Thèse De Doctorat

Xueying Shen

Virginie Gabrel

Virginie Mme

Gabrel

M Fabio

Furini M Filippo

Focacci Decisionbrain

M Stéphane

M Roberto

Wolfler Calvo

M Vincent Giard

Complex lot Sizing problem with parallel machines and setup carryover 28.11.2017

In this thesis, we study two production planning problems motivated by challenging real-world applications.

In the first part of this manuscript, a production planning problem for an apparel manufacturing company is studied and an optimization tool is developed to tackle it.

We propose a decomposition framework composed by an aggregated model and a detailed model, which are solved in sequence. The aggregated problem is shown to be the bottleneck of the approach, which corresponds to a complex capacitated lot sizing problem with setup carryover, parallel machines, production time windows, backlogging and lost sales. This problem is shown to be NP-hard even without the setup costs.

Several Mixed Integer Programming (MIP) formulations are proposed and compared from a theoretical and a computational point of view. Moreover, several constructive and local search heuristics are developed to find good quality solutions for large scale instances. We propose two sets of benchmark instances to evaluate the performances of the models and the heuristics. Thanks to extensive computational tests, we showed that the constructive heuristic (called First-Solution Heuristic) together with a Fix&Optimize algorithm is able to compute the best solutions in terms of optimality gap. Finally, the whole production planning approach is presented and its performance is analyzed.

In the second part of this manuscript, a restricted version of the capacitated lot sizing problem with sequence dependent setups is studied, where the setup sequences for each time bucket have to follow the order of a given sequence. Compared to the capacitated lot sizing problem with sequence dependent setup, the new model reduces the number of candidate setup sequences from O(n!) to O(n2 n) where n is the number of products. This problem is shown to be NP-hard. A special case with only two possible setup values is studied and we prove that also in this case the problem remains NP-hard. Moreover, product-oriented and sequence-oriented MIP formulations are developed. A column generation heuristic is also proposed based on the sequence-oriented formulations. Finally, we perform computational tests to evaluate their respective computational performance.

ii To my dearest grandfather Shen Fengzhi.

iii "Don't worry, Gromit. Everything's under control!" -The Wrong Trousers, Aardman Animations, 1993 iv Chapter 1

Industrial and Scientific Context

In this manuscript, our research focuses on production planning. The problem is to optimize production plan in manufacturing industry to achieve high customer service level and cost efficiency. Due to our industrial background, we have been exposed to various types of real-world applications. Therefore, all our research is motivated by realistic requirements that we have encountered in building industrial production planning solutions. First, we have studied a production planning problem from apparel manufacturing industry. This problem is brought to our attention by a project that we have worked with a market leader in the apparel industry, which produces 60% of the T-shirts sold in the US. Our research result, including modeling and algorithm design, has been implemented inside the engine of their production planning and scheduling software and improves the daily production efficiency. Second, we have studied a restricted version of a classical production planning problem: capacitated lot sizing problem with sequence dependent setups, which is known to be hard to solve. This newly proposed model considers the planners knowledge in certain industries and therefore simplifies the classical model. By doing so, there is a better chance to deliver reasonable production planning solutions for industries where our model is applicable. This chapter is organized as follows: In Section 1.1, we present our research background and introduce our study interest at production planning. In Section 1.2, we describe a general picture of production planning, i.e., lot sizing problem. In Section 1.3, the real-world application of production planning problem in apparel manufacturing is introduced. Finally, we summarize major contributions of our research in Section 1.4 as a reading guide for the rest of this manuscript.

Introduction

Our research is performed under the CIFRE program (Conventions Industrielles de Formation par la REcherche) [30]. Therefore, it is a collaboration between Paris Dauphine University and DecisionBrain (https://www.decisionbrain.com). DecisionBrain is a software company that delivers advanced analytics and optimization solutions to innovative companies who want to apply a scientific approach to decision making. Building production planning and scheduling solution is one of DecisionBrain's expertise.

Generally speaking, production planning is to decide the production for a future period of time (planning horizon) given limited resources and/or production restrictions to achieve optimal customer service level and cost efficiency. Here is a small example modified from [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF] to illustrate the concept. An apparel manufacturer produces different types of costumes. One specific type of costumes requires a high setup cost due to the special technique and equipment needs, therefore at most one batch can be produced in one month. Given 200 units of stock at the end of the year, the goal is to plan the production of this costume for the next 8 months (January to August) to minimize the cost while satisfy all forecasted demands. The cost includes: setup cost as $5000 if there is a positive production in a month, unitary processing cost $100, and unitary inventory cost $5. The demand forecast for the next 8 months is given in Table 1.1 and we need to decide the production quantity for each month. If it is only to minimize the manufacturing cost (setup cost and production cost), we can produce only once in January to satisfy total demands till August. The solution is given in Table 1.2 and the total cost equals to $859,000. This cost includes $700,000 (7,000 x 100) processing cost, $154,000 (30,800 x 5) inventory cost and $5,000 (5,000 x 1) setup cost. If it is only to minimize the inventory cost, we can follow the just-in-time rule and produce in each month the amount it requires. The total cost becomes $740,000 and the solution is given in Table 1.3. However, if it is to minimize the overall cost, the optimal solution has total cost equals to $736,000 and the optimal solution is given in Table 1.4. In the optimal solution, there are two months (February and April) that have no production.

decision process could have a non-negligible impact on their profits and competences.

Another reason of the tremendous interest shown in literature in production planning is that different manufacturing industry implies different production planning problems.

Therefore production planning problems occur with many variations each with its own complexity and challenges. For instance, to the best of our knowledge, production planning problems studied in this manuscript have never been addressed before.

There are several production planning projects explored in DecisionBrain from different industries, such as apparel manufacturing, semi conductor assembling and testing, and disposable table-ware production (Figure 1.1). Research presented in this manuscript is mainly motivated by the project with an apparel company, which is to build a production planning and scheduling software to arrange mid term and short term productions. The details of this application is presented in Section 1.3. But first of all, we give a general introduction on the production planning problem in Section 1.2, which is also referred as lot sizing problem. Lot Sizing Problem (LSP) is to plan production resources and activities, especially determine production quantities, to achieve the economical cost and/or more intangible objectives such as customer service level. The history of LSP can be traced back to the publication of Harris [START_REF] Harris | How many parts to make at once[END_REF], which proposes the Economic Order Quantity (EOQ) model.

This problem has continuous time model with infinite time horizon, and all parameters such as demand quantity and inventory holding cost are constant. The solution of this problem can be obtained by a formula directly. Later, different extensions of EOQ have been studied such as Economic Lot Scheduling Problem (ELSP), which extends the problem to multi-item and considers capacity constraints. It is shown to be NP-hard in Gallego and Shaw [START_REF] Gallego | Complexity of the elsp with general cyclic schedules[END_REF]. However, both EOQ and ELSP consider constant parameters, which is not always the case in real applications. The Wagner-Whitin (WW) model was studied in the seminal papers of Wagner and Whitin [START_REF] Wagner | Dynamic version of the economic lot size model[END_REF] and Manne [START_REF] Manne | Programming of economic lot sizes[END_REF] in late 50's.

In this model, the planning horizon is decomposed into time buckets and demand quantities vary with time buckets. Therefore, the WW model extends constant parameters to dynamic parameters varying with time and thus is referred to dynamic LSP.

The WW model is defined as follows: Given a planning horizon with T time buckets, let d t be the product demand quantity for each time bucket t ∈ {1, 2, . . . , T }. The unit inventory holding cost is h t . Moreover, in each time bucket, to produce a positive quantity of products, there is a setup cost sc t . The problem is to determine the production quantity in each time bucket so that all demands are satisfied with minimum cost. This problem can be formulated as follows: min T t=1 h t I t + sc t z t s.t. I t-1 + x t = d t + I t t ∈ {1, 2, . . . , T }

I 0 = I T = 0 x t ≤ b t z t t ∈ {1, 2, . . . , T } x ∈ R T + , I ∈ R T +1 + , z ∈ {0, 1} T (1.1)
where b t is the maximum production quantity in time bucket t.

Different classification schemes are used in literature reviews of LSP such as De Bodt et al. [START_REF] De Bodt | Lot sizing under dynamic demand conditions: A review[END_REF], Drexl and Kimms [START_REF] Drexl | Lot sizing and scheduling Survey and extensions[END_REF], Staggemeier and Clark [START_REF] Staggemeier | A survey of lot-sizing and scheduling models[END_REF] and Guner Goren et al. [START_REF] Guner Goren | A review of applications of genetic algorithms in lot sizing[END_REF]. One of the classification scheme divide LSP from two dimensions: models with stationary or dynamic parameters, models with deterministic or stochastic parameters (see Figure 1.2). According to this classification scheme, the EOQ and ELSP will lie in the stationary model whereas the WW model and its extensions lie in the dynamic model.

Figure 1.2: Technical structure of lot sizing problem in Glock et al. [START_REF] Glock | The lot sizing problem: A tertiary study[END_REF] In this manuscript, our focus is the deterministic extensions of the WW model, which is Deterministic Dynamic LSP with finite time horizon (DDLS). Giving a comprehensive survey on the literature of DDLS becomes an "impossible mission" due to the flourish research in this domain. For more than half a century development of DDLS, more than 30 literature review papers and books have been published and even two reviews of literature reviews on production planning and inventory management are given by Glock et al. [START_REF] Glock | The lot sizing problem: A tertiary study[END_REF] and Guiffrida et al. [START_REF] Guiffrida | A review of inventory lot sizing review papers[END_REF]. To avoid duplication but still provide a set of references for interested readers, we summarize the survey papers related to DDLS in Table 1.5. They are from Glock et al. [START_REF] Glock | The lot sizing problem: A tertiary study[END_REF] and Guiffrida et al. [START_REF] Guiffrida | A review of inventory lot sizing review papers[END_REF] together with several papers and books that we believe worth mentioning. Some papers are not included in the table since their focus is not lot sizing problem.

For example, Gelders [START_REF] Gelders | Production planning: a review[END_REF] mainly focuses on the state of the art progress in the production planning, where LSP takes only one section. It covers the WW model, multi-level uncapacitated LSP, capacitated LSP and ELSP, mainly from the perspective of heuristic algorithms. Bitran and Yanasse [START_REF] Bitran | Computational Complexity of the Capacitated Lot Size Problem[END_REF] studies the capacitated LSP and gives complexity analysis over various cost structures. Nahmias [START_REF] Nahmias | Perishable inventory theory: A review[END_REF] gives an overview of the perishable ordering policy, only one paper about deterministic LSP is mentioned, which has random decay.

Table 1.5: Overview of review papers of deterministic dynamic LSP LSP (such as planning horizon, static/dynamic demands).

Wolsey [START_REF] Wolsey | Progress with single-item lot-sizing[END_REF] Single item uncapacitated LSP.

Benton and Park [START_REF] Benton | A classification of literature on determining the lot size under quantity discounts[END_REF] LSP with several types of discount schemes. Four discount types are surveyed from both the buyer point of view and the supplyer point of view.

Drexl and Kimms [START_REF] Drexl | Lot sizing and scheduling Survey and extensions[END_REF] General review of the LSP and scheduling. Single/multi level. For the single level, discrete time and continuous time model are considered.

Goyal and Giri [START_REF] Goyal | Recent trends in modeling of deteriorating inventory[END_REF] The deteriorating inventory literature review as a continuation of Raafat [START_REF] Raafat | Survey of literature on continuously deteriorating inventory models[END_REF].

Shelf life, demand variations and other conditions or constraints.

Rizk and Martel [START_REF] Rizk | Supply chain flow planning methods: a review of the lot-sizing literature[END_REF] Material flow planning in a supply chain, and in particular with deterministic lot-sizing methods.

Single/multiple facility, single/multiple level, single/ multiple items, capacitated/uncapacitated, deterministic/ stochastic, static/dynamic demand.

Table 1.5: Overview of review papers of deterministic dynamic LSP (continue)

Staggemeier and Clark [START_REF] Staggemeier | A survey of lot-sizing and scheduling models[END_REF] LSP and scheduling models and its algorithms. Time period, multi machines and other constraints.

Karimi et al. [START_REF] Karimi | The capacitated lot sizing problem: A review of models and algorithms[END_REF] Models and algorithms of capacitated LSP with single level. Planning horizon, number of levels, number of products, capacity or resource constraints, deterioration items, static/dynamic/deterministic/stochastic demand, setup structure, inventory shortage.

Brahimi et al. [START_REF] Brahimi | Single item lot sizing problems[END_REF] Single item LSP. Big/small time buckets, uncapacitated (extensions such as backlogging, multiple facilities) and capacitated (different cost structures).

Pochet and Wolsey [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF] Mixed integer programming formulations for the LSP and its variants Zhu and Wilhelm [START_REF] Zhu | Scheduling and lot sizing with sequencedependent setup: A literature review[END_REF] LSP and scheduling with sequence dependent setup.

Jans and Degraeve [START_REF] Jans | Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches[END_REF] An overview of the use of meta-heuristics for solving LSP. Algorithm representation, evaluation, neighborhood definition and genetic operators.

Jans and Degraeve [START_REF] Jans | Modeling industrial lot sizing problems: a review[END_REF] Modeling deterministic single-level dynamic LSP based on various industrial extensions.

Basic LSP models and their extensions from two directions:

modeling the operational aspects in more details, or is more towards tactical and strategic models.

Quadt and Kuhn [START_REF] Quadt | Capacitated lot-sizing with extensions: A review[END_REF] Extensions of the capacitated LSP: back-orders, setup carryover, sequencing, and parallel machines.

Back-orders, setup carry-over, sequencing, and parallel machines.

Allahverdi et al. [START_REF] Allahverdi | A survey of scheduling problems with setup times or costs[END_REF] LSP with setup cost and setup times.

Robinson et al. [START_REF] Robinson | Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms[END_REF] Updates the review by Aksoy and Selcuk Erenguc [START_REF] Aksoy | MultiItem Inventory Models with Coordinated Replenishments: A Survey[END_REF] of the coordinated LSP.

Single/multiple items, coordinated/uncoordinated setup cost structures, capacitated/uncapacitated.

Buschkühl et al. [START_REF] Buschkühl | Dynamic capacitated lot-sizing problems: A classification and review of solution approaches[END_REF] Mainly survey the algorithms for the dynamic capacitated LSP for single level and multi level.

Mathematical programming heuristics, Lagrangian heuristics, decomposition and aggregation heuristics, metaheuristics, problem-specific greedy heuristics.

Guner Goren et al. [START_REF] Guner Goren | A review of applications of genetic algorithms in lot sizing[END_REF] A review of applications of genetic algorithms in LSP. Static/dynamic, single/multi level, capacitated/uncapacitated Capacitated Lot sizing problem Among all problems in the domain of DDLS, our focus is at one type of LSP which considers the limited resource/machine capacity, called Capacitated Lot Sizing Problem (CLSP). Considering different features and cost structures will lead to different types of CLSP. Based on problems studied in this manuscript, we introduce the CLSP model with following parameters:

• N = {1, 2, . . . , N } a set of N products.

• T = {1, 2, . . . , T } a set of T time periods.

• cap t : machine capacity in each time period t ∈ T .

• d it : demand of each product i ∈ N in time period t ∈ T .

• pt i : unitary production time of each product i ∈ N .

• hc it : unitary inventory cost of each product i ∈ N in time period t ∈ T .

• b it : maximum amount of production i that can be produced in t ∈ T .

• st i : setup time to product i ∈ N .

• sc i : setup cost to product i ∈ N .

CLSP is to decide the production quantity of each product in each time bucket so that all demands are satisfied with a minimum total cost while respecting machine capacities.

Due to the capacity constraints, the problem is shown to be NP-hard even when there is only a single product by Florian et al. [START_REF] Florian | Deterministic Production Planning: Algorithms and Complexity[END_REF] and Bitran and Yanasse [START_REF] Bitran | Computational Complexity of the Capacitated Lot Size Problem[END_REF]. In the case of multiple products, Chen and Thizy [START_REF] Chen | Analysis of relaxations for the multi-item capacitated lot-sizing problem[END_REF] proved that it is strongly NP-hard.

Karimi et al. [START_REF] Karimi | The capacitated lot sizing problem: A review of models and algorithms[END_REF] have done a nice survey focusing on CLSP with production cost and its solution approaches. Quadt and Kuhn [START_REF] Quadt | Capacitated lot-sizing with extensions: A review[END_REF] have provided a survey of CLSP with extensions including back-orders, setup carryover, sequencing and parallel machine.

Developing mathematical formulations is the very first step of our research since problems studied in this manuscript have not been studied before to the best of our knowledge. Therefore, in this section, we recall three Mixed Integer Programming (MIP) formulations of CLSP that have been studied and often adapted to other extensions of CLSP in the literature. These formulations are aggregated formulation, facility location formulation and network formulation.

Aggregated (AG) formulation is an intuitive formulation and was proposed by

Trigeiro et al. [START_REF] Trigeiro | Capacitated Lot Sizing with Setup Times[END_REF]. We introduce following variables for each product i ∈ N and time bucket t ∈ T :

• x it ∈ R + : quantity of product i produced in time bucket t;

• I it ∈ R + : inventory of product i at the end of time bucket t;

• z it ∈ {0, 1}: it equals to 1 if product i is produced in time bucket t, 0 otherwise.

The formulation is given as follows: min i∈N ,t∈T

hc it I it + i∈N ,t∈T sc i z it (1.2) s.t. I i,t-1 + x it = I it + d it i ∈ N , t ∈ T (1.3) i∈N pt i x it + i∈N sc i z it ≤ cap t t ∈ T (1.4) x it ≤ b it z it i ∈ N , t ∈ T (1.5)
x it , I it ≥ 0, I i,0 = 0 i ∈ N , t ∈ T (1.6)

z it ∈ {0, 1} i ∈ N , t ∈ T (1.7)
The objective function (1.2) is to minimize the total cost including inventory cost i∈N ,t∈T hc it I it and setup cost i∈N ,t∈T sc i z it . Constraints (1.3) ensure material balance for each product i in each time bucket t that the total inflow (last bucket ending inventory and production quantity) equals to the outflow (demand d it and ending inventory). Constraints (1.4) guarantee the capacity usage does not exceed the available capacity in each time bucket. Finally, constraints (1.5) link production with setup: there is only a production if there is a corresponding setup for each product in each time bucket.

Facility Location (FL) formulation was first proposed by Krarup and Bilde [START_REF] Krarup | Plant location, set covering and economic lot size: An o(mn) algorithm for structural problems[END_REF] for cases without capacity restrictions. It is also referred as the transportation problem formulation [START_REF] Denizel | Equivalence of the LP relaxations of two strong formulations for the capacitated lot-sizing problem with setup times[END_REF] and simple plant location formulation [START_REF] Krarup | Plant location, set covering and economic lot size: An o(mn) algorithm for structural problems[END_REF]. Later it has been adapted to other LSP [124]. We introduce decision variables as follows for each product i ∈ N , time bucket t, k such that t ≤ k ∈ T :

• x itk ∈ R + : quantity of product i produced in time bucket t to satisfy demand in later time bucket k;

• z it ∈ {0, 1} is defined as before, it equals to 1 if product i is produced in time bucket t, 0 otherwise.

x itk ≤ min{b it , d ik }z it i ∈ N , t ∈ T , t ≤ k ∈ T (1.11)
x itk ≥ 0 i ∈ N , t ∈ T (1.12)

z it ∈ {0, 1} i ∈ N , t ∈ T (1.13)
There is a direct link between variables introduced in AG model and those introduced in FL formulation:

x it = k∈T :t≤k

x itk I it = s∈T :s≤t k∈T :t<k

x isk Therefore, the objective function is a simple substitution. Constraints (1.9) state that the total production quantity dedicated for demand d ik equals to the demand quantity.

Constraints (1.11) link the production quantity x itk with the corresponding setup z it .

Here the upper bound of x itk is no greater than the upper bound of x it , which is the main reason that FL is stronger than AG formulation in the sense of better lower bound from Linear Programming (LP) relaxation. The price for the tighter lower bound is the number of variables, which is increased to O(N T 2).

Network (NW) formulation was first proposed by Eppen and Martin [START_REF] Eppen | Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition[END_REF]. It is also referred as shortest path/route formulation [START_REF] Denizel | Equivalence of the LP relaxations of two strong formulations for the capacitated lot-sizing problem with setup times[END_REF][START_REF] Sox | The capacitated lot sizing problem with setup carryover[END_REF]. We introduce decision variables as follows for each product i ∈ N , time bucket t, k such that t ≤ k ∈ T :

• u itk ∈ [0, 1]: fraction of total demand from time bucket t through k of item i that is produced in t;

• z it ∈ {0, 1} is defined as before, it equals to 1 if product i is produced in time bucket t, 0 otherwise.

We also define following constant for simplicity of the formulation:

D itk = k v=t d iv , H itk = k v=t+1 h i,v-1 D ivk , I D itk = 1 if D itk > 0 0 otherwise
The formulation is given as follows: min k∈T :k≤t

u itk i ∈ N , 1 < t ∈ T (1.
I D itk u itk ≤ z it i ∈ N , t ∈ T (1.18)
u itk ≥ 0 i ∈ N , t ∈ T (1.19) z it ∈ {0, 1} i ∈ N , t ∈ T (1.20)
The formulation is easier to understand if we see variables u itk only as binary value.

Then based on the proof in [START_REF] Eppen | Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition[END_REF], the formulation is still valid when u itk ∈ [0, 1]. When u itk = 1, its corresponding production quantity equals to D itk and inventory cost equals to H itk . The objective function (1.14) is still to minimize the inventory cost and setup cost. Constraints (1.15) ensure capacity restriction in time bucket t. Constraints (1.16) and (1.17) represent flow balance constraints for the source node and other nodes in the underlying network. Constraints (1.18) link production with its corresponding setup for each product i in time bucket t.

FL and NW models are stronger reformulation of AG model for CLSP. Nemhauser

and Wosley [START_REF] Nemhauser | Integer and combinartorial optimization[END_REF] has shown that in the uncapacitated case, both LP relaxations of FL and NW define the convex hull of the problem. Denizel et al. [START_REF] Denizel | Equivalence of the LP relaxations of two strong formulations for the capacitated lot-sizing problem with setup times[END_REF] further proved the equivalence of the LP relaxations of FL and NW formulations for CLSP with constant unitary inventory cost h i . They also point out that FL formulation has more constraints while its constraint matrix is less dense and has smaller coefficients, therefore different characteristics may be exploited to choose between these two reformulations.

In the next section, we start from another perspective and introduce the real-word application that motivates the first part of our research.

Production Planning in An Apparel Manufacturing Application

The main problem studied in this manuscript is brought to our attention by a project in manufacturing industry. The company is a market leader in the apparel industry, which produces 60% of the T-shirts sold in the US. On-time delivery, low production and shipping cost is a critical competitive advantage for the company. To achieve this goal on such large scale, it is essential to optimize production planning and scheduling to perform efficient production. To model and solve the underlying production planning problem, we need to first understand the manufacturing procedure and bottlenecks in this particular case study. Hence, in Section 1.3.1, we first present the apparel company, its manufacturing procedure and bottlenecks. In section 1.3.2, we present the modeling of the problem, which leads to the CLSP studied in Chapters 2 -4.

An Apparel Manufacturing Application

The company has 10 manufacturing plants over Asia, however, they are independent on the production planning and scheduling level. Therefore, the problem scope is considered as a single plant. A plant layout example is shown in Figure 1.3. In each plant, there are several work centers, each of which corresponds to a production operation. In other words, to produce one piece of clothes, it has to go through several work centers to finish.

Moreover, there are normally more than one machine in each work center. Therefore, the production planning has to decide the production quantity for each production line.

This implies parallel machines in the underlying lot sizing problem and leads to the first difficulty of the problem. To produce one piece of clothes, all or some of following operations have to be done in sequence which includes cutting, embroidery, sewing, washing, ironing/dipping, packing and cartoning. In Figure 1.4, we show the entire manufacturing processes. Each product has a specific production routing. Some orders will route through all the operations, while some orders may skip certain operations (such as washing). On the other hand, some orders will go through the ironing operation, while some orders will go through dipping operation instead. Among all these processes, we could identify a bottleneck step, which is the sewing process. This is not only because that it mainly depends on workers instead of machines but also because that it consumes most of the time during the production cycle. Due to this reason, we only model the production planning on the sewing process, which leads to the lot sizing problem with single level. Sewing process is the craft of fastening or attaching objects using stitches made with a needle and thread. As an apparel company, it produces different types of products such as T-shirts, pants and costumes. In fact, each client demand corresponds to one particular product. This is the third difficulty of our problem that 400 to 1000 products have to be produced in the realistic instances. Different products have different unitary processing time therefore can not be aggregated directly.

Products can be grouped into about 400 different styles in total, which can be further grouped into about 50 style families (currently they are regrouping them to 150+ style families). On a sewing line, changing the style family from one to another requires a setup and an efficiency loss, which is known as learning curve. In this application, the learning curve is given as a list of worker efficiency over 10 working days instead of a function (see example in Table 1.6). Given a product, the processing time of sewing is

given by the time needed to process one item divided by the efficiency of the sewing line (which is 1 maximum). To achieve the best efficiency, the same style family is usually kept for a few days (1 to 2 style families per week) on a sewing line. For small orders, style family can be changed daily. Within the same style family, a style change will also cause a setup cost and setup time, which is minor comparing to style family change.

This leads to the fourth difficulty of our problem that setup is sequence dependent, i.e., it depends not only on the current product but also the previous product. LSP with sequence dependent setup is known to be very hard to solve since there is Traveling Salesman Problem embedded inside. Each sales order, i.e., demand, specifies the product required, the quantity, the shipping destination and the due date. It is allowed to delay the delivery or even cancel the delivery of a sale order, however, corresponding penalty will be charged accordingly.

There are two levels of tardiness cost. The first level corresponds to a shipment cost by airplane instead of maritime to catch up the due date. The second level corresponds to a compensation for the orders delivered too late. This leads to a different model from classical LSP that we have introduced in Section 1.2 that demands can be delayed or lost with penalty cost, and the cost is defined during a interval. This feature is often referred as lost sale and backlogging in the literature.

Some aspects are out of the scope of this project. First, the ordering and management of raw material. The existing MRP system will generate the earliest available date for all the raw materials in an order. This date will be used as the earliest possible start time for an order. Second, demand forecasting. All work orders confirmed or forecasted are treated the same as an input to our system. However, as one way to reduce uncertainty, forcasted demands also have a start date to prevent them from producing too early.

Therefore, we have a release date for each demand that only after which the production for this demand can start.

To make use of the planning resources efficiently, the company would like to plan its production activities for a future period of time, which is called planning horizon. The duration of the planning horizon considered is between 24 weeks to 56 weeks. The major objective of the production planning includes: maximization of the on-time delivery rate, minimization of the late shipment cost (including expediting transportation cost and sales loss cost), minimization of the learning curve loss and setup costs on the sewing lines. The minimization of the labor cost (due to overtime) is also one goal which is not considered in the project currently.

Production Planning Problem Modeling

To be able to optimize the production planning in this apparel project, we first have to extract the mathematical model out of the context. Modeling large scale real-world application is always a trade-off between accuracy and solvability, and often has a big impact on the solution quality. In Table 1.7, we present the mapping between the application aspects presented in previous section to a lot sizing problem we will study in following chapters. Lot sizing problem with up to seven levels is very complex. Therefore, we only model the bottleneck process and study the single level LSP. Modeling setup and learning curve accurately on the sewing production line will dramatically increase the problem complexity. In order to achieve reasonable performance, we simplify the problem in the production planning level and deal with them in the scheduling phase. First, all setup between styles within the same style family is ignored. Second, each learning curve is transformed to a total capacity loss. In our example in Table 1.6, the efficiency loss

equals to (1 -0.6) + (1 -0.65) + (1 -0.7) + (1 -0.8) + (1 -0.9) = 1.35.
Then the capacity loss will be 1.35 × dailyCapacity and the new setup time equals to capacity loss, which depends on both products and production lines. Third, we relax the sequence dependent setup to setup carryover so that the model still prefers to keep the same style family on a production line, but with less complexity.

In summary, the lot sizing problem based on this project consists of single level production, multiple products, parallel machines, backlogging, lost sale, production time window and setup carryover. To the best of our knowledge, this problem is first studied in this manuscript. We will formally define the problem and perform study on it in the following chapters. In the next section, we summarize our major contributions.

Contributions

In this section, we provide a contribution summary of our research, which can be used as a reading guide for the rest of this manuscript.

First of all, a complex capacitated lot sizing problem with setup carryover is formulated and studied, which is based on the real-world application introduced in Section Second, a special case of capacitated lot sizing problem with sequence dependent setup is studied in Chapter 5, which is called CLSP with a fixed product sequence. In many manufacturing industry, switching production from one product to another will cause setup operations. The setup will consume limited machine capacity and/or cause a setup cost. When the setup depends on the production sequence, i.e., the setup to produce current product depends on both itself and the previous produced product, it is called sequence dependent setup [START_REF] Fleischmann | The discrete lot-sizing and scheduling problem with sequence-dependent setup costs[END_REF][START_REF] Guimarães | Modeling lotsizing and scheduling problems with sequence dependent setups[END_REF]. In this case, both lot sizing and sequencing decisions have to be made. The difficulty of this problem lies in the factorial number of setup sequence candidates to be chosen from for each time bucket. However, in certain manufacturing industries, this number may be reduced if we restrict the model based on the planners' knowledge. We consider a restricted model in which the number of potential setup sequences is reduced to O(n2 n) compared to O(n!) for the CLSP with sequence dependent setups. The problem is shown to be NP-hard, and a column generation heuristic is developed. A set of benchmark instances is tested and computational results are presented to evaluate the algorithm performance.

Chapter 2

Complex Capacitated Lot Sizing Problem: Formulations and

Benchmarks

A complex capacitated lot sizing problem is constructed from the apparel manufacturing application presented in the previous chapter. This capacitated lot sizing problem consists of complex features including parallel machines, production time windows, backlogging, lost sales and setup carryover [START_REF] Focacci | MIP Formulations for a Rich Real-World Lot-Sizing Problem with Setup Carryover[END_REF]. These features have been studied in different context of lot sizing problems. However, to the best of our knowledge, they are first considered together in this application. In this chapter, we formally define, formulate and analyze the problem.

The chapter is organized as follows: In Section 2.1, we formally define the complex capacitated lot sizing problem. In Section 2.2, we present the literature review of lot sizing problem closely related to our problem classified by features. In Section 2.3, four mixed integer programming formulations are proposed and compared theoretically. In Section 2.4, benchmark instances are presented, including both application instances and pseudo-randomly generated instances with realistic characteristics. In Section 2.5, computational results are presented to evaluate developed formulations. Finally, we conclude in Section 2.6.

Problem Definition

Input parameters of the problem are:

• T = {1, 2, . . . , T }: set of time buckets.

• R = {1, 2, . . . , R}: set of resources/machines.

• N = {1, 2, . . . , N }: set of products.

• D = {1, 2, . . . , D}: set of demands.

• cap rt : capacity of machine r in time bucket t (r ∈ R, t ∈ T).

• pt i : unitary processing time of product i (i ∈ N).

• st ir : setup capacity for product i on machine r (i ∈ N ,r ∈ R).

• sc ir : setup cost for product i on machine r (i ∈ N ,r ∈ R).

• • D i ⊆ D: the subset of demands such that

p d = i, i.e., D i := {d ∈ D|p d = i}.
The problem is to decide for each machine r ∈ R and in each time bucket t ∈ T , how much to produce of each product i ∈ N . The objective is to minimize the total cost including lost sale cost, tardiness cost and setup cost. The restriction includes three parts: first, the machine capacities cap rt must not be exceeded by the capacity usage for each machine r ∈ R and time bucket t ∈ T ; second, the production to satisfy demand d can only start from its release date; last, setup carryover is considered. This means that to produce product i on machine r during time bucket t, there has to be a setup for i on r during t. However, if product i is the last product produced in the previous time bucket t -1 on machine r, there is no setup needed to produce product i on machine r during time bucket t anymore. Proof. The result follows from the fact that CLSP is strongly NP-hard [START_REF] Chen | Analysis of relaxations for the multi-item capacitated lot-sizing problem[END_REF], which can be seen as a special case of CLSC.

st ir r 1 r 2 i 1 1 1 i 2 1 1 i 3 1 1 sc ir r 1 r 2 i 1 5 5 i 2 3 3 i 3 3 3
Theorem 2.2. CLSC without setup cost is NP-hard.

Proof. Trigeiro et al. [START_REF] Trigeiro | Capacitated Lot Sizing with Setup Times[END_REF] proved that CLSP is NP-hard even without setup cost, therefore as an extension of CLSP, CLSC without setup cost is NP-hard.

Literature Review

In this section, we review the state-of-the-art literature of LSP that are related to CLSC.

Specially, we present the overview based on features, including setup carryover, parallel machines, production time windows, backlogging and lost sale.

Setup carryover. Setup carryover is also called linked lot size or linked production quantities (Haase [69]). In each time bucket, producing a positive amount of products causes a setup time and/or a setup cost. However, if the first product produced in t is the same as the last product produced in the previous time bucket t -1, then in time bucket t we can continue to produce the same product without additional setup. This is called setup carryover. The setup carryover is always considered in CLSP with multiple products.

The LSP with setup carryover are first studied in Dillenberger et al. [START_REF] Dillenberger | On Solving a Large-Scale Resource Allocation Problem in Production Planning[END_REF][START_REF] Dillenberger | On practical resource allocation for production planning and scheduling with period overlapping setups[END_REF]. Since then, most of the research on setup carryover has been focused on the formulation and heuristic algorithm design. In Dillenberger et al. [START_REF] Dillenberger | On Solving a Large-Scale Resource Allocation Problem in Production Planning[END_REF][START_REF] Dillenberger | On practical resource allocation for production planning and scheduling with period overlapping setups[END_REF], a MIP model has been proposed and a fix-and-relax heuristic algorithm has been developed. In Gopalakrishnan et al. [START_REF] Gopalakrishnan | A framework for modelling setup carryover in the capacitated lot sizing problem[END_REF], a MIP model has been proposed and a real-world instances with multiple machines and product families is solved by using the solver LINDO. In Haase [START_REF] Haase | Capacitated Lot-Sizing with Linked Production Quantities of Adjacent Periods 1 Introduction[END_REF], the setup carryover is restricted to at most one time bucket, a MIP model has been proposed and a priority rule based heuristic algorithm is developed. In Sox and Gao [START_REF] Sox | The capacitated lot sizing problem with setup carryover[END_REF], two MIP models are proposed while one is based on the shortest path formulation. Also, a decomposition heuristic algorithm is developed which is based on Lagrangian relaxation.

In Gopalakrishnan [START_REF] Gopalakrishnan | A modified framework for modelling set-up carryover in the capacitated lotsizing problem[END_REF], they extend the formulation in Gopalakrishnan et al. [START_REF] Gopalakrishnan | A framework for modelling setup carryover in the capacitated lot sizing problem[END_REF] so that it incorporates product dependent setup times and costs. Later in Gopalakrishnan et al.

[57] a Tabu Search (TS) algorithm is proposed for this model. In Suerie and Stadtler

[124], another formulation is proposed and it is furthermore extended by introducing extra variables and valid inequalities. A MIP solver together with a procedure to add cuts is used to solve the problem. In Briskorn [START_REF] Briskorn | A note on capacitated lot sizing with setup carry over[END_REF], the Lagrangian relaxation based heuristic algorithm proposed in Sox and Gao [START_REF] Sox | The capacitated lot sizing problem with setup carryover[END_REF] is modified so that subproblems are guaranteed to be solved optimally. In Karimi et al. [START_REF] Karimi | A tabu search heuristic for solving the CLSP with backlogging and set-up carry-over[END_REF], a CLSP model is studied which considers multi-item, setup carryover and backlogging. A TS heuristic algorithm is developed for it. In Nascimento and Toledo [START_REF] Nascimento | A hybrid heuristic for the multiplant capacitated lot sizing problem with setup carry-over[END_REF], the problem is extended to multiple plants, therefore the possibility of transporting products between plants is considered. A MIP formulation is proposed and a Greedy Randomized Adaptive Search Procedure (GRASP) heuristic algorithm is designed. In Sahling et al. [START_REF] Sahling | Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a fix-and-optimize heuristic[END_REF], a multi level CLSP with setup carryover is studied, a MIP formulation is proposed and a MIP based fix-and-optimize heuristic algorithm is developed. In Goren et al. [START_REF] Goren | A hybrid approach for the capacitated lot sizing problem with setup carryover[END_REF], a hybrid approach combining genetic algorithms and a fix-and-optimize heuristic is proposed. It is compared to the TS algorithm developed in Gopalakrishnan et al. [START_REF] Gopalakrishnan | A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover[END_REF] and is shown to have a better solution quality with longer computational time. In Gören and Tunal [START_REF] Gören | Solving the capacitated lot sizing problem with setup carryover using a new sequential hybrid approach[END_REF], another hybrid approach combining Genetic Algorithms (GAs) and a fix-and-optimize heuristic is proposed, which is different from that of Goren et al. [START_REF] Goren | A hybrid approach for the capacitated lot sizing problem with setup carryover[END_REF]. In Goren et al. [START_REF] Goren | A hybrid approach for the capacitated lot sizing problem with setup carryover[END_REF], the fix-and-optimize heuristic is embedded in the GA procedure so solve each subproblem, while in Gören and Tunal [START_REF] Gören | Solving the capacitated lot sizing problem with setup carryover using a new sequential hybrid approach[END_REF] it runs GAs for a predetermined number of generations and use the overall best solution as the initial solution for the fix-and-optimize heuristic.

Parallel machines. Parallel machines are commonly taken into account in practical production planning such as pharmaceutical industry, disposable products and so on.

The introduction of parallel machines may lead to a large amount of symmetric solutions, therefore it increases the difficulties of the problem.

