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General Introduction

"Quand même c'est classe, les vieux. Ils arrivent, c'est hyper mystérieux." -Perceval le Gallois -Alexandre Astier, Kaamelott, Saison 3, Episode 13 : La Poétique -2ère partie

Motivation

Population dependency rate (i.e. the ratio of dependent people over the total population) has continuously increased over the last decades all over the world and is projected to continue to increase in the future. In fact, as shown in [START_REF] Eurostat | Population structure and ageing[END_REF] and Figure 0.0.1, the age repartition in the European Union population is drastically changing towards elder median age. In these societal studies, a person is considered as dependent on the rest of the population if its age is lower than 14 years old or upper than 65. As might be expectable, this population aging issue is not limited to the European Union. According to the World Health Organization (2012), Figure 0.0.2, in 2050, the part of the population aged 60 or more will rise to 30% in the majority of countries. The United Nations world population prospects realised in 2017 supports this point, see figure 0.0.3. In fact, the world population pyramid expected in 2050 shows a dependency rate drastically higher in the future. This societal evolution is becoming an important human and economic issue for next years. Indeed, current health and well-fare institutions will not be sufficient to treat this proportion of elderly people. Therefore, alternative solutions have to be found and rapidly developed in order to supply help and independence to dependent people.

A common idea to deal with this future lack of medical facilities is the development of ambient assisted living (AAL) systems that enable to keep people at home. In this way, medical facilities could be allocated to severe pathologies and emergencies only. Furthermore, it enables the elderly and disabled people to stay longer in a familiar environment [START_REF] Cornelis | Early diagnosis of mild cognitive impairment and mild dementia through basic and instrumental activities of daily living: Development of a new evaluation tool[END_REF]. Therefore this cheaper, and more pleasant solution, needs to be developed. AAL systems allocated to health monitoring, also called health at home (HaH) systems, consist of keeping old people at home as long as possible, thanks to an automatic monitoring of their everyday life. As soon as an unsafe or abnormal behaviour is detected, the medical staff in charge or the family is informed.

The activities of daily living (ADLs) monitoring [START_REF] Chaaraoui | A review on vision techniques applied to human behaviour analysis for ambient-assisted living[END_REF][START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF] is one of the major investigations in the domain of HaH systems. It aims to provide the medical staff with very useful and precise information concerning the monitored patient. By definition [START_REF] Lawton | Assessment of older people: self-maintaining and instrumental activities of daily living[END_REF], an ADL is an activity, which is daily performed by a person (e.g. to prepare meal, to do housework, to take leisure, etc.) and whose monitoring is helpful to the doctor. Current studies about ADLs mainly treat four problems: the activity discovery (AD), the activity recognition (AR), the activity prediction (AP) and the detection of deviation (DD). In this thesis, only the AD and the AR are treated. The AD objective is to generate one or several more or less formal models of activities by studying the patient habits during a learning period. After that, the objective of AR is to detect that an activity is actually performed by a person during its realisation. At this point, the acceptance of the proposed system by the monitored person is a major issue. The system has to be considered as non-intrusive by the patient while giving pertinent information to the medical staff.

The objective of this thesis is to propose both an activity discovery and an activity recognition method compatible with some assumptions linked with the acceptance issue and possibility to feasibly apply them in mass. These assumptions are explained with more details in section 1.2.2.

Contributions of the thesis

The contributions of the presented thesis are summarised in figure 0.0.4. In a first step, models of activities performed by an inhabitant in a smart home are built during an Off-line Activity Discovery. The presented AD method is performed using a database obtained by recording the events emitted by the instrumented home during a learning period. An additional expert knowledge is needed in order to produce efficient models. In the majority of existing works [START_REF] Tapia | Activity recognition in the home using simple and ubiquitous sensors[END_REF][START_REF] Gaglio | Human activity recognition process using 3-d posture data[END_REF], this expert knowledge consists of labelling of activities performed during the learning period. This expert knowledge is very difficult to obtain and error-prone. Therefore, in this thesis, we decided not to use this expert knowledge during the ADL study in order to keep our method applicable easily anywhere. Thus, in contrast with already existing methods, we reject the labelling of the performed activities during the learning period. In addition, to deal with the inhabitant willingness and privacy, we decide to use only General Introduction binary sensors.

For a second time, an On-line Activity Recognition protocol has been developed using the models previously computed with the AD to recognise which activity is performed by the inhabitant during its life living. As a consequence of the reject of the performed activity knowledge during our AD, the models obtained are not compatible with the already existing AR methods which have to be adapted. To this aim, new probabilistic distances and methods to compute them were defined.

Organisation of the manuscript

The manuscript is organised as follows. A review of the state of the art in the fields of ambient assisted living and of activities of daily living monitoring is given in chapter 1. In this chapter, the concept of smart home, activity discovery and activity recognition are given and several existing technologies, sensors and methods are presented. At the end of this chapter, a problem statement is made and a summary of the assumptions and considerations hold in this thesis are enunciated and explained.

Before developing the two main contributions of this thesis, the case study we used to apply our methods is presented chapter 2. In this chapter, an overview of the existing living labs is first done and lacking information is exposed. Then, a description of the smart flat we developed for this thesis is presented.

In chapter 3, the first contribution consisting in an original Activity Discovery method is presented. An application of this method on our living lab is also proposed.

The second contribution of this thesis is presented in chapter 4. This contribution consists in a procedure to recognise which activity is performed by the inhabitant of a smart home. To this aim, some existing distances between an observation and a probabilistic model are presented and their limits are highlighted. Then, these distances are extended to be adapted to a more general case. To conclude the chapter 4, an application of the proposed activity recognition procedure in our case study is developed and discussed.

In the last chapter, a summary of the contributions of the thesis and outlooks for future works are given.

Finally, in the appendix of the thesis, the proofs of two properties enunciated in chapter 4 are extensively developed.

Introduction

As stated in the general introduction, due to the increase of the population median age, alternatives to classical medical facilities should be found to efficiently take care of dependent people. One of the most retained solutions is to maintain in their home environment the people who do not have too severe pathologies. To this aim, it is necessary to monitor these persons using data extracted from an adapted instrumentation. To achieve such a goal, different approaches based on different scientific backgrounds, different models and different considerations on the sensor that may be installed were developed.

This chapter is aimed to review the state of the art relative to this topic and to state the problem of this thesis. First, some definitions and generic terms are given and the concept of ambient assisted living (AAL) system and smart home are developed. Secondly, a technological description of the existing sensors are given and their cases of use are discussed. Third, a complete definition of Activities of Daily Living (ADLs) is related and the main topics around these ADLs are listed. The two topics developed in this thesis are thus presented in detailed and existing works are discussed.

Finally, the proposed framework to deal with activity discovery (AD) and recognition (AR) concludes this chapter.

Literature review

In this section, basic definitions of classical terms used in the domain of activities of daily living monitoring in a smart home are given. Technologies implied in smart home and their advantages and drawbacks are discussed. Then, existing works in AD and AR are described.

Terminology and definitions

During the 20th century, a huge technological evolution was observed, especially in the fields of information and electronic networks. Compact sensors with low energy consumption and giving specific information were created. Naturally, with this technology evolution the notion of ubiquitous networking has appeared: Definition 1.1 (Ubiquitous networking). [START_REF] Rouse | Defintion: ubiquitous networking[END_REF] Ubiquitous networking, also known as pervasive networking, is the distribution of communication infrastructures and wireless technologies throughout the environment to enable continuous connectivity. That capacity is an essential component of pervasive computing. (The terms are interchangeable, with slight variations, as either "ubiquitous" or "pervasive', which means essentially the same thing.)

Several objectives can be reached by instrumenting the right environment. Indeed, ubiquitous environment could improve the energy consumption of a building [START_REF] Shah | Energy aware routing for low energy ad hoc sensor networks[END_REF], [START_REF] Agarwal | Occupancydriven energy management for smart building automation[END_REF] or improve home safety [START_REF] Flöck | Activity monitoring and automatic alarm generation in AAL-enabled homes[END_REF]. Furthermore, ubiquitous environments can be used to manage the aging or disabled population life. Ambient assisted living has thus been envisaged monitoring the person life at any time. At this point the monitoring can be anywhere: at home, at work, in the supermarket... Definition 1.2 (Ambient Assisted Living (AAL)). [START_REF] Monekosso | Ambient assisted living [guest editors' introduction[END_REF] Ambient assisted living can be defined as "the use of information and communication technologies in a person's daily living and working environment to enable them to stay active longer, remain socially connected and live independently into old age" 1.1. Literature review . By considering the case of health monitoring, the main environment of life for disabled and aging people is their own home. In the presented thesis, the goal is thus to monitor the people at home health. In this specific case, the terms Health at Home systems (HaH) or Home Care Systems (HCS) are used and defined as following: Definition 1.3 (Home Care Systems). [START_REF] Kleinberger | Ambient Intelligence in Assisted Living: Enable Elderly People to Handle Future Interfaces[END_REF] The aim of Home Care Systems is to allow the assisted persons to live longer in their preferred environment at home, while retaining their independence, even when they have handicaps or medical diseases.

It is important to note here that challenges implied by HaH (or HCS) and their solutions are strongly dependent on technologies. It is at the same time worn by and limited by the existing technologies and their cost [START_REF] Barlow | Smart home, dumb suppliers? the future of smart homes markets[END_REF]. To develop HCS, it appears that the elderly or disabled people homes have to be equipped: the notion of smart home [START_REF] Robles | Applications, systems and methods in smart home technology: A[END_REF] is born.

Definition 1. 4 (Smart Home). [START_REF] Balta-Ozkan | European smart home market development: Public views on technical and economic aspects across the united kingdom, germany and italy[END_REF]A smart home is a residence equipped with a communication network, linking sensors, domestic appliances, and devices, that can be remotely monitored, accessed or controlled [START_REF] King | Smart home-a definition[END_REF] and which provides services that respond to the needs of its inhabitants [START_REF] Chan | A review of smart homes-present state and future challenges[END_REF][START_REF] Taylor | Homes that make us smart[END_REF]. In principle, the term 'smart home' may refer to any form of residence, for example, a standalone house, an apartment, or a unit in a social housing development. In this definition, sensors are devices used to detect the location of people and objects, or to collect data about states (e.g. temperature, energy usage, open windows). Devices can be electronic, for instance, phones, televisions, computers, or electric, referring to the simplest toasters, kettles, light bulbs, etc.

The network, connecting and coordinating these various technological features (i.e. sensors, devices, appliances) and information, is central to the concept of the smart home [START_REF] King | Smart home-a definition[END_REF][START_REF] Jiang | Smart home research[END_REF]. It is the existence of this home network that distinguishes the smart home from a home merely equipped with standalone, highly advanced technological features [START_REF] Scott | Teaching homes to be green: smart homes and the environment[END_REF]. The definitions of basic terms, from ubiquitous environments to smart home are now given. The description of technologies used in different smart homes is described in the next subsection.

Smart home technologies

The achievable objectives, and the ways to reach them, are strongly linked to smart home used technologies. In this subsection, sensors are divided considering the semantic level of information they give. We can define a three-bar ladder:

• High level of semantics, • Average level of semantics, • Low level of semantics.

High level of semantics Some sensors give complex and complete information about the person to monitor. In this category, we classify wearable vital sign sensors (i) and cameras (ii).

(i) Vital sign sensors, as used in [START_REF] Forkan | A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living[END_REF] and [START_REF] Sadek | Automatic heart rate detection from fbg sensors using sensor fusion and enhanced empirical mode decomposition[END_REF], are wearable sensors, also called body sensors, which periodically send different vital signs data of the user to a cloud server. Table 1.1.1 shows some examples of typical body sensors. These kinds of sensors together form a body sensor network (BSN) [START_REF] Otto | System architecture of a wireless body area sensor network for ubiquitous health monitoring[END_REF][START_REF] Bellifemine | Spine: a domain-specific framework for rapid prototyping of wbsn applications[END_REF]. These sensors have some key configurations and infrastructure that make them easily implantable or wearable on the human body (Figure 1.1.2). Some sensors can be implanted in the garment of the user; these are known as wearable textile sensors. These sensors have low power, can communicate wirelessly and above all monitor the health and activity of the target user.

(ii) Cameras are sensors giving information via image processing and motion recognition. Indeed, as precise in [START_REF] Chaaraoui | A review on vision techniques applied to human behaviour analysis for ambient-assisted living[END_REF], motion recognition is the basis for estimation of human pose and gaze direction (also referred to as focus of attention) and for further human behaviour analysis tasks. Motion can be seen as a series of poses along the time. The human body is an articulated system of rigid segments connected by joints (as models used in [START_REF] Andriluka | Pictorial structures revisited: People detection and articulated pose estimation[END_REF] and [START_REF] Sapp | Cascaded models for articulated pose estimation[END_REF] assume). Human motion is often considered as a continuous evolution of the spatial configuration of these segments or body postures (as stated in [START_REF] Li | Expandable data-driven graphical modeling of human actions based on salient postures[END_REF] and exploited in [START_REF] Andriluka | Pictorial structures revisited: People detection and articulated pose estimation[END_REF] and [START_REF] Sapp | Cascaded models for articulated pose estimation[END_REF]). On the other hand, the gaze can either be seen as a line in the 3D space or a cone, or, if working only in the horizontal plane (as some works do, as seen later on), a direction and an angle.

Average level of semantics

In contrast with high level of semantics sensors, other sensors are giving a less complex but not poor information. It is the case of many wearable sensor not giving vital signs (i) or of microphones (ii).

(i) Wearable sensors not giving vital signs are sensors partially worn by the inhabitant and giving binary information to the health at home system. It is the case of sensors based on the radio frequency identification (RFID) technologies. RFID is a technology used for identifying persons who carry identification badges (or tags)

1.1. Literature review or a reader. If the person wears a tag [START_REF] Hussain | Applications of wireless sensor networks and rfid in a smart home environment[END_REF]), this technology implies readers which read an approaching tag to identify the person who is carrying the tag. Else, if the person wears the reader [START_REF] Darianian | Smart home mobile rfid-based internet-ofthings systems and services[END_REF], it identifies the tagged objects or the tagged zones the person is approaching.

(ii) Microphones are also used as sensors giving complementary information to other sensors as cameras [START_REF] Brdiczka | Learning situation models in a smart home[END_REF] or RFID [START_REF] Park | Hierarchical recognition of activities of daily living using multi-scale, multi-perspective vision and rfid[END_REF].

Chapter 1. Activities of Daily Living Issues and Objectives

Low level of semantics

Finally, some sensor technologies provide a low level of semantics information. These sensors give binary values extracted from environmental sensing. As precise in [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF], these binary environmental sensors are not affixed to the individuals performing the activity but are placed in the environment surrounding them. These sensors are valuable in passively providing readings without requiring individuals to comply with rules regarding wearing or carrying sensors in prescribed manners. The most frequent binary environmental sensors are:

• Passive infrared (PIR) sensors, or motion sensors, detect infrared radiations that are emitted by objects in their field of view through multiple slots. If the difference in the detected radiation between the multiple slots of a PIR sensor is greater than a predefined threshold (as would happen when a warm body moves into or out of the range of the sensor), it generates a message. A PIR sensor will sense movement from any object that generates heat, even if the origin is inorganic. • Magnetic contact switch sensors, or magnetic door sensors, consist in two components: a reed switch and a magnet. When the door is closed, the magnet component pulls the metal switch in the second component closed so the electric circuit is complete, thus changing the state of the sensor. The sensor can report this change of state as a sensor event. When the magnet is moved by opening the door, the spring snaps the switch back into the open position. This cuts off the current and closes the relay, again causing a change in the state of the sensor that can be reported as a sensor event. This feature is useful for detecting if doors, windows, drawers, or cabinets are open or closed. • Vibration sensors often attached to items or placed on surfaces in order to detect interactions with the corresponding object. Some sensors are designed to be sensitive both to vibration (dynamic acceleration) and tilt (static acceleration). While they can be useful for generating events when the object they are attached to is handled, they may also generate events when they are accidentally bumped or when nearby surfaces shake. • Pressure sensors, for monitoring of activities in a particular environment. Tactile sensors are sensitive to touch, force, or pressure. These pressure sensors detect and measure interactions between an individual and a contact surface. The combined force can be compared to a threshold value to note that there is an object in contact with the sensor. Pressure sensors can be placed on or under chairs, door mats, floors, and beds to monitor the location and weight distribution of an individual in the space. • Flow sensors provide readings indicating the amount of electricity or water that was consumed by a particular building for a unit of time. The metre calculates the amount of electricity or water currently being consumed and can report instantaneous values, accumulated values, or sufficient changes in consumption. The amount of electricity or water currently being consumed can be compared with a threshold value to note that an object is in use. • Temperature sensors, light sensors, humidity sensors can be placed in environments to measure ambient temperature, lighting, and humidity. These types of sensors are frequently bundled into one package. Such sensors are calibrated to periodically report their current status (e.g., light level, humidity reading, and temperature reading) or they report their current reading when there is a sufficiently large change in the value from the previous time point.

Literature review

From another point of view, it is possible to classify the sensor technologies by considering their interactions relatively to the human. In [START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF], the sensors are classified in two families: sensors performing external or wearable sensing. Another classification, as proposed in [START_REF] Chikhaoui | A frequent pattern mining approach for adls recognition in smart environments[END_REF], orders events by considering the human feeling about the sensors in terms of privacy. Sensors are thus considered as intrusive or non-intrusive. The acceptance issue is essential to allow a monitoring of inhabitants at home. And even if sensors generating semantically high information, like cameras, have an high performance in the field of activity of daily living monitoring, they are often considered too intrusive and raise problems of acceptance by monitored people [START_REF] Himmel | From Living Space to Urban Quarter: Acceptance of ICT Monitoring Solutions in an Ageing Society[END_REF]. This consideration also includes microphones.

Additionally, the efficiency of wearable sensors strongly depends on the ability and the willingness of the patients to wear them every day, and sometimes during the night. As in the case of cameras, this sensor technology also raises some problems of acceptance and, furthermore, is sometimes not compatible with the pathology of patients to be monitored (e.g. loss of memory).

To summarise, two issues involving human parameters have to be considered during the smart home instrumentation: the intrusiveness of the sensors and the ability of patients to live with. The following table shows the existing sensors, their location relatively to the human, their semantics levels and their compatibility with the two presented problems.

In this thesis, non-intrusive sensors compatible with any pathology are preferred to allow our method being applicable to the majority of cases. Therefore, in the proposed approaches, only binary environmental sensors are used, even if they only provide very low level of semantics information.

Activities of daily living definition and main topics

One of the possible ways to take care of persons health at home is to monitor their activities of daily living (ADL). ADL is defined by Farlex (2018) as following: The ability to perform activities of daily living may be hampered by illness or accident resulting in physical or mental disability. Health care rehabilitation workers play a significant role in teaching people to maintain or relearn these skills so that they can achieve the highest possible degree of independence.

Furthermore, in [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF], authors precise than activities to monitor in a smart home include physical (or basic) activities as well as instrumented activities (introduced in [START_REF] Lawton | Assessment of older people: self-maintaining and instrumental activities of daily living[END_REF]). Therefore, the use of the generic therm ADL is preferred.

In addition, as considered in [START_REF] Chaaraoui | A review on vision techniques applied to human behaviour analysis for ambient-assisted living[END_REF], [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF], [START_REF] Ahad | Human activity recognition: Various paradigms[END_REF] and [START_REF] Fleury | Svm-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results[END_REF], activities performed by a person can be decomposed into several actions. For instance "cooking" can be seen as the set of the actions "preparing pasta", "preparing a ready-cook dish", "ordering meal on the net", etc. Moreover, actions can be described as a succession of elementary moves (or motions). This hierarchical decomposition of activities in actions and moves is represented in figure 1.1.4.

By reading the existing papers dealing with ADL, it appears four main topics based on the ADL studies: the activity discovery (AD) [START_REF] Kim | Human activity recognition and pattern discovery[END_REF][START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF], the activity recognition (AR) [START_REF] Duong | Activity recognition and abnormality detection with the switching hidden semi-markov model[END_REF][START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF], the activity prediction (AP) [START_REF] Mahmoud | Behavioural pattern identification and prediction in intelligent environments[END_REF][START_REF] Krumm | Predestination: Inferring destinations from partial trajectories[END_REF] and the detection of behavioural deviation (DD) [START_REF] Chandola | Anomaly detection for discrete sequences: A survey[END_REF][START_REF] Forkan | A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living[END_REF]. In this work, we focus on the AD and the AR. [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF].

Activity discovery

First, ADL have to be modelled. When the modelled is generated by learning, we use the term of activity discovery defined as follows:

Definition 1.6 (Activity Discovery AD). [START_REF] Cook | Activity discovery and activity recognition: A new partnership[END_REF] The activity discovery is an unsupervised learning algorithm to discover activities in raw sensor event sequence data.

In the literature, a great variety of methods using different inputs and outputs can be found. A brief review of the major methods is now developed. In coherence with the sorting made in subsection 1.1.2, these methods are grouped by considering the semantic level of the sensors used. The semantic level of the generated models are also highlighted to improve the comprehension of the pros and cons linked to each method.

Inputs of high level of semantics

In [START_REF] Forkan | Cocamaal: A cloud-oriented context-aware middleware in ambient assisted living[END_REF], authors model human behaviour using expert knowledge and vital sign sensors. In addition, authors skip the ADL discovery process by choosing not to use data learning but rather ontological models as visible in table 1.1.3. Therefore, the human behaviour models of this method have a very high level of semantics since they correspond to very specific situations. With these models, it is possible to directly detect dangerous situation and quickly react in case of emergency. However, those models are fully constructed using expert knowledge, and therefore subject to human mistake and forgot.

In [START_REF] Duong | Efficient duration and hierarchical modeling for human activity recognition[END_REF], authors use cameras to detect the location of the inhabitant. Then, by using expert knowledge, authors link different successions of locations with activities to generate hidden semi-Markov models (HSMM) [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF]. A hidden Markov model (HMM) is a stochastic model of a process with an underlying part considered as non-observable. Furthermore, an HSMM is an HMM in which a duration knowledge is added. Figure 1.1.5 shows the dynamic Bayesian network graphical structure for HSMM with generic state duration distribution. At each time slice, a set of variables V t = {x t , m t , y t } is maintained where x t is the current state, m t is duration variable of the current state, and y t is the current observation. The duration m t is a Chapter 1. Activities of Daily Living Issues and Objectives counting-down variable, which not only specifies how long the current state will last, but also acts like a context influencing how the next time slice t + 1 will be generated from the current time slice t. The discovery method presented uses expert-given HSMM as bases for the duration learning. According to the authors, the use of HMMs is suitable and efficient for learning simple sequential data. It is notable that, in this work, the information from cameras are quickly parsed to become a simple location information.

Inputs of average level of semantics

In [START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF], the AD, called the training stage, initially requires a time series dataset of measured attributes from individuals performing each activity. The time series are split into time windows to apply feature extraction and thereby filtering relevant information in the raw signals. Later, learning methods are used to generate an activity recognition model from the dataset of extracted features. Likewise, data are collected during a time window, which is used to extract features. Such feature set is evaluated in the priorly trained learning model, generating a predicted activity label (see figure 1.1.6).

A generic data acquisition is also an identified architecture for AD and AR systems, as shown in figure 1.1.7. In the first step, wearable sensors are attached to the person's body to measure attributes of interest such as motion, location, temperature, ECG, among others. These sensors should communicate with an integration device (ID), which can be a cellphone, a PDA, a laptop, or a customised embedded system.

The models thus obtained can be probabilistic or not. However, the need to split the data recorded during the learning period to "individuals performing of each activity" leads to record labels of the performed activity. [START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF].

Inputs of low level of semantics

In [START_REF] Saives | Activity discovery and detection of behavioral deviations of an inhabitant from binary sensors[END_REF], authors propose a method to model, starting from a log of binary sensor events (rising and falling edges), the habits of the inhabitant. These models are extracted by sequence mining techniques and modelled by extended finite automata (EFA). The learned habits are then labelled by an expert. This AD method, base on the [START_REF] Agrawal | Mining sequential patterns[END_REF] pattern mining method, is a black bock discovery method. However, as this pattern mining method distinguish each recurrent pattern, each aleatory and minor event inversion create a new pattern. The expert work is thus fastidious if treating data from a big smart home. As an output, authors gives a global map of activities represented by an EFA. This output model has a medium level of semantics since the main interesting part (i.e. the labelling) is done a posteriori by the expert.

In [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF], authors presents several machine learning using binary sensors and individuals performing of each activity as inputs. Naîve Bayes classifier, Gaussian Mixture model, hidden Markov model, decision tree, support vector machine conditional random field are probabilistic models possible to generate with these inputs. The computed models have semantically high information since they are trained directly with adapted and labelled data.
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The majority of the existing methods model ADL by probabilistic models. In addition to their natural robustness to small variations, those models have the advantage to be coherent with the human non-determinism. Therefore, in this thesis, a modelling of human ADLs by probabilistic model is preferred. However, when explained by the researchers, the generation of the models uses individuals performing of each activity to learn probabilities. This needed input signifies that, during the learning period, a log of the performed activity is recorded. Unfortunately, this information is in practice very difficult to obtain.

In [START_REF] Tapia | Activity recognition in the home using simple and ubiquitous sensors[END_REF], the monitored patient indicates which activity he is performing. Of course, the efficiency of this approach is confronted with the ability and the willingness of the person to declare his activity: in general, numerous reported activities errors are introduced in the database. In other works [START_REF] Gaglio | Human activity recognition process using 3-d posture data[END_REF], experts are in charge of the enrichment of the database by studying sensor logs or by using cameras exclusively during the learning phase. This approach is expensive, intrusive and therefore risks changing the behaviour of the patient during the learning phase. In both cases, the labelling step is difficult and unreliable. That is the reason why, in the methods proposed in this thesis, the knowledge of actually performed activities during the learning phase is not required.

Activity recognition

Activity recognition methods are model-based approaches to monitor people. The used models can be given by an expert or obtained by learning (i.e. by applying an AD method). A definition of activity recognition is given in [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF] as follows:

Definition 1.7 (Activity Discovery AR). [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF] The field of activity recognition (AR) is concerned with the question of how to label activities from a sensor-based perception of the environment. The problem of AR is to map a sequence of sensor outputs onto a value from a set of predefined activity labels As for AD, a great variety of methods using different inputs and outputs can be found in the literature. In this subsection, existing methods will be classified according to the type of model used to model the activities.

