasi-Newton principles instead
of Nesterov’s acceleration. Besides, the point of view of Moreau-Yosida smoothing also led to
new practical strategies, which we now present.

More effective stopping criteria and warm start strategies. Catalyst is a two-loop
algorithm, which requires solving sub-problems in an inner-loop with enough accuracy. In this
chapter, we introduce new parameter-free stopping criteria for solving these sub-problems that
are more practical than those we originally presented in [Lin et al., 2015], and new warm start
strategies with significantly better empirical performance.

The paper is structured as follows: We complete this introductory section with some re-
lated work in Section 3.1.1, and give a short description of the two-loop Catalyst algorithm in
Section 3.1.2. Then, Section 3.2 introduces the Moreau-Yosida regularization and its inexact
variant. In Section 3.3, we introduce formally the main algorithm, and its convergence analysis
is presented in Section 3.4. Section 3.6 is devoted to numerical experiments and Section 3.7
concludes the chapter.

3.1.1 Related Work
Catalyst can be interpreted as a variant of the proximal point algorithm [Rockafellar, 1976,
Güler, 1991], which is a central concept in convex optimization, underlying augmented La-
grangian approaches, and composite minimization schemes [Bertsekas, 2015, Parikh and Boyd,
2014]. The proximal point algorithm consists of solving (3.1) by minimizing a sequence of aux-
iliary problems involving a quadratic regularization term. In general, these auxiliary problems
cannot be solved with perfect accuracy, and several notations of inexactness were proposed
by Güler [1992], He and Yuan [2012] and Salzo and Villa [2012]. The Catalyst approach hinges
upon (i) an acceleration technique for the proximal point algorithm originally introduced in the
pioneer work of Güler [1992]; (ii) a more practical inexactness criterion than those proposed in
the past.2 As a result, we are able to control the rate of convergence for approximately solving
the auxiliary problems with an optimization methodM. In turn, we are also able to obtain the
computational complexity of the global procedure for solving (3.1), which was not possible with

2Note that our inexact criterion was also studied, among others, by Salzo and Villa [2012], but their
analysis led to the conjecture that this criterion was too weak to warrant acceleration. Our analysis refutes this
conjecture.
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previous analysis [Güler, 1992, He and Yuan, 2012, Salzo and Villa, 2012]. When instantiated
in different first-order optimization settings, our analysis yields systematic acceleration.

Beyond Güler [1992], several papers have inspired our work. In particular, accelerated
SDCA [Shalev-Shwartz and Zhang, 2016] is an instance of an inexact accelerated proximal
point algorithm, even though this was not explicitly stated in the original paper. Catalyst can
be seen as a generalization of their algorithm, originally designed for stochastic dual coordinate
ascent approaches. Their proof of convergence relies on different tools than ours. Specifically, we
introduce an approximate sufficient descent condition, which, when satisfied, grants acceleration
to any optimization method, whereas the direct proof of Shalev-Shwartz and Zhang [2016],
in the context of SDCA, does not extend to non-strongly convex objectives. Another useful
methodological contribution was the convergence analysis of inexact proximal gradient methods
of Schmidt et al. [2011b] and Devolder et al. [2014]. Finally, similar ideas appear in the
independent work [Frostig et al., 2015]. Their results overlap in part with ours, but both papers
adopt different directions. Our analysis is for instance more general and provides support for
non-strongly convex objectives.

Then, beyond accelerated SDCA [Shalev-Shwartz and Zhang, 2016], a lot of other works have
been recently developed towards obtaining optimal incremental methods, such as APCG [Lin
et al., 2014], SDPC [Zhang and Xiao, 2015b], RPDG [Lan and Zhou, 2015], Point-SAGA [De-
fazio, 2016] and Katyusha [Allen-Zhu, 2016]. We remark that their techniques are algorithm-
specific and cannot be directly generalized into a unified scheme. However, we should mention
that the complexity obtained by applying Catalyst acceleration to incremental methods only
matches the optimal bound up to a logarithmic factor, which may be the price to pay for
providing a generic framework.

Finally, another recent line of work has also combined smoothing techniques with outer-
loop algorithms such as Quasi-Newton methods [Themelis et al., 2016, Giselsson and Fält,
2016], even though their purpose is not to accelerate existing techniques, but rather to derive
new algorithms for nonsmooth optimization.

3.1.2 Overview of Catalyst
Before introducing Catalyst precisely in Section 3.3, we provide here a first overview of the
algorithm and its main ideas. Catalyst is a generic approach that wraps an algorithm M
into an accelerated one A, which can achieve the same accuracy as M with reduced compu-
tational complexity. The resulting method A is an inner-outer loop construct, presented in
Algorithm 3, where in the inner loop the method M is called to solve an auxiliary strongly-
convex optimization problem, and where in the outer loop the sequence of iterates produced
by M are extrapolated for faster convergence. There are therefore three main ingredients in
Catalyst: a) a smoothing technique that produces strongly-convex sub-problems; b) an extrap-
olation technique to accelerate the convergence; c) a balancing principle to optimally tune the
inner and outer computations.
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Algorithm 3 Catalyst - Overview
input initial estimate x0 in Rp, smoothing parameter κ, optimization method M.

1: Initialize y0 = x0.
2: while the desired accuracy is not achieved do
3: Find xk using M

xk ≈ arg min
x∈Rp

{
hk(x) ≜ f(x) + κ

2
∥x− yk−1∥2

}
. (3.4)

4: Compute yk using an extrapolation step, with βk in (0, 1)

yk = xk + βk(xk − xk−1).

5: end while
output xk (final estimate).

Smoothing by infimal convolution Catalyst can be used on any algorithm M that en-
joys a linear-convergence guarantee when minimizing strongly-convex objectives. However the
objective at hand may be poorly conditioned or even might not be strongly convex.

In Catalyst, we use M to approximately minimize an auxiliary objective hk at iteration k,
defined in (3.4), which is strongly convex and has better conditioning than f . The classical
notion of Moreau envelope allows to build, using smoothing by infimal convolution with a
quadratic, a well-conditioned convex function F from any poorly-conditioned convex function
f (see Section 3.3 for a refresher on Moreau envelopes). We shall show in Section 3.3 that a
notion of approximate Moreau envelope allows to define precisely the first-order information
collected when approximately minimizing the auxiliary objective.

Extrapolation by Nesterov acceleration Catalyst uses an extrapolation scheme “à la
Nesterov” to build a sequence (yk)k≥0 updated as

yk = xk + βk(xk − xk−1) ,

where (βk)k≥0 is a positive decreasing sequence, which we define in Section 3.3.
We shall show in Section 3.4 that we can get faster rates of convergence thanks to this

extrapolation step when the smoothing parameter κ, the inner-loop stopping criterion, and the
sequence (βk)k≥0 are carefully built.

Balancing inner and outer complexities The optimal balance between inner loop and
outer loop complexity derives from the complexity bounds established in Section 3.4. Given
a target accuracy and a condition number estimate of f , our bounds dictate a choice of κ
that gives the optimal setting for the inner-loop stopping criterion and all technical quantities
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Without Catalyst With Catalyst

µ > 0 µ = 0 µ > 0 µ = 0

FG O
(
n
Lf

µ
log

(
1
ε

))
O
(
n
Lf

ε

)
Õ
(
n

√
Lf

µ
log

(
1
ε

))
Õ
(
n
√

Lf

ε

)
SAG/SAGA

O
((
n+ L̄

µ

)
log

(
1
ε

))
O
(
n L̄
ε

)
Õ
((
n+

√
nL̄
µ

)
log

(
1
ε

))
Õ
(√

nL̄
ε

)MISO
not avail.SDCA

SVRG

Acc-FG O
(
n

√
Lf

µ
log

(
1
ε

))
O
(
n
Lf√
ε

)
no acceleration

Acc-SDCA Õ
((
n+

√
nL̄
µ

)
log

(
1
ε

))
not avail.

Table 3.1 – Comparison of rates of convergence, before and after the Catalyst acceleration, in the
strongly-convex and non strongly-convex cases, respectively. The notation Õ hides logarithmic
factors. The constant Lf is the global Lipschitz constant of the gradient with respect to the
entire objective function, while L̄ is the average Lipschitz constants of the gradients ∇fi, or
the maximum value, depending on the algorithm’s variants considered.

involved in the algorithm. We shall demonstrate in particular the power of an appropriate
warm start strategy to achieve near-optimal complexity.

Overview of the complexity results Finally, we provide in Table 3.1 a brief overview
of the complexity results obtained from the Catalyst acceleration, when applied to various
optimization methods M for minimizing a large finite sum of n functions. Note that the
complexity results obtained with Catalyst are optimal, up to some logarithmic factors [see
Agarwal and Bottou, 2015, Arjevani and Shamir, 2016, Woodworth and Srebro, 2016].

3.2 The Moreau-Yosida envelope and its inexact
variant

We now briefly recall the definition of the Moreau-Yosida envelope [Moreau, 1962, Yosida, 1980],
which we have already introduced in Section 1.6 and which plays a key role for understanding
the Catalyst acceleration.

More precisely, the Moreau-Yosida envelope results from the infimal convolution of f with
a quadratic penalty:

F (x) ≜ min
z∈Rp

{
f(z) + κ

2
∥z − x∥2

}
, (3.5)
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where κ is the positive regularization parameter. Note that the proximal operator is then
defined as the unique minimizer of the problem—that is,

p(x) ≜ proxf/κ(x) = arg min
z∈Rp

{
f(z) + κ

2
∥z − x∥2

}
.

Unlike the proximal operator of ψ defined in (3.3), p(x) does not admit a closed form in general.
Therefore, computing it requires to solve a sub-problem to high accuracy with some iterative
algorithm.

In Section 1.6, we discussed basic properties of the Moreau-Yosida envelope. In particular,
minimizing F and f is equivalent in the sense that both optimal function values and solution
sets coincide. F is always LF = κ-smooth and its gradient is given by

∇F (x) = κ(x− p(x)). (3.6)

Finally, if f is µ-strongly convex, then F is µF -strongly convex with µF = µκ
µ+κ . Note that F

can then be arbitrarily well conditioned when f is µ-strongly convex, by choosing a small value
of κ.

3.2.1 A Fresh Look at Catalyst
We have also seen that first-order methods applied to F provide us several known algorithms;
gradient descent on F yields the proximal point algorithm [Martinet, 1970, Rockafellar, 1976]
and Nesterov’s accelerated method yields the the accelerated proximal point algorithm of Güler
[1992]. While these algorithms are conceptually elegant, each update requires to evaluate the
gradient of F , and thus to compute proximal operator p(x) exactly. Unless a closed form is
available, which is almost never the case, an iterative algorithm is required, which yields the
two-loop scheme (see Algorithm 3). Catalyst can then be interpreted as an accelerated gradient
descent method that computes inexact sub-problems using an optimization method M:

xk+1 ≈ p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

where βk+1 is Nesterov’s extrapolation parameter [Nesterov, 2004]. When the minimization
is exact, xk+1 = p(yk) = yk − 1

LF
∇F (yk), and we recover a gradient step computed at the

extrapolated point yk. The main challenge that will be addressed in Section 3.3 is how to
control the complexity of the inner-loop minimization.

3.2.2 The Inexact Moreau-Yosida Envelope
Since Catalyst uses the Moreau-Yoside envelope with inexact gradient, it is natural to introduce
inexactness criteria. We start with the most natural one.
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Inexactness through absolute accuracy. The following definition introduces a set of ap-
proximate proximal operators, which we will use in Catalyst. Given a proximal center x, a
smoothing parameter κ, and an accuracy ε> 0, we denote the set of ε-approximations of the
proximal operator p(x) by

pε(x) ≜ {z ∈ Rp s.t. h(z)− h∗ ≤ ε} where h(z) = f(z) + κ

2
∥x− z∥2, (C1)

and h∗ is the minimum function value of h. Checking the condition z in pε(x) may typically
be done by computing a duality gap, or by using another certificate of the type h(z) − h∗ ≤
h(z)−d(z), where the lower-bound d(z) ≤ h∗ is obtained from duality such as in SDCA [Shalev-
Shwartz and Zhang, 2016]. In other methods such as MISO [Mairal, 2015], d(z) may be obtained
from a quadratic approximation of the objective function and may have a simple closed form.
Note that a criterion based on the subdifferential may also be used as in the extension of
Catalyst recently developed for non-convex optimization by Paquette et al. [2017]. Here, we
focus on the convex case, where other simple criterions may be appropriate, as shown in the
next lemma.

Lemma 6 (Checking the absolute accuracy criterion). Consider a proximal center x, a
smoothing parameter κ and an accuracy ε > 0. Consider an objective with composite form (3.1),
and the function h defined in (C1). Then, define

[z]η = proxηψ (z − η∇h0 (z)) , (3.7)

where h0 is the smooth part of h, namely ∇h0 (z) = ∇f0(z) + κ(z − x) and η = 1
κ+L . Then,

∥z − [z]η∥ ≤ η
√

2κε implies that [z]η ∈ pε(x).

The proof is provided in Appendix B.2[see also the link with criterions based on subdiffer-
ential in Paquette et al., 2017]. Then, with an approximate proximal operator in hand, we may
now obtain an approximate gradient of the Moreau-Yosida envelope, defined as

g(z) ≜ κ(x− z), (3.8)

for any z in pε(x), according to the exact gradient formula ∇F (x) = κ(x − p(x)). As a
consequence, we may immediately draw a link

z ∈ pε(x) =⇒ ∥z − p(x)∥ ≤
√

2ε
κ

⇐⇒ ∥g(z)−∇F (x)∥ ≤
√

2κε, (3.9)

where the upper bound on ∥z−p(x)∥ is a consequence of the strong convexity of h and the fact
that p(x) is its exact minimizer.
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Relative error criterion. We have seen that z in pε(x) yields an upper-bound of the form
∥g(z)−∇F (x)∥ ≤ ε′. Another criterion that arise naturally in the convergence analysis provides
instead an upper bound of the form ∥g(z) − ∇F (x)∥ ≤ δ′∥∇F (x)∥ for some δ′ > 0—that is,
providing a relative error in terms of gradient approximation.

Given a proximal center x, a smoothing parameter κ and a relative accuracy δ in [0, 1), we
denote the set of δ-relative approximations by

gδ(x) ≜
{
z ∈ Rp s.t. h(z)− h∗ ≤ δκ

2
∥x− z∥2

}
, (C2)

Criterion (C2) may be interpreted as (C1) with an adaptive ε that depends on the point z.
Therefore, given a fixed z, checking if z is in gδ(x) is equivalent to checking if z is in pε(x) with
ε = δκ

2 ∥x− z∥
2. Then, by following similar steps as in (3.9), notice that z in gδ(x) implies

∥z − p(x)∥ ≤
√
δ∥x− z∥ ≤

√
δ(∥x− p(x)∥+ ∥p(x)− z∥),

and by rearranging, and using closed forms of g(z) and ∇F (x),

z ∈ gδ(x) =⇒ ∥g(z)−∇F (x)∥ ≤ δ′∥∇F (x)∥ with δ′ =
√
δ

1−
√
δ
,

which provides a relative gradient approximation.
Finally, note that Lemma 6 may be used as well to obtain a point [z]η in gδ(x) after taking

an extra gradient and prox steps and setting the value ε = δκ
2 ∥x− z∥.

A few remarks on related works. Inexactness criteria with respect to subgradient norms
have been investigated in the past, starting from the pioneer work of Rockafellar [1976] in the
context of the inexact proximal point algorithm. Later, different works have been dedicated
to more practical inexactness criteria3 [Auslender, 1987, Correa and Lemaréchal, 1993, Solodov
and Svaiter, 2001, Fuentes et al., 2012]. Here, we provide a more intuitive point of view using
the Moreau-Yosida envelope.

While the proximal point algorithm has caught a lot of attention, very few works have
focused on its accelerated variant. The first accelerated proximal point algorithm with inexact
gradients was proposed by Güler [1992]. Then, Salzo and Villa [2012] proposed a more rigorous
convergence analysis, and more inexactness criteria, which are typically stronger than ours. In
the same way, a more general inexact oracle framework has been proposed later by Devolder
et al. [2014]. To achieve the Catalyst acceleration, our main effort was to propose and analyze
criteria that allow us to control the complexity for finding approximate solutions of the sub-
problems.

3Such as, duality gap, ε-subdifferential or decrease in terms of function value.
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3.3 Catalyst acceleration
In this section, we introduce the Catalyst algorithm, and discuss its main features.

3.3.1 Main Algorithm
Catalyst is presented in Algorithm 4. As discussed in Section 3.2, this scheme can be interpreted
as an inexact accelerated proximal point algorithm, or equivalently as an accelerated gradient
descent method applied to the Moreau-Yosida envelope of the objective with inexact gradients.
Since an overview has already been presented in Section 3.1.2, we now present important details
to obtain acceleration in theory and in practice.

Algorithm 4 Catalyst
input Initial estimate x0 in Rp, smoothing parameter κ, strong convexity parameter µ, opti-

mization methodM and a stopping criterion based on a sequence of accuracies (εk)k≥0, or
(δk)k≥0, or a fixed budget T .

1: Initialize y0 = x0, q = µ
µ+κ . If µ > 0, set α0 = √q, otherwise α0 = 1.

2: while the desired accuracy is not achieved do
3: Compute an approximate solution of the following problem with M

xk ≈ arg min
x∈Rp

{
hk(x) ≜ f(x) + κ

2
∥x− yk−1∥2

}
,

using the warm start strategy of Section 3.3.1 and one of the following stopping criteria:

(a) absolute accuracy: find xk in pεk(yk−1) by using criterion (C1);

(b) relative accuracy: find xk in gδk(yk−1) by using criterion (C2);

(c) f ixed budget: run M for T iterations and output xk.

4: Update αk in (0, 1) by solving the equation

α2
k = (1− αk)α2

k−1 + qαk (3.10)

5: Compute yk with Nesterov’s extrapolation step

yk = xk + βk(xk − xk−1) with βk = αk−1(1− αk−1)
α2
k−1 + αk

. (3.11)

6: end while
output xk (final estimate).
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Requirement: linear convergence of the method M. One of the main characteristic of
Catalyst is to apply the methodM to strongly-convex sub-problems, without requiring strong
convexity of the objective f . As a consequence, Catalyst provides direct support for convex
but non-strongly objectives to M, which may be useful to extend the scope of application of
techniques that need strong convexity to operate. Yet, Catalyst requires to solve these sub-
problems efficiently enough in order to control the complexity of the inner-loop computations.
More precisely, when applyingM to minimize a strongly-convex function h, we assume thatM
is able to produce a sequence of iterates (zt)t≥0 such that

h(zt)− h∗ ≤ CM(1− τM)t(h(z0)− h∗), (3.12)

where z0 is the initial point given to M, and τM in (0, 1), CM > 0 are two constants. In such
a case, we say that M admits a linear convergence rate. The quantity τM controls the speed
of convergence for solving the sub-problem: the larger is τM, the faster is convergence. For
a given algorithm M, the quantity τM depends usually on the condition number of h. For
instance, for the proximal gradient method and many first-order algorithms, we simply have
τM = O((µ + κ)/(L + κ)), as h is (µ + κ)-strongly convex and (L + κ)-smooth. Catalyst can
also be applied to randomized methods M that satisfy (3.12) in expectation:

E[h(zt)− h∗] ≤ CM(1− τM)t(h(z0)− h∗), (3.13)

Then, the complexity results of Section 3.4 also hold in expectation. This allows us to apply
Catalyst to randomized block coordinate descent algorithms [see Richtárik and Takáč, 2014,
and references therein], and some incremental algorithms such as SAG, SAGA, or SVRG. For
other methods that admit a linear convergence rates in terms of duality gap, such as SDCA,
MISO/Finito, Catalyst can also be applied as explained in Section 3.5.

Stopping criteria. Catalyst may be used with three types of stopping criteria for solving
the inner-loop problems. We now detail them below.

(a) absolute accuracy: we use a sequence (εk)k≥0 of accuracies, and stop the methodM by
using criterion (C1). Typically, (C1) requires to compute a duality gap to guarantee
that hk(zt)− h∗

k ≤ εk. Our analysis suggests the following choice for (εk)k≥0:

– if f is µ-strongly convex, use α0 = √q and

εk = 2
9

(1− ρ)k(f(x0)− f ∗) with ρ <
√
q.

– if f is convex but not strongly convex, use α0 = 1.

εk = 2(f(x0)− f ∗)
9(k + 2)4+γ with γ > 0.
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Typically, γ = 0.1 and ρ = 0.9√q are reasonable choices, both in theory and in practice.
Of course, the quantity f(x0) − f ∗ is unknown, but it may be replaced safely by an
upper bound such as f(x0) if f is non-negative or by a duality gap.

(b) relative accuracy: To use criterion (C2), our analysis suggests the following choice for
the sequence (δk)k≥0:

– if f is µ-strongly convex,
δk =

√
q

2−√q
.

– if f is convex but not strongly convex,

δk = 1
(k + 1)2 ,

and in both cases, the value of α0 is the same as for criterion (C1).

With no a priori knowledge required about the objective function f , these relative
accuracy criteria (b) are sometimes simpler to use than criteria (a).

(c) fixed budget: Finally, the simplest way of using Catalyst is to fix in advance the num-
ber T of iterations of the methodM for solving the sub-problems without checking any
optimality criterion. Whereas our analysis provides theoretical budgets that are com-
patible with this strategy, we found them to be pessimistic and impractical. Instead,
we propose an aggressive strategy for incremental methods that simply consists of set-
ting T = n. This setting was called the “one-pass” strategy in the original Catalyst
paper [Lin et al., 2015].

Warm-starts in inner loops. Besides linear convergence rate, an adequate warm start
strategy needs to be used to guarantee that the sub-problems will be solved in reasonable
computational time. Specifically, the following choices arise from the convergence analysis that
will be detailed in Section 3.4. Consider a sub-problem consisting of minimizing the function

hk(z) ≜ f(z) + κ

2
∥z − yk−1∥2.

Then, M will produce a sequence of iterates (zt)t≥0 with initial point z0, which enjoys linear
convergence (3.12) or (3.13). To achieve the Catalyst acceleration, the choice of z0 is critical.
Here, we propose the following rules, which are both compatible with the theory, and more
effective in practice than the one introduced in the original Catalyst paper [Lin et al., 2015].
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(a) when using criterion (C1) to find xk in pεk(yk−1), choose

– if f is smooth (ψ = 0), then choose z0 = xk−1 + κ
κ+µ(yk−1 − yk−2).

– if f is composite as in (3.1), then define w0 = xk−1 + κ
κ+µ(yk−1 − yk−2) and

z0 = proxηψ(w0 − ηg) with g = ∇f0(w0) + κ(w0 − yk−1) and η = 1
L+ κ

.

(3.14)

At the cost of an extra function evaluation, we also noticed that the warm start strategy
can be improved by choosing the starting point among xk−1 and (3.14) that yields the
smallest function value for h.

(b) when using criteria (C2) to find xk in gδk(yk−1),

– if f is smooth (ψ = 0), then choose z0 = yk−1.
– if f is composite as in (3.1), then choose

z0 = proxηψ(yk−1 − η∇f0(yk−1)) with η = 1
L+ κ

.

(c) when using a fixed budget T , choose the same warm start strategy as in (a).

Note that the original paper about Catalyst [Lin et al., 2015] only considers criterion (C1) with
the warm start rule z0 = xk−1, which does not perform as well as the ones proposed here.

Optimal balance: choice of parameter κ. Finally, the last ingredient is to find an optimal
balance between the inner-loop (for solving each sub-problem) and outer-loop computations. To
do so, we minimize our global complexity bounds with respect to the value of κ. As studied in
the experimental section, this strategy turns out to be reasonable in practice. Then, as shown
in the theoretical section, the resulting rule of thumb is

We select κ by maximizing the ratio τM/
√
µ+ κ.

We recall that τM characterizes how fast M solves the sub-problems, according to (3.12);
typically, τM depends on the condition number L+κ

µ+κ and is a function of κ.4 In Table 3.2, we
illustrate the choice of κ for different methods. Note that the resulting rule for incremental
methods is very simple for the pracitioner: select κ such that the condition number L̄+κ

µ+κ is of
the order of n; then, the inner-complexity becomes O(n log(1/ε)).

4 Note that the rule for the non strongly convex case, denoted here by µ = 0, slightly differs from Lin et al.
[2015] and results from a tighter complexity analysis.
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Method M Inner-complexity τM Choice for κ

FG O
(
nL+κ
µ+κ log

(
1
ε

))
∝ µ+κ

L+κ L− 2µ

SAG/SAGA/SVRG O
((
n+ L̄+κ

µ+κ

)
log

(
1
ε

))
∝ µ+κ

n(µ+κ)+L̄+κ
L̄−µ
n+1 − µ

Table 3.2 – Example of choices of the parameter κ for the full gradient (FG) and incremental
methods SAG/SAGA/SVRG. See Table 3.1 for details about the complexity of the methods.

3.4 Convergence and complexity analysis
We now present the complexity analysis of Catalyst. In Section 3.4.1, we analyze the conver-
gence rate of the outer loop, regardless of the complexity for solving the sub-problems. Then,
we analyze the complexity of the inner-loop computations for our various stopping criteria and
warm start strategies in Section 3.4.2. Section 3.4.3 combines the outer- and inner-loop analysis
to provide the global complexity of Catalyst applied to a given optimization method M.

3.4.1 Complexity Analysis for the Outer-Loop
The complexity analysis of the first variant of Catalyst we presented in [Lin et al., 2015] used
a tool called “estimate sequence”, which was introduced by Nesterov [2004]. Here, we provide
a simpler proof. We start with criterion (C1), before extending the result to (C2).

Analysis for Criterion (C1)

The next theorem describes how the errors (εk)k≥0 accumulate in Catalyst.

Theorem 7 (Convergence of outer-loop for criterion (C1)). Consider the sequences
(xk)k≥0 and (yk)k≥0 produced by Algorithm 4, assuming that xk is in pεk(yk−1) for all k ≥ 1,
Then,

f(xk)− f ∗ ≤ Ak−1

√(1− α0)(f(x0)− f ∗) + γ0

2
∥x∗ − x0∥2 + 3

k∑
j=1

√
εj
Aj−1

2

,

where

γ0 = (κ+ µ)α0(α0 − q) and Ak =
k∏
j=1

(1− αj). (3.15)

Before we prove this theorem, we note that by setting εk = 0 for all k, the speed of
convergence of f(xk)− f ∗ is driven by the sequence (Ak)k≥0. Lemma 2.2.4 of Nesterov [2004],
which we recall below, provides us this speed.
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Lemma 7 (Lemma 2.2.4 of Nesterov 2004). Consider the quantities γ0, Ak defined in (3.15)
and the αk’s defined in Algorithm 4. Then, if γ0 ≥ µ,

Ak ≤ min

(1−√q)k , 4(
2 + k

√
γ0
κ

)2

 .
For non-strongly convex objectives, Ak follows the classical accelerated O(1/k2) rate of

convergence, whereas it achieves a linear convergence rate for the strongly convex case. Note
that the quantity q = µ

µ+κ is simply the inverse square root of the condition number of the
Moreau-Yosida regularization F of the objective f . We now provide the proof of the theorem
below.

Proof. We start by defining an approximate sufficient descent condition inspired by a remark
of Chambolle and Pock [2015] regarding accelerated gradient descent methods. A related
condition was also used by Paquette et al. [2017] in the context of non-convex optimization.

Approximate sufficient descent condition. Let us define the function hk(x) = f(x) +
κ
2∥x − yk∥

2. Since p(yk) is the unique minimizer of hk, we may start with a strong convexity
inequality: for any k ≥ 1, for all x in Rd and θk ≥ 0,

hk(x) ≥ h∗
k + κ+ µ

2
∥x− p(yk−1)∥2

≥ h∗
k + κ+ µ

2
(1− θk) ∥x− xk∥2 − κ+ µ

2

( 1
θk
− 1

)
∥xk − p(yk−1)∥2

≥ hk(xk)− εk + κ+ µ

2
(1− θk) ∥x− xk∥2 − κ+ µ

2

( 1
θk
− 1

)
∥xk − p(yk−1)∥2,

where the (µ+κ)-strong convexity of hk is used in the first inequality; Lemma 16 is used in the
second inequality, and the last one uses the relation hk(xk)− h∗

k ≤ εk. Moreover, when θk ≥ 1,
the last term is non-negative and

hk(x) ≥ hk(xk)− εk + κ+ µ

2
(1− θk) ∥x− xk∥2.

If instead θk ≤ 1, the coefficient 1
θk
− 1 is non-negative and we have

−κ+ µ

2

( 1
θk
− 1

)
∥xk − p(yk−1)∥2 ≥ −

( 1
θk
− 1

)
(hk(xk)− h∗

k) ≥ −
( 1
θk
− 1

)
εk.

In this case, we have

hk(x) ≥ hk(xk)−
εk
θk

+ κ+ µ

2
(1− θk) ∥x− xk∥2.
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As a result, we have for all value of θk ≥ 0,

hk(x) ≥ hk(xk) + κ+ µ

2
(1− θk) ∥x− xk∥2 − εk

min{1, θk}
.

After using the definition of hk, we then obtain the approximate descent condition

f(xk) + κ

2
∥xk− yk−1∥2 + κ+ µ

2
(1− θk) ∥x−xk∥2 ≤ f(x) + κ

2
∥x− yk−1∥2 + εk

min{1, θk}
. (3.16)

Definition of the Lyapounov function. we introduce a sequence (Sk)k≥0 that will act as
a Lyapounov function, with

Sk = (1− αk)(f(xk)− f ∗) + αk
κηk
2
∥x∗ − vk∥2. (3.17)

where x∗ is a minimizer of f , (vk)k≥0 is a sequence defined by v0 = x0 and

vk = xk + 1− αk−1

αk−1
(xk − xk−1) for k ≥ 1,

and (ηk)k≥0 is an auxiliary quantity defined by

ηk = αk − q
1− q

.

The way we introduce these variables allow us to write the following relationship,

yk = ηkvk + (1− ηk)xk, for all k ≥ 0,

which is obtained after simple calculation. Then, we have the following relations for all k ≥ 1
and zk = αk−1x

∗ + (1− αk−1)xk−1.

f(zk) ≤ αk−1f
∗ + (1− αk−1)f(xk−1)−

µαk−1(1− αk−1)
2

∥x∗ − xk−1∥2;

zk − xk = αk−1(x∗ − vk),

and also the following one

∥zk − yk−1∥2 = ∥(αk−1 − ηk−1)(x∗ − xk−1) + ηk−1(x∗ − vk−1)∥2

= α2
k−1

∥∥∥∥∥
(

1− ηk−1

αk−1

)
(x∗ − xk−1) + ηk−1

αk−1
(x∗ − vk−1)

∥∥∥∥∥
2

≤ α2
k−1

(
1− ηk−1

αk−1

)
∥x∗ − xk−1∥2 + α2

k−1
ηk−1

αk−1
∥x∗ − vk−1∥2

= αk−1(αk−1 − ηk−1)∥x∗ − xk−1∥2 + αk−1ηk−1∥x∗ − vk−1∥2,
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where we used the convexity of the norm and the fact that ηk ≤ αk. Using the previous relations
in (3.16) with x = zk = αk−1x

∗ + (1− αk−1)xk−1, gives for all k ≥ 1,

f(xk) + κ

2
∥xk − yk−1∥2 + κ+ µ

2
(1− θk)α2

k−1∥x∗ − vk∥2

≤ αk−1f
∗ + (1− αk−1)f(xk−1)−

µ

2
αk−1(1− αk−1)∥x∗ − xk−1∥2

+ καk−1(αk−1 − ηk−1)
2

∥x∗ − xk−1∥2 + καk−1ηk−1

2
∥x∗ − vk−1∥2 + εk

min{1, θk}
.

Remark that for all k ≥ 1,

αk−1 − ηk−1 = αk−1 −
αk−1 − q

1− q
= q(1− αk−1)

1− q
= µ

κ
(1− αk−1),

and the quadratic terms involving x∗ − xk−1 cancel each other. Then, after noticing that for
all k ≥ 1,

ηkαk = α2
k − qαk
1− q

=
(κ+ µ)(1− αk)α2

k−1
κ

,

which allows us to write

f(xk)− f ∗ + κ+ µ

2
α2
k−1∥x∗ − vk∥2 = Sk

1− αk
. (3.18)

We are left, for all k ≥ 1, with

1
1− αk

Sk ≤ Sk−1 + εk
min{1, θk}

− κ

2
∥xk − yk−1∥2 +

(κ+ µ)α2
k−1θk

2
∥x∗ − vk∥2. (3.19)

Control of the approximation errors for criterion (C1). Using the fact that

1
min{1, θk}

≤ 1 + 1
θk
,

we immediately derive from equation (3.19) that

1
1− αk

Sk ≤ Sk−1 + εk + εk
θk
− κ

2
∥xk − yk−1∥2 +

(κ+ µ)α2
k−1θk

2
∥x∗ − vk∥2. (3.20)

By minimizing the right-hand side of (3.20) with respect to θk, we obtain the following inequality

1
1− αk

Sk ≤ Sk−1 + εk +
√

2εk(µ+ κ)αk−1∥x∗ − vk∥,
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and after unrolling the recursion,

Sk
Ak
≤ S0 +

k∑
j=1

εj
Aj−1

+
k∑
j=1

√
2εj(µ+ κ)αj∥x∗ − vj∥

Aj−1
.

From Equation (3.18), the lefthand side is larger than (µ+κ)α2
k−1∥x∗−vk∥2

2Ak−1
. We may now define

uj =
√

(µ+κ)αj−1∥x∗−vj∥√
2Aj

and aj = 2
√
εj√
Aj

, and we have

u2
k ≤ S0 +

k∑
j=1

εj
Aj−1

+
k∑
j=1

ajuj for all k ≥ 1.

This allows us to use Lemma 17, which yields

Sk
Ak
≤


√√√√√S0 +

k∑
j=1

εj
Aj−1

+ 2
k∑
j=1

√
εj
Aj−1


2

,

≤

√S0 + 3
k∑
j=1

√
εj
Aj−1

2

which provides us the desired result given that f(xk)− f ∗ ≤ Sk

1−αk
and that v0 = x0.

We are now in shape to state the convergence rate of the Catalyst algorithm with crite-
rion (C1), without taking into account yet the cost of solving the sub-problems. The next two
propositions specialize Theorem 7 to the strongly convex case and convex, but not strongly
convex cases, respectively. Their proofs are provided in Appendix B.2.

Proposition 2 (µ-strongly convex case, criterion (C1)).
In Algorithm 4, choose α0 = √q and

εk = 2
9

(f(x0)− f ∗)(1− ρ)k with ρ <
√
q.

Then, the sequence of iterates (xk)k≥0 satisfies

f(xk)− f ∗ ⩽ 8
(√q − ρ)2 (1− ρ)k+1(f(x0)− f ∗).

Proposition 3 (Convex case, criterion (C1)).
When µ = 0, choose α0 = 1 and

εk = 2(f(x0)− f ∗)
9(k + 1)4+γ with γ > 0.