In Özdamar and Birbil [START_REF] Özdamar | Hybrid heuristics for the capacitated lot sizing and loading problem with setup times and overtime decisions[END_REF], a lot sizing and loading problem studied deals with the issue of determining the lot sizes of product families/end items and loading them on parallel facilities to satisfy dynamic demand over a given planning horizon. The facilities here have similar functions as parallel machines. A hybrid algorithm combining TS, GA and Simulated Annealing (SA) is developed. It is further extended to multi-stage model in Ozdamar and Barbarosoglu [START_REF] Ozdamar | Hybrid Heuristics for the Multi-Stage Capacitated Lot Sizing and Loading Problem[END_REF], where a hybrid algorithm based on Lagrangian relaxation, SA and GA is also proposed. In Kang et al. [START_REF] Kang | Lotsizing and Scheduling on Parallel Machines with Sequence-Dependent Setup Costs[END_REF], a LSP on parallel machines with sequence dependent setup costs is studied. The problem is solved by a branch and bound algorithm based on column generation. In Meyr [START_REF] Meyr | Simultaneous lotsizing and scheduling on parallel machines[END_REF], a CLSP model with micro time buckets, parallel machines and minimum lot size is studied. A heuristic algorithm combining threshold acceptance and SA with dual re-optimization is also developed. In Quadt and Kuhn [START_REF] Quadt | Capacitated lot-sizing and scheduling with parallel machines, back-orders, and setup carry-over[END_REF], a CLSP model with setup times, setup carryover, back-orders, and parallel machines is studied. To find a solution of the original model, the aggregate model is embedded in a lot sizing and scheduling procedure. In Tempelmeier and Copil [START_REF] Tempelmeier | Capacitated lot sizing with parallel machines, sequence-dependent setups, and a common setup operator[END_REF], a CLSP model with parallel machines, sequence dependent setup, shelf life and a single common setup resource is studied. Two MIP based heuristic algorithms including a fix-and-optimize heuristic and a fix-and-relax heuristic are proposed and tested. Some heuristic algorithms are based on Lagrangian relaxation on capacity constraints such as in Toledo and Armentano [START_REF] Toledo | A Lagrangian-based heuristic for the capacitated lot-sizing problem in parallel machines[END_REF] or demand constraints such as Fiorotto and de Araujo [START_REF] Fiorotto | Reformulation and a Lagrangian heuristic for lot sizing problem on parallel machines[END_REF] to be able to decompose the problem into sub problems. In Fiorotto et al. [START_REF] Fiorotto | Hybrid methods for lot sizing on parallel machines[END_REF],

a DantzigWolfe decomposition is applied to the demand constraints where the master problem is solved by a combination of Lagrangian relaxation and DantzigWolfe decomposition in a hybrid form. The parallel machines are also considered in Nattaf et al.

[103], Almada-Lobo et al. [START_REF] Almada-Lobo | INDUSTRIAL INSIGHTS INTO LOT SIZING AND SCHEDULING MODELING[END_REF] and the bc-prod system see Belvaux and Wolsey [START_REF] Belvaux | bc -prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems[END_REF].

Most cases considering parallel machines are in the context of scheduling, for a though survey we refer to Charrua et al. [START_REF] Charrua | Lot Sizing and Scheduling in Parallel Uniform Machines A Case Study[END_REF]. There are other papers considering multiple resources without considering setup on machines but only resource capacity or usage cost and so on. In Diaby et al. [START_REF] Diaby | A Lagrangean Relaxation Approach for Very-Large-Scale Capacitated Lot-Sizing[END_REF], the setup is counted for each time bucket which means when a setup is paid once in a time bucket, all machines are able to produce the corresponding product. In Hindi [START_REF] Hindi | Algorithms for Capacitated, Multi-Item Lot-Sizing without Set-Ups[END_REF], no setup is considered but there is a unit machine usage cost and capacity per machine per time bucket.

Production time windows. In the LSP model with production time windows, each demand has a release date and a due date, during which the production for this demand must be fulfilled. Therefore, the release date and the due date of a demand become its time window. Moreover, there are two cases: customer-specific or non-customer-specific time windows. In the customer-specific case, each demand has a specific release date and the release quantity can not be used to satisfy other demands. In the non-customerspecific case, products produced in s can be used to satisfy any demand that require this product. The release date is used to model raw material availability and customer confirmation date. A customer order can still be canceled before its confirmation date and we would like to avoid producing before it is confirmed.

The LSP model with production time windows is first studied in Brahimi [START_REF] Brahimi | Planification de la production: modéles et algorithmes pour les problems de demensionnementde lots[END_REF],

Dauzère-Pérès et al. [START_REF] Dauzère-Pérès | Uncapacitated Lot-Sizing Problems with Time windows[END_REF], Brahimi et al. [START_REF] Brahimi | Capacitated Multi-Item Lot-Sizing Problems with Time Windows[END_REF]. In Dauzère-Pérès et al. [START_REF] Dauzère-Pérès | Uncapacitated Lot-Sizing Problems with Time windows[END_REF], the uncapacitated case is studied and a general dynamic programming pseudo-polynomial algorithm is presented for the customer-specific problem and a polynomial time O(T 4) algorithm is proposed for the non-customer-specific case. In Brahimi et al. [START_REF] Brahimi | Capacitated Multi-Item Lot-Sizing Problems with Time Windows[END_REF], the capacitated case is studied which also extends the problem to multi-item. Lagrangian relaxations based heuristics are developed for both cases. In Wolsey [START_REF] Wolsey | Lot-sizing with production and delivery time windows[END_REF], for the customer-specific case, tight extended formulations are proposed for both the constant capacity and uncapacitated problems with Wagner-Whitin (non-speculative) costs. For the non-customerspecific case, it is shown to be equivalent to the basic lot-sizing problem with upper bounds on the stocks. Also, polynomial time dynamic programming algorithms and tight extended formulations for the uncapacitated and constant capacity models with general cost are also developed. In Hwang [80], different cost structures are studied and a dynamic programming algorithm with O(T 5) is proposed. In van den Heuvel and Wagelmans [START_REF] Van Den Heuvel | Four equivalent lot-sizing models[END_REF], four LSP variants are shown to be equivalent which includes the LSP with a remanufacturing option [START_REF] Richter | Remanufacturing planning for the reverse wagner/whitin models[END_REF], the LSP with production time windows, the LSP with cumulative capacities [START_REF] Sargut | Lot-sizing with non-stationary cumulative capacities[END_REF] and the LSP with bounded inventory [START_REF] Love | Bounded production and inventory models with piecewise concave costs[END_REF]. In Brahimi et al. [START_REF] Brahimi | Polyhedral and Lagrangian approaches for lot sizing with production time windows and setup times[END_REF], the CLSP with multi-item, non-customer-specific production time windows and setup times is studied. A Lagrangian relaxation based heuristic algorithms is developed and a reformulation is proposed. In Absi et al. [START_REF] Absi | Uncapacitated lotsizing problem with production time windows, early productions, backlogs and lost sales[END_REF], the production time window is studied together with lost sale as well as early production, backlog on the uncapacitated LSP. Several properties of the optimal solution are presented for different variants of the problem when production time windows are non-customer specific. Exact dynamic programming algorithms are developed with computational complexity O(T 2).

Backlogging. Backlogging is also called inventory shortage, or backorder in Millar and

Yang [START_REF] Millar | An application of Lagrangean decomposition to the capacitated multi-item lot sizing proble[END_REF]. If it is possible to satisfy a demand after its due date, it is called backlogging.

Together with lost sale, they are common features in practice when there is insufficient capacity or for simulation analysis purpose.

This feature backlogging has been widely studied in the literature. Here we review the literature which is most related to our problem. In Zangwill [START_REF] Zangwill | A Deterministic Multi-Period Production Scheduling Model with Backlogging[END_REF], backlogging is first studied in an LSP model with concave production costs and piecewise concave inventory costs. A dynamic programming algorithm is also proposed. In Pochet and Wolsey [START_REF] Pochet | Lot-size models with backlogging: Strong reformulations and cutting planes[END_REF],

mixed integer programming reformulations of the uncapacitated lot-sizing problem with constant cost and backlogging is studied. The linear programming reformulations solves the problem directly, while a cut generation algorithm is also developed with a family of cuts. In Choo and Chan [START_REF] Choo | Two-way eyeballing heuristics in dynamic lot sizing with backlogging[END_REF], a simple class of heuristic algorithms two-way eyeballing heuristic (TWEH) is presented which first determine the backlogging periods and then the production quantities. This algorithm is further compared in Hsieh et al. [START_REF] Hsieh | Comparative study of dynamic lot sizing heuristics with backlogging[END_REF] with modified algorithms which are originally designed for LSP, the result shows that TWEH is the simplest algorithm with good performance. In Federgruen and Tzur [START_REF] Federgruen | The dynamic lot-sizing model with backlogging: A simpleo(n logn) algorithm and minimal forecast horizon procedure[END_REF], timevariant cost starts to be considered in the model and a O(T log T) exact algorithm is developed. In Chen et al. [START_REF] Chen | A dynamic programming algorithm for dynamic lot size models with piecewise linear costs[END_REF], a LSP model with piecewise linear costs and capacity restrictions on both production and inventory is studied, also a dynamic programming algorithms is developed. In Millar and Yang [START_REF] Millar | Lagrangian heuristics for the capacitated multi-item lot-sizing problem with backordering[END_REF], the multi-item CLSP with backordering is studied and two heuristic algorithms based on a network-based formulation and Lagrangian decomposition are developed. In Robinson Jr. and Gao [START_REF] Gao | A dual ascent procedure for multiproduct dynamic demand coordinated replenishment with backlogging[END_REF], backlogging is considered together with coordinated replenishment. A mixed-integer programming formulation is proposed and dual ascent based branch-and-bound algorithm is developed. In Ozdamar and Barbarosoglu [START_REF] Ozdamar | Hybrid Heuristics for the Multi-Stage Capacitated Lot Sizing and Loading Problem[END_REF], the multi-stage CLSP with backlogging on the last stage is studied and a hybrid algorithm is developed which embeds SA and GA into Lagrangean relaxation. In Hung et al. [START_REF] Hung | Evolutionary Algorithms for Production Planning Problems with Setup Decisions[END_REF], a CLSP model with parallel machines, setup and backlogging is studied and different GA algorithms are used to make setup decisions. In Hung and Chien [START_REF] Hung | A Multi-Class Multi-Level Capacitated Lot Sizing Model[END_REF], a multi-level CLSP considers multiple demand classes with backlogging is studied, where the MIP models corresponding to each demand class is solved in sequence. Three heuristic algorithms including TS, GA and SA are developed and compared. In Belvaux and Wolsey [START_REF] Belvaux | Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs[END_REF], different formulation techniques for a range of LSP is discussed which includes backlogging, start-ups, changeovers and so on. Papers that consider backlogging also include Gupta and Brennan [START_REF] Gupta | Lot Sizing and Backordering in Multi-Level Product Structures[END_REF], Hung et al. [START_REF] Hung | Using tabu search with ranking candidate list to solve production planning problems with setups[END_REF], Jans and Degraeve [START_REF] Jans | An industrial extension of the discrete lot-sizing and scheduling problem[END_REF], Duda [START_REF] Duda | Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions[END_REF], Karimi et al. [START_REF] Karimi | A tabu search heuristic for solving the CLSP with backlogging and set-up carry-over[END_REF], Megala and Jawahar [START_REF] Megala | Genetic algorithm and Hopfield neural network for a dynamic lot sizing problem[END_REF], Gaafar [START_REF] Gaafar | Applying genetic algorithms to dynamic lot sizing with batch ordering[END_REF], Kämpf and Köchel [START_REF] Kämpf | Simulation-based sequencing and lot size optimisation for a production-and-inventory system with multiple items[END_REF], Huai-En Chiao et al. [START_REF] Huai-En | A deteriorating inventory model with tow storage facilities, partial backordering and quantity discount[END_REF].

There are many papers considering backlogging which considers other topics such as ELSP in Zangwill [START_REF] Zangwill | A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production SystemA Network Approach[END_REF], Blackburn and Kunreuther [START_REF] Blackburn | Planning Horizons for the Dynamic Lot Size Model with Backlogging[END_REF], Hsu and Lowe [START_REF] Hsu | Dynamic Economic Lot Size Models with Period-Pair-Dependent Backorder and Inventory Costs[END_REF], or based on inventory system in one period in Atkins and Sun [START_REF] Atkins | 98%-Effective Lot Sizing for Series Inventory Systems with Backlogging[END_REF], Sun and Atkins [START_REF] Sun | 98%-Effective Lot-Sizing for Assembly Inventory Systems with Backlogging[END_REF], or integrate pricing and LSP on infinite planning horizon in Abad [START_REF] Abad | Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale[END_REF].

Lost sale. Lost sale is also called stockout in Sandbothe and Thompson [START_REF] Sandbothe | A Forward Algorithm for the Capacitated Lot Size Model with Stockouts[END_REF], where it is possible to not meet demands with a penalty cost.

Comparing to backlogging, there are much fewer papers considering LSP with lost sales. The CLSP with lost sale is first studied in Sandbothe and Thompson [START_REF] Sandbothe | A Forward Algorithm for the Capacitated Lot Size Model with Stockouts[END_REF] with constant cost over time period, in which two necessary optimality conditions are stated and two forward algorithms are developed for the constant capacity case and nonconstant capacity case. In Sandbothe and Thompson [START_REF] Sandbothe | Decision horizons for the capacitated lot size model with inventory bounds and stockouts[END_REF], the problem is extended to include also capacity constraints on inventory, optimality conditions are also stated together with a forward algorithm of asymptotically linear time. In Aksen et al. [START_REF] Aksen | The single-item lot-sizing problem with immediate lost sales[END_REF], an uncapacitated single-item LSP with lost sales is studied which have a time-variant cost structure. Several structural properties of optimal solutions are proposed and an exact algorithm in linear time O(T 2) is developed. In Absi et al. [START_REF] Absi | Uncapacitated lotsizing problem with production time windows, early productions, backlogs and lost sales[END_REF], the lost sale is studied together with production time windows as well as early production, backlog on the uncapacitated LSP. Several properties of the optimal solution are presented for different variants of the problem when production time windows are non customer specific. Exact dynamic programming algorithms are developed with computational complexity O(T 2).

There a few other papers considering lost sale as well such as Abad [START_REF] Abad | Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale[END_REF], Teng et al.

[127], Huai-En Chiao et al. [START_REF] Huai-En | A deteriorating inventory model with tow storage facilities, partial backordering and quantity discount[END_REF], Abad [START_REF] Abad | Optimal price and order size under partial backordering incorporating shortage, backorder and lost sale costs[END_REF], Ghosh et al. [START_REF] Ghosh | Optimal price and lot size determination for a perishable product under conditions of finite production, partial backordering and lost sale[END_REF]. However, they focus on an integration of pricing and lot sizing with infinite time horizon with perishability or deteriorating inventories.

Among all these features related to CLSC, setup carryover and parallel machines contribute the most to the problem complexity. Without setup, the problem can be solved as a continuous optimization problem. Parallel machines not only increase the problem size but also make the LP relaxation solution provide less guidance to the MIP solution due to the fact that the production in the LP solution will be distributed to all machines. Therefore it is interesting for to study this problem and hopefully develop efficient algorithms for it.

MIP Formulations

In this section, we present MIP formulations for CLSC. The first three formulations are aggregated formulations with different ways to model setup carryover. The last formulation is adapted from facility location reformulation.

Aggregated Formulation 1 (F orm1)

For each product i ∈ N , each machine r ∈ R, each time bucket t ∈ T and each demand d ∈ D, we first introduce the following decision variables:

• x irt ∈ R + : the production quantity of product i on machine r during time t.

• y dt ∈ [0, q d]: the satisfied quantity of demand d in time bucket t ≥ b d .

• y d ∈ [0, q d]: the unsatisfied quantity of demand d.

In Haase [START_REF] Haase | Lotsizing and Scheduling for Production Planning[END_REF], a MIP formulation for CLSP on a single machine with setup carryover has been introduced. We adapt this formulation to our problem and introduce setup variables for each product i ∈ N , each machine r ∈ R and each time bucket t ∈ T as follows:

• v rt ∈ [0, 1], v rt > 0 indicates if more than one product is produced in time bucket t on machine r.

• z irt ∈ {0, 1} equals to 1 if a setup state for product i on machine r exists in time bucket t and 0 otherwise.

• z c irt ∈ {0, 1}
y dt + y d = q d d ∈ D (2.3) i∈N pt i x irt + i∈N st ir (z irt -z c irt) ≤ cap rt r ∈ R, t ∈ T (2.4) x irt ≤ Θ irt z irt i ∈ N , r ∈ R, t ∈ T (2.5) i∈N z c irt ≤ 1 r ∈ R, t ∈ T (2.6) z c irt ≤ z ir,t-1 i ∈ N , r ∈ R, t ∈ T (2.7) z c irt ≤ z irt i ∈ N , r ∈ R, t ∈ T (2.8) z c irt + z c ir,t-1 + v r,t-1 ≤ 2 i ∈ N , r ∈ R, t ∈ T (2.9) N v rt ≥ i∈N z irt -1 r ∈ R, t ∈ T (2.10) 0 ≤ x irt i ∈ N , r ∈ R, t ∈ T (2.11) 0 ≤ y dt , y d ≤ q d d ∈ D, t ≥ b d (2.12) z c irt , z irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ T (2.13) v rt ∈ [0, 1] r ∈ R, t ∈ T (2.14)
where). Note that according to setup carryover, a setup cost has to be paid when there is a setup (z irt = 1) which is not carried over from the last time bucket (z c irt = 0). Constraints (2.2) state flow balance for each product in each time bucket, the inflow (production) equals to the outflow (demand satisfaction). Constraints (2.3) ensure that for each demand, the unsatisfied demand quantity plus the unsatisfied demand quantity equals to the demand quantity. Constraints (2.4) ensure that the capacity is not exceeded on each machine in each time bucket, where the setup capacity consumption is formulated similarly to the setup cost. Constraints (2.5) link the production and the setup since a positive production of i on r at t requires a setup state for i on r at t. Constraints (2.6) -(2.10) model setup carryover. There is at most one setup state to be carried over to the next time bucket, which is guaranteed by constraints (2.6). A setup state of i on r carried over from t -1 to t implies that this state is included in both t -1 (2.7) and t (2.8).

Θ irt = min{ caprt pt i , d∈D i ,b d ≤t q d }.
If there is more than one setup state in one time bucket, i.e., v rt > 0, the initial setup state and the last setup state are necessarily different. This is formulated as constraints (2.9). Finally, to fulfill the definition of variable v rt , we have the constraints (2.10).

Aggregated Formulation 2 (F orm2)

In Sox and Gao [START_REF] Sox | The capacitated lot sizing problem with setup carryover[END_REF], two MIP formulations for CLSP on single machine with setup carryover are presented. One is aggregated formulation while the other one is network formulation. Here we adapt the aggregated formulation to CLSC. Besides variables x irt , y dt and y d as introduced above, we introduce the following setup variables for each product i ∈ N , each machine r ∈ R and each time bucket t ∈ T :

• z 0 irt ∈ {0, 1} equals to 1 if the initial setup state is for product i on machine r in time bucket t, implying that the final setup state for t -1 on r is for product i.

• z + irt ∈ {0, 1}
y dt + y d = q d d ∈ D (2.17) i∈N pt i x irt + i∈N st ir z + irt ≤ cap rt r ∈ R, t ∈ T (2.18) x irt ≤ Θ irt (z 0 irt + z + irt) i ∈ N , r ∈ R, t ∈ T (2.19) i∈N z 0 irt = 1 r ∈ R, t ∈ T (2.20) z 0 irt ≤ z 0 ir,t-1 + z + ir,t-1 i ∈ N , r ∈ R, t ∈ T (2.21) z + jr,t-1 ≤ 2 -z 0 ir,t-1 -z 0 irt i, j = i ∈ N , r ∈ R, t ∈ T (2.22) 0 ≤ x irt i ∈ N , r ∈ R, t ∈ T (2.23) 0 ≤ y dt , y d ≤ q d d ∈ D, b d ≤ t ∈ T (2.24) z 0 irt , z + irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ T (2.25)
The total setup cost is formulated as i∈N ,r∈R,t∈T sc ir z + irt since the setup cost has to be paid only when there is a setup switch (z + irt = 1). Constraints (2.18) ensure that the total used capacity does not exceed the available capacity, where the setup capacity consumption is formulated similarly to the setup cost. Constraints (2.19) link the setup and production since a positive production of i on r at t requires a setup state for i on r at t, which is either from an initial setup state (z 0 irt = 1) or a setup switch (z + irt = 1). There is a unique initial setup state for each time bucket on each machine, which is established by constraints (2.20). Also, the initial setup state must be one of the setup states in the previous time bucket (2.21). However, constraints (2.22) ensure that, on machine r during time bucket t, no setup switch is possible when the initial setup state and the last setup state of t (i.e., the initial setup state of the next time bucket t + 1) are both for the same product.

Aggregated Formulation 3 (F orm3)

In Suerie and Stadtler [124], a MIP formulation for CLSP on multiple unrelated machines with setup carryover is presented. This formulation is similar to the F orm2. In addition to the previously defined binary variables z 0 irt and z + irt , additional variables w rt are introduced for each machine r ∈ M and time bucket t ∈ T :

• w rt ∈ [0,
z 0 irt + z 0 ir,t-1 ≤ 1 + w r,t-1 i ∈ N , r ∈ R, t ∈ T (2.26) z + irt + w rt ≤ 1 i ∈ N , r ∈ R, t ∈ T (2.27) 0 ≤ w rt ≤ 1 ∀r ∈ R, t ∈ T (2.28)
Basically, we substitute constraints (2.22) with constraints (2.26) -(2.28). Constraints

(2.26) implies that on machine r, the initial setup states at t-1 and t have to be different when more than one product is produced during t -1 (w r,t-1 = 0). Constraints (2.27) ensures that w rt = 0 when there are more than one setup state during time bucket t. Then it is straightforward to build the relationship between previously defined variables

x irt , y dt , y d and Q drt :

x irt = d∈D i ,t≥b d Q drt y dt = r∈R Q drt y d = q d - r∈R,b d ≤t∈T Q drt
Here we apply these newly defined production variables on the F orm3. However, it is not hard to see that we can also reformulate F orm1 and F orm2. The formulation is formally given as follows: min d∈D,t∈T :t≥e

Q drt ≤ q d d ∈ D (2.30) i∈N ,d∈D i ,b d ≤t pt i Q drt + i∈N st ir z + irt ≤ cap rt r ∈ R, t ∈ T (2.31) Q drt ≤ Θ drt (z 0 irt + z + irt) d ∈ D, r ∈ R, b d ≤ t ∈ T (2.32) d∈D i Q drt ≤ Θ irt (z 0 irt + z + irt) i ∈ N , r ∈ R, t ∈ T (2.33) 0 ≤ Q drt ≤ q d d ∈ D, r ∈ R, b d ≤ t ∈ T (2.
z+ jrt } = 1 + min j∈N {1 -z+ jrt } = 1 + wrt .
The first inequality is due to constraints (2.22), while the third equality is due to definition of w. Moreover, f 3 (x, ȳ, z0 , z+ , w) equals to f 2 (x, ȳ, z0 , z+) by definition of the objective. Therefore f 2 (x, ȳ, z0 , z+) = f 3 (x, ȳ, z0 , z+ , w) ≥ f 3 (ẋ, ẏ, ż0 , ż+ , ẇ).

Second, we prove that f 2 (x, ȳ, z0 , z+) ≤ f 3 (ẋ, ẏ, ż0 , ż+ , ẇ). More specifically, we will show that solution (ẋ, ẏ, ż0 , ż+) is feasible for F orm2, and has the same objective function value as f 3 (ẋ, ẏ, ż0 , ż+ , ẇ). The only constraints in F orm2 that do not appear in the F orm3 is (2.22). For any j = i ∈ N , we have

ż0 ir,t+1 + ż0 irt ≤ 1 + ẇrt ≤ 1 + 1 -ż+ jrt = 2 -ż+ jrt .
The first inequality is due to (2.26) while the second inequality is due to (2.27). Therefore,

f 2 (x, ȳ, z0 , z+) ≤ f 2 (ẋ, ẏ, ż0 , ż+) = f 3 (ẋ, ẏ, ż0 , ż+ , ẇ).
Third, we show that f 2 (x, ȳ, z0 , z+) ≥ f 1 (x, ỹ, zc , z, ṽ). First of all, we point out that there exists an optimal solution of F orm1 satisfying that

z0 irt + z+ irt ≤ 1.
This is due to the fact that in constraints (2.

vrt = i zirt -1 N = i (z 0 irt + z+ irt) -1 N = i z0 irt + i z+ irt -1 N = i z+ irt N ≤ max i z+ irt
Hence,

z 0 ir,t+1 + z 0 irt ≤ 2 -max j z + jrt ≤ 2 -vrt . Therefore, f 2 (x, ȳ, z0 , z+) = f 1 (x, ȳ, z, ẑc , v) ≥ f 1 (x, ỹ, z0 , z, ṽ).
This theorem shows that the LP relaxation of F orm2 and F orm3 provide equivalently lower bounds no worse than F orm1.

Theorem 2.4. The formulation F orm3 F L is stronger than the formulation F orm3 in the sense that its optimal objective function value of the LP relaxation Obj * LP (F orm3 F L) is greater than or equal to that of the F orm3 Obj * LP (F orm3).

Obj * LP (F orm3) ≤ Obj * LP (F orm3 F L)
Proof. Let (Q, z0 , z+ , ẘ) be the optimal solution of the LP relaxation of F orm3 Second, the solution (ẍ, ÿ, z0 , z+ , ẘ) and (Q, z0 , z+ , ẘ) share the same objective function value due to the fact that the objective function of F orm3 F L is based on the substitution of (2.35) -(2.37). Therefore, the theorem holds.

Benchmark Instances

To perform experimental study on the problem CLSC, we introduce two sets of benchmark instances in this section. One set consists of real-world instances of the apparel application, whereas the other one comes from a pseudo-random instance generator designed to simulate real-world problems. The benchmark instances are summarized in Table 2.4, in which we present the type of the instances (Type), its notation (Notation),

the number of instances it contains (Size) and some comments. We present the real-world instances, their characteristics and the data analysis in Section 2.4.1. Based on the real data analysis, the instance generator and characteristics of pseudo-randomly generated instances are given in Section 2.4.2.

Benchmark IAP: Real-World Instances and Data Analysis

We have collected 7 real-world instances so far. The characteristics of our application instances are summarized in Calculation of the capacity requirement ratio is actually data analysis. Performing data analysis in a real-world application is often necessary and important. First, it helps to detect possible data error which is a common issue in practice. Second, it helps to discover the data structure and may lead to efficient tailored heuristics. Third, due to the fact that data collection and verification might be a long and struggling process, randomly generated instances are needed to develop optimization engine for production planning. Therefore, in the rest of this section, we take instance R5 as a representative to perform analysis. There are many parameters in our problem, therefore we group these parameters into following features first and perform analysis from these perspectives:

1. Problem size: N , R, D, T . In Figure 2.5, for each machine r, we give its minimum capacity, maximum capacity and average capacity over its nonzero-capacity time buckets, and capacities for each time bucket. We have following observations: 1) Machine capacities vary between 1,000,000 and 4,000,000. Parallel machines have very different capacity layout. 2) Even for one machine, its capacity changes from time bucket to time bucket. However, it seems that over most time buckets, the capacity is relatively stable around one level for most machines. In other time buckets, the capacity has a decrease. 3) Although there are irregular machines such as r3 which only has nonzero-capacity in t2, the overall capacity trends for all machines have similar pattern. For example, in time bucket t10 and t12, there is a decrease for all machines' capacities. This is mainly due to national holidays. In Figure 2.6, we present the unit production time for each product. For example, to produce one unit of product 1, the production time is 1529. For each product, the number of demands |D i | is also shown in the right axis. We cannot conclude a distribution pattern for the production time, and there is no relationship between the production time and its demand size. In most cases, the production time is between 1000 and 2000 seconds. . We observe that the setup time is on average very large that it takes 40% to 50% of the capacity in each time bucket. The setup cost equals to the setup time times unitary labor cost. In Figure 2.8, we show the product distribution. For each product i, the left vertical axis represents the number of demands that require this product, i.e., |D i |. For each product i, the right vertical axis shows the percentage of its required capacity over all products, which is calculated by d∈D i pt i q d j∈N d∈D j pt j q d . For example, product 1 has 7 demands and is responsible for 1.19% of total capacity requirement. We have the following observations: 1) Number of demands and capacity requirement of each product are not always positively correlated. For example, Product 4 has most number of demands as 123, but its capacity requirement takes 19.77%, which is less comparing to Product 33. This is due to difference in production time of different demands. 2) There are several "big" products, such as Product 33 and Product 4. Overall, 20% products covers more than 80% of demand capacity requirement. We have following observations:

• 99% of demands are released in the first 60% time buckets (t = 1 to t = 15).

Moreover, the number of released demands has a peak in the middle of these time buckets.

• 99% of demands are due in the first 76% time buckets (t = 1 to t = 19). This matches the on-time window length we have observed before.

• 88% of demands have second due date in the last 60% time buckets (t = 1 to t = 19). This matches the window length e 2 de 1 d we have observed before.

• All dates distribution seem to have a similar shape as the possibility density function of nominal distribution.

Based on this analysis, we can analyze the capacity requirement based on time window instead of on the whole time horizon. For each consecutive time window with length

4 [t, t + 3], we calculate the set of demands D t that have [r d , e 1 d -1] ⊆ [t, t + 3].
Then for each time interval [t, t + 3], the percentage of demands |Dt| D is given as the blue columns on the left vertical axis, while their total required capacity ratio as d∈D t ptp d q d r∈R,t≤s≤t+3 caprt is given as the orange dot in the right vertical axis. This value reflect that to produce and satisfy all demands on time, what is the required capacity. For example, in the time interval [t1, t4], we have 7.63% demands released and should be satisfied in this interval to be on time. Their required production capacity takes 115% of the total available capacity in this interval. By looking at the graph and values, we observe that most of demands requirement are concentrated on the first 68% of the time horizon. Therefore, the capacity constraint is tight on this part of the time horizon and if there is not enough capacity many demands will be pushed late.

Benchmark IRG: Pseudo-Randomly Generated Instances

Due to the limited number of real-world instances, it requires us to generate benchmark instances to perform computational test. In this section, we propose an instance generator and 2 sets of instances, of which the number of contained instances are summarized in Table 2

Instance Generator

We introduce an instance generator which is able to produce instances of CLSC with different characteristics.

The input parameters for the instance generator is given in Table 2.7:

Approximately weight(p) % of demands belong to the first size(p) % of products.

pt i lbd(pt), ubd(pt) pt d ∈ [lbd(pt), ubd(pt)], pt i = d∈D i pt d q d d∈D i q d q d lbd(q), mbd(q), ubd(q), mpt(q)
Approximately with possibility mpt(q), q d ∈ [lbd(q), mbd(q)]; otherwise, q d ∈ [mbd(q), ubd(q)].

tc 1 d lbd(tc 1), ubd(tc 1) tc 1 d ∈ [lbd(tc 1), ubd(tc 1)] tc 2 d lbd(tc 2), ubd(tc 2) tc 2 d ∈ [lbd(tc 2), ubd(tc 2)] lc d lbd(lc), ubd(lc) lc d ∈ [lbd(lc), ubd(lc)] cap rt R, T ype(cap)
Types of capacity allocation and target demand capacity ratio.

st ir lbd(st), ubd(st) st ir ∈ [lbd(st)cap rt , ubd(st)cap rt]
sc ir lbd(sc), ubd(sc) sc ir ∈ [lbd(sc), ubd(sc)] and is positively proportional to st ir .

The procedure of the instance generator is described in the following, which uses above parameters to realize all instance data. Let randI(l, u) represent a random integer number between l and u inclusively following uniform distribution, while randD(l, u) represent a random real number between l (inclusive) and u (exclusively) following uniform distribution.

1. Instance size T , M , N , D is given by parameters directly. Without loss of generality, N ≤ D.

Demand product

p d : α ← randD(0, 1) and β ← N • size(p) . If α < weight(p) and β > 0, p d ← randI(1, β).
Otherwise, p d ← randI(β + 1, N).

pt

i : for each demand d ∈ D i , pt d = randI(lbd(pt), ubd(pt)), then pt i = d∈D i pt d q d d∈D i q d .
4. Demand quantity q d : α ← randD(0, 1).

If α < mpt(q), q d ← randI(lbd(q), mbd(q)).

Otherwise, q d ← randI(mbd(q), ubd(q)).

Demand first due date e

1 d : α ← randD(0, 1), β ← T •size1(d) , γ ← T •size2(d) . If α ≤ prob1(d) and β > 0, e 1 d ← randI(1, β). Else if α ≤ prob2(d) and γ > 0, e 1 d ← randI(β + 1, γ). Otherwise, e 1 d ← randI(γ + 1, T). 6. Demand release time b d : α ← randD(0, 1). If α ≤ pf (dr), r d = max{1, e 1 d -4}. Otherwise, r d ∈ max{1, [e 1 d -3, e 1 d -1]}. 7. Demand second due date e 2 d : α ← randD(0, 1). If α ≤ pf (dd), e 2 d = min{T + 1, e 1 d + 4}. Otherwise, e 2 d ∈ min{T + 1, [e 1 d + 1, e 1 d + 3]}. If e 2
d == T + 1, it implies that there is no second due date.

8. Demand tardiness cost tc 1 d ← randI(lbd(tc 1), ubd(tc 1)), tc 2 d ← randI(lbd(tc 2), ubd(tc 2)).

9. Demand lost sale cost lc d ← randI(lbd(lc), ubd(lc)). -For each machine r ∈ R, avgCap r ← randI(lbd, ubd),

Machine capacity: let

lbd = 0.75b , ubd = 1.25b where b = d∈D pt i q d M •T •R . • If T ype(cap) = Constant, cap r ← randI(lbd, ubd), cap rt = cap r for r ∈ R. • If T ype(cap) = V arious, cap rt ← randI(lbd, ubd).
uCap r ← avgCap r /((1 -lowT BSize) + lowT BSize * lowCapRatio) , lCap r ← ucap r • lowCapRatio. -For t ∈ T , if t ∈ T cap rt ← lCap r ; otherwise, cap rt ← uCap r . 11. Setup time st ir : For r ∈ R, let avgCap r = t∈T caprt t∈T ,cap rt >0 1 . For i ∈ N , st ir ← randI(lbd(st) • avgCap r , ubd(st) • avgCap r).
12. Setup cost. Let minSt = min i∈N ,r∈R st ir , maxSt = max i∈N ,r∈R st ir , which are the minimum and maximum of setup time.

a := (ubd(sc) -lbd(sc))/(maxSt -minSt); b := (lbd(sc) * maxSt -ubd(sc) * minSt)/(maxSt -minSt); If minST == maxST , set all sc ir ← lbd(sc).
Otherwise sc ir ← a • st ir + b.

Pseudo-randomly generated benchmark Instances

To study the problem property from computational point of view, as well as developing efficient heuristic algorithms to tackle it, we propose two sets of pseudo randomly generated instances in this section with different characteristics.

Simple structure instances First of all, we generate a set of small size instances of which the optimal objective value might be reached. In this way, we may easily compare the performances of different MIP formulations. For each possible combination of the parameters, we generate 5 instances to limit bias. Other parameters for the randomly generated instances are described as follows:

• All combinations of T, M, N, D with following values T ∈ {4, 9, 13}, M ∈ {1, 5, 10}, N ∈ {4, 8, 12}, D ∈ {50, 100, 200}. • size(p) = 100.0, weight(p) = 100.0 • lbd(pt) = 20, ubd(pt) = 40. Also, pt i := d∈D i pt d d∈D i 1 • lbd(q) = 1, mbd(q) = 10, ubd(q) = 10, mpt(q) = 1.0 • size1(d) = 30,size2(d) = 70, prob1(d) = 0.1, prob2(d) = 0.9
• b d has 80% possibility to be set as max{0, e 1 d -a} and 20% possibility to be set as max{0, e 1 da/2} where a = √ T .

• e 2 d has 80% possibility to be set as max{0, e 1 d -a} and 20% possibility to be set as e 1 d .

• lbd(tc 1) = 1, ubd(tc 1) = 1

• lbd(tc 2) = 5, ubd(tc 2) = 5

• lbd(lc) = 20, ubd(lc) = 20

• cap rt = rand(0.75b, 1.25b) where b = d∈D cap d q d M •T . • st ir = st i = rand(0.75c, 1.25c) where c = 0.1 • r∈R,t∈T caprt M •T .
Application based instances. In Section 2.4.1, we have presented the data analysis based on a real application instance. Based on this analysis, we propose our first set of testing instances with following instance generator parameter values:

• Three size of instance including (T, M, N, D) = (25, 15, 50, 500), [START_REF] Buschkühl | Dynamic capacitated lot-sizing problems: A classification and review of solution approaches[END_REF][START_REF] Brahimi | Single-item dynamic lot-sizing problems: An updated survey[END_REF][START_REF] Hsu | Dynamic Economic Lot Size Models with Period-Pair-Dependent Backorder and Inventory Costs[END_REF]750) and [START_REF] Buschkühl | Dynamic capacitated lot-sizing problems: A classification and review of solution approaches[END_REF]30,[START_REF] Millar | Lagrangian heuristics for the capacitated multi-item lot-sizing problem with backordering[END_REF]1000).

• size(p) = 0.2, weight(p) = 0.8

• lbd(pt) = 100, ubd(pt) = 200

• lbd(q) = 1, mbd(q) = 1000, ubd(q) = 5000, mpt(q) = 0.95

• size1(d) = 20, size2(d) = 60, prob1(d) = 0.1, prob2(d) = 0.85
• pf (dr) = 0.5

• pf (dd) = 0.7

• lbd(tc 1) = 1, ubd(tc 1) = 2 • lbd(tc 2) = 10, ubd(tc 2) = 10 • lbd(lc) = 200, ubd(lc) = 200 • R ∈ {0.75, 0.90}, T ype(cap) = T woLevel • lbd(st) = 0.4, ubd(st) = 0.5 • lbd(sc) = 0, ubd(sc) = 0
To introduce certain level of varieties, propose following instances with different features. All instances have the same instance generator parameters value unless specified:

• Equally distributed products (ProdEven):

size(p) = 100.0, weight(p) = 100.0

• Constant capacity (Capconst):

-T ype(cap) = Constant • Different capacity (Capdiff):
-T ype(cap) = V arious

• Small setup time ratio (STLow):

lbd(st) = 0.1, ubd(st) = 0.2

• Evenly distributed demand due date (DemEven):

-size1(d) = 100, prob1(d) = 1.0, size2(d) = 0, prob2(d) = 0.0
For each possible combination of the parameters, we generate 3 different instances to limit bias.

Empirical Evaluations

In this section, we present experimental results to study CLSC from computational perspective. All experiments run on computer with Intel Core i7-4790 2.50 GHz 3.60, 16 GB shared memory, under the Linux Ubuntu 12.4 operating system.

First of all, different MIP formulations are compared. All developed formulations are solved for benchmark IRG-A and IAP-A with standard MIP solver CPLEX 12.6.1.

In the practical application, lost sales cost and tardiness cost have higher priority than setup cost. Therefore, tests are done considering setup cost and without considering setup cost in Section 2.5.1 and Section 2.5.2 respectively.