AR using descriptive model linked to data from vital signs sensors

In [START_REF] Forkan | Cocamaal: A cloud-oriented context-aware middleware in ambient assisted living[END_REF], authors adopt the ontology-based context model [START_REF] Mocholí | Ontology for modeling interaction in ambient assisted living environments[END_REF][START_REF] Devaraju | Ontology-based context modeling for user-centered context-aware services platform[END_REF] to recognise the performed activity or a dangerous situation. Figure 1.1.8 shows the proposed ontology-based context model based on OWL (web ontology language). Each context entity has attributes to describe some basic properties of the entity. Context entities are part of parent entity such as characteristics, diseases, preference, social and health ontologies are part of person ontology. Each of those entities has some more children to describe them. The relation among different entities is also shown.

The context space is described in four major entities:

• Person ontology is used to identify the user of the AAL system and his/her profile, diseases, health conditions, doctors, social interactions, and so on. • Place ontology describes the current position of the user.

• Environment ontology is used to identify the conditions of surrounding environments. Environment has some impact on making decisions for assistive actions.

1.1. Literature review Figure 1.1.8: Context model using OWL [START_REF] Forkan | Cocamaal: A cloud-oriented context-aware middleware in ambient assisted living[END_REF].

• Device ontology contains the details of the body sensors and devices of the system

To detect an activity or an abnormal situation, a service rule can be defined. For example, table 1.1.3 shows the service rules of detecting a possible heart attack by using the ontology model. By using these highly detailed models, authors can generate very precise information concerning the patient health state. Unfortunately, the given expert models are generic and not adapted to each human living each pathologies differently. As an example, the case of a heart attack for a human aging less than 65 years is not detected with the presented description table 1.1.3. Generating an adapted model for each human out of standards should be a fastidious and expensive process.

AR using vision-based models

In [START_REF] Chaaraoui | A review on vision techniques applied to human behaviour analysis for ambient-assisted living[END_REF], authors make a great review on vision techniques applied to human behaviour analysis for AAL. According to the authors, it can be seen that at the motion, pose and gaze estimation level, several methods achieve robust and high success rates. [START_REF] Mihailidis | The use of computer vision in an intelligent environment to support aging-in-place, safety, and independence in the home[END_REF] are able to track the activity of hand washing to assist older adults with dementia. Multiple orders in the process can be correct, but not all of them. Their system is able to prompt the user if a necessary step is missing or the order of the implied actions is unacceptable. Vision is used as the only sensor in the developed system for two purposes: (1) tracking of hand location; and (2) tracking of step-specific object locations.

Chapter 1. Activities of Daily Living Issues and Objectives Related to this type of activity recognition, [START_REF] Wu | Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors[END_REF] stand out in activity recognition based on object use. These authors define activities as combinations of actions and objects and intend to recognise and track objects use in order to infer human activities. Object models are acquired automatically from video, whereas object identification is based on RFID labels. At the learning phase, the user wears a RFID bracelet which reads the RFID tags attached to the surrounding objects in a home environment. Assuming that the object being moved is always the object in use and that only one object is being moved at a time, the system learns the relationship between the segmented image and the active RFID tag using a dynamic Bayesian network. As arms and hands move with the objects, skin filtering is applied beforehand. At the test phase, the system works without the RFID data as objects are recognised by detecting SIFT features within the segmented area. These key points are matched based on maximum likelihood to the previously trained SIFT points.

In [START_REF] Zhou | Activity analysis, summarization, and visualization for indoor human activity monitoring[END_REF], activity recognition is approached differently. The individual silhouette is obtained at different positions of a living room. Grouped into 10-20 prototypes, each silhouette stores its centre, width and height and is manually labelled with a location. A fuzzy inference method is used to estimate the most likely physical location of test silhouettes. Location estimation and previously assigned coordinates enable average speed measurement, which is used besides location in order to recognise human indoor activities. A Hierarchical Action Decision Tree (HADT) is used to classify human actions using multiple levels. At the first level, human actions are classified based on location and speed. With K-means, clustering feature patterns are obtained; and activities of daily living, like walking or visiting the bathroom, are recognised.

All those presented methods are efficient in their field of appliances. Nevertheless, according to [START_REF] Chaaraoui | A review on vision techniques applied to human behaviour analysis for ambient-assisted living[END_REF], at higher levels, especially at behaviour, there is still a long way to go to achieve off-the-shelf products. Still, huge advances have been made in the last ten years. But the challenge to design and develop stable and general systems still persists, as most systems only solve specific problems in very particular environments.

AR using models linked to binary information

In [START_REF] Van Kasteren | Accurate activity recognition in a home setting[END_REF] the authors describe all inhabitant activities by only one HMM. Then, authors recognise activities by applying the well-known Viterbi algorithm1 [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF]. In fact, as explained in [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF], inferring which sequence of labels best explains a new sequence of observations can be performed efficiently this algorithm. This dynamic programming technique is commonly used for HMM computations. If all activities are modelled in the same HMM, Viterby algorithm generates the most likely sequence of activity labels from a sequence of sensor observation. Unfortunately, the complexity of the model drastically increases with the number of activities and sensors. Furthermore, the used model has not intermediary semantic levels between activities and sensors and the precision of the recognition is not guaranteed.

In [START_REF] Kellokumpu | Human activity recognition using sequences of postures[END_REF], after converting video information to binary events traducing the human posture, the authors present a system that recognises a set of activity modelled by HMMs. Moreover, they classify activities by a probability that allows recognising the activity as being the one, which is represented by the most probable model.

1.1. Literature review However, the previous methods can only compare models linked to the same sensor and event sets. On the contrary, in practice, activities are linked to different sensors because they are performed in different home areas and are realised by using diverse equipment in different spaces

In the majority of the presented methods, probabilistic models are used to estimate which activity is the most likely performed. For all the AR existing works, the recognition method is strongly linked with the models used to represent the activity. Therefore, if a new kind of models is used during the activity discovery, a new method, ideally based on existing ones, should be developed. The large use of probabilistic models comforts the decision to model activities by probabilistic models in this thesis. In this thesis, the non-intrusiveness is preferred to the input knowledge semantic level. The problem statement of this thesis is presented in the next section 1.2. 

Summary

Problem statement

Since the existing works are now presented, the problem statement of this thesis is developed in this section. The assumptions taken and their involvement are discussed and the proposed methods are summarised in a simple framework.

Global objectives

The literature review presented in section 1.1 highlights that managing the activities of daily living for dependent persons is a promising way to manage the increasing rate of the dependent population. Several methods more or less intrusive exist and are applicable following some conditions and assertions.

Even if the existing methods are different, some elements are common. The first one is the need to discover and recognise the ADLs of the inhabitants. Those two missions are the basic operations to perform in order to manage the human activities of daily living.

Therefore, the objective of this thesis is to develop a global framework to discover and recognise activities of daily living. As for the majority of the works in the literature, three sources of knowledge are authorised:

• the medical staff gives a list of ADL to be monitored corresponding to the inhabitant pathologies; • the sensors of the smart home gives information during the inhabitant life. These sensor data can be recorded during a learning period or directly interpreted; • an expert can, if needed, complete the basic information (flat floorplan, sensor locations,...) or those given by the two previously presented sources (the medical staff or the sensors).

In addition, in order to be applicable on a big scale and for the majority of the population, four points are considered, in this thesis, as unavoidable:

• The human nature has to be considered to choose the appropriate models; • The patient privacy is a priority and its feeling about the intrusiveness of the used sensors have to be considered;
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• Any choice has to be compatible with the patient pathology;

• The developed methods have to be applicable on a big scale and the information given by the medical staff, the sensors and the expert have to be viable and easy to obtain.

These points leads to make four assumptions described in the next section 1.2.2

Considered assumptions

In order to fulfil the objectives following the four unavoidable points presented just above, some practical and ethical decisions have to be taken and assumed. In this thesis, four main assumptions are made.

Assumption 1: Activities are represented by probabilistic models

The first unavoidable point is to consider the human nature to choose our model. It signifies that the human cannot be considered as a machine strictly repeating the same moves. Indeed, the human behaviour is, by nature, non-deterministic and may even be irrational. Therefore deterministic models and classical identification methods, more adapted to Cartesian and repetitive behaviour, cannot be used in the present problem.

During his life performance, a human can vary its way to perform an activity by inversing two moves during the "cooking" activity, for example. Indeed, as a medium variation, a human can choose, one day, to take the packet of pasta after boiling the water and the inverse another day. As a small variation, a human can open and close a useless cupboard to prepare tea because it forgot where is stored tea.

To be compatible with this human non-determinism, the chosen models have to be robust to variations. Therefore, in this thesis as in many paper in the literature, ADLs are modelled by using probabilistic models.

Assumption 2: Only binary and environmental sensors are used

The second unavoidable point is that the patient privacy is a priority and its feeling about the intrusiveness of the used sensors have to be considered. Therefore, as introduced before, cameras are rejected. Indeed, they can be considered as too intrusive and can be rejected by the patients [START_REF] Himmel | From Living Space to Urban Quarter: Acceptance of ICT Monitoring Solutions in an Ageing Society[END_REF].

In addition, wearable sensors efficiency strongly depends on the ability and the willingness of the patients to wear them every day, and sometimes during the night. This sensor technology also raises problems of acceptance for the monitored inhabitant.

Furthermore, wearable sensors are sometimes not compatible with the pathology of patients to be monitored (e.g. loss of memory). This property is in contradiction with our third unavoidable point.

The elimination of the too intrusive and wearable sensors leads to the use of binary sensors only, such as motion detectors or door barriers. Such sensors are, furthermore, low cost. Unfortunately, by using only binary sensors, a difficulty due to the very low level of semantics information sensed exists.

Assumption 3: The considered smart home is occupied by a single inhabitant

According to Assumption 2, only binary sensors are used for both AD and AR. In case where several inhabitants are living in the same dwelling, it is not possible to distinguish which inhabitant is generating events observed through binary sensors. That is therefore necessary to make the assumption that a single-inhabitant is living in the smart home.
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This assumption is quite restrictive but allows proposing a complete solution for AD and AR that is based on the use of binary sensors only. A way to relax this hypothesis is to consider that each inhabitant wears a sensor that allows identifying himself (e.g. a RFID sensor) and therefore knowing who has generated which event.

As we saw before, the use of this kind of sensors is incompatible with every pathology. However, in the case of multiple inhabitants with compatible pathology, the use of wearable sensors can be an acceptable trade-off between applicability and privacy.

The limit to a single inhabitant is assumed in this thesis but the presented method can be applicable to each person individually if a multiple inhabitant smart home is equipped with a RFID sensor that allows allocating each sensor occurrence to a unique person.

Assumption 4: The knowledge of the actually performed activity is not required

As precise before, several studies use the knowledge of performed activities during the learning phase to perform an efficient AD. Indeed, this information allows an easy decomposition of the observed data during the learning period and allows directly label the slit data. Unfortunately, as explained in chapter 1.1.4, this information is difficult to obtain and unreliable. Therefore, the use of this information is incompatible with the fourth unavoidable point since it is inapplicable and unreliable.

Therefore, in the presented thesis, the knowledge of the actually performed activity during the learning period is not required.

This Assumption 4 leads to a loss of information to compensate. The chosen solution is presented in the next section 1.2.3.

Proposed framework to discover and recognise ADLs

The objectives of this thesis is to propose new AD an AR methods following the four assumptions presented above. Figure 1.2.1 represent the proposed framework to perform this two objectives.

Activity Discovery

In the proposed framework, the AD is performed off-line to generate the output O AD by using the inputs I 1 AD and I 2 AD . In order to compensate for the loss of information implied by the Assumption 4, an additional expert knowledge has to be given. The retained solution is to use an expert knowledge based on the ADL definition. Therefore, with the goal to manage the observations, the expert has to give a hierarchical decomposition of the activities to be monitored into actions. Then, as sensors have a low level of semantics, their sensed information can be considered as having the same level of semantics as elementary moves. Therefore, expert details which sensor events are linked to which action. Those two hierarchical links activities/actions and actions/sensors are pertinent considering the definition 1.5 of ADLs. By doing this, the expert creates the input I 1 AD represented in figure 1.2.2. This input is called hierarchical decomposition in the rest of the manuscript.

The principle of the AD is to generate models using data observed during a learning period. Thus, the second input I 2 AD of the AD is a database obtained by recording the generated events during this observation. Due to Assumption 2, information recorded is binary. Then, according to Assumption 3, the learning database corresponds to the life of an inhabitant living alone in a smart home. The used probabilistic model, its definition and notations and more generally the AD proposed method are given in chapter 3.

Activity Recognition

The AR is a procedure performed on-line to recognise the activity O AR actually performed by the inhabitant during its life by using the inputs I 1 AR and I 2 AR . The AR is performed by using a direct observation of the events generated by the smart home. Thus, I 1 AR is the direct observation of this events. As explained in chapter 4, I 1 AR is not only composed by the last observed event, but by a log of the last observed events.

The second input I 2

AR is a set of models representing the activities to monitor. As the presented AR responds to a global framework containing AD and AR, the activity models are those obtained by applying our AD method. Therefore we have

I 2 AR = O AD .
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As output O AR of the AR, the proposed AR protocol gives a probability, for each activity, to be performed. The section 4.6 explains how to conclude about the actually performed activity using those probabilities.

Conclusion

In this chapter, basic definitions of ambient assisted living has been given and a global overview of the existing works in the field of activity of daily living discovery and recognition was presented. Smart home current technologies and activities models were presented. Assumptions for this thesis work was taken and explained to finally state the problem.

The taken assumptions are the following: Assumption 1 Activities are represented by probabilistic models; Assumption 2 Only binary and environmental sensors are used; Assumption 3 The considered smart home has a single inhabitant; Assumption 4 The knowledge of the actually performed activity is not required.

By considering these four assumptions, the problem can be summarised as follows:

The objective of this thesis is to develop a global framework to discover and recognise activities of daily living of an inhabitant living alone in a smart home. This smart home has to be equipped with binary sensors only, expert labelling of activities should not be needed and activities can be represented by probabilistic models.

Introduction

In this thesis, applicative methods to monitor health at home system are developed. In order to illustrate and validate our propositions, a case study is needed. This case study should include a description of the used smart home, or living lab, and a welldetailed and fault-free database of activity performance. More precisely, the following criteria are mandatory.

Firstly, the equipped smart flat has to be perfectly known. It signifies that the floorplan has to be given with details, the normal location of objects relevant considering the activities to be monitored (e.g. normal location of tea bags, coffee, pasta ...) has to be indicated and the exact location of sensors has to be supplied. This criterion is necessary to allow an expert hierarchical decomposition (see figure 1.2.2) sufficiently detailed. The knowledge of the object locations allows a fine decomposition. This expert knowledge is an essential input of the proposed activity discovery (AD) method and has to be reliable.

Secondly, since the activity recognition (AR) objective is to point out the performed activity out among several ones, it is important to have multiple activities to compare. Therefore, several activities have to be performed during the generation of the case study database.

Thirdly, the objective of this thesis is to discover and recognise complex activities using binary sensors with semantically poor information. Therefore, the case study has to be equipped with enough binary sensors to compensate for the low information by the number of them.

Fourthly, in accordance with the Assumption 3 enunciated in section 1.2.2, the data of the case study have to be generated by a person performing each activity alone and several times. Furthermore, since each activity model is linked to a way to perform it, the person performing the activities has to be the same every time.

Finally, in order to confront the result of our methods and the reality, the name of the performed activities and their realisation moments have to be recorded. As this knowledge is only needed to validate the methods, this need is not incompatible with our Assumption 4 rejecting this knowledge for real and non-experimental applications.

In this chapter, several existing databases are presented and their conformity with our criteria are discussed. Since no existing living-lab among the studied ones fulfil all the presented requirements, a new smart flat (AALTA) specially equipped for this thesis is presented.

Existing living labs and public datasets

In this section, three major living labs are presented. Each of them is well documented and their pros and cons are easily detectable. Unfortunately, due to the adopted point of view of our approaches, the documentation may not be exactly as wanted. The compatibility between the three presented living labs and our requirements are thus discussed.

Living lab of the Washington State University (WSU)

As explained in [START_REF] Cook | Assessing the quality of activities in a smart environment[END_REF], to validate their algorithms, authors test them in a smart apartment testbed located on the Washington State University (WSU) campus. The CASAS testbed is equipped with motion and temperature sensors as well as analogue sensors that monitor water consumption and stove burner use (see figure 2.1. Existing living labs and public datasets 2.1.1). Voice over Internet Protocol (VOIP) captures phone usage and contact switch sensors are used to monitor usage of the phone book, a cooking pot, and the medicine container. Sensor data is captured using a customised sensor network and stored in an SQL database.

To provide physical training data, the research team brought 20 WSU undergraduate students to perform activities in the smart apartment. One at a time, student had to Figure 2.1.1: Resident performing "hand washing" activity (left). This activity triggers motion sensor ON/OFF events as well as water flow sensor values (right). Sensors in the apartment (bottom): monitor motion (M), temperature (T), water (W), burner (B), phone (P), and item use (I) [START_REF] Cook | Assessing the quality of activities in a smart environment[END_REF].
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1. Telephone use: look up a specified number in a phone book, call the number, and write down the cooking directions given on the recorded message.

2. Hand washing: wash hands in the kitchen sink.

3. Meal preparation: cook oatmeal on the stove according to the recorded directions, adding brown sugar and raisins (from the kitchen cabinet) once done.

4. Eating and medication use: eat the oatmeal together with a glass of water and medicine (a piece of candy).

5. Cleaning: clean and put away the dishes and ingredients.

The selected activities include both basic and more complex ADLs that are found in clinical questionnaires [START_REF] Reisberg | The alzheimer's disease activities of daily living international scale (adl-is)[END_REF]. Noted difficulties in these areas can help to identify individuals who may have difficulty functioning independently at home [START_REF] Schmitter-Edgecombe | Characterizing multiple memory deficits and their relation to everyday functioning in individuals with mild cognitive impairment[END_REF]. As shown in figure 2.1.1, each sensor reading is tagged with the date and time of the event, the ID of the sensor that generated the event, and the sensor value.

The sensors used by [START_REF] Cook | Assessing the quality of activities in a smart environment[END_REF] The data thus obtained are available at ailab.eecs.wsu.edu/casas. It contains several text files named according to the participant and the task performed. Hence, the data recorded when the participant number i performed activity k is named "pi.tk". In those files, sensors events are logged line by line. Each line represents the occurrence of one event as shown in figure 2.1.2. An event occurrence is thus characterised by its observance day (column 1) and time (column 2), the sensor name (column 3) and the event linked (column 4). In addition, a file "data" contains all of the sensor events in one file. In this new file, the performed activity is reported in a fifth column and the participant is not stored.

As the CASAS living lab was developed to test ADLs monitoring, it naturally fulfils some of our criteria presented in the introduction. That is the case with three of them:

• Several activities are considered during the data record (telephone use, hand washing, meal preparation, eating and medication use and cleaning), the second criterion is thus satisfied; • Lots of binary sensors are implied in the living lab giving enough information to generate high-level information, the third criterion is thus filled;

2.1. Existing living labs and public datasets 2008-02-27 12:43:27.416392 M08 ON 2008-02-27 12:43:27.8481 M07 ON 2008-02-27 12:43:28.487061 M09 ON 2008-02-27 12:43:29.222889 M14 ON 2008-02-27 12:43:29.499828 M23 OFF 2008-02-27 12:43:30.159565 M01 OFF 2008-02-27 12:43:30.28561 M07 OFF 2008-02-27 12:43:31.491254 M13 ON ... • The activities performed by the undergraduate student are well labelled, this fulfils the last criterion.

Unfortunately, two criteria are not fully fulfilled:

• Even if the activities are performed by a single inhabitant each time, they are not performed by a unique one. Indeed, multiple persons realise activities only once; this point discords with criterion four; • Sensors placement is perfectly documented but the relevant object placements in the living lab is not precise enough to allow a detailed expert decomposition (first criterion).

Living lab of the Université de Sherbrooke (Domus)

In [START_REF] Chikhaoui | A new algorithm based on sequential pattern mining for person identification in ubiquitous environments[END_REF], authors present another smart home: Domus. This smart home is a one-bedroom apartment, as shown in figure 2.1.3, mounted inside the University of Sherbrooke. It includes a bedroom, a bathroom, a kitchen, a dining room and a living room. During the experiments, six adults have performed the early morning routines which correspond to some basic activities of life. The experiments were held in the Domus smart home apartment in two steps.

First, users were asked to perform the early morning routine as they are supposed to do at home. This step was realised ten times per user.

Secondly, users were asked to repeat the same routine with an additional constraint: performing a given tea recipe which lasts at most 10 minutes. This step was realised five times per user.

In both series, the user can use any equipment available in the apartment, and decides the order of the activities that composed his routine. Each experiment lasted about 45 minutes.

During the experimentation, authors labelled the observed events in seven activities:

1. Wake up. The obtained data are available at https://www.usherbrooke.ca/domus/en/research/ dataset/ and organised as follows. Each data from an experiment step i is classed in a 2.1. Existing living labs and public datasets corresponding directory named "Domus Series i". In each of these directories, there are six folders named according to the user number. Each user folder contains the sensor data files named per day "Day d.vna". In these files, there is one sensor event on each line of the files presented as shown in figure 2.1.4. An event occurrence is characterised by its observance time (column 1), the sensor id (column 2), the sensor location in the smart home (column 3) and its new value (column 4). In addition, the folder contains also the activity annotation file that annotates the activities performed by the observed subjects during the experiments.

"9:8:18" "5105" "Lampe" "Bedroom" "Open" "9:8:28" "0215" "Door" "Bedroom" "Open" "9:8:34" "5101" "Lampe" "Kitchen" "Open" "9:8:38" "5105" "Lampe" "Bedroom" "Close" "9:8:42" "0215" "Door" "Bedroom" "Close" "9:8:47" "IR01" "Infrared" "KitchenSink" "Close" "9:8:50" "Fl04" "TapeColdWaterSink" "Kitchen" "Open" "9:8:50" "IR01" "Infrared" "KitchenSink" "Open" ... By analysing the Domus smart home dataset by regarding its conformity with our five criteria, it appears that four of them are respected.

• Several activities are considered (Wake up, Use toilet, Preparing breakfast, Having breakfast, Washing dishes, Unknown activities, Preparing tea). However, we can notice than only morning activities are tested. That validates the criterion two. • An important number of events are implemented in the smart home and validates the third criterion. • Activities are sufficiently performed by each subject to be compatible with the criterion four. • The performed activities are labelled with start and end times. This fulfils criterion five.

Unfortunately, the sensor placement is not given with enough details. In addition, the position of the relevant tools in the smart home needed by the expert to construct a detailed hierarchical decomposition is not indicated. That does not fulfil the criterion one since it is impossible to viably construct an expert hierarchical decomposition.

Living lab of the Massachusetts Institute of Technology

As explained by the authors, in [START_REF] Tapia | Activity recognition in the home using simple and ubiquitous sensors[END_REF], two studies were run in two homes of people not affiliated with the MIT research group in order to collect data for developing and testing of the activity recognition algorithms. The first subject was a professional 30-year-old woman who spent free time at home, and the second was an 80-year-old woman who spent most of her time at home. Both subjects lived alone in one-bedroom apartment. 77 state-change sensors were installed in the first apartment and 84 in the second one. The sensors were left unattended, collecting data for 14 days in each apartment. During the study, the subjects used in the context-aware experience sampling method [START_REF] Intille | Tools for studying behavior and technology in natural settings[END_REF] to create a detailed record of their activities. Figure 2.1.5 shows the first apartment floor-plan. [START_REF] Tapia | Activity recognition in the home using simple and ubiquitous sensors[END_REF] During the experiments, twenty-one activities were targeted and labelled. Those activities are decomposed into several actions not listed here. For two weeks, the inhabitants lived normally at home and generated a database composed of 2323 and 1422 events. The sensors used are binary sensors labelled by: 2.1. Existing living labs and public datasets

• Burner • Freezer • Shower faucet • Cabinet • Garbage disposal • Sink faucet -cold • Cereal • Jewelry box • Sink faucet -hot • Coffee machine • Lamp • Stereo • Containers • Laundry Dryer • Telephone • Dishwasher • Light switch • Toaster • Door • Medicine cabinet • Toilet Flush • Drawer • Microwave • TV • DVD • Oven • Window • Exhaust Fan • Refrigerator
The data thus obtained are available at http://courses.media.mit.edu/2004fall/ mas622j/04.projects/home/. It contains two directories, one per subject. In the "text dataset", the data is stored in text format and comma separated values (.csv). Each directory contains three files:

• sensors.csv: containing information about the sensors;

• activities.csv: containing a description of the targeted activities and their decomposition in actions;

• activities_data.csv: contains the observed events during the study.

The files "activities_data.csv" are composed with blocks of five lines (see figure 2.1.6). In these blocks, the first line gives the performed activity and its date, begin time and ending time. The second one contains the ids of the sensors generating events in the occurrence time order. The third line corresponds to the list of the sensors generating events in the occurrence time order. The fourth line lists the rising edge times of the observed event. Finally, the fifth line gives the time corresponding to the falling edge of the observed event.

Preparing dinner,5/1 [START_REF] King | Smart home-a definition[END_REF],16:15:7,17:40:7 115,115,79,73,73, ... Microwave,Microwave,Cabinet,Cabinet,Cabinet, ... 16:14:24,16:17:10,16:17:45,16:17:50,16:18:9, ... 16:16:16,16:17:21,16:18:18,16:17:54,16:18:15, ... Preparing lunch,5/1/2003,10:57:51,11:49:27 53,75,115,115,108, ... Light switch,Light switch,Microwave,Microwave,Toaster, ... 11:3:13,11:3:17,11:5:39,11:7:17,11:8:10, ... 11:43:40,11:43:41,11:5:41,11:7:26,11:8:27, ... 2004) file "activi-ties_data.csv" of the "subject2" directory.

To facilitate the data treatment, the data can easily be parsed to appear with the same form as in the CASAS dataset 2.1.1. The data are thus as shown in figure 2 The presented living lab seems closed to be perfectly adapted to our work. Unfortunately, only three criteria are fulfilled:

• Several activities are considered during the data record (there are 21 activities in this case), the second criterion is thus satisfied; • A huge number of binary sensors are implied in the normal life realisation of the two subjects, the third criterion is fulfilled; • Activities are performed by a unique inhabitant for each smart home during a significant learning period. The fourth criterion is thus filled.