Then, Algorithm 4 generates iterates (xk)k≥0 such that

f(xk)− f ∗ ⩽ 8
(k + 1)2

(
κ

2
∥x0 − x∗∥2 + 4

γ2 (f(x0)− f ∗)
)
.
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Analysis for Criterion (C2)

Then, we may now analyze the convergence of Catalyst under criterion (C2), which offers similar
guarantees as (C1), as far as the outer loop is concerned.

Theorem 8 (Convergence of outer-loop for criterion (C2)). Consider the sequences
(xk)k≥0 and (yk)k≥0 produced by Algorithm 4, assuming that xk is in gδk(yk−1) for all k ≥ 1 and
δk in (0, 1). Then,

f(xk)− f ∗ ≤ Ak−1∏k
j=1 (1− δj)

(
(1− α0)(f(x0)− f ∗) + γ0

2
∥x0 − x∗∥2

)
,

where γ0 and (Ak)k≥0 are defined in (3.15) in Theorem 7.

Proof. xk in gδk(yk−1) is equivalent to xk in pεk(yk−1) with an adaptive εk = δkκ
2 ∥xk − yk−1∥2.

All steps of the proof of Theorem 7 hold for such values of εk and from (3.19), we may deduce

Sk
1− αk

− (κ+ µ)α2
k−1θk

2
∥x∗ − vk∥2 ≤ Sk−1 +

(
δkκ

2 min{1, θk}
− κ

2

)
∥xk − yk−1∥2.

Then, by choosing θk = δk < 1, the quadratic term on the right disappears and the left-hand
side is greater than 1−δk

1−αk
Sk. Thus,

Sk ≤
1− αk
1− δk

Sk−1 ≤
Ak∏k

j=1 (1− δj)
S0,

which is sufficient to conclude since (1− αk)(f(xk)− f ∗) ≤ Sk.

The next propositions specialize Theorem 8 for specific choices of sequence (δk)k≥0 in the
strongly and non strongly convex cases.

Proposition 4 (µ-strongly convex case, criterion (C2)).
In Algorithm 4, choose α0 = √q and

δk =
√
q

2−√q
.

Then, the sequence of iterates (xk)k≥0 satisfies

f(xk)− f ∗ ⩽ 2
(

1−
√
q

2

)k
(f(x0)− f ∗) .

Proof. This is a direct application of Theorem 8 by remarking that γ0 = (1−√q)µ and

S0 = (1−√q)
(
f(x0)− f ∗ + µ

2
∥x∗ − x0∥2

)
≤ 2(1−√q)(f(x0)− f ∗).
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And αk = √q for all k ≥ 0 leading to

1− αk
1− δk

= 1−
√
q

2

Proposition 5 (Convex case, criterion (C2)).
When µ = 0, choose α0 = 1 and

δk = 1
(k + 1)2 .

Then, Algorithm 4 generates iterates (xk)k≥0 such that

f(xk)− f ∗ ⩽ 4κ∥x0 − x∗∥2

(k + 1)2 . (3.21)

Proof. This is a direct application of Theorem 8 by remarking that γ0 = κ, Ak ≤ 4
(k+2)2

(Lemma 18) and
k∏
i=1

(
1− 1

(i+ 1)2

)
=

k∏
i=1

i(i+ 2)
(i+ 1)2 = k + 2

2(k + 1)
≥ 1

2
.

Remark 1. In fact, the choice of δk can be improved by taking δk = 1
(k+1)1+γ for any γ > 0,

which comes at the price of a larger constant in (3.21).

3.4.2 Analysis of Warm Start Strategies for the Inner Loop
In this section, we study the complexity of solving the subproblems with the proposed warm
start strategies. The only assumption we make on the optimization methodM is that it enjoys
linear convergence when solving a strongly convex problem—meaning, it satisfies either (3.12)
or its randomized variant (3.13). Then, the following lemma gives us a relation between the
accuracy required to solve the sub-problems and the corresponding complexity.

Lemma 8 (Accuracy vs. complexity). Let us consider a strongly convex objective h and
a linearly convergent method M generating a sequence of iterates (zt)t≥0 for minimizing h.
Consider the complexity T (ε) = inf{t ≥ 0, h(zt) − h∗ ≤ ε}, where ε > 0 is the target accuracy
and h∗ is the minimum value of h. Then,

1. If M is deterministic and satisfies (3.12), we have

T (ε) ≤ 1
τM

log
(
CM(h(z0)− h∗)

ε

)
.
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2. If M is randomized and satisfies (3.13), we have

E[T (ε)] ≤ 1
τM

log
(

2CM(h(z0)− h∗)
τMε

)
+ 1

The proof of the deterministic case is straightforward and the proof of the randomized case
is provided in Appendix B.2.4. From the previous result, a good initialization is essential for
fast convergence. More precisely, it suffices to control the initialization h(z0)−h∗

ε
in order to

bound the number of iterations T (ε). For that purpose, we analyze the quality of various warm
start strategies.

Warm Start Strategies for Criterion (C1)

The next proposition characterizes the quality of initialization for (C1).

Proposition 6 (Warm start for criterion (C1)). Assume thatM is linearly convergent for
strongly convex problems with parameter τM according to (3.12), or according to (3.13) in the
randomized case. At iteration k + 1 of Algorithm 4, given the previous iterate xk in pεk(yk−1),
we consider the following function

hk+1(z) = f(z) + κ

2
∥z − yk∥2,

which we minimize with M, producing a sequence (zt)t≥0. Then,

• when f is smooth, choose z0 = xk + κ
κ+µ(yk − yk−1);

• when f = f0 + ψ is composite, choose z0 = proxηψ(w0 − η∇h0(w0)) with w0 = xk +
κ

κ+µ(yk − yk−1), η = 1
L+κ and h0 = f0 + κ

2∥ · −yk∥
2.

We also assume that we choose α0 and (εk)k≥0 according to Proposition 2 for µ > 0, or Propo-
sition 3 for µ = 0. Then,

1. if f is µ-strongly convex, hk+1(z0)− h∗
k+1 ≤ Cεk+1 where,

C = L+ κ

κ+ µ

(
2

1− ρ
+ 2592(κ+ µ)

(1− ρ)2(√q − ρ)2µ

)
if f is smooth, (3.22)

or
C = L+ κ

κ+ µ

(
2

1− ρ
+ 23328(L+ κ)

(1− ρ)2(√q − ρ)2µ

)
if f is composite. (3.23)

2. if f is convex with bounded level sets, there exists a constant B > 0 that only depends on
f, x0 and κ such that

hk+1(z0)− h∗
k+1 ≤ B. (3.24)

Proof. We treat the smooth and composite cases separately.
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Smooth and strongly-convex case. When f is smooth, by the gradient Lipschitz assump-
tion,

hk+1(z0)− h∗
k+1 ≤

(L+ κ)
2
∥z0 − p(yk)∥2.

Moreover,

∥z0 − p(yk)∥2 = ∥xk + κ

κ+ µ
(yk − yk−1)− p(yk)∥2

= ∥xk − p(yk−1) + κ

κ+ µ
(yk − yk−1)− (p(yk)− p(yk−1))∥2

≤ 2∥xk − p(yk−1)∥2 + 2
∥∥∥∥∥ κ

κ+ µ
(yk − yk−1)− (p(yk)− p(yk−1))

∥∥∥∥∥
2

.

Since xk is in pεk(yk−1), we may control the first quadratic term on the right by noting that

∥xk − p(yk−1)∥2 ≤ 2
κ+ µ

(hk(xk)− h∗
k) ≤

2εk
κ+ µ

.

Moreover, by the firmly non-expansiveness property of the proximal operator, it is possible to
show that ∥∥∥∥∥ κ

κ+ µ
(yk − yk−1)− (p(yk)− p(yk−1))

∥∥∥∥∥
2

≤ ∥yk − yk−1∥2.

As a consequence,

hk+1(z0)− h∗
k+1 ≤

(L+ κ)
2
∥z0 − p(yk)∥2

≤ (L+ κ)(∥xk − p(yk−1)∥2 + ∥yk − yk−1 − (p(yk)− p(yk−1))∥2),

≤ 2L+ κ

µ+ κ
εk + (L+ κ)∥yk − yk−1∥2,

(3.25)

Then, we need to control the term ∥yk − yk−1∥2. Inspired by the proof of accelerated SDCA
of Shalev-Shwartz and Zhang [2016],

∥yk − yk−1∥ = ∥xk + βk(xk − xk−1)− xk−1 − βk−1(xk−1 − xk−2)∥
⩽ (1 + βk)∥xk − xk−1∥+ βk−1∥xk−1 − xk−2∥
⩽ 3 max {∥xk − xk−1∥, ∥xk−1 − xk−2∥} ,

The last inequality was due to the fact that βk ≤ 1. In fact,

β2
k =

(
αk−1 − α2

k−1

)2

(
α2
k−1 + αk

)2 =
α2
k−1 + α4

k−1 − 2α3
k−1

α2
k + 2αkα2

k−1 + α4
k−1

=
α2
k−1 + α4

k−1 − 2α3
k−1

α2
k−1 + α4

k−1 + qαk + αkα2
k−1
≤ 1,
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where the last equality uses the relation α2
k + αkα

2
k−1 = α2

k−1 + qαk from (3.10). Then,

∥xk − xk−1∥ ⩽ ∥xk − x∗∥+ ∥xk−1 − x∗∥,

and by strong convexity of f

µ

2
∥xk − x∗∥2 ⩽ f(xk)− f ∗ ⩽ 36

(√q − ρ)2 εk+1,

where the last inequality is obtained from Proposition 2. As a result,

∥yk − yk−1∥2 ⩽ 9 max
{
∥xk − xk−1∥2, ∥xk−1 − xk−2∥2

}
⩽ 36 max

{
∥xk − x∗∥2, ∥xk−1 − x∗∥2, ∥xk−2 − x∗∥2

}
⩽ 2592 εk−1

(√q − ρ)2µ
.

Since εk+1 = (1− ρ)2εk−1, we may now obtain (3.22) from (3.25) and the previous bound.

Smooth and convex case. When µ = 0, Eq. (3.25) is still valid but we need to control
∥yk − yk−1∥2 in a different way. From Proposition 3, the sequence (f(xk))k≥0 is bounded by a
constant that only depends on f and x0; therefore, by the bounded level set assumption, there
exists R > 0 such that

∥xk − x∗∥ ≤ R, for all k ≥ 0.

Thus, following the same argument as the strongly convex case, we have

∥yk − yk−1∥ ≤ 36R2 for all k ≥ 1,

and we obtain (3.24) by combining the previous inequality with (3.25).

Composite case. By using the notation of gradient mapping introduced in (3.7), we have
z0 = [w0]η. By following similar steps as in the proof of Lemma 6, the gradient mapping satisfies
the following relation

hk+1(z0)− h∗
k+1 ≤

1
2(κ+ µ)

∥∥∥∥∥1
η

(w0 − z0)
∥∥∥∥∥

2

,

and we need to bound ∥w0 − z0∥ = ∥w0 − [w0]η∥. For that, we introduce

[xk]η = proxηψ(xk − η(∇f0(xk) + κ(xk − yk−1))).

Then,
∥w0 − [w0]η∥ ≤ ∥w0 − xk∥+ ∥xk − [xk]η∥+ ∥[xk]η − [w0]η∥, (3.26)
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and we will bound each term on the right. By construction

∥w0 − xk∥ = κ

κ+ µ
∥yk − yk−1∥ ≤ ∥yk − yk−1∥.

Next, it is possible to show that the gradient mapping satisfies the following relation [see
Nesterov, 2013],

1
2η
∥xk − [xk]η∥2 ≤ hk(xk)− h∗

k ≤ εk.

And then since [xk]η = proxηψ(xk − η(∇f0(xk) + κ(xk − yk−1))) and [w0]η = proxηψ(w0 −
η(∇f0(w0) + κ(w0 − yk))). From the non expansiveness of the proximal operator, we have

∥[xk]η − [w0]η∥ ≤ ∥xk − η(∇f0(xk) + κ(xk − yk−1))− (w0 − η(∇f0(w0) + κ(w0 − yk))) ∥
≤ ∥xk − η(∇f0(xk) + κ(xk − yk−1))− (w0 − η(∇f0(w0) + κ(w0 − yk−1))) ∥

+ ηκ∥yk − yk−1∥
≤ ∥xk − w0∥+ ηκ∥yk − yk−1∥
≤ 2∥yk − yk−1∥.

We have used the fact that ∥x−η∇h(x)− (y−η∇h(y))∥ ≤ ∥x−y∥. By combining the previous
inequalities with (3.26), we finally have

∥w0 − [w0]η∥ ≤
√

2ηεk + 3∥yk − yk−1∥.

Thus, by using the fact that (a+ b)2 ≤ 2a2 + 2b2 for all a, b,

hk+1(z0)− h∗
k+1 ≤

L+ κ

κ+ µ

(
2εk + 9(L+ κ)∥yk − yk−1∥2

)
,

and we can obtain (3.23) and (3.24) by upper-bounding ∥yk − yk−1∥2 in a similar way as in the
smooth case, both when µ > 0 and µ = 0.

Finally, the complexity of the inner loop can be obtained directly by combining the previous
proposition with Lemma 8.

Corollary 3 (Inner-loop Complexity for Criterion (C1)). Consider the setting of Propo-
sition 6; then, the sequence (zt)t≥0 minimizing hk+1 is such that the complexity Tk+1 = inf{t ≥
0, hk+1(zt)− h∗

k+1 ≤ εk+1} satisfies

Tk+1 ≤
1
τM

log (CMC) if µ > 0 =⇒ Tk+1 = Õ
( 1
τM

)
,

where C is the constant defined in (3.22) or in (3.23) for the composite case; and

Tk+1 ≤
1
τM

log
(

9CM(k + 2)4+ηB

2(f(x0)− f ∗)

)
if µ = 0 =⇒ Tk+1 = Õ

(
log(k + 2)

τM

)
,
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where B is the uniform upper bound in (3.24). Furthermore, when M is randomized, the
expected complexity E[Tk+1] is similar, up to a factor 2/τM in the logarithm—see Lemma 8,
and we have E[Tk+1] = Õ(1/τM) when µ > 0 and E[Tk+1] = Õ(log(k + 2)/τM). Here, Õ(.)
hides logarithmic dependencies in parameters µ, L, κ, CM, τM and f(x0)− f ∗.

Warm Start Strategies for Criterion (C2)

We may now analyze the inner-loop complexity for criterion (C2) leading to upper bounds with
smaller constants and simpler proofs. Note also that in the convex case, the bounded level
set condition will not be needed, unlike for criterion (C1). To proceed, we start with a simple
lemma that gives us a sufficient condition for (C2) to be satisfied.

Lemma 9 (Sufficient condition for criterion (C2)). If a point z satisfies

hk+1(z)− h∗ ≤ δk+1κ

8
∥p(yk)− yk∥2,

then z is in gδk+1(yk).

Proof.

hk+1(z)− h∗
k+1 ≤

δk+1κ

8
∥p(yk)− yk∥2

≤ δk+1κ

4
(
∥p(yk)− z∥2 + ∥z − yk∥2

)
≤ δk+1κ

4

(
2

µ+ κ
(hk+1(z)− h∗

k+1) + ∥z − yk∥2
)

≤ 1
2
(
hk+1(z)− h∗

k+1

)
+ δk+1κ

4
∥z − yk∥2.

Rearranging the terms gives the desired result.

With the previous result, we can control the complexity of the inner-loop minimization with
Lemma 8 by choosing ε = δk+1κ

8 ∥p(yk) − yk∥
2. However, to obtain a meaningful upper bound,

we need to control the ratio

hk+1(z0)− h∗
k+1

ε
=

8(hk+1(z0)− h∗
k+1)

δk+1κ∥p(yk)− yk∥2 .

Proposition 7 (Warm start for criterion (C2)). Assume thatM is linearly convergent for
strongly convex problems with parameter τM according to (3.12), or according to (3.13) in the
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randomized case. At iteration k + 1 of Algorithm 4, given the previous iterate xk in gδk(yk−1),
we consider the following function

hk+1(z) = f(z) + κ

2
∥z − yk∥2,

which we minimize with M, producing a sequence (zt)t≥0. Then,

• when f is smooth, choose z0 = yk;

• when f = f0 + ψ is composite, choose z0 = proxηψ(yk − η∇f0(yk)) with η = 1
L+κ .

Then,

hk+1(z0)− h∗
k+1 ≤

L+ κ

2
∥p(yk)− yk∥2. (3.27)

Proof. When f is smooth, the optimality conditions of p(yk) yield ∇hk+1(p(yk)) = ∇f(p(yk)) +
κ(p(yk)− yk) = 0. As a result,

hk+1(z0)− h∗
k+1 = f(yk)−

(
f(p(yk)) + κ

2
∥p(yk)− yk∥2

)
≤ f(p(yk)) + ⟨∇f(p(yk)), yk − p(yk)⟩+ L

2
∥yk − p(yk)∥2

−
(
f(p(yk)) + κ

2
∥p(yk)− yk∥2

)
= L+ κ

2
∥p(yk)− yk∥2.

When f is composite, we use the inequality in Lemma 2.3 of [Beck and Teboulle, 2009]: for
any z,

hk+1(z)− hk+1(z0) ≥
L+ κ

2
∥z0 − yk∥2 + (L+ κ)⟨z0 − yk, yk − z⟩,

Then, we apply this inequality with z = p(yk), and thus,

hk+1(z0)− h∗
k+1 ≤ −

L+ κ

2
∥z0 − yk∥2 − (L+ κ)⟨z0 − yk, yk − p(yk)⟩

≤ L+ κ

2
∥p(yk)− yk∥2.

We are now in shape to derive a complexity bound for criterion (C2), which is obtained by
combining directly Lemma 8 with the value ε = δk+1κ

8 ∥p(yk)− yk∥
2, Lemma 9, and the previous

proposition.
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Corollary 4 (Inner-loop Complexity for Criterion (C2)). Consider the setting of Propo-
sition 7 when M is deterministic; assume further that α0 and (δk)k≥0 are chosen according to
Proposition 4 for µ > 0, or Proposition 5 for µ = 0.

Then, the sequence (zt)t≥0 is such that the complexity Tk+1 = inf{t ≥ 0, zt ∈ gδk+1(yk)}
satisfies

Tk+1 ≤
1
τM

log
(

4CM
(L+ κ)

κ

2−√q
√
q

)
when µ > 0,

and
Tk+1 ≤

1
τM

log
(

4CM
(L+ κ)

κ
(k + 2)2

)
when µ = 0.

When M is randomized, the expected complexity is similar, up to a factor 2/τM in the
logarithm—see Lemma 8, and we have E[Tk+1] = Õ(1/τM) when µ > 0 and E[Tk+1] =
Õ(log(k + 2)/τM).

The inner-loop complexity is asymptotically similar with criterion (C2) as with criterion (C1),
but the constants are significantly better.

3.4.3 Global Complexity Analysis
In this section, we combine the previous outer-loop and inner-loop convergence results to derive
a global complexity bound. We treat here the strongly convex (µ > 0) and convex (µ = 0)
cases separately.

Strongly Convex Case

When the problem is strongly convex, we remark that the subproblems are solved in a constant
number of iterations Tk = T = Õ

(
1
τM

)
for both criteria (C1) and (C2). This means that the

iterate xk in Algorithm 4 is obtained after s = kT iterations of the methodM. Thus, the true
convergence rate of Catalyst applied to M is of the form

fs − f ∗ = f
(
x s

T

)
− f ∗ ≤ C ′(1− ρ)

s
T (f(x0)− f ∗) ≤ C ′

(
1− ρ

T

)s
(f(x0)− f ∗), (3.28)

where fs = f(xk) is the function value after s iterations of M and ρ = √q/2 for criterion (C2)
and ρ may be chosen to be 0.9√q for criterion (C1). Then, choosing κ consists of maximizing
the rate of convergence (3.28). In other words, we want to maximize √q/T = Õ(√qτM). Since
q = µ

µ+κ , this naturally lead to the maximization of τM/
√
µ+ κ. As we will discuss later,

this choice recovers classical accelerated rates of convergence. We now state more formally the
global convergence result in terms of complexity.

Proposition 8 (Global Complexity for strongly convex objectives). When f is µ-
strongly convex and all parameters are chosen according to Propositions 2 and 6 when using
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criterion (C1), or Propositions 4 and 7 for (C2), then Algorithm 4 finds a solution x̂ such that
f(x̂)− f ∗ ≤ ε in at most NM iterations of a deterministic method M with

1. when criterion (C1) is used,

NM ≤
1

τMρ
log (CMC) · log

(
8(f(x0)− f ∗)
(√q − ρ)2ε

)
= Õ

(
1

τM
√
q

log
(1
ε

))
,

where ρ = 0.9√q and C is the constant defined in (3.22) or (3.23) for the composite case;

2. when criterion (C2) is used,

NM ≤
2

τM
√
q

log
(

4CM
L+ κ

κ

2−√q
√
q

)
· log

(
2(f(x0)− f ∗)

ε

)
= Õ

(
1

τM
√
q

log
(1
ε

))
.

Note that similar results hold in terms of expected number of iterations when the method M is
randomized (see the end of Proposition 6).

Proof. Let K be the number of iterations of the outer-loop algorithm required to obtain an
ε-accurate solution. From Proposition 2, using (C1) criterion yields

K ≤ 1
ρ

log
(

8(f(x0)− f ∗)
(√q − ρ)2ε

)
.

From Proposition 4, using (C2) criterion yields

K ≤ 2
√
q

log
(

2(f(x0)− f ∗)
ε

)
.

Then since the number of runs of M is constant for any inner loop, the total number NM is
given by KT where T is respectively given by Corollaries 3 and 4.

Convex, but not Strongly Convex Case

When µ = 0, the number of iterations for solving each subproblems grows logarithmically, which
means that the iterate xk in Algorithm 4 is obtained after s ≤ kT log(k + 2) iterations of the
methodM, where T is a constant. By using the global iteration counter s = kT log(k+ 2), we
finally have

fs − f ∗ ≤ C ′ log2(s)
s2

(
f(x0)− f ∗ + κ

2
∥x0 − x∗∥2

)
. (3.29)

This rate is near-optimal, up to a logarithmic factor, when compared to the optimal rateO(1/s2).
This may be the price to pay for using a generic acceleration scheme. As before, we formally
detail the global complexity bound for convex in the next proposition.
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Proposition 9 (Global complexity for convex objectives). When f is convex and all
parameters are chosen according to Propositions 3 and 6 when using criterion (C1), or Propo-
sitions 5 and 7 for criterion (C2), then Algorithm 4 finds a solution x̂ such that f(x̂)− f ∗ ≤ ε
in at most NM iterations of a deterministic method M with

1. when criterion (C1) is applied

NM ≤
1
τM

K log
(

9CMBK4+γ

2(f(x0)− f ∗)

)
= Õ

( 1
τM

√
κ

ε
log

(1
ε

))
,

where,

Kε =

√√√√8
(
κ
2∥x0 − x∗∥2 + 4

γ2 (f(x0)− f ∗)
)

ε
;

2. when criterion (C2) is applied,

NM ≤
1
τM

√
4κ∥x0 − x∗∥2

ε
log

(
16CM(L+ κ)∥x0 − x∗∥2

ε

)

= Õ
( 1
τM

√
κ

ε
log

(1
ε

))
.

Note that similar results hold in terms of expected number of iterations when the method M is
randomized (see the end of Proposition 7).

Proof. Let K denote the number of outer-loop iterations required to achieve an ε-accurate
solution. From Proposition 3, when (C1) is applied, we have

K ≤

√√√√8
(
κ
2∥x0 − x∗∥2 + 4

γ2 (f(x0)− f ∗)
)

ε
.

From Proposition 5, when (C2) is applied, we have

K ≤
√

4κ∥x0 − x∗∥2

ε
.

Since the number of runs in the inner loop is increasing, we have

NM =
K∑
i=1

Ti ≤ KTK .

Respectively apply TK obtained from Corollary 3 and Corollary 4 gives the result.
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3.4. CONVERGENCE AND COMPLEXITY ANALYSIS

Theoretical foundations of the choice of κ. The parameter κ plays an important rule
in the global complexity result. The linear convergence parameter τM depends typically on κ
since it controls the strong convexity parameter of the subproblems. The natural way to choose
κ is to minimize the global complexity given by Proposition 8 and Proposition 9, which leads
to the following rule

Choose κ to maximize τM√
µ+ κ

,

where µ = 0 when the problem is convex but not strongly convex. We now illustrate two exam-
ples when applying Catalyst to the classical gradient descent method and to the incremental
approach SVRG.

Gradient descent. When M is the gradient descent method, we have

τM = µ+ κ

L+ κ
.

Maximizing the ratio τM√
µ+ κ

gives

κ = L− 2µ, when L > 2µ.

Consequently, the complexity in terms of gradient evaluations for minimizing the finite sum 3.2,
where each iteration of M cost n gradients, is given by

NM =


Õ
(
n
√

L
µ

log
(

1
ε

))
when µ > 0;

Õ
(
n
√

L
ε

log
(

1
ε

))
when µ = 0.

More precisely, when (C2) is applied

NM ≤


√

2(L−µ)
µ

log
(

2(f(x0)−f∗)
ε

)
log

(
16
√

L−µ
µ

)
when µ > 0;

4
√

L∥x0−x∗∥2

ε
log

(
32∥x0−x∗∥2

ε

)
when µ = 0.

These rates are near-optimal up to logarithmic constants according to the first-order lower
bound [Nemirovskii et al., 1983, Nesterov, 2004].

SVRG. For SVRG [Xiao and Zhang, 2014] applied to the same finite-sum objective,

τM = 1
600

(
n+ L+κ

µ+κ

) .5
5The coefficient 600 corresponds to the choice θ = 0.1 and m = 100 L

µ in Xiao and Zhang [2014].
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Thus, maximizing the corresponding ratio gives

κ = L− µ
n+ 1

− µ, when L > (n+ 2)µ.

Consequently, the resulting global complexity, here in terms of expected number of gradient
evaluations, is given by

E[NM] =


Õ
(√

nL
µ

log
(

1
ε

))
when µ > 0 and L > (n+ 2)µ;

Õ
(√

nL
ε

log
(

1
ε

))
when µ = 0.

Note that we treat here only the ill-conditioned case L > (n+ 2)µ to simplify. More precisely,
when (C2) is applied

E[NM] ≤


4800

√
nL
µ

log
(

2(f(x0)−f∗)
ε

)
log

(
76800n

√
nL
µ

)
when µ > 0 and L > (n+ 2)µ;

9600
√

nL
ε

log
(
153600nL∥x0−x∗∥2

ε

)
when µ = 0.

We end up with large constant coefficients since we use a pessimistic convergence rate of SVRG
algorithm, which is purely theoretical. This rate is near-optimal up to logarithmic factors
according to the first-order lower bound [Woodworth and Srebro, 2016, Arjevani and Shamir,
2016]. We remark that applying Catalyst to other incremental algorithms such as SAG/SAGA
[Schmidt et al., 2017, Defazio et al., 2014a] or dual-type algorithm Finito/MISO [Defazio et al.,
2014b, Mairal, 2015] or SDCA [Shalev-Shwartz and Zhang, 2012] yields similar convergence
rates, which is different only in the constant. Thus, we successfully accelerate a large class of
first-order algorithms, see Table 3.1 for a summary.

Practical Aspects of the Theoretical Analysis

So far, we have not discussed the fixed budget criterion mentioned in Section 3.3.1. The idea is
quite natural and simple to implement: we predefine the number of iterations to run for solving
each subproblems and stop worrying about the stopping condition. For example, when µ > 0
and M is deterministic, we can simply run TM iterations of M for each subproblem where
TM is greater than the value given by Corollaries 3 or 4, then the criterions (C1) and (C2)
are guaranteed to be satisfied. Unfortunately, the theoretical bound of TM is relatively poor
and does not lead to a practical strategy. On the other hand, using a more aggressive strategy
such as TM = n for incremental algorithms, meaning one pass over the data, seems to provide
outstanding results, as shown in the experimental part of this chapter.

Finally, one could argue that choosing κ according to a worst-case convergence analysis is
not necessarily a good choice. In particular, the convergence rate of the methodM, driven by
the parameter τM is probably often under estimated in the first place. This suggests that using
a smaller value for κ than the one we have advocated earlier is a good thing. In practice, we have
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3.5. CATALYST FOR MISO/FINITO/SDCA

observed that indeed Catalyst is often robust to smaller values of κ than the theoretical one,
but we have also observed that the theoretical value performs reasonably well (see experimental
section).

3.5 Catalyst for MISO/Finito/SDCA
In this section, we present the application of Catalyst to MISO/Finito [Mairal, 2015, Defazio
et al., 2014b], which may be seen as a variant of SDCA [Shalev-Shwartz and Zhang, 2016].
The reason why these algorithms require a specific treatment is due to the fact that their linear
convergence rates are given in a different form than (3.12); specifically, Theorem 4.1 of Lin et al.
[2015] tells us that MISO produces a sequence of iterates (zt)t≥0 for minimizing the auxiliary
objective h(z) = f(z) + κ

2∥z − y∥
2 such that

E[h(zt)]− h∗ ≤ CM(1− τM)t+1(h∗ − d0(z0)),

where d0 is a lower-bound of h defined as the sum of a simple quadratic function and the
composite regularization ψ. More precisely, these algorithms produce a sequence (dt)t≥0 of
such lower-bounds, and the iterate zt is obtained by minimizing dt in closed form. In particular,
zt is obtained from taking a proximal step at a well chosen point wt, providing the following
expression,

zt = proxψ/(κ+µ)(wt).
Then, linear convergence is achieved for the duality gap

E[h(zt)− h∗] ≤ E[h(zt)− dt(zt)] ≤ CM(1− τM)t(h∗ − d0(z0)).

Indeed, the quantity h(zt) − dt(zt) is a natural upper-bound on h(zt) − h∗, which is simple to
compute, and which can be naturally used for checking the criterions (C1) and (C2). Conse-
quently, the expected complexity of solving a given problem is slightly different compared to
Lemma 8.

Lemma 10 (Accuracy vs. complexity). Let us consider a strongly convex objective h.
Finito/MISO/SDCA generate a sequence of iterates (zt)t≥0. Consider the complexity T (ε) =
inf{t ≥ 0, h(zt)− d0(z0) ≤ ε}, where ε > 0 is the target accuracy and h∗ is the minimum value
of h. Then,

E[T (ε)] ≤ 1
τM

log
(

2CM(h∗ − d0(z0))
τMε

)
+ 1,

where d0 is a lower bound of f constructed by the algorithm.

For the convergence analysis, the outer-loop complexity does not change as long as the
algorithm finds approximate proximal points satisfying criterions (C1) and (C2). It is then
sufficient to control the inner loop complexity. As we can see, we now need to bound the dual
gap h∗ − d0(z0) instead of the primal gap h(z0) − h∗, leading to slightly different warm start
strategies. Here, we show how to warm start MISO/Finito.
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Proposition 10 (Warm start for criterion (C1)). Consider applying Catalyst with the
same parameter choices as in Proposition 6 to MISO/Finito. At iteration k+ 1 of Algorithm 4,
assume that we are given the previous iterate xk in pεk(yk−1), the corresponding dual function
d(x) and its prox-center wk satisfying xk = proxψ/(κ+µ)(wk). Then, initialize the sequence (zt)t≥0
for minimizing hk+1 = f + κ

2∥ · −yk∥
2 with,

z0 = proxψ/(κ+µ)

(
wk + κ

κ+ µ
(yk − yk−1)

)
,

and initialize the dual function as

d0(x) = d(x) + κ

2
∥x− yk∥2 − κ

2
∥x− yk−1∥2.

Then,

1. when f is µ-strongly convex, we have h∗
k+1 − d0(z0) ≤ Cεk+1 with the same constant as

in (3.22) and (3.23), where d0 is the dual function corresponding to z0;

2. when f is convex with bounded level sets, there exists a constant B > 0 identical to the
one of (3.24) such that

h∗
k+1 − d0(z0) ≤ B.

Proof. The proof is given in Lemma D.5 of [Lin et al., 2015], which gives

h∗
k+1 − d0(z0) ≤ εk + κ2

2(κ+ µ)
∥yk − yk−1∥2.

This term is smaller than the quantity derived from (3.25), leading to the same upper bound.

Proposition 11 (Warm start for criterion (C2)). Consider applying Catalyst with the same
parameter choices as in Proposition 7 to MISO/Finito. At iteration k + 1 of Algorithm 4,
we assume that we are given the previous iterate xk in gδk(yk−1) and the corresponding dual
function d(x). Then, initialize the sequence (zt)t≥0 for minimizing hk+1 = f + κ

2∥ · −yk∥
2 by

z0 = proxψ/(κ+µ)

(
yk −

1
κ+ µ

∇f0(yk)
)
,

where f = f0 + ψ and f0 is the smooth part of f , and set the dual function d0 by

d0(x) = f0(yk) + ⟨∇f0(yk), x− yk⟩+ κ+ µ

2
∥x− yk∥2 + ψ(x).

Then,

h∗
k+1 − d0(z0) ≤

(L+ κ)2

2(µ+ κ)
∥p(yk)− yk∥2. (3.30)
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Proof. Since p(yk) is the minimum of hk+1, the optimality condition provides
−∇f0(p(yk))− κ(p(yk)− yk) ∈ ∂ψ(p(yk)).

Thus, by convexity,
ψ(p(yk)) + ⟨−∇f0(p(yk))− κ(p(yk)− yk), z0 − p(yk)⟩ ≤ ψ(z0),

f0(p(yk)) + κ

2
∥p(yk)− yk∥2 + ⟨∇f0(p(yk)) + κ(p(yk)− yk), yk − p(yk)⟩ ≤ f0(yk).

Summing up gives
h∗
k+1 ≤ f0(yk) + ψ(z0) + ⟨∇f0(p(yk)) + κ(p(yk)− yk), z0 − yk⟩.

As a result,
h∗
k+1 − d0(z0) ≤ f0(yk) + ψ(z0) + ⟨∇f0(p(yk)) + κ(p(yk)− yk), z0 − yk⟩ − d0(z0)

= ⟨∇f0(p(yk)) + κ(p(yk)− yk)−∇f0(yk), z0 − yk⟩ −
κ+ µ

2
∥z0 − yk∥2

≤ 1
2(κ+ µ)

∥∇ f0(p(yk))−∇f0(yk)︸ ︷︷ ︸
∥·∥≤L∥p(yk)−yk∥

+κ(p(yk)− yk)∥2

≤ (L+ κ)2

2(µ+ κ)
∥p(yk)− yk∥2.

The bound obtained from (3.30) is similar to the one form Proposition 7, and differs only in
the constant factor. Thus, the inner loop complexity in Section 3.4.2 still holds for MISO/Finito
up to a constant factor. As a consequence, the global complexity of MISO/Finito applied
to Catalyst is similar to one obtained by SVRG, yielding an acceleration for ill-conditioned
problems.

3.6 Experimental study
In this section, we conduct various experiments to study the effect of the Catalyst acceleration
and its different variants, showing in particular how to accelerate SVRG, SAGA and MISO.