Second, many features are involved in CLSC. In Section 2.5.3, we test different variants of CLSC on one application instance by relaxing one feature at a time. In this way, we analyze the impact of features to the problem difficulty.

Furthermore, based on the insight given by the formulation comparison test, one formulation with overall best performance is chosen. Benchmark IRG-B and IAP-B are solved with the chosen formulation by standard MIP solver CPLEX 12.6.1 on full cores given 1 hour time limit. The results are given in Section 2.5.4.

MIP Formulation Comparison Considering Setup Cost

In the Table 2.8, we present the summary computational results using CPLEX to solve the MIP models and their LP relaxations on the benchmark instances IRG-A and IAP-A with standard MIP solver CPLEX 12.6.1 on one thread given 10 minutes time limit.

In the table, the computing time is expressed in seconds. For each instance parameter (T , R, D, N , Γ) and values, we give the average results over all instances that have the corresponding value. In the Row T/A, averages values over all tested instances are reported while its Column Opt reports the total number of optimally solved instances for each formulation. In the first two columns, we present the parameters and their values.

For example, for number of time buckets T , there are three values {4, 9, 13} for IRG-A instances. In Column Opt and Time, we report the number and the average computing time over all instances with given parameter value solved to prove optimality within the time limit. In Column Nodes and Gap, we report the number of explored nodes and the exit gap when CPLEX terminates. This gap represents the relative difference between the primal and the dual bounds computed by the CPLEX at the time limit. In Column LPT, it reports the average computational time to solve the LP relaxation over all the instances sharing this parameter value. In Column LPG, we measure the quality of the LP relaxation which is calculated as

LP G = BestM ip -LP V al BestM ip , (2.39)
where bestM ip is the best known MIP solution of all formulations and LP V al is the optimal LP relaxation objective value of the given formulation. On all instances except two, the three formulations F orm1, F orm2 and F orm3 are characterized by the same LP V al. In the remaining two cases the difference is less than 0.001, thus we only report the LPG once under column F orm3. For IAP-A instances, we report the objective function values returned by the solver in Column Obj.

As far as the computing time necessary to calculate the LP relaxation is concerned, the average values over all tested instances are 0.37 seconds, 0.74 seconds and 0.30 seconds for F orm1, F orm2 and F orm3 respectively. For IRG-A instances, the average computational time of the LP relaxation are 0.24, 0.26 and 0.20 seconds, which are quite close. Therefore, the difference mainly comes from IAP-A instances. Thanks to the shortest average computing time for the LP relaxation, F orm3 is able to explore more nodes within the given time limit.

According to the Column Opt, the table shows that as the problem size increases, instances become more difficult to solve. The parameter N , which has an impact on the number of binary variables, affects most the solvability of the instances. Take F orm2

for example, when N increases from 4 to 12, the number of instances decreases from 258 to 59, whereas when D increases from 50 to 200, the number is only reduced by 36.

The number of time buckets T has a smaller impact on the computing time. We can observe that F orm1 explores a higher number of nodes, this is probably due to the fact that it struggles to find good quality integer solutions. On the other hand, F orm2 and F orm3 explore almost the same number of nodes for the randomly generated instances, while the F orm3 explores more nodes for the 3 real-world instances. Regarding the number of randomly generated instances solved to be proven optimality, F orm3 solves 416 instances and F orm2 solves 411 instances, while F orm1 solves only 379. A similar behavior can be also observed for the exit gap. For the real-world instances, we observe similar results, i.e., the F orm3 shows the best performance. Hence, according to the computational experiments, F orm3 shows the best overall computational performance. This is due to the fact that it has the least number of constraints with the same number of binary variables compared to the other two formulations, and its LP relaxation can be solved faster.

Next we compare two models of different production quantity decisions. Since F orm3 performs best among three different setup models, we fix the setup carryover model based on F orm3 therefore compare the formulation F orm3 and F orm3 F L . The average computational time of the LP relaxation of F orm3 F L on IRG-A is 1.60 seconds while for F orm3 it is only 0.2. For the real instance R2, CPLEX even fails to solve the LP relaxation of F orm3 F L optimally given 10 minutes time limit. With the price of longer computational time, F orm3 F L shows a lower LP Gap, as proven in the Theorem 2.4. However, even though F orm3 F L has a stronger lower bound, due to its longer computational time on each node, it only solves 365 instances out of 810 instances to optimality. In summary, F orm3 still gives better performance comparing to F orm3 F L , therefore gives overall best performance among all presented formulations. 10,672 0 0 0.00 0.0 10,672 0.0 0 0.00 0.0 10,672 0.0 0 0.00 0.0 0.00 10,672 2.1 0 0.00 0.9 0.00

MIP Formulation Comparison without Considering Setup Cost

In the apparel application, setup cost has secondary priority comparing to lost sale cost and tardiness cost. In other words, minimizing lost sale cost and tardiness cost is the most important objective. Therefore, in this section, we perform experiments on benchmark instances without setup cost but only setup time. In the Table 2.9, we present the summary computational results using CPLEX to solve the MIP models and its LP relaxations on the benchmark instances IRG-A and IAP-A with standard MIP solver CPLEX 12.6.1 on one thread given 10 minutes time limit. The table has the same layout as Table 2.8.

First of all, the optimal objective function values of LP relaxation of formulations F orm1, F orm2 and F orm3 are the same except for 15 instances. For these 15 instances, F orm2 and F orm3 have larger objective function values than F orm1, but the relative difference is less than 0.0001. Therefore, we only show the LP Gap under F orm3 column defined as (2.39).

For the performance of formulations to solve the problem, we observe similar results

as CLSC with setup cost. First, if we look at the overall performance over 810 instances of IRG-A, F orm3 solved 476 instances to prove optimality with the average absolute gap equals to 4.06%. The number of instances that are solved to optimality for F orm1, F orm2 and F orm3 F L are 460, 468 and 424 respectively. Hence, the experimental results

shows the superior performance among all developed formulations.

For the IAP-A instances, without setup cost, all of them are solved to prove optimality within a few seconds. However, due to the large formulation size, F orm3 F L took around 4 minutes to prove optimality of the solution.

Impact Analysis of Problem Features

CLSC consists of many features studied in CLSP. Here we perform experiments to understand the impact of each feature to the problem difficulty. Due to the priority difference of demand cost (lost sale cost and tardiness cost) and setup cost in the application, we solve CLSC without setup cost. As a reference, the original problem and its LP relaxation are solved as well and their results are shown in the row MIP and LP respectively.

The formulation is F orm3 since it gives the overall best performance. Other variants include:

• Parallel machines: all parallel machines are aggregated into one machine 0 with capacity cap 0t = r∈R cap rt for t ∈ T .

• Lost sale: no lost sales so that all demands must be satisfied.

• Tardiness: each demand has only the first due date and it is either satisfied on time or lost.

• Due dates: each demand has no due dates and can be satisfied any time by the end of the planning horizon without penalty cost.

• First due date: each demand has only the second due date e 2 d . It is considered to be on time if satisfied before e 2 d and it is considered to be delayed if satisfied at or after e 2 d with a unitary tardiness cost of tc 1 d + tc 2 d .

• Release date: each demand has release date b d equals to the beginning of the time horizon so that it can be satisfied from the very first time bucket.

The computational result is presented in Table 2.10. Each variant is solved by CPLEX with time limit 2 hours. For each problem, the returned objective function value, the computational time, the exit gap, the best lower bound returned by CPLEX and the number of explored nodes are given in Column Obj, Time, Gap, LB and # Nodes respectively.

We have following observations: first of all, the original problem is hard to solve that after 2 hours solving, the solution still has gap of 86%. Moreover, parallel machines contribute a lot to the problem difficulty that if we aggregate all machines, the problem can reach 0.1% gap after 2 hours of solving. Also, lost sales help CPLEX to find feasible solution. Actually, with developed heuristic algorithm, we find the near optimal solution of instance R5 and the lost sale cost equals to 0. However, when we set demands' satisfaction as a constraints, CPLEX has difficult time to find feasible solution. Eventually, after 2 hours, no integer solution has been found and the feasibility of the problem is reported unknown. Without considering backlogging, each demand can either be on time or lost. We observe a small gap as 6.3% for this variant. However, the objective function value is on the level of 3 × 10 8 , which might be the reason of the small gap.

Therefore, we can not conclude that this variant is easier. In the case of Due dates, different from Tardiness, all demands can be satisfied any time after its release date and be considered on time. Therefore, it is equivalent to optimize only lost sale cost and provide a feasible solution to the original problem. Moreover, its objective represents the lost sale cost of the solution. Comparing to solving the original problem, the real objective function value of this solution (> 37,900,675) is worse. The exit gap is 100% due to the lower bound of 0. Next variant is First due date, which ignores the first due date and has a simpler cost structure. So the solution of this problem is also feasible for the original problem and its cost represents the lost sale cost and partial tardiness cost (tardiness cost due to second level due dates). Similar to no due dates, the solution quality is worse than that of the original problem. Therefore, considering backlogging seems to make the problem easier for CPLEX to solve. Finally, we cancel all the release dates, and the problem solution is quite similar to the original problem. On one hand, we were expecting a lower objective function value than the original problem if both this one and the original problem are solved to optimality because that there are less constraints on the demand satisfaction time. On the other hand, it is also possible that the release date function as cuts and speed up the solving processing. Therefore, the result is a bit unexpected and we will continue to test once we collect more realistic instances. In summary, parallel machines make the problem more difficult to solve while backlogging and lost sales seem to make the problem easier to solve, at least for the tested standard MIP solver. Based on this computational result, we conclude that CPLEX has bad performance due to the bad lower bound based on the LP relaxation and the large problem size which prevent its embedded heuristics to find good solution.

Conclusions

We study a new variant of the CLSP, which is based on a real-world application. The problem combines, for the first time, several classical features of the LSP such as setup carryover and production time windows. We present and compare three different MIP formulations of the problem. We prove that one of the formulations is weaker since it may provide worse LP relaxation bounds. A set of instances are randomly generated and extensive computational experiments are conducted to compare these formulations.

The results show that one of the formulation F orm3 gives the overall best performance on both real-world instances and randomly generated instances. A library of instances is available online, and we hope that this can stimulate further research on this very challenging rich real-world LSP (http://decisionbrain.com/ISCO2016).

Chapter 3

Complex Capacitated Lot Sizing Problem: Heuristics

In the previous chapter, we have introduced the complex capacitated lot sizing problem CLSC. It is shown to be NP-hard and cannot be solved efficiently by a standard MIP solver based on our computational experiments. Therefore, we develop heuristic algorithms to tackle CLSC in this chapter.

The chapter is organized as follows: In Section 3.1, we present the introduction. In

Introduction

In the apparel application, the service level key performance indicator has superior priority than operational cost. In other words, tardiness cost and lost sale cost are much more important than setup cost. Our goal is to address the production planning problem from the application. Therefore, we only consider CLSC without setup cost in this chapter.

All heuristic algorithms we have developed are based on the MIP formulation of the problem. As shown before, formulation F orm3 gives the best overall performance.

Therefore, we use F orm3 to develop and test the algorithm whenever the MIP formulation of CLSC is required.

In the following sections, we present both constructive heuristics and improvement heuristics.

Constructive Heuristic Algorithms

In this section, we propose three heuristic algorithms to construct feasible solutions to CLSC. They include Fix&Relax algorithm, which is a classical algorithm widely used for CLSP, product decomposition based algorithm which explores real instances structure, and first solution heuristic algorithm based on the LP relaxation, which has a general framework. We adapt the Fix&Relax algorithm based on the time bucket and the machine decomposition, and it solves a series of MIP models. The PD algorithm is based on the product decomposition, which is also based on solving a series of MIP model.

However, its MIP models are on a smaller scale compared to those in the Fix&Relax algorithm. Finally, the first solution heuristic algorithm is based on variables fixation and it solves a series of LP models. Therefore, all constructive heuristics utilize mathematical models but have difference models and scales. For some algorithms, different variations and configurations are developed, and their analysis and comparison results are presented in Section 3.4.

Fix&Relax Algorithm

Fix&Relax (F&R) algorithm [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF] is one of the most commonly used heuristic algorithm in practice for CLSP. The algorithm has a general framework and is easy to implement.

Furthermore, it gives decent performance in many cases as shown in [START_REF] Absi | MIP-based heuristics for multi-item capacitated lot-sizing problem with setup times and shortage costs[END_REF][START_REF] Helber | A fix-and-optimize approach for the multilevel capacitated lot sizing problem[END_REF]. Therefore, we adapt F&R algorithm to CLSC in this section.

The essence of F&R algorithm is to decompose a problem, so that in each iteration a simpler and smaller sub-problem is solved to construct part of the feasible solution.

Normally the problem is divided into three parts:

• Frozen window: integer variables in this set are fixed at a given value.

• Decision window: all variables in this set are defined as in the original problem to be decided.

• Approximation window: integer variables in this set are relaxed to be continuous.

Intuitively, there are three decomposition strategy: period-oriented, product-oriented and machine-oriented. However, due to the setup carryover, the F&R algorithm can not be adapted directly to our problem. Decomposing the problem by products and fix the related setup variables may easily lead to infeasibility. Therefore, we only develop the F&R algorithm based on the time period and the machine decomposition. The product-oriented decomposition method is presented in the next section.

Period-oriented F&R algorithm

The F&R algorithm with period-oriented decomposition (FR-T) decomposes the problem by time buckets. Absi and Kedad-Sidhoum [START_REF] Absi | MIP-based heuristics for multi-item capacitated lot-sizing problem with setup times and shortage costs[END_REF] provided a nice presentation on the procedure of FR-T algorithm, we cite it here in

T

Frozen window Decision window Approximation window

Step 1 Given time window [a, b] and initial solution sol 0 , we define the following sub-problem

T a 1 b 1 σ Step k T a k b k σ Step k + 1 T a k+1 b k+1 σ δ Step K T a K b K = T σ
P F RT ([a, b], sol 0): (P F RT ([a, b], sol 0)) min (2.
z 0 irt = sol 0 (z 0 irt), z + irt = sol 0 (z + irt) i ∈ N , r ∈ R, t ∈ [1, a -1] z 0 irt , z + irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ [a, b] z 0 irt , z + irt ∈ [0, 1] i ∈ N , r ∈ R, t ∈ [b + 1, T]
We give the pseudo code of FR-T in Algorithm 1.

Algorithm 1: F&R algorithm with period-oriented decomposition (FR-T) Input: σ length of decision window, δ step size

Result: x irt , z 0 irt , z + irt , y dt and y d 1 k ← 1, a k ← 1, b k ← min{σ, T }, sol 0 = ∅; 2 while a k ≤ T do 3 sol k ← Solve sub-problem P F RT ([a k , b k], sol k-1); 4 a k+1 ← a k + δ, b k+1 ← min{b k + δ, T }, k ← k + 1; 5 end

Machine-oriented F&R algorithm

The F&R algorithm with machine-oriented decomposition (FR-M) decomposes the decision by machine. Given two non-intersect subsets of machines R F , R O ⊆ R and initial solution sol 0 , we define the sub-problem P F RM (R F , R O , sol 0) as follows:

(P F RM (R F , R O , sol 0) min (2.
z 0 irt = sol 0 (z 0 irt), z + irt = sol 0 (z + irt) i ∈ N , t ∈ T , r ∈ R F z 0 irt , z + irt ∈ {0, 1} i ∈ N , t ∈ T , r ∈ R O z 0 irt , z + irt ∈ [0, 1] i ∈ N , t ∈ T , r ∈ R\{R F ∪ R O }
We give the pseudo code of FR-M in Algorithm 2.

Algorithm 2: F&R algorithm with machine-oriented decomposition (FR-M) Input: σ length of the decision window, δ step size, π a permutation of all machines

Result: x irt , z 0 irt , z + irt , y dt and y d 1 k ← 1, a k ← 1, b k ← min{σ, R}, sol 0 = ∅; 2 while a k ≤ R do 3 R F ← {π l ∈ R : 1 ≤ l ≤ a k -1}; 4 R O ← {π l ∈ R : a k ≤ l ≤ b k }; 5 sol k ← Solve sub-problem P F RM (R F , R O , sol k-1); 6 a k+1 ← a k + σ, b k+1 ← min{b k + σ, R}, k ← k + 1; 7 end
Even though F&R algorithm with product decomposition can not be directly applied to our problem, in the next section, we develop a heuristic algorithm based on the product decomposition.

Product Decomposition Based Algorithm

In this section, we develop a constructive algorithm based on some observation from the application data. Data analysis in Section 2.4.1 shows that even though there are many products, normally 20% of products cover 80% of demands. This feature can actually be observed in many industrial cases. Therefore, we would like to develop an algorithm to make use of this knowledge. One idea is to decompose the problem based on products, and solve a sequence of sub-problems based on each product. We call it the Product Decomposition (PD) based algorithm.

The PD algorithm flow chart is shown in Figure 3.2. First, we sort all products to obtain an order π based on certain criteria. Then for each product i = π(k), a subproblem P P D (i) is built and solved by a standard MIP solver. After each iteration, the current production plan is updated and it moves to the next product π(k + 1).

Compute product order π

Build and Solve

P P D (π(k)) Update status, k ← k + 1 Return solution k ← 1 k > N k ≤ N Figure 3.

2: PD algorithm flow chart

There are two critical components in PD algorithm: sorting criteria and definition of the sub-problem. In the rest of the section, we introduce several variants of PD based on different strategies of these two components and complete the algorithm.

Sorting criteria

All products can be sorted with increasing or decreasing order based on an assigned value. We introduce two ways to define this value: demand capacity and release date.

Therefore based on increasing or decreasing direction, we have four sorting criteria, which are summarized in Table 3.1. For a given product i, define the demand capacity as the total required capacity of the demands for this product as follows:

dc(i) = d∈D i pt i q d (3.1)
For a given product i, define the release date as the earliest release date of all its demands as follows:

rd(i) = min d∈D i r d (3.2)
As shown in Table 3.1, we have four different criteria. For example, the criteria CI represents ordering products according to the increasing value of dc(i). In the Example 2.1, the order of product is π = (i1, i3, i2) based on CI with the demand capacity value

dc(i1) = 3, dc(i2) = 4, dc(i3) = 3.

Sub-problem definition

For each product, we define a sub-problem, which only plans the production of the current product. On one hand, each sub-problem optimizes the original objective including lost sale cost and tardiness cost for demands belonging to current product. On the other hand, it also has to consider to leave capacity for remaining products to be planned. In the rest of this section, we explain two types of sub-problems, which are summarized in Sub-problem with start-up and idle cost For one product sub-problem, instead of setup carryover, we consider start-up as well as the idle cost. Due to the start-up cost, the solution prefers production in continuous time buckets on a machine. However, if there is only start-up cost, some time buckets will be used partially just to make production continuous and avoid a new start-up. Therefore, we introduce idle cost, which tries to reduce capacity waste for products not planned yet.

Given a product j and available capacity avlcap(r, t) defined for each machine r in time bucket t, we introduce following variables for each machine r ∈ R and time bucket t ∈ T :

• x jrt is defined as in formulation F orm3 for CLSC, it represents the production quantity of product j on machine r during time bucket t.

• γ rt ∈ {0, 1} equals to 1 if machine r in time bucket t is used, i.e., there is a positive production for j.

• θ rt ∈ {0, 1} equals to 1 if there is a start up in t for machine r, which means that machine r is not used in t -1 (γ r,t-1 = 0) whereas it is used in t (γ r,t-1 = 0).

Let w sp ≥ 0 and w ic ≥ 0 be the weight of start-up cost and idle cost respectively.

The sub-problem P P D SI (j) with start-up and idle cost is defined as follows:

(P P D SI (j)) min

y dt + y d = q d d ∈ D j (3.5) pt j x jrt + st jr θ rt ≤ avlcap(r, t)γ rt r ∈ R, t ∈ T (3.6) x jrt ≤ Θ jrt γ rt r ∈ R, t ∈ T (3.7) x jrt ≥ γ rt r ∈ R, t ∈ T (3.8)
θ rt ≥ γ rt -γ r,t-1 r ∈ R, t ∈ T (3.9)
γ rt , θ rt ∈ {0, 1} r ∈ R, t ∈ T (3.10)

x jrt ≥ 0 r ∈ R, t ∈ T (3.11)
y dt ≥ 0, y d ≥ 0 d ∈ D j , b d ≤ t ∈ T (3.12)
In the objective (3.3), we minimize not only the lost sale cost and tardiness cost, but also the start-up cost and idle cost. As in F orm3 for CLSC problem, constraints (3.4) ensure the material flow balance in each time bucket while constraints (3.5) state the flow balance for each demand, i.e., the satisfied quantity plus the unsatisfied quantity of each demand should equal to its total required quantity. Constraints (3.6) require total used capacity is no more than the total available capacity on each machine for each time bucket. The total used capacity includes production used capacity pt j x jrt and start-up used capacity st jr θ rt . On the other hand, the given available capacity is avlcap(r, t)γ rt , which equals to 0 when the capacity is not used (γ rt = 0) and equals to avlcap(r, t) when the capacity is used (γ rt = 1). Constraints (3.7) link production with setup usage that there is a positive production only if the capacity is used. On the other hand, constraints (3.8) ensure at least 1 unit is produced when the capacity is used. Finally, we define start-up variables with constraints (3.9) that given machine r if capacity is not used in t -1 but used in t, there is a start-up in time bucket t.

Note that in the objective function, we mix two types of objectives together: original objective (including lost sale cost and tardiness cost) and capacity usage cost (including start-up cost and idle cost). Obviously, they do not have the same priority and serve different purpose. Hence, we need to treat them differently. One way is to adjust the coefficient w sp and w ic accordingly to distinguish different levels of importance (which is actually hard to define in practice). Another way is to use goal programming. Since original objective dominates capacity usage objective, we choose to use goal programming. In the first rank, we try to minimize lost sale cost and tardiness cost, while in the second rank we try to minimize start-up cost and idle cost.

Given a MIP defined as min x∈X f 1 (x) + f 2 (x), the goal programming with objective f 1 (•) as rank 1 and f 2 (•) as rank 2 is to solve following two optimization problems in sequence:

1) z * 1 = min x∈X f 1 (x) 2) min x∈X ,f 1 (x)≤z * 1 f 2 (x)
Therefore, for each product, we solve two sub-problems P P D SI1 (j) and P P D SI2 (j) in sequence, which are defined as follows:

(P P D SI1 (j)) min In the first rank, we try to minimize the lost sale cost and tardiness cost in problem P P D SI1 (j). Given the obtained feasible objective function value obj(P P D SI1 (j)), we minimize the start-up cost and idle cost in rank 2. However, constraint (3.13) ensures that the lost sale cost and tardiness cost is not worse than what we have achieved in rank 1.

Sub-problem with fully capacity usage Another way of compact capacity usage is to force almost full capacity usage unless it is a switch-off time bucket. It means that if several continuous time buckets are used, then the capacity in all time buckets but the last one should be fully used. So on machine r, if time bucket t and t + 1 are used, then capacity in t must be fully used. In this way, each sub-problem also considers leaving capacity for remaining products to be planned. This sub-problem is defined as follows:

(P P D F (j)) min
pt j x jrt + st jr θ rt ≥ avlcap(r, t)(γ rt + γ r,t+1 -1) r ∈ R, t ∈ T \{T } (3.14)
We also consider to use goal programming, where the first rank is also to minimize the lost sale cost and tardiness cost while the second rank is to minimize the start-up cost.

PD algorithm variants

In this section, we complete two variants of PD algorithm.

First of all, once we solve sub-problems for all products, we use following model to recover the setup values for the original problem. Given solution value γ irt and θ irt for i ∈ N , r ∈ R and t ∈ T , we define the problem as follows:

(P (γ irt , θ irt)) min 0

s.t. i∈N z 0 irt = 1 r ∈ R, t ∈ T z 0 irt ≤ z 0 ir,t-1 + z + ir,t-1 i ∈ N , r ∈ R, t ∈ T \{1} z 0 irt + z 0 ir,t+1 ≤ 1 + w rt i ∈ N , r ∈ R, t ∈ T \{T } z + irt + w rt ≤ 1 i ∈ N , r ∈ R, t ∈ T z 0 irt = 1 If γ irt = 1, θ irt = 0 i ∈ N , r ∈ R, t ∈ T z 0 irt + z + irt = 1 If θ irt = 1 i ∈ N , r ∈ R, t ∈ T z + irt = 0 If γ irt = 0 i ∈ N , r ∈ R, t ∈ T
The PD algorithm with start-up and idle cost (PD-SI) is given in the Algorithm 3.

The crucial part is to update the available capacities for the next sub-problem. After planning one product, the available capacity includes non-used time bucket and the remaining capacity in the switch-off time bucket. As shown in the example in Figure 3.3, time buckets tb 1 and tb 4 are never used therefore their capacity is available for the next product. Moreover, the time bucket tb 3 and tb 5 are switch-off time buckets therefore their remaining capacity is also available for the next product. However, time bucket tb 2 is partially used and is not a switch-off time bucket, therefore even though there is capacity left but is considered nonavailable for the next product.

First Solution Heuristic Algorithm Based on LP Relaxation

In the previous section, we have introduced the PD algorithm, which is based on the special feature that we have observed in the application instances. In this section, we develop a rather general constructive heuristic algorithm which is based on the MIP formulation and its LP relaxation.

The algorithm flow chart is shown in Figure 3.4. First, we solve the LP relaxation of the problem. Based on this continuous solution, a set of binary variables is selected to be fixed. The LP relaxation of the updated formulation is solved again with fixed variables and new binary variables are selected to be fixed. We repeat this process until either there is no more variable that fulfills our condition to be selected, or the LP relaxation is infeasible. In the first case, we solve the resulting MIP formulation with fixed variables. In the second case, a repair process is performed and we solve the resulted MIP formulation with fixed variables. Eventually, if a solution is returned by solving this final MIP formulation, we obtain a feasible solution to the original problem. be fixed; second, how to avoid infeasibility. We address these two issues in the following.

Variable selection

First we analyze the LP solution of the problem to understand which variables should be fixed. In the Example 2.1, we give the optimal MIP solution without setup cost in Figure 3.5 and the optimal LP relaxation solution in Figure 3.6. In time bucket t 2 on machine r 1 , there is not enough capacity to produce and setup for both product i1 and i2. However, the LP relaxation solution have them both produced by sharing the initial state (z 0 i2,r1,t2 = 1 3 , z 0 i3,r1,t2 = 2 3). Producing both products in t2 is a potential conflict and if we help the LP solver to resolve this conflict, i.e., make a decision and set z 0 i1,r1,t2 = 1, then only product i1 will be produced in t2. Therefore, the idea is that for each machine r, we select a time bucket with highest potential conflict, then a variable is selected to be fixed to resolve this conflict. The selection strategy is as follows: for each machine r, define

r 2 r 1 t 1 t 2 t 3 t 4 t 5 d 1 (2 3) d 2 (1 3) d 3 (2 3) d 2 (2 3) d 4 (4 3) setup d 5 (1 2) d 5 (1) d 1 (1 3) d 2 (2 3) d 3 (4 3) d 2 (1 3) d 4 (2
vio(r, t) =    i∈N st ir z + irt -cap rt if ∃i s.t. z 0 irt = 1 i∈N st ir z + irt + z 0 irt -cap rt otherwise (3.15)
It represents the potential capacity violation when we round up fractional setup variable values to integers. When vio(r, t) ≤ 0, it implies that even if we setup all the products indicated in the LP relaxation solution, there is enough capacity in (r, t). When vio(r, t) > 0, it means that the LP relaxation solution might be making a wrong decision that there is not enough capacity to produce all the products indicated in the continuous solution.

To simplify the algorithm description, we introduce following notations which has the same structure as Map in Java. • Given var ∈ B, define

F (var) :=    val such that (var, val) ∈ F if var ∈ F v -1 otherwise
Given a continuous solution of CLSC, the variable selection in FSH algorithm is given as follows in Algorithm 5:

Algorithm 5: The variable selection algorithm of FSH algorithm Input: sol LP R as a continuous solution, a set of variables already fixed

F 0 ⊆ B × {0, 1} ;
Result: A subset of binary variables F ⊆ B × {0, 1} Let N * ⊆ N be the subset of products such that

z 0 irt / ∈ F 0 , z + irt / ∈ F 0 ; 9 Let i * ∈ N * such that pt i * sol LP R (x i * ,rt) = max i∈N * pt i sol LP R (x irt); ; /* i with max production capacity */ 10 if z 0 i * ,rt / ∈ F 0 then 11 F ← F ∪ {(z 0 i * ,rt , 1)}; 12 F ← F ∪ UpdateBounds(z 0 i * ,rt , 1)

Infeasibility issue

If the fixing strategy is proper, we may even prevent the situation of infeasible LP relaxation or MIP, therefore guarantees to return a feasible solution. Due to the nature of our problem, the major infeasiblity comes from the relations between setup variables z 0 irt and z + irt . Therefore, one way is to introduce analysis rules and perform constraint propagation. All the propagation rules are summarized as follows:

• If set z 0 irt = 0 -If z + irt = 0, set z 0 ir,t+1 = 0 -If z 0 ir,t+1 = 1, set z + irt = 1 • If set z 0 irt = 1 -For i = j ∈ N , set z 0 jrt = 0 -Set z + irt = 0 -If z 0 ir,t+1 = 1, for i = j ∈ N , set z + jrt = 0
-If there exits j, i = j ∈ N , set z 0 ir,t+1 = 0

-If z 0 ir,t-1 = 1, for j ∈ N , set z + jr,t-1 = 0 -If z 0 ir,t-1 = 0, set z + ir,t-1 = 1 -If z + ir,t-1 = 0, set z 0 ir,t-1 = 1 -If there exits j ∈ N such that z + jr,t-1 = 1, set z 0 ir,t-1 = 0 -If z 0 ir,t-1 and z + ir,t-1 are both free, For i = j ∈ N , if recap(r, t -1) < st jr , set z + jr,t-1 = 0 • If set z + irt = 0 -If z 0 irt = 0, set z 0 ir,t+1 = 0 -If z 0 ir,t+1 = 1, set z 0 irt = 1 • If set z + irt = 1 -For i = j ∈ N , if z + jrt is free and recap(r, t) < st jr , set z + jrt = 0 -Set z 0 irt = 0 -For j ∈ N , if z 0 jrt = 1, set z 0 jr,t+1 = 0 -For j ∈ N , if z 0 jr,t+1 = 1, set z 0 jrt = 0 -For j ∈ N , if z + jrt = 0, set z 0 jr,t+1 = 0
where recap(r, t) = cap rt -i∈N ,z + irt is fixed to 1 st ir . Unfortunately, we can not guarantee that the LP relaxation and the final MIP are feasible based on the above rules. One future research direction is to develop a general constraint propagator which can detect infeasibility and we can have roll back function to recover from the infeasible fixation.

Repair Procedure

If infeasibility is detected at the kth iteration during running FSH, we try to repair by rolling back to the previous iteration. Let F (k) be the set of all variables fixed after the kth iteration and F k be the set of all variables fixed during the kth iteration. We recover all variables var ∈ F k back to free binary variables and solve the original MIP model with variables var ∈ F (k)\F k fixed to the given value during FSH.

First solution heuristic algorithm (FSH)

The pseudo code of the FSH algorithm is given in Algorithm 6.

Fix&Optimize algorithm

In previous sections, we introduce several constructive heuristic algorithms to build up a solution for CLSC from scratch. In this section, we develop a local search algorithm to further improve the solution quality. Fix&Optimize (F&O) algorithm [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF] is another commonly used method for LSP. The algorithm starts from an initial solution. Then in each iteration, partial variables are fixed, while the remaining variables are optimized to try to improve the solution quality. After each iteration, variables in the decision window are updated and the process is repeated until certain criteria is reached. The final solution is no worse than the initial solution. The idea is to solve a smaller MIP problem in each iteration to search for a better solution.

In this section, we develop a F&O algorithm based on period-oriented decomposition.

Given a feasible solution of CLSC as sol 0 , we define the problem

P F O ([a k , b k], sol 0)
z 0 irt = sol 0 (z 0 irt), z + irt = sol 0 (z + irt) i ∈ N , r ∈ R, t ∈ [1, a -1] ∪ [b + 1, T] z 0 irt , z + irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ [a, b]
The algorithm is formally presented in Algorithm 7:

Algorithm 7: The Fix&Optimize (F&O) algorithm for CLSC Input: σ length of the decision time window, δ step size

Result: x irt , z 0 irt , z + irt , y dt and y d 1 k ← 1, a k ← 1, b k ← min{σ, T }, sol 0 = ∅; 2 while a k ≤ T do 3 sol k ← Solve sub-problem P F O ([a k , b k], sol k-1); 4 a k+1 ← a k + δ, b k+1 ← min{b k + δ, T }, k ← k + 1; 5 end

Computational Results

In this section, we present computational results of above developed heuristic algorithms to evaluate and compare their performance. First, parameter evaluation is performed on the pilot benchmark instances to evaluate different configurations of the F&R algorithm and the PD algorithm. Then all developed heuristic algorithms are compared based on their chosen configurations which give the overall best performance.

Algorithm Parameter Evaluation

We use benchmark IAP-B, which includes four real-world instances, as pilot benchmark instances. Computational results of pilot instances with CPLEX given 1 hour time limit is used as a reference, we recall the computational results here, which have been presented in Table 2.11 in Section 2.5.4:

Parameter evaluation of Fix&Relax (F&R) algorithm

Parameters for the F&R algorithm include decomposition strategy, decision window size σ and step size δ. We test following combinations of different parameters:

• Decomposition strategy: TO, MO

• (σ, δ): {(2, 1), (3, 1), (3, 2)}
The computational results are shown in Table 3.3. The time limit of each iteration is set to 600 seconds. According to the computational results, we have following observations:

1) For all tested configurations, the F&R algorithm fails to solve the instance R5. The reason is that it fails to find a feasible solution in the first iteration within the time limit set on each iteration (600 seconds). We have also tried to increase this time limit from 600 seconds to 1200 seconds, we observe the same result for instance R5 that the F&R algorithm still fails to find a feasible solution to the sub-problem in the first iteration.

This implies that the sub-problems constructed in F&R is still too hard to solve for CPLEX based on tested instances and formulation.

2) We observe the overall best solution quality on the F&R algorithm with machineoriented decomposition, decision window length as 3 and step size as 1 (FR-MO-(3,1)).

It returns an average gap of 6.9%, whereas it is 33.7% for CPLEX. However, the average computational time of FR-MO-(3,1) is more than 3 hours. Therefore, we observe a natural trade-off between solution qualities and computational times.

3) Comparing the two decomposition strategies of the F&R algorithm, MO based F&R algorithm offers better solution quality than TO based F&R algorithm, but with a much longer computational time. Also, one does not dominate the other since we observe that the algorithm FR-TO-(2,1) obtains better solution than its counter part FR-MO-(2,1).

4) Comparing the different decision window sizes and step sizes, the parameter (3, 1)

gives best solution quality on average for both decomposition strategies. In fact, it is true for all cases except one that the FR-MO-(3,2) algorithm gives better solution than FR-MO-(3,1) for instance R6.

In summary, F&R algorithm based on machine decomposition with decision window size and step size as [START_REF] Absi | MIP-based heuristics for multi-item capacitated lot-sizing problem with setup times and shortage costs[END_REF][START_REF] Abad | Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale[END_REF] gives the overall best performance. However, the F&R algorithm can not address the most difficult instance R5. Also, the computational time of F&R is on average very long, which exceeds 3 hours for some configurations. Hence, we conclude that F&R algorithm is not efficient enough on our problem, therefore we stop testing it on other benchmark instances.

Parameter evaluation of PD algorithm

The parameter for the PD algorithm includes sorting criteria and sub-problem definition.

• Sorting criteria: the demand capacity dc(•) and the release date rd(•) in increasing and decreasing order.

• Sub-problem definition: the sub-problem with the start-up and the idle cost (SI), the sub-problem with full usage (F).

We first evaluate two sub-problems based on the same sorting criteria: the demand capacity dc(•) in decreasing order. The computational results are presented in Table 3.4. Based on the same sorting criteria of decreasing required capacity, the PD algorithm based on the SI sub-problem (PD-SI-DC) and the PD algorithm based on the F subproblem (PD-F-DC) obtain solutions with similar quality. Over tested instances, the average gap of PD-SI-DC and PD-F-DC are 46.3% and 45.9%, which implies that the PD-F-DC algorithm have slightly better performance on average. However, there is no dominance between these two variants. Moreover, we observe a longer average computational time on the PD-F-DC (170 seconds) algorithm than PD-SI-DC (103 seconds). This is due to the fact that the almost-full-capacity-usage constraints introduces more difficulty to the sub-problems.

We then evaluate the sorting criteria based on the same sub-problem definition SI.

The computational result is shown in Table 3.5. We observe that the variant with decreasing demand capacity (PD-SI-DC) gives the overall best performance, since it has the lowest average gap and the shortest average computational time. Its average gap is 46.3%, whereas the average gap is more than 55% for other criteria. The major improvement comes from the instance R5. Compared to CPLEX with 1 hour time limit, within 70 seconds, the PD-SI-DC algorithm reduces the gap from 91% to 48.2%.

We also present

Algorithm Comparison Results

In previous sections, we have presented the parameter analysis on the F&R algorithm and PD algorithm. In this section, we select following parameters which give the best overall performance for each algorithm, and perform test on benchmark IAP-B and IRG-B to evaluate their performances.

• CPLEX with 1 hour time limit (presented in Section 2.5.4).

• PD-F-DC algorithm, iteration time limit for each sub-problem as 60 seconds.

• FSH algorithm, iteration time limit as 600 seconds.

• F&O algorithm with optimization window size as 3 and step size as 1, iteration time limit as 60 seconds.

FSH results

We first present the detailed computational results of the FSH algorithm. In Table 3.6

we show the computational results on the benchmark IAP-B while in Table 3.7-3.9 we show the FSH results on benchmark IRG-B.

As we presented before, the FSH algorithm consists of two steps: LP phase, when a series LP relaxation problems are solved and a subset of binary variables are fixed during each iteration. MIP phase, the restricted MIP model is solved to obtain a feasible solution. Therefore, we present detailed results to analyze that how each component performs and contributes to the algorithm.

In the following table, for each instance, we present the obtained objective function value (Obj), total computational time (Time), the relative gap based on the best known lower bound (Gap), the number of iteration of solving LP relaxation and fixing variables (#Iter), the percentage of the number of variables fixed to 1 over the number of all binary variables (#FixedTo1), and the computational time to solve the restricted MIP problem. Based on results of real application instances IAP-B, we observe that 1) The FSH algorithm addresses the difficult instance R5. Compared to CPLEX, the objective function value is reduced from 35,511,200 to 14,160,409, while the gap is reduced from 91.6% to 79.0%. Moreover, its computational time is within 4 minutes. However, this does not apply to all instances. For relatively easier to solve instances R6, R7 and R8, the solution quality is worse than that of CPLEX.

