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General Introduction

"Quand même c’est classe, les vieux. Ils arrivent, c’est hyper mystérieux."
- Perceval le Gallois -

Alexandre Astier, Kaamelott, Saison 3, Episode 13 : La Poétique - 2ère partie

Motivation

Population dependency rate (i.e. the ratio of dependent people over the total popula-
tion) has continuously increased over the last decades all over the world and is projected
to continue to increase in the future. In fact, as shown in EUROSTAT (2010) and Fig-
ure 0.0.1, the age repartition in the European Union population is drastically changing
towards elder median age. In these societal studies, a person is considered as dependent
on the rest of the population if its age is lower than 14 years old or upper than 65.

Figure 0.0.1: European Union age repartition in 2010 and 2060 (EUROSTAT, 2010).

As might be expectable, this population aging issue is not limited to the European
Union. According to the World Health Organization (2012), Figure 0.0.2, in 2050, the
part of the population aged 60 or more will rise to 30% in the majority of countries.
The United Nations world population prospects realised in 2017 supports this point, see
figure 0.0.3. In fact, the world population pyramid expected in 2050 shows a dependency
rate drastically higher in the future.

This societal evolution is becoming an important human and economic issue for next
years. Indeed, current health and well-fare institutions will not be sufficient to treat

1



General Introduction

Figure 0.0.2: Population aged 60 and over in 2012(a) and 2050(b) (World Health Orga-
nization, 2012).

Figure 0.0.3: Population pyramid according to the United Nations World Population
Prospects (United Nations, 2017).

this proportion of elderly people. Therefore, alternative solutions have to be found and
rapidly developed in order to supply help and independence to dependent people.

A common idea to deal with this future lack of medical facilities is the development
of ambient assisted living (AAL) systems that enable to keep people at home. In this
way, medical facilities could be allocated to severe pathologies and emergencies only.
Furthermore, it enables the elderly and disabled people to stay longer in a familiar
environment (Cornelis et al., 2017). Therefore this cheaper, and more pleasant solution,
needs to be developed. AAL systems allocated to health monitoring, also called health
at home (HaH) systems, consist of keeping old people at home as long as possible, thanks
to an automatic monitoring of their everyday life. As soon as an unsafe or abnormal
behaviour is detected, the medical staff in charge or the family is informed.

The activities of daily living (ADLs) monitoring (Chaaraoui et al., 2012; Cook and
Krishnan, 2015) is one of the major investigations in the domain of HaH systems. It
aims to provide the medical staff with very useful and precise information concerning
the monitored patient. By definition (Lawton and Brody, 1969), an ADL is an activity,
which is daily performed by a person (e.g. to prepare meal, to do housework, to take
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leisure, etc.) and whose monitoring is helpful to the doctor. Current studies about ADLs
mainly treat four problems: the activity discovery (AD), the activity recognition (AR),
the activity prediction (AP) and the detection of deviation (DD). In this thesis, only
the AD and the AR are treated. The AD objective is to generate one or several more or
less formal models of activities by studying the patient habits during a learning period.
After that, the objective of AR is to detect that an activity is actually performed by a
person during its realisation. At this point, the acceptance of the proposed system by
the monitored person is a major issue. The system has to be considered as non-intrusive
by the patient while giving pertinent information to the medical staff.

The objective of this thesis is to propose both an activity discovery and an activity
recognition method compatible with some assumptions linked with the acceptance issue
and possibility to feasibly apply them in mass. These assumptions are explained with
more details in section 1.2.2.

Contributions of the thesis

The contributions of the presented thesis are summarised in figure 0.0.4.

Figure 0.0.4: Overview of the contributions of the thesis.

In a first step, models of activities performed by an inhabitant in a smart home are
built during an Off-line Activity Discovery. The presented AD method is performed
using a database obtained by recording the events emitted by the instrumented home
during a learning period. An additional expert knowledge is needed in order to produce
efficient models. In the majority of existing works (Tapia et al., 2004; Gaglio et al., 2015),
this expert knowledge consists of labelling of activities performed during the learning
period. This expert knowledge is very difficult to obtain and error-prone. Therefore, in
this thesis, we decided not to use this expert knowledge during the ADL study in order
to keep our method applicable easily anywhere. Thus, in contrast with already existing
methods, we reject the labelling of the performed activities during the learning period.
In addition, to deal with the inhabitant willingness and privacy, we decide to use only
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binary sensors.

For a second time, an On-line Activity Recognition protocol has been developed using
the models previously computed with the AD to recognise which activity is performed
by the inhabitant during its life living. As a consequence of the reject of the performed
activity knowledge during our AD, the models obtained are not compatible with the
already existing AR methods which have to be adapted. To this aim, new probabilistic
distances and methods to compute them were defined.

Organisation of the manuscript

The manuscript is organised as follows. A review of the state of the art in the fields
of ambient assisted living and of activities of daily living monitoring is given in chapter
1. In this chapter, the concept of smart home, activity discovery and activity recognition
are given and several existing technologies, sensors and methods are presented. At the
end of this chapter, a problem statement is made and a summary of the assumptions
and considerations hold in this thesis are enunciated and explained.

Before developing the two main contributions of this thesis, the case study we used
to apply our methods is presented chapter 2. In this chapter, an overview of the existing
living labs is first done and lacking information is exposed. Then, a description of the
smart flat we developed for this thesis is presented.

In chapter 3, the first contribution consisting in an original Activity Discovery
method is presented. An application of this method on our living lab is also proposed.

The second contribution of this thesis is presented in chapter 4. This contribution
consists in a procedure to recognise which activity is performed by the inhabitant of
a smart home. To this aim, some existing distances between an observation and a
probabilistic model are presented and their limits are highlighted. Then, these distances
are extended to be adapted to a more general case. To conclude the chapter 4, an
application of the proposed activity recognition procedure in our case study is developed
and discussed.

In the last chapter, a summary of the contributions of the thesis and outlooks for
future works are given.

Finally, in the appendix of the thesis, the proofs of two properties enunciated in
chapter 4 are extensively developed.
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Chapter

1
Activities of Daily Living Issues and

Objectives

"Insanity is doing the same thing over and over again and expecting different results"
- Albert Einstein -

Abstract

This chapter surveys the existing works and tools in the field of monitor-
ing of activities of daily living, especially for activity discovery and activity
recognition. A statement of the problem handled in this thesis is afterwards
presented.
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Chapter 1. Activities of Daily Living Issues and Objectives

Introduction

As stated in the general introduction, due to the increase of the population median
age, alternatives to classical medical facilities should be found to efficiently take care
of dependent people. One of the most retained solutions is to maintain in their home
environment the people who do not have too severe pathologies. To this aim, it is nec-
essary to monitor these persons using data extracted from an adapted instrumentation.
To achieve such a goal, different approaches based on different scientific backgrounds,
different models and different considerations on the sensor that may be installed were
developed.

This chapter is aimed to review the state of the art relative to this topic and to
state the problem of this thesis. First, some definitions and generic terms are given and
the concept of ambient assisted living (AAL) system and smart home are developed.
Secondly, a technological description of the existing sensors are given and their cases of
use are discussed. Third, a complete definition of Activities of Daily Living (ADLs) is
related and the main topics around these ADLs are listed. The two topics developed in
this thesis are thus presented in detailed and existing works are discussed.

Finally, the proposed framework to deal with activity discovery (AD) and recognition
(AR) concludes this chapter.

1.1 Literature review

In this section, basic definitions of classical terms used in the domain of activities of
daily living monitoring in a smart home are given. Technologies implied in smart home
and their advantages and drawbacks are discussed. Then, existing works in AD and AR
are described.

1.1.1 Terminology and definitions

During the 20th century, a huge technological evolution was observed, especially in
the fields of information and electronic networks. Compact sensors with low energy con-
sumption and giving specific information were created. Naturally, with this technology
evolution the notion of ubiquitous networking has appeared:

Definition 1.1 (Ubiquitous networking). (Rouse and Wigmore, 2017) Ubiquitous net-
working, also known as pervasive networking, is the distribution of communication in-
frastructures and wireless technologies throughout the environment to enable continuous
connectivity. That capacity is an essential component of pervasive computing. (The
terms are interchangeable, with slight variations, as either "ubiquitous" or "pervasive’,
which means essentially the same thing.)

Several objectives can be reached by instrumenting the right environment. Indeed,
ubiquitous environment could improve the energy consumption of a building (Shah and
Rabaey, 2002),(Agarwal et al., 2010) or improve home safety (Flöck, 2010). Furthermore,
ubiquitous environments can be used to manage the aging or disabled population life.
Ambient assisted living has thus been envisaged monitoring the person life at any time.
At this point the monitoring can be anywhere: at home, at work, in the supermarket...

Definition 1.2 (Ambient Assisted Living (AAL)). (Monekosso et al., 2015) Ambient
assisted living can be defined as "the use of information and communication technologies
in a person’s daily living and working environment to enable them to stay active longer,
remain socially connected and live independently into old age"
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.
By considering the case of health monitoring, the main environment of life for dis-

abled and aging people is their own home. In the presented thesis, the goal is thus to
monitor the people at home health. In this specific case, the terms Health at Home
systems (HaH) or Home Care Systems (HCS) are used and defined as following:

Definition 1.3 (Home Care Systems). (Kleinberger et al., 2007) The aim of Home Care
Systems is to allow the assisted persons to live longer in their preferred environment at
home, while retaining their independence, even when they have handicaps or medical
diseases.

It is important to note here that challenges implied by HaH (or HCS) and their
solutions are strongly dependent on technologies. It is at the same time worn by and
limited by the existing technologies and their cost (Barlow and Venables, 2003). To
develop HCS, it appears that the elderly or disabled people homes have to be equipped:
the notion of smart home (Robles and Kim, 2010) is born.

Definition 1.4 (Smart Home). (Balta-Ozkan et al., 2014)A smart home is a residence
equipped with a communication network, linking sensors, domestic appliances, and de-
vices, that can be remotely monitored, accessed or controlled (King, 2003) and which
provides services that respond to the needs of its inhabitants (Chan et al., 2008; Taylor
et al., 2007). In principle, the term ’smart home’ may refer to any form of residence, for
example, a standalone house, an apartment, or a unit in a social housing development.
In this definition, sensors are devices used to detect the location of people and objects,
or to collect data about states (e.g. temperature, energy usage, open windows). Devices
can be electronic, for instance, phones, televisions, computers, or electric, referring to
the simplest toasters, kettles, light bulbs, etc.

The network, connecting and coordinating these various technological features (i.e.
sensors, devices, appliances) and information, is central to the concept of the smart home
(King, 2003; Jiang et al., 2004). It is the existence of this home network that distin-
guishes the smart home from a home merely equipped with standalone, highly advanced
technological features (Scott, 2007).

Figure 1.1.1 is a representation of a smart home in its basic definition: a home
equipped with sensors and actuators connected via a communication network.

Figure 1.1.1: A smart home: a home equipped with several sensors and actuators.
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The definitions of basic terms, from ubiquitous environments to smart home are now
given. The description of technologies used in different smart homes is described in the
next subsection.

1.1.2 Smart home technologies

The achievable objectives, and the ways to reach them, are strongly linked to smart
home used technologies. In this subsection, sensors are divided considering the semantic
level of information they give. We can define a three-bar ladder:

• High level of semantics,
• Average level of semantics,
• Low level of semantics.

High level of semantics
Some sensors give complex and complete information about the person to monitor.

In this category, we classify wearable vital sign sensors (i) and cameras (ii).

(i) Vital sign sensors, as used in Forkan et al. (2015) and Sadek et al. (2015), are
wearable sensors, also called body sensors, which periodically send different vital
signs data of the user to a cloud server. Table 1.1.1 shows some examples of
typical body sensors. These kinds of sensors together form a body sensor network
(BSN) (Otto et al., 2006; Bellifemine et al., 2011). These sensors have some key
configurations and infrastructure that make them easily implantable or wearable
on the human body (Figure 1.1.2). Some sensors can be implanted in the garment
of the user; these are known as wearable textile sensors. These sensors have low
power, can communicate wirelessly and above all monitor the health and activity
of the target user.

(ii) Cameras are sensors giving information via image processing and motion recog-
nition. Indeed, as precise in Chaaraoui et al. (2012), motion recognition is the
basis for estimation of human pose and gaze direction (also referred to as focus of
attention) and for further human behaviour analysis tasks. Motion can be seen as
a series of poses along the time. The human body is an articulated system of rigid
segments connected by joints (as models used in Andriluka et al. (2009) and Sapp
et al. (2010) assume). Human motion is often considered as a continuous evolution
of the spatial configuration of these segments or body postures (as stated in Li
et al. (2008) and exploited in Andriluka et al. (2009) and Sapp et al. (2010)). On
the other hand, the gaze can either be seen as a line in the 3D space or a cone,
or, if working only in the horizontal plane (as some works do, as seen later on), a
direction and an angle.

Average level of semantics
In contrast with high level of semantics sensors, other sensors are giving a less com-

plex but not poor information. It is the case of many wearable sensor not giving vital
signs (i) or of microphones (ii).

(i) Wearable sensors not giving vital signs are sensors partially worn by the inhabitant
and giving binary information to the health at home system. It is the case of
sensors based on the radio frequency identification (RFID) technologies. RFID is
a technology used for identifying persons who carry identification badges (or tags)
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Table 1.1.1: Examples of some typical body sensors and their use in AAL (Forkan et al.,
2014).

Sensor Measured signal Application
ECG Electrocardiogram wave Heart rate
PPG Photoplethysmogram wave Blood volume pulse
BP Blood pressure in mm Hg Blood pressure
EEG Electroencephalogram wave Abnormality
EMG Electromyograph wave Muscular activity
Accelerometer Acceleration in 3D space Activity recognition
Motion sensor Motion signal User movement
Activity sensor 3-axis motion Activity recognition
Inertial sensor Motion signal Position detection
BG sensor Blood sugar level Diabetes detection
Gyroscopes Rotation angle Body orientation
Thermometer Body temperature in ◦F Fever detection
RF antenna RF wave Position detection
Fall detector Motion signal Fall detection

Figure 1.1.2: (a) A demonstration of wearable body sensors on a human body. (b) A
conceptual BSN architecture of the proposed AAL system. (c) An example of wearable
textile sensors (Forkan et al., 2014).

or a reader. If the person wears a tag (Hussain et al., 2009), this technology implies
readers which read an approaching tag to identify the person who is carrying the
tag. Else, if the person wears the reader (Darianian and Michael, 2008), it identifies
the tagged objects or the tagged zones the person is approaching.

(ii) Microphones are also used as sensors giving complementary information to other
sensors as cameras (Brdiczka et al., 2009) or RFID (Park and Kautz, 2008).
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Low level of semantics
Finally, some sensor technologies provide a low level of semantics information. These

sensors give binary values extracted from environmental sensing. As precise in Cook and
Krishnan (2015), these binary environmental sensors are not affixed to the individuals
performing the activity but are placed in the environment surrounding them. These
sensors are valuable in passively providing readings without requiring individuals to
comply with rules regarding wearing or carrying sensors in prescribed manners. The
most frequent binary environmental sensors are:

• Passive infrared (PIR) sensors, or motion sensors, detect infrared radiations that
are emitted by objects in their field of view through multiple slots. If the difference
in the detected radiation between the multiple slots of a PIR sensor is greater than
a predefined threshold (as would happen when a warm body moves into or out of
the range of the sensor), it generates a message. A PIR sensor will sense movement
from any object that generates heat, even if the origin is inorganic.

• Magnetic contact switch sensors, or magnetic door sensors, consist in two com-
ponents: a reed switch and a magnet. When the door is closed, the magnet
component pulls the metal switch in the second component closed so the electric
circuit is complete, thus changing the state of the sensor. The sensor can report
this change of state as a sensor event. When the magnet is moved by opening the
door, the spring snaps the switch back into the open position. This cuts off the
current and closes the relay, again causing a change in the state of the sensor that
can be reported as a sensor event. This feature is useful for detecting if doors,
windows, drawers, or cabinets are open or closed.

• Vibration sensors often attached to items or placed on surfaces in order to de-
tect interactions with the corresponding object. Some sensors are designed to be
sensitive both to vibration (dynamic acceleration) and tilt (static acceleration).
While they can be useful for generating events when the object they are attached
to is handled, they may also generate events when they are accidentally bumped
or when nearby surfaces shake.

• Pressure sensors, for monitoring of activities in a particular environment. Tactile
sensors are sensitive to touch, force, or pressure. These pressure sensors detect and
measure interactions between an individual and a contact surface. The combined
force can be compared to a threshold value to note that there is an object in contact
with the sensor. Pressure sensors can be placed on or under chairs, door mats,
floors, and beds to monitor the location and weight distribution of an individual
in the space.

• Flow sensors provide readings indicating the amount of electricity or water that
was consumed by a particular building for a unit of time. The metre calculates
the amount of electricity or water currently being consumed and can report in-
stantaneous values, accumulated values, or sufficient changes in consumption. The
amount of electricity or water currently being consumed can be compared with a
threshold value to note that an object is in use.

• Temperature sensors, light sensors, humidity sensors can be placed in environments
to measure ambient temperature, lighting, and humidity. These types of sensors
are frequently bundled into one package. Such sensors are calibrated to periodically
report their current status (e.g., light level, humidity reading, and temperature
reading) or they report their current reading when there is a sufficiently large
change in the value from the previous time point.
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From another point of view, it is possible to classify the sensor technologies by con-
sidering their interactions relatively to the human. In Lara and Labrador (2013), the
sensors are classified in two families: sensors performing external or wearable sensing.
Another classification, as proposed in Chikhaoui et al. (2011), orders events by consider-
ing the human feeling about the sensors in terms of privacy. Sensors are thus considered
as intrusive or non-intrusive. Figure 1.1.3 symbolise the difference between this two new
classification.

Figure 1.1.3: Sensors taxonomy

The acceptance issue is essential to allow a monitoring of inhabitants at home. And
even if sensors generating semantically high information, like cameras, have an high
performance in the field of activity of daily living monitoring, they are often considered
too intrusive and raise problems of acceptance by monitored people (Himmel et al.,
2013). This consideration also includes microphones.

Additionally, the efficiency of wearable sensors strongly depends on the ability and
the willingness of the patients to wear them every day, and sometimes during the night.
As in the case of cameras, this sensor technology also raises some problems of acceptance
and, furthermore, is sometimes not compatible with the pathology of patients to be
monitored (e.g. loss of memory).

To summarise, two issues involving human parameters have to be considered during
the smart home instrumentation: the intrusiveness of the sensors and the ability of
patients to live with. The following table shows the existing sensors, their location
relatively to the human, their semantics levels and their compatibility with the two
presented problems.

In this thesis, non-intrusive sensors compatible with any pathology are preferred to
allow our method being applicable to the majority of cases. Therefore, in the proposed
approaches, only binary environmental sensors are used, even if they only provide very
low level of semantics information.

1.1.3 Activities of daily living definition and main topics

One of the possible ways to take care of persons health at home is to monitor their
activities of daily living (ADL). ADL is defined by Farlex (2018) as following:

Definition 1.5 (Activity of Daily Living ADL). Tasks performed by people in a typi-
cal day that allow independent living. Basic activities of daily living (BADL) include
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Table 1.1.2: Review of existing sensors
Type of sensors Location relatively

to the human
Semantic

level
Intrusiveness Patient ability

Wearable vital sign
sensors

Wearable sensing High Very intrusive Sometimes
incompatible

Cameras External sensing High Very intrusive Compatible
Other wearable

sensors
Hybrid Average A little bit

intrusive
Sometimes

incompatible
Microphones External sensing Average Intrusive Compatible

Motion sensors External sensing Low Non-intrusive Compatible
Magnetic door

sensors
External sensing Low Non-intrusive Compatible

Vibration sensors External sensing Low Non-intrusive Compatible
Pressure sensors External sensing Low Non-intrusive Compatible

Flow sensors External sensing Low Non-intrusive Compatible
Temperature, light

and humidity sensors
External sensing Low Non-intrusive Compatible

feeding, dressing, hygiene, and mobility. Instrumental activities of daily living (IADL)
include more advanced skills such as managing personal finances, using transportation,
telephoning, cooking, performing household chores, doing laundry, and shopping.

The ability to perform activities of daily living may be hampered by illness or acci-
dent resulting in physical or mental disability. Health care rehabilitation workers play
a significant role in teaching people to maintain or relearn these skills so that they can
achieve the highest possible degree of independence.

Furthermore, in Cook and Krishnan (2015), authors precise than activities to monitor
in a smart home include physical (or basic) activities as well as instrumented activities
(introduced in Lawton and Brody (1969)). Therefore, the use of the generic therm ADL
is preferred.

In addition, as considered in Chaaraoui et al. (2012),Cook and Krishnan (2015),
Ahad et al. (2008) and Fleury et al. (2010), activities performed by a person can be
decomposed into several actions. For instance “cooking” can be seen as the set of
the actions “preparing pasta”, “preparing a ready-cook dish”, “ordering meal on the
net”, etc. Moreover, actions can be described as a succession of elementary moves
(or motions). This hierarchical decomposition of activities in actions and moves is
represented in figure 1.1.4.

By reading the existing papers dealing with ADL, it appears four main topics based
on the ADL studies: the activity discovery (AD) (Kim et al., 2010; Lara and Labrador,
2013), the activity recognition (AR) (Duong et al., 2005; Lara and Labrador, 2013), the
activity prediction (AP) (Mahmoud et al., 2013; Krumm and Horvitz, 2006) and the
detection of behavioural deviation (DD) (Chandola et al., 2012; Forkan et al., 2015). In
this work, we focus on the AD and the AR.
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(a)

(b)

Figure 1.1.4: (a)Human behaviour analysis tasks - classification (Chaaraoui et al., 2012)
(b) Human behaviour degree of semantics (Cook and Krishnan, 2015).

1.1.4 Activity discovery

First, ADL have to be modelled. When the modelled is generated by learning, we
use the term of activity discovery defined as follows:

Definition 1.6 (Activity Discovery AD). (Cook et al., 2013) The activity discovery is
an unsupervised learning algorithm to discover activities in raw sensor event sequence
data.

In the literature, a great variety of methods using different inputs and outputs can
be found. A brief review of the major methods is now developed. In coherence with the
sorting made in subsection 1.1.2, these methods are grouped by considering the semantic
level of the sensors used. The semantic level of the generated models are also highlighted
to improve the comprehension of the pros and cons linked to each method.

Inputs of high level of semantics
In Forkan et al. (2014), authors model human behaviour using expert knowledge and

vital sign sensors. In addition, authors skip the ADL discovery process by choosing not
to use data learning but rather ontological models as visible in table 1.1.3. Therefore, the
human behaviour models of this method have a very high level of semantics since they
correspond to very specific situations. With these models, it is possible to directly detect
dangerous situation and quickly react in case of emergency. However, those models are
fully constructed using expert knowledge, and therefore subject to human mistake and
forgot.

In Duong et al. (2009), authors use cameras to detect the location of the inhabitant.
Then, by using expert knowledge, authors link different successions of locations with
activities to generate hidden semi-Markov models (HSMM) (Rabiner, 1989). A hidden
Markov model (HMM) is a stochastic model of a process with an underlying part con-
sidered as non-observable. Furthermore, an HSMM is an HMM in which a duration
knowledge is added. Figure 1.1.5 shows the dynamic Bayesian network graphical struc-
ture for HSMM with generic state duration distribution. At each time slice, a set of
variables Vt = {xt, mt, yt} is maintained where xt is the current state, mt is duration
variable of the current state, and yt is the current observation. The duration mt is a
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counting-down variable, which not only specifies how long the current state will last,
but also acts like a context influencing how the next time slice t + 1 will be generated
from the current time slice t.

Figure 1.1.5: DBN representation for a standard HSMM. Shaded nodes represent ob-
servation. (Duong et al., 2009).

By performing known and wanted activities, authors use a Coxian distribution to
efficiently model the duration information. This information added to the HSMM result
in a novel form of stochastic model : the coxian hidden semi-Markov model (CxHSMM).

The discovery method presented uses expert-given HSMM as bases for the duration
learning. According to the authors, the use of HMMs is suitable and efficient for learning
simple sequential data. It is notable that, in this work, the information from cameras
are quickly parsed to become a simple location information.

Inputs of average level of semantics
In Lara and Labrador (2013), the AD, called the training stage, initially requires

a time series dataset of measured attributes from individuals performing each activity.
The time series are split into time windows to apply feature extraction and thereby
filtering relevant information in the raw signals. Later, learning methods are used to
generate an activity recognition model from the dataset of extracted features. Likewise,
data are collected during a time window, which is used to extract features. Such feature
set is evaluated in the priorly trained learning model, generating a predicted activity
label (see figure 1.1.6).

A generic data acquisition is also an identified architecture for AD and AR systems,
as shown in figure 1.1.7. In the first step, wearable sensors are attached to the person’s
body to measure attributes of interest such as motion, location, temperature, ECG,
among others. These sensors should communicate with an integration device (ID),
which can be a cellphone, a PDA, a laptop, or a customised embedded system.

The models thus obtained can be probabilistic or not. However, the need to split
the data recorded during the learning period to "individuals performing of each activity"
leads to record labels of the performed activity.
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Figure 1.1.6: General data flow for training systems based on wearable sensors (Lara
and Labrador, 2013).

Figure 1.1.7: Generic data acquisition architecture for Human Activity Discovery and
Recognition (Lara and Labrador, 2013).

Inputs of low level of semantics
In Saives et al. (2015), authors propose a method to model, starting from a log

of binary sensor events (rising and falling edges), the habits of the inhabitant. These
models are extracted by sequence mining techniques and modelled by extended finite
automata (EFA). The learned habits are then labelled by an expert. This AD method,
base on the Agrawal and Srikant (1995) pattern mining method, is a black bock discovery
method. However, as this pattern mining method distinguish each recurrent pattern,
each aleatory and minor event inversion create a new pattern. The expert work is thus
fastidious if treating data from a big smart home. As an output, authors gives a global
map of activities represented by an EFA. This output model has a medium level of
semantics since the main interesting part (i.e. the labelling) is done a posteriori by the
expert.

In Cook and Krishnan (2015), authors presents several machine learning using binary
sensors and individuals performing of each activity as inputs. Naîve Bayes classifier,
Gaussian Mixture model, hidden Markov model, decision tree, support vector machine
conditional random field are probabilistic models possible to generate with these inputs.
The computed models have semantically high information since they are trained directly
with adapted and labelled data.
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The majority of the existing methods model ADL by probabilistic models. In ad-
dition to their natural robustness to small variations, those models have the advantage
to be coherent with the human non-determinism. Therefore, in this thesis, a modelling
of human ADLs by probabilistic model is preferred. However, when explained by the
researchers, the generation of the models uses individuals performing of each activity to
learn probabilities. This needed input signifies that, during the learning period, a log of
the performed activity is recorded. Unfortunately, this information is in practice very
difficult to obtain.

In Tapia et al. (2004), the monitored patient indicates which activity he is performing.
Of course, the efficiency of this approach is confronted with the ability and the willingness
of the person to declare his activity: in general, numerous reported activities errors are
introduced in the database. In other works (Gaglio et al., 2015), experts are in charge of
the enrichment of the database by studying sensor logs or by using cameras exclusively
during the learning phase. This approach is expensive, intrusive and therefore risks
changing the behaviour of the patient during the learning phase. In both cases, the
labelling step is difficult and unreliable. That is the reason why, in the methods proposed
in this thesis, the knowledge of actually performed activities during the learning phase
is not required.