3.6.1 Datasets, formulations, and metric
Datasets. We consider four standard machine learning datasets with different characteristics
in terms of size and dimension, which are described below:

name covtype alpha real-sim rcv1
n 581 012 250 000 72 309 781 265
d 54 500 20 958 47 152
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Formulations. We consider three common optimization problems in machine learning and
signal processing, which admit a particular structure (large finite sum, composite, strong con-
vexity). For each formulation, we also consider a training set (bi, ai)ni=1 of n data points, where
the bi’s are scalars in {−1,+1} and the ai are feature vectors in Rd. Then, the goal is to fit a
linear model x in Rp such that the scalar bi can be well predicted by the inner-product ≈ a⊤

i x,
or by its sign. Specifically, the three formulations we consider are listed below.

• ℓ2
2-regularized Logistic Regression:

min
x∈Rd

1
n

n∑
i=1

log
(
1 + exp(−bi aTi x)

)
+ µ

2
∥x∥2,

which leads to a µ-strongly convex smooth optimization problem.

• ℓ1-regularized Linear Regression (LASSO):

min
x∈Rd

1
2n

n∑
i=1

(bi − aTi x)2 + λ∥x∥1,

which is non smooth and convex but not strongly convex.

• ℓ1 − ℓ2
2-regularized Linear Regression (Elastic-Net):

min
x∈Rd

1
2n

n∑
i=1

(bi − aTi x)2 + λ∥x∥1 + µ

2
∥x∥2,

which is based on the Elastic-Net regularization [Zou and Hastie, 2005] leading to strongly-
convex optimization problem.

Each feature vector ai is normalized, and a natural upper-bound on the Lipschitz constant L
of the un-regularized objective can be easily obtained with Llogistic = 1/4 and Llasso = 1. The
regularization parameter µ and λ are choosing in the following way:

• For Logistic Regression, we set µ = 0.01/n which corresponds to relatively ill-
conditioned problems.

• For Elastic-Net, we set µ = 0.01/n as in logistic regression and add a small l1-
regularization penalty with λ = 1/n that produces sparse solutions.

• For the Lasso problem, we consider a logarithmic grid 10i/n, with i = −3,−2, . . . , 3,
and we select the parameter λ that provides a sparse optimal solution closest to 10%
non-zero coefficients, which leads to λ = 10/n or 100/n.

Note that for the strongly convex problems, the regularization parameter µ yields a lower bound
on the strong convexity parameter of the problem.
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Metric used. In this chapter, and following previous work about incremental meth-
ods [Schmidt et al., 2017], we plot objective values as a function of the number of gradients
evaluated during optimization, which appears to be the computational bottleneck of all pre-
viously mentioned algorithms. Since no metric is perfect for comparing algorithms speed, we
shall make the two following remarks, such that the reader can interpret our results and the
limitations of our study with no difficulty.

• Ideally, CPU-time would be a gold standard but CPU time is implementation-dependent
and hardware-dependent. Thus, we have chosen the number of gradient computations as
a proxy for CPU time that does not suffer from unwanted externalities.

• We have chosen to count only gradients computed with random data access. Thus, com-
puting n times a gradient fi by picking each time one function at random counts as “n
gradients”, whereas we ignore the cost of computing a full gradient ∇(1/n)∑n

i=1 fi, where
the fi’s can be accessed in sequential order. Similarly, we ignore the cost of computing
the function value f(x) = (1/n)∑n

i=1 fi(x), which is typically performed every pass on
the data when computing a duality gap. While this assumption may be inappropriate
in some contexts, the cost of sequential gradient computations was indeed insignificant
in our experiments, where (i) datasets fit into memory; (ii) computing full gradients was
done in C++ by calling BLAS2 functions exploiting multiple cores.

3.6.2 Choice of hyper-parameters and variants
Before presenting the numerical results, we discuss the choice of default parameters used in the
experiments as well as different variants.

Choice of method M. We consider the acceleration of incremental algorithms which are
able to adapt to the problem structure we consider: large sum of functions and composite
regularization.

• The proximal SVRG algorithm [Xiao and Zhang, 2014] with stepsize η = 1/L.

• SAGA algorithm [Defazio et al., 2014a] with stepsize η = 1/3L.

• The proximal MISO algorithm that we developed in Section 2.3.

Choice of regularization parameter κ. As suggested by the theoretical analysis, we take
κ to minimize the global complexity. Leading to the choice

For SVRG/SAGA/MISO, κ =
L − µ

n + 1
− µ.
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Stopping criteria for the inner loop. The choice of the accuracies are driven from the
theoretical analysis. Here, we specify it for the problems we consider:

• Stopping criterion (C1). Stop when hk(zt)− h∗
k ≤ εk, where

εk =


2
9(1− ρ)kf(x0)6 with ρ = 0.9

√
µ

µ+κ when µ > 0;
2f(x0)

9(k+1)4.1 when µ = 0.

The duality gap h(wt)− h∗ can be estimated either by evaluating the Fenchel conjugate
or by computing the squared norm of the gradient.

• Stopping criterion (C2). Stop when hk(zt)− h∗
k ≤ δk · κ2∥zt − yk−1∥2, where

δk =


√
q

2−√
q

with q = µ
µ+κ when µ > 0;

1
(k+1)2 when µ = 0.

• Stopping criterion (C3) . Perform exactly one pass over the data in the inner loop
without checking any stopping criteria.7

Warm start for the inner loop. This is an important point to achieve acceleration which
was not highlighted in the conference paper [Lin et al., 2015]. At iteration k, we consider the
minimization of

hk(z) = f0(z) + κ

2
∥z − yk−1∥2 + ψ(z).

Let xk−1 be the approximate minimizer of hk−1, obtained from the last iteration.

• Initialization for (C1). Let us define η = 1
L+κ , then initialize at

zC1
0 =

 w0 ≜ xk−1 + κ
κ+µ(yk−1 − yk−2) if ψ = 0;

proxηψ(w0 − ηg) with g = ∇f0(w0) + κ(w0 − yk−1) otherwise.

• Initialization for (C2). Intialize at

zC2
0 =

 yk−1 if ψ = 0;
proxηψ(yk−1 − η∇f0(yk−1)) otherwise.

7This stopping criterion is heuristic since one pass may not be enough to achieve the required accuracy.
What we have shown is that with a large enough TM, then the convergence will be guaranteed. Here we take
heuristically TM as one pass.
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• Initialization for (C3). Take the best initial point among xk−1 and zC1
0

zC3
0 such that hk(zC3

0 ) = min{hk(xk−1), hk(zC1
0 )}.

• Initialization for (C1∗). Use the strategy (C1) with zC3
0 .

The warm start at zC3
0 requires to choose the best point between the last iterate xk−1 and the

point zC1
0 . The motivation is that since the one-pass strategy is an aggressive heuristic, the

solution of the subproblems may not be as accurate as the ones obtained with other criterions.
Allowing to use the iterate xk−1 turned out to be significantly more stable in practice. Then, it
is also natural to use a similar strategy for criterion (C1), which we call (C1∗) . Using a similar
strategy for (C2) turned out not to provide any benefit in practice and is thus omitted from
the list here.

3.6.3 Comparison of Stopping Criteria and Warm Start Strategies
First, we evaluate the performance of the previous strategies when applying Catalyst to SVRG,
SAGA and MISO. The results are presented in Figures 3.1, 3.2, and 3.3, respectively.

Observations for Catalyst-SVRG. We remark that in most of the cases, the curve of
(C3) and (C1∗) are superimposed, meaning that one pass through the data is enough for solving
the subproblem up to the required accuracy. Moreover, they give the best performance among
all criterions. Regarding the logistic regression problem, the acceleration is significant (even
huge for the covtype dataset) except for alpha, where only (C3) and (C1∗) do not degrade
significantly the performance. For sparse problems, the effect of acceleration is more mitigated,
with 4 cases out of 8 exhibiting important acceleration and 4 cases no acceleration. As before,
(C3) and (C1∗) are the only strategies that never degrade performance.

One reason explaining why acceleration is not systematic may be the ability of incremental
methods to adapt to the unknown strong convexity parameter µ′ ≥ µ hidden in the objec-
tive’s loss, or local strong convexity near the solution. When µ′/L ≥ 1/n, we indeed obtain a
well-conditioned regime where acceleration should not occur theoretically since the complexity
O(n log(1/ε)) of the unaccelerated method is already optimal. For sparse problems, condition-
ing of the problem with respect to the linear subspace where the solution lies might also play a
role, even though our analysis does not study this aspect. Therefore, this experiment suggests
that adaptivity to unknown strong convexity is of high interest for incremental optimization.

Observations for Catalyst-SAGA. Our conclusions with SAGA are almost the same as
with SVRG. However, in a few cases, we also notice that criterion C1 lacks stability, or at least
exhibits some oscillations, which may suggest that SAGA has a larger variance compared to
SVRG. The difference in the performance of (C1) and (C1∗) can be huge, while they differ from
each other only by the warm start strategy. Thus, choosing a good initial point for solving the
sub-problems is a key for obtaining acceleration in practice.
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Figure 3.1 – Experimental study of different stopping criterions for Catalyst-SVRG. We plot
the value f(xk)/f ∗ − 1 as a function of the number of gradient evaluations, on a logarithmic
scale; the optimal value f ∗ is estimated with a duality gap.

Observations for Catalyst-MISO. The warm start strategy of MISO is different from
primal algorithms because parameters for the dual function need to be specified. The most
natural way for warm starting the dual functions is to set

Dk+1
0 (x) = Dk(x) + κ

2
∥x− yk∥2 − κ

2
∥x− yk−1∥2,

where Dk is the last dual function of the previous subproblem hk. This gives the warm start

z0 = prox
(
xk + κ

κ+ µ
(yk − yk−1)

)
.

For other choices of z0, the dual function needs to be recomputed from scratch, which is
computationally expensive and unstable for ill-conditioned problems. Thus, we only present
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Figure 3.2 – Experimental study of different stopping criterions for Catalyst-SAGA, with a
similar setting as in Figure 3.1.

the experimental results with respect to criterion (C1) and the one-pass heuristic (C3) . As
we observe, a huge acceleration is obtained in logistic regression and Elastic-net formulations.
For Lasso problem, the original Prox-MISO is not defined since the problem is not strongly
convex. Thus, in order to make a comparison, we compare with Catalyst-SVRG which shows
that the acceleration achieves a similar performance. This confirms the theoretical result that
Catalyst applied to incremental algorithms yields a similar convergence rate. Notice also that
the original MISO algorithm suffers from numerical instability in this ill-conditioned regime
chosen for our experiments. Catalyst not only accelerates MISO, but it also stabilizes it.
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Figure 3.3 – Experimental study of different stopping criterions for Catalyst-MISO, with a
similar setting as in Figure 3.1

3.6.4 Acceleration of Existing Methods
Then, we put the previous curves into perspective and make a comparison of the performance
before and after applying Catalyst across methods. We show the best performance among the
three developed stopping criteria, which corresponds to be (C3) .

Observations. We observe that by applying Catalyst, we accelerate the original algorithms
up to the limitations discussed above (comparing the dashed line and the solid line of the same
color). In three datasets (covtype, real-sim and rcv1), significant improvements are achieved
as expected by the theory for the ill-conditioned problems in logistic regression and Elastic-net.
For dataset alpha, we remark that an relative accuracy in the order 10−10 is attained in less
than 10 iterations. This suggests that the problems is in fact well-conditioned and there is
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Figure 3.4 – Experimental study of the performance of Catalyst applying to SVRG, SAGA and
MISO. The dashed lines correspond to the original algorithms and the solid lines correspond to
accelerated algorithms by applying Catalyst. We plot the relative function value gap (f(xk)−
f ∗)/f ∗ in the number of gradient evaluations, on a logarithmic scale.
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some hidden strong convexity for this dataset. Thus, the incremental algorithms like SVRG or
SAGA are already optimal under this situation and no improvement is obtained by applying
Catalyst.

3.6.5 Study of the Parameter κ
Finally, we provide evaluations of the performance for different κ.
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Figure 3.5 – Evaluations of Catalyst-SVRG for different κ using stopping criterion C1, where
κ0 is the theoretical choice given by the complexity analysis.

Observations for different choices of κ. We consider a logarithmic grid κ = 10iκ0 with i =
−2,−1, · · · , 2 and κ0 is the optimal κ given by the theory. We observe that for ill-conditioned
problems, using optimal choice κ0 provides much better performance than other choices, which
confirms the theoretical result. For the dataset of alpha or Lasso problems, we observe that the
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best choice is given by the smallest κ = 0.01κ0. This suggests that, as discussed before, strong
convexity may be hidden in the loss for this dataset.

3.7 Discussions and concluding remarks
In this chapter, we have introduced a generic algorithm, Catalyst, that brings Nesterov’s ac-
celeration to a large class of first-order methods. In particular, it can be applied to previously
unaccelerated incremental algorithms such as SAG/SAGA, SVRG, MISO/Finito. The result-
ing algorithms after applying Catalyst achieve the optimal complexity up to a logarithmic
factor. We studied experimentally different variants of it and show the acceleration does occur
in practice. We compare different choices of parameters and show that the theoretical choice
provides promising performance, especially for ill-conditioned problems. The current version of
the algorithm requires the knowledge of both the Lipschitz constant parameter and the strong
convexity parameter. As we have seen in the experiments, the acceleration degrades when
the parameter are not correctly estimating, such as the existence of hidden strong convexity.
Designing a parameter free algorithm is one of our important future directions.
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Chapter 4

QuickeNing: acceleration with
Quasi-Newton principles

Chapter abstract:
We propose a generic approach to accelerate gradient-based optimization algorithms with
quasi-Newton principles. The proposed scheme, called QuickeNing, can be applied the
same class of methods as Catalyst, including classical gradient methods and incremental
first-order methods. It is a variable metric approach compatible with composite objectives,
meaning that it has the ability to deal with sparsity-inducing regularizations and provide
exactly sparse solutions. QuickeNing relies on applying an inexact limited-memory
BFGS rules to the Moreau-Yosida regularization, which is also known as variable metric
proximal point algorithm. We provide a global convergence analysis, showing that
QuickeNing enjoys a worst-case linear convergence rate for strongly convex problems.
We present experimental results where QuickeNing gives significant improvements over
competing methods for solving large-scale high-dimensional machine learning problems.

The material of this chapter is based on the following paper, which is currently un-
der review:
H. Lin, J. Mairal, and Z. Harchaoui. A generic quasi-newton algorithm for faster gradient-
based optimization. arXiv:1610.00960v2, 2017

The code for reproducing the figures in this chapter is publicly available at:
https://github.com/hongzhoulin89/Catalyst-QNing
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CHAPTER 4. QUICKENING: ACCELERATION WITH QUASI-NEWTON PRINCIPLES

4.1 Introduction
First-order methods are often the default choice in machine learning for solving the empirical
risk minimization problem,

min
x∈Rp

{
f(x) = 1

n

n∑
i=1

fi(x) + ψ(x)
}
. (4.1)

However, it is also known that standard Quasi-Newton approaches can sometimes be surpris-
ingly effective in the smooth case—that is when ψ = 0, see, e.g., [Schmidt et al., 2017] for
extensive benchmarks. Since the dimension of the problem d is typically very large (d ≥ 10 000),
“limited memory” variants of these algorithms, such as L-BFGS, are necessary to achieve the
desired scalability [Liu and Nocedal, 1989, Nocedal, 1980]. The theoretical guarantees offered
by L-BFGS are somewhat weak, meaning that it does not outperform accelerated first-order
methods in terms of worst-case convergence rate, and also it is not guaranteed to correctly
approximate the Hessian of the objective. Yet, it remains one of the greatest practical success
of smooth optimization. Adapting L-BFGS to composite and structured problems, such as the
finite sum of functions (4.1), is of utmost importance nowadays.

For instance, there have been several attempts to develop a proximal Quasi-Newton
method [Byrd et al., 2015, Lee et al., 2012, Scheinberg and Tang, 2016, Yu et al., 2008]. These
algorithms typically require computing many times the proximal operator of ψ with respect to
a variable metric, which may be as computationally demanding as solving the original problem.
Quasi-Newton steps were also incorporated as local search steps into accelerated first-order
methods to further enhance their numerical performance [Ghadimi et al., 2015]. More related
to our work, L-BFGS is combined with SVRG for minimizing smooth finite sums in [Gower
et al., 2016]. The scope of our approach is broader beyond the case of SVRG. We present a
generic Quasi-Newton scheme, applicable to a large-class of first-order methods for compos-
ite optimization, including other incremental algorithms [Defazio et al., 2014a,b, Mairal, 2015,
Schmidt et al., 2017, Shalev-Shwartz and Zhang, 2016] and block coordinate descent meth-
ods [Razaviyayn et al., 2013, Richtárik and Takáč, 2014]

More precisely, our main contribution is a generic meta-algorithm, called QuickeNing (the
letters “Q” and “N” stand for Quasi-Newton), which uses a given optimization method to
solve a sequence of auxiliary problems up to some appropriate accuracy, resulting in faster
global convergence in practice. The resulting scheme admits a simple interpretation: it may
be seen as applying the L-BFGS algorithm with inexact (but accurate enough) gradients to
the Moreau-Yosida regularization of the objective. As a result, our approach is (i) generic,
as stated previously; (ii) despite the smoothing of the objective, the sub-problems that we
solve are composite ones, which may lead to exactly sparse iterates when a sparsity-inducing
regularization is involved, e.g., the ℓ1-norm; (iii) it admits a worst-case linear convergence
rate for strongly convex problems similar to that of gradient descent, which is typically the
best guarantees obtained for L-BFGS schemes in the literature; (iv) it is easy to use and does
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not require using a line search algorithm, which is sometimes computationally expensive and
difficult to calibrate in classical Quasi-Newton methods.

The idea of combining second-order or quasi-Newton methods with Moreau-Yosida regu-
larization is in fact relatively old. It may be traced back to variable metric proximal bundle
methods [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996], which use BFGS
updates on the Moreau-Yosida smoothing of the objective and bundle methods to approx-
imately solve the corresponding sub-problems. Our approach revisits this principle with a
limited-memory variant (to deal with large dimension d), with an alternative strategy to line
search schemes—which is useful when f is a large sum of n functions as in (4.1)—and with
warm start strategies for the sub-problems with a global complexity analysis that is more relevant
than convergence rates that do not take into account the cost per iteration.

To demonstrate the effectiveness of our scheme in practice, we evaluate QuickeNing on
regularized logistic regression and regularized least-squares, with smooth and non smooth regu-
larization penalities such as the Elastic-Net [Zou and Hastie, 2005]. We use large-scale machine
learning datasets and show that QuickeNing performs at least as well as the recently proposed
Catalyst [Lin et al., 2015] and as the classical L-BFGS scheme in all experiments, and signifi-
cantly outperforms them in many cases.

This chapter is organized as follows: Section 4.2 presents related work on Quasi-Newton
methods such as L-BFGS; we introduce QuickeNing in Section 4.3, and we provide a convergence
analysis in Section 4.4; Section 4.5 is devoted to experiments and Section 4.6 concludes the
chapter.

4.2 Related work and preliminaries
The history of quasi-Newton methods can be traced back to the 1950’s [Bonnans et al., 2006,
Hiriart-Urruty and Lemaréchal, 1996, Nocedal and Wright, 2006]. Quasi-Newton methods often
lead to significantly faster convergence in practice compared to simpler gradient-based methods
for solving smooth optimization problems [Schmidt et al., 2011a]. Yet, a theoretical analysis
of quasi-Newton methods that explains their impressive empirical behavior on a wide range of
problems is still an open topic. Here, we recall the well-known BFGS algorithm in Section 4.2.1,
its limited memory variant [Nocedal, 1980], and a few recent extensions. Then, we present
earlier works that combine proximal point and Quasi-Newton algorithms in Section 4.2.2, which
is related to the strategy we use in this chapter.

4.2.1 Quasi-Newton methods for smooth optimization
In Section 1.3, we introduce Quasi-Newton methods for smooth optimization. Here, we recall
the updates of BFGS, named after its inventors (Broyden-Fletcher-Goldfarb-Shanno), and its
limited variant L-BFGS [Nocedal and Wright, 2006]. These approaches will be the workhorses
of the QuickeNing meta-algorithm. Consider a smooth convex objective f to be minimized, the
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BFGS method constructs at iteration k a couple (xk, Bk) with the following update:

xk+1 = xk − αkB−1
k ∇f(xk) and Bk+1 = Bk −

Bksks
⊤
k Bk

s⊤
k Bksk

+ yky
⊤
k

y⊤
k sk

, (4.2)

where αk is a suitable stepsize and

sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk).

The condition y⊤
k sk > 0 and the positive definiteness of Bk are guaranteed as soon as f is

strongly convex. To determine the stepsize αk, Wolfe’s line-search is a simple choice which pro-
vides linear convergence rate in the worst case. In addition, if the objective is twice differentiable
and the Hessian is Lipschitz continuous, the convergence is asymptotically superlinear [Nocedal
and Wright, 2006].

The limited memory variant L-BFGS [Nocedal, 1980] overcomes the issue of storing Bk for
large d, by replacing it by another positive definite matrix—say B̄k—which can be built from
a “generating list” of at most l pairs of vectors {(ski , yki )}i=0...j along with an initial diagonal
matrix B̄0. Formally, B̄k can be computed by applying at most l times a recursion similar
to (4.2) involving all pairs of the generating list. Between iteration k and k+ 1, the generating
list is incrementally updated, by removing the oldest pair in the list (when j = l) and adding a
new one. What makes the approach appealing is the ability of computing Hkz = B−1

k z for any
vector z with only O(ld) floating point operations instead of O(d3) for a naive implementation
with matrix inversion. The price to pay is that superlinear convergence becomes out of reach
in contrast to BFGS, (see Section 1.3).

L-BFGS is thus appropriate for high-dimensional problems (when d is large), but it still re-
quires computing the full gradient at each iteration, which may be cumbersome in the large sum
setting (4.1). This motivated stochastic counterparts of the Quasi-Newton method (SQN) [Byrd
et al., 2016]. The direct application substituting the full gradient ∇f(xk) by a stochastic es-
timate is unfortunately not convergent. Instead, the SQN method [Byrd et al., 2016] uses a
product of a sub-sampled Hessian and sk to approximate yk. SQN can be complemented by a
variance reduction scheme such as SVRG [Gower et al., 2016, Moritz et al., 2016].

4.2.2 Combining the proximal point algorithm and Quasi-Newton
There are several ways to extend Quasi-Newton methods for nonsmooth optimization. A first
approach consists in minimizing successive quadratic approximations, providing the update

xk+1 = arg min
x∈Rp

{
f0(xk) + ⟨∇f0(xk), x− xk⟩+ 1

2
(x− xk)TBk(x− xk) + ψ(x)

}
, (4.3)

which is known as proximal Quasi-Newton method [Byrd et al., 2015, Lee et al., 2012, Scheinberg
and Tang, 2016, Yu et al., 2008]. A major drawback is then the computation of the proximal
operator. Since Bk is dense and changes over the iterations, an exact solution to the proximal
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operator is usually not available. An inexact variant has been analyzed in [Byrd et al., 2015],
but it is unclear whether or not the quadratic approximation could be solved inexactly in an
efficient manner.

A second approach consists in applying Quasi-Newton methods after Moreau-Yosida smooth-
ing or equivalently a proximal point algorithm on the objective function [Bonnans et al., 1995,
Fukushima and Qi, 1996, Chen and Fukushima, 1999, Burke and Qian, 2000, Fuentes et al.,
2012]. The underlying idea is to first smooth and improve the conditioning of the objective
function, then apply a Quasi-Newton method on the smoothed function. We recall here the
definition of the Moreau-Yosida regularization, which we have presented in Section 1.6

F (x) ≜ min
z∈Rp

{
f(z) + κ

2
∥z − x∥2

}
, (4.4)

where κ is a positive scalar. Applying Quasi-Newton methods on F gives a sequence of sub-
problems in the shape of (4.4). The main difference between the proximal Newton approach and
this smoothing approach is that the subproblems generated by (4.3) change the metric at every
iteration while the subproblems in (4.4) have a fixed conditioning. Moreover, the conditioning
of the subproblems is explicitly controlled by the parameter κ, which is free to choose. Thus, it
suffices to take an appropriate value of κ to make the subproblem well conditioned and apply
an optimization method to approximate the solution. For instance, in [Chen and Fukushima,
1999], the sub-problems are solved inexactly by proximal bundle methods, and in [Fuentes et al.,
2012] by using a sophisticated sufficient descent criterion. While the proposed algorithms are
elegant, the required complexity of solving these subproblems has not been investigated, which
explains the lack of global complexity result.

The proposed QuickeNing algorithm, which will be presented in the next section, follows this
line of research. We provide a global convergence analysis taking into account the complexity
for solving the subproblems. More importantly, the complexity result allows us to provide an
explicit choice for the parameter κ, which hardly discussed in the previous work. Moreover, we
propose a simple strategy to set the parameters, removing the need of a line-search scheme in
the determination of stepsizes. Several theoretical grounded warm start strategies are proposed
for efficiently solving the sub-problems, leading to a significant acceleration in practice.

4.3 QuickeNing: a Quasi-Newton meta-algorithm
We now present the QuickeNing method in Algorithm 5, which consists of applying L-BFGS
rules on the smoothed objective F with inexact gradients. Each gradient approximation is the
result of a minimization problem tackled with the algorithm M, used as a sub-routine. The
outer loop of the algorithm performs L-BFGS quasi-Newton updates. The method M can
be any algorithm of the user’s choice, as long as it enjoys linear convergence rate for strongly
convex problems. More details about the choice of the parameter κ and about the inexactness
criterion to use will be given next.
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Algorithm 5 QuickeNing
input Initial point x0 in Rp; number of iterations K; parameter κ > 0; minimization algo-

rithm M.
1: Initialization: (g0, F0, z0) = ApproxGradient (x0,M); L-BFGS matrix H0 = (1/κ)I.
2: for k = 0, . . . , K − 1 do
3: Perform the Quasi-Newton step

xtest = xk −Hkgk.

4: Estimate the new gradient and the Moreau-Yosida function value

(gtest, Ftest, ztest) = ApproxGradient (xtest,M) .

5: if sufficient approximate decrease is obtained

Ftest ≤ Fk −
1

2κ
∥gk∥2, (4.5)

then
6: Accept the new iterate: (xk+1, gk+1, Fk+1, zk+1) = (xtest, gtest, Ftest, ztest).
7: else
8: Update the current iterate with the proximal mapping: xk+1 = zk.

(gk+1, Fk+1, zk+1) = ApproxGradient (xk+1,M) .

9: end if
10: update Hk+1 = L-BFGS(Hk, xk+1 − xk, gk+1 − gk).
11: end for
output last proximal mapping zK (solution).

Algorithm 6 Generic procedure ApproxGradient
input Current point x in Rp; smoothing parameter κ > 0.

1: Compute the approximate proximal mapping using an optimization method M:

z ≈ arg min
w∈Rp

{
h(w) ≜ f(w) + κ

2
∥w − x∥2

}
, (4.6)

using the warm start strategies and stopping criterions described later in this section.
2: Estimate the gradient ∇F (x) of the Moreau-Yosida objective function

g = κ(x− z).

output approximate gradient estimate g, objective value Fa ≜ h(z), proximal mapping z.
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4.3.1 The main algorithm
We now discuss the main algorithm components and its main features.

Outer-loop: inexact L-BFGS. The L-BFGS rule is the standard one and consists in up-
dating incrementally a generating list of vectors {(si, yi)}i=1...j, which implicitly defines the
L-BFGS matrix. We use here the two-loop recursion detailed in Algorithm 7.4 of [Nocedal and
Wright, 2006] and use skipping steps when the condition s⊤

i yi > 0 is not satisfied, in order
to ensure the positive-definiteness of the L-BFGS matrix Hk (see [Friedlander and Schmidt,
2012]).

Inner-loop: approximate Moreau-Yosida envelope. The minimization algorithm M
is used to compute an approximate Moreau-Yosida envelope of the objective. The procedure
ApproxGradient () calls the minimization algorithmM to minimize the sub-problem (4.6). When
the problem is solved exactly, the function returns the exact values g = ∇F (x), Fa = F (x)
and z = p(x). Otherwise, a stopping criterion should be used. In this chapter, we consider the
three following cases:

(a) defining a pre-defined decreasing sequence (εk)k≥0 and stopping criterion based on func-
tion values—that is, stop the optimization method M when the approximate solution
of (4.6) satisfies h(z) − h∗ ≤ εk, where h∗ = minz∈Rd h(z), which may be checked by
computing a duality gap. This is the less practical of the three strategies presented here.

(b) defining an adaptive sequence (εk)k≥0, which depends on quantities that are available at
iteration k.

(c) using a pre-defined budget TM in terms of number of iterations of the method M at
iteration k.

Section 4.4 will provide theoretical and practical insight about these parameter choices. Before
that, we discuss the requirements on f and M and warm start strategies to solve the sub-
problems.

Requirements on f . When f is µ-strongly-convex, we show that the method achieves a
linear convergence rate (which takes into account the complexity of solving the sub-problems
withM); to obtain this guarantee, the accuracy for solving the sub-problems needs to decrease
at the same linear rate. In principle, all strategies (a)-(b)-(c) above may be used to stop M,
as discussed in Section 4.4.

When f is convex but not strongly convex (meaning µ = 0), it is possible to achieve the
classical O(1/k) worst-case convergence rate on function values, by using a particular strategy
(b) and by replacing the approximate descent condition (4.5) by a slightly stronger one f(xtest) ≤
f(zk), see Proposition 15 for more details.

97



CHAPTER 4. QUICKENING: ACCELERATION WITH QUASI-NEWTON PRINCIPLES

Requirements on M and warm start. We have mentioned that QuickeNing applies to
methods M with linear convergence rates for strongly-convex problems. More precisely, we
consider methods M that are always able to produce a sequence of iterates (wt)t≥0 for solving
each sub-problem (4.6) such that

h(wt)− h∗ ≤ CM(1− τM)t(h(w0)− h∗) for some constants CM, τM > 0, (4.7)

where w0 is the initial point given to M. When (4.7) is satisfied, we call M a primal method.
QuickeNing can also afford non-deterministic methods M that satisfy (4.7) in expectation; in
such a case, our complexity results also hold in expectation. The condition typically holds
for many primal gradient-based optimization techniques, such as block-coordinate descent algo-
rithms [Nesterov, 2012b, Richtárik and Takáč, 2014], or some incremental algorithms [Defazio
et al., 2014a, Schmidt et al., 2017]. The warm start strategy derived from our convergence
analysis in Section 4.4 is simply w0 = xtest. The class of dual methods MISO/Finito [Defazio
et al., 2014b, Mairal, 2015] can also be applied with a different warm start in the same way
as Catalyst [Lin et al., 2015]. Finally, before giving more precise theoretical statements, we
discuss briefly two important features of the algorithm.

Handling composite objective functions. In machine learning or signal processing, con-
vex composite objectives (4.1) with a non-smooth penalty ψ are typically formulated to en-
courage solutions with specific characteristics; in particular, the ℓ1-norm is known to provide
sparsity. Smoothing techniques [Nesterov, 2005] may allow us to solve the optimization prob-
lem up to some chosen accuracy, but they provide solutions that do not inherit the properties
induced by the non-smoothness of the objective. To illustrate what we mean by this sentence,
we may consider smoothing the ℓ1-norm, leading to a solution vector with small coefficients,
but not with exact zeroes. When the goal is to perform model selection—that is, understanding
which variables are important to explain a phenomenon, exact sparsity is seen as an asset, and
optimization techniques dedicated to composite problems such as FISTA [Beck and Teboulle,
2009] are often preferred.

Then, one might be concerned that our scheme operates on the smoothed objective F , lead-
ing to iterates (xk)k≥0 that may suffer from the above “non-sparse” issue, assuming that ψ
is the ℓ1-norm. Yet, our approach also provides iterates (zk)k≥0 that are computed using the
original optimization methodM we wish to accelerate. WhenM handles composite problems
without smoothing, typically when M is a proximal block-coordinate, or incremental method,
the iterates (zk)k≥0 may be sparse. For this reason, our theoretical analysis presented in Sec-
tion 4.4 studies the convergence of the sequence (f(zk))k≥0 to the solution f ∗.

On the absence of line-search scheme. Another key property of the QuickeNing algorithm
is that it does not require using a line-search scheme to select a step-size, which is typically
necessary to ensure the monotonic descent (and convergence) of classical BFGS and L-BFGS
algorithms [Nocedal, 1980]. In the context of the Moreau-Yosida regularization, any line-search
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would be prohibitive, since it would require to evaluate the function F multiple times, hence
solving the sub-problems (4.6) as many times at every iteration.1 Here, we choose a simple
strategy that selects xk+1 = zk when the sufficient descent condition (4.5) is not satisfied. zk
is indeed a good candidate since it is obtained by performing one step of the inexact proximal
point algorithm, which we have described above, and whose convergence properties are well
understood. In practice, we have observed that the sufficient decrease condition is almost all
the time satisfied, given the choice of parameters provided in the experimental section.

4.4 Convergence and complexity analysis
In this section, we study the convergence of the QuickeNing algorithm—that is, the rate of
convergence to zero of the quantities (f(zk)− f ∗)k≥0 and (F (xk)− F ∗)k≥0, and also its compu-
tational complexity, which takes into account the cost of solving the sub-problems (4.6). We
consider several cases, leading to different variants of the parameter choices, warm start and ap-
proximation strategies. We start by stating the main properties of the gradient approximation
in Section 4.4.1. Then, we analyze the convergence of the outer loop algorithm in Section 4.4.2,
and then Section 4.4.3 is devoted to the global complexity analysis.

4.4.1 Properties of the gradient approximation
The next lemma is classical and provides approximation guarantees about the quantities re-
turned by the ApproxGradient procedure (Algorithm 6); see [Bertsekas, 2015, Fukushima and
Qi, 1996]. We recall here the proof for completeness.

Lemma 11 (Approximation quality of the gradient approximation). Consider a vec-
tor x in Rp, a positive scalar ε and compute

z ≈ arg min
v∈Rp

{
h(v) ≜ f(v) + κ

2
∥v − x∥2

}
,

such that h(z)− h∗ ≤ ε, where h∗ = minv∈Rp h(v). As in Algorithm 6, define g = κ(x− z) and
Fa = h(z). Then, the following inequalities hold

F (x) ≤ Fa ≤ F (x) + ε, (4.8)

∥z − p(x)∥ ≤
√

2ε
κ
, (4.9)

∥g −∇F (x)∥ ≤
√

2κε. (4.10)
1Note that in the context of BFGS applied to F , a heuristic line-search that requires evaluating f instead

of F is also proposed in [Chen and Fukushima, 1999], but this heuristic does not guarantee the algorithm
convergence and is still computationally demanding when f is a large sum of functions as in (4.1).
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Proof. (4.8) is straightforward by definition of h(z). Since f is convex, the function h is κ-
strongly convex, and (4.9) follows from

κ

2
∥z − p(x)∥2 ≤ h(z)− h(p(x)) = h(z)− h∗ ≤ ε,

where we recall that p(x) minimizes h. Finally, we obtain (4.10) from

g −∇F (x) = κ(x− z)− κ(x− p(x)) = κ(p(x)− z),

by using the definitions of g and the property (1.37).