The following criteria are thus not respected:

• Even if the activities seem to be well-labelled, it appears by analysing them more precisely that the declarations made by the inhabitant are not already true. Since the labelling is performed directly by the inhabitant, the observed divergences can be due to human mistakes or decency considerations (voluntary or not). The last criterion is thus unfulfilled;

• Even if the decomposition of activities into actions is given, the specific object locations needed by the expert are not specified. Therefore, the links between actions and sensors cannot be done. The needed expert decomposition is thus impossible to obtain. It discords with the first criterion.

Conclusion

By studying the datasets given by the existing databases, it appears that the five criteria needed to test and validate our methods are not fulfilled simultaneously in the existing works. Indeed, the necessity to generate an expert decomposition of activities into actions linked to events from the given data is limiting. This classification is feasible for an expert having access to the equipped home but is difficult to obtain in other cases. Therefore, in this thesis, it appears that we need to create our own living lab in order to know exactly the instrumentation and the performed activities. This perfect knowledge allows validating the methods using viable information.

The next section is thus dedicated to present the ambient assisted living test area (AALTA) developed at the ENS Paris-Saclay to test and validate our AD and AR methods.

Ambient Assisted Living Test Area (AALTA)

The smart flat we equipped for this Ph.D. is presented and described in this section. The activities to monitor we select to experiment our methods and sensors we installed are given and justified. Finally, the experimental protocol to obtain our test database is presented.

Description

Following our research of a smart home dataset corresponding to our needs, it appears that the best way to experience our methods is to develop our own living lab. Since the major need is a sufficient knowledge of the smart home to generate a dynamic expert decomposition as explained section 1.2.3, a large home is not necessary. Zone C: kitchen.

The kitchen was initially equipped with a fridge, five top cupboards, three bottom cupboards (one near the fridge and two sideboards near to the bed, at the limit of the kitchen zone), one top shelf, two hotplates a sink, five plugs, a table and four chairs. A picture of this zone is visible in figure 2.2.3.

Concerning the object placement, the sugar, the coffee and the coffee filters are placed on the first top cupboard starting from the extreme left (the closed with the entrance), called Cupboard_Lef t. The tea bags are placed on the second one denoted Cupboard_CenterLef t. The coffee and tea cups are placed on the third one noted Cupboard_CenterRight.

Zone D: sleeping zone.

The sleeping zone is equipped with a bed, a window and a little shelf. This zone delimited by two of the three kitchen bottom cupboards is not separated from the kitchen using walls. 

Activities to monitor

As precise in section 1.2.1, in the real life application, the activities to be monitored are fixed by the medical staff and depend on the inhabitant pathologies. In this living lab, activities are chosen to be realistic while testing specific situations useful to discuss the obtained results. For example, the following four specific cases are interesting to observe:

1. An activity to monitor can be performed in a smart home zone in which no other activity is performed. In this case, whatever the sensor placement is, the observed events in this zone will obligatory be linked to this specific activity.

2. An activity can have two actions semantically closed but in practice very different to perform,

3. An activity can be so similar to another one that the distinction of them can be difficult;

4. In contrast to the previous point, two activities can be similar during a small part of their realisations but not during the rest of it.

Therefore, to be able to discuss results obtained for those cases, three activities to monitor have been chosen. These activities, denoted A 1 ,A 2 and A 3 are selected among all activities encountered during the literature study. The chosen activities are thus:

• Activity A 1 : Cooking; • Activity A 2 : Hot beverage preparation; • Activity A 3 : Use bathroom.

with, as action composing those activities, the following:

• Action prepare a ready-cooked dish linked to activity A 1 ; • Action make pasta linked to activity A 1 ; • Action make tea linked to activity A 2 ;

• Action make coffee linked to activity A As explained below, these four activities and their eight associated actions allow the four specific cases previously enumerated: 2.2. Ambient Assisted Living Test Area (AALTA) 1. The activity A 3 is an activity performed in an allocated zone where no other activity is performed: the bathroom.

2. The actions prepare a ready-cooked dish and make pasta are linked to the same activity cooking and are semantically comparable since these are two ways to prepare food. But, in practice, the first action consists in taking a ready-cooked dish in the fridge to warm it using a microwave oven. In contrast, the second action implied to boil water, to cook pasta during some minutes, to drain them and potentially to add sauce. These two actions are thus in practice radically different.

3. The activity A 2 is nearly identical to the prepare pasta action of the activity A 1 when the inhabitant prepares tea by making water to boil on the hotplates.

4. Finally, by preparing the coffee, the activity A 2 shares some action with the action prepare pasta of A 1 since it is necessary to fill the machines with water.

Sensor placement

Since the smart flat and the activities to monitor are now described, it is possible to choose an efficient implementation of sensors to discover and recognise them.

In order to well understand the output given by the binary sensors, let's recall what represents an event for a binary sensor. Each sensor, denoted by an explicit name as Kitchen|Cupboard_Bottom|Open can generate two events: one linked to the rising edge of its binary information (thus denoted sensorN ame|1), the other one linked to the falling edge (sensorN ame|0) (see figure 2.2.6). More specifically, the list of the forty-two sensor events used in AALTA is given in Table 2.2.1.

The twenty sensors generating the forty-two events are placed on the smart home as represented in the floor-plan figure 2.2.9 and in the picture visible figure 2.2.8.

Starting from these activities to monitor and the detailed knowledge of the equipped flat, it is possible to give a coherent expert decomposition of activities in actions linked to events. The decomposition we retained is detailed in figure 2.2.10. This decomposition is used in chapter 3 to discover the activities to monitor.

By analysing this decomposition, we can see that, as wanted, the four different cases of more or less important overlapping of sensors between activities are well present. We The figure 2.2.11 briefly summarises our living lab network. Our sensors use the Z-wave wireless communication protocol to emit or receive instructions. The Z-wave protocol is a mesh network using low-energy radio waves to communicate from appliances to appliances. And USB Z-wave controller plugs on a computer manage the networks and receipt all information. This information is then transmitted to the computer to analyse. The open-source software Jeedom, installed on the computer, is in charge to record these information and to facilitate the human-machine interaction. This software Since the instrumented smart flat and the expert hierarchical decomposition of activities are perfectly known, we can define an experimental protocol to generate and use a test database.

Experimental protocol

In order to estimate the robustness of the approach, during our experiment phase, activities A 1 , A 2 and A 3 are realised and observed a huge number of times by introducing the following variations: • the insertion of noisy events (i.e., events not linked with the performed activity)

during their realisation, for instance by wandering in the flat; • some actions are interrupted;

• the execution order of elementary moves composing actions is changed; • the action make tea is realised by two different ways: using the kettle or boiling water with hotplates.

These variations focus the majority of possible noisy phenomena occurring during a normal human life.

These activity realisations, split in different parts, compose a library of modular activity performance. By ordering them in different order and following different rules, it is possible to test several particular situations. On the one hand, to realise simple test, we can use activities performed without noise timely place in an optimal order. On the other hand, to test more difficult situations such as interrupted activities or a direct succession of activities, we can use all kind of activity performance timely closed or broken.

In order to run our methods onto an acceptable dataset, a learning sequence was creating using a library containing realisations of activities to monitor. More precisely, this database is generated using recorded activity instances placed in a random time order and separated by a random number of random noisy events not belonging to the performed activities. The resulting sequence is composed of 2087 events corresponding to twenty realisations of each activity. This database generation method is presented in figure 2.2.13. First, to validate our methods, the activity recognition will be run over the learning database to verify that we are able to recognise the activities used during the discovering phase. Then, additional tests are run to analyse the robustness of our methods to successions of activities. For all those experiments, the details about the placed activities and their positions in the constructed database are kept. This information is used to compare the methods results to the reality. This knowledge is for the validation process only and is not needed for an application in the real world. 

Conclusion

Since the topic treated in this thesis is directly linked to an actual societal problem needing concrete solutions, all methods presented in this thesis have to be applicable on a real case. The methods development cannot be decoupled with the technical application. Therefore, in this chapter, several living labs were presented and their usability to apply our methods using their datasets was discussed. Unfortunately, the restrictions linked to the assumptions make in chapter 1 make the currently known living labs not fully adapted to our methods. These incompatibilities are mainly due to a lack of information concerning the equipped smart homes.

To deal with this problem, a new living lab was developed at the ENS Paris-Saclay. This ambient assisted living test area (AALTA) is presented in section 2.2. Object and sensor placements are given and the expert decomposition needed in the activity discovery method (presented in chapter 3 of the manuscript) is detailed. Finally, the experimental protocol used to generate out test databases is developed and explained. 

Introduction

In this chapter, we present the first contribution of this thesis: a new activity discovery (AD) method. We need to develop this innovative approach because of our Assumption 4 incompatible with existing methods. Indeed, Assumption 4, stated in section 1.2.2, rejects the possibility of labelling activities actually performed by the monitored person during the learning period. Unfortunately, this information is usually one of the mandatory inputs of AD methods.

Moreover, Assumption 2 consists in treating information coming from environmental binary sensors only. Therefore, the method is free from performed activity knowledge and uses only environmental and binary sensors.

One major asset of this approach is its portability. Indeed, it is applicable to each smart home regardless of the inhabitant pathologies (e.g. a patient suffering from Alzheimer do not need to help the process).

This approach models each activity to monitor by probabilistic finite-state automaton (PFA). Lost information due to the rejection of the performed activity knowledge is compensated by the addition of a specific expert knowledge which gives a hierarchical decomposition of the activities into a set of actions observable using a given subset of events among the smart home ones.

First of all, a theoretical picture of this new method is presented with the definitions and notations that are needed for a better understanding.

Then this concept is illustrated with the study of a specific case that has been described in the previous chapter.

Models and notations

In order to develop the proposed method, we first need to present the general notions of discrete event system modelling such as alphabets and probabilistic finite-state automata (PFA), as well as specific notations for this method.

As a beginning, we provide definitions for sensor events and activity instance as defined in [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF]. Definition 3.1 (Sensor event). An activity discovery method receives data from sensors that are used to perceive the state of an individual and/or an environment. One of the input data of an AD method is a sequence of sensor events. Each sensor event e i can be seen as a tuple e i =< s, m > where s denotes a sensor ID and m denotes the sensor message. As we threat only binary sensors (Assumption 2), the message can take two values (rising and falling edge) as explain in figure 2.2.6. Definition 3.2 (Activity instance). We define an activity instance or activity occurrence as a subsequence of n sensor events e 1 e 2 ...

e n . An activity represents the collection of all of its instances. An activity model may represent an activity as an abstraction of this collection of activity instances.

First of all, we give the formal definition of the expert decomposition as following: Definition 3.3 (Expert decomposition). The expert decomposition needed in this thesis can be described as a tuple: decomposition = <lActivities, lActions, Σ T ot , Link Activity/Action , Link Action/Event >, where:

3.1. Models and notations

• lActivities is the list of activities to be monitored A k ;

• lActions is the list of actions Action k.h composing the activities;

• Σ T ot is the list of events e generated by the sensors in the smart home;

• Link Activity/Action : lActivities → lActions * is a function linking the activities and the actions; • Link Action/Event : lActions → Σ T ot * is a function linking the actions and the events.

As seen in chapters 1 and 2, this expert decomposition can be graphically represented as in figure 3.1.1. In order to simplify the readability of equations and algorithms, the following notations are used:

• Σ Actionk.h = Link Action/Event (Actionk.h) is the set of events linked with the action Actionk.h; • Σ A k is the set of events linked with the activity A k . This set can be defined as

Σ A k = action∈Link Activity/Action (A k )
Link Action/Event (action);

• Le A k = card(Σ A k )
is the number of events hierarchically linked with the activity A k .

We are now able to give the definition of the used model type: the PFA. Probabilistic finite state automata is the name of a syntactic object (i.e. it contains symbols, lists, and constant values that essentially correspond to the quoted form of the expression) which attempts to model and generate probabilistic distributions over a set of possible infinite cardinality of strings or sequences. This object is defined as written in Vidal et al. (2005a) and in the following.

Definition 3.4. : A

PFA A k is a tuple A k = <Q A k , Σ A k , δ A k , I A k , F A k , P A k >, where: • Q A k is a finite non-empty set of states q; • Σ A k is a non-empty alphabet of events e; • δ A k ⊆ Q A k × Σ A k × Q A k is a set of transitions; • I A k : Q A k → [0, 1] are the initial-state probabilities; • P A k : δ A k → [0, 1] are the transition probabilities; • F A k : Q A k → [0, 1] are the final-state probabilities;
where I A k , P A k and F A k are functions such that:

q∈Q A k I A k (q) = 1, (3.1) and ∀q ∈ Q A k , F A k (q) + e∈Σ A k ,q ′ ∈Q A k P A k (q, e, q ′ ) = 1. (3.2)
PFAs are represented as directed labelled graphs. Figure 3.1.2 shows an example of a PFA with four states: Q A k = {q 0 , q 1 , q 2 , q 3 } , with I A k (q 0 ) = 1 and I A k (q i ) = 0 for i ∈ {1, 2, 3}, and a four-symbol alphabet: Σ A k = {a, b, c, d}. Each transition (resp. state) is labelled by the linked event (resp. the state name) and its possibility to occur (resp. its final probability). [START_REF] Vidal | Probabilistic finite-state machines -Part II[END_REF].

In the following study, the term A k is used to represent both activity k and the PFA modelling this activity. When used in subscript of a symbol, A k represents the PFA to which the symbol is linked. Moreover, we call structure of a PFA A k the triplet structure

(A k ) = <Q A k , Σ A k , δ A k >
where all is known except probabilities.

In the given example, the transition (q 0 , a, q 1 ) going from q 0 to q 1 and having a probability P A k (q 0 , a, q 1 ) = 1/8 can be read as the probability, for the event generator modelled by the PFA A k (shown figure 3.1.2) to reach state q 1 from state q 0 by generating the event a.

According to [START_REF] Cassandras | Introduction to discrete event systems[END_REF], the key operation involved in building strings (or sequences), from a set of events Σ is concatenation. The string abb is the concatenation of the string ab with the event (or string of length one) b; ab is itself the concatenation of a and b. The concatenation uv of two strings u and v is the new string consisting of the events in u immediately followed by the events in v. The empty string ǫ is the identity element of concatenation: uǫ = ǫu = u for any string u.

Furthermore, by defining Σ * as the Kleene-closure of the set of events Σ, i.e. the infinite set of all possible sequences of elements of Σ, we can define the projection function. This function is needed during our AD procedure in order to avoid noise influence and its definition and is the following: 3.2. A systematic procedure for models generation Definition 3.5 (Projection function). The projection of w ∈ Σ * on alphabet Σ A k is noted P roj(w, Σ A k ) and defined as defined in [START_REF] Cassandras | Introduction to discrete event systems[END_REF]:

P roj : Σ * → Σ * A k ;
with:

P roj(ǫ, Σ A k ) = ǫ; P roj(v, Σ A k ) = v if v ∈ Σ A k ǫ else ; P roj(σv, Σ A k ) = P roj(σ, Σ A k )P roj(v, Σ A k ) f or σ ∈ Σ * , v ∈ Σ;
As can be seen from the definition, the projection operation takes a string formed from the larger event set (Σ) and erases events in it that do not belong to the smaller event set (Σ A k ).

Finally, the following notations are also chosen to simplify the approach formulation:

• Σ q l the alphabet of events associated with the transitions ongoing into the state q l ; • w Obs = e i e j . . . e n is a sequence of the observed events in the smart home. The length of w Obs (denoted w Obs ) corresponds to the number of events composing the sequence; • w Obs p k = P roj(w Obs , Σ A k ) is the projection of the sequence w Obs on the alphabet Σ A k ;

A systematic procedure for models generation

In this section, the objective is to model each activity A k we want to monitor by a PFA. To this aim, the structure of the PFA is first generated in 3.2.1. Then probabilities are learned 3.2.3 thanks to a database splitting chosen in 3.2.2.

Generation of PFA structure

We know that for some methods (as in [START_REF] Oliver | Layered representations for human activity recognition[END_REF]) based on the Baum-Welch algorithm [START_REF] Baum | An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes[END_REF], the structure is not very important. Indeed, probabilities are computed iteratively without considering any semantic signification linked with the state name. However, those methods are efficient only if the sequences given to each iterative step are representative of the modelled activity.

Unfortunately, let's recall that according to Assumption 4, in our proposed method the knowledge of the performed activity is rejected. Thus, no representative sequences can easily be extracted from the learning database. Therefore, in order to deal with this information reject, an expert decomposition of activities into a hierarchy of actions and events is used to generate activity PFA structures, which consequently matters to us.

First, for each action Actionk.h ∈ Link Activity/Action (A k ) linked to the activity A k , we associate a state q h . Then, a unique initial state q 0 not linked to any action is added (as shown in figure 3.2.1). At this point,

Q A k = {Link Activity/Action (A k ) + q 0 }.
The objective is now to illustrate the links between the Le A k events and the different actions in the expert decomposition. We recall that an event of the smart home can be Figure 3.2.1: Example of the creation of a set of five states Q A k = {q 0 , q 1 , q 2 , q 3 , q 4 } from an activity A k decomposed into four actions (Action k.1 to k.4).

linked to zero, one or several actions of the same activity A k . Only events linked with at least one action of A k are counted in Le A k .

Thus, if we want to illustrate the capacity of an action Actionk.h to generate an event e i during its performance (e.g. the ability to generate an event "Open the frigde" when a ready-cook dish is prepared), a transition (q g , e i , q h ) is added to the structure for each couple of actions (q g , q h ) and the event e i is added to the alphabet Σ A k (see figure 3.2.2). Here, the state q h is the state representing the action Actionk.h and q g any state of the model.

At this step, with card(Q A k ) the number of states previously created, at most card(Q A k ) × Le A k transitions are generated. Figure 3.2.2: Example of the creation of five transitions {(q 0 , e 4 , q 3 ), (q 1 , e 4 , q 3 ), (q 2 , e 4 , q 3 ), (q 3 , e 4 , q 3 ), (q 4 , e 4 , q 3 )} reflecting the link between the action N.3 and the event e 4

The structure, and thus the model, generated there has to be seen as an interpreter. If we are incoming into a state q g linked with a given action, it signifies that we are starting to perform this action. If we are staying in this state, by passing through self-loops, we are carrying on the action.

At the end of this step, the structure of each PFA associated with an activity A k is fully known. In order to improve the figure readability, states are labelled by the corresponding action name and q 0 is labelled by "Initial". Fig. 3.2.3 shows a generic overview of this structure generation starting from the expert decomposition.

The algorithm 1 gives a pseudo-code representation of this step. By analysing it, we can observe that the complexity C AD 1 of this AD step 1 is polynomial and can be 3.2. A systematic procedure for models generation expressed as follows:

C AD 1 = O card(lActivities) × max A k card(Link Activity/Action (A k )) 2 × max A k (Le A k ) (3.3) with:
• card(lActivities) the number of activities to monitor; • max A k card(Link Activity/Action (A k )) the maximum number of actions links to the same activity in the expert decomposition; • max A k (Le A k ) the maximum number of events; hierarchically linked to the same activity in the expert decomposition. It maximises the number of events hierarchically linked to the same action.

Algorithm 1 AD step 1: Generation of a PFA structure Require:

• A list of activities lActivities : {A k } to monitor; 

append < Q A k , Σ A k , δ A k > to Structures 24: end for
At this point, all sequences w ∈ Σ * A k composed with events hierarchically linked with the activity A k are generated by the PFA structure. The constructed structure is non-deterministic since, starting from a state q g , several transition generating the same event e i and outgoing to different states are existing. This indeterminism expresses the choice to not promote any hypothesis on the comportment at this step of the discovery. This kind of choice is thus reported to the probability computation and will be commented at this step.

Once the PFA structures generated, the probabilities linked to each transition have to be computed. Steps 3.2.2 and 3.2.3 explain the proposed solution. 

Database of event logs exploration

As the PFA structure is now known, we need to get the probabilities of each transition (q g , e i , q h ). To compute these values, we use a learning approach by observing events during a learning period. Specific key indicators that can be extracted from this observation help us to compute probabilities. Those indicators, described in the next subsections, correspond to the count of some situation occurrences in the recorded event database. The database consists of one or several long sequences of recorded events in which we have to look for local succession of actions. These long sequences of events obtained thanks to observation is usually divided into smaller segments in order to reduce the needed computational resources. In the existing literature [START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF][START_REF] Oliver | Layered representations for human activity recognition[END_REF], indicators values are obtained from several well-chosen sequences extracted from the learning database using a log of performed activities. Once again in this work, the Assumption 4 excludes the use of this kind of log considered as a non-suitable input of the problem and another way to divide the learning database has to be used.

It exists different ways to divide such a huge sequence in several ones. The most common approach is to split the sequence by considering a sliding subsequence of events. In [START_REF] Krishnan | Activity recognition on streaming sensor data[END_REF], authors present three common approaches for processing such subsequence of events (see Figure 3 

Explicit Segmentation

In [START_REF] Junker | Gesture spotting with bodyworn inertial sensors to detect user activities[END_REF], the streaming sensor events are segmented into chunks, each chunk possibly corresponding to an activity. An example of this process is illustrated in Figure 3.2.4. The segmentation process results in chunks C 1 , C 2 , ... , C 6 obtained by processing a naive activity recognition process. We can see that the process does not result in exact activity boundaries (activity A 1 is broken down to chunks C 1 and C 2 ). This fact is common with all other segmentation algorithms. While the segmentation process could lead to chunks representing specific activities, it has some drawbacks. The foremost one is that the approach has to wait for future data to make a decision on past data rendering it a somewhat non-streaming approach. Furthermore, because of its dependency on the future data, large temporal gaps in successive sensor events, which are realistic in everyday routines, will result in the approach waiting for a long time to make a decision on the past events. Finally, this approach also leads to additional complexity issues of the segmentation process to be dealt with such as splitting and merging chunks. This segmentation approach is particularly adapted with activities having very distinct boundaries. Unfortunately this is not the usual scenario.

Time windows

The second approach to handle streaming data is to divide the entire sequence of sensor events into equal size time intervals as illustrated in Figure 3.2.4 by the chunks denoted by T 1 , T 2 ,... , T 9 . This approach has been adopted by many researchers [START_REF] Krishnan | Analysis of low resolution accelerometer data for continuous human activity recognition[END_REF][START_REF] Van Kasteren | An activity monitoring system for elderly care using generative and discriminative models[END_REF]. This technique offers a simple approach to learn the activity models during the training phase over the explicit segmentation approach. It further reduces the computational complexity of the explicit segmentation process. This is a good approach when dealing with data obtained from periodic generation of events. Data for every time interval is always guaranteed in such a scenario. This is a common approach with accelerometers and gyroscopes, where data is sampled at a constant rate from the sensors. However, one has to deal with the problem of selecting the optimal length of the time interval. If a very small interval is chosen, there is a possibility that it will not contain any relevant activity information. If the time interval is too large, information belonging to multiple activities can be embedded into it. Hence, the activity that dominates the time interval will have a greater influence in the classification decision. This problem manifests itself when dealing with sensors that do not have a constant sampling rate. In the current context of motion and door sensor events, it is very likely that some time intervals do not have any sensor events in them (e.g., T 6 in Figure 3.2.4). Then heuristics have to be developed to extend the activity occurring in the previous time intervals to the current time interval.

Sensor Windows

The third approach for sensor stream processing is to divide the sequence into windows containing an equal number of sensor events. This is illustrated in figure 3.2.4 by the chunks S 1 , S 2 , ... , S 26 . It is evident that the windows appear to vary in their duration. This is fine considering that during the performance of activities, multiple sensors could be triggered, while during silent periods, there will not be many sensor firings. The sensor events preceding the last event in a window define the context for the last event. This method also has some inherent drawbacks. For example, consider the chunk S 13 , in Figure 3.2.4. The last sensor event of this chunk corresponds to the beginning sensor event of activity A 2 . There is a significant time lag between this event and its preceding sensor event. The relevance of all the sensor events in this chunk on the last event might be small if the time lag is large. While by itself this approach may not be alluring, modifying it to account for the relationship between the sensor events is a good method to process the stream of sensor events. This approach offers computational advantages over the explicit segmentation process and does not require future sensor events for classifying past sensor events. Therefore, sensor windowing is preferred in this work since we have activities with a variable duration and separated with a variable delay. Furthermore, let's recall that the idea behind the dataset splitting is to compute some indicators traducing the event 3.2. A systematic procedure for models generation sensors relationship. Those indicators can thus be used to compute the model probabilities by learning as presented in the next subsection. However the algorithm 2 giving a pseudo-code representation of the complete step 2 is presented here. By analysing it, we can observe that the time complexity C AD 2 of this AD step 2 is linear and can be expressed as follows:

C AD 2 = O (|LearningDB| -w Obs ) × card(Structures) × w Obs (3.4)
with:

• (|LearningDB|w Obs ) the number of windows obtained by sliding;

• card(Structures) = card(lActivities) the number of activities to monitor;

• w Obs the length of the learning windows.

Probabilities computation

As precise in the PFA definition in subsection 3.1, each transition (q g , e i , q h ) represents the fact that, during the activity performance, the inhabitant performs successively the action q g then q h and that the first event of the action q h generated by this transition is the event e i . Therefore, probabilities P A k (q g , e i , q h ) linked to transition (q g , e i , q h ) represents the probability, for an inhabitant performing the activity A k to generate the event e i by changing from action q g to action q h . In order to compute those probabilities, it is first necessary to avoid the influence of noise on the computation precision. To this aim, for each activity, a projection of the sliding window w Obs presented above (subsection 3.2.2 and in figure 3.2.4) on the activity alphabet Σ A k is performed. The obtained sequence w Obs p k is, as defined in subsection 3.1, generated by removing the events e i / ∈ Σ A k from w Obs . The transition (q g , e i , q h ) can be seen as a consequence of two different and independent human decisions:

• the choice to perform the action q h after the action q g ; • the choice to perform a move generating event e i as first observable move following the action change decision.