2) On average, the average computational time is around 4 minutes to construct feasible solutions. In FSH algorithm, the most time consuming part is to solve the LP relaxation sub-problem in each iteration. Therefore, we can expect that as the problem size increases, the FSH algorithm will consume more computational time as well.

3) For the LP phase, the FSH algorithm goes through 20 iterations on average and fixes near 1.5% of binary variables to 1. However, it is enough to solve the resulted MIP in less than 5 seconds. This is mainly due to the structure of the setup carryover that if we fix all initial setup states, then all other z 0 irt variables are fixed to 0 accordingly. To build up the first solution, the major computational time is spent on solving LP relaxation problems. Therefore the bottleneck of the problem speed is at solving LP relaxation problems. given 600 seconds time limit. Therefore, the returned results of the FSH algorithm is to solve the original model given 600 seconds time limit. For other instances, the average iterations for fixing variables are from 26 to 39 for different types of instances with around 1% of binary variables fixed to 1. This is similar to the results of the IAP-B instances.

Moreover, the resulted restricted MIP model are solved within 1 minutes. Also, for tested instances, the constraint propagation manages to avoid infeasibility during the variable fixation. Without the constraint propagation, the FSH algorithm easily get into infeasibility which leads to no solution found in most cases. However, as we mentioned before, the completeness of the propagation rule is not proved. At last, for the solution quality, the relative gap is still very high based on our best known lower bounds. The further analysis are given in comparison with other heuristic algorithms in the next part.

All heuristic algorithm comparison results

Finally, we compare all developed heuristic algorithms in Table 3 For other heuristic algorithms, we show the computational time and the relative gap or the relative improvement defined as impro = max{-1, obj C -obj A max{1,obj C } } • 100%, where obj A and obj C are the objective function value of the corresponding algorithm and CPLEX. We compare the improvement instead of gap is because that in many cases of IRG-B, the best known lower bound is 0, which leads to 100% gap for any positive objective function value. Therefore we use the value impro to measure the improvement of objective function value with reference of CPLEX. Comparison results on IAP-B instances are shown in Table 3.10 and in Figure 3.9.

First, besides CLPEX, the computational time always follows the order PD < FSH < PD + F&O < FSH + F&O on these 4 instances. On the other hand, the gap always follows the order FSH > PD > PD + F&O > FSH + FO. Second, between two constructive heuristic algorithm, it seems that more computational effort does not lead to better solution quality. On average, the computational time of FSH is 243 seconds while it is 170 seconds for PD algorithm. However, the average gap of FSH algorithm is 74.5%, which is almost double of that of PD algorithm (45.9%). However, the effort pays off when the constructive algorithm is followed with the improving algorithm. With the same improving local search mechanism as F&O algorithm, FSH + F&O gives better results than PD + F&O on all instances. It implies that a better starting solution does not mean a better final solution for F&O algorithm. Third, comparing to CPLEX, both algorithm FSH + F&O and PD + F&O manages to provide better solutions in shorter computational time. The average gap of FSH + F&O algorithm is 9.0% whereas the average gap of PD + F&O is 21.1%. For CPLEX, the average gap is 33.7%. Especially for the most difficult instance R5, the gap is reduced from 91.6% (CPLEX) to 14.2% (FSH + F&O). This shows the efficiency of our developed heuristic algorithms comparing to CPLEX. For the apparel application, a decent solution is provided in a reasonable time (< 12 minutes) by our heuristic algorithm. At last, we observe that the F&O algorithm improves the solution quality quite well, especially for FSH algorithm. Therefore, F&O algorithm remains efficient for our LSP as well as for many cases in the literature in spite of its simple structure. and analyze the results. We first give a summary results over all 108 instances in Table 3.11 and 3.12. The comparison results for each instance is given in Table 3.13 -3.15. Based on this summary results, we observe similar trend on computational time and solution quality (measured by value impro). Therefore, the performance is consistent on both benchmark instances. The only difference is that PD + F&O algorithm takes even shorter time than FSH algorithm, which is opposite for the real application instances.

In terms of computational time, FSH algorithm (1548 seconds) takes much longer than PD algorithm (248 seconds). This is because the instance size of some IRG-B instances is much larger than that of IAP-B, therefore the LP relaxation problem in each iteration gets harder to solve. Even the F&O algorithm computational time are different when the initial solution is provided by FSH algorithm or by PD algorithm. FSH + F&O algorithms takes 3671 seconds on average while PD + F&O algorithm takes 985 seconds on average. Therefore, the average time of FSH + F&O is longer than that of CPLEX already, even though it provides better solution than CPLEX. In terms of solution quality, on average, all heuristic algorithms obtain better solution quality comparing to CPLEX with 1 hour time limit. However, the improvement is not well shown by gap. One of the reason is as we have mentioned before: when the best lower bound is 0, then any positive objective function value gives a gap 100%. Another reason is that some IRG-B instances might be more difficult to solve due to the larger instance size and the instance generating algorithm. The best average gap is given by FSH + F&O algorithm, which equals 88.3%. We have gained less than 3% in terms of relative gap comparing to CPLEX. Therefore, the gap may not be a good indicator in this case. If we look at the value impro instead, then the improvement of solution quality by heuristic algorithms are more obvious. For example, FSH algorithm improve objective function value by 44.7% on average, which is the worst case in all 4 heuristic algorithms.

In Table 3.12, we show the summary result on different types of generated instances.

Since the relative gap does not provide too much information, we only show the computational time and the impro value for each heuristic algorithm. We observe that 1), on average comparing to CPLEX, the FSH algorithm takes half of the computational time while improves at least 43% objective function value for all types but the STLow type instances. According to CPLEX results, STlow type instances are easier to solve than other types. Therefore, the FSH algorithm performs better on relatively difficult instances.

2), PD algorithm has a big advantage on short computational time comparing to other algorithms. On average, PD algorithm takes less than 5 minutes and improves the solution quality of CPLEX for most instances. On average, PD algorithm manages to improve solution quality by 57.8% comparing to CPLEX. Like FSH algorithm, PD algorithm fails to obtain better solution quality than CPLEX on STLow type instances.

However, the average improvement is better than FSH on all types instances. Therefore we can conclude that PD algorithm is efficient and can provide a feasible solution with reasonable quality in short time.

3), by combining FSH algorithm with F&O algorithm, the solution quality is further improved, the objective function value is improved by 85.1% over all instances comparing to CPLEX. Actually, for 107 instances over 108, the algorithm gives better solution than CPLEX. However, the computational time of FSH + F&O algorithm is on average around 5 minutes higher than CPLEX.

4), by combining PD algorithm with F&O algorithm, the solution quality is also improved comparing to PD algorithm. The F&O phase increases the average computational time from 248 seconds to 985 seconds, while increases the improving value from 38% to 56%.

Conclusions

In this chapter, we have developed three constructive heuristic algorithms: F&R algorithm, FSH algorithm and PD algorithm and one improvement heuristic algorithm: F&O algorithm.

First different variants of F&R algorithm and PD algorithm are tested on real-world application instances IAP-B to perform parameter analysis. The result shows that F&R algorithm is not adapted to our problem since it takes very long computational time. This is due to that the partially relaxed problem in each iteration remains hard for CPLEX to solve. Moreover, one type of PD algorithm PD-F-DC has slightly better performance than other its peers therefore is selected to be tested on a larger benchmark instances

IRG-B.
All heuristic algorithms except the F&R algorithm are tested on both real application instances IAP-B and pseudo-randomly generated instance IRG-B. On both benchmark instances, all heuristic algorithms have consistent behavior on solution quality. The average impro values of algorithm FSH, PD, PD + F&O and FSH + F&O follows increasing order. In other words, FSH algorithm gives the worst performance whereas FSH + F&O algorithm has the best performances based on our experiments. As for the computational time, on benchmark IAP-B, the computational time of algorithm PD, FSH, PD + F&O and FSH + F&O follows increasing order. However, on benchmark IRG-B, PD + F&O algorithm even has shorter computational time than FSH algorithm.

PD algorithm has the advantage of short computational time. It seems to have better performance on relatively difficult instances, which has worse performance on relatively easy instances comparing to CPLEX. FSH algorithm has the same attribute on this that it performance better on relatively difficult instances. On average, it takes longer time than PD algorithm, and obtains worse solution quality. However, when we combine the constructive algorithm with F&O algorithm, FSH + F&O returns better solution and PD + F&O algorithm. Therefore, F&O algorithm does not guarantee a better final solution given a better initial solution. Actually, FSH + F&O algorithm almost always provide better solution than CPLEX, therefore has the best overall performance.

However, the bottleneck is the computational time spent on solving LP relation problem in each iteration.

In summary, PD algorithm or PD + F&O algorithm has the advantage of speed, which can be used when computational time is rare resource. FSH algorithm and FSH + F&O algorithm has non negligible computational time, especially when the problem size gets large. However, it returns best solution over all developed algorithm.

Chapter 4

Production Planning Solution to the Apparel Application

Motivated by the apparel manufacturing application introduced in the first chapter, we extracted a complex capacitated lot sizing problem CLSC and have studied it from different points of view. In fact, this problem is constructed by simplifying constraints and aggregating products. In this chapter, we refocus on the application and display the entire production planning solution. The methodology is based on a decomposition approach, and CLSC is solved as the first step of the production planning engine.

The chapter is organized as follows: in Section 4.1, we present the decomposition approach in the application production planning engine. In Section 4.2, we use one application instance to analyze different scenarios and evaluate the system performance.

Finally, we conclude in Section 4.3.

Decomposition Approach

The project scope is production planning and scheduling, and the decomposition framework is shown in Figure 4.1. The production planning problem is solved first, which is followed by a scheduling phase. The aggregated model is solved first. Then we fix the setup of detailed model according to the aggregated model solution. Eventually, the restricted detailed model is solved to obtain a planning solution for the apparel application.

In the scheduling phase, activities on each sewing production line are decided by the planning solution. For each demand on each machine, if the production quantity is nonzero, we combine its productions in all time buckets into one production activity in the scheduling phase. This is due to the fact that we rarely split production of a work order on one production line. Each sewing activity is projected to an activity on other process step. First, scheduling of pre-sewing steps are solved by a greedy algorithm.

Then based on the pre-sewing solution, we restrict the starting date of sewing activities based on pre-sewing solution and schedule sewing activities with a commercial constraint scheduling solver CPLEX CPO optimizer. At last, we schedule after-sewing process steps and obtain a complete scheduling solution.

Since our work is mainly the production planning phase, in the following, we focus on explaining detailed steps of the production planning phase in the decomposition approach.

Planning Phase Detailed Model

The aggregated model CLSC have been defined and studied in previous chapters. Therefore, in the following, we formally define the detailed model. The input parameters of the detailed model are:

• T = {1, 2, . . . , T }: set of time buckets.

• R = {1, 2, . . . , R}: set of machines.

• N = {1, 2, . . . , N }: set of product families.

• D = {1, 2, . . . , D}: set of demands.

• cap rt : capacity of machine r in time bucket t (r ∈ R, t ∈ T).

• st ir : setup capacity for product family i on machine r (i ∈ N ,r ∈ R).

• sc ir : setup cost for product family i on machine r (i ∈ N ,r ∈ R).

• pt d : capacity required by unitary production of product d (d ∈ D).

• pc d : unitary production cost of product required by demand d (d ∈ D).

• p d ∈ N : the required product family of the demand d (d ∈ D).

• q d : quantity of product required by demand d (d ∈ D). • D i ⊆ D: the subset of demands such that p d = i, i.e., D i ⊆ D.

• θ dr : minimum split size for product of demand d on machine r.

The problem is to decide for each machine r ∈ R and for each time bucket t ∈ T , how much to produce of each demand d ∈ D. The objective is to minimize the total cost including lost sale cost (first priority), tardiness cost (first priority), setup cost (second priority) and production cost (second priority). The restriction includes four parts: 1), the production to satisfy demand d can only start from its release date; 2), the machine capacities cap rt must not be exceeded by the capacity usage for each machine r and time bucket t (r ∈ R, t ∈ T); 3), setup occurs for the product families and setup carryover is considered; 4), for each demand d on each machine r, the total production quality of d has to be greater than equals to its minimum split size θ dr if there is a positive production. It comes from the application requirement that each demand can be produced on multiple lines. However, on each production line the production must continue for a minimum number of days. This formulation is very close to the F orm3 F L formulation of CLSC introduced in Section 2.3.

The link between the CLSC and the detailed model is shown in Table 4.1. Each style family is seen as a product in the aggregated model, whereas each demand corresponds to a product in the detailed model. Therefore, the unitary production time are defined differently. Moreover, we have minimum split size constraints introduced in the detailed model.

pt pt i = d∈D i pt d |D i | pt d θ dr ×
We introduce following MIP formulation for the detailed model. For each i ∈ N , r ∈ R, t ∈ T , d ∈ D, we introduce following variables:

• x drt ∈ R + : the production quantity of product i on machine r during time t.

• z dr ∈ {0, 1}: it equals to 1 if there is positive production of demand d on machine r.

• z 0 irt ∈ {0, 1} equals to 1 if the initial setup state is for product family i on machine r in time bucket t, implying that the final setup state for t -1 on r is for product family i.

• z +

irt ∈ {0, 1} equals to 1 if there is a state switch for product family i on machine r in time bucket t.

• w rt ∈ [0, 1] is zero if there is more than one product setup on machine r in time bucket t.

The formulation is formally given as follows (T = T \ {1}): min F irst priority :

d∈D lc d (q d - r,t x drt) lost + d∈D,
x drt ≤ q d d ∈ D (4.2) d∈D pt d x drt + i∈N st ir z + irt ≤ cap rt r ∈ R, t ∈ T (4.3) x drt ≤ Θ drt (z 0 irt + z + irt) d ∈ D, r ∈ R, t ∈ T (4.4) t∈T x drt ≤ q d z dr d ∈ D, r ∈ R, t ∈ T (4.5) t∈T x drt ≥ θ dr z dr d ∈ D, r ∈ R, t ∈ T (4.6) i∈N z 0 irt = 1 r ∈ R, t ∈ T (4.7) z 0 irt ≤ z 0 ir,t-1 + z + ir,t-1 i ∈ N , r ∈ R, t ∈ T (4.8) z 0 irt + z 0 ir,t-1 ≤ 1 + w r,t-1 i ∈ N , r ∈ R, t ∈ T (4.9) z + irt + w rt ≤ 1 i ∈ N , r ∈ R, t ∈ T (4.10) z 0 irt , z + irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ T (4.11) z dr ∈ {0, 1} d ∈ D, r ∈ R (4.12) 0 ≤ w rt ≤ 1 r ∈ R, t ∈ T (4.13) x drt ∈ [0, q d] i ∈ N , r ∈ R, b d ≤ t ∈ T (4.14)
Constraints (4.2) guarantee production quantity of demand d is not greater than its required quantity. Constraints (4.3) ensure capacity usage is less than the available capacity, where the capacity usage consists of both production and setup. Constraints (4.4) link the production x drt and its setup variable z 0 irt and z + irt . Constraints (4.5) link total production quality of d on machine r with the binary variable z dr . Constraints (4.6) force the minimum split size for each production that if there is a positive production, then it has to be equal to or greater than the given minimum split size. Constraints

Planning Phase Decomposition Approach

The decomposition approach is described in Algorithm 8.

Application Performance Analysis

In this section, we perform computational test to evaluate the performance of the system. The test is performed on the application instance R5, which is the most difficult instance we have. The computational results are given in Table 4.2. We have tested the decomposition approach with FSH + FO algorithm developed in the previous chapter, of which the result is reported in Row DA. Moreover, the result for aggregated model and the detailed model is given in Row DA.Aggregated and DA.Detail. We have also tested to solve the instance directly by CPLEX within 2 hours time limit on the above proposed formulation. The result is given in Row Detail MIP whereas its LP relaxation solution is reported in Row Detail LP. For each approach, we present the objective function value including lost sale cost and tardiness cost in Column Obj. Lost sale cost and tardiness cost are given in Column Lost and Tardiness as well for reference. Also given are the computational time and relative Gap in percentage. To be able to compare the gap, we use the LP relaxation value LPV of the corresponding model (reported in Table 2.11) and define the gap as Obj-LP V Obj . We observe the efficiency of the proposed decomposition algorithm. Without applying the decomposition method and solve the detailed model directly, the gap is 99% after 2 hours of running and apparently CPLEX got stuck at the first trivial solution that all demands are lost sales. By applying decomposition approach, the gap is reduced to 21% for the detailed model. Moreover, almost all computational time is spent on the aggregated model. Once the aggregated model is solved and we fixed the setup in detailed model, the restricted detailed problem became trivial to solve to optimality.

Therefore, even though we probably lose certain optimality at the detailed problem, the solution quality is much better than solving it directly.

Conclusions

To conclude this section, we have developed a decomposition strategy for the production planning phase in the apparel manufacturing application. The decomposition method provides decent planning solution, which cannot be achieved by solving the detailed model directly using standard MIP solver.

Chapter 5

Capacitated Lot Sizing Problem with A Fixed Product Sequence

In many manufacturing industry, switching production from one product to another will cause setup operations. The setup will consume limited machine capacity and/or cause a setup cost. When the setup depends on the production sequence, i.e., the setup to produce current product depends on both itself and the previous produced product, it is called sequence dependent setup [START_REF] Fleischmann | The discrete lot-sizing and scheduling problem with sequence-dependent setup costs[END_REF][START_REF] Guimarães | Modeling lotsizing and scheduling problems with sequence dependent setups[END_REF]. In this case, both lot sizing and sequencing decisions have to be made. The difficulty of this problem is the factorial number of setup sequence candidates to be chosen from. However, in certain manufacturing industries, this number may be reduced if we restrict the model based on the planners' knowledge.

In this chapter, we study a special case of CLSP with sequence dependent setup, which is called capacitated lot sizing problem with a fixed product sequence.

The chapter is organized as follows: In Section 5.1, the classical CLSP with sequence dependent setup is presented with problem definition and literature review. In Section 5.2, we introduce the study motivation and formally define our problem. In Section 5.3 -5.6, we present study results of this problem which include MIP formulations, a special case study, a column generation heuristic and computational results. Finally, we conclude in Section 5.7.

Capacitated Lot Sizing Problem with Sequence Dependent Setup

The CLSP with sequence dependent setup we address in this manuscript is defined as follows:

• N = {1, 2, . . . , N } a set of N products.

• T = {1, 2, . . . , T } a set of T time buckets

• cap t : machine capacity in each time bucket t ∈ T .

• d it : demand of each product i ∈ N in time bucket t ∈ T .

• pt i : unitary production time of each product i ∈ N .

• hc it : unitary inventory cost of each product i ∈ N in time bucket t ∈ T .

• b it : the maximum amount of production i ∈ N that can be produced in t ∈ T .

• st ij : setup time from product i ∈ N to product j ∈ N .

• sc ij : setup cost from product i ∈ N to product j ∈ N .

The problem CLSP with sequence dependent setup is to decide the production sequence and the production quantity of each product in each time bucket so that all demands are satisfied with a minimum total cost while respecting the machine capacities, which are consumed by production and setup. Moreover, to clarify the problem we are studying, following assumptions are made:

• The setup state is carried over between time buckets, even preserved over idle time.

• No setup crossover, i.e., the setup has to be finished in one time bucket.

• Only single lot is considered unless it is the first product of the sequence. This implies that one product appears at most once in the setup sequence each time bucket. However, the first product could be the same as the last product in the selected setup sequence.

Let S be the set of available sequences to schedule products on the machine for each time bucket. Based above assumption, the cardinality of S equals to O(n!).

Different MIP formulations of this problem are compared in [START_REF] Guimarães | Modeling lotsizing and scheduling problems with sequence dependent setups[END_REF], here we only present one of them to further describe the problem. For each sequence s ∈ S, we define its length as L(s), the associated setup cost and setup time as sc(s) and st(s). For each product i ∈ N , each time bucket t ∈ T and each candidate sequence s ∈ S, we introduce following variables:

• x it ∈ R + : quantity of product i produced in time bucket t;

• I it ∈ R + : inventory of product i at the end of time bucket t;

• w st ∈ {0, 1}: it equals to 1 if sequence s is chosen for time bucket t, 0 otherwise;

Then the problem can be formulated as follows: min i∈N ,t∈T

hc it I it + s∈S,t∈T
sc(s)w st (5.1)

s.t. I i,t-1 + x it = I it + d it i ∈ N , t ∈ T (5.2) i∈N pt i x it + s∈S st(s)w st ≤ cap t t ∈ T (5.3)
x it ≤ b it s∈S:i∈s

w st i ∈ N , t ∈ T (5.4) s∈S w st = 1 t ∈ T (5.5) s∈S:s 1 =i w s,t+1 = s∈S:s L(s) =i w st i ∈ N , t ∈ T \{T } (5.6)
x it , I it ≥ 0, I i0 = 0 i ∈ N , t ∈ T (5.7)

w st ∈ {0, 1} s ∈ S, t ∈ T (5.8)
The objective function (5.1) includes the inventory cost and setup cost. The material flow balance constraints are formulated as (5.2). Constraints (5.3) ensure that the used capacity does not exceed the available capacity. Constraints (5.4) express that there can be a production for product i only if there is a setup for i, which implies that a sequence containing i is selected. One and only one sub-sequence can be chosen, which is guaranteed by Constraints (5.5). At last, Constraints (5.6) express the consistence of the chosen sequences from one bucket to the next, which means that the last product of bucket t should be the same as the first product of time bucket t + 1.

In CLSP with sequence dependent setup, both lot sizing and sequencing decisions have to be made. Therefore, it is often classified as lot sizing and scheduling problem [START_REF] Gagne | Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times[END_REF][START_REF] Guimarães | Modeling lotsizing and scheduling problems with sequence dependent setups[END_REF]. Sequence dependent setup has been first studied with only setup costs in different context: discrete lot sizing and scheduling like problem [START_REF] Schrage | The multiproduct lot scheduling problem[END_REF], discrete lot sizing and scheduling problem [START_REF] Fleischmann | The discrete lot-sizing and scheduling problem with sequence-dependent setup costs[END_REF], proportional lot sizing and scheduling problem [START_REF] Haase | Lotsizing and Scheduling for Production Planning[END_REF], uncapacitated LSP [START_REF] Dilts | Joint Lot Sizing and Scheduling of Multiple Items with Sequence Dependent Setup Costs[END_REF] and CLSP [START_REF] Haase | Capacitated lot-sizing with sequence dependent setup costs[END_REF]. Then setup time is also incorporated in the model and has been studied [START_REF] Dobson | The cyclic lot scheduling problem with sequence-dependent setups[END_REF][START_REF] Haase | Lot sizing and scheduling with sequencedependent setup costs and times and efficient rescheduling opportunities[END_REF][START_REF] Salomon | Solving the discrete lotsizing and scheduling with sequence dependent setup costs and set-up times using the travelling salesman problem with time windows[END_REF]. Generally, introducing setup times makes the problem more difficult to solve since the feasibility depends on the sequencing decisions as well.

Copil et al. [START_REF] Copil | Simultaneous lotsizing and scheduling problems: a classification and review of models[END_REF] present a review paper on lot sizing and scheduling problem recently.

In this survey, all above mentioned models with sequence dependent setups are reviewed and classified. Specially, the literature on CLSP with sequence dependent setups is presented in Section 3. search algorithm [START_REF] Laguna | A heuristic for production scheduling and inventory control in the presence of sequence-dependent setup time[END_REF], variable neighborhood based search algorithm [START_REF] Almada-Lobo | Production planning and scheduling in the glass con-tainer industry: a vns approach[END_REF][START_REF] Almada-Lobo | Neighbourhood search meta-heuristics for capacitated lot-sizing with sequence-dependent setups[END_REF], and MIP formulation based algorithm such as fix and relax algorithm [START_REF] James | Single and parallel machine capacitated lotsizing and scheduling: New iterative MIP-based neighborhood search heuristics[END_REF] and fix and optimize algorithm [START_REF] Lang | Fix-and-optimize heuristics for capacitated lot-sizing with sequence-dependent setups and substitutions[END_REF][START_REF] Tempelmeier | Capacitated lot sizing with parallel machines, sequence-dependent setups, and a common setup operator[END_REF] that we have used previously for CLSP-SC.

Problem Definition

As mentioned before, the difficulty of CLSP with sequence dependent setup is due to the exponential size of candidate setup sequence that can be chosen for each time bucket.

However, in certain industries, this situation might be improved by considering planners knowledge to redefine the model.

We take the color change in production as an example shown in Figure 5.1. There is a most efficient production sequence as white, yellow, orange and black . When the production follows the given sequence from left to right, there are minor setups incurred due to additive color. For instance, when we switch the production from white cups to yellow cups, we need to add the yellow color to the machine. However, if we switch the production from a later product to a previous product in the sequence, there is a major setup occurred due to the machine cleaning. For instance, when the production is switched from black cups to white cups, we need to clean up the entire machine to be able to produce qualified white cups. In this case, ideally, the chosen setup sequence should follow this given product sequence as much as possible to reduce major setups and capacity loss. In other words, the selected setup sequence should satisfy following conditions:

1. Products position follows the same order as the given sequence.

Sequence white → orange → yellow is not efficient.

Allow to skip products.

It is possible to switch production from white to black directly without producing the middle products.

3. Allow to restart the sequence.

Sequence black → white → orange is also valid which has one major setup incurred. This is the essential concept and motivation of our interest at this restricted model.

In the next, we formally define our problem.

Definition 5.1. Given two sequences ω = ω 1 , ω 2 , . . . , ω n and α = α 1 , α 2 , . . . , α m (m ≤ n + 1), we say α follows the order of ω, denoted by α ω, if 1. α i ∈ ω for i ∈ {1, 2, . . . , m}.

2. α i = α j for i = j ∈ {1, 2, . . . , m} and {i, j} = {1, m}.

3. Let i be the index such that ω i = α 1 and define sequence

β(i) = ω i , ω i+1 , . . . , ω n , ω 1 , ω 2 , . . . , ω i-1 , ω i (5.9)
There exists a subset

Ω = {ω i 1 , ω i 2 , . . . , ω in m } such that α 1 , ω i 1 , ω i 2 , . . . , ω in 1 , α 2 , ω i n 1 +1 , ω i n 1 +2 , . . . , ω in 2 , α 3 , . . . , α m , ω i n m-1 +1 , . . . , ω in m equals to β(i).
The Figure 5.2 illustrates the above definition. The first condition ensures that entries of sequence α are from sequence ω. The second condition excludes repeating element unless they are the first and the last product. For example, (ω 1 , ω 2 , ω 3 , ω 2) is not allowed. Finally, the third condition restricts α to be a "sub-sequence" of ω which can reach β(i) at maximum. Based on the definition, β(i) tries to keep element position as ω as much as possible while gives the possibility to revert the production with a major setup. Moreover, we keep the possibility to skip some elements. For example, given a sequence ω = A, B, C, D, E , the sequence a = B, C, A satisfies that a ω. However, sequence A, E, C, B ω. Parameters of the CLSP with a fixed product sequence are given as follows:

β(i) ω i ω i+1 . . . ωn ω 1 ω 2 . . . ω i α α 1 α j αm
• N = {1, 2, . . . , N } a set of N products.

• T = {1, 2, . . . , T } a set of T time buckets.

• cap t : machine capacity in each time bucket t.

• d it : demand of each product i in time bucket t.

• pt i : unitary production time of each product i.

• hc it : unitary inventory cost of each product i in time bucket t.

• b it : the maximum amount of production i that can be produced in t.

• st ij : setup time from product i to product j.

• sc ij : setup cost from product i to product j.

• A permutation of N : ω = ω 1 , ω 2 , . . . , ω N .
The problem CLSP with a fixed product sequence, denoted as CLSP-FS1, is to decide the production sequence and the production quantity of each product in each time bucket so that all demands are satisfied with a minimum total cost while respecting the machine capacities. Moreover, the chosen setup sequence of each time bucket has to follow the order of ω.

Example 5.1. We consider three products and four time buckets. The capacity cap t equals to 5 for all t = 1, 2, 3. The demand and setup is given in Table 5.1. For i ∈ N and t ∈ T , define pt i = 1, hc it = 1, b it = 1. The given sequence ω = 1, 2, 3 .

Table 5.1: CLSP-FS1 Example 5.1 data If we do not consider the fixed sequence and solve the problem as a CLSP with sequence dependent setup, then the optimal objective function value is 20 with only setup cost, and the optimal solution is given in Figure 5.3.

d it t 1 t 2 t 3 t 4 i 1 0 0 1 1 i 2 0 0 1 0 i 3 1 0 1 0 st ij i 1 i 2 i 3 i 1 0 1 1 i 2 1 0 1 i 3 1 1 0 sc ij i 1 i 2 i 3 i 1 0 10
t1 t2 t3 t4 i 3 (1) i 3 (0) i 3 (1) i 2 (1) i 1 (1) i 1 (1)
i (quantity) However, the optimal objective function value of CLSP-FS1 is 21 due to the restriction on production sequence that 3, 2, 1 is not a feasible sequence. Therefore, we can not produce all products in time bucket t3. The optimal solution is given in Figure 5.4.

t3 t3 t3 t4 i 3 (1) i 3 (1) i 2 (0) i 2 (1) i 1 (1) i 1 (1)
i (quantity) In the literature of CLSP with sequence dependent setup, a concept of "efficient" sequence is proposed by Haase and Kimms [START_REF] Haase | Lot sizing and scheduling with sequencedependent setup costs and times and efficient rescheduling opportunities[END_REF]. The similar part of two concepts is that once we decide the first product, the last product and other appearing products, the sequence itself is decided. However, the computation of this sequence is polynomial whereas the computation of the "efficient" sequences requires to solve a traveling salesman problem hence intractable.

Theorem 5.1. CLSP-FS1 is strongly NP-hard.

Proof. We prove the statement by reduction from CLSP defined in Section 1.2.

Given an instance P1 of CLSP defined as Section 1.2, We construct following CLSP-FS1 instance P2: there are N + 2T products, T time buckets. Let the time bucket set be the same as defined in CLSP as T and the product set be N = N ∪ N s ∪ N e where N = {1, 2, . . . , N }, N s = {p t s : t ∈ T } and N e = {p t e : t ∈ T }. We define:

• Capacity in t equals to cap t for t ∈ T .

• For i ∈ N , demand of i in time bucket t equals to d it . For t ∈ T , demand of product p t s (p t e) in time bucket t equals to d p t s ,t = 1 (d p t e ,t = 1), otherwise 0.

• Production time of product i ∈ N equals to p i . Production time of product i ∈ N s ∪ N e equals to 0.

• Holding cost of product i ∈ N in time bucket t equals to h it . Holding cost of product i ∈ N s ∪ N e in time bucket t equals to ∞.

• Setup cost (time) For any solution to P2, it consists of the production quantity of each product i in time bucket t represented as x it , the inventory represented as I it and the setup sequence

sc ij (st ij) =                        0 If j ∈ N e ∞ If i ∈ N and j ∈ N s 0 If i ∈ N e ∪ N s and j ∈ N s sc j (st j) If i ∈ N ∪ N s and j ∈ N ∞ If i ∈ N e
s t in time bucket t.
First, we show that any feasible solution to P1 can be transformed into a feasible solution to P2 with the same objective value. Let S1 be a feasible solution in the form of decision variables' values in formulation (1.2) -(1.7). For example, S1(x it) represents the production quantity of product i in time bucket t of solution S1. We construct a solution S2 of P2 as follows:

S2(x it) = S1(x it) for i ∈ N and t ∈ T . S2(I it) = S1(I it)
for i ∈ N and t ∈ T . S2(x p t s ,t) = 1 for t = t ∈ T , 0 otherwise. S2(x p t e ,t) = 1 for t = t ∈ T , 0 otherwise. S2(I it) = 0 for i ∈ N s ∪ N e and t ∈ T . For t ∈ T , let α = α 1 , α 2 , . . . , α n be a sequence such that S1(z α i ,t) = 1 for α i ∈ α and α i < α j for i < j. The chosen sequence in t > 1 is S2(s t) = p t-1 e , p t s , α, p t e and S2(s t) = p t s , α, p t e for t = 1. We claim that S2 is a feasible solution to P2. For product i ∈ N , material flow constraints are guaranteed by the feasibility of S1. For product i ∈ N e ∪ N s , material flow constraints are guaranteed by the construction that there is no inventory during the planning horizon. The chosen sequences' setup time (cost) equals to j:S1(z it)=1 st j (j:S1(z it)=1 sc j) by definition of sequence S2(s t). Therefore, the capacity constraints hold since production and setup of product i ∈ N do not consume capacities and S1 is a feasible solution to P1. Finally, sequence S2(s t) follows the order of ω and together form a valid planning sequence over the entire time horizon. Moreover,

obj(S2) = i∈N ,t∈T S2(I it) + t∈T S2(s t)sc(s t) = i∈N ,t∈T S2(I it) + t∈T i∈N :S1(z it)=1 sc i = obj(S1)
Second, we show that any optimal solution S2 of P2 must either satisfy following properties or can be transformed to an equivalent optimal solution satisfying following properties:

• S2(x p s t ,t) = 1 for t = t ∈ T , 0 otherwise.

• S2(x p e t ,t) = 1 for t = t ∈ T , 0 otherwise.

• S2(I it) = 0 for i ∈ N s ∪ N e and t ∈ T .

• S2(s t) = p s t-1 , p s t , α, p e t where α is a subsequence of N α ⊆ N for 1 < t ∈ T .

• S2(s t) = p s t , α, p e t where α is a subsequence of N α ⊆ N for t = 1.

The first three conditions ensure the demand satisfaction of products in N s ∪N e without any inventories since the unitary inventory cost equals to ∞. To prove last two conditions hold, we first point out that first three conditions implies that we only have positive production of products in the set N ∪ {p s t , p e t } in time bucket t. Moreover, having setup of products not in this set does not improve the solution. Due to the setup cost from any product i ∈ N to p s t is ∞ and the setup cost from p e t to any product i ∈ N is ∞, in the chosen sequence S2(s t), p s t must be before any i ∈ N while p e t must be after any i ∈ N . In other words, S2(s t) = ..., p s t , i 1 , ..., i n , p e t , Finally, due to the last product of t -1 is p e t-1 , the setup sequence in t will start from p e t-1 . Hence, all properties hold. Third, any optimal solution of P2 can be transformed into a solution to P1 with the same objective value. Based on the second statement, let S2 be an optimal solution to P2 satisfying above properties. Then we construct a feasible solution S1 to P1 as follows: S1(x it) = S2(x it) for i ∈ N and t ∈ T . S1(I it) = S2(I it) for i ∈ N and t ∈ T . S1(z it) = 1 if i ∈ S2(s t) for i ∈ N and t ∈ T . Due to the above properties, S1 is feasible and share the same objective function value as S2.

CLSP with only setup cost is still NP-hard. Therefore based on our proof procedure, we have Corollary 5.1. CLSP-FS1 with only setup cost is NP-hard.

Actually, CLSP can be seen as a special case of CLSP-FS1 with sc ii = sc i , st ii = st i for all products i. Therefore, the complexity result holds directly. However, with our proof, we prove that even under the case that sc ii = 0, st ii = 0, the problem is still strongly NP-hard. Corollary 5.2. CLSP-FS1 with setup sc ii = 0, st ii = 0 for i ∈ N is still strongly NP-hard.

Problem Formulation

In this section, we introduce MIP formulations for CLSP-FS1. There are two types of decisions to make: lot sizing and sequencing. For lot sizing, we have the classical aggregated formulation and facility location based formulation inherited from CLSP (see Section 1.2). For sequencing, we have product-oriented formulation with compact size and sequence-oriented formulation with exponential size. In the next, we introduce them in details.

Aggregated sequence-oriented formulation (AG-SO)

Let S = {s : s ω}. Given a sequence s ∈ S with length L(s), its associated setup cost sc(s) and setup time st(t) are defined as follows:

sc(s) = L(s)-1 k=1 sc s k ,s k+1 st(s) = L(s)-1 k=1 sc s k ,s k+1
We introduce the following variables for i ∈ N , t ∈ T and s ∈ S:

• x it ∈ R + : quantity of product i produced in time bucket t;

• I it ∈ R + : inventory of product i at the end of time bucket t;

• w st ∈ {0, 1}: it equals to 1 if sequence s is chosen for time bucket t, 0 otherwise.

The problem can be formulated as follows: min i∈N ,t∈T

hc it I it + s∈S,t∈T sc(s)w st (5.10)
s.t. I i,t-1 + x it = I it + d it i ∈ N , t ∈ T (5.11)
i∈N pt i x it + s∈S st(s)w st ≤ cap t t ∈ T (5.12)
x it ≤ b it s∈S:i∈s

w st i ∈ N , t ∈ T (5.13) s∈S w st = 1 t ∈ T (5.14) s∈S s 1 w s,t+1 = s∈S s L(s) w st t ∈ T \{T } (5.15)
x it , I it ≥ 0, I i0 = 0 i ∈ N , t ∈ T (5.16)

w st ∈ {0, 1} s ∈ S, t ∈ T (5.17)
The objective function (5.10) includes the inventory cost and the setup cost. The material flow balance constraints is formulated as (5.11). Constraints (5.12) ensure that the used capacity does not exceed the available capacity. Constraints (5.13) express that there can be a production for product i only if there is a setup for i, which implies a subsequence containing i is selected. One and only one sub-sequence can be chosen, which is guaranteed by constraints (5.14). At last, constraints (5.15) express the consistence of the chosen sequences between time buckets, which means that the last setup product of time bucket t should be the same as the first setup product of time bucket t + 1.

Aggregated product-oriented formulation (AG-PO)

In this section, we introduce a product-oriented formulation which does not have the sequence as a variable explicitly. The setup sequence can be represented as a path in the graph.

First of all, we have following observations regarding the valid setup sequences in CLSP-FS1:

Observation 5.1. Given a sequence ω, any sequence α with length L(α) ≤ 2 and α i ∈ ω ∀i follows the order of ω: α ω.

Observation 5.2. Given a sequence ω, if the first product, the last product and its appearing products of a sequence s are known, and s ω, then the sequence s is fixed.