This lemma allows us to quantify the quality of the gradient and function value approxima-
tions in terms of ε, which is a key to control the error accumulation of our algorithm. Before
moving to the first convergence result, a few additional technical inequalities are needed.

Lemma 12 (Simple inequalities regarding the gradient approximation). Consider the
same quantities introduced in Lemma 11. Then,

f(z) = Fa −
1

2κ
∥g∥2, (4.11)

1
2
∥∇F (x)∥2 − 2κε ≤ ∥g∥2 ≤ 2(∥∇F (x)∥2 + 2κε). (4.12)

Proof. Eq. (4.11) is obtained by using the definitions of g and noticing that Fa = h(z). Eq. (4.12)
follows from

∥∇F (x)∥2 ≤ 2(∥∇F (x)− g∥2 + ∥g∥2)
≤ 2(2κε+ ∥g∥2) (from (4.10)).

Interchanging ∇F (x) and g gives the right-hand side inequality.

4.4.2 Convergence analysis of the outer loop
We are now in shape to establish the convergence of the QuickeNing meta-algorithm, without
considering yet the cost of solving the sub-problems (4.6). We first remark that the following
relation always holds

(gk, Fk, zk) = ApproxGradient(xk,M) , (4.13)
which allows us to apply Lemma 12 for all k ≥ 0. In the following analysis, we will always
call εk the precision (in the sense of Lemma 11) of solving the sub-problem (4.6) related to the
call (4.13).

Lemma 13 (Approximate descent property). Consider the sequences (xk)k≥0 and (zk)k≥0
generated by Algorithm 5 where zk is obtained by solving a sub-problem (4.6) with accuracy εk.
Then,

F (xk+1) ≤ f(zk) ≤ F (xk)−
1

4κ
∥∇F (xk)∥2 + 2εk. (4.14)
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Proof. By (4.11), we have

f(zk) = Fk −
1

2κ
∥gk∥2.

To show the first inequality, we consider two cases:

• When the condition (4.5) is violated, then we set xk+1 = zk. As a result,

F (xk+1) = min
z∈Rk

{
f(z) + κ

2
∥z − xk+1∥2

}
≤ f(xk+1) = f(zk).

• Otherwise, we have F (xk+1) ≤ Fk+1 ≤ Fk − 1
2κ∥gk∥

2 = f(zk).

Thus, we have F (xk+1) ≤ f(zk) in both cases and we may now prove the second inequality:

f(zk) = Fk −
1

2κ
∥gk∥2

≤ F (xk) + εk −
( 1

4κ
∥∇F (xk)∥2 − εk

)
(from (4.8) and (4.12))

= F (xk)−
1

4κ
∥∇F (xk)∥2 + 2εk.

This concludes the proof.

This lemma gives us a first intuition about the natural choice of the accuracy εk to use,
which should be of the same order as ∥∇F (xk)∥2. Unfortunately, the quantity ∥∇F (xk)∥2 is
not known since computing its value requires solving exactly the subproblem (4.6). We propose
in the next section several practical strategies to set the sequences (εk)k≥0. Before that, we
now use the approximate descent property of the previous lemma to control the accumulation
of errors across iterations.

Strongly-convex objectives.

We start by analyzing the convergence of our algorithm for strongly-convex objectives.

Proposition 12 (Convergence of Algorithm 5 with theoretical sequence (εk)k≥0.).
Assume that f is µ-strongly convex and define ρ = µ

4(µ+κ) . Consider the sequences (xk)k≥0

and (zk)k≥0 generated by Algorithm 5 where zk is obtained by solving a sub-problem (4.6) with
accuracy εk where

εk ≤
1

16κ
∥∇F (xk)∥2. (4.15)

Then,

F (xk+1)− F ∗ ≤ f(zk)− f ∗ ≤ (1− ρ)k+1 (f(x0)− f ∗).
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Proof. We may apply Lemma 13, and from (4.14), we obtain

F (xk+1)− F ∗ ≤ f(zk)− F ∗ ≤ F (xk)− F ∗ − 1
8κ
∥∇F (xk)∥2

≤ F (xk)− F ∗ − µF
4κ

(F (xk)− F ∗)

= (1− ρ) (F (xk)− F ∗)
≤ (1− ρ)k+1 (f(x0)− f ∗),

where the second inequality uses a classical relation Theorem 2.1.10 in [Nesterov, 2004] for
strongly-convex functions, and the third one simply uses the definition of ρ given in Proposi-
tion 14.

The previous proposition is interesting from a theoretical point of view, but, as discussed
previously, the quantity ∥∇F (xk)∥2 is unknown in advance. Therefore, the above criterion does
not seem practical at first sight. The next proposition presents one way to use them concretely.

Proposition 13 (On using Proposition 12 in practice). The following condition implies
the inequality (4.15) in Proposition 12:

εk ≤
1

36κ
∥gk∥2.

Proof. We may use (4.12) from Lemma 12, which gives

∥gk∥2 ≤ 2
(
∥∇F (xk)∥2 + 1

18
∥gk∥2

)
,

which implies

4
9
∥gk∥2 ≤ ∥∇F (xk)∥2 and thus εk ≤

1
36κ
∥gk∥2 ≤ 1

16κ
∥∇F (xk)∥2.

While we do not have access to ∥∇F (xk)∥2, we do have access to the estimate gradient
gk = κ(xk − zk). This immediately suggests the following stopping criterion when applying the
method M to (4.6)

h(wt)− h∗ ≤ κ

36
∥wt − x∥2 (4.16)

where (wt)t≥0 is the sequence produced by M to solve the sub-problem (4.6). Again, such
a condition can often be checked by computing duality gap. This choice ensures the linear
convergence of the sequences (F (xk))k≥0 and (f(zk))k≥0 to f ∗. We shall also see in Section 4.4.3
that the condition may also be enforced by simply using a constant number of iterations of the
method M when the right warm start strategy is used. Another possibility is to use a pre-
defined sequence (εk)k≥0, similar to Catalyst [Lin et al., 2015].
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Proposition 14 (Convergence of Algorithm 5 with pre-defined sequence). Assume
that f is µ-strongly convex and define ρ = µ

4(µ+κ) . Consider the sequences (xk)k≥0 and (zk)k≥0

generated by Algorithm 5 where zk is obtained by solving a sub-problem (4.6) with accuracy εk
for all k. Then,

F (xk+1)− F ∗ ≤ f(zk)− f ∗ ≤ (1− 2ρ)k+1 (f(x0)− f ∗) + 2
k∑
i=0

(1− 2ρ)k−i εi.

Proof. First, we recall from Proposition 1 that F is µF -strongly convex with parameter µF =
µκ
µ+κ and that the optimal value of the objectives f and F coincide—in other words, and F ∗ = f ∗.
We may then apply Lemma 13 and

F (xk+1)− F ∗ ≤ f(zk)− f ∗ ≤ F (xk)− F ∗ − 1
4κ
∥∇F (xk)∥2 + 2εk,

≤ F (xk)− F ∗ − µF
2κ

(F (xk)− F ∗) + 2εk,

= (1− 2ρ) (F (xk)− F ∗) + 2εk,

≤ (1− 2ρ)k+1 (F (x0)− F ∗) + 2
k∑
i=0

(1− 2ρ)k−i εi,

≤ (1− 2ρ)k+1 (f(x0)− f ∗) + 2
k∑
i=0

(1− 2ρ)k−i εi,

where the last inequality simply comes from the upper-bound F ≤ f .

Corollary 5 (Recommended pre-defined sequence (εk)k≥0). If the sequence (εk)k≥0 in
Proposition 14 satisfies

εk = 1
2
C(1− ρ)k+1 with C ≥ f(x0)− f ∗.

then
F (xk+1)− F ∗ ≤ f(zk)− f ∗ ≤ C

ρ
(1− ρ)k+2 . (4.17)

Proof. From Proposition 14, we have

F (xk+1)− F ∗ ≤ f(zk)− f ∗ ≤ (1− 2ρ)k+1 (f(x0)− f ∗) + 2
k∑
i=0

(1− 2ρ)k−i εi,

≤ (1− 2ρ)k+1 C +
k∑
i=0

(1− 2ρ)k−i (1− ρ)i+1C,

= C
(1− ρ)k+2 − (1− 2ρ)k+2

(1− ρ)− (1− 2ρ)
,

≤ C

ρ
(1− ρ)k+2.
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We remark that, of course, the quantity f(x0)− f ∗ is unknown in practice, but the propo-
sition only requires an upper-bound, e.g., a duality gap, or simply f(x0) if the function is non-
negative. Next, we present a similar complexity analysis for convex, but not strongly-convex
objectives.

Convex but not strongly-convex objectives.

The goal of this section is to show that a minor modification of the algorithm yields the classical
O(1/k) convergence rate of the sequences (F (xk))k≥0 and (f(zk))k≥0, which can be shown to
be slightly stronger than the previous one, when the accuracy εk is small enough. Specifically,
we replace the descent condition (4.5) by f(xtest) ≤ f(zk). We may now use the new descent
condition to derive a convergence rate for non-strongly convex function.

Proposition 15 (Convergence of Algorithm 5 for convex, but not strongly-convex
objectives). Let f be a convex function, which attains its minimum at x∗. Assume that the
level sets of f are bounded. More precisely, assume that there exists R > 0 such that

∀y ∈ Rp s.t. f(y) ≤ f(x0) then ∥y − x∗∥ ≤ R.

Assume that the sub-problems (4.6) are solved up to accuracy εk ≤ 1
2κ∥gk∥

2 for any k, and
replace the descent condition (4.5) in Algorithm 5 by f(xtest) ≤ f(zk); then, the sequence
(xk)k≥1 satisfies

f(xk)− f ∗ ≤ 2κR2

k + 3
.

Proof. First, we remark that with the new condition, we always have

f(xk+1) ≤ f(zk),

since xk+1 = zk when the descent condition f(xtest) ≤ f(zk) is not satisfied. Moreover, according
to Lemma 11,

f(zk) + κ

2
∥zk − xk∥2 = Fk ≤ F (xk) + εk,

and then, by combining the two previous inequalities

f(xk+1) ≤ f(zk) ≤ F (xk)−
κ

2
∥zk − xk∥2 + εk = F (xk)−

1
2κ
∥gk∥2 + εk ≤ F (xk).
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This relation allows us to use a similar proof technique introduced in [Nesterov, 2013] in the
context of the proximal gradient descent method

f(xk+1) ≤ F (xk) = min
z∈Rp

{
f(z) + κ

2
∥z − xk∥2

}
≤ min

α∈[0,1]

{
f(αx∗ + (1− α)xk) + κα2

2
∥x∗ − xk∥2

}

≤ min
α∈[0,1]

{
αf(x∗) + (1− α)f(xk) + κα2

2
∥x∗ − xk∥2

}
.

Since f(xk) is necessarily decreasing (take α = 0 in the previous relation), we may use the
bounded level set assumption, which leads to

f(xk+1)− f ∗ ≤ min
α∈[0,1]

{
(1− α)(f(xk)− f ∗) + κα2R2

2

}
.

1. If f(xk)− f ∗ ≥ κR2, then α∗ = 1 and f(xk+1)− f ∗ ≤ κR2

2 .

2. Otherwise, α∗ = f(xk)−f∗

κR2 , which gives

rk+1 ≤ rk(1−
rk

2κR2 ) ≤ κR2

2
,

where rk ≜ f(xk)− f ∗. Thus

1
rk+1

≥ 1
rk(1− rk

2κR2 )
≥ 1
rk

(
1 + rk

2κR2

)
= 1
rk

+ 1
2κR2 .

In both cases, r1 ≤ κR2

2 and there

1
rk+1

≥ 1
r1

+ k

2κR2 ≥
k + 4
2κR2 ,

which is sufficient to conclude.

4.4.3 Complexity analysis of the inner loop
In this section, we compute the complexity of solving the sub-problems (4.6) using the
method M, which allows us to obtain the global complexity of QuickeNing, when using the
various approximation strategies described in the previous section. We analyze here primal ap-
proachesM, which achieve the convergence guarantees (4.7). Dual methods like MISO/Finito
whose convergence rate does not satisfy (4.7) require a different warm start as presented in
the appendix of [Lin et al., 2017]. In both cases, our main result is that all sub-problems can
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be solved with an appropriate accuracy in a constant number TM of iterations. One of the
key is to choose the right warm start point, as detailed next. The first lemma characterizes
the quality of the initialization w0 = x for solving the sub-problem (4.6) when the objective
function is smooth.

Lemma 14 (Warm start for primal methods - smooth case). If f is differentiable with
L-Lipschitz continuous gradients, we can initialize the methodM with w0 = x for solving (4.6).
Then, we have the guarantee that

h(w0)− h∗ ≤ L+ κ

2κ2 ∥∇F (x)∥2. (4.18)

Proof. Denote by w∗ the minimizer of h. Then, we have the optimality condition ∇f(w∗) +
κ(w∗ − x) = 0. As a result,

h(w0)− h∗ = f(x)−
(
f(w∗) + κ

2
∥w∗ − x∥2

)
≤ f(w∗) + ⟨∇f(w∗), x− w∗⟩+ L

2
∥x− w∗∥2 −

(
f(w∗) + κ

2
∥w∗ − x∥2

)
= L+ κ

2
∥w∗ − x∥2

= L+ κ

2κ2 ∥∇F (x)∥2.

The inequality in the proof of Lemma 14 relies on the smoothness of f , which does not hold
for composite problems. The next lemma addresses this issue.

Lemma 15 (Warm start for primal methods - composite case). Consider the composite
optimization problem (4.1). We may initialize the method M for solving (4.6) with

w0 = arg min
w∈Rp

{
f0(x) + ⟨∇f0(x), w − x⟩+ L+ κ

2
∥w − x∥2 + ψ(w)

}
. (4.19)

Then,
h(w0)− h∗ ≤ L

2κ2∥∇F (x)∥2.

Proof. We use the inequality corresponding to Lemma 2.3 in [Beck and Teboulle, 2009]: for
any w,

h(w)− h(w0) ≥
L′

2
∥w0 − x∥2 + L′⟨w0 − x, x− w⟩, (4.20)

with L′ = L+ κ. Then, we apply this inequality to w = w∗, and

h(w0)− h∗ ≤ −L
′

2
∥w0 − x∥2 − L′⟨w0 − x, x− w∗⟩ ≤ L′

2
∥x− w∗∥2 = L+ κ

2κ2 ∥∇F (x)∥2.
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The lemmas presented above are important, since they allow us to derive the global com-
plexity of QuickeNing in the scenarios described in Propositions 12, 13, and 15. Specifically, it
shows us that the conditions in both cases will be satisfied in a constant number of iterations
of the method M.

Proposition 16 (Inner-loop complexity for Algorithm 5). Assume that f is differentiable
with L-Lipschitz continuous gradients. Consider Algorithm 5 with the warm start strategy de-
scribed in Lemma 14 or in Lemma 15. Assume that the primal method M applied in the inner
loop produces a sequence (wt)t≥0 for each sub-problem (4.6) such that

h(wt)− h∗ ≤ CM(1− τM)t(h(w0)− h∗) for some constants CM, τM > 0. (4.21)

Then, the sub-problems are solved with enough accuracy to apply Propositions 12, 13, and 15
in at most TM iterations with

TM = 1
τM

log
(

38CM
L+ κ

κ

)
.

Proof. The proposition is a direct consequence of the warm start strategy in previous lemmas.
Consider at iteration k, we want to approximate the proximal mapping according to xk. With
the given TM (which we abbreviate by T ), we have

h(wT )− h∗ ≤ CM(1− τM)T (h(w0)− h∗)
≤ CMe−τMT (h(w0)− h∗)

≤ CMe−τMT L+ κ

2κ2 ∥∇F (xk)∥2 (By Lemma 14 and Lemma 15)

= 1
76κ
∥∇F (xk)∥2.

It remains to show that this accuracy is in fact small enough to apply Propositions 12, 13,
and 15. From Lemma 12, we know that ∥gk∥ and ∥∇F (xk)∥ are related through:

1
2
∥∇F (xk)∥2 ≤ ∥gk∥2 + 2κεk ≤ ∥gk∥2 + 1

38
∥∇F (xk)∥2.

Thus
h(wT )− h∗ ≤ 1

76κ
∥∇F (xk)∥2 ≤ 1

36κ
∥gk∥2.

This is exactly the accuracy required in Proposition 13. From which we easily derived the
accuracy in Propositions 12 and 15.
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4.4.4 Global complexity of QuickeNing
Finally, we can use the previous result to upper-bound the complexity of the QuickeNing
algorithm in terms of iterations of the method M for minimizing f up to ε.

Proposition 17 (Worst-case global complexity for Algorithm 5). Under the setting
of Proposition 16, the number of iterations of the method M (or expected number if M is
non-deterministic) to guarantee the optimality condition f(zk)− f ∗ ≤ ε is

• for µ-strongly-convex problems:

2TM ×
µ+ κ

µ
log

(
f(x0)− f ∗

ε

)
= 2µ+ κ

τMµ
log

(
f(x0)− f ∗

ε

)
log

(
38CM

L+ κ

κ

)
.

• for convex but not strongly convex problems:

2TM ×
2κR2

ε
= 4κR2

τMε
log

(
38CM

L+ κ

κ

)
.

Proof. Since in the worst case, there are two proximal problems to be solved at each outer-loop
iteration, the total number of calls of methodM is at most 2TM times the number of outer-loop
iterations. The result follows immediately from Propositions 12 and 15.

We give below the worst-case global complexity of QuickeNing when applied to two opti-
mization methods M of interest. As we shall see, in terms of worst-case complexity bounds,
QuickeNing does not lead to an improved convergence rate. It is worthwhile to underline,
though, that this result is not surprising since it is often the case for L-BFGS-type methods,
for which an important gap remains between theory and practice. When comparing the vanilla
L-BFGS algorithm with the gradient descent method, one outperforms the other in many prac-
tical cases, but never in theory.

Proposition 17 and its application to the two examples below show that, in terms of worse-
case complexity, the QuickeNing scheme leaves the convergence rate unchanged. Linearly-
converging methods remain linear-converging when used within the QuickeNing scheme.

Example 1. Consider gradient descent with fixed constant step-size 1/L as the optimization
method M. Gradient descent (GD) minimizes f to ε accuracy in L/µ log(1/ε) iterations.
Quickening-GD minimizes f to ε accuracy in 2(L + κ)/µ log(1/ε) iterations (when ignoring
logarithmic terms).

Example 2. Consider the stochastic variance-reduced gradient (SVRG) as the optimization
method M. SVRG minimizes f to ε accuracy in

O

(
max

{
n,
L

µ

}
log

(1
ε

))
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iterations in expectation. QuickeNing-SVRG with minimizes f to ε accuracy in

O

(
max

{
µ+ κ

µ
n,
L+ κ

µ

}
log

(1
ε

))

iterations in expectation.

Choice of κ. The worst-case complexity theory also does not seem to offer any guidance
regarding the choice of κ for the QuickeNing acceleration to be most effective. We shall exper-
iment with a heuristic, consisting in choosing the κ that would lead to the most acceleration
for the related Catalyst acceleration scheme [Lin et al., 2015]. We present empirical evidence
in support of this heuristic in Section 4.5.

4.5 Experiments and practical details
In this section, we present experimental results obtained by applying QuickeNing on SVRG
(Section 4.5.3) and on the proximal gradient descent algorithm ISTA (Section 4.5.4), and we
compare the resulting methods to other acceleration techniques and to the L-BFGS algorithm.
We also study the behavior of QuickeNing when changing the smoothing parameter κ and the
limited-memory parameter l (Section 4.5.5). Before that, we first present in Section 4.5.1 the
formulations and datasets that we use, and also discuss in Section 4.5.2 various experimental
and practical choices.

4.5.1 Formulations and datasets
We consider the same problems as in Section 3.6.1 including regularized logistic regression,
Elastic-net and Lasso problem. The datasets are also identical to the that in the experiments
of Catalyst with different characteristics in terms of size and dimension:

name covtype alpha real-sim rcv1
n 581 012 250 000 72 309 781 265
d 54 500 20 958 47 152

4.5.2 Choice of hyper-parameters and variants
Before presenting the numerical results, we discuss the choice of default parameters used in the
experiments as well as different variants.
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Choice of method M. We consider the acceleration of the proximal SVRG algorithm [Xiao
and Zhang, 2014] since it is able to adapt to the problem structure we consider: large sum of
functions and composite regularization. We also consider accelerating the ISTA algorithm [Beck
and Teboulle, 2009], which allow us to perform a comparison with the natural baselines FISTA
and L-BFGS for smooth problems.

Stopping criteria for the inner loop. The default stopping criteria is to solve the sub-
problem until accuracy εk such that εk ≤ 1

36κ∥gk∥
2, which reduces to the simple criterion (4.16).

Although we have shown that such accuracy is attainable in constant TM iteration, the theoret-
ical value of TM could be very large depending on the conditioning of the problem. A natural
heuristic is to always perform exactly one pass over the data in the inner loop without checking
any stopping criteria as proposed in [Lin et al., 2015].

When applying QuickeNing to SVRG and ISTA, we call the one-pass variant QuickeNing-
SVRG1 and QuickeNing-ISTA1, respectively, and the one using stopping criterion (4.16)
QuickeNing-SVRG2 and QuickeNing-ISTA2.

stopping criterion for minw h(w)

QuickeNing1 one-pass through the data.

QuickeNing2 stop when h(wt)− h∗ ≤ κ
36∥wt − xk∥

2.

We upper bound the duality gap h(wt) − h∗ either by evaluating the Fenchel conjugate or by
computing the squared norm of the gradient. Finally, another variant that could be considered
is to give a pre-defined sequence of (εk)k≥0 and stop when the current accuracy is smaller
than εk, which is checked by using Fenchel conjugate; typically, this variant is less practical
and is thus omitted from the experiments.

Choice of regularization parameter κ. As the global complexity is a function of κ, the
most intuitive choice is to choose κ to minimize the complexity. However, such analysis leads
to κ = 0, which is not quite helpful since this suggests directly performing M on the original
problem. The reason is that the convergence of L-BFGS is hard to characterize and theoretical
rates of convergence can be pessimistic. Noting that for smooth functions, L-BFGS often
outperforms Nesterov’s accelerated gradient method, it is reasonable to expect QuickeNing
achieves a similar complexity bound as Catalyst.

Choose κ to maximize τM√
µ+ κ

,
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Therefore, we choose κ identical as in Catalyst algorithm, which leads to κ = L for gradient
descent and κ = L/2n for SVRG. Later in this section, a comparison of different scaling of κ is
performed in order to demonstrate the relevance of this strategy.

Choice of limited memory parameter l. The default setting is l = 100. We show a
comparison with smaller values to study the influence of this parameter.

Sufficient decrease condition. We use the sufficient decrease condition suggested by the
theory:

• for strongly convex objectives, we use Ftest ≤ Fk − 1
2κ∥gk∥

2;

• for convex, but non-strongly convex objectives, we use f(xk+1) ≤ f(zk). Nevertheless,
we will also evaluate experimentally the strategy for strongly-convex objectives in this
context.

Comparison metric. For all experiments, we use the number of gradient evaluations as a
natural metric, assuming this is the computational bottleneck of all methods considered. This
is indeed the case here since the L-BFGS step cost O(dl) floating-point operations [Nocedal and
Wright, 2006], whereas evaluating the gradient of the full objective costs O(nd), with d ≤ n
and l≪ d. A similar choice was made in other works [Schmidt et al., 2017].

4.5.3 QuickeNing-SVRG for minimizing large sums of functions
We now apply QuickeNing to SVRG and compare different variants.

• SVRG: the Prox-SVRG algorithm of [Xiao and Zhang, 2014] with default parameters
m = 1 and η = 1/L, where L is the upper-bound on Lipschitz constant of the gradient,
as described in the Section 4.5.2.

• Catalyst-SVRG: The catalyst meta-algorithm of [Lin et al., 2015] applied to Prox-
SVRG;

• L-BFGS (for smooth objectives): Since implementing effectively L-BFGS with a line-
search algorithm is a bit involved, we use the implementation of Mark Schmidt2, which
has been widely used in other comparisons [Schmidt et al., 2017]. The limited memory
parameter l is also set to 100. We use it for the logistic regression experiment since
L-BFGS is defined only for smooth objectives.

2available here http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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Figure 4.1 – Experimental study of the performance of QuickeNing-SVRG for minimizing large
sums of functions. We plot the value F (xk)/F ∗ − 1 as a function of the number of gradient
evaluations, on a logarithmic scale; the optimal value F ∗ is estimated with a duality gap.

• QuickeNing-SVRG1 as detailed above. For the Lasso problem, we also evaluate this
heuristic with the sufficient decrease condition used for strongly convex problems. We
call this heuristic variant QuickeNing-SVRG1*.

• QuickeNing-SVRG2, as detailed above.

The result of the comparison is presented in Figure 4.1 and leads to the conclusions below,
showing that QuickeNing-SVRG1 is a safe heuristic, which never decreases the speed of the
method SVRG:

• L-BFGS is less competitive than other approaches that exploit the sum structure of the
objective, except on the dataset real-sim; the difference in performance with the SVRG-
based approaches can be very important (see dataset alpha).
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• QuickeNing-SVRG1 is significantly faster than or on par with SVRG and
QuickeNing-SVRG2.

• QuickeNing-SVRG2 is significantly faster than, or on par with, or only slightly slower
than SVRG.

• QuickeNing-SVRG1 is significantly faster, or on par with Catalyst-SVRG except in
two cases where Catalyst-SVRG performs slightly better.

• there is no clear conclusion regarding the performance of QuickeNing-SVRG1* vs
QuickeNing-SVRG1 for the Lasso problem.

4.5.4 QuickeNing-ISTA and comparison with L-BFGS
The previous experiments have included a comparison between L-BFGS and approaches that
are able to exploit the sum structure of the objective. It is then interesting to study the
behavior of QuickeNing when applied to a basic proximal gradient descent algorithm such as
ISTA. Specifically, we now consider

• ISTA: the classical proximal gradient descent algorithm ISTA [Beck and Teboulle, 2009]
with back-tracking line-search to automatically adjust the Lipschitz constant of the gra-
dient objective;

• FISTA: the accelerated variant of ISTA from [Beck and Teboulle, 2009].

• L-BFGS, QuickeNing-ISTA1, QuickeNing-ISTA2, and QuickeNing-ISTA1*, as
in the previous section when replacing SVRG by ISTA.

The results are reported in Figure 4.2 and lead to the following conclusions

• L-BFGS is slightly better on average than QuickeNing-ISTA1 for smooth problems,
which is not surprising since we use a state-of-the-art implementation with a well-
calibrated line search.

• QuickeNing-ISTA1 is always significantly faster than, or on par with QuickeNing-
ISTA2.

• The QuickeNing-ISTA approaches are significantly faster than FISTA in 15 cases out
of 16.

• for Lasso problems, QuickeNing-ISTA1* is sometimes faster than QuickeNing-
ISTA1.
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Figure 4.2 – Experimental study of the performance of QuickeNing-ISTA. We plot the
value F (xk)/F ∗ − 1 as a function of the number of gradient evaluations, on a logarithmic
scale; the optimal value F ∗ is estimated with a duality gap.

4.5.5 Experimental study of hyper-parameters l and κ

In this section, we study the influence of the limited memory parameter l and of the regular-
ization parameter κ in QuickeNing. More precisely, we start with the parameter l and try the
method QuickeNing-SVRG1 with the values l = 1, 2, 5, 10, 20, 100. Note that all previous
experiments were conducted with l = 100, which is the most expensive in terms of memory and
computational cost for the L-BFGS step. The results are presented in Figure 4.3. Interestingly,
the experiment suggests that having a large value for l is not necessarily the best choice, espe-
cially for composite problems where the solution is sparse, where l = 5 seems to be a reasonable
choice in practice.

The next experiment consists of studying the robustness of QuickeNing to the smoothing
parameter κ. We present in Figure 4.4 an experiments by trying the values κ = 10iκ0, for
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Figure 4.3 – Experimental study of influence of the limited-memory parameter l for QuickeNing-
SVRG1. We plot the value F (xk)/F ∗ − 1 as a function of the number of gradient evaluations,
on a logarithmic scale; the optimal value F ∗ is estimated with a duality gap.
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Figure 4.4 – Experimental study of influence of the smoothing parameter κ for QuickeNing-
SVRG1. κ0 denotes the default choice used in the previous experiments. We plot the
value F (xk)/F ∗ − 1 as a function of the number of gradient evaluations, on a logarithmic
scale; the optimal value F ∗ is estimated with a duality gap.

i = −3,−2, . . . , 2, 3, where κ0 is the default parameter that we used in the previous experi-
ments. The conclusion is clear: QuickeNing clearly slows down when using a larger smoothing
parameter than κ0, but it is very robust to small values of κ (and in fact it even performs better
for smaller values than κ0 in one experiment).

4.6 Discussions and concluding remarks
A few questions naturally arise regarding the QuickeNing scheme: one may wonder whether
or not our convergence rates may be improved, or if the Moreau-Yosida regularization could
be replaced by another smoothing technique. In this section, we discuss these two points and
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present concluding remarks.

4.6.1 Discussion of convergence rates
In this chapter, we have established the linear convergence of QuickeNing for strongly con-
vex objectives when sub-problems are solved with enough accuracy. Since QuickeNing uses
Quasi-Newton steps, one might have expected a superlinear convergence rate as several Quasi-
Newton algorithms often enjoy [Byrd et al., 1987]. The situation is as follows. Consider the
BFGS Quasi-Newton algorithm (without limited memory). As shown in [Chen and Fukushima,
1999], if the sequence (εk)k≥0 decreases super-linearly, then, it is possible to design a scheme
similar to QuickeNing that indeed enjoys a super-linear convergence rate. There are two major
downsides though. The scheme of [Chen and Fukushima, 1999] with such a fast rate requires
performing a line-search on F and a super-linearly decreasing sequence (εk)k≥0 implies an expo-
nentially growing number of iterations in the inner-loops. These two issues make this approach
impractical.

Another potential strategy for obtaining a faster convergence rate consists in interleaving
a Nesterov-type extrapolation step in the QuickeNing algorithm. Indeed, the convergence rate
of QuickeNing scales linearly in the condition number µF/LF , which suggests that a faster
convergence rate could be obtained using a Nesterov-type acceleration scheme. Empirically, we
did not observe any benefit of such a strategy, probably because of the pessimistic nature of the
convergence rates that are typically obtained for Quasi-Newton approaches based on L-BFGS.
Obtaining a linear convergence rate for an L-BFGS algorithm is still an important sanity check,
but to the best of our knowledge, the gap in performance between these worst-case rates and
practice has always been huge for this class of algorithms.

4.6.2 Other types of smoothing
Algorithm 6 (ApproxGradient) corresponds to applying the Moreau-Yosida regularization first
before computing an estimate g of the gradient, which is a particular instance of infimal con-
volution smoothing [Beck and Teboulle, 2012], whose family also encompasses the so-called
Nesterov smoothing [Beck and Teboulle, 2012]. Other ways to smooth a function include ran-
domization techniques [Duchi et al., 2012] or specific strategies tailored for the objective at
hand.

One of the main purposes of the Moreau-Yosida regularization is to provide a better condi-
tioning. As seen in Proposition 1, the gradient of the Moreau-Yosida-smoothed function F is
Lipschitz continuous regardless of whether the original function is continuously differentiable
or not. Furthermore, the conditioning of F is improved with respect to the original function,
with a condition number depending on the amount of smoothing. As highlighted in [Beck and
Teboulle, 2012], this property is also shared by other types of infimal convolutions. There-
fore, QuickeNing could potentially be extended to such types of smoothing in place of the
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Moreau-Yosida regularization. A major advantage of our approach, though, is its outstanding
simplicity.

4.6.3 Concluding remarks
To conclude, we have proposed a generic mechanism, QuickeNing, to accelerate existing first-
order optimization algorithms with quasi-Newton-type rules to update a variable metric along
the iterations. QuickeNing’s main features are the compatibility with composite optimization
and its practical performance when combined with incremental approaches. The absence of line-
search scheme makes it also easy to implement and use, making it a promising tool for solving
large-scale machine learning problems. A few questions remain however open regarding the use
of the method in a pure stochastic optimization setting, and the gap in performance between
worst-case convergence analysis and practice is significant. We are planning to address the first
question about stochastic optimization in future work; the second question is unfortunately
difficult and is probably one of the main open question in the literature about L-BFGS methods.
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Chapter 5

Catalyst for non-convex optimization

Chapter abstract:
We introduce a generic scheme to solve nonconvex optimization problems using gradient-
based algorithms originally designed for minimizing convex functions. When the objective
is convex, the proposed approach enjoys the same properties as the Catalyst approach of
Lin et al. [2015]. When the objective is nonconvex, it achieves the best known convergence
rate to stationary points for first-order methods. Specifically, the proposed algorithm
does not require knowledge about the convexity of the objective; yet, it obtains an overall
worst-case efficiency of Õ(ε−2) and, if the function is convex, the complexity reduces to the
near-optimal rate Õ(ε−2/3). We conclude the chapter by showing promising experimental
results obtained by applying the proposed approach to SVRG and SAGA for sparse matrix
factorization and for learning neural networks.

The material of this chapter is a short version of the following technical report,
which is a joint work with Courtney Paquette and Dmitriy Drusvyatskiy from University
of Washington and my PhD advisors:
C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui. Catalyst acceleration
for gradient-based non-convex optimization. arXiv preprint arXiv:1703.10993v2, 2017
The paper is in preparation for submission to AISTATS 2018. For completeness, the
technical report is presented in appendix D, which includes the proofs of all technical
results of this chapter.
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5.1 Introduction
We consider optimization problems of the form

min
x∈Rp

{
f(x) := f0(x) + ψ(x)

}
, where f0(x) := 1

n

n∑
i=1

fi(x) . (5.1)

Here each function fi : Rp → R is smooth, the regularization ψ : Rp → R̄ may be nonsmooth,
and R̄ := R ∪ {∞}. By considering extended-real-valued functions, this composite setting also
encompasses constrained minimization by letting ψ be the indicator function of the constraints
on x. Minimization of a regularized empirical risk objective of form (5.1) is central in machine
learning. Whereas a significant amount of work has been devoted to this setting for convex
problems, leading in particular to fast incremental algorithms [see, e.g., Defazio et al., 2014a,
Lan and Zhou, 2015, Mairal, 2015, Schmidt et al., 2017, Woodworth and Srebro, 2016, Xiao
and Zhang, 2014], the question of minimizing efficiently (5.1) when the functions fi and ψ may
be nonconvex is still largely open today.