Probabilistically thinking, this point of view is equivalent to decompose the probability P (q g , e i , q h ) as the product of two probabilities: the probability to move from action q g to action q h and the probability to generate e i during this change. Thus, we have:

P (q g , e i , q h ) = P (q g → q h |q g ) × P (e i |q g → q h ) (3.5)
By supposing than we have enough knowledge to directly count changes linked with each probability and that N (q g → q h |q g ) and N (e i |q g → q h ) denote the number of occurrences of transitions from q g to q h and the occurrences of event e i conditioned to the transition q l → q m during the run period, respectively, we know that:

P (q g → q h |q g ) = N (q g → q h |q g ) qn∈Q A k N (q g → q n |q g ) (3.6) P (e i |q g → q h ) = N (e i |q g → q h ) e j ∈Σ A k N (e j |q g → q h ) (3.7)
Chapter 3. Activity Discovery Algorithm 2 AD step 2: Database of event logs exploration Require:

• A set of PFA Structures Structures : {< Q A 1 , Σ A 1 , δ A 1 > ... < Q A k , Σ A k , δ A k >};
• A learning database of events LearningDB = [e 1 , e 5 , ..., e i , ..., e j ]; • A sliding window length w Obs . Ensure:

• The dictionary dictOccurs with keys (A k , e i ) and values representing {N k e i }; • The dictionary dictInits with keys (A k , e i ) and values representing {N k init e i }; • The dictionary dictF ollows with keys (A k , e i , e j ) and values representing

{N k e i →e j }. 1: // Global Initialisation: 2: dictOccurs := ∅ 3: dictInits := ∅ 4: dictF ollows := ∅ 5: // For all windows of length w Obs in the learning database |LearningDB|: 6: for index := 1 to |LearningDB|w Obs + 1 do 7:

w Obs := LearningDB[index to index + w Obs -1] 8:
// For all activity structure (and by extension, for all activities):

9: for all < Q A k , Σ A k , δ A k >∈ Structures do 10: w Obs p k = P roj(w Obs , Σ A k ) 11:
// N k init e i incrementation: end for 36: end for 3.2. A systematic procedure for models generation Unfortunately, due to the same reasons as those explained in chapter 1 leading us to reject the performed activities knowledge as a reliable input, we cannot consider the more detailed performed action knowledge as an input. Thus, the values of N (q g → q h |q g ) and N (e i |q g → q h ) have to be estimated using observable occurrences or successions of events. The retained countable indicators are the following and figure 3.2.5 represents the complete procedure from the windowing to the indicators count.

12: if key (A k , w Obs p k [1]) ∈ dictInits then 13: dictInits[(A k , w Obs p k [1])] := dictInits[(A k , w Obs p k [1])] +
• N k e i : number of times where event e i is observed in the sequence w Obs p k ; • N k init e i : number of times where event e i is the first event of the projected sequence w Obs p k ; • N k e i →e j : number of times where event e j follows event e i in the projected sequence w Obs p k . Using these counters, the values of N (q g → q h |q g ) and N (e i |q g → q h ) are estimated as follows:

Ñ (q g → q h |q g ) =                      e i ∈Σq h 1 C e i N k init e i if q g = q 0 e i ,e j ∈Σq h
N k e i →e j if q g = q h = q 0 e i ∈Σq g ;e j ∈Σq h ;e j / ∈Σq g 1

C e j N k e i →e j if q g = q h = q 0 (3.8) and Ñ (e i |q g → q h ) = N k e i if e i ∈ Σ q h ; 0 otherwise, (3.9)
where C e j is the number of states hierarchically linked in input with e j .

When a human starts a new action, the performed move has no reason to be dependant with the past action. Therefore, in equation (3.9), the occurrence of e i is independent from the starting action q g but depends only on the reached action q h . In addition, when an event linked to two actions are observed, two cases can be considered. First, the human is changing action. Secondly, the human continue the current performed action. But, since the first observable move can be linked to the Chapter 3. Activity Discovery previous action as well as the possible new one, a choice has to be done. In equation (3.8), the choice to count the event occurrence as linked to the previous action is done.

In equation (3.8), three cases are distinguished:

1. if q g = q 0 , initial indicators N k init e i are considered, 2. if q g = q h then only succession of two events linked to q g are considered as precise before, 3. if q g = q h then the succession of two events both linked to q g and q h is not considered.

The factor 1

Ce j shares each occurrence of event e j between all states possibly concerned.

Finally, using the automatically computed frequency indicators N k e i , N k init e i and N k e i →e j the probabilities P (q g , e i , q h ) are defined as following:

P (q g , e i , q h ) = P (q g → q h |q g ) × P (e i |q g → q h ) with:

P (q g → q h |q g ) = Ñ (q g → q h |q g ) qn∈Q A k Ñ (q g → q n |q g ) P (e i |q g → q h ) = Ñ (e i |q g → q h ) e j ∈Σ A k Ñ (e j |q g → q h )
and N (q g → q h |q g ) (resp. N (e i |q g → q h )) as defined in (3.8) (resp. (3.9))

(3.10) At this point, for each activity A k , we define:

I A k (q h ) = 1 if q h = q 0 ; 0 otherwise; (3.11)
and P A k = {P (q g , e i , q h )∀(q g , e i , q h ) ∈ δ A k }.

As the inhabitant of a smart home can decide to stop an activity at any time and anywhere, define a final probability is nonsense. Therefore, in our models, F A k = ∅.

The algorithm 3 gives a pseudo-code representation of this step. By analysing it, we can observe that the time complexity C AD 3 of this AD step 3 is polynomials considering the number of actions linked to activities, linear considering the rest and can be expressed as follows:

C AD 3 = O card(Structures) × max A k (card(Q A k )) × max A k (card(Q A k )) + max A k (Le A k )
(3.12) with:

• card(Structures) = card(lActivities) the number of activities to monitor; • max

A k (card(Q A k )
) the maximum number of actions links to the same activity;

• max A k (Le A k ) the maximum number of events linked to the same activity.

A systematic procedure for models generation

Algorithm 3 AD step 3: Probabilities computation Require:

• A set of PFA Structures

Structures : {< Q A 1 , Σ A 1 , δ A 1 > ... < Q A k , Σ A k , δ A k >}; • Three dictionaries of counters:
-The dictionary dictOccurs with keys (A k , e i ) and values {N k e i }; -The dictionary dictInits with keys (A k , e i ) and values {N k init e i }; -The dictionary dictF ollows with keys (A k , e i , e j ) and values {N k e i →e j }. Ensure: A set of PFAs P F As : {A k } modelling the activities to monitor 1: //Global Initialisation: 2: P F As := ∅ 3: // For all activity structures (and by extension, for all activities): else By applying this probability computation for each activity to monitor, the AD is fully performed. Indeed, at the end of the probability computation, we have a complete

4: for all < Q A k , Σ A k , δ A k >∈
PFA A k = <Q A k , Σ A k , δ A k , I A k , F A k , P A k > modelling each activity with Q A k , Σ A k , δ A k defined in subsection 3.2.1 and I A k , F A k , P A k defined in this subsection 3.2.3.
Finally, by applying the three steps of AD models building, the complexity C AD of the proposed method is:

C AD = C AD 1 + C AD 2 + C AD 3 ; (3.13)
Thus we have:

C AD = O card(lActivities) × max A k card(Link Activity/Action (A k )) 2 × max A k (Le A k ) + O (|LearningDB| -w Obs ) × card(Structures) × w Obs + O card(Structures) × max A k (card(Q A k )) × max A k (card(Q A k )) + max A k (Le A k )
(3.14) In practice, the number of actions linked to an activity (card(Q A k ) can be considered as negligible compared to the number of events linked to the same activity (Le A k ). Thus,

Application to the Case Study

In this section, the presented AD method is applied to the case study presented in section 2.2 and the generation of the three activity models are presented and discussed.

Generation of PFA structure

In order to generate PFAs structures, we start from the expert hierarchical decomposition of activities into actions then into events given in figure 2.2.10 and recall in figure 3.3.1. In the proposed method, the activities to be monitored are fixed by the medical staff and the expert instruments smart homes specifically to observe the activities. Additionally, the expert completes the medical knowledge by linking the actions composing the activities and the implemented sensors. In this case study, we have to generate three PFAs A 1 ,A 2 and A 3 modelling the three activities A 1 : cooking, A 2 : hot beverage preparation and A 3 : use bathroom. As recalled in the previous section, activities are decomposed in actions (two for each activity) themselves linked to events. Some events are shared between actions of the same activity as well as between activities. As our AD procedure threats independently each activity, the phenomenon of shared events between activities will not influence the aspect of our PFA structures. Thus, if the expert decides to modify its hierarchical decomposition for a unique activity (e.g. due to a new equipment implementation), the learning can be re-performed for this activity only without to change other models.

Figures 3.3.3 shows the structure generation of the activities A 1 . The structure generations of the activities A 2 and A 3 are reported in appendix B. For a readability issue of the intermediate models in the figures, events linked with the same actions are merged to label the same arrow. This merge is a graphical simplification only. At the end of this step, only the developed structured is kept. In the probability computation step, a different probability will be associated with each event and thus, this graphical merge will not be applicable any more. The made merge group M e l are visible in figure 3.3.1 and the figure 3.3.2 shows how to read this graphical simplification on a simple example involving the merge group M e 1 . The complete final structure is represented in the last cell of each explicative figures. 

Database of event logs exploration

Once the structures of activities are known, we can compute probabilistic indicators linked to each activity A k presented in the previous section. These indicators will be extracted from the learning database generated as explained in Chapter 2.2.4. To do so, for the reasons explained before, the learning database is split in several sequences by sliding a window of a fix number of events. As the global learning database is composed of 1044 events and is therefore too long for being extensively treated, three short subsequence w Obs A 1 , w Obs A 2 and w Obs A 3 of this global database will be used in this subsection to illustrate the indicators computation procedure. Each example subsequence represents a part of an occurrence of activities A 1 ,A 2 and A 3 , respectively.

The chosen sequences used to illustrate the indicators computation are: A 3 = e 39 e 38 e 2 e 1 e 4 e 7 e 6 e 5 e 3 Furthermore, those three retained sequences are representatives of three particular situations. Indeed:

• w Obs

A 1 is an activity A 1 performance of an activity sharing a lot of events with another one (w Obs A 2 ),

• w Obs A 2 is an activity A 2 performance of an activity sharing a little part of events with an other one (w Obs A 1 ), • w Obs A 3 is an activity A 3 performance of an activity sharing no event with any other ones.

Table 3.3.1 shows the incrementation of the different counters during the analysis of the subsequences w Obs A 1 . Treatment of sequences w Obs A 2 and w Obs A 3 are given in appendix C. Values of the indicators N k e i ,N k init e i and N k e i →e j given in this case are initialised to zero at the beginning of the example treatment. Therefore, even if the analysed sequences are extracted from the case study database, the values taken by the counters are illustrative. The real values of our counters linked with the activity A 1 at the end of the learning period are given in the tables 3.3.2 to 3.3.4.

By analysing the count operation shown figures 3.3.1 and in annexe C, we can see than the same occurrence of an event is counted several time. For example, if not detected at the beginning or at the end of the learning database, the value N k e i of an event e i will be equal to the length of the sliding window multiply by the number of the event occurrences. Therefore, in figure 3.3.4, most of the events have a number N k e i proportional to 5. This multiple count of the same occurrence is existing in the other indicators also. As the probabilities computation will consist in doing a ratio between all occurrences, this multiple count is not an issue. At this step, all indicators are computed for each activity A k and we are now able to compute the transition probabilities. 

Initial ∅ N 1 e i = 0 ∀e i ∈ Σ A 1 N 2 e i = 0 ∀e i ∈ Σ A 2 N 3 e i = 0 ∀e i ∈ Σ A

Probabilities computation

At this point, structures of activities A 1 , A 2 and A 3 are established and needed indicators for the probabilities computation are known. Thus, all needed information is in our hands to compute our model probabilities.

In order to illustrate this computation step, application of equations (3.8) to (3.10) for some transitions of the activity A 1 are now presented. These application examples use indicator values shown tables 3.3.2 to 3.3.4.

Application to the transition (Initial, e 13 , M ake P asta) (case q g = q 0 of equation (3.8)):

According to equation (3.10), we have: P (Initial,e 13 ,M ake P asta)=P (Initial→M ake P asta|Initial)×P (e 13 |Initial→M ake P asta) with: P (Initial → M ake P asta|Initial) = Ñ (Initial → M ake P asta|Initial)

qn∈Q A 1 Ñ (Initial → q n |Initial)
P (e 13 |Initial → M ake P asta) = Ñ (e 13 |Initial → M ake P asta)

e j ∈Σ A 1
Ñ (e j |Initial → M ake P asta) Application to the transition (M ake P asta, e 13 , M ake P asta) (joining cases q g = q h and q g = q h = q 0 of equation (3.8)):

(
According to equation (3.10), we have: P (M ake P asta,e 13 ,M ake P asta)=P (M ake P asta→M ake P asta|M ake P asta)×P (e 13 |Initial→M ake P asta) with: P (M ake P asta → M ake P asta|M ake P asta) = Ñ (M ake P asta→M ake P asta|M ake P asta) qn∈Q A 1 Ñ (M ake P asta→qn|M ake P asta) P (e 13 |M ake P asta → M ake P asta) = Ñ (e 13 |M ake P asta→M ake P asta) e j ∈Σ A 1 Ñ (e j |M ake P asta→M ake P asta) (3.23) According to equation 3.8: Ñ (M ake P asta → M ake P asta|M ake P asta) = e i ,e j ∈Σ M ake P asta N 1 e i →e j = N 1 e 13 →e 13 + N 1 e 13 →e 14 + N 1 e 13 →e 24 + N 1 e 13 →e 25 + N Concerning the probability for the event to occur, according to equation 3.9, Ñ (e i |q g → q h ) does not depend on q g : P (e i |q g → q h ) = P (e i |q ′ g → q h )∀q g , q ′ g ∈ Q A k . Its give us:

3.3. Application to the Case Study P (e 13 |M ake P asta → M ake P asta) = P (e 13 |Initial → M ake P asta) = 132 1062 ≃ 0.1243 (3.27) Finally, the probability P (M ake P asta, e 13 , M ake P asta) is as follows: P (M ake P asta, e 13 , M ake P asta) = 590 590 + 21 × 132 1062 ≃ 0.1200 (3.28)

By automatically apply those methods to all transitions, we obtain the complete activity A 1 , A 2 and A 3 models presented in figures 3.3.4,3.3.5 and 3.3.6, respectively. Those models will be discussed in the next section and they will be used as input models of the example in the next chapter. 

Discussion

By analysing the model of the activity A 1 shown in figure 3.3.4, we can observe that the most observed event e 36 (observed 150 times in a sequence of 1044 events) of this activity is the one with the highest probability in the model for each couple of actions in which it is implied. This result was expected since, for a fixed state transition q g → q h , the probability P (q g , e i , q h ) is directly proportional to the counter N k e i (equations (3.10) and (3.9)). This logic, expected and wanted property can be a disadvantage since, if shared between several activities, it is impossible to distinguish occurrences of its events is arriving with one activity or with another one. The most observed events e 36 and e 37 of the activity A 1 are submitted to this skewed since their are also linked to the activity A 2 , especially with the action make tea of A 2 .

In the presented method, we consider important to have this drawback in mind during the use of the models. This drawback is unavoidable without to record the activity performed by the inhabitant during the learning period. However, the main advantage of this method is precisely not to use this knowledge (Assumption 4), systematically difficult to obtain and not reliable. The pointed out drawback is negligible in comparison with the use of a potentially faulty input.

Conclusion

In this chapter, an approach for activity of daily living discovery was proposed and illustrated. A procedure to model activities by probabilistic finite-state automata was developed based on the knowledge of a training event logs database and the decomposition of activities into actions expertly linked with the smart home events. The main advantage of this method is related to the Assumption 4 of this thesis avoiding the use of activity labelling during the learning phase to generate the models.

Introduction

In this chapter, the second main contribution of this thesis is presented: a new activity recognition (AR) method. Activity recognition consists in determining on-line, potentially in real-time if required, the activity performed by a smart home inhabitant during its operation. To this aim, the group {inhabitant + smart home} is considered as an event generator and the activities to monitor are modelled by PFAs. As explained in section 4.3, in the literature, it exists several methods to recognise which PFA, among several, generates a given sequence if the compared PFAs have the same alphabet Σ A k . Otherwise, if PFAs do not share the same alphabet, existing methods are not applicable. Unfortunately, our models generated in chapter 3, are linked to several activities of daily living and have different alphabets. Therefore, the new AR method presented in this chapter is needed.

A common point between the existing methods [START_REF] Van Kasteren | Accurate activity recognition in a home setting[END_REF][START_REF] Kellokumpu | Human activity recognition using sequences of postures[END_REF] and ours is the definition and the use of a distance. Indeed, in all methods, a distance computation is used to estimate which activity is the most probably performed.

Furthermore, in order to improve the recognition, several operations, as projections and language computation, have to be considered. The projection helps to avoid noise by keeping only useful events for each activity as explained in section 4.2.2. The observed language generation allows considering the observed sequence of events as a succession of possibly independent event groups, as described in section 4.2.3.

To put it in a nutshell, after a brief definition of languages and some complements about the sequences terminology, made in section 4.1, the proposed protocol to recognise an activity among several modelled by PFAS is detailed in the section 4.2. The last step of this protocol (i.e. the distance computation) requires the definition of a new indicator. Therefore, already existing distances between a sequence and an automata will be presented in section 4.3. Limits of these distances will be enlightened in regard to their use with our models and the observed languages. Thus, an original distance indicator compatible with our models is presented in section 4.4 and computation issues linked to this distance are also treated. Finally, an application to case study of the chapters 2 and 3 will be presented in section 4.5 and discussed in section 4.6.

Models and used notations

In this section, in addition to the definition of PFAs and the implied concepts given in section 3.1, the definition of a language is given here. In addition, some specific notations needed in this chapter are presented. Definition 4.1 (Language [START_REF] Cassandras | Introduction to discrete event systems[END_REF]). A language defined over an event set Σ is a set of finite-length sequence (or strings) formed from events in Σ.

A language over an event set Σ is therefore a subset of Σ * which is the Kleene-closure of the set of events Σ, i.e. the infinite set of all possible sequences of elements of Σ. In particular, ∅, Σ, and Σ * are languages.

In order to well define languages, some notions and definitions about sequences have to be known. Therefore, sequence prefix, suffix and substring are defined as the following: Definition 4. 2 (prefix, suffix and substring). Let tuv = s be a sequence in Σ * with t, u, v ∈ Σ * , then:

4.2. Activity Recognition protocol • t is called a prefix of s,
• u is called a substring of s, and • v is called a suffix of s.

We observe that both ǫ and s are prefixes, substrings and suffixes of s.

In addition, we choose to denote Σ m A k the language composed of all possible sequences of length m composed with events of Σ A k .

Activity Recognition protocol

In order to recognise on-line the performed activity using the observed events and the previously built models, we propose a four-step protocol. The four steps are graphically represented in figure 4.2.1 and are the following:

➀ The observed event sequence e i ...e j is split in order to threat the closed events: the observed sequence w Obs is thus obtained, ➁ The obtained sequence is projected to remove disturbances: the projected sequence w Obs p k is resulting, ➂ A language L Obs p k is created using the projected sequence to translate the continuous nature of the observation, ➃ Finally, occurrence probability of each activity is computed using a specific distance indicator. 

Observed sequence windowing

As an inhabitant living at home is considered as an event generator on which we have no influence, the recognition of the performed activity has to be done by using only the generated events and the activity models at our disposition. As the inhabitant Chapter 4. Activity Recognition at home generates new events continuously, the objective of this step is to choose the sequence in which the recognition is performed.

In order to recognise activity on-line, it is necessary to perform an efficient and quick activity recognition each time a new event is observed. As an activity is a complex succession of events, the recognition cannot be made by only using the last observed event: an appropriate view of the past is needed. Therefore, during the activity recognition, a sequence of events has to be considered. This sequence consists in the last occurred event and some of the previous ones. Concerning the length of the retained sequence, a trade-off has to be done since the kept sequence of events should be long enough to traduce the current human behaviour but not too much to have an acceptable computation time and being representative of the activity to be recognised. The sliding operation in this case is not a window that we change to scan a learning database, but the list of the last observed events evolving since the time is running.

As for the windowing performed in section 3.2.2, the three most common approaches are:

(i) explicit segmentation;

(ii) time base windowing;

(iii) sensor event based windowing.

As precise in section 3.2.2, the sensor event based windowing is the most adapted method to treat activities with variable duration and separated with a variable duration.

The main difference with the sensor windowing performed in chapter 3 is the constraint around the window length. Indeed, in chapter 3, the window length has mainly to be chosen short enough to reduce the computational time but not too short to avoid the generation of too much sequences from the learning database. However, in this chapter, the sequences must have, as much as possible, the length of the performed activity.

Unfortunately, there is no existing systematic method to compute the windows length a priori.

However, by experiment, we observe that the optimal size of the sliding windows (i.e. the size giving the bests AR results) is strongly linked to the noise during the life observation. Is considered as noisy each event occurring during an activity occurrence and not hierarchically linked with it. More noise there is, more the sequence has to be long.

Once the sequence is extracted from on-line flow, we have to deal with noises.

Projection of the exploited sequence

In the normal life, sensors of smart homes useful to recognise activities of daily living are subjected to several kind of disturbance. First of all, some sensors of the smart home useful to other missions (inactivity detection, motion sensors used for the inhabitant security, ...) can flood the recorded database. Secondly, some sensors could malfunction and send events in excess. Finally, the human indeterminism can lead the monitor person to perform useless move or to stroll in the home.

Furthermore, sensors implanted in the smart home to detect a specific activity A k1 but emitting when another activity A k2 is performed can be considered as a noise for this specific activity A k2 . This situation can occur if the two activities A k1 and A k2 share 4.2. Activity Recognition protocol the same geographic area. Thus, the projection allows recognising activities performed in a same area but implying different sensors locally.

Our objective is to use probabilistic distances to detect the performed activity. Unfortunately, using these kinds of distance, if a totally unexpected event occurs, the obtain result diverges quickly. This characteristic, explained later in section 4.3, leads to envisage a projection of the observed sequence w Obs to each model alphabet Σ A k , as defined in section 3.1, before computing distance between the sequence w Obs and the PFA A k . Thus, the sequences w Obs p k used to estimate the probability for each activity A k to be performed are shorter than the observed sequence but contain only non-noisy events.

By performing the projection of the observed sequence in each PFA alphabet, we obtain a different projected window for each activity. This point is appreciable since, in this way, the probability for each activity to be detected as occurring will not depend on the others. Furthermore, an activity semantically more general than another one will not flow up another activity generating a very low number of events. In brief, the projection act as a filter.

We remark that, if the inhabitant performs an activity A k sharing no events with any other activity, it is highly likely that the projected sequences linked to the other activities are empty.

The influence of the length of the treated window chosen in the previous step is noted at this step. On the one hand, if the length of the sequence is too small compared to the number of noisy events, a very small number of events are kept at the end and the future results will not be significant. On the other hand, if the chosen length is too long, too much events will be kept after the projection step since most of the manipulated sequences could traduce several activities generating a small number of events.

Language creation using the projected sequence

The life performance is a continuous succession of actions and activities. Transitions between these activities are most of the time non-instantaneous but smooth. As a consequence, observed events traduce this life property. By choosing to treat a continuously sliding window of a fix length to perform the AR computation, we are compatible with it since, if activities are changed, new events arrive one by one in the considered sequence. However, it is necessary not to consider the sequences w Obs p k obtained after projection as a block. Indeed, in a long sequence, several phenomenon can be included and a local succession of events can have a higher importance than the global sequence. Thus, in the same way as the sliding window performed step 1 traduce a continuity in the monitored person life, a smaller sliding window in the obtained projected sequence can also be important. For example, let's imagine a sequence w Obs p k = e 1 e 2 e 4 e 6 where the succession of events e 2 e 4 is a representative behaviour of a given activity A k , and the two other events (e 1 and e 6 ) are linked to A k but not as much than the two others from a probabilistic point of view. In this case, it can be better to read the sequence as the successions of events e 1 e 2 , e 2 e 4 and e 4 e 6 . In this way, the representative succession of events can be treated independently, as well as the two non-representative ones. The obtained result can thus procure a probabilistic result closest with the realty than by considering just the global sequence e 1 e 2 e 4 e 6 . Thus, in the presented AR method, every succession of events can have an importance.

Therefore, in order not to consider the last observed events as a block, a language is created. Several choices to generate this language exists. The most common [START_REF] Cassandras | Introduction to discrete event systems[END_REF] are the following:

The prefix-closed language: Let w Obs p k ∈ Σ * A k , then

L pref (w Obs p k ) = {s ∈ Σ * A k |∃t ∈ (Σ A k ∪ {ǫ}) * such as st = w Obs p k }. (4.1)
In words, the language prefix-close of the sequence w Obs p k is the language consisting of all the prefixes of w Obs p k . In our work, this language traduces the time running starting from an event of reference. It can be useful if we want to study the consequences linked to the observation of a given event.

The suffix-closed language: Let w Obs p k ∈ Σ * A k , then

L suf f (w Obs p k ) = {s ∈ Σ * A k |∃t ∈ (Σ A k ∪ {ǫ}) * such as ts = w Obs p k }. (4.2)
In words, the language suffix-close of the sequence w Obs p k is the language consisting of all the suffixes of w Obs p k . In our work, this language traduces successions of events that may have led to a given event (the last one). It can be useful if we want to study the reasons for a specific situation. In words, the language substrings of the sequence w Obs p k is the language consisting of all the substrings of w Obs p k . In our work, this language traduces each succession of events observed in our sequence (that includes their prefixes and suffixes). It is useful if we want to study the reasons and the consequences of all observed events, and it is our case. Indeed, as we precise before, each succession of events has an importance. Moreover, since each activity can be interrupted at any time, all words included in the sequence have to be kept.

Language of substrings: Let w

Obs p k ∈ Σ * A k , then
Since it is impossible by analysing an isolated event to conclude if it represents an activity realisation or a noisy phenomenon, all substrings of length one are excluded from the language used in our method. Thus, the language actually used is the following:

L 2<w<w Obs p k = |w Obs p k | n=2 L n w Obs p k with L w Obs p k = {w ∈ w Obs p k , |w| = n}. (4.5)
and can also be written as:

L 2<w<w Obs p k = |w Obs p k | n∈2
{all possible substrings of w Obs p k of length l}. The language representing the human behaviour during the closed past is now generated. The following step treats this language to obtain a high level information: the probability for each activity A k to be performed.