1.1.5 Activity recognition

Activity recognition methods are model-based approaches to monitor people. The
used models can be given by an expert or obtained by learning (i.e. by applying an AD
method). A definition of activity recognition is given in Cook and Krishnan (2015) as
follows:

Definition 1.7 (Activity Discovery AR). (Cook and Krishnan, 2015) The field of ac-
tivity recognition (AR) is concerned with the question of how to label activities from a
sensor-based perception of the environment. The problem of AR is to map a sequence of
sensor outputs onto a value from a set of predefined activity labels

As for AD, a great variety of methods using different inputs and outputs can be
found in the literature. In this subsection, existing methods will be classified according
to the type of model used to model the activities.

AR using descriptive model linked to data from vital signs sensors
In Forkan et al. (2014), authors adopt the ontology-based context model (Mocholí

et al., 2010; Devaraju and Hoh, 2008) to recognise the performed activity or a dangerous
situation. Figure 1.1.8 shows the proposed ontology-based context model based on OWL
(web ontology language). Each context entity has attributes to describe some basic
properties of the entity. Context entities are part of parent entity such as characteristics,
diseases, preference, social and health ontologies are part of person ontology. Each of
those entities has some more children to describe them. The relation among different
entities is also shown.

The context space is described in four major entities:

• Person ontology is used to identify the user of the AAL system and his/her profile,
diseases, health conditions, doctors, social interactions, and so on.

• Place ontology describes the current position of the user.
• Environment ontology is used to identify the conditions of surrounding environ-

ments. Environment has some impact on making decisions for assistive actions.
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Figure 1.1.8: Context model using OWL (Forkan et al., 2014).

• Device ontology contains the details of the body sensors and devices of the system

To detect an activity or an abnormal situation, a service rule can be defined. For
example, table 1.1.3 shows the service rules of detecting a possible heart attack by using
the ontology model.

Table 1.1.3: Service rules for detecting a possible heart attack (Forkan et al., 2014).
Ontology Instance Raw data Context attr. Values

Person User X Profile Age ≤ 65
Person User X Profile Weight ≤ 80
Person Disease Profile Cardiac patient Have cardiac issue
Device ECG sensor ECG wave Heart rate Abnormal
Device BP sensor BP readings Blood pressure Normal or high
Device PPG sensor Sensor readings O2 consump-

tion
Low

Device Audio sensor Sound wave Breathing Irregular
Device Camera, radar,

accelerometer
Video, images, 3D accel-
eration, motion path

Motion Tripping or falling or flailing
of arms or any rapid motion

By using these highly detailed models, authors can generate very precise information
concerning the patient health state. Unfortunately, the given expert models are generic
and not adapted to each human living each pathologies differently. As an example, the
case of a heart attack for a human aging less than 65 years is not detected with the
presented description table 1.1.3. Generating an adapted model for each human out of
standards should be a fastidious and expensive process.

AR using vision-based models
In Chaaraoui et al. (2012), authors make a great review on vision techniques applied

to human behaviour analysis for AAL. According to the authors, it can be seen that
at the motion, pose and gaze estimation level, several methods achieve robust and high
success rates.

Mihailidis et al. (2004) are able to track the activity of hand washing to assist older
adults with dementia. Multiple orders in the process can be correct, but not all of them.
Their system is able to prompt the user if a necessary step is missing or the order of
the implied actions is unacceptable. Vision is used as the only sensor in the developed
system for two purposes: (1) tracking of hand location; and (2) tracking of step-specific
object locations.
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Related to this type of activity recognition, Wu and Nevatia (2005) stand out in
activity recognition based on object use. These authors define activities as combinations
of actions and objects and intend to recognise and track objects use in order to infer
human activities. Object models are acquired automatically from video, whereas object
identification is based on RFID labels. At the learning phase, the user wears a RFID
bracelet which reads the RFID tags attached to the surrounding objects in a home
environment. Assuming that the object being moved is always the object in use and
that only one object is being moved at a time, the system learns the relationship between
the segmented image and the active RFID tag using a dynamic Bayesian network. As
arms and hands move with the objects, skin filtering is applied beforehand. At the test
phase, the system works without the RFID data as objects are recognised by detecting
SIFT features within the segmented area. These key points are matched based on
maximum likelihood to the previously trained SIFT points.

In Zhou et al. (2008), activity recognition is approached differently. The individ-
ual silhouette is obtained at different positions of a living room. Grouped into 10–20
prototypes, each silhouette stores its centre, width and height and is manually labelled
with a location. A fuzzy inference method is used to estimate the most likely physical
location of test silhouettes. Location estimation and previously assigned coordinates
enable average speed measurement, which is used besides location in order to recognise
human indoor activities. A Hierarchical Action Decision Tree (HADT) is used to clas-
sify human actions using multiple levels. At the first level, human actions are classified
based on location and speed. With K-means, clustering feature patterns are obtained;
and activities of daily living, like walking or visiting the bathroom, are recognised.

All those presented methods are efficient in their field of appliances. Nevertheless,
according to Chaaraoui et al. (2012), at higher levels, especially at behaviour, there is
still a long way to go to achieve off-the-shelf products. Still, huge advances have been
made in the last ten years. But the challenge to design and develop stable and general
systems still persists, as most systems only solve specific problems in very particular
environments.

AR using models linked to binary information
In Van Kasteren et al. (2008) the authors describe all inhabitant activities by only

one HMM. Then, authors recognise activities by applying the well-known Viterbi algo-
rithm1 (Rabiner, 1989). In fact, as explained in Cook and Krishnan (2015), inferring
which sequence of labels best explains a new sequence of observations can be performed
efficiently this algorithm. This dynamic programming technique is commonly used for
HMM computations. If all activities are modelled in the same HMM, Viterby algo-
rithm generates the most likely sequence of activity labels from a sequence of sensor
observation. Unfortunately, the complexity of the model drastically increases with the
number of activities and sensors. Furthermore, the used model has not intermediary
semantic levels between activities and sensors and the precision of the recognition is not
guaranteed.

In Kellokumpu et al. (2005), after converting video information to binary events
traducing the human posture, the authors present a system that recognises a set of
activity modelled by HMMs. Moreover, they classify activities by a probability that al-
lows recognising the activity as being the one, which is represented by the most probable
model.

1https://en.wikipedia.org/wiki/Viterbi_algorithm
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However, the previous methods can only compare models linked to the same sensor
and event sets. On the contrary, in practice, activities are linked to different sensors
because they are performed in different home areas and are realised by using diverse
equipment in different spaces

In the majority of the presented methods, probabilistic models are used to estimate
which activity is the most likely performed. For all the AR existing works, the recogni-
tion method is strongly linked with the models used to represent the activity. Therefore,
if a new kind of models is used during the activity discovery, a new method, ideally based
on existing ones, should be developed. The large use of probabilistic models comforts
the decision to model activities by probabilistic models in this thesis.

1.1.6 Summary

Figure 1.1.9 summarises the context of this thesis: activity discovery and recognition
are two principal missions of the assistance and monitoring of ADLs in health at home
systems (HaH). HaH is the group of topics treating about the health monitoring of smart
home inhabitants.

Figure 1.1.9: Thesis summarised context

Previously presented existing methods are listed in the figure 1.1.10. The mission
performed in the paper, the level of semantics of the used sensors and their intrusiveness
are shown.

In this thesis, the non-intrusiveness is preferred to the input knowledge semantic
level. The problem statement of this thesis is presented in the next section 1.2.
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Figure 1.1.10: Existing methods, their sensor level of semantics and their intrusiveness.

1.2 Problem statement

Since the existing works are now presented, the problem statement of this thesis is
developed in this section. The assumptions taken and their involvement are discussed
and the proposed methods are summarised in a simple framework.

1.2.1 Global objectives

The literature review presented in section 1.1 highlights that managing the activities
of daily living for dependent persons is a promising way to manage the increasing rate
of the dependent population. Several methods more or less intrusive exist and are
applicable following some conditions and assertions.

Even if the existing methods are different, some elements are common. The first one
is the need to discover and recognise the ADLs of the inhabitants. Those two missions
are the basic operations to perform in order to manage the human activities of daily
living.

Therefore, the objective of this thesis is to develop a global framework to discover
and recognise activities of daily living. As for the majority of the works in the literature,
three sources of knowledge are authorised:

• the medical staff gives a list of ADL to be monitored corresponding to the inhab-
itant pathologies;

• the sensors of the smart home gives information during the inhabitant life. These
sensor data can be recorded during a learning period or directly interpreted;

• an expert can, if needed, complete the basic information (flat floorplan, sensor
locations,...) or those given by the two previously presented sources (the medical
staff or the sensors).

In addition, in order to be applicable on a big scale and for the majority of the
population, four points are considered, in this thesis, as unavoidable:

• The human nature has to be considered to choose the appropriate models;
• The patient privacy is a priority and its feeling about the intrusiveness of the used

sensors have to be considered;
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• Any choice has to be compatible with the patient pathology;
• The developed methods have to be applicable on a big scale and the information

given by the medical staff, the sensors and the expert have to be viable and easy
to obtain.

These points leads to make four assumptions described in the next section 1.2.2

1.2.2 Considered assumptions

In order to fulfil the objectives following the four unavoidable points presented just
above, some practical and ethical decisions have to be taken and assumed. In this thesis,
four main assumptions are made.

Assumption 1: Activities are represented by probabilistic models
The first unavoidable point is to consider the human nature to choose our model. It

signifies that the human cannot be considered as a machine strictly repeating the same
moves. Indeed, the human behaviour is, by nature, non-deterministic and may even
be irrational. Therefore deterministic models and classical identification methods, more
adapted to Cartesian and repetitive behaviour, cannot be used in the present problem.

During his life performance, a human can vary its way to perform an activity by
inversing two moves during the "cooking" activity, for example. Indeed, as a medium
variation, a human can choose, one day, to take the packet of pasta after boiling the
water and the inverse another day. As a small variation, a human can open and close a
useless cupboard to prepare tea because it forgot where is stored tea.

To be compatible with this human non-determinism, the chosen models have to be
robust to variations. Therefore, in this thesis as in many paper in the literature, ADLs
are modelled by using probabilistic models.

Assumption 2: Only binary and environmental sensors are used
The second unavoidable point is that the patient privacy is a priority and its feeling

about the intrusiveness of the used sensors have to be considered. Therefore, as intro-
duced before, cameras are rejected. Indeed, they can be considered as too intrusive and
can be rejected by the patients (Himmel et al., 2013).

In addition, wearable sensors efficiency strongly depends on the ability and the will-
ingness of the patients to wear them every day, and sometimes during the night. This
sensor technology also raises problems of acceptance for the monitored inhabitant.

Furthermore, wearable sensors are sometimes not compatible with the pathology of
patients to be monitored (e.g. loss of memory). This property is in contradiction with
our third unavoidable point.

The elimination of the too intrusive and wearable sensors leads to the use of binary
sensors only, such as motion detectors or door barriers. Such sensors are, furthermore,
low cost. Unfortunately, by using only binary sensors, a difficulty due to the very low
level of semantics information sensed exists.

Assumption 3: The considered smart home is occupied by a single inhab-
itant

According to Assumption 2, only binary sensors are used for both AD and AR.
In case where several inhabitants are living in the same dwelling, it is not possible to
distinguish which inhabitant is generating events observed through binary sensors. That
is therefore necessary to make the assumption that a single-inhabitant is living in the
smart home.
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This assumption is quite restrictive but allows proposing a complete solution for AD
and AR that is based on the use of binary sensors only. A way to relax this hypothesis
is to consider that each inhabitant wears a sensor that allows identifying himself (e.g. a
RFID sensor) and therefore knowing who has generated which event.

As we saw before, the use of this kind of sensors is incompatible with every pathology.
However, in the case of multiple inhabitants with compatible pathology, the use of
wearable sensors can be an acceptable trade-off between applicability and privacy.

The limit to a single inhabitant is assumed in this thesis but the presented method
can be applicable to each person individually if a multiple inhabitant smart home is
equipped with a RFID sensor that allows allocating each sensor occurrence to a unique
person.

Assumption 4: The knowledge of the actually performed activity is not
required

As precise before, several studies use the knowledge of performed activities during
the learning phase to perform an efficient AD. Indeed, this information allows an easy
decomposition of the observed data during the learning period and allows directly label
the slit data. Unfortunately, as explained in chapter 1.1.4, this information is difficult
to obtain and unreliable. Therefore, the use of this information is incompatible with the
fourth unavoidable point since it is inapplicable and unreliable.

Therefore, in the presented thesis, the knowledge of the actually performed activity
during the learning period is not required.

This Assumption 4 leads to a loss of information to compensate. The chosen solution
is presented in the next section 1.2.3.

1.2.3 Proposed framework to discover and recognise ADLs

The objectives of this thesis is to propose new AD an AR methods following the
four assumptions presented above. Figure 1.2.1 represent the proposed framework to
perform this two objectives.

Activity Discovery
In the proposed framework, the AD is performed off-line to generate the output OAD

by using the inputs I1
AD and I2

AD.

In order to compensate for the loss of information implied by the Assumption 4,
an additional expert knowledge has to be given. The retained solution is to use an
expert knowledge based on the ADL definition. Therefore, with the goal to manage
the observations, the expert has to give a hierarchical decomposition of the activities to
be monitored into actions. Then, as sensors have a low level of semantics, their sensed
information can be considered as having the same level of semantics as elementary
moves. Therefore, expert details which sensor events are linked to which action. Those
two hierarchical links activities/actions and actions/sensors are pertinent considering
the definition 1.5 of ADLs. By doing this, the expert creates the input I1

AD represented in
figure 1.2.2. This input is called hierarchical decomposition in the rest of the manuscript.

The principle of the AD is to generate models using data observed during a learning
period. Thus, the second input I2

AD of the AD is a database obtained by recording the
generated events during this observation. Due to Assumption 2, information recorded
is binary. Then, according to Assumption 3, the learning database corresponds to the
life of an inhabitant living alone in a smart home.
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Figure 1.2.1: Activity discovery and recognition proposed framework.

Figure 1.2.2: I1
AD: Hierarchical decomposition of activities into actions linked to sensor

events given by an expert.

Starting from those two inputs I1
AD and I2

AD, the AR generates a set of probabilis-
tic models (OAD) in accordance with Assumption 1, each one representing an activity
(denoted Ak).

The used probabilistic model, its definition and notations and more generally the
AD proposed method are given in chapter 3.

Activity Recognition
The AR is a procedure performed on-line to recognise the activity OAR actually

performed by the inhabitant during its life by using the inputs I1
AR and I2

AR.
The AR is performed by using a direct observation of the events generated by the

smart home. Thus, I1
AR is the direct observation of this events. As explained in chapter

4, I1
AR is not only composed by the last observed event, but by a log of the last observed

events.

The second input I2
AR is a set of models representing the activities to monitor. As

the presented AR responds to a global framework containing AD and AR, the activity
models are those obtained by applying our AD method. Therefore we have I2

AR = OAD.
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As output OAR of the AR, the proposed AR protocol gives a probability, for each
activity, to be performed. The section 4.6 explains how to conclude about the actually
performed activity using those probabilities.

Conclusion

In this chapter, basic definitions of ambient assisted living has been given and a
global overview of the existing works in the field of activity of daily living discovery and
recognition was presented. Smart home current technologies and activities models were
presented. Assumptions for this thesis work was taken and explained to finally state the
problem.

The taken assumptions are the following:
Assumption 1 Activities are represented by probabilistic models;
Assumption 2 Only binary and environmental sensors are used;
Assumption 3 The considered smart home has a single inhabitant;
Assumption 4 The knowledge of the actually performed activity is not required.

By considering these four assumptions, the problem can be summarised as follows:
The objective of this thesis is to develop a global framework to discover and recognise

activities of daily living of an inhabitant living alone in a smart home. This smart home
has to be equipped with binary sensors only, expert labelling of activities should not be
needed and activities can be represented by probabilistic models.
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Chapter

2
Case Study

"La scienza è il capitano, e la pratica sono i soldati."
- Leonardo da Vinci -

Abstract

This chapter confronts three existing living labs, chosen among those
that are open to an external usage or whose data are public, to the specific
requirements of our works. Since none of them fulfil perfectly our demands,
the smart flat we developed is described, as well as the experimental protocol
used for tests.
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Introduction

In this thesis, applicative methods to monitor health at home system are developed.
In order to illustrate and validate our propositions, a case study is needed. This case
study should include a description of the used smart home, or living lab, and a well-
detailed and fault-free database of activity performance. More precisely, the following
criteria are mandatory.

Firstly, the equipped smart flat has to be perfectly known. It signifies that the floor-
plan has to be given with details, the normal location of objects relevant considering
the activities to be monitored (e.g. normal location of tea bags, coffee, pasta ...) has
to be indicated and the exact location of sensors has to be supplied. This criterion
is necessary to allow an expert hierarchical decomposition (see figure 1.2.2) sufficiently
detailed. The knowledge of the object locations allows a fine decomposition. This expert
knowledge is an essential input of the proposed activity discovery (AD) method and has
to be reliable.

Secondly, since the activity recognition (AR) objective is to point out the performed
activity out among several ones, it is important to have multiple activities to compare.
Therefore, several activities have to be performed during the generation of the case study
database.

Thirdly, the objective of this thesis is to discover and recognise complex activities
using binary sensors with semantically poor information. Therefore, the case study has
to be equipped with enough binary sensors to compensate for the low information by
the number of them.

Fourthly, in accordance with the Assumption 3 enunciated in section 1.2.2, the data
of the case study have to be generated by a person performing each activity alone and
several times. Furthermore, since each activity model is linked to a way to perform it,
the person performing the activities has to be the same every time.

Finally, in order to confront the result of our methods and the reality, the name of
the performed activities and their realisation moments have to be recorded. As this
knowledge is only needed to validate the methods, this need is not incompatible with
our Assumption 4 rejecting this knowledge for real and non-experimental applications.

In this chapter, several existing databases are presented and their conformity with
our criteria are discussed. Since no existing living-lab among the studied ones fulfil all
the presented requirements, a new smart flat (AALTA) specially equipped for this thesis
is presented.

2.1 Existing living labs and public datasets

In this section, three major living labs are presented. Each of them is well docu-
mented and their pros and cons are easily detectable. Unfortunately, due to the adopted
point of view of our approaches, the documentation may not be exactly as wanted. The
compatibility between the three presented living labs and our requirements are thus
discussed.

2.1.1 Living lab of the Washington State University (WSU)

As explained in Cook et al. (2009), to validate their algorithms, authors test them
in a smart apartment testbed located on the Washington State University (WSU) cam-
pus. The CASAS testbed is equipped with motion and temperature sensors as well
as analogue sensors that monitor water consumption and stove burner use (see figure
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2.1.1). Voice over Internet Protocol (VOIP) captures phone usage and contact switch
sensors are used to monitor usage of the phone book, a cooking pot, and the medicine
container. Sensor data is captured using a customised sensor network and stored in an
SQL database.

To provide physical training data, the research team brought 20 WSU undergraduate
students to perform activities in the smart apartment. One at a time, student had to

Figure 2.1.1: Resident performing “hand washing” activity (left). This activity triggers
motion sensor ON/OFF events as well as water flow sensor values (right). Sensors in
the apartment (bottom): monitor motion (M), temperature (T), water (W), burner (B),
phone (P), and item use (I) (Cook et al., 2009).
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perform the five following activities:

1. Telephone use: look up a specified number in a phone book, call the number, and
write down the cooking directions given on the recorded message.

2. Hand washing: wash hands in the kitchen sink.

3. Meal preparation: cook oatmeal on the stove according to the recorded directions,
adding brown sugar and raisins (from the kitchen cabinet) once done.

4. Eating and medication use: eat the oatmeal together with a glass of water and
medicine (a piece of candy).

5. Cleaning: clean and put away the dishes and ingredients.

The selected activities include both basic and more complex ADLs that are found
in clinical questionnaires (Reisberg et al., 2001). Noted difficulties in these areas can
help to identify individuals who may have difficulty functioning independently at home
(Schmitter-Edgecombe et al., 2009). As shown in figure 2.1.1, each sensor reading is
tagged with the date and time of the event, the ID of the sensor that generated the
event, and the sensor value.

The sensors used by Cook et al. (2009) and partially placed in figure 2.1.1 are:

• M01..M26: motion sensors;
• I01..I05: item sensors for oatmeal, raisins, brown sugar, bowl, measuring spoon;
• I06: medicine container sensor;
• I07: pot sensor;
• I08: phone book sensor;
• D01: cabinet sensor;
• AD1-A: water sensor;
• AD1-B: water sensor;
• AD1-C: burner sensor;
• asterisk: phone usage.

The data thus obtained are available at ailab.eecs.wsu.edu/casas. It contains
several text files named according to the participant and the task performed. Hence,
the data recorded when the participant number i performed activity k is named "pi.tk".
In those files, sensors events are logged line by line. Each line represents the occurrence
of one event as shown in figure 2.1.2. An event occurrence is thus characterised by its
observance day (column 1) and time (column 2), the sensor name (column 3) and the
event linked (column 4). In addition, a file "data" contains all of the sensor events in
one file. In this new file, the performed activity is reported in a fifth column and the
participant is not stored.

As the CASAS living lab was developed to test ADLs monitoring, it naturally fulfils
some of our criteria presented in the introduction. That is the case with three of them:

• Several activities are considered during the data record (telephone use, hand wash-
ing, meal preparation, eating and medication use and cleaning), the second crite-
rion is thus satisfied;

• Lots of binary sensors are implied in the living lab giving enough information to
generate high-level information, the third criterion is thus filled;
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2008-02-27 12:43:27.416392 M08 ON
2008-02-27 12:43:27.8481 M07 ON
2008-02-27 12:43:28.487061 M09 ON
2008-02-27 12:43:29.222889 M14 ON
2008-02-27 12:43:29.499828 M23 OFF
2008-02-27 12:43:30.159565 M01 OFF
2008-02-27 12:43:30.28561 M07 OFF
2008-02-27 12:43:31.491254 M13 ON

...

Figure 2.1.2: Example of logs extracted from the CASAS file "p01.t1".

• The activities performed by the undergraduate student are well labelled, this fulfils
the last criterion.

Unfortunately, two criteria are not fully fulfilled:

• Even if the activities are performed by a single inhabitant each time, they are not
performed by a unique one. Indeed, multiple persons realise activities only once;
this point discords with criterion four;

• Sensors placement is perfectly documented but the relevant object placements in
the living lab is not precise enough to allow a detailed expert decomposition (first
criterion).

2.1.2 Living lab of the Université de Sherbrooke (Domus)

In Chikhaoui et al. (2010), authors present another smart home: Domus. This
smart home is a one-bedroom apartment, as shown in figure 2.1.3, mounted inside the
University of Sherbrooke. It includes a bedroom, a bathroom, a kitchen, a dining room
and a living room. During the experiments, six adults have performed the early morning
routines which correspond to some basic activities of life. The experiments were held in
the Domus smart home apartment in two steps.

First, users were asked to perform the early morning routine as they are supposed
to do at home. This step was realised ten times per user.

Secondly, users were asked to repeat the same routine with an additional constraint:
performing a given tea recipe which lasts at most 10 minutes. This step was realised
five times per user.

In both series, the user can use any equipment available in the apartment, and decides
the order of the activities that composed his routine. Each experiment lasted about 45
minutes.

During the experimentation, authors labelled the observed events in seven activities:
1. Wake up.
2. Use toilet.
3. Preparing breakfast.
4. Having breakfast.
5. Washing dishes.
6. Other activities (Unknown).
7. Preparing tea.
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Figure 2.1.3: Domus smart home plan (Chikhaoui et al., 2010).

The Domus smart home is equipped with five different types of binary sensors:

• Infrared motion detectors;
• Pressure detector;
• Lamp light switches;
• Door contacts sensor;
• Flow sensors.

The obtained data are available at https://www.usherbrooke.ca/domus/en/research/

dataset/ and organised as follows. Each data from an experiment step i is classed in a
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corresponding directory named "Domus Series i". In each of these directories, there are
six folders named according to the user number. Each user folder contains the sensor
data files named per day "Day d.vna". In these files, there is one sensor event on each
line of the files presented as shown in figure 2.1.4. An event occurrence is characterised
by its observance time (column 1), the sensor id (column 2), the sensor location in the
smart home (column 3) and its new value (column 4). In addition, the folder contains
also the activity annotation file that annotates the activities performed by the observed
subjects during the experiments.

"9:8:18" "5105" "Lampe" "Bedroom" "Open"
"9:8:28" "0215" "Door" "Bedroom" "Open"
"9:8:34" "5101" "Lampe" "Kitchen" "Open"
"9:8:38" "5105" "Lampe" "Bedroom" "Close"
"9:8:42" "0215" "Door" "Bedroom" "Close"
"9:8:47" "IR01" "Infrared" "KitchenSink" "Close"
"9:8:50" "Fl04" "TapeColdWaterSink" "Kitchen" "Open"
"9:8:50" "IR01" "Infrared" "KitchenSink" "Open"

...

Figure 2.1.4: Example of logs extracted from the file "Domus Series 1/User 1/Day 1.vna".

By analysing the Domus smart home dataset by regarding its conformity with our
five criteria, it appears that four of them are respected.

• Several activities are considered (Wake up, Use toilet, Preparing breakfast, Having
breakfast, Washing dishes, Unknown activities, Preparing tea). However, we can
notice than only morning activities are tested. That validates the criterion two.

• An important number of events are implemented in the smart home and validates
the third criterion.

• Activities are sufficiently performed by each subject to be compatible with the
criterion four.

• The performed activities are labelled with start and end times. This fulfils criterion
five.

Unfortunately, the sensor placement is not given with enough details. In addition,
the position of the relevant tools in the smart home needed by the expert to construct
a detailed hierarchical decomposition is not indicated. That does not fulfil the criterion
one since it is impossible to viably construct an expert hierarchical decomposition.

2.1.3 Living lab of the Massachusetts Institute of Technology

As explained by the authors, in Tapia et al. (2004), two studies were run in two
homes of people not affiliated with the MIT research group in order to collect data for
developing and testing of the activity recognition algorithms. The first subject was a
professional 30-year-old woman who spent free time at home, and the second was an
80-year-old woman who spent most of her time at home. Both subjects lived alone in
one-bedroom apartment. 77 state-change sensors were installed in the first apartment
and 84 in the second one. The sensors were left unattended, collecting data for 14 days
in each apartment. During the study, the subjects used in the context-aware experience
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Figure 2.1.5: (a) The top view of the apartments and the sensor distribution for subject
one. (b) Sensor distribution for subject two. Tapia et al. (2004).

sampling method (Intille et al., 2003) to create a detailed record of their activities.
Figure 2.1.5 shows the first apartment floor-plan. (Tapia et al., 2004)

During the experiments, twenty-one activities were targeted and labelled. Those
activities are decomposed into several actions not listed here.

1. Employment work at home. 8. Preparing a meal. 15. Home education.
2. Travel employment. 9. Preparing a snack. 16. Travel study.
3. Eating. 10. Preparing a beverage. 17. Leisure.
4. Personal hygiene. 11. Meal Cleanup. 18. Travel social.
5. Sleeping. 12. Putting away groceries. 19. Travel sport.
6. Talking on telephone. 13. Clean house. 20. Travel services.
7. Resting. 14. Outdoor chores. 21. Other.