Yet, nonconvex problems in machine learning are of high interest. For instance, the variable
x may represent the parameters of a neural network, where each term fi(x) measures the fit
between x and a data point indexed by i, or (5.1) may correspond to a nonconvex matrix
factorization problem (see Section 5.6). Besides, even when the data-fitting functions fi are
convex, it is also typical to consider nonconvex regularization functions ψ, for example for
feature selection in signal processing [Hastie et al., 2015.]. In this work, we address two questions
from nonconvex optimization:

1. How to apply a method for convex optimization to a nonconvex problem?
2. How to design an algorithm which does not need to know whether the objective function

is convex while obtaining the optimal convergence guarantee if the function is convex?
Several pioneering works attempted to transfer ideas from the convex world to the nonconvex

one, see, e.g., [Ghadimi and Lan, 2016, Ghadimi et al., 2015]. Our work has a similar goal
and studies the extension of Nesterov’s acceleration for convex problems [Nesterov, 1983] to
nonconvex composite ones. For nonconvex and L-smooth problems, gradient descent is optimal
among first-order methods in terms of information-based complexity to find an ε-stationary
point [Carmon et al., 2017][Thm. 2 Sec. 5]. Without additional assumptions on the function f ,
worst case complexity for first-order methods can not achieve better than O(ε−2) oracle queries
[Cartis et al., 2010, 2014]. Under a stronger assumption that the objective function is C2-
smooth, state-of-the-art methods [e.g., Carmon et al., 2016, 2017] only achieve marginal gain
with complexity O(ε−7/4 log(1/ε)), and do not appear to generalize to composite or stochastic
settings. For this reason, our work fits within a broader stream of recent research on methods
that do not perform worse than gradient descent in the nonconvex case (in terms of worst-case
complexity), while automatically accelerating for minimizing convex functions. The hope is to
see acceleration in practice for non-convex problems, by exploiting “hidden” convexity in the
objective (e.g., local convexity near the optimum, or convexity along the trajectory of iterates).
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Our main contribution is a generic meta-algorithm, dubbed 4WD-Catalyst, which is able
to use an optimization method M, originally designed for convex problems, and turn it into
an accelerated scheme that also applies to nonconvex objective functions. The proposed 4WD-
Catalyst can be seen as a 4-Wheel-Drive extension of Catalyst [Lin et al., 2015] to all optimiza-
tion “terrains”. Specifically, without knowing whether the objective function is convex or not,
our algorithm may take a methodM designed for convex optimization problems with the same
structure as (5.1), e.g., SAGA [Defazio et al., 2014a], SVRG [Xiao and Zhang, 2014], and apply
M to a sequence of sub-problems such that it provides a stationary point of the nonconvex
objective. Overall, the number of iterations of M to obtain a gradient norm smaller than ε is
Õ(ε−2) in the worst case, while automatically reducing to Õ(ε−2/3) if the function is convex.1

Related work. Inspired by Nesterov’s fast gradient method for convex optimization [Nes-
terov, 2004], the first accelerated method performing universally well for nonconvex and convex
problems was introduced in [Ghadimi and Lan, 2016]. Specifically, [Ghadimi and Lan, 2016]
addresses composite problems such as (5.1) with n=1, and, provided the iterates are bounded,
performs no worse than gradient descent on nonconvex instances with complexity O(ε−2) on the
gradient norm. When the problem is convex, it accelerates with complexity O(ε−2/3). Exten-
sions to Gauss-Newton methods were also recently developed in [Drusvyatskiy and Paquette,
2016]. To the best of our knowledge, convergence guarantees for accelerated gradient methods
directly applied to nonconvex problem are unknown; however their performance escaping sad-
dle points faster than gradient descent has been observed [O’Neill and Wright, 2017, Jin et al.,
2017].

In [Li and Lin, 2015], a similar strategy is proposed, focusing instead on convergence
guarantees under the so-called Kurdyka-Łojasiewicz inequality—a property corresponding to
polynomial-like growth of the function, as shown by [Bolte et al., 2016]. Our scheme is in
the same spirit as these previous papers, since it monotonically interlaces proximal-point steps
(instead of proximal-gradient as in [Ghadimi et al., 2015]) and extrapolation/acceleration steps.
A fundamental difference is that our method is generic and accommodates inexact computa-
tions, since we allow the subproblems to be approximately solved by any method we wish to
accelerate.

By considering C2-smooth nonconvex objective functions f with Lipschitz continuous gra-
dient ∇f and Hessian ∇2f , the authors of [Carmon et al., 2016] propose an algorithm with
complexity O(ε−7/4 log(1/ε)), based on iteratively solving convex subproblems closely related to
the original problem. It is not clear if the complexity of their algorithm improves in the convex
setting. Note also that the algorithm proposed in [Carmon et al., 2016] is inherently for C2-
smooth minimization. This implies that the scheme does not allow incorporating nonsmooth
regularizers and cannot exploit finite sum structure.

Finally, a method related to SVRG [Johnson and Zhang, 2013] for minimizing large sums,
while automatically adapting to the weak convexity constant of the objective function, is pro-

1In this section, the notation Õ only displays the polynomial dependency with respect to ε for simplicity.
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posed in [Allen-Zhu, 2017]. When the weak convexity constant is small (i.e., the function is
nearly convex), the proposed method enjoys an improved efficiency estimate. This algorithm,
however, does not automatically accelerate for convex problems, in the sense that the rate is
slower than O(ε−3/2) in terms of target accuracy ε on the gradient norm.

Organization of the chapter. Section 5.2 presents mathematical tools for non-convex and
non-smooth analysis. Section 5.3 introduces our algorithm, while Section 5.5 presents global
convergence guarantees of the scheme and convergence guarantees when the algorithm wraps
specific algorithms such as SAGA and SVRG. Section 5.6 is devoted to experiments on neural
networks and matrix factorization.

5.2 Tools for nonconvex and nonsmooth optimization
Convergence results for nonsmooth optimization typically rely on the concept of subdifferential,
which does not admit a unique definition in a nonconvex context [Borwein and Lewis, 2010]. In
this chapter, we circumvent this issue by focusing on a broad class of nonconvex functions known
as weakly convex or lower C2 functions, for which all these constructions coincide. Weakly
convex functions cover most of the interesting cases of interest in machine learning and resemble
convex functions in many aspects.

Definition 5 (Weak convexity). A function f : Rp → R is ρ−weakly convex if for any points
x, y ∈ Rp and λ ∈ [0, 1], the approximate secant inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ρλ(1− λ)
2

∥x− y∥2 .

Notice that ρ-weak convexity with ρ= 0 is exactly the definition of a convex function and
it is easy to show that f is ρ-weakly convex if and only if the function x 7→ f(x) + ρ

2 ∥x∥
2

is convex. In particular, a C1-smooth function f is ρ-weakly convex if the gradient ∇f is
ρ-Lipschitz, while a C2-smooth function f is ρ-weakly convex if and only if ∇2f(x) ⪰ −ρI for
all x. This resembles an equivalent condition for C2-smooth and µ-strongly convex functions,
namely ∇2f(x) ⪰ µI.

Useful characterizations of ρ-weakly convex functions rely on differential properties. Since
the functions we consider here are nonsmooth, we use a generalized derivative construction.
We mostly follow the standard monograph on the subject by Rockafellar and Wets [Rockafellar
and Wets, 1998].

Definition 6 (Subdifferential). Consider a function f : Rp → R and a point x with f(x) finite.
The subdifferential of f at x is the set

∂f(x) :={v ∈ Rp : f(y)≥f(x) + vT (y − x) + o(∥y − x∥) ∀y ∈ Rp}.
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Thus, a vector v lies in ∂f(x) whenever the linear function y 7→ f(x) + vT (y − x) is a
lower-model of f , up to first-order around x. In particular, the subdifferential ∂f(x) of a
differentiable function f is the singleton {∇f(x)}, while for a convex function f it coincides
with the subdifferential in the sense of convex analysis [see Rockafellar and Wets, 1998, Exercise
8.8]. It is useful to keep in mind that the sum rule, ∂(f + g)(x) = ∂f(x) +∇g(x), holds for any
differentiable function g.

In non-convex optimization, standard complexity bounds are derived to guarantee

dist
(
0, ∂f(x)

)
≤ ε .

When ε = 0, we are at a stationary point and first-order optimality conditions are satisfied; that
is, the directional derivative at the point is nonnegative in every direction. For functions that
are nonconvex, first-order methods search for points with small subgradients, which does not
necessarily imply small function values, in contrast to convex functions where the two criteria
are much closer related.

5.3 The 4WD-Catalyst algorithm
We present here our main algorithm called 4WD-Catalyst. The proposed approach extends the
Catalyst method [Lin et al., 2015] to potentially nonconvex problems, while enjoying the two
following properties:

1. When the problem is non convex, the algorithm automatically adapts to the unknown
weak convexity constant ρ.

2. When the problem is convex, the algorithm automatically accelerates in the sense of
Nesterov, providing near-optimal convergence rates for first-order methods.

Main goal. As in the regular Catalyst algorithm of [Lin et al., 2015], the proposed scheme
wraps in an outer loop a minimization algorithm M used in an inner loop. The goal is to
leverage a method M that is able to exploit the problem structure (finite-sum, composite) in
the convex case, and benefit from this feature when dealing with a new problem with unknown
convexity; remarkably, M does not need to have any convergence guarantee for nonconvex
problems to be used in 4WD-Catalyst.

Two-step subproblems. In each iteration, 4WD-Catalyst forms subproblems of the form

min
x

fκ(x; y) := f(x) + κ

2
∥x− y∥2. (P)

We call y the prox-center of the subproblem and any minimizer a proximal point. The perturbed
function fκ(x; y) satisfies the important property: fκ(·; y) is (κ − ρ)-strongly convex for any
κ > ρ. The addition of the quadratic to f makes the subproblem more “convex”. That is,
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when f is non convex, a large enough κ yields convex subproblems; even when f is convex, the
quadratic perturbation nonetheless improves conditioning.

We now describe the k’th iteration of Algorithm 8. To this end, suppose we have available
iterates xk−1 and vk−1. At the center of our Algorithm 8 are two main sequences of iterates
(x̄k)k and (x̃k)k, obtained from approximately solving two subproblems of the form P .
1. Proximal point step. We first perform an inexact proximal point step with prox-center xk−1:

x̄k ≈ arg min
x

fκ(x;xk−1) [Proximal-point step] (5.2)

2. Accelerated proximal point step. Then we build the next prox-center yk as the combination

yk = αkvk−1 + (1− αk)xk−1. (5.3)

Next we use yk as a prox-center and update the next extrapolation term:

x̃k ≈ arg min
x

fκ(x; yk) [Accelerated proximal-point step] (5.4)

vk = xk−1 + 1
αk

(x̃k − xk−1) [Extrapolation] (5.5)

where αk+1 ∈ (0, 1) is a sequence of coefficients satisfying (1− αk+1)/α2
k+1 = 1/α2

k. Essentially,
the sequences (αk)k, (yk)k, (vk)k are built upon the extrapolation principles of [Nesterov, 2004].

Picking the best. At the end of iteration k, we have two iterates, resp. x̄k and x̃k. Follow-
ing [Ghadimi and Lan, 2016], we simply choose the best of the two in terms of their objective
values, that is we choose xk such that

f(xk) ≤ min {f(x̄k), f(x̃k)} .

The proposed scheme blends the two steps in a synergistic way, allowing us to recover the
near-optimal rates of convergence in both worlds: convex and non-convex. Intuitively, when x̄k
is chosen, it means that Nesterov’s extrapolation step “fails” to accelerate convergence.

We present now our strategy to set the parameters of 4WD-Catalyst so that the resulting
algorithm a) automatically adapts to the unknown weak convexity constant ρ; b) enjoys a
near-optimal rate of convergence in both convex and non-convex settings.

5.4 Optimal parameters and adaptation
When κ is large enough, the subproblems become strongly convex; thus globally solvable. Hence-
forth, we will assume that M satisfies the following natural linear convergence assumption.
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Algorithm 7 Auto-adapt (x, κ, T )
input x ∈ Rp, method M, κ > 0, number of iterations T .

Repeat Run T iterations of M initializing from z0 = x, or z0 = proxηψ(x − η∇f0(x; y))
with η = 1/(L + κ) for composite objectives f = f0 + ψ with L-smooth function f0, to
obtain

zT ≈ arg min
z∈Rp

fκ(z;x).

If fκ(zT ;x) ≤ fκ(x;x) and dist(0, ∂fκ(zT ;x)) ≤ κ ∥zT − x∥,
then go to output.
else repeat with κ→ 2κ.

output (zT , κ).

Algorithm 8 4WD-Catalyst
input Fix a point x0 ∈ dom f , real numbers κ0, κcvx > 0 and T, S > 0, and an opt. method
M.
initialization: α1 = 1, v0 = x0.
repeat for k = 1, 2, . . .

1. Compute
(x̄k, κk) = Auto-adapt (xk−1, κk−1, T ).

2. Compute yk = αkvk−1 + (1− αk)xk−1 and apply S log(k + 1) iterations of M to find

x̃k ≈ arg min
x∈Rp

fκcvx(x, yk). (5.6)

3. Update vk and αk+1 by

vk = xk−1 + 1
αk

(x̃k − xk−1) and αk+1 =

√
α4
k + 4α2

k − α2
k

2
.

4. Choose xk to be any point satisfying f(xk) = min{f(x̄k), f(x̃k)}.

until the stopping criterion dist
(
0, ∂f(x̄k)

)
< ε

Linear convergence ofM for strongly-convex problems. We assume that for any κ > ρ,
there exist Aκ ≥ 0 and τκ ∈ (0, 1) so that the following hold:

1. For any prox-center y ∈ Rp, define f ∗
κ(y) = minz fκ(z, y). For any initial point z0 ∈ Rp,

the iterates {zt}t≥1 generated by M on the problem minz fκ(z; y) satisfy

dist2(0, ∂fκ(zt; y)) ≤ Aκ(1− τκ)t
(
fκ(z0; y)− f ∗

κ(y)
)
. (5.7)
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2. The rates τκ and constants Aκ are increasing in κ.
When the function is strongly convex, the first condition is equivalent to the error fκ(zk; y) −
f ∗
κ(y) decreasing geometrically to zero (convergence in sub-gradient norm and function values

are equivalent in this case). If the method is randomized, we allow (5.7) to hold in expectation;
see Sec. 4. in Appendix. All algorithms of interest, (e.g., gradient descent, SVRG, SAGA)
satisfy these properties.

Adaptation to weak convexity and predefining T . Recall that we add a quadratic to
f to make each subproblem convex. Thus, we should set κ > ρ, if ρ were known. On the
other other hand, we do not want κ too large, as that may slow down the overall algorithm. In
any case, it is difficult to have an accurate estimate of ρ for machine learning problems such
as neural networks. Thus, we propose a procedure described in Algorithm 7 to automatically
adapt to ρ.

The idea is to fix in advance a number of iterations T , let M run on the subproblem for T
iterations, output the point zT , and check if a sufficient decrease occurs. We show that if we
set T = Õ(τ−1

L ), where Õ hides logarithmic dependencies in L and AL, where L is the Lipschitz
constant of the smooth part of f ; then, if the subproblem were convex, the following conditions
would be guaranteed:

1. Descent condition: fκ(zT ;x) ≤ fκ(x;x);
2. Adaptive stationary condition: dist

(
0, ∂fκ(zT ;x)

)
≤ κ ∥zT − x∥ .

Thus, if either condition is not satisfied, then the subproblem is deemed not convex and we
double κ and repeat. The procedure yields an estimate of ρ in a logarithmic number of increases;
see lem. D.3.

The descent condition is a sanity check, which ensures the iterates generated by the al-
gorithm always decrease the function value. Without it, the stationarity condition alone is
insufficient because of the existence of local maxima in nonconvex problems.

The adaptive stationarity property controls the inexactness of the subproblem in terms of
subgradient norm. In a non convex setting, the subgradient norm is convenient, since we cannot
access fκ(zT , x) − f ∗

κ(x). Furthermore, unlike the stationary condition dist
(
0, ∂fκ(zT ;x)

)
< ε,

where an accuracy ε is predefined, the adaptive stationarity condition depends on the iterate
zT . This turns out to be essential in deriving the global complexity. Sec. 3 in the Appendix
contains more details.

Relative stationarity and predefining S. One of the main differences of our approach
with the Catalyst algorithm of [Lin et al., 2015] is to use a pre-defined number of iterations, T
and S, for solving the subproblems. We introduce κcvx, a M dependent smoothing parameter
and set it in the same way as the smoothing parameter in [Lin et al., 2015]. The automatic
acceleration of our algorithm when the problem is convex is due to extrapolation steps in Step
2-3 of Algo. 8. We show that if we set S = Õ

(
τ−1
κcvx

)
, where Õ hides logarithmic dependencies
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in L, κκ, and Aκcvx , then we can be sure that, for convex,

dist
(
0, ∂fκcvx(x̃k; yk)

)
<

κcvx

k + 1
∥x̃k − yk∥ . (5.8)

This relative stationarity of x̃k, including the choice of κcvx, shall be crucial to guarantee that
the scheme accelerates in the convex setting. An additional k + 1 factor appears compared
to the previous adaptive stationary condition because we need higher accuracy for solving the
subproblem to achieve the accelerated rate in 1/

√
ε. Therefore, an extra log(k + 1) factor of

iterations is needed; see Sec. 3 and Sec. 4 in the Appendix.
We shall see, in Sec. 5.6, that our strategy of predefining T and S works quite well. The

theoretical bounds we derive are, in general, too conservative; we observe in our experiments
that one may choose T and S significantly smaller than the theory suggests and still retain the
stopping criteria.

5.5 Global convergence and applications to existing
algorithms

With the previous section in mind, we can now present the complexity of our algorithm, which
takes into account the cost of approximately solving the subproblems (5.2) and (5.4).

Theorem 9 (Global complexity bounds for 4WD-Catalyst). Choose T = Õ(τ−1
L ) and S =

Õ(τ−1
κcvx) (see Theorem 4.5 in Appendix). Then the following are true.

1. Algorithm 8 generates a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at most

Õ

((
τ−1
L + τ−1

κcvx

)
· L(f(x0)− f ∗)

ε2

)
iterations of the method M.

2. If f is convex, Algorithm 8 generates a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at most

Õ

(τ−1
L + τ−1

κcvx

)
· L

1/3 (κcvx∥x∗ − x0∥2)1/3

ε2/3

 iterations of the method M.

3. If f is convex, Algorithm 8 generates a point x satisfying f(x)− f ∗ ≤ ε after at most

Õ

(τ−1
L + τ−1

κcvx

)
·

√
κcvx∥x∗ − x0∥2
√
ε

 iterations of the method M.

Here Õ hides universal constants and logarithmic dependencies in Aκcvx, AL, κ0, κcvx, ε,
and ∥x∗ − x0∥2.
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IfM is a first order method, the convergence guarantee in the convex setting is near-optimal,
up to logarithmic factors, when compared to O(1/

√
ε) [Lin et al., 2015, Woodworth and Srebro,

2016]. In the non-convex setting, our approach matches, up to logarithmic factors, the best
known rate for this class of functions, namely O(1/ε2) [Cartis et al., 2010, 2014]. Moreover, our
rates dependence on the dimension and Lipschitz constant equals, up to log factors, the best
known dependencies in both the convex and nonconvex setting. These logarithmic factors may
be the price we pay for having a generic algorithm.

Choice of κcvx. The parameter κcvx drives the convergence rate of 4WD-Catalyst in the
convex setting. To determine κcvx, we compute the global complexity of our scheme as if ρ = 0,
hence using the same reasoning as [Lin et al., 2015]. The rule consists in maximizing the ratio
τκ/
√
L+ κ. Then, the choice of κ0 is independent of M; it is an initial lower estimate for the

weak convexity constant, ρ. We provide a detailed derivation of all the variables for each of the
considered algorithms in the appendix (Sec.5 in Appendix)

5.5.1 Applications
We now compare the guarantees obtained before and after applying 4WD-Catalyst to some
specific optimization methodsM (full gradient, SAGA, and SVRG). In the convex setting, the
accuracy is stated in terms of optimization error, f(x)− f ∗ ≤ ε and in the nonconvex setting,
in terms of stationarity condition dist(0, ∂f(x)) < ε.

Full gradient method. First, we consider the simplest case of applying our method to the
full gradient method (FG). Here, the optimal choice for κcvx is L. In the convex setting, we
get the accelerated rate O(n

√
L/ε log(1/ε)) which is consistent with Nesterov’s accelerated

variant (AFG) up to logarithmic factors. In the nonconvex case, our approach achieves no
worse rate than O(nL/ε2 log(1/ε)), which is consistent with the standard gradient descent up
to logarithmic factors. We note that under stronger assumptions, namely C2-smoothness of
the objective, the accelerated algorithm in [Carmon et al., 2017] achieves the same rate as
(AFG) for the convex setting and O(ε−7/4 log(1/ε)) for the nonconvex setting. Their approach,
however, does not extend to composite setting nor to stochastic methods. Our marginal loss is
the price we pay for considering a much larger class of functions.

Randomized incremental gradient. We now consider randomized incremental gradient
methods such as SAGA [Defazio et al., 2014a] and (prox) SVRG [Xiao and Zhang, 2014]. Here,
the optimal choice for κcvx is O(L/n). Under the convex setting, we achieve an accelerated
rate of O(

√
n
√
L/ε log(1/ε)). Direct applications of SVRG and SAGA have no convergence

guarantees in the non-convex setting. With our approach, the resulting algorithm matches the
guarantees for FG up to log factors.

2See [Xiao and Zhang, 2014, Defazio et al., 2014a]
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Table 5.1 – Comparison of rates of convergence, before and after the 4WD-Catalyst , resp. in
the non-convex and convex cases. For the comparison, in the convex case, we only present the
number of iterations to obtain a point x satisfying f(x)− f ∗ < ε. In the non-convex case, we
show the number of iterations to obtain a point x satisfying dist(0, ∂f(x)) < ε.

Stepsize Nonconvex Convex

FG O
( 1
L

)
O
(
n
L

ε2

)
O
(
n
L

ε

)

4WD-Catalyst-FG O
( 1
L

)
Õ
(
n
L

ε2

)
Õ

n
√
L

ε



Stepsize Nonconvex Convex

SVRG/SAGA2 O
( 1
L

)
not avail. O

(
n
L

ε

)

ncvx-SVRG/SAGA3 O

(
1√
nL

)
O
(
n2/3 L

ε2

)
O
(√

n
L

ε

)

4WD-Catalyst-SVRG/SAGA O
( 1
L

)
Õ
(
n
L

ε2

)
Õ

√n
√
L

ε


5.6 Experiments
We investigate the performance of 4WD-Catalyst in two standard non-convex problems in ma-
chine learning. We report experimental results of 4WD-Catalyst when applied to two different
algorithms: SVRG [Xiao and Zhang, 2014] and SAGA [Defazio et al., 2014a]. We compare the
following algorithms:
• Nonconvex Prox-SVRG/SAGA [Reddi et al., 2016b]: stepsize η = 1/Ln
• Convex Prox-SVRG/SAGA [Xiao and Zhang, 2014, Defazio et al., 2014a]: stepsize η = 1/2L
• 4WD-Catalyst SVRG/SAGA: stepsize η = 1/2L

3See [Reddi et al., 2016a,b]. Here we present the convergence result without any mini-batching. In the
mini-batch case, the same convergence can be obtained with a batch size b = n2/3 and the large stepsize O(1/L)
is allowed.
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Following the same experimental setting as [Reddi et al., 2016b], we evaluate algorithms in
the absent of mini-batch. The original version of SVRG (resp. SAGA), convex SVRG (resp.
SAGA), was designed for minimizing convex objectives. We report their results, while there
is no theoretical guarantee on their behavior when venturing into nonconvex terrains. We
also report the results of recently proposed variants, Nonconvex SVRG/SAGA, designed for
minimizing nonconvex objectives. The proposed algorithms 4WD-Catalyst SVRG and 4WD-
Catalyst SAGA enjoy the strong theoretical guarantees stated in Sec. 3.

Parameter settings We start from an initial estimate of the Lipschitz constant L and use the
theoretically recommended κ0 = κcvx = 2L/n. The number of inner iterations is to T = S = n
in all experiments, which boils down to making one pass at most over the data for solving
each sub-problem. We simply drop the log(k) dependency while solving the subproblem in
(5.6). These choices turn out to be justified a posteriori, as both SVRG and SAGA have a
much better convergence rate in practice than the theoretical rate derived from a worst-case
analysis. Indeed, in all experiments, one pass over the data to solve each sub-problem is enough
to guarantee sufficient descent. We focus in the main text on the results for SVRG. We relegate
results for SAGA and details about experiments to Sec.6 in Appendix.

Sparse matrix factorization a.k.a. dictionary learning. Dictionary learning consists
of representing a dataset X = [x1, · · · , xn] ∈ Rm×n as a product X ≈ DA, where D in Rm×p

is called a dictionary, and A in Rp×n is a sparse matrix. The classical non-convex formu-
lation [see Mairal et al., 2014] can be reformulated as the equivalent finite-sum problem
minD∈C

1
n

∑n
i=1 fi(D) with

fi(D) := min
α∈Rp

1
2
∥xi −Dα∥2

2 + ψ(α). (5.9)

ψ is a sparsity-inducing regularization and C is chosen as the set of matrices whose columns
are in the ℓ2-ball; see Sec.6 in Appendix. We consider elastic-net regularization ψ(α) =
µ
2∥α∥

2 + λ∥α∥1 of [Zou and Hastie, 2005], which has a sparsity-inducing effect, and report
the corresponding results in Figure 5.1, learning a dictionary in Rm×p with p = 256 elements,
on a set of whitened normalized image patches of size m = 8×8. Parameters are standard ones
in this literature [Mairal et al., 2014]—that is, a small value µ= 1e − 5, and λ= 0.25, leading
to sparse matrices A (on average ≈ 4 non-zero coefficients per column of A).

Neural networks. We consider simple binary classification problems for learning neural
networks. Assume that we are given a training set {ai, bi}ni=1, where the variables bi in {−1,+1}
represent class labels, and ai in Rp are feature vectors. The estimator of a label class is now
given by a two-layer neural network b̂ = sign(w⊤

2 σ(W⊤
1 a)), where W1 in Rp×d represents the

weights of a hidden layer with d neurons, w2 in Rd carries the weight of the network’s second
layer, and σ(u) = log(1 + eu) is a non-linear function, applied point-wise to its arguments. We
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Figure 5.1 – Dictionary learning experiments. We plot the function value (top) and the sub-
gradient norm (bottom). From left to right, we vary the size of the dataset from n = 1 000
to n = 100 000
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Figure 5.2 – Neural network experiments. Same experimental setup as in Fig. 5.1. From left
to right, we vary the size of the dataset’s subset from n = 1 000 to n = 100 000.

use the logistic loss to fit the estimators to the true labels and report experimental results on
the two datasets alpha and covtype. The weights of the network are randomly initialized and
we fix the number of hidden neurons to d = 100.

Computational cost. For the Convex-SVRG and Nonconvex-SVRG, one iteration corre-
sponds to one pass over the data in the plots. On the one hand, since 4WD-Catalyst-SVRG
solves two sub-problems per iteration, the cost per iteration is twice that of the Convex-SVRG
and Nonconvex-SVRG. On the other hand, in the experiments, we observe that, everytime
acceleration occurs, then x̃k is almost always preferred to x̄k in step 4 of 4WD-Catalyst, half
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CHAPTER 5. CATALYST FOR NON-CONVEX OPTIMIZATION

of the computations are in fact not performed when running 4WD-Catalyst-SVRG.

Experimental conclusions. In matrix factorization experiments, we observe that 4WD-
Catalyst-SVRG always outperforms the competing algorithms. Nonconvex-SVRG has slower
convergence in objective values and Convex-SVRG is not always converging; see in particu-
lar right panel in Fig. 5.1. Therefore 4WD-Catalyst-SVRG offers a more stable option than
Convex-SVRG for minimizing nonconvex objectives. Furthermore, in these experiments 4WD-
Catalyst-SVRG enjoys a faster convergence in objective values. This confirms the remarkable
ability of 4WD-Catalyst-SVRG to adapt to nonconvex terrains. Similar conclusions hold when
applying 4WD-Catalyst to SAGA; see Sec.6. in Appendix, which demonstrate the genericity
of 4WD-Catalyst.

In neural network experiments, we observe that 4WD-Catalyst-SVRG converges much faster
in terms of objective values than the competing algorithms. Nonconvex-SVRG with the theo-
retically recommended sequence of step-sizes [Reddi et al., 2016b] compares unfavorably here,
which implies that the recommended step-sizes are too pessimistic hence too small. We also
observe an interesting phenomenon: the subgradient norm may increase at some point then de-
crease, while the function value keeps decreasing, as the algorithm proceeds. This suggests that
the extrapolation step, or the Auto-adapt procedure, is helpful to escape bad stationary points,
e.g., saddle-points. We leave study of this particular phenomenon as a potential direction for
future work.
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Chapter 6

Discussions and concluding remarks

In this manuscript, we have introduced several generic acceleration schemes for accelerating
gradient-based optimization methods. Our approaches are adapted to large-scale and high-
dimensional convex problems a with composite finite sum structure. Moreover, one of our
methods is extended to non convex formulations, which allows us to apply it to a large range
of machine learning problems. In this section, we summarize our contributions and discuss
possible directions for future work.

First, we have presented a proximal variant of the Finito/MISO algorithm. The algorithm
we developed is able to deal with non smooth regularizations and it removes a constraint on the
number of data points required in the original Finito/MISO algorithm. We have shown that our
algorithm converges linearly with a similar rate as other variance reduction based incremental
algorithms, when the objective function is strongly convex.

Second, we introduce a generic acceleration scheme called Catalyst. It provides acceleration
in the sense of Nesterov to a large class of first-order optimization methods. We prove that for
both convex and strongly convex problems, a near-optimal convergence rate, up to a logarithmic
factor, is achieved by applying Catalyst. We experimentally demonstrate that the acceleration
is useful, especially for ill-conditioned problems.

We then present another generic mechanism, QuickeNing, to accelerate existing first-order
optimization algorithms with quasi-Newton principles. It is able to exploit the composite
structure of the objective function and take into account the curvature information. To the
best of our knowledge, QuickeNing is the first generic algorithm enjoying both of these features.
We show that it provides significant improvement in practice over competing methods including
the Catalyst acceleration. However, in contrast to Catalyst where a theoretical acceleration is
guaranteed, QuickeNing does not improve the convergence rate in the worst case analysis. Thus
a huge gap remains between the practical performance and the theoretical analysis, which is a
common observation for quasi-Newton methods.

Finally, we extend Catalyst acceleration to non convex objective functions. The proposed
algorithm does not require to know the function is convex or not and it automatically adapts
to the convexity. When the objective is non convex, it converges to a stationary point with a
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complexity not worse than the gradient descent method; when the objective is convex, acceler-
ation will be obtained as the original Catalyst algorithm. We provide experiments on problems
of matrix factorization and neural networks to show that our approach converges faster than
existing algorithms.

Catalyst is our first attempt to the field of non convex optimization, it is possible to extend
QuickeNing in a similar way which we leave to future work. The main difference between
convex and non convex optimization is that when the function is convex, all stationary points
are global minima; but when the function is non convex, a stationary point may not even be
a local minimum. Thus, an important subject in non convex optimization is to study whether
an optimization method can escape bad stationary points, e.g., saddle-points. On one hand,
positive results have been proven by incorporating Hessian information. Nesterov and Polyak
[2006] shows that a cubic regularization of Newton method converges to second-order stationary
points. Later, algorithms based on Hessian-vector products has been proposed to relax the
requirement of the evaluation of Hessian matrix [Agarwal et al., 2016, Carmon et al., 2016,
2017]. On the other hand, it seems difficult to ask the same property for first-order methods
since they are blind to second-order information. Amazingly, it is shown that classical gradient
descent method with a random initialization converges almost surely to a local minimum [Lee
et al., 2016]. Moreover, with additional perturbed noise, gradient descent method or stochastic
gradient descent (SGD) are guaranteed to escape saddle points [Ge et al., 2015, Jin et al., 2017].

Thus, there may be a hope to prove similar properties for our algorithm since Catalyst can
be interpreted as an inexact accelerated proximal point algorithm. In fact, the experimental
results in Section 5.6 do suggest our algorithm may be helpful to escape bad stationary points.
Indeed, in the experiments for neural networks, we observe that when applying Catalyst, the
subgradient norm may increase at some point then decrease, while the function value keeps
decreasing. A more systematic study is required to confirm such a observation, which we leave
as a potential direction of future work.
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Appendix A

Proofs of simple results

A.1 Convergence of the gradient descent method
Theorem 10 (Convergence of gradient descent). If f is convex and L-smooth, then by letting
ηk = 1

L
, the sequence {xk}k∈N generated by the gradient descent algorithm satisfies

f(xk)− f ∗ ≤ L∥x0 − x∗∥2

2k
, ∀k ≥ 1, (A.1)

where f ∗ is the minimum of f and x∗ is an optimal point with f(x∗) = f ∗. Moreover, if f is
µ-strongly convex, then

f(xk)− f ∗ ≤
(

1− µ

L

)k
(f(x0)− f ∗) . (A.2)

Proof. By the L-smoothness of the function f and the iterate update xk+1 = xk −∇f(xk)/L,
we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2

= f(xk)−
1

2L
∥∇f(xk)∥2.

This shows that the sequence {f(xk)}k∈N is decreasing. Moreover by convexity, we have

f(xk) + ⟨∇f(xk), x∗ − xk⟩ ≤ f ∗.

Thus,

f(xk+1) ≤ f ∗ + ⟨∇f(xk), xk − x∗⟩ − 1
2L
∥∇f(xk)∥2

= f ∗ + L

2
(∥xk − x∗∥2 − ∥xk − x∗ − 1

L
∇f(xk)∥2)

= f ∗ + L

2
(∥xk − x∗∥2 − ∥xk+1 − x∗∥2).
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Summing it up from i = 0 to k yields

k∑
i=0

f(xi+1)− f ∗ ≤ L

2
(
∥x0 − x∗∥2 − ∥xk+1 − x∗∥2

)
.

As a result, since f(xi) is decreasing, we have

f(xk+1)− f ∗ ≤ L∥x0 − x∗∥2

2(k + 1)
.

When f is strongly convex,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2,

for any x, y ∈ Rd. Taking both side the minimum according to y, we have

min
y∈Rd

f(y) ≥ min
y∈Rd

{
f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2

}
,

which gives f ∗ ≥ f(x)− 1
2µ∥∇f(x)∥2. This is true for any x ∈ Rd, thus

f(xk+1) ≤ f(xk)−
1

2L
∥∇f(xk)∥2 ≤ f(xk)−

µ

L
(f(xk)− f ∗).

Rearranging the terms gives

f(xk+1)− f ∗ ≤
(

1− µ

L

)
(f(xk)− f ∗) ≤ · · · ≤

(
1− µ

L

)k+1
(f(x0)− f ∗).

A.2 Quasi-Newton methods
Proposition 18. The BFGS algorithm satisfies the first-order oracle defined in Assumption 1
if H0 is initialized proportional to the identity matrix.

Proof. We prove by recurrence that

xk − x0 ∈ Span{∇f(x0), . . . ,∇f(xk−1)} ≜ Gk.