Probability estimation

As first inputs of this step, we have several PFAs modelling several activities {A k }. These models are obtained by applying the AD method presented in chapter 3 in a database recorded during a learning period of the smart home inhabitant life. Activity models are never modified during the recognition. Secondly, the observed language L Obs p k generated from the observed sequence w Obs as explained in section 4.2.3 are needed. The generation of these languages is chosen to represent the fragmented but continuous property of the human life.

Starting from these data, the objective of this final step is to estimate the probability for each activity model A k to generate the corresponding language L Obs p k . This probability, denoted P (L Obs p k |A k ), is also called the distance between the language L Obs p k and the PFA A k .

The algorithm 4 gives a pseudo-code representation of the presented protocol. As the used distance is presented in the next subsections, its computation is not detailed yet. The complexity C AR of the AR protocol is polynomial considering the length of the observed sequence w Obs and linear considering the distance complexity:

C AR = O card(ActivityP F As) × ( w Obs 2 + C distance ) . ( 4.7) 
with:

• card(ActivityP F As) the number of activities to monitor;

• w Obs the length of the observed sequence;

• C distance the complexity of the retained distance.

Several probability distances exist but the most used to compute the distance between a language and a probability model such as PFA are the likelihood based methods [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF]) such as the perplexity [START_REF] Vidal | Probabilistic finite-state machines -Part II[END_REF]. The likelihood is a distance between a sequence and a PFA and is used as a base to compute the perplexity. Those two distances are presented in subsection 4.3.

Algorithm 4 AR protocol. The distance computation is not detailed. Require:

• A set of PFAs modelling the activities to monitor:

ActivityP F As : {A 1 ...A k }, with A k =< Q A k , Σ A k , δ A k , I A k , F A k , P A k > • An
event sequence w Obs of the last observed events. //step 1: observed sequence windowing. Ensure: Distances between the given activities and the observed sequence w Obs .

1: // Global Initialisation: 2: dictDistances := ∅ // Dictionary of distances.

3: // For all activity models (and by extension, for all activities):

4: for all < Q A k , Σ A k , δ A k , I A k , F A k , P A k >∈ ActivityP F As do 5:
// Step 2: Projection of the exploited sequence:

6:
w Obs p k := P roj(w Obs , Σ A k )

7:

// Step 3: Language creation using the projected sequence: As explained in subsection 4.3.3, these two presented distances are not adapted in our case since the sequence lengths of the languages to compare are, in the majority of cases, different. Therefore, in our work, we extend the existing likelihood then the perplexity to deal with this issue. The original distances thus obtained, called normalised likelihood and normalised perplexity, are presented in subsection 4.4.

It is important to note here that the proposed method is modular. The AR can be performed on several activities having their own models. If a new activity has to be recognised, we just have to add the new model. Furthermore, if we want to apply a new distance method to the observed events or to use a new language generation process, it is not necessary to change all the procedure, but only the corresponding step.

Distance between a sequence and a PFA

The likelihood

The likelihood, as defined in Vidal et al. (2005a) and [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF], is the classical distance, denoted P (w Obs |A k ), between a sequence w Obs and a PFA A k . By computing this distance, an estimation of the probability that the PFA A k generates a sequence w Obs ∈ Σ * A k is done. To deal with this probability computation, let θ = (q l , w ′ 1 , q m , w ′ 2 , q s , . . . , q p , w ′ |w Obs | , q r ) 4.3. Distance between a sequence and a PFA be a path of transitions for w Obs in A k ; it signifies that there is a sequence of transitions (q l , e i , q m ), (q m , e j , q s ), . . . , (q p , e n , q r ) ∈

δ A k such that w Obs = w ′ 1 w ′ 2 . . . w ′ |w Obs | ;
The probability of generating such a path is:

P (θ|A k ) = I(q l ) × |w Obs | k=1 P (s j-1 , w ′ j , s j ), (4.8) 
where s i is the j th state considered in θ(s 0 = q l , s 1 = q m , . . . ).

Some general considerations are needed to develop the likelihood definition: A valid path in a PFA A k is a path for some w Obs ∈ Σ * A k with probability greater than zero. The set of valid paths in

A k is denoted Θ A k .
In general, a given string w Obs can be generated by A k through multiple valid paths. Let Θ A k (w Obs ) denote the set of all the valid paths for w Obs in A k .

The probability of generating w Obs with A k , also call likelihood of w Obs in A k is:

Definition 4.3 (Likelihood). P (w Obs |A k ) = θ∈Θ A k (w Obs ) P (θ|A k ) (4.9)
The higher the likelihood, the more probable to perform the activity A k . Let remark here that the value of the likelihood decreases when the length of the considered sequence w Obs increases. Indeed, let t ∈ Σ * A k be a sequence composed of events included in the alphabet Σ A k and e i ∈ Σ A k be an event of the same alphabet. Thus:

P (te i |A k ) ≤ P (t|A k ), (4.10) 
since, by definition, each valid path θ(te i ) for te i could be described as a valid path θ(t) for t followed by a transition generating e i : ∀θ(te i ) = (q l , t ′ 1 , q m , . . . , q s , t ′ |t| , q p , e i , q r ); ∃θ(t) = (q l , t ′ 1 , q m , . . . , q s , t ′ |t| , q p ), (4.11) with θ(te i ) and θ(t) two valid path for te i and t in A k . Then,

P (θ(te i )|A k ) = P (θ(t)|A k ) × P (q p , e i , q r ) ≤ P (θ(t)|A k ) (4.12)
Finally, the equation (3.2) bounds the summation of the additional transitions P (q p , e i , q r ) to one. Equation (4.10) is thus demonstrated.

The presented likelihood computes the distance between a sequence and a PFA and can be extended to compute the distance between a language (i.e. a set of sequences) and a PFA. The major extension of the likelihood to languages is the perplexity.

The perplexity

According to [START_REF] Jelinek | Statistical methods for speech recognition[END_REF], a measure of the complexity of a language considering a model is the mathematical quantity known as language perplexity. We can compute the language perplexity, by first defining the entropy X(L Obs p k |A k ) [START_REF] Cover | Elements of information theory[END_REF] of the language L Obs p k with respect to A k as given in Vidal et al. (2005a):

Definition 4.4 (Entropy). X(L Obs p k |A k ) = - 1 norm(L Obs p k ) × w Obs ∈L Obs p k log(P (w Obs |A k )), (4.13) 
with two possible definitions of norm(L Obs p k ): Definition 4.5 (Language norm). The norm norm(L Obs p k ) of a language can be defined by considering:

• the number of sequences in the language: norm(L Obs p k ) = card(L Obs p k ). In this case, the normed is called by string;

• the length of the sequences in the language: norm(L Obs p k ) =

w Obs ∈L Obs p k
w Obs . In this case, the normed is called by symbol;

The perplexity, denoted P P (L Obs p k |A k ), of the language L Obs p k for the PFA A k is then defined as: Definition 4.6 (Perplexity).

P P (L Obs p k |A k ) = 2 X(L Obs p k |A k ) , ( 4.14) 
which can also be written as:

P P (L Obs p k |A k ) =    w Obs ∈L Obs p k P (w Obs |A k )    - 1 norm(L Obs p k ) (4.15) 
with norm(L Obs p k ) as defined in definition 4.5. The perplexity can be seen as the inverse of the likelihood geometrical means of sequences in the concerned language. Due to this link with the likelihood, the perplexity is also strongly linked to the length of the sequences contained in the language L Obs p k . The perplexity has a value between one and the infinity. The lower the perplexity, the more probable to perform the activity A k . In order to avoid treating with the infinity, the inverse of the perplexity can be preferred.

The likelihood and the perplexity can be used to detect, among several models, which one has the most likely generated a given sequence. If used to this aim, several hypotheses have to be verified. These hypothesis and their incompatibility to our AR problem are presented in the next subsection 4.3.3.

Issues due to distance hypotheses

As demonstrated before, the likelihood and thus the perplexity values are strongly linked to the length of the sequences given as input. Indeed, as shown in equation (4.10), the longest is the sequence, the lower is the likelihood (resp. the higher is the perplexity). Therefore, when used to choose which activity is performed, these distances have to be applied to the same sequence. Furthermore, by applying the likelihood definition, when a noisy event occurs, the likelihood (resp. the perplexity) decreases to zero (resp. diverge to the infinity). Unfortunately in our case, as explained in section 4.2.2, the noise due to several causes (human behaviour, other activities) is unavoidable without to envisage a projection. We are thus in front of a paradoxical issue if we want to use the presented distances. Indeed, according to our choice: 4.4. Normalised likelihood and extension • We do not project the observed events and the obtained distances are useless since always diverging, • We project the observed events and we compare two incomparable values since obtained by using sequences of different length.

The trouble with the second item is that, due to the property written in equation ( 4.10), an activity having a low projected sequence may have a better result than another activity having a long and representative projected sequence.

To summarise, the use of the likelihood (rest. perplexity) to compare the probability, for several PFAs, to generate a sequence (resp. a language) is applicable only if:

• the sequences considered for each PFA do not include noise, • the sequences considered for each PFA have exactly the same length.

Those two points can be systematically true only if, the sequence to compare is the same for all the PFAs and does not include noisy events. Thus, the alphabet of the studied sequence w Obs have to be included in all PFA alphabets (Σ Obs w ∈ Σ A k ∀k). In this presented thesis, it is not the case since activities can be realised in different areas of the smart home and using different tools. Therefore the projections of the sequences, as presented 4.2.2, are unavoidable for us.

As we cannot use the likelihood and the perplexity like presented due to their strong dependency with the length of the sequence to compare, we need to create new distances based on them but less dependent on the length of the sequences. Hereafter, the likelihood and perplexity presented in this section 4.3 are called classical likelihood and classical perplexity.

Normalised likelihood and extension

Likelihood based distances are too much dependent on the length of the input data to be used with our work. Indeed, our activity models A k have different alphabets Σ A k that can be totally disjoint. This characteristic of our models leads us to project the observed sequences before to perform the language generation and the distance computation. By performing this projection and for the reasons explained before, the existing methods became inapplicable. The objective of this part is to present and develop a new distance between a sequence and a PFA called normalised likelihood and its extension to the languages called normalised perplexity.

The normalised likelihood

In order to be able to choose a model by using likelihood based methods, a normalisation of the classical likelihood is proposed. The objective here is to have a probability really contained between zero and one whatever is the length of the windows. It can be obtained by dividing the classical likelihood by its maximal value obtainable with the considered automaton and with a sequence having the same length as the considered sequence. To illustrate the objective, let's consider the simple PFA A k in figure 4.4.1. In this figure, for a sequence of length one, the likelihood values are P (a|A k ) = 0.2 + 0.3 = 0.5, P (b|A k ) = 0, P (c|A k ) = 0.4 and P (d|A k ) = 0.1. Thus, the likelihood for a sequence of length one in the example automaton A k is bounded by 0.5: the maximum possible value. In the same way, the likelihood for a sequence of length two in the example automaton A k is bounded by 0.2 (corresponding to P (ca|A k )). The goal of the normalised likelihood is to have a maximum bound to 1 whatever the length of More formally, the normalised likelihood is defined in [START_REF] Viard | Recognition of Human Activity Based on Probabilistic Finite-State Automata[END_REF] as follows: Definition 4.7 (Normalised likelihood). Let us consider the PFA A k and a given sequence w Obs ∈ Σ * A k . The normalised likelihood of sequence w Obs in A k , is defined as:

||P (w Obs |A k )|| = P (w Obs |A k ) max v∈Σ |w Obs | A k [P (v|A k )] . ( 4.16) 
with P (w Obs |A k ) the classical likelihood.

As the classical likelihood can be extended to define the entropy then the perplexity, the normalised likelihood can be extended to define the normalised entropy then and the normalised perplexity. The next subsection will define it.

The normalised perplexity

As the use of the normalised likelihood solves the dependency issue of the classical likelihood concerning the length of the input sequences, we can define the normalised entropy as follows:

Definition 4.8 (Normalised entropy). || X(L Obs p k |A k )|| = - 1 norm(L Obs p k ) × w Obs ∈L Obs p k log(||P (w Obs |A k )||), (4.17) 
with norm(L Obs p k ) as defined in definition 4.5. The normalised perplexity, denoted ||P P (L Obs p k |A k )||, of the language L Obs p k for the PFA A k is then defined as: Definition 4.9 (Normalised perplexity).

||P P (L Obs p k |A k )|| = 2 || X(L Obs p k |A k )|| , ( 4.18) 
4.4. Normalised likelihood and extension which can also be written as:

||P P (L Obs p k |A k )|| =    w Obs ∈L Obs p k ||P (w Obs |A k )||    - 1 norm(L Obs p k (4.19)
with norm(L Obs p k ) as defined in definition 4.5. As for the classical entropy and normalised likelihood, the normalised perplexity can be seen as the inverse of the normalised likelihood geometrical mean of sequences in the concerned language.

As the normalised perplexity represents the distance between a language and its probability to be generated by a model, its value can tend towards infinity and have to be minimised. While the inverse of the normalised perplexity represents the probability, for the considered model, to generate the considered sequence. It is bounded by 1 and has to be maximised. In order to simplify the computation, the inverse of the normalised perplexity

1 ||P P (L Obs p k |A k )|| is preferred.

Computational Issues

The computation of the normalised likelihood for an observed sequence w Obs of length w Obs includes the computation of the maximum value of the classical likelihood applied to card(Σ A k ) |w Obs | possible sequences of length w Obs . Its complexity can be written:

C ||L|| = C L + C M , (4.20) 
with C ||L|| the complexity of the normalised likelihood, C L the complexity of the classical likelihood and C M the computation of the maximum value of the classical likelihood for a length fixed. The normalised likelihood can thus be decomposed in two parts corresponding to two different steps of the computation:

1. P (w Obs |A k ) can be computed on-line when the distance estimation is done; Even if the forward algorithm [START_REF] Jurafsky | Speech and language processing[END_REF] optimises the computation of the classical likelihood to reach the complexity polynomial with w Obs

C L = O(card(Q A k ) 2 × w Obs ), (4.21) 
the computation of max

v∈Σ |w Obs | A k [P (v|A k )
] is exponential with w Obs and polynomial with the event set cardinality:

C M = O card(Σ A k ) |w Obs | × C L = O card(Σ A k ) |w Obs | × card(Q A k ) 2 × w Obs . ( 4 
.22) Therefore, even if the maximum likelihood is computed off-line, the computational effort may be too high and the complexity of this has to be reduced. To this aim, we developed two complementary methods of complexity reduction that we will now present:

• the model reduction;

• the dynamical computation.

Complexity reduction by model reduction:

Let A k =< Q A k , Σ A k , δ A k , I A k , F A k , P A k > be a PFA, we denote by: A r k =< Q A k , Σ r A k , δ r A k , I A k , F A k , P r A k > (4.23)
the reduced PFA associated with A k where Σ r A k , δ r A k and P r A k are obtained by the reduction procedure A k → A r k . In order to specify the reduction procedure A k → A r k , the following definitions are necessary.

First, we denote by Geq qg,q h (e i ) (resp.Equ qg,q h (e i )) the set of events e j ∈ Σ A k having a probability P (q g , e j , q h ) to occur from state q g to state q h greater than or equal to (resp. equal to) e i ∈ Σ A k having a probability P (q g , e i , q h ) to occur.

More formally, it holds:

Geq qg,q h (e i ) = {e j |e j ∈ Σ A k and P (q g , e j , q h ) ≥ P (q g , e i , q h )} , (

and Equ qg,q h (e i ) = {e j |e j ∈ Σ A k and P (q g , e j , q h ) = P (q g , e i , q h )} . (

In the following, the reduction procedure

A k → A r k is presented. Step 1: Selection of candidate events Σ r A k =    e j e j ∈ Σ A k and qg,q h ∈Q A k Geq qg,q h (e j ) = qg,q h ∈Q A k Equ qg,q h (e j )    . (4.26)
Step 2: Deletion of equivalent events For all the event sets qg,q h ∈Q A k Equ qg,q h (e j ), only one event is kept: a new Σ r A k is thus obtained.

Step 3: Conservation of transitions linked to the kept events Only transitions implying kept events are conserved, all the others are deleted. Probability of those transitions are not changed. Thus, we have:

δ r A k = (q g , e j , q h ) (q g , e j , q h ) ∈ δ A k and e j ∈ Σ r A k , ( 4.27) 
and P r A k = P (q g , e j , q h ) (q g , e j , q h ) ∈ δ r A k and P (q g , e j , q h ) ∈ P A k . (4.28)

In

Step 1, events having the same intersection sets of Geq and Equ are selected, i.e., events having no event with probability to occur greater than one or more transitions and equals for others. In Step 2, the alternatives for sequences having the same probability are deleted.

The problem reduction leads to a new model with a lower number of events than the original one. Thus, the number of combinations to compare in the determination of the Let

A k =< Q A k , Σ A k , δ A k , I A k , F A k , P A k > be a PFA and A r k =< Q A k , Σ r A k , δ r A k , I A k , F A k , P r A k > be the reduced PFA obtained by the reduction procedure A k → A r k . Then ∀w Obs ∈ Σ * A k of length w Obs it holds: max u∈Σ |w Obs | A r k [P (u|A k )] = max v∈Σ |w Obs | A k [P (v|A k )]. (4.29)
The proof is in Appendix A.

By applying the reduction procedure and by Proposition 4.1, the computational complexity of the maximum classical likelihood is reduced as follows:

C M = O card(Σ r A k ) |w Obs | × card(Q A k ) 2 × w Obs . (4.30)
Now, the following proposition shows how the complexity (4.30) is reduced if the reduction procedure is used.

Proposition 4.2.

Let

A k =< Q A k , Σ A k , δ A k , I A k , F A k , P A k > be a PFA and A r k =< Q A k , Σ r A k , δ r A k , I A k , F A k , P r A k > be the reduced PFA obtained by the reduction procedure A k → A r k .
Then the computational complexity of the maximum classical likelihood is the following:

C M = O 2 [card(QA k )-1] | w Obs | × card(Q A k ) 2 × w Obs . (4.31)
The proof is in Appendix A.

It is important to highlight that in the majority of practical cases, a unique event appears to be maximum for several group of states, decreasing naturally the number of kept events.

The algorithm 5 shows in pseudo-code a function GeqEqu generating Geq qg,q h (event) and Equ qg,q h (event) and the model reduction. The complexity C GeqEqu of the function GeqEqu is:

C GeqEqu = O (card(Σ A k )) . (4.32)
The probabilities assigned to the paths in Θ A k (section 4.3.1) are used to compute the classical likelihood efficiently P (w Obs |A k ). The idea is similar to the one proposed for HMMs [START_REF] Ney | Corpus-based statistical methods in speech and language processing[END_REF] by defining α w 1 ...w l (i)∀i ∈ 0 ≤ i ≤ card(Q A k ) -1 as the probability of generating the sequence w 1 ...w l of length l, prefix of w Obs and reaching state q i :

α w 1 ...w l (i) = (s 0 ,s 1 ,...,s l )∈Θ A k (w 1 ...w l ) s l =q i I(s 0 ) × l j=1
P (s j-1 , w j , s j ), (4.34) Equation ( 4.34) can be calculated with the following algorithm: Forward algorithm:

α ǫ (i) = I(q i ), α w 1 ...w j (i) = qg∈Q A k α w 1 ...w j-1 (g) × P (q g , w j , q i ), 1 ≤ j ≤ w Obs (4.35)
For a sequence w Obs ∈ Σ * A k , the following proposition is straightforward: Proposition 4.3.

P (w Obs |A k ) = q i ∈Q A k α Obs w (i). (4.36)
Therefore, the computation of P (w Obs |A k ) can be performed with a time complexity of O( w Obs × card(Q A k ) 2 ) where w Obs is the length of w Obs and card(Q A k ) the number of states in A k . Algorithm 6 shows this classical likelihood computation.

Algorithm 6 Forward algorithm. Require: (4.37) to (4.38) Finally, this dynamic reduction shown in algorithm 7, removes the linear component w Obs of the complexity. Require: To summarise:

• A PFA A k =< Q A k , Σ A k , δ A k , I A k , F A k , P A k >; • An
C M = O card(Σ A k ) |w Obs | × card(Q A k ) 2 × w Obs ,
C M = O   |w Obs | l=1 card(Σ A k ) l × card(Q A k ) 2   = O card(Σ A k ) |w Obs | × card(Q A k ) 2 ,
• A PFA A k =< Q A k , Σ A k , δ A k , I A k , F A k , P A k >; • A
The two presented reduction methods act on two independent points influencing the computation complexity: the model used to compute and the computation algorithm. The table 4.4.1 recalls the complexity of the maximum classical likelihood computation by considering, or not, the different reduction methods. The reduction or the cardinality of the exponential part of the complexity and the removal of the linear component allow a quick computation time compatible with a real-time analysis. 

O(card(Σ A k ) |w Obs | × card(Q A k ) 2 × w Obs ) O(2 [card(QA k )-1] | w Obs | × card(Q A k ) 2 × w Obs ) With Problem re- duction O(card(Σ A k ) |w Obs | × card(Q A k ) 2 ) O(2 [card(QA k )-1] | w Obs | × card(Q A k ) 2 )
It is important to underline that in the majority of practical cases, a unique event appears to be maximum for several group of states, decreasing naturally the number of kept events. By experiments, it is the case in the majority of times.

In order to illustrate the presented AR protocol, an application is made in the next section.

Application to the Case Study

In this section, the AR protocol is applied to the study case presented in section 2.2. The recognition during an occurrence of each of the three activities is presented. A way to read the obtained distances is presented and a discussion about result viability and validation is realised in the section 4.6.

Observed sequence windowing

In order to illustrate the AR process, the fourth protocol steps are applied to the three activities of our case study: A 1 : cooking, A 2 : hot beverage preparation and A 3 : use bathroom. Activity models used are those presented in figures 3.3.4 to 3.3.6.

As during the learning period, a windowing has to be performed in order to treat a long enough sequence to observe the activity occurrence but not too long to facilitate the computation. Furthermore, as a succession of short activities has to be detected as several activity, and not as a unique activity occurrence, the number of treat events should not be too long. By experimentation, we find that, for our study case log, a length of sequence to observe equal to five is a good trade-off to obtain valid results.

In the section 4.5, the recognition protocol is applied to the same three significant subsequences of life than in section 3.3: w Obs A 1 , w Obs A 2 and w Obs A 3 . Each chosen subsequence represents a part of an occurrence of activities A 1 , A 2 and A 3 , respectively.

The chosen example sequences are thus: A 3 = e 39 e 38 e 2 e 1 e 4 e 7 e 6 e 5 e 3 Let recall than the three retained sequences are also representative of three specific situations:

• w Obs A 1 is an activity A 1 performance of an activity sharing a lot of events with another one (w Obs A 2 ), • w Obs A 2 is an activity A 2 performance of an activity sharing a little part of events with another one (w Obs A 1 ), • w Obs A 3 is an activity A 3 performance of an activity sharing no event with any other ones. For the sake of simplicity, we consider than the fourth first events already occurred and we show the kept sequence when a new event occurs. In the real case, at the beginning of the recognition, we use all we can. That means that if only three events occur since the beginning of the recognition, the complete sequence is kept. It does not have real importance since the beginning of the recognition represents a very few part of the inhabitant life and the quality of the obtained information at this specific time does not matter since it is a small transition phase for us.

Projection of the exploited sequence

The second step of our AR protocol consists in a projection of the fixed length sequences (five here) of events extracted from the sensors information flow. The projection step illustrated here has as impact that all computation performed after it produces results strongly linked to each PFA A k . Thus, result obtained between an input sequence and a PFA depends only on the concerned PFA since computations are independent. This computation independence is an advantage in the real life since activity to monitor can evolve with the time according to the pathologies the medical staff want to focus. If the medical staff want to focus on the cooking activity only during a fixed period of the inhabitant life, the monitoring of the other activities can be considered as useless or unwanted. Furthermore, the independence of the distances computation can lead us to indecision since two activities will be considered as possible. In this case, the decision making can be reported to later if the indecision disappears with the time or it can be asked to an expert to distinguish the occurred activity or to improve the instrumentation.

Figure 4.5.2 lists the different projected sequences obtained after each occurrence of a new event with the example sequences w Obs A 1 ,w 

Language generation based on the projected sequence

Once the extracted sequence projected, it is necessary to extract a language from the obtained projected sequences w Obs p k . Indeed, as explained in section 4.2.2, the language creation is necessary to traduce the continuous property of the human life and to consider all successions of events without any unwanted discrimination.

The retained language generation method is illustrated in figure 4.2.2 and consists in creating a language L Obs p k composed of all substrings of the projected sequence w Obs p k having a length greater than or equal to two. {e 4 e 7 , e 7 e 6 , e 6 e 5 , e 5 e 3 , e 4 e 7 e 6 , e 7 e 6 e 5 , e 6 e 5 e 3 , e 4 e 7 e 6 e 5 , e 7 e 6 e 5 e 3 , e 4 e 7 e 6 e 5 e 3 } compare alphabets in the figure 4.5.5 just above, we can see that six sequences are kept from the language L Obs p 3 generated after the occurrence of e 4 to the one generated after the occurrence of e 7 , since four sequences changes. It is exactly what we want since the occurrence of a single event does not change totally what the inhabitant do. At each step, we keep the shared substring between the past and the present to traduce the life continuity: a single event does not totally change the manipulated language. This Chapter 4. Activity Recognition property can be seen for all languages and for all events succession. In the same way, when the number of events in the projected sequence decrease, the language progressively lose sequences until it is empty.

Probability estimation

Each time a new event is observed and once the first three steps of the protocol performed, we have one language for each activity A k to monitor. A distance can thus be computed between each PFA modelling those activities {A k } and the corresponding languages {L Obs p k }. In our case, the retained distance is the inverse of the normalised perplexity. Therefore, as a final step of the AR, the inverse of the normalised perplexity

1 ||P P (L Obs p k
|A k )|| for each model A k to generate the language L Obs p k is computed. Since the differences between perplexity per string or per symbol is only proportional, we prefer to use the perplexity per symbol to underline the importance of the events.