For two weeks, the inhabitants lived normally at home and generated a database
composed of 2323 and 1422 events. The sensors used are binary sensors labelled by:
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• Burner • Freezer • Shower faucet
• Cabinet • Garbage disposal • Sink faucet - cold
• Cereal • Jewelry box • Sink faucet - hot
• Coffee machine • Lamp • Stereo
• Containers • Laundry Dryer • Telephone
• Dishwasher • Light switch • Toaster
• Door • Medicine cabinet • Toilet Flush
• Drawer • Microwave • TV
• DVD • Oven • Window
• Exhaust Fan • Refrigerator

The data thus obtained are available at http://courses.media.mit.edu/2004fall/

mas622j/04.projects/home/. It contains two directories, one per subject. In the "text
dataset", the data is stored in text format and comma separated values (.csv). Each
directory contains three files:

• sensors.csv: containing information about the sensors;

• activities.csv: containing a description of the targeted activities and their decom-
position in actions;

• activities_data.csv: contains the observed events during the study.

The files "activities_data.csv" are composed with blocks of five lines (see figure 2.1.6).
In these blocks, the first line gives the performed activity and its date, begin time and
ending time. The second one contains the ids of the sensors generating events in the
occurrence time order. The third line corresponds to the list of the sensors generating
events in the occurrence time order. The fourth line lists the rising edge times of the
observed event. Finally, the fifth line gives the time corresponding to the falling edge of
the observed event.

Preparing dinner,5/1/2003,16:15:7,17:40:7
115,115,79,73,73, ...
Microwave,Microwave,Cabinet,Cabinet,Cabinet, ...
16:14:24,16:17:10,16:17:45,16:17:50,16:18:9, ...
16:16:16,16:17:21,16:18:18,16:17:54,16:18:15, ...
Preparing lunch,5/1/2003,10:57:51,11:49:27
53,75,115,115,108, ...
Light switch,Light switch,Microwave,Microwave,Toaster, ...

11:3:13,11:3:17,11:5:39,11:7:17,11:8:10, ...
11:43:40,11:43:41,11:5:41,11:7:26,11:8:27, ...

Figure 2.1.6: Exemple of logs extracted from the Tapia et al. (2004) file "activi-
ties_data.csv" of the "subject2" directory.

To facilitate the data treatment, the data can easily be parsed to appear with the
same form as in the CASAS dataset 2.1.1. The data are thus as shown in figure 2.1.7.
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05/01/2003 16:14:24 115 ON
05/01/2003 16:17:21 115 OFF
05/01/2003 16:17:45 79 ON
05/01/2003 16:18:15 73 OFF
05/01/2003 16:18:18 79 OFF
05/01/2003 16:18:28 89 OFF
05/01/2003 16:20:39 115 OFF
05/01/2003 16:21:00 84 OFF

...

Figure 2.1.7: Example of readable presentation of Tapia et al. (2004) logs.

The presented living lab seems closed to be perfectly adapted to our work. Unfortu-
nately, only three criteria are fulfilled:

• Several activities are considered during the data record (there are 21 activities in
this case), the second criterion is thus satisfied;

• A huge number of binary sensors are implied in the normal life realisation of the
two subjects, the third criterion is fulfilled;

• Activities are performed by a unique inhabitant for each smart home during a
significant learning period. The fourth criterion is thus filled.

The following criteria are thus not respected:

• Even if the activities seem to be well-labelled, it appears by analysing them more
precisely that the declarations made by the inhabitant are not already true. Since
the labelling is performed directly by the inhabitant, the observed divergences can
be due to human mistakes or decency considerations (voluntary or not). The last
criterion is thus unfulfilled;

• Even if the decomposition of activities into actions is given, the specific object
locations needed by the expert are not specified. Therefore, the links between
actions and sensors cannot be done. The needed expert decomposition is thus
impossible to obtain. It discords with the first criterion.

Conclusion

By studying the datasets given by the existing databases, it appears that the five
criteria needed to test and validate our methods are not fulfilled simultaneously in the
existing works. Indeed, the necessity to generate an expert decomposition of activities
into actions linked to events from the given data is limiting. This classification is feasible
for an expert having access to the equipped home but is difficult to obtain in other cases.
Therefore, in this thesis, it appears that we need to create our own living lab in order to
know exactly the instrumentation and the performed activities. This perfect knowledge
allows validating the methods using viable information.

The next section is thus dedicated to present the ambient assisted living test area
(AALTA) developed at the ENS Paris-Saclay to test and validate our AD and AR
methods.
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2.2 Ambient Assisted Living Test Area (AALTA)

The smart flat we equipped for this Ph.D. is presented and described in this section.
The activities to monitor we select to experiment our methods and sensors we installed
are given and justified. Finally, the experimental protocol to obtain our test database
is presented.

2.2.1 Description

Following our research of a smart home dataset corresponding to our needs, it appears
that the best way to experience our methods is to develop our own living lab. Since the
major need is a sufficient knowledge of the smart home to generate a dynamic expert
decomposition as explained section 1.2.3, a large home is not necessary.

An existing flat in the ENS Paris-Saclay campus has been lent. The floor plan of
this flat is given in figure 2.2.1. It can be decomposed into four different living zones:

• Zone A: entrance;
• Zone B: the bathroom;
• Zone C: the kitchen;
• Zone D: the sleeping zone.

Figure 2.2.1: The smart flat with its zones

Zone A: entrance.
The entrance is a space open to the kitchen and the sleeping zone and near the

bathroom. It is a transitory space between the kitchen and the bathroom. A wardroom
and a utility closet are installed in this entrance zone. Figure 2.2.2-a shows a picture of
this zone.

Zone B: bathroom.
The bathroom is a simple room with a sink placed on a two-door cupboard, a shower

cabin and toilets. Figure 2.2.2-b shows a picture of this bathroom.
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(a) (b)

Figure 2.2.2: Picture of the AALTA entrance (a) and bathroom (b).

Zone C: kitchen.
The kitchen was initially equipped with a fridge, five top cupboards, three bottom

cupboards (one near the fridge and two sideboards near to the bed, at the limit of the
kitchen zone), one top shelf, two hotplates a sink, five plugs, a table and four chairs. A
picture of this zone is visible in figure 2.2.3.

Concerning the object placement, the sugar, the coffee and the coffee filters are
placed on the first top cupboard starting from the extreme left (the closed with the
entrance), called Cupboard_Left. The tea bags are placed on the second one denoted
Cupboard_CenterLeft. The coffee and tea cups are placed on the third one noted
Cupboard_CenterRight.

Zone D: sleeping zone.
The sleeping zone is equipped with a bed, a window and a little shelf. This zone

delimited by two of the three kitchen bottom cupboards is not separated from the kitchen
using walls. Figure 2.2.4 shows this zone.
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Figure 2.2.3: Picture of the kitchen (before equipping sensors and machines).

Figure 2.2.4: Picture of the sleeping zone.
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2.2.2 Activities to monitor

As precise in section 1.2.1, in the real life application, the activities to be monitored
are fixed by the medical staff and depend on the inhabitant pathologies. In this living
lab, activities are chosen to be realistic while testing specific situations useful to discuss
the obtained results. For example, the following four specific cases are interesting to
observe:

1. An activity to monitor can be performed in a smart home zone in which no other
activity is performed. In this case, whatever the sensor placement is, the observed
events in this zone will obligatory be linked to this specific activity.

2. An activity can have two actions semantically closed but in practice very different
to perform,

3. An activity can be so similar to another one that the distinction of them can be
difficult;

4. In contrast to the previous point, two activities can be similar during a small part
of their realisations but not during the rest of it.

Therefore, to be able to discuss results obtained for those cases, three activities to
monitor have been chosen. These activities, denoted A1,A2 and A3 are selected among
all activities encountered during the literature study. The chosen activities are thus:

• Activity A1: Cooking;
• Activity A2: Hot beverage preparation;
• Activity A3: Use bathroom.

with, as action composing those activities, the following:

• Action prepare a ready-cooked dish linked to activity A1;
• Action make pasta linked to activity A1;
• Action make tea linked to activity A2;
• Action make coffee linked to activity A2;
• Action go to the toilets linked to activity A3;
• Action have a shower linked to activity A3.

Those hierarchical links are represented in the figure 2.2.5.

Figure 2.2.5: Hierarchical links between our activities and our actions.

As explained below, these four activities and their eight associated actions allow the
four specific cases previously enumerated:
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1. The activity A3 is an activity performed in an allocated zone where no other
activity is performed: the bathroom.

2. The actions prepare a ready-cooked dish and make pasta are linked to the same
activity cooking and are semantically comparable since these are two ways to
prepare food. But, in practice, the first action consists in taking a ready-cooked
dish in the fridge to warm it using a microwave oven. In contrast, the second
action implied to boil water, to cook pasta during some minutes, to drain them
and potentially to add sauce. These two actions are thus in practice radically
different.

3. The activity A2 is nearly identical to the prepare pasta action of the activity A1

when the inhabitant prepares tea by making water to boil on the hotplates.

4. Finally, by preparing the coffee, the activity A2 shares some action with the action
prepare pasta of A1 since it is necessary to fill the machines with water.

2.2.3 Sensor placement

Since the smart flat and the activities to monitor are now described, it is possible to
choose an efficient implementation of sensors to discover and recognise them.

In order to well understand the output given by the binary sensors, let’s recall what
represents an event for a binary sensor. Each sensor, denoted by an explicit name as
Kitchen|Cupboard_Bottom|Open can generate two events: one linked to the rising
edge of its binary information (thus denoted sensorName|1), the other one linked to
the falling edge (sensorName|0) (see figure 2.2.6).

Figure 2.2.6: Event emission from sensor binary information.

This flat was instrumented to detect the presented activities using four kinds of
binary sensors shown in figure 2.2.7.

• Door sensors, picture (a);
• Coupled door sensors and motion detectors, picture (b);
• Water flow sensors, picture (c);
• Smart outlets, picture (d).
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(a) (b) (c) (d)

Figure 2.2.7: Installed kinds of binary sensors.

Table 2.2.1: List of events logged in AALTA.

Id Event name Id Event name

e1 Bathroom|Door_PIR|Open|0 e22 Kitchen|Fridge_PIR|Open|1
e2 Bathroom|Door_PIR|Open|1 e23 Kitchen|Fridge_PIR|Presence|1
e3 Bathroom|Door_PIR|Presence|1 e24 Kitchen|Hotplate_bottom|Power|0
e4 Bathroom|Shower_Door|Open|0 e25 Kitchen|Hotplate_bottom|Power|1
e5 Bathroom|Shower_Door|Open|1 e26 Kitchen|Hotplate_top|Power|0
e6 Bathroom|Shower_Waterflow|Flow|0 e27 Kitchen|Hotplate_top|Power|1
e7 Bathroom|Shower_Waterflow|Flow|1 e28 Kitchen|Kettle|Power|0
e8 Bathroom|Sink_Waterflow|Flow|0 e29 Kitchen|Kettle|Power|1
e9 Bathroom|Sink_Waterflow|Flow|1 e30 Kitchen|Microwave_oven|Power|0
e10 Bathroom|Toilets_Waterflow|Flow|1 e31 Kitchen|Microwave_oven|Power|1
e11 Kitchen|Coffee_Machine|Power|0 e32 Kitchen|Sideboard_Left|Open|0
e12 Kitchen|Coffee_Machine|Power|1 e33 Kitchen|Sideboard_Left|Open|1
e13 Kitchen|Cupboard_Bottom|Open|0 e34 Kitchen|Sideboard_Right|Open|0
e14 Kitchen|Cupboard_Bottom|Open|1 e35 Kitchen|Sideboard_Right|Open|1
e15 Kitchen|Cupboard_CenterLeft|Open|0 e36 Kitchen|Sink_Waterflow|Flow|0
e16 Kitchen|Cupboard_CenterLeft|Open|1 e37 Kitchen|Sink_Waterflow|Flow|1
e17 Kitchen|Cupboard_CenterRight|Open|0 e38 Kitchen|Wardrobe|Open|0
e18 Kitchen|Cupboard_CenterRight|Open|1 e39 Kitchen|Wardrobe|Open|1
e19 Kitchen|Cupboard_Left|Open|0 e40 Entrance|Door_PIR|Open|0
e20 Kitchen|Cupboard_Left|Open|1 e41 Entrance|Door_PIR|Open|1
e21 Kitchen|Fridge_PIR|Open|0 e42 Entrance|Door_PIR|Presence|1

More specifically, the list of the forty-two sensor events used in AALTA is given in
Table 2.2.1.

The twenty sensors generating the forty-two events are placed on the smart home as
represented in the floor-plan figure 2.2.9 and in the picture visible figure 2.2.8.

Starting from these activities to monitor and the detailed knowledge of the equipped
flat, it is possible to give a coherent expert decomposition of activities in actions linked to
events. The decomposition we retained is detailed in figure 2.2.10. This decomposition
is used in chapter 3 to discover the activities to monitor.

By analysing this decomposition, we can see that, as wanted, the four different cases
of more or less important overlapping of sensors between activities are well present. We
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Figure 2.2.8: Kitchen view of the smart flat.

Figure 2.2.9: The smart flat with its binary sensors

have activities with actions sharing some sensors, others sharing a lot of sensors and the
activity A3 totally isolated.

The figure 2.2.11 briefly summarises our living lab network. Our sensors use the
Z-wave wireless communication protocol to emit or receive instructions. The Z-wave
protocol is a mesh network using low-energy radio waves to communicate from appliances
to appliances. And USB Z-wave controller plugs on a computer manage the networks
and receipt all information. This information is then transmitted to the computer to
analyse. The open-source software Jeedom, installed on the computer, is in charge to
record these information and to facilitate the human-machine interaction. This software
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Figure 2.2.10: Expert hierarchical decomposition of activities to monitor

is available at https://www.jeedom.com/site/en/soft.html.

Figure 2.2.11: Living lab sensor networks

Finally, the data generated by our instrumentation during experiments have the
format presented in figure 2.2.12.

Since the instrumented smart flat and the expert hierarchical decomposition of ac-
tivities are perfectly known, we can define an experimental protocol to generate and use
a test database.

2.2.4 Experimental protocol

In order to estimate the robustness of the approach, during our experiment phase,
activitiesA1, A2 andA3 are realised and observed a huge number of times by introducing
the following variations:
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2017-04-04 10:11:09 e22

2017-04-04 10:11:16 e21

2017-04-04 10:11:21 e31

2017-04-04 10:11:32 e23

2017-04-04 10:11:32 e30

2017-04-04 10:11:43 e35

2017-04-04 10:12:01 e34

...

Figure 2.2.12: Example of AALTA logs.

• the insertion of noisy events (i.e., events not linked with the performed activity)
during their realisation, for instance by wandering in the flat;

• some actions are interrupted;
• the execution order of elementary moves composing actions is changed;
• the action make tea is realised by two different ways: using the kettle or boiling

water with hotplates.

These variations focus the majority of possible noisy phenomena occurring during a
normal human life.

These activity realisations, split in different parts, compose a library of modular
activity performance. By ordering them in different order and following different rules,
it is possible to test several particular situations. On the one hand, to realise simple
test, we can use activities performed without noise timely place in an optimal order.
On the other hand, to test more difficult situations such as interrupted activities or a
direct succession of activities, we can use all kind of activity performance timely closed
or broken.

In order to run our methods onto an acceptable dataset, a learning sequence was
creating using a library containing realisations of activities to monitor. More precisely,
this database is generated using recorded activity instances placed in a random time
order and separated by a random number of random noisy events not belonging to the
performed activities. The resulting sequence is composed of 2087 events corresponding
to twenty realisations of each activity. This database generation method is presented in
figure 2.2.13.

First, to validate our methods, the activity recognition will be run over the learning
database to verify that we are able to recognise the activities used during the discovering
phase. Then, additional tests are run to analyse the robustness of our methods to
successions of activities. For all those experiments, the details about the placed activities
and their positions in the constructed database are kept. This information is used to
compare the methods results to the reality. This knowledge is for the validation process
only and is not needed for an application in the real world.
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Figure 2.2.13: Structure of the test sequence of observed events

Conclusion

Since the topic treated in this thesis is directly linked to an actual societal problem
needing concrete solutions, all methods presented in this thesis have to be applicable on a
real case. The methods development cannot be decoupled with the technical application.
Therefore, in this chapter, several living labs were presented and their usability to apply
our methods using their datasets was discussed. Unfortunately, the restrictions linked
to the assumptions make in chapter 1 make the currently known living labs not fully
adapted to our methods. These incompatibilities are mainly due to a lack of information
concerning the equipped smart homes.

To deal with this problem, a new living lab was developed at the ENS Paris-Saclay.
This ambient assisted living test area (AALTA) is presented in section 2.2. Object
and sensor placements are given and the expert decomposition needed in the activity
discovery method (presented in chapter 3 of the manuscript) is detailed. Finally, the
experimental protocol used to generate out test databases is developed and explained.
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Chapter

3
Activity Discovery

"If you want to know someone, don’t listen to what he says, but look what he does."
- Tenzin Gyatso, His holiness the 14th Dalai Lama-

Abstract

This chapter presents a probabilistic approach allowing to model activities
of daily living under the form of probabilistic finite-state automata. This
method uses as input a log of events recorded during a learning phase and
a hierarchical decomposition of activities to monitor to actions linked to the
instrumentation of the dwelling. Finally, this approach is applied to the
experimental smart flat to illustrate and validate its discovery method.
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Introduction

In this chapter, we present the first contribution of this thesis: a new activity dis-
covery (AD) method. We need to develop this innovative approach because of our
Assumption 4 incompatible with existing methods. Indeed, Assumption 4, stated in
section 1.2.2, rejects the possibility of labelling activities actually performed by the
monitored person during the learning period. Unfortunately, this information is usually
one of the mandatory inputs of AD methods.

Moreover, Assumption 2 consists in treating information coming from environmental
binary sensors only. Therefore, the method is free from performed activity knowledge
and uses only environmental and binary sensors.

One major asset of this approach is its portability. Indeed, it is applicable to each
smart home regardless of the inhabitant pathologies (e.g. a patient suffering from
Alzheimer do not need to help the process).

This approach models each activity to monitor by probabilistic finite-state automa-
ton (PFA). Lost information due to the rejection of the performed activity knowledge is
compensated by the addition of a specific expert knowledge which gives a hierarchical
decomposition of the activities into a set of actions observable using a given subset of
events among the smart home ones.

First of all, a theoretical picture of this new method is presented with the definitions
and notations that are needed for a better understanding.

Then this concept is illustrated with the study of a specific case that has been
described in the previous chapter.

3.1 Models and notations

In order to develop the proposed method, we first need to present the general no-
tions of discrete event system modelling such as alphabets and probabilistic finite-state
automata (PFA), as well as specific notations for this method.

As a beginning, we provide definitions for sensor events and activity instance as
defined in Cook and Krishnan (2015).

Definition 3.1 (Sensor event). An activity discovery method receives data from sensors
that are used to perceive the state of an individual and/or an environment. One of the
input data of an AD method is a sequence of sensor events. Each sensor event ei can
be seen as a tuple ei =< s, m > where s denotes a sensor ID and m denotes the sensor
message. As we threat only binary sensors (Assumption 2), the message can take two
values (rising and falling edge) as explain in figure 2.2.6.

Definition 3.2 (Activity instance). We define an activity instance or activity occurrence
as a subsequence of n sensor events e1e2...en. An activity represents the collection of all
of its instances. An activity model may represent an activity as an abstraction of this
collection of activity instances.

First of all, we give the formal definition of the expert decomposition as following:

Definition 3.3 (Expert decomposition). The expert decomposition needed in this thesis
can be described as a tuple:

decomposition = <lActivities, lActions, ΣT ot, LinkActivity/Action, LinkAction/Event>,
where:
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• lActivities is the list of activities to be monitored Ak;
• lActions is the list of actions Action k.h composing the activities;
• ΣT ot is the list of events e generated by the sensors in the smart home;
• LinkActivity/Action : lActivities→ lActions∗ is a function linking the activities and

the actions;
• LinkAction/Event : lActions→ ΣT ot

∗ is a function linking the actions and the events.

As seen in chapters 1 and 2, this expert decomposition can be graphically represented
as in figure 3.1.1.

Figure 3.1.1: Graphical representation of the hierarchical decomposition of activities
into actions linked to sensor events given by an expert.

In order to simplify the readability of equations and algorithms, the following nota-
tions are used:

• ΣActionk.h = LinkAction/Event(Actionk.h) is the set of events linked with the action
Actionk.h;

• ΣAk
is the set of events linked with the activity Ak. This set can be defined as

ΣAk
=

⋃
action∈LinkActivity/Action(Ak)

LinkAction/Event(action);

• LeAk
= card(ΣAk

) is the number of events hierarchically linked with the activity
Ak.

We are now able to give the definition of the used model type: the PFA. Probabilistic
finite state automata is the name of a syntactic object (i.e. it contains symbols, lists,
and constant values that essentially correspond to the quoted form of the expression)
which attempts to model and generate probabilistic distributions over a set of possible
infinite cardinality of strings or sequences. This object is defined as written in Vidal
et al. (2005a) and in the following.

Definition 3.4. : A PFA Ak is a tuple Ak = <QAk
, ΣAk

, δAk
, IAk

, FAk
, PAk

>, where:

• QAk
is a finite non-empty set of states q;

• ΣAk
is a non-empty alphabet of events e;

• δAk
⊆ QAk

× ΣAk
×QAk

is a set of transitions;
• IAk

: QAk
→ [0, 1] are the initial-state probabilities;

• PAk
: δAk

→ [0, 1] are the transition probabilities;
• FAk

: QAk
→ [0, 1] are the final-state probabilities;
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where IAk
, PAk

and FAk
are functions such that:

∑

q∈QAk

IAk
(q) = 1, (3.1)

and

∀q ∈ QAk
, FAk

(q) +
∑

e∈ΣAk
,q′∈QAk

PAk
(q, e, q′) = 1. (3.2)

PFAs are represented as directed labelled graphs. Figure 3.1.2 shows an example
of a PFA with four states: QAk

= {q0, q1, q2, q3} , with IAk
(q0) = 1 and IAk

(qi) = 0
for i ∈ {1, 2, 3}, and a four-symbol alphabet: ΣAk

= {a, b, c, d}. Each transition (resp.
state) is labelled by the linked event (resp. the state name) and its possibility to occur
(resp. its final probability).

Figure 3.1.2: Graphical representation of a PFA Ak (Vidal et al., 2005b).

In the following study, the term Ak is used to represent both activity k and the
PFA modelling this activity. When used in subscript of a symbol, Ak

represents the
PFA to which the symbol is linked. Moreover, we call structure of a PFA Ak the triplet
structure(Ak) = <QAk

, ΣAk
, δAk

> where all is known except probabilities.

In the given example, the transition (q0, a, q1) going from q0 to q1 and having a
probability PAk

(q0, a, q1) = 1/8 can be read as the probability, for the event generator
modelled by the PFAAk (shown figure 3.1.2) to reach state q1 from state q0 by generating
the event a.

According to Cassandras and Lafortune (2009), the key operation involved in building
strings (or sequences), from a set of events Σ is concatenation. The string abb is the
concatenation of the string ab with the event (or string of length one) b; ab is itself the
concatenation of a and b. The concatenation uv of two strings u and v is the new string
consisting of the events in u immediately followed by the events in v. The empty string
ǫ is the identity element of concatenation: uǫ = ǫu = u for any string u.

Furthermore, by defining Σ∗ as the Kleene-closure of the set of events Σ, i.e. the
infinite set of all possible sequences of elements of Σ, we can define the projection
function. This function is needed during our AD procedure in order to avoid noise
influence and its definition and is the following:
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Definition 3.5 (Projection function). The projection of w ∈ Σ∗ on alphabet ΣAk
is

noted Proj(w, ΣAk
) and defined as defined in (Cassandras and Lafortune, 2009):

Proj : Σ∗ → Σ∗
Ak

;

with:

Proj(ǫ, ΣAk
) = ǫ;

Proj(v, ΣAk
) =

{
v if v ∈ ΣAk

ǫ else
;

Proj(σv, ΣAk
) = Proj(σ, ΣAk

)Proj(v, ΣAk
) for σ ∈ Σ∗, v ∈ Σ;

As can be seen from the definition, the projection operation takes a string formed
from the larger event set (Σ) and erases events in it that do not belong to the smaller
event set (ΣAk

).

Finally, the following notations are also chosen to simplify the approach formulation:

• Σql
the alphabet of events associated with the transitions ongoing into the state

ql;
• wObs = eiej. . . en is a sequence of the observed events in the smart home. The

length of wObs (denoted
∣∣∣wObs

∣∣∣) corresponds to the number of events composing
the sequence;

• wObs
pk

= Proj(wObs, ΣAk
) is the projection of the sequence wObs on the alphabet

ΣAk
;

3.2 A systematic procedure for models generation

In this section, the objective is to model each activity Ak we want to monitor by a
PFA. To this aim, the structure of the PFA is first generated in 3.2.1. Then probabilities
are learned 3.2.3 thanks to a database splitting chosen in 3.2.2.

3.2.1 Generation of PFA structure

We know that for some methods (as in Oliver et al. (2002)) based on the Baum-Welch
algorithm (Baum, 1972), the structure is not very important. Indeed, probabilities are
computed iteratively without considering any semantic signification linked with the state
name. However, those methods are efficient only if the sequences given to each iterative
step are representative of the modelled activity.

Unfortunately, let’s recall that according to Assumption 4, in our proposed method
the knowledge of the performed activity is rejected. Thus, no representative sequences
can easily be extracted from the learning database. Therefore, in order to deal with this
information reject, an expert decomposition of activities into a hierarchy of actions and
events is used to generate activity PFA structures, which consequently matters to us.

First, for each action Actionk.h ∈ LinkActivity/Action(Ak) linked to the activity Ak,
we associate a state qh. Then, a unique initial state q0 not linked to any action is added
(as shown in figure 3.2.1). At this point, QAk

= {LinkActivity/Action(Ak) + q0}.
The objective is now to illustrate the links between the LeAk

events and the different
actions in the expert decomposition. We recall that an event of the smart home can be
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Figure 3.2.1: Example of the creation of a set of five states QAk
= {q0, q1, q2, q3, q4} from

an activity Ak decomposed into four actions (Action k.1 to k.4).

linked to zero, one or several actions of the same activity Ak. Only events linked with
at least one action of Ak are counted in LeAk

.

Thus, if we want to illustrate the capacity of an action Actionk.h to generate an
event ei during its performance (e.g. the ability to generate an event "Open the frigde"
when a ready-cook dish is prepared), a transition (qg, ei, qh) is added to the structure for
each couple of actions (qg, qh) and the event ei is added to the alphabet ΣAk

(see figure
3.2.2). Here, the state qh is the state representing the action Actionk.h and qg any state
of the model.

At this step, with card(QAk
) the number of states previously created, at most

card(QAk
)× LeAk

transitions are generated.

Figure 3.2.2: Example of the creation of five transitions {(q0, e4, q3), (q1, e4, q3),
(q2, e4, q3), (q3, e4, q3), (q4, e4, q3)} reflecting the link between the action N.3 and the
event e4

The structure, and thus the model, generated there has to be seen as an interpreter.
If we are incoming into a state qg linked with a given action, it signifies that we are
starting to perform this action. If we are staying in this state, by passing through
self-loops, we are carrying on the action.