When k = 0, this is true if H0 is proportional to the identity matrix. Assume that this is true
for all i ≤ k. Then for k + 1, we have

xk+1 − x0 = xk+1 − xk + xk − x0 = −ηkHk∇f(xk) + xk − x0︸ ︷︷ ︸
∈Gk⊂Gk+1

,
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meaning that it suffices to show that Hk∇f(xk) ∈ Gk+1. By the definition of the BFGS’s
update,

Hk =
(
I − sk−1y

T
k−1

⟨yk−1, sk−1⟩

)
︸ ︷︷ ︸

Lk−1

Hk−1

(
I − yk−1s

T
k−1

⟨yk−1, sk−1⟩

)
︸ ︷︷ ︸

Rk−1

+
sk−1s

T
k−1

⟨yk−1, sk−1⟩
,

with sk−1 = xk − xk−1 and yk−1 = ∇f(xk) −∇f(xk−1). The Lk−1 and Rk−1 represent the left
and right matrix multiplied to Hk−1 respectively. Unrolling the recursion gives

Hk = Lk−1:0H0R0:k−1 +
k−1∑
i=0

Lk−1:i+1
sis

T
i

yTi si
Ri+1:k−1, (A.3)

where

Lj:i =
{
LjLj−1 · · ·Li if j > i

I otherwise
, Ri:j =

{
RiRi+1 · · ·Rj if j > i

I otherwise
. (A.4)

We remark that for any vector z in Rd,

Lj:iz ∈ z + Span{sj, sj−1, · · · , si};
and Ri:jz ∈ z + Span{yi, yi+1, · · · , yj};

This immediately shows that

Hk∇f(xk) ∈ ∇f(xk) + Span{s0, · · · , sk−1, y0, · · · , yk−1} ⊂ Gk+1,

where the last inclusion is true because all si and yi are in Gk+1.

A natural implication of relation (A.3) is the two loop recursion for BFGS update which
can be extended to the limited memory variant:
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Two loop recursion strategy

Input: ∇f(xk) and two lists {s0, · · · sk−1}, {y0, · · · , yk−1}.

Initialize z = ∇f(xk).

For i = k − 1 to 0 do

γi = ρis
T
i z with ρi = 1

yTi si
,

z = z − γiyi.

Update z = H0z.

For i = 0 to k − 1 do

λi = ρiy
T
i z

z = z + si(γi − λi).

Output the vector z which verifies z = Hk∇gk.

Thus, instead of storing the dense matrix Bk or Hk, an alternative way is to store two list of
vectors of si and yi and use the two loop recursion strategy to build the matrix. This relax the
requirement of the matrix storage and provide the possibility to limited memory variant.
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Appendix B

Proof and technical results of
Chapter 3

B.1 Useful lemmas
Lemma 16 (Simple lemma on quadratic functions). Consider three vectors x, y and z
in Rd. Then, for all θ > 0,

∥x− y∥2 ≥ (1− θ)∥x− z∥2 +
(

1− 1
θ

)
∥z − y∥2.

Proof.

∥x− y∥2 = ∥x− z + z − y∥2

= ∥x− z∥2 + ∥z − y∥2 + 2⟨x− z, z − y⟩

= ∥x− z∥2 + ∥z − y∥2 + ∥
√
θ(x− z) + 1√

θ
(z − y)∥2 − θ∥x− z∥2 − 1

θ
∥z − y∥

≥ (1− θ)∥x− z∥2 +
(

1− 1
θ

)
∥z − y∥2.

Lemma 17 (Simple lemma on non-negative sequences). Consider a increasing sequence
(Sk)k≥0 and two non-negative sequences (ak)k≥0 and (uk)k≥0 such that for all k,

u2
k ≤ Sk +

k∑
i=1

aiui. (B.1)

Then,

Sk +
k∑
i=1

aiui ≤
(√

Sk +
k∑
i=1

ai

)2

. (B.2)
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Proof. This lemma is identical to the Lemma A.10 in the original Catalyst paper [Lin et al.,
2015], inspired by a lemma of Schmidt et al. [2011b] for controlling errors of inexact proximal
gradient methods.

First, We give here an elementary proof for completeness based on induction. The rela-
tion (B.2) is obviously true for k = 0. Then, we assume it is true for k − 1 and prove the
relation for k. First, we remark that from (B.1),(

uk −
ak
2

)2
≤ Sk +

k−1∑
i=1

aiui + a2
k

4
,

and then

uk ≤

√√√√Sk +
k−1∑
i=1

aiui + a2
k

4
+ ak

2
.

We may now prove the relation (B.2) by induction,

Sk +
k∑
i=1

aiui ≤ Sk +
k−1∑
i=1

aiui + ak

ak
2

+

√√√√Sk +
k−1∑
i=1

aiui + a2
k

4


≤ Sk +

k−1∑
i=1

aiui + ak

ak +

√√√√Sk +
k−1∑
i=1

aiui


≤


√√√√Sk +

k−1∑
i=1

aiui + ak

2

=


√√√√(Sk − Sk−1) + (Sk−1 +

k−1∑
i=1

aiui) + ak

2

≤


√√√√√(Sk − Sk−1) +

(√
Sk−1 +

k−1∑
i=1

ai

)2

+ ak


2

(by induction)

≤
(√

Sk +
k∑
i=1

ai

)2

.

The last inequality is obtained by developing the square
(√

Sk−1 +∑k−1
i=1 ai

)2
and use the

increasing assumption Sk−1 ≤ Sk.

Lemma 18 (Growth of the sequence (Ak)k≥0).
Let (Ak)k≥0 be the sequence defined in (3.15) where (αk)k≥0 is produced by (3.10) with α0 = 1
and µ = 0. Then, we have the following bounds for all k ≥ 0,

2
(k + 2)2 ≤ Ak ≤

4
(k + 2)2 .
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Proof. The righthand side is directly obtained from Lemma 7 by noticing that γ0 = κ with the
choice of α0. Using the recurrence of αk, we have for all k ≥ 1,

α2
k = (1− αk)α2

k−1 =
k∏
i=1

(1− αi)α2
0 = Ak ≤

4
(k + 2)2 .

Thus, αk ≤ 2
k+2 for all k ≥ 1 (it is also true for k = 0). We now have all we need to conclude

the lemma:

Ak =
k∏
i=1

(1− αi) ≥
k∏
i=1

(
1− 2

i+ 2

)
= 2

(k + 2)(k + 1)
≥ 2

(k + 2)2 .

B.2 Proofs of auxiliary results

B.2.1 Proof of lemma 6
Proof. Let us introduce the quantity h′(z) ≜ 1

η
(z − [z]η), which is often called “gradient map-

ping”. Since [z]η is a proximal operator, we have
1
η

((z − η∇h0(z))− [z]η) ∈ ∂ψ([z]η).

Therefore, since h = h0 + ψ, we may define

u ≜ 1
η

(z − [z]η)− (∇h0(z)−∇h0([z]η)) ∈ ∂h([z]η),

and, by strong convexity,

h∗ ≥ h([z]η) + u⊤(p(x)− [z]η) + κ

2
∥p(x)− [z]η∥2

≥ h([z]η)−
1

2κ
∥u∥2.

Moreover,

∥u∥2 =
∥∥∥∥∥1
η

(z − [z]η)
∥∥∥∥∥

2

− 2
η
⟨z − [z]η,∇h0(z)−∇h0([z]η)⟩+ ∥∇h0(z)−∇h0([z]η)∥2

≤ ∥h′(z)∥2 − ∥∇h0(z)−∇h0([z]η)∥2 ≤ ∥h′(z)∥2 ≤ (κε)2,

where the first inequality comes from the relation [Nesterov, 2004, Theorem 2.1.5]
η∥∇h0(z)−∇h0([z]η)∥2 ≤ ⟨∇h0(z)−∇h0([z]η), z − [z]η⟩,

since h0 is (1/η)-smooth. Thus,

h([z]η)− h∗ ≤ 1
2κ
∥u∥2 ≤ 1

2κ
∥h′(z)∥2 = 1

2κη2∥z − [z]η∥2 ≤ ε. (B.3)
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B.2.2 Proof of Proposition 2
Proof. We simply use Theorem 7 and specialize it to the choice of parameters. The initialization
α0 = √q leads to a particularly simple form of the algorithm, where αk = √q for all k ≥ 0.
Therefore, the sequence (Ak)k≥0 from Theorem 7 is also simple since we indeed have Ak =
(1−√q)k. Then, we remark that γ0 = µ(1−√q) and thus, by strong convexity of f ,

S0 = (1−√q)
(
f(x0)− f ∗ + µ

2
∥x0 − x∗∥2

)
⩽ 2(1−√q)(f(x0)− f ∗).

Therefore,
√
S0 + 3

k∑
j=1

√
εj
Aj−1

⩽
√

2(1−√q)(f(x0)− f ∗) + 3
k∑
j=1

√
εj
Aj−1

=
√

2(1−√q)(f(x0)− f ∗)

1 +
k∑
j=1

√√√√ 1− ρ
1−√q


︸ ︷︷ ︸

η

j


=
√

2(1−√q)(f(x0)− f ∗) η
k+1 − 1
η − 1

⩽
√

2(1−√q)(f(x0)− f ∗) ηk+1

η − 1
.

Therefore, Theorem 7 combined with the previous inequality gives us

f(xk)− f ∗ ⩽ 2Ak−1(1−
√
q)(f(x0)− f ∗)

(
ηk+1

η − 1

)2

= 2
(

η

η − 1

)2

(1− ρ)k(f(x0)− f ∗)

= 2

 √
1− ρ

√
1− ρ−

√
1−√q

2

(1− ρ)k(f(x0)− f ∗)

= 2

 1
√

1− ρ−
√

1−√q

2

(1− ρ)k+1(f(x0)− f ∗).

Since
√

1− x+ x
2 is decreasing in [0, 1], we have

√
1− ρ+ ρ

2 ⩾
√

1−√q +
√
q

2 . Consequently,

f(xk)− f ∗ ⩽ 8
(√q − ρ)2 (1− ρ)k+1(f(x0)− f ∗).

142



B.2. PROOFS OF AUXILIARY RESULTS

B.2.3 Proof of Proposition 3
Proof. The initialization α0 = 1 leads to γ0 = κ and S0 = κ

2∥x
∗ − x0∥2. Then,

√
γ0

2
∥x0 − x∗∥2 + 3

k∑
j=1

√
εj
Aj−1

≤
√
κ

2
∥x0 − x∗∥2 + 3

k∑
j=1

√
(j + 1)2εj

2
(from Lemma 18)

⩽
√
κ

2
∥x0 − x∗∥2 +

√
f(x0)− f ∗

 k∑
j=1

1
(j + 1)1+γ/2

 ,
where the last inequality uses Lemma 18 to upper-bound the ratio εj/Aj. Moreover,

k∑
j=1

1
(j + 1)1+γ/2 ⩽

∞∑
j=2

1
j1+γ/2 ⩽

∫ ∞

1

1
x1+γ/2 dx = 2

γ
.

Then applying Theorem 7 yields

f(xk)− f ∗ ⩽ Ak−1

(√
κ

2
∥x0 − x∗∥2 + 2

γ

√
f(x0)− f ∗

)2

⩽ 8
(k + 1)2

(
κ

2
∥x0 − x∗∥2 + 4

γ2 (f(x0)− f ∗)
)
.

The last inequality uses (a+ b)2 ⩽ 2(a2 + b2).

B.2.4 Proof of Lemma 8
Proof. We abbreviate τM by τ and C = CM(h(z0)− h∗) to simplify the notation. Set

T0 = 1
τ

log
( 1

1− e−τ
C

ε

)
.

For any t ≥ 0, we have
E[h(zt)− h∗] ⩽ C(1− τ)t ⩽ C e−tτ .

By Markov’s inequality,

P[h(zt)− h∗ > ε] = P[T (ε) > t] ⩽ E[h(zt)− h∗]
ε

⩽ C e−tτ

ε
. (B.4)

Together with the fact P ⩽ 1 and t ≥ 0. We have

P[T (ε) ⩾ t+ 1] ⩽ min
{
C

ε
e−tτ , 1

}
.
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Therefore,

E[T (ε)] =
∞∑
t=1

P[T (ε) ⩾ t] =
T0∑
t=1

P[T (ε) ⩾ t] +
∞∑

t=T0+1
P[T (ε) ⩾ t]

⩽ T0 +
∞∑
t=T0

C

ε
e−tτ = T0 + C

ε
e−T0τ

∞∑
t=0

e−tτ

= T0 + C

ε

e−τT0

1− e−τ = T0 + 1.

As simple calculation shows that for any τ ∈ (0, 1), τ
2 ⩽ 1− e−τ and then

E[T (ε)] ⩽ T0 + 1 = 1
τ

log
( 1

1− e−τ
C

ε

)
+ 1 ⩽ 1

τ
log

(2C
τε

)
+ 1.
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Appendix C

Short review regarding Quasi-Newton
approximations

We have been presenting Quasi-Newton methods as a “natural” extension of Newton’s method.
But readers may wonder how the update of BFGS algorithm has been discovered. The expres-
sion of the update (4.2) is indeed not trivial at all. In order to provide a better understanding
about Quasi-Newton methods, we perform in this chapter a literature review of them, aiming
to give intuitions behind their constructions.

The whole story starts from the estimation of the Hessian matrix. For the purpose of reduc-
ing the computational complexity, we would like to approximate the Hessian matrix instead of
evaluating it. More formally speaking, given a twice differentiable function f and a point x, we
are looking for a reasonable approximation1 B of the Hessian matrix ∇2f(x), based on gradient
informations. A naive way is to apply the finite difference method, approximating each column
by

B(:, i) = (∇f(x+ hei)−∇f(x)) /h, ∀i ∈ [1, d] (C.1)

where h > 0 and (e1, . . . , ed) is the canonical basis. This yields the discrete Newton’s method
which replaces the Hessian matrix in Newton’s by the above approximation. However, in terms
of computational complexity, discrete Newton’s method requires d evaluations of gradients at
each iteration, which is as expensive as evaluation of the Hessian matrix. Thus, in order to
reduce the per-iteration cost, only a small amount of gradients are allowed to be evaluated,
say one or two gradients, at each iteration. The main difficulty is that the Hessian matrix
lives in the vector space of d2 dimension but the informations we have is in the order of d. It
then seems hopeless to provide a good estimation of the Hessian matrix, since the problem
is largely underdetermined. The idea for going through it is to iteratively build the matrix
Bk+1 based on the past estimation Bk. If the Hessian of the function does not change too
much, then Bk may still be a reasonable approximation of the current Hessian. This explains

1Remind that for historical reasons, we use B for denoting Hessian approximations and use H for denoting
the approximations of the inverse Hessian matrix.
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why an additional assumption is usually required for analyzing Quasi-Newton methods such as
Lipschitz continuous Hessians.

Let us now introduce the secant equation, which is plays a crucial rule in the construction
of Quasi-Newton mtehods. At (k + 1)-th iteration, given the past iterate xk and its Hessian
approximation Bk, we evaluate the new iterate xk+1 through the Quasi-Newton update

xk+1 = xk −B−1
k ∇f(xk).

Then, the new Hessian approximation Bk+1 at xk+1 is required to satisfy the secant equation,

Bk+1sk = yk, (C.2)

where sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk). The methods that we are presenting in
this section all satisfy the secant equation (C.2), making it the core object to be understood.

Many explanations have been given to justify the requirement of the secant equation. One
way is to introduce the local quadratic approximation

Qk+1(x) = f(xk+1) + ⟨∇f(xk+1), x− xk+1⟩+ 1
2

(x− xk+1)TBk+1(x− xk+1).

The secant equation is just asking the gradient of Qk+1 to match the gradient of f , at the
previous iterate xk. While this interpretation is easy to follow, it does not provide further
information about how we can construct Bk+1. Since the secant equation is an underdeter-
mined system which may admit an infinity amount of solutions, itself alone does not uniquely
determine Bk+1.

A different way to interpret the secant equation is through the point of view of discretization.
More precisely, by the definition of the Hessian matrix,

lim
h→0

∇f(xk+1 + h)−∇f(xk+1)−∇2f(xk+1)h
∥h∥

= 0.

The limit is valid along any direction h. The secant equation (C.2) is nothing else than a
discretization of the above limit along the direction h = xk − xk+1 = −sk. The reason for
choosing this direction is two-fold: first, xk is the closest point to xk+1 among the past iterates,
which makes the discretization error small; second, by letting h = −sk, the gradient ∇f(xk+1 +
h) becomes ∇f(xk), which is already evaluated and does not require an additional gradient
evaluation. Since the secant equation is the only information we have at iteration k + 1, there
is no justification to update Bk+1 in other directions which are orthogonal to sk. This leads to
the condition

Bk+1z = Bkz, ∀⟨z, sk⟩ = 0. (C.3)
Together with the secant equation (C.2), the matrix Bk+1 is uniquely determined, giving the
update of (Good) Broyden’s method,

Bk+1 = Bk + (yk −Bksk)sTk
∥sk∥2 . (C.4)
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From the variational point of view, the constructed Bk+1 is the closest matrix to Bk satisfying
the secant equation [Dennis and Moré, 1977]:

Proposition 19. Given Bk in L(Rd), yk in Rd and a nonzero vector sk ∈ Rd, the matrix Bk+1
defined in (C.4) is the unique solution of the problem

min
B∈L(Rd)

{∥B −Bk∥F | Bsk = yk}, (C.5)

where ∥ · ∥F denotes the Frobenius norm.

The interpretation based on the discretization provides us a more exhaustive point of view
about the construction of Quasi-Newton methods. The key idea is to iteratively correct the
Hessian estimation by adding new information regarding the current iterate. Broyden’s update
is the simplest one which does not guarantee the symmetry nor the positive definiteness of
the matrix. This may be the reason why the corresponding theoretical result for Broyden’s
update is weaker than other well known Quasi-Newton methods. When the objective function
is quadratic, Broyden’s method is globally and superlinearly convergent to the exact minimum
under mild modifications, see [Moré and Trangenstein, 1976].2 Discarding the convergence
analysis, let us show that we benefit a reduction in the computational complexity. Especially,
we improve the O(d3) operations required for the matrix inversion to O(d2) operations, by
applying the Sherman-Morrison formula [Sherman and Morrison, 1950].

Lemma 19. Let u, v ∈ Rd and A ∈ L(Rd) is non singular. Then A + uvT is non singular if
and only if σ = 1 + ⟨v, A−1u⟩ ̸= 0. If σ ̸= 0, then

(A+ uvT )−1 = A−1 − 1
σ
A−1uvTA−1. (C.6)

As a consequence, one can implement Broyden’s method by considering the update on the
inverse of Hessian: set Hk = B−1

k , then apply Lemma 19 to (C.4) yields

Hk+1 = Hk + (sk −Hkyk)sTkHk

sTkHkyk
, (C.7)

under the condition sTkHkyk ̸= 0. Then, the next iterate can be obtained by performing

xk+2 = xk+1 −Hk+1∇f(xk+1).

The matrix inversion is no longer required which reduces the complexity to O(d2) due to the
multiplication of matrix vector. Broyden’s method is originally designed for solving nonlinear
equations, in which case the underlying structure can be neither symmetric nor positive defi-
nite. However, in the unconstrained convex optimization setting, these properties are naturally

2Convergence results are beyond the focus of this part, we invite readers who are interested in that to go
through the discussion in Section 1.3.
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satisfied by the Hessian matrix. Thus, it is natural to maintain them in the construction of the
metrics such that

Bk symmetric implies Bk+1 symmetric; (S)

and Bk positive definite implies Bk+1 positive definite. (P)

Different update strategy are then proposed to guarantee symmetry or positive definiteness. Let
us first investigate the rank one update formula, meaning that Bk+1 is constructed by adding
a rank one matrix to Bk. Remark that Broyden’s method (C.4) is indeed a rank one update,
but it does not guarantee the symmetry (S). More generally, any rank one update satisfying
the secant equation can be written in the form

Bk+1 = Bk + (yk −Bksk)zTk
⟨zk, sk⟩

, (C.8)

where zk is any vector non-orthogonal to sk. More precisely, the solutions of the secant equation
forms an affine subspace V = {B | yk = Bsk} and the update (C.8) is the projection of Bk on
V along the rank one subspace {uzTk |u ∈ Rd} generated by zk. The vector zk represents the
“direction” in which we project the metric. It is immediate to see that zk = yk −Bksk provides
the unique symmetric update

Bk+1 = Bk + (yk −Bksk)(yk −Bksk)T

⟨yk −Bksk, sk⟩
, (C.9)

as long as Bk is symmetric and ⟨yk−Bksk, sk⟩ ̸= 0. This update is known as the symmetric single
rank formula, called the SR1 method [Broyden, 1967]. One may use the Sherman-Morrison
formula (19) to develop an update of the inverse Hessain matrix, see Table C.1. As its name
indicates, the SR1 method ensures the metric Bk being symmetric, but unfortunately it does
not guarantee the positive definiteness, (a counter example can be found in Example 11.2
in [Nocedal and Wright, 2006]). Moreover, the vectors sk and yk − Bksk can be orthogonal, in
which case the algorithm is not defined. Since the SR1 update is the unique rank one update
conserving the symmetry, there is no hope to ensure both the symmetry and the positive
definiteness by a rank one update. This is the reason why rank two update are investigated.

A generic routine for constructing a rank two update has been proposed by Powell [1970]
for deriving extensions of Broyden’s method. Given the past metric B, vectors y and s, fix a
direction of projection z, the procedure iteratively constructs the following sequence (Cj)j∈N
with C0 = B and

C2j+1 = C2j + (y − C2js)zT

⟨z, s⟩
, (C.10)

C2j+2 = (C2j+1 + CT
2j+1)/2. (C.11)
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Intuitively, C2j+1 is the projection from C2j to the affine space defined by the solutions of the
secant equation, along the “direction” z, and C2j+2 is the projection of C2j+1 on the space of
symmetric matrices. This is nothing but an alternating projection procedure. It turns out that
the sequence Cj converge to a limit C∞ with a rank two update

C∞ = B + (y −Bs)zT + z(y −Bs)
⟨z, s⟩

− ⟨y −Bs, s⟩
⟨z, s⟩

zzT . (C.12)

In the variational point of view, this procedure converges to the solution of the following
minimization problem:

Proposition 20. Given B ∈ L(Rd) be symmetric, and let y, s and z be the vectors in Rd such
that ⟨z, s⟩ > 0. Let W ∈ L(Rd) be any nonsingular, symmetric matrix such that Wz = s. Then
the matrix C∞ defined in (C.12) is the unique solution of the problem

min
B̂∈L(Rd)

{∥B̂ −B∥F,W | B̂ symmetric, B̂s = y}, (C.13)

where ∥ · ∥F,W denotes the weighted Frobenius norm defined by

∥A∥F,W = ∥W 1/2AW 1/2∥F .

The update given by (C.12) is always symmetric and unintentionally it is a rank two update.
Now it suffices to choose an appropriate direction z. By taking zk = sk, the underlying single
rank update is Broyden’s method, this gives the Powell symmetric Broyden update, called PSB
update [Powell, 1970]:

BPSB
k+1 = Bk + rks

T
k + skr

T
k

∥sk∥2 − ⟨rk, sk⟩sks
T
k

∥sk∥4 , (C.14)

where rk = yk−Bksk is the residual vector. Unfortunately, the PSB update does not necessarily
maintain the positive definiteness (P). This can be verified by checking the determinant of the
matrix. Amazingly, a positive determinant is in fact a sufficient condition to guarantee the
positive definiteness (P) of the update (C.12). The main reason is that the update can be
rewritten as

Bk+1 = Bk + aaT − bbT ,
for some vectors a, b ∈ Rd. Given that Bk is positive definite, Bk+1 has at most one negative
eigenvalue, meaning that the positive determinant is sufficient to ensure the positive definiteness.
To make this reasoning rigorous, a result from perturbation theory is required [Wilkinson, 1965]:

Lemma 20. Let A ∈ L(Rd) be symmetric with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λd. Let u ∈ Rd be
a non zero vector and B = A+ σuuT . Then if σ ≥ 0, then the eigenvalues of B satisfies

λ1 ≤ λB1 ≤ λ2 ≤ · · · ≤ λd ≤ λBd ;

otherwise if σ < 0, then the eigenvalues of B satisfies

λB1 ≤ λ1 ≤ λB2 ≤ · · · ≤ λBd ≤ λd.
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From the expression (C.12), one can derive that

det(Bk+1) = det(Bk)
⟨zk, sk⟩2

[
⟨zk, yk⟩2Hk

− ∥zk∥2
Hk
∥yk∥2

Hk
+ ∥zk∥2

Hk
⟨yk, sk⟩

]
, (C.15)

where Hk = B−1
k and ⟨u, v⟩Hk

= uTHkv. Thus the determinant is positive is equivalent to

∥zk∥2
Hk
⟨yk, sk⟩ > ∥zk∥2

Hk
∥yk∥2

Hk
− ⟨zk, yk⟩2Hk

. (C.16)

For the PSB update, we have zk = sk and the inequality does not always hold because it
depends essentially on the spectrum of the metric Hk = B−1

k . In order to make the update
inherit the positive definiteness, a simple choice is to set zk = yk, in which case the righthand
side vanishes. This gives the Davidon-Fletcher-Powell (DFP) update [Davidon, 1991, Fletcher
and Powell, 1963],

BDFP
k+1 = Bk + (yk −Bksk)yTk + yk(yk −Bksk)T

⟨yk, sk⟩
− ⟨yk −Bksk, sk⟩ykyTk

⟨yk, sk⟩2

=
(
I − yks

T
k

⟨yk, sk⟩

)
Bk

(
I − sky

T
k

⟨yk, sk⟩

)
+ yky

T
k

⟨yk, sk⟩
. (C.17)

Thus, BDFP
k+1 is positive definite if Bk is positive definite and ⟨yk, sk⟩ > 0. Remind that yk =

∇f(xk+1) − ∇f(xk) and sk = xk+1 − xk, then ⟨yk, sk⟩ > 0 holds whenever the function is
strongly convex. Finally, to get rid of the matrix inversion, we apply the Sherman-Morrison
formula twice, leading to the expression

HDFP
k+1 = Hk + sks

T
k

⟨sk, yk⟩
− Hkyky

T
kHk

yTkHkyk
. (C.18)

So far, we have been focusing on approximating the Hessian matrix and apply the Sherman-
Morrison formula to develop the inverse Hessian update. Indeed, it is also natural to directly
approximate the inverse of the Hessian matrix H. In this case, the secant equation Bk+1sk = yk
transforms to the inverse secant equation, which is

Hk+1yk = sk. (C.19)

We can construct Hk+1 in the same way as we construct Bk+1. For instance, one can derive
the (Bad) Broyden’s method by following the reasoning of (Good) Broyden’s method; the SR1
method remains the same. More importantly, by mimicking the DFP update, one can derive the
Broyden-Fletcher-Goldfarb-Shanno update (BFGS) [Broyden, 1970, Fletcher, 1970, Goldfarb,
1970, Shanno, 1970],

HBFGS
k+1 =

(
I − sky

T
k

⟨yk, sk⟩

)
Hk

(
I − yks

T
k

⟨yk, sk⟩

)
+ sks

T
k

⟨yk, sk⟩
. (C.20)
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The corresponding Hessian update is given by

BBFGS
k+1 = Bk + yky

T
k

⟨yk, sk⟩
− Bksks

T
kBk

sTkBksk
. (C.21)

Even though the underlying mechanism of BFGS is the same as the DFP update, the matrix
HBFGS
k+1 is in fact different from the inverse of the DFP update HDFP

k+1 . One explanation is that
the symmetrization operation (A + AT )/2 does not commute with the inverse operation of
matrices.

In this part, we have provided a review of several well-known Quasi-Newton methods. The
construction starts from approximating the Hessian or inverse Hessian matrix, then desired
properties such as symmetry and positive definiteness are carefully incorporated. The procedure
that we reviewed provides a straightforward way for developing new variants of Quasi-Newton
methods. In particular, we can replace the secant equation by

Bk+1h = ∇f(xk+1 + h)−∇f(xk+1),

where h is direction to be determined. The drawback of always choosing h = −sk in the secant
equation is that sk are usually quite “similar” for recent iterations, meaning that we may
keep correcting our approximation in similar directions and ignoring the others. Ideally, as in
the discrete Newton method, an Hessian estimation need to perform updates in all directions.
Privileging one of them may not be a good choice since the other directions may be seriously
wrong from the beginning. This effect does happen in practice that sometimes Quasi-Newton
methods are stuck in a region for a long time. This may be an interesting direction for the
future work. Finally, we list all the mentioned Quasi-Newton algorithm in the following table:
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Hessian estimation: Bk+1 Inverse Hessian estimation: Hk+1 (S) (P)

Broyden B +
(y − Bs)sT

∥s∥2 H + (s−Hy)sT H

sT Hy
7 7

SR1 B +
(y − Bs)(y − Bs)T

⟨y − Bs, s⟩
H +

(s − Hy)(s − Hy)T

⟨s − Hy, y⟩
4 7

PSB B +
rsT + srT

∥s∥2 −
⟨r, s⟩ssT

∥s∥4 (∗) 4 7

DFP

(
I −

ysT

⟨y, s⟩

)
B

(
I −

syT

⟨y, s⟩

)
+

yyT

⟨y, s⟩
H + ssT

⟨s, y⟩
− HyyT H

yT Hy
4 4

BFGS B + yyT

⟨y, s⟩
− BssT B

sT Bs

(
I −

syT

⟨y, s⟩

)
H

(
I −

ysT

⟨y, s⟩

)
+

ssT

⟨y, s⟩
4 4

Table C.1 – For simplicity, we abbreviate Bk, Hk, sk, yk by B,H, s, y, respectively. The vector
r is the residual defined by r = y − Bs. The bold formulas are obtained directly form the
construction and the others are obtained from applying the Sherman-Morrison formula (C.6).
We omit the inverse Hessian update for PSB method since it is relatively complicate, an explicit
formula can be found in equation (23) of [Powell, 1970].
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D.1 Introduction
We consider optimization problems of the form

min
x∈Rp

{
f(x) := f0(x) + ψ(x)

}
, where f0(x) := 1

n

n∑
i=1

fi(x) . (D.1)

Here each function fi : Rp → R is smooth, the regularization ψ : Rp → R may be nonsmooth,
and R := R ∪ {∞}. By considering extended-real-valued functions, this composite setting also
encompasses constrained minimization by letting ψ be the indicator function of the constraints
on x.

Minimization of regularized empirical risk objectives of form (D.1) is central in machine
learning. Whereas a significant amount of work has been devoted to this composite setting for
convex problems, leading in particular to fast incremental algorithms [see, e.g., Defazio et al.,
2014a, Lan and Zhou, 2015, Mairal, 2015, Schmidt et al., 2017, Woodworth and Srebro, 2016,
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Xiao and Zhang, 2014], the question of minimizing efficiently (D.1) when the functions fi and ψ
may be nonconvex is still largely open today.

Yet, nonconvex problems in machine learning are of high interest. For instance, the variable
x may represent the parameters of a neural network, where each term fi(x) measures the fit
between x and a data point indexed by i, or (D.1) may correspond to a nonconvex matrix
factorization problem (see Section D.6). Besides, even when the data-fitting functions fi are
convex, it is also typical to consider nonconvex regularization functions ψ, for example for
feature selection in signal processing [Hastie et al., 2015.]. In this work, we address two questions
from nonconvex optimization:

1. How to apply a method for convex optimization to a nonconvex problem?

2. How to design an algorithm which does not need to know whether the objective function
is convex while obtaining the optimal convergence guarantee if the function is convex?

Several pioneering works attempted to transfer ideas from the convex world to the nonconvex
one, see, e.g., [Ghadimi and Lan, 2016, Ghadimi et al., 2015]. Our paper has a similar goal
and studies the extension of Nesterov’s acceleration for convex problems [Nesterov, 1983] to
nonconvex composite ones. Unfortunately, the concept of acceleration for nonconvex problems is
unclear from a worst-case complexity point of view: gradient descent requires O(ε−2) iterations
to guarantee a gradient norm smaller than ε [Cartis et al., 2010, 2014]. Under a stronger
assumption that the objective function is C2-smooth, state-of-the-art methods [e.g., Carmon
et al., 2016] achieve a marginal gain with complexity O(ε−7/4 log(1/ε)), and do not appear to
generalize to composite or finite-sum settings. For this reason, our work fits within a broader
stream of recent research on methods that do not perform worse than gradient descent in
the nonconvex case (in terms of worst-case complexity), while automatically accelerating for
minimizing convex functions. The hope when applying such methods to nonconvex problems
is to see acceleration in practice, by heuristically exploiting convexity that is “hidden” in the
objective (for instance, local convexity near the optimum, or convexity along the trajectory of
iterates).

The main contribution of this part is a generic meta-algorithm, dubbed 4WD-Catalyst,
which is able to use a gradient-based optimization method M, originally designed for convex
problems, and turn it into an accelerated scheme that also applies to nonconvex objective func-
tions. The proposed 4WD-Catalyst can be seen as a 4-Wheel-Drive extension of Catalyst [Lin
et al., 2015] to all optimization “terrains” (convex and nonconvex), while Catalyst was originally
proposed for convex optimization. Specifically, without knowing whether the objective func-
tion is convex or not, our algorithm may take a method M designed for convex optimization
problems with the same structure as (D.1), e.g., SAGA [Defazio et al., 2014a], SVRG [Xiao and
Zhang, 2014], and applyM to a sequence of sub-problems such that it asymptotically provides
a stationary point of the nonconvex objective. Overall, the number of iterations ofM to obtain
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a gradient norm smaller than ε is Õ(ε−2) in the worst case, while automatically reducing to
Õ(ε−2/3) if the function is convex.1

Related work. Inspired by Nesterov’s acceleration method for convex optimization [Nesterov,
2004], the first accelerated method performing universally well for nonconvex and convex prob-
lems was introduced in [Ghadimi and Lan, 2016]. Specifically, this work addresses composite
problems such as (D.1) with n = 1, and, provided the iterates are bounded, it performs no worse
than gradient descent on nonconvex instances with complexity O(ε−2) on the gradient norm.
When the problem is convex, it accelerates with complexity O(ε−2/3). Extensions to acceler-
ated Gauss-Newton type methods were also recently developed in [Drusvyatskiy and Paquette,
2016]. In a follow-up work, the authors of [Ghadimi et al., 2015] proposed a new scheme that
monotonically interlaces proximal gradient descent steps and Nesterov’s extrapolation; thereby
achieving similar guarantees as [Ghadimi and Lan, 2016] but without the need to assume the
iterates to be bounded. Extensions when the gradient of ψ is only Hölder continuous can also
be devised.

In [Li and Lin, 2015], a similar strategy is proposed, focusing instead on convergence
guarantees under the so-called Kurdyka-Łojasiewicz inequality—a property corresponding to
polynomial-like growth of the function, as shown by [Bolte et al., 2016]. Our scheme is in
the same spirit as these previous papers, since it monotonically interlaces proximal-point steps
(instead of proximal-gradient as in [Ghadimi et al., 2015]) and extrapolation/acceleration steps.
A fundamental difference is that our method is generic and accommodates inexact computa-
tions, since we allow the subproblems to be approximately solved by any method we wish to
accelerate.