For a sake of simplicity, all the details of the distance computation will not be presented here. The intermediate computation results for w Obs = e 23 e 14 e 13 e 37 e 36 extracted from w Obs A 1 are given in figure 4.5.6. In this figure, we can find, for each language L Obs p 1 , L Obs p 2 and L Obs p 3 , the sequences included in the language and their likelihood, maximum likelihood, normalised likelihood and inverse of normalised perplexity per symbol knowing the activity model A 1 , A 2 and A 3 , respectively. 1. As wanted, in this example case, a decision cannot be directly done since the two activities A 1 : cooking and A 2 : hot beverage preparation have a too high probability simultaneously. Furthermore, by choosing the most probable one, a mistake can be done since the events used in this example correspond, in real life, to the events generated when an inhabitant put some water to boil. This step, necessary to prepare hot beverages and to prepare pasta, is less closed to represent the activity A 1 than the activity A 2 since the other way to cook is by preparing a ready-cooked dishes, which do not need water;

2. The natural property of classical likelihood to decrease with the length of the considered sequence is clearly visible here;

3. we can see that, if the language was not created and the normalised likelihood directly used, the activity A 1 have a distance value of 0.435 against 0.9025 for the A 2 . Indeed, due to the influence of the low probability linked to the event e 14 in the PFA A 1 , indeterminism is less visible and a faulty conclusion could be done without the language creation.

By evaluating the distance at each time step, it is possible to draw in a figure the evolution of the probability with the time. A simple example of its kind of figure is given figure 4.5.1 and shows the evolution of this value during a deterministic realisation of the A 1 : cooking activity. Here, in order to discuss the results, the log of actually performed activities is compared with the computed estimations. We enlighten this log is for the validation procedure only and is not required by the proposed method.

The knowledge of performed activity is drawn with plain lines. The probability is equal to 1 when the activity is actually performed. The value of the presented estimator is drawn by the crossed lines. The example shows that for each new observed event, the estimation of probability is actualised. The language is empty if the projected sequence length is lower than 2 and an offset is systematically observed when the activity starts. Furthermore, another offset is present when an activity stops. This second offset is due to the use of a sliding window storing the last five observed events.

Discussion

In the previous sections, we present an AR method in four steps and we applied it into the case study presented in 2. The following discussion consists of analysing results obtained depending on the activities of daily living performance. To this aim, two specific cases are considered:

• the recognition of an activity occurring individually, • the recognition of a succession of activities.

With the first case, presented section 4.6.1, we study the activities to monitor probabilities obtained when an activity is performed after a succession of events linked to no other activities. In this way, we are able to conclude about the AR method without introducing the disturbances possibly linked to an activity violently changed or interrupted.

With the second case, presented section 4.6.2, we study the result of the AR method when the activities are performed successively without interruption. In this way, we see the reaction of our method to an activity change or interruption.

As explained in section 4.5.4, in order to discuss the results, the log of actually performed activities is compared with the computed estimations. We enlighten this log is for the validation procedure only and is not required by the proposed method.

In the figures presented in the next sections, the knowledge of performed activity is drawn with plain lines. The probability is equal to 1 when the activity is actually performed. The value of the presented estimator is drawn by the crossed lines.

Activities occurring individually

In this subsection, in order to estimate our method viability, the AR protocol is applied to our three case study activities: A 1 : cooking, A 2 : hot beverage preparation and A 3 : use bathroom. These three activities have the advantage to allow us to test three specific cases:

w Obs

A 3 is an activity sharing no event with any other ones,

the activity w Obs

A 2 shares some events with the activity A 1 when the action prepare coffee is performed,

the activity w Obs

A 1 shares a lot of events with the activity A 2 when the action prepare pasta is performed. Respectively, the activity w Obs A 2 shares a lot of events with the activity A 1 .

1 -Activity sharing no event with any other ones: Figure 4.6.1 shows the result of the AR applied to the performance of the activity A 3 : use bathroom. We observe that the values of the inverse of the normalised perplexity linked to the activity A 3 is clearly upper than zero since the perplexity linked to the other activities A 1 and A 2 are equals to zero. In this case, it seems obvious that the performed activity is A 3 : use bathroom since the obtained distance is clearly good for A 3 and no other activity seems to be occurring.

Thus, as expected, the proposed AR protocol for activities sharing no event with others is efficient when the concerned activities are occurring individually.

2 -Activity sharing some events with another one: shows the result of the AR applied to the performance of the activity A 2 : hot beverage preparation, more specifically during the preparation of coffee. We can observe that the values of the inverse of the normalised perplexity linked to the activity A 1 : cooking and A 2 : hot beverage preparation are initially both clearly upper than zero since the perplexity linked to the activity A 3 is equal to zero. Furthermore, before twenty-three seconds, we are in a situation of indeterminism. Then, once unshared event occurs, the indeterminism disappears since the activity A 1 : cooking probability fall to zero and never grown up.

In this case, it seems obvious after a period of indecision that the performed activity is A 2 : hot beverage preparation since the obtained distance is good for A 2 longer than for A 1 .

The proposed AR protocol for activities sharing some events with others is efficient once unshared events appear when the concerned activities are occurring individually. 4.6.3 shows the result of the AR applied to the performance of the activity A 1 : cooking, more specifically during pasta preparation. We can observe that the values of the inverse of the normalised perplexity linked to the activity A 1 : cooking and A 2 : hot beverage preparation are both clearly upper than zero the majority of the time since the perplexity linked to the activity A 3 and A 2 are equals to zero. Here, the situation of indeterminism is too present to clearly conclude about which activity was performed.

-Activity sharing many events with another one:

The proposed AR protocol for activities sharing many events with others is not efficient. This drawback of the methodology is normal and common to each recognition technique. Of course, if two activities have too closed moves indissociable using sensors installed in the smart home, our AR method could not dissociate them either.

In addition to these three cases, it is important to highlight that if a sensor is linked with too many activities, it is observed a lot of times during the learning period and its probability becomes predominant in all linked ADL models. This property makes the occurrence of the concerned event non-discriminant and noisy. Therefore, the events detected by such sensors are not useful and may be unlinked to all activities. If used for the ADL monitoring only, this sensors should not be implemented.

Activities occurring successively

In this subsection, in order to estimate if our method is robust to activity interruption and succession, the AR protocol is applied to a succession of the three case study 4.6. Discussion activities: A 3 : use bathroom then A 1 : cooking and finally A 2 : hot beverage preparation.

As we see before that AR is not efficient with activities performances sharing many events, the succession tested in this subsection implied only activity occurrences having zero or some events shared.

Figure 4.6.4 the result of our AR method for the presented activity succession. We can observe that it is easy to conclude from the probabilities that we perform a succession of activities A 3 then A 1 finally A 2 . The detection of the exact time of changing activity is more difficult between the two activities A 1 and A 2 sharing some events but the succession can even be detected. 

Validation

The presented and discussed results are obtained by discovering activities as described in chapter 3 and by applying the activity recognition protocol presented in this chapter 4.

In this discussion section, we showed that, after learning PFAs, we are able to find the performed activity with the common hypothesis to have activities not sharing too much events.

These results allow us to conclude that the presented method to discover and recognise activities of daily living performed by an inhabitant of a smart home is powerful. Especially, those results are obtained without declaring the performed activity during the learning period and using only environmental and binary sensors.

Conclusion

An approach for activity recognition has been presented in this chapter. To do that, a new probabilistic distance, called normalised likelihood, and its extension to perplexity has been defined. It has also been shown that the normalised likelihood can be efficiently computed onto a reduced model of the activity without loss of accuracy. This make efficient the on-line computation of the probability for an activity, modelled by a

Conclusions & Outlooks

This activity discovery method has been illustrated using the living lab information.

An activity recognition method using previously generated models

Finally, an activity recognition approach has been presented. This approach, decomposable into four steps, needs a new probabilistic distance, called normalised likelihood, and its extension to the normalised perplexity. These two distance estimators are defined and explained in this thesis. It has also been shown that the normalised likelihood can be calculated efficiently using a reduced model without loss of precision. This makes efficient the on-line calculation of the probabilities for an activity to be performing. Finally, the recognition approach has been applied to several test activities carried out in the living lab previously presented and the quality of the results obtained appear to be good.

Outlook

A global framework for discovering and recognising activities is proposed in this thesis and several improvements can be envisaged.

To relax the assumption concerning the sensor technology used

In this thesis, in addition to the rejection of too intrusive sensors (as cameras), we reject in Assumption 2 the use of wearable sensors sometimes incompatible with some pathologies. This assumption leads to consider only single inhabitant smart homes. A perspective is to relax this assumption, by authorising, when possible, the use of wearable sensors which are not too intrusive considering the inhabitant privacy: the binary ones (as RFID). By allowing the use of binary and wearable sensors, the assumption of single inhabitant can easily be removed since the automatic labelling of the input data with the name of the person wearing sensors is possible. Furthermore, the use of RFID targets fixed on some objects can lead to a better granularity in the expert knowledge. The presented method, developed to deal with binary sensors, should directly be applicable without changes if the Assumption 2 is relaxed by allowing wearable binary sensors.

To use the discovered models and the recognised activity to treat the detection of deviation and activity prediction problems

As a continuity of the presented work, it can be envisaged to treat the two other main objectives linked with the activity of daily living monitoring: the detection of deviations and the activity prediction. Indeed, as we did with the activity discovery and recognition, those two other objectives could be reformulated to be compatible with the discrete event system paradigms.

For example, the use of well-known diagnosis methods of the industrial domain can be extended to human deviation if we consider human deviations as faults to detect. Since, in this thesis, the human behaviour are models using DES paradigms, these extensions can easily be envisaged. An extension of residuals uses for fault localisation developed in the LURPA [START_REF] Roth | The concept of residuals for fault localization in discrete event systems[END_REF] can be extended to probabilistic residuals for human deviation detection. Furthermore, works treating the field of predictability in DES domain such as [START_REF] Jéron | Predictability of sequence patterns in discrete event systems[END_REF] and [START_REF] Genc | Predictability of event occurrences in partiallyobserved discrete-event systems[END_REF] can be reused and adapted to our models.

To identify activities not listed by the medical staff

Using the existing methods in the industrial identification of reactive system [START_REF] Dotoli | Real time identification of discrete event systems using petri nets[END_REF][START_REF] Saives | Activity discovery and detection of behavioral deviations of an inhabitant from binary sensors[END_REF], it could be envisaged to find activities initially not given by the medical staff, to detect the linked events and to automatically discover their models without any expert intervention.

The medical staff and the expert decomposition could thus be enriched by automatically detected activities one which deviation detection could also be performed. The use of identification method to extend the monitored activities to medically not targeted ones could allow a better inhabitant supervision during his entire daily life. Cette évolution démographique de la société soulève de nouveaux problèmes, tant sur le plan humain qu'économique. En effet, les institutions de santé ne sont pas capables, en l'état actuel, de gérer autant de personnes âgées. C'est pourquoi il est nécessaire de développer des solutions alternatives aux moyens existants afin d'aider les personnes âgées n'ayant pas de problèmes de santé trop graves à rester indépendantes des services de santé conventionnels.

Résumé en langue française

Introduction

Une solution actuellement envisagée est de développer des systèmes assistants et surveillant les personnes continuellement afin de leur permettre de rester à domicile aussi longtemps que possible. Ainsi, les installations médicales peuvent être réservées aux pathologies sévères et aux urgences. De plus, cette solution permet aux personnes âgées ou handicapées de rester plus longtemps dans un environnement qui leur est familier Figure Fr.2: Pourcentage de la population de tout âge ayant un excellent ou un très bon état de santé, par âge et par sexe : États-Unis [START_REF] Norris | Early release of selected estimates based on data from the january-march 2017 national health interview survey[END_REF]. [START_REF] Cornelis | Early diagnosis of mild cognitive impairment and mild dementia through basic and instrumental activities of daily living: Development of a new evaluation tool[END_REF]. C'est pourquoi cette solution, moins chère et plus plaisante, doit être développée. Cette surveillance continue des personnes à domicile permettrait de contacter la famille ou des médecins quand un problème ou un comportement anormal est détecté.

La surveillance des activités de tous les jours (ADL) est l'une des principales possibilités étudiées dans le domaine des systèmes de santé à domicile. Elle consiste à donner au personnel médical des informations précises et utiles à propos du patient. Par définition [START_REF] Lawton | Assessment of older people: self-maintaining and instrumental activities of daily living[END_REF], une ADL est une activité qui est réalisée régulièrement par une personne (comme préparer à manger, faire le ménage, prendre du temps libre, etc.) et dont la surveillance est utile aux médecins. Les études actuelles sur les ADLs traitent quatre points: la découverte d'activité (AD), la reconnaissance d'activité (AR), la prédiction d'activité (AP) et la détection de déviation de comportement (DD). Dans cette thèse, seulement les problèmes de découverte et de reconnaissance d'activité sont traités. L'objectif de l'AD est de générer un ou plusieurs modèles d'activités plus ou moins formels en observant, durant une période d'apprentissage, le comportement de la personne à surveiller. L'objectif de l'AR est de détecter qu'une activité est réalisée quand la personne la réalise effectivement. L'objectif de cette thèse est de proposer une méthode de découverte d'activité et une méthode de reconnaissance d'activité compatible avec les limitations choisies suivantes: en pratique, les cibles principales de la surveillance de personnes à domicile sont les personnes vivant seules. 

Création d'un appartement test

Comme le sujet traité dans cette thèse est directement lié au problème sociétal présenté précédemment, les méthodes présentées doivent être applicables à des cas réels. En effet, le développement des méthodes ne peut être découplé de l'application technique. Malheureusement, les appartements tests existants dans la littérature ne sont pas compatibles avec nos hypothèses de travail. C'est pourquoi, pour tester les méthodes de cette thèse, un appartement prêté par l'ENS Paris-Saclay a été instrumenté en utilisant vingt capteurs binaires. L'instrumentation à été choisie afin de découvrir et reconnaître trois activités :

• A 1 : Cuisiner; • A 2 : Préparer une boisson chaude; • A 3 : Utiliser la salle de bain; Les activités à découvrir et reconnaître peuvent être décomposées hiérarchiquement en plusieurs actions rattachables à certains capteurs. Cette décomposition sera utilisée plus tard pour découvrir les modèles d'activités. Dans notre exemple, la décomposition de chaque activité en deux actions et leurs liens avec les événements sont choisis afin de pouvoir analyser les résultats obtenus pour quatre cas spécifiques:

1. Une des activités doit pouvoir être réalisée dans une pièce de l'appartement équipé dans laquelle aucune autre activité ne peut être réalisée. Ainsi, les événements observés dans cette zone seront systématiquement liés à cette activité uniquement. 

Découverte d'activité

La première contribution de cette thèse est le développement d'une nouvelle méthode de découverte d'activité (AD). Cette approche est nécessaire, car la quatrième limitation rejetant l'étiquetage des données d'apprentissage présentées précédemment est incompatible avec les méthodes de découverte déjà existantes.

Le principal avantage de la méthode développée est sa portabilité. En effet, elle est applicable dans tous les appartements équipés, quelleque soit la pathologie de l'habitant.

Cette approche modélise chaque activité à surveiller par un automate à état probabiliste (PFA). La perte d'information liée au rejet du savoir des activités réalisées pendant la période d'apprentissage est compensée par l'ajout d'un savoir expert spécifique donnant la décomposition hiérarchique des activités en actions puis en événements capteurs.

Le modèle de chaque activité est généré en trois étapes:

1. La structure du modèle est automatiquement créée à partir de la décomposition experte; 2. La base de données d'apprentissage est analysée en faisant glisser une fenêtre d'observation composée d'un nombre fixe d'événements et des indicateurs de fréquences pertinentes sont calculés; 3. Les probabilités de nos modèles sont calculées en utilisant les indicateurs de fréquence calculés à l'étape 2.

Les modèles générés par cette découverte d'activités sont ensuite utilisés comment entrée pour la reconnaissance d'activité.

Reconnaissance d'activité

La seconde contribution principale de cette thèse est le développement d'une nouvelle méthode de reconnaissance d'activité (AR). Cette approche consiste à détecter l'activité réalisée par un habitant surveillé pendant qu'il la réalise. Pour cela, le groupe {habitant + maison équipée} est considéré comme un générateur d'événements et les activités à reconnaître sont modélisées par des PFAs. Dans la littérature, il existe plusieurs façons de reconnaître quel PFA a le plus probablement généré une séquence si les différents PFAs comparés sont liés aux mêmes événements. Cependant, si ceux-ci ne partagent pas les mêmes événements, les méthodes sont inutilisables. Or, les modèles que nous avons découverts précédemment ne partagent pas les mêmes événements, car les activités ne sont pas systématiquement liées aux mêmes capteurs. C'est pourquoi la nouvelle méthode de reconnaissance d'activité présentée dans cette thèse est nécessaire.

Un point commun entre les méthodes existantes [START_REF] Van Kasteren | Accurate activity recognition in a home setting[END_REF][START_REF] Kellokumpu | Human activity recognition using sequences of postures[END_REF] et la nôtre est la définition et l'utilisation d'une distance. En effet, dans ces méthodes comme dans la nôtre, le calcul d'une distance est utilisé pour estimer quelle activité a le plus de chance d'être réalisée au vu des observations. Dans le but d'améliorer les méthodes de reconnaissance existantes et de les adapter à notre cas, plusieurs opérations telles que l'utilisation de fonctions de projections et la création de langage doivent être considérées. La projection aide à supprimer le bruit lié à d'autres activités ou à des capteurs non pertinents en ne gardant que les événements utiles à la détection de chaque activité. La génération d'un langage nous permet de considérer les événements observés comme une succession de plusieurs groupes d'événements plus ou moins indépendants.

Les distances existantes dans la littérature doivent être adaptées pour donner des résultats exploitables après les différentes projections et créations de langage. C'est pourquoi, dans cette thèse, une nouvelle distance : la vraisemblance normalisée, basée sur la définition de la perplexité usuellement utilisée pour calculer la distance entre un modèle et un langage. Le calcul de cette nouvelle distance posant des problèmes de complexité calculatoire, deux algorithmes ont été développés pour rendre ce calcul faisable dans un temps acceptable (moins d'une seconde).

Conclusion

Dans cette thèse, une approche globale pour découvrir et reconnaître les activités de tous les jours d'un habitant dans une maison équipée est proposée. Ainsi, une procédure pour modéliser les activités par des automates finis probabilistes est développée en utilisant l'enregistrement les événements générés par l'habitant pendant une période d'essai et la décomposition hiérarchique des activités à modéliser en actions liées aux différents événements de capteurs. Puis, une méthode de découverte d'activité basée sur une nouvelle distance appelée perplexité normalisée est présentée. De plus, il est prouvé que cette nouvelle distance peut être efficacement calculée sans aucune perte de performance en utilisant des algorithmes développés dans cette thèse.

Finalement, toutes ces méthodes sont appliquées sur un vrai appartement de test équipé.

Pour prolonger ces travaux, il pourrait être envisagé de traiter le cas de plusieurs habitants vivant dans une maison équipée. Cela est envisageable en relaxant l'hypothèse de n'utiliser que des capteurs binaires environnementaux (en utilisant des capteurs RFID par exemple).

• if e sup ∈ Equ s j-1 ,s j (e i ) then

I(s 0 ) ×   |w| h=1 P (s h-1 , w ′ h , s h )   = I(s 0 ) ×   |w| h=1 P (s h-1 , v ′ h , s h )   → P (θ|A k ) = P (θ ′ |A k )
• else if e sup / ∈ Equ s j-1 ,s j (e i ) then

I(s 0 ) ×   |w| h=1 P (s h-1 , w ′ h , s h )   < I(s 0 ) ×   |w| h=1 P (s h-1 , v ′ h , s h )   → P (θ|A k ) < P (θ ′ |A k )
Since e sup / ∈ q l ,qm∈Q A k Equ q l ,qm (e i ), the case e sup / ∈ Equ s j-1 ,s j (e i ) occurs at least one time, thus:

P (v|A k ) = θ ′ ∈Θ A k (v) P (θ ′ |A k ) > P (w|A k ) = θ∈Θ A k (w)P (θ|A k ) (A.1)
Hence, equation (A.1) proves that, for all sequences w including an event e i with {e sup } e i = ∅, it exists another sequence v having the same length with a greater likelihood. Therefore, event e i with {e sup } e i = ∅ can be excluded for the maximum likelihood computation.

By the same way, we can prove that the likelihood does not change by changing an event e i by another event e eq ∈ {e eq } e i , then only one of them can be kept in A r k . Consequently, it holds max 

Let A k =< Q A k , Σ A k , δ A k , I A k , F A k , P A k > be a PFA and A r k =< Q A k , Σ r A k , δ r A k , I A k , F A k , P r
A k > be the reduced PFA obtained by the reduction procedure A k → A r k . Then the computational complexity of the maximum classical likelihood is the following:

C M = O 2 [card(QA k )-1] |w| × card(Q A k ) 2 × |w| .
Proof. We recall that the following properties are direct consequences of equation (4.26):

Property 1: If event e i is kept using equation (4.26), it exists a set of n 1 origin and destination states C n 1 A k = (q l 1 , q m 1 )...(q lp , q mp )...(q ln 1 , q mn 1 ) such that ∀e j ∈ Σ A k , ∀p ∈ [1, n 1 ] it holds: P (q lp , e i , q mp ) ≥ P (q lp , e j , q mp ) .

Furthermore, according to equation (3.9), Ñ (e i |q l → q m ) and P (q l , e i , q m ) do not depend on q l . Thus, Geq q l ,qm (e i ) and Equ q l ,qm (e i ) depend only on e i and q m . It is possible to rewrite Property 1 as follow: A k = (q m 1 ...q mp ...q mn 1 such that ∀e j ∈ Σ A k , ∀q l ∈ Q A k , ∀p ∈ [1, n 2 ] it holds: P (q l , e i , q mp ) ≥ P (q l , e j , q mp ) .

Moreover, for each possible set D n 2 A k of destination states, only one event is kept by the equivalent events deletion performed by step 2 of the reduction procedure A k → A r k . Thus, the number of kept events N A k = card(Σ r A k ) is bounded by the number of possible sets D n 2

A k that is necessary to evaluate. For a PFA with m = card(Q A k ) states, sets composed with n 2 ∈ [1, m-1] destination states can be created. For each n 2 , it exists m -1 n different possible sets D n 2 A k . Thus, we have:

N A k ≤ m-1 i=1 m -1 i = 2 m-1 -1.
Thus, according to equation (4.22), the complexity of the maximum classical likelihood after the reduction procedure A k → A r k is the following:

C M = O card(Σ A r k ) |w| × card(Q A k ) 2 ×
|w| . and thus:

C M = O card(2 [card(Q A k )-1] |w| × card(Q A k ) 2 × |w| .
This proves Proposition 4.2. e 6 →e 5 ← 1 uniquement basées sur l'utilisation de capteurs binaires intégrés dans l'habitat, tels que les détecteurs de mouvements, les tapis sensitifs ou les barrières optiques.

Dans un tel contexte technologique, il devient intéressant à utiliser les paradigmes, les modèles et les outils des systèmes à événement discrets (SED), initialement plutôt développés pour la modélisation, l'analyse et la commande des systèmes industriels complexes.

Dans ces travaux de thèse, l'objectif est de construire une approche pour la modélisation et le suivi des habitudes de vie, basée sur les modèles et le paradigme des SED et répondant à une problématique qui s'énonce de la manière suivante:

L'objectif est de développer un cadre global pour découvrir et reconnaître les activités de la vie quotidienne d'un habitant vivant seul dans une maison intelligente. Cette maison intelligente doit être équipée uniquement de capteurs binaires, l'étiquetage par des experts des activités observées ne doit pas être nécessaire et les activités peuvent être représentées par des modèles probabilistes.

La première méthode présentée dans cette thèse permet de construire un modèle d'automate à états finis probabiliste (PFA) à partir d'une base de données d'apprentissage et d'une description experte des activités à modéliser listées par des médecins.

La seconde méthode développée lors de cette thèse estime, au vu des observations, quelle activité la personne observée réalise.

Les méthodes décrites dans cette thèse sont illustrées en utilisant les données générées localement via l'utilisation d'un appartement prêté par ENS Paris-Saclay équipé pour répondre aux besoins expérimentaux de cette thèse.

Modelling and Recognition of Human Activities of Daily Living in a Smart Home Abstract

Most of the work done in the field of ambient assisted living (AAL) is based on the use of visual and audio sensors such as cameras. However, these sensors are often rejected by the patient because of their invasiveness. Alternative approaches require the use of sensors embedded in the person (GPS, electronic wristbands or RFID chips in clothing ...), and their relevance is therefore reduced to the assumption that people actually wear them, without rejecting nor forgetting them.

For these reasons, in this thesis, we find more relevant the approaches based on the use of binary sensors integrated into the habitat only, such as motion detectors, sensory mats or optical barriers.

In such a technological context, it becomes interesting to use paradigms, models and tools of Discrete Event Systems (DES), initially developed for modelling, analysis and control of complex industrial systems.

In this thesis work, the goal is to build an activity of daily living modelling and monitoring approach, based on the models and the paradigm of the DES and answering a problem that is expressed as follows:

The objective is to develop a global framework to discover and recognise activities of daily living of an inhabitant living alone in a smart home. This smart home has to be equipped with binary sensors only, expert labelling of activities should not be needed and activities can be represented by probabilistic models.

The first method presented in this thesis allows to build a probabilistic finite-state automata (PFA) from a learning database and an expert description of the activities to be modelled given by the medical staff.

The second method developed during this thesis estimates, according to the observations, the activity performed by the monitored inhabitant.

The methods described in this thesis are applied on data generated using an apartment lent by ENS Paris-Saclay and equipped according to the experimental needs of this thesis.

Modellizzazione e riconoscimento delle abitudini di un abitante in una casa intelligente

Sintesi

La maggior parte dei lavori nel settore dell'Ambient Assisted Living (AAL) si basa sull'uso di sensori visivi e audio come le telecamere. Tuttavia, questi sensori sono spesso rifiutati dal paziente a causa della loro natura invasiva. Gli approcci alternativi richiedono l'uso di sensori integrati nella persona (GPS, bracciali elettronici o chip RFID...), e la loro rilevanza è quindi ridotta all'ipotesi che le persone li indossino effettivamente, senza mai rifiutarli o dimenticarli.

Per questi motivi, in questa tesi, troviamo approcci più rilevanti basati esclusivamente sull'uso di sensori binari integrati nell'habitat, come rilevatori di movimento, tappeti sensoriali o barriere fotoelettriche.