This holds due to the definition. In other words, we only need to know all elements and the first and the last element of a sequence to build up the whole information if it follows the order of a given sequence. We define the CLSP-FS1 associated graph G = (V, E) as follows:

• Vertex V -Source P and sink Q -V t i := {v t i0 } ∪ {v t ij : j ∈ N } for t ∈ T , i ∈ N . • Edge E -E 1 : (P, v 1 i0) for i ∈ N . -E 2 : (v t ij , v t ik) for i ∈ N , j < k ∈ N and t ∈ T . -E 3 : (v t ij , v t+1 j0) for i ∈ N , j ∈ N and t ∈ T \{T }. -E 4 : (v T ij , Q) for i ∈ N and j ∈ N .
Except the source and the sink node, each node v represents a product p(v) and belongs to a time bucket t(v) which is defined as follows:

p(v t i0) = ω i p(v t ij) = (β(i)) j+1 t(v t i0) = t t(v t ij) = t ∀j ∈ N
where β(i) is defined as (5.9) and (β(i)) j is the jth element of β(i). We also introduce following notations to link products i ∈ N and time buckets t ∈ T with the graph:

E(i, t) := {(u, v) ∈ E|p(u) = i and t(u) = t} E(t) := {(u, v)|t(u) = t}
Moreover, we define the setup cost/time of each edge (u, v) ∈ E accordingly as follows:

sc(u, v) =          sc p(v),p(v) (u, v) ∈ E 1 sc p(u),p(v) (u, v) ∈ E 2 , E 3 0 (u, v) ∈ E 4
(5.18)

st(u, v) =          st p(v),p(v) (u, v) ∈ E 1 st p(u),p(v) (u, v) ∈ E 2 , E 3 0 (u, v) ∈ E 4
(5.19)

An example with 3 products A, B, C and 2 time buckets is given in Figure 5.6 for illustration: According to the Property 5.2, we decide the setup sequence by forming a path in the product-oriented formulation. Let G = (V, E) be the induced graph presented before.

We introduce following variables for each edge (u, v) ∈ E:

• T uv ∈ {0, 1} equals to 1 if the edge (u, v) ∈ E is selected, 0 otherwise.

Then the product oriented formulation (AG-PO) can be formally formulated as follows: min i∈N ,t∈T

hc it I it + (u,v)∈E sc(u, v)T uv (5.20) s.t. I i,t-1 + x it = I it + d it i ∈ N , t ∈ T (5.21) i∈N pt i x it + (u,v)∈E(t) st(u, v)T uv ≤ cap t t ∈ T (5.22) x it ≤ b it (u,v)∈E(i,t)
T uv i ∈ N , t ∈ T (5.23)

(P,v)∈E T P v = 1 (5.24) (v,Q)∈E T vQ = 1 (5.25) (u,v)∈E T uv = (v,u)∈E T vu v ∈ V \{P, Q} (5.26)
x it , I it ≥ 0,

I i0 = 0 i ∈ N , t ∈ T (5.27)
T uv ∈ {0, 1} (u, v) ∈ E (5.28)
Like the previous formulation, the objective is to minimize the total cost including inventory cost and setup cost. Specially, the setup cost is defined as the total cost of selected edges. Constraints (5.21) are to maintain material flow balance as in previous formulation. Constraints (5.22) guarantee the machine capacity is not exceeded by the used capacity. The setup time is defined similarly as setup cost. Constraints (5.23) link production and setup. Constraints (5.24) -(5.26) are flow balance constraints for each node in graph G = (V, E) to form a path, which is a valid setup sequence for entire time horizon.

Facility location based sequence-oriented formulation (FL-SO)

Another straightforward formulation for the CLSP-SD is the facility location based formulation. Instead of production variables x it , we introduce following variables for each product i ∈ N and time bucket t ≤ k ∈ T :

• x itk : the production quantity of product i in time bucket t to satisfy the demand in time bucket k.

Then the FL sequence-oriented formulation (FL-SO) is formally defined as follows:

min i∈N ,t∈T hc it t k=1 T l=t+1
x ikl + s∈S,t∈T sc(s)w st (5.29)

s.t. t k=1 x ikt = d it i ∈ N , t ∈ T (5.30) i∈N T k=t pt i x itk + s∈S st(s)w st ≤ cap t t ∈ T (5.31)
x itk ≤ min{b it , d ik } s∈S:i∈s

w st i ∈ N , t ≤ k ∈ T (5.32) s∈S w st = 1 t ∈ T (5.33) s∈S s 1 w s,t+1 = s∈S s L(s) w st t ∈ T \{T } (5.34) x itk ≥ 0 i ∈ N , t ≤ k ∈ T (5.35)
w st ∈ {0, 1} s ∈ S, t ∈ T (5.36)
There is a direct relation between variables x it , I it and newly introduced variable

x itk that x it = T k≥t x itk and I it = t k=1 T l=t+1
x ikl . Therefore, the objective function (5.29) is to minimize the inventory cost and setup cost by substitution. Constraints (5.30) ensure demands satisfaction.

Facility location based product-oriented formulation (FL-PO)

The previous formulation is based on the sequence-oriented formulation, therefore another formulation will be combining aggregated lot sizing decision with product-oriented sequencing formulation. The facility location based product-oriented formulation (FL-PO) is given as follows:

min i∈N ,t∈T hc it t k=1 T l=t+1 x ikl + (u,v)∈E sc(u, v)T uv (5.37) s.t. t k=1 x ikt = d it i ∈ N , t ∈ T (5.38) i∈N T k=t pt i x itk + (u,v)∈E st(u, v)T uv ≤ cap t t ∈ T (5.39) x itk ≤ min{b it , d ik } (u,v)∈E(i) T uv i ∈ N , t ≤ k ∈ T (5.40)
(P,v)∈E

T P v = 1 (5.41) (v,Q)∈E T vQ = 1 (5.42) (u,v)∈E T uv = (v,u)∈E T vu v ∈ V \{P, Q} (5.43)
x itk ≥ 0 i ∈ N , t ≤ k ∈ T (5.44)
T uv ∈ {0, 1} (u, v) ∈ E (5.45)

A Special Case Study

Given a product sequence, if the production follows the given sequence, the setup is minor. However, when we need to reverse products in the sequence, there will be a major setup occurred. Here we study an extreme case to have the minor setup as zero and the major setup as a positive number. More specifically, we define

st ω i ,ω j =    0 i ≤ j ∆ st otherwise sc ω i ,ω j =    0 i ≤ j ∆ sc otherwise
where ∆ st > 0 and ∆ sc > 0. Without loss of generality, we can assume the fixed sequence is 1, 2, . . . , N by reindexing. Then the setup matrices {st ij } i,j∈N , {sc ij } i,j∈N have following structure:

             0 0 0 . . . 0 0 ∆ st 0 0 . . . 0 0 ∆ st ∆ st 0 . . . 0 0 ∆ st ∆ st ∆ st . . . 0 0 ∆ st ∆ st ∆ st . . . ∆ st 0                           0 0 0 . . . 0 0 ∆ sc 0 0 . . . 0 0 ∆ sc ∆ sc 0 . . . 0 0 ∆ sc ∆ sc ∆ sc . . . 0 0 ∆ sc ∆ sc ∆ sc . . . ∆ sc 0             
We refer this special case of CLSP-FS1 as CLSP-FS1-LT since its setup matrices are lower triangle. In the following theorem, CLSP-FS1-LT is shown to be NP-hard.

Theorem 5.2. CLSP-FS1-LT is NP-hard.

Proof. The proof is based on reduction from CLSP with single product.

Given a CLSP instance P1 with one product and T time buckets, for each time bucket t, the demand is d t , the unitary holding cost is hc t , the unitary processing time is pt and the setup cost is sc . The capacity for each time bucket t is cap t . Without loss of generality, we assume pt > 0, otherwise the solution is trivial. This problem is NP-hard [START_REF] Brahimi | Single-item dynamic lot-sizing problems: An updated survey[END_REF].

Now we build a CLSP-FS1-LT instance P2 based on P 1. Let N = {1, 2} and

T = {1, 2, . . . , 2T }. Define T 1 = {2t -1 ∈ T : 1 ≤ t ≤ T } and T 2 = {2t ∈ T : 1 ≤ t ≤ T }.
If t ∈ T 1 , cap t = 0; otherwise, cap t = cap t/2 . Other parameters of P2 are summarized in Table 5.2. The given product sequence is 1, 2 . Therefore, all sequences are feasible, including

Table 5.2: Theorem 5.2 proof CLSP-FS1-LT instance parameters

i = 1 i = 2 Parameter t ∈ T 1 t ∈ T 2 (u = t 2) t ∈ T 1 t ∈ T 2 (u = t 2) d it 0 d u 1 0 h it 0 h u ∞ ∞ pt i pt 0 st ij 1 2 1 0 0 2 st 0 sc ij 1 2 1 0 0 2 sc 0
We claim that P1 and P2 are equivalent in the sense that P1 is feasible if and only if P2 is feasible and its optimal objective value is less than ∞. The idea of the problem is to show that any optimal solution of P2 has structure shown in Figure 5.7, and it corresponds to a solution to P1 which shares the same objective function value.

(x 1,2t) = S1(x t), S2(x 1,2t-1) = 0 for 1 ≤ t ≤ T . S2(x 2,2t) = 0, S2(x 2,2t+1) = 1 for 1 ≤ t ≤ T . S2(I 1,2t) = S2(I 1,2t-1) = S1(I t) for 1 ≤ t ≤ T . S2(I 1,1) = 0. S2(I 2,t) = 0 for all t ∈ T . If t ∈ T 1 , S2(s t) = 2 . If t ∈ T 2 , S2(s t) = 2, 1, 2 if S1(z t) = 1; S2(s t) = 2 if
S1(z t) = 0. First, by construction, we have

Obj(S2) = i∈N ,t∈T hc it S2(I it) + t∈T sc(S2(s t)) = 1≤t≤T hc t S1(I t) + t∈T sc(S2(s t)) = 1≤t≤T hc t S1(I t) + t∈T 2 sc(S2(s t)) = 1≤t≤T hc t S1(I t) + 1≤t≤T ,S1(zt)=1 sc = Obj(S1)
The second equation is by construction of S2. The third and fourth equation is because of the sequence construction in S2. For t ∈ T 1 there is no setup since the selected sequence is always 2 , while for t ∈ T 2 there is a setup if and only if the selected sequence is 2, 1, 2 , which implies S1(z t) = 1 by construction. Therefore, the objective function value of S2 equals to that of SI. Moreover, S2 is a feasible solution of P2.

First, the capacity restriction is respected on t ∈ T 1 due to that the only production is one unit of product 2 which consumes 0 capacity and there is no setup. For t ∈ T 2 ,

we have S2(x 1,t)pt 1 + S2(x 2,t pt 2) = S2(x 1,t)pt 1 = S1(x t)pt ≤ cap t = cap t . Second,
the production sequence is consistent from one time bucket to the next one due to construction.

2. Given an optimal solution S2 to P2, S2 satisfies following properties or it can be transformed to an equivalent optimal solution with the same objective function value that follows properties:

• For t ∈ T 1 , S2(x 2,t) = 1; for t ∈ T 2 , S2(x 2,t) = 0. • For t ∈ T , S2(I 2,t) = 0. • For t ∈ T 1 , S2(x 1,t) = 0. • For t ∈ T 1 , S2(s t) = 2 . • For t ∈ T 2 , S2(s t) = 2 if S2(x 1,t) = 0 or S2(s t) = 2, 1, 2 otherwise.
The first two properties guarantee that product 2 is produced only in the demanding time bucket without any inventory since the unitary holding cost is ∞. The third property holds because there is no capacity to perform production of product 1 in time bucket t ∈ T 1 . Based on the first three properties, the nonzero production in t ∈ T 1 can only be product 2 and the nonzero production in t ∈ T 2 can only be product 1.

Therefore, we can always have the setup sequence S2(s t) = 2 in t ∈ T 1 and S2(s t) = 2 or 2, 1, 2 in t ∈ T 2 . Other sequences are either equivalent or not optimal.

3. An optimal solution S2 to P2 corresponds to a feasible solution S1 to P1 and they share the same objective function value. Due to the second argument, we assume that S2 satisfies above properties as an optimal solution. Then we can build a solution S1 of problem P1 as follows: for t ∈ T , S1(

x t) = S2(x 1,2t), S1(I t) = S2(I 1,2t), S1(z t) = 1 if S1(x t) > 0.
First, by construction, we have

Obj(S1) = t∈T hc t S1(I t) + t∈T sc S1(z t) = t∈T 2 hc 1,t S2(I 1,t) + t∈T 2 :S2(x 1,t)>0 sc = i∈N ,t∈T hc it S2(I it) + t∈T sc(S2(s t)) = Obj(S2)
Therefore, the objective function value of S2 equals to that of S1. The feasibility of S1 comes from the feasibility of S2 that capacity is respected in time bucket t ∈ T 2 and the flow balance is conserved on product 1.

From above arguments, P1 and P2 are equivalent in the sense that the optimal objective function value of P1 equals to that of P2. Therefore, CLSP-FS1-LT is NPhard.

From the proof procedure, we have following result holds:

Corollary 5.3. In the Definition 5.1, if we require α to be a sub-sequence of β(i), i.e., without the possibility to skip some products in the middle, the problem is still NP-hard.

Due to the special structure of the setup matrix and the definition of the problem, we have one direct observation Observation 5.3. Given a feasible solution to CLSP-FS1-LT, there is maximum one nonzero setup occurred in each time bucket. Moreover, if a nonzero setup occurs, then all products can be setup in this time bucket.

In this special case, the sequencing decision to make is simplified to decide the first (last) product of each time bucket and to decide whether we perform a major (nonzero) setup or not in this time bucket. Therefore, we can reformulate it to a simplified model.

For each product i ∈ N and time bucket t ∈ T , we introduce following sequencing variables:

• z t ∈ {0, 1}: it equals to 1 if there is a major setup in time bucket t.

• f it ∈ {0, 1}: it equals to 1 if product i is the first product in the setup sequence in time bucket t. It also represents the last product in the time bucket t -1.

• z it ∈ {0, 1}: it equals to 1 if there is a setup for product i in time bucket t.

Together with variables x it and I it as introduced before, the reformulation of CLSP-FS1-LT is given as follows: min i∈N ,t∈T

hc it I it + t∈T ∆ sc z t (5.46) s.t. I i,t-1 + x it = I it + d it i ∈ N , t ∈ T (5.47) i∈N pt i x it + ∆ st z t ≤ cap t t ∈ T (5.48) x it ≤ b it z it i ∈ N , t ∈ T (5.49)
f i,t+1 ≤ j∈N :j≤i f jt + z t i ∈ N , t ∈ T (5.50)
f i,t+1 ≤ j∈N :j≥i f jt + (1 -z t) i ∈ N , t ∈ T (5.51)
z it ≤ (z t -1) + (j∈N :j≤i f jt + j∈N :j≥i f j,t+1) i ∈ N , t ∈ T (5.52) z it ≤ (1 -z t) + (j∈N :j≤i f jt + j∈N :j≥i f j,t+1) i ∈ N , t ∈ T (5.53) i∈N f it = 1 t ∈ T ∪ {T + 1} (5.54)
x it , I it ≥ 0, I i0 = 0 i ∈ N , t ∈ T (5.55)

z t ∈ {0, 1} t ∈ T (5.56) z it , f it ∈ {0, 1} i ∈ N , t ∈ T (5.57)
Recall that we assume ω = 1, 2, . . . , N . Constraints (5.50) and (5.51) link the last product in time bucket t f i,t+1 (i.e., the first product in time bucket t + 1) with the first product in t f it and the major setup decision z t . If there is no major setup (z t = 0), the last product can only be a product after i in the sequence ω. In other words, when there is no major setup occurred in t, i might be last product in t only if a product j before i is the first product in t, which is stated by (5.50). If there is a major setup (z t = 1), the last product can only be a product before i in the sequence ω to trigger a major setup, which is stated by (5.51). Constraints (5.52) and (5.53) link the product setups z it with the first setup product f it , the last setup product f i,t+1 and the major setup decision z t .

If there is no major setup (z t = 0), product i can have a setup only if it is between the first product and the last product, which is ensured by constraints (5.52). If there is a major setup (z t = 1) and the first product is j, then all products in ω after j can be included in the setup sequence. If there is a major setup (z t = 1) and the last product is j, then all products in ω products from 1 to j can be included in the setup sequence.

In other words, if there is a major setup in t, product i can be setup if it is after the first product or before the last product in the ω. This is ensured by constraints (5.53).

Other constraints are explained as before.

Column Generation Approach

In this section, we develop a heuristic algorithm for the problem CLSP-FS1. This algorithm is based on the formulation AG-SO (5.10) -(5.17). Due to the exponential number of variables, we use column generation to solve the LP relaxation. Then the problem is solved as MIP with generated columns to obtain a feasible solution to CLSP-FS1.

Given subset S ⊆ S, the master problem and its dual problem are defined as follows:

(F S M (S)) min i∈N ,t∈T

hc it I it + s∈S ,t∈T sc(s)w st s.t. I i,t-1 + x it = I it + d it i ∈ N , t ∈ T i∈N pt i x it + s∈S st(s)w st ≤ cap t t ∈ T x it ≤ b it s∈S :i∈s w st i ∈ N , t ∈ T s∈S w st = 1 t ∈ T s∈S :s 1 =i w s,t+1 = s∈S :s L(s) =i w st i ∈ N , t ∈ T \{T } x it , I it ≥ 0, I i0 = 0 i ∈ N , t ∈ T w st ∈ {0, 1} s ∈ S , t ∈ T (F S D (S)) min i∈N ,t∈T d it α it + t∈T cap t β t + t∈T σ t s.t. α it + pt i β t + γ it ≤ 0 i ∈ N , t ∈ T -α it + α i,t+1 ≤ hc it i ∈ N , t ∈ T st(s)β t - i∈s b it γ it + σ t + ζ s L(s) ,t -ζ s 1 ,t-1 ≤ sc(s) s ∈ S , t ∈ T β t ≤ 0 t ∈ T γ it ≤ 0 i ∈ N , t ∈ T
The pricing problem is to use reduced cost to price out a new setup pattern s ∈ S to be able to add to the master problem. It is actually the graph presented with AG-PO formulation considering only one time bucket. Let graph G = (V , E), where V is the vertex set defined as {v ij : i ∈ N , j ∈ N ∪ {0}} ∪ {P, Q}, and E is the edge set defined

as E = E 1 ∪ E 2 ∪ E 4 . E 1 = {(P, v i0) : i ∈ N }, E 2 = {(v ij , v ik) : i ∈ N , j < k ∈ N } and E 4 = {(v ij , Q) : i, j ∈ N }.
The produce presented by each node and the setup cost/time for each edge are also defined as (5.18), (5.19). The network representation of the pricing problem example with 3 products is given in the Figure 5.8. • T uv ∈ {0, 1}: it equals to 1 if the edge (u, v) is selected, 0 otherwise.

• z i ∈ {0, 1}: it equals to 1 if there exists an edge (u, v) is selected such that p(u) = i or p(v) = i.

Given an optimal solution of dual problem (α * , β * , γ * , σ * , ζ *), we have the pricing problem defined as follows:

(F S P (S , t)) max (P,v)∈E

T P v = 1 (5.59) (v,Q)∈E T vQ = 1 (5.60) u∈V :(u,v)∈E T uv = u∈V :(v,u)∈E T vu v ∈ V \{P, Q} (5.61)
z i ≤ (u,v)∈E (i)
T uv i ∈ N (5.62)

T uv ∈ {0, 1} (u, v) ∈ E (5.63) z i ∈ {0, 1} i ∈ N (5.64)
where the cost is defined as follows:

c i = -b it γ * it (5.65) c uv =          -ζ * p(v),t-1 (u, v) ∈ E 1 st(u, v)β * t -sc(u, v) (u, v) ∈ E 2 ζ * p(u),t (u, v) ∈ E 4
If the optimal objective function value of above pricing problem is positive, the sequence defined by the optimal solution should be added into the master problem. We solve the LP relaxation of the master problem with newly added columns and repeat this process until no column is pricing out. This implies that the LP relaxation of the master problem is optimally solved. Based on generated columns, we solve the MIP model of the master problem to obtain a feasible solution to the original problem. The column generation heuristic is formally defined in Algorithm 9.

Algorithm 9: Column generation heuristic

1 Initialize the set S with the initial heuristic solution;

2 Solve the F S M (S) by column generation, and update set S by adding the generated columns (setup sequences);

Computational Results

CLSP-FS1 Computational Results

We first compare four formulations that we have developed: AG-SO, AG-PO, FL-SO, FL-PO. The benchmark instances consists of 10 instances from [START_REF] Guimarães | Modeling lotsizing and scheduling problems with sequence dependent setups[END_REF], with only the first 10 products and 10 time buckets. The summary result is given in Table 5.3, while detailed results for each instance is given in Table A.12 -A.15.

For the MIP formulation, we present the objective function value (MIP/Obj), the computational time (MIP/Time), the exit gap when CPLEX terminates (E.Gap), the relative gap comparing to the best known lower bound defined as Obj-BestKnownLB Obj (R.Gap), the number of columns (Cols), the number of binary variables (Bin), the number of constraints (Rows) and number of explored nodes for each formulation (Nodes).

Moreover, for the LP relaxation of each MIP formulation, the optimal objective function value (LP/Obj) and its computational time (LP/Time) are also presented. According to the average results over 10 tested instances, we observe that 1) Formulation FL-PO has the best solution quality, which gives the lowest average relative gap as 1.4%. On the other hand, formulation AG-SO shows the worst solution quality that its average relative gap is 3.1%, which is largest among all four formulations.

2) Formulation FL-PO also has the shortest computational time comparing to other formulations.

3) Although the exit gap and the relative gap are consistent for all formulations, we still observe that there is a difference between them. For instance, the formulation AG-SO has average exit gap as large as 12.2% whereas its relative gap is 3.1%. It implies that this formulation obtains better solution quality than what its optimality gap has shown.

4)

For the lower bound given by the LP relaxation, formulation FL-SO gives the best bound while formulation AG-PO gives the worst lower bound. There seems to be a dominance relationship of the formulations strength in terms of lower bounds given by the LP relaxations. However, it is not proven yet.

Next, we present our column generation algorithm based on the formulation AG-SO in Table 5.4. One observation based on our experiments is that the column generation heuristic gives average gap of 12.9%, which is worse than solving the problem directly by a standard MIP solver CPLEX. This is mainly due to the lower bound given by the linear relaxation is not strong enough based on AG-SO algorithm. This is because that when capacity is not tight, and we just need to generate all the single-product sequence i for i ∈ N . The linear relaxation will chose a fraction of each singe-product sequence so that the total setup cost is zero and many products can be produced.

CLSP-FS1-LT Computational Results

To compare different formulations on CLSP-FS1-LT, we also generate instances based on the above tested instances. For each instance, we modify the setup values as follows to transform CLSP-FS1 instances into CLSP-FS1-LT instances:

1. ω = 1, 2, . . . , N 2. ∆ st = capmax 2 + 1 where cap max = max t∈T cap t 3. ∆ sc = i,j∈N sc ij N 2 4. st ij = ∆ st if i > j, 0 otherwise. 5. sc ij = ∆ sc if i > j, 0 otherwise.
Moreover, in such instance, at most one nonzero setup can be performed in each time bucket. Therefore, we can also use the MIP formulation for CLSP with sequence dependent setup to solve the instances. According to the results presented in [START_REF] Guimarães | Modeling lotsizing and scheduling problems with sequence dependent setups[END_REF], we choose the product-oriented formulation with single commodity flow, which is represented as SCM.

In Table 5.5, we present the formulation comparison results for all eight formulations by combining 2 lot sizing formulations (AG and FL) and 4 sequencing formulation (LT, PO, SO and SCM) where LT represents for the tailored formulation of CLSP-FS1-LT.

Detailed results are given in Table A. [START_REF] Benton | A classification of literature on determining the lot size under quantity discounts[END_REF] -A.23. We have following observations:

1) Out of 8 formulations, 6 of them solve all the tested instances to prove optimality. In fact, the maximum relative gap we obtained is less than 0.01%. Therefore, the problem CLSP-FS1-LT seems easier to solve than the general version CLSP-FS1.

2) Overall, the FL formulations provide better solution quality than the AG formulations on tested instances. Based on te relative gap, all of the FL formulations have solved tested instances to optimality (may not be proven by the corresponding formulation), while one AG formulation (AG-SO) fails to solve 2 instances to optimality.

3) We measure the formulation performance based on the lexicographical order of relative gap, exit gap and computational time. Then for the AG formulations, we have formulation AG-LT, AG-SCM, AG-PO and AG-SO in the order of decreasing performances. For the FL formulations, we have FL-LT, FL-SCM, FL-SO and FL-PO in the order of decreasing performance. In other words, the LT formulation always gives best performance as expected. Moreover, the SCM formulation also gives the second best performance in our experiments. This might be due to the smaller size of the SCM formulation, which has less binary variables comparing to the PO and SO formulations.

In summary, for the special case CLSP-FS1-LT problem, the tailored formulation LT is most promising among all tested formulations. Moreover, the SCM formulation, which was developed for general CLSP with sequence dependent setups, can also solves CLSP-FS1-LT efficiently in comparison to our developed PO and SO formulation.

Conclusions

In this chapter, we have studied a restricted model of CLSP with sequence dependent setup. The problem reduces the number of candidate setup sequences from O(n!) to O(n2 n). However, the sequencing decision is still exponential and the problem is proven to be strongly NP-hard. We have studied two types of formulations including exponential size sequence-oriented formulation and polynomial size product-oriented formulation.

Moreover, both formulations are reformulated according to the facility location based model. We perform preliminary experiments on developed formulations and column generation heuristic. Formulation FL-SO gives the overall best lower bound from LP relaxation and FL-PO gives the best MIP solution quality.

A special case is studied, which considers only two setup values. However, it still captures the essence of our problem with a major setup and a minor setup. It is proven to be NP-hard as well. Due to the special structure, we simplify the MIP formulation for this special case, and comparing to the product-oriented formulation for the general problem, the number of binary variables is reduced from O(N 3 T) to O(N T).

However, more experiments need to be done to further evaluate formulation performance, and more efficient heuristic algorithms are to be designed.

Chapter 6

General Conclusion and Future

Work

In this manuscript, we have presented our research motivated by challenging real-world applications. We can summarize the main results in two areas.

In the first part of the manuscript, a challenging production planning problem brought to our attention by an apparel manufacturing project is studied. We designed Average-size instances can be solved directly using CPLEX, but large scale instances cannot be solved to proven optimality within short computational time. Therefore, several effective heuristic algorithms are developed based on constructive phases and enhanced by local search phases. We designed a Fix & Relax (F&R) heuristic algorithm based on the Linear Programming (LP) relaxation of the compact formulations. This heuristic provides good quality solutions but it requires long computational times. Then, in order to obtain good quality solutions in short computational time, we designed a Product Decomposition (PD) algorithm based on the observation that 20% of the product families covers 80% of the demands (for realistic instances). We experienced a natural trade-off of solution quality and computational time when comparing the performances of F&R and PD. In addition, a constructive heuristic is developed and is called First Solution Heuristic (FSH). The FSH algorithm is based on the LP relaxation of the compact model and variable fixing with the goal of constructing good quality feasible solutions. Thanks to extensive computational tests, we observed that the PD algorithm outperforms the FSH algorithm in terms of computational time and solution quality (for the tested benchmark instances). However, we observed that the positive effect of the local search phase is stronger for the FSH algorithm than for the PD algorithm. Finally, combining FSH and F&O allows us to achieve overall best performance. For real-world instances, a maximum optimality gap of 15% is observed between the feasible solutions and the LP relaxation values. These results outperforms the optimality gap of CPLEX directly applied to the compact formulations, which is greater than 30% on average considering within similar time limit of 1 hour CPU time. As far as the randomly generated benchmarks are concerned, if we compare the solution of CPLEX and the ones of the algorithm FSH + F&O, we observed an improvement in their quality of 85%. As far as the other heuristics are concerned, they also outperform CPLEX in computing feasible solutions within short computational time. All the developed heuristic algorithms have been included into the production planning tool of DecisionBrain improving in this way the efficiency of the optimization system.

In the second part the manuscript, we studied a restricted version of the capacitated lot sizing problem with sequence dependent setups, where the setup sequences for each time bucket have to follow the order of a given sequence. This problem is called capacitated lot sizing problem with a fixed product sequence (CLSP-FS1). Also this problem comes from a real-world application. Compared to the capacitated lot sizing problem with sequence dependent setups, CLSP-FS1 reduces the number of candidate sequences from O(n!) to O(n2 n). In many real-world applications, an "ideal" sequence is known and only sequences following that order can be chosen. This problem is shown to be NP-hard and four MIP models are developed based on sequence-oriented and product-oriented (setup) formulations. We performed preliminary computational tests to compare these formulations to a classical reformulation. We observed that one newly The study of TBPP has been published in the conference paper [49]. Since TBPP does not follow the line of production planning, we have not included it in this manuscript. -T = {1, 2, . . . , T } : ensemble des périodes.

A.1 CLSC Computational Results

-R = {1, 2, . . . , R} : ensemble des ressources/machines.

-N = {1, 2, . . . , N } : ensemble des produits.

-D = {1, 2, . . . , D} : ensemble des demandes.

-cap rt : capacité de la machine r dans la période t (r ∈ R, t ∈ T).

-pt i : temps de traitement unitaire du produit i (i ∈ N).

-st ir : capacité de setup pour le produit i sur la machine r (i ∈ N ,r ∈ R).

-sc ir : coût de setup du produit i sur la machine r (i ∈ N ,r ∈ R).

-p d ∈ N : produit requis par la demande d (d ∈ D).

-q d : quantité de produit p d requise par la demande d (d ∈ D).

-b d ∈ T : date de début de la demande d (d ∈ D).

- Le problème est de décider pour chaque machine r ∈ R et dans chaque période t ∈ T , la quantité à produire de chaque produit i ∈ N . L'objectif est de minimiser le coût total, y compris les frais de vente perdus et le coût des retards. Le coût de setup est secondaire par rapport aux autres coûts. Les contraintes sont de trois types : premièrement, il existe des contraintes de capacité limitée cap rt sur chaque machine r ∈ R et période t ∈ T ; deuxièmement, la production pour satisfaire la demande d ne peut commencer qu'à partir de sa date de début ; troisièmement, les contraintes concernant le report de setup. Les contraintes de setup exprime le fait que, pour produire le produit i sur la machine r pendant la période t, il doit y avoir un setup pour i sur r pendant t. Cependant, si le produit i est le dernier produit fabriqué dans la periode précédente t -1 sur la machine r, il n'y a plus besoin de setup pour produire le produit i sur la machine r pendant la periode t. Nous supposons qu'il existe au plus un setup par produit sur chaque machine pendant chaque période.

sc ir z + irt) (2.1) s.t. r∈R x irt = d∈D i ,t≥b d y dt i ∈ N , t ∈ T (2.2) b d ≤t∈T y dt + y d = q d d ∈ D (2.3) i∈N pt i x irt + i∈N st ir z + irt ≤ cap rt r ∈ R, t ∈ T (2.4) x irt ≤ Θ irt (z 0 irt + z + irt) i ∈ N , r ∈ R, t ∈ T (2.5) i∈N z 0 irt = 1 r ∈ R, t ∈ T (2.6) z 0 irt ≤ z 0 ir,t-1 + z + ir,t-1 i ∈ N , r ∈ R, t ∈ T (2.7) z 0 irt + z 0 ir,t-1 ≤ 1 + w r,t-1 i ∈ N , r ∈ R, t ∈ T (2.8) z + irt + w rt ≤ 1 i ∈ N , r ∈ R, t ∈ T (2.9) 0 ≤ x irt i ∈ N , r ∈ R, t ∈ T (2.10) 0 ≤ y dt , y d ≤ q d d ∈ D, b d ≤ t ∈ T (2.11) z 0 irt , z + irt ∈ {0, 1} i ∈ N , r ∈ R, t ∈ T (2.12) 0 ≤ w rt ≤ 1 ∀r ∈ R, t ∈ T (2.13)
Pour comparer ces quatre formulations, nous avons prouvé de thèorème ci-dessous. 2. α i = α j pour tout i = j ∈ {1, 2, . . . , m} et {i, j} = {1, m}.

3. Soient i un indice tel que ω i = α 1 et une séquence Les paramètres du CLSP avec une séquence fixe de produits sont donnés comme suit :

β(i) = ω i ,
-N = {1, 2, . . . , N } un ensemble de N produits.

-T = {1, 2, . . . , T } un ensemble de T périodes.

-cap t : capacité de la machine sur la période t.

-d it : demande de chaque produit i sur la période t.

-pt i : temps de production unitaire de chaque produit i.

-hc it : coût d'inventaire unitaire de chaque produit i sur la période t.

-b it : la quantité maximale de production i qui peut être produite sur t.

-st ij : temps de setup du produit i au produit j.

-sc ij : coût de setup du produit i au produit j.

-Une permutation de N : ω = ω 1 , ω 2 , . . . , ω N .

Le problème CLSP avec une séquence fixe de produits, noté CLSP-FS1, consiste à décider de la séquence de production et de la quantité de production de chaque produit dans chaque période, de façon à ce que toutes les demandes soient satisfaites avec un coût total minimum, tout en respectant les capacités des machines. De plus, la séquence de setup choisie pour chaque période doit suivre l'ordre donné par ω.

Figure 1 . 1 :

 11 Figure 1.1: DecisionBrain production planning applications

)

Figure 1 . 3 :

 13 Figure 1.3: Apparel manufacturing application: plant structure

There are about 20

 20 to 60 sewing lines in each plant. Each sewing line is a group of sewing workers who share the same working shift schedule. Different sewing lines may have different number of workers and different working hours per day, which results in different machine capacities in the lot sizing problem. This together with multiple productions lines leads to the second difficulty because all parallel machines are not identical.

Figure 1 . 4 :

 14 Figure 1.4: Apparel manufacturing application: production procedure

1. 3 .

 3 The problem is shown to be NP-hard and different MIP formulations are proposed in Chapter 2. Two sets of benchmark instances are presented to evaluate these formulations. One set consists of real-world application instances, whereas the other set is pseudo-randomly generated and simulates characteristics observed from real-world instances. The computational results show that the problem can not be solved within reasonable time limit by the standard MIP solver CPLEX. Therefore, heuristic algorithms are developed to tackle this problem in Chapter 3. Both constructive and improving heuristic algorithms are developed. We perform experimental tests to evaluate performances of all developed heuristic algorithms and show the efficiency of our algorithms compared to the standard MIP solver CPLEX. In Chapter 4, our study results are implemented in the production planning engine for the apparel company and we show the complete industrial production planning solution.

 p d ∈ N : required product of demand d (d ∈ D). • q d : quantity of product p d required by demand d (d ∈ D). • b d ∈ T : release date of demand d (d ∈ D). • e 1 d ∈ T : first due date of demand d (d ∈ D). No extra cost in interval [b d , e 1 d). • e 2 d ∈ T : second due date of demand d (d ∈ D). • tc 1 d : unitary tardiness cost of demand d satisfied at or after e 1 d (d ∈ D). • tc 2 d : unitary tardiness cost of demand d satisfied at or after e 2 d (d ∈ D). • lc d : unitary lost sale cost of demand d (d ∈ D, lc d > tc 1 d + tc 2 d).

Figure 2 . 4 :

 24 Figure 2.4: CLSC Example 2.1 optimal solution with setup cost

Facility

 Location Based Reformulation (F orm3 F L) In section 1.2 we introduce two reformulations of CLSP. Here we adapt facility location reformation of CLSP to CLSC. For all d ∈ D, b d ≤ t ∈ T and r ∈ R, we introduce • Q drt ∈ R + : the production quantity of product p d on machine r during time t to satisfy demand d.

Figure 2 . 5 :

 25 Figure 2.5: CLSC instance R5 analysis: machine capacity distribution

Figure 2 . 6 :

 26 Figure 2.6: CLSC instance R5 analysis: production time distribution

Figure 2 . 7 :

 27 Figure 2.7: CLSC instance R5 analysis: setup time distribution

Figure 2 . 8 :

 28 Figure 2.8: CLSC instance R5 analysis: product-demand distribution

Figure 2 . 9 :

 29 Figure 2.9: CLSC instance R5 analysis: demand quantity distribution

Figure 2 .

 2 Figure 2.10: CLSC instance R5 analysis: demand time window distribution

Figure 2 .

 2 Figure 2.11: CLSC instance R5 analysis: demand release/due date distribution

Figure 2 .

 2 Figure 2.12: CLSC instance R5 analysis: capacity requirement by time interval

Figure 2 .

 2 Figure 2.13: CLSC instance R5 analysis: tardiness cost distribution

 With possibility prob1(d), e 1 d ∈ first size1(d)% part of time horizon; with possibility prob2(d), e 1 d ∈ second size1(d)% part of time horizon; otherwise, e 1 d ∈ remaining part of time horizon. r d pf (dr) With possibility pf (dr), r d = max{1, e 1 d -4}; otherwise, r d ∈ max{1, [e 1 d -3, e 1 d -1]}.

•-

 If T ype(cap) = T woLevel, let lowCapRatio = 0.5 and lowT BSize = 0.2, Randomly select a subset of time buckets T ⊆ T and | T | = lowT BSize • T .

13 :

 13 Computational results: CPLEX on IRG-B[START_REF] Abad | Optimal price and order size under partial backordering incorporating shortage, backorder and lost sale costs[END_REF]

 show the computational time of LP relaxation in Figure2.14. For each instance size, we show the LPR time for different types of generated instances. All instance types have similar trend that the LPR time goes up when the instance size increases. Also, when the required capacity ratio R increases from 75% to 90%, the LPR time increases as well for most cases. For type ProdEven, of which each product has the same number of demands statistically, the LPR time is larger than others except the last instance size. Moreover, the objective function value based on the LP relaxation are zero in most cases. This is due to the instance generation have required capacity ratio as 90% maximum, therefore with relaxed setup in LP relaxation, most of the work order can be fulfilled fully on time.

Figure 2 .

 2 Figure 2.14: LPR time on different types of instances

Figure 2 .

 2 Figure 2.15: MIP gap on different types of instances

Figure 2 .

 2 Figure 2.16: MIP number of nodes on different types of instances

Section 3 . 2 ,

 32 different constructive algorithms are developed, while in Section 3.3 a Fix & Optimize algorithm is presented. Computational results are given in Section 3.4 to evaluate algorithm performances. Finally, we conclude the chapter in Section 3.5.

Figure 3 . 1 .