By considering C2-smooth nonconvex objective functions f with Lipschitz continuous gra-
dient ∇f and Hessian ∇2f , the authors of [Carmon et al., 2016] propose an algorithm with
complexity O(ε−7/4 log(1/ε)), based on iteratively solving convex subproblems closely related
to the original problem. It is not clear if the complexity of their algorithm improves in the
convex setting. Note also that the algorithm proposed in [Carmon et al., 2016] is inherently for
C2-smooth minimization and requires exact gradient evaluations. This implies that the scheme
does not allow incorporating nonsmooth regularizers and can not exploit finite sum structure.

Finally, a stochastic method related to SVRG [Johnson and Zhang, 2013] for minimizing
large sums while automatically adapting to the weak convexity constant of the objective func-
tion is proposed in [Allen-Zhu, 2017]. When the weak convexity constant is small (i.e., the
function is nearly convex), the proposed method enjoys an improved efficiency estimate. This
algorithm, however, does not automatically accelerate for convex problems, in the sense that
the overall rate is slower than O(ε−3/2) in terms of target accuracy ε on the gradient norm.

1In this section, the notation Õ only displays the polynomial dependency with respect to ε for the clarity
of exposition.
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Organization of the chapter. Section D.2 presents mathematical tools for non-convex and
non-smooth analysis, which are used throughout the chapter. In Sections D.3 and D.4, we
introduce the main algorithm and important extensions, respectively. Finally, we present ex-
perimental results on matrix factorization and training of neural networks in Section D.6.

D.2 Tools for nonconvex and nonsmooth optimization
Convergence results for nonsmooth optimization typically rely on the concept of subdifferential,
which does not admit a unique definition in a nonconvex context [Borwein and Lewis, 2010].
In this chapter, we circumvent this issue by focusing on a broad class of nonconvex functions
known as weakly convex or lower C2 functions, for which all these constructions coincide.
Weakly convex functions cover most of the interesting cases of interest in machine learning and
resemble convex functions in many aspects. In this section, we formally introduce them and
discuss their subdifferential properties.

Definition 7 (Weak convexity). A function f : Rp → R is ρ−weakly convex if for any points
x, y ∈ Rp and λ ∈ [0, 1], the approximate secant inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ρλ(1− λ) ∥x− y∥2 .

Notice that ρ-weak convexity with ρ = 0 is exactly the definition of a convex function. An
elementary algebraic manipulation shows that f is ρ-weakly convex if and only if the function
x 7→ f(x) + ρ

2 ∥x∥
2 is convex. In particular, a C1-smooth function f is ρ-weakly convex if the

gradient ∇f is ρ-Lipschitz, while a C2-smooth function f is ρ-weakly convex if and only if
∇2f(x) ⪰ −ρI for all x. This closely resembles an equivalent condition for C2-smooth and
µ-strongly convex functions, namely ∇2f(x) ⪰ µI with µ > 0.

Useful characterizations of ρ-weakly convex functions rely on differential properties. Since
the functions we consider in the paper are nonsmooth, we use a generalized derivative con-
struction. We mostly follow the standard monograph on the subject by Rockafellar and Wets
[Rockafellar and Wets, 1998].

Definition 8 (Subdifferential). Consider a function f : Rp → R and a point x with f(x) finite.
The subdifferential of f at x is the set

∂f(x) :={v ∈ Rp : f(y)≥f(x) + vT (y − x) + o(∥y − x∥) ∀y ∈ Rp}.

Thus, a vector v lies in ∂f(x) whenever the linear function y 7→ f(x) + vT (y − x) is a
lower-model of f , up to first-order around x. In particular, the subdifferential ∂f(x) of a
differentiable function f is the singleton {∇f(x)}, while for a convex function f it coincides
with the subdifferential in the sense of convex analysis [see Rockafellar and Wets, 1998, Exercise
8.8]. It is useful to keep in mind that the sum rule, ∂(f + g)(x) = ∂f(x) +∇g(x), holds for any
differentiable function g.
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We are interested in deriving complexity bounds on the number of iterations required by a
method M to guarantee

dist
(
0, ∂f(x)

)
≤ ε .

Recall when ε = 0, we are at a stationary point and satisfy first-order optimality conditions. In
our convergence analysis, we will also use the following differential characterization of ρ-weakly
convex functions, which generalize classical properties of convex functions. A proof follows
directly from Theorem 12.17 of [Rockafellar and Wets, 1998] by taking into account that f is
ρ-weakly convex if and only if f + ρ

2∥ · ∥
2 is convex.

Theorem 11 (Differential characterization of ρ-weakly convex functions).
For any lower-semicontinuous function f : Rp → R, the following properties are equivalent:

1. f is ρ-weakly convex.

2. (subgradient inequality) The inequality

f(y) ≥ f(x) + vT (y − x)− ρ

2
∥y − x∥2

holds for all x, y ∈ Rp and v ∈ ∂f(x).

3. (hypo-monotonicity) The inequality

(v − w)T (x− y) ≥ −ρ∥x− y∥2

holds for all x, y ∈ Rp and v ∈ ∂f(x), w ∈ ∂f(y).

Weakly convex functions have appeared in a wide variety of contexts, and under different
names. Some notable examples are globally lower-C2 [Rockafellar, 1982], prox-regular [Poliquin
and Rockafellar, 1996], proximally smooth functions [Clarke et al., 1995], and those functions
whose epigraph has positive reach [Federer, 1959].

D.3 The Basic 4WD-Catalyst algorithm for non-convex
optimization

We now present a generic scheme (Algorithm 9) for applying a convex optimization method to
minimize

min
x∈Rp

f(x), (D.2)

where f is only ρ-weakly convex. Our goal is to develop a unified framework that automatically
accelerates in convex settings. Consequently, the scheme must be agnostic to the constant ρ.
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D.3.1 Basic 4WD-Catalyst : a meta algorithm
At the center of our meta algorithm (Algorithm 9) are two sequences of subproblems, with
better convexity properties, obtained by adding simple quadratics to f . The proposed approach
extends the Catalyst acceleration of [Lin et al., 2015] and comes with a simplified convergence
analysis. We next describe in detail each step of the scheme.

Two-step subproblems. The proposed acceleration scheme builds two main sequences of
iterates (x̄k)k and (x̃k)k, obtaining from approximately solving two subproblems. These sub-
problems are simple quadratic perturbation of the original problem f having the form:

min
x

{
fκ(x; y) := f(x) + κ

2
∥x− y∥2

}
.

Here κ is a regularization parameter and y is called the prox-center. By adding the quadratic, we
make the problem more "convex": when f is non convex, with a large enough κ, the subproblem
will be convex; when f is convex, we improve the conditioning of the problem.

At the k-th iteration, given a previous iterate xk−1 and the extrapolation term vk−1, we
construct the two following subproblems.

1. Proximal point step. We first perform an inexact proximal point step with prox-center
xk−1:

x̄k ≈ arg min
x

fκ(x;xk−1) [Proximal-point step]

2. Accelerated proximal point step. Then we build the next prox-center yk as the convex
combination

yk = αkvk−1 + (1− αk)xk−1. (D.3)
Next we use yk as a prox-center and update the next extrapolation term:

x̃k ≈ arg min
x

fκ(x; yk) [Accelerated proximal-point step]

vk = xk−1 + 1
αk

(x̃k − xk−1) [Extrapolation] (D.4)

where αk+1 ∈ (0, 1) is a sequence of coefficients satisfying (1− αk+1)/α2
k+1 = 1/αk2. Essen-

tially, the sequences (αk)k, (yk)k, (vk)k are built upon the extrapolation principles of [Nes-
terov, 2004].

Picking the best. At the end of iteration k, we have at hand two iterates, resp. x̄k and
x̃k. Following [Ghadimi and Lan, 2016], we simply choose the best of the two in terms of their
objective values, that is we choose xk such that

f(xk) ≤ min {f(x̄k), f(x̃k)} .
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Algorithm 9 Basic 4WD-Catalyst
input Fix a point x0 ∈ dom f , real numbers κ > 0, and an optimization method M.

initialization: α1 ≡ 1, v0 ≡ x0.
repeat for k = 1, 2, . . .

1. Choose x̄k using M such that

x̄k ≈ arg min
x

fκ(x;xk−1) (D.5)

where dist
(
0, ∂fκ(x̄k;xk−1)

)
< κ ∥x̄k − xk−1∥ and fκ(x̄k;xk−1) ≤ fκ(xk−1;xk−1).

2. Set
yk = αkvk−1 + (1− αk)xk−1. (D.6)

3. Choose x̃k using M such that

x̃k ≈ arg min
x

fκ(x; yk) where dist
(
0, ∂fκ(x̃k; yk)

)
<

κ

k + 1
∥x̃k − yk∥ .

(D.7)

4. Set
vk = xk−1 + 1

αk
(x̃k − xk−1). (D.8)

5. Pick αk+1 ∈ (0, 1) satisfying
1− αk+1

α2
k+1

= 1
α2
k

. (D.9)

6. Choose xk to be any point satisfying

f(xk) ≤ min {f(x̄k), f(x̃k)}. (D.10)

until the stopping criterion dist
(
0, ∂f(x̄k)

)
< ε

The proposed scheme blends the two steps in a synergistic way, allowing us to recover the
near-optimal rates of convergence in both worlds: convex and non-convex. Intuitively, when x̄k
is chosen, it means that Nesterov’s extrapolation step “fails” to accelerate convergence.

Stopping criterion for the subproblems. In order to derive complexity bounds, it is
important to properly define the stopping criterion for the proximal subproblems. When the
subproblem is convex, a functional gap like fκ(z;x)− infz fκ(z;x) may be used as a control of
the inexactness, as in [Lin et al., 2015]. Without convexity, this criterion can not be used since
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such quantities can not be easily bounded. In particular, first order methods seek points whose
subgradient is small. Since small subgradients do not necessarily imply small function values
in a non-convex setting, first order methods only test is for small subgradients. In contrast, in
the convex setting, small subgradients imply small function values; thus a first order method
in the convex setting can “test” for small function values. Hence, we can not direct application
of catalyst [Lin et al., 2015] which uses the functional gap as a stopping criteria. Because we
are working in the nonconvex setting, we include a stationarity stopping criteria.

We propose the following two types of stopping criteria:

1. Descent condition: fκ(z; y) ≤ fκ(y; y);

2. Adaptive stationary condition: dist
(
0, ∂fκ(z; y)

)
< κ ∥z − y∥.

Without the descent condition, the stationarity condition is insufficient for defining a good
stopping criterion because of the existence of local maxima in nonconvex problems. In the
nonconvex setting, local maxima and local minima satisfy the stationarity condition. The
descent condition ensures the iterates generated by the algorithm always decrease the value of
objective function f ; thus ensuring we move away from local maxima. The second criterion,
adaptive stationary condition, provides a flexible relative tolerance on termination of algorithm
used for solving the subproblems; a detailed analysis is forthcoming.

In Basic 4WD-Catalyst , we use both the stationary condition and the descent condition as
a stopping criteria to produce the point x̄:

dist
(
0, ∂fκ(x̄k;xk−1)

)
< κ ∥x̄k − xk−1∥ and fκ(x̄k;xk−1) ≤ fκ(xk−1;xk−1). (D.11)

For the point x̃, our “acceleration” point, we use a modified stationary condition:

dist
(
0, ∂fκ(x̃k; yk)

)
<

κ

k + 1
∥x̃k − yk∥ . (D.12)

The k + 1 factor guarantees Basic 4WD-Catalyst accelerates for the convex setting. To be
precise, Equation D.27 in the proofs of Theorem 13 and Theorem 13 uses the k+ 1 to ensure a
produce converges. Note, we do not need the descent condition for x̃, as the functional decrease
in x̄ is enough to ensure the sequence {f(xk)}k≥1 is monotonically decreasing.

D.3.2 Convergence analysis.
We present here the theoretical properties of Algorithm 9. In this first stage, we do not take
into account the complexity of solving the subproblems (D.5) and (D.7). For the next two
theorems, we assume that the stopping criteria for the proximal subproblems are satisfied in
each iteration of Algorithm 9.

Theorem 12 (Outer-loop complexity for Basic 4WD-Catalyst; non-convex case). For any
κ > 0 and N ≥ 1, the iterates generated by Algorithm 9 satisfy

min
j=1,...,N

dist2
(
0, ∂f(x̄j)

)
≤ 8κ
N

(f(x0)− f ∗).
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It is important to notice that this convergence result is valid for any κ and does not require
it to be larger than the weak convexity parameter. As long as the stopping criteria for the
proximal subproblems are satisfied, the quantities dist(0, ∂f(x̄j)) tend to zero. The proof is
inspired by that of inexact proximal algorithms [Bertsekas, 2015, Güler, 1991, Lin et al., 2015]
and appears in the appendix (see Appendix D.8).

If the function f turns out to be convex, the scheme achieves a faster convergence rate both
in function values and in stationarity:

Theorem 13 (Outer-loop complexity, convex case). If the function f is convex, then for any
κ > 0 and N ≥ 1, the iterates generated by Algorithm 9 satisfy

f(xN)− f(x∗) ≤ 16κ
(N + 1)2 ∥x

∗ − x0∥2 (D.13)

and

min
j=1,...,2N

dist2
(
0, ∂f(x̄j)

)
≤ 32κ2

N(N + 1)2 ∥x
∗ − x0∥2

where x∗ is any minimizer of the function f .

This theorem establishes a rate of O(N−2) for suboptimality in function value and conver-
gence in O(N−3/2) for the minimal norm of subgradients. The first rate is optimal in terms of
information-based complexity for the minimization of a convex composite function [Nesterov,
2004, 2013]. The second can be improved to O(N−2 log(N)) through a regularization technique,
if one knew in advance that the function is convex and had an estimate on the distance of the
initial point to an optimal solution [Nesterov, 2012a]. The proof appears in the appendix; see
Appendix D.9.1.

Towards an automatically adaptive algorithm. So far, our analysis has not taken into
account the cost of obtaining the iterates x̄j and x̃j by the algorithmM. We emphasize again
that the two results above do not require any assumption on κ, which leaves us a degree of
freedom. In order to develop the global complexity, we need to evaluate the total number of
iterations performed byM throughout the process. Clearly, this complexity heavily depends on
the choice of κ, since it controls the magnitude of regularization we add to improve the convexity
of the subproblem. This is the point where a careful analysis is needed, because our algorithm
must adapt to ρ without knowing it in advance. The next section is entirely dedicated to this
issue. In particular, we will explain how to automatically adapt the parameter κ (Algorithm 10).

D.4 The 4WD-Catalyst algorithm
In this section, we work towards understanding the global efficiency of Algorithm 9, which
automatically adapts to the weak convexity parameter. For this, we must take into account the
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cost of approximately solving the proximal subproblems to the desired stopping criteria. First,
we require some natural conditions on the optimization method M.

Linear convergence of M: When κ is sufficiently large, the subproblems become strongly
convex; thus easy to solve. As such, we assume that M has a linear convergence rate, namely
for any κ > ρ, there exist Aκ ≥ 0 and τκ ∈ (0, 1) so that the following hold:

1. For any prox-center y ∈ Rp and initial z0 ∈ Rp the iterates {zt}t≥1 generated by M on
the problem minz fκ(z; y) satisfy

dist2(0, ∂fκ(zt; y)) ≤ Aκ(1− τκ)t(fκ(z0; y)− f ∗
κ(y)) (D.14)

where fκ(y)∗ := infz fκ(z; y). If the methodM is randomized, we allow this inequality to
take an expectation

E
[
dist2

(
0, ∂fκ(zt; y)

)]
≤ Aκ(1− τκ)t (fκ(z0; y)− f ∗

κ(y)) .

2. The rates τκ and the constants Aκ are increasing in κ.

Remark 2. The linear convergence we assume here for M differs from the one considered
by [Lin et al., 2015], which was given in terms of function values. However, if the problem is
a composite one, both points of view are near-equivalent, as discussed in Section D.7 and the
precise relationship is given in Appendix D.9.

We chose the norm of the subgradient as our measurement because the complexity analysis
is easier. This allow us to bound the computational complexity to achieve an ε approximate
stationary point.

Lemma 21. Given a strongly convex problem fκ(·; y) and a linear convergent method M gen-
erating {zt}t≥0. Given a target accuracy ε, denote T (ε) = inf{t ≥ 1, dist

(
0, ∂fκ(zt; y)

)
≤ ε}.

1. If M is deterministic, then T (ε) ≤ 1
τκ

log
(
Aκ(fκ(z0;y)−f∗

κ(y))
ε2

)
.

2. If M is randomized, then E [T (ε)] ≤ 1
τκ

log
(
Aκ(fκ(z0;y)−f∗

κ(y))
τκε2

)
. [Lemma C.1 of [Lin et al.,

2015]]

As we can see, we lose a factor in the log term by passing from deterministic to randomized
algorithms. For the sake of simplicity, we perform our analysis only for deterministic algorithms
and we use τκ to denote the linear rate for fκ.
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Bounding the required iterations when κ > ρ. When κ > ρ and τκ is explicitly given
as a function of κ, the number of inner calls to M is easy to compute. First, we define the
notation

f0(x; y) = 1
n

n∑
i=1

fi(x) + κ

2
∥x− y∥2 (D.15)

y0 = prox1/(κ+L)f0

(
y − 1

κ+ L
∇f0(y; y)

)
. (D.16)

and note that fκ(x; y) = f0(x; y) + ψ(x). The number of inner calls is given by the following
formula:

Theorem 14. Suppose κ > ρ. Define the initialization point z0 by

1. if fκ(·; y) is smooth, set z0 = y;

2. if fκ(·; y) is a composite form, fκ(·; y) = f0(·; y)+ψ(·) with the function f0 having (L+κ)-
Lipschitz continuous gradient, set z0 = proxηψ(y − η∇f0(y)) with η ≤ 1

L+κ .

If M is initialized at the point z0, then

1. the output zT satisfies fκ(zT ; y) ≤ fκ(z0; y) (descent condition) and dist(0, ∂fκ(zT ; y)) ≤
κ ∥zT − y∥ (adaptive stationary condition) in at most Tκ iterations where

Tκ = 1
τκ

log
(

32Aκ(L+ κ)
(κ− ρ)2

)
;

2. the output zS satisfies dist(0, ∂fκ(zS; y)) ≤ κ
k+1 ∥zS − y∥ (modified adaptive stationary

condition) in at most Sκ log(k + 1) iterations where

Sκ log(k + 1) = 1
τκ

log
(

32Aκ(L+ κ)(k + 1)2

(κ− ρ)2

)
.

The proof is technical so we will leave it to the end of the supplementary materials (see
Section D.7). When ρ is known, such that κ can be chosen large enough to guarantee linear
convergene of M, the global complexity for Algorithm 9 is immediate. Herein lies a problem–
the smoothing parameter κ drives the outer complexity (see Theorem 12 and Theorem 13). By
choosing κ too large, we may fail to obtain the desired optimal complexity guarantees; choosing
κ too small the method M converges at suboptimal rates.
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Algorithm 10 4WD-Catalyst
input Fix a point x0 ∈ dom f , real numbers κ0, κcvx > 0 and T, S > 0, and an opt. method
M.
initialization: α1 = 1, v0 = x0.
repeat for k = 1, 2, . . .

1. Compute
(x̄k, κk) = Auto-adapt (xk−1, κk−1, T ).

2. Compute yk = αkvk−1 + (1− αk)xk−1 and apply S log(k + 1) iterations of M to find

x̃k ≈ arg min
x∈Rp

fκcvx(x, yk). (D.17)

3. Update vk and αk+1 by

vk = xk−1 + 1
αk

(x̃k − xk−1) and αk+1 =

√
α4
k + 4α2

k − α2
k

2
.

4. Choose xk to be any point satisfying f(xk) = min{f(x̄k), f(x̃k)}.

until the stopping criterion dist
(
0, ∂f(x̄k)

)
< ε

Adaptive versions of Basic 4WD-Catalyst. To solve the previous theoretical and practi-
cal challenges, we introduce an adaptive variant, called 4WD-Catalyst, of Basic 4WD-Catalyst.
The adaptive algorithm is presented in Algorithm 10. There are two main modifications to
Algorithm 9.

The first idea consists of using a pre-defined number of iterations for solving (D.7), corre-
sponding to the maximal number of iterations ofM that we are willing to tolerate for evaluating
x̃k. The main motivation is three-fold: (i) the complexity of such a strategy is known in ad-
vance; (ii) in the convex case, we can choose a small κ, denoted by κcvx, that ensures we obtain
the optimal convergence guarantee; (iii) for nonconvex problems, we remark from the proof of
Theorem 12 that the convergence guarantees are obtained regardless of the quality of x̃k for
solving (D.7). In other words, the conclusions of Theorem 12 are valid even when the iterates
x̃k do not satisfy ∥∂fκ(x̃k)∥ < κ

k+1 ∥x̃k − yk∥ for non-convex functions.This allows us to choose
the same strategy for computing x̃k in the convex and non-convex case—that is, we use the
pre-defined number of iterations of M and a “convex” smoothing parameter κcvx.

The second idea lies in an adaptive procedure, Auto-adapt; see Algorithm 11. This procedure
uses a pre-defined number of iterations of M to compute the iterates x̄k while automatically
choosing the smoothing parameter κ. We show that as soon as the number of iterations allocated
to M for computing x̄k is large enough, acceleration is preserved in the convex case, while
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keeping the conclusions of Theorem 12 valid. Under our assumptions on M (see Section D.4),
we show that the procedure Auto-adapt(x, κ, ε, T ) indeed terminates regardless of the number
of iterations T chosen with the assumption that τκ → 1 as κ→∞ (see Lemma 24). If the later
is not the case, we can still choose T sufficiently large so that Auto-adapt(x, κ, ε, T ) terminates
(See Proposition 21). When a formula for τκ is explicitly given as a function of κ, the number
of calls made by Auto-adapt(x, κ, ε, T ) to M is easy to compute.

Algorithm 11 Auto-adapt (x, κ, T )
input x ∈ Rp, method M, κ > 0, number of iterations T .

Repeat Compute
zT ≈ arg min

z∈Rp
fκ(z;x).

by running T iterations of M initializing from z0 = x or z0 = proxηψ(x− η∇f0(x)).
If fκ(zT ;x) > fκ(x;x) or dist(∂fκ(zT ;x), 0) > κ ∥zT − x∥,
then go to repeat with κ→ 2κ.
else go to output.

output (zT , κ).

New stopping criteria for the subproblems Recall, equations (D.11) and (D.12) rely on
a fixed parameter κ > ρ. To derive the global complexity results for Basic 4WD-Catalyst that
match optimal convergence guarantees, we make a distinction between the κ in the convex
setting versus the nonconvex setting. As the weak convexity constant is unknown and κ depends
on k, we introduce a parameter κ0 > 0 as an initial guess for ρ. Algorithm 11 produces a
sequence of κk. In replacement of (D.11), our new stopping criteria to produce the point x̄k is

dist
(
0, ∂fκk

(x̄k;xk−1)
)
< κk ∥x̄k − xk∥ and fκk

(x̄k;xk−1) ≤ fκk
(xk−1;xk−1). (D.18)

To obtain the optimal convergence guarantee in the convex setting, we introduce the parameter
κcvx, the choice of which is same as the smoothing parameter in [Lin et al., 2015] and depends
on the method M. In replacement of (D.12), the new stopping criteria for x̃k is

dist
(
0, ∂fκcvx(x̃k; yk)

)
<

κcvx

k + 1
∥x̃k − yk∥ . (D.19)

Convergence analysis. Let us next postulate that T and S are chosen large enough to
guarantee that x̄k and x̃k satisfy conditions (D.18) and (D.19) for the corresponding subprob-
lems, and see how the outer algorithm complexity resembles the guarantees of Theorem 12 and
Theorem 13. The main technical difference is that κ changes at each iteration k and the new
stopping criterions (D.18) and (D.19), namely keeping track of the effects of κ0 and κcvx on the
proof.
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Theorem 15 (Outer-loop complexity, 4WD-Catalyst). Fix real constants κ0, κcvx > 0, and
x0 ∈ dom f . Set κmax := maxk≥1 κk. Suppose that the number of iterations T is such that x̄k
satisfies (D.18). Define f ∗ := limk→∞ f(xk). Then for any N ≥ 1, the iterates generated by
Algorithm 10 satisfy,

min
j=1,...,N

dist2
(
0, ∂f(x̄j)

)
≤ 8κmax

N
(f(x0)− f ∗).

If in addition the function f is convex and Sk is chosen so that x̃k satisfies (D.19), then

min
j=1,...,2N

dist2
(
0, ∂f(x̄j)

)
≤ 32κmaxκcvx

N(N + 1)2 ∥x
∗ − x0∥2

and
f(xN)− f(x∗) ≤ 16κcvx

(N + 1)2 ∥x
∗ − x0∥2 (D.20)

where x∗ is any minimizer of the function f .

Inner-loop Complexity In light of Theorem 15, we must now understand how to choose T
and S as small as possible, while guaranteeing that x̄k and x̃k satisfy (D.18) and (D.19) hold
for each k. The quantities T and S must be set beforehand without knowing the true value of
the weak convexity constant ρ. Using Theorem 14, we assert the following choices for T and S.

Theorem 16 (Inner complexity for 4WD-Catalyst : determining the values T and S). Suppose
the stopping criteria are (D.18) and (D.19) as in in Theorem 15 and we choose T and S in
Algorithm 10 to be the smallest numbers satisfying

T ≥ 1
τL

log
(160A4L

L

)
and

S log(k + 1) ≥ 1
τκcvx

log
(

32Aκcvx(κcvx + L)(k + 1)2

κ2
cvx

)

for all k. In particular,

T = O
( 1
τL

log (A4L, L)
)
,

S = O

(
1

τκcvx

log(Aκcvx , L, κcvx)
)
.

Then κmax ≤ 4L and the following hold for any index k ≥ 1:

1. Generating x̄k in Algorithm 10 starting at x0
k−1 requires at most Õ

(
τ−1
L

)
iterations ofM;
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2. Generating x̃k in Algorithm 10 starting at y0
k requires at most Õ

(
τ−1
κcvx

)
iterations of M.

where Õ hides universal constants and logarithmic dependencies on k, L, κcvx, AL, and Aκcvx.

Appendix D.10 is devoted to proving Theorem 16, but we outline below the general proce-
dure and state the two main propositions (see Proposition 21 and Proposition 22).

We summarize the proof of Theorem 16 as followed:

1. When κ > ρ+L, we compute the number of iterations ofM to produce a point satisfying
(D.18). Such a point will become x̄k.

2. When the function f is convex, we compute the number of iterations of M to produce a
point which satisfies the (D.19) condition. Such a point will become the point x̃k.

3. We compute the smallest number of times we must double κ0 until it becomes larger than
ρ+ L. Thus eventually the condition 4L ≥ κ > ρ+ L will occur.

4. We always set the number of iterations of M to produce x̄k and x̃k as in Step 1 and
Step 2, respectively, regardless of whether fκ(·;xk) is convex or f is convex.

The next proposition shows that Auto-adapt terminates with a suitable choice for x̄k after
T number of iterations.

Proposition 21 (Inner complexity for x̄k). Suppose ρ + L < κ ≤ 4L. If the method M is
initialized at a point x0 ∈ Rp, where x0 is defined Theorem 14, and is applied to the problem

min
z
fκ(z;x) := f(z) + κ

2
∥z − x∥2

for at least the number of iterations

T ≥ 1
τL

log
(160A4L

L

)
,

then the output zM satisfies fκ(zM ;x) ≤ fκ(x;x) and dist
(
0, ∂fκ(zM ;x)

)
≤ κ ∥zM − x∥.

Under the additional assumption that the function f is convex, we produce a point with
(D.19) when the number of iterations, S, is chosen sufficiently large.

Proposition 22 (Inner-loop complexity for x̃k). Fix a method M initialized at y0
k, where y0

k

is defined by either (D.16) in the composite setting or yk when f is smooth, generating iterates
{z̃k}k≥1 for minimizing fκcvx(·; yk) with linear convergence rates of the form (D.14). Suppose
the function f is convex. If the number of iterations of M is

S = O

(
1

τκcvx

log(Aκcvx , L, κcvx)
)

167



APPENDIX D. TECHNICAL REPORT: CATALYST ACCELERATION FOR
GRADIENT-BASED NON-CONVEX OPTIMIZATION

such that

S log(k + 1) ≥ 1
τκcvx

log
(

32Aκcvx(κcvx + L)(k + 1)2

κ2
cvx

)
, (D.21)

then, the output z̃S = x̃k satisfies ∥∂fκcvx(z̃S)∥ < κcvx
k+1 ∥z̃Sk

− yk∥ for all k ≥ 1.

We can now derive global complexity bounds by combining Theorem 15 and Theorem 16,
and a good choice for the constant κcvx.

Theorem 17 (Global complexity bounds for 4WD-Catalyst). Choose T and S as in Õ(τ−1
L )

and Õ(τ−1
κcvx) (see Theorem 16 in appendix). We let Õ hide universal constants and logarithmic

dependencies in AL, Aκcvx, L, ε, κ0, κcvx, and ∥x∗ − x0∥2. Then the following are true.

1. Algorithm 10 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at most

Õ

((
τ−1
L + τ−1

κcvx

)
· L(f(x0)− f ∗)

ε2

)

iterations of the method M.

2. If f is convex, then Algorithm 10 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε

after at most

Õ

(τ−1
L + τ−1

κcvx

)
· L

1/3 (κcvx∥x∗ − x0∥2)1/3

ε2/3


iterations of the method M.

3. If f is convex, then Algorithm 10 will generate a point x satisfying f(x)− f ∗ ≤ ε after at
most

Õ

(τ−1
L + τ−1

κcvx

)
·

√
κcvx∥x∗ − x0∥2

√
ε


iterations of the method M.

D.5 Applications to Existing Algorithms
We show how to accelerate existing algorithms M and compare the convergence guaranties
before and after 4WD-Catalyst. In particular, the algorithms considered are gradient descent
and incremental methods, SAGA and SVRG. For all the algorithms considered, we state the
convergence guaranties in terms of the total number of iterations (in expectation, if appropriate)
to reach an accuracy of ε; in the convex setting, the accuracy is stated in terms of functional
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error, f(x) − inf f < ε and in the nonconvex setting, the appropriate measure is stationarity,
namely dist(0, ∂f(x)) < ε. All the algorithms considered have formulations for the compos-
ite setting with analogous convergence rates. Table D.1 summarizes our conclusions for the
algorithms considered.

Derivation of smoothing parameters. The smoothing parameter, κcvx drives the conver-
gence rate of 4WD-Catalyst in the convex setting. To determine κcvx, we pretend ρ = 0 and
compute the global complexity of our scheme. As such, we end up with the same complexity
result as in [Lin et al., 2015]. Following their work, the rule of thumb is to maximize the ratio
τκ/
√
L+ κ.

On the other hand, the choice of κ0 is independent of M; it is an initial lower estimate for
the weak convexity constant, ρ. We provide a detailed derivation of all the variables for each
of the considered algorithms in the appendix D.4.

Convergence results for existing algorithm. Table D.1 presents convergence rates for
SAGA [Defazio et al., 2014a], (prox) SVRG [Xiao and Zhang, 2014], and gradient descent (FG).
In the appendix, we provide a complete derivation of the rate for each of the algorithms.

ρ > 0 ρ = 0
Original 4WD-Catalyst Original 4WD-Catalyst

FG O
(
n L
ε2

)
Õ
(
n L
ε2

)
O
(
nL
ε

)
Õ
(
n
√

L
ε

)
SVRG [Xiao and Zhang, 2014] not avail. Õ

(
n L
ε2

)
not avail. Õ

(√
n
√

L
ε

)
SAGA [Defazio et al., 2014a] not avail. Õ

(
n L
ε2

)
O
(
nL
ε

)
Õ
(√

n
√

L
ε

)
Table D.1 – Comparison of rates of convergence, before and after the 4WD-Catalyst , resp. in
the non-convex and convex cases. For the comparision, in the convex case, we only present the
number of iterations to obtain a point x satisfying f(x)− f ∗ < ε. In the non-convex case, we
show the number of iterations to obtain a point x satisfying dist(0, ∂f(x)) < ε.

Full gradient method. A first illustration is the algorithm obtained when accelerating the
regular “full” gradient (FG). Here, the optimal choice for κcvx is L. In the convex setting, we
get an accelerated rate of O(n

√
L/ε log(1/ε)) which agrees with Nesterov’s accelerated variant

(AFG) up to logarithmic factors. On the other hand, in the nonconvex setting, our approach
achieves no worse rate than O(nL/ε2 log(1/ε)), which agrees with the standard gradient descent
up to logarithmic factors. We note that under stronger assumptions, namely C2-smoothness
of the objective, the accelerated algorithm in [Carmon et al., 2017] achieves the same rate as
(AFG) for the convex setting and O(ε−7/4 log(1/ε)) for the nonconvex setting. Their approach,
however, does not extend to composite setting nor to stochastic methods. Our marginal loss is
the price we pay for considering a much larger class of functions.
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Randomized incremental gradient. We now consider randomized incremental gradient
methods such as SAGA [Defazio et al., 2014a] and (prox) SVRG [Xiao and Zhang, 2014]. Here,
the optimal choice for κcvx is O(L/n). Under the convex setting, we achieve an accelerated
rate of O(

√
n
√
L/ε log(1/ε)). A direct application of SVRG and SAGA have no convergence

guarantees in the non-convex setting. With our approach, the resulting algorithm matches the
guarantees for FG up to log factors.

Derivation of the variables for the existing algorithms For gradient descent, we have
the following table of values

Variable Description Value

1/τL linear convergence with κ = L 2

κcvx
smooth parameter for convex set-
ting

L

1/τκcvx linear convergence with κcvx = L 2

A4L Method M constant 4L

Using these values for gradient descent, the number of iterations in the inner loop are

T ≥ 2 log(640)
S log(k + 1) ≥ 2 log

(
64(k + 1)2

)
The global complexity for gradient descent is

1. Algorithm 10 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at most

O

[
n log

(
L

κ0

)
log

(
L2(f(x0)− f∗)2

ε4

)
·
(

L(f(x0)− f∗)
ε2

)]

gradient computations.

2. If f is convex, then Algorithm 10 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at

most

O

[
n log

(
L

κ0

)
log

(
L4/3 ∥x∗ − x0∥4/3

ε4/3

)
·
(

L2/3 ∥x∗ − x0∥2/3

ε2/3

)]

gradient computations.
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3. If f is convex, then Algorithm 10 will generate a point x satisfying f(x)− f∗ ≤ ε after at most

O

[
n log

(
L

κ0

)
· log

(
L ∥x0 − x∗∥2

ε

)
·
√

L ∥x∗ − x0∥√
ε

]

gradient computations.