At the end of this step, the structure of each PFA associated with an activity Ak

is fully known. In order to improve the figure readability, states are labelled by the
corresponding action name and q0 is labelled by "Initial". Fig. 3.2.3 shows a generic
overview of this structure generation starting from the expert decomposition.

The algorithm 1 gives a pseudo-code representation of this step. By analysing it,
we can observe that the complexity CAD1 of this AD step 1 is polynomial and can be
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expressed as follows:

CAD1 = O

(
card(lActivities)×

(
max

Ak

(
card(LinkActivity/Action(Ak))

))2

×max
Ak

(LeAk
)

)

(3.3)
with:

• card(lActivities) the number of activities to monitor;
• max

Ak

(
card(LinkActivity/Action(Ak))

)
the maximum number of actions links to the

same activity in the expert decomposition;
• max

Ak

(LeAk
) the maximum number of events; hierarchically linked to the same

activity in the expert decomposition. It maximises the number of events hierar-
chically linked to the same action.

Algorithm 1 AD step 1: Generation of a PFA structure
Require:

• A list of activities lActivities : {Ak} to monitor;
• A hierarchical decomposition activities/actions:

LinkActivity/Action(Ak) : {action k.1, action k.2, ...};
• A hierarchical decomposition actions/events:

Σaction k.h : {ei, ..., ej}

Ensure: A set of PFA structures Structures, one for each activity Ak.
1: // Global Initialisation:
2: Structures := ∅
3: // For loop over all activities:
4: for all Ak ∈ lActivities do
5: QAk

:= {Initial, }
6: ΣAk

:= ∅
7: δAk

:= ∅
8: // States creation:
9: for all action ∈ LinkActivity/Action(Ak) do

10: append action to QAk

11: end for
12: // Transitions and alphabet creation:
13: for all end_action ∈ QAk

− Initial do
14: for all begin_action ∈ QAk

do
15: for all event ∈ Σendaction do
16: append (begin_action, event, end_action) to δAk

17: if event /∈ ΣAk
then

18: append event to ΣAk

19: end if
20: end for
21: end for
22: end for
23: append < QAk

, ΣAk
, δAk

> to Structures
24: end for

At this point, all sequences w ∈ Σ∗
Ak

composed with events hierarchically linked with
the activity Ak are generated by the PFA structure. The constructed structure is non-
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deterministic since, starting from a state qg, several transition generating the same event
ei and outgoing to different states are existing. This indeterminism expresses the choice
to not promote any hypothesis on the comportment at this step of the discovery. This
kind of choice is thus reported to the probability computation and will be commented
at this step.

Once the PFA structures generated, the probabilities linked to each transition have
to be computed. Steps 3.2.2 and 3.2.3 explain the proposed solution.

Figure 3.2.3: From expert decomposition to PFA structure.
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3.2.2 Database of event logs exploration

As the PFA structure is now known, we need to get the probabilities of each tran-
sition (qg, ei, qh). To compute these values, we use a learning approach by observing
events during a learning period. Specific key indicators that can be extracted from this
observation help us to compute probabilities. Those indicators, described in the next
subsections, correspond to the count of some situation occurrences in the recorded event
database. The database consists of one or several long sequences of recorded events in
which we have to look for local succession of actions. These long sequences of events ob-
tained thanks to observation is usually divided into smaller segments in order to reduce
the needed computational resources. In the existing literature (Cook and Krishnan,
2015; Oliver et al., 2002), indicators values are obtained from several well-chosen se-
quences extracted from the learning database using a log of performed activities. Once
again in this work, the Assumption 4 excludes the use of this kind of log considered as a
non-suitable input of the problem and another way to divide the learning database has
to be used.

It exists different ways to divide such a huge sequence in several ones. The most
common approach is to split the sequence by considering a sliding subsequence of events.
In Krishnan and Cook (2014), authors present three common approaches for processing
such subsequence of events (see Figure 3.2.4):

(i) explicit segmentation;

(ii) time based windowing;

(iii) sensor event based windowing.

Figure 3.2.4: Common approaches for processing streaming data (from (Krishnan and
Cook, 2014))

Explicit Segmentation
In Junker et al. (2008), the streaming sensor events are segmented into chunks, each

chunk possibly corresponding to an activity. An example of this process is illustrated
in Figure 3.2.4. The segmentation process results in chunks C1, C2, ... , C6 obtained by
processing a naive activity recognition process. We can see that the process does not
result in exact activity boundaries (activity A1 is broken down to chunks C1 and C2).
This fact is common with all other segmentation algorithms. While the segmentation
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process could lead to chunks representing specific activities, it has some drawbacks. The
foremost one is that the approach has to wait for future data to make a decision on past
data rendering it a somewhat non-streaming approach. Furthermore, because of its
dependency on the future data, large temporal gaps in successive sensor events, which
are realistic in everyday routines, will result in the approach waiting for a long time
to make a decision on the past events. Finally, this approach also leads to additional
complexity issues of the segmentation process to be dealt with such as splitting and
merging chunks. This segmentation approach is particularly adapted with activities
having very distinct boundaries. Unfortunately this is not the usual scenario.

Time windows
The second approach to handle streaming data is to divide the entire sequence of

sensor events into equal size time intervals as illustrated in Figure 3.2.4 by the chunks
denoted by T1, T2,... , T9. This approach has been adopted by many researchers (Kr-
ishnan and Panchanathan, 2008; Van Kasteren et al., 2010). This technique offers a
simple approach to learn the activity models during the training phase over the explicit
segmentation approach. It further reduces the computational complexity of the explicit
segmentation process. This is a good approach when dealing with data obtained from
periodic generation of events. Data for every time interval is always guaranteed in such a
scenario. This is a common approach with accelerometers and gyroscopes, where data is
sampled at a constant rate from the sensors. However, one has to deal with the problem
of selecting the optimal length of the time interval. If a very small interval is chosen,
there is a possibility that it will not contain any relevant activity information. If the
time interval is too large, information belonging to multiple activities can be embedded
into it. Hence, the activity that dominates the time interval will have a greater influence
in the classification decision. This problem manifests itself when dealing with sensors
that do not have a constant sampling rate. In the current context of motion and door
sensor events, it is very likely that some time intervals do not have any sensor events
in them (e.g., T6 in Figure 3.2.4). Then heuristics have to be developed to extend the
activity occurring in the previous time intervals to the current time interval.

Sensor Windows
The third approach for sensor stream processing is to divide the sequence into win-

dows containing an equal number of sensor events. This is illustrated in figure 3.2.4
by the chunks S1, S2, ... , S26. It is evident that the windows appear to vary in their
duration. This is fine considering that during the performance of activities, multiple
sensors could be triggered, while during silent periods, there will not be many sensor
firings. The sensor events preceding the last event in a window define the context for
the last event. This method also has some inherent drawbacks. For example, consider
the chunk S13, in Figure 3.2.4. The last sensor event of this chunk corresponds to the
beginning sensor event of activity A2. There is a significant time lag between this event
and its preceding sensor event. The relevance of all the sensor events in this chunk on
the last event might be small if the time lag is large. While by itself this approach
may not be alluring, modifying it to account for the relationship between the sensor
events is a good method to process the stream of sensor events. This approach offers
computational advantages over the explicit segmentation process and does not require
future sensor events for classifying past sensor events.

Therefore, sensor windowing is preferred in this work since we have activities with
a variable duration and separated with a variable delay. Furthermore, let’s recall that
the idea behind the dataset splitting is to compute some indicators traducing the event
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sensors relationship. Those indicators can thus be used to compute the model proba-
bilities by learning as presented in the next subsection. However the algorithm 2 giving
a pseudo-code representation of the complete step 2 is presented here. By analysing it,
we can observe that the time complexity CAD2 of this AD step 2 is linear and can be
expressed as follows:

CAD2 = O
(
(|LearningDB| −

∣∣∣wObs
∣∣∣)× card(Structures)×

∣∣∣wObs
∣∣∣
)

(3.4)

with:
• (|LearningDB| −

∣∣∣wObs
∣∣∣) the number of windows obtained by sliding;

• card(Structures) = card(lActivities) the number of activities to monitor;
•
∣∣∣wObs

∣∣∣ the length of the learning windows.

3.2.3 Probabilities computation

As precise in the PFA definition in subsection 3.1, each transition (qg, ei, qh) repre-
sents the fact that, during the activity performance, the inhabitant performs successively
the action qg then qh and that the first event of the action qh generated by this transi-
tion is the event ei. Therefore, probabilities PAk

(qg, ei, qh) linked to transition (qg, ei, qh)
represents the probability, for an inhabitant performing the activity Ak to generate the
event ei by changing from action qg to action qh.

In order to compute those probabilities, it is first necessary to avoid the influence of
noise on the computation precision. To this aim, for each activity, a projection of the
sliding window wObs presented above (subsection 3.2.2 and in figure 3.2.4) on the activity
alphabet ΣAk

is performed. The obtained sequence wObs
pk

is, as defined in subsection 3.1,
generated by removing the events ei /∈ ΣAk

from wObs.

The transition (qg, ei, qh) can be seen as a consequence of two different and indepen-
dent human decisions:

• the choice to perform the action qh after the action qg;
• the choice to perform a move generating event ei as first observable move following

the action change decision.

Probabilistically thinking, this point of view is equivalent to decompose the prob-
ability P (qg, ei, qh) as the product of two probabilities: the probability to move from
action qg to action qh and the probability to generate ei during this change. Thus, we
have:

P (qg, ei, qh) = P (qg → qh|qg)× P (ei|qg → qh) (3.5)

By supposing than we have enough knowledge to directly count changes linked with
each probability and that N(qg → qh|qg) and N(ei|qg → qh) denote the number of
occurrences of transitions from qg to qh and the occurrences of event ei conditioned to
the transition ql → qm during the run period, respectively, we know that:

P (qg → qh|qg) =
N(qg → qh|qg)
∑

qn∈QAk

N(qg → qn|qg)
(3.6)

P (ei|qg → qh) =
N(ei|qg → qh)
∑

ej∈ΣAk

N(ej|qg → qh)
(3.7)
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Algorithm 2 AD step 2: Database of event logs exploration
Require:

• A set of PFA Structures
Structures : {< QA1 , ΣA1 , δA1 > ... < QAk

, ΣAk
, δAk

>};
• A learning database of events LearningDB = [e1, e5, ..., ei, ..., ej];
• A sliding window length

∣∣∣wObs
∣∣∣.

Ensure:
• The dictionary dictOccurs with keys (Ak, ei) and values representing {Nk

ei
};

• The dictionary dictInits with keys (Ak, ei) and values representing {Nk
init ei

};
• The dictionary dictFollows with keys (Ak, ei, ej) and values representing
{Nk

ei→ej
}.

1: // Global Initialisation:
2: dictOccurs := ∅
3: dictInits := ∅
4: dictFollows := ∅
5: // For all windows of length

∣∣∣wObs
∣∣∣ in the learning database |LearningDB|:

6: for index := 1 to |LearningDB| −
∣∣∣wObs

∣∣∣+ 1 do

7: wObs := LearningDB[index to index +
∣∣∣wObs

∣∣∣− 1]
8: // For all activity structure (and by extension, for all activities):
9: for all < QAk

, ΣAk
, δAk

>∈ Structures do
10: wObs

pk
= Proj(wObs, ΣAk

)
11: // Nk

init ei
incrementation:

12: if key (Ak, wObs
pk

[1]) ∈ dictInits then
13: dictInits[(Ak, wObs

pk
[1])] := dictInits[(Ak, wObs

pk
[1])] + 1

14: else
15: dictInits[(Ak, wObs

pk
[1])] := 1

16: end if
17: // Nk

ei
incrementation:

18: for all event ei ∈ wObs
pk

do
19: if key (Ak, ei) ∈ dictOccurs then
20: dictOccurs[(Ak, ei)] := dictInits[(Ak, ei)] + 1
21: else
22: dictOccurs[(Ak, ei)] := 1
23: end if
24: end for
25: // Nk

ei→ej
incrementation:

26: for index_couples := 1 to |wObs
pk
| − 2 + 1 do

27: ei := wObs
pk

[index_couples]
28: ej := wObs

pk
[index_couples + 1]

29: if key (Ak, ei, ej) ∈ dictFollows then
30: dictFollows[(Ak, ei, ej)] := dictFollows[(Ak, ei, ej)] + 1
31: else
32: dictFollows[(Ak, ei, ej)] := 1
33: end if
34: end for
35: end for
36: end for
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Unfortunately, due to the same reasons as those explained in chapter 1 leading us to
reject the performed activities knowledge as a reliable input, we cannot consider the more
detailed performed action knowledge as an input. Thus, the values of N(qg → qh|qg)
and N(ei|qg → qh) have to be estimated using observable occurrences or successions of
events. The retained countable indicators are the following and figure 3.2.5 represents
the complete procedure from the windowing to the indicators count.

• Nk
ei

: number of times where event ei is observed in the sequence wObs
pk

;
• Nk

init ei
: number of times where event ei is the first event of the projected sequence

wObs
pk

;
• Nk

ei→ej
: number of times where event ej follows event ei in the projected sequence

wObs
pk

.

Figure 3.2.5: Sliding sensor window and indicator computation

Using these counters, the values of N(qg → qh|qg) and N(ei|qg → qh) are estimated
as follows:

Ñ(qg → qh|qg) =





∑

ei∈Σqh

1
Cei

Nk
init ei

if qg = q0

∑

ei,ej∈Σqh

Nk
ei→ej

if qg = qh 6= q0

∑

ei∈Σqg ;ej∈Σqh
;ej /∈Σqg

1
Cej

Nk
ei→ej

if qg 6= qh 6= q0

(3.8)

and

Ñ(ei|qg → qh) = Nk
ei

if ei ∈ Σqh
; 0 otherwise, (3.9)

where Cej
is the number of states hierarchically linked in input with ej.

When a human starts a new action, the performed move has no reason to be de-
pendant with the past action. Therefore, in equation (3.9), the occurrence of ei is
independent from the starting action qg but depends only on the reached action qh.

In addition, when an event linked to two actions are observed, two cases can be
considered. First, the human is changing action. Secondly, the human continue the
current performed action. But, since the first observable move can be linked to the
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previous action as well as the possible new one, a choice has to be done. In equation
(3.8), the choice to count the event occurrence as linked to the previous action is done.

In equation (3.8), three cases are distinguished:

1. if qg = q0, initial indicators Nk
init ei

are considered,
2. if qg = qh then only succession of two events linked to qg are considered as precise

before,
3. if qg 6= qh then the succession of two events both linked to qg and qh is not

considered.

The factor 1
Cej

shares each occurrence of event ej between all states possibly concerned.

Finally, using the automatically computed frequency indicators Nk
ei

, Nk
init ei

and
Nk

ei→ej
the probabilities P (qg, ei, qh) are defined as following:

P (qg, ei, qh) = P (qg → qh|qg)× P (ei|qg → qh)

with:

P (qg → qh|qg) =
Ñ(qg → qh|qg)
∑

qn∈QAk

Ñ(qg → qn|qg)

P (ei|qg → qh) =
Ñ(ei|qg → qh)
∑

ej∈ΣAk

Ñ(ej|qg → qh)

and N(qg → qh|qg) (resp. N(ei|qg → qh)) as defined in (3.8) (resp. (3.9))

(3.10)

At this point, for each activity Ak, we define:

IAk
(qh) = 1 if qh = q0; 0 otherwise; (3.11)

and PAk
= {P (qg, ei, qh)∀(qg, ei, qh) ∈ δAk

}.

As the inhabitant of a smart home can decide to stop an activity at any time and
anywhere, define a final probability is nonsense. Therefore, in our models, FAk

= ∅.

The algorithm 3 gives a pseudo-code representation of this step. By analysing it, we
can observe that the time complexity CAD3 of this AD step 3 is polynomials considering
the number of actions linked to activities, linear considering the rest and can be expressed
as follows:

CAD3 = O
(

card(Structures)×max
Ak

(card(QAk
))×

(
max

Ak

(card(QAk
)) + max

Ak

(LeAk
)
))

(3.12)
with:

• card(Structures) = card(lActivities) the number of activities to monitor;
• max

Ak

(card(QAk
)) the maximum number of actions links to the same activity;

• max
Ak

(LeAk
) the maximum number of events linked to the same activity.
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Algorithm 3 AD step 3: Probabilities computation
Require:

• A set of PFA Structures
Structures : {< QA1 , ΣA1 , δA1 > ... < QAk

, ΣAk
, δAk

>};
• Three dictionaries of counters:

– The dictionary dictOccurs with keys (Ak, ei) and values {Nk
ei
};

– The dictionary dictInits with keys (Ak, ei) and values {Nk
init ei

};
– The dictionary dictFollows with keys (Ak, ei, ej) and values {Nk

ei→ej
}.

Ensure: A set of PFAs PFAs : {Ak} modelling the activities to monitor
1: //Global Initialisation:
2: PFAs := ∅
3: // For all activity structures (and by extension, for all activities):
4: for all < QAk

, ΣAk
, δAk

>∈ Structures do
5: IAk

(Initial) := 1
6: for all state ∈ QAk

− Initial do
7: IAk

(state) := 0
8: end for
9: FAk

:= ∅
10: PAk

:= ∅ (dictionary of probabilities)
11: // Computation of the different Ñ needed:
12: for all end_action ∈ QAk

− Initial do
13: for all begin_action ∈ QAk

do
14: if begin_action = Initial then
15: Ñ(Initial→ end_action) :=

∑
ei∈Σend_action

1
Cei

Nk
init ei

16: else if beginaction = endaction then
17: Ñ(end_action→ end_action) :=

∑
ei,ej∈Σend_action

Nk
ei→ej

18: else

By applying this probability computation for each activity to monitor, the AD is
fully performed. Indeed, at the end of the probability computation, we have a complete
PFA Ak = <QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
> modelling each activity with QAk

, ΣAk
, δAk

defined in subsection 3.2.1 and IAk
, FAk

, PAk
defined in this subsection 3.2.3.

Finally, by applying the three steps of AD models building, the complexity CAD of
the proposed method is:

CAD = CAD1 + CAD2 + CAD3 ; (3.13)

Thus we have:

CAD = O

(
card(lActivities)×

(
max

Ak

(
card(LinkActivity/Action(Ak))

))2

×max
Ak

(LeAk
)

)

+ O
(
(|LearningDB| −

∣∣∣wObs
∣∣∣)× card(Structures)×

∣∣∣wObs
∣∣∣
)

+ O
(

card(Structures)×max
Ak

(card(QAk
))×

(
max

Ak

(card(QAk
)) + max

Ak

(LeAk
)
))

(3.14)
In practice, the number of actions linked to an activity (card(QAk

) can be considered
as negligible compared to the number of events linked to the same activity (LeAk

). Thus,
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19: Ñ(begin_action→ end_action) :=
∑

ei∈Σbegin_action
ei /∈Σend_action
ej∈Σend_action

1
Cej

Nk
ei→ej

20: end if
21: end for
22: for all event ∈ ΣAk

do
23: if event ∈ Σend_action then Ñ(event|end_action) := dictOccurs[(Ak, event)]
24: elseÑ(event|end_action) := 0
25: end if
26: end for
27: end for
28: // Computation of the probabilities:
29: for all begin_action ∈ QAk

do
30: temporary_sum_1 :=

∑
qn∈QAk

Ñ(begin_action→ qn)

31: for all end_action ∈ QAk
− Initial do

32: P (begin_action→ end_action) := Ñ(begin_action→end_action)
temporary_sum_1

33: end for
34: end for
35: for all end_action ∈ QAk

− Initial do
36: temporary_sum_2 :=

∑
ej∈ΣAk

Ñ(ej|end_action)

37: for all event ∈ ΣAk
do

38: P (event|end_action) := Ñ(event|end_action)
temporary_sum_2

39: end for
40: end for
41: for all (begin_action, event, end_action) ∈ δAk

do
42: PAk

[(begin_action, event, end_action)] := P (begin_action → end_action) ×
P (event|end_action)

43: end for
44: end for

the complexity of the three AD is polynomial and can be approximated to:

CAD = O

([
(|LearningDB| −

∣∣∣wObs
∣∣∣)×

∣∣∣wObs
∣∣∣+

(
max

Ak

(card(QAk
))
)2

+ max
Ak

(LeAk
)

]

×
(

max
Ak

(card(QAk
))
)2

card(lActivities)

)

(3.15)

In order to illustrated the presented AD method, an application is made in the next
section.
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3.3 Application to the Case Study

In this section, the presented AD method is applied to the case study presented in
section 2.2 and the generation of the three activity models are presented and discussed.

3.3.1 Generation of PFA structure

In order to generate PFAs structures, we start from the expert hierarchical decom-
position of activities into actions then into events given in figure 2.2.10 and recall in
figure 3.3.1. In the proposed method, the activities to be monitored are fixed by the
medical staff and the expert instruments smart homes specifically to observe the activ-
ities. Additionally, the expert completes the medical knowledge by linking the actions
composing the activities and the implemented sensors.

Figure 3.3.1: Expert hierarchical decomposition of activities to monitor and merge
groups Mel for representation

In this case study, we have to generate three PFAs A1,A2 and A3 modelling the
three activities A1: cooking, A2: hot beverage preparation and A3: use bathroom.
As recalled in the previous section, activities are decomposed in actions (two for each
activity) themselves linked to events. Some events are shared between actions of the
same activity as well as between activities. As our AD procedure threats independently
each activity, the phenomenon of shared events between activities will not influence the
aspect of our PFA structures. Thus, if the expert decides to modify its hierarchical
decomposition for a unique activity (e.g. due to a new equipment implementation), the
learning can be re-performed for this activity only without to change other models.

Figures 3.3.3 shows the structure generation of the activities A1. The structure
generations of the activities A2 and A3 are reported in appendix B. For a readability
issue of the intermediate models in the figures, events linked with the same actions are
merged to label the same arrow. This merge is a graphical simplification only. At the
end of this step, only the developed structured is kept. In the probability computation
step, a different probability will be associated with each event and thus, this graphical
merge will not be applicable any more. The made merge group Mel are visible in figure
3.3.1 and the figure 3.3.2 shows how to read this graphical simplification on a simple
example involving the merge group Me1. The complete final structure is represented in
the last cell of each explicative figures.
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At this point, the structures of the three activities A1: Cooking, A2: Hot beverage
preparation and A3: Use bathroom are fully known.

Figure 3.3.2: (a) Developed representation; (b) Merged representation to improve read-
ability.

States creation QA1 ={Prepare a
ready-cooked dish, Make pasta, Initial}

Creation of transitions reflecting the link of
the action Prepare a ready-cooked dish with

the merge group Me1

Creation of transitions reflecting the link of
the actions Prepare a ready-cooked dish and

Make pasta with the merge group Me2

Creation of transitions reflecting the link of
the action Make pasta with the merge

group Me3
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Creation of transitions reflecting the link of
the action Make pasta with the merge

group Me4

Creation of transitions reflecting the link of
the action Make pasta with the merge

group Me6

Activity A1 PFA structure (Merge groups are developed)

Figure 3.3.3: Generation of the activity A1 (Cooking) PFA structure.

3.3.2 Database of event logs exploration

Once the structures of activities are known, we can compute probabilistic indicators
linked to each activity Ak presented in the previous section. These indicators will be
extracted from the learning database generated as explained in Chapter 2.2.4. To do so,
for the reasons explained before, the learning database is split in several sequences by
sliding a window of a fix number of events. As the global learning database is composed
of 1044 events and is therefore too long for being extensively treated, three short sub-
sequence wObs

A1
, wObs

A2
and wObs

A3
of this global database will be used in this subsection to

illustrate the indicators computation procedure. Each example subsequence represents
a part of an occurrence of activities A1,A2 and A3, respectively.

The chosen sequences used to illustrate the indicators computation are:

• wObs
A1

= e23 e14 e13 e37 e36 e23 e33 e32 e35

• wObs
A2

= e36 e29 e28 e23 e16 e15 e18 e17

• wObs
A3

= e39 e38 e2 e1 e4 e7 e6 e5 e3

Furthermore, those three retained sequences are representatives of three particular
situations. Indeed:

• wObs
A1

is an activity A1 performance of an activity sharing a lot of events with
another one (wObs

A2
),
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• wObs
A2

is an activity A2 performance of an activity sharing a little part of events
with an other one (wObs

A1
),

• wObs
A3

is an activity A3 performance of an activity sharing no event with any other
ones.

Table 3.3.1 shows the incrementation of the different counters during the analysis of
the subsequences wObs

A1
. Treatment of sequences wObs

A2
and wObs

A3
are given in appendix C.

Values of the indicators Nk
ei

,Nk
init ei

and Nk
ei→ej

given in this case are initialised to zero at
the beginning of the example treatment. Therefore, even if the analysed sequences are
extracted from the case study database, the values taken by the counters are illustrative.
The real values of our counters linked with the activity A1 at the end of the learning
period are given in the tables 3.3.2 to 3.3.4.

By analysing the count operation shown figures 3.3.1 and in annexe C, we can see
than the same occurrence of an event is counted several time. For example, if not
detected at the beginning or at the end of the learning database, the value Nk

ei
of an

event ei will be equal to the length of the sliding window multiply by the number of
the event occurrences. Therefore, in figure 3.3.4, most of the events have a number Nk

ei

proportional to 5. This multiple count of the same occurrence is existing in the other
indicators also. As the probabilities computation will consist in doing a ratio between
all occurrences, this multiple count is not an issue.