 31 In kth iteration, we have a time window [a k , b k], of which the length is σ. Time buckets t ∈ [1, a k) are frozen window, which means all binary variables are fixed at the value of the solution from the previous iteration. Time buckets t ∈ [a k , b k] are decision window, in which all decision variables remain the same as in the original problem. The remaining time buckets t ∈ (b k , T] are approximation window that all binary variables are relaxed to continuous variables. We solve this problem and obtain solution sol k . Note that in sol k , all binary variables belong to time buckets [1, b k] have binary values, while the rest can be fractional. Then in the next iteration k + 1, the decision window is moved forward by a step size δ where 0 < δ < σ. Therefore we have new decision window [a k+1 , b k+1] where a k+1 ← a k + δ, b k+1 ← min{b k + δ, T }. Comparing to the sub-problem considered in iteration k, binary variables belonging to [a k , a k+1 -1] are fixed and variables belonging to [b k + 1, b k+1] are set back to binary variables. We solve this updated sub-problem in iteration k + 1 and the process is repeated until the end of the time horizon is reached.

Figure 3 . 1 :

 31 Figure 3.1: FR-T algorithm procedure Absi and Kedad-Sidhoum [3] (modified)

d∈D j lc d y d + d∈D j ,t∈T :t≥e 1 d tc 1 dd tc 1 d y dt + d∈D j ,t∈T :t≥e 2 d tc 2 d

 12 y dt + d∈D j ,t∈T :t≥e 2 d tc 2 d y dt s.t. (3.4) -(3.12) Let obj(P P D SI1 (j)) be the obtained objective function value of problem P P D SI1 (j), (P P D SI2 (j)) min w sp r∈R,t∈T θ rt + w ic r∈R,t∈T (avlcap(r, t)γ rtpt j x jrtst jr θ rt) s.t. (3.4) -(3.12) d∈D j lc d y d + d∈D j ,t∈T :t≥e 1 y dt ≤ obj(P P D SI1 (j)) (3.13)

d∈D j lc d y d + d∈D j ,t∈T :t≥e 1 d tc 1 d

 1 y dt + d∈D j ,t∈T :t≥e2

Figure 3 . 3 :

 33 Figure 3.3: PD-SI algorithm capacity update example

PFigure 3 . 4 :

 34 Figure 3.4: FSH algorithm flow chart

3) setup d 5 (4 3) d 5 (1 6)Figure 3 . 6 :

 33636 Figure 3.6: CLSC Example 2.1 optimal LP relaxation solution (no setup cost)

Definition 3 . 1 .•

 31 Let B represent the set of all binary variables in a MIP problem. Given a set F ⊆ B × {0, 1}, which is a set of variable and binary value pair, we introduce the notation Denote var ∈ F v if there exists val ∈ {0, 1} such that (var, val) ∈ F .

; 13 end 14 else 15 F 16 F

 141516 ← F ∪ {(z + i * ,rt , 1)}; ← F ∪ UpdateBounds(z + i * ,rt , 1); var,val)" is a function to propagate bounds of other variables after fixing var at val according to the rules introduced in the following section. It returns a set of variables and their fixed values.

Algorithm 6 : 5 F 6 P 7 Break; 8 end 9 F 14 F 15 F 16 end 17 F 18 P

 6567891415161718 FSH algorithmInput: P as the original problem. ;Result: sol1 Initialize: P ← P , F all ← ∅, F pre ← ∅; 2 while do 3 sol LP R ←Solve the LP Relaxation of P ; 4 if sol LP R == N U LL then /*LPR infeasible */ all ← F all \F pre ; ← {P : var = val ∀(var, val) ∈ F all }; cur ← SelectVariablesToFix(sol LP R , F all); 10 if F cur == ∅ then /* No variables to fix */ F ea ← Recursively set var at val for (var, val) ∈ F cur based on feasibility rules; cur ← F cur ∪ F F ea ; pre ← F cur , F all ← F all ∪ F cur ; ← {P : var = val ∀(var, val) ∈ F all }; 19 end 20 sol ← Solve P as MIP;

Figure 3 .

 3 7 to show the comparison of computational time and relative gap between PD variants. In summary, PD algorithm is computationally efficient and tackles the most difficult instance R5. Also, the algorithm PD-F-DC gives the overall best performance.

Figure 3 . 7 :

 37 Figure 3.7: PD algorithm gap and computational time on pilot benchmark

For the test on

 benchmark IRG-B, first we show the computational time of FSH algorithm in Figure 3.8. The speed of the algorithm depends on the LP relaxation, therefore the curve has similar form as that of the computational time of the LP relaxation presented in Figure 2.14.

Figure 3 . 8 :

 38 Figure 3.8: FSH algorithm computational time on different types of instances

Figure 3 . 9 :

 39 Figure 3.9: Heuristic algorithm comparison results on pilot instances

Figure 4 . 1 :

 41 Figure 4.1: Apparel manufacturing decomposition approach

•

 b d : release date of demand d (d ∈ D). • e 1 d : first due date of demand d (d ∈ D). No extra cost in interval [b d , e 1 d). • e 2 d : second due date of demand d (d ∈ D). • tc 1 d : unitary extra cost for demand d satisfied at or after e 1 d (d ∈ D). • tc 2 d : unitary extra cost for demand d satisfied at or after e 2 d (d ∈ D). • lc d : unitary cost for unsatisfied demand d (d ∈ D, lc d > tc 1 d + tc 2 d).

(4 .

 4 7) -(4.10) are setup carryover related constraints for product families. Remaining constraints are to define the introduced variables.

2 .

 2 The research on CLSP with sequence dependent setups have two major directions: problem modeling and heuristic algorithm design. As for the problem modeling, Guimarães et al.[START_REF] Guimarães | Modeling lotsizing and scheduling problems with sequence dependent setups[END_REF] classified and compared different MIP formulations for the CLSP with sequence dependent setup. Based on the sequencing decision, they group MIP formulations into sequence-oriented and product-oriented. The sequenceoriented formulation has binary variables representing the selection of sequences explicitly. Therefore, it has exponential number of variables. The product-oriented formulation formulate the setup sequence as a path in a graph, and subtour elimination constraints are needed to prevent disconnected subtours in the chosen setup sequence. Therefore, we have polynomial number of variables but some models have exponential number of constraints. Due to the difficulty of the problem, different heuristics are developed for different variants of the problem, such as production-balancing algorithm[START_REF] Haase | Capacitated lot-sizing with sequence dependent setup costs[END_REF][START_REF]A two-stage heuristic for single machine capacitated lot-sizing and scheduling with sequence-dependent setup costs[END_REF], tabu

Figure 5 . 1 :

 51 Figure 5.1: Color change in production

Figure 5 . 2 :

 52 Figure 5.2: Definition 5.1 illustration

Figure 5 . 3 :

 53 Figure 5.3: CLSP with sequence dependent setup Example 5.1 optimal solution

Figure 5 . 4 :

 54 Figure 5.4: CLSP-FS1 Example 5.1 optimal solution

 and j ∈ N • ω = p T s , p T -1 s , . . . , p 1 s 1, 2, . . . , N p 1 e , p 2 e , . . . , p T e In the following, we show the optimal objective function value of P1 equals to P2 with three steps. The idea of the proof is to show that any optimal solution of P2 has structure shown in Figure 5.5, and it has a corresponding solution to P1 which shares the same objective function value.

Figure 5 . 5 :

 55 Figure 5.5: Theorem 5.1 CLSP-FS1 instance optimal solution structure

Property 5 . 1 .

 51 CLSP with sequence dependent setup has O(n!) valid sequences, while CLSP-SD has O(n2 n) sequences.

Figure 5 . 6 :

 56 Figure 5.6: CLSP-FS1 graph representation of setup sequence

Figure 5 . 7 :

 57 Figure 5.7: Theorem 5.2 reduction from CLSP with single product to CLSP-FS1-LT

Figure 5 . 8 :

 58 Figure 5.8: CLSP-FS1 network representation of the pricing problem

 an optimized software tool to efficiently tackle this industrial problem. A decomposition framework has been developed, which solves an aggregated model and a detailed model in sequence. The aggregated problem, called for brevity CLSC, is shown to be the bottleneck of the approach and it has been studied from different perspectives. CLSC corresponds to a complex capacitated lot sizing problem, and it has been shown to be NP-hard even without the setup costs. Several Mixed Integer Programming (MIP) formulations are developed for CLSC. To computationally evaluate the different MIP formulations, two sets of benchmark instances have been designed. The first set consists of realistic data while the second set consists of pseudo-randomly generated instances with realistic characteristics and different features. Thanks to extensive computational tests, we have identified that one formulation computationally outperforms the others.

 proposed formulation guarantees the best performance overall for the tested benchmark instances. For the sequence-oriented (setup) formulation, a simple column generation heuristic has been developed and tested. Even if the quality of the LP relaxation bound is superior to its counter part of the compact formulations, the feasible solutions computed by the column generation heuristic are inferior to those computed by CPLEX applied to the compact formulation. Moreover, we studied a special case of CLSP-FS1, which has a lower triangle form of setup matrices and is called CLSP-FS1-LT. For this variant of the problem, if the production plan follows the order of the given sequence, then no setup incurs. However, if the production plan reverses the order of products in the given sequence, a big setup has to be paid. Hence, what has to be decided is when to perform the major (nonzero) setup. Also, this problem variant is shown to be NP-hard and a tailored MIP formulation is developed. Comparing to the product-oriented formulation with O(N 3 T) binary variables, the tailored MIP formulation of CLSP-FS1-LT has only O(N T) binary variables. Summarizing this thesis, we tacked challenging production planning problems and we designed advanced mathematical models and effective heuristic algorithms. These tools allow us to compute good quality feasible solution, however, several possible future lines of research remain open. Regarding the CLSC problem, we observed a large optimality gap larger than 50% on difficult benchmark instances IRG-B. Therefore, other families of heuristic algorithms can be developed possibly based on stronger formulations. More in details, a promising line of research can be the study of the network reformulation of the CLSC, or a hybrid MIP formulation could also be developed based on recently proposed in the literature. With regards to the problem CLSP-FS1, our study offers a first glance into this problem and only preliminary experiments have been conducted thus far. Therefore, we would like to test developed formulations on a larger scale instances especially on structured instances where our model applies, and they should be compared with the classical sequence dependent model. At last, the study presented in Chapter 2 have been published in the conference paper [48]. We have also started another project regarding Temporal Bin Pacing Problem (TBPP). It is an extension of the Bin Packing Problem, where items consume the bin capacity during a time window only. Both a polynomial-size formulation and an extensive formulation are studied. Moreover, various heuristic algorithms are developed and compared, including greedy-type heuristics and a column generation based heuristic.

e 1 d

 1 ∈ T : première échéance de la demande d (d ∈ D). Pas de frais supplémentaires dans l'intervalle [b d , e 1 d). -e 2 d ∈ T : deuxième échéance de la demande d (d ∈ D). -tc 1 d : coût unitaire de retard de la demande d satisfait à ou après e 1 d (d ∈ D). -tc 2 d : coût unitaire de retard de la demande d satisfait à ou après e 2 d (d ∈ D). -lc d : coût de vente perdu unitaire de la demande d (d ∈ D, lc d > tc 1 d + tc 2 d). -D i ⊆ D : le sous-ensemble des demandes telles que p d = i, i.e., D i := {d ∈ D|p d = i}.

 Tout d'abord, différentes formulations MIP sont comparées pour le CLSC avec et sans le coût de setup. Toutes les formulations développées sont résolues pour le benchmark IRG-A et IAP-A avec le solveur standard MIP CPLEX 12.6.1 et avec une limite de temps de 10 minutes. Le résumé des résultats est donné dans le tableau 2.4 et dans le tableau 2.5. Dans les tableaux, le temps de calcul est exprimé en secondes. Pour chaque paramètre d'instance (T , R, D, D, N , Γ) et pour chaque valeur, nous donnons les résultats moyens sur toutes les instances correspondantes. Dans la rangée T/A, les valeurs moyennes sur toutes les instances testées sont rapportées tandis que sa colonne Opt indique le nombre total d'instances résolues de manière optimale pour chaque formulation. Dans les deux premières colonnes, nous présentons les paramètres et leurs valeurs. Par exemple, pour le nombre de périodes T , il y a trois valeurs 4, 9, 13 pour les instances IRG-A. Dans les colonnes Opt et Temps, nous rapportons le nombre et le temps de calcul moyen sur toutes les instances, avec les valeurs des paramètres donnés, résolues pour prouver l'optimalité dans le délai imparti. Dans les colonnes Noeuds et Écart, nous signalons le nombre de noeuds explorés et l'écart de sortie lorsque CPLEX termine. Cet écart représente la différence relative entre les limites primale et duale calculées par CPLEX à la date limite. Dans la colonne LPT, nous rapportons le temps de calcul moyen pour résoudre la relaxation linéaire sur toutes les instances partageant cette valeur de paramètre. En Colonne LPG, nous mesurons la qualité de la relaxation linéaire qui est calculée comme suit LP G = BestM ip -LP V al BestM ip , (2.14) où bestM ip est la meilleure solution entière (parmi toutes les formulations) et LP V al est la valeur optimale de la relaxation linéaire de la formulation correspondante. Dans tous les cas sauf deux, les trois formulations F orm1, F orm2 et F orm3 aboutissent à la même valeur LP V al (dans les deux cas la différence est inférieure à 0,001 !). Nous ne présentons le LPG qu'une seule fois sous la colonne F orm3. Pour les instances IAP-A, nous reportons, dans la colonne Obj, les valeurs de la fonction objectif obtenues par le solveur. Nous observons que la formulation F orm3 donne la meilleure performance globale. Par exemple, sur les 810 instances d'IRG-A avec coûts de setup, F orm3 résout (avec preuve d'optimalité) 416 instances alors que F orm2 n'en résout que 411 instances, F orm1 379

 Dans le chapitre précédent, nous avons présenté le problème complexe de lot-sizing CLSC. Nous montrons qu'il est NP-difficile et ne peut être résolu efficacement par un solveur MIP standard d'après nos expériences de calcul. Dans ce chapitre, nous proposons donc des algorithmes heuristiques afin de résoudre CLSC.Pour l'application de fabrication de vêtements, l'indicateur clé de performance concerne le niveau de satisfaction de la demande. En d'autres termes, les coûts dûs au retard ou à la non-satisfaction de la demande sont beaucoup plus importants que le coût de setup.Notre objectif étant de résoudre le problème de planification de la production issu de l'application, nous considérons par la suite uniquement le CLSC sans coût de setup. Tous les algorithmes heuristiques que nous avons développés sont basés sur la formulation MIP du problème. Comme montré précédemment, la formulation F orm3 donne les meilleures performances globales. Par conséquent, nous utilisons F orm3 pour développer et tester l'algorithme à chaque fois que la formulation MIP du CLSC est requise. Nous proposons trois algorithmes heuristiques pour construire des solutions réalisables au CLSC : l'algorithme Fix&Relax, qui est une adaptation d'un algorithme classique largement utilisé pour résoudre CLSP, l'algorithme basé sur la décomposition des produits (PD) qui explore la structure des instances réelles, et l'algorithme heuristique avec solution initiale basé sur la relaxation LP. L'algorithme Fix&Relax, basé sur la décomposition par périodes et machines, résout une série de modèles MIP. De la même façon, l'algorithme PD est basé sur la décomposition du produit, et résout également une série de modèles MIP à plus petite échelle que ceux de l'algorithme Fix&Relax. Enfin, l'algorithme heuristique avec solution initiale est basé sur la fixation des variables et résout une série de modèles LP. Par conséquent, toutes les heuristiques constructives utilisent des formulations mathématiques, mais avec des modèles et des tailles différentes. Nous développons ensuite un algorithme de recherche locale pour améliorer la qualité de la solution. Fix&Optimize (F&O) algorithm [108] est une autre méthode couramment utilisée pour résoudre LSP. Partant d'une solution initiale, chaque itération consiste à fixer une partie des variables, tandis que les variables restantes sont optimisées pour essayer d'améliorer la qualité de la solution. Après chaque itération, les variables de la fenêtre de décision sont mises à jour et le processus est répété jusqu'à ce que certains critères soient atteints. La solution finale ne peut pas être pire que la solution initiale. L'idée est de résoudre un problème MIP plus petit à chaque itération pour trouver une meilleure solution. Tous les algorithmes heuristiques à l'exception de l'algorithme F&R sont testés à la fois sur des instances d'application réelles IAP-B et sur des instances pseudo-aléatoires IRG-B. Les résultats de calcul obtenus sur les instances IAP-B, sont donnés dans le Tableau 3.1.

Chapitre 4 ProblèmeDefinition 4 . 1 .

 441 de lot-sizing avec une séquence fixe de produits Dans de nombreuses industries manufacturières, le transfert de la production d'un produit à un autre entraîne des opérations de setup. Le setup consomme une quantité limitée de capacité des machines et/ou engendre un coût de setup. Lorsque le setup dépend de la séquence de production, c'est-à-dire lorsque le setup pour produire le produit actuel dépend à la fois de lui-même et du produit précédent, on parle de setup dépendant de la séquence[START_REF] Fleischmann | The discrete lot-sizing and scheduling problem with sequence-dependent setup costs[END_REF][START_REF] Guimarães | Modeling lotsizing and scheduling problems with sequence dependent setups[END_REF]. Dans ce cas, il est nécessaire de prendre une décision pour le lot-sizing et le séquençage. La difficulté de ce problème réside dans le nombre factoriel de séquences de setup possibles. Toutefois, dans certaines industries manufacturières, ce nombre peut être réduit en utilisant les connaissances des planificateurs. Dans ce chapitre, nous étudions un cas particulier de CLSP avec setup dépendant de la séquence, appelé problème de lot-sizing à capacité finie et séquence fixe de produits. Étant données deux séquence ω = ω 1 , ω 2 , . . . , ω n et α = α 1 , α 2 , . . . , α m (m ≤ n + 1), on dit que α suit l'ordre de ω, noté α ω, si 1. α i ∈ ω pour tout i ∈ {1, 2, . . . , m}.

Theorem 4 . 1 .∆∆

 41 CLSP-FS1 est fortement NP-difficile. Démonstration. Cette affirmation se démontre par réduction au CLSP. Diverses formulations MIP pour CLSP-FS1 sont proposées. Il y a deux types de décisions à prendre : le lot-sizing et le séquençage. Pour le lot-sizing, nous avons la formulation classique agrégée et la reformulation basée sur le problème de l'emplacement d'installations en CLSP. Pour le séquençage, nous proposons une formulation compacte orientée produit et, une formulation orientée séquence avec un nombre exponentiel de variables. En fonction d'une séquence de produit, si la production suit la séquence donnée, le setup est mineur. Cependant, lorsque nous avons besoin d'inverser les produits dans la séquence, le setup devient majeur. Ici nous étudions un cas extrême où le setup mineur vaut zéro et où le setup majeur est un nombre positif. Plus précisément, nous définissons st ω i ,ω j = où ∆ st > 0 et ∆ sc > 0. Sans perte de généralité, on peut supposer que la séquence fixe est 1, 2, . . . , N par réindexation. Les matrices de setup {st ij } i,j∈N , {sc ij } i,j∈N ont alors la structure suivante : st ∆ st ∆ st . . . 0 0 ∆ st ∆ st ∆ st . . . ∆ st 0 sc ∆ sc ∆ sc . . . 0 0 ∆ sc ∆ sc ∆ sc . . . ∆ sc 0 Nous faisons référence à ce cas particulier de CLSP-FS1 par la notation CLSP-FS1-LT puisque ses matrices de setup forment des triangles inférieurs. Dans le théorème suivant, CLSP-FS1-LT est montré comme étant NP-difficile. Theorem 4.2. CLSP-FS1-LT est NP-difficile. Démonstration. La preuve est basée sur une réduction à CLSP avec un seul produit. En raison de la structure particulière, nous simplifions la formulation du MIP. Par rapport à la formulation orientée produit du problème général, le nombre de variables binaires est réduit de O(N 3 T) à O(N T). Dans la suite, nous effectuons une étude expérimentale. Nous comparons quatre formulations que nous avons développées : AG-SO, AG-PO, FL-SO, FL-PO. Les instances de référence sont 10 instances de [63], avec seulement les 10 premiers produits et 10 périodes. De plus, aucune vente perdue n'est considérée. Par conséquent, toutes les demandes doivent être satisfaites. Le résumé des résultats est donné dans le tableau 4.1. D'après les résultats moyens sur 10 cas pilotes, nous observons que la formulation FL-PO donne l'écart moyen le plus faible à 2,1%. D'autre part, la formulation AG-SO donne l'écart le plus grand avec 3,8%. De plus, la formulation FL-PO possède également le temps de calcul le plus court par rapport aux autres formulations. Pour la borne inférieure donnée par la relaxation linéaire, la formulation FL-SO donne la meilleure borne tandis que la formulation AG-PO donne la plus mauvaise borne inférieure. Il semble y avoir une relation de dominance entre les relaxations linéaires de ces différentes formulations.

Chapitre 5 Conclusion

 5 générale et travaux futurs Dans ce manuscrit, nous avons présenté nos recherches motivées par des applications réelles. Nous pouvons résumer les principaux résultats en deux parties. Dans la première partie du manuscrit, nous avons étudié un problème de planification de la production qui nous a été soumis par un projet de fabrication de vêtements. Nous avons conçu un outil logiciel optimisé pour répondre efficacement à ce problème industriel. Un cadre de décomposition a été développé, qui résout successivement un modèle agrégé et un modèle détaillé. Le problème agrégé, noté CLSC, s'avère être le goulot d'étranglement de l'approche et a été étudié sous différents angles. Le CLSC correspond à un problème complexe de lotsizing à capacité finie, et il a été démontré comme étant NP-difficile, même sans les coûts de setup. Plusieurs formules de programmation linéaire mixtes (MIP) sont développées pour le CLSC. Afin d'évaluer expérimentalement les différentes formulations MIP, deux ensembles d'instances de référence ont été conçus. Le premier ensemble est constitué de données réelles, tandis que le deuxième ensemble est constitué d'instances pseudoaléatoires avec des caractéristiques réalistes et des propriétés différentes. Grâce à ces évaluations expérimentales approfondies, nous avons pu constater qu'une formulation donne de meilleurs résultats que les autres.Les instances de taille moyenne peuvent être résolues directement à l'aide de CPLEX, mais l'optimalité ne peut pas être prouvée pour les instances de grande taille en un temps de calcul court. Par conséquent, plusieurs algorithmes heuristiques efficaces sont développés à partir de phases constructives et améliorés par des phases de recherche locale.Nous avons conçu un algorithme heuristique Fix & Relax (F&R) basé sur la relaxation de la programmation linéaire (LP) des formulations compactes. Cette heuristique fournit des solutions de bonne qualité, mais elle nécessite des temps de calcul importants. Ensuite, afin d'obtenir des solutions de bonne qualité en un temps de calcul court, nous avons conçu un algorithme de décomposition des produits (PD) basé sur l'observation que 20% des familles de produits couvrent 80% des demandes (sur les instances réalistes). Nous avons fait l'expérience d'un compromis naturel entre la qualité des solutions et le temps de calcul en comparant les performances de F&R et PD. De plus, une heuristique constructive est développée, appelée First Solution Heuristic (FSH). L'algorithme FSH est basé sur la relaxation linéaire du modèle compact et la fixation des variables dans le but de construire des solutions réalisables de bonne qualité. Grâce à des expériences de calcul intensives, nous avons pu constater que l'algorithme PD est plus performant que l'algorithme FSH en terme de temps de calcul et de qualité de solution (pour les instances considérées).Cependant, nous avons observé que l'effet positif de la phase de recherche locale est plus fort pour l'algorithme FSH que pour l'algorithme PD. Enfin, la combinaison FSH et F&O nous permet d'atteindre la meilleure performance globale. Dans la pratique, un écart d'optimalité maximum de 15% est observé entre les solutions réalisables et les valeurs optimales des relaxations linéaires. Ces résultats surpassent l'écart d'optimalité de CPLEX appliqué directement sur les formulations compactes, qui est supérieur à 90% en moyenne si l'on considère le même temps CPU d'une heure. En ce qui concerne les instances générées aléatoirement, si l'on compare la solution de CPLEX et celle de l'algorithme FSH + F&O, on constate une amélioration de leur qualité de 85%. En ce qui concerne les autres heuristiques, elles sont également plus performantes que CPLEX pour ce qui est du calcul des solutions réalisables en peu de temps. Tous les algorithmes heuristiques développés ont été intégrés dans l'outil de planification de production de DecisionBrain, améliorant ainsi l'efficacité du système d'optimisation. Dans la deuxième partie du manuscrit, nous avons étudié une version restreinte du problème de lot-sizing à capacité finie et setup dépendant de la séquence, où les séquences de setup pour chaque période doivent suivre l'ordre d'une séquence donnée. Ce problème est appelé problème de lot-sizing à capacité finie et séquence de produit fixe (CLSP-FS1). Ce problème vient d'une application du monde réel. Par rapport au problème de lotsizing à capacité finie et setup dépendant de la séquence, CLSP-FS1 réduit le nombre de séquences candidates de O(n!) à O(n2 n). Dans de nombreuses applications du monde réel, une séquence "idéale" est connue et seules les séquences suivant cet ordre peuvent être choisies. Il est démontré que ce problème est de type NP-difficile. Quatre modèles MIP sont développés à partir de formulations orientées séquence et produit (setup). Nous avons effectué des tests computationnels préliminaires pour comparer ces formulations à une reformulation classique. Nous avons observé qu'une nouvelle formulation proposée garantit la meilleure performance globale pour les instances de référence testées. Pour la formulation orientée séquence, une heuristique simple de génération de colonne a été développée et testée. Même si la qualité de la relaxation linéaire de cette formulation est meilleure que celle de la formulation compacte, les solutions réalisables calculées par l'heuristique de génération de colonne sont moins bonnes que celles calculées par CPLEX en utilisant la formulation compacte. De plus, nous avons étudié un cas particulier de CLSP-FS1, dont les matrices de setup ont une forme triangulaire inférieure, noté CLSP-FS1-LT. Pour cette variante du problème, si le plan de production suit l'ordre de la séquence donnée, aucun setup n'est effectuée. Toutefois, si le plan de production inverse l'ordre des produits dans la séquence donnée, une coût de setup important doit être payée. Par conséquent, la décision cruciale concerne l'exécution du setup dominant (non nulle). De plus, cette variante de problème s'avère être NP-difficile et une formulation MIP sur mesure est développée. Comparativement à la formulation orientée produit avec des O(N 3 T) variables binaires, la formulation MIP sur mesure de CLSP-FS1-LT ne contient que O(N T) variables binaires. Pour résumer cette thèse, nous avons abordé des problèmes complexes de planification de la production et nous avons conçu des modèles mathématiques avancés et des algorithmes heuristiques efficaces. Ces outils nous permettent de calculer des solutions réalisables de bonne qualité, mais plusieurs pistes de recherche restent ouvertes. En ce qui concerne le problème du CLSC, nous avons observé un saut d'intégrité important, de plus de 50% sur les instances difficiles IRG-B. Par conséquent, d'autres familles d'algorithmes heuristiques peuvent être développées à partir de formulations renforcées. Plus en détail, une ligne de recherche prometteuse peut être l'étude de la reformulation en réseau du CLSC, ou une formulation hybride MIP pourrait aussi être développée à partir de la littérature récemment proposée. En ce qui concerne le problème CLSP-FS1, notre étude offre un premier regard sur ce problème et seules des expériences préliminaires ont été menées à ce jour. Par conséquent, nous aimerions tester les formulations développées sur des instances de plus grande échelle, en particulier sur les instances structurées où notre modèle s'applique, et elles devraient être comparées avec le modèle dépendant de la séquence classique. Enfin, l'étude présentée au chapitre 2 a fait l'objet d'une publication en conférence [48]. Nous avons également lancé un autre projet concernant le problème de Temporal Bin Pacing (TBPP). Il s'agit d'une extension du problème de bin packing, où les produits consomment la capacité du bin pendant une période de temps seulement. Une formulation polynomiale et une formulation extensive sont étudiées. De plus, divers algorithmes heuristiques sont développés et comparés, dont l'heuristique de type gloutonne et une

Table 1 . 1 :

 11 Production planning example: demands

	Jan Feb Mar Apr	May	Jun	Jul	Aug
	400	400	800	800 1200 1200 1200 1200

Table 1 .

 1 6: Apparel manufacturing production: learning curve example

	Day	Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Day10
	Efficiency	0.6	0.65	0.7	0.8	0.9	1.0	1.0	1.0	1.0	1.0

Table 1 .

 1 7: Modeling apparel production planning to lot sizing problem

	Application	Lot sizing Problem
	Planning horizon 20 -30 weeks	Weekly time buckets
	7 production process step	Bottleneck sewing process, single level LSP
	Multiple sewing production lines	Non-identical parallel machines
	300 -1000 products, 1 -80 style families	Aggregated product for each style family
	Sequence dependent learning curve	Setup carryover
	Demand release date	Production time window
	Demand can be lost or delayed	Lost sales and backlogging

 tc 2 d and lost sale cost lc d . In other words, one product is required by a set of demands but each demand is Another difference is that there is no inventory to be taken into consideration. Not only there is no inventory cost, but also the produced product is used to satisfy demands Example 2.1. We consider 2 machines, 3 products and 5 time buckets. Parameters are given in the Table2.1, Table 2.2 and Figure 2.3. Production time pt i equals to 1 for all 3 products.

	directly, i.e., immediate delivery. These two differences imply that CLSC has certain
	Setup scheduling features since the cost and material flow are directly connected to demand Production
	delivery.				
	We illustrate the problem in Example 2.1.		
	t -1	t	t + 1	
		Figure 2.1: Setup carryover	
	associated to one product.				
		0	tc 1 d	tc 1 d + tc 2	
	0	b d	e 1 d	e 2 d	T

We assumes that there is no more than one setup for each product on each machine during each time bucket. A pseudo formulation may serve to summarize the problem as follows. To the best of our knowledge, it is the first time that this CLSP is studied, we denote it as CLSC for simplicity. (CLSC) min LostSaleCost + T ardinessCost + SetupCost s.t. Material flow conservation constraints Machine capacity constraints Time windows of demands

Setup carryover

Based on the definition, we notice that CLSC is different from classical CLSP at the demand definition. In CLSP, demands are normally aggregated by products and time buckets. Hence, a demand is defined for each product in each time bucket. However, in our case it is important to consider individual time window of each demand based on its release date and due dates. Therefore, we separate the concept of product and demand.

Each demand d requires one product p d with quantity q d , and is given with a release date r d , two due dates e 1 d , e 2 d , their associated tardiness cost tc 1 d , d Figure 2.2: Time window of demand

Table 2 .

 2

1: CLSC Example 2.1 data: setups

Table 2 .

 2 Demand parameters is given in Figure2.3. For example, demand d 3 requires 2 units of product i 2 . We can start to produce for d 3 from its release date t 2 . If we deliver before its first due date t 3 , i.e., within [t 2 , t 2], it is on time. If we deliver at or after the first due date but before the second due date t 4 , i.e., within [t 3 , t 3], it is delayed and a unitary tardiness cost of 1 is charged per unit of delivery quantity. If we deliver at or after the second due date t 4 , i.e., within [t 4 , t 5], it is delayed and a unitary tardiness cost of 6=1+5 is charged per unit of delivery quantity. If we do not fulfill d 3 , a lost sale cost 100 per unit is paid.The optimal solution is described in Figure2.4 with total cost 6. The lost sale cost is 0 since all demands are satisfied. There is only one setup on machine r 2 in time bucket

	caprt	t 1	t 2	t 3	t 4	t 5
	r 1	2	1	2	1	2
	r 2	1	2	1	2	1
	d [p d , q d , lc d , tc 1 d , tc 2 d]	b d		e 1 d		e 2 d
	t 1		t 2		t 3	t 4	t 5
	d 5 [i 3 , 3, 100, 1, 5]					
	d 4 [i 2 , 2, 100, 1, 5]					
	d 3 [i 2 , 2, 100, 1, 5]					
	d 2 [i 1 , 2, 100, 1, 5]					
	d 1 [i 1 , 1, 100, 1, 5]					
	t 1		t 2		t 3	t 4	t

2: CLSC Example 2.1 data: capacities 5

Figure 2.3: CLSC Example 2.1 data: time windows t 3 for product i 3 , hence the setup cost is 3. Demand d 3 , d 4 and d 5 are delayed, so the tardiness cost is 3. For instance, demand d 3 is delivered in two lots: time bucket t 2 and time bucket t 3 . The first delivery is on time whereas the second delivery is late with a tardiness cost of 1 = 1 × 1. Therefore, the tardiness cost of demand d 3 is 1.

 equals to 1 if the setup state for product i is carried over from time bucket t -1 to time bucket t on machine r and 0 otherwise.

	Then the first formulation (F orm1) is formally given as follows (T = T \ {1}):
	min	d∈D	lc d y d +	d∈D,t∈T :t≥e 1 d	tc 1 d y dt +	d∈D,t∈T :t≥e 2 d	tc 2 d y dt +	i∈N ,r∈R,t∈T	sc ir (z irt -z c irt)
										(2.1)
		s.t.	r∈R	x irt =	d∈D:p d =i,t≥b d	y dt	i ∈ N , t ∈ T	(2.2)
			b d ≤t∈T				

 In the objective (2.1), it minimizes the cost including lost sale cost d∈D lc d y d , first level tardiness cost d∈D,t∈T :t≥e 1 dt , and setup cost i∈N ,r∈R,t∈T sc ir (z irtz c irt

		d	tc 1 d y dt , second
	level tardiness cost d∈D,t∈T :t≥e 2 d	tc 2 d y

 equals to 1 if there is a state switch for product i on machine r in time bucket t.

	Then the second formulation (F orm2) is formally given as follows:
	min	lc d y d +		tc 1 d y dt +	tc 2 d y dt +	sc ir z + irt (2.15)
	d∈D	d∈D,t∈T :t≥e 1 d	d∈D,t∈T :t≥e 2 d	i∈N ,r∈R,t∈T
	s.t.	r∈R	x irt =	d∈D i ,t≥b d	y dt		i ∈ N , t ∈ T	(2.16)
		b d ≤t∈T				

 1] equals to 0 if there is a setup switch on r in t, it is greater than 0

	otherwise.
	Then the third formulation (F orm3) is formally given as follows:
	min (2.15)
	s.t. (2.16) -(2.21), (2.23) -(2.25)

Table 2 .

 2 4: CLSC benchmark instances summary

	Type	Notation Size	Comment
	Application instances	IAP-A	3	
	(IAP)	IAP-B	4	
	Randomly generated	IRG-A	810	small size
	(IRG)	IRG-B	108 medium to big size

Table 2

 2

	.5, which include instance type, instance name,

Table 2 .

 2 .6: 6: CLSC pseudo-randomly generated benchmark instances

	Notation Size	T	N	R	D	Γ(%)
	IRG-A IRG-B	810 108	{4,9,13} {25} {50,75,100} {15,20,30} {500,750,1000} {75,90} {4,8,12} {1,5,10} {50,100,200} {75,90}

Table 2 .

 2

7: CLSC instance generator parameters Data IG Parameter Description T, R, N, D T , R, N , D Instance size p d size(p), weight

Table 2 .

 2 7: CLSC instance generator parameters (continued)

	Data	IG Parameter	Description
	e 2 d	pf (dd)	With possibility pf (dd), e 2 d = min{T + 1, e 1 d + 4};
			otherwise, e 2 d ∈ min{T + 1, [e 1 d + 1, e 1 d + 3]}. If e 2 d == T + 1, it implies that there is no second due date.

Table 2 .

 2 8: CLSC formulation comparison with setup cost

				F orm1			F orm2			F orm3	F orm3 F L
	Para Val	Opt Time Nodes Gap LPT	Opt Time Nodes Gap LPT	Opt Time Nodes Gap LPT LPG	Opt Time Nodes Gap LPT LPG
	T	4	165	32 85970 4.64 0.0	175	35 49088 4.16 0.0	178	36 55347 3.89 0.0 31.01	158	39 18641 5.66 0.5 16.20
		9	123	69 41168 15.81 0.2	128	61 26469 15.28 0.2	131	65 31207 14.95 0.2 51.19	115	89 17907 18.98 1.6 35.92
		13	91 112 35839 24.17 0.5	108 102 20961 23.34 0.5	107	97 25667 23.13 0.4 59.98	92 105 16089 27.11 2.7 48.74
	R	1	212	48 18748 2.70 0.0	217	55 12988 2.50 0.0	218	53 13563 2.75 0.0 65.30	226	48 21390 2.34 0.0 32.36
		5	97	68 50892 23.18 0.2	101	46 30784 22.46 0.2	105	58 37983 21.93 0.1 48.48	83	93 16101 27.17 1.1 41.29
		10	70 104 93338 18.74 0.5	93	91 52746 17.82 0.6	93	81 60674 17.29 0.5 28.40	56 136 15145 22.25 3.7 27.21
	N	4	231	47 58790 1.40 0.1	258	47 25497 0.51 0.0	258	44 22985 0.59 0.0 35.07	212	59 9025 2.98 0.6 23.91
		8	87	95 64440 17.23 0.2	94	87 46402 16.48 0.2	94	86 55293 16.25 0.2 49.80	89 104 21291 19.95 1.6 35.04
		12	61	83 39746 25.99 0.4	59	81 24619 25.78 0.5	64	93 33943 25.12 0.4 57.31	64	68 22321 28.83 2.6 41.92
	D	50	151	66 63995 11.75 0.2	156	53 35211 11.13 0.2	159	58 43104 10.64 0.1 46.81	149	56 23920 13.58 0.4 36.91
		100	126	56 47988 15.78 0.2	135	60 32839 15.06 0.3	137	57 37585 14.76 0.2 48.18	129	89 18361 17.67 1.0 33.79
		200	102	68 50994 17.09 0.3	120	72 28469 16.60 0.4	120	70 31532 16.56 0.3 47.19	87	73 10355 20.51 3.4 30.17
	Γ	75	211	60 41299 14.53 0.2	226	50 23728 14.01 0.2	230	52 29214 13.60 0.1 49.07	206	67 13839 16.77 1.2 33.88
		90	168	68 67353 15.22 0.3	185	74 40617 14.51 0.3	186	72 45600 14.37 0.3 45.72	159	77 21252 17.74 2.0 33.36
	T/A		379	63 54326 14.87 0.2	411	61 32173 14.24 0.3	416	61 37407 13.99 0.2 47.39	365	72 17546 17.25 1.6 33.62
	Inst		Obj Time Nodes Gap LPT	Obj Time Nodes Gap LPT	Obj Time Nodes Gap LPT LPG	Obj Time Nodes Gap LPT LPG
	R1		654,807	12 1827 0.00 0.1	654,807 2.6 434 0.00 0.0	654,807 3.1 404 0.00 0.0 14.25	654,807 34.7 469 0.00 0.5 14.03
	R2		2,239,793 600	2 97.36 107.9	29,619,416 600	0 99.80 395.8	1,086,637 600 452 94.56 78.2 100	1E9 600	0 100 600	-
	R3									

Table 2 .