In tale contesto tecnologico, diventa interessante utilizzare i paradigmi, i modelli e gli strumenti dei sistemi ad eventi discreti (SED), inizialmente sviluppati per la modellazione, l'analisi e il controllo di sistemi industriali complessi.

In questo lavoro di tesi, l'obiettivo è quello di presentare un metodo per la modellazione e il monitoraggio delle abitudini di vita, basato sui modelli e paradigmi di SED e rispondendo ad un problema che si esprime come segue:

L'obiettivo è quello di sviluppare un quadro globale per rivelare e riconoscere le attività della vita quotidiana di una persona che abita da sola in una smart home che dovrebbe essere dotata solo di sensori binari. Inoltre si suppone che non sia necessaria l'etichettatura delle attività osservate da parte di un esperto e tali attività sono rappresentate da modelli probabilistici.

Il primo metodo presentato in questa tesi permette di costruire un modello probabilistico di automa a stati finiti (PFA) ottenuto da un database di apprendimento e una descrizione delle attività da parte di medici.

Il secondo metodo sviluppato in questa tesi stima, alla luce delle osservazioni, quale attività svolge la persona osservata.

I metodi descritti sono illustrati utilizzando dati generati localmente attraverso l'uso di un appartamento messo a disposizione da ENS Paris-Saclay e attrezzato per soddisfare le esigenze sperimentali di questa tesi.
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 0 Figure 0.0.1: European Union age repartition in 2010 and 2060 (EUROSTAT, 2010).
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 0 Figure 0.0.2: Population aged 60 and over in 2012(a) and 2050(b) (World Health Organization, 2012).

Figure 0

 0 Figure 0.0.3: Population pyramid according to the United Nations World Population Prospects (United Nations, 2017).

Figure 0

 0 Figure 0.0.4: Overview of the contributions of the thesis.

Figure 1

 1 Figure 1.1.1 is a representation of a smart home in its basic definition: a home equipped with sensors and actuators connected via a communication network.

Figure 1

 1 Figure 1.1.1: A smart home: a home equipped with several sensors and actuators.

Figure 1

 1 Figure 1.1.2: (a) A demonstration of wearable body sensors on a human body. (b) A conceptual BSN architecture of the proposed AAL system. (c) An example of wearable textile sensors (Forkan et al., 2014).

  Figure 1.1.3 symbolise the difference between this two new classification.

Figure

  Figure 1.1.3: Sensors taxonomy

  Figure 1.1.4: (a)Human behaviour analysis tasks -classification (Chaaraoui et al., 2012) (b) Human behaviour degree of semantics[START_REF] Cook | Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data[END_REF].

Figure 1

 1 Figure 1.1.5: DBN representation for a standard HSMM. Shaded nodes represent observation. (Duong et al., 2009).

  Figure 1.1.6: General data flow for training systems based on wearable sensors[START_REF] Lara | A survey on human activity recognition using wearable sensors[END_REF].

Figure 1

 1 Figure 1.1.7: Generic data acquisition architecture for Human Activity Discovery and Recognition (Lara and Labrador, 2013).

Figure 1

 1 Figure 1.1.9 summarises the context of this thesis: activity discovery and recognition are two principal missions of the assistance and monitoring of ADLs in health at home systems (HaH). HaH is the group of topics treating about the health monitoring of smart home inhabitants.
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 1 Figure 1.1.9: Thesis summarised context

Figure 1

 1 Figure 1.1.10: Existing methods, their sensor level of semantics and their intrusiveness.
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 2 Figure 1.2.1: Activity discovery and recognition proposed framework.

Figure 1

 1 Figure 1.2.2: I 1 AD : Hierarchical decomposition of activities into actions linked to sensor events given by an expert.

  and partially placed in figure 2.1.1 are: • M01..M26: motion sensors; • I01..I05: item sensors for oatmeal, raisins, brown sugar, bowl, measuring spoon; • I06: medicine container sensor; • I07: pot sensor; • I08: phone book sensor; • D01: cabinet sensor; • AD1-A: water sensor; • AD1-B: water sensor; • AD1-C: burner sensor; • asterisk: phone usage.

Figure 2 . 1 . 2 :

 212 Figure 2.1.2: Example of logs extracted from the CASAS file "p01.t1".

Figure 2 .

 2 Figure 2.1.3: Domus smart home plan (Chikhaoui et al., 2010).

Figure 2 . 1 . 4 :

 214 Figure 2.1.4: Example of logs extracted from the file "Domus Series 1/User 1/Day 1.vna".

Figure 2 .

 2 Figure 2.1.5: (a) The top view of the apartments and the sensor distribution for subject one. (b) Sensor distribution for subject two. Tapia et al. (2004).
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 2 Figure 2.1.6: Exemple of logs extracted from the Tapia et al. (2004) file "activi-ties_data.csv" of the "subject2" directory.

Figure 2 .

 2 Figure 2.1.7: Example of readable presentation of Tapia et al. (2004) logs.

  An existing flat in the ENS Paris-Saclay campus has been lent. The floor plan of this flat is given in figure 2.2.1. It can be decomposed into four different living zones: • Zone A: entrance; • Zone B: the bathroom; • Zone C: the kitchen; • Zone D: the sleeping zone.

Figure 2 .

 2 Figure 2.2.1: The smart flat with its zones

  Figure 2.2.2-a shows a picture of this zone.Zone B: bathroom. The bathroom is a simple room with a sink placed on a two-door cupboard, a shower cabin and toilets.

  Figure 2.2.2-b shows a picture of this bathroom.

Figure 2 . 2 . 2 :

 222 Figure 2.2.2: Picture of the AALTA entrance (a) and bathroom (b).

  Figure 2.2.4 shows this zone.

2. 2 .

 2 Figure 2.2.3: Picture of the kitchen (before equipping sensors and machines).
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 224 Figure 2.2.4: Picture of the sleeping zone.

  2 ; • Action go to the toilets linked to activity A 3 ; • Action have a shower linked to activity A 3 . Those hierarchical links are represented in the figure 2.2.5.
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 2 Figure 2.2.5: Hierarchical links between our activities and our actions.
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 2 Figure 2.2.6: Event emission from sensor binary information.
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 2 Figure 2.2.7: Installed kinds of binary sensors.
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 2 Figure 2.2.8: Kitchen view of the smart flat.

Figure 2 .

 2 Figure 2.2.9: The smart flat with its binary sensors

  Figure 2.2.10: Expert hierarchical decomposition of activities to monitor

Figure 2 .

 2 Figure 2.2.11: Living lab sensor networks
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 2212 Figure 2.2.12: Example of AALTA logs.

  Figure 2.2.13: Structure of the test sequence of observed events
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Figure 3

 3 Figure 3.1.1: Graphical representation of the hierarchical decomposition of activities into actions linked to sensor events given by an expert.

Figure 3

 3 Figure 3.1.2: Graphical representation of a PFA A k[START_REF] Vidal | Probabilistic finite-state machines -Part II[END_REF].

Figure 3

 3 Figure 3.2.3: From expert decomposition to PFA structure.

  .2.4): (i) explicit segmentation; (ii) time based windowing; (iii) sensor event based windowing.

Figure 3 . 2 . 4 :

 324 Figure 3.2.4: Common approaches for processing streaming data (from (Krishnan and Cook, 2014))

Figure 3 . 2 . 5 :

 325 Figure 3.2.5: Sliding sensor window and indicator computation

Figure 3

 3 Figure 3.3.1: Expert hierarchical decomposition of activities to monitor and merge groups M e l for representation

3. 3 .

 3 Figure 3.3.3: Generation of the activity A 1 (Cooking) PFA structure.

3. 3 .

 3 Figure 3.3.5: Final A 2 Hot beverage preparation model.

Figure 4 .

 4 Figure 4.2.1: The proposed activity recognition protocol

=

  {w ∈ w Obs p k | ∃s, t ∈ (Σ A k ∪ {ǫ}) * such as swt = w Obs p k and |w| = n} (4.4)

  L Obs p k . An example of this language generation is visible figure 4.2.2.

Figure 4 . 2 . 2 :

 422 Figure 4.2.2: Chosen language generation: language of substrings of length upper than two.

  2 // Substring of length 2 are first selected: 10: // Selection of the substrings: 11: while lenSubStr ≤ |w Obs p k | do 12: for index_subStr := 1 to |w Obs p k | -lenSubStr + 1 do 13: append w Obs p k [index_subStr to index_subStr + lenSubStr -1] to language

Figure 4 .

 4 Figure 4.4.1: Example on a simple PFA A k

  v|A k )] can be performed off-line for each PFA A k and for all possible values of w Obs .

4. 4 .

 4 Normalised likelihood and extension normalised perplexity is reduced. The following proposition proves that the likelihood maximum value is conserved after the reduction. The figure 4.4.2 shows the reduced PFA associated with the PFA A 1 shown figure 3.3.4. It is obvious that there is less paths possible in this reduced model than in the global model.

Figure 4 . 4 . 2 :

 442 Figure 4.4.2: Reduced PFA associated with the PFA A 1 (figure 3.3.4).

4. 4 .

 4 Normalised likelihood and extension

Figure 4 .

 4 Figure 4.4.3: Computation of the maximum likelihood without dynamical computation.

Figure 4 . 4 . 4 :

 444 Figure 4.4.4: Computation of the maximum likelihood with dynamical computation

Figure 4 .

 4 Figure 4.5.1 lists the sequences obtained by keeping the last five observed events.For the sake of simplicity, we consider than the fourth first events already occurred and we show the kept sequence when a new event occurs. In the real case, at the beginning of the recognition, we use all we can. That means that if only three events occur since the beginning of the recognition, the complete sequence is kept. It does not have real importance since the beginning of the recognition represents a very few part of the inhabitant life and the quality of the obtained information at this specific time does not matter since it is a small transition phase for us.

4. 5 .

 5 Application to the Case Study

  Figures 4.5.3 to 4.5.5 shows the languages L Obs p k obtained for the projected sequences w Obs p k shown in figure4.5.2.

Figure 4 .

 4 Figure 4.5.1: Inverse of the normalised perplexity during the realisation of the activity A 1 cooking using no shared events.

Figure 4 .

 4 Figure 4.6.1: Inverse of the normalised perplexity during the realisation of the activity A 3 : use bathroom sharing no event with any other activity.

Figure 4 .

 4 Figure 4.6.2: Inverse of the normalised perplexity during the realisation of the activity A 2 : hot beverage preparation sharing some events with the activity A 1 : cooking.

Figure 4 .

 4 Figure 4.6.2 shows the result of the AR applied to the performance of the activity A 2 : hot beverage preparation, more specifically during the preparation of coffee. We can observe that the values of the inverse of the normalised perplexity linked to the activity A 1 : cooking and A 2 : hot beverage preparation are initially both clearly upper than

Figure 4 .

 4 Figure 4.6.3: Inverse of the normalised perplexity during the realisation of the activity A 1 : cooking sharing many events with the activity A 2 : hot beverage preparation.

Figure

  Figure4.6.3 shows the result of the AR applied to the performance of the activity A 1 : cooking, more specifically during pasta preparation. We can observe that the values of the inverse of the normalised perplexity linked to the activity A 1 : cooking and A 2 : hot beverage preparation are both clearly upper than zero the majority of the time since the perplexity linked to the activity A 3 and A 2 are equals to zero. Here, the situation of indeterminism is too present to clearly conclude about which activity was performed.The proposed AR protocol for activities sharing many events with others is not efficient. This drawback of the methodology is normal and common to each recognition technique. Of course, if two activities have too closed moves indissociable using sensors installed in the smart home, our AR method could not dissociate them either.

Figure 4 .

 4 Figure 4.6.4: Inverse of the normalised perplexity during the succession of the three activities A 1 : cooking, A 2 : hot beverage preparation and A 3 : use bathroom sharing no zero of some events.

  Au cours des dernières décennies, la proportion de personnes âgées de 65 ans et plus dans le monde a continuellement augmenté. Comme estimé dans l'étude statistique européenne EUROSTAT (2013) et explicité par la figure Fr.1, ce vieillissement de la population devrait continuer dans le futur. Or, comme montré par l'étude américaine Norris et al. (2017) et représenté sur la figure Fr.2, les problèmes de santé viennent avec l'âge et 55% des personnes âgées ont des problèmes de santé. D'après la même étude, seulement 8% des personnes âgées de 65 ans et plus ont besoin qu'une tierce personne les aide au quotidien, ce qui laisse 47% de personnes de cette tranche d'âge avec des problèmes de santé suffisamment peu sérieux pour leur permettre de vivre seuls.

Figure

  Figure Fr.1: Structure de la population par tranche d'âge, UE-28, 2015-2080 (en % de la population totale) (EUROSTAT, 2013).

4 .

 4 Finalement, l'étiquetage des données d'apprentissages avec les activités réellement réalisées est rejeté. En effet, qu'elle soit faite par un expert analysant les données capteurs ou directement par l'habitant pendant la période d'essai, la déclaration manuelle des activités réalisées pendant la période d'apprentissage contient souvent des informations mauvaises ou incomplètes. Afin de parer la perte d'information liée à ce choix, un nouveau savoir est ajouté : la décomposition des activités à surveiller en actions liées à des données capteurs.Le plan proposer dans cette thèse pour découvrir et reconnaître les activités de tous les jours est donné par la figure Fr.3.

Figure

  Figure Fr.3: Plan proposé pour la découverte et la reconnaissance d'activités.

Proposition 4 . 2 (

 42 v|A k )] and the thesis is proved.Chapter 4, Page 89) 

Property 2 :

 2 If event e i is kept using equation (4.26), it exists a set of n 2 destination states D n 2
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Table 1 .

 1 

	Sensor	Measured signal	Application
	ECG	Electrocardiogram wave	Heart rate
	PPG	Photoplethysmogram wave Blood volume pulse
	BP	Blood pressure in mm Hg	Blood pressure
	EEG	Electroencephalogram wave Abnormality
	EMG	Electromyograph wave	Muscular activity
	Accelerometer Acceleration in 3D space	Activity recognition
	Motion sensor Motion signal	User movement
	Activity sensor 3-axis motion	Activity recognition
	Inertial sensor Motion signal	Position detection
	BG sensor	Blood sugar level	Diabetes detection
	Gyroscopes	Rotation angle	Body orientation
	Thermometer	Body temperature in • F	Fever detection
	RF antenna	RF wave	Position detection
	Fall detector	Motion signal	Fall detection

1.1: Examples of some typical body sensors and their use in AAL

[START_REF] Forkan | Cocamaal: A cloud-oriented context-aware middleware in ambient assisted living[END_REF]

.

Table 1 .

 1 1.3: Service rules for detecting a possible heart attack[START_REF] Forkan | Cocamaal: A cloud-oriented context-aware middleware in ambient assisted living[END_REF].

	Ontology Instance	Raw data	Context attr.	Values
	Person	User X	Profile	Age	≤ 65
	Person	User X	Profile	Weight	≤ 80
	Person	Disease	Profile	Cardiac patient Have cardiac issue
	Device	ECG sensor	ECG wave	Heart rate	Abnormal
	Device	BP sensor	BP readings	Blood pressure Normal or high
	Device	PPG sensor	Sensor readings	O 2 consump-	Low
				tion	
	Device	Audio sensor	Sound wave	Breathing	Irregular
	Device	Camera, radar,	Video, images, 3D accel-	Motion	Tripping or falling or flailing
		accelerometer	eration, motion path		of arms or any rapid motion

  .1.7.

	Chapter 2. Case Study
	05/01/2003 16:14:24 115 ON
	05/01/2003 16:17:21 115 OFF
	05/01/2003 16:17:45 79 ON
	05/01/2003 16:18:15 73 OFF
	05/01/2003 16:18:18 79 OFF
	05/01/2003 16:18:28 89 OFF
	05/01/2003 16:20:39 115 OFF
	05/01/2003 16:21:00 84 OFF
	...

Table 2 .

 2 2.1: List of events logged in AALTA.

	Id Event name	Id Event name
	e 1 Bathroom|Door_P IR|Open|0	e 22 Kitchen|F ridge_P IR|Open|1
	e 2 Bathroom|Door_P IR|Open|1	e 23 Kitchen|F ridge_P IR|P resence|1
	e 3 Bathroom|Door_P IR|P resence|1	e 24 Kitchen|Hotplate_bottom|P ower|0
	e 4 Bathroom|Shower_Door|Open|0	e 25 Kitchen|Hotplate_bottom|P ower|1
	e 5 Bathroom|Shower_Door|Open|1	e 26 Kitchen|Hotplate_top|P ower|0
	e 6 Bathroom|Shower_W aterf low|F low|0	e 27 Kitchen|Hotplate_top|P ower|1
	e 7 Bathroom|Shower_W aterf low|F low|1	e 28 Kitchen|Kettle|P ower|0
	e 8 Bathroom|Sink_W aterf low|F low|0	e 29 Kitchen|Kettle|P ower|1
	e 9 Bathroom|Sink_W aterf low|F low|1	e 30 Kitchen|M icrowave_oven|P ower|0
	e 10 Bathroom|T oilets_W aterf low|F low|1	e 31 Kitchen|M icrowave_oven|P ower|1
	e 11 Kitchen|Cof f ee_M achine|P ower|0	e 32 Kitchen|Sideboard_Lef t|Open|0
	e 12 Kitchen|Cof f ee_M achine|P ower|1	e 33 Kitchen|Sideboard_Lef t|Open|1
	e 13 Kitchen|Cupboard_Bottom|Open|0	e 34 Kitchen|Sideboard_Right|Open|0
	e 14 Kitchen|Cupboard_Bottom|Open|1	e 35 Kitchen|Sideboard_Right|Open|1
	e 15 Kitchen|Cupboard_CenterLef t|Open|0 e 36 Kitchen|Sink_W aterf low|F low|0
	e 16 Kitchen|Cupboard_CenterLef t|Open|1 e 37 Kitchen|Sink_W aterf low|F low|1
	e 17 Kitchen|Cupboard_CenterRight|Open|0 e 38 Kitchen|W ardrobe|Open|0
	e 18 Kitchen|Cupboard_CenterRight|Open|1 e 39 Kitchen|W ardrobe|Open|1
	e 19 Kitchen|Cupboard_Lef t|Open|0	e 40 Entrance|Door_P IR|Open|0
	e 20 Kitchen|Cupboard_Lef t|Open|1	e 41 Entrance|Door_P IR|Open|1
	e 21 Kitchen|F ridge_P IR|Open|0	e 42 Entrance|Door_P IR|P resence|1

  1

	14:	else
	15: 16:	dictInits[(A k , w Obs p k [1])] := 1 end if
	17:	// N k e i incrementation:
	21:	else
	22: 23:	dictOccurs[(A k , e i )] := 1 end if
	24:	end for
	25: 26: 27: 28: 29: 30: 31:	// N k e i →e j incrementation: for index_couples := 1 to |w Obs p k | -2 + 1 do e i := w Obs p k [index_couples] e j := w Obs p k [index_couples + 1] if key (A k , e i , e j ) ∈ dictF ollows then dictF ollows[(A k , e i , e j )] := dictF ollows[(A k , e i , e j )] + 1 else
	32: 33:	dictF ollows[(A k , e i , e j )] := 1 end if
	34:	end for
	35:	

18:

for all event e i ∈ w Obs p k do 19:

if key (A k , e i ) ∈ dictOccurs then 20: dictOccurs[(A k , e i )] := dictInits[(A k , e i )] + 1

  Structures do

	5: 6: 7: 8:	I A k (Initial) := 1 for all state ∈ Q A k -Initial do I A k (state) := 0 end for		
	9:	F A k := ∅		
	10:	P A e i ∈Σ end_action	1 Ce i	N k init e i
	16:			

k := ∅ (dictionary of probabilities) 11: // Computation of the different Ñ needed: 12: for all end_action ∈ Q A k -Initial do 13: for all begin_action ∈ Q A k do 14: if begin_action = Initial then 15: Ñ (Initial → end_action) := else if begin a ction = end a ction then 17: Ñ (end_action → end_action) := e i ,e j ∈Σ end_action N k e i →e j 18:

  Obs A 1 = e 23 e 14 e 13 e 37 e 36 e 23 e 33 e 32 e 35 • w Obs A 2 = e 36 e 29 e 28 e 23 e 16 e 15 e 18 e 17 • w Obs

• w

Table 3 .

 3 3.1: Counting example during the activity A 1 performance. sequence w Obs A 1 = e 23 e 14 e 13 e 37 e 36 e 23 e 33 e 32 e 35

	sliding windows	projected sequences	A 1 indicators changes	A 2 indicators changes	A 3 indicators changes

Table 3 .

 3 3 e 23 e 14 e 13 e 37 e 36 w Obs p 1 : e 14 e 13 e 37 e 36 w Obs p 2 : e 14 e 13 e 37 e 36 13 e 37 e 36 e 23 w Obs p 1 : e 14 e 13 e 37 e 36 w Obs p 2 : e 14 e 13 e 37 e 36 3.2: N 1 e i →e j values for the activity A 1 , with e i in column and e j in line (e.g. N 1 e →e 24 = 7). e 13 e 14 e 21 e 22 e 24 e 25 e 26 e 27 e 28 e 29 e 30 e 31 e 32 e 33 e 34 e 35 e 36 e 37

		w Obs p 3 : ∅	N 1 init e 14 ← 1 N 1 e 14 ← 1 N 1 e 13 ← 1 N 1 e 37 ← 1 N 1 e 36 ← 1 N 1 e 14 →e 13 ← 1 N 1 e 13 →e 37 ← 1 N 1 e 37 →e 36 ← 1	N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 e 37 →e 36 ← 1 e 13 →e 37 ← 1 e 14 →e 13 ← 1 e 36 ← 1 e 37 ← 1 e 13 ← 1 e 14 ← 1 init e 14 ← 1	∅
	e 14 e w Obs p 3 : ∅	N 1 init e 14 ← 2 N 1 e 14 ← 2 N 1 e 13 ← 2 N 1 e 37 ← 2 N 1 e 36 ← 2 N 1 e 14 →e 13 ← 2 N 1 e 13 →e 37 ← 2 N 1 e 37 →e 36 ← 2	N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 e 37 →e 36 ← 2 e 13 →e 37 ← 2 e 14 →e 13 ← 2 e 36 ← 2 e 37 ← 2 e 13 ← 2 e 14 ← 2 init e 14 ← 2	∅
	e 13 e 37 e 36 e 23 e 33	w Obs p 1 : e 13 e 37 e 36 e 33 w Obs p 2 : e 13 e 37 e 36 w Obs p 3 : ∅	N 1 init e 13 ← 1 N 1 e 13 ← 3 N 1 e 37 ← 3 N 1 e 36 ← 3 N 1 e 33 ← 1 N 1 e 13 →e 37 ← 3 N 1 N 1 e 36 →e 33 ← 1 e 37 →e 36 ← 3	N 2 N 2 N 2 N 2 N 2 N 2 e 37 →e 36 ← 3 e 13 →e 37 ← 3 e 36 ← 3 e 37 ← 3 e 13 ← 3 init e 13 ← 1	∅
	e 37 e 36 e 23 e 33 e 32	w Obs p 1 : e 37 e 36 e 33 e 32 w Obs p 2 : e 37 e 36 w Obs p 3 : ∅	N 1 init e 37 ← 1 N 1 e 37 ← 4 N 1 e 36 ← 4 N 1 e 33 ← 2 N 1 N 1 N 1 N 1 e 33 →e 32 ← 1 e 36 →e 33 ← 2 e 37 →e 36 ← 4 e 32 ← 1	N 2 N 2 N 2 N 2 e 37 →e 36 ← 4 e 36 ← 4 e 37 ← 4 init e 37 ← 1	∅
	e 36 e 23 e 33 e 32 e 35	w Obs p 1 : e 36 e 33 e 32 e 35 w Obs p 2 : e 36 w Obs p 3 : ∅	N 1 init e 36 ← 1 N 1 e 36 ← 5 N 1 N 1 N 1 N 1 N 1 N 1 e 32 →e 35 ← 1 e 33 →e 32 ← 2 e 36 →e 33 ← 3 e 35 ← 1 e 32 ← 2 e 33 ← 3	N 2 N 2 e 36 ← 5 init e 36 ← 1	∅

Table 3

 3 

	.3.3: N 1 init e i values for the activity A 1 (e.g. N 1 init e 13 = 35).
	e13 e14 e21 e22 e24 e25 e26 e27 e28 e29 e30 e31 e32 e33 e34 e35 e36 e37
	35 99 11 52 18 11 10 8 32 13 23 12 11 27 20 29 44 81
	Table 3.3.4: N 1 e i values for the activity A 1 (e.g. N 1 e 13 = 132).
	e13 e14 e21 e22 e24 e25 e26 e27 e28 e29 e30 e31 e32 e33 e34 e35 e36 e37
	132 126 55 55 40 40 20 25 45 45 50 60 55 55 90 90 150 149

  1 e 13 →e 26 + N 1 e 13 →e 27 + ...

				(3.24)
	= 590			
	and			
	Ñ (M ake P asta → P repare a ready cooked dish|M ake P asta) = 1 N 1 e i →e j C e j e i ∈Σ M ake P asta e j ∈Σ P repare a ready cooked dish	(3.25)
	e j / ∈Σ M ake P asta			
	= N 1 e 13 →e 21 + N 1 e 13 →e 22 + N 1 e 13 →e 30 + N 1 e 13 →e 31 + N 1 e 14 →e 21 + N 1 e 14 →e 22 + ... = 21	
	thus:			
	P (M ake P asta → M ake P asta|Initial) =	590 590 + 21	≃ 0.9656	(3.26)

  observed sequence w Obs . Ensure: The likelihood P (wObs |A k ). ...w |w|-1 , A k , g) × P (q g , w j , q i ) Obs , A k , i). )], the intermediate values of α v 1 ...v j (i)are computed several times: once for all sequences having v 1 ...v j as a prefix, as shown with a simple example in figure4.4.3. The idea of the dynamical computation is to avoid multiple computation of the same α v 1 ...v j (i) by keeping it in memory as long as needed, see figure4.4.4. 

	1: // alpha function. Inputs: a sequence w, a PFA A k and a state index i 2: function alpha (w,A k ,i)
	3:	if |w| > 0 then
	4: alpha(w 1 5: result := qg∈Q A k else
	6: 7:	result := I(q i ) end if
	8:	return result
	9: end function
	10: P (w Obs |A k ) = alpha(w Now the forward algorithm known, we can see that, by performing each classical q i ∈Q A k
	likelihood independently to find max A k v∈Σ |w Obs |	[P (v|A k

  sequence length w Obs .