At this step, all indicators are computed for each activity Ak and we are now able
to compute the transition probabilities.
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Table 3.3.1: Counting example during the activity A1 performance.
sequence wObs

A1
= e23 e14 e13 e37 e36 e23 e33 e32 e35

sliding windows projected
sequences

A1 indicators
changes

A2 indicators
changes

A3 indicators
changes

Initial ∅ N1
ei

= 0
∀ei ∈ ΣA1

N2
ei

= 0
∀ei ∈ ΣA2

N3
ei

= 0
∀ei ∈ ΣA3

e23e14e13e37e36 wObs
p1

: e14e13e37e36

wObs
p2

: e14e13e37e36

wObs
p3

: ∅

N1
init e14

← 1
N1

e14
← 1

N1
e13
← 1

N1
e37
← 1

N1
e36
← 1

N1
e14→e13

← 1
N1

e13→e37
← 1

N1
e37→e36

← 1

N2
init e14

← 1
N2

e14
← 1

N2
e13
← 1

N2
e37
← 1

N2
e36
← 1

N2
e14→e13

← 1
N2

e13→e37
← 1

N2
e37→e36

← 1

∅

e14e13e37e36e23 wObs
p1

: e14e13e37e36

wObs
p2

: e14e13e37e36

wObs
p3

: ∅

N1
init e14

← 2
N1

e14
← 2

N1
e13
← 2

N1
e37
← 2

N1
e36
← 2

N1
e14→e13

← 2
N1

e13→e37
← 2

N1
e37→e36

← 2

N2
init e14

← 2
N2

e14
← 2

N2
e13
← 2

N2
e37
← 2

N2
e36
← 2

N2
e14→e13

← 2
N2

e13→e37
← 2

N2
e37→e36

← 2

∅

e13e37e36e23e33 wObs
p1

: e13e37e36e33

wObs
p2

: e13e37e36

wObs
p3

: ∅

N1
init e13

← 1
N1

e13
← 3

N1
e37
← 3

N1
e36
← 3

N1
e33
← 1

N1
e13→e37

← 3
N1

e37→e36
← 3

N1
e36→e33

← 1

N2
init e13

← 1
N2

e13
← 3

N2
e37
← 3

N2
e36
← 3

N2
e13→e37

← 3
N2

e37→e36
← 3

∅

e37e36e23e33e32 wObs
p1

: e37e36e33e32

wObs
p2

: e37e36

wObs
p3

: ∅

N1
init e37

← 1
N1

e37
← 4

N1
e36
← 4

N1
e33
← 2

N1
e32
← 1

N1
e37→e36

← 4
N1

e36→e33
← 2

N1
e33→e32

← 1

N2
init e37

← 1
N2

e37
← 4

N2
e36
← 4

N2
e37→e36

← 4

∅

e36e23e33e32e35 wObs
p1

: e36e33e32e35

wObs
p2

: e36

wObs
p3

: ∅

N1
init e36

← 1
N1

e36
← 5

N1
e33
← 3

N1
e32
← 2

N1
e35
← 1

N1
e36→e33

← 3
N1

e33→e32
← 2

N1
e32→e35

← 1

N2
init e36

← 1
N2

e36
← 5

∅
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Table 3.3.2: N1
ei→ej

values for the activity A1, with ei in column and ej in line (e.g.
N1

e13→e24
= 7).

e13 e14 e21 e22 e24 e25 e26 e27 e28 e29 e30 e31 e32 e33 e34 e35 e36 e37

e13 0 0 0 0 7 4 0 0 0 0 0 0 0 0 0 6 0 65
e14 86 0 0 0 4 0 4 4 0 0 0 0 0 0 0 0 0 0
e21 0 0 0 0 0 0 0 0 0 0 0 36 0 0 0 4 0 0
e22 0 0 40 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
e24 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
e25 0 0 0 0 4 0 0 0 4 0 0 0 0 15 0 0 0 0
e26 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e27 4 4 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0
e28 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
e29 0 4 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
e30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 11 0 0
e31 0 0 4 0 0 0 0 0 0 0 9 8 0 0 0 15 0 0
e32 0 3 0 0 4 0 0 0 0 0 0 0 0 4 0 20 0 3
e33 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 0 0
e34 0 9 0 0 3 0 6 2 0 0 14 0 0 0 0 0 0 0
e35 0 0 0 0 0 0 0 0 0 0 4 0 0 0 66 0 0 0
e36 0 0 0 0 0 25 0 11 0 32 0 0 0 3 0 0 0 0
e37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 106 0

Table 3.3.3: N1
init ei

values for the activity A1 (e.g. N1
init e13

= 35).

e13 e14 e21 e22 e24 e25 e26 e27 e28 e29 e30 e31 e32 e33 e34 e35 e36 e37
35 99 11 52 18 11 10 8 32 13 23 12 11 27 20 29 44 81

Table 3.3.4: N1
ei

values for the activity A1 (e.g. N1
e13

= 132).

e13 e14 e21 e22 e24 e25 e26 e27 e28 e29 e30 e31 e32 e33 e34 e35 e36 e37
132 126 55 55 40 40 20 25 45 45 50 60 55 55 90 90 150 149
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3.3.3 Probabilities computation

At this point, structures of activities A1, A2 and A3 are established and needed
indicators for the probabilities computation are known. Thus, all needed information is
in our hands to compute our model probabilities.

In order to illustrate this computation step, application of equations (3.8) to (3.10)
for some transitions of the activity A1 are now presented. These application examples
use indicator values shown tables 3.3.2 to 3.3.4.

Application to the transition (Initial, e13, Make P asta) (case qg = q0 of
equation (3.8)):

According to equation (3.10), we have:

P (Initial,e13,Make P asta)=P (Initial→Make P asta|Initial)×P (e13|Initial→Make P asta)

with:

P (Initial→Make Pasta|Initial) =
Ñ(Initial→Make Pasta|Initial)

∑
qn∈QA1

Ñ(Initial→ qn|Initial)

P (e13|Initial→Make Pasta) =
Ñ(e13|Initial→Make Pasta)
∑

ej∈ΣA1

Ñ(ej|Initial→Make Pasta)

(3.16)

According to equation (3.8):

Ñ(Initial→Make Pasta|Initial) =
∑

ei∈ΣMake P asta

1
Cei

N1
init ei

= N1
init e13

+ N1
init e14

+ N1
init e24

+ N1
init e25

+
N1

init e26
+ N1

init e27
+ N1

init e28
+ N1

init e29
+

N1
init e32

+ N1
init e33

+ 1
2
N1

init e34
+ 1

2
N1

init e35
+

N1
init e36

+ N1
init e37

= 35 + 99 + 18 + 11 +
10 + 8 + 32 + 13 +
11 + 27 + 20/2 + 29/2 +
44 + 81

= 413.5

(3.17)

Analogously, we can find:

Ñ(Initial→ Prepare a ready cooked dish|Initial) = 122.5 (3.18)

thus:
P (Initial→Make Pasta|Initial) =

413.5
413.5 + 122.5

≃ 0.7714 (3.19)

Then, according to equation (3.9):
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Ñ(e13|Initial→Make Pasta) = N1
e13

= 132
and∑

ej∈ΣA1

Ñ(ej|Initial→Make Pasta) = 132 + 126 + 40 + 40 + 20 + 25 + 45

+ 45 + 55 + 55 + 90 + 90 + 150 + 149

= 1062
(3.20)

thus:
P (e13|Initial→Make Pasta) =

132
1062

≃ 0.1243 (3.21)

Finally, the probability P (Initial, e13, Make Pasta) is:

P (Initial, e13, Make Pasta) =
413.5

413.5 + 122.5
×

132
1062

≃ 0.0959 (3.22)

Application to the transition (Make P asta, e13, Make P asta) (joining
cases qg = qh and qg 6= qh 6= q0 of equation (3.8)):

According to equation (3.10), we have:

P (Make P asta,e13,Make P asta)=P (Make P asta→Make P asta|Make P asta)×P (e13|Initial→Make P asta)

with:
P (Make Pasta→Make Pasta|Make Pasta) = Ñ(Make P asta→Make P asta|Make P asta)∑

qn∈QA1

Ñ(Make P asta→qn|Make P asta)

P (e13|Make Pasta→Make Pasta) = Ñ(e13|Make P asta→Make P asta)∑
ej ∈ΣA1

Ñ(ej |Make P asta→Make P asta)

(3.23)
According to equation 3.8:

Ñ(Make Pasta→Make Pasta|Make Pasta) =
∑

ei,ej∈ΣMake P asta

N1
ei→ej

= N1
e13→e13

+ N1
e13→e14

+ N1
e13→e24

+ N1
e13→e25

+ N1
e13→e26

+ N1
e13→e27

+ ...
= 590

(3.24)

and

Ñ(Make Pasta→ Prepare a ready cooked dish|Make Pasta)

=
∑

ei∈ΣMake P asta

ej∈ΣP repare a ready cooked dish

ej /∈ΣMake P asta

1
Cej

N1
ei→ej

= N1
e13→e21

+ N1
e13→e22

+ N1
e13→e30

+ N1
e13→e31

+ N1
e14→e21

+ N1
e14→e22

+ ...
= 21

(3.25)

thus:

P (Make Pasta→Make Pasta|Initial) =
590

590 + 21
≃ 0.9656 (3.26)

Concerning the probability for the event to occur, according to equation 3.9, Ñ(ei|qg →
qh) does not depend on qg: P (ei|qg → qh) = P (ei|q

′
g → qh)∀qg, q′

g ∈ QAk
. Its give us:
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P (e13|Make Pasta→Make Pasta) = P (e13|Initial→Make Pasta) =
132
1062

≃ 0.1243

(3.27)
Finally, the probability P (Make Pasta, e13, Make Pasta) is as follows:

P (Make Pasta, e13, Make Pasta) =
590

590 + 21
×

132
1062

≃ 0.1200 (3.28)

By automatically apply those methods to all transitions, we obtain the complete
activity A1, A2 and A3 models presented in figures 3.3.4,3.3.5 and 3.3.6, respectively.
Those models will be discussed in the next section and they will be used as input models
of the example in the next chapter.
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Figure 3.3.4: Final A1 Cooking model.
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Figure 3.3.5: Final A2 Hot beverage preparation model.
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Figure 3.3.6: Final A3 Use bathroom model.
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3.4 Discussion

By analysing the model of the activity A1 shown in figure 3.3.4, we can observe that
the most observed event e36 (observed 150 times in a sequence of 1044 events) of this
activity is the one with the highest probability in the model for each couple of actions in
which it is implied. This result was expected since, for a fixed state transition qg → qh,
the probability P (qg, ei, qh) is directly proportional to the counter Nk

ei
(equations (3.10)

and (3.9)).

This logic, expected and wanted property can be a disadvantage since, if shared
between several activities, it is impossible to distinguish occurrences of its events is
arriving with one activity or with another one. The most observed events e36 and e37 of
the activity A1 are submitted to this skewed since their are also linked to the activity
A2, especially with the action make tea of A2.

In the presented method, we consider important to have this drawback in mind during
the use of the models. This drawback is unavoidable without to record the activity
performed by the inhabitant during the learning period. However, the main advantage
of this method is precisely not to use this knowledge (Assumption 4), systematically
difficult to obtain and not reliable. The pointed out drawback is negligible in comparison
with the use of a potentially faulty input.

Conclusion

In this chapter, an approach for activity of daily living discovery was proposed and
illustrated. A procedure to model activities by probabilistic finite-state automata was
developed based on the knowledge of a training event logs database and the decompo-
sition of activities into actions expertly linked with the smart home events. The main
advantage of this method is related to the Assumption 4 of this thesis avoiding the use
of activity labelling during the learning phase to generate the models.
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Chapter

4
Activity Recognition

"Never ignore coincidence. Unless, of course, you’re busy.
In which case, always ignore coincidence."

- The 11th Doctor -
Steven Moffat, Doctor Who, Season 5, Episode 12: The Pandorica Opens

Abstract

This chapter proposes an approach allowing to recognise in real time
which activity is being performed by an inhabitant. For that, a new proba-
bilistic distance is proposed and the robustness of this indicator as well as its
computational complexity are discussed. Finally, the quality of the obtained
results are shown on the basis of experiments performed in the experimental
smart flat.
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Introduction

In this chapter, the second main contribution of this thesis is presented: a new
activity recognition (AR) method. Activity recognition consists in determining on-line,
potentially in real-time if required, the activity performed by a smart home inhabitant
during its operation. To this aim, the group {inhabitant + smart home} is considered
as an event generator and the activities to monitor are modelled by PFAs. As explained
in section 4.3, in the literature, it exists several methods to recognise which PFA, among
several, generates a given sequence if the compared PFAs have the same alphabet ΣAk

.
Otherwise, if PFAs do not share the same alphabet, existing methods are not applicable.
Unfortunately, our models generated in chapter 3, are linked to several activities of daily
living and have different alphabets. Therefore, the new AR method presented in this
chapter is needed.

A common point between the existing methods (Van Kasteren et al., 2008; Kel-
lokumpu et al., 2005) and ours is the definition and the use of a distance. Indeed, in all
methods, a distance computation is used to estimate which activity is the most probably
performed.

Furthermore, in order to improve the recognition, several operations, as projections
and language computation, have to be considered. The projection helps to avoid noise by
keeping only useful events for each activity as explained in section 4.2.2. The observed
language generation allows considering the observed sequence of events as a succession
of possibly independent event groups, as described in section 4.2.3.

To put it in a nutshell, after a brief definition of languages and some complements
about the sequences terminology, made in section 4.1, the proposed protocol to recognise
an activity among several modelled by PFAS is detailed in the section 4.2. The last
step of this protocol (i.e. the distance computation) requires the definition of a new
indicator. Therefore, already existing distances between a sequence and an automata
will be presented in section 4.3. Limits of these distances will be enlightened in regard
to their use with our models and the observed languages. Thus, an original distance
indicator compatible with our models is presented in section 4.4 and computation issues
linked to this distance are also treated. Finally, an application to case study of the
chapters 2 and 3 will be presented in section 4.5 and discussed in section 4.6.

4.1 Models and used notations

In this section, in addition to the definition of PFAs and the implied concepts given
in section 3.1, the definition of a language is given here. In addition, some specific
notations needed in this chapter are presented.

Definition 4.1 (Language (Cassandras and Lafortune, 2009)). A language defined over
an event set Σ is a set of finite-length sequence (or strings) formed from events in Σ.

A language over an event set Σ is therefore a subset of Σ∗ which is the Kleene-closure
of the set of events Σ, i.e. the infinite set of all possible sequences of elements of Σ. In
particular, ∅, Σ, and Σ∗ are languages.

In order to well define languages, some notions and definitions about sequences have
to be known. Therefore, sequence prefix, suffix and substring are defined as the following:

Definition 4.2 (prefix, suffix and substring). Let tuv = s be a sequence in Σ∗ with t,
u, v ∈ Σ∗, then:
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• t is called a prefix of s,
• u is called a substring of s, and
• v is called a suffix of s.

We observe that both ǫ and s are prefixes, substrings and suffixes of s.

In addition, we choose to denote Σm
Ak

the language composed of all possible sequences
of length m composed with events of ΣAk

.

4.2 Activity Recognition protocol

In order to recognise on-line the performed activity using the observed events and the
previously built models, we propose a four-step protocol. The four steps are graphically
represented in figure 4.2.1 and are the following:

➀ The observed event sequence ei...ej is split in order to threat the closed events:
the observed sequence wObs is thus obtained,

➁ The obtained sequence is projected to remove disturbances: the projected sequence
wObs

pk
is resulting,

➂ A language LObs
pk

is created using the projected sequence to translate the continuous
nature of the observation,

➃ Finally, occurrence probability of each activity is computed using a specific dis-
tance indicator.

Figure 4.2.1: The proposed activity recognition protocol

This protocol is the result of several reflexions and tests. Each of those steps is
essential to have a good recognition of activities and the necessity of each one and their
operations are presented below.

4.2.1 Observed sequence windowing

As an inhabitant living at home is considered as an event generator on which we
have no influence, the recognition of the performed activity has to be done by using
only the generated events and the activity models at our disposition. As the inhabitant
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at home generates new events continuously, the objective of this step is to choose the
sequence in which the recognition is performed.

In order to recognise activity on-line, it is necessary to perform an efficient and quick
activity recognition each time a new event is observed. As an activity is a complex suc-
cession of events, the recognition cannot be made by only using the last observed event:
an appropriate view of the past is needed. Therefore, during the activity recognition,
a sequence of events has to be considered. This sequence consists in the last occurred
event and some of the previous ones. Concerning the length of the retained sequence, a
trade-off has to be done since the kept sequence of events should be long enough to tra-
duce the current human behaviour but not too much to have an acceptable computation
time and being representative of the activity to be recognised. The sliding operation in
this case is not a window that we change to scan a learning database, but the list of the
last observed events evolving since the time is running.

As for the windowing performed in section 3.2.2, the three most common approaches
are:

(i) explicit segmentation;

(ii) time base windowing;

(iii) sensor event based windowing.

As precise in section 3.2.2, the sensor event based windowing is the most adapted
method to treat activities with variable duration and separated with a variable duration.

The main difference with the sensor windowing performed in chapter 3 is the con-
straint around the window length. Indeed, in chapter 3, the window length has mainly to
be chosen short enough to reduce the computational time but not too short to avoid the
generation of too much sequences from the learning database. However, in this chapter,
the sequences must have, as much as possible, the length of the performed activity.

Unfortunately, there is no existing systematic method to compute the windows length
a priori.

However, by experiment, we observe that the optimal size of the sliding windows
(i.e. the size giving the bests AR results) is strongly linked to the noise during the life
observation. Is considered as noisy each event occurring during an activity occurrence
and not hierarchically linked with it. More noise there is, more the sequence has to be
long.

Once the sequence is extracted from on-line flow, we have to deal with noises.

4.2.2 Projection of the exploited sequence

In the normal life, sensors of smart homes useful to recognise activities of daily
living are subjected to several kind of disturbance. First of all, some sensors of the
smart home useful to other missions (inactivity detection, motion sensors used for the
inhabitant security, ...) can flood the recorded database. Secondly, some sensors could
malfunction and send events in excess. Finally, the human indeterminism can lead the
monitor person to perform useless move or to stroll in the home.

Furthermore, sensors implanted in the smart home to detect a specific activity Ak1

but emitting when another activity Ak2 is performed can be considered as a noise for this
specific activity Ak2. This situation can occur if the two activities Ak1 and Ak2 share
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the same geographic area. Thus, the projection allows recognising activities performed
in a same area but implying different sensors locally.

Our objective is to use probabilistic distances to detect the performed activity. Un-
fortunately, using these kinds of distance, if a totally unexpected event occurs, the obtain
result diverges quickly. This characteristic, explained later in section 4.3, leads to envis-
age a projection of the observed sequence wObs to each model alphabet ΣAk

, as defined
in section 3.1, before computing distance between the sequence wObs and the PFA Ak.
Thus, the sequences wObs

pk
used to estimate the probability for each activity Ak to be

performed are shorter than the observed sequence but contain only non-noisy events.

By performing the projection of the observed sequence in each PFA alphabet, we
obtain a different projected window for each activity. This point is appreciable since, in
this way, the probability for each activity to be detected as occurring will not depend
on the others. Furthermore, an activity semantically more general than another one
will not flow up another activity generating a very low number of events. In brief, the
projection act as a filter.

We remark that, if the inhabitant performs an activity Ak sharing no events with
any other activity, it is highly likely that the projected sequences linked to the other
activities are empty.

The influence of the length of the treated window chosen in the previous step is noted
at this step. On the one hand, if the length of the sequence is too small compared to
the number of noisy events, a very small number of events are kept at the end and the
future results will not be significant. On the other hand, if the chosen length is too long,
too much events will be kept after the projection step since most of the manipulated
sequences could traduce several activities generating a small number of events.

4.2.3 Language creation using the projected sequence

The life performance is a continuous succession of actions and activities. Transitions
between these activities are most of the time non-instantaneous but smooth. As a con-
sequence, observed events traduce this life property. By choosing to treat a continuously
sliding window of a fix length to perform the AR computation, we are compatible with it
since, if activities are changed, new events arrive one by one in the considered sequence.

However, it is necessary not to consider the sequences wObs
pk

obtained after projection
as a block. Indeed, in a long sequence, several phenomenon can be included and a
local succession of events can have a higher importance than the global sequence. Thus,
in the same way as the sliding window performed step 1 traduce a continuity in the
monitored person life, a smaller sliding window in the obtained projected sequence can
also be important. For example, let’s imagine a sequence wObs

pk
= e1e2e4e6 where the

succession of events e2e4 is a representative behaviour of a given activity Ak, and the
two other events (e1 and e6) are linked to Ak but not as much than the two others from
a probabilistic point of view. In this case, it can be better to read the sequence as the
successions of events e1e2, e2e4 and e4e6. In this way, the representative succession of
events can be treated independently, as well as the two non-representative ones. The
obtained result can thus procure a probabilistic result closest with the realty than by
considering just the global sequence e1e2e4e6. Thus, in the presented AR method, every
succession of events can have an importance.

Therefore, in order not to consider the last observed events as a block, a language is
created. Several choices to generate this language exists. The most common (Cassandras
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and Lafortune, 2009) are the following:

The prefix-closed language: Let wObs
pk
∈ Σ∗

Ak
, then

Lpref(wObs
pk

) = {s ∈ Σ∗
Ak
|∃t ∈ (ΣAk

∪ {ǫ})∗ such as st = wObs
pk
}. (4.1)

In words, the language prefix-close of the sequence wObs
pk

is the language consisting of all
the prefixes of wObs

pk
.

In our work, this language traduces the time running starting from an event of
reference. It can be useful if we want to study the consequences linked to the observation
of a given event.

The suffix-closed language: Let wObs
pk
∈ Σ∗

Ak
, then

Lsuff(wObs
pk

) = {s ∈ Σ∗
Ak
|∃t ∈ (ΣAk

∪ {ǫ})∗ such as ts = wObs
pk
}. (4.2)

In words, the language suffix-close of the sequence wObs
pk

is the language consisting of all
the suffixes of wObs

pk
.

In our work, this language traduces successions of events that may have led to a
given event (the last one). It can be useful if we want to study the reasons for a specific
situation.

Language of substrings: Let wObs
pk
∈ Σ∗

Ak
, then

L<wObs
pk

=
|wObs

pk
|∑

n=1

Ln
wObs

pk
; (4.3)

with:

Ln
wObs

pk
= {w ∈ wObs

pk
| ∃s, t ∈ (ΣAk

∪ {ǫ})∗ such as swt = wObs
pk

and |w| = n} (4.4)

In words, the language substrings of the sequence wObs
pk

is the language consisting of
all the substrings of wObs

pk
.

In our work, this language traduces each succession of events observed in our sequence
(that includes their prefixes and suffixes). It is useful if we want to study the reasons
and the consequences of all observed events, and it is our case. Indeed, as we precise
before, each succession of events has an importance. Moreover, since each activity can
be interrupted at any time, all words included in the sequence have to be kept.

Since it is impossible by analysing an isolated event to conclude if it represents an
activity realisation or a noisy phenomenon, all substrings of length one are excluded from
the language used in our method. Thus, the language actually used is the following:

L2<w<wObs
pk

=
|wObs

pk
|∑

n=2

Ln
wObs

pk
with LwObs

pk
= {w ∈ wObs

pk
, |w| = n}. (4.5)

and can also be written as:

L2<w<wObs
pk

=
|wObs

pk
|∑

n∈2

{all possible substrings of wObs
pk

of length l}. (4.6)
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Thereafter, the language L2<w<wObs
pk

will be denoted LObs
pk

. An example of this language
generation is visible figure 4.2.2.

Figure 4.2.2: Chosen language generation: language of substrings of length upper than
two.

The language representing the human behaviour during the closed past is now gen-
erated. The following step treats this language to obtain a high level information: the
probability for each activity Ak to be performed.

4.2.4 Probability estimation

As first inputs of this step, we have several PFAs modelling several activities {Ak}.
These models are obtained by applying the AD method presented in chapter 3 in a
database recorded during a learning period of the smart home inhabitant life. Activity
models are never modified during the recognition. Secondly, the observed language LObs

pk

generated from the observed sequence wObs as explained in section 4.2.3 are needed.
The generation of these languages is chosen to represent the fragmented but continuous
property of the human life.

Starting from these data, the objective of this final step is to estimate the probability
for each activity model Ak to generate the corresponding language LObs

pk
. This probabil-

ity, denoted P (LObs
pk
|Ak), is also called the distance between the language LObs

pk
and the

PFA Ak.
The algorithm 4 gives a pseudo-code representation of the presented protocol. As

the used distance is presented in the next subsections, its computation is not detailed
yet. The complexity CAR of the AR protocol is polynomial considering the length of the
observed sequence wObs and linear considering the distance complexity:

CAR = O
(

card(ActivityPFAs)× (
∣∣∣wObs

∣∣∣
2

+ Cdistance)
)

. (4.7)

with:

• card(ActivityPFAs) the number of activities to monitor;
•
∣∣∣wObs

∣∣∣ the length of the observed sequence;
• Cdistance the complexity of the retained distance.

Several probability distances exist but the most used to compute the distance be-
tween a language and a probability model such as PFA are the likelihood based methods
(Rabiner, 1989) such as the perplexity (Vidal et al., 2005b). The likelihood is a distance
between a sequence and a PFA and is used as a base to compute the perplexity. Those
two distances are presented in subsection 4.3.
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Algorithm 4 AR protocol. The distance computation is not detailed.
Require:

• A set of PFAs modelling the activities to monitor:
ActivityPFAs : {A1...Ak},
with Ak =< QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
>

• An event sequence wObs of the last observed events. //step 1: observed sequence
windowing.

Ensure: Distances between the given activities and the observed sequence wObs.
1: // Global Initialisation:
2: dictDistances := ∅ // Dictionary of distances.
3: // For all activity models (and by extension, for all activities):
4: for all < QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
>∈ ActivityPFAs do

5: // Step 2: Projection of the exploited sequence:
6: wObs

pk
:= Proj(wObs, ΣAk

)
7: // Step 3: Language creation using the projected sequence:
8: language := ∅
9: lenSubStr := 2 // Substring of length 2 are first selected:

10: // Selection of the substrings:
11: while lenSubStr ≤ |wObs

pk
| do

12: for index_subStr := 1 to |wObs
pk
| − lenSubStr + 1 do

13: append wObs
pk

[index_subStr to index_subStr + lenSubStr − 1] to language
14: end for
15: lenSubStr := lenSubStr + 1
16: end while
17: // Step 4: Probability estimation:
18: distance := P (LObs

pk
|Ak)

19: dictDisctances[Ak] := distance
20: end for

As explained in subsection 4.3.3, these two presented distances are not adapted in our
case since the sequence lengths of the languages to compare are, in the majority of cases,
different. Therefore, in our work, we extend the existing likelihood then the perplexity
to deal with this issue. The original distances thus obtained, called normalised likelihood
and normalised perplexity, are presented in subsection 4.4.

It is important to note here that the proposed method is modular. The AR can be
performed on several activities having their own models. If a new activity has to be
recognised, we just have to add the new model. Furthermore, if we want to apply a new
distance method to the observed events or to use a new language generation process, it
is not necessary to change all the procedure, but only the corresponding step.

4.3 Distance between a sequence and a PFA

4.3.1 The likelihood

The likelihood, as defined in Vidal et al. (2005a) and Rabiner (1989), is the classical
distance, denoted P (wObs|Ak), between a sequence wObs and a PFA Ak. By computing
this distance, an estimation of the probability that the PFA Ak generates a sequence
wObs ∈ Σ∗

Ak
is done.

To deal with this probability computation, let θ = (ql, w′
1, qm, w′

2, qs, . . . , qp, w′

|wObs|
, qr)
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be a path of transitions for wObs in Ak; it signifies that there is a sequence of transitions
(ql, ei, qm), (qm, ej, qs), . . . , (qp, en, qr) ∈ δAk

such that wObs = w′
1w

′
2. . . w′

|wObs|
;

The probability of generating such a path is:

P (θ|Ak) = I(ql)×
|wObs|∏

k=1

P (sj−1, w′
j, sj), (4.8)

where si is the jth state considered in θ(s0 = ql, s1 = qm, . . . ).

Some general considerations are needed to develop the likelihood definition:
A valid path in a PFA Ak is a path for some wObs ∈ Σ∗

Ak
with probability greater

than zero. The set of valid paths in Ak is denoted ΘAk
.

In general, a given string wObs can be generated by Ak through multiple valid paths.
Let ΘAk

(wObs) denote the set of all the valid paths for wObs in Ak.

The probability of generating wObs with Ak, also call likelihood of wObs in Ak is:

Definition 4.3 (Likelihood).

P (wObs|Ak) =
∑

θ∈ΘAk
(wObs)

P (θ|Ak) (4.9)

The higher the likelihood, the more probable to perform the activity Ak. Let remark
here that the value of the likelihood decreases when the length of the considered sequence
wObs increases. Indeed, let t ∈ Σ∗

Ak
be a sequence composed of events included in the

alphabet ΣAk
and ei ∈ ΣAk

be an event of the same alphabet. Thus:

P (tei|Ak) ≤ P (t|Ak), (4.10)

since, by definition, each valid path θ(tei) for tei could be described as a valid path
θ(t) for t followed by a transition generating ei:

∀θ(tei) = (ql, t′
1, qm, . . . , qs, t′

|t|, qp, ei, qr);∃θ(t) = (ql, t′
1, qm, . . . , qs, t′

|t|, qp), (4.11)

with θ(tei) and θ(t) two valid path for tei and t in Ak.
Then,

P (θ(tei)|Ak) = P (θ(t)|Ak)× P (qp, ei, qr) ≤ P (θ(t)|Ak) (4.12)

Finally, the equation (3.2) bounds the summation of the additional transitions P (qp, ei, qr)
to one. Equation (4.10) is thus demonstrated.