 2 9: CLSC formulation comparison without setup cost

				F orm1		F orm2		F orm3		F orm3 F L
	Para Val	Opt Time Nodes Gap LPT	Opt Time Nodes Gap LPT	Opt Time Nodes Gap LPT LPG	Opt Time Nodes Gap LPT LPG
	T	4	205 33.0 57230 0.34 0.0	211 45.0 33768 0.32 0.0	214 39.4 36530 0.29 0.0 16.84	186 60.9 16830 0.58 0.2 6.9
		9	127 75.6 40526 5.10 0.1	123 40.1 26566 5.20 0.3	127 58.4 29364 5.11 0.2 25.58	104 47.2 16316 7.06 1.0 15.3
		13	128 35.8 31595 7.08 0.3	134 49.5 22915 6.92 0.6	135 42.4 25327 6.79 0.4 24.35	134 45.2 14521 9.73 1.5 17.2
	R	1	214 37.2 18963 3.57 0.0	213 41.4 16839 3.81 0.0	215 37.8 17276 3.82 0.0 53.99	222 31.8 21773 3.43 0.0 25.3
		5	137 56.0 54654 5.44 0.1	145 59.5 29227 5.17 0.2	149 61.8 31683 5.05 0.2 8.78	119 84.4 13909 7.15 0.7 8.4
		10	109 48.7 55735 3.50 0.4	110 32.8 37183 3.46 0.7	112 37.7 42261 3.32 0.5 3.99	83 62.6 11985 6.79 2.0 5.7
	N	4	219 24.8 33367 0.46 0.1	224 20.7 23845 0.35 0.0	227 29.3 23535 0.37 0.1 14.38	194 32.2 8974 1.33 0.4 8.1
		8	143 54.8 48945 4.49 0.2	147 54.0 30907 4.27 0.2	148 48.0 31840 4.24 0.2 23.91	130 68.4 17905 5.77 0.8 13.9
		12	98 78.3 47039 7.56 0.3	97 87.3 28498 7.83 0.7	101 77.5 35845 7.58 0.4 28.47	100 71.6 20788 10.28 1.6 17.4
	D	50	153 44.1 59071 3.28 0.1	159 48.8 35406 3.11 0.3	161 44.4 40181 2.96 0.2 20.44	145 47.4 22467 3.76 0.3 14.8
		100	156 49.0 37713 3.97 0.2	155 45.8 26664 4.00 0.3	160 54.8 30210 3.92 0.2 22.93	143 47.4 15504 5.28 0.8 12.6
		200	151 43.4 32567 5.26 0.2	154 40.3 21179 5.34 0.4	155 36.5 20829 5.31 0.3 23.39	136 63.5 9696 8.32 1.7 12.0
	Γ	0.75	299 36.3 34915 2.41 0.1	298 34.6 22200 2.43 0.2	299 29.0 25081 2.24 0.1 19.41	286 45.6 11490 2.95 0.5 9.3
		0.90	161 62.7 51319 5.93 0.3	170 63.2 33299 5.87 0.5	177 72.9 35733 5.89 0.4 25.10	138 66.9 20288 8.63 1.4 16.9
	T/A		460 45.2 43117 4.17 0.2	468 44.7 27750 4.15 0.3	476 45.0 30407 4.06 0.2 22.25	424 52.8 15889 5.79 0.9 13.1
	Inst		Obj Time Nodes Gap LPT	Time Nodes Gap LPT	Time Nodes Gap LPT LPG	Time Nodes Gap LPT LPG
	R1		442,906	0.5	51 0.00 0.1	0.3	14 0.00 0.0	0.3	8 0.00 0.1 0.83	19.5	400 0.00 0.4 0.83
	R2		59,153	5.8	0 0.00 1.1	11.7	0 0.00 12.7	4.8	0 0.00 1.2 0.00	241.1	0 0.00 91.4 0.00
	R3		10,672	0.1	0 0.00 0.1	0.1	0 0.00 0.0	0.1	0 0.00 0.0 0.00	2.2	0 0.00 1.3 0.00

Table 2 .

 2 10: CLSC feature -complexity analysisWe have performed formulation comparison on benchmark instances IAP-A and IRG-A.It is shown that formulation F orm3 gives the best overall performance. Therefore, in this section, we present test on benchmark IAP-B and IRG-B without considering setup cost with F orm3 to evaluate the problem difficulty and analyze the computational behavior on standard MIP solver. Computational results of CPLEX for benchmark IAP-B with 1 hour time limit is given in Table2.11, while the result for benchmark IRG-B is given in Table2.12 -2.14.For each instance, its characteristic are given in first six columns including the num-

	Variants	Time	Obj	LB Gap(%) # Nodes
	LP	104	2,935,797	-	-	-
	MIP	T.L.	22,564,237	2,975,645	86.8	0
	Parallel machines	T.L.	3,082,657	3,078,520	0.1	151056
	Lost sale	T.L.	-	-	-	-
	Tardiness	T.L. 359,044,010 336,491,186	6.3	30
	Due dates	T.L.	37,900,675	0	100.0	0
	First due date	T.L. 113,773,295	634,788	99.4	0
	Release date	T.L.	20,720,657	2,774,592	86.6	0

*Time unit in seconds, T.L. = 7200s 2.5.4 Computational Results on Benchmark IAP-B and IRG-B ber of time buckets T , the number of machines R, the number of products N , the number of demands D and the capacity requirement ratio Γ defined as (2.38). We show the optimal objective value and the computational time of the LP relaxation in Column LP/Obj and LP/Time respectively. The computational results of CPLEX of the original MIP model are given in the MIP section. The returned objective function values, computational times, best known lower bounds and number of explored nodes are given in Column MIP/Obj, MIP/Time, MIP/LB and MIP/#Node. The Column BestLB gives best known lower bounds, which is the maximum between the optimal objective function value of the LP relaxation and the best known lower bound returned from the MIP solving max{Lbd, LP/Obj}. The relative gap based on this best known lower bound, which equals to M IP/Obj-BestLB max{1,M IP/Obj} is given in the Column MIP/Gap.

Table 2.11: Computational results: CPLEX on IAP-B

Table 2 .

 2 12: Computational results: CPLEX on IRG-B (1)

	Characteristics		LP	MIP	
	Inst T R N	D Γ	Type	Obj Time	Obj Time Gap	Lbd #Node BestLB

Table 2 .

 2 14: Computational results: CPLEX on IRG-B (3)

	Characteristics		LP	MIP	
	Inst T R N	D Γ	Type	Obj Time	Obj Time Gap	Lbd #Node BestLB

 15) s.t. (2.16) -(2.21), (2.23) -(2.25), (2.26) -(2.28)

Table 3 .

 3 1: PD algorithm: sorting criteria

	Criteria	Value	Direction
	CI	demand capacity dc(i) (defined in (3.1))	Increase
	CD	demand capacity dc(i) (defined in (3.1)) Decrease
	RI	Release date rd(i) (defined in (3.2))	Increase
	RD	Release date rd(i) (defined in (3.2)) Decrease

Table 3 .

 3 2.

Table 3 . 2

 32

: PD algorithm: sub-problem Sub-problem StartupCost IdleCost FullyUsage SI × F ×

 Algorithm 3: The PD-SI algorithm Input: Chosen sorting criteria SortCriteria Result: x irt , z 0 irt , z + irt , y dt and y d 1 for each product i, each machine r, time bucket t do 2 γ irt ← 0, θ irt ← 0,; Sort products, π ← ComputeP roductOrder(SortCriteria) ; jrt , y dt , y d , γ rt , θ rt) ← Solve sub-problem P P D Algorithm 4: The PD-F algorithm Input: Chosen sorting criteria SortCriteria Result: x irt , z 0 irt , z + irt , y dt and y d 1 for each product i, each machine r, time bucket t do 2 γ irt ← 0, θ irt ← 0,; Sort products, π ← ComputeP roductOrder(SortCriteria) ; jrt , y dt , y d , γ rt , θ rt) ← Solve sub-problem P P D

	3 4 3 4	recap(r, t) ← cap rt ; S(r, t) = ∅; recap(r, t) ← cap rt ; S(r, t) = ∅;
	5 end 5 end
	6 7 for k = 1 to N do 6 7 for k = 1 to n do
	8 8	j ← π(k); j ← π(k);
	10 11 12	if S(r, t) ∩ S(r, t + 1) = ∅ then avlcap(r, t) ← recap(r, t); end
	13	else
	14 15	avlcap(r, t) ← 0; end
	16	end
	17 (x 23 end
	24 end
	25 (z 0 irt , z +

9

for each machine r, time bucket t do SI (j) with capacity avlcap(r, t); 18 for each machine r, time bucket t, demand d ∈ D j do 19 x jrt ← x jrt , y dt ← y dt , y d ← y d ; 20 recap(r, t) ← recap(r, t)pt j x jrt + st jr θ rt ; 21 γ irt ← γ rt , θ irt ← θ rt ,; 22 S(r, t) ← S(r, t) ∪ {j}; irt) ← Solve P (γ irt , θ irt); 9 for each machine r, time bucket t do 10 avlcap(r, t) ← recap(r, t); 11 end 12 (x F (j) with capacity avlcap(r, t); 13 for each machine r, time bucket t, demand d ∈ D j do 14 x jrt ← x jrt , y dt ← y dt , y d ← y d ; 15 recap(r, t) ← recap(r, t)pt j x jrt + st jr θ rt ; 16 γ irt ← γ rt , θ irt ← θ rt ,; 17 S(r, t) ← S(r, t) ∪ {j}; 18 end 19 end 20 (z 0 irt , z + irt) ← Solve P (γ irt , θ irt);

 Compute vio(r, t) as (3.15) based on sol LP R ;

	5	end	
	6	if max t vio(r, t) > 0 then	/* If exists conflict */
	8		

1 F ← ∅; 2 for each r ∈ R do /* Select one variable for each r */ 3 for each t ∈ T do 4 7 Let t * such that vio(r, t *) = max t∈T vio(r, t) ; /* t with max conflict */

Table 2 .

 2 11: Computational results: CPLEX on IAP-B

	Characteristics	LP		MIP	
	Inst T R N	D Γ	Obj Time	Obj Time Gap	LB #Node	BestLB
	R5 25 30 46 668 91	2,935,797	79	35,511,200 3600 91.6 2,973,702	0 2,973,702
	R6 25 30 36 425 74	1,277,107	18	1,456,011 3600 7.7 1,344,501	97 1,344,501
	R7 20 31 80 1428 40	2,217,260 118	2,692,957 3601 16.7 2,244,422	29 2,244,422
	R8 20 31 73 1404 41	2,081,921	83	2,597,838 3600 18.7 2,111,181	0 2,111,181
	AVG		2,128,021	74	10,564,501 3600 33.7 2,168,451	32 2,168,451

Table 3 .

 3 3: Comparison results: F&R algorithm variations

		FR-TO-(2,1)		FR-TO-(3,1)		FR-TO-(3,2)	
	Instance	Obj Time Gap	Obj Time Gap	Obj Time Gap
	R5	-	-	-	-	-	-	-	-	-
	R6	1,413,088 5387 4.9	1,391,377 5854 3.4	1,422,186 3181 5.5
	R7	4,322,763 5553 48.1	3,458,993 5195 35.1	4,274,910 3080 47.5
	R8	-	-	-	3,292,260 5465 35.9	3,935,323 3036 46.4
	AVG	2,867,925 5470 26.5	2,714,210 5505 24.8	3,210,806 3099 33.1
		FR-MO-(2,1)		FR-MO-(3,1)		FR-MO-(3,2)	
	Instance	Obj Time Gap	Obj Time Gap	Obj Time Gap
	R5	-	-	-	-	-	-	-	-	-
	R6	1,442,343 4111 6.8	1,430,022 6292 6.0	1,423,001 2260 5.5
	R7	2,448,047 14661 8.3	2,432,500 16572 7.7	2,468,958 8371 9.1
	R8	2,309,079 10990 8.6	2,266,813 12583 6.9	2,363,615 6718 10.7
	AVG	2,066,490 9921 7.9	2,043,112 11816 6.9	2,085,191 5783 8.4

Table 3 . 4

 34

		PD-SI-DC	PD-F-DC
	Instance	Obj Time Gap	Obj Time Gap
	R5	5,740,173	70 48.2	5,738,345	74 48.2
	R6	2,574,221	8 47.8	2,450,901	7 45.1
	R7	3,713,166 154 39.6	3,800,412 315 40.9
	R8	4,211,277 180 49.9	4,159,586 285 49.2
	AVG	4,059,709 103 46.3	4,037,311 170 45.9

: Comparison results of PD algorithm variations: sub-problems

Table 3 .

 3

		5: Comparison results of PD algorithm variations: sorting criteria	
		PD-SI-DC	PD-SI-IC	PD-SI-DR	PD-SI-IR
	Instance	Obj Time Gap	Obj Time Gap	Obj Time Gap	Obj Time Gap
	R5	5,740,173	70 48.2	56,347,969 117 94.7	66,499,812	87 95.5	31,158,680 146 90.5
	R6	2,574,221	8 47.8	3,576,452	19 62.4	3,573,873	16 62.4	2,539,376	72 47.1
	R7	3,713,166 154 39.6	4,083,438 344 45.0	3,986,194 365 43.7	3,693,703 325 39.2
	R8	4,211,277 180 49.9	4,159,176 271 49.2	3,982,998 271 47.0	3,886,077 368 45.7
	AVG	4,059,709 103 46.3	17,041,759 188 62.9	19,510,719 185 62.1	10,319,459 228 55.6

Table 3 .

 3 6: Computational results: FSH algorithm on IAP-B

	Inst	Obj Time Gap #Iter #FixedTo1(%) MIPTime
	R5 14,160,409 216 79.0	19	1.3	3
	R6	5,761,670	64 76.7	17	1.4	2
	R7	8,835,804 376 74.6	21	1.5	5
	R8	6,549,786 316 67.8	24	1.6	3
	AVG 8,826,917 243 74.5	20	1.5	

Table 3 .

 3 7: Computational results: FSH algorithm on IRG-B (1)

	Inst	Obj Time Gap #Iter #FixedTo1 MIPTime
	B1	569496 261 100.0	28	1.5
	B2	857700 252 100.0	28	1.4
	B3	1332316 238 100.0	31	1.5
	B4	3154699 310 95.4	31	0.9
	B5	1627483 294 100.0	29	1.3
	B6	2687665 315 100.0	27	1.2
	B7	3006613 947 100.0	30	1.0
	B8	2675949 893 100.0	32	1.1
	B9	1925285 1040 100.0	31	0.9
	B10	3301737 1081 100.0	30	0.8
	B11	4475709 1242 100.0	27	0.8
	B12	3183505 1111 100.0	27	0.8
	B13	1421072 3480 100.0	29	0.7
	B14	1477498 3505 100.0	31	0.8
	B15	1004987 3530 100.0	29	0.7
	B16 120095966 1216 100.0	0	0.0
	B17	7721458 3932 99.8	29	0.5
	B18	4892235 3842 99.8	30	0.5
	AVG	1527 100	28	0.9
	B19	1885162 328 100.0	30	1.7
	B20	2435489 379 100.0	28	1.5
	B21	3068139 389 100.0	28	1.5
	B22	5863879 374 98.9	28	1.3
	B23	6120530 372 100.0	33	1.2
	B24	4924154 410 100.0	28	1.3
	B25	5299304 1531 100.0	28	1.0
	B26	4432748 1492 100.0	32	1.0
	B27	4074232 1349 100.0	31	1.0
	B28 10067139 1371 99.8	29	0.8
	B29 11750265 1367 99.0	30	0.8
	B30 10401358 1383 99.6	29	0.8
	B31	4458564 5328 100.0	31	0.7
	B32	4216738 4989 100.0	30	0.8
	B33 119181317 1216 100.0	0	0.0
	B34 13215539 4146 99.8	32	0.6
	B35 12392793 3701 98.4	28	0.6
	B36 114132867 1216 100.0	0	0.0
	AVG	1741 100	26	0.9

Table 3 .

 3 8: Computational results: FSH algorithm on IRG-B (2)

	Inst	Obj Time Gap #Iter #FixedTo1 MIPTime
	B37	983010 239 100.0	30	1.6
	B38	1412074 281 100.0	31	1.4
	B39	1255719 273 100.0	30	1.4
	B40	3909024 312 100.0	32	1.2
	B41	1734686 296 100.0	27	1.2
	B42	3277156 354 99.1	29	1.1
	B43	2011864 930 100.0	30	1.0
	B44	1114294 782 100.0	31	1.1
	B45	2145942 832 100.0	30	1.0
	B46	5709567 1127 99.9	32	0.8
	B47	3407334 1101 100.0	30	0.8
	B48	6654652 1327 99.0	29	0.7
	B49	1790740 3516 100.0	31	0.7
	B50	2460050 3310 100.0	30	0.8
	B51	2398138 3833 100.0	30	0.7
	B52	4685339 4049 100.0	31	0.6
	B53	5921797 3660 98.9	30	0.5
	B54	6485383 3934 98.7	28	0.5
	AVG	1675 100	30	1.0
	B55	909994 259 100.0	30	1.4
	B56	816435 247 100.0	31	1.5
	B57	736264 243 100.0	30	1.5
	B58	2247744 331 100.0	27	1.1
	B59	2298256 310 100.0	28	1.1
	B60	2278970 322 99.1	26	1.1
	B61	1842306 934 100.0	30	1.0
	B62	2518664 1022 100.0	31	1.0
	B63	2300055 1088 100.0	29	1.0
	B64	5192475 1142 100.0	29	0.7
	B65	5255345 1204 100.0	29	0.8
	B66	4610617 1031 99.9	27	0.7
	B67	1937528 3542 100.0	29	0.7
	B68	1845334 3469 100.0	29	0.7
	B69	2948951 3554 100.0	33	0.7
	B70	4781314 4690 100.0	30	0.6
	B71 115751239 1216 100.0	0	0.0
	B72	5652817 3296 100.0	28	0.5
	AVG	1550 100	28	0.9

Table 3 .

 3 9: Computational results: FSH algorithm on IRG-B (3)

	Inst	Obj Time Gap #Iter #FixedTo1 MIPTime
	B73	1027	66 100.0	44	2.2
	B74	2166	71 100.0	42	2.3
	B75	5079 113 100.0	44	2.2
	B76	118275 276 100.0	37	1.6
	B77	1290034 341 93.2	30	1.2
	B78	626638 276 78.8	30	1.3
	B79	11036 135 100.0	45	1.5
	B80	19799 544 100.0	39	1.4
	B81	3116 446 100.0	41	1.4
	B82	495908 952 100.0	33	1.1
	B83	1431220 1028 89.8	29	0.8
	B84	110817 910 100.0	35	1.1
	B85	4838 2013 100.0	43	1.1
	B86	5088 680 100.0	42	1.1
	B87	2812 2249 100.0	47	1.1
	B88	13799 3327 100.0	37	0.8
	B89	207862 4165 100.0	49	0.8
	B90	78039 3991 100.0	38	0.7
	AVG		1199	98	39	1.3
	B91	870570 213 100.0	29	1.5
	B92	460278 233 100.0	32	1.6
	B93	776054 236 100.0	29	1.5
	B94	1624274 310 100.0	28	1.2
	B95	2211051 319 100.0	26	1.2
	B96	2455140 338 100.0	26	1.1
	B97	1625407 803 100.0	30	1.1
	B98	2150486 966 100.0	31	1.0
	B99	1720532 936 100.0	30	1.0
	B100	6485075 1142 100.0	30	0.7
	B101	9240132 1262 97.7	27	0.7
	B102	3928379 1127 100.0	28	0.8
	B103	1436398 3410 100.0	31	0.8
	B104	2097677 3616 100.0	30	0.7
	B105	1882524 3606 100.0	30	0.7
	B106 123496124 1215 100.0	0	0.0
	B107	4693908 4228 100.0	30	0.6
	B108	3453669 4800 100.0	29	0.6
	AVG		1598 100	28	0.9

 .10 -3.15. The detailed results are given in Appendix Table A.6 -A.11. For CPLEX results, we present the computational time, the objective function value and the relative gap based on the best known lower bound as reference.

Table 3 .

 3 10: Computational results: heuristic algorithm on IAP-B

		CPLEX	FSH	PD	FSH+FO	PD+FO
	Inst	Obj Time Gap	Time Gap	Time Gap	Time Gap	Time Gap
	R5	35,511,200 3600 91.6	216 79.0	74 48.2	662 14.2	478 35.8
	R6	1,456,011 3600 7.7	64 76.7	7 45.1	492 5.9	181 19.0
	R7	2,692,957 3601 16.7	376 74.6	315 40.9	823 9.2	756 12.0
	R8	2,597,838 3600 18.7	316 67.8	285 49.2	762 6.9	734 17.7
	AVG 10,564,501 3600 33.7	243 74.5	170 45.9	685 9.0	537 21.1

Table 3 .

 3

	CPLEX	FSH	PD	FSH+FO	PD+FO
	Inst Time Gap	Time Gap Impro	Time Gap Impro	Time Gap Impro	Time Gap Impro
	AVG 3381 91.6	1548 99.5 44.7	248 99.6 57.8	3671 88.3 85.1	1149 90.9 77.4

11: Computational results: heuristic algorithm on IRG-B summary

Table 3 .

 3 12: Computational results: heuristic algorithm on IRG-B summary by type

		CPLEX	FSH	PD	FSH+FO	PD+FO
	Inst type	Time Gap	Time Impro	Time Impro	Time Impro	Time Impro
	DF	3600 99.9	1527 52.8	201 75.7	3818 94.8	1197 89.1

Table 3 .

 3 13: Computational results: heuristic algorithm on IRG-B[START_REF] Abad | Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale[END_REF]

		CPLEX	FSH		PD	FSH+FO	PD+FO
	Inst	Gap Time	Obj	Time Impro	Time Impro	Time Impro	Time Impro
	B1	100.0 3600	329607	261 -72.8	48 50.0	2343 95.7	87.5
	B2	100.0 3600	769798	252 -11.4	82 79.5	2435 96.1	94.5
	B3	100.0 3600	69398	238 -100.0	43 -100.0	2462 53.8	-11.5
	B4	98.5 3600	9485931	310 66.7	16 64.4	1023 86.6	81.0
	B5	100.0 3600	1084421	294 -50.1	39 38.4	2354 92.0	79.1
	B6	100.0 3600	6291857	315 57.3	110 59.3	1811 93.8	88.9
	B7	100.0 3600 88795819	947 96.6	154 98.7	3334 99.9	99.7
	B8	100.0 3600 83386167	893 96.8	204 99.8	3541 100.0	99.9
	B9	100.0 3600 85466741	1040 97.7	77 99.7	3804 99.9	99.8
	B10 100.0 3600 83980195	1081 96.1	217 97.9	3630 99.5	99.2
	B11 100.0 3600 90015737	1242 95.0	95 95.5	3528 98.5	97.7
	B12 100.0 3600 89549343	1111 96.4	120 95.9	3723 99.1	97.9
	B13 100.0 3600 115106676	3480 98.8	314 99.8	6010 99.9	99.9
	B14 100.0 3600 121228481	3505 98.8	454 99.8	6156 99.9	99.9
	B15 100.0 3600 12857474	3530 92.2	406 97.8	5935 99.7	98.9
	B16 100.0 3600 123816283	1216	3.0	447 96.9	3658 97.0	98.5
	B17 100.0 3600 127298893	3932 93.9	369 93.0	6699 96.7	94.8
	B18 100.0 3600 116072579	3842 95.8	426 96.1	6273 98.7	97.6
	AVG	99.9 3600		1527 52.8	201 75.7	3818 94.8	89.1
	B19 100.0 3600	132638	328 -100.0	81 -100.0	2738 60.7	6.7
	B20 100.0 3600 58077709	379 95.8	176 99.1	3070 99.8	99.7
	B21 100.0 3600	8404981	389 63.5	155 76.0	2883 96.7	95.5
	B22	99.5 3600 13053180	374 55.1	40 53.5	1882 80.1	77.7
	B23 100.0 3600 62081602	372 90.1	92 87.1	2210 95.4	94.6
	B24 100.0 3600 10247860	410 51.9	82 58.3	2368 89.7	85.9
	B25 100.0 3600 92162919	1531 94.3	434 95.7	4294 99.3	99.2
	B26 100.0 3600 91068198	1492 95.1	257 97.0	4256 99.4	99.2
	B27 100.0 3602 67557529	1349 94.0	331 98.7	4113 99.6	99.4
	B28	99.9 3600 43534412	1371 76.9	288 71.2	3829 85.2	84.7
	B29	99.6 3600 32120464	1367 63.4	84 59.1	3290 77.1	73.8
	B30	99.9 3600 35640301	1383 70.8	321 63.5	3510 83.1	80.8
	B31 100.0 3600 127510049	5328 96.5	729 98.7	8094 99.1	99.2
	B32 100.0 3600 120922514	4989 96.5	742 99.4	7756 99.6	99.6
	B33 100.0 3600 119911245	1216	0.6	1166 97.6	3983 96.4	99.1
	B34 100.0 3600 118721109	4146 88.9	496 86.0	6913 93.3	91.4
	B35	99.8 3600 120294447	3701 89.7	613 87.4	6468 92.6	91.6
	B36 100.0 3600 110465941	1216	-3.3	754 86.8	3982 88.7	91.1
	AVG	99.9 3600		1741 62.2	380 73.1	4202 90.9	87.2

Table 3 .

 3 14: Computational results: heuristic algorithm on IRG-B (2)

		CPLEX		FSH	PD	FSH+FO	PD+FO
	Inst	Gap Time	Obj	Time Impro	Time Impro	Time Impro	Time Impro

Table 3 .

 3 15: Computational results: heuristic algorithm on IRG-B (3)

			CPLEX	FSH		PD		FSH+FO	PD+FO
	Inst	Gap Time	Obj	Time Impro	Time Impro	Time Impro	Time Impro
	B73	0.0	37	0	66 -100.0	34 -100.0	77	0.0	0.0
	B74	0.0	84	0	71 -100.0	59 -100.0	82	0.0	0.0
	B75	0.0 277	0	113 -100.0	59 -100.0	125	0.0	0.0
	B76	100.0 3600	5148006	276 97.7	59 93.4	2414 98.6	96.4
	B77	98.8 3600	7241378	341 82.2	40 44.5	1516 96.7	81.0
	B78	97.5 3601	5381298	276 88.4	44 89.4	2043 95.7	93.7
	B79	0.0 465	0	135 -100.0	116 -100.0	200	0.0	0.0
	B80	0.0 1200	0	544 -100.0	123 -100.0	763	0.0	-100.0
	B81	0.0 1008	0	446 -100.0	284 -100.0	576	0.0	0.0
	B82	100.0 3600 87599277	952 99.4	92 95.6	3628 100.0	99.2
	B83	99.1 3600 15890973	1028 91.0	227 76.0	3171 97.5	90.9
	B84	100.0 3600 88968761	910 99.9	148 97.4	3403 100.0	99.7
	B85	0.0 1745	0	2013 -100.0	417 -100.0	2103	0.0	0.0
	B86	0.0 1809	0	680 -100.0	454 -100.0	769	0.0	-100.0
	B87	0.0 2127	0	2249 -100.0	520 -100.0	2359	0.0	0.0
	B88	100.0 3600 116164709	3327 100.0	441 99.6	5361 100.0	99.9
	B89	100.0 3600 120352296	4165 99.8	413 99.5	6813 99.9	99.7
	B90	100.0 3600 121208248	3991 99.9	347 99.5	6757 100.0	99.7
	AVG	49.7 2286		1199	-2.3	215	-5.8	2342 49.4	36.7
	B91	100.0 3600	7154	213 -100.0	105 -100.0	1181 100.0	94.3
	B92	100.0 3600	1	233 -100.0	180 -100.0	1415 -100.0	100.0
	B93	100.0 3600	21171	236 -100.0	58 -100.0	1812 99.2	100.0
	B94	100.0 3600 54451635	310 97.0	84 97.3	2695 99.8	99.7
	B95	100.0 3600	7334313	319 69.9	89 60.5	2855 97.9	92.1
	B96	100.0 3600 13755823	338 82.2	48 73.8	2185 96.0	92.3
	B97	100.0 3600	83679	803 -100.0	286 91.5	1929 99.0	100.0
	B98	100.0 3600 93744125	966 97.7	265 100.0	3730 100.0	100.0
	B99	100.0 3600 91176566	936 98.1	201 100.0	3596 100.0	100.0
	B100 100.0 3600 86302661	1142 92.5	199 91.0	3818 95.8	95.1
	B101	99.8 3600 92421684	1262 90.0	234 89.7	2725 93.1	92.6
	B102 100.0 3600 89646764	1127 95.6	182 95.6	3814 99.1	98.1
	B103 100.0 3600 121114882	3410 98.8	639 100.0	5985 100.0	100.0
	B104 100.0 3600 115605436	3616 98.2	472 100.0	6383 100.0	100.0
	B105 100.0 3600 118987924	3606 98.4	557 100.0	6373 100.0	100.0
	B106 100.0 3600 100250337	1215 -23.2	454 93.9	3982 92.2	97.2
	B107 100.0 3600 114328741	4228 95.9	325 96.6	6994 98.5	98.9
	B108 100.0 3600 112508993	4800 96.9	437 97.4	7566 99.2	99.1
	AVG 100.0 3600		1598 43.8	251 58.2	3835 87.2	80.3

Table 4 .

 4 1: Detailed and aggregated model in planning phase

	Parameter AggregatedModel	DetailedModel
	N D	Products Demands Demands and products Product families

 r∈R,t∈T :t≥e1

				tc 1 d x drt +	tc 2 d x drt
				d	d∈D,r∈R,t∈T :t≥e 2 d
				tardiness
					(4.1)
	Second priority :	sc ir z + irt	+	pc d x drt
	i∈N ,r∈R,t∈T		d∈D,r∈R,t∈T	
	setup		production
	s.t.			

r∈R,t∈T

Algorithm 8 :

 8 Planning Phase Decomposition Approach

1 (x irt , z0 irt , z+ irt) ← Solve aggregated model; 2 Fix setup variables z 0 irt ← z0 irt , z + irt ← z+ irt in detailed model; 3 Solve detailed model with only first priority objective.

Table 4 .

 4 2: Application planning solution evaluation

	Algorithm	Obj	Lost Tardiness Time Gap (%)
	DA.Aggregated 3,443,159	0 3,443,159 1208	14.74
	DA.Detail	3,449,146	0 3,449,146	0	21.10
	DA	3,449,146	0 3,449,146 1208	21.10
	Detailed MIP	1.12E+09 1.12E+09	0 T.L.	99.76
	Detailed LP	2,721,535	0 2,721,535 3295	-
	*Time unit in seconds, T.L. = 7200s		

Table 5 .

 5

		3: Computational results: CLSP-FS1 formulation comparison
				MIP			LP
	Form.	Obj Time E.Gap(%) R.Gap(%)	LB	Cols	Bin Rows Nodes	Obj Time
	AG-PO 42,235 569	2.8	1.7 41,038	6,710	6,510 1,312 133,075	9,038	0.1
	AG-SO 42,817 600	12.2	3.1 37,582 102,500 102,300 310 15,622	11,486	2.0
	FL-PO 42,118 524	1.5	1.4 41,498	7,060	6,510 1,762 132,359	37,138	0.3
	FL-SO 42,252 600	4.1	1.7 40,496 102,850 102,300 760 27,175	39,991	8.3

Table 5 .

 5 4: Computational results: column generation heuristic based on AG-SO

	Inst	Obj Time R.Gap (%) Generated Cols Pricing time Master time MIP time
	A1	47742	23	12.4	600	22	0.1	1
	A2	44705	22	9.9	603	20	0.1	2
	A3	50550	22	12.2	591	20	0.2	1
	A4	43576	19	14.9	568	18	0.1	1
	A5	49064	21	13.6	575	19	0.1	1
	A6	48396	21	14.9	575	19	0.1	1
	A7	47776	22	13.5	576	20	0.1	1
	A8	48615	22	13.3	572	20	0.1	1
	A9	49797	21	12.5	580	19	0.1	1
	A10 43286	20	11.5	584	18	0.1	1
	AVG 47351	21	12.9	582	20	0.1	1

Table 5

 5

		.5: Computational results: CLSP-FS1-LT formulation comparison
					MIP					LP
	Form.	Obj Time E.Gap(%) R.Gap(%)	LB	Cols	Bin Rows Nodes	Obj Time
	AG-LT	10,623	0.3	0.00	0.00 10,623	420	220 621	278	1,243	0.0
	AG-PO	10,623 56.4	0.01	0.00 10,623	6,710	6,510 1,312 29,993	882	0.1
	AG-SO	10,630 253.6	2.68	0.05 10,291 102,500 102,300 310 17,703	1,245	2.0
	AG-SCM 10,623	3.9	0.00	0.00 10,623	2,510	1,210 1,731 3,914	0	0.0
	FL-LT	10,623	0.2	0.00	0.00 10,623	770	220 1,071	-	6,586	0.0
	FL-PO	10,623 145.6	0.30	0.00 10,588	7,060	6,510 1,762 53,507	6,419	0.3
	FL-SO	10,623 29.3	0.00	0.00 10,623 102,850 102,300 760	775	6,586	2.2
	FL-SCM 10,623	3.0	0.00	0.00 10,623	2,860	1,210 2,181 2,219	0	0.0

Table A .

 A 2: CLSP-SC real-world instance R5 analysis: demand feature Table A.5: CLSP-SC real-world instance R5 analysis: capacity feature Table A.6: Computational results: FSH and FO algorithm on IRG-B (1) Table A.7: Computational results: FSH and FO algorithm on IRG-B (2) Table A.8: Computational results: FSH and FO algorithm on IRG-B (3) Table A.9: Computational results: PD and FO algorithm on IRG-B (1) Table A.14: Computational results of CLSP-FS1 formulation: FL-SO Table A.16: Computational results of CLSP-FS1-LT formulation: AG-LT Table A.18: Computational results of CLSP-FS1-LT formulation: AG-SO Table A.20: Computational results of CLSP-FS1-LT formulation: AG-LT planification de la production est présentée et sa performance est analysée. Dans la deuxième partie de ce manuscrit, nous étudions une version restreinte du problème de lot-sizing à capacité finie avec setups dépendants de la séquence, où les séquences de setup pour chaque période doivent suivre l'ordre d'une séquence donnée. Par rapport au problème de lot-sizing à capacité finie avec setups dépendantes de la séquence, le nouveau modèle réduit le nombre de séquences de setup candidates de O(n!) à O(n2 n). Ce problème s'avère être NP-difficile. Un cas particulier avec seulement deux valeurs de setup possibles est étudié : nous prouvons que, dans ce cas également, le problème reste NP-difficile. De plus, des formulations MIP orientées produits et séquentielles sont développées. Une heuristique de génération de colonnes est également proposée à partir des formulations séquentielles. Enfin, nous effectuons des tests de calcul pour évaluer leurs performances respectives.