	Ensure: The maximum likelihood max |w Obs | v∈Σ A k 1: // browse function. Inputs: a PFA A k , a sequence length length, a list listAlphas [P (v|A k )].
		of already computed dynamical variables α(v, A k , i) and an integer step traducing
		the step already reached:
	2: function browse (A k ,length,listAlphas,step)
	3:	likelihoods := ∅ // list in which all maximum likelihoods computed are stocked.
	4:	newAlphas := ∅
	5:	if step := 1 then
	6: 7: 8:	for all e j ∈ Σ A k do for all end_action ∈ Q A k do append I(end_action) to newAlphas
	9:	end for
	10:	if step = length then
	11:		append newAlphas to likelihoods
	12:	else
	13: 14:		f ollowing_result := browse(A k , w Obs , newAlphas, step + 1) append f ollowing_result to likelihoods
	15:	end if
	16:	end for
	17:	else	
	18: 19: 20: 21:	for all e j ∈ Σ A k do for all end_action ∈ Q A k do temp_alpha := g:=1 to card(Q A k ) append temp_alpha to newAlphas listAlphas[g] × P (q g , e j , end_action)
	22:	end for
	23:	if step = length then
	24:		append	new_Alphas[g] to likelihoods
	25:	else	g:=1 to card(Q A k )
	26: 27:		f ollowing_result := browse(A k , w Obs , new_Alphas, step + 1) append f ollowing_result to likelihoods
	28:	end if
	29:	end for
	30:	end if
	31:	result := max(likelihoods)
	32:	return result
	33: end function
	34: // Launch the wanted computation:
	35: max A k v∈Σ |w Obs |	[P (v|A

k )] := browse(A k , w Obs , ∅, 1)

Table 4 .

 4 4.1: Time complexity of the maximum classical likelihood computation for a given length of sequence equal to w Obs with card(Q A k ) << card(Σ A k ).

	Without Dynamical calcu-	With Dynamical calcula-
	lation	tion
	Without Problem	
	reduction	

  • w Obs A 1 = e 23 e 14 e 13 e 37 e 36 e 23 e 33 e 32 e 35 • w Obs A 2 = e 36 e 29 e 28 e 23 e 16 e 15 e 18 e 17 e 23 • w Obs
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 4 5.1: Analysed sequences each time a new event of the sequence w Obs A k occurs. During the performance of sequence w Obs A 1 = e 23 e 14 e 13 e 37 e 36 e 23 e 33 e 32 e 35 23 e 14 e 13 e 37 e 36 e 14 e 13 e 37 e 36 e 23 e 13 e 37 e 36 e 23 e 33 e 37 e 36 e 23 e 33 e 32 e 36 e 23 e 33 e 32 e 35 During the performance of sequence w Obs A 2 = e 36 e 29 e 28 e 23 e 16 e 15 e 18 e 17 e 23 36 e 29 e 28 e 23 e 16 e 29 e 28 e 23 e 16 e 15 e 28 e 23 e 16 e 15 e 18 e 23 e 16 e 15 e 18 e 17 e 16 e 15 e 18 e 17 e 23 During the performance of sequence w Obs A 3 = e 39 e 38 e 2 e 1 e 4 e 7 e 6 e 5 e 3 39 e 38 e 2 e 1 e 4 e 38 e 2 e 1 e 4 e 7 e 2 e 1 e 4 e 7 e 6 e 1 e 4 e 7 e 6 e 5 e 4 e 7 e 6 e 5 e 3

	occurrence of	occurrence of	occurrence of	occurrence of	occurrence of
	e 36	e 23	e 33	e 32	e 35
	e occurrence of	occurrence of	occurrence of	occurrence of	occurrence of
	e 16	e 15	e 18	e 17	e 23
	e occurrence of	occurrence of	occurrence of	occurrence of	occurrence of
	e 4	e 7	e 6	e 5	e 3
	e				

  Obs A 1 and w Obs A 3 . The projection of the analysed sequences obtained above (figure 4.5.1) on the activity alphabet Σ A k is denoted w Obs p k . The list of events Σ A k linked with activity A k can be seen in figures 2.2.10 or 3.3.2 and are the following: • Σ A 1 = {e 13 , e 14 , e 21 , e 22 , e 24 , e 25 , e 26 , e 27 , e 28 , e 29 , e 30 , e 31 , e 32 , e 33 , e 34 , e 35 , e 36 , e 37 }; • Σ A 2 = {e 11 , e 12 , e 13 , e 14 , e 15 , e 16 , e 17 , e 18 , e 19 , e 20 , e 24 , e 25 , e 26 , e 27 , e 28 , e 29 , e 36 , e 37 }; • Σ A 3 = {e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 7 , e 8 , e 9 , e 10 , e 38 , e 39 }.

Table 4 .

 4 5.2: Projected sequences w Obs p k when new events of the sequences w Obs A k occurs. During the performance of sequence w Obs A 1 = e 23 e 14 e 13 e 37 e 36 e 23 e 33 e 32 e 35 occurrence of e 36 14 e 13 e 37 e 36 e 14 e 13 e 37 e 36 e 13 e 37 e 36 e 33 e 37 e 36 e 33 e 32 e 36 e 33 e 32 e 35 w Obs p 2 e 14 e 13 e 37 e 36 e 14 e 13 e 37 e 36 e 13 e 37 e 36 Obs A 2 = e 36 e 29 e 28 e 23 e 16 e 15 e 18 e 17 e 23 36 e 29 e 28 e 16 e 29 e 28 e 16 e 15 e 28 e 16 e 15 e 18 e 16 e 15 e 18 e 17 e 16 e 15 e 18 e 17 w Obs A 3 = e 39 e 38 e 2 e 1 e 4 e 7 e 6 e 5 e 3 39 e 38 e 2 e 1 e 4 e 38 e 2 e 1 e 4 e 7 e 2 e 1 e 4 e 7 e 6 e 1 e 4 e 7 e 6 e 5 e 4 e 7 e 6 e 5 e 3

			occurrence	occurrence	occurrence	occurrence
			of e 23	of e 33	of e 32	of e 35
	w Obs p 1					
					e 37 e 36	e 36
	w Obs p 3	∅	∅	∅	∅	∅
		During the performance of sequence w occurrence occurrence occurrence	occurrence	occurrence
		of e 16	of e 15	of e 18	of e 17	of e 23
	w Obs p 1	e 36 e 29 e 28	e 29 e 28	e 28	∅	∅
	w Obs p 2					
	Obs p 3	∅	∅	∅	∅	∅
		During the performance of sequence w occurrence occurrence occurrence	occurrence	occurrence
		of e 4	of e 7	of e 6	of e 5	of e 3
	w Obs p 1	∅	∅	∅	∅	∅
	w Obs p 2	∅	∅	∅	∅	∅
	w Obs p 3					

e e e

Table 4 .

 4 5.3: Generated languages L Obs p k when new events of the sequence w Obs A 1 occurs. During the performance of sequence w Obs A 1 = e 23 e 14 e 13 e 37 e 36 e 23 e 33 e 32 e 35 occurrence of e 36 occurrence of e 23 {e 14 e 13 , e 13 e 37 , e 37 e 36 , e 14 e 13 e 37 , e 13 e 37 e 36 , e 14 e 13 e 37 e 36 } {e 14 e 13 , e 13 e 37 , e 37 e 36 , e 14 e 13 e 37 , e 13 e 37 e 36 , e 14 e 13 e 37 e 36 } L Obs p 2 {e 14 e 13 , e 13 e 37 , e 37 e 36 , e 14 e 13 e 37 , e 13 e 37 e 36 , e 14 e 13 e 37 e 36 } {e 14 e 13 , e 13 e 37 , e 37 e 36 , e 14 e 13 e 37 , e 13 e 37 e 36 , e 14 e 13 e 37 e 36 } L {e 13 e 37 , e 37 e 36 , e 36 e 33 , e 13 e 37 e 36 , e 37 e 36 e 33 , e 13 e 37 e 36 e 33 } {e 37 e 36 , e 36 e 33 , e 33 e 32 , e 37 e 36 e 33 , e 36 e 33 e 32 , e 37 e 36 e 33 e 32 } L Obs p 2 {e 13 e 37 , e 37 e 36 , e 13 e 37 e 36 } {e 37 e 36 } L {e 36 e 33 , e 33 e 32 , e 32 e 35 , e 36 e 33 e 32 , e 33 e 32 e 35 , e 36 e 33 e 32 e 35 } L By studying the languages obtained by adding a unique event, we can see than most of the sequences of the alphabet are kept from one step to another one. Indeed, if we 4.5. Application to the Case Study

	L Obs p 1			
	Obs p 3	∅ occurrence of e 33		∅ occurrence of e 32
	L Obs p 1			
	Obs p 3	∅	occurrence of e 35	∅
	L Obs p 1			
	Obs p 2		∅	
	L Obs p 3		∅	

Table 4 .

 4 5.4: Generated languages L Obs p k when new events of the sequence w Obs A 2 occurs. During the performance of sequence w Obs A 2 = e 36 e 29 e 28 e 23 e 16 e 15 e 18 e 17 e 23 occurrence of e 16 occurrence of e 15 {e 36 e 29 , e 29 e 28 , e 36 e 29 e 28 } {e 29 e 28 } L Obs p 2 {e 36 e 29 , e 29 e 28 , e 28 e 16 , e 36 e 29 e 28 , e 29 e 28 e 16 , e 36 e 29 e 28 e 16 } {e 29 e 28 , e 28 e 16 , e 16 e 15 , e 29 e 28 e 16 , e 28 e 16 e 15 , e 29 e 28 e 16 e 15 } L {e 28 e 16 , e 16 e 15 , e 15 e 18 , e 28 e 16 e 15 , e 16 e 15 e 18 , e 28 e 16 e 15 e 18 } {e 16 e 15 , e 15 e 18 , e 18 e 17 , e 16 e 15 e 18 , e 15 e 18 e 17 , e 16 e 15 e 18 e 17 } L {e 16 e 15 , e 15 e 18 , e 18 e 17 , e 16 e 15 e 18 , e 15 e 18 e 17 , e 16 e 15 e 18 e 17 } L

	L Obs p 1			
	Obs p 3	∅ occurrence of e 18		∅ occurrence of e 17
	L Obs p 1	∅		∅
	L Obs p 2			
	Obs p 3	∅	occurrence of e 23	∅
	L Obs p 1		∅	
	L Obs p 2			
	Obs p 3		∅	

Table 4 .

 4 5.5: Generated languages L Obs p k when new events of the sequence w Obs A 3 occurs. During the performance of sequence w Obs A 3 = e 39 e 38 e 2 e 1 e 4 e 7 e 6 e 5 e 3 occurrence of e 4 occurrence of e 7 {e 39 e 38 , e 38 e 2 , e 2 e 1 , e 1 e 4 , e 39 e 38 e 2 , e 38 e 2 e 1 , e 2 e 1 e 4 , e 39 e 38 e 2 e 1 , e 38 e 2 e 1 e 4 , e 39 e 38 e 2 e 1 e 4 } {e 38 e 2 , e 2 e 1 , e 1 e 4 , e 4 e 7 , e 38 e 2 e 1 , e 2 e 1 e 4 , e 1 e 4 e 7 , e 38 e 2 e 1 e 4 , e 2 e 1 e 4 e 7 , e 38 e 2 e 1 e 4 e 7 } occurrence of e 6 occurrence of e 5 {e 2 e 1 , e 1 e 4 , e 4 e 7 , e 7 e 6 , e 2 e 1 e 4 , e 1 e 4 e 7 , e 4 e 7 e 6 , e 2 e 1 e 4 e 7 , e 1 e 4 e 7 e 6 , e 2 e 1 e 4 e 7 e 6 } {e 1 e 4 , e 4 e 7 , e 7 e 6 , e 6 e 5 , e 1 e 4 e 7 , e 4 e 7 e 6 , e 7 e 6 e 5 , e 1 e 4 e 7 e 6 , e 4 e 7 e 6 e 5 , e 1 e 4 e 7 e 6 e 5 } occurrence of e 3

	L Obs p 1	∅	∅
	L Obs p 2	∅	∅
	L Obs p 3		
	L Obs p 1	∅	∅
	L Obs p 2	∅	∅
	L Obs p 3		
	L Obs p 1	∅	
	L Obs p 2	∅	
	L Obs p 3		

Table 4 .

 4 5.6: Pertinent intermediate probability for the distance computation of the example observed sequence and final distance.

	L Obs p 1	sequence u e 14 e 13 e 13 e 37 e 37 e 36 e 14 e 13 e 37 e 13 e 37 e 36 e 14 e 13 e 37 e 36	P (u|A k ) 0.01288334 0.01360917 0.01427535 0.00171671 0.00181342 0.00022875	max v∈Σ |u| A k 0.01628777 0.01628777 0.01628777 0.00277459 0.00277459 0.00052513	0.79098265 0.83554505 0.87644586 0.61872418 0.65358188 0.43560692	1 ||P P (L Obs p k 0.86705593 |A k )||
	L Obs p 2	e 14 e 13 e 13 e 37 e 37 e 36 e 14 e 13 e 37 e 13 e 37 e 36 e 14 e 13 e 37 e 36	0.01532699 0.01619049 0.01698303 0.00199506 0.00210746 0.00025955	0.01698303 0.01698303 0.01698303 0.00221062 0.00221062 0.00028759	0.90248889 0.95333333 1.0 0.90248889 0.95333333 0.90248889	0.97510402
	L Obs p 3	∅	/	/	/	0

[P (v|A k )] ||P (u|A k )||

  Dans notre cas d'application, l'activité A 3 répond à ce critère; 2. Une activité doit avoir deux actions sémantiquement proches, mais en pratique, réalisée différemment. Les actions Préparer un plat préparé et Faire des pâtes de notre cas d'étude répond à ce critère; 3. Un des moyens pour réaliser une activité doit être si proche d'une autre activité que la distinction entre ces deux activités est difficile. Dans notre cas, les actions préparées des pâtes de l'activité A 1 et préparer du thé de l'activité A 2 sont suffisamment proches pour répondre à ce cas; 4. En contraste avec le cas précédent, deux actions d'activités différentes doivent avoir une petite partie de leurs réalisations en commun et une grande partie différente. C'est le cas des actions préparer des pâtes de l'activité A 1 et préparer du café de l'activité A 2 .

Table C .

 C 0.1: Counting example during the activity A 2 performance. sequence w Obs A 2 = e 36 e 29 e 28 e 23 e 16 e 15 e 18 e 17 ∀e i ∈ Σ A 3 e 36 e 29 e 28 e 23 e 16 w Obs p 1 : e 36 e 29 e 28 w Obs p 2 : e 36 e 29 e 28 e 16 w Obs p 3 : ∅ ∅ e 29 e 28 e 23 e 16 e 15 w Obs p 1 : e 29 e 28 w Obs p 2 : e 29 e 28 e 16 e 15 w ∅ e 28 e 23 e 16 e 15 e 18 w Obs p 1 : e 28 w Obs p 2 : e 28 e 16 e 15 e 18 w Obs p 3 : ∅ Appendix C. Counting example during the activities hot beverage preparation and use bathroom performances. Table C.0.2: Counting example during the activity A 3 performance. sequence w Obs A 3 = e 39 e 38 e 2 e 1 e 4 e 7 e 6 e 5 ∀e i ∈ Σ A 3 e 39 e 38 e 2 e 1 e 4 w Obs p 1 : ∅ w Obs p 2 : ∅ w Obs p 3 : e 39 e 38 e 2 e 1 e 4 →e 4 ← 1 e 38 e 2 e 1 e 4 e 7 w Obs p 1 : ∅ w Obs p 2 : ∅ w Obs p 3 : e 38 e 2 e 1 e 4 e 7 Obs p 3 : e 2 e 1 e 4 e 7 e 6 Obs p 3 : e 1 e 4 e 7 e 6 e 5

	sliding windows	projected sequences	A 1 indicators changes	A 2 indicators changes	A 3 indicators changes
	Initial	∅	N 1 e i = 0 ∀e i ∈ Σ A 1	N 2 e i = 0 ∀e i ∈ Σ A 2	N 3 e i = 0
	sliding windows Initial e 2 e 1 e 4 e 7 e 6 w Obs ∅ p 1 : ∅ Obs p 3 : ∅ projected sequences w Obs p 2 : ∅ w ∅ ∅ e 1 ∅ A 1 indicators changes A 2 indicators changes N 1 e i = 0 ∀e i ∈ Σ A 1 N 2 e i = 0 ∀e i ∈ Σ A 2 N 1 init e 36 ← 1 N 1 e 36 ← 1 N 1 e 29 ← 1 N 1 e 28 ← 1 N 1 e 36 →e 29 ← 1 N 1 e 29 →e 28 ← 1 N 2 init e 36 ← 1 N 2 e 36 ← 1 N 2 e 29 ← 1 N 2 e 28 ← 1 N 2 e 16 ← 1 N 1 e 36 →e 29 ← 1 N 1 e 29 →e 28 ← 1 N 1 e 28 →e 16 ← 1 N 1 init e 29 ← 1 N 1 e 29 ← 2 N 1 e 28 ← 2 N 1 e 29 →e 28 ← 2 N 2 init e 29 ← 1 N 2 e 29 ← 2 N 2 ∅ N 3 init e 39 ← 1 A 3 indicators changes N 3 e i = 0 N 3 e 39 ← 1 N 3 e 38 ← 1 N 3 e 2 ← N 3 e 1 ← N 3 e 4 ← N 3 e 39 →e 38 ← 1 N 3 e 38 →e 2 ← 1 N 3 e 2 →e 1 ← 1 N 3 ∅ N 3 init e 38 ← 1 N 3 e 38 ← 2 N 3 e 2 ← N 3 e 1 ← N 3 e 4 ← N 3 e 7 ← N 3 e 38 →e 2 ← 2 N 3 e 2 →e 1 ← 2 N 3 e 1 →e 4 ← 2 N 3 e 4 →e 7 ← 1 e 28 ← 2 N 2 e 16 ← 2 N 2 e 15 ← 1 N 1 e 29 →e 28 ← 2 N 1 e 28 →e 16 ← 2 N 1 e 16 →e 15 ← 1 N 1 init e 28 ← 1 N 1 e 28 ← 3 N 2 init e 28 ← 1 N 2 e 28 ← 3 N 2 e 16 ← 3 N 2 e 15 ← 2 N 2 ∅ ∅ N 3 init e 2 ← 1 N 3 e 2 ← N 3 e 1 ← N 3 e 4 ← N 3 e 7 ← N 3 e 6 ← N 3 e 2 →e 1 ← 3 N 3 e 1 →e 4 ← 3 N 3 e 4 →e 7 ← 2 N 3 e 7 →e 6 ← 1 e 18 ← 1 N 1 e 28 →e 16 ← 3 N 1 e 16 →e 15 ← 2 N 1 e 15 →e 18 ← 1 e 1 e 4 e 7 e 6 e 5 w Obs p 1 : ∅ w Obs p 2 : ∅ w ∅ ∅ N 3 init e 1 ← 1 N 3 e 1 ← N 3 e 4 ← N 3 e 7 ← N 3 e 6 ← N 3 e 5 ← N 3 e 1 →e 4 ← 4 N 3 e 4 →e 7 ← 3 N 3 e 7 →e 6 ← 2 N 3

https://en.wikipedia.org/wiki/Viterbi_algorithm

Acknowledgments

In order to make my acknowledgments understandable by the concerned people, I will use the french and italian language in this page.

1. Les activités sont représentées par des modèles probabilistes : ces modèles sont compatibles avec le côté erratique du comportement humain. 2. Seulement des capteurs binaires et environnementaux sont utilisés : ces capteurs sont considérés comme non intrusifs et peu chers. L'objectif est donc de savoir jusqu'où on peut aller en n'utilisant que ces capteurs qui sont sémantiquement pauvres. 3. Les maisons équipées considérées pour appliquer notre méthode sont habitées par une seule personne. En effet, l'utilisation de capteurs binaires environnementaux ne permet pas de distinguer précisément quelle personne interagie avec quel capteur. Cette limitation à une seule personne surveillée n'est pas un problème, car,

Résumé

La plupart des travaux réalisés dans le domaine de l'assistance à l'autonomie à domicile (AAL) reposent sur l'utilisation de capteurs visuels et audio tels que des caméras. Or, ces capteurs sont souvent rejetés par le patient à cause de leur caractère invasif. Des approches alternatives requièrent l'utilisation de capteurs embarqués sur la personne (GPS, bracelets électroniques ou puces RFID dans les vêtements...), et leur pertinence est donc ramenée à l'hypothèse que les personnes les portes effectivement, sans jamais les rejeter ni les oublier.

Pour ces raisons que, dans cette thèse, nous trouvons plus pertinentes les approches

for all (begin_action, event, end_action) ∈ δ A k do 42: [(begin_action, event, end_action)] := P (begin_action → end_action) × P (event|end_action)

43:

end for 44: end for the complexity of the three AD is polynomial and can be approximated to:

In order to illustrated the presented AD method, an application is made in the next section.

Chapter 3. Activity Discovery At this point, the structures of the three activities A 1 : Cooking, A 2 : Hot beverage preparation and A 3 : Use bathroom are fully known. (4.33) This reduction time complexity is negligible in comparison with the computation time earned by using the reduced PFA A r k instead of the complete one A k .

Algorithm 5 Model reduction. Require:

and an event event ∈ Σ A k ; Outputs: two lists listGeq and listEqu giving Geq qg,q h (event) and Equ qg,q h (event) respectively. 2: function GeqEqu (A k ,q g ,q h ,event) if (q g , event, q h ) ∈ δ A k then 7:

proba_ref := P (q g , event, q h ) 8: // listGeq Creation:

proba_other := P (q g , other_event, q h ) GeqT ot := ∅ // GeqT ot is a dictionary with keys e j and values qg,q h ∈Q A k Geq qg,q h (e j ).

31:

EquT ot := ∅ // EquT ot is a dictionary with keys e j and values qg,q h ∈Q A k Equ qg,q h (e j ) 

add (q h , e i , q g ) to δ r A k 70:

add P (q h , e i , q g ) from

end if 72: end for Complexity reduction by computational simplification:

In addition to the model reduction, a computational simplification can be employed. Indeed, to compute the max

, a natural idea is to independently compute the value of P (v|A k ) for all possible v by applying the forward algorithm [START_REF] Jurafsky | Speech and language processing[END_REF]) that we will describe now as in Vidal et al. (2005a).

Probabilistic Finite-State Automaton, to be performed. Finally, the proposed approach has been applied to several test activities performed in the living lab presented in chapter 2 and the quality of the results obtained has been discussed.

Conclusions & Outlooks

Summary

The objective of this thesis was to propose a contribution in the field of ambient assisted living and activity of daily living monitoring by limiting the semantic level of the problem inputs. Indeed, three main limiting issues in the domain appear to be non-negligible: the instrumentation cost, the human non-determinism and the patient inability and privacy. These three points lead us to make four assumptions:

Assumption 1 Activities are represented by probabilistic models; Assumption 2 Only binary and environmental sensors are used; Assumption 3 The considered smart home has a single inhabitant; Assumption 4 The knowledge of the actually performed activity is not required. These assumptions bring us to use paradigms, theory and tools of the discrete event system domain. By considering an inhabitant generating sensor events by living in a smart home and using an initial expert knowledge, a new framework to discover and recognise activities performed by the inhabitant was proposed. In order to develop this framework, we built a living lab adapted to our hypothesis and we developed two main contributions, detailed and presented in this thesis.

A living lab installation and a protocol to test the developed methods

Since the subject treated in this thesis is directly related to a real problem of society requiring concrete solutions, all the methods presented in this thesis must be applicable on a real case. The development of the methods cannot be decoupled with the technical application. Therefore, in the first time, several living labs were introduced and their utility in applying our methods using their datasets was discussed. Unfortunately, the limitations of the assumptions previously taken make living labs currently known not fully adapted to our methods. These incompatibilities are mainly due to a lack of information on smart homes equipped.

To cope with this problem, a new living laboratory has been developed at ENS Paris-Saclay. This ambient assisted living test area (AALTA) is presented and the placement of objects and sensors is given. A necessary expert decomposition in the activity discovery method is also detailed. Finally, the experimental protocol used to generate test databases is developed and explained.

An activity discovery method using probabilistic finite-state automata

An approach to discover the human activities of daily living has been proposed and illustrated. An activity modelling procedure using probabilistic finite-state automata was developed based on the knowledge of a training event log database and thanks to an expert decomposition of activities into actions related to the smart home events. The main advantage of this method is related to the Assumption 4 of this thesis which avoids the use of activity labelling during the learning phase to generate the models.

Appendix

A Proofs

Notations

In order to prove Proposition 4.1, the following notation is defined:

Equ q l ,qm (e i );

• {e eq } e i is the set of all possible e eq associated to e i ;

• e sup ∈ Σ A k such as e sup ∈ q l ,qm∈Q A k Geq q l ,qm (e i ) and e sup / ∈ q l ,qm∈Q A k Equ q l ,qm (e i );

• {e sup } e i is the set of all possible e sup associated to e i .

Thus, by definition it holds:

{e eq } e i + {e sup } e i = q l ,qm∈Q A k Geq q l ,qm (e i ). 

Proof. In equation (4.26), only event e i with {e sup } e i = ∅ are kept in the reduced PFA A r k . We prove that the rejection of events having {e sup } e i = ∅ does not change the value of the maximum likelihood.

Let w = w ′ 1 ...w ′ k ...e i ...w ′ |w|-1 w ′ |w| be a sequence of events and e i is one of the events in the sequence.

Let w = w ′ 1 ...w ′ k ...e sup ...w ′ |w|-1 w ′ |w| be a sequence of events that equals sequence w but for event e i , which is changed by e sup ∈ {e sup } e i .

At this point, two case exist ∀ql, q(m ∈ Q A k :

• P (q l , e sup , q m ) = P (q l , e i , q m ) if e sup ∈ Equ q l ,qm (e i )

• P (q l , e sup , q m ) > P (q l , e i , q m ) if e sup / ∈ Equ q l ,qm (e i ) Thus, for each path θ = (s 0 , w