The presented likelihood computes the distance between a sequence and a PFA and
can be extended to compute the distance between a language (i.e. a set of sequences)
and a PFA. The major extension of the likelihood to languages is the perplexity.

4.3.2 The perplexity

According to Jelinek (1997), a measure of the complexity of a language considering
a model is the mathematical quantity known as language perplexity. We can compute
the language perplexity, by first defining the entropy X̂(LObs

pk
|Ak) (Cover and Thomas,

1991) of the language LObs
pk

with respect to Ak as given in Vidal et al. (2005a):
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Definition 4.4 (Entropy).

X̂(LObs
pk
|Ak) = −

1
norm(LObs

pk
)
×

∑

wObs∈LObs
pk

log(P (wObs|Ak)), (4.13)

with two possible definitions of norm(LObs
pk

):

Definition 4.5 (Language norm). The norm norm(LObs
pk

) of a language can be defined
by considering:

• the number of sequences in the language: norm(LObs
pk

) = card(LObs
pk

). In this case,
the normed is called by string;

• the length of the sequences in the language: norm(LObs
pk

) =
∑

wObs∈LObs
pk

∣∣∣wObs
∣∣∣. In this

case, the normed is called by symbol;

The perplexity, denoted PP (LObs
pk
|Ak), of the language LObs

pk
for the PFA Ak is then

defined as:

Definition 4.6 (Perplexity).

PP (LObs
pk
|Ak) = 2X̂(LObs

pk
|Ak), (4.14)

which can also be written as:

PP (LObs
pk
|Ak) =




∏

wObs∈LObs
pk

P (wObs|Ak)




− 1

norm(LObs
pk

)

(4.15)

with norm(LObs
pk

) as defined in definition 4.5.

The perplexity can be seen as the inverse of the likelihood geometrical means of
sequences in the concerned language. Due to this link with the likelihood, the perplexity
is also strongly linked to the length of the sequences contained in the language LObs

pk
.

The perplexity has a value between one and the infinity. The lower the perplexity, the
more probable to perform the activity Ak. In order to avoid treating with the infinity,
the inverse of the perplexity can be preferred.

The likelihood and the perplexity can be used to detect, among several models, which
one has the most likely generated a given sequence. If used to this aim, several hypothe-
ses have to be verified. These hypothesis and their incompatibility to our AR problem
are presented in the next subsection 4.3.3.

4.3.3 Issues due to distance hypotheses

As demonstrated before, the likelihood and thus the perplexity values are strongly
linked to the length of the sequences given as input. Indeed, as shown in equation (4.10),
the longest is the sequence, the lower is the likelihood (resp. the higher is the perplexity).
Therefore, when used to choose which activity is performed, these distances have to be
applied to the same sequence. Furthermore, by applying the likelihood definition, when
a noisy event occurs, the likelihood (resp. the perplexity) decreases to zero (resp. diverge
to the infinity). Unfortunately in our case, as explained in section 4.2.2, the noise due
to several causes (human behaviour, other activities) is unavoidable without to envisage
a projection. We are thus in front of a paradoxical issue if we want to use the presented
distances. Indeed, according to our choice:
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• We do not project the observed events and the obtained distances are useless since
always diverging,

• We project the observed events and we compare two incomparable values since
obtained by using sequences of different length.

The trouble with the second item is that, due to the property written in equation (4.10),
an activity having a low projected sequence may have a better result than another
activity having a long and representative projected sequence.

To summarise, the use of the likelihood (rest. perplexity) to compare the probability,
for several PFAs, to generate a sequence (resp. a language) is applicable only if:

• the sequences considered for each PFA do not include noise,
• the sequences considered for each PFA have exactly the same length.

Those two points can be systematically true only if, the sequence to compare is the same
for all the PFAs and does not include noisy events. Thus, the alphabet of the studied
sequence wObs have to be included in all PFA alphabets (ΣObs

w ∈ ΣAk
∀k).

In this presented thesis, it is not the case since activities can be realised in different
areas of the smart home and using different tools. Therefore the projections of the
sequences, as presented 4.2.2, are unavoidable for us.

As we cannot use the likelihood and the perplexity like presented due to their strong
dependency with the length of the sequence to compare, we need to create new dis-
tances based on them but less dependent on the length of the sequences. Hereafter, the
likelihood and perplexity presented in this section 4.3 are called classical likelihood and
classical perplexity.

4.4 Normalised likelihood and extension

Likelihood based distances are too much dependent on the length of the input data to
be used with our work. Indeed, our activity models Ak have different alphabets ΣAk

that
can be totally disjoint. This characteristic of our models leads us to project the observed
sequences before to perform the language generation and the distance computation. By
performing this projection and for the reasons explained before, the existing methods
became inapplicable. The objective of this part is to present and develop a new distance
between a sequence and a PFA called normalised likelihood and its extension to the
languages called normalised perplexity.

4.4.1 The normalised likelihood

In order to be able to choose a model by using likelihood based methods, a normali-
sation of the classical likelihood is proposed. The objective here is to have a probability
really contained between zero and one whatever is the length of the windows. It can be
obtained by dividing the classical likelihood by its maximal value obtainable with the
considered automaton and with a sequence having the same length as the considered
sequence. To illustrate the objective, let’s consider the simple PFA Ak in figure 4.4.1.

In this figure, for a sequence of length one, the likelihood values are P (a|Ak) =
0.2 + 0.3 = 0.5, P (b|Ak) = 0, P (c|Ak) = 0.4 and P (d|Ak) = 0.1. Thus, the likelihood
for a sequence of length one in the example automaton Ak is bounded by 0.5: the
maximum possible value. In the same way, the likelihood for a sequence of length two
in the example automaton Ak is bounded by 0.2 (corresponding to P (ca|Ak)). The goal
of the normalised likelihood is to have a maximum bound to 1 whatever the length of
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Figure 4.4.1: Example on a simple PFA Ak

the sequence. It works if we divide each likelihood of sequence of length one by 0.5 all
sequences of length two by 0.2 and, more generally, all sequences w′ of length

∣∣∣wObs
∣∣∣ by

the maximum value taken by P (w′|Ak).

More formally, the normalised likelihood is defined in Viard et al. (2017) as follows:

Definition 4.7 (Normalised likelihood). Let us consider the PFA Ak and a given se-
quence wObs ∈ Σ∗

Ak
. The normalised likelihood of sequence wObs in Ak, is defined as:

||P (wObs|Ak)|| =
P (wObs|Ak)

max
v∈Σ

|wObs|
Ak

[P (v|Ak)]
. (4.16)

with P (wObs|Ak) the classical likelihood.
As the classical likelihood can be extended to define the entropy then the perplexity,

the normalised likelihood can be extended to define the normalised entropy then and the
normalised perplexity. The next subsection will define it.

4.4.2 The normalised perplexity

As the use of the normalised likelihood solves the dependency issue of the classical
likelihood concerning the length of the input sequences, we can define the normalised
entropy as follows:

Definition 4.8 (Normalised entropy).

||X̂(LObs
pk
|Ak)|| = −

1
norm(LObs

pk
)
×

∑

wObs∈LObs
pk

log(||P (wObs|Ak)||), (4.17)

with norm(LObs
pk

) as defined in definition 4.5.

The normalised perplexity, denoted ||PP (LObs
pk
|Ak)||, of the language LObs

pk
for the

PFA Ak is then defined as:

Definition 4.9 (Normalised perplexity).

||PP (LObs
pk
|Ak)|| = 2||X̂(LObs

pk
|Ak)||, (4.18)
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which can also be written as:

||PP (LObs
pk
|Ak)|| =




∏

wObs∈LObs
pk

||P (wObs|Ak)||




− 1

norm(LObs
pk

(4.19)

with norm(LObs
pk

) as defined in definition 4.5.

As for the classical entropy and normalised likelihood, the normalised perplexity can
be seen as the inverse of the normalised likelihood geometrical mean of sequences in the
concerned language.

As the normalised perplexity represents the distance between a language and its
probability to be generated by a model, its value can tend towards infinity and have to
be minimised. While the inverse of the normalised perplexity represents the probability,
for the considered model, to generate the considered sequence. It is bounded by 1 and
has to be maximised. In order to simplify the computation, the inverse of the normalised
perplexity 1

||P P (LObs
pk

|Ak)||
is preferred.

4.4.3 Computational Issues

The computation of the normalised likelihood for an observed sequence wObs of length∣∣∣wObs
∣∣∣ includes the computation of the maximum value of the classical likelihood applied

to card(ΣAk
)|w

Obs| possible sequences of length
∣∣∣wObs

∣∣∣. Its complexity can be written:

C||L|| = CL + CM , (4.20)

with C||L|| the complexity of the normalised likelihood, CL the complexity of the classical
likelihood and CM the computation of the maximum value of the classical likelihood
for a length fixed. The normalised likelihood can thus be decomposed in two parts
corresponding to two different steps of the computation:

1. P (wObs|Ak) can be computed on-line when the distance estimation is done;

2. max
v∈Σ

|wObs|
Ak

[P (v|Ak)] can be performed off-line for each PFA Ak and for all possible

values of
∣∣∣wObs

∣∣∣.

Even if the forward algorithm (Jurafsky and Martin, 2014) optimises the computation
of the classical likelihood to reach the complexity polynomial with

∣∣∣wObs
∣∣∣

CL = O(card(QAk
)2 ×

∣∣∣wObs
∣∣∣), (4.21)

the computation of max
v∈Σ

|wObs|
Ak

[P (v|Ak)] is exponential with
∣∣∣wObs

∣∣∣ and polynomial with

the event set cardinality:

CM = O
(

card(ΣAk
)|w

Obs| × CL

)
= O

(
card(ΣAk

)|w
Obs| × card(QAk

)2 ×
∣∣∣wObs

∣∣∣
)

.

(4.22)
Therefore, even if the maximum likelihood is computed off-line, the computational

effort may be too high and the complexity of this has to be reduced. To this aim,
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we developed two complementary methods of complexity reduction that we will now
present:

• the model reduction;
• the dynamical computation.

Complexity reduction by model reduction:
Let Ak =< QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
> be a PFA, we denote by:

Ar
k =< QAk

, Σr
Ak

, δr
Ak

, IAk
, FAk

, P r
Ak

> (4.23)

the reduced PFA associated with Ak where Σr
Ak

, δr
Ak

and P r
Ak

are obtained by the re-
duction procedure Ak → A

r
k. In order to specify the reduction procedure Ak → A

r
k, the

following definitions are necessary.

First, we denote by Geqqg ,qh
(ei) (resp.Equqg ,qh

(ei)) the set of events ej ∈ ΣAk
having

a probability P (qg, ej, qh) to occur from state qg to state qh greater than or equal to
(resp. equal to) ei ∈ ΣAk

having a probability P (qg, ei, qh) to occur.

More formally, it holds:

Geqqg ,qh
(ei) = {ej|ej ∈ ΣAk

and P (qg, ej, qh) ≥ P (qg, ei, qh)} , (4.24)

and

Equqg ,qh
(ei) = {ej|ej ∈ ΣAk

and P (qg, ej, qh) = P (qg, ei, qh)} . (4.25)

In the following, the reduction procedure Ak → A
r
k is presented.

Step 1: Selection of candidate events

Σr
Ak

=



ej

∣∣∣∣∣∣
ej ∈ ΣAk

and
⋂

qg ,qh∈QAk

Geqqg ,qh
(ej) =

⋂

qg ,qh∈QAk

Equqg ,qh
(ej)



 . (4.26)

Step 2: Deletion of equivalent events
For all the event sets

⋂
qg ,qh∈QAk

Equqg ,qh
(ej), only one event is kept: a new Σr

Ak
is thus

obtained.

Step 3: Conservation of transitions linked to the kept events
Only transitions implying kept events are conserved, all the others are deleted. Prob-

ability of those transitions are not changed. Thus, we have:

δr
Ak

=
{
(qg, ej, qh)

∣∣∣(qg, ej, qh) ∈ δAk
and ej ∈ Σr

Ak

}
, (4.27)

and

P r
Ak

=
{
P (qg, ej, qh)

∣∣∣(qg, ej, qh) ∈ δr
Ak

and P (qg, ej, qh) ∈ PAk

}
. (4.28)

In Step 1, events having the same intersection sets of Geq and Equ are selected, i.e.,
events having no event with probability to occur greater than one or more transitions and
equals for others. In Step 2, the alternatives for sequences having the same probability
are deleted.

The problem reduction leads to a new model with a lower number of events than the
original one. Thus, the number of combinations to compare in the determination of the
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normalised perplexity is reduced. The following proposition proves that the likelihood
maximum value is conserved after the reduction.

The figure 4.4.2 shows the reduced PFA associated with the PFA A1 shown figure
3.3.4. It is obvious that there is less paths possible in this reduced model than in the
global model.

Figure 4.4.2: Reduced PFA associated with the PFA A1 (figure 3.3.4).

Proposition 4.1.
Let Ak =< QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
> be a PFA and

Ar
k =< QAk

, Σr
Ak

, δr
Ak

, IAk
, FAk

, P r
Ak

> be the reduced PFA obtained by the reduction

procedure Ak → A
r
k. Then ∀wObs ∈ Σ∗

Ak
of length

∣∣∣wObs
∣∣∣ it holds:

max
u∈Σ

|wObs|
Ar

k

[P (u|Ak)] = max
v∈Σ

|wObs|
Ak

[P (v|Ak)]. (4.29)

The proof is in Appendix A.

By applying the reduction procedure and by Proposition 4.1, the computational
complexity of the maximum classical likelihood is reduced as follows:

CM = O
(

card(Σr
Ak

)|w
Obs| × card(QAk

)2 ×
∣∣∣wObs

∣∣∣
)

. (4.30)

Now, the following proposition shows how the complexity (4.30) is reduced if the
reduction procedure is used.

Proposition 4.2.
Let Ak =< QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
> be a PFA and

Ar
k =< QAk

, Σr
Ak

, δr
Ak

, IAk
, FAk

, P r
Ak

> be the reduced PFA obtained by the reduction
procedure Ak → Ar

k. Then the computational complexity of the maximum classical
likelihood is the following:

CM = O

(
2[card(QAk

)−1]|w
Obs|
× card(QAk

)2 ×
∣∣∣wObs

∣∣∣
)

. (4.31)

The proof is in Appendix A.

It is important to highlight that in the majority of practical cases, a unique event
appears to be maximum for several group of states, decreasing naturally the number of
kept events.

The algorithm 5 shows in pseudo-code a function GeqEqu generating Geqqg ,qh
(event)

and Equqg ,qh
(event) and the model reduction. The complexity CGeqEqu of the function

GeqEqu is:
CGeqEqu = O (card(ΣAk

)) . (4.32)
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and the global model reduction time complexity Cmodel_reduction is polynomial:

Cmodel_reduction = O
(
card(ΣAk

)2 × card(QAk
)2
)

. (4.33)

This reduction time complexity is negligible in comparison with the computation
time earned by using the reduced PFA Ar

k instead of the complete one Ak.

Algorithm 5 Model reduction.
Require: A PFA Ak =< QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
>.

Ensure: A reduced PFA Ar
k =< QAk

, Σr
Ak

, δr
Ak

, IAk
, FAk

, P r
Ak

>.
1: // GeqEqu function. Inputs: a PFA Ak, two states qg, qh ∈ QAk

and an event
event ∈ ΣAk

; Outputs: two lists listGeq and listEqu giving Geqqg ,qh
(event) and

Equqg ,qh
(event) respectively.

2: function GeqEqu (Ak,qg,qh,event)

3: // Function initialisation:
4: listGeq := ∅
5: listEqu := ∅
6: if (qg, event, qh) ∈ δAk

then
7: proba_ref := P (qg, event, qh)
8: else
9: proba_ref := 0

10: end if
11: // listGeq Creation:
12: for all other_event ∈ ΣAk

do
13: if (qg, other_event, qh) ∈ δAk

then
14: proba_other := P (qg, other_event, qh)
15: else
16: proba_other := 0
17: end if
18: if proba_other ≥ proba_ref then
19: append other_event to listGeq
20: end if
21: if proba_other = proba_ref then
22: append other_event to listEqu
23: end if
24: end for
25: return listEqu,listGeq

26: end function
27: // Model reduction:
28: // Initialisation:
29: Σr := ∅
30: GeqTot := ∅ // GeqTot is a dictionary with keys ej and values

⋂
qg ,qh∈QAk

Geqqg ,qh
(ej).

31: EquTot := ∅ // EquTot is a dictionary with keys ej and values
⋂

qg ,qh∈QAk

Equqg ,qh
(ej)

90



4.4. Normalised likelihood and extension

32: // Computation of GeqTot and EquTot:
33: for all ej ∈ ΣAk

do
34: // GeqTot[ej] and EquTot[ej] are initialised to ΣAk

then reduced by intersections.
35: GeqTot[ej] := ΣAk

36: EquTot[ej] := ΣAk

37: for all begin_action ∈ QAk
do

38: for all end_action ∈ QAk
− Initial do

39: listEqu,listGeq=GeqEqu(Ak,begin_action,end_action,ej)
40: GeqTot[ej] := GeqTot[ej] ∩ listGeq
41: EquTot[ej] := EquTot[ej] ∩ listEqu
42: end for
43: end for
44: end for
45: // Step 1: selection of candidate events:
46: candidates = ∅
47: for all ej ∈ ΣAk

do
48: if thenGeqTot[ej] = EquTot[ej]
49: append ej to candidates
50: end if
51: end for
52: // Step 2: deletion of equivalent events:
53: rejected = ∅
54: for all ej ∈ candidates do
55: if ej /∈ rejected then:
56: append ej to Σr

Ak

57: for all ei ∈ EquTot[ej] do
58: if ei 6= ej then
59: append ei to rejected
60: end if
61: end for
62: end if
63: end for
64: // Step 3: conservation of transitions linked to the kept events:
65: δr

Ak
= ∅

66: P r
Ak

= ∅
67: for all do(qh, ei, qg) ∈ δAk

68: if ei ∈ Σr
Ak

then
69: add (qh, ei, qg) to δr

Ak

70: add P (qh, ei, qg) from PAk
to P r

Ak

71: end if
72: end for

Complexity reduction by computational simplification:

In addition to the model reduction, a computational simplification can be employed.
Indeed, to compute the max

v∈Σ
|wObs|
Ak

[P (v|Ak)], a natural idea is to independently compute

the value of P (v|Ak) for all possible v by applying the forward algorithm (Jurafsky and
Martin, 2014) that we will describe now as in Vidal et al. (2005a).
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The probabilities assigned to the paths in ΘAk
(section 4.3.1) are used to compute

the classical likelihood efficiently P (wObs|Ak). The idea is similar to the one proposed for
HMMs (Ney, 1997) by defining αw1...wl

(i)∀i ∈ 0 ≤ i ≤ card(QAk
)− 1 as the probability

of generating the sequence w1...wl of length l, prefix of wObs and reaching state qi:

αw1...wl
(i) =

∑

(s0,s1,...,sl)∈ΘAk
(w1...wl)

sl=qi

I(s0)×
l∏

j=1

P (sj−1, wj, sj), (4.34)

Equation (4.34) can be calculated with the following algorithm:
Forward algorithm:

αǫ(i) = I(qi),
αw1...wj

(i) =
∑

qg∈QAk

αw1...wj−1
(g)× P (qg, wj, qi), 1 ≤ j ≤

∣∣∣wObs
∣∣∣ (4.35)

For a sequence wObs ∈ Σ∗
Ak

, the following proposition is straightforward:

Proposition 4.3.
P (wObs|Ak) =

∑

qi∈QAk

αObs
w (i). (4.36)

Therefore, the computation of P (wObs|Ak) can be performed with a time complexity
of O(

∣∣∣wObs
∣∣∣× card(QAk

)2) where
∣∣∣wObs

∣∣∣ is the length of wObs and card(QAk
) the number

of states in Ak. Algorithm 6 shows this classical likelihood computation.

Algorithm 6 Forward algorithm.
Require:

• A PFA Ak =< QAk
, ΣAk

, δAk
, IAk

, FAk
, PAk

>;
• An observed sequence wObs.

Ensure: The likelihood P (wObs|Ak).
1: // alpha function. Inputs: a sequence w, a PFA Ak and a state index i
2: function alpha (w,Ak,i)

3: if |w| > 0 then
4: result :=

∑
qg∈QAk

alpha(w1...w|w|−1,Ak, g)× P (qg, wj, qi)

5: else
6: result := I(qi)
7: end if
8: return result
9: end function

10: P (wObs|Ak) =
∑

qi∈QAk

alpha(wObs,Ak, i).

Now the forward algorithm known, we can see that, by performing each classical
likelihood independently to find max

v∈Σ
|wObs|
Ak

[P (v|Ak)], the intermediate values of αv1...vj
(i)

are computed several times: once for all sequences having v1...vj as a prefix, as shown
with a simple example in figure 4.4.3.

The idea of the dynamical computation is to avoid multiple computation of the same
αv1...vj

(i) by keeping it in memory as long as needed, see figure 4.4.4.
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Figure 4.4.3: Computation of the maximum likelihood without dynamical computation.

Figure 4.4.4: Computation of the maximum likelihood with dynamical computation

As shown in the figure, the complexity by applying this method is changing from:

CM = O
(

card(ΣAk
)|w

Obs| × card(QAk
)2 ×

∣∣∣wObs
∣∣∣
)

, (4.37)

to

CM = O



|wObs|∑

l=1
card(ΣAk

)l × card(QAk
)2




= O
(

card(ΣAk
)|w

Obs| × card(QAk
)2

)
,

(4.38)

Finally, this dynamic reduction shown in algorithm 7, removes the linear component∣∣∣wObs
∣∣∣ of the complexity.
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Algorithm 7 Dynamical computation of max
v∈Σ

|wObs|
Ak

[P (v|Ak)].

Require:
• A PFA Ak =< QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
>;

• A sequence length
∣∣∣wObs

∣∣∣.
Ensure: The maximum likelihood max

v∈Σ
|wObs|
Ak

[P (v|Ak)].

1: // browse function. Inputs: a PFA Ak, a sequence length length, a list listAlphas
of already computed dynamical variables α(v,Ak, i) and an integer step traducing
the step already reached:

2: function browse (Ak,length,listAlphas,step)

3: likelihoods := ∅ // list in which all maximum likelihoods computed are stocked.
4: newAlphas := ∅
5: if step := 1 then
6: for all ej ∈ ΣAk

do
7: for all end_action ∈ QAk

do
8: append I(end_action) to newAlphas
9: end for

10: if step = length then
11: append

∑
newAlphas to likelihoods

12: else
13: following_result := browse(Ak,

∣∣∣wObs
∣∣∣ , newAlphas, step + 1)

14: append following_result to likelihoods
15: end if
16: end for
17: else
18: for all ej ∈ ΣAk

do
19: for all end_action ∈ QAk

do
20: temp_alpha :=

∑
g:=1 to card(QAk

)
listAlphas[g]× P (qg, ej, end_action)

21: append temp_alpha to newAlphas
22: end for
23: if step = length then
24: append

∑
g:=1 to card(QAk

)
new_Alphas[g] to likelihoods

25: else
26: following_result := browse(Ak,

∣∣∣wObs
∣∣∣ , new_Alphas, step + 1)

27: append following_result to likelihoods
28: end if
29: end for
30: end if
31: result := max(likelihoods)
32: return result
33: end function
34: // Launch the wanted computation:

35: max
v∈Σ

|wObs|
Ak

[P (v|Ak)] := browse(Ak,
∣∣∣wObs

∣∣∣ , ∅, 1)
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To summarise:
The two presented reduction methods act on two independent points influencing the

computation complexity: the model used to compute and the computation algorithm.
The table 4.4.1 recalls the complexity of the maximum classical likelihood computation
by considering, or not, the different reduction methods. The reduction or the cardinality
of the exponential part of the complexity and the removal of the linear component allow
a quick computation time compatible with a real-time analysis.

Table 4.4.1: Time complexity of the maximum classical likelihood computation for a
given length of sequence equal to

∣∣∣wObs
∣∣∣ with card(QAk

) << card(ΣAk
).

Without Dynamical calcu-
lation

With Dynamical calcula-
tion

Without Problem
reduction

O(card(ΣAk
)|w

Obs| ×

card(QAk
)2 ×

∣∣∣wObs
∣∣∣)

O(2[card(QAk
)−1]|w

Obs|
×

card(QAk
)2 ×

∣∣∣wObs
∣∣∣)

With Problem re-
duction

O(card(ΣAk
)|w

Obs| ×
card(QAk

)2)
O(2[card(QAk

)−1]|w
Obs|

×
card(QAk

)2)

It is important to underline that in the majority of practical cases, a unique event
appears to be maximum for several group of states, decreasing naturally the number of
kept events. By experiments, it is the case in the majority of times.

In order to illustrate the presented AR protocol, an application is made in the next
section.
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4.5 Application to the Case Study

In this section, the AR protocol is applied to the study case presented in section 2.2.
The recognition during an occurrence of each of the three activities is presented. A way
to read the obtained distances is presented and a discussion about result viability and
validation is realised in the section 4.6.

4.5.1 Observed sequence windowing

In order to illustrate the AR process, the fourth protocol steps are applied to the
three activities of our case study: A1: cooking, A2: hot beverage preparation and A3:
use bathroom. Activity models used are those presented in figures 3.3.4 to 3.3.6.

As during the learning period, a windowing has to be performed in order to treat a
long enough sequence to observe the activity occurrence but not too long to facilitate
the computation. Furthermore, as a succession of short activities has to be detected
as several activity, and not as a unique activity occurrence, the number of treat events
should not be too long. By experimentation, we find that, for our study case log, a
length of sequence to observe equal to five is a good trade-off to obtain valid results.

In the section 4.5, the recognition protocol is applied to the same three significant
subsequences of life than in section 3.3: wObs

A1
, wObs

A2
and wObs

A3
. Each chosen subsequence

represents a part of an occurrence of activities A1, A2 and A3, respectively.

The chosen example sequences are thus:
• wObs

A1
= e23 e14 e13 e37 e36 e23 e33 e32 e35

• wObs
A2

= e36 e29 e28 e23 e16 e15 e18 e17 e23

• wObs
A3

= e39 e38 e2 e1 e4 e7 e6 e5 e3

Let recall than the three retained sequences are also representative of three specific
situations:

• wObs
A1

is an activity A1 performance of an activity sharing a lot of events with
another one (wObs

A2
),

• wObs
A2

is an activity A2 performance of an activity sharing a little part of events
with another one (wObs

A1
),

• wObs
A3

is an activity A3 performance of an activity sharing no event with any other
ones.

Figure 4.5.1 lists the sequences obtained by keeping the last five observed events.
For the sake of simplicity, we consider than the fourth first events already occurred and
we show the kept sequence when a new event occurs. In the real case, at the beginning
of the recognition, we use all we can. That means that if only three events occur since
the beginning of the recognition, the complete sequence is kept. It does not have real
importance since the beginning of the recognition represents a very few part of the
inhabitant life and the quality of the obtained information at this specific time does not
matter since it is a small transition phase for us.