	A.2 CLSP-FS1 Computational Results
	Machine	TimeBucket ReleaseDate FirstDueDate SecondDueDate avgCap minCap maxCap avgSetupCap minSetupCap maxSetupCap FSH FSH+FO FSH FSH+FO FSH FSH+FO PD PD+FO MIP LP MIP LP MIP LP MIP LP
	1 2,329,699 1,428,300 2,768,970 38 Obj Time Gap #Iter #FixedTo1 MIPTime 24 1,060,070 Obj Time Gap #Iter #FixedTo1 MIPTime Obj Time Gap #Iter #FixedTo1 MIPTime Inst Obj Time Gap Obj Time 880,638 Obj Time Gap 1,539,450 Obj Time Gap Obj Time Gap Gap Table A.12: Computational results of CLSP-FS1 formulation: AG-SO Inst Inst Inst Inst. r1 Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2,089,478 1,273,049 2,225,250 24 14 32 33 78 87 98 34 41 38 19 31 67 29 0 1 0 2 0 2,217,635 1,366,200 2,333,925 3,487,490 2,181,780 3,643,200 3,574,976 2,252,160 3,848,130 569496 261 100.0 28 857700 252 100.0 28 1332316 238 100.0 31 983010 239 100.0 30 1412074 281 100.0 31 1255719 273 100.0 30 1027 66 100.0 44 2166 71 100.0 42 5079 113 100.0 44 B1 164824 48 100.0 B2 157580 82 100.0 B3 145923 43 100.0 MIP Obj Time E.Gap(%) R.Gap(%) B37 B1 B2 B3 B38 B39 B73 B74 B75 LB 42,960 600 3.41 1.30 41,493 102,850 102,300 760 29,400 12 5 18 15 46 45 47 36 44 50 87 15 54 37 18 37 48 25 0 996,465 827,800 932,861 774,962 1,441,695 1,197,668 1,441,695 1,197,668 1.5 2 14220 2343 100.0 1,447,083 1,354,716 2,093,652 1.4 2 30347 2435 100.0 1.5 2 32043 2462 100.0 1.6 3 14942 100.0 1.4 2 56629 100.0 1.4 2 72866 100.0 2.2 4 0 0.0 2.3 3 0 0.0 2.2 4 0 0.0 41083 100.0 42608 100.0 77369 100.0 LP Cols Bin Rows Nodes 41,162 7.5 40,504 600 3.42 0.52 39,118 102,850 102,300 760 34,560 38,542 4.8 A1-LT r2 r3 r4 r5 Inst. A1 A2 8,987 0.2 0.00 0.00 8,987 420 220 621 216 1,217 0.0 A2-LT 8,969 0.3 0.00 0.00 8,969 420 220 621 265 1,227 0.0 A1-LT 8,987 80.6 0.00 0.00 8,987 102,500 102,300 310 6,675 1,217 2.1 A2-LT 8,969 274.3 0.01 0.00 8,968 102,500 102,300 310 28,498 1,227 2.2 A1-LT 8,987 0.2 0.00 0.00 8,987 770 220 1,071 0 6,081 0.0 A2-LT 8,969 0.2 0.00 0.00 8,969 770 220 1,071 0 6,036 0.0 Chapitre 1 Chapitre 2 Obj Time A3 45,904 600 5.37 2.74 43,441 102,850 102,300 760 21,408 43,044 9.9 A3-LT 14,204 0.3 0.00 0.00 14,204 420 220 621 374 1,286 0.0 A3-LT 14,273 600.1 3.79 0.48 13,733 102,500 102,300 310 35,556 1,287 2.2 A3-LT 14,204 0.2 0.00 0.00 14,204 770 220 1,071 0 7,719 0.0 2,093,652 r6 3,008,788 1,821,600 3,449,655 1,314,486 1,091,991 B4 3154699 310 95.4 31 0.9 4 1268281 1023 88.6 B40 3909024 312 100.0 32 1.2 2 1212755 100.0 B76 118275 276 100.0 37 1.6 2 69647 100.0 B4 3378237 16 95.7 1802414 92.0 A1 43,411 600 9.68 2.32 39,210 102,500 102,300 310 14,500 11,262 2.1 A4 37,069 600 0.80 0.01 36,771 102,850 102,300 760 36,018 35,532 6.0 A4-LT 7,871 0.2 0.00 0.00 7,871 420 220 621 89 1,217 0.0 A4-LT 7,871 31.4 0.00 0.00 7,871 102,500 102,300 310 2,531 1,218 1.9 A4-LT 7,871 0.1 0.00 0.00 7,871 770 220 1,071 0 5,892 0.0 1,908,918 r7 3,215,400 1,987,200 3,415,500 1,272,084 1,056,766 1,847,340 r8 3,334,425 2,111,400 3,622,500 1,349,179 1,120,812 1,959,300 r9 2,320,183 1,424,160 2,539,200 1,017,667 845,413 B5 1627483 294 100.0 29 1.3 2 86697 2354 100.0 B6 2687665 315 100.0 27 1.2 3 389124 1811 100.0 B7 3006613 947 100.0 30 1.0 6 121681 3334 100.0 B41 1734686 296 100.0 27 1.2 3 143503 100.0 B42 3277156 354 99.1 29 1.1 2 1591917 98.1 B43 2011864 930 100.0 30 1.0 7 50310 100.0 B77 1290034 341 93.2 30 1.2 3 238513 63.5 B78 626638 276 78.8 30 1.3 2 230945 42.4 B79 11036 135 100.0 45 1.5 9 0 0.0 B5 668287 39 100.0 226697 100.0 B6 2563782 110 100.0 700792 100.0 B7 1113790 154 100.0 265497 100.0 A2 41,612 600 14.03 3.17 35,772 102,500 102,300 310 14,298 11,494 2.1 A3 46,398 600 11.59 3.78 41,021 102,500 102,300 310 17,652 11,977 2.7 A4 38,081 600 12.13 2.67 33,461 102,500 102,300 310 6,357 11,186 1.7 A5 43,231 600 3.97 1.66 41,514 102,850 102,300 760 22,567 41,202 9.5 A6 43,363 600 5.04 1.35 41,177 102,850 102,300 760 21,394 40,738 10.3 A7 42,152 600 4.56 1.27 40,231 102,850 102,300 760 31,603 39,711 9.2 A5-LT 9,179 0.2 0.00 0.00 9,179 420 220 621 325 1,288 0.0 A6-LT 12,833 0.4 0.00 0.00 12,833 420 220 621 551 1,241 0.0 A7-LT 9,088 0.2 0.00 0.00 9,088 420 220 621 392 1,271 0.0 A5-LT 9,179 106.4 0.00 0.00 9,179 102,500 102,300 310 4,411 1,292 2.2 A6-LT 12,833 600.1 13.11 0.00 11,151 102,500 102,300 310 36,286 1,242 1.4 A7-LT 9,088 139.3 0.01 0.00 9,087 102,500 102,300 310 16,909 1,271 1.8 A5-LT 9,179 0.1 0.00 0.00 9,179 770 220 1,071 0 6,289 0.0 A6-LT 12,833 0.3 0.00 0.00 12,833 770 220 1,071 0 7,246 0.0 A7-LT 9,088 0.2 0.00 0.00 9,088 770 220 1,071 0 6,240 0.0 Introduction Problème complexe de lot-sizing : 1,477,872 r10 2,584,539 1,583,550 2,925,600 1,166,077 968,702 B8 2675949 893 100.0 32 1.1 5 8182 3541 100.0 B44 1114294 782 100.0 31 1.1 8 2302 100.0 B80 19799 544 100.0 39 1.4 11 0 0.0 B8 200636 204 100.0 101699 100.0 A5 44,182 600 12.52 3.77 38,650 102,500 102,300 310 15,095 11,817 2.6 A8 42,820 600 4.64 3.23 40,835 102,850 102,300 760 25,358 40,261 9.1 A8-LT 10,247 0.2 0.00 0.00 10,247 420 220 621 80 1,253 0.0 A8-LT 10,247 62.1 0.00 0.00 10,247 102,500 102,300 310 6,495 1,257 1.6 A8-LT 10,247 0.1 0.00 0.00 10,247 770 220 1,071 0 6,363 0.0 1,693,395 r11 2,896,103 1,676,700 3,187,800 1,229,680 1,021,540 1,785,761 r12 4,079,481 2,527,469 4,340,100 1,616,446 1,342,840 r13 2,916,000 1,242,000 3,105,000 1,272,084 1,056,766 1,847,340 r14 1,912,162 1,117,799 2,421,900 954,063 792,575 1,385,505 r15 3,112,130 1,970,640 3,381,000 1,259,235 1,046,092 r16 2,426,845 1,523,520 2,784,840 1,060,070 880,638 1,539,450 r17 4,031,382 2,527,469 4,257,990 1,590,104 1,320,957 r18 2,188,478 1,366,200 2,539,200 1,017,667 845,413 r19 2,137,045 1,366,200 2,428,110 932,861 774,962 1,354,716 r20 2,516,028 1,475,910 2,815,200 1,166,077 968,702 1,693,395 B17 7721458 3932 99.8 29 0.5 25 4137600 6699 99.7 B18 4892235 3842 99.8 30 0.5 26 1463073 6273 99.2 B53 5921797 3660 98.9 30 0.5 24 3055235 97.9 B54 6485383 3934 98.7 28 0.5 24 4203031 98.0 B89 207862 4165 100.0 49 0.8 20 66902 100.0 B90 78039 3991 100.0 38 0.7 25 17031 100.0 B17 8876278 369 99.9 6655287 B18 4501086 426 99.7 2831314 99.6 Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time Inst. Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes Obj Time Table A.13: Computational results of CLSP-FS1 formulation: AG-PO 99.8 MIP LP MIP LP MIP LP MIP LP 1,477,872 B16 120095966 1216 100.0 0 0.0 600 3726046 3658 100.0 B52 4685339 4049 100.0 31 0.6 26 1399951 100.0 B88 13799 3327 100.0 37 0.8 21 0 0.0 B16 3820282 447 100.0 1863076 100.0 2,309,175 B14 1477498 3505 100.0 31 0.8 23 78058 6156 100.0 B15 1004987 3530 100.0 29 0.7 22 38147 5935 100.0 B50 2460050 3310 100.0 30 0.8 20 54707 100.0 B51 2398138 3833 100.0 30 0.7 21 154890 100.0 B86 5088 680 100.0 42 1.1 22 0 0.0 B87 2812 2249 100.0 47 1.1 25 0 0.0 B14 258130 454 100.0 117655 100.0 B15 284868 406 100.0 142262 100.0 AVG 42,817 600 12.25 3.06 37,582 102,500 102,300 310 15,622 11,486 Table A.15: Computational results of CLSP-FS1 formulation: FL-PO Table A.17: Computational results of CLSP-FS1-LT formulation: AG-PO Table A.19: Computational results of CLSP-FS1-LT formulation: AG-SCM Table A.21: Computational results of CLSP-FS1-LT formulation: AG-PO 2.0 1,828,680 B11 4475709 1242 100.0 27 0.8 7 1393145 3528 100.0 B12 3183505 1111 100.0 27 0.8 7 774781 3723 100.0 B13 1421072 3480 100.0 29 0.7 20 62269 6010 100.0 B47 3407334 1101 100.0 30 0.8 7 1168334 100.0 B48 6654652 1327 99.0 29 0.7 6 3902549 98.3 B49 1790740 3516 100.0 31 0.7 22 28248 100.0 B83 1431220 1028 89.8 29 0.8 7 398953 63.4 B84 110817 910 100.0 35 1.1 6 3169 100.0 B85 4838 2013 100.0 43 1.1 26 0 0.0 B11 4083545 95 100.0 2049581 100.0 B12 3693503 120 100.0 1900927 100.0 B13 223826 314 100.0 115884 100.0 A8 43,495 600 13.96 4.73 37,423 102,500 102,300 310 20,133 11,567 1.6 A9 45,056 600 8.26 2.31 41,334 102,500 102,300 310 22,191 11,654 A10 39,377 600 11.79 2.85 34,736 102,500 102,300 310 16,130 10,869 1.8 trielles de Formation par la REcherche) [30]. C'est donc une collaboration entre l'Univer-2.0 AVG 42,252 600 4.11 1.75 40,496 102,850 102,300 760 27,175 39,991 8.3 AVG 10,623 0.3 0.00 0.00 10,623 420 220 621 278 1,243 0.0 AVG 10,630 253.6 2.68 0.05 10,291 102,500 102,300 310 17,703 1,245 2.0 AVG 10,623 0.2 0.00 0.00 10,623 770 220 1,071 0 6,586 0.0 Nos recherches sont réalisées dans le cadre du programme CIFRE (Conventions Indus-2,347,428 B9 1925285 1040 100.0 31 0.9 6 97418 3804 100.0 B10 3301737 1081 100.0 30 0.8 7 381594 3630 100.0 B45 2145942 832 100.0 30 1.0 6 45059 100.0 B46 5709567 1127 99.9 32 0.8 7 2508003 99.8 B81 3116 446 100.0 41 1.4 10 0 0.0 B82 495908 952 100.0 33 1.1 6 4519 100.0 B9 229043 77 100.0 142183 100.0 B10 1777419 217 100.0 651238 100.0 A6 43,659 600 15.04 2.02 37,093 102,500 102,300 310 13,273 11,697 2.0 A7 42,899 600 13.47 2.99 37,120 102,500 102,300 310 16,594 11,339 1.8 A9 44,854 600 4.15 1.87 42,991 102,850 102,300 760 24,064 42,665 9.1 A10 39,665 600 5.74 3.56 37,388 102,850 102,300 760 25,373 37,057 8.1 A9-LT 11,798 0.3 0.00 0.00 11,798 420 220 621 182 1,237 0.0 A10-LT 13,058 0.2 0.00 0.00 13,058 420 220 621 305 1,197 0.0 A9-LT 11,798 600.2 9.88 0.00 10,633 102,500 102,300 310 36,275 1,240 2.2 A10-LT 13,058 41.7 0.00 0.00 13,058 102,500 102,300 310 3,396 1,199 2.1 A9-LT 11,798 0.2 0.00 0.00 11,798 770 220 1,071 0 7,062 0.0 A10-LT 13,058 0.1 0.00 0.00 13,058 770 220 1,071 0 6,936 0.0 formulations et benchmarks
	21 3,008,788 1,821,600 3,449,655 2 9189521 1527 100 28 3186487 1675 100 30 245975 1199 98 39 AVG 2007836 201 99.7 MIP 42,658 600 AVG AVG AVG 0.60 0.60 42,403 7,060 6,510 1,762 147,216 1 1,314,486 1,091,991 0.9 43 783484 3818 99.3 1,908,918 1.0 11 1092513 99.6 1.3 11 57204 37.2 1095976 99.5 LP 38,244 0.3 A1-LT r21 A1 8,987 18.6 0.00 0.00 8,987 6,710 6,510 1,312 4,268 858 0.2 A1-LT 8,987 1.9 0.00 0.00 8,987 2,510 1,210 1,731 2,416 0 0.0 A1-LT 8,987 50.6 0.01 0.00 8,986 7,060 6,510 1,762 27,784 6,023 0.3
	22 23 6,557,759 6,557,759 6,557,759 0 0 2,426,845 1,523,520 2,784,840 1885162 328 100.0 30 2435489 379 100.0 28 909994 259 100.0 30 816435 247 100.0 31 870570 213 100.0 29 460278 233 100.0 32 B19 278413 81 100.0 B20 497369 176 100.0 Obj Time E.Gap(%) R.Gap(%) LB Cols Bin Rows Nodes 0 2 3,053,000 2,536,238 1,060,070 880,638 1.7 2 52074 2738 100.0 4,433,616 1,539,450 1.5 3 135957 3070 100.0 1.4 2 19346 100.0 1.5 2 11763 100.0 1.5 2 0 0.0 1.6 2 5755 100.0 123732 100.0 189411 100.0 40,299 366 B19 B20 B55 B56 B91 B92 Inst. r22 r23 A2 0.01 0.01 40,295 7,060 6,510 1,762 92,967 36,006 0.3 A2-LT 8,969 22.7 0.00 0.00 8,969 6,710 6,510 1,312 9,353 848 0.1 A2-LT 8,969 2.9 0.01 0.00 8,969 2,510 1,210 1,731 4,130 0 0.0 A2-LT 8,969 79.3 0.01 0.00 8,968 7,060 6,510 1,762 33,716 5,894 0.3 Obj Time A3 45,557 600 2.00 2.00 44,644 7,060 6,510 1,762 154,849 40,090 0.3 A3-LT 14,204 31.1 0.01 0.00 14,203 6,710 6,510 1,312 15,796 934 0.1 A3-LT 14,204 2.7 0.00 0.00 14,204 2,510 1,210 1,731 3,774 0 0.0 A3-LT 14,204 69.1 0.01 0.00 14,203 7,060 6,510 1,762 48,768 7,309 0.3
	24 2,804,821 1,753,290 2,998,050 0 3068139 389 100.0 28 736264 243 100.0 30 776054 236 100.0 29 B21 2019686 155 100.0 42,873 600 B21 B57 B93 2.65 1.10 41,735 6,710 6,510 1,312 136,294 0 1,116,607 927,605 1.5 3 276295 2883 100.0 1,621,554 1.5 2 5208 100.0 1.5 2 166 100.0 378180 100.0 8,742 0.1 37,069 114 0.01 0.01 37,066 7,060 6,510 1,762 27,597 32,316 0.3 A4-LT r24 A1 A4 7,871 3.4 0.00 0.00 7,871 6,710 6,510 1,312 1,821 891 0.1 A4-LT 7,871 1.1 0.00 0.00 7,871 2,510 1,210 1,731 642 0 0.0 A4-LT 7,871 4.1 0.00 0.00 7,871 7,060 6,510 1,762 2,395 5,880 0.3
	25 1,981,479 1,140,570 2,372,910 0 5863879 374 98.9 28 2247744 331 100.0 27 1624274 310 100.0 28 B22 6064520 40 98.9 40,751 600 B22 B58 B94 2.94 1.12 39,552 6,710 6,510 1,312 130,389 2 890,459 739,736 1.3 3 2597011 1882 97.4 1,293,138 1.1 3 257911 100.0 1.2 3 121190 100.0 2909949 97.7 9,069 0.1 43,231 600 1.66 1.66 42,515 7,060 6,510 1,762 169,998 38,403 0.3 A5-LT r25 A2 A5 9,179 16.9 0.00 0.00 9,179 6,710 6,510 1,312 5,150 876 0.1 A5-LT 9,179 1.7 0.00 0.00 9,179 2,510 1,210 1,731 1,104 0 0.0 A5-LT 9,179 28.5 0.01 0.00 9,179 7,060 6,510 1,762 9,282 6,227 0.3
	r26 A3 A6 A6-LT B23 B59 B95 45,514 600 1,390,278 6120530 372 100.0 870,435 1,450,725 33 2298256 310 100.0 28 2211051 319 100.0 26 B23 7991949 92 100.0 3.39 1.91 43,973 6,710 6,510 1,312 149,275 699,646 581,221 1.2 3 2862285 2210 100.0 1,016,037 1.1 3 511325 100.0 1.2 3 152603 100.0 3374718 100.0 9,456 0.1 42,782 564 0.01 0.01 42,778 7,060 6,510 1,762 153,500 37,910 0.3 12,833 373.8 0.01 0.00 12,832 6,710 6,510 1,312 214,606 868 0.1 A6-LT 12,833 15.6 0.01 0.00 12,832 2,510 1,210 1,731 15,018 0 0.0 A6-LT 12,833 555.6 0.01 0.00 12,832 7,060 6,510 1,762 219,805 6,929 0.3
	r27 A4 A7 A7-LT B24 B60 B96 37,069 286 1,878,438 1,170,585 2,051,024 4924154 410 100.0 28 2278970 322 99.1 26 2455140 338 100.0 26 B24 4275062 82 100.0 0.01 0.01 37,065 6,710 6,510 1,312 64,068 954,063 792,575 1.3 3 1059845 2368 100.0 1,385,505 1.1 3 578207 96.3 1.1 3 544955 100.0 1440811 100.0 8,609 0.1 42,232 600 1.45 1.45 41,618 7,060 6,510 1,762 155,701 36,977 0.3 9,088 27.6 0.01 0.00 9,087 6,710 6,510 1,312 13,224 901 0.2 A7-LT 9,088 2.7 0.00 0.00 9,088 2,510 1,210 1,731 2,271 0 0.0 A7-LT 9,088 55.3 0.01 0.00 9,087 7,060 6,510 1,762 21,037 6,173 0.3
	r28 A5 A8 A8-LT B25 B61 B97 43,231 600 2,392,143 1,490,399 2,860,050 5299304 1531 100.0 28 1842306 934 100.0 30 1625407 803 100.0 30 B25 3925330 434 100.0 2.45 1.66 42,170 6,710 6,510 1,312 115,580 1,102,472 915,864 1.0 9 607896 4294 100.0 1,601,028 1.0 5 69887 100.0 1.1 6 842 100.0 752207 100.0 9,315 0.1 42,820 600 3.34 3.23 41,388 7,060 6,510 1,762 106,436 37,198 0.3 10,247 3.7 0.00 0.00 10,247 6,710 6,510 1,312 3,248 905 0.1 A8-LT 10,247 1.1 0.00 0.00 10,247 2,510 1,210 1,731 464 0 0.0 A8-LT 10,247 6.7 0.01 0.00 10,246 7,060 6,510 1,762 5,855 6,292 0.3 Table A.3: CLSP-SC real-world instance R5 analysis: demand feature r29 1,529,040 950,130 2,119,680 848,056 704,511 1,231,560 B26 4432748 1492 100.0 32 1.0 7 511110 4256 100.0 B62 2518664 1022 100.0 31 1.0 7 90160 100.0 B98 2150486 966 100.0 31 1.0 4 6905 100.0 B26 2719359 257 100.0 692292 100.0 A6 43,023 600 2.36 0.57 42,008 6,710 6,510 1,312 147,601 9,301 0.1 A9 44,854 600 1.87 1.87 44,017 7,060 6,510 1,762 145,601 39,813 0.3 A9-LT 11,798 55.6 0.01 0.00 11,797 6,710 6,510 1,312 28,387 889 0.1 A9-LT 11,798 7.4 0.01 0.00 11,797 2,510 1,210 1,731 8,066 0 0.0 A9-LT 11,798 600.0 2.98 0.00 11,446 7,060 6,510 1,762 160,870 6,796 0.3
	r30 A7 A10 39,678 600 1,893,877 1,229,579 2,231,460 B27 4074232 1349 100.0 31 B63 2300055 1088 100.0 29 B99 1720532 936 100.0 30 B27 889276 331 100.0 42,274 600 2.50 1.55 41,217 6,710 6,510 1,312 138,486 848,056 704,511 1.0 7 303425 4113 100.0 1,231,560 1.0 7 91142 100.0 1.0 6 29277 100.0 386731 9,024 0.1 3.59 3.59 38,254 7,060 6,510 1,762 169,723 34,420 0.3 A10-LT 13,058 10.8 0.01 0.00 13,057 6,710 6,510 1,312 4,077 848 0.2 A10-LT 13,058 1.5 0.00 0.00 13,058 2,510 1,210 1,731 1,258 0 0.0 A10-LT 13,058 6.9 0.00 0.00 13,058 7,060 6,510 1,762 5,559 6,670 0.3 100.0 Length first -release second-first B28 10067139 1371 99.8 29 0.8 7 6458050 3829 99.6 B64 5192475 1142 100.0 29 0.7 9 2084179 100.0 B100 6485075 1142 100.0 30 0.7 7 3623037 100.0 B28 12551842 288 99.8 6653551 99.6 A8 43,030 600 3.70 3.70 41,439 6,710 6,510 1,312 125,851 9,079 0.1 AVG 42,118 524 1.45 1.44 41,498 7,060 6,510 1,762 132,359 37,138 0.3 AVG 10,623 56.4 0.01 0.00 10,623 6,710 6,510 1,312 29,993 882 0.1 AVG 10,623 3.9 0.00 0.00 10,623 2,510 1,210 1,731 3,914 0 0.0 AVG 10,623 145.6 0.30 0.00 10,588 7,060 6,510 1,762 53,507 6,419 0.3
	A9	< 0 11750265 1367 99.0 5255345 1204 100.0 9240132 1262 97.7 B29 13123882 44,982 600 B29 B65 B101 3.20	16 0.8 0.8 0.7 2.15 43,544 6,710 6,510 1,312 168,123 4 30 6 7363777 3290 98.5 29 8 2548560 100.0 27 7 6400344 96.7 84 99.1 8404438 98.7 9,253	0.1
	0 1 10401358 1383 99.6 4458564 5328 100.0 4610617 1031 99.9 1937528 3542 100.0 3928379 1127 100.0 1436398 3410 100.0 B30 13000493 A10 39,599 600 B30 B31 B66 B67 B102 B103 4.85 B31 1660838 AVG 42,235 569 2.80 problème agrégé est le goulot d'étranglement de l'approche, et correspond à un problème 56 10 91 1 29 0.8 6 6025335 3510 99.4 31 0.7 26 1180039 8094 100.0 27 0.7 8 1321694 99.7 29 0.7 22 62085 100.0 28 0.8 8 789585 100.0 31 0.8 18 3155 100.0 321 99.7 6837244 3.40 37,680 6,710 6,510 1,312 155,080 8,530 0.1 99.5 729 100.0 1007841 100.0 1.72 41,038 6,710 6,510 1,312 133,075 9,038 0.1
	2 3 4216738 4989 100.0 B33 119181317 1216 100.0 B32 B68 1845334 3469 100.0 B69 2948951 3554 100.0 B104 2097677 3616 100.0 B105 1882524 3606 100.0 B32 667081 B33 2861996 de lot-sizing à capacité finie avec report de setup, machines parallèles, délais de production, 55 5 114 181 30 0.8 23 466260 7756 100.0 0 0.0 601 4321073 3983 100.0 29 0.7 27 82770 100.0 33 0.7 21 83002 100.0 30 0.7 19 35075 100.0 30 0.7 19 43186 100.0 742 100.0 480884 100.0 1166 100.0 1128450 100.0
	4 13215539 4146 99.8 4781314 4690 100.0 B106 123496124 1215 100.0 B34 B70 B34 16566442 arriérés et pertes de ventes. Ce problème s'est avéré NP-difficile, même sans les coûts de 303 458 32 0.6 17 7946626 6913 99.7 30 0.6 31 1880378 100.0 0 0.0 600 7824869 100.0 496 99.8 10165015 99.7
	5 6 12392793 3701 98.4 B36 114132867 1216 100.0 B35 B71 115751239 1216 100.0 B72 5652817 3296 100.0 B107 4693908 4228 100.0 B108 3453669 4800 100.0 B35 15187035 B36 14542025 setup. Plusieurs formulations de programmation linéaire mixte (MIP) sont proposées et 25 0 7 9 28 0.6 21 8878757 6468 97.7 0 0.0 601 12516305 3982 100.0 0 0.0 600 4244626 100.0 28 0.5 27 1881746 99.9 30 0.6 23 1671870 100.0 29 0.6 25 911956 100.0 613 98.7 10143799 98.0 754 100.0 9856305 100.0
	7 18773345 1741 100 9106906 1550 100 9478204 1598 100 AVG 6601255 comparées d'un point de vue théorique et expérimental. De plus, plusieurs heuristiques de 1 0 AVG 26 0.9 75 3531229 4202 99.6 AVG 28 0.9 44 879111 99.8 AVG 28 0.9 42 1231376 94.3 380 99.8 3606976 99.6
	recherche constructives et locales sont développées pour trouver des solutions de bonne
	qualité sur les instances de grande taille. Nous proposons deux ensembles d'instances
	de benchmark pour évaluer les performances des modèles et des heuristiques. Grâce	à

sité Paris Dauphine et DecisionBrain (https ://www.decisionbrain.com). DecisionBrain est une société de logiciels qui fournit des solutions avancées d'analyse et d'optimisation pour les entreprises innovantes qui souhaitent mettre en oeuvre une démarche scientifique à la prise de décisions. La réalisation de solution de planification et d'ordonnancement de la production fait partie de l'expertise de DecisionBrain. Grâce à ce contexte industriel, nous avons été confronté à différents types d'applications réelles. Dans cette thèse, nous étudions deux problèmes de planification de la production motivés par des applications réelles complexes. Dans la première partie de ce manuscrit, nous étudions un problème de planification de la production pour une entreprise de fabrication de vêtements et mettons au point un outil d'optimisation pour le résoudre. Nous proposons un framework de décomposition composé d'un modèle agrégé et d'un modèle détaillé, qui sont résolus en séquence. Le des tests expérimentaux approfondis, nous avons montré que l'heuristique constructive (appelée Heuristic First-Solution) associée à un algorithme Fix&Optimize détermine les solutions approchées s'écartant le moins des valeurs optimales. Enfin, l'ensemble de la démarche de

Nous construisons un problème complexe de lot-sizing à capacité finie basé sur une application de fabrication de vêtements. Ce problème de lot-sizing à capacité finie est composé d'éléments complexes tels que les machines parallèles, les fenêtres de temps de production, l'arriéré, les pertes de ventes et le report de setup

[START_REF] Focacci | MIP Formulations for a Rich Real-World Lot-Sizing Problem with Setup Carryover[END_REF]

. Ces caractéristiques ont été étudiées dans différents contextes de problèmes de lot-sizing. Cependant, à notre connaissance, ils sont pour la première fois considérés ensemble dans cette application.

Dans ce chapitre, nous définissons, formulons et analysons formellement le problème.

Les paramètres d'entrée du problème sont :

 En se basant sur la définition, nous remarquons que le CLSC est différent du CLSP classique par rapport à la définition de la demande. Dans CLSP, les demandes sont généralement agrégées par produits et par périodes. Ainsi, une demande est définie pour chaque produit dans chaque période. Toutefois, dans notre cas, il est important de tenir compte de la fenêtre temporelle individuelle de chaque demande en fonction de sa date de début et des dates d'échéance. Par conséquent, nous séparons le concept de produit et de demande. Chaque demande d concerne un seul produit p d à produire en quantité q d à une date r d , accompagnée de deux dates d'échéance e 1 d , e 2 d et leurs coûts de retard associés tc 1 d , tc 2 d et lc d . En conséquence, un produit peut être requis par un ensemble de demandes.

					0	tc 1 d	tc 1 d + tc 2
				0	b d	e 1 d	e 2 d	T
						Setup	Production
	min	d∈D	lc d y d +	t Figure 2.1 -Report de setup t + 1 t -1 tc 1 d y dt + tc 2 d y dt (+ d∈D,t∈T :t≥e 1 d d∈D,t∈T :t≥e 2 d	i∈N ,r∈R,t∈T
	Une pseudo-formulation peut servir à résumer le problème comme suit. Au meilleur
	de notre connaissance, c'est la première fois que ce problème de lot-sizing est étudié, nous
	l'appelons CLSC pour plus de simplicité.
	(CLSC) min Coût des ventes perdues + Coût de retard (+ Coût de setup)
			s.t. Contraintes liées à la conservation du flux de matières premières
			Contraintes de capacité des machines
			Fenêtres temporelles des demandes
			Report de setup

d Figure 2.2 -Fenêtre Temporelle de la demande Une autre différence concerne le stockage : il n' y a pas de problème de stockage, et donc pas de coût de stockage à considérer. Un produit fabriqué est directement utilisé pour satisfaire les demandes, c'est-à-dire que la livraison est immédiate. Quatre formules de programmation linéaire mixte (MIP), appelées F orm1, F orm2, F orm3 et F orm3 F L , ont été développées pour modéliser CLSC. Dans ce résumé, nous présentons uniquement la formulation F orm3.

Table 2 .

 2 1 -Résumé des instances de référence du CLSC

	Theorem 2.1. Les valeurs optimales des fonctions objectives des relaxations linéaires des
	formulations F orm1, F orm2, F orm3 et F orm3 F L , notées Obj * LP (F orm1), Obj * LP (F orm2),
	Obj * LP (F orm3) et Obj * LP (F orm3 F L), vérifie
	Obj

* LP (F orm3 F L) ≥ Obj * LP (F orm3) = Obj * LP (F orm2) ≥ Obj * LP (F orm1)

Pour pouvoir étudier expérimentalement le problème CLSC, nous générons deux ensembles d'instances de référence. L'un des ensembles est constitué d'instances réelles de l'application de fabrication de vêtements, tandis que l'autre provient d'un générateur d'instances pseudo-aléatoires conçu pour simuler des problèmes réels. Les instances de référence sont résumées dans le Tableau 2.1, dans lequel nous présentons le type d'instances (Type), sa notation (Notation), le nombre d'instances qu'il contient (Taille) et quelques commentaires. Les détails de chaque ensemble d'instances de benchmark sont donnés dans le Tableau 2.2 et le Tableau 2.3.

Table 2 .

 2 2 -Instances de référence du CLSC provenant de l'application

	Type	Instance	T	R	N	D	Γ(%)	Commentaire
	IAP-A	R1	27	3	3	313	99	
		R2	36	28	18	1188	30	
		R3	30	29	1	595	33	
	IAP-B	R5	25 30 46	668	91	
		R6	25	30	36	431	74 R5 avec horizon gelé
		R7	20	31	80	1428	40	
		R8	20	31	73	1404	41 R7 avec horizon gelé

Table 2 .

 2 3 -Instances de référence du CLSC générées pseudo-aléatoirement

	Notation Taille	T	N	M	D	Γ(%)
	IRG-A IRG-B	810 108	{4,9,13} {25} {50,75,100} {15,20,30} {500,750,1000} {75,90} {4,8,12} {1,5,10} {50,100,200} {75,90}

Table 2 .

 2 4 -Comparaison des formulations CLSC avec coût de setup

	F orm3 F L	Opt Temps Noeuds Écart LPT LPG	158 39 18641 5.66 0.5 16.20
	F orm3	Opt Temps Noeuds Écart LPT LPG	178 36 55347 3.89 0.0 31.01
	F orm2	Opt Temps Noeuds Écart LPT	175 35 49088 4.16 0.0
	F orm1	Opt Temps Noeuds Écart LPT	165 32 85970 4.64 0.0
		Para Val	T 4

Table 2 .

 2 5 -Comparaison des formulations CLSC sans coût de setup la lumière de ces résutats, nous choisissons donc la formulation la plus performante, à savoir F orm3, pour résoudre les instances IRG-B et IAP-B à l'aide du solveur MIP standard CPLEX 12.6.1 (en exploitant tous les coeurs du processeur et avec un temps limite d'une heure). Le résumé des résultats obtenus sur les instances IRG-B est reporté dans le Tableau 2.6. L'écart relatif moyen constaté entre la valeur de la solution entière obtenue en 1 heure et la valeur de la relaxation linéaire sur les instances IAP-B est supérieur à 30%. En particulier pour l'instance R5, l'écart est supérieur à 91%. Sur la base de ces tests préliminaires, nous concluons que la performance médiocre de CPLEX est dûe, d'une part, à la faiblesse de la relaxation linéaire et, d'autre part, à la taille élévée des intances, sur lesquelles l'heuristique intégrée de CPLEX n'arrive pas à trouver de bonnes solutions de départ. Par conséquent, des algorithmes heuristiques efficaces doivent être développés. Ceux-ci sont présentés dans le chapitre suivant.

	F orm3 F L	Opt Temps Noeuds Écart LPT LPG	186 60.9 16830 0.58 0.2 6.9	104 47.2 16316 7.06 1.0 15.3		Temps Noeuds Écart LPT LPG	19.5 400 0.00 0.4 0.83	241.1 0 0.00 91.4 0.00	2.2 0 0.00 1.3 0.00
	F orm3	Opt Temps Noeuds Écart LPT LPG	214 39.4 36530 0.29 0.0 16.84	127 58.4 29364 5.11 0.2 25.58		Temps Noeuds Écart LPT LPG	0.3 8 0.00 0.1 0.83	4.8 0 0.00 1.2 0.00	0.1 0 0.00 0.0 0.00
	F orm2	Opt Temps Noeuds Écart LPT	211 45.0 33768 0.32 0.0	123 40.1 26566 5.20 0.3		Temps Noeuds Écart LPT	0.3 14 0.00 0.0	11.7 0 0.00 12.7	0.1 0 0.00 0.0
	F orm1	Opt Temps Noeuds Écart LPT	205 33.0 57230 0.34 0.0	127 75.6 40526 5.10 0.1		Obj Temps Noeuds Écart LPT	442,906 0.5 51 0.00 0.1	59,153 5.8 0 0.00 1.1	10,672 0.1 0 0.00 0.1
		Para Val	4 T	9	13	Inst	R1	R2	R3

A

Table 2 .

 2 6 -Résultats computationnels : CPLEX sur IAP-B

	Characteristics	LP			MIP
	Inst T R N	D Γ	Obj Temps	Obj Temps Écart	LB #Noeuds	BestLB
	R5 25 30 46 668 91	2,935,797	79	35,511,200 3600 91.6 2,973,702	0 2,973,702
	R6 25 30 36 425 74	1,277,107	18	1,456,011 3600	7.7 1,344,501	97 1,344,501
	R7 20 31 80 1428 40	2,217,260	118	2,692,957 3601 16.7 2,244,422	29 2,244,422
	R8 20 31 73 1404 41	2,081,921	83	2,597,838 3600 18.7 2,111,181	0 2,111,181
	AVG		2,128,021	74	10,564,501 3600 33.7 2,168,451	32 2,168,451

Table 3 .

 3 1 -Résultats expérimentaux : algorithmes heuristiques sur IAP-B Tout d'abord, à l'exception de CLPEX, le temps de calcul suit toujours l'ordre PD < FSH < PD < PD + F&O < FSH + F&O sur ces 4 instances. Par contre, l'écart suit toujours l'ordre FSH > PD > PD > PD + F&O > FSH + FO. Deuxièmement, entre deux algorithmes heuristiques constructifs, il semble qu'un effort de calcul plus important ne mène pas à une meilleure qualité de solution. En moyenne, le temps de calcul de FSH est de 243 secondes alors qu'il est de 170 secondes pour l'algorithme PD. Toutefois, l'écart moyen de l'algorithme FSH est de 74,5%, soit presque le double de celui de l'algorithme PD (45,9%). Cependant, l'effort est payant lorsque l'algorithme constructif est suivi de l'algorithme d'amélioration. Avec le même mécanisme de recherche locale amélioré que l'algorithme F&O, FSH + F&O donne de meilleurs résultats que PD + F&O sur toutes les instances. Cela implique qu'une meilleure solution de départ ne signifie pas une meilleure solution finale pour l'algorithme F&O. Troisièmement, par rapport à CPLEX, l'algorithme FSH + F&O et PD + F&O parvient à fournir de meilleures solutions en un temps de calcul plus court. L'écart moyen de FSH + algorithme F&O est de 9,0% alors que l'écart moyen de PD + F&O est de 21,1%. Pour CPLEX, l'écart moyen est de 33,7%. Surtout pour l'exemple le plus difficile R5, l'écart est réduit de 91,6% (CPLEX) à 14,2% (FSH + F&O). Ceci démontre l'efficacité de nos algorithmes heuristiques développés par rapport à CPLEX. Pour l'application de fabrication de vêtements, une solution acceptable est fournie dans un délai raisonnable (< 12 minutes) par notre algorithme heuristique. Enfin, nous observons que l'algorithme F&O améliore relativement la qualité de la solution, surtout celle obtenue avec l'algorithme FSH. Par conséquent, l'algorithme F&O reste efficace pour résoudre LSP ainsi que pour de nombreux cas dans la littérature malgré la simplicité de sa structure.Pour les deux benchmark de référence, tous les algorithmes heuristiques ont un comportement constant sur la qualité de la solution. En résumé, l'algorithme PD ou PD + F&O a l'avantage de la vitesse, et peut être utilisé lorsque le temps de calcul est une ressource rare. L'algorithme FSH et l'algorithme FSH + F&O ont un temps de calcul non négligeable, surtout lorsque la taille du problème devient trop grande. Cependant, parmi tous les algorithmes développés, ce sont eux qui retournent la meilleure solution.

		CPLEX		FSH	PD	FSH+FO	PD+FO
	Inst	Obj Temps Écart	Temps Écart	Temps Écart	Temps Écart	Temps Écart
	R5	35,511,200 3600 91.6	216 79.0	74 48.2	662 14.2	478 35.8
	R6	1,456,011 3600	7.7	64 76.7	7 45.1	492	5.9	181 19.0
	R7	2,692,957 3601 16.7	376 74.6	315 40.9	823	9.2	756 12.0
	R8	2,597,838 3600 18.7	316 67.8	285 49.2	762	6.9	734 17.7
	MOY 10,564,501 3600 33.7	243 74.5	170 45.9	685	9.0	537 21.1

 ω i+1 , . . . , ω n , ω 1 , ω 2 , . . . , ω i-1 , ω i (4.1)Il existe un sous-ensemble Ω = {ω i 1 , ω i 2 , . . . , ω in m } tel que α 1 , ω i 1 , ω i 2 , . . . , ω in 1 , α 2 , ω i n 1 +1 , ω i n 1 +2 , . . . , ω in 2 , α 3 , . . . , α m , ω i n m-1 +1 , . . . , ω in

m est égal à β(i).

Table 4 .

 4 1 -Comparaison des formulations : résulats computationnels

						MIP		LP
	Inst	Obj Temps Écart	LB	Cols	Bin Lignes Noeuds	Obj Temps
	AG-SO 42921	600	3.8 37383 102501 102300	320 15448	11486	6
	FL-SO 42200	601	2.2 40516 102851 102300	770 27462	39991	15
	AG-PO 42277	581	2.4 40612	6712	6511 1312 159063	9038	0
	FL-PO 42178	560	2.1 41188	7062	6511 1762 154882	37138	0

Solve F S M (S) with an MIP solver by considering the subset of variables w st , s ∈ S .

2005 2,860,220 0.2 1,145,018 234,477

1468

3,376,944 0.2 1,141,011 233,656

2657 5,446,850 0.3 1,435,590 293,980

1431 5,276,868 0.3 1,448,209 296,564

Acknowledgments

Appendix A Data Analysis and Computational

Results