For SVRG, we have the following table of values

Variable Description Value

1/τL linear convergence with κ = L n+ 2

κcvx
smooth parameter for convex set-
ting

L/n

1/τκcvx linear convergence with κcvx = L/n 2n+ 1

A4L Method M constant 4L

Using these values for SVRG, the number of iterations in the inner loop are

T ≥ (n + 2) log(640)

S log(k + 1) ≥ max
{

(2n + 1) log
(

32 · n

L

(
L

n
+ L

)
· (k + 1)2

)}
.

The global complexity for SVRG when n is sufficiently large is

1. Algorithm 10 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at most

O

[
n log

(
L

κ0

)
log

(
nL2(f(x0)− f∗)2

ε4

)
·
(

L(f(x0)− f∗)
ε2

)]

gradient computations.

2. If f is convex, then Algorithm 10 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at

most

O

[
n2/3 log

(
L

κ0

)
log

(
L4/3n ∥x∗ − x0∥4/3

ε4/3

)
·
(

L2/3 ∥x∗ − x0∥2/3

ε2/3

)]

gradient computations.
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3. If f is convex, then Algorithm 10 will generate a point x satisfying f(x)− f∗ ≤ ε after at most

O

[
√

n log
(

L

κ0

)
· log

(
nL ∥x0 − x∗∥2

ε

)
·
√

L ∥x∗ − x0∥√
ε

]

gradient computations.

For SAGA, we have the following table of values

Variable Description Value

1/τL linear convergence with κ = L n+
√

2n

κcvx
smooth parameter for convex set-
ting

L/(2n+ 1)

1/τκcvx
linear convergence with κcvx =
L/(2n+ 1)

n+
√

2n2 + n+ 1

A4L Method M constant 4L

We observe that the variables for SAGA are only constant multiples as those for SVRG.
Therefore, the global complexities results for SAGA are, up to constants, the same as SVRG.

We present a summary of common choices for the parameters when minimizing the compos-
ite form, 1

n

∑n
i=1 fi(x) + ψ(x) where L is the Lipschitz constant.

Variable Description Initialization

x0 ∈ Rp Starting point; x0 ∈ dom(f) Random

κ0 > 0
Moreau envelope parameter for
proximal term; (Smallest) initial
guess for ρ

2L/n

κcvx > 0 Moreau envelope parameter for ac-
celeration term

2L/n

T Number of iterations to produce x̄k n

S Number of iterations to produce x̃k n
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D.6 Experiments
We investigate the performance of 4WD-Catalyst in two standard non-convex problems in ma-
chine learning. We report experimental results of 4WD-Catalyst when applied to two different
algorithms: SVRG [Xiao and Zhang, 2014] and SAGA [Defazio et al., 2014a]. We compare the
following algorithms:
• Nonconvex SVRG/SAGA [Reddi et al., 2016b]: stepsize η = 1/Ln2/3

• Convex SVRG/SAGA [Defazio et al., 2014a, Xiao and Zhang, 2014]: stepsize η = 1/2L
• 4WD-Catalyst SVRG/SAGA: stepsize η = 1/2L
The original version of SVRG (resp. SAGA), convex SVRG (resp. SAGA), was designed for

minimizing convex objectives. We report their results, while there is no theoretical guarantee on
their behavior when venturing into nonconvex terrains. We also report the results of recently
proposed variants, Nonconvex SVRG/SAGA, designed for minimizing nonconvex objectives.
The proposed algorithms 4WD-Catalyst SVRG and 4WD-Catalyst SAGA enjoy the strong
theoretical guarantees stated in Sec. 3.

Parameter settings We start from an initial estimate of the Lipschitz constant L and use the
theoretically recommended κ0 = κcvx = 2L/n. The number of inner iterations is to T = S = n
in all experiments, which boils down to making one pass at most over the data for solving
each sub-problem. We simply drop the log(k) dependency while solving the subproblem in
(D.17). These choices turn out to be justified a posteriori, as both SVRG and SAGA have a
much better convergence rate in practice than the theoretical rate derived from a worst-case
analysis. Indeed, in all experiments, one pass over the data to solve each sub-problem is enough
to guarantee sufficient descent.

Sparse matrix factorization a.k.a. dictionary learning. Dictionary learning consists of
representing a dataset X = [x1, · · · , xn] ∈ Rm×n as a product X ≈ DA, where D in Rm×p is
called a dictionary, and A in Rp×n is a sparse matrix. The classical non-convex formulation [see
Mairal et al., 2014] is

min
D∈C,A∈Rp×n

n∑
i=1

1
2
∥xi −Dαi∥2

2 + ψ(αi),

where A = [α1 · · ·αn] carries the decomposition coefficients of signals x1 · · ·xn, ψ is a sparsity-
inducing regularization and C is chosen as the set of matrices whose columns are in the ℓ2-ball.
An equivalent point of view is the finite-sum problem minD∈C

1
n

∑n
i=1 fi(D) with

fi(D) := min
α∈Rp

1
2
∥xi −Dα∥2

2 + ψ(α). (D.22)

We consider elastic-net regularization ψ(α) = µ
2∥α∥

2 + λ∥α∥1 of [Zou and Hastie, 2005], which
has a sparsity-inducing effect, and report the corresponding results in Figure D.1 and D.2,
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Figure D.1 – Dictionary learning experiments using SVRG. We plot the function value (top)
and the subgradient norm (bottom). From left to right, we vary the size of dataset from
n = 1 000 to n = 100 000.
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Figure D.2 – Dictionary learning experiments using SAGA. We plot the function value (top)
and the subgradient norm (bottom). From left to right, we vary the size of dataset from
n = 1 000 to n = 100 000.

learning a dictionary in Rm×p with p = 256 elements, on a set of whitened normalized image
patches of size m = 8×8. Parameters are standard ones in this literature [Mairal et al., 2014]—
that is, a small value µ= 1e − 5, and λ= 0.25, leading to sparse matrices A (on average ≈ 4
non-zero coefficients per column of A).

Neural networks. We consider now simple binary classification problems for learning neural
networks. Assume that we are given a training set {ai, bi}ni=1, where the variables bi in {−1,+1}
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Figure D.3 – Neural network experiments on subsets of dataset alpha. From left to right, we
vary the size of the dataset’s subset from n = 1 000 to n = 100 000.
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Figure D.4 – Neural network experiments on subsets of datasets alpha (top) and covtype (bot-
tom).

represent class labels, and ai in Rp are feature vectors. The estimator of a label class is now
given by a two-layer neural network b̂ = sign(W⊤

2 σ(W⊤
1 a)), where W1 in Rp×d represents the

weights of a hidden layer with d neurons, W2 in Rd carries the weight of the network’s second
layer, and σ(u) = log(1 + eu) is a non-linear function, applied pointwise to its arguments. We
fix the number of hidden neurons to d = 100 and use the logistic loss to fit the estimators
to the true labels. Since the memory required by SAGA becomes n times larger than SVRG
for nonlinear models, which is problematic for large n, we can only perform experiments with
SVRG. The experimental results are reported on two datasets alpha and covtype in Figure D.3
and D.4.
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Initial estimates of L. The proposed algorithm 4WD-Catalyst requires an initial estimate
of the Lipschitz constant L. In the problems we are considering, there is no simple closed form
formula available to compute an estimate of L. We use following heuristics to estimate L:

1. For matrix factorization, it can be shown that the function fi defined in (D.22) is differen-
tiable according to Danskin’s theorem [see Bertsekas [Bertsekas, 1999], Proposition B.25]
and its gradient is given by

∇Dfi(D) = −(xi −Dαi(D))αi(D)T where αi(D) ∈ arg min
α∈Rp

1
2
∥xi −Dα∥2 + ψ(α).

If αi(D) is in fact D-independant, the gradient is linear in D and thus admit ∥αi∥2 as
Lipschitz constant. Thus when initializing our algorithm at D0, we use a Lasso/Elastic-
net solver spams to find αi(D0) for any i ∈ [1, n] and use maxi∈[1,n] ∥αi(D0)∥2 as an
estimate of L.

2. For neural network, the formulation we are considering is actually differentiable. We ran-
domly generates two pairs of weight vectors (W1,W2) and (W ′

1,W
′
2) and use the quantity

max
i∈[1,n]

{
∥∇fi(W1,W2)−∇fi(W ′

1,W2)∥
∥W1 −W ′

1∥
,
∥∇fi(W1,W2)−∇fi(W1,W

′
2)∥

∥W2 −W ′
2∥

}

as an estimate of the Lipschitz constant, where fi denotes the loss function respect to
i-th training sample (ai, bi). We separate weights in each layer to estimate the Lipschitz
constant per layer. Indeed the scales of the weights can be quite different across layers.

Computational cost. For the Convex-SVRG and Nonconvex-SVRG, one iteration corre-
sponds to one pass over the data in the plots. On the one hand, since 4WD-Catalyst-SVRG
solves two sub-problems per iteration, the cost per iteration is twice that of the Convex-SVRG
and Nonconvex-SVRG. On the other hand, in the experiments, we observe that, every time
acceleration occurs, then x̃k is almost always preferred to x̄k in step 4 of 4WD-Catalyst, hence
half of the computations are in fact not performed when running 4WD-Catalyst-SVRG.

We report in Figure D.5 an experimental study where we vary S on the neural network
example. In terms of number of iterations, of course, the larger Sk the better the performance.
This is not surprising as we solve each subproblem more accurately. Nevertheless, in terms of
number of gradient evaluations, the relative performance is reversed. There is clearly no benefit
to take larger Sk. This justifies in hindsight our choice of setting S = 1.

Experimental conclusions. In matrix factorization experiments, we observe that 4WD-
Catalyst-SVRG always outperforms the competing algorithms. Nonconvex-SVRG has slower
convergence in objective values and Convex-SVRG is not always converging; see in particu-
lar right panel in Fig. D.1. Therefore 4WD-Catalyst-SVRG offers a more stable option than
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Figure D.5 – We run 50 iterations of 4WD-Catalyst SVRG with different choice of S on two-
layer neural network. The data is a subset of dataset covtype. The x-axis is the number of
gradient evaluations on the left, which is T + Sk per iteration with T = 1; and the number of
iterations on the right.

Convex-SVRG for minimizing nonconvex objectives. Furthermore, in these experiments 4WD-
Catalyst-SVRG enjoys a faster convergence in objective values. This confirms the remark-
able ability of 4WD-Catalyst-SVRG to adapt to nonconvex terrains. Similar conclusions hold
when applying 4WD-Catalyst to SAGA; see Sec.6. in Appendix, which demonstrates how
general 4WD-Catalyst is.

In neural network experiments, we observe that 4WD-Catalyst-SVRG converges much faster
in terms of objective values than the competing algorithms. Nonconvex-SVRG with the theo-
retically recommended sequence of step-sizes [Reddi et al., 2016b] compares unfavorably here,
which implies that the recommended step-sizes are too pessimistic hence too small. We also
observe an interesting phenomenon: the subgradient norm may increase at some point then
decrease, while the function value keeps decreasing, as the algorithm proceeds. This suggests
that the extrapolation step, or the Auto-adapt procedure, is helpful to escape bad stationary
points, e.g., saddle-points. A more systematic study is required to confirm such observation,
we leave it as a potential direction of future work.

D.7 Note on convergence rates in strongly-convex
composite minimization

We now briefly discuss convergence rates, which are typically given in different forms in the
convex and non-convex cases. If the weak-convex constant is known, we can form a strongly
convex approximation similar to [Lin et al., 2015]. For that purpose, we consider a strongly-
convex composite minimization problem

min
x∈Rp

h(x) := f0(x) + ψ(x),
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where f0 : Rp → R is µ-strongly convex and smooth with L-Lipschitz continuous gradient ∇f0,
and ψ : Rp → R is a closed convex function with a computable proximal map

proxβψ(y) := arg min
z∈Rp

{
ψ(y) + 1

2β∥z − y∥
2
}
.

Let x∗ be the minimizer of h and h∗ be the minimal value of h. In general, there are three
types of measures of optimality that one can monitor: ∥x− x∗∥2, h(x)− h∗, and dist(0, ∂h(x)).

Since h is strongly convex, the three of them are equivalent in terms of convergence rates if
one can take an extra prox-gradient step:

[x]L := proxψ/L(x− L−1∇f0(x)).

To see this, define the displacement vector, also known as the gradient mapping, gL(x) :=
L(x− [x]L), and notice the inclusion gL(x) ∈ ∂h([x]L). In particular gL(x) = 0 if and only if x
is the minimizer of h. These next inequalities follow directly from Theorem 2.2.7 in [Nesterov,
2004]:

1
2L∥gL(x)∥ ≤∥x− x∗∥ ≤ 2

µ
∥gL(x)∥

µ
2∥x− x

∗∥2 ≤h(x)− h∗ ≤ 1
2µ |∂h(x)|2

2µ(h([x]L)− h∗) ≤∥gL(x)∥2 ≤ 2L(h(x)− h([x]L))

Thus, an estimate of any one of the four quantities ∥x−x∗∥, h(x)−h∗, ∥gL(x)∥, or dist(0, ∂h(x))
directly implies an estimate of the other three evaluated either at x or at [x]L.

D.8 Theoretical analysis of the basic algorithm
We present here proofs of the theoretical results of the paper. Althroughout the proofs, we shall
work under the Assumptions on f stated in Section D.3 and the Assumptions on M stated in
Section D.4.

D.8.1 Convergence guarantee of Basic 4WD-Catalyst
In Theorem 12 and Theorem 13 under an appropriate tolerance policy on the proximal subprob-
lems (D.5) and (D.7), Basic 4WD-Catalyst performs no worse than an exact proximal point
method in general, while automatically accelerating when f is convex. For this, we need the
following observations.

Lemma 22 (Growth of (αk)). Suppose the sequence {αk}k≥1 is produced by Algorithm 9. Then,
the following bounds hold for all k ≥ 1:

√
2

k + 2
≤ αk ≤

2
k + 1

.
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Proof. This result is noted without proof in a remark of [Tseng, 2008]. For completeness, we
give below a simple proof using induction. Clearly, the statement holds for k = 1. Assume the
inequality on the right-hand side holds for k. By using the induction hypothesis, we get

αk+1 =

√
α4
k + 4α2

k − α2
k

2
= 2√

1 + 4/α2
k + 1

≤ 2√
1 + (k + 1)2 + 1

≤ 2
k + 2

,

as claimed and the expression for αk+1 is given by explicitly solving (D.9). To show the lower
bound, we note that for all k ≥ 1, we have

α2
k+1 = (1− αk+1)α2

k =
k+1∏
i=2

(1− αi)α2
1 =

k+1∏
i=2

(1− αi).

Using the established upper bound αk ≤ 2
k+1 yields

α2
k+1 ≥

k+1∏
i=2

(
1− 2

i+ 1

)
= 2

(k + 2)(k + 1)
≥ 2

(k + 2)2 .

The result follows.

Lemma 23 (Prox-gradient and near-stationarity). Suppose y+ satisfies dist(0, ∂fκ(y+; y)) < ε.
Then, the inequality holds:

dist
(
0, ∂f(y+)

)
≤ ε+

∥∥∥κ(y+ − y)
∥∥∥ .

Proof. We can find ξ ∈ ∂fκ(y+; y) with ∥ξ∥ ≤ ε. Taking into account ∂fκ(y+; y) = ∂f(y+) +
κ(y+ − y) the result follows.

Next we establish convergence guarantees of Theorem 12 and Theorem 13 for Basic 4WD-
Catalyst .

Proof of Theorem 13 and Theorem 13. The proof of Theorem 12 follows the analysis of inexact
proximal point method [Lin et al., 2015, Güler, 1991, Bertsekas, 2015]. The descent condition
in (D.11) implies {f(xk)}k≥0 are monotonically decreasing. From this, we deduce

f(xk−1) = fκ(xk−1;xk−1) ≥ fκ(x̄k;xk−1) ≥ f(xk) + κ

2
∥x̄k − xk−1∥2 . (D.23)

Using the adaptive stationarity condition (D.11), we apply Lemma 23 with y = xk−1, y+ = x̄k
and ε = κ ∥x̄k − xk−1∥; hence we obtain

dist(0, ∂f(x̄k)) ≤ 2 ∥κ(x̄k − xk−1)∥ .
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We combine the above inequality with (D.23) to deduce

dist2(0, ∂f(x̄k)) ≤ 4 ∥κ(x̄k − xk−1)∥2 ≤ 8κ (f(xk−1)− f(xk)) . (D.24)

Summing j = 1 to N , we conclude

min
j=1,...,N

{
dist2(0, ∂f(x̄j))

}
≤ 4
N

N∑
j=1
∥κ(x̄k − xk−1)∥2)

≤ 8κ
N

 N∑
j=1

f(xj−1)− f(xj)


≤ 8κ
N

(f(x0)− f ∗) .

Next, suppose the function f is convex. Our analysis is similar to that of [Tseng, 2008, Beck
and Teboulle, 2009]. Using the stopping criteria (D.12), fix an ξk ∈ ∂fκ(x̃k; yk) with ∥ξk∥ <
κ
k+1 ∥x̃k − yk∥. For any x ∈ Rn, Equation (D.10), and the strong convexity of the function
fκ(·; yk) yields

f(xk) ≤ f(x̃k) ≤ f(x) + κ

2
(
∥x− yk∥2 − ∥x− x̃k∥2 − ∥x̃k − yk∥2

)
+ ξTk (x̃k − x) .

We substitute x = αkx
∗ + (1− αk)xk−1 where x∗ is any minimizer of f . Using the convexity of

f , the norm of ξk, and Equations (D.6) and (D.8), we deduce

f(xk) ≤ αkf(x∗) + (1− αk)f(xk−1) + α2
kκ

2
(
∥x∗ − vk−1∥2 − ∥x∗ − vk∥2

)
− κ

2
∥x̃k − yk∥2 + αkκ

k + 1
∥x̃k − yk∥ ∥x∗ − vk∥ . (D.25)

Set θk = 1
k+1 . Completing the square on Equation (D.25), we obtain

−κ
2
∥x̃k − yk∥2 + αkθkκ ∥x̃k − yk∥ ∥x∗ − vk∥ ≤

κ

2
(αkθk)2 ∥x∗ − vk∥2 .

Hence, we deduce

f(xk)− f ∗ ≤ (1− αk)(f(xk−1)− f ∗) + α2
kκ

2
(
∥x∗ − vk−1∥2 − ∥x∗ − vk∥2

)
+ κ

2
(αkθk)2 ∥x∗ − vk∥2 .

= (1− αk)(f(xk−1)− f ∗) + α2
kκ

2
(
∥x∗ − vk−1∥2 −

(
1− θ2

k

)
∥x∗ − vk∥2

)
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Denote Ak := 1− θ2
k. Subtracting f ∗ from both sides and using the inequality 1−αk

α2
k

= 1
α2

k−1
and

α1 ≡ 1, we derive the following recursion argument:

f(xk)− f ∗

α2
k

+ Akκ

2
∥x∗ − vk∥2 ≤ 1− αk

α2
k

(
f(xk−1)− f ∗

)
+ κ

2
∥x∗ − vk−1∥2

≤ 1
Ak−1

(
f(xk−1)− f ∗

α2
k−1

+ Ak−1κ

2
∥x∗ − vk−1∥2

)
.

The last inequality follows because 0 < Ak−1 ≤ 1. Iterating N times,we deduce

f(xN)− f ∗

α2
N

≤
N∏
j=2

1
Aj−1

(
κ

2
∥x∗ − v0∥2

)
. (D.26)

We note
N∏
j=2

1
Aj−1

= 1∏N
j=2

(
1− 1

(j+1)2

) ≤ 2; (D.27)

thereby concluding the result. Summing up (D.24) from j = N + 1 to 2N , we obtain

min
j=1,...,2N

{
dist2(0, ∂f(x̄j))

}
≤ 4
N

2N∑
j=N+1

∥κ(x̄k − xk−1)∥2)

≤ 8κ
N

 2N∑
j=N+1

f(xj−1)− f(xj)


≤ 8κ
N

(f(xN)− f ∗)

Combining this inequality with (D.26), the result is shown.

D.9 Analysis of 4WD-Catalyst and Auto-adapt
Linear convergence interlude. Our assumption on the linear rate of convergence of M
(see (D.14)) may look strange at first sight. Nevertheless, most linearly convergent first-order
methodsM for composite minimization either already satisfy this assumption or can be made
to satisfy it by introducing an extra prox-gradient step. To see this, recall the convex composite
minimization problem from Section D.7

min
z∈Rp

h(z) := f0(z) + ψ(z),

where
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1. f0 : Rp → R is convex and C1-smooth with the gradient ∇f0 that is L-Lipschitz,

2. ψ : Rp → R is a closed convex function with a computable proximal map

proxβψ(y) := arg min
z

{ψ(y) + 1
2β∥z − y∥

2}.

See [Parikh and Boyd, 2014] for a survey of proximal maps. Typical linear convergence guaran-
tees of an optimization algorithm assert existence of constants A ∈ R and τ ∈ (0, 1) satisfying

h(zt)− h∗ ≤ A(1− τ)t(h(z0)− h∗) (D.28)

for each t = 0, 1, 2, . . . ,∞. To bring such convergence guarantees into the desired form (D.14),
define the prox-gradient step

[z]L := proxψ/L(z − L−1∇f0(z)),

and the displacement vector
gL(z) = L(z − [z]L),

and notice the inclusion gL(z) ∈ ∂h([z]L). The following inequality follows from [Nesterov,
2013]:

∥gL(z)∥2 ≤ 2L(h(z)− h([z]L)) ≤ 2L(h(z)− h∗).

Thus, the linear rate of convergence (D.28) implies

∥gL(zt)∥2 ≤ 2LA(1− τ)t(h(z0)− h∗),

which is exactly in the desired form (D.14).

D.9.1 Convergence analysis of the adaptive algorithm:
4WD-Catalyst

First, under some reasonable assumptions on the methodM (see Section D.4), the sub-method
Auto-adapt terminates.

Lemma 24 (Auto-adapt terminates). Assume that τκ → 1 when κ → +∞. The procedure
Auto-adapt(x, κ, ε, T ) terminates after finitely many iterations.

Proof. Due to our assumptions on M and the expressions fκ(x;x) = f(x) and f ∗
κ(x) ≥ f ∗, we

have

dist2
(
0, ∂fκ(zT ;x)

)
≤ A(1− τκ)T

(
f(x)− f ∗

κ(x)
)
≤ A(1− τκ)T

(
f(x)− f ∗)

)
. (D.29)
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Since τκ tends to one, for all sufficiency large κ, we can be sure that the right-hand-side is
smaller than ε2. On the other hand, for κ > ρ, the function fκ(·;x) is (κ− ρ)-strongly convex
and therefore we have dist2(0, ∂fκ(zT ;x)) ≥ 2(κ − ρ)(fκ(zT ;x) − f ∗

κ(x)). Combining this with
(D.29), we deduce

fκ(zT ;x)− f ∗
κ(x) ≤ A(1− τκ)T

2(κ− ρ)
(
f(x)− f ∗

κ(x)
)
.

Letting κ→∞, we deduce fκ(zT ;x) ≤ f(x), as required. Thus the loop indeed terminates.

We prove the main result, Theorem 15, for 4WD-Catalyst.

Proof of Theorem 15. The proof closely resembles the proofs of Theorem 13 and Theorem 13,
so we omit some of the details. The main difference in the proof is that we keep track of the
effects the parameters κcvx and κ0 have on the inequalities as well as the sequence of κk. Since
{f(xk)}k≥0 are monotonically decreasing, we deduce

f(xk−1) = fκk
(xk−1;xk−1) ≥ fκk

(x̄k;xk−1) ≥ f(xk) + κk
2
∥x̄k − xk−1∥2 . (D.30)

Using the adaptive stationary condition (D.18), we apply Lemma 23 with ε = κk ∥x̄k − xk−1∥;
hence we obtain

dist(0, ∂f(x̄k)) ≤ 2 ∥κk(x̄k − xk−1)∥ .

We combine the above inequality with (D.30) to deduce

dist2(0, ∂f(x̄k)) ≤ 4 ∥κk(x̄k − xk−1)∥2 ≤ 8κmax (f(xk−1)− f(xk)) . (D.31)

Summing j = 1 to N , we conclude

min
j=1,...,N

{
dist2(0, ∂f(x̄j))

}
≤ 4
N

N∑
j=1

2 ∥κk(x̄k − xk−1)∥2)

≤ 8κmax

N

 N∑
j=1

f(xj−1)− f(xj)


≤ 8κmax

N
(f(x0)− f ∗) .

Suppose the function f is convex. Using in the stopping criteria (D.19) in replacement of
(D.11), we deduce a similar expression as (D.25):

f(xk) ≤ αkf(x∗) + (1− αk)f(xk−1) + α2
kκcvx

2
(
∥x∗ − vk−1∥2 − ∥x∗ − vk∥2

)
− κcvx

2
∥x̃k − yk∥2 + αkκcvx

k + 1
∥x̃k − yk∥ ∥x∗ − vk∥ .
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Denote θk = 1
k+1 . Completing the square, we obtain

−κcvx

2
∥x̃k − yk∥2 + αkθkκcvx ∥x̃k − yk∥ ∥x∗ − vk∥ ≤

κcvx

2
(αkθk)2 ∥x∗ − vk∥2 .

Hence, we deduce

f(xk)− f ∗ ≤ (1− αk)(f(xk−1)− f ∗) + α2
kκcvx

2
(
∥x∗ − vk−1∥2 − ∥x∗ − vk∥2

)
+ κcvx

2
(αkθk)2 ∥x∗ − vk∥2 .

= (1− αk)(f(xk−1)− f ∗) + α2
kκcvx

2
(
∥x∗ − vk−1∥2 −

(
1− θ2

k

)
∥x∗ − vk∥2

)
Denote Ak := 1−θ2

k. Following the standard recursion argument as in the proofs of Theorem 13
and Theorem 13, we conclude

f(xk)− f ∗

α2
k

+ Akκcvx

2
∥x∗ − vk∥2 ≤ 1− αk

α2
k

(
f(xk−1)− f ∗

)
+ κcvx

2
∥x∗ − vk−1∥2

≤ 1
Ak−1

(
f(xk−1)− f ∗

α2
k−1

+ Ak−1κcvx

2
∥x∗ − vk−1∥2

)
.

The last inequality follows because 0 < Ak−1 ≤ 1. Iterating N times, we deduce

f(xN)− f ∗

α2
N

≤
N∏
j=2

1
Aj−1

(
κcvx

2
∥x∗ − v0∥2

)
. (D.32)

We note
N∏
j=2

1
Aj−1

= 1∏N
j=2

(
1− 1

(j+1)2

) = 2;

thus the result is shown. Summing up (D.31) from j = N + 1 to 2N , we obtain

min
j=1,...,2N

{
dist2(0, ∂f(x̄j))

}
≤ 1
N

2N∑
j=N+1

2
(

1 + κ2
0
κ2
k

)
∥κk(x̄k − xk−1)∥2)

≤ 8κmax

N

 2N∑
j=N+1

f(xj−1)− f(xj)


≤ 8κmax

N
(f(xN)− f ∗)

Combining this inequality with (D.32), the result is shown.

184



D.10. INNER-LOOP COMPLEXITY: PROOF OF THEOREM 16

D.10 Inner-loop complexity: proof of Theorem 16
Recall, the following notation

f0(x; y) = 1
n

n∑
i=1

fi(x) + κ

2
∥x− y∥2

y0 = prox1/(κ+L)f0

(
y − 1

κ+ L
∇f0(y; y)

)
. (D.33)

Lemma 25 (Relationship between function values and iterates of the prox). Assuming ψ(x) is
convex and the parameter κ > ρ, then

fκ(y0; y)− f ∗
κ(y) ≤ κ+ L

2
∥y∗ − y∥2 (D.34)

where y∗ is a minima of fκ(·; y) and f ∗
κ(y) is the optimal value.

Proof. As the κ is chosen sufficiently large, we know f0(·; y) is convex and differentiable with
(κ+ L)-Lipschitz continuous gradient. Hence, we deduce for all x

f0(y; y) +∇f0(y; y)T (x− y) ≤ f0(x; y). (D.35)

Using the definition of y0 and the (κ− L)-Lip. continuous gradient of f0(·; y), we conclude for
all x

fκ(y0; y) = f0(y0; y) + ψ(y0) ≤ f0(y; y) +∇f0(y; y)T (y0 − y) + κ+ L

2
∥y0 − y∥2 + ψ(y0)

≤ f0(y; y) +∇f0(y; y)T (x− y) + κ+ L

2
∥x− y∥2 + ψ(x).

(D.36)
By setting x = y∗ in both (D.35) and (D.36) and combining these results, we conclude

fκ(y0; y) ≤ f ∗
κ(y) + κ+ L

2
∥y∗ − y∥2 .

Note that if we are not in the composite setting and κ > ρ, then fκ(·, y) is (κ+L)-strongly
convex. Using standard bounds for strongly convex functions, Equation (D.34) follows (see
[Nesterov, 2004]). We next show an important lemma for deducing the inner complexities.

Lemma 26. Assume κ > ρ. Given any ε ≤ κ−ρ
2 , if an iterate z satisfies dist(0, ∂fκ(z; y)) ≤

ε ∥y∗ − y∥ , then
dist(0, ∂fκ(z; y)) ≤ 2ε ∥z − y∥ . (D.37)
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Proof. Since κ > ρ, we know fκ(·; y) is (κ− ρ)-strongly convex. Therefore, by [Nesterov, 2004],
we know

∥z − y∗∥ ≤ 1
κ− ρ

dist(0, ∂fκ(z; y)). (D.38)

By the triangle inequality and Equation (D.38), we deduce

dist(0, ∂fκ(z; y)) ≤ ε ∥y∗ − y∥ ≤ ε
(
∥y∗ − z∥+ ∥z − y∥

)
≤ ε

κ− ρ
· dist(0, ∂fκ(z; y)) + ε ∥z − y∥

≤ 1
2
· dist(0, ∂fκ(z; y)) + ε ∥z − y∥ .

The last inequality follows because of the assumption ε ≤ κ−ρ
2 . Rearranging the terms above,

we get the desired result.

These two lemmas together give us Theorem 14.

Proof of Theorem 14. First, we prove that zT satisfies both adaptive stationary condition and
the descent condition. Recall, the point y0 is defined to be the prox or y depending on if fκ(·; y)
is a composite form or smooth, respectively (see statement of Theorem 14). By Lemma 25 (or
the remark following it), the starting y0 satisfies

fκ(y0; y)− f ∗
κ(y) ≤ κ+ L

2
∥y∗ − y∥2 .

By the linear convergence assumption ofM (see (D.14)) and the above equation, after T := Tκ
iterations initializing from y0, we have

dist2(0, ∂fκ(zT ; y)) ≤ Aκ(1− τκ)T
(
fκ(y0; y)− f ∗

κ(y)
)

≤ Aκe
−T ·τκ

(
fκ(y0; y)− f ∗

κ(y)
)

≤ (κ− ρ)2

32(L+ κ)
· L+ κ

2
∥y∗ − y∥2

≤ (κ− ρ)2

64
∥y∗ − y∥2 .

(D.39)

By applying Lemma 26, we obtain

dist(0, ∂fκ(zT ; y)) ≤ (κ− ρ)
4

∥zT − y∥ ≤ κ ∥zT − y∥ ,
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which gives the adaptive stationary condition. Next, we show we also have the descent condition.
By the (κ− ρ)-strong convexity of fκ(·; y), for any v ∈ ∂fκ(zT ; y) we deduce

fκ(y; y) ≥ fκ(zT ; y) + ⟨v, y − zT ⟩+ κ− ρ
2
∥zT − y∥2

≥ fκ(zT ; y)− ∥v∥ ∥y − zT∥+ κ− ρ
2
∥zT − y∥2

≥ fκ(zT ; y).

This yields the descent condition which completes the proof for T . The proof for Sκ is similar to
Tκ, so we omit many of the details. In this case, we only need to show the adaptive stationary
condition. For convenience, we denote S = Sκ. Following the same argument as in Equation
(D.39) but with S log(k + 1) number of iterations, we deduce

dist2(0, ∂fκ(zS; y)) ≤ (κ− ρ)2

64(k + 1)2 ∥y
∗ − y∥2 .

By applying Lemma 26, we obtain

dist(0, ∂fκ(zS; y)) ≤ (κ− ρ)
4

∥zT − y∥ ≤
κ

k + 1
∥zS − y∥ ,

which proves the desired result for zS.

Assuming Proposition 21 and Proposition 22 hold as well as Lemma 27, we begin by pro-
viding the proof of Theorem 16.

Proof of Theorem 16. We consider two cases: (i) the function f is non-convex and (ii) the
function f is convex. First, we consider the non-convex setting. To produce x̄k, the method
M is called

T log
(

4L
κ0

)
/ log(2) (D.40)

number of times. This follows from Proposition 21 and Lemma 27. The reasoning is that
once κ > ρ + L, which only takes at most log(4L/κ0) number of increases of κ to reach, then
the iterate x̄k satisfies the stopping criteria (D.18). Each time we increase κ we run M for
T iterations. Therefore, the total number of iterations of M is given by multiplying T with
log(4L/κ0). To produce x̃k, the method M is called S log(k + 1) number of times. (Note: the
proof of Theorem 15 does not need x̃k to satisfy (D.19) in the non-convex case).

Next, suppose the function f is convex. As before, to produce x̄k the method M is
called (D.40) times. To produce x̃k, the method M is called S log(k + 1) number of times. By
Proposition 22, the iterate x̃k satisfies (D.19); a key ingredient in the proof of Theorem 15.
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D.10.1 Inner complexity for x̄k: proof of Proposition 21
Next, we supply the proof of Proposition 21 which shows that by choosing κ large enough,
Algorithm 11 terminates.

Proof of Proposition 21. The idea is to apply Theorem 14. Since the parameter Aκ increases
with κ, then we upper bound it by Aκk

≤ A4L. Moreover, we have κ−ρ ≥ ρ+L−ρ = L. Lastly,
since τκ is increasing in κ, we know 1

τκ
≤ 1

τL
. Plugging these bound into Theorem 14, we see

that for any smoothing parameter κ satisfying ρ+ L < κ < 4L, we get the desired result.

Next, we compute the maximum number of times we must double κ until κ > ρ+ 2L.

Lemma 27 (Doubling κ). If we set T and S according to Theorem 16, then the doubling of
κ0 will terminate as soon as κ > ρ + L. Thus the number of times κ0 must be doubled in
Algorithm 11 is at most

log
(

2(ρ+L)
κ0

)
log(2)

≤


log

(
4L
κ0

)
log(2)

 .
Since κ is doubled (Algorithm 11) and T is chosen as in Proposition 21 , the maximum the

value κ, κmax, takes is 2(ρ+ L) ≤ 4L.

D.10.2 Inner complexity for x̃k: proof of Proposition 22
In this section, we prove Proposition 22, an inner complexity result for the iterates x̃k. Recall
that the inner-complexity analysis for x̃k is important only when f is convex (see Section D.4).
Therefore, we assume throughout this section that the function f is convex. We are now ready
to prove Proposition 22.

Proof of Proposition 22. The proof immediately follows from Theorem 14 by setting κ = κcvx
and ρ = 0 as the function f is convex.
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