4.5.2 Projection of the exploited sequence

The second step of our AR protocol consists in a projection of the fixed length se-
quences (five here) of events extracted from the sensors information flow. The projection
step illustrated here has as impact that all computation performed after it produces re-
sults strongly linked to each PFA Ak. Thus, result obtained between an input sequence
and a PFA depends only on the concerned PFA since computations are independent.
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Table 4.5.1: Analysed sequences each time a new event of the sequence wObs
Ak

occurs.

During the performance of sequence wObs
A1

= e23 e14 e13 e37 e36 e23 e33 e32 e35

occurrence of
e36

occurrence of
e23

occurrence of
e33

occurrence of
e32

occurrence of
e35

e23 e14 e13 e37 e36 e14 e13 e37 e36 e23 e13 e37 e36 e23 e33 e37 e36 e23 e33 e32 e36 e23 e33 e32 e35

During the performance of sequence wObs
A2

= e36 e29 e28 e23 e16 e15 e18 e17 e23

occurrence of
e16

occurrence of
e15

occurrence of
e18

occurrence of
e17

occurrence of
e23

e36 e29 e28 e23 e16 e29 e28 e23 e16 e15 e28 e23 e16 e15 e18 e23 e16 e15 e18 e17 e16 e15 e18 e17 e23

During the performance of sequence wObs
A3

= e39 e38 e2 e1 e4 e7 e6 e5 e3

occurrence of
e4

occurrence of
e7

occurrence of
e6

occurrence of
e5

occurrence of
e3

e39 e38 e2 e1 e4 e38 e2 e1 e4 e7 e2 e1 e4 e7 e6 e1 e4 e7 e6 e5 e4 e7 e6 e5 e3

This computation independence is an advantage in the real life since activity to
monitor can evolve with the time according to the pathologies the medical staff want
to focus. If the medical staff want to focus on the cooking activity only during a fixed
period of the inhabitant life, the monitoring of the other activities can be considered
as useless or unwanted. Furthermore, the independence of the distances computation
can lead us to indecision since two activities will be considered as possible. In this case,
the decision making can be reported to later if the indecision disappears with the time
or it can be asked to an expert to distinguish the occurred activity or to improve the
instrumentation.

Figure 4.5.2 lists the different projected sequences obtained after each occurrence
of a new event with the example sequences wObs

A1
,wObs

A1
and wObs

A3
. The projection of the

analysed sequences obtained above (figure 4.5.1) on the activity alphabet ΣAk
is denoted

wObs
pk

. The list of events ΣAk
linked with activity Ak can be seen in figures 2.2.10 or

3.3.2 and are the following:

• ΣA1 = {e13, e14, e21, e22, e24, e25, e26, e27, e28, e29, e30, e31, e32, e33, e34, e35, e36, e37};
• ΣA2 = {e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e24, e25, e26, e27, e28, e29, e36, e37};
• ΣA3 = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e38, e39}.

4.5.3 Language generation based on the projected sequence

Once the extracted sequence projected, it is necessary to extract a language from the
obtained projected sequences wObs

pk
. Indeed, as explained in section 4.2.2, the language

creation is necessary to traduce the continuous property of the human life and to consider
all successions of events without any unwanted discrimination.

The retained language generation method is illustrated in figure 4.2.2 and consists
in creating a language LObs

pk
composed of all substrings of the projected sequence wObs

pk

having a length greater than or equal to two. Figures 4.5.3 to 4.5.5 shows the languages
LObs

pk
obtained for the projected sequences wObs

pk
shown in figure 4.5.2.
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Table 4.5.2: Projected sequences wObs
pk

when new events of the sequences wObs
Ak

occurs.

During the performance of sequence wObs
A1

= e23 e14 e13 e37 e36 e23 e33 e32 e35

occurrence
of e36

occurrence
of e23

occurrence
of e33

occurrence
of e32

occurrence
of e35

wObs
p1

e14 e13 e37 e36 e14 e13 e37 e36 e13 e37 e36 e33 e37 e36 e33 e32 e36 e33 e32 e35

wObs
p2

e14 e13 e37 e36 e14 e13 e37 e36 e13 e37 e36 e37 e36 e36

wObs
p3

∅ ∅ ∅ ∅ ∅

During the performance of sequence wObs
A2

= e36 e29 e28 e23 e16 e15 e18 e17 e23

occurrence
of e16

occurrence
of e15

occurrence
of e18

occurrence
of e17

occurrence
of e23

wObs
p1

e36 e29 e28 e29 e28 e28 ∅ ∅

wObs
p2

e36 e29 e28 e16 e29 e28 e16 e15 e28 e16 e15 e18 e16 e15 e18 e17 e16 e15 e18 e17

wObs
p3

∅ ∅ ∅ ∅ ∅

During the performance of sequence wObs
A3

= e39 e38 e2 e1 e4 e7 e6 e5 e3

occurrence
of e4

occurrence
of e7

occurrence
of e6

occurrence
of e5

occurrence
of e3

wObs
p1

∅ ∅ ∅ ∅ ∅

wObs
p2

∅ ∅ ∅ ∅ ∅

wObs
p3

e39 e38 e2 e1 e4 e38 e2 e1 e4 e7 e2 e1 e4 e7 e6 e1 e4 e7 e6 e5 e4 e7 e6 e5 e3

Table 4.5.3: Generated languages LObs
pk

when new events of the sequence wObs
A1

occurs.

During the performance of sequence wObs
A1

= e23 e14 e13 e37 e36 e23 e33 e32 e35

occurrence of e36 occurrence of e23

LObs
p1

{e14e13, e13e37, e37e36, e14e13e37,
e13e37e36, e14e13e37e36}

{e14e13, e13e37, e37e36, e14e13e37,
e13e37e36, e14e13e37e36}

LObs
p2

{e14e13, e13e37, e37e36, e14e13e37,
e13e37e36, e14e13e37e36}

{e14e13, e13e37, e37e36, e14e13e37,
e13e37e36, e14e13e37e36}

LObs
p3

∅ ∅
occurrence of e33 occurrence of e32

LObs
p1

{e13e37, e37e36, e36e33, e13e37e36,
e37e36e33, e13e37e36e33}

{e37e36, e36e33, e33e32, e37e36e33,
e36e33e32, e37e36e33e32}

LObs
p2

{e13e37, e37e36, e13e37e36} {e37e36}

LObs
p3

∅ ∅
occurrence of e35

LObs
p1

{e36e33, e33e32, e32e35, e36e33e32, e33e32e35, e36e33e32e35}

LObs
p2

∅

LObs
p3

∅

By studying the languages obtained by adding a unique event, we can see than most
of the sequences of the alphabet are kept from one step to another one. Indeed, if we
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Table 4.5.4: Generated languages LObs
pk

when new events of the sequence wObs
A2

occurs.

During the performance of sequence wObs
A2

= e36 e29 e28 e23 e16 e15 e18 e17 e23

occurrence of e16 occurrence of e15

LObs
p1

{e36e29, e29e28, e36e29e28} {e29e28}

LObs
p2

{e36e29, e29e28, e28e16, e36e29e28,
e29e28e16, e36e29e28e16}

{e29e28, e28e16, e16e15, e29e28e16,
e28e16e15, e29e28e16e15}

LObs
p3

∅ ∅
occurrence of e18 occurrence of e17

LObs
p1

∅ ∅

LObs
p2

{e28e16, e16e15, e15e18, e28e16e15,
e16e15e18, e28e16e15e18}

{e16e15, e15e18, e18e17, e16e15e18,
e15e18e17, e16e15e18e17}

LObs
p3

∅ ∅
occurrence of e23

LObs
p1

∅

LObs
p2

{e16e15, e15e18, e18e17, e16e15e18, e15e18e17, e16e15e18e17}

LObs
p3

∅

Table 4.5.5: Generated languages LObs
pk

when new events of the sequence wObs
A3

occurs.

During the performance of sequence wObs
A3

= e39 e38 e2 e1 e4 e7 e6 e5 e3

occurrence of e4 occurrence of e7

LObs
p1

∅ ∅

LObs
p2

∅ ∅

LObs
p3

{e39e38, e38e2, e2e1, e1e4, e39e38e2,
e38e2e1, e2e1e4, e39e38e2e1,
e38e2e1e4, e39e38e2e1e4}

{e38e2, e2e1, e1e4, e4e7, e38e2e1,
e2e1e4, e1e4e7, e38e2e1e4,
e2e1e4e7, e38e2e1e4e7}

occurrence of e6 occurrence of e5

LObs
p1

∅ ∅

LObs
p2

∅ ∅

LObs
p3

{e2e1, e1e4, e4e7, e7e6, e2e1e4,
e1e4e7, e4e7e6, e2e1e4e7,
e1e4e7e6, e2e1e4e7e6}

{e1e4, e4e7, e7e6, e6e5, e1e4e7,
e4e7e6, e7e6e5, e1e4e7e6,
e4e7e6e5, e1e4e7e6e5}

occurrence of e3

LObs
p1

∅

LObs
p2

∅

LObs
p3

{e4e7, e7e6, e6e5, e5e3, e4e7e6, e7e6e5, e6e5e3, e4e7e6e5, e7e6e5e3, e4e7e6e5e3}

compare alphabets in the figure 4.5.5 just above, we can see that six sequences are kept
from the language LObs

p3
generated after the occurrence of e4 to the one generated after

the occurrence of e7, since four sequences changes. It is exactly what we want since the
occurrence of a single event does not change totally what the inhabitant do. At each
step, we keep the shared substring between the past and the present to traduce the
life continuity: a single event does not totally change the manipulated language. This
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property can be seen for all languages and for all events succession. In the same way,
when the number of events in the projected sequence decrease, the language progressively
lose sequences until it is empty.

4.5.4 Probability estimation

Each time a new event is observed and once the first three steps of the protocol
performed, we have one language for each activity Ak to monitor. A distance can thus
be computed between each PFA modelling those activities {Ak} and the corresponding
languages {LObs

pk
}. In our case, the retained distance is the inverse of the normalised

perplexity. Therefore, as a final step of the AR, the inverse of the normalised perplexity
1

||P P (LObs
pk

|Ak)||
for each model Ak to generate the language LObs

pk
is computed. Since the

differences between perplexity per string or per symbol is only proportional, we prefer
to use the perplexity per symbol to underline the importance of the events.

For a sake of simplicity, all the details of the distance computation will not be pre-
sented here. The intermediate computation results for wObs = e23e14 e13 e37 e36 extracted
from wObs

A1
are given in figure 4.5.6. In this figure, we can find, for each language LObs

p1
,

LObs
p2

and LObs
p3

, the sequences included in the language and their likelihood, maximum
likelihood, normalised likelihood and inverse of normalised perplexity per symbol know-
ing the activity model A1, A2 and A3, respectively.

Table 4.5.6: Pertinent intermediate probability for the distance computation of the
example observed sequence and final distance.

sequence u P (u|Ak) max
v∈Σ

|u|
Ak

[P (v|Ak)] ||P (u|Ak)|| 1
||P P (LObs

pk
|Ak)||

e14e13 0.01288334 0.01628777 0.79098265
e13e37 0.01360917 0.01628777 0.83554505

LObs
p1

e37e36 0.01427535 0.01628777 0.87644586 0.86705593
e14e13e37 0.00171671 0.00277459 0.61872418
e13e37e36 0.00181342 0.00277459 0.65358188

e14e13e37e36 0.00022875 0.00052513 0.43560692
e14e13 0.01532699 0.01698303 0.90248889
e13e37 0.01619049 0.01698303 0.95333333

LObs
p2

e37e36 0.01698303 0.01698303 1.0 0.97510402
e14e13e37 0.00199506 0.00221062 0.90248889
e13e37e36 0.00210746 0.00221062 0.95333333

e14e13e37e36 0.00025955 0.00028759 0.90248889
LObs

p3
∅ / / / 0
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4.5. Application to the Case Study

By analysing the figure 4.5.6, several point can be noted.

1. As wanted, in this example case, a decision cannot be directly done since the
two activities A1: cooking and A2: hot beverage preparation have a too high
probability simultaneously. Furthermore, by choosing the most probable one, a
mistake can be done since the events used in this example correspond, in real life,
to the events generated when an inhabitant put some water to boil. This step,
necessary to prepare hot beverages and to prepare pasta, is less closed to represent
the activity A1 than the activity A2 since the other way to cook is by preparing a
ready-cooked dishes, which do not need water;

2. The natural property of classical likelihood to decrease with the length of the
considered sequence is clearly visible here;

3. we can see that, if the language was not created and the normalised likelihood
directly used, the activity A1 have a distance value of 0.435 against 0.9025 for the
A2. Indeed, due to the influence of the low probability linked to the event e14 in
the PFA A1, indeterminism is less visible and a faulty conclusion could be done
without the language creation.

By evaluating the distance at each time step, it is possible to draw in a figure the
evolution of the probability with the time. A simple example of its kind of figure is given
figure 4.5.1 and shows the evolution of this value during a deterministic realisation of the
A1: cooking activity. Here, in order to discuss the results, the log of actually performed
activities is compared with the computed estimations. We enlighten this log is for the
validation procedure only and is not required by the proposed method.

The knowledge of performed activity is drawn with plain lines. The probability is
equal to 1 when the activity is actually performed. The value of the presented estimator
is drawn by the crossed lines.

Figure 4.5.1: Inverse of the normalised perplexity during the realisation of the activity
A1 cooking using no shared events.

The example shows that for each new observed event, the estimation of probability
is actualised. The language is empty if the projected sequence length is lower than 2
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and an offset is systematically observed when the activity starts. Furthermore, another
offset is present when an activity stops. This second offset is due to the use of a sliding
window storing the last five observed events.

4.6 Discussion

In the previous sections, we present an AR method in four steps and we applied
it into the case study presented in 2. The following discussion consists of analysing
results obtained depending on the activities of daily living performance. To this aim,
two specific cases are considered:

• the recognition of an activity occurring individually,
• the recognition of a succession of activities.

With the first case, presented section 4.6.1, we study the activities to monitor prob-
abilities obtained when an activity is performed after a succession of events linked to
no other activities. In this way, we are able to conclude about the AR method without
introducing the disturbances possibly linked to an activity violently changed or inter-
rupted.

With the second case, presented section 4.6.2, we study the result of the AR method
when the activities are performed successively without interruption. In this way, we see
the reaction of our method to an activity change or interruption.

As explained in section 4.5.4, in order to discuss the results, the log of actually
performed activities is compared with the computed estimations. We enlighten this log
is for the validation procedure only and is not required by the proposed method.

In the figures presented in the next sections, the knowledge of performed activity
is drawn with plain lines. The probability is equal to 1 when the activity is actually
performed. The value of the presented estimator is drawn by the crossed lines.

4.6.1 Activities occurring individually

In this subsection, in order to estimate our method viability, the AR protocol is
applied to our three case study activities: A1: cooking, A2: hot beverage preparation
and A3: use bathroom. These three activities have the advantage to allow us to test
three specific cases:

1. wObs
A3

is an activity sharing no event with any other ones,

2. the activity wObs
A2

shares some events with the activity A1 when the action prepare
coffee is performed,

3. the activity wObs
A1

shares a lot of events with the activityA2 when the action prepare
pasta is performed. Respectively, the activity wObs

A2
shares a lot of events with the

activity A1.

1 - Activity sharing no event with any other ones:
Figure 4.6.1 shows the result of the AR applied to the performance of the activity A3:

use bathroom. We observe that the values of the inverse of the normalised perplexity
linked to the activity A3 is clearly upper than zero since the perplexity linked to the
other activities A1 and A2 are equals to zero.
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Figure 4.6.1: Inverse of the normalised perplexity during the realisation of the activity
A3: use bathroom sharing no event with any other activity.

In this case, it seems obvious that the performed activity is A3: use bathroom since
the obtained distance is clearly good for A3 and no other activity seems to be occurring.

Thus, as expected, the proposed AR protocol for activities sharing no event with
others is efficient when the concerned activities are occurring individually.

2 - Activity sharing some events with another one:

Figure 4.6.2: Inverse of the normalised perplexity during the realisation of the activity
A2: hot beverage preparation sharing some events with the activity A1: cooking.

Figure 4.6.2 shows the result of the AR applied to the performance of the activity
A2: hot beverage preparation, more specifically during the preparation of coffee. We can
observe that the values of the inverse of the normalised perplexity linked to the activity
A1: cooking and A2: hot beverage preparation are initially both clearly upper than
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zero since the perplexity linked to the activity A3 is equal to zero. Furthermore, before
twenty-three seconds, we are in a situation of indeterminism. Then, once unshared event
occurs, the indeterminism disappears since the activity A1: cooking probability fall to
zero and never grown up.

In this case, it seems obvious after a period of indecision that the performed activity
is A2: hot beverage preparation since the obtained distance is good for A2 longer than
for A1.

The proposed AR protocol for activities sharing some events with others is efficient
once unshared events appear when the concerned activities are occurring individually.

3 - Activity sharing many events with another one:

Figure 4.6.3: Inverse of the normalised perplexity during the realisation of the activity
A1: cooking sharing many events with the activity A2: hot beverage preparation.

Figure 4.6.3 shows the result of the AR applied to the performance of the activity
A1: cooking, more specifically during pasta preparation. We can observe that the values
of the inverse of the normalised perplexity linked to the activity A1: cooking and A2:
hot beverage preparation are both clearly upper than zero the majority of the time since
the perplexity linked to the activity A3 and A2 are equals to zero. Here, the situation
of indeterminism is too present to clearly conclude about which activity was performed.

The proposed AR protocol for activities sharing many events with others is not
efficient. This drawback of the methodology is normal and common to each recognition
technique. Of course, if two activities have too closed moves indissociable using sensors
installed in the smart home, our AR method could not dissociate them either.

In addition to these three cases, it is important to highlight that if a sensor is linked
with too many activities, it is observed a lot of times during the learning period and its
probability becomes predominant in all linked ADL models. This property makes the
occurrence of the concerned event non-discriminant and noisy. Therefore, the events
detected by such sensors are not useful and may be unlinked to all activities. If used for
the ADL monitoring only, this sensors should not be implemented.

4.6.2 Activities occurring successively

In this subsection, in order to estimate if our method is robust to activity interrup-
tion and succession, the AR protocol is applied to a succession of the three case study
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activities: A3: use bathroom thenA1: cooking and finallyA2: hot beverage preparation.
As we see before that AR is not efficient with activities performances sharing many

events, the succession tested in this subsection implied only activity occurrences having
zero or some events shared.

Figure 4.6.4 the result of our AR method for the presented activity succession. We
can observe that it is easy to conclude from the probabilities that we perform a succession
of activities A3 then A1 finally A2. The detection of the exact time of changing activity
is more difficult between the two activities A1 and A2 sharing some events but the
succession can even be detected.

Figure 4.6.4: Inverse of the normalised perplexity during the succession of the three
activities A1: cooking, A2: hot beverage preparation and A3: use bathroom sharing no
zero of some events.

4.6.3 Validation

The presented and discussed results are obtained by discovering activities as de-
scribed in chapter 3 and by applying the activity recognition protocol presented in this
chapter 4.

In this discussion section, we showed that, after learning PFAs, we are able to find
the performed activity with the common hypothesis to have activities not sharing too
much events.

These results allow us to conclude that the presented method to discover and recog-
nise activities of daily living performed by an inhabitant of a smart home is powerful.
Especially, those results are obtained without declaring the performed activity during
the learning period and using only environmental and binary sensors.

Conclusion

An approach for activity recognition has been presented in this chapter. To do
that, a new probabilistic distance, called normalised likelihood, and its extension to
perplexity has been defined. It has also been shown that the normalised likelihood can be
efficiently computed onto a reduced model of the activity without loss of accuracy. This
make efficient the on-line computation of the probability for an activity, modelled by a
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Probabilistic Finite-State Automaton, to be performed. Finally, the proposed approach
has been applied to several test activities performed in the living lab presented in chapter
2 and the quality of the results obtained has been discussed.
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Summary

The objective of this thesis was to propose a contribution in the field of ambient
assisted living and activity of daily living monitoring by limiting the semantic level of
the problem inputs. Indeed, three main limiting issues in the domain appear to be
non-negligible: the instrumentation cost, the human non-determinism and the patient
inability and privacy. These three points lead us to make four assumptions:

Assumption 1 Activities are represented by probabilistic models;
Assumption 2 Only binary and environmental sensors are used;
Assumption 3 The considered smart home has a single inhabitant;
Assumption 4 The knowledge of the actually performed activity is not required.

These assumptions bring us to use paradigms, theory and tools of the discrete event
system domain. By considering an inhabitant generating sensor events by living in a
smart home and using an initial expert knowledge, a new framework to discover and
recognise activities performed by the inhabitant was proposed. In order to develop this
framework, we built a living lab adapted to our hypothesis and we developed two main
contributions, detailed and presented in this thesis.

A living lab installation and a protocol to test the developed methods

Since the subject treated in this thesis is directly related to a real problem of society
requiring concrete solutions, all the methods presented in this thesis must be applicable
on a real case. The development of the methods cannot be decoupled with the technical
application. Therefore, in the first time, several living labs were introduced and their
utility in applying our methods using their datasets was discussed. Unfortunately, the
limitations of the assumptions previously taken make living labs currently known not
fully adapted to our methods. These incompatibilities are mainly due to a lack of
information on smart homes equipped.

To cope with this problem, a new living laboratory has been developed at ENS
Paris-Saclay. This ambient assisted living test area (AALTA) is presented and the
placement of objects and sensors is given. A necessary expert decomposition in the
activity discovery method is also detailed. Finally, the experimental protocol used to
generate test databases is developed and explained.

An activity discovery method using probabilistic finite-state automata

An approach to discover the human activities of daily living has been proposed and
illustrated. An activity modelling procedure using probabilistic finite-state automata
was developed based on the knowledge of a training event log database and thanks to
an expert decomposition of activities into actions related to the smart home events.
The main advantage of this method is related to the Assumption 4 of this thesis which
avoids the use of activity labelling during the learning phase to generate the models.
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This activity discovery method has been illustrated using the living lab information.

An activity recognition method using previously generated models

Finally, an activity recognition approach has been presented. This approach, decom-
posable into four steps, needs a new probabilistic distance, called normalised likelihood,
and its extension to the normalised perplexity. These two distance estimators are defined
and explained in this thesis. It has also been shown that the normalised likelihood can
be calculated efficiently using a reduced model without loss of precision. This makes
efficient the on-line calculation of the probabilities for an activity to be performing. Fi-
nally, the recognition approach has been applied to several test activities carried out in
the living lab previously presented and the quality of the results obtained appear to be
good.

Outlook

A global framework for discovering and recognising activities is proposed in this
thesis and several improvements can be envisaged.

To relax the assumption concerning the sensor technology used

In this thesis, in addition to the rejection of too intrusive sensors (as cameras), we
reject in Assumption 2 the use of wearable sensors sometimes incompatible with some
pathologies. This assumption leads to consider only single inhabitant smart homes. A
perspective is to relax this assumption, by authorising, when possible, the use of wearable
sensors which are not too intrusive considering the inhabitant privacy: the binary ones
(as RFID). By allowing the use of binary and wearable sensors, the assumption of single
inhabitant can easily be removed since the automatic labelling of the input data with the
name of the person wearing sensors is possible. Furthermore, the use of RFID targets
fixed on some objects can lead to a better granularity in the expert knowledge. The
presented method, developed to deal with binary sensors, should directly be applicable
without changes if the Assumption 2 is relaxed by allowing wearable binary sensors.

To use the discovered models and the recognised activity to treat the
detection of deviation and activity prediction problems

As a continuity of the presented work, it can be envisaged to treat the two other
main objectives linked with the activity of daily living monitoring: the detection of
deviations and the activity prediction. Indeed, as we did with the activity discovery and
recognition, those two other objectives could be reformulated to be compatible with the
discrete event system paradigms.

For example, the use of well-known diagnosis methods of the industrial domain can be
extended to human deviation if we consider human deviations as faults to detect. Since,
in this thesis, the human behaviour are models using DES paradigms, these extensions
can easily be envisaged. An extension of residuals uses for fault localisation developed
in the LURPA (Roth et al., 2011) can be extended to probabilistic residuals for human
deviation detection.

Furthermore, works treating the field of predictability in DES domain such as Jéron
et al. (2008) and Genc and Lafortune (2009) can be reused and adapted to our models.
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To identify activities not listed by the medical staff

Using the existing methods in the industrial identification of reactive system (Dotoli
et al., 2008; Saives et al., 2015), it could be envisaged to find activities initially not
given by the medical staff, to detect the linked events and to automatically discover
their models without any expert intervention.

The medical staff and the expert decomposition could thus be enriched by automat-
ically detected activities one which deviation detection could also be performed. The
use of identification method to extend the monitored activities to medically not targeted
ones could allow a better inhabitant supervision during his entire daily life.
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Résumé en langue française

Introduction

Au cours des dernières décennies, la proportion de personnes âgées de 65 ans et plus
dans le monde a continuellement augmenté. Comme estimé dans l’étude statistique
européenne EUROSTAT (2013) et explicité par la figure Fr.1, ce vieillissement de la
population devrait continuer dans le futur. Or, comme montré par l’étude américaine
Norris et al. (2017) et représenté sur la figure Fr.2, les problèmes de santé viennent avec
l’âge et 55% des personnes âgées ont des problèmes de santé. D’après la même étude,
seulement 8% des personnes âgées de 65 ans et plus ont besoin qu’une tierce personne
les aide au quotidien, ce qui laisse 47% de personnes de cette tranche d’âge avec des
problèmes de santé suffisamment peu sérieux pour leur permettre de vivre seuls.

Figure Fr.1: Structure de la population par tranche d’âge, UE-28, 2015-2080 (en % de
la population totale) (EUROSTAT, 2013).

Cette évolution démographique de la société soulève de nouveaux problèmes, tant sur
le plan humain qu’économique. En effet, les institutions de santé ne sont pas capables,
en l’état actuel, de gérer autant de personnes âgées. C’est pourquoi il est nécessaire
de développer des solutions alternatives aux moyens existants afin d’aider les personnes
âgées n’ayant pas de problèmes de santé trop graves à rester indépendantes des services
de santé conventionnels.

Une solution actuellement envisagée est de développer des systèmes assistants et
surveillant les personnes continuellement afin de leur permettre de rester à domicile aussi
longtemps que possible. Ainsi, les installations médicales peuvent être réservées aux
pathologies sévères et aux urgences. De plus, cette solution permet aux personnes âgées
ou handicapées de rester plus longtemps dans un environnement qui leur est familier
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Figure Fr.2: Pourcentage de la population de tout âge ayant un excellent ou un très bon
état de santé, par âge et par sexe : États-Unis (Norris et al., 2017).

(Cornelis et al., 2017). C’est pourquoi cette solution, moins chère et plus plaisante, doit
être développée. Cette surveillance continue des personnes à domicile permettrait de
contacter la famille ou des médecins quand un problème ou un comportement anormal
est détecté.

La surveillance des activités de tous les jours (ADL) est l’une des principales possi-
bilités étudiées dans le domaine des systèmes de santé à domicile. Elle consiste à donner
au personnel médical des informations précises et utiles à propos du patient. Par défini-
tion (Lawton and Brody, 1969), une ADL est une activité qui est réalisée régulièrement
par une personne (comme préparer à manger, faire le ménage, prendre du temps libre,
etc.) et dont la surveillance est utile aux médecins. Les études actuelles sur les ADLs
traitent quatre points: la découverte d’activité (AD), la reconnaissance d’activité (AR),
la prédiction d’activité (AP) et la détection de déviation de comportement (DD). Dans
cette thèse, seulement les problèmes de découverte et de reconnaissance d’activité sont
traités. L’objectif de l’AD est de générer un ou plusieurs modèles d’activités plus ou
moins formels en observant, durant une période d’apprentissage, le comportement de
la personne à surveiller. L’objectif de l’AR est de détecter qu’une activité est réalisée
quand la personne la réalise effectivement.

L’objectif de cette thèse est de proposer une méthode de découverte d’activité et une
méthode de reconnaissance d’activité compatible avec les limitations choisies suivantes:

1. Les activités sont représentées par des modèles probabilistes : ces modèles sont
compatibles avec le côté erratique du comportement humain.

2. Seulement des capteurs binaires et environnementaux sont utilisés : ces capteurs
sont considérés comme non intrusifs et peu chers. L’objectif est donc de savoir
jusqu’où on peut aller en n’utilisant que ces capteurs qui sont sémantiquement
pauvres.

3. Les maisons équipées considérées pour appliquer notre méthode sont habitées par
une seule personne. En effet, l’utilisation de capteurs binaires environnementaux
ne permet pas de distinguer précisément quelle personne interagie avec quel cap-
teur. Cette limitation à une seule personne surveillée n’est pas un problème, car,
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en pratique, les cibles principales de la surveillance de personnes à domicile sont
les personnes vivant seules.

4. Finalement, l’étiquetage des données d’apprentissages avec les activités réellement
réalisées est rejeté. En effet, qu’elle soit faite par un expert analysant les données
capteurs ou directement par l’habitant pendant la période d’essai, la déclaration
manuelle des activités réalisées pendant la période d’apprentissage contient souvent
des informations mauvaises ou incomplètes. Afin de parer la perte d’information
liée à ce choix, un nouveau savoir est ajouté : la décomposition des activités à
surveiller en actions liées à des données capteurs.

Le plan proposer dans cette thèse pour découvrir et reconnaître les activités de tous
les jours est donné par la figure Fr.3.

Figure Fr.3: Plan proposé pour la découverte et la reconnaissance d’activités.

Création d’un appartement test

Comme le sujet traité dans cette thèse est directement lié au problème sociétal
présenté précédemment, les méthodes présentées doivent être applicables à des cas réels.
En effet, le développement des méthodes ne peut être découplé de l’application tech-
nique. Malheureusement, les appartements tests existants dans la littérature ne sont pas
compatibles avec nos hypothèses de travail. C’est pourquoi, pour tester les méthodes de
cette thèse, un appartement prêté par l’ENS Paris-Saclay a été instrumenté en utilisant
vingt capteurs binaires. L’instrumentation à été choisie afin de découvrir et reconnaître
trois activités :

• A1 : Cuisiner;
• A2 : Préparer une boisson chaude;
• A3 : Utiliser la salle de bain;

Les activités à découvrir et reconnaître peuvent être décomposées hiérarchiquement
en plusieurs actions rattachables à certains capteurs. Cette décomposition sera utilisée
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plus tard pour découvrir les modèles d’activités. Dans notre exemple, la décomposition
de chaque activité en deux actions et leurs liens avec les événements sont choisis afin de
pouvoir analyser les résultats obtenus pour quatre cas spécifiques:

1. Une des activités doit pouvoir être réalisée dans une pièce de l’appartement équipé
dans laquelle aucune autre activité ne peut être réalisée. Ainsi, les événements
observés dans cette zone seront systématiquement liés à cette activité uniquement.
Dans notre cas d’application, l’activité A3 répond à ce critère;

2. Une activité doit avoir deux actions sémantiquement proches, mais en pratique,
réalisée différemment. Les actions Préparer un plat préparé et Faire des pâtes de
notre cas d’étude répond à ce critère;

3. Un des moyens pour réaliser une activité doit être si proche d’une autre activité
que la distinction entre ces deux activités est difficile. Dans notre cas, les ac-
tions préparées des pâtes de l’activité A1 et préparer du thé de l’activité A2 sont
suffisamment proches pour répondre à ce cas;

4. En contraste avec le cas précédent, deux actions d’activités différentes doivent avoir
une petite partie de leurs réalisations en commun et une grande partie différente.
C’est le cas des actions préparer des pâtes de l’activité A1 et préparer du café de
l’activité A2.

Découverte d’activité

La première contribution de cette thèse est le développement d’une nouvelle méthode
de découverte d’activité (AD). Cette approche est nécessaire, car la quatrième limitation
rejetant l’étiquetage des données d’apprentissage présentées précédemment est incom-
patible avec les méthodes de découverte déjà existantes.

Le principal avantage de la méthode développée est sa portabilité. En effet, elle est
applicable dans tous les appartements équipés, quelleque soit la pathologie de l’habitant.

Cette approche modélise chaque activité à surveiller par un automate à état prob-
abiliste (PFA). La perte d’information liée au rejet du savoir des activités réalisées
pendant la période d’apprentissage est compensée par l’ajout d’un savoir expert spéci-
fique donnant la décomposition hiérarchique des activités en actions puis en événements
capteurs.

Le modèle de chaque activité est généré en trois étapes:

1. La structure du modèle est automatiquement créée à partir de la décomposition
experte;

2. La base de données d’apprentissage est analysée en faisant glisser une fenêtre
d’observation composée d’un nombre fixe d’événements et des indicateurs de fréquences
pertinentes sont calculés;

3. Les probabilités de nos modèles sont calculées en utilisant les indicateurs de
fréquence calculés à l’étape 2.

Les modèles générés par cette découverte d’activités sont ensuite utilisés comment
entrée pour la reconnaissance d’activité.

120



BIBLIOGRAPHY

Reconnaissance d’activité

La seconde contribution principale de cette thèse est le développement d’une nouvelle
méthode de reconnaissance d’activité (AR). Cette approche consiste à détecter l’activité
réalisée par un habitant surveillé pendant qu’il la réalise. Pour cela, le groupe {habitant
+ maison équipée} est considéré comme un générateur d’événements et les activités à
reconnaître sont modélisées par des PFAs. Dans la littérature, il existe plusieurs façons
de reconnaître quel PFA a le plus probablement généré une séquence si les différents
PFAs comparés sont liés aux mêmes événements. Cependant, si ceux-ci ne partagent
pas les mêmes événements, les méthodes sont inutilisables. Or, les modèles que nous
avons découverts précédemment ne partagent pas les mêmes événements, car les activités
ne sont pas systématiquement liées aux mêmes capteurs. C’est pourquoi la nouvelle
méthode de reconnaissance d’activité présentée dans cette thèse est nécessaire.

Un point commun entre les méthodes existantes (Van Kasteren et al., 2008; Kel-
lokumpu et al., 2005) et la nôtre est la définition et l’utilisation d’une distance. En effet,
dans ces méthodes comme dans la nôtre, le calcul d’une distance est utilisé pour estimer
quelle activité a le plus de chance d’être réalisée au vu des observations.

Dans le but d’améliorer les méthodes de reconnaissance existantes et de les adapter
à notre cas, plusieurs opérations telles que l’utilisation de fonctions de projections et la
création de langage doivent être considérées. La projection aide à supprimer le bruit lié
à d’autres activités ou à des capteurs non pertinents en ne gardant que les événements
utiles à la détection de chaque activité. La génération d’un langage nous permet de con-
sidérer les événements observés comme une succession de plusieurs groupes d’événements
plus ou moins indépendants.

Les distances existantes dans la littérature doivent être adaptées pour donner des
résultats exploitables après les différentes projections et créations de langage. C’est
pourquoi, dans cette thèse, une nouvelle distance : la vraisemblance normalisée, basée
sur la définition de la perplexité usuellement utilisée pour calculer la distance entre
un modèle et un langage. Le calcul de cette nouvelle distance posant des problèmes
de complexité calculatoire, deux algorithmes ont été développés pour rendre ce calcul
faisable dans un temps acceptable (moins d’une seconde).

Conclusion

Dans cette thèse, une approche globale pour découvrir et reconnaître les activités de
tous les jours d’un habitant dans une maison équipée est proposée. Ainsi, une procé-
dure pour modéliser les activités par des automates finis probabilistes est développée
en utilisant l’enregistrement les événements générés par l’habitant pendant une période
d’essai et la décomposition hiérarchique des activités à modéliser en actions liées aux
différents événements de capteurs. Puis, une méthode de découverte d’activité basée
sur une nouvelle distance appelée perplexité normalisée est présentée. De plus, il est
prouvé que cette nouvelle distance peut être efficacement calculée sans aucune perte de
performance en utilisant des algorithmes développés dans cette thèse.

Finalement, toutes ces méthodes sont appliquées sur un vrai appartement de test
équipé.

Pour prolonger ces travaux, il pourrait être envisagé de traiter le cas de plusieurs
habitants vivant dans une maison équipée. Cela est envisageable en relaxant l’hypothèse
de n’utiliser que des capteurs binaires environnementaux (en utilisant des capteurs RFID
par exemple).
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L’utilisation des modèles générés et des activités reconnues peut être envisagée afin
de détecter de potentielles déviations d’habitudes de l’habitant pouvant être symptoma-
tique de certaines pathologies.

Enfin, il peut être envisagé d’identifier automatiquement des activités non listées
comme "à surveiller" par le corps médical afin d’améliorer notre reconnaissance d’activité.
En effet, l’ajout automatique de ce genre d’activité non sensible peut faciliter la recon-
naissance en évitant de potentiels faux positifs.

122



Appendix

A
Proofs

Notations
In order to prove Proposition 4.1, the following notation is defined:

• ei ∈ ΣAk
;

• eeq ∈ ΣAk
such as eeq ∈

⋂
ql,qm∈QAk

Equql,qm(ei);

• {eeq}ei
is the set of all possible eeq associated to ei;

• esup ∈ ΣAk
such as esup ∈

⋂
ql,qm∈QAk

Geqql,qm(ei) and esup /∈
⋂

ql,qm∈QAk

Equql,qm(ei);

• {esup}ei
is the set of all possible esup associated to ei.

Thus, by definition it holds:

{eeq}ei
+ {esup}ei

=
⋂

ql,qm∈QAk

Geqql,qm(ei).

Proposition 4.1 (Chapter 4, Page 89)
Let Ak =< QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
> be a PFA and

Ar
k =< QAk

, Σr
Ak

, δr
Ak

, IAk
, FAk

, P r
Ak

> be the reduced PFA obtained by the reduction
procedure Ak → A

r
k. Then ∀w ∈ Σ∗

Ak
of length |w| it holds:

max
u∈Σ

|w|

Ar
k

[P (u|Ak)] = max
v∈Σ

|w|
Ak

[P (v|Ak)].

Proof. In equation (4.26), only event ei with {esup}ei
= ∅ are kept in the reduced PFA

Ar
k. We prove that the rejection of events having {esup}ei

6= ∅ does not change the value
of the maximum likelihood.

Let w = w′
1...w

′
k...ei...w

′
|w|−1w

′
|w| be a sequence of events and ei is one of the events

in the sequence.
Let w = w′

1...w
′
k...esup...w′

|w|−1w
′
|w| be a sequence of events that equals sequence w

but for event ei, which is changed by esup ∈ {esup}ei
.

At this point, two case exist ∀q − l, q(m ∈ QAk
:

• P (ql, esup, qm) = P (ql, ei, qm) if esup ∈ Equql,qm(ei)
• P (ql, esup, qm) > P (ql, ei, qm) if esup /∈ Equql,qm(ei)

Thus, for each path θ = (s0, w′
1, s1...sj−1, ei, sj, ...w|w|

′, s|w|) generating w, it exists a
path θ′ = (s0, w′

1, s1...sj−1, esup, sj, ...w|w|
′, s|w|) generating v such as:
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• if esup ∈ Equsj−1,sj
(ei) then

I(s0)×




|w|∏

h=1

P (sh−1, w′
h, sh)


 = I(s0)×




|w|∏

h=1

P (sh−1, v′
h, sh)




→ P (θ|Ak) = P (θ′|Ak)

• else if esup /∈ Equsj−1,sj
(ei) then

I(s0)×




|w|∏

h=1

P (sh−1, w′
h, sh)


 < I(s0)×




|w|∏

h=1

P (sh−1, v′
h, sh)




→ P (θ|Ak) < P (θ′|Ak)

Since esup /∈
⋂

ql,qm∈QAk

Equql,qm(ei), the case esup /∈ Equsj−1,sj
(ei) occurs at least one

time, thus:

P (v|Ak) =
∑

θ′∈ΘAk
(v)

P (θ′|Ak) > P (w|Ak) =
∑

θ∈ΘAk
(w)P (θ|Ak)

(A.1)

Hence, equation (A.1) proves that, for all sequences w including an event ei with
{esup}ei

6= ∅, it exists another sequence v having the same length with a greater likeli-
hood. Therefore, event ei with {esup}ei

6= ∅ can be excluded for the maximum likelihood
computation.

By the same way, we can prove that the likelihood does not change by changing
an event ei by another event eeq ∈ {eeq}ei

, then only one of them can be kept in Ar
k.

Consequently, it holds max
u∈Σ

|w|

Ar
k

[P (u|Ak)] = max
v∈Σ

|w|
Ak

[P (v|Ak)] and the thesis is proved.

Proposition 4.2 (Chapter 4, Page 89)
Let Ak =< QAk

, ΣAk
, δAk

, IAk
, FAk

, PAk
> be a PFA and

Ar
k =< QAk

, Σr
Ak

, δr
Ak

, IAk
, FAk

, P r
Ak

> be the reduced PFA obtained by the reduction
procedure Ak → Ar

k. Then the computational complexity of the maximum classical
likelihood is the following:

CM = O
(

2[card(QAk
)−1]|w|

× card(QAk
)2 × |w|

)
.

Proof. We recall that the following properties are direct consequences of equation (4.26):

Property 1: If event ei is kept using equation (4.26), it exists a set of n1 origin and
destination states Cn1

Ak
=
{
(ql1 , qm1)...(qlp , qmp)...(qln1

, qmn1
)
}

such that ∀ej ∈ ΣAk
,∀p ∈

[1, n1] it holds:
P
[
(qlp , ei, qmp)

]
≥ P

[
(qlp , ej, qmp)

]
.

Furthermore, according to equation (3.9), Ñ(ei|ql → qm) and P (ql, ei, qm) do not
depend on ql. Thus, Geqql,qm(ei) and Equql,qm(ei) depend only on ei and qm. It is
possible to rewrite Property 1 as follow:
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Property 2: If event ei is kept using equation (4.26), it exists a set of n2 destination
states Dn2

Ak
=
{
(qm1 ...qmp ...qmn1

}
such that ∀ej ∈ ΣAk

,∀ql ∈ QAk
,∀p ∈ [1, n2] it holds:

P
[
(ql, ei, qmp)

]
≥ P

[
(ql, ej, qmp)

]
.

Moreover, for each possible set Dn2
Ak

of destination states, only one event is kept by
the equivalent events deletion performed by step 2 of the reduction procedure Ak → A

r
k.

Thus, the number of kept events NAk
= card(Σr

Ak
) is bounded by the number of possible

sets Dn2
Ak

that is necessary to evaluate.

For a PFA with m = card(QAk
) states, sets composed with n2 ∈ [1, m−1] destination

states can be created. For each n2, it exists

(
m− 1

n

)
different possible sets Dn2

Ak
. Thus,

we have:

NAk
≤

m−1∑

i=1

(
m− 1

i

)
= 2m−1 − 1.

Thus, according to equation (4.22), the complexity of the maximum classical likeli-
hood after the reduction procedure Ak → A

r
k is the following:

CM = O
(
card(ΣAr

k
)|w| × card(QAk

)2 × |w|
)

.

and thus:

CM = O
(

card(2[card(QAk
)−1]|w|

× card(QAk
)2 × |w|

)
.

This proves Proposition 4.2.
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Appendix

B
Generation of the activities hot
beverage preparation and use

bathroom PFA structures

States creation QA2 ={Make tea, Make
coffee, Initial}

Creation of transitions reflecting the link
of the action Make tea with the merge

group Me4

Creation of transitions reflecting the link
of the action Make tea with the merge

group Me5

Creation of transitions reflecting the link
of the actions Make tea and Make coffee

with the merge group Me6

Creation of transitions reflecting the link
of the actions Make tea and Make coffee

with the merge group Me7

Creation of transitions reflecting the link
of the action Make Coffee with the merge

group Me8
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Appendix B. Generation of the activities hot beverage preparation and use
bathroom PFA structures

Activity A2 PFA structure (Merge groups are developed)

Figure B.0.1: Generation of the activity A2 (Hot beverage preparation) PFA structure.
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States creation QA3 ={Go to the toilets,
Have a shower, Initial}

Creation of transitions reflecting the link
of the action Go to the toilets with the

merge group Me9

Creation of transitions reflecting the link
of the actions Go to the toilets and Have

a shower with the merge group Me10

Creation of transitions reflecting the link
of the action Have a shower with the

merge group Me11

Activity A3 PFA structure (Merge groups are developed)

Figure B.0.2: Generation of the activity A3 (Use bathroom) PFA structure.
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Appendix

C
Counting example during the

activities hot beverage preparation
and use bathroom performances.

Table C.0.1: Counting example during the activity A2 performance.
sequence wObs

A2
= e36 e29 e28 e23 e16 e15 e18 e17

sliding windows projected
sequences

A1 indicators
changes

A2 indicators
changes

A3 indicators
changes

Initial ∅ N1
ei

= 0
∀ei ∈ ΣA1

N2
ei

= 0
∀ei ∈ ΣA2

N3
ei

= 0
∀ei ∈ ΣA3

e36e29e28e23e16 wObs
p1

: e36e29e28

wObs
p2

: e36e29e28e16

wObs
p3

: ∅

N1
init e36

← 1
N1

e36
← 1

N1
e29
← 1

N1
e28
← 1

N1
e36→e29

← 1
N1

e29→e28
← 1

N2
init e36

← 1
N2

e36
← 1

N2
e29
← 1

N2
e28
← 1

N2
e16
← 1

N1
e36→e29

← 1
N1

e29→e28
← 1

N1
e28→e16

← 1

∅

e29e28e23e16e15 wObs
p1

: e29e28

wObs
p2

: e29e28e16e15

wObs
p3

: ∅

N1
init e29

← 1
N1

e29
← 2

N1
e28
← 2

N1
e29→e28

← 2

N2
init e29

← 1
N2

e29
← 2

N2
e28
← 2

N2
e16
← 2

N2
e15
← 1

N1
e29→e28

← 2
N1

e28→e16
← 2

N1
e16→e15

← 1

∅

e28e23e16e15e18 wObs
p1

: e28

wObs
p2

: e28e16e15e18

wObs
p3

: ∅

N1
init e28

← 1
N1

e28
← 3

N2
init e28

← 1
N2

e28
← 3

N2
e16
← 3

N2
e15
← 2

N2
e18
← 1

N1
e28→e16

← 3
N1

e16→e15
← 2

N1
e15→e18

← 1

∅
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Appendix C. Counting example during the activities hot beverage preparation and
use bathroom performances.

Table C.0.2: Counting example during the activity A3 performance.
sequence wObs

A3
= e39 e38 e2 e1 e4 e7 e6 e5

sliding windows projected
sequences

A1 indicators
changes

A2 indicators
changes

A3 indicators
changes

Initial ∅ N1
ei

= 0
∀ei ∈ ΣA1

N2
ei

= 0
∀ei ∈ ΣA2

N3
ei

= 0
∀ei ∈ ΣA3

e39e38e2e1e4 wObs
p1

: ∅
wObs

p2
: ∅

wObs
p3

: e39e38e2e1e4

∅ ∅ N3
init e39

← 1
N3

e39
← 1

N3
e38
← 1

N3
e2
← 1

N3
e1
← 1

N3
e4
← 1

N3
e39→e38

← 1
N3

e38→e2
← 1

N3
e2→e1

← 1
N3

e1→e4
← 1

e38e2e1e4e7 wObs
p1

: ∅
wObs

p2
: ∅

wObs
p3

: e38e2e1e4e7

∅ ∅ N3
init e38

← 1
N3

e38
← 2

N3
e2
← 2

N3
e1
← 2

N3
e4
← 2

N3
e7
← 1

N3
e38→e2

← 2
N3

e2→e1
← 2

N3
e1→e4

← 2
N3

e4→e7
← 1

e2e1e4e7e6 wObs
p1

: ∅
wObs

p2
: ∅

wObs
p3

: e2e1e4e7e6

∅ ∅ N3
init e2

← 1
N3

e2
← 3

N3
e1
← 3

N3
e4
← 3

N3
e7
← 2

N3
e6
← 1

N3
e2→e1

← 3
N3

e1→e4
← 3

N3
e4→e7

← 2
N3

e7→e6
← 1

e1e4e7e6e5 wObs
p1

: ∅
wObs

p2
: ∅

wObs
p3

: e1e4e7e6e5

∅ ∅ N3
init e1

← 1
N3

e1
← 4

N3
e4
← 4

N3
e7
← 3

N3
e6
← 2

N3
e5
← 1

N3
e1→e4

← 4
N3

e4→e7
← 3

N3
e7→e6

← 2
N3

e6→e5
← 1
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"Ah, so tired. I’ll rest for just a moment."
- XT-002 Deconstructor -

World of Warcraft, The siege of Ulduar





Modélisation et reconnaissance des habitudes de vie
d’un habitant dans un habitat intelligent

Résumé

La plupart des travaux réalisés dans le domaine de l’assistance à l’autonomie à domi-
cile (AAL) reposent sur l’utilisation de capteurs visuels et audio tels que des caméras.
Or, ces capteurs sont souvent rejetés par le patient à cause de leur caractère invasif. Des
approches alternatives requièrent l’utilisation de capteurs embarqués sur la personne
(GPS, bracelets électroniques ou puces RFID dans les vêtements...), et leur pertinence
est donc ramenée à l’hypothèse que les personnes les portes effectivement, sans jamais
les rejeter ni les oublier.

Pour ces raisons que, dans cette thèse, nous trouvons plus pertinentes les approches
uniquement basées sur l’utilisation de capteurs binaires intégrés dans l’habitat, tels que
les détecteurs de mouvements, les tapis sensitifs ou les barrières optiques.

Dans un tel contexte technologique, il devient intéressant à utiliser les paradigmes,
les modèles et les outils des systèmes à événement discrets (SED), initialement plutôt
développés pour la modélisation, l’analyse et la commande des systèmes industriels
complexes.

Dans ces travaux de thèse, l’objectif est de construire une approche pour la modéli-
sation et le suivi des habitudes de vie, basée sur les modèles et le paradigme des SED
et répondant à une problématique qui s’énonce de la manière suivante:

L’objectif est de développer un cadre global pour découvrir et reconnaître les activités
de la vie quotidienne d’un habitant vivant seul dans une maison intelligente. Cette
maison intelligente doit être équipée uniquement de capteurs binaires, l’étiquetage par
des experts des activités observées ne doit pas être nécessaire et les activités peuvent être
représentées par des modèles probabilistes.

La première méthode présentée dans cette thèse permet de construire un modèle
d’automate à états finis probabiliste (PFA) à partir d’une base de données d’apprentissage
et d’une description experte des activités à modéliser listées par des médecins.

La seconde méthode développée lors de cette thèse estime, au vu des observations,
quelle activité la personne observée réalise.

Les méthodes décrites dans cette thèse sont illustrées en utilisant les données générées
localement via l’utilisation d’un appartement prêté par ENS Paris-Saclay équipé pour
répondre aux besoins expérimentaux de cette thèse.





Modelling and Recognition of Human Activities of
Daily Living in a Smart Home

Abstract

Most of the work done in the field of ambient assisted living (AAL) is based on
the use of visual and audio sensors such as cameras. However, these sensors are often
rejected by the patient because of their invasiveness. Alternative approaches require
the use of sensors embedded in the person (GPS, electronic wristbands or RFID chips
in clothing ...), and their relevance is therefore reduced to the assumption that people
actually wear them, without rejecting nor forgetting them.

For these reasons, in this thesis, we find more relevant the approaches based on the
use of binary sensors integrated into the habitat only, such as motion detectors, sensory
mats or optical barriers.

In such a technological context, it becomes interesting to use paradigms, models and
tools of Discrete Event Systems (DES), initially developed for modelling, analysis and
control of complex industrial systems.

In this thesis work, the goal is to build an activity of daily living modelling and
monitoring approach, based on the models and the paradigm of the DES and answering
a problem that is expressed as follows:

The objective is to develop a global framework to discover and recognise activities of
daily living of an inhabitant living alone in a smart home. This smart home has to be
equipped with binary sensors only, expert labelling of activities should not be needed and
activities can be represented by probabilistic models.

The first method presented in this thesis allows to build a probabilistic finite-state
automata (PFA) from a learning database and an expert description of the activities to
be modelled given by the medical staff.

The second method developed during this thesis estimates, according to the obser-
vations, the activity performed by the monitored inhabitant.

The methods described in this thesis are applied on data generated using an apart-
ment lent by ENS Paris-Saclay and equipped according to the experimental needs of
this thesis.





Modellizzazione e riconoscimento delle abitudini di
un abitante in una casa intelligente

Sintesi

La maggior parte dei lavori nel settore dell’Ambient Assisted Living (AAL) si basa
sull’uso di sensori visivi e audio come le telecamere. Tuttavia, questi sensori sono
spesso rifiutati dal paziente a causa della loro natura invasiva. Gli approcci alterna-
tivi richiedono l’uso di sensori integrati nella persona (GPS, bracciali elettronici o chip
RFID...), e la loro rilevanza è quindi ridotta all’ipotesi che le persone li indossino effet-
tivamente, senza mai rifiutarli o dimenticarli.

Per questi motivi, in questa tesi, troviamo approcci più rilevanti basati esclusiva-
mente sull’uso di sensori binari integrati nell’habitat, come rilevatori di movimento,
tappeti sensoriali o barriere fotoelettriche.

In tale contesto tecnologico, diventa interessante utilizzare i paradigmi, i modelli e
gli strumenti dei sistemi ad eventi discreti (SED), inizialmente sviluppati per la model-
lazione, l’analisi e il controllo di sistemi industriali complessi.

In questo lavoro di tesi, l’obiettivo è quello di presentare un metodo per la model-
lazione e il monitoraggio delle abitudini di vita, basato sui modelli e paradigmi di SED
e rispondendo ad un problema che si esprime come segue:

L’obiettivo è quello di sviluppare un quadro globale per rivelare e riconoscere le at-
tività della vita quotidiana di una persona che abita da sola in una smart home che
dovrebbe essere dotata solo di sensori binari. Inoltre si suppone che non sia necessaria
l’etichettatura delle attività osservate da parte di un esperto e tali attività sono rappre-
sentate da modelli probabilistici.

Il primo metodo presentato in questa tesi permette di costruire un modello proba-
bilistico di automa a stati finiti (PFA) ottenuto da un database di apprendimento e una
descrizione delle attività da parte di medici.

Il secondo metodo sviluppato in questa tesi stima, alla luce delle osservazioni, quale
attività svolge la persona osservata.

I metodi descritti sono illustrati utilizzando dati generati localmente attraverso l’uso
di un appartamento messo a disposizione da ENS Paris-Saclay e attrezzato per soddisfare
le esigenze sperimentali di questa tesi